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Abstract
The invention of the laser was certainly one of the most important technological de-
velopments of the 20th century. Countless laser applications in our daily life prove the
significance of the process of stimulated emission of photons. Besides photons, however,
also phonons can be amplified by stimulated emission. This gives rise to the concept of
a phonon laser, which represents the sonic equivalent to an optical laser. In recent years,
phonon lasers could even be realized experimentally.

While optical lasers have been used and studied for more than five decades, the theory
of phonon lasers is much less developed. One of the missing links, for example, is a
complete phonon laser linewidth theory. This thesis deals with the dependence of the
phonon laser characteristics on various system and operating parameters. In particular,
the behavior of the linewidth in the vicinity of an exceptional point is examined. Excep-
tional points occur when the eigenvalues and the corresponding eigenstates of a system
coalesce. As we show on a theoretical level, such a non-Hermitian degeneracy results
in nontrivial broadening of the phonon laser linewidth – a quantity that should also be
accessible in the experiment.
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1 Introduction
The impact of the laser on science and our daily life is tremendous. Although at first
the laser was only of scientific interest, its enormous range of technological applications
cannot be overestimated. Nowadays, lasers can be found nearly everywhere [1] – from
barcode scanners in the supermarket through medical diagnostic and surgery tools to
laser rangefinders – and usually we get in touch with laser applications on a daily basis.
Moreover, countless industrial and scientific methods rely on the special properties
of laser light [2], which is characterized by high intensity and coherence. The main
principle behind laser operation is the process of stimulated emission.

Recently, it turned out that this principle can be applied not only to photons but also
to phonons. Based on this understanding, the idea of a phonon laser was introduced
[3, 4]. Phonon lasers can be considered as the sonic equivalent to conventional photon
lasers. Therefore, a phonon laser is often also called SASER, which is the acronym
for sound amplification by stimulated emission of radiation. The idea of a coherent
sound beam gives rise to promising possibilities of application [5]. Especially the high
frequencies available (up to the THz range) make phonon lasers potentially useful, e.g.
for high-resolution ultrasound imaging or probing and manipulating electronic devices
at nanoscale level. However, phonon lasers are not yet ready for industrial applications,
although a considerable number of successful experiments has been reported [6–8].

While optical lasers are well established in science and their characteristics are already
described by a complete laser theory [9, 10], the relatively novel field of phonon lasers
still leaves many unanswered questions. One of these open questions, for example, is the
physical mechanism behind the phonon laser linewidth and its dependence on different
system and operational parameters. In this context, also the influence of so-called
exceptional points (EPs) on the system behavior is of enormous physical interest. At an
EP, some of the eigenvalues and the corresponding eigenvectors of a system coalesce,
which gives rise to novel features and fascinating new physics. Examples for the effects
of EPs in lasers are the reversion of the pump dependence [11, 12] or the loss-induced
suppression and revival of lasing [13]. Moreover, the laser linewidth was predicted to
broaden in the vicinity of an EP. Therefore, it might be interesting to study the behavior
of a phonon laser in connection with the influence of EPs as a first step into a new field
of physics.

This thesis intends to study the properties of a phonon laser on a theoretical level.
First, a set of dynamical system equations will be derived. With the help of this set of
equations, several characteristic properties of the phonon laser will be investigated, as
for example the dependence of the phonon laser threshold or amplification on various
system and operating parameters. In particular, the linewidth of the phonon laser shall
be calculated. The main focus of our studies will be the system behavior in the vicinity
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1 Introduction

of an exceptional point. The theoretical results will be compared to experimental data
provided by the Micro/Nano Photonics Lab from Washington University in St. Louis.
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2 Theory

2.1 Phonon lasers

2.1.1 Concept
In a nutshell, a laser consists of an active medium (gain medium), pumped by an external
non-coherent source, and of a resonator. In optical lasers, the gain medium is often
represented by an ensemble of atoms with different discrete energy levels. The pump
mechanism excites the atoms into an upper energy level. If an excited electron drops to a
lower energy level (e.g. to the ground state), the liberated energy (which is given by the
difference between the binding energies of the two involved energy levels, ∆E = E2−E1)
is emitted in form of a photon with frequency ω = ∆E/~. Such a decay of an excited
state with simultaneous emission of a photon can happen spontaneously or due to the
interaction with another photon of the same frequency. The former process is called
spontaneous emission, which occurs because of the limited lifetime of the excited state.
The latter process (which is fundamental for a laser) is known as stimulated emission and
was first discussed by Einstein in 1916 [14]. The principle of this process is schematically
shown in fig. 2.1. The crucial point about the stimulated emission is that the emitted
photon has the same frequency, polarization, phase, and direction of travel as the incident
photon. As a result, laser light is characterized by a high degree of coherence and high
intensity due to constructive interference of the emitted photons. Photons can, however,
also be absorbed by the atoms, causing a transition from the lower to the upper level.
While stimulated emission leads to amplification, absorption causes the attenuation of
light in the gain medium. Thus, it is important for the laser operation that the upper
energy level is always more populated than the lower level (population inversion), which
must be ensured by a sufficiently high pump power.

As a matter of fact, the principle of stimulated emission can be directly applied to
phonons as well. Therefore, a phonon laser can be realized with any multi-state system
where transitions between the energy levels are phonon mediated. In recent years, many
different theoretical studies and successful experimental attempts to observe phonon
laser action have been reported. Vahala et al. have realized a phonon laser where a single
trapped ion interacts with a blue-detuned laser beam to coherently amplify phonons [6].
In contrast, the system of Beardsley et al. consists of a doped semiconductor superlattice
with an electrical bias applied to it [7]. Another very different approach was presented by
Grudinin et al. [8]. Their experiment, which is very similar to the system considered in
this thesis (see section 2.1.2), makes use of the optomechanical interaction between two
optical modes and one mechanical mode in a system of two coupled microresonators.
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2 Theory

Figure 2.1: Principle of stimulated emission: the system with energy levels E1 and E2 is
initially prepared in the upper level E2. Due to the interaction with an incident photon with
energy ~ω = E2 − E1, the system performs a transition from the upper to the lower energy
level while emitting an additional photon with the same energy, phase, polarization, and
direction as the incident photon.

Kabuss et al. have presented a scheme for the generation of coherent phonons by an
optically driven semiconductor quantum dot coupled to an acoustic nanocavity [15, 16].
Note that an interaction between electromagnetic radiation and micromechanical motion
is the central element in the field of cavity optomechanics [17]. The origin of this
interaction lies in the radiation pressure forces induced through the momentum carried
by light. Important for a phonon laser in this context is the possibility of Raman
scattering [18, 19], a process which takes place due to the interaction between the light
and the vibrations in an optomechanical cavity. One can distinguish here between Stokes-
and anti-Stokes-scattering. In a Stokes-scattering process, a photon loses part of its
energy which is transferred into the vibrational field by creating a phonon. If this process
is stimulated by already existing phonons, then the phonons are coherently amplified
and the system works as a phonon laser. In contrast, anti-Stokes-scattering means that
a photon gains some energy which is taken from the vibrational field by annihilating a
phonon. This effect can be used for cavity optomechanical cooling [20].

2.1.2 Experimental setup
In this thesis, we consider the system that was implemented in the Micro/Nano Photonics
Lab of Washington University in St. Louis (see fig. 2.2). It consists of two coupled
whispering gallery mode resonators (WGMRs)1, similar to the system presented in [8].
The coupling between the two optical resonators is induced by the evanescent light field
and the coupling strength is determined by the distance between the two discs. Energy is

1 WGMRs consist of miniaturized dielectric structures having circular symmetry, which sustain electro-
magnetic waves that circulate within the structure. They are ideally suited for studying optomechanics
as they combine ultra high finesse and Q-factors (corresponding to giant photon storage times) with
microscale mode volume [21, 22].
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2.1 Phonon lasers

Figure 2.2: Phonon laser system considered in this thesis. The system consists of the two
micro resonators µR1 and µR2 which contain the optical modes a1 and a2. Furthermore, the
first resonator supports a mechanical mode with resonance frequency ωm. Additional loss
can be introduced to the second resonator with a chromium nano-tip. The system is pumped
via an optical fiber with input field ain and output field aout. Figure courtesy of Şahin Özdemir
(Washington University in St. Louis)2.

pumped into the system through a tapered optical fiber which is evanescently coupled
to the first optical cavity. Additionally, the first resonator supports a mechanical mode
which acts as the lasing mode in the system. In order to add some additional loss to
the system, the second WGMR is coupled to a chromium nano-tip. The amount of
additional loss is controlled by varying the distance between the tip and the edge of
the WGMR. Without interaction, the two WGMRs have the same optical resonance
frequency. However, due to the coupling of the two disks, the eigenmodes of the system
are changed and a frequency splitting between the optical modes can be observed if
the coupling constant is large compared to the optical dissipation rates. The resulting
eigenmodes of the system are called supermodes [8]. A phonon laser can now be realized
in two ways. The first possibility is to resonantly pump the optical supermode with the
higher frequency. In this way, one gets an optical two-level system with a population
inversion. Phonons are then coherently amplified by stimulated emission because of
transitions between the two supermode levels. The frequency splitting between the two
supermodes must be approximately equal to the mechanical resonance frequency. The
second possibility to realize a phonon laser with this system is to non-resonantly pump
one of the two supermodes where the difference between the pump frequency and the
supermode frequency corresponds exactly to the mechanical resonance frequency. If the
system is operating in this way, the respective supermode serves as the Stokes-mode in
a stimulated Raman scattering process, similar to the case of a Raman laser [23]. The
difference between the energy of the pump photons and the energy of the supermode
photons is then available for the creation of a new phonon. The latter method is the one
that was used in the actual experiment.

2 Private communication, 2015.
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2 Theory

2.1.3 Theoretical description
Hamiltonian

The system presented in section 2.1.2 is theoretically described by the Hamiltonian

Ĥ = Ĥfree + Ĥint + Ĥdrive , (2.1)

where Ĥfree is the free Hamiltonian of the uncoupled optical and mechanical modes,
Ĥint is the interaction part, and Ĥdrive represents the optical driving of the system. In
our model, the optical and mechanical modes are represented by quantum harmonic
oscillators. Therefore, the first part of eq. (2.1) is given by

Ĥfree = ~ωcâ
†

1â1 + ~ωcâ
†

2â2 + ~ωmb̂†b̂ , (2.2)

where ωc is the resonance frequency of the (uncoupled) optical cavities and ωm is the
resonance frequency of the mechanical mode. The annihilation (creation) operators for
the two optical modes and for the mechanical mode are denoted by â1,2 (â†1,2) and b̂ (b̂†),
respectively. Since both photons and phonons are bosons, their creation and annihilation
operators satisfy the usual bosonic commutator relations[

m̂ , n̂†
]
≡ m̂n̂† − n̂†m̂ = δmn , (2.3)[

m̂ , n̂
]

=
[
m̂† , n̂†

]
= 0 , (2.4)

where δmn is the Kronecker delta and m̂ and n̂ can be any of the operators â1, â2, or b̂.
The interaction part in eq. (2.1) consists of the interaction between the two optical modes
and the optomechanical interaction in the first cavity,

Ĥint = Ĥ(opt)
int + Ĥ(om)

int . (2.5)

The first term in eq. (2.5) depends on the inter-resonator coupling strength κ (coupling
strength between the two optical modes) and is given by

Ĥ(opt)
int = ~κ

(
â†1â2 + â†2â1

)
. (2.6)

The optomechanical interaction part in eq. (2.5) can be easily obtained by considering that
the resonance frequency of the first cavity is modulated by the mechanical motion and
hence is a function of the mechanical displacement x, which is given by the expectation
value of the mechanical displacement operator x̂ = x0

(
b̂ + b̂†

)
, where x0 =

√
~/ (2mωm)

is the zero-point fluctuation amplitude of the mechanical oscillator with effective mass
m. A first order Taylor series expansion yields

ωc(x) ≈ ωc + x
∂ωc

∂x
+ · · · . (2.7)

We can now define the optical frequency shift per displacement [17]

g B −
∂ωc

∂x
, (2.8)
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2.1 Phonon lasers

which directly leads to the optomechanical interaction Hamiltonian

Ĥ(om)
int = −~gx0â†1â1

(
b̂ + b̂†

)
. (2.9)

A more detailed derivation of the optomechanical interaction term is given in [24]. The
total interaction Hamiltonian then reads

Ĥint = ~κ
(
â†1â2 + â†2â1

)
− ~gx0â†1â1

(
b̂ + b̂†

)
. (2.10)

As the system is driven by a coherent continuous-wave laser, the last term in eq. (2.1) is
given by

Ĥdrive = i~
(
Ωe−iωdtâ†1 − H.c.

)
, (2.11)

where Ω is the driving strength, ωd is the driving frequency, and H.c. denotes the
Hermitian conjugate. Combining the results of eqs. (2.2), (2.10) and (2.11) finally yields
the complete system Hamiltonian

Ĥ = ~ωc

(
â†1â1 + â†2â2

)
+ ~ωmb̂†b̂ + ~κ

(
â†1â2 + â†2â1

)
− ~gx0â†1â1

(
b̂ + b̂†

)
+ i~

(
Ωe−iωdtâ†1 − H.c.

)
. (2.12)

For convenience, the optical modes are transformed to a frame rotating at the driving
frequency ωd, i.e. âold

1,2 = e−iωdtânew
1,2 . To this end, we apply the unitary transformation

Û = eiωdt
(
â†1â1+â†2â2

)
, (2.13)

which generates a new Hamiltonian with time-independent driving of the form

Ĥ = ÛĤoldÛ† − i~Û
∂Û†

∂t
= −~∆

(
â†1â1 + â†2â2

)
+ ~ωmb̂†b̂ + ~κ

(
â†1â2 + â†2â1

)
− ~gx0â†1â1

(
b̂ + b̂†

)
+ i~

(
Ωâ†1 − H.c.

)
, (2.14)

where ∆ = ωd − ωc is the detuning between the driving laser frequency and the optical
cavity resonance frequency.

Heisenberg equations of motion

Using the Hamiltonian eq. (2.14), we can derive the Heisenberg equations of motion,
which can be written for an arbitrary operator ô according to

d
dt

ô =
i
~

[
Ĥ , ô

]
. (2.15)

However, the Hamiltonian eq. (2.14) does not take into account the interaction of the
system with a heat bath. These interactions are treated within the framework of input-
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2 Theory

output theory [25, 26] and extend eq. (2.15) by adding terms standing for loss and
quantum fluctuations,

d
dt

ô =
i
~

[
Ĥ , ô

]
− γô + Γ̂ , (2.16)

where γ is the decay rate of the operator ô and Γ̂ is a statistical noise operator. The
complete Heisenberg equations of motion for our system are then given by

˙̂a1(t) = (i∆ − γ1) â1(t) − iκâ2(t) + igx0â1(t)
(
b̂(t) + b̂†(t)

)
+ Ω + Γ̂1(t) , (2.17)

˙̂a2(t) = (i∆ − γ2) â2(t) − iκâ1(t) + Γ̂2(t) , (2.18)
˙̂b(t) = (−iωm − γm) b̂(t) + igx0â†1(t)â1(t) + Γ̂b(t) , (2.19)

in which γ1,2 are the optical decay rates, γm is the mechanical decay rate, and Γ̂1,2 and Γ̂b

are the optical and mechanical noise operators. For the sake of completeness, we also
present the set of eqs. (2.17) to (2.19) in terms of the mechanical displacement operator
x̂ = x0

(
b̂ + b̂†

)
,

˙̂a1(t) = (i∆ − γ1) â1(t) − iκâ2(t) + igâ1(t)x̂(t) + Ω + Γ̂1(t) , (2.20)
˙̂a2(t) = (i∆ − γ2) â2(t) − iκâ1(t) + Γ̂2(t) , (2.21)

m ¨̂x(t) + mγm ˙̂x(t) = −mω2
m x̂(t) + ~gâ†1(t)â1(t) + Γ̂x(t) , (2.22)

where we have introduced the displacement noise operator Γ̂x.
The quantum noise in eqs. (2.17) to (2.19) is assumed to be Markovian3. Therefore,

the noise operators are delta-correlated and satisfy the correlation relations [26]〈
Γ̂1(t) Γ̂

†

1(t′)
〉

= 2γ1

(
n̄(opt)

th + 1
)
δ(t − t′) , (2.23)〈

Γ̂
†

1(t) Γ̂1(t′)
〉

= 2γ1n̄(opt)
th δ(t − t′) , (2.24)〈

Γ̂2(t) Γ̂
†

2(t′)
〉

= 2γ2

(
n̄(opt)

th + 1
)
δ(t − t′) , (2.25)〈

Γ̂
†

2(t) Γ̂2(t′)
〉

= 2γ2n̄(opt)
th δ(t − t′) , (2.26)〈

Γ̂b(t) Γ̂
†

b(t′)
〉

= 2γm

(
n̄(mech)

th + 1
)
δ(t − t′) , (2.27)〈

Γ̂
†

b(t) Γ̂b(t′)
〉

= 2γmn̄(mech)
th δ(t − t′) , (2.28)

with the average number of thermally excited photons n̄(opt)
th ≈

(
e~ωc/kBT − 1

)−1
and the

average number of thermally excited phonons n̄(mech)
th ≈

(
e~ωm/kBT − 1

)−1
, where T is the

environmental temperature and kB is the Boltzmann constant. For all other combinations
of the noise operators, the correlation functions vanish. In particular, the statistical

3 It is thus memoryless, i.e. the probability distribution of a future state does not depend on previous
events but only on the current state.
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2.1 Phonon lasers

averages of the quantum noise operators are all equal to zero,〈
Γ̂1(t)

〉
=

〈
Γ̂2(t)

〉
=

〈
Γ̂b(t)

〉
= 0 . (2.29)

Note that the angle brackets in eqs. (2.23) to (2.29) mean a statistical average over many
different noise realizations.

c-number Langevin equations

Equations (2.17) to (2.19) represent a set of quantum operator Langevin equations.
In order to solve these equations numerically and to simplify the analysis, the set of
operator equations has to be transformed to a set of corresponding c-number equations,
where the c-numbers are given by the expectation values of the respective operators.
While c-numbers commute with each other, operators in general do not and therefore
all operator products have to be preliminarily ordered. Specifically, one has to define
a correspondence between a product of operators and a product of c-numbers. Here,
we follow the procedure outlined in chapter 12 of [27] and choose the normal ordering
â†1, â

†

2, b̂
†, b̂, â2, â1. Since the system operators satisfy the commutator relations eqs. (2.3)

and (2.4), the operator equations eqs. (2.17) to (2.19) are already in the chosen order and
we can immediately write the c-number Langevin equations

ȧ1(t) = (i∆ − γ1) a1(t) − iκa2(t) + igx0a1(t) (b(t) + b∗(t)) + Ω + Γ1(t) , (2.30)
ȧ2(t) = (i∆ − γ2) a2(t) − iκa1(t) + Γ2(t) , (2.31)

ḃ(t) = (−iωm − γm) b(t) + igx0a∗1(t)a1(t) + Γb(t) . (2.32)

The functions Γ in eqs. (2.30) to (2.32) are again the Langevin noise forces with the
properties

〈Γk(t)〉 = 0 , (2.33)
〈Γk(t) Γl(t′)〉 = Dkl δ(t − t′) , (2.34)〈
Γ∗k(t) Γl(t′)

〉
= Dk∗l δ(t − t′) , (2.35)

where the indices k and l can be any of {1, 2, b}. The diffusion coefficients Dkl and Dk∗l,
however, are not necessarily the same as those in eqs. (2.23) to (2.28) but have to be
determined such that also the equations of motion for the second moments are identical
to the corresponding normally ordered operator equations. As an example, we calculate
the diffusion coefficient D1b, which is defined by the relation

〈Γ1(t) Γb(t′)〉 = D1b δ(t − t′) . (2.36)
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2 Theory

With the help of the operator equations of motion eqs. (2.17) and (2.19), we find that

d
dt

〈
â1(t) b̂(t)

〉
=

〈
˙̂a1(t) b̂(t) + â1(t) ˙̂b(t)

〉
= (i∆ − γ1)

〈
â1 b̂

〉
− iκ

〈
â2 b̂

〉
+ igx0

〈
â1

(
b̂ + b̂†

)
b̂
〉

+ Ω
〈
b̂
〉

+
〈
Γ̂1 b̂

〉
+ (−iωm − γm)

〈
â1 b̂

〉
+ igx0

〈
â1 â†1â1

〉
+

〈
â1 Γ̂b

〉
= (i∆ − iωm − γ1 − γm)

〈
â1 b̂

〉
− iκ

〈
â2 b̂

〉
+ igx0

〈
â1 b̂ b̂ + â1 b̂† b̂

〉
+ Ω

〈
b̂
〉

+ igx0

〈
â1 â†1â1

〉
+

〈
Γ̂1 b̂

〉
+

〈
â1 Γ̂b

〉
. (2.37)

Evidently, the term igx0

〈
â1 â†1â1

〉
is not in the chosen order. However, using the commu-

tator relations eqs. (2.3) and (2.4), this term can be rewritten and brought into normal
order according to

igx0

〈
â1 â†1â1

〉
= igx0

〈(
â†1â1 +

[
â1 , â†1

])
â1

〉
= igx0

〈
â†1â1â1 + â1

〉
. (2.38)

Furthermore, it can be shown that the system operators together with the corresponding
noise operators satisfy the relation4 [28]〈

Γ̂m(t) n̂(t)
〉

+
〈
m̂(t) Γ̂n(t)

〉
= D̂mn , (2.39)

in which m̂ and n̂ can be any of the system operators (â1, â2, or b̂), Γ̂m and Γ̂n are the
corresponding noise operators, and D̂mn denotes the diffusion coefficient on the operator
level, which is defined by 〈

Γ̂m(t) Γ̂n(t′)
〉

= D̂mn δ(t − t′) . (2.40)

Therefore, the sum of the last two terms in eq. (2.37) can be replaced by the respective
diffusion coefficient D̂1b, which is equal to zero,〈

Γ̂1 b̂
〉

+
〈
â1 Γ̂b

〉
= D̂1b = 0 . (2.41)

Inserting the results of eqs. (2.38) and (2.41) into eq. (2.37) yields

d
dt

〈
â1(t) b̂(t)

〉
= (i∆ − iωm − γ1 − γm)

〈
â1 b̂

〉
− iκ

〈
â2 b̂

〉
+ igx0

〈
â1 b̂ b̂ + â1 b̂† b̂

〉
+ Ω

〈
b̂
〉

+ igx0

〈
â†1â1 â1

〉
+ igx0 〈â1〉 . (2.42)

4 An equivalent relation holds for the c-number quantities (a1, a2, and b) and the corresponding c-number
noise forces (Γ1, Γ2, and Γb).
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Now, we can perform the same calculation for the c-number quantities, where we use
eqs. (2.30) and (2.32) and the fact that c-numbers commute with each other. The result is

d
dt
〈a1(t) b(t)〉 = (i∆ − iωm − γ1 − γm) 〈a1 b〉 − iκ 〈a2 b〉

+ igx0 〈a1 b b + a1 b∗ b〉 + Ω 〈b〉 + igx0
〈
a∗1a1 a1

〉
+ D1b . (2.43)

By requiring the left-hand sides of eqs. (2.42) and (2.43) to be equal, the diffusion
coefficient D1b is found to be given by

D1b = igx0 〈a1〉 . (2.44)

For our system, the diffusion coefficient D1b is indeed the only one that differs from the
corresponding operator diffusion coefficient. Consequently, the remaining non-vanishing
c-number diffusion coefficients are given by

D1∗1 = 2γ1n̄(opt)
th , (2.45)

D2∗2 = 2γ2n̄(opt)
th , (2.46)

Db∗b = 2γmn̄(mech)
th . (2.47)

In order to study the behavior of the phonon laser, eqs. (2.30) to (2.32) can be solved
numerically, where it has to be ensured that the noise is implemented such that the
relations for the diffusion coefficients eqs. (2.44) to (2.47) are satisfied. This procedure
is explained in section 3.1 in more detail.

2.2 Laser linewidth
One of the most important properties of laser radiation is the intrinsic linewidth which
arises because of quantum and thermal fluctuations. Even before the first laser was
experimentally realized, Schawlow and Townes have found a fundamental limit for the
laser linewidth which is given by the famous Schawlow-Townes formula [29]

∆ωST =
~ω0γ

2
0

2P
, (2.48)

where ω0 is the laser frequency, γ0 is the passive cavity resonance width, and P is the
output power of the laser. During the following decades, several multiplicative correction
factors to the Schawlow-Townes formula have been introduced, leading to an improved
linewidth formula of the form

∆ω =
~ω0γ̃

2

2P
· nsp ·

(
1 + α2

)
· K . (2.49)

The first correction is the bad cavity factor γ̃ [30], which arises if the gain linewidth
γ⊥ is on the order of or smaller than the passive cavity resonance width γ0 and causes
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the substitution of γ0 in eq. (2.48) with γ̃ =
2γ⊥γ0

2γ⊥+γ0
. The second correction results from

the incomplete inversion of the gain medium and is referred to as spontaneous emission
factor nsp = N2

N2−N1
[31], where N2 and N1 are the spatially averaged populations in the

upper and lower states of the lasing transition. Another modification of the linewidth is
given by the Henry α factor [32], which is caused by the nonlinear coupling between
the amplitude and phase fluctuations of the laser field. Finally, the laser linewidth is
enhanced by the Petermann factor K [33]. Due to the presence of the gain medium as
well as the openness of the laser cavity, the modes are not power-orthogonal, which
results in an enhancement of the noise power [34–36]. Such behavior has also been
experimentally verified [37, 38].

The correction factors in eq. (2.49) have been derived under certain approximations
and do not fully consider the space-dependence of the electric fields or nonlinear effects
like spatial hole-burning. In recent years, a linewidth theory which also takes such
effects into account has been proposed [39–41]. This theory is based on the steady-state
ab initio laser theory (SALT) [42, 43]. However, the equations of our phonon laser
system eqs. (2.30) to (2.32) have a different structure as the conventional laser equations
treated in the framework of SALT. Therefore, SALT is not directly applicable and the
phonon laser linewidth has to be calculated numerically as described in section 3.3.

2.3 Exceptional Points
An important influence on the behavior of lasers is given by the possibility of inducing
so-called exceptional points. The term exceptional point (EP) has been introduced by
Kato [44] and it refers to a special property of non-Hermitian matrices [45–47]. As
opposed to common Hermitian degeneracies, an EP occurs when not only some of
the eigenvalues of a system but also the corresponding eigenvectors coalesce. As an
example, let us consider the following non-Hermitian 2 × 2 matrix

M =

(
a − ib κ
κ c − id

)
(2.50)

with real parameters a, b, c, d, and κ. By varying these parameters, one can now induce
an EP in the matrix M. Here we keep a, b, and c constant, e.g. a = b = c = 1, and vary
the parameters d and κ. The behavior of the eigenvalues for this situation is illustrated in
fig. 2.3. Obviously, the eigenvalue sheets can be divided into two regions – one region
where the real parts of the two eigenvalues are equal and the imaginary parts differ and
another region where the real parts differ and the imaginary parts are equal. The feature
along the border between these regions, where both real and imaginary parts of the
eigenvalues are equal, could be called an exceptional line. Thus, it is possible to induce
an EP for any given value of κ by varying the parameter d, which is very similar to the
procedure followed in the experiment as described in section 2.3.2.

The appearance of EPs leads to many interesting phenomena in a wide range of
physical problems. EPs can have drastic effects in the above-threshold behavior of

12
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Figure 2.3: Eigenvalues of the non-Hermitian matrix M (eq. (2.50)) as a function of d and
κ for constant parameters a = b = c = 1. The left picture shows the real part and the right
picture shows the imaginary part of the two eigenvalues λ.

lasers, as for instance a counter-intuitive laser turn-off although the overall pump power
deposited in the system is increased [11, 12] or the opposite effect of switching on
although the total loss of the system is increased [13]. Another example for the influence
of EPs is the state-switching in a system of coupled oscillator modes caused by an
adiabatic encircling of an EP [48, 49]. Furthermore, the influence of EPs on parity-time-
symmetric (PT -symmetric) systems is of special interest [50]. It was shown that also a
non-Hermitian Hamiltonian can have an entirely real spectrum if the system satisfies the
condition of PT -symmetry [51]. A symmetry-breaking, where the eigenvalues become
complex, is always connected with the occurrence of an EP in the system [52–55].

2.3.1 Influence on the laser linewidth
The influence of EPs on the laser linewidth is subject of enormous physical interest.
The closer a system is steered towards an EP, the more its eigenmodes approach each
other. In other words, the eigenmodes become more and more non-orthogonal in the
vicinity of an EP. According to the Petermann-theory (see section 2.2), this leads to
an additional linewidth enhancement which should reach its maximum exactly at the
EP [56]. Although there exist experiments where exceptional points have been induced
in lasers (see e.g. [12, 13]), the linewidth broadening behavior in the vicinity of the
EP could not be experimentally verified. The reason for that is that the currently
available spectrum analyzers cannot resolve the laser linewidth for the relevant laser
frequencies (∼ 1012 − 1015 Hz). The linewidth of mechanical oscillations with MHz
to THz frequencies, however, can be measured more precisely. Therefore, it would be
desirable to investigate the phonon laser linewidth at an EP. However, the EP in our
system does not concern the mechanical mode but only the optical modes, as outlined
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in section 2.3.2. The situation is thus more complicated than in an optical laser and the
Petermann-theory is not directly applicable. Nevertheless, the influence of EPs leads to
interesting features as it is shown in chapter 4.

2.3.2 Exceptional points in phonon lasers
In our phonon laser system, only one mechanical mode is excited. Thus, the EP cannot
be induced in the mechanical part of the system but rather in the optical part, which
contains two optical modes. This can be achieved by varying several system parameters.
If we take a look on eqs. (2.17) and (2.18) and ignore the optomechanical interaction,
we can write down the equations for the two coupled optical modes alone,

˙̂a1(t) = (i∆ − γ1) â1(t) − iκâ2(t) + Ω + Γ̂1(t) , (2.51)
˙̂a2(t) = (i∆ − γ2) â2(t) − iκâ1(t) + Γ̂2(t) . (2.52)

Equations (2.51) and (2.52) can be reformulated as a matrix equation,

d
dt

(
â1(t)
â2(t)

)
= −i

(
−∆ − iγ1 κ

κ −∆ − iγ2

)
︸                         ︷︷                         ︸

M

(
â1(t)
â2(t)

)
+

(
Ω + Γ̂1(t)

Γ̂2(t)

)
. (2.53)

The eigenvalues of this system can be found by solving the characteristic equation

∣∣∣M − λ1∣∣∣ =

∣∣∣∣∣∣−∆ − iγ1 − λ κ
κ −∆ − iγ2 − λ

∣∣∣∣∣∣ = 0 , (2.54)

which leads to the solutions for the complex supermode frequencies

λ± = −∆ − i
γ1 + γ2

2
±

√
κ2 −

(γ2 − γ1)2

4
. (2.55)

The corresponding eigenvectors (supermodes) are defined by the equation

(M − λ±1) v± = 0 (2.56)

and the solutions read

v± =
1

N±

i (γ2 − γ1) ∓
√

4κ2 − (γ2 − γ1)2

2κ

 , (2.57)
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Figure 2.4: Frequencies ω± = Re(λ±) (left) and dissipation rates γ± = −Im(λ±) (right) of the
supermodes â± as a function of γ2. For simplicity, we chose the dimensionless parameters
∆ = 0, κ = 2, and γ1 = 1.

with the normalization constants

N± =


√

8 κ if
[
4κ2 − (γ2 − γ1)2

]
≥ 0√

4κ2 +

(
γ2 − γ1 ∓

√
(γ2 − γ1)2

− 4κ2

)2

if
[
4κ2 − (γ2 − γ1)2

]
< 0

. (2.58)

Therefore, the supermodes are given by linear combinations of the cavity modes â1 and
â2,

â±(t) =
1

N±

[(
i (γ2 − γ1) ∓

√
4κ2 − (γ2 − γ1)2

)
â1(t) + 2κâ2(t)

]
. (2.59)

The real parts of the complex supermode frequencies eq. (2.55) represent the new
supermode resonant frequencies ω± = Re(λ±) and the negative imaginary parts are the
corresponding dissipation rates γ± = −Im(λ±). If the term under the square root in
eqs. (2.55) and (2.59) vanishes, i.e. if 4κ2 = (γ2 − γ1)2, then the two eigenvalues as well
as the corresponding eigenvectors coalesce. This situation defines the EP. Therefore, an
EP can be induced by controlling the parameters κ, γ1, and γ2. In our system, the loss in
the second WGMR is modified by adding extra loss through the tip, i.e. γ2 → γ2,0 + γtip,
where γ2,0 is the intrinsic loss of the second WGMR and γtip is the loss induced by the
tip. The values of γ1 and κ were kept constant in the experiment. Figure 2.4 shows the
typical behavior of the supermode frequencies and dissipation rates in the vicinity of an
EP.

Finally, it should be recalled that the EP only applies to the optical part of the system.
Thus, there is no EP regarding the (lasing) mechanical mode. Consequently, we have a
different situation as in [12, 13], where the EP directly concerned the lasing modes.
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3.1 Numerical solution of stochastic differential
equations

Over the years, a huge variety of methods for the solution of differential equations has
been developed. The common methods which are valid for the solution of ordinary dif-
ferential equations (ODEs), however, are not directly applicable to stochastic differential
equations (SDEs). SDEs are equations of the form

d
dt

x(t) = f (x(t), t, ξ(t)) , (3.1)

where f is an arbitrary function of the variable x(t) itself, the time t, and a stochastic
process ξ(t). For our purposes, it is sufficient to reduce the considerations to a simpler
form of equations,

d
dt

x(t) = f (x(t)) + ξ(t) , (3.2)

where the function f only depends on the variable x and the stochastic process appears
in the form of an additive noise term5. The stochastic process ξ(t) is assumed to be a
Gaussian white noise with the properties

〈ξ(t)〉 = 0 , (3.3)
〈ξ(t) ξ(t′)〉 = D δ(t − t′) , (3.4)

where the diffusion coefficient D determines the noise strength. Gaussian means that
the values of the noise term follow a normal distribution with zero mean and variance
D. The white noise is a non-analytic function and can be defined as the derivative of a
special stochastic process, namely the Wiener process W(t)6,

ξ(t) =
d
dt

W(t) . (3.5)

Examples for typical realizations of a Wiener process are shown in fig. 3.1.
As in numerical calculations time takes always discrete values, we aim to write the

5 For simplicity, all quantities are assumed to be real at this point. However, the concept can be easily
transferred to complex numbers.

6 The Wiener process is a continuous-time stochastic process which is, for example, used to describe
Brownian motion. It can be interpreted as the continuous limit of a one-dimensional random walk.
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t

W(t)

Figure 3.1: Three different trajectories of a Wiener process W(t).

formal solution of eq. (3.2) for one time step h,

x(t + h) = x(t) +

t+h∫
t

f (x(s)) ds

︸          ︷︷          ︸
Fh(t)

+

t+h∫
t

ξ(s) ds

︸     ︷︷     ︸
wh(t)

, (3.6)

in which the integral is separated into a deterministic part Fh(t) and a stochastic con-
tribution wh(t). The deterministic part can be calculated using any common method
for integrating ODEs. The stochastic contribution, however, needs a special treatment.
Using eq. (3.5), wh(t) can be expressed as the difference of the Wiener process at two
different times,

wh(t) = W(t + h) −W(t) . (3.7)

Therefore, wh(t) is a Gaussian process characterized by the properties

〈wh(t)〉 =

t+h∫
t

〈ξ(s)〉 ds = 0 , (3.8)

〈wh(t) wh(t′)〉 =

t+h∫
t

t′+h∫
t′

〈ξ(s) ξ(u)〉 ds du =

t+h∫
t

t′+h∫
t′

D δ(s − u) ds du , (3.9)

which follows directly from eqs. (3.3) and (3.4). In order to evaluate the integral in
eq. (3.9), we assume, without loss of generality, that t′ > t. If t′ > t +h, the delta function
vanishes as there is no overlap in the integration intervals and the integral is equal to
zero. For t ≤ t′ < t + h, the result is

〈wh(t) wh(t′)〉 =

t+h∫
t′

D ds = D
(
t − t′ + h

)
. (3.10)

By considering discrete times t = ti = ih and t′ = t j = jh, the correlation becomes〈
wh(ti) wh(t j)

〉
= Dhδi j . (3.11)
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For the numerical implementation of wh(ti), we introduce a set of independent Gaussian
random numbers {ri} with zero mean and variance 1,

〈ri〉 = 0 , (3.12)
〈ri r j〉 = δi j . (3.13)

The stochastic contribution wh(ti) is then given by

wh(ti) =
√

Dh ri , (3.14)

and hence the solution for x(t) with the initial value x0 can be generated according to

x(t0) = x0 , (3.15)

x(ti+1) = x(ti) + Fh(ti) +
√

Dh ri . (3.16)

In this way, we have found a recurrence relation for the solution of SDEs of the form
eq. (3.2). A more detailed treatment of stochastic differential equations can be found
in [57, 58].

We are now in the position to apply the above considerations to our case of a phonon
laser. In section 2.1.3, we have derived the c-number equations (eqs. (2.30) to (2.32))
which describe our phonon laser system. These equations represent a set of coupled
Langevin equations, i.e. they are stochastic differential equations of the form

d
dt

x(t) = f(x(t)) + ξ(t) , (3.17)

in which f is a function of the variables x = (a1, a2, b) and ξ = (Γ1, Γ2, Γb) is a vector of
Gaussian white noises. Similarly as before, eq. (3.17) can be split into the deterministic
part f and the stochastic contribution ξ. The deterministic part is solved with the fourth-
order Runge-Kutta method [59]. While simpler methods only take into account the
function f at the beginning of the time interval for the computation of one time step,
the Runge-Kutta method also uses intermediate time steps, which results in higher
accuracy and convergence. After the calculation of the deterministic part, the noise term
wh(ti) =

√
h ni has to be added, in accordance with eq. (3.16). Each time step of the

numerical integration is then computed with the following algorithm:

k1 = f(xi) , (3.18)
k2 = f(xi + h

2 k1) , (3.19)
k3 = f(xi + h

2 k2) , (3.20)
k4 = f(xi + h k3) , (3.21)

xi+1 = xi +
h
6

(k1 + 2k2 + 2k3 + k4) +
√

h ni . (3.22)

In the remaining part of this section, we concentrate on the appropriate implementation
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of the noise term ni. The fields a1, a2, and b, as well as the corresponding noise forces
in eqs. (2.30) to (2.32) are complex-valued functions. Consequently, the noise term ni is
also complex-valued and can therefore be split into a real and an imaginary part,

n =

n1

n2

nb

 =

n
Re
1 + i nIm

1
nRe

2 + i nIm
2

nRe
b + i nIm

b

 =


α1rα1 + i β1rβ1
α2rα2 + i β2rβ2
αbrαb + i βbrβb

 , (3.23)

where we have dropped the index i for simplicity and to avoid confusion with the
imaginary unit. Both real and imaginary parts are presented as a product of a certain
prefactor (αk, βk) and a Gaussian random number (rαk , rβk ) with zero mean and variance 1.
Combining the result eq. (3.11) with the non-vanishing diffusion coefficients eqs. (2.44)
to (2.47) yields the following constraints for the noise terms,〈

n∗1 n1
〉

= D1∗1 , (3.24)〈
n∗2 n2

〉
= D2∗2 , (3.25)〈

n∗b nb
〉

= Db∗b , (3.26)
〈n1 nb〉 = D1b , (3.27)

where the correlations for all other combinations of the noise terms are equal to zero.
The next step is to determine the constants αk and βk. For each of the nk, we can write〈

n∗k nk
〉

=
〈(
αkrαk − i βkr

β
k

) (
αkrαk + i βkr

β
k

)〉
= α2

k
〈
rαk rαk

〉︸ ︷︷ ︸
1

+β2
k

〈
rβk rβk

〉︸ ︷︷ ︸
1

= Dk∗k (3.28)

=⇒ α2
k + β2

k = Dk∗k (3.29)

and

〈nk nk〉 =

〈(
αkrαk + i βkr

β
k

)2
〉

= α2
k
〈
rαk rαk

〉︸ ︷︷ ︸
1

−β2
k

〈
rβk rβk

〉︸ ︷︷ ︸
1

+2iαkβk

〈
rαk rβk

〉︸ ︷︷ ︸
0

= 0 (3.30)

=⇒ α2
k = β2

k . (3.31)

Inserting eq. (3.31) into eq. (3.29), one finds that

α2
k = β2

k =
1
2

Dk∗k (3.32)

and therefore

α1 = β1 =

√
γ1n̄(opt)

th , (3.33)

α2 = β2 =

√
γ2n̄(opt)

th , (3.34)

αb = βb =

√
γmn̄(mech)

th . (3.35)
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Hitherto, we have considered exclusively the constraints given by eqs. (3.24) to (3.26),
so we still have to fulfill the last constraint eq. (3.27). At first glance, the noise terms
seem to be overdetermined. However, it is possible to introduce specific correlations
between certain random numbers such that all conditions are simultaneously satisfied.
To this end, we write the correlation〈

n∗1 nb
〉

=
〈(
α1rα1 − i β1rβ1

) (
αbrαb + i βbrβb

)〉
=

√
γ1γmn̄(opt)

th n̄(mech)
th

[〈
rα1 rαb

〉
+

〈
rβ1 rβb

〉
+ i

(〈
rα1 rβb

〉
−

〈
rβ1 rαb

〉)]
= 0 , (3.36)

where we used the relation

α1αb = β1βb = α1βb = β1αb =

√
γ1γmn̄(opt)

th n̄(mech)
th . (3.37)

Equation (3.36) implies that 〈
rα1 rαb

〉
= −

〈
rβ1 rβb

〉
, (3.38)〈

rα1 rβb
〉

=
〈
rβ1 rαb

〉
. (3.39)

With the help of eqs. (3.38) and (3.39), we can write the other correlation

〈n1 nb〉 =
〈(
α1rα1 + i β1rβ1

) (
αbrαb + i βbrβb

)〉
=

√
γ1γmn̄(opt)

th n̄(mech)
th

[〈
rα1 rαb

〉
−

〈
rβ1 rβb

〉
+ i

(〈
rα1 rβb

〉
+

〈
rβ1 rαb

〉)]
=

√
γ1γmn̄(opt)

th n̄(mech)
th 2

(〈
rα1 rαb

〉
+ i

〈
rα1 rβb

〉)
= D1b = igx0 〈a1〉 . (3.40)

Therefore, all constraints for the noise terms can be satisfied if the random numbers meet
the additional requirements

−
〈
rα1 rαb

〉
=

〈
rβ1 rβb

〉
=

gx0

2
√
γ1γmn̄(opt)

th n̄(mech)
th

Im(〈a1〉) , (3.41)

〈
rα1 rβb

〉
=

〈
rβ1 rαb

〉
=

gx0

2
√
γ1γmn̄(opt)

th n̄(mech)
th

Re(〈a1〉) . (3.42)

One possibility to fulfill the correlations eqs. (3.41) and (3.42) is to specifically replace
the random numbers rαb and rβb for a certain number of noise realizations by the random
numbers rα1 and rβ1. For a sufficiently large number of different noise realizations N, we
can write for i , j

〈ri r j〉 =
1
N

N∑
µ=1

rµi rµj = 0 , (3.43)

〈ri ri〉 =
1
N

N∑
µ=1

rµi rµi = 1 , (3.44)
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and therefore with 0 � M < N

〈ri r j〉M B
1
N

 M∑
µ=1

rµi rµi +

N∑
µ=M+1

rµi rµj

 =
M
N
. (3.45)

Hence, we can satisfy the conditions eqs. (3.41) and (3.42) for a total number of N noise
realizations with L + M ≤ N if we make L times the replacements

rαb → −sgn[Im(〈a1〉)] rα1 , (3.46)

rβb → sgn[Im(〈a1〉)] rβ1 , (3.47)

and M times the replacements

rαb → sgn[Re(〈a1〉)] rβ1 , (3.48)

rβb → sgn[Re(〈a1〉)] rα1 , (3.49)

where sgn is the sign function and L and M are determined by the relations

L
N

=
gx0

2
√
γ1γmn̄(opt)

th n̄(mech)
th

|Im(〈a1〉)| , (3.50)

M
N

=
gx0

2
√
γ1γmn̄(opt)

th n̄(mech)
th

|Re(〈a1〉)| . (3.51)

Obviously, this method is valid only if

gx0

2
√
γ1γmn̄(opt)

th n̄(mech)
th

(|Re(〈a1〉)| + |Im(〈a1〉)|) ≤ 1 , (3.52)

which is always fulfilled with the parameters that were used for the calculations presented
in chapter 4.

3.2 Linear stability analysis
For numerous issues of our phonon laser system, it is necessary to know the lasing
threshold pump power. A standard way to find the laser threshold is given by a technique
called linear stability analysis [60]. A particular solution of a non-linear system is called
linearly stable if the linearization of the equations at this solution is of the form

d
dt

u(t) = Au(t) , (3.53)

where the spectrum of the linear operator A contains only eigenvalues with negative
real part. Otherwise, if one of the eigenvalues has a positive real part, the system is
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3.2 Linear stability analysis

called linearly unstable. For our system of a phonon laser, the transition between linear
stability and instability corresponds to the laser threshold. In order to linearize the
system equations, the fields a1(t), a2(t), and b(t) are split into a constant steady-state
value and a small time-dependent perturbation7, i.e.

a1(t)→ ā1 + δa1(t) , (3.54)
a2(t)→ ā2 + δa2(t) , (3.55)
b(t)→ b̄ + δb(t) . (3.56)

Inserting eqs. (3.54) to (3.56) into eqs. (2.30) to (2.32) yields the linearized equations

d
dt

(ā1 + δa1(t)) = (i∆ − γ1) (ā1 + δa1(t)) − iκ (ā2 + δa2(t)) + Ω

+ igx0

[
ā1

(
b̄ + b̄∗

)
+ ā1 (δb(t) + δb∗(t)) + δa1(t)

(
b̄ + b̄∗

)]
, (3.57)

d
dt

(ā2 + δa2(t)) = (i∆ − γ2) (ā2 + δa2(t)) − iκ (ā1 + δa1(t)) , (3.58)

d
dt

(
b̄ + δb(t)

)
= (−iωm − γm)

(
b̄ + δb(t)

)
+ igx0

(
ā∗1ā1 + δa∗1(t)ā1 + ā∗1δa1(t)

)
, (3.59)

where we have neglected the noise forces and dropped the terms of higher than first
order in the perturbations. Using the relation

˙̄a1 = ˙̄a2 = ˙̄b = 0 , (3.60)

the zero-order contribution of eqs. (3.57) to (3.59) reads

0 = (i∆ − γ1) ā1 − iκā2 + igx0ā1

(
b̄ + b̄∗

)
+ Ω , (3.61)

0 = (i∆ − γ2) ā2 − iκā1 , (3.62)
0 = (−iωm − γm) b̄ + igx0ā∗1ā1 . (3.63)

Equations (3.61) to (3.63) represent a closed set of nonlinear equations for the steady
state fields and can be easily solved numerically. The first order equations are then given
by

˙δa1(t) = (i∆ − γ1) δa1(t) − iκδa2(t) + α (δb(t) + δb∗(t)) + βδa1(t) , (3.64)
˙δa2(t) = (i∆ − γ2) δa2(t) − iκδa1(t) , (3.65)

δ̇b(t) = (−iωm − γm) δb(t) + α∗δa1(t) + αδa∗1(t) , (3.66)

where we have introduced the abbreviations α = igx0ā1 and β = igx0

(
b̄ + b̄∗

)
. The

values for the steady-state quantities ā1 and b̄ are directly taken from the solution of
eqs. (3.61) to (3.63).

7 Note that this ansatz is valid only below threshold as it is demonstrated in section 4.1.1.
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The next step is to define the solution vector

u(t) B
(
δa1(t) δa∗1(t) δa2(t) δa∗2(t) δb(t) δb∗(t)

)T
, (3.67)

which satisfies eq. (3.53) with the matrix

A =



i∆ − γ1 + β 0 −iκ 0 α α
0 −i∆ − γ1 − β 0 iκ α∗ α∗

−iκ 0 i∆ − γ2 0 0 0
0 iκ 0 −i∆ − γ2 0 0
−α∗ α 0 0 −iωm − γm 0
α∗ −α 0 0 0 iωm − γm


.

(3.68)
By calculating the eigenvalues of the matrix A, it can be decided for any given input
parameter set whether the system is below or above threshold. The exact value for
the threshold pump power can be found by systematically varying the input power and
simultaneously evaluating the eigenvalues of the matrix A.

3.3 Calculation of the signal linewidth
Our main goal is to calculate the linewidth of the phonon laser above threshold. The
extraction of the linewidth of a noisy signal can be performed either in the frequency
domain or in the time domain [41]. The determination of the linewidth in the frequency
domain requires the analysis of the phonon mode spectrum. According to the Wiener-
Khinchin theorem, the power spectrum of a signal x(t) is given by the Fourier transform
of its autocorrelation function,

S (ω) =
1
√

2π

∞∫
−∞

Rxx(t) eiωt dt , (3.69)

where the autocorrelation function is defined as

Rxx(t) B 〈x(τ) x∗(τ − t)〉 = lim
T→∞

1
2T

T∫
−T

x(τ) x∗(τ − t) dτ . (3.70)

Typically, a laser spectrum contains a peak centered around the laser frequency, and the
linewidth is defined as the full width at half maximum (FWHM) of this peak. However,
due to the narrow linewidth of a laser, it is necessary to calculate the autocorrelation
function and its Fourier transform for a large number of sample points in order to properly
resolve the resonant peak. Consequently, this requires considerable computational effort.
A numerically more efficient method to extract the linewidth from the signal is given by
the time domain analysis. As a result of the noise in the signal, both the amplitude and
the phase of the field are subject to statistical fluctuations, where the linewidth is mainly
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3.3 Calculation of the signal linewidth

governed by the behavior of the phase. The phase ϕ can be expressed as the sum of a
deterministic part caused by the laser frequency ω and a fluctuating term δϕ due to the
presence of the noise,

ϕ(t) = ωt + δϕ(t) . (3.71)

One finds under certain approximations (for details see e.g. chapter 12 in [27]) that the
square of the phase fluctuations diffuses linearly in time, i.e.〈

(δϕ(t) − δϕ(0))2
〉

= ∆ω · t , (3.72)

where the rate of diffusion is given by the linewidth ∆ω. This is the main idea of the time
domain analysis. To summarize, the laser linewidth can be calculated in the following
way:

(i) The system equations are numerically solved for a large number of different noise
realizations. Depending on the initial conditions for the time integration, the system
shows some transient behavior until a steady state is reached. The transient part of
the solution has to be omitted to obtain correct results.

(ii) For a certain time interval in the steady state, the phase is evaluated at each time
step of the different solutions from (i). In this process, the deterministic part of the
phase is removed since we are only interested in the phase fluctuations δϕ.

(iii) The average phase diffusion for each time ti is calculated according to

〈
(δϕ(ti) − δϕ(0))2

〉
=

1
N

N∑
µ=1

(
δϕµ(ti) − δϕµ(0)

)2
, (3.73)

where N is the number of different solutions generated in (i). The steps (ii) and
(iii) can be combined with (i), which has the advantage that the solutions are not
required to be stored.

(iv) The data from (iii) is fitted with the function f (t) = c · t, in which the fit parameter
c corresponds to the linewidth of the signal.

The decisive factor for the accuracy of this method is mainly the number of resulting
solutions for different noise realizations.
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4 Results and Discussion
The theoretical results presented in this chapter have been generated by numerically
solving the system eqs. (2.30) to (2.32) according to the procedures outlined in chapter 3.
The experimental data as well as the figures with the experimental results shown here
have been produced by the Micro/Nano Photonics Lab at Washington University in St.
Louis8. Since there are already experimental results available, the intention of this thesis
is to compare theory and experiment. Therefore, most of the calculations presented in
this chapter have been performed with similar parameter values as those used in the
experiment. In the following, this parameter set will be referred to as experimental
parameter set. Furthermore, we additionally define a modified parameter set in order
to compare the results for different parameter values. The parameter values of the
experimental and modified parameters sets are shown in table 4.1.

Table 4.1: Phonon laser system parameters used in the calculations.
Parameter Experimental parameter set Modified parameter set

ωc 2π · 2 · 1014 Hz 2π · 2 · 1014 Hz

ωm 2π · 17.4 MHz 2π · 2.77 MHz

γ1 2π · 3.2 MHz 2π · 160 kHz

γ2 2π · 13.6 MHz 2π · 480 kHz

γm 2π · 40 kHz 2π · 40 kHz

κ 2π · 12.6 MHz 2π · 1.39 MHz

gx0 2π · 1.6 kHz 2π · 40 Hz

With the parameters from table 4.1, we can calculate the value of γtip where the EP
occurs. This value is given for the experimental parameter set as γEP

tip ≈ 2π · 14.8 MHz
and for the modified parameter set as γEP

tip ≈ 2π ·2.46 MHz. In the following, the situation
with γtip < γEP

tip will be referred to as the regime before the EP and analogously for
γtip > γ

EP
tip the regime after the EP.

It should be noted that the value for the optomechanical coupling strength gx0 from
the actual experiment was reported to be about gx0 ≈ 2π · 8.4 MHz. In what we call
the experimental parameter set, however, we have employed a much smaller value.
The value of gx0 in our calculations had to be reduced because the noise strength

8 Provided by Şahin Özdemir, private communication, 2015.

27



4 Results and Discussion

becomes unrealistically high and exceeds the signal amplitudes for high values of gx0

(see section 4.1.1 and fig. 4.4). However, this is justified as it turns out that the results
remain qualitatively unchanged when gx0 is varied, which was verified in a range of
several orders of magnitude.

As shown in sections 4.1 and 4.2.2 below, the results for the phonon laser behavior in
the vicinity of an EP strongly depend on the driving frequency ωd. One possibility to
operate the phonon laser is to pump one of the optical supermodes non-resonantly. This
means that the driving frequency is detuned from the supermode frequency by the value
of the mechanical resonance frequency. Unless explicitly stated otherwise, we used the
driving frequency ωd = ωm +ω+ for our calculations because this is exactly the procedure
that was followed in the experiment. Ideally, in this case, the frequency splitting between
the two optical supermodes should also be equal to the resonance frequency of the
mechanical mode (for γtip = 0) because phonons can then be additionally amplified
by stimulated emission due to transitions between the two photonic supermode levels
producing a phonon (cf. section 2.1.1). We note in this context that this resonance is not
exactly satisfied by the experimental parameter set. Using eq. (2.55) and ω± = Re(λ±),
the supermode frequency splitting is found to be

ωsplit = ω+ − ω− =

√
4κ2 − (γ2 − γ1)2

≈ 2π · 23 MHz (4.1)

for the experimental parameter set, which is about one third larger than the value for the
mechanical resonance frequency ωm. In contrast, the modified parameter set has been
chosen such that ωsplit ≈ ωm holds.

In the first part of this chapter (section 4.1), we study some basic properties of the
phonon laser. As a first test of the theory, we present the theoretical results which
are calculated by omitting the noise terms in eqs. (2.30) to (2.32), as for example the
optomechanical amplification or the phonon laser threshold dependence. These results
are then compared to the experimental data. In the second part (section 4.2), all noise
terms are taken into account in order to calculate the linewidth of the phonon laser. The
influence of several system and operation parameters is examined and the outcome is
compared to the experimental results.

4.1 Phonon laser characteristics

4.1.1 Time-dependent solution of the system equations
To study the dynamical regimes in our phonon laser, we numerically solve the system
equations. Typical solutions without noise for the experimental and modified parameter
sets (with γtip = 0) are shown in figs. 4.1 and 4.2. In analogy to the case of a conventional
photon laser, one can distinguish between two qualitatively different dynamical regimes:
the regime below threshold and the regime above threshold. For sufficiently small values
of the input pump power Pin, the system is not lasing. In this case, the solutions reach a
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Figure 4.1: Time-dependent solution of the phonon laser system at a steady state for
the experimental parameter set. The left column (a,c,e) shows the fields a1, a2, and b
below threshold (Pin = 0.9 · Pthr), the right column (b,d,f) shows the fields above threshold
(Pin = 1.1 · Pthr).
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Figure 4.2: Time-dependent solution of the phonon laser system at a steady state for the
modified parameter set. The left column (a,c,e) shows the fields a1, a2, and b below threshold
(Pin = 0.9 · Pthr), the right column (b,d,f) shows the fields above threshold (Pin = 1.1 · Pthr).
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4.1 Phonon laser characteristics

constant steady state value9. Above a critical value Pthr, however, phonon lasing occurs
and the solutions show an oscillatory behavior. Below threshold, the solutions for the
optical modes are constant only in the rotating frame but oscillate with frequency ωd in
the lab frame. The values of the optical solutions in the rotating frame merely determine
the relative phase between the two optical modes. The mechanical mode, however, is not
given in a rotating frame and is thus constant in the lab frame. This can be understood as
a constant displacement of the resonator which contains the mechanical mode due to
the radiation pressure of the optical field in the cavity. The steady-state values for the
solutions below threshold can also be obtained by solving eqs. (3.61) to (3.63). Above
threshold, on the other hand, both optical and mechanical modes are oscillating. The
mechanical mode oscillates with the laser frequency ω which is approximately equal to
the resonance frequency ωm. Additionally, there is still a constant contribution to the
mechanical field as a result of the radiation pressure forces. Therefore, the mechanical
field can be approximated by the sum of an oscillating part with amplitude B and a
constant contribution b0,

b(t) ≈ B e−iωt + b0 , (4.2)

which is used to calculate the phase diffusion in section 4.2.2. However, the optical
modes cannot be approximated by a simple form similar to eq. (4.2) because they show
a more complex behavior above threshold due to the non-linear character of the system
equations.

Figures 4.1 and 4.2 show the solutions of the system equations in a steady state. In
order to solve the equations numerically, one has to define initial values of the fields
for the first time step. In our calculations, we choose the fields initially to be equal to
zero. Consequently, in the time-dependent solution, the system needs a certain number
of time steps to reach a stationary value. This transient behavior for the phonon mode is
depicted in fig. 4.3. The transient region in the time-dependent signal has to be excluded
for further analysis, especially for linewidth calculations.

Hitherto, we have only considered the solutions of the system equations without noise.
The addition of the respective noise terms causes statistical fluctuations of the signal
amplitude and phase whose magnitudes depend on the signal-to-noise ratio. According
to eqs. (3.33) to (3.35), the noise strength depends only on the ambient temperature
as well as on the optical and mechanical dissipation rates γ1, γ2, and γm. The signal
amplitudes, however, depend on other parameters as well. For example, the signal
amplitudes (for Pin = 1.1Pthr) decrease if the optomechanical coupling gx0 is increased
while the noise strength remains constant (see fig. 4.4). As long as the value of gx0 is
small enough, the signal is only marginally disturbed by the noise. The larger the value
of gx0 is, the stronger the effect of the noise on the signal is observable. For very high
values of the optomechanical coupling, the noise strength exceeds the signal amplitude,
which leads to unreasonable results due to enormous amplitude and phase fluctuations.
Consequently, the system parameters have to be chosen such that the noise strength lies
well below the signal amplitude in order to enable a proper numerical analysis.

9 Note that we consider the solutions for the optical modes in a rotating frame. In order to obtain the
solutions in the lab frame, the optical modes have to be multiplied with the factor e−iωdt.
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Figure 4.3: Transient behavior of the numerical solution for the phonon mode. Initially, the
solution b(t0) is set equal to zero. After a certain time interval, the amplitude reaches a
stationary value.

4.1.2 Phonon laser threshold
A characteristic feature of a laser is the existence of a laser threshold, i.e. a critical value
for the pump power at which the laser emission sets in. Besides a significant linewidth
narrowing, the laser threshold is characterized by a substantial increase of the laser
intensity. Figure 4.5 shows the dependence of the phonon laser intensity as a function of
the input pump power Pin for the regimes before and after the EP. As can be seen, in both
cases the intensity remains small as long as Pin < Pthr. Above threshold, the intensity
grows rapidly with increasing pump power. However, the curves look qualitatively
different in the regimes before and after the EP. Before the EP (γtip = 0), the intensity
grows linearly with the pump power, except for a narrow pump interval close to the
threshold, where a non-linear growth is observed. After the EP, however, we find an
asymptotic square root dependence of the intensity on the pump power, I ∝

√
Pin − Pthr .

This might be a result of the two different operating regimes of the phonon laser. Before
the EP, the two supermode frequencies are split and phonons can also be amplified by
means of stimulated emission due to photon transitions between the two supermode
levels. This is not possible in the regime after the EP where the supermode frequencies
are identical. In fact, the only possibility of coherent amplification is stimulated Raman
scattering. Experimental results for the phonon laser output power as a function of the
pump power are shown in fig. 4.6.

In the remaining part of this section, we want to concentrate on the behavior of the
threshold pump power in the vicinity of the EP. For this purpose, we calculate Pthr with
the method described in section 3.2 while varying the value of γtip. It turned out that
the results for the experimental parameter set with ωd = ωm + ω+ agree quite well
with the experimental data (see fig. 4.7). In the regime before the EP, the threshold
pump power has a maximum after which it drops rapidly until γtip = γEP

tip where we
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Figure 4.4: Influence of the noise on the signal for the experimental parameter set with
different optomechanical coupling strengths: (a) gx0 = 2π · 160 Hz, (b) gx0 = 2π · 1.6 kHz,
and (c) gx0 = 2π · 16 kHz. For each case, the pump power was chosen to be Pin = 1.1 · Pthr
and the field amplitude is always normalized to the steady state value without noise.
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Figure 4.5: Phonon laser intensity as a function of the input pump power for the modified
parameter set with γtip = 0 (a) and γtip = 2π · 3.2 MHz > γEP

tip ≈ 2π · 2.46 MHz (b).

Figure 4.6: Experimental results for the phonon laser threshold for different values of γtip.
Figure courtesy of Şahin Özdemir (Washington University in St. Louis).

observe a kink in the threshold curve. After the EP, the threshold pump power decreases
slowly with increasing γtip. It turns out that the results strongly depend on the driving
frequency ωd, which is shown in fig. 4.8. For both the experimental and the modified
parameter set, the threshold in the regime before the EP is much lower for ωd = ωm +ω−
compared to the case for ωd = ωm +ω+. If the driving frequency is chosen to be constant,
ωd = ωm + ωc, the phonon laser threshold is a monotonously decreasing function of
γtip (in the investigated parameter range). Besides, there is no kink in the curve for
this driving frequency. The occurrence of the kink in the curves for the previously
considered driving frequencies is not the result of a special feature of the EP but arises
because of the behavior of the input parameter ωd = ωm + ω±. The reason is that the
curves for the supermode frequencies already show a kink at the EP (cf. eq. (2.55)
and fig. 2.4) which is directly reflected in the shapes of the calculation results.

Finally, it should be mentioned that the phonon laser threshold results (figs. 4.5
and 4.8) remain qualitatively unchanged if the value of gx0 is varied. There is only a
constant scaling factor for the threshold pump power Pthr ∝ 1/(gx0)2.
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Figure 4.7: Comparison between the theoretical (a) and experimental (b) results for the
threshold pump power of the phonon laser system as a function of γtip. The driving frequency
was chosen to be ωd = ωm + ω+. Right figure courtesy of Şahin Özdemir (Washington
University in St. Louis).
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Figure 4.8: Threshold pump power of the phonon laser system as a function of γtip for the
experimental parameter set (a) and the modified parameter set (b). The curve is shown for
three different driving frequencies ωd.

4.1.3 Optomechanical amplification
As a result of the optomechanical interaction in the system, phonons are coherently
amplified if the input power is high enough, i.e. if the system is pumped above threshold.
The magnitude of amplification, i.e. the achievable phonon intensity, strongly depends
on the system parameters, in particular on the additional loss induced by the tip and on
the driving frequency. Depending on the choice of ωd, we observe a large variation of
the phonon laser intensity as a function of γtip in the vicinity of the EP (see fig. 4.9).
For the experimental parameter set, the curves for the phonon laser intensity look
similar to the curves for the phonon laser threshold as a function of γtip (fig. 4.8). With
ωd = ωm + ω+, the intensity first increases slightly, then drops rapidly until γtip = γEP

tip ,
and decreases slowly for γtip > γ

EP
tip . In contrast, if ωd = ωm + ω−, the intensity increases

monotonously for γtip < γEP
tip . Moreover, the resulting intensity before the EP is much
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Figure 4.9: Intensity of the phonon field as a function of γtip with input power Pin = 1.2 · Pthr
for the experimental parameter set (a) and the modified parameter set (b). The curve is
shown for three different driving frequencies ωd.

Figure 4.10: Experimental results for the phonon laser intensity for different values of γtip.
In this measurement, the pump power was always chosen to be 20 % above threshold, i.e.
Pin = 1.2 · Pthr. Figure courtesy of Şahin Özdemir (Washington University in St. Louis).

smaller as compared to the case with ωd = ωm + ω+. However, if ωd = ωm + ωc, the
intensity decreases monotonously for all values of γtip in the investigated range and the
intensity before the EP is also much smaller than for ωd = ωm + ω+ but larger than for
ωd = ωm + ω−. For the modified parameter set, the highest phonon intensity is attained
with ωd = ωm +ωc. The qualitative behavior of the intensity curves for ωd = ωm +ωc and
ωd = ωm + ω− is there also comparable to the corresponding threshold curves (fig. 4.8).
The case with ωd = ωm + ω+, however, gives rise to a qualitative different behavior.
There, the intensity curve has two local maxima, one of which is located exactly at
the EP. A similar behavior with two maxima was also observed in the experiment as
shown in fig. 4.10. However, the second maximum in the experimental results is not
located at the EP but occurs in the region before the EP. A possible explanation for this
discrepancy could be the accidental change of the inter-resonator coupling strength κ. If
the distance between the two optical resonators is changed (e.g. due to environmental
vibrations), the value of κ is modified, which also affects the value of γtip where the EP
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Figure 4.11: Intensity of the phonon field as a function of γtip for the driving frequency
ωd = ωm + ω+ and Pin = 1.2 · Pthr where the experimental parameter set with an adjusted
value of κ = 2π · 8.5 MHz was used.

occurs. Indeed, one can generate a result which is similar to the intensity curve for the
modified parameter set with ωd = ωm + ω+ if the experimental parameter set with an
adjusted value of κ is used. For comparison to the experimental data, this result is shown
in fig. 4.11.

4.2 Numerical linewidth calculations

4.2.1 Linewidth calculations for a conventional photon laser
In the theory of a conventional photon laser, one can derive a closed equation for the
electromagnetic field alone by adiabatically eliminating the atomic polarization and
population variables [27]. This equation reads for the laser field α

α̇ = −
C

2
+

A α

2
(
1 + B

A
I
) + Fα , (4.3)

where I = |α|2, A and B are the gain and saturation coefficients, C is the cavity decay
rate, and Fα is the corresponding Langevin noise force whose diffusion coefficients are
given by

Dαα = −
Bα2

4
(
1 + B

A
I
)2

(
3 +

B

A
I
)
, (4.4)

Dα∗α =
A(

1 + B
A

I
)2

[
1 +

B

4A
I
(
3 +

B

A
I
)]
. (4.5)
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Figure 4.12: Typical stationary solutions of the laser equation eq. (4.3). The Langevin noise
force causes both amplitude (a) and phase fluctuations (b).

Equations (4.3) to (4.5) can be used to derive an analytic expression for the phase
diffusion of the laser field which is given by〈

(δϕ(t) − δϕ(0))2
〉

=
A + C

4 〈n〉
· t = ∆ω · t , (4.6)

where ∆ω is the linewidth of the laser and

〈n〉 = I0 =
A

C

(
A − C

B

)
(4.7)

is the mean photon number. The derivation of an equivalent analytical formula for the
linewidth of our phonon laser is not possible in this way because of the substantially more
complicated structure of the phonon laser equations eqs. (2.30) to (2.32). Therefore, we
have to determine the phonon laser linewidth numerically with the procedure described in
section 3.3. As a first test of our method, we want to numerically calculate the linewidth
of a conventional photon laser such that we can compare the results to the predictions
of the analytically derived formula for the linewidth. For that purpose, we have to
numerically solve eq. (4.3) and average the results for many different noise realizations
in order to calculate the phase diffusion and hence the laser linewidth. The noise has to
be implemented such that the constraints for the diffusion coefficients eqs. (4.4) and (4.5)
are satisfied (cf. the procedure demonstrated for the phonon laser in section 3.1). Since
eq. (4.3) is given in a frame rotating with the laser frequency ω, the steady state solution
for the electromagnetic field α yields a constant value. Due to the action of the noise
force Fα, however, the field is subject to both amplitude and phase fluctuations. This
is demonstrated for three different noise realizations in fig. 4.12. If the square of the
phase is averaged over many different noise realizations, the linear diffusion in time
can be observed as expected (see fig. 4.13). Note that the accuracy of the results
in fig. 4.13 depends on the number of different noise realizations. If the average is
performed over a relatively small number of solutions, e.g. for 102 trajectories, there are
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Figure 4.13: Due to the presence of the noise, the square of the phase ϕ diffuses linearly in
time (a). The average slope of the phase diffusion corresponds to the laser linewidth. The
crosses in (b) mark the average linewidth values of 10 simulation runs (each run averaged
over N trajectories), the error bars represent the corresponding standard error, and the
dashed line indicates the analytically calculated linewidth result. The accuracy of the method
depends on the total number of different trajectories N.

still significant phase fluctuations observable. For 105 trajectories, however, the phase
diffusion curve becomes already very smooth. The slope of the linear approximation
to

〈
(δϕ(t) − δϕ(0))2

〉
corresponds to the linewidth of the laser. The simulation results

agree very well with the analytic formula eq. (4.6) (see fig. 4.13). This has been verified
for a wide range of the parameters A , B, and C . Thus, the validity of the linewidth
calculation method from section 3.3 has been proved.

4.2.2 Phonon laser linewidth calculations
In section 4.2.1, we have calculated the linewidth of a photon laser with the phase
diffusion method from section 3.3. Apart from amplitude and phase fluctuations, the
laser field α(t) was there given by a constant steady state value (in the rotating frame).
The field of our phonon laser b(t), however, is not given in a rotating frame and therefore
represents an oscillating quantity which can be approximated in the steady state by
eq. (4.2). In order to use the same method as before, the oscillating factor as well as the
constant contribution of the field have to be excluded. This is done by calculating the
phase diffusion of the modified field

b′(t) = (b(t) − b0) eiωt . (4.8)

Typical results of the phonon laser phase diffusion for the experimental parameter set with
two different values of γtip are shown in figs. 4.14 and 4.15. There, the average square
of the phase is not a pure linear function of time but also shows periodic oscillations
which occur because of higher frequency components in the phonon field that are not
considered by eq. (4.8). The relative magnitude of these oscillations compared to the
overall phase diffusion depends on the input pump power and grows with increasing Pin.
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Figure 4.14: Phonon laser phase diffusion for the experimental parameter set with γtip = 0
for different pump powers Pin = 1.1 · Pthr (a) and Pin = 5 · Pthr (b). The slope of the dashed
line corresponds to the linewidth of the phonon laser.
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Figure 4.15: Phonon laser phase diffusion for the experimental parameter set with γtip =

2π · 30 MHz for different pump powers Pin = 1.1 · Pthr (a) and Pin = 5 · Pthr (b).

While the oscillations become quite large at higher input powers for γtip = 0 (fig. 4.14),
the effect is relatively small for γtip = 2π · 30 MHz (fig. 4.15). In both cases, however,
the average phase diffusion is still a linear function of time and the average slope of the
curve represents the phonon laser linewidth.

As a first investigation of the phonon laser linewidth behavior, we calculated the
dependence of the linewidth on the output power of the laser, the result of which is
displayed in fig. 4.16. It turns out that the linewidth is a linear function of the inverse
output power, ∆ω ∝ 1/Pout. This is exactly the same behavior as it is the case for an
optical laser (cf. eqs. (2.48) and (2.49)).

We now address the central question of this thesis concerning the phonon laser
linewidth in the vicinity of an EP. Analogously to the procedure established in sec-
tions 4.1.2 and 4.1.3, we aim to calculate also the linewidth of the phonon laser as a
function of γtip. However, the value of γtip influences not only the linewidth but also the
output lasing power of the phonon laser. As already shown before, the linewidth linearly
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Figure 4.16: Phonon laser linewidth as a function of the inverse output power 1/Pout.

depends on the inverse output power and therefore decreases when Pout is increased. In
order to produce results which are comparable to each other, this effect has to be taken
into account. For each given value of γtip, either the input power must always be chosen
such that the output power is kept constant or the linewidth has to be normalized to the
respective output power. For the affected calculations presented in this section, the latter
method has been applied, i.e. each linewidth value was calculated with Pin = 1.1 · Pthr

and normalized according to

∆ω→ ∆ω ·
Pout

PEP
out
, (4.9)

where PEP
out is the value of Pout for γtip = γEP

tip and Pin = 1.1 ·Pthr. Following this procedure,
a remarkable behavior of the linewidth near the EP is revealed. Similar to the phonon
laser threshold or the optomechanical amplification, the linewidth strongly depends on
the driving frequency ωd (see fig. 4.17). For ωd = ωm + ωc, the linewidth decreases
monotonously with increasing γtip. In contrast, for ωd = ωm + ω±, the linewidth first
increases and then decreases as a function of γtip with a maximum not directly at but close
to the EP in the regime before the EP. This effect can be observed for the experimental as
well as for the modified parameter set. In both cases, the maximum is more pronounced
when ωd = ωm + ω+ is used. Nevertheless, the height of the maximum is much smaller
for the experimental than for the modified parameter set. It is worth noting that as for
the threshold or mechanical amplification results (see figs. 4.8 and 4.9), the linewidth
curve has a kink at the position of the EP where also the driving frequency shows a kink.

The experimental results for the phonon laser linewidth behavior are presented in
fig. 4.18. The output power dependence of the linewidth measured in the experiment
agrees very well with the theoretical result shown in fig. 4.16. Furthermore, the linewidth
broadening in the vicinity of the EP was also observed in the experiment. However, the
height of the experimentally observed maximum clearly exceeds the calculated value
(by a factor of 200). In addition, the maximum seems to appear directly at the EP, which
is, however, hard to determine due to the small number of available data points.

To get additional insight into the phonon laser linewidth characteristics, several
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Figure 4.17: Phonon laser linewidth as a function of γtip, normalized to the linewidth value
at the EP (∆ωEP). The curve is shown for both the experimental parameter set (a) and the
modified parameter set (b) with three different driving frequencies ωd.

Figure 4.18: Experimental results for the phonon laser linewidth in the vicinity of an EP
induced by the additional loss γtip. The left figure (a) shows the power dependence of the
linewidth for different values of γtip. The right figure (b) shows the slopes of the curves in
(a) as a function of γtip and can be understood as a cut through the curves in (a) for a fixed
output power. Figure courtesy of Şahin Özdemir (Washington University in St. Louis).

calculations for different parameter sets have been performed10. The results suggest
that the linewidth is qualitatively almost independent of the optomechanical coupling
gx0 (see fig. 4.19). For both experimental and modified parameter sets, the shape of
the linewidth curve does not change when the value of gx0 is varied by a factor of 10.
Quantitatively, the results are only scaled by a constant factor because the signal-to-noise
ratio is changed when gx0 is varied (cf. fig. 4.4). Qualitatively different behaviors can
be observed by varying the mechanical dissipation rate γm (see fig. 4.20). In this case,

10 These calculations were performed with the driving frequency ωd = ωm +ω+, which coincides with the
procedure from the experiment.
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Figure 4.19: Phonon laser linewidth as a function of γtip, normalized to the linewidth value
at the EP (∆ωEP). The curve is shown for both the experimental parameter set (a) and the
modified parameter set (b) with two different optomechanical coupling rates gx0.

the signal-to-noise ratio is also changed since the noise strength depends on the value of
γm. However, varying that parameter also shows an effect on the qualitative linewidth
behavior. For the experimental as well as for the modified parameter set, the linewidth
broadening in the vicinity of the EP is enhanced when γm is increased. Moreover, the
position of the maximum is slightly shifted and moved away from the EP for larger
values of γm. Finally, the influence of the inter-resonator coupling strength κ is examined
(see fig. 4.21). One finds that κ has an important influence on the phonon laser linewidth.
On the one hand, the choice of κ determines the value of γtip where the EP occurs. This
is the reason why the maximum in the linewidth curve is shifted when κ is varied. On the
other hand, the supermode frequencies and therefore also the driving frequency strongly
depend on κ. As already shown before, the driving frequency has a substantial influence
on the linewidth. However, one can observe two qualitatively different behaviors of
the linewidth for our two different parameter sets. For the experimental parameter set,
the effect of the linewidth broadening near the EP is reduced for increasing κ while the
modified parameter set features a growing linewidth enhancement for higher values of κ.

In summary, by using the parameter values that were provided by the experimentalists,
the theoretical results for the linewidth behavior in the vicinity of the EP could not
reproduce the experimental observations. However, it turned out that the correspondence
between calculated and measured results can be improved by adjusting certain parameter
values. As we have shown, a major influence factor for the linewidth is given by
the inter-resonator coupling strength κ. The value of κ is controlled by the distance
between the two optical cavities in our system. If the gap between the WGMRs is
accidentally changed during a measurement, this modifies the coupling constant κ, which
might be a possible explanation for the discrepancy between theory and experiment (cf.
section 4.1.3). In addition, some of the system parameters are difficult to be determined
precisely. Therefore, the parameter values can contain a significant error.
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Figure 4.20: Phonon laser linewidth as a function of γtip, normalized to the linewidth value
at the EP (∆ωEP). The curve is shown for both the experimental parameter set (a) and the
modified parameter set (b) with three different mechanical dissipation rates γm.
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5 Conclusions and Outlook
The goal of this thesis was to establish the theory for a phonon laser system and to
compare the theoretical results with the experimental ones provided by the Micro/Nano
Photonics Lab at Washington University in St. Louis.

For this purpose, we have constructed a Hamiltonian (eq. (2.14)) and three corre-
sponding Langevin equations (eqs. (2.30) to (2.32)) that describe the system used in
the experiment. In this context, we have also found certain conditions that characterize
the corresponding Langevin noise forces involving the diffusion coefficients eqs. (2.44)
to (2.47). Furthermore, a method for solving stochastic differential equations was
presented where we have developed a procedure to implement the noise such that all
constraints for the diffusion coefficients are fulfilled (see section 3.1).

In the remaining part of the thesis, various calculations have been performed to inves-
tigate the properties of the phonon laser system. First, the characteristics of the solutions
of the system equations were examined (section 4.1.1), where we showed the existence
of a laser threshold. While the solutions for the fields are given by constant values below
threshold, one can observe an oscillating behavior above threshold. Furthermore, the
dependence of the threshold pump power as well as of the optomechanical amplification
on the system parameters was explored (sections 4.1.2 and 4.1.3). In particular, we
focused our study on the system behavior in the vicinity of an exceptional point (EP),
which occurs if some of the eigenvalues and eigenmodes of a system coalesce (see
section 2.3). It turned out that the results strongly depend on the driving frequency and
one can observe a large variation of the quantities under investigation around the EP.
These results, which were calculated without the influence of the noise, show rather good
agreement with the experimental data. Finally, we have performed various calculations
for the phonon laser linewidth by including the complete noise (section 4.2.2). The
validity of our calculation method was checked in section 4.2.1. Similarly as for a
conventional optical laser, the linewidth of the phonon laser is a linear function of the
inverse output power. Additionally, it was shown that the variation of certain system
parameters significantly influences the linewidth, especially in the vicinity of the EP.
The qualitative linewidth behavior, however, is mainly governed by the choice of the
driving frequency. On the one hand, if the driving frequency is chosen to be the sum
of one of the optical supermode frequencies plus the mechanical resonance frequency,
a broadening of the linewidth can be observed with a maximum near the EP. On the
other hand, if the driving frequency is set to be equal to the constant value given by the
sum of the optical cavity resonance frequency plus the mechanical resonance frequency,
only a monotonous behavior around the EP can be observed. The effect of the linewidth
broadening at the EP could also be observed in the experiment. In fact, this effect is much
more pronounced in the experimental observations than in our theoretical calculations.
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The experimental linewidth results could thus not be fully reproduced by our theory,
which might be either an indication for a problem with the parameter values or for
another missing link in the theoretical framework.

Since phonon lasers represent a relatively new area of research, there is still a lot of work
that has to be done in the future. In order to obtain a larger number of comparative results,
further experiments with different parameters would be desirable. In particular, it would
be very helpful to investigate experimentally the effect of the driving frequency on the
results to verify our theoretical observations. As the extent of the linewidth broadening
in the experiment exceeded the theoretical prediction of this effect considerably, such
additional measurements would help to clarify the differences between experiment and
theory.

As a next step, the behavior of different phonon laser systems could be analyzed in
detail. For instance, an interesting line of research would be to study the phonon laser
characteristics for the case of PT -symmetry, when both gain and loss are present in
the system, as suggested in [55]. In such a situation, the occurrence of an EP is always
accompanied by a symmetry-breaking transition whose effects on the system properties
would be interesting to be examined. Such kind of investigations might contribute
substantially to a deeper understanding of the phonon laser linewidth mechanism or to
other aspects of the theoretical framework.

Generally, the usability of the phonon laser could be improved by deliberately control-
ling characteristic properties like the lasing frequency or intensity. The phonon laser is
not yet at a stage to be directly used for technological applications, but if it undergoes a
similar development as the optical laser, it may soon be an integral part of the technology
we use on an everyday basis.
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