
Algorithm Selection and Runtime
Prediction for the two

Dimensional Bin Packing Problem
Analysis and Characterization of Instances

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Computational Intelligence

eingereicht von

Bernd-Peter Ivanschitz
Matrikelnummer 0603596

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Priv.-Doz. Dr. Nysret Musliu

Wien, 1. Oktober 2017
Bernd-Peter Ivanschitz Nysret Musliu

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/ 
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich. 

http://www.ub.tuwien.ac.at 

The approved original version of this diploma or 
master thesis is available at the main library of the 
Vienna University of Technology. 

http://www.ub.tuwien.ac.at/eng 





Algorithm Selection and Runtime
Prediction for the two

Dimensional Bin Packing Problem
Analysis and Characterization of Instances

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Computational Intelligence

by

Bernd-Peter Ivanschitz
Registration Number 0603596

to the Faculty of Informatics

at the TU Wien

Advisor: Priv.-Doz. Dr. Nysret Musliu

Vienna, 1st October, 2017
Bernd-Peter Ivanschitz Nysret Musliu

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at





Erklärung zur Verfassung der
Arbeit

Bernd-Peter Ivanschitz
Schanzstraße 13/22, 1140 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 1. Oktober 2017
Bernd-Peter Ivanschitz

v





Danksagung

Ich bedanke mich bei meinen Eltern und bei meiner Ditzy für ihre Liebe und ihre Geduld!

vii





Kurzfassung

Das Behälterproblem (engl. Bin packing problem -BPP) ist eines der bekanntesten
kombinatorischen Optimierungsprobleme. Trotz seiner einfachen Aufgabenstellung zählt
es zu den NP-Schweren Probleme der Informatik. Seit ihrer Einführung in den 1960er
Jahren wurden verschiedenste exakte und heuristische Algorithmen für diese Probleme
vorgestellt. Das Berechnen einer exakten Lösung ist oftmals sehr aufwändig und benötigt
unter Umständen eine exponentielle Laufzeit. Jedoch konnte in den letzten Jahren
einen Vielzahl von heuristischen Algorithmen mit nahezu optimalen Lösungen für dieses
Problem entwickelt werden. Allerdings scheint es, dass die Qualität der Ergebnisse oft
von den konkreten Eigenschaften der Probleminstanz abhängen. Die Suche nach einem
optimalen Verfahren dass das bestmögliche Ergebnis für die jeweilige Probleminstanz
liefert ist eine, in Analogie zu dem No-free-Lunch-Theorem, sehr schwierige wenn nicht
sogar unmöglich Aufgabenstellung.

Einen möglichen Lösungsansatz für dieses Problem bietet das Algorithm-Selection Verfah-
ren. Hierbei wird mit Hilfe von optimal gelösten Probleminstanzen ein Vorhersagemodell
erstellt und trainiert. Dieses Algorithm-Selection Vorhersagemodell ist danach im Stande,
für neue Probleminstanzen ein möglichst optimales Verfahren vorherzusagen. Aus einem
Set von Algorithmen wird jenes Verfahren ausgewählt, dass das beste prognostizierte
Ergebnis liefern könnte.

Diese Arbeit befasst sich mit der Anwendung des Algorithm Selection Verfahren für
das BPP unter Zuhilfenahme von Methoden des maschinellen Lernens. Damit wir das
Vorhersagemodell erfolgreich nutzen können, werden mehrere Attribute von den Pro-
bleminstanzen erhoben und für die Trainingsphase und den Vorhersageprozess genutzt.
Diese Merkmale, auch Features genannt, werden in polynomieller Zeit berechnet um
eine gute Performance des Algortihm Selection Verfahren zu gewährleisten. Es werden
des Weiteren neun state-of-the-Art Heuristiken verwendet, die mit 500 frei verfügbaren
Probleminstanzen trainiert werden. Die Ergebnisse der unterschiedlichen Experimente
zeigen, dass keine der Heuristiken im Allgemeinen besser als jede andere ist, wenn die
Laufzeit und die Güte der Lösung betrachtet werden. Es wurden einzelne Untergruppen
der Probleminstanzen analysiert, um die Attribute der Probleminstanzen besser defi-
nieren zu können. Des Weiteren wurde noch eine Laufzeitanalyse einzelner Heuristiken
durchgeführt, um zusätzliche Informationen über die Probleminstanzen zu sammeln.
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Der zweite Teil dieser Arbeit befasst sich mit den Machine Leraning Algorithm, die
für die Erstellung des Vorhersagemodelles trainiert werden. Insgesamt wurden sieben
unterschiedliche Klassifikations - sowie sechs Regeressionsalgorithmen trainiert. Mittels der
Ergebnisse des Experiments konnten erfolgreiche wichtige Attribute der Probleminstanze
identifiziert und evaluiert werden. Darüber hinaus untersuchen wir, wie ein verkleinertes
Algorithmen-Set sich auf die Qualität der Vorhersage auswirkt.

Neben dem Algorithm-Selection Vorhersagemodell wurde ebenfalls eine Runtime-Prediction
Verfahren implementiert. Diese wurden genutzt um die Laufzeiten der einzelnen Proble-
minstanzen vorhersagen zu können. Für die Auswertung der Runtime-Prediction wurden
zusätzliche Probelminstanzen generiert um ein breiteres Spektrum an Instanzengrößen
abdecken zu können.

Im letzten Teil dieser Arbeiten werden die trainierten Modelle mit den einzelnen Heu-
ristiken verglichen. Es wird gezeigt ob die Nutzung der vorgestellten Verfahren für das
BPP sinnvoll genutzt werden können, und welche Vorteile sich dadurch ergeben.



Abstract

The bin packing problem (BPP) is one of the best-known combinatorial optimization
problems. This problem is proven to be NP-hard despite its simple task setting. Since
its first introduction in the 1960s, different exact and heuristic algorithms have been
proposed for this problem. A variety of algorithms that obtain nearly optimal solutions
have been presented in the last decade. However, the proposed methods have advantages
and disadvantages, which depend on the specific instance to which they are applied.
Designing an algorithm which finds the best possible solution for every possible instance is
hard or, by analogy to the No-free-Lunch-Theorem, even impossible. Therefore, selecting
the optimal solver for a specific problem can be used in industrial areas of the BPP to
reduce the costs and resources needed for real-life problems.

Many approaches have been proposed for the NP-hard problems to achieve better results
on all available instances. One of them is the algorithm selection approach. The method
predicts for each instance the algorithm which achieves the best performance. The
procedure uses a set of intrinsic features computed from the problem instances, and a set
of algorithms to predict the best algorithm for the particular instance.

This thesis investigates the algorithm selection approach and the runtime prediction
approach for the BPP. We considered two variations of the BPP, in the first case the
items are oriented (O) and guillotine cuts are required (G), and in the second case the
items can be rotated by 90 degrees (R) and guillotine cuts are also required (G). To
use this method, we first introduce a set of features for the problem instances, which
can be computed in polynomial time. Then we evaluate the performance of nine state
of the art heuristics for the BPP. In order to evaluate these algorithms, we use 500
problem instances from two publicly available instance sets. We analyse the behavior of
the algorithms on classes of problem instances with different attributes. Furthermore, we
investigate which attributes define hard instances and whether an algorithm exist, which
clearly outperforms the other algorithms. We analyse the behaviour of the algorithms
on classes of problem instances with different attributes. Furthermore, we investigate
which characteristics define hard instances and whether algorithms exist, which clearly
preforms better than others.

In the next step, we use the knowledge about the most appropriate algorithm and
the newly developed features for each instance to train seven classification algorithms.
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The obtained models use supervised learning methods to predict the most appropriate
algorithm for new and unseen instances. For each classifier, we test multiple parameter
settings. We analyse the impact of preprocessing and data preparation techniques on
the quality of the performance for the prediction models. Furthermore, we use a cross-
validation method as standard machine learning strategies to compare the prediction
models. Our experiments show that the selection of an algorithm based on machine
learning is able to beat all the single solver heuristics in terms of time - and solution
quality.

For the run time prediction approach we use additionally a newly generated dataset
with a higher variety of instance sizes. The experimental results with different regression
models show that the designed features can be used for the runtime prediction of the
BPP-algorithms.
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CHAPTER 1
Introduction

Computer scientists have been studying NP-complete and NP-hard problems for decades.
One of them is known as the bin packaging problem (BPP), which is a variety of Karp’s
[Kar72] well-studied NP-complete problems.

The problem has its origin in the 1960s and variants of the BPP find their use in many
practical applications, such as cutting of materials (wood, glass, stone, cloth industries),
as well as newspaper paging. Many different varieties of the BPP have been described in
literature [LMV99, LMV02] with respective solving methods since its first introduction
over forty-two years ago. The classical BPP is defined as follows: We are given a set of
items I = {1, . . . , n}, where each item i ∈ I has size si ∈ (0, 1] and a set B = (1, . . . , n)
of Bins with capacity one. The goal is to find a valid assignment a : I → B such that the
number of bins used is minimal. This does not sound hard at all, but it is indeed hard to
find an optimal arrangement of items in the bins to achieve an optimal solution. Moreover,
with the fact that the problem is NP-hard, it is very unlikely that an exact strategy
exists, which needs less than exponential time to find a minimal packing of the items,
unless P = NP . As a logical consequence, the research focused on (meta)heuristics to
find good solutions for the BPP. These methods are often able to produce good solutions
faster but do not guarantee optimality.

Popular developments were presented for the BPP in the last decade, such as justification
improvement heuristic by [Fle13], ant colony optimization heuristics by [LD04] as well
as genetic algorithms introduced by [FD92]. Other metaheuristic techniques [VMOR12,
HT01, BHK06] or hyper heuristics [RSMBH02] were also introduced in the past ten years.
The current state of the art solvers are based on two-stage or three-stage heuristics with
tree structures for the insertion process [CCT15, CF11, Fle13].

The various algorithms show varying performance for particular problems, such as the
BPP or other optimization tasks. To find the most suitable algorithms for the given task,
we have to decide which method is suited best for the practical use with our problem
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1. Introduction

cases. This defines a new problem since finding the best method is not trivial, and in
analogy to the No Free Lunch Theorem[WM+95] , it is highly unlikely that there exists
one heuristic that performs on all our instances better than the others. For an optimal
solution of a particular instance, it would be rather advantageous to know in advance
which method is most appropriate.

The issue of the selection of the most appropriate algorithm for a specific instance is also
known as Rices algorithm selection problem [Ric76]. The algorithm selection approach
allows us to prevent a worst case scenario and helps to produce good solutions. This is
important, especially for practical questions, as it allows us to save some money in the
best case. On the other hand, it is also very interesting from a theoretical perspective to
gain insight and knowledge under which circumstances an algorithm performs well or
badly. That way we can choose the most suitable algorithm and develop new strategies
to optimize their usage. In addition, it allows us to gather important information about
difficult cases.

In the last decade, several new applications and methodologies have been developed
for selecting the best algorithms for a problem. One of these approaches is the use of
machine learning techniques for the algorithm selection problem. These methods are able
to learn from given examples important patterns and help to predict the best algorithms
based on the learned model.

Another interesting research topic is the algorithm runtime prediction. This method
is not new, but with new powerful machine learning techniques, the predictions are
more accurate and scalable than ever. The issue with NP-hard problems is that some
state-of-the-art algorithms can take an enormous amount of time to solve large problems.
Most of the problems are solved in a reasonable time, but some need an increased quantity
of time and there is only little theoretical understanding why some algorithms need more
time than other on a particular problem instance [GSCK00].

In this thesis, we will focus on the algorithm selection problem and the run time prediction
problem for the 2-dimensional BPP with machine learning techniques. We will use a
set of features computed from the problem instances of the BPP and investigate if the
algorithm selection approach and the algorithm run time prediction is practicable for
the BPP. Therefore we will use a set of eight state of the art bin packing algorithms and
two publicly available instance sets for an empirical investigation on the performance of
these algorithms. Furthermore, we will investigate the characteristic attributes for the
instances of the BPP and use the gained knowledge to train the prediction models for
the algorithm selection and run time prediction.
The final part of this thesis evaluates the performance of the approach based on automated
algorithm selection and the single solver algorithms.

1.1 Objectives
The objectives for this thesis are:

2



1.2. Main Results

• Identification of state-of-the-art algorithms used for BP and evaluation of their
performance on a representative set of instances.

• Identification of important features of BPP instances that have an impact on the
performance of algorithms.

• Investigation of applications of different machine learning techniques for automated
algorithm selection based on features of specific instances.

• Comparison of the performance of an overall solver based on algorithm selection
with other algorithms for the BPP.

1.2 Main Results
The main results of this thesis are:

• We identified a set of 23 features that characterise the BPP problem instances.

• We investigate the performance of the algorithm selection method with up to nine
state-of-the-art heuristics and 500 instances of publicly available data sets for the
BPP. The experimental findings show that some algorithms perform better, with
respect to quality and runtime of the solution, on instances with a particular set of
features.

• We investigate the performance of different machine learning techniques for au-
tomated algorithm selection based on features of specific instances and trained
seven different classifiers to predict the best algorithm for new, unseen problem
instances. Furthermore, we explored the effects of data preparation and apply a
feature selection to identify the most important features.

• We train and test the runtime prediction models for three state-of-the-art bin
packing algorithms. For the prediction task, a set of six different machine learning
procedures has been used.

• We compare the overall solver based on algorithm selection with single solver
heuristics for the BPP. The results show that our approach achieves a better
performance than any single algorithm for the BPP.

1.3 Organization
This thesis is organized as follows. The thesis continues in Chapter 2 with the relevant
background information on heuristics, complexity, experimental aspects and machine
learning techniques. The third chapter explains the algorithm selection method and
the relation to the No Free Lunch theorem. Chapter 4 explains the BPP in detail and
gives an overview of popular heuristics to solve the problem. In addition, we describe

3



1. Introduction

the features used to characterize the problem instances. In Chapter 5 we describe the
experimental setup and give a detailed overview of the used heuristics, instances and
the machine learning techniques. Chapter 6 and 7 show the results of the experiments
and compares them to heuristics in the BPP. Furthermore, we show the performance
of the overall solver based on the algorithm selection method and discuss the impact of
different preprocessing techniques and parameter settings. The last chapter concludes
the results and gives an outlook on further work.
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CHAPTER 2
Background

2.1 NP-Problems
Computer science encompasses many different challenges and fields of expertise. One
core aspect is the efficiency of algorithms for different areas, like sorting, solving complex
equations or finding the shortest path. All the aforementioned topics define sets of
constraints, which have to be solved in order to retrieve valid answers.

In the context of computer science, problems are usually divided into so-called complexity
classes. The problems are grouped according to their complexity as a function of the input
parameter n. We use the well-known big O notation, or Landau notation, introduced by
Paul Bachmann and Edmund Landau to classify the algorithms according to the runtime
of an algorithm or the space needed to solve them [Knu76]. Therefore, a problem can be
solved in:

• Constant time, then we write O(1)

• In linear time on the input variable n, then we write O(n)

• In polynomial time, then we write O(p(n)), where p is a polynomial

• In exponential time, then we write O(xn)

2.2 The complexity of P and NP

Let P be the complexity class of the set of problems that can be solved in polynomial time
using a Deterministic Turing Machine, in general, O(1), O(n), or O(p). In practice, we say
that the class P represents all the problems that are solvable in reasonable computational
time.

5



2. Background

The theory of NP gives us a framework for showing that it is very doubtful that a
polynomial algorithm exists for a specific problem in this class. This means that the
class NP , which stands for nondeterministic polynomial, contains all problems that can
be solved in polynomial time only by a Nondeterministic Turing Machine. Another
interesting fact is that all problems that are in P are also in NP . Furthermore, we are
able to verify the correctness of a solution in the class NP in deterministic polynomial
time [Coo00].

One of the most important theoretical questions according to the complexity classes
in computer science is not yet solved. Are we able to solve all the problems that are
computed in nondeterministic polynomial time also by using a Deterministic Turing
Machine with a smart algorithm in polynomial time [WW05]? The P = NP question is
essential and the answer is still unknown but it is believed that P 6= NP .

In addition to the class P and NP , we also distinguish between NP − Hard and
NP −Complete problems. We say that a problem is NP −Hard if any NP problem can
be converted into it in polynomial time [Coo00]. Informally, if a problem is NP −Hard it
means that it is at least as hard as anyNP problem [Aar05]. A problem isNP−Complete
, if and only if it is NP−Hard and if its in NP (verifiable in non-deterministic polynomial
time) [Coo00]. Informally, the NP − Complete problems are defined as the hardest
problems in NP .

Clearly, not all computer science problems are equally hard to solve. Often we are not
only interested in the worst case runtime of an algorithm as mentioned earlier. In detail,
we are also eager to define the best and the average runtime of an algorithm for a problem.
We define the performance of an algorithm f(n) with respect to n based on the worst O
, the best Ω and the average Θ case as follows from[Knu76]:

O(g(n)) = {f(n) | ∃c ∈ R, n0 ∈ N : ∀n ≥ n0 : |f(n)| ≤ c ∗ |g(n)|}

Ω(g(n)) = {f(n) | ∃c ∈ R, n0 ∈ N : ∀n ≥ n0 : |f(n)| ≥ c ∗ |g(n)|}

Θ(g(n)) = {f(n) | ∃c, c′ ∈ R, n0 ∈ N : ∀n ≥ n0 : c ∗ |g(n)| ≤ f(n)| ≤ c′ ∗ |g(n)|}

We define n as the problem specific variable and the other variables as constant factors c.
For example, if an algorithm f(n) is in O(n2) it means that any instance of size n can be
solved with the algorithm f(n) in at most c ∗ n2 time.

As already mentioned, the O notation only specifies an asymptotic upper bound for the
algorithm. The information gained from this worst-case scenario helps to define the
runtime of an algorithm and can be used the define if the problem is in P or NP as
explained earlier in this chapter. [Sch12b].

2.3 Heuristics
Exact algorithms have usually one major disadvantage compared to heuristics. Depending
on the complexity of a problem and its size, the exact algorithms may need an enormous
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amount of time and resources to solve the problem especially if the problem is big. Of
course, such procedures are also researched and offered but their field of application is
limited [Chi05].

For the main problem in this thesis, it has been firmly established [LMM02] that the
2 dim BPP is NP − hard. Therefore we can conclude that an optimal solution to the
problem is rather unlikely, at least not in reasonable time. In some cases, it is possible
that an instance can be solved with an exact method in moderate time, but this is rather
uncommon [LMV02].

In recent years, heuristics have become popular and various new methods were introduced
to solve NP − Hard problems in reasonable time with good but mostly not optimal
solutions.

Heuristics use different techniques to scan certain areas where good configurations are ex-
pected instead of searching the whole problem space. They start with a "random" starting
point given from the heuristics and explore the area around for valuable configurations.
They may encounter local optima which they can or cannot overcome, depending on the
chosen technique. After a certain amount of time or iterations, the algorithm stops and
returns the most promising solution it encounters. Reruns with different starting points
using information of previous runs could lead to better overall solutions.

For this thesis, we only focus on the 2 dim BPP heuristics. These methods are normally
distinguished by one-phase or two-phase approaches [BS13]. While the one-phase ap-
proaches tries to pack the items immediately in a bin, the two-phase heuristics pack the
items into levels which are later packed into the bins efficiently. A level is a horizontal
packing of items that do not exceed the bin width.

2.4 Experimental Aspects

One of the most important underlying assumptions of this thesis is that algorithms show
different performances on the same datasets. Therefore, to show that this knowledge can
be used to solve new, unseen problem instances more effectively is the goal of this thesis.
This goal can be achieved by predicting the most suitable algorithm for the problem. It
is important to explore the advantages and disadvantages of the algorithm used with
some instance-specific features. This information is used in the training process to build
the prediction models.

For this purpose, we analyze the performance of the algorithms on the two publicly
available datasets. Unfortunately, it was impossible to gather the original implementations
of the presented algorithms for a detailed analysis of newly generated dataset, due to
license problems and contracts. For this reason, a cross-validation approach is used to
ensure a valid analysis of the results and to prevent overfitting of the prediction model
to the given datasets.

7



2. Background

2.4.1 Runtime Comparison

A similar motivation is used for the algorithm runtime approach as for the algorithm
prediction problem. In principle, it is possible to calculate the run times of individual
algorithms, for previously unseen problem instances, to a certain extent at least for classic
problems like the propositional satisfiability (SAT), the traveling salesperson (TSP) or
the mixed integer programming (MIP) problem [HXHLB14]. One underlying assumption
for this thesis is, that the runtime of different algorithms is somehow affected by the
features of the problem instances. A goal would be to show that the algorithm runtime
prediction approach can also be used for the BPP.

The tested three state of the art BPP algorithms with the original implementations. We
extended the two publicly available datasets with 100 new problem instances, which
should mainly model the run times for problems instances that pack more than 200 items.
To evaluate the quality of the predictions we used the root mean square error RMSE as
our benchmark value.

2.5 Machine Learning
Over the last two decades, machine learning [GH88] has become one of the most popular
technologies in the area of artificial intelligence with a multitude of use cases. The impact
of machine learning should not be underestimated due to the fact of its vast range of
applications that range from fraud detection, pattern/image recognition, and Email
Spam filters are only a few of the practical use cases. The machine learning methods are
capable of learning from historical data and use this knowledge to recognize and solve
similar cases.

Machine learning techniques allow us to get valuable insight in the problem cases.
Furthermore, the methods are not only able to choose a solution given a specific set of
rules, they also learn form the old cases and advance their prediction. To predict which
algorithm solves a new, unseen instance best, is clearly a learning problem. Despite its
simple task setting, it is not easy at all, but with these machine learning techniques, we
are able to build a robust system.

We concentrate our efforts in this thesis on the so-called supervised learning methods.
These methods use a training data, where the best solutions for each problem instance
is given. With this informations, the machine learning algorithms are able to build a
prediction model and classify new instances. The following subsections of this thesis
describe the used algorithms.

2.5.1 Classification

The task to classify objects into groups or classes is a very interesting field of research
for computer scientists and other researchers [Wol96]. For the classification task, some
features about the problem instance are needed, but to calculate or even to develop
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these features that describe a problem representative is a complex task and needs a lot
of domain experience. For example, to describe a car we could use features like tires,
doors and a windshield since every car has these characteristics. With that information,
it is possible to classify new objects into a group of cars and other vehicles. However,
if we really use this model also aircrafts would be classified as cars since they show the
required characteristics. Clearly, that is a bad classification model since aircrafts should
not be classified as cars. Machine learning techniques help us to define good classification
methods through their ability to learn. Naturally, a classification task heavily depends
on the quality of the features of the problem cases, which are provided for the training
phase. If the data is insufficient or irrelevant, then the results of the classification reflect
this, which leads to a misclassification of new unseen data. For the classification tasks,
we used the supervised learning methods already mentioned in the last section.

The classification algorithms show some similarities to the already discussed heuristics.
Not every classification method is suitable for each problem case. The No-Free-Lunch
theorem [WM+95] also applies to classification which implies that no classification
algorithm is superior to all other algorithms [Wol96]. Different techniques have been
developed over the years to solve this problem. A detailed analysis of this methods would
go beyond the goal of this thesis but can be found in [AS06] and [Bro93].

This work focus on eight well-known classification algorithms that have been used success-
fully in similar environments as the BPP. The used algorithms for the algorithm selection
tasks are k-nearest neighbor (kNN), decision trees (DT), random forest(RF), naive Bayes
(NB), support vector machines (SVM), Generalized Linear Models (GLMNET), and
neural networks (NN). For the runtime prediction approached we used additionally the
loess regression (LOESS) method since not all of the methods used for the algorithm
selection are capable of regression tasks. The selected methods offer a good composition
of modern and successful machine learning methods for the algorithm selection problem
as well as the algorithm runtime prediction and are briefly described in the following
section. For a detailed overview of the chosen methods and an introduction to machine
learning, we point to the original publications and [Alp14, WFHP16].

Data Representation

The typical application of a machine learning algorithm requires a training and a test
set. The effect of splitting the data into a training and test set prevents overfitting of
the machine learning algorithms to the whole dataset. Additionally, we define a new
dataset for our evaluation. Typically, the data is presented as a table for each instance.
Here we must distinguish between a problem instance as described in Chapter 2.1 and
the machine learning instances with the computed features of a problem instance. The
former is the concerted problem case, and for this thesis, consists of the problem id,
height, length of the bins and the dimensions of the single items with which we want
to pack the bins. The machine learning instances consist of a fixed number of features
X = {x1, x2, . . . , xn} and some result variables Y = {y1, y2} for the runtime and the best
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solution.
A classification is then to assign the most likely class from Y to the instances on the
testing set based on the computed attribute values Xk = {x1k, x2k, . . . , xnk}.

As already mentioned we use a cross-validation method to ensure the quality of our
predictions [K+95].

k-Nearest Neighbor

The KNN approach is a rather simple classification method and an extension of the
classical nearest neighbor method [CH67]. In general, the (k)-nearest neighbor method is
an instance-based classifier [AKA91] , which is based on the assumption that instances
which have similar feature attributes should be classified in the same class. Therefore,
new unseen data is classified using a distance/similarity function on the stored data from
correctly classified cases. This means for the nearest neighbor method, a new instance
is compared based on their characteristics with the other classified cases. The point
with the minimal distance is called the nearest neighbor and the new instance takes as
the prediction the class of this point. The advantage of this method is that no training
session is needed because all the observations for the classification are stored. This,
however, also leads us to the downside of this class of algorithms, which is an increased
space requirement. The nearest neighbor method uses only one neighbor and classifies
an instance based on the class of its nearest neighbor.

The extension of the nearest neighbor method, kNN, uses k-neighbors and takes the class
from the majority of the neighbors which makes the method more robust against outliers.
A too large value of k, on the other hand, takes to many neighbors from other classes
which could lead to an incorrect classification [WKQ+08]. Further modifications of the
KNN method were presented in the last decade using different distance functions with
scaling for k > 1 , and voting methods with distance-depended weights

Decision Tree

Decision Tree (DT) [Qui86] is one of the most successful supervised learning method for
classification and regression. It models the decision process in a graphical representation
of a tree. This tree-based representation of the information includes the concepts of
nodes, branches, and evaluation performance measures. One of the most used methods is
the C4.5 decision tree [Qui93].

A training set is used to generate a DT using each level of the tree to split the data
according to different attributes into smaller subsets. This concept is known as the
divide and conquer method. Using this method the whole training data set is split into
decreasingly smaller subsets using single attributes in the nodes until either an abort
criterion is satisfied or all data instances in a terminal node belong to the same class.
A key component of this algorithm is the selection of the observed splitting attributes
for the splitting-node, as this affects the depth of the search tree and quality of the
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prediction. After each split of the data different evaluation criteria are applied to inspect
the quality of the split. The information gain [Qui86] and the gain ratio [Qui93] are
the most used criteria in practice. Once the tree is completed, it can be trimmed back
by cutting of nodes. This process is generally referred to as pruning and helps prevent
against overfitting [WKQ+08]. After each pruning step the algorithm computes the
prediction accuracy of the new subtree and replaces the unnecessary nodes with a leaf-
node. If the prediction accuracy does not deteriorate, the change is kept, otherwise, the
old tree is restored.

After the tree is completed and all the desired criteria are met it can be used to predict
the classes of new data. New datasets are processed throw the tree, starting with the
root node and the algorithm evaluates the decision rule at each node and forwards the
data to the next node with the next decision rule until a leaf node is reached. When a
leaf node is reached the algorithm returns a classification for the new data. So we are
able to check each step of the classification process in the tree at any time which results
in an easy and intuitive system.

Random Forest

The random forest method (RF) [Bre01] is a versatile machine learning method which
uses an ensemble approach of several individual DT. The main principle behind this
method is to group several "weak" decision tree classifiers to a "stronger" classification
model with higher generalization accuracy. For the RF method, t different decision trees
with a random subset of the training set are computed. To classify a new dataset based
on his features, the data is processed by each of the t single DT. Therefore, each single
DT classifies the new dataset. The RF method counts all the "votes" and chooses the
classification with the most votes.

RF are able to handle large data sets with a rather short training phase[Ho98]. They are
capable of handling thousands of input variables and identify the most important ones.
Additionally, the RF method is able to handle missing data, use bootstrap sampling
and is rather robust against overfitting [CKY08, Ho95]. As a drawback of its higher
complexity, the method is no longer as intuitive as a single DT and can feel like a black
box approach, since only the parameter t can be used to tweak the model.

Support Vector Machine

Support vector machines (SVM) [BGV92, Vap13, CV95] is a machine learning algorithm
which is mostly used for the classification of data but is also capable of regression tasks.
The method proceeds as follows: the SVM "plots" each data point in an n-dimensional
space (where n defines the number of features) with a coordinate for each feature value
in the respective dimension. The algorithm tries to separate the data into two subsets
with a hyperplane. These subsets ideally consist of only one class, which is assigned
to the data. The SVM tries to maximize the margin between these two classes with a
distance measure, which computes the shortest distance between the hyperplane and
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the closest data points per class to the line. These data points are the so-called support
vectors. If it is not possible to separate the data into mutually exclusive sets, then a
punishment function is used to calculate a "soft" margin for the separation. An alternative
is to transform the features in a high dimensional feature space. This transformation
may be non-linear, therefore a non-linear classification kernel function is used. These
kernel functions are usually radial basis functions or high order polynomials. After the
training phase of the SVM, new data can be classified by using the decision function.
This decision function positions and classifies the new datasets into one of the two classes.
If more than two classes are given, we merge multiple (binary-splitting) SVM to compute
a hierarchical decision for the new data point.

The SVM needs less training data than similar methods, to produce good classifications
and is rather robust against outliers. Another honorable mention is that its theoretical
bases are well-founded [WKQ+08].

Neural Networks

Neural Networks (NN) [Fun89, RNI95] are inspired by the brain, especially the stimulus.
The method uses the concept of neurons, which is a single unit that is linked with outer
neurons by a selection of input and output channels. The neuron gets an input signal
and sums them up until they exceed a certain threshold value. If the limit is reached,
the neurons activate and start to "fire" a signal to the other connected neurons, which
can thereby are also activated if their respective threshold is exceeded. If not, the signal
stops at this node.

A variation of the NN method is the multilayer perceptron (MLPE) [Vap13], which is
a popular modification used for classification duties [SMP11]. A perceptron is, in its
simplest form, a neuron with multiple inputs and a corresponding weighting function
which defines the influence of each input variable. The neuron processes the informa-
tion and calculates a weighted sum which is passed to the next level via its output function.

The MLPE method arranges the perceptrons in a layer structure, where each node is
connected to all the other nodes in the next level of the layer.
The MLPE is trained via a back-propagation approach using the error of a wrong
classification to update the weight function of the neurons. To classify new data, the
features are used as input variables. This information is processed through the input -
and several hidden layers until an output layer is reached with the associated class.

The hidden layers of the MLPE work like a black box, which makes the method a little
harder to trace. The other downside of this method is, that in comparison to other
procedures, more time is needed to create a reliable classification model. The advantage
of this method is their robustness and the possibility to model non-linear dependencies.
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Generalized Linear Models

The Generalized Linear Models (GLM) [NB72] is an extension of the classical linear
Models and was introduced by Wedderburn and Nelder in the year 1972. The advantage
of GLM is that they allow the mean to depend on the explanatory variables through
a link function. Furthermore, the GLM model allows us to use, besides the normal
distribution, also the distributions from the exponential family for the response variables.
[McC84]. This distribution class also includes Binomial, Poisson, Gamma and inverse
Gaussian distribution. This method could, therefore, be used for the estimation and
testing of classification and regression models for a variety of problems.

The GLM’s have been used successfully for various fields of application like economics,
education, engineering, environmental studies and pollution, geography, geology, history
and medicine [Lin00]. Furthermore, the GLM’s have been applied for the insurance
industry to support critical decisions [DJH+08]. An extension of the GLM which has
received special attention especially in the last years is the Generalized linear mixed
model (GLMM) [MN13]. These models add some random effects into the linear prediction
of the GLM’s.

Naive Bayes

A Naive Bayes classifier is a probabilistic classifier (NB) [HY01] derived from the Bayes
theorem [BPC63] named after the English mathematician Thomas Bayes and published
by Richard Price after Bayes death. In the Naive Bayes classifier, each object, in our
case, each bin packing instance, is assigned to a class or category to which it most likely
belongs. The methods predicts therefore, the probability of a previously unseen problem
instance belonging to each class and simply picks the most probable one. The underlying
assumption in the Naive Bayes classifier is the independence of the problem features used.
This "naive" assumption gives the name to the classifier.
This "naive" approach achieves for some applications good results in practice [Ris01,
Mur06].

The NB method has already been successfully applied in various applications, including
medical diagnoses support, text classification and systems performance management
[DP97, M+97, HJR+00]. For example, the studies [TMM+81, MPW97] show that the
NB is the best choice for their predictions. Other studies, which found that the NB
method performed very well, sometimes even better than the alternatives [RKF83, TS94]
and [FGG97].
On the other hand, there are seams to be some studies which show that the NB classifier
performs rather poorly in comparison with the other used methods. Experience shows
that the assumption of independence of all input variables is most of the time not useful
(also in our use case). This fact leads to the consequence that the model was often
rejected by researchers for the benefit of other procedures.
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2.5.2 Regression

The machine learning procedures we discussed so far classify the given instances. If we
try to predict a target value which is a real-valued number we have to use regression
methods since classification methods, in general, are not able to do so. However, there are
procedures that are capable of regression and classification tasks. If we are using regression,
we try to approximate the underlying function of our training data to predict the value
of the target variable for a new problem instance. Regression analysis [BH03, MT77]
is a statistical tool for the investigation of relationships between some input variables
x1, x2, . . . , xn to one target variable y. The simplest variation of this technique is the
linear regression which uses a linear model to find relations between the input variables
x1, x2, . . . , xn and y. The expected value E(yj) for the target variable y can be modelled
as

E(yj) = β0 +
n∑

i=1
βi ∗ xij

The variable i = 1, . . . , n is the index for the feature values and βk with k = 0, . . . , n
determines the weighting values of the formula. The complexity of the model can be
increased significantly with other functions like cubic or quadratic regression when no
linear relation between the data is suspected. In this thesis, the regression analysis is
used for the algorithm selection but especially for runtime prediction of the algorithm.
The model can be trained to find a context between the computed features of the problem
instance and some performance criteria (e.g. runtime). The regression predicts the
performance of all algorithms which can be ranked afterward according to the results.
Consequently, we compute the best algorithm for each instance which can then be used
to find the optimal algorithm for a new problem instance.

As mentioned above, some of the machine learning methods are able to cope with
classification tasks as well as regressions tasks. Therefore we used the k-nearest neighbor
(kNN), decision trees (DT), support vector machines (SVM), random forests (RF), the
generalized linear models (GLM) for the classification and regression experiments. We
extended the methods with the loess regression model (LOESS) to bring more variability
into the evaluation. In the next section, a short overview is given for the loess regression.

Loess

The LOESS regression procedure (LOESS), which stands for locally weighted scatterplot
smoothing is a nonparametric method for estimating regression surfaces introduced by
[CDG88, CG91] and [CGS92]. The LOESS regression is mostly used to model datasets,
where the different variables clearly show a non-linear behavior. The non-parametric
method uses a least squares regression that is performed on localized subsets of the
data, which makes the method a suitable candidate for smoothing any numerical vector.
The size of the subset or neighborhood is chosen such that a fixed percentage of the
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data points is covered. This value can be adjusted to fit the particular problem and is
called the smoothening parameter. In addition, the individual data points in the local
neighborhood are also weighted using a weight function depending on how far their
position is from the center of the local neighborhood.

The loess regression method is used in practice for time series prediction [HN97] time
tracking and predicting target motion [RFB07].

One of the biggest advantages of LOESS is that it only needs a smoothing parameter
value and the desired sizes for the various neighborhoods to fir a model for the dataset.
Second, the procedure is rather flexible and able to model complex data structures where
standard regression models fail.

One disadvantage of the procedure is that it requires a relatively large data set with
densely sample data to produce good models. This is due to the local neighborhood
structure of the method which needs enough data points to build a comprehensible
model.
The other disadvantage is that the LOESS regression model is, like all other least
square models, also noticeably affected by outliers in the data. In addition, it is worth
mentioning that the method is rather complex and computationally intensive in relation
to the selected parameters described above.

2.5.3 Discretization

As already discussed, we calculate features from the problem instance to use them in a
variety of machine learning methods. Usually, the values are represented as either ordinal,
which represent the information in a finite set of possibilities. The numerical values can
take an arbitrary value that is usually represented in a linear order. The problem is
that some of the machine learning techniques are not able to handle continuous data.
To bypass this problem a transformation of the continues data into nominal data with
different discretization methods could be used. Some procedure like the C4.5 decision
tree have this procedure per default already implemented which is very convenient for
the users. The discretization techniques are categorized into supervised, unsupervised,
global, local, static and dynamic methods [DKS+95]. As an example for a supervised,
global and dynamic method we could use the minimum descriptive length(MDL) method
[FI93].

For this thesis, we use two different supervised discretization techniques. The Minimum
Description Length Principle (MLP) [FI93] discretizes the continuous attributes of data
matrix using entropy criterion with the Minimum Description Length [BRY98] as stopping
rule.

The second discretization technique used is a top-down(TOP) method using the Class-
Attribute Interdependence Maximization (CAIM) algorithm [GACVO09]. The CAIM
criterion measures the dependency between the class variable and the discretization
variable of a feature or attribute.
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For a more detailed overview of discretization methods, we refer to [DKS+95].

A data transformation can also be taken into consideration even if it is not necessarily
required by the machine learning algorithm. Some algorithms show a better performance
if the data is converted from continuous variables into nominal ones [DKS+95]. Research
[YW03] in this area clearly indicates that kNN and naive Bayes deliver better results if
the data is previously transformed.

2.5.4 Feature Selection

Using a set of attributes to teach a model to predict new information is one of the core
applications of machine learning procedures. One motivation of this thesis is to find high-
quality features to model the significant properties of a problem instance. Inexperienced
users could attempt to create more and more features trying to enforce better predictions.
In some cases, meaningless features are able to distract the classifier and could lead to
a poor performance[Hal99, TBB+91]. Bad features are distinguished by the fact that
they provide only redundant information or that they are strongly correlated with other
features and thus contribute no useful information to the prediction process. Other
downsides of too many useless features is a longer computation time [LS97] and lower
accuracy [LS97, Joh97].

To choose the right subsets S ⊆ F from the set of all computed features F which
provide the best performance for the algorithms is an independent optimization problem.
Finding these subsets S is a hard task for every machine learning method and is generally
referred to as the feature selection problem. The problem space for F is defined by
all possible subsets of F . This means they are 2n possibilities to split the features
for our experiment. Even for a very small n, it is practically impossible to test all
subsets to find the optimal one. A pre-selection of the possible features by hand could
decrease the search space significantly, but requires a very good knowledge of the domain,
some expertise for classification algorithms, and of course, time. A pre-sorting of the
features, like in [JKP+94], into strongly relevant, weakly and irrelevant features can
help to find the ideal composition. However, just using all the strongly relevant features
often leads into suboptimal results [GE03]. A mix of all strongly relevant and some
weakly relevant features usually leads to good results. Thankfully, there are several
processes for automated feature selection that use two techniques as shown in [GE03].
One technique uses a search algorithm, similar to forward - or backward selection and
genetic search procedures, to find a good bundle of features that perform well. The subset
selection approach can use some filtering methods [JKP+94] with no more information
needed for the execution of the selection task. These algorithms compute a "value" of
the feature set considering certain criteria (e.g. correlation) and select the set with the
highest "value". These filter algorithms are fast, flexible and rather versatility. The
wrapper-based techniques need a predetermined classification method which they apply
to the subsets and then evaluate performance as the selection criteria. Advantages, of
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the wrapper algorithms, are the better preference for a targeted classifier, but with the
downside of losing generality.

Alternative methods to the subset selection approach, use the individual features and
rank them to suit their individual performance on some specific measurement like the
information gain [GE03]. This ranking is used in a second step to choose the best features
for the task. For further information on the feature selection we recommend [DL97] and
[GE03] to get a good overview about this procedure.
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CHAPTER 3
Algorithm Selection

3.1 Define a good algorithm

In computer science, and especially for heuristics [BGK+95], we mostly deal with a set
of three criteria which define the "best" algorithms: computational effort, quality of the
solution and robustness.

The first criterion that we analyze is the computation complexity of algorithms. One
of the most important issue, when we talk about the complexity of an algorithm, is the
memory consumption. The memory usage strongly depends on the used machine and
on the quality of the implementation (e.g. check if the code is optimized and delete
redundant or dead variable). These factors may greatly differ and lead to inaccurate
measurements. However, the hardware and software components can easily be extended
and since most heuristics only use a smaller part of the search space, they are much less
memory depended than the exact algorithms. Moreover, the lack of memory can be easily
mitigated by more computational effort, which leads to an increased computation time,
and therefore is one of most important argument against the memory criteria. That is
why in most practical cases the researchers concentrate more on the runtime requirements
and use the memory criteria only with reservations or they exclude it for the comparison.

The most important benchmark for a good algorithm is the time requirement. There is
more than one method to compute the runtime of an algorithm. One way is to measure
the CPU-execution time, which leads to easily comparable measurements, but the method
is controversial among researchers because the results depend highly on the hardware and
are difficult to reproduce [AO96]. Despite these problems, the method is still popular
and widely used in practice.

An alternative is to count the program calls [AO96] and evaluate the algorithm based on
the operation cycles needed. These give a hardware independent indicator for the quality
of a solution.
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As we already mentioned, in computer science we usually talk about optimization and
decision problems. Depending on the problem we usually need different measures to
describe the quality of the computed solution. When two algorithms produce the same
results the time is usually used as the second criteria to judge the quality of the solution.
The optimization problems, on the other hand, are a little more complex to describe. In
this context, we speak of the solution quality, which highly correlates with the runtime in
most cases. Better solutions can be achieved by a longer runtime which also allows the
algorithm to search a bigger area of the search space, in an extreme case the algorithm
could be able to check to whole search space and find the optimal solution. Clearly, that
would result in a long runtime, which is in most cases not desired. Therefore, a balance
has to be found between the current solution and the time needed to find it. The task to
find a good termination condition (e.g number of iterations, max runtime), is also a very
important.

The robustness of an algorithm gives some insight into the stability of a method. It tells
the user how well the algorithm can adapt to different instances of the problem, and
how well the parameter tuning can be used to solve problems better. The robustness
describes, therefore, the behavior on a set of instances and not on a single one. The
robustness criteria are less effective in this field of research and are therefore ignored in
this thesis since we are mostly interested in instance-based decisions.

3.2 Choose the best algorithm

In some cases, where algorithms show similar performances, it is hard to say which
algorithm performs better based on some criteria on a set of new instances. To just
select one algorithm random from the set of algorithms which perform similarly, is a
valid method but could lead unpleasant results.

In this thesis, we use a combination of the quality of the solution, i.g. the number of bins
needed to pack all items, and the execution time of the algorithm to rank the procedures.
This helps us to avoid more than one optimal algorithm per problem instance.

A further important factor for the quality of algorithms is the use of randomness of the
procedure. Often state-of-the-art algorithms use random components to compute good
solutions. This randomness factor is used in the progress of creating a starting solution to
help to explore different promising areas of the search space. Of course, the randomness
has an impact on the quality of the solutions and also influence the duration of a process
[HLH97].

According to the information of the individual evaluation criteria for an algorithm we
are now able to say that an algorithm A is, in general, better than an algorithm B, if we
compute the evaluation criteria and A performs at least as good as algorithm B and for
at least one criteria A must perform better than B. Then it should be save to say that
A is clearly better than B for the tested instance[Ewa12].
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3.3 No Free Lunch Theorem

The no free lunch (NFL) theorem was introduced by Wolpert and Macready [WM+95,
WM97]. It states that we are not able to find one optimal universal optimization
algorithm for all problems. If we find one particular algorithm outperforming another
in a particular situation, it is a consequence of its fit to the particular problem, not the
general superiority of the algorithm [WM+95].

Originally the theorem was developed for naturally inspired heuristics, but it is generally
valid for all optimization algorithms that use a so-called black box1 approach. The
findings of Wolpert and Macready may indicate, that if we are interested solely in the
generalization performance, there are no reasons to prefer one algorithm over another.
After we have looked at the NFL theorem more closely, the question arises how we can
find a "suitable" algorithm for our problem?

Fortunately, for a particular problem instance, the performance of two or more algorithms
can be different, especially when a procedure is specifically designed for some particular
classes of instances [WM+95, DJW02]. Therefore, algorithms can outperform all other
algorithms for a particular set of instances.

Using the concept of the NFL theorem, we are eager to find a hidden structure of
a problem that describes how difficult an instance is. In general, we try to find out
whether it is possible for BPP to create a set of features that influence the performance
of algorithms. If this is possible, we are able to create some instance-specific predictions
about the performance of an algorithm for a new instance.

We investigate the following question in this thesis:

• Does the assumption hold that no single algorithm outperforms all other algorithms
on all instances of the BPP?

• Are we able to create some features of the problem instances, for the BPP, which
express information about the performance of various algorithms?

• Are we able to predict the "best" algorithm for a new and unseen problem instance
of the BPP, using these calculated attributes?

But how can we select the "best" algorithm for an instance and which features describe an
instance in the best manner? To answer this question we will deal with the well-known
Algorithm Selection Problem.

1 The black box approach describes an optimization technique where the algorithm has no information
about the problem and just tries to max a cost function.
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3.4 The Algorithm Selection Problem

Many researchers use different approaches to solve a problem. The invented procedures
have mostly advantages and disadvantages which can be used selectively to solve particular
problem instance better. Finding the "best fitting" algorithm is a hard challenge, given
the need to address the different problem areas of instances deliberately.

3.4.1 Algorithm Selection: The Concept

The Algorithm Selection Problem (ASP), first introduced by Rice [Ric76], solves the task
of finding, among a set of algorithms, the best for a specific problem instance.

A schematic overview of the ASP by Rice [Ric76] is given in Figure 3.1 2.

Giving this overview, term x describes an instance of the problem space P . The problem
space P is the set of all possible problems, in our case the input data, on which the
different algorithm should operate. Further, the term f(x) is a representation of the
features of x ∈ P using a feature extraction function F . The criteria space is defined
as a vector w ∈ Rn, in our case the performance measures are defined by n = 2, the
bins needed and the second being the time needed to pack the items. The algorithm
space A defines the set of all algorithms from which we choose the best one for each
instance. The ASP tries to find the best algorithm a ∈ A from the set of all algorithms
A, using a performance mapping which maps the algorithm a ∈ A and a problem x ∈ P
to an element from the criteria space Rn. This performance is finally mapped by a norm
function g(p, w) to the performance of the algorithm [Ewa12].

Over the years, the ASP has evolved and we can distinguish between static and dynamic
approaches [Guo03]. The static methods select an algorithm using a predefined underlying
model, while the dynamic method observes the performance of selected algorithms and, if
needed, changes the selection of the algorithms in the progress. Especially the recursive
ASP may be mentioned here, which checks the selected algorithm after each recursive
call [LL00, LLP01, XHHLB08]. In contrast to the non-recursive algorithms, the recursive
processes divide the decision process into subproblems with sequential decision tasks.

The next sub-chapters deals with important measurements of the ASP, namely the feature
space and the algorithm space. The criteria space, a further possible measure for an
algorithm, was already discussed in Section 3.1 and therefore will not be discussed further
in this sub-chapters.

3.4.2 Algorithm Space

Algorithms with different performances on instances are necessary for the ASP. Theoreti-
cally any procedure, no matter how simple or complicated it is, can be used as a source
for the selection process. Should we use some methods that prove to be unsuitable for

2The figure was taken form [Sch12b]
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Figure 3.1: Model overview of the algorithm selection by Rice [Ric76]

the problem, an optimal selection strategy will avoid them anyway. So in theory, we
are not bound to any specification regarding the methods to choose, but in practice,
it is rather difficult to find the right mix of algorithms for a problem. For example,
exact methods may solve some problems well but need to much time for other instances.
A good selection of complementary algorithms for the set of instances is necessary for
a useful ASP approach. To select this set of algorithms a manual selection process is
sometimes used to identify good candidates for the problem instances. This process
requires a depth knowledge of the problem domain.
Another way is to use the meta-information available provided by benchmarks and
existing research or complexity features, which will be discussed in Section 3.4.4, to
preselect the algorithms for the ASP.

3.4.3 Feature Space

The feature space describes the quantity of all features that describe a problem instance.
It is one of the most important elements for the ASP since the features determine how
well we are able to describe the problem instances. There are no generally valid rules for
automatically choosing features [Nud05]. Therefore, expert knowledge about the domain
and analytical intuition is needed. Another possibility is to use features from similar
problems [SML12], that usually contain some basic information about the size of the
instances and other metrics. More about features for optimisation problems can be found
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at [SML12].

Basically, every measure that is associated with an element of the problem instance can
be used as a feature. We must also consider that too many features or redundant ones
do not always produce better outcomes [Nud05]. However, in order to determine which
features are useful and which not is often a very difficult task but the following two rules
help us to select appropriate candidates: First, it is important, that the features do not
need some prior knowledge about the instance to be computed since this information
is usually not available. Second, the time needed to compute a feature is critical. If
the features take too much time, e.g. longer than a low-order polynomial time period,
they are usually impractical to be effectively used in practice. A similar problem is the
meta-reasoning-partition problem [HB90], which describes the problem that, the more
time a method needs to compute some features, the less time there is to actually solve the
problem. So there is always a trade-off between the benefit of a good feature computation
and the benefits of solving the underlying problem in reasonable time.

A method that is very often used is the so-called feature selection method which was
discussed in Section 2.5.4 . Feature selection uses different machine learning techniques
to pick the best available features.

3.4.4 Analytical Algorithm Selection

The use of analytical procedures and complexity theory to compare algorithms is another
approach to find the best suitable algorithm for a particular instance. The complexity
theory uses characteristics like best/worst/average performance to describe an algorithm
asymptotically. Using this method for algorithm selection, we can schematically find
the best algorithm for each instance based on its best/worst/average performance of all
candidates.

These methods have some advantages and disadvantages with regard to the ASP. It
allows us to compare two algorithms on a different level more clearly separated from
the complexity of the implementation. The downside is, that the concerned instance
and the implementation of the algorithm has a strong impact on the performance of
an algorithm. This could lead to significantly different performances for asymptotically
similar procedures [HCR+00].

Due to the aforementioned problems, analytical analysis and complexity theory is rather
inappropriate for an automatic algorithm selection approach [Ewa12]. Nevertheless, this
method can be used in the manual pre-selection process for the ASP.

3.4.5 Machine Learning for Algorithm Selection

When we are using machine learning techniques we are mostly interested in the perfor-
mance on different problem instances rather than some mathematical analysis of the
algorithms. To do so we use some empirical procedures. We analyze the algorithms on
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their performance on different types of instances and compare the results. The gained
information is used afterward to choose the best procedure for an instance with specific
properties. This procedure refers to machine learning techniques because trying to learn
a pattern from the performance of different algorithms to predict the best solution is the
typical machine learning approach. Many of earlier introduced machine learning methods
have been already used very successfully in the area of the algorithm selection problems
[Ewa12].

Nowadays, machine learning methods are considered the most promising techniques
for solving the ASP. Nevertheless, there are discussions which of the two fundamental
concepts, classification or regression, is more suitable for the ASP. Recent research
suggests a preference for regression methods, like in [XHHLB08, LBNS09, PM14] while
the classical analysis of Rice [Ric76] encourages a procedure similar to decision-trees as
well as other approaches like in [Aha92, Bro93] favor classification.

The two methods use a different approach to deal with the prediction of errors. Classifi-
cation methods make no distinction between the different miss classifications. Whether
the proposed algorithms give a nearly optimal solution or he performs not even close to
a good solution. The punishment of an almost optimal miss-classification or a rather bad
classification is similar for the classification methods. Worth mentioning is that advances
in the classification methods also allow a differentiated penalization of mismatches.

The regression methods, on the other hand, penalize an almost optimal prediction only
slightly. This advantage of regression methods is provided due to a better error metric
handling. Thereby, regression procedures are able to minimize the risk of getting a rather
poor algorithm for an instance. The downside of regression methods is the execution
time and the complexity of the methods [MSSS11].

It is difficult to choose between the classification and regression methods as it greatly
depends on the area of application. With the better error handling, regression methods
seem to have an advantage, but using regression for optimization problems, forces us
to predict the solution quality and the execution time [MSSS11] which includes more
computational complexity. The good thing is that both methods have a rather active
community to provide us with state-of-the-art algorithms. Additional results for the
comparison between regression and classification models can be found in [MDC11]. A
comparison of different machine learning methods for the ASP can be found in [KGM12].

The next subsection gives a brief insight into the application of machine learning methods
for algorithm selection. For more information, please refer to the cited sources.

Representatives of machine learning techniques for the algorithm selection problem are
the portfolio-based regression methods like SATzilla [XHHLB08] and its descendants
[XHS+12]. This state-of-the-art algorithm selection method successfully predicts the best
suited SAT-solver for particular problem cases and was able to win different categories in
the 2007 and 2009 sat competition [XHHLB12]. Another method for SAT that achieves
better results than the SATzilla, using a kNN classifier, was introduced in [MSSS11].
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Other achievements in this area to go back to static and dynamic scheduling strategies
by [KMS+11] as well as greedy selection strategies from [NMJ13].

The ASlib library [BKK+16] is a benchmark library trying to standardized formats
of algorithm selection problems and scenarios. This formats are applicable to a wide
variety of algorithm selection scenarios and helps to compare the results from different
approaches.

Other areas where machine learning techniques are successfully used for algorithm
prediction is answer-set-programming (ASPr) [GL91], with the CLASPFOLIO methode
[GKK+11] and AQME [PT07] a similar framework for quantified Boolean formulas. Also
worth mentioning is the classification- regression-based procedure by [Sch12a] and the
multi-level approach by [MPR15] for ASP. Furthermore, in 2016 a benchmark library
has been introduced by [BKK+16] to better compare different approaches.

For the traveling salesman problem (TSP), a multilayer perceptron method is introduced
by [VG08]. DT, kNN, SVM and Naive Bayes networks were used by [KCHS11] to predict
the best algorithm for the TSP. Other approaches using a regression-based system and
other strategies can be found in [LBNA+03, LBNS09, PM14].

The traveling thief problem (TTP) was introduced by [BMB13] as a combination of the
TSP and the knapsack problem (KP) [KPP04]. For this rather new optimization problem,
an algorithm selection approach has been presented by [WLM+17]. They evaluated the
performance of 21 TTP algorithms and introduced the first algorithm portfolios for the
TTP.

The algorithm selection technique has also been successfully used for the graph coloring
problem (GCP) by [MS13]. They evaluate the performance of six state-of-the-art (meta)
heuristics for the GCP and were able to achieve better performance with the machine
learning algorithms.

For learning problems, which are not directly correlated with our use case we refer
to [SM09] with the approach to select the best learning algorithm for a problem by
[Aha92, Bro93, BSDC03, LBV12, AS06].

Besides these "classical" machine learning approaches meta-learning [WFHP16] methods
have been introduced in the last decade. Procedures for Markov decision processes using
meta-learning methods for a subproblem in SAT were introduced by [LL01] or the OSSP
[LL00]. A statistical model using regression methods and a plain set of rules for a method
selection approach is given by [Fin98]. Using runtime prediction for branch and bound
algorithm is documented in [LL+98].

Method for backtracking search using a portfolio based procedure can be found in
[WvB07] and in [YMTS09].

An example of a combination of a portfolio based algorithm selection approach and
an automated algorithm configuration is HYDRA [XHLB10]. For more information
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of new technologies and historical remarks we recommend [SM09], [Kot12] as well as
[Kot14, MSKH15].
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CHAPTER 4
Algorithm Runtime prediction

4.1 What is Runtime prediction
Most of the NP − complete problems are solvable these days with good results in a
reasonable amount of time with a good heuristic. The downside is, depending on the
algorithm, the run times could vary greatly [GSCK00]. In the last decade, the algorithm
runtime prediction (ARP) method was introduced, which provides information about the
approximate runtime given some criteria, to verify if an algorithm is usable for a specific
task or not.

The method is quite similar to the ASP, since both procedures use features to predict the
result on an unseen problem instance, using prediction models. Even more, the ARP is
used in different applications like the automatic configuration of parametrized algorithms
or portfolio-based algorithm selection. It follows, that the more information we are able
to gather of the problem the more we can improve the quality of our solution.

The goal of the ARP is to predict the runtime of an algorithm on a previously unseen
input using machine learning techniques. The forecast is done using a prediction model
for the algorithm’s runtime. The instance features are used as the input of the prediction
model to produce the forecast for the unseen problem instance [HXHLB14].

In this thesis, we use the ARP to gather additional information about the problem
instances for future work and to predict the run times of three state of the art bin packing
algorithms.

4.2 Algorithm Runtime Prediction: The Concept
The Algorithm Runtime Prediction (ARP) has been researched in various fields of
computer science. Inspired by the ASP [Ric76] different machine learning techniques are
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used for the ARP. One method uses statistical linear regression techniques to predict the
expected runtime of new unseen problem instances. The first models using this method
date back at least to the mid-1990s [Bre94, Bre95].

The problem instances are described by the term x , with f(x) defining the features of x.
The performance criteria w defines the runtime needed to solve a particular instance x
on a reference machine. The ARP tries to find the best algorithm a, from the set of all
algorithms a ∈ A, using a selection mapping S that minimizes w. The function P (a, x)
then predicts the quality of the solution p of a on the instance x. This performance is
finally mapped to a function g(p, w) to the performance of the algorithm [HXHLB14].

Some data transformations are able to simplify the problem, which helps the modeling
process. A log-transformation of the runtime is often used to effectively predict the log
runtime due to the limitations of the accuracy of CPU timers to measure time below a
certain threshold [HXHLB14].

4.3 Machine Learning for Algorithm Runtime Prediction

By similar reasoning as discussed in Section 3.4 we also use machine learning methods
for the ARP. However, please note that the ARP is, in contrast to the ASP, a regression
problem. Not all of the already proposed methods in Section 2.5 can be used.

The next section briefly describes some popular machine learning methods for the ARP.
For more information please refer to the given sources.

One popular and simple linear regression method for the ARP is the ridge regression
as featured in [Bis06]. This method is used in many different ARP approaches due
to its simplicity and interoperability [Fin98, HDH+99, LBNS02, LBNS09, NLBH+04,
HHHLB06, XHLB07]. Variations of the ridge regression, e.g. Ridge Regression Variant
RR [XHHLB07, XHHLB08] and [HJY+10], have been developed over time allowing the
use of iterative modeling methods and forward/backward feature selection methods to
reduce the cross-validation error in the models.

The neural networks are used by Smith-Miles and van Hemert [SMvH11] to predict the
runtime of local search algorithms for solving timetabling instances. Popular resources
for such methods are the Neuroshell software and the Matlab neural network package
NETLAB [Nab02].

Another machine learning technique is the Gaussian Process Regression [Ras06] first
applied by Hutter [HHHLB06] for the ARP. This method has its roots in geostatistics
[Kri51] and uses a kernel-based function computing the similarities between the pairs of
elements.

Similar to the classification trees of the ASP, the ARP uses regression trees [BFOS84] for
the prediction. This method was first applied by Bartz-Beielstein and Markon [BBM04]
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for the ARP and is known to handle discrete inputs very well. The pruning procedures
of the regression trees paired with the cross-validation method allow a cost-complexity
pruning of the tree to define a good trade-off between the prediction quality and the
complexity of the tree. Additional information about regression trees can be found in
[DF00, ELH08].
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CHAPTER 5
Application of the Algorithm

Selection and Algorithm Runtime
Prediction for the BPP

In the following chapter, we discuss our approach of the Algorithm Selection Problem
(ASP) and the Algorithm Runtime Prediction (ARP) for the bin packing problem. We
give an overview of the heuristics used describe the bin packing features as well as how
to compute them to apply the ASP and ARP for the BPP.

In the last section, we demonstrate our algorithm selection and algorithm runtime
approach for the BPP.

5.1 The Bin Packing Problem

5.1.1 Definition

One of the most studied computer science problem is the bin packing problems (BPP),
which is a variation of Karp’s [Kar72] well studied NP complete problems. The problem
has its origin in the 1960‘s and variants of the BPP find their use in many practical
applications, such as cutting of materials (wood, glass, stone, cloth industries), as well as
newspaper paging. Many different variations of the BPP have been presented in literature
and a variety of solving heuristics have been proposed since its first introduction over
forty-two years ago. The classical BPP is defined as follows: We are given a set of items
I = {1, . . . , n}, where each item i ∈ I has a size si ∈ (0, 1] and a set B = (1, . . . , n) of
Bins with capacity of one. The goal is to find a valid assignment a : I → B such that the
number of bins used is minimal without overlapping any item and exceeding the capacity
of the bin.
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The problem description is simple, but it is indeed hard to find a good arrangement
of items in the bins to achieve an optimal solution. Moreover, with the fact that the
problem is NP − hard, it is very unlikely that there exists an exact strategy that needs
less than exponential time to find a minimal packing of the items unless P = NP . The
BPP is part of the so-called Cutting and Packing category of problems [Dyc90].

This thesis deals with the 2 dimensional (2d) bin packing problem, which is an extension
of the classic 1-dimensional packing. For the 2d BPP a set of n items i ∈ I is defined
by his height hi ∈ (0,m] and by its width wi ∈ (0,m]. The bins of the 2d BPP are
also defined by a height and width. There exist some varieties of the two-dimensional
bin packing problem which are defined by the (1) orientation of the items and (2) the
guillotine cutting pattern1. As an example, for a newspaper article rotation is not
desired but for wood cutting, it is normally no problem. The guillotine cutting pattern
is mostly needed for automated cutting machines and the complexity of programming
them. [BLS05].

According to these settings, the following variations of the 2d BPP exist:

1. 2BPOG: the items are oriented (O), and a guillotine cutting (G) is required;

2. 2BPRG: the items can be rotated by 90◦(R), and a guillotine cutting (G) is required;

3. 2BPOF: the items are oriented (O), and the cutting is free (F);

4. 2BPRF: the items can be rotated by 90◦ (R), and the cutting is free (F);

It is important to know that some of the proposed methods can deal with more the one
variation of the 2d BPP, others are suitable only for one of the four cases.

Our approach in this thesis deals with the first two cases of the 2d BPP variations, due to
organizational reasons and licensing problems with the needed procedures and algorithms.
In the next section, we discuss recent advances in heuristics and exact algorithms for the
2d BPP.

5.1.2 Exact Algorithms for the BPP

One property of NP − hard problems is that the process of finding the optimal solution
for exact algorithm could be very time-consuming. There are some exact procedures for
the 2d BPP, which were particularly popular during the 1990s. The most recent work
for exact algorithms for the BPP is given by Delorme, Iore and Martello [DIM16]. An
exact algorithm was presented by Martello and Vigo [MV98], for which the items were
sorted in a decreasing order of their size. In the next step, the method tries to pack the

1The guillotine cutting pattern specifies that the items must form a sequence of edge-to-edge cuts.
This cuts must be parallel to the edges of the bin
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first bins with the items in an optimal order by reducing the size of the instance. This
process leads to a first intermediate solution z∗ which is used in the next step. By using
this intermediate solution a decision tree is constructed.

Next, a two-level branching scheme is used by the algorithm:

• outer branch-decision tree: for each branch in the decision tree an item is appointed
to a bin without finalizing its position;

• inner branch-decision tree: a valid packing is searched for the items assigned to the
bins.

The outer search tree uses a depth-first search to select the items. At a defined level
k = (1, . . . , n) the item is assigned to an open bin, or to a new one if the number of bins
needed by the current solution is less than z∗ − 1.

In the next phase, the feasibility of the assigned items to the bin is checked heuristically
in two ways:

• (i) a lower bound is computed for the instance. If the value of the lower bound is
greater than 1 the packing is not feasible.

• (ii) an upper bound is computed for the same instance if the value is 1, a feasible
packing is found.

Should both methods fail to find an acceptable solution, all possible packings of the items
are enumerated by the inner branching scheme. After a feasible packing is found for
the instance, the algorithm returns to the outer enumeration tree. Otherwise, the outer
backtracking routine is performed.

Alternatively, another exact method introduced by Fekete and Schepers [FSVdV07] is
based on an enumerative approach.

5.1.3 Heuristics for the BPP

The next section gives a brief overview of different heuristics for the BPP, explains there
principles, shows the similarities and differences as well as their relation to each other. We
focus mostly on the state-of-the-art algorithms used in the experimental part of this work.
We distinguish between the previously discussed variations of the BPP, concentrating
on the 2BPRG and 2BPOG case, and provided a listing of the best methods currently
available. For more information about recent approaches on the 2d BPP the reader is
referred to [WOZL13], [LH13] and [HBZS13].
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Approaches for 2BPRG and for 2BPOG

Constructive heuristics

Some of the most famous constructive heuristics are the first-fit insertion (FFIHOGJ04),
best-fit insertion (BFIHOGJ04) and the critical fit insertion (CFIHOGJ04) heuristic
introduced by Fleszar in 2013 [Fle13].

These three procedures use a tree-based structure to perform guillotine cutting patterns.
The items are inserted in a partial solution one at a time based on a procedure for
enumerating possible insertions. The insertions are based on a fitness criterion which
specifies the best placement for the item. The first two heuristics have a quadratic
worst-case computational complexity, only the critical-fit insertion procedure has a cubic
worst-case complexity. A detailed analysis of the performance and effectiveness of the
three methods by comparing their empirical performance against other heuristics using
popular benchmarks can be found in [Fle13].

Another heuristic introduced by Charalambous and Fleszer [CF11] using a principal
of average-area sufficiency to choose the best fitting item for a bin is the constructive
heuristic (CH). Three variations of this method have been developed, the constructive
heuristic (CH), CH with bias (CHB), and CHB with post-processing (CHBP). The
efficiency of this method is tested by a set of benchmark problem instances which can be
found in the given source.

Neighbourhood heuristics

The Stochastic Neighbourhood Structures (SNS) solves the 2dBPP either with a two-stage
or three-stage procedure. This heuristic was introduced by [CASDC11]. The method uses
previously defined packing criteria to pack the items in existing or new generated bins. A
solution is stored as a sequence of items which are packed into the bins. Three different
neighborhood structures (cut-and-paste, split, swap blocks) are used by the SNS to modify
the current sequence of items to improve the solution. Computational results show that
the heuristic provides results within a small range of the optimal values of the instances.
Generally, this method makes improvements to the other neighborhood heuristics like
the Variable Neighbourhood Descent (VND) meta-heuristic [PAVOT10, HMP10].

Agent based heuristics

The next heuristic, proposed by Polyakovsky and MHallah (2009) [PM09] , uses an
agent-based (A-B) implementation to solve the 2dBPP. The A-B systems use different
agents, that try to fill the bins dynamically. The agents work together, though each
agent is driven by its own decision processes, parameters, and fitness criteria. The basis
of each agent is the guillotine bottom left (GBL) constructive heuristic which places
the items in the first available most bottom left position of the chosen bin and defines
the direction of the first cut of the strip containing the positioned item. The heuristics
constantly updates the unoccupied areas in the chosen bin and tries to fill unpacked

36



5.2. Our Contribution

items into the bin until it tried all unpacked items. If there are still unpacked items, a
new bin is opened until all the remaining items are packed.

Sequential value correction heuristics

The last algorithm introduced in this section, the SVC2BPRG proposed by Yi-Ping
Cui and Yaodong Cui [CCT15], is based on the sequential value correction procedure
that computes a specified number of cutting patterns, from which the most promising is
selected as the current solution. Each of the patterns is generated sequentially which
allows it to restrict some cuttings/packings if needed. Compared to other procedures, the
heuristic performs very effectively by improving the quality of the solution, in most of the
benchmark instances. This method is one of the best current state of the art procedures.
The SVC2BPRG is the only heuristic used in this thesis which cannot be applied for the
2BPOG variation of the 2d BPP.

Other approaches

Of course, other methods were also used for the 2d BPP such as ant colony optimization
[GTM+05], simulated annealing [LCT03] or a space defragmentation heuristic [ZGZ+11].
The quality of these methods, however, does not reach the level of heuristics already
described. Interested readers will find more information in the referenced sources.

5.2 Our Contribution

In the following subsection, we describe the created features that describe the bin packing
problem instances and present our approach for the ASP and the ARP for the BPP.
We show which procedures and methods were used to build the prediction models.
Furthermore, we list which preprocessing, feature selection and parameter setting we
introduced.

5.3 Features

One of the central hypothesis of this thesis is that it is possible to create a representative
set of features that characterize well the 2d bin packing problem instance. Using this
set of features we want to find the best algorithm to solve the instance and define its
hardness. Basically, features must be calculated quickly because otherwise they can
not be effectively used for the ASP or the ARP. A set of good features covers different
constraints, characteristics and properties of the problem instance.

However, "good" features alone aren’t of much use. A good learning algorithm is essential
in order to make sense of the obtained features.
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5.3.1 Feature Overview

In this section we will introduce and explain each feature using the syntax defined in
Chapter 5.1.1. The features are computed for each of the 600 problem instance used in
this thesis and stored as a matrix.

• Max Item size / (Elementgröße)

– Calculate the size for each item by multiplying the height hi with the width
wi of each item i of the problem instance and choosing the maximum size of
the items.

• Total item size / (Gesamtfläche Items)

– This features Sums up the size for each item i ∈ I of the problem instance:∑n
i=1 hi ∗ wi

• Mean item size / (Mittelwert der Itemsgrößen)

– This features calculates the mean of the item size:
∑n

i=1(hi∗wi)
n

• Median item size / (Median der Itemsgrößen)

– This features calculates the median of the item size.

• Variance item size / (Varianz der Itemsgrößen)

– This features computes the variance of the item size.

• Mean height / (Mittelwert der Items Höhen)

– This features computes the mean of the item heights h.

• Mean width / (Mittelwert der Items Breiten)

– This features computes the mean of the item widths w.

• Variance height / (Varianz der Item Höhen)

– This features computes the variance of the item heights h.

• Variance width / (Varianz der Items Breiten)

– This features computes the variance of the item widths w.

• Bin size / (Bin Kapazität)

– This features computes the capacity of the bins B of the problem instance.

• Big items / (Grosse Teile)
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– This features computes the number of items i that have an ItemSize ≥ 50%
of the capacity of the Bins B.

• Small items / (Kleine Teile)

– This features computes the number of items i that have an ItemSize ≤ 25%
of the capacity of the Bins B.

• Ratio Small Big / (Ratio Gross Klein)

– This features computes the computes the ratio between the smallest and the
largest item : min(ItemSize)

max(ItemSize)

• Ratio items / (Flaechenverhaeltnisse)

– This features computes for each item i the ratio between the heigth hi and
width wi. An RatioItem value of 1 indicates a square : hi

wi

• Square items / (Quadrat Anteil)

– This features computes the number of items i that are square or almost square
: RatioItems ≤ 0.80 or RatioItems ≥ 1.20

• Odd items / (Unfoermigen Anteil)

– This features computes the number of items i that have Uneven height and
widths ratios : RatioItems ≤ 0.25 or RatioItems ≥ 1.85

• Lower bound bins / (Theoretische min Bin Anzahl)

– This features computes the theoretical lower bound, the min number of bins
B to pack all the items.

• Filler items / (Filler Items)

– This features computes the number of items i that have ItemSize ≤ 10% of
the BinSize.

• One bin items / (Singell bin items)

– This features computes the number of items i that have ItemSize ≥ 87.5% of
the BinSize.

• Ratio height item / (Hoehen Range)

– This features computes the ratio between the min and max height of the
items i of the problem instance: min(h)

max(h)
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• Ratio width item / (Breite Range)

– This features computes the ratio between the min and max width of the items
i of the problem instance: min(w)

max(w)

Table 5.1 gives also an overview of all the features with a short description.

5.4 Experimental Setup and Environment
The following section explains the setup and the environment which was used for our
algorithm selection and runtime prediction approach. The first part explains the evalua-
tion of the chosen heuristics for the BPP, describes the different procedures and their
parameter configurations. After that, a detailed overview of the setup for the machine
learning task is given.

5.4.1 Definition and Algorithm setup

The classical algorithm selection approach, introduced by Rice [Ric76] consists of the
following components as explained in Chapter 3.4 :

• the problem space P

• the feature space F

• the algorithm space A

• the criteria space W

Using this standard notation for the BPP, we define the BPP instances (P ) as the problem
space, the 24 extracted attributes belong to the feature space (F ) as presented in Section
3.4.1, the algorithm space (A) is defined by the state-of-the-art methods introduced in
section 5.1.3. The criteria space (W ) is given by the combination of the bins and the time
needed by the algorithms to solve the problem instances. The classification task/decision
procedure is handled by different machine learning methods using various empirical
approaches. Using a training set and the information gained from the extracted features,
a classifier is built. This classifier is trying to learn the underlying patterns/structures of
the problem instances. In the training set, the best algorithm is defined according to the
performance criteria from their criteria space W for each instance.

The algorithm prediction task calculates the features for new unseen problem instances,
feeds the information to the previously calculated classifier which finds the best-suited
algorithm based on the learned information.

The algorithm runtime prediction uses a similar procedure but predicts the expected
runtime of a new unseen problem instance based on the information learned from the
prediction model.
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Name Shortcut Description
Max item size itemSize Calculates the max area of the items
Total item size totalItemSize Calculates the sum of all item areas
Mean item size meanItem Calculates the mean of the sum of all item areas
Median item size medianItem Calculate the median of the sum of all item areas
Variance item size varItem Calculates the variance of the sum of all item

areas
Item height heightItem A vector with the height of the items
Item width widthItem A vector with the width of the items
mean height meanHItem Calculates the mean height of the items
mean width meaWItem Calculates the mean width of the items
Variance height varHItem Calculates the variance height of the items
Variance width varWItem Calculates the variance width of the items
Bin size binSize Calculates the area of the bins
Big items bigItems Number of items that have an area larger than

half of the bin size
Small items smallItems Number of Items that have an area less or equal

than one quarter of the bin size
Ratio Small Big ratioSBItems Computes the ratio between the smallest and the

largest item
Ratio items ratioHWitems Computes the ratio between height and width of

the individual items
Square items squareItems Number of items that are square / almost square
Odd items oddItems Number of items that have an unequal high /

wide ratio
Lower bound bins lbBins The theoretical lower bound, so many bins must

at least be used
Filler items fillerItems Calculates the Number of very small items that

can be used to fill open spaces
One bin items oneBinItems Calculates the number of items that require a

new bin with high probability
Ratio height item ratioHItems Calculates the ratio between the min and max

height of the items
Ratio width item ratioWItems Calculates the ratio between the min and max

width of the items

Table 5.1: List of features from 5.3.1
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5.4.2 Algorithms for the BPP

To create a sophisticated algorithm selection model for the BPP we need a large selection
of algorithms with different performances on the problem instances. We have chosen
current state-of-the-art algorithms to simulate a practical use case of the experiment.
In total, we have nine different heuristics for the 2BPRG and the 2BPOG cases. In
collaboration with the authors of these algorithms, we were able to get access to three
of the original implementations with the associated data set. These three algorithms
were used for the ARP. Unfortunately, due to copyright law and other problems we were
not able to gather the other heuristics despite the comprehensive support of the authors.
Nevertheless, we were able to collect detailed results of the most popular data set for
each of the heuristics which we used for our experiment.

In detail we have chosen the following state-of-the-art heuristics:

• FFIHOGJ04

• BFiHOGJ04

• CFIHOGJ04

• CH

• CHB

• CHBP

• A-B

• A-B.New

• SVC2BPRG

As already mentioned in Section 5.1.3 the SVC2BRG algorithm can’t be used for the
2BPOG bin packing problem case. Therefore, the algorithm is excluded from the set of
these experiments.

Furthermore, we excluded the A-B and A-B.New heuristic for both cases, since the
performance of the algorithms, could not compete with the other heuristics.

We ended up using 7 different heuristics, 7 for the 2BPRG and 6 for the 2BPOG. The
result of these 7 algorithms on the 500 benchmark problem instances was used for our
algorithm selection approach.

For the algorithm run-time prediction approach, the original implementation of the CH,
CHB, and CHBP heuristics was used in our experiment. In addition, we extended the
data sets with a greater variety of problem instances to build a more robust prediction
model. The experiment was performed with 3 heuristics and 600 benchmark instances in
total. The heuristics were compiled with Windows OS using Microsoft Visual Studio.
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Algorithm rank scheme

For the BPP algorithms are usually compared on the basis of the number of containers
needed for the particular problem instance. The first evaluations of the algorithms have
shown that a comparison based only on this one criterion gives a relatively inaccurate
result, due to the fact that no information of the spare space in the container is stored,
nor how much time was needed to compute the solution.

In order to evaluate the process better, we use a combination of computation time and
containers required to solve a particular instance. This allows us to rank the algorithms
according to their performance on a single problem instance. The best algorithm for an
instance x is the one which needed the fewest number of bins in the shortest amount
of time. The chosen state-of-the-art heuristics are very fast and specialized for the bin
packing task, therefore there are able to solve "normal" sized problem instances in a very
short amount of time.

In our experiment, the most important criterion is the required number of bins to pack all
items. If two or more algorithms perform equally well then the time needed to compute
the solution is used to rank them.

Variations of the Algorithm Space

Another aspect we tested in our experiment is the performance of the classification
algorithms with a subset of the chosen heuristics, to see if the number of possibilities
affects the performance of the algorithm selection experiment. To test this aspect, we
reduce the set of heuristics step by step and compare the performance to the previous
complete model. The subsets were indicated by hx where the x defines the chosen
heuristics. The algorithms are chosen on their average performance rank. In each step,
we eliminate the heuristic with the lowest average rank.

Algorithm Section Classifier Evaluation

The solutions of the optimization problems can immediately be used to train a machine
learning prediction model to predict the best class/runtime/solution for a new unseen
problem instance. However, in some cases there exist more algorithms that obtain the
best solution for a certain problem instance [DZ02]. The existence of multiple algorithms
that compute the best solution can occur when for example the metric to compare the
results is too vague or a to generous solution space is permitted.

Of course, two algorithms can also calculate the same solution randomly or both methods
are able to solve the problem optimally. In order to deal with the multiple best algorithms,
we have to ensure that the metric chosen to compare the performance of the algorithm
selection is capable of dealing with more the one optimal solution.

In our experiments, no instance was solved by multiple algorithms best. Since we used
the rank schema proposed in Section 5.4.2 each problem instance was solved optimally by
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only one algorithm. We counted the number of times how often the best algorithm was
correctly predicted for the problem instances. This metric helps us to evaluate the quality
of the classification models. In detail the success metric s(c, I, A) for the classifiers c, the
instances I, and c(i) the predicted algorithm for the current instance i is defined as:

s(c, I, A) =
{∣∣i ∈ I : c(i) ∈ Bi

∣∣}
|I|

The variable B indicates the best algorithm for each problem instances i ∈ I which
the prediction c(i) is compared to. The algorithm space A defines the chosen set of
algorithms for each of the experiments.

5.5 Benchmark Graphs

5.5.1 Training and Test Data

The base of our algorithm prediction and runtime prediction approach is are versatile
data sets. We choose the two most popular publicly available data sets for 2-dimensional
bin packing and extended them with 100 more instances for our runtime prediction
approach. These data sets consist of 10 classes with 50 instances each. Each of this
instances contain 10 items of the sizes n ∈ 20, 40, 60, 80, 100. The first set, consisting
of classes 1− 6, was introduced by Berkey and Wang [BW87], while the second set of
benchmark problems, classes 7− 10 were provided by Lodi et al. [LMV99]. The bin sizes
vary for the 10 classes, ranging from 10× 10 to 300× 300. These intervals are also used
to define the item height and width of the problem instances.

For the runtime prediction model, we expanded the data sets with 2 more classes. These
100 problem instances are characterized by a larger variety of n. The number of items
ranged from 200 to 1000 items as well as a greater variety of bin sizes.

For testing and the final evaluation of our prediction models, we used a cross-validation
method. In Section 5.6.5 we give a detailed overview of the cross-validation and prepro-
cessing methods used to evaluate the best model.

5.6 Test Methodology and Experimental Setup

5.6.1 Evaluation System

All our experiments were performed on the same system. We used a PC running Windows
10 OS with an Intel i5 2,55 GHz processor with 16 GB ram. Each of the prediction
models was executed as a single process/thread and real computation times were recorded
for the runtime prediction procedure.
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5.6.2 Algorithm Evaluation

As earlier mentioned we used 3 algorithms for our algorithm run-time prediction approach.
For each of the algorithms, we applied an instance set 10 times with random seeds and
computed the median time needed to pack the items. The information computed for each
of the instances and all algorithms is used in the next step to build the prediction model.

5.6.3 Classifier Evaluation

For the different machine learning classier methods, a set of success criteria was needed
to compare the performance of our algorithm selection and algorithm runtime approach.
The most popular method is to success-rate, as introduced in 5.4.2, which counts how
often the ”best” algorithm is predicted for the set dived by the total number of problem
instances. In detail, we calculate the accuracy of the classier determined as the percentage
of correct classifications for the set.

Due to the fact that we also tested different subsets of the classifiers we introduce a
second performance measure. If we would use the success-rate for the subsets of classier
we would lose some information since each instance has only one best algorithm. If we
exclude this algorithm, we would not be able to solve the instance with the optimal
solution. Whenever an algorithm is excluded from the set of classifiers, we update the
list of the best algorithms for each instance using the ranking scheme introduced in
Chapter5.4.2.

For each problem instance, where the excluded algorithm was defined as the best one,
we choose the second best choices with the next best rank. This process is repeated
after each subsampling step. Following this strategy to ensure that the prediction model
returns the best algorithms among the set of available heuristics for every single problem
instance.

5.6.4 Chosen Classification Algorithms

The main body of this thesis focuses on the performance differences of the 2d BPP
algorithms. Additionally, the various machine learning methods also play an important
role in the quality of the solution. The task of finding the best-suited machine learning
algorithms for a problem instance is the main topic of many different research projects
e.g. [Aha92, Bro93, BS00, BSDC03, AS06, LBV12]. This subject, of finding the optimal
machine learning algorithm, is by itself an algorithm selection problem. Several well-
known methods have been used in our experiments with different configurations, however,
the main focus of this thesis stays on the BPP algorithms.

To find the best-suited algorithm for each problem instance we used 6 different machine
learning methods, namely:

• Naive Bayes (NB)
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• C4.5 decision trees (DT)

• Random forests (RF)

• K-nearest neighborhood (kNN)

• Neural Networks (NN)

• Support vector machines (SVM)

These methods were both used for the algorithm selection task as well as the algorithm
runtime prediction, except the Bayesian Networks, since not all the machine learning
techniques are capable of classification and regression predictions.

5.6.5 Setup and Tools

For the evaluation itself we used that programming language R 2 with the caret package.

The caret package (short for Classification And REgression Training) is an extension
for R which combines different functions for the purpose of creating predictive models.
The package consists of many different R prediction and data management packages and
combines them comfortably in one meta package. It provides a uniform interface for
the functions, as well as a standardized way for parameter tuning, feature selection, and
other tasks.

Caret contains tools for:

• data splitting

• pre-processing

• feature selection

• model tuning using re-sampling

• variable importance estimation

The current release version can be found on CRAN3 and the project is hosted on github4.

Many algorithms featured in the caret package offer a wide range of parameter tuning
options, which might influence the performance and the solution of the learning phase.
Consequently, we tested different configurations to find the most promising setup for each
method. The following paragraphs describe the variables we used and the parameter
setting for each method.

2 R version 3.3.2 https://www.r-project.org/
3 https://cran.r-project.org/web/packages/caret/
4 https://github.com/topepo/caret
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Methode Compelexity parameter
DT1 0.000000
DT2 0.007702182
DT3 0.015404365
DT4 0.023106547
DT5 0.030808729
DT6 0.038510911
DT7 0.046213094
DT8 0.053915276
DT9 0.061617458
DT10 0.069319641
DT11 0.077021823
DT12 0.084724005
DT13 0.092426187
DT14 0.100128370
DT15 0.107830552
DT16 0.115532734
DT17 0.123234917
DT18 0.130937099
DT19 0.138639281
DT20 0.146341463

Table 5.2: Parameter settings for the DT classifier

Another important factor for the performance of the machine learning techniques are the
different preprocessing methods. The used preprocessing methods are featured in section
5.6.6.

All of the models presented here were designed using a 10-fold cross validation, with the
default parameters as introduced in Section 5.6.5.

Starting with the Decision Trees we used the following configurations. We modified
the pruning rate of the trees and defined different levels of minimal elements per leave
node. The parameters define the complexity of the tree and his extent. We used a set of
twenty possible values for the complexity parameter cp. A detailed overview of the cp
values used are given in the Table 5.2 for the model with all algorithms available, the
items are oriented (O) and guillotine cuts are required (G). The cp values are slightly
different for the various models, however the are always in a range of cp = 0, . . . , 0.5.

An extension of the Decision Trees is the Random forest (RF ) method. To test the
RF method, we experimented with a different number of trees ntree, which should not
be set to a too small limit, to ensure that every input row gets predicted at least a few
times. After the first test attempts, we set the number of trees to constant 500. The
second parameter defines the number of variables randomly sampled as candidates at
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Setting mtry ntree
RF1 2 500
RF2 3 500
RF3 5 500
RF4 7 500
RF5 9 500
RF6 11 500
RF7 13 500
RF8 15 500
RF9 17 500
RF10 19 500

Table 5.3: Parameter settings for the RF classifier

each split (mtry).
Even though the method can be used with arbitrarily large ranges, the computational
time available to spend on modeling forms a practical upper bound on for the RF method.
The selected values are shown in table 5.3 for the RF method.

One of the most promising machine learning technique is the support vector machine
(SVM). For the first run, we always used the SVM start configuration optimization,
integrated in the R package caret. After the first cold start optimization, we tested
different complexity parameter values c and two kernel functions which define the
performance of SVM . For the complexity parameter c we used values between c ∈
{0.1, . . . , 12}. We tested a linear as well as a radial kernel for our experiment.

Usually, the decision is whether to use linear or a non-linear kernel is defined by two
main factors.

• Speed: Solving the optimisation problem for a linear kernel is much faster.

• Quality: Typically, the best possible predictive performance is better for a non-linear
kernel (or at least as good as the linear one).

We tested for both kernel the same values of the complexity parameter c. Table 5.4 shows
the different settings for the SVM .

The Naive Bayes method (NB), has three options to tune a model. The fL values
stand for a Laplace correction. We tested different values but decided to choose the
default factor 0, i.e. no correction at the end. The usekernel variable was held constant
at a value of TRUE. For the adjust tuning parameter values between {1, 2, 3, . . . , 10}
were used.

Regarding the Neural Networks (NN) we used two options to tune the model. The
size parameter defines the number of units in the hidden layer. The second parameter is
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Setting c Kernel
SVM1 0.05 linear/radial
SVM2 0.15 linear/radial
SVM3 0.25 linear/radial
SVM4 0.50 linear/radial
SVM5 1.00 linear/radial
SVM6 2.00 linear/radial
SVM7 4.00 linear/radial
SVM8 8.00 linear/radial
SVM9 10.00 linear/radial
SVM10 12.00 linear/radial

Table 5.4: Parameter settings for the SVM classifier

Setting size decay
NN1 1 0.00
NN2 1 0.05
NN3 1 0.10
NN4 5 0.00
NN5 5 0.05
NN6 5 0.10
NN7 10 0.00
NN8 10 0.05
NN9 10 0.10

Table 5.5: Parameter settings for the NN classifier

the decay value, which is a regularization to avoid over-fitting. This method is used as a
penalty for the sum of squares of the weights of the units in the hidden layer [VR13]. A
detailed overview of the used values can be found in table 5.5.

For the Generalized Linear Model (GLM) we can achieve a better performance by
tuning the alpha and lambda parameters. We used the tuning method included in the
caret package to find the best settings for our purpose. The method set the tuning
parameter alpha constant at a value of one and tested for the lambda parameter the
values λ = {0.001, 0.002, 0.011, 0.020, 0.030, 0.040}.

For the last method, the k-Nearest Neighbor (kNN), we experimented with a dif-
ferent number of neighbors k. We experimented with mostly odd values for k =
{2, 5, 7, 9, 11, . . . , 41, 43} for this method.

Cross Validation

Cross Validation (CV) helps, in general, to not overfit the prediction model to a selected
part of the dataset (i.g. the training set). It supports the search process to find the best
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fitting model based on the given datasets, with the lowest possible error. Cross-validation
is a way of measuring the predictive performance of the models. Without validating the
prediction models, we are not able to say anything about the performance on an unseen
set of data. It is possible to fit a model to almost 100% on a training set (overfitting) by
simple tuning the model until every problem case is optimally solved. But if we use this
model on a new and unseen set of data, it would produce poor results with a very high
probability.

Using this motivation all feature selection processes were performed using a repeated
k-fold cross-validation. The k-fold cross validation method splits the dataset into k-
subsets (S1, . . . , Sk) (we tested differrent values for k and decided on the value k = 10).
In the next step the model is trained an all other subsets excluding one, for example
(S1∪S2∪· · ·∪Si−1∪Si+1∪· · ·∪Sk). This approach is repeated for all subsets, computing
an accuracy each step, and an overall mean accuracy estimation at the end. After all
subsets had been excluded the model with the lowest estimated generalization error is
chosen for further computations.

If the process of splitting the data into k subsets (folds) is repeated a number of times,
and then processed as above described, we perform a so-called Repeated k-fold Cross-
Validation. For our experiment we used a 10-fold cross-validation which was 3 times
repeated.

5.6.6 Feature Selection and Preprocessing

In order to exploit the full potential of the machine learning algorithms, it is advisable
to prepare the data. Furthermore, some machine learning algorithms require the data to
be in a specific form to be applied, but not all preprocessing methods are suitable for
all machine learning techniques. However, basically, the more we are able to expose the
underlying structure and relationships of the data the better are the predictions of the
machine learning algorithms.

So pre-processing the raw data is part of most machine learning applications. In this
section, we will explain the different preprocessing methods used in this thesis in order
to expose the data to the machine learning algorithms. We used two discretization
techniques which were already introduced in Section 2.5.3.

Different methods were used for the feature selection and the preprocessing techniques
featured in the caret package for R. The package offers several types of techniques
including the centering, scale and principal component analysis (PCA) which we used for
our experiment.

Scale and Center

The first two preprocessing methods are used for the standardization of the data. This
requirement is very common for machine learning estimators. If the individual features
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do not more or less look like standard normally distributed data, it could seriously affect
the performance of the machine learning algorithms.

For example, the SVM assumes (at least for the RBF kernel) that all features follow a
standard normal distribution, which means that they are centered around zero with a
standard deviation of one. Is this property not given, it could interrupt the learning
process and therefore lead to an unexpected or bad performance.

The scale transform calculates the standard deviation for an attribute and divides each
value by that standard deviation.

The center transform calculates the mean for an attribute and subtracts it from each
value.

We tested the machine learning methods with each preprocessing step separately, but we
also combined these two methods to standardize the dataset to a mean value of zero and
a standard deviation of one.

PCA

The Principal Component Analysis (PCA) [Jol02] is a modern statistical preprocessing
method that has been successfully used for face recognition, image compression and other
fields of application. This method helps us to find only the important features for our
prediction model. Depending on the number of features n there are 2n possible feature
subsets and the PCA supports us to find the most promising one.

The method tries to find some patterns in high dimensional data. The PCA transforms
the features in so-called principal components using a variance threshold function. This
technique leads to a set of features that are uncorrelated and that contain important
information about the dataset which are useful for machine learning algorithms. All
other features which do not exceed the threshold function are not used in the training
process for the prediction model and therefore dropped.

Regarding our experiments, we first tested the performance of the machine learning
methods without any preparation. To generate better performance we added the three
preprocessing methods step by step and compared the individual results until the best
configuration for each machine learning method was found.
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CHAPTER 6
Evaluation for the Algorithm

Selection

The following chapter presents the results and the evaluation of the algorithms for 2D
Bin packing case, the algorithm selection approach. For our testing proposes we used the
two free available data sets.

The main goal is to define the best performing algorithm for each problem instance and
to analyze the performance on subsets of instances with different characteristics. The
accuracy measure is used to compare the performance of the algorithms to each other.
We also investigate different parameter settings for the procedures used and how they
affect the quality of the solution.

After the general analysis of the heuristics, the second part of this chapter examines
the algorithm selection approach for the 2BPOG and 2BPRG BPP. With the already
introduced machine learning methods several prediction models were trained and tested
using different parameter configurations and data-preprocessing methods. In addition,
we analyzed the effects of reducing the algorithm portfolio and compare the collected
results.

The last part of these chapter evaluates the trained prediction models using a test set.

6.1 Heuristic Evaluation
The first task of the heuristic evaluation analyses the behavior and results of the algorithms
using the given dataset.

The dataset contains 500 problem instances with 10, 20, 40, 50 and 100 items. To compare
the performance of the algorithms first only the number of bins needed (to pack all the
items) is used.
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Figure 6.1: Number of instances of the test set on which the algorithms obtain the best
solution for the 2BPOG case using only the bin - criteria

After this first analysis of the 2BPOG and 2BPRG case another metric is used for the
following experiments. The most important performance metric is the combination of the
runtime and the needed bins to pack all items of the problem instance. With our main
benchmark criteria, the combination of bins and runtime, there is a possibility that more
than one algorithm solves an instance best, but since we used a precise time measurement
unite till the 3rd decimal place it is very unlikely. In fact, for our experiment, each
instance was solved best only by one method using the main benchmark criteria.

To get a first overview of the algorithms used we rank all methods according to our
metric and count how often a heuristic is identified as the best one.

6.1.1 2BPOG Metric Bins

Figure 6.1 shows a graphical representation of how often each method was able to solve
an instance best. More than one algorithm solves an instance optimal using only the
bins a quality metric. This is very common since the bins are a rather big unit to use as
a quality metric for a problem.

As shown in figure 6.1 especially the CHBP algorithms performs best for 479 of the
500 bin packing instances, followed by the CFIHOGJ04 with 465 and the A.B.New
method with 455.

To get a more representative overview of the algorithms we investigated the results on
different subsets of the data.
First we separated the data in Easy , Medium and Hard sets using two lower bounds
(DevMV and DevBst ). The DevMV lower bounds are based on the work of Martello
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Subgroup Description
EASY Both lower bounds are reached by all algorithms

MEDIUM One of the two lower bounds is reached by all algorithms
HARD No algorithm was able to reach one of the two lower bounds

Table 6.1: Subsets defined by the hardness of the test set

Subgroup Description
SMALL n ≤ 40

INTERMEDIATE n > 40 ∧ n ≤ 80
BIG n > 80

Table 6.2: Subsets defined by the number of items to pack

and Vigo [MV98] and the DevBst are collected from the web page of the Operations
Research Group of the University of Bologna based on there research 1 [Fle13]. The
definitions of the subsets are given in table 6.1.

Furthermore, we separated the test set using the number of items to pack n. We created
also three sets Small, Intermediat and Big based on the rules of table 6.2.

Figure 6.2 shows the result of the algorithms according to chosen subsets. We assumed,
that the methods show different performances in dependence of the problem-size and
hardness. All in all, we can say that for the 2BPOG case of the BPP no very large
difference in the number of best-solved problem instances per algorithm can be found.
In detail, only the GBL algorithm underperforms for all nine subgroups of the test set.
Furthermore, we see that the CHBP outperforms the other algorithms in almost all
subgroups, except in the medium hardness classes.

6.1.2 2BPRG Metric Bins

For the second variant of the BPP, the 2BPRG case, we also separated the data set into
nine different subsets according to the size and the hardness of the instances. The same
set of rules was used as shown in Table 6.1 and 6.2. Only different lower bounds were
used, the DevDA lower bounds based on the work of Dell’Amico et al. [DMV02] and
the DevC lower bounds are based on the research of Clautiaux et al. [CJEH07].

Keep in mind that the 2BPRG case contains one more algorithm than the 2BPOG
case, the SCV 2BPRG method. Figure 6.3 gives an overview on the number of best
solutions each single algorithm was able to achieve. Similar to the 2BPOG case a lot of
the procedures could solve the bulk of the problem instances well. The best performance
is shown by the SCV 2BPRG method by solving 96, 2% optimal according to the bin
quality criteria. The second and third best results are achieved by the A.B.NEW with

1http://www.or.deis.unibo.it
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Figure 6.2: Number of instances for the 2BPOG case on which the algorithms obtain the
best solution for each subgroup using only bins as criteria
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Figure 6.3: Number of instances of the test set on which the algorithms obtain the best
solution for the 2BPOG case using only the bin - criteria

90, 6% as well as the CHBP algorithm with 90, 4%. Mentionable is that the other
algorithms are less frequently able to achieve the best-known solution compared to the
2BPOG case. The worst performance returns once again the GBL algorithm with 53, 0%
followed by the CH method with 67, 8%.

Consider the individual subsets, as shown in Figure 6.4, the SCV 2BPRG method is
able to solve almost all subgroups at least as good as the next best algorithm. Only the
CHBP is able to outperform the SCV 2BPRG method in the Easy − Big subgroups
and ties with them in two more subgroups. Furthermore, we are not able to recognize
any trend. The strong methods solve both the easy and the hard instances better than
the other procedures.

6.1.3 Conclusion - Metric Bins

The first experiments clearly show that if we use only the number of bins as a performance
measure, most of the 500 instances are solved best by the at least three of the presented
algorithms. These three algorithms are superior to the others. Therefore, one of the
essential requirements for the algorithm selection approach is not given.

The second observation shows that we are not able to identify a trend that influences the
performance of the different BPP heuristics.

These two observations lead to the conclusion that the algorithm selection approach is
not helpful for the 2D BPP using only the bins as the performance measure. The goal for
the following experiments is to evaluate if an advanced performance measure is suitable
for the purpose of applying the algorithm selection approach for the BPP.
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Figure 6.4: Number of instances for the 2BPOG case on which the algorithms obtain the
best solution for each subgroup using only bins as criteria
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Figure 6.5: Number of instances of the test set on which the algorithms obtain the best
solution for the 2BPOG case using the main criteria

6.1.4 2BPOG Metric Bins-Time

The second phase of the experiment uses the main benchmark criteria, bins needed to
pack all items in combination with the time needed to compute the result. The 500
benchmark instances were also used for the second part of this experiment.

Figure 6.5 gives a first overview of the 2BPOG case of the BPP. The FFIHOGJ04
solves clearly the most problem instances best using the main benchmark criteria. This
method is in 60.2% better than the other BPP heuristics used.
This value serves as a benchmark for our further experiments for the 2BPOG case. This
means without an algorithm selection approach and any further information, we could
solve 60.2% of the benchmark instances optimally by simply picking the FFIHOGJ04
for all instances. Therefore we will try to improve this value using machine learning
techniques introduced earlier. Mentionable is also that the GBL and the A.B.Orig are
not able to solve one single instance best using the main criteria. Therefore, we exclude
this two heuristics from future experiments in this thesis.

Figure 6.6 and Figure 6.7 give a more detailed overview of the performance of the
heuristics using the main benchmark criteria and the earlier introduced subgroups as
well as only the hardness subgroups. The graphics show that especially for the small and
medium instances the CH algorithms and its variations are able to solve some instances
better than the leading FFIHOGJ04 algorithm. The reasons for this could be that the
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Figure 6.6: Number of instances for the 2BPOG case on which the algorithms obtain the
best solution for the hardness subgroups using the main criteria

Figure 6.7: Number of instances for the 2BPOG case on which the algorithms obtain the
best solution for the subgroups using the main criteria

CH, CHB and CHBP heuristics are faster in placing the items into the bins. Further
investigations are needed to analyze why these algorithms are suited for this subgroup of
data.

The ranks of the different subsets are summarized in Figure 6.8 show the performance of
each algorithm. The areas of interest are especially the subgroups where the algorithms
were able to beat the mean ranks of the FFIHOGJ04 algorithm. This is the case in the
Easy − Small and in the Medium− Small subgroups. On this sets, we can clearly see
that the mean rank of the CHBP and CHB algorithms perform better than the other
methods.

6.1.5 2BPRG Metric Bins-Time

For the second 2DBPP case we separated the 500 benchmark instances the same way as
in the previous experiment. The results obtained using the main benchmark criterion
are shown in Figure 6.9. Similar to the 2BPOG chase, the FFIHOGJ04 algorithm is
able to solve the most benchmark instances optimal with 59%. Once again this value
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Figure 6.8: Boxplot diagram showing the ranking of the algorithms on the different
subgroups of the training set - 2BPOG

can be used as a benchmark value for further research.

Figure 6.10 and Figure 6.11 give some interesting insights of the performance of the
algorithms. We can see that the FFIHOGJ04 algorithm is able to solve the most
benchmark instances optimal in all subgroups. However, especially in the easy − small
and in the hard − big subgroups, we can see that the gap between the FFIHOGJ04
and all other algorithms is relatively small. Furthermore, we can see that the CH, CHB
and CHBP perform best for the rather small instances.

For a more insight illustration, Figure 6.12 shows the ranking results for the 500 benchmark
instances. As expected the mean and median rank of the FFIHOGJ04 algorithm is better
than the other alternatives. However also the CH , CHB , CHBP and the SV C2BRG
algorithms show good performance for a great part of the benchmark instances. Another
observation worth mentioning is that the A.B.Old, the A.B.New and the GBL algorithms
are not able to solve a single instance as good as the other algorithms. Therefore, these
procedures are no longer taken into account for further analysis of the 2BPRG case.
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Figure 6.9: Number of instances of the test set on which the algorithms obtain the best
solution for the 2BPRG case using the main criteria

Figure 6.10: Number of instances for the 2BPRG case on which the algorithms obtain
the best solution for the hardness subgroups using the main criteria
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Figure 6.11: Number of instances for the 2BPRG case on which the algorithms obtain
the best solution for the subgroups using the main criteria

Figure 6.12: Boxplot diagram showing the ranking of the algorithms on the different
subgroups of the training set- 2BPRG
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6.1.6 Conclusion - Metric Bins- Time

Our second experiment shows that the results of the individual algorithms clearly provide
heterogeneous solutions for the benchmark set using the main criteria for both cases. The
first evaluation shows that one algorithm is able to solve a major part of the benchmark
instances. However, the algorithm is not able to dominate the other procedures since
two or more heuristics perform better than the rest for some subclasses of the instances.
Furthermore, many algorithms show a better performance on some subgroups than on
the others, which could indicate some hidden structure that influences the performance
of the algorithms.

Another observation is that using the algorithm selection approach, a high proportion of
the problem instances could be optimally solved as with a single algorithm solution.
The goal for the following experiments is to evaluate for both BPP cases if the simple
extracted problem instance features are able to train a prediction model to choose the
best-suited algorithm for each problem instance.

6.2 Solvers based on Algorithm Selection

6.2.1 Terminology

For our experiment, we used some specific terminology and nomenclature to simplify our
attempts as follows.

As mentioned earlier in this thesis, we tested 500 bin packing instances from the well-
known benchmark instances. We created a test and a training set by splitting this 500
instances. The training set contains 400 randomly picked problem instances and the test
set all others. The additional instances for the algorithm runtime prediction approach
were also divided using the same schema 80% training and 20% test set. For the creation
of the prediction models we excursively used the training set and therefore the test set
was only used for the model evaluation proposes.

In our experiments, we used different instance sets, preparation steps and featured subsets.
We created a naming schema in order to distinguish the individual models better. The
sets were labeled as MET −Time−Disc−Case−Set where MET stands for one of the
machine learning methods {NN, kNN,GLM,SVM,RPART,RF,NB}, the attribute
Time is optional and only defines the algorithm runtime prediction models. The attribute
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Disc ∈ {No−Discretization,NB, TOP} describes the applied discretization method,
the value Set ∈ {All, Set6, Set5, Set4} stands for the number of used heuristics and the
value Case ∈ {OG,RG} describes the BPP case as already explained earlier.

For example, the kNN −MLP −OG−All stands for the kNN k-nearest-neighbourhood
algorithm selection classifier, with the MLP discretization method. Furthermore, the
OG value stands for the 2BPOG case of the BPP and the All variable hints that all
available algorithms are used for this model.

6.3 Classifier Parameter Evaluation

The next section analyzes the varying parameter settings for the different machine
learning classifier. We evaluate the different tuning parameters using the accuracy of the
prediction models.

k-Nearest Neighbour

Starting with the kNN machine learning method our experiment includes different
parameters for the value k. Figure 6.13 shows the results for the 2BPOG case. The
results show that large k have almost no effects while using discretized features. Only for
neighborhoods between 2 and 15, we can identify slight improvements in accuracy. For
the no-discretized data, we are able to see a bigger effect when changing the size of the
neighborhoods.

The results for the 2BPRG use case of the BPP are shown in Figure 6.14. Here can
especially be noted that for a large k the accuracy decreases using no discretization
technique. The best results can be achieved with a value between 2 and 6. Similar results
can be seen using the TOP preprocessing method. Only the MLP method seems to be
able to achieve better results with a larger neighborhood.

For the 2BPOG case, a big neighborhood seems to lead to better results and almost
never to a drop of the accuracy, while for the other BPP case the exact opposite seems
to lead to the best possible prediction model.
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Figure 6.13: Accuracy of the KNN classifier on the training set using different parameter
settings for the 2BPOG case. The results are grouped using the different dicretization
methods and the algorithm sets. The dot represent the mean value using cross validation
for each parameter setting.

Figure 6.14: Accuracy of the KNN classifier on the training set using different parameter
settings for the 2BPRG case. The results are grouped using the different dicretization
methods and the algorithm sets. The dot represent the mean value using cross validation
for each parameter setting.

66



6.3. Classifier Parameter Evaluation

Naive Bayes

Figure 6.15 shows the results for the varying Bandwidth adjustment for the NB algorithm
for the 2BPOG case. It is clearly shown that for all three models the accuracy drops for
an adjustment value. A small increase of the accuracy can be seen for the no discretization
and the TOP preprocessed models. The best results can be achieved for all models with
an adjustment value around two.

The results for the 2BPRG case as shown in 6.16. With the increase of the value of the
performance of the model is stagnating for all three preprocessing models of the NB
method. However, as in the 2BPOG case of the BPP, we are able to see an increase of
the accuracy for the no discretization and the TOP preprocessed models with a higher
adjust value before the model falters.

Figure 6.15: Accuracy of the NB classifier on the training set using different parameter
settings for the 2BPOG case. The results are grouped using the different dicretization
methods and the algorithm sets. The dot represent the mean value using cross validation
for each parameter setting.
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Figure 6.16: Accuracy of the NB classifier on the training set using different parameter
settings for the 2BPRG case. The results are grouped using the different dicretization
methods and the algorithm sets. The dot represent the mean value using cross validation
for each parameter setting.

Decision Tree

For our decision trees (DT ) classifier, we tested complexity parameters as shown in the
Figures 6.17 and 6.18. For the 2BPOG case, we see that for the non-discretized data, the
complexity parameter has a significant impact on the performance of the classification
models. All three models are characterized by the fact that the higher the complexity
parameter is chosen, the worse the performance gets. However, the value seems to have
the least influence on the MLP model. Furthermore, we are able to recognize that the
overall performance of the methods using some discretization methods is on average up
to 5% more accurate.

In Figure 6.18 we are also able to see that the performance of the methods using
discretization methods lead to better results. The best model can be achieved with the
TOP method using a rather small complexity parameter around 0 and 0.05.
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Figure 6.17: Accuracy of the decision trees classifier on the training set using different
parameter settings for the 2BPOG case. The results are grouped using the different
dicretization methods and the algorithm sets. The dot represent the mean value using
cross validation for each parameter setting.

Figure 6.18: Accuracy of the decision trees classifier on the training set using different
parameter settings for the 2BPRG case. The results are grouped using the different
dicretization methods and the algorithm sets. The dot represent the mean value using
cross validation for each parameter setting.
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Random Forest

For the random forest (RF ) classifier, we tested the different numbers of variables for
each split. The results for 2BPOG are shown in Figure 6.19. The outcome shows that
the three models perform almost similar. The best model is once again the one using the
TOP discretization method.

For the 2BPRG case gives Figure 6.20 an overview of the accuracy using the different
settings. Here the classifier training with the non-discretized data could achieve the best
results. Furthermore, the number of randomly selected predictors seem hardly to have
an influence.

Figure 6.19: Accuracy of the random forest classifier on the training set using different
parameter settings for the 2BPOG case. The results are grouped using the different
dicretization methods and the algorithm sets. The dot represent the mean value using
cross validation for each parameter setting.
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Figure 6.20: Accuracy of the random forest classifier on the training set using different
parameter settings for the 2BPRG case. The results are grouped using the different
dicretization methods and the algorithm sets. The dot represent the mean value using
cross validation for each parameter setting.

Support Vector Machines

Concerning the Support Vector Machines (SVM), we tested two different kernels (linear
and radial) and different complexity parameters as shown in Table 5.4. First, we analyze
the results for the 2BPOG case as shown in Figure 6.21 and 6.22. For the linear SVM, the
complexity parameters only show a small influence on the performance of our experiment.
Further, the SVM using a radial kernel is able to outperform almost all three models
using the linear one.

As shown in Figure 6.23 and 6.24 for the 2BPRG case of the BPP we are able to recognize
that all models are positively influenced by an increased complexity parameter. The only
notable exception is the model using the MLP discretization method with the radial
kernel. The performance of the models using different kernels is almost identical.
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Figure 6.21: Accuracy of the SVM classifier with a linear kernel on the training set using
different parameter settings for the 2BPOG case. The results are grouped using the
different dicretization methods and the algorithm sets. The dot represent the mean value
using cross validation for each parameter setting.

Figure 6.22: Accuracy of the SVM classifier with a radial kernel on the training set using
different parameter settings for the 2BPOG case. The results are grouped using the
different dicretization methods and the algorithm sets. The dot represent the mean value
using cross validation for each parameter setting.
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Figure 6.23: Accuracy of the SVM classifier with a linear kernel on the training set using
different parameter settings for the 2BPOG case. The results are grouped using the
different dicretization methods and the algorithm sets. The dot represent the mean value
using cross validation for each parameter setting.

Figure 6.24: Accuracy of the SVM classifier with a radial kernel on the training set using
different parameter settings for the 2BPRG case. The results are grouped using the
different dicretization methods and the algorithm sets. The dot represent the mean value
using cross validation for each parameter setting.
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Neural Networks

As mentioned earlier, we tested three different numbers of hidden units (1, 5, 10) and
different values for the weight decay function. The Figures 6.25, 6.26 and 6.27 show
the results for the 2BPOG case. The best accuracy can be achieved with one hidden
layer and a relatively high value for the weight decay function. The NN model with one
hidden layer profits most from a higher value of the weight decay function.

For the 2BPRG case, we are able to achieve the best accuracy using a one or five hidden
layer model. Basically, for both cases, the models with the ten hidden layers are not able
to achieve any good results. That could be because the models are rather complicated
and need a lot of time and resources to be computed. More precise results can be taken
from the Figures 6.28, 6.29 and 6.30

Figure 6.25: Accuracy of the neural network classifier on the training set using different
parameter settings for the 2BPOG case. The dot represent the mean value using cross
validation for each parameter setting.
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Figure 6.26: Accuracy of the random forest classifier with the TOP dicretization on the
training set using different parameter settings for the 2BPOG case. The dot represent
the mean value using cross validation for each parameter setting.

Figure 6.27: Accuracy of the neural network classifier with the MPL dicretization on the
training set using different parameter settings for the 2BPOG case. The dot represent
the mean value using cross validation for each parameter setting.
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Figure 6.28: Accuracy of the neural network classifier on the training set using different
parameter settings for the 2BPRG case. The dot represent the mean value using cross
validation for each parameter setting.

Figure 6.29: Accuracy of the random forest classifier with the TOP dicretization on the
training set using different parameter settings for the 2BPRG case. The dot represent
the mean value using cross validation for each parameter setting.
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Figure 6.30: Accuracy of the neural network classifier with the MPL dicretization on the
training set using different parameter settings for the 2BPRG case. The dot represent
the mean value using cross validation for each parameter setting.
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Generalized Linear Models

The last classification method used is the Generalized Linear Model (GLM). Figure
6.31 shows the results for the different parameter settings of the 2BPOG case. The best
accuracy can be achieved with the MLP discretized data. This is also the group where
the tuning parameter has the least influence on the accuracy.

Another result can be observed on Figure 6.32 for the 2BPRG case. For all three models,
the regularisation parameter seems to have more influence on performance. It can be
observed that an increase of the parameter leads to poorer results overall. Furthermore,
we can see that the best accuracy can be achieved with the non-discretized data.

Figure 6.31: Accuracy of the GLM classifier on the training set using different parameter
settings for the 2BPOG case. The results are grouped using the different dicretization
methods and the algorithm sets. The dot represent the mean value using cross validation
for each parameter setting.
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Figure 6.32: Accuracy of the GLM classifier on the training set using different parameter
settings for the 2BPRG case. The results are grouped using the different dicretization
methods and the algorithm sets. The dot represent the mean value using cross validation
for each parameter setting.

6.4 Variation in the Algorithm Space

Another experiment that we want to test in this thesis is the effect of the algorithm space
on the performance of the classifier. In theory, the fewer options the algorithm selection
method has to choose from, the more likely it is that he will choose the right algorithm.
This means for our experiment that by leaving out some algorithm options the better
the performance of the machine learning procedures gets. To do so we applied all our
test with subsets of the algorithms using only the best x ∈ {4, 5, 6} algorithms.

Figure 6.33 displays the results for the 2BPOG case using the accuracy of the different
machine learning methods for each of the different discretization methods. The accuracy
is once again calculated using the ratio between the number of instances solved optimal
and the total number of instances. For each algorithm that was taken from the set, the
instances that were optimally solved using that particular algorithm had been split on
the remaining algorithm with the help of the algorithm rank schema. Therefore, the
metric gives an overview of the performance of the classifier always in relation to the
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set of algorithms. We can clearly identify a trend that the smaller the set of algorithms
available, the better the performance of machine learning methods gets. Only in one case
does the performance of the algorithm selection process improve with a larger algorithm
set, such as the RF method using the TOP discretization preprocessing method. The
algorithm selection models show the biggest performance boost between the accuracy of
the B4 and B5 algorithm set.

Similar results can be seen for the 2BPOG case of the BPP . The results are shown in
Figure 6.34. The effects of a smaller algorithm set seem to be similar as for the 2BPOG
case but not quite as strongly. The accuracy of the algorithm set B5 to B4 increases
especially for the GLM and the RF machine learning methods. Furthermore, for all
cases, an increase of the accuracy can be recognized with each smaller algorithm subset.

These results can be derived from the fact that there are some algorithms that only solve
a few instances optimally and therefore add some noise in all other cases.

Figure 6.33: Accuracy of the tested classifiers using the best x ∈ {4, 5, 6} heuristics
(described as B4, B5, B6 and Full) for the 2BPOG case. The dots represent the best
(highest) value achieved with the most promising parameter configurations for each
machine learning method.
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Figure 6.34: Accuracy of the tested classifiers using the best x ∈ {4, 5, 6} heuristics
(described as B4, B5, B6 and Full) for the 2BPRG case. The dots represent the best
(highest) value achieved with the most promising parameter configurations for each
machine learning method.

6.5 Comparison of Classifier

In addition to the effects of different algorithm sets, we are also interested in performances
of the different machine learning classifier. Each of the methods presented uses different
ways to compute the classification which can significantly influence the quality of the
solution. To find the best method for our propose, we compared the accuracy of the
classifiers using their best parameter settings.

The results of the evaluation of the 2BPOG case are shown in Figure 6.33. Once again we
can see that the best results can be achieved with the B4 algorithm set. Almost all the
models using the MLP discretized data, except the GLM classifier, are able to produce
the best results for all three discretization methods. On the contrary, poor results have
been achieved by the NB and the DT classifier. This method seems to be inadequate
for the classification task of our BPP . Another interesting fact is that the kNN is only
able to achieve a higher accuracy with the discretized data.

Concerning the classifier performance of the 2BPRG case Figure 6.34 shows an overview
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of the results. It can be observed that especially the kNN classifier is able to perform
well in all three cases. Furthermore, the kNN classifier seems to benefit most from the
reduction of the algorithm set. Compared to the 2BPOG case the DT classifier is able
to perform rather good for the discretized data but the accuracy is only average for the
not processed data. The other classifier perform very similarly to the 2BPOG case of the
BPP.

6.5.1 Effects of Discretization

Besides the effects of the parameter configurations and the algorithms sets, we are
also interested in the insights for the effects of the two different discretization methods
compared to the not modified data. The effects of transforming numerical values into
nominal ones can have a significant impact on the performances of the different classifier.

Figure 6.33 reveals some results using the discretization methods for the 2BPOG case.
Concerning the data processed with the MLP discretization, the graphic shows that
classifiers are able to achieve the best accuracy of the experiment with the B4 algorithm
set. In general, better results can be achieved with the MLP data as shown in detail
in 6.3. The avg column displays the average accuracy of the best parameter settings
for each data set compared to the non-discretized data. The best column shows the
comparison between the best value of the discretized and the non-discretized data.

On the data where the TOP discretization was used, it is observable that the performance
is varying concerning the accuracy of the classifier. The kNN benefits most from this
preprocessing, with 4.34% but not as much as for the MLP prepared data. A detailed
overview of the results can also be found in Table 6.3.

Method MLP TOP
avg (%) best (%) avg (%) best (%)

GLM + 0.87 - 0.07 - 0.56 - 0.20
KNN + 5.92 + 4.55 + 4.34 + 4.08
NB + 5.17 + 6.77 - 2.90 - 2.55
DT + 11.83 + 8.02 + 1.02 + 1.43
RF + 1.15 + 1.31 + 0.79 + 1.40
NN + 6.65 + 4.13 + 0.54 + 2.16
SVM-L - 0.01 + 0.55 - 1.73 - 0.94
SVM-R + 5.82 + 1.58 - 3.52 - 2.10

Table 6.3: Impact of the accuracy (in percent ) for the 2BPOG case when using discretized
data in relation to the results achieved with dicretization

For the 2BPRG case of the BPP Figure 6.34 and Table 6.4 show the achieved accuracy
and the comparisons between the results. It is easy to see that for the 2BPRG case the
best accuracy is achieved using the non-discretized data for five classifiers. Only the DT
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Method MLP TOP
avg (%) best (%) avg (%) best (%)

GLM - 9.15 - 7.66 - 9.32 - 6.07
KNN - 2.10 - 1.76 - 2.43 0.04
NB - 0.31 + 3.06 - 0.98 + 1.19
DT + 3.70 + 1.44 - 1.80 + 0.35
RF - 6.79 - 4.40 - 2.04 + 0.76
NN - 1.66 - 2.83 - 3.09 - 1.66
SVM-L - 1.55 - 2.96 - 2.46 - 2.03
SVM-R + 1.78 - 1.21 - 2.53 - 0.69

Table 6.4: Impact of the accuracy (in percent ) for the 2BPRG case when using discretized
data in relation to the results achieved with dicretization

classifier seems to benefit from the processing methods. These results confirm the first
assumption for the 2BPRG case.

6.6 Analysis of the Best Configuration per Classifier

To summarise the results of the different discretization methods and parameter settings,
the best configurations for each classifier with the highest accuracy have been selected
and summarized in Table 6.5 for the 2BPOG case and in Table 6.6 for the 2BPRG case.

First, we decided to choose the B4 algorithms set for all further analysis since all classifier
show their best accuracy using this set. For the 2BPOG case, we can see that the
discretization has a positive effect on the accuracy of all classifier. The highest accuracy
is achieved using the NN but the RF , SVM and DT are also able to achieve nearly
similar results. In general, the algorithm shows a good performance by classifying around
79% of the problem instances correct. Compared to the best single heuristic, which has
an accuracy of 60.2%, we are able to improve the prediction by 19% .

The positive effects of the discretization methods cannot be displayed so clearly for
the 2BPRG case. Only the NB, kNN , and DT algorithms are able to produce better
results with the edited data. Furthermore, the best performance, achieved from the
GLM classifier, is able to classify 79% of the test set correctly using the non-discretized
data. The performances of the other procedures are again very similar, only the NB
classifier delivers a slightly lower accuracy. Compared to the single solver solution we are
able to boost the accuracy by almost 20%.

83



6. Evaluation for the Algorithm Selection

Algorithm Algorithm Set &
Discretization

Accuracy
(%) Configuration

NB B4_MLP_full_OG 0.72 fL = 0, usekernel = T, adjust = 1
GLM B4_TOP_full_OG 0.78 alpha = 1, lambda = 0.02
kNN B4_MLP_full_OG 0.79 k = 9
RF B4_MLP_full_OG 0.791 mtry = 5
NN B4_MLP_full_OG 0,794 size = 1 and decay = 0.1

RPART B4_MLP_full_OG 0.792 cp = 0.3538364
SVM-L B4_MLP_full_OG 0.792 C = 0.05
SVM-R B4_MLP_full_OG 0.792 sigma = 0.2500781, C = 0.25

Table 6.5: Summary of the best-performing parameter settings for the 2BPOG case with
respect to the accuracy of the different classifier on the training set

Algorithm Algorithm Set &
Discretization

Accuracy
(%) Configuration

NB B4_MLP_full_RG 0.72 fL = 1, usekernel = TRUE , adjust = 1
GLM B4_full_RG 0.79 alpha = 1, lambda = 0.002
kNN B4_TOP_full_RG 0.76 k = 9
RF B4_full_RG 0.75 mtry = 7
NN B4_full_RG 0,76 size = 1, decay = 0.05

RPART B4_MLP_full_RG 0.75 cp = 0.03302374
SVM-L B4_full_RG 0.76 C = 10
SVM-R B4_full_RG 0.75 sigma = 0.1779091, C = 2

Table 6.6: Summary of the best-performing parameter settings for the 2BPRG case with
respect to the accuracy of the different classifier on the training set

6.7 Analysis of the Performance of the Classifier on the
Test Set

The experiment so far was always performed using cross-validation the training data,
which was used for the learning phase and the evaluation part. We split the data into two
different sets, the test 20% of the data and training set 80% of the data, to get a more
realistic view of the performance of our prediction model. This allows a more unbiased
comparison between the algorithm selection solvers and the single solver solutions. The
test set was, until now, not used in any part of the experiment to simulate the performance
of the classifier on a newly unseen problem instance. If we omit this step, we could
theoretically adapt our models to the data until all cases are processed correctly. This
model would then perform perfectly for our data, but with high probability, it would be
useless for any real BPP application.

Concerning the test set, we separated the dataset randomly using the key 80% training
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and 20% test set. Therefore, the test set consists of 100 problem instances. Figure 6.35
gives a first overview of the number of problems solved optimally by each classifier for the
2BPOG case. As already mentioned in the section before we tested our trained prediction
models using the B4 algorithm set. The figure reveals that the FFIHOGJ04 method
is able to solve 69 of the 100 test set instances optimal. This means to show that the
algorithm selection approach is useful for the BPP at least 70% of the problem instances
have to be solved optimally by the algorithm selection solver.

Concerning the 2BPRG case, Figure 6.36 shows the performance of the four algorithms
from the B4 algorithm set. Once again, the FFIHOGJ04 performs best on the test set
by solving 60% of the instances optimal. Therefore, a single solver solution is able to
solve 60% without any training.

To review how good the algorithm selection procedure is suited for the BPP, as described
previously, we trained each classifier using the training set with the parameter settings
that showed the most promising results on the training set. The used configurations are
shown for both cases in the Table 6.5 and 6.6.

The most important outcome of this experiment is certainly the number of problem
instances on which the trained solver show the best performances. For this propose, Figure
6.37 shows the results of the 2BPOG case compared to the single solver performances.
As illustrated we clearly see that the almost all classifier are able to beat the single solver
benchmark of 67%. A noteworthy observation is that the SVM −L and the NB classifier
are the only two classifiers that are not able to outperform the single heuristic. On the
contrary, the RF solver perform very well on the test set with an overall accuracy of 91%.
The confusion matrix for the best learning algorithm RF is shown in Table 6.7. The table
shows that the RF solvers confuse mostly the CFIHOGJ04 with the FFIHOGJ04.
The only other misclassification is done for the CH, which is once wrongly classified as
CHB and twice as FFIHOGJ04. More details for the algorithm selection approach is
given in Table 6.9. The best algorithm selection approach is able to beat the best single
solver solution by 24%.

To verify the results of the experiment for the 2BPRG using the training set we also
evaluated the best configurations with the test set. Figure 6.38 presents the results of the
machine learning solver compared to the single solver solutions. Similar to the 2BPOG
case, the RF was able to classify even more instances correctly to the corresponding BPP
heuristics. This procedure was able to solve 93 of the 100 problem instances correctly,
followed by the NN and the SVM −R solver with 81 correctly classified instances. The
NB was once again not able to beat the single solver solution. The SVM −L method is
able to perform better for the 2BPOG case with 80 correct classified problem instances.
Table 6.8 shows the results of the confusion matrix for the 2BPRG case. Again, it can
be observed that especially the CFIHOGJ04 heuristic is incorrectly classified as is
FFIHOGJ04. The results for the algorithm selection experience of the 2BPRG case are
summarized in Table 6.10.
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Classified as CFIHOGJ04 CH CHB FFIHOGJ04
CFIHOGJ04 4 0 0 6

CH 0 12 1 2
CHB 0 0 8 0

FFIHOGJ04 0 0 0 67

Table 6.7: Confusion martix for the classifications of the RF solver using the test set
with the 2BPOG case.

Classified as CFIHOGJ04 CH CHB FFIHOGJ04
CFIHOGJ04 4 0 0 6

CH 0 13 0 1
CHB 0 0 10 0

FFIHOGJ04 0 0 0 66

Table 6.8: Confusion martix for the classifications of the RF solver using the test set
with the 2BPRG case.

Figure 6.35: Number of instances form the test set on which the algorithms from the B4
set show best performance for the 2BPOG case.
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Figure 6.36: Number of instances form the test set on which the algorithms from the B4
set show best performance for the 2BPRG case.

Figure 6.37: Comparison between the single solver heuristics and the algorithm selection
classifier for the 2BPOG case using the test set.
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Figure 6.38: Comparison between the single solver heuristics and the algorithm selection
classifier for the 2BPRG case using the test set.

Solver No. Best
Solution Accuracy

Heuristics
CFIHRGJ04 10 10 %

CH 15 15 %
CHB 8 8 %

FFIHOGJ04 67 67 %
Algorithm Selection

kNN 72 72 %
GLM 81 81 %
RF 91 91 %
DT 81 81 %
NN 82 82 %

SVM-L 44 44 %
SVM-R 82 82 %
NB 67 67 %

Table 6.9: Performance metrics of the algorithm selection and the underlying heuristics
on the test set for the 2BPOG case.
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Solver No. Best
Solution Accuracy

Heuristics
CFIHRGJ04 10 10 %

CH 14 14 %
CHB 10 10 %

FFIHOGJ04 66 66 %
Algorithm Selection

kNN 66 66 %
GLM 78 78 %
RF 93 93 %
DT 69 69 %
NN 81 81 %

SVM-L 80 80 %
SVM-R 81 81 %
NB 61 61 %

Table 6.10: Performance metrics of the algorithm selection and the underlying heuristics
on the test set for the 2BPRG case.
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CHAPTER 7
Evaluation for the Algorithm

Runtime Prediction

Based on the approach presented in Chapter 6, the following paragraphs demonstrate
the results of the algorithm runtime prediction. In addition to the publicly available data
sets, we extend the instances with a newly created data set for the algorithm runtime
prediction.

We tested the algorithm runtime prediction model for the BPP using three already intro-
duced state-of-the-art algorithms, namely the constructive heuristic CH, the constructive
heuristic with bias CHB, and the constructive heuristic with bias and post-processing
CHBP . Different configurations are used to build a robust prediction model for the
runtime of the algorithms. Finally, we tested our approach and define which features
have the biggest impact on the computation time needed.

7.1 Regression Parameter Evaluation

The next section describes the results of the different parameter settings for the regression
methods used for the algorithm runtime prediction. As already mentioned, for the
algorithm runtime prediction three algorithms were used, the CH, CHB and CHBP .
Besides the already presented procedures, we will also analyze the LOESS regression
method. We use the Root-mean-squared error to evaluate and compare the performance
of the different regression models with the discretization methods for the three algorithms.
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7.1.1 k-Nearest Neighbour

The first regression method which we evaluate with different parameter settings is the
kNN procedure. The results for the 2BPOG case can be taken from Figure 7.1. By
increasing the number of neighbors, no decreasing RMSE could be detected in all three
models.

This observation also applies to the 2BPRG case of the BPP shown in figure 7.2.
Furthermore, the models using the non-discretized data performs poor for both cases.

Figure 7.1: Root-mean-squared error of the kNN regression method on the training set
using different parameter settings for the 2BPOG case. The results are shown for each
algorithm using the different dicretization methods. The dot represent the mean value
using cross validation for each parameter setting.
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Figure 7.2: Root-mean-squared error of the kNN regression method on the training set
using different parameter settings for the 2BPRG case. The results are shown for each
algorithm using the different dicretization methods. The dot represent the mean value
using cross validation for each parameter setting.

7.1.2 Regression Tree

Figure 7.3 and Figure 7.4 show the effects of the complexity parameters for the regression
trees (RT ). In both cases, we can observe that the higher the complexity parameter is
chosen the higher the RMSE gets. The most promising configuration for the 2BPOG
case consists of a complexity parameter of zero and TOP discretized data for all three
algorithms.

On the contrary, for the 2BPRG case, the MLP preprocessing method was able to
achieve twice the best solution.
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Figure 7.3: Root-mean-squared error of the regression trees on the training set using
different parameter settings for the 2BPOG case. The results are shown for each algorithm
using the different dicretization methods. The dot represent the mean value using cross
validation for each parameter setting.

Figure 7.4: Root-mean-squared error of the regression trees on the training set using
different parameter settings for the 2BPRG case. The results are shown for each algorithm
using the different dicretization methods. The dot represent the mean value using cross
validation for each parameter setting.
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7.1.3 Random Forest

The results for the random forest (RF ) show that the more predictors we have to split
the data, the better the prediction gets for both cases. Further, we can see in Figure 7.5
and Figure 7.6 that all models perform almost the same with a big enough number of
predictors. However, it is worth mentioning that the model using the TOP preprocessing
method has some major problems if the number of predictors is rather small.

Figure 7.5: Root-mean-squared error of the random forest regression method on the
training set using different parameter settings for the 2BPOG case. The results are shown
for each algorithm using the different dicretization methods. The dot represent the mean
value using cross validation for each parameter setting.
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Figure 7.6: Root-mean-squared error of the random forest regression method on the
training set using different parameter settings for the 2BPRG case. The results are shown
for each algorithm using the different discretization methods. The dot represents the
mean value using cross-validation for each parameter setting.

7.1.4 Support Vector Machine

The next regression method, the Support Vector Machines (SVM), shows some interesting
behaviors for the two discretization methods. The experiment clearly illustrates that we
are not able to apply the TOP model in all cases and the MLP model for the 2BPRG
case usefully. The most consistent results are obtained using the non-discretized data
in both cases. Figure 7.7 and Figure 7.8 shows the RMSE values for the different
configurations. Unfortunately, none of the configurations show to perform satisfactorily
but a higher cost function seems to have a positive effect on the prediction error.
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Figure 7.7: Root-mean-squared error of the Support Vector Machine regression method
on the training set using different parameter settings for the 2BPOG case. The results
are shown for each algorithm using the different dicretization methods. The dot represent
the mean value using cross validation for each parameter setting.

Figure 7.8: Root-mean-squared error of the Support Vector Machine regression method
on the training set using different parameter settings for the 2BPRG case. The results
are shown for each algorithm using the different dicretization methods. The dot represent
the mean value using cross validation for each parameter setting.
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7.1.5 Generalized Linear Model

Concerning the results for Generalized Linear Model (GLM) regression method, we
tested different regularization parameters and values for alpha. The 2BPOG and the
2BPRG case show once again a similar basic behavior for the regression tasks. Both
models perform best using the smallest possible regularization value with an alpha value
of 0.1 as shown in Figure 7.9 and Figure 7.10. The graphics reveal that for the 2BPOG
case significantly better results can be achieved than for the other case.

Figure 7.9: Root-mean-squared error of the Generalized Linear Model regression method
on the training set using different parameter settings for the 2BPOG case. The results
are shown for each algorithm using the different dicretization methods. The dot represent
the mean value using cross validation for each parameter setting.

98



7.1. Regression Parameter Evaluation

Figure 7.10: Root-mean-squared error of the Generalized Linear Model regression method
on the training set using different parameter settings for the 2BPRG case. The results
are shown for each algorithm using the different dicretization methods. The dot represent
the mean value using cross validation for each parameter setting.

7.1.6 LOESS

The last considered regression method for the runtime prediction is the LOESS regression.
We tested six different span parameter values. Figure 7.11 shows that values between 0.3
and 0.6 were able the achieve the best results. This also applies to the 2BPRG case as
shown in Figure 7.12. Furthermore, the experiment shows that the LOESS regression
model is not able to deal with data which were preprocessed using the TOP method.
Another observation is that LOESS was only able to predict good values for the CHB
algorithm of the 2BPRG cases. The method was, on the other hand, able to deliver
consistently good results for the other cases.
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Figure 7.11: Root-mean-squared error of the LOESS regression method on the training
set using different parameter settings for the 2BPOG case. The results are shown for
each algorithm using the different dicretization methods. The dot represent the mean
value using cross validation for each parameter setting.

Figure 7.12: Root-mean-squared error of the LOESS regression method on the training
set using different parameter settings for the 2BPRG case. The results are shown for
each algorithm using the different dicretization methods. The dot represent the mean
value using cross validation for each parameter setting.
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7.2 Comparison of Regression Models

After the first evaluation of the individual machine learning regression models, we
summarize the results in Figure 7.13 for the 2BPOG and in Figure 7.14 for the 2BPRG
case to compare the individual performances with each other.

Figure 7.13 compares the results for the 2BPOG case. The graph shows clearly different
performances for each of the three algorithms regardless of the preparation of the data set.
Especially for the TOP preprocessing method, there seems to be a significant difference
between the performances of the machine learning procedures. Good results can be
accomplished especially by the kNN , RF and the RT . However, these results also very
clearly for the individual algorithms. The GLM and SVM procedures seem to not be
suitable for the algorithm runtime prediction.

Concerning the 2BPRG, the Figure 7.14 reveals that the results of the RF for each of
the three BPP algorithms belong to the best ones. Similar good results could otherwise
only be achieved by the kNN method. Another interesting finding is that the LOESS
regression model shows some fluctuating results for the different preprocessing methods.

Figure 7.13: RMSE of the tested machine learning regresion prediction models using the
three available algorithms for the 2BPOG case. The dots represent the best (lowest) value
achieved with the most promising parameter configurations for each machine learning
method.
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Figure 7.14: RMSE of the tested machine learning regression prediction models using the
three available algorithms for the 2BPRG case. The dots represent the best (lowest) value
achieved with the most promising parameter configurations for each machine learning
method.

7.2.1 Effects of Discretization

So far, we have evaluated the different parameter configurations and compared the results
to each other. In the next paragraph, we want to analyze the effects of the discretization
methods for the runtime prediction approach.

Starting with the 2BPOG case, Figure 7.13 indicates that the best performance for the
CH and CHB are achieved with the non-discretized data. For the CHBP algorithm the
kNN machine learning method was able to obtain the best performance using the MLP
preprocessing method. Table 7.1 gives a complete overview of the results compared to
each other. Keep in mind that the evaluation criteria is the RMSE for this experiment.
This means a negative percentage range in the analysis indicates a smaller RMSE and
therefore an improvement of the prediction model. Some noteworthy results from Table
7.1 are that the kNN method performs significantly better using the MLP and the
TOP preprocessed data sets. Further, the GLM , LOESS and SVM shows a better
performance only with the MLP preprocessed data. The RF , on the other hand, shows
a positive development when using the data from the TOP method.
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Method MLP TOP
avg (%) best (%) avg (%) best (%)

GLM - 39.54 - 39.31 + 43.91 + 43.91
KNN - 69.08 - 19.89 - 67.60 - 20.35
RT + 24.72 + 17.18 + 154.63 - 18.79
RF + 15.95 + 16.75 - 16.95 - 19.51
SVM - 4.13 - 13.61 + 50.18 + 50.06
LOESS - 16.64 + 0.004 + 86.99 + 160.16

Table 7.1: Impact on the RMSE (in percent ) for the 2BPOG case when using discretized
data.

For the 2BPRG case, Table 7.2 and Figure 7.14 give an overview of the effect of the
discretization methods. Interestingly, the RF method is able to perform better with both
discretized data sets compared to the 2BPOG case. The other procedures follow most of
the time the same patterns as for the 2BPOG case. The exact results can be taken from
Table 7.2.

Method MLP TOP
avg (%) best (%) avg (%) best (%)

GLM - 8.93 - 8.93 + 19.26 + 19.26
KNN - 52.24 - 9.21 - 48.81 + 15.59
RT - 18.74 - 3.52 - 19.73 - 5.10
RF + 30.00 + 18.35 + 146.90 - 10.88
SVM + 38.61 + 30.86 + 35.16 + 35.16
LOESS + 26.30 + 45.35 + 129.38 + 215.17

Table 7.2: Impact on the RMSE (in percent ) for the 2BPRG case when using discretized
data.

7.3 Analysis of the Best Configuration per Regression
Model

The following section gives an overview of the results for the runtime prediction approach.
Once again, all results are computed using a repeated 10-fold-cross-validation on the
training data set. For the three algorithms, the best configurations combined with the
most promising preprocessing method are summarized and compared to each other. The
results are displayed for each of the three algorithms separately in the following tables.

The following tables represent the best configurations for the 2BPOG case of the BPP.
Table 7.3 contains the results for the CH algorithm. It is easy to see that the RF is able
to perform best with a RMSE of 17.76413 closely followed by the kNN prediction model.
All other methods are not able to compete with these two.
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Algorithm Preprocessing
Method RMSE Configuration

GLM MLP 50.40345 none
kNN MLP 17.86678 k = 2
RT TOP 29.01001 cp = 0.01
RF TOP 17.76413 mtry = 19
SVM MLP 84.11483 C = 15

LOESS MLP 37.97607 span = 0.5 &
degree = 1

Table 7.3: Summary of the best performing parameter settings for the CH algorithm of
2BPOG case with respect to the RMSE.

Next, we analyze the outcome for the CHB method. The Table 7.4 shows again the
RF performs best on the training set using the TOP discretization technique. More
interesting is the fact that almost all approaches deliver acceptable results compared
to each other. Only the performance of the SVM might be inferior in relation to its
competitors.

Algorithm Preprocessing
Method RMSE Configuration

GLM MLP 39.57406 none
kNN TOP 26.04224 k = 2
RT TOP 30.93993 cp >0.01
RF TOP 25.13520 mtry = 14
SVM MLP 57.34458 C = 15

LOESS MLP 37.99581 span = 0.5 &
degree = 1

Table 7.4: Summary of the best performing parameter settings for the CHB algorithm
of 2BPOG case with respect to the RMSE.

Distinctly different results are shown for the CHBP algorithm in Table 7.5 . Compared
to the other two heuristics, the prediction models provide significantly poorer results. The
best approaches uses the kNN method and provides us with a RMSE vale of 60.40159.
This value is twice as bad as the best value for the CHB heuristic and more than three
times worse than the comparable value for the CH algorithm. A possible explanation
would be the complexity of the algorithm since it is the most complex compared with
the other two.
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Algorithm Preprocessing
Method RMSE Configuration

GLM MLP 84.3053 none
kNN none 60.40159 k = 7
RT TOP 63.64074 cp >0.01
RF TOP 62.71340 mtry = 16
SVM MLP 107.7158 C = 15

LOESS none 72.18040 span = 0.5 &
degree = 1

Table 7.5: Summary of the best performing parameter settings for the CHBP algorithm
of 2BPOG case with respect to the RMSE.

So far, we have evaluated the results for the 2BPOG case. The next step is to analyze
the performance of the three algorithms for the 2BPRG case. For this purpose, we
summarized the results in the Table 7.6 , 7.7 and 7.8. In general, it is noticeable that
the results of the 2BPOG case are not as good as those for the 2BPOG case. Starting
with the CH algorithm, Table 7.6 shows the detailed analysis. The performance is not
as good as for the 2BPOG case as already mentioned. Especially the GLM , the SVM
and also the RT method are not able to produce usable results. The best model is using
the kNN method with the MLP discretized data and a RMSE of 81.60648.

Algorithm Preprocessing
Method RMSE Configuration

GLM none 194.9283 none
kNN MLP 81.60648 k = 2
RT TOP 235.0692 cp = 0.0005
RF TOP 90.12391 mtry = 14
SVM none 198.1537 C = 1

LOESS none 109.2510 span = 0.5 &
degree = 1

Table 7.6: Summary of the best performing parameter settings for the CH algorithm of
2BPRG case with respect to the RMSE.

Surprisingly, for the CHB algorithm the approaches are able to produce a good outcome.
The individual results are summarized in Table 7.7. With a RMSE of 23.63004, the
prediction model is able to produce a smaller error than for the 2BPOG case. The
impression we got from Figure 7.14 are confirmed by the numbers in the table. All other
procedures, except the SVM method, can also provide very good results for the CHB
algorithm. An explanation for this behavior cannot be made on the basis of the available
data.
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Algorithm Preprocessing
Method RMSE Configuration

GLM MLP 45.18718 none
kNN TOP 27.06684 k = 2
RT TOP 30.38953 cp = 0.0002
RF TOP 23.63004 mtry = 14
SVM MLP 71.54584 C = 15

LOESS MLP 42.81039 span = 0.5 &
degree = 1

Table 7.7: Summary of the best performing parameter settings for the CHB algorithm
of 2BPRG case with respect to the RMSE.

The performance for the CHBP is similarly poor as for the 2BPOG case. Table 7.8
displays the results concerning the RMSE. As expected, the best performance was
achieved by the RF method with a RMSE of 95.84077 followed by the kNN method
with 96.88509. Both models are able to achieve their best performance using the TOP
discretized data set. Compared to the other methods the LOESS approach is able to
reach the third place. The other processes produce a RMSE of well over 200 and are
therefore no longer suitable for a practical use.

Algorithm Preprocessing
Method RMSE Configuration

GLM MLP 212.2038 none
kNN TOP 96.88509 k = 2
RT TOP 255.8048 cp = 0.0001
RF TOP 95.84077 mtry = 14
SVM none 225.9977 C = 1

LOESS none 107.9664 span = 0.5 &
degree = 1

Table 7.8: Summary of the best performing parameter settings for the CHBP algorithm
of 2BPRG case with respect to the RMSE.

The results for the training set indicates that the RF and the kNN prediction models
are best suited for the algorithm runtime prediction approach. Furthermore, the results
of the training set show that the TOP preprocessing method has a positive influence
on the RMSE. In 4 of 6 cases, the RF method achieved the best results with the TOP
discretized data and the kNN used once the MLP preprocessing method in the best
setup. In the next paragraph, these results are to be evaluated on the basis of the test
sets in order to give a final judgment on the usability for the algorithm runtime approach
for the three tested algorithms.
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Algorithm Prediction Model RMSE R^2 Data Span
(Sec)

2BPOG

CH RF_TOP_CH_OG 12.4867063 0.9995902 1 - 2990

CHB RF_TOP_CHB_OG 34.2816482 0.9909219 1 - 1947

CHBP kNN_CHBP_OG 39.745708 0.992555 1 - 2995

2BPRG

CH kNN_MLP_CH_RG 197.033200 0.979931 1 - 6722

CHB RF_CHB_RG 31.035428 0.994268 1 - 2183

CHBP RF_TOP_CHBP_RG 59.2276826 0.9968807 1 - 6923

Table 7.9: Performance metrics for the runtime prediction and the underlying heuristics
on the test set.

7.4 Comparison of Regression Models for the Runtime
Prediction on the Test Set

In the previous chapter, we compared the results of the different configurations for the
runtime prediction model with the various machine learning techniques. After we tested
the created models with the designated training set we have to evaluate them using
some previously unseen problem instances. The test set consist of 111 randomly selected
problem instances from the two publicly available datasets and the dataset we created
for this thesis.

The already presented RMSE is used as an evaluating parameter. The RMSE is calculated
from the square root of the average forecast error. The larger the RMSE, the worse is
the adaptation of the model. It is necessary to obtain the smallest possible RMSE by
controlling the influencing factors in order to improve the quality of a model. In order to
determine the best models from the training set, it was enough to compare the different
RMSE values among each other and to select the model with the smallest value. For the
evaluation of the models in a more realistic environment, it is important to consider the
RMSE in connection with the data itself. This means a RMSE of 30 can be good if the
initial data set has a span of 0− 3000. If, however, our data shows a span of 10 to 50,
then a model with a RMSE of 30 is not usable in practice.

As a further reference point for the goodness of the model, we also refer to the R2 for
each prediction model. The R2 is an indication of how well the independent variables are
able to explain the variance of the dependent variables. The values for R2 are always
between 0% (useless model) and 100 % (perfect model adjustment). Note that the R2 is a
measure of quality for describing a linear relationship. It can be easily interpreted as the
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fraction of the variance of the dependent variable (in our case the runtime), which can
be explained by the independent variable (the calculated features ). For the evaluation
of the best models, we used the test set with the parameter configurations that showed
the best performance during the preceding experiments.

The RMSE for both cases of the BPP is summarized in Table 7.9. Both cases show a very
good performance on the test set and even surpass sometimes the results of the training
set. Only the CH algorithm for the 2BPRG case remains behind our expectations. This
particular case is interesting since it is the only one where the MLP preprocessing method
was able to achieve the best results during the test phase. The plots of the observed
values against the predicted values give a visual representation of the results and can
help us to understand how well the model fits. For the 2BPOG case Figure 7.15 shows
the performance of the CH algorithm. The distribution of the results, amongst other
things, from the use of the well-known benchmark instances. These instances include a
large share of problems with only a few items to pack. The runtime of the large instances
are only covered by the problem instance which we introduced. Figure 7.16 and 7.17
show especially for the smaller values some higher residuals which leads to the slightly
increased RMSE compared to the CH algorithm.

Figure 7.15: Visual comparison of models for runtime predictions of previously unseen
test instances. In each scatter plot, the x-axis shows true runtime and the y-axis runtime
as predicted by the respective model. Each dot represents the runtime of an unseen
instance for the 2BPOG case - CH heuristic
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Figure 7.16: Visual comparison of models for runtime predictions of previously unseen
test instances. In each scatter plot, the x-axis shows true runtime and the y-axis runtime
as predicted by the respective model. Each dot represents the runtime of an unseen
instance for the 2BPOG case - CHB heuristic

Figure 7.17: Visual comparison of models for runtime predictions of previously unseen
test instances. In each scatter plot, the x-axis shows true runtime and the y-axis runtime
as predicted by the respective model. Each dot represents the runtime of an unseen
instance for the 2BPOG case - CHBP heuristic
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Figures 7.18, 7.19, and 7.20 show some qualitative differences in predictions for the
2BPRG case. It can be well recognized that the increased RMSE for the CH algorithms
is due to the outliers in the 5000 sec range as shown in Figure 7.18. The other figures
show again a good fitting with some noise for the lower part of the prediction.

Figure 7.18: Visual comparison of models for runtime predictions of previously unseen
test instances. In each scatter plot, the x-axis shows true runtime and the y-axis runtime
as predicted by the respective model. Each dot represents the runtime of an unseen
instance for the 2BPRG case - CH heuristic
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Figure 7.19: Visual comparison of models for runtime predictions of previously unseen
test instances. In each scatter plot, the x-axis shows true runtime and the y-axis runtime
as predicted by the respective model. Each dot represents the runtime of an unseen
instance for the 2BPRG case - CHB heuristic

Figure 7.20: Visual comparison of models for runtime predictions of previously unseen
test instances. In each scatter plot, the x-axis shows true runtime and the y-axis runtime
as predicted by the respective model. Each dot represents the runtime of an unseen
instance for the 2BPRG case - CHBP heuristic
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7.4.1 Variable Importance for the Runtime Prediction

The last section deals with the analysis of the importance of the features for the runtime
prediction models.

For each of the three algorithms, we performed a variable importance evaluation and
visualized the results. The function used a method which automatically scales the
importance scores for each feature between {−1, . . . , 0, . . . , 1}. A negative variable
importance could appear if pairs of features offer almost the same kind of information
which could lead in extreme cases to different results. However, most of the time this
features only add unnecessary noise in the prediction model because they provide no
additional information for the model.

In our experiment, we see these behavior in Figure7.21, 7.22 and 7.25. In all these cases,
the TOP discretized data was used to build the best prediction model for the algorithm.
This could be a sign that the data is too simplified or categorized by using the TOP
preprocessing method.

Another important outcome is that some models use only a fraction of the available
features to produce the predictions (mostly the RF method) as we can see in the Figures
7.21, 7.22, 7.25, and 7.26 . In these models, the NumberOfItems is the most important
feature for the prediction of the running time.

Concerning the kNN prediction models, Figure 7.23 and 7.24 show that almost all
features are used for this method.

The most important variable is the TotalItemSize and for the other model the OddItems
as presented in Chapter 5.3.1. Only the OneBinItems as well as BigItems and
SmallItems seem to have no influence on the predictions of this model.
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Figure 7.21: Visual overview of the feature Importance for the runtime predictions
models. Each plot represents the most important features for the selected machine
learning method of the 2BPOG case - CH heuristic.

Figure 7.22: Visual overview of the feature Importance for the runtime predictions
models. Each plot represents the most important features for the selected machine
learning method of the 2BPOG case - CHB heuristic.
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Figure 7.23: Visual overview of the feature Importance for the runtime predictions
models. Each plot represents the most important features for the selected machine
learning method of the 2BPOG case - CHBP heuristic.

Figure 7.24: Visual overview of the feature Importance for the runtime predictions
models. Each plot represents the most important features for the selected machine
learning method of the 2BPRG case - CH heuristic.
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Figure 7.25: Visual overview of the feature Importance for the runtime predictions
models. Each plot represents the most important features for the selected machine
learning method of the 2BPRG case - CHB heuristic.

Figure 7.26: Visual overview of the feature Importance for the runtime predictions
models. Each plot represents the most important features for the selected machine
learning method of the 2BPRG case - CHBP heuristic.
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CHAPTER 8
Conclusion and Future Works

This thesis featured the algorithm selection and algorithm runtime prediction approach
for the 2-dimensional bin packing problem(BPP). We focused on the 2BPRG case
(where items may be rotated by 90 degrees and guillotine cuts are required) and on
the 2BPOG case (where Items are oriented and guillotine cuts are required) of the bin
packing problem. For the used machine learning techniques we computed 23 features.
Furthermore, we collected experimental results of 10 state of the art bin packing heuristics
(FFIHOGJ04, BFIHOGJ04, CFIHOGJ04, CH, CHB, CHBP, GBL,A-B,A-B
New and SVC2BPRG) on 500 instances of 2 different public available sets of problem
instances.

Using the gathered information we trained six classification and regression models for
the BPP. We used a series of well-known machine learning techniques like Naive Bayes,
Decision Trees, k-Nearest Neighbor, Random Forests, Support Vector Machines, Neural
Networks, Generalized Linear Models and the LOESS regression. We expanded the
experiments with different parameter settings for the prediction models and investigated
the effects of two discretization techniques. Furthermore, we examined the effects of
different algorithm sets on the quality of the predictions.

The first lessons we learned was that the algorithm selection approach for the BPP is
not beneficial if only the number of bins is used as the main benchmark criteria. The
first experiments clearly show that most of the 500 instances are solved best by the at
least three of the presented algorithms. These three algorithms are superior to the others.
Therefore, one of the essential requirements for the algorithm selection approach is not
given. These observations lead to the conclusion that the algorithm selection approach is
not helpful for the 2D BPP using only the bins as the performance measure.

Our second finding shows that the results of the individual algorithms clearly provide
heterogeneous solutions for the benchmark set using the bins and time as the evaluation
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criteria for the 2BPRG and the 2BPOG case. Some algorithms performed good but
they were not able to dominate the others. Furthermore, many algorithms show a better
performance on some subgroups than on the others, which could indicate some hidden
structure that influences the performance of the algorithms.

For the algorithm selection approach our experiments showed that the k-Nearest Neighbor,
Random Forests, and the Support Vector Machines are the most appropriate machine
learning procedures for the algorithm selection based on classification for the 2BPOG
case. All models had been tuned using 10- fold cross-validation to find the best setup
for each prediction model Additionally, we were able to find a positive effect of using
the data processed with discretization methods, especially the Minimum Description
Length Principle (MDL) for the 2BPOG case. For the 2BPRG case, the decision trees
and the other machine learning methods mentioned above were also able to develop good
strategies to solve the problem instances.

The results of our algorithm runtime prediction experiment showed that good results can
be accomplished especially by the k-Nearest Neighbor, Random Forests, and the Decision
Trees machine learning procedures for both cases. Another interesting observation shows
that the Generalized Linear Models and Support Vector Machines procedures produced
weaker results than the other methods.

In the final step of this thesis, we evaluated both approaches using the test set. Using
the best heuristics sets, machine learning techniques and configuration for the algorithm
selection we were able to show that our approach is able to achieve better results than
any single heuristic alone. For the algorithm runtime prediction, we were able to produce
rather good predictions for the run times of previously unseen problem instances.

Future works for the algorithm selection approach could focus on including further
algorithms like exact solvers and newly introduced methods. Another interesting topic
would be to experiment with other cases of the bin packing problem to examine if the
algorithm selection approach can also be usefully applied.
Another consideration is the use of combined portfolio implementations, which execute
more the one heuristic for each problem instance. This approaches could achieve better
performances especially for problem instances with many items. For the algorithm
runtime prediction, an extension of the benchmark instances would be desirable to better
evaluate and test the presented approach. Additional, a broader field of heuristics could
help to build a better prediction model. The results of the algorithm selection approach
could also be used in a next iteration for the algorithm selection problem to make the
process even more optimal.
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