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Abstract

Future wireless systems will be characterized by a large range of possible use cases. This
requires a flexible allocation of the available time-frequency resources, which is difficult in
conventional Orthogonal Frequency Division Multiplexing (OFDM). Thus, modifications of
OFDM, such as windowing or filtering, become necessary. Alternatively, one can employ
a different modulation scheme, such as Filter Bank Multicarrier Modulation (FBMC). In
this thesis, I provide a unifying framework, discussion and performance evaluation of
FBMC and compare it to OFDM based schemes. My investigations are not only based on
simulations, but are substantiated by real-world testbed measurements and trials, where I
show that multiple antennas and channel estimation, two of the main challenges associated
with FBMC, can be efficiently dealt with. Additionally, I derive closed-form solutions for the
signal-to-interference ratio in doubly-selective channels and show that in many practical cases,
one-tap equalizers are sufficient. For the rare cases where this is not true, I propose enhanced
methods to deal with such harsh environments, including channel estimation and equalization.
Finally, on top of a conventional FBMC system, I develop a novel precoding method based
on a pruned Discrete Fourier Transform (DFT) in combination with one-tap scaling. This
scheme offers a low peak-to-average power ratio, enables low latency transmissions and has a
high spectral efficiency.





Kurzfassung

Zukünftige drahtlose Kommunikationssysteme sollten in der Lage sein, eine Vielzahl an un-
terschiedlichen Anwendungen zu unterstützen. Dies erfordert eine flexible Zeit und Frequenz
Zuteilung der vorhandenen Ressourcen. Das derzeit vorherrschende Übertragungsverfahren,
Orthogonal Frequency Division Multiplexing (OFDM), ist dafür nicht optimal geeignet. Es
werden somit Modifikationen von OFDM notwendig, oder gänzlich neue Übertragungsver-
fahren müssen zum Einsatz kommen. In dieser Dissertation untersuche ich Filter Bank
Multicarrier Modulation (FBMC), ein solch neues Übertragungsverfahren, und stelle es
OFDM basierten Systemen gegenüber. Meine Untersuchungen basieren nicht nur auf theo-
retischen Überlegungen und Simulationen, sondern werden anhand realer Messungen validiert.
Insbesondere zeige ich, dass viele Herausforderungen die üblicherweise mit FBMC assoziiert
werden, vor allem in Bezug auf mehrere Antennen und Kanalschätzung, effizient gelöst
werden können. Ich leite geschlossene Lösungen für das Signal-zu-Interferenz Verhältnis her
und zeige, dass in den meisten Fällen eine einfache, symbolweise, Multiplikation ausreicht,
um einen Zeit- und Frequenz-Selektiven Kanal zu entzerren. Für die seltenen Fälle wo
dies nicht möglich ist, entwickle ich neue Schätzverfahren und Entzerrungsmethoden. Im
letzten Kapitel präsentiere ich eine Erweiterung von FBMC welche Daten mithilfe einer
modifizierten diskreten Fourier-Transformation spreizt, bevor sie übertragen werden. Diese
neue Methode weist einen reduzierten Scheitelfaktor auf, erlaubt niedrige Latenzzeiten und
besitzt eine hohe spektrale Effizienz.





Acknowledgements

First and foremost, I want to thank my advisor, Prof. Markus Rupp, for offering me the
opportunity to conduct research under his guidance and for giving me the necessary freedom
to pursue my own ideas, which eventually led to this thesis. I am also thankful to Dr. Stephan
Weiss and Prof. Maurice Bellanger who agreed to review this thesis.

My thesis would not have been possible without the financial support of the Christian
Doppler Laboratory and some outstanding companies such as Nokia (special thanks goes
to Birger Haetty and Gottfried Schnabl), A1 (special thanks goes to Waltraud Müllner) and
Kathrein (special thanks goes to Alexander Seeor).

Throughout my doctoral studies, I had the opportunity to attend eleven conferences, all
over the world, ranging from Vancouver over Rio de Janeiro and Sydney to Hokkaido. On
those conferences, I met many wonderful people. I want to thank them all, for making every
single conference a unique experience.

I also want to thank Sebastian Caban for offering some unique insights and for building
the Vienna Wireless Testbed. Being able to test theoretical concepts over true physical
channels was very helpful, especially at the beginning of my study. In this context, I also
want to thank Martin Lerch for keeping the testbed running and Erich Zöchmann for building
a new mmWave testbed. Besides those three, I also want to thank all the other, former and
current, members of the MIMO lab, that is, Martin Müller and Stefan Pratschner, for making
the lab a much nicer place to work at.

Last but not least, I want to thank my parents. I owe them everything.





Table of Contents

1 Introduction 1
1.1 Why Filter Bank Multicarrier Modulation? . . . . . . . . . . . . . . . . . . 1
1.2 Testbed Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Scientific Contributions and Outline . . . . . . . . . . . . . . . . . . . . . 7

2 Filter Bank Multicarrier Modulation 11
2.1 Multicarrier Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 CP-OFDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.2 FBMC-QAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.3 FBMC-OQAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.4 Block Spread FBMC-OQAM . . . . . . . . . . . . . . . . . . . . 20

2.2 Matrix-Based System Model . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3 IFFT Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4 Possible Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Equalization 33
3.1 Are One-Tap Equalizer Sufficient? . . . . . . . . . . . . . . . . . . . . . . 34

3.1.1 Bit Error Probability . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.1.2 Signal-to-Interference Ratio . . . . . . . . . . . . . . . . . . . . . 40

3.2 Equalization in Doubly-Selective Channels . . . . . . . . . . . . . . . . . 47
3.2.1 MMSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2.2 Interference Cancellation . . . . . . . . . . . . . . . . . . . . . . . 53
3.2.3 Extension to MIMO . . . . . . . . . . . . . . . . . . . . . . . . . 55

4 Pilot-Aided Channel Estimation 57
4.1 LS Estimation and Interpolation . . . . . . . . . . . . . . . . . . . . . . . 58
4.2 Canceling the Imaginary Interference . . . . . . . . . . . . . . . . . . . . 60

4.2.1 Auxiliary Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . 61



x Table of Contents

4.2.2 Data Spreading . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3.1 Throughput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3.2 Bit Error Probability . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4 Doubly-Selective Channel Estimation . . . . . . . . . . . . . . . . . . . . 78

5 Block Spread FBMC-OQAM: Restoring Complex Orthogonality 87
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.2 Walsh–Hadamard Spreading in Time . . . . . . . . . . . . . . . . . . . . . 94
5.3 Walsh–Hadamard Spreading in Frequency . . . . . . . . . . . . . . . . . . 100

6 Pruned DFT Spread FBMC-OQAM: Reducing the PAPR 105
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.2 Mathematical Details of the Novel Approach . . . . . . . . . . . . . . . . . 110
6.3 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7 Conclusions 119

Appendix A 123
A.1 Why A Matrix Description? . . . . . . . . . . . . . . . . . . . . . . . . . 123
A.2 Eb/N0: A Problematic Normalization . . . . . . . . . . . . . . . . . . . . 125
A.3 Bit Error Probability: Doubly-Flat Rayleigh, 4-QAM . . . . . . . . . . . . 126

Appendix B 129
B.1 List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
B.2 List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
B.3 List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
B.4 List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

Bibliography 139



Chapter 1

Introduction

1.1 Why Filter Bank Multicarrier Modulation?

Future mobile systems will be characterized by a large range of possible use cases, ranging from
enhanced Mobile Broadband (eMBB) over enhanced Machine Type Communications (eMTC)
to Ultra-Reliable Low Latency Communications (URLLC) [2–6]. To efficiently support
such diverse use cases, a flexible time-frequency resource allocation becomes necessary,
as illustrated in Figure 1.1. In such a multicarrier system, symbols are transmitted over
a rectangular time-frequency grid. Note that the subcarrier spacing determines the shape
in frequency and, correspondingly, in time. A high subcarrier spacing allows for low
latency transmissions while a small subcarrier spacing increases the bandwidth efficiency.
Furthermore, different subcarrier spacings allow to match the transmission system to specific
channel conditions. A user at high velocities should employ a high subcarrier spacing. On
the other hand, if multipath delay spread is the limiting factor, a small subcarrier spacing is
the better choice. As illustrated in Figure 1.1, the Fifth Generation (5G) of mobile systems
will indeed employ such flexible subcarrier spacings [7].

There has been a lively discussion both, within the scientific community as well as within
standardizations, which modulation format should be used for 5G [8–11]. Eventually, the 3rd
Generation Partnership Project (3GPP) decided that they will stick to Orthogonal Frequency
Division Multiplexing (OFDM) for 5G [7, 12]. While such decision makes sense in terms
of backwards compatibility to Fourth Generation (4G) wireless systems, it is not the most
efficient technique for all possible use cases.

In this thesis, I investigate an alternative modulation technique, namely Filter Bank
Multicarrier Modulation (FBMC), and show its benefits over OFDM based schemes. Two
key observations make FBMC a viable choice for future wireless systems:
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Figure 1.1. Future wireless systems will have to support a large range of possible use cases,
requiring a flexible assignment of the available time-frequency resources. ©2017 IEEE, [1].

1. Flexible time-frequency allocation to efficiently support diverse user requirements and
channel characteristics.

2. Low channel delay spread, especially in dense heterogeneous networks utilizing
Multiple-Input and Multiple-Output (MIMO) beamforming and high carrier frequen-
cies.

The first observation relates to Figure 1.1. In particular, low Out-Of-Band (OOB)
emissions are required, so that the guard band between different use cases is relatively
small. Conventional OFDM is not suited for that. 3GPP is therefore considering windowing
and filtering in OFDM [5, 13, 14]. The windowed OFDM scheme is called OFDM with
Weighted Overlap and Add (WOLA) and the filter based methods are called Universal Filtered
Multi-Carrier (UFMC) and filtered-OFDM (f-OFDM). While windowing and filtering can
indeed reduce the OOB emissions of pure OFDM, FBMC still performs much better, as
shown in Figure 1.2. Additionally, FBMC has a maximum symbol density of TF = 1 while
in OFDM based schemes the symbol density is lower, as indicated by TF > 1, additionally
worsening the spectral efficiency.
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Figure 1.2. FBMC has much better spectral properties than CP-OFDM. Windowing (WOLA)
and filtering (UFMC, f-OFDM) can improve the spectral properties of CP-OFDM, but FBMC
still performs much better and has the additional advantage of a maximum symbol density,
TF = 1 (complex). ©2017 IEEE, [1].

The second key observations relates to recent measurements. In [15], the authors
present real-world measurement results for Third Generation (3G) systems and found that the
measured delay spread is much smaller than “typically” assumed in simulations. They also
provide convincing arguments for the lower delay spread, such as, decreasing cell sizes and
“spatial filtering” of the environment through beamforming; these arguments will become even
more significant in future mobile networks because of an increased network densification,
application of massive two-dimensional antenna arrays and the push towards higher carrier
frequencies, implying larger propagation path losses. A low delay spread was also observed
by other measurements [16, 17]. The low delay spread guarantees that low-complexity
one-tap equalizers are sufficient in FBMC to achieve a close to optimal performance. Thus,
complicated and computationally demanding receiver structures, as for example proposed in
[18], are not necessary in most cases.

There exist different variants of FBMC, but I will mainly focus on Offset Quadrature
Amplitude Modulation (OQAM) [19] based schemes because they provide the highest
spectral efficiency. Different names are used to describe OQAM, such as, OFDM/OQAM,
FBMC-Pulse-Amplitude Modulation (PAM) [20–22], Staggered Multitone (SMT) or Cosine
Modulated Multitone (CMT) [23, 24], which, however, are essentially all the same. One can
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Figure 1.3. The Vienna Wireless Testbed operates at a carrier frequency of 2.5 GHz. The
link distance between TX and RX is approximately 150 m. The RX antenna is mounted on a
xyφ-table, allowing to measure at different RX positions. This leads to Rayleigh fading.

easily transform one of those schemes into another by appropriately tuning the underlying
parameters. For example, FBMC-PAM is a conventional FBMC-OQAM system where the
subcarrier spacing is reduced by a factor of two, the number of subcarriers is increased by two,
and the offset is applied in the frequency domain instead of the time domain. Unfortunately,
all the nice features of FBMC-OQAM come at a price: the complex orthogonality condition
is replaced by the less strict real orthogonality condition. While this limitation has in many
cases either no, or only a minor influence on the performance, some important methods, such
as, channel estimation or some MIMO techniques, become more challenging.

In this thesis, I provide a unifying framework, discussion and performance evaluation
of FBMC and compare it to OFDM based schemes. I enhance existing methods of channel
estimation and equalization. Furthermore, I provide novel insights into spread FBMC-
OQAM systems. Finally, I propose a novel pruned Discrete Fourier Transform (DFT)
spread FBMC transmission scheme with superior properties over legacy Single Carrier -
Frequency-Division Multiple Access (SC-FDMA). Testbed measurements validate many of
my proposed solutions.

1.2 Testbed Measurements

While most papers related to FBMC are purely based on simulations, I additionally perform
real-world testbed measurements at a carrier frequency of 2.5 GHz, outdoor-to-indoor, 150 m
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TX Antennas RX Antenna

Figure 1.4. The indoor mmWave testbed operates at a carrier frequency of 60 GHz. The link
distance between TX and RX is approximately 5 m, see also [25]. Again, the RX can be
relocated, leading to Rician fading in case of LOS. Once the LOS component is blocked, the
Rician K factor becomes very low, close to Rayleigh fading.

link distance, see Figure 1.3, and 60 GHz, indoor-to-indoor, 5 m link distance, see Figure 1.4.
My measurements support the claim that FBMC is a viable choice for future mobile systems.
I follow the measurement methodology presented in [26]. FBMC and OFDM signals are
pre-generated off-line in MATLAB and the samples are saved on a hard disk. Then, a
Digital-to-Analog-Converter (DAC) together with a radio frequency hardware up-converts
the signal to 2.5 GHz, respectively 60 GHz. Furthermore, I relocate the receive antennas
within an area of a few wavelengths, resulting in Rayleigh or Rician fading. Figure 1.5
shows a possible channel realization, measured at 60 GHz in case of NLOS. Different
Signal-to-Noise Ratio (SNR) values are obtained by a stepwise attenuator at the transmitter.
Time and frequency synchronization is guaranteed by a rubidium frequency standard, a GPS
reference clock and a backbone network to exchanging time-stamps [28]. The receiver itself
down-converts the signal and saves the samples on a hard disk. After the measurement, I
evaluate the received samples again off-line in MATLAB. Such off-line evaluation represents
a cost efficient way of emulating real world transmissions. Throughout all my measurements,
simple one-tap equalizers were sufficient in FBMC. Thus, computationally demanding
receiver structures, see Section 3.2, are in many cases not necessary.

In my 2.5 GHz measurement setup, see Figure 1.3, the transmit antenna points directly
to the receiver but objects within the Fresnel zone cause diffraction and scattering. I
measure approximately Rayleigh fading, that is, my measurement results in [29–31] are in
agreement with the theoretical predictions of Rayleigh fading. All multipath components
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Figure 1.5. The measured channel at a carrier frequency of 60 GHz (averaged over 6 MHz
and 300 µs, possible because of a high correlation in time and frequency) shows large fading
dips in case of NLOS (low Rician K factor). For LOS, smaller fluctuations are observed due
to a higher Rician K factor (not shown here). ©2017 IEEE, [27].

arrive approximately at the same time, so that the channel is relatively flat in frequency.
Rayleigh fading is mainly observed by relocating the receive antennas within a few wavelength
but not over the frequency domain (for the small bandwidth I usually consider). For my
60 GHz measurement setup, I observe a relatively high Rician K-factor in case of LOS, which
can be explained by highly directional horn antennas and a small wavelength. Once the LOS
path is blocked, however, the Rican K-factor becomes very small, close to Rayleigh fading.

While a testbed is very useful for proof-of-concept measurements and performance
evaluations over true physical channels, it does not necessarily reflect real world systems. For
example, my testbed does not operate in real time, higher layers are ignored, time-frequency
synchronization is not an issue and I only measure two specific channel scenarios, see
Figure 1.3 and Figure 1.4. Those drawbacks, however, could be mitigated by spending
more money and more man-power into the testbed. Nonetheless, one of the most important
aspects of a testbed is that it forces one to think about the true physical meaning behind
certain transmission techniques. Very often, people forget the underlying assumptions
of their simulation models and ignore crucial practical aspects. Some common physical
misinterpretations for OFDM and FBMC included:

• Only the subcarrier spacing and the channel statistics determine the performance
over a doubly-selective channel. The Fast Fourier Transform (FFT) size has no direct
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influence. The relationship between FFT size NFFT, subcarrier spacing F and sampling
rate fs is given by:

NFFT =
fs
F
. (1.1)

• Practical systems will never operate at a critical sampling rate, that is, the FFT size will
alway be larger than the number of active subcarriers. The remaining FFT points are
set to zero. This has many important implications, especially for channel estimation.
The channel impulse response cannot be accurately estimated because there is no
information available at the zero subcarriers. Fortunately, the impulse response is not
needed for equalization. Also, FFT interpolation will perform poorly because of errors
at the edges.

• The FFT size must not necessarily be a power of two (in simulations). Instead, the
FFT size should be chosen so that the sampling rate, see (1.1), fits approximately the
predefined delay taps of the power delay profile (assuming that transmit filtering can
be neglected). Alternatively, one could choose an FFT size that is a power of two but
must later up-sample the transmit signal. The first approach is more convenient.

• One should always check the feasibility of parameters. An SNR of 70 dB can easily be
achieved in MATLAB, but not so much in reality. Also, the maximum Doppler-shift
and delay spread are often chosen too high.

• The usage of Eb/N0 instead of (receive) SNR might lead to the wrong conclusions,
see Appendix A.2.

1.3 Scientific Contributions and Outline

As a doctoral candidate, I first-authored three journals papers [1, 32, 33], 13 high quality
conference papers [27, 29–31, 34–42], one book chapter [43] and one master thesis in
economics [44]. Furthermore, I coauthored several other papers [45–49]. In my first-authored
papers, I investigated a large range of different topics, ranging from OFDM [34, 29, 30, 43]
over information theory [31] and queuing theory [35] to the economic aspects of dynamic
spectrum allocation [44]. However, for this thesis, I will mainly focus on FBMC because it
was my main research topic over the last two years [1, 27, 32, 33, 36–42]. To be specific, my
thesis is based on the following papers1:

1All those papers were accepted at the first go; none was ever truly rejected, indicating the high quality. The
decision of (ii) and (iii) was reject - resubmission allowed, essentially a major revision. With respect to (iii), the
editor and the reviewers encouraged us to transform the initial letter submission into a full paper.
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In the following paragraphs, I will give a short overview of the individual chapters. A more
detailed description can be found at the beginning of each chapter, where also the novel
contributions are explicitly stated.

In Chapter 2, I provide a detailed description of FBMC and OFDM, propose a novel
matrix based system model, and show that FBMC can be interpreted as a special case of
windowed OFDM. Furthermore, I discuss possible use-cases for FBMC and show that it
outperforms OFDM in terms of time-frequency efficiency.

In Chapter 3, I discuss channel equalization in FBMC. Firstly, I derive closed-form Bit
Error Probability (BEP) and Signal-to-Interference Ratio (SIR) expressions and show that,
in many practical cases, one-tap equalizers are sufficient. This is particularly true for an
optimal subcarrier spacing. Secondly, for the few rare cases where one-tap equalizers are
not sufficient, I propose a novel Minimum Mean Squared Error (MMSE) multi-tap equalizer
and a low-complexity interference cancellation scheme. Additionally, I show how those two
methods can be extended to MIMO systems.

In Chapter 4, I investigate pilot-aided channel estimation in FBMC. To cancel the
imaginary interference at the pilot positions, I enhance two existing methods, namely the
auxiliary symbol method and the data spreading method. Furthermore, I compare these two
methods in terms of throughput, measured with my testbed, and in terms of BEP, based
on closed-form expressions, allowing me also to find an optimal pilot-to-data power offset.
Finally, I propose a novel channel estimation method for doubly-selective channels, purely
based on correlations and not relying on clustered pilots or any basis expansion model.

In Chapter 5, I discuss block spread FBMC-OQAM. Here, data symbols are spread in
time or frequency, allowing to restore complex orthogonality in FBMC-OQAM. I propose
two different interpretations of such spreading (code dimension, transforming the basis pulses)
and derive the optimal spreading matrix. I then investigate Walsh-Hadamard spreading in
more detail, focusing on the effects of block interference and doubly-selective channels. In
case of spreading in time, real world testbed measurements validate the feasibility of my
approach.

In Chapter 6, I propose a novel modulation scheme which combines the advantages of
FBMC and SC-FDMA. On top of a conventional FBMC system, I develop a novel precoding
method based on a pruned DFT in combination with one-tap scaling. The proposed technique
has the same Peak-to-Average Power Ratio (PAPR) as SC-FDMA but requires no CP and has
much better spectral properties. Furthermore, my method restores complex orthogonality
and allows for low latency transmissions. Compared to pure SC-FDMA, the computational
complexity is only two times higher. MIMO simulations over doubly-selective channels
validate my claims.
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In Appendix A, I compare my matrix notation with the commonly used discrete-time filter
representation. I also discuss the problem of Eb/N0 when comparing different modulation
schemes and provide a compact overview of my closed form BEP expressions.

Reproducibility

In my opinion, one the most important aspects of scientific work is reproducibility. Indeed,
many journals encourage authors to make their publications reproducible by publishing the
underlying code on a website [50]. Unfortunately, this important aspect is often neglected
in research [51]. It is therefore very hard, sometimes even impossible, to reproduce certain
results. This unfortunate situation should be changed. To set a good example, my MATLAB
code can be downloaded at

https://www.nt.tuwien.ac.at/downloads/

and allows to reproduce the results of [1, 33, 36, 39, 42]. In particular, the following important
contributions can be easily reproduced:

• Effect of different subcarrier spacings within the same band, see Section 2.4, [1].

• Closed-form BEP calculations, see Section 3.1.1, [32].

• SIR calculations, see Section 3.1.2, [1].

• Channel estimation, including throughput simulations, see Section 4.1-4.3.1, [1, 42].

• Block spread FBMC-OQAM, see Section 5.2-5.3, [1, 36, 39].

• Pruned DFT spread FBMC-OQAM, see Section 6.2-6.3, [33].

A publishable code should always be well documented, leading to an additional workload.
Thus, not all my papers are supported by a downloadable MATLAB code. Instead, I focused
on those papers which are, in my opinion, more relevant. Nonetheless, it is relatively easy to
reproduce also the other papers because I consistently employ the same matrix notation. This
allows to reused the same basic elements with only minor modifications which are described
in the corresponding papers. Note that, providing a downloadable MATLAB code, is well
received within the community, as indicated by more than 1300 downloads within one year.

https://www.nt.tuwien.ac.at/downloads/


Chapter 2

Filter Bank Multicarrier Modulation

In this chapter, I provide a comprehensive overview of multicarrier systems and compare
FBMC to OFDM in the context of the Balian-Low theorem. The three basic versions of
FBMC, that is, FBMC-Quadrature Amplitude Modulation (QAM), FBMC-OQAM and block
spread FBMC-OQAM, as well as conventional OFDM, are explained in detail. I also show
that FBMC is better suited than OFDM for supporting different subcarrier spacings within
the same band. This chapter is mainly based on my publications [1, 36, 42] and includes the
following novel contributions:

• In Section 2.2, I propose a novel, matrix-based, transmission system model with many
beneficial properties over the commonly used discrete-time filter bank description
[1, 42].

• In Section 2.3, I show that, from a conceptional point of view, there is little difference
in the modulation and demodulation step between FBMC and windowed OFDM. Thus,
many hardware components can be reused [1].

• In Section 2.4, I show that FBMC allows for an efficient co-existence between different
use cases within the same band and that, in contrast to common believe, FBMC can
also be efficiently used in low-latency transmissions [1].

2.1 Multicarrier Modulation

Multicarrier modulation has a long-standing history in wireless communications [52–54];
however, widespread practical applications have only been realized in the latest versions of
wireless systems in the form of OFDM, enabled by advances in integrated circuits. Current
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applications of OFDM include, for example, Long Term Evolution (LTE), WiFi and Digital
Video Broadcasting - Terrestrial (DVB-T).

In multicarrier systems, information is commonly transmitted over orthogonal pulses
which overlap in time and frequency, see Figure 1.1. The big advantage is that these pulses
usually occupy only a small bandwidth, so that frequency selective broadband channels
transform into multiple, virtually frequency flat, sub-channels (subcarriers) with negligible
interference, see Section 3.1.2. This enables the application of low-complexity one-tap
equalizers which correspond to the maximum likelihood symbol detection in case of Gaussian
noise, see Section 3.1. Furthermore, in many cases, the channel estimation process is
simplified, adaptive modulation and coding techniques become applicable and MIMO can be
straightforwardly employed [55]. Mathematically, the transmitted signal, s(t), of a multicarrier
system in the time domain can be expressed as

s(t) =
K∑

k=1

L∑
l=1

gl,k(t) xl,k, (2.1)

where xl,k denotes the transmitted symbol at subcarrier-position l and time-position k, and
is chosen from a symbol alphabet X, often a QAM or a PAM signal constellation. The
transmitted basis pulse, gl,k(t) in (2.1), is defined as

gl,k(t) = pTX(t − kT) ej2π lF (t−kT) e jθl,k, (2.2)

and is, essentially, a time and frequency shifted version of the prototype filter pTX(t) with T
denoting the time spacing and F the frequency spacing (subcarrier spacing). The choice of the
phase shift, θl,k , becomes relevant later in the context of FBMC-OQAM. After transmission
over a channel, the received symbols are decoded by projecting the received signal, r(t), onto
the receive basis pulses, ql,k(t), that is,

yl,k = ⟨r(t), ql,k(t)⟩ =
∞∫

−∞

r(t) q∗
l,k(t) dt, (2.3)

where ql,k(t) is similarly defined as gl,k(t), except that a different prototype filter might be
used:

ql,k(t) = pRX(t − kT) ej2π lF (t−kT) e jθl,k . (2.4)

In an Additive White Gaussian Noise (AWGN) channel, a matched filter maximizes the SNR,
that is, ql,k(t) = gl,k(t) and thus pRX(t) = pTX(t). In a doubly-selective channel, on the other
hand, it might better to choose the TX prototype filter and the RX prototype filter slightly
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differently, pRX(t) , pTX(t), as for example done in pulse-shaped multicarrier transmissions
[56] or in the practically more relevant case of CP-OFDM, see Section 2.1.1. Throughout
this thesis, I assume an AWGN matched filter for FBMC, that is, p(t) = pRX(t) = pTX(t).
Only for CP-OFDM, I allow different transmit and receive filters.

As indicated in (2.1)-(2.4), multicarrier systems are mainly characterized by the prototype
filters, pTX(t) and pRX(t), as well as time spacing T and frequency spacing F, so that the
ambiguity function, defined as [23, 55]:

A(τ, ν) =
∞∫

−∞

pTX
(
t − τ

2

)
p∗RX

(
t +
τ

2

)
e j2πνt dt, (2.5)

captures the main properties of a multicarrier system in a compact way. In contrast to [23, 55],
I flip the sign of τ and ν, leading to a more intuitive description of time and frequency
offsets. The projection of the transmitted basis pulse onto the received basis pulse can then
be expressed by the ambiguity function according to

⟨gl1,k1(t), ql2,k2(t)⟩ = e−jπ TF(l1+l2)(k1−k2) e j(θl1,k1−θl2,k2 )︸                                    ︷︷                                    ︸
only a phase shift

A(T(k1 − k2), F(l1 − l2) )︸                           ︷︷                           ︸
ambiguity function

. (2.6)

Moreover, the SIR in a doubly-selective channel can be computed by the ambiguity function
[55, 57].

There exist fundamental limitations for multicarrier systems, as formulated by the Balian-
Low theorem [58], which states that it is mathematically impossible that the following four
desired properties are fulfilled at the same time:

1. Maximum symbol density,
TF = 1, (2.7)

2. Time-localization,

σt =

√∫ ∞

−∞
(t − t̄)2 |p(t)|2 dt < ∞, (2.8)

3. Frequency-localization,

σ f =

√∫ ∞

−∞
( f − f̄ )2 |P( f )|2 d f < ∞, (2.9)
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Table 2.1. Comparison of different multicarrier schemes (for AWGN), ©2017 IEEE, [1]
Maximum
Symbol
Density

Time-
Localization

Frequency-
Localization

(Bi)-
Orthogonal

Independent
Transmit
Symbols

OFDM
(without CP) yes yes no yes yes

Windowed/Filtered
OFDM no yes yes yes yes

FBMC-QAM1 no yes yes yes yes

FBMC-OQAM yes yes yes real
only yes

Block Spread
FBMC-OQAM yes yes yes

yes,
after de-
spreading

no

1 There does not exist a unique definition

4. (Bi)-orthogonality,

⟨gl1,k1(t), ql2,k2(t)⟩ = δ(l1−l2),(k1−k2) (2.10)

A(T(k1 − k2), F(l1 − l2)) = δ(l1−l2),(k1−k2), (2.11)

with δ denoting the Kronecker delta function. The pulse P( f ) =
∫ ∞
−∞ p(t) e−j2π f tdt in (2.9)

represents the Fourier transform of p(t) while t̄ =
∫ ∞
−∞ t |p(t)|2 dt corresponds to the mean

time and f̄ =
∫ ∞
−∞ f |P( f )|2 d f the mean frequency of the pulse. Furthermore, I assume

that p(t) is normalized to preserve unit energy. The localization measures in (2.8) and (2.9)
can be interpreted as standard deviation with |p(t)|2 and |P( f )|2 representing the probability
density function (pdf). This relates the Balian-Low condition to the Heisenberg uncertainty
relationship [59, Chapter 7].

The Balian-Low theorem implies that at least one of the desired properties has to be
sacrificed when designing multicarrier waveforms. Table 2.1 compares different modulation
schemes in the context of the Balian-Low theorem. The different techniques are explained in
more detail in the following subsections.

2.1.1 CP-OFDM

CP-OFDM is the most prominent multicarrier scheme and is applied, for example, in Wireless
LAN and LTE [60, 61]. CP-OFDM employs rectangular transmit and receive pulses, which
greatly reduce the computational complexity. Furthermore, the CP guarantees orthogonality
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OFDM (no CP) CP-OFDM |A(τ, ν)|2

Figure 2.1. The ambiguity function 20 log10 |A(τ, ν)| in case of CP-OFDM, see (2.12) and
(2.13). The right figure illustrates the case of TCP = 0.3T0. In particular, a time-offset and
multipath delays do not destroy orthogonality (as long as they are smaller than the CP).
Unfortunately, the rectangular prototype filter leads to a poor localization in the frequency
domain.

in frequency selective channels. The TX and RX prototype filters are given by

pTX(t) =


1√
T0

if −
(

T0
2 + TCP

)
≤ t < T0

2

0 otherwise
(2.12)

pRX(t) =


1√
T0

if T0
2 ≤ t < T0

2

0 otherwise
(2.13)

for which

(Bi)-Orthogonal : T = T0 + TCP; F = 1/T0 → TF = 1 + TCP
T0

Localization : σt =
T0+TCP

2
√
3

; σ f = ∞ , (2.14)

with T0 representing a time-scaling parameter, which depends on the desired subcarrier
spacing (or time-spacing).

Figure 2.1 shows the ambiguity function, see (2.5), for CP-OFDM. The left part of the
figure represents the case if no CP is employed. Orthogonality is then guaranteed for a
time spacing of T = T0 and a frequency spacing of F = 1/T0, leading to TF = 1. This is
also indicated by the rectangular grid (the small circles) inside of Figure 2.1. Furthermore,
one recognizes that the ambiguity function decays very slowly in frequency because of the
rectangular pulse. The right part of Figure 2.1 assumes a CP length of TCP = 0.3T0, leading
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to an orthogonal time-frequency spacing of TF = 1.3. It can easily be checked that the
system preserves orthogonality even if a time-offset (or multipath delay) occurs, simply by
shifting the time-frequency grid by some additional time-offset. This works as long as the
time-offset is smaller than the length of the CP.

One of the biggest disadvantages of OFDM is its poor spectral behavior, caused by the
underlying rectangular prototype filters, see Figure 1.2 and Figure 2.1. Additionally, the
CP simplifies equalization in frequency-selective channels but also reduces the spectral
efficiency TF > 1; in an AWGN channel, no CP is needed. In order to reduce the OOB
emissions in OFDM, 3GPP is currently considering windowing [13] and filtering [5, 14]. The
windowed OFDM scheme is called OFDM with WOLA [13]. At the transmitter, the edges
of the rectangular pulse are replaced by smoother functions (windowing) and neighboring
WOLA symbols overlap in time. The receiver also applies windowing but the overlapping
and add operation is performed within the same WOLA symbol which reduces the inter-band
interference. To guarantee orthogonality, the CP must be long enough to account for both,
windowing at the transmitter and windowing at the receiver (even in an AWGN channel). For
the filter based OFDM schemes, two methods are proposed. Firstly, UFMC [14] which applies
subband wise filtering based on a Dolph-Chebyshev window. Orthogonality is guaranteed by
either Zero-Padding (ZP) or a conventional CP. The performance differences between CP
and ZP are rather small, so that I will consider only the CP version here to be consistent with
the other proposed schemes. The filter parameters are chosen similarly as suggested in [14].
This leads to 12 subcarriers per subband and, if no receive filter is employed, to an orthogonal
time-frequency spacing of TF = 1.07 (same as in LTE). However, the receive filter is as
important as the transmit filter, see Section 2.4. Thus, I also apply subband-wise filtering at
the receiver. Orthogonality is then guaranteed for a time-frequency spacing of TF = 1.14. To
improve the spectral efficiency, however, I decrease the time-frequency spacing to TF = 1.09

and allow some small self-interference (≈65 dB). The second filter-based OFDM scheme
considered within 3GPP is f-OFDM [5]. Here, the number of subcarriers for one subband
is usually much higher than in UFMC and often includes all subcarriers belonging to a
specific use case. The filter itself is based on a sinc pulse (perfect rectangular filter) which is
multiplied by a Hann window; other filters are also possible [5]. For a fair comparison, I
consider the same time-frequency spacing as in UFMC, that is, TF = 1.09 and increase the
length of the transmit and receive filters so that self interference is approximately 65 dB. The
filters in f-OFDM are usually longer than in UFMC.

As shown in Figure 1.2, windowing and filtering can reduce the high OOB emissions of
CP-OFDM. However, this comes at the price of reduced spectral efficiency, as indicated by
the product of TF > 1, and lower robustness in frequency selective channels. Furthermore,
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filtering and windowing still do not provide as low OOB emissions as FBMC, which can
additionally achieve a maximum symbol density of TF = 1.

2.1.2 FBMC-QAM

There does not exist a unique definition for FBMC-QAM. Some authors [62] sacrifice
frequency localization, making the modulation scheme even worse than OFDM in terms of
OOB emissions. Others [63, 64] sacrifice orthogonality in order to have a time-frequency
spacing of TF ≈ 1 and time-frequency localization. I, on the other hand, consider for
FBMC-QAM a time-frequency spacing of TF = 2, thus sacrifice spectral efficiency to fulfill
all other desired properties; see Table 2.1. Such large time-frequency spacing increases
the overall robustness in a doubly-selective channel, see Section 3.1.2. However, the main
reason for choosing TF = 2 is the straightforward application in FBMC-OQAM, described
in Section 2.1.3.

A possible prototype filter for FBMC-QAM is based on Hermite polynomials Hn(·), as
proposed in [65]:

p(t) = 1
√

T0
e
−2π

(
t
T0

)2 ∑
i={0,4,8,
12,16,20}

aiHi

(
2
√
π

t
T0

)
, (2.15)

for which the coefficients can be found to be [42]

a0 = 1.412692577

a4 = −3.0145 · 10−3

a8 = −8.8041 · 10−6

a12 = −2.2611 · 10−9

a16 = −4.4570 · 10−15

a20 = 1.8633 · 10−16.
(2.16)

This leads to the following properties of (2.15),

Orthogonal : T = T0; F = 2/T0 → TF = 2

Localization : σt = 0.2015T0; σ f = 0.403/T0.
(2.17)

The left part of Figure 2.2 shows the ambiguity function for the Hermite prototype filter.
Orthogonality is observed for a time spacing of T = T0 and a frequency spacing of F = 2/T0.
Compared to OFDM, the frequency localization is much better. Note that the Hermite pulse
has the same shape in time and frequency, allowing to exploit symmetries. Furthermore, it is
based on a Gaussian function and therefore has a good joint time-frequency localization of
σtσ f = 1.02 × 1/4π, almost as good as the bound of σtσ f ≥ 1/4π ≈ 0.08 (attained by the
Gaussian pulse), making it relatively robust to doubly-selective channels, see Section 3.1.2.
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Hermite PHYDYAS (O = 4) |A(τ, ν)|2

Figure 2.2. The ambiguity function 20 log10 |A(τ, ν)|, see (2.5), in case of FBMC-OQAM.
In contrast to OFDM, the Hermite and the PHYDYAS pulses are localization in both, time
and frequency. Orthogonality is guaranteed for T = T0 and F = 2

T0
, leading to TF = 2.

Note that no on-line evaluation of the Hermite polynomials is necessary because the sampled
version of (2.15) can be pre-calculated.

Another prominent filter is the so called PHYDYAS prototype filter [66, 67], constructed
by:

p(t) =


1+2

O−1∑
i=1

bi cos
(
2πt
OT0

)
O
√

T0
if − OT0

2 < t ≤ OT0
2

0 otherwise
. (2.18)

The coefficients bi were calculated in [68] and depend on overlapping factor O (the inter-
pretation of the overlapping factor will be more clear in Section 2.3). For example, for an
overlapping factor of O = 4, the coefficients become:

b1 = 0.97195983; b2 =
√
2/2; b3 = 0.23514695. (2.19)

which leads to

Orthogonal : T = T0; F = 2/T0 → TF = 2

Localization : σt = 0.2745T0; σ f = 0.328/T0.
(2.20)

The right part of Figure 2.2 shows the ambiguity function for the PHYDYAS filter (O =
4). Compared to the Hermite prototype filter, the PHYDYAS filter has better frequency-
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FBMC-QAM FBMC-OQAM |A(τ, ν)|2

Figure 2.3. Illustration of FBMC-OQAM. Starting from an FBMC-QAM system (left), the
time spacing and the frequency spacing are both reduced by a factor of two, leading to a
time spacing of T = T0/2 and a frequency spacing of F = 1/T0 (right). The so induced
interference (black markers) is shifted to the purely imaginary domain by the phase shift
θl,k =

π
2 (l + k) and can easily be canceled by taking the real part.

localization but worse time-localization. The joint time-frequency localization of σtσ f =

1.13 × 1/4π is also worse.

2.1.3 FBMC-OQAM

FBMC-OQAM is related to FBMC-QAM but has the same symbol density as OFDM
without CP. To satisfy the Balian-Low theorem, the complex orthogonality condition
⟨gl1,k1(t), gl2,k2(t)⟩ = δ(l2−l1),(k2−k1) is replaced by the less strict real orthogonality condition
ℜ{⟨gl1,k1(t), gl2,k2(t)⟩} = δ(l2−l1),(k2−k1). FBMC-OQAM works, in principle, as follows:

1. Design a prototype filter with p(t) = p(−t) which is orthogonal for a time spacing of
T = T0 and a frequency spacing of F = 2/T0, leading to TF = 2, see (2.15) or (2.18).

2. Reduce the (orthogonal) time-frequency spacing by a factor of two each, that is,
T = T0/2 and F = 1/T0.

3. The induced interference, caused by the time-frequency squeezing, is shifted to the
purely imaginary domain by the phase shift θl,k =

π
2 (l + k) in (2.2).

The described process is illustrated in Figure 2.3. Starting from an FBMC-QAM system (left)
the orthogonal time-frequency spacing of T = T0 and F = 2/T0 is reduced to T = T0/2 and
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F = 1/T0 (right). This causes interference, indicated by the black markers. To be specific,
for θl,k =

π
2 (l + k) and TF = 0.5, the inner product of (2.6), can be expressed as

⟨gl+∆l,k+∆k(t), ql,k(t)⟩ = e j
π
2 (∆l+∆k)e−j

π
2∆k(2l+∆l)︸                       ︷︷                       ︸

purely imaginary for odd∆k,∆l

A(∆k T,∆l F)︸           ︷︷           ︸
0 if both∆k,0,∆l,0 are even

. (2.21)

The ambiguity function in (2.21) guarantees orthogonality if both, ∆k and ∆l, are even. On
the other hand, if either ∆k or ∆l is odd, A(·) no longer becomes zero. Then, the overall phase
of (2.21) is purely determined by the exponential function since the ambiguity function is
always real-valued because of p(t) = p(−t). In particular, the exponential function becomes
purely imaginary if either ∆k or ∆l is odd. Thus, the real orthogonality condition is satisfied.

Although the time-frequency spacing of FBMC-OQAM is equal to TF = 0.5, only
real-valued information symbols can be transmitted in such a system, leading to an equivalent
time-frequency spacing of TF = 1 for complex-valued symbols. Very often, the real-part
of a complex-valued symbol is mapped to the first time slot and the imaginary-part to the
second time slot, thus the name offset-QAM. However, such self-limitation is not necessary.

The main disadvantage of FBMC-OQAM is the loss of complex orthogonality. This
implies particularities for some MIMO techniques, such as space-time block codes [69] or
maximum likelihood symbol detection [70], as well as for channel estimation [41].

2.1.4 Block Spread FBMC-OQAM

To overcome the problems related to FBMC-OQAM, one has to restore complex orthogonality.
This can be achieved by spreading symbols in time or frequency. In [70] the authors utilize FFT
spreading, while the authors of [69, 71] employ Walsh–Hadamard spreading. The latter can
be implemented by a fast Walsh-Hadamard transform and has almost no additional complexity.
Although block spread FBMC is similar to Code Division Multiple Access (CDMA),
employed in 3G, it is also different in the sense that no rake receiver and no root-raised-cosine
filter is necessary. Instead, simple one-tap equalizers can be employed, which is possible
as long as the channel is approximately flat in time (for spreading in time) or in frequency
(for spreading in frequency). Because wireless channels are highly underspread [72], such
assumption is true in many scenarios. Furthermore, the good time-frequency localization
of FBMC allows to efficiently separate blocks by only one guard symbol and no additional
filtering is necessary. Figure 2.4 illustrates the concept of block spread FBMC-OQAM for
spreading in the frequency domain, although one could equivalently spread in time. The left
part of Figure 2.4 represents conventional FBMC-OQAM. Because each time-frequency
position can only carry real-valued symbols, two subcarriers are required to transmit one



2.2 Matrix-Based System Model 21

FBMC-OQAM

Time

Code

Frequency

Block Spread FBMC-OQAM

Time

Code

Frequency

Guard subcarrier

Channel is approximately
frequency-flat,
see Chapter 5

Figure 2.4. In conventional FBMC-OQAM (left), real valued symbols are transmitted over
a rectangular time-frequency grid (TF = 0.5). Two real-valued symbols are required to
transmit one complex-valued symbol. Thus, the name “offset”-QAM, where the offset
is not in time (as often in literature) but in frequency to be consistent with block spread
FBMC-OQAM (right). In block spread FBMC-OQAM, complex-valued symbols are spread
over several subcarriers (or time positions). This restores complex orthogonality. To improve
the SIR between different blocks, a guard symbol might be necessary. ©2017 IEEE, [36].

complex-valued data symbol, indicated by the color. In block spread FBMC-OQAM, on
the other hand, data symbols no longer belong to a specific time-frequency position, but
are rather spread over several subcarriers. To keep the spectral efficiency the same as in
FBMC-OQAM (ignoring possible guard symbols), several data symbols are transmitted over
the same time-frequency resources, but differentiated by the spreading/coding sequence.
To be specific, L/2 complex-valued data symbols are spread over L subcarriers, leading to
the same infomation rate as conventional FBMC-OQAM (again, ignoring possible guard
symbols). Another advantage of block spread FBMC-OQAM can be found in the uplink.
Conventional FBMC-OQAM requires phase synchronous transmissions (θl,k =

π
2 (l + k))

which is problematic in the uplink (but not in the downlink) [14]. In block spread FBMC,
this is no longer an issue because complex orthogonality is restored. The main disadvantage,
on the other hand, is the increased sensitivity to doubly-selective channels. This, however,
was never an issue in my real world testbed measurements. A more detailed discussion of
block spread FBMC-OQAM can be found in Chapter 5.

2.2 Matrix-Based System Model

The continuous-time representation, presented in Section 2.1, provides analytical insights
and gives physical meaning to multicarrier systems. However, such representation becomes
analytically hard to track in doubly-selective channels because double integrals have to be
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solved. Furthermore, in practice, the signal is generated in the discrete-time domain. Thus, I
will switch from the continuous-time domain to the discrete-time domain. Additionally, I
propose a novel matrix description, simplifying analytical calculations and allowing to utilize
well-known matrix algebra. A more detailed discussion on the advantages of my matrix
notation compared with the commonly used discrete-time filter description can be found in
Appendix A.1.

I denote the sampling rate by fs = 1/∆t = FNFFT, where NFFT ≥ L represents the size of
the FFT; see Section 2.3. For the time interval −OT0/2 + T ≤ t < OT0/2 + KT , the sampled
basis pulse gl,k(t), see (2.2), can be written in a basis pulse vector gl,k ∈ CN×1, that is,

[gl,k]i =
√
∆t gl,k(t)

���
t=(i−1)∆t−OT0

2 +T
for i = 1, 2, . . . , N (2.22)

with N = (OT0 + T(K − 1)) fs. (2.23)

By stacking all those basis pulse vectors in a large transmit matrix G ∈ CN×LK ,

G =
[
g1,1 · · · gL,1 g1,2 · · · gL,K

]
, (2.24)

and all data symbols in a large transmit symbol vector x ∈ CLK×1,

x = vec



x1,1 · · · x1,K
...
. . .

...

xL,1 · · · xL,K


 (2.25)

=
[
x1,1 · · · xL,1 x1,2 · · · xL,K

]T
, (2.26)

I can express the sampled transmit signal s ∈ CN×1 in (2.1) by:

s = Gx. (2.27)

Because of linearity, matrix G can easily be found even if the underlying modulation format
is not known in detail. For that, all transmitted symbols have to be set to zero, except xl,k = 1.
Vector s then provides immediately the l + L(k − 1)-th column vector of G. Repeating this
step for each time-frequency position delivers transmit matrix G.

Similar as in (2.22)-(2.24), the sampled receive basis pulses ql,k ∈ CN×1, see (2.4), can
also be stacked in a matrix according to,

Q =
[
q1,1 · · · qL,1 q1,2 · · · qL,K

]
. (2.28)
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By allowing a different transmit and receive matrix, I obtain a more general description
of multicarrier systems that covers, for example, CP-OFDM and its derivatives (window-
ing/filtering). However, one should keep in mind that FBMC employs an AWGN matched
filter, that is, Q = G.

Multipath propagation over time-variant channels is modeled by a time-variant impulse
response h[mτ, n], where mτ represents the delay and n the time position [61]. By writing the
impulse response in a time-variant convolution matrix H ∈ CN×N , defined as,

[H]i, j = h[i − j, i], (2.29)

I can reformulate the received symbols in (2.3) by

y = QH r = QHHGx + n, (2.30)

where r ∈ CN×1 represents the sampled received signal and n ∼ CN(0, PnQ
HQ) the Gaussian

distributed noise, with Pn the white Gaussian noise power in the time domain. Because
wireless channels are highly underspread, the channel induced interference can often be
neglected compared to the noise. This means that the off-diagonal elements of QHHG are
so small, that they are dominated by noise; see Section 3.1 for more details. Thus, only the
diagonal elements of QHHG remain, allowing me to factor out the channel according to

y ≈ diag{h}QHGx + n, (2.31)

with h ∈ CLK×1 describing the one-tap channel, that is, the diagonal elements of QHHG. The
operator diag{·} generates a diagonal matrix out of a vector. In OFDM and FBMC-QAM,
the orthogonality condition implies that QHG = ILK , while in FBMC-OQAM only real
orthogonality holds true, that is, ℜ{QHG} = ℜ{GHG} = ILK . The imaginary interference
in FBMC-OQAM can be canceled by phase equalization of (2.31) followed by taking the real
part. Note that, discarding the imaginary interference does not remove any useful information
in an AWGN channel. To show that, I utilize a similar approach as for the derivation of the
MIMO channel capacity [73], that is, I perform an eigendecomposition of QHG and employ
water-filling. Figure 2.5 shows the corresponding eigenvalues of QHG and how they depend
on the number of sucarriers, L, and the number of time symbols, K . I get rid of border
effects (which become negligible for a large number of subcarriers and time symbols) by
cyclically extending the pulses in time and frequency (which is equivalent to K → ∞ and
L → ∞). Then QHG has exactly LK/2 non-zero eigenvalues, each having a value of two.



24 Filter Bank Multicarrier Modulation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

Cyclic repetition,
correponds to
L → ∞, K → ∞

L = 12, K = 10

L = 36, K = 30

i-th position / LK

Ei
ge

nv
al

ue
so

fQ
H
G

Figure 2.5. The eigenvalues of QHG for an FBMC-OQAM system. Similar as for the
derivation of the MIMO channel capacity, the eigenvalues in combination with eigenvector
precoding can be utilized to determine the information rate. In particular, for a large number
of subcarriers and time symbols, QHG has exactly LK/2 nonzero eigenvalues. This is the
same information rate as in FBMC-OQAM (LK real-valued symbols), implying that, by
taking the real part, no useful information is lost.

This corresponds to the same information rate one can transmit with LK real-valued symbols
(the SNR is also the same), so that, by taking the real part, no useful information is lost.

One advantage of my matrix notation is the straightforward equalization of the channel
in OFDM and FBMC-QAM, for example, by a zero-forcing equalizer (QHHG)−1, or an
MMSE equalizer. In FBMC-OQAM, such direct inversion is not possible because QHHG

has not full rank. Even more problematic is the inherent imaginary interference which
influences the performance, so that a simple matrix inversion is overall a bad choice. Some
of these problems can be avoided by stacking real and imaginary part into a supervector, see
Section 3.2. However, as I have already elaborated and will further discuss throughout this
thesis, in almost all practical cases one-tap equalizers are sufficient.

Another advantage of my matrix representation is the straightforward calculation of the
expected transmit power in time, PS ∈ RN×1 :

PS = diag{GRxG
H}, (2.32)

where Rx = E{xxH} describes the correlation matrix of the transmitted symbols, often
an identity matrix. The Power Spectral Density (PSD), PSD ∈ RN×1, can also be easily
calculated by

[PSD] j =

KL−1∑
i=0

���[WN GU
√
Λ] j,i

���2 , (2.33)
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Figure 2.6. When comparing different modulation schemes, I always consider the same
average transmit power (left part of the figure). Different transmission blocks may overlap
in time, allowing to emulate the case of infinitely many blocks. The right part of the figure
illustrates the SNR definition for FBMC-OQAM and OFDM.

where WN is a DFT matrix of size N while U and Λ are obtained by an eigendecomposition
of Rx = UΛUH. Again, in many cases, Rx is an identity matrix, leading to U

√
Λ = ILK .

Note that the index j in (2.33) represents the frequency index with resolution ∆ f = fs
N .

Furthermore, (2.33) represents a scaled PSD. This scaling, however, does not matter because
I usually normalize the PSD to 0 dB, see Figure 1.2, in order to improve readability.

When comparing different modulation schemes, I always consider the same average
transmit power, defined as

P̄S =
1

KT

∫ ∞

−∞
E{|s(t)|2} dt (2.34)

=
1

KT
tr{GRxG

H} 1
fs
. (2.35)

This leads to a certain per symbol SNR, which determines the performance. For FBMC-
OQAM and CP-OFDM, the SNR can be expressed by:

SNR =
P̄S

LF
1

N0
, (2.36)

with N0 =
Pn
fs

being the noise power spectral density. The SNR concept is illustrated
in Figure 2.6. A fixed transmit power P̄S is equally spread over the transmission band.
Furthermore, the left part of Figure 2.6 shows that different transmit blocks may overlap in time.
Under the assumption of uncorrelated data symbols of equal power power, Px = E{|xl,k |2},
the SNR for OFDM and FBMC-OQAM can be expressed by

SNR =
PCP−OFDM

x

Pn
=

PFBMC−OQAM
x

1
2Pn

. (2.37)
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For the same bandwidth FL, setting PFBMC−OQAM
x = 1

2PCP−OFDM
x , see (2.37), implies that

the average transmit power PS =
1

KT

∫ ∞
−∞ E{|s(t)|

2} dt is the same for CP-OFDM and FBMC,
allowing a fair comparison. FBMC only experiences half the noise power due to “taking the
real part”, which explains the factor of 1

2 in (2.37). Furthermore, interpreting (2.37), one has
to keep in mind that the channel has, on average, unit power and that the basis pulses are
(real) orthonormal. In FBMC-QAM, the SNR definition changes because of a lower symbol
density. To be specific, for the same bandwidth FL and the same average transmit power P̄S,
the SNR for FBMC-QAM (TF = 2) is 3 dB higher than for CP-OFDM and FBMC-OQAM.
However, the data rate is also reduced by a factor of two.

2.3 IFFT Implementation

Practical systems must be much more efficient than the simple matrix multiplication in
(2.27) and (2.30). It was shown in [74], for example, that FBMC-OQAM can be efficiently
implemented by an Inverse Fast Fourier Transform (IFFT) together with a polyphase network.
However, the authors of [74] do not provide an intuitive explanation of their implementation.
I therefore investigate an alternative, intuitive, interpretation for such efficient FBMC-OQAM
implementation. A similar interpretation was suggested, for example, in [56] for pulse-
shaping multicarrier systems, or in [75] for FBMC-OQAM (without theoretical justification).
However, most papers still refer to [74] when it comes to an efficient FBMC-OQAM
implementation. It is thus worth to show that the modulation and demodulation step in FBMC
is very simple and actually the same as in windowed OFDM.

To simplify the exposition and without losing generality, I consider only time-position
k = 0. Any other time-position can easily be obtained by time-shifting this special case. The
main idea is to factor out prototype filter p(t) from (2.1),

s0(t) = p(t)
L∑

l=1

ej2π lF t e jθl,0 xl,0. (2.38)

The exponential function in (2.38) is periodic in T0 because of F = 1
T0 , so that the exponential

summation has to be calculated only for the time interval−T0/2 ≤ t < T0/2. Furthermore, with
the sampling rate fs = 1/∆t = FNFFT, I deduce that the exponential summation corresponds
to an NFFT point inverse DFT. Thus, the sampled version of (2.38), s0 ∈ CONFFT×1, can be
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Figure 2.7. From a conceptional point of view, the signal generation in windowed OFDM
and FBMC-OQAM requires the same basic operations, namely, an IFFT, copying the IFFT
output, element wise multiplication with the prototype filter and, finally, overlapping. ©2017
IEEE, [1]

expressed by (e jθl,0 = jl+0):

s0 = p ◦
(
1O×1 ⊗ WH

NFFT



0

x1,0 j1+0
...

xL,0 j
L+0

0
...

︸                 ︷︷                 ︸
IFFT︸                               ︷︷                               ︸

repeat O-times

)

︸                                           ︷︷                                           ︸
element-wise multiplication

, (2.39)

where ◦ denotes the element-wise Hadamard product and ⊗ the Kronecker product. The
sampled prototype filter p ∈ CONFFT×1 in (2.39) is given by:

[p]i =
√
∆t p(t)

���
t=(i−1)∆t−OT0

2

for i = 1, 2, . . . ,O NFFT. (2.40)

Figure 2.7 illustrates such low-complexity implementation and compares FBMC-OQAM
to windowed OFDM. Both modulation schemes apply the same basic steps, that is, IFFT,
repeating and element-wise multiplications. However, windowed OFDM has overall a lower
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complexity because the element-wise multiplication is limited to a window of size 2TW
and time symbols are further apart, that is, T = TW + TCP + T0 in windowed OFDM versus
T = T0/2 in FBMC-OQAM. Thus, FBMC needs to apply the IFFT more than two times
(exactly two times if TW = TCP = 0). Of course, the overhead TW +TCP in windowed OFDM
reduces the spectral efficiency. Because the signal generation for both modulation schemes is
very similar, FBMC-OQAM can utilize the same hardware components as windowed OFDM.

The receiver works in a similar way, but in reversed order, that is, element-wise multipli-
cation, reshaping the received symbol vector to NFFT ×O, followed by a row-wise summation
and, finally, an FFT. Note that the same operations are also required in WOLA. In contrast
to FBMC, however, the transmit and receive prototype filters are different in WOLA.

2.4 Possible Use Cases

I will now investigate possible use cases for FBMC and discuss why it outperforms OFDM
based schemes in many cases. Let me define the time-frequency efficiency as

ρ =
KL

(KT + TG)(FL + FG)
, (2.41)

where TG represents the required guard time and FG the required guard band. The time-
frequency efficiency helps to answer the question which modulation format utilizes available
time-frequency resources best. Note that in the limit case of K → ∞ and L → ∞, the
time-frequency efficiency depends only on the symbol density, that is, ρ = 1

TF .
Figure 2.8 compares the time-frequency efficiency of FBMC-OQAM with that of f-OFDM.

Guard time TG is chosen so that 99.99% (= 40 dB) of the transmitted energy, see (2.32), is
within the time interval KT + TG. Similarly, 99.99% of the transmitted energy (utilizing
the PSD in (2.33)) is within the bandwidth FL + FG. Depending on the specific use case,
one might want to apply different thresholds. However, the basic statements will stay the
same. If only a few time symbols are used, for example K = 1 for f-OFDM and K = 2 for
FBMC, f-OFDM shows a better performance than FBMC because of a larger guard time
required in FBMC (only if no overlapping between blocks is possible). Approximately
K = 5 complex-valued time symbols (K = 10 real-valued symbols) are required to make
the time-frequency efficiency of FBMC better than that of f-OFDM, although this depends
strongly on the number of subcarriers. Once the number of time symbols approaches infinity,
which is approximately true in many cases because blocks (subframes) can easily overlap,
only OOB emissions are relevant and FBMC strongly outperforms f-OFDM. Already K = 15
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Figure 2.8. The time-frequency efficiency, see (2.41), depends on the number of subcarriers
and the number of time symbols. If overlapping between transmit blocks is possible or if the
number of time symbols is high, FBMC-OQAM strongly outperforms f-OFDM in terms of
time-frequency efficiency. ©2017 IEEE, [1].

complex-valued time symbols are sufficient to come close to the limit of K → ∞ for the
Hermite pulse (95% threshold); for the PHYDYAS filter it is K = 30.

I will now take a closer look at how FBMC can efficiently support different use cases
within the same band, as illustrated in Figure 1.1. For that, I assume two users. User 1
employs a subcarrier spacing of F1 = 15 kHz and user 2 employs F2 = 120 kHz. Such
different subcarrier spacings will be included in 5G [7] and allow, for example, to deal
with different channel conditions, see Section 3.1.2. Another reason for different subcarrier
spacings are different performance requirements. For example, a high subcarrier spacing
allows low latency transmissions whereas a low subcarrier spacing increases the bandwidth
efficiency and makes the system more robust to delays.

My metric of interest here is the SIR. To keep the analysis simple, I ignore the channel
(although it could be included similar as later in Section 3.1.2). The transmitted signal of the
first user is characterized by G1, see (2.27), and employs L1 = 96 subcarriers with a subcarrier
spacing of F1 = 15 kHz, leading to a transmission bandwidth of F1L1 = 1.44MHz. Similarly,
the second user is characterized by G2, employs L2 = 12 subcarriers with a subcarrier
spacing of F2 = 120 kHz, leading to the same bandwidth as before, that is, L2F2 = 1.44MHz.
Additionally, G2 is shifted in frequency by F1L1 + FG. Figure 2.9 shows the PSD, see (2.33),
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Figure 2.9. The PSD in case that two users with different subcarrier spacings (F1 = 15 kHz,
F2 = 120 kHz) share the same band. The transmission bandwidth is the same for both users
F1L1 = F2L2 = 1.44MHz. In case of FBMC, a subcarrier spacing of F2 = 480 kHz is also
considered, leading to approximately the same latency as for OFDM with F2 = 120 kHz. In
this example, the guard band is set to FG = 0.2 F1L1. ©2017 IEEE, [1].

for both users and a guard band of FG = 0.2 F1L1. For WOLA, UFMC and f-OFDM, I
assume a time-frequency spacing of T1F1 = 1.09 for the first user, same as in Figure 1.2.
For the second user, on the other hand, I assume a time-frequency spacing of T2F2 = 1.27

to reduce the OOB emissions further. My proposed matrix notation again simplifies the
analytical calculation of the total SIR, defined for FBMC-OQAM as:

SIRtotal,2-use-case =
L1K1 + L2K2

| |ℜ{QH
1G2}| |2F + | |ℜ{QH

2G1}| |2F
, (2.42)

where | | · | |F represents the Frobenius norm. To keep the notation in (2.42) simple, I ignore
self interference (≈65 dB for the PHYDYAS prototype filter, O = 4), that is, the off-diagonal
elements of QH

1G1 and QH
2G2 are ignored. In CP-OFDM, WOLA, UFMC and f-OFDM, the

ℜ{} in (2.42) disappears because they operate in the complex domain. In (2.42), I consider
the sum interference power but one should keep in mind that subcarriers close to the other
user experience a higher interference than subcarriers farther away. Furthermore, to keep the
notation simple, (2.42) does not account for different receive power levels caused by different
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Figure 2.10. FBMC has a higher SIR than OFDM, so that the required guard band is
much smaller. Compared with the channel induced inference, which will be discussed in
Section 3.1.2, one often requires a much higher SIR because of different receive power levels
(not included in (2.42) to keep the notation simple). Windowed and filtered OFDM only
perform well if windowing and filtering is also applied at the receiver. ©2017 IEEE, [1].

transmit power levels and different path losses. Thus, compared to the channel induced
interference, a higher SIR is often required to account for those factors. Figure 2.10 shows
how the SIR, see (2.42), depends on the normalized guard band, where I assume K ≫ 1, so
that T + TG

K ≈ T . The higher the guard band, the less interference is observed. As illustrated
in Figure 2.10, receive windowing and filtering are of utmost importance. Without it, there is
not much difference between WOLA, UFMC, f-OFDM and conventional CP-OFDM. The
importance of receive windowing and filtering was also observed in [76]. Additionally, one
should keep in mind that, without receive windowing and filtering, the interference from
user 1 to user 2 is higher than the interference from user 2 to user 1, which can also be
deduced from Figure 2.9. Once windowing and filtering is applied at the receiver, both users
experience approximately the same interference power. As shown in Figure 2.10, WOLA,
UFMC and f-OFDM can improve the SIR but the performance is still not as good as in FBMC.
Assuming an SIR of 45 dB is required, f-OFDM needs a guard band of FG = 0.24 FL. Thus,
the time-frequency efficiency for user 2 becomes ρ = 1

1.24×1.27 = 0.64. In contrast to that,
FBMC has a much higher efficiency of ρ = 0.97. Therefore, the data rate in FBMC is
approximately 50 % higher than in f-OFDM. One reason for the high subcarrier spacing
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of user 2 (F2 = 120 kHz) is to enable low latency transmissions. For a fair comparison in
terms of latency, the subcarrier spacing in FBMC has to be further increased by a factor
of four (O = 4), leading to F = 480 kHz and thus approximately the same latency as in
OFDM. The number of subcarriers in FBMC then decreases from L = 12 to only L = 3.
As shown in Figure 2.10, a higher subcarrier spacing (F = 480 kHz) requires a larger guard
band (FG = 0.13 FL for a 45 dB SIR threshold), but the time-frequency efficiency (ρ = 0.88)
is still approximately 40% higher than in f-OFDM. Thus, the statement that FBMC is not
suited for low-latency transmissions is not true in general. One only has to increase the
subcarrier spacing. Of course, this further increases the sensitivity to time-offsets and delay
spreads (but decreases the sensitivity to frequency-offsets and Doppler spreads). Note that
the superior spectral properties of FBMC also simplify frequency synchronization [77].

For a higher bandwidth per user, say 10.08 MHz instead of 1.44 MHz, the possible
improvement of FBMC compared to f-OFDM reduces to only 15% (45 dB SIR threshold).
Thus, if the number of subcarriers is high, OFDM has a relatively high spectral efficiency. This
will usually be the case in eMBB. However, other use cases, such as eMTC, might not always
employ a high number of subcarriers (per user/machine). FBMC then becomes much more
efficient, as discussed in this section. If only one subcarrier is active, FBMC can even act as a
single carrier scheme with the advantage of a reduced PAPR. The time-frequency efficiency
then decreases but is still much higher than in OFDM. If the bandwidth is sufficiently small,
simple one-tap equalizers can still be employed and the SNR will be high. Of course, a small
bandwidth implies low data rates but many use cases do not require high data rates.

Another important use case is URLLC. I have already shown that FBMC has a higher
spectral efficiency than OFDM in low latency scenarios. For that, the subcarrier spacing needs
to be increased. For example, I was able to transmit a 2×1 Alamouti FBMC and OFDM signal
(one subframe) within less than 40 µs [27], thus satisfying the low latency condition [78] (the
evaluation was performed off-line to keep hardware costs reasonable low). High reliability
can also be achieved in FBMC by switching from an FBMC-OQAM transmission to an
FBMC-QAM transmission. Thus, deliberately sacrificing spectral efficiency but improving
robustness in doubly-selective channels and with respect to time-frequency offsets, see
Section 3.1.2. Of course, one has to include additional steps, such as diversity (frequency,
space), to guarantee high reliability.



Chapter 3

Equalization

As already mentioned in Section 2.2, time-variant multipath propagation causes distortions
of the transmitted signal, so that equalization becomes necessary. Important questions are
then what kind of equalization is needed and how computational demanding it is. To answer
those questions, I start with a simple, yet effective, one-tap equalizer. I provide closed-form
solutions for the BEP and calculate the SIR. The performance depends strongly on the
subcarrier spacing. By considering an optimal subcarrier spacing, I eliminate this dependency.
Numerical evaluations reveal that in most practical cases, one-tap equalizers are sufficient.
Nonetheless, in a few rare cases, advanced equalization methods might be necessary. I thus
propose a novel MMSE equalizer as well as a simple interference cancellation scheme. This
chapter is mainly based on my publications [1, 32, 37] and includes the following novel
contributions:

• In Section 3.1.1, I derive a closed-form BEP expression for arbitrary linear modulation
methods based on one-tap equalizers, with OFDM and FBMC being special cases,
covered by my general expression [32].

• In Section 3.1.2, I propose a novel method to calculate the SIR for doubly-selective
channels and show that in many cases, one-tap equalizers are sufficient, especially if an
optimal subcarrier spacing is considered [1].

• In Section 3.2, I propose a novel n-tap MMSE equalizer which not only takes neighboring
time symbols into account, as usually done in literature, but also includes neighboring
subcarriers into the equalization process. Furthermore, I propose a full block MMSE
equalizer and a simple interference cancellation scheme [37].

Throughout this chapter, I assume perfect channel knowledge. The challenge of channel
estimation for FBMC systems is discussed in Chapter 4.
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3.1 Are One-Tap Equalizer Sufficient?

Equalization has always been one of the key challenges in wireless communications [79–84].
In multicarrier transmissions, however, equalization becomes in many cases a lot easier
because (2.31) can be decomposed according to:

yl,k = hl,k xl,k + nl,k . (3.1)

Here, I ignore the imaginary interference of FBMC, that is, QHG = ILK . This is feasible
because the imaginary interference is orthogonal to the useful signal, so that it has no influence
on the performance. I further assume that the channel induced interference is dominated
by the noise, so that (3.1) accurately describes the transmission system, and that the noise
is Gaussian distributed, that is, nl,k ∼ CN(0, Pn). The Maximum Likelihood (ML) symbol
detection for (3.1) can then be found by:

x̂l,k = arg max
xl,k∈X

{
pdf(yl,k |xl,k)

}
(3.2)

= arg max
xl,k∈X

{
1

πPn
exp

(
− |yl,k − hl,k xl,k |2

Pn

)}
(3.3)

= arg min
xl,k∈X

{���� yl,k

hl,k
− xl,k

����} . (3.4)

In particular, (3.4) is nothing else than a simple one-tap Zero-Forcing (ZF) equalizer followed
by nearest neighbor detection and can thus be expressed by

x̂l,k = Q
{
yl,k

hl,k

}
, (3.5)

whereQ{·} represents nearest neighbor detection. That a simple one-tap equalizer corresponds
to the ML symbol detection is one of the biggest advantages of multicarrier systems. Of
course, once the channel induced interference becomes relevant, one-tap equalization no
longer corresponds to the ML symbol detection. The effect of doubly-selective channels on
one-tap equalizers is discussed in this section.

3.1.1 Bit Error Probability

I start my analysis by calculating the BEP, an important metric in wireless communications.
While many authors have already investigated the BEP in OFDM from an analytical point
of view, such as [85] for a time-invariant channel and [86] for a doubly-selective channel,
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Pr{ x̂ = Xi |x = X j} =
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Figure 3.1. For a given symbol alphabet X, Lemma 1 and (3.10)-(3.13) are applied to
calculate the probability that x̂l,k = Xi is detected, conditioned that xl,k = X j was sent,
allowing to calculate the BEP in (3.14). ©2017 IEEE, [32].

FBMC is still missing in literature. I therefore propose a general method to calculate
the BEP in doubly-selective channels for arbitrary linear modulation techniques based on
one-tap equalization, such as OFDM and FBMC. I assume Rayleigh fading, perfect channel
knowledge at the receiver and that the data symbols are statistically independent. Furthermore,
I limit myself to m-QAM and

√
m-PAM signal constellations because they lead to vertical

and horizontal decision boundaries, see Figure 3.1, allowing me to use the following lemma
to calculate the BEP:

Lemma 1 Let y and h be zero mean, correlated, complex-valued, Gaussian random variables,
then the Cumulative Distribution Function (CDF) of the complex Gaussian ratio y

h reads

CDFy/h(zR, zI) =Pr
{(
ℜ

{ y
h

}
< zR

)
∧

(
ℑ
{ y

h

}
< zI

)}
=

=
1

4
+

(zR −ℜ{α})
(
2 tan−1

(
zI−ℑ{α}√

(zR−ℜ{α})2+β−|α |2

)
+ π

)
4π

√
(zR −ℜ{α})2 + β − |α |2

+

+

(zI − ℑ{α})
(
2 tan−1

(
zR−ℜ{α}√

(zI−ℑ{α})2+β−|α |2

)
+ π

)
4π

√
(zI − ℑ{α})2 + β − |α |2

,

(3.6)

with

α =
E{yh∗}
E{|h|2} and β =

E{|y |2}
E{|h|2} . (3.7)
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Lemma 1 is obtained by reformulating and combining Equations (10)-(15) of [87]. In many
cases, only the projection onto the real axis is needed, zI → ∞, simplifying (3.6) according
to [41],

Pr
(
ℜ

{ y
h

}
< zR

)
=

1

2
− ℜ{α} − zR

2

√
(ℜ{α} − zR)2 + β − |α |2

. (3.8)

By reformulating (2.30), I am able to express the received symbol at subcarrier position l
and time position k by

yl,k = qHl,k HGx + nl,k =
(
(Gx)T ⊗ qHl,k

)
vec{H} + nl,k, (3.9)

where I utilize the Kronecker product in (3.9) to simplify statistical investigations, see
(3.10)-(3.12). To apply Lemma 1 in my transmission system, the received symbols yl,k

have to be Gaussian distributed, which is only true conditioned on the transmitted data
symbols x. By employing (3.9), I straightforwardly calculate the required expectations in
(3.7), conditioned on x, according to

E
{
|yl,k |2

��x} = xT
(
GT ⊗ qHl,k

)
Rvec{H}

(
GT ⊗ qHl,k

)H
x∗ + Pn, (3.10)

E
{
|hl,k |2

}
=

(
gTl,k ⊗ qHl,k

)
Rvec{H}

(
gTl,k ⊗ qHl,k

)H
, (3.11)

E
{
yl,k h∗l,k

��x} = xT
(
GT ⊗ qHl,k

)
Rvec{H}

(
gTl,k ⊗ qHl,k

)H
, (3.12)

where Rvec{H} = E{vec{H}vec{H}H} represents the correlation matrix of the vectorized
time-variant convolution matrix and depends on the underlying power delay profile and
the Doppler spectral density. I normalize the channel so that it has unit power, that is,
the taps of the power delay profile sum up to one. Combining Lemma 1 and (3.10)-(3.12)
allows me to express the CDF, conditioned on x, of my transmission system in (3.5),
CDFyl,k/hl,k (zR, zI |x). To calculate the overall BEP, however, I need the CDF conditioned
solely on xl,k . With a permutation matrix P, I split the transmitted symbols x into interfering
symbols xIl,k ∈ X(LK−1)×1 and the symbol of interest, xl,k , according to x = P [xTIl,k, xl,k]T.
The required CDF can then be calculated with the law of total probability according to

CDFyl,k/hl,k (zR, zI |xl,k) =
1

M

∑
xIl,k ∈X

LK−1

CDFyl,k/hl,k (zR, zI |xIl,k, xl,k), (3.13)

with M = |XLK−1 | denoting the cardinality of XLK−1. Note that (3.13) is required to model
the interference influence correctly. Many papers, such as [88], assume that the interference



3.1 Are One-Tap Equalizer Sufficient? 37

is Gaussian distributed, arguing that the central limit theorem can be applied. This is wrong
because only a few symbols have a significant contribution to the interference, as also shown
in [86]. For a small symbol alphabet, (3.13) can be calculated analytically, because only
a few interferers have a significant contribution which makes the number of summations
reasonable small. For higher modulation orders, on the other hand, this is no longer possible
because too many summations are required. Then, numerical approximations, such as Monte
Carlo evaluation, become necessary. Nonetheless, compared to pure simulations one has the
advantages of analytical insights and a highly reduced evaluation time.

Finally, with Lemma 1 and (3.10)-(3.13), all the necessary tools are available to calculate
the BEP of transmitted symbol xl,k , given by:

BEPl,k =
1

log2 |X|

log2 |X|∑
p=1

1

|X|

|X|∑
j=1

∑
Xi∈Ep

j

Pr
{

x̂l,k = Xi |xl,k = X j
}
. (3.14)

Set X = {X1, · · · , X |X|} describes the symbol alphabet where each symbol is mapped to a
unique bit sequence of size log2 |X|. Set Ep

j , on the other hand, represents all those elements
of X for which the bit-value at bit-position p ∈ N is different from the corresponding bit-value
of X j . Note that the cardinality of Ep

j is |X|
2 . As illustrated in Figure 3.1, the probability

expression Pr{·} in (3.14) can be straightforwardly calculated by the CDF, see (3.13).

Usually, the BEP expression in (3.14) consists of many terms, mainly because of the
inference term described in (3.13). For the important special case of doubly-flat Rayleigh
fading, that is, H = h̄ IN with h̄ ∼ CN(0, 1), however, I find compact expressions. For
OFDM, the required expectations in (3.10)-(3.12) simplify to E{|yl,k |2 |x} = |xl,k |2 + Pn,
E{|hl,k |2} = 1 and E{yl,k h∗l,k |x} = xl,k . Note that those expressions no longer depend on the
surrounding data symbols xIl,k , simplifying (3.13). For Gray-coded 4-QAM, symmetries
allow me to rewrite (3.14) by BEPl,k = CDFyl,k/hl,k

(
0,∞

��√Px
1+j√
2

)
which, together with

Lemma 1 leads to
BEPOFDM,FBMC

4-(O)QAM =
1

2
− 1

2
√
1 + 2 1

SNR

, (3.15)

identical for each transmit symbol. FBMC experiences imaginary interference. However,
this does not influence the BEP for a doubly-flat channel, so that (3.15) also describes the
BEP for a 2-PAM (4-OQAM) FBMC system. Similar as before, I find the BEP for 16-QAM
respectively 4-PAM (16-OQAM) by:

BEPOFDM,FBMC
16-(O)QAM =

1

2
− 3

8
√
1 + 10 1

SNR

− 6

8
√
9 + 10 1

SNR

+
5

8
√
25 + 10 1

SNR

. (3.16)
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Figure 3.2. Doubly-flat fading represents an important special case because it also describes
the BEP for doubly-selective channels, as long as the SNR is smaller than a certain threshold,
see Figure 3.3. ©2017 IEEE, [32].

For higher modulation orders, similar expressions can be derived but they involve many
terms so that I omit them at this point. Note that the SNR in (3.15) and (3.16) was already
defined in Section 2.2, see (2.37). In particular, for the same bandwidth FL, the same SNR
for OFDM and FBMC implies that the average transmit power PS =

1
KT

∫ ∞
−∞ E{|s(t)|

2} dt is
also the same for both modulation schemes, allowing a fair comparison.

Figure 3.2 plots the BEP over the SNR for the special case of a doubly-flat channel. The
performance is independent of a specific modulation scheme but one should keep in mind that
FBMC has lower out-of-band emissions than OFDM. Furthermore, for the same bandwidth
FL, FBMC and OFDM without CP have the same bit rate while the bit rate for CP-OFDM is
lower by a factor of (1 + TCPF). Nonetheless, all modulation schemes use the same transmit
power PS, allowing a fair comparison. The special case of a doubly-flat channel can also
be used to approximate the BEP in doubly-selective channels. One simply has to replace
the SNR by the Signal-to-Interference plus Noise Ratio (SINR) in the BEP expressions of a
doubly-flat channel. This corresponds to the assumption of Gaussian distributed interference
and delivers a rough approximation of the true BEP. In Section 3.1.2, I will explain in detail
how to calculate the interference power.
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Figure 3.3. Simulations validate the BEP calculations. The interference is not Gaussian
distributed, so that the Gaussian approximation only provides a rough estimate of the true
BEP. Once the SNR is higher than the SIR, interference starts to dominate the noise, leading
to a saturation effect. For a Vehicular A channel model at 500 km/h, OFDM without CP has
an SIR of 17.5 dB, CP-OFDM 20 dB and FBMC 23 dB. ©2017 IEEE, [32].

Let me now numerically investigate the influence of time-variant multipath propagation
onto the BEP for OFDM without CP, CP-OFDM and FBMC (Hermite prototype filter).
For that, I consider a subcarrier spacing of F = 15 kHz, same as in LTE, a Jakes Doppler
spectrum and two different channel models: Firstly, the Pedestrian A channel model which
has a Root Mean Square (RMS) delay spread of 46 ns. Such small delay spread describes the
reality of current (and future) mobile communication systems more accurately than channel
models with a much higher delay spread because of various reasons [15]. Secondly, the
Vehicular A channel model which has a relatively high RMS delay spread of 370 ns. Although
I consider only these two channel models, it is worth mentioning that the downloadable
MATLAB code allows for an arbitrary tapped delay line channel model, so that a large range
of possible scenarios can be investigated. The sampling rate is chosen as small as possible,
but high enough so that it fits approximately the predefined delay taps of the channel model.
For a Pedestrian A channel model this leads to a sampling rate of 10.08 MHz and for a
Vehicular A model to 2.94 MHz. The BEP is evaluated at the middle position and the number
of subcarriers and the number of multicarrier symbols are chosen so that they include all
significant interferers.



40 Equalization

Figure 3.3 shows the BEP over the SNR. For a Pedestrian A channel model at low
velocities, one-tap equalizers deliver an optimal performance for CP-OFDM and FBMC, but
not necessarily for OFDM without CP. As long as the interference is dominated by noise, the
BEP of a doubly-flat channel accurately describes the transmission system. For example, a
Vehicular A channel model at 500 km/h leads to an SIR of 20 dB for CP-OFDM. As shown
in Figure 3.3, the BEP severely starts to saturate at an SNR of 20 dB because interference
becomes the dominant factor. As long as the SNR is approximately 10 dB lower than the
SIR, noise completely dominates the interference which can thus be neglected. Even if the
SNR approaches the SIR, only a small performance degeneration, equivalent to an SNR shift
of approximately 3 dB, can be observed. The interference in case of a Vehicular A channel
at 500 km/h is mainly dominated by the Doppler spread, so that FBMC (with a Hermite
prototype filter) performs better than OFDM, although both modulation schemes suffer from
interference. However, such high velocity scenarios will rarely happen and even if they do,
an SIR of 20 dB is still high enough to obtain relatively high data rates. For a time-invariant
channel, the BEP of CP-OFDM becomes the same as for doubly-flat fading. FBMC, on the
other hand, is effected by a relatively high delay spread in a Vehicular A channel, so that
it deviates from doubly-flat fading at very high SNR values (not shown in the Figure 3.3).
However, for practical relevant SNR ranges smaller than 20 dB, this is no issue.

Figure 3.4 shows how the BEP depends on the velocity in case of zero noise and a
Vehicular A channel model. For low velocities, CP-OFDM shows the lowest BEP because
interference, caused by frequency-selectivity, can be completely eliminated at the expense of a
lower bit rate. For velocities higher than 100 km/h, however, FBMC outperforms CP-OFDM
because of a better robustness in time-variant channels.

3.1.2 Signal-to-Interference Ratio

As shown in Section 3.1.1, the SIR can be utilized to determine the point at which interference
starts to dominate noise. Compared to the closed-form BEP expression, the SIR is much
easier to handle, so that I will focus on the SIR in this section. So far, I have argued that in
most cases, the channel induced interference can be neglected in FBMC systems. This is
indeed true for all my testbed measurements conducted so far. In this section, I will formally
derive an analytical SIR expression. Similar to my testbed measurements, I also conclude
that the interference can be neglected in many cases, especially if the subcarrier spacing
is chosen in an optimal way. The SIR for FBMC-OQAM systems was also calculated in
[57, 89]. However, the authors of [89] calculated the SIR only for a given channel realization
but did not include channel statistics and instead relied on simulations. Authors in [57]
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Figure 3.4. Similar to Figure 3.3, simulations validate the BEP calculations. The Gaussian
interference approximation leads to relatively large errors. Note that FBMC outperforms
OFDM for velocities larger than 100 km/h. ©2017 IEEE, [32].

utilized the ambiguity function to calculate the SIR. I, on the other hand, use a compact
matrix description and compare the performance to OFDM.

The SIR in case of QAM transmissions can be straightforwardly calculated by employing
my matrix notation. Similar to (3.9), I utilize the Kronecker product and evaluate only one
received symbol, at subcarrier position l and time-position k, but additionally set the noise
power to zero, leading to

yl,k = qHl,k HGx =
(
(Gx)T ⊗ qHl,k

)
vec{H}. (3.17)

The SIR follows directly from (3.17) and can be expressed by (uncorrelated data symbols)

SIRQAM
l,k =

[Γ]lk,lk

tr{Γ} − [Γ]lk,lk
, (3.18)



42 Equalization
Si

gn
al

-to
-In

te
rfe

re
nc

e
Ra

tio

Subcarrier Spacing

Optimal Subcarrier Spacing

Limiting factor:
Doppler spread

(time-variant channel)

Limiting factor:
delay spread

(multipath delays)

Figure 3.5. The SIR for different modulation schemes also depends on the subcarrier spacing.
This dependency can be eliminated by considering an optimal subcarrier spacing, allowing a
fair comparison.

with matrix Γ ∈ CLK×LK given by

Γ =
(
GT ⊗ qHl,k

)
Rvec{H}

(
GT ⊗ qHl,k

)H
. (3.19)

The correlation matrix Rvec{H} = E{vec{H}vec{H}H} depends on the underlying channel
model and has a major impact on the SIR. Note that lk = l + L(k − 1) in (3.18) represents
the lk-th index of the vectorized symbol; see (2.26) for the underlying structure.

The SIR in OQAM transmissions cannot be calculated as easily as in QAM because
OQAM utilizes phase compensation in combination with taking the real part. This is exactly
what needs to be done to calculate the SIR,

Γ = ΩΩH, (3.20)

[Ω̃lk]u,v = [Ω]u,v
|[Ω]lk,v |
[Ω]lk,v

, ; for u, v = 1, 2, . . . , LK (3.21)

Γ̃lk = ℜ{Ω̃lk}ℜ{Ω̃lk}
H. (3.22)

I perform a matrix decomposition of (3.19) according to (3.20). This delivers an auxiliary
matrix Ω ∈ CLK×LK which is phase compensated based on the lk-th row of Ω, see (3.21),
leading to Ω̃lk ∈ CLK×LK . As a final step, I combine the phase equalized auxiliary matrix,
see (3.22), allowing me to express the SIR for OQAM by

SIROQAM
l,k =

[Γ̃lk]lk,lk

tr{Γ̃lk} − [Γ̃lk]lk,lk

. (3.23)
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In the numerical example of Section 3.1.1, FBMC outperforms CP -OFDM in high
velocity scenarios. This, however, was only the case because interference from the Doppler
spread dominated interference from the delay spread. By increasing the subcarrier spacing,
the overall SIR could be improved, as illustrated in Figure 3.5. The big question is then,
does FBMC still outperform CP-OFDM once both modulation schemes apply an optimal
subcarrier spacing. This is, in particular, important for a fair comparison. Additionally, as
5G will allow such flexible subcarrier spacings, it also becomes a relevant factor for practical
systems. I will thus consider an optimal subcarrier spacing in the sense of maximizing the
SIR. As a rule of thumb, the subcarrier spacing should be chosen so that [23],

σt

σ f
≈ τrms

νrms
, (3.24)

where time-localization σt and frequency-localization σ f is given by (2.17) for the Hermite
pulse and by (2.20) for the PHYDYAS pulse. For FBMC-OQAM, the optimal subcarrier
spacing can thus be expressed by:

Fopt,Hermite ≈ 0.71 ×
√
νrms

τrms
, (3.25)

Fopt,PHYDYAS ≈ 0.91 ×
√
νrms

τrms
. (3.26)

For a Jakes Doppler spectrum, the RMS Doppler spread is given by νrms =
1√
2
νmax, where

the maximum Doppler shift can be expressed by νmax =
v
c fc, with v the velocity, c the speed

of light and fc the carrier frequency. On the other hand, the RMS delay spread is τrms = 46 ns
for a Pedestrian A channel model and τrms = 370 ns for a Vehicular A channel model [90].
Note that (3.24) represents only an approximation. The exact relation can be calculated, as for
example done in [91] for the Gaussian pulse, and depends on the underlying channel model
and prototype filter. However, for my chosen numerical parameters, the differences between
the optimal SIR (exhaustive search) and the SIR obtained by applying the rule in (3.24) is
less than 0.1 dB for FBMC-OQAM and less than 1 dB for FBMC-QAM. For the rest of this
section, I always find the optimal subcarrier spacing in FBMC by exhaustive search.

As a reference, I also consider an optimal subcarrier spacing in CP-OFDM. The rule in
(3.24), however, cannot be applied because the underlying rectangular pulse is not localized
in frequency. Instead, I assume, for a fixed CP overhead of κ = TCP

T0
= TCPF = TF − 1, that

the subcarrier spacing is chosen as high as possible while satisfying the condition of no Inter
Symbol Interference (ISI), TCP = τmax, so that the optimal subcarrier spacing for OFDM
transforms to F = κ

τmax
. For a Jakes Doppler spectrum, the SIR can then be expressed by a
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Channel Model: PedestrianA, τrms= 46 ns, fc = 2.5GHz
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Figure 3.6. For a Pedestrian A channel model, the SIR is so high, that the channel induced
interference can usually be neglected. It is dominated by noise. ©2017 IEEE, [1].

generalized hypergeometric function 1F2(·) [92],

SIRCP−OFDM
opt.,noISI =

1F2

(
1
2 ;

3
2, 2;−

(
π νmaxτmax

TF−1
)2)

1 − 1F2

(
1
2 ;

3
2, 2;−

(
π νmaxτmax

TF−1
)2) . (3.27)

For example, LTE uses κ = 1
14 → TF = 1.07. Besides the theoretical expression in (3.27), I

also find the optimal subcarrier spacing through exhaustive search.
Figure 3.6 shows the SIR over velocity for a Pedestrian A channel model. FBMC exceeds

OFDM without CP by approximately 10 dB. Furthermore, the Hermite filter performs better
than the PHYDYAS filter, but only by approximately 0.7 dB. CP-OFDM performs best but
also has a lower symbol density (TF = 1.07). Overall, the SIR is so high, that noise and
other interference sources usually dominate the channel induced interference. Also, the
limited symbol alphabet decreases the usefulness of high SNR values, as I will later show in
Section 4.3.1 by real world throughput measurements.

Figure 3.7 shows a similar result as in Figure 3.6 but for a Vehicular A channel model.
The SIR performance is worse than for Pedestrian A but still reasonably high. The SIR for
CP-OFDM comes close to FBMC for high velocities, so that CP-OFDM with TF = 1.07

no longer provides a much higher SIR compared to FBMC. Note that I assume that the



3.1 Are One-Tap Equalizer Sufficient? 45

Channel Model: VehicularA, τrms= 370 ns, fc = 2.5GHz
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Figure 3.7. Similar to Figure 3.6, the interference can often be neglected, but now OFDM
(TF = 1.07) and FBMC have a similar performance for high velocities scenarios. ©2017
IEEE, [1].

subcarrier spacing is lower bounded by F ≥ 5 kHz in order to account for latency constraints,
computational efficiency and real-world hardware effects. Figure 3.7 also shows that, in
contrast to Figure 3.6, Equation (3.27) no longer is optimal for velocities higher than 200 km/h
because the optimal subcarrier spacing obtained through exhaustive search leads to a higher
SIR by allowing some small ISI (black line).

I now consider a carrier frequency of 60 GHz and the new Tapped Delay Line (TDL)
channel model, proposed by 3GPP [93]. In contrast to the Pedestrian A and Vehicular A
channel models, the delay taps are no longer fixed, but can be scaled to achieve a desired RMS
delay spread. Figure 3.8 shows the SIR in case of a TDL-A channel model and the assumption
of an RMS delay spread of 30 ns. Overall, the behavior is similar to Figure 3.7. In particular,
for low velocities, distortions caused by frequency selectivity can be mitigated by decreasing
the subcarrier spacing, assumed to be lower bounded by F ≥ 100 kHz. In contrast to the
previous results, (3.27) no longer performs close to the optimum SIR (exhaustive search)
because the TDL-A channel model has one extremely delayed tap with an extremely small
power contribution. Such residual tap can usually be neglected. However, (3.27) assumes a
perfect ISI free transmission, which is, in this case, highly suboptimal.

Figure 3.9 shows the SIR for a TDL-B channel model and an RMS delay spread of 900 ns,
thus representing a doubly-selective channel with a very large delay spread. I expect that
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Channel Model: TDL-A, τrms= 30 ns, fc = 60GHz
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Figure 3.8. Even at a carrier frequency of 60 GHz, one-tap equalizers are often sufficient,
especially if the RMS delay spread is relatively low. ©2017 IEEE, [1].

Channel Model: TDL-B, τrms= 900 ns, fc = 60GHz
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Figure 3.9. In the rare case of a very large delay spread, one might want to sacrifice spectral
efficiency (TF = 2) in order to gain robustness. In such cases, FBMC-QAM even outperforms
CP-OFDM (SIR and SNR). ©2017 IEEE, [1].
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such extreme scenarios will rarely happen in reality and a system should therefore not be
optimized for such extreme cases, but of course it should be able to cope with it. In FBMC,
such harsh channel environments can easily be dealt with, simply by switching from an
FBMC-OQAM transmission to an FBMC-QAM transmission, that is, setting some symbols
xl,k to zeros. Thus, in order to gain robustness, one deliberately sacrifices spectral efficiency,
TF = 2. It then turns out that FBMC performs even better than CP-OFDM. Additionally,
the Hermite pulse strongly outperforms the PHYDYAS pulse because it has a better joint
time-frequency localization. In FBMC-OQAM, this effect is somewhat lost because of the
time-frequency squeezing. Note that it is not possible to transmit ISI free CP-OFDM with
TF = 1.07 because it would require a subcarrier spacing of F = 1

14 τmax
= 16 kHz < 100 kHz,

violating my lower bound.
Let me go back to the initial question, “Are One-Tap Equalizers Sufficient?”. The

correct answer to this question is, as almost always, “It depends”. However, from a practical
point of few, I think that the answer is “Yes, one-tap equalizers are sufficient in mobile
communications”. In most cases, the delay spread as well as the Doppler spread are so low,
that the channel induced interference is dominated by noise, as depicted in Figure 3.6-3.9.
Moving at 500 km/h will rarely happen. Also, a Jakes Doppler spectrum might not accurately
model the true physical behavior. For example, in car-to-car communications, one might
observe a half-bathtube shaped Doppler spectrum [94]. Furthermore, in trains scenarios,
there might be a strong LOS path [95], leading to a fixed Doppler shift which can easily
be compensated by the phase-locked loop. Feedback delays and repeated handovers are
more problematic than a small, channel induced, interference. Even in the rare case of high
interference, say an SIR of 20 dB, the data rate is still relatively high, see Section 4.3.1. By
employing computational demanding equalizers, one has to sacrifice chip area. Furthermore,
the power consumption and the costs increase. All those drawbacks, just for a small throughput
improvement in a few rare cases are, in my opinion, not worth the effort.

3.2 Equalization in Doubly-Selective Channels

As discussed in Section 3.1, in almost all practical cases, the channel induced interference
can be neglected compared to the noise, so that both, OFDM and FBMC, show the same
performance in terms of Bit Error Ratio (BER) for a one-tap equalizer. However, in some
rare cases, especially in high SNR regimes and if the usage of an optimal subcarrier spacing
is not possible, interference may be dominant. Enhanced equalization methods can then
improve the performance at the expense of increased computational complexity. Although
I do not think that such equalizers are worth the effort in practical systems (at least in
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Figure 3.10. The interference contribution of neighboring symbols for the PHYDYAS
prototype filter (left) and the Hermite prototype filter (right). Only a few symbols close to the
symbol of interest have a significant contribution on the total interference. The SIR is 20 dB
for the PHYDYAS pulse and 23 dB for the Hermite pulse. ©2017 IEEE, [37].

mobile communications), a lot of research has been focusing on exactly such equalizers.
Most papers dealing with equalization in FBMC assume a time-invariant channel [18, 96–
99]. Authors in [96] propose a parallel equalization scheme, requiring multiple parallel
FFT blocks, while the equalization method in [97] requires a larger FFT. The authors of
[100] apply the method of [96] on doubly-selective channels. In this thesis, I consider
an equalization method that operates after a conventional FFT. MMSE equalization was
proposed in [98] for a time-invariant channel and later extended in [99] to MIMO. Authors in
[101] considered the same method as in [98], but applied on doubly-selective channels. All
those papers [98, 99, 101] consider the interference contribution of neighboring subcarriers
only in a statistical sense. However, from a conceptional point of view, there is no difference
between interference coming from neighboring time symbols and interference coming from
neighboring subcarriers. Thus, an equalizer which utilizes only neighboring time symbols,
but ignores neighboring subcarriers, is in many cases not optimal. I thus propose a novel
n-tap MMSE equalizer which, in contrast to [98, 99, 101], not only includes neighboring time
symbols, but also utilizes neighboring subcarriers into the equalization process. I furthermore
investigate a full block MMSE equalizer as well as a low-complexity interference cancellation
scheme. Finally, I show that my equalization methods can be straightforwardly extended to
MIMO systems.

To get a better understanding of the influence of doubly-selective channels in FBMC, I
calculate how much interference neighboring symbols in time and frequency contribute to the
total interference power. For that, I utilize a reshaped version of the diagonal elements of Γ̃lk ,
see (3.22), and assume a subcarrier spacing of F = 15 kHz, a Vehicular A channel model
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and a Jakes-Doppler spectrum with a maximum Doppler shift of 1.16 kHz (500 km/h for a
carrier frequency of 2.5 GHz). Those parameters lead to a channel induced SIR of 20 dB for
the PHYDYAS prototype filter. The left part of Figure 3.10 shows how much interference
is generated by neighboring symbols in time and frequency for the PHYDYAS prototype
filter. As illustrated, only a few close symbols contribute significantly to the SIR. The right
part of Figure 3.10 shows the interference distribution for the Hermite prototype filter. The
SIR is 23 dB and thus better than for the PHYDYAS filter. From Figure 3.10, I conclude
that the underlying prototype filter has a huge impact on which neighboring symbols cause
interference and that the distribution follows loosely the ambiguity function, see Figure 2.2.

Throughout this section, I assume the same channel model (Vehicular A, Jakes Doppler
spectrum with a maximum Doppler shift of 1.16 kHz). The subcarrier spacing is set to
F = 15 kHz and the number of subcarriers to L = 24. For FBMC, I consider K = 30

time symbols and for OFDM K = 14 symbols (CP length of 4.7 µs), leading to the same
transmission time for both schemes (KT = 1ms). The PAM modulation order is set to 16,
equivalent to a 256-QAM signal constellation. Such high modulation order is necessary to
see any influence of doubly-selectivity in practical systems. For example, for a 4-QAM signal
constellation, the operating point is usually below an SNR of approximately 5 dB, so that an
SIR of 20 dB has no influence. To be specific, channel coding would completely mitigate any
channel induced interference with negligible coding overhead. For my channel parameters,
one-tap equalizers might not be sufficient anymore if the SNR is high. Advanced equalization
methods can then improve the performance at the expense of increased complexity.

3.2.1 MMSE

For the derivation of the MMSE equalizer, I utilize the same system model as already
described in Section 2.2, see also (2.30),

y = Dx + n, (3.28)

where transmission matrix D helps to keep the notation compact and is defined as

D = QHHG. (3.29)

Note that n ∼ CN(0, PnQ
HQ) denotes the Gaussian noise, same as in Section 2.2. A simple

way to estimate the transmitted data symbols x in (3.28) would be the employment of a
conventional (complex-valued) MMSE equalizer. Unfortunately, this does not work because
such equalizer would also include the imaginary interference into the minimization problem,
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leading to large detection errors. To avoid this problem, I stack real and imaginary part in a
large vector, as suggested in [98]. The full block MMSE equalization of y, see (3.28), can
then be calculated by:

x̂ =

[
ℜ{D}
ℑ{D}

]T ©«
[
ℜ{D}
ℑ{D}

] [
ℜ{D}
ℑ{D}

]T
+Ψ

ª®¬
−1 [

ℜ{y}
ℑ{y}

]
, (3.30)

with noise matrix Ψ given by

Ψ=
Pn

2

[
ℜ{QHQ} −ℑ{QHQ}
ℑ{QHQ} ℜ{QHQ}

]
. (3.31)

Note that the matrix to be inverted in (3.30) usually has extremely small eigenvalues. This
is caused by the time-frequency squeezing, similar as in Figure 2.5. In contrast to many
other systems, noise matrix Ψ does not guarantee full rank because the noise matrix has
a similar structure as D (in case of an AWGN channel, exactly the same). Thus, solving
(3.30) is numerically very challenging and requires, for example, an eigendecomposition
in combination with setting small eigenvalues to zero, as implicitly done in MATLAB by
applying the pseudo inverse. However, there are two other main problems with the full block
MMSE equalizer: Firstly, it has a high computational complexity. One has to invert a matrix
of size 2LK × 2LK , too large for most practical applications. Secondly, a large delay is
introduced because all symbols need to be received before equalization is possible. I therefore
consider an n-tap MMSE equalizer which only includes a few neighboring symbols. Let me
split the transmission model of (3.28) according to:

yS = DSxS +DS,RxR + nS . (3.32)

Here, yS ∈ C|S|×1 is a subvector of y with S representing the considered subblock, that
is, certain time-frequency positions, see Figure 3.11. For example, a subblock vector of

size |S| = 5 (5-tap) can be written as: yS =
[
yl,k−2 yl,k−1 yl,k yl,k+1 yl,k+2

]T
. Such

subblock was used in [98] and only includes neighboring symbols in time but ignores
neighboring subcarriers. In many cases, this is not optimal, especially in high velocity
scenarios and for some specific prototype filters. My considered subblock vector, on the

other hand, can be expressed by yS =
[
yl,k−1 yl−1,k yl,k yl+1,k yl,k+1

]T
, see Figure 3.11.

Vector xS ∈ R|S|×1 in (3.32) represents the transmitted data symbols of the considered
subblock, while xR ∈ R|R |×1 represents all other transmitted data symbols relevant for yS.
Only a few symbols outside the subblock have a significant contribution on yS, so that
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Figure 3.11. The n-tap equalizer utilizes n received symbols to estimate the transmitted data
symbol at one time-frequency position (indicated by the crosses in the center). Authors in
[98, 99, 101] employ only neighboring time symbols for the equalization process. This is, in
many cases, not optimal. ©2017 IEEE, [37].

usually |R | << LK − |S|. The matrices DS ∈ C|S|×|S| and DS,R ∈ C|S|×|R| correspond to the
correct elements of D, so that (3.32) satisfies (3.28). Similar to (3.30), the |S|-tap MMSE
equalization of (3.32) becomes

x̂S =

[
ℜ{DS}
ℑ{DS}

]T (
∆S +∆S,R +ΨS

)−1 [
ℜ{yS}
ℑ{yS}

]
(3.33)

with

∆S =

[
ℜ{DS}
ℑ{DS}

] [
ℜ{DS}
ℑ{DS}

]T
(3.34)

∆S,R =

[
ℜ{DS,R}
ℑ{DS,R}

] [
ℜ{DS,R}
ℑ{DS,R}

]T
. (3.35)

Noise matrix ΨS ∈ C2|S|×2|S| in (3.33) is given by the submatrix of Ψ ∈ C2LK×2LK , see
(3.31), corresponding to the correct elements. Note that x̂S in (3.33) delivers in total |S|
estimates. However, I am only interested in the center position, as illustrated in Figure 3.11.
The remaining elements are discarded. Thus, my equalization requires in total LK matrix
inversions of size 2|S| × 2|S|. The computational complexity is usually lower then for the full
block MMSE equalizer but still relatively high. In Section 3.2.2, I propose a low-complexity
interference cancellation scheme. But first, I provide a numerical example of the MMSE
equalizers.
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Figure 3.12. Considering only neighboring time symbols [98, 99, 101] is very inefficient.
By utilizing neighboring subcarriers as well, see Figure 3.11, the performance of an n-tap
equalizer can be greatly improved. ©2017 IEEE, [37].

Figure 3.12 shows how the BER depends on the SNR for the PHYDYAS prototype filter.
As a reference, I also consider CP-OFDM. The upper black curve represent the performance
for a one-tap equalizer while the lower black curve corresponds to a doubly-flat channel, see
Figure 3.2 in Section 3.1. MMSE equalization will result in a performance between these two
reference curves. Note that CP-OFDM slightly outperforms FBMC. The equalization method
in [98], which uses only neighboring time symbols but ignores neighboring subcarriers, is
suboptimal in this scenario. Increasing the number of taps from |S| = 5-taps to |S| = 21-taps
only marginally improves the performance. On the other hand, with my equalization method,
the performance increases significantly thanks to the employment of neighboring subcarriers.
The 21-tap equalizer even comes close to the full block MMSE equalizer, see (3.30). For
the 3-tap and 5-tap equalizer, it is sufficient to consider only neighboring time symbols.
Figure 3.11 illustrates which symbols are utilized for the |S|-tap equalizer. To determine the
optimal subblock, I follow loosely the interference distribution of the one-tap equalizer, see
Figure 3.10. However, this delivers not always the optimal solution as, for example, in case
of the 21-tap equalizer.

Figure 3.13 shows the BER for the Hermite prototype filter. In contrast to the PHYDYAS
filter, the Hermite filter outperforms CP-OFDM in case of a one-tap equalizer, as already
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Figure 3.13. Compared to the PHYDYAS prototype filter, see Figure 3.12, the Hermite pulse
shows better robustness in time-variant channels. ©2017 IEEE, [37].

observed in Section 3.1.1. Overall, the Hermite prototype filter is better suited for high
velocity scenarios (for a fixed subcarrier spacing). In contrast to the PHYDYAS filter, even the
3-tap equalizer of [98] is suboptimal. The optimal 3-tap equalizer utilizes only neighboring
subcarriers. The 13-tap equalizer already achieves a performance close to that of the full
block MMSE equalizer.

The channel model and the prototype filter have a huge impact on which neighboring
symbols should be used for the equalization process. For example, in a highly-frequency-
selective, but time-invariant channel, it is usually not necessary to consider neighboring
subcarriers for the PHYDYAS prototype filter. For the Hermite prototype filter, on the other
hand, neighboring subcarriers have to be employed as well. Thus, for an optimal performance,
one always has to check which symbols to include in the equalization process. Because the
Hermite prototype filter performs better than the PHYDYAS prototype filter in high velocity
scenarios, I consider only the Hermite prototype filter in Section 3.2.2 and Section 3.2.3.

3.2.2 Interference Cancellation

The MMSE equalizer has the big disadvantage of high computational complexity, even if only
a small subblock is considered. This is, in particular, problematic in a time-variant channel,
where the equalizer coefficients have to be calculated at every time instant. I therefore propose
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Figure 3.14. The main drawback of MMSE equalizers is the high computational complexity.
A simple interference cancellation scheme can circumvent this limitation. For realistic SNR
values smaller than 30 dB, the BER performs close to the optimum. ©2017 IEEE, [37].

a simple, yet effective, interference cancellation scheme. Similar as suggested in [102] for
OFDM, one can cancel the interference by:

y(i+1) = y − (D − ddiag{D}) x̂(i). (3.36)

The superscript (·)(i) denotes the i-th iteration and the ddiag{D} operator generates a diagonal
matrix with the same diagonal elements as D. Thus (D − ddiag{D}) represents all the
off-diagonal elements of D. The data estimates are obtained by one-tap equalization, see also
(3.5), according to:

x̂(i) = Q
{
ddiag{D}−1 y(i)

}
, (3.37)

with Q{·} denoting the quantization operator, that is, nearest neighbor symbol detection. Note
that quantization implicitly removes the imaginary interference of FBMC. My algorithm
starts with x̂(0), representing the conventional (quantized) one-tap equalizer.

Figure 3.14 shows the BER over SNR for the interference cancellation scheme in (3.36)
and (3.37). As a reference (grayed out), I also include the n-tap MMSE equalization from
Section 3.2.1. The BER of interference cancellation lies between the 5-tap equalizer and the
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9-tap equalizer. After 2 to 3 iterations, the performance no longer increases significantly.
Thus, more than two to three iterations are not necessary, in particular if the computational
complexity should be kept low. Although the cancellation scheme performs not as good
as the MMSE equalizer in terms of BER, the performance is still very good, especially for
practical relevant SNR values smaller than 30 dB.

Let me now discuss the computational complexity (per symbol) in more detail, where
I assume that transmission matrix D is already known and does not need to be calculated.
As shown in the right part of Figure 3.10, only eight neighboring symbols cause significant
interference. Thus, for the first iteration, only nine multiplications (8 + one-tap equalizer)
are needed. For the following iterations, a multiplication is only required if the estimated
data symbol, x̂l,k , has changed. On the other hand, the computational complexity of a 5-tap
MMSE equalizer is significantly higher. It requires a matrix inversion of size 10× 10 together
with additional multiplications, see (3.33).

3.2.3 Extension to MIMO

So far, I considered only a Single-Input and Single-Output (SISO) transmission, but the
extension to MIMO is straightforward thanks to my matrix notation. One only needs bigger
matrices. Of course, this further increases the computational complexity, making the practical
implementation challenging. As a theoretical reference, however, the MMSE equalizer is
quite useful. For a better illustration of the concept, I consider a 2 × 2 MIMO transmission
system, which can be modeled similar as in (2.30):[

y1

y2

]
︸︷︷︸
yM

=

[
QHH1,1G QHH1,2G

QHH2,1G QHH2,2G

]
︸                         ︷︷                         ︸

DM

[
x1

x2

]
︸︷︷︸
xM

+

[
n1

n2

]
. (3.38)

The subscript 1 and 2 now denote antenna 1 and antenna 2. Similar as in (3.30), I find the
full block MMSE equalizer by:

x̂M =

[
ℜ{DM}
ℑ{DM}

]T ©«
[
ℜ{DM}
ℑ{DM}

] [
ℜ{DM}
ℑ{DM}

]T
+ΨM

ª®¬
−1 [

ℜ{yM}
ℑ{yM}

]
(3.39)

with noise matrix ΨM ∈ C4LK×4LK given by

ΨM =
Pn

2

[
ℜ{Υ} −ℑ{Υ}
ℑ{Υ} ℜ{Υ}

]
with Υ =

[
QHQ 0

0 QHQ

]
(3.40)
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Figure 3.15. The matrix notation allows to straightforwardly extend the proposed equalization
methods to MIMO. Overall, a similar behavior as in SISO is observed. Again, employing
neighboring subcarriers improves the performance. ©2017 IEEE, [37].

One can also find the n-tap MIMO MMSE equalizer, similar as in (3.33), but applied
on the system model in (3.38). To be consistent with SISO, I count, for an n-tap MIMO
equalizer, only the number of taps per antenna. For example, a one-tap MMSE equalizer
requires in total four multiplications for the equalization (ignoring the calculation of the
equalizer matrix). The interference cancellation scheme in (3.36) can also be easily extended
to MIMO. The one-tap ZF equalizer in (3.37) then becomes a one-tap MMSE equalizer.

Figure 3.15 shows the BER over the SNR for a 2 × 2 MIMO system. The behavior is
similar to SISO. Considering only neighboring time symbols, but ignoring neighboring
subcarriers, is highly suboptimal. Thus, my 9-tap equalizer performs much better than
the 9-tap equalizer proposed in [98]. The interference cancellation scheme also performs
relatively good, while at the same time the computational complexity is much lower compared
to the MMSE equalization.



Chapter 4

Pilot-Aided Channel Estimation

In Section 3, I investigated channel equalization under perfect channel knowledge. In practical
systems, however, the channel always has to be estimated before equalization is possible.
In principle, one can distinguish between blind channel estimation [103–105], preamble
based channel estimation [106–110] and pilot symbol aided channel estimation [111–113]. I
will focus on the latter because the computational complexity as well as the overhead are
relatively low and pilots allow a simple tracking of the channel in time. This also explains why
pilot-aided channel estimation is employed in LTE. In this Section, I first explain the concept
of pilot aided channel estimation. While in FBMC-QAM and block spread FBMC-OQAM,
one can straightforwardly apply all channel estimation methods known in OFDM [114], this is
not possible in conventional FBMC-OQAM because of the imaginary interference. To solve
this issue, I investigate two methods to cancel the imaginary interference at the pilot positions,
namely, auxiliary symbols and data spreading. Furthermore, I evaluate the performance in
terms of measured throughput, achievable rate and theoretical BEP. Finally, I propose a novel
channel estimation technique for doubly-selective channels. This chapter is mainly based on
my publications [1, 30, 38, 40–42] and includes the following novel contributions:

• In Section 4.2.1, I propose a general method to choose auxiliary pilot symbols. In
contrast to other contributions, my method allows closely spaced pilots and more than
one auxiliary symbol per pilot. By, for example, choosing two auxiliary symbols per
pilot, I am able to reduce the power offset so that the achievable rate increases for low
to medium SNR ranges [42].

• In Section 4.2.2, I propose an algorithm for designing the coding matrix, required for
the data spreading approach. Compared to other contributions, which consider only a
spreading length of up to eight, my algorithm allows for an arbitrary spreading length
[42].
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Figure 4.1. Pilot-symbol aided channel estimation consists of two basic steps: Firstly, a LS
channel estimation at the pilot positions. Secondly, interpolation of those LS estimates to
obtain the channel at the data positions. The pilot pattern in the figure is chosen according to
the LTE standard.

• In Section 4.3, I provide a detailed performance comparison of the auxiliary symbol
technique and the data spreading approach. In particular, in Section 4.3.1, I present
real world throughput measurements, conducted with my testbed, together with the
corresponding information theoretic bounds. In Section 4.3.2, I derive a closed-form
expression for the BEP, including channel estimation errors, and discuss the optimal
trade-off between pilot symbol power and data symbol power [1, 40, 41].

• In Section 4.4, I propose a novel channel estimation technique for doubly-selective
channels. My method is based on MMSE interpolation and does not require clustered
pilots or a basis expansion model. The content is partly based on [30, 38] but mainly
consists of original work which was not yet submitted to any paper.

4.1 LS Estimation and Interpolation

The idea of pilot-aided channel estimation is quite simple. It consists of two basic steps, a LS
channel estimation at the pilot positions and interpolation, as illustrated in Figure 4.1. Certain
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“data” symbols, the so called pilots, are known a priory at the receiver. The LS estimation of
the channel at the pilot positions (l, k) ∈ P can then be obtained by dividing the received
symbols by the pilot symbols, that is,

ĥLS
Pi
=

yPi

xPi

, (4.1)

where Pi corresponds to the i-th pilot position, see Figure 4.1. Such LS channel estimation
can be interpreted as sampling the transfer function at the pilot positions. The channel at the
data positions, on the other hand, is estimated through interpolation of the LS estimates, that
is,

ĥl,k = wH
l,k ĥ

LS
P , (4.2)

where I stack all LS estimates from (4.1) in a vector ĥLS
P ∈ C|P |×1, according to

ĥLS
P =


ĥLS
P1

ĥLS
P2
...

ĥLS
P |P |


. (4.3)

Vector function wl,k ∈ C|P |×1 in (4.2) describes an arbitrary linear interpolation method, for
example, nearest neighbor interpolation, “straight line” interpolation, spline interpolation
or linear MMSE interpolation. Although I call wl,k interpolation, it may also describe
extrapolation when the channel values are outside the pilot grid and, more generally, any
linear combination of LS channel estimates. It is thus a very generic concept. For example,
the linear MMSE channel interpolation (estimation) can be found by [38, 115],

wLMMSE
l,k = argmin

wl,k

E
{
|hl,k − wH

l,k ĥ
LS
P |2

}
(4.4)

=R−1
ĥLS
P
rĥLS

P ,hl,k
, (4.5)

with RĥLS
P
= E{ĥLS

P (ĥLS
P )H} denoting the correlation matrix and rĥLS

P ,hl,k
= E{ĥLS

P h∗l,k} the
correlation vector. Note that (4.5) follows directly from the orthogonal projection theorem
[116]. If ĥLS

P and hl,k are zero mean, jointly complex Gaussian variables, as often assumed,
the linear MMSE interpolation in (4.5) corresponds to the overall MMSE solution (linear
and nonlinear).
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The channel estimation in OFDM works exactly as illustrated in Figure 4.1. In particular,
the complex orthogonality of OFDM guarantees that the LS channel estimation, see (4.1), is
very accurate. The same holds true for FBMC-QAM and block spread FBMC-OQAM. How-
ever, in conventional FBMC-OQAM, the imaginary interference prevents a straightforward
LS channel estimation, so that additional processing becomes necessary, see Section 4.2.

4.2 Canceling the Imaginary Interference

To provide a better understanding of the challenges in FBMC-OQAM and to describe possible
solutions, I employ the same system model as in Section 2.2, see (2.31),

y ≈ diag{h} D̄ x + n, (4.6)

with back-to-back transmission matrix D̄ defined as,

D̄ = QHHG
��
H=IN

= QHG. (4.7)

The big challenge in FBMC-OQAM is the imaginary interference, described by the off-
diagonal elements of D̄. The main idea of FBMC-OQAM is to equalize the phase followed by
taking the real part in order to get rid of the imaginary interference. This, however, only works
once the phase is known, thus only after channel estimation. The channel estimation itself
has to be performed in the complex domain which is affected by the imaginary interference,
leading to an SIR of 0 dB, too low for an accurate LS channel estimation in (4.1). Thus
additional processing becomes necessary. A simple method for pilot aided channel estimation
was proposed in [117], where one data symbol per pilot is sacrificed to cancel the imaginary
interference at the pilot position. The authors of [118] proposed the name auxiliary symbol for
such method. The big disadvantage of such method is the high power of the auxiliary symbols,
worsening the PAPR and wasting signal power. Subsequently, different methods have been
proposed to mitigate these harmful effects [42, 119–124]. From all those techniques, I think
that the data spreading approach [119] is the most promising method because no energy
is wasted, there is no noise enhancement, and the performance is close to OFDM. The
idea of [119] is to spread data symbols over several time-frequency positions, close to the
pilot symbol, in such a way, that the imaginary interference at the pilot position is canceled.
The drawback is a slightly higher computational complexity because of de-spreading at the
receiver. This complexity, however, can be reduced by a fast Walsh-Hadamard transform
and by exploiting the limited symbol alphabet (at least at the transmitter). Another way of
reducing the complexity is to combine the spreading approach with the auxiliary method, as
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Figure 4.2. The imaginary interference weights in FBMC-OQAM (certain elements of D̄)
for the Hermite prototype filter. Note that the interference weights are symmetric for the
Hermite prototype filter. The auxiliary symbol is chosen so that it cancels the interference
from all other neighboring symbols that affect the pilot. ©2016 IEEE, [42].

proposed in [125] (the performance becomes slightly worse because now energy is wasted).
Moreover, for channels with a large delay spread and a large Doppler spread, the method
in [125] seems promising because the spreading length is very short and closely spaced
pilots are feasible. Note however, that also the classical spreading method performs well
in doubly-selective channels [38]. In the following two sections, I will provide a detailed
description of two interference cancellation techniques, namely the auxiliary symbol method
and the data spreading approach.

4.2.1 Auxiliary Symbols

Figure 4.2 shows the interference weights of surrounding symbols for FBMC-OQAM
(Hermite prototype filter). Those interference weights correspond to a reshaped version of
an (arbitrary) row of D̄. For the most simple interference cancellation approach, one “data”
symbol, the so called auxiliary symbol, is sacrificed to cancel the imaginary interference
from all other symbols [117]. As indicated in Figure 4.2, the imaginary interference weight
is smaller than one, here 0.4357 < 1, implying that the auxiliary symbol power has to be
increased to compensate for this loss. To be specific, the auxiliary symbol has to compensate
the interference from all the surrounding symbols (excluding the auxiliary symbol), leading to
a total interference power of (1 − 0.43572) = 0.8102. Additionally, the auxiliary symbol has
to be multiplied by 1

0.4357 to compensate for the loss caused by the interference weight. Thus,
the auxiliary symbol power is (1−0.43572)

0.43572
= 4.27 times higher than the data symbol power. In

[42], I suggested the usage of two auxiliary symbols which split the cancellation job between
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themselves, decreasing the power offset from 4.27 to (1−2× 0.43572)
(2× 0.4357)2 = 0.82. By extending this

method to three and four auxiliary symbols, I am able to further decrease the power offset to
0.25 respectively 0.08. Of course, an increased number of auxiliary symbols per pilot also
decreases the number of available data symbols. However, as I will show in Section 4.3.1, the
saved power offsets the loss of data symbols and leads to an increased throughput for certain
SNR ranges. Note that there exists two other important aspects related to the auxiliary symbol
method . Firstly, the interference weight depends on the underlying prototype filter. While for
the Hermite prototype filter the interference weight of the adjacent symbol in time is 0.4357,
it is 0.5769 for the PHYDYAS prototype filter. Thus, the auxiliary symbol power offset for the
PHDYAS filter is (1−0.57692)

0.57692
= 2. Secondly, to keep the computational complexity as well as

the latency low, not all interference terms are canceled. For example, if one cancels only the
eight closest interferers, the power offset becomes (3 · 0.43572 + 4 · 0.23932)/0.43572 = 4.21,
slightly less then canceling all interferers. Moreover, the residual interference leads to an
interference power of 1 − (4 · 0.43572 + 4 · 0.23932) = 0.0116 and thus an SIR of 19.4 dB.

I will now utilize my matrix notation to express the cancellation condition in a more
general way than suggested in [117, 118], allowing for an arbitrary number of auxiliary
symbols per pilot and capturing also the interdependency of closely spaced pilot symbols
(some authors, such as [126], claim that this is not possible). The imaginary interference at
the pilot positions can be completely eliminated if the auxiliary symbols are chosen so that,

xP =
[
D̄P,P D̄P,D D̄P,A

] 
xP
xD
xA

 , (4.8)

which follows directly from my transmission system model in (4.6). Vector xP ∈ R|P |×1

denotes all those elements of x at the pilot positions. The same applies for xD ∈ R|D|×1 at
the data positions and xA ∈ R|A|×1 at the auxiliary pilot positions. Similarly, matrix D̄P,D ∈
C|P |×|D| consists of those row elements and those column elements of D̄, corresponding to
the pilot positions respectively data positions, that is, D̄P,D = QH

PGD . Again, the same is
true for D̄P,P ∈ C|P |×|P| and D̄P,A ∈ C|P |×|A|. If the number of auxiliary symbols is larger
than the number of pilot symbols, that is, |A| > |P |, (4.8) has infinitely many solutions. One
can then exploit this additional degree of freedom to spend as little energy as possible on
auxiliary pilot symbols, leading to the following minimization problem:

minimize
xA

∥xA ∥2

subject to D̄P,A xA =
(
I|P | − D̄P,P

)
xP − D̄P,D xD

, (4.9)
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which can be solved by the Moore-Penrose pseudoinverse [116],

xA = D̄#
P,A

(
I|P | − D̄P,P

)
xP − D̄#

P,AD̄P,DxD, (4.10)

with
D̄#

P,A = D̄H
P,A

(
D̄P,AD̄H

P,A

)−1
. (4.11)

If the pilot symbols are spaced sufficiently far away from each other, D̄P,P becomes an
identity matrix, simplifying (4.10). Additionally, in case of one auxiliary symbol per pilot
symbol, D̄P,A becomes a diagonal matrix, further simplifying (4.10) and delivering the
classical auxiliary symbol condition [117, 118]. Note that the auxiliary condition in (4.8)
can also be expressed by a matrix according to

x = Ca

[
xP
xD

]
, (4.12)

where matrix Ca ∈ RLK×(LK−|A|) is mainly a one-to-one mapping of the data and pilot
symbols to their corresponding positions. Only at the auxiliary symbol positions, the matrix
becomes more evolved and is described by (4.10).

Let me denote the data symbol power by PD = E{|xl,k |2} for (l, k) ∈ D, the pilot
symbol power by PP = E{|xl,k |2} for (l, k) ∈ P and the (average) auxiliary symbol power by
PA =

1
|A| tr{E{xAxH

A}} with xA given by (4.10). The average transmitted symbol power
can then be expressed by

PFBMC−OQAM
x =

|D| PD + |P | PP + |A| PA
LK

, (4.13)

and determines the SNR in (2.37) and (2.36).

4.2.2 Data Spreading

It is possible to spread Ns − 1 data symbols over Ns time-frequency positions, close to the
pilot, in such a way, that the imaginary interference is canceled at the pilot positions. This is
illustrated in Figure 4.3. Note that only the interference from Ns neighboring time-frequency
positions is canceled with this method, so that some residual interference remains.
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Figure 4.3. The imaginary interference weights in FBMC-OQAM (certain elements of D̄) for
the Hermite prototype filter. Ns − 1 data symbols are spread over Ns time-frequency positions
in such a way, that the imaginary interference is canceled at the pilot position. ©2016 IEEE,
[42].

The data symbols x̃D ∈ R(LK−2|P |)×1 are precoded by matrix Cs ∈ RLK×(LK−|P|), so that
the transmitted symbols x can be expressed as,

x = Cs

[
xP
x̃D

]
. (4.14)

Note that I utilize a tilde symbol to better point out that some data symbols no longer belong
to a certain time-frequency position but are rather spread over several positions. Precoding
matrix Cs must be designed so that the following two conditions are fulfilled,

QH
PGCs

[
xP
x̃D

]
= xP (4.15)

CT
s Cs = ILK−|P| . (4.16)

The first condition (4.15) guarantees that the imaginary interference is canceled at the pilot
positions, with QP ∈ CN×|P| representing all column vectors of Q which correspond to the
correct pilot positions. The second condition (4.16) implies that the received symbols can be
decoded (despread) by CT

s , that is, [
ỹP
ỹD

]
= CT

s y, (4.17)
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where ỹD represents the received data symbols after despreading. Vector ỹP , on the other
hand, has no immediate use because the channel estimation is finished before decoding. Note
that the noise statistics are the same as for the case without data spreading because of the
orthogonality condition in (4.16). Furthermore, the spread data symbols no longer belong
to a certain time-frequency position and are instead distributed over several time-frequency
positions. This, however, only applies to data symbols close to the pilot. Data symbols farther
away still belong to a certain time-frequency position, although this fact is somewhat hidden
in (4.14). In doubly-selective channels, equalization might be necessary before decoding
(despreading). However, in many cases, as for example in my testbed measurements, the
channel is so flat in time and frequency, that the channel equalization can be performed after
decoding (despreading).

In contrast to Section 4.2.1, I assume that the pilots are spaced sufficiently far away
from each other, so that coding can be designed independently for different pilot positions.
Thus, the challenge of finding Cs can be simplified into finding a much smaller coding
matrix C̃s =

[
c̃1 · · · c̃Ns−1

]
∈ RNs×(Ns−1), which spreads Ns − 1 data symbols over Ns

time-frequency positions close to the pilot, see Figure 4.3. I follow loosely the approach
suggested in [119]. The imaginary interference weights are stacked in a vector d̃I ∈ RNs×1.
For the i-th pilot, those weights correspond to the Ns largest elements (magnitude) of the i-th
row of QH

PG. Furthermore, the elements with the same magnitude are clustered together,
as shown in Figure 4.4. I assume Ms such cluster exists, each having either two, four or
eight elements. By generating Hadamard matrices, dividing each row by the corresponding
interference weight and canceling the column that is not orthogonal to the interference
weights, I find i = 1, 2, . . . , Ns − Ms linearly independent coding vectors c̃i ∈ RNs×1 which
are orthogonal to each other and to d̃I. This process is illustrated in Figure 4.4. Although the
authors in [119] provide general conditions for the remaining Ms − 1 coding vectors, they give
no detailed instructions on how to construct them. I thus propose the following algorithm:

1. Generate j = (Ns − Ms + 1), (Ns − Ms + 2), . . . , Ns − 1 vectors v j ∈ RNs×1 which consist
of only two nonzero elements, located at the transition between two clusters, and chosen
so that d̃T

I v j = 0, see Figure 4.4.

2. Use Gram-Schmidt [116] orthogonalization to find the remaining Ms−1 coding vectors
for j = (Ns − Ms + 1), (Ns − Ms + 2), . . . , Ns − 1:

c̃ j = v j −
j−1∑
i=1

vT
j c̃i

c̃T
i c̃i

c̃i . (4.18)
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with Gram-Schmidt orthogonalization, allows to straightforwardly find the coding matrix C̃s.
©2016 IEEE, [42].

Note that (4.18) preserves orthogonality to the interference vector d̃I, making such approach
feasible. In order to keep the computational complexity low, the vectors v j should combine
always the clusters with the smallest number of elements for an increasing j. Once two clusters
have been combined by vector v j , they form a new cluster. My proposed algorithm describes
a general way of finding the coding matrix C̃s and does not necessarily require orthogonal
shortened “Hadamard” matrices. However, using them reduces the overall computational
complexity. After normalizing each column of C̃s, the individual coding matrix C̃s is mapped
to the overall coding matrix Cs.

Similar as before, the average transmitted symbol power can be expressed by

PFBMC−OQAM
x =

|D| PD + |P | PP
LK

, (4.19)

and determines the SNR in (2.37) and (2.36). Note, that |D| + |P | = LK − |P|. Thus, a
pilot power offset of PP/PD = 2 results in the same average transmit symbol power as for an
FBMC system without channel estimation. Additionally, choosing PP/PD = 2 guarantees
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Table 4.1. Additional computational complexity (per pilot) for the auxiliary symbol method
(Aux.) and the data spreading approach (Spr.). ©2016 IEEE, [42].

Ns = 4 Ns = 8 Ns = 16 Ns = 28
SIR=9 dB SIR=22 dB SIR=35 dB SIR=61 dB
Spr. Aux. Spr. Aux. Spr. Aux. Spr. Aux.

TX Multiplications 0 0 2 4 12 12 26 24
TX Summations 8 2 24 6 88 14 184 26
RX Multiplications 0 none 8 none 32 none 80 none
RX Summations 9 none 25 none 89 none 185 none
Note 1: Multiplications by -1 and 1/2 are considered as no complexity.
Note 2: A pilot to data power offset of PP/PD = 2 is assumed for the SIR calculations.
Note 3: A Hermite prototype filter is considered.

the same SNR for channel estimation (complex domain) and for data transmission (taking the
real part reduces the noise power by a factor of two). This is the biggest advantage of the data
spreading approach compared to the auxiliary symbol method: no energy is wasted.

4.3 Performance Evaluation

Before I compare the channel estimation methods in terms of achievable rate, measured
throughput and BEP, let me investigate the computational complexity in more detail.
Table 4.1 shows the additional computational complexity per pilot for a Hermite prototype
filter. Multiplications are far more demanding than summations, so that the auxiliary symbol
method and the data spreading approach have a similar complexity at the transmitter. However,
the big disadvantage of data spreading is that it requires de-spreading at the receiver. Many
papers claim that the data spreading approach is computationally very complex [120–122].
I do not agree with this assessment. For example, considering an LTE pilot pattern, see
Figure 4.1, one has |P | = 8 pilot symbols and |D| = 344 data symbols (OQAM, no CP,
LK = 12 × 30 = 360). Thus, the auxiliary symbol method requires 344 multiplications for a
one-tap equalizer. In contrast to that, the data spreading method requires 352 + 8 × 32 = 608

multiplications for an SIR of 35 dB, see Table 4.1, which is less than two times the complexity
of the auxiliary symbol method. Thus the additional complexity is relatively small, in
particular compared to other parts such as channel decoding. Additionally, one can combine
the data spreading approach with the auxiliary symbol method, as proposed in [125], resulting
in an intermediate complexity and only a small power offset. Table 4.1 also shows the SIR
for a different number of considered interference terms Ns. I always consider a pilot to
data power offset of PP/PD = 2, leading to the same SNR for channel estimation (complex
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domain) and data detection (real domain), allowing a fair comparison. Many authors forget
this crucial power offset, resulting in a poor BER performance.

4.3.1 Throughput

Let me start the discussion by explaining some theoretical bounds. The ergodic capacity
[127] for one time-frequency position, see (3.1), is given by:

CGauss = Eh

{
log2

(
1 + |h|2 SNR

)}
. (4.20)

Such expression assumes Gaussian distributed data symbols, an unrealistic assumption. The
data symbols are usually chosen from a fixed symbol alphabet, which is included in the
Bit-Interleaved Coded Modulation (BICM) capacity [128, 129],

CBICM = Eh

 max
X∈{X̃1,X̃2,...}

©«log2 |X| −
log2 |X|∑

i=1

Eb,y |h

log2
∑

x∈X
pdfh(y |x)∑

x∈Xi
b

pdfh(y |x)


ª®®®¬
 , (4.21)

where X is the symbol alphabet and Xi
b the subset of X whose label has the bit value

b ∈ {0, 1} at position i. In contrast to [128], I also include an adaptive symbol alphabet
{X̃1, X̃2, . . .} = {4, 16, . . .}-QAM. I could also include channel estimation in the BICM
expressions [31, 130], but assuming perfect channel knowledge provides enough insights to
understand the system. The achievable rate is then obtained by

R =
|D| C
KT
, (4.22)

where I account for the number of data symbols within one frame, that is, |D|, and the
frame duration, KT . The variable C can either be the true capacity, see (4.20), or the BICM
capacity, see (4.21).

FBMC has a higher spectral efficiency than OFDM because of lower OOB emissions and
no CP overhead. In order to validate this improvement and to show the feasibility of the
channel estimation methods discussed so far, I measure an 1.4 MHz LTE like signal with the
Vienna Wireless Testbed [40]. For OFDM, I assume a subcarrier spacing of F = 15 kHz,
K = 14 symbols and a CP length of 4.76 µs, resulting in a transmission time of KT = 1ms.
FBMC also employs a subcarrier spacing of F = 15 kHz but uses K = 30 (real-valued
symbols), leading to the same transmission time as OFDM, that is, KT = 1ms. Although
LTE occupies 1.4 MHz, it only utilizes L = 72 subcarriers (LF = 1.08MHz). Because
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Figure 4.5. Real-world testbed measurements at 2.5 GHz show that FBMC has a higher
throughput than OFDM (1.4 MHz LTE resembling SISO signal) because of a higher available
bandwidth and no CP overhead. The channel estimation in FBMC is based on the data
spreading approach. Note that the measured throughput performs close to the achievable
rates based on information theory. ©2017 IEEE, [1].

of much lower OOB emissions in FBMC, I am able to increase the number of subcarriers
to L = 87, corresponding to LF = 1.305MHz and a power spectral density that is below
84 dB of its maximum value for frequencies outside the 1.4 MHz bandwidth. Note that the
number of subcarriers must be a multiple of three to guarantee the same pilot density as in
LTE. The pilot pattern is chosen according to the LTE standard, that is, a diamond-shaped
pattern with a pilot density of |P |/(KT LF) = 0.044, see Figure 4.1 for OFDM. In OFDM,
the pilot symbol power is the same as the data symbol power, PP = PD , while in FBMC
the pilot symbol power is increased by a factor of two, PP = 2PD , so that the channel
estimation (complex domain) and the data transmission (real domain) experience the same
SNR. I transmit my signal at a carrier frequency of 2.4955 GHz and obtain different channel
realizations, corresponding to Rayleigh fading, by moving (and rotating) the receive antenna
to 4096 different positions within a 4×4 wavelength grid. For the measured throughput, I use
turbo coding in combination with 15 Channel Quality Indicator (CQI) values, corresponding
to a specific modulation order and code rate, as defined in the LTE standard. I transmit
the signal for all CQI values consecutively and choose at the receiver the highest possible
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Figure 4.6. Achievable rate improvement relative to CP-OFDM. The data spreading approach
shows the highest improvement because no energy is wasted. Two auxiliary symbols
outperform one auxiliary symbols in low to medium SNR ranges because the power that is
saved, offsets the loss in data symbols.

throughput, that is, the highest CQI value for which all data bits were detected correctly after
turbo decoding.

Figure 4.5 shows the measured throughput as well as the theoretical bounds discussed so
far (for Rayleigh fading). FBMC has a higher throughput than OFDM because of a higher
usable bandwidth and no CP overhead. The channel estimation in Figure 4.5 is based on the
data spreading approach in combination with a moving-block average interpolation, that is, all
pilot estimates who are within a time-frequency range of 15 (complex-valued) time symbols
and 12 subcarriers are averaged to obtain an estimate at the data position. Such interpolation
method is possible because the channel is highly correlated in time and frequency. OFDM
and FBMC have the same transmit power which leads to a 0.82 dB smaller SNR for FBMC
compared to OFDM because the power is spread over a larger bandwidth, see (2.36). The
measured throughput is only 2 dB worse than the theoretical BICM bound. Such differences
can be explained by an imperfect coder, a limited code length, a limited number of code rates
(I employ turbo coding [132] and 15-CQI values, same as in LTE) and channel estimation
errors [133]. An important observation here is that the throughput saturates. If one increases
the SNR from 0 dB to 10 dB, that is, by a factor of 10, then the throughput increases by
approximately 300%. On the other hand, if the SNR is increased from 20 dB to 30 dB, also a
factor of 10, the throughput only increases by 20%. Even by considering a symbol alphabet
of up to 256-OQAM (BICM), the achievable rate only increases by 40%. Thus, a high
SNR provides only a small throughput gain while power and hardware costs are significantly
higher.
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Figure 4.7. Real-world testbed measurements show that the throughput performs similarly
as the achievable rate in Figure 4.6. Again, the data spreading approach performs best while
two auxiliary symbols outperform one auxiliary symbols for low to medium SNR values.
Note that only CP-OFDM is measured (the reference) but not OFDM without CP.

Figure 4.6 shows, for a doubly-flat channel, the improvement in achievable rate, see (4.21)
and (4.22), relative to CP-OFDM. For example, at an SNR of 10 dB, FBMC based on data
spreading has a 20% higher achievable rate than OFDM because of a higher bandwidth and
no CP overhead. Overall, the data spreading approach performs best because no energy is
wasted. Furthermore, two auxiliary symbols per pilot outperform one auxiliary symbol per
pilot for SNR values smaller than 15 dB. To get a better understanding of Figure 4.6, let me
investigate the SNR in more detail. The SNR definition in (2.36) and the average transmitted
data symbol power for each method, see (4.13) and (4.19), implies that the SNR in FBMC
based on data spreading is 0.82 dB smaller than in OFDM (LOFDM/LFBMC = 72/87). For
the auxiliary method with one auxiliary symbol per pilot it is 1.22 dB (data symbol) and for
two auxiliary symbols per pilot it is 0.88 dB (data symbol). Those SNR shifts are relevant
for the achievable rate. In particular, FBMC has a lower SNR than OFDM but at the same
time a higher bandwidth. In a low SNR regime, the received power has a relatively large
impact on the achievable rate while in a high SNR regime the bandwidth is the dominant
factor. This explains why the improvement of FBMC in Figure 4.6 increases with the SNR.
Furthermore, it explains why two auxiliary symbols outperform one auxiliary symbol. The
increased SNR of two auxiliary symbols is more important than the loss of the data symbols
in low to medium SNR ranges. Note that it is also possible to employ more than two auxiliary
symbols per pilot, as I have done in [40]. However, the potential improvement compared to
two auxiliary symbols is relatively low. As shown in Figure 4.6, the relative improvement of
OFDM without CP is constant over the SNR, because CP-OFDM and OFDM without CP
have the same bandwidth and thus the same SNR.
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Figure 4.7 shows the improvement of FBMC compared to OFDM for my real world
throughput measurements, conducted with the Vienna Wireless Testbed. The results are
similar as in Figure 4.6. Thus, the theoretical consideration based on the achievable rate
accurately model the true physical behavior. Only for small SNR values, large differences
can be observed because of a limited CQI in combination with the SNR shift between FBMC
and OFDM. Again, data spreading performs best, while two auxiliary symbols outperform
one auxiliary symbol for low to medium SNR values.

4.3.2 Bit Error Probability

In my opinion, the throughput is a more important performance metric than the uncoded
BEP. Unfortunately, throughput simulations require channel coding which increases the
simulation time and makes the overall evaluation relatively cumbersome. The uncoded BEP,
on the other hand, can be simulated in a very simple way. Furthermore, the BEP is a more
fundamental performance measure and allows an easy comparison to other papers. Thus,
there are good reasons to consider the BEP, although possible effects on the throughput
should be kept in mind. In Section 3.1.1, I already derived the BEP for perfect channel
knowledge. In this section, I additionally include the effect of channel estimation into
my BEP expressions. Although I could consider doubly-selective channels, similar as in
Section 3.1.1, I assume a doubly-flat channel in order to focus on the important part, that is,
the influence of channel estimation on the BEP. Note that doubly-flat fading also represents
an important special case because it describes the performance for doubly-selective channels
as long as the channel induced interference is dominated by noise, as already elaborated in
Section 3.1.1. Furthermore, I assume a 4-QAM signal constellation in OFDM and a 2-PAM
signal constellation in FBMC. Again, this simplification allows me to focus on the relevant
factors. I also assume that the interpolation vector is chosen so that the following condition
holds true, wH

l,k1|P |×1 = 1, that is, the elements of wl,k sum up to one. There are two main
reasons for this assumption. Firstly, the interpolation should not cause any unnecessary
phase rotations, so that, for doubly-flat fading, wH

l,k1|P |×1 has to be real-valued and greater
than zero. Secondly, for a 4-QAM and 2-PAM signal constellation, only the phase of the
estimated channel matters. The magnitude has no influence on the BEP, implying that wl,k

can be normalized by any real-valued number greater than zero. Choosing this number so
that wH

l,k1|P |×1 = 1 is fulfilled, allows me to express the BEP in a compact way.

The normalization of interpolation vector wl,k and the assumption of doubly-flat fading
imply that ℑ{wH

l,k1|P |×1} = ℑ{wH
l,krhP,hl,k } = 0, allowing me to express the BEP in OFDM
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by [34]:

BEPOFDM
l,k = Pr

(
ℜ

{
yl,k

ĥl,k

}
< 0

�����xl,k =

√
PD
2
+ j

√
PD
2

)
. (4.23)

Note that this BEP expression is similar as in Section 3.1.1 except that the perfectly known
channel is now replaced with its estimate, that is, hl,k → ĥl,k . To apply Lemma 1, I need
the second order statistics, which can easily be calculated by utilizing the perfect correlation
property of a doubly-flat channel, RhP = 1|P |×|P| and rhP,hl,k = 1|P |×1, as well as the
normalization of the interpolation vector, wH

l,k1|P |×1 = 1, leading to

E{yl,k ĥ∗l,k |xl,k} = xl,k (4.24)

E{|yl,k |2 |xl,k} = |xl,k |2 + Pn (4.25)

E{| ĥl,k |2} = 1 + ∥wl,k ∥2
Pn

PP
. (4.26)

Finally, Lemma 1 together with (4.24)-(4.26) allows me to express the BEP in (4.23) by:

BEPOFDM
l,k =

1

2
− 1

2

√
2
(
1 + ∥wl,k ∥2 Pn

PP

) (
1 + Pn

PD

)
− 1

. (4.27)

Besides data symbol power PD , pilot symbol power PP and noise power Pn, the BEP
also depends on the squared norm of the interpolation vector, given for nearest neighbor
interpolation by ∥wl,k ∥2 = 1 and for MMSE interpolation (doubly-flat fading) by ∥wl,k ∥2 = 1

|P | .
In general, however, ∥wl,k ∥2 depends on a specific time-frequency position, for example, linear
interpolation (straight line) leads to ∥wl,k ∥2 < 1, while linear extrapolation to ∥wl,k ∥2 > 1.
Note that the interpolation vector is normalized by wH

l,k1|P |×1 = 1, so that wl,k cannot take
any arbitrary values. To be specific, ∥wl,k ∥2 is lower bounded by ∥wl,k ∥2 ≥ 1

|P | , where
equality holds for the MMSE interpolation. Thus, MMSE interpolation delivers also the
minimum BEP in (4.27). Note that this is not only true for a doubly-flat channel, but also for
a doubly-selective channel (interference is treated as Gaussian noise), as I have shown in [34]
by utilizing the generalized Rayleigh quotient.

In contrast to OFDM, the BEP in FBMC depends on all other symbols because of the
imaginary interference. One can model the influence of the imaginary interference by
a pseudo symbol x′l,k , which not only includes the data symbol, but also the imaginary
interference, as described in (4.6). Together with the law of total probability and auxiliary
precoding matrix Ca, see (4.12), the BEP for FBMC in case of channel estimation based on
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auxiliary symbols can be expressed by:

BEPAux.
l,k =

1

2|D||P|

∑
xD∈|X|D

∑
xP∈X |P |

Pr

(
ℜ

{
yl,k

ĥl,k

}
< 0

�����x′l,k = √
PD + jℑ{qHl,kG}Ca

[
xP
xD

])
.

(4.28)
A simple evaluation of (4.28) is computationally very challenging. However, because only a
few symbols close to xl,k have a significant contribution to the BEP, it is possible to reduce
the computational complexity by including only those closest symbols in the evaluation.
Another method to reduce the computational complexity is a Monte Carlo evaluation, which
I will use later for my numerical examples. Similar as in OFDM, I need the second order
statistics to apply Lemma 1, which can be found by:

E{yl,k ĥ∗l,k |x} = x′l,k + r
H
nP,nl,kdiag(xP)

−1wl,k (4.29)

E{|yl,k |2 |x} = |x′l,k |
2 + Pn (4.30)

E{| ĥl,k |2} = 1 + ∥wl,k ∥2
Pn

PP
. (4.31)

Compared to OFDM, see (4.24)-(4.26), the only differences are the pseudo symbol, which
includes the imaginary interference, and the correlation of the noise in (4.29). Applying
Lemma 1 in (4.28), delivers immediately the desired BEP for FBMC. However, the exact
closed-form solution is quite lengthy and does not provide any additional insights, so that I omit
it at this point. Instead, I consider an approximation based on the following two assumptions.
Firstly, the “random” imaginary interference, jℑ{qHl,kG}Ca [xP xD]T is replaced by a fixed
value of j

√
PD . Secondly, the noise in (4.29) is uncorrelated. With those two assumptions,

the BEP in (4.28) is well approximated by

BEPAux.,approx
l,k ≈ 1

2
− 1

2

√
2
(
1 + Pn

PP
∥wl,k ∥2

) (
1 + Pn

2PD

)
− 1

. (4.32)

The only difference to the exact solution for OFDM, see (4.27), is the additional factor of
two inside the right bracket. However, FBMC uses different data and pilot symbol powers
when compared to OFDM. In particular, the data symbol power in FBMC (without channel
estimation) is usually two times lower than that for OFDM. This implies that the BEP
approximation for FBMC is the same as the exact solution for OFDM. However, auxiliary
symbols are “wasted” energy, so that the approximated BEP in FBMC becomes slightly
worse than the BEP for OFDM, that is, BEPAux.,approx

l,k > BEPOFDM
l,k (for all possible l, k,

assuming the same interpolation method wl,k).
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The calculation of the BEP for the data spreading approach works in a similar way as for
the auxiliary method, but the received symbols in (4.28) have to be replaced by the decoded
symbols from (4.17), that is, yl,k → ỹi. Those decoded symbols, in general, no longer belong
to a certain time-frequency position and are instead spread over several time-frequency
positions, so that I replace the index (l, k) by i. Still, from a conceptional point of view
nothing changes in the derivation of the BEP compared to the auxiliary method. Thus, I omit
the derivation at this point and instead refer to my paper in [41]. Similar to the auxiliary
method, one can find an approximation of the BEP which turns out to be exactly the same as
in (4.32), except that the interpolation vector might be differently because of the spreading.
Compared to the auxiliary method, however, no energy is wasted, so that, for a comparable
interpolation method, BEPSpr.,approx

l,k = BEPOFDM
l,k < BEPAux.,approx

l,k (for all possible l, k).
From the results so far, I identify three differences between OFDM and FBMC for the

BEP in doubly-flat fading:

1. For OFDM, the imaginary part of the conditioned data symbol in the BEP expression
is fixed and given by j

√
PD
2 , see (4.23), while for FBMC the imaginary part depends on

the neighboring data symbols, that is, jℑ{qHl,kG}Ca [xP xD]T, and is thus a random
variable, see (4.28).

2. The noise in FBMC is correlated, at least for symbols close to the pilots, see (4.29).

3. In the auxiliary symbol method (but not for the data spreading method), the data symbol
power is lower than in OFDM, because auxiliary symbols are “wasted” energy.

In particular, the first point is interesting. It implies that, if the imaginary part in FBMC is
relatively low, that is, jℑ{qHl,kG}Ca [xP xD]T << j

√
PD , the BEP in FBMC is better than in

OFDM because phase errors of the estimated channel have less impact on the BEP (ignoring
any power offsets). On the other hand, if the imaginary interference is larger, any phase
errors of the estimated channel will be amplified. Thus there are two opposite effects which
influence the BEP in FBMC. A priori, it is not clear which of those effects is dominant. Let
me therefore consider a numerical example for which I assume an LTE like pilot pattern,
that is, eight pilot symbols within TK = 1ms and FL = 180 kHz, as illustrated in Figure 4.1
for CP-OFDM. Figure 4.8 shows how the BEP depends on the SNR. Overall there are only
minor differences between OFDM and FBMC and the underlying interpolation method has a
much greater influence. Still, a few small differences can be observed. Firstly, FBMC based
on data spreading performs better than OFDM. Thus, the random imaginary interference
in the BEP expression, jℑ{qHl,kG}Cs [xP xD]T, turns out to be advantageous compared to
the fixed term in OFDM, j

√
PD/2. However, the possible improvement in terms of BEP is
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Figure 4.8. The BEP depends strongly on the channel estimation method, while the differences
between FBMC and OFDM are very small. In contrast to many other papers, the auxiliary
method shows a relatively good performance because the auxiliary symbol power is not only
taken from the pilot, but also from the data symbols. ©2016 IEEE, [41].

less than 3% for nearest neighbor interpolation and less then 0.5 % for MMSE interpolation.
The better the channel estimation, the closer are the BEP for FBMC and OFDM. In the
limit of perfect channel knowledge, both BEP expressions are equal, as already investigated
in Section 3.1.1. Note that the approximated BEP in FBMC, see (4.32), is the same as
in OFDM, so that the reported differences between OFDM and FBMC (data spreading)
also represent the approximation error. The second observation relates to FBMC based on
auxiliary symbols. In principle, one has the same effect as for the data spreading approach,
that is, the random imaginary interference term jℑ{qHl,kG}Ca [xP xD]T is advantageous
compared to the fixed term of OFDM. However, auxiliary symbols represent wasted energy,
reducing the available power for the data symbols and the pilot symbols, so that the BEP
for FBMC becomes worse than in OFDM. To be specific, for an MMSE interpolation, the
BEP in FBMC is approximately 10 % worse than in OFDM and 9 % for a nearest neighbor
interpolation. Of course, those differences also depend on the pilot density. If the pilot
density is very low, the BEP for the auxiliary method will approach the BEP of the data
spreading approach because the wasted energy becomes very small. My results indicate
that the differences between FBMC (auxiliary symbols) and OFDM are relatively small.
However, other papers report huge differences of approximately 100 % [120, 121]. Such poor
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behavior can be explained by a reduced pilot symbol power because those papers assume
that the additional auxiliary symbol power is solely taken from the pilots. I, on the other
hand, assume that the additional auxiliary symbol power is equally taken from pilot symbols
and data symbols, where the pilot-to-data power offset is two, leading to the same SNR for
data transmission (real domain) and channel estimation (complex domain). Reducing the
pilot symbol power below the data symbol power, as done in [120, 121], is quite problematic.
To get a better understanding of this fact, let me consider the BEP expression in (4.27) for
OFDM in case of nearest neighbor interpolation, ∥wl,k ∥2 = 1. Then, the pilot symbol power
has the same influence on the BEP as the data symbol power. However, there are usually
much more data symbols than pilot symbols. Thus, it makes sense to slightly reduce the data
symbol power and to distribute the available power to the pilot symbols. This increases the
pilot symbol power significantly and is exactly the opposite of what authors in [120, 121] are
doing. Let me formally derive an optimal pilot-to-data power offset which I define as

κ =
PP
PD
. (4.33)

Inserting κ into (4.27) leads to the following minimization problem for OFDM:

κOFDM
opt = argmin

κ

{
BEPOFDM

l,k

}
(4.34)

= argmin
κ


1

2
− 1

2
√
2
(
1 + ϵD+ϵP κSNR κ ∥wl,k ∥2

) (
1 + ϵD+ϵP κSNR

)
− 1

 (4.35)

=

√√√√ϵD
ϵP

( ϵD
SNR + 1

)(
ϵP

SNR +
1

∥wl,k ∥2

) . (4.36)

Equation (4.35) can easily be solved by setting the first derivative to zero and solving with
respect to κ. The optimal pilot-to-data power offset for OFDM depends on data symbol
density ϵD = |D|

KL , pilot symbol density ϵP = |P |
KL , interpolation vector wl,k and the SNR,

as defined in Table 4.2. For the practical relevant case of |D| ≥ |P| and ∥wl,k ∥2 ≤ 1, the
optimal pilot-to-data power offset is bounded by:√

|D|
|P| ∥wl,k ∥2 ≤ κOFDM

opt ≤ |D|
|P| , (4.37)

which follows directly from SNR → ∞ (left) and SNR → 0 (right). Note that the SNR is
often high enough so that the left part of (4.37) provides an accurate approximation of the
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Table 4.2. Optimal (minimizes the BEP) pilot-to-data power offset κopt.
OFDM FBMC, Auxiliary FBMC, Spreading

ϵD + ϵP = 1 ϵD + ϵP + ϵA = 1 ϵD + ϵP = 1 − ϵP
SNR

|D|PD + |P |PP
LKPn

|D|PD + |P |PP + |A|PA

LK Pn
2

|D|PD + |P |PP

LK Pn
2

κopt =
PP
PD

√√√√ϵD
ϵP

( ϵD
SNR + 1

)(
ϵP

SNR +
1

∥wl,k ∥2

)
√√√√√√ ϵ̃DA
ϵP

(
ϵ̃DA
SNR + 1

)(
ϵP

SNR +
1

2∥wl,k ∥2

) √√√√ϵD
ϵP

( ϵD
SNR + 1

)(
ϵP

SNR +
1

2∥wl,k ∥2

)
ϵD =

|D|
KL

; ϵP =
|P |
KL

; ϵA =
|A|
KL

; ϵ̃DA = ϵD + κ̄AD ϵA ; κ̄AD =
PA
PD

Nearest neighbor: ∥wl,k ∥2 = 1; MMSE: ∥wl,k ∥2 = 1
|P |

optimal pilot-to-data power offset. For example, an LTE pilot pattern (|D| = 180 − 8 = 172,
|P | = 8) leads to an optimal pilot-to-data power offset of 4.6 for nearest neighbor interpolation.
Such power offset improves the BEP by approximately 30% which is equivalent to an SNR
shift of 1.5 dB (for the same BEP). For an MMSE interpolation (∥wl,k ∥2 = 1/8), the optimal
pilot-to-data power offset is 1.6. However, the possible improvement is only 2%, equivalent
to an SNR shift of 0.07 dB.

In a similar way, one can also find the optimal pilot-to-data power offset for FBMC.
However, instead of using the exact BEP solution, I utilize the approximation in (4.32) which
is possible because the approximation error is relatively small. Table 4.2 shows the optimal
pilot-to-data power offset. Note that the optimal pilot-to-data power offset is very similar to
OFDM. In particular, for the data spreading approach, the optimal pilot-to-data power offset
is exactly two times larger than in OFDM, that is, κFBMC,Spr.

opt = 2 κOFDM
opt (for comparable

parameters). This can easily be checked in Table 4.2, where one has to keep in mind that |D|
and K are two times higher in FBMC compared with OFDM because of the reduced time
spacing.

4.4 Doubly-Selective Channel Estimation

So far, I mainly focused on scenarios with a low delay spread and a low Doppler spread
because they are much more important in practice, as already discussed in Section 3.1.
Yet, a lot of academic research is focused on highly double-selective channels because of
its challenging nature, allowing to come up with innovative solutions. In this section, I
also propose a doubly-selective channel estimation technique which, in contrast to most
other proposed solutions, does not require clustered pilots and is thus complaint with the
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LTE standard. However, I want to emphasize that I do not think that doubly-selective
channel estimation and equalization are, in general, worth the effort. Note that the available
literature about doubly-selective channel estimation in FBMC is very limited so that almost
all references within this section refer to OFDM.

I employ the same system model as in Section 3.2, where the input-output relation can be
described as

y = Dx + n, (4.38)

with transmission matrix D given by

D = QHHG. (4.39)

Most papers try to estimate the channel impulse response, that is, Ĥ. However, estimating
the impulse response is quite problematic because in practical systems, the number of active
subcarriers is always lower than the FFT size, that is L < NFFT. This implies that the channel
transfer function at the zero subcarriers cannot be accurately estimated, preventing also an
accurate estimation of the impulse response. By applying an inverse Fourier transform onto
the channel transfer function of the L active subcarriers, one only obtains a pseudo impulse
response, implicitly assuming a rectangular filter. In particular, the delay taps of the pseudo
impulse response are no longer limited in time (within the symbol duration), even though the
true impulse response might be. This is caused by the discontinuity of the channel transfer
function at the edge subcarriers and becomes problematic for estimation methods which rely
on the assumption that the delay taps are limited in time. Another aspect is the computational
complexity. Even if one is able to accurately estimate the impulse response, the matrix
multiplication in (4.39) still has to be evaluated, implying a huge computational burden. All
those drawbacks can be avoided by directly estimating the transmission matrix, that is, D̂.
To some extend, this is already happening in practical systems as the one-tap channel is
usually estimated through interpolation, see Figure 4.1. Those one-tap channel coefficients
correspond to the diagonal elements of D̂.

A recent method for doubly-selective channel estimation is based on compressed sensing
[134], where the authors claim that conventional methods do not exploit the sparse nature
of wireless channels. I do not completely agree with this statement because an MMSE
channel estimation already exploits sparsity in the form of time-frequency correlation of the
channel. Of course, the power delay profile and the Doppler spectral density must be known
or accurately estimated for such estimation to work. Authors in [135] and [136] investigated
MMSE channel estimation but considered only one OFDM symbol in time which requires
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Figure 4.9. The LS channel estimates at the pilot positions are interpolated to estimate
the time-variant transfer function. Note that FBMC transmission matrix D can be directly
estimated without the detour of the time-variant transfer function.

clustered pilots. Many other authors employ a basis expansion model [137, 138] to estimate
doubly-selective channels. Here, the time variation is modeled by a basis expansion, for
example, an exponential basis [139], a polynomial basis [140], a Slepian basis [141] or an
MMSE interpolation basis [142]. The main argument for a basis expansion model is that,
estimating all (LK)2 elements of D̂, out of just |P | pilot symbols, is very challenging, so
that the number of unknown variables should be reduced. I do not completely agree with
this assessment. Estimating all elements of D̂ can easily be achieved by exploiting the
time-frequency correlation of the channel. This becomes especially useful if not only one
OFDM/FBMC symbol is considered, as most other authors do, but several symbols in time
jointly, that is, K > 1. The main idea is illustrated in Figure 4.9. The “sampled” time-variant
transfer function (at the pilot positions) is interpolated, delivering an accurate estimate of the
full time-variant transfer function. This is possible because of a high correlation in time and
frequency. Compared to the conventional channel interpolation, see Figure 4.1, one not only
estimates the one-tap channel, but rather interpolates the whole transfer function and thus
includes the time-frequency variations within one symbol. Of course, it is computationally
more efficient to directly estimate D̂ without the detour of the channel transfer function,
whereby the underlying correlation is preserved. One element of transmission matrix D̂,
at row position l1k1 = l1 + L(k1 − 1) and column position l2k2 = l2 + L(k2 − 1), can be
estimated by

[D̂]l1k1,l2k2
= w̃H

l1,k1,l2,k2 ĥ
LS
P , (4.40)

where w̃l1,k1,l2,k2 ∈ C|P |×1 represents a weighting vector and ĥLS
P ∈ C|P |×1 the LS channel

estimates at the pilot positions, see (4.3). In contrast to Section 4.1, I not only estimate the
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one-tap channel coefficients, that is, the diagonal elements, [D̂]lk,lk = ĥl,k , but rather the
whole transmission matrix, including the off-diagonal elements. Note that, for l = l1 = l2
and k = k1 = k2, the weighting vector in (4.40) is the same as the interpolation vector in
(4.2), that is, w̃l,k,l,k = wl,k . Equation (4.40) can also be written as

D̂ =

|P |∑
i=1

Θi ĥLS
Pi
, (4.41)

where Θi ∈ CLK×LK represents a weighting matrix for which the l1k1-th row and l2k2-th
column element is given by the i-th element of w̃H

l1,k1,l2,k2
. Note that Θi is a sparse matrix.

For example, in case of an FBMC design based on a Hermite prototype filter, each row of Θi

only has nine relevant elements, see Figure 3.10, leading to a matrix density of 9
LK << 1.

Thus, the computational complexity of my channel estimation method is relatively very low.
One only has to multiply |P | sparse matrices with a scalar followed by |P | − 1 sparse matrix
summations.

The interpolation method has a major influence on the estimation accuracy. Authors
in [143] interpolate the estimated impulse responses of several OFDM symbols linearly,
whereas the authors in [144] utilize a LS polynomial fitting and the authors in [145] a LS
discrete prolate spheroidal fitting. I, on the other hand, employ an MMSE interpolation
which is the best possible channel estimation method in terms of minimum Mean Squared
Error (MSE). By utilizing the orthogonal projection theorem, the MMSE weighting vector
in (4.40) can be calculated by

w̃LMMSE
l1,k1,l2,k2 = R−1

ĥLS
P
rĥLS

P ,[D]
l1k1,l2k2

, (4.42)

with RĥLS
P
∈ C|P |×|P| denoting the correlation matrix of the LS estimates at the pilot positions

and rĥLS
P ,[D]

l1k1,l2k2

∈ C|P |×1 the correlation vector between the LS channel estimates at the
pilot positions and one element of transmission matrix D. Very often, the biggest challenge
is to find the required correlation matrices. Thanks to my superior matrix notation, however,
finding those matrices becomes a trivial task. The correlation between the LS channel
estimates at the pilot positions can be calculated by

RĥLS
Pi
=

1

PP
tr

{(
CT
aG

T ⊗ qHPi

)
Rvec{H}

(
CT
aG

T ⊗ qHPi

)H}
+

Pn

PP
qHPi

qPi . (4.43)

RĥLS
Pi
,ĥLS

Pj

=
(
gTPi

⊗ qHPi

)
Rvec{H}

(
gTPj

⊗ qHPj

)H
for i , j . (4.44)
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The auto-correlation in (4.43) and the cross-correlation in (4.44) build up the overall
correlation matrix RĥLS

P
∈ C|P |×|P|. To simplify the notation, I assume that the imaginary

interference cancellation matrix Ca also includes any power-offsets. Furthermore, Ca can
be the precoding matrix of the data spreading approach, that is, Cs. Similar as before, the
correlation between the LS channel estimate at the i-th pilot position and one element of
transmission matrix D, can be calculated by

rĥLS
Pi
,[D]

l1k1,l2k2

=
(
gTPi

⊗ qHPi

)
Rvec{H}

(
gTl2,k2 ⊗ qHl1,k1

)H
, (4.45)

and builds up correlation vector rĥLS
P ,[D]

l1k1,l2k2

∈ C|P |×1. With (4.43)-(4.45) one has all the

necessary tools to calculate the MMSE weighting vector in (4.42), that is, w̃LMMSE
l1,k1,l2,k2

. One
might think that my channel estimation method is unrealistic because the correlation matrices
are not known in practical systems. While it is indeed hard to find the true correlation
matrices, a rough approximation can easily be found and is often sufficient to obtain a
close to optimal performance. For example, testbed measurements at 400 km/h validate
that my MMSE channel estimation works in real world testbed scenarios [30]. To measure
at such high velocities, the Vienna Wireless Testbed was augmented by a rotation wheel
unit [45, 146]. To calculate the required correlation matrices, I assumed a frequency flat
channel (13 subcarriers) and a uniform Doppler spectral density. The maximum Doppler shift
was then estimated by matching the theoretical interference power (for a uniform Doppler
spectral density) to the measured interference power (exploiting the zero subcarriers). The
measurement results in [30] indicate that my channel estimation method, see (4.40) and
(4.42), performs close to perfect channel knowledge, although some additional iterative steps
are necessary. Thus, in contrast to almost all other works related to time-variant channel
estimation, my method was already proven to work in real world testbed scenarios.

Besides the challenge of doubly-selective channel estimation, channel equalization is also
important and was already discussed in Section 3.2. I will now combine channel estimation
and equalization in an iterative way. The channel equalization is based on interference
cancellation because it offers the best performance complexity trade-off, see Section 3.2. My
iterative interference mitigation scheme works as follows, where the superscript (·)(i) denotes
the i-th iteration step:

1. MMSE channel estimation of transmission matrix D̂(0), see (4.40)-(4.45).

2. One-tap equalization and quantization, x̂(0)l,k = Q
{
y
(0)
l,k /ĥ(0)l,k

}
, with ĥ(0) = diag{D̂(0)}.

3. Initialize with i = 0.
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4. Interference cancellation, y(i+1) = y − (D̂(i) − diag{D̂(i)}) x̂(i)

5. Improved estimation of transmission matrix D̂(i+1), enabled by reduced interference at
the pilot positions.

6. Improved one-tap equalization and quantization x̂(i+1)l,k = Q
{
y
(i+1)
l,k /ĥ(i+1)l,k

}
7. Repeat Step 4 to Step 6. In my simulations, I considered i = 0, 1, ..., 4.

Note that the underlying correlation in (4.43) does not take the power reduction of the
interference after cancellation into account because non-linearities make the analytical
calculation very challenging. To circumvent this problem, I employ a slightly mismatched
MMSE estimation. For iteration step i = 0, 1, 2, I consider the correlation as described
in (4.43) while for iteration step i = 3 and i = 4, I assume that interference was perfectly
canceled, so that the matrix product CTGT in (4.43) transforms to CTGT →

√
PP gTPi

. The
computational complexity of my interference mitigation technique is relatively low once the
MMSE weighting vector is calculated. Let me ignore the computational complexity of the
imaginary interference cancellation method (auxiliary symbols/data spreading) because it
was already discussed in Section 4.2. I assume that each row of matrix D has nine relevant
interference terms. Furthermore, approximately |P | = 10 pilots are needed for an accurate
channel estimation. A conventional one-tap equalization together with MMSE channel
estimation then requires in total 11 multiplications per data symbol. On the other hand,
my interference cancellation scheme requires 91 + 99i multiplications for i iterations. For
example, four iterations require in total 487 multiplications, implying that the computational
complexity is approximately 45 times higher that for a conventional one-tap equalizer. Of
course, one can reduce this complexity by reducing the number of iterations, the number
of considered interference terms, or the number of pilot symbols. Thus, there exists a
performance-complexity trade-off.

Let me now discuss the improvement of my interference cancellation scheme compared
with conventional one-tap equalization. I assume an FBMC transmission with a Hermite
prototype filter and channel estimation based on the data spreading approach, see Section 4.2.2.
The parameters are chosen similarly as for the channel equalization in Section 3.2. I consider
a diamond-shaped pilot pattern, same as in LTE, that is, |P | = 32 pilots are distributed
over a time-frequency resource of KT = 2ms and LF = 360 kHz. The total overhead
is given by TF |P |2

KT LF = 4.4%, where the factor of two inside the equation can be explained
by the data spreading approach which requires to sacrifice one additional time-frequency
position per pilot. To improve the channel estimation accuracy, I employ a pilot-to-data
power offset of four, so that the data symbol SNR is 0.19 dB smaller than the overall SNR.
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Figure 4.10. The proposed doubly-selective channel estimation method performs close to
perfect channel knowledge. Compared with Figure 3.14, the BER is slightly worse, even for
perfect channel knowledge, because of spreading of the data symbols and the pilot-to-data
power offset, leading to a lower data symbol SNR.

Figure 4.10 shows the BER over the SNR. Compared to Section 3.2, the performance for
perfect channel knowledge is slightly worse due the SNR shift of the data symbols and the
spreading. A one-tap equalizer performs poorly once interference starts to dominate the noise.
By employing my interference cancellation scheme, the performance can be significantly
improved. Overall, MMSE channel estimation is very accurate and only slightly worse than
perfect channel knowledge. In particular, my doubly-selective channel estimation technique
performs close to perfect channel knowledge (only a small SNR shift of approximately 1 dB
for the “no edges” curve). For the “no edges” MMSE channel estimation curve in Figure 4.10,
I ignore extrapolation, that is, time-frequency positions close to the edges are excluded. One
can imagine a sliding block with an inner and an outer block where only the inner block is
evaluated for the BER while the outer block only contributes to the channel estimation.

Figure 4.11 shows the BER over SNR for channel estimation based on auxiliary symbols.
I employ four auxiliary symbols per pilot so that the channel induced interference at the pilot
positions is relatively low, while at the same time the required overhead is the same as in LTE,
that is, TF(|P|+|A|)

KT LF = 11.1% for FBMC and LF TCPK+|P |
KT LF = 11.1% for OFDM. Furthermore, I

consider a pilot-to-data power offset of 4.685, which guarantees that the data symbol SNR is
the same as the overall SNR. This is possible because the auxiliary symbol power is close
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Figure 4.11. The proposed doubly-selective channel estimation method performs close to
the theoretical bound of doubly-flat fading. In terms of BER, four auxiliary symbols show a
better performance than the spreading approach in Figure 4.10. However, this comes at the
expense of an increased overhead.

to zero so that the available power can be distributed to the pilots. With those settings, the
BER for perfect channel knowledge in Figure 4.11 is the same as in Figure 3.14. Again, my
MMSE channel estimation scheme performs close to perfect channel knowledge, validating
its capability to deal with doubly-selective channels.

My proposed interference cancellation scheme can be considered as a first step and can
be further improved. For example, one could optimize the pilot density or the pilot-to-data
power offset. Other possible improvements are soft information bits or decoding at each
iteration step. A detailed discussion of all those possible improvements, however, is beyond
the scope of this work, in particular because I do not think that doubly-selective channel
estimation and equalization are usually worth the effort.





Chapter 5

Block Spread FBMC-OQAM: Restoring
Complex Orthogonality

The loss of complex orthogonality is the main obstacle in FBMC-OQAM and seriously
hampers some important transmission techniques, such as channel estimation [42], Alamouti’s
space-time-block-code [69] or maximum likelihood MIMO detection [70]. In particular the
limited MIMO compatibility is a major issue [147], preventing a widespread application of
FBMC. Most papers which combine MIMO and FBMC have some serious drawbacks, such
as [148] which relies on channel knowledge at the transmitter or [149, 150] which require
high computational complexity. On the other hand, there exists many practical solutions for
channel estimation in FBMC, as already discussed in Chapter 4. However, all those solutions
merely deal with the imaginary interference, but not truly solve the underlying problem, that
is, the loss of complex orthogonality.

In this section, I investigate a method which restores complex orthogonality in FBMC-
OQAM. This is enabled by adding an additional code dimension (besides time and frequency),
so that all methods known in OFDM can be straightforwardly employed in FBMC. In contrast
to conventional FBMC, the data symbols no longer belong to a certain time-frequency
position, but are rather spread over several time or frequency positions. Such spreading
increases the sensitivity to doubly-selective channels. However, if the delay spread and
the Doppler spread are sufficiently low, channel induced interference can still be neglected.
In future wireless systems, such condition will often be fulfilled, making block spread
FBMC-OQAM an interesting modulation scheme.

This chapter is mainly based on my publications [1, 27, 36, 39] and includes the following
novel contributions:
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Figure 5.1. In conventional multicarrier systems, each data symbol only occupies a small
time-frequency resource of approximately TF = 1. This is advantageous in highly double-
selective channels (left part of the figure) because the transmission can still be modeled by
one-tap channels. However, in a more realistic scenario (right part of the figure), data symbols
can be spread over several time (or frequency) positions while keeping all the advantages
of conventional multicarrier systems. In FBMC, such spreading is beneficial because the
additional code dimension allows to restore complex-orthogonality.

• In Section 5.1, I present the basic idea of block spread FBMC-OQAM. Furthermore, I
derive the optimal spreading matrix and explain why Walsh–Hadamard spreading is a
more practical solution. Finally, I discuss two possible interpretations of the spreading
approach (code dimension, changing the basis pulses) [1, 36, 39].

• In Section 5.2, I provide a detailed discussion of Walsh–Hadamard spreading in time.
Compared to [69, 71], I investigate the interference between different blocks and
propose the usage of guard symbols. Furthermore, I allow for a time-variant channel
and derive closed-form SIR expressions. Finally, I validate the applicability of my
block spread FBMC transmission scheme by real world testbed measurements [27, 39]

• In Section 5.3, I discuss Walsh–Hadamard spreading in frequency. Again, I consider a
doubly-selective channel and propose a block frequency spreading approach, similar to
Section 5.2, but now in frequency instead of time [36].

5.1 Introduction

The left part of Figure 5.1 shows a channel with a very large delay spread and a very large
Doppler spread. In such scenarios, it is advantageous that each data symbol only occupies
a small time-frequency resource of approximately TF = 1, so that the transmission can be
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modeled by a one-tap channel. This has many advantages, such as, simple equalization, a
straightforward employment of MIMO techniques and efficient scheduling of multiple users.
However, such highly double-selective channel will rarely happen in practice. A much more
realistic scenario is depicted in the right part of Figure 5.1, corresponding to a low delay
spread and a low Doppler spread. For such channel, there is no reason why one data symbol
should only occupy a small time-frequency resource of TF = 1. Instead, one data symbol
can be spread over several time-frequency positions. Because the channel is approximately
flat within such spreading interval, all the beneficial properties of conventional multicarrier
systems are preserved. Of course, the channel is only flat over a certain bandwidth and a
certain period of time, so that several transmission blocks must be concatenated to achieve a
desired bandwidth and transmission time. Furthermore, to keep the data rate high, several
data symbols occupy the same time-frequency resources. Those symbols are differentiated
by their spreading sequences.

Spreading is very beneficial in FBMC because it allows to solve the problem of the
imaginary interference. For example, authors in [151] proposed a block-Alamouti scheme
(over time) which can be seen as special kind of spreading (distributing symbols in time).
The same method was recently applied by [152] in the frequency domain. However, a better
method is Walsh–Hadamard spreading [69] because it restores complex orthogonality, so
that it not only works for Alamouti transmissions (as in [151, 152]), but additionally allows
to straightforwardly employ all other methods known in OFDM, such as channel estimation,
other space-time-block codes or low-complexity maximum likelihood symbol detection.
Similar to Walsh–Hadamard spreading, authors in [70] suggested FFT spreading in time to
restore (quasi)-orthogonality. However, I prefer Walsh–Hadamard spreading because it has a
much lower computational complexity and perfectly restores complex orthogonality within
one block.

Let me describe the spreading approach in more detail. In a first step, I assume an AWGN
channel, that is, H = IN , so that (2.30) transforms to

y = QHGx + n. (5.1)

Note that (5.1) describes a block transmission of L subcarriers and K symbols in time. Several
of those blocks must be concatenated in time and frequency to achieve a desired bandwidth
and transmission time. In block spread FBMC, complex-valued data symbols x̃ ∈ C LK

2 ×1,
are precoded by a coding/spreading matrix C ∈ CLK× LK

2 , so that the transmitted symbols
x ∈ CLK×1 are obtained by

x = C x̃. (5.2)
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Note that, a priori, the size of C and x̃ is unknown. I will explain later in this section why the
size was chosen that way. The received data symbols ỹ ∈ C LK

2 ×1 are obtained by decoding
the received symbols according to

ỹ = CH y. (5.3)

To restore complex orthogonality, the coding matrix has to be chosen so that the following
condition is fulfilled,

CHQHGC = ILK/2. (5.4)

As already mentioned in Section 2.2, it is possible to satisfy (5.4) by utilizing an eigenvalue
decomposition QHG = GHG = UΛUH, so that coding matrix C ∈ CLK× LK

2 can be calculated
by

C = U



Λ
−1/2
1 0 0

0
. . . 0

0 0 Λ
−1/2
LK/2

0 . . . 0

: : :

0 . . . 0


, (5.5)

where Λi represents the i-th eigenvalue (sorted) of QHG and U the corresponding eigenvector
matrix. As shown in Figure 2.5, the eigenvalues for K → ∞ and L → ∞ are given by
Λ1 = Λ2 = · · · = ΛLK/2 = 2 and Λi = 0 for i > LK

2 . Thus, (5.5) implicitly applies the
water-filling algorithm [73], so that C becomes the optimal spreading matrix in terms of
maximizing the information rate. In particular, it shows that the optimal size of the spreading
matrix is LK × LK

2 and that any matrix, C ∈ CLK× LK
2 , which satisfies (5.4), is optimal for

K → ∞ and L → ∞ (the SNR is always the same). Once K and L are bounded, the spreading
matrix in (5.5) no longer correspond to the optimum. The optimal spreading matrix can then
be found by applying the water-filling algorithm, where the column size of the matrix will
usually be larger than LK

2 . However, a spreading matrix of size LK × LK
2 , which satisfies

(5.4), still performs close to the optimum, as indicated by the eigenvalues in Figure 2.5. For
example, for L = 36 and K = 30, the suboptimal spreading matrix performs only 3.6% worse
in terms of achievable rate than the optimal spreading matrix (water filling) for SNR values
smaller than 20 dB. Furthermore, the optimal spreading matrix requires different code rates
for layers close to the eigenvalue of ΛLK/2. This increases the overall complexity while the
possible improvement is rather low, so that, employing a suboptimum spreading matrix, such
as (5.5), makes sense in practical systems. Note that precoding reduces the average transmit
power by a factor of two, that is, tr

{
GCCHGH

}
= tr

{
CHGHGC

}
= LK

2 =
1
2tr

{
GHG

}
.

Thus, for the same SNR, the data symbol power has to be increased by a factor of two. This
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is in agreement with my observation that the power of complex-valued data symbols is twice
as large as the power of real-valued data symbols, employed in FBMC-OQAM, as already
discussed in Section 2.2. It is also interesting that the noise after de-spreading is white,
ñ ∼ CN(0, Pn ILK/2), even though the spreading matrix itself is not necessarily semi-unitary.
The reason behind this is again the orthogonalization condition in (5.4), implying that
Rñ = CHRnC = CHQHQC = Pn ILK/2.

The spreading matrix in (5.5) was my first approach to restore complex orthogonality
in FBMC. I later realized that a related concept, based on Walsh–Hadamard matrices, was
already proposed in [69, 71]. While the spreading matrix in (5.5) provides analytical insights,
it is not very practical because of the high computational complexity and the fact that the
spreading is performed in both, time and frequency, which only works for a doubly-flat
channel. Walsh–Hadamard spreading, on the other hand, is a much more practical solution
because it requires almost no additional complexity and the spreading is performed in
only one direction, either in time, see Section 5.2, or in frequency, see Section 5.3. Thus,
the channel only has to be flat in one dimension. Authors of [71] left the question open
whether it is possible to find a spreading matrix that has more than LK

2 columns while still
satisfying (5.4). My investigations in (5.5) show that this is not possible (ignoring any edge
effects which become negligible for a large number of K and L). A small disadvantage of
Walsh–Hadamard spreading is the fact that the spreading length has to be a power of two1.
This makes the integration into existing systems problematic but has almost no impact if a
system is designed from scratch. The big advantage of Walsh–Hadamard spreading, on the
other hand, is that only additions but no multiplications are needed. Thus, the additional
computational complexity is very low. Moreover, a fast Walsh–Hadamard transform can
be used, further reducing the computational complexity. For example, spreading in time
only requires log2(K) − 1 extra additions/subtractions per data symbol at the transmitter
and log2(K) extra additions/subtractions per data symbol at the receiver. For spreading in
frequency, it is log2(L) − 1 respectively log2(L). Because the Hermite prototype filter has
better localization in time than the PHYDYAS filter, I employ the Hermite prototype filter
for spreading in time so that one guard symbol is usually sufficient to separate different
transmission blocks. The same applies in reversed order for spreading in frequency, that is, I
employ the PHYDYAS prototype filter.

In principle, there exist two interpretations of my proposed spreading scheme.

1. Code dimension: on top of a conventional FBMC-OQAM system, a code dimension is
added (besides time and frequency), allowing to restore complex orthogonality.

1Restoring complex orthogonality in FBMC requires that the spreading length is a power of two [71].
Conventional Hadamard matrices must not necessarily be a power of two.
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Figure 5.2. In conventional FBMC-OQAM, each time-frequency position can only carrier
real-valued symbols, so that two time slots are required to transmit one complex-valued
symbol (thus the name offset-QAM). In block spread FBMC-OQAM, complex-valued
symbols are spread over several time slots, allowing to restore complex orthogonality in
FBMC-OQAM. Illustration: L = 2, K = 8. ©2016 IEEE, [39].
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Figure 5.3. Similar to Figure 5.2, one can equivalently spread in frequency. Note that there
is no reason why the “offset” in FBMC-OQAM should be in time (as usually assumed in
literature). Instead, the offset can equivalently be applied in frequency, so that the left part
and the right part of the figure are consistent. Illustration: L = 8, K = 2.

2. Transformed basis pulses: data symbols are no longer modulated by the basis pulses in
G but by the transformed basis pulses, given by, G̃ = GC =

[
g̃1 g̃2 . . . g̃LK/2

]
.

The first interpretation is illustrated in Figure 5.2-5.3 and corresponds to the mathematical
description in (5.2) and (5.3), that is, symbols are transmitted over a rectangular time-
frequency grid. In conventional FBMC-OQAM, two time-frequency positions are required
to transmit one complex-valued data symbol. In block spread FBMC, on the other hand,
complex-valued data symbols are spread over several time-frequency positions, allowing
to restore complex orthogonality. Some data symbols occupy the same time-frequency
resources. For those symbols, different code words guaranteed complex orthogonality. In
time spread FBMC, one can easily add subcarriers without losing complex orthogonality.
Concatenating blocks in the time, however, causes interference, so that guard symbols
might become necessary, see Section 5.2. The same applies in reversed order for frequency
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Figure 5.4. The black curves correspond to the basis pulses of conventional FBMC-OQAM
and represent the power in time, |gl,k(t)|2, and in frequency, |F{gl,k(t)}|2. The colored
curves, on the other hand, represent the “new” basis pulses, that is, |g̃i(t)|2 and |F{g̃i(t)}|2.
In contrast to the conventional basis pulses, the new basis pulses are not only orthogonal in
the real domain, but also in the complex domain.
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Figure 5.5. The power distribution in time and frequency for conventional basis pulses (black)
and the new basis pulses (colored). Similar to Figure 5.4, but for spreading in frequency and
the PHYDYAS prototype filter.

spreading, that is, an additional block can easily be added in time while adding frequency
blocks causes interference, see Section 5.3. Note that the guard symbols slightly reduce the
spectral efficiency.

The second interpretation of my block spread FBMC-OQAM transmission scheme is
illustrated in Figure 5.4-5.5 and shows the power in time and frequency of the conventional
basis pulses (black curve) and the transformed basis pulses (colored curves). I start my
discussion with the conventional FBMC-OQAM basis pulses (black), see (2.2). The left part
of Figure 5.4-5.5 represents the power distribution in time, that is, |gl,k(t)|2 while the right
part describes the power distribution in frequency, that is, |F{gl,k(t)}|2, with F{·} denoting
the Fourier transform. As already mentioned in Section 2.1, the basis pulses of conventional
multicarrier systems are just time and frequency shifted versions of the prototype filter. This
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implies that the power distribution in time has the same shape for all the basis pulses and the
only difference is that those pulses are shifted by T = 1

2F . The same applies in the frequency
domain, where the frequency shift is given by F. Let me now discuss the more interesting
part, that is, the transformed basis pulses (colored curves). Same as before, the left part
of Figure 5.4-5.5 shows the power distribution in time, that is, |g̃i(t)|2, while the right part
shows the power distribution in frequency, |F{g̃i(t)}|2. In contrast to conventional FBMC,
the underlying prototype filters are now unsymmetrical and no longer the same for all basis
pulses. Furthermore, the main power of those pulses is concentrated within a small area (the
peaks) but the side lobes are much higher than for a typical FBMC systems.

Frequency spreading can also be interpreted as a single carrier transmission scheme.
To achieve a desired bandwidth, several such single carrier blocks must be transmitted in
parallel. This is the same as in my block spread FBMC-OQAM transmission scheme. In
particular, both methods require a small guard band to improve the SIR, see Section 5.3. Still
block spread FBMC-OQAM has some advantages compared with conventional single carrier
schemes, such as, low complexity signal generation, flexible time-frequency assignment,
block wise processing and, in case of a doubly-selective channel, simple one-tap equalization
(although some advantages of block spread FBMC might be lost in such scenarios).

In a similar way, time spread FBMC can be compared to windowed OFDM. For this,
I consider spreading over K FBMC symbols in time, so that the transmission time is K

2F

(seconds). To obtain the same transmission time in windowed OFDM, one could reduce
the subcarrier spacing by a factor of K

2 . A potential window overhead is then relatively
small, comparable to the overhead of block spread FBMC, see Section 5.2. For such a setup,
FBMC still has better spectral properties than windowed OFDM, but the differences between
those two modulation schemes become very small. However, time spread FBMC has some
additional advantages over windowed OFDM (reduced subcarrier spacing). For example, the
common phase error caused by phase noise can be better dealt with. One only has to equalize
the phase before de-spreading. This is especially useful if all receive chains of a MIMO
system have the same phase error. Then, all the advantages of block spread FBMC can be
preserved. However, if the time variations are caused by the channel, this is no longer possible
so that windowed OFDM and block spread FBMC show a similar performance degeneration.

5.2 Walsh–Hadamard Spreading in Time

In a first step, I propose a coding matrix that satisfies the orthogonality condition in (5.4)
and, at the same time, is based on a fast Walsh–Hadamard transform, so that the additional
computational complexity becomes very low. As explained in Section 5.1, the ratio between
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the row dimension and the column dimension must be 2 : 1. Thus, spreading in time can be
modeled by the matrices Ct ′ ∈ RK×K

2 and Ct ′′ ∈ RK×K
2 where one has to alternate between

spreading with Ct ′ and Ct ′′ for adjacent subcarriers. The spreading matrix itself is found
by taking every second column out of a sequency ordered [153] Walsh-Hadamard matrix
H ∈ RK×K , that is,

[Ct ′]k,m = [H]k,2m−1

[Ct ′′]k,m = [H]k,2m
; for k = 1, 2, . . . ,K; m = 1, 2, . . . ,

K
2
. (5.6)

To find the overall spreading matrix C ∈ RLK× LK
2 , one has to map the individual spreading

matrices Ct ′ and Ct ′′ to the correct subcarrier positions. For my vectorized system model,
see (2.26), this leads to,

C = Ct ′ ⊗ IL/2 ⊗
[
1 0

0 0

]
+ Ct ′′ ⊗ IL/2 ⊗

[
0 0

0 1

]
. (5.7)

It can easily be checked through numerical evaluations that (5.7) satisfies the complex
orthogonalization condition in (5.4). Note that the matrices

[
1 0
0 0

]
and

[
0 0
0 1

]
in (5.7) are

necessary to alternate between spreading with Ct ′ and Ct ′′ for adjacent subcarriers.
So far, I considered only a block transmission of L subcarriers and K symbols in time. In

theory, K can approach infinity. However, as symbols are spread over K time slots, this is
not practical because of latency constraints and the fact that the channel varies over time,
destroying orthogonality. Indeed, the concept of block spread FBMC-OQAM is based on
concatenating several blocks. For analytical investigations, it is sufficient to assume three
transmit blocks and to analyze the performance in block 2. The first block is characterized
by transmit matrix G1, the second block by G2 and the third block by G3. Those transmit
matrices are almost the same except that they are time shifted by KT from each other, see
Figure 5.6. Note that G1, G2 and G3 must all have the same column dimension and can, for
example, be generated by a larger transmit matrix G with 3K symbols in time, followed by
splitting this matrix into three pieces. The overall transmit signal can then be written as

s =
[
G1 G2 G3

] 
x1

x2

x3

 , (5.8)

where x1 ∈ CLK×1 represents the transmitted symbols of the first block, x2 of the second
block and x3 of the third block. As shown in Figure 5.6, these blocks overlap slightly. In
conventional FBMC, such overlapping has no influence on the performance because of the
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Figure 5.6. Neighboring blocks cause interference. In conventional FBMC-OQAM, such
interference can be completely eliminated by taking the real part. In block spread FBMC-
OQAM, however, this interference remains, see Figure 5.7, and affects the performance if the
interference power is higher than the noise power. ©2016 IEEE, [39].

real orthogonality condition, that is ℜ{QH
2G1} = ℜ{QH

2G3} = 0LK , where Q2 = G2 denotes
the receive matrix for block 2. Unfortunately, orthogonality no longer holds true if time
spreading is applied within one transmission block. By neglecting noise, the received data
symbols of block 2 can be calculated by

ỹ2 = CHQH
2 s (5.9)

= x̃2 + C
HQH

2G1C x̃1 + C
HQH

2G3C x̃3. (5.10)

The first term in (5.10) represents the signal power while the second and third term the
undesired interference. The SIR of block 2 can thus be expressed by

SIR2 =

KL
2

| |CHQH
2G1C| |2

F
+ | |CHQH

2G3C| |2
F

, (5.11)

with | | · | |F denoting the Frobenius norm.

Figure 5.7 shows the SIR over spreading length K . As long as the SNR is much smaller
than the SIR, block interference can be neglected because the interference is dominated by
noise. Interference between blocks occurs only at the boarder region, so that, by increasing
spreading length K , the SIR can be improved because the interference is spread over a higher
number of symbols. However, if a short spreading length is desired, the interference might
be too high. By inserting a guard slot in time, the SIR can be increased at the expense of
spectral efficiency. Such efficiency loss, η = 1

K+1 , is relatively small and decreases for an
increasing spreading length K . As a reference, I also consider an LTE like OFDM system
which has an efficiency loss of η = 6.67%, caused by the CP. The overall spectral efficiency
loss, however, is higher than 6.67% because OFDM requires large guard bands, especially
compared with FBMC, see Section 2.4.
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Figure 5.7. Overlapping between blocks, see Figure 5.6, causes interference. By including a
guard slot, the SIR can be increased by approximately 20 dB at the loss of spectral efficiency,
that is, η = 1

K+1 . Note that the spreading length has to be a power of two because of the
Walsh-Hadamard structure. ©2016 IEEE, [39].

Let me now include doubly-selective channels into my model by a time-variant convolution
matrix H, see Section 2.2. Again, I neglect noise, so that the received data symbols at
subcarrier position l = 1, 2, . . . , L and code position m = 1, 2, . . . , K

2 for transmission block 2
can be expressed by:

ỹl,m,2 = cHl,mQ
H
2 H

[
G1C G2C G3C

] 
x̃1

x̃2

x̃3

 (5.12)

=

©«

x̃1

x̃2

x̃3


T [

G1C G2C G3C
]T

⊗ cHl,mQ
H
2

ª®®®¬ vec{H}, (5.13)

where cl,m ∈ RLK×1 denotes the l + L(m − 1)-th column vector of C and corresponds to
subcarrier position l and code position m. Similar as in Section 3.1.2, the Kronecker product
in (5.13) helps to simplify statistical investigations. With (5.13), the signal plus interference
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power PS+Il,m,2 = E{| ỹl,m,2 |2} can be straightforwardly calculated by

PS+Il,m,2 =tr

{([
G1C G2C G3C

]T
⊗ cHl,mQ

H
2

)
Rvec{H}

( [
G1C G2C G3C

]T
⊗ cHl,mQ

H
2

)H}
(5.14)

where Rvec{H} = E{vec{H}vec{H}H} denotes the correlation matrix of the vectorized
convolution matrix and can easily be calculated for a given power delay profile and a given
power spectral density. Similar to (5.14), the signal power (without interference) can be
found by

PSl,m,2 =
(
cTl,mG

T
2 ⊗ cHl,mQ

H
2

)
Rvec{H}

(
cTl,mG

T
2 ⊗ cHl,mQ

H
2

)H
, (5.15)

so that the average SIR for block 2 becomes:

SIR2 =

L∑
l=1

K
2∑

m=1
PSl,m,2

L∑
l=1

K
2∑

m=1

(
PS+Il,m,2 − PSl,m,2

) . (5.16)

If the channel is approximately frequency flat within one subcarrier (supported by my
measurements) and for a Jakes Doppler spectrum, Figure 5.8 shows how the SIR depends
on the velocity. For a flat fading channel, the performance depends only on the normalized
maximum Doppler shift, that is, fc vc

1
F , with fc being the carrier frequency, v the velocity and c

the speed of light. Note that I consider one guard slot per block, so that, for a velocity of zero,
the same SIR as the blue curve in Figure 5.7 is achieved. The smaller the spreading length,
the less effect has a time-variant channel. Therefore, both curves in Figure 5.8 intersect at
some point.

The main reason for block spread FBMC is to enable MIMO transmissions in FBMC
with approximately the same MIMO complexity as in OFDM. To validate my spreading
approach, I conduct real world testbed measurements at a carrier frequency of 2.5 GHz [39]
and 60 GHz [27]. Let me start with the description of my 2.5 GHz measurement setup. The
signal is transmitted at a carrier frequency of fc = 2.4955GHz with L = 12 subcarriers and
a subcarrier spacing of F = 15 kHz, leading to a transmission bandwidth of FL = 180 kHz.
The sampling rate is fs = 200MHz (determined by the hardware), so that the FFT size
becomes ⌈ fs

F ⌉ = 13334, where most FFT points are set to zero. Similar as in Figure 5.6, I
consider three transmit blocks but evaluate the performance only for block 2. For FBMC, one
block consists of K = 32 FBMC symbols and a zero time slot, leading to a transmission time
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Figure 5.8. A high velocity reduces the SIR because time spread FBMC-OQAM implicitly
assumes a time-invariant channel. Note that the robustness can be improved by increasing
the subcarrier spacing or by reducing the spreading length. The theoretical SIR expression in
(5.16) is validated by simulations. ©2016 IEEE, [39].

of (K + 1)T = 1.1ms per block. I also apply spreading in the time domain, as described in
this section, so that for each transmission block, 16 symbols per subcarrier are available. For
OFDM, the CP length is set to TCP = 2.085 µs, approximately half the length of that in LTE,
and the number of time symbols per block is set to K = 16, leading to the same transmission
time as in FBMC, that is, K(1/F + TCP) = 1.1ms. Thus, the bit rate is the same for FBMC
and OFDM, allowing a fair comparison, although one should keep in mind that FBMC has
better spectral properties so that a higher number of subcarriers could be used. Note that the
SNR in FBMC is 0.13 dB higher than in OFDM because the zero time slots require no power.
In real world transmissions, channel estimation is always necessary, which I perform by pilot
symbol aided channel estimation, similar as in LTE, that is, a diamond shaped pilot pattern
with eight pilot symbols per antenna, see Section 4.1. Because the channel is highly correlated
in time and frequency, I average over all eight channel estimates, improving the channel
estimation accuracy. At the pilot positions of antenna 1, antenna 2 must transmit zero symbols
in order to avoid interference. The same applies in reversed order. Thus, I lose 16 data
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symbols for the channel estimation, so that, for 16-QAM, 704 bits are transmitted per antenna
(spatial multiplexing). The receiver is located indoor while the transmitter is 150 m away, on
the rooftop of the opposite building, see Figure 1.3. Different MIMO channel realizations are
obtained by relocating the static receive antennas to 1024 positions within a 4 × 4 wavelength
grid. For 2 × 2 spatial multiplexing, I transmit independent bit streams at both antennas
simultaneously. At the receiver, I employ ML MIMO detection, assuming perfect channel
knowledge and Gaussian distributed noise, so that my detection only approximates the true
ML performance. Note that ML detection is not feasible in conventional FBMC-OQAM
since too many possibilities have to be calculated because of the imaginary interference
[70]. The second considered transmission scheme is 2 × 1 Alamouti’s space-time block code
[69] which achieves full diversity at rate one. Besides my measurements at 2.5 GHz, I also
measure at 60 GHz. The parameters are chosen similar to my 2.5 GHz measurements, except
that the subcarrier spacing is set to F = 500 kHz and the number of subcarriers is increased
to L = 48, leading to a transmission bandwidth of FL = 24MHz. Note that such a high
subcarrier spacing is proposed for mmWave transmissions [154] and implicitly reduces the
latency. Thus, even though I spread data symbols in time, the overall transmission time is less
than 40 µ, satisfying the low-latency condition of 100 µs [78]. More details on my mmWave
measurement setup can be found in [27].

Figure 5.9 shows the measured BER over SNR for my 2.5 GHz measurement as well as
my 60 GHz measurement. FBMC and OFDM show the same BER performance but FBMC
has much better spectral properties. The measurement results validate that my block spread
FBMC-OQAM transmission scheme works in real world testbed scenarios.

5.3 Walsh–Hadamard Spreading in Frequency

Again, I start my discussion with the calculation of spreading matrix C ∈ RLK× LK
2 . Similar as

in Section 5.2, frequency spreading matrix C f ∈ RL× L
2 can be found by taking every second

column out of a sequency ordered [153] Walsh-Hadamard matrix H ∈ RL×L , that is,

[C f ]l,m = [H]l,2m−1 ; for l = 1, 2, . . . , L; m = 1, 2, . . . ,
L
2
. (5.17)

In contrast spreading in time, however, there is no need to alternate between two matrices, so
that one frequency spreading matrix is sufficient. Matrix C f in (5.17) could be equivalently
defined by [H]l,2m. Utilizing the underlying structure of my notation (vectorization) and the
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Figure 5.9. Real-world testbed measurements show that MIMO works in FBMC once
symbols are spread in time. The spreading process itself has low computational complexity
because a fast Walsh-Hadamard transformation can be used. FBMC and OFDM experience
both the same BER, but FBMC has lower OOB emissions. ©2017 IEEE, [1].

fact that I spread over frequency only, allows me to express spreading matrix C ∈ RLK× LK
2 by,

C = IK ⊗ C f , (5.18)

where Kronecker product ⊗ together with identity matrix IK map coding matrix C f to the
correct time slot.

Similar as in Section 5.2, I am interested in the performance over doubly-selective channels.
From a mathematical point of view, the SIR calculation is exactly the same as in Section 5.2,
see (5.14)-(5.16). Only the interpretation of transmit matrix G1 and G3 is differently. They
now represent a frequency-shift by FL instead of a time-shift by KT . Furthermore, the index
changes slightly, that is, (l,m) transforms to (m, k), reflecting that coding is performed in
the frequency domain and not in the time domain. As already elaborated throughout this
thesis, I expect a low delay spread for future wireless communication systems, enabled by
beamforming, higher carrier frequencies and smaller cell sizes. This is important for my
frequency spreading approach because efficient one-tap equalization only works for a low
delay spread. To cover a large range of possible scenarios, I include three different Rayleigh
fading channel models in my performance evaluation. Firstly, the Vehicular A channel model
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Figure 5.10. The interference can be neglected if the SIR is approximately 10 dB higher than
the SNR. A guard subcarrier increases the SIR significantly, especially for a short spreading
length. The higher the spreading length, the higher the spectral efficiency. However, a high
spreading length also leads to a large, channel induced, interference. ©2017 IEEE, [36].

with a relatively large delay spread of 370 ns. Secondly, the Pedestrian A channel model
with a moderate delay spread of 46 ns. Thirdly, a short delay spread of 10 ns for which I
assume three equally spaced taps. These taps are 100 ns apart and the power of each tap is
20 dB lower then the previous tap. Such short delay spread represents, for example, an indoor
scenario [25]. For those channel models, Figure 5.10 shows the SIR over spreading length L.
Here, I assume a time invariant channel. In many practical cases, the SNR is below 20 dB.
Thus, for a short delay spread (10 ns), one can easily spread over L = 128 subcarriers, leading
to an almost negligible time-frequency efficiency loss of η = 1

L+1 = 0.8%. For a Pedestrian
A channel model, spreading over L = 32 subcarriers is feasible, leading to η = 3%. Only for
a high delay spread, my method is suboptimal because of the large overhead required for a
sufficiently high SIR. As a reference, I also include the SIR in case of no guard subcarriers
(dotted line). In some cases, especially for low to medium SNR ranges, one does not need a
guard subcarrier, that is, η = 0%.



5.3 Walsh–Hadamard Spreading in Frequency 103

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

30

35

40

45

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

30

35

40

45

Pedestrian A, τrms = 46 ns

Vehicular A, τrms = 370 ns

Short delay spread, τrms = 10 ns

F = 15 kHz
L = 32

CP-OFDM, TCP ≥ τmax, no ISI

Velocity [km/h], fc = 2.5GHz

Si
gn

al
-to

-In
te

rfe
re

nc
e

Ra
tio

[d
B]

Figure 5.11. A time-variant channel causes additional interference. For high velocities,
FBMC shows approximately the same SIR as OFDM. Thus, OFDM no longer performs
better in terms of SIR but still has poorer spectral properties. The SIR for velocity zero can
be found in Figure 5.7. ©2017 IEEE, [36].

Figure 5.11 shows how the SIR depends on the velocity. Even high velocities, such as
200 km/h, generate only small additional interference, so that the SIR remains sufficiently
high for a short delay spread and a Pedestrian A channel model. Compared to the time-
spreading approach, discussed in Section 5.2, frequency spreading provides higher robustness
in time-variant channels. As a reference, I also include the SIR for conventional CP-OFDM.

In contrast to Section 5.2, I validate my transmission scheme by means of simulations
instead of measurements, allowing a high degree of freedom in terms of channel parameters.
I assume a Pedestrian A channel model and a Jakes Doppler spectrum (velocity 100 km/h
at 2.5 GHz). The subcarrier spacing is set to F = 15 kHz and the symbol alphabet is
chosen from a 16-QAM signal constellation. For FBMC, I assume a spreading length of
L = 32 and a total of NB = 16 frequency blocks. This leads to a transmission bandwidth
of F(L + 1)NB = 7.92MHz. OFDM employs the same bandwidth, that is 528 subcarriers.
Note, however, that in practice, OFDM requires an additional guard band because of the
poor spectral behavior. The transmission time for both methods is the same and given by
KT = 1ms. The zero guard subcarrier in FBMC leads to a slightly higher SNR compared to
OFDM, but only by (L + 1)/L = 1.03 which has almost no influence.
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Figure 5.12. Simulations validate that the proposed block spread FBMC-OQAM transmission
scheme has approximately the same BER as OFDM. However, FBMC has the additional
advantage of a higher spectral efficiency because of lower OOB emissions. Only for high
SNR values, the channel induced interference becomes noticeable, see also Figure 5.11.
©2017 IEEE, [36].

Similar as in Section 5.2, I consider a 2×1Alamouti transmission scheme as well as spatial
multiplexing with ML symbol detection. To keep the computational complexity low, my ML
detection ignores any channel induced interference and thus represents a slightly mismatched
ML detection. Figure 5.12 shows that FBMC has almost the same BER performance as
OFDM, but the additional advantage of much better spectral properties. Only for high SNR
values, small deviations between OFDM and FBMC are observable. This can be explained
by the channel induced interference which leads to an SIR of approximately 27 dB, see
Figure 5.11. Such interference, however, has no influence for low to medium SNR values.
Only for high SNR values, the spreading length might need to be reduced in order to improve
robustness.



Chapter 6

Pruned DFT Spread FBMC-OQAM:
Reducing the PAPR

The superior spectral properties of FBMC are lost if nonlinearities become dominant [1, 55].
Thus, the concept of sharp digital filters to enable a flexible time-frequency allocation, see
Figure 1.1 and Section 2.4, only works as long as FBMC operates in the linear regime.
In multicarrier systems, this is hard to achieve because of a poor PAPR, caused by the
overlapping structure of subcarriers in time, essentially leading to Gaussian distributed
samples. The poor PAPR is one of the main disadvantages of multicarrier systems. To
reduce the PAPR in OFDM, several techniques have been suggested, such as, selective
mapping [155] or partial transmit sequences [156]. Those methods can be extended to
FBMC, as demonstrated, for example, in [157–159]. However, all those techniques require a
high computational complexity and side information. Those drawbacks explain why they
are not employed in practical systems. Instead, LTE uses SC-FDMA in the uplink [160],
essentially, a DFT precoded OFDM system. The same technique will also be included in
5G [7]. The advantages of SC-FDMA compared with other PAPR reduction techniques are
a relatively low computational complexity and that no side information is necessary. The
disadvantages, compared with pure OFDM, are a slightly lower throughput and a slightly
higher computational complexity.

Simply combining FBMC and a DFT, as done in SC-FDMA for OFDM, performs poorly
in FBMC [161–163]. To improve the performance, authors in [161] propose precoding
by a filter bank instead of a DFT. While such method reduces the PAPR, it still does not
perform as good as SC-FDMA and has the additional disadvantages of a higher computational
complexity and an increased overhead. To overcome those limitations, I propose a novel
modulation scheme based on a pruned DFT in combination with one-tap scaling. My
proposed technique has the same PAPR as SC-FDMA but requires no CP and has much better
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Figure 6.1. Nonlinearities, such as clipping, destroy the superior spectral properties of FBMC.
Thus, a flexible time-frequency allocation, as illustrated in Figure 1.1, is not possible anymore.
To overcome this limitation, I propose a novel transmission scheme, pruned DFT spread
FBMC-OQAM, which is less sensitive to nonlinearities.

spectral properties. Furthermore, my method restores complex orthogonality and allows for
low latency transmissions. Compared to pure SC-FDMA, the computational complexity is
only two times higher. This chapter is mainly based on my publication in [33], currently
under review, and contains the following novel contributions:

• In Section 6.1, I describe the basic idea of pruned DFT spread FBMC and discuss its
relationship to other transmission techniques.

• In Section 6.2, I provide a comprehensive mathematical description of pruned DFT
spread FBMC. Furthermore, I propose the usage of CP subcarriers. Such overhead is
usually not necessary, but might be needed if the spreading length is small.

• Finally, in Section 6.3, I compare my method to OFDM, SC-FDMA and conventional
FBMC in terms of PAPR and throughput.

6.1 Introduction

To get a better understanding of how nonlinearities affect the PSD, I consider a simple
clipping example. Here, the real part of the signal is clipped to a fixed value of ±A

√
P̄S/2 as

soon as the signal is larger/smaller than a certain threshold, that is, ℜ{s(t)} ≷ A
√

P̄S/2. The
same applies for the imaginary part. The left part of Figure 6.1 shows that clipping destroys
the superior spectral properties of conventional FBMC. This is a major problem because
one of the biggest advantages of FBMC is lost. Thus, having a low PAPR is a crucial aspect
for all filter based modulation schemes. The right part of Figure 6.1 shows the PSD of my
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Figure 6.2. Power of the underlying basis pulses in time, that is, |gl,k(t)|2 and |g̃i(t)|2; (a)
conventional OFDM, NFFT = 1024, L = 16; (b) conventional SC-FDMA, that is, precoding
by DFT matrix WL; (c) only L/2 = 8 basis pulses, close to the center, are utilized, that is,
WL is replaced by a pruned DFT matrix, W̃L×L/2; (d) multiply by a window/prototype filter
p(t), so that OFDM transforms into FBMC; (e) one-tap scaling of the basis pulses so that the
transmit power is approximately constant over time.

pruned DFT spread FBMC transmission scheme. My method performs much better than
conventional FBMC. The possible improvement in terms of OOB emissions is 10 dB for
A2 = 6 dB and 35 dB for A2 = 9 dB.

The basic idea of my transmission scheme can be best explained with the underlying
basis pulses. Figure 6.2 shows the power of those basis pulses and illustrates a step by step
construction of my method, starting from a conventional OFDM system. Figure 6.2 (a)
represents an OFDM transmission for NFFT = 1024, L = 16 and K = 1. The underlying
basis pulses are rectangular functions which are shifted in frequency, see (2.12). However, in
terms of transmit power, a frequency shift has no influence. All the basis pulses are added
together with some random weights (the data symbols), so that, according to the central limit
theorem, the signal distribution at one time position approaches a Gaussian distribution. This
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explains the poor PAPR performance of OFDM. In SC-FDMA, see Figure 6.2 (b), DFT
precoding by WL transforms the basis pulses of a conventional OFDM system in such a
way, that a single carrier transmission is emulated. In particular, the basis pulses are more
localized in time and even though they still overlap in time, the signal distribution at one
time position is mainly determined by 1-2 basis pulses. Thus, as long as the data symbols
are not Gaussian distributed, but chosen from a limited signal constellation such as QAM,
the PAPR will be better than in OFDM. Unfortunately, SC-FDMA has the same poor OOB
emissions as OFDM. This can easily be deduced by considering the transmitted signal at the
edge positions, that is, tF = 0 and tF = 1. Similar as in OFDM, the underlying rectangular
pulse cuts through the signal so that, at the edges, the signal value abruptly jumps to zero
without a smooth transition. Only basis pulses close to the edge positions are affected by this
cutting effect. Thus, setting the basis pulses at the edges to zero, reduces the OOB emissions
and is indeed the basic idea of zero-tail DFT-spread-OFDM [165, 166]. However, authors in
[165, 166] remove only a few basis pulses to keep the overhead low. I, on the other hand,
remove L

2 basis pulses from the set, that is, DFT spreading matrix WL is replaced by a pruned
DFT matrix W̃L×L/2. In contrast to zero-tail DFT-spread-OFDM, however, my method does
not impose any overhead because I also reduce the time spacing by a factor of two, as typically
done in FBMC-OQAM. The result of my approach is shown in Figure 6.2 (c). The reason
why I remove exactly L

2 basis pulses is motivated by my observation in Section 5.1, which
provides a theoretical background on the optimal spreading matrix and, in particular, its size.
To combat multipath delays, zero-tail DFT-spread-OFDM utilizes the zero-tail overhead
in a similar way as the CP in OFDM, reducing the spectral efficiency. Again, I choose a
different approach, namely, I transform the OFDM system into an FBMC system, so that
the influence of multipath propagation becomes very low and can usually be neglected, see
Section 3.1.2. As shown in Section 2.3, an OFDM system can easily be transformed into
an FBMC system simply by multiplying the IFFT output with a prototype filter p(t), as
illustrated in Figure 6.2 (d). In the last step, the individual basis pulses are scaled so that the
sum transmit power is approximately constant over the transmission time. This final step
completes my novel pruned DFT spread FBMC transmission scheme, see Figure 6.2 (e). To
keep the illustration in Figure 6.2 simple, I consider a root-raised cosine pulse in time (roll-off
factor one, time length 1

F ). However, in Section 6.2- 6.3, I employ a truncated Hermite pulse
of length 1.56 1

F (seconds). In particular, the IFFT output has to be repeated so that it covers
the full length of the prototype filter, as already explained in Section 2.3.

With respect to other modulation schemes, my method is related to zero-tail DFT-
spread-OFDM [165, 166] and FFT-FBMC [70, 167], although the differences are still severe.
Compared to zero-tail DFT-spread-OFDM, my method does not need any overhead and has
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much better spectral properties. Compared to FFT-FBMC, I spread in frequency instead of
time, include one-tap scaling, employ a modified prototype filter, and focus on the PAPR
performance as well as the latency. Furthermore, the channel may vary within the spreading
interval while FFT-FBMC relies on a time invariant channel. FFT-FBMC is therefore more
closely related to block spread FBMC, see Chapter 5. The key difference between pruned
DFT spread and block spread FBMC is that in pruned DFT spread FBMC, data symbols are
spread over the whole bandwidth, while for block spread FBMC the bandwidth is split into
smaller chunks. These small chunks can then be equalized by a simple one-tap equalizer,
so that Alamouti’s space-time block code and ML MIMO detection becomes feasible. In
pruned DFT spread FBMC, on the other hand, ML detection is often not possible. However,
this is not a big problem because the focus lies on a low PAPR. Furthermore, SC-FDMA has
the same drawback. The advantages and possible disadvantages of my novel pruned DFT
spread FBMC transmission scheme, can be summarized as follows:
Advantages:

• Low PAPR, same as in SC-FDMA.

• Low OOB emissions, comparable to FBMC.

• Low latency, only slightly higher than in OFDM.

• Complex orthogonality is restored, therefore an efficient multi-user uplink transmission
is possible.

• Maximum symbol density, TF = 1 (complex), same as in FBMC.

• Low-complexity one-tap equalizers can be used.

• Relatively high robustness in doubly-selective channels.

Possible disadvantages:

• Slightly higher computational complexity, approximately two times that of SC-FDMA.

• Only quasi-orthogonal, that is, some small residual interference remains. This, however,
is usually not a problem. Furthermore, a frequency CP can reduce this interference.

• Low-complexity ML MIMO detection only works if the channel is approximately flat
within the spreading interval (same problem as in SC-FDMA).

• Throughput is slightly lower than in multicarrier systems because of the spreading
(same problem as in SC-FDMA).
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6.2 Mathematical Details of the Novel Approach

I will now mathematically describe my pruned DFT spread FBMC transmission scheme in
more detail. I stack all basis pulses, belonging to time-position k, into matrix Gk ∈ CN×L ,
according to

Gk =
[
g1,k . . . gL,k

]
. (6.1)

The overall transmit signal can then be modeled, similar as in Section 2.2, by

s =
K∑

k=1

Gkxk = Gx, (6.2)

where xk = [x1,k . . . xL,k]T ∈ CL×1 consists of all data symbols belonging to time-
position k. The overall transmission system is described by, see (2.31),

y ≈ diag{h}QHGx + n. (6.3)

Similar as in Section 5.3, I spread L/2 complex valued data symbols, x̃k ∈ C L
2×1, over L

subcarriers, so that the transmitted symbols for FBMC at time position k become:

xk = C f x̃k, (6.4)

with C f ∈ CL× L
2 denoting the frequency spreading matrix. In contrast to conventional FBMC,

the transmitted symbols are now complex-valued. Note that the size of spreading matrix
C f is optimal, as already discussed in Section 5.1. The received data symbols ỹk ∈ C L

2×1

are obtained by one-tap equalization of the received symbols with ek ∈ CL×1, followed by
despreading according to

ỹk = CH
f diag{ek}−1 yk . (6.5)

For the derivation of spreading matrix C f , I assume an AWGN channel, H = IN , for which
no equalization is necessary. The ultimate goal is to restore complex orthogonality, that is,

CH
f Q

H
k GkC f ≈ IL/2. (6.6)

The approximation symbol in (6.6) indicates that some small residual interference remains
so that the system is only quasi orthogonal. However, in many practical cases, this has no
impact on the performance. In a first step, I assume that the spreading and despreading is
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performed by a DFT matrix W ∈ CL×L , so that the left part of (6.6) can be rewritten as:

a = diag{WHQH
k GkW}, (6.7)

with a ∈ RL×1 denoting an auxiliary vector. Figure 6.3 shows how [a]i depends on position
i. Note that element [a]i corresponds to the i-th column vector of W. The main idea of my
transmission scheme is to utilize only those column vectors of W, which correspond to the
L
2 largest elements of a. This means only the first L

2 column vectors of W are employed.
Furthermore, I perform pre-equalization of [a]i. The final spreading matrix C f ∈ CL× L

2 can
then be expressed by

C f = W̃ diag{b̃}, (6.8)

with pruned DFT matrix W̃ ∈ CL× L
2 and scaling vector b̃ ∈ R L

2×1 given by:

[b̃]i =

√
1

[a]i
; for i = 1, 2, . . . ,

L
2
, (6.9)

W̃ =W

[
I L
2

0 L
2

]
. (6.10)

The whole transmission system is depicted in Figure 6.4. The gray areas indicate the
novel parts. To be specific, I spread and de-spread data symbols with C f and employ a
truncated Hermite prototype filter, that is, a conventional Hermite prototype filter, see (2.15),
for which the pulse is set to zero after the first zero-crossing. This leads to a pulse length of
1.56 1

F (seconds) where O = 1.56 also represents the overlapping factor in FBMC. Note that
other prototype filters are also possible and there exists a trade-off between OOB emissions
and latency.
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Figure 6.5 shows the expected transmit power for one time-position (ignoring other
symbols in time). In conventional FBMC, there exists a large overlapping of symbols in time.
In pruned DFT spread FBMC, on the other hand, precoding by C f shapes the transmitted
signal in such a way, that the overlapping in time is very low. This is very important for
low-latency transmissions and to keep the computational complexity low. Furthermore,
an efficient multi-user uplink transmission becomes feasible because phase synchronous
transmission, an unrealistic assumption and a major problem in conventional FBMC uplink,
is no longer necessary. The latency can be further reduced by decreasing the overlapping
factor in combination with windowing. However, this comes at the expense of higher OOB
emissions, as shown in Figure 6.6. Still, the OOB emissions are much better than in OFDM.
For an overlapping factor of O = 1.56, the OOB emissions of my method are comparable
to conventional FBMC transmissions and much better than in OFDM. Note that a similar
precoding effect, as shown in Figure 6.5, was also observed in FFT-FBMC [167], but in the
frequency domain instead of the time domain.

Let me now discuss the latency in more detail. The transmission time of one FBMC
symbol depends on the overlapping factor and requires O

F (seconds). However, one FBMC
symbol only carries half the information of that of an OFDM symbol. Thus, one might need
to include the second symbol, leading to an additional delay of T = 0.5

F , that is, the time
spacing. For example, an overlapping factor of O = 0.8 implies that the first half of the
information is received 20% faster than in OFDM (no CP) while the second half needs 30%
longer.

The computational complexity of my transmission scheme is approximately two times
higher than in conventional SC-FDMA. To be specific, the computational complexity relative
to SC-FDMA at the transmitter can be approximated by

CpDFTsFBMC

CSCFDMA
≈

2
( L
2 + L log L

2 + NFFT log NFFT +ONFFT
)

L log L + NFFT log NFFT
≈ 2. (6.11)

The term NFFT log NFFT corresponds to the IFFT, required for both, FBMC and OFDM.
Additionally, FBMC requires element-wise multiplication by the prototype filter, see Sec-
tion 2.3, leading to an additional complexity of ONFFT. Furthermore, DFT spreading in
SC-FDMA has a complexity of L log L, while the pruned DFT in combination with one-tap
scaling requires L

2 + L log L
2 . Finally, the reduced time-spacing in FBMC implies that all the

calculations have to be applied two times as often as in SC-FDMA (no CP).

Although I shape the transmit signal in time by C f , see Figure 6.5, there still exists some
residual interference between blocks. Furthermore, only quasi orthogonality is restored
within one block. To quantify those effects, I calculate the SIR. The pruned DFT spread
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efficiency.

FBMC transmission matrix can be expressed by

D̃ = (IK ⊗ C f )HQHG (IK ⊗ C f ), (6.12)

and describes the input-output relation ỹ = D̃ x̃ in case of zero noise, n = 0N×1. The Kronecker
product in (6.12) maps the frequency spreading matrix to the correct time-positions. Utilizing
(6.12), the SIR can be straightforwardly calculated by

SIR =
∑ L

2 K
i=1 |[D̃]i,i |2∑ L

2 K
i=1

∑ L
2 K
j=1 |[D̃]i, j |2 −

∑ L
2 K
i=1 |[D̃]i,i |2

. (6.13)

The blue curve in Figure 6.7 shows the SIR over the number of subcarriers. For a large
number of subcarriers, the SIR is so high, that the interference is usually dominated by noise.
However, sometimes a higher SIR might be required. This can easily be accomplished with a
frequency CP/suffix, that is, a cyclical extension of the signal in the frequency domain. The
drawback is a small reduction in spectral efficiency. The CP at the transmitter can be modeled
by matrix TCP ∈ CL×(L−LCP) and the CP reduction at the receiver by RCP ∈ CL×(L−LCP). For
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example, a frequency CP of length LCP = 2 leads to

TCP =


0 0 · · · 0 1

IL−2
1 0 · · · 0 0

 ; RCP =


0 · · · 0

IL−2
0 · · · 0

 , (6.14)

and guarantees that x1,k = xL−1,k and xL,k = x2,k . Compared to the previous coding matrix,
see (6.8), the new matrices Cf,TX ∈ CL× L−LCP

2 and Cf,RX ∈ CL× L−LCP
2 change according to:

Cf,TX = TCP W̃ diag{b̃} (6.15)

Cf,RX = RCP W̃ diag{b̃}. (6.16)

Furthermore, pruned DFT matrix W̃ ∈ C(L−LCP)×
L−LCP

2 and scaling vector b ∈ R
L−LCP

2 ×1

now also have different dimensions. The process of finding W̃ and b, however, is the same as
described in (6.6)-(6.10). Figure 6.7 shows that a frequency CP can significantly improve the
SIR while the efficiency loss, given by η = LCP

L , is relatively small.

6.3 Performance Evaluation

Figure 6.8 shows the Complementary Cumulative Distribution Function (CCDF) of the PAPR.
A simple DFT spread FBMC transmission scheme, as propose in [161], performs poorly. In
contrast to that, my method performs as good as SC-FDMA. By including a frequency CP,
the PAPR can be further improved at the expense of spectral efficiency.

In the following simulations, I utilize the 3GPP 38.900 TDL-A channel model [93,
Section 7.7.3]. For such channel model, Figure 6.9 shows the throughput, that is, turbo
coding in combination with an adaptive modulation and coding scheme, similar as in LTE.
The detection is based on a one-tap MMSE-MIMO equalizer, where“one-tap” means a per
time-frequency position equalization. Although not shown directly, SC-FDMA without CP
is severely effected by the long delay spread while the delay spread has almost no influence
on my pruned DFT spread FBMC transmission scheme. Of course, SC-FDMA with CP is
also not effected by the long delay spread because of the CP. However, in contrast to my
transmission scheme, SC-FDMA is severely effected by the high velocity. This explains why
in Figure 6.9, my method performs much better than SC-FDMA. Of course, some of the
improvement also comes from the fact that my scheme does not need a CP. Conventional
FBMC performs best because the log likelihood ratios include the fading states, whereas
spreading destroys this information (for a low complexity detection). Note that I ignore
guard subcarriers in my considerations here. Thus, the true performance of FBMC compared
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Figure 6.9. Pruned DFT spread FBMC-OQAM performs much better than SC-FDMA.
Conventional FBMC-OQAM performs best because the channel decoder can exploit different
fading states, while spreading destroys this information.
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Figure 6.10. In contrast to conventional FBMC-OQAM, ML-MIMO detection is feasible in
pruned DFT spread FBMC-OQAM, leading to a higher throughput. OFDM performs best
because no CP is necessary. However, once guard subcarriers are included, pruned DFT
spread FBMC will outperform OFDM.

to OFDM is even better than illustrated in Figure 6.9 because fewer guard subcarriers are
needed.

Figure 6.10 shows the throughput for a very short delay spread and a small number of
subcarriers, as I expect, for example, in indoor Machine to Machine (M2M) communications.
The channel is approximately flat within the transmission bandwidth, allowing to de-spread
before equalization, leading to a similar scenario as discussed in Chapter 5. In particular,
low complexity ML detection becomes possible because pruned DFT spread FBMC restores
complex orthogonality. This is not the case in conventional FBMC, so that ML detection is
not feasible. Still, my method performs slightly worse than OFDM because of the frequency
CP, required as the number of subcarriers is relatively small. However, once guard subcarriers
are included, my method will outperform even OFDM.





Chapter 7

Conclusions

Future wireless systems will have to support a large range of different use cases within the same
band. This is difficult in legacy CP-OFDM because of the poor OOB emissions. There exists
methods to reduce the OOB emissions in OFDM, such as windowing and filtering, but they
are only efficient if the number of subcarriers is high. Not all possible use cases envisioned
for future wireless systems will employ such a high number of subcarriers, so that FBMC
becomes an efficient alternative to OFDM, because it has much better spectral properties.
Although FBMC has many advantages, it also requires some special treatment because
of the intrinsic imaginary interference. In this thesis, I have shown that many challenges
associated with FBMC, such as channel estimation and MIMO, can be efficiently dealt with.
Furthermore, in contrast to most other papers, my proposed solutions are validated by real
world testbed measurement and a downloadable MATLAB code supports reproducibility.

I employ a matrix-based system model which greatly simplifies analytical evaluations.
Even highly sophisticated concepts, such as doubly-selective channel estimation and equal-
ization, become very easy to handle. Additionally, my matrix notation helps in understanding
that there is, from a conceptional point of view, no difference between the signal generation
in windowed OFDM and FBMC. Thus, the overly complicated polyphase description is not
needed to find an efficient IFFT based implementation.

One-tap equalizers are in most practical cases sufficient for FBMC once the subcarrier
spacing is matched to the channel. I have shown this by deriving closed-form solutions for
the BEP and the SIR. Thus, sophisticated equalization methods are usually not worth the
effort and their usefulness is often overstated in literature. Still, for the sake of completeness,
I have also proposed enhanced equalization methods, namely, an MMSE equalizer and a
low-complexity interference cancellation scheme. Thanks to my matrix notation, those
equalizers can be straightforwardly extended to MIMO transmission systems.
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Channel estimation is always required in practical systems and therefore an integral part
of my thesis. I have discussed different methods to cancel the imaginary interference at
the pilot positions. By applying two auxiliary symbols instead of one, as usually done in
literature, I am able to improve the throughput for low to medium SNR values because the
saved power offsets the loss of data symbols. I have also formulated general conditions for
the auxiliary symbols, enabling closely spaced pilots. Many authors claim that the BER
in case of auxiliary symbols performs poorly when compared to OFDM. This is not true
once a fair power distribution between pilot and data symbols is considered, especially if
the pilot-to-data power offset is optimized. My testbed measurements have shown that the
data spreading approach performs best, at the expense of a higher computational complexity,
which, however, is still manageable. I have further improved the data spreading approach by
proposing an algorithm that allows spreading over arbitrary many time-frequency positions.
For highly double-selective channels, I have proposed a novel channel estimation technique
which performs close to perfect channel knowledge and outperforms existing methods in the
sense that clustered pilots and basis expansions are not necessary. In the context of OFDM,
the feasibility of my approach was even validated by real world testbed measurements at
velocities of up to 400 km/h.

By spreading data symbols in time or frequency, complex orthogonality can be restored
in FBMC-OQAM, allowing to straightforwardly employ all methods known in OFDM. I
have derived the optimal spreading matrix and proposed two different interpretations of such
spreading, either in the code dimension, or by transforming the basis pulses. Although the
optimal spreading matrix provides analytical insights, a more practical solution is based
on Walsh-Hadamard spreading because it requires almost no additional complexity and
performs close to the optimum. Because different spreading blocks interfere with each other,
I have proposed the usage of guard symbols. This slightly reduces the spectral efficiency but
improves the SIR. The underlying assumption of block spread FBMC is a flat channel within
the spreading interval. In mildly-selective channels, this assumption is often true, as I have
shown by deriving closed-form SIR expressions. The feasibility of my block spread FBMC
transmission scheme was validated by real world testbed measurements at a carrier frequency
of 2.5 GHz as well as 60 GHz.

One of the most important contributions of this thesis is pruned DFT spread FBMC,
which has the remarkable properties of a low PAPR, low latency transmissions and a high
spectral efficiency. Pruned DFT spread FBMC outperforms SC-FDMA in almost all aspects.
It is more robust in doubly-selective channels, requires no CP and has much lower OOB
emissions. If the channel is approximately flat within the transmission bandwidth, pruned
DFT spread FBMC even outperforms conventional FBMC-OQAM in terms of throughput
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because low-complexity ML-MIMO detection becomes feasible. Potential applications
of my scheme include uplink transmissions in wireless communications as well as M2M
communications, where the good time-frequency localization guarantees that no sophisticated
synchronization between users is necessary.

Open Issues

Although this thesis provides a comprehensive overview of FBMC and covers a large range
of different topics, not all possible aspects are included. In this subsection, I will give a short
overview of possible future research directions.

So far, I only considered average performances. In terms of user experience, however, it
is often more important to have a steady performance without large fluctuations. In this sense,
the deep fading states in Figure 1.5 are problematic. This is even more true if the channel is
relatively flat in time and frequency, as I have argued throughout this thesis, implying that
there is no inherent channel induced diversity anymore. One then has to rely on technical
methods to prevent deep fading states, such as beamforming, cyclic delay diversity or space
time block codes. The effect of those techniques in the context of FBMC and, in particular,
on my prosed solutions, should be investigated in more detail.

My testbed offers a much higher hardware quality than typically installed in low-cost
devices. Thus, many hardware challenges were never an issue in my measurements. Time-
frequency synchronization errors, non-linearities and phase noise should be investigated
in more detail. With respect to phase noise, it should be possible to extend my proposed
solutions for doubly selective channels to phase noise.

I briefly mentioned that there exist some similarities between block spread FBMC and
single-carrier transmissions (spreading in frequency) as well as windowed OFDM with
reduced subcarrier spacing (spreading in time). However, a comprehensive and quantitative
comparison is still an open topic.

While pruned DFT spread FBMC is a promising new technique, further research is
necessary to fully exploit its potential. Because there are many similarities to conventional
SC-FDMA, I expect that many methods known in SC-FDMA can be straightforwardly
employed in pruned DFT spread FBMC. However, some techniques, such as Alamouti’s
space time block code, might require some special treatment.





Appendix A

A.1 Why A Matrix Description?

Many authors employ a discrete-time filter representation to describe multicarrier systems.
However, in my opinion, such description is rather cumbersome because it transforms a
simple system into something unnecessarily complicated. I therefore utilize a matrix notation
with many beneficial properties. Let me start my argument with a simple example. Suppose
the data symbols are modulated by prototype filter p[n]. At the receiver, a matched filter is
employed, so that the received symbols y[k] can be expressed by:

y[k] = (r[n]⋆ p∗[−n])↓NFFT/2 , (A.1)

where ⋆ denotes the convolution and ↓ NFFT/2 down-sampling by NFFT/2. Assuming that the
prototype filter has a length of NFFTO, the convolution in (A.1) requires in total 1

2N2
FFTO

multiplications for each detected symbol. However, down-sampling implies that many results
of the convolution are discarded. Thus, there is no point in calculating them in the first place.
I therefore consider a more practical vector description,

yk = pH rk, (A.2)

where rk ∈ CNFFTO×1 simply stacks the appropriate received samples r[n] in a vector. The
evaluation in (A.2) no longer includes any unnecessary calculations and only requires NFFTO
multiplications. In my opinion, a filter represenation is only benefical in the continuous-time
domain. Here, physics does the convolution, so that no additional calculations are necessary.
Furthermore, the underlying integral would require a vector of size NFFTO → ∞ in (A.2),
not possible in practice. However, just because a concept is useful in the continuous-time
domain does not mean it should also be employed in the discrete-time domain. This simple
fact motivates my matrix notation. In multicarrier systems, the advantages of my matrix
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notation become even more prominent. Authors in [149] utilize the following convolution
based system model (ignoring noise and with a slight abuse of notation):

yl[k] =
L∑

l ′=1

xl ′[k]⋆
(
gl ′[n]⋆ h[n]⋆ q∗

l [−n]
)
↓NFFT/2 . (A.3)

I, on the other hand, employ the following simple matrix description, see Section 2.2,

yl,k = qHl,kHGx. (A.4)

In contrast to (A.3), my matrix notation does not require any convolutions or down-sampling,
making it much easier to handle. Furthermore, I write both, subcarrier index l and time-
position k, in a subscript to better point out that time and frequency are, from a mathematical
point of view, completely equivalent. If a signal processing algorithm works in one domain,
it also works in the other domain, as already discussed in Section 3.2 in the context of channel
equalization. By treating time and frequency differently, one might miss some crucial aspects
of multicarrier transmissions. Another advantage of my matrix notation is that a time-variant
channel is modeled by a sparse matrix H. This is very beneficial for simulations because
sparse matrix multiplications are efficiently implemented in most numerical programs, such
as MATLAB, reducing the simulation time. Also, my matrix notation tremendously helps
in finding an efficient IFFT based signal generation algorithm. For example, the polyphase
representation in [74] is rather lengthy and unnecessarily complicated. In contrast to that, my
windowed based description in Figure 2.7 is much easier to understand.

Some authors evaluate (A.3) explicitly, leading to a similar description I employ. However,
those authors do not utilize my matrix notation and instead rely on many summation, which
is, in my opinion, rather cumbersome to use. For example, authors in [167] needed several
pages to calculate the PSD. With my matrix notation, this is a matter of two equations, that
is, (2.33) together with correlation matrix Rx = CCH. Another example is the calculation
of the SIR. Authors in [89] provided a rather lengthy and cumbersome evaluation of the
SIR. Furthermore, they only considered the SIR conditioned on a fixed channel but did not
include channel statistics. With my matrix notation, calculating the SIR becomes trivial, as
discussed in Section 3.1.2. Similar to [89], my matrix notation also allows to investigate
inter-carrier-interference and inter-symbol-interference separately, simply by considering the
corresponding submatrices of G. The only drawback of my matrix notation in the context
of SIR calculations is that the required correlation matrix Rvec{H} has dimension N2 × N2,
which is rather large. Even though Rvec{H} is sparse, it still requires a large amount of
memory. Either the sampling rate or the number of symbols in time must then be reduced so
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Signal 1 Signal 2

CP OFDM OFDM OFDM P̄SP̄S

TCP = T0 T0 T0 T0

1 OFDM symbol 2 OFDM symbols

SNR =
P̄S

LF
1

N0

Eb

N0
= SNR

2

log2 |A|

SNR =
P̄S

LF
1

N0

Eb

N0
= SNR

1

log2 |A|

Figure A.1. To better illustrate the underlying problem with Eb/N0, two extreme cases of
OFDM are considered, that is, OFDM for which the CP is as long as the useful symbol
duration and OFDM without a CP. The SNR is the same for both signals, see also (2.36).
However, Signal 2 has twice the data rate, so that the same SNR implies a 3 dB shift in Eb/N0

between the two signals.

that the allocated memory becomes reasonable small. Another approach is to split the whole
transmission system into smaller submatrices and to processed them individually (with some
overlapping).

A.2 Eb/N0: A Problematic Normalization

In order to compare different modulation schemes, one has to find a meaningful metric.
Many authors, such as [119], use the BER over Eb/N0 to compare FBMC with CP-OFDM.
However, in my opinion, Eb/N0 has some serious drawbacks. To understand why, let me
consider a simple example. I assume there exists two signals, as illustrated in Figure A.1.
Signal 1 consists of one OFDM symbol for which the CP is as long as the useful symbol
duration. Signal 2 consists of two OFDM symbols (without CP). Both signals occupy the
same time duration. For a fair comparison, I always consider the same average transmit power
P̄S. This leads to the same SNR, see Section 2.2, and therefore the same BER performance in
an AWGN channel, see Figure A.2 (a). However, Signal 2 has twice the data rate. The idea
in Eb/N0 is to account for such different data rates, but a simple power normalization is not a
good solution because the symbol power affects the throughput only logarithmically. Let me
explain this in more detail. The same Eb/N0 implies that the transmit power for Signal 1 is
3 dB lower. Thus, the BEP over Eb/N0 is also 3 dB shifted, as shown in Figure A.2 (b). One
might now think that, by increasing the transmit power of Signal 1 by 3 dB, both systems will
perform equally good because the same BEP for a given energy per bit is achieved. However,
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Figure A.2. Subplot (a) and (b) show the BEP for 16-QAM in an AWGN channel. The
meaning of Signal 1 and Signal 2 is illustrated in Figure A.1. The power normalization
Eb/N0 might be misleading because the power affects the rate only logarithmically, as can be
concluded from subplot (c).

this is wrong, as can be deduced from Figure A.2 (c) which shows the spectral efficiency
for an AWGN channel, see (4.20) for h = 1. Consider for example an initial SNR of 10 dB.
Increasing the SNR of Signal 1 by 3 dB, leads only to a small throughput improvement,
still much lower than the throughput of Signal 2. The transmit power of Signal 1 has to be
increased by more than 10 dB to achieve the same performance as in Signal 2. Thus, in my
opinion, the BER over Eb/N0 might be misleading. Instead of Eb/N0, I suggest to always
use the same average transmit power P̄S on the x-axis when comparing different modulation
schemes. Of course, this can also be included implicitly by the SNR, as in this thesis. If the
data rates are different, it is, in my option, better to include this as a side note rather than
some artificial power normalization.

A.3 Bit Error Probability: Doubly-Flat Rayleigh, 4-QAM

Table A.1 provides a compact comparison of the BEP for OFDM and FBMC, calculated in
Section 3.1.1 and Section 4.3.2. In case of perfect channel knowledge, there is no difference
between OFDM and FBMC. For imperfect channel knowledge, on the other hand, there
are some small differences between OFDM and FBMC, mainly caused by different power
distributions, especially for the auxiliary symbol method. However, those differences are
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Table A.1. Bit Error Probability for OFDM and FBMC in case of perfect channel knowledge
and imperfect channel knowledge (channel estimation). Valid for a 4-QAM signal constellation
in case of a doubly-flat Rayleigh channel.

Bit Error Probability

OFDM FBMC

Perfect
Chan.
Know.1

1

2
− 1

2
√
1 + 2 1

SNR

1

2
− 1

2
√
1 + 2 1

SNR

Chan.
Est.2,3

1

2
− 1

2

√
2
(
1 + ∥wl,k ∥2 Pn

PP

) (
1 + Pn

PD

)
− 1

≈ 1

2
− 1

2

√
2
(
1 + Pn

PP
∥wl,k ∥2

) (
1 + Pn

2PD

)
− 1

SNR =
|D|PD + |P |PP

LKPn

SNRAux. =
|D|PD + |P |PP + |A|PA

LK Pn

2

SNRSpr. =
|D|PD + |P |PP

LK Pn

2
1 The BEP is exactly the same for OFDM and FBMC.
2 For FBMC, the BEP represents only an approximation, see Section 4.3.2.
3 Perfect channel knowledge is obtained by ∥wl,k ∥2 = 0, |P | = |A| = 0 and |D| = LK .

so small that they can often be neglected. Note that the BEP in Table A.1 for FBMC
(channel estimation) represents only an approximation. The exact expression must include
the imaginary interference, as discussed in Section 4.3.2.





Appendix B

B.1 List of Symbols

The notation is, in general, consistent throughout the thesis. However, sometimes it is
necessary to slightly change it in order to improve readability.

Mathematical Notation
Notation Description

(·)H Hermitian of a matrix.
(·)T Transposed of a matrix.
⊗ Kronecker product.
◦ Element-wise Hadamard product.

∥ · ∥ Euclidean norm.
| | · | |F Frobenius norm.
(·)∗ Conjugate complex.
| · | Scalar: absolute value; Set: cardinality.
ˆ Estimation (“hat” symbol).
lk Short notation: lk = l + L(k − 1) due to the vectorized structure.

ℜ{·} Real part.
ℑ{·} Imaginary part.
E{·} Expectation.
Pr{·} Probability.
Q{·} Nearest neighbor detection.
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Set Symbols
Notation Description

X Symbol alphabet, usually a QAM or PAM signal constellation.
S Set of (l, k), corresponding to the signal subblock (equalization).
R Set of (l, k), corresponding to the residual interference (equalization).
A Set of (l, k), corresponding to the auxiliary pilot positions (channel estimation).
D Set of (l, k), corresponding to the data positions (channel estimation).
P Set of (l, k), corresponding to the pilot positions (channel estimation).

Matrix/Vector Notation
Variable Dimension Description

M Cm1×m2 Matrix, upper-case bold.
v Cv×1 Vector, lower-case bold.

s, S C Scalar, non-bold.
[M]i, j C i-th row element and j-th column element of matrix M.
[v]i C i-th element of vector v.
MS,R C|S|×|R| Submatrix of M (Set S: row position; Set R: column position)1.
vS C|S|×1 Subvector of v (positions are chosen from set S).
MP Cm1×|P| Submatrix of M (column positions are chosen from set P)1.
vPi Cv×1 Vector vl,k , corresponding to the i-position of set P.
Im Rm×m Identity matrix.

0m1×m2 Rm1×m2 All zero matrix.
1m1×m2 Rm1×m2 All one matrix.
Rv1,v2 Cv1×v2 Correlation matrix between vector v1 and v2, that is, E{v1vH2 }.
rv,s Cv×1 Correlation vector between vector v and scalar s, that is, E{vs∗}.
Wm Cm×m DFT matrix of size m.

vec{M} Cm1m2×1 Vectorization operator.
diag{M} Cm×1 Take the diagonal elements out of a square matrix → vector.
diag{v} Cv×v Put the vector elements of v in a diagonal matrix.
ddiag{M} Cm×m Double diagonal operator.
tr{M} C Trace operator.

1Does not apply to Greek letters.
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Upper-Case Symbols
Variable Dimension Description

F R Frequency-spacing (subcarrier spacing) [Hz].
T R Time-spacing [s].
T0 R Time-scaling parameter [s].

TCP R Cyclic prefix duration in OFDM [s].
A(τ, ν) C Ambiguity function, see (2.5).

O R Overlapping factor in FBMC.
K N+ Number of symbols in time (per block).
L N+ Number of subcarriers (per block).
N N+ Total number of samples in time, see (2.23).

NFFT N+ FFT size
Ns N+ Spreading length (channel estimation).
Ca RLK×(LK−|A|) Precoding matrix (channel estimation, auxiliary symbols).
Cs RLK×(LK−|P|) Precoding matrix (channel estimation, data spreading).
C CLK× LK

2 Precoding/spreading matrix.
Ct RK×K

2 Precoding/spreading matrix in time.
C f RL× L

2 Precoding/spreading matrix in frequency.
D CLK×LK Transmission matrix, see (3.29).
D̄ CLK×LK Transmission matrix for H = IN , see (4.7).
G CN×LK Transmit basis pulse matrix, see (2.24).
H CN×N Time-variant convolution matrix, see (2.29).
Q CN×LK Receive basis pulse matrix, see (2.28).
N0 R Noise spectral density.
Pn R White Gaussian noise power in the time domain.
P̄S R Average transmit signal power in time, see (2.34).
Px R Transmitted symbol power.
PA R Auxiliary symbol power.
PD R Data symbol power.
PP R Pilot symbol power.
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Lower-Case Symbols
Variable Dimension Description

k N Time position.
l N Subcarrier position.
fs R Sampling rate [Hz].

gl,k(t) C Transmit basis pulse, see (2.2).
g̃i(t) C New transmit basis pulse, transformed by C.
p(t) R Prototype filter.
s(t) C Transmitted signal.
gl,k CN×1 Transmit basis pulse, see (2.22).
s CN×1 Transmitted signal.
ql,k CN×1 Receive basis pulse.
hl,k C One-tap channel.
nl,k C Gaussian noise.
xl,k C Transmitted symbol.
yl,k C Received symbol (after demodulation, but before equalization).
h CLK×1 One-tap channel in vectorized form.
n CLK×1 Gaussian distributed noise (colored) in vectorized form.
x CLK×1 Transmitted symbols in vectorized form, see (2.26).
x̃ C

LK
2 ×1 Transmitted (data) symbols before precoding.

y CLK×1 Received symbols in vectorized form.
ỹ C

LK
2 ×1 Received (data) symbols after decoding by CH.

ĥLS
Pi

C LS channel estimation at pilot position i, see (4.1).
ĥLS
P C|P |×1 LS channel estimates (pilot, vectorized), see (4.3).

wl,k C|P |×1 Interpolation (extrapolation) vector for channel estimation.
w̃l1,k1,l2,k2 C

|P |×1 Weighting vector for doubly-selective channel estimation.

Greek Symbols
Variable Description

τrms RMS delay spread.
νrms RMS Doppler spread.
θl,k Symbol-wise phase shift in FBMC.
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B.2 List of Abbreviations

3G Third Generation
3GPP 3rd Generation Partnership Project
4G Fourth Generation
5G Fifth Generation
AWGN Additive White Gaussian Noise
BEP Bit Error Probability
BER Bit Error Ratio
BICM Bit-Interleaved Coded Modulation
CCDF Complementary Cumulative Distribution Function
CDF Cumulative Distribution Function
CDMA Code Division Multiple Access
CMT Cosine Modulated Multitone
CP Cyclic Prefix
CQI Channel Quality Indicator
DAC Digital-to-Analog-Converter
DFT Discrete Fourier Transform
DVB-T Digital Video Broadcasting - Terrestrial
eMBB enhanced Mobile Broadband
eMTC enhanced Machine Type Communications
FBMC Filter Bank Multicarrier Modulation
FFT Fast Fourier Transform
f-OFDM filtered-OFDM
IFFT Inverse Fast Fourier Transform
ISI Inter Symbol Interference
LOS Line-Of-Sight
LS Least Squares
LTE Long Term Evolution
M2M Machine to Machine
MIMO Multiple-Input and Multiple-Output
ML Maximum Likelihood
MMSE Minimum Mean Squared Error
MSE Mean Squared Error
NLOS Non-Line-Of-Sight
OFDM Orthogonal Frequency Division Multiplexing
OOB Out-Of-Band
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OQAM Offset Quadrature Amplitude Modulation
PAM Pulse-Amplitude Modulation
PAPR Peak-to-Average Power Ratio
pdf probability density function
PSD Power Spectral Density
QAM Quadrature Amplitude Modulation
RMS Root Mean Square
RX Receiver
SC-FDMA Single Carrier - Frequency-Division Multiple Access
SINR Signal-to-Interference plus Noise Ratio
SIR Signal-to-Interference Ratio
SISO Single-Input and Single-Output
SMT Staggered Multitone
SNR Signal-to-Noise Ratio
TDL Tapped Delay Line
TX Transmitter
UFMC Universal Filtered Multi-Carrier
URLLC Ultra-Reliable Low Latency Communications
WOLA Weighted Overlap and Add
ZF Zero-Forcing
ZP Zero-Padding
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