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Abstract

In this thesis, we use temporal-epistemic logic to analyze asynchronous message-
passing systems with up to f Byzantine node failures. We introduce the class of
contexts Γbamp, a model for Byzantine asynchronous message-passing systems that
allows us to apply temporal-epistemic logic. We propose an intuitive interpretation
of knowledge for Byzantine-faulty agents. We use temporal-epistemic logic to prove
that with up to f Byzantine-faulty agents, an agent can initially only gain knowledge
by receiving messages from at least f + 1 agents.

We seek to apply temporal-epistemic logic to the analysis of fault-tolerant dis-
tributed clock synchronization. For this purpose we introduce Firing Rebels without
Relay, a weaker problem related to clock synchronization. We apply our model
to prove necessary and sufficient knowledge for the actions of agents in Firing
Rebels without Relay. Based on necessary knowledge, we derive a lower bound on
communication between agents.

This work was supported through project RiSE/SHiNE (S11405) of the Austrian
Science Fund (FWF).
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Kurzfassung

In dieser Diplomarbeit verwenden wir temporal-epistemische Logik, um asynchro-
ne Message-Passing-Systeme mit bis zu f Byzantinisch fehlerhaften Rechenknoten
zu analysieren. Wir stellen die Kontextklasse Γbamp vor, ein Modell für asynchro-
ne Message-Passing-Systeme mit Byzantinischen Fehlern, in dem wir temporal-
epistemische Logik verwenden können. Wir stellen eine anschauliche Möglichkeit
vor, wie Wissen für Byzantinisch-fehlerhafte Akteure definiert werden kann. Mittels
temporal-epistemischer Logik zeigen wir, dass ein Akteur in einem System mit bis
zu f Byzantinisch-fehlerhaften Akteuren zu Beginn nur dann Wissen gewinnen kann,
wenn er Nachrichten von mindestens f + 1 Akteuren erhält.

Wir versuchen, fehlertolerante verteilte Uhrensynchronisation mittels epistemi-
scher Logik zu untersuchen. Zu diesem Zweck führen wir Firing Rebels ohne Relay ein,
ein einfacheres, aber mit Uhrensynchronisation verwandtes Problem. Mit unserem
Modell beweisen wir notwendiges und hinreichendes Wissen, mit dem Akteure in
Firing Rebels ohne Relay agieren können. Davon ausgehend leiten wir eine untere
Schranke für die Kommunikation zwischen Akteuren ab.

Diese Arbeit wurde durch das Projekt RiSE/SHiNE (S11405) des Österreichischen
Wissenschaftsfonds (FWF) unterstützt.
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CHAPTER 1
Introduction

In distributed computing systems, several processing nodes—agents— communicate
with each other to solve a given distributed computing problem, coordinating cer-
tain decisions or actions. Given a problem statement, how soon and under what
circumstances can an agent perform some action X without potentially violating
correctness criteria for the system—for example, when can a consensus algorithm
decide on a certain value, or when can a tick generation algorithm advance the clock
value? An engineer might argue informally that “the agent can perform action X
once it knows that Y has happened”, or “no algorithm can solve the problem earlier,
because the agent cannot know whether X or Y has happened”. Knowledge and
indistinguishability are intuitive concepts for reasoning about distributed systems.

Indistinguishability arguments and combinatorial reasoning are frequently used in
proofs for problems in Distributed Computing, often in an ad-hoc manner. Epistemic
logic—logic with a concept of knowledge—can be a natural fit for these kinds of
arguments and has been applied to distributed systems before. Epistemic logic
is a modal logic that enables statements such “agent X knows that Y has hap-
pened”. In semantics for epistemic logic, knowledge is usually defined through
indistinguishability. Research has used the potential of epistemic logic to make
arguments about distributed systems simpler, more rigorous, or provide additional
insights on the fundamental properties of a given distributed computing problem
[FHMV03,DM90,BM14].

Temporal logic is logic extended by a notion of time; it enables statements such as
“from now on, X holds forever” or “at some point in the future, Y holds”. Temporal
and epistemic operators can be combined to form temporal-epistemic logic.

Most published results that apply epistemic logic to distributed systems either
assume a failure-free system, or if they talk about Byzantine failures, they restrict
themselves to a crash/omission failure assumption, e.g. [DM90,HMW01,CGM14].
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In this work, we investigate how a Byzantine failure assumption without restrictions
and the knowledge-based approach play together, and take first steps towards the
analysis of fault-tolerant clock synchronization using temporal-epistemic logic.

Fault-tolerant clock synchronization has been studied extensively at the Institute
of Computer Engineering at TU Wien, particularly in weak asynchronous system
models without absolute time bounds [WS09,RS11]. Ultimately, we would like to
see a knowledge-based characterization of clock synchronization, in the hope that it
provides new insights on about clock synchronization in different system models. We
would like to understand in which system models clock synchronization is achievable
at all, and why. This thesis aims to provide a starting point for future work in this
direction.

Research for this work began in March 2016. Based on a January 2017 draft of
this thesis, Prosperi, Kuznets and Schmid [PKS17] started further research in the
area of temporal-epistemic logic for Byzantine-faulty message-passing systems. We
briefly mention a few of their ideas in the final version of this thesis.

This work received support through project RiSE/SHiNE (S11405) of the Austrian
Science Fund (FWF), which we gratefully acknowledge.
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1.1. Related Work

1.1 Related Work

The following publications are related to this thesis, grouped by topic:

Temporal-epistemic logic. The foundation for our analysis of distributed systems
using temporal-epistemic logic is laid by Fagin, Halpern, Moses and Vardi [FHMV03],
the revised edition of [FHMV95], which collects material from several earlier papers
by the authors such as [HM90]. Fagin et al. define a formal model of distributed
systems that allows the evaluation of temporal-epistemic formulas, which we present
in Chapter 3. Van Ditmarsch, van der Hoek and Kooi [DHK08] give a modern
introduction to epistemic logic isolated from its application to distributed systems
from which we borrow some notation.

Knowledge and communication. Ben-Zvi and Moses [BM14] extend Lamport’s
happened-before relation [Lam78] to derive a link between nested knowledge and
communication in distributed systems. Assume an asynchronous, failure-free system
with bounded message delivery times. In this system model, they define a simple
problem called Ordered Response. They derive necessary knowledge that agents
need to obtain to solve Ordered Response, and find that it is nested knowledge.
Generalizing these findings, they show that a certain communication pattern—a
centipede—must always occur when agents obtain such nested knowledge.

Knowledge and failures. Variants of the consensus problem have been studied
using epistemic logic under a crash/omission failure assumption. In particular,
simultaneous Byzantine agreement was investigated by Moses and Tuttle [MT88] and
Dwork and Moses [DM90]. Eventual Byzantine agreement has been studied using
epistemic logic by Halpern, Moses and Waarts [HMW01], Neiger and Bazzi [NB99],
and Castañeda, Gonczarowski and Moses [CGM14]. Ruben Michel [Mic89] combines
a restricted Byzantine failure assumption with category theory. In contrast to
our model, Michel allows agents to only have corrupted state, but not to send a
combination of messages that appears in no legal state.

Clock synchronization. Fault-tolerant clock synchronization is a well-studied
problem in distributed systems literature, e.g. see [AW04]. Our analysis uses an
algorithm by Widder and Schmid [WS09], a variation of Srikanth and Toueg [ST87].
Widder and Schmid [WS09] and Robinson and Schmid [RS11] have studied fault-
tolerant clock synchronization under particularly weak assumptions on relative
end-to-end delay. We are not aware of published results on the application of
epistemic logic to fault-tolerant clock synchronization.
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1.2. Outline and Major Contributions

1.2 Outline and Major Contributions

This thesis is laid out as follows:
Chapter 2 introduces and motivates an abstract notion of knowledge for readers

unfamiliar with epistemic logic. We define knowledge based on indistinguishability
of worlds. We briefly explore group knowledge and introduce the Muddy Children
Puzzle as an example application showing some of the intricacies of nested knowledge.

Chapter 3 explains how temporal-epistemic logic can be applied to distributed
systems, and we introduce runs, systems, protocols, and contexts [FHMV03]. We
define a semantics for temporal-epistemic logic over runs that forms the foundation
for arguments and proofs in later chapters.

Chapter 4 introduces Γamp, the class of failure-free asynchronous message-passing
contexts, a model for distributed systems that enables reasoning using temporal-
epistemic logic. We explain the model and explain limitations that we encountered
trying to model lock-step synchronous systems.

Chapter 5 extends Γamp to Γbamp, the class of Byzantine asynchronous message-
passing contexts. We discuss how the knowledge of Byzantine-faulty agents in our
model can be understood intuitively. We prove a basic theorem about knowledge
gain in Byzantine asynchronous message-passing contexts.

Chapter 6 introduces Firing Rebels, a variant of Firing Squad [BL87]. We
argue that Firing Rebels is a stepping stone towards an analysis of fault-tolerant
clock synchronization using epistemic logic. We use our definition of Byzantine
asynchronous message-passing contexts to analyze necessary and sufficient knowledge
for agents to solve Firing Rebels without Relay. We derive a basic statement about
necessary communication to solve Firing Rebels without Relay.

Chapter 7 summarizes our results, explains difficulties that we encountered, and
explores directions for further research.

The appendix lists our references, along with a glossary of mathematical symbols
used in this thesis.
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CHAPTER 2
Introduction to Epistemic Logic

What does it mean to know something? As a first approximation, philosophy
literature has discussed the question whether or not knowledge can be described
as “justified, true belief”. In everyday speech, we assign an intuitive meaning to a
sentence such as “Bob knows that 2 + 2 = 4”. What is the exact semantic meaning
of such a sentence, and can we find a formalization for it?

The field of epistemic logic provides formal tools for reasoning about knowledge.
What it calls knowledge is an abstraction, an idealization of human knowledge. We
will later see how this formal notion of knowledge allows us to reason about the
information states of agents in distributed computing systems.

In this chapter, we discuss the Possible-Worlds model [Hin62,FHMV03], which
enables us to reason about knowledge in a static world. We will see how knowledge
defined this way shares some properties with human knowledge as understood in
everyday language use, justifying the terminology. We introduce different notions
of group knowledge. We then turn to the Muddy Children Puzzle as a well-known
example demonstrating the application of epistemic logic.

Chapter 3 builds upon the notion of knowledge developed here, but introduces a
separate model based on runs and systems [HM90,FHMV03].

5



2.1. Possible Worlds

2.1 Possible Worlds

The possible-worlds model formalizes a notion of knowledge. In this chapter, we
consider abstract agents and their knowledge, removed from a specific application
domain. Chapter 3 introduces a model specifically for distributed computing systems.

In the possible-worlds model, agents are actors within a global state or world. For
example, in distributed systems as will be introduced in Chapter 3, agents represent
processes or processors. However, an agent might just as well represent an idealized
human, as in the Muddy Children Puzzle (Section 2.4).

As a convention, we use the letters i, j, . . . to denote agents. Often, we consider
n agents and label them i1 through in, giving rise to the following definition:

Definition 2.1. A = {i1, i2, . . . , in} is the set of agents.

We want to consider different scenarios of how the agents A behave and in particular,
what information they have available. We capture this using the notion of a global
state that agents find themselves in. This global state can be considered as being
one of multiple possible worlds for these agents.

Definition 2.2. G is the set of global states (set of all possible worlds).

Right now, we do not make any assumptions about the shape of a global state s ∈ G.
The global states should be considered as abstract objects. Only when we consider a
specific scenario, we might specify the shape of global states in detail.

A global state s (a world s) represents the state of the agents A at a specific
point in time, a “snapshot” of the agents and their information. We will soon see
that we can reason about the state of agents A using propositional logic, extended
with knowledge operators Ki. When doing so, we want to make statements about
certain facts about the world s. How do we denote these in a formula? At the most
basic level, we need some atomic propositions to express facts that hold in a given
world:

Definition 2.3. Π is the set of atomic propositions. Every p ∈ Π is an atomic
proposition (a propositional atom).

Π may be countably infinite. The actual propositions are specific to each individual
scenario. For example, atomic propositions could be “agent 2 has the ace of spades
on its hand” or “child 5 has mud on its forehead” (see Section 2.4). We will assign
identifiers for such propositions as needed. The choice of atomic propositions defines
what statements we can make about a world s, and hence Π is chosen depending on
the specific arguments we want to make about worlds or systems.

We require that an omniscient observer can determine the truth value of an atomic
proposition by examining the global state s. In other words, atomic propositions can
be either true or false in a given world, and cannot change within this world. This

6



2.1. Possible Worlds

allows us to define an interpretation function (truth assignment function, valuation)
as follows:

Definition 2.4. An interpretation function π : G 7→ (Π 7→ Bool) assigns a truth
value to each atomic proposition p ∈ Π, depending on the global state s ∈ G over
which it is evaluated.

Note that π has the state s as a parameter, and is function-valued (it returns
another function). Every π(s) is an interpretation (truth assignment) in the sense
of propositional logic. π(s)(p) is the truth value of atomic proposition p in state s.
We use > and ⊥ to denote true and false respectively, and write the set of Boolean
values as Bool = {>,⊥}.

Throughout this thesis, we will not explicitly define the interpretation function π,
but assume that π is clear from the context. We will specify the meaning of atomic
propositions as we introduce them.

So far we have discussed facts about the world as they can be examined by an
omniscient observer. What about individual agents? An agent i may have limited
information about the global state. Multiple global states, as distinguishable by an
omniscient observer, may result in the same local state for agent i, such that the
agent considers several global states possible. In other words, these global states are
indistinguishable to i with its current information.

The ability to rule out certain global states is what we use to define knowledge
of an agent. To formalize this intuition, we can define a Kripke model as follows,
following [FHMV03] with some notation borrowed from [DHK08]:

Definition 2.5. Let G be a set of global states, π an interpretation function over Π,
and R1 through Rn relations on global states, Ri ⊆ G2. Then

M = (G, π,R1, . . . , Rn)

is a Kripke model over Π for n agents. Ri is the accessibility relation of agent
i.

The key part here are the accessibility relations Ri. (s, t) ∈ Ri means that in global
state s, agent i considers it possible that the global state is actually t. Throughout this
thesis, we assume that Ri is an equivalence relation (reflexive, symmetric, transitive);
this is the S5 class of models [DHK08].

With Ri as an equivalence relation, (s, t) ∈ Ri has the intuitive meaning that the
global states s and t are indistinguishable to agent i. The notion of indistinguishability
is central to our notion of knowledge. Consider a formula ϕ. In any given world s, ϕ
either holds or doesn’t hold. We interpret “knowledge” that an agent i has as follows:

7



2.1. Possible Worlds

Definition 2.6. We say that agent i knows ϕ when, in all worlds that i considers
possible, ϕ holds.

This can be formalized as follows. We write Ki ϕ for “agent i knows that formula
ϕ holds”. By enriching propositional logic with operators Ki, we get the following
language:

Definition 2.7 (Syntax). Let LP W be the language generated by the following BNF
specification:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Ki ϕ

where the symbol p is any atomic proposition p ∈ Π, and i is any agent i ∈ A.

Note that other propositional operators such as ∨ or → can be rewritten using ∧ and
¬, and are not explicitly introduced here. We will revisit this topic in Section 3.10.

The language LP W allows us to formulate statements about the knowledge of
agents in a certain world s. Given a formula ϕ ∈ LP W , we want to check whether it
holds, relative to a Kripke model M and a fixed world s. This is captured in the
following semantics for LP W .

Definition 2.8 (Semantics). A formula ϕ ∈ LP W is evaluated with regard to a
Kripke model M = (G, π,R1, R2, . . . , Rn) and a global state (world) s ∈ G as follows:

(M, s) |= p iff π(s)(p) = >. (2.1)
(M, s) |= ψ ∧ ψ′ iff (M, s) |= ψ and (M, s) |= ψ′. (2.2)
(M, s) |= ¬ψ iff (M, s) 6|= ψ. (2.3)
(M, s) |= Ki ψ iff (M, t) |= ψ for all t with (s, t) ∈ Ri. (2.4)

This is our first definition of semantics for Ki. We will later see a different semantics
that is tailored to distributed systems and that incorporates time (Section 3.10). With
Definition 2.8, an agent i is ascribed knowledge of ϕ if it has sufficient information
to rule out all worlds in which ϕ does not hold. This information is encoded in the
relation Ri as well as the actual state s as seen by an omniscient observer.

Halpern and Moses [HM90] aptly remark that “Knowledge is just the dual of
possibility [. . .]”. This is not only an intuitive summary of the definition of knowledge
we just gave, but also true in a technical sense: Along with Ki, it is common to
introduce the dual operator K̂i ϕ = ¬Ki ¬ϕ. The intuitive meaning of K̂i ϕ is “agent
i considers ϕ possible”.

8



2.2. S5 Models

2.2 S5 Models

The class (collection) of all Kripke models where all Ri are equivalence relations
is denoted as S5 , which we will also call epistemic models [DHK08]. All models
considered in this thesis are epistemic models. Epistemic models have the following
properties:

Proposition 2.9. The following hold for any Kripke model M , world s and any
formulas ϕ,ψ ∈ LP W :

(K) M, s |= Ki (ϕ→ ψ)→ (Ki ϕ→ Ki ψ)
(T) M, s |= Ki ϕ→ ϕ

(4) M, s |= Ki ϕ→ KiKi ϕ

(5) M, s |= ¬Ki ϕ→ Ki ¬Ki ϕ

These equations are modeled after axioms in deductive systems for epistemic logic,
where (K) corresponds to the distribution axiom, (T) to the truth axiom, (4) to
positive introspection and (5) to negative introspection. These are axioms in the
axiom system S5, which we will not explore in this work as we restrict ourselves to
semantic (rather than syntactic) reasoning.

These equations show that with Definition 2.8, the operator Ki actually possesses
some properties that we also expect of human knowledge. For example, (T) intuitively
states that only true things can be known. (4) states that agents know what they
know, while (5) states that agents know what they don’t know. As [DHK08] remark,
the assumption that agents know what they don’t know is rather strong, and a good
example for how the properties of Ki deviate from typical assumptions about human
knowledge.

A more in-depth treatment of axiom systems and syntactic reasoning for epistemic
logic is given by [FHMV03] and [DHK08]. Throughout this thesis, we will limit
ourselves to reasoning on the semantic level.

2.3 Group Knowledge

We have defined knowledge for a single agent i. What if we have a group G of agents,
G ⊆ A? What can we say about their knowledge? Can agents in such a group gain
information by pooling their knowledge?

Halpern and Moses [HM90] introduce four notions of group knowledge:

Definition 2.10 (Notions of group knowledge). For a group G ⊆ A, we define the
following knowledge operators:
• DG ϕ — distributed knowledge: if an agent knew everything that each member
of G knows, it would know ϕ,

9



2.4. Muddy Children Puzzle

• SG ϕ — someone in G knows ϕ,
• EG ϕ — everyone in G knows ϕ, and
• CG ϕ — ϕ is common knowledge in G, that is, Ek

G ϕ holds for arbitrary k.

The subscript “G” is usually omitted when G = A.

Note that Ek
G ϕ is an abbreviation for

k times︷ ︸︸ ︷
EGEG · · ·EG ϕ. Interestingly, while Ki ϕ→

KiKi ϕ holds by Proposition 2.9, EG ϕ→ EGEG ϕ does not always hold. This also
means that in general, CG ϕ is a stronger statement than Ek

G ϕ for any given k.
Clearly, SG and EG could equivalently be specified in LP W using just Ki, dis-

junctions and conjunctions. On the other hand, DG and CG are, in a sense, new
notions of knowledge. We can extend our semantics as follows:

(M, s) |= SG ψ iff (M, s) |= Ki ψ for some i ∈ G. (2.5)
(M, s) |= EG ψ iff (M, s) |= Ki ψ for all i ∈ G. (2.6)
(M, s) |= CG ψ iff (M, s) |= Ek

G ψ for k = 1, 2, . . . (2.7)

(M, s) |= DG ψ iff (M, t) |= ψ for all t with (s, t) ∈
⋂
i∈G

Ri. (2.8)

2.4 Muddy Children Puzzle

The Muddy Children Puzzle is a popular example for the kind of reasoning that
epistemic logic can capture. The following account is from [Bar81], cited after
[HM90]:

Imagine n children playing together. The mother of these children has
told them that if they get dirty there will be severe consequences. So,
of course, each child wants to keep clean, but each would love to see
the others get dirty. Now it happens during their play that some of the
children, say k of them, get mud on their foreheads. Each can see the
mud on others but not on his own forehead. So, of course, no one says a
thing. Along comes the father, who says, “At least one of you has mud
on your head”, thus expressing a fact known to each of them before he
spoke (if k > 1). The father then asks the following question, over and
over: “Can any of you prove you have mud on your head?” Assuming
that all the children are perceptive, intelligent, truthful, and that they
answer simultaneously, what will happen?

In the possible-worlds model introduced in this chapter, the children can be considered
agents; the father could also be considered an agent, or an entity external to the
system. We will stick with the latter interpretation, only considering children to be
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agents. As the father makes his announcements and asks questions, the knowledge
of the children changes, which we can model as a series of Kripke models M . We
will use the following atomic propositions to reason about this problem:
• pi means that the i-th child has mud on its forehead (1 ≤ i ≤ n), and
• q means that k ≥ 1, i.e., at least one kid has mud on its forehead.

Note that q captures exactly the father’s initial statement, while the father’s repeated
question, “Can any of you prove you have mud on your head?”, is essentially asking
whether Ki pi for some i.

What will happen? [Bar81] notes that with k muddy children, all children will
answer “no” the first k − 1 times. When the father asks his question for the k-th
time, the k muddy children will answer “yes”.

Let us consider the case when exactly one child has a muddy forehead, i.e., k = 1.
The only muddy child, say i, will see only clear foreheads; thus considering k = 0
and k = 1 possible. But with the father’s announcement, k = 1 remains as the only
possibility, and Ki pi holds. Similarly, for k ≥ 2 muddy children, assume that the
muddy children would have answered “yes” to the (k − 1)-th question or earlier if
there were less than k muddy children. Then all muddy children, who see k − 1
muddy foreheads, can conclude that their foreheads must be muddy.

As [Bar81] remarks, in the case of k ≥ 2, the father’s initial announcement of k ≥ 1
is not providing any new information. But, assuming that the children still consider
k = 1 possible, the children cannot solve the puzzle without this announcement!

What is going on from the perspective of epistemic logic? Consider the situation
with two muddy children, k = 2. Before the father’s announcement, everyone knows
that k ≥ 1, i.e., E q holds. But not everyone knows that everyone knows this, i.e.,
E2 q does not hold. On the other hand, since everyone can observe the father’s
announcement, and everyone can observe this, . . . , we have C q after the father’s
announcement. The effect of the father’s announcement is to establish common
knowledge.

[HM90] argue that to solve the muddy children puzzle, at least Ek q is required,
whereas Ek−1 q is not sufficient. It is the father’s announcement that provides
this required level of knowledge (and it even provides a stronger condition, namely
common knowledge).

Other puzzles lend themselves to an analysis using epistemic logic: e.g., “Consec-
utive Numbers” [DHK08, ex. 2.4] or “Three-player card game” [DHK08, ex. 4.2]. The
framework of epistemic logic can also be applied to distributed computing systems,
as we will see in the next chapter.
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CHAPTER 3
Temporal-Epistemic Logic in

Distributed Systems

In Chapter 2, we introduced the possible-worlds model and a formal definition of
knowledge. So far we have evaluated formulas over one specific, static world. To
describe distributed systems, we would like to argue not only about one world
in isolation, but about a time sequence of worlds, or even multiple, related time
sequences.

A problem in distributed systems is typically characterized by a problem statement
and a system model. The system model describes what is also called the setting or
environment that agents find themselves in. What we refer to as agents are also
called processors, processes, or nodes depending on literature. The system model is an
abstraction of the real-world processing and networking characteristics of computing
systems. At a very fundamental level, system models are called synchronous or
asynchronous, depending on whether agents have access to a shared notion of time (a
shared clock). If the system model allows erroneous computations or communication,
the failure assumption specifies the remaining correctness guarantees, typically as an
upper bound on the number of failures of a certain kind. To ensure progress, liveness
conditions are another part of the system model.

A system going through a possibly infinite sequence of states is called an execu-
tion [AW04] or run [HM90]. A run is typically the result of executing an algorithm
in the given system. When all conditions on system behavior, such as the failure
assumption or liveness conditions are fulfilled in a run, such a run is called admissi-
ble [AW04]. The goal is then often to analyze which properties hold in all admissible
runs of an algorithm, or to find an algorithm that guarantees certain properties in
all admissible runs.

In this chapter, we introduce runs, systems, protocols and contexts [HM90,
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FHMV03] as a foundation for reasoning about distributed systems using temporal-
epistemic logic. In Chapter 4, we see how this framework applies to asynchronous
message-passing systems in particular. In Chapter 5, we extend this further to a
Byzantine [LSP82] failure assumption.

Throughout this chapter, we assume a discrete time domain, t ∈ {0, 1, . . .}. This
is not in conflict with a treatment of asynchronous systems: one can think of the
time base being stretched by an arbitrary factor, or t progressing simply whenever a
message arrives. t does not necessarily progress at the same speed as real time or at
constant speed.

3.1 Runs

Runs and systems are a formalization of a “time-series of worlds” and enables
analysis of distributed systems using temporal-epistemic logic. Runs and systems
were proposed in [HF89,HM90] and appeared slightly refined in [FHMV03]. Runs
and systems are used to analyze distributed systems for example in [HM90], which
examines common knowledge in distributed systems, and in [BM14], which inves-
tigates necessary communication structures for certain actions (centipedes). Runs
and systems are the foundation for the higher-level concepts of protocols [HF89] and
contexts [FHMV95,FHMV03].

As in Section 2.1, we consider a set of n agents A = {i1, i2, . . . , in}. In the
context of distributed systems, agents are nodes (processes, processors) on some
sort of computing network. Each agent can be thought of as executing a local state
machine. In addition, we will consider the environment as a “pseudo-agent”. The
state of the environment can encode external influences on the system, for example,
input, wall-clock time, randomness, failures, etc. The set of agents A contains all
regular agents, but not the environment.

In this section, we introduce runs over abstract state domains. We later introduce
message-passing systems, where local states are histories.

Definition 3.1. Consider a snapshot of n agents at a given point in time. Let se be
the state of the environment, and si be the state of agent i for all agents 1 ≤ i ≤ n.
Then,

s = (se, s1, s2, . . . , sn)

is the global state s. For each agent i, Li is the domain of local states of agent i,
Le is the domain of local states of the environment, and G is the domain of global
states, with si ∈ Li, se ∈ Le, s ∈ G, and

G = Le × L1 × L2 × · · · × Ln.

In Section 2.1, we introduced an abstract definition of global states and called them
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worlds. For runs and systems, we assume a specific shape of the global state, namely
that it is composed of the local states of individual agents. This is a natural way of
modeling distributed computing systems.

When a computing system executes an algorithm, a time-sequence of global states
can be observed. In the terms of [AW04], this would be called an execution. In the
framework of runs and systems, this is called a run. Following [FHMV03], we define
runs as follows:

Definition 3.2. A run r : N 7→ G represents one specific execution of a system in
the history of time. r(t) maps a point in time to a global state of the system.

Per Definition 3.1, a global state s ∈ G consists of the state of the environment se

and the local states of agents s1, . . . , sn. Analogous to this notation, we split r(t)
into per-agent components, such that for all r(t) ∈ G,

r(t) = (re(t), r1(t), r2(t), . . . , rn(t)).

ri : N 7→ Li is the sequence of local states of agent i in run r.

Throughout this thesis, the domain of t is N = {0, 1, 2, . . .}, so ri(t) is the state
of agent i in run r at time t. This is the notation that we will most frequently use,
such as when we will define the knowledge operator over runs. Note that for two
agents i and j, ri(t) and rj(t) refer to the same run r (ri and rj are not independent
objects).

3.2 Systems

A set of related runs—for example, all runs that correspond to executions of a given
algorithm in a computing system—is called a system [FHMV03]:

Definition 3.3. A system R over G is a set of runs. We say that a run r ∈ R
is a run of system R.

Note that system is a technical term here. A system R in the sense of Definition 3.3
can represent a distributed computing system, or an abstraction for the behavior of
a group of people. We might also be able to come up with a system R in the sense
of Definition 3.3 that does not resemble any such real-world group of agents. To
prevent confusion, we will write “the system R” as a fixed expression when referring
to a system in the sense of Definition 3.3.

A system R is really just any set of runs with a common set of agents and domain
of global states, and this set a priori does not have any additional properties that
make it a “system”.
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Assume that we want to talk about a run r at some time t. Then we might not
only be interested in the global state r(t), but also the earlier and later states in this
run. [FHMV03] introduce the following terminology:

Definition 3.4. A point in system R is a pair (r, t) such that r ∈ R and t is in the
domain of r.

Technically, (r, t) is a pair of a run and a time, whereas r(t) is just a global state
without connection to r or t. We will often not make this distinction and write (r, t)
and r(t) interchangeably.

3.3 Histories

We have defined runs and systems over abstract domains for states. In order to model
message-passing systems1 using runs and systems, we define histories. We consider
systems with perfect recall [FHMV03], that is, systems where agents remember all
of their past states. In Section 3.10, we will use the local state of agents to define
epistemic knowledge. There are only a few ways how the local state of agents can
change, and thus how agents can gain knowledge in a message-passing system:
• performing a local state transition (computation),
• sending a message,
• receiving a message, or
• interactions with the environment (inputs, passage of time).

No other communication or synchronization primitives exist.

In line with these constraints, we model the local state of agents in such a system
with histories. We extend the definition of Fagin et al. [FHMV03] to allow sets of
events at each time step and include external events [BM14]:

Definition 3.5. Fix an agent i. Let Σi be its set of initial states, Inti its set of
internal actions, Exti its set of external actions, and Msgs a set of messages. These
domains are arbitrary. Then a history h over Σi, Inti,Exti,Msgs is a sequence

h = 〈si0, E1, E2, . . . , Em〉,

where 〈si0〉 ∈ Σi is the initial state of agent i, m is arbitrary ≥ 0, and E1 through
Em are sets of events on agent i as per Definition 3.6.

1Here, “message-passing system” refers to computers on a network, not a system R in the sense
of Definition 3.3. However, Definition 3.7 will also use the term “message-passing system” to refer
to a system R with certain properties. This ambiguity is a bit unfortunate, but we want to stay
true to the terminology introduced by [FHMV03].
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3.3. Histories

For ease of exposition, we assume that any message M ∈ Msgs is unique, and that it
is sent only once. This is an innocent assumption, since starting from a system where
messages do not have this property, we can make messages unique by attaching a
sequence number for our analysis (possibly resulting in an infinite set of messages),
an approach taken by [PKS17].

Sequence notation. We denote histories as (ordered) sequences. When h is a
sequence, we will write h′ = h : E to indicate that h′ equals h with the sequence
element E appended, i.e. 〈si0, E1〉 : E2 = 〈si0, E1, E2〉. We blur the line between
sequences and sets when the intended meaning should be clear, in particular we will
write E1 ∈ h for “E1 is an element of sequence h”.

Definition 3.6. Fix an agent i. An event on agent i (e ∈ E ∈ h) is one of the
following with its intended meaning, for any j ∈ A, M ∈ Msgs, a ∈ Inti, b ∈ Exti:
• internal(i, a): Agent i performs internal action a (a local computing step).
• send(i, j,M): Agent i sends message M to agent j.
• recv(j, i,M): Agent i receives message M from agent j.
• external(i, b): External action b occurs on agent i.

We define the arguments of send and recv here such that both send(a, b,M) and
recv(a, b,M) refer to a message M from a to b.

Note that i is fixed in Definitions 3.5 and 3.6, i.e., the history of agent i can only
contain events pertaining to agent i. si0 is a single object, but E1 through Em are sets
of events. The intuition is that events in the same set E occur simultaneously. This
makes it possible to model e.g. lock-step synchronous systems or atomic broadcasts
in this framework.

How do histories of agents evolve over time in a message-passing system? Infor-
mally, the history of agent i starts out with the initial state only (m = 0). When one
or multiple events occur, a set of events E is appended to the history. In a lock-step
synchronous system, such a set of events might occur at every time step for every
agent. In an asynchronous system, this might not be the case. Hence, the length of
the history is not necessarily linked to the elapsed time.
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3.4. Message-Passing Systems

3.4 Message-Passing Systems

We now consider systems R where the local states of agents are histories and progress
in such a way that they record all past events that have occurred on an agent. When
a system R fulfills these constraints, Fagin et al. [FHMV03] call R a message-passing
system:

Definition 3.7. A system R is a failure-free message-passing system when
all of the following hold for any run r ∈ R, any time t and any i, j ∈ A:
(MP1) ri(t) is a history over Σi, Inti,Exti,Msgs.
(MP2) When recv(i, j,M) has occurred in the history rj(t), a corresponding event

send(i, j,M) has occurred in the history ri(t).
(MP3) ri(0) consists only of the initial state of agent i.

ri(t+ 1) equals ri(t), optionally extended by one set of events.

(MP1) limits what kind of knowledge agents can have, since ri(t) is the local state
of agent i. (MP2) guarantees causality of message delivery, and in fact also that
messages cannot be forged or corrupted. (MP3) describes how histories evolve, and
it establishes perfect recall, i.e., agents always remember information they have had
in the past.

[FHMV03] define an additional property for guaranteed eventual message delivery
(“reliability”) that they do not require for all message-passing systems:
(MP4) When send(i, j,M) has occurred in the history ri(t), ∃ t′ ≥ t s.t. recv(i, j,M)

has occurred in the history rj(t′).

Limitations of Definition 3.7. In a sense, Definition 3.7 places an “upper bound”
on a system R: (MP1) through (MP3) ensure that R does not encode any “magic”
actions that cannot occur in real-world message-passing systems. In other words,
every run r of a message-passing system R could occur in a real-world message-
passing system. However, there is no “lower bound” on R: runs that could in fact
occur in a real-world message-passing system are not guaranteed to be present in R.

Why is this a problem? Assume that in a system R, two messages M1 and M2
are sent. In R, message M1 is always delivered earlier than M2. Further assume
that this is not always the case in real-world message-passing systems. But then an
algorithm that works fine in R might not work in a real-world system!

Hence, knowing that R is a message-passing system is not sufficient for analysis
without more guarantees about which runs are in R. To improve on this, we take a
look at protocols and contexts [FHMV95,FHMV03].
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3.5 Protocols

Given a distributed algorithm and a system model, we would like a system R where
each run r ∈ R represents an admissible execution of the given algorithm in the
given system model. This then allows us to connect reasoning about a system R
using epistemic logic to properties of the distributed system that R models.

Definition 3.7 only specifies properties for individual runs within a message-passing
system R. Knowledge of agents is defined relative to all possible runs, however. To
construct the set of all possible runs, Fagin et al. [FHMV03] introduce protocols and
contexts.

A given protocol and context induce a set of runs representing the execution
of this protocol in the given context. Protocols represent a distributed algorithm.
The context represents the setting in which an algorithm is executed; it effectively
encodes the system model or the adversary.

We first introduce protocols and contexts as an abstract mechanism to generate a
set of runs. In Section 4.1, we will apply this framework to message-passing systems
in particular.

A protocol for an agent i specifies its behavior, the algorithm that an agent
executes. We need a domain for actions that an agent can take:

Definition 3.8. Acti is the set of actions of agent i. Acte is the set of actions of
the environment.

For agents in message-passing systems, an action could be a local state transition
(an internal action) combined with a number of send events as per Definition 3.6.
We will revisit this in Section 4.1. An action is essentially something that an agent
requests to perform, but it is up to the context whether the behavior specified by
that action actually takes place. This is because the context specifies whether and
how the action affects the global state, as we will see in Definition 3.13.

We require that an agent chooses its actions exclusively based on its local state.
Following [FHMV03], we define protocols as follows:

Definition 3.9. Consider an agent i. Let Li be its set of local states and Acti its
set of actions. Then

Pi : Li 7→ 2Acti

is a protocol for agent i. Analogously, Pe : Le 7→ 2Acte is a protocol for the
environment.

A protocol maps each local state to a set of actions, encoding nondeterministic choice.
In this thesis, protocols for agents are always deterministic, i.e., |Pi(si)| = 1. The
protocol of the environment can be nondeterministic.

Often, we want to reason about the protocols of all the agents combined:
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Definition 3.10. P = (P1, P2, . . . , Pn) is the joint protocol of agents 1 through n.

Notably, the protocol Pe of the environment is not part of P . While P is controlled
by the algorithm designer, Pe is usually fixed as part of the problem statement. For
this practical reason, Pe is not included in P , but rather part of the context.

3.6 Contexts

Intuitively, a context represents the system model in which a distributed algorithm
is executed. A joint protocol P and a context γ together yield a set of runs R. We
will later say that R represents P in γ. R corresponds to all possible executions of
P in the system model defined by the context γ.

Definition 3.11. A context γ is a tuple γ = (L,Act, G0, τ,Ψ, Pe), where
• L = (Le, L1, . . . , Ln) are domains of local states, which induce the domain of
global states G = Le × L1 × · · · × Ln,
• Act = (Acte,Act1, . . . ,Actn) are domains of actions for protocols in γ,
• G0 ⊆ (Σe × Σ1 × · · · × Σn) ⊆ G is the set of initial global states,
• τ : (Acte ×Act1 × · · · ×Actn) 7→ (G 7→ G) is the transition function,
• Ψ is a liveness condition (Section 3.7), and
• Pe is the protocol of the environment.

Similar to regular agents, the environment e has a local state and executes a (possibly
nondeterministic) protocol. Pe yields a set of actions for each state.

For each global state, the protocols Pi of agents and the protocol of the en-
vironment Pe each yield a set of actions. Depending on the system model that
we encode in γ, some actions of agents influence the state of other agents or the
environment. Such a “non-local” action could be sending a message, or writing a
shared memory variable. In some system models, the environment can make agents
behave erroneously, crash, or perform stuttering steps instead of their desired action.
To capture these possibilities, we always consider global states and global state
transitions. In particular, we do not view actions in isolation, but instead consider
the effect of joint actions on the global state:

Definition 3.12. A joint action ~α is a tuple

~α = (αe, α1, α2, . . . , αn),

where αi ∈ Acti is the action of agent i and αe ∈ Acte is the action of the environment.
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Definition 3.13. The transition function

τ : Acte ×Act1 × · · · ×Actn 7→ (G 7→ G)

defines a global transition relation for each joint action. It specifies the effects of a
joint action on the global state.

The intuition, as visualized in Figure 3.1, is that each run in a context γ starts out
in an initial global state r(0). Depending on the state, the protocol of every agent
specifies a set of actions that it wants to perform; similarly for the environment. The
Cartesian product of these sets of actions yields a number of joint actions, of which
exactly one joint action ~α is chosen nondeterministically. The transition function τ
describes how the joint action ~α changes the global state. A formal definition follows
in Definition 3.15.

τ encodes whether agents find themselves in a message-passing or a shared-memory
system, as well as what failures they are subject to.

In particular, τ defines the influence that Pe, the protocol of the environment,
can have on the system. Restrictions on the environment (on the adversary) can be
modeled either as a property of τ or as a property of Pe. Throughout this thesis, we
encode desired properties in τ and leave Pe unrestricted. For example, in Section 5.2
we will specify τ such that Pe can make up to f agents behave in a faulty way. We
will see a different choice of τ for the failure-free case in Section 4.1.

Observe that τ(~α) is a function from G to G. While ~α is chosen nondeterministi-
cally, given ~α, the following global state is uniquely determined. In other words, given
an initial state r(0) and a sequence of joint actions, the resulting state is uniquely
determined. This will become important when we introduce recording contexts in
Definition 4.5.
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(re(t), r1(t), r2(t), . . . , rn(t)) = r(t)

{αe, α
′
e, α
′′
e} {α1} {α2, α

′
2} · · · {αn}

(α′′e , α1, α′2, . . . , αn) = ~α

Pe P1 P2 Pn

r(t+ 1)
τ(~α)

——nondeterministic choice——

Figure 3.1: The evolution of global states in a context γ, from r(t) to r(t+1). For each agent,
the protocol Pi specifies a set of actions based on its local state. One action
from each set is picked nondeterministically to form the joint action ~α. τ defines
a transition relation on global states, depending on ~α. In this example, Pe and
P2 are nondeterministic protocols, whereas we will later assume deterministic
protocols (except for Pe).
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3.7 Liveness Conditions

In a given system model, we want to guarantee safety properties: in any prefix of a
run, nothing bad happens. For example, no message is delivered before it was sent.
We can encode this in the transition function τ .

Often, we also want to argue that eventually, something good happens [AW04].
Hence contexts can require runs to satisfy liveness conditions, which we specify as a
predicate Ψ.

Definition 3.14. The liveness condition Ψ is a predicate over runs r.

Ψ can be interpreted interchangeably as a function mapping each run to a Boolean
value, or simply as a set of runs. We denote the trivial condition that allows all runs
as True. To enforce that Ψ should specify liveness conditions rather than arbitrary
conditions, we require that contexts are non-excluding in Definition 3.17.

In [FHMV03], Fagin et al. informally define conditions Rel, Fair and FS , where
Rel guarantees eventual (“reliable”) message delivery, Fair guarantees eventual
delivery of messages sent infinitely often, and FS guarantees a fair schedule, i.e.,
every agent is allowed to perform actions infinitely often. We will revisit liveness
conditions in Sections 4.3 and 5.4.

3.8 Generating Systems from Protocols

We have defined protocols and contexts, and argued that a joint protocol P and a
context γ yield a set of runs R. Formally:

Definition 3.15. Consider a joint protocol P and a context γ = (L,Act, G0, τ,Ψ, Pe).
A run r is weakly consistent with P in γ when

r(0) ∈ G0, and (3.1)

for all t, ∃ ~α=(αe, α1, . . . αn) s.t. (r(t), r(t+ 1)) ∈ τ(~α)
and αe ∈ Pe(r(t))
and αi ∈ Pi(r(t)) ∀i∈A.

(3.2)

r is (strongly) consistent with P in γ when it also satisfies

r ∈ Ψ. (3.3)

A run consistent with P in γ starts out in one of the initial states specified by
the context. All subsequent states result from applying the global state transition
for some joint action ~α to the previous state. The joint action contains actions as
specified by the protocol of each agent and the environment. Since agents can specify
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a set of possible actions in general, there can be multiple choices of ~α in a single
state. Finally, to be strongly consistent, the run also needs to satisfy the admissibility
condition.

Definition 3.16. Consider a joint protocol P and a context γ. Let R be the set of
all runs consistent with P in γ. Then R is the system representing P in γ, also
written as R̂(P, γ).

To get a shorter notation, we will often write R = R̂(P, γ) to indicate that R is the
system representing P in γ.

3.9 Non-Excluding Contexts

We introduced the notion of weak consistency for runs that do not necessarily satisfy
the admissibility condition. Based on this, Fagin et al. [FHMV03] introduce non-
excluding contexts to restrict Ψ to liveness conditions, rather than arbitrary conditions
that could also be encoded in the transition function τ .

Definition 3.17. A context γ is non-excluding when, for an arbitrary joint protocol
P and all times t, the following holds: Given r weakly consistent with P in γ, there
is a strongly consistent r′ s.t. r′(t′) = r(t′) for all t′ ≤ t.

In other words, non-excluding contexts guarantee that any prefix of a weakly con-
sistent run can always be extended to become a strongly consistent run. We only
consider non-excluding contexts throughout this thesis.

3.10 Temporal-Epistemic Logic over Runs: Syntax

In Definition 3.1, we specified that every global state is composed of the local states
of agents and the state of the environment. From an agent’s point of view, two global
states are distinguishable exactly when the local state of i differs in these two states.
This intuition yields an indistinguishability relation over all global states, with which
we could build a Kripke model (in fact, an S5 model) over the global states G. This
would be a natural way of defining epistemic modal operators over runs. Rather
than mapping runs to Kripke models, however, we will define the knowledge operator
directly over runs (in Definition 3.21).

Since runs encode a time sequence of global states, given a certain point in a
run, an omniscient observer can argue about the past and future global states of the
entire run r. This allows us to also introduce temporal modal operators over runs.

We will use the formal language introduced here throughout the remainder of
this thesis. In contrast to [FHMV03], we will not consider group knowledge for runs
and systems, and we will not introduce the next-state operator . This is done
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for ease of exposition, as we never need them in our later arguments. It should be
possible to add them in a straightforward way.

Our definitions build upon those of Section 2.1, where we considered the Possible-
Worlds framework. In this section, we will also define the temporal modal operators
 (“holds globally from now on”) and  (“holds eventually”). Furthermore, we will
introduce shorthand notations for formulas that hold at all times in a run, and for
formulas that hold across all runs of a system.

As introduced in Section 2.1, A denotes the set of agents and Π denotes the set
of atomic propositions (propositional atoms). First, we specify the language that we
will use for temporal-epistemic formulas throughout the rest of this thesis:

Definition 3.18. L is the language generated by the following BNF specification:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Ki ϕ | ϕ

where the symbol p is any atomic proposition p ∈ Π, and i is any agent i ∈ A.

Note that other propositional operators such as ∨ or → can be rewritten using ∧
and ¬. Additionally, ϕ can be rewritten as ¬¬ϕ. For ease of exposition, we only
include a minimum set of operators in L. Throughout this thesis, when a formula
uses other operators, the formula should be treated as a shorthand for its equivalent
formula in L.

3.11 Temporal-Epistemic Logic over Runs: Semantics

We can now define how formulas in L are evaluated over runs, and start by assigning
truth values to atoms:

Definition 3.19. An interpretation function π : G 7→ (Π 7→ Bool) assigns a
truth value to each atomic proposition p ∈ Π, depending on the global state s ∈ G
over which it is evaluated.

When applied to runs, π(r(t))(p) is the truth value of atomic proposition p in run r
at time t (in global state r(t)). This is analogous to Definition 2.5 in the Possible-
Worlds framework. Again, our choice of atomic propositions and π defines which
statements we can make about runs and systems. We will often not explicitly mention
π, although formally, [FHMV03] introduce the following object:

Definition 3.20. An interpreted system is the pair (R, π) of a system R and an
interpretation function π.

On the language L, we can now define a semantics to evaluate formulas over runs
and systems, extending Definition 2.8.
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3.11. Temporal-Epistemic Logic over Runs: Semantics

We define knowledge using the fact that global states are indistinguishable to
an agent i whenever its local state is the same, thus equality of the local state of i
replaces the indistinguishability relation Ri from Definition 2.8.

We introduce the temporal operator (“globally”), which specifies that something
holds in a state and all later states. Its dual operator,  (“eventually”), specifies
that something holds eventually, in some later state.

Our notion of knowledge in a run is always linked to a system R, as the system
R defines which states an agent considers possible. Some formulas may hold in every
possible system, for which we introduce a shorthand notation. Finally, we often
want to make statements about something that holds throughout a run, or even
throughout all runs in a system R. For these cases, we also introduce shorthand
notations.

Definition 3.21. A formula ϕ ∈ L is evaluated with regard to an interpreted system
(R, π), a run r and a time t as follows:

(R, r, t) |= p iff π(r(t))(p) = >. (3.4)
(R, r, t) |= ¬ϕ iff (R, r, t) 6|= ϕ. (3.5)
(R, r, t) |= ϕ ∧ ψ iff (R, r, t) |= ϕ and (R, r, t) |= ψ. (3.6)
(R, r, t) |= Ki ϕ iff (R, r′, t′) |= ϕ for all r′ ∈ R s.t. r′i(t′) = ri(t). (3.7)
(R, r, t) |= ϕ iff (R, r, t′) |= ϕ for all t′ ≥ t. (3.8)

For properties of a given run that hold in every possible system R (system-independent
properties), we also write

(r, t) |= ϕ iff (R, r, t) |= ϕ for all R 3 r. (3.9)

For properties of runs resp. systems that hold at any point in time (global properties),
we also write

(R, r) |= ϕ iff (R, r, t) |= ϕ for all t ≥ 0. (3.10)
R |= ϕ iff (R, r, t) |= ϕ for all r ∈ R, t ≥ 0. (3.11)
r |= ϕ iff (R, r, t) |= ϕ for all R 3 r, t ≥ 0. (3.12)

We will use this semantics throughout the rest of this thesis.
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CHAPTER 4
Failure-Free Asynchronous
Message-Passing Contexts

In Chapter 3, we have introduced protocols and contexts as a generic way of generating
a set of runs (a system). We have further introduced the language L that includes
epistemic and temporal operators, and defined a semantics to evaluate a formula
ϕ ∈ L over a given run in a given system.

In this chapter, we examine contexts that model failure-free asynchronous message-
passing systems (failure-free a.m.p. systems). In such systems, agents have a local
state that is not shared with other agents. Agents do not have a notion of time.
Agents can send messages to each other, which get delivered eventually and intact,
but not necessarily timely or in order. The environment decides when agents make
computing steps, but agents are never stuck forever (fair schedule). Neither agents
nor messages are subject to failures.

We denote this class of contexts as Γamp and write γ ∈ Γamp for contexts in
this class. This is a refinement of the message-passing contexts introduced by
Fagin et al. [FHMV03] and based on the “examples for contexts” they give.

In contrast to [FHMV03], we allow environment actions αe that specify more than
one action for an agent at a time, with an eye towards a later extension of this model
towards synchronous systems. In particular, our model can capture simultaneous
delivery of multiple messages. In truly asynchronous systems, the difference might be
negligible: when agents do not have access to the time t available to the omniscient
observer, they cannot distinguish simultaneous events from consecutive ones.

We focus on failure-free a.m.p. systems in this chapter, but keep an eye on how
other system models could be captured using similar definitions. In Section 4.6, we
highlight potential pitfalls for an extension to lock-step synchronous systems. In
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4.1. The Class Γamp

Chapter 5, we extend the class Γamp introduced here to Γbamp, a class of contexts
that allows Byzantine failures.

4.1 The Class Γamp

A context γ is specific to a set of agents A and local states L. To reason about
contexts independently from the number of agents and from their local states, we
introduce the class Γamp of contexts which guarantees certain properties relevant for
the analysis of failure-free a.m.p. systems:

Definition 4.1 (Class of failure-free a.m.p. contexts). γ = (L,Act, G0, τ,Ψ, Pe) is a
failure-free asynchronous message-passing context, or γ ∈ Γamp, iff all of
the following hold:

si ∈ Li ⇐⇒ si is a history over some arbitrary Σi, Inti,Exti, and Msgs, (4.1)
(Definition 3.5)

se ∈ Le ⇐⇒ se = 〈se0, ~α1, ~α2, . . . , ~αm〉, (4.2)
where 〈se0〉 ∈ Σe, m ≥ 0, and ~α1 through ~αm are joint actions,

αi ∈ Acti ⇐⇒ αi ⊆ {internal(i, aik) | aik ∈ Inti} ∪
{send(i, j,M) | j ∈ A,M ∈ Msgs},

(4.3)

αe ∈ Acte ⇐⇒ αe ⊆ {go(i) | i ∈ A} ∪
{deliver(i, j,M) | i, j ∈ A,M ∈ Msgs} ∪
{trigger(i, b) | i ∈ A, b ∈ Exti},

(4.4)

∀s, s′ ∈ G0. s 6= s′ =⇒ se 6= s′e, (4.5)

τ = τ̂amp(L), (Definition 4.2) (4.6)
Ψ = Rel ∧ FS . (4.7)

Equation (4.1) requires that the local states of agents are histories; in other words,
agents remember all received messages and their past actions. τ̂amp specifies that
these events are added to the history of an agent as they occur. Equation (4.2)
requires that, similar to histories, the states of the environment are a sequence of the
initial state se0 of the environment, and the joint global actions taken in the past.
τ̂amp specifies that the joint action taken is added to the state of the environment for
each global state transition.

Equation (4.3) specifies the shape of actions of agents, and Equation (4.4) specifies
the shape of actions of the environment. Each action is a set of sub-actions. In
Section 4.2, we define how the actions of agents and the environment influence the
evolution of the global state through τ̂amp.
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4.2. Transition Relation

Equation (4.5) requires that the environment can distinguish between all initial
global states. Together with τ̂amp, this makes γ a recording context, as we show in
Theorem 4.6. Equation (4.6) specifies that global states evolve according to τ̂amp,
which we define in Section 4.2. Equation (4.7) specifies liveness conditions for γ,
namely Eventual Delivery and Fair Schedule, which we define in Section 4.3.

Remark. This definition of Γamp places very strict requirements on the context γ.
A possible generalization [PKS17] is to allow sets of states and the transition relation
to be a subset of what we currently require. We do not pursue this here for easier
reasoning about the contexts in Γamp.

4.2 Transition Relation

In a context γ, the transition relation τ defines how the global state evolves in
response to joint actions. Definition 4.1 requires that failure-free a.m.p. contexts
follow a canonical transition relation τ̂amp, which we define here.

Actions of agents. In Γamp, the protocol Pi of agent i can propose a set of
sub-actions in each step, with the following desired meaning:
• internal(i, a): Agent i performs internal action a (a local computing step).
• send(i, j,M): Agent i sends message M to agent j.

This is a subset of the events that can occur on agents per the definition of histories
(Definition 3.6). We will specify τ̂amp such that the environment can influence whether
and how these events actually occur. In this way, actions of agents are a “proposal”,
a desired action.

Actions of the environment. In Γamp, the protocol Pe of the environment can
specify a set of sub-actions in each step to influence evolution of the global state,
with the following desired meaning:
• go(i): i performs its action αi (send and internal actions). Conversely, we

specify that i performs a stuttering step when go(i) /∈ αe.
• deliver(i, j,M): j receives message M from i.
• trigger(i, b): External action b occurs on i.

A single environment action can specify an arbitrary number of sub-actions (including
zero) for each agent.

Attention! An individual action αi/αe is a set of sub-actions (internal, send,
go, . . . ) that occur simultaneously. Sets of actions, in turn, can be specified by
protocols to model nondeterminism (Definition 3.9).
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4.2. Transition Relation

Recall that q : x denotes the sequence q with the element x appended. si denotes
the local state of agent i in global state s. We can define τ̂amp as follows to get the
desired semantics of actions:

Definition 4.2. Fix the domains of local states L = (Le, L1, . . . , Ln). Then τ̂amp(L)
is a transition function s.t. for all global states s, s′ ∈ G and joint actions ~α,

(~α, (s, s′)) ∈ τ̂amp(L)

iff all of the following hold for all i ∈ A:

s′e = se : ~α (4.8)

s′i =


si if go(i) /∈ αe and R = ∅
si : R if go(i) /∈ αe and R 6= ∅
si : (αi ∪R) if go(i) ∈ αe

(4.9)

where R = {recv(j, i,M) | deliver(j, i,M) ∈ αe} ∪
{external(i, b) | trigger(i, b) ∈ αe}.

∀deliver(i, j,M) ∈ αe : send(i, j,M) ∈ E for some E ∈ si. (4.10)

Transitions occur between r(t) and r(t+ 1) as per Definition 3.15. States are labelled
s and s′, since the possible transitions allowed by τ̂amp do not necessarily appear in
any run r.

Equation (4.8) states that the state of environment keeps a record of all joint
actions, making τ̂amp a recording context (Theorem 4.6).

Equation (4.9) assigns meaning to actions of the environment. go(i) determines
whether agent i performs its desired action (αi can contain internal(i, . . .) and
send(i, . . .) events). R are the messages and external events that an agent receives.
When the environment specifies deliver(j, i,M), a receive event is appended to the
history of i. Similarly, when the environment specifies trigger(i, b), an external action
is appended to the history of i. In the absence of go(i) and message deliveries, i
does not make progress, and does not even notice the occurrence of a step. In other
words, in this case, the agent is oblivious to the passage of time. The agent’s internal
action, messages, and external events are added to its state simultaneously, which i
can only process in its next step.

Equation (4.10) states that only messages that have been sent earlier are delivered.

Throughout this thesis, we consider the protocol Pe(se) := Acte where the environ-
ment chooses any action nondeterministically. Given a global state s, it could specify
delivery of a message that was never sent, or other inconsistent behavior. However,
a joint action ~α that contains such an action αe is filtered out by the fact that no
state s′ exists s.t. (~α, (s, s′)) ∈ τ̂amp(L).
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4.3. Liveness Conditions

4.3 Liveness Conditions

We require that a.m.p. systems guarantee the liveness conditions Reliable Message
Delivery and Fair Schedule. We formalize them as follows:

Definition 4.3. A run r provides Reliable Message Delivery, r ∈ Rel, iff

for all i, j ∈ A, M ∈ Msgs, and times t,
∃E. send(i, j,M) ∈ E ∈ ri(t)

=⇒ ∃E′, t′ ≥ t. recv(i, j,M) ∈ E′ ∈ rj(t′).

Definition 4.4. A run r provides Fair Schedule, r ∈ FS, iff

for all i ∈ A and times t,
∃ t′ ≥ t. re(t′) = q : ~α and go(i) ∈ αe.

In Section 5.4, we generalize Rel to allow Byzantine failures. In Section 5.7, we
translate these liveness conditions to temporal-epistemic logic.

4.4 Recording Context

Fagin et al. [FHMV03] call a context that records all joint actions in the state of the
environment a recording context. Together with a suitable transition relation τ , this
allows Pe to distinguish between all global states. We base our definition directly on
this property:

Definition 4.5. A context γ is a recording context when, for all joint protocols
P , runs r, r′ consistent with P in γ, and times t, t′,

r(t) 6= r′(t′) =⇒ re(t) 6= r′e(t′).

This captures the intuition that the environment is “omniscient”. In particular, the
environment can choose a different action for each global state.

Theorem 4.6. Every context γ ∈ Γamp is a recording context.

Proof. Assume r(t) 6= r′(t′). We show that re(t) 6= r′e(t′).
Case t 6= t′: By Equation (4.8), the state of the environment grows by exactly

one element in each time step, hence r(t) 6= r′(t′).
Case t = t′: Proof by induction on t.

Base case: t = t′ = 0. By Equation (4.5) and our assumption, re(0) 6= r′e(0).
Induction step: Assume the induction hypothesis holds for t− 1. When r(t− 1) 6=
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4.5. Relation to Message-Passing Systems

r′(t− 1), the claim follows by Definition 4.2. When r(t− 1) = r′(t− 1), assume for
contradiction that r(t) 6= r′(t) and the claim does not hold, i.e.,

re(t) = r′e(t)

re(t− 1) : ~α = r′e(t− 1) : ~α′ by Definition 4.2.
But then

r(t) = τ(~α)(r(t− 1)) = τ(~α′)(r′(t− 1)) = r′(t).

This contradicts our assumption that r(t) 6= r′(t), hence the claim must hold.

4.5 Relation to Message-Passing Systems

As [FHMV03] note, we can relate failure-free message-passing contexts to message-
passing systems:

Theorem 4.7. In a failure-free a.m.p. context γ ∈ Γamp, every system R = R̂(P, γ)
is a message-passing system (Definition 3.7).

Proof sketch. We argue that R must satisfy (MP1) to (MP3). (MP1) requires that
every ri(t) is a history, which is guaranteed by Equation (4.1).

For (MP2), let e = recv(j, i,M) be a receive event such that e ∈ E ∈ ri(t).
Since initial states never include events and states are histories, E must have been
appended to the history at some point. By Equation (4.9), we can find t′ ≤ t, ~α s.t.
(r(t′− 1), r(t′)) ∈ τ̂amp(~α) and e ∈ (αi ∪R). Since e is a recv event and agent actions
are never recv events by Equation (4.3), we know that e ∈ R. By the definition of R
and Equation (4.10), we can find j, E′ s.t. send(j, i,M) ∈ E′ ∈ rj(t′). Since t′ ≤ t

and rj(t) is a history, send(j, i,M) ∈ E′ ∈ rj(t).
(MP3) follows directly from Equations (4.1), (3.1) and (4.9).

4.6 Lock-Step Synchronous Systems

We have introduced Γamp as the class of failure-free a.m.p. contexts. Can lock-step
synchronous systems be modeled in a similar fashion?

For illustration purposes, consider a simple system where agent i sends a message
〈ping〉, to which agent j responds with 〈pong〉. In a lock-step synchronous system,
when i sends 〈ping〉 in round 1, j would see it in round 2 and send 〈pong〉 as its
response still in round 2. The end-to-end-delay, measured from sending a message to
an action depending on it, is 1.
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4.6. Lock-Step Synchronous Systems

When modeling the same exchange using a failure-free a.m.p. context γ ∈ Γamp,
the closest we can get is a run like this, due to the way we defined τ̂amp:

ri(0) = 〈si0〉 αi = {send(i, j, 〈ping〉)}
rj(0) = 〈sj0〉 αj = ∅

 ~α0

re(0) = 〈se0〉 αe = {go(i), go(j)}

ri(1) = 〈si0, {send(i, j, 〈ping〉)}〉 αi = ∅
rj(1) = 〈sj0〉 αj = ∅

 ~α1

re(1) = 〈se0, ~α0〉 αe = {go(i), go(j),deliver(i, j, 〈ping〉)}

ri(2) = 〈si0, {send(i, j, 〈ping〉)}〉 αi = ∅
rj(2) = 〈sj0, {recv(i, j, 〈ping〉)}〉 αj = {send(j, i, 〈pong〉)}

 ~α2

re(2) = 〈se0, ~α0, ~α1〉 αe = {go(i), go(j)}

Here, agent j can only act at t = 2 on the message sent at t = 0, which means that
state transitions in r cannot directly represent lock-step rounds. There are a few
ways to resolve this:
• Introduce quiescent ticks for communication, stretching a round over two global

states in a run r. This makes the model more complex.
• Modify τ̂amp, such that the environment can specify “deliver” for messages

already before it sees them in se. This goes against the idea that the protocol
Pe can “willfully influence the evolution of runs, Pe would have to blindly
specify delivery of all possible messages at every point in time.
• Modify the definition of contexts to change the role of Pe. The separation

between τ and Pe is a bit artificial to begin with; in this thesis, we always use
Pe = Acte and encode all desired properties in τ . One could eliminate Pe, and
replace se with a “trace” of the actions that have occurred that is maintained by
τ . Or, keeping Pe, Pe could be given “early access” to the actions of agents in
the current transition. One could view this as the transition function operating
in multiple phases [PKS17].

We do not further investigate lock-step synchronous systems here and leave this
aspect up to future work.
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CHAPTER 5
Byzantine Asynchronous

Message-Passing Contexts

In the analysis of fault-tolerant distributed systems, the failure assumption defines
which failures an algorithm must tolerate. We will consider the communication links
between agents to be a perfect (failure-free), fully-connected point-to-point network.
The agents in this network, however, may misbehave in a particularly malicious way,
namely according to a Byzantine failure assumption [LSP82].

With f Byzantine node failures, up to f faulty agents may transmit arbitrary
messages at arbitrary times. In particular, they can send erroneous and contradictory
messages to different agents, i.e., a combination of messages that a correct agent
would never send in a run of the system. This means that the apparent behavior of
Byzantine-faulty agents need not correspond to their actual local state, or in fact
any legal state at all. This is in contrast to [Mic89].

With such a permissive failure assumption, the idea is to capture a very broad
range of real-world scenarios. A more restricted failure assumption, such as the
assumption of crash failures, may not always be justified in a real-world scenario.
Consequently, Attiya and Welch write, “If a system designer is not sure exactly how
errors will be manifested, a conservative assumption is that they will be Byzantine”
[AW04, p. 123].

In Chapter 4, we introduced the class Γamp of failure-free a.m.p. contexts. We
extend this to allow Byzantine node failures, and get the class Γbamp of Byzantine
a.m.p. contexts.

In Sections 3.10 and 3.11 we introduced a language L and a corresponding
semantics to make statements about runs. In this chapter, we describe properties of
Γbamp using temporal-epistemic logic, and derive a result about knowledge gain in
Byzantine a.m.p. contexts.
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5.1. Knowledge of Byzantine-Faulty Agents

In Chapter 6, we will then use properties of Γbamp to analyze necessary and
sufficient knowledge in Firing Rebels.

5.1 Knowledge of Byzantine-Faulty Agents

What does it mean to say “agent i knows ϕ” (Ki ϕ) when i is Byzantine-faulty?
A naive attempt at answering this question might go like this: At a given point

(r, t), a Byzantine-faulty agent i can pretend that Ki ϕ, Ki ¬ϕ, and ¬Ki ϕ all hold
at the same time (in communication with different neighbors). But does this mean
that all of these formulas hold? Byzantine agents are also allowed to have “targeted”
behavior. But does this mean that agent i is omniscient, that is, ϕ→ Ki ϕ? Or does
it mean that Ki cannot be defined in a meaningful way at all?

One resolution of this apparent paradox is to make the knowledge of an agent
conditional on its correctness. For example, [HMW01] employ a logic of belief 2 for
crash failures, where many statements are of the form Ki (correcti → ϕ), meaning
“i knows that when it is correct, ϕ holds.” Interestingly, this means that the truth
value of this statement may change when i becomes faulty, which seems unintuitive
at first. We will later see a formal definition of the atom correcti.

A priori, we would like an intuition also for statements that are not of the form
Ki (correcti → ϕ). But what should Ki ϕ mean when i is Byzantine-faulty?

Simulation with Byzantine-faulty links. The thought model employed in this
thesis is based the idea that a system with Byzantine-faulty agents can be transformed
by a simulation as illustrated in Figure 5.1. Under this simulation, we treat Byzantine-
faulty agents as if they were correct agents, but with Byzantine-faulty outgoing links.

Observe that the two situations are indistinguishable to all other agents in the
system, because messages over the outgoing links are the only thing they can observe.
But in the scenario depicted in Figure 5.1b, knowledge of agent i has a well-defined
intuitive meaning: Ki ϕ holds if agent i has sufficient evidence for ϕ. In other words,
a correct agent in the place of i can conclude from its local history that ϕ must hold.

We thus propose that when dealing with a Byzantine-faulty agent i like in 5.1a,
we will ascribe the same knowledge to it as to the agent in 5.1b.

Examples. What are the consequences of defining knowledge of Byzantine-faulty
agents in this way? Consider a system of four agents A = {i, j, k, l}, where a single
agent may become Byzantine-faulty during any run (f = 1). Assume that in the
system R, j, k and l run the following protocol: when they receive a message, they
echo the message back to the sender immediately. Further assume that Msgs =
{1, 2, 3} are all valid messages that i could send.

2Belief is a technical term here, and as introduced in [HMW01] its semantics can be quite
different from colloquial “belief”.
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5.1. Knowledge of Byzantine-Faulty Agents

a) i b) i

Figure 5.1: Simulation of a Byzantine-faulty agent i by a correct agent with Byzantine-
faulty outgoing links. (a) The agent as a whole is considered faulty, with an a
priori unclear meaning of knowledge of i. (b) We pretend that i is a correct
agent, but its outgoing links behave in a Byzantine-faulty way.

ij

k

l
〈1〉

〈1〉

〈1〉

M1

M2

M3

Figure 5.2: A system of n = 4 agents, with j, k, l as echo nodes and up to f = 1 Byzantine
node failures. Edges indicate communication as observed by agent i. In different
runs, agent i can observe different values depending on whether any of the
agents are faulty.

r1 r2 r3

What i sends to j, k, l: 〈1〉 〈1〉 〈1〉

What i receives from j (M1): 〈1〉 〈1〉 〈1〉
What i receives from k (M2): 〈1〉 〈2〉 〈1〉
What i receives from l (M3): 〈1〉 〈3〉 〈3〉

Does i know that i is correct? no no no
Does i know that i is faulty? no yes no

Table 5.1: Three runs of the system in Figure 5.2, from the perspective of agent i. First,
i sends 1 to all neighbors. Then, i receives a reply from them. Based on the
replies, can i conclude (with f = 1) that its own outgoing links are behaving in
a faulty way?
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5.1. Knowledge of Byzantine-Faulty Agents

We consider three different runs as listed in Table 5.1, where i sends 1 to its
neighbors. The communication in these runs is illustrated in Figure 5.2. We observe:
In run r1, all agents appear to be correct. Since a Byzantine-faulty agent may pretend
to be correct for an arbitrary amount of time, i cannot infer anything about its own
correctness. In r2, k and l send inconsistent messages. But f = 1, thus in fact the
messages that k and l received must already have been corrupted. Hence i can infer
that i must be faulty. In r3, agent i can infer that i or l are faulty, but not which of
the two.

This example illustrates that with our proposed thought model, agents can know
that they are faulty. Of course, this is a purely technical artifact: when they are
faulty, they cannot reliably communicate this “knowledge” to other agents. In some
runs, agents might also learn that they are correct, by cooperating to identify f
faulty agents (but they cannot rely on f agents showing faulty behavior in other
runs).

We define Γbamp with this model in mind in the next section.

Remarks. The idea of treating Byzantine-faulty agents as if they were correct
with Byzantine-faulty outgoing links was originally inspired by the concept of honest
announcements in Pucella and Sadrzadeh [PS10]. Honest announcements are in turn
based on earlier concepts of honesty [HF85, PR03]. Whenever an agent makes a
honest announcement of ϕ, it is not only required that ϕ is true, but also that the
sender knows it is true. In other words, with honest announcements, a sender cannot
make announcements that are true merely “by accident”.

In our thought model, the knowledge of Byzantine-faulty agents evolves just like
that of correct agents. The crucial difference is that Byzantine-faulty agents are not
required to be honest: they may send arbitrary messages, in particular even ones
that are not backed by their local knowledge. Note that if we allow Byzantine-faulty
agents (resp. their outgoing links) to violate message timing assumptions, they are
actually more powerful than mere dishonest announcements.

The observation that state corruption (faultiness of an agent) and faultiness
of links is indistinguishable to neighboring nodes has also been made in [BCG+07,
Section 5.2] and [Lam01].
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5.2 The Class Γbamp

In Chapter 4, we introduced the class Γamp. We extend this definition to allow
Byzantine node failures as follows:

Definition 5.1 (Class of Byzantine a.m.p. contexts). γ = (L,Act, G0, τ,Ψ, Pe) is
a Byzantine asynchronous message-passing context with f node failures, or
γ ∈ Γbamp(f), iff all of the following hold:

si ∈ Li ⇐⇒ si is a history over some arbitrary Σi, Inti,Exti, and Msgs, (5.1)
(Definition 3.5)

se ∈ Le ⇐⇒ se = 〈se0, ~α1, ~α2, . . . , ~αm〉, (5.2)
where 〈se0〉 ∈ Σe, m ≥ 0, and ~α1 through ~αm are joint actions,

αi ∈ Acti ⇐⇒ αi ⊆ {internal(i, aik) | aik ∈ Inti} ∪
{send(i, j,M) | j ∈ A,M ∈ Msgs},

(5.3)

αe ∈ Acte ⇐⇒ αe ⊆ {go(i) | i ∈ A} ∪
{deliver(i, j,M) | i, j ∈ A,M ∈ Msgs} ∪
{trigger(i, b) | i ∈ A, b ∈ Exti} ∪
{fail(i) | i ∈ A},

(5.4)

∀s, s′ ∈ G0. s 6= s′ =⇒ se 6= s′e, (5.5)

τ = τ̂bamp(L, f), (Definition 5.3) (5.6)
Ψ = EDel ∧ FS . (5.7)

This mirrors Definition 4.1 (Γamp), which explains the equations in detail. The differ-
ences are: Γbamp is parameterized by the number f of Byzantine node failures allowed.
Equation (5.4) allows an action fail(i) for the environment. Equation (5.6) specifies
a transition relation which deviates from τ̂amp and introduces Byzantine behavior,
see Section 5.3. Equation (5.7) specifies EDel rather than Rel, see Section 5.4.

37



5.3. Transition Relation

5.3 Transition Relation

We introduce τ̂bamp, the transition relation for Γbamp, mirroring τ̂amp with some
adjustments. Refer to Section 4.2 for a detailed description of actions and their
interaction with the transition relation.

We introduce a new action fail(i), other actions are identical to Section 4.2:

Actions of agents. In Γbamp, agents can propose the following sub-actions:
• internal(i, a): Agent i performs internal action a (a local computing step).
• send(i, j,M): Agent i sends message M to agent j.

Actions of the environment. In Γbamp, the environment can specify the following
sub-actions:
• go(i): i performs its action αi (send and internal actions). Conversely, we

specify that i performs a stuttering step when go(i) /∈ αe.
• deliver(i, j,M): j receives message M from i.
• trigger(i, b): External action b occurs on i.
• fail(i): i is marked Byzantine-faulty.

A single environment action can specify an arbitrary number of sub-actions (including
zero) for each agent.

To model Byzantine behavior, τ̂bamp will allow the environment to deliver arbitrary
messages, i.e., even messages that have never been sent. To simplify later arguments,
the environment must explicitly mark an agent i faulty when it imposes such behavior
in Γbamp.

We introduce Failed(s) as the set of faulty agents in global state s:

Definition 5.2. Fix a global state s ∈ G. Then

Failed(s) := {i ∈ A | ∃ ~α∈se. fail(i) ∈ αe}.

We will define τ̂bamp such that se has the full history of joint actions, thus Failed(r(t))
includes all agents marked as faulty in the past in r. Implicitly, Failed(s) = ∅ for all
initial states s ∈ G0.
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We define the transition function such that the environment can fake messages from
agents marked as faulty. We do not allow more than f agents to be marked as faulty.3

Definition 5.3. Fix domains of local states L = (Le, L1, . . . , Ln) and the number
of Byzantine node failures f . Then τ̂bamp(L, f) is a transition function s.t. for all
global states s, s′ ∈ G and joint actions ~α,

(~α, (s, s′)) ∈ τ̂bamp(L, f)

iff all of the following hold for all i ∈ A:

s′e = se : ~α (5.8)

s′i =


si if go(i) /∈ αe and R = ∅
si : R if go(i) /∈ αe and R 6= ∅
si : (αi ∪R) if go(i) ∈ αe

(5.9)

where R = {recv(j, i,M) | deliver(j, i,M) ∈ αe} ∪
{external(i, b) | trigger(i, b) ∈ αe}.

∀deliver(i, j,M) ∈ αe :
i /∈ Failed(s) =⇒ send(i, j,M) ∈ E for some E ∈ si. (5.10)

|Failed(s′)| ≤ f (5.11)
fail(i) ∈ αe =⇒ i /∈ Failed(s) (5.12)

Identical to Definition 4.2, transitions occur between r(t) and r(t+ 1) as per Defini-
tion 3.15. States are labelled s and s′, since the possible transitions allowed by τ̂bamp
do not necessarily appear in any run r.

Identical to Definition 4.2, Equation (5.8) states that the state of environment
keeps a record of all joint actions, making τ̂bamp a recording context (proof omitted,
similar to Theorem 4.6).

Identical to Definition 4.2, Equation (5.9) assigns meaning to actions of the
environment. go(i) determines whether agent i performs its desired action (αi can
contain internal(i, . . .) and send(i, . . .) events). R are the messages and external
events that an agent receives. When the environment specifies deliver(j, i,M), a
receive event is appended to the history of i. Similarly, when the environment specifies
trigger(i, b), an external action is appended to the history of i. In the absence of
go(i) and message deliveries, i does not make progress, and does not even notice
the occurrence of a step. In other words, in this case, the agent is oblivious to the
passage of time. The agent’s internal action, messages, and external events are added
to its state simultaneously, which i can only process in its next step.

3The restriction to f faulty agents could also be enforced in the protocol of the environment Pe.
We chose to capture this property in τ and leave Pe unconstrained.

39



5.4. Liveness Conditions

Equation (5.10) states that any message received from a correct agent i was
actually sent by agent i, thus providing causality and intactness for correct agents.
Conversely, arbitrary behavior can take place on the outgoing links of Byzantine-
faulty nodes. Equation (5.11) states that only up to f agents are marked faulty
(initially, no agent is faulty). Equation (5.12) states that an agent can only be marked
faulty once.

In Γbamp, we assume Pe(r(t)) := Acte throughout this thesis.

Remarks. With this transition function, Byzantine failures correspond to a one-
time fail(i) action of the environment, only after which the environment is allowed
to forge and corrupt messages appearing to come from i at will. Why did we choose
this approach? A different possibility would be “implicit” signaling of failures, where
an agent is regarded as faulty as soon as the environment specifies actions that are
not normally allowed. One could also require that the environment yield fail(i) in
every step throughout the rest of the run for faulty agents.

Our approach of explicitly flagging failed agents makes it easier to argue about
statements like “all correct agents perform action X”, since an omniscient observer
can distinguish whether agent i is correct or only acting like it is correct at any
given time. The fact that we allow regular go(i), deliver(j, i,M) actions after fail(i)
corresponds to our intuition of evolving the local state like for correct agents. This
detail also allows us to state some liveness conditions without any special treatment
of faulty agents, as we will see in Section 5.4.

5.4 Liveness Conditions

We motivated liveness conditions in Section 3.7 and introduced Rel (reliable delivery)
and FS (fair schedule) in Section 4.3.

We apply FS in Γbamp without modification, i.e., we require infinitely many go(i)
actions from the environment. This includes faulty agents.

We cannot directly apply Rel since it prohibits faked messages. We modify it
to accommodate Byzantine behavior, and choose the term eventual delivery (EDel)
rather than “reliable” delivery for this generalization.

Definition 5.4 (Eventual message delivery). A run r provides Eventual Delivery,
r ∈ EDel, iff

for all i, j ∈ A, M ∈ Msgs, and times t,
∃E. send(i, j,M) ∈ E ∈ ri(t) and i /∈ Failed(r(t))

=⇒ ∃E′, t′ ≥ t. recv(i, j,M) ∈ E′ ∈ rj(t′).
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With our definition, when agent i is marked faulty at time t, messages already in
transit from i cannot be lost or corrupted. This is not a problem in Γbamp, as the
adversary could always mark agent i as faulty at an earlier time.

5.5 Recording Context

Theorem 5.5. Every context γ ∈ Γbamp is a recording context.

We introduced recording contexts in Section 4.4, and the proof is analogous to
Theorem 4.6.

5.6 Non-Excluding Context

We introduced non-excluding contexts in Section 3.9.

Theorem 5.6. Every context γ ∈ Γbamp is a non-excluding context.

Proof sketch. Intuitively, τ̂bamp is specified in such a way that starting from any
state r(t), the environment can always choose actions such that r satisfies EDel and
FS .

5.7 Properties in Temporal-Epistemic Logic

We introduced a language L of temporal-epistemic formulas and corresponding
semantics over runs in Sections 3.10 and 3.11.

In this section, we introduce “special” atoms that allow us to reason about runs
in a context γ ∈ Γbamp using temporal-epistemic logic. In particular, we want to be
able to express properties like Eventual Delivery in L. Rather than extending L, we
introduce atomic propositions with a predefined meaning. In other words, in the
remainder of this thesis, we restrict interpretations π to ones that assign the desired
meaning to these predefined atoms.

[FHMV03] describe stable formulas, which we extend by the notion of 0-stable
formulas:

Definition 5.7. A formula ϕ is 1-stable (stable) in a system R when

R |= ϕ→ ϕ.

A formula ϕ is 0-stable when ¬ϕ is 1-stable.
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Predefined atoms. To reason about runs of a Byzantine a.m.p. context γ ∈ Γbamp
in L, we introduce a number of predefined atomic propositions. Their intuitive
meaning at time t in a run r is as follows:
• correcti: i is a correct agent at time t (may become faulty later).
• msg-sent(i, j,M): i has sent M to j.
• msg-recvd(i, j,M): j has received M from i.
• ext-occurred(i, b): i has observed external action b.
• env-action(a): The most recent action of the environment includes a.

Here, msg-sent, msg-recvd and ext-occurred refer to the current and all past states
of r, hence they are 1-stable. We use a function-like notation for convenience and
readability, but syntactically, all objects of the form msg-sent(i, j,M) are individual
atomic propositions. To give atoms their desired meaning, we require the following
for all interpretation functions π considered in contexts γ ∈ Γbamp:

Definition 5.8 (Predefined Atoms). Let R be a system consistent with a protocol P
in a Byzantine a.m.p. context γ ∈ Γbamp. Then an interpretation π must satisfy:

(R, r, t) |= correcti iff i /∈ Failed(r(t))
(R, r, t) |= msg-sent(i, j,M) iff ∃E. send(i, j,M) ∈ E ∈ ri(t)
(R, r, t) |= msg-recvd(i, j,M) iff ∃E. recv(i, j,M) ∈ E ∈ rj(t)
(R, r, t) |= ext-occurred(i, b) iff ∃E. external(i, b) ∈ E ∈ rj(t)
(R, r, t) |= env-action(a) iff re(t) = q : ~α and a ∈ αe.

This allows us to state properties of Γbamp using temporal-epistemic logic:

Theorem 5.9. Consider a run r consistent with a protocol P in γ ∈ Γbamp. Then
for all i, j ∈ A, M ∈ Msgs,

r |= ¬ correcti → ¬ correcti (5.13)
r |= msg-sent(i, j,M)→ msg-sent(i, j,M) (5.14)
r |= msg-recvd(i, j,M)→ msg-recvd(i, j,M) (5.15)

r |= msg-sent(i, j,M)→ Ki msg-sent(i, j,M) (5.16)
r |= msg-recvd(i, j,M)→ Kj msg-recvd(i, j,M) (5.17)

r |= |{i ∈ A | ¬ correcti}| ≤ f (5.18)
r |= correcti → (msg-recvd(i, j,M)→ msg-sent(i, j,M)) (5.19)

r |= correcti → (msg-sent(i, j,M)→msg-recvd(i, j,M)). (5.20)
r |= env-action(go(i)). (5.21)

42



5.8. Knowledge Gain

Proof sketch. Claim (5.13) follows from Definition 5.8 and Equation (5.8). Claims
(5.14)–(5.15) follow from Definition 5.8 and Equation (5.9). Claims (5.16)–(5.17) hold
because the atoms are defined using the local state of i, hence agent i always knows
their truth value. Claim (5.18) follows from Equation (5.11). Claim (5.19) follows
from Equation (5.10). Claims (5.20)–(5.21) follow from the liveness conditions EDel
and FS .

5.8 Knowledge Gain

Ben-Zvi and Moses [BM14] introduce syncausality to describe how agents can gain
knowledge about external actions in a failure-free system with time bounds on
message delivery. Syncausality provides a foundation for centipedes [BM14] that
describe necessary communication structures for certain actions in such a system.

In a similar spirit, we prove that in order to gain knowledge in any Byzantine
a.m.p. context γ ∈ Γbamp, an agent needs to have received messages from at least f+1
agents. This is a basic result on necessary communication structures for knowledge
gain in Byzantine a.m.p. systems.

Our formal proof uses the following construction of indistinguishable runs for agent i
in states where i has received messages from less than f other agents:

Lemma 5.10. Fix a run r consistent with P in γ ∈ Γbamp. Fix a time t and an
agent i ∈ A. Assume a set of agents S exists s.t.

|S| ≤ f, and (5.22)
S ⊇ {j ∈ A | recv(j, i,M) ∈ E ∈ ri(t) and j 6= i}. (5.23)

Then we can find a run r′ consistent with P , and a time t′, s.t.

r′i(t′) = ri(t) (5.24)
r′j(t′) = rj(0) for all j ∈ A, j 6= i (5.25)

Failed(r′(t′)) = S. (5.26)

Equations (5.22) and (5.23) state that agent i has received messages from at most
f other agents. Equations (5.25) and (5.26) state that in the constructed run r′ at
time t′, all agents other than i are in their initial states, and the Byzantine-faulty
agents are exactly the agents in S. It follows that i is correct, and no agent other
than i sent any messages or observed any external actions. Equation (5.24) states
that agent i cannot distinguish between r(t) and r′(t′).
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Proof. By Theorem 5.6, γ is a non-excluding context, thus we can extend any weakly
consistent run to a strongly consistent run. We show the existence of a weakly
consistent run with properties (5.24)–(5.26) by induction on t.

Base case: t = 0. Then ri(t) = ri(0) = 〈si0〉. Choose r′ such that r′(0) = r(0)
and r′e(1) = re(0) : {fail(j) | j ∈ S}, and r′ weakly consistent with P in γ. r′ exists
by r(0) ∈ G0 and Equation (5.9). Then r′(1) satisfies (5.24)–(5.26).

Induction step: Assume the hypothesis holds for r(t− 1). Distinguish two cases.
Case 1: ri(t) = ri(t− 1). The claim follows trivially from the induction hypothesis.
Case 2: ri(t) = ri(t− 1) : E. In other words, one set of events E was appended to
ri(t). By the induction hypothesis and substituting t′ = t′′ − 1, we can find r′ and t′′
s.t.

r′i(t′′ − 1) = ri(t− 1)
r′j(t′′ − 1) = rj(0) for all j ∈ A, j 6= i

Failed(r′(t′′ − 1)) = S. (5.27)

E are the events added from ri(t− 1) to ri(t). Partition E by event type s.t.

E = Einternal ∪ Esend ∪ Erecv ∪ Eexternal.

By τ̂bamp, r being consistent, (5.27), and (5.23) for r(t) and S, these subsets must
fulfill

Einternal ∪ Esend =

∅ or
αi, where αi ∈ Pi(r′i(t′′ − 1)) = Pi(ri(t))

(5.28)

Erecv ⊆ {recv(j, i,M) | j = i or j ∈ Failed(r′(t′′ − 1))} (5.29)

The two cases of Equation (5.28) correspond to the absence or presence of go(i) in
the previous action of the environment respectively.

We now construct an action of the environment such that only i makes a step, but
the resulting run is identical to r(t) for i. Choose αe = αe1 ∪ αe2 ∪ αe3 in accordance
with E s.t.

αe1 =

∅ if Einternal ∪ Esend = ∅
{go(i)} otherwise

αe2 = {deliver(j, i,M) | recv(j, i,M) ∈ Erecv}
αe3 = {trigger(i, b) | external(i, b) ∈ Eexternal}
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By (5.28), (5.29), ri(t′′ − 1) = r′i(t− 1) and τ̂bamp, there is a run r′′ s.t.

r′′(t′′ − 1) = r′(t′′ − 1) and
(r′′(t′′ − 1), r′′(t′′)) ∈ τ(αe),

that is, we can extend r′(t′′ − 1) by applying αe to get r′′(t′′). By choice of αe and
τ̂bamp,

r′′i (t′′) = r′i(t′′ − 1) : E = ri(t− 1) : E = ri(t),

and r′′(t′′) satisfies (5.24)–(5.26).

With Lemma 5.10, we can prove the following theorem:

Theorem 5.11. Let R = R̂(P, γ) with γ ∈ Γbamp. Fix a run r ∈ R, time t, agent
i ∈ A and formula ϕ ∈ L. Assume that

(R, r, t) |= correcti ∧Ki ϕ, and (5.30)

for all r′ ∈ R, t′ with

r′i(t) = ri(t) and
r′j(t) = rj(0) for all j ∈ A, j 6= i,

it holds that (R, r′, t′) |= correcti → ¬ϕ. (5.31)

Then

(R, r, t) |= |{j ∈ A | msg-recvd(j, i,M) and j 6= i}| ≥ f + 1. (5.32)

Equation (5.30) states that agent i is correct and knows ϕ in r(t). Equation (5.31)
states that ϕ never holds when all other agents are in their initial states, in other
words, ϕ is some formula that depends on the state of other agents.

When these assumptions hold, Equation (5.32) guarantees that agent i has
received messages from at least f + 1 distinct agents in r(t).

Proof. For the sake of contradiction, assume that for some r ∈ R, t and i ∈ A,

(R, r, t) |= correcti(1)
(R, r, t) |= Ki ϕ(2)
(R, r, t) 6|= |{j ∈ A | msg-recvd(j, i,M) and j 6= i}| ≥ f + 1.(3)

By (2), for all r′(t′) s.t. r′i(t′) = ri(t),

(R, r′, t′) |= ϕ.(4)
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Let S be the set of agents that sent messages to i in r(t), i.e.,

S = {j ∈ A | (R, r, t) |= msg-recvd(j, i,M) and j 6= i}
= {j ∈ A | recv(j, i,M) ∈ E ∈ ri(t) and j 6= i}.

By (3), |S| ≤ f . By Lemma 5.10, we can find r′ ∈ R and t′ such that

r′i(t′) = ri(t)(5)
r′j(t′) = rj(0) for all j 6= i(6)
i /∈ Failed(r′(t′)).(7)

By (5) and (6), Equation (5.31) holds for r′(t′). Thus

(R, r′, t′) |= correcti → ¬ϕ by (5.31)(8)
(R, r′, t′) |= correcti by (7)(9)
(R, r′, t′) |= ¬ϕ by (8) and (9).(10)

But this contradicts (4), since r′i(t′) = ri(t) by (5). Hence, the claim holds.
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CHAPTER 6
Temporal-Epistemic Analysis of

Clock Synchronization

In Chapter 3, we described runs and systems [FHMV03] and a semantics to evaluate
formulas in temporal-epistemic logic over runs. In Chapter 5, we introduced Byzantine
asynchronous message-passing contexts, a formalization of some of their properties in
temporal-epistemic logic, and proved Theorem 5.11 as a basic result on knowledge gain
in Byzantine a.m.p. contexts. In this chapter, we discuss how Clock Synchronization
in Byzantine a.m.p. systems can be analyzed using temporal-epistemic Logic.

Clock synchronization is a popular problem in distributed systems research.
We discuss clock synchronization in general and a clock synchronization algorithm
by Srikanth and Toueg [ST87] that tolerates Byzantine failures, in a variant by
Widder and Schmid [WS09]. The core of this algorithm provides tick generation, a
problem closely related to clock synchronization. Tick generation primitives can be
used in Systems-on-Chip to provide synchronized local clocks for different functional
units [FS12], for example.

We relate tick generation to Firing Squad [BL87], and introduce two variants of
the problem, Firing Rebels with/without Relay, that share some properties with both
Firing Squad and tick generation. Firing Rebels is essentially a simplified, time-free
variant of one round of tick generation, which in turn can serve as a basis for clock
synchronization.

In the spirit of centipedes [BM14], we look for necessary communication structures
in Firing Rebels without Relay, based on Theorem 5.11. In particular, we show that
an agent in Firing Rebels without Relay needs to establish specific knowledge before
performing its action, giving a lower bound on knowledge. We further show that this
knowledge is actually sufficient to act on, giving an upper bound on knowledge.

While Firing Rebels without Relay is a deliberately simplified problem, we hope
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that our results can be eventually be extended to the larger problem of Clock
Synchronization, and can serve as a starting point for others looking to apply
epistemic logic to distributed systems with Byzantine failures.

6.1 Clocks and Ensembles

Based on the treatment of clock synchronization in Attiya and Welch [AW04, Ch. 13]
and Kopetz [Kop11], we establish some basic terms and definitions. Following
[AW04] and [DFP+14], we will consider idealized, continuous clocks for a high-level
introduction, even though clocks in a real-world computing system output values
from a discrete domain.

Definition 6.1. A clock Ci is a function Ci(t) : R 7→ R. Ci(t) is the clock reading
at real time t. Typically, we consider t ≥ 0. A clock ensemble {C1, . . . , Cn} is a
set of related clocks.

For example, if every agent i has its own clock Ci available, the clocks Ci of all agents
together form a clock ensemble.

Due to physical limitations, hardware clocks in any real system drift over time.
A simple model is that clocks stay within a linear envelope of real time [AW04]:

Definition 6.2. A clock Ci has drift ρ when it satisfies, for all t, t′ s.t. t′ ≥ t:

1
1 + ρ

(t′ − t) ≤ Ci(t′)− Ci(t) ≤ (1 + ρ)(t′ − t).

This is illustrated in Figure 6.1.

t

Ci(t)

Figure 6.1: Bounded Drift. Starting from any point in time t, the clock Ci may not range
outside the linear envelope defined by lines of slope (1 + ρ, 1

1+ρ ).
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The imperfections of clock ensembles in real systems can be roughly described using
two characteristics [Kop11]:
• Accuracy describes how much a clocks differs from a reference clock, or from

real time. An ensemble has accuracy α when all clocks satisfy |Ci(t)− t| ≤ α.
• Precision describes how much clocks differ from each other within an ensemble.
An ensemble has precision π when all pairs of clocks satisfy |Ci(t)−Cj(t)| ≤ π.

Hardware clocks are imperfect and might drift away from each other over time. A
clock synchronization algorithm can provide adjusted clocks with stronger precision
and/or accuracy guarantees. Assuming a communication network between agents
that provides certain guarantees on end-to-end delay, agents can exchange clock
values and accelerate or slow down their adjusted clocks to improve these properties.

Internal and external synchronization [Kop11]. The desire for accuracy and
precision translates to two sub-problems of clock synchronization. External clock
synchronization keeps adjusted clocks close to a reference clock, addressing accuracy
(and to some extent, precision). In real-world systems, a reference clock could take
the form of a GPS receiver or a networked time server external to the system.

Internal clock synchronization keeps the clocks of an ensemble close together,
addressing precision. Depending on the application, agents in a distributed system
might find an offset from real time acceptable as long as all the clocks of all agents
are still in approximate agreement with each other.

In the remainder of this thesis, we deal exclusively with internal clock synchro-
nization.

6.2 Algorithm for Tick Generation

We consider an algorithm by Srikanth and Toueg [ST87] for internal clock synchro-
nization with Byzantine failures. With unauthenticated messages, the algorithm can
tolerate up to f Byzantine node failures in a system of n ≥ 3f + 1 nodes. We discuss
the core of the algorithm in a variant by Widder and Schmid [WS09].

By regularly exchanging messages between agents, the algorithm generates events
that occur almost simultaneously on all correct agents, which we will call ticks. On
top of its hardware clock, each agent keeps a series of adjusted clocks. In the original
algorithm, each tick initiates a new resynchronization epoch, where a new adjusted
clock is started with an initial value that is shared across all agents. This clock
becomes the new output clock of the algorithm. In this manner, the clock provided by
the algorithm is periodically re-synchronized, and clocks are brought “closer together”
at the start of each resynchronization epoch. By this mechanism, the adjusted clocks
can satisfy precision guarantees [ST87,AW04,WS09].
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1 k := 0
2 send 〈tick 0〉 to all [once]

/* catch-up rule */
3 if received 〈tick l〉 from f + 1 distinct nodes:
4 while k < l:
5 step()

/* advance rule */
6 if received 〈tick k〉 from n− f distinct nodes:
7 step()

8 step():
9 k := k + 1

10 perform action k
11 send 〈tick k〉 to all [once]

Algorithm 6.1: Algorithm for tick generation, after [WS09], for n ≥ 3f + 1. This is the
core of the algorithm by [ST87].

Given that the communication network guarantees an end-to-end delay within
[0; δ], the algorithm guarantees that clocks are at most 2δ time units apart at the
start of each resynchronization period [WS09].

Tick generation. The repeated generation of ticks is the core of the clock syn-
chronization algorithm, shown in Algorithm 6.1. Instead of building adjusted clocks
of a finer granularity on top of these almost-simultaneous ticks, ticks generated from
a similar algorithm can be used on the hardware level to directly drive a clock [FS12].

Timing assumptions. The timing assumptions for messages sent over the com-
munication network influence how well the algorithm can perform, i.e., how close
together ticks are. [ST87] assume that the communication network guarantees an end-
to-end-delay within [0, δ]. However, Algorithm 6.1 also works in system models with
weaker timing assumptions, such as the Theta Model [WS09] or the Asynchronous
Bounded-Cycle Model (ABC Model) [RS11].

Our model for Byzantine a.m.p. systems as introduced in Chapter 5 does not include
timing guarantees at all. It turns out, however, that we can define a problem related
to tick generation that does not reference time.
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6.3 Firing Squad

In Section 6.2, we introduced Algorithm 6.1 as the foundation of clock synchronization
in Byzantine a.m.p. systems. Algorithm 6.1 generates approximately synchronized
rounds, where each tick separates one round from the next one. We consider one
such round in isolation, i.e., consider what happens from tick k to tick k + 1. The
idea is that one isolated round will be easier to analyze. We call this one-shot tick
generation.

One-shot tick generation bears similarities to a distributed systems problem called
Firing Squad [BL87]. Firing Squad assumes a lock-step synchronous system with
up to f Byzantine node failures. The environment can “trigger” each agent with a
start event. start events are external to the system and can occur at an arbitrary
time. Each agent can emit a fire event.

Strict Byzantine Firing Squad [BL87] requires the following:

Definition 6.3. A system is consistent with Strict Byzantine Firing Squad
when all runs satisfy:
• Correctness: If at least f + 1 correct agents observe start, at least one correct
agent fires eventually.
• Unforgeability: If a correct agent fires, a correct agent has observed start.
• Agreement: If a correct agent fires in round r, all correct agents fire in round r.

Informally, we require that when f + 1 start events have occurred on correct agents,
all correct agents must emit fire simultaneously in some future round.

To understand some subtleties of this specification, consider a run r where start
occurs on k correct agents. Observe that the following situations can arise:
• k = 0. By Unforgeability, no correct agent may fire.
• 1 ≤ k ≤ f . Either all correct agents fire, or none. If one correct agent fires, by
Agreement, all correct agents must fire.
• f + 1 ≤ k. By Correctness and Agreement, all correct agents must fire.

Definition 6.3 allows a choice of “all or none” in the case of 1 ≤ k ≤ f , and
this choice is necessary: No agent shall fire when k = 0, but all agents shall fire
when k ≥ f + 1. But depending on the behavior of up to f Byzantine-faulty
agents, a run r with 1 ≤ k ≤ f could be indistinguishable from a run r′ with
k = 0, or indistinguishable from a run r′′ with k = f + 1. In the worst case, this
indistinguishability could hold for all agents! Hence, any sound specification must
allow this choice.

Correctness in Definition 6.3 requires that f + 1 correct agents observe start.
An alternative specification could require that 2f + 1 agents, not necessarily correct,
must observe start before the specification guarantees that all correct agents fire.
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Burns and Lynch [BL87] show that an algorithm for Byzantine Firing Squad
can be derived from an Eventual Byzantine Agreement (consensus) algorithm with
bounded termination time.

6.4 Firing Rebels with/without Relay

In Section 6.3, we argued that Firing Squad bears similarities to a single round of
tick generation in Algorithm 6.1. Byzantine Firing Squad is essentially a time-free,
lockstep-synchronous variant of one-shot tick generation. Consider the following
variation on Firing Squad:

Definition 6.4. A system R is consistent with Firing Rebels when all runs satisfy:
• Correctness: If at least f + 1 correct agents observe start, all correct agents
fire eventually.
• Unforgeability: If a correct agent fires, a correct agent has observed start.

R is consistent with Firing Rebels with Relay when runs also satisfy:

• Relay: If a correct agent fires, all correct agents fire eventually.

Compared to Definition 6.3, we give up the Agreement property, which allows the
problem to be solved in asynchronous systems. To exclude trivial solutions in the
absence of Relay, we strengthen Correctness. Finally, the Relay property is essentially
an asynchronous variant of Agreement that guarantees “all-or-none” behavior.

Algorithm 6.2 shows an algorithm that solves Firing Rebels with Relay, based
on Algorithm 6.1. An agent fires when it receives its own 〈fire〉 message, which we
explain in Section 6.5. We claim (without proof):

Proposition 6.5. Algorithm 6.2 solves Firing Rebels with Relay.

A run of this algorithm is visualized in Figure 6.2.

Since the specification of Firing Rebels does not mention time, we can express it
as a protocol in Γbamp as introduced in Chapter 5. Despite being time-free, Firing
Rebels closely resembles one-shot tick generation.

The Relay property is tricky to analyze using temporal-epistemic logic. As a
first step, we analyze consider Firing Rebels without Relay in this thesis. Figure 6.2
illustrates a case where the Relay property makes a significant difference.
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6.4. Firing Rebels with/without Relay

1 if observed start:
2 send 〈echo〉 to all

3 if received 〈echo〉 from f + 1 distinct agents:
4 send 〈echo〉 to all

5 if received 〈echo〉 from 2f + 1 distinct agents:
6 send 〈fire〉 to self

Algorithm 6.2: Algorithm for Firing Rebels with Relay, based on Algorithm 6.1 for tick
generation [ST87,WS09]. We model the action fire as a message that an
agent sends to itself, as explained in Section 6.5.

1 if observed start:
2 send 〈echo〉 to all
3 fire

4 if received 〈echo〉 from f + 1 distinct agents:
5 fire

Algorithm 6.3: Algorithm for Firing Rebels (without Relay).

a) i

j

k

l

b) i

j

k

l

Figure 6.2: A possible run of a) Algorithm 6.2, solving Firing Rebels with Relay, and
b) Algorithm 6.3, solving Firing Rebels. Horizontal lines represent agents in
time. Thick down and up arrows represent start and fire actions respectively,
thin arrows represent 〈echo〉 messages. Wavy arrows indicate messages forged
by the environment, here agent l is Byzantine-faulty. The environment triggers
start on agent i, i.e., on exactly one agent. By the specification, correct
agents may either fire or not fire. In a), echo messages guarantee that when
one correct agent fires, all correct agents fire (Relay property). In b), no such
guarantee exists.
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Dropping the Relay property allows a situation where only a subset of all correct
processors fire. This allows for the simpler Algorithm 6.3, and we claim:

Theorem 6.6. Algorithm 6.3 solves Firing Rebels without Relay.

Proof sketch. Informally, we show Correctness as follows. When f + 1 correct agents
observe start, every such agent broadcasts 〈echo〉 by the algorithm. By eventual
delivery, every correct agent eventually receives f + 1 distinct 〈echo〉 messages. By
the algorithm, every correct agent fires eventually.

For Unforgeability, observe that a correct agent i has two possibilities to emit
fire. In line 3, the agent has observed start by itself. In line 5, it has received 〈echo〉
from f + 1 agents, thus at least one such agent is correct by the failure assumption.
By the algorithm, this agent has observed start itself or received 〈echo〉 from f + 1
agents, in which case we repeat our argument until we arrive at a correct agent that
has observed start.

In the following section, we formalize the properties of the Firing Rebels specifi-
cation. Based on this, we will examine what kind of knowledge is at play in protocols
that solve Firing Rebels.

6.5 Properties in Temporal-Epistemic Logic

In Sections 3.10 and 3.11, we introduced semantics for temporal-epistemic logic
formulas ϕ ∈ L over runs and systems. In Chapter 5, we introduced the class of
Byzantine a.m.p. contexts Γbamp and properties of such contexts. In Section 6.4, we
introduced Firing Rebels.

In this section, we discuss how we can formulate properties of the Firing Rebels
problem using temporal-epistemic logic.

When representing Algorithm 6.3 in Γbamp, we model start and fire as follows:
• start is an external action on each agent i ∈ A: start ∈ Exti.
• fire is a message that each agent i sends to itself: fire ∈ Msgs.

We model fire as a message, in order to allow the environment to fake the fire
action for Byzantine-faulty agents per τ̂bamp. This highlights a limitation of the way
we defined Γbamp: The environment cannot fake internal actions of agents, nor do
agents have separate actions for outputs that could be faked, similar to external
actions that represent inputs.

Extending Definition 5.8, we define the following atomic propositions:

(R, r, t) |= starti iff ∃E. external(i, start) ∈ E ∈ ri(t) (6.1)
(R, r, t) |= firei iff ∃E. recv(i, i, fire) ∈ E ∈ ri(t) (6.2)
(R, r, t) |= readyi iff ∃E. send(i, i, fire) ∈ E ∈ Pi(ri(t)) (6.3)
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The intuitive meaning of these atoms is:
• starti states that start has occurred on agent i.
• firei states that agent i has fired, which we model as the receipt of a fire
message from itself.
• readyi states that agent i is ready to fire, that is, it will send a fire message

as soon as the environment allows it with a go(i) action.

The truth value of starti can only be changed by the environment, namely through a
trigger(i, start) action. We introduce readyi here because we will need it for the
analysis of sufficient knowledge in Section 6.8. We can show the following:

Lemma 6.7. Fix a protocol P for Firing Rebels, and a context γ ∈ Γbamp. Then the
following hold for R = R̂(P, γ):

R |= starti →  starti

R |= firei →  firei

R |= starti → Ki starti

R |= firei → Ki firei

R |= readyi → Ki readyi

Proof sketch. The claims hold because (6.1)–(6.3) depend only on the local state of
agent i, and local states in Γbamp are histories.

With these atomic propositions, we can state the properties required in Firing Rebels
as follows. Note that since A is a finite domain, all formulas can be expressed in L,
even though we use a set-based shorthand notation here.

Correctness:

R |=
∣∣{i ∈ A | correcti ∧ starti}

∣∣ ≥ f + 1 → 
∧
i∈A

(correcti → firei) (6.4)

Unforgeability:

R |=
∨
i∈A

(correcti ∧ firei) →
∨
i∈A

(correcti ∧ starti) (6.5)

Relay:4

R |=
∨
i∈A

(correcti ∧ firei) → 
∧
i∈A

(correcti → firei) (6.6)

4We mention Relay here for the sake of completeness, but the remainder of this work deals with
Firing Rebels without Relay.
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6.6 Necessary Knowledge

In Section 5.8, we have shown a theorem on knowledge gain in Γbamp. In Section 6.5,
we established basic properties of Firing Rebels in temporal-epistemic logic. Similar
to how Ben-Zvi and Moses establish a lower bound on communication structures in
Ordered Response [BM14], we aim to find such a bound in Firing Rebels, as a first
step towards an epistemic analysis of clock synchronization.

Ben-Zvi and Moses [BM14] talk informally about necessary and sufficient knowl-
edge. Castañeda, Gonczarowski and Moses give a formal definition of necessary
knowledge [CGM14].

The concept is simple, but there are some peculiarities involved in specifying
when a formula ϕ is necessary knowledge. In particular, can the formula be different
for each agent i? In this work, we assume that each agent i has some formula ϕi as
necessary knowledge. Formally:

Definition 6.8. Fix a context γ ∈ Γbamp, an agent i ∈ A and a formula ϕi ∈ L.
When for all protocols P consistent with Firing Rebels and R = R̂(P, γ),

R |= (correcti ∧ firei)→ Ki ϕi, (6.7)

then ϕi is necessary to be known at agent i to fire.

In other words, if we can show (6.7) for a formula ϕi without any restrictions on
the protocol P , we know that Ki ϕi is a necessary condition for agent i to fire, i.e.,
no protocol can solve the problem without agent i attaining knowledge of ϕi. This
is a stronger statement than R |= (correcti ∧ firei)→ ϕi: ϕi might only be seen by
an omniscient observer without being known to i, and i can only act on its local
knowledge.

Theorem 6.9. Fix a context γ ∈ Γbamp and an agent i ∈ A. Then the following is
necessary to be known at each agent i ∈ A to fire:

ϕi := correcti →
∨

j∈A
startj .

Proof. For the sake of contradiction, assume that there is a context γ ∈ Γbamp,
protocol P that solves Firing Rebels without Relay, R = R̂(P, γ), r(t), and i ∈ A,
s.t.

(R, r, t) 6|= (correcti ∧ firei)→ Ki (correcti →
∨

j∈A
startj).(1)
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Then
(R, r, t) |= correcti ∧ firei by (1)(2)

(R, r, t) 6|= Ki (correcti →
∨

j∈A
startj) by (1)(3)

By the semantics of Ki, we can find r′(t′) s.t. r′i(t′) = ri(t) and

(R, r′, t′) 6|= correcti →
∨

j∈A
startj by (3)(4)

(R, r′, t′) |= correcti by (4)(5)

(R, r′, t′) 6|=
∨

j∈A
startj by (4)(6)

(R, r, t) |= Ki firei by (2) and Lemma 6.7(7)
(R, r′, t′) |= firei by r′i(t) = ri(t)(8)
(R, r′, t′) |= correcti ∧ firei by (5) and (8)(9)

(R, r′, t′) |=
∨

j∈A
(correctj ∧ firej) by (9) and ∨(10)

By assumption, P solves Firing Rebels and thus Equation (6.5) holds:

(R, r′, t′) |=
∨

j∈A
(correctj ∧ firej)→

∨
j∈A

(correctj ∧ startj)(11)

(R, r′, t′) |=
∨

j∈A
(correctj ∧ startj) by (10) and (11)(12)

(R, r′, t′) |=
∨

j∈A
startj by (12)(13)

which contradicts (6). Hence, the theorem holds.

In Section 6.8, we will show that ϕi is not only necessary, but also sufficient to
be known at agent i to fire. Note that one might intuitively find ϕi too weak:
When startj holds on a faulty agent, ϕi also becomes true! However, agent i cannot
distinguish whether startj holds or not for a faulty j, and hence Ki ϕi cannot hold
in this case.
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6.7 Necessary Communication

How can agent i gain knowledge of ϕi? We show that it needs to receive at least
f + 1 messages from other agents:

Theorem 6.10. Let P represent Algorithm 6.3, γ ∈ Γbamp, and R = R̂(P, γ). Then

(R, r, t) |= correcti ∧ ¬ starti ∧Ki (correcti →
∨

j∈A
startj) (6.8)

implies
(R, r, t) |= |{j ∈ A | msg-recvd(j, i,M) and j 6= i}| ≥ f + 1. (6.9)

Proof. Assume (6.8) holds. Then

(R, r, t) |= ¬ starti by (6.8)(1)
(R, r, t) |= Ki ¬ starti by (6.1)(2)

Then, for all r′(t′) s.t. r′i(t′) = ri(t) and r′j(t) = rj(0) for all j 6= i,

(R, r′, t′) |= ¬ starti by (2)(3)
(R, r′, t′) |= ¬ startj for all j 6= i by r′j(t′) = rj(0) and (6.1)(4)

(R, r′, t′) |= ¬
∨

j∈A
startj by (3) and (4)(5)

By (5) and ¬ψ =⇒ ¬ϕ ∨ (ϕ ∧ ¬ψ) ⇐⇒ ¬ϕ ∨ ¬(¬ϕ ∨ ψ) ⇐⇒ ϕ→ ¬(ϕ→ ψ),

(R, r′, t′) |= correcti → ¬
(
correcti →

∨
j∈A

startj
)

(6)

Since (6.8) holds, and (6) holds for all r′(t′) with the above conditions, we can apply
Theorem 5.11:

(R, r, t) |= |{j ∈ A | msg-recvd(j, i,M) and j 6= i}| ≥ f + 1.(7)
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6.8 Sufficient Knowledge

Can agent i fire, based solely on knowledge of ϕi? Consider Algorithm 6.4, a
knowledge-based full-information protocol [FHMV03] based on ϕi.

We show that Algorithm 6.4 solves Firing Rebels without Relay:

Theorem 6.11. Algorithm 6.4 provides Unforgeability.

Proof sketch. We need to show

(R, r, t) |=
∨
i∈A

(correcti ∧ firei)→
∨
i∈A

(correcti ∧ starti)(1)

For the sake of contradiction, assume that for some i,

(R, r, t) |= correcti ∧ firei(2)

(R, r, t) 6|=
∨

j∈A
(correctj ∧ startj)(3)

Further, assume that

(R, r, t) 6|= starti(4)

(otherwise, the argument is trivial). Let S = {j ∈ A | (R, r, t) |= startj}. By (3),

(R, r, t) |= startj → ¬ correctj for all j ∈ A(5)
(R, r, t) |= ¬ correctj for all j ∈ S.(6)

By (6) and τ̂bamp, |S| ≤ f . Then, analogous to the construction of Lemma 5.10
(proof omitted), we can find r′(t′) such that

r′i(t′) = ri(t)(7)
r′j(t′) = rj(0) for all j 6= i(8)
i /∈ Failed(r′(t′)).(9)

1 on each state change of agent i:
2 send local state to all
3 if Ki (correcti →

∨
j∈A startj):

4 fire

Algorithm 6.4: Knowledge-based program for Firing Rebels (full-information protocol).
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Then

(R, r′, t′) 6|=
∨

j∈A
startj by (4), (8), (6.1)(10)

(R, r′, t′) |= correcti by (9)(11)

But by (2) and the algorithm,

(R, r, t) |= Ki (correcti →
∨

j∈A
startj)(12)

Since r′i(t′) = ri(t),

(R, r′, t′) |= correcti →
∨

j∈A
startj(13)

(R, r′, t′) |=
∨

j∈A
startj by (11)(14)

But this contradicts (10). Hence, the algorithm provides Unforgeability.

Theorem 6.12. Algorithm 6.4 provides Correctness.

Proof sketch. We need to show

(R, r, t) |=
∣∣{i ∈ A | correcti ∧ starti}

∣∣ ≥ f + 1→
∧
i∈A

(correcti → firei).(1)

Let S = {i ∈ A | (R, r, t) |= correcti ∧ starti} and assume

|S| ≥ f + 1.(2)

By the definition of starti, for all i ∈ S,

∃E. external(i, start) ∈ E ∈ ri(t)(3)

By the algorithm, each agent repeatedly broadcasts its local state. For each i ∈ S, let
Mi denote the message that contains ri(t). By the algorithm and Eventual Delivery,
there is a time t+ ≥ t s.t. for arbitrary i ∈ S and arbitrary j ∈ A,

(R, r, t+) |= msg-recvd(i, j,Mi)(4)
(R, r, t+) |= Kj msg-recvd(i, j,Mi) by (5.17)(5)
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Thus for all r′(t′) s.t. r′j(t′) = rj(t+), and i ∈ S,

(R, r′, t′) |= msg-recvd(i, j,Mi)(6)
(R, r′, t′) |= correcti → msg-sent(i, j,Mi) by τ̂bamp(7)
(R, r′, t′) |= correcti → starti by def. of Mi(8)

By |S| ≥ f + 1, there is an agent i ∈ S s.t.

(R, r′, t′) |= correcti(9)
(R, r′, t′) |= correcti ∧ starti by (8), (9)(10)

We can weaken this to

(R, r′, t′) |=
∨
l∈A

startl(11)

And in particular, for our arbitrary j ∈ A chosen earlier,

(R, r′, t′) |= correctj →
∨
l∈A

startl(12)

Since this holds in arbitrary r′(t′) s.t. r′j(t′) = rj(t+),

(R, r, t+) |= Kj (correctj →
∨
i∈A

starti)(13)

Then, by the algorithm,

(R, r, t′) |= correctj → readyj(14)

By Fair Schedule and Eventual Delivery, every agent that is ready to fire is firing
eventually. Let t∗ > t+ be a time when this has happened for every agent. Then

(R, r, t∗) |= correctj → firej(15)

Since j ∈ A was arbitrary,

(R, r, t∗) |=
∧
i∈A

(correcti → firei)(16)

(R, r, t) |=
∧
i∈A

(correcti → firei) by t∗ > t(17)

Hence, the algorithm provides Correctness.
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Since Algorithm 6.4 solves Firing Rebels (without Relay), we can conclude that

ϕi = correcti →
∨

j∈A
startj

is indeed sufficient knowledge for agent i to fire.
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CHAPTER 7
Conclusion and Outlook

In this thesis, we introduced a formal model for temporal-epistemic logic in Byzantine
Asynchronous Message-Passing systems, namely the class of contexts Γbamp. We
presented a non-contradictory intuitive interpretation of the knowledge of faulty
agents in our model. We showed limitations of the model regarding its application
to message-passing systems.

We used temporal-epistemic logic to show that in Γbamp, agents can only gain
knowledge when they have received messages from more than f + 1 agents. This is a
result about Γbamp, but more importantly an example of how temporal-epistemic
logic can be applied to reason about Byzantine message-passing systems.

We have investigated the link between clock synchronization and tick generation,
and introduced the Firing Rebels problem as a simplification. Using temporal-
epistemic logic, we characterized Firing Rebels without Relay using knowledge
formulas. We proved that in Firing Rebels without Relay, knowledge of a certain
formula is both a necessary and sufficient condition for the fire action of agents.
We extended this result to a lower bound on communication for any protocol solving
Firing Rebels without Relay in Γbamp.

As a foundation, we have summarized the existing framework of Protocols and Con-
texts [FHMV03] and laid it out in a coherent way, aimed at readers from a distributed
systems background and not necessarily familiar with epistemic logic.

The analysis of Firing Rebels also serves an indicator for the practical usefulness of
the model specified by Γbamp and its limitations. We point out possible improvements
later in this chapter.

We encountered several obstacles in the course of our work dealing with Byzantine-
faulty systems:
• The way of thinking about the knowledge of Byzantine-faulty agents proposed

in Section 5.1 was central for our first formalization of Γbamp.
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• The complexity of analyzing clock synchronization using epistemic logic has led
us to the definition of Firing Rebels as a stripped-down version of the problems
that we are actually interested in.
• In the specification of Firing Rebels, we discovered that we had no good way to
model agent actions that the environment can fake. We decided to let agents
send messages to themselves for this purpose, so that Firing Rebels could be
accommodated in the existing model.

7.1 Future Work

In this section, we describe possibilities for future work, based on the experiences we
made in the application of temporal-epistemic logic to Byzantine message-passing
systems. Prosperi, Kuznets and Schmid [PKS17] build their work on some of our
findings and notably introduce a different, more generic system model.

Limitations of our system model. Our model Γbamp is a first shot at bringing
temporal-epistemic logic and Byzantine failures together. We see two main issues:

In the specification of Firing Rebels, we let agents send messages to themselves
to represent actions that the environment can fake. In an improved model, agents
could have explicit “outputs” that the environment can fake, similar to how external
actions represent “inputs”. One could also model inputs and outputs as messages
sent from and to the environment respectively. Roman Kuznets has proposed
another alternative: like a “powerful psychic”, the environment could fake internal
actions [PKS17,Kuz]. Agents would “know” about the fake actions, but be unable
to communicate this to other agents.

Throughout our thesis, we never use the fact that the protocol of the environment
Pe can specify specific actions; instead, we always let it propose the set of all actions,
of which a nondeterministic choice is then made. A simplified model could remove Pe

from the specification, and encode all restrictions in τ , as we basically did already for
τ̂amp and τ̂bamp. For reasoning, it might be desirable to keep a trace of which actions
happened similar to the state of the environment se, but this could also be encoded
directly in τ . One could also explore a model in the style of executions [AW04], where
unlike runs, not only the global state is tracked but also the transitions between
states.

Knowledge gain. Our knowledge gain theorem (Theorem 5.11) is very simple
and only states that, at some time, an agent must have heard from f + 1 neighbors.
It would be interesting to see an extension that allows statements about what
communication is necessary after a certain event has occurred. This gets more
complicated since, when agent i has heard from f + 1 neighbors, it might already
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know which ones are faulty and which ones are correct. Past causal cones [BM14]
could be a starting point. Based on this, it might be possible to find necessary
communication structures similar to the centipedes of [BM14].

Time bounds. Our framework does not include any timing guarantees on messages.
Ben-Zvi and Moses [BM14] propose a failure-free model with time bounds that is
compatible with epistemic logic. Epsilon-Common Knowledge [HM90], a variant
of Common Knowledge with timing uncertainties, also goes in this direction. For
an analysis of clock synchronization, a modal operator dealing with time bounds
would be desirable. Ideally, weaker timing guarantees such as can be found in the
Theta model [WS09] or the Asynchronous Bounded-Cycle Model [RS11] should also
have a representation in this logic.

Firing Rebels with Relay. Our treatment of Firing Rebels deals with the variant
without Relay, which is much simpler to analyze. It would be interesting to see
whether a similar analysis about necessary and sufficient knowledge can be performed
on Firing Rebels with Relay, which is essentially a time-free version of the consistent
broadcast primitive of Srikanth and Toueg [ST87].

Logics to directly represent messages. This thesis only applies temporal-
epistemic logic by reasoning on the semantic level. Pucella and Sadrzadeh [PS10]
propose a logic with axioms for announcements. Possibly, a logic could be defined
that allows syntactic reasoning based on axioms for Byzantine-faulty message-passing
systems.
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List of Symbols

Symbol Meaning

A The set of agents (nodes, processors).
Acti The set of actions of agent i.
~α A joint action.
αi The action of agent i.
e The environment.
Exti External actions of agent i.
G The set of global states.
G0 The set of initial global states, part of a context γ.
γ A context.
Γamp The class of failure-free asynchronous message-passing contexts.
Γbamp The class of Byzantine asynchronous message-passing contexts.
i, j, . . . An agent.
Inti Internal actions of agent i.
Ki The knowledge operator.
Li The set of local states of agent i.
P A joint protocol.
Pi The protocol of agent i.
Π The set of atomic propositions.
π An interpretation.
Ψ Admissibility conditions, part of a context γ.
Ri Possible-worlds relation of agent i.
r(t) A run.
R A system (set of runs).
R̂(P, γ) The system representing joint protocol P in context γ.
Σi Initial states of agent i.
τ Global transition function, part of a context γ.
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