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Kurzfassung

Neurochirurgen treffen Entscheidungen auf Basis ihres Expertenwissens. In diesem Prozess
werden Faktoren wie die Distanz zu gefährdeten Strukturen, Pfadlänge und -winkel, etc.
berücksichtigt. Während manche Kriterien (wie etwa das Unterschreiten der minimalen
Distanz zu Blutgefäßen) zum Ausschluß einer potentiellen Trajektorie führen, sind
andere Kriterien (etwa die Pfadlänge) weniger rigide. Diese Faktoren können dann
zur Reihung und Bewertung von potentiellen Trajektorien herangezogen werden. Nach
Analyse tatsächlich erfolgter Eingriffe sowie Rücksprache mit Neurochirurgen haben wir
wichtige Regeln zur Planung und Durchführung von Gehirnbiopsien identifiziert.

In dieser Arbeit präsentieren wir BrainXplore, ein in Zusammenarbeit mit der medizin-
schen Universität Wien entwickeltes System zur Unterstützung von Neurochriurgen bei
der Planung von Gehirnbiopsien. BrainXplore ist ein erweiterbares Biopsieplanungs-
rahmenwerk, das die erarbeiteten Regeln implementiert und dabei dem Benutzer volle
Flexibilität hinsichtlich deren Definition und Erweiterung bietet. Das System berechnet
automatisch eine Menge an potentiellen Trajektorien. Durch die Definition und Verfei-
nerung der Regeln kann diese Menge schrittweise verkleinert werden, bis eine geeignete
Trajektorie gefunden wurde. Durch den Einsatz eines räumlichen Indexes können beliebig
viele anatomische Strukturen bei beliebiger Auflösung zur Berechnung der Trajektorien
herangezogen werden. Somit wird der Einsatz hochauflösender multimodaler Datensätze
möglich, welcher bisher aufgrund von Speicherplatzlimiterungen der Graphikkarte unmög-
lich war. Um den Neurochirurgen bei der Entscheidungsfindung zu unterstützen bietet
BrainXPlore Methoden der Informationsvisualisierung, wie parallele Koordinatensysteme
und Risikoprofildiagramme.

Wir haben BrainXPlore auf realen Daten einer tatsächlich erfolgten Biopsie getestet
und akzeptable Resultate erzielt. Der partizipierende Neurochirurg gab uns das Feedback,
dass der Einsatz von BrainXPlore zu einer Verringerung der Dauer von Gehirnbiopsien
führen kann und sinnvoll zur Unterstützung weniger erfahrener Chirurgen eingesetzt
werden kann.
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Abstract

Neurosurgeons make decisions based on expert knowledge that takes factors such as
safety margins, the avoidance of risk structures, trajectory length and trajectory angle
into consideration. While some of those factors are mandatory, others can be optimized
in order to obtain the best possible trajectory under the given circumstances. Through
comparison with the actually chosen trajectories from real biopsies and qualitative
interviews with domain experts, we identified important rules for trajectory planning.

In this thesis, we present BrainXplore, an interactive visual analysis tool for aiding
neurosurgeons in planning brain biopsies. BrainXplore is an extendable Biopsy
Planning framework that incorporates those rules while at the same time leaving full
flexibility for their customization and adding of new structures at risk. Automatically
computed candidate trajectories can be incrementally refined in an interactive manner
until an optimal trajectory is found. We employ a spatial index server as part of our
system that allows us to access distance information on an unlimited number of risk
structures at arbitrary resolution. Furthermore, we implemented InfoVis techniques such
as Parallel Coordinates and risk signature charts to drive the decision process. As a case
study, BrainXPlore offers a variety of information visualization modalities to present
multivariate data in different ways.

We evaluated BrainXPlore on a real dataset and accomplished acceptable results. The
participating neurosurgeon gave us the feedback that BrainXPlore can decrease the
time needed for biopsy planning and aid novice users in their decision making process.
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CHAPTER 1
Introduction

More than 100 different tumor types with widely divergent biologies and clinical outcomes
are known [SR06]. Different treatment options, such as surgery, radiation, and palliative
cytotoxics exist and are well established in medicine. Before deciding between further
treatment options, however, the tumor needs to be identified.

A brain tumor biopsy is the extraction of tissue from a tumor for the analysis of its
nature, i.e., whether it is benign or malignant. For the biopsy, a hole is drilled into the
cranium, trough which a biopsy needle is inserted into the brain. In general, a needle
trajectory is defined by an entry point in the skin and a target point on the tumor.

To prevent permanent damage to the patient, vital tissues have to be avoided by the
trajectory and hence, protected from damage caused by the needle. Certain rules have
to be fulfilled for a trajectory to be deemed acceptable. Amongst those rules are the
avoidance of risk structures, minimization of trajectory length, etc.

Satisfying all those rules requires good knowledge of the particular brain’s anatomy.
Due to the high risk, carrying out the biopsy also requires a high degree of precision
A stereotactic brain biopsy makes use of medical imaging data such as magnetic
resonance imaging (MRI) and computer tomography (CT) to precisely identify and target
any brain area in a 3D coordinate system. The biopsy needle can be positioned by a
robotic arm after the patient was registered to the 3D coordinate system. Stereotactic
biopsies are well established and have a high success rate. Shoshan et al. [SPS+95]
report a diagnostic success rate of 96% over a three-year period.

Deep Brain Stimulation (DBS) is a method of treating advanced Parkinson’s dis-
ease [BSB04], movement disorders and other psychiatric and neurological disorders such
as epilepsy [LKG14]. The neurosurgeon places electrodes in the patient’s brain along
well-defined neural pathways. These electrodes further serve to regulate the flow of neural
information, including pathological signals mediating seizure propagation. This mech-
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1. Introduction

anism is known as neuro-modulation. Like brain biopsies, the placement of electrodes
requires careful and precise planning.

Despite the available technologies and tools, brain biopsy and DBS planning is still a
time-intensive task that requires a high amount of expert knowledge. Different systems
have been proposed to plan and visualize needle trajectories. While some aspects of
the planning process are (partially) solved by the proposed systems, others need to be
improved upon.

For one, most systems operate on a rigid set of rules to augment the planning process. To
our knowledge, no existing work allows the inclusion of an arbitrary number of distinct
structures (e.g., fiber bundles, anatomical atlas, etc) and the flexible definition of rules
for trajectory filtering. This does not necessarily allow neurosurgeons, who ultimately
are the domain experts, to use the tool in such a way as to optimally support their (or
their hospital’s) preferred planning methods.

On the other hand, only a limited number of structures is taken into consideration by
existing solutions at this moment. As brain atlases become more sophisticated and
white matter tracts are better understood, the number of structures that are considered
when planning a biopsy is likely to increase greatly in the near future. Orringer et al.
[OGJ12] points out that advances in MRI imaging provide the possibility of incorporating
functional data into the neuronavigational datasets. Modern imaging data that might
have not been considered for planning purposes in the past, such as fMRI, is gaining
significance [BHWB07]. When designing planning tools, these developments have to be
accounted for and scalability must be guaranteed. Some of the existing systems limit
themselves by design, others are limited by their system architecture with regards to
future scalability (e.g., by the reliance on video memory, which is limited in typical
consumer hardware).

In this thesis we propose BrainXPlore, an interactive data exploration and filtering
system to support the neurosurgeon in planning biopsies. BrainXPlore offers a set
of filtering operations that allow the surgeon to incrementally refine a set of potential
trajectories until an optimum has been found.

We solve the issue of scalability by including a spatial index server that has previously
successfully been used in the research of fly brains [BŠG+09]. This component in our
work-flow allows us, in contrast to existing solutions, to access a very high number
of structures at an arbitrary spatial resolution. Šoltészová [Šol10] has presented the
efficiency of the index structure for large distance tables of 2GB.

Besides supporting the surgeon, we also aim at creating insight when it comes to the
decision process. To evaluate our system, we had a neurosurgeon use BrainXPlore to
go through the planning process on a real-world data set of a past biopsy.

The remainder of this thesis is structured as follows: Chapter 1, provides information
of the methods used in medical image acquisition and data segmentation. An overview
over the planning guidelines as laid down by a domain expert at our partner hospital
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is given. Finally, we present a real case study to illustrate the state of the art in brain
biopsy planning. Chapter 2 evaluates related work in the fields of biopsy planning
and visualization of multivariate data. Chapter 4 offers an overview of the software
and hardware we used for the implementation. Chapter 5 provides information on the
methods we have employed when designing and implementing BrainXPlore. Imple-
mentation details are outlined in Chapter 6. Chapter 7 evaluates our system based
on a real data set. Finally, Chapter 8 summarizes the contributions of this thesis and
proposes future work.
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CHAPTER 2
Medical Background

Stereotactic brain biopsies are an efficient and safe [TFM+09] method of obtaining
tissue samples of brain tumors for further histological evaluation. The planning process
builds upon detailed knowledge of the human brain. Because no two brains are identical,
medical images have to be obtained for every patient. Orringer et al. [OGJ12] state that
"currently, all systems for stereotactic biopsy rely on navigation based on preoperatively
obtained images". To build a (semi)automated planning system, structures at risk need
to be segmented from the obtained data. Blood vessels are arguably the most critical
of these structures. Another commonly considered example is the ventricular system,
comprised of the lateral ventricles, third and fourth ventricle.

This Chapter is structured as follows. In Section 2.1, we describe the medical imaging
methods that are employed to acquire the data needed to plan a biopsy. Section 2.2
describes the process of segmenting structures at risk from the obtained data. Finally,
planning guidelines from related literature are presented in Section 2.3.

2.1 Medical Imaging Methods

Many anatomical structures can be considered in the process of planning a brain biopsy.
In order to use data, it first needs to be acquired. The following sections describe the
data acquisition methods and explain the relevance of the different data modalities to
the planning process.

2.1.1 Computed tomography

As presented in Chapter 3, in brain biopsy planning, the skull is often used to automatically
calculate candidate entry points. The best modality for skull image data acquisition is
computed tomography (CT).
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2. Medical Background

Figure 2.1: CT windowing as illustrated by Xue et al. [XAL+12]. (a): Brain window.
(b): Bone window.

CT, specifically X-ray CT, is an imaging method that combines X-rays taken from
different angles to produce a 3D model of the respective area. Each voxel gets assigned a
value corresponding to its radio density µ.

CT offers a standardized unit for describing radio densities, namely, the Hounsfield scale
(HU). Air has a value of -1000HU (µair), water is 0 HU(µwater). All other values are
scales with regards to the radio density of air and water, as described in Equation 2.1.
Depending on the structures of interest, CT data can be windowed in order to optimize
contrast. Windowing describes the process of limiting the relevant scale of values to a
defined area, i.e., the window. A window is defined by a center and a width. Grey values
are then mapped to the values that fall into the interval [center − width

2 ; center + width
2 ],

with the value center − width
2 being mapped to black and center + width

2 being mapped
to white. Table 2.1 gives examples of commonly used windows. Figure 2.1 illustrates the
same dataset, displayed with a bone window and a brain window.

HU = 1000 ∗ µ− µwater
µwater − µair

(2.1)

Due to the use of ionizing radiation, CT comes at a risk. Based on their risk estimate
from 1991 through 1996, Brenner et al. state that "it has been estimated that about
0.4% of all cancers in the United States may be attributable to the radiation from CT
studies" [BH07] and go on to project that "this estimate might now be in the range of
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2.1. Medical Imaging Methods

Center Width
Lung -650 1500
Emphysema -800 800
Soft tissue without contrast agent 40 400
Liver without contrast agent 40 200
Soft tissue with contrast agent 70 400
Liver with contrast agent 60 - 100 300
Neck with contrast agent 50 300
CT Angiography 100 - 200 500
Bones 500 2000
Osteoporosis 300 1000 - 1500

Table 2.1: Commonly used CT windows, adapted from Prokop et al. [PGSP06]

1.5 to 2.0%" based on the current CT use. Hence, eliminating CT scans from the biopsy
planning process does not only make data fusion simpler and the whole process cheaper
(by eliminating an additional study), but also potentially preserves patient health.

2.1.2 Magnetic Resonance Imaging

In biopsy planning, differentiating between different tissue types, e.g., in the brain, is
crucial. For soft tissues, Magnetic Resonance Imaging (MRI) is better suited than
CT, as it provides much more detail.

MRI is based on the relaxation of hydrogen atoms after excitation by a strong electromag-
netic field. Schild [Sch12] describes the process quite simply: "1) the patient is placed in
a magnet, 2) radio wave is sent in, 3) the radio wave is turned off, 4) the patient emits a
signal, which is received and used for 5) reconstruction of the picture" [Sch12].

Atoms consist of a nucleus and a shell. Inside the nucleus, amongst other things, are
protons, i.e., positively charged particles. Protons spin around their axes and thereby
create an electrical current. While protons are normally aligned in a random fashion,
exposure to a strong magnetic field aligns them either parallel or anti-parallel to the
external magnetic field. Slightly more protons are aligned parallel than anti-parallel.
Protons precess around the magnetic fields longitudinal axis. The precession frequency is
dependent of the magnetic field strength and can be calculated as stated in Equation 2.2.
ω0 specifies the precession frequency, γ is the gyro-magnetic ratio and B0 indicates the
magnetic field strength.

ω0 = γB0 (2.2)

Parallelly and anti-parallelly aligned protons that point in opposite directions cancel
each other out when it comes to the net electric current they create. Since there
are more parallelly than anti-parallelly aligned protons, however, not all current is
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2. Medical Background

eliminated. When considering the reduced set of protons, i.e., only those with a parallel
alignment, elimination occurs in the plane perpendicular to the magnetic field. Let Z
be the axis defined by the magnetic field. Then, currents in the XY plane that point to
opposite directions cancel each other out. In contrast, all parallelly aligned positrons
induce magnetic vectors that point in the same direction along the Z axis and hence
add up. This magnetization is referred to as longitudinal magnetization. Because the
magnetization is longitudinal to the external magnetic field, however, it can not directly
be measured.

To resolve this issue, a radio frequency (RF) pulse is applied to the magnetic field. The
frequency is based on the Larmour Equation. By matching the radio frequency to the
protons precession frequency, resonance is created and energy transfer occurs. For one,
this energy transfer flips the alignment of some protons, such that parallelly aligned
protons take an anti-parallel alignment and hence, the longitudinal magnetization is
reduced. On the other hand, the RF pulse puts the protons in sync, i.e., they all point
to the same direction in the XY plane at the same time. The resulting magnetic vector
is referred to as transverse magnetization. Due to the precession of the positrons, the
magnetic vector is constantly moving, thus inducing an electric current that also has the
precession frequency. This current is the MR signal. After turning off the RF pulse, the
protons whose alignment has been flipped from parallel to anti-parallel take their initial
alignment again, thus increasing the longitudinal magnetization. This process is known
as longitudinal relaxation or spin-lattice relaxation (as the protons hand over energy to
their surroundings, the so-called lattice). The relaxation is described by a time constant
T1. Conversely, the transverse relaxation (also called spin-spin relaxation), is described
by a time constant T2. Different tissues have different relaxation times. While water,
for example, has a long T1 and long T2, fat has a short T1 and a shorter T2 than water
[Sch12].

Various sequences can be used to weigh an MRI. The most common are T1-weighted,
T2-weighted, T1-weighted with contrast, Diffusion and FLAIR. T1-weighted MRI is
particularly useful for assessing the cerebral cortex. T2-weighted MRI helps in detecting
edema and inflammation and revealing white matter lesions. Diffusion weighted imaging
(DWI) can be used to perform tractography and identify neural tracts.

While the Hounsfield scale used for CT offers a standardized scale, MRI images taken
for the same patient on the same scanner at different times may appear different from
each other due to a variety of scanner-dependent variations [NUZ00]. This means that
absolute intensity values have no fixed meaning and windowing has to be performed for
each image. More recently, variants of data standardization have been proposed, such as
the work performed by Nyul et al. [NUZ00].

Contrast agents can be used if necessary. Especially in the context of tumor detec-
tion, they further enhance the image contrast for more accurate cancer detection and
diagnosis [ZL13]. Paramagnetic compounds such as gadolinium based agents are the
most commonly used contrast agents in clinical MRI [ZL13]. They mainly reduce the
longitudinal (T1) relaxation property and result in a brighter signal [Sho13, ZL13]. Super-
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2.1. Medical Imaging Methods

Figure 2.2: T1-weighted, contrast enhanced MRI. Left Upper: 3D reconstruction. Right
Upper: Axial View. Left lower: Sagittal View. Right Lower: Coronal View

paramagnetic nanoparticles (SPMNPs) such as iron oxides, on the other hand, have a
strong effect on the transverse (T2) relaxation properties. Figure 2.2 shows an example
of a T1-weighted MRI after gadolinium injection in coronal, sagittal, and axial views as
well as a 3D reconstruction.

In contrast to CT, MRI has no ionizing radiation and is therefore deemed safer for most
applications. On the other hand, acquiring MRI takes a lot longer than CT. MRI is better
suited than CT for evaluating soft tissue structures. For evaluating bony structures, CT
is more suitable.

2.1.3 Diffusion-weighted Magnetic Resonance Imaging

White matter tracts, such as the corticospinal tract (CST) must not be damaged
during neuro surgeries, as this could potentially lead to lasting impairments of the patient.
One-sided damage to the CST, for example, usually leads to a paresis of the contralateral
side. While it is known that most of the CST’s neurons originate in the primary motor
cortex or the premotor frontal areas, the precise location must be found for each patient
individually before planning a biopsy. However, brain tracts are not identifiable by a
direct exam in MRI.

Diffusion, in its basic form, is the random movement of molecules. Given a concentration
gradient, i.e., a separation between areas of high and low concentrations of molecules, this
random movement will result in molecules passing from the area of higher concentration
to the area of lower concentration (and vice versa, but probability dictates that the
amount of movement from high to low will be higher). This phenomenon is called flux
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2. Medical Background

(J) and is defined by Fick’s first law as presented in Equation 2.3. The diffusion coefficient
D equates the flow vector and the concentration gradient c.

J = −D∇c (2.3)

Diffusion-weighted Magnetic Resonance Imaging (DWI) is an imaging method
that builds on MRI and exploits the diffusion patterns of water molecules to reveal
microscopic details about tissues. DWI provides an estimate of the rate of water
diffusion for each voxel. This information can be used to detect early stages of a
pathological change.

To acquire a DWI image, first an RF is applied to the subject as with standard MRI,
to excite water molecules. Then, a positive, so-called dephasing gradient magnetic
field is set up. This dephasing gradient will cause electrons in water atoms to spin at
different speeds with respect to their spatial location inside the gradient field (they are
brought out of phase, hence, dephasing gradient). Once the gradient is turned off (i.e., a
homogeneous magentic field is restored), rotation speed will be the same again for all
molecules. Applying a gradient inverse to the initial one will again cause rotation speeds
to change with respect to the corresponding atoms location. If the same field strength
was applied for the same duration, all molecules should rotate at the same speed and
be in phase again. Hence, this negative gradient is called the rephasing gradient. In a
static system, the rephasing would be perfect. However, if water atoms move due to
diffusion, this process will be imperfect, i.e., after the rephasing gradient was applied,
not all the molecules will be in phase. This imperfect refocusing will result in a signal
loss, which can be used to measure the diffusion constant. However, only the diffusion
along the gradient direction can be measured. To obtain Fiber directions, multiple scans
are necessary.

Diffusion Tensor Imaging (DTI) expands on DWI by considering not only the rate, but
also the average direction of diffusion. In areas that are made up of an internal fibrous
structure, water will diffuse faster in the direction parallel to the structure [HJM+06].
Since a defining characteristic of neuronal tissue is its fibrillar structure, this consideration
allows for the identification of brain tracts. As pointed out, this is not possible in T1-
weighted or T2-weighted MRI. In contrast to DWI, DTI is usually built on six or more
gradient directions, rather than three. Multiple gradient directions (mathematically, at
least six, although often more are used) are necessary to calculate a diffusion tensor.

In anisotropic media, the diffusion coefficient D depends on the direction. Therefore, in
DTI, it is replaced by the diffusion tensor D. D is a 3 x 3 matrix that fully characterizes
diffusion in 3D space [HJM+06] and can be calculated with the help of the Stejskal-
Tanner-Equation presented in Equation 2.4. g denotes the gradient direction. The b-value
specifies the diffusion weighting and is proportional to the product of the square of
the gradient strength q and the diffusion time interval ∆ [HJM+06] as illustrated in
Equation 2.5. S0 is the signal intensity without the diffusion weighting, S is the signal
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2.1. Medical Imaging Methods

(a) 3D visualization of white matter tracts in MeVisLab. (b) 3D visualization of white matter
tracts in MeVisLab.

Figure 2.3: Visualization of DTI data in 2D (a) and 3D (b). XYZ diffusion directions
are color coded in RGB. Red fibers indicate that diffusion primarily takes place in the
X-direction, green shows diffusion in the Y-direction and blue in the Z-direction. Other
colors indicate intermediate diffusion directions.

with the gradient. Since D possesses six degrees of freedom, at least six directional
gradients must be applied to fully determine the system.

S(g) = S0 ∗ e−bg
TDg (2.4)

b ≈ q2∆ (2.5)

The diffusion tensor gives, for each voxel, information on the diffusion direction. Usually,
directions are RGB encoded, as illustrated in Figure 2.3. In a similar fashion, blood
flow across different brain regions can be identified from functional MRI (fMRI). This
modality can be used to segment functional brain areas.

2.1.4 Positron Emission Tomography

Positron Emission Tomography (PET) and single photon emission computed
tomography (SPECT) are imaging methods that offer insight into functional metabolic
processes. As the name implies, it is based on the observation of positron annihilation
events. A radioactive tracer is injected into the bloodstream. Usually, this tracer is
glucose-based, as regional glucose uptake corresponds to a tissue’s metabolic activity. If
a radioactive (i.e., unstable) atom transforms into a stable atom by emitting either a
positron or an electron, this process is called beta-decay. Specifically, in the case of a
positron and a neutron being emitted, it is called a β+-decay. Equation 2.6 [VBTM03]
illustrates the process, with p denoting a proton, n being a neutron, e+ being an electron
and finally, v being a neutrino.
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2. Medical Background

p→ n+ e+ + v (2.6)

As the tracer undergoes β+-decay, it emits a positron which, eventually, interacts with an
electron. Since the positron has the opposite charge of the electron, both are annihilated
during the interaction. The annihilation results in a pair of annihilation photons, i.e.,
γ-quanta, moving at an angle of 180 degree to each other. On their way, those quanta
interact with their surrounding tissues and are attenuated. One they leave the body, the
photons are measured by means of a scintillator. Based on their location and attenuation,
the physician can draw conclusions regarding the spatial distribution of the tracer. PET
images are functional rather than topological imaging techniques and hence results have
to be correlated to other data, e.g., CT scans. Modern CT devices are capable of acquiring
both image modalities in the same session.

In this context, the most important application of PET scans is the examination of
tumors with regards to metastases. Since the cost of PET scans is fairly high, no such
data has been considered in the case studies presented in this work.

2.2 Brain Anatomy Segmentation

Segmenting the brain at a structural level is not trivial. Figure 2.4 shows intensity
histograms for different subcortical brain structures. Based on their intensity values
alone, the Amygdala (Am) and the Hippocampus (Hp) are virtually indistinguishable.
However, by including spatial information in the segmentation process (i.e., the Amygdala
residing to the anterior and superior to the Hippocampus), the inherent ambiguity of
class intensity distributions can be overcome. To incorporate this spatial information,
brain segmentation is facilitated by the construction of a probabilistic atlas. In such an
atlas, somewhat arbitrary raw image coordinates are transformed to a space in which
coordinates have an anatomical meaning. Atlases can be based on single specimens, such
as the Talairach atlas, or can be constructed from a large population, as presented by
Mazziotta et al. [MTE+95].

In the context of brain segmentation, different functional levels of increasing granularity
can be observed, as illustrated in Figure 2.5. At the topmost level is the hemisphere. The
Hemisphere is important because crossing the mid-sagittal plane should be avoided in
brain biopsies. Beneath the Hemisphere Level lies the Lobe Level. Here, the four main
Lobes (Frontal, Temporal, Parietal, and Occipital), the Limbic Lobe and a sub-lobar
region can be identified. Further down in the hierarchy is the Gyrus Level. In the Gyrus
Level, anatomical classes (e.g., Caudate, Thalamus, Lentiform, etc.) are defined. In
contrast, the Tissue Level defines the type of tissue within a voxel (i.e., white matter,
grey matter, cerebrospinal fluid). At the lowest level, the Cell Level, the brain can
be labeled by cell-type in the cortex using Brodmann’s scheme [Gar94], presented in
Figure 2.6. This is important as certain cortical areas must not be damaged, as explained
in Section 4.1.1.
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Figure 2.4: Intensity histograms for different brain structures as presented by Fischl
et al. [FSB+02]. While structures such as the Putamen (Pu) and Thalamus (Th) have
significantly different T1 properties, the Amygdala (Am) and the Hippocampus (Hp) are
virtually indistinguishable.

This hierarchical structure narrows down the number of candidate structures for each
given atlas position, as the spatial relations between the structures are known. In fact,
once the MRI coordinates are transformed into probabilistic atlas coordinates, "the
number of classes at a given location is rarely greater than 4, and in fact averages less
than 3 within the brain", as stated by Fischl et al. [FSB+02]. A probabilistic atlas
is a reference system of the human brain that takes the anatomic variability between
individual human brains into account.

The Talairach atlas is an example of a non-probabilistic atlas. It was derived from
a single sample, namely the brain of a 60 year old French woman. The hemispheres
are assumed to be symmetrical. For areas of low intersubject variability and for sites
close to the landmarks of the reference system, this type of atlas can be employed
successfully [MTE+95]. In areas of high intersubject variability and in brain regions
known to be highly asymmetric between the two hemispheres, this type of atlas performs
progressively less accurate, though.

Conversely, a probabilistic atlas is based on a population of multiple brains. Mazziotta
et al. [MTE+95] state that "by its very nature, a probabilistic atlas improves in accuracy
with time, achieving better statistics as more information is added".

Different packages exist that are capable of performing an automated parcellation
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Figure 2.5: The five hierarchical levels in the Talairach Atlas as described by Lancaster
et al. [LWP+00]: Hemisphere Level, Lobe Level, Gyrus Level, Tissue Level, Cell Level

of subcortical structures. Two commonly used packages are FreeSurfer [RSRF12] and
FIRST [PSKJ11]. FIRST is a part of FMRIB’s Software Library (FSL) [SJW+04].
Studies [MPX+09] have compared the performance of those packages.

Morey et al. [MPX+09] used both packages to automatically segment the Amygdala
and Hippocampus and compared the respective results to hand tracings performed by a
single expert rater with the experience of performing over 500 hippocampal tracings. The
authors conclude that FSL and FreeSurfer are not equal when compared to manual tracing
and further state that FreeSurfer is generally preferred to FIRST. Conversely, Perlaki
et al. [PHN+17] find that FIRST is superior to FreeSurfer with regards to putaminal
segmentation.

Table 2.3 gives an overview of each packages strengths and weaknesses. FreeSurfer is
capable of segmenting more structures than FSL. Table 2.2 gives an overview over each
packages set of subcortical labels.

Cortical Parcellation is based on standard atlases, as described above. Both FreeSurfer
and FSL offer different atlases. For the cortical parcellation used in the data segmentation
process of our case study (see Section 7), the Destrieux atlas [DFDH10] was used. It
was built on a training set of twelve data sets and segments the cortex into 74 regions of
interest per hemisphere.
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Figure 2.6: Brodmann’s areas. The primary somatosensory cortex, motor cortex and
Broca’s area, amongst other cortical structures, must not be damaged during the biopsy.

2.3 Planning Guidelines
Quick-Weller et al. [QWKD+] state that while stereotactic brain biopsies can be carried
out under local or general anesthesia, stress levels appear to be higher in patients
undergoing local anesthesia[QWKD+].

Certain guidelines have to be adhered to when performing a brain biopsy. The first step in
planning a brain biopsy consists of the selection of an appropriate target point. Germano
and Kondo [ABB+02] recommend choosing target points at the tumors periphery. This
is because the center of the lesion may consist of fluid or necrotic tissue. In the latter
case, the obtained sample would not be diagnostic. In the former case, drainage of the
fluid causes brain shifting, preventing additional biopsies with the same setting.

After a target point was identified, a suitable entry point must be found. Those two points
define the biopsy trajectory, which intersects the skull at an entry angle α. Zombori et
al. [ZRN+14] point out that "from a surgical point of view the entry angle has to be
as close to perpendicular as possible, otherwise it is not possible to drill the borehole
through the skull".

When deciding for or against a trajectory, caution regarding the vascular system is of
the utmost importance. A certain safety margin to nearby vessels needs to be respected,
as damaging a brain vessel may lead to irreparable damage or even the death of the
patient. Care must also be taken not to damage eloquent areas around the tumor, such
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Structure FSL / FIRST FreeSurfer
Left / Right Thalamus 3 3

Left / Right Caudate 3 3

Left / Right Putamen 3 3

Left / Right Pallidum 3 3

Left / Right Hippocampus 3 3

Left / Right Amygdala 3 3

Left / Right Accumbens Area 3 3

Brain-Stem /4th Ventricle 3 3

Left / Right Thalamus 7 3

Left / Right Caudate 7 3

Left / Right Putamen 7 3

Left / Right Pallidum 7 3

Left / Right Cerebellum Cortex 7 3

Left / Right Cerebellum White Matter 7 3

Left / Right Cerebral Cortex 7 3

Left / Right Cerebral White Matter 7 3

Left / Right Ventral Diencephalon 7 3

Lesion 7 3

Third Ventricle 7 3

Lateral Ventricle 7 3

Inferior Lateral Ventricle 7 3

Table 2.2: Subcortical structures segmented by FSL and FreeSurfer, respectively. In the
FSL Model, the fourth ventricle is combined with the Brain-Stem, and so the labels for
the Brain-Stem also cover the fourth ventricle.

as Broca’s area and motor and sensory cortex [ABB+02]. Another safety criteria regards
the cortical insertion site. Essert et al. [EHJ10] state that "Vessels are numerous in the
brain, and generally located in cortical sulci. Unfortunately they are often invisible when
images are acquired without contrast agent or Angiography". Hence, intersecting sulci
poses a threat and should be avoided. Trans-gyral trajectories are therefore preferred
over trans-sulcal trajectories.

In an interview, our domain expert further pointed out that he discourages puncturing the
mid-sagittal plane. Hence, needle entry points should be located on the same hemisphere
as the tumor target point. The ventricular system consists of four ventricles: the lateral
ventricles, the third ventricle and the fourth ventricles. The ventricles are linked to the
production of cerebrospinal fluid (CSF). If possible, ventricles should not be intersected,
as the puncture of ventricles significantly correlates with postoperative altered mental
status and subsequent increased length of hospital stay [GBHM+11]. Also, for cosmetics
reasons, trajectory entry points above the hairline are preferred in order to avoid visible
operation scars.
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Attribute FreeSurfer FSL / FIRST Source(s)
Number of segmented tissues 37 16
Hippocampal Volume Overlap Higher Lower [MPX+09]
Hippocampal Volume Difference Lower Higher [MPX+09]
Hippocampal Sample Size Estimates Closer Further [MPX+09]
Hippocampal Correlation to Hand Tracing Higher Lower [MPX+09, SBH+16]
Hippocampal 3D Shape Analysis More Accurate Less Accurate [MPX+09]
Amygdala Volume Overlap Equal Equal [MPX+09]
Amygdala Volume Difference Higher Lower [MPX+09]
Amygdala Sample Size Estimates Equal Equal [MPX+09]
Amygdala Correlation to Hand Tracing Higher Lower [MPX+09, SBH+16]
Amygdala 3D Shape Analysis Less Accurate More Accurate [MPX+09]

Table 2.3: A comparison of FSL / FIRST and FreeSurfer.

After the biopsy was performed, post-operative CT scans can be taken to exclude the
presence of hemorrhages [Hal98] and confirm the location of the biopsy site [TFM+09].
Fritsch et al. [FLG+98] state that if the post-operative images show no complications, it
appears safe to discharge patients the same day or within 24 hours after the biopsy.
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CHAPTER 3
Related Work

In the previous chapter, the medical background of brain biopsies was presented and
established planning guidelines were explained. The aim of a biopsy planning system
is to incorporate medical data and aid the neurosurgeon in finding a suitable needle
trajectory. Such a system must provide overview of the medical data in a concise and
understandable manner, as well as implement the planning guidelines which are applied
in the respective hospital. In this chapter, relevant state-of-the-art solutions in the field
of brain biopsy planning on the one hand and medical information visualization on the
other hand are summarized.

This Chapter is structured as follows. First, existing solutions for brain biopsy planning
are presented in Section 3.1. Second, methods of medical information visualization are
shown in Section 3.2.

3.1 Biopsy Planning
In this section, we review the state-of-the art solutions for brain biopsy planning. In Sec-
tion 3.1 will give an overview of current brain biopsy planning systems. Section 3.1.1 offers
information on the different work-flows implemented in the existing systems. Data
acquisition and Segmentation is outlined in Section 3.1.2. The Rules and Guide-
lines for planning trajectories are presented in Section 3.1.3. Visualization modalities
for calculated trajectories are shown in Section 3.1.4. Finally, in Section 3.1.5, the
existing solutions are summarized and their limitations, along with the improvements
introduced by BrainXPlore, are discussed.

3.1.1 Work-Flow

Automatic and semi-automatic trajectory planning is a research topic that occurs mainly
in Brain Biopsy (BP) Planning [KKMS11, HMG11, HMP+12, GCH+14] and DBS plan-

19



3. Related Work

Figure 3.1: Work-flow as presented by Brunenberg et al. [BVVV+07]

ning [BLE+13, GPP07, EHJ10, ZRN+14, ZBM+13, BVVV+07, BDS+13]. It aims at
reducing the time surgeons need to spend at planning operations. Hence, a relatively
simple work-flow including a high degree of automation is beneficial. On the other
hand, as the surgeon is ultimately responsible for the operation’s outcome and hence, his
patient’s well-being, certain decisions can not be taken away from him.

Beriault et al. [BDS+13] illustrate the fundamental work-flow of automatic trajectory
planning in four subsequent steps. The first of these is MRI acquisition or, more generally,
data acquisition. In a second step, critical structures are segmented. This can be achieved
with or without user interaction. Following this segmentation, target identification makes
up the third step. Here, a target for the electrode / needle is specified. Finally, trajectories
are automatically calculated and analyzed. From a list of best trajectories, the surgeon
can pick one.

Brunenberg et al. [BVVV+07] employ a two-pass approach by evaluating MR data
first and only integrating CT data in a second step. On the MR side, contrast-enhanced
T1-weighted and T2-weighted images are acquired some days before the operation. These
images are then processed in three subsequent steps. First, the images are registered
and an indirect atlas-based segmentation is performed in order to locate the subthalamic
nucleus. Second, an automatic segmentation of critical structures is done. Lastly, the
target points and segmentation results are used to calculate possible paths. On the
operation day, the integration of CT data follows. First, the CT images are registered to
the MR images. Second, the possible paths are visualized in 3D. Figure 3.1 illustrates
the work-flow.
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Figure 3.2: Segmentation result as presented in [ZBM+13]. Gray matter, Hippocampus
and Amygdala segmentation are based on T1-weighted MRI before gadolinium injection
((A) and (B)). MRI taken post gadolinium injection is used for vessel segmentation (C).
(D) is for evaluation purposes only.

Bock et al. [BLE+13] include additional data, namely, the results of microelectrode
recording (MER). MER is an intra-operative data acquisition method where electrodes
are inserted into the access path. There, the electrodes measure the brains electrical
field and hence, allow for the identification of functional brain regions. In order to
make efficient use of this additional data, the authors introduce a recording phase to
their work-flow. During the MRI based planning phase, a trajectory is defined by the
neurosurgeon. Subsequently, during the recording phase, electrodes are inserted into the
access path and advanced towards the target region. Functional brain areas are identified
by their MER signal and visualized as described in Section 3.1.4. Finally, stimulation
electrodes are placed during the placement phase.

3.1.2 Data Acquisition and Segmentation

Proper segmentation is crucial for safe trajectory planning. Here, the segmentation of
blood vessels is of utmost importance, as a puncture can lead to severe trauma or death.
Furthermore, any path needs to be chosen in such a manner that no cortex sulci be
damaged.

In essence, all considered works share the same concept with regards to segmentation. Dif-
ferences can be observed in the level of segmentation (i.e., number of different structures
that are considered) and the choice of external libraries and tools. The general pipeline,
however, can be summarized by the tasks pre-processing, brain-segmentation, tu-
mor segmentation, vessel segmentation, gray matter segmentation, and white
matter segmentation.

Pre-processing aims at making data easier to segment in subsequent steps. Brunenberg
et al. [BVVV+07] use coherence-enhancing diffusion in order to decrease the image noise
while preserving edges.

Brain segmentation, also called skull stripping, means the removal of the skull and
other non-brain tissues like the eyes from the dataset. Essert et al. [EHJ10] segment the
brain from a pre-operative, T1-weighted MRI using BrainVISA [CMG+01]
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Tumor segmentation is necessary in order to define a target region. This can be
done automatically or manually. Herghelegiu et al. [HMG11] segment the tumor in a
T1-weighted MRI sequence using the watershed algorithm, which is based on the variation
of voxel gradients.

Vessel segmentation is crucial as hitting a vessel is arguably the highest risk one
faces when performing a biopsy. Proper segmentation is therefore of the utmost im-
portance. Most authors make use of a vesselness-filter, which enhances voxels within
tubular structures. Herghelegiu et al. [HMG11] obtain the blood vessel mask by manual
segmentation. Zelmann et al. [ZBM+13] process a post-gadolinium set of MRI with
a vesselness-filter that returns a voxel likelihood of blood vessel presence in the [0;1]
range. Figure 3.2(C) shows a corresponding MRI. Brunenberg et al. [BVVV+07] also
use a vesselness measure, based on the work of Frangi et al. [FNVV98]. Beriault et
al. [BDS+13] fully automatically extract arteries from time-of-flight (TOF) angiography
and veins from susceptibility-weighted imaging (SWI) venography. SWI data is processed
with a vesselness-filter. Zombori et al. [ZRN+14] extract the vasculature from computed
tomography angiography (CTA), 3D Phase Contrast MRI and Time-of-flight (ToF) MR
using a custom tool.

Gray Matter Segmentation reveals structures at risk in the gray matter. Those
include the ventricles, sulci, gyri and other subcortical structures. Different authors
propose different segmentation strategies:

Ventriclesmust not be punctured during the biopsy. Gemmar et al. [GGF+08] preprocess
the T1-weighted MRI with an nonlinear anisotropic diffusion (NLAD) filter and then
apply a modified 3D region growing algorithm to segment the 3rd ventricle. From the
3rd ventricle’s symmetry plane, the mid-sagittal plane (MSP) is found. The anterior
(AC) and posterior (PC) commissure of the 3rd ventricle is then identified at the
anterior and posterior boundaries of the 3rd ventricle. Brunenberg et al. [BVVV+07]
segment ventricles with a region-growing method based on the work of Schnack et
al. [SPB+01] in combination with morphological methods presented by Géraud [Gér98].
Essert et al. [EHJ10] segment ventricles semi-automatically using MITK (Medical Imaging
Interaction ToolKit [MNMW09]). Beriault et al. [BDS+13] segment the ventricles from
the T1-weighted MRI using ANIMAL [CZBE99].

Cortical Structures need to be segmented because trans-gyral trajectories are preferred
over trans-sulcal trajectories. This is because small vessels in the sulci are usually not
detectable in MRI yet still pose a risk. Brunenberg et al. [BVVV+07] use morphological
operations (i.e., dilation and erosion) based on the methods of Géraud [Gér98] as well as
masking of T2- with results from T1-weighted MR and a connected component analysis in
combination with the method of Lohman [Loh98] to segment the sulci and gyri. Essert et
al. [EHJ10] automatically segment cortical sulci from the previously extracted brain using
an algorithm based on curvature information. Beriault et al. [BDS+13] and Zelmann et
al. [ZBM+13] segment the sulci from the T1-weighted MRI using ANIMAL [CZBE99].

Subcortical Structures are at risk in the case of tumors which are situated deeper
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in the brain, i.e., further away from the cortex. Beriault et al. [BDS+13] segment the
Caudate from the T1-weighted MRI using ANIMAL [CZBE99]. Zelmann et al. [ZBM+13]
use ANIMAL, augmented with a template library and label fusion [CP10] to segment the
Amygdala and Hippocampus from T1-weighted MRI. In Figure 3.2 (A) and (B), those
structures are highlighted in the respective MRI.

White Matter Segmentation reveals structures at risk in the white matter, pri-
marily white matter tracts (e.g. cortico-spinal tract, optic radiation tract). Zelmann
et al. [ZBM+13] segment the white matter from the T1-weighted MRI using ANI-
MAL [CZBE99]. Zombori et al. [ZRN+14] point out that they segment white matter
tracts from DTI data.

3.1.3 Path Planning

After proper segmentation, the goal of most presented works is automatic or semi-
automatic trajectory planning. Basically, the planning process is performed either
on a mesh/geometry base (e.g., the work performed by Gao et al. [GCH+14]) or on an
volume base (e.g., the work performed by Shamir et al. [STD+10]). Regardless of the
chosen approach, the general steps can be summarized as follows.

The first step is the selection of a target point or area. This choice is usually based
on a prior segmentation, e.g. with a watershed algorithm or manual intervention by
the surgeon. After a target point or area was chosen, potential entry points must be
selected. This can be done either fully automatically or based on a user-specified entry
region. Usually, a skull mesh is used for sample point generation. Based on the target
point or area and an entry point or area, a list of potential trajectories is generated.
The list of trajectory candidates is processed and each candidate is assessed for quality
based on certain criteria. While different authors propose different evaluation criteria,
the consensus is that the minimum distance between the trajectory and the closest vessel
is of utmost importance. This trajectory evaluation yields the set of results. The
trajectories that score best in the assessment are presented to the user in a subsequent
step.

Brunenberg et al. [BVVV+07], automatically generate a set of safe entry points. These
points are chosen such that they begin in front of the motor cortex but behind the hairline.
From each of these points, a straight path towards the target is calculated based on the
segmentation results. For each such path, two cost functions are stored. Those costs
are based on the minimum distance to a vessel (function one) and the minimum
distance to a ventricle (function two). For faster search in the result set, safe paths
(i.e., paths that do not cross a safe margin of 5 mm around vessels and/or ventricles)
are stored in bins representing the respective distances. This way, good paths (i.e., such
paths that exhibit higher distances than defined thresholds) can be proposed without
further examination.

Gao et al. [GCH+14] present a prototype system for craniofacial surgery. and present
experimental results for tumor surgery. In a first step, the authors form a spherical target
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area around the target point. Trajectories are evaluated based on visibility attributes
of this target area. Five measures are used for quantification of a path’s quality: The
Vital Distance (VD) essentially encompasses the same information as considered by
Brunenberg et al. [BVVV+07]. The Insertion Depth gives a measure of the paths
length, with shorter paths being superior to longer ones. The Visible Size of the
Target Area (VSTA) from the entry point yields a safety margin. The target area
is defined as a sphere centered around the target point. Higher visibility means less
occlusion and, as a consequence, higher distances to vital structures. Hence, paths with
a larger visible size of the target area are preferable. The authors claim that if the VSTA
is above a specified threshold, the safety of the path can be guaranteed. The Absolute
Visible Size (AVS) accounts for the fact that tumors and similar structures are not
necessarily spherical in their appearance. Therefore, the AVS is defined as the visibility of
the segmented target structure from the starting point, when considering the occlusions
through surrounding tissues. The Relative Visible Rate (RVR) of the target is the
AVS divided by the whole area size (WAS) of the target. The WAS is the size of
the tumor from the start point of the path when no surrounding tissues are considered.
Like the AVS, the RVT gives a measure of occlusion and thus, risk of crossing a vital
structure.

The scene is bounded by a sphere, which is sampled with approximately 18k sample
points. Using each sample point as a camera position with the focal point set at the target
position, the scene is rendered twice, once with surrounding tissues and once without
them. From these renderings, the AVS and RVR can be acquired. These two measures,
together with the visible size of the target area, can be used to filter and dispose of
unsuitable paths before calculating the other markers for the remaining paths. Since the
number of remaining paths can still be too large to allow for a feasible selection, all paths
are clustered using a mean shift algorithm as proposed by Cheng [Che95]. Clustered
paths are further reduced to the safest one. Implicitly, a safety margin is given by the
position inside the cluster, as medial paths naturally offer a bigger margin than lateral
ones. Additionally, as outlined before, a shorter path is preferable over a longer one.
Figure 3.3 illustrates the concept of the clustering approach.

Essert et al. [EHJ10] introduce additional rules for their DBS planning system. Here, a
set of eight rules has been developed in cooperation with participating neurosurgeons.
The first four of these rules are Boolean (i.e., they must be satisfied for a path to be
acceptable). First, the target point needs to be placed at the target. Second, the entry
point must be on the scalp. Third, path length is restricted to a maximum of 90 mm.
This eliminates insertion points on the other side of the cranium. Finally, structures at
risk, i.e., vessels and ventricles, are avoided.

The remaining four rules are preferences (i.e., they need to be optimized based on a set of
weights). The first rule concerns theminimization of the path length, as longer paths
are inherently more damaging and dangerous than shorter ones. This is a low-weight
rule and can be omitted. The second rule states that distances to structures at risk
should be maximized. Again, this is a preference rule, as the avoidance of risky structures
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already yields a safety margin. The third rule defines a relationship between the target
shape and the orientation of the electrode. The trajectory axis should be oriented
as close as possible with target main axis. Finally, according to the fourth rule, the tip
of the electrode should be placed as close as possible to the center of the target. This
preference rule is more important for DBS than for biopsy planning, as the electrode
remains in the brain with DBS.

While the first four of these rules are Boolean (i.e., they must be satisfied for a path
to be acceptable), the remaining four are preferences (i.e., they need to be optimized
based on a set of weights). Rules one and two, regarding the position of insertion points
and target points, are provided with the input data rather than being determined, hence
reducing the model’s complexity.

The insertion mesh is evaluated on a triangle-by-triangle basis, with triangles that do not
satisfy the hard constraints being eliminated from the solution set. Triangles which only
partially satisfy the constraints are further subdivided into four smaller triangles which
are then re-tested. From the remaining set of insertion points, some homogeneously
spaced points are chosen and evaluated with regards to satisfying of the soft constraints.
Around the best of these points, a connected components analysis is performed and
Nelder-Mead optimization is done from the best candidate. This way, local minima are
avoided. Evaluated triangles are rendered with a transfer function that color codes the
aggregative cost function for a trajectory. Good entry regions are presented in green, bad
entry regions are presented in red, and a range of progressive intermediate colors is used
for the other areas. Figure 3.4 illustrates the color map, applied to the insertion mesh.

Herghelegiu et al. [HMG11] follow a slightly different approach. First, they segment the
tumor using a watershed algorithm. Furthermore, they manually segment a blood-vessel
mask. Then, they apply a distance transformation (DT) to the vessel-segmentation
results. This distance transform yields color-coded information about the proximity of
vessels for every pixel in a slice. For every entry point EP and every tumor point TP,
a simple check is performed to determine whether the tumor point is reachable, i.e.,
whether it lies on the tumor’s surface and allows for sufficiently deep entry to actually
take a sample. Each point satisfying these requirements is added to a list of reachable
points. Around each of those reachable tumor points, a disk D is created in the needle
pathway’s (NP’s) normal plane as a proxy object for cost calculation. For each voxel
V on the slice, a direction between the entry point EP and V is derived. If a point TP
belonging to the tumor is found along that direction, the corresponding NP is stored
with its cost being set to the nearest distance to a vessel. This distance can be acquired
from the previously calculated DT.

Zombori et al. [ZRN+14] point out that for reasons of robustness, the entry angle of the
trajectory should be as close to 90 degrees as possible. In their MITK based EpiNav
system, a system for DBS planning, the authors consider much more information than all
the above presented implementations: White matter tracts derived from DTI data,
lesions and eloquent cortex derived from fMRI, areas of ictal hyperperfusion
derived from SPECT images, areas of hypometabolism derived from PET image, ictal
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or interictal EEG/MEG sources, blood vessels derived from CTA, 3D Phase Contrast
MR imaging and in some cases ToF MR and, the skull surface derived from CT, CTA
or pseudo CT synthesized from an MR scan.

Entry point candidates are automatically created from the vertices of the skull mesh. In
a first step, distance and entry angle for each trajectory are checked against user-defined
thresholds. Trajectories that do not match the criteria are immediately discarded. This
shrinks the search space in a computationally inexpensive way. The innovation that
is presented in EpiNav is the inclusion of a full distance profile along the trajectory,
presenting distances to critical structures for 256 sample points per trajectory. The
trajectory that exhibits the lowest overall risk is chosen and presented to the surgeon.

Zelmann et al. [ZBM+13] introduce novel scoring factors specific to deep brain stimulation.
These factors revolve around the fact that deep electrodes need to cover a large volume
for recording purposes. For the purposes of biopsy planning, those factors are not
relevant. What is interesting, however, is that the authors chose to pick one thousand,
pseudo-randomly chosen (i.e., they are uniformly spaced) trajectories for evaluation. This
raises the question whether or not good paths get discarded by chance. Still, validation
shows that results are significantly further away from blood vessels (p < 0.01) than the
manually chosen paths.

3.1.4 Visualization

Although there are obvious differences in the visualization pipelines implemented by
the various authors, some shared principles exist. For example, 3D medical images are
traditionally displayed in an MPR view, i.e., a set of orthogonal cuts through the
volume. By selecting a voxel in one of the slices, the linked views displaying the other
planes are automatically updated and the planes containing the voxel are presented.
More context is offered in 3D views. Hence, these views are most practical for creating
a global understanding of the trajectory. A different use of the MPR view is the Needle
Path Slice View. To keep the decision transparent, information on the trajectory can
be encoded by choosing planes that are orthogonal to the needle path. This way, the
volume can be presented from the needle’s perspective. This is also called a Probe’s Eye
View. Finally, any number of charts, plots and other well-known InfoVis techniques can
be employed to communicate certain qualitative or quantitative criteria of a trajectory
explicitly. These Visual Analytics Views aim at creating insight into data that might
not be revealed easily in more traditional views.

Essert et al. [EHJ10] present to the user a global color map which encodes the aggregate
cost function for each path. Green pixels indicate the best insertion points whereas red
pixels represent the worst points. Since the individual rules are evaluated in distinct
color maps, the weighting parameters can be changed interactively, as only the cost
aggregation needs to be recalculated.

Gao et al. [GCH+14] provide the user with a 3D view illustrating vessels, tumors, and the
suggested path. Furthermore, a slice view is given where the path can easily by altered.
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(a) Trajectory space before clustering (b) Trajectory space after clustering

Figure 3.3: Trajectory clustering as presented in the work performed by Gao et
al. [GCH+14]. Trajectories at the center of a cluster of valid trajectories are considered
inherently safer than those at the cluster’s boundary.

For further visualization of the path’s quality, scatterplots and Parallel Coordinates can
be displayed.

Likewise, Herghelegiu et al. [HMP+12] provide a 3D view along with an augmented 2D
slice view (orthogonal to the needle direction), which is special in that at every slice,
a line connecting the needle position to the nearest vessel is displayed. Furthermore,
a needle pathway distance graph, presenting the nearest distance to a vessel along the
trajectory, is given. Figure 3.5 shows a screenshot of the user interface.

In the context of DBS, Bock et al. [BLE+13] propose a visualization modality that
supports the neurosurgeon by presenting the intersected brain regions as a series of beads,
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Figure 3.4: Aggregative cost function evaluation used for path planning as presented by
Essert et al. [EHJ10]. Green areas represent good entry points, red areas are considered
bad entry points.

as illustrated in Figure 3.6. MER electrodes are inserted along the access path and record
the brain’s electrical field. From that signal, the functional brain region at the electrodes
depth can be identified. For each classified brain region, a bead is attached to the string
of beads. The string of beads is rendered behind the electrodes in the application’s
contextual view. Regions that are outside of the target area result in beads that are
rendered in different shades of red, while regions in the target area yield green beads.
Finally, crossing uncategorized areas results in a black bead in order to maintain the
spatial relationship of a bead string. Although multiple electrodes are employed, only
one bead is added for all of them. This is a valid simplification because, as the authors
point out, "the different functional regions of the brain are oriented such that either
all electrodes detect the same signal (either type of tissue or undefined) or a subset of
electrodes detects a regional signal and the others detect an undefined signal".

3.1.5 Limitations

To the best of our knowledge, all existing solutions take into account only a relatively small
number of structures. The most basic solutions [HMG11, HMP+12] consider only the
distance to vessels along the needle trajectory. More sophisticated solutions [BVVV+07,
EHJ10] consider the distance to vessels, ventricles and cortical sulci. Additionally, Beriault
et al. [BDS+13] include the caudate. Zelmann et al. [ZBM+13] consider vessels, sulcus
patterns, Amygdala, Hippocampus, as well as white and grey matter in the temporal
lobe. Zombori et al. [ZRN+14] present the most sophisticated approach, considering
vessels, white matter tracts, lesions, eloquent areas, as well as PET and Single Positron
Emission Tomography (SPECT) data . Since their implementation runs on the GPU,
though, GPU memory limitations might be a potential bottleneck. Converting MRI
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Figure 3.5: Visualization of the Biopsy Planner presented by Herghelegiu et al. [HMP+12].
Spatial information on the needle trajectory can be derived from the 3D and 2D views.
Furthermore, the augmented slice view highlights vessels in the needle trajectories
proximity. The needle pathway distance graph plots the needle’s distance to the nearest
vessel along the trajectory. Finally, the entry points stability map presents the safety
margin for each potential entry point inside an ellipsoidal region of interest defined by
the user.

data, whose native format is voxel-based, to geometry meshes yields an additional loss
of precision. If this loss of precision is to be avoided, a volume-based approach must
be taken. In this case, video memory may be too small for a sufficiently high number
of structures at risk. A typical MRI resolution is 2563. When storing each segmented
structure in a 3D texture for further use on the GPU, each texture has a size of 16 MB.
At this time, typical consumer hardware offers 2GB of dedicated video memory. This
means that 125 distinct structures can be uploaded into the video memory. As brain
atlases become more sophisticated, the number of structures at risk to be considered in a
biopsy is likely to increase greatly.

We overcome this limitation and allow for an unlimited number of structures at arbitrary
resolution by integrating a spatial index server [BŠG+09] into BrainXPlore that can
be queried for distance information in a very fast and efficient manner. The decision to
resort to this spatial index instead of performing GPU-based distance computation was
made considering that this approach is not limited by GPU memory, but rather offers a
convenient way of accessing out-of-core data.

Linked to the limited number of structures is the rigid definition of rules. Systems, which
are restricted to a defined number of structures at risk do not necessarily support custom
operation guidelines that are unique to a particular hospital. For example, our domain
expert noted that in our partner hospital, as a rule, the mid-sagittal plane is not crossed
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Figure 3.6: Contextual view during the recording phase as proposed by Bock et
al. [BLE+13] The beads behind the electrode indicate intersected functional brain regions,
identified by their MER signal. Red beads are outside of the target area, green beads
indicate a region that is within the target area. Black beads represent areas that could
not be classified.

during biopsies. To the best of our knowledge, no system in the established body of work
allows for such constraints. We offer the neurosurgeon a set of geometric rules (e.g., needle
insertion angle at the skull, needle insertion angle at the tumor, trajectory length) as
presented in other works [GCH+14, EHJ10]. Additionally, we introduce a flexible spatial
rule system that can consider any given structure (e.g., the afore-mentioned mid-sagittal
plane) and discard trajectories based on their spatial relationship to that structure (e.g.,
maximal overlap, minimal distance).

3.2 Medical Information Visualization

Information is processed or interpreted data that has a meaning for those who know how
to read it. Presenting this information in a meaningful way is the aim of Information
Visualization (InfoVis). Card et al. define InfoVis as "the use of computer-supported,
interactive, visual representation of abstract non-physically based data to amplify cogni-
tion" [CMS99]. In the following sections, we review the state of the art of typical InfoVis
methods and evaluate their relevance to the interaction techniques we implemented.

In Section 3.2.1, the use of Parallel Coordinates in existing brain biopsy planning systems
is presented. Information on different implementations of sparklines and line graphs is
given in Section 3.2.2. Finally, in Section 3.2.3, methods for visualizing multivariate data
are investigated.
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3.2.1 Parallel Coordinates

Parallel Coordinates [Ins85] are a well established InfoVis technique used for displaying
multivariate data. Data sets are displayed as lines passing through a set of vertical,
parallel axes, where each axis represents a single data feature. By arranging the axes,
correlations between data features can be identified.

In the context of brain biopsy planning, Parallel Coordinates have been employed by
Gao et al. [GCH+14]. The risk signature for each trajectory is represented in the Parallel
Coordinate View and updated interactively when the path is adjusted.

Martin and Ward [MW95] evaluated the usefulness of brushing in Parallel Coordinates
and found it an "indispensable tool for visualizing and examining" multivariate data.
To the best of our knowledge, no existing work in the context of brain biopsy planning
implements trajectory picking based on a Parallel Coordinate View.

3.2.2 Line Graphs and Spark Lines

A line graph is a type of chart which, similar to a scatter plot, displays data based on
point, so-called markers, on a 2-dimensional grid. Markers are connected by straight line
segments. Those graphs offer insight into data trends and help the viewer to understand
the relationship between the considered variables. A spark line is a special type of line
graph that indicates the change over time in some variable. Spark lines are commonly
used to illustrate the value of shares in the stock market. In the context of brain biopsy
planning, spark lines have been employed to qualitatively visualize the distance between
the trajectory and structures at risk.

Herghelegiu et al. [HMP+12] present a special form of line graph. A needle pathway
distance graph shows the distance to the closest blood vessel for every point of the
needle pathway. Zombori et al. [ZRN+14] expand on this concept by introducing filled
areas and annotations indicating the minimum distance to structures, risk thresholds,
safety margins and the resulting risk at each sample position. Figure 3.7 illustrates both
views.

3.2.3 Methods for Visualizing Multivariate Data

In the context of biopsy planning, the quality of a candidate trajectory depends on a
multitude of factors. In some views (e.g., summary and filtering views ), multivariate
data must be displayed in such a manner so as to instantly reveal significant features
to the user to drive the selection process. At the same time, dimensionality must be
reduced to such a degree that visual cluttering is avoided.

Ropinski et al. [ROP11] discuss glyph-based visualization techniques for spatial mul-
tivariate medical data. The authors differentiate between a pre-attentive and an
attentive phase of stimulus processing. During the pre-attentive phase, impulses are
perceived in parallel, while during the attentive phase, they are perceived sequentially.
The authors identify the basic glyph shape, color, transparency, and texture as well as
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(a) Needle pathway distance graph as implemented by Herghelegiu et al. [HMP+12]. Needle
radius and safety margin are represented with grey and green dotted lines.

(b) Needle pathway distance graph as implemented by Zombori et al. [ZRN+14]. The grey area
represents the minmal distance to a critical structure, red and green lines indicate the lower and
upper safety threshold, respectively. Dark blue areas represent the risk at a given sample position.

Figure 3.7: Distance Graphs used in brain biopsy planning
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Figure 3.8: (A) Radar chart depicting patient satisfaction across three different towns, as
presented by Saary [Saa08]. (B) Target chart depicting the quality of clinical outcomes
for a healthcare provider across eight different categories as presented by Stafoggia et
al. [SLF+11]. The chart immediately conveys an impression of good global performance.

glyph placement as pre-attentive features. Composite glyph shape (e.g., added directional
vectors), glyph legend, and interaction details are identified as attentive features.

Stafoggia et al. [SLF+11] describe radar charts, target charts and spie charts as
means of presenting multivariate data in the context of health care outcomes in an
easy-to-convey manner. Radar charts are depictions that map data values to the radii of
polygonal coordinate systems. In those coordinate systems, axes (spokes) originate from
a shared center (node) and are equidistantly distributed in a circular fashion. Connecting
the end points of all axes yields a polygon. On each axis, the corresponding data value is
applied and the resulting vertices are connected. The shape of the created polygon offers
the viewer a qualitative sense of the data-set’s attributes. Saary [Saa08] presents the use
of radar charts as a means of comparing multivariate data across different populations.
Figure 3.8 (A) illustrates a radar chart that represents the results of an interview where
patients were asked to rate their interaction with a hospital according to different criteria.
In this case, it is immediately apparent that patients in town B are more happy with
their hospital in every regard than patients in the other towns.

Target charts present the user with a pie chart where each circular sector corresponds
to one data dimension. Individual data points are mapped to their respective sector,
with higher performing data points being drawn closer to and worse performing data
points further away from the target center. Figure 3.8 (B) presents a target chart where
the quality of clinical outcomes for a single healthcare provider across eight different
categories is illustrated. Dots closer to the target center indicate higher scores in the
respective categories. Finally, spie charts are superimposed bar charts where the radius of
each slice represents the data value and the slice angle represents the feature’s relevance.

The authors point out that while the radar chart is easy to implement, "the interpretation
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of the results strongly depends on the ordering of the indicators being displayed". Also,
missing information introduces ambiguity (i.e., it is impossible to distinguish between a
missing data feature and one whose value is zero). They continue to state that the target
chart does not perform well in situations where many data dimensions are displayed.
Finally, they conclude that spie charts overcome the limitations of both radar charts and
target charts and allow for the flexible definition of the different weights of displayed data
dimensions. Finally, the authors conclude that out of the three presented techniques, "the
spie chart is the best alternative for graphically presenting clinical outcome indicators
for comparative evaluations among health care providers or populations".

Chernoff [Che73] proposes Chernoff Faces, another form of iconic representation of
multivariate data. In this visualization, data features are mapped to 18 distinct facial
features on cartoon faces. The author explains that this approach is based on a reverse
image recognition algorithm - instead of discriminating between human faces by reducing
them to numbers, numbers are discriminated by rendering faces and leaving interpretation
to the expert user. Morris et al. [MER00] conclude that Chernoff facial feature perception
is not pre-attentive and that hence "Chernoff faces may not have significant advantage
over other multivariate iconic visualization techniques".
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CHAPTER 4
Visual Computing Work-flow and

System Design

After briefly discussing the state-of-the art in brain biopsy planning, in this Chapter
we present our prototype for a novel brain biopsy planning framework. It allows the
definition of custom planning rules and interactive exploration of the resulting trajectories.
Here we explain how the requirements were defined and how our system overcomes the
challenges presented by existing solutions.

In Section 4.1, we describe how we conducted the requirement analysis and the results
it produced. Section 4.2 offers a global overview of our system and the participating
modules. Finally, in Section 4.3, the work-flow from the user’s perspective is presented.

4.1 Requirement Analysis

To evaluate the requirements of our new system, we have conducted interviews with
the domain expert and asked about the biopsy planning work-flow as performed in the
partner hospital. Before deriving requirements, we will discuss the interview in this
Section.

Currently, our domain expert performs the biopsy planning with the help of the MedTronic
(http://www.medtronic.com) StealthStation Surgical Navigation System. In an ortho-
graphic coordinate system, MRI data is displayed in a sagittal, cranial and coronal
view. Also, a supporting 3D view is presented to the surgeon. Various data (i.e., CT,
MRA, etc) can be used as overlays to highlight structures such as vessels.

To plan the biopsy, as a first step, a target point or area on the tumor is defined. This
target point should be located inside living tissue, as necrotic tissue is not well suited for
further histological examination. To define an entry point, the surgeon first defines the
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Figure 4.1: Cortical regions of interest, adapted from Desikan et al. [DSF+06]. Pial (left)
and inflated (right) surfaces of the right hemisphere. Top: Lateral representation of right
hemisphere. Bottom: Medial representation of right hemisphere.

suitable quadrant. The mid-sagittal plane should not be crossed. Then, certain areas on
the cortical surface are excluded from the set of possible entry points.

The cerebral cortex is divided into the frontal, temporal, parietal and occipital lobe. Each
lobe is further subdivided into functional areas. The frontal lobe, for example, is divided
into the gyrus frontalis superior (F1), gyrus frontalis medius (F2), and gyrus frontalis
inferior (F3). The same partition can be applied to the temporal lobe. It consists of
the gyrus temporalis superior (T1), gyrus temporalis medius (T2), and gyrus temporalis
inferior (T3). In the parietal lobe, P1 denotes the lobulus parietalis superior, while P2
and P3 together form the lobulus parietalis inferior. Figure 4.1 illustrates the lobes and
the pre- and postcentral gyrus, as described in the Desikan [DSF+06] cortical atlas.

Each area has distinct properties that can potentially make it a no-go area. For instance,
the area between the pre- and postcentral sulcus (i.e., the central gyrus) contains the
motor cortex as well as the somatosensoric cortex, as illustrated in Figure 2.6. These
areas are highly critical and must not be punctured.

For example, the gyrus frontalis inferior (F3) is located on the left hemisphere. The F3

36



4.1. Requirement Analysis

Figure 4.2: Needle trajectory in the context of subcortical critical structures. Displayed
in red is the vascular system. The right and left ventricle are presented in blue and yellow
respectively. The tumor is shown in orange. The pyramidal tract is displayed in green.

consists of three parts, the pars orbitalis, pars opercularis, and pars trianglularis. The
latter two form the so-called Broca’s area. Broca’s area is linked to motor language and
damage to this area can impair speech. The gyrus temporalis superior (T1) contains the
primary auditory cortex. Together with the gyrus supramarginalis and gyrus angularis
on the left hemisphere, it is linked to sensor language. Damage to these regions might
impair the comprehension of language. If possible, the distance between the insertion
point on the skull and the insertion point at the cortex should be minimized. Finally, for
cosmetic reasons, entry points should be located behind the hairline.

If an entry point has been found that satisfies all the above mentioned criteria, the
trajectory is evaluated. Vessels, ventricles and the pyramidal tract, amongst other
structures, must not be crossed. Figure 4.2 illustrates a trajectory (blue) in the context
of the vascular system, the ventricles and the pyramidal tract.

If a trajectory satisfies all outlined constraints, it is accepted. Otherwise, either the
entry or target point are varied and the resulting trajectory is re-evaluated. This
process is iteratively repeated until a suitable trajectory has been found. The process is
demonstrated in a real-life scenario in Section 4.1.1.

4.1.1 Case Study

To better understand the planning process outlined in Section 4.1, we have carried out
a case study on real data from a previous biopsy. Figure 4.3 illustrates the decision
finding process. Vessels are highlighted in a light red. The planning process for this
case was challenging because of the lesion’s proximity to a vessel. The lesion can easily
be identified in the MRI as an approximately spherical area of high intensities at the
borders and low intensities at the center. The low intensities indicate necrotic tissues
which are not suitable for histological analysis. Hence, as a first step in the planning
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process, a target point near the lesion’s caudal border is defined where the tissue is alive
and metabolically active.

In a second step, an entry point is chosen, in accordance with the criteria defined in
Section 2.3. Because the target point is located in the left hemisphere and the mid-sagittal
plane must not be crossed, the entry point must be on the left side as well. Since the
target is also located anterior to the mid-coronal plane, the parietal and occipital lobes
are disqualified as entry regions. This leaves the frontal and temporal lobe as candidates.
F3 and T1 are excluded due to their anatomical relevance, as explained in Section 2.3. A
suitable trajectory was found iteratively, as illustrated in Figures 4.3 and 4.4.

4.1.2 Core Requirements

Based on the state of the art case study presented in Section 4.1.1, we have derived the
following core requirements for our system:

• Automatic entry point generation

• Multiple target point optimization

• Avoidance of structures at risk

Given the relevant hemisphere, a set of potential entry points must be calculated au-
tomatically. These entry points must be on the skull surface and must not be located
on areas where trajectories are not feasible such as the eyes or ears. Trajectories must
be evaluated for a set of target points rather than a single target. This, in conjunction
with the automatic entry point generation, allows the system to evaluate a multitude of
candidate trajectories. As presented in the case study, currently the surgeon manually
evaluates a relatively small set of trajectories, piece by piece, until a suitable candidate is
found. Delegating this task to the system is the main driver for time savings. To ensure
the patient’s safety, structures at risk such as vessels, ventricles and sulci must not be
damaged by any resulting trajectory.

While this list satisfies all requirements that arise from the case study, we have decided
to expand it and make some fundamental improvements. First, rather than dictating the
selection criteria for valid trajectories, we want our system to allow for a Flexible Filter
Rule Definition. The system must allow the neurosurgeon to flexibly define rules for
trajectory evaluation. Trajectories that violate those rules must are not considered for
further evaluation. Furthermore, discriminates valid trajectories with regards to their
quality. It also offers the neurosurgeon a way of defining the rules for this Trajectory
Quality Evaluation.

From a interaction design point of view, the system should allow for interactive filtering
of trajectories. Initially generated trajectories can be filtered based on attributes such as
length, structure to vital distances, etc. Filtering is interactive and provides immediate
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4.1. Requirement Analysis

Figure 4.3: Red lines indicate rejected trajectories, the green line shows the accepted
trajectory. a) The tumor can clearly be identified in the MRI by an elliptic region of
higher intensity. The green sphere indicates the chosen target point. The red line shows
the first selected trajectory. This path violates the safety distance to the pyramidal
tract, visible in the axial view as white area and is therefore invalid. b) The trajectory
intersects a ventricle, as seen in the coronal view and is therefore invalid.
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Figure 4.4: Red lines indicate rejected trajectories, the green line shows the accepted
trajectory. a) This trajectory intersects a sulcus, as seen in the coronal view and is
therefore invalid. b) This is the trajectory that was finally accepted.
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feedback. Since the neurosurgeon is the authority in his field and ultimately has the
responsibility for the biopsies outcome, the system should offer the possibility of manually
refining existing trajectories and evaluating the result. The interactive refinement
and addition of trajectories must be accomplished at interactive framerates.

Because our system is designed to be a proof-of-concept prototype, we have decided to
implement different visualization techniques and evaluate them in the context of biopsy
planning.

4.1.3 Interaction Requirements

To define requirements for the user interface of BrainXPlore, we conducted multiple
design sessions with a domain expert. We discussed the challenges in his work-flow
and utilized tools. Based on our consultation with the expert and previous work, we
implemented the following design guidelines for developing the interface:

Workflow-based user interaction: The work-flow, from the user’s perspective, is
described in Section 4.3. The user interface should be arranged so that it supports
the work-flow rather than hinders it.

Interactivity: Data segmentation is non-trivial and error-prone. Hence, the final
decision should always belong to the surgeon. The system should allow to change
both endpoints of a suggested trajectory and provide interactive feedback. Also,
rule refinement should provide immediate visual feedback.

Providing diverse data perspectives and views: 3D views offer good spatial con-
text but also tend to exhibit a high degree of occlusion. 2D slice views, on the
other hand, do not offer the same spatial context but are very good at conveying
information on a limited part of the data. In the context of brain biopsy planning,
for example, when tracing the needle trajectory, a slice orthogonal to the trajectory
can be extracted from the MRI dataset at every point on the trajectory. This slice
then offers a direct view of the needle’s surroundings, i.e., a probe’s eye view. Info-
Vis views such as Parallel Coordinates offer information that goes beyond spatial
information, e.g., data distribution and correlation in multidimensional datasets.
For example, histograms can offer an estimate of how a rule refinement may affect
the number of available trajectories. Parallel Coordinates offer a convenient picking
method that allows the user to select trajectories based on multiple features in one
view.

4.2 System Overview
BrainXPlore consists of four major components: a data preprocessing module, a
trajectory preprocessing module, the index server, and an interactive visualization
module (i.e., the user interface). The interactive visualization module is implemented
in the rapid prototyping software MeVisLab [Sol17]. Figure 4.5 illustrates our system
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Figure 4.5: Overview of BrainXPlore system architecture. Data acquisition and
segmentation are not part of BrainXPlore and can be accomplished using various
approaches. The data preprocessing module translates data into BrainXPlore’s internal
format. The index server stores distance information for all trajectories. The trajectory
preprocessing module samples the volume and generates initial trajectories. All user
interaction takes place in the user interface module, where rules are defined and refined
until a suitable trajectory has been found.
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Figure 4.6: User work-flow. Steps that require user interaction are highlighted in green.
Steps that run automatically apart from setting the parameters and starting the module,
are shown with black borders.

architecture. Note that while data acquisition and segmentation are critical steps in the
processing pipeline, they are not part of our system.

4.3 Visual Computing Work-flow

The user work-flow is illustrated in Figure 4.6. After data acquisition and segmentation,
which are not part of BrainXPlore, the user starts the pre-processing module where
data is automatically converted to BrainXPlore’s internal data format.

The converted data can be inspected by the user and is then submitted to the index
server. Index generation runs automatically. While the index is being built, the user
performs the target definition and sets the sampling density for trajectory generation.
These parameters are submitted to the trajectory pre-processing module where the risk
signature of each potential trajectory is computed.

The user loads the resulting trajectory file into the user interface and defines rules for
trajectory selection. Hard rules lead to the exclusion of trajectories that do not meet
the requirements while soft (i.e., evaluation) rules are used for color-coding of candidate
trajectories. After the hard rules have been defined and applied, the soft rules are
evaluated for the remaining trajectories. Across different views, a consistent coloring
scheme for trajectories is employed. In the Visual Analytics View, trajectories can be
selected and filtered. Details on selected trajectories are presented to the user. The user
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Figure 4.7: Interaction of different views. Top left: Parallel Coordinates. Top right: risk
signature chart used for trajectory inspection. Bottom left: the main 3D view Bottom
middle: Supporting 3D View. Bottom right: Augmented Slice View.

inspects the set of remaining trajectories and refines the rules as needed. This iterative
process is repeated until a feasible result has been reached. Furthermore, the trajectories
themselves can be modified and evaluated interactively by querying the index server. In
the end, a final decision is taken and a trajectory is chosen. Figure 4.7 illustrates the
process. First, trajectories are selected in a PC view. Those trajectories are presented
to the user in different 2D views, 3D views and visual analytics views, which will be
introduced in Section 6.4.
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CHAPTER 5
Methods and Data

BrainXPlore is a system that consists of different modules which all fulfill specific
roles. In the following sections we offer an overview of the methods we have employed in
each module. The interaction of the modules with each other is illustrated in Figure 4.5.

The methods we used for data acquisition and segmentation are presented in Section 5.1.
In Section 5.2, we outline the steps we have undertaken to preprocess the segmented
data. Indexing is discussed in Section 5.3. Our methods of trajectory generation are
presented in Section 5.4. Finally, in Section 5.5, filtering and refinement of generated
trajectories is discussed.

5.1 Data Acquisition and Segmentation
We used a real dataset from a past biopsy to test and evaluate our system. The patient
underwent contrast enhanced CT, MR and MRA scans. Also, a MRI scan was taken
post-operatively to verify the site of the biopsy and exclude the existence of hemorrhage.
All images exhibited different spatial resolutions. The image dimensions for each image
modality is presented in Table 5.1.

Any segmentation software can be used to segment risk structures. In our case study, we
used FreeSurfer for cortical and subcortical segmentation. Results for vessel segmentation

Data Width Height Depth (Slices)
Pre-Op MRI 288 288 205
Post-Op MRI 232 256 192
MRA 528 528 125
CT 512 512 164

Table 5.1: Spatial resolution of the considered input data.
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tend to be of insufficient quality for precise planning. Therefore, vessels are segmented
separately in MeVisLab, from a combination of contrast-agent enhanced MRI and MRA
data. The pyramidal tract was manually segmented by the neurosurgeon from MRI data.
Finally, using MeVisLab, the tumor was segmented manually from the MRI and the
skull was extracted from the CT. The acquired binary masks are then passed to the
data preprocessing module. Although arbitrary data modalities can be included in the
system, the minimal requirements of BrainXPlore are an MRI and a CT for the initial
trajectory generation as discussed in Section 5.4.

5.2 Data Preprocessing

In contrast to other systems, we do not convert our data to polygonal meshes. Rather,
we work directly on volume data and avoid additional computation time and conversion-
related loss of precision.

The minimal distances to structures at risk defines a trajectory’s risk signature. Those
minimal distances are calculated based on the results of the data pre-processing step.
Stray misclassified voxels can severely impair the end result. Hence, on each relevant
structure, a connected component analysis is performed and only the largest connected
component is considered for further processing. Each structure is then converted to a
distance field, i.e., the distance to the closest non-zero voxel in the mask is computed for
each voxel. Distances are capped to a pre-defined upper limit, as any distance further
than that is considered safe for all practical purposes.

5.3 Indexing

As explained in Section 4.1.2, the neurosurgeon’s work-flow demands quick access to
spatial information. This is implemented via the use of a spatial index server as described
by Bruckner et al. [BŠG+09].The server stores spatial information for an arbitrary number
of structures out-of-core and allows quick access to distance information. It is based upon
two parts, i.e., a lookup volume, which is kept in memory and an out-of core distance
table. Each voxel in the lookup volume stores an offset into the distance table and a
number N of proximal items. The distance map stores, for each voxel P, a list of pairs of
the form <distance, identifier>, sorted by ascending distance to P. In order to enable
efficient caching for subsequent accesses to the distance table, the entries of the distance
table are arranged based on a three-dimensional Hilbert curve. Figure 5.1 illustrates the
storage concept. When issuing a distance query, a simple lookup at the corresponding
entry in the distance table yields a list of all proximal structures, together with their
respective distances from the queried voxel.

The results of the indexing process are persisted to the hard drive for later use. Alter-
natively, the indexing server can also be interactively queried during runtime after a
trajectory position has been refined in order to obtain updated distance information for
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Figure 5.1: Index server storage concept as described by Bruckner et al. [BŠG+09]. To
the left is a simple 2D scene containing three objects. In the middle, the lookup volume
is illustrated. The light-grey overlay shows the corresponding Hilbert curve. To the right
is the corresponding distance map.

the new trajectory. This allows the neurosurgeon to alter existing trajectories or, if no
suitable candidate can be found, add new custom entry points.

5.4 Trajectory Generation and Preprocessing

In the trajectory preprocessing module, the set of potential entry points is calculated.
As an input, the module takes the spatial index to work on, a sampling density and a
target area definition in the form of either a single point or a list of points.

We assume that the head is in the center of the CT data set and define its center as the
center of a spherical coordinate system. The diameter in each dimension is chosen in
accordance to the respective data dimension, i.e., for a data set with data dimensions of
2563, the diameter is 256. With a user-defined number of latitudinal and longitudinal
steps we sample the coordinate system and convert the spherical coordinates to Cartesian
coordinates, as described in Algorithm 5.1.

Since the skull is not a sphere, the points created in this manner will not lie on the
skin surface. Therefore, for each potential entry point, a ray to each specified target
point on the tumor is cast. This ray is then traced in the CT volume until a voxel
value above a specified threshold is hit. This way, the entry point is guaranteed to be
on the skull surface. To prevent trajectories that would pass through the eyes, ears
or mouth to be created, the number of crossed bone layers is counted, similar to the
approach presented by Beyer et al. [BHWB07]. Trajectories that do not cross exactly
one layer are discarded. Algorithm 5.2 described the process, Figure 5.2 illustrates an
example. This correction process may lead to the generation of new entry points on the
skull. Figure 5.3 shows how this happens. For an original entry point on the spherical
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coordinate system, three rays are cast to their respective tumor target point. Since each
point intersects the skull surface at a different voxel, three entry points are generated.
This means that specifying multiple tumor target points may inherently lead to a denser
skull sampling.

After the correction, for each calculated potential entry point, a ray is cast to each
specified target point on the tumor and the minimal distances to each structure along
that trajectory are queried. Good, noiseless distance fields (i.e., such where only relevant
connected components above a certain size threshold are stored) are of crucial importance
here. While not visually disruptive, noise in the form of misclassified voxels can lead to
significantly altered minimal distances.

An initial list of candidate trajectories is created from every possible combination of
entry sample points and tumor target points. These candidate trajectories are saved to a
file for further use in the visualization module.

The trajectory preprocessing module can also be interactively queried at runtime to
create a list of new entry sample points at a higher sampling density around a promising
candidate. This allows the neurosurgeon to assess promising regions where one or more
suitable entry points have already been found.

Algorithm 5.1: Creation of geographic coordinate system for sample generation.
After the loop, each sample point can be identified with the tuple (latitude, longitude)
Input: Volume Size sxyz in x/y/z, number of latitudinal steps latsteps, number of

longitudinal steps lonsteps
Output: List c of potential entry points on Sphere

1 for x← {stepsize ∗ n|n ∈ N, n ∈ {−180, 180}} do
2 lat← x∗π

180 ;
3 for y ← {stepsize ∗ n|n ∈ N, n ∈ {−180, 180}} do
4 lon← y∗π

180 ;
5 cx,y,0 ← (sx − 1) ∗ sin lon∗sin lat

2.0 + sx
2.0 ;

6 cx,y,1 ← (sy − 1) ∗ sin lon cos lat
2.0 + sy

2.0 ;
7 cx,y,2 ← (sz − 1) ∗ cos lon

2.0 + sz
2.0 ;

8 end
9 end

5.5 Trajectory Filtering and Refinement

After the initial set of potential trajectories has been generated on the index server as
described in Section 5.4, is is subjected to optimization as well as incremental refinement
and filtering. If more than one target point on the tumor is specified, optimization aims
at choosing, for each entry point, the best target point such that the resulting trajectory
candidate best satisfies the rules laid down by the neurosurgeon. The optimization process
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Algorithm 5.2: Correction of entry-points based on CT data. Given a set of
trajectories T described by all Bresenham points t along the trajectory, the algorithm
finds the first point on the skull and returns the corrected (i.e., cropped) trajectory
that now goes from the tumor target point to the skull surface.
Input: List of potential trajectories T based on result of Algorithm5.1, CT image

data C
Output: List c of potential entry points on Sphere

1 for t ∈ T do
2 cnt← 0 bonecnt← 0;
3 insidebone← 0;
4 skullpoint← Nothing;
5 goodidx← −1;
6 for pt ∈ t, t is the set of Bresenham points in the current trajectory do
7 if Cpt > 0 then
8 if insidebone == 0 then
9 insidebone← 1;

10 bonecnt← bonecnt+ 1;
11 end
12 else
13 if insidebone == 1 then
14 insidebone← 0;
15 goodidx← cnt;
16 end
17 end
18 cnt← cnt+ 1
19 end
20 if bonecnt 6= 1 or goodidx < 0 then
21 return Nothing;
22 else
23 return {ti | t ∈ T , i ≤ goodidx}
24 end
25 end
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Figure 5.2: Example of entry Point Correction as described in Algorithm 5.2. Three entry
point candidates (A, B, C) have been sampled on the geographic coordinate system’s
upper hemisphere. Between point A and the tumor (yellow), exactly one layer of bone is
passed. Hence, A is translated to the first intersection with the skull and stored as new
entry point A′. Point B yields a trajectory that passes through two layers of bone. The
trajectory between point C and the target point does not pass any bone layer. Hence,
both entry points are discarded.

is described in Section 5.5.1. The resulting set of trajectory candidates is evaluated
against hard constraints and filtered accordingly. The idea and process of this step is
explained in Section 5.5.2.

5.5.1 Target Optimization

During the data loading process, the most suitable target point is selected for each
potential entry point. In the GUI, up to three evaluation criteria can be specified for this
optimization. Amongst these criteria are minimal distances to each structure, path length,
insertion angles at the skull and tumor, etc. The criteria are processed hierarchically for
pairs of trajectories. If two trajectories originate from the same entry point candidate on
the skull but reach different target points on the tumor, the first criterion is evaluated
for both trajectories. The results are then compared and a choice is made depending
on a user-specified operation (i.e., <, =<, >=, >). If the trajectories are equal with
regards to the first criterion, the second one is evaluated likewise. Finally, if both the
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Figure 5.3: Side effects with the Entry Point Correction algorithm. A given entry point
that is connected with a set of tumor target points may result in the generation of new
entry points on the skull.

first and second criterion are equal for both trajectories, the third one is evaluated. If all
three criteria are equal, the first trajectory supplied to the algorithm is chosen by default.
Algorithm 5.3 describes the decision process. In Figure 5.4, an example is illustrated.

Algorithm 5.3: Optimization of candidate trajectories.
Input: Two candidate trajectories (T1 and T2) originating at the same entry point

on the skull but reaching different target points on the tumor
Output: Better candidate trajectory based on evaluation criteria

1 for c← criterium1,2,3, o← operation1,2,3 do
2 val1 ← c(T1);
3 val2 ← c(T2);
4 if o(val1,val2) then
5 return T1;
6 end
7 if o(val2,val1) then
8 return T2;
9 end

10 end
11 return T1

5.5.2 Hard Rule Definition

The definition and application of hard rules aims at reducing the set of potential tra-
jectories to a manageable number before evaluating their fitness based on soft rules.
Trajectories that are longer than a user-specified length-threshold are discarded. Finally,
the minimal distance to all structures along the trajectory is considered. Also, trajectories
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that do not satisfy the user-defined safety requirements are discarded. Since all data has
already been preprocessed by the trajectory generation module, distance look-ups can be
performed in a very time-efficient manner. Algorithm 5.4 describes how the list of initial
trajectory candidates is processed.

Algorithm 5.4: Pre-Filtering of target points.
Input: Unfiltered List ts of Trajectory Candidates, List of structures ss and

corresponding minimal distances md
Output: Filtered List of Trajectory Candidates

1 for t← ts do
2 for s← ss do
3 if mindistance(s, t) < mds then
4 discard t;
5 end
6 end
7 end
8 return filtered List of Trajectory Candidates

5.5.3 Soft Rule Definition and Evaluation

In contrast to hard rules, which aim at reducing the number of potential trajectories by
imposing rigid exclusion criteria, a set of soft rules can be used to evaluate the remaining
trajectories and optimize the result. The quality Qt of a trajectory t is defined as shown
in Equation 5.1.

Qt =
n∑
i=1

di ∗ wi
maxi

(5.1)

di denotes the minimal distance to structure i along the trajectory, wi is the weight
assigned to that structure and maxi is the maximal minimal distance found in all
remaining trajectories. All weights need to sum up to 1.0. Each Qt is then divided by
the best encountered quality. This yields a relative measure, i.e., trajectory qualities are
given with respect to the best currently found trajectory.
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Figure 5.4: Example of target point optimization as described in Algorithm 5.3. Three
trajectories originating from the same entry point but ending at different points on the
tumor are sequentially compared. Optimization is set to distance maximization, with
the distance to the nearest vessel being the top priority, followed by the distance to
the nearest sulcus and finally, the distance to the ventricle. Sequentially evaluating the
candidate trajectories against these optimization criteria yields the selection of Trajectory
3.
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CHAPTER 6
Implementation

To demonstrate the feasibility of our system, we have implemented a prototype. All
modules were implemented and tested on a Windows 10 operated laptop PC with an Intel
Core i7-3630QM processor, 12GB RAM and an NVidia GTX 660M graphics processor
with 2GB dedicated GPU memory.

In this Chapter the implementation details of our system are presented. Section 6.1
briefly describes the MeVisLab work-flow. Specifics on data preprocessing are discussed in
Section 6.2. Our implementation of the spatial index is presented in Section 6.3. The user
interface, including details on each step of the user-work-flow is discussed in Section 6.4.
Information Visualization techniques can be found in Section 6.5.

6.1 MeVisLab Work-Flow

MeVisLab is a rapid prototyping system developed by the MeVis Medical Solutions
AG. It offers extensive data processing and visualization capabilities and is therefore
an excellent choice for creating a prototype. The work-flow in MeVisLab is based on
creating networks from various modules. Each module has input and output fields as
well as parameters. Input and output fields can be image data, OpenInventor scenes, and
base objects (e.g., lists of markers, strings, etc). Modules are placed with drag-and-drop
and input fields are joined to the corresponding output fields of modules at an earlier
stage in the network. Data evaluation is performed on demand, i.e., modules may or
may not actually request data from their predecessors. Parameter fields communicate in
the form of string variables. Figure 6.1 shows an example network in MeVisLab. New
modules can be created by joining existing ones into macro modules and extending their
functionality by adding Python [Ros95] or Java Script [Fla98] Code. Alternatively, new
modules can be written in C++.
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Figure 6.1: Example network in MeVisLab. Green nodes represent inventor modules,
blue nodes are MevisLab modules and brown nodes are macro modules. Triangular
connectors represent image data, round connectors represent Open Inventor Scenes and
square connectors are used for Base objects such as lists. [AG17]

6.2 Data Preprocessing

Data preprocessing was performed in MeVisLab. Structures that were segmented with
FreeSurfer and stored as NIFTI files were imported and processed. Connected component
analysis was performed with MeVisLab’s built in module ComputeConnectedComponents.
From the resulting list, the largest component was filtered using the FilterConnected-
Components module.

Each structure was stored as a set of files. On the one hand, a DICOM file was stored
for visualization purposes. On the other hand, a raw file in an 8 bit unsigned int format
was stored for the corresponding distance field. Distance fields were calculated using
MeVisLab’s built in EuclideanDTF module. They were then capped to a maximum
distance of 20 mm, as higher distances are not relevant for our purposes. Distances were
scaled to the to the range [0,255] in order to fit the 8 bit data format.
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6.3 Indexing
The spatial index server and the trajectory pre-processing module build upon existing
work and are implemented in the Go Programming Language [DK15]. As pointed out by
Hansen [Han11], "the data types may have a big influence on the size of the data file". In
our prototype, distances are stored as unsigned 8 bit integer values and scaled to the
range [0, 255] on the client side. Distances above 20 mm are not stored.

Initial trajectory generation can be executed directly from the user interface or alterna-
tively, by usage of a command line program. In the former case, the results are directly
communicated to the user interface by means of Python’s subprocess package. In the
latter case, a corresponding data file is stored in the CSV format for future use. In the
file, each line represents a potential trajectory, identified by the entry point at the skull
and the tumor end point. Additional columns indicate path length, insertion angle at
the skull and insertion angle at the tumor. Finally, each line contains a list of structures
at risk and their minimal distances in mm (or overlaps in voxels) from the trajectory.

The spatial index server has been implemented with a web interface and thus allows for
a distributed work-flow. When queried, the server returns the risk signature of a single
trajectory (i.e., a list of tuples where each tuple represents one structure at risk and the
corresponding distance from or overlap with the trajectory) as a json object.

6.4 User Interface
The user interface was implemented in MeVisLab, based on the analysis presented in
Section 4.1.2. Additional functionality was implemented with Python scripts. The system
also uses OpenGL [SSKLK13] with GLSL vertex and fragment programs for visualizations
that are not readily available in MeVisLab.

The visualization module displays trajectories and their contextual information with
various views. The main view consists of a Main 3D View, a Supporting 3D View,
an Augmented Slice View, a trajectory query view and an Visual Analytics
View.

The Main 3D View is configurable and presents the trajectories in an anatomical
context. Different data modalities (CT, MRI, the vascular system) are presented and
can be toggled according to the surgeons needs. Candidate trajectories are represented
as glyphs and color-coded according to their quality. Green markers denote the entry
points of the highest quality, yellow markers indicate medium quality and orange markers
indicate low - but still acceptable - quality. The weights for the cost function can be
customized by the user. The currently selected trajectory is highlighted and the needle is
shown as a blue line.

The Supporting 3D View displays the currently selected trajectory in a reduced
context. Two modes have been implemented. In the first mode, the vascular system is
color-coded with respect to the distance to the needle. Red areas are close to the needle
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Figure 6.2: Visualization module user interface, with alternate supplemental views. Top
left: Main 3D View. Top middle: Supporting 3D View, set to critical region view mode.
Vessels are red, the left lateral ventricle is yellow, the right lateral ventricle is blue, and
the pyramidal tract is green. Top right: Augmented Slice View, set to critical region
view. Coloring is consistent with the Supporting 3D View. Bottom: Parallel Coordinates
for trajectory picking. Between the Main 3D View and the command buttons, in the
white boy on the left, is the trajectory query Visual Analytics View that offers real-time
information on the minimal distances for trajectories that have not been generated in
the pre-processing step.

and therefore at risk, while green areas are further away and therefore safe. We used
a MevisLab module for the distance calculation and visualization. In the second mode,
selected structures at risk can be displayed. Each structure can be assigned a custom
color and opacity value. Figures 4.7 and 6.2 illustrate the supporting 3D views.

The Augmented Slice View always presents a needle-aligned slice stack with additional
annotations and highlights. In one mode, the augmented 2D view highlights vessels in
the current slice and annotates the distance to the needle center. This is similar to the
work performed by Herghelegiu et al. [HMP+12]. In another mode, the augmented 2D
view highlights the structures at risk. Figures 6.2 and 4.7 illustrate the two modes of the
augmented 2D view.

The Trajectory Query View offers a tabular overview of the best trajectory at a given
point on the skull, similar to the work done by Bruckner et al. [BŠG+09]. Information is
queried online and can be obtained for arbitrary positions, even if no samples have been
generated at this point during the initial sampling process. In Figure 6.2, the trajectory
query view can be seen under the command buttons, in the white box on the left.
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Figure 6.3: Manual Target Area Defintion. Upper Left: 3D Contextual 3D view. The
sagittal, axial, and coronal mid-planes are displayed. Highlighted in yellow is the
segmented tumor. The red sphere indicates the target area’s position and extent. Top
Right, Bottom Left, Bottom Right: MPR view for the main anatomical planes, i.e., axial,
sagittal, coronal.

The Visual Analytics View has been implemented using the MatplotLib library and
operates in two distinct modes. In the global filtering mode, it can be used for trajectory
selection. Three techniques have been implemented. These are discussed in Section 6.4.2.
In the local evaluation mode, a trajectory’s risk signature is presented. Two different
views have been implemented and are discussed in Section 6.4.5.

Figure 4.7 offers an overview of the most important views in the user interface and their
interaction during the planning process.

6.4.1 Target definition

After data segmentation and before trajectory pre-processing, the target area is defined
in the user interface. The surgeon is presented with an MPR view of the volume. For
better usability, the tumor is highlighted. As illustrated in Figure 6.3, the initial target
location (represented by a red sphere in the left upper view) is selected in an orthogonal
slice view and visualized in a contextual 3D view. A target radius in voxels can then be
specified with a slider control. A sphere of the specified radius at the initial target point
contains all final target voxels, i.e., all those voxels which are closer to the target than
the specified radius. Each potential entry point is automatically connected with each
target point and hence, the set of initial candidate trajectories is generated.
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Figure 6.4: Trajectories are binned according to their minimal distance to configured
structures. Bins of trajectories can be picked or rejected. Red bars indicate that a bin has
been picked, while all trajectories in green bins will be rejected after filtering is applied.

6.4.2 Hard Rule Definition and Evaluation

Two methods of hard rule definition have been implemented. Pre-filtering is meant as a
first, crude reduction step to exclude trajectories that violate minimal safety requirements.
It is performed in the GUI by means of a set of slider controls which can be used to
specify the the minimum distance to each structure at risk. After each filtering operation,
the user is presented with the number of remaining trajectories that satisfy the rules. All
operations can be undone in such a matter that the initial state (or any intermediate
state resulting from filtering) can be restored at any point. Post-filtering, as opposed to
pre-filtering, aims at the incremental refinement of rules and a step-wise approximation of
the optimal result. The process is interactive in nature and offers different visual feedback
mechanism. Filterable trajectory attributes are, among others, the minimal distance to
each registered structure along the trajectory, path length, insertion angle at skull surface
(deviation from a perpendicular insertion), insertion angle at tumor (deviation from a
perpendicular insertion) and the distance between entry point and the cerebral cortex.

Different visualization and interaction methods to support post-filtering are provided. On
the one hand, standard GUI elements such as sliders can be used to set scalar values (i.e.,
lengths, angles, distances to a single structure). On the other hand, InfoVis techniques are
employed to provide insight into multivariate data (e.g., correlations between trajectory
attributes are visualized in Parallel Coordinates, data distribution is visualized as a set
of interactive histograms) and enable intuitive trajectory picking.

Four such picking techniques have been implemented. Parallel Coordinates are em-
ployed to present the user with all data dimensions in one view. Trajectories are
represented as color-coded lines in the Parallel Coordinates. The coloring scheme is
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Figure 6.5: Multiple small bar charts illustrating each trajectory’s risk signature. Trajec-
tories can be compared to each other and then accepted or rejected in this view. Colored
bars indicate distances toward critical structures. Green bars indicate high distances, red
bars indicate low distances and intermediate colors represent medium distances. The
domain expert can rank trajectories based on his evaluation of the situation. Risk signa-
ture charts on blue background represent picked trajectories, those on white background
will be rejected after filtering is applied.

consistent with the main 3D view. The Parallel Coordinates in the context of the user
worklow is presented in Figure 4.7. Configurable scatterplots can be used for picking
trajectories based on the most relevant data features. An arbitrary number of scatterplots
can be displayed. Distance histograms allow the surgeon to pick one or more bins of
trajectories for every data dimension. Each bin contains a certain set of trajectories. The
union of all these sets is formed for each structure. Then, the intersection of all these
sets is selected for further examination. This view can be used to prevent a filtering
operation from returning an empty set of results. Figure 6.4 illustrates the concept. In
the presented example, all trajectories with a distance of at least 4 mm to the closest
vessel, 8 mm to the pyramidal tract, 9 mm to the left lateral ventricle and 7 mm to the
closest sulcus have been selected, as indicated by the red color. In the main 3D view,
selected trajectories are highlighted with light blue markers. This selection yields the
same results as minimal distance thresholding, but allows for a better estimate of how
many trajectories will remain after each filtering operation.

We also introduce novel ways of filtering trajectories based on their risk signature.
Multiple small bar charts illustrating each trajectory’s risk signature are presented
to the user, as illustrated in Figure 6.5. In each bar chart, color coded bars indicate
the minimal distance to a structure at risk along the trajectory, with the highest bar
indicating the largest distance and hence, the lowest risk. While this may seem counter-
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intuitive at first, the reasoning was that the highest bar inherently draws the user’s
attention. Representing higher risks with higher bars emphasizes the trajectories that
exhibit a greater risk. The goal, however, is to find the best suited trajectories for
further evaluation, not identify those with the highest risk. Also, the color-coding, which
goes from green for trajectories of low risk to red for those with a high risk further
aids the selection process. Note that the charts are scaled with regards to the highest
encountered distance and hence, scales may differ between individual charts. To illustrate
the difference in scale, a white dashed line has been inserted at the 3 mm and 4 mm
mark of the first and last trajectory.

Here, the color coding offers a more intuitive and concise measure than bar height alone.
This becomes visible, for example, when comparing the second and fourth chart in
Figure 6.5. The third bar, i.e., the distance to the left lateral ventricle, appears to be of
the same height in both charts. Due to differences in scale, however, the distance in the
second chart is 10 mm, while it is 14 mm in the fourth chart. This difference becomes
evident when also considering the color coding, i.e., the bright green in the fourth chart
as opposed to the olive green in the second chart. In Figure 6.5, the first trajectory
maximizes the distance to the vessels. In contrast, the last trajectory does not perform
as well with regards to vessels, but exhibits a higher safety margin towards the nearest
sulcus.

An icon based view that maps trajectories to cartoon faces, as proposed by Cher-
noff [Che73] has been implemented, as shown in Figure 6.6. Trajectory properties such
as length, distance to vessels, etc can be mapped to spatial features such as, e.g., the
slant of the eyes or the length of the nose. Each of these views can be used to accept or
reject trajectories based on their properties.

Potential trajectories are also visualized in a main 3D view. Figure 6.7 presents Parallel
Coordinates used for selecting trajectories, along with the main 3D view. After each
operation on the trajectory space, the set of options is refined accordingly and the number
of remaining candidates is presented to the user. As in the pre-filtering step, every
operation can be undone at any point.

6.4.3 Soft Rule Defintion and Evaluation

After each filtering operation, all remaining trajectory candidates are evaluated for their
fitness as described in Section 5.5.3. Rules can be defined in a configuration file where
each line represents a soft constraint that will be used for quality evaluation. For each
soft constraint, the corresponding weight is supplied.

Those trajectory candidates, which are not excluded due to the violation of a hard
constraint are divided into six bins according to their quality. The best bin gets assigned
the color green, the worst bin is red. The potential entry points in the Main 3D View
are colored accordingly. Lines in the Parallel Coordinates are given the same colors as
the entry points they represent. The coloring scheme can be seen in Figures 4.7 and 6.7.
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Figure 6.6: Chernoff faces map features of multivariate data to facial features on comic
faces. According to Chernoff, by presenting data in a very familiar fashion, namely,
human faces, "an investigator can quickly comprehend relevant information and then
apply appropriate statistical analysis" [Che73]. Faces on blue background represent
picked trajectories, those on white background will be rejected after filtering is applied.

6.4.4 Trajectory Addition and Removal

Trajectories can be added interactively at any time. This can be done in three ways:
addition of new samples in the main 3D view, resampling around existing samples and
finally, refinement of existing trajectories.

In the main 3D view, trajectories can be added manually at any time. A GPU-based
risk evaluation was implemented in order to aid the surgeon in the decision where to
place a new sample. Figure 6.8 presents the view. For each point on the skull surface,
a ray is cast to the specified target point on the tumor. A distance field containing
the vessel system is supplied to the GPU as a 3D texture. The texture is sampled at
each point along the trajectory and the minimal distance to the closest vessel along the
trajectory is found. The corresponding value is then projected onto the skull surface.
Safe entry points are displayed in green, while entry points that result in the intersection
of a vessel are displayed in red. This is an extension of the work done by Herghelegiu
et al. [HMG11], who project the stability map of a given, user-defined ellipsoidal entry
region onto a sagittal plane.

In Figure 6.8 A, a trajectory in a green, i.e., safe entry zone is presented. Conversely,
Figure 6.8 B shows a trajectory in a red, i.e., unsafe entry zone. As can be verified in
the supporting 3D view (top right) and Visual Analytics View (bottom), the minimal
distance to the nearest vessel is much higher for the trajectory presented in Figure 6.8 A,
than for the one presented in Figure 6.8 B.

63



6. Implementation

Figure 6.7: Trajectory evaluation after minimal hard rule definition. Trajectories that
are closer to the closest vessel than 3 mm have been rejected. The weights used for
evaluation are 0.5 for vessels and 0.25 for Sulci and the left lateral ventricle respectively.
Trajectories are represented as glyphs in the main 3D view (top left) and consistently
colored lines in the Parallel Coordinates (bottom).

Because of GPU limitations, only one tumor target point can be considered in our
implementation. Furthermore, since GPU memory is limited, as explained in Section 3.1.5,
only the vascular system is considered in this view.

New trajectories can also be created on demand by resampling around an existing,
promising candidate trajectory. The trajectory preprocessing module is queried for a new
set of trajectories. The newly created trajectories are then added to the set of currently
available trajectories. Sampling works similarly to the initial sampling process described
in Section 5.4.

Equation 6.1 describes the random translation of the spherical coordinates, where X is
the random scalar used for translation, nx, ny, nz are the corresponding coordinates of
the newly created sample and ox, oy, oz are the corresponding coordinates of the initial
sample.

nx = X ∗ radius ∗ sign+ ox

ny = X ∗ radius ∗ sign+ oy

nz = X ∗ radius ∗ sign+ oz

(6.1)

The coordinates obtained in this matter are adapted so that they are guaranteed to lie on
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a bony surface as described in Algorithm 5.2 and converted into cartesian coordinates as
shown in Algorithm 5.1. Figure 6.9 illustrates the process of adding new trajectories by
resampling around an existing one. Steps that are performed in the visualization module
are represented by black boxes, green boxes indicate a step is performed on the server
module.

Finally, existing trajectories can also be refined in an MPR view. Both the entry point
and the tumor target point can be translated. The spatial index server is queried for the
risk signature of the new trajectory. A risk signature chart as illustrated in Figure 6.5 is
presented to the user and the new trajectory is added to the set of currently available
trajectories. This manual refinement function acknowledges the fact that, ultimately,
the neurosurgeon is the domain expert and might make decisions based on criteria that
are hard to quantify.

Exclusion of trajectories is usually done by refining the rules and applying the filter. All
trajectories that do not satisfy the rules are excluded from further examination. However,
if a trajectory does satisfy all rules but is still deemed unsuitable by the neurosurgeon, it
can also be deleted manually.

6.4.5 Trajectory Inspection

During evaluation, the reduced set of trajectories is presented to the user. As in the
post-filtering stage, the user can navigate between different views. The Main and
Supporting 3D Views offer spatial context, while the Visual Analytics View presents
detail information. A trajectory’s risk signature is displayed in one of three ways in the
Visual Analytics View.

The Visual Analytics View offers detail information on the trajectories risk signature.
Figure 4.7, on the top right, illustrates the risk signature chart view. Bars are colored
according to their value with a simple linear interpolation in RGB space between green
(for distances of 20 mm) and red (for distances of 0 mm). In case a trajectory does
intersect a structure, a negative bar representing the total overlap volume between the
needle and the structure is presented. These bars are displayed in red.

Alternatively, the distance profile from the needle to all structures at risk can be plotted
as a set of colored functions in a shared coordinate system. The spatial index server can
be queried for all voxels that lie on the trajectory. Sample positions are calculated with a
modified Bresenham’s line drawing algorithm. Figure 6.10 illustrates the needle pathway
distance graph view. Although the most important measure regarding the distance to
a structure along the trajectory is the minimum, considering the distance at multiple
sample points might reveal additional insight into the trajectory’s quality. For example,
although two trajectories might exhibit an identical minimal distance to a given structure,
with everything else being equal, the trajectory with a higher average distance is better
than the one with a lower average distance.

Finally, the radar chart view presents a trajectory’s risk signature as a geometric figure.
Radar charts can be freely configured to include arbitrary structures such as to best
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suit the user’s needs. On each plot, the trajectory is presented as a pair of shapes.
One shape, the distance polygon, reflects the minimal distances to structures. The
second shape, the overlap polygon, depicts the overlap with structures. Shapes are
created by setting up a polygonal coordinate system where each data dimension is
represented by an axis connecting the plot center with the respective polygon vertex.
For example, a three-dimensional dataset can be represented in a triangular coordinate
system, while a four-dimensional dataset requires a square or diamond-shaped coordinate
system. Data points in each dimension are scaled such that each axis has the same length.
In our implementation, the area under the distance polygon gives an estimate of the
safety margin. Hence, distance polygons with larger areas and overlap polygons with
smaller areas generally represent safer trajectories. In order to alleviate the radar chart’s
shortcomings described by Staffogia et al. [SLF+11], namely, the inability of the radar
chart to differentiate between the case when information on a data dimension is missing
and the data dimension’s value is zero, we fill missing data dimensions with a value of 20.

A distance of zero or less indicates an intersection with, and hence, a violation of a
structure at risk. Representing missing values as zero therefore leads to the potential
exclusion of trajectories. The only way a data dimension is missing, in our case, is if it
is capped by the spatial index server. This happens if a structure is further away from
the needle center than 20 mm. In that case, it is deemed not to be at risk, i.e., it is safe.
Hence, while substituting 20 mm for the true value skews the data, this is of no clinical
relevance.

Spatial information regarding the trajetories relation to structures at risk is also presented
to the user. In a Supporting 3D View, the vascular system can be color coded with
regards to the vessel’s distance to the needle. Alternatively, the needle is presented
in the context of selected critical structures, as shown in Figure 6.2. An Augmented
Slice View presents the needle-aligned slice stack with highlighted vessels and distance
annotations. Alternatively, the surgeon can choose to display a selected set of critical
structures highlighted in the needle-aligned slice stack, as presented in Figure 6.2.

Finally, the results can be viewed slice by slice in either the original coordinate system
or in a needle-aligned slice stack. These views are very similar to those offered by the
system our domain expert currently uses. By creating familiar views, we aim at making
the transition from one system to the other easy.

6.4.6 Trajectory refinement

Trajectories can be refined in two ways, either by resampling around an existing entry
point or by manually altering the trajectory start- and endpoint. On the one hand, the
trajectory generation module can be queried for a set of trajectories sampled at a higher
resolution around an existing entry point as described in Section 6.4.4. This approach is
meant to support the automatic addition of new trajectories in promising entry areas, at
earlier stages of the planning process. Alternatively, the surgeon can interactively modify
a trajectory in either the original coordinate system or in a needle-aligned slice stack
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and query the spatial index server for updated distance information. The new trajectory
is then added to the visualization module. This approach is meant to be used in later
stages of the planning process, when acceptable solution may have already been found
but expert knowledge makes certain subtle changes preferable.

6.5 Information Visualization
Although Staffogia et al. [SLF+11] deem the spie chart the best representation for
multivariate data for clinical outcome indicators, we have decided to rather implement
the radar chart to illustrate the quality of individual trajectories.

This is due to the nature of our data. Rather than clinical outcome data, which is limited
to a positive range, we have to display spatial information that can be either positive
or negative, as described in Section 6.4.5. Also, the ambiguity between missing data
dimensions and those items whose value is zero is a non-issue in our case, as missing
information can be interpreted and handled easily in our system. The details of our radar
chart implementation are discussed in Section 6.4.5.

Needle pathway distance graphs are implemented such that each structure at risk is
represented by an individual line. This allows for a more detailed qualitative analysis of
trajectories. Different structures may have different levels of risk associated with them,
so displaying only a single line representing the nearest structure at risk for every sample
point might take away important information. Figure 6.10 illustrates our implementation.

We have implemented Parallel Coordinates in which trajectories can be interactively
picked and filtered. To the best of our knowledge, no existing solution in the context of
brain biopsy planning implements this interaction technique.

Finally, Chernoff Faces seem to be a feasible visualization technique, as brain regions can
be mapped to facial features based on their function. For example, the distance to the
optic chiasm can be mapped to the size of the eyes, while Broca’s area, the motor center
for speech, can be mapped to the slant of the mouth. While not pre-attentive, in the
scenario of brain surgery, this view enables to user to directly map at least a few features
to the cartoon face. Figure 6.6 shows our implementation.
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Figure 6.8: Presented in the Main 3D View (left) is the risk map. For each point on the
skull surface, a ray is cast to the specified target point on the tumor and the minimal
distance to the nearest vessel along the trajectory is found. Safe entry points with
regards to the vascular system are displayed in green, while entry points that result
in the intersection of a vessel are displayed in red. The Supporting 3D View (right)
shows a color coded representation of the trajectory in the context of the vascular system.
Blood vessels in red are closer to the trajectory, i.e., at risk. in the Visual Analytics
View (bottom), the risk structure of the selected trajectory candidate is presented. A)
Trajectory in a green, i.e., safe entry zone. B) Trajectory in a red, i.e., unsafe entry zone.
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Figure 6.9: Adding new trajectories by resampling around an existing one. Black boxes:
steps in the visualization module. Green boxes: steps that are performed on the spatial
index server.

Figure 6.10: The needle pathway distance graph (bottom) represents the currently
inspected trajectory (visible in the contextual 3D view in the top left and center) as a
set of line graphs. Each structure at risk is represented by a colored line. The abscissa
represents the current insertion depth while the ordinate shows the minimal distance to
the respective structure at that position. This representation summarizes the information
that could be gathered by slicing through the annotated volume in the augmented slice
view (top right).
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CHAPTER 7
Evaluation

We performed an internal evaluation of BrainXPlore, where we evaluated the system
for performance, accuracy and result quality. The methods used for the evaluation as
well as the results are presented in Section 7.1. Furthermore, we performed an external
evaluation and compared BrainXPlore to existing solutions. Our findings are presented
in Section 7.2.

7.1 Internal Evaluation

We evaluated the usefulness of our application based on the dataset used for the case study
in Section 4.1.1. Because our input data came from independent scans, pre-processing
had to be performed. The CT and MRA scans were resampled in order to produce results
with the same resolution as the FreeSurfer results (2563). The resampled results were
manually registered to the pre-operation MRI scan. Then, semi-automatic vessel and
tumor segmentation was performed in MeVisLab.

Based on this data, different spatial index files were built. Candidate entry points were
sampled on a spherical coordinate system at 255 latitudinal steps and 255 longitudinal
steps, as described in Section 5.4. For trajectory generation, we provided the system with
different tumor point configurations. The most basic configuration contained only one
target point at the tumor’s periphery. To test the performance for multi-target scenarios,
we added additional definitions for 3, 5, 10 and 15 target points.

With those spatial index files, entry points, and target points, we evaluated the per-
formance of the individual components of our system. Then, in cooperation with our
domain expert, we used BrainXPlore to produce a biopsy trajectory for the dataset in
our case study and evaluated the quality of the result.
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The rest of this Chapter is structured as follows: First, in Section 7.1.1, we present the
performance of our system under different conditions. Then, in Section 7.1.7, we show
the neurosurgical evaluation of our results.

7.1.1 Performance Evaluation

We examined the efficiency of each individual part of our solution. A laptop computer
running on a Windows 10 Professional 64 bit operating system with an Intel Core i7-3630
CPU was used for the evaluation. The machine has 12 GB of memory and an NVIDIA
GeForce GTX 660M with 2 GB of video memory. In a real world scenario we expect the
number of relevant trajectory candidates to be in the vicinity of 200-6000, as stated by
Zombori et al. [ZRN+14]. However, use cases of upwards of 10000 trajectory candidates
are possible. We have therefore decided to test our system with higher numbers of
trajectory candidates than usually encountered in real world examples.

7.1.2 Index Generation

Although it is not within the scope of this thesis, the spatial index is a crucial component
of our system. In order to assess the usefulness of our system, we have decided to include
an evaluation for this component as well. To evaluate the performance of the spatial
index generation, we measured the average computation time for the creation of indices
of different sizes. Indices were built for 1, 5, 10, 50, 100, 150 and 178 structures at risk.
The maximum number of 178 structures resulted from the extraction of cortical and
subcortical regions of interest from our data set. We used the Destrieux Atlas provided
by FreeSurfer for cortical parcellation the atlas developed by Fischl et al. [FSB+02],
which is also provided by FreeSurfer, for subcortical segmentation. All empty results, i.e.,
those structures that could not be classified, were discarded. This process resulted in 175
structures. In addition to those structures, we used our semi-automatically segmented
blood-vessels, a union of all sulci (except for the precentral and postcentral sulcus) as
well as the manually segmented pyramid tract.

Each configuration was built five times and the times were recorded using the Measure-
Command function of Microsoft’s PowerShell. Table 7.1 provides details on the measure-
ments, Figure 7.1 shows the average runtimes as a function of the number of structures
at risk. As can be seen, the time required to construct an index for a single structure is
approximately 13 seconds. This time is used for startup of the system and the allocation
of memory.

7.1.3 Online Interactive Trajectory Query

To evaluate the performance of the spatial index query, we measured the average compu-
tation time for sending queries to the index server and processing the results on the client
side. This excludes visualization. For the evaluation, different sets of tumor target points
have been considered. We performed evaluations for 1, 3, 5, 10 and 15 distinct target
points on the tumor surface. Additionally, we performed all tests on different spatial
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Structures at Risk 1 5 10 50
Measurement 1 12440 13611 14931 25017
Measurement 2 12305 14058 15473 25122
Measurement 3 13247 13575 14732 25402
Measurement 4 13107 13847 15464 25284
Measurement 5 12647 13862 15048 25537
Average Runtime 12749 13791 15130 25272
Structures at Risk 100 150 178
Measurement 1 48423 71189 94306
Measurement 2 48319 72098 83914
Measurement 3 47876 70832 85208
Measurement 4 48742 71526 85948
Measurement 5 48027 71208 84278
Average Runtime 48277 71371 86731

Table 7.1: Time measurements for index generation, in ms, with respect to the number
of structures at risk.

indices, which were built on different numbers (1, 50, 100, 150, and 178, respectively) of
structures at risk.

Each configuration was profiled by choosing 150 random points on the skull surface
and sending a trajectory query to the server. For multi-target scenarios (i.e., all cases
except the first), target optimizations were performed as described in Algorithm 5.3. We
measured computation times and recorded the average for each configuration. Table 7.2
lists the resulting timings with regards to the number of structures at risk and the number
of tumor target points. We included average runtimes across the different spatial indices
to illustrate an average scenario.

Figures 7.2 and 7.3 offer a graphical representation of our findings. From the data we
conclude that the runtime is linearly dependent on the number of considered tumor
targets but not on the number of structures at risk. Due to the nature of the spatial
index, access times are dependent on the sparsity of the data rather than the number of
structures, because the trajectory is evaluated for each rasterized point. Passing through
a higher number of voxels that have distance information associated with them leads to
a higher number of calculations. The number of considered structures at risk, however,
is not relevant to the computation time.

For real-time framerates, computation times need to be below 1
30 of second, while

interactive framerates call for computation times below 1
20 of a second. From the data in

Table 7.2, we conclude that on typical data sets with a resolution of 2563, our system
can provide near real-time trajectory information for up to 10 targets on the tumor.
Interactive framerates can still be achieved for up to 15 targets.
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Figure 7.1: Average runtimes for the spatial index generation with respect to the number
of considered structures at risk

Targets / Structures at Risk 1 50 100 150 178 Average
1 Target 4 4 5 5 5 5
3 Targets 7 8 8 8 8 8
5 Targets 12 12 12 12 13 12
10 Targets 23 23 24 24 25 24
15 Targets 33 34 36 35 36 35

Table 7.2: Average runtimes in ms for a trajectory query and subsequent optimizations.
Also provided are the average runtimes across different numbers of structures.

7.1.4 Sample Point Generation

We also evaluated the performance of our system by profiling the sample generation
process with different sets of tumor target points, as described in Section 7.1.3. We set up
a spatial index consisting of 178 structures at risk. Then we generated a set of samples
on a spherical coordinate system consisting of 250 longitudinal and 250 latitudinal steps
as described in Algorithm 5.1. Each of created grid points was corrected as described in
Algorithm 5.2. From each corrected entry point, a trajectory to each specified tumor point
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Figure 7.2: Average runtimes for querying a trajectory with respect to the number of
considered structures at risk and tumor target points. It can be seen that the runtime
strongly correlates with the number of tumor target points.

was calculated on the server. First, we created trajectories for a single target point on
the tumor. Then, we created sets of trajectories for 3, 5, 10 and 15 targets, as described
in Section 7.1.3. For reasons explained in Section 5.4, introducing additional target
points yields additional trajectories. Each target configuration was run 50 times and the
average time was recorded. Table 7.3 offers an overview over the average computation
times. Figure 7.4 illustrates the linear relationship between the computation time and
the number of target points on the tumor.

The resulting set of trajectories was then parsed on the client and in the multi-target case,
trajectory optimizations were performed as described in Algorithm 5.3. Also, trajectory
length was calculated on the client. We evaluated the client with the same method as
outlined above. Table 7.4 offers an overview of the average computation times. Figure 7.5
illustrates the results.
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Figure 7.3: Average runtimes for querying a trajectory with respect to the number of
considered structures at risk and tumor target points. It can be seen that the runtime
strongly correlates with the number of tumor target points, but not with the number of
structures at risk.

Targets Trajectories Sample Generation Time
1 19766 22
3 46468 59
5 62860 97
10 82158 192
15 89376 291

Table 7.3: Average computation times in ms for the initial sample point generation with
respect to the number of tumor target points.

7.1.5 Soft Rule Evaluation

To evaluate quality evaluation times, an initial sampling resulting in 32830 trajectories
was performed. This set was incrementally filtered by adding rules until only four
trajectories remained. Each set was evaluated five times and the average runtime was
recorded. The evaluation was based on four criteria, each of which contributed 25% to
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Targets Trajectories Trajectory Optimization Time
1 19766 15
3 46468 49
5 62860 93
10 82158 176
15 89376 335

Table 7.4: Average computation times in ms for the initial sample point optimization
with respect to the number of tumor target points.
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Figure 7.4: Average runtimes for the initial sample point creation with respect to the
number of tumor target points.

the overall trajectory quality score: the distance to the nearest vessel, the distance to the
nearest sulcus, the distance to the left lateral ventricle and the path length. Equation 7.1
describes how the trajectory quality was calculated for a given trajectory i. Dj represents
the trajectories distance to structure j, Maxj is the maximum distance to that structure
amongst all considered trajectories. Trajectories are binned into quality categories for
visualization purposes, as described in Section 6.4.3.

The results are presented in Table 7.5. Figure 7.6 illustrate the data. To fit all data, the
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Figure 7.5: Average runtimes for the initial sample point optimization with respect to
the number of tumor target points.

X-Axis was scaled logarithmically. As can be seen, the runtime is a linear function of the
number of trajectories.

Qi =
∑

j=0,1,2,3

1
4Dj/Maxj (7.1)

7.1.6 Rule Refinement

To evaluate the performance of our rule refinement algorithm, we tested it with respect to
the number of rules to be evaluated. As described in Algorithm 5.4, our filtering algorithm
discards any trajectory that does not satisfy all defined rules. We sped up the process
by implementing early termination, i.e., the evaluation for a given trajectory candidate
is stopped as soon as the first rule violation is detected. Therefore, our hypothesis was
that performance is dependent on the order in which the rules are applied. To test our
hypothesis, we created an initial sample space of 32830 trajectories and a set of 17 rules.
For the first test, we applied the rules in a fixed order such that the most significant
rules (i.e., those that lead to the highest number of discarded trajectories) are evaluated
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Trajectories Measure 1 Measure 2 Measure 3 Measure 4 Measure 5 Avg. Runtime
32830 1896 1890 1876 1873 1886 1884.2
17339 1173 1190 1180 1190 1167 1180
6081 582 586 586 587 588 585.8
3053 320 312 314 314 313 314.6
1812 200 202 199 203 199 200.6
588 122 117 117 118 116 118
106 30 25 25 26 26 26.4
1 3 3 3 3 3 3

Table 7.5: Average runtimes in ms for soft rule evaluation on a set of four rules. Each
evaluation was performed five times, Measures 1 through 5 show the respective timings
in ms.
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Figure 7.6: Average runtimes in ms for soft rule evaluation on logarithmic scale.
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in the beginning. We filtered our initial sample space iteratively and added one rule in
each iteration, i.e., the same sample space was first filtered with a single rule, then with
two rules and so on, until all rules were enabled. To test the stability of our approach,
we ran the process five times and recorded runtimes for each individual test run as well
as average runtimes. Table 7.6 presents the resulting times.

In Figure 7.7 it can be seen that the runtimes appear to be a linear function of the
number of evaluated rules, until rule six is evaluated, at which time they exhibit a
considerable drop-off. At this point, the combination of three rules (namely, distance to
vessels, distance to the sulci and distance to the left lateral ventricle) lead to an early
termination of the evaluation for all but 20 samples. This supports our hypothesis that
the order of rules significantly affects the performance.

We performed the same experiment again, on the same set of initial samples. The second
time, however, the order of rule application was randomized, i.e., in each of the five
test runs, the order of rule application was different. Table 7.7 presents the resulting
runtimes. As can be seen in Figure 7.8, the same characteristic drop-off in computation
times can be observer in all measurements, only at different times. This indicates that the
introduction of the respective rule led to a set of rules which result in the early rejection
of most trajectories. We conclude that while the computation time is a linear function of
the number of rules to be evaluated, the order in which those rules are introduced can be
very significant.

7.1.7 Neurosurgical Evaluations

Our domain expert employs biopsy needles with a diameter of 3.5 mm and therefore a
radius of 1.75 mm. We compute minimal distances from the needle center to structures
at risk. The safety margin then describes the distance between the needle’s edge and the
structure, i.e., we subtract the needle radius from the minimal distance.

Pre-filtering was applied with the minimal distances presented in Table 7.8. This yielded
390 potential trajectories. Limiting path length to 80 mm reduced this set to 20 potential
trajectories. Samples were further spatially limited to the left side, behind the hairline,
by defining an appropriate ROI in the user interface. This reduced the set to 9 valid
candidates. These were evaluated based on their minimal distance to the sulci.

From the set, the best trajectory (i.e., the one with the largest safety margin towards
the sulci) is illustrated in Figures 7.10 and 7.11. Figure 7.10 presents the trajectory
in an orthogonal slice view in the original coordinate system. The solid yellow line
indicates the part of the trajectory behind the current needle tip position, dashed lines
indicate the part of the trajectory that has not yet been crossed. As can be seen in the
coronal view, the trajectory does not originate at a sulcus (highlighted in orange). The
sagittal view reveals that the trajectory laterally passes the ventricle. Table 7.9 lists the
minimal distances to structures at risk along the needle trajectory for those structures
that are within the critical range of 20 mm. The associated risk signature is illustrated
in Figure 7.9.
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Rules Measure 1 Measure 2 Measure 3 Measure 4 Measure 5 Average Runtime
1 1184 1160 1216 1215 1221 1199.2
2 1816 1851 1859 1864 1888 1855.6
3 2388 2500 2457 2485 2477 2461.4
4 2955 3003 3004 3023 3039 3004.8
5 3480 3590 3578 3603 3620 3574.2
6 1055 1085 1081 1090 1089 1080
7 891 914 906 910 899 904
8 875 891 899 891 913 893.8
9 871 897 887 893 898 889.2
10 906 917 916 906 926 914.2
11 912 944 944 939 942 936.2
12 922 960 943 938 942 941
13 944 970 958 952 943 953.4
14 955 970 962 950 957 958.8
15 965 1006 1011 992 995 993.8
16 994 1023 1013 999 1004 1006.6
17 985 1034 1021 1000 1024 1012.8

Table 7.6: Average runtimes in ms for rule refinement with respect to the number of
evaluated rules. Each evaluation was performed five times, Measures 1 through 5 show
the respective timings in ms. The rule order was not randomized.

Figure 7.11 presents the same trajectory, this time in an altered coordinate system
obtained by performing multiplanar reformation along the trajectory path on the volume.
For better spatial orientation, the postcentral sulcus is highlighted in a very light pink.
This view presents the situation even more clearly - no sulci or vessels are crossed, high
distances to the ventricle and pyramidal tract are maintained over the whole trajectory.
Hence, all demands our domain expert places upon a suitable trajectory are satisfied.

We have reconstructed the reference trajectory from the post-operation MRI and evaluated
it using our system. Figure 7.12 presents the trajectory in an orthogonal slice view in the
original coordinate system. Table 7.10 lists the minimal distances to structures at risk
along the needle trajectory. The corresponding risk signature is presented in Figure 7.9,
at the bottom. As can be seen, the reference trajectory exhibits a higher distance to the
precentral sulcus than the solution computed by our system. On the other side, distances
towards the vessels, left lateral ventricle and all other cortical sulci are slightly higher in
our solution.

Our domain expert has given us the feedback that BrainXPlore is a feasible planning
tool, compared to manual planning on the Medtronic workstation and EpiNav [ZRN+14].
EpiNav is a software that was developed for pre-surgical trajectory planning for electrode
placement in the context of deep brain stimulation and does therefore not work well for
brain biopsy planning. With manual planning, under the assumption that all medical
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Rules Measure 1 Measure 2 Measure 3 Measure 4 Measure 5 Average Runtime
1 1172 799 1171 1181 1179 1100.4
2 1795 896 1803 1804 1798 1619.2
3 961 930 2409 2605 2002 1781.4
4 994 1022 3006 2654 2322 1999.6
5 950 1023 3532 2801 2828 2226.8
6 1022 1020 3742 2827 1051 1932.4
7 1032 1078 4381 3204 1102 2159.4
8 1101 1041 5077 3459 1129 2361.4
9 927 1091 2216 3739 1207 1836
10 922 1127 1967 1096 1283 1279
11 972 1141 2223 953 1279 1313.6
12 917 1145 2506 948 1355 1374.2
13 929 997 2585 995 1372 1375.6
14 941 986 2638 997 1268 1366
15 950 1011 2941 1006 1016 1384.8
16 944 1003 1046 1007 1009 1001.8
17 985 1024 1041 1016 1013 1015.8

Table 7.7: Average runtimes in ms for rule refinement with respect to the number of
evaluated rules. Each evaluation was performed five times, Measures 1 through 5 show
the respective timings in ms. The rule order was randomized.

Structure Minimal Distance Safety Margin
Vessels 4 2.25
Pyramid Tract 4 2.25
Left Lat Ventricle 4 2.25
Right Lat Ventricle 4 2.25
Sulci 3 1.25
Gyrus sup. temp. 4 2.25
Occipital Pole (LH) 4 2.25
Pars Opercularis (LH) 4 2.25
Pars Triangularis (LH) 3 1.25
Gyrus Supramarginalis 4 2.25
Postcentral Sulcus (LH) 4 2.25
Precentral Sulcus (LH) 4 2.25

Table 7.8: Minimal distance in mm to each structure along the needle trajectory in the
case study. The safety margin is calculated by
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Figure 7.7: Average runtimes in ms for rule refinement with respect to the number of
evaluated rules. Each evaluation was performed five times, Measures 1 through 5 show
the respective timings in ms. Since the rule evaluation order is fixed, early termination
leads to significant drop-offs in computation time after the sixth rule is evaluated. At
this point, only 20 samples are subjected to the full rule set.

imaging data is present on the Medtronic workstation, the planning process takes
approximately 5 to 15 minutes. However, this is the time it takes to evaluate only a
few possible trajectories and pick an acceptable one. BrainXPlore can calculate and
evaluate a big number of trajectories in this time and hence, lead to potentially better
results. Also, for novice users that do not have a high degree of experience, the planning
procedure takes longer, approximately 15 - 30 minutes. For these users, BrainXPlore
can on the one hand bring a considerable speed benefit. On the other hand, novice users
can verify and evaluate their manual planning result by comparing it to the trajectories
computed by BrainXPlore.

7.1.8 User Interface Evaluation

The color-coded glyphs have been particularly well received by our expert. Also, the
trajectory inspection views illustrated in Figures 7.10 and 7.11, have proven useful.
Contrary to our expectations, the Chernoff face view was not well received. We believe
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Figure 7.8: Average runtimes in ms for rule refinement with respect to the number of
evaluated rules. Since the rule evaluation order is randomized, early termination leads to
significant drop-offs in computation time at different points. After the most significant
rules have been implemented, only 20 samples are subjected to the full rule set.

that this is due to a lack of apparent relevance concerning the given data. Still, we believe
that further evaluation with more direct mappings, as described in Section 8, might lead
to higher acceptance rates.

7.1.9 Precision

Segmentation and registration of different data modalities arguably introduce the most
significant source of error. These steps are not part of our system however. Hence,
evaluating them lies outside of this thesis’ scope. In our system we could identify
one aspect that may adversely impact precision. Our implementation of the spatial
index operates on 8 bit integer precision. Distances that do not exceed the safety
threshold of 40 mm are scaled to the range [0,255]. In this step, a certain amount of
precision is necessarily lost. To test the impact of this scaling operation, we built floating-
point precision distance fields from the original segmentation results using MevisLab’s
EuclideanDTF module. We consider these distance fields the ground truth.
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Structure Minimal Distance Along Needle Trajectory Safety Margin
Vessels 4.549 2.799
Pyramid Tract 13.882 12.132
Left Lat Ventricle 6.667 4.917
Right Lat Ventricle 18.118 16.368
Pars Opercularis (LH) 11.529 9.779
Sulci 3.686 1.936
precentral sulcus (LH) 4.941 3.191

Table 7.9: Distances in mm to structures at risk along the needle trajectory of the best
result produced in our evaluation. All structures not listed here exhibit a distance of
more than 20mm to the needle trajectory.

Structure Minimal Distance Along Needle Trajectory Safety Margin
Vessels 4.235 2.485
Pyramid Tract 13.882 12.132
Left Lat Ventricle 6.275 4.525
Right Lat Ventricle 18.039 16.289
Pars Opercularis (LH) 6.353 4.603
Pars Triangularis (LH) 15.059 13.309
Sulci 2.196 0.446
precentral sulcus (LH) 12.706 10.956

Table 7.10: Distances in mm to structures at risk along the reference needle trajectory. All
structures not listed here exhibit a distance of more than 20 mm to the needle trajectory.

For each trajectory candidate from the initial sampling result described in Section 7.1.4,
we queried the distance to the nearest blood vessel from the spatial index server. To
verify the result, we calculated the voxel positions along the trajectory with an adaptation
of Bresenham’s line drawing algorithm and sampled the distance field at the respective
positions. The minimum distance along this sampled ray was stored and compared to
the scaled result from the spatial index query. After testing 32830 trajectories, we found
the average error magnitude to be 0.036 mm, with the maximum error magnitude being
0.076 mm. To ensure that the same trajectories were evaluated, we have also compared
the positions that were sampled in the spatial index with those that were sampled in the
distance field and found them to be identical.

Because we are not rounding values after our scaling operation, but rather cut off the
mantissa when casting to integer, the spatial index will always return a smaller distance to
the structures at risk than the manual query. Therefore, we can conclude that we always
err on the side of caution and numerical imprecision will not jeopardize the patient’s
safety. This was also confirmed by the results of our precision evaluation.
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7.2 External Evaluation
We have decided against comparing the performance of our system to existing systems.
This is due to the fact that hardware and input data need to be taken into consideration
when interpreting evaluation results. Also, to the best of our knowledge, no existing work
offers the functionality that BrainXPlore provides. Therefore, we have decided for a
qualitative evaluation.

Most existing brain biopsy and DBS planning systems [GCH+14, ZRN+14, EHJ10] use
surface meshes for trajectory planning. The conversion of volumetric data to surface
data takes additional time and may yield a potential loss of precision. In contrast, we
work directly on volume data and preserve full precision.

One unique feature of BrainXPlore is the possibility to include an arbitrary number
of structures. As explained in Section 3.1.5, existing works are limited in this regard.
Herghelegiu et al. [HMP+12] only consider vessels. Essert et al. [EHJ10] consider vessels,
ventricles, and sulci. Only Zombori et al.[ZRN+14] allow the surgeon to include a larger
number of structures in the planning process.

Probably the most significant distinguishing feature of BrainXPlore is the possibility
to define custom rules for the evaluation of trajectory qualities. Zombori et al. [ZRN+14]
employ a risk metric as outlined in Equation 7.2. w1, w2 and w3 are user-defined
weights. Rangle represents the trajectory’s risk with regards to the insertion angle,
Rlength represents the trajectory’s risk with regards to the path length. In Rdist, the risk
associated with structures at risk is computed as given in Equations 7.3 and 7.4.

Rtotal = w1Rdist + w2Rangle + w3Rlength (7.2)

Sdist =
∫ target

entry
(dmax − (fdist(x)− dmin))dx (7.3)

Rdist = Sdist
(dmax − dmin ∗ length

(7.4)

In Equation 7.3, dmin is a safety margin, i.e., the minimal required distance to a structure
at risk along the needle trajectory. Trajectories that are closer to structures at risk than
this value are discarded. dmax is a risk zone margin, i.e., a structure that lies further away
from the trajectory than this value is considered to be not at risk. fdist represents the
minimum distance to the closest structure at risk. In Equation 7.4, this risk is normalized
to the range [0,1]. This means that structures are considered to be of equal importance.
In contrast, BrainXPlore offers much more flexibility with regards to preference rules.
Rather than defining a global dmin across all strucutures, we allow the neurosurgeon
to define different safety margins for individual structures. Also, in our system, the
neurosurgeon can assign a weight to each individual structure at risk, as described in
Equation 7.1.
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Figure 7.9: Top: Risk Signature for resulting trajectory. Bottom: Risk Signature for
reference trajectory All specified quality criteria have been met. Compared to the
reference, our solution puts the precentral sulcus at a higher risk. However, our solution
also exhibits higher safety margins to the other cortical sulci. Also, the pars opercularis
of the gyris frontalis inferior is at a lower risk in our solution
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Figure 7.10: Needle trajectory in original coordinate system (i.e., in the sagittal, axial,
and coronal plane). Vessels are highlighted in red, sulci in orange, the left lateral ventricle
in green, the pyramidal tract in cyan, and the tumor in yellow.
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Figure 7.11: Needle trajectory in a coordinate system obtained from performing multi-
planar reformation along the needle path on the volume. Vessels are highlighted in red,
sulci in orange, the left lateral ventricle in green, the pyramidal tract in cyan, and the
tumor in yellow. Additionally, for better spatial orientation, the postcentral sulcus is
highlighted in a very light pink.
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7. Evaluation

Figure 7.12: Reference needle trajectory in a coordinate system obtained by performing
multiplanar reformation along the needle path in the volume. Vessels are highlighted in
red, sulci in orange, the left lateral ventricle in green, the pyramidal tract in cyan, and
the tumor in yellow. Additionally, for better spatial orientation, the postcentral sulcus is
highlighted in a very light pink.
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CHAPTER 8
Conclusion

In this thesis, a proof-of-concept of our BrainXPlore biopsy planning system was given.
Based on interviews with an experienced neurosurgeon, we identified gaps in currently
available brain biopsy planning tools. While sophisticated solutions to planning brain
biopsies exist, all existing systems are limited by the number of critical structures they
can consider. This is because GPU-based implementations, although fast and efficient,
are limited by the amount of GPU memory. As brain atlases get more sophisticated
and more structures, e.g., due to fMRI and DTI, are included into the planning process,
this bottleneck may limit the feasibility of such solutions, especially on consumer-grade
hardware. Also, existing solutions operate on a fixed set of rules, which may not accurately
reflect the specific planning guidelines of a particular neurosurgeon or hospital.

Based on these considerations, in collaboration with a domain expert from the Medical
University of Vienna, we have implemented BrainXPlore, an interactive biopsy planning
framework. We solve the problem of limited GPU memory by introducing a spatial
index server as described by Bruckner et al. [BŠG+09] into our system. This allows
for fast and efficient access to an unlimited number of risk structures at an arbitrary
resolution. To the best of our knowledge, this has not been achieved by other works thus
far. BrainXPlore also allows the user to define custom planning rules. These rules can
concern the minimal distance of a trajectory to a structure at risk or be geometrically
oriented and consider the trajectory’s length or angle.

A set of candidate trajectories is generated by the system and automatically evaluated
against those rules. Trajectories that do not satisfy hard constraints are discarded. By
interactively refining rules the number of considered trajectories is iteratively decreased
until a suitable candidate has been found. To further support the user, custom rules for
trajectory quality evaluation can be defined. These soft rules do not lead to trajectories
being discarded, but rather play a role in the visualization of the set of available
trajectories. Trajectories are subjected to a consistent color-coding that reflects their
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8. Conclusion

quality. This measure makes the decision process more intuitive. Trajectories can
interactively be added, removed and altered.

We also present novel ways of user interaction which have not been implemented before
in the context of biopsy planning. Our system combines 2D views, 3D views and InfoVis
techniques such as Parallel Coordinates. These views present multivariate trajectory
data in an anatomical context and offer a high degree of overview.

We evaluated our system based on a real planning use case. The evaluation presented in
Section 7.1.7 shows that our system finds trajectories that satisfy all demands imposed
by our domain expert. However, there are also challenges that arise and have so far kept
us from a clinical evaluation on a larger scale. Segmentation with FreeSurfer takes a long
time (>24 hours) on consumer-grade hardware. In the clinical practice, pre-operation
MRI scans are sometimes performed on the day of the biopsy. In order to take full
advantage of our system and consider a large number of structures, the schedule has to
be changed so as to plan enough time between the patient’s arrival at the hospital, the
scans, and the biopsy.

8.1 Future Work
In the future, we would like to improve on our system. Based on the feedback we have
received from the surgeon during the evaluation, we have identified several points that
need to be improved.

Initial Sampling Instead of globally sampling over a sphere, the system should limit
sample generation to a user-defined lobe. While this requires an additional user
interaction, it allows for a higher sampling density without increasing preprocessing
times.

Segmentation Our domain expert pointed out that in clinical practice, especially vessel
segmentation tends to be of insufficient quality and hence, visual path evaluation
tools on the raw MRI images are critically important. Also, packages like FreeSurfer
do not perform well for alterations in brain physiology that are due to lesions.
Finally, the segmentation process takes a long time (upwards of 24 hours in our case
study if performed on the hardware specified in Chapter 4). This somewhat limits
the feasibility of automated systems that heavily rely on a thorough segmentation
of medical imaging data.

Post-filtering In the future, we want trajectories to be sortable by user defined criteria
in views such as the risk signature chart view.

Visualization The glyph-based Chernoff faces we have implemented have not been well
received. This may be due to the fact that the parameter mapping is not particularly
intuitive and few details are revealed on a pre-attentive level. Introducing a color-
coding might alleviate this limitation. The coloring scheme can either be consistent
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8.1. Future Work

with the one employed for the 3D glyphs and the Parallel Coordinates, or code
each data dimension (represented in this case as eyes, ears, nose, etc) individually.
Further user studies need to be carried out in order to find the most feasible
representation or decide to drop the Chernoff view altogether.
In order to introduce another distinguishing feature at the pre-attentive level, we
plan on scaling the 3D glyphs according to the relation to their neighborhood. As
Ropinski et al. [ROP11] point out, "when using a continuous color mapping, an
absolute quantification is difficult to achieve because differences in color are harder
to perceive than for instance spatial distances". Hence, while the color-coding
indicates a global quality measure as described in Section 6.4, glyph size may be
used in order to better distinguish trajectories in relatively homogeneous potential
entry regions. Furthermore, we need to evaluate whether or not exchanging our
basic glyphs with composite glyphs indicating the needle insertion angles at the
skull and tumor surface impact the final decision.
Although the glyph-based representation does offer benefits, as outlined above, high
sampling densities lead to a high amount of geometry to be rendered and hence,
increase computational cost, thereby potentially decreasing framerates. Hence,
we plan on evaluating an alternative way of visualization. Instead of rendering
glyphs over the skull, quality is then stored for each skull surface point in a 3D
texture. Although this would lead to a rather significant increase in data volume,
it could simplify the scene. User studies will show which method leads to a higher
acceptance.
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