
Smart food sharing across smart
cities: concepts, processes and

infrastructure

MASTERARBEIT

zur Erlangung des akademischen Grades

Master of Science

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Konrad M. Steiner, BSc
Matrikelnummer 0927159

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: A.o. Univ. Prof. Dr. Dipl.-Ing. eva Kühn

Wien, 7. Dezember 2017
Konrad M. Steiner eva Kühn

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Smart food sharing across smart
cities: concepts, processes and

infrastructure

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Software Engineering & Internet Computing

by

Konrad M. Steiner, BSc
Registration Number 0927159

to the Faculty of Informatics

at the TU Wien

Advisor: A.o. Univ. Prof. Dr. Dipl.-Ing. eva Kühn

Vienna, 7th December, 2017
Konrad M. Steiner eva Kühn

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Konrad M. Steiner, BSc
Leipziger Straße 14/22, 1200 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 7. Dezember 2017
Konrad M. Steiner

v

Acknowledgements

First, I want to thank my supervisor, Prof. eva Kühn for suggesting such an interesting
topic for my master thesis. Her various and manifold ideas guided me during the writing of
my theses, but never restricted me. I am very glad that eva, despite her full appointment
calendar, has always managed to take time for a meeting with me. I want also to thank
Dagmar Haier from Foodsharing for sharing her extensive knowledge about food sharing
with me and giving me insights about Foodsharing which I would not have received
otherwise. A big thank you belongs to my cousin Marlena Zeichner for proofreading this
work.

At this point I also want to thank two of my fellow students and best friends Christian
Kühmayer and Christian Schnitzer for their input in all the group works we did together
during our studies. A very special thank you is for my parents Edeltraud and Hans-Peter
Steiner for all the support they gave me during my extensive education. Last but not least
I want to thank my girlfriend Gerda Mitterlehner for her mental support and kindness
particular in stressful times of my studies.

vii

Kurzfassung

Um überleben zu können, benötigt jeder Mensch Lebensmittel und daher ist eine ange-
messene Versorgung der gesamten Menschheit mit Essen wichtig. Offensichtlich ist das
nicht der Fall - Nahrungsmittelabfälle und Mangelernährung sind die Folgen. In letzter
Zeit versuchen immer mehr food sharing Initiativen das Problem zu lösen, indem sie über-
schüssige Lebensmittel weiterverteilen, sind dabei aber nur mäßig erfolgreich. Deshalb ist
das Ziel dieser Arbeit einen smarten food sharing Prozess zu beschreiben. Sie beschäftigt
sich mit vielen Aspekten von food sharing und bietet Vorschläge für Verbesserungen.
Ganz besonders wird das Koordinationsproblem das food sharing innewohnt beleuchtet
und mit dem Peer Model gelöst.

Zu Beginn gibt die Arbeit Einblicke in die globale Lebensmittelversorgung und schätzt
das mögliche Potential von food sharing ab. Danach analysiert sie bestehende food sharing
Lösungen und Forschung über food sharing und gibt Verbesserungsvorschläge. Anschlie-
ßend werden mehrere Informations- und Kommunikationstechnologien beschrieben, die
in einem verbesserten food sharing Prozess verwendet werden können. Dabei vergleicht
sie gängige Koordinationsframeworks und kommt zu dem Ergebnis, dass für food sharing
das Peer Model am besten geeignet ist. Deshalb wird das Koordinationsproblem von food
sharing mit dem Peer Model modelliert, für seine Java Laufzeitumgebung implementiert
und eine Simulation zeigt, dass das Model funktioniert. Abschließend beschreibt die Ar-
beit einen smarten food sharing Prozess und Storyboards veranschaulichen wie Benutzer
damit interagieren.

Die Weltbevölkerung mit Essen zu versorgen wird auch zukünftig herausfordernd, vor
allem wenn sie wie erwartet steigt. Mit food sharing können heute bereits einige Probleme
in der Lebensmittelversorgung verbessert werden, aber aktuelle Lösungen sind nicht
effizient genug. Ein smarter food sharing Prozess, wie in dieser Arbeit beschrieben, sollte
daher so bald als möglich eingesetzt werden.

ix

Abstract

Everybody needs food to survive and therefore an appropriate supply of all people with
foodstuff is of enormous importance. Obvious this is still not ensured - food waste and
undernourishment are direct consequences. Lately, emerging food sharing initiatives
try to solve these problem by redistribution of surplus food products, but they are not
effective enough. So, the aim of this work is to describe an improved food sharing process.
Therefore, the thesis deals with numerous aspects of food sharing and provides several
prospects to improve current food sharing solutions. Especially the coordination problem
that is inherent to food sharing is considered in detail and solved with a coordination
framework called Peer Model.

The thesis starts with literature review to get insights about food waste as well as
undernourishment and evaluates the possible potential of food sharing. Then it analyses
current food sharing solutions and research about food sharing and names improvement
opportunities. Afterward it describes several information and communication technologies
that can be used for an enhanced food sharing process. At that it compares popular
coordination frameworks and comes to the result that the Peer Model is suited best
to deal with the coordination problem of food sharing. Thus, the thesis models the
coordination parts of food sharing with the Peer Model, implements them for its Java
runtime environment and a simulation shows that the model works. Finally, the work
describes an advanced smart food sharing process and storyboards illustrate how users
interact with it.

Supplying the world’s population with food will be a challenging task in the future,
particularly when the expected growth in population occurs. Today’s food sharing
solutions can improve some problems of the food supply chain, but current solutions are
not efficient enough. Therefore, a smart food sharing process like the one described in
this thesis should be implemented as soon as possible.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Aim of the work . 2
1.3 Methodological approach . 2
1.4 Structure of the work . 3

2 Global food situation survey 5
2.1 Food losses and food waste . 5
2.2 Food insecurity and undernourishment 8
2.3 Prospects of enhanced assignment . 11
2.4 Summary . 12

3 State of the art in food sharing solutions and research 13
3.1 Literature and research approaches . 14
3.2 Deployed solutions for food sharing between households 23
3.3 Summary and open issues . 27

4 State of the art in ICT suited for food sharing 29
4.1 RFID . 29
4.2 Smart fridges . 31
4.3 Autonomous goods transport . 33
4.4 Others . 35
4.5 Summary . 35

5 Coordination models 37
5.1 Selection of a suitable coordination model 37
5.2 Peer Model . 40
5.3 Summary . 47

xiii

6 S-FOSM: a Smart FOod Sharing Model 49
6.1 Modelling the S-FOSM . 49
6.2 Implementation of the S-FOSM . 59
6.3 Using S-FOSM in a food sharing simulation 64
6.4 Summary . 70

7 S-FOSS: a vision of a Smart FOod Sharing Solution 71
7.1 Properties of the S-FOSS . 71
7.2 The S-FOSS in action . 76
7.3 Summary . 83

8 Conclusion 85
8.1 Summary . 85
8.2 Future work . 86

List of Figures 89

List of Tables 90

List of Algorithms 91

Acronyms 93

Bibliography 95

CHAPTER 1
Introduction

As being the first of the thesis this chapter introduces the topic. At the beginning in
section 1.1 the motivation for this work is illustrated. Then section 1.2 describes the aim
of the work. Afterwards section 1.3 names the methodological approach to reach these
goals. Finally, section 1.4 will explain how the further work is structured.

1.1 Motivation
Worldwide each day unimaginable amounts of food get wasted because people cannot or
do not want to eat it. Wasted food is a useless dissipation of resources and pollutes the
environment. Paradoxically at the same time for lots of people there is no food available
or they cannot afford it and hence they suffer from hunger. This undernourishment
influences the whole life of the concerned people and makes them more susceptible for
illness and less productive.

So, obvious there exists a problem of proper splitting the available food to the world
population. These issues are already known and people and organisations have founded
food sharing initiatives that redistribute surplus food to humans who need it. Food
sharing solutions contribute in reducing food waste and feeding the ones in need. However,
as there still so much food ends up in trash and there are lots of people undernourished,
food sharing initiatives must be improved.

These days many cities develop to smart cities. They use many information and communi-
cation technologies (ICTs) to optimize resource utilisation, reduce costs and increase the
quality of life of its residents. Smart city solutions are convenient to use and the people
can enjoy their advantages. While at the beginning smart cities were mainly restricted
to the energy and mobility domain now they also deal with topics like smart buildings,
water, waste and pollution management and emerging concepts like urban farming. Food
sharing would also fit into this concept. It increases resource utilisation and reduces

1

1. Introduction

costs by decreasing food waste. Furthermore, increased food security would improve the
quality of life for the inhabitants. Unfortunately, current food sharing processes are not
convenient enough to use and therefore not smart enough for smart cities. Lots of people
do not get the advantages of food sharing (e.g. reduced costs) because the high effort
inherent to current food sharing solutions scare them off.

1.2 Aim of the work
This work has several goals that are all related to food sharing:

• The 1st goal is to determine the extent of food waste and undernourishment as
well as in what way food sharing can improve these problems.

• The 2nd goal is find reasons why existing food sharing solutions are not effective
enough (i.e. there is still so much food waste and lots of food insecure people)

• The 3rd goal is to give examples of ICTs and how they could improve food sharing
solutions and make them more effective and convenient for its users. Most important
is to find a way to deal with the coordination problem that is inherent to food
sharing.

• The 4th goal is to provide a solution for the coordination problem for food sharing.

• The 5th goal is to describe a smart food sharing solution. It must integrate various
ICTs and the solution for the coordination part to be more convenient for its users.

1.3 Methodological approach
To reach the previously defined goals a couple of different methodological approaches
have been applied:

• Literature review:
At the beginning of this work literature about food sharing and related topics (e.g.
food waste) has been reviewed. Thereby the 1st, the 2nd and the 3rd goal of this
thesis could be reached.

• Modelling, implementation and simulation:
The coordination problem of food sharing was solved using the Peer Model. For
this task the first step was to model the food sharing process with the graphical
notation of the Peer Model. Then this model was implemented and source code for
the Java runtime of the Peer Model was written. Finally, a simulation environment
was created where food sharing was simulated based on this model. Using these
methodological approaches the 4th goal of the thesis was achieved.

2

1.4. Structure of the work

• Prototyping:
For the description of the smart food sharing solution there was a focus on charac-
terising the interaction of the user with the system. Therefore, several prototypes
of the graphical user interface (GUI) of the smart food sharing solution have been
created and helped to reach the 5th goal of this thesis.

1.4 Structure of the work
The remaining work is structured as follows:

• Chapter 2 is a survey of the global food situation. It will deal with the main
problems of food waste and food insecurity in more detail. Furthermore, it analyses
how far an improved assignment can facilitate both of these problems and gives
thereby the possible potential of food sharing.

• Chapter 3 reviews literature about food sharing in the modern human society to
find out which problems are already solved and what is open. In addition, already
deployed food sharing solutions that facilitate food sharing between households are
analysed to find out their weaknesses.

• Chapter 4 describes various ICTs and how they can be used to make food sharing
more convenient for users. These technologies should be integrated in food sharing
solutions to make their processes smart and suitable for modern smart cities.

• Chapter 5 states why a coordination model is essential to deal with such a complex
coordination problem like food sharing. Then different coordination models are
briefly described and compared. It is explained why the Peer Model will be used in
this thesis and a detailed description of the Peer Model is given.

• Chapter 6 proposes a solution for the coordination parts of food sharing between
households using the Peer Model. At first the process of food sharing is modelled
with the graphical notation of the Peer Model. Then this model is translated to
executable source code for the Java runtime of the Peer Model. Finally, a simulation
environment is created where simulated households use this process to share food
among each other what proves that the model is a valid solution for food sharing.

• Chapter 7 describes the vision of a smart food sharing solution for households.
This smart food sharing solution uses various ICTs and concentrates on coordination
to be as convenient as possible for its users. At first the properties of this system
are specified and then storyboards give examples how fictional persons interact
with the smart food sharing solution and enjoy its advantages.

• Chapter 8 concludes this work. It provides a summary of the thesis and gives
hints for future work in this area.

3

CHAPTER 2
Global food situation survey

Everybody needs food to survive. Having enough and adequate food is one of the most
important requirements for humans to be healthy and fit. Furthermore, food has a strong
social and cultural component as it brings together people and has formed different local
customs. Hence the supply of all people with sufficient and appropriate foodstuff is of
extreme importance. Sadly, currently this does not work and there is a multitude of
people suffering from hunger. Additionally, there are people that get more food than
they can eat and thus waste it. These troubles in the global food situation lead to health
problems, wastage of limited resources, environmental damage and has also negative
economic impacts.

At first this chapter deals with two major problems in the global food supply: food
losses and food waste (see section 2.1) as well as food insecurity and undernourishment
(see section 2.2). Then section 2.3 analyses in what way an enhanced assignment would
improve these matters. Finally, section 2.4 will sum up the most important facts about
the global food situation.

2.1 Food losses and food waste

In 1981 the Food and Agriculture Organisation of the United Nations (FAO) had defined
food loss as the weight of all food that was produced for human consumption, but do
not get eaten by a human [FAO81]. In the literature (e.g. [GCS+11]) food losses are
often divided into two parts: The term food loss is only used for decreases of quality and
quantity of food due limitations in the food supply chain (FSC) and food waste relates
to lost food because of wrong behaviour. Food losses rather occur at the beginning of
the FSC (production, post-harvest and processing steps) and food waste mostly at the
end (retail and final consumption). Other papers (e.g. [SJQM16] and [PBM10]) call all
food losses food waste.

5

2. Global food situation survey

There is a multitude of studies about food loss and food waste. Most of them consider
only a specific stage of the FSC and a bordered geographical region. As these studies
often use different methods (e.g. questionnaire surveys, waste analyses and inferential
analyses) as well as different definitions of food losses and food waste (e.g. inedible parts
of the food like nutshells are sometimes considered as food loss, sometimes not and food
that is used for alternative applications like pet feeding is sometimes counted as food
waste and sometimes not) it is hard to compare them and get an aggregated view about
food losses and food waste [SJQM16][PBM10][MFI+16]. Furthermore, for some regions
or stages there is no data available. Therefore amounts of food losses and food waste in
the literature always have to be handled with care and papers that provide an overall
view have a high degree of uncertainty [GCS+11][SJQM16].

The next subsection (see subsection 2.1.1) gives details about the amount of lost and
wasted food. Then subsection 2.1.2 describes some negative impacts of food losses and
waste and finally subsection 2.1.3 gives some ideas to decrease the quantity of lost and
wasted food.

2.1.1 Magnitude of food losses and food waste

As already denoted, exact data about global food losses and food waste are not available.
Lundqvist et al. estimate in their often-cited work [LdFM08] from 2008 that about 50%
of all produced food is lost or wasted. The newer and more detailed work [GCS+11]
from 2011 by Gustavsson et al. comes to the result that each year about 1.3 billion
tons of food produced for human consumption are lost or wasted. This is approximately
one-third of the whole food production.

Lost and wasted food accrue all over the world, but the amount and the reasons differ
between developing and developed regions of the world. As can be seen in figure 2.1
the per capita food loss and food waste of high income countries is considerably higher
than in low income countries. For example, the per capita food loss and waste of North
America and Oceania is with nearly 300 kg/year more than twice as high as in South
and Southeast Asia with about 125 kg/year. Considering the food losses and food waste
only at costumer level the difference is even more major. The per capita food loss and
food waste at customer level in Sub-Saharan Africa is only 6 kg/year while it is in North
America and Oceania with 115 kg/year about 19 times higher [GCS+11]. Food losses
and food waste at production and retailing stages of developed and developing regions
are on a comparable level but the reasons are different. In developing countries mainly
process limitations like missing cooling facilities and inefficient harvesting techniques
cause a reduction of quality and quantity of food (i.e. the food gets brackish or is lost
on the fields) [PBM10]. However, in medium and high income regions the reasons for
food losses and food waste are mostly consumer behaviour (e.g. insufficient purchase
planning) and a lack of coordination (e.g. overproduction) in the FSC.

Stenmarck et al. give in their work [SJQM16] more details about food losses and food
waste for a high-income region, the former EU-28 states. The per capita food loss and

6

2.1. Food losses and food waste

Figure 2.1: Per capita food losses for different regions (from [GCS+11])

food waste is different to [GCS+11] (173 kg/year in [SJQM16] for EU-28 vs. 280 kg/year
in [GCS+11] for Europe). This is the case because [SJQM16] does not count food losses
and food waste that are fed to animals as food losses and food waste. Furthermore
[SJQM16] counts inedible parts of food also as food loss or food waste. In the former
EU-28 households are responsible for the main part of food losses and waste. Their share
in food losses and food waste is 53% (or per capita 92 kg/year) and about 60% are edible
parts. Processing is responsible for 19% (50% edible), food service for 12% (59% edible),
production for 11% (50% edible) and wholesale and retail for 5% (83% edible) of the
food losses and food waste in the former EU-28 countries.

2.1.2 Negative impacts of food losses and food waste

Lost and wasted food causes several problems. The literature deals with the following
drawbacks of food losses and waste particularly intense: The stress of the environment
and the economic damage. But lost food and wasted food has also negative influence on
the society as it decreases the food security of poor people and cumbers the efforts to
combat the hunger in the world [GCS+11].

Food losses and food waste are a big dissipation of resources and stress the environment.
For example, in the US more than 25% of the whole freshwater demand [HGDC09] and
worldwide about 306 km3 of water per year is needed to produce edibles that get wasted
[FAO14]. Both, the production of food and its rotting in landfills produce considerable
amounts of greenhouse gases [HGDC09]. Only the production of all food losses emits
greenhouse gases in the amount of 3.49 Gt CO2e per year [FAO14] what is about 7 % of
the global greenhouse gas emission of 2010 (49.5 Gt CO2e) [VZA+14].

7

2. Global food situation survey

Wasting and loosing food costs a lot of money. In 2012 the edible parts of the food wasted
by households of the former EU-28 states are estimated to 98 billion Euros, the overall
edible food losses in these countries worth 143 billion Euros [SJQM16]. WRAP comes in
[QJ09] to the result that in the UK each year edibles amounting 12 billion pounds are
wasted by households and that an average UK family spends 480 pounds per year on
food waste. In South Africa, the calculated cost of a ton of food waste is 592 US-dollar.
The overall worth of wasted food in South Africa is 7.5 billion US-dollar per year what
is about 2.2% of its gross domestic product (GDP) from 2013 [dLN15]. All food losses
worldwide value about 936 billion US-dollars per year. Furthermore, the costs of the
societal impacts (e.g. soil erosion and water pollution) of food losses are estimated to 1.2
trillion US-dollars annually [FAO14].

2.1.3 Countermeasures against food losses and food waste

In low-income countries, most food losses occur because of limitations in harvesting,
storing, packing and transporting the food products [PBM10]. Therefore, for developing
countries technical and managerial improvements at production stage are needed to
reduce their food losses and increase their food security [GCS+11].

In contrast in medium and high-income regions mainly wrong behaviour and missing
coordination in the FSC lead to wasting of food [GCS+11]. As customers in developed
countries have the biggest contribution to food waste a change of their behaviour would
be the biggest input for reducing food losses and food waste [SJQM16]. Different studies
(e.g. [GFC13]) have already shown that these people in most cases do not want to waste
food, it happens accidentally. Already small assistance (e.g. making the food waste
visible) can have huge impacts [TCM+12]. Moreover, there are various initiatives with
the goal to decrease food waste at different stages of the FSC (e.g. food banks or surplus
food used as animal feed) [FAO14]. Additionally, currently there is an increasing interest
in food sharing as one method that reduces food waste, especially at costumer and retailer
level [MFI+16].

2.2 Food insecurity and undernourishment
The term of food security was defined at the World Food Summit (WFS) in 1974 and
redefined to be more precise over the years [FAO03]. The current definition is "Food
security (is) a situation that exists when all people, at all times, have physical, social
and economic access to sufficient, safe and nutritious food that meets their dietary needs
and food preferences for an active and healthy life." and was introduced in [FAO01] in
2001. This widely accepted definition implies that four criteria must be fulfilled that a
person can be called food secure: the availability of sufficient food (domestic production
or imports), economic and physical access to the food, an adequate utilisation of the
food by that person (is closely related to its health status) and the stability (i.e. that
the person has access to enough food at all time) [FIW15][Gib12][FAO06]. People are
food insecure if at least one of these conditions do not meet [FAO03].

8

2.2. Food insecurity and undernourishment

It is very costly to determine food insecurity for a person or a household. Therefore,
studies often use proxy measures to gain insights about some aspects of food security
or use models to estimate food security for bigger groups of people based on existing
data. The most often cited food insecurity data is from the FAO [Bar10]. They use the
term undernourishment or hunger for people that do not get enough food to satisfy their
energy requirements for at least one year. Based on national food balance sheets they
estimate the number of undernourished people worldwide [FIW15]. The United States
Department of Agriculture (USDA) uses the term food insecurity for people who do
not get food whose energy amounts 2,100 kcal per day. They use two different models,
one demand oriented and one supply oriented to calculate approximate values of food
insecure people in 76 low and middle income countries [RKB16].

The next subsection (see subsection 2.2.1) deals with the amount of undernourished and
food insecure people. Then subsection 2.2.2 describe some negative impacts undernour-
ishment and finally subsection 2.2.3 briefly discusses some ideas to reduce food insecurity
and undernourishment.

2.2.1 Magnitude of food insecurity and undernourishment

Although undernourishment was decreasing in the last decades it is still a big problem.
According to the FAO from 2014 to 2016 there were about 795 million people suffering
from hunger what was around 10.9% of the whole population [FIW15]. Some literature
claim that this number is too low. They count people with micronutrient deficiencies (e.g.
iron or vitamin A) as food insecure and therefore they set 2 billion people as lower bound
of food insecurity [Bar10][PA09]. Hunger is rather a problem of developing countries, but
there are also undernourished people in developed states [FIW15].

For developing countries, the absolute number of undernourished people decreased from
991 to 780 million and the prevalence of hunger dropped from 23.3% to 12.9% from
1990-1992 to 2014-2016, but the targets of WFS and Millennium Development Goal
(MDG) were missed (see figure 2.2) [FIW15]. The USDA had only considered 76 low
and middle income countries and used two different models to estimate the number of
food insecure people. With their demand oriented model, they came to the result that in
2016 in this region 607.1 million people (16.9% of the population) were food insecure
and that this value will drop to 250.7 million (6%) in 2026. On the other hand with the
supply-oriented model the food insecure share is 12% (431.3 million people) in 2016 and
will increase to 13.6% (570.3 million) in 2026 [RKB16].

In the developed regions of the world in 2014-2016 there were 15 million people under-
nourished [FIW15]. Furthermore, in the high-income country US in 2015 12.7% of the
households (15.8 million) had at least at some time during the year problems to provide
enough food for its members [CJRGS16].

9

2. Global food situation survey

Figure 2.2: Change of the magnitude of undernourishment in developing countries over
the time (from [FIW15])

2.2.2 Negative impacts of food insecurity and undernourishment

In case of food insecurity and undernourishment the concerned people feel the negative
effects directly. The hunger reduces their health status. Furthermore, the undernourish-
ment decreases their productivity and can even cumber the economic performance of a
country.

Malnutrition is the most important risk factor for illness and death. In particular, people
in developing countries cannot get sufficient and balanced food and therefore they are
more susceptible for infections that cause illness, disease and death [MK05]. Young
children are especially concerned by undernutrition. In 2011 malnutrition was the cause
for 3.1 million child deaths (45% of all child deaths) [BVW+13].

Undernutrition hinders the development of children and influences them negatively for
their whole life [BVW+13]. Bad nourished children have a lower household income,
affluence and labour market activity in their adulthood. Moreover hunger reduces the
performance of workers and so their income [LU15]. Hence food insecurity also causes an
economical damage. It is estimated that worldwide the GDP has lost 6% because of the

10

2.3. Prospects of enhanced assignment

impacts of undernourishment. In poor countries this loss is up to 12% [HS13]. It is not
easy for the concerned people to get out of this situation. They earn few money because
they are undernourished and they are undernourished as long as they earn few money.
Furthermore, they cannot feed their children properly and therefore the children’s risk of
being food insecure in the adulthood is raised [LU15][Bar10].

2.2.3 Countermeasures against food insecurity and undernourishment

Food insecurity and undernourishment can be reduced in many ways. At the moment,
there are mainly famine relief organisations that prohibit temporary hunger as a con-
sequence of natural disasters by delivering emergency food aid to developing regions.
Additionally, they support projects that increase food security in low-income countries
long-term. Assuming that the world population continues to grow in future there will be
worldwide efforts needed to supply all people with enough food.

There are lots of famine relief organisations which spend a lot of money to bring food to
the hungry people [LW95]. The largest humanitarian agency, the World Food Program
(WFP) [CRC12], got in 2016 donations in the height of nearly 6 billion US-dollar (from
countries, private and public organisations and individuals) [WFP] to deliver emergency
food aid and to conduct projects like school feeding or social protection and safety net
programs [OGS10]. Unfortunately, currently emergency food aid deliveries are often to
slow and therefore lose parts of their impact. Moreover, all projects to increase food
security have to be planned and executed with great care. Otherwise they could negatively
influence the local food supply (e.g. displacing of commercial food trade or affecting local
prices) and therefore finally decrease food security [Bar10].

It is estimated that the world population will increase and in 2050 will reach 9 billion
people. That means that the food demand will also rise and there must be something
done to ensure food security for this amount of people. Increasing the productivity in
food production (e.g. improved pest management), using crops with higher yield (e.g.
disease-resistant varieties of wheat), a change of people’s diets (e.g. meat and dairy
products are less energy efficient) and expanding aquacultures (e.g. to Africa) are some
possibilities [GBC+10]. Furthermore a reduction of half of the food waste would cover
a quarter of this increased food demand [FAO14]. Hence food sharing can also help to
increase food security, particularly in developed countries with high amounts of food
waste [GMP14].

2.3 Prospects of enhanced assignment

Obviously there exists a problem of proper splitting the food to the world’s population.
Currently several people get more than they can eat and others cannot get enough to
appease their hunger. An improved dispersal would reduce both the food waste and
the hunger. But could an enhanced assignment eliminate the hunger in the world?
Unfortunately, this question is not easy to answer, since the detailed composition of the

11

2. Global food situation survey

global food losses and the precise needs of undernourished people are not known. The
next paragraph will use existing data to estimate if there would be enough food for all
humans.

Equally dividing all food losses (1.3 billion tons per year) to all undernourished people
(795 million) would mean that each of them would get about 1635 kg of food per year.
An average German man eats about 565 kg per year [RIfEuL08]. Under the premise that
an average German man is well fed and the food losses have a similar composition than
his diet one can suppose that there is enough food produced for all people. However, food
losses also contain food that is lost during harvesting and processing (e.g. limitations in
harvesting) and therefore cannot be redistributed. But if all customers in industrialised
countries would hand over their surplus food (222 million tons per year [GCS+11]) to
undernourished people instead of wasting it, in average each starving person would
get about 277 kg per year what is nearly half of the food consumption of a German
man. Depending on how much food they had before this could be crucial to stop their
undernourishment. Moreover, only the food waste of the US contains an energy of 150
trillion kcal/year [HGDC09] and could be used to entire fulfil the USDA’s nutrition goal
of 2,100 kcal/day for more than 195 million people. In his famous documentary film
"Taste the Waste" (see [Thu11]) Thurn even claims that only a third of the food wasted
by Europe and North America would suffice to feed all the hungry people in the world.
Unfortunately, the film does not say how this number comes about.

2.4 Summary
Summarising one can say that already more than enough food to feed all people over the
world is produced. However, because of the great amount of food losses and food waste
lots of humans are food insecure or undernourished. Since food losses and food waste
as well as food insecurity and undernourishment have big disadvantages for the whole
humanity all options to reduce them should be utilised, also to cope with the expected
growth of population in future in a world with limited resources. Food sharing is one
possibility to tackle both of these problems. Therefore, the further parts of this work
will deal with food sharing and the next chapter (see chapter 3) will analyse the state of
the art in food sharing solutions and research. However, what should not be forgotten is
that food sharing cannot eliminate all food waste (e.g. quick perishable products that go
bad before they can be redistributed) and that the transfer of surplus food products to
people who eat them, needs resources. Therefore, a combination of several measures is
needed to eliminate food losses and food waste and ensure food security and adequate
nourishment for the world’s population now and in future.

12

CHAPTER 3
State of the art in food sharing

solutions and research

For the animality Feister and McGrew defined 1989 in their article [FM89] food sharing
as: "transfer of a defensible food-item from one food-motivated individual to another,
excluding theft". Unfortunately, such an agreed definition of food sharing does not exist
for the modern human society. Davies and Weyemes suggest in their briefing note [DW17]
the very broad definition: "having a portion of food with another or others; giving a
portion of food to others; using, occupying or enjoying food and food related spaces
to include the growing, cooking and/or eating of food jointly; possessing an interest in
food in common; or telling someone about food" that also includes collective cooking
or exchange information about food. Most other literature (e.g. [CV16], [GFSG14] and
[BKHM+16]) see food sharing rather only as form of surplus food management. Also
for this work food sharing means to decrease food waste and in addition reduce food
insecurity by redistributing excess food from private households as well as food producers
and retailers, who give it to people who want it or to charitable organisations that need
it for their mission. To have the most impact people get the food from others for free.
In the further progress of the work this definition of food sharing will be used, except
for the next section (see section 3.1) where also literature is analysed that has a broader
definition of food sharing.

At the beginning (see section 3.1) this chapter reviews literature about food sharing.
Then section 3.2 analyses two major food sharing solutions that are already in use.
Finally, section 3.3 will sum up this chapter and point out important open issues in food
sharing.

13

3. State of the art in food sharing solutions and research

3.1 Literature and research approaches

There is a lot of research about food sharing in the animality (e.g. [JVS11]) and about
food sharing in forager populations (e.g. [Mic04]). However, these results cannot be
applied to the modern humans directly and therefore they are out of the scope of this
work. Literature and research about food sharing in the modern human society was
a long time very rare. Meanwhile it seems that more scientists engage with this issue
as there is continuous publishing of new works about this wide topic. Also during the
writing of this thesis new literature about food sharing in the modern human society
appeared and was reviewed in this part of the thesis.

The next two subsections (see subsection 3.1.1 and subsection 3.1.2) will explain different
types of food sharing and the worldwide distribution. Then subsection 3.1.3 will have a
closer look at ICT supported food sharing initiatives in Dublin and subsection 3.1.4 will
analyse a field report about developing and operating a food sharing solution in Italy.
Afterwards (see subsection 3.1.5) a case study with users of a food sharing platform will
be analysed and the role of food sharing as a way to reduce domestic food waste will
be discussed in subsection 3.1.6. Thereafter subsection 3.1.7 deals with trust in food
sharing apps and subsection 3.1.8 is about a research project with the goal to design
cooling stations for food hand over in the urban area. Finally, subsection 3.1.9 will sum
up the most important facts about this section.

3.1.1 Types of food sharing

There is not much research and literature about food sharing but in practice food sharing
solutions are widespread and manifold. Davies analysed in her working paper [Dav16]
a multitude of food sharing applications and tries different variants to classify them.
Finally, she proposes a classification along two dimensions: Mode of sharing and what is
shared. The dimension what is shared provides three classes: stuff (e.g. seeds, foodstuffs
and food processing utensils), spaces (e.g. growing and preparation spaces) and skills
(e.g. knowledge and experience food growing and preparation). The dimension mode of
sharing is split in five categories: IIU (informal, illicit or unorganised activities such as
foraging, gleaning and freeganism), gifting, bartering, not-for-profit (exchange of products
and services against money, but not for profit) and for-profit (monetary exchange for
profit)

Figure 3.1 describes each of these 15 types of food sharing (e.g. gifting and space results
in providing space to grow food for free) and gives examples of existing food sharing
solutions of this type (e.g. Fallen Fruits for Skills and IIU). Actually, it is not always easy
to draw the line between gifting, bartering and monetary exchange. The food sharing
solution Foodsharing (see subsection 3.2.1) supports its users to offer edibles to other
users for free, but they can charge deposit (e.g. bottle deposit) from the acceptor of the
food. This is probably the reason why Davis had classified Foodsharing as not-for-profit
and not as gifting. In later work this typology of food sharing was slightly adopted and
extended (see [DW17] and [DEM+17]), but it is essentially the same.

14

3.1. Literature and research approaches

Figure 3.1: Types of food sharing (from [Dav16])

3.1.2 Magnitude of food sharing solutions

Davies and Weyemes present in their briefing note [DW17] data about the number of
food sharing initiatives world-wide. Therefore, the new research approach called creative
construction by Davies et al. (see [DEM+17]) was used to create a database1 with food
sharing solutions. They identified more than 4000 food sharing initiatives in 100 cities in
44 countries around the world.

The food sharing initiatives are unequal distributed across these 100 cities. While
the 10 most active food sharing cities (London, New York City, Melbourne, Berlin,
Sydney, Barcelona, Philadelphia, Chicago, Buenos Aires and Vancouver) have 29% of all
initiatives the 10 least active have only 2%. Furthermore, food sharing is more widespread
in developed countries than in developing countries (see figure 3.2). The high-income
region Australia and New Zealand have in average 76 food sharing initiatives per reviewed
city, in Africa there are only 13 per examined city.

Most of the food sharing initiatives (54%) share stuff, 33% skills and the remaining ones
(13%) space. Gifting is with 49% the most common mode of sharing, selling (for-profit
and not-for-profit) is with 35% at the second place. Lots of the food sharing initiatives
use ICTs and websites are frequently utilized to enable the food sharing. Smartphone
apps on the other hand are only used by 9% of the food sharing initiatives, but these are
more famous than food sharing solutions without an app.

3.1.3 ICT supported food sharing initiatives in Dublin

In his master thesis [Mur16] Murphy deals with ICT supported food sharing initiatives
in Dublin. In the first step, he deals with the amount and the geographical distribution

1http://sharecity.ie/research/sharecity100-database/

15

http://sharecity.ie/research/sharecity100-database/

3. State of the art in food sharing solutions and research

Figure 3.2: Average number of food sharing initiatives per city for different regions (from
[DW17])

of them. In the following he selected four food sharing solutions and analysed them in
more detail. The following paragraphs will briefly discuss his results.

Geospatial analysis of the food sharing initiatives

Murphy used the SHARECITY1002 database to get information about food sharing
initiatives and their position in Dublin. He combined this information with public
available socio economic data about this city from the Irish Central Statistics Office3.
The result was that more than the half of the 15 food sharing organisations are in the
city centre. Furthermore, a higher percentage of people in the age between 20-40 years,
an income that is marginally above average and a marginally deprived population make
an area more likely to have more food sharing initiatives than other areas.

Case studies with four food sharing initiatives

For his case studies Murphy selected four different food sharing initiatives from Dublin:
Urban Farm4 a non-profit organisation that mainly wants to educate people about food,

2http://sharecity.ie/research/sharecity100-database/
3http://www.cso.ie/en/
4http://www.urbanfarm.ie/

16

http://sharecity.ie/research/sharecity100-database/
http://www.cso.ie/en/
http://www.urbanfarm.ie/

3.1. Literature and research approaches

Social Hops5 where people can grow hops at home and exchange it at local brewers for beer,
Urban Oyster6 sells kits to grow mushrooms on coffee grounds and the Hardwicke Street
Community Garden7. Murphy conducted interviews with representatives of this food
sharing initiatives and three other interviews with food sharing experts. Furthermore, he
observed each of the food sharing organisations for two days to gain insights about them.
Based on this data SWOT analyses were performed to identify their strengths, weaknesses,
opportunities and threats. Additional for each of these four organisations individual
toolkits to check their economic, social and environmental sustainability indicators were
created.

ICT was identified as a meaningful way to facilitate food sharing and create a larger
community around a food sharing solution. Furthermore, educating the population about
food sustainability was roundly denoted as major factor to further spread food sharing
as well as support services for food sharing organisations. Whereas an official of the Irish
Environmental Protection Agency mentioned that food regulations are needed, the food
sharing initiatives see the current laws rather as obstacle. The toolkits were accepted
well by the food sharing initiatives and they want to check their indicators in future from
time to time.

3.1.4 Experiences with developing and operating a food sharing
initiative

Ciaghi and Villafiorita describe in their conference paper [CV16] their more than five
years’ experience with BringTheFood8, a food sharing solution to share food products in
Italy. At the beginning they recognised that only few edibles were exchanged with their
web based food sharing platform. They related this to the following conditions:

1. Low Degree of Recoverability (DoR) of donations:
The DoR was introduced with the Availability-Surplus-Recoverability-Waste (ASRW)
framework and is a function of the intrinsic recoverability (depends among others on
the shelf life and the need for refrigeration of a food product) and the management
intensity (the costs for a potential acceptor to get the food) of the surplus food.
Generally, the DoR of products in the production and retail stage of the FSC is
rather high (larger amounts per donation, proper wrapped, ...), at customer stage
rather low (small amounts, close to expiration date, sometimes unpacked). Products
at food service stage typically have a medium DoR. However, the implementation
of the food sharing solution has also an impact on the DoR.
There were often few edibles (e.g. two cups of yoghurt) offered by households.
BringTheFood cannot reduce the management intensity for these products suf-
ficiently and hence they are often not collected by other members. However, at

5http://www.urbanfarm.ie/social-hops.html
6http://www.urbanfarm.ie/urban-oyster.html
7http://dublincommunitygrowers.ie/gardens/hardwicke-street-community-garden/
8http://www.bringfood.org/landing/

17

http://www.urbanfarm.ie/social-hops.html
http://www.urbanfarm.ie/urban-oyster.html
http://dublincommunitygrowers.ie/gardens/hardwicke-street-community-garden/
http://www.bringfood.org/landing/

3. State of the art in food sharing solutions and research

the beginning also large amounts of products (e.g 300 kg walnuts) from producers
and retailers were not requested. This plenty was often too much for the small
charities and private households to take it at once on the whole. Hence, they
enabled that acceptors could request smaller portions of a huge food offer what
noticeable increased the quantity of shared edibles.

2. Missing support for logistic:
At the beginning the users that were registered to accept food were mainly small
charities and households. They often could not pick-up the food from the offering
producers and retailers (e.g. because they had no refrigerated vans). BringTheFood
started to cooperate with larger food banks with own transport fleet. These bigger
charities help smaller ones by collecting and transporting foodstuffs for them.

3. Lack of focus:
The initial BringTheFood food sharing initiative was intended to facilitate sharing
of food products among producers, retailers, charities and households. Because of
this magnitude of possibilities, the users did not get the sense of BringTheFood:
Households did not want to request food offers because they thought charities can
use it more, charities thought it is a tool for food waste reduction and did not use
it.

Hence, they decided to provide different solutions for different target groups. With
the original BringTheFood web application now food producers give their surplus
food to food banks. Food producers get easy and for free rid of their no longer
needed food products. On top of that they even get tax reductions for this form
of food donation. The charities get big amounts and just need to collect it at the
producers site. Retailers can also use the original BringTheFood web solution to
give surplus food to charities. In contrast to food producers there is an additional
mediator that ensures that the quality of the donations is okay and that the retailers
follow some rules. As for their solutions for food service and households the DoR
was too low they offer other possibilities to reduce food waste at this stage. For
canteens, they started the awareness project "ZeroAScuola", but if anyway food is
left over it can be given to selected food banks (food from canteens must be eaten
within 24 h) using the "BringTheFood per la Ristorazione" tool. At household
level, they promote their Android app "QuantoSpreco?" that should reduce the
food waste by monitoring the food stock of families. "QuantoSpreco?" provides
food sharing for households too, but they do not expect much exchange of food.
Also for other food sharing solutions (e.g. IFoodShare9 and Foodsharing) Ciaghi
and Villafiorita claim limited effectiveness for food sharing at household level due
to limitations in their models.

9http://ifoodshare.org/

18

http://ifoodshare.org/

3.1. Literature and research approaches

3.1.5 Case study with food sharing users

Ganglbauer et al. performed a case study [GFSG14] with the Facebook group10 of the
food sharing platform Foodsharing (see subsection 3.2.1). Foodsharing uses this Facebook
group to discuss topics and invite its members to participate. The case study analysed
demographic information about its members. The result was that the majority of their
1012 members is female (69.6%) and that 39% of all users are between 25 and 34 years
old. Furthermore 3242 contributions to the group were analysed to find out why people
participate in Foodsharing and how the Foodsharing community emerged. The main
reason for people to give away surplus food was that they have felt better since they
started to do something good and only few users mentioned that they take food because
they cannot afford food. For the emerging of the Foodsharing community the members
pointed out the following three reasons:

1. Medial presence:
When Foodsharing started in 2012 big German TV channels and major newspapers
reported about it. Therefore, lots of people were informed about Foodsharing and
some of them participated.

2. Local communities:
Food sharing is only productive and sustainable if there is a local community. You
need a critical mass of members in an area that food sharing works.

3. Global awareness:
Food sharing brings together people, who want to reduce food waste. The more
people are familiar with the disadvantages of food waste, the more will join the
food sharing communities.

Ganglbauer et al. also points out that the Facebook group of Foodsharing might not
be representative for Foodsharing, but it gives some insights about Foodsharing and its
members. Not all Foodsharing members joined the Facebook group and people that do
not use Foodsharing can also contribute to it. They plan to interview Foodsharing users
to get more detailed results.

3.1.6 Food sharing to reduce domestic waste

Through the high amounts of food waste at this stage of the FSC food sharing at
household level can be an important contribution to reduce food losses and food waste
and increase food security. As food sharing within a household (e.g. flat share) and
between households differ, they will be treated separately in the next paragraphs.

10https://www.facebook.com/foodsharing.de

19

https://www.facebook.com/foodsharing.de

3. State of the art in food sharing solutions and research

Intra-household food sharing

Monore et al. conducted a framed field experiment [MFI+16] to examine the relationship
between food sharing and domestic food waste. 20 students living in five flat shares
(three to five persons) participated. At first all participants filled in a questionnaire with
socio-demographic information and questions about their lifestyle and diet. Then in two
succeeding weeks the organic food waste of the participants was collected and analysed.
In the first week, they were asked to behave normal and in the second week to purchase,
cook and consume the food collectively.

They observed an overall increase of the weight of the organic food waste in the second
week, but with a closer look they saw that in three flat shares the organic food waste
decreased and in two increased. Furthermore, they included data from the questionnaire,
the food waste analyses and cross-inspections and recognized some patterns. The residents
of the three flat shares that decreased their food waste indicated themselves to be more
environmental aware and economic aware than the others. Moreover, the participants
from the other two flat shares that increased their food waste lacked in domestic skills
(e.g. problems with separating organic waste from other waste) and stand out through
non-collaborative behaviours (e.g. leaving the flat share for several days during the
experiment).

The conclusion of Monore et al. was that sharing practices could reduce the food waste if
people have a certain degree of awareness, skills and collaborative behaviour. In addition,
they suggest to repeat their experiment with more participants over a longer period of
time to get better results.

Inter-household food sharing

For their conference paper [FWCF14] Farr-Wharton et al. examined the effect of smart
phone apps on domestic food waste. In a three-week period 15 participants used three
apps that have the goal to reduce food waste on household level: Fridge Pal11 to monitor
the food stock of households, LeftoverSwap12 for food sharing with other households and
their own app EatChaFood (see [FWFC13]) that combines both of this features. All
participants had to answer a questionnaire regarding the usefulness and the usability of
the apps at the end of every week.

The participants denoted that the food monitoring functions of Fridge Pal and EatChaFood
helped them to organise their food inventory. It reduced the chance that people forget
food and therefore it goes off and gets wasted. However, most participants mentioned
that the process of adding to and deleting food products from the monitoring apps com-
promised to many manual steps and hence they will not use them after the experiment.
The food sharing functionality of the apps was controversial for the participants. Lots of
them did not want to meet with strangers to hand over food. Generally, the participants

11https://www.facebook.com/FridgePal/
12https://play.google.com/store/apps/details?id=com.greasedwatermelon.

leftoverswap

20

https://www.facebook.com/FridgePal/
https://play.google.com/store/apps/details?id=com.greasedwatermelon.leftoverswap
https://play.google.com/store/apps/details?id=com.greasedwatermelon.leftoverswap

3.1. Literature and research approaches

were more willing to give food to others than taking food from other members. However,
from known persons or persons within a trusted community the taking of food was more
likely. Furthermore, a good condition of food (e.g. packaged products) or a non-personal
handover (e.g. in a communal fridge) increased food takings.

The conclusion of Farr-Wharton et al. was that food sharing needs trust and comfort.
Only people that have a certain degree of trust in both, the offering partner and the offered
product, will take it. The trust in the offering partner increases with the familiarity,
but can also be raised through a strong community. Trust in a product depends on the
condition of the product. For giving food to other people comfort is essential. People
must feel comfortable about giving food to another person.

3.1.7 Trust in food sharing apps

In food sharing people eat food products they have taken from other people. Furthermore,
for the handover of the edibles often a personal meeting is necessary. Hence trust is an
essential factor for a food sharing initiative. People must have a certain degree of trust in
other people and in the food products or they will not take or give edibles (see [FWCF14]).
Wruß claims in his master thesis [Wru13] that, if the food sharing solutions are ICT
supported, users must also trust in these techniques. Particular mobile applications
that support food sharing have to keep trust in mind and therefore Wruß established 20
guidelines (e.g. "let the user control his/her data", "be careful with advertisements", "have
features that really satisfy your users" and "use rating systems for users and their actions")
for developing mobile applications that users trust in. Furthermore, he described an iOS
app for food sharing he had created with respect to his guidelines.

3.1.8 Cooling stations for food handover

There is the ongoing research project UrbanFoodSpots13 by Österreichisches Ökologisches
Institut. It was started in 2015 with the goal to design cooling stations for food handover
in urban areas. These stations will be public available and support the local and private
handover of food. The UrbanFoodSpots use ICTs and the operator can always follow
who had given or taken what food. For the design of the user interface the diversity
of its prospective users was considered so that as much people as possible can use this
facility. The UrbanFoodSpots are not intended to replace current modes of food sharing,
in fact they should support them and cooperate with local organisations. Another goal
of the project is to raise awareness for food waste and food poverty in the population.
Furthermore, they want to find feasible prospects for founding and supervision of these
stations (see [BKHM+16]).

Figure 3.3 shows an early prototype of an UrbanFoodSpot. At the right side in the
middle is the user interface where users can select the food product they want to have.
Then the appropriate shelf at the left side can be opened and the product can be removed.

13http://www.ecology.at/urban_food_spots.htm

21

http://www.ecology.at/urban_food_spots.htm

3. State of the art in food sharing solutions and research

In a test run with more than 300 users the prototype worked well. 94% of the users
denoted that the interface is comprehensible and 95% indicated that they would use the
UrbanFoodSpots for food handover (see [Pla16]).

Figure 3.3: Prototype of a UrbanFoodSpot (from [Pla16])

3.1.9 Summary

This section has shown that besides the variant of food sharing, where surplus food
is redistributed to people in need, there are various other forms that can be seen as
food sharing. There are many food sharing initiatives in all parts of the world and
ICT supports their further spread. Considering food sharing as means to redistribute
surplus food there exist successful models that support charities to get excess food from
producers and retailers. However, food sharing between households is more difficult. In
contrast to food producers and retailers domestic homes have only small portions of food
at once. Furthermore, compared to charities they can take smaller amounts of food. This
increases the coordination effort. Current food sharing solutions use too simple models
for this audience and therefore too little food is exchanged. However, since households
have a great potential for food sharing (households are responsible for 53% of the food
waste in the EU and 12.7% of the US households had problems to buy enough food in the
last year), this thesis will concentrate on food sharing between households. The following
section (see section 3.2) will analyse food sharing initiatives for food sharing between
households that are already in use in more detail.

22

3.2. Deployed solutions for food sharing between households

3.2 Deployed solutions for food sharing between
households

Compared to research and literature about food sharing in the modern human society,
creating food sharing solutions became popular earlier. Meanwhile world-wide there are
more than 4000 food sharing initiatives with various forms of food sharing. Since this thesis
concentrates on supporting the exchange of surplus food between households, this section
will only consider food sharing solutions that match these conditions. Substitutional for
all other food sharing initiatives that could be used for that task this section analyses
two of the most successful ones: Foodsharing (see subsection 3.2.1 and OLIO (see
subsection 3.2.2)

3.2.1 Foodsharing

Foodsharing14 has been provided by the registered association Foodsharing e.V. since
2012. Foodsharing started in Germany and now they have more than 200,000 registered
members, mainly from Germany, Switzerland and Austria that prevented more than 8000
tons of food from getting wasted. Everybody can register at their website and become a
member of Foodsharing, a Foodsharer as they call it. Foodsharers can create so called
food baskets, a virtual representation of their surplus food, or request food baskets from
other Foodsharers.

To create a food basket with the Foodsharing website (see figure 3.4) the Foodsharer
must describe the food and define if other Foodsharers can request the basket via the
Foodsharing chat messages, by telephone or both. The address in the Foodsharers profile
is set as the food baskets location and the user can provide some additional information
like a photo or the weight of the products. Other Foodsharers can find the food basket on
the map and can request it using Foodsharing’s chat messages or telephone and arrange
the handover of the food products.

Furthermore, some Foodsharing members operate so called Fair-Teiler15. That are public
fridges where anyone can give off excess food or take food left by others. All Fair-Teilers
are listed on the Foodsharing website and can be seen on the map. For each Fair-Teiler
there is a page with details (e.g. address and opening hours) and a pinboard where
Foodsharer sometimes write down what is in the Fair-Teiler at the moment. Figure 3.5
shows the details page of the Fair-Teiler Amtshaus Wien 7 in the seventh district of
Vienna as example.

Foodsharing also cooperates with food companies to reduce their food waste. Therefore,
Foodsharing and the food company agree on fixed dates where Foodsharing members
come to the shop and take the food products that cannot be sold anymore. Food sharing

14https://foodsharing.de/
15The name Fair-Teiler is compound from the German words "fair" which means fair and "Teiler"

which means someone who shares. Furthermore, the word Fair-Teiler is pronounced the same like the
German word "Verteiler" which stands for distributor.

23

https://foodsharing.de/

3. State of the art in food sharing solutions and research

Figure 3.4: Create a food basket with the Foodsharing website

Figure 3.5: Details page of the Fair-Teiler Amtshaus Wien 7 (Photos and names of
Foodsharing users have been made irrecognisable)

24

3.2. Deployed solutions for food sharing between households

members that pick up food at stores are called Foodsavers. A Foodsharer becomes
a Foodsaver after passing a quiz and three introduction pick ups with experienced
Foodsavers. When Foodsavers pick up food at cooperating companies they can either eat
it themselves, give it to family, friends and charities or use Foodsharing to create a food
basket.

3.2.2 OLIO

The OLIO Exchange Limited16 was founded in 2015 and launched an app for Android
and iOS for food sharing. At the beginning, it was limited to some area in North London
but now there are nearly 200,000 users (OLIOers) that share food in 41 countries. Anyone
can become an OLIOer for free and use the app to share food and non-food products.
Products pass over for free, though the provider can request that the acceptor donates
money to a charitable organisation. OLIOs vision is to reduce the food waste to zero
and that everyone has enough to eat. The OLIO App is available in English only, but
the offered products are often described in other languages.

To share food with OLIO you must create a new listing. Therefore, the OLIOer must
add a photo, choose offering food, choose whether the product is free or the acceptor
must make a charitable donation, insert title, description, pick-up location and pick-up
time and decide how many days the item is listed. Figure 3.6 shows the creation of a
new listing with the Android app as example. Other OLIOers see the item in their list
or on the map and can request them by writing a OLIO chat message. The provider and
the acceptor of the food have to agree on time and location of the handover using these
chat messages. If they do not want to meet in person, the provider can put the food in a
drop box at one of OLIOs partner shops and the acceptor picks it up afterwards.

For people who want to engage themselves for OLIO and food sharing, OLIO provides
three volunteer roles: Ambassador, Food Waste Hero and City Champion:

1. Ambassador:
Ambassadors promote OLIO in their neighbourhood and help new users. OLIOers
must fill in a form and watch some information videos to become an Ambassador.

2. Food Waste Hero:
Food Waste Heroes pick up surplus food at stores that cooperate with OLIO and
distribute it to other people via the OLIO app. OLIOers can write an email to
OLIO to become a Food Waste Hero and they can keep up to 10% of the food they
collect.

3. City Champion:
City Champions work closely together with OLIO’s Head of Communication to
launch and embed OLIO in a town. The role is limited for a four to six months’

16https://olioex.com/

25

https://olioex.com/

3. State of the art in food sharing solutions and research

Figure 3.6: Create listing with the OLIO Android app

26

3.3. Summary and open issues

period in which City Champions have to work at least 10 hours per week for OLIO.
OLIOers can write an email with a covering letter to OLIO if they want to become
a City Champion.

3.3 Summary and open issues
Literature has already engaged with some aspects of food sharing. Furthermore, there are
various food sharing initiatives that provide food sharing solutions for users. Generally,
it is easier to redistribute surplus food from producers and retailers to charities and for
this case solutions are already in use that considerable reduce the amount of food waste.
Food sharing initiatives for food sharing between households are also deployed, but only
with moderate results. The more successful ones managed to create communities where
people trust each other as far as that they can meet for food handover and eat food they
received from others. Furthermore, primarily in cities they have reached enough active
members so that people with food needs often find a suitable food offer and vice versa.
Moreover, their members are aware of food waste and some of them not only share their
surplus food, they additionally pick up excess food at retailers and producers and share
it within the community.

Unfortunately, still the most surplus food of households ends up in trash. This is certainly
the case because using these food sharing solutions is too costly and time intensive. Users
have to enter all food information by hand, must transport the food themselves and
monitor their food stock manually. Even worse is that the coordination between the
food sharing people is only supported limited. People can indeed search for food offers of
others, but when they want to request it they must write text messages or communicate
outside the food sharing solution (e.g. make telephone calls) to arrange date and time
for food handover. Therefore, ICTs should be integrated in food sharing processes to
make them more comfortable. Then they would be more beneficial for users and better
fit into the concept of modern smart cities. This thesis will analyse various ICTs and
integrate them in a food sharing to get a smart food sharing process. The next chapter
(see chapter 4) is about ICTs that are suited to improve food sharing. As coordination
is of extreme importance for a smart food sharing process, coordination models will be
analysed separately from other ICTs in an own chapter (see chapter 6).

27

CHAPTER 4
State of the art in ICT suited for

food sharing

As already described in the previous chapter (see section 3.2) current food sharing
solutions to share food at household level are quite expensive to use. The users must
enter long product descriptions by hand before they can give away food, get no support
in monitoring their food stock and transport the edibles themselves to other users.

Therefore, this chapter will analyse three ICTs that support the food sharing process
and together with a coordination model (see chapter 5) transform it to a smart food
sharing process that is convenient to use and the users can enjoy the advantages of food
sharing (e.g. less domestic waste). The next section (see section 4.1) is about radio-
frequency identification (RFID)). Then in section 4.2 smart fridges will be discussed before
section 4.3 deals with autonomous goods transport. Section 4.4 gives further examples of
technologies that could improve the food sharing process and finally section 4.5 sums up
the whole chapter.

4.1 RFID
RFID is a general term for many techniques that facilitate wireless short range com-
munication between readers and transponders (also called tags) [Lan05]. It enables
identification of objects without visual contact or physical access to them [Wan06]. The
first application was military during World War II to differ enemy aircraft from the own
planes [Dob12]. Since the 1990s RFID has become more popular and nowadays it is part
of everyday life with applications like theft protection, access control and contactless
payment [Lan05].

All RFID tags have an antenna to send and receive signals as well as a logic to process
the data. There are different variations of RFID tags with varying properties. A detailed

29

4. State of the art in ICT suited for food sharing

description of all variants can be found in Finkenzellers RFID handbook (see [Fin15]).
The following listing categorises RFID tags in two different ways that have the most
influence on their properties:

• Active vs. passive tags

Passive RFID tags do not have an own power supply. They get the energy needed
for sending and processing signals through receiving signals. These tags are smaller,
cheaper, more durable and need less maintenance than active tags. Active RFID tags
have an external power supply which gives them more range and more computational
power than passive ones. Furthermore, there are semi-active RFID where only the
computing microchip needs an external power supply but not the antenna [Dob12].

• Frequency bands

The used frequency for RFID has effects on the range and the transfer rate. The
following frequency bands are used for RFID: Low frequency (LF)), high frequency
(HF), ultra high frequency (UHF) and super high frequency (UHF) [TT10]. The
range of LF and HF RFID tags is comparable to their antenna size (typically a few
centimetres up to a metre). Ranges of UHF and UHF tags are limited by transmit
power and can reach hundreds of metres. The transfer rate of LF is very low, but
therefore LF can go through thin metal and the data transfer is immune to water.
The other frequencies provide faster communication [Dob12].

4.1.1 EPCGlobal

There are several standards that regulate RFID in various areas. For merchandise
management, the initiative EPCGlobal1 of GS12 develops standards for RFID supported
processes.

EPCGlobal Class-1 Generation-2 is the newest standard of EPCGlobal to identify products
or shipping units with RFID [Dob12]. To keep the costs for the tags low the standard
defines passive RFID tags which need just 96 Bits of memory. To reach high ranges (up
to 7 meters) it specifies the use of UHF frequency bands, but there is also a standard
which uses HF and has a limited range (about 1 meter) for countries where UHF is not
allowed [Flö05].

The memory of an EPCGlobal certified tag is used to store the Electronic Product Code
(EPC), an identification value of the object that the tag is attached to. Currently the EPC
is 96 Bits long but depending on its 8 Bit header it can vary in length and format [Dob12].
The EPC is backward compatible and current identification numbers like the Serialized
Shipping Container Code (SSCC) for shipping units or the Global Trade Item Number
(GTIN) for product classes can be converted to the SSCC-96 respectively the GTIN-96

1http://www.gs1.org/epcglobal
2http://www.gs1.org/

30

http://www.gs1.org/epcglobal
http://www.gs1.org/

4.2. Smart fridges

format of the EPC [Flö05]. For objects that do not have any existing identification there
is the General ID (GID) format of the EPC [TT10].

A EPCGlobal certified reader can read the EPC of all objects in its range. EPCGlobal
suggests to use an Application Level Event (ALE) compliant middleware that connects
readers and enterprise applications. The middleware receives, filters and groups the
RFID events from all readers and hands them over to the enterprise applications. ALE
is used to define when and what events the business information systems get [GB06].

The EPCGlobal tags just store the EPC (the identification of an object), but no detailed
information. For this, the Object Naming Service (ONS) is used. It returns all sources
that provide information for a specific EPC [GB06].

4.2 Smart fridges

Smart fridges are digitally upgraded versions of normal fridges which provide innovative
features for its users. Most smart fridges have a touch screen mounted on the outside of
their door that provides various information and multimedia content. Furthermore, they
are often connected to different sensors and the internet [Rot07][HBSA16].

The following subsections will analyse research and literature about smart fridges (see
subsection 4.2.1) as well as smart fridges that can be already bought by consumers (see
subsection 4.2.2).

4.2.1 Research and literature

Several works introduced different smart fridges for different purposes. For example, Lou
et al. describe in their article [LJL09] a smart fridge that helps its users to improve
their nutrition and therefore the health of them. Based on the medical record and other
information of the household’s members as well as the current content of the fridge it
generates shopping lists and meal suggestions for the users. Moreover, it provides detailed
information (e.g. nutrition facts and allergens) of all of its current products and sends
notifications if one of them will expire soon. The ZmartFRI described by Bucci et al.
in their conference paper [BCC+10] is intended as information hub that connects the
members of a household. They can collectively create a shopping list and post and read
messages at the ZmartFRIs display. These interactions can also be done from remote.
Furthermore, this smart fridge also monitors its content, the users can query its food
stock and get notifications before a product expires. In his conference paper [Rou12]
Rouillard shows that at least some functionality of expensive smart fridges can be also
accomplished with a smart phone app. Using the Pervasive Fridge app, people can easily
monitor their food stock. By scanning its barcode or entering its product information by
text or speech they can add an edible to the list. The goal of the Pervasive Fridge app is
to reduce food waste and therefore it reminds the users to consume their food before it
expires.

31

4. State of the art in ICT suited for food sharing

The approaches and goals of research for smart fridges are manifold, but most of them
have one feature in common: They monitor the food products that are stored inside.
Thereby they can remind users to eat food before it goes off, propose recipes based on
the available food and user’s diets, order food before it goes out and other useful things
to support their users. Using RFID the smart fridge can monitor the food products
inside, without human interaction [XYL+13][HBSA16], but therefore all groceries must
be equipped with RFID tags. To capture food without tags their bar code can be scanned
or the information can be entered manually by the user [Rou12].

4.2.2 Consumer products

Already in the year 2000 LG launched the first smart fridge, called Internet Digital DIOS
(or R-S73CT). It had a big screen at the outside, a web camera to photograph its inside
and was connected to the internet. The users could for example monitor their food stock,
write memos, play MP3 music or watch TV. Furthermore, it had an automatic ice maker,
it needed only half of the energy than other comparable fridges and was with 23 decibels
very quiet. On the market the Internet Digital DIOS was not very successful. On the
one hand its high price of about 20,000 US-dollar scared the customers, on the other
hand they did not see the advantages of these innovations (see [FS16]).

Probably the reduced prices and adapted features have opened be a bigger market for
smart fridges. In any case, meanwhile there are more and more manufacturers selling
smart fridges. The LG InstaView Refrigerator3 has a glass door and turns on its light
when you knock twice on it. Therefore, you do not need to open the door to see what is
inside. That saves energy and money. Saving money is also the intention of Whirlpools
smart fridge4. It tries to shift the energy intensive defrost cycles to times where the
current is cheap. Furthermore, the customer can install an app on her or his smart
phone to get faster help if the fridge has some problems. However, the most features
offers at the moment certainly the Samsung Family Hub5 (costs from 3,500 US-dollars).
The customer can install various apps (e.g. calendar, recipes and web browser) and
interact with a huge touch screen (see figure 4.1) with the fridge. It has a camera that
photographs the inside of the fridge regularly. Furthermore, the fridge is connected to
the internet and the user can access its information (e.g. the photo from the inside) from
everywhere via a smart phone app. The Family Hub also reacts to voice commands and
can read aloud media content (e.g. news and recipes). In addition, it can be used to
order groceries at local supermarkets.

3http://www.lg.com/us/refrigerators/lg-LFXS30796D-french-3-door-refrigerator
4https://www.whirlpool.com/kitchen/refrigeration/refrigerators/

french-door/p.36-inch-wide-french-door-refrigerator-with-infinity-slide-shelves-32-cu.
-ft.wrf995fifz.html

5http://www.samsung.com/us/explore/family-hub-refrigerator/overview/
6Photo from the Samsung web page (http://www.samsung.com/us/)

32

http://www.lg.com/us/refrigerators/lg-LFXS30796D-french-3-door-refrigerator
https://www.whirlpool.com/kitchen/refrigeration/refrigerators/french-door/p.36-inch-wide-french-door-refrigerator-with-infinity-slide-shelves-32-cu.-ft.wrf995fifz.html
https://www.whirlpool.com/kitchen/refrigeration/refrigerators/french-door/p.36-inch-wide-french-door-refrigerator-with-infinity-slide-shelves-32-cu.-ft.wrf995fifz.html
https://www.whirlpool.com/kitchen/refrigeration/refrigerators/french-door/p.36-inch-wide-french-door-refrigerator-with-infinity-slide-shelves-32-cu.-ft.wrf995fifz.html
http://www.samsung.com/us/explore/family-hub-refrigerator/overview/
http://www.samsung.com/us/)

4.3. Autonomous goods transport

Figure 4.1: Samsung Family Hub 6

4.3 Autonomous goods transport

Around 1950 companies started to automate their on-site goods transportation and intro-
duced automated guided transport (AGT) systems to increase productivity. Automated
guided vehicles Automated guided vehicless (AGVs) enabled automated, driverless and
partially autonomous transfer of goods for these systems. AGVs transported products
on predetermined paths and needed markers that guide their way. Furthermore, AGV
needed a connection to a central controller that coordinated them [Flä16]. Over the
years AGVs got more intelligent and more autonomous. More decisions were taken by
the vehicles and not by the central control unit [LADK06]. Nowadays fully autonomous
transport vehicles for off-road applications are already available and in use [BCH16].
The following subsection (see subsection 4.3.1) will analyse autonomous driving in more
detail.

33

4. State of the art in ICT suited for food sharing

4.3.1 Autonomous driving

Autonomous moving means of transport are the most important requirement for au-
tonomous goods transport. In aviation autopilot functions have been in use for a long
time and steer aeroplanes autonomous over long distances [Flä16]. Autonomous vehicles
use radar, laser range finders, cameras, GPS, accurate maps of the environment and other
techniques to find their way [GLU12]. Research projects like the Prometheus project or
the Autonomous Land Vehicle project proved concepts for autonomous driving in the
1990s. The following paragraphs will examine the role of autonomous driving for cars,
trucks and last mile delivery separately.

Cars

By now lots of car manufacturers (e.g. BMW and Mercedes) have assistant systems
available that enable partial autonomous driving (e.g. autonomous parking and adaptive
cruise control). Furthermore, several car markers (e.g. Nissan and Volvo) and other
companies (e.g. Google and Apple) are currently developing and testing autonomous
cars and want to release them in the next years. Tesla introduced the AutoPilot system
which can drive autonomously with little manual intervention [BCH16]. However, due
legal constraints (e.g. the Vienna Convention on Road Traffic) on the roads of many
countries there must be a driver that can overtake car control from the autonomous
driving system.

Trucks

Truck manufacturers (e.g. Daimler and Scania) are also testing autonomous trucks on
the road. On private property autonomous driving transport vehicles are already in use
for applications like farming and mining[BCH16]. The loading and unloading of goods
can also be done automatically [Flä16].

Last mile delivery

A great potential for autonomous transport vehicles is the delivery of products to
customers in urban areas. Small, electric powered, autonomous robots can transport
goods on the last mile cost-efficient [BCH16]. The company Starship Technologies
developed such delivery bots (see figure 4.2). Their six wheeled robots can transport the
content of two shopping bags. Using an app, the recipient can decide when to get the
goods, follow the bots progress on the map and finally open it to get the products. Other
companies like Amazon or Walmart try to use autonomous unmanned aerial vehicles
(UAVs) for this purpose.

7Photo from the Starship Technologies web page page (https://www.starship.xyz)

34

https://www.starship.xyz)

4.4. Others

Figure 4.2: Autonomous transport robot from Starship Technologies 7

4.4 Others

The three already described ICTs are certainly the most important to improve food
sharing processes and together with a coordination model (see chapter 5) they could be
used to create a smart food sharing solution. Of course, there are other technologies that
could be embedded to a food sharing process to further improve it.

The German Fraunhofer institute has sent out a press information8 that they have
developed a sensor film that can be packed with fresh meat and fish and changes its
colour when the food gets bad. Also in press information9,10 the TU Vienna claims that
they have developed test strips to detect unwanted substances in food. All you need to
scent out poison, allergen and bacteria is a heating block and this special control strips.
Furthermore, the real identities of the users could be checked. There are log in methods
that can be used online and prove the real identity of people (e.g. the "Handysignatur"11

in Austria)

4.5 Summary

This chapter analysed three ICTs that can be used to transform the food sharing process
into a smart one. RFID allows to get product information from food easy. The necessary
standards were already created, now it is up to food producers to equip their products

8https://www.fraunhofer.de/de/presse/presseinformationen/2011/april/
keine-chance-fuer-gammelfleisch.html

9https://www.tuwien.ac.at/aktuelles/news_detail/article/8714/
10https://www.tuwien.ac.at/aktuelles/news_detail/article/9373/
11https://www.handy-signatur.at/hs2/

35

https://www.fraunhofer.de/de/presse/presseinformationen/2011/april/keine-chance-fuer-gammelfleisch.html
https://www.fraunhofer.de/de/presse/presseinformationen/2011/april/keine-chance-fuer-gammelfleisch.html
https://www.tuwien.ac.at/aktuelles/news_detail/article/8714/
https://www.tuwien.ac.at/aktuelles/news_detail/article/9373/
https://www.handy-signatur.at/hs2/

4. State of the art in ICT suited for food sharing

with RFID tags. Smart fridges are already on the market and help their users to monitor
their food stock. Additionally they should be endowed with RFID readers so that they
can examine its content without manual intervention in future. Autonomous transport
vehicles are already used in test operation. Further testing and legal changes are needed so
that they can overtake the transport of shared food products. Further details about how
these three technologies improve food sharing are in chapter 7. But first chapter 5 will
analyse coordination models as further ICT to make the food sharing between households
more convenient.

36

CHAPTER 5
Coordination models

Food sharing can be seen as coordination problem with time and location constraints.
People and companies with too much food must hand it over to other people or organisa-
tions who need it, before it goes off. When the food givers are food producers or food
retailers that have bigger amounts of food products and the takers are charities that
have use for various forms of food and own logistics to pick up food, current food sharing
initiatives already work out well. However, food sharing at household level is different.
Lots of small and heterogeneous food offers and complex time constraints (people must be
at home for the handover of the food products) increase the coordination effort. Current
food sharing initiatives have too simplistic models to deal with that and therefore too
few food is exchanged (see subsection 3.1.4).

Coordination models help to deal with such complex coordination problems. They
abstract the network communication and the developer can concentrate on coordination
logic. Coordination models support the design and implementation of distributed and
concurrent software that is robust, flexible and easy to adapt and extend in case of new
requirements [KCS15].

Therefore, this thesis uses a coordination model to design and implement a food sharing
process between households (see chapter 6). This chapter will deal with coordination
models in general. First, it briefly describes and compares different coordination models
and explains why the Peer Model is used in this thesis (see section 5.1). Then section 5.2
will describe the Peer Model in more detail (see section 5.2). Finally, section 5.3 will sum
up the chapter.

5.1 Selection of a suitable coordination model
There are several coordination models that can be used to deal with coordinating food
sharing between households. The sense of this section is to find the best coordination

37

5. Coordination models

model for this purpose. First, selection criteria are defined (see subsection 5.1.1) and
then popular coordination models are compared according to them and the most suitable
one is selected (see subsection 5.1.2).

5.1.1 Selection criteria

The coordination model used for modelling the coordination problem inherent to food
sharing between households must meet the following criteria that were taken from [Küh16],
[Küh17] and [KCJ+13]:

1. Readable models:
As already denoted, food sharing between households is a complex coordination
problem. The used coordination model therefore must support these problems and
keep the resulting model clear and readable so that all stakeholders can understand
it.

2. Graphical representation:
It would make sense to discuss the resulting model with food sharing experts (e.g.
representatives of food sharing initiatives). Since they are no computer scientists a
graphical representation is indispensable.

3. Runtime support for many platforms:
In order that a model can be used to coordinate a food sharing solution it must be
executed. Therefore, the coordination model should provide runtimes for various
platforms where its models can be executed.

4. Time constraints:
As already mentioned, food sharing has to deal with complex time constraints (e.g.
food is getting bad). The coordination model therefore must provide support for
time constraints.

5. Flow correlation:
The processes for food sharing (e.g. the handover of a food product) can be seen as
distributed work flow. In order that the concurrent flows do not affect each other
in a undesirable way, correlation of flows must be supported by the coordination
model.

6. Exception handling:
The work flows of food sharing can run into anomalous conditions (e.g. someone
does not show up at the product handover). The coordination model must provide
a suitable mechanism to deal with these exceptions.

7. Transaction handling:
Some actions of the food sharing processes must be carried out as distributed
transaction (e.g. the reservation of a food product and its transport). To keep the

38

5.1. Selection of a suitable coordination model

modelling as simple as possible the coordination model must provide support for
distributed transactions.

5.1.2 Comparison and Selection

The most important coordination models are Petri Nets (see [Pet62]), Reo (see [Arb04]),
the Actor Model (see [HBS73]) and the Peer Model (see [KCJ+13]). Kühn, Craß and
Scherman in [KCS15], Kühn in [Küh16] and [Küh17] and Scherman in [Sch14] have
already described the properties of those coordination models. Based on their work
the next paragraphs find a suitable coordination model to deal with the food sharing
coordination problem.

Petri Nets are well-founded and widely used to model concurrent processes. There exist a
graphical notation and tools for modelling as well as for simulating and verifying activities.
Petri Nets are universally applicable and its extension (Colored Petri Nets and Timed
Petri Nets) provide support for time constraints. However, Petri Nets tent to become
unreadable with increasing problem size. Furthermore, no support for correlating flows,
handling errors, distributed transactions and no runtime environments are provided.

Reo is a data-driven coordination model that forces a clear separation of coordination
logic from application logic. Same as in Petri Nets there are tools to model processes
with its graphical notation and to verify them. Time constraints are supported as well.
Unfortunately, it is too verbose and complex coordination problems are difficult to handle.
It also does not support flow correlation, error handling, distributed transactions and
has no runtime environment.

The Actor Model provides a mathematical model to deal with coordination problems. It
supports distributed transactions and time constraints. Furthermore it has frameworks
to execute the models on different platforms. These frameworks often provide additional
features (e.g. flow correlation and error handling) that are not supported by the formal
model. Unfortunately, the Actor Model does not have a graphical representation.

The Peer Model is the newest of these coordination models and was partially inspired
by the others. It is well suited to deal with complex coordination problems, provides a
graphical representation and runtime environments for different platforms. Furthermore,
it supports time constraints, flow correlation and exceptions handling. A recent extension
provides distributed transaction handling.

Table 5.1 compares the four most important coordination models with respect to the
criteria defined above. A 3means that the formal definition of this coordination model
sufficiently fulfils the corresponding criterion, a 7means it does not. l means that the
feature is not supported by the formal definition of the coordination model, but there
are some frameworks for this coordination model that fulfil the criterion. As one can see,
in contrast to the other three coordination models, the Peer Model satisfies all of the
defined criteria. Therefore, it will be used to model the coordination parts of food sharing
between households (see chapter 6). The next section (see section 5.2) will explain the
Peer Model in more detail.

39

5. Coordination models

Criterion
Coordination model Petri Nets Reo Actor Model Peer Model

Readable models 7 7 3 3

Graphical representation 3 3 7 3

Runtime support for many platforms 7 7 3 3

Time constraints 3 3 3 3

Flow correlation 7 7 l 3

Exception handling 7 7 l 3

Transaction handling 7 7 3 3

Table 5.1: Comparison of popular coordination models

5.2 Peer Model

The Peer Model was invented by Kühn as a novel programming model for modelling
coordination between concurrent parts of a distributed software system. It is a data-
driven approach and needs a tuple space-based middleware for data transfer among its
participants [KCJ+13][KCJN14]. With the Peer Model Domain Specific Language (PM-
DSL) the Peer Model provides a formal definition that allows automatic code generation
for the runtime system of the Peer Model and therefore bridges the gap between design and
implementation. Also, documentation (e.g. the graphical notation of the Peer Model) can
be generated automatically [Ham15][KCH14]. The forced separation between coordination
logic and application logic increases the readability and maintainability. Furthermore, it
enables the reuse of configurable coordination components [KCS15][Sch14].

The Peer Model is independent of programming language and platform. Currently there
exist runtime systems for Go, Java [Küh16], .Net [Rau14], ANSI C [Ham15][KCH14] and
Android [Sch17][Til17]. In addition, there is a graphical monitoring tool that facilitates
debugging for the Peer Model [Csu14].

The following subsubsections will describe the basic concepts of Peer Model (see subsec-
tion 5.2.1) and one of its extensions (see subsection 5.2.2) together with their graphical
representation. As both, the Peer Model and the graphical notation, were refined over
the time the latest version (see [Küh16] and [Küh17]) will be used.

5.2.1 Ground model

Using the, Peer Model coordination problems can be modelled in a convenient way. For
this, its ground concepts are applied [Küh16]. These ground concepts are: Entry (data
handled by the Peer Model), container (to store entries), peer (participants of the Peer
Model), wiring (to describe the behaviour of a peer), link (to transport entries) and
service (for application specific code) and will be explained in the next paragraphs.

40

5.2. Peer Model

Entry

All data that is transported in the Peer Model is encapsulated in entries. Entries are used
to share information between processes and can represent among others messages, events,
tasks, requests, acknowledgements and data. Each entry is structured in properties that
have a name and a value. Besides the reserved system-defined coordination properties,
arbitrary application-defined coordination properties can be added. For coordination in
the Peer Model both system-defined and application-defined coordination properties can
be used. Thereby the Peer Model is extensible.

The following listing contains the most important system-defined coordination properties
and describes their meaning:

• type:
The type property stands for the coordination entry’s coordination type and is
the only mandatory property, because entries are selected on their type. The type
property can be set arbitrary, only the name exception is reserved for exceptions.

• time-to-live (ttl):
Entries whose ttl is reached are ignored by the Peer Model and get eventually
cleaned up. If the entry’s ttl_exc_dest property was set to a peer, an entry of
type exception is sent to this peer. The original entry is wrapped in the entry
property of the exception entry and its type can be accessed via the etype property.
The ttl allow a simple modelling of application timeouts.

• time-to-start (tts):
Entries whose tts is not reached are ignored by the Per Model. This concept can
be used to model timers as well as periodic repeating.

• destination (dest):
The dest property is used to specify an entry’s destination. The entry is transported
to the given peer’s peer input container (PIC) by the Peer Model.

• flow identifier (fid):
The Peer Model supports the correlation of flows. If the fid property is set, the
entry is treated separately from entries with incompatible fids.

• data:
With the data property application-specific data can be added to entries. The
type of this data structures is set with the data-type property. Note that the
data-type and the type property are independent of each other. The former
indicates the data type of the application-specific information encapsulated in that
entry and the later one is the type of entry used for coordination purposes.

As already described before, each type of information in the Peer Model is wrapped up
in entries, what also applies to exceptions. When an exception occurs (e.g. a service fails,

41

5. Coordination models

an entry cannot be delivered or a ttl expires) an entry with coordination type exception
is created. Exception entries are treated like any other entry in the Peer Model.

Container

Containers are used in the Peer Model to store entries. The containers are realized by
extensible virtual shared memory (XVSM) (see [CKS09]), an extended and improved
version of a tuple-space-based middleware. The Peer Model uses space containers that
support transactions and blocking operations for a peer’s PIC and peer output container
(POC) as well as internal containers for wirings that do not support these features.

Peer

The participants of the Peer Models are called peers. Each peer has a unique name and
two containers: The PIC for receiving entries and the POC for sending entries to other
peers. Peers can read or take entries from and write new ones to their containers. The
exact behaviour of a peer is defined by its internal wiring that can be activated by writing
entries to the peers PIC. Furthermore, peers can have sub-peers that encapsulates logic
only needed by them.

All peers of a site together form a so-called Peer Space. The Peer Space provides methods
to add or delete peers and wirings. Furthermore each Peer Space contains an I/O peer
that is responsible for transporting the entries between the peers. Entries that are
transported on action links and whose dest property is set, are written to the I/O peers
PIC automatically. The I/O peer delivers all entries of its PIC. If the dest values a local
peer (i.e. in the same Peer Space) the entry is written to its PIC directly. When the
dest property is set to a remote peer (i.e. the peer resides on another site) the I/O peer
calls the send service to transmit the entry to this site. At the other Peer Space the
receive service takes the entry and delivers it to the PIC of the appropriate peer.

Figure 5.1 shows the graphical notation of a peer. The low rectangle on the top contains
the name of the peer, the slim grey rectangles on the left-hand and the right-hand side
represent the PIC respectively the POC of the Peer. The rectangle in the centre is meant
to define the peer’s behaviour and can contain arbitrary many wirings and sub-peers.
Peers are identified uniquely by the combination of the Peer Space and the peer name.

Link

Links are intended to transport entries between the containers of a peer as well as between
the containers and services of a peer. Links are used by the wirings of a peer and a link
is defined by the following parts:

• source container:
This attribute defines the source container for the link. It can be the PIC or the
POC of a peer or its direct sub-peers as well as the internal container of one of the
peer’s wirings.

42

5.2. Peer Model

Figure 5.1: Graphical representation of a peer (without wirings and sub-peers)

• target container:

It defines the target container for the link. Identical to the source container it can
be any of the peer’s container.

• operation:
Operation can be one of the following seven values and defines what happens with
the transported entries in their source respective their target containers: Copy
(also called read) reads the entries at the source and copies them to the target, take
(also called move) does the same, but deletes the entries at the source. Create
generates new entries that do not exist in the source and writes them to the target,
delete in contrast deletes them from the source and do not insert them in the
target. With test entries are read at the source but not transported to the target.
Noop does neither access source nor target and call is used to execute services.

• query (optional):
The query specifies which elements are selected in the source container and consists
of three parts: type, count and selectors. A link transports solely entries of one
coordination type that is defined by type. Count defines how many entries are
selected by the query. It can be a precise number, a range or the keywords ALL
and NONE. The default value is one. Selectors is a sequence of selectors connected
by AND and OR. Selectors are based on the container selectors of XVSM and allow
to define in which order (e.g. FIFO or random) and what entries (e.g. by SQL-like
queries) are selected. If the query is not empty, the link is not executed before it is
fulfilled.

• expressions (optional):
Links have access to the properties of the entries they transport and can manipulate
them. Furthermore, they can create, read and write local variables that exist only
in the context of their wiring and access system variables (e.g. THIS_PEER for
the name of the current peer). Also functions (e.g. fid() to create a new fid) can
be called. All these operations can be done in the expression part of the link.

43

5. Coordination models

• properties (optional):
A link can be configured using optional properties. The most important are: tts
(the time when the link starts operating), ttl (how long an instance of that link is
executed), dest (all entries of this link are transported to the given peer; only for
action links), flow (if true (default value) the link only transports entries with the
same or with no fid) and mandatory (if true the link must succeed so that the
wiring does not fail).

Links can have the following four types: guard link, action link as well as input and
output link of services. Guard links provide entries for the wirings and therefore their
target is always the internal container (called entry collection (EC)) of the wiring. On
the other hand action links transport the entries away from the wirings so their source is
always the EC of the wiring. Service input and output links transport entries between a
wiring and its services.

Figure 5.2 shows the graphical representation of a link. It is an arrow where the tail is
connected to the source container and the head to the target container (the containers
are not shown here). Above the line of the arrow there is the operation written in bold
characters followed by the type, the count in square brackets, the selectors in double
square brackets and the expressions in angle brackets. The space below the line is reserved
to set the link’s properties.

The input and output links of services can be omitted in the graphical notation. Then
the service must be connected directly with the wiring and the service has access to the
entire EC of the wiring and can read/add/delete/change all entries.

Figure 5.2: Graphical representation of a link (without source and target container)

Wiring

Wirings are the active part of the Peer Model and model concurrent processes. They
are activated by entries in the space containers of a peer or its sub-peers. The wirings
can fetch entries from these containers, process and change them, delete some of them or
create new ones. These resulting entries are written to space containers and can activate
further wirings. Basically, the execution of a wiring consists of three consecutive steps:

1. Guards:
Guards transport entries from space containers to the wiring’s EC and are realised
by guard links. A wiring can have arbitrary many guards, but at least one. All

44

5.2. Peer Model

guards of a wiring are numbered with a running value and executed in this order.
Generally, the mandatory property of guard links is set to true. That means if
a guard link fails (i.e. its query cannot be fulfilled) the execution of the wiring is
halted until the guard link succeeds or the execution of the wiring fails (depending
on the rollback_on_failure property of the wiring as well as the ttl of the wiring
and the guard link).

2. Service execution (optional):
If a wiring needs to execute business logic it does it by calling one or more services.
Like the guards all services have a running value and the execution order is defined
by this number. Via input and output links a service can modify the content of its
wiring’s EC.

3. Actions (optional):
Actions use action links to transport entries from the wiring’s EC to the space
containers. Since the action part of a wiring is optional a wiring can have any
amount (including zero) of actions. Same as in guards a running value determines
their execution order. Usually the mandatory property of action links is set to
false. Therefore, if its query cannot be fulfilled, this action link is skipped and
transports no entries.

At runtime, each wiring of an instance of a peer can have several instances (bounded
above by the wirings property max_threads). The tts property can be used to set the
time until a new instance gets operative. The ttl property can be used to bound the
operation time of a wiring instance. All instances of a wiring run in parallel and perform
their tasks concurrently.

An instance of a wiring is executed in one single transaction (called wiring transaction
(WTX)). For the execution, a wiring considers only entries with the same fid or no fid.
The first entry that is fetched and has a fid defined, sets the fid for this instance of the
wiring. Links whose flow property is set to false are excluded from this rule.

Figure 5.3 shows the graphical representation of a wiring with its guards, actions and a
service. The white rectangle in the centre stands for the wiring and the wiring’s name
is denoted there. If the wiring sets some properties, they must follow the name after a
colon in square brackets. The grey small rectangles at the left side represent the guards
and the number inside their running value. Guard links (not shown in this example)
are connected to them. Similar to this the small yellow boxes on the right-hand side
represent the actions. The light blue box at the top of the wiring stands for a service and
its name is written inside. In this example the service links are omitted and the service
is directly connected to the wiring.

Service

Services are the only part of the Peer Model that contains application specific logic.
However, the logic of a service is not modelled in the Peer Model. Through their input

45

5. Coordination models

Figure 5.3: Graphical representation of a wiring (guard and action links are not shown)

links and output links respective their service links, services have access on the entries in
the wiring’s EC. Services can there create, read, update and delete entries.

Since application specific code is not modelled in the Peer Model, the graphical represen-
tation of services is very simple. As already shown in figure 5.3 a service is represented
by plain light blue rectangle, labelled with its name.

5.2.2 FWTX

Extensive coordination problems often have dependencies between concurrent coordination
steps and need to conduct distributed flows in transactions. The original version of the
Peer Model does not support these requirements very well. All phases of a distributed
transaction as well as the clean-up of outdated entries to manage the transactions must
be modelled explicit. Furthermore, associated consecutive steps of a workflow must be
split into several wirings. This leads to unneeded complicated models with too much
wirings and links.

To overcome this problem Kühn provided in her conference paper [Küh17] an extension
to the Peer Model called flexible wiring transactions (FWTX). FWTX is inspired by
the Flex transaction model (see [BEK93] and [ELLR90]) where an early commit of
sub-transactions is allowed. In case of an abort of its parent transaction a compensate
action is called to undo the foregoing commit. Since really undoing this commit is not
possible it is a semantic compensation. To make use of this concept in the Peer Model
the WTX or wirings are extended to FWTX. FWTX provides the new link operation
wiring to call a special form of wirings named passive wirings that take over the part of
sub-transactions. Furthermore, new properties for wirings allow to define compensate,
on-commit, on-top-commit, on-start and on-abort actions.

Passive wiring

Passive wirings are very similar to the ordinary wirings of the Peer Model. The greatest
difference is that for an ordinary wiring there are always instances active that try to fulfil
the guards and that a passive wiring creates a new active instance when it is called as
sub-transaction by a guard link or as compensate, on-commit, on-top-commit, on-start

46

5.3. Summary

or on-abort action of a wiring. Furthermore, since passive wirings are called directly,
parameters can be passed to them.

The graphical representation of a passive wiring is not much different from an ordinary
wiring. The rectangle with the wiring’s name has a dashed line to differ it from ordinary
wirings. Furthermore, between the wirings name and the properties, the parameters are
written in brackets.

Link operation wiring

One possibility to call passive wirings is via a guard. Therefore, the new link operation
wiring was introduced. A link with this operation does not need a query to fetch entries,
instead the called passive wiring is denoted by its name. The link is successful if the
execution of the passive wiring was successful. To pass local variables to the passive
wirings, the expression part of the link is used. The n-th parameter of the wiring is set
addressed by $n.

New properties for wirings

Using FWTX compensate, on-commit, on-top-commit, on-start and on-abort actions
for wiring can be defined. These actions are set by wiring’s properties with the same
name and refer to passive wirings. The on-commit action is called automatically when
the wiring commits, on-top-commit when the top-level wiring commits. On-start is
called before the wiring is executed and on-abort when the wiring aborts. Compensate is
executed when the wiring has already committed and it’s calling wiring fails. Furthermore,
the Boolean property cascade defines if the compensation is cascading or not.

5.3 Summary
This chapter has explained why a coordination model is necessary to deal with such a
complex coordination problem like food sharing at household level in a reasonable way.
In the following it shortly summarized properties of several popular coordination models
and explained why this thesis will use the Peer Model to model the food sharing process.
Then the Peer Model was described in more detail. At first its ground model and then
one of its recent extensions: FWTX. In the next chapter (see chapter 6) this thesis uses
the Peer Model to model the coordination inherent to food sharing between households.

47

CHAPTER 6
S-FOSM: a Smart FOod Sharing

Model

The previous chapter (see chapter 5) has already mentioned that food sharing between
households is a complex, distributed coordination problem. Furthermore, it explained
why a coordination model should be used to deal with this problem and why in this thesis
the Peer Model will be used. This chapter translates this into action and uses the Peer
Model to develop the S-FOSM, a model that provides a solution for the coordination
parts of food sharing between households.

The next section (see section 6.1) describes how the S-FOSM is modelled with the Peer
Model. Then the S-FOSM is implemented for the Java runtime of the Peer Model (see
section 6.2). Afterwards a simulation is used to prove that the S-FOSM is indeed a
solution for the food sharing problem (see section 6.3). Finally, section 6.4 will sum up
this chapter.

6.1 Modelling the S-FOSM
In this section the S-FOSM is modelled with the graphical notation of the Peer Model.
It is the first formal representation of a solution for the food sharing problem.

Unfortunately, up to now there is no specific modelling tool for the Peer Model, so this
work used the general-purpose diagramming tool Microsoft Visio1 and followed the latest
version of the graphical notation as described in [Küh16] and[Küh17].

A prerequisite for food sharing is that there are people that give off and people that take
food. The idea of the S-FOSM is that participants that have a food product they do
not need, create a food offer (modelled by the myFoodOffer entry type) and people that

1see https://products.office.com/en/visio/flowchart-software?tab=tabs-1

49

https://products.office.com/en/visio/flowchart-software?tab=tabs-1

6. S-FOSM: a Smart FOod Sharing Model

want edibles search for this food offers (modelled by the foodSearch entry type). For
each new food search at the beginning is checked if there are some food offers that match
the search. Then for each of the matching food offers is tested, if it can be transported
from the offering to the searching food sharer. Finally, the searching partner selects one
of the matching food offers whereby the transport is possible and the edible is shifted
from one participant to the other.

Each participant of the S-FOSM has to run an instance of the FoodSharingPeer and
can offer food products, search for food products or do both. To add a food offer, a
myFoodOffer entry type with the properties productName, pickupOptions, productDetails
and foodOfferID, has to be sent to the FoodSharingPeer. A foodSearch entry type with
the properties status="new", searchTerm and deliveryOptions must be sent to the
FoodSharingPeers PIC in order to a search for food.

Figure 6.1 shows the FoodSharingPeer from a hight level point of view (the wirings are
omitted). As one can see, it has two sub-peers, the FoodOfferManagerPeer and the
TransportManagerPeer. The following subsection (see subsection 6.1.1) describes the
sub-peers, the 21 wirings of the FoodSharingPeer are explained in detail afterwards (see
subsection 6.1.2).

Figure 6.1: The FoodSharingPeer (from a high level point of view)

6.1.1 Sub-peers

The sub-peers of the FoodSharingPeer are used to abstract sub-problems of the food
sharing problem and their behaviour (e.g. their wirings) is not modelled here. Finding
optimal solutions for these sub-problems is outside the scope of this work (e.g. the
TransportManagerPeer has to deal with the NP-hard scheduling problem). The next
paragraphs describe what solutions for the sub-problems must do in order to solve them,
but not how the sub-problems must be solved. However, for the simulation of the S-FOSM
mock-up implementations for the sub-peers will be used (see subsection 6.3.2).

50

6.1. Modelling the S-FOSM

FoodOfferManagerPeer

The FoodOfferManagerPeer manages the food offers for the FoodSharingPeer.

In the PIC of its FoodOfferManagerPeer the FoodSharingPeer can find entries of type
foodOffer representing the current surplus food products of all other food sharers it
cooperates with. Moreover, the PIC of the foodOfferManagerPeer contains entries of
type myFoodOffer representing the current surplus food of its FoodSharingPeer. The
FoodSharingPeer can read, add and delete these entries of type myFoodOffer and the
FoodOfferManagerPeers are responsible that they have an entry of foodOffer for each
entry of myFoodOffer for all cooperating partners.

In addition, the FoodOfferManagerPeer is responsible for keeping an actual list of all
other food sharers it cooperates with. Based on some criteria (e.g. the needed resources
for the transport of products between them) it must decide if it cooperates with another
food sharer or not.

TransportOfferManagerPeer

The TransportManagerPeer manages the transport of food products between cooperating
FoodSharingPeers.

It receives entries of type transportFoodOfferRequest in the PIC and has to replace
them with entries of transportFoodOfferResponse. The application-defined coordina-
tion properties pickupOptions (several options when and where the food can be picked
up), productInformation (product information like size, weight and expiration date),
deliveryOptions (several options when and where the food can be delivered), offer-
ingPartner and FoodOfferID of the transportFoodOfferRequest must be set that the
TransportManagerPeer can decide whether this transport would be possible or not and
create the transportFoodOfferResponse. The application-defined property isFeasible of
the transportFoodOfferResponse must be true or false and if it is true the properties
selectedPickupOption (when and where the food is picked up), productInformation,
selectedDeliveryOption (when and where the food is delivered), offeringPartner and
FoodOfferID must be set as well.

When a reserveTransportRequest entry (properties: selectedPickupOption, productInfor-
mation, selectedDeliveryOption, offeringPartner and FoodOfferID) reaches the Trans-
portManagerPeers PIC it has to take it, check if this transport is still possible and if so
write a reserveTransportResponse back. This indicates that the TransportManagerPeer
has reserved the resources for the transport. Then the offering partner has to add a
foodRelease entry to the PIC of its TransportManagerPeer. When the pickup time
of the selectedPickupOption is reached the foodRelease entry is deleted and when the
delivery time of the selectedDeliveryTime is reached a foodDelivery entry added to the
PIC of the TransportManagerPeer of the searching partner. In case a previous reserved
transport is not needed anymore a cancelTransportReservation entry can be sent to the
TransportManagerPeer and it tries to free the reserved resources for the transport.

51

6. S-FOSM: a Smart FOod Sharing Model

6.1.2 Wirings

The FoodSharingPeer has to react to four main events: A new food product to share
with other participants (denoted a myFoodOffer entry is in its PIC), a new search for
food (denoted by a foodSearch entry in its PIC), the reservation of a previous offered
product by another participant (its passive wiring reserveFoodWiring gets executed) and
the delivery of a preliminary reserved edible (denoted by a foodDelivery entry type in the
PIC of the TransportManagerPeer of the FoodSharingPeer). The following paragraphs
describe the behaviour of the FoodSharingPeer by explaining its wirings.

The SendMyFoodOfferToManagerWiring (see Figure 6.2) gets executed when there
are unreserved myFoodOffers (property reserved is not true) in the PIC of the Food-
SharingPeer. This is the case when the FoodSharingPeer has a new food product to
offer. It takes all unreserved myFoodOffers (guard G1) and sends them to the PIC of the
FoodOfferManager sub-peer (action A1).

Figure 6.2: SendMyFoodOfferToManagerWiring

When the MyFoodOfferExpiredWiring (see Figure 6.3) gets executed the expiration
date of a myFoodOffer was reached. The wiring takes an exception of etype myFoodOffer
(guard G1) before the MyFoodOfferExpiredService is called to handle this problem
(e.g. inform the user).

Figure 6.3: MyFoodOfferExpiredWiring

If the FoodSharingPeer receives a new foodSearch the GetMatchingFoodOffer-
sWiring (see Figure 6.4) is executed to get all suitable food offers. It takes the foodSearch
(guard G1) and reads all matching foodOffers from the FoodOfferManagerPeer (guard
G2). Then it updates the status to gotFoodOffers, sets the numOfTransportRequestsSent
to zero, the numberOfMatichingFoodOffers to the correct value and sets the fid (ac-
tion A1). Furthermore, the fid of all foodOffers is set before they are written to the
FoodSharingPeers PIC.

52

6.1. Modelling the S-FOSM

Figure 6.4: GetMatchingFoodOffersWiring

The NoMatchingFoodOffersWiring (see Figure 6.5) is only executed if there were no
matching foodOffers for a foodSearch. It takes the foodSearch (guard G1) and executes
the NoMatchingFoodOffersService to handle this case (e.g inform the user) and
possibly start a new food search (action A1).

Figure 6.5: NoMatchingFoodOffersWiring

The purpose of the RequestTransportFoodOfferWiring (see Figure 6.6) is to
create for each foodOffer a transportFoodOfferRequest and send it to the TransportMan-
agerPeer. It takes the foodSearch (guard G1) and one foodOffer (guard G2) and creates
a transportFoodOfferRequest and sends it to the TransportManagerPeer (action A2).
Additionally, the numOfTransportRequestsSent is increased by one and the foodSearch
written to the FoodSharingPeers PIC (action A1).

Figure 6.6: RequestTransportForFoodOfferWiring

After all transportFoodOfferRequests are sent the UpdateStatusWiring (see Fig-
ure 6.7) is executed to update the status of the foodSearch. The foodSearch is taken

53

6. S-FOSM: a Smart FOod Sharing Model

(guard G1) and its status is set to sentAllTransportRequests before it’s written back to
the FoodSharerPeers PIC (action A1).

Figure 6.7: UpdateStatusWiring

When the TransportManagerPeer has created a transportFoodOfferResponse for each
transportFoodOfferRequest and at least one of them is satisfiable the SelectFood-
Wiring (see Figure 6.8 is executed to select the best foodOffer that can be transported
from the offering partner to the searching participant. The wiring takes the foodSearch
with status sentAllTransportRequests from the FoodSharingPeers PIC (guard G1), takes
all feasible (guard G2) and deletes all unfeasible transportFoodOfferResponses from the
TransportManagerPeers PIC (guard G3). Moreover, it is only executed if there is at least
one feasible transportFoodOfferResponse and one transportFoodOfferResponse was cre-
ated for each transportFoodOfferRequest (guard G4). Then the SelectFoodService
is executed to select the best foodOffer according to some algorithm. The selection is
stored in the foodSearch and then it is written back to the FoodSharingPeers PIC.

Figure 6.8: SelectFoodWiring

The NoFeasibleTransportWiring (see Figure 6.9) is only executed when the Trans-
portManagerPeer has created all transportFoodOfferResponses and none of them is
feasible. It takes the foodSearch with status sentAllTransportRequests (guard G1) and
deletes all the transportFoodOfferResponses (guard G2). Then the NoFeasibleTrans-
portService is executed to handle this case (e.g. inform the user). Furthermore, a
new FoodSearch could be started (action A1).

54

6.1. Modelling the S-FOSM

Figure 6.9: NoFeasibleTransportWiring

Whenever the foodOffer is selected the ReserveFoodAndTransportWiring (see Fig-
ure 6.10 is performed to reserve the foodOffer and its transport. The wiring takes the
foodSearch with status foodSelected (guard G1) and calls the reserveFood wiring of the
sharing partner to reserve the food (guard G2) and its own reserveTransport wiring to
reserve the transport of the food. Both reservations must be completed within a specified
time, otherwise the ReservationTimeoutWiring is executed as on-abort action.

Figure 6.10: ReserveFoodAndTransportWiring

If the reservation of a foodOffer or its transport times out, the ReservationTime-
outWiring (see Figure 6.11) is activated by the ReserveFoodAndTransportWiring.
Since it has no guards the ReservationTimeoutService is executed immediately
to handle this problem (e.g. inform the user) and potentially starts a new foodSearch
(ation A1).

Figure 6.11: ReservationTimeoutWiring

The passive wiring ReserveFoodWiring (see Figure 6.12) reserves a foodOffer for
a searching partner. Therefore, the myFoodOffer with fitting offerid is taken from
the FoodOfferManagers PIC (guard G1) and written to the FoodSharingPeers PIC
(action A1). The wiring has defined the CancelFoodReservationWiring wiring as
compensate and the PrepareFoodReleaseWiring wiring as on-top-commit action.

55

6. S-FOSM: a Smart FOod Sharing Model

Figure 6.12: ReserveFoodWiring

To revoke the reservation of a foodOffer the passive wiring CancelFoodReservation-
Wiring (see Figure 6.13) is needed. It takes the myFoodOffer from the FoodSharingPeer
(guard G1) and writes it to the FoodOfferManagerPeers PIC.

Figure 6.13: CancelFoodReservationWiring

When the wiring PrepareFoodReleaseWiring (see Figure 6.14) is activate, the
reservation of the foodOffer is committed and the food product is prepared for its release.
The wiring takes the myFoodOffer (guard G1) and writes back a foodRelease (action
A1). The tts of foodRelease is set to pickup.minTime that the food is not released too
early and the ttl of the foodRelease is set to pickup.maxTime that the FoodSharingPeer
recognises when the foodRelease is not picked up by the FoodOfferManager in time.

Figure 6.14: PrepareFoodReleaseWiring

The ReleaseFoodWiring (see Figure 6.15) is responsible to release a food product to
the TransportManagerPeer. Therefore, the wiring takes the foodRelease (guard G1) and
writes it to the TransportManagerPeers PIC.

Figure 6.15: ReleaseFoodWiring

56

6.1. Modelling the S-FOSM

In case that the foodRelease is not picked up in time by the TransportManagerPeer
the FoodNotPickedUpWiring (see Figure 6.16) is called. It takes the foodRelease
within the exception (guard G1) and executes the FoodNotPickedUpService to deal
with this condition (e.g. inform the user). The service can create a myFoodOffer that is
written to the FoodOfferManagers PIC (action A1).

Figure 6.16: FoodNotPickedUpWiring

Using the ReserveTransportWiring (see Figure 6.17) the transport of a food prod-
uct can be reserved. It takes a transportReservationRes from the TransportManager-
Peer (guard G1) and writes it to the FoodSharingPeer (action A1). Furthermore,
the GetTransportReservationWiring is defined as on-start, the CancelTrans-
portReservationWiring as compensate and the PrepareForFoodReceiving-
Wiring wiring as on-top-commit action.

Figure 6.17: ReserveTransportWiring

With the passive GetTransportReservationWiring (see Figure 6.18) the trans-
port of a food product is prepared. The wiring sends a reservateTransportReq to the
TransportManagerPeer (action A1).

Figure 6.18: GetTransportReservationWiring

By calling the passive CancelTransportReservationWiring (see Figure 6.19) a
transport reservation can be revoked. Therefore, the wiring takes the reservateTrans-
portRes from the FoodSharerPeer (guard G1) and writes a cancelTransportReservation
in the TransportManagerPeers PIC.

57

6. S-FOSM: a Smart FOod Sharing Model

Figure 6.19: CancelTransportReservationWiring

When the transport of the food is committed the PrepareForFoodReceivingWiring
(see Figure 6.20) wiring is executed to prepare the FoodSharingPeer for receiving the
food. It takes the reservateTransportRes (guard G1) and writes back a foodReceiving
with set tts and ttl that marks the time of the delivery.

Figure 6.20: PrepareForFoodReceivingWiring

The FoodReceivingWiring (see Figure 6.21) is activated when the reserved food
reaches the searching Partner. The wiring takes the foodDelivery (guard G1) and the
foodReceiving (guard G2).

Figure 6.21: FoodReceivingWiring

If a requested food is not delivered in time the FoodNotReceivedWiring (see Fig-
ure 6.22) is activated. It takes the exception (guard G1) and executes the FoodNotRe-
ceivedService to handle this situation (e.g. inform the user). The service could also
create a new foodSearch which is written to the FoodSharerPeers PIC.

Figure 6.22: FoodNotReceivedWiring

58

6.2. Implementation of the S-FOSM

6.2 Implementation of the S-FOSM

In the previous section (see section 6.1) the S-FOSM was presented with the graphical
notation of the Peer Model. In order to execute the S-FOSM, source code for a specific
runtime environment of the Peer Model has to be created. In this thesis the Java runtime
of the Peer Model is used, because it supports the most features. This section explains
the translation of the graphical model of the food sharing problem to source code for the
Java runtime of the Peer Model in two steps: At first features that are not supported by
the Java runtime of the Peer Model must be replaced (see subsection 6.2.1) and then the
peers and wirings of the S-FOSM are translated to Java source code (see subsection 6.2.2).

6.2.1 Adaption of the S-FOSM

Both, the graphical representation and the formal definition of the Peer Model provide
features that are not implemented in the Java runtime yet. To represent the food sharing
problem this work used two features of the Peer Model that are currently not supported by
the Java runtime: Variable assignments at wirings and FWTX. The following paragraphs
describe how the S-FOSM is adapted in order to be executable with the Java runtime.

Variable assignments at wirings

The variable assignments at the wirings are removed and their behaviour is overtaken by
the wiring’s service. As the process is similar for all wirings it will be explained only for
one of them, the GetMatchingFoodOffersWiring.

In the original S-FOSM with variable assignments at wirings (see figure 6.4) the Get-
MatchingFoodOffersWiring at first takes a foodSearch entry with status new and
saves its searchTerm property to a local variable $searchTerm (guard G1). Then it copies
all foodOffers whose productName match the $searchTerm and saves the number of
copied foodOffers to a local variable $n (guard G1). As there is no service directly after
the guard links the actions are performed. Action A1 sets the fid to a new generated
one, the status to gotFoodOffers, the numOfMatchingFoodOffers to $n and the numOf-
TransportRequestsSent to 0 and returns the foodSearch. Finally, it sets the fid of all
foodOffers and returns them (action A2).

In the adapted S-FOSM for the Java runtime of the Peer Model (see figure 6.23) the
GetMatchingFoodOffersWiring takes a new foodSearch entry (guard G1) and all
foodOffers(guard G2). Then the GetMatchingFoodOffersService is called. It
must remove all foodOffers whose productName does not contain the searchTerm of the
foodSearch and set the fid of the remaining ones. Furthermore, the fid, the status, the
numOfMatchingFoodOffers and the numOfTransportRequestsSent of the foodSearch are
set. Then the wiring returns the foodSearch(action A1) and all foodOffers (action A2).

59

6. S-FOSM: a Smart FOod Sharing Model

Figure 6.23: GetMatchingFoodOffersWiring (adapted S-FOSM)

FWTX

In the original S-FOSM FWTX was used to reserve the food and its transport. To adapt
it for the Java runtime, passive wirings are replaced by regular ones, the call of a passive
wiring is replaced by sending entries to the corresponding regular wirings and the implicit
activation of passive wirings by actions (e.g. on-top-commit and compensate) has to be
done explicit by sending entries to regular wirings.

The passive wirings ReservationTimeoutWiring (see Figure 6.11), ReserveFood-
Wiring (see Figure 6.12), CancelFoodReservationWiring (see Figure 6.13), Pre-
pareFoodReleaseWiring (see Figure 6.14) and PrepareForFoodReceivingWiring
(see Figure 6.20) of the original S-FOSM are replaced by regular wirings with the same
name but different internal logic in the adapted S-FOSM (see Figure 6.26, Figure 6.29,
Figure 6.30, Figure 6.31 and Figure 6.32). The adapted S-FOSM needs three new wirings,
the CommitReservationsWiring (see Figure 6.25), the CleanUpFoodReserva-
tionWiring (see Figure 6.27) and the CleanUpTransportReservationWiring
(see Figure 6.28) to control the commitment respectively the cancellation of reservations.
Furthermore, in the adapted S-FOSM three wirings, the ReserveTransportWiring
(see Figure 6.17), the GetTransportReservationWiring (see Figure 6.18) and the
CancelTransportReservationWiring (see Figure 6.19), are not needed anymore
since its wirings are directly communicating with the TransportManagerPeer.

In the original S-FOSM the reservation can be summarised like this: The Reserve-
FoodAndTransportWiring (see Figure 6.10) activates the ReserveFoodWiring
(see Figure 6.12) and the ReserveTransportWiring (see Figure 6.17) to reserve the
food and its transport. Both of these passive wirings try to perform their reservation
within a given timeout. If one of them fails their compensate wirings are called to revoke
possible performed reservations, when both of them are successful their on-top-commit
wirings are activated to commit the reservations.

In the adapted S-FOSM the reservation process works like this: The ReserveFoodAnd-
TransportWiring (see Figure 6.24) sends a reserveFoodOfferRes to activate the Re-
serveFoodWiring (see Figure 6.29) and a reserveTransportRes to the TransportMan-
agerPeer to reserve the transport. If both reservations were successful (denoted by a
reserveFoodOfferRes in the FoodSharerPeers PIC and a reserveTransportFoodOfferRes in
the FoodOfferManagerPeers PIC) the CommitReservationsWiring (see Figure 6.25)
is executed and activates the PrepareFoodReleaseWiring (see Figure 6.31) by

60

6.2. Implementation of the S-FOSM

sending a commitFoodReservation and the PrepareForFoodReceivingWiring (see
Figure 6.32) by sending a commitTransportReservation to commit the reservation. If one
of the reservation has not been performed in the given time the CleanUpFoodReser-
vationWiring (see Figure 6.27) and/or the CleanUpTransportReservation (see
Figure 6.28) are called to revoke already performed reservations.

Figure 6.24: ReserveFoodAndTransportWiring (adapted reservation process)

Figure 6.25: CommitReservationsWiring (adapted reservation process)

Figure 6.26: ReservationTimeoutWiring (adapted reservation process)

Figure 6.27: CleanUpFoodReservationWiring (adapted reservation process)

61

6. S-FOSM: a Smart FOod Sharing Model

Figure 6.28: CleanUpTransportReservationWiring (adapted reservation process)

Figure 6.29: ReserveFoodWiring (adapted reservation process)

Figure 6.30: CancelFoodReservationWiring (adapted reservation process)

Figure 6.31: PrepareFoodReleaseWiring (adapted reservation process)

Figure 6.32: PrepareForFoodReceivingWiring (adapted reservation process)

62

6.2. Implementation of the S-FOSM

6.2.2 Deriving the Java source code of the S-FOSM

To run the S-FOSM with the Java runtime of the Peer Model, Java code source for the
Java runtime must be created. Unfortunately, up to now there is no code generator
that does this job automatically, so the code has to be written by hand. The following
paragraphs briefly describe how the Java code for the peers and wirings can be derived
from the graphical model.

Peers

With the PeerEntryBuilder class a new peer can be created. Its constructor takes
one String, the name of the peer, as parameter. The dest method sets the destination
of the new peer which must be the PSCAdress of its superpeer. Using the build
method the new peer is created. To give an example algorithm 6.1 shows the Java code
for the FoodSharingPeer. As the FoodSharingPeer has no superpeer the runtimepeer is
set as its superpeer.

Algorithm 6.1: Java code of the FoodSharingPeer
new PeerEntryBui lder (" foodShar ingPeer ") .

des t (new Address (Address .RUNTIME_PEER_ADDRESS,
Address . PSCAddress)) .

bu i ld () ;

Wirings

To implement a wiring the WiringEntryBuilder class can be used. The name of the
wiring is set via the constructor. Furthermore, there are the methods guard to add a
guard link, service to add a service, action to add an action link, dest to set the
destination of the wiring and build to finally create the wiring.

The guard method takes six arguments to set the entry type, the source container,
the link operation, the link query, the link count and the flowdependency of the guard.
Action takes five arguments to set the entry type, the destination container, the link
operation, the link query and the link count of the action.

To call the service method a WiringEntryBuilder.ServiceBuilder object has
to be delivered. One constructor for the WiringEnryBuilder.ServiceBuilder
takes a String for the services name and a Class for the service class. Furthermore, it
has guard and action methods to add the services guard and action links.

To give an example algorithm 6.2 shows the Java code for the GetMatchingFoodOf-
fersWiring.

Algorithm 6.2: Java code of the GetMatchingFoodOffersWiring
new WiringEntryBui lder (" GetMatchingOffersWiring ") .

guard (EntryType . getEntryType (" foodSearch ") , Address . PIC ,

63

6. S-FOSM: a Smart FOod Sharing Model

Link . LinkOperation .TAKE, (coData) −> {
return (coData . containsKey (s t a tu s) &&

coData . get (s t a tu s) ==
FoodSearchStatus .NEW) ;

} , LinkCount .EXACTLY_ONE, true) .
guard (EntryType . getEntryType (" f oodOf f e r ") ,

" / " + " foodOfferManagerPeer " + " : PIC" ,
Link . LinkOperation .TAKE, LinkQuery .ALL,
LinkCount .EXACTLY_ONE, true) .

s e r v i c e (new WiringEntryBui lder . S e rv i c eBu i l d e r
(" GetMatchingOf fersServ ice " , GetMatchingOffers . Class)) .
guard (EntryType . getEntryType (" foodSearch ") ,

Link . LinkOperation .TAKE, LinkQuery .ALL,
LinkCount .EXACTLY_ONE) .

guard (EntryType . getEntryType (" f oodOf f e r ") ,
Link . LinkOperation .TAKE, LinkQuery .ALL,
LinkCount .ALL) .

ac t i on (EntryType . getEntryType (" foodSearch ")) .
a c t i on (EntryType . getEntryType (" f oodOf f e r "))) .

a c t i on (EntryType . getEntryType (" foodSearch ") , Address .POC,
Link . LinkOperation .TAKE, LinkQuery .ALL,
LinkCount .EXACTLY_ONE) .

ac t i on (EntryType . getEntryType (" f oodOf f e r ") , Address .POC,
Link . LinkOperation .TAKE, LinkQuery .ALL, LinkCount .ALL) .

des t (new Address (new Address . PeerAddress (" foodShar ingPeer ") ,
Address .WSCAddress)) .

bu i ld () ;

6.3 Using S-FOSM in a food sharing simulation
This section proves that the S-FOSM is indeed a valid solution for the food sharing
problem. For this purpose, a food sharing simulation environment is created, where the
S-FOSM is used for the coordination of surplus food and food needs.

In the next section (see subsection 6.3.1) the implementations of the services used for
the simulation are described. Then Subsection 6.3.2 explains how the sup-peers are
implemented for the simulation. Afterwards subsection 6.3.3 gives some details about
the simulation environments and finally subsection 6.3.4 discusses the results of the
simulation.

6.3.1 Implementation of the Services

In the Peer Model only coordination logic is modelled, business logic can be injected
in abstract services. The S-FOSM uses nine services that must be implemented for the

64

6.3. Using S-FOSM in a food sharing simulation

simulation. The next paragraphs describe how these services are implemented for the
simulation.

The SelectFoodService should select the best food product for a food search. The
implementation for the simulation selects one of the food products with minimal transport
time.

The NoMatchingFoodOffersServics, the NoFeasibleTransportService, the
ReservationTimeoutService, the FoodNotReceivedService, the FoodNot-
PickedUpService and the MyFoodOfferExpiredWiring are called when problems
occur during a search or the offering of food (e.g. no matching food offers found) in order
to handle them. A good way to cope with these problems would be to inform the user
and provide some possibilities to continue (e.g. start a new food search). However, for
the simulation it is sufficient that these services just log the problem for the summary
after the simulation run.

The ReleaseFoodService respectively the FoodReceivingService are called
when a food product is released respectively delivered. In a real application scenario,
these services must monitor the handover of the food. For the simulation, it is again
sufficient to log these events.

6.3.2 Mock-ups of the sub-peers

In the S-FOSM the sub-peers FoodOfferManagerPeer and TransportManagerPeer were
not modelled with the Peer Model, their behaviour was only described textual to leave
space for different implementations of these sub-peers. However, for the simulation
of the S-FOSM concrete versions are needed. The following paragraphs describe how
the sub-peers were implemented for the simulation. The used implementations for the
sub-peer are not optimal solutions for a productive food sharing setting, but adequate
for the simulation.

FoodOfferManagerPeer

During one simulation run the number of food sharers is constant (i.e no food sharers
leave, no food sharers join). Furthermore, each FoodSharingPeer cooperates with each
other FoodSharingPeer. So, the idea of the FoodSharingPeer is that it informs all other
FoodSharingPeers about all changes of its myFoodOffers. In order to do that, the
FoodOfferManagerPeer (see Figure 6.33) needs three wirings: the DistributeMyFood-
OffersWiring, the AddFoodOfferWiring and the DeleteFoodOfferWiring.

The DistributeMyFoodOffersWiring is responsible for informing other FoodOffer-
ManagerPeers about changes of its myfoodOffers. First it takes a scheduleDistribute-
FoodOffers (guard G1) and reads myFoodOffers (guard G2). Then the service determines
if the myFoodOffers have changed since the last execution and for each new/missing
myFoodOffer for all other FoodSharingPeers a addFoodOffer/deleteFoodOffer entry

65

6. S-FOSM: a Smart FOod Sharing Model

Figure 6.33: FoodOfferManagerPeer

is created and sent to the POC (action A1 and A2). Furthermore, the tts of the
scheduleDistributeFoodOffer is set before it is written to the PIC (action A3).

All addFoodOffer entries from other FoodOfferManagerPeers are processed by the
AddFoodOfferWiring. It takes the addFoodOffer (guard G1) and executes the service
to create a new foodOffer which is written to the PIC (action A1).

When a FoodOfferManagerPeer receives a deleteFoodOffer entry the DeleteFoodOf-
ferWiring is activated to remove the foodOffer. The wiring takes the deleteFoodOffer
(guard G1) and all foodOffers(guard G2) before the service deletes the foodOffer denoted
in deleteFoodOffer. Finally, all other foodOffers are written to the PIC (action A1).

66

6.3. Using S-FOSM in a food sharing simulation

TransportManagerPeer

The idea behind the implementation of the TransportManagerPeer (see Figure 6.34) is that
there is a fixed number of transporters that have a base station. From there, each of them
can reach all FoodSharingPeers, but only transport one food product at once. For the
implementation of the TransportManagerPeer four wirings are used: the HandleTrans-
portFoodOfferRequestWring, the HandleReservationTransportRequestWiring,
the HandleCancelTransportReservationWiring and the TransportFoodWiring.

Figure 6.34: TransportManagerPeer

The HandleTransportFoodOfferRequestWiring receives a transportFoodOffer-
Request (guard G1) and responds in a transportFoodOfferResponse (action A1) whether
and when the transport of a food product is possible. Therefore, the service checks first
if one of the transporters is available and then if it could perform the transport in the

67

6. S-FOSM: a Smart FOod Sharing Model

given time.

When the TransportManagerPeer receives a reserveTransportReq the HandleReserve-
TransportRequestWiring is activated. Its service checks if there is still a transporter
available, and only if so it assigns the transport to a transporter and responds with a
reserveTransportRes (action A1).

With the HandleCancelTransportReservationWiring a previous reserved trans-
port can be cancelled. The wiring takes a cancelTransportReservation (guard G1) and
its service removes the transport from the transporter so that it is available for other
assignments.

The TransportFoodWiring is responsible for the transport of a food. It takes a
foodRelease (guard G1) before its service creates a foodDelivery whose dest property is
set to the TransportManagerPeer of the receiving FoodSharingPeer and waits until the
time for the delivery has elapsed. Then the foodDelivery is sent to the POC (action A1).

6.3.3 Simulation environment

In a productive environment, each food sharing participant would have a own runtime
environment for the Peer Model where its instance of the FoodSharingPeer resides. For
the simulation, it is adequate to use one runtime environment with all FoodSharigPeer
instances (one for each food sharing participant).

The simulation environment provides several parameters to parametrise the simula-
tion runs. The parameter simulatedDays is used to set the number of days of
food sharing that are simulated with one simulation run. Furthermore, the parameter
simulationSpeedup defines how much faster the simulation is than the reality. A
simulationSpeedup of 86400 means that one day (= 86400 seconds) is simulated in
one second.

The parameter numberOfOfferingFoodSharers is used to set the number of food
sharing participants that create food offers, but no food searches and the parameter
FoodOffersPerFoodSharerAndDay specifies the average number of food offers each
food sharer creates per simulated day. Similar the parameter numberOfSearching-
FoodSharers controls the number of food sharing participants that create food searches,
but no food offers and the parameter FoodSearchesPerFoodSharerAndDay sets the
average number of food searches each of them creates per simulated day. Furthermore
the parameter numberOfDualFoodSharers is used to set the number of food sharers
that create food offers and food searches. The point of time when a food offer respec-
tively a food search is created is randomly chosen within the simulation time. The
product name of a food offer is only one of the following three values: apple, banana
and strawberry. The same applies for the search term of the food search. The pickup
location of the food offer respectively the delivery location of the food search is set to
the location of the corresponding food sharer. The location of a food sharing participant
is generally random, but the parameter maxDistanceFromBase defines the maximal

68

6.3. Using S-FOSM in a food sharing simulation

distance between a food sharing household and the base station. With the parameter
foodOfferPickupDuration the duration a food offer is available for pick up and with
foodSearchDeliveryDuration the timespan a searching food sharer is available for
delivery is set.

With the parameter numOfConcurrentTransports the number of transporters used
for the simulation can be set. Furthermore, the parameter transportSpeed defines
their speed (in meters per second).

The FoodOfferManagerPeer can be parametrised using the parameter foodOffersUp-
dateInterval. It sets the timespan the FoodOfferManagerPeer checks for updates of
own food offers.

The main events of the simulation (e.g. food sharer has a new food offer, food offer has
expired and food was picked up) are logged during the simulation. A graphical interface
shows actual statistics (e.g. number of food offers, number of expired food offers and
number of picked up food) during the simulation run.

6.3.4 Simulation results

The goal of the simulation is to prove that the S-FOSM is a valid solution for the
coordination parts of the food sharing problem. This is the case when some of the food
offers created by the food sharing participants are requested by searching food sharers.
Furthermore the performance of S-FOSM is evaluated by the ratio of food offers that
lead to food handovers.

Unfortunately, data about food sharing behaviour (e.g. when participants are at home
for handover) are rare. Therefore, a fictitious example was used for the simulation
runs. The fictitious example is a small community with 20 households. Near the
village square in the centre of their village they have a base station for three trans-
port robots (numOfConcurrentTransports = 3). Each of them can move au-
tonomously with a speed of one meter per second (transportSpeed = 1). The
houses of the villagers are not more than 500 meters away from the base station
(maxDistanceFromBase = 500). Four of the 20 households use food sharing only
to give away surplus food (numberOfOfferingFoodSharers), four of them only
want to get food (numberOfOfferingFoodSharers = 4). The remaining twelve
households want to give away and get food (numberOfDualFoodSharers = 12). In
average each household creates two food offers respectively two food searches per day
(FoodSearchesPerFoodSharerAndDay= 2 and FoodOffersPerFoodSharerAnd-
Day = 2). Food offers can be requested up to two days after their creation (foodOffer-
PickupDuration = 2) and food sharing participants wait not longer than one day to
get the food they want (foodSearchDeliveryDuration = 1). In a simulation run,
a whole week of the village is simulated (simulatedDays = 7) accelerated by a factor
of 5,000 (simulationSpeedup).

Each simulation run creates 224 food offers and 224 food searches. In each of the ten
simulation runs (see Table 6.1) between 184 and 207 food handovers have been taken

69

6. S-FOSM: a Smart FOod Sharing Model

place. That means that between 82.14% and 92.41% of the food offers respectively of the
food searches have led to a food handover. Therefore the model is indeed a valid solution
for the food sharing problem. Furthermore, at least for this example it had delivered
pretty good results.

simulation run food handovers ratio
1 207 92.41%
2 185 82.59%
3 193 86.16%
4 187 83.48%
5 193 86.16%
6 200 89.29%
7 198 88.39%
8 189 84.38%
9 186 83.04%
10 184 82.14%

Table 6.1: Simulation results

6.4 Summary
In this chapter the S-FOSM, a model to coordinate food sharing between households
was developed. At first the Peer Model was used to model the S-FOSM. The S-FOSM
was illustrated with the graphical representation of the Peer Model and its sequence was
explained. Then the S-FOSM was adapted and translated to source code that could be
executed with the Java runtime of the Peer Model. Finally, a simulation environment was
created where several simulated households use the S-FOSM to share food among each
other. Simulation runs have shown that the model works and the participants can give
away surplus food or get food they need. Based on S-FOSMand the other ICTs suited to
improve food sharing (see chapter 4) the next chapter (see chapter 7) will describe the
vision of a smart food sharing solution.

70

CHAPTER 7
S-FOSS: a vision of a Smart FOod

Sharing Solution

Chapter 2 has found out that households are responsible for a big share of the worldwide
food waste. Furthermore chapter 3 has shown that food sharing solutions for this audience
are harder to provide than others and that current food sharing solutions for households
are too expensive and cumbersome to use for many people. This chapter will integrate the
ICTs described in chapter 4 and chapter 5 and describe S-FOSS, a vision of a smart food
sharing process that is convenient to use and fits into today’s smart cities. Although the
S-FOSS is intended for households, it can also be used by retailers, producers, charities
and others. Please also note that S-FOSS is visionary and not all of its requirements
(e.g. autonomous transport robots that are allowed to use the public streets) are already
given.

The following section (see section 7.1) describes properties of the S-FOSS and explains
that it improves current food sharing solutions. Then section 7.2 shows some examples
how S-FOSS can be used by its users. Finally, section 7.3 sum up the chapter.

7.1 Properties of the S-FOSS

This section will describe important properties of food sharing platforms and how they
are solved in the S-FOSS in contrast to current food sharing systems.

The following subsection (see subsection 7.1.1) is about product information. Then
subsection 7.1.2, subsection 7.1.3 and subsection 7.1.4 describe the monitoring of food
products, the coordination of food offers and food needs and the transport of food products
in the smart food sharing solution. Finally, subsection 7.1.5 is about intermediate food
storages.

71

7. S-FOSS: a vision of a Smart FOod Sharing Solution

7.1.1 Product information

Information about the food products are crucial for a food sharing solution. Only with
adequate product information food sharers can search for edibles and get the foodstuff
they need.

Current food sharing solutions

In current food sharing solutions food sharers that create a food offer are responsible
to enter product information. They have to transcribe the text from the food products
label to the food sharing system. This process is very expensive and the data is often
incomplete or faulty. Furthermore, often several food products are summarised to one
food offering.

Food sharers that need food, search themselves. If they see an interesting product with
incomplete product information, they can try to get the missing data (e.g. write a
message to the offerer) or take the food anyway.

Requirements for the smart food sharing solution

In smart food sharing, food needs are automatically matched to food offers. This process
only works if there are machine readable, accurate and detailed information of each
available food product. Hence all food products must have a machine readable label
that provides the product information. Food sharers use a reader that quickly reads this
information and forwards it to the smart food sharing solution.

S-FOSS

The asset and licence costs for standardised RFID solutions are very low. Furthermore,
they enable process optimisations (e.g. inventory or checkout) through the whole supply
chain with considerable savings. So, all food maker equip their products with standardised
RFID tags that uniquely identify the product they are attached to. Standardised and
public available web services provide detailed information (e.g. name, producer, weight,
expiration date, ingredients and nutrition facts) about each food product and its way
through the supply chain.

Each food sharer has a RFID reader that reads the tag of the product and provides the
product information for the S-FOSS, before an edible is shared. Home-made products
must be equipped with RFID tags by the food sharer and the product information must
be entered to a web service.

7.1.2 Food monitoring

Before a food sharer creates a food offer she or he has to detect that she or he has a food
product that she or he does not need anymore. Therefore a good monitoring and easy
inventory of food products is important for a prosperous food sharing solution.

72

7.1. Properties of the S-FOSS

Current food sharing solutions

In current food sharing solutions, food sharers are responsible for monitoring their edibles.
They must supervise their stock themselves and recognise when they have food that they
do not need before it goes off. Then they must create a food offer and enter the product
information by hand.

Requirements for the smart food sharing solution

In smart food sharing the food stock is monitored by the system. A food sharer can
always get an actual list of all edibles he possesses. Furthermore, smart food sharing
reminds the users to share food products before they go off.

When a food sharer wants to create a food offer she or he only needs to select the food
product on the list and set handover options (when and where she or he can handover
the food stuff). The product information is known by the smart food sharing solution.

S-FOSS

Current fridges have been replaced by smart fridges. Beside lots of other smart features
they can read the RFID tags of food products and have an internet connection. Further-
more, all other shelves that store edibles (e.g. in the cellar) are equipped with RFID
readers and internet connection as well. So the smart food sharing can provide each food
sharer her or his current food inventory and remind her or him to share surplus food.

Intermediate storage (e.g. Public fridges) and transporters of the smart food sharing
solution have RFID readers and internet connection too. So, the S-FOSS can always
determine how much and what food products are available at the moment.

7.1.3 Coordination of food offers and food needs

People that use a food sharing solution want to give off surplus food or get edibles they
need (or both). So, the main task of food sharing solution is to find for each person that
searches food another participant that offers a suitable product and vice versa.

Current food sharing solutions

In most current food sharing solutions members that have surplus food products create
food offers. Participants that want food have to browse these food offers to find a
matching offer. Then they use text messages to request a food offer and arrange the
hand over.

For people who need food this process is very cumbersome. At first they must look
through lots of offers to find the right one and then wait until the offering partner answers
if they can have the food or not.

73

7. S-FOSS: a vision of a Smart FOod Sharing Solution

Requirements for the smart food sharing solution

In the smart food sharing process people that want food enter their requirements (e.g.
what products they want, when and where) and the smart food sharing solution finds
immediately the best matching food offer for that search. Then the offering partner is
informed that its offer will be picked up, before it is transported to the searching partner.

The matching of food offers and food needs is a coordination task. Therefore, for the
smart food sharing solution a coordination framework should be used to solve this problem
in an appropriate way.

S-FOSS

The S-FOSS uses the Peer Model to coordinate the food offers and food searches and
find matches. As FOSM(see section 6.1) is a model that solves the food sharing problem,
it can be used for the S-FOSS. Only some minor adaptions (e.g. support of intermediate
stores and reservation of several food products in one transaction) must be performed.

7.1.4 Transport of food products

Food sharers that need food are seldom at the position where the food they want is
offered. Hence, for a working food sharing solution, food must be transported from the
offering member to the searching participant.

Current food sharing solutions

In current food sharing solutions members that want to exchange edibles have to arrange
the transport of the product themselves. Once a searching participant has found a
matching food offer she or he has to exchange text messages with the offering partner to
find a date and time to hand over the food.

This process needs lots of text messages and time. Moreover, they could fail on arranging
the handover and the searching partner must find another food offer.

Requirements for smart food sharing

In the smart food sharing solution members that create food offers always have to enter
when and where they can hand over their products. Also participants that want food
have to define where and when they can take over the food. In addition, the smart food
sharing process supports external transporters that carry food between the members.
Thus, also members that cannot hand over food directly can share food.

For participants that want food, the food sharing solution automatically finds the best
food offer. Thus, it only considers food offers where the transport of the products is
possible. From these food offers it selects that one that matches the food search best.

74

7.1. Properties of the S-FOSS

S-FOSS

Autonomous vehicles have reached a degree of dependability so that they are allowed
to use the public roads. Since they are electrically driven they are ecologically friendly
and cheap. Authorities have recognised that food sharing is a good way to save the
environment and improve the quality of life of the residents. Therefore, they sponsor
autonomous transport vehicles in order to make food sharing more comfortable.

Members that have surplus food just create food offers and participants that need food
let the S-FOSS search for suitable edibles. When there is a match the transport robots
pick up the food at the offering partners home and deliver it to the partner who needs it.

7.1.5 Intermediate storages

In some cases food sharers want to give off food, but do not have the time to wait until
some other food sharer needs it (e.g. they want to leave for holiday or need the space for
other food). This food should be brought to an intermediate storage until its needed by
a food sharer in order to decrease food waste and make the food sharing more efficient.

Current food sharing solutions

Most current food sharing solutions do not support the concept of intermediate storages,
only foodsharing.de operates so called Fair-Teiler. Food sharers that do not want to
wait until their offer is requested can put it into this public fridge and others can take
everything they need from it.

The main problem is that food sharers do not know the status (i.e. if there is some free
space for food offers or what food is offered at the moment) of these fridges. Furthermore,
they are often placed in stores with limited opening hours.

Requirements for smart food sharing

In the smart food sharing solution intermediate stores detect that the maximum pick
up time of a food product will elapse soon. If the food product could be needed by
another food sharer in future (e.g. the edible does not expire in the next days) and the
intermediate store is not full, it requests the food.

Intermediate stores create a food offer for each food product they store at the moment, so
that it can be requested by other food sharers. The intermediate stores can take and give
food at any time (i.e. they have no limiting opening hours). Products at intermediate
stores that are not requested and go bad must be detected and disposed.

S-FOSS

Intermediate stores are equipped with automatic loading systems that take food from
transporters and store them or bring stored products to transporters at any time. They
keep the overview of their products and dispose food that is gone bad automatically. The

75

7. S-FOSS: a vision of a Smart FOod Sharing Solution

automatic loading system is very space efficient and so the intermediate store runs at
little operating costs. Like the transport robots the intermediate storages are sponsored
by authorities.

7.2 The S-FOSS in action
This section will give some examples of how food sharers use the S-FOSS to give off
surplus food or search for food they need. As up to now the smart food sharing solution
is a vision, storyboards are used to explain how food sharers interact with the S-FOSS.

The GUI prototypes for the storyboards were created with Pencil, an open-source tool for
GUI prototyping1. The used GUI elements are included into Pencil, the pictures inside
the GUI prototypes are partially self-made. The remaining ones are from pixabay2, a
website with free pictures and videos under the Creative Commons CC0 licence.

The next subsection (see subsection 7.2.1) describes the personas used in the storyboards.
Then subsection 7.2.2 and subsection 7.2.3 will give examples how the S-FOSS can be
used.

7.2.1 Personas

The following paragraphs describe the users that use the smart food sharing solutions in
the storyboards. These are just imaginary persons, but they should give the reader a
feeling who would use the smart food sharing solution and why.

Claudia Winkler

Claudia Winkler is 22 years old and studies medicine in Vienna. She lives there in a
small flat in the eighteenth district. Her studies are really challenging and during the
week Claudia spends most of her time in lectures and in the library.

Claudia pays a lot of attention to her diet and loves fresh vegetables and fruits. Her
fridge always contains the ingredients that she needs to quickly prepare a delicious and
healthy meal.

At the weekends, Claudia often visits her parents. They have a farm near Melk, where
they produce organic grain that is sold to local bakeries. In a huge garden, they grow
vegetables and fruits for personal use and to give it to family and friends. Claudia
loves the countryside and often helps her parents with their farm and garden work.
Furthermore, she is a volunteer at the red cross agency in Melk and most of her fiends
live there.

From her parent’s farm, Claudia knows how much hard work and resources are needed
to produce high quality food products and so she does not want that her food goes off or

1https://pencil.evolus.vn/
2https://pixabay.com/

76

7.2. The S-FOSS in action

she has to waste edibles. But due to her food preferences and her busy lifestyle there are
always some fruits or vegetables she cannot eat before they go off.

Therefore, Claudia uses the S-FOSS. She does not need to waste food, she can share it
before it gets bad. Claudia is always glad when her food gets to someone who needs it.

Michael Weber

Michael Weber is 45 years old and works as key account manager for a large international
bank. He and his children Lena (10 years old) and Lukas (8 years old) live in a generous
flat in the twentieth district of Vienna.

Michael is a single father and loves to spent time with his children. Unfortunately, the
time with his children is very short during the week. Michael works very long and so they
can only spend some hours after he picks up the children from after-school supervision
and before they have to go to bed together. Therefore, Michael’s weekends are reserved
for his children.

Michael earns enough money to enable his children a comfortable life now, but he grew
up in humble conditions. He wants to show his children that they can have a good life
without spending a lot of money. He uses the S-FOSS because it confirms his attitude.
He can get great food products for free and additionally save the environment.

7.2.2 Claudia goes rural for a long weekend

Claudia’s best friend Daniela celebrates her 30th birthday in Melk on Wednesday eve,
the day before a bank holiday. Claudia has no compulsory lectures on Friday so she will
leave Vienna on Wednesday and stay until Sunday. She has planned this trip for a long
time and added it to the calendar of her smartphone.

Reminder to create food offer

Claudia comes home from university on Wednesday afternoon. She must pack her things
and leave the flat within one hour to reach her train to Melk. The S-FOSS knows her
schedule and that some of the food in her smart fridge will go off during the weekend.
Therefore, the S-FOSS app shows a notification on her smartphone (see figure 7.1) to
remind her.

Claudia opens the app to see a list with all the products that expire until Sunday (see
figure 7.2). By default, all products on the list are selected for sharing, but Claudia
wants to eat the cheese when she comes back on Sunday and therefore she unselects it.
By touching the add button Claudia could add additional products of her fridge, that do
not expire during the weekend, for sharing.

Claudia pushes the share button and comes to the next step where she can define when
and where she can hand over the food (see figure 7.3). The S-FOSS app has already

77

7. S-FOSS: a vision of a Smart FOod Sharing Solution

Figure 7.1: Notification to share food Figure 7.2: Select products to share

78

7.2. The S-FOSS in action

filled in her address as location and the time until she must leave as time. Hence Claudia
had nothing to change.

Figure 7.3: Set Handover options Figure 7.4: Food handover

Claudia pushes the share button again and in a final step she gets explained that food
offers are created and that she will be informed when someone want to have her food.
Claudia lays aside her smartphone and starts to pack her suitcase.

Public fridge requests food

As the handover times are very short a public fridge in Claudia’s neighbourhood decides
to take the food until a food sharer needs it. Then the S-FOSS app notifies Claudia that

79

7. S-FOSS: a vision of a Smart FOod Sharing Solution

her offers had been requested. She opens the app (see figure 7.4) where she can see that
a transport robot will come to her place and pick up the food in about 40 min. Claudia
continues packing her stuff.

Food handover to transport robot

Nearly 40 minutes later, Claudia has just finished her packing, the S-FOSS app sends
the next notification: The transport robot is here. Claudia takes the products from her
fridge and walks to the robot outside of her flat. The robot recognizes the RFID tags of
the food products and opens its lid as soon as Claudia is near the robot. Claudia puts
the food inside. The robot closes its lid again and transports the goods to the public
fridge. Claudia takes her suitcase, leaves her flat and reaches the train station in time.

7.2.3 Michael cooks with his children

It is a warm and sunny Sunday in May and Michael and his children had a late breakfast.
They pack up there swimming things and go to a public sunbathing area near the New
Danube. Lena, Lukas and Michael play with their volleyball, refresh themselves in the
water and the time flies.

Search for food

It is already four o’clock when they take their first rest and lay down in the shade. Lena
and Lukas started to play a card game when it comes in Michael’s mind that he has to
prepare dinner for him and the children in the evening. He can remember that after the
breakfast there was not much food left at home, but he is not sure what. So, Michael
takes his smartphone and opens the S-FOSS app to see his food inventory (see figure 7.5).
As he suspected, there is not much in it, but he has an idea. With some canned tuna and
cream cheese he could make the tuna pasta that his children really like. Furthermore, a
tomato salad with mozzarella would be nice.

Michael begins a new food search and fills in the food he needs (see figure 7.6). Then he
indicates when an where he could take over the food. The S-FOSS searches for these
products and tells him that they will be delivered at 6 pm (see figure 7.7). Michael joins
his children’s card game for a final match before they leave the park.

Take food from the transport robot

Arrived at home Michael starts to boil the noodles. Sharp at 6 pm he gets a notification
(see figure 7.8) by the S-FOSS app: his food is here. He opens the door where the
transport robot already waits for him. Michael pushes the button to open the transport
robots lid and together they unload the food. The robot closes its lid and drives away
and Lena and Lukas help Michael to prepare a delicious dinner.

80

7.2. The S-FOSS in action

Figure 7.5: Show food inventory Figure 7.6: Enter food needs

81

7. S-FOSS: a vision of a Smart FOod Sharing Solution

Figure 7.7: Food take over Figure 7.8: Reminder to take over food

82

7.3. Summary

7.3 Summary
This chapter has described S-FOSS, a vision of a smart food sharing process. At first
properties of current food sharing solutions were described, as they should be for a smart
food sharing solution and how the ICTs analysed in chapter 4 and chapter 5 can be
used to establish that. Afterwards the chapter has described how users can use S-FOSS.
Therefore, personas were created and storyboards were used to describe their interactions
with S-FOSS.

83

CHAPTER 8
Conclusion

The conclusion sums up the thesis and points out its contribution (see section 8.1).
Additionally, it gives ideas for possible future works in the area of food sharing or with
the Peer Model (see section 8.2).

8.1 Summary
This thesis has dealt with several aspects of food sharing in the modern human society.
The following paragraphs will provide a summary and point out the contribution of the
work.

The work started with a survey about the global food situation and analysed the
magnitude, the negative impacts and the countermeasures for food losses and food waste
as well as for food insecurity and undernourishment. Furthermore, it showed that food
sharing has the potential to considerably improve both of these problems. Hence, with
this global food situation survey the first goal of the work was reached.

Then research approaches and literature about food sharing as well as deployed food
sharing initiatives have been reviewed. It has come out that there are various different
forms of food sharing that are used by food sharing initiatives all over the world. This
work has concentrated on food sharing solutions that want to reduce food waste and
improve food security. It found out that food sharing initiatives that redistribute surplus
food from producers and retailers to charities already perform well, but food sharing
between households is inefficient. This is mainly because of too simple models of current
food sharing initiatives. So, the second goal of the thesis was reached.

In the following the work analysed ICTs and how they can be used to improve food
sharing solutions in order to make them more convenient for the users. A particular
focus was to enhance the support for coordination (e.g. the process to find a suitable
food offer) of the food sharing people. Therefore, different coordination models have

85

8. Conclusion

been compared, the Peer Model was selected as most suitable to handle the food sharing
process and an overview of the Peer Model was given. This accomplished the third goal
of the thesis.

The Peer Model was used to create S-FOSM (a Smart FOod Sharing Model). This was
the first design of a food sharing process with a formal model. At first the S-FOSM
was modelled with the graphical representation of the Peer Model. Then S-FOSM was
translated to source code that can be executed with the Java runtime of the Peer Model.
Furthermore, in a simulation, fictive households used the S-FOSM to show that they can
share food with it. So, the fourth goal of the thesis was reached.

Finally, the previous described ICTs were taken and integrated into S-FOSS (a vision
of a Smart FOod Sharing Solution). At first the thesis described the properties of the
S-FOSS. Then prototypes of the GUI were created and fictive personas interacted in
storyboards with the S-FOSS to show how its processes work. Thereby the fifth goal of
the thesis was achieved.

8.2 Future work
This work has dealt intensively with food sharing and found some ideas for further
works on this topic (see subsection 8.2.1). Furthermore, for creating the S-FOSM (see
chapter 6) the work made use of the Peer Model and got ideas for future work on it (see
subsection 8.2.2).

8.2.1 Food sharing

The topic of food sharing is very broad and there are lots of possibilities for future work.
The following paragraphs are about topics that arose during the work on this thesis, but
were not handled since they were out of scope.

Data about food losses and food insecurity are on the one hand very imprecise and on
the other hand not very detailed (e.g. what food is wasted by whom). Food sharing and
other countermeasures against these problems need better data in order to be improved.
Furthermore, the collection of this data must be repeated in regular intervals to find out
if the implemented methods are working or not.

The S-FOSM presented in chapter 6 is just one way to solve the coordination problem
inherent to food sharing between households. The performance of this model can be
compared to other models that provide solutions for the food sharing problem either in
simulations (but therefore better data about food losses and food insecurity would be
useful) or in real operation.

Chapter 7 describes S-FOSS, a real-life implementation could be done in a future work.
As some of the prerequisites are not given (e.g. not all food products are equipped with
RFID tags), for the implementation some alternatives must be found (e.g. scanning the
bar code with the smart phone).

86

8.2. Future work

This thesis has mostly dealt with technical aspects of food sharing between households,
but there is more about it. For example the lawgivers in many countries did not yet have
reacted to the current trend in food sharing appropriately and so it is unclear under
with conditions food sharing is allowed and when it is forbidden. Additionally, the legal
situation differs from country to country. Hence, a detailed survey about the legal aspects
of food sharing would be useful.

8.2.2 Peer Model

With the use of the Peer Model, the complex coordination problem food sharing between
households, was to some degree easy to model and implement. But further improvements
would make it even more comfortable to deal with coordination problems using the Peer
Model. These ideas appeared during using the Peer Model:

A modeller to model coordination problems with the graphical notation of the peer model
is still under development [Schon]. One can use a general-purpose modeller (e.g. in this
thesis Visio was used), but it is quite cumbersome to find the right shapes for the Peer
Model and assemble them to a model. The right tool would make the modelling more
comfortable and prevent people from generating models that are not conform with the
graphical notation of the Peer Model.

There exist different runtime environments of the Peer Model for various platforms (e.g.
Java, Android and .NET). All of them support different features, but unfortunately none
of them all features, that the formal definition of the Peer Model provides. For this
work it was quite expensive to transform the created model into a model that only uses
features supported by the Java runtime, the runtime with the most features. So, all the
runtimes for the Peer Model (or at least one) should provide all features of the formal
model.

For this work a lot of time was invested to implement the source code for the Java
runtime from the graphical model. That is not difficult, but time-consuming. Hence, it
should be done automatically by a code generator. There exists already a tool that can
generate code for the embedded C runtime from Peer Model DSL, but it should also take
graphical models and generate source code for all Peer Model runtimes.

87

List of Figures

2.1 Per capita food losses for different regions (from [GCS+11]) 7
2.2 Change of the magnitude of undernourishment in developing countries over

the time (from [FIW15]) . 10

3.1 Types of food sharing (from [Dav16]) . 15
3.2 Average number of food sharing initiatives per city for different regions (from

[DW17]) . 16
3.3 Prototype of a UrbanFoodSpot (from [Pla16]) 22
3.4 Create a food basket with the Foodsharing website 24
3.5 Details page of the Fair-Teiler Amtshaus Wien 7 (Photos and names of

Foodsharing users have been made irrecognisable) 24
3.6 Create listing with the OLIO Android app 26

4.1 Samsung Family Hub . 33
4.2 Autonomous transport robot from Starship Technologies 35

5.1 Graphical representation of a peer (without wirings and sub-peers) 43
5.2 Graphical representation of a link (without source and target container) . 44
5.3 Graphical representation of a wiring (guard and action links are not shown) 46

6.1 The FoodSharingPeer (from a high level point of view) 50
6.2 SendMyFoodOfferToManagerWiring . 52
6.3 MyFoodOfferExpiredWiring . 52
6.4 GetMatchingFoodOffersWiring . 53
6.5 NoMatchingFoodOffersWiring . 53
6.6 RequestTransportForFoodOfferWiring . 53
6.7 UpdateStatusWiring . 54
6.8 SelectFoodWiring . 54
6.9 NoFeasibleTransportWiring . 55
6.10 ReserveFoodAndTransportWiring . 55
6.11 ReservationTimeoutWiring . 55
6.12 ReserveFoodWiring . 56
6.13 CancelFoodReservationWiring . 56
6.14 PrepareFoodReleaseWiring . 56

89

6.15 ReleaseFoodWiring . 56
6.16 FoodNotPickedUpWiring . 57
6.17 ReserveTransportWiring . 57
6.18 GetTransportReservationWiring . 57
6.19 CancelTransportReservationWiring . 58
6.20 PrepareForFoodReceivingWiring . 58
6.21 FoodReceivingWiring . 58
6.22 FoodNotReceivedWiring . 58
6.23 GetMatchingFoodOffersWiring (adapted S-FOSM) 60
6.24 ReserveFoodAndTransportWiring (adapted reservation process) 61
6.25 CommitReservationsWiring (adapted reservation process) 61
6.26 ReservationTimeoutWiring (adapted reservation process) 61
6.27 CleanUpFoodReservationWiring (adapted reservation process) 61
6.28 CleanUpTransportReservationWiring (adapted reservation process) 62
6.29 ReserveFoodWiring (adapted reservation process) 62
6.30 CancelFoodReservationWiring (adapted reservation process) 62
6.31 PrepareFoodReleaseWiring (adapted reservation process) 62
6.32 PrepareForFoodReceivingWiring (adapted reservation process) 62
6.33 FoodOfferManagerPeer . 66
6.34 TransportManagerPeer . 67

7.1 Notification to share food . 78
7.2 Select products to share . 78
7.3 Set Handover options . 79
7.4 Food handover . 79
7.5 Show food inventory . 81
7.6 Enter food needs . 81
7.7 Food take over . 82
7.8 Reminder to take over food . 82

List of Tables

5.1 Comparison of popular coordination models 40

6.1 Simulation results . 70

90

List of Algorithms

6.1 Java code of the FoodSharingPeer . 63
6.2 Java code of the GetMatchingFoodOffersWiring 63

91

Acronyms

AGT automated guided transport. 33

AGV automated guided vehicles. 33

ALE Application Level Event. 31

ASRW Availability-Surplus-Recoverability-Waste. 17

dest destination. 41, 42, 44

DoR Degree of Recoverability. 17, 18

EC entry collection. 44–46

EPC Electronic Product Code. 30, 31

FAO Food and Agriculture Organisation of the United Nations. 5, 9

fid flow identifier. 41, 43–45

FSC food supply chain. 5, 6, 8, 17, 19

FWTX flexible wiring transactions. 46, 47, 59, 60

GDP gross domestic product. 8, 10

GID General ID. 31

GTIN Global Trade Item Number. 30

GUI graphical user interface. 3, 76, 86

HF high frequency. 30

ICT information and communication technology. xiii, 1–3, 14, 15, 17, 21, 22, 27, 29, 30,
32, 34–36, 70, 71, 83, 85, 86

93

LF low frequency. 30

MDG Millennium Development Goal. 9

ONS Object Naming Service. 31

PIC peer input container. 41, 42

PM-DSL Peer Model Domain Specific Language. 40

POC peer output container. 42

RFID radio-frequency identification. xiii, 29–32, 35, 36, 72, 73, 80, 86

S-FOSM a Smart FOod Sharing Model. xiv, 49–70, 86, 90

S-FOSS a vision of a Smart FOod Sharing Solution. xiv, 71–83, 86

SSCC Serialized Shipping Container Code. 30

ttl time-to-live. 41, 42, 44, 45

tts time-to-start. 41, 44, 45

UAV unmanned aerial vehicle. 34

UHF super high frequency. 30

UHF ultra high frequency. 30

USDA United States Department of Agriculture. 9, 12

WFP World Food Program. 11

WFS World Food Summit. 8, 9

WTX wiring transaction. 45, 46

XVSM extensible virtual shared memory. 42, 43

94

Bibliography

[Arb04] Farhad Arbab. Reo: A channel-based coordination model for component
composition. Mathematical. Structures in Comp. Sci., 14(3):329–366, June
2004.

[Bar10] Christopher B. Barrett. Measuring food insecurity. Science, 327(5967):825–
828, 2010.

[BCC+10] Manuela Bucci, Caterina Calefato, Sergio Colombetti, Monica Milani, and
Roberto Montanari. Fridge Fridge on the Wall: what Can I Cook for Us All?
An HMI Study for an Intelligent Fridge. In Proceedings of the International
Conference on Advanced Visual Interfaces, AVI ’10, page 415. ACM, 2010.

[BCH16] Graeme Bampton, Dalene Campbell, and Werner Heyns. Autonomous
transport - the future is now. Civil Engineering : Magazine of the South
African Institution of Civil Engineering, 24:9–16, September 2016.

[BEK93] Omran A. Bukhres, Ahmed K. Elmagarmid, and eva Kühn. Implementation
of the Flex Transaction Model. IEEE Data Eng. Bull., 16(2):28–32, June
1993.

[BKHM+16] G. Bernhofer, M. Kalleitner-Huber, G. Mraz, C. Pladerer, M. Pohl,
E. Weißenböck, R. Wauschek, and S. Gemballa. UrbanFoodSpots – Kühlsta-
tionen mit integriertem Informationssystem zur Lebensmittelweitergabe im
urbanen Raum. Technical report, Österreichisches Ökologie-Institut, 2016.

[BVW+13] Robert E. Black, Cesar G. Victora, Susan P. Walker, Zulfiqar A. Bhutta,
Parul Christian, Mercedes de Onis, Majid Ezzati, Sally Grantham-McGregor,
Joanne Katz, Reynaldo Martorell, Ricardo Uauy, and the Maternal and
Child Nutrition Study Group. Maternal and child undernutrition and
overweight in low-income and middle-income countries. The Lancet, 382:427–
451, June 2013.

[CJRGS16] Alisha Coleman-Jensen, Matthew P. Rabbitt, Christian A. Gregory, and
Anita Singh. Household Food Security in the United States in 2015. Eco-
nomic Research Report 215, United States Department of Agriculture,
September 2016.

95

[CKS09] Stefan Craß, eva Kühn, and Gernot Salzer. Algebraic Foundation of a
Data Model for an Extensible Space-Based Collaboration Protocol. In
Proceedings of the 2009 International Database Engineering & Applications
Symposium, pages 301–306. ACM, 2009.

[CRC12] Alessandra Cozzolino, Silvia Rossi, and Alessio Conforti. Agile and lean
principles in the humanitarian supply chain: The case of the United Nations
World Food Programme. Journal of Humanitarian Logistics and Supply
Chain Management, 2:16–33, 2012.

[Csu14] Maximilian Alexander Csuk. Developing an Interactive, Visual Monitoring
Software for the Peer Model Approach. Master’s thesis, Vienna University
of Technology, 2014.

[CV16] Aaron Ciaghi and Adolfo Villafiorita. Beyond food sharing: Supporting
food waste reduction with ICTs. In Smart Cities Conference (ISC2), 2016
IEEE International, pages 1–6. IEEE, 2016.

[Dav16] Anna R. Davies. Sharecity typologies of food sharing. Working paper 1,
Trinity college Dublin, Ireland, 2016.

[DEM+17] Anna R. Davies, Ferne Edwards, Brigida Marovelli, Oona Morrow, Monika
Rut, and Marion Weymes. Creative construction: crafting, negotiating and
performing urban food sharing landscapes. Area, 2017.

[dLN15] Willem de Lange and Anton Nahman. Costs of food waste in South Africa:
Incorporating inedible food waste. Waste Management, 40:167–172, March
2015.

[Dob12] Daniel M. Dobkin. The RF in RFID: UHF RFID in Practice. Newnes,
Kidlington UK, 2012.

[DW17] A. Davies and M. Weymes. The SHARECITY100 Database. SHARECITY
Briefing Note 1, Trinity college Dublin, Ireland, 2017.

[ELLR90] Ahmed Elmagarmid, Yungho Leu, Witold Litwin, and Marek Rusinkiewicz.
A Multidatabase Transaction Model for InterBase. In Proceedings of the
16th International Conference on Very Large Data Bases, pages 507–581.
Morgan Kaufmann Publishers Inc, 1990.

[FAO81] FAO. Food loss prevention in perishable crops. Number 43 in FAO agriculture
organisation services bulletin. FAO, Rome, 1981.

[FAO01] FAO. The State of Food Insecurity in the World 2001. FAO, Rome, 2001.

[FAO03] FAO. Trade reforms and food security: Conceptualizing the linkages. FAO,
Rome, 2003.

96

[FAO06] FAO. Food security. Policy brief, FAO’s Agriculture and Development
Economics Division (ESA), June 2006.

[FAO14] FAO. Mitigation of food wastage. Societal costs and benefits. FAO, Rome,
2014.

[Fin15] Klaus Finkenzeller. RFID-Handbuch: Grundlagen und praktische Anwen-
dungen von Transpondern, kontaktlosen Chipkarten und NFC. Carl Hanser
Verlag GmbH Co KG, Munich, 2015.

[FIW15] FAO, IFAD, and WFP. The State of Food Insecurity in the World 2015.
Meeting the 2015 international hunger targets: taking stock of uneven
progress. FAO, Rome, 2015.

[Flä16] Heike Flämig. Autonomous vehicles and autonomous driving in freight
transport. In Autonomous Driving, pages 365–385. Springer, Berlin, 2016.

[Flö05] Christian Flörkemeier. EPC-Technologie — vom Auto-ID Center zu EPC-
global. In Das Internet der Dinge: Ubiquitous Computing und RFID in
der Praxis: Visionen, Technologien, Anwendungen, Handlungsanleitungen,
pages 87–100. Springer, Berlin, 2005.

[FM89] Anna T.C. Feistner and William C. McGrew. Food-sharing in primates: a
critical review. Perspectives in primate biology, 3:21–36, 1989.

[FS16] A. D. Floarea and V. Sgârciu. Smart refrigerator: A next generation
refrigerator connected to the IoT. In 2016 8th International Conference
on Electronics, Computers and Artificial Intelligence (ECAI), pages 1–6.
IEEE, June 2016.

[FWCF14] Geremy Farr-Wharton, Jaz Hee-Jeong Choi, and Marcus Foth. Food talks
back: exploring the role of mobile applications in reducing domestic food
wastage. In Proceedings of the 26th Australian Computer-Human Interaction
Conference on Designing Futures: the Future of Design, pages 352–361.
ACM, 2014.

[FWFC13] Geremy Farr-Wharton, Marcus Foth, and Jaz Hee-jeong Choi. Eatchafood:
challenging technology design to slice food waste production. In Proceedings
of the 2013 ACM conference on Pervasive and ubiquitous computing adjunct
publication, pages 559–562. ACM, 2013.

[GB06] Bill Glover and Himanshu Bhatt. RFID Essentials. O’Reilly Media, Inc.,
Sebastopol USA, 2006.

[GBC+10] H. Charles J. Godfray, John R. Beddington, Ian R. Crute, Lawrence Haddad,
David Lawrence, James F. Muir, Jules Pretty, Sherman Robinson, Sandy M.
Thomas, and Camilla Toulmin. Food security: the challenge of feeding 9
billion people. science, 327:812–818, 2010.

97

[GCS+11] Jenny Gustavsson, Christel Cederberg, Ulf Sonesson, Robert Van Otterdijk,
and Alexandre Meybeck. Global food losses and food waste – Extent, causes
and prevention. FAO, Rome, 2011.

[GFC13] Eva Ganglbauer, Geraldine Fitzpatrick, and Rob Comber. Negotiating Food
Waste: Using a Practice Lens to Inform Design. ACM Trans. Comput.-Hum.
Interact., 20:11:1–11:25, May 2013.

[GFSG14] Eva Ganglbauer, Geraldine Fitzpatrick, Özge Subasi, and Florian
Güldenpfennig. Think Globally, Act Locally: A Case Study of a Free
Food Sharing Community and Social Networking. In Proceedings of the
17th ACM Conference on Computer Supported Cooperative Work & Social
Computing, CSCW ’14, pages 911–921. ACM, 2014.

[Gib12] Mark Gibson. Food security—a commentary: What is it and why is it so
complicated? Foods, 1(1):18–27, December 2012.

[GLU12] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous driving?
The KITTI vision benchmark suite. In 2012 IEEE Conference on Computer
Vision and Pattern Recognition, pages 3354–3361. IEEE, June 2012.

[GMP14] Paola Garrone, Marco Melacini, and Alessandro Perego. Opening the black
box of food waste reduction. Food policy, 46:129–139, 2014.

[Ham15] Thomas Hamböck. Towards a Toolchain for Asynchronous Embedded
Programming based on the Peer-Model. Master’s thesis, Vienna University
of Technology, 2015.

[HBS73] Carl Hewitt, Peter Bishop, and Richard Steiger. A Universal Modular
ACTOR Formalism for Artificial Intelligence. In Proceedings of the 3rd
International Joint Conference on Artificial Intelligence, IJCAI’73, pages
235–245, San Francisco, 1973. Morgan Kaufmann Publishers Inc.

[HBSA16] A. Hachani, I. Barouni, Z. Ben Said, and L. Amamou. Rfid based smart
fridge. In 2016 8th IFIP International Conference on New Technologies,
Mobility and Security (NTMS), pages 1–4. IEEE, November 2016.

[HGDC09] Kevin D. Hall, Juen Guo, Michael Dore, and Carson C. Chow. The
Progressive Increase of Food Waste in America and Its Environmental
Impact. PLOS ONE, 4(11):1–6, November 2009.

[HS13] Sue Horton and Richard H. Steckel. Malnutrition global economic losses
attributable to malnutrition 1900-2000 and projections to 2050. In How
Much have Global Problems Cost the World? Cambridge University Press,
Cambridge, 2013.

[JVS11] Adrian V. Jaeggi and Carel P. Van Schaik. The evolution of food sharing
in primates. Behavioral Ecology and Sociobiology, 65:2125–2140, June 2011.

98

[KCH14] eva Kühn, Stefan Craß, and Thomas Hamböck. Approaching coordination
in distributed embedded applications with the peer model DSL. In 40th EU-
ROMICRO Conference on Software Engineering and Advanced Applications
(EUROMICRO-SEAA), pages 64–68. IEEE, 2014.

[KCJ+13] eva Kühn, Stefan Craß, Gerson Joskowicz, Alexander Marek, and Thomas
Scheller. Peer-Based Programming Model for Coordination Patterns. In
15th International Conference on Coordination Models and Languages (CO-
ORDINATION), held as part of the 8th International Federated Conference
on Distributed Computing Techniques (DisCoTec), pages 121–135. Springer,
2013.

[KCJN14] eva Kühn, Stefan Craß, Gerson Joskowicz, and Martin Novak. Flexible Mod-
eling of Policy-Driven Upstream Notification Strategies. In 29th Symposium
On Applied Computing (SAC). ACM, 2014.

[KCS15] eva Kühn, Stefan Craß, and Gerald Schermann. Extending a Peer-Based
Coordination Model with Composable Design Patterns. In 23rd Euromi-
cro International Conference on Parallel, Distributed, and Network-Based
Processing (PDP), pages 53–61. IEEE, 2015.

[Küh16] eva Kühn. Reusable coordination components: Reliable development of
cooperative information systems. International Journal of Cooperative
Information Systems, 25:1740001, 2016.

[Küh17] eva Kühn. Flexible Transactional Coordination in the Peer Model. In 7th
IPM International Conference on Fundamentals of Software Engineering
(FSEN). Springer, 2017.

[LADK06] Tuan Le-Anh and M.B.M. De Koster. A review of design and control
of automated guided vehicle systems. European Journal of Operational
Research, 171:1–23, May 2006.

[Lan05] Jeremy Land. The history of RFID. IEEE Potentials, 4:8–11, 2005.

[LdFM08] Jan Lundqvist, Charlotte de Fraiture, and David Molden. Saving Water:
From Field to Fork – Curbing Losses and Wastage in the Food Chain. SIWI
policy brief, 2008.

[LJL09] Suhuai Luo, Jesse Jin, and Jiaming Li. A smart fridge with an ability to
enhance health and enable better nutrition. Int. J. Multimedia Ubiquitous
Eng, 4(2):66–80, 2009.

[LU15] Katharina Lehmann-Uschner. Die langfristigen Folgen von Mangel-und
Unterernährung in Entwicklungsländern. Research Report DIW Roundup:
Politik im Fokus, No. 69, DIW Berlin, 2015.

99

[LW95] Douglas C. Long and Donald F. Wood. The logistics of famine relief. Journal
of Business Logistics, 16(1):213–229, 1995.

[MFI+16] Piergiuseppe Morone, Pasquale Marcello Falcone, Enrica Imbert, Marcello
Morone, and Andrea Morone. New consumers behaviours in the sharing
economy: An experimental analysis on food waste reduction. Working
Paper 2016/11, Economics Department, Universitat Jaume I, Castellón
(Spain), 2016.

[Mic04] Gurven Michael. To give and to give not: The behavioral ecology of human
food transfers. Behavioral and brain sciences, 27:543–583, August 2004.

[MK05] Olaf Müller and Michael Krawinkel. Malnutrition and health in developing
countries. Canadian Medical Association Journal, 173(3):279–286, 2005.

[Mur16] Benjamin Murphy. Assessing the Sustainability of ICT Enabled Urban
Food Sharing in Dublin. Master’s thesis, University of Dublin, 2016.

[OGS10] Steven Were Omamo, Ugo Gentilini, and Susanna Sandström, editors.
Revolution: From Food Aid to Food Assistance. WFP, Rome, 2010.

[PA09] Per Pinstrup-Andersen. Food security: definition and measurement. Food
security, 1:5–7, 2009.

[PBM10] Julian Parfitt, Mark Barthel, and Sarah Macnaughton. Food waste within
food supply chains: quantification and potential for change to 2050. Philo-
sophical Transactions of the Royal Society of London B: Biological Sciences,
365:3065–3081, 2010.

[Pet62] Carl Adam Petri. Kommunikation mit Automaten. PhD thesis, Technische
Hochschule Darmstadt, 1962.

[Pla16] Christian Pladerer. UrbanFoodSpots: Kühlstationen mit integriertem Infor-
mationssystem zur Lebensmittelweitergabe im urbanen Raum. Conference
talk slides, 2016. Recy&DepoTech 2016.

[QJ09] Tom Quested and Hannah Johnson. Household Food and Drink Waste in
the UK. Report, WRAP, 2009.

[Rau14] Dominik Rauch. PeerSpace.NET: Implementing and Evaluating the Peer
Model with Focus on API Usability. Master’s thesis, Vienna University of
Technology, 2014.

[RIfEuL08] Max Rubner-Institut and Bundesforschungsinstitut für Ernährung und
Lebensmittel. Ergebnisbericht, Teil 2. In Nationale Verzehrs Studie II.
Max Rubner-Institut and Bundesforschungsinstitut für Ernährung und
Lebensmittel, 2008.

100

[RKB16] Stacey Rosen, Thome Karen, and Meade Birgit. International food security
assessment, 2016-2026. Technical report, U.S. Department of Agriculture,
2016.

[Rot07] M. Rothensee. A high-fidelity simulation of the smart fridge enabling
product-based services. In 2007 3rd IET International Conference on
Intelligent Environments, pages 529–532. IEEE, September 2007.

[Rou12] José Rouillard. The Pervasive Fridge. A smart computer system against
uneaten food loss. In Seventh International Conference on Systems
(ICONS2012), pages pp. 135–140. HAL CCSD, February 2012.

[Sch14] Gerald Schermann. Extending the Peer Model with Composable Design
Patterns. Master’s thesis, Vienna University of Technology, 2014.

[Sch17] Jörg Schoba. Mobile Peer Model A mobile peer-to-peer communication and
coordination framework - with focus on scalability and security. Master’s
thesis, Vienna University of Technology, 2017.

[Schon] Matthias Schwayer. Towards a Visual Design and Development Environment
for the Peer Model. Master’s thesis, Vienna University of Technology, in
preparation.

[SJQM16] Åsa Stenmarck, Carl Jensen, Tom Quested, and Graham Moates. Estimates
of European food waste levels. Report, FUSIONS, March 2016.

[TCM+12] Anja Thieme, Rob Comber, Julia Miebach, Jack Weeden, Nicole Kraemer,
Shaun Lawson, and Patrick Olivier. We’ve bin watching you: designing
for reflection and social persuasion to promote sustainable lifestyles. In
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pages 2337–2346. ACM, 2012.

[Thu11] Valentin Thurn. Taste the waste. DVD, 2011.

[Til17] Peter Tillian. Mobile Peer Model A mobile peer-to-peer communication and
coordination framework - with focus on mobile constraints and persistence.
Master’s thesis, Vienna University of Technology, 2017.

[TT10] Gerrit Tamm and Christoph Tribowski. RFID. Springer, Berlin, 2010.

[VZA+14] D. G Victor, D. Zhou, E.H.M. Ahmed, P.K. Dadhich, J.G.J Olivier, H-H.
Rogner, K. Sheikho, and M. Yamaguchi. Introductory chapter. In Climate
Change 2014: Mitigation of Climate Change, Cabridge, 2014. Cambridge
University Press.

[Wan06] Roy Want. An introduction to RFID technology. IEEE Pervasive Comput-
ing, 5:25–33, 2006.

101

[WFP] WFP. Contributions to wfp in 2016. http://www.wfp.org/funding/
year/2016, last visited 24.03.2017.

[Wru13] Thomas Wruß. Guidelines to Support Design and Development of Trust
in Mobile Community Applications. Master’s thesis, Vienna University of
Technology, 2013.

[XYL+13] Lei Xie, Yafeng Yin, Xiang Lu, Bo Sheng, and Sanglu Lu. iFridge: An
Intelligent Fridge for Food Management Based on RFID Technology. In
Proceedings of the 2013 ACM Conference on Pervasive and Ubiquitous
Computing Adjunct Publication, UbiComp ’13 Adjunct, pages 291–294.
ACM, 2013.

102

http://www.wfp.org/funding/year/2016
http://www.wfp.org/funding/year/2016

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Aim of the work
	Methodological approach
	Structure of the work

	Global food situation survey
	Food losses and food waste
	Food insecurity and undernourishment
	Prospects of enhanced assignment
	Summary

	State of the art in food sharing solutions and research
	Literature and research approaches
	Deployed solutions for food sharing between households
	Summary and open issues

	State of the art in ICT suited for food sharing
	RFID
	Smart fridges
	Autonomous goods transport
	Others
	Summary

	Coordination models
	Selection of a suitable coordination model
	Peer Model
	Summary

	FOSM: a Smart FOod Sharing Model
	Modelling the FOSM
	Implementation of the FOSM
	Using FOSM in a food sharing simulation
	Summary

	FOSS: a vision of a Smart FOod Sharing Solution
	Properties of the FOSS
	The FOSS in action
	Summary

	Conclusion
	Summary
	Future work

	List of Figures
	List of Tables
	List of Algorithms
	Acronyms
	Bibliography

