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Abstract

We develop a model of Heath-Jarrow-Morton type for the forward price of energy that is driven
by a d-dimensional Lévy process. The specification of the forward yields a representation of the
futures price of electricity as well. Moreover, a finite dimensional realization for the forward in
Musiela parametrisation is assumed. The model is then fitted using base-load prices of R©PHELIX
futures contracts traded on the European Energy Exchange. This calibration is performed using
both ordinary and weighted least square methods and the results are compared. Moreover, possible
applications of the model are given. Those comprise the simulation from the presented model and
the estimation of market covariance structures.
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Kurzfassung

Die vorliegende Arbeit beschäftigt sich mit der Entwicklung eines Heath-Jarrow-Morton-Modells
für den Forward-Preisprozess von Strom, das von einem d-dimensionalen Lévy-Prozess getrieben
wird. Aus der Spezifikation des Forwards resultiert eine Darstellung für den Energie-Futures Preis.
Weiters wird der Forward im Sinne von Musiela umparametrisiert und eine angemessene endlich
dimensionale Realisierung für diesen Prozesses angenommen. Die darauf folgende Modellkalib-
rierung geschieht auf Basis von R©PHELIX Base-Load Futures Kontrakten, die an der Europäis-
chen Strombörse (EEX) gehandelt werden. Diese Justierung wird sowohl anhand der gewöhnlichen
als auch gewichteten Methode der kleinsten Fehlerquadrate durchgeführt und deren Resultate ver-
glichen. Zudem werden mögliche Anwendungen des vorgestellten Modells diskutiert. Hierzu zählen
die Simulation aus dem Modell sowie die Bestimmung von Kovarianzstrukturen im Markt.
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Introduction

A convenient way to model forwards and swaps in fixed income markets is to directly specify the

forward rate dynamics. This approach, originating from Heath Jarrow and Morton [6] has already

been applied to commodity markets as well (see i.a. [2]). In the present thesis, we like to present

such a HJM modelling approach in the context of energy markets.

The object of interest in this thesis is the futures price of energy. More precisely, it is the price

specified in a futures contract at some time t which is to be paid for the delivery of electricity

throughout a future period [T1, T2], where t < T1 ≤ T2. We will see however, that the futures price

may be obtained integrating over the (weighted) forward price of energy. This forward price is to

be understood as the payment agreed upon in time t that is to be made on a fixed future date

T > t by some agent in exchange for receiving one MWh of energy. Hence, to obtain a model for

the futures price we make use of the HJM methodology and employ such a model for the forward

price of electricity. To incorporate possible jumps, its dynamics is modelled as diffusion driven by

a d-dimensional Lévy process with independent components.

For the ensuing model calibration, we consider the following: first, we work with the Musiela

parametrization of the forward curves to guarantee their comparability in time. Second, in order

to adjust the model to finitely many observed prices, we give a suitable vector space as finite

dimensional realization for the forward curves. The vector space we suggest exhibits a number of

convenient properties. In particular we find that the futures price in Musiela parametrization can

be nicely linked to the re-parametrized forward which aids at adapting the model parameters to

the observed data.

The fitting in the FDR setting is then performed based on observed base-load prices of R©PHELIX

futures contracts traded on the EEX in the period of 02.01.2012 to 14.04.2017. Those (financially

settled) futures contracts exhibit the greatest liquidity among futures contracts (of the same set-

tlement type) in Europe. We present two different estimation methods and compare their results.

Thereafter, possible applications of the model are discussed. First, we display a method of simu-

lating the forward price. Second, we briefly consider the task of quantifying the market covariance

structure. In further consequence, a model as presented in this thesis can be used to price or hedge

options on futures contracts. This however is beyond the scope of discussion of the present thesis.

Notation

Throughout this thesis we mainly work on Rd and write B(Rd) for the corresponding Borel σ-

algebra. We write R+ for the non-negative real numbers [0,∞). Furthermore, we denote by 〈·|·〉
and ‖ · ‖ the scalar product respectively some arbitrary norm on Rd.
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Chapter 1

The Model

In this chapter we establish a suitable modelling framework that will serve as basis throughout

this master thesis. We do so by first stating the forward price dynamics of power which will then

specify the energy futures prices as well. In order to later be able to conveniently calibrate the

model that is set up in Sections 1.1-1.2 to observed market prices, we re-parametrize both the

forward and futures price-curves and state a fitting finite-dimensional vector space for the former.

This will be covered in Section 1.3.

1.1 The forward dynamics

Pursuing a Heath-Jarrow-Morton-approach, we directly model the dynamics of the energy forward.

To capture possibly large jumps that characterize the spot and should be mirrored by the forward

price of electricity, we decide upon finite dimensional Lévy processes as noise to the forward

dynamics. For a short recap on characteristics of Lévy processes and further results on them

referred to in this thesis, see appendix Chapter A. Hereafter, let (Ω,F ,F,Q) be the underlying

probability space equipped with a filtration F = (Ft)t≥0 where Q denotes a risk-neutral measure1.

Let L = (Lt)t≥0 be an Rd-valued Lévy process with characteristic triplet (γ,Σ, ν) and independent

components. Assume further that for any t ≥ 0 Lt has finite first moment, i.e. E [‖Lt‖] < ∞.

Denoting the maximal delivery time in the market by τ ∈ R+, we define the forward price at time

t for delivery at the fixed time T > t via

f(t, T ) = f0 +

∫ t

0

β(s, T ) ds+

∫ t

0

σ(s, T ) dLs, 0 ≤ t < T ≤ τ

or in differential notation

df(t, T ) = β(t, T ) dt+

d∑
i=1

σi(t, T ) dLit, 0 ≤ t < T ≤ τ (1.1)

where

• f0 = f(0, T ) denotes the forward curve currently observed on the market

1Note that a risk-neutral measure Q is, inter alia, characterized by the fact that the price process of any tradeable
asset is a local-Q-martingale. Usually in commodities markets, this includes the corresponding spot price process
too. However, electricity can not yet be efficiently stored and therefore not be considered a tradeable asset. Hence,
up to now, a risk-neutral measure may be any measure equivalent to the market measure.

2



3 CHAPTER 1. THE MODEL

• β : R+ × R+ × Ω→ R

• σi : R+ × R+ × Ω→ R+ bounded and predictable, i = 1, . . . , d

For details on stochastic integrals based on Lévy processes as in (1.1) we refer to [8] Chapter 23.

See also appendix Section A.1 for a short overview of the approach to define the stochastic integral

for arbitrary semimartingales presented therein.

As mentioned earlier, we directly state the risk-neutral dynamics of the forward rate. In what

follows, we pose certain conditions on the drift to ensure the martingale property of the forward

rate f for fixed maturity T. This in return will be sufficient for price processes of the energy futures,

that is the actually traded objects, F (t, T1, T2) =
∫ T2

T1
ω(u, T1, T2)f(t, u) du (cf. Section 1.2) to be

martingales under Q.

Recall that by the Lévy-Itô decomposition any Lévy process with characteristic triplet (γ,Σ, ν)

can be decomposed into the sum of four independent Lévy processes via

Lt = γt+ ΣBt +

∫ t

0

∫
‖x‖≤1

x (µL − νL)(ds, dx) +

∫ t

0

∫
‖x‖>1

xµL(ds, dx)

where µL is the jump measure of the Lévy process L and νL denotes the corresponding compensator

measure (see Chapter A.1 of the appendix for details). Here L(1) := γt is a constant drift, L(2) :=

ΣBt a d-dimensional standard Brownian motion, L(3) :=
∫ t

0

∫
‖x‖≤1

x(µL−νL)(ds, dx) a pure jump

process, and L(4) :=
∫ t

0

∫
‖x‖>1

xµL(ds, dx) a compound Poisson process2. Both the building block

L(2) and the integral w.r.t. compensated small jumps L(3) are martingales. Since in our model

we assume L to have finite first moment, we have by Proposition A.6 that
∫
‖x‖≥1

‖x‖ ν(dx) <∞.

Hence big jumps can be compensated as well and the above decomposition simplifies to

Lt = γ̄t+ ΣBt +

∫ t

0

∫
Rd
x (µL − νL)(ds, dx)

with γ̄ := γ +
∫
‖x‖>1

x ν(dx). For the sake of simplifying notation we henceforth write γ instead

of γ̄. Using this observation, we can rewrite the dynamics of the forward price in (1.1). Moreover,

following the above, we pose a condition on the drift β(s, T ) in order to obtain the martingale

property of f(t, T )0≤t≤T .

Lemma 1.1 (riskneutral dynamics) Under the drift condition

β(t, T ) = −〈σ(t, T )|γ〉

the forward price f(t, T ) as introduced in (1.1) has the following dynamics for any T ≤ τ and

t ≤ T
df(t, T ) = σ(t, T )Σ dBt +

∫
Rd
〈σ(t, T )|x〉 (µL − νL)(dt, dx)

2See [10] for details on the one-dimensional case.
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Proof. By (1.1) we have:

df(t, T ) = β(t, T ) dt+ σ(t, T ) dLt = β(t, T ) dt+ σ(t, T ) d

(
γt+ ΣBt +

∫ t

0

∫
Rd
x (µL − νL)(ds, dx)

)
= (β(t, T ) + 〈σ(t, T )|γ〉)︸ ︷︷ ︸

=0

dt+ σ(t, T )Σ dBt +

∫
Rd
〈σ(t, T )|x〉 (µL − νL)(dt, dx)

= σ(t, T )Σ dBt +

∫
Rd
〈σ(t, T )|x〉 (µL − νL)(dt, dx)

�

Remark 1.2 Following Lemma 1.1, we will from now on assume the underlying risk-neutral dy-

namics to be

df(t, T ) = σ(t, T ) dLt (1.2)

with d-dimensional Lévy process L, whose characteristic triplet is given by (0,Σ, ν) and σ as above.

Moreover, we still require L to have independent components and finite first moment.

Since in the long run, the goal is to adapt the theoretical forward curves to observed futures prices

that are available on the market, we need to determine the characteristics of the forward curve

f(t, T ) under the market-measure that we denote by P. For this purpose we assume that the

measure change can be described by an Esscher transform, that is we assume there is some θ ∈ Rd

such that E[exp(〈θ|L1〉)] < ∞ that defines the risk neutral measure Q = Qθ ∼ P via the density

process

dQθ

dP

∣∣∣∣∣
Ft

= e〈θ|Lt〉−κ(θ)t

Here κ denotes the cumulant function of the Lévy process L (under P) cf. Definition A.3. This

choice seems particularly convenient, since the Esscher transform is structure preserving. However,

the measure change we like to conduct goes the opposite way, from the risk-neutral to the market

environment, hence we consider

dP
dQθ

∣∣∣∣∣
Ft

= e〈−θ|Lt〉+κ(θ)t

to determine the market dynamics of the forward curves. We will in what follows neglect the

explicit dependence of the risk neutral measure on the parameter θ from the Esscher transform in

the notation of Qθ and simply write Q instead.

Lemma 1.3 Let L = (Lt)0≤t≤T be a Lévy process under Q with canonical representation

Lt = ΣBt +

∫ t

0

∫
Rd
x (µL − νL)(ds, dx) (1.3)

Assume that P ∼ Q is defined via the density process

Zt :=
dP
dQ

∣∣∣∣∣
Ft

:= e〈−θ|Lt〉+κ(θ)t
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Then L remains a Lévy process under P and its characteristic triplet (γ̃, Σ̃, ν̃) is given by

γ̃ = −Σθ +

∫
Rd

(
e〈−θ|x〉 − 1

)
x1‖x‖≤1 ν(dx)

Σ̃ = Σ

ν̃(dx) = e〈−θ|x〉ν(dx)

Proof. The following proof is mainly along the lines of the one given in [10] for Proposition 12.7.

By Bayes’ formula for conditional expectations (cf. [11]) we have that Z is a Qθ-martingale iff
dQθ
dP Z is one w.r.t. P. This holds true since dQθ

dP Z ≡ 1. Moreover, we have Z0 = 1. Therefore,

Z functions as density process. As Z is in fact a non-negative process, the measure change it

describes is equivalent.

To show that the measure change preserves the Lévy property we show that L has independent

and stationary increments under P. Note that property (L1) of Definition A.1 follows directly since

P ∼ Q. Let 0 ≤ s < t ≤ T and denote by F = (Ft)0≤t≤T with Ft := σ(Lu, u ≤ t) the filtration

generated by L. Let further Fs ∈ Fs and B ∈ B(Rd). Then we have

P [{Lt − Ls ∈ B} ∩ Fs] = EP
[
1{Lt−Ls∈B}1Fs

]
= EQ

[
1{Lt−Ls∈B}1FsZt

]
= EQ

[
1{Lt−Ls∈B}1Fs

Zt
Zs
Zs

]
(1)
= EQ

[
1{Lt−Ls∈B}

Zt
Zs

]
EQ [1FsZs]

= EQ

[
1{Lt−Ls∈B}

Zt
Zs

]
EQ [1FsZs]EQ [Zs]︸ ︷︷ ︸

=1

(2)
= EQ

[
1{Lt−Ls∈B}Zt

]
EQ [1FsZs]

= EP
[
1{Lt−Ls∈B}

]
EP [1Fs ] = P [{Lt − Ls ∈ B}]P [Fs]

where in (1) and (2) we used that 1{Lt−Ls∈B}
Zt
Zs

(as measurable function of the increment Lt−Ls)
is independent of 1FsZs and Zs respectively. Arguing similarly, the stationarity of the increments

follows due to

P [{Lt − Ls ∈ B}] = EP
[
1{Lt−Ls∈B}

]
= EQ

[
1{Lt−Ls∈B}Zt

]
= EQ

[
1{Lt−Ls∈B}

Zt
Zs

]
EQ [Zs] = EQ

[
1{Lt−Ls∈B}

e〈−θ|Lt−Ls〉

EQ
[
e〈−θ|Lt−Ls〉

]]

= EQ

[
1{Lt−s∈B}

e〈−θ|Lt−s〉

EQ
[
e〈−θ|Lt−s〉

]] = EP
[
1{Lt−s∈B}

]
= P [{Lt−s ∈ B}]

Finally we determine the characteristic triplet of L under the market measure P. Let κP(·) be the

cumulant function of L under P (cf. A.3). Then we have for any z ∈ C such that E
[
eRe(z)L1

]
<∞

etκ
P(z) = EP

[
ezLt

]
= EQ

[
ezLt

dP
dQ

]
= EQ

[
ezLt EQ

[
dP
dQ
|Ft
]]

= EQ

[
e〈(z−θ)|Lt〉+κ

P(θ)t
]

= eκ
P(θ)t EQ

[
e〈(z−θ)|Lt〉

]
︸ ︷︷ ︸

eκQ(z−θ)t

= et(κ
Q(z−θ)+κP(θ))
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which is equivalent to κP(z) − κP(θ) = κQ(z − θ). By Lévy-Kinchine the r.h.s. can be further

extended to

κQ(z − θ) =
1

2
(z − θ)TΣ(z − θ) +

∫
Rd
e〈(z−θ)|x〉 − 1− 〈(z − θ)|x〉1‖x‖≤1 ν(dx)

=
1

2
zTΣz + zT

(
−Σθ −

∫
Rd
x1‖x‖≤1 ν(dx)

)
+

1

2
θTΣθ +

∫
Rd
e〈(z−θ)|x〉 − 1− 〈−θ|x〉1‖x‖≤1 ν(dx) (1.4)

For the l.h.s. we proceed in the same way, where (γ̃, Σ̃, ν̃) denotes the characteristic triplet of L

under P.

κP(z)− κP(θ) = γ̃T z +
1

2
zT Σ̃z +

∫
Rd
e〈z|x〉 − 1− 〈z|x〉1‖x‖≤1 ν̃(dx)

−γ̃T θ − 1

2
θT Σ̃θ −

∫
Rd
e〈θ|x〉 − 1− 〈θ|x〉1‖x‖≤1 ν̃(dx)

=
1

2
zT Σ̃z + zT

(
γ̃ −

∫
Rd
x1‖x‖≤1 ν̃(dx)

)
−θT γ̃ − 1

2
θT Σ̃θ +

∫
Rd
e〈z|x〉 − e〈θ|x〉 + 〈θ|x〉1‖x‖≤1 ν̃(dx) (1.5)

Comparing the coefficients of (1.4) and (1.5) yields Σ = Σ̃. This implies

−θT γ̃ − 1

2
θTΣθ +

∫
Rd
e〈z|x〉 − e〈θ|x〉 + 〈θ|x〉1‖x‖≤1 ν̃(dx)

=
1

2
θTΣθ +

∫
Rd
e〈(z−θ)|x〉 − 1− 〈−θ|x〉1‖x‖≤1 ν(dx)

⇐⇒ −1

2
θTΣθ + θTΣθ +

∫
Rd
e〈z|x〉 − e〈θ|x〉 + 〈θ|x〉1‖x‖≤1 ν̃(dx) +

∫
Rd
〈−θ|x〉1‖x‖≤1 ν̃(dx)

+

∫
Rd
〈θ|x〉1‖x‖≤1 ν(dx) =

1

2
θTΣθ +

∫
Rd
e〈(z−θ)|x〉 − 1− 〈−θ|x〉1‖x‖≤1 ν(dx)

⇐⇒
∫
Rd
e〈z|x〉 − e〈θ|x〉 ν̃(dx) =

∫
Rd

(
e〈(z−θ)|x〉 − 1

)
ν(dx)

⇐⇒
∫
Rd

(
e〈z−θ|x〉 − 1

)
e〈θ|x〉 ν̃(dx) =

∫
Rd

(
e〈(z−θ)|x〉 − 1

)
ν(dx)

=⇒ ν̃(dx) = e〈−θ|x〉 ν(dx)

Finally we get:

γ̃ =

∫
Rd
x1‖x‖≤1 ν̃(dx)− Σθ −

∫
Rd
x1‖x‖≤1 ν(dx) = −Σθ +

∫
Rd

(
e〈−θ|x〉 − 1

)
x1‖x‖≤1 ν(dx)

�

Remark 1.4 The measure transform performed in lemma 1.3 is structure preserving. The corre-

sponding Girsanov parameters (cf. [7] Theorem III3.24) (β, Y ) can be obtained from the charac-

teristic triplet under the market measure P and read as:

βt ≡ −θ Y : Rd → R, x 7→ e〈−θ|x〉
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We now have everything at hand to state the dynamics of both the driving noise L and the forward

price, which constitute the model that we established in the risk-neutral world, under the market

measure P.

Corollary 1.5 (Market dynamics) The market dynamics of L are

Lt = γ̃t+ ΣWt +

∫ t

0

∫
Rd
x (µL − ν̃L)(ds, dx), 0 ≤ t ≤ T (1.6)

with

γ̃ = −Σθ +

∫
Rd

(
e〈−θ|x〉 − 1

)
x ν(dx)

Wt = Bt + θt

ν̃L = ν̃ ⊗ dt and ν̃(dx) = e〈−θ|x〉ν(dx)

By Girsanov’s theorem, (Wt)0≤t≤T is a P-Brownian motion. Consequently, the market dynamics

of the forward curve are given by

df(t, T ) = σ(t, T )dLt, 0 ≤ t ≤ T (1.7)

with L as in (1.6)

Proof. Girsanov’s theorem for semimartingales ( [7] Theorem III.3.24) applied to the Q-semimartingale

B with characteristics (0, I, 0) under Q yields (β, I, 0) as P-characteristics with β = −θ as in Re-

mark 1.4. Hence Wt := Bt + θt constitutes a Brownian Motion w.r.t P. Moreover, we have

Lt = ΣBt +

∫ t

0

∫
Rd
x (µL − νL)(ds, dx)

= −Σθt+ ΣWt +

∫ t

0

∫
Rd
x (µL − νL)(ds, dx)±

∫ t

0

∫
Rd
x ν̃L(ds, dx)

= −Σθt+ ΣWt +

∫ t

0

∫
Rd
x (µL − ν̃L)(ds, dx) +

∫ t

0

∫
Rd
x
(
e〈−θ|x〉 − 1

)
νL(ds, dx)

=

(
−Σθ +

∫
Rd
x
(
e〈−θ|x〉 − 1

)
ν(dx)

)
t+ ΣWt +

∫ t

0

∫
Rd
x (µL − ν̃L)(ds, dx)

�

As a final remark in this section, observe that we can in a natural way recover the spot dynamics

of the energy price. We obtain the spot price at time t S(t) as the price of a forward contract at

the same time with immediate delivery f(t, t). Hence we have for any 0 ≤ t ≤ T

S(t) = f(t, t) = f(0, t) +

∫ t

0

σ(s, t) dLs

where L as in (1.6) and (1.3) yield the market and risk neutral dynamics of S respectively. This

implies that under the risk neutral measure the spot price will, except for specific choice of σ, in

general not be a martingale.
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1.2 The futures dynamics

Let us now turn to energy futures that constitute the central objects of interest in this thesis.

Throughout this section we assume that the market provides a constant risk-free interest rate

r > 0. Denote for 0 ≤ t ≤ T1 < T2 ≤ τ by F (t, T1, T2) the price at time t of an energy futures

contract that delivers energy over the period [T1, T2]. Following [2] (Chapter 4) this price is of the

form

F (t, T1, T2) =

∫ T2

T1

ω̄(T, T1, T2)f(t, T ) dT (1.8)

where f(t, T ) is the forward curve as in Section 1.1. The deterministic function T 7→ ω̄(T, T1, T2)

serves as weight function and is defined depending on in what way the settlement procedure is

specified by the particular futures contract. It is set to be

ω̄(T, T1, T2) :=
ω(T )∫ T2

T1
ω(u) du

with ω(T ) ≡ 1 for futures that are settled at the end of the delivery period and ω(T ) = exp(−rT )

for the case when settlement takes place continuously over [T1, T2]. Thus we have in the former

case

ω̄(T, T1, T2) =
1

T2 − T1
(1.9)

while the weight function is specified to be

ω̄(T, T1, T2) =
re−rT

e−rT1 − e−rT2
(1.10)

in the latter.

1.2.1 No-arbitrage relations

Typically, delivery periods of energy futures may range from days over months or weeks up to years.

Thereby, one inevitably observes that contracts with overlapping delivery periods are traded on

energy markets. Assume an agent would like to buy a futures contract that guarantees delivery

over one year. In most energy markets, she may choose between a series of contracts that meet her

demands. There are for instance, monthly or quarterly contracts over one whole year as well as

contracts with delivery over one year themselves. Hence, there is some need for a relation between

prices of traded futures contracts that ensure no arbitrage opportunity exists.

To that end, consider a futures contract with delivery over [T1, TN ] with corresponding futures

price F (t, T1, TN ). Assume further that there are N tradeable futures contracts F (t, Tk, Tk+1) for

k ∈ {1, . . . , N − 1} with T1 < T2 < . . . < TN . Then, as can be shown by simple reformulations we

have the following relation between futures prices

F (t, T1, TN ) =

N−1∑
k=1

ωkF (t, Tk, Tk+1) (1.11)

where

ωk =

∫ Tk+1

Tk
ω(u) du∫ TN

T1
ω(u) du
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In concordance with [2] we refer to (1.11) as no-arbitrage relation, since, if (1.11) were violated,

this would yield static arbitrage opportunities.

In our framework, we are interested in a continuous no-arbitrage relation that holds for all possible

delivery periods. Passing to a limit in (1.11), one obtains for arbitrary maturities T1 < T2 ≤ τ

(see [2] Chapter 6.3)

F (t, T1, T2) =

∫ T2

T1

ω̄(T, T1, T2)F (t, T, T ) dT (1.12)

Using (1.8) together with an application of the fundamental theorem of calculus yields

lim
T2↓T1

F (t, T1, T2) = lim
T2↓T1

∫ T2

T1
ω(T )f(t, T ) dT∫ T2

T1
ω(u) du

= lim
T2↓T1

1
T2−T1

∫ T2

T1
ω(T )f(t, T ) dT

1
T2−T1

∫ T2

T1
ω(u) du

= f(t, T1)

Hence in our model, both the relations preventing arbitrage (1.12) and (1.11) hold true.

1.3 Musiela-parametrization and finite dimensional realisa-

tion

In order to conveniently adapt the forward curves in our model to observed futures prices, we will

consider in what follows a reasonable, finitely parametrized vector space of curves. Moreover, we

like to work with the same set of curves at any time t, thus we first need to restate the above

defined forward curves in so-called Musiela parametrisation. This means that instead of denoting

the forward curves as functions of time and maturity, we view them as functions of time t and

time-to-maturity x := T − t. Hereinafter, we denote the maximal time-to-maturity observed in the

market by ξ ∈ R+. Naturally, we have ξ ≤ τ .

Lemma 1.6 Let f(t, T ) be the forward curve with dynamics as in (1.7) and define g(t, x) :=

f(t, t + x) and c(t, x) := σ(t, t + x). If additionally g(t, x) is continuously differentiable w.r.t. x,

then for any x ≤ ξ the stochastic process (ω, t) 7→ g(ω, t, x) is a solution to the stochastic partial

differential equation

dg(t) = ∂xg(t)dt+ c(t)dLt (1.13)

Proof. Denoting with ∂i for i = 1, 2 the partial derivative w.r.t. the i’th argument of g, we

consider for fixed ω ∈ Ω

d

dt
g(t, x) =

d

dt
f(t, x+ t) = ∂1f(t, t+ x) · ∂

∂t
(t) + ∂2f(t, t+ x) · ∂

∂t
(t+ x)

= ∂1f(t, t+ x) + ∂2 f(t, t+ x)︸ ︷︷ ︸
=g(t,x)

=⇒ dg(t, x) = ∂1f(t, t+ x) dt+ ∂xg(t, x) dt = df(t, T ) + ∂2g(t, x) dt

= σ(t, T ) dLt + ∂xg(t, x) dt = ∂xg(t, x) dt+ c(t, x) dLt

�

Note that the above lemma holds true as well in the case where ∂xg(t, ·) is not defined, yielding

a weak solution to 1.13. However, we will in what follows consider such re-parametrized forward

curves g(t, ·) for fixed t that are suitably differentiable.

Moreover, since in our model we demand σ to be bounded, likewise is the re-parametrized diffusion
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coefficient c.

As mentioned above, our aim is to adapt the forward curves we model to finitely many observed

prices of energy futures. Therefore, we introduce a finite dimensional vector space and postulate

that the (re-parametrized) forward curves (up to a P-null-set) stay within this vector space for

fixed t ≥ 0.

Assumption 1.7 Let Pol1 := {p : [0, ξ]→ R, x 7→ a+ bx|a, b ∈ R} denote the vector space of real-

valued polynomials on [0, ξ] ⊂ R+ up to degree one and define for λ > µ > 0 the following finite-

dimensional vector space

Vλ,µ :=
{
p1(·)e−λ(·) + p2(·)e−µ(·)

∣∣∣p1, p2 ∈ Pol1
}

Moreover, let g be the solution to (1.13). We assume that there are positive constants λ and µ

such that g satisfies g(t) ∈ Vλ,µ P-almost surely ∀t ≥ 0 and say f has finite dimensional realisation

Vλ,µ.

Let us now elaborate why this choice of Vλ,µ is sensible. With regard to the historical evolution

of market futures prices, we may determine empirically the form of the forward curve. Typically,

such analyses show highly volatile prices for contracts with short time to maturity, while those of

products looking far into the future remain almost constant at some non-zero level. Figure 1.1

exemplarily shows base-load R©PHELIX futures prices over time to maturity, as observed on 22nd

of June 2016 at the European Energy Exchange AG. The length of the dotted lines corresponds to

the delivery period on which the traded contracts are written. They comprise monthly, quarterly

and yearly power futures.

2017 2018 2019 2020 2021 2022 2023

20
22

24
26

28
30

32

22.06.2016  futures prices (base-load)

time to maturity
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U

R
/M

W
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Figure 1.1: Base-load R©PHELIX futures prices observed at EEX on 22nd June 2016.

The particular functional space mentioned in Assumption 1.7 serves well to create curves that fit

such a historic development. Moreover, if said assumption holds true, we obtain that the quintupel
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encompassing the re-parametrized forward curve itself as well as its four coefficient processes is

affine.

The following corollary outlines some characteristics of the vector space Vλ,µ that can be easily

verified.

Corollary 1.8 (properties of Vλ,µ)

1. ∂xh ∈ Vλ,µ, ∀h ∈ Vλ,µ

2. Vλ,µ ⊂ C∞([0, ξ],R)

3. The set {b1, . . . , b4} with

b1(x) := e−λx b3(x) := e−µx

b2(x) := xe−λx b4(x) := xe−µx

for x ∈ [0, ξ] constitutes a basis of Vλ,µ.

By Assumption 1.7 and Corollary 1.8, we obtain that for any t ≥ 0 there are random variables

ai(t, ·) : Ω→ R;ω 7→ ai(t, ω), i = 1, . . . , 4 such that

g(t, ·, ω) =

4∑
i=1

ai(t, ω)bi(·) P− a.s (1.14)

In fact, we will see that the coefficients ai(t, ·) can be determined more precisely, if the re-

parametrized diffusion coefficients cj , j ∈ {1, . . . , 4} are chosen to be deterministic and homoge-

neous in time. To do so, we first show that if the forward curve f has finite dimensional realisation

Vλ,µ, for fixed 0 ≤ t ≤ T , every component of the diffusion coefficient c of g as a function of x

almost surely lies within Vλ,µ as well.

Lemma 1.9 Let the forward curve be given as in (1.7) and let the diffusion coefficient σ be con-

tinuous. Assume further Assumption 1.7 holds true, i.e. that f has finite dimensional realisation

Vλ,µ. Then we have for c(t, ·) as in Lemma 1.6:

ci(t, ·) ∈ Vλ,µ P-a.s.∀i = 1, . . . , d, for any 0 ≤ t ≤ T

Proof.

Since (1.14) holds for arbitrary t ∈ [0, T ] we have g(0) ∈ Vλ,µ P-a.s. Moreover, the invariance

of Vλ,µ w.r.t. ∂x yields ∂xg(s) ∈ Vλ,µ P-a.s. This implies that both these functions of x can be

represented w.r.t. the basis defined in Corollary 1.8. Thus there are random variables ai(0) and

ãi(s) (for any s ∈ [0, t]), i = 1, . . . , 4 such that

g(0, ·) =

4∑
i=1

ai(0)bi(·) P− a.s.

∫ t

0

∂xg(s, ·) ds =

4∑
i=1

bi(·)
∫ t

0

ãi(s) ds P− a.s.

Hence, all in all, for any t ≥ 0 there are random variables âi(t), i = 1, . . . , 4 such that (1.13) can
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be restated as

4∑
i=1

âi(t)bi(·) =

∫ t

0

c(s, ·) dLs =

d∑
j=1

∫ t

0

cj(s, ·) dLjs P− as (1.15)

To show that this implies cj(s, ·) ∈ Vλ,µ ∀0 ≤ s ≤ t P-a.s. we define the linear functional

ϕ` : C([0, ξ],R)→ R that operates on elements of Vλ,µ ⊂ C([0, ξ],R) in the following way:

ϕ`

(
4∑
i=1

αibi(·)

)
= α` ∀α ∈ R4

A suitable version of the Hahn-Banach theorems may then be employed to obtain the existence

of a continuous extension of ϕ` to C([0, ξ],R). More precisely, Theorem 3.36 of [12] applied to

the normed (and hence locally convex) space (C([0, ξ],R), ‖ · ‖∞), its finite-dimensional subspace

Vλ,µ and the thereon defined linear (and hence continuous) functional ϕ`, yields the existence of a

continuous extension of ϕ` to C([0, ξ],R). Moreover we set

kj` (s) := ϕ` (cj(s, ·)) , s ∈ [0, t] ∀j ∈ {1, . . . , d}

We then have

d∑
j=1

∫ t

0

kj` (s) dL
j
s

(∗)
= ϕ`

 d∑
j=1

∫ t

0

cj(s, ·) dLjs


︸ ︷︷ ︸

(1.15)
=
∑4
i=1 âi(t)bi(·)

= â`(t) P− as (1.16)

whereby the first equality (∗) shall be shown in more detail: By linearity of ϕ` we have

ϕ`

 d∑
j=1

∫ t

0

cj(s, ·) dLjs

 =

d∑
j=1

ϕ`

(∫ t

0

cj(s, ·) dLjs
)

and hence it only remains to show that the linear operator ϕ` may be interchanged with the

stochastic integral, i.e. that the following holds true for any j ∈ {1, . . . , d}:∫ t

0

ϕ` (cj(s, ·)) dLjs = ϕ`

(∫ t

0

cj(s, ·) dLjs
)

Recall that in the present model the re-parametrized diffusion coefficient c is bounded. Thus

there exists some constant C ∈ R such that for any (x, ω) ∈ ([0, ξ] × Ω) and all 0 ≤ s ≤ t

|cj(s, x, ω)| < C. Moreover, due to continuity in time, the real-valued function cj(·, x, ω) may

for any (x, ω) ∈ ([0, ξ],Ω) be uniformly approximated by step-functions cnj , n ∈ N specified via

cNj (s, x, ω) =
∑N
n=1 Yn(x, ω)1(an−1,an](s) for some N ∈ N. Here, the real-valued functions Yn,

n ∈ N are themselves bounded. Theorem 23.4 of [8] applied to the C([0, ξ],R)-valued bounded

processes VN := cj(·) − cNj (·) yields
∫ t

0
cNj (s, ·) dLs

P→
∫ t

0
cj(s, ·) dLs. For every sequence that

converges in probability there exists a subsequence that does so almost surely and to the same

limit, thus we have lim
m→∞

∫ t
0
cNmj (s, ·) dLs =

∫ t
0
cj(s, ·) dLs P-a.s. for some suitable subsequence
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(cNmj )m∈N. This in turn, as well as continuity of ϕ` yields

ϕ`

(∫ t

0

cj(s, ·) dLjs
)

= ϕ`

(
lim
m→∞

∫ t

0

cNmj (s, ·) dLjs
)

= lim
m→∞

ϕ`

(∫ t

0

cNmj (s, ·) dLjs
)

= lim
m→∞

ϕ`

(
Nm∑
n=1

Yn(·)
(
Ljan − L

j
an−1

))
= lim
m→∞

Nm∑
n=1

ϕ` (Yn(·))
(
Ljan − L

j
an−1

)

Being a continuous operator between normed spaces ϕ` is bounded as well. Hence we may continue

via the definition of the stochastic integral for elementary integrands and apply Theorem 23.4 of [8]

once more to obtain

= lim
m→∞

∫ t

0

ϕ`(c
Nm
j (s, ·)) dLjs =

∫ t

0

ϕ`(cj(s, ·)) dLjs

We may then proceed with

d∑
j=1

∫ t

0

cj(s, ·) dLjs
(1.15)

=

4∑
i=1

âi(t)bi(·)
(1.16)

=

4∑
i=1

 d∑
j=1

∫ t

0

kji (s) dL
j
s

 bi(·)

=

d∑
j=1

∫ t

0

(
4∑
i=1

kji (s)bi(·)

)
dLjs P− as

⇐⇒
d∑
j=1

∫ t

0

(
cj(s, ·)−

4∑
i=1

kji (s)bi(·)

)
dLjs = 0 P− as

We further obtain by [8] Theorem 23.6 (ii) & (v) and the independence of the Lévy components

for the quadratic variation of above semimartingale

=⇒ 0 =

 d∑
j=1

∫ ·
0

(
cj(s, ·)−

4∑
i=1

kji (s)bi(·)

)
dLjs


t

P− as

=

d∑
j=1

∫ t

0

(
cj(s, ·)−

4∑
i=1

kji (s)bi(·)

)2

d[Lj ]s + 0 P− as

=

d∑
j=1

(
σ2
j +

∫
R
x2 νj(dx)

)
︸ ︷︷ ︸

=:Aj≥0

∫ t

0

(
cj(s, ·)−

4∑
i=1

kji (s)bi(·)

)2

︸ ︷︷ ︸
≥0

ds P− as

For the definition of the quadratic variation process of a semimartingale we refer to [8] as well.

With the help some results on it presented therein (see Theorem 23.6 and Corollary 23.15), the

quadratic variation of the present (1-dimensional) Lévy process can be determined as

[
Lj
]
s

=

[
γ ·+σ2

jW· +

∫ ·
0

∫
R
x (µL

j

− νL
j

)(ds, dx)

]
s

= σ2
j s+

∫ s

0

∫
R
x2 µL

j

(ds, dx)

and hence the final step in above equation follows.
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For any j ∈ {1, . . . , d} such that Aj 6= 0 we next obtain, due to non-negativity of every summand,

∫ t
0

(
cj(s, ·)−

∑4
i=1 k

j
i (s)bi(·)

)2

ds = 0 P− as

=⇒
(
cj(s, ·)−

∑4
i=1 k

j
i (s)bi(·)

)2

for P⊗ λ-a.e. 0 ≤ s ≤ t

=⇒ cj(s, ·) =
∑4
i=1 k

j
i (s)bi(·) for P⊗ λ-a.e. 0 ≤ s ≤ t

The degenerate case Aj = 0 in which Lj merely consists in a constant drift, shall in fact not be

considered, since in the model we set up deterministic components are rather taken account for

separately (c.f. (1.1)).

Hence we obtain that there is some t-dependent null set Nt such that cj(s, ω, ·) ∈ Vλ,µ for all

j ∈ {1, . . . , d}, s ∈ [0, t] and any ω ∈ Ω\Nt. Due to continuity we arrive at cj(s, ·) ∈ Vλ,µ for all

j ∈ {1, . . . , d} and s ≥ 0 P−almost surely.

�

Let us now turn towards the question of characterizing the coefficient-processes ai(t), t ≥ 0, i ∈
{1, . . . , 4} of the re-parametrized forward curve g c.f. (1.14). We have for any x ∈ [0, ξ]

∂xb1(x) = −λb1(x) ∂xb3(x) = −µb3(x)

∂xb2(x) = b1(x)− λb2(x) ∂xb4(x) = b3(x)− µb4(x)

which implies

∂xg(t, ·) =

4∑
i=1

ai(t)∂xbi(·) = b1(·)[a2(t)− λa1(t)] + b2(·)[−λa2(t)]

+ b3(·)[a4(t)− µa3(t)] + b4(·)[−µa4(t)]

Moreover we get by (1.13) and (1.14) the following two representations for dg(t, x) and x ∈ [0, ξ].

4∑
i=1

bi(x) dai(t)
(1.14)

= dg(t, x)
(1.13)

=

4∑
i=1

ai(t)∂xbi(x) dt+

d∑
j=1

cj(t, x)dLjt ∀x ∈ [0, ξ] (1.17)

In what follows, we choose the (re-parametrized) diffusion coefficient c to be time-homogeneous

and deterministic. By Lemma 1.9 this yields cj(t, ·, ω) :=
∑4
i=1 k

j
i bi(·) for j = 1, . . . , 4 and kj ∈ R4.

Thus we can reformulate (1.17) for any x ∈ [0, ξ] as

4∑
i=1

bi(x) dai(t) = b1(x)

(a2(t)− λa1(t)) dt+

d∑
j=1

kj1 dL
j
t

+ b2(x)

(−λa2(t)) dt+

d∑
j=1

kj2 dL
j
t


+ b3(x)

(a4(t)− µa3(t)) dt+

d∑
j=1

kj3 dL
j
t

+ b4(x)

(−µa4(t)) dt+

d∑
j=1

kj4 dL
j
t


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Hence, by comparing coefficients, one arrives at

da1(t) = (a2(t)− λa1(t)) dt+

d∑
j=1

kj1 dL
j
t da3(t) = (a4(t)− µa3(t)) dt+

d∑
j=1

kj3 dL
j
t

da2(t) = (−λa2(t)) dt+

d∑
j=1

kj2 dL
j
t da4(t) = (−µa4(t)) dt+

d∑
j=1

kj4 dL
j
t

We make the following observation

Corollary 1.10 Assume the setting of Lemma 1.13, and let Assumption 1.7 hold true. For c

time-homogeneous and deterministic, i.e. cj(t, ·, ω) :=
∑4
i=1 k

j
i bi(·) with kj ∈ R4, j = 1, . . . , 4, the

process

Yx : (Ω,R+)→ R5

(ω, t) 7→ Yx(ω, t) := (a1(ω, t), a2(ω, t), a3(ω, t), a4(ω, t), g(ω, t, x))
T

is affine for any fixed x ∈ [0, ξ].

Proof. Let x ∈ [0, ξ] be fixed. From above we have for all t ∈ R+:

g(t, x) = g(0, x) +

4∑
i=1

bi(x)

∫ t

0

dai(s) =

= g(0, x) + b1(x)

∫ t

0

(a2(s)− λa1(s)) ds+

d∑
j=1

kj1L
j
t

+ b2(x)

∫ t

0

(−λa2(s)) ds+

d∑
j=1

kj2L
j
t

 =

+ b3(x)

∫ t

0

(a4(s)− µa3(s)) ds+

d∑
j=1

kj3L
j
t

+ b4(x)

∫ t

0

(−µa4(s)) ds+

d∑
j=1

kj4L
j
t


= g(0, x) + b1(x)

∫ t

0

(a2(s)− λa1(s)) ds+ b2(x)

∫ t

0

(−λa2(s)) ds

+ b3(x)

∫ t

0

(a4(s)− µa3(s)) ds+ b4(x)

∫ t

0

(−µa4(s)) ds+ bTKLt

with

b := (b1(x), b2(x), b3(x), b4(x))T ∈ R4 and K :=


k1

1 · · · kd1
...

...

k1
4 · · · kd4

 ∈ R4×d

Since B := bTK ∈ R1×d we obtain (see [4] THEOREM 4.1) that the process BL is again Lévy (on

R). For L ∼ (γ,Σ, ν) the characteristic triplet (γB ,ΣB , νB) of the linearly transformed process

BL is given by

γB = Bγ +

∫
R
y
(
1{|y|≤1}(y)− 1{By:‖y‖≤1}(y)

)
νB(dy)

ΣB = BΣBT

νB(A) = ν({z ∈ Rd : Bz ∈ A}), ∀A ∈ B(R)
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By Lévy-Itô, the process AB(t) := γB · t denotes the finite-variation part of the semimartingale

BL. Since (AB(t))t∈R+
is predictable, it constitutes a part of the canonical decomposition BLt =

MB(t) +AB(t), where MB(t) denotes the local martingale part.3

Next we determine the semimartingale characteristics4 of g(t, x). Its (canonical) decomposition is

of the form g(t, x) = g(0, x) + A(t) + M(t) with local martingale part M(t) = MB(t) and A(t) a

predictable process of finite variation given by

A(t) = AB(t)+

∫ t

0

b1(x)(a2(s)−λa1(s))+b2(x)(−λa2(s))+b3(x)(a4(s)−µa3(s))+b4(x)(−µa4(s)) ds

By [7] (Chapter II Definition 2.6) the distribution of the process g(t, x), t ∈ R+ hence is character-

ized by the triplet (A,C, νg) with

• A = A(t), t ∈ R+ the predictable process appearing above

• C = C(t), t ∈ R+ the continuous process 〈gc, gc〉t, t ∈ R+, i.e. the predictable quadratic

variation process associated with the continuous martinale part of the process g(·, x). Since

gc(t, x) = BΣBTWt by the Lévy-Itô decomposition, where W denotes a one-dimensional

Brownian Motion, we obtain: C(t) = (BΣBT )2 · t.

• νg the compensator measure associated with the jumps of g(·, x). The jumps of g(·, x)

however coincide with those of BL, whose compensator measure is given by νB ⊗ dt.

To prove our claim, we now similarly to above derive the semimartingale characteristics for Yx.

Since we have

Yx(t) = Yx(0) +



∫ t
0
a2(s)− λa1(s) ds∫ t

0
−λa2(s) ds∫ t

0
a4(s)− µa3(s) ds∫ t

0
−µa4(s) ds∫ t

0
∂xg(s, x) ds


︸ ︷︷ ︸

=:dY (t)

+

(
K

B

)
Lt

we may proceed as before, first applying the linear transformation M :=

(
K

B

)
∈ R5×d to the

d-dimensional Lévy process L, and then adding dY , a predictable term of finite variation. Thus,

the canonical decomposition of the semimartingale Yx reads as

Yx(t) = Yx(0) +AY (t) +MY (t)

with

AY (t) =

(
Mγ +

∫
R5

y
(
1{|y|≤1}(y)− 1{My:‖y‖≤1}(y)

)
νM (dy)

)
︸ ︷︷ ︸

γM

·t+ dY (t)

MY (t) = MΣMTWt +

∫ t

0

∫
R5

y
(
µML − νML

)
(ds, dy)

3Note that both the local martingale and finite variation parts of the canonical decomposition depend on the
truncation function of choice. Throughout this thesis, we take it to be h : Rd → Rd, h(x) := x1‖x‖≤1 (cf. Appendix
Theorem A.4).

4The notion of characteristics of a semimartingale serves as generalisation of a Lévy process’ characteristic triplet
to semimartingales and is nicely characterized in [7] Chapter II.
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where νM (A) := ν({z ∈ Rd : Mz ∈ A}), ∀A ∈ B(R5) and Wt a 5-dim Brownian Motion. Analo-

gously, its semimartingale characteristics (AY , CY , νY )then is given by

• AY = AY (t), t ∈ R+

• CY = CY (t), t ∈ R+, with C(t) = (MΣMT )(MΣMT )T · t

• νY the compensator measure associated with the jumps of Yx(·) which coincide with those

of ML, whose compensator measure νML is given by νM ⊗ dt.

These just derived characteristics correspond to those of a Lévy driven Ornstein-Uhlenbeck process.

To see that the just derived characteristics are of the desired affine form we rephrase the drift once

more

AY (t) =

∫ t

0

γM · s+


a2(s)− λa1(s)

−λa2(s)

a4(s)− µa3(s)

−µa4(s)

b1(x)(a2(s)− λa1(s)) + b2(x)(−λa2(s)) + b3(x)(a4(s)− µa3(s)) + b4(x)(−µa4(s))

 ds

=

∫ t

0

γM · s+


−λ 1 0 0 0

0 −λ 0 0 0

0 0 −µ 1 0

0 0 0 −µ 0

−λb1(x) b1(x)− b2(x)λ −µb3(x) b3(x)− µb4(x) 0

Yxs ds

Therefore, Theorem 2.12. of [5] is applicable and it follows that Yx is affine. �

1.3.1 Futures dynamics in Musiela parametrisation

Concluding this chapter, we state the re-parametrized futures dynamics as well. Consider F (t, T1, T2),

the price of a futures contract with delivery over [T1, T2] as in (1.8). We set x := T1 − t > 0 the

time to delivery and denote by ` := T2 − T1 > 0 the length of the delivery period of the specific

contract and define

G(t, x, `) := F (t, t+ x, t+ x+ `) =

∫ t+x+`

t+x

ω̄(T, t+ x, t+ x+ `)f(t, T ) dT

=

∫ x+`

x

ω̄(t+ u, t+ x, t+ x+ `)f(t, t+ u) du

Recall that f(t, t+x) = g(t, x) and set w(t, u, x, `) = ω̄(t+u, t+x, t+x+ `). Regarding the weight

functions introduced in Section 1.2, we obtain w(t, u, x, `) = 1
` for futures contracts with terminal

settlement whereas those contracts that determine settlement continuously over the delivery period

yield w(t, u, x, `) = r
1−exp(−r`) ·exp(−r(u−x)). We observe that both these functions do not depend

on time. Therefore, we henceforth consider weighting functions to be time-independent and write
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w(u, x, `).5 We then arrive at the following re-parametrized futures price

G(t, x, `) =

∫ x+`

x

w(u, x, `)g(t, u) du (1.18)

In order to fit observed futures prices to theoretical ones according to the above formula (1.18),

we restrict ourselves to the weighting function associated with futures that settle at the end of the

delivery period with corresponding futures price

G(t, x, `) =
1

`

∫ x+`

x

g(t, u) du (1.19)

This (simple) choice is in spirit of Lucia and Schwartz [9] who show that an arithmetic mean of the

forward prices yields sensible approximations to the futures prices in the Nordic Power Exchange.

Passing on to the data we have at hand, i.e. futures prices that originate from the European

Energy Exchange AG, our next objective will consist in determining the coefficients a1, . . . , a4 of

g(t, x) as well as the parameters λ and µ which co-create the basis of the vector space Vλ,µ with

regards to the given data. For the sake of facilitating parameter estimation we re-formulate the

futures price once more. As before we assume the setting of Lemma 1.13, and let Assumption 1.7

hold true.

Lemma 1.11 Denote with ∂−1
x the integral operator on Vλ,µ with kernel k(u) ≡ 1 i.e.

(
∂−1
x g

)
(y) :=

∫
g(z) dz (y) ∀g ∈ Vλ,µ, y ∈ [0, ξ]

Then the operator maps to Vλ,µ, in particular, we have ht(·) := ∂−1
x g(t, ·) ∈ Vλ,µ for any t ≥ 0.

Accordingly, the futures price from (1.19) can be represented as

G(t, x, `) =
1

`
(ht(x+ `)− ht(x)) (1.20)

Proof. Let a1, . . . , a4 be the coordinates of some arbitrary function g ∈ Vλ,µ with respect to

the vector space’s basis
{
e−λx, xe−λx, e−µx, xe−µx

}
. Simple integration leads to the following

coordinates ãi, i = 1, . . . , 4 for ∂−1
x g:

ã1

ã2

ã3

ã4

 =


− 1
λ − 1

λ2 0 0

0 − 1
λ 0 0

0 0 − 1
µ − 1

µ2

0 0 0 − 1
µ



a1

a2

a3

a4


Since the integral operator ∂−1

x assigns a primitive function to every g ∈ Vλ,µ, the second result

follows by the fundamental theorem of calculus. �

By the above lemma, the futures price as we model it in (1.19) has itself a representation w.r.t.

the basis of Vλ,µ. However, we will not make use of this when fitting the coefficient processes

a1(t), . . . , a4(t) of g(t, ·). Our approach rather consists in first an estimation of the coefficient

5In fact, among those two choices of weighting functions, only the latter depends on x and u as well. Moreover
this dependency is stationary, meaning that the weight only depends on the time that has passed since the maturity
u− x.
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processes ã1(t), . . . , ã4(t) of ht(x) with the help of (1.20). Thereafter, the actual processes of

interest can be obtained via a linear transformation. This procedure will be covered in the following

chapter.



Chapter 2

Model Calibration

Ensuing the fundamental model description in Chapter 1, the upcoming part aims at a thorough

calibration of theoretical expressions to present data. For our analysis we consider the base-load

prices of monthly, quarterly and annual R©PHELIX futures contracts traded at the European

Energy Exchange AG during the period from 02.01.2012 to 14.04.2017. R©PHELIX futures con-

tracts are financially settled although physical delivery is also possible in the market region of

Germany/Austria. More than half of the volume traded at the EEX’s electricity forward market

stems from such futures contracts. Besides, they feature the greatest liquidity among financial

electricity futures products in Europe.

2.1 Fitting of coefficient processes for the re-parametrized

forward curve

At first, we consider the forward curve in Musiela parametrisation g cf. Section 1.3 and assume 1.7

to be in place. We are interested in finding a suitable basis representation of the re-parametrized

forward curve which includes its coefficient processes a1, . . . , a4 as well as the parameters λ and µ

that shape the vector space Vλ,µ. To this end, we proceed in two steps:

1. estimate coefficient processes for ∂−1
x g(t, ·) ∈ Vλ,µ t ≥ 0 and the parameters λ, µ

Initially, we fit the theoretical futures prices to observed ones that we denote by GO(t, x, `)

for each time-point t in the present observation period. Making use of representation (1.20)

of the futures price with regards to ht(·) = ∂−1
x g(t, ·) ∈ Vλ,µ, which we educed in Section

1.3.1, this first optimization yields an estimation of the vector space parameters λ and µ as

well as the coefficient processes ã1, . . . , ã4 of ht(·).

2. estimate coefficient processes for g(t, ·) ∈ Vλ,µ t ≥ 0

With ã1, . . . , ã4 and λ, µ at hand, it only remains to determine the coefficient processes

a1, . . . , a4 of g. For each time-point t, those are obtained by applying the coordinate matrix

of the linear mapping ∂x : Vλ,µ → Vλ,µ to the coefficients of ht(·), that is we have
a1

a2

a3

a4

 =


−λ 1 0 0

0 −λ 0 0

0 0 −µ 1

0 0 0 −µ



ã1

ã2

ã3

ã4

 =


−λã1 + ã2

−λã2

−µã3 + ã4

−µã4


20
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We resort to two different methods for the fitting in step one. First, a standard non-linear least

square (in short: nls) algorithm is exercised. Second, in view of liquidity issues we introduce

weights to the nls estimation, that should emphasize the fitting of futures contracts on the short

in expense of those on the long end.

In the ensuing Sections 2.1.1 and 2.1.2 we like to discuss each method separately, whereupon

Section 2.1.3 encompasses a comparison of said methods.

Regarding both of the non-linear least square algorithms listed below, it should be noted that

convergence problems are likely to arise for days where only few distinct products are traded.

Furthermore, convergence may fail due to contracts whose delivery period has already started.

The latter we exclude in both fitting processes, as such products are rather illiquid anyhow and

thus not adding much relevant information about price movements. As for days in the data on

which only a small number of different contracts is traded, the coefficients fitted for those time-

points are taken to be the mean value of preceding and subsequent days’ values, assuming that

from one day to another the forward curve does not change significantly.

The results presented in this chapter are obtained from optimisation conducted via the free software

R.

2.1.1 Method 1: Non-linear Least Square

We initially focus on calibrating the coefficient processes of ∂−1
x g using a standard nls-approach.

Recall from Lemma 1.11 that we have ht(·) := ∂−1
x g(t, ·) ∈ Vλ,µ for any t ∈ R+. Hence, with regard

to (1.20), we consider for fixed time t the following problem:

min
ãi(t),i=1,...,4

∑
x,`

[
1

`
(ht(x+ `)− ht(x))−GO(t, x, `)

]2

(2.1)

where ht(x) =
∑4
i=1 ãi(t)bi(x), and bi(x) ∈

{
e−λx, xe−λx, e−µx, xe−µx

}
. In order to derive sensible

values for the vector space parameters λ and µ, we conduct a six-dimensional optimisation to begin

with. Then we perform the four dimensional non-linear least square optimisation (2.1) using the

mean values for λ and µ and the previously obtained estimates for the coefficients as starting

values. This first calibration yields as vector space parameters:

λ = 0.01816636 µ = 0.00009999

The estimated coefficient processes are visualized in figure 2.1. We observe that the vector space

parameter µ is significantly smaller than λ. Hence, the basis elements corresponding to the latter

b1(x) = exp(−λx) and b2(x) = x exp(−λx) indeed contribute to the shape of ∂−1
x g on the short

end, however, their influence weighs off more quickly than that of the basis vectors associated with

the former parameter.

An application of the linear transform outlined in step 2 yields the corresponding coefficient pro-

cesses a1, . . . , a4 for the forward curve as function of time to maturity. Those are depicted in figure

2.2. Once more, as the vector-space parameters remain unchanged, we observe that the fitted func-

tional form of the re-parametrized forward curve is (especially in the long run) mainly determined

by the basis elements b3 and b4. We observe that, due to its coefficient’s comparably large values,

basis vector b3 contributes the main part to the level of the forward price. This particular basis

vector could be interpreted as representing the overall price trend.
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Figure 2.1: Coefficient processes of ∂−1
x g resulting from ordinary nls estimation.

As for the basis elements b1 and b2, those could be seen as seasonal adjustments to the short end of

the forward. Their seasonal pattern becomes more evident in figure 2.3. Although the fourth basis

element shows a slight, recurring pattern as well, it could also be interpreted as the non-foreseeable

random effects that contribute to the shape of the forward price.

Moreover, we note that every coefficient process displays some distinct comparably extreme values

at similar points in time. Those outliers solely appear before 2014 and may represent reactions to

surprising developments in the relatively young market.

2.1.2 Method 2: Weighted non-linear Least Square

The second estimation takes into account the liquidity of the different products disposable for

trade. This method involves introducing a weighting function v : R+ → R to the nls-estimation

in (2.1) that - among each group of products with equal length of delivery (in our case: monthly,

quarterly and yearly futures contracts) - is decreasing in time to maturity x. This approach rests on

the observation that futures on the short side are much more actively traded, compared to those on

the long side, that might even be highly illiquid. Moreover, liquidity of a futures contract decreases

more severely in time to maturity the longer its specified delivery period lasts. The constructed

weighting function should mirror this by putting equally most weight on the monthly, quarterly or

yearly products with lowest time to maturity, whereas the futures prices of the remaining contracts

should be rated less important in decreasing order. The rate at which the weight decreases with

growing time to maturity should hence depend on the length of the delivery period specified by

the respective futures contract.

As suitable weighting function we choose in this section for some fixed time-point t ∈ R+ and any
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Figure 2.2: Coefficient processes of the re-parametrized forward curve g obtained via ordinary nls
estimation.
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Figure 2.3: Zoom on coefficient processes of the re-parametrized forward curve g obtained via
ordinary nls estimation.
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finite Ot ⊂ [0, ξ]× R+:

vt(x; `) :=
1∑

(x,`)∈Ot

1

1+
(
x−x`
100

)2

· 1

1 +
(
x−x`
100

)2 , (x, `) ∈ Ot (2.2)

In our setting, we have

Ot := {(x, `) ∈ [0, ξ]× R+ :∃ futures contract at time t with time to maturity x

and length of delivery `}

Moreover, for any futures contract with length of delivery `, x` (in simplified notation) represents

the smallest value of time to maturity among all (currently traded) futures contracts with matching

length of delivery period. This weighting function hence puts weight 1/c on products on the very

short end among their delivery group, where c :=
∑

(x,`)∈Ot

1

1+
(
x−x`
100

)2 denotes the normalizing

constant. Calibration of the coefficient processes in this section is then performed solving the

problem:

min
ãi(t),i=1,...,4

∑
x,`

vt(x)

[
1

`
(ht(x+ `)− ht(x))−GO(t, x, `)

]2

(2.3)

The optimisation then is performed analogously to before in Section 2.1.1. Similarly, we obtain as

estimates for the parameters that determine the vector space Vλ,µ

λ = 0.01395158 µ = 0.0001000013

Thereafter, we proceed with step 2 and further determine the forward curve’s coefficient processes

that are visualized in figure 2.4. We again observe that each of those attains few distinct extreme

values that may later on be interpreted as jumps. However, compared to the results obtained from

estimation 1, the processes’ periodic behaviour now shows more clearly. Figure 2.5 provides a more

detailed view on the calibrated coefficient process a1. Once more, we observe a distinct seasonal

pattern.

2.1.3 Comparison of estimated coefficient processes

In the following section we will compare the estimated forward curves obtained by the standard

nls-approach of Section 2.1.1 to those that result from the weighted optimisation conducted in

2.1.2.

With the calibrated coefficients at hand, we may compare both method’s fitted forward curves

to observed futures prices at arbitrary time-points. Exemplarily, we consider the power contracts

available on June 22nd 2016 and visualize the adjusted forward curves in figure 2.6. In said figure,

the horizontal dotted lines are closing prices of monthly, quarterly and yearly futures contracts,

whereby the length of those lines corresponds to the length of the delivery period specified in the

particular futures contract. The solid lines show the calibrated forward curves for that day for

both the standard and weighted optimisation.

We note that the red forward curve, estimated using weights, in fact emphasizes futures prices on

the short end in expense of those on the long end. Indeed, the prices of yearly contracts whose

time to maturity is greater than three years do not seem to be considered to a great extend for
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Figure 2.4: Coefficient processes of the re-parametrized forward curve g obtained via weighted nls
estimation.
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Figure 2.5: Zoom on coefficient process a1 of the re-parametrized forward curve g obtained via
weighted nls estimation.

calibration. Instead, the forward curve resulting from weighted nls is strongly oriented towards

capturing correctly the prices of monthly and most of the quarterly products.

In contrast, the blue curve mirrors the fact that every futures price is deemed to be equally im-

portant in ordinary nls estimation.

The extent to which this difference in approximations comes into effect shows more clearly in the

comparison shown below in figure 2.7. For each class of futures contracts, grouped by their length

of delivery period, this figure shows a comparison of both estimated forward curves (as functions



26 CHAPTER 2. MODEL CALIBRATION

2017 2018 2019 2020 2021 2022 2023

20
22

24
26

28
30

32

22.06.2016  futures prices (base-load)

ordinary nls
weighted nls

Figure 2.6: Futures prices for power contracts traded on 22nd of June 2016 and the fitted forward
curves for both methods of estimation.

of time to maturity) superimposed on observed prices (in MWh) for the same date as in figure 2.6.

We now clearly observe mechanism of the weighting function. While monthly and quarterly prices

seem to be fitted more accurately with the weighted estimation, yearly contracts whose maturity

lies far in the future are hardly considered in the optimisation process.

Regarding this first comparison, we remark the following: One may be interested in capturing the

prices on the short end more correctly while still not deteriorating from given futures prices on

the long end, however uninformative they might be. One option to proceed would be to consider

a ”hybrid-version” of estimated coefficient processes, considering those arising from weighted and

ordinary nls-estimation for fitting the short respectively long end of the forward curve. This way,

one could capture the (due to increasing uncertainty) typically rising prices for products with large

time to maturity.

Although in practice one might opt for such a hybrid form of coefficient processes, for the succeed-

ing analyses we will work with the coefficient processes obtained by the economically reasonable

weighted nls-estimation.
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Figure 2.7: Futures prices for monthly, quarterly and yearly power contracts traded on 22nd of
June 2016 and the fitted forward curves for both methods of estimation.



Chapter 3

Applications of the model

In this chapter, we discuss two possible applications of the model presented in this thesis: First,

we introduce a method to simulate paths of the forward in Section 3.1. Second, we address the

topic of quantifying the market volatility. This will be covered in Section 3.2.

We start by building the basis of the succeeding discussion. Recall that the dynamics of the

re-parametrized forward are (cf. Lemma 1.13)

g(t) = g(0) +

∫ t

0

∂xg(s) ds+

∫ t

0

c(s) dLs t ≥ 0

where L is a d-dimensional Lévy process with independent components. For simplicity, we assume

that the d-dimensional Lévy process reduces to four dimensions and consists of the sum of a

Brownian motion B and compound Poisson process Ct :=
∑Nt
i=1 Yi for t ≥ 0, where Yi are i.i.d.

and independent of both B and the Poisson process N1. Hence, our ansatz reads as

g(t) = g(0) +

∫ t

0

∂xg(s) ds+

∫ t

0

c(s) dBs +

∫ t

0

c(s) dCt (3.1)

Moreover, due to the FDR-Assumption 1.7 we may, for our subsequent analysis, consider the

isomorphic coordinate representation of the re-parametrized forward g in the vector space Vλ,µ,

that is we have

g(t)(·) ∼= (a1(t), a2(t), a3(t), a4(t))
T

=: aT (t) ∀t ≥ 0

Denoting the continuous and jump part of this 4-dimensional coefficient process a by ac and ad

respectively, we obtain

a = ac + ad

In order to receive observations of both ac and ab that will be needed in the following sections,

we need to distinguish observations that most likely can be ascribed to the compound Poisson,

from those we assume to stem from the continuous part. Thus, there is need to set up a rule

that classifies observations in either category. We do so by considering absolute returns of the

observed coefficient processes a1, . . . , a4 and selecting those which exceed the 97.5% sample-quantile

as ”jumps”. Adjusting the observed process for those jumps we obtain the continuous time-

series sample visualized in figure 3.1. The remaining observations of course yield a sample of the

1This simplification is well justified in the one dimensional case, where any Lévy process may be approxiamted
by the independent sum of a Brownian motion and a ”compound Poisson”-like process (see [1] Chapter XII). In the
multidimensional setting, it is motivated by the assymptotic result that is presented in [3].

28
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discontinuous part ad.

With those separate observations at hand, we may in what follows conduct the analyses mentioned

in the beginning.
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Figure 3.1: Coefficient processes of the re-parametrized forward g estimated via weighted nls (black
solid line) and the adjustment for jumps (green dashed line). The red crosses indicate positions
where jumps are said to have occured.

3.1 Simulation of forward price

For simulation within the presented model we consider the representation of the forward within

the vector space Vλ,µ, that is we simulate a = ac + ad. Motivated by the behaviour of the fitted

coefficient process, which strongly suggests that the continuous part is governed by a seasonal

pattern, we assume the following dynamics of ac:

aci (t) = `i + hi cos(ϕi(t− ti)) + sit+ ãi(t) t ≥ 0, ∀i ∈ {1, . . . , 4}

where t 7→ s(t)i := `i + hi cos(ϕi(t − ti)) + sit is a deterministic, Lipschitz continuous function

capturing the seasonal movements of the coefficient process’ ith component and ãi denotes a re-

maining centred Brownian noise. Note that we incorporate in this functions a trend component

as well. We fit the coefficients that shape this deterministic pattern once more with ordinary least

square optimisation. The results are depicted below in figures 3.2 and 3.3, where the fitted season-

ality functions are super-imposed on the observed continuous time-series. The remaining centred

diffusions are visualised as well.

Strictly speaking, one may observe that although the deterministic function s3 captures well the

trend behaviour of coefficient process a3, there might still be a recognizable yearly pattern in the
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Figure 3.2: The top and bottom left graphs show the coefficient processes a1 and a2 of the re-
parametrized forward g estimated via weighted nls, adjusted for jumps and the fitted seasonal
function super-imposed. To the right, the remaining noise series are visualized.
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Figure 3.3: The top and bottom left graphs show the coefficient processes a3 and a4 of the re-
parametrized forward g estimated via weighted nls, adjusted for jumps and the fitted seasonal
function super-imposed. To the right, the remaining noise series are visualized.
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noise series. However, we consider the sesaonal function a good enough fit for the pursuing analysis.

Once a fit for the seasonal function is obtained, simulation of paths for the forward price is a

matter of generating independent Gaussian and compound Poisson variables. Motivated by the

fitted coefficient processes, which clearly exhibit jumps at similar times, we consider the following

simple model for simulation: We assume that jumps are introduced to all four coefficient processes

by one common Poisson shock Nt, t ≥ 0. The jump sizes are specific to each process and modelled

by i.i.d. 4-dimensional random vectors (Yj)
∞
j=1. Thus the model we consider reads as

ait = s(t)i +Bit +

Nt∑
j=1

Y ij i = 1, . . . , 4

where (Bt)t≥0 is a 4-dimensional Brownian motion with covariance matrix Σ. Moreover the depen-

dence structure between the jumps of the four coefficient processes a1, . . . , a4 need be specified. If

we make the simplifying assumption that Yj ∼ N (µ, Σ̃) ∀j, this amounts to determining the mean

vector µ and covariance matrix Σ̃. Estimates for these two parameters can easily be obtained from

the realized jump-sizes of the discontinuous process ad. In addition, we derive approximate param-

eter values for the intensity of the Poisson driver via the classical parametric maximum likelihood

estimator dividing realized jump-times by overall length of the observation period. Finally, the

covariance matrix of the centred Brownian noise is estimated from the realized ã processes.

The results of a MC-simulation following the steps outlined above are visualized in figures 3.4-

3.6. First, we consider the simulated coefficient processes for a time horizon of approximately

three years (1200 days). We observe that the estimated seasonality acts particularly strong on the

fourth coefficient process, as the estimated impact of both the corresponding Brownian noise and

the variation in the jumps remains rather weak. Moreover, the fitted trend in coefficient a3 is mir-

rored as well. Note however, that the typical behaviour of the forward prices to display occasional

spikes, which also shows in the fitted coefficient processes (see e.g. figure 2.4), can in general not

be captured by the simulation method outlined in this section. As it seems, the underlying Poisson

driver is not particularly suited for generating such ”kick-backs”.

Second, in figure 3.5, we visualize resulting paths of the forward price for two exemplary contracts

specifying delivery in approximately one quarter and one year respectively. Moreover, the cross

sections indicated by the red dashed lines in each graph correspond to such futures prices at 30

and 120 days ahead. The entire forward curves for those time-points are then depicted in figure

3.6.

Concluding this section, we note once more that the simplification of the jump structure comes at

the expense of capturing the typical leptokurtic behaviour of forward prices. Although simple to

implement, the presented method can be improved by considering processes with smaller frequency

and larger magnitude of the jumps.

3.2 Estimating market volatility

Another objective of a model as presented in this thesis may be to quantify the market covariance

structure. We like to do so by specifying its model-free notion of quadratic covariation. Hence,

the following section is dedicated to determining the covariation process of the re-parametrized
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Figure 3.4: Simulated coefficient processes resulting from MC-simulation.
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Figure 3.5: Simulated paths for forward prices with time to maturity of 90 respectively 360 days
over the period of 360 days. The dashed red lines correspond to such prices at 30 and 120 days
from today.
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Figure 3.6: Simulated forward curves at 30 respectively 120 days ahead. The dashed red lines
indicate forward prices at the respective time-points that specify delivery in 90 and 360 days.

forward, which, with regard to (3.1), is given by

[g]t =

∫ t

0

c(s)c(s)T ds+
∑

0<s≤t

(c(s)Ys) (c(s)Ys)
T
1∆Cs 6=0 t ≥ 0 (3.2)

Moreover, due to the FDR-Assumption 1.7 we may determine the quadratic variation in (3.2) via

its equivalent representation using the corresponding coefficient processes a1, . . . , a4:

[a]t = [a]ct +
∑
s∈[0,t]
∆as 6=0

|∆as||∆as|T (3.3)

With the coefficient processes fitted in Section 2.1 at hand, we are now able to determine an

estimate for (3.3). In what follows, we will specify the sample covariance for both the jump and

continuous part separately using the distinct observations that we obtained in the beginning of this

chapter. The discontinuous part can easily be estimated taking the sum of these squared returns

of the observations corresponding to ad.

Estimation of [a]ct
∼=
∫ t

0
c(s)c(s)T ds is more elaborate. For the calibration we consider the observed

time series adjusted for jumps as depicted by the green line in figure 3.1. We may then proceed

by estimating the quadratic variation of the four-dimensional coefficient process. Alternatively,

one may as well consider the noise processes adjusted for seasonality ã1, . . . , ã4, that were fit in

Section 3.1, since the deterministic and Lipschitz continuous seasonality function s has no effect

on the quadratic variation. We opt for the latter, and hence estimate for every time-point t ≤ T

the quadratic variation of the coefficient processes adjusted for periodicity [ã]t.
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The classical estimator for this integrated covariance matrix is given by the realized covariance

matrix defined as

RC(ã)t(i, j) =

N∑
n=1

(ãi(tn)− ãi(tn−1))(ãj(tn)− ãj(tn−1))

where t0 = 0 < . . . < tN = t and i, j ∈ {1, . . . , 4}. However, this estimator is known to be biased

as observations commonly are contaminated by market micro structure noise. Those disturbances

are induced by various frictions in the trading process such as the bid-ask spread or asymmetric

information of traders. Moreover, the discreteness of observations of continuous price processes

may add to such inaccuracies as well. Despite their small size, market micro structure noise

accumulates at high frequency and renders the realized covariance strongly biased.

Therefore, we determine the multivariate extension of the two scaled realized variance estimator, an

estimate that accounts for a bias-correction using sparse sampling2. For some sampling frequency

K ∈ N it is given by

TSRC(ã)t(i, j) :=
1

K

K∑
k=1

RC(ã)kt −
n−K + 1

nK
RC(ã)t (i, j) t ≤ T

where RC(ã)k is obtained by splitting the entire set of observations into K non-overlapping sub-

grids (with sampling frequency K) and computing the standard estimate for observations from the

kth sub-grid among those.

Below we provide the estimates we obtained for the yearly integrated covariance matrices (normal-

ized to one trading day) using the TSRC-estimate. Table 3.1 shows the average daily integrated

volatility per year in the observation period corresponding to the continuous part of the estimated

coefficient processes. Compared to the remaining coefficients, the observed absolute change of ã4

seems negligible. Moreover, overall volatility mostly tends to decrease over the years, at least

by some slight margin. Table 3.2 collects the corresponding mean covariances per trading day

observed in the period 2012-2017. Here too, we note that the mutual influence the (continuous)

coefficient processes have on each other decreases over the years.

ã1 ã2 ã3 ã4

2012 1.8361 0.0565 0.7086 0.0010
2013 1.8235 0.0560 0.6467 0.0010
2014 1.4968 0.0303 0.3180 0.0004
2015 1.3618 0.0340 0.3956 0.0006
2016 1.1759 0.0404 0.5030 0.0007
2017 1.5662 0.0227 0.4634 0.0004

Table 3.1: Yearly integrated volatility per trading day of the coefficient processes’ continuous parts.

Taking into account the quadratic variation of the coefficient processes’ jump parts as well, we

arrive at the estimated market volatility and covariance (see tables 3.3 and 3.4). Comparing the

results in table 3.3 to those in 3.1, we observe that especially in the early years, the variation in

the jumps added highly to the volatility observed in the market.

In contrast to the covariance estimated from the continuous part only, we note that the estimates

of the overall mean covariance structure rather indicate that there might be positive dependence

between some of the coefficients. This mirrors the fact that, judging by the data, jumps occur in

2For the univariate case see [13].
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ã1/ã2 ã1/ã3 ã2/ã3 ã1/ã4 ã2/ã4 ã3/ã4

2012 -0.0678 0.6490 -0.0259 -0.0010 0.0000 -0.0007
2013 -0.0647 0.6255 -0.0285 -0.0007 0.0000 -0.0006
2014 -0.0404 0.2726 -0.0060 -0.0005 0.0000 -0.0001
2015 -0.0391 0.2440 -0.0070 -0.0006 0.0000 -0.0001
2016 -0.0173 0.1800 -0.0078 -0.0001 0.0000 -0.0001
2017 -0.0292 0.3376 -0.0051 -0.0002 0.0000 -0.0001

Table 3.2: Yearly integrated covariance per trading day of the coefficient processes’ continuous
parts.

all four coefficient processes at similar times.

a1 a2 a3 a4
2012 133.5487 1.3329 2.8876 0.0053
2013 99.9583 1.0002 2.4826 0.0046
2014 2.5858 0.0471 0.3180 0.0004
2015 2.6076 0.0503 0.4036 0.0006
2016 1.1759 0.0404 0.5030 0.0007
2017 1.5662 0.0227 0.4634 0.0004

Table 3.3: Yearly realized volatility per trading day.

a1/a2 a1/a3 a2/a3 a1/a4 a2/a4 a3/a4
2012 174.8150 316.1266 3.3853 0.5741 0.0063 0.0138
2013 97.9574 198.7920 2.1551 0.3577 0.0040 0.0101
2014 0.0348 0.2726 -0.0060 -0.0005 0.0000 -0.0001
2015 0.0433 0.4162 -0.0042 -0.0005 0.0000 -0.0001
2016 -0.0173 0.1800 -0.0078 -0.0001 0.0000 -0.0001
2017 -0.0292 0.3376 -0.0051 -0.0002 0.0000 -0.0001

Table 3.4: Yearly realized covariances per trading day.

As final note, we remark that the main advantage of models of Heath-Jarrow-Morton type over

models of the spot price is that they are better suited to describe options on futures prices.

Although models on the spot price of energy nicely fit the initial curve, the market prices of

derivatives are mostly inconsistent with those arising from said model. With that in mind, the

idea to model the whole curve of instantaneous forward rates proposed by Heath et al. in the

interest rate setting has been accommodated in the context of energy markets. The challenge of

fitting those infinite dimensional objects to finitely many observed futures prices can, as outlined in

the present thesis, be taken up by proposing a suitable finite dimensional realisation for the forward

curves. Hence, the present model may well serve as basis for subsequent analyses of options on

energy futures.



Appendix A

A recap on Lévy processes

In the following we will outline some results about Lévy processes without proofs that are used

throughout this thesis. These subsequent findings are obtained from both [11] and the lecture

notes [10]. Let (Ω,F ,P) henceforth be the underlying probability space. We start by giving the

definition of an Rd-valued Lévy process which constitutes a central object in this thesis.

Definition A.1 We call a stochastic process X := (Xt)t≥0 with values in (Rd,B(Rd)) a (d-

dimensional) Lévy process, if it satisfies the following conditions:

(L1) X has P-almost surely cádlág paths

(L2) X has stationary increments, i.e. Xt −Xs
d
= Xt−s for any 0 ≤ s ≤ t

(L3) The increments of X are independent of the past, i.e. Xt−Xs is independent of σ(Xu : u ≤ s)
for any 0 ≤ s ≤ t

Throughout this section, let X be a d-dimensional Lévy process with values in Rd.

Proposition A.2 Define a set function ν on Rd by

ν(A) := EP

 ∑
0<t≤1

1A(∆Xt)

 for A ∈ B(Rd), 0 /∈ A (A.1)

where ∆Xt := Xt − lim
s↑t

Xs, and ν({0}) := 0. Then ν is a σ-finite measure on Rd\{0}, extended

on zero to a measure on Rd. with ∫
Rd
‖x‖2 ∧ 1 ν(dx) <∞

It is referred to as the Lévy measure.

Hence, by Definition (A.1), given some Borel set A that does not contain zero, the Lévy measure

ν assesses the expected number of jumps per unit time whose sizes fall into that set A.

Next we provide the fundamental result, that states that any Lévy process can be uniquely char-

acterized by a triple (γ,Σ, ν) where γ is referred to as the drift term, Σ the diffusion coefficient

and ν denotes the Lévy measure defined above.

36
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Definition A.3 We define for t > 0 the cumulant function κ as

κ : D → C

eκ(z)t = E
[
e〈z|Xt〉

]
where the domain D is specified to be

D :=
{
z ∈ Cd

∣∣∣E [e〈Re(z)|X1〉
]
<∞

}
Theorem A.4 (Lévy-Khintchine) There exists a triplet (γ,Σ, ν) such that the cumulant func-

tion of any Lévy process in terms of Definition A.1 can be written as

κ(z) = γz +
1

2
zTΣz +

∫
Rd

(
e〈z|x〉 − 1− zh(x)

)
ν(dx) (A.2)

where

1. γ ∈ Rd

2. Σ ∈ Rd × Rd is a positive semi-definite matrix

3. ν is the Lévy measure cf. (A.1)

4. h(x) is some truncation function, i.e. a bounded measurable function such that h(x) = x in

a neighbourhood of zero

We call (γ,Σ, ν) the characterizing triplet.

Note that the Lévy-Khintchine representation of the cumulant function, or more precisely the drift

component γ, may vary depending on the choice of the truncation function. In this thesis, we will

choose the commonly used truncation function h : Rd → Rd, h(x) := x1‖x‖≤1.

For any adapted cádlàg process X, hence in particular for a Lévy process, one can define an integer

valued random measure µX , called the jump measure, for t ≥ 0 via

µX(ω, t, A) :=
∑
s≤t

1A(∆Xs(ω)) for A ∈ B(Rd) : 0 /∈ A (A.3)

For (ω, t) fixed A → µX(ω, t, A) is a counting measure that determines the number of jumps of

the process X of size in A up to time t. Next we define the integral w.r.t. the counting measure

µX(ω, t, .) for a Borel set A ∈ B(Rd) : 0 /∈ A and some borel-measurable function f : Rd → R that

is finite on A as the real-valued random variable∫
A

f(x)µX(ω, t, dx) :=
∑
s≤t

f(∆Xs(ω))1A(∆Xs(ω))

Moreover, we have that the stochastic process(∫ t

0

∫
A

f(x)µX(ω, ds, dx)

)
0≤t≤T

=:
((
f(x) ∗ µX

)
t

)
0≤t≤T

defines a compound Poisson process (see [10] Theorem 5.3.).

We denote the compensator measure of µX by νX := ν ⊗ dt.
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Theorem A.5 (Lévy-Itô decomposition) Any d-dimensional Lévy process X with characteriz-

ing triplet (γ,Σ, ν) can be represented as sum of four independent Lévy processes in the following

way:

Xt = γt+ ΣBt +

∫ t

0

∫
‖x‖≤1

x (µL − νL)(ds, dx) +

∫ t

0

∫
‖x‖>1

xµL(ds, dx) ∀t ≥ 0 (A.4)

Here, Bt is a standard P-Brownian motion and µL and νL refer to the process’ jump and compen-

sator measure respectively.

More precisely, the components of said decomposition consist of

• a constant drift L
(1)
t := γt, t ≥ 0

• a d-dimensional standard P-Brownian motion L
(2)
t := ΣBt, t ≥ 0

• a pure jump square integrable martingale L
(3)
t :=

∫ t
0

∫
‖x‖≤1

x(µL − νL)(ds, dx), t ≥ 0

• and a compound Poisson process L
(4)
t :=

∫ t
0

∫
‖x‖>1

xµL(ds, dx), t ≥ 0

Finally we state how the Lévy measure can be linked to the finiteness of the moments of a Lévy

process X.

Proposition A.6 Let X be a d-dimensional Lévy process. Xt possesses finite first moments for

any t ≥ 0 iff ∫
‖x‖>1

‖x‖ ν(dx) <∞

A.1 Integration based on Lévy processes

In the present thesis, we frequently integrate against Lévy processes, hence there is a need to provide

some basic theoretical background concerning stochastic integration against such processes. The

subsequent section is aimed at providing a brief collection of (some of) the results on stochastic

integration against semimartingales in general, as it is presented in [8].

Initially, Kallenberg establishes the notion of a stochastic integral against continuous integrators

(see [8] Chapter 15). In particular, the integral against a continuous local martingale M c is

defined for progressive integrands V such that
∫ t

0
V 2
s d[M c]s < ∞ a.s. for every t > 0. The

class of such processes is denoted by L(M c). The process [M c]t, t ≥ 0 appearing above denotes

the quadratic variation which is a.s. uniquely associated with the continuous local martingale M c

(c.f. [8] Theorem 15.5). Integration against some continuous semimartingaleXc with decomposition

X = M c + Ac is then defined for integrands V ∈ L(Xc) := (L(M c) ∩ L(Ac)), with L(Ac) being

the class of all progressive processes U such that
∫ ·

0
Us dA

c
s exists path-wise as Lebesgue-Stieltjes

integral. For V ∈ L(Xc) the corresponding integral process is then set to be∫ ·
0

Vs dX
c
s :=

∫ ·
0

Vs dM
c
s +

∫ ·
0

Vs dA
c
s

Those results are then further extended to possibly discontinuous semimartingales in [8] Chapter

23. First, for every uniformly square-integrable local martingale M (or put differently for every

M ∈M2
loc) the predictable quadratic covariation of M is defined to be the predictable compensator

of M2 and is denoted by 〈M〉. Thereafter, similar to the continuous case, the stochastic integral
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against M ∈M2
loc is established, feasible integrands being those progressively measurable processes

V such that
∫ t

0
V 2
s d〈M〉s <∞ a.s. for every t > 0. Finally, the stochastic integral is then extended

to general semimartingales for locally bounded integrands (c.f. Theorem 23.4). As is shown in

Lemma 23.5, due to suitable truncation, an arbitrary semimartingale X may be decomposed into

the sum of a local martingale with bounded jumps and a process of locally finite variation that we

denote by M and A respectively. The just mentioned integral process then is specified via∫ ·
0

Vs dXs :=

∫ ·
0

Vs dMs +

∫ ·
0

Vs dAs

where the first integral on the r.h.s. is defined as before (since every local martingale with bounded

jumps is locally square integrable) and the second exists as Lebesgue-Stieltjes integral.

Thus, for an arbitrary Rd-valued Lévy process as defined in A.1 with characteristics (γ,Σ, ν) the

stochastic integral is well-defined for locally bounded, predictable integrands.
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