FAKULTAT
FUR INFORMATIK
Faculty of Informatics

Evaluating the Unikernel Concept
for the Deployment of Software
on loT Devices

DIPLOMARBEIT

zur Erlangung des akademischen Grades
Diplom-Ingenieur
im Rahmen des Studiums
Software Engineering & Internet Computing
eingereicht von

Jan Amort, BSc.
Matrikelnummer 0425530

an der Fakultat fir Informatik

der Technischen Universitat Wien

Betreuung: Univ.Prof. Dr. Schahram Dustdar

Wien, 1. Dezember 2017

Jan Amort Schahram Dustdar

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. 4+43-1-58801-0 - www.tuwien.ac.at

FAKULTAT
FUR INFORMATIK

Faculty of Informatics

Evaluating the Unikernel Concept
for the Deployment of Software
on loT Devices

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of
Diplom-Ingenieur
in
Software Engineering & Internet Computing
by

Jan Amort, BSc.
Registration Number 0425530

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Dr. Schahram Dustdar

Vienna, 15t December, 2017

Jan Amort Schahram Dustdar

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 - www.tuwien.ac.at

Erklarung zur Verfassung der
Arbeit

Jan Amort, BSc.
Lienfeldergasse 3/8, 1160 Wien

Hiermit erklére ich, dass ich diese Arbeit selbstdndig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollstdndig angegeben habe und dass ich die Stellen der
Arbeit — einschliellich Tabellen, Karten und Abbildungen —, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 1. Dezember 2017

Jan Amort

Acknowledgements

I would like to thank Prof. Schahram Dustar for agreeing to supervise this diploma
thesis, for his advice and valuable feedback.

I thank Martina for encouraging me to finish my study and her support throughout this
journey. Particularly for her support, patience and understanding when I had to work
late during the diploma thesis.

To my parents I want to say thank you for allowing me to study, their patience and
support and allowing me to pursuit my own ways.

When it comes to writing a thesis it can be a lonesome endeavor. I want to thank Alex
for her input, feedback, encouragements and being a good companion during writing of
this thesis.

vii

Kurzfassung

IoT Geréte sind nicht mehr wegzudenken aus dem modernen Alltagsleben. Als integraler
Bestandteil des téglichen Lebens haben Sicherheitsprobleme dieser Geréte eine grofie
Auswirkung auf deren User.

Die relativ neue Verfiigharkeit von Hypervisoren fiir die vergleichsweise leistungsschwachen
CPUs von IoT Geréten bringt Vorteile beziiglich Sicherheit und der Bereitstellung von
Software auf den Gerdten. Andererseits beeintriachtigt der Einsatz eines vollumfianglichen
Betriebssystems auf einem Hypervisor die Leistungsfahigkeit des IoT Geréts.

In den letzten Jahren wurde das Unikernel Konzept neu entdeckt. Unikernels kombinieren
eine Applikation zusammen mit einem kleinen Umfang an Betriebssystemfunktionen zu
einer untrennbaren, leistungsstarken Einheit. Dies macht Unikernels zu einer interessanten
Option fiir die Bereitstellung von Software auf IoT Geréten.

Diese Arbeit untersucht ob Unikernels dafiir gut geeignet sind, Software auf [oT Geréten
bereitzustellen und dazu beitragen kénnen die Sicherheit des Gerétes zu erhéhen indem
Updates zeitnah ausgeliefert werden kénnen.

Im ersten Teil der Arbeit werden relevante Performancecharakteristiken fir IoT Geréte
definiert und umfangreiche Tests durchgefiihrt. Die Ergebnisse der Unikernels werden
mit den Ergebnissen von Virtuellen Maschinen verglichen und stellen die Grundlage fiir
die weiteren Erwédgungen dar.

Die sicherheitsrelevanten Eigenschaften von Unikernels werden in einem weiteren Hauptteil
untersucht und dargestellt, welche Auswirkungen sich daraus fiir die Sicherheit von IoT
Geréten ergeben.

Da die Sicherheit des System entscheidend davon abhingt ob Aktualisierungen der
Software zeitnah fiir eine grofle Anzahl von Gerdten bereitgestellt werden konnen, wird in
einem weiteren Kapitel untersucht wie ein Prozess von der Entwicklung bis zur Installation
von Software unter Einbeziehung von Unikernels gestaltet werden kénnte.

ix

Abstract

The ever increasing number of IoT devices makes it clear that a lack of security in these
systems has a big impact on the lives of people. The availability of hypervisors for low-
power CPUs used on IoT devices brings advantages regarding security and deployment
strategies but bear the question how the use of fully fledged operations systems would
impact the performance of these low-power CPUs.

In recent years the concept of a Unikernel has reemerged, challenging the idea of a general
purpose operating system. A Unikernel combines an application with a minimal set of
operating system functionalities needed to run the application on a hypervisor. This
makes Unikernels an interesting option for deploying applications on a hypervisor-based
IoT device.

This work evaluates whether Unikernels are a good fit for deployments of software on
IoT devices and can contribute to the security of IoT devices by facilitating the timely
rollout of new versions of an application.

In the first part this work conducts a series of comprehensive performance tests for a
range of characteristics relevant in the field of IoT devices and compares the results of
Unikernels with virtual machines. Next this work evaluates the problems by IoT devices
regarding security, takes a look at current incidents involving IoT devices and the claims
of Unikernels with respect to security. The chapter takes the inherent properties of
Unikernels in consideration and evaluates whether these properties can contribute to the
security of the overall system.

The security of the system depends upon the ability of rolling out new versions of
an application in a timely manner whenever bugs are discovered. Therefore the third
part lays out how Unikernels could be integrated into a modern software development
process based on continuous integration and -delivery principles to enable the frictionless
deployment, testing and distribution of new versions of an application.

X1

Contents

Kurzfassung ix
Abstract xi
Contents xiii

1 Introduction 1
1.1 Motivationl 1
1.2 Problem Statement! 2
1.3 Methodology| 3

2 Fundamentals 5
2.1 Evolution of Operating Systems|. 5
2.2 Operating System Concepts| 7
2.3 _Virtualizationl 13
2.4 Unikernel Concept| 15
2.5 Internet of Things 26

3 _State of the Art and Related Work 31
3.1 Stateof the Artl. 31
3.2 Related Work 32

4 Performance & Footprint - Evaluation of Unikernels 37
4.1 Evaluation Framework! 37
4.2 Measurements and Comparison| 43
4.3 _Measurement: Boot Time 44
4.4 Measurement: Network Protocols 46
4.5 Measurement: Image Size 52
4.6 Measurement: A Real-World Application| 53
4.7 Performance Measurements in other Works 56
4.8 Evaluation of the Resultsl 58

5 Security of Unikernels on IoT Devices 63
5.1 Security Incidents involving IoT devices 64

xiii

5.2 Implications of compromised IoT devices
5.3 The OWASP Top 10 o s
5.4 Security Properties of Unikernels|
5.5 Atomic Updates

5.6 Summary

6 Deployment Prototype - Deploying Software to IoT Devices
6.1 Devops & Unikernels in the Development process
6.2 System Overview|
6.3 Application Development,
6.4 Continuous Integration|.
6.5 Creation of the Unikernel
6.6 _Hub: Unikernel Distribution/.

6.7 The Agent

6.8 Hypervisor Updatel

6.9 Summary
7 Future Work
8 Conclusion
List of Figures
List of Tables

Bibliography

65
66
67
71
72

73
73
74
76
76
7
78
79
81
82

83

85

89

91

93

CHAPTER

Introduction

1.1 Motivation

The term Internet of Things (IoT) refers to a range of heterogeneous devices that have in
common, that they are all connected to some type of Internet service and have relatively
low system resources. IoT devices are deployed in smart homes as part of the climate
system for the heating control system, operating security cameras or as part of the
entertainment system. The term IoT applies to industrial control systems (Industry 4.0)
as well as for interconnected autonomous driving systems.

A Gartner study estimates the number of IoT devices deployed in 2017 to be 8,4 billion
with a forecast of 20 billion in the year 2020 (41)). With the widespread presence of IoT
devices we also have to face security problems, that for a long time have been haunting
desktop and server environments, entering our homes and critical infrastructure. IoT
devices operate on general-purpose hardware and run applications on top of an operating
system like any other IT system and like any type of software it contains bugs that pose
potential security risks.

In the recent months there have been a number of high profile attacks on IT systems of
companies and home users through ransomware trojans. These campaigns use zero-day
exploits for bugs that have not yet been fixed. The cycles between the publication of a
bug in a system and the development and use of a corresponding exploit became shorter
through the professionalisation of this industry. Criminal groups make large amounts of
money with large-scale attacks on systems and thereby raise the market prices for bugs
and exploits. It’s an ongoing armsrace between criminals trying to exploit systems and
the software companies fixing bugs in their software and rolling it out to their users.
IoT devices are specially valuable targets as they are part of the inner network of a
company and, therefore, can be the launchingpads for further attacks on the network.
They are a vital part of the infrastructure and due to their heterogeneity and lack of
accessible user interfaces are harder to keep updated.

1.

INTRODUCTION

This recent development shows that timely updates and automatic rollouts are an
important part of the security strategy and reduce the likelihood to become victim of a
ransomware campaign.

Since IoT devices are part of the IT infrastructure of a company and, therefore, are
connected on various points to other IT systems, they become interesting targets for
attacks and therefore call for a security strategy with a focus on hardening the system
and timely rollouts of new software versions as soon as bugfixes are available.

1.2 Problem Statement

The availability of virtualization for low-power CPUs used on IoT devices brings ad-
vantages like improved security and easier software deployments known from the world
of cloud computing to IoT devices. The use of fully-fledged virtual machines on these
devices raises questions regarding performance and feasibility of deployments over the
network. The goal of this thesis is to evaluate whether the concept of Unikernels is
able to address the problems arising from the use of traditional virtual machines on IoT
devices and inquiry if Unikernels can bring advantages regarding security, performance
and deployment strategies to x86 based IoT devices.

Since the currently most advanced Unikernel implementations OSv and Rumprun do not
support ARM architectures yet (see 2.4.4), the focus will be on Unikernels for the x86
processor architecture.

The use of virtualization technologies on IoT devices brings performance penalties through
the additional layer between the application and the underlying hardware. The question
arises how the different Unikernels perform compared to a virtual machine running a
standard Linux system. There have been performance measurements and comparisons
before in the literature but they either focused on one particular Unikernel implementation
(79) (56), compare Unikernels with other systems like Docker or focus on a small selection
of performance characteristics (16]) (82)). The question remains how the performance
characteristics of Unikernels compare to a standard Linux system in a range of categories
particularly relevant for IoT devices like the handling of various network protocols, boot
time and image size. To this end this thesis will present an evaluation framework for
performance characteristics of IoT devices and conduct comprehensive series of tests in
the categories defined in the evaluation framework in order to draw conclusions on the
ability of Unikernels in the handling of IoT workloads.

For an accurate performance comparison between Unikernels and a Linux VM the same
application has to be deployed to all tested systems. For this the Unikernels need to be
POSIX compatible. Therefore, this work focuses on the two POSIX compatible Unikernel
projects OSv and Rumprun during the performance evaluation. Other evaluated aspects
like the security properties apply to other Unikernels as well.

The properties of Unikernels differentiating them from modern operating systems have
security implications, positive and negative. This work will evaluate the impact of these

1.3. Methodology

properties on the security and assess whether they can contribute to the overall security
of the system and which type of attacks could be mitigated by deploying software in
Unikernels.

The security of an IoT system relies heavily on the timely rollout of updates whenever bugs
are found. This work will inquiry how a software development and deployment process
based on Unikernels could look like, where sourcecode would be compiled into Unikernels
and what benefits a Unikernel based process could bring for software deployments on
IoT devices.

1.3 Methodology

In a first step, a literature research is conducted in order to get a comprehensive overview
of the problems and inefficiencies of IoT devices regarding security and deployment
management. Research on virtualization support for low power CPUs will be included to
define appropriate type 1 hypervisors (XEN, KVM) for the use on a IoT field device.

As a second step, commonalities and differences of different implementations (MirageOS,
Rumprun, OSv) of the Unikernel concept are being compared and evaluated for their
applicability for the problems of IoT security and deployment management. As some
implementations are designed for a specific purpose or programming language, not all of
them are equally applicable for the deployment of software on IoT devices.

An evaluation framework will be defined allowing the comparison of different deployment
strategies (virtual machines running full operating systems, Unikernel) regarding perfor-
mance and defines relevant metrics in the loT world regarding execution speed, network
handling (protocols relevant in the sphere of IoT devices) and updatability.

Based on the evaluation framework, comprehensive tests of the performance characteristics
of the different Unikernels will be conducted. A range of tests for different protocol
implementations used in IoT devices will lead to a detailed view on the networking
capabilities of the Unikernels and allow for a comparison of the results with a reference
Linux system.

Next, a real-world IoT application will be developed simulating a scenario of an IoT device
collecting temperature sensory data. The application will be developed in two different
languages and frameworks that are supported by both Unikernel projects and the Linux
system. Experiments will be conducted deploying these applications on a virtual machine
running Linux and as a Unikernel. These tests will allow to draw further conclusions
about the performance of different aspects of the Unikernels since the applications go
beyond the simple handling of protocol requests. The evaluation framework will be used
to assess the performance of the different deployment strategies in the dimensions relevant
for IoT devices.

In a next step, a prototype for deploying software on IoT devices will be built. This will
show the applicability of the Unikernel concept for the deployment management of IoT

1.

INTRODUCTION

devices with virtualized x86 hardware. The deployment system manages the sourcecode
for the different applications running on a IoT device in software repositories. Whenever
a new version, tagged as a release, is pushed, the deployment system checks out the code,
compiles it into a Unikernel and presents it in a web interface as a new update available
for the IoT devices. Since we assume that the IoT devices are not directly connected to
the Internet and therefore cannot be reached by a server by directly addressing the device,
an update service running on the IoT devices need to query the central deployment
system regularly to check for new available updates. As soon as the IoT field device
realizes that there is a new update available, it downloads the updated image, verifies
the image by calculating a hash and starts the new image on the hypervisor. This will
lead to a handover from the old Unikernel instance to the new and the old instance can
be shut down. In order to assess the deployment prototype, a IoT application will be
implemented exposing a webservice and acts as a proof-of-concept for the deployment
System.

CHAPTER

Fundamentals

2.1 Evolution of Operating Systems

In the early days of computing the computers were big mainframes focused on completing
a single job at a time. A user was attributed a certain time slot and could load the
computer with the program (punched paper cards) and data. The computer would
calculate a result and print it out. Since computers were big and expensive only a small
number of organizations could afford it and a large number of users needed to share
the same computer. Timesharing was an idea by Bob Bemer in 1957 allowing multiple
users to share the same computer and interact with the mainframe through a terminal.
The amount of real memory in a system was limiting the timesharing capabilities of the
systems. The publication of Arden et al. (7)) in 1966 describing virtual memory and
address translation for the first time was the starting point facilitating timesharing in
mainframes ([77)).

IBM designed their IBM System/360 Model 67 for the needs of time sharing and
implemented virtual memory for the first time. The operating system “Time Sharing
System Monitor” regulated the access to the hardware and supported a multiprocessor
system. The virtual memory system implemented segment- and page tables and the
operating system translated the virtual addresses into real addresses with the “Dynamic
Adress Translation Box” (DAT box). With its 32bit virtual address space it could address
4GB of memory. The first operating system supporting operating system virtualization
was the CP-40/CMS that was deployed for the System/360. It allowed the execution of
multiple operating systems in separate virtual machines. The virtual address space and
other features allowed the system to virtualize IO and interrupt handling (42)).

The era of the home and personal computing began with the availability of cheaper
commodity hardware using common interconnection. Early operating systems like the
CP/M-80 for the 8080 processor family and later Microsofts MSDOS designed for the

5

2.

FUNDAMENTALS

IBM PC provided a standard operating system working for a variety of hardware. These
systems were single user systems and the user interacted with the operating system via a
commandline. MSDOS did not provide memory protection or a scheduler. There was
only one process running at a given time and it did so until the process has finished.
There was no scheduler that could preempt the process and share the CPU with other
running processes (77).

In the 1980s the graphical user interface was introduced to the personal computer by
multiple vendors. This led to the use of the personal computer by multiple users and the
operating systems started to introduce additional protection mechanisms. Windows 3.1
was the first system from Microsoft introducing a non-preemptive scheduler that would
allow to run several applications in parallel. Operating system manufacturers began
to implement protection mechanisms limiting the access of processes to the memory.
With the introduction of the 80286 processor (member of the x86 architecture) two
important security features were introduced: Rings and the CPU mode “protected mode”.
The concept of protection rings allowed to attribute privilege levels (rings) to code
blocks (see 2.2.2 for detail). The protected mode regulated access to memory segments
with the help of a newly introduced memory management unit (MMU). With this new
mode the operating system could for the first time protect privileged operating system
processes from unprivileged code. The next generation 80386 then introduced new paging
mechanisms that made virtual memory easier and faster on x86 based systems ([77]).

On the server side commodity servers based on x86 system architectures began entering
the market. They were used to serve personal homepages and small commercial websites
and provided webspace to multiple users on the same operating system. Access to the
resources like harddisk and memory was regulated by operating system capabilities
attributing quotas to the users and separating the users from each other with filesystem
permissions. Users only got access to certain folders on the system via ftp to store the
content of the website. The computing services provided to the customer were limited to
isolated services like webhosting and e-mail services.

While virtualization was available on mainframes since the 70s, on the x86 processor
architecture used for personal computers and servers the concept of virtualization became
popular only in the late 1990s with hypervisors by VMware. The availability of hypervisors
for x86 based server systems made it possible to run multiple virtual machines on a
hypervisor on cheap commodity hardware. The system provider could sell complete
virtual machines with varying resource attributions to the customer. The customer got
complete root access to the operating system and could buy additional computing power
or memory when needed (77).

An application running on an operating system requires a number of libraries to execute.
When several applications run in parallel requiring different versions of the same library,
this could lead to conflict and result in harder to maintain system setups. This and the
fact that different setups on developer and production systems could bring undetected
conflicts on production machines lead to the widespread adoption of container systems
for software deployments. These container systems like Docker are often deployed on

2.2. Operating System Concepts

top of virtual machines. The abstraction provided by the container is implemented on
the operating system level. Containers run as normal processes on an underlying Linux
system, using the kernel of the host (see 3.2.2)).

This development over time shows that a system running Docker on a virtual machine
has a number of redundant protection mechanisms collected throughout the history of
computing systems. The Hardware is encapsulated by a hypervisor running multiple
guest systems in parallel and separates itself from the guests through privileged CPU
modes. The hypervisor separates the memory pages of the guests from each other and
from the memory pages used by the hypervisor. The guest system then runs a full
operating system in the VM using CPU privilege levels to separate itself from the running
processes in the VM, and the processes from each other. One of these processes is a
Docker container running an operating system environment inside the container using the
kernel of the host (that is a guest of the hypervisor) to separate the multiple containers
from each other and simulating hardware resources.

Unikernels in contrast to this example only rely on the hypervisor for resource separation
and protection. All operating system level mechanisms like privilege transitions between
operating system and application, separated virtual memory and user management is
abandoned for the gain of speed, reduced attack surface and smaller system images. The
goal is simply to run a single application on top of a hypervisor.

2.2 Operating System Concepts

Unikernels see operating system functionalities as a set of libraries used to aid the
execution of the one application running in the Unikernel. They break with a number
of operating system concepts and protection mechanisms in order to gain advantages
regarding execution speed and optimize the Unikernel for running on a hypervisor. This
chapter takes a look at traditional operating system concepts that later in chapter [2.4
get reevaluated and challenged by the Unikernel projects.

2.2.1 Kernels

The kernel is the central piece of an operating system interacting with the hardware on
behalf of the other software components. It controls peripherals like keyboard, network
cards, graphic cards and manages the memory for the programs. System calls are used
by programs to interact with the kernel and request an operation. There have been
several design principles in the past. Most modern kernels fall into one of the following
two design principles: monolithic- or micro kernel.

2.2.1.1 Monolithic Kernel

Monolithic kernels are kernels that include a wide range of functionalities directly into
the kernel itself and thereby letting them run in kernel space with the corresponding
privileges. Until recently most operating systems were monolithic kernels. Typically, a

2.

FUNDAMENTALS

monolithic kernel is implemented as a single process, with all elements sharing the same
address space. Examples of implementations of this design principle are Linux, Windows
9x and MS DOS (95)).

Linux has addressed the problems and shortcomings of the monolithic model by developing
loadable kernel modules that can be loaded into the kernel only when needed. This
reduces the size of the codebase running in the monolithic kernel simultaneously. An
advantage of the monolithic kernel architecture is the fact that all the code is running in
kernel mode and thus the costly privilege transitions into and out of ring0 (see 2.2.2)
can be omitted. Another advantage is the easier communication between parts of the
operating system. A disadvantage of this architecture model occurs when parts of the
kernel get changed or need to be patched. This requires a recompilation of the whole
kernel instead of just patching a module (64)).

2.2.1.2 Microkernel

A microkernel externalizes as much functionality as possible into the user space and
provides a minimal coordinating set of functions in kernel space. The microkernel provides
functionalities for memory management, multi-tasking and inter process communication
in the kernel and externalizes functions like networking into so called “servers” in user
space. These user space servers are treated like any other user space application by
the microkernel. An advantage of the microkernel architecture is the smaller trusted
computing base. This is the amount of code the kernel needs to trust in order to function.
The microkernel design simplifies the development by separating the kernel development
from the server development (95)).

A disadvantage of this concept is the reduced execution speed. The functionalities of
the kernel are separated into several userland processes and therefore result in a larger
number of context switches (see 2.2.5) and inter-process communication. Subsequently
the system is slower than a comparable monolithic kernel.

Implementations of the microkernel principle are systems like QNX, L4 and the Mach
kernel.

2.2.2 CPU-Modes and Rings

CPU modes (also called CPU privilege levels) are operation modes implemented in the
CPU regulating which operations can be executed in a particular mode and which parts
of the virtual address space can be accessed. This allows an operating system to run with
more privileges than a normal application and at the same time to control the access of
unprivileged processes to hardware resources. Each process gets assigned a privilege level
which it is running in and stores this information in the segment descriptor (64).

The TA-32 architecture uses a system of four privilege levels that can be visualized as
rings. These rings are numbered from 0 to 3, where ring0 is the most and ring3 the least
privileged. This mechanism is in place to protect hardware resources from user processes

2.2. Operating System Concepts

and prohibit unprivileged processes from accessing virtual address space pages used by
the kernel. Through this separation the operating system can ensure that only processes
running on ring0 are allowed to access the hardware directly and thereby enforce security
policies. Most modern operating systems like Windows and Linux use only two of the
four available rings: ring0 for privileged access and ring3 for user mode. The resources
protected by the ring model are memory, I/O ports, some registers and certain machine
instructions. The ring3 process thus cannot execute instructions that would result in
more rights for the process like changing the privilege level, changing pagetables or
registering interrupt handlers. When programs try to run these protected instructions
outside of ring0 this leads to a general-protection exception, like when programs use
invalid memory addresses (53)) (64]).

When an application, running in the unprivileged ring3, needs to access the hardware
(eg. write data to the disk) it issues a so called system call. This results in executing a
function in the kernel running with the heightened privilege level ring0 and therefore has
access to all resources without restrictions. When the kernel function is done executing,
the execution in the user space process is continued and the privilege level drops to ring3
again (64).

2.2.3 Privilege Transitions through Syscalls

Modern operating systems encapsulate the parts of the software talking directly to the
hardware (drivers) in the kernel. As described in 2.2.2 these instructions run in a higher
privilege level than ordinary userspace programs and the CPU supports this separation
through the concept of rings.

When a user process has to access hardware or requires services provided by the kernel,
it does so by calling a system call (or syscall for short). A syscall is a function running in
kernel space and therefore has access to parts of the memory belonging to the kernel and
can execute any instruction since it runs in ring0. The user process initiates a syscall
by setting the kernel function and the parameters in the corresponding registers and
executing a software interrupt. This triggers the interrupt handler of the kernel that
then resolves the function and executes the corresponding code in kernel space. When
the code is finished running, it gives back control to the user process (95).

The way a syscall was implemented in Linux in previous times (and still is for older
CPUs that do not support the corresponding instructions) was to load the system call
number into the register EAX and execute the instruction “int 0x80”. This generates the
interrupt 0x80 and an interrupt service routine in the kernel is called. This then saves the
current state of the process and calls the system call handler for the system call defined
in the register EAX. This method is now deprecated for modern CPUs and replaced by a
faster approach with less overhead supported by new hardware instructions (40).

Modern CPUs by Intel and AMD provide a new set of instructions for faster syscalls.
Current Linux systems use the hardware instructions SYSENTER/SYSEXIT for Intel
CPUs and SYSCALL/SYSRET for AMD CPUs to transition between user- and kernel

2.

FUNDAMENTALS

10

space. The intention for the new instructions was to speed up system calls by eliminating
unneeded checks and loading predetermined values into the CS and SS segment registers.
As a result, SYSCALL and SYSRET can take fewer than one-fourth of the number of
internal clock cycles to complete compared to the legacy method of CALL and RET ().

Linux setups the entry/exit points for the syscalls by attaching a single memory page
called VDSO to the address space of all user space processes. This page contains the
actual implementation of the syscalls enter/exit mechanism. Through this mechanism
the system can avoid context switches when calling a syscall and thereby improve the
performance (40).

2.2.4 Memory Management

Most modern computing architectures use the concept of virtual memory for handling its
memory requirements. This concept distinguishes between the addresses of the physical
memory blocks built into the system and the (virtual) addresses used by the processes to
access the memory. The process running on the CPU sees memory as a single contiguous
address space with contiguous memory segments. The important advantage the system
gets by using virtual memory, is that the amount of memory accessible to a process
does not need to match the amount af memory physically present in the system. By
splitting memory into blocks and writing unused blocks to the disk, a process can access
more pages than would fit into the physical memory (also called “real memory”). The
translation of virtual addresses into physical addresses is done via a hardware part called
memory management unit (MMU) (95)).

The memory is divided into equally sized blocks of memory called pages. Operating
system functionalities can extend the capabilities of the MMU to load and save memory
pages to the harddrive and thereby dynamically exceed the physically present memory.
The MMU uses pagetables to translate virtual addresses into physical (also called “real”)
addresses. The pagetable contains for each page a flag indicating if the page is currently
in real memory and therefore can be accessed, or is swapped out to the harddisk (page
eviction). In this case the MMU raises a page fault and the paging component of the
operating system loads the missing page into physical memory by swapping out a currently
unused page. Pages can be flaged as being writable, only readable or executable if they
contain program code. This is a protection mechanism making it harder for attackers
to inject code into memory and redirect the control flow of the program to execute the
injected code. All input read by a program is stored temporarily in a memory page, but
if this page is not executable, the attacker has not gained any advantage by being able to
load his code into a non executable memory page. A virtual memory address consists of a
virtual page frame number and an offset into the page. The MMU translates the virtual
page frame number into a physical page via a lookup in the page table by using the
virtual page frame number as an index into the page table. Modern processors support a
physical address mode and a virtual address mode. If the CPU runs in physical address
mode it does not attempt to translate addresses into physical addresses via the MMU.
The Linux kernel uses this mode to load itself for performance reasons (95)).

2.2. Operating System Concepts

In Linux each process has its own virtual address space. The virtual address spaces are
completely separated from each other and so a process cannot interfere with the address
space of another process (91)).

Processors have a number of caches for fast access to small amounts of data. One of these
caches is the translation lookaside buffer (TLB) caching recently accessed entries in the
page table from one or more processes. When a reference to a virtual address is made,
the processor first tries to find a matching entry in the TLB. If this succeeds (called a
“TLB hit”), the address can directly be translated into a physical address. If it however
fails (called a “TLB miss”), a time consuming process called “page walk” starts. A signal
is issued to the operating system that a TLB miss has occurred. The OS then has to
lookup the physical page via the page table and calculate the real address from the offset.
This address is then stored in the TLB and further can be directly translated. When
a memory page is altered by the process while in real memory, it is called “dirty” and
flagged as such. When a context switch happens these dirty pages need to be saved to
secondary memory in order to be later restored. The TLB entries implicitly refer to the
current address space. If now a context switch happens the TLB is flushed and has to be
rebuilt for the new process. This is the reason why context switches are computationally
expensive (91)).

When a binary is executed on a system, first the image of the executable has to be loaded
into memory. This process is called memory mapping. This does not mean that the
image is completely loaded into physical memory, instead the image is linked into the
virtual address space of the process and the corresponding pages of the image are loaded
as they are accessed (95)).

2.2.5 Context Switch

A context switch occurs when multiple threads share the same processor. When the
scheduler decides to pause the currently running thread and continue with another thread
(rescheduling), the current state of the running thread or process needs to be saved in
order to later be able to continue where the thread or process was paused. A context
switch is the act of saving the processors state of the thread and loading the saved state
of another thread. The data saved for a thread includes the program counter (pointer to
the next instruction that should be executed), stack pointer and all registers. When a
thread gets rescheduled this data gets saved to the thread control block (TCB) containing
the state of the thread. If the new thread is associated with a different virtual address
space the context switch also includes the switching of the address translation maps used
by the processor. In Linux this happens when the thread belongs to a different user
process.

A process switch is more expensive than a thread switch because more data needs to
be saved and the virtual memory for the new process needs to be loaded. Two threads
belonging to the same process use the same virtual address space, therefore the caches do
not need to be cleared. If the new thread belongs to another process the state of the old

11

2.

FUNDAMENTALS

12

process is saved to the process control block (PCB), the dirty memory pages are written
to secondary memory, the TLB entries for the old thread are invalidated and therefore
the TLB gets flushed, the pagetable for the new process gets loaded into the MMU and
the data (stackpointer, program counter, registers) from the new process gets loaded
from the processes PCB.

The switch from one virtual address space to another including the flushing of the caches
is the reason for the higher costs for process switches than for thread switches (28]).

2.2.6 POSIX Interface

The Portable Operating System Interface (POSIX (47)) is a standard to maintain
compatibility between operating systems. It specifies application programming interfaces
(API), utility interfaces and command line interpreter (shell). A wide range of operating
systems are POSIX compatible like Linux, OpenBSD, AIX or MacOS. Other systems
like the Microsoft Windows NT kernel are only compliant with a compatibility feature.

The standard defines operating system properties like filename conventions, character sets,
regular expressions, path structures and environment variables. It specifies APIs called
by userspace programs for handling threads, requesting or freeing memory, synchronizing
between threads and accessing 10 devices.

An operating system is said to be POSIX compatible if it provides all expected APIs to
a userspace program and thereby allowing the POSIX compliant code to be compiled on
the system without any modifications (64)).

2.2.7 Spinlocks and Synchronization

When code blocks need exclusive access to a resource they need some type of mutual
exclusion mechanism. Unlike sempaphores spinlocks may be used in code that cannot
sleep such as interrupt handlers. Spinlocks offer higher performance then semaphores.

Spinlocks are mutual exclusion devices that can have only two states: locked and unlocked.
It is usually implemented as a single bit in an integer. When a thread tries to access
a resource protected by a spinlock, it tests for the spinlock and when available, locks
the spinlock and continues in the critical section therefore only one thread can hold the
spinlock at any given time. When on the other hand the spinlock is locked, it repeatedly
tries for the lock (“spins”) until the lock gets available. In order to avoid deadlocks
the “test and set” operation has to be atomic, meaning that the two operations have to
be executed without interruption. In a scenario where a process acquires the spinlock
and then goes to sleep or being preempted by the kernel for calling a long-running I/0
operation, another process waiting for the lock could be waiting forever when the first
process dies. This would result in a deadlock situation and this is the reason why code
holding the spinlock has to be atomic and cannot go to sleep. A disadvantage of spinlocks
is that the thread waiting to gain the lock is continuously testing for the lock and is
therefore in a busy-waiting mode. The information in this chapter is taken from (60) and
(64).

2.3. Virtualization

2.3 Virtualization

Virtualization is a concept where operating systems are executed on top of virtualized
hardware instead of running on the hardware directly. Through virtualization several
fully fledged operating systems can run in parallel on the same hardware. A hypervisor
or virtual machine monitor (vmm) is a software layer running on top of the hardware to
manage the interaction between the guest systems and the underlying hardware. The
hypervisor attributes resources to the guest systems and queries hardware on behalf of
the guest system. A range of CPUs by Intel, AMD and ARM provide features to support
hardware virtualization on host systems. The CPUs provide hardware virtualization
capabilities through dedicated instruction sets for memory management, page table
virtualization and execution modes facilitating the interaction between guest and host
and allows a hypervisor to efficiently manage and schedule concurrently running virtual
machines.

Intel introduced with their VI-X CPU extension new instructions for the handling of
virtual machines. One important new concept are two additional privilege levels “VMX
Root Operation” and “VMX non-Root Operation” additionally to the Ring levels. The
hypervisor runs in the VMX Root Operation mode and all virtual machines run in the
VMX non-Root Operation mode. Within those modes the usual Rings 0-3 are available
for the protection of processes. The big difference is that instructions executed in ring0
in the VMX non-Root mode can be trapped by the hypervisor running in VMX Root
mode. This is an implementation of the trap-and-emulate procedure and solves the
depreviligation problem (27)).

AMD has with AMD-V a similar hardware extension implementing the trap-and-emulate
principle. The “hypervisor mode” is used to distinguish between guest privileges and the
hypervisor running with full access to the hardware (6)).

Small devices that should fulfill a small set of tasks require suitable CPUs with lower
power requirements than regular desktop- or server CPUs. In the world of mobile-
and IoT devices the CPUs by the company ARM are widely used. The more recent
CPU series v7 and v8 include features supporting hardware virtualization. The “ARM
Virtualization Extension” introduces a new operation mode (hypervisor mode) for the
CPU running with higher privileges than the previous modes and allows the hypervisor
to trap and emulate instructions. Additionally the extension brings new facilities for
memory management and address translation (67)).

For the MIPS32 and MIPS64 processor architecture there exists an extension called
“VZ” bringing hardware virtualization to MIPS processors. These processors have an
additional operation mode called “quest mode” additionally to the “root mode” allowing
the execution of guest systems and trapping of guest-instructions through the hypervisor
running in root-mode (48).

13

2.

FUNDAMENTALS

14

2.3.1 Full-, Para- and Hardware Assisted Virtualization

In full virtualization the guest system is not aware that it is running in a hypervisor and
thinks it is running on real hardware. The hardware is completely abstracted away by the
hypervisor. The hypervisor runs in ring0 (see 2.2.2) and provides the needed virtualization
infrastructure. The guest operating system resides in ringl and the applications running
inside are executed in ring3. Since the guest is not aware of the virtualization and thinks
it is running in ring0 and therefore has access to the hardware, the hypervisor needs to
translate the instructions on the fly (called binary-translation). The non virtualizable
instructions get translated into a sequence of instructions that have the same effect (21)).

Paravirtualization or partial virtualization is a concept where the guest is aware of
running on a hypervisor layer. The guest system gets modified in a way that replaces
non-virtualizable instructions and lets it directly interact with the hypervisor through
hypercalls. Hypercalls are similar to system calls and let the guest directly talk to
the hypervisor. This technique improves the performance of the system and eliminates
additional overheads (21I)).

All of the big CPU producing companies like Intel, AMD and ARM have implemented
special instructions into their CPU instruction set supporting and facilitating the execution
of virtualized guest systems (called “hardware assisted virtualization”). The instructions
include operations for page table management of the guest systems, storing and managing
the state of the virtual machines and additional execution modes allowing a hypervisor
to trap access to hardware without binary translation. This leads to performance
improvements and makes hardware assisted virtualization the fastest of the three options
21).

2.3.2 Hypervisors

A hypervisor is an abstraction layer between the guest systems and the hardware. To
the guest system it provides a uniform interface, emulates hardware parts and manages
the access to the hardware resources of the host.

Hypervisors can be distinguished into two categories: typel and type2. A typel hypervisor
runs directly on the hardware and is therefore also called bare-metal hypervisor. Examples
for this type are XEN, Oracle VM Server and Microsoft Hyper-V. Type2 hypervisors run
on top of an operating system as a normal process on the host next to other applications.
Examples include VM Ware Workstation, VirtualBox and Qemu. For KVM (details see
below) and FreeBSDs bhyve the case is not so clear. They use an existing operating
system indicating a type 2 hypervisor but they get loaded as a kernel module and thereby
turn the operating system into a typel hypervisor (105).

Two of the most prominent open source hypervisors are XEN an KVM. They both are
supported by most Unikernel projects and, therefore, are examined in more detail in the
following.

2.4. Unikernel Concept

XEN is a hypervisor developed as an open source project. It provides full virtualization
if the required hardware (CPU extensions) is available and paravirtualisation if the
hardware is not available. XEN differentiates between paravirtualized guests (so called
PV guests) and hardware virtual machines (HVM). In a paravirtualized environment the
guest operating system is aware of the virtualization and the hypervisor and needs to be
ported to the specific hypervisor in order to work. Instead of issuing syscalls, the guest
OS sends so called hypercalls to the hypervisor in order to interact with the hardware
(104).

The kernel based virtual machine (KVM) is a virtualization technology based on the
Linux kernel. It uses the hardware virtualization extensions Intel VT and AMD-V to
run virtual machines. After loading the KVM kernel module the Linux kernel plays the
role of a hypervisor for the guest systems and thereby it can be argued that KVM is
a typel hypervisor. The started guest systems appear on the host system as normal
processes(55)).

While the forementioned hypervisors mainly target the x86 processor architecture, there
exists with the prpl hypervisor a hypervisor specifically targeting low power MIPS CPUs
(87). Since MIPS processors are widely used in embedded devices like IoT devices, this
hypervisor could become an interesting target for Unikernels once they support the MIPS
architecture.

2.3.3 Virtio

Virtio (Il) is a set of efficient drivers for Linux intended to be used by a variety of
hypervisors. Before Virtio each hypervisor would implement its own block, network,
console and other drivers.

Full virtualization where the hypervisor simulates a certain hardware for the guest is
not efficient and therefore slow. To optimize running a guest on a hypervisor Virtio is
implemented as a set of paravirtualized drivers where the guest knows that it is running
on a hypervisor and both sides (guest and hypervisor) use a Virtio driver to interact
with one another. This leads to a significant performance improvement compared to the
full virtualization environment. The interaction between guest and host uses buffers and
virtual queues to send commands to the host and receive data from the host. A device
driver can use several virtual queues for the interaction. The network device driver for
example uses one queue for receiving packets and one for sending network packets via
the hypervisor to the network (92)).

2.4 Unikernel Concept

“Unikernels are single-purpose appliances that are compile-time specialised into standalone
kernels, and sealed against modification when deployed to a cloud platform. In return
they offer significant reduction in image sizes, improved efficiency and security, and
should reduce operational costs.” (63)).

15

2.

FUNDAMENTALS

16

The term Unikernel refers to a design principle for a system combining all aspects of an
operating system together with an application into one inseparable execution unit. An
alternative name for the same concept often found in the literature is the term “Library
Operating System” (84) (62)). There are several projects implementing this principle and
each has a different focus (see chapter 2.4.1). The projects can be separated into two
categories: Unikernels aiming to be POSIX (see 2.2.6) compatible and thereby support
the execution of unchanged applications, meaning an application can be ported from
running on a bare metal Linux to running in a Unikernel without changing the code. The
OSv Unikernel and Rumprun are members of this group and are therefore able to run
unmodified applications that were not specifically written for a Unikernel. The second
category are Unikernels where the application is specifically written to be run on that
Unikernel implementation by using specific libraries developed for this Unikernel. Most
of them require the application to be written in the same programming language as the
Unikernel itself. MirageOS for example is written in the functional language OCaml and
requires its applications to be written in OCaml as well (63).

Unikernels directly target hypervisors as platforms for the executions, thereby Unikernels
avoid the hardware compatibility problems which older approaches to the library OS like
Nexus and Nemesis had. Traditional operating systems have multiple layers of protection
and thereby allow to run untrusted applications side by side. Unikernels execute only
one application and therefore reduce the protection boundaries between kernel- and user
space for the benefit of improved execution speed. Unikernels running on a hypervisor
rely on the hypervisor to introduce the needed protection boundaries between mutually
untrusting systems (62]).

The chapter “Unikernel Implementations” 2.4.1| gives an overview over the available
Unikernel projects, their aims and project status and goes into detail on the three most
advanced projects OSv, Rumprun and MirageOS. Based on these projects chapter 2.4.2
extracts common properties and design principles found in all Unikernel implementations
and defines the characteristics and aims uniting all projects.

2.4.1 Unikernel Implementations

The Unikernel design is a concept implemented by a range of projects with different
focuses. This chapter will give an overview on the currently available implementations
and explore some of the implementations in depth highlighting the interesting features
distinguishing them from general purpose operating systems.

To this date there are the following projects implementing the Unikernel concept:

Project Version | Description State

MirageOS (169)) 3.0 A Unikernel developed in the functional language | active
OCaml designed to run in the cloud. see 2.4.1.2

2.4. Unikernel Concept

OSv (78)) 0.24 OSv is one of the more advanced Unikernel | active
projects. I supports a wide range of programming
languages and execution environments (including
Java) by being POSIX compatible. see 2.4.1.1

Rumprun (89) 08/2017| A project based on the NetBSD Rump kernel. | active
Like OSv, this Unikernel aims to be POSIX com-
patible. see 2.4.1.3

HalVM (39)) 2.4.0 The Haswell Lightweight Virtual Machine | active
(HalVM) is an Unikernel project designed to run
Haskell code on top of a Xen hypervisor.

ClickOS (23) 2.0.1 A modular Unikernel for network function virtu- | inactive
alization (NFV). - merged

into
MiniOS

Drawbridge (66) | - A research prototype by Microsoft combining | inactive
a picoprocess with the concept of a library OS
based on Windows. Code is not available.

IncludeOS (49) 0.10.0 | A project that allows to compile c++ programs | active
into Unikernels by simply including the library
in the sourcecode. It is designed to run on top
of a hypervisor in the cloud.

LING (35)) 0 LING allows to run an erlang application on top | active
of a XEN hypervisor.

runtime.js (90) 0.2.14 | A library OS running a JavaScript application | active
based on the V8 JavaScript engine running on a
KVM hypervisior.

Arrakis (I1)) - A research prototype developed to investigate if | inactive
the influence of the kernel in the execution of an | - merged
apllication can be reduced and thus speedup the | with Bar-
application. relfish

0S

Clive (24)) - A research prototype written in go. It aims to | active
compile applications written in go into a Uniker-
nel and run it on a hypervisor or baremetal.

2.4.1.1 OSv

The OSv project (78) describes itself as an operating system for the cloud. It is designed
to be run on a hypervisor and does not include drivers needed to run on bare metal. It
runs the kernel and multiple threads all in the same address space and thereby makes
system calls as efficient as function calls. OSv aims to be able to run unchanged POSIX
compliant Linux ELF binaries and therefore provides most of the standard POSIX

17

2.

FUNDAMENTALS

18

Configuration
Application
Threads
— [
Processes Application c
)
X
OS Kernel Runtime library =
-]
Hypervisor Hypervisor
Hardware Hardware

Figure 2.1: Structure of traditional OS and a Unikernel (from (16]))

interface (see 2.2.6) to the application. One crucial difference to a standard POSIX
compliant system is that OSv is designed to be a single process system and does not
support multiple processes running in parallel, therefore the POSIX APIs initiating new
processes as fork() and exec() are not supported. The same applies for signals that are
partially supported in order to support the execution of a Java Virtual Machine (JVM)
on the OSv system since one major goal of the project is to support JVM applications
(86]).

Traditional general purpose operating systems take a lot of effort to make sure that
processes running in parallel are separated from one another and one cannot interfere
with the memory of the other. The same applies to the separation of user-land processes
and kernel-land functions. When a process in a traditional operating system like Linux
tries to interact with the hardware, it issues a system call to the kernel. Since the kernel
runs on a different ring (ring 0) (see 2.2.2) a privilege transition has to occur where the
control is passed to the kernel function, the command on the hardware is executed and
the result is passed back to the process in user-mode (in Linux running on ring 3). Since
OSv Unikernel runs a single application in a single process, there is no need to separate
processes from one another or the user-mode processes from kernel-mode functions. The
complete Unikernel is seen as one single application either working as expected or failing.
If the application does not function properly there is no need for the underlying operating
system kernel to continue to function, therefore there is no need to protect the kernel
from user-process behavior. OSv has implemented a range of performance improvements
targeted at services running in the cloud.

System calls in traditional operating systems produce a significant overhead for the
operating system through context switches and parameter copying (see chapter 2.2.3)). In
OSv all the expected syscall APIs are available to the application but are implemented as
normal function calls. This improves the performance of the OSv Unikernel by reducing

2.4. Unikernel Concept

the overhead of a system call to the costs of a normal function call without address page
swapping (50).

The OSv project rewrote the network stack with a network channels based design.

A channel is a single producer, single consumer queue forwarding the packets to the
application. The network channels approach leads to a reduction of required locks on
the resources: Socket receive buffer lock and -send buffer lock are now populated by the
same thread either running the syscall recv() or send(). The interleave prevention lock
has been replaced by a waiting queue using the socket lock for synchronization. The
TCP layer lock has been merged with the socket lock since TCP processing now always
happens within a socket call (56).

OSv has implemented a custom thread scheduler that is described as lock-free, preemptive,
tick-less, fair, scalable and efficient. Where traditional scheduling mechanisms use
spinlocks for synchronizing threads (see 2.2.7), OSv avoids them by introducing runnable
queues for each CPU. While the use of spinlocks is unproblematic when the code runs on
a physical hardware, it gets problematic when the CPUs are virtual and the code runs on
top of a hypervisor. The problem arises when the vCPU is preempted in the guest system
while holding the lock. The other vCPUs of the same guest system have to wait until
the CPU holding the lock is executed again and is freeing the lock. OSv addresses the
spinlock problem through runnable queues and by implementing a lock-free algorithm for
resource access (56). In order to ensure fairness for threads in the queues a load-balancer
thread runs 10 times in a second to reassign threads to runnable queues if one queue has
more waiting threads than another. All threads can be preempted, there is no difference
between an application and kernel thread. A thread can temporarily avoid preemption by
increasing the per-thread preempt-disable counter. Classic operating systems use periodic
timer interrupts (ticks) to cause a reschedule. The scheduler accounts the amount of

time for each thread and uses these counts to determine which thread to schedule next.

Especially on hypervisors these frequent timer interrupts waste CPU time since interrupts
lead to hypervisor exits and costs valuable CPU time. OSv uses a tick-less design by
using a high-resolution clock to account the actual time each thread used, instead of
approximating it by ticks. Fairness in scheduling is achieved by calculating a moving
average over the recent history of the runtime of each thread. The thread with the lowest
average is scheduled next (50).

OSv uses a single virtual address space for all threads, kernel- or userspace threads.

As described in chapter 2.2.4] and [2.2.5| this reduces the costs of context switches for
threads since the operating system does not need to load page tables and flush the TLB
(Translation Lookaside Buffer) and needs to store less state since all code runs in the
same process.

OSv describes itself as the operating system for the cloud and therefore seeks to support
a number of popular programming languages and frameworks. One specific goal is to
be optimized for the execution of Java applications on a JVM in the OSv Unikernel
by providing optimized APIs for memory usage and garbage collection. OSv supports

19

2.

FUNDAMENTALS

20

memory mapping via the mmap API to specifically support JVM based applications, like
Apache Cassandra, managing their own memory over JNI.

While the project supports a large set of POSIX APIs (see chapter 2.2.6) and thereby
aims at being able to run unchanged POSIX compatible applications, it introduced new
APIs for memory management and networking deriving advantages from the reduced
complexity in the kernel functionalities by not needing to support multi-process and
multi-user functionalities. The socket API on a Linux system has significant overhead in
the handling of packets resulting from not being able to share a buffer between kernel-
and userspace. When data is read from or written to a socket, the buffer has to be copied
between kernel- and userspace. The single-addressspace design of OSv allows to develop
zero-copy APIs and share a common buffer without copying. This even allows the OSv
kernel to expose the Virtio rings (see chapter 2.3.3) to the application and thereby further
improve the performance of the network stack. It was demonstrated in (56]) that this
non-POSIX API can lead to a 4-fold increase in packet throughput for a Memcached
implementation.

2.4.1.2 MirageOS

MirageOS (69)) was one of the earlier implementations of the Unikernel concept. It was
developed by Madvahapeddy and is written in the high-level functional language OCaml.

The goal of MirageOS is to restructure the functionalities that virtual appliances provide
into modular, flexible and secure components. To this end the MirageOS project takes the
core functionalities of a standard kernel and surrounding drivers and implements them
into libraries written in the type-safe high-level language OCaml (63). The approach
of MirageOS for the implementation of larger applications with multiple services that
traditionally would run in a single virtual machine is to split it up into multiple small
Unikernels running on a hypervisor and interacting with each other over the network
interface.

In contrast to other implementations of the Unikernel concept like OSv or Rumprun,
MirageOS does not support porting existing applications directly into MirageOS since it
does not provide the standard POSIX interface needed for Linux binaries to interact with
the system. The project aims to optimize for execution speed and safety of applications
executed on a hypervisor. To achieve this goal, the project has rewritten libraries for
handling TCP/IP connections in the typesafe language Ocaml and could show that
they were able to improve the network performance of MirageOS by that. A traditional
operating system has protection mechanisms on several levels. It aims to protect kernel
functionalities from rogue user processes by using different privilege levels and a clear
separation between kernel-space and user-space. MirageOS does not differentiate between
the both since the only purpose of running a Unikernel is to execute the one application.
If the application is no longer functioning correctly through a misbehaving process, there
is no purpose for the rest of the system to continue to work. MirageOS Unikernels
therefore have only one single address space where all code is executed.

2.4. Unikernel Concept

MirageOS provides a collection of libraries for the developer ranging from block device
drivers and network drivers to more specific ones as drivers for key-value stores. Since
the system cannot rely on additional system services a normal Linux system would
provide through separate processes running in parallel, the libraries have to include
implementations of popular protocols like TCP/IP, DNS and TLS for communication
with other services over the network. One property contributing to the boottime advantage
compared to traditional operating systems is the missing configuration phase during the
boot process. MirageOS Unikernels do not read configuration files during bootup, instead
the configuration is compiled into the Unikernel during the build phase (62]).

When a developer writes an application for MirageOS, the code will be written in
the OCaml language and declares the needed libraries for the compilation. When the

developer starts the building process, the compilation target for the code is specified.

The building system for MirageOS can produce Unikernels for XEN, UKVM or Virtio
and includes only the necessary drivers for the chosen target environment. During this
process the Unikernel is linked against a minimal runtime, providing garbage collection
and boot support and the device drivers for the defined compilation target and thus
a Unikernel specific for that target environment is compiled. The Unikernel does not
include capabilities for dynamic linking at runtime since all configuration is resolved at
compiletime and compiled into the resulting system image. The developer can choose
the compile target “Unix” and the building system compiles into a POSIX compliant
Linux binary that is linked against the Linux device drivers. This facilitates testing on
the developer system and is often used during the development process (68).

MirageOS Unikernels are treated as immutable objects. Since all configuration takes
place at compile time, a reconfiguration of an existing system image is not possible. In
this case a new Unikernel with the new configuration is compiled and replaces the existing
system image.

2.4.1.3 Rumprun

The Rumprun Unikernel (89) is an operating system framework built on top of NetBSD
Rump kernel drivers to compile applications into a Unikernel running on bare metal
or a hypervisor. It uses Rumps modular drivers to build an application together with
additional platform specific operating system functionalities into a minimal system image
(B3]).

The Rump kernel is a kernel that is designed as an “anykernel” through componentizing
its functionalities, meaning it can compile the needed drivers into the monolithic kernel
or run the drivers in userspace on top of a lightweight Rump kernel (and thereby function
as a microkernel) (54)). The term “anykernel” refers to a kernel type codebase from which
drivers can be extracted and integrated into any operating system model (53]).

The Rump kernel provides a way to run drivers outside the kernel in user space. The goal
is to provide drivers as a set of libraries for an application. An important differentiation
to a traditional operating system are the functionalities it does not provide. It does not

21

2.

FUNDAMENTALS

22

include virtual memory, a scheduler, thread handling, lock management and interrupt
handling. The Rump kernel expects the platform it runs on to provide these functionalities
and thereby the Rump kernel alone is not a complete kernel. The Rump kernel depends
on a slim hypercall layer to provide these functionalities to the Rump kernel. Hypercalls
are the interfaces the CPU specific code provides to interact with the Rump kernel
and lets the kernel interact with the hardware. The platform could either be a regular
operating system like Linux or NetBSD where the Rump kernel runs as a user space
process or the platform could be a system on top of a XEN hypervisor providing the
hypercall interface. A number of other microkernel projects like Genode use the drivers
from the Rump project in their projects to interact with the hardware (26)).

The Rump kernel and its modularized drivers are the basis for the Rumprun Unikernel.
Since the Rump kernel alone is not a complete kernel through the lack of forementioned
operating system functionalities, the Rumprun framework provides the missing environ-
ment and operating system functionalities the Rump kernel needs through a so called
bare metal kernel (bmk). The project includes several platform specific bare metal
kernels for platforms like XEN or KVM. Figure 2.2/ shows the internal structure as layers
of a Rumprun Unikernel and the abstraction it uses to provide a POSIX interface to
the running application. It includes a unmodified libc library from NetBSD allowing
the applications running in the Rumprun kernel to use the same POSIX syscalls as on
other POSIX compatible systems like Linux or NetBSD. Where in other Unikernels the
applications need to be specifically developed for this Unikernel (for example MirageOS
2.4.1.2), because the drivers are provided as libraries with newly designed APIs, an
application in Rumprun does not need to be tailored for the system and can be compiled
without changes in the sourcecode (53).

Rumprun Unikernels are always crosscompiled on a different system. The building system
provides custom wrappers for the appropriate toolchain. The application is compiled
for the target platform together with the Rump drivers and bare metal kernel into a
bootable system image through a “bake” process (103).

2.4.2 Common Properties of Unikernels

The previous chapter described three of the most advanced Unikernel projects. Each
of these projects has a different focus. OSv lays its focus on becoming the operating
system for the cloud and therefore aims at supporting a wide range of frameworks and
languages. MirageOS on the other hand explores the advantages of writing operating
system functionalities in a typesafe language and requires the applications running in
MirageOS to be written in this language. Rumprun builds upon an existing wide ranging
repository of drivers which allows them to be able to execute on bare metal. All of
these projects, as different as they may be, have as Unikernels common properties. This
chapter explores these properties and lays out differences in the implementations where
they arise.

2.4. Unikernel Concept

application

code & libraries

libc
provides POSIX AP

rump kernel
network protocols, file systems, drivers

rumprun

Figure 2.2: Layout of a Rumprun Unikernel (from (103)))

2.4.2.1 Single virtual address space

One property all Unikernel implementations have in common is the lacking separation
between kernel- and userspace memory. A traditional operating system will go over
great lengths to protect the core system from the users and different processes from each
other. It has clear protection boundaries and trust zones. If a program needs to access a
hardware resource, it has to ask the kernel for the resource by the way of a syscall. In
that way the kernel is the gatekeeper managing access to the hardware and grants or
denies access. Through this strict separation the operating system makes sure that a
rogue program cannot compromise other processes and bring the system to a hold. A
Unikernel by contrast is seen as one single unit that either functions together or fails
together. From the viewpoint of a Unikernel there is no need for the operating system to
continue to function if the application fails since there is no separation between the kernel
and the application and therefore if the application is terminated the system-kernel has
no point of continuing the work since there are no other tasks for it to fulfill.

Unikernels use a single virtual address space for the execution of the application and all
threads concerned with managing the system (63)) (16). As described in chapter 2.2.4

23

2.

FUNDAMENTALS

24

during a context switch from one process to another, the fast cache for memory addresses
TLB is flushed and needs to be rebuilt for the newly loaded process. These TLB misses
are costly and reduce the executions speed of a process. In a Unikernel with a single
virtual address space the TLB never needs to be flushed, which leads to the claims by
several Unikernel projects that context switches in Unikernels are cheaper and therefore
Unikernels have performance advantages over traditional systems.

2.4.2.2 No privilege separation

The threat model of traditional operating systems knows different untrusting parts inside
an operating system that need to be protected from one another. Userspace processes
running side by side cannot trust one another and therefore each need to be protected
through mechanisms like virtual memory and privilege separation. On systems like Linux
each process gets its own virtual memory (see 2.2.4). This prohibits a process from
accessing and interfering with the memory of other processes. The separation through
address translation and page tables provides clear boundaries between multiple concurrent
processes running on the same CPU.

In the Unikernel world the system is seen as a inseperable unit that cannot be divided
into separate layers of operating system and application. Unikernels run in one virtual
address space 2.4.2.1/ and all instructions run on ring 0 (62)). This reduces the overhead
of a syscall on a standard Linux system to a normal function call within the same address
space.

2.4.2.3 Single process

Unikernels execute all running code in a single process (I5). This improves the perfor-
mance through the lack of costly context switches between processes (switching between
threads is less costly since fewer data needs to be saved and restored (60))). The context
switch between two concurrently running processes is the costly transition from the
execution of one process to the execution of another by saving the state of the former
process an load the previously saved state of the later. By avoiding context switches
in Unikernels, the page table does not need to be switched and the TLB (Translation
Lookaside Buffer) does not need to be flushed and rebuilt.

2.4.2.4 Optimized for Hypervisor

The Linux operating system aims at being able to run any software and to be able to
run on any hardware. This is achieved through a large number of drivers and libraries
provided and delivered with the system image. The large number of drivers increase
the size of the system image and makes it harder to distribute a new system image over
the network. Earlier approaches at implementing the library operating system concept
as the projects Nexus and Nemesis struggled with keeping up with the demands for
drivers for new hardware. Whenever new hardware was released, new drivers needed to
be developed.

2.4. Unikernel Concept

Since the dawn of virtualization on commodity hardware this reduced the requirement
for new drivers for each individual operating system. The hypervisor presents to the
guest system an abstracted view on the hardware and therefore the guest systems need
to support only the drivers needed for the hypervisor. Unikernels for the most part are
developed to be executed on top of a hypervisor. The hypervisor provides a standardized
interface to the Unikernel such that the system image only needs to include a small
number of drivers for the interaction with the hypervisor. The specific drivers are
determined, configured and included at compiletime into the Unikernel.

2.4.3 Claims of Unikernels

The Unikernel community claims performance advantages over traditional operating
systems through the reduction of protection mechanisms between processes, faster APIs
and whole system optimizations and thereby reducing system startup time and resource
usage.

The claims in detail:

Faster boot time: Unikernel projects aim at being able to boot quickly. This is achieved
though a reduction of the amount of code running at boottime and configuration
being done at compiletime. Claim for OSv in (56), for Rumprun in (53)) and
MirageOS in (62).

Smaller image size: The size of the system image is relevant when the image has to
be transfered to the system over the network, the bigger the image the more load
is produced. Claims of the Unikernel projects regarding smaller image sizes can be
found in (62) (MirageOS), (56) (OSv) and (53) (Rumprun).

Increased performance: By getting rid of the protection boundaries between kernel-
and userspace and using a single virtual address space the Unikernel projects claim
to have improved the systems performance. OSv in (56)), MirageOS in (62) (63).

Security: Security plays an important role in computing environments handling valuable
data. Operating systems go over great lengths to address security issues. Unikernels
address security primarily through a reduction of the amount of code present in a
Unikernel. Security in OSv is addressed in (56), for MirageOS in (62).

These claims make the Unikernel principle a potential solution to the challenges of
running virtual machines on a hypervisor on top of an IoT device.

2.4.4 Unikernels on ARM

IoT devices are often embedded systems with low system resources fulfilling a small set
of specific tasks. In order to reduce the power consumption of the system the device
manufacturers often use low power CPUs based on the ARM architecture for the IoT

25

2.

FUNDAMENTALS

26

devices. These CPUs operate on an instruction set different from the x86 architecture
dominant in the desktop- and server world and therefore the software running on these
systems needs to be adapted for the ARM architecture to be able to run it.

This work has chosen the two projects OSv and Rumprun as examples for the Unikernel
principle because they are developed relatively far and are designed to be POSIX com-
patible. This means that a binary has the same interface to talk to the system as on a
regular Linux. This allows for a comparison of performance metrics between Unikernels
and a standard Linux system. Both Unikernel projects (89) describe themselves as being
able to compile for several architectures including ARM (53). Therefore, the first idea
was to use an ARM based device like the Raspberry Pi v3 as a model for an IoT device,
run the tests on the device and demonstrate the deployment of software to this device
through the deployment prototype described in |6. The Raspberry Pi v3 seemed to be a
good fit for this purpose through the use of an ARMv8 CPU (9) supporting hardware
virtualization with a dedicated instruction set for memory management and interrupt
handling in virtual machines. During the compilation attempts it turned out that the the
projects were not as advanced on the ARM architecture as they are for their x86 codebase.

While the Rumprun system itself could be crosscompiled for the ARM64 architecture,
when it came to the compilation of an application into a Rumprun compatible binary,
the compiler produced a binary that got rejected by the next step of the creation of a
Rumprun image “rumprun-bake”.

Both projects state that the ARM port is an ongoing effort and while they were able to
demonstrate the possibility for running the respective Unikernel on an ARM CPU for
some chosen appliances, the codebase is not yet ready to compile a suitable Unikernel for
this architecture.

2.5 Internet of Things

The idea behind the Internet of Things (IoT) is that physical objects of our daily lives
get connected to Internet over a local network and thereby increase their utility to the
user and become “smart”. An example for such devices is an integrated temperature
control system in a house with a number of sensors delivering data to a control device
regulating the heating and ventilation system according to a defined temperature goal.
An ever increasing number of devices in people’s homes get connected to the Internet for
additional services. Smart refrigerators can transfer a live video feed to the user over
the Internet to inform him about the products present at home. A smart coffee maker
can receive commands to produce coffee from remote, the home security system transfers
alerts and video feeds to the user by sending data from the home to a webservice. The TV
receives movies over video streams directly from Youtube and smart speaker systems like
Google Home or Amazons Echo have a bidirectional connection to the cloud. They are
receive spoken commands from the user, decode them in the cloud and can stream music
or receive information from the Internet. While these services so far have been voluntary
choices by users, through the rollout of smart metering systems for the electricity grid

2.5. Internet of Things

IoT devices become unavoidable (2)).

IoT devices are not just present in homes but are omnipresent in the corporate world as
well. Access systems process authentication information and unlock doors accordingly. In
the manufacturing industry where the term is tightly connected to the buzzword Industry
4.0, IoT devices are used to collect measurement data and initiate actions as part of
the manufacturing process or the surrounding environment. The idea here is to tightly
interconnect the systems such that the overall processes can be optimized and shortages
and overstockage can be avoided.

The integration of IoT devices in healthcare environments like hospitals makes clear that
privacy and security play a crucial role in the acceptance of the added value the devices
can provide.

In applications like smart agriculture and smart animal farming the goal is to supervise
the whole production process, detect problems early on and automate as many tasks as
possible. The large amount of data that can be collected through the widespread use of
sensors allow deep insights into the production process and reveal optimization potential.
This shows that IoT devices are already omnipresent in our daily lives and their number
will dramatically increase over the near future as the devices get ever smaller and cheaper.

2.5.1 Hardware

There are several hardware platform available for the development of IoT devices. Several
manufacturers provide boards with different computational power and power requirements
like Arduino, UDOO, FriendlyARM, Intel Galileo, Raspberry PI, Gadgeteer, BeagleBone,
Cubieboard, Z1, WiSense, Mulle, and T-Mote Sky (2).

IoT devices are designed to be small in size and consume less resources than a regular
system. The core of each system is the CPU managing all surrounding devices. There
are a range of CPUs with low power requirements on the market. One of the biggest
player is the company ARM. Their ARM CPUs (10)) are widespread in mobile devices like
smartphones, tablets, NAS systems and IoT devices (70). The newer versions ARMv8 and
ARMv9 have support for hardware virtualization build in through a set of instructions
facilitating memory management and interrupt handling. The company MIPS Computer
systems include in their processors support for virtualization in their newer products
of the P- and I-series, M5100 and M5150 CPUs. Intel has some CPUs in their low
power Atom series that support virtualization as well. Their system-on-a-chip “Quark”
designed for low power consumption in the embedded world however does not support
virtualization yet (51)).

The Arduino project enters the market of IoT devices with their “Yun” called project. It
aims to provide a development platform for IoT devices and includes a resource efficient
ATmega32u4 CPU at its core ().

27

2.

FUNDAMENTALS

28

2.5.2 Operating Systems

Operating systems for IoT devices are tailored to the needs of low power devices. There are
several realtime operating systems (RTOS) like Contiki in use on IoT devices. Operating
systems like TinyOS, LightOS, Riot OS, Android (43)) or some flavor of Linux are other
candidates for the use on devices (2).

Several companies run projects aiming to define the future operating system for IoT
devices. Google is developing with “Android Things ”(codename Brillo) (43)) a platform
for embedded operating systems working with systems that have low system resources
(32-64MB RAM) and supports wireless connections with Bluetooth Low Energy and Wifi.
The company Canonical has a project by the name “Ubuntu Core for IoT” (I8) aiming
at providing an integrated platform for IoT devices. It uses Canonicals snap system to
isolate applications from each other through the use of application containers and thereby
tries to implement heightened security mechanisms protecting concurrently running
applications from one another.

Microsoft enters the IoT market with its Windows 10 for IoT operating system (65)
integrating the devices running the operating system with cloud services running in its
Azure cloud. It aims to support devices running on x86 and ARM processors.

2.5.3 Network Connection and Communication Protocols

IoT devices use various technologies to connect to other devices or directly to the
cloud. Apart from cable based ethernet connections, there are a range of wireless
technologies available. On close proximity wireless technologies like RFID, UWB (Ultra
Wide Bandwidth) or NFC are used where for larger distances systems like Bluetooth
(including the near-range low power variant Bluetooth LE), Wi-Fi, Z-Wave or Zigbee
suit the need (2)).

There are several communication protocols in use for the communication among IoT
devices and with the cloud. Depending upon the positioning of the device within the
architecture of the network (sensor/actor, network edge, gateway, ...) and the processing
capabilities of the devices different protocols are used. In the communication between
the “Thing” and the gateway, lowlevel protocols like CAN-Bus or LonWorks are used.
For the communication between the gateways and cloud services protocols like CoAP,
MQTT or REST/HTTP based protocols are used (101)).

2.5.3.1 CoAP Protocol

In the world of IoT devices the communication protocols present in the web-based Internet
communication confront environments with constraints on the available computing power
and network connectivity. Nodes often use 8-bit microcontrollers with low amounts of
RAM and ROM and can have lossy network connections over low-power wireless personal
area networks (6LowPANs). A high error rate in the transmission of packets and a low
throughput lessens the reliability of the network connection.

2.5. Internet of Things

To address these issues a new protocol called “Constrained Applications Protocol (CoAP)”
was developed and specified in the RFC-Standard 7252 (see (94])). The protocol is designed
for machine-to-machine communication in an IoT environment. The protocol adopted
key concepts of the web like URI (“Unified Resourcee Identifiers”) and media types. It is
based on a request/response model between application endpoints and supports built-in
service discovery. The low overhead and good integration with the HT'TP protocol makes
the protocol a good fit for constrained environments like IoT devices. (Information in
this chapter taken from (94))).

2.5.3.2 MQTT Protocol

The MQTT (Message Queue Telemetry Transport) protocol was developed by IBM and
Arcom Control Systems originally for the supervision of a oil pipeline. In 2013 it was
standardized at OASIS (12). In contrast to the HTTP protocol it uses a publish/subscribe
model instead of a request/response model. It is event-driven and allows for messages to
be pushed to the clients. A MQTT installation consists of three components: publisher,
subscriber and broker. The broker sits in the middle of the architecture and passes
messages between publisher and subscriber. Messages are associated with so called
“topics”. Each subscriber subscribes to a certain topic with the broker and receives all
messages with this topic from the broker whenever they arrive at the broker. Publishers
send messages with a specific topic to the broker to be forwarded (I3)).

2.5.4 Update Mechanisms

IoT devices like any other computing device runs software that potentially contains
bugs. When the manufacturer issues updates for the software the system needs a way to
receive these updates and patching the system. IoT devices normally do not include user
accessible userinterfaces that would allow a manual update through the user. When an
update fails and renders the device disconnected from the network or unable to continue
to execute the operating system, the IoT device needs to be accessed physically by
attaching interaction devices like a screen and keyboard to try to recover the system
from the fail state. This problematic recovery mechanisms makes an update on a IoT
device risky.

2.5.5 Security

Due to the integration of some IoT devices with the private lifes of the users or internal
business processes through collecting and processing data, IoT devices may arguably
become a major target for attackers (71)).

Home automation systems and network connected entertainment systems are part of the
homes of many users and therefore touch the private lifes of the users. All devices that
are interacting of that area therefore bring concerns regarding privacy for the users and
security of the devices. When IoT devices are deployed as part of the infrastructure of a
company, either as part of the manufacturing process of the building management system

29

2.

FUNDAMENTALS

30

(heating/cooling, light management, door access systems), the IoT systems could be a
target for attackers as a stepping stone for further attacks into the companies network.

Compromised devices can pose risks to the confidentiality /privacy of the collected and
transmitted data, modify traversing data (authenticity) and causing malfunction on the
devices or one of the connected devices (71]).

(93)
There have been a number of attacks on IoT devices mainly focused on the use of these

devices as part of a botnet to attack IT systems with a DDOS attack. Details of these
incidents are described in |5.1.

CHAPTER

State of the Art and Related
Work

3.1 State of the Art

There are two prominent projects concerning the management and orchestration of
IoT devices and their connection to the cloud: IBM Bluemix and Amazons AWS IoT
cloud. Both provide software development kits (SDK) for the application development
on the devices and focus on the communication of the devices with the cloud services
and vice versa. The Unik project aims at unifying the creation and management of
Unikernels regardless of the Unikernel implementation in use. It allows the developer
to be agnostic of the underlying Unikernel and manages the compiled Unikernels in a
Docker like repository system from where the images are distributed to the devices.

3.1.1 Unik

The project Unik (34]) aims at implementing a Docker like system for creating, distributing
and starting of new Unikernels in the same way as containers are managed.

Where Docker uses a Dockerfile to specify the layout of the system, Unik has a file called
manifest.yaml as part of the application sourcecode where the basesystem of the future
Unikernel is specifies, how the sources are compiled and which compiled binaries should be
included. The basesystem is a template for the Unikernel and depends upon the language
environment the application needs. There are templates for languages like Java including
the needed JVM and its dependencies. With the command “unik build” the yaml file is
read, the basesystem gets downloaded, the sourcecode compiled according to the manifest
file and the resulting binaries get combined with the basesystem into a Unikernel. Unik
supports at this point the compilation of applications into the Unikernels OSv, Rumprun,
MirageOS and IncludeOS and can compile them for a number of platforms including XEN,

31

3.

STATE OF THE ART AND RELATED WORK

32

KVM, Amazon Webservices, Openstack, Virtualbox, vSphere and Photon Controller.
It presents a frontend for the creation of Unikernels and delegates the creation to the
corresponding toolkits (44]).

Like the Docker engine Unik runs as a daemon on the host system in the background
and is controlled by a client command line program. It manages the virtual machine
images, start and stop the Unikernels and provides facilities for monitoring and logging.

3.1.2 Amazon AWS IoT

Amazon has developed an IoT platform as part of their AWS infrastructure going by the
name “Amazon AWS ToT”. It connects IoT devices to the cloud and allows a bidirectional
connection sending collected data from the devices to the cloud and allowing the user to
send instructions from the cloud to the connected actors. The infrastructure consists
of device gateways controlling a number of devices and providing a secure connection
to the cloud, a message broker, rule engine, identity services, a registry for the things
and a shadowing service storing the last state of each device in case of their outage. The
communication is secured through a x509 certificate that is managed by the registry that
is part of the IoT cloud services ().

Amazon provides a SDK (Software Development Kit) for a range of programming
languages and platforms including Arduino Yin, Android, Java and iOS. The APIs allow
the programmer to interact with the Amazon hosted webservices and messagebrokers
to interact with a cloud based application (61)). The IoT platform by Amazon does not
include specifics for the device itself like an operating system beyond the SDK provided
through the project. The deployment of the compiled application to the device is not
part of the infrastructure.

3.2 Related Work

This chapter gives an overview over technologies and platforms used for deployments
of software on IoT devices. The prerequisite for the deployment of Unikernels on
hypervisors on IoT devices is the availability of hypervisors for the low-power CPUs used
for the devices. Docker is the most prominent system for deployments of applications
in virtualized environments via a centralized repository and is similar in the handling
to the Unikernel based architecture proposed in [6. Resin.io is a project demonstrating
the process of software deployments to IoT devices using the Docker system for the
distribution of images and thereby demonstrates the process an application traverses
from the developers machine to the repository on to the devices.

3.2.1 Virtualization on IoT devices

In their 2016 paper (72)) Moratelli et al describe the hypervisor PRPL (87) for MIPS
processors and discuss the benefits of using a a hypervisor on IoT devices. They argue for
security improvements for the applications on IoT devices through security by separation
through the use of hypervisors.

3.2. Related Work

The deployment of software on IoT devices through container technologies is discussed
by Celesti et al. in 2016 (20). They demonstrate the use of Docker on an IoT device as

part of a cloud IoT infrastructure and use a Raspberry Pi as a model for an IoT device.

The conducted experiments highlight the overhead introduced by the use of container
based virtualization.

3.2.2 Docker

Docker (29)) is a system for operating system level virtualization with containers. Contrary
to virtual machines it does not run on top of a hypervisor, but instead uses an underlying
Linux system and the features of its kernel to run a container as a separated process on
the host machine (30]).

Docker containers are derived from a base image providing a standard environment for
the application. These base images include all features an application expects from its
environment and provides the needed frameworks and libraries to the application. Similar
to virtual machines running on hypervisors this clearly separates the guest environment
from the host environment and allows for running different versions of services and
libraries in a contained environment.

From a developers perspective this is an interesting feature for deploying software. In
the past software was compiled on a developer machine having a certain version of
the dependencies, surrounding services and frameworks installed. This binary then got
deployed to a production machine and being executed. A common problem was that
only at this point did the operations team realize that the version of the dependent
libraries and services on the production machine the binary expects did not fit with the
binaries expectations. Between two version of a library the API might have changed or
the interaction with the library got redesigned completely. This lead to conflicts between
developer- and operations teams (30).

The other problem with library version was that a production system did run more
than one service at a time. With different software requiring different versions of the
same library installed on the system this could lead to a conflict on the system and
some trickery was required to deploy both versions side by side. Docker addresses these
conflicts by specifying the required dependencies at creation of a container. The developer
writes the software, specifies the layout and dependencies of the container and assembles
a local container on his developer machine. Upon starting the container on the developers
machine potential conflicts resulting from library version mismatches arise at that point
and the developer can address them. The sourcecode and the container specification
gets deployed to a build system where the exact same container gets build again, tested
and deployed to the production environment. Thereby no discrepancy between library
versions on the developer side and production side can arise. Since these containers
normally only contain one application and its dependencies, there can not arise a conflict
between two different library versions being required by two pieces of software on the
same machine ([73]).

The crucial difference to virtual machines is the kernel. Where virtual machines include a
complete operating system inside the vm including a separate kernel, the Docker system

33

3.

STATE OF THE ART AND RELATED WORK

34

uses the kernel of the host system for the interaction with hardware. Since the kernel
of the host system is already initialized when a Docker container is started, the guest
system does not need to initialize the hardware and thereby is very fast at booting up
the application running in the container. Docker uses two features from the Linux kernel
to separate the process running the container from the other operating system processes:
cgroups and namespaces. Cgroups are a feature implemented in the kernel of the host
system allowing to specify the amount of system resources a process can access.

In 2017 a paper was published comparing the performance of Docker containers against
a bare metal deployment on SBCs (Single board computers) that could be the base of
an IoT edge device. The paper compared five devices including two generations of the
popular Raspberry Pi and three Odroid devices. All devices use a ARM v7 or V8 CPU
at their core. The study found that the use of container technologies on the devices bring
only a negligible performance penalty when compared to the bare metal performance and
the container activation time is relatively small even when the SBC is overloaded (70).

3.2.3 Resin.io

Resin.io (88) is a platform for software deployments on IoT devices. It compiles the
application into containers and relies on Docker 3.2.2 for this task. The platform consists
of three components: client, server and device. The developer specifies through a
Dockerfile the layout and build instructions for the system and after checking in the code
the build system creates the container accordingly.

The process from development to application deployment begins at the developer machine.
The developer writes the application code and pushes it into a git repository. The resin.io
builder system receives the code from the repository and builds it according to the
instructions for a specified platform. The builder are capable to build for several IoT
specific platforms. The result of the build process is a Docker image. An agent running
on the IoT device gets aware of the newly created image and downloads it to the device.

3.2.4 Amazon Greengrass

With the product “Greengrass”(4) Amazon aims at integrating IoT devices with their
AWS cloud infrastructure but taking into account that the devices need to continue to
function without an Internet connection. It is an extension to their existing product
AWS I0T (see 3.1.2 for details) and extends the functionalities through an edge gateway
connected to the IoT devices. Greengrass allows the devices to execute AWS Lambda
functions using the same programming model on the device like in the cloud even if the
devices are not connected to the Internet (4). AWS Lambda is a product by Amazon that
follows the serverless-computing paradigm. Code is stored on the server side and only
executed when triggered by a request. Contrary to classic server applications Lambdas
do not need a user owned server constantly running and waiting for incoming requests.
The users of the service are billed by the amount of calls processed instead of per-VM
basis. The system extends the AWS IoT SDK powered devices through local edge devices

3.2. Related Work

called “Greengrass Cores” that play the role of a hub connecting all devices of a local
network that are combined into so called “Greengrass groups”. Compared to the previous
solutions based only on AWS IoT, Greengrass reduces the latency between devices and
data processing layer by shifting functionalities from the cloud to the local Greengrass
Cores. At the same time it reduces bandwidth costs by reducing the amount of data that
needs to be transfered between the local network and the cloud service (74).

35

CHAPTER

Performance & Footprint -
Evaluation of Unikernels

One of the advantages all Unikernel implementations claim to have, is improved perfor-
mance compared to a standard Linux system (for the claims see 2.4.3). This chapter
defines metrics relevant in the context of IoT devices based on the claims of Unikernels
and evaluates the performance of Unikernels in seven relevant categories. Of all the
Unikernel projects currently available only two (Rumprun 2.4.1.3/and OSv 2.4.1.1) are
POSIX compatible 2.2.6/ and therefore can run unchanged Linux applications. All other
Unikernels require the application to be written specifically for this system and a specific
programming language and, therefore, are not directly comparable with an application
running on a Linux system.

4.1 Evaluation Framework

To compare Unikernel implementations with a standard Linux, one first needs to define a
framework of relevant metrics for the context of IoT devices. IoT devices are by definition
connected to a network and almost all interaction is done over some network protocol.
Thereby the performance of the network stack is particular relevant in order to compare
performance characteristics of Unikernels with a standard Linux system. The tests for
the network stack include low level tests for the processing of TCP and UDP connections
(4.1.2) and tests for higher level protocols like the HTTP-protocol (4.1.3), CoAP protocol
(4.1.4) and the MQTT protocol (4.1.5).

The tests for the low level protocols described above take an isolated view on the protocol
implementations within the Unikernels and therefore allow for making statements about
the processing of requests by a specific part of the system. In a real world application the
ability of a system to respond to an incoming request is the result of several components

37

4.

PERFORMANCE & FOOTPRINT - EVALUATION OF UNIKERNELS

38

of the system working together. The response by the protocol handler can only be sent
after e.g. data is received from a the database, values calculated and transformed into
the requested format. To test the capabilities of Unikernels in a real world scenario, an
TIoT-application simulating the collection and storage of sensor data was developed in
two prominent languages (4.1.6).

One advantage of hypervisor based architectures is that a new instance of a system can
be started when needed in order to address an increased number of incoming requests
(called scaling out). To be able to react in a timely manner to the rising demand, the
boot time of a system becomes relevant. Therefore, the evaluation framework includes
the boot time as a metric for the performance of the Unikernels.

When a new version of a virtual machine should be executed on top of a hypervisor,
the image file of the VM first needs to be downloaded to the device over the network
connection. If several IoT devices download an image over the network at the same time,
this produces a heavy load on the network and can influence the throughput of the data
on the network. This makes the size (see |4.1.7) of the operating system image a relevant
metric since smaller images produce less load on the network.

4.1.1 Boot Time

During the boot process the system queries the available hardware, loads the appropriate
drivers and initializes the devices. A standard Linux system starts a number of background
services for different maintenance tasks. This process takes time. In an environment with
varying workloads a strategy to cope with a rising number of incoming requests could be
to spin up new virtual machines on the fly and shut them down as soon as they are no
longer needed. Fast boot times allow to spin up new instances on demand and therefore
allows for a flexible handling of workload spikes.

The time measured as “boot time” in this test series is defined as the time difference
between issuing the command to start the virtual machine or Unikernel and the time
where the service running inside the VM is starting to respond to incoming requests. To
this end a script was written taking time x, starting the system and immediately start
querying for the service. As soon as an answer is received, the time y is taken again
and the difference between the two values (y-x) is stored as boot time. The boot time
thereby not only includes the time it takes a system to initialize the interaction with the
hypervisor, but includes the startup process of the running application as well.

4.1.2 TCP/UDP Connection

Both, TCP and UDP, are the fundamental protocols of modern computer networks
like the Internet. They both belong to the transport layer in the protocol stack. The
Transmission Control Protocol (TCP) (50) is a connection oriented protocol that can
detect packet loss and retransmits the lost packages if needed. An example for a higher
level protocol relying on TCP for the transportation of data is the HT'TP protocol.

The User Datagram Protocol (UDP) is a so called connectionless protocol that, contrary

4.1. Evaluation Framework

to the TCP protocol, does not keep track of the sent packets and does not verify with
the recipient if the packet was received. UDP sends the content in datagrams to the
receiver (85). A number of higher level protocols use UDP for the transportation of their
data: The DNS protocol used for name resolution in a network, the DHCP protocol
for assigning dynamic ip addresses in a network and a number of routing protocols to
negotiate the routes a packet can take through the network (46]).

Since all application level protocols (HTTP, DHCP, DNS, CoAP, MQTT) rely on the
two transport layer protocols for the data delivery, the performance of the network
connection fundamentally relies on the implementation of the two low level network
protocols. Therefore, the two layers of network protocols get tested separately to draw
conclusions on the implementations of subcomponents of the network stack.

For IoT devices the network stack plays a central role, because all communications with
the device happens over the network. Therefore, the performance of the networkstack
and its subcomponents is an important criteria for evaluating a Unikernel implementation
for the use on a IoT device.

For the testseries evaluating the transport layer protocols (TCP and UDP) the tool
Netperf (76)) is used. It consists of two executables (netserver and netperf) and is designed
as a client-server model where the server (called netserver) is executed on the system
under test and the client (netperf) is executed on a second system running the tests.
Netperf allows to test different test profiles and thereby measuring certain characteristics
of an TCP and UDP connection. The following description of the testprofiles used during
the testseries is taken from (52)).

TCP__RR The TCP request-response test executes one request at a time synchronously.
The resulting measurement expresses the average number of completed transactions
per second.

TCP__STREAM In this test some quantity of data is sent from the client to the server
and measured on the server side. The initialization of the connection does not
count to the measurement. The measuring unit of the result is megabit per second.

UDP_STREAM During the UDP_STREAM test the client sends data to the server.
Since the UDP protocol has no end-to-end control flow the netperf tool has no way
of knowing from the protocol if the data was received. To mitigate this netperf
shows the sending and receiving throughput.

UDP__ RR A UDP request-response test is similar to the TCP__RR test in the sense
that data is sent in both directions. The difference is found in the characteristic of
the UDP protocol that is a connectionless protocol meaning that it does not make
sure that the data is actually received by the receiving system. If a UDP datagram
is lost it is not retransmitted as with the TCP protocol.

39

4.

PERFORMANCE & FOOTPRINT - EVALUATION OF UNIKERNELS

40

TCP_MAERTS This testprofile is the reverse of the TCP__ STREAM test. Instead of
streaming from the client to the netserver application running in the system under
test, it streams from the netserver to the client and thereby testing the capabilities
of the system to send TCP packets. The measured result represents the average
number of megabits successfully transfered during the test.

There are more testprofiles available in the netperf testsuit, but the above listing contains
the most common and useful for the intended testscenario. Additional profiles cover
other protocols or operating system specific functions.

4.1.3 HTTP Connection

The preferred way to interact with a data providing service these days is via a REST
interface. Theses interfaces communicate over the HTTP protocol (36]) and mainly deliver
a JSON file as result.

In the context of an IoT device this could be a service aggregating data from different
sensors and stores it in a local database. Other centralized services could then fetch the
data from this service over the REST interface.

The performance metric for the HT'TP connection is different from the tests for the TCP
stack since the TCP tests only measure the performance of the networking components
and the implementation of the low level protocols where the HT'TP response times are
the result of components involved in the handling of higher level protocols. Isolated tests
for the handling of the HT'TP protocol allows to derive additional conclusions on top of
the results for the TCP tests. Where the results for the TCP connection mainly involves
the handling of the network drivers implemented in the Unikernel projects, the tests
for the HTTP protocol additionally include the communication between the networking
component with the Java-VM and the handling of the HT'TP-requests inside the VM.

The tool used to test the HT'TP connection of Unikernels and the reference system is
httperf (45). It collects a number of data points for a testrun and calculates average
values for metrics as reply time. For this testseries two related metrics were chosen
allowing to make a statement about the ability of the system to process incoming requests
and define the basis for comparing the performance of the tested systems.

e Reply time: The reply time of a single request is the time it takes from sending a
request to receiving an answer. The tool calculates the average value of all requests
sent during a testrun and prints it after the test. The measurement unit for this
metric is milliseconds (ms).

e Request rate: The value measured as request rate is the average number of requests
the server can process in a second. This is highly correlated with the reply time
in the sense that the faster a single request can be replied, the more requests can
be processed in a second. The unit for this measurement is requests per second

(req/s).

4.1. Evaluation Framework

This testseries was conducted with different system configurations (see |4.1) to see if
differences in the amount of RAM or number of vCPUs have an impact on the measured
network performance. For each system configuration five tests were executed and the
average of these values was calculated. The tool httperf allows to specify the number of
connections that are established during a single testrun. For all tests with the tool httperf
the fixed number of 3000 connections was chosen as it is a reasonably high number to
get a good average value over all connections but is low enough for the slower systems to
complete the test in time.

4.1.4 CoAP Protocol

The CoAP protocol is a machine-to-machine communication protocol designed for con-
strained environments (see 2.5.3.1 for details).

The client-server architecture allows to design a test for the performance of Unikernels in
the handing of CoAP requests where a simple server is implemented through a library
and compiled into a Unikernel. A client benchmark-application then queries the server
repeatedly and measures the time it takes the server to complete the request. An
important distinction from the MQTT protocol is the use of the underlying transport
layer protocol. Here CoAP uses the connectionless UDP protocol instead of TCP. The
project “Californium” (37) implements a library for the handling of CoAP requests. Next
to the library itself they have implemented a range of tools to test the installation. One
of the tools is a simple benchmark application (client and server) written in Java called
“TepThroughput” allowing to measure the throughput between client and server. During
the tests the server application was packaged into a JAR archive and compiled into both
Unikernels OSv and Rumprun.

The fact that CoAP is widely used in IoT projects and is a more lightweight protocol
than HTTP makes it an interesting candidate for testing the network capabilities of
Unikernels. Therefore, the CoAP tests were included in the evaluation framework to get
a comprehensive view on the different aspects of the networkstack implemented in the
Unikernel projects.

4.1.5 MQTT Broker

Like the CoAP protocol, the MQTT protocol is a protocol for constrained environments
with low network reliability (see 2.5.3.2 for details). The architecture of a MQTT based
system is different from CoAP in that it has a broker in the middle between the client
nodes.

The MQTT protocol is widely used for the communication and integration of low-power
devices into a larger network and therefore the performance of Unikernels in the processing
of MQTT messages becomes relevant.

In an IoT environment a Unikernel could be a sensor or actor interacting with a MQTT
broker or a Unikernel could be used to host the MQTT broker for other clients. In a

41

4.

PERFORMANCE & FOOTPRINT - EVALUATION OF UNIKERNELS

42

scenario where the Unikernel is the broker, the throughput capabilities of the Unikernel
becomes relevant to the performance of the overall system.

One of the most prominent implementations of a MQTT broker is the Mosquitto project
(33)) by the Eclipse Foundation. Therefore, this broker was chosen for the throughput-
capability tests.

4.1.6 Real World Application

The tests for the networking components specified before all try to take an isolated view
on their component. The transport layer protocols (OSI layer 4) TCP and UDP lay the
groundwork for the higher level protocols to work. So the results for the higher level
protocols need to take into account the results for the lower level protocols since they
build ontop of them. The tests for the higher level protocols HTTP, CoAP and MQTT
all use lightweight implementations of these protocols to isolate the tests from interfering
components as good as possible.

After the isolated tests for the network protocols the question remains how Unikernels
would handle a real world application consisting of more than just a simple response
server and is implemented on top of a more resource-demanding framework. To this
end an application was developed in two languages with two different frameworks. The
application simulates the collection of sensor data in regular intervals, saves the received
data in an in-memory relational database and provides a REST interface over the HT'TP
protocol to any client querying for the data. The application was implemented on the
one hand in the language Java and uses the framework “spring-boot”. This application
is further called “IoT-App-Java”. To rule out language or framework specific effects,
the same application was reimplemented in the language JavaScript with the use of the
framework Node.js. This application is further called “IoT-App-Node.js”.

The comparison of the simple handling of HT'TP requests through the tests specified in
4.1.3 with the real world applications and the comparison among both implementations of
the application should allow for drawing conclusions about the performance of Unikernels
in the handling of more complex applications.

4.1.7 Image Size

When a new virtual machine is deployed on a system, the host system first needs to
download the VM image in order to execute it. With an IoT device possibly low on
system resources and restricted on the available network bandwidth this could be a
significant bottleneck for the deployment of new virtual machines on a hypervisor running
on an IoT device.

The system images of Unikernels are much smaller through the radical reduction of
drivers, tools and services needed for the task at hand. A comparison of image sizes
should give a good indicator if the deployment of software through a Unikernel would be
feasible even if the network connection does not allow for the download of large images.

4.2. Measurements and Comparison

4.2 Measurements and Comparison

For the assessment of the metrics two Unikernel implementations (OSv [2.4.1.1 and
Rumprun 2.4.1.3) were selected for their ability to execute applications without making
changes to the sourcecode and thereby allow for a direct comparison of the performance of
the same software on different systems. The OSv Unikernels were built with the current
version 0.24 of the project. For Rumprun the current code version from August 2017 was
used. As a reference system for the comparison a standard Ubuntu Linux was chosen in
the server version 16.04.

4.2.1 Test Setup

For an accurate comparison of Unikernels against a standard Linux system, one has
to ensure that each system gets the same amount of resources allocated. The virtual
machines and Unikernels were started on a system with an Intel i7 5820k CPU and
32GB RAM. KVM was chosen as the hypervisor on which the systems were run. The
tests were executed for different VM configurations (assignments of virtual CPUs and
amount of RAM) in order to compare the behavior of the tested systems under different
resource attributions (see table 4.1 for all configurations). Each test was repeated five
times to get an accurate average value. The machine running the VMs and Unikernels

was connected via an ethernet cable with a laptop (Intel i7 3517U) that ran the tests.

On the hypervisor the VMs and Unikernels were using a bridge interface to interact with
the physical ethernet device.

For the HTTP tests and boot time tests a small sample IoT application further called
“IoT-App” was developed in two different languages and frameworks. One application is
written in the language Java and based on the Spring-Boot framework and therefore the
system running the application (“IoT-App-Java”) has to include a JVM for the execution
of the program. The other application (“IoT-App-Nodejs”) is written in JavaScript with
the currently popular event based server-side framework Node.js. Both applications
fulfill the same requirements. The applications simulate the collection of temperature
data that are stored in an in-memory database. It offers a REST interface to query the
stored data from the database. Whenever an HT'TP-GET request reaches the interface
the average of all collected temperature data is calculated and delivered to the client
in the form of a JSON file. This produces a load on the system so that a realistic
scenario with changing data can be tested and the efficiency of the complete system is

measured instead of evaluating only the network stack or the delivery of static content.

Both Unikernel projects OSv and Rumprun currently only support a smaller number of
languages and frameworks and the chosen ones (Java and Node.js) were some of the few
that are supported by both.

It would have been interesting to see the performance of an application running directly
on the CPU without a runtime environment between. Unfortunately it was not possible
to compile the same application written in the language Go into a runnable Unikernel.

43

4.

PERFORMANCE & FOOTPRINT - EVALUATION OF UNIKERNELS

44

4.2.1.1 Resource Attributions

A hypervisor allows to attribute certain amounts of resources (number of virtual CPUs
and amount of RAM) to a virtual machine. Each individual test was repeated under
different resource attributions to the VMs in order to measure performance differences
under certain conditions. The following configurations were used for the tests:

Setup nr. | Number of vCPUs | Amount of RAM (MB)
1. 1 512
2. 1 1024
3. 1 2048
4 2 2048

Table 4.1: Hardware configurations used in the tests

4.3 Measurement: Boot Time

The time measured as “boot time” here is the time it takes from issuing the start
command for the VM to the hypervisor until the service running in the VM (either
the netserver service or the REST interface of the IoT-App) is responding to incoming
requests. Three testseries were conducted for boot time measurements. One series with
the netserver binary compiled into the Unikernels, a second testseries with the Java
IoT-App as reference point and a third with the Node.js based application. The idea is
to compare a fast booting service like the netserver application with more heavyweight
applications needing to initialize more resources like the in-memory database during the
boot-process and thereby differentiate between the provision time of the system on the
hypervisor and the initialization of an application within the Unikernel.

4.3.1 Boot Time Netserver

The variation between different configurations of any system was very low such that
the differentiation by resources can be neglected for this test. The OSv Unikernel was
the fastest to boot with an average time of 2,01 seconds from initiating the start of the
Unikernel on the hypervisor until the netserver application responds to queries. The
Rumprun system was only slightly slower with an average boot time of 2,55 seconds.
Compared to both Unikernels the standard Ubuntu Linux was over 15 times slower than
the OSv Unikernel (12 times for Rumprun) with an average boot time of 32,06 seconds.

System Average Boot time (sec) | in percent of ref. system
OSv 2,01 6,28%
Rumprun | 2,55 7,97%
Ubuntu 32,06 -

Table 4.2: Boot time Measurements Netserver-series (1CPU 1GB RAM)

4.3. Measurement: Boot Time

140
120
100

80
m Osv

Rumprun

60 Ubuntu server

40

20

netserver Node.js Java

Figure 4.1: Boot time measurements (1 vCPU 1024MB RAM)

4.3.2 Boottime IoT-App-Java

The second testseries for the systems boot time lead to dramatically different results (see
table 4.3). While the Ubuntu system was consistent with the boot time in the netserver
test with an average boot time of 31 seconds, the results for the Unikernels are much
slower and the results show differences in the configurations as well.

The OSv system reached a 15 second boot time for the lower system resources (configu-
rations 2 and 3 in table |4.1) that dropped to 10,77 seconds for the higher configuration
(configuration 4 4.1). Thereby OSv needs only 50% (35% respectively for the higher
configurations) of the boot time of the Linux system. Compared to the Netserver results
it shows that while the Linux system is consistent in the boot time, the Unikernel takes
much more time to initialize the IoT application compared to the netserver application.
The reduction of boot time for the higher configuration indicates that OSv is able to
effectively use the second processor to its advantage and thereby speedup the initialization
of the system.

The most eye catching result is the performance drop for the Rumprun Unikernel. It took
the Unikernel on average 122 seconds to respond to the queries on the REST interface.
This is four times the amount of time needed by the Ubuntu server. Contrary to the
OSv measurements the attribution of more resources did not lead to a change in the
measurements for Rumprun. The comparison of the netserver result for Rumprun and the
IoT-App result makes clear that the Rumprun system is able to boot fast on a hypervisor
but takes significantly more time initializing a heavy-weight Java application.

The explanation of the differences here between OSv and Rumprun might be the opti-
mizations specifically for the JVM implemented in OSv (see 2.4.1.1).

45

4.

PERFORMANCE & FOOTPRINT - EVALUATION OF UNIKERNELS

46

CPU | RAM (MB) | System Average Boottime (sec) | in percent of ref. system
1 1024 OSv 15,53 49.51%

1 1024 Rumprun | 122,13 389,40%

1 1024 Ubuntu 31,36 -

2 2048 OSv 10,91 34,88%

2 2048 Rumprun | 126,47 404,51%

2 2048 Ubuntu 31,26 -

Table 4.3: Boottime Measurements IoT-App-Java series

4.3.3 Boottime IoT-App-Node.js

The results for the Ubuntu reference system in this test series is consistent with the
results in the Java-series, meaning the type of the application has no influence on the
boot time on a Ubuntu system.

System Average Boottime (sec) | in percent of ref. system
OSv 6,23 19,85%
Rumprun | 5,86 18,67%
Ubuntu 31,56 -

Table 4.4: Boottime Measurements IoT-App-Node.js series (1lvCPU 1GB RAM)

The boot time of the OSv Unikernel improved by 9 seconds compared to the Java-
testseries resulting in only needing twenty percent of the boot time of the reference
system. The improvement of the Rumprun Unikernel is even more remarkable as it only
takes a 20th of the time (5,86 seconds compared to 122.13 seconds) it took to run the
Java application in a Rumprun system on the same configuration (compare table 4.4).
This indicates that the significantly slower boot time for the Java application is not a
result of a slow initialization process with the hypervisor but has more to do with the
initialization of the more heavy weight and memory intensive Java application.

Compared to the boot time of the netserver application |4.3.1 this shows an overhead
of starting the Node.js environment on a OSv Unikernel of an additional 4,13 seconds
adding to the boot time.

4.4 Measurement: Network Protocols

The defining characteristic of IoT devices is their connection to a network. For the
communication between a IoT device and a gateway, server or other IoT device a number
of protocols can be used. Current webapplications often use a REST interface over the
HTTP protocol to exchange data with a service. In the resource constrained environment
of IoT devices two alternative protocols have emerged that specifically address the needs
of devices with few resources and varying availability on the network: MQTT and CoAP.

4.4. Measurement: Network Protocols

This chapter presents measurements of the performance of OSv and Rumprun Unikernels
in the handling of low-level TCP and UDP connections, MQTT connections, the CoAP
protocol as well as the HT'TP protocol.

4.4.1 Performance of TCP and UDP Connections

When data is sent over a network different protocols on different layers of the network
stack are involved. The two most used protocols on the transport-layer of the OSI-model
are TCP and UDP. To evaluate the performance of the network connection of Unikernels
this chapter takes an isolated view on the handling of those two protocols and measures
and compares their performance.

4.4.1.1 Testsetup

For the measurement and evaluation of the network stack of a system, the company
Hewlett Packard developed a tool called netperf (76). It consists of two components: a
server replying to incoming TCP or UDP connection requests (called netserver) and a
client allowing the user to execute test profiles for a certain period of time.

The two Unikernels OSv and Rumprun were compiled with the netserver binary and on
the reference Linux system the binary gets started as daemon on startup.

4.4.1.2 Results

For the reference Linux system the performance under different configurations was relative
consistent, meaning that an increase in the amount of RAM or number of virtual CPUs
did not lead to a significant increase in throughput. The same can be said about the OSv
Unikernel with the exception of a 18 percent improvement for the TCP__RR profile and
a 32 percent improvement of the UDP__ STREAM profile when comparing the second
configuration (1GB RAM and 1 vCPU) with the first configuration (see table 4.1/ for all
tested configurations).

The OSv Unikernel outperformed the Linux system in four of the five categories. With
a throughput of 138 percent compared to the reference system in the TCP_ MAERTS
(138,65) and TCP_RR/(138,01) tests, a 133,88 percent performance in the UDP_RR test
the Unikernel performed significantly better than the Linux system. In the UDP_STREAM
test the Unikernel could only reach a slight improvement of 102,25 percent and in the
TCP_STREAM category it reached 67,51 percent of the performance of the Linux system.
These findings are consistent with the tests conducted by the OSv project themselves
(see chapter 4.7).

The Rumprun Unikernel was not able to outperform the Linux system in any of the
tested categories (see figure 4.2). While it reached in the UDP_RR test only 89 percent
of the transfer rate of the reference system when started with the second configuration
(1 vCPU 1GB RAM), it could at least keep up with the result of the Ubuntu system
when a higher configuration (1 vCPU 2GB RAM) was used. For the TCP equivalent

47

4.

PERFORMANCE & FOOTPRINT - EVALUATION OF UNIKERNELS

48

25.000,00

20.000,00

15.000,00
mosv
Rumprun
10.000,00 Ubuntu server
5.000,00
0,00

TCP_RR TCP_STREAM UDP_STREAM UDP_RR TCP_MAERTS

Figure 4.2: Results of the netperf testseries (req/s) (1 vCPU 1024MB RAM)

the results show a similar behavior: 85% of the transfer rate of the reference system for
the lower configurations (configuration 2 in table 4.1) the results increased to 93% with
more attributed RAM (configuration 3). Both streaming tests resulted in much worse
performance. With an average result of 1.532 Mbit per second in the TCP_ STREAM
test the Unikernel only got 13 percent compared to the Ubuntu system. Even lesser
was the result for the UDP_ STREAM test resulting in 0,01 percent (1,82 Mbit) of the
throughput the reference system reached for the same configuration (18.013 Mbit). The
Unikernel failed the TCP_ MAERTS test completely by not producing any results.

4.4.2 Performance of MQTT Connections

The MQTT protocol is a protocol specifically developed with IoT devices in mind. It
aims at facilitating the interaction of a device with a broker distributing the data. On
the transport layer of the OSI (see (46])) model it uses the TCP protocol to transport
the packets on the network. An IoT device collecting data from sensors could be tasked
to run a MQTT broker as an intermediary between the sensors and a cloud service.

4.4.2.1 Testsetup

For this testseries the prominent MQTT broker Mosquitto (33) was used. The broker
was compiled for the OSv Unikernel with slight modifications to the build process since
the binary used in the OSv image needs to be position independent (modifications taken
from (80)). For the comparison of the results the Mosquitto broker was installed on a
Ubuntu server virtual machine. The Rumprun build system uses a custom compiler that
was not able to build the Mosquitto broker from source. Therefore, the measurement
results for Rumprun are missing. To test the Mosquitto broker with requests the tool
mqtt-bench (96) was used. It sends 1000 messages with 10 concurrently connected clients

4.4. Measurement: Network Protocols

and measures the time the messages need to traverse the broker. From the resulting data
the throughput in requests per second are measured.

4.4.2.2 Results

The measurement results for the MQTT broker 4.5 show that the throughput is unaffected
by the amount of resources attributed to the virtual machines. The throughput is
consistent all throughout the measurement series for the systems OSv and Ubuntu.

CPU | RAM (MB) | System Throughput (req/s)
1 512 OSv 25.994
1 1024 OSv 25.211
1 2048 OSv 26.800
2 2048 OSv 25.176
1 1024 Rumprun -
1 512 Ubuntu 27.511
1 1024 Ubuntu 27.133
1 2048 Ubuntu 28.768
2 2048 Ubuntu 25.464

Table 4.5: Results of the MQTT tests with the Moquitto broker

When the results of the OSv Unikernel are compared to the counterparts from the Ubuntu
system, it becomes clear that the throughput of the OSv system is only slightly less than
that of the Ubuntu system. The throughput (reqests per second) stays within a range of
92-98 percent compared to the reference system.

4.4.3 Performance of CoAP Connections

The CoAP protocol is a service level protocol that is intended to be used to connect IoT
devices. An interesting property differentiating CoAP from MQTT and HTTP is the
underlying transport layer protocol it uses. Instead of using TCP the CoAP protocol
uses the connectionless UDP protocol.

4.4.3.1 Testsetup

The project “Californium” (37) by the Eclipse Foundation has implemented the CoAP
protocol as a Java library. As part of the project, benchmarking tools were developed
allowing for a measurement of the throughput of a server. For the tests on the Unikernels
the benchmarking tool “TcpThroughputServer” by the Californium project was compiled
into a executable JAR-file together with the Californium libraries and deployed on a OSv
and Rumprun Unikernel. For the performance comparison the same JAR was deployed
to a Ubuntu server as a reference machine for the test. The project includes next to
the server a benchmarking client “TcpThroughputClient” as counterpart for the test.

49

4.

PERFORMANCE & FOOTPRINT - EVALUATION OF UNIKERNELS

50

During a test the client sends 2000 requests to the server and measures the time it takes
to complete. From this data the throughput is calculated. For each configuration the
tests were repeated five times. The results shown in table [4.6| show the average of the
five results.

4.4.3.2 Results

The results for the CoAP tests show a similar behaviour to the results from the MQTT
test 4.4.2.2 in that they are not responsive to changes in the resource attributions. Neither
an increase in the amount of RAM attributed to a virtual machine, nor an additional
virtual CPU (vCPU) for the v has any impact on the amount of requests the Unikernels
or the Ubuntu system are able to process.

CPU | RAM (MB) | System avg Throughput (req/s)
1 512 OSv 327,60
1 1024 OSv 332,80
1 2048 OSv 336,60
2 2048 OSv 322,80
1 512 Rumprun 164,40
1 1024 Rumprun 159,60
1 2048 Rumprun 162,80
2 2048 Rumprun 162,40
1 512 Ubuntu 337,60
1 1024 Ubuntu 339,00
1 2048 Ubuntu 346,80
2 2048 Ubuntu 332,80

Table 4.6: Results of the CoAP tests with the TcpThroughputServer

The measurements results presented in 4.6 show that the results for the OSv Unikernel is
within a slim margin of the results of the reference system. The Rumprun system scored
significantly worse than the reference- and OSv system (see figure 4.3). With an average
throughput of around 160 requests per second it reaches only half or the throughput of
both the reference system and the OSv Unikernel.

4.4.4 Performance of HTTP Connections

The HTTP protocol is the backbone of todays Internet. Every website is transported to
the browser over the HT'TP protocol and most webservices exchanging JSON structured
data do this using the HT'TP protocol. A pattern that has emerged in recent years is
the use of REST-style interfaces on data providing webservices making use of the HT'TP
protocol to retrieve and store data and query data in a predefined structure. The clients
query data by directly using the HT'TP protocol instead of merely using it as a means of
transportation.

4.4. Measurement: Network Protocols

400
350
300
250
200

150

OSv Rumprun Ubuntu

Figure 4.3: Throughput CoAP server in req/s (1 vCPU 1024MB RAM)

4.4.4.1 Testsetup

To test the performance of Unikernels in the processing of HT'TP requests a simple
application was written in the language Java and deployed to both Unikernels and the
reference system. Java was used to ensure that the same application could be deployed
to all three platforms without any changes to the code. The test application “iot-spark-
static” exhibits a simple REST interface providing a static value in the JSON format.
This allows for an isolated view on the processing of HT'TP requests and can factor out
other influences (eg. database queries) that could play a role in the performance. The
framework “Spark” (97) (not Apache Spark) was used for the creation of the REST
interface.

To test the performance of the REST interface the tool httperf was used executing 1000
requests and measuring the time needed for completion. The tool then calculates the
request rate from the collected data.

4.4.4.2 Results

As before in the test of the CoAP protocol |4.4.3.2] and the MQTT protocol 4.4.2.2| the
amount of resources attributed to a system has next to no influence on the performance
measurements of the processing of the HT'TP protocol. The testseries were conducted with
all configurations defined in 4.2.1.1 leading to a result where changes in the configurations
did not significantly impact the performance.

The results shown in figure 4.4 show no significant performance differences between the
OSv Unikernel and the Ubuntu reference system. While Ubuntu slightly outperformed
OSv by a slim margin for the configuration with 1 virtual CPU and 512MB RAM and OSv
outperformed Ubuntu in the configuration with double the amount of RAM, both results
are within a slim margin so that none of the two system can be called outperforming the
other. The Rumprun results on the other hand show a completely different picture. While
the results themselves show unresponsive to changes in the configuration the performance

51

4.

PERFORMANCE & FOOTPRINT - EVALUATION OF UNIKERNELS

52

3500

3000

2500

2000

1500+

1000

500+

'
Q)Q-

&
&
N \)'\’

m Osv

Rumprun

?~
&
S
K
x
N

<
NS

<Q
©

= Ubuntu

&
¥
2

Q
0’1/

Figure 4.4: Request rate (req/s) for the HTTP protocol

measurement for the REST interface show significantly lower request rates than for OSv
or Ubuntu. On average Rumprun could only score around 15 percent of the result of the

reference (Ubuntu) system.

4.5 Measurement: Image Size

When a new virtual machine or Unikernel gets deployed onto a device, the machine
image first has to be transfered to the device. This often happens over a network where
the device downloads the system image from a server. In a scenario where the virtual
machine is treated as immutable infrastructure, and therefore only the system as a whole
can be updated, the size of the delivered system image gets relevant. In this scenario
when software updates are necessary the existing image is not altered but instead gets

thrown away and is replaced by a new image including the new software version.

System Application Image size in MB
Ubuntu server 16.04 | Netserver 3.776
Ubuntu server 16.04 | IoT-App Java 3.776
Ubuntu server 16.04 | ToT-App Node.js 3.754
OSv Netserver 29
OSv ToT-App Java 123
OSv ToT-App Node.js 99,1
Rumprun Netserver 19
Rumprun ToT-App Java 189
Rumprun IoT-App Node.js 58

4.6. Measurement: A Real-World Application

Table 4.7: Image size

4.6 Measurement: A Real-World Application

The TCP and UDP tests conducted in chapter [4.4.1| and the HTTP tests in 4.4.4 did
focus on the protocol implementations of the systems and try to take an isolated view
on the network stack of the system. However the overall performance of a system is
influenced by more than just the network drivers and protocol handlers. To get a more
holistic view on the handling of real life scenarios by the tested systems a more complex
application was developed. These tests are designed to not only evaluate the performance
of the network stack of the Unikernel but to take the complete system in account and
thereby evaluate how the Unikernel performs in a realistic scenario.

To test the capabilities of Unikernels in processing HTTP connections the same near
real-world application was developed in Java and Node.js. Both use rather heavy-weight
frameworks and aim to simulate an application that could be run on a IoT device
aggregating temperature data with the use of an in-memory database.

4.6.1 Java IoT-App

Java was chosen as an example because it is a common language in software development,
has frameworks for a wide range of tasks and is portable to different systems. Both
Unikernels OSv and Rumprun have build systems allowing the creation of Unikernels
including the Java runtime environment and can run arbitrary JAR-archives.

4.6.1.1 Test setup

To test Unikernels with a real world application an application was developed in the
language Java. The applications builds upon the widely used but rather heavy-weight
framework “sping-boot” (81). The application simulates the collection of temperature
data from sensors by creating random temperature data in regular intervals and saving
the data in an in-memory database. The application provides a REST interface over the
HTTP protocol to query for the saved data. When a HTTP-GET request reaches the
application, the average of all stored values is calculated and sent back as a response in
the form of a JSON file. A query to the service thereby leads to a number of internal
processes contributing to the query-time.

4.6.1.2 Results

The test results for the application written in Java shows a clear performance advantage
of the standard Linux system over both Unikernel implementations in all of the collected
metrics.

As outlined in chapter [4.1.1, changing hardware configurations had not much impact on
the measured data of the Unikernels. Only for the Ubuntu system an increase in the

53

4. PERFORMANCE & FOOTPRINT - EVALUATION OF UNIKERNELS

800
700
600
500
400

300
Rumprun

200 m Osv
100 Ubuntu

Figure 4.5: Request rate (req/s) of the Java-IoT application for all configurations

throughput could be measured. The switch from one virtual CPU to two virtual CPUs
lead to a request rate at 140 percent of the 1 CPU throughput. Since the values did not
vary much within the Unikernels and the lower configurations of reference system, the
configuration 2 (see table 4.1) was chosen as comparison in table 4.8.

CPU | RAM (MB) | System Reply time(ms) | Request rate (req/s)
1 1024 OSv 15,98 41,1
1 1024 Rumprun 219,54 2,82
1 1024 Ubuntu 1,44 506,96

Table 4.8: Httperf results for Java IoT-app: Reply time

Both measured values are highly correlated. The lower the reply time the higher the
request rate and vice versa. With a reply time of 15,98 seconds the OSv Unikernel
was the better of the two Unikernels but eleven times slower than the reference system.
Rumprun did not perform well in this testseries. With a reply time of 219,54 it needed
152 times the time Ubuntu needed for a request on average. This is consistent with the
boot time measurements results for Rumprun where the Java application did much worse
than the other options.

4.6.2 Node.js IoT-App

Node.js is an application framework based on the ECMA Script (JavaScript) language
and allows the creation of serverside applications. It became popular in the recent years
in web applications for its reactive programming style.

54

4.6. Measurement: A Real-World Application

4.6.2.1 Test setup

The logic implemented in the “IoT-Node.js” application is the same as in the Java
equivalent 4.6.1. The application collects temperature data from simulated sensors into
an in-memory database and provides a REST interface to query the data. Whenever
a request reaches the REST interface the database calculates the average value of all
collected temperature data and responds with a JSON representation of this data. Like
in the Java application a request to this service involves a number of different parts
of the system including the in-memory database and therefore a measurement of the
performance characteristics of this application allows to draw further conclusions about
the performance of the overall system.

4.6.2.2 Results

The results of the Node.js-based IoT application show that the amount of resources
attributed has next to no influence on the measurement results of the Unikernels. The
average reply time for a request and the request rate is relatively stable for increasing
system resources, indicating that resource attributions are not the bottleneck for the
performance. Therefore, the following data is selected from the results for the second
configuration in table 4.1. The only significant differences between configurations is the
same behavior perceived in the Java results 4.6.1.2 for the Ubuntu system. In the Node.js
results the jump from one virtual CPU to two virtual CPUs has lead to a throughput of
140 percent compared to the result of one CPU.

The average reply time (see table 4.9) for a request to the REST-interface of a OSv
Unikernel is more than three and a half times the time it takes a request to the reference
system. This gets toped by the average reply time of the Rumprun system that results
with 5,92ms in a 17 times higher reply time than the Ubuntu system.

Compared to the respective results of the Java application the results show an improvement
in the reply time for all systems.

CPU | RAM (MB) | System Reply time(ms) | in percent of ref. system
1 1024 OSv 12 352,94%
1 1024 Rumprun 5,92 1741,17%
1 1024 Ubuntu 0,34 -

Table 4.9: Httperf results for Node.js loT-app: Reply time

The request rate is the number of requests that can be executed within a second and
gives an indication on the amount of traffic a system is able to process. The results (table
4.10) show that OSv is able to process a third of the request the Ubuntu system can
process in the same time. Rumprun is with 147,60 request per second much slower than
the reference system and reaches only 12,80 percent of the throughput of the Ubuntu
Linux.

55

4.

PERFORMANCE & FOOTPRINT - EVALUATION OF UNIKERNELS

56

1800
1600
1400
1200
1000

800

600 Rumprun
400 m Osv
200 Ubuntu

0

Figure 4.6: Request rate (req/s) of the Node.js-IoT application for all configurations

CPU | RAM (MB) | System Request rate | in percent of ref. system
1 1024 OSv 622,68 54,41%
1 1024 Rumprun 147,60 12,89%
1 1024 Ubuntu 1144,24 -

Table 4.10: Httperf results for Node.js loT-app: Request rate

Figure 4.6, shows the request rate of the Node.js IoT application on both Unikernels and
the Ubuntu server reference system with all tested configurations.

4.7 Performance Measurements in other Works

The performance of Unikernels was measured before in different works and led to varying
results.

In their 2015 paper “A performance evaluation of Unikernels” (16) Briggs et al. compared
the two Unikernels MirageOS and OSv with a standard Ubuntu Linux 14.04. The
conducted tests include tests for the TCP/UDP stack with the bandwidth benchmark
tool iperf, test for a DNS server with the toolsuit queryperf and test for a HT'TP-server
delivering static html pages with the tool httperf. The paper found that OSv exeeds the
performance of the Linux system in all categories but they had some problems porting
some applications to OSv through the early version they were using. For MirageOS the
paper concludes that the response rate for the DNS test was much higher than for the
other systems but they discovered severe bugs prohibiting the comparison of the HTTP
server.

4.7. Performance Measurements in other Works

1400
1200
1000

800
 Osv

Rumprun

600 Ubuntu

400

200

Node.js Java

Figure 4.7: Comparison: Node.js and Java-IoT app. Request rate (req/s) for configuration
1CPU 1024MB RAM

The OSv project conducted a series of tests (79) in 2014 with the netperf testsuit
comparing the performance of the network stack of an OSv Unikernel with a Fedora
Linux version 20. They conducted two testseries, one with one virtual CPU and a second
with four virtual CPUs both on a KVM hypervisor. The results show a relative advantage
for OSv of 110 percent for the MAERTS test profile with one CPU (103 percent for 4
CPUs), a 163 percent relative performance for the TCP_RR profile (151 percent for
4 CPUs) and 177 percent advantage for the UDP__RR profile (162 percent advantage
for OSv with 4 CPUs). These results are consistent with the findings in this work as
described in chapter 4.4.1.

In 2014 Kivity et al. published a paper (56) benchmarking some performance char-
acteristics of the OSv Unikernel. The tests included benchmarks on the TCP/UDP
networkstack with the tool netperf. For the TCP_STREAM profile they concluded
that the throughput of OSv is 24-25 percent higher than the Linux system. For the
request-response test profile they found a 37-47 percent reduction in latency for both
TCP and UDP.

Plauth et al. have conducted a study (82) in 2017 where they compared containers,
virtual machines and the two Unikernels OSv and Rumprun. One of the testseries tested
the performance of the HT'TP server nginx serving static content on the systems. The
results show for Rumprun that contrary to their expectations it could not outperform
containers and both, containers and Unikernels, were outperformed by a Ubuntu Linux
running on KVM. They suspected that this could be due to the highly optimized network
stack found on a Linux system in comparison to the NetBSD network drivers used by
Rumprun. In a followup test they compared the network performance of the Rumprun
system with the performance of a full NetBSD system and found a significant performance
advantage for the Rumprun Unikernel. They concluded that with further improvements
on the network stack Rumprun could keep up or outperform a Linux virtual machine in

o7

4.

PERFORMANCE & FOOTPRINT - EVALUATION OF UNIKERNELS

58

the future.

4.8 Evaluation of the Results

The tests conducted in this chapter fall into four categories: Tests for network protocol
handlers, measurements of the boot time with different running applications, measure-
ments of the image sizes with changing frameworks and applications and tests with real
world applications to get a more comprehensive overview. In the following chapters the
results are discussed in relation to each other and conclusions about the performance of
Unikernels are drawn. Table 4.11 gives an overview over all tests that were conducted and
presents the results of the two Unikernels in percent of the reference system (Ubuntu).

Test Unit OSv | Rumprun
TCP_RR throughput | 138,01% 106%
TCP_STREAM throughput 67,51% 25,71%
TCP_MAERTS throughput | 138,65% nA
UDP_RR throughput | 133,88% 99,44%
UDP_STREAM throughput | 102,25% | 23,20%
HTTP throughput | 109,80% 15,56%
CoAP throughput | 98,17% 47.07%
MQTT throughput | 92,91% nA
IoT-Java throughput 6,10% 0,57%
IoT-Node.js throughput | 54,42% 12,90%
Boot time: netserver time 6,28% 7,97%
Boot time: IoT-Java time 49.51% | 389,40%
Boot time: IoT-Node.js | time 19,85% 18,67%
Image size: netserver size 0,76% 0,50%
Image size: IoT-Java size 3,25% 5%
Image size: IoT-Node.js | size 2,60% 1,50%

Table 4.11: Overview over all testresults for configuration 2. The data is presented in
percent of the reference system (Ubuntu).

The choice for languages and frameworks were limited by the support of the Unikernels
in building images with these frameworks. There could have been other interesting
programming languages to be used in the tests of the real-world applications like python
or go but had to be ruled out for a lack of support through the projects. At this point
the Unikernel projects OSv and Rumprun do not fully support the language Go that
could potentially improve the boot time and performance in the HTTP-testseries as it is
compiled into a binary running directly on the CPU instead of running on a heavyweight
virtual machine (Java) or being interpreted on the fly (Node.js).

4.8. Evaluation of the Results

4.8.1 Network Protocols

The defining characteristic for all IoT devices is their network connection. The tests for
the handling of network connections through Unikernels therefore play an important role
in evaluating whether Unikernels are a good fit for IoT devices. During the tests five
protocols from different OSI-layers were tested and evaluated for their performance.

On the transport layer the two most prominent protocols TCP and UDP were evaluated.

For the OSv Unikernel the test results show that for the network tests (chapter 4.4.1) the
Unikernel has clear performance advantage over the reference system in most (but not all)
of the tests. This shows that the zero-copy API for socket connections implemented in
OSv (described in chapter 2.4.1.1), enabled by the lacking separation between kernel- and
userspace in Unikernels, results in clear performance advantages over a comparable Linux
system with stricter separation and privilege transitions. With a throughput of 138%
compared to the reference system in the TCP__RR profiles OSv clearly outperformed the
Ubuntu system where Rumprun could with 106% perform only slightly better.

The MQTT broker used during the tests|4.4.2.2] is called Mosquitto and is an application
written in the programming language C and therefore is compiled into a binary instead
of bytecode as with Java. The results show that OSv can with 92,91% almost keep up
with the performance of the reference system. Unfortunately the broker could not be
compiled for Rumprun since the NetBSD based Rumprun compiler was not able to work
with the build configuration of the Mosquitto project. Therefore, no Rumprun results
could be gathered.

The CoAP server compiled into the Unikernels and Ubuntu system shows different
testresults for OSv and Rumprun. Where OSv could score a draw with the Ubuntu
system by reaching a result of 98,17%, the Rumprun system could barely reach half of
the throughput. Since CoAP is based on the UDP protocol one might be able to see
similar behavior as in the UDP tests. Where the results for OSv show a similar relation
between TCP__RR and MQTT (TCP based) as in the relation between UDP_RR and
CoAP, the results for Rumprun clearly break such a correlation.

The ability of the OSv Unikernel to outperform the reference system during the HT'TP
tests (4.4.4.2 and score a draw in the CoAP category (a Java application as well) shows
that OSv can handle Java applications and the interaction between the network drivers
and the JVM (Java virtual machine) does not lead to performance penalties. The
Rumprun Unikernel on the other hand seems to have difficulties in the handling of the
JVM. The results for the simple HT'TP application written in Java show a throughput
of only 15 percent compared to the reference system. Contrasted with the good results
for the TCP__RR tests and the results for the CoAP tests this indicates that Rumprun
is not as well equipped as OSv in handling Java based systems. Contrary to the OSv
project, the Rumprun project has not focused on optimizations for the JVM.

59

4.

PERFORMANCE & FOOTPRINT - EVALUATION OF UNIKERNELS

60

4.8.2 Boot Time

When the Node.js application was used for the boot time test, Rumprun was able to beat
both other systems with a time of 5,86 seconds (18,67% of the time Ubuntu required for
the bootprocess). The good results could not be repeated when the Java application was
used in the tests. With an average boot time of 122,13 seconds it needed 3,9 fold the
time it took the Ubuntu system to boot. This is an additional datapoint for the above
conclusion that Rumprun has difficulties with the handling of Java applications.

The boot time measurements for Rumprun show a good result for the native application
(netserver) with an average boot time of 2,55 seconds (compared to a slightly faster OSv
with 2,01 sec and a slow 32,06 seconds for the Ubuntu system).

4.8.3 Image Size

In the test category image size Rumprun has shown that it needs only 65% of the image
size OSv needs for the native application (netserver) and 58% of the storage in the case
of the Node.js application.

With an image size (chapter 4.5)) of only 100MB the OSv system shows a significant
advantage over the reference system by using only 2,6 percent of the image size the
Ubuntu system needs.

4.8.4 Real World Applications

When it comes to the more holistic tests for the REST-interface over the HTTP protocol
taking other system components into account, the OSv Unikernel cannot keep up with
the reference system. With needing 3,5 times the average reply time of the reference
system (11 times for the Java application) and only a third of the request rate (8% for
the Java application) the OSv Unikernel cannot compete with a Ubuntu system in this
category. When it comes to boot- and initialization time OSv clearly outperforms the
Ubuntu system and takes only half of the time to boot, initialize the application and
respond to requests. This time goes down to 35% for higher resource attributions to the
Java application and to 19% for the Node.js implementation.

The Rumprun Unikernel could nearly reach the performance of the reference system in
two of the five network testseries (TCP and UDP request-response tests) as described in
4.4.1. In two other tests the system did manage to complete the tests but showed a much
worse performance than the other two systems (TCP and UDP stream tests). During the
HTTP testseries the average reply time of a request and the request rate was measured for
both applications Java and Node.js. Compared to the Ubuntu system and OSv kernel the
Rumprun Unikernel lost in all categories by a big margin. It took over 17 times the reply
time the Ubuntu system needed for the Node.js application and got only an average of
2,82 requests per second completed for the Java application (Ubuntu got 506,96 req/s). A
notable improvement can be seen when the results for the two applications are compared

4.8. Evaluation of the Results

against each other. The Ubuntu system could improve its request rate from 506,96 req/s
for the Java application to 2314,98 for the Node.js application leading to a 4,5 times
improvement. When the Rumprun Unikernel was started with the Node.js application it
reached an average request rate of 143,04. Compared to the Rumprun result for the Java
application (2,82 req/s) this is a 50 times improvement. The same comparison for the OSv
Unikernel results in a 18 times better result for the Node.js application. The devastating
performance of the Rumprun system in the Java test and the 50 times improvement for
the Node.js test indicates that Rumprun has a particular problem with the Java system.
While the OSv project explicitly supports Java applications and describes optimizations
it has implemented for this environment (56), the Rumprun project has not mentioned
any performance optimizations for Java specifically. This could give an indication for the
reason of the much poorer performance the Java application has shown on the Rumprun
Unikernel.

The differences between the result for the HTTP tests (see 4.11) and the IoT-Java results
show for both Unikernels the difficulties they have in handling a more heavy-weight
framework. For the HT'TP tests the lightweight framework “Spark” was used focusing on
facilitating REST requests but does not do much beyond. IoT-Java on the other hand
was developed in the Spring-Boot framework providing a wide range of functionalities
used during software development. Besides providing ways to easily develop REST
interfaces it includes a comprehensive dependency injection framework and ways to
abstract a database connection. The use of this framework requires a longer booting
and initialization phase for the application since it has to configure and initialize the
application by evaluating the runtime configuration.

61

CHAPTER

Security of Unikernels on IoT
Devices

IoT devices are a part of the everyday lifes of people through the central integration of
IoT devices into home automation, smart cars, smart meters, smart cities and part of
the manufacturing process in factories. This is leading to concerns regarding privacy for
the users and security and accountability for the devices.

The future homes of people increasingly will be smart homes. These smart homes will
have a multitude of local sensors and actors connected to a local smart home hub. The
hub can open doors, interact with the integrated kitchen system and use the collected
data from the sensors to operate feedback loops connecting temperature sensors with the
heating system. The smart hub is connected to a cloud uplink and thereby allows the
user to remote control the system and read data from the devices. This makes clear that
whoever has control over the system, has access to the most private surroundings of a
user. This leads to smart homes being a prime target for an attacker as it allows access
to private life of a target person (32).

On a larger scale [oT devices are, as part of the industry 4.0 movement, an integral part of
the manufacturing facilities integrating the production systems with the I'T landscape of
companies. The IoT driven manufacturing facilities are not isolated from the outer world,
but are connected over the Internet to other IT systems within or between companies to
deliver realtime data for production planning. Data is constantly uploaded to the cloud,
in order to organize the flow of data and manufacturing parts for improved efficiency of
the manufacturing process. Traditional IT defense systems struggle to keep up with the
range of newly connected devices. The industrial control systems contain vulnerabilities
like the traditional IT systems assume the local network to be protected (32)).

The industrialization of the process of finding and exploiting bugs in a system shortened
the timespan between finding a bug and using the exploit for criminal gains and thereby

63

d.

SECURITY OF UNIKERNELS ON I0oT DEVICES

64

created a profitable market for bugs and corresponding exploits. Recent widespread
attacks like the ransomware campaign going by the name “WannaCry” have shown a
professionalization of attacks on systems. Security relevant bugs in software get traded for
high prices over trading platforms leading to increased efforts to find bugs and selling them
on market places. These bugs then get bought by criminals using them for campaigns
infecting a vast number of systems. Any system connected to a network needs to address
the possibility of an attack and how to recover from being compromised.

This chapter discusses security incidents involving IoT devices, the aims of the attackers
and highlights implications of compromised devices in a corporate IT infrastructure.
Since Unikernel projects claim advantages regarding security over conventional operating
systems, this chapter evaluates the properties and claims of Unikernels for software
deployments on hypervisor based systems. While the properties of Unikernels aim at
hardening the system against an attack, they cannot prevent the existence of softwarebugs
in the application or the Unikernel code. The ability to rollout new versions of an
application in time is paramount to the security of the system. Chapter 5.5 discusses the
contributions of Unikernels in this field.

5.1 Security Incidents involving IoT devices

In 2016 a large-scale DDOS (distributed denial of service) attack took place involving
thousands of IoT devices sending requests to websites and subsequently leading to their
unavailability (I00). Internet connected DVR and web-enabled cameras by the Chinese
manufacturer XiongMai Technologies got hijacked by a group of attackers and connected
to a botnet. The botnet software Mirai was used to connect the IoT devices and launch
coordinated attacks on its targets through the use of the network connection of thousands
of captured IoT devices. The attack on the DNS service provider “Dyn” lead to availability
problems for big companies like Netflix, Twitter and Github (57]).

Researchers from the security company Flashpoint have found over 515.000 vulnerable
devices by this manufacturer accessible over the Internet, that could potentially be
attacked and integrated into the botnet (58). Since the device manufacturer has no
means in place to update the flawed software on the devices, they had to recall a large
number of devices in the US (19).

Verizon describes in their 2017 cybercrime report an incident involving IoT devices taking
place in the network of an unnamed university (102). The devices affected by the attack
ranged from network enabled light bulbs to vending machines for soda. These IoT devices
were all connected to a subsegment of the network and the administration staff began to
notice an unusual amount of traffic to the DNS server coming from the IoT devices. The
devices were controlled by a botnet launching DDOS attacks on certain websites. The
botnet spread from device to device by brute-forcing default and weak passwords. After
the malware gained full control over the device, it connected to the central server for
updates and instructions.

In October of 2017 reports of a new botnet by the name “IoT reaper” or “loTroop”

5.2. Implications of compromised IoT devices

emerged that is based on the Mirai botnet sourcecode attacking a range of IoT devices
by numerous manufacturers. At this point the botnet has grown to a size of 2 million
infected devices. The botnet attacks known weaknesses in the devices where patches
already exist. It uses an arsenal of nine publicly known exploits to attack devices. This
shows that the problem is not the availability of patches that would prevent the attack,
but the lack of awareness by the users and lack of a method to roll out updates in masses
to the devices (22) (75) (59).

These incidents show that with the large-scale rollout of IoT devices to consumers and in
the industry, the threat for attacks on the infrastructure of the Internet rises. While the
capturing of a single consumer IoT device by an attacker could be just an inconvenience
for the user without further threat for this user, the device as part of a larger botnet
can pose a serious risk to companies, government agencies and the infrastructure of
the Internet. This makes clear that every device connected to the Internet entails the
responsibility of making sure that the device is up to date and can be recovered upon a
successful attack.

5.2 Implications of compromised IoT devices

IoT devices can be the target of attacks for two reasons: On the one hand for gaining
access to - or manipulating data traversing the device, on the other hand to use the
captured device as a launchpad for further attacks on other systems.

If the device is processing data interesting to an attacker, the motive for an attack could
simply be to gain access to the traversing data and exfiltrate them to destinations outside
the security perimeter. If the IoT device is an actor controlling a physical object directly,
the goal of an attacker could be to manipulate the device itself in order to trigger a
physical object like a door lock that is the target of an attacker. The aim of the attack
in these scenarios is the device itself.

As part of industrial control systems IoT devices are integrated into the inner network of
a company, making them an ideal launchpad for attacks on more valuable systems in
the network. An IoT device that just collects data could be seen by the administrators
to have a low impact on the security because the task handled by the device is not
security critical. This could lead to neglecting the otherwise strict update policies. By
compromising the device an attacker has an entrypoint to the wider network and a
launchpad for attacks on bigger targets. Another use of a compromised IoT device is
the collection of a large number of similar devices into a botnet in order to use the large
number of network connections to overload a target system. Distributed denial of service
attacks (DDOS) connect a large number of compromised systems called “bots” to a
central control unit. When the attack gets launched, all the bots start a large number of
requests to the system under attack (a website for example). This load is more than the
system can handle and the system fails to respond to legitimate requests. IoT devices
are an ideal target for being made into bots since they are by definition connected to the
network and always available. They often form large networks of homogeneous devices

65

d.

SECURITY OF UNIKERNELS ON I0oT DEVICES

66

and if an attacker has a bug compromising one system the attack can be scaled up to
take over all of the similar devices. The incidents described in 5.1 show that this scenario
is realistic and already being exploited by criminal groups.

5.3 The OWASP Top 10

Attacks on IT systems can occur on many different levels. On a low level errors in
the handling of memory can be exploited in binaries and on a higher level the protocol
handling and configuration errors can lead to compromised systems.

The OWASP Foundation periodically publishes a list of the ten most common security
vulnerability categories in webapplications ordered by their abundance called “OWASP
Top 10”. Since IoT devices often present content for users through a webapplication or
provide a web based management interface, the OWASP Top 10 is also relevant for IoT
devices.

Code | Threat

Al Injection

A2 Cross Site Scripting (XSS)

A3 Broken Authentication and Session Management

A4 Insecure direct object reference

A5 Cross Site Request Forgery (CSRF)
A6 Security Misconfiguration

A7 Insecure Cryptographic Storage

A8 Failure to Restrict URL Access

A9 Insufficient Transportlayer protection
A10 | Unvalidated Redirects and Forwards

Table 5.1: The OWASP Top 10 - Vulnerability List 2010 (99)

In their 2017 paper (44) Happe, Duncan and Batterud try to group the ten OWASP vul-
nerabilities into three categories and discuss the contribution of Unikernels to the security
of IT systems. The first category “low-level vulnerabilities” deals with vulnerabilities
that can be mitigated by local defense measurements like input validation - and output
sanitization libraries. The vulnerabilities A1, A2 and A8 are part of this category. The
second category “high-level vulnerabilities” includes vulnerabilities that must be dealt
with on an architectural level. The OWASP A2, A5 and A7 are part of this category.
The third and final category of “application specific vulnerabilities” directly depends
upon the application specific workflow and can only be dealt on an application specific
basis. The vulnerabilities A4, A6, A10 belong to this category.

With the widespread rollout of IoT devices in industry, homes, cars and cities the OWASP
Foundation started a new project specifically focusing on the vulnerabilities and security

5.4. Security Properties of Unikernels

concerns in the area of IoT devices. Table 5.2 shows the most recent Top 10 list of

vulnerabilities compiled by the project in 2014.

Code

Threat

11

Insecure Web Interface

12

Insufficient Authentication/Authorization

I3

Insecure Network Services

14

Lack of Transport Encryption

15

Privacy Concerns

16

Insecure Cloud Interface

I7

Insecure Mobile Interface

I8

Insufficient Security Configurability

19

Insecure Software/Firmware

110

Poor Physical Security

Table 5.2: The OWASP IoT Top 10 - Vulnerability List (38)

5.4 Security Properties of Unikernels

Bratterud et al. have identified six security properties that Unikernels exhibit (15). These
properties constitute the security features claimed by the Unikernel projects for their

products. The following security observations were identified:

—_

. Choice of service isolation mechanism

2. The concept of reduced software attack surface

3. The use of a single address space, shared between service and kernel

4. No shell by default, and the impact on debugging and forensics

5. Micro services architecture and immutable infrastructure

6. Single thread by default

An additional property relevant to the security of the system is the choice of programming
language used for the development of an application on a Unikernel. Therefore, the
implications of the use of certain languages will be discussed in an additional chapter
below [5.4.6. The property of lacking privilege separation in Unikernels can potentially
have a negative impact on the security since all code is running in ring0. Chapter 5.4.7

discusses the implications thereof.

67

d.

SECURITY OF UNIKERNELS ON I0oT DEVICES

68

5.4.1 Isolation

Modern operating systems have multiple layers of protection and isolation implemented
in the kernel. They protect processes running in kernels space from rogue processes
running in user space and protect user space processes from one another. This isolation
is achieved by virtual memory where every process gets its own virtual memory space.
New hardware instructions and support were introduced to facilitate this mechanisms in
the CPU. The problem with process level isolation is that the processes still share the
same kernel. If the execution stack gets compromised and one process is able to gain
root privileges, all other processes are compromised as well.

In 1974 Popek and Goldberg (83) introduced a formal model describing complete instruc-
tion level isolation i.e. hardware virtualization (3I). While hardware virtualization was
present in mainframes for a long time, it was introduced by chipset manufacturers for
desktop environments as late as 2005. In a hardware virtualized environment a hypervisor
running on the hardware presents a uniform interface to the virtual machines. The
dedicated instruction set for managing virtual machines allows the hypervisor to securely
and efficiently separate the memory pages of the machines and manages interrupts for all
running VMs.

Another isolation technology that became popular in the recent years are application
containers. The most prominent implementation of this technology is the Docker system
(see 3.2.2). The isolation relies on two technologies by the underlying Linux kernel:
cgroups and namespaces. These kernel features allow to specify the amount of resources
each virtual machine can access and isolate the running container from other containers
and the underlying system through dedicated namespaces preventing the application
from accessing resources not belonging to this container.

5.4.2 Reduced Attack Surface

One of the major arguments of the different Unikernel projects with respect to security, is
the reduced number of services and processes running on the system and thereby reduced
attack surface (63) (31)). Bugs can occur in any of the components of a system and the
effect is not limited to this component. The argument for the reduced attack surface
states that if a system has less code either running or available in the system image to
run, this reduces the amount of potentially runnable code and the points where bugs
could be present.

Bratterud et al. describe in (15) a more formal approach to the considerations of attack
surface on Unikernels. They define the attack surface of a system as the number of bytes
physically available for reading, writing and executing on a given hardware architecture.
One of the smallest Linux distributions “TinyOS” with an assumed size of 24MB executing
a 1MB executable would thereby lead to an attack surface of 25MB. Assuming that there
exists a Unikernel providing the same application with a size of 2MB, this would lead to
a reduction of the attack surface of 92%.

5.4. Security Properties of Unikernels

5.4.3 No Shell in Unikernels

Most POSIX 2.2.6 operating systems include a command line interpreter (shell) that can
start new processes. It is widely used to configure, update, maintain and debug in server
environments as it provides fine grained control over the running system. A standard
Linux system running on a server includes a variety of services and tools facilitating
the maintenance of the system. One of the most common is the ability to connect to
the system from remote via a secure shell connection (ssh). The client connects to the
server with a cryptographically protected connection and executes a shell on the server.
Anybody with access to a shell on a system can execute arbitrary commands on the
system. This makes a shell an interesting goal for an attacker and many exploits aim to
get a shell for the attacker. Contrary to most operating systems, a Unikernel does not
provide this type of access and normally would not include a shell. A Unikernel is treated
as immutable infrastructure and therefore there is no need for a shell to assist in any
maintenance tasks. The other problem with shells is that they start new processes which
is contradicting the Unikernel principle of a single process running in a single address
space. This Feature of Unikernels reduces the options an attacker has on the system.
Even if a bug is found on the system and the attacker can control the controlflow of a
program, the lack of a shell greatly reduces the options for further exploiting the system.

5.4.4 Mutability and Microservices

Unikernels are treated as immutable infrastructure meaning that a once compiled Uniker-
nel cannot be altered after the fact. Where a traditional operating system is configured
after the installation and provisioning on a hypervisor or bare metal, the Unikernel is
finally configured at compiletime and does not support altering the configuration once
the Unikernel is deployed. This different approach is represented in the toolstack that
is available to a user on a traditional operating system like a Linux system where one
normally finds services for remote logins, tools to modify files and a shell to execute
arbitrary commands. On a Unikernel none of these tools is provided by default. If it
is specifically needed for a particular task, services like a ssh server can be compiled
into a Unikernel, but by default no such services are available leading to the advantages
described in 5.4.2.

This immutable infrastructure approach has consequences for the system security as well.
If a bugreport is released by a manufacturer and a securityfix is rolled out to the clients,
in a traditional operating system the engineer would connect to the system and install
the patch on the system. The problem with this approach is that the bug could have
been exploited before the patch was installed and there is no easy way to guarantee
that the system has not been compromised before. With a Unikernel infrastructure on
the other hand the security patch would result in a recompilation of a new Unikernel
including the patched application and the flawed system running on a hypervisor would
be shut down and replaced by the new system.

69

d.

SECURITY OF UNIKERNELS ON I0oT DEVICES

70

5.4.5 Single Thread by Default

This property applies to some of the Unikernel projects but not all. IncludeOS and
MirageOS by default execute all running code in a single thread (15). Other Unikernels
like OSv or Rumprun have their running code all in one process but several threads that
get preempted and scheduled by a custom scheduler. The argument for a single thread
regarding security layed out by (I5) is similar to the argument of reduced attack surface.
Through the use of a single thread, the complexity of the running system gets reduced as
the error prone handling of multiple threads and their coordination does not need to be
addressed.

5.4.6 Programming Language in Unikernels

The programming language used for the application in a Unikernel has a big impact on
the security of the system. Depending on the type of Unikernel, the programmer can or
can not choose the language for the application. Unikernels like MirageOS or IncludeOS
require the application to be written in the same language as the Unikernel itself. For
MirageOS [2.4.1.2] it is the type safe functional language OCaml and for IncludeOS it is
the language C. Other Unikernels like OSv [2.4.1.1 or Rumprun 2.4.1.3| support a range
of frameworks and languages by providing a POSIX interface to the applications and
therefore allow to run POSIX compatible programming frameworks. Different languages
have different properties regarding security. Especially error prone is the memory safety
and memory management of languages. Flexible languages like C or C++ allowing the
direct manipulation of memory cells, pointer arithmetic and manual memory allocation.
This leads to higher performance in the execution but introduces a range of potential
security problems like buffer overflows, use-after-free and dangling pointers (44).

Many highlevel languages disallow pointer arithmetic and manage memory access through
the execution environment for the user. Garbage collectors free the memory after being
used whereby the programmer does not need to free the memory manually after the
use. (44)

5.4.7 No Privilege Separation - A problem?

In the world of desktop- and server-computing one of the most important security related
lowlevel tasks of an operating system is the separation of processes running in the
unprivileged user space from processes running in kernel space (explained in detail in
2.2.2) that need to be protected from rogue user space processes. Unikernels neglect
the separation for the benefit of increased execution speed. Where in a traditional OS
the architecture clearly separates between user- and kernel space, a Unikernel is seen as
one single unit that either works as expected or fails. When a process in a traditional
OS through a bug starts to consume all memory resources or tries to write in memory
areas reserved for the kernel, this process gets killed when the process exceeds memory
boundaries or other quotas. The Unikernel does not have this type of control over the
running processes.

5.5. Atomic Updates

As described in chapter 2.4.2.2 Unikernels cannot make use of the hardware protection
mechanisms through protection rings (see [2.2.2) because they do not separate between
kernel and application like most modern operating systems do. All code in a Unikernel
(the application as well as the drivers) run on ring0 with the highest privileges. This
means that the protection boundaries described in 2.2.2| do not apply to Unikernels. User
space processes can therefore access all memory pages of the Unikernel and can execute
any otherwise restricted instructions. In a normal Linux system an attack would happen
in two stages, first the attacker would try to get access to the system by exploiting a
vulnerability this could result in a shell being opened for the attacker. If the process
through which the attacker got access is unprivileged (meaning the user under which
the process runs has no root privileges), the second stage would be to try to elevate
the privileges to be able to execute commands with root privileges and therefore having
access to the complete system.

Unikernels are no multiuser systems and thus have no users or file permissions. When
the attacker is able to inject his code into an executable memory page and redirect the
control flow of the application to jump to this code, the injected code runs with the
highest privileges as well and therefore has access to all instructions by the CPU and all
memory pages of the virtual single address space. The difference to the Linux example
above is the shell. Unikernels per default do not include shells and therefore the attacker
would need to inject the code of the shell command that should be executed as well. The
second stage of the above attack is needless since the Unikernel does not have users or
associated file permissions that would prevent access to certain resources.

5.5 Atomic Updates

IoT devices seldom provide a physical interface like a monitor and keyboard. If an update
process fails to update the system and produces an error, this could lead to a device
disconnected from the network and thereby needs to be physically accessed or replaced
completely. The idea of atomic updates is that the system has a fallback if the update
fails. The system initiates the update process, if it succeeds then it continues to run
on the new version of the software. If on the other hand it fails to update the system
properly, the update process gets canceled and since the old version of the software is
still present, the device continues to run on the old version.

Google’s Chromebook laptop with the ChromeOS follows this approach by having two
partitions on the harddisk, both containing the operating system. In case of an update,
the new version is installed to the currently unused partition. Upon reboot the partition
with the new version is selected but if the boot fails, the old system is pre-selected as
boot-option so the system can recover to the functioning version of the operating system
(98)). The Android project has adopted this update process for the release of Android N
as well (3)).

Unikernels running on top of a hypervisor on a IoT device have two layers that need
updates: the Unikernel and the hypervisor. When a bug is reported in the application
running in a Unikernel or a new feature is implemented and should be rolled out to

71

d.

SECURITY OF UNIKERNELS ON I0oT DEVICES

72

the device, the sourcecode gets changed on the developers machine and compiled into a
Unikernel by the build system. This newly created Unikernel then gets downloaded to
the IoT device and started on the hypervisor. Thereby the new system starts replying to
incoming requests and takes over from the old Unikernel that can be shut down. The
second layer needing updates is the hypervisor. Through the minimal size and hardening
of the system this should be a more rare event. For this type of update the dual-boot
model of ChromeOS could be employed (32).

5.6 Summary

All software contains bugs no matter how hard the developers try to prevent them.
Therefore, a way to handle the problem is needed. Unikernels can contribute to the
solution in two ways: on the one hand their system images contain only the software
components needed for the task at hand and thereby reducing the attack surface to
the absolute minimum. On the other hand are Unikernels designed as immutable
infrastructures meaning that after the compilation of the application into a Unikernel, the
system image is not intended to be altered. When a problem with a system is detected,
an engineer does not connect to the system and tries to repair the problem like it might
be done on a virtual machine, but instead fixes the problem in the application, compiles
a new Unikernel with the changed software and replaces the running faulty Unikernel by
the newly compiled.

CHAPTER

Deployment Prototype -
Deploying Software to IoT
Devices

To answer the question whether Unikernels are well suited for the use on IoT devices and
can contribute to the deployment process going beyond what is currently possible through
the use of classic virtual machines, the first two main chapters examined properties and
features of the Unikernel implementations and compared different Unikernel projects
against each other regarding performance and security. What is so far missing from a
complete picture of Unikernels as a deployment method, is the question on which point
in the development- and deployment process Unikernels are added and how a deployment
process based on Unikernels could look like.

This chapter describes a prototype that was developed to demonstrates a deployment
process involving Unikernels. A product feature developed on a developers machine gets
sent through a code repository to a continuous integration system, where the application
is packaged into a Unikernel and distributed through a central hub to a number of
connected clients. The Unikernel chosen for this prototype allows the developer to be
agnostic about the Unikernel during the development process, while on the other hand
allows to compile and test a near production system on the developer machine and the
CI system.

6.1 Devops & Unikernels in the Development process

A recent trend in software development is “devops” a term combining development and
operations. Instead of each team working isolated in silos and having few conversation
happening between each other, in teams following the devops principle developers and
operations people work side by side. If the software a developer wrote fails in the

73

6.

DEPLOYMENT PROTOTYPE - DEPLOYING SOFTWARE TO 10T DEVICES

74

production environment this problem is not just a problem for the operations but gets
back to the developer as well. This produces a feedback loop where developers and
operations people are incentivised to work together and make sure that the software
performs well on a production system. This process is supported by a range of tools
and frameworks as continuous integration (CI) - and continuous delivery (CD) systems
where all code that gets pushed to the code repository gets supervised by the CI system.
The CI system gets triggered by a new commit to the central repository, receives the
code from the repository, builds it and runs a range of unit- and integration tests on the
complete codebase. If the tests fail, the developer responsible for the last commit gets
notified automatically and has to fix the problem.

A prerequisite for this type of process is a uniform execution environment. If the versions
of libraries and services (for example locally installed database systems) differentiates
between the developer system, CI system and production system, compatibility problems
that are hard to debug are likely to arise. This leads to a situations where a bug gets
reported to the developer who cannot recreate the problem on the developers machine
since the problem only arises from the interaction with certain versions of a library or
service. To address this kind of problem containers like the Docker |3.2.2| system gets
employed. The developer can specify the requirements for a service in a Dockerfile and
explicitly request a certain version of a library. If the compiled Docker container passes
all tests on the developer machine, it will do so on the CI and production system as well.

Unikernels run on virtualized environments with a uniform virtualization layer presented
to the Unikernel by the hypervisor. This standardization of the interaction between
operating system and hardware allows the developer of the application to run and test
the system in an environment similar to the production system during the development
process and thereby reduce the friction between the developer system and production
environment.

The development process with the use of Unikernels is similar to the use of the Docker
system depending on the build system. The OSv system uses with Capstan and Capstan-
files (see 6.5) a similar approach like Docker by declaring a base image, dependencies and
build instructions in a central file and compiling all necessary parts into a runnable unit.
On a higher level the project Unik 3.1.1] facilitates this process by providing a unified
frontend for the compilation of a number of Unikernels. It creates a central repository
for Unikernel images and can derive running Unikernel instances from them. It provides
monitoring and logging capabilities to supervise the running Unikernels and help in the
debugging of errors.

6.2 System Overview

The architecture of the prototype for deployments of applications to IoT devices through
the use of Unikernels consists of five components that are described in the following
chapters in more detail.

Figure [6.1] gives an overview over the components of the process distributing changes

6.2. System Overview

Maven Unikernel
Repository Image

t,

- Cl System Hub ([
Code _ 2de_ _ . A Unikernel

Repository —p—p —p—

@__9

push

Developer : .
)

Client

Figure 6.1: System architecture

made in the code to a number of clients. It consists of the following components:

1. Developer: All changes begin with a developer adding functionality to the applica-
tion or fixing a bug.

2. Code repository: All sourcecode is managed by a centralized code repository
containing and versioning changes by all involved developers.

3. CI System: A continuous integration system makes sure that the committed code
is in a functioning state at any time and triggers the creation of a Unikernel after a
successful build.

4. Hub: The Hub is the central connection point for all clients and responsible for
distributing new versions of the Unikernel to the clients.

5. Client: The clients of the system are loT devices running a hypervisor and receiving
and executing Unikernels through an agent service.

75

6.

DEPLOYMENT PROTOTYPE - DEPLOYING SOFTWARE TO 10T DEVICES

76

6.3 Application Development

The process of deploying updates to clients depicted in figure 6.1 begins on the lower left
corner with the developer. A developer fixes a bug in the code or develops a new feature
on her local machine. In a next step new unit tests are added to the code covering the
new features or reflect the changes made to existing code. When the build is successful on
the local machine and all unit tests run without producing errors, the developer prepares
a commit to the code repository and pushes the commit to the central version control
system. For this deployment prototype the distributed version control system “git” was
used where every developer has his own local repository where commits are added first
and subsequently can be pushed to one or more central shared repositories. The next
phase of the process, the CI system, is connected to this central repository and receives
all code changes from it.

Depending on the Unikernel project used, the source code and therefore the developer
can either be agnostic of the Unikernel technology, or has to develop her application
specifically for the Unikernel in use (see 2.4.2 for details). The MirageOS Unikernel project
(see 2.4.1.2) has rewritten all drivers from disk- to network drivers in the programming
language OCaml and has deliberately broken the POSIX compatibility (see 2.2.6) of its
API for the benefit of performance. The disadvantage from the viewpoint of a developer
just wanting to deploy a feature to an IoT device, is that all sourcecode needs to be
developed in the language OCaml and use the API only available on the MirageOS. The
developer therefore binds himself to the use of a specific technology, making it harder to
later migrate to a different Unikernel if needed.

Unikernel projects like OSv and Rumprun on the other hand put emphasis on their
POSIX compatibility. This allows a developer to be agnostic of the underlying system
and can deploy the same, unchanged application on a Linux based virtual machine as
well as on the above mentioned Unikernels. Disadvantages could be fewer optimizations
for compatibility reasons and missing out on MirageOS’ advantages stemming from using
one language all throughout the system (type safety).

For the deployment prototype the OSv Unikernel was selected since it has shown to
be stable during the performance tests in chapter 4/ and has the convenient property
that the application does not need to be tailored to the Unikernel environment. For the
demonstration the unchanged IoT-App, used during the performance tests, was used as
a demonstration application that is built by the CI system and distributed to the client.

The only indication in the sourcecode for the use of a Unikernel is the Capstan file in the
root directory. This is used by the build system to create an OSv Unikernel from the
compiled application (see 6.5/ for details on the Capstan file).

6.4 Continuous Integration

In former times the development of large software projects involving numerous developers
meant that after the development of individual components was finished a critical

6.5. Creation of the Unikernel

phase began where the components were integrated into one coherent application. The
components were long in the making before an integration was tried for the first time. This
meant that changes and assumptions in one component would break other components
during the integration. The integration therefore was a much feared, complicated and
long running process that could potentially jeopardize release dates.

A continuous integration system is a system used to make sure that the code in a
repository at any given time can be built into a runnable application without error. To
this end the CI system connects with the code repository of a project and receives the
code upon being triggered. This can either happen periodically or through an event
on the repository system. Each developer releases completed features to a centralized
repository several times a day such that the current state of the repository represents a
realistic picture of the currents state of the project.

The CI system builds the code from the central repository into a application by using
the build system of the project (maven, gradle, ant or any other build system). When

the build fails, the responsible developer gets notified and is tasked with fixing the code.

A Dashboard visible to all project members is available to indicate the current health
status of the project and the result of the last build.

For this deployment prototype the continuous integration system “Jenkins” was selected.

It receives the code from the code repository hosted on GitHub whenever changes are
pushed to the main branch. Jenkins then compiles the code with the maven dependency
management and build system since the application is a Java application using the maven
build- and dependency management system. During the build, the unit tests for the
application are executed making sure that the changed code does not alter the expected
behavior in other parts of the system. After a successful build, Jenkins triggers a script
compiling the application into a Unikernel.

6.5 Creation of the Unikernel

The successful build of the code through the CI system triggers the creation of the
Unikernel through a post-build script. The Unikernel selected for this deployment
prototype is OSv and therefore the buildsystem Capstan is used to compile the sourcecode
into the Unikernel, since Capstan was created for the OSv building process.

Capstan uses a file called “Capstanfile” (25)) to specify how the code should be compiled
into a Unikernel. The file structure is similar to the Dockerfile used by the application
container system Docker (see 3.2.2) to specify how their containers should be built and
what files and dependencies to include in the image. Both configuration files specify
a base system that is used as a basis for compiling the new image. For the IoT-App
the base system already includes an OpenJDK for executing JVM code used by the
application. The Capstanfile specifies what build command should be executed to initiate
the building process compiling the sourcecode into a runnable application (in the case

7

6.

DEPLOYMENT PROTOTYPE - DEPLOYING SOFTWARE TO 10T DEVICES

78

of the Java based IoT-App the goal is a JAR-file) and which of the resulting artifacts
should be included in the Unikernel.

During the development phase the developer does not need to deal with the Unikernel
since OSv provides standard APIs (see 6.3|for details on the development process). To test
the creation of the Unikernel on the developer machine, the compilation of the compiled
application into a Unikernel can be initiated through the use of the Capstan build system
as well. For testing purposes a local installation of the hypervisors virtualbox or KVM
could be used.

1 # Name of the base image. Capstan will download this automatically from
Cloudius S3 repository.

2 base: cloudius/osv-openjdk

3 # The commandline passed to OSv to start up the application.

4 cmdline: /java.so -jar /iot-app.jar

5 # The command to use to build the application.

6 build: mvn package

7 # List of files that are included in the generated image.

8 files: /iot-app.jar: target/iot-app-0.0.1-SNAPSHOT jar

Since the Capstan build system is only able to build an OSv Unikernel, the Unikernel
compilation- and deployment platform Unik (see 3.1.1) could be used instead to build
a wider variety of Unikernels like MirageOS, Rumprun or IncludeOS. The goal of this
prototype was to demonstrate the use of Unikernels in the process and OSv was chosen
as a demonstration object for reasons described in (6.3 Therefore, it was not necessary
to support all kinds of Unikernels through the use of Unik and the Capstan system was
chosen for the prototype for easier handling and integration in the custom distribution
system (Hub). The Unik project takes control over the creation of Unikernels and the
handling of images and instances in a way that was not fitting with the architecture in
this prototype. Unik uses a central repository system for the distribution of Unikernels
(similar to Dockerhub) that could be a replacement for the Hub, but has jet to be
published.

6.6 Hub: Unikernel Distribution

The Hub is the central connection point for all connected clients. Whenever new versions
of the system image are provided, the hub manages these versions and provides them to
the clients.

In a real life scenario for IoT home automation devices this service would be provided
to the customer as a service over the Internet. The devices would be connected to
the Internet through a router in the home of the customer and would query the Hub
for updates on a regular basis. In a setup where the devices are part of a larger IT

6.7. The Agent

infrastructure in a company, the company would probably want to separate the devices
from the rest of the network and prohibit direct connections to the Internet for security
reasons. In this type of environment the Hub would be installed on a company internal
system and cater updates to all company internal devices.

To make sure only allowed clients can retrieve the newly created Unikernel, the agent
service running on the client has to authenticate itself against the hub.

The project resin.io (see 3.2.3)) tackles the authentication of the provisioned clients by
distributing provisioning keys within the system image. The device registers itself over
the Internet using the provisioning keys. After the image is successfully installed and the
device added to the VPN, the device receives unique API keys from the Hub.

6.7 The Agent

After the application changes were compiled into a Unikernel and uploaded to the
distribution hub, the client needs to retrieve the image and replace the currently running
system with the new one. To this end the client runs a software called “agent” that has
the following tasks:

1. Periodically checking with the Hub for available updates
2. Downloading available system images

3. Verifying the image

4. Starting the new Unikernel

5. Shutting down the old system

6. Checking for available hypervisor updates

6.7.1 Authentication

A crucial aspect of the security infrastructure is the authentication of the clients against
the server to make sure that the incoming requests are legitimate. If unauthenticated
clients would be allowed to communicate with the server, the aggregated data on the
server could contain misleading information about the state of the network.

There are several methods for authenticating clients to a server. One is to use client side
x509 (14)) certificates to provide identity information to the server. In this method the
client trying to connect to a server supplies a certificate to the server in the process of
establishing a connection in order to prove its identity to the server.

Client and server negotiate during the connection establishment the cipher and certificate
authority they would use.

79

6.

DEPLOYMENT PROTOTYPE - DEPLOYING SOFTWARE TO 10T DEVICES

80

6.7.2 Verification

Verification of system images is an omnipresent problem in software distribution. Every
available Linux distribution provided on a server also provides a way to verify if the image
was altered during the download. A system image could either be damaged during the
distribution over the network through a network problem, or being deliberately altered
by an attacker on the server. The usual way to provide verification information to the
receiver of an image is through a secure hash algorithm. A hash algorithm calculates a
value (called “hash value”) of a predetermined lengths from a given input of arbitrary
length. A cryptographically secure hash algorithm calculates the hash value in a way
that if a single bit of the input is altered, the hash value changes as well. This property is
the basis for verifying that a distributed piece of data was not altered during the delivery.
In order to use the hash value to verify a downloaded system image, one needs a way to
securely distribute the hash value.

Over the years a number of cryptographically strong hash functions have been recom-
mended for the use in cryptographic applications and later to be found to have weaknesses.
The german federal agency “Federal Agency for Information Security” (BSI) publishes
recommendations for the use of cryptographic algorithms (17)). They currently recom-
mend among others the SHA256 algorithm for the creation of cryptographically strong
hashes. Therefore, the prototype uses a SHA256 on the Hub to create a hash value and
on the client to verify the downloaded image.

6.7.3 Running the Unikernel

The hypervisor used for the prototype is KVM (see 2.3.2). In order to run a virtual
machine it needs an emulator system providing drivers and the necessary environment.
Here the widely known Qemu system will be used on the client. The agent service is
responsible to instantiate the VM image into a running instance on the hypervisor. After
downloading the image file and verifying its integrity the agent starts the Unikernel by
invoking a startup script that uses the Qemu system and the KVM hypervisor.

For the network connection a bridge device is created on the client connecting the virtual
devices to the physical network connection and all virtual machines receive an ip address
from a centralized DHCP service.

1 gemu-system-x86_ 64 -m 1024 -smp 1 -cpu host,+x2apic -enable-kvm
-nographic -device virtio-blk-pci,id=blk0,bootindex=0,drive=hd0 -drive
file=/imgs/osv-iot2.qcow?2,if=none,id=hd0,aio=native,cache=unsafe -chardev
stdio,mux=on,id=stdio,signal=off -device isa-serial,chardev=stdio -netdev
bridge,id=un0 -device virtio-net-pci,netdev=un0

6.8. Hypervisor Update

6.7.4 Transportlayer Security

The network packets transmitted over the network can take unpredictable routes and
traverse parts of the Internet that can not be trusted. To make sure that the data
transmitted over the network is not altered, one approach is the verification of downloaded
data presented in |6.7.2. While this approach is feasible for downloaded packets, it cannot

guarantee the integrity of the data received from a call to for example a webservice API.

The prototype uses TLS to encrypt the data transmitted between the hub and the agent
service. In that way an attacker cannot easily intercept data or inject additional data
into the packet stream.

6.8 Hypervisor Update

The Unikernel with the IoT service application is running on the IoT device on top of
a hypervisor. While the process for fixing a bug in the code and distributing it to all
clients has been demonstrated in the previous chapters (see 6.2), the question remains

how to roll out updated on the layer beneath the application, namely the hypervisor.

Hypervisors are themselves a type of operating system in that they interact with the
hardware on behalf of higher software layers and manage, protect and attribute resources
for the virtual machines.

A hypervisor is a complex system with a large codebase that needs to provide a vast number
of hardware drivers to operate on diverse hardware. Although a systems administrator is
well aware of the criticality of the security of the hypervisor and therefor is likely to take
protective actions and heighten security, a hypervisor is like any other complex software
and therefore bugs are inevitable. A system built upon a hypervisor infrastructure
therefore needs a way to update the hypervisor as well.

The update process of an operating system on a IoT devices is more difficult than on other
systems since they normally can only be reached over the network and do not provide any
other means of interaction like a directly connected screen. This makes debugging and
recovering from a failed system upgrade next to impossible without extracting the device
from its environment and attaching it to a debug environment. To tackle this problem the
ChromeOS project has divided the harddisk into two partitions. One partition contains
the currently running system and the other is used for updates. When a new version
gets released, the running system downloads the new system to the currently unused
partition, unpacks it into a bootable system and adds this partition as the first boot
option to the bootmanager. The old system then initiates a reboot. If all goes well, the
new system gets booted from here on whenever the system starts up. When on the other
hand the bootprocess fails, the old system is present as a backup and the default boot
option gets reversed to the old system. This makes sure that there is a bootable system
present at any time, even if the update process fails.

For hypervisor updates on IoT devices, a similar system could be used. The agent
described in 6.7 could receive new system images of the hypervisor through the hub just

81

6.

DEPLOYMENT PROTOTYPE - DEPLOYING SOFTWARE TO 10T DEVICES

82

as it receives new version of a Unikernel. The client devices could use two partitions
for the hypervisor updates and since the agent is running as a service on the operating
system, it has (unlike the Unikernels running on the hypervisor) access to the harddisk.

From a security perspective a bug in the agent with access to the complete harddisk
poses a higher risk the the security of the IoT device than a bug in the application or
Unikernel since these are contained and separated through the hypervisor. A security
breach in the application or Unikernel would affect the functioning and availability of
the service provided by the application, but can be repaired through an update and new
rollout.

6.9 Summary

The deployment prototype described in this chapter demonstrates how Unikernels can be
used in a state of the art development environment to deploy an application to multiple
clients.

Compared to the deployment on bare metal, the prototype has the advantage of separating
the base system from the application through the hypervisor.

An application could be deployed as part of a classic virtual appliance using a complete
operating system image. The comparison in [4.5| shows the advantages of a Unikernel
compared to this deployment method. The system image of a standard Ubuntu server
system is over 30 times larger than a Unikernel deploying the same application.

The process described in this chapter shows that the developer can be agnostic of the
deployment method during the development process when the appropriate Unikernel
is chosen. This is due to the selection of a Unikernel project that does not need the
application to be tailored to the Unikernel. When other Unikernels like IncludeOS or
MirageOS would be selected as a basis for the deployment, the layout and specific APIs
of the Unikernels would have a big impact during the development and testing phase on
the developers machine. The application would be developed with the specific system in
mind.

The advantages regarding security and portability of a hypervisor do not come without
costs. The additional layer comes with performance penalties where Unikernels can show
their advantages over traditional virtual machines in some aspects (see 4.3 for details)
and needs its own update process for rolling out updates. An update strategy for the
application on top of a hypervisor without an update strategy for the hypervisor does
not add additional security for the system. In [6.8 a strategy addressing these needs was
described that would make sure that all layers of the system stay up to date.

CHAPTER

Future Work

When manufacturers build low power devices they often use an ARM-based processor
for its low resource consumption and lower price. Both Unikernel projects (OSv and
Rumprun) that were used in this work for the performance evaluation of Unikernels 4
are not supporting the ARM architecture at this point, but are working on supporting it
in the future.

At the beginning of this work the intention was to take a Raspberry Pi v3 as a model for
an IoT device and run the Unikernels on this device. It was possible to initialize a KVM
hypervisor on top of a Linux system running on the device. The hypervisor was able to
execute a Debian guest system and thereby demonstrated that virtualization on a Raspi
is possible. Unfortunately the current state of the Unikernel projects do not allow the
compilation of the Unikernels for the ARM platform and therefore the tests described in
4.2/ could not be executed on the Raspberry Pi, but instead needed a 64bit x86 CPU.
It would be interesting to see the performance comparison conducted in chapter 4/ repeated
on an ARM based system and have a direct comparison of a Linux system running on a
bare metal Raspberry pi v3 with its resource restrictions and Unikernels running on top
of a hypervisor on this system.

The applications tested in |4.2| were both written in languages running in a heavyweight
runtime environment. It would be interesting to see the performance of the same
application written in a compiled language directly running on the CPU as for example
Go. The application was already written to be used in the testseries but at the current
moment the Unikernel projects OSv and Rumprun are not able to compile an application
written in the language Go into a Unikernel in a stable manner.

83

CHAPTER

Conclusion

The idea of the library operating system has been known for a longer time and have been
implemented in projects like Nemesis and Exokernel. In the current form implemented in
Unikernel projects like OSv, Rumprun or MirageOS they draw from the benefits of long
development of hypervisors through the support of virtualization in modern CPUs. This
makes Unikernels an interesting solution to a range of problems in modern computing
addressing concerns of security and the ever increasing layers of software on a modern
operating system.

In this work the question was raised whether Unikernels could address the pressing
problem of shipping new versions of an application to IoT devices in a timely manner
and thereby improve the security of the systems. To this end Unikernels were evaluated
in three dimensions relevant to the topic. The first main chapter 4| inquiried performance
characteristics of Unikernels like boot time, ability to respond to network connections,
handling of higher-level protocols and size of the system image and compared them with
a standard Linux system in a virtual machine. The second main chapter 5| takes a look
at incidents from the near past regarding loT devices, evaluates inherent properties of
Unikernels regarding security and lays out how the use of Unikernels in the deployment of
software on IoT devices could contribute to the security of the system. In the third main
chapter |6/ the focus is on the process how software is deployed to the devices. The chapter
shows a modern development process where the sourcecode written by a developer gets
pushed to a repository, built by a continuous integration system, tested and deployed
to a distribution hub from where the images get pulled by the devices. This process
demonstrates where Unikernels could fit in the development process and facilitate the
handling of application deployments.

One property of Unikernels that the Unikernel projects emphasize is the performance
improvement in computation operations compared to regular operating systems. This
claim was evaluated in the first main chapter 4| by conducting performance measures
of real-world applications with different resource attributions. The claims could not

85

8.

CONCLUSION

86

be verified in during the performance tests. While all Unikernel projects demonstrated
performance improvements in some selected scenario (4.7), the selected POSIX-compatible
Unikernel projects OSv and Rumprun were not able to outperform a classic Linux system
running in a virtual machine in the tests conducted in this work. The aim of the tests
was to conduct tests with near real-world applications using widely used programming
languages and frameworks not optimized for the Unikernel environment and thereby get
a realistic view on the deployment of real-world applications on IoT devices through
Unikernels.

Chapter 5| examined the security risks and attack scenarios todays IoT devices face
when deployed as part of the corporate IT infrastructure or running in the homes of
users. The incidents described in |5.1 make clear that security of IoT devices already is a
major problem not just for the owner of the devices, but for all other Internet connected
potential targets of DDOS attacks as well. The projection of the number of deployed IoT
devices in the near future (41]) makes it clear that the need for security of the devices
cannot be emphasized enough. Apart from the hardening of the systems themselves, the
process of fixing bugs, developing patches and rolling out updates to all relevant devices
in a timely manner is paramount to the security of the future Internet and all connected
systems. Unikernels contribute in this field with advantageous security properties like
reduced attack surface, isolation from the hardware through the use of a hypervisor and
the lack of attacker-supporting management tools (like shells) on the systems. While it
should be clear that the use of a new technology like Unikernels can never be a silver
bullet to deal with all security problems, the small size of the Unikernel system images,
abstracted environment for the developer and system hardening properties lets Unikernels
contribute to the overall security of the system.

The third main chapter |6 demonstrated how Unikernels could be integrated into the de-
velopment process. If the handling and building of the Unikernel would be to complicated
during the development process, the benefits regarding performance and security would
not justify the use of Unikernels in an IoT project. The chapter shows how Unikernels can
be added to a modern development process through the use of a continuous integration
system. The integration of Unikernels from a developers perspective is similar to the
use of a Docker system in that it uses a configuration file for the creation of the OSv
Unikernel.

Whether Unikernels are a good fit for software deployments on real world IoT devices
will be dependent upon the availability of Unikernel implementations for the CPU
architectures found in those devices 7. To this day the Unikernel projects support only
x86 based architectures that are rather uncommon in the devices. Contrary to the claims
by the Unikernel projects, the request-handling performance of a real-world application on
a Unikernel was not significantly faster than the execution on a standard virtual machine
with a full operating system. However the much smaller system image of the Unikernels
(1/30 the size of the Ubuntu virtual machine image) has clear benefits for the large-scale
distribution of new versions over the network to a large number of devices. The isolation
between the hardware and application through a hypervisor has clear benefits for the

security of the system and allows the system to recover even after being compromised by
shutting down the compromised virtual machine and start a new vm from the updated
system image.

While the Unikernel concept might not be the silver bullet for software deployments on
IoT devices, it has clear advantages over classical virtual machines with full operating
systems in that it facilitates the rollout of new versions of the application and allows for
the automation of large parts of the process. Thereby Unikernels can contribute to the
security of IoT devices and with the availability of ARM-based versions and the continual
improvement of the Unikernel projects they could be a good fit for the deployment of
software to the upcoming network of 20 billion connected devices.

87

2.1
2.2

4.1
4.2
4.3
4.4
4.5
4.6
4.7

6.1

List of Figures

Structure of traditional OS and a Unikernel (from (16))
Layout of a Rumprun Unikernel (from (103))

Boot time measurements (1 vCPU 1024MB RAM)
Results of the netperf testseries (req/s) (1 vCPU 1024MB RAM)
Throughput CoAP server in req/s (1 vCPU 1024MB RAM)
Request rate (req/s) for the HTTP protocol
Request rate (req/s) of the Java-IoT application for all configurations
Request rate (req/s) of the Node.js-IoT application for all configurations) .

Comparison: Node.js and Java-IoT app. Request rate (req/s) for configuration

1CPU 1024MB RAM

System architecture

18
23

45
48
51
52
54
56

o7

75

89

List of Tables

4.1 Hardware configurations used in the tests 44
4.2 Boot time Measurements Netserver-series (1ICPU 1GB RAM) 44
4.3 Boottime Measurements loT-App-Java series| 46
4.4 Boottime Measurements IoT-App-Node.js series (1lvCPU 1GB RAM)| . . 46
4.5 Results of the MQTT tests with the Moquitto broker| 49
4.6 Results of the CoAP tests with the TepThroughputServer, 50
4.7 Image sizeo e e e 52
4.8 Httperf results for Java loT-app: Reply time/ 54
4.9 Httpert results for Node.js [oT-app: Reply time 55
4.10 Httperf results for Node.js IoT-app: Request ratel 56
4.11 Overview over all testresults for configuration 2. The data is presented in
percent of the reference system (Ubuntu). 58
5.1 The OWASP Top 10 - Vulnerability List 2010 (99) 66
5.2 The OWASP IoT Top 10 - Vulnerability List (38) 67

91

Bibliography

Virtio project. URL https://www.linux—kvm.org/page/Virtio. Accessed:
2017-12-01.

A. Al-Fuqgaha, m. guizani, M. Mohammadi, M. Aledhari, and M. Ayyash. Internet
of Things: A Survey on Enabling Technologies, Protocols and Applications. 17:
Fourthquarter 2015, 2015.

R. Amadeo. Android n borrows chrome os code for “seamless” update installation.
Ars Technica, May 2016. URL https://arstechnica.com/gadgets/2016/
05/android—-n-borrows—-chrome—-os—code—for—-seamless—update-—
installation/l Accessed: 2017-12-01.

Amazon. Greengrass. URL https://aws.amazon.com/de/greengrass/. Ac-
cessed: 2017-12-01.

Amazon Inc. Amazon AWS IoT. URL jhttps://aws.amazon.com/de/iot—+
platform/how—-it-works/. Accessed: 2017-12-01.

AMD Staff. AMDG64 Architecture Programmer’s Manual Volume 2: System Pro-
gramming. Advanced Micro Devices, 2017. URL https://support.amd.com/
TechDocs/24593.pdf.

B. W. Arden, B. A. Galler, T. C. O’Brien, and F. H. Westervelt. Program and
addressing structure in a time-sharing environment. J. ACM, 13(1):1-16, Jan.
1966. ISSN 0004-5411. doi: 10.1145/321312.321313. URL http://doi.acm.org/
10.1145/321312.321313!

Arduino. Arduino Yun. URL https://store.arduino.cc/arduino—yun.
Accessed: 2017-12-01.

ARM Inc. Arm architecture reference manual armv8, for armv8-a ar-
chitecture profile. https://developer.arm.com/docs/ddi0487/
latest/arm-architecture-reference-manual-armv8-for—-armv8—-a-—
architecture—-profilel Accessed: 2017-12-01.

ARM Inc. Arm architecture, 2017. URL https://developer.arm.com/
products/architecturel

93

https://www.linux-kvm.org/page/Virtio
https://arstechnica.com/gadgets/2016/05/android-n-borrows-chrome-os-code-for-seamless-update-installation/
https://arstechnica.com/gadgets/2016/05/android-n-borrows-chrome-os-code-for-seamless-update-installation/
https://arstechnica.com/gadgets/2016/05/android-n-borrows-chrome-os-code-for-seamless-update-installation/
https://aws.amazon.com/de/greengrass/
https://aws.amazon.com/de/iot-platform/how-it-works/
https://aws.amazon.com/de/iot-platform/how-it-works/
https://support.amd.com/TechDocs/24593.pdf
https://support.amd.com/TechDocs/24593.pdf
http://doi.acm.org/10.1145/321312.321313
http://doi.acm.org/10.1145/321312.321313
https://store.arduino.cc/arduino-yun
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/products/architecture
https://developer.arm.com/products/architecture

[11]

[12]

[15]

94

Arrakis Project. Arrakis. URL http://arrakis.cs.washington.edu/. Ac-
cessed: 2017-12-01.

A. Banks and R. Gupta. MQTT Version 3.1.1 Plus Errata 01. OASIS, Decem-
ber 2015. URL http://docs.ocasis—-open.org/mgtt/mgtt/v3.1.1/mgtt—~+
v3.1.1.htmll Accessed: 2017-12-01.

J. Batalla, G. Mastorakis, C. Mavromoustakis, and E. Pallis. Beyond the Internet
of Things: Everything Interconnected. Internet of Things. Springer International
Publishing, 2016. ISBN 9783319507583.

S. Boeyen, S. Santesson, T. Polk, R. Housley, S. Farrell, and D. Cooper. Inter-
net X.509 Public Key Infrastructure Certificate and Certificate Revocation List
(CRL) Profile. RFC 5280, May 2008. URL https://rfc-editor.org/rfc/
rfc5280.txtl

A. Bratterud, A. Happe, R. Duncan, and A. Keith. Enhancing Cloud Security
and Privacy: The Unikernel Solution. Eighth International Conference on Cloud
Computing, GRIDs, and Virtualization, 19 February 2017 - 23 February 2017,
Athens, Greece, 2017.

I. Briggs, M. Day, Y. Guo, P. Marheine, and E. Eide. A Performance Evaluation of
Unikernels. 2015.

Bundesamt fiir Sicherheit in der Informationstechnik. Kryptographische
verfahren: Empfehlungen und schlussellingen. January 2017. URL |https:
//www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/
TechnischeRichtlinien/TR02102/BSI-TR-02102.pdf?__ _blob=
publicationFilel Accessed: 2017-12-01.

Canonical Inc. Ubuntu for the Internet of Things, 2017. URL https://
www.ubuntu.com/internet-of-thingsl

A. Carman. Hacked webcams that helped shut down the internet last week are being
recalled. The Verge, October 2016. URL https://www.theverge.com/2016/
10/24/13383968/hangzhou—xiongmai—-ddos—attack—iot-mirai. Ac-
cessed: 2017-12-01.

A. Celesti, D. Mulfari, M. Fazio, M. Villari, and A. Puliafito. Exploring con-
tainer virtualization in iot clouds. Smart Computing (SMARTCOMP), 2016 IEEE
International Conference on Smart Computing (SMARTCOMP):1-6, May 2016.

K. Chandrasekaran. FEssentials of Cloud Computing. CRC Press, 2014. ISBN
9781482205442.

Check Point Research. A new iot botnet storm is coming, Octo-
ber 2017. URL https://research.checkpoint.com/new—iot-botnet-+
storm-coming/. Accessed: 2017-12-01.

http://arrakis.cs.washington.edu/
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
https://rfc-editor.org/rfc/rfc5280.txt
https://rfc-editor.org/rfc/rfc5280.txt
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR02102/BSI-TR-02102.pdf?__blob=publicationFile
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR02102/BSI-TR-02102.pdf?__blob=publicationFile
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR02102/BSI-TR-02102.pdf?__blob=publicationFile
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR02102/BSI-TR-02102.pdf?__blob=publicationFile
https://www.ubuntu.com/internet-of-things
https://www.ubuntu.com/internet-of-things
https://www.theverge.com/2016/10/24/13383968/hangzhou-xiongmai-ddos-attack-iot-mirai
https://www.theverge.com/2016/10/24/13383968/hangzhou-xiongmai-ddos-attack-iot-mirai
https://research.checkpoint.com/new-iot-botnet-storm-coming/
https://research.checkpoint.com/new-iot-botnet-storm-coming/

[26]

[27]

[28]

ClickOS Project. ClickOS. URL http://cnp.neclab.eu/clickos/. Accessed:
2017-12-01.

Clive Project. Clive. URL https://lsub.org/ls/clive.html. Accessed:
2017-12-01.

Cloudius Systems. Capstan project. GitHub. URL https://github.com/
cloudius-systems/capstan. Accessed: 2017-12-01.

J. Cormak. The Rump Kernel: A tool for driver development and a toolkit for
applications. AsiaBSDcon, 2015.

1. Corporation. Intel®) 64 and IA-32 Architectures Software Developer’s Manual
Volume 3C. Intel Corporation, 2016.

F. M. David, J. C. Carlyle, and R. H. Campbell. Context switch overheads for
linux on arm platforms. In Proceedings of the 2007 Workshop on Ezxperimental
Computer Science, ExpCS 07, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-
751-3. doi: 10.1145/1281700.1281703. URL http://doi.acm.org/10.1145/
1281700.1281703.

Docker Inc. Docker. . URL https://www.docker.com/. Accessed: 2017-12-01.

Docker Inc. Docker system documentation, . URL https://docs.docker.com/.
Accessed: 2017-12-01.

B. Duncan, A. Bratterud, and A. Happe. Enhancing cloud security and privacy:
Time for a new approach? In Innovative Computing Technology (INTECH), 2016
Sixth International Conference on, 2016.

B. Duncan, A. Happe, and A. Bratterud. Enterprise iot security and scalability:
How unikernels can improve the status quo. In Proceedings of the 9th International
Conference on Utility and Cloud Computing, UCC 16, pages 292-297, New York,
NY, USA, 2016. ACM. ISBN 978-1-4503-4616-0. doi: 10.1145/2996890.3007875.
URL http://doi.acm.org/10.1145/2996890.3007875.

Eclipse Foundation. Mosquitto. URL https://mosquitto.org/. Accessed:
2017-12-01.

EMC Inc. Unik project. GitHub. URL https://github.com/cf-unik/unik.
Accessed: 2017-12-01.

Erlang on XEN Project. Erlang on XEN. URL http://erlangonxen.org/.
Accessed: 2017-12-01.

R. T. Fielding, J. Gettys, and J. Mogul. Hypertext transfer protocol — http/1.1.
RFC 2616, IETF, Juni 1999.

95

http://cnp.neclab.eu/clickos/
https://lsub.org/ls/clive.html
https://github.com/cloudius-systems/capstan
https://github.com/cloudius-systems/capstan
http://doi.acm.org/10.1145/1281700.1281703
http://doi.acm.org/10.1145/1281700.1281703
https://www.docker.com/
https://docs.docker.com/
http://doi.acm.org/10.1145/2996890.3007875
https://mosquitto.org/
https://github.com/cf-unik/unik
http://erlangonxen.org/

[45]

[46]

[47]

96

E. Foundation. Californium. GitHub. URL https://github.com/eclipse/
californium. Accessed: 2017-12-01.

T. O. Foundation. Owasp iot top 10, 2014. URL |https://www.owasp.org/
index.php/Top_10_IoT_Vulnerabilities_ (2014)} Accessed: 2017-12-01.

Galois Inc. Halvm. GitHub. URL https://github.com/GaloisInc/HaLVM.
Accessed: 2017-12-01.

M. Garg. Sysenter based system call mechanism in linux 2.6, 2006. URL http:
//articles.manugarg.com/systemcallinlinux2_6.html. Accessed: 2017-
12-01.

Gartner Inc. Gartner says 8.4 billion connected "things" will be in use in 2017, up 31
percent from 2016. URL http://www.gartner.com/newsroom/1d/3598917.
Accessed: 2017-12-01.

C. T. Gibson. Time-sharing in the ibm system/360: Model 67. In Proceedings of
the April 26-28, 1966, Spring Joint Computer Conference, AFIPS ’66 (Spring),
pages 61-78, New York, NY, USA, 1966. ACM. doi: 10.1145/1464182.1464190.
URL http://doi.acm.org/10.1145/1464182.1464190.

Google Inc. Android things project. 2017. URL |https://
developer.android.com/things/index.html.

A. Happe, B. Duncan, A. Bratterud, O. Gusikhin, V. M. Mufioz, F. Firouzi, D. Mgn-
ster, and V. Chang. Unikernels for cloud architectures: How single responsibility
can reduce complexity, thus improving enterprise cloud security. Proceedings of

the 2nd International Conference on Complexity, Future Information Systems and
Risk, 2017.

Httperf Project. Httperf. URL |https://github.com/httperf/httperf.
Accessed: 2017-12-01.

C. Hunt. TCP/IP. O’Reilly Media, 2003.

IEEE and The Open Group. POSIX.1-2008, 2016. URL http://
pubs.opengroup.org/onlinepubs/9699919799/.

Imagination Technologies. Mips virtualization, 2017. URL https://
www.imgtec.com/mips/architectures/virtualization/.

Include OS Project. Include OS. URL http://www.includeos.org/. Accessed:
2017-12-01.

Information Sciences Institute University of Southern California. Transmission
control protocol. RFC 793, 1981.

https://github.com/eclipse/californium
https://github.com/eclipse/californium
https://www.owasp.org/index.php/Top_10_IoT_Vulnerabilities_(2014)
https://www.owasp.org/index.php/Top_10_IoT_Vulnerabilities_(2014)
https://github.com/GaloisInc/HaLVM
http://articles.manugarg.com/systemcallinlinux2_6.html
http://articles.manugarg.com/systemcallinlinux2_6.html
http://www.gartner.com/newsroom/id/3598917
http://doi.acm.org/10.1145/1464182.1464190
https://developer.android.com/things/index.html
https://developer.android.com/things/index.html
https://github.com/httperf/httperf
http://pubs.opengroup.org/onlinepubs/9699919799/
http://pubs.opengroup.org/onlinepubs/9699919799/
https://www.imgtec.com/mips/architectures/virtualization/
https://www.imgtec.com/mips/architectures/virtualization/
http://www.includeos.org/

Intel Inc. Quark processor series. URL https://www.intel.de/content/www/
de/de/embedded/products/quark/x1000/overview.html. Accessed:
2017-12-01.

R. Jones. Care and feeding of netperf. GitHub, 2012. URL https://github.com/
HewlettPackard/netperf/blob/master/doc/netperf.pdfl Accessed:
2017-12-01.

A. Kantee. The Design and Implementation of the Anykernel and Rumpkernels.
2016. URL http://www.fixup.fi/misc/rumpkernel-book/.

A. Kantee and J. Cormak. Rump kernels - no 0s? no problem! Login - The Usenix
Magazine, 39(5), October, 2014 2014.

A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori. KVM: The Linux virtual
machine monitor. In Proceedings of the Linuz symposium, volume 1, pages 225-230,
2007.

A. Kivity, D. Laor, G. Costa, P. Enberg, N. Har’El, D. Marti, and V. Zolotarov.
OSv—Optimizing the Operating System for Virtual Machines. In 201/ USENIX An-
nual Technical Conference (USENIX ATC 14), pages 61-72, Philadelphia, PA, 2014.
USENIX Association. ISBN 978-1-931971-10-2. URL https://www.usenix.org/
conference/atcl4/technical-sessions/presentation/kivity.

C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas. DDoS in the IoT: Mirai and
other botnets. Computer, 50:80-84, 01 2017.

B. Krebs. Hacked cameras, dvrs powered today’s massive internet outage. Krebs
on Security, 2016. URL https://krebsonsecurity.com/2016/10/hacked+
cameras—dvrs—-powered-todays—-massive—internet-outage/l Ac-
cessed: 2017-12-01.

B. Krebs. Reaper: Calm before the iot security storm, October 2017.
URL https://krebsonsecurity.com/2017/10/reaper—calm-before-
the—iot—-security—-storm/. Accessed: 2017-12-01.

R. Love. Linuxz-Kernel-Handbuch: Leitfaden zu Design und Implementierung von
Kernel 2.6. Open source library. Pearson Deutschland, 2005. ISBN 9783827322043.

I. Lunden. Amazon Launches AWS IoT — A Platform For Building, Man-
aging And Analyzing The Internet Of Things. Techcrunch, 10 2015. URL
https://techcrunch.com/2015/10/08/amazon—-announces—aws—
iot—-a-platform-for-building-managing—-and—-analyzing—the-
internet-of-things/. Accessed: 2017-12-01.

A. Madhavapeddy and D. J. Scott. Unikernels: The rise of the virtual library
operating system. Communications of the ACM, 2014.

97

https://www.intel.de/content/www/de/de/embedded/products/quark/x1000/overview.html
https://www.intel.de/content/www/de/de/embedded/products/quark/x1000/overview.html
https://github.com/HewlettPackard/netperf/blob/master/doc/netperf.pdf
https://github.com/HewlettPackard/netperf/blob/master/doc/netperf.pdf
http://www.fixup.fi/misc/rumpkernel-book/
https://www.usenix.org/conference/atc14/technical-sessions/presentation/kivity
https://www.usenix.org/conference/atc14/technical-sessions/presentation/kivity
https://krebsonsecurity.com/2016/10/hacked-cameras-dvrs-powered-todays-massive-internet-outage/
https://krebsonsecurity.com/2016/10/hacked-cameras-dvrs-powered-todays-massive-internet-outage/
https://krebsonsecurity.com/2017/10/reaper-calm-before-the-iot-security-storm/
https://krebsonsecurity.com/2017/10/reaper-calm-before-the-iot-security-storm/
https://techcrunch.com/2015/10/08/amazon-announces-aws-iot-a-platform-for-building-managing-and -analyzing-the-internet-of-things/
https://techcrunch.com/2015/10/08/amazon-announces-aws-iot-a-platform-for-building-managing-and -analyzing-the-internet-of-things/
https://techcrunch.com/2015/10/08/amazon-announces-aws-iot-a-platform-for-building-managing-and -analyzing-the-internet-of-things/

98

A. Madhavapeddy, R. Mortier, C. Rotsos, and D. Scott. Unikernels: Library
operating systems for the cloud. ASPLOS ’18 Proceedings of the eighteenth interna-
tional conference on Architectural support for programming languages and operating
systems Pages 461-472, 2013.

W. Mauerer. Professional Linux Kernel Architecture. Wiley, 2010. ISBN
9781118079911.

Microsoft. Windows 10 iot core. URL https://developer.microsoft.com/
en—-us/windows/iot. Accessed: 2017-12-01.

Microsoft Inc. Drawbridge. URL fhttps://www.microsoft.com/en—-us/
research/project/drawbridge/. Accessed: 2017-12-01.

R. Mijat and A. Nightingale. Virtualization is coming to a platform near you.

Mirage OS Project. Technical background of MirageOS. URL https://
mirage.io/wiki/technical-background. Accessed: 2017-12-01.

MirageOS Project. MirageOS. URL https://mirage.io/. Accessed: 2017-12-01.

R. Morabito. Virtualization on Internet of Things Edge Devices with Container
Technologies: a Performance Evaluation. IEEE Access, PP, 05 2017.

C. Moratelli, S. Johann, M. Neves, and F. Hessel. Embedded virtualization for
the design of secure iot applications. In Proceedings of the 27th International
Symposium on Rapid System Prototyping: Shortening the Path from Specification
to Prototype, RSP 16, pages 2-6, New York, NY, USA, 2016. ACM. ISBN
978-1-4503-4535-4. doi: 10.1145/2990299.2990301. URL http://doi.acm.org/
10.1145/2990299.2990301

C. Moratelli, S. Johann, M. Neves, and F. Hessel. Embedded virtualization for
the design of secure iot applications. In Proceedings of the 27th International
Symposium on Rapid System Prototyping: Shortening the Path from Specification
to Prototype, RSP ’16, pages 2-6, New York, NY, USA, 2016. ACM. ISBN
978-1-4503-4535-4. doi: 10.1145/2990299.2990301. URL http://doi.acm.org/
10.1145/2990299.2990301.

A. Mouat. Docker: Software entwickeln wund deployen mit Containern.
dpunkt.verlag, 2016. ISBN 9783960880370.

J. MSV. Amazon Makes Foray Into Edge Computing With AWS Greengrass.
Forbes, 2017. URL https://www.forbes.com/sites/janakirammsv/
2017/06/07/amazon—-makes—foray—-into—-edge—-computing-with—aws—
greengrass/#416ec2603298. Accessed: 2017-12-01.

https://developer.microsoft.com/en-us/windows/iot
https://developer.microsoft.com/en-us/windows/iot
https://www.microsoft.com/en-us/research/project/drawbridge/
https://www.microsoft.com/en-us/research/project/drawbridge/
https://mirage.io/wiki/technical-background
https://mirage.io/wiki/technical-background
https://mirage.io/
http://doi.acm.org/10.1145/2990299.2990301
http://doi.acm.org/10.1145/2990299.2990301
http://doi.acm.org/10.1145/2990299.2990301
http://doi.acm.org/10.1145/2990299.2990301
https://www.forbes.com/sites/janakirammsv/2017/06/07/amazon-makes-foray-into-edge-computing-with-aws-greengrass/#416ec2603298
https://www.forbes.com/sites/janakirammsv/2017/06/07/amazon-makes-foray-into-edge-computing-with-aws-greengrass/#416ec2603298
https://www.forbes.com/sites/janakirammsv/2017/06/07/amazon-makes-foray-into-edge-computing-with-aws-greengrass/#416ec2603298

[81]

[82]

Netlab 360. IoT reaper: A Rappid Spreading New IoT Botnet, October 2017.
URL http://blog.netlab.360.com/iot_reaper—a-rappid-spreading-
new—iot—botnet—en/. Accessed: 2017-12-01.

Netperf Project. Netperf. URL https://github.com/HewlettPackard/
netperfl Accessed: 2017-12-01.

G. O'Regan. A Brief History of Computing. SpringerLink : Biicher. Springer
London, 2012. ISBN 9781447123590.

OSv Project. OSv. URL http://www.osv.io. Accessed: 2017-12-01.

OSv Project. OSv:Netperf Tests, May 2014. URL http://osv.io/netperf-+
benchmarks/. Accessed: 2017-12-01.

J. Penninkhof. Mosquitto unikernel using osv and capstan, August 2015.
URL |https://www.penninkhof.com/2015/08/mosquitto—unikernel—~
using—-osv—and—-capstan/.

Pivotal Software. Spring boot. URL https://projects.spring.io/spring-
boot /. Accessed: 2017-12-01.

M. Plauth, L. Feinbube, and A. Polze. A performance evaluation of lightweight
approaches to virtualization. CLOUD COMPUTING 2017, page 14, 2017.

G. J. Popek and R. P. Goldberg. Formal requirements for virtualizable third genera-
tion architectures. Commun. ACM, 17(7):412-421, July 1974. ISSN 0001-0782. doi:
10.1145/361011.361073. URL http://doi.acm.org/10.1145/361011.361073

D. E. Porter, S. Boyd-Wickizer, and J. Howell. Rethinking the library os from
the top down. ASPLOS XVI Proceedings of the sixteenth international conference

on Architectural support for programming languages and operating systems Pages
291-304, 2011.

J. Postel. User datagram protocol, 1980. URL https://tools.ietf.org/html/
rfc’/768.

O. Project. POSIX API Support. GitHub, 2014. URL https://github.com/
cloudius—-systems/osv/wiki/POSIX-API-support. Accessed: 2017-12-
01.

PRPL Foundation. PRPL Foundation Unveils the First Open Source
Hypervisor for the Internet of Things, July 2016. URL https:
//prplfoundation.org/2016/07/12/prpl-foundation-unveils—the-
first-open-source-hypervisor-for-the-internet-of-things/\
Accessed: 2017-12-01.

99

http://blog.netlab.360.com/iot_reaper-a-rappid-spreading-new-iot-botnet-en/
http://blog.netlab.360.com/iot_reaper-a-rappid-spreading-new-iot-botnet-en/
https://github.com/HewlettPackard/netperf
https://github.com/HewlettPackard/netperf
http://www.osv.io
http://osv.io/netperf-benchmarks/
http://osv.io/netperf-benchmarks/
https://www.penninkhof.com/2015/08/mosquitto-unikernel-using-osv-and-capstan/
https://www.penninkhof.com/2015/08/mosquitto-unikernel-using-osv-and-capstan/
https://projects.spring.io/spring-boot/
https://projects.spring.io/spring-boot/
http://doi.acm.org/10.1145/361011.361073
https://tools.ietf.org/html/rfc768
https://tools.ietf.org/html/rfc768
https://github.com/cloudius-systems/osv/wiki/POSIX-API-support
https://github.com/cloudius-systems/osv/wiki/POSIX-API-support
https://prplfoundation.org/2016/07/12/prpl-foundation-unveils-the-first-open-source-hypervisor-for-the-internet-of-things/
https://prplfoundation.org/2016/07/12/prpl-foundation-unveils-the-first-open-source-hypervisor-for-the-internet-of-things/
https://prplfoundation.org/2016/07/12/prpl-foundation-unveils-the-first-open-source-hypervisor-for-the-internet-of-things/

[96]

[97]

98]

100

Resin.io Corp. Resin.io. URL |https://resin.io/how—it-works/. Accessed:
2017-12-01.

Rumprun Project. Rumprun. GitHub. URL https://github.com/
rumpkernel/rumprun. Accessed: 2017-12-01.

Runtime.js Project. Runtime.js. URL http://runtimejs.org/. Accessed:
2017-12-01.

D. A. Rusling. The linux documentation project, 1999. URL |http://
www.t 1dp.org/LDP/t1lk/mm/memory.html. Accessed: 2017-12-01.

R. Russell. Virtio: Towards a de-facto standard for virtual i/o devices. SIGOPS
Oper. Syst. Rev., 42(5):95-103, July 2008. ISSN 0163-5980. doi: 10.1145/
1400097.1400108. URL http://doi.acm.org/10.1145/1400097.1400108.

J. Saleem, B. Adebisi, R. Ande, and M. Hammoudeh. A state of the art survey -
impact of cyber attacks on sme’s. In Proceedings of the International Conference
on Future Networks and Distributed Systems, ICFNDS 17, New York, NY, USA,
2017. ACM. ISBN 978-1-4503-4844-7. doi: 10.1145/3102304.3109812. URL http:
//doi.acm.orqg/10.1145/3102304.3109812.

Z. Shelby, K. Hartke, and C. Bormann. The Constrained Application Protocol
(CoAP). RFC 7252, IETF, June 2014.

W. Stallings. Operating Systems: Internals and Design Principles. Prentice
Hall Press, Upper Saddle River, NJ, USA, 6th edition, 2008. ISBN 0136006329,
9780136006329.

T. Suzuki. MQTT Bench. GitHub. URL https://github.com/takanorig/
mgtt-bench. Accessed: 2017-12-01.

The Apache Foundation. Spark framework. URL http://sparkjava.com/.
Accessed: 2017-12-01.

The Chromium Project. Filesystem autoupdates. URL https:
//www.chromium.org/chromium-os/chromiumos—-design—-docs/
filesystem—autoupdate. Accessed: 2017-12-01.

The OWASP Foundation. Owasp top 10, 2010. URL https://www.owasp.org/
index.php/Top_10_2010-Main. Accessed: 2017-12-01.

S. Thielman. Can we secure the Internet of Things in time to pre-
vent another cyber-attack? The Guardian, October 2016. URL
https://www.theguardian.com/technology/2016/oct/25/ddos—
cyber—attack-dyn—-internet-of-things. Accessed: 2017-12-01.

https://resin.io/how-it-works/
https://github.com/rumpkernel/rumprun
https://github.com/rumpkernel/rumprun
http://runtimejs.org/
http://www.tldp.org/LDP/tlk/mm/memory.html
http://www.tldp.org/LDP/tlk/mm/memory.html
http://doi.acm.org/10.1145/1400097.1400108
http://doi.acm.org/10.1145/3102304.3109812
http://doi.acm.org/10.1145/3102304.3109812
https://github.com/takanorig/mqtt-bench
https://github.com/takanorig/mqtt-bench
http://sparkjava.com/
https://www.chromium.org/chromium-os/chromiumos-design-docs/filesystem-autoupdate
https://www.chromium.org/chromium-os/chromiumos-design-docs/filesystem-autoupdate
https://www.chromium.org/chromium-os/chromiumos-design-docs/filesystem-autoupdate
https://www.owasp.org/index.php/Top_10_2010-Main
https://www.owasp.org/index.php/Top_10_2010-Main
https://www.theguardian.com/technology/2016/oct/25/ddos-cyber-attack-dyn-internet-of-things
https://www.theguardian.com/technology/2016/oct/25/ddos-cyber-attack-dyn-internet-of-things

[101]

[102

—

[103]

[104]

[105]

H.-L. Truong, G. Copil, S. Dustdar, D.-H. Le, D. Moldovan, and S. Nastic. icomot
— a toolset for managing iot cloud systems. In Proceedings of the 2015 16th IEEE
International Conference on Mobile Data Management - Volume 01, MDM ’15,
pages 299-302, Washington, DC, USA, 2015. IEEE Computer Society. ISBN 978-1-
4799-9972-9. doi: 10.1109/MDM.2015.65. URL http://dx.doi.org/10.1109/
MDM.2015.65.

Verizon Threat Research Advisory Center. Data breach digest 2017: Cyber-
crime case studies. URL http://www.verizonenterprise.com/verizon-
insights—-lab/data-breach-digest/2017/. Accessed: 2017-12-01.

S. Wicki. The Rumprun Unikernel. pkgSrcCon, 2016.

D. Williams. Virtualization with Xen(tm): Including XenEnterprise, XenServer,
and XenEzxpress. Elsevier Science, 2007. ISBN 9780080553931.

C. Wolf and E. Halter. Virtualization: From the Desktop to the Enterprise. Books
for Professionals by Professionals. Apress, 2006. ISBN 9781430200277.

101

http://dx.doi.org/10.1109/MDM.2015.65
http://dx.doi.org/10.1109/MDM.2015.65
http://www.verizonenterprise.com/verizon-insights-lab/data-breach-digest/2017/
http://www.verizonenterprise.com/verizon-insights-lab/data-breach-digest/2017/

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Problem Statement
	Methodology

	Fundamentals
	Evolution of Operating Systems
	Operating System Concepts
	Virtualization
	Unikernel Concept
	Internet of Things

	State of the Art and Related Work
	State of the Art
	Related Work

	Performance & Footprint - Evaluation of Unikernels
	Evaluation Framework
	Measurements and Comparison
	Measurement: Boot Time
	Measurement: Network Protocols
	Measurement: Image Size
	Measurement: A Real-World Application
	Performance Measurements in other Works
	Evaluation of the Results

	Security of Unikernels on IoT Devices
	Security Incidents involving IoT devices
	Implications of compromised IoT devices
	The OWASP Top 10
	Security Properties of Unikernels
	Atomic Updates
	Summary

	Deployment Prototype - Deploying Software to IoT Devices
	Devops & Unikernels in the Development process
	System Overview
	Application Development
	Continuous Integration
	Creation of the Unikernel
	Hub: Unikernel Distribution
	The Agent
	Hypervisor Update
	Summary

	Future Work
	Conclusion
	List of Figures
	List of Tables
	Bibliography

