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Abstract

The phenomenon that the threshold voltage of metal-oxide-semiconductor field-effect transistors
changes, when the device is stressed at elevated temperatures, has been observed first in the 1960s
and termed the bias temperature instabilities (BTI). It is commonly accepted that the threshold
voltage shifts can be attributed to defects located inside the oxide, so called border states and
interface states. By investigating BTI in large area devices the collective response of a vast amount
of defects can be measured as a continuous degradation and recovery behavior. However, to model
the complex nature of BTI properly, a detailed knowledge of the physical mechanism behind charge
trapping of single defects is required. This can be achieved by using nanoscale devices, which in
contrast to their large area counterparts, contain only a handful of defects with experimentally
resolvable threshold voltage shifts. As a consequence, the intricate charge trapping behavior can
thus be studied for each defect individually. For the analysis of single charge trapping, the time-
dependent defect spectroscopy (TDDS) has been recently proposed. The substantial amount of
manual effort currently necessary to analyze TDDS data call for a more automated TDDS work-
flow. One particular time-consuming task during the TDDS analysis is to identify clusters in the
recorded data. Each cluster is subsequently linked to a particular defect in order to obtain statis-
tical parameters of the charge transition times. A detailed understanding of charge trapping for
a certain technology requires the trapping parameters of a large number of defects. To simplify
the process and increase the accuracy of the extraction of the charge transition times, a sophisti-
cated data analysis algorithm has been developed. This work describes the implementation of an
unsupervised algorithm based on expectation–maximization (EM) to perform an automatic cluster
detection. Satisfactory results, compared to manually analyzed data, are achieved using the pre-
sented algorithm. In addition, the effort necessary to identify single traps is significantly reduced.
Although the algorithm requires further optimization with respect to the assignment of clusters to
defects, this work offers the ability to efficiently study numerous single traps.
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Kurzfassung

Das Phänomen einer Änderung der Schwellspannung von Metall-Oxid-Halbleiter-Feldeffekttransis-
toren (MOSFETs) aufgrund von Stress bei höheren Temperaturen wurde erstmals in den 1960er
Jahren beobachtet und als temperatur- und gatespannungsabhängige Instabilitäten (Bias Tempera-
ture Instabilities – BTI) bezeichnet. Der Grund dieser Schwellspannungsänderungen wird gemein-
hin auf Störstellen im Inneren des Oxids, sogenannte Grenzschichtzustände, zurückgeführt. Anhand
Untersuchungen von BTI bei Bauelementen kann die gemeinsame Reaktion einer großen Anzahl
von Störstellen als kontinuierliches Degradations- und Regenerationsverhalten gemessen werden.
Um das komplexe Wesen von BTI angemessen modellieren zu können, ist jedoch ein umfassendes
Verständnis der physikalischen Vorgänge des Ladungsaustausches einzelner Störstellen unerlässlich.
Dies wird durch den Einsatz nur wenige Nanometer großer Transistoren erreicht, die im Gegen-
satz zu ihren größer dimensionierten Gegenstücken lediglich eine kleine Anzahl von Störstellen
mit experimentell messbaren Veränderungen der Schwellspannung aufweisen. Daher kann das kom-
plexe Verhalten des Ladungsaustausches jeder einzelnen Störstelle gesondert untersucht werden.
Die Time-Dependent Defect Spectroscopy (TDDS) wurde kürzlich zur Analyse einzelner Ladungs-
austauschvorgänge vorgestellt. Der mit der Analyse von TDDS-Daten verbundene erhebliche Ar-
beitsaufwand macht eine zunehmende Automatisierung notwendig. Eine besonders zeitaufwändige
Tätigkeit während der TDDS-Analyse ist die Identifizierung von Clustern im Datenmaterial. Da-
bei wird jeder Cluster einer bestimmten Störstelle zugeordnet, um statistische Parameter der La-
dungsübergänge zu erhalten. Ein vertieftes Verständnis des Ladungsaustausches in Hinblick auf be-
stimmte Technologien erfordert die Parameter für eine große Anzahl von Störstellen. Um diesen Pro-
zess zu vereinfachen und die Genauigkeit der extrahierten Ladungsübergangszeiten zu erhöhen, wur-
de ein ausgeklügelter Algorithmus zur Datenanalyse entwickelt. Die vorliegende Arbeit beschreibt
die Implementierung eines auf Expectation-Maximization (EM) beruhenden, unüberwachten Algo-
rithmus zur automatisierten Clustererkennung. Im Vergleich zu manuell analysierten Daten konnte
durch den Einsatz des hier vorgestellten Algorithmus zufriedenstellende Ergebnisse erzielt und der
erforderliche Arbeitsaufwand zur Identifizierung einzelner Störstellen erheblich reduziert werden.
Obwohl der Algorithmus hinsichtlich der Zuweisung der Cluster zu einzelnen Störstellen noch wei-
terer Verbesserung bedarf, ermöglicht diese Arbeit deren effiziente Untersuchung.
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1 Introduction

Bias temperature instabilities (BTI) are today’s major reliability issues occurring in metal-oxide-
semiconductor field-effect transistors (MOSFETs) and can be attributed to defects located inside
the oxide. Section 1.1 gives a brief overview of BTI. The detailed motivation of this work is given
in Section 1.3, but summing up, the aim of this work is to develop a set of machine learning
algorithms (c.f. Section 1.2) to further enhance the current workflow of handling measurement
data. One major achievement regarding analysis of BTI is the time-dependent defect spectroscopy
(TDDS), discussed in Chapter 2. In this context, a clustering algorithm for collected data should
be developed, which is a particular unsupervised machine learning algorithm that automatically
finds groups in the data. Chapter 3 covers the two clustering techniques employed in this work and
Chapter 4 deals with the implementation and how the proposed method is embedded into the data
analysis workflow. In Chapter 5 this work concludes with some results on real measurement data,
recorded employing the TDDS.

1.1 Bias Temperature Instability

Defects at the semiconductor-oxide interface as well as inside the oxide result in a non-ideal behavior
of MOSFETs. In particular, such single defects can get repeatedly charged and discharged during
device operation and are responsible for random telegraph (RTN) and 1/f noise as well as for a
significant contribution to BTI [10].

1.1.1 Physical Considerations

Oxide defects in MOSFETs can be classified into two different classes according to the underlying
physical phenomenon [8, 5]:

Interface
Traps

They are commonly attributed to trivalent silicon dangling bonds called Pb0 and
Pb1 centers on (110)-oriented interfaces and Pb centers on (111) interfaces.

Border Traps
and
Oxide Traps

Although their exact chemical structure is still controversially discussed, border
traps are often associated with E′ centers, which are trivalent silicon dangling
bonds in the SiO2. The term border traps applies to oxide defects located within
approximately less than 3 nm from the oxide interface. With today’s thin oxides
of small scale devices this distinction is not longer very usual and the traps are
commonly referred to as border traps.

By randomly exchanging an electron or a hole with the substrate, single traps lead to random
fluctuations of the drain source current IDS. On small-area devices the single carrier capture and
emission events are visible as discrete steps in IDS. Furthermore, under certain bias conditions
RTN is observed in IDS.
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Figure 1.1: The IDS(VG) characteristic (left) together with a recovery trace of the drain current VG(t)
(middle) of a device allows for calculating the behavior of the threshold voltage Vth during recovery
(right).

Figure 1.2: Schematic drawing of the Pb0 Si/SiO2

interface defects, responsible for BTI [4].

The phenomenon BTI is observed in both n-channel MOSFET (nMOS) and p-channel MOSFET
(pMOS) transistors. In common, BTI are classified into positive BTI (PBTI) and negative BTI
(NBTI), depending on whether a positive or a negative stress voltage is applied at the gate, re-
spectively. During the long history of BTI, mainly NBTI is studied on pMOSFETs as it is more
pronounced compared to PBTI on nMOSFETs. Apparently, less is known about NBTI on nMOS-
FETs and PBTI on pMOSFETs, which is sometimes difficult to study as most structures show
electrostatic discharge (ESD) protection diodes at the gate. Nonetheless, to understand charge
trapping for a certain technology, bot NBTI and PBTI, have to be studied in detail.

To compare the impact of BTI between different devices and technologies, BTI is expressed in
terms of a gate voltage shift. Therefore ∆Vth can be considered as the amount of gate voltage VG

necessary after the switch to maintain the drain current IDS at the same level as before the switch.
An example of the conversion of IDS is to an equivalent ∆Vth is shown in Fig. 1.1 for a continuous
recovery behavior which is typical for large area devices. To study the physical mechanism behind
BTI the TDDS has been recently proposed, and will be discussed more detailed in Chapter 2.

Density Functional Theory To account for the chemical structure behind the defects, density
functional theory (DFT) calculations are carried out. Thereby, computational expensive simu-
lations considering different atomic configurations are performed. With the results in hand the
transition energy barriers between the neutral and charged states of particular structures, for in-
stance E’ centers, can be determined. These energy barriers allow to link charge trapping kinetics
obtained from TDDS measurements by employing the four-state NMP model with a particular
atomic configuration of a defect. A schematic drawing of a Pb0 center is shown in Fig. 1.2.
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Figure 1.3: (a) The graphical representation of the two-state stochastic defect model. (b) An example
of the state in dependence of the time for k12 = 1/9 s−1 and k21 = 1 s−1.

1.1.2 Stochastic Defect Modeling

Defects in semiconductors and oxides don’t behave deterministically but randomly. The stochastic
behavior of such defects can be described by a Markov process, a stochastic process in which the
future state only depends on the current state but not on the history of the system [3].

In the simplest assumption the defect can only take two different stable states, a neutral and
a charged one. Fig. 1.3a shows a state diagram of a two-state defect, in which the states are
represented by circles. In the following it is arbitrarily assumed that state 1 represents the neutral
and state 2 the charged state.

The Master Equations The probability for a transition from state i to state j within a infinites-
imal small time interval is given by the transition rate kij and visible as arrows in the diagram
in Fig. 1.3a. The system is analytically represented by an ordinary differential equation [10], the
solution of which gives the probability of being in the state 2 at any particular time t

p2(t) = p2(∞) + [p2(0)− p2(∞)]e−t/τ , (1.1)

where

p2(∞) =
k12

k12 + k21
and τ =

1

k12 + k21
. (1.2)

As the defect must be in either of its two states, one can calculate from p1(t) = 1 − p2(t) the
probability of being in the state 1

p1(t) = p1(∞) + [p1(0)− p1(∞)]e−t/τ , (1.3)

where

p1(∞) =
k21

k12 + k21
. (1.4)
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The equations Eqs. (1.1) and (1.3) are called the master equations which fully describe the two
state Markov process.

Capture and Emission Time Constants TDDS, the analysis framework utilized in this work, as
well as other measurement rely on measuring the transition of a defect from the charged state to
the neutral state, or the other way round. As the time the transition takes place is a stochastic
process, it is necessary to know the mean value τ̄12 that a defect makes a transition to state 2
provided that it is in state 1. As τ̄12 does not depend on k21 it can be set to 0 without any loss of
generality. Together with the initial condition p1(0) = 1 Eq. (1.3) reduces to

p1(t) = e−k12t. (1.5)

The probability that the defect has transitioned to state 2 at a time t is given by the cumulative
distribution

P (τ12 ≤ t) = p2(τ12) = 1− p1(τ12) = 1− e−k12τ12 . (1.6)

One can get the corresponding probability density function by differentiating

g(τ12) =
dp2(τ12)

dτ12
= k12e−k12τ12 . (1.7)

This probability density function is the exponential distribution and will be discussed further in
Section 3.2.

The average capture time τ̄c equals the expectation value of τ12

τ̄c = E[τ12] =

∫ ∞
0

τ12g(τ12) dτ12 =
1

k12
. (1.8)

Analogously the average emission time τ̄e is the expectation value of τ21

τ̄e = E[τ21] =
1

k21
. (1.9)

Using this two state model RTN signals can be modeled properly, see Fig. 1.3b. However this
simple model is unable to accommodate a number of experimentally observed phenomena. One
of these is anomalous RTN (aRTN) or temporary RTN, a form of RTN that is suspended for a
specific time. Such behavior can be accounted for by expanding the two state model with a third
metastable state. An example of a simulated aRTN can be seen in Fig. 1.4.

1.1.3 Impact on the Device

As aforementioned, defects responsible for the ∆Vth are due to inaccuracies of the perfect atomic
structure inside the oxide or a consequence of lattice mismatch between SiO2 and Si at the interface.
The former are considered oxide traps and are typically attributed to slower time constants. In
contrast, the latter are referred to as interface states with very fast charge transition times which
cannot be measured directly.

In contrast to the time-invariant behavior of an ideal device, the behavior of a device subject to
BTI stress detrimentally changes over the time. Its normally assumed that neutral defects do not
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Figure 1.4: A simulated aRTN pro-
duced by a multi-state defect. The
RTN stops after approximately t =
40 s.

interact with the remainder of the device, while charged defects result in a threshold voltage change
through the generation of a charge layer at the Silicon-oxide interface. In this context one has to
differentiate between the charge Qit caused by the fast interface states and the charge Qox caused
by the slower border traps. The effect of these charges on the threshold voltage Vth can be written
as

∆Vth(VG, t) = Vth −
Qit(VG, t) +Qox(VG, t)

Cox
, (1.10)

where the oxide capacity per unit area for an oxide with a thickness of tox is given by

Cox =
ε0εr
tox

. (1.11)

Although the time constants of the interface states are to small to be measurable as a transition of
Vth, instead they become noticeable as a increase of the sub-threshold slope compared to the virgin
MOS transistor. By means of a charge sheet approximation, i.e. by assuming that the charge of
the defect is homogeneously spread across the oxide, one can derive an expression for the charge
caused by the border traps

Qox(VG, t) = q
1− x/tox

WL
ηrp2(t), (1.12)

with the elementary charge q, the position x of the defect from the surface, the width W and the
length L of the transistor, an empirical parameter ηr and the probability p2 of being in state two.

1.2 Machine Learning

One can define machine learning as a set of methods that automatically find patterns in data and
make predictions and other decisions based on them [17, 3].

In general, machine learning techniques can be classified in three different categories, see Fig. 1.5:

Supervised
Learning

The term supervised learning denotes an algorithm that is given the training set
x = {x1, . . . ,xN} of N observations together with the corresponding target values
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Machine Learning
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Curve Fitting Classification
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Density

Estimation
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Networks

Figure 1.5: Classification (second row) and typical examples (third row) of different machine learning
techniques

t = {t1, . . . , tN} during the training or learning phase. The objective is to make
a prediction of the value t̂ for some new value x̂ during the generalization step by
tuning some model coefficient θ. The observations xn could be scalars, D-dimensional
vectors or even more complex structured objects.

One can further distinguish this technique according to the type of the target values
t:

• The term classification is used where the target value consists of a discrete num-
ber of categories. Fitting a curve from noisy observations is a typical example
of this technique.

• The term regression is used where the target value is a continuous variable.
Examples for this learning method include pattern and face recognition.

Unsuper-
vised
Learning

This method differs from the supervised learning in that the algorithm is not provided
a target set t. This technique is often more convenient than supervised learning, since
it does not require any human interaction.

Finding groups of similar observations, called clustering, or determining model pa-
rameters from the observed data, called density estimation are typical application of
this machine learning technique. Both of them are extensively used in this work.

Reinforced
Learning

In contrast to supervised learning, the algorithm is not given any training set at
all, but must discover it instead by trial and error itself. This is done by finding
actions that maximizes some kind of reword. An example would be a neural network
learning how to play a game.

1.3 Motivation

The outstanding possibilities that the TDDS offers compared to other BTI measuring techniques
stand oppose to its biggest disadvantage, the high workload necessary to obtain satisfactory results.
Although it is difficult to formulate a generalized work flow for TDDS, one can summarize the
following main tasks, see Fig. 1.6:

Prescreening Not all devices contain defects suitable for TDDS analysis. For instance, if de-
fects show emission times too close to each other, they can not be unambiguously
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Figure 1.6: The typical TDDS measurement workflow
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attributed to a single defect. Furthermore, defects with step heights at the mea-
surement limit are also very hard to resolve.

Defect
Identification

Once a device is selected, the initial capture and emission times of the present
defects can be determined by initial S/M measurements.

Detailed S/M
Cycles

By deliberately varying the stress and recovery time as well as the stress and
recovery bias, the capture and emission time characteristics for a wide gate voltage
range can be determined.

Data Analysis The analysis of TDDS data is very challenging and time-consuming. At this
point, the cluster detection algorithm investigated in this thesis improves the
performance of the evaluation procedure.

Simulation Finally, the four-state nonradiative multi-phonon (NMP) model is used to explain
the experimental data.

Note that for the same device the experimental parameters, i.e. ts, tr, Vs, Vr, T and VDS, have to be
varied and for each for each set of parameters typically 100 traces have to be recorded and analyzed.
There are different reasons for this procedure, which is represented by the loop in Fig. 1.6:

• Statistical significance has to be reached to obtain reliable values for τe and τc.
• One uses different sets of stress parameters such that a change of the emission probability

(depends on ts) and emission time (depends on VG in case of switching traps) is beneficial
during the subsequent analysis. This kind of deconvolution is actually one of the main ideas
behind the TDDS.
• The capture time cannot be measured directly but can be determined by varying the stress

time and analyzing the number of emission events.
• The effect of various stress and recovery biases and device temperatures on the capture and

emission time is to be investigated.
• One wants to monitor the long term effects of the device.

Apart from repeatedly measuring the same device, there is a strong demand for measuring a huge
number of different devices (more than 1000):

• Again, statistical significance to study charge trapping for a particular technology should be
reached.
• One wants to investigate for geometries dependent effects.

The manual interaction currently needed during the analysis of the data prevents a fully automated
workflow. Specifically, a time-consuming step in the analysis is to identify clusters in the spectral
maps, that will be discussed in detail in the following chapter, and relate these clusters to a specific
defect. For the reasons stated above the analysis should be fully automated by applying machine
learning algorithms.

14



2 The Time-Dependent Defect Spectroscopy

In [11] a novel analysis method, the TDDS, is proposed to study trapping kinetics of border traps in
detail. A rough overview of the typical TDDS workflow, was already given in Fig. 1.6. In principle,
TDDS relies on repeatedly measuring the recovery of a nanoscale device subjected to BTI stress,
thereby enabling the extraction of charge capture and emission times of singe defects. Based on
this data the trap depth can be estimated using the well-established four-state NMP model. In the
following the concept behind TDDS is discussed.

Comparison to Other Techniques In general, the response of a single device to BTI stress can
be expressed as the sum of contributions from K defects with different ∆Vth shifts by

∆Vth =

K∑
k=1

ηkBk (2.1)

with ηk the step height and Bk the defect occupancy function of defect k. Based on investigation on
SiON transistors the number of active traps have been found to scale inversely with the gate area
N ∝ (WL)−1, while the average contribution of a single trap increases when considering scaled
transistors η ∝ WL. The TDDS profits from the latter, as in nanoscale devices the contributions
of the individual defects are more pronounced and thus visible as discrete steps in the drain-source
current IDS, quite in contrast to large area devices where only the mean behavior of many defects
is observed. The difference between these two situations can be seen in Fig. 2.1, where additionally
different stress and recovery parameters have been chosen. Furthermore, the presence of only a
handful of traps in such devices, permits to uniquely assign the ∆Vth shifts to a particular defect.

The charge transition times have been initially studied by detecting and analyzing RTN signals.
One difference to this classical RTN analysis techniques is that the bias conditions are chosen to
systematically force certain defects to a capture and emission event. Furthermore, RTN analysis
requires the charge capture and emission to occur within the experimental window. Because of the
strong bias dependence of the capture and emission time the trapping kinetics of switching traps
could only by studied within a very narrow gate voltage window. In contrast, using TDDS a wide
gate voltage range can be used to analyze single traps.

Stress and Recovery A key point in BTI is that the transition rates between the charged and
neutral state or correspondingly the capture and emission time strongly depend on the stress and
recovery bias conditions and the temperature. By careful selection of stress and recovery biases
and times for each single defect, a charge capture during stress and a subsequent charge emission
during recovery can be enforced. The process of repeatedly stressing and measuring is termed MSM
(measure-stress-measure) and is depicted in Fig. 2.2.

The gate voltage is held at the stress voltage VG = VS. After the stress time tS has elapsed, the
gate bias is switched to the recovery voltage VG = VR and the drain source current is recorded for

15
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Figure 2.1: Experimentally determined recovery traces of different device areas, (a) W ×L = 10 µm×
10 µm, (b) W × L = 160 nm× 120 nm, (c) W × L = 90 nm× 35 nm.

Figure 2.2: The MSM process repeatedly
goes through cycles where stress conditions
are applied to the device for a time span
of ts followed by recovery phase lasting tr
where a measurement of IDS is performed.
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a time span of tR. To avoid Hot Carrier Degradation (HCD) effects during the stress cycle, VDS is
settled to VDS = 0 V and switched to VDS = ±100 mV during recovery, depending on whether an
NMOS or PMOS transistor is studied.

Measurement Technique There are two established methods for recording the ∆Vth during device
recovery [18]:

1. Measuring ∆VG = ∆Vth, while VG is controlled with a negative feedback circuit in a way that
a constant IDS is obtained, or

2. measuring IDS and subsequently convert it to ∆Vth by use of the ID-VG characteristic of the
device.

The TDDS measurement instrument, a custom-mode setup developed at the IuE currently employs
the latter method.

Extraction of the Capture Time In order to obtain a statistical relevant amount of data, the
aforementioned stress/recovery cycle is typically repeatedN = 100 times at the same bias condition.
Additional capture and emission times are recorded using variations of the stress conditions (VS,
tS), the temperature T or the recovery bias voltage VR. The average capture time τc is determined
by gradually increasing the stress time from tS � τc (where it is very unlikely for the defect to be
charged at all) to tS � τc (where the defect is certainly charged). The capture time can be finally
estimated from the capture probability

Pc(ts) = B(1− e−ts/τc) =
Nm

Ms
, (2.2)

where B is the defect occupancy, ts the stress time of the corresponding block, Nm the number of
emission events of the defect m and Ms the total number of stress-recovery cycles. For the sake of
completeness, note that, the effects of the drain-source voltage VDS are also investigated, especially
with a view to hot carrier stress.

Temperature Dependency Like other thermally activated processes the temperature dependency
of the emission time could be quantitatively described by Arrhenius’ law

k21 =
1

τe
= ν exp

(
− Ea

kBT

)
, (2.3)

where ν is the frequency factor, Ea the activation energy, kB the Boltzmann constant and T the
absolute temperature. Typical values for Ea are in the range of 0.3 eV to 2 eV for SiON MOSFETs
[11, 26].

Spectral Maps In TDDS the charge emission events of the recovery traces measured at the same
stress and recovery conditions are binned into a two-dimensional histogram, called spectral map.
These spectral maps visualize the emission events of the defects defined by its average emission
time τe and voltage step height. Figure 2.3 illustrates how the spectral map is derived from the
measured emission events after negative gate bias (NBTI) stress. As the emission time and step
height are characteristic properties of each defect (for certain temperature and bias conditions),
individual defects can be clearly identified as disjoint clusters in the spectral map. Each cluster in
the obtained spectral map is the fingerprint of an individual defect.
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2 The Time-Dependent Defect Spectroscopy

Figure 2.3: Mapping of the single
charge capture and emission events
from four recorded recovery traces of a
PMOS device after NBTI stress (top)
into the (τe, d) plane, called spectral
map (bottom) [26]. Charge capture
and emission events attributed to the
same defect are marked with an el-
lipse. In the case of RTN, multiple
capture and emission events symmetri-
cally arranged around the abscissa are
observed.
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Figure 2.4: Spectral maps obtained after a PMOS transistor was stressed at Vs = −2.1 V for an
increasing stress time of (a) ts = 10 µs, (b) ts = 100 µs, (c) ts = 1 ms, (d) ts = 10 ms. As visible,
the clusters get more intense at higher stress times, revealing the strong stress time dependency of the
charge capture process. The detailed parameters are given in the top-left corner of the map. Line 1:
temperature, stress voltage, recovery voltage. Line 2: stress time, recovery time, number of traces [11].
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(a) (b)

(c) (d)

Figure 2.5: Spectral maps obtained after the same PMOS transistor was stressed at VS = −1.7 V
for tS = 10 s at increasing temperatures of (a) T = 100 ◦C, (b) T = 125 ◦C, (c) T = 150 ◦C,
(d) T = 175 ◦C. A unique shift of the clusters toward lower emission times is visible when the device
temperate is increased. The detailed parameters are given in the top-left corner of the map. Line 1:
temperature, stress voltage, recovery voltage. Line 2: stress time, recovery time, number of traces [11].

19



2 The Time-Dependent Defect Spectroscopy

Fig. 2.4 shows four such spectral maps recorded with increasing stress time ts, where five defects
(#1, #2, #3, #4, #16) could be identified. The capture probability increases with increasing stress
time which becomes noticeable by the more pronounced clusters or by the appearance of new ones
in the spectral maps recorded at higher stress times. Another particular interesting observation
is that defect #2 splits into two peaks, what is explained by the electrostatic interaction with
another defect. Fig. 2.5 gives set of spectral maps recorded on the same device but at increasing
temperatures. The strong shift to the left of the cluster gives a clear indication of the strong
temperature dependency of the emission time. One defect (#12) shifts out of the experimental
windows, where another defect (#9) appears. The figures demonstrate the remarkable advantages
spectral maps have to offer for the investigation of single trapping.

Experimental Requirements for the Capture and Emission Times Summing up, the basic re-
quirements for a defect to be accessible by the TDDS are:

• The capture time must be within voltage stress pulse width (usually 500 ns to 10 ks), i.e.
τc . ts.
• The emission time is within the experimental window (usually 1 µs to 10 ks), i.e. τe . tr.
• The step height is large enough to be properly resolved by the measurement equipment

(typically ∆Vth ≥ 0.1 mV).

To separate the clusters of different defects accurately:

• There should be at least a difference of d ≈ 0.5 mV for defects with similar emission time,
• or there should be a difference of two decades in the emission time for defects with similar

step height d.
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3 Cluster Analysis

In Section 1.2 the basic machine learning terminology has been introduced. The following chapter
will give an overview of cluster analysis [1, 15, 16, 6] or clustering for short, which is one particular
machine learning technique. The chapter starts with introducing some basic concepts, continues
with summarizing the probability theory and statistics machine learning and probabilistic clustering
algorithms are based on, and will than finally focus on the two clustering algorithms used in this
work, namely the EM-algorithm and DBSCAN.

3.1 Introduction

The vast amount of publications available on cluster analysis suggests that this area of machine
learning and data mining received a substantial amount of research activity. As a result there is
a plethora of algorithms available exhibiting very different properties. This is motivated by the
fact that there is no single clustering technique that is applicable to all of the different problem
scenarios.

Terms and Definitions Clustering can be defined as the process of partitioning a given set of
data points into a set of groups which are as similar as possible. This unsupervised process of
classification contrasts a supervised classification process, the discriminant analysis. While in the
former the categories are derived solely from the data, the latter requires a pattern set of already
classified data to classify a, yet unclassified, pattern.

Commonly, in the context of clustering the training set is called a pattern set {x1, . . . ,xn} and one
of its vectorial elements a pattern. One scalar component xn,d of a pattern xn is called a feature.
The patterns are often combined into a pattern matrix X for convenience.

Applications Like other data analysis and statistic techniques, cluster analysis can be motivated
from either a exploratory or confirmatory point of view. Tools for data processing, clustering proved
to be useful to a number of different research communities, as well in many real-life problems. To
illustrate this, following examples could be given [7]:

• In astronomy cluster analysis has been employed to find groups among astronomical objects
like planetary nebulae and stars or to find objects with unusual properties compared to the
rest in a huge amount of data.

• Different kind of data analysis problems in biology brought forth a whole new field of science
called bioinformatics. Genes are particular regions of the DNA that influence the production
of proteins, which is called gene expression. Cluster analysis is therein used to identify groups
of genes with similar patterns of gene expression.

• In marketing research, cluster analysis has proven useful to find groups of consumers with
similar needs, which is also called segmentation in that context.
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3 Cluster Analysis

• In psychiatry cluster analysis is useful as a method to divide patients into diagnostic categories
according to their answers on a questionnaire.

Furthermore, clustering can be categorized according to different criteria:

Algorithm There is a manifold of different clustering algorithms available. Most of theme can
be assigned to one of the following categories.

• Distance-Based Algorithms
Distance-based algorithms require some measure of similarity or dissimilarity
between two patterns.

A dissimilarity measure is also called distance function d. It is often assumed
that the distance function is non-negative d(x1,x2) ≥ 0, that the distance of a
sample to itself is zero d(x,x) = 0 and the distance is symmetric d(x1,x2) =
d(x2,x1). Sometimes it is beneficial to further require the triangle inequality
d(x1,x3) ≤ d(x1,x2) + d(x2,x3) to be satisfied. The Manhattan, Euclidean or
more generally the Minkowski or Mahalanobis distance are popular choices for
the distance function.

In contrast to the dissimilarity function, the similarity function s is often as-
sumed to only take values between zero and one, 0 ≤ s(x1,x2) ≤ 1. The simi-
larity of a sample and itself is obviously s(x,x) = 1 and the similarity measure
must again be reflexive s(x1,x2) = s(x2,x1).

• Probabilistic Algorithms
Probabilistic algorithms try to model the underlying generative process of the
pattern set. This requires to assume a probabilistic model, the correspond-
ing parameters and cluster membership of which are then typically estimated
through a iterative process.

• Density-Based Algorithms
In density-based methods either the number of samples or a smoother kernel
density estimate is used as a measure. Grid-based methods can be thought
as a special case of density-based methods, where the pattern space is divided
into a grid-like structure. Clusters are assumed to be regions of higher density
surrounded by regions of lower density.

• Spectral Algorithms
This graph-theoretic approach is related to distance-based algorithms. Basi-
cally the adjacency matrix is derived from the similarity graph of samples and
then the eigenvalues of the normalized or unnormalized Laplacian matrix is cal-
culated. The eigenvectors corresponding to the top K eigenvalues are finally
clustered with conventional techniques.

For the sake of completeness it should be mentioned that there are yet further tech-
niques, like genetic algorithms, that do not fall in any of the categories above.

Data Type Not all clustering algorithms are equally applicable to a particular data type, what
has to be taken into consideration during the selection of the algorithm.

• Quantitative Features
Quantitative features are those that can be measured on a ratio scale.

– continuous value (e.g. the weight of a person)
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– discrete value (e.g. the number of faulty devices in a sample)

– interval value (e.g. a time interval)

• Qualitative or Categorical Features
They consist of discrete features that can’t be measured on a ratio scale.

– ordinal value (e.g. the letters in the English alphabet)
These are features that have an implicit meaningful order. One can obtain
ordinal values from a continuous feature by binning the value into a discrete
number of classes.

– nominal value (e.g. a postal code)
These are features that don’t have a meaningful numeric representation.

• Mixed Features
They are particular challenging because they need to be handled heteroge-
neously across different dimensions.

Again there are further more application-centric data types like text data, multimedia
data, time-series etc.

Cluster
Structure

Algorithms differ in how the resulting clusters are structured:

• Partitioning Algorithms
Partitioning algorithms construct a flat partition of the pattern set into a set
of K clusters. Some of these algorithms require the number of clusters K as an
input parameter. In a problem scenario in which K is not known in advance,
this type of algorithms have the disadvantage that K has to be determined by
other means.

• Hierarchical Algorithms
Hierarchical Algorithms create a hierarchical decomposition of the pattern set,
which is graphically represented in a dendrogram. This has the advantage that
the parameters determining the granularity of the grouping can be chosen after
the actual clustering process. Thereby one can further distinguish between:

– Agglomerative Algorithms
Agglomerative algorithms start from a state where every pattern is assigned
to a distinct cluster which are then successively merged until only one cluster
is left or a stopping criterion is satisfied.

– Divisive Algorithms
Divisive Algorithms start from a state where every pattern is assigned to
the same cluster and splitting is performed until a stopping criterion is
satisfied.

Both hierarchical methods have the shortcoming that a suboptimal merge or
split can’t be repaired in a later step. Furthermore it is often difficult to derive
an appropriate stopping criterion.

Pattern
Assign-
ment

Cluster techniques can further be characterized according to the type of membership
of patterns to a particular cluster.

• Hard
Each pattern is assigned to exactly one cluster.
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• Soft or Fuzzy
Each feature is assigned a likelihood of belonging to a particular cluster.

One can achieve hard clustering by assigning each pattern resulting from soft clus-
tering to the cluster with the highest likelihood.

Feature
Usage

One can distinguish between two types of pattern usage:

• Polythetic
In polythetic clustering decisions are based on a distance function that is a
function of all the features. The majority of clustering techniques are of this
type.

• Monothetic
In that case a distance function is used sequentially such that only one feature
is used at a time.

In view of the algorithms used in this work, the EM-algorithm, used as the main clustering mecha-
nism, is a probabilistic technique and will be explained in Sections 3.3 and 4.2. A very minimalistic
distance-based clustering approach is used during the initialization (Section 4.1) and defect predic-
tion (Section 4.3). DBSCAN is a prototypical example of a density-based method and is used in
this work for the initialization and treated in Sections 3.4 and 4.1. The EM-algorithm naturally
implicates a fuzzy pattern assignment which is converted to a hard one in order to further process
the data more conveniently. Using physical measurement data of reasonable resolution makes the
features necessarily quantitative with continuous values and all algorithms can be considered to be
partitioning and polythetic.

3.2 Statistical Basics

Probability theory and statistics play a vital role in the area of machine learning and not surprisingly
in probabilistic clustering techniques used in this work. In the following section fundamental
statistical theory, important in the context of machine learning, is informally summarized [3, 24,
23, 21]. The formal justification of some of the results in this section can be established by measure
theory.

Probability Density Functions A continuous random variable X has a probability of zero taking
exactly one value x, but one can define its probability density function or density function p(x)
such that

P (a < X < b) =

∫ b

a
p(x) dx (3.1)

gives the probability P that X takes a value in the interval [a, b].

As it doesn’t cause any confusion, no distinction between a random variable X and its value x is
being made in this work most of the time.

To be a valid probability density the distribution has to satisfy the requirement

p(x) ≥ 0 ∀x, (3.2)
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3.2 Statistical Basics

and the normalization∫ ∞
−∞

p(x) dx = 1. (3.3)

Any probability density function in this work is implicitly assumed to be normalized.

Several Continuous Variables In a machine learning context there are typically several contin-
uous random variables that can be written as a D-dimensional vector x = (x1, . . . , xD)>. The
properties above can be extended to a probability density function of several continuous variables,
e.g. Eq. (3.2)

p(x) ≥ 0 ∀x, (3.4)

and the normalization Eq. (3.3)∫ ∞
−∞

p(x) dx = 1. (3.5)

Cumulative Distribution Function The probability that the random variable X with the probabil-
ity density function p(x) takes a value in the interval [−∞, x] is given by the cumulative distribution
function q(x)

P (X < x) = q(x) =

∫ x

−∞
p(x′) dx′. (3.6)

Joint and Marginal Distribution Similar to the one-dimensional case one can define the joint
probability function p(x, y) for the two random variables X and Y as the probability

P ((X,Y ) ∈ A) =

∫ ∫
A
p(x, y) dx dy (3.7)

that (X,Y ) lies in the region A.

The marginal distribution can be found from the joint distribution by integration

p(x) =

∫ ∞
−∞

p(x, y) dy. (3.8)

In analogy to the similar rule for discrete random variables this is called the sum rule.

It should be noted that p(x) and p(x, y) actually constitute two different functions, which never-
theless are denoted with the same symbol p, in accordance to the machine learning literature.

Conditional Distribution The conditional distribution p(x |y) of a random variable X given that
Y = y is

p(x |y) =
p(x, y)

p(y)
. (3.9)
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Because of symmetry reasons the above equation can be written as

p(x, y) = p(x |y)p(y) = p(y, x) = p(y |x)p(x) (3.10)

which is also know as the product rule. In case the joint distribution p(x, y) is not available, one
can eliminate it with the above equation to get another form of the sum rule Eq. (3.8)

p(x) =

∫ ∞
−∞

p(x |y)p(y) dy. (3.11)

The two random variables X and Y are independent if and only if

p(x, y) = p(x)p(y). (3.12)

Bayes’ Theorem Solving Eq. (3.10) for p(x |y) and eliminating the marginal distribution p(y) in
the denominator with aid of Eq. (3.11), one obtains at Bayes’ theorem in the form

p(x |y) =
p(y |x)p(x)

p(y)

=
p(y |x)p(x)∫∞

−∞ p(y |x′)p(x′) dx′
.

(3.13)

Bayes’ theorem plays an extremely important role in a lot of machine learning algorithms. In case
one has some observed data x and some model parameter θ to be determined Eq. (3.13) can be
written as

p(θ |x) =
p(x |θ)p(θ)

p(x)

=
p(x |θ)p(θ)∫
p(x |θ′)p(θ′) dθ′

.

(3.14)

In this context the above quantities can be interpreted as follows:

p(θ) is the prior probability of θ before any data has been observed.
p(x |θ) is the likelihood function, which is a measure of how probable the observed data is for a

value of the unknown parameter θ.
p(θ |x) is the posterior distribution, which is a measure of the probability of the unknown parameter

θ after one has observed the data x.

The integral in the denominator just serves as a normalization constant.

Expectation The expectation or expected value of a random variable X is defined as

E[x] =

∫ ∞
−∞

xp(x) dx, (3.15)

which can also be thought as the mean value of the distribution p(x). The law of large numbers
states that the average value of the samples of a distribution converges to the expected value of that
distribution for a large number of samples. For some distributions (e.g. the Cauchy distribution)
the expected value does not exist though [9].
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More generally the expected value of a function of the random variable f(x), which represents a
new random variable itself, is

E[f(x)] = E[f ] =

∫ ∞
−∞

f(x)p(x) dx. (3.16)

This can be extended to a multivariate distribution p(x, y) and a function f(x, y)

E[f(x, y)] = E[f ] =

∫ ∞
−∞

∫ ∞
−∞

f(x, y)p(x, y) dx dy, (3.17)

or the expectation with respect to x only

Ex[f(x, y)] = Ex[f ] =

∫ ∞
−∞

f(x, y)p(x, y) dx, (3.18)

which is a function of of the random variable Y . A further important concept is the conditional
expectation

Ex[f(x) |y] = Ex[f |y] =

∫ ∞
−∞

f(x) p(x |y) dx. (3.19)

Variance and Covariance The variance of a random variable X is defined as

var[x] = E[x2]− (E[x])2 (3.20)

More generally the variance of a function of the random variable X is

var[f ] = E[(f(x)− E[f(x)])2]

= E[f(x)2]− (E[f(x)])2.
(3.21)

Finally the covariance of two random variables X and Y is given by

cov[x, y] = Ex,y[(x− E[x])(y − E[y])]

= Ex,y[xy]− E[x] E[y].
(3.22)

Similar results can be derived for discrete random variables.

Parameter Estimation A typical statistical and machine learning problem is to determine an
estimate θ̂ for the vector of parameters θ of a distribution, given a set of N observations {x1,
. . . ,xN} combined into a N × D matrix X. There are two approaches for such a parameter
estimation problem: 1. Interval estimation, which gives a range of parameters together with the
level of confidence and 2. point estimation which gives one value according some criteria. The
least squares, the method of moments and the maximum likelihood estimator are examples of the
latter.

To obtain a maximum likelihood estimator one starts with the definition of the likelihood

p(X | θ̂) =

N∏
n=1

p(xn | θ̂), (3.23)
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which is a measure for the probability of the observed data set X for given model parameters θ̂.
Using Bayes’ theorem one can get the opposite, i.e. a measure for the probability of the model
parameters for a given set of observed data. Thus for finding the most likely model parameter
one can maximize Eq. (3.23). This is equally achieved by maximization of the logarithm of the
likelihood function

ln p(X | θ̂) =
N∑
n=1

ln[p(xn | θ̂)], (3.24)

because the logarithm is a monotonic increasing function. This is advantageous in both analytical
and numerical calculations. In the latter case the sum in Eq. (3.24) is less prone to numerical
underflows than the product in Eq. (3.23). In a machine learning context the negative log likelihood
is also called error function.

There are different quality criteria that apply to estimates, one of which is the bias. An estimator
is called unbiased if

E[θ̂] = θ, (3.25)

which means, that the expected value of the estimate θ̂ equals the true value of the parameter θ.
Another desirable property is that the variance of estimates should be as small as possible.

3.2.1 The Gaussian Distribution

All the mentioned properties are valid for any probability density function p(x). One very important
density function is the normal or Gaussian distribution. The univariate normal distribution [3] is
defined as

N (x |µ, σ2) =
1

(2πσ2)1/2
exp

{
− 1

2σ2
(x− µ)2

}
, (3.26)

where µ is the distributions mean value and σ2 its variance. It can be shown, that the distribution
satisfies the requirements Eqs. (3.2) and (3.3).

For a D-dimensional vector x the Gaussian distribution can be generalized to a multivariate dis-
tribution

N (x |µ,Σ) =
1

(2π)D/2|Σ|1/2
exp

{
−1

2
(x− µ)>Σ−1(x− µ)

}
. (3.27)

The mean now takes the form of D-dimensional vector µ, the variance is then represented by D×D
covariance matrix Σ and |Σ| denotes its determinant. The inverse of the covariance matrix is called
the precision matrix

Γ = Σ−1. (3.28)

In comparison to the univariate distribution, the square in the exponential changes to the quadratic
form

∆2 = (x− µ)>Σ−1(x− µ). (3.29)

The quantity ∆ is called Mahalanobis distance.
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The covariance matrix Σ To get the dependency of N (x |µ,Σ) on x one has to investigate the
exponent of Eq. (3.27). In the two-dimensional case the probability has a constant value on elliptical
surfaces centered around the mean value µ. The orientation and the scaling factor of the axes of
the ellipsoid correspond to the eigenvectors and eigenvalues of the inverse covariance matrix Σ−1

respectively.

Every matrix can be written as a sum of a symmetric and antisymmetric part [22] and it can be
shown that the anitsymmetric part cancels out in Eq. (3.27). A real, symmetric matrix has only
real eigenvalues λi and its eigenvectors ui can be chosen to be orthonormal. So the matrix Σ can
be expanded in terms of its D eigenvalues λi and eigenvectors ui in the form

Σ =
D∑
i=1

λiuiu
>
i . (3.30)

By resolving to Σ−1 and substituting this into Eq. (3.29) one finally gets

∆2 =

D∑
i=1

u>i (x− µ)

λi

=

D∑
i=1

y2
i

λi
.

(3.31)

In two dimensions Eq. (3.31) can be interpreted as the defining equation of an ellipse, whose axes
are oriented along the eigenvectors ui and have the length

√
λi.

Fig. 3.1 shows the probability density function of a two-dimensional normal distribution for different
values of the covariance matrix Σ. With the identity matrix I the covariance matrix in Fig. 3.1a
can be written as Σ = σ2I and is called an isotropic variance. In this case the probability density
function takes constant values around circles centered at the mean value µ. In Fig. 3.1b the
covariance matrix is diagonal with the values σ2

i along the diagonal. The probability density
functions takes constant values along axis-aligned ellipses. An example of the most general case in
which Σ has off-diagonal elements is depicted in Fig. 3.1c.

Likelihood The likelihood of a Gaussian distribution for a set of observations combined into a
matrix X can be written as

p(X |µ,Σ) =
N∏
n=1

N (xn |µ,Σ) (3.32)

and thus the log likelihood

ln p(X |µ,Σ) =

N∑
n=1

ln[N (xn |µ,Σ)]. (3.33)

One can analytically obtain a maximum likelihood estimate µ̂ and Σ̂ of the mean value and the
variance for the Gaussian distribution, by substituting Eq. (3.27) into Eq. (3.33) and finding the
roots of the derivative. The result of this involved calculation is

µ̂ =
1

N

N∑
n=1

xn (3.34)
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Figure 3.1: The probability density function of a two-dimensional normal distribution for different values
of the covariance matrix Σ, µ = (0, 0)>, with an isotropic variance (a), an covariance matrix with zero

of-diagonal elements (b) and covariance matrix that is rotated with a rotation matrix R =
(

cosφ − sinφ
sinφ cosφ

)
where φ = π

4 (c).
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3.3 Expectation Maximization and Mixture Models

10 7 10 6 10 5 10 4 10 3 10 2 10 1 100 101 102 103

x

10 6

10 5

10 4

10 3

10 2

10 1

100

p
(x

|τ
)

0.1
1

10

Figure 3.2: The probability density function
p(x |τ) of the exponential distribution for dif-
ferent values of the parameter τ

and

Σ̂ =
1

N

N∑
n=1

(x− µ̂)(x− µ̂)>. (3.35)

3.2.2 The Exponential Distribution

An exponential distributed random variable X has the probability density function

p(x |λ) =

{
λ exp(−λx) x ≥ 0

0 x < 0.
(3.36)

The mean value can be calculated easily

E[x] =
1

λ
. (3.37)

The recording on a logarithmic time scale as it is done in the TDDS, can be thought as sampling
of a random variable, which is a transformed version of the actual random variable [10]. By a
variable transformation, it can be shown that this transformed variable has the probability density
function

p̃(x |τ) =
x

τ
exp

(
−x
τ

)
. (3.38)

Fig. 3.2 shows the exponential distribution for values of the parameter τ .

3.3 Expectation Maximization and Mixture Models

Some particular clustering techniques rely on the idea that the pattern set is drawn form a linear
combination of basis distributions, so called mixture distributions [3, 15, 17]. In this case the
clustering problem is to identify the number of components and each of its parameters. One
well-studied technique for achieving the latter is the so-called expectation maximization (EM)
algorithm.
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Figure 3.3: (a) 400 random samples from a Gaussian mixture of two components with π1 = π2 = 0.5,
µ1 = (−2,−1)>, µ2 = (2, 1)> and Σ1 = Σ2 =

(
4 0
0 1

)
. (b) The component responsible for generating

each sample [3].

So relying on a mixture distribution makes an implicit prior assumption about the form of the
clusters, even though the parameters of the distribution are found by means of the algorithm. For
a good result the probability density function of the underlying generative process has to be known,
such a deep knowledge of the problem domain is not always available tough. The EM-algorithm
shows poor results on data sets that have clusters of shapes that diverge significantly from that
of the basis distribution. The fact that an arbitrary density function could be used as the basis
function, makes this technique yet capable for a lot of situations.

Its analytic properties and frequent occurrence in real life problems make the Gaussian distribu-
tion a popular choice for the basis distribution. The superpositions of K Gaussian components
N (x |µk,Σk) yields the distribution

p(x |π,µ,Σ) =

K∑
k=1

πkN (x |µk,Σk)

=
K∑
k=1

p(k) p(x |k).

(3.39)

The mixture distribution has 3K individual parameters: the means µ = {µ1, . . . ,µK}, the covari-
ance matrices Σ = {Σ1, . . . ,ΣK} and the so called mixing coefficients π = {π1, . . . , πK}.

Fig. 3.3a shows the distribution that results from drawing 400 random samples from a two-
dimensional Gaussian mixture of two components with equal mixture coefficients. In Fig. 3.3b
it can be seen, which of the two clusters actually contributed each point.

Integrating both sides of Eq. (3.39) with respect to x and interchanging the order of the integration
and the summation, one obtains the condition

K∑
k=1

πk = 1. (3.40)

If one requires that πk ≥ 0, πk fulfill Eqs. (3.2) and (3.3) and this justifies considering πk as the
prior probability p(k). Note, Eq. (3.39) has the form of a discrete version of the product rule
Eq. (3.10).
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3.3 Expectation Maximization and Mixture Models

zn

xn

π

µ Σ

N Figure 3.4: The probabilistic graphical model [3]

Latent Variables Trying to fit mixture model on a set of observed data points X is particularly
tricky as it is not known which one of the components is responsible for contributing one sample.
This situation can be made explicit by introducing a so-called latent variable z, the kth element of
which is 1 if the component k of the mixture contributed the point and all the other elements are
0. Thereby, the mixing coefficient can be interpreted as the probability πk = p(zk = 1). Eq. (3.39)
can now be reformulated in terms of a latent variable

p(x) =
∑
z

p(z) p(x |z). (3.41)

Probabilistic Graphical Model A probabilistic graphical model is a diagrammatic representation
of a probability distribution. In a Bayesian network, a special kind of probabilistic graphical model,
the random variables are represented by nodes and the probabilistic relationships are expressed by
arrows. Besides visualizing the structure and properties of a probabilistic model, these representa-
tion can be used to graphically achieve algebraic manipulations.

Fig. 3.4 gives the graphical model of having observed N samples from a mixture of K Gaussian
components. The small nodes indicate the deterministic parameters of the components, the box is
used as compact notation for the N independent and identical distributed samples. The shaded
node points out that xn is the observed variable, whereas the open node is used for the latent
variable zn.

Responsibility The responsibilities γk(x) are defined as the posterior probabilities and can be
found with the aid of Bayes theorem 3.13

γk(x) = p(k |x) =
πkN (xn |µk,Σk)∑
k′ πk′ N (xn |µk′ ,Σk′)

=
p(k) p(xn |k)∑
k′ p(k

′) p(xn |k′)
.

(3.42)

The responsibilities γ2(x) for the example of the two component Gaussian mixtures is depicted in
Fig. 3.5.

Likelihood By extending Eq. (3.33) for the case of a Gaussian mixture, the likelihood is

p(X |π,µ,Σ) =
N∏
n=1

p(xn |µ,Σ)

=

N∏
n=1

K∑
k=1

πkN (xn |µk,Σk),

(3.43)
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Figure 3.5: The responsibilities γ2 of the dis-
tribution of Fig. 3.3 [3].
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and the log likelihood therefore

ln p(X |π,µ,Σ) =
N∑
n=1

ln

 K∑
k=1

πkN (xn |µk,Σk)

. (3.44)

Maximum Likelihood Solution To get a maximum likelihood solution, one can again use the
derivative of Eq. (3.44) with respect to π, µ and Σ. However, there is no closed-form solution, but
an iterative procedure could be given instead. In this manner, in the E-step the responsibilities are
calculated, which can be thought as the expectation value of the latent variable. In the M-step the
parameters are re-estimated on the basis of the current responsibility, i.e. the parameters π, µ and
Σ are chosen such that the expected value of the complete data log likelihood

EZ[ln p(X,Z |π,µ,Σ, )] =
N∑
n=1

K∑
k=1

γk(zn)[lnπk + lnN (xn |µk,Σk)] (3.45)

is maximized. The result of such iterations on a pattern set drawn from a Gaussian mixture of two
components can be seen in Fig. 3.6.

One problem that has to be taken care of are singular solutions, where one component with
µk converges to just on point xn. In this case the covariance matrix Σ gets very small and
N (xn |µk,Σk) → ∞. Another drawback of an EM-base clustering approach is that the number
and the initial values of π, µ, Σ have to been known in advance and need to be therefore obtained
by an external mechanism. An inadequate choice of the initial values generally leads to slow con-
vergence or even no convergence at all. An inappropriate number of clusters has the even more
undesirable effect, of one cluster getting split up, what is illustrated in Fig. 3.7.

3.4 DBSCAN Clustering

In contrast to probabilistic clustering techniques, like the EM, the DBSCAN clustering technique
doesn’t make any assumption of the stochastic nature of the data source [1, 6, 19]. The driving
assumption behind DBSCAN and other density-based clustering techniques is that clusters are high
density areas separated from each other by sparse areas.
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Figure 3.6: (a) N = 400 samples from a Gaussian mixture with µ1,2 = ∓(5, 5)>, Σ1 = Σ2 =
(

4 0
0 1

)
,

π = (0.2, 0.8)>. (b) The initial values of the mean values µ and the covariance matrices Σ are
represented by the colored cross and the ellipses respectively. The responsibility γ2 is color-coded as in
Fig. 3.3. (c-e) The evolution of the estimation of the parameters during iterations of the EM algorithm
after the 1st, 3rd, 6th and 9th iteration. Convergence is already reached after the 9th iteration. The
covariance matrices are forced to be diagonal. [3]
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Figure 3.7: The result of the EM-based clus-
tering of the same distribution as in Fig. 3.6,
but now with three cluster centers initialized
at µ1,2 = ∓(5, 5)> and µ3 = (0, 0)>. The re-
sult converges to a solution where on Gaussian
component is split up between two clusters.
27 iterations are necessary which is consider-
ably more than in the case of initializing only
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Figure 3.8: (a) A distribution of N = 1712 samples. (b) The result of DBSCAN clustering with
ε = 0.3.

Where probabilistic techniques tend to break up or merge clusters of irregular shape, DBSCAN
shows good results with clusters of any shape. Fig. 3.8 shows a distribution that could not rea-
sonably modeled by a Gaussian mixture model, however, using DBSCAN the clusters are properly
resolved. Another advantage of DBSCAN is its simplicity and its low computational efforts com-
pared to other clustering techniques.

One of its major weaknesses is that the algorithm expects clusters of similar and homogenous
densities. With clusters having different densities and intermediate noise it could be difficult or
even impossible to find parameters that neither merge some clusters nor split them up. This problem
is illustrated in Fig. 3.9 for a Gaussian mixture of three components with different variances. On
one hand, clustering with ε lower than a certain value will merge the violet and orange cluster
Fig. 3.9a. On the other hand, clustering with ε larger than a certain value will start to break
up the low density areas of the blue cluster, which can be seen in Fig. 3.9b. In this case
the parameters of the components are chosen such that there is no global value ε that avoids
both merging the dense clusters and splitting up the sparse one. It has to be emphasized that
the problem of splitting is not solely caused by the different variances used for the components,
but rather because the samples from a normal distribution, like most other practically important
probability density functions, are more scarce in areas more distance from its mode. In [2] an
algorithm has been published, that can be considered as an enhanced version of DBSCAN that
solves the mentioned problem. Instead of a fixed cluster membership an augmented ordering of
the pattern set that represents its density-based clustering structure can be obtained. Another
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Figure 3.9: (a) N = 400 samples from a Gaussian mixture of three components µ1 = (−10,−2)>,
µ2 = (−5, 2)>, µ3 = (5,−2)>, Σ1 = Σ2 =

(
4 0
0 1

)
, Σ3 =

(
8 0
0 4

)
and π = (0.34, 0.33, 0.33)>. The violet

and orange components are very close, but nevertheless clearly distinct clusters are formed. As visible,
the blue component has a bigger variance than the others. (b) The result of DBSCAN clustering with
ε = 1 and Nmin = 4. It can be seen that most of the points from the two close components are merged
into only one cluster by DBSCAN, but some of the remote points in the low density areas of the high
variance cluster are divided into multiple clusters.

issue with DBSCAN is that the result is very sensitive to the clustering parameters. A method for
choosing the parameter ε has been proposed that tries to derive its value from the sparsest cluster.
This method however needs some user interaction and can’t therefore be used as an unsupervised
solution.

Definitions The neighborhood of a point p of the complete pattern set X is defined as the set of
samples with a distance smaller than ε

Nε(p) = {q ∈ X | d(p,q) ≤ ε}. (3.46)

In its simplest form the distance function d(p,q) corresponds to the euclidean distance. A central
concept of DBSCAN is that of a core sample, which is a sample that has at least Nmin samples in
its neighborhood

|Nε(q)| ≤ Nmin. (3.47)

A none-core sample is a sample in the neighborhood of a core point, but not a core point itself.
These concepts are visualized in Fig. 3.10a. A point p is directly density-reachable from q if q is
a core point and p is in the neighborhood of q. A point pn is density-reachable from p1 if there
is a chain of points p1, . . . ,pn such that pi+1 is directly density-reachable from pi. Two points p1

and p2 are called density-connected if there is a third point p3, both points are density-reachable
from. A cluster C ⊆ X is the biggest set of density-connected points.

Algorithm The algorithm can be roughly summarized as follows [28]: All points not visited yet
is iterated over and marked visited. If a point is a non-core point it is preliminary classified as
noise, otherwise a new cluster is created, the point is added to the cluster and its neighbors are
further processed. Any unvisited neighbor is checked to be a core point itself and its neighborhood
is added to the list of neighbors as well, if this is the case. Finally the current neighbor is added to
the cluster too if it is not part of any cluster yet and the next neighbor is processed.
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Figure 3.10: (a) The core sample is represented by the violet square, the non-core samples by dots,
the neighborhood by the corresponding circles. For Nmin = 3 the violet sample is the only core sample,
as no other circle contains at least 3 other samples. (b) The result contains only the orange cluster as
the black dot is not connected to any core sample and is therefore classified as noise.

More formally the algorithm can be represented by following pseudocode:

procedure dbscan(pattern set)
for each point in pattern set do

if not point visited then
mark point as visited
neighbors ← get neighborhood(pattern set, point)
if size of neighbors < MinPts then

mark point as noise
else

clusters ← expand cluster(pattern set, point, neighbors)

function expand cluster(pattern set, point, neighbors)
cluster ← new cluster
add point to cluster

for each neighbor in neighbors do
if neighbor not visited then

mark neighbor as visited
neighborsneighbors ← get neighborhood(pattern set, neighbor)
if size of neighborsneighbors ≥ MinPts then

append neighborsneighbors to neighbors

if neighbor not member of any cluster then
add neighbor to cluster

unmark neighbor as noise

return cluster
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4 Implementation

The overall flow chart of the TDDS analysis software framework is shown in Fig. 4.1. All the
components, excluding those marked with a star, have been implemented in the course of this
diploma thesis and will be discussed in detail in the subsequent sections. There is some additional
input/output to the file system taking place in the legacy codes which is not shown for simplicity.
The purpose of this additional input/output is to cache computation intensive parts or serve as an
interface between different components.

In the following the term block is used for a set of measurements with the same stress and recovery
conditions, i.e. the stress and recovery times, biases and temperature.

General Design The following general design decisions have been taken or the software patterns
have been followed:

• The analysis process should work both, in a batched and an interactive workflow. I.e., by
exploiting machine learning algorithms the software should automatically make suitable de-
cisions and predictions, but also provide the possibility to take manual action, if necessary.

• The software should be modular in the sense that specific components should be easily ex-
changeable in future versions of the software.

• The whole process to be implemented should, to some degree, reassemble the work flow as it
is done manually at the moment.

• Furthermore, depending on the stress and recovery scenario, the real-time measurements to
obtain TDDS could be very time-consuming. For instance, obtaining 100 traces with a typical
configuration of ts = 10 s and tr = 1 ks results in a measurement time of more than 28 h. For
this reason it is desirable that the analysis is done on-the-fly, so that the preliminary results
could by inspected by the user.

Fig. 4.1 makes it very clear that in such a long pipeline of processing, a inferior result of just one
single component results in suboptimal values of the extracted parameters or even a subsequent
component to fail. The fact that the processing of the TDDS blocks in the first loop is independent
of all other blocks makes this chain an obvious candidate for parallelization.

4.1 Cluster Initialization

As pointed out in Section 3.3, the EM algorithm itself is neither able to find a suitable number
of clusters nor their initial positions. Therefore these parameters have to be determined by other
means. The purpose of this initialization step is to generate the preliminary clusters that are used
for initializing the subsequent EM step. The quality of these initial values is essential for a fast
convergence (if convergence is reached at all) and a good result of the EM algorithm. In its current
implementation it’s prohibitive to initialize much more than 10 clusters, which nevertheless should
be enough for the typical dataset used during the TDDS analysis.
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Figure 4.1: The flow chart of the framework to analysis single trap defects using TDDS. Components
marked with * are already existing components provided by the IuE.
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4.1 Cluster Initialization

Since defects are specific to a particular device, different physical devices need certainly be initialized
independently. But for different measurements on the same physical device three different ways of
finding initial clusters are conceivable:

• Use the distributions of all blocks to generate one set of initial positions used for all blocks
during the EM.

• Group together blocks that only differ in their stress time, and use these distributions to
generate one set of initial positions used for all blocks of that group. This is motivated by
the fact that in the simple two-state model, only the number of emission events is changed
as long only the stress time is changed.

• Treat every block independently.

Rationale for Working on a Per-Block Basis Actually all three options have been investigated
but the best result has been obtain with an initialization done for each block separately. If the
stress time in one block is much lower than the capture time of the single defect, there are no or
only very few emissions in that block. By treating the blocks independently the few emission events
are either considered as noise and discarded or erroneously assigned to a nearby cluster during the
EM step. However, in the first two methods, by reusing the same initial cluster positions across
multiple blocks, it is more likely that the single emission events are assigned correctly, if the defect
shows a more pronounced cluster in a block at higher stress time. Another advantage in using
the same initial cluster positions for multiple blocks is that the cluster affiliations are maintained
during the EM step and are then available after finishing processing the entire measurement data
from a single device. If the clusters converge to the emissions events of the same defect in all blocks,
an additional defect prediction step will be unnecessary.

The mentioned advantages of using the same initial values for multiple blocks are countered by
certain disadvantages. The fact that the defect parameters considerably change as a result of
altering the stress biases and times makes it impossible to obtain good initial values that are
generally adequate. Even worse than inappropriate values for π, µ and Σ is a wrong number of
initialized clusters which leads to results where the emissions of one defect are divided between the
surplus cluster and another one (c.f. Fig. 3.7). The reason of such a surplus cluster is that the
defect has no emission events because the stress time in one specific block is much smaller than its
capture time or a volatile defect is involved.

Description of the Implementation Again, different implementations have been evaluated and
overall satisfying results have been achieved with an implementation that is presented in Fig. 4.2.
The initialization code receives its data, which consists of an array of emission times τe with respect
to the beginning of the data acquisition and the step heights ∆Vth, from the previously performed
step detection and RTN removal step.

First the complete distribution is clustered with DBSCAN. Every cluster, the number of points of
which is surpassing a certain size max points, is then further processed: First the kernel density
estimation (KDE) is calculated and the local maxima are determined and its values are normalized
to the biggest maximum. Any maximum smaller than a certain discard factor is discarded and
the remaining ones are used as new cluster centroids. Finally, every point of the distribution is
assigned to the cluster with the smallest Mahalanobis distance with respect to a certain diagonal
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Figure 4.2: The flow chart of the cluster initialization. Configuration parameters are marked with a
solid dot.
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4.2 Clustering of the Trap Emissions

covariance matrix. For the KDE Gaussian basis functions are used and the bandwidth h is chosen
according to Scott’s Rule [20]

h = κN−1/(D+4), (4.1)

where D = 2 is the number of dimensions and N is the number of emissions in that particular block
and κ is a user-configurable constant (kernel factor). Clusters from the DBSCAN with less or
equal max points emissions are not further separated.

Finally a list of clusters is returned. This allows for initializing not only the vectors of the mean
values µ, but also the vectors of the mixing coefficients π and the standard deviations σ during
the EM-algorithm with very close estimates, which typically results in fast convergence.

Rationale for the Two Step Approach This two step approach tries to mitigate the weakness
that both of the techniques have on their own. On one hand, as explained in Section 3.4, DBSCAN
tend to either merge clusters together if the intermediate noise is to high or the clusters come to
close, or conversely split them up if they get to sparse. On the other hand, if there are clusters of
very high density close enough, but yet clearly separated, the maximum of the KDE could be so
weak that it is undetectable. The reason is that the contribution of a few points of a small cluster
to the KDE could be much less than the tail of a very high density cluster. This issue is illustrated
in Fig. 4.3.

In this implementation a rather low value for ε is used that tend to merge clusters together as they
get split again anyway in the second step if they exhibit some clear density peaks. This combined
approach proved to be relative insensitive to the parameters and showed satisfying results in the
majority of cases.

4.2 Clustering of the Trap Emissions

Chapter 3 gave a short overview of different clustering algorithms and covered two algorithms in
detail, namely DBSCAN and the EM-algorithm. Section 4.1 showed how the former is used together
with KDE and the Mahalanobis distance to determine the initial parameters. These parameters are
now used as an input for the actual clustering mechanism, the EM-algorithm the implementation
of which is described in the following.

Rationale for Using a EM-Algorithm Base on Mixture Models Several clustering techniques
have been investigated during this work with only a moderate quality of the results compared to
the EM-algorithm. There are several arguments in favor of using the EM-algorithm as the main
clustering technique: By using a probabilistic model for the clusters accordingly, there is a direct
link to the physical model of the defect. This is yet very flexible, as an arbitrary function could
be used as the likelihood function. So the estimates of the model parameters are available directly
after clustering, provided that the algorithm has converged. In addition to the model parameters,
the algorithm provides the responsibilities γ, which serve as a measure of how likely one particular
point belongs to one particular cluster and could be used to give an error estimate in the subsequent
defect parameter extraction.

Nonetheless, building upon a mixture of base distributions entails, that the probability density
function of the underlying generating process has to be known in advance. As the probabilistic
defect models are able to explain the observed data reasonably well this does not seem to be a
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Figure 4.3: (a) A Gaussian mixture with three component µ1,3 = ∓(5, 5)>, µ2 = (0, 0)>, Σ1 =

Σ3 = (2, 0.5)>, Σ2 = (0.5, 0.125)>, π = (0.48, 0.04, 0.48)> and N = 400 samples. The KDE with a
bandwidth according to Eq. (4.1) with k = 1.2 (b) and k = 0.7 (c). The local maxima of the KDE are
marked with red triangles. Some very weak local maxima are omitted for clarity. In (b) the bandwidth
is to large for the second component to cause a maximum in the KDE. With the reduced bandwidth in
(c) the second component is indeed detectable but the KDE over the first component exhibits already
two maxima.

44



4.2 Clustering of the Trap Emissions

problem anymore. Besides, the mixture model makes the implementation implicitly tied to a special
distribution and makes it therefore difficult to re-use the same implementation on other problem
domains. Yet another main issue of the EM-algorithm is its numeric complexity compared to
other clustering algorithms, especially when considering high number of dimensions. This however
doesn’t seem to be an issue in the TDDS analysis as analyzing each block separately results in only
two dimensions and typically less than ten clusters, each well below 1000 points.

Some considerations have been made of regarding the stress and recovery parameters as additional
deterministic variables in the likelihood and doing a simultaneous EM across all blocks. There
are, however, many arguments against doing so. The iterations are substantially more numerically
demanding and very slow convergence is to be expected. To get a satisfying result the quantitative
influence of all stress and recovery parameters on the likelihood have to be known analytically.
Volatile and interacting defects cause additional intricacies that need to be handled manually.
Moreover there is no easy way to manually interact with this kind of processing.

Description of the Implementation In all the subsequent calculations statistical independence
between τe and ∆Vth is supposed and the following probability density function

p(x |µ,σ, k) = p(x |µk, σk) = f(δµτ,k, δµV,k)
τe

µτ,k
e
− τe
µτ,k N (∆Vth |µV,k, σk) (4.2)

is used. This probability density function incorporates the exponential distribution over τe and
the normal distribution over the ∆Vth. The additional factor f(δµτ,k, δµV,k) is a function of the
difference of the estimated mean value of τe and ∆Vth during the EM-iterations from their initial
values. The purpose of this is to avoid a drift-away of the mean values in case there is some prior
knowledge of their approximate values, or to avoid splitting up clusters in case of sub-optimal
initialization.

The flow chart of the EM-algorithm is given in Fig. 4.4. In the following it is supposed that the EM
algorithm receives K clusters from the initialization and that the observed data X = {x1, . . . ,xN}
is made up by the N overall data points in all clusters. Each data point xn = (τe,n,∆Vth,n)> is a
two-dimensional vector with one component representing the emission time τe and the other the step
height ∆Vth. The initial mean values µ = {µ1, . . . ,µK} are calculated as the arithmetic mean values
with respect to τe and ∆Vth of every cluster received from the initialization. As the exponential
distribution has only one parameter, the standard deviations σ = {σ1, . . . , σK} are initialized to
the standard deviations with respect to ∆Vth only. The mixing coefficients π = {π1, . . . , πK} are
initialized with

πk =
NK

N
, (4.3)

where NK is the number of points of the cluster K.

The process continues with the E-step by calculating the matrix of the responsibilities where the
responsibility of the component k for the data points xn is given by

γn,k =
πk p(xn |µk, σk)∑K

k′=1 πk′ p(xn |µk′ , σk′)
. (4.4)
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Figure 4.4: The flow chart of implementation of the EM algorithm. Configuration parameters are
marked with a solid dot.
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Figure 4.5: Result of EM-based clustering using assuming a bivariate Gaussian distribution (a) and
exponential distributed over τe and Gaussian distributed over ∆Vth (b)

The expected value of the complete-data likelihood is

E[p(X |µ,σ,π)] =
N∏
n=1

K∏
k=1

πk p(xn |µk, σk) (4.5)

and the expected value of the complete-data log likelihood

E[ln p(X |µ,σ,π)] =
N∑
n=1

K∑
k=1

γn,k[lnπk + p(xn |µk, σk)]. (4.6)

The M-step consists of maximizing Eq. (4.6) with respect to µ, σ and π under the constraints

0 ≤ πk ≤ 1 and
K∑
k=1

πk = 1. (4.7)

This is done numerically with the aid of the sequential least squares (SLSQP) algorithm [20]. Al-
though distributions of the exponential family, exhibit some beneficial analytical properties relying
on numerical methods for optimizing, have the advantage that the implementation gets less depen-
dent on the underlying probabilistic model. In the next step the log likelihood is calculated with
the new parameters µ, σ and π. If the difference of the log likelihood between two consecutive
iterations is smaller than a certain value, convergence is assumed and the iterations are stopped,
otherwise the algorithm starts over from the E-step.

Finally the soft cluster assignment of each point is converted to a hard one by assigning each
point n to the cluster k such that γn,k is a maximum. At this stage a point n could be discarded
from a cluster k and classified as noise according to two parameters, the minimum responsibility if
γn,k < γmin and the minimum probability if p(xn |µk,σk) < pmin.

The result of the discussed initialization and subsequent clustering of real TDDS data can be seen
in Fig. 4.5 in which (a) is based on a bivariate Gaussian distribution and (b) is based on the
distribution Eq. (4.2). Apart from the clearly higher quality of the result when considering the
temporal exponential distribution, faster converge on the TDDS data can be observed as well, which
is plausible, as the likelihood function is better adapted to the underlying probabilistic model.
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Figure 4.6: The mean values µ = (µτ , µV )> of the clusters found by the EM-algorithm. The color
gives the result of the defect prediction. It can be seen that the mean values of the clusters again form
clusters, a fact which is exploited during the defect prediction.

4.3 Defect Prediction

When reaching the cluster prediction step, all measurements of one physical device have been
clustered, i.e. the emission events in one block that are similar according to the clustering algorithm
are grouped together. Across different blocks some of these, at this point still independent clusters,
belong together as well, because the emission events are due to the same physical defect. The aim
of this step is to predict the defect each cluster is belonging to.

Rationale The näıve idea is that the mean values of the clusters across different blocks form
clusters again and to use this as a means of defect prediction, what can be seen in Fig. 4.6. With
a perfect clustering there should be a one-to-one mapping between clusters in each block and the
defects. In reality, however, this is not always the case as emission events of one defect could be
split into multiple clusters or the emission events of different defects are merged into one common
cluster. Most of the time this is the result of a suboptimal initialization. Further, more sever
complexities arise from the fact that the defect parameters change considerably in dependence of
the stress and recover conditions.

One of the advantages of this defect prediction technique is that a the emission event of one defect
that erroneously got split up into multiple cluster in a previous step are still assigned to the same
defect as long as the cluster mean lies close enough to the defect centroid. Additionally all bad
defect assignments could be easily corrected manually by the user on a per-cluster basis.

The major weakness of this approach is its incapability of handling clusters that move significantly
in response to changes of the stress or recovery conditions. As a consequence the mean values of
the clusters do not longer form clusters themselves but can be thought as stochastic deviations
from trajectories that are defined by the stress and recover conditions. Making again use of some
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kind of maximum likelihood algorithm is conceivable, but this case is much more complex, because
there are more parameters and latent variables. In concluding, it may be said that the current
implementation works fine in cases where the mean values of the clusters only move a moderate
distance across different blocks, but a much more sophisticated algorithm is necessary to handle
other cases.

Description of the Implementation The process of defect prediction is quite similar to the cluster
initialization and is sketched in Fig. 4.7. Even if the temperature dependence is not the same for
all defects, in order to at least partially compensate the temperature dependence, a compensated
emission time τ ′e is calculated with

τ ′e = τe10∆TkT , (4.8)

where τe is the original emission time, ∆T = T−100◦ is the deviation from the default measurement
temperature and kT is the compensation constant. But instead of operating on single points of one
block as in the initialization, the mean values of the clusters of all blocks received from the cluster
detection are used.

Based on the compensated clusters the KDE of the mean values of the clusters of all blocks is
calculated. The bandwidth is again selected according to Eq. (4.1), where N is the number of
clusters found in all blocks and k is chosen smaller than during the initialization. The maxima
of the KDE serve as the centroids of the defects and the Mahalanobis distance with respect to
a constant diagonal covariance matrix is calculated. Every cluster is assigned to the defect with
the smallest Mahalanobis between the cluster mean and the defect centroid and clusters whose
Mahalanobis distance surpasses a certain limit are considered as outliers and simply discarded.

4.4 Parameter Extraction

The emission time τe can, in a good approximation, be calculated as the mean value of each defect
cluster with respect to the time. The capture time τc and occupancy B is extracted by doing a least
square fit on the capture probability Eq. (2.2). The occupancy B is thus defined as the capture
probability for long stress times B = Pc(ts →∞).

For a good quality of fit of B there need to be at least a few blocks where ts � τc. For a good
quality of fit of τc there need to be at least a few block in the intermediate regime, where ts ≈ τc.
This situation is illustrated in Fig. 4.8.
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Figure 4.7: The flow chart of the defect prediction. Configuration parameters are marked with a solid
dot.
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Figure 4.8: Extraction of the capture time τc and the occupancy B of three different defects. (a) There
is not a sufficient number of measurements with a stress time ts much larger than the expected capture
time τc of the defect, so no reasonable value for the occupancy B could be extracted. (b) The stress time
ts of all measurements is much larger than the capture time τc of the defect and therefore no conclusion
about the quantitative value of τc can be drawn. (c) There is a sufficient number of measurements in
the intermediate regime where ts ≈ τc and some blocks with ts � τc, so the extracted value of both τc

and B could therefore expected to be of feasible quality.
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5 Results

Results of the clustering algorithm and other low-level components have already been discussed
in previous chapters. The following chapter gives some results of the cluster detection algorithm
applied on real TDDS data.

5.1 Granularity of the Clustering Result

Fig. 5.1 shows how the number of clusters can by determined by the kernel factor κ described in
Section 4.1. A smaller kernel factor results in more peaks in the kernel density estimation and
therefore in a larger number of initialized clusters. This example clearly points out that there is no
unique solution to a clustering problem. In the context of TDDS additional insight can be gained
by varying the stress and recovery times, the stress and recovery bias and the device temperature.

5.2 Dependence of the Emission Time on the Temperature

As aforementioned, the temperature plays an important role in the defect characterization. The
capture and emission times are very sensitive to changes of the device temperature. This behavior
is formally described by the Arrhenius’ law Eq. (2.3). Fig. 5.2 shows the mean values of five
detected clusters analyzed from recorded TDDS data of a single nanoscale device. As expected
similar emission times are observed when the stress time and stress bias is changed. This fact
can be further used to check if the detected clusters from each stress/measurement sequence are
correctly assigned to the corresponding defect. The outliers are a consequence of the recovery bias
dependence of the switching traps. The temperature dependence of the emission time τe becomes
visible through a shift of the mean values of the detected clusters at 125 ◦C (red) compared to
the clusters at 100 ◦C (blue), see Fig. 5.3. Taking defect #4 as an example, it can be seen that
the implemented defect prediction is able to assign the cluster to the correct defect even with a
considerable temperature induced change of the defect parameters.

5.3 Trapping Kinetics

The gate voltage dependence of the time constants of one particular defect is shown in Fig. 5.4. The
bias independent emission time τe is typical for fixed oxide traps. Quite contrary, the capture time
varies over multiple decades in response to a change of the stress gate bias of less than one volt,
specifically the capture time decreases with an increase of the absolute value of the gate voltage VG.
In addition to the bias dependence, the emission time τe and capture time τc change with different
device temperatures.
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Figure 5.1: The result of clustering with different values of the kernel factor of the initialization (a) κ =
1.7, (b) κ = 1.3 and (c) κ = 1.0.

Figure 5.2: The mean values of the predicted
clusters resulting from 26 measurement se-
quences of TDDS data of a PMOS device.
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Figure 5.3: The temperature dependence of
the mean values of the clusters from Fig. 5.2.
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Figure 5.5: A selection of cluster obtained from TDDS data for different readout voltages (a) VG =
−400 mV, (b) VG = −500 mV and (c) VG = −600 mV.

5.4 Limit for an Automated Analysis

Fig. 5.5 illustrates the limit of an automated analysis of TDDS data in case of coalescing clusters
as well as a pronounced change of the emission parameters as a result of a change of the recovery
condition. In both Fig. 5.5a and Fig. 5.5b the selected clusters are clearly separated and easily
identifiable. However, in Fig. 5.5c some of the clusters have coalesced into a single bigger one. It’s
impossible for both a human and a machine to make an unambiguous assignment of the emission
events to a particular defect. Because of the pronounced change of the cluster means in Fig. 5.5
this is also an example of a case where the current defect prediction algorithm fails to determine
to which defect the cluster belongs to.

5.5 Recovery Bias Dependence of Single Traps

To study the dependence of the step height of single traps on different drain-biases during recovery,
a pMOSFET (W × L = 160 nm × 120 nm) is investigated. By using the TDDS and subsequently
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Figure 5.6: Using the proposed algorithm four defects can be identified in the spectral maps recorded
using (a) VDS = −100 mV, (b) VDS = −900 mV and VG = −500 mV during recovery. The device has
been stressed using VDS = 0 V and VG = −1.8 V and the measurements are performed at T = 60 ◦C.

applying the EM based cluster detection algorithm to the spectral maps extracted from the mea-
surements, four traps could be identified, see Figs. 5.6 and 5.7. Noteworthy, even with a high
amount of intermediate noise and very close clusters, the presented algorithm leads to satisfying
results.

Finally, the recovery drain bias VDS dependence of the mean value of the step height of these four
defects is shown in Fig. 5.8. A remarkable dependency of the step heights on the recovery drain-
source bias can been, as the average step heights decrease with a smaller absolute value of VDS.

5.6 Consideration of Runtime and Number of Iterations

Fig. 5.9 shows a scatter matrix of points in a block, the number of initialized clusters, the number
of iterations and the time of the EM-algorithm until convergence. As only a very small sample
of 108 blocks in total are considered for this analysis, conclusions have to be taken with caution.
Only in rare cases more than four iterations are necessary to reach convergence. Rather intuitively
the number of iterations increases with the number of clusters, but are nearly independent of the
number of points in a block. The situation is quite different for the time to complete the EM-
algorithm, especially in dependence of the number of cluster. This can be reasoned by the fact that
every cluster adds three additional parameters to the likelihood function that has to be optimized.
Indeed, very poor convergence during the optimization step is observed with test data with more
than 10 clusters.
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Figure 5.7: With an increasing stress time from (a) ts = 100 ms to (b) ts = 2 s a new defect close to
defect #2 appears. Nevertheless, the cluster detection algorithm is able to detect the defect correctly.
Both measurements are recorded applying VDS = −300 mV at T = 60 ◦C. The stress biases are the
same as in Fig. 5.6.

Figure 5.8: The step heights, i.e. mean value
of ∆Vth shifts produced by the single defects in
Figs. 5.6 and 5.7, is plotted against VDS dur-
ing recovery. The average step heights of the
emissions become smaller for a smaller absolute
value of VDS. All experiments are performed on
the same p-channel MOSFET with a geometry
of W × L = 160 nm× 120 nm.
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Figure 5.9: Scatter matrix plot of the number of points in the switch file, the number of clusters found
during initialization, the number of iterations during the EM-algorithm, and the normalized computation
time until convergence of the EM-algorithm. The data is based on 108 blocks of TDDS data and the
values are considered on a per-block basis. The diagonal elements show a histogram of the corresponding
value. The lines represent the mean values. For the number of points the value is binned into bins of
50 points.
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6 Conclusion

A clustering algorithm based on expectation maximization (EM) as well as an implementation for
its initialization and a subsequent defect prediction has been demonstrated in this work. The good
results of the clustering algorithm can be attributed to the probabilistic nature of the EM algorithm
that accounts for the statistical behavior of the underlying physical process. Even with seemingly
nice-looking clusters the result has to be used with caution, though. By converting the fuzzy cluster
assignment to a hard one by assigning every point to the most probable cluster, will presumably
lead to clusters with a systematic bias toward an underestimated variance. Roughly speaking, there
is the tendency to smaller, denser and strictly separated clusters over overlapping sparse ones. This
however does not seem to cause big problems when it comes to the subsequent TDDS analysis.
A full probabilistic treatment of the subsequent components is conceivable, but the considerable
implementation effort is certainly the biggest counterargument. It has been observed that the re-
sult of the clustering algorithm strongly depends on the initial values that can either be supplied
manually or obtained automatically from the presented algorithm. The former manner of supply-
ing initial values is beneficial in cases where the user wants to designate the approximate cluster
positions while still taking advantage of the subsequent EM-based clustering. With basically two
parameters of the automatic initialization algorithm the clustering result can be gradually tuned
to yield a larger number of smaller clusters or a smaller number of larger clusters. Furthermore,
reasonably fast convergence in most cases is achieved by the presented initialization. The com-
putational demand of the implementation calls for parallelization which could be achieved easily
because of the missing interdependency between different TDDS measurements during the cluster
detection. Such an interdependency comes into play in a defect prediction step subsequent to the
EM. Perfect results are achieved with the proposed straightforward implementation of the defect
prediction approach in cases where the mean values of the emission events of the defects only move
moderately as a result of a change of the stress and recovery bias conditions and temperature. A
much more sophisticated implementation is necessary to handle other cases. The compelling reason
of a separate cluster prediction step is that the defect assignment of a cluster can be easily done
manually for cases in which the automatic prediction fails. The output of the clustering algorithm
is still valuable in such cases due to the time-saving compared to manually marking the clusters. In
concluding, it may be said that the implemented clustering algorithm proved capable of performing
an unsupervised analysis of TDDS data in a lot of cases, which opens up the opportunity for an
automated study of both single devices and whole transistor arrays.
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