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Kurzfassung der Dissertation

Äquivalenzrelationen formalisieren den Begriff der Ähnlichkeit von mathematischen Objekten.

Aus Sicht der berechenbaren Strukturtheorie sind Äquivalenzrelationen ein nützliches Mittel,

um die Effektivität mathematischer Strukturen zu analysieren. Weiters ist die Untersuchung al-

gorithmischer Eigenschaften von Äquivalenzrelationen ein aktives Forschungsgebiet, das viele

offene Fragen hat und die Aufmerksamkeit von Spezialisten auf sich zieht. Wir betrachten nur

abzählbare Strukturen in berechenbaren Sprachen. Wir setzen Strukturen mit ihren Atomardia-

grammen gleich. Insbesondere ist eine Struktur berechenbar, wenn ihr Atomardiagramm eine

berechenbare Teilmenge der natürlichen Zahlen ist. Wir betrachten die obengenannten Richtun-

gen zur Erforschung von Äquivalenzrelationen in berechenbarer Strukturtheorie.

Zuerst betrachten wir Isomorphismen beschränkten Turinggrades. Für einen Turinggrad d

sagen wir, dass eine berechenbare Struktur A d-kategorisch ist, falls es für jede isomorphe

Kopie B einen d-berechenbaren Isomorphismus zwischen A und B gibt. Wir untersuchen die

Beziehungen zwischen algebraischen, deskriptiven, und algorithmischen Eigenschaften mathe-

matischer Strukturen mit Hilfe der Begriffe ∆0
n Kategorizität und relativer ∆0

n Kategorizität. Wir

betrachten natürliche Strukturklassen, inklusive verschiedener Arten von Gruppen, Booleschen

Algebras, Fraïssé Limits, usw. Diese Ergebnisse erscheinen als Teil des Papers “Computability-

Theoretic Categoricity and Scott Families” von E. Fokina, V. Harizanov und D. Turetsky.

Wir beantworten dann die Frage, wie schwierig es ist die Eigenschaft der effektiven Kat-

egorizität für Strukturen mit verschiedenen algorithmischen Einschränkungen zu beschreiben.

Der Hauptbegriff hier ist der Begriff der Indexmenge. Wir geben die exakte Abschätzung der

Komplexität für die n-entscheidbare Strukturen, die kategorisch bezüglich m-entscheidbarer

Präsentationen sind, für verschiedene m, n ∈ ω. Die Ergebnisse erscheinen in “Index sets of

n-decidable structures categorical relative to m-decidable presentations” von E. Fokina, S. Gon-

charov, V. Harizanov, O. Kudinov und D. Turetsky.

Schließlich verwenden wir Grade von Atomardiagrammen, um die inhärente Komplexität
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Kurzfassung der Dissertation

von Äquivalenzklassen verschiedener Strukturen zu charakterisieren. Wir führen den Begriff

des Gradspektrums bezüglich Σn-Äquivalenz ein (zwei Strukturen sind Σn-äquivalent, falls ihre

Σn-Diagramme gleich sind). Die Ergebnisse stellen ein Teil des Papers “Degree Spectra of

Structures relative to Equivalence Relations” von E. Fokina, P. Semukhin und D. Turetsky dar.

Für alle Ergebnisse, die in dieser Dissertation enthalten sind, hat E. Fokina den Hauptbeitrag

geleistet, sowohl bei der Erbingung der Beweise als auch beim Verfassen der Publikationen.

Die Einführung enthält den Stoff aus “Computable Model Theory” von E. Fokina, V. Hari-

zanov und A. Melnikov.
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Summary

Equivalence relations formalize the idea of resemblance between mathematical objects. In the

context of computable structure theory, equivalence relations are a useful tool to study the ef-

fectiveness of mathematical structures. On the other hand, the study of algorithmic properties

of equivalence relations themselves is an active area of investigation with many open questions

attracting a lot of attention of specialists in the field. We only consider countable structures in

computable languages. We identify structures with their atomic diagrams.In particular, a struc-

ture is computable if its atomic diagram is a computable subset of the natural numbers. We

consider the above mentioned directions to study the role of equivalence relations in computable

structure theory.

We start by looking at isomorphisms of bounded Turing degree. For a degree d, we say that a

computable structureA is d-categorical if for every its isomorphic computable copy B there ex-

ists a d-computable isomorphims betweenA and B. First we concider the connections between

algebraic, descriptive and algorithmic properties of mathematical structure through the notions

of ∆0
n categoricity and relative ∆0

n categoricity. We look at natural classes of structures including

various kinds of groups, Boolean algebras, Fraïssé limits, etc. The results form a part of the

paper “Computability-Theoretic Categoricity and Scott Families” by E. Fokina, V. Harizanov

and D. Turetsky.

We then answer the question how hard it is to describe the property of effective categoricity

for structures with various algorithmic restrictions. The main notion here is the notion of index

sets. We give the exact estimation of complexity for structures that are n-decidable categorical

relative to m-decidable presentations, for various m, n ∈ ω. The results appear in the paper

“Index sets of n-decidable structures categorical relative to m-decidable presentations”, joint

with S. Goncharov, V. Harizanov, O. Kudinov and D. Turetsky.

Finally, we employ degrees of atomic diagrams of structures to characterize the inherent com-

plexity of equivalence classes of structures, up to various equivalence relations. Here we intro-
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Summary

duce the notion of degree spectra relative to equivalence relations. We study the degree spectra

of structures relative to Σn-equivalence (two structures are Σn-equivalent if there Σn-theories co-

incide). The presented results form a part of the paper “Degree Spectra of Structures relative

to Equivalence Relations” by E. Fokina, P. Semukhin and D. Turetsky. For all the new results

provided in this thesis, the main contribution to proving and writing them down was done by

E. Fokina.

Introduction uses material from the paper “Computable Model Theory” by E. Fokina, V. Hari-

zanov and A. Melnikov.
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1 Introduction

1.1 Motivation

Computable structure theory uses the tools of computability theory to explore algorithmic con-

tent (effectiveness) of notions, theorems, and constructions in various areas of ordinary math-

ematics. In algebra this investigation based on intuitive notion of effectiveness dates back to

van der Waerden who in his 1930 book Modern Algebra defined an explicitly given field as one

the elements of which are uniquely represented by distinguishable symbols with which we can

perform the field operations algorithmically. In his pioneering paper [81] on non-factorability

of polynomials from 1930, van der Waerden essentially proved that an explicit (i.e., effectively

given) field (F,+, ·) does not necessarily have an algorithm for splitting polynomials in F[x]

into their irreducible factors. A remarkable property of the van der Waerden’s example was

that the field F had an isomorphic effective copy which at the same time did possess a splitting

algorithm. Thus, implicitely van der Waerden gave an example of two isomorphic effectively

given structures that were not effectively isomorphic. After rigorous definitions of computable

functions appeared, van der Waerden’s results were revisited and formalized by Fröhlich and

Shepherdson in [29].

Several different notions of effectiveness of structures have been investigated since then. The

generalization and formalization of van der Waerden’s intuitive notion of an explicitly given

field led to the notion of a computable structure, which is one of the main notions in computable

structure theory. A structure is computable if its domain is computable and its relations and

functions are uniformly computable. Further generalization led to a countable structure of a

certain Turing degree d. (Computable structures are of degree 0.) Henkin’s construction of a

model for a complete decidable theory is effective and produces a structureAwith a computable

domain such that the elementary diagram ofA is decidable. Such a structure is called decidable.

Thus, in the case of a computable structure, our starting point was semantic, while in the case of
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1 Introduction

a decidable structure, the starting point was syntactic. It is easy to see that not every computable

structure is decidable since for computable structures only the atomic (open) diagram has to

be decidable. To bridge the gap between computable and decidable structures, one uses the

following notion. A structure A is n-decidable, for n > 0, if the Σn-diagram of A is decidable.

In particular, a structure is 0-decidable iff it is computable.

We can also assign Turing degrees or some other computability-theoretic degrees to isomor-

phisms, as well as to various relations on structures. We can also investigate structures, their

theories, fragments of diagrams, relations, and isomorphisms within arithmetic and hyperarith-

metic hierarchies.

The emphasis of this thesis is on algorithmic properties of equivalence relations between

countable structures. In the context of computable structure theory, equivalence relations are a

useful tool to study the effectiveness of mathematical structures. Moreover, the study of algorith-

mic properties of equivalence relations themselves is an active area of investigation with many

open questions attracting a lot of attention of specialists in the field. In this work we consider

several approaches to study the role of equivalence relations in computable structure theory.

We start by looking at isomorphisms of bounded Turing degree, generalising the direction of

research started by van der Waerden. We look at the complexity of isomorphisms between effec-

tively given isomorphic copies of structures from natural classes of structures including various

kinds of groups, Boolean algebras, Fraïssé limits, etc. Later on, we discuss the complexity of

descriptions of structures for which there exist effective isomorphisms between their copies. Fi-

nally, we discuss how equivalence relations turn out to be useful when one studies algorithmic

properties of non-computable structures.

Computability-theoretic notation in this thesis is standard and as in [78].

1.2 Preliminaries

We will assume that all structures are at most countable and their languages are computable.

Clearly, finite structures are computable. Let d be a Turing degree. An infinite structureM is

d-computable if its universe can be identified with the set of natural numbers ω in such a way

that the relations and operations ofM are uniformly d-computable.

If an algebraic structure is not computable, then it is natural to ask how close it is to a com-

putable one. This property can be captured by the collection of all Turing degrees relative to
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1.2 Preliminaries

which a given structure has a computable isomorphic copy. Thus, we have the following defini-

tion. For a countable structure A, its degree spectrum DgSp(A) was defined by Richter in [75]

and consists of the Turing degrees of all isomorphic copies of A. As shown by Knight in [58],

in all nontrivial cases, the degree spectrum of a structure is closed upward. Degree spectra of

structures with various model-theoretic and algebraic properties have been widely studied; an

overview of the current situation can be found, e.g., in [25]. Probably the simplest example of a

degree spectrum is a cone above a Turing degree d. On the other hand, no non-degenerate finite

or countable union of cones can be a degree spectrum [80]. Slaman and Wehner in [76, 82] gave

examples of structures with the degree spectrum consisting of exactly the non-computable de-

grees. In [55] Kalimullin constructed an example of a structure with its degree spectrum equal to

all the non-∆0
2 degrees. Greenberg, Montalbán and Slaman showed that non-hyperarithmetical

degrees form a spectrum of a structure in [48].

For a theory T , the degree spectrum of T was defined in [2]. It consists of all degrees of count-

able models of T . Some of the known examples of the spectra of theories include [2]: cones, a

non-degenerate union of two cones, exactly the PA degrees, exactly the 1-random degrees. On

the other hand, the authors of [2] prove that the collection of non-hyperarithmetical degrees is

not the spectrum of a theory. In particular, these examples show that not every spectrum of a

structure is a spectrum of a theory and, vice versa, not every spectrum of a theory is a spectrum

of a structure.

We suggest the following generalization of these two notions to arbitrary equivalence rela-

tions.

Definition 1. The degree spectrum of a countable structure A with universe ω under an equiv-

alence relation E is

DgSp(A, E) = {d | there exists a d-computable B which is E − equivalent toA}.

Then the classical degree spectrum of A is DgSp(A,�), the degree spectrum of A under

isomorphism, while the degree spectra of the theory of A is DgSp(A,≡), the degree spectrum

ofA under elementary equivalence.

If we restrict our attention to computable structures and study equivalence relations on those,

then the main notion used in this direction of reserach is that of computable categoricity. The

topic dates back to Fröhlich and Shepherdson [29] who revisited van der Waerden’s results and

produced examples of computable fields that are not computably isomorphic. Mal’cev in [63]
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1 Introduction

studied the question of uniqueness of a constructive enumeration for a model and introduced

the notion of a recursively stable model. Later in [64] he built isomorphic computable infinite-

dimensional vector spaces that were not computably isomorphic. In the same paper he intro-

duced the notion of an autostable model, which is equivalent to that of a computably categorical

model. Since then, the definition of computable categoricity has been standardized and rela-

tivized to arbitrary Turing degrees d, and has been the subject of much study (see, e.g., surveys

[35, 25]).

A computable structureA is called computably categorical if for every computable structure

B isomorphic to A, there exists a computable isomorphism from A onto B. For example,

Ershov [21] established that a computable algebraically closed field is computably categorical if

and only if it has a finite transcendence degree over its prime subfield. Miller and Schoutens [71]

constructed a computably categorical field of infinite transcendence degree over the field of

rational numbers.

The notion of computable categoricity can be extended to higher levels of hyperarithmetic

hierarchy. Let α be a computable ordinal. A computable structure A is ∆0
α-categorical if for

every computable structure B isomorphic to A, there exists a ∆0
α isomorphism from A onto B.

More generally, a computable structureA is relatively ∆0
α-categorical if for every B isomorphic

to A, there is an isomorphism from A to B, which is ∆0
α relative to the atomic diagram of B.

Clearly, a relatively ∆0
α-categorical structure is ∆0

α-categorical. The converse is not always true.

Relative ∆0
α-categoricity has a syntactic characterization that involves the existence of certain

Scott families of computable formulas. Roughly speaking, computable formulas are infinitary

formulas with disjunctions and conjunctions over computable enumerable (c.e.) sets. A Scott

family for a structure A is a countable family Φ of Lω1ω-formulas with finitely many fixed

parameters from A such that:

(i) Each finite tuple inA satisfies some ψ ∈ Φ;

(ii) If a, b are tuples inA, of the same length, satisfying the same formulas in Φ, then there is

an automorphism ofA, which maps a to b.

Ash [4] defined computable Σα and Πα formulas of Lω1ω, where α is a computable ordinal,

recursively and simultaneously and together with their Gödel numbers. The computable Σ0 and

Π0 formulas are the finitary quantifier-free formulas. The computable Σα+1 formulas are of the
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1.2 Preliminaries

form ∨
n∈We

∃ynψn(x, yn),

where for n ∈ We, ψn is a Πα formula indexed by its Gödel number n, and ∃yn is a finite block of

existential quantifiers. Similarly, Πα+1 formulas are c.e. conjunctions of ∀Σα formulas. If α is a

limit ordinal, then Σα (Πα, respectively) formulas are of the form
∨

n∈We

ψn (
∧

n∈We

ψn, respectively),

such that there is a sequence (αn)n∈We of ordinals less than α, given by the ordinal notation for

α, and every ψn is a Σαn (Παn , respectively) formula. For a more precise definition see [4].

A formally Σ0
α Scott family is a Σ0

α Scott family consisting of computable Σα formulas. It follows

that a formally c.e. Scott family is also a c.e. Scott family of finitary existential formulas.

The following equivalence (i)–(ii)–(iii) for a computable structureA was established by Gon-

charov [32] for α = 1, and by Ash, Knight, Manasse, and Slaman [6] and independently by

Chisholm [13] for any computable ordinal α:

(i) The structureA is relatively ∆0
α-categorical.

(ii) The structureA has a formally Σ0
α Scott family.

(iii) The structureA has a c.e. Scott family consisting of computable Σα formulas.

Infinitary language is essential for Scott families. Cholak, Shore, and Solomon [15] proved

the existence of a computably categorical rigid graph that does not have a Scott family of finitary

formulas. It follows that this structure is not relatively computably categorical.

Goncharov [33] was the first to show that computable categoricity of a computable structure

does not imply relative computable categoricity. The result of Goncharov was lifted to higher

levels in the hyperarithmetic hierarchy by Goncharov, Harizanov, Knight, McCoy, R. Miller,

and Solomon for successor ordinals [46], and by Chisholm, Fokina, Goncharov, Harizanov,

Knight, and Quinn for limit ordinals [12]. Hence, for every computable ordinal α, there is a

∆0
α-categorical but not relatively ∆0

α-categorical structure. If follows from results by Hirschfeldt,

Khoussainov, Shore, and Slinko in [50] that there are (computable) computably categorical but

not relatively computably categorical structures in the following classes: partial orders, lattices,

2-step nilpotent groups, commutative semigroups, and integral domains of arbitrary character-

istic. Hirschfeldt, Kramer, R. Miller, and Shlapentokh [51] showed that there is a computably

categorical algebraic field, which is not relatively computably categorical.

Cholak, Goncharov, Khoussainov, and Shore [14] showed that there is a computable structure,

which is computably categorical, but ceases to be after naming any element of the structure.

5



1 Introduction

Clearly, this structure is not relatively computably categorical. Khoussainov and Shore [57]

proved that there is a computably categorical structure A, which is not relatively computably

categorical, but the expansion ofA by any finite number of constants is computably categorical.

Previously, T. Millar [68] showed that if a computably categorical structure A is 1-decidable,

then any expansion ofA by finitely many constants remains computably categorical.

Goncharov’s graph in [33], which is computably categorical but not relatively computably

categorical, is rigid, and hence computably stable but not relatively computably stable. A struc-

ture A is ∆0
α-stable if for every computable copy B of A, all isomorphisms from A onto B are

∆0
α. Similarly, we define relatively ∆0

α-stable structures. A defining family for a structure A is a

set Φ of Lω1ω formulas with one free variable and a fixed finite tuple of parameters fromA such

that:

(i) Every element ofA satisfies some formula ψ ∈ Φ;

(ii) No formula of Φ is satisfied by more than one element ofA.

The existence of a defining family is equivalent to rigidity relative to a finite set of parameters.

A countable structure is rigid if and only if it has a defining family with no parameters. A

computable structureA is relatively ∆0
α-stable if and only if it has a formally Σ0

α defining family.

Downey, Kach, Lempp, Lewis, Montalbán, and Turetsky [19] proved that for every com-

putable ordinal α, there is a computably categorical structure, which is not relatively ∆0
α-categorical.

In fact, it follows from their construction that the structure is rigid. Thus, they answered pos-

itively the following question from [46, 12]: For a computable ordinal α > 1, is there a com-

putable structure A that is ∆0
α-stable but not relatively ∆0

α-stable? On the other hand, a natural

open question arising from [19] is whether there is a computably categorical structure that is not

relatively hyperarithmetically categorical.

Ash [5] proved that a computable structure A is ∆1
1-categorical if and only if A is ∆0

α-

categorical for some computable ordinal α. It is not known whether every computable ∆1
1-

categorical structure is relatively ∆1
1-categorical. A similar question has been resolved for rela-

tions on structures – intrinsically ∆1
1 and relatively intrinsically ∆1

1 relations are the same (see

[47]). Namely, it follows from a result by Soskov [79] that for a computable structure A and

a relation R on A, if R is invariant under automorphisms of A, and ∆1
1, then R is definable in

A by a computable infinitary formula with no parameters. This is used to establish that if R is

intrinsically ∆1
1 onA, then R is relatively intrinsically ∆1

1 onA.
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1.2 Preliminaries

An injection structure is a structure (A, f ) where f : A → A is a 1 − 1 function. For a

linear order [31, 74], a Boolean algebra [31, 73], a tree of finite height [62], an abelian p-

group [34, 77, 10], an equivalence structure [9], an injection structure [11], and an algebraic

field with a splitting algorithm [72], computable categoricity coincides with relative computable

categoricity.

For an injection structureA = (A, f ) and a ∈ A, we define the orbit of a:

O f (a) = {b ∈ A : (∃n ∈ ω)[ f n(a) = b ∨ f n(b) = a]}.

Cenzer, Harizanov, and Remmel [11] established that a computable injection structure is ∆0
2-

categorical if and only if it has finitely many orbits of type ω or finitely many orbits of type Z.

They showed that every ∆0
2-categorical injection structure is relatively ∆0

2-categorical. It is not

hard to see that every computable injection structure is relatively ∆0
3-categorical.

Calvert, Cenzer, Harizanov, and Morozov [9] proved that a computable equivalence structure

is relatively ∆0
2-categorical if and only if it either has finitely many infinite equivalence classes, or

there is an upper bound on the size of its finite equivalence classes. They also have partial results

towards characterizing ∆0
2-categoricity. First we need some definitions. A function f : ω2 → ω

is a Khisamiev s-function if for every i and s, f (i, s) 6 f (i, s + 1), and the limit mi = limt f (i, t)

exists. If, in addition, mi < mi+1 for every i, then we say that f is a Khisamiev s1-function. If an

equivalence structure A has no upper bound on the size of the finite equivalence classes, then

Khisamiev s1-function for A is such that A contains an equivalence class of size mi for every

i. If an equivalence structureA has infinitely many infinite equivalence classes, no upper bound

on the size of its finite equivalence classes, and has a computable Khisamiev s1-function, thenA

is not ∆0
2-categorical (see [9]). Kach and Turetsky [54] showed that there exists a ∆0

2-categorical

equivalence structureM, which is not relatively ∆0
2-categorical. Their equivalence structureM

has infinitely many infinite equivalence classes and unbounded character, but has no computable

Khisamiev’s s1-function, and has only finitely many equivalence classes of size k for any finite

k. Every computable equivalence structure is relatively ∆0
3-categorical.

Goncharov and Dzgoev [31], and independently Remmel [74] proved that a computable linear

order is computably categorical (also, relatively computably categorical) if and only if it has

only finitely many adjacencies (successor pairs). In [67], McCoy characterized relatively ∆0
2-

categorical linear orders as follows. By ω∗ we denote the reverse order of ω, and by η the order

type of rationals. A computable linear order is relatively ∆0
2-categorical if and only if it is a
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1 Introduction

sum of finitely many intervals, each of type m, ω, ω∗, Z or n · η, so that each interval of type

n · η has a supremum and an infimum. McCoy [67] also characterized, after adding certain extra

predicates, ∆0
2-categorical linear orders. However, it still remains open whether there is a ∆0

2-

categorical linear order, which is not relatively ∆0
2-categorical. In [66], McCoy proved that there

are 2ℵ0 relatively ∆0
3-categorical linear orders.

Goncharov and Dzgoev [31], and independently Remmel [73] established that a computable

Boolean algebra is computably categorical (also, relatively computably categorical) if and only

if it has finitely many atoms (see also LaRoche [61]). In [67], McCoy characterized computable

relatively ∆0
2-categorical Boolean algebras as those that can be expressed as finite direct sums of

subalgebras C0 ⊕ · · ·⊕Ck where each Ck is either atomless, an atom, or a 1-atom. Using McCoy’s

characterization, Bazhenov [7] showed that for Boolean algebras the notions of ∆0
2-categoricity

and relative ∆0
2-categoricity coincide. Harris gave another proof in [49]. In [66], McCoy gave a

complete description of relatively ∆0
3-categorical Boolean algebras.

Fokina, Kalimullin, and R. Miller [26] introduced the following notions trying to capture the

set of all Turing degrees capable of computing isomorphisms between computable structures.

LetA be a computable structure. The categoricity spectrum ofA is the following set of Turing

degrees:

CatSpec(A) = {x : A is x-computably categorical}.

The degree of categoricity of A, if it exists, is the least Turing degree in CatSpec(A). If d

is a non-hyperarithmetic degree, then d cannot be the degree of categoricity of a computable

structure. A Turing degree d is called categorically definable if it is the degree of categoric-

ity of some computable structure. Fokina, Kalimullin, and R. Miller [26] investigated which

arithmetic degrees are categorically definable. Csima, Franklin, and Shore [16] extended their

results to hyperarithmetic degrees. For sets X and Y , we say that Y is c.e. in and above (c.e.a.

in) X if Y is c.e. relative to X, and X 6T Y . Csima, Franklin, and Shore [16] proved that

for every computable ordinal α, 0(α) is categorically definable. They also established that for a

computable successor ordinal α, every degree d that is c.e.a. in 0(α) is categorically definable.

There were also negative results in [26, 16]. Anderson and Csima [1] showed that there exists

a Σ0
2 set the degree of which is not categorically definable. They also showed that no noncom-

putable hyperimmune-free degree is categorically definable. It is an open question whether all

∆0
2 degrees are categorically definable.
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1.2 Preliminaries

Not every computable structure has the degree of categoricity. The first negative example

was built by R. Miller [70]. Examples of rigid structures without the degrees of categoricity

were built by Fokina, Frolov, and Kalimullin [23]. It is an open question whether there is a

computable structure the categoricity spectrum of which is the set of all noncomputable Turing

degrees.

Similarly to the case of computable categoricity, we define decidable categoricity spectrum of

A to be the collection of degrees that can compute at least one isomorphism between decidable

copies ofM. In a series of works, including [8, 37, 38, 40], Goncharov and his students studied

decidable categoricity of structures. In particular, Goncharov established the following results.

Theorem 2. ([38]) Every c.e. degree d is the degree of decidable categoricity of some decidable

almost prime model.

Theorem 3. ([37]) There exists a decidable Ehrenfeucht theory T such that T has a decidable

prime model that is decidably categorical, and T has a decidable almost prime model that is not

decidably categorical.

We can extend the definition also to the case of effective categoricity relative to m-decidable

presentations, as follows.

Definition 4. We call a structure categorical relative to m-decidable presentations (or autostable

relative to m-constructivizations) if any two m-decidable copies of A are computably isomor-

phic.

In particular, being computably categorical is the same as being categorical relative to 0-

decidable presentations.

To estimate the complexity of algorithmic, algebraic and model-theoretic properties on com-

putable structures, one of the approaches is to use the notion of index set. In Chapter 3 we will

use this approach to find out how hard it is to say that a computable structure is categorical rel-

ative to m-decidable presentations, where 0 6 m ∈ ω. Here we review the necessary definitions

as given in [42].

Let K be a class of structures. We denote by Kc the set of computable structures in K. A

computable characterization of K should separate computable structures in K from all other

structures (those not in K, or noncomputable ones). We say that K has a computable character-

ization if Kc is the set of computable models of a computable infinitary sentence.

9



1 Introduction

Proposition 5. (i) The class of linear orders can be characterized by a single first-order sen-

tence.

(ii) The class of abelian p-groups is characterized by a single computable Π2 sentence.

(iii) The classes of well orders and reduced abelian p-groups cannot be characterized by

single computable infinitary sentences.

A computable index for a structureA is a number e such that D(A) = We, where D(A) is the

atomic diagram of A. We denote the structure with index e byMe. For a class K of structures,

the index set I(K) is the set of computable indices of members of Kc:

I(K) = {e : We = D(A) ∧A ∈ K}.

Existence of a computable infinitary sentence describing a class Kc is equivalent to hyper-

arithmetical complexity of I(K), as shown in [42]. In fact, we do not know a better way to

estimate the complexity of an index set than by giving a description by a computable infinitary

formula.

Proposition 6. ([42]) (i) For the following classes K, the index set I(K) is Π0
2:

(a) linear orders,

(b) Boolean algebras,

(c) abelian p-groups,

(d) vector spaces over Q.

(ii) (Kleene, Spector) For the following classes K, the index set I(K) is not hyperarithmetic:

(a) well-orders,

(b) superatomic Boolean algebras,

(c) reduced abelian p-groups.

Downey, Kach, Lempp, Lewis, Montalbán, and Turetsky [19] proved that there is no simple

syntactic characterization of computable categoricity. More formally, they showed that the index

set of computable categorical structures is Π1
1-complete. Combining the methods from [19] and

10



1.3 Structure of the thesis

from [34], Bazhenov, Goncharov and Marchuk showed that also the index set of computable

structures of algorithmic dimension n > 1 is Π1
1 complete [40]. On the other hand, the index set

of relatively computably categorical structures is Σ0
3-complete (see [19]).

More recently, Goncharov introduced the notion of categoricity restricted to decidable struc-

tures [36, 37, 38].

Definition 7. A structure A is called decidably categorical (also called autostable relative to

strong constructivizations) if any two decidable copies ofA are computably isomorphic.

Goncharov and Marchuk in [44] showed that the index set of computable, decidably categor-

ical structures is Σ0
ω+2 complete, while for decidable, decidably categorical structures the index

set is a complete Σ0
3 set. Index sets for decidably categorical structures with particular algebraic,

model-theoretic and algorithmic properties were further studied in [39, 43, 45, 40].

1.3 Structure of the thesis

In Chapter 2 we study the relations between algorithmic properties of isomorphisms and de-

scriptive properties of natural structures. We present some new examples of structures in natural

classes, which are computably categorical but not relatively computably categorical, as well as

∆0
2-categorical but not relatively ∆0

2-categorical. We build a 1-decidable structure that is a Fraïssé

limit, which is computably categorical but not relatively computably categorical.We build com-

putable ∆0
2-categorical but not relatively ∆0

2-categorical trees of finite and infinite heights. Here,

a tree can be viewed both as a partial order and as a directed graph. Furthermore, we prove

that there is a homogenous completely decomposable abelian group, which is ∆0
2-categorical

but not relatively ∆0
2-categorical. We also compute the degrees of categoricity for relatively ∆0

2-

categorical abelian p-groups. This parallels Frolov’s work in [30] where he computed degrees

of categoricity for relatively ∆0
2-categorical linear orders. We further compute the degrees of cat-

egoricity for relatively ∆0
3-categorical Boolean algebras. This extends Bazhenov’s work in [7]

where he computed the degrees of categoricity for relatively ∆0
2-categorical Boolean algebras.

In Chapter 3 we consider n-decidable structures and their categoricity with respect to m-

decidable copies, where m, n ∈ ω. It turns out the the answer depends on the relationship

between m and n. For n 6 m, there exists no nice description of n-decidable structures cate-

gorical relative to m-decidable presentation. For m < n, there exist descriptions of arithmetical

11



1 Introduction

complexity, but they are also different for m = n− 1 and m 6 n− 2. We give the exact estimation

of complexity of index sets for the three cases.

Finally, in Chapter 4 we consider Σn-fragments of theories and the corresponding equivalence

relations ≡Σn (two structures are ≡Σn-equivalent if their Σn-theories coincide). We also write

A ≡Σn B when A and B are Σn-equivalent. We call DgSp(A,≡Σn) the Σn–spectrum of A. We

study what kinds of spectra are possible with respect to these equivalence relations and how such

spectra are related to each other and to the theory spectra of structures, defined above.

12



2 Effective categoricity and Scott families

In this chapter, we present some new examples of structures in natural classes, which are com-

putably categorical but not relatively computably categorical, as well as ∆0
2-categorical but not

relatively ∆0
2-categorical. In Section 2.1, we present 1-decidable structure that is a Fraïssé limit,

which is computably categorical but not relatively computably categorical. In Section 2.2, we

build computable ∆0
2-categorical but not relatively ∆0

2-categorical trees of finite and infinite

heights. Here, a tree can be viewed both as a partial order and as a directed graph. In Sec-

tion 2.3, we prove that there is a homogenous completely decomposable abelian group, which

is ∆0
2-categorical but not relatively ∆0

2-categorical. In Section 2.4, we compute the degrees of

categoricity for relatively ∆0
2-categorical abelian p-groups. This parallels Frolov’s work in [30]

where he computed degrees of categoricity for relatively ∆0
2-categorical linear orders. We fur-

ther compute the degrees of categoricity for relatively ∆0
3-categorical Boolean algebras. This

extends Bazhenov’s work in [7] where he computed the degrees of categoricity for relatively

∆0
2-categorical Boolean algebras.

2.1 Computably categorical but not relatively computably

categorical Fraïssé limits

For a computable ordinal α, the notions of ∆0
α-categoricity and relative ∆0

α-categoricity of a com-

putable structure A coincide if A satisfies certain extra decidability conditions (see Goncharov

[32] and Ash [5]). Goncharov [32] proved that ifA is 2-decidable, then computable categoricity

and relative computable categoricity of A coincide. Kudinov [59] showed that the assumption

of 2-decidability cannot be weakened to 1-decidability, by giving an example of 1-decidable

and computably categorical structure, which is not relatively computably categorical. On the

other hand, Downey, Kach, Lempp, and Turetsky [20] showed that any 1-decidable computably

categorical structure is relatively ∆0
2-categorical.

13



2 Effective categoricity and Scott families

The proofs by Goncharov and by Downey, Kach, Lempp, and Turetsky use the decidability of

the structure to determine if certain finitely generated substructures can be extended to various

larger finitely generated substructures. Because of the special properties of a Fraïssé limit, one

might expect that all such questions would be trivial to determine, and so the decidability con-

dition could be weakened or dropped entirely for such structures. However, this is not the case.

Here, we give an example of 1-decidable and computably categorical Fraïssé limit which is not

relatively computably categorical.

Let us recall the definition of a Fraïssé limit (see [53, Chapter 6]). The age of a structure

M is the class of all finitely generated structures that can be embedded inM. Fraïssé showed

that a (nonempty) finite or countable class K of finitely generated structures is the age of a finite

or a countable structure if and only if K has the hereditary property and the joint embedding

property. A class K has the hereditary property if whenever C ∈ K and S is a finitely generated

substructure of C, thenS is isomorphic to some structure inK. A classK has the joint embedding

property if for every B,C ∈ K there isD ∈ K such that B and C embed intoD. A structureU is

ultrahomogeneous if every isomorphism between finitely generated substructures ofU extends

to an automorphism ofU.

Definition 8. (see [53, Chapter 6]) A structureA is a Fraïssé limit of a class of finitely generated

structures K ifA is countable, ultrahomogeneous, and has age K.

Fraïssé proved that the Fraïssé limit of a class of finitely generated structures is unique up to

isomorphism. We say that a structure A is a Fraïssé limit if for some class K, A is the Fraïssé

limit of K. First we show that every Fraïssé limit is relatively ∆0
2-categorical.

Theorem 9. Let A be a computable structure which is a Fraïssé limit. Then A is relatively

∆0
2-categorical.

Proof. Because of ultrahomogeneity, we can construct isomorphisms betweenA and an isomor-

phic structure B using a back-and-forth argument, as long as we can determine, for every a ∈ A

and b ∈ B, whether there is an isomorphism from the structure generated by a to the structure

generated by b that maps a to b in order. This can be determined by (B)′, since there is such an

isomorphism precisely if there is no atomic formula ϕ with A |= ϕ(a) and B 6|= ϕ(b). This is a

Π0
1 condition relative toA⊕ B ≡T B.
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2.1 Computably categorical but not relatively computably categorical Fraïssé limits

Therefore, we can use (B)′ as an oracle to perform the back-and-forth construction of an

isomorphism, and so there is a ∆0
2(B) isomorphism. �

Note that if the language ofA is finite and relational, then there are only finitely many atomic

formulas ϕ to consider, and the set of such formulas can be effectively determined. Hence, if

the language is finite and relational, then a Fraïssé limit is necessarily relatively computably

categorical.

Theorem 10. There is a 1-decidable structure F that is a Fraïssé limit and computably cate-

gorical, but not relatively computably categorical. Moreover, the language for such F can be

finite or relational.

Proof. The proof is a modification of the first construction in Theorem 3.3 by Downey, Kach,

Lempp, and Turetsky [20], where the structure they build is, in particular, 1-decidable, com-

putably categorical but not relatively computably categorical. The only new ingredient we add

is to make the resulting structure a Fraïssé limit. We sketch the original constructions and ex-

plain the modifications we must make to ensure that the resulting structure is a Fraïssé limit. All

the formal details can be easily recovered from the original proof in [20].

The original construction is an undirected graph. To assure that the structure is made not rel-

atively computably categorical, we diagonalize agains all potential Scott families of computable

Σ1 formulas with finitely many parameters. This is done by creating infinitely many connected

components that are all accumulation points in the Σ1 type-space; this is similar to the technique

used in Kudinov’s construction in [59]. Then for any potential Scott family of Σ1 formulas, there

must be some accumulation point in a component disjoint from the finitely many parameters of

the family with the following property. Any Σ1 formula from the Scott family, which holds of

the accumulation point would also need to hold of any other point that is “sufficiently close” in

the type space, contradicting the definition of a Scott family.

The original construction created these accumulation points as vertices with loops of various

sizes coming out of them. For each accumulation point, there would be a pair of computable

sequences {nk}k∈ω and {mk}k∈ω, chosen exclusively for this accumulation point. For every k,

there would be a vertex vk with attached loops of sizes n0, . . . , nk and a loop of size mk. The loop
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2 Effective categoricity and Scott families

of size mk is meant to identify the component corresponding to vk, so loops of this size are not

used in any other component of the construction. There would also be a vertex v∞ with attached

loops n0, n1, . . . . Each vk and v∞ would also have infinitely many rays – non-branching infinite

paths originating from the vertex. The Σ1 type of v∞ was then the limit of the Σ1 types of the vk.

The original construction took place on a tree of strategies, where each accumulation point

was created by an individual strategy. Because a strategy might be visited only finitely many

times in the construction, not all strategies would create the full set of vertices described above.

Each time a strategy was visited, it performed one of the following steps, in alternation:

• Increment k, choose nk+1 and attach a loop of size nk+1 to v∞.

• Choose mk. Create the full vk component.

Thus, if a strategy was only visited finitely many times, the v∞-component would have loops

of sizes n0, . . . , nk+1, and the components v0, . . . , vk−1 would have all been created, and possibly

vk as well. Numbers nk and mk are always chosen larger than the current stage, and two distinct

strategies choose completely distinct numbers nk and mk. That is, any number is chosen by at

most one strategy.

Notice that each time the strategy first chooses a sufficiently large new nk+1 and attaches a

corresponding loop to v∞. Only after that it chooses a new mk and creates the vk component.

This ensures that the resulting structure is computably categorical. The fact that each component

has infinitely many infinite rays makes the structure 1-decidable. Finally, the structure is not

relatively computably categorical, as the construction destroys any potential Scott family.

We describe now two ways of modifying this construction so that the structure becomes a

Fraïssé limit while still being computably categorical, 1-decidable and not relatively computably

categorical. The first uses a finite language with function symbols, while the second uses an

infinite relational language. Let L1 = {E, f , g, h}, where E is a binary relation symbol and f , g

and h are unary function symbols. Let

L∞ = {E} ∪ {Ui, j : j < i ∧ i, j ∈ ω} ∪ {Vi, j : j 6 i ∧ i, j ∈ ω} ∪ {Ri : i ∈ ω} ∪ {S i : i ∈ ω},

where E is a binary relation symbol and each Ui, j, Vi, j, Ri and S i is a unary relation symbol.

The intention is that E is the edge relation of the graph from the original construction. That

is, in both cases, the reduct of the structures we make to the language {E} will be the original

structure in [20]. We will now describe the new functions and relations on the structure.
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2.1 Computably categorical but not relatively computably categorical Fraïssé limits

Suppose that v is one of the vk or v∞, and a0, . . . , ank−1 are vertices with vEa0, aiEai+1 for all

i < nk − 1, and ank−1Ev; that is, v, a0, . . . , ank−1 is the loop of size nk attached to v. Suppose also

that a0 has lower Gödel number than ank−1, so that we have chosen a particular orientation of the

loop. Then we define f (ai) = ai+1, and f (ank−1) = v. We also define g(ai+1) = ai and g(a0) = v.

So f “walks” along the loop in one direction, and g “walks” along it in the other direction. We

also define Unk ,i(ai) to hold for every i < nk, while Unk ,i(x) fails to hold for any other x.

For vk, suppose that a0, . . . , amk−1 are vertices as above, so that vk, a0, . . . , amk−1 is the loop of

size mk attached to vk, again with a chosen orientation. Then we define f (ai) = ai+1, f (amk−1) =

vk and f (vk) = a0. We also define g(ai+1) = ai, g(a0) = vk and g(vk) = amk−1. So again f and g

walk along the loop in the opposite directions, but the walks continue through vk. We also define

Vmk ,i(ai) to hold, and Vmk ,i(x) fails to hold for any other x, for every i < mk. Finally, we define

Vmk ,mk (z) to hold for every vertex z in the same component as vk.

Suppose that v is one of the vk’s or v∞, and consider a ray of the form a0, a1, . . . with vEa0

and aiEai+1 for all i ∈ ω. For infinitely many of these rays, we define f (ai) = ai+1, g(ai+1) = ai

and g(a0) = v, and for infinitely many rays we define g(ai) = ai+1, f (ai+1) = ai and f (a0) = v.

So for infinitely many rays, f walks away from v, while g walks towards v, and for infinitely

many rays the reverse holds. For every ray, we define Ri(ai) to hold.

For v∞, we choose some a0 from some ray with g(a0) = v∞ and define f (v∞) = a0. We choose

some b0 from some ray with f (b0) = v∞ and define g(v∞) = b0.

Suppose that v is one of the vk’s or v∞, and a is part of the loop of size n0 with g(a) = v. Then

we define h(v) = a. For every other x, we define h(x) = f (x).

For every vertex x in every component created by strategy i from the priority tree, we define

S i(x) to hold.

Claim 10.1. In both L1 and L∞, if x and y generate substructures that are isomorphic via an

isomorphism mapping x to y, then there is an automorphism of the full structure F mapping x

to y.

Proof. We prove the result for singletons x and y. The general case proceeds similarly. The point

is that if x , y, then they must both be vertices from loops/rays within the same component, and

they must be the same length along those loops/rays. Then, loops are identified uniquely and
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2 Effective categoricity and Scott families

for any two rays, there is an automorphism switching those rays and fixing the remainder of the

structure. The argument is slightly longer for L∞, because rays come in two sorts, and there are

two distinguished rays in the component of v∞.

In L1, through f or g, the substructure generated by x contains some vertex vk or v∞. The

same is true for y. Through h, the substructure also contains the entire loop of size n0. Since n0

is unique to some strategy from the priority tree, x and y are both placed by the same strategy.

In L∞, there is some i such that S i(x) and S i(y) hold. So x and y must again both be placed

by the same strategy.

In L1, if the substructure generated by x contains vk, then through f (vk) it also contains the

loop of size mk. If the substructure contains v∞, then through f (v∞) it also contains an infinite ray

with f (v∞) = a0. The same holds for y. This loop or ray uniquely characterizes the component,

so x and y must be part of the same component.

In L∞, if the component of x contains vk, then Vmk ,mk (x) holds. If instead it contains v∞,

then no Vmk ,mk (x) holds for any k. The same is true for y. So x and y must be part of the same

component.

In L1, there are four possibilities: f i(x) = v and g j(x) = v for some i and j; f i(x) = v for

some i but g j(x) , v for all j; g j(x) = v for some j but f i(x) , v for all i; or x = v. Note that

v is uniquely characterized by having degree greater than 2, even in the substructures generated

by x or y. In the first case, x must be a j−1 from the loop of size i + j. In the second case, x must

be ai−1 from one of the rays in which f walks towards v. In the third case, x must be a j−1 from

one of the rays in which g walks towards v. The same holds for y. The first case is unique in

the component, so in this case we know that x = y. If v , v∞, there is a single orbit containing

every instance of the second case, and another containing every instance of the third case, so

there must be an automorphism mapping x to y. If v = v∞, then the second case breaks into two

subcases: g(v) = f i−1(x), and g(v) , f i−1(x). The first subcase is unique in the component, so

x = y, while the second subcase again comprises a single orbit. We reason similarly in the third

case. The fourth case is again unique in the component.

In L∞, if x is part of some loop, then there is some Ui, j or Vi, j that holds of x and no other

point. So x = y. If x is part of some ray, then there is some Ri that holds of x and only of the

points on rays, which are distance i from v. So y is also a point on a ray, which is distance i

from v. So there is an automorphism of the structure switching those two rays, and in particular

18



2.2 ∆0
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sending x to y.

In L∞, vk is uniquely characterized by Vmk ,mk (vk) holding, some S i(vk) holding, and no other

unary relation holding. So if x = vk, then y = vk. Also, v∞ is uniquely characterized by some

S i(v∞) holding and no other unary relation holding. So if x = v∞, then y = v∞. �

It follows that the structures we have described are Fraïssé limits. Observe that they are de-

fined in a computable fashion. Furthermore, our expanded language does not provide an obstacle

to 1-decidability, since nk and mk are always chosen larger than the current stage. Thus any state-

ment about f s(x), gs(x), hs(x), Us, j(x), Vs, j(x), Rs(x) or S s(x) can be decided by considering the

construction up through stage s. From the definition of the additional functions and relations it

also follows that the expanded structure is still computably categorical but not relatively com-

putably categorical (as the vertices v∞ are still accumulation points in the Σ1-space, allowing us

to diagonalize against Scott families). �

2.2 ∆0
2-categorical but not relatively ∆0

2-categorical trees

We consider trees as partial orders. R. Miller [69] established that no computable tree of infinite

height is computably categorical. Lempp, McCoy, R. Miller, and Solomon [62] characterized

computably categorical trees of finite height, and showed that for these structures, computable

categoricity coincides with relative computable categoricity. There is no known characteriza-

tion of ∆0
2-categoricity or higher level categoricity for trees of finite height. Lempp, McCoy,

R. Miller, and Solomon [62] proved that for every n > 1, there is a computable tree of finite

height, which is ∆0
n+1-categorical but not ∆0

n-categorical. We will establish the following result,

which also holds when a tree is presented as a directed graph.

Theorem 11. There is a computable ∆0
2-categorical tree of finite height, which is not relatively

∆0
2-categorical.

Proof. While building a computable treeT (with domainω), we diagonalize against all potential

c.e. Scott families of computable Σ2 formulas with finitely many parameters. Thus, we consider

all pairs (X, p), where X is a c.e. family of computable Σ2 formulas and p is a finite tuple of
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2 Effective categoricity and Scott families

elements from the domain of T , and we must ensure that for each pair (X, p), X with parameters

p is not a Scott family for T . At the same time, we have to assure that every isomorphic

computable tree is 0′-isomorphic to T . The construction will be an infinite injury construction

where strategies are arranged on a priority tree with the true path defined as usual.

The root of T will have infinitely many “children,” which we label c0, c1, c2, . . .. Each ce will

have 3 children, ae, be and me. The purpose of me is to uniquely identify ce. The node me will

have a child ne, and ne will have e + 1 many children. See the diagram.

root

c0 c1

· · ·

ce

ae be me

ne

0 1

· · ·

e

· · ·

At stage 0, ae will have 2 children and be will have no children. Through the action of some

strategy, more children may be added to ae and be at later stages.

Let (Xi, pi)i be an enumeration of pairs, where Xi is a c.e. family of computable Σ2 formulas,

and pi is a tuple drawn from ω, the domain of T . We must meet the following categoricity

and isomorphism requirements. Let M0,M1, . . . be an effective enumeration of all computable

structures.

Ri : Xi with parameters pi is not a Scott family for T .

Q j : If M j � T , then there is a 0′-computable isomorphism between M j

and T .

Strategy for Ri
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Our strategy will appear on a priority tree. When the strategy is visited, s is always the current

stage, and t < s is the last stage at which the strategy took outcome ∞ (or t = 0 if the strategy

has never before taken outcome∞). The first time the strategy is visited, we choose a large e to

work with. In particular, ae and be must not occur in pi, and e > s.

We will take advantage of the fact that if ϕ(x) is a computable Σ2 formula and a ∈ T , then we

have a computable approximation (Ts)s to T and a computable sequence of finitary formulas

(ϕs(x))s such that T |= ϕ(a) if and only if Ts |= ϕs(a) for co-finitely many stages s, in the future

we will simply write Ts |= ϕ(a), meaning the corresponding finite formula ϕs(x). We may also

define the sequences (ϕs(x)s in such a way that that Ts 2 ϕ(a) for any a if ϕ(x) is not one of the

first s elements of Xi, and this is what we will assume from now on.

We proceed as follows.

1. Among the first s elements of Xi, locate the ϕ(x) that minimizes the u such that Tr |=

ϕ(ae, pi) ∧ ϕ(be, pi) for every r ∈ (u, s]. Note that u = s always works. Decide ties by

favoring earlier elements of Xi.

2. Wait until there is an r ∈ (t, s] with Tr 2 ϕ(ae, pi) ∧ ϕ(be, pi).

3. Add a child to both ae and be, ensuring that these children are not elements of pi.

4. Return to Step (1).

We perform at most one step at every stage at which the strategy is visited. In particular, we

never add more than 1 child to ae at a single stage. This will be important for interactions with

higher priority categoricity requirements. Note also that at every stage, ae has exactly 2 more

children than be.

The strategy has infinitely many outcomes: ∞ and fink for k ∈ ω. Every time we reach Step

(4), we take outcome∞ for a single stage. At all other stages, we take outcome fink, where k is

the number of previous stages at which we have taken outcome∞.

Strategy for Q j

Suppose σ is a strategy for Q j. This strategy will also appear on the priority tree. When σ is

visited, s is always the current stage and t < s is the last stage at which the strategy took outcome

∞ (or t = 0 if σ has never before taken outcome∞).
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We construct the isomorphism on ce and its descendants independently of the isomorphism

for all the other ce′’s. We begin by searching for a tuple (r, c,m, n) ∈ M j with

r CM j c CM j m CM j n,

and n having e + 1 many children. When we find such a tuple, we map ce to c; me to m; ne to

n; and the children of ne to the children of n. Of course, we may later see that the (e + 2)nd

child of ne appear, in which case we have made a mistake. If this happens, we will discard our

mapping and begin again. If M j � T , eventually the tuple in M j that respects the isomorphism

is the Gödel least satisfying the above, and so we will define the correct mapping. The oracle 0′

will be able to predict our mistakes, and so can ignore all mappings before the correct one.

Under the assumption that we have correctly mapped ce, we must map ae and be. This part

will not rely on the oracle. We wait until σ is visited and s > e. If e has not been chosen by an

Ri-strategy by this point, we know by construction that it will be never chosen. In this case, we

search for an a BM j c such that a has two children and map ae to a. We then search for any child

b BM j c other than m or a, and map be to b.

If e has been chosen by an Ri-strategy, and that strategy is incomparable with σ on the tree,

then, under the assumption that σ is along the true path, the strategy that chose e will never be

visited again. So let pe be the number of children of ae. We search for an aBM j c such that a has

pe children, and map ae to a. We then search for any b BM j c which is incomparable with m and

a, and, in case pe > 2, itself has children, and map be to b.

If e has been chosen by an Ri-strategy τ with τ̂ ∞ ⊆ σ, then, under the assumption that σ is

along the true path, ae and be are automorphic. So we search for any a, b BM j c incomparable

with m, a and having children, and map ae to a and be to b.

If e has been chosen by an Ri-strategy τ with τ̂ fink ⊆ σ, then, under the assumption that σ

is along the true path, ae and be will never gain any more children. So let pe be the number of

children on ae. We search for an a BM j c such that a has pe children, and map ae to a. We then

search for any b BM j c which is incomparable with m, a, and, in case pe > 2, itself has children,

and map be to b.

If e has been chosen by an Ri-strategy τ with σ̂ fink ⊆ τ, then we wait until a stage t when σ

is accessible and t > e. At this stage, we know that τ will never again be accessible (since τ was

visited before t, σ had taken outcome ∞ at least k times strictly before t, so at least k + 1 times

22



2.2 ∆0
2-categorical but not relatively ∆0

2-categorical trees

by any stage after t, so any future outcomes of σ must be ∞ or fink′ for k′ > k). So let pe be

the number of children on ae. We search for an a BM j c such that a has pe children, and map ae

to a. We then search for any b BM j c which is incomparable with m, a, and, in case pe > 2, has

children, and map be to b.

If e has been chosen by an Ri-strategy τ with σ̂∞ ⊆ τ, then let pe
s be the number of children

on ae at the beginning of stage s. We search for an a BM j c such that a has pe
s children, and map

ae to a. We then search for any b BM j c which is incomparable with m, a, and, in case pe
2 > 2,

has children, and map be to b. Note that, unlike in the other cases, pe
s may change, which is why

we have subscripted it with the stage number.

The strategy has infinitely many outcomes: ∞ and fink for k ∈ ω. At stage s, if the iso-

morphism is defined on ae for every e < s, which has been chosen by a τ extending σ̂∞, and

further the image of ae in M j has pe
s many children for every such e, then we take outcome ∞.

Otherwise, we take outcome fink where k is the number of previous stages at which we have

taken outcome∞.

Construction

Arrange the strategies on a tree in some effective fashion, and at every stage allow strategies

to be visited according to the outcome of previous strategies at that stage in the usual fashion.

Verification

Define the true path in the usual fashion for a 0′′-construction.

Lemma 12. Suppose that τ is an Ri-strategy along the true path. Then τ ensures Ri is satisfied.

Proof. Since τ is along the true path, it is visited infinitely often. We have 2 cases to consider.

Case 1. There is some ϕ(x) ∈ Xi such that T |= ϕ(ae, pi) ∧ ϕ(be, pi). Choose the least such

ϕ(x). Let u be such that Tr |= ϕ(ae, pi) ∧ ϕ(be, pi) for every r ∈ (u,∞]. Then for any ψ(x) ∈ Xi,

which is not one of the first u + 1 elements of Xi, we know that τ will never choose ψ(x) because

it will always prefer ϕ(x).

So if τ were to take outcome ∞ infinitely many times, by the pigeon hole principle, it would

choose one of the first u+1 elements ofXi infinitely many times. But if there are infinitely many

r with Tr 2 ψ(ae, pi)∧ψ(be, p), then eventually τ will prefer ϕ over ψ, and so will stop choosing
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ψ. Since ϕ was chosen to be least such, it will eventually be preferred to every other formula,

but then once that occurs, we will never again reach Stage 4. Therefore, τ cannot have outcome

∞ infinitely often. So τ has true outcome fink for some k, and ae and be have different finite

numbers of children. This means that ae and be are not automorphic, so ϕ witnesses the failure

of (Xi, pi) as a Scott family.

Case 2. There is no ϕ(x) ∈ Xi such that T |= ϕ(ae, pi) ∧ ϕ(be, pi). Then for any ϕ, there

are infinitely many r with Tr 2 ϕ(ae, pi) ∧ ϕ(be, pi). So with any chosen ϕ we eventually reach

Step (3), so ae and be have infinitely many children. So ae and be will be automorphic, and in

particular there will be an automorphism permuting ae and be and pointwise fixing pi. So for

any ϕ with T |= ϕ(ae, pi), we know that T |= ϕ(be, pi). Hence there can be no ϕ ∈ Xi, so that

T |= ϕ(ae, pi), and thus Xi fails to be a Scott family. �

Lemma 13. Suppose that σ is a Q j-strategy along the true path, that M j � T , and e is chosen

by some τ ⊇ σ̂∞. Then σ eventually correctly maps ae and be.

Proof. Certainly, σ eventually correctly maps ce and me, and defines some map for ae and be. If

τ has true outcome∞, then ae and be are automorphic, so this is a correct map.

Suppose instead that τ has true outcome fink (thus ae has k+2 children, and be has k children).

Let s0 be the stage at which σ correctly maps ce, and let t0 be the final stage at which τ takes

outcome ∞. Suppose that s0 > t0. Then at stage s0, σ searches for an a BM j c with pe
s0

= k + 2

children, and maps ae to a. By assumption, ae never gains any more children, so, since M j � T ,

the correct image of ae is the only such child of c. The element be is correctly mapped by

elimination.

If instead s0 6 t0, then let a be the element to which σ has mapped ae at stage t0. (Such an

element necessarily exists because σ must have taken outcome∞ at stage t0.) Since ae can gain

at most one child during stage t0, and will gain no children after stage t0, it has at least k + 1

children at the start of stage t0. Since σ has outcome ∞ at stage t0, a has at least pe
t0 = k + 1

children. Since M j � T , the correct image of ae is the only child of c with at least k +1 children,

so ae is correctly mapped. The element be is correctly mapped by elimination. �

Lemma 14. Suppose that σ is a Q j-strategy along the true path, and that M j � T . Then σ has

true outcome∞.
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Proof. Suppose otherwise. Let t0 be the final stage at which σ takes outcome ∞. Then there

are only finitely many e that are chosen by strategies extending σ̂∞, and, by Lemma 13, σ

eventually correctly maps ae for each of these e’s. Since M j � T , σ eventually sees pe
t0 many

children below the target of ae for each e, and so σ will take outcome ∞ at some stage after t0,

contrary to our assumption. �

Lemma 15. If M j � T , then there is a ∆0
2 isomorphism between M j and T .

Proof. Non-uniformly fix σ that is the Q j-strategy along the true path. As argued before, σ

eventually correctly maps every ce and me, and 0′ can determine when this occurs. By Lemma

13, or by the description of σ’s action, σ correctly maps ae and be once ce has been correctly

mapped. The only new ingredient is the observation that since σ has true outcome ∞, there is

eventually a stage s with t > e, thus treating those e’s chosen by strategies extending σ f̂ink.

Once ae and be are mapped, their children can be mapped by a simple back-and-forth argu-

ment. Thus 0′ can build an isomorphism. �

This completes the proof. Note that every step we have described above can be performed

equally well for partial orders and directed graphs. �

We can modify the construction in the proof of the previous theorem to make the tree have

infinite height by extending every child of ae, be and ne to an infinite non-branching path. Once

ae, be and ne are correctly mapped, we then need to use the 0′-oracle to correctly map their

descendants. Hence we have the following result, which is interesting, in particular, since there

is no computably categorical tree of infinite height.

Theorem 16. There is a computable ∆0
2-categorical tree of infinite height, which is not relatively

∆0
2-categorical.

2.3 ∆0
2-categorical but not relatively ∆0

2-categorical homogenous

completely decomposable abelian groups

We will now consider certain torsion-free abelian groups. A homogenous completely decompos-

able abelian group is a group of the form
⊕
i∈κ

H, where H is a subgroup of the additive group
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of the rationals, (Q,+). Note that we have only a single H in the sum – any two summands

are isomorphic. It is well known that such a group is computably categorical if and only if κ is

finite; the proof is similar to the analogous result that a computable vector space is computably

categorical if and only if it has finite dimension. In the remainder of this section, we will restrict

our attention to groups of infinite rank κ.

For P a set of primes, define Q(P) to be the subgroup of (Q,+) generated by { 1
pk : p ∈

P ∧ k ∈ ω}. Downey and Melnikov [18] showed that a computable homogenous completely

decomposable abelian group of infinite rank is ∆0
2-categorical if and only if it is isomorphic to⊕

ω

Q(P), where P is c.e. and the set (Primes−P) is semi-low. Recall that a set S ⊆ ω is semi-low

if the set HS = {e : We ∩ S , ∅} is computable from ∅′. Here, we will first fully characterize the

computable relatively ∆0
2-categorical homogenous completely decomposable abelian groups of

infinite rank.

Theorem 17. A computable homogenous completely decomposable abelian group of infinite

rank is relatively ∆0
2-categorical if and only if it is isomorphic to

⊕
ω

Q(P), where P is a com-

putable set of primes.

Proof. Suppose that G is relatively ∆0
2-categorical. Since this implies that G is ∆0

2-categorical,

by the above mentioned result of Downey and Melnikov, we know that G �
⊕
ω

Q(P) for P a c.e.

set of primes. We will show that P is also co-c.e.

Fix X, a c.e. Scott family of computable Σ2 formulas for G, with parameters a ∈ G<ω. By

definition, any element of G has all but finitely many coordinates equal to 0. Choose l ∈ ω to be

a coordinate which equals to 0 for every element of a. Fix an element b ∈ G, such that the only

non-zero coordinate of b is l. Then b is independent of a. The map b 7→ p · b can be extended to

an automorphism of G fixing a if and only if p ∈ P. Fix some formula ∃x θ(z, x, y) ∈ X, where θ

is a computable Π1 formula and G |= ∃x θ(a, x, b). Fix some tuple c ∈ G such that G |= θ(a, c, b).

Now, decompose the elements of c as ci = di + ei, where di is a rational multiple of b, and b

is independent of {a, e}. Observe that the map b 7→ p · b can be extended to an automorphism of

G fixing a and e if and only if p ∈ P, and any such isomorphism would need to map di 7→ p · di.

Define cp by cp
i = p · di + ei. Note that an isomorphism sending b 7→ p · b and fixing a and

e would necessarily map c 7→ cp. So, if there is such an isomorphism, then G |= θ(a, cp, p · b).
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Conversely, if G |= θ(a, cp, p · b) then G |= ∃x θ(a, x, p · b), and, by the definition of Scott family,

there must be an isomorphism fixing a and mapping b 7→ p · b. Thus,

p ∈ P⇔ G |= θ(a, cp, p · b).

Since θ is a computable Π1formula, and cp can be obtained effectively from p, it follows that

P is co-c.e. �

Since there exist co-c.e. sets that are semi-low and noncomputable, we obtain the following

categoricity result.

Corollary 18. There is a computable homogenous completely decomposable abelian group,

which is ∆0
2-categorical but not relatively ∆0

2-categorical.

2.4 Degrees of categoricity of certain Boolean algebras and

abelian p-groups

Cenzer, Harizanov, and Remmel established in [11] that the degrees of categorictiy of com-

putable injections structures can only be 0, 0′ and 0′′. Frolov [30] showed that the degrees of

categoricity of relatively ∆0
2-categorical linear orders can only be 0 and 0′. Using the charac-

terization of relatively ∆0
2-categorical Boolean algebras by McCoy in [67], Bazhenov [7] estab-

lished that the degrees of categoricity of relatively ∆0
2-categorical (equivalently, ∆0

2-categorical)

Boolean algebras can only be 0 and 0′. In this section, we will extend Bazhenov’s result to

relatively ∆0
3-categorical Boolean algebras.

A Boolean algebra B is atomic if for every a ∈ B there is an atom b 6 a. An equivalence

relation ∼ on a Boolean algebraA is defined by:

a ∼ b iff each of a ∩ b and b ∩ a is ∅ or a union of finitely many atoms ofA.

A Boolean algebra A is a 1-atom if A/ ∼ is a two-element algebra. A Boolean algebra A is

rank 1 if A/ ∼ is a nontrivial atomless Boolean algebra. McCoy [67] proved that a countable

rank 1 atomic Boolean algebra is isomorphic to I(2 · η).
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In [67], McCoy established that a Boolean algebra is relatively ∆0
2-categorical if and only if

it is a finite direct sum of algebras that are atoms, atomless, or 1-atoms. Furthermore, in [66],

McCoy characterized relatively ∆0
3-categorical Boolean algebras as those computable Boolean

algebras that can be expressed as finite direct sums of algebras that are atoms, atomless, 1-atoms,

rank 1 atomic, or isomorphic to the interval algebra I(ω + η). In our next theorem, we will use

this characterization and the following isomorphism result of Remmel [73] .

Lemma 19 (Remmel). IfA is a Boolean algebra, B ⊆ A is a subalgebra, B has infinitely many

atoms, every atom in B is a finite join of atoms inA, andA is generated by B and the elements

below the atoms of B, then B � A.

Theorem 20. The degrees of categoricity of relatively ∆0
3-categorical Boolean algebras can only

be 0, 0′ and 0′′.

Proof. Fix a relatively ∆0
3-categorical Boolean algebra B. If B is a finite join of atoms, 1-

atoms and atomless Boolean algebras, then B is relatively ∆0
2-categorical, and so its degree of

categoricity is either 0 or 0′. Otherwise, B has a summand which is either rank 1 atomic or

isomorphic to the interval algebra I(ω + η).

All of the potential summands in the characterization of relatively ∆0
3-categorical Boolean

algebras have computable isomorphic copies in which the set of finite elements (that is, the

elements a with a ∼ 0) is computable. We will show that both the rank 1 atomic algebra and

I(ω + η) have computable isomorphic copies where the set of finite elements is Σ0
2-complete.

It will follow that B has a computable isomorphic copy in which the set of finite elements is

computable, and another computable isomorphic copy in which it is Σ0
2-complete, and so any

isomorphism between these two copies will compute ∅′′.

We begin with the rank 1 atomic algebra. Let C be a computable copy of this algebra in which

the set of atoms is computable. Let {ai : i ∈ ω} be the atoms of C. We will create an algebraA

by extending C. Let ϕ(i, x) be a computable formula such that

i ∈ ∅′′ ⇔ ∃<∞xϕ(i, x).
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At every step s, we will consider whether ϕ(i, s) holds. The first time ϕ(i, s) holds, we choose

three large elements b0
i , b

1
i and b2

i and use them to partition ai into three pieces. That is,

b0
i ∧ b1

i = b1
i ∧ b2

i = b2
i ∧ b0

i = 0

and

b0
i ∨ b1

i ∨ b2
i = ai.

At the second stage at which we see ϕ(i, s) hold, we repeat the process on b0
i and b2

i . See the

following diagrams.

ai

b0
ib1

ib2
i

Working with rank 1 atomic, the first time we see ϕ(i, s) hold.

ai

b0
i

b00
ib01

ib02
i

b1
ib2

i

b20
ib21

ib22
i

Working with rank 1 atomic, the second time we see ϕ(i, s) hold.

ai

b0
i

b00
i

b000
ib001

ib002
i

b01
ib02

i

b020
ib021

ib022
i

b1
ib2

i

b20
i

b200
ib201

ib202
i

b21
ib22

i

b220
ib221

ib222
i

Working with rank 1 atomic, the third time we see ϕ(i, s) hold.
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We then letA be the Boolean algebra generated by C along with these new elements we have

added. Note that every element of A is the join of an element from C and some of these new

elements (among bσi ’s). That is, for all d ∈ A, d = c ∨ bσ0
i0
∨ bσ1

i1
∨ · · · ∨ bσk

ik
for some c ∈ C and

some bσ0
i0
, . . . , bσk

ik
.

Observe that ai is infinite inA if and only if ϕ(i, x) holds for infinitely many x, which is if and

only if i < ∅′′. Also, ai necessarily bounds an atom in A, e.g., b1
i . Finally, if ai is infinite, then

it can be partitioned into two infinite elements, e.g., b0
i and b1

i ∨ b2
i . Since every element of C

bounds an atom, and every infinite element of C can be partitioned into two infinite elements, it

follows that the same holds for every element ofA. This characterizes the rank 1 atomic algebra.

ThusA � C, andA is as desired.

Next, consider I(ω + η). Again, let C be a computable copy of I(ω + η) in which the set of

atoms is computable. Let {ai : i ∈ ω} be the atoms of C. We again create A extending C. Let

ϕ(i, x) be as before. At every step s, if ϕ(i, s) holds, we add new elements below a2i. The first

time ϕ(i, s) holds, we partition a2i = b0
i ∨ b1

i . The second time it holds, we partition b0
i and b1

i .

See the diagrams.

a2i

b0
ib1

i

Working with I(ω + η), the first time we see ϕ(i, s) hold.

a2i

b0
i

b00
ib01

i

b1
i

b10
ib11

i

Working with I(ω + η), the second time we see ϕ(i, s) hold.

We again let A be the Boolean algebra generated by C along with these new elements. The

isomorphism type of I(ω + η) is characterized by three properties: there are infinitely many

atoms; any element which bounds infinitely many atoms also bounds an atomless element; and
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a2i

b0
i

b00
i

b000
ib001

i

b01
i

b010
ib011

i

b1
i

b10
i

b100
ib101

i

b11
i

b110
ib111

i

Working with I(ω + η), the third time we see ϕ(i, s) hold.

no two disjoint elements both bound infinitely many atoms. Since every atom of A is bounded

by an atom of C, every atomless element of C is still atomless in A, and every atom of C is

either atomless or finite in A, the second and the third properties are inherited from C to A.

Meanwhile, the first property is ensured by the fact that each a2i+1 is still an atom of A. Thus

A � C. Also, a2i is finite if and only if i ∈ ∅′′, soA is as desired.

This completes the proof. �

It follows from proofs in [9] that the degrees of categoricity of computable relatively ∆0
2-

categorical equivalence structures can only be 0 and 0′. Using the characterization of relatively

∆0
2-categorical abelian p-groups in [10] we can show the following.

Proposition 21. The categoricity degrees of computable relatively ∆0
2-categorical abelian p-

groups can only be 0 and 0′.

Proof. Suppose that G is a computable abelian p-group, which is relatively ∆0
2-categorical but

not computably categorical. We will show that G has degree of categoricity 0′. From the earlier

described classifications of categoricity, it follows that G is of one of the following two forms:

1.
⊕
ω

Z(pk) ⊕
⊕
ω

Z(pm) ⊕ H, where 0 < k < m 6 ω; or

2. Every element of G has finite height, but G contains elements of arbitrarily large finite

heights.
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We will handle the two cases separately.

First Case

Consider elements x ∈ G with x , 0, p · x = 0 and ht(x) = k − 1. Note that Z(pk) contains

such an element (indeed, p − 1 such elements). By the observation that G �
⊕
ω

Z(pk) ⊕G, we

may assume that we have an effective enumeration {an : n ∈ ω} of elements of this sort.

Fix µ the modulus function of ∅′. We will build a second computable copy A such that the first

µ(n) elements of A contain at most n elements of the desired sort. Then given any isomorphism

f : G � A, the function n 7→ f (an) would necessarily dominate µ. Thus, any isomorphism from

G to A would compute ∅′.

The construction is now straightforward. By dom(F) we denote the domain and by ran(F)

the range of a function F. We will build a ∆0
2 homomorphism F : G � A and arrange that

A = ran(F) ⊕
⊕
ω

Z(pm). We begin with F0 = ∅.

At stage s + 1, for every n 6 s, we consider every x ∈ G with n 6 x 6 s, x , 0, p · x = 0

and [ht(x)]Gs < k. For each such element, if Fs(x) 6 µs(n), we define Fs+1(x) as some new large

element. This requires that we also define Fs+1(y) for every y dividing such an x, to be some

new large element. We let Fs+1(x) = Fs(x) for every other x. We then extend the domain of Fs+1

to the next element of G. We let Fs+1 induce the group operation on its range via pull-back.

Let Ds+1 = ran(Fs) − ran(Fs+1). Note that every elements of Ds has height less than k.

We add new elements to extend Ds+1 to a copy of
⊕

l
Z(pm) for some l < ω. Also, for every

a ∈ As+1 − ran(Fs+1) and every b ∈ ran(Fs+1), if A does not yet have an element corresponding

to a + b, we add an appropriate element now. This completes stage s + 1.

Now we argue that F is a total ∆0
2 function. Fix x ∈ G with x , 0 and p · x = 0. If

Fs+1(x) , Fs(x), then either our construction was deliberately redefining F(x), or it was required

to redefine F(x) because it deliberately redefined F(z) for some z that x divides. The only such

z’s are of the form i · x for 1 6 i < p. Let s0 be such that µs0(i · x) = µ(i · x) for 1 6 i < p.

Then at any stage s > s0 with Fs+1(x) , Fs(x), necessarily Fs+1(i · x) > µs(i · x) = µ(i · x), since

Fs+1(i · x) is chosen to be large. Then at any stage t > s, Ft(i · x) > µ(i · x) = µt(i · x), and so we

will have Ft+1(x) = Ft(x), and thus F(x) will reach a limit.

Now, consider y ∈ G with pα+1 · y = 0. Then p · (pα · y) = 0, and Fs+1(y) , Fs(y) only when

Fs+1(pα · y) , Fs(pα · y). Since we have just argued that F(pα · y) reaches a limit, it follows that

F(y) reaches a limit.
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Note that A = ran(F) ⊕
⊕
ω

Z(pm) by construction. It follows that A � G. It also follows that

every x ∈ A − ran(F) with p · x = 0 has height at least m − 1 > k. Finally, our construction

ensured that there are at most n elements x ∈ G with p · x = 0, ht(x) < k and F(x) < µ(n). Thus,

there are at most n elements x ∈ A with p · x = 0, ht(x) < k and x < µ(n), as desired.

Second Case

By a result of Khisamiev [56] and independently of Ash, Knight and Oates [3], we know that

G � Z(pk0) ⊕ Z(pk1) ⊕ · · · ,

where the sequence (ki)i∈ω is uniformly computable from below. That is, there is a computable

function g : ω×ω→ ω such that for all i and s, g(i, s) 6 g(i, s + 1), and for all i, ki = lims g(i, s).

Fix such a function g. By our assumptions on G, we know that the ki’s are unbounded.

We will construct a computable function h and a ∆0
2 function ι such that:

1. For all i and s, h(i, s) 6 h(i, s + 1);

2. ι : ω→ ω is a bijection;

3. For all i, lims h(i, s) = lims g(ι(i), s); and

4. For all n and all x ∈ G with x < µ(n) and x , 0, ht(x) + 1 < lims h(2n, s).

We will then let A = Z(plims h(0,s)) ⊕ Z(plims h(0,s)) ⊕ · · · . By the first property above, this is a

computable structure. By the second and the third properties, A � G. By the fourth property,

given an isomorphism f : A � G, for any element x of the (2n)th summand of A with x , 0 and

p · x = 0, it must be that f (x) > µ(n). Thus, f computes ∅′.

It remains to construct h and ι. We begin with ι0 = ∅ and h(i, 0) = 0 for all i.

At stage s + 1, if there is an n with 2n ∈ dom(ιs) and an x ∈ G with x < µ(n), x , 0 and

[ht(x)]Gs > h(2n, s), we search for a large pair ( j, t) with g( j, t) > h(2n, s), and define ιs+1(2n) = j

and h(2n, s + 1) = g( j, t). We then choose a large m and define ιs+1(2m + 1) = ιs(2n). We let

ιs+1(k) = ιs(k) for every other k.

We then choose the least a < dom(ιs+1) and the least b < ran(ιs+1), and define ιs+1(a) =

b. Then, for every i ∈ dom(ιs+1) with h(i, s + 1) not yet defined, we define h(i, s + 1) =
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2 Effective categoricity and Scott families

max{g(ιs+1(i), s + 1), h(i, s)}. For every i < dom(ιs+1), we define h(i, s + 1) = 0. This com-

pletes stage s + 1.

First, note that, by construction, h(i, s) 6 h(i, s + 1) for every i and s.

Next, we argue that ι is a total ∆0
2 function. Note that, by construction, for every i, there is

eventually a stage s0 with ιs(i) defined for all s > s0. If i is odd, then ιs(i) = ιs0(i) for all s > s0.

If instead i = 2n, then at every stage s with ιs(i) , ιs(i + 1), we have h(i, s + 1) > h(i, s) + 1.

Let u = max{ht(x) : x ∈ G ∧ x < µ(n)}. So for sufficiently large s1, h(i, s1) > u, and then

h(i, s) = h(i, s1) for all s > s1.

Next, we argue that ι is surjective. If b = ιs0(a), then either b = ιs(a) for all s > s0, or there is

a stage s1 > s0 with b = ιs1(c) for some odd c. By construction, ι never changes on odd inputs,

so b = ιs(c) for all s > s1. By construction, every element is eventually added to the range of

some ιs, so every element is in ran(ι).

By induction on s, h(i, s) 6 lims g(ιs(i), s) for all i and s, and so in particular, lims h(i, s)

exists and equals at most lims g(ι(i), s). On the other hand, h(i, s) > g(ιs(i), s) for all i and s by

construction, and so lims h(i, s) = lims g(ι(i), s), as desired.

Finally, for all n and all x ∈ G with x < µ(n) and x , 0, ht(x) + 1 < lims h(2n, s), as we

deliberately increase h(2n, s) whenever this appears to be false. This completes the proof. �
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3 Decidablilty, effective categoricity and

complexity of descriptions

In this chapter we consider n-decidable structures and their categoricity with respect to m-

decidable copies, where m, n ∈ ω. Recall the definitions.

Definition 22. A structure is n-decidable if its Σn-diagram is a computable subset of ω.

A structure is categorical relative to m-decidable presentations (or autostable relative to m-

constructivizations) if any two m-decidable copies ofA are computably isomorphic.

In particular, being computable is the same as being 0-decidable, and being computably cate-

gorical is the same as being categorical relative to 0-decidable presentations.

The index sets for structures with specific algorithmic properties related to decidability and

effective categoricity were studied by White [83], Fokina [24], Downey, Kach, Lempp, and

Turetsky [20] and Downey, Kach, Lempp, Lewis, Montalbán, and Turetsky [19].

Theorem 23. (i) ([24]) The index set of decidable structures is Σ0
3-complete.

(ii) ([83]) The index set of hyperarithmetically categorical structures is Π1
1-complete.

(iii) ([20]) The index set of relatively computably categorical structures is Σ0
3-complete.

(iv) ([19]) The index set of computably categorical structures is Π1
1-complete.

The question we investigate in this chapter is how complicated the property of being n-

decidable and categorical relative to m-decidable presentations is. The goal is to find the exact

complexity of index sets of computable structures with the mentioned properties. The answer

depends on the relationship between m and n. We summarize the results of this chapter in the

following table.
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3 Decidablilty, effective categoricity and complexity of descriptions

n-decidable m-decidably categorical Σ0
3 complete

n > 2 m 6 n − 2

n-decidable (n − 1)-decidably categorical Π0
4 complete

n > 1

n-decidable m-decidably categorical Π1
1 complete

n > 0 m > n

Figure 3.1: Complexity of index sets for n-decidable structures, categorical relative to m-

decidable presentations

3.1 Case 0 6 n 6 m

We first consider n-decidable structures that are categorical relative to n-decidable presentations.

Theorem 24. The index set of n-decidable structures that are categorical relative to n-decidable

presentations is Π1
1 complete.

Proof. Recall that by the result of Downey, Kach, Lempp, Lewis, Montalbán, and Turetsky [19]

the index set of computably categorical structures is Π1
1 complete. This means that for every Π1

1

set S there is a uniformly computable sequence of structures {Ai}i∈ω such that i ∈ S ⇐⇒ Ai is

computably categorical.

Marker in [65] defined ∀- and ∃-extensions, A∀ and A∃, respectively, of an arbitrary struc-

ture A. Fix a finite language L with no function symbols, and let A = (A, Pn0
0 , . . . , P

nm
m ) be

a structure of L. We assume that for every P of this structure the sets P and Ak \ P are infi-

nite, where k is the arity of P. For each k-ary predicate P of this structure we define ∃- and

∀-extensions of P, following the work of Marker in [65].

Marker’s ∃-extension of P is a (k + 1)-ary predicate denoted by P∃ with the following prop-

erties. Let X be an infinite set disjoint with A. Then P∃ satisfies the following conditions:

1. If P∃(a1, a2, . . . , ak, ak+1) then P(a1, . . . , ak) and ak+1 ∈ X.

2. For every ak+1 ∈ X there exists a unique tuple (a1, . . . , ak) ∈ Ak such that P∃(a1, a2, . . . , ak, ak+1).
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3.2 Case m = n − 1, where n > 1

3. If P(a1, . . . , ak) then there exists a unique a such that P∃(a1, a2, . . . , ak, a).

Marker’s ∀-extension of the predicate P is a (k + 1)-ary predicate P∀ with the following

properties. Let X be an infinite set disjoint with A. Then P∀ satisfies the following conditions:

1. If P∀(a1, a2, . . . , ak, ak+1) then a1, . . . , ak ∈ A and ak+1 ∈ X.

2. For all (a1, . . . , ak) ∈ A there exists at most one ak+1 ∈ X such that¬P∀(a1, a2, . . . , ak, ak+1).

3. P(a1, . . . , ak) iff for every ak+1 ∈ X we have P∀(a1, a2, . . . , ak, ak+1).

4. For every ak+1 ∈ X there exists a unique (a1, . . . , ak) ∈ Ak such that¬P∀(a1, a2, . . . , ak, ak+1).

The set X in an ∃- or ∀-extension is called a fellow of P.

Definition 25. LetA = (A, Pn0
0 , . . . , P

nm
m ) be a structure.

1. A∃ is a structure (A ∪ X0 . . . ∪ Xm, P
n0+1
0 , . . . , Pnm+1

m , X0, . . . , Xm), where each Pni+1
i , i =

0, . . . ,m, is a Marker’s ∃-extension of Pni
i such that fellows Xi of distinct predicates are

pairwise disjoint sets.

2. A∀ is a structure (A ∪ X0 . . . ∪ Xm, P
n0+1
0 , . . . , Pnm+1

m , X0, . . . , Xm), where each Pni+1
i , i =

0, . . . ,m, is a Marker’s ∀-extension of Pni
i such that fellows Xi of distinct predicates are

pairwise disjoint sets.

The main property of Marker’s extensions is that the domain and the basic relations ofA are

definable inA∀,A∃ by universal or existential formulas, respectively. One can iteratively apply

the extensions in the obvious way. Define Bi to be the result of the application of Marker’s (∀∃)-

extension n-times. As follows from [2] or [41], if Ai was computable, then Bi is n-decidable.

And from properties of the Marker’s extensions proved in [26], Ai is computably categorical iff

Bi is categorical relative to n-decidable presentations. The claim follows immediately. �

Corollary 26. For all m > n > 0, the index set of n-decidable structures that are categorical

relative to m-decidable presentations is Π1
1 complete.

3.2 Case m = n − 1, where n > 1

We now consider 1-decidable, computably categorical structures, i.e. we do not impose addi-

tional effectiveness conditions on the copies of the structure except of being computable.
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3 Decidablilty, effective categoricity and complexity of descriptions

Theorem 27. The index set of 1-decidable, computably categorical structures is Π0
4 complete.

Proof. We first show that the index set is Π0
4. Recall that 〈Mi〉i∈ω is a fixed effective listing of

all partial computable structures.

The relation “Mi is n-decidable” is Σ0
3, as it states that there is a partial computable {0, 1}-

valued function f defined on pairs (ϕ(x), a) with ϕ(x) a Σn formula in the language ofMi and

a ∈ M<ω
i such that:

• f is total;

• For ϕ(x) quantifier-free, f (ϕ(x), a) = 1 ⇐⇒ Mi |= ϕ(a);

• For ϕ(x, y) a Πn−1 formula, f (∃yϕ(x, y), a) = 1 ⇐⇒ ∃b f (¬ϕ(x, y), ab) = 0.

Consider the following relations on pairs (i, j):

(i, j) ∈ E ⇐⇒ Mi andM j are total structures and there is a computable

isomorphism between them

(i, j) ∈ F ⇐⇒ Mi andM j are total structures and there is a ∆0
2 isomorphism

between them

It is straightforward to show that E is Σ0
3, while F is Σ0

4.

Now consider the following property of a computable structureA:

For every computable structure B, if there is a ∆0
2 isomorphism from A to B, then

there is a computable isomorphism fromA to B. (†)

As a relation on i, this can be written as

∀ j F(i, j)→ E(i, j),

and so this is Π0
4.

Note that property (†) is a weakening of computable categoricity. Downey, Kach, Lempp and

Turetsky [20] showed that if a structure is computably categorical and 1-decidable, then it is

relatively ∆0
2-categorical. Inspection of their proof reveals that they did not use the full power of

computable categoricity; instead, they only used property (†). Thus they showed the following:

Lemma 28. If a structure is 1-decidable and has property (†), then it is relatively ∆0
2-categorical.
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3.3 Case m 6 n − 2, where n > 2

Note that a structure which is simultaneously relatively ∆0
2-categorical and has property (†) is

necessarily computably categorical. Thus we have the following: a structure is 1-decidable and

computably categorical if and only if it is 1-decidable and has property (†). So the relation “Mi

is 1-decidable and computably categorical” can be written as the conjunction of a Σ0
3 formula

and a Π0
4 formula, and so is Π0

4.

To show the completeness at the level Π0
4, we use a known method to code computable families

of functions in 1-decidable unars (for short, S is coded inMS ), as exposed in [22, 59]. The main

feature of the construction is the following: S admits exactly one computable numbering up to

equivalence iff the unarMS is computably categorical. So, the index set of computable families

of functions with exactly one computable numbering is m-reducible to required index set. And

the first index set was investigated in [60], where its Π0
4-completeness was proven. The theorem

is proven.

�

Using the technique of Marker’s extensions, it is not hard to show:

Corollary 29. For any n > 1, the index set of n-decidable, categorical relative to (n − 1)-

decidable presentations structures is Π0
4 complete.

3.3 Case m 6 n − 2, where n > 2

Goncharov [32] proved that a 2-decidable computably categorical structure is relatively com-

putably categorical. Downey, Kach, Lempp and Turetsky [20] showed that the index set of

relatively computably categorical structures is Σ0
3 complete. In fact, they show that the index set

of 2-decidable computably categorical structures is Σ0
3 complete. Applying Marker’s extensions,

we get the following result.

Proposition 30. For any n > 2 and m 6 n − 2, the index set of n-decidable, categorical relative

to m-decidable presentations structures is Σ0
3 complete.
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4 Degree spectra with respect to

equivalence relations

Recall the definition of degree spectra relative to equivalence relations.

Definition 31. The degree spectrum of a countable structure A with universe ω relative to the

equivalence relation E is

DgSp(A, E) = {d | there exists a d-computable B which is E − equivalent toA}.

Then the classical degree spectrum of A is DgSp(A,�), the degree spectrum of A under

isomorphism, while the degree spectra of the theory of A is DgSp(A,≡), the degree spectrum

ofA under elementary equivalence.

In this chapter, instead of considering the full theory of a structure, as for theory spectra, we

consider Σn-fragments of theories and the corresponding equivalence relations ≡Σn (two struc-

tures are ≡Σn-equivalent if their Σn-theories coincide). We also write A ≡Σn B when A and B

are Σn-equivalent. We call DgSp(A,≡Σn) the Σn–spectrum of A. We will study what kinds of

spectra are possible with respect to these equivalence relations.

4.1 Two cones

It is well-known that the degree spectrum of a structure cannot be the union of two cones [80].

On the other hand, the authors of [2] built a theory T with the spectrum of T being a non-

degenerate union of two cones. For Σn-spectra, the situation depends on n.

We start with a simple observation.

Lemma 32. Two relational structures A and B are Σ1–equivalent iff they have the same finite

substructures (in finite sublanguages).
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Proof. Suppose A ≡Σ1 B. Choose an arbitrary finite substructure A0 of A of a finite sublan-

guage. As its language is finite, we can write its atomic diagram D(A0) as a single first order

sentence ϕ(a) with parameters a from A0. ThenA |= ∃xϕ(x), where |x| = |a|. By Σ1–equivalence,

B |= ∃xϕ(x). Let b witness ϕ in B. Then the finite substructure B0 of B with domain b and with

relation symbols that appear in ϕ is isomorphic toA0.

Suppose now thatA and B have the same finite substructures in finite sublanguages. Assume

A |= ∃xϕ(x). Let a be a witness. Consider the finite substructure A0 of A with the universe a

and the language consisting of the relation symbols used in ϕ. By assumption, there is a finite

substructure B0 of B in the same language which is isomorphic to A0. Then B0 |= ∃xϕ(x), and

thus B |= ∃xϕ(x). �

Theorem 33. No Σ1–spectrum of a structure can be a non-degenerate union of two cones.

Proof. LetA and B be Σ1–equivalent structures that have degrees a and b, respectively, where a

and b are incomparable. For simplicity, we use the standard assumption that the language of the

structures is relational. We build a Σ1–equivalent structure C of degree c, such that c is neither

above a nor above b.

The universe of C will be ω. At each stage s we define a finite substructure Cs with the

universe an initial segment of ω. To make sure that C computes neither A nor B, we as usually

consider the list of requirements of the form ΦCe , A and ΦCe , B. Assume that the next

requirement is of the form ΦCe , A, so we want to diagonalize against C computing A. Let

{N j} j∈ω be a list of finite structures, such that each N j:

• extends Cs,

• has the universe an initial segment of ω,

• is isomorphic to a finite substructure of B in a finite language,

• every such substructure of B appears in the list.

Obviously, we can construct such a list computable in B. Now we ask if there are n and N j

such that ΦN j(n) ↓, A(n). If the answer is positive, we let Cs+1 be equal to such N j. So the

requirement ΦCe , A will be satisfied.

On the other hand, if the answer is negative, then for all n andN j either ΦN j(n) ↑ or ΦN j(n) ↓=

A(n). Suppose that in the end of the construction ΦCe is everywhere defined. Then for every n
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4.2 All but computable

there exists an N j such that ΦN j(n) ↓= A(n). So we can compute A from B, which is a

contradiction. Therefore, in this case ΦCe must be partial, and the requirement is again satisfied.

Note that the above construction guarantees that every substructure of C in a finite sublan-

guage appears inA and B. To ensure that C ≡Σ1 A,B, we also add stages where we extend the

previously built Cs to include the next finite substructure ofA or B. �

Theorem 34. There is a structureAwith DgSp(A,≡Σ2) equal to the union of two non-degenerate

cones.

Proof. If we allow infinite languages, the statement follows directly from the result of Andrews

and Miller [2], where they build a theory T with the spectrum of T consisting of exactly two

cones. Let A be a model of T and let B ≡Σ2 A. The theory T is a complete theory that can

be axiomatized using Σ2- and Π2-sentences. Thus, B is also a model of T . In other words,

DgSp(A,≡Σ2) = DgSp(A,≡), which is the union of two cones.

The result is also true for finite languages, for example, using the transformation from [50]

of arbitrary structures into graphs. It is not hard to show that the transformation preserves Σ2-

equivalence. A formal proof of a more general fact about preservation of Σn-spectra, n ∈ ω

under effective transformations can be found in [27]. �

4.2 All but computable

According to [76] and [82], there exist structures with the classical degree spectrum containing

exactly all the non–computable degrees. Moreover, as the structure from [76] is not elementary

equivalent to a computable structure, the built example actually shows that the degree spectrum

of the theory of the constructed structure consists of all the non–computable degrees.

The theory of the structure built in [76] is Σ3- and Π3-axiomatizable, however minor modifi-

cations can make it axiomatizable using Σ2- and Π2-sentences.

Theorem 35. There exists a countable structure A, such that DgSp(A,≡Σ2) consists of exactly

all the non–computable Turing degrees. The same is also true for DgSp(A,≡Σn), for all n > 2.

On the other hand, for Σ1-spectra this is again not true:

Proposition 36. No structureAmay have its Σ1-spectrum consisting of exactly the non-computable

degrees.
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Proof. The Σ1-spectrum of any structure A has the form {d | X is d-c.e.}, where X is the set of

Gödel indices of the sentences from the Σ1-theory of A. As shown in [17], if the collection

of oracles that enumerate any set X has positive measure, then X is c.e. So, if DgSp(A,≡Σ1)

contains all non–computable degrees, then the Σ1-theory of A is c.e. It is not hard to show that

if a Σ1-theory is c.e., then it has a computable model (see Theorem 40 below for a more general

statement). This completes the proof of the proposition. �

Similar considerations prove the following:

Corollary 37.

1. If DgSp(A,≡Σ1) contains all non–computable c.e. degrees, it also contains 0.

2. If DgSp(A,≡Σ1) contains all low degrees, it also contains 0.

3. If DgSp(A,≡Σ1) contains all high degrees, it also contains 0.

4. If DgSp(A ≡,Σ1) contains all PA degrees, it also contains 0.

5. If DgSp(A,≡Σ1) contains all degrees above a, it also contains a.

Proposition 36 and Corollary 37 can also be proved by coding a special kind of a minimal pair

of degrees into the above collections of degrees.

Definition 38. The sets X and Y form a Σ1-minimal pair if Σ1(X) ∩ Σ1(Y) = Σ0
1.

For example, if the set of all non-computable degrees were a Σ1-spectrum, there would exist

structures A,B of degrees a,b, respectively, where a and b form a Σ1-minimal pair. As the

Σ1-theory TΣ1 is c.e. inA and in B, it must be c.e. In this case it must have a computable model,

so the Σ1-spectrum must contain 0. Analogously for results from Corollary 37. A similar idea

was used in [2] to prove that certain collections of degrees are not structure spectra.

We use Σ1-minimal pairs to prove that further collections of degrees cannot be Σn-degree

spectra, for suitable n ∈ ω. We need the following two facts.

Observation 39. For any C, if A ⊕ B is sufficiently generic, then A ⊕ C and B ⊕ C form a

Σ0
1-minimal pair over C. That is, Σ0

1(A ⊕C) ∩ Σ0
1(A ⊕C) = Σ0

1(C).

Theorem 40. If T is a complete consistent theory in computable language L, and S is the

Σn-fragment of T (equivalently, S is the Σn-theory of a structure), and S is c.e., then S has a

computable model.
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Proof. We perform an effective Henkin construction. Let our universe be {ci}i∈ω, and let

{∃xϕi(x)}i∈ω be an enumeration of all Σn-sentences in L, where ϕi is a Πn−1-formula. Let {θi}i∈ω

be an enumeration of all Σn−1-sentences in L ∪ {ci}i∈ω. We will compute the (n − 1)-diagram of

our structure.

During the construction, we will have a set of sentences δs, which is the fragment of the

diagram we have committed to so far. We begin with δ0 = ∅. We also keep a stage ts which is

the stage we have enumerated S to. We begin with t0 = 0.

At stage s + 1, let δ̂s be made from δs by replacing the constant for ci with the new variable yi,

and similarly θ̂s(y) (where the same substitution ci 7→ yi is made).

Define the following:

ψs,+
t = ∃y∃z


θ̂s(y) ∧

(∧
ρ∈δ̂s

ρ(y)
)
∧

(∧
∃xτ(x,y)∈δ̂s

(∃w ∈ z)τ(w, y)
)

∧

(∧
i<s

∃xϕi(x)∈S t

(∃w ∈ yz)ϕi(w)
)
∧

(∧
i<s

∃xϕi(x)<S t

(∀w ∈ yz)¬ϕi(w)
)  ,

ψs,−
t = ∃y∃z


¬θ̂s(y) ∧

(∧
ρ∈δ̂s

ρ(y)
)
∧

(∧
∃xτ(x,y)∈δ̂s

(∃w ∈ z)τ(w, y)
)

∧

(∧
i<s

∃xϕi(x)∈S t

(∃w ∈ yz)ϕi(w)
)
∧

(∧
i<s

∃xϕi(x)<S t

(∀w ∈ yz)¬ϕi(w)
)  .

where “∃w ∈ yz” means there is a tuple of the appropriate length made from the elements of the

tuples y and z, and similarly for “∀w ∈ yz”. Note that both ψs,+
t and ψs,−

t are Σn-sentences in L.

We enumerate S until we see some ψs,+
t or ψs,−

t enumerated with t > ts. We will argue in the

verification that this must eventually occur.

Suppose we have seen ψs,+
t be enumerated. Fix some tuple c ∈ {ci}i∈ω with |c| = |z| and none

of c occurring in δs or θs. Fix a bijection between c and z. Define the map f such that for z ∈ z,

f (z) follows this bijection, and for y j, f (y j) = c j. Note that this is an injection from the variables

occurring in yz into {ci}i∈ω.

For every sentence ∃xϕi(x) ∈ S t, fix a witnessing tuple wi. Note that we can identify such w

effectively: since “∃w ∈ yz” is a finite disjunction, we can make more specific versions of ψs,+
t

by retaining only a single disjunct for every ϕi. Eventually, one of these more specific sentences

must be enumerated. Similarly, for every sentence ∃xτ(x, y) ∈ δs, fix a witnessing tuple wτ.

Define ts+1 = t and

δs+1 = δs ∪ {θs} ∪ {τ( f (wτ), f (y)) : ∃xτ(x, y) ∈ δ̂s}

∪{ϕi( f (wi)) : i < s & ∃xϕi(x) ∈ S t}

∪{¬ϕi( f (w)) : i < s & w ∈ yz & ∃xϕi(x) < S t}.
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4 Degree spectra with respect to equivalence relations

If instead ψs,−
t is enumerated, proceed similarly except define δs+1 with ¬θs instead of θs.

Once ts+1 and δs+1 are defined, proceed on to stage s + 2.

Verification:

Claim 40.1. For every s, ∃y
∧
ρ∈δ̂s

ρ(y) ∈ S .

Proof. Induction. �

In particular, the diagram D = {δs}s∈ω we build is consistent.

Claim 40.2. For every s, we will eventually see some ψs,+
t or ψs,−

t enumerated into S .

Proof. We know that ∃yδ̂s(y) is in S and thus in T . Since T is complete, at least one of ∃y(δ̂s(y)∧

θ̂s(y)) or ∃y(δ̂s(y) ∧ ¬θ̂s(y)) is in T , and by counting quantifiers, must thus be in S .

Let t be such that S t �i= S �i. Then at least one of ψs,+
t or ψs,−

t is in T , and thus is in S . �

Claim 40.3. D is computable.

Proof. We decide θs at stage s. �

LetM be the structure with universe {ci}i∈ω determined by the quantifier-free fragment of D.

Claim 40.4. M |= D.

Proof. Induction on sentence complexity. For quantifier-free sentences, this is immediate.

Suppose ∃xτ(x, b) ∈ D. Then at some sufficiently large stage, we act to put τ(c, b) ∈ D for

some b. By the inductive hypothesis,M |= τ(c, b), soM |= ∃xτ(x, b).

Suppose ∀xτ(x, b) ∈ D. Then for any c, it cannot be that ¬τ(c, b) ∈ D, as that would violate

the consistency of D. Since we eventually act to decide θ = τ(c, b), it must be that τ(c, b) ∈ D.

By the inductive hypothesis,M |= τ(c, b). Since c was arbitrary,M |= ∀xτ(x, b). �

Claim 40.5. M |= S .

Proof. If ∃xϕi(x) ∈ S t, then at any stage with i < s and t < ts, we will place the sentence ϕi(c)

in D for some c, and thusM |= ∃xϕi(x).

If ∃xϕi(x) < S , then at every stage with i < s, we will place the sentence ¬ϕi(c) in D for every

c mentioned so far in the construction. ThusM 6|= ϕi(c) for any c, and soM 6|= ∃xϕi(x). �

This completes the proof. �
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4.3 A non–trivial spectrum for Σ1–equivalence

We now use Observation 39 und Theorem 40 to prove that non-∆0
n-degrees cannot be a Σn-

spectrum.

Theorem 41. The non-∆0
n degrees are not the Σn-spectrum of any structure.

Proof. Suppose there were a structure M with SpecΣn(M) consisting precisely of the non-∆0
n

degrees. Using Observation 39, fix degrees a and b forming a Σ0
1-minimal pair over 0(n−1), with

a and b not arithmetical. By jump inversion, there are degrees c and d with c(n−1) = a and

d(n−1) = b, and neither c nor d are arithmetical.

By assumption, c,d ∈ SpecΣn(M). Let S be the Σn-theory ofM. Then S ∈ Σ0
n(c) = Σ0

1(a) and

also S ∈ Σ0
n(d) = Σ0

1(b). Since a and b form a Σ0
1-minimal pair over 0(n−1), S ∈ Σ0

1(0(n−1)), and

thus by Theorem 40 0(n−1) can compute a model of S . This model has ∆0
n-degree, contrary to

assumption. �

4.3 A non–trivial spectrum for Σ1–equivalence

In view of the results about Σ1-spectra from the previous two sections, we study the question of

existence of Σ1–spectra that are not cones.

Theorem 42. There exists a structure A such that its Σ1–spectrum DgSp(A,≡Σ1) cannot be

presented as a cone above a degree a.

Proof. As we already noted above, Σ1-spectra must have the form {d | X is d-c.e.}, where X is the

set of Gödel indices of the sentences from the Σ1-theory. On the other hand, every set of degrees

of the form {d | X is d-c.e.}, for some X, is a Σ1-spectrum of a structure AX: the structure AX

contains anω–chain x0, x1, . . . using a binary predicate P(xn, xn+1) (and a constant that fixes x0 as

the first element of the chain). Whenever n is enumerated into X, we define Q(xn, yn), where yn is

a new element that from now on witnesses n ∈ X. It is clear that DgSp(A,≡Σ1) = {d | X is d-c.e.}.

Richter studied sets of this form in [75]. She constructed a non-computably enumerable set

X, which is computably enumerable in sets B and C forming a minimal pair. Thus, the degrees

that enumerate X do not form a cone. The corresponding structureAX , built as described above,

witnesses the statement of the theorem. �
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4 Degree spectra with respect to equivalence relations

4.4 Relations between Σn-spectra

In this section we study relations between Σn-spectra, for various n.

Proposition 43. If S is a Σn–spectrum then {d | d′ ∈ S } is a Σn+1–spectrum.

Proof. The proof is essentially the same as the proof of Lemma 2.8 in [2] which is based on

Marker’s construction already discussed in Chapter 3. In that lemma it is proved that if S is a

theory spectrum, then so is {d | d′ ∈ S }. Recall that the idea of the Marker’s construction is to

build a new theory T ′ in such a way that every predicate of the original theory T is interpreted

by both Σ2- and Π2-formula in T ′. Using this, one can make sure that for an arbitrary sentence ϕ

from T , the number of quantifier alternations in its interpretation ϕ′ in T ′ increases only by one.

Therefore, if the original theory is axiomatizable by Σn- or Πn-sentences, then the new theory is

axiomatizable by Σn+1- or Πn+1-sentences. �

This result allows us to prove that some collections of degrees are Σn-spectra.

Proposition 44. Non-lown degrees form a Σn+2-spectrum.

Proof. By Theorem 35, the set of degrees strictly above 0(n) is a Σ2-spectrum. Applying Propo-

sition 43 n times we get the desired result. �

Proposition 45. The hignn degrees form a Σn+1-spectrum of a structure.

Proof. We build a structure A with its Σn+1-spectrum consisting of exactly the highn degrees.

Let B be a structure that has the Σ1-spectrum of the form {d : d >T 0(n+1)}. Applying Proposi-

tion 43 n times, we getA with the desired Σn+1 spectrum. �

Recall that by Corollary 37, high degrees do not form a Σ1–spectrum. We are going to extend

this result by showing that highn degrees never form a Σn-spectrum.

Proposition 46. The highn degrees do not form a Σn-spectrum of a structure.

To show that, we compare the descriptive complexity of {X ∈ ωω : X is highn} and {X ∈ ωω :

X ∈ S }, where S is a Σn-spectrum.

Proposition 47. Let T be a Σn-fragment of a (complete) theory. Then

{X : X computes (the atomic diagram of) a model of T }

is a Σ0
n+2-class.
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4.5 Σn-spectra and theory spectra

Proof. X computes a model of T iff

∃Φ∀ϕ ∈ Σn[ϕ ∈ T ⇐⇒ ΦX |= ϕ].

Here ΦX is the X-computable structure computed by Φ with oracle X. Then for a Σn sentence ϕ,

the complexity of “ΦX |= ϕ” is Σ
0,X
n . Considering T as a parameter, we get the desired complexity

Σ0
n+2. �

Theorem 48. {X ∈ ωω : X is highn} is not a Σ0
n+2-class.

The proof of the theorem can be found in [28], we omit it in this thesis.

4.5 Σn-spectra and theory spectra

We now prove that there is a theory spectrum that is not a Σn-spectrum, for any n > 1.

Definition 49. For n ∈ ω, let F = {X ∈ 2ω : (∃Φ)(∀n)[Φ(X(n) ⊕ {n}) = ∅(2n)]}.

Theorem 50. F is not the Σk-spectrum of any structureM for any k ∈ ω.

Proof. Suppose not, and fix witnessing M and k. By a standard Friedberg jump inversion con-

struction, fix a and b forming a minimal pair over 0(3k) with a′ = b′ = 0(ω). By jump inversion

again, there are c and d both above 0(2k) with c(k) = a and d(k) = b.

Note that c ∈ F : for C ∈ c, if n ≤ k, C(n) >T C >T ∅
(2k) >T ∅

(2n); if n > k, C(n) >T C(k+1) =

∅(ω) >T ∅
(2n). Further, all of these reductions are uniform. Similarly, d ∈ F . Thus there is an

Mc ∈ c and an Md ∈ d with

ThΣk (Mc) = ThΣk (Md) = ThΣk (M).

Then ThΣk (M) ∈ Σ0
k(c) ⊂ ∆0

1(a), and ThΣk (M) ∈ Σ0
k(d) ⊂ ∆0

1(b). By our choice of a and b,

ThΣk (M) ∈ ∆0
1(0(3k)), and so there is a 0(3k)-computable model of ThΣk (M). But clearly no

arithmetical degree can be in F , which is a contradiction. �

Theorem 51. There is a structureM with DgSp(M,�) = DgSp(M,≡) = F .

Proof. Our structure will be an effective disjoint union M =
⊔

n∈ωMn. In Mn, we will code

∅(2n) in a manner than can be decoded by the nth jump. Our language forMn will be {Pi,Ni}i∈ω∪

{→}, where the Pi and Ni are unary relations, and→ is a binary relation.

We recall the following trees (in the language of directed graphs), originally due to Hirschfeldt

and White [52]:
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4 Degree spectra with respect to equivalence relations

• A1 is the tree consisting of only the root;

• E1 is the tree where the root has infinitely many children, and all of these children are

leaves;

· · ·

Figure 4.1: The tree E1.

• Ak+1 is the tree where the root has infinitely many children all of whose subtrees are a

copy of Ek;

· · ·EkEkEkEkEk

Figure 4.2: The tree Ak+1.

• Ek+1 is the tree where the root has infinitely many children whose subtrees are a copy of

Ek, and also has infinitely many children whose subtrees are a copy Ak.

· · ·EkEkEk· · ·AkAkAk

Figure 4.3: The tree Ek+1.

Hirschfeldt and White showed that given a Σ0
k predicate, one can computably construct a tree T

which is isomorphic to Ek if the predicate holds, and is isomorphic to Ak if it fails, and further

this construction is uniform in an index for the predicate.

Also, there is a first-order Σk formula that holds of the root of the Ek tree, but does not

hold of the root of the Ak tree. We define these recursively: define ϕ1(x) : ∃z[x → z]; define

ϕk+1(x) : ∃z[x→ z ∧ ¬ϕk(z)].
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4.5 Σn-spectra and theory spectra

We now constructMn as follows: for each i, there is a unique element x withM |= Pi(x), and

x is the root of a tree of type En+1 if i ∈ ∅(2n) and of type An+1 if i < ∅(2n); conversely there is a

unique element y withM |= Ni(y), and y is the root of a tree of type An+1 if i ∈ ∅(2n) and of type

En+1 if i < ∅(2n).

We claim that if X ∈ F , then X uniformly computes a copy ofMn. For ∅(2n) ∈ ∆0
n+1(X), and

thus for the x and y with Pi(x) and Ni(y), we can construct the trees rooted at x and y computably

relative to X as described above.

Conversely, we claim that if X uniformly computes structures (Ln)n∈ω with Ln elementarily

equivalent toMn, then X ∈ F . For

i ∈ ∅(2n) ⇐⇒ (∃x ∈ Ln)[Pi(x) ∧ ϕn+1(x)] ⇐⇒ (∀y ∈ Ln)[Ni(y)⇒ ¬ϕn+1(y)].

Thus ∅(2n) ∈ ∆0
n+1(X), and further the code is obtained uniformly. �

51





Bibliography

[1] Bernard Anderson and Barbara Csima. Degrees that are not degrees of categoricity. Notre

Dame J. Formal Logic, 57(3):389–398, 2016.

[2] Uri Andrews and Joseph S. Miller. Spectra of theories and structures. Proc. Amer. Math.

Soc., 143(3):1283–1298, 2015.

[3] C. Ash, J. Knight, and S. Oates. Recursive abelian p-groups of small length. unpublished.

An annotated manuscript: https://dl.dropbox.com/u/4752353/Homepage/AKO.pdf.

[4] C. J. Ash. Recursive labelling systems and stability of recursive structures in hyperarith-

metical degrees. Trans. Amer. Math. Soc., 298(2):497–514, 1986.

[5] C. J. Ash. Categoricity in hyperarithmetical degrees. Ann. Pure Appl. Logic, 34(1):1–14,

1987.

[6] Chris Ash, Julia Knight, Mark Manasse, and Theodore Slaman. Generic copies of count-

able structures. Ann. Pure Appl. Logic, 42(3):195–205, 1989.

[7] N. A. Bazhenov. ∆0
2-categoricity of Boolean algebras. J. Math. Sci. (N. Y.), 203(4):444–

454, 2014.

[8] Nikolay Bazhenov. Prime model with no degree of autostability relative to strong con-

structivizations. In Evolving computability, volume 9136 of Lecture Notes in Comput. Sci.,

pages 117–126. Springer, Cham, 2015.

[9] Wesley Calvert, Douglas Cenzer, Valentina Harizanov, and Andrei Morozov. Effective

categoricity of equivalence structures. Ann. Pure Appl. Logic, 141(1-2):61–78, 2006.

[10] Wesley Calvert, Douglas Cenzer, Valentina S. Harizanov, and Andrei Morozov. Effective

categoricity of abelian p-groups. Ann. Pure Appl. Logic, 159(1-2):187–197, 2009.

53



Bibliography

[11] D. Cenzer, V. Harizanov, and J. B. Remmel. Computability-theoretic properties of injection

structures. Algebra Logika, 53(1):60–108, 134–135, 137–138, 2014.

[12] J. Chisholm, E. Fokina, S. Goncharov, V. Harizanov, J. Knight, and S. Quinn. Intrinsic

bounds on complexity and definability at limit levels. J. Symbolic Logic, 74(3):1047–1060,

2009.

[13] John Chisholm. Effective model theory vs. recursive model theory. J. Symbolic Logic,

55(3):1168–1191, 1990.

[14] Peter Cholak, Sergey Goncharov, Bakhadyr Khoussainov, and Richard A. Shore. Com-

putably categorical structures and expansions by constants. J. Symbolic Logic, 64(1):13–

37, 1999.

[15] Peter Cholak, Richard A. Shore, and Reed Solomon. A computably stable structure with

no Scott family of finitary formulas. Arch. Math. Logic, 45(5):519–538, 2006.

[16] Barbara F. Csima, Johanna N. Y. Franklin, and Richard A. Shore. Degrees of categoricity

and the hyperarithmetic hierarchy. Notre Dame J. Form. Log., 54(2):215–231, 2013.

[17] K. de Leeuw, E. F. Moore, C. E. Shannon, and N. Shapiro. Computability by probabilistic

machines. In Automata studies, Annals of mathematics studies, no. 34, pages 183–212.

Princeton University Press, Princeton, N. J., 1956.

[18] Rodney Downey and Alexander G. Melnikov. Effectively categorical abelian groups. J.

Algebra, 373:223–248, 2013.

[19] Rodney G. Downey, Asher M. Kach, Steffen Lempp, Andrew E. M. Lewis-Pye, Antonio

Montalbán, and Daniel D. Turetsky. The complexity of computable categoricity. Adv.

Math., 268:423–466, 2015.

[20] Rodney G. Downey, Asher M. Kach, Steffen Lempp, and Daniel D. Turetsky. Computable

categoricity versus relative computable categoricity. Fund. Math., 221(2):129–159, 2013.

[21] Ju. L. Ershov. Theorie der Numerierungen. III. Z. Math. Logik Grundlagen Math.,

23(4):289–371, 1977. Translated from the Russian and edited by G. Asser and H.-D.

Hecker.

54



Bibliography

[22] Yu. L. Ershov and S. S. Goncharov. Constructive models. Number New York in Siberian

School of Algebra and Logic. Consultants Bureau, 2000.

[23] Ekaterina Fokina, Andrey Frolov, and Iskander Kalimullin. Categoricity spectra for rigid

structures. Notre Dame J. Form. Log., 57(1):45–57, 2016.

[24] Ekaterina B. Fokina. Index sets for some classes of structures. Ann. Pure Appl. Logic,

157(2-3):139–147, 2009.

[25] Ekaterina B. Fokina, Valentina Harizanov, and Alexander Melnikov. Computable model

theory. In Rod Downey, editor, Turing’s Legacy, pages 124–194. Cambridge University

Press, 2014. Cambridge Books Online.

[26] Ekaterina B. Fokina, Iskander Kalimullin, and Russell Miller. Degrees of categoricity of

computable structures. Arch. Math. Logic, 49(1):51–67, 2010.

[27] Ekaterina B. Fokina and Dino Rossegger. Enumerable functors in computable structure

theory. preprint.

[28] Ekaterina B. Fokina, Pavel Semukhin, and Daniel Turetsky. Degree spectra of structures

relative to equivalence relations. preprint.

[29] A. Fröhlich and J. Shepherdson. Effective procedures in field theory. Philos. Trans. Roy.

Soc. London, Ser. A, 248:407–432, 1956.

[30] A. N. Frolov. Categoricity degrees of computable linear orderings. preprint.
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