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Abstract 

This work deals with computer aided monitoring of electrical brain signals to detect disease-related 

patterns. Severe neurological disorders can trigger unusually strong firing of brain cells that 

distinguishes clearly from normal brain activity. A well-known example of such a disease is epilepsy. 

During an epileptic seizure, fast repeating electrical discharges on the head surface are often 

measurable. Epileptic seizures usually occur rarely or unnoticed by patients during night wherefore 

considerable effort is needed to properly evaluate and treat patients. Besides epilepsy, inflammatory 

brain diseases such as encephalopathies or traumatic brain injuries can trigger different types of 

patterns with repetitive discharges and seizures. The severity of these diseases and injuries often 

require intensive medical treatment and continuous monitoring of neurological activity. The 

automatic detection of epileptic seizures and repetitive patterns in measurements of electrical brain 

signals is a central part of this work. 

Currently, diagnostic in neurological patients involves a wide spectrum of methods and tools. In 

addition to clinical observations the objective quantification of the brain status is the primary step 

in diagnosis. Imaging methods such as magnetic resonance imaging (MRI) are able to generate a 

snapshot of the brain morphology. To evaluate the brain activity over time the 

electroencephalography (EEG) is used. The EEG is able to continuously record the electrical activity 

of the cortex which makes this method to a central element in the diagnosis of neurological patients. 

Manual evaluation of EEG is done by visual inspection of a graphical representation of these signals. 

Specially trained medical staff interpret the EEG in 10 to 15 second sections throughout the whole 

recording period. With a usual recording time of 4 days more than 34,000 EEG pages need to be 

evaluated, which requires a considerably amount of time for EEG interpretation. The correct 

evaluation of the EEG curves requires a high degree of experience in order to avoid 

misinterpretations. Despite intensive training, different interpretations of an EEG by different 

reviewers and differences in the evaluation of an EEG by the same reviewer at different time points 

are fundamental problems. Further, distortions from electrical signals of muscles (electromyography, 

EMG) can overlay with the EEG, which may lead to misinterpretations. In order to make medical 

findings comparable in the context of international studies, standardized descriptions of EEG 

patterns have been developed which are, however, require experienced staff to be assigned 

correctly. If the EEG is used for real-time monitoring of patients with serious illnesses, the evaluation 

of the EEGs must be carried out promptly in order to achieve an improved treatment. However, this 

places extremely high demands on the staff. Many of the mentioned problems in manual EEG 

analysis can be addressed by using computer-aided evaluation methods. A computer algorithm is 

able to reduce the cost and time of analysis and provides perfect repeatability of the result. Despite 

these obvious advantages, correct automatic analysis of the highly complex EEG signal is an 

unsolved problem that prevents the widespread use of such computer algorithms. 

In this work novel computer algorithms for the automatic interpretation and monitoring of EEG 

signals are presented that were published in eight papers of highly-ranked peer reviewed journals. 

The overall aim is to make EEG evaluation considerably easier by automatically marking important 

time points in real-time. The focus is on the detection of epileptic seizures and patterns with 

repetitive discharges. Although the EEG is the primary data source for the algorithms, EMG 

interferences have to be treated adequately in order to achieve the highest possible precision. To 

raise sensitivity of the automatic seizure detection algorithm even further the electrocardiography 

(ECG) signal was additionally evaluated to find seizure related activity. The use of computer 

algorithms for real-time monitoring of EEG activity is intended to improve treatment of patients and 

to increase patient safety. 

A fundamentally new approach for the detection of EEG discharges was developed in this work that 

can be applied to a wide range of pathological patterns. By combining individual discharges into 

groups that are extended spatially and over time, different types of patterns are modelled. Important 

measures such as frequency and amplitude can then be found by simply averaging the group 

elements. Furthermore, the temporal progression of patterns is used to quantify changes. The time-

domain algorithm therefore creates the basis for analysis of seizures and other EEG patterns. The 



 
 
 

7 
 
 

classification algorithms that utilize this information then allow the detection of seizures as well as 

the quantification of EEG patterns in intensive care patients. The results of the computer algorithms 

can be read and interpreted efficiently by means of a newly developed graphical visualization.  

The clinical validation of computer algorithms is an essential part of this work. The quality of the 

algorithms can only be determined with statistical significance by diagnostic studies including a high 

number of patients. Results of the algorithms were compared to manual annotations from experts 

to measure sensitivity and specificity. In this work, four multi-center studies and some smaller 

preliminary investigations were carried out for different medical questions and algorithms. In total, 

EEGs of 621 patients from 6 centers in Europe and the USA were used for validation. The results 

show that seizure alarming is possible with a sensitivity of 81% and a false alarm rate of 7 false alarms 

per day. A time delay of only 3 seconds was measured from the seizure pattern to the alarm. In the 

detection of seizures based on existing EEG files, the algorithms achieved a high sensitivity of 86% 

which is required for efficient evaluation. Special epilepsy types such as temporal lobe epilepsy 

showed a sensitivity of 94%. The detection of different patterns in the EEG of intensive care patients 

yielded in sensitivities between 85% and 93% and specificities in the range of 90% and 96%. 

Improved treatment of patients as well as a reduction in workload for medical staff are thus possible. 

In the future, mobile EEG systems in the outpatient setting can represent a further significant 

improvement in diagnostic. Patients with rarely occurring seizures can save themselves from 

protracted hospital stays. Moreover, the use of mobile sleep diagnostic including EEG can increase 

the quality of life and save costs. At present, mobile EEG systems are still suffering from problems 

such as high time expenditure for the attachment of the electrodes and complex wiring. This results 

in low patient acceptance and prevents their widespread use. As soon as these difficulties are solved 

computer algorithms can be utilized to evaluate such mobile EEG systems. A large number of medical 

applications are then conceivable in which the quality of the algorithms will play a central role. 
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Kurzfassung 

Diese Arbeit beschäftigt sich mit der computerunterstützen Überwachung von krankheitsbedingten 

Mustern in elektrischen Hirnsignalen. Schwerwiegende neurologische Krankheiten können ein 

ungewöhnlich starkes Feuern von Hirnzellen auslösen, welches eindeutig von normaler Aktivität 

unterscheidbar ist. Das bekannteste Beispiel einer solchen Krankheit ist die Epilepsie. Während eines 

epileptischen Anfalls sind oft schnell wiederholende elektrische Entladungen auf der 

Kopfoberfläche messbar. Gewöhnlich treten epileptische Anfälle sehr selten, oder auch vom 

Patienten unbemerkt in der Nacht auf, weshalb der Aufwand bei der Diagnose und Behandlung 

erheblich ist. Neben der Epilepsie, können auch entzündliche Hirnerkrankungen wie 

Enzephalopathien oder Schädel-Hirn-Traumata unterschiedliche repetitive Entladungen und Anfälle 

auslösen. Die Schwere dieser Krankheiten und Verletzungen erfordert oft eine intensivmedizinische 

Behandlung und eine laufende Überwachung der neurologischen Aktivität. Das automatische 

Auffinden von epileptischen Anfällen und repetitiven Entladungen in Messungen von elektrischen 

Hirnsignalen bildet den Schwerpunkt dieser Arbeit.  

Zurzeit wird eine Vielzahl von Methoden und Werkzeugen in der Diagnostik von neurologischen 

Patienten eingesetzt. Neben bildgebenden Verfahren wie der Magnetresonanztomographie (MRT), 

ist die Elektroenzephalografie (EEG) ein zentraler Bestandteil in der Diagnostik von neurologischen 

Patienten. Im Gegensatz zur MRT, das eine Momentaufnahme der Morphologie des Gehirns darstellt, 

kann das EEG die elektrische Aktivität im Kortex kontinuierlich aufzeichnen. Die Auswertung der oft 

über mehrere Tage dauernden Aufzeichnungen erfolgt durch visuelle Begutachtung einer 

graphischen Darstellung dieser Signale. Speziell ausgebildetes medizinisches Personal interpretiert 

das EEG in 10 bis 15 Sekunden langen Abschnitten. Bei einer üblichen Aufnahmedauer von 4 Tagen 

fallen so über 34000 EEG Seiten für die Auswertung an, wodurch der zeitliche Aufwand der EEG 

Interpretation erheblich wird. Die korrekte Beurteilung der EEG Kurven erfordert ein hohes Maß an 

Erfahrung um Fehlinterpretationen zu vermeiden. Trotz intensiver Ausbildung stellen 

unterschiedliche Auslegungen eines EEGs von verschiedenen Begutachtern, sowie Unterschiede in 

der Bewertung eines EEGs vom selben Begutachter zu unterschiedlichen Zeitpunkten grundsätzliche 

Probleme dar. Auch können elektrische Signale von Muskeln (Elektromyographie, EMG) das EEG 

überlagern, wodurch es zu Fehlinterpretationen kommen kann. Um medizinische Erkenntnisse im 

Kontext von internationalen Studien vergleichbar zu machen, wurden standardisierte 

Beschreibungen von EEG Mustern entwickelt die sich allerdings wieder auf eine manuelle Auslegung 

stützen. Wird das EEG zur Echtzeit-Überwachung von Patienten mit schwerwiegenden Erkrankungen 

verwendet, muss die Interpretation des EEGs zeitnah erfolgen um eine verbesserte Behandlung zu 

erzielen. Allerdings werden dadurch extrem hohe Anforderungen an das Personal gestellt. Viele der 

genannten Probleme in der manuellen EEG Analyse können durch den Einsatz von 

computerunterstützten Auswerteverfahren adressiert werden. Ein Computeralgorithmus kann 

Kosten und Zeit der Analyse reduzieren und schafft eine perfekte Wiederholbarkeit des Ergebnisses. 

Trotz dieser offensichtlichen Vorteile stellt die korrekte Analyse des hochkomplexen EEG Signals ein 

ungelöstes Problem dar, das den weit verbreiteten Einsatz von Computeralgorithmen verhindert. 

In dieser Arbeit werden neuartige Computeralgorithmen zur automatischen Interpretation und 

Überwachung von EEG-Ableitungen vorgestellt, die zuvor in acht Beiträgen von angesehenen 

wissenschaftlichen Zeitschriften veröffentlicht wurden. Ziel ist eine wesentliche 

Arbeitserleichterung in der EEG Auswertung durch automatische Markierung wichtiger Stellen in 

Echtzeit. Das Hauptaugenmerk liegt dabei auf der Detektion von epileptischen Anfällen und Mustern 

mit repetitiven Entladungen. Obwohl das EEG die primäre Datenquelle für die Algorithmen darstellt, 

müssen auch Überlagerungen von EMG adäquat behandelt werden um eine möglichst hohe 

Präzision zu erreichen. Um die Sensitivität der automatischen Anfallsdetektion noch weiter zu 

steigern wurde zusätzlich das elektrische Signal vom Herzen (Elektrokardiographie, EKG) 

ausgewertet, dass sich im Anfall ebenfalls stark verändert. Der Einsatz von Algorithmen für die 

Echtzeit-Überwachung von EEG-Aktivität soll die Behandlung von Patienten verbessern und die 

Patientensicherheit erhöhen. 
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Der in dieser Arbeit entwickelte und grundlegend neue Ansatz zur Auffindung von EEG Entladungen 

kann ganz allgemein auf eine Vielzahl von pathologischen Mustern angewandt werden. Durch 

Zusammenfassung von Einzelentladungen zu zeitlich und räumlich ausgedehnten Gruppen werden 

unterschiedliche Mustertypen modelliert. Wichtige Messwerte wie Frequenz und Amplitude können 

dann durch einfache Mittelwertbildung der Gruppenelemente gefunden werden.  Weiteres wird der 

zeitliche Verlauf von Mustern verwendet um Änderungen zu quantifizieren. Dadurch wird die Basis 

für die Analyse von Anfällen und anderer Muster im EEG geschaffen. Die auf all diesen 

Informationen basierenden Klassifikations-Algorithmen erlauben dann neben der Detektion von 

Anfällen auch die Quantifizierung von EEG Mustern bei Intensivpatienten. Durch eine neu 

entwickelte graphische Visualisierung können die Ergebnisse der Computeralgorithmen effizient 

abgelesen und interpretiert werden.  

Die klinische Validierung der Computeralgorithmen ist ein wesentlicher Teil dieser Arbeit. Erst durch 

Diagnosestudien die eine hohe Anzahl von Patienten inkludieren, kann die Güte der Algorithmen 

mit statistischer Signifikanz festgestellt werden. Dazu wurden die Ergebnisse der Algorithmen mit 

manuellen Bewertungen von Experten verglichen und Sensitivität sowie Spezifität festgestellt. Im 

Rahmen der Arbeit wurden für die unterschiedlichen medizinischen Fragestellungen und 

Algorithmen vier multizentrische Studien sowie weitere kleinere Voruntersuchungen durchgeführt. 

Insgesamt wurden für die Validierung EEGs von 621 Patienten aus 6 Zentren in Europa und den USA 

verwendet. Die Ergebnisse zeigen, dass die automatische Alarmierung bei epileptischen Anfällen 

mit nur 3 Sekunden Verzögerung zum Anfallsmuster mit einer Sensitivität von 81% und einer 

Fehlalarmrate von 7 Fehlalarmen pro Tag möglich ist. Auch bei der Detektion von Anfällen in bereits 

vorliegenden EEGs wurde eine hohe Sensitivität von 86% erreicht, die für eine effiziente Auswertung 

benötigt wird. Spezielle Epilepsie-Arten wie Temporallappenepilepsie erreichten hier eine 

Sensitivität von 94%. Die Detektion von unterschiedlichen Mustern im EEG von Intensivpatienten 

zeigte eine Sensitivität zwischen 85% und 93% und eine Spezifität im Bereich von 90% und 96%. 

Durch die Ergebnisse dieser Arbeit wurde gezeigt, dass der Einsatz von automatischen Systemen zur 

Überwachung von EEG Aktivität mit hoher Genauigkeit möglich ist. Eine verbesserte Behandlung von 

Patienten sowie eine Arbeitserleichterung für medizinisches Personal werden somit möglich.  

Zukünftig kann der mobile Einsatz von Langzeit-EEGs außerhalb des Krankenhauses eine weitere 

wesentliche Verbesserung in der Diagnostik darstellen. Viele Patienten mit selten auftretenden 

Epilepsien können sich dadurch langwierige Krankenausaufenthalte ersparen. Auch der Einsatz von 

mobiler Schlafdiagnostik mittels EEG kann die Lebensqualität erhöhen und Kosten sparen. Derzeit 

leiden mobile EEG Systeme noch an Problemen wie hohem Zeitaufwand für die Anbringung der 

Elektroden und aufwendiger Verkabelung. Die dadurch geringe Akzeptanz bei Patienten verhindert 

deren weit verbreiteten Einsatz. Werden diese Schwierigkeiten behoben, können 

Computeralgorithmen für die Auswertung dieser Systeme eingesetzt werden. Eine Vielzahl von 

medizinischen Anwendungen sind dann denkbar bei denen die Qualität der Algorithmen eine 

zentrale Rolle spielen wird.   
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This work will present computer algorithms for automatic assessment of electroencephalographic 

signals (EEG). Patients with epilepsy and patients of the neurological intensive care unit (ICU) are 

commonly diagnosed with EEG and are in the focus of this work. Some general concepts and 

definitions will be described in this chapter that are essential to understand the problems and 

requirements of diagnosis with EEG. 

 Diagnosis of epilepsy patients 

An epileptic seizure is a transient occurrence of signs and/or symptoms due to abnormal excessive 

or synchronous neuronal activity in the brain [1]. Recurrent and unprovoked seizures define 

epilepsy, a severe disease which about one percent of the world’s population suffers from. The 

exact definition is given by Fisher et al, 2005: “Epilepsy is a disorder of the brain characterized by an 

enduring predisposition to generate epileptic seizures and by the neurobiologic, cognitive, 

psychological, and social consequences of this condition. The definition of epilepsy requires the 

occurrence of at least one epileptic seizure” [1]. While 63 to 70% of epilepsy patients can become 

seizure free using antiepileptic drugs, the remaining are most difficult to treat and therefore suffer 

from medically refractory epilepsy [2], [3]. In 2017 the international league against epilepsy (ILAE) 

defined three fundamental seizure types based on the origin of their onset [4]. Seizures either begin 

focally in one hemisphere of the brain, have a generalized onset appearing from both hemispheres 

or are of unknown onset [4].  

Assessment of clinical symptoms and anamnesis of patients is the primary source to diagnose 

epilepsy. Because the rate of misdiagnosis in epilepsy is as high as 23% evaluation of cerebral 

imaging and electrophysiological measurements is highly advisable [5]. Magnetic resonance 

imaging (MRI) shows a snapshot of the brain morphology at a certain time point and is used to find 

structural deviations. Besides MRI the most important measurement for diagnosis of epilepsy is the 

EEG. The EEG picks up electrical activity of postsynaptic potentials from large groups of pyramidal 

cells in the cortex. In normal brain activity cells are activated asynchronous which generate only 

small electrical potentials on the scalp (Figure 1, A). To measure increased amplitudes by electrodes 

on the scalp a few square centimetres of cortex have to be activated synchronously. Especially in 

pathologic conditions such large groups of cells are activated simultaneously and therefore show 

high EEG amplitudes. The time course of pathologic EEG activity is often abruptly and discontinuous 

but can also show sinusoidal activation patterns (Figure 1, B). 
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Figure 1: Normal EEG compared to EEG including a seizure: (A) Normal EEG of 15 seconds; (B) EEG 

of the same patient having an epileptic seizure visible as rhythmic activity starting on electrodes P8 
and T8. 

EEG is a non-invasive diagnostic technique that allows continuous recording of several days. The 

signal provides high time resolutions in milliseconds but only average spatial resolution. Recording 

durations of several days are required to catch clinically important seizure activity for assessment of 

spatial origin and occurrence frequency. In principle two types of events are of interest: events that 

are seizures, called ‘ictal’ and events in between seizures called ‘interictal’. Typical interictal events 

are epileptic spikes (short term sharp transients lasting 40-200ms) that occur with high prevalence 

during night especially in slow wave sleep [6]. Ictal events like the seizure shown in Figure 1B may 

occur very seldom. The average seizure rate varies greatly between different epilepsy syndromes. 

Patients with an epileptic focus in the frontal lobe may have several seizures in a single day but other 

epilepsies may show only a few seizures per year. Epileptic seizures typically show quasi periodic 

activity in the EEG with frequencies of 4 to 12 Hz. The medical term for such irregular but repetitive 

EEG activity is ‘rhythmic pattern’. Commonly evolution in frequency and amplitude of rhythmic 

patterns can be observed during seizures [7]. Signal distortions from muscle activity, body 

movements, or from electrodes with high impedance (> 10 kΩ) can overlay with the EEG. These 

signal artefacts are a common source of misinterpretation and overtreatment of patients [8].  

Seizure activity with rhythmic waveforms is typically observed in patients having mesial temporal 

lobe epilepsy (Figure 1B). But such ‘rhythmic patterns’ include a variety of repeating transients that 

are only loosely related to a signal that is described in technical terms as periodic signal. Figure 2 

compares two examples of rhythmic seizure activity by showing a single channel signal and the 

corresponding power spectrum. In EEG terminology, both have the same level of ‘rhythmicity’ but 

the technical evaluation using a power spectrum estimation shows major differences between EEG 

signals (A) and (C). Although signal (A) seems much more distorted by high frequency noise the 

pattern exhibits a concentrated power spectrum at about 4 Hz (B). Signal (C) includes EEG activity 

with irregular gaps between discharges that shows equally power levels in a broad frequency band. 

This makes such waveform especially hard to analyse with standard signal analysis methods. 
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Figure 2: Two examples of rhythmic EEG: Ictal EEG with rhythmic morphology and with muscle 

artifacts (A) compared to the power spectrum of the same signal (B). In contrast, an ictal EEG with 

irregular morphology (C) leads to a fuzzy spectrum after transformation in the frequency domain (D). 

The smeared power spectrum has equally high components from 2 to 5 Hz. 

Different reasons for EEG assessment exist. These clinical indications differ in their medical question 

to answer and require different equipment and recording durations. Common clinical indications for 

long-term EEG are differential diagnosis of epilepsy, psychogenic non-epileptic seizures (PNES), or 

other neurological diseases. Routine EEG of up to 30 minutes allows primary evaluation of brain 

activity in the ambulatory setting. Recording of such EEGs is often done using EEG caps that can be 

applied rapidly. Recording of seizures require much longer observation times and are therefore 

mostly done in stationary settings. Epilepsy monitoring units (EMUs) are hospital departments with 

specialized staff to diagnose or rule out epilepsy using long-term EEG and video monitoring. 

Evaluation of the recorded EEGs is mostly done on regularly basis with a time delay of several hours. 

But time delay of evaluation can be critical. Low latency of evaluation allows early treatment of 

seizures and neurological evaluation in the postictal phase. This increases the yield of the whole 

diagnostic by providing valuable clinical information of the seizure. Furthermore, safety of patients 

need to be addressed carefully. Immediate staff response is required in case of a seizure to avoid 

life threating conditions like post ictal apnoea. The percentage of time in which patients are 

observed continuously vary greatly between institutions. E.g. Atkinson et al. showed in a study 

including 20 patients that only 40% of seizures showed staff response [24]. 

In clinical praxis EEG signals are recorded by at least 21 electrodes on the scalp to ensure proper 

spatial resolution of cortical activity [7]. Commonly silver—silver chloride (Ag/AgCI) or gold disk 

electrodes are applied to standardized positions on the head with electrode impedances below 5 

kΩ. The international 10-10 electrode placement system defines these standard positions for each 

sensor [16]. This allows interpretation of the signal location by channel names only. Figure 3 shows 

electrode positions of the international 10-10 electrode placement system. E.g. channel label C3 

represents the EEG signal of the left motor area just above the central sulcus. The reduced 10-20 

electrode placement system includes 21 electrodes in relative distances (10% or 20%) between the 

cranial landmarks over the head [16]. 
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Figure 3: EEG electrode standard positions defined by the American Clinical Neurophysiology 

Society [16, p. 6]. 

Analysis of EEGs need to be repeated from medical staff with persistent high quality using 

standardized wording to describe findings. The SCORE initiative (Standardized Computer-based 

Organized Reporting of EEG) addresses the issue of standardized reporting on EEG by providing a 

predefined dictionary of terms to describe EEG findings [17]. By using SCORE unified EEG reporting 

is possible that will greatly facilitate clinical research. Despite all these efforts the issue of finding 

and interpreting EEG patterns of long term recordings remain one of the most time consuming and 

critical tasks. 

 Monitoring ICU patients with EEG 

Recently, increasing attention has been paid to the treatment of seizures in critical care patients, 

which also triggered an increased use of continuous EEG. In patients of the ICU, epileptic seizures 

are often caused by traumatic brain injury, post-anoxic coma, or intracerebral haemorrhage. Because 

most patients are intubated and received muscle relaxants epileptic seizures are only visible in EEG 

without showing any or only subtle clinical signs (e.g. body movements). Seizures therefore often 

remain undetected and can further damage grey matter tissue by an excessive increase in metabolic 

demand of pyramidal cells. In a retrospective study including 102 patients with spontaneous 

intracerebral hemorrhage seizures occurred in 31% but over half were purely electrographic and 

only one patient had clinical seizures [18]. Seizures were associated with expanding haemorrhages, 

periodic discharges, and poor outcome [18]. These recent findings support the thesis that the 

number of seizures in critical care patients is underestimated.  

Detection of seizures and EEG patterns require continuous EEG monitoring to reach high 

sensitivities. Claassen et al showed that 88% of the non-convulsive seizures of ICU patients require 

at least 24 hours of continuous EEG recording and that 12% of the patients needed more than 48 

hours of recording to detect their first seizure [21]. To establish EEG for ICU monitoring in the first 

place, routine EEGs with short durations are used (e.g. < 30 minutes). Such diagnostic is available 

temporarily in most neurological ICUs. An analysis of 30 minute EEGs of 32 ICU patients showed that 

epileptiform discharges within these recording are predictive for the occurrence of seizures and 

rhythmic or periodic patterns of ictal–interictal uncertainty [22].  



 
 
 

14 
 
 

While patients with epilepsy mostly have clear-cut electrographic seizure patterns the situation is 

quite different for critical care patients. There, the epileptic seizure pattern itself is altered by 

medication and generally shows slower rhythmic EEG activity as well as discontinuous EEG patterns 

[19]. The Ictal – interictal continuum describes EEG patterns ranging from unequivocal seizure activity 

in the 4-8 Hz range to seizure related patterns with unclear significance [20]. The American Clinical 

Neurophysiology Society (ACNS) developed a research nomenclature for such EEG patterns of ICU 

patients with unclear significance to unify interpretation of these patterns and to establish the basis 

for research [9]. 

Automatic analysis of EEG from critical care patients is especially challenging. Commonly 

discontinuous EEG patterns can be observed which include periods of distinct low amplitude 

intervals. An example of such a pattern is the periodic pattern that consists of repetitive transients 

followed by low amplitude inter-discharge intervals. Another example of a discontinuous pattern is 

the burst suppression pattern (BSP). Burst suppressions are EEG patterns consisting of intermittent 

periods of very low voltage brain electrical activity (‘‘suppression”), alternating in a quasi-periodic 

fashion with periods of higher amplitude activity (‘‘bursts”) [7], [9]. The major difference to periodic 

patterns is that discharges have more than three signal deflections and durations longer than 0.5 

seconds. The close relationship between periodic and burst suppression patterns can be observed 

during rewarming of patients in hypothermia were burst suppression evolve into periodic patterns 

[7]. Figure 4 shows examples of periodic and burst suppression patterns.  

 

Figure 4: EEG examples of discontinuous patterns: EEG with discontinuous patterns is commonly 

observed in EEG of critical care patients. (A) Burst suppression pattern; (B) Burst suppression pattern 

with low amplitude bursts followed by a final burst including a high amplitude discharge; (C) Periodic 

pattern with surrounding low amplitude burst suppression pattern. (D) Periodic pattern with less 

than 3 phases in all discharges; (E) Periodic pattern with low amplitude discharges repeat with an 

inter-discharge interval of less than 1 second [A4]. 

BSPs are found in a wide range of pathological and clinically-induced conditions, including 

anesthetic-induced coma, hypothermia [10], [11] deep hypothermia [12], [13], or arising 

spontaneously as a result of anoxic brain injury [14], [15]. In addition, BSP can be found during 

myoclonic jerks in patients having hypoxic encephalopathies which are not directly epileptic seizures 

[7] but seizure are often develop in parallel to this severe functional brain disorder. In automatic 

computer analysis, such signal waveforms are problematic as no technical periodic signal 

components exist because of the random inter-discharge interval. Therefore, periodic and burst 

suppression patterns in general cannot be analysed with frequency domain methods like the Fourier 

transform. 
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 State of the art in EEG processing 

Starting in 1970 the length of EEG recordings continuously increases from 30 minutes up to one 

week for close inspection of patients with rare seizures [23]. But evaluation procedure continued to 

be tedious and time consuming for such lengthy recordings as pure visual inspection of raw signals 

on consecutive 10 second pages was state of the art at that time. Computer supported evaluation 

of EEG potentially reduces time spend to scan EEG segments without relevant information. To 

support this assumption, we conducted a small retrospective study on 14 randomly selected patients 

from an EMU that underwent video-EEG monitoring. Results showed that by using automatic EEG 

software it required only 3 minutes of time to find 83% of all seizures in 24 hours of recording on 

average [B3] 1. This shows that most of review time is spent to find time positions of epileptiform 

patterns without deducing valuable information. Driven by these existing issues of EEG diagnostic 

and with the ongoing wide spread use of continuous EEG automatic evaluation methods were 

developed. 

1.3.1 EEG based seizure detection 

One of the first algorithms for automatic seizure detection was published in 1982 by Jean Gotman. 

In that work, already 24 recordings were used for evaluation of detection performance [25]. From 

there on numerous approaches to automatic EEG evaluation and seizure detection were reported in 

the literature.  

In principle two main use cases should be distinguished. Seizure alarming or online seizure 

detection algorithms evaluate the EEG data stream during recording. If a seizure was detected a 

notification is triggered to allow immediate staff response and neurological testing. Such alarming 

algorithms are trimmed to have short time delay and a low number of false alarms. As only past 

information of the patient can be used the task is considered as more challenging as to use all 

recorded EEG at once. In addition, short time delay does not allow extensive use of pipeline based 

signal processing and will therefore be suboptimal in calculation time. One of the first dedicated 

online detection algorithms already showed 100% sensitivity and a false alarm rate of 4 in 24 hours 

[26] on a number of selected recordings. By trimming online seizure detection algorithms to specific 

patients, the high inter-patient variability of different seizure types can be avoided. E.g. Zheng et al. 

showed that their machine learning based approach can reach a sensitivity of 92% while having an 

average false alarm rate of 4.08 in 24 hours [27]. From engineering perspective, such patient specific 

seizure detection algorithms and devices are highly problematic as each of these devices will need 

a separate clinical trial to be cleared as medical device. A common problem in neurological 

diagnostic of critical care patients is the unavailability of EEG equipment and of trained medical staff 

for EEG interpretation. The time delay of evaluation is especially critical in this setting as prolonged 

non-convulsive seizures need to be treated within short time delay to improve patient outcome [28], 

[29]. Therefore, evaluation has to be done ad-hoc or in regular short intervals.  

Another use case of automatic EEG evaluation is supporting review of data after recording, called 

offline seizure detection or just seizure detection. There, automatic detection algorithms in 

general show higher sensitivity as online algorithms but also higher false detection rates. In clinical 

workflow such algorithms do not trigger alarms but are used to rapidly review data. The higher false 

detection rate is usually accepted as detections can be evaluated quickly. In this research area a high 

number of publications exists. In 2014 Jin et al. published an editorial that summarizes the most 

interesting approaches until that time [30] including [31]–[37]. Most recently Hopfengärter et all 

showed promising results mostly based on temporal lobe epilepsy patients in a large retrospective 

study [38].  

                                                             
1 References [B1]...[B3] are scientific abstracts including major contributions of the author. 
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1.3.2 Non-EEG based seizure detection  

In addition to electrical brain activity measured by EEG the electrocardiography (ECG) is another 

physiological signal expressing seizure activity. Seizures causing activation of the central autonomic 

network followed by changes in heart rhythm at seizure onset. Ictal tachycardia (ITC) represents the 

most frequent change in heart rhythm and can be observed in 65-86% of seizures [39], [40]. The 

advantage of seizure detection based on heart rate is the ease of measurement compared to EEG. 

A single ECG lead is sufficient to retrieve time information of QRS complexes. Further, the 

photoplethysmography (PPG) is a viable alternative to ECG based measurements resulting in similar 

timing information of heart beats by optically measuring changes in volume of blood vessels. 

Compared to evaluation of multi-channel EEG computational effort of ECG or PPG based algorithms 

is lower as computational complexity approximately rises linearly with the number of signal 

channels. Several heart beat based seizure detection algorithms were published in the past showing 

good results on patients having complex partial seizures [41], tonic and myoclonic seizures [42]. 

Osorio et al presented results of an ECG based seizure detection on 81 patients and showed that 

the delay of ictal changes in the ECG is short compared to intracranial EEG. The time delay between 

ictal EEG and ECG seizure onset ranged from 0.8 to 13.8 seconds [43]. Recently Jeppesen et al. 

showed that all seizures of 13 out of 17 patient could be detected using a ECG based algorithm [44] 

[45]. The disadvantage of heart beat based detection is the limited applicability as ITC is not present 

in all seizure types of epilepsy patients and is usually not observed in seizures of ICU patients. 

Another common problem of heart beat based detections are false detections triggered by normal 

physical activity. 

Another electrical signal modality for detection of epileptic seizures is the electromyography (EMG) 

representing the electrical activity of muscle fibres. During convulsive seizures, pathologic muscle 

contraction can be observed that distinguishes from physiological contraction by its excessive 

strength which can even lead to torn muscle fibres. The commonly known generalized tonic-clonic 

seizure (GTCS) where patients show symptoms like stiffened muscles and jerking movements is a 

major risk factor for sudden unexpected death in epilepsy [46]. Mostly a single lead surface electrode 

is used as electrophysiological setup and detection performance reported in literature is generally 

high for GTCS (95% in [47], 100% in [48]). Disadvantage of this approach is the limited applicability 

as GTCS represent the minority of all seizure types and focal motor seizure or focal seizures with 

impairment of consciousness can only be detected with EEG or ECG. 
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In this chapter computer algorithms for detection of epileptic seizures and patterns with repetitive 

discharges in EEG, ECG, and EMG signals will be presented. This work aims to improve on the current 

state of the start in automatic biosignal evaluation by using algorithms that imitate clinical validated 

methodologies. The presented algorithms are based on features that capture physiological 

knowledge of human experts and therefore facilitate comprehensibility. Further, rule-based 

classification schemes that imitate decision trees of EEG experts are implemented. To allow real-time 

monitoring of patients, algorithms must evaluate the EEG data stream continuously. All methods in 

this work avoid patient specific parameter settings to allow universal application to new patients and 

therefore maximize efficacy in clinical practice. This will greatly increase applicability in clinical 

workflow. 

 Time domain analysis of EEG 

A major problem in automatic EEG analysis is the irregularity of patterns as outlined in section 1.1 

and Figure 2. Discontinuous patterns like periodic and burst suppression patterns (Figure 4) basically 

consist of transient discharges occurring randomly in time. To create the basis for analysis of all 

these patterns a novel approach for signal analysis is sought. The idea to solve this problem was 

triggered by the observation of irregular seizure patterns that showed wide spread energy 

distribution of frequency bins although visual interpretation of a rhythmic pattern was obvious 

(Figure 2). In this section time-domain methods for analysis of such patterns are investigated. 

2.1.1 Epileptiform wave sequence algorithm 

In a first approach to automatically analyse EEG in the time-domain the epileptiform wave sequence 

(EWS) algorithm was developed [A1]2. The algorithm especially addresses a group of ictal patterns 

that show moderate irregular rhythmic signal patterns, abrupt phase changes and distortions. Figure 

2 shows an example of a rhythmic EEG pattern with a dominating frequency (A, B) compared to (C, 

D) where the energy is spread over a wide frequency range. Both signals were annotated by board 

certified EEG experts as rhythmic ictal activity and need a highly flexible approach for automatic 

detection. The EWS algorithm directly scans time series data of EEG for consecutive maxima of ictal 

waves. A wave must fulfil certain criteria on instantaneous frequency, dynamic, and the relative 

amount of high frequency noise. All three measurements are defined in the time domain (Equation 

1, 2, and 3) of [A1] . High frequency noise is estimated by the squared sum of all amplitude signal 

points in the wave. Then waves are clustered using the instantaneous frequency and sequences are 

defined of non-overlapping waves of the same cluster. This algorithm copes with the irregularity of 

distinct waves in the rhythmic pattern and creates a compact information entity including the 

number of waves, average frequency, and amplitude. Figure 5 gives an example of the time position 

of maximum points that were included in a rhythmic pattern group [A1] . Such definition of rhythmic 

groups would lead to a very high false detection rate if compared to seizures markers of EEG experts. 

The reason is that the regularity of waves need to be incorporated in classification. The next step in 

the algorithm therefore checks if waves show a certain amount of average regularity in morphology. 

The similarity value 𝛾 defines such measure as the quotient of the variance of the average wave to 

the average variance of all waves 𝑤n in a group of N waves.  

                                                             
2 References [A1]...[A8] are peer reviewed papers including major contributions of the author. 
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𝜸 =  
𝐯𝐚𝐫𝛕 (𝐄𝐧 [𝐰𝐧(𝛕)])

𝐄𝐧[𝐯𝐚𝐫𝛕 (𝐰𝐧(𝛕))]
|  𝐧 ∈ 𝟏. . 𝐍, 𝛕 ∈ 𝛕𝐧

𝐦𝐚𝐱. . 𝛕𝐧+𝟏
𝐦𝐚𝐱 (1) 

 

The value of γ reaches 1 if all waves are exact replicates of each other. In this case the averaged 

wave will be equal to each wave 𝑤n. Wave groups with very different waves will result in a low value 

of γ with a lower bound of zero.  

 

Figure 5: Wave sequence marked by dots on the maximum position of waves found by the EWS 
algorithm.  

A limitation of the EWS algorithm is that waves describe the transition between two consecutive 

discharges and not a single discharge. Noisy signal components in between two discharges may 

avoid detection of the sequence. Therefore, wave sequences without major interruption are 

required in general. This implies that analysis of EEG patterns with large inter-discharge intervals like 

periodic pattern or burst suppression pattern is hardly feasible. Analysis of such patterns in addition 

to unequivocal rhythmic seizure patterns will be possible with an advancement of the idea of the 

EWS algorithm called direct discharge segmentation. 

 

2.1.2 Direct discharge segmentation 

Based on the idea of the epileptiform wave sequence (EWS) algorithm [A1]  a universal 

segmentation algorithm was developed. The algorithm works directly on the time series data without 

using templates for correlation analysis. The working principle is to capture transient discharges of 

signal sources that show large amplitudes compared to other signal components. For example, an 

epileptic seizure activity can be modelled as sequence of discharges without inter-discharge 

intervals. Periodic patterns are based on the same model but show distinct inter-discharge intervals 

with lower amplitude levels. Surprisingly, this approach can be extended to non-EEG signals. In the 

ECG three defections with the largest amplitudes correspond to the electrical signal of the ventricular 

contraction called QRS complexes. This typical waveform repeats for every heartbeat and dominates 

all other electrical activity of the heart like the electrical signal of the atrial contraction and the 

ventricular repolarisation. QRS complexes can be therefore detected with the same computer 

algorithm than EEG discharges. A limitation of the direct discharge segmentation is that 

superposition of two signal sources with the same amplitude levels cannot be differentiated. E.g. 

two sine waves with different frequencies but same amplitudes are not separable by analysing the 

dominating summation peaks in the time domain. Another counter example are burst suppression 

patterns that include an overlay of several small discharges in each burst and are therefore 

indistinguishable in the time domain (e.g. Figure 4, signal A and B). 
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Direct discharge segmentation defines a list of wave segments that represent discharges. Each 

discharge is defined by start, end, and maximum time point. Constraints are defined that control 

how fine grained the signal is segmented. These constraints include the minimum discharge 

amplitude and the minimum discharge duration. The algorithm starts by defining local minimum and 

maximum time points of the time series. By using each maximum X as start point the time span is 

extended along the signal samples in the surrounding of X to reach the minimum amplitude and 

duration constraints (Figure 6, A). After that, a secondary search is conducted to extend the 

discharge. Two lines g1 and g2 starting at the borders of the primary discharge (Ms, Me) are defined. 

Signal samples with smaller amplitudes than the values of g1 and g2 at the same time position are 

included in addition and will extend the initial discharge (Figure 6, B). 

 

Figure 6: Direct discharge segmentation exemplified on a single EEG discharge. First maximum 

point X, start and end time points 𝐌𝐬, 𝐌𝐞 are detected in the primary search (A). Two extensions 

lines 𝐠𝟏, 𝐠𝟐 define the final extent of the discharge segment (B). Discharge segments are the basis 

for automatic detection of seizure patterns in EEG and ECG. 

All extracted discharges are then classified as slow wave, sharp wave, spikes, theta, or alpha waves 

depending on the morphology, duration, and amplitude of the wave. The resulting list of discharges 

will then be used as input for pattern detection algorithms. Comparing this method to the Fast 

Fourier Transform (FFT) or the continuous wavelet transform (CWT) algorithm reveals some major 

differences. First, no signal templates are needed that act as eigenvectors for signal analysis. In 

direct discharge segmentation, the morphology of discharges is found directly without correlation 

of eigenvectors with the signal. This avoids definition of a previously unknown signal morphology 

with the advantage that series of discharges with random morphology are segmented with equal 

quality. Analysis quality in continuous wavelet transform relates to the number of wavelet 

coefficients that include most of the signal energy. This approach avoids such templates and will 

therefore show high signal analysis quality at low computational cost. 

2.1.3 Quantification of discontinuous EEG 

The level of EEG discontinuity is an important clinical marker in the EEG of critical care patients. To 

lay the basis for quantification of discontinuous EEG like burst suppressions patterns a simple time-

domain method was developed. The primary goal is to measure any drop in signal amplitude that 

exceeds a factor of two over a certain time period, as defined by the ACNS terminology for critical 

care EEG patterns [9]. The ACNS terminology requires that bursts have a duration of at least 0.5 

seconds and that more than fifty percent of the recording consists of suppressions. No restriction to 

the signal waveform in the non-suppressed segments are made to allow maximal flexibility. The 
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algorithm works on fixed non-overlapping analysis windows of 15 seconds. First, for each EEG 

channel the peak-to-peak amplitude of non-overlapping chunks of 0.4 length is measured in each 

segment [A4]. Amplitude values are smoothed using moving average filters with 0.5 and 1.5 second 

length and are then used for detection of discontinuous segments. If the average amplitude of 

chunks in a time period of at least 1.5 seconds is less than half of the amplitude of a foregoing or 

following interval of at least 0.5 seconds, then a discontinuous EEG segment was detected. The 

average amplitude value of the whole burst and suppression period is used as separation value to 

assign chunks in the segment to either the burst or the suppression group. If no suppression was 

found all chunks get assigned to the burst group. The average amplitude values of the burst and 

suppression group is evaluated. The result of this quantification will then be used for detection of 

burst suppression patterns.  

 Detection of repetitive patterns 

In this work, computer algorithms for detection of distinct types of EEG patterns with repetitive 

elements were developed. For simplicity, such patters are referred as ‘repetitive patterns’ in this text. 

Rhythmic and periodic patterns are two examples that are closely related to each other when 

automatically analyzed in the time-domain. Therefore, a single algorithm is used detect both. Burst 

suppression patterns are detected based on a different approach that will be described in section 

2.2.2.  

2.2.1 Detection of rhythmic and periodic patterns 

Rhythmic and periodic patters are signal waveforms consisting of a repetitive sequence of 

discharges. According to the standardized critical care EEG terminology [14] a rhythmic activity is a 

“repetition of a waveform with relatively uniform morphology and duration, and without an interval 

between consecutive waveforms” whereas a periodic discharge is a “repetition of a waveform with 

relatively uniform morphology and duration with a quantifiable inter-discharge interval between 

consecutive waveforms and recurrence of the waveform at nearly regular intervals”. These signal 

waveforms are the basis for automatic EEG monitoring and detection of epileptic seizures which will 

be the major goals of this work. The probability to observe these patterns in the EEG is not equally 

likely. In general, ICU patients with rhythmic or periodic patterns below 4 Hz are three times more 

frequent than ICU patients with electrographic seizures [49]. Further, rhythmic and periodic patterns 

may not be clearly ictal or inter-ictal depending on the patient under investigation [20] [50] and are 

subject of current clinical research [51]. This shows that an automatic detection algorithm needs to 

objectively measure patterns in a large frequency range without further classification as ictal or non-

ictal. 

In this work, an algorithm for automatic detection of rhythmic and periodic patterns was developed. 

The basis of the algorithm are segments that were found by the direct discharge segmentation 

algorithm. The algorithm starts by combination of similar discharges that occur at the same time in 

different signal channels [A3]. This will be the case in EEG when several channels may pick up signal 

from the same group of neurons that fire synchronously. This spatial combination utilizes a 

hierarchical cluster algorithm where the maximum point of each segment is used as distance metric. 

This early integration of spatial information allows exclusion of signalling distortions by checking 

the amplitude and phase and by exploiting information of absolute sensor positions on the head. 

Then consecutive multi-channel discharges are used to build groups with similar properties in spatial 

extent, duration, and amplitude. In each group, the algorithm scans for sequences of discharges 

that fulfil criteria related to the ACNS definition [A3] . Properties of the group are calculated by 

averaging values of all included multi-channel discharges. The algorithm therefore results in 

information elements describing rhythmic or periodic patterns that span over several seconds and 

channels. 
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2.2.2 Detection of burst suppression patterns 

Burst suppressions are patterns with repetitive bursts in the EEG of critical care patients. Like periodic 

patterns, burst suppression patterns show distinct low amplitude intervals that are clinically 

described as discontinuous EEG. Despite these similarities, the non-suppressed period includes a 

superposition of random discharges that are not separable. For automatic detection and monitoring, 

a different approach than the grouping of single discharges is needed. In general, not only burst 

suppression (suppressed below 10 µV) but also burst attenuation patterns (suppressed but higher 

than 10 µV) are interesting clinical markers and should be considered during EEG evaluation. In this 

work, it was decided to not only detect burst suppression but also to model burst attenuation 

patterns and other variants with a single detection algorithm. This approach will result in a much 

richer information for clinicians as also transitional states can be observed over time. Detections of 

burst suppression patterns will be continuously visualized in real-time on a graphical user interface 

to allow bedside monitoring (see section 2.3). 

The algorithm is based on the quantification for discontinuous EEG presented in section 2.1.3. First, 

consecutive burst and suppression chunks are connected over time to form larger segments. A 

hierarchical cluster algorithm spatially combines this channel-wise information. The relative time 

duration between detected burst and suppression segments, the amplitude relation between 

suppression/attenuation and burst, as well as spatial distribution is used to quantify detected 

patterns. A complete description of the algorithm can be found in section 2 of [A4]. Figure 7 shows 

an EEG example and detected burst as well as suppression areas. The major algorithmic steps are 

outlined in addition. 

 

Figure 7: Block diagram of the burst suppression detection algorithm including EEG example 

showing burst and suppression clusters [A4]. 
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 EEG monitoring with NeuroTrend 

The graphical visualisation of detected patterns and other simple EEG measures over a time axis is 

called quantitative EEG (qEEG). The amplitude integrated EEG (aEEG) is a simple but effective 

implementation of qEEG that is widely used to monitor neurological state of neonates [53]. The goal 

is to visualise the time course of EEG properties on a compressed time axis to allow visual assessment 

of trends without the need to continuously check and interpret the raw EEG curves. In this work, a 

graphical user interface called NeuroTrend [B2]  was designed to visualise a more sophisticated 

quantification of EEG: detections of patterns with repetitive discharges and seizures. Figure 8 gives 

an example of NeuroTrend for an EEG of a critical care patient. The idea was to use major properties 

of patterns instead of a directly visualizing the amplitude of the whole EEG. NeuroTrend shows the 

spatial localisation of rhythmic and periodic patterns, their frequency and amplitude. The major 

difference and advantage to aEEG is the visual amplification of focal rhythmic activity with small 

amplitudes by information reduction. AEEG that will show one amplitude value of one EEG channel 

or of one hemisphere for each time point. Pattern detections will show only values for EEG segments 

including rhythmic activity. This pre-filtering of information reduces the number of visual elements 

and will allow the reviewer to focus on most important time segments. In addition, focal rhythmic 

activity on a single channel is not averaged with non-rhythmic activity before the amplitude value is 

calculated. This way a single channel with rhythmic or periodic activity will contribute in the same 

way to a visualisation element on the quantitative EEG screen than a rhythmic pattern distributed 

over hemispheres. Burst suppression patterns are visualized by showing detections in red bars. In 

addition, a quantification of amplitude and time relations between burst and suppression segments 

are shown to allow recognition of pattern transitions between continuous and discontinuous EEG. 

The relative amplitude drop 𝑉drop of a burst suppression is calculated by the average burst amplitude 

minus the average inter-burst interval (IBI) amplitude divided by the average suppression amplitude 

(Equation 2). The relative suppression time 𝑇supp is defined as the average IBI time duration divided 

by the sum of burst and IBI time duration (Equation 3).  

𝑽𝐝𝐫𝐨𝐩(%) =
𝑽𝐛𝐮𝐫𝐬𝐭 − 𝑽𝐢𝐛𝐢

𝑽𝐛𝐮𝐫𝐬𝐭
∗ 𝟏𝟎𝟎 

(2) 

 

𝑻𝐬𝐮𝐩𝐩(%) =
𝑻𝐢𝐛𝐢

𝑻𝐛𝐮𝐫𝐬𝐭 + 𝑻𝐢𝐛𝐢
∗ 𝟏𝟎𝟎 

(3) 

 

Both measures are given in percent, whereas the relative suppression time is visualized with an 

inverted y axis. This axis inversion will reduce relative distance on the y-axis for burst suppression 

patterns with either a long suppression times or very reduced suppression amplitudes. In this work 

NeuroTrend is used to monitor detections in real-time and as visual inspection tool for EEG review 

[A3, A4, A6] . 
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Figure 8: NeuroTrend as EEG Monitor: The graphical visualisation tool NeuroTrend showing 

results of a continuous EEG recording of a critical care patient in real-time. 
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 Automatic seizure detection 

To find epileptic seizures in long-term EEG recordings is the major goal in epilepsy monitoring units. 

Although some seizures are clinically observed through medical staff or relatives, many seizures are 

missed during sleep. In this work, algorithms for automatic detection of seizures were developed to 

alarm hospital staff in case of a seizure and to raise efficiency during EEG review. 

2.4.1 Seizure alarming  

In epilepsy monitoring units (EMU) seizure alarming devices are used to ensure patient safety and 

to initiate neurological tests after the seizure. Seizure alarming devices evaluate the signal ad-hoc 

or “online” while recording of the signal. The algorithm first has to detect the seizure in the data 

stream and then to trigger an alarm as fast as possible. 

EpiScan is an seizure detection and alarming algorithm built for the use in epilepsy monitoring units 

[33]. The algorithm is trimmed to detect seizure activity with short time delay in EEG signals. In this 

work the EWS algorithm was introduced into the initial version of the EpiScan algorithm [33] to 

further increase detection sensitivity by automatic detection of irregular ictal EEG patterns [A1] . 

EpiScan finally consisted of a continuous wavelet transformation algorithm called periodic waveform 

analysis (PWA) for detection of small amplitude regular rhythmic activity of deep cortical sources, 

the EWS algorithm for detection of irregular rhythmic activity, and a simple muscle activity detector 

[A2] . The false alarm rate of an alarming device should be as low as possible to avoid ignorance of 

relevant alarms by staff members. To use the EWS algorithm in EpiScan a patient adaption 

mechanism had to be developed. Patient adaption uses recorded feature vectors of the past to 

evaluate the normal EEG activity of the patient over time and for each channel. Feature vectors 

include measures like frequency and amplitude of the rhythmic group. Goal is to build a 

spatiotemporal model depending on frequency that is used to avoid repeating alarms. False alarms 

can be caused by physiological non-ictal patterns like alpha background activity or other benign 

theta variants [A2] . After removing statistical outliers of collected measures the remaining maximum 

amplitude value of each channel and frequency band is used to normalize currently detected feature 

values. Experiment series showed best adaption results for a time window of 4 hours. Applied to the 

EWS adaption model this means that physiological events of a certain pattern frequency and location 

will reduce the alarm probability of patterns with similar frequency and location of up to 4 hours in 

the future. The resulting combined algorithms therefore build a novelty detection system [52]. This 

approach imitates the behaviour of EEG technicians that first learn commonly present EEG patterns 

of a patient and later decides if a pattern is pathologic or physiologic based on that initial evaluation. 

An issue with the seizure alarming approach of EpiScan is that a very high computational effort is 

required to reduce the detection delay. Pipeline processing to calculate values for later use cannot 

be utilized to reduce alarming delay as much as possible. The reason is that delays of filters, 

detection algorithms of rhythmic groups, and classification algorithms would exceed the delay 

requirement if calculated sequentially. In addition, computation of spatiotemporal models including 

information of several hours of EEG activity are very processing intensive. These two issues illustrate 

that post-hoc detection of seizures in long-term EEG requires different algorithmic structures to 

reduce calculation complexity. 
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2.4.2 Seizure detection 

Compared to seizure alarming devices that are designed to detect epileptic seizure as early as 

possible at low false alarm rates, the use case for offline seizure detectors are different. Here, the 

primary goal is to find most of the seizures to reduce work load in EEG evaluation by avoiding 

scanning through EEG segments without valuable information. Seizure detectors are therefore 

trimmed to have a very high sensitivity and fast computation times. False detections are accepted 

as long as most of uninteresting EEG segments can be skipped. Of highest importance is the overall 

gain in work load reduction by using automatic detection systems. Based on the algorithms for 

automatic detection of rhythmic and periodic patterns and the knowledge gained by the EpiScan 

algorithm an automatic seizure detection algorithm for post-hoc analysis was developed [A5] . The 

incorporation of all available signal modalities aims to raise detection sensitivity as high as possible. 

The multimodal seizure detection algorithm exploits information from EEG and ECG data. The EEG 

signal is used to detect rhythmic EEG patterns with steadily increasing amplitudes in the delta, theta, 

and alpha Berger EEG bands (1-13 Hz). The detection algorithm for rhythmic pattern detection based 

on direct discharge segmentation was used for that purpose [A5] . Detected rhythmic patterns are 

used in a novelty detection approach to normalize current detections using past rhythmic activity as 

baseline. In addition, rhythmic pattern amplitudes must exceed a frequency dependent amplitude 

threshold (Figure 9, part B) that models the average physiological EEG activity. This frequency 

dependent EEG model will allow detection of rhythmic alpha activity (8-13Hz) with amplitudes below 

20 µV, whereas delta activity needs a much higher rhythmic pattern amplitude to trigger detections. 

 

Figure 9: Multimodal seizure detection system with high sensitivity of [A5] . 
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Generalized tonic-clonic seizures (GTCS) are commonly followed by temporary paralysis and post 

ictal apnea which is potentially life threatening for patients. Such seizures show extremely high 

muscle activity that differentiates from physical muscle movement. The surface EMG is able to 

capture muscle activity, but dedicated EMG electrodes are not part of the standard setup in the EMU. 

In this work electrical activity from chin, scalp, and face muscles captured by EEG electrodes are 

utilized for seizure detection. A bandpass filter between 30 and 60 Hz extracts EMG data from 

standard EEG signal. Signal strength was quantified using the line length method defined as the 

sum of distances between each consecutive data sample in non-overlapping windows [A5] . Similar 

to the detection scheme for rhythmic ictal activity, the line length measure is required to raise 

continuously over a time period of several seconds. Further, the absolute value must exceed the 

mean value of a baseline window by a certain factor.  

Finally, ECG signals were used for detection of epileptic seizures. ECG signals from chest electrodes 

were used to measuring heart rate and for automatic detection of ictal tachycardia [A5] . In addition 

to a novelty detection scheme, the condition on increasing heart rate had to be defined more 

precisely. Heart rate increases are very common during normal physical activity and during arousals 

in sleep [7]. The cardiac sympathetic index (CSI) is a graphical method to define a steadily increasing 

signal with a certain slope [45]. In this work, 100 heart beats are used for CSI calculation and to avoid 

detections having low CSI values. Signal epochs that show high heart rates compared to baseline 

and having large CSI values trigger detections based on ECG.  

 Measuring algorithm performance 

2.5.1 Quantifying detection performance 

Detection performance of computer algorithms is quantified using sensitivity, specificity, and false 

detection rate. Seizure annotations from experienced epileptologists are used as reference. Time 

points of detected events are compared to these annotations to define four logical variables: true 

positive (TP), false positive (FP), true negative (TN), and false negative (FN). Seizure epochs were 

defined as true positive (TP) if at least one detection occurred within the epoch time range. 

Detections outside of seizure epochs were defined as false positives (FP). False positives occurring 

within a time span of less than 30 s were counted as a single false detection because validation of 

this event is done by assessment of the same screen of EEG. Seizure epochs without a matching 

detection were defined as false negative (FN). All other epochs are defined as TN. Figure 10 

summaries these definitions. In this work a maximum seizure duration of 3 minutes is assumed which 

covers most seizures [54]. To handle also seizure annotations just before ictal patterns, a seizure 

epoch is defined ranging from 30 seconds before manual seizure annotation to 150 seconds after 

annotation. 

 

 

Figure 10: Definition of logical variables TP, FP, and FN. All remaining epochs are defined as TN. 
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Sensitivity (SE) is defined as the number of true positive events (𝑛TP) divided by the sum of true 

positives and false negatives (𝑛FN): 

SE =  
𝑛TP

𝑛TP + 𝑛FN
 (4) 

 

Specificity is defined as the number of true negative events (𝑛TN) divided by the sum of the number 

of true negatives and the number of false positives (𝑛FP): 

SP =  
𝑛TN

𝑛TN + 𝑛FP
 (5) 

 

Human interpretation of specificity is problematic for seizure detection algorithms as the number of 

TN exceeds the number of FP by an order of magnitude. E.g. an average patient in the epilepsy unit 

will has 3 seizures in 100 hours of observation time on average [A2] . Let us assume one-minute 

time intervals for all logical variables, 500 false detections (𝑛FP = 500) as well as 3 seizures (𝑛TP = 3) 

and 100 hours of recording (𝑛hour = 100). In this example 

𝑛TN = 100 ∗ 60 − 500 − 3 =  5497 (6) 

  

SP =  
5497

 (5497 + 500)
  ≈  0.916 =  91.6% (7) 

 

The value of 91.6% misleadingly implies high specificity because of the unbalanced ratio between 

𝑛TN and 𝑛FP. Much simpler interpretability can be reached by using false detections per time unit. 

An established unit in the community is number of false positives divided by the number of 

recording days (𝑛hour/24)  [55]: 

FD/24h =  24
𝑛FP 

𝑛hour
 (8) 

 

This value can be interpreted easily by physicians as the average number of false detections per day 

and linearly correlates to the amount of work needed for assessment of detections or alarms. For 

the given example 

FD/24h =  24
500

100
= 120 (9) 

 

which is considered as a too high false detection rate for most use cases of seizure detection 

systems. 
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2.5.2 Number of patients for validation 

Sensitivity and false detection rate quantify detection performance of a single patient recording. To 

assess average sensitivity and false detection rate a high number of patients need to be involved to 

result in point estimates with small confidence intervals. In this work, an experiment was performed 

to determine the reliability of the mean and confidence interval of sensitivities in a seizure detection 

study with 30 and 94 patients [A2] . In this experiment, sensitivity results of 242 patients with 

seizures were used to simulate 1,000 virtual trials. For each virtual trial, 30 results out of 242 were 

drawn randomly to simulate a study with n=30. The average sensitivities and the 95% confidence 

intervals of all 1,000 virtual studies were calculated using a bootstrapping method [56]. The same 

protocol was applied to simulate a study with n=94 patients and results were compared to the n=30 

studies. For trials with n=30 average sensitivities of single trials ranged from 43% to 92% with an 

average confidence interval of 25%. Open circles in Figure 11 shows results for all 1,000 trials. This 

high variance of means and confidence intervals demonstrates that a sample size of 30 is too small 

for reliably estimating the detection sensitivity. Most compelling is the fact that a single n=30 study 

achieved a mean sensitivity of 92% with a very small confidence interval of 14% simply by chance, 

although this result does not reflect the real detection performance at all. The same procedure was 

repeated for n=94 and plotted in comparison to the n=30 studies in Figure 11 (filled circles). 

Sensitivity of trials with n=94 are much more concentrated between 55% and 80%. The confidence 

intervals for detection sensitivity reduced to a range of 10% to 17% with an average confidence 

interval of 14%.  

 

Figure 11: The 95% confidence interval (CI) of the mean sensitivity plotted over the mean 

sensitivity of 1,000 virtual studies with n=30 (open circles) and n=94 (filled circles) [A2] . 
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Proper clinical validation of computer algorithms is of highest importance. The study design must 

be considered carefully to retrieve meaningful results. For validation, EEG data of a high number of 

patients has to be used for high statistical confidence. Several types of epilepsies should be included 

in the data so that results will correspond to real world situation. Further, whole recordings must be 

used for validation without modification or manual editing. Data of multiple recording sites will 

reduce the problem of hidden confounders. EEG data for development and data for testing should 

be separated to avoid overfitting of algorithms. In this work retrospective datasets were previously 

used for algorithm development; prospective datasets were not used for development of 

algorithms. In this chapter, results of clinical validation studies are presented that will show the 

performance of the developed computer algorithms. 

 Validation of repetitive pattern detections 

3.1.1 Validation of rhythmic and periodic detections 

To get a first impression on the clinical applicability of rhythmic and periodic pattern detections a 

small retrospective study was conducted with NeuroTrend. We randomly selected EEG recordings of 

10 ICU patients including 187 hours of EEG with an associated clinical EEG report from the 

Comprehensive Epilepsy Center, Medical University of South Carolina (MUSC) [A3] . A clinical 

neurophysiologist from the Neurological Center Rosenhuegel (NCR) used NeuroTrend and the EEG 

to write a detection guided EEG report. Then, the detection guided report was compared to the 

content of the manual EEG report from neurophysiologists of MUSC to evaluate similarities and 

differences. The study was designed to use a restricted evaluation time of 10 minutes only, to show 

if detected patterns lead to the most important EEG time points of the recording. The result showed 

that in three out of five patients with reported seizures all seizures from the original report were 

found [A3] . In two patients, additional features were found which shows the high sensitivity of the 

detection method. Not all seizures of another patient could be found because of minor EEG 

correlates. There, seizures were defined by clinical observation and video analysis. In one patient, 

the single seizure was not found because of no clear EEG activity. The result of this small 

retrospective study was promising but the sensitivity and specificity of pattern detections had to be 

shown with high statistical confidence.  

A prospective multi-center study was designed and performed in two neurological ICUs including 

68 patients to validate sensitivity and specificity of automatically detected rhythmic and periodic 

patterns [A7] . Annotations of two clinical neurophysiologist were used as gold standard in this 

study. Automatically detected patterns were compared to annotations to define sensitivity and 

specificity of the detection algorithm. The result showed an overall sensitivity of 94%. Periodic 

patterns detections showed a sensitivity of 80%, rhythmic patterns below 4 Hz a sensitivity of 82%. 

The study showed that an average specificity of 78% could be reached for 20 second annotation 

segments [A7] .  

In summary, high sensitivity but only average specificity could be measured for the detected 

patterns. Further, the possibility to find most important EEG segments using a graphical visualisation 

of detected patterns was shown but validation of the underlying EEG will be mandatory. Results also 

showed that further work on classification algorithms is needed to raise specificity.  
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Finally, two open questions for the application in the neurological ICU remained: 1) How does the 

quality of the detected patterns degrade when only few EEG electrodes are applied? 2) Can the 

graphical visualisation be used as bedside monitor for real-time monitoring of the neurological 

state? These two important questions were addressed in two separate follow-up studies (3.1.3 and 

3.2). 

3.1.2 Validation of burst suppression detections 

Clinical validation of the burst suppression detection algorithm was conducted using prospectively 

collected data of multiple centers [A4] . Because of the lack of EEG annotations that describe the 

discontinuity in EEG signals directly, only the burst suppression detection of the algorithm was 

validated. Assessment included data of three recording centers including data from the 

Massachusetts General Hospital in Boston. In summary data of 88 patients with a total of 3982 hours 

of EEG was included. Sensitivity (SE), specificity (SP), positive predictive value (PPV), and negative 

predictive value (NPV) were measured by comparing detection results of the algorithm with EEG 

annotations of several reviewers. The inter-rater agreement (IRA) between human annotations of 

burst suppression and detection results was assessed to gain insight into the quality of human 

annotation on this pattern type. 

Results showed substantial inter-rater agreement with a kappa value of 0.71 (0.68–0.74). Detailed 

analysis of the annotated data showed that EEGs from the Massachusetts General Hospital included 

significantly more burst suppression patterns than data of the two ICUs in Vienna. Based on the 

uneven distribution of review segments with burst suppression patterns it was decided to avoid 

patient-wise statistics. Instead, detection performance was analysed over all annotation segments 

of all patients. 

Detection results based on consensus annotation of two reviewers yielded in an average sensitivity 

of 90% and an average specificity of 84%. A PPV of 64% (61–66) and a NPV of 96% (96–97) was 

measured. The high detection performance on prospectively collected data showed that automatic 

detection of burst suppression patterns is possible at high accuracy and that real-time monitoring of 

burst suppression patterns is feasible for ICU patients. 

3.1.3 Effects of electrode reduction 

The reduction of EEG electrodes plays an important role in the ICU and for ambulant EEG. Dedicated 

staff for EEG recording and evaluation is generally missing in ICUs. The standardized 10/20 electrode 

placement system including 19 electrodes is therefore a major obstacle to implement continuous 

EEG in the ICU. In this work, the first published systematic approach to evaluate detection sensitivity 

of rhythmic, periodic, and burst suppression patterns with reduced electrode sets was conducted 

[A8] . Based on the 10/20 electrode system including 19 sensors the number of electrode was 

reduced stepwise towards fours minimal electrode setup schemes know from literature. For each of 

the resulting 50 reduction schemes the sensitivity and specificity of the automatic pattern detections 

(section 2.2) was assessed.  
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Results showed that reduction of EEG electrodes rapidly reduces sensitivity for periodic patterns. 

Contrary, rhythmic and especially burst suppression patterns can be detected with much less 

electrodes at the same sensitivity level (Figure 12). Further, placement of the reduced number of 

sensors is important. Results showed that the forehead electrode placement system is most 

beneficial [A8]. The study has a major impact to the neurophysiological community as continuous 

EEG is the fastest growing market in the EEG segment and the costs for electrode application and 

maintenance are high [57]. 

 

Figure 12: Results of systematic electrode reduction to pattern detection [A8] . Analysis was done 

on the group of ictal patterns, periodic patterns (PD), rhythmic delta activity (RDA), and burst 
suppression patterns (BS). Reduction of electrodes was done in four montage schemes called BAM, 

CRM, FOM, and HAM [A8] . 

 NeuroTrend as bedside monitor 

The urgent need for automatic EEG evaluation in the neurological ICU triggered the design of a 

study involving the monitoring tool NeuroTrend. Automatic detections of seizures and patterns of 

ictal–interictal uncertainty can be used for post-hoc analysis and delayed patient treatment [49]. But 

of higher importance is continuous EEG evaluation of intensive care patients to allow early treatment 

of life threatening pathologies like cerebral ischemia or status epilepticus. Goal of the study 

“Applicability of NeuroTrend as a bedside monitor in the neuro ICU” [A6]  was to assess if ICU 

caregivers will be able to correctly interpret NeuroTrend screens for treatment decisions. The study 

involved retrospective ratings of 120 NeuroTrend screenshots by 18 briefly trained nurses and 

biomedical analysts. Substantial agreement (60–80%) was found for electrographic seizure patterns, 

periodic discharges, and seizure suspicion. The study demonstrated that subclinical seizures can be 

detected by shortly trained caregivers using NeuroTrend. 
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 Validation of seizure detections 

3.3.1 Validation of seizure alarming 

The seizure alarming system EpiScan includes the EWS algorithm for detection of rhythmic seizure 

activity (section 2.4.1) as well as the existing continuous wavelet based algorithm PWA [33]. First, 

the algorithm was validated in a retrospective study. In total EEGs of 275 patients including 22,463 

hours of recording and 623 seizures were used to measure detection performance. By comparing 

performance of different parameter sets and combinations of detection features the most promising 

variant for a subsequent prospective multi-center trial should be evaluated. Highest detection 

performance was observed when combining the existing continuous wavelet transform algorithm 

for seizure detection [33] using high specific settings with the EWS algorithm [A1]  (Figure 13, 

HYB_L1). The results proofs that time domain algorithms are capable of adding value to frequency 

domain based algorithms for detection of epileptic seizures in EEG. 

 

Figure 13: Detection performance of continuous wavelet transform based algorithm with parameter 

set 1 (PWA_L1), the parameter set L2 having higher sensitivity (PWA_L2), and combination of 

PWA_L1 and EWS detection (HYB_L1) [A1] . 

In this work one of the largest published prospective multi-center studies for an automatic seizure 

alarming algorithm was conducted on EpiScan [A2] . Three epilepsy monitoring units in Austria and 

the Netherlands joint the research consortium for assessment of detection delay, sensitivity, and 

false alarm rate. Data of 539 long-term EEG recordings including over 42,000 hours of EEG was 

included consisting of 205 prospective and 334 retrospective EEGs. Overall 1836 seizures were 

recorded and annotated. Annotations of seizures in prospective data was done using a novel multi-

level scheme that solved the problem of different levels of seizure perception. In addition, the one 

and only FDA and CE cleared seizure detection software at that time from Persyst (www.persyst.com) 

was evaluated using the same prospective dataset. Result showed that detection performance 

measured on ‘‘probably yes’’ seizures resulted in a sensitivity of 81% (74–86%) and a false alarm rate 

of 7.1 false alarms per day (FA/24h). Detection performance degraded to 78% sensitivity and 7.08 

FA/24h when annotations with lower perception values were used for comparison. Finally, a 

sensitivity of 72% with similar false detection rate was achieved when all seizures from the standard 
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EMU review protocol were used for evaluation. Comparison to the Persyst seizure detection software 

showed that sensitivity was 81% for EpiScan whereas Persyst reached a value of 75%. A two-paired 

t-test showed that the difference of sensitivities was of no statistically significance. False alarm rate 

of EpiScan was lower compared to the result of Persyst (-27% or 2.68 FA/24 h). Although the overall 

detection sensitivity did not reach values over 85% similar results could be reached in all centers 

which allows the universal application of the method. Figure 14 depicts the main result of the 

EpiScan study. 

 

Figure 14: Result of the EpiScan study [A2] . Detection performance of EpiScan and Persyst 12 
compared in four seizure categories using the same prospective data. 
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3.3.2 Validation of offline seizure detection 

Clinical validation of the seizure detection algorithm described in section 2.4.2 involved 

retrospective recordings of two epilepsy monitoring units including EEG and ECG data of 94 patients 

with 494 epileptic seizures. Special attention was given to reduced electrode setups with only 8 

electrodes. The use case of counting seizure using an automatic seizure detection algorithm for 

ambulant recordings of outpatients is of high interest to reduce costs and to increase quality of 

seizure therapy studies [A5] . Result showed that a high overall detection sensitivity of 86% could 

be reached with the multimodal seizure detection algorithm. An average false detection rate of 16.5 

false detections in 24 hours was reached. The subgroup of temporal lobe epilepsy patients showed 

94% detection sensitivity and generalized tonic-clonic seizures could be detected to 100%. The work 

also showed that by using 8 frontal and temporal electrodes the detection sensitivity reduces only 

by 5% compared to the full setup. This finding will allow reduction of EEG setup time by a factor of 

three and ensures patient compliance. Compared to manual evaluation of EEG the proposed 

method will increase overall detection sensitivity and efficiency of EEG review. 

 

Figure 15: Results of the multimodal seizure detection algorithm. Reduced and full electrode sets 
were used to validate the algorithm on temporal lobe epilepsy patients (TLE), extra temporal lobe 
epilepsy patients (XTLE), on patients with focal seizures (FS), and on patients with generalized tonic-
clonic seizures (GTCS). 
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Aim of this work was to implement real-time monitoring of patients by using computer algorithms 

for automatic EEG evaluation. The detections of seizures and repetitive discharges capture neuronal 

activity of patients which are highly relevant for diagnostic. Through this approach several major 

improvements in the workflow of clinical neurophysiologists were achieved. First, real-time 

surveillance of seizure activity in epilepsy patients became possible. An alarming algorithm for 

epileptic seizures was developed that is able to notify medical staff of epilepsy monitoring units 

within a few seconds. The false alarm rate had to be as low as possible in order not to be ignored. 

Second, monitoring of critical care patients was implemented by extracting several kinds of patterns 

with repetitive discharges from the EEG. These detection algorithms are able to capture information 

of rhythmic, periodic, and burst suppression patterns. A graphical visualization tool called 

NeuroTrend was invented that allows monitoring of the neurological state through display of these 

patterns at bedside of critical care patients. Further, efficiency of post-hoc EEG review was raised by 

introducing a computer assisted EEG review workflow. A multimodal and high sensitive detection 

algorithm for epileptic seizures was developed for that purpose. By showing results of seizure and 

pattern detections in NeuroTrend the review time of EEG can be reduced while maintaining quality.  

In this work, a novel and unique approach for signal analysis of biosignals was invented. The idea 

started with the observation that frequency transformation algorithms are not able to analyze seizure 

patterns at equal quality. The EWS algorithms was invented in this work to directly scan time-series 

EEG data for consecutive epileptiform discharges. By iteratively validating the waveform between 

two discharges an epileptiform wave sequence is build. The prove of concept that such feature is 

able to find at least some seizure activity with higher precision than a precursor wavelet based 

algorithm was shown in this work. This idea was taken further to build a more universal signal analysis 

framework. The direct discharge segmentation is able to separate pulsing discharges in time series 

data. Based on this segmentation the detection algorithms for seizures and other repetitive patterns 

were built. The algorithms mimic the visual approach of EEG reviewers by grouping discharges with 

similar amplitude, duration, and spatial location. Such pattern fields are then validated to fulfill 

minimal requirements on the number of discharges and finally represent EEG patterns of medical 

interest. 

Real-time monitoring of critical care patients was implemented by developing algorithms that 

automatically detect standardized EEG patterns defined by the American Clinical Neurophysiology 

Society (ACNS). The algorithms scan the EEG for rhythmic, periodic, and burst suppression patterns 

and allow objective quantification of EEG content. By using the computer results a standardized and 

reproducible way of EEG evaluation regarding these patterns was created. Further, by showing these 

repetitive patterns on a graphical user interface a novel computer assisted workflow was introduced 

that is able to provide real-time assessment of the EEG. In this work, clinical validation of computer 

algorithms was conducted with high effort. Clinical diagnostic studies including data of multiple 

recording centers were used for each use case. For the validation of rhythmic and periodic patterns 

detections a clinical study including 68 patients of two neurological ICUs was completed. High 

detection sensitivity and specificity of the different pattern variants was proven. A major obstacle to 

implement continuous EEG in neurological ICUs is the high number of electrodes in the standard 

EEG setup. In this dissertation, the first published study on systematically reduced electrode sets was 

conducted. The effect on the algorithm performance and the reviewer impression was measured 

when reducing the number of EEG electrodes one by one. Results showed that some EEG patterns 

of critical care patients are more vulnerable to reduced electrodes sets than others. Further, clinical 

validation of the burst suppression pattern detection algorithm was conducted in cooperation with 

the Massachusetts General Hospital and two neurological intensive care units in Vienna. Results 

showed high performance levels above previously published data in this field. The algorithm is 

therefore able to monitor sedation levels as well as spontaneously arising discontinuities in the EEG 

of critical care patients in real-time.  
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In this dissertation, a novel seizure alarming algorithm was developed that will raise patient safety 

and efficiency of continuous EEG in the epilepsy monitoring unit. The problem of high inter-patient 

variability of ictal EEG had to be solved first. Small amplitude rhythmic patterns in a single channel 

may be the most pronounced seizure activity in one patient but may be present continuously as 

normal EEG activity in another patient. To solve this issue, a patient specific component had to be 

used that works without explicit training data. The spatiotemporal patient model collects past 

information of a fixed time window for baseline estimation and for feature normalization. This 

approach was then used to implement the seizure alarming system EpiScan that notifies medical 

staff in case of seizure. For clinical validation of EpiScan one of the largest published prospective 

multi-center studies was initiated and completed. The international consortium of three epilepsy 

centers gathered long-term EEG data of 205 patients including gold standard annotations of 

seizures. Results showed high sensitivity and acceptable false alarm rates in all centers. In addition, 

the prospectively collected EEG data was used to compare EpiScan to a commercially available 

seizure detection software. This unique approach is the first published comparison of two EEG based 

seizure detection algorithms on a large prospective dataset and showed the superior false alarm rate 

of EpiScan.  

To raise effectiveness of EEG review was another goal of this work. The user interface NeuroTrend 

was designed to show detected patterns as simple colour coded elements and therefore implements 

a computer aided monitoring system for EEG. This work showed that review time can be reduced 

significantly when using NeuroTrend to review EEGs of epilepsy patients. To further raise quality of 

EEG diagnostic, a high sensitive seizure detection algorithm was developed that is based on 

detections of rhythmic EEG patterns. In addition, the algorithm incorporates information of ECG and 

EMG to raise sensitivity. A clinical study including recordings of 91 epilepsy patients of the Epilepsy 

Center Erlangen and the Neurological Center Rosenhügel in Vienna was used for validation. Results 

show that some seizure types can be detected with 100% sensitivity while having an acceptable 

false detection rate of 16.5 per day on average. Compared to manual EEG review the number of EEG 

screens for validation therefore reduces from over 34,000 to only 66 to find 86% of the seizures on 

average. 

Clinical evaluation studies of this work already received attention in the scientific community. An 

review paper on EEG based seizure detection algorithms by Jean Gotman, who published the first 

computer algorithm of that kind in 1982, describes the EpiScan study [A2]  as “probably a realistic 

assessment of the performance that is possible on current methods” [23]. Further, the work on 

electrode reduction received an editorial by Kenneth G. Jordan in the journal Clinical 

Neurophysiology [57]. 

This work showed that the highly complex problem of automatic EEG analysis can be solved to a 

certain extend and that new and innovative solutions are possible for diagnostic of EEG. Computer 

based monitoring of EEG can potentially increase quality of diagnostic by providing simple and easy 

to understand descriptions that can be interpreted not only by experts in the field. With the help of 

computer algorithms for EEG evaluation future applications like home monitoring and wearable 

seizure alarming devices are feasible. Such applications can further reduce the overall costs of the 

health care system and will increase quality of life for patients. 
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Figure 1 Ictal EEG with rhythmic morphology and 

with muscle artifacts (A) compared to the power 

spectrum of the same signal (B). A method based on 

spectral analysis will be capable of detecting the 

underlying rhythmic pattern as the power spectrum 

reveals a strong peak at 4 Hz. 

� 

Abstract² The detection of epileptic seizures in long-term 

electroencephalographic (EEG) recordings is a time-consuming 

and tedious task requiring specially trained medical experts. 

The EpiScan [1±4] seizure detection algorithm developed by the 

Austrian Institute of Technology (AIT) has proven to achieve 

high detection performance with a robust false alarm rate in 

the clinical setting. This paper introduces a novel time domain 

method for detection of epileptic seizure patterns with focus on 

irregular and distorted rhythmic activity. The method scans the 

EEG for sequences of similar epileptiform discharges and uses 

a combination of duration and similarity measure to decide for 

a seizure. The resulting method was tested on an EEG database 

with 275 patients including over 22000h of unselected and 

uncut EEG recording and 623 seizures. Used in combination 

with the EpiScan algorithm we increased the overall sensitivity 

from 70% to 73% while reducing the false alarm rate from 0.33 

to 0.30 alarms per hour.  

I. INTRODUCTION 

LECTROENCEPHALOGRAPHY (EEG) is the medical 

standard for examination of patients suffering from 

epilepsy. Long-term EEG recordings lasting for several days 

are needed for pre-surgical evaluation of patients with 

refractory epilepsy types or patients having inacceptable 

medical side-effects. The unpleasant situation for patients 

monitored continuously with video and EEG is impaired 

with an increased risk of seizures as anti epileptic drugs are 

reduced. Not only is a thorough analysis of the long-term 

EEG involving medical experts required but also a 24 hour 

surveillance of the EEG in real-time. An automatic method 

that marks seizure events can reduce evaluation time 

drastically and increases patient security by alerting medical 

staff immediately.  

A major problem in the automatic seizures detection is the 

inter-patient variability of ictal patterns ranging from quasi 

periodic patterns over patterns with high frequency variation 

or abrupt phase changes to completely irregular groups of 

ictal discharges. The existing EpiScan algorithm [1±5] 

identifies ictal activity with rhythmic or periodic 

morphology using a continuous wavelet transform approach. 

This method has reached a high overall sensitivity and a low 

false alarm rate in uncut, unselected clinical data [4]. Ictal 
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patterns with high frequency variation and phase changes 

were partly recognized by the EpiScan algorithm, but lead to 

higher overall false alarm rates. 

In this paper a time domain algorithm for detection of 

epileptic seizures called Epileptiform Wave Sequence (EWS) 

analysis will be presented that is designed to reliably detect 

epileptic seizures with rhythmic morphology and especially 

addresses the group of ictal patterns with a moderate 

irregular structure, abrupt phase changes or distortions. In 

this context an epileptiform wave is a pathologic discharge 

seen in the EEG and a sequence is an epoch dominated by 

waves with the same properties. 

Such wave sequences result from repeating discharges of 

groups of cortical neurons with abnormal hypersychronous 

behavior [6]. The post-synaptic electrical potentials [6] 

coming from a synchronous firing neuronal group in the 

seizure onset zone mix non-linearly with other physiological 

signals, will be attenuated at the skull bone and finally sum 

up with artifacts from scalp muscles and technical electrode 

artifacts. Ictal patterns with moderate irregular morphology 

are often seen in patients with ictal slowing, rhythmic delta 

activity or in a secondary generalization phase of the seizure 

when the rhythmic pattern at onset (PAO) was obscured.  

Figure 1 shows an example of an ictal signal interfered with 

noise that can be easily analyzed by a method based on a 
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Figure 2 : Ictal EEG signal with an irregular 

morphology (A) that leads to a fuzzy spectrum after 

transformation in the frequency domain (B). The 

power spectrum looks smeared and has equally high 

components from 2 to 5 Hz. The averaging of the 

spectral analysis obscures the simple structure of 

repeating discharges seen in the time series. 

 

spectral estimation. A time series analysis is preferable for 

the signal in Figure 2 because the more irregular distance 

between adjacent peaks do not result in a stable frequency 

for spectral estimation. Hence a combination of both 

approaches will be preferable. 

 

Time-series algorithms that search for unique markers in the 

signal to segment and analyze the patterns are commonly 

used in the field of EEG analysis. Gotman e.g. [7±9] showed 

several applications with this approach. In this paper the 

method is evaluated using a comprehensive EEG database 

with statistical relevance. 

 

II. METHODS 

A.  Frequency domain analysis 

EpiScan utilizes a continuous wavelet transformation 
algorithm called Periodic Waveform Analysis (PWA) to 
search for rhythmic patterns in the surface electrode EEG 
channels. More details can be found in [2], and a complete 
performance analysis using the AIT EEG database can be 
found in [3].  

 

B.  Time domain analysis 

The Epileptiform Wave Sequence (EWS) analysis was 
designed to reliably detect epileptic seizure patterns with 
rhythmic morphology in the time domain and especially 
encounter the problems of high frequency variation, abrupt 
phase changes and signal distortions by muscle or electrode 
artifacts. The EWS analysis will proceed as follows: 

1. wave classification 

2. wave clustering 

3. sequence creation 

4. intra-sequence correlation 

 

Step 1 will find interesting signals called waves, Step 2 

group waves with the same properties using a clustering 

algorithm. Step 3 then creates a sequence from waves 

belonging to the same cluster. Step 4 calculates a correlation 

value acting as similarity measure for the sequence. 

1) Wave classification 

To find epileptogenic waves, the signal is scanned iteratively 

over time for maxima of ictal discharges. A wave is defined 

as the signal between two adjacent maxima that fulfills the 

following classification criteria: 

 

x the instantaneous frequency Bá has to be in range  

x the dynamic @áof the wave has to be high enough 

x the high frequency noise of a wave has to be small 

 

 

The instantaneous frequency Bá of wave J is the ratio of the 

sampling frequency Bæ to the duration of the wave measured 

between time points of two maximum peaks ìÞ
àÔë. 

 

Bá L
Bæ

ì
á>5

àÔë F �ìáàÔë
 (1) 

 

The dynamic of a wave @á is measured using the two 

maximum values and the including minimum value PàÜáÞ 

 

@á L +G:ìáàÜá F �ìáàÔë;E T:ìáàÔë;F Tkìá>5àÜáo+ (2) 

 

with the slope G�defined as 
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. (3) 

 

The high frequency noise of a wave is measured using the 

sum of squares of all adjacent signal points T:P; in the wave.  

This wave-extraction scheme will solve the problems of 

phase changes, signal distortion and high frequency 

variation as all waves are handled separately. Only a 

sequence of epileptogenic waves with similar morphology 

reliably specify a seizure pattern, so a sequence needs to be 

found. 

 

 2) Wave clustering 

Waves will be clustered using the measures found in the 

wave classification step.  The clustering algorithm uses a 

given variance to find a single subgroup that dominates the 

ictal EEG. The variances were found using a statistical 

analysis of the AIT EEG-database and cross-validation with 

knowledge from specially trained EEG experts. Clustering is 

done sequentially using the instantaneous frequency, wave 

amplitude and the noise measure. 
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Figure 3 Ictal EEG (sampling frequency 256 Hz) with a repeating 

but irregular morphology and the detected sequence marked with 

filled circles at the end of the wave. Note that some waves are left out 

as they do not fit into the cluster or the sequence restrictions. 

3) Sequence creation 

After wave clustering a sequence will be defined allowing 
gaps that correspond to signal distortions. This step will 
create the sequence using only clustered waves but leaving 
out signal epochs with artifacts. This will avoid mixing 
artifacts and interesting signals like in the spectral widening 

problem of the FFT [10]. An example of an ictal EEG in the 
delta band with marked waves as sequence is shown in 
Figure 3. 

4) Intra-sequence correlation 

The morphology of the waves in the sequence is used to 

separate artifacts from ictal patterns based on the 

observation that ictal sequences of epileptogenic discharges 

look similar to each other. A similarity value Û is calculated 

that models the similarity in a group of waves. Note that the 

morphology is not pre-defined but only must be similar in 

the sequence. This will avoid correlation artifacts as in 

cosine or wavelet transforms where a signal needs to be 

decomposable into the respective signal forms. The 

similarity value Û is calculated using the signal of 

0�extracted waves Sá:P;. 
 

(4) 
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The measure Û will then be used as replacement for the PWI 

feature in the EpiScan algorithm as described in [2]. 

 

C. Performance analysis 

1) Sensitivity: The detection sensitivity was evaluated as 

follows: Each marker of electrographically visible seizures 

that intersects with a seizure alert from the algorithm is 

regarded as true positive event, whereas each seizure marker 

with no intersection is a false negative event. For each 

patient with recorded seizures the sensitivity is determined 

as the ratio of true positives and the total number of recorded 

seizures. We evaluate these sensitivities by calculating the 

mean over all patients with seizures. Averaging over patient-

wise sensitivities is done since seizure counts of the patients 

are not equally distributed.  

 

 

2) False alarm rate: The false alarm rate is also calculated 

patient-wise. Long contiguous markers from an automatic 

seizure detector create a higher review effort than short ones 

that can be inspected on a single EEG screen. In order to 

accommodate this fact, each seizure alert is divided into 

multiple sub-markers of maximally 30 seconds, meaning 

that each of these markers contributes to the false alarm rate. 

Each sub-alert that does not intersect with a true seizure 

marker (basic truth) is regarded as a false alarm. The number 

of false alarms for one patient divided by the total number of 

hours of EEG recordings for this patient gives the false 

alarm rate. False alarm rates are evaluated by calculating the 

mean over all patients. 

 

D. Test set 

The EEG database of the AIT [1] was used to validate the 

seizure detection performance. The database includes solely 

uncut and unselected EEG long-term recordings from 

several epilepsy monitoring units, mostly in 256 Hz 

sampling rate using the standard 10-10 or 10-20 

international electrode system.  

 

AIT EEG Database  Measure 

# Patients 275 

# Patients with epilepsy 159 

# Patients with seizures 96 

# Epileptic seizures 623 

# Hours of EEG recordings 22463 

Table 1 Overview of the AIT EEG database 
 

 

III. RESULTS  

 A. EWS Detection Performance 

The EWS algorithm reached 100% detection sensitivity in a 

third of the patients (N=31). The mean of the detection 

sensitivity using all patients with all epilepsy types (N=96) is 

53%. The overall false alarm rate of all patients (N=275) 

was 0.14 false alarms per hour (FA/h).  

 

B. Combined EpiScan and EWS Detection Performance 

To optimize the detection performance without further 

increasing the false alarm rate (compared to [4]) a PWA 

setting with reduced sensitivity was combined with the EWS 

algorithm. Figure 4 draws the detection sensitivity as 

function of the false alarm rate showing that the combination 

with the EWS algorithm is preferable to a further increase of 

the PWA sensitivity. The advantage of the combined version 

is an increase of 3% in sensitivity and a reduction of 0.034 

false alarms per hour (FA/h) giving absolute values of 73% 

overall sensitivity (N=96) with an overall false alarms rate 

(N=275) of 0.3 FA/h. The combination leads to an 

improvement because irregular ictal patterns are detected 

more efficiently with the EWS algorithm.  

A histogram showing the detection performance of the 

combined method is given in Figure 5. Note that the 
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Figure 4 The plot of the algorithm operating 

characteristic (AOC) shows the overall detection 

sensitivity in percent against the false alarm rate per 

hour (FA/h). The marker PWA_L2 correspond to 

EpiScan algorithm solely based on PWA published in 

[4]. The EWS algorithm is combined with the setting 

PWA_L1 to raise sensitivity while reducing FA/h 

compared to PWA_L2, giving the marker HYB_L1. 
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majority of patients (N=52) had a detection sensitivity of 

100%. The important subgroup of temporal lobe epilepsy 

(TLE) patients (N=61) is detected with high sensitivity of 

83.6% and a false alarm rate of 0.29 FA/h. 

 
Figure 5  The histogram of the combined detection 

performance using the PWA_L1 and the EWS algorithm. 

Most of the 96 patients with seizures have a detection 

performance of 100%, patients having lower detection 

sensitivities are nearly equally distributed. The mean of the 

detection sensitivity is 73%. 

 

 

 

 

 

 

 

IV. DISCUSSION 

A time domain approach of an epileptic seizure detector 

called EWS was presented that showed its effectiveness in 

detection of rhythmic seizure patterns with moderate 

irregular morphology or signal distortions. The combination 

with the EpiScan algorithm leads to a new hybrid detection 

scheme with a performance that could not be reached by one 

algorithm alone. An overall detection sensitivity of 73% 

while having a false alarm rate of 0.3 was reached that 

correspond to an increase of 3% in sensitivity and a 

reduction of 0.034 in false alarm rate compared to [4]. The 

performance of the important group of TLE patients reached 

a sensitivity of 83.6% with a false alarms rate of 0.29 alarms 

per hour. 

The analysis of the problems and results imply that many 

feature extraction schemes working on biomedical signals 

face similar problems and that they will benefit from hybrid 

algorithm approaches as the strengths of both viewpoints are 

needed to bring performance to new levels.   
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h i g h l i g h t s

� Large prospective multi-center study of an automatic seizure detection system including 205 patients.
� Comparison between two automatic seizure detection systems using the same prospectively recorded

dataset.
� Performance numbers on the publicly available CHB–MIT dataset and on 310 retrospective patients

datasets.

a b s t r a c t

Objective: A method for automatic detection of epileptic seizures in long-term scalp-EEG recordings
called EpiScan will be presented. EpiScan is used as alarm device to notify medical staff of epilepsy mon-
itoring units (EMUs) in case of a seizure.
Methods: A prospective multi-center study was performed in three EMUs including 205 patients. A com-
parison between EpiScan and the Persyst seizure detector on the prospective data will be presented. In
addition, the detection results of EpiScan on retrospective EEG data of 310 patients and the public avail-
able CHB–MIT dataset will be shown.
Results: A detection sensitivity of 81% was reached for unequivocal electrographic seizures with false
alarm rate of only 7 per day. No statistical significant differences in the detection sensitivities could be
found between the centers. The comparison to the Persyst seizure detector showed a lower false alarm
rate of EpiScan but the difference was not of statistical significance.
Conclusions: The automatic seizure detection method EpiScan showed high sensitivity and low false
alarm rate in a prospective multi-center study on a large number of patients.
Significance: The application as seizure alarm device in EMUs becomes feasible and will raise the effi-
ciency of video-EEG monitoring and the safety levels of patients.
� 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights

reserved.

1. Introduction

Long-term video EEG-monitoring in epilepsy monitoring units
(EMUs) plays a central role in pre-surgical evaluation of patients

with epilepsy (Smith, 2005). This time-consuming procedure last-
ing for several days up to weeks requires high effort from staff to
ensure patient safety and to evaluate the high amount of data.
Safety in EMUs is an on-going discussion. It is generally accepted
that precautions have to be in place to promptly detect seizures
(Carlson, 2009) and to avoid additional harm to the patients. A
study by Atkinson et al. (2012) with N = 20 patients showed that
only 40% of seizures showed staff response. Changing the safety
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protocol for EMUs can thus lead to a decrease in patient accidents
and an increase in detected seizures (Spanaki et al., 2012).

Automatic epileptic seizure detection (ESD) is one method to
improve patient safety and efficiency in the EMU. Although these
systems have a long history of numerous methodical approaches
that proved to be effective in some trials (Gotman and Gloor,
1976; Gotman, 1982, 1990) wide spread clinical application were
not accomplished until now. Today, the small number of epilepsy
monitoring units using such systems stays in contrast with the
increasing awareness of patient security issues during long-term
recording and the high costs of this examination method. A low
false alarm rate is of major importance for alarm systems to avoid
ignorance by staff as found by Lee and Shah (2013). Many epilepsy
centers do not use automatic seizure detection systems because of
a very high number of false detections.

Several publications proposed patient specific seizure detectors
or detectors for certain seizure patterns (Beniczky et al., 2013).
These approaches will be of limited value in clinical practice
because details of the type of epilepsy or the localization of the sei-
zure onset zone (SOZ) are mostly unknown. Attempts to use the
first seizure of a patient for patient specific detectors are limited
because of the long time delay to the first seizure. Several studies
reported a delay between 2 and 3.7 days in EMUs for pre-surgical
evaluation, depending on the type of epilepsy (Todorov et al.,
1994). In addition, the average number of seizures that can be
recorded in one week of video EEG is rather small (median of 3
in one week in our data). Furthermore, it is important to detect
whether or not a patient has one or multiple types of seizures. This
implies that detection systems cannot be efficiently trained or con-
figured for patients in the EMU and that only parameter-free detec-
tion systems without restriction to seizure types are feasible.

Automatic analysis of the EEG can be done either ad-hoc during
the recording of the patient or post hoc after the patient recoding
has finished. These situations are also referred to as ‘‘online’’ or
‘‘offline’’ detection, respectively. This article will solely present
results of the online seizure detector EpiScan but the major differ-
ences to offline detectors are depicted shortly to allow objective
comparison to other publications. First of all, because online detec-
tion systems may be used as alarm devices whereas offline systems
support the EEG evaluation after recording. Furthermore, online
detection systems must have a very short time delay to trigger
alarms. An artificially delayed alarm allows the collection of infor-
mation about the trend of the supposed seizure and can avoid false
alarms. A system reacting in the range of a few seconds is more
close to an alarm device, whereas a system with a detection delay
of several minutes or hours behaves like a typical post hoc system.
When comparing the performance of ad-hoc to post hoc systems or
ad-hoc systems with different delays care has to be taken.

The amount and kind of data to evaluate an automatic seizure
detection system is an important and frequently discussed issue.
A sufficient number of long-term patient recordings are needed
in order to draw reliable conclusions about sensitivity, specificity
or the differentiation between two competing systems or datasets.
One critical point in assessment of seizure detectors is the estima-
tion of the sensitivity. Seizures are rare events with high inter- and
intra-patient variability. The detection sensitivity of an automatic
system represents a random variable with high variance and
unknown distribution. In statistics the central limit theorem states
that a sampling distribution approaches the normal distribution if
the sample size is sufficient, no matter how the population distri-
bution was shaped. A sample size of N = 30 is considered as appro-
priate for moderately skewed population distributions and will
give a rough estimate of the performance. Population distributions
far from normal need a sample size of N = 500 or more. For the
sensitivity and false alarm rate of a seizure detection system we
cannot assume a distribution close to normal and thus have to

carefully determine the amount of data necessary to get significant
results.

However, sensitivity based on a high number of patients alone
does not validate a clinical application if only parts of the record-
ings are used. Only complete and uncut datasets reflect the real
clinical situation and can prove sensitivity and specificity at the
same time. A detection system may easily be able to detect 100%
of the seizures in a dataset when only ictal EEG fragments are used
but will show an excessive false alarm rate when evaluated on full
long-term recordings. In addition, changes of the EEG during the
day/night cycle need to be included in the evaluation leading to
a necessary continuous recording length of more than 24 h.

The Computational Encephalography research group
(www.eeg-vienna.com) of the Austrian Institute of Technology
(AIT) has developed an automatic seizure detection system for
long-term scalp EEG recordings called EpiScan. The detection algo-
rithm of EpiScan works as an alarm device which allows notifica-
tion of medical staff in case of a seizure. The system does not
require parameters or patients specific settings. In this article the
results of a prospective multi-center study will be presented. The
results of EpiScan will be compared to the results of the Persyst
seizure detector using the same prospective dataset. A comparison
to the EpiScan performance on the development dataset and the
MIT–CHB dataset will be carried out.

2. Methods

2.1. Data analysis

EpiScan is based on a computational method, which automati-
cally detects epileptic seizures in digitized EEG. This method was
developed over several years by a team of physicians, mathemati-
cians and medical experts (Schachinger et al., 2006; Perko et al.,
2007; Kluge et al., 2009; Hartmann et al., 2011; Fürbass et al.,
2012). It is intended to analyze the EEG ad-hoc and to act as an
online detection system. The EpiScan method analyses the digital
EEG during recording in intervals of a quarter-second. Frequencies
below 0.7 Hz and above 99 Hz are removed by finite impulse
response filters. Line noise is removed with notch filters at 50
and 60 Hz. EEG segments with artifacts like i.e. excessive ampli-
tudes or artifacts from loose electrodes are removed automatically
(Skupch et al., 2013) and are not used for detection. This will avoid
false alarms based on measurement problems. The EEG is then
scanned for rhythmic patterns in the time and frequency domain
by algorithms called Epileptiform Wave Sequence Analysis (EWS)
and Periodic Waveform Analysis (PWA), respectively (Hartmann
et al., 2011; Fürbass et al., 2012). An energy detector scans for tonic
or tonic–clonic seizures with strong muscle artifacts. All extracted
features are normalized by a spatio-spectral model of the brain
activity that is continuously updated by past information from
the EEG. A set of classifiers is used to remove events with physio-
logical origin. The use of these adaption and classification
algorithms avoids repeated detections of physiological or patho-
logical patterns that are no seizures and is therefore another
important mechanism to avoid excessive false alarms. The
parameters of the classifiers were optimized using an automatic
parameter optimization method (Dollfuss et al., 2013).

2.2. Quantity and quality of data needed for evaluation

The amount of data in a study is a critical parameter for the reli-
ability of the results. Standard measures in statistics like i.e. the
mean or confidence intervals of a result assume a sufficient high
number of replicates in order to be valid estimates. An objective
estimate of the number of participants for a seizure detector study
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is hardly feasible but it is easy to show that N < 30 is too low. View-
ing the problem from the neurophysiological perspective it has to
be considered that epilepsy is a symptomatic disease with numer-
ous etiologies. Thus 30 patients will not adequately represent the
full range of possible manifestations (see experiment using virtual
trials in supplementary data).

2.3. Definition of seizures

An epileptic seizure is defined as a transient occurrence of signs
and/or symptoms due to abnormal excessive or synchronous neu-
ronal activity in the brain (Fisher et al., 2005). Although the EEG is
an important tool for epilepsy diagnosis this definition does not
state how well the seizure activity can be identified in the EEG.
Some seizures are hardly recognized without using additional
information from video or other clinical information because of
artifact overlap or subtle EEG patterns. Furthermore, clinical prac-
tice often includes subtle seizure-like events in the list of seizures
to support the neurologist.

In order to remove the bias of clinical procedures and EEG
measurement issues, it is common to restrict the evaluation of
EEG-based epileptic seizure detection systems on clearly visible
electrographic seizures. In such an approach one or several expe-
rienced EEG reviewers select seizures according to a visual per-
ception value and define seizure onset and duration. Such a
pre-sorting of seizures is preferable during development of the
detection system but not appropriate in the clinical practice of
EMUs.

To take this into account we used a two-step procedure to eval-
uate our seizure detection system. In a first step the detection per-
formance of EpiScan was assessed using seizures defined by
clinical and electrographic observations without restriction to
EEG correlates. This includes all seizures that were marked during
recording of the EEG and seizures that were found retrospectively
by the standard EMU review procedure using video, EEG, and
observation reports from nursery staff. Results using seizures from
this first step are referred to as C + E evaluation group. In a second
step the detection performance for seizures with different levels of
EEG perception value (P) will be given. The perception values of
seizures were assigned from experienced EEG technicians in sev-
eral video-blinded reviewing sessions. The reviewers were asked
to decide whether the EEG at a defined time point shows a seizure.
They were allowed to switch montages and to review the EEG
before and after the given time point. The possible answers
included six levels of increasing perceptions values (see Table 1).
Based on these six perception values data were divided to form
four groups called C + E, E75, E50, and E25 for the evaluation of
the seizure detection systems. The evaluation groups E75, E50
and E25 include all seizures that had at least at perception value
of >75%, >50% or >25%, respectively (see supplementary data for
examples). Reviewers will often use the middle of a scale or 50%
if they are uncertain about the decision. This case was avoided

by forcing a decision between ‘‘rather a seizure’’ (rather yes) or
‘‘rather not a seizure’’ (rather no).

2.4. Dataset

2.4.1. Prospective multi-center study
A prospective multi-center study was performed to evaluate the

seizure alarm system EpiScan. During the study, long-term EEG
recordings from 205 consecutive patients were evaluated. Data
were recorded at three epilepsy-monitoring units, the 2nd Neuro-
logical Department of the General Hospital Hietzing with Neuro-
logical Center Rosenhuegel in Vienna (NCR), the Department of
Clinical Neurology of the Medical University of Vienna (MUV)
and the Epilepsy Center Kempenhaeghe in Heeze, the Netherlands
(KEMP). Data were recorded between January 2012 and March
2013. All centers used the international 10–20 electrode placement
system for data recording. The data was recorded using a sampling
rate of 256 Hz in center MUV and NCR and a sampling rate of
200 Hz in center KEMP. The inclusion criteria were a signed patient
agreement form and an age above 18.

An ITmed EEG recording machine was used in center MUV.
Patients had to stay in bed to allow video-EEG in this facility. The
center NCR uses a Micromed recording system including a headbox
with internal memory that allowed unplugging of several minutes
without loss of EEG. Due to technical reasons it was not possible to
use the EEG in the unplugged time periods for the study (about 3%
of the recorded data at NCR). The center KEMP uses a Stellate
recording device with long patch cables. Here all patients stayed
in a living-room like environment that allowed free movement.
They were able to use fitness devices or the bathroom without dis-
ruption of the EEG recording. This environment induced lots of
additional movement artifacts namely from cycling, chewing, and
tooth brushing making this dataset especially challenging to ana-
lyze for an automatic detection system. In all three centers AEDs
were withdrawn preceding or during the five day period of
video-EEG monitoring depending on the patient. The amount of
data that was collected at each center as well as number of patients
is summarized in Table 2.

2.4.2. Retrospective data
EpiScan was developed using a dataset of 310 patients. This

dataset will also be evaluated in this article to further increase

Table 1
The EEG perception value (P) of a seizure. Seizure markers received from EMUs have no perception value (C + E). A seizure perception value is assigned through EEG reviewing, the
higher the more clearly a pattern was perceived as seizure in the EEG. An evaluation group includes all seizures that have at least a given minimum perception value.

Q: Is this EEG pattern a seizure? Evaluation groups with included seizure

Possible answer P (%) E75 E50 E25 C + E

Seizure perception value
Surely yes 100–90 x x x x
Probably yes 90–75 x x x x
Rather yes 75–50 x x x
Rather no 50–25 x x
Probably no 25–10 x
Surely no 10–0 x

Table 2
Overview of the EEG data included in the prospective multicenter study. In total 205
patients participated, including 94 patient with seizures. The number of seizures and
hours of recorded EEG is given.

Epilepsy center N N with sz. Number of sz. Hours of EEG

EEG data of the prospective study
NCR 83 27 142 6513
KEMP 60 47 211 5127
MUV 62 20 173 4044
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the statistical relevance of the results and to show differences and
similarities between a retrospective and prospective dataset. The
development dataset was recorded at several different EMUs using
the international 10–20 electrode placement system at a sampling
rate of 256 Hz. The dataset included 693 markers that were a mix-
ture of relevant information for the diagnosis and real seizures. The
EMU review procedure on this development data had not been
standardized for the use in a clinical study. Therefore a seizure
evaluation group C + E is undefined and thus no evaluation on
C + E seizures could be done. The dataset was evaluated retrospec-
tively and the same protocol as for the prospective dataset to
define seizures for the E25, E50, and E75 evaluation groups was
applied.

Although EpiScan was developed and tested on data from
patients with age above 18 an evaluation on a small pediatric data-
set gives a first insight if a clinical application will be feasible. The
CHB–MIT scalp EEG database was used. It was created by a team of
investigators from Children’s Hospital Boston (CHB) and the Mas-
sachusetts Institute of Technology (MIT) and is publicly available
from the Physionet website (http://www.physionet.org/physio-
bank/database/chbmit/). The database includes data from 24
patients from 1.5 years to 22 years of age and a mean of 10 years
(Goldberger et al., 2000; Shoeb, 2009; Hunyadi et al., 2012). Sei-
zure markers were uses as given in the dataset without assigning
perception values. Unfortunately, the CHB–MIT data is given in
bipolar longitudinal montage only. A full montage set with other
reference electrodes cannot be restored from this information. This
will have a negative influence on the detection performance.

To mimic the behavior of prospective data, all retrospective
patient recordings were used in their full length without restric-
tion. No file selection and no segmentation of patient data were
applied. The number of patients with seizures was defined based
on the lowest available seizure perception value for each dataset.
For the retrospective dataset E25 was used, for the prospective
study data C + E was used to define the number of patients with
seizures. Table 3 gives an overview of the complete dataset used
for this publication.

2.5. Definition of detection performance

EpiScan alarms were compared to manually defined seizure
markers. Analysis was done separately for the four evaluation
groups C + E, E25, E50, and E75. A seizure epoch was defined as a
three minutes time range starting from the beginning of the sei-
zure marker. An EpiScan alarm occurs on a specific time point
without having time duration. An EpiScan alarm was defined as
true positive (TP) when it appeared within a seizure epoch. Several
EpiScan alarms in one seizure epoch were defined as one TP.
Alarms outside of a seizure epoch were defined as false positives
(FP). False positives occurring within a time span of less than
30 s were counted as a single false alarm. A seizure epoch without
a matching EpiScan alarm was defined as false negative (FN). Fig. 1
summarizes these definitions.

The sensitivity of the automatic detection was calculated for
each patient. It was defined as the ratio between the numbers of

true positives (TP) to the number of all seizures (TP + FN). The false
alarm rate of the automatic seizure detection was defined by the
number of false alarms in 24 h (FA/24 h).

Sensitivity ¼ #TP
#TPþ#FN

FA=24h ¼ #FP
duration of recording days

2.6. Comparison to Persyst seizure detection

Currently, Persyst is considered to be the most prevalent seizure
detection system. We compared the results from the prospective
study data with the results obtained from the Persyst seizure
detection in Version 12 (Version 12, Rev. B, 2012.11.27, http://
www.persyst.com/). All EEG datasets were converted to EDF for-
mat (http://www.edfplus.info/) with a maximum of 99,000 cycles
per file. The correctness of the files was validated with the Polyman
EDF checker (http://www.edfplus.info/downloads/). Each EDF file
was processed separately with the Persyst seizure detection
engine. The results of the ‘‘SzDetect’’ table were manually copied
to Microsoft Excel tables. These tables were automatically analyzed
by reading them into Matlab. The values for sensitivity and false
alarm rate were calculated with the same procedures that were
used for the EpiScan results.

2.7. Statistical methods

All confidence interval (CI) values are calculated using a param-
eter-free bootstrapping method for confidence intervals with 1000
bootstrap samples as described in DiCiccio and Efron (1996). The
two-sample t-test was used to validate whether two samples came
from a distribution with the same mean. The default alpha value
was 0.05.

3. Results

3.1. Detection results of the prospective multi-center study

An overview of the dataset collected in the prospective multi-
center study is given in Table 2. In total, 15,684 h of EEG including
205 patients with 526 seizures were evaluated. The results for the
different perception values are shown in Fig. 2. For those seizures
where all reviewers agreed on ‘‘probably yes’’ or higher (E75) Epi-
Scan showed a mean sensitivity of 81% (95% confidence inter-
val = 74–86%) combined with a false alarm rate of 7.1 false
alarms per day. As expected including more ambiguous EEG pat-
tern and thus lower perception value for the seizures led to a
decrease in sensitivity. With a perception value of E50 (‘‘rather
yes’’ or higher) a mean sensitivity of 78% (95% confidence inter-
val = 70–84%) with a false alarm rate of 7.08 per day was reached.

When calculating the average sensitivity for all 94 patients with
seizures regardless of whether the seizure is visible in the EEG or
not (C + E) we achieved a mean sensitivity of 72% (95% confidence

Table 3
Data used to evaluate EpiScan: Data of the prospective multicenter study (Study), the retrospective data of the development dataset (Devel), the public available pediatric dataset
from MIT (CHB–MIT), and the cumulative dataset including all (ALL). The number of patients and the subgroup of the number of patients with seizures (N with sz.) are given. The
total number of seizures and hours of recorded EEG are shown in the last two columns.

Dataset name Prosp./Retrosp. N N with sz. Number of sz. Hours of EEG

EEG data for EpiScan evaluation
Study P 205 94 526 15,684
Devel R 310 124 1113 25,567
CHB–MIT R 24 24 197 1355
All P/R 539 242 1836 42,594
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interval = 65–79%). The false alarm rate reduced slightly to 7.05
false alarms per day.

Some seizures were not detected by the clinical protocol of the
EMUs at the different centers. Reasons were subtle clinical signs,
strong artifact superposition, unobtrusive visual EEG patterns or
they were simply overlooked by the reader. During the prospective
study, EpiScan detected 16 (3% of all seizures) previously unde-
tected seizures.

We found no statistically significant difference in detection sen-
sitivity between the three participating centers (p > 0.06) which
shows the robustness of EpiScan against influences of different
recording setups.

We further investigated how sensitivity and false alarm rate of
individual patients are distributed in the dataset. This gives more
insight into the performance of the detection system. We divided
the patients in five groups: group one contained patients where
EpiScan detected less than 25% of the seizures. Group two con-
tained those patients where 25–50% of the seizures where
detected. Group three, four and five contained patients where more
than 50%, more than 75% and 100% of the seizures were detected,
respectively. A histogram of the C + E detection sensitivities is
shown Fig. 3. The results were plotted separately for each center
and for the complete dataset. The histograms were normalized to
the number of patients of the given center to allow comparison
of the results between the different recording sites. Fig. 3 reveals
that in more than half of the patients 100% of the seizures were
detected. The distribution of the detection sensitivity had a very
similar pattern in all centers proving a very stable detection quality
for different patient cohorts and recording conditions.

A similar analysis was performed for the false alarm rate.
Patients were divided into groups with a false alarm rate per day
of less than one, between one and five, five and ten, and between
ten and 24 false alarms per day. Fig. 4 shows a histogram for all
four centers as well as the combined data. The difference of the
false alarm rate from center MUV was statistically significant
(p < 0.05) compared to the other two centers.

3.2. Comparison with Persyst seizure detection

In addition to the analysis of the seizure detection system Epi-
Scan we also performed an analysis of the Persyst seizure detector.
Performance of EpiScan and Persyst 12 are presented for the data
of the prospective study using all patients with seizures (N = 94).
A comparison of the detection performance for different seizure
perception values is given in Fig. 5. The results show an increase
of the performance with increasing visibility of the seizure in the
EEG for both detectors. For the clearly visible electrographic sei-
zures in the E75 seizure group we found a sensitivity of 81% for
EpiScan compared to 75% for the Persyst seizure detection. Similar
increases in sensitivity for EpiScan were found for all other groups
(+3.7% sensitivity for C + E, +6.2% sensitivity for E25, +5.5% sensitiv-
ity for E50, p < 0.76 for all groups). In addition to the higher sensi-
tivity we found lower false alarm rate for the EpiScan seizure
detector (�27% or �2.68 FA/24 h) compared to the Persyst seizure
detector for all detection groups. The differences in sensitivity and
false alarm rate are not statistically significant using a paired sam-
ple t-test.

3.3. Results on retrospective datasets

3.3.1. Results of the development dataset
The results on the development dataset, which contains an

extraordinary high number of patients (Table 3), will be shown
to further raise the reliability of the EpiScan detection perfor-
mance. Here, correlation on patient diagnosis will be presented
that is not yet available for the prospective study data.

Fig. 1. Definition of true positives (TP), false positives (FP) and false negative (FN)
detections by comparing seizure epochs defined by epileptologists to EpiScan
alarms.

Fig. 2. Results of the prospective multi-center study of EpiScan for different levels
of seizure perception values (C + E, E25, E50, E75). A steady increase in detection
sensitivity can be observed for seizures groups with higher reviewer perception
values.

Fig. 3. Histogram of EpiScan detection sensitivities in the prospective study using
all seizures (C + E). The normalized histograms of the three individual centers (NCR,
KEMP, MUV) shows that more than half of the patients were detected with 100%
sensitivities.

Fig. 4. Histogram of EpiScan false alarms of the three individual centers (NCR,
KEMP, and MUV) and combined (ALL) normalized to percent. The mean values are:
NCR = 5.1, KEMP = 6.9, MUV = 9.8, ALL = 7.05 FA/24 h.
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(Fig. 6) depicts the detection performance of EpiScan for this
dataset. Results for the three perception value groups E25, E50
and E75 are shown. As for the prospective dataset, an increased
seizure perception value (defined in Table 1) results in better
detection performance. For perception value E75 the detection per-
formance is 75% sensitivity with a false alarm rate of 7.2 FA/24 h.

We looked a possible correlation between the type of epilepsy
and the detection performance of an automatic system. Table 4
compares the results for patients suffering from mesial temporal
lobe epilepsy (mTLE), temporal lobe epilepsy (TLE), extra temporal
lobe epilepsy (XTLE) and frontal lobe epilepsy (FLE). The best
results of an average sensitivity of 87% were found for the sub-
group with mTLE because of many regular rhythmic patterns dur-
ing seizures. The TLE subgroup achieved an average sensitivity of
83% which is a very good result. The missed seizures are due to a
few patients with neocortical seizure onset zone (SOZ) which often
exhibited unique seizure patterns for each patient that were not
always detected. A similar explanation for the lower detection sen-
sitivity applies to the XTLE and FLE group, which also include some
patients with neocortical SOZ. An additional problem of the FLE
group was that a typical seizure shows high amplitude muscle arti-
facts but some seizures from certain patients lack this property and
show only average amplitude artifact and no other obvious seizure
activity in the EEG.

3.3.2. Results on pediatric EEG data
In addition to the large dataset recorded from adults a small

pediatric dataset was analyzed. The detection performance of Epi-
Scan on the MIT dataset had an average sensitivity of 67% (95%

confidence interval from 53% to 79%) with 7.7 FA/24 h on average.
No conclusions about the expected performance of EpiScan on
pediatric data can be drawn as the amount of patients with sei-
zures is too small.

3.4. Cumulative meta-analysis of all available data

The prospective and all available retrospective data was used to
assess statistical variables with high confidence level. The record-
ing length, number of patients and number of seizures of all
patients are listed in Table 3. Fig. 7 shows the nearly invariant
detection performance of the different datasets. When combining
all data into a large dataset the confidence interval reduces to
8.6% for all 242 patients with seizures. The difference in sensitivity
between retrospective dataset (Devel) and prospective dataset
(study) is small and statistically insignificant (p = 0.91). The aver-
age false alarm rate of all 539 patients was 7.2 false alarms in
24 h with a 95% confidence interval of 6.7–7.8 FA/24 h. No statisti-
cal significant difference between the different datasets could be
found (p > 0.38 for all combinations).

4. Discussion

Seizure detection is an eagerly awaited feature in clinical prac-
tice of EMUs. We presented a multi-center study for the EpiScan
online seizure detection system. EpiScan was tested as an online
device in three different EMUs and its sensitivity and false alarm
rate was calculated.

We were able to show that a sensitivity of 81% can be reached
for seizures that are clearly visible in the EEG. We compared these
results to the Persyst software, the most widely used seizure detec-
tion system. For the Persyst system we found a performance of
about 75% showing that the new detection system EpiScan per-
forms at least as good as the Persyst system.

The average sensitivity of EpiScan of about 81% was achieved
for adult patients of age 18 and above. A small pediatric dataset

Fig. 5. Comparison of EpiScan and Persyst 12 detection performance using the
prospective dataset showing the superior performance of EpiScan compared to
Persyst 12. The performance increases with increasing level of perception value
which is true for both seizure detectors. An average sensitivity of 81% is reached by
EpiScan for unequivocal electrographic seizures (E75), compared to 75% reached by
Persyst.

Fig. 6. EpiScan detection performance on the development dataset. The variation of
the seizure perception value shows that detection performance increases if subtle
electrographic seizures are removed from evaluation.

Table 4
Average detection performance of EpiScan for patient groups with different diagno-
ses. The development dataset with unequivocal electrographic seizures (E75) were
used. Mesial temporal lobe epilepsy (mTLE) showed the best results.

Diagnosis Sensitivity [%] False alarm rate [FA/24 h]

Average detection performance of EpiScan compared between patient diagnoses
mTLE (N = 11) 87 6.6
TLE (N = 52) 83 6.7
XTLE (N = 50) 64 7.3
FLE (N = 11) 54 7.2
No epilepsy – 7.2

Fig. 7. Average detection sensitivities of EpiScan compared between different
patients groups with different sample sizes. All sensitivities use the E75 seizure
definition. At N = 242 the 95% confidence interval reduces to 8%, whereas a sample
size of N = 24 will result in a range from 53% to 79%.
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showed that EpiScan achieved comparable results also for EEG of
children. No significant differences compared to the results of the
development or prospective dataset were found. We concluded
that an application of EpiScan on pediatric patients is also possible.
However, the size of the pediatric dataset of N = 24 was too small
to achieve a statistically valid comparison. More data are necessary
to draw a reliable conclusion about the EpiScan performance for
pediatric datasets.

A low false alarm rate is an essential feature of online seizure
detection system. An alarm rate of several alarms per hour would
render a seizure detection system useless regardless of the
achieved sensitivity. We found an average false alarm rate of the
EpiScan system of 7.1 false alarms per day. The comparison with
the Persyst software showed that the Persyst system has a false
alarm rate which is about 27% higher than that of EpiScan. As
pointed out in the Methods section, false alarms within 30 s were
counted as single false positive. An alarm occurs on a specific time
point without having time duration. The concatenation of several
false alarms within 30 s to a single false positive therefore corre-
sponds to a false positive with maximal length of 30 s. The rational
for this definition of a maximum length for a false alarm was that a
reviewer should be able to determine if an EpiScan marker is a false
alarm by looking at one single page of EEG. By restricting the max-
imum length of an artifact to 30 s we ensured that it would not be
necessary to scroll through the EEG when classifying a marker as a
false alarm. Variation of this maximal length parameter had only
little impact on the false alarm rate. Increasing the time range
for false alarms to 3 min will reduce the false alarm rate by 15%.
We found a small increase in false alarm rate of less than 1% when
the minimal perception value of the seizures was increased. This
effect relates to the fact that EpiScan detected numerous seizures
with a low perception value. When increasing the minimal percep-
tion value these seizure epochs do not longer count as true positive
but add to the false alarms. Thus the marker converts to a false
alarm according to the definitions in Fig. 1.

We found non-significant differences in sensitivity between the
different centers that participated in the study. Only the center
MUV showed a significantly higher false alarm rate of more than
10 false alarms per day due to artifacts appearing as epileptiform
discharges during many of the recordings. The artifact contamina-
tion in the data from center KEMP was also high but did not raise
the false alarm rate as in center MUV. A detailed analysis showed
that most of the KEMP artifacts consisted of movement related
electrode artifacts which did not trigger one of the seizure detec-
tion methods in EpiScan. Although some other artifacts like tooth
brushing and movements during cycling did raise false alarms
the incidence rate was too low to have a significate effect.

It is a question of debate if only a prospective clinical study of a
seizure detection system can give a reliable proof of the perfor-
mance. The results of our clinical study showed no statistically sig-
nificant differences compared to the performance that was
determined in offline experiments on a large development dataset.
We did find a slightly increased performance in the study dataset
that was due to the lower number of patients in the clinical study
as compared to the offline-dataset. While usability issues can only
be addressed in a clinical setting we argue that the use of large off-
line-datasets will give information about the performance of a sei-
zure detection system that is as good as a prospective clinical
study. The amount of data in an extensive offline analysis can be
much larger than in any reasonable clinical trial of an automatic
seizure detection system. It is of course necessary to ensure that
the dataset used for offline-evaluation reflects the data found in
an EMU. Taking for instance data from TLE-patients only, from sei-
zure patients only, taking patients that only show a low level of
artifacts or taking subsets of the datasets based on different inclu-
sion criteria might strongly bias the results of an offline analysis. In

addition it is important that large periods without seizures are
included in every dataset in order to get a reliable estimation of
both sensitivity and false alarm rate. Studies on many patients
but very few hours of EEG only show the sensitivity but not the
specificity of the method. In addition care must be taken not to
over-fit the detection system to a given dataset by using the same
small dataset for development and subsequent testing. Ideally the
dataset for development and testing will be different. In practice a
sufficient large dataset of several 10,000 h of data will also reduce
this problem of over-fitting. In addition it is important to include
complete 24 h recordings of the EEG in order to analyze the com-
plete day/night cycle of a patient during the validation of a detec-
tion system.

We believe that patient safety in EMUs can be increased even by
an imperfect seizure detection system. It is often assumed that
medical staff will reach near 100% surveillance. This however is
not always the case. A study by Atkinson et al. (2012) claimed that
only 40% of the seizure showed a staff response. Although this
number seems low, the general statement that a certain number
of seizures in EMUs do not get immediate staff response is in line
with our findings. Even at the large centers that participated in this
study the automatic seizure detection system did find additional
seizures that were not detected by the manual review procedures.
The amount of missed seizures during recording depends heavily
on the available staff in EMUs, their training and the time when
a seizure occurs. Centers that do have highly trained staff available
in their EMUs 24 h a day and that show a staff-patient-ratio of up
to 1 technician for three patients during the day will be less likely
to miss seizures. However, smaller hospitals often cannot afford
this number of staff at their EMUs leading to an increased number
of missed or un-responded seizures, especially during the night
when even less staff is available. Here, an automated seizure detec-
tion system would be of great value by providing additional safety
to the patient, since it will not depend on human factors, staff
availability or time of day but on the quality of the visible EEG pat-
tern only.

It is evident from all performed studies so far that an automatic
seizure detection system will never replace the human EEG analy-
sis. It will always be an additional source of information. Especially
on highly specialized EMUs for pre-surgical evaluation such a sys-
tem would be used in addition to today’s procedures in order to
find possible additional seizures that were missed by the visual
analysis. However, even the larger centers are under constant pres-
sure to cut costs. The available staff for EEG analysis generally
decreases. Here, an automatic seizure detection system provides
reliable monitoring of the EEG that will help to ensure the level
of patient safety.

5. Conclusion

An automatic seizure detection and alerting system was vali-
dated in a prospective multi-center study and on retrospective
data. In total 42,000 h of uncut long term EEG recordings were used
to assess detection performance by means of sensitivity and false
alarm rate on a high statistical confidence level. The results
showed 81% sensitivity for seizures with high perception value at
7.1 false alarms per day in the prospective study. The analysis of
539 patient recordings showed no significant difference between
prospective and retrospective detection results.

The multi-center study of EpiScan proved the ability of the sys-
tem to work as seizure alarm device in the clinical long-term video
EEG monitoring. The evaluation of the seizure detection perfor-
mance on patient data with various diagnoses and ages showed
the universal applicability of EpiScan. The comparison to the cur-
rently most prevalent seizure detection system from Persyst
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showed that EpiScan reaches a lower false alarm rate on the col-
lected prospective dataset but the difference was not of statistical
significance. We conclude that the application of the EpiScan sei-
zure detection system in EMUs could increase the efficiency and
the safety level for patients.
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Summary
Aims  of  the  study.  —  Continuous  EEG  from  critical  care  patients  needs  to  be  evaluated  time
efficiently to  maximize  the  treatment  effect.  A  computational  method  will  be  presented  that
detects  rhythmic  and  periodic  patterns  according  to  the  critical  care  EEG  terminology  (CCET)  of
the  American  Clinical  Neurophysiology  Society  (ACNS).  The  aim  is  to  show  that  these  detected
patterns  support  EEG  experts  in  writing  neurophysiological  reports.
Materials and  methods.  —  First  of  all,  three  case  reports  exemplify  the  evaluation  procedure
using graphically  presented  detections.  Second,  187  hours  of  EEG  from  10  critical  care  patients
were  used  in  a  comparative  trial  study.  For  each  patient  the  result  of  a  review  session  using
the  EEG  and  the  visualized  pattern  detections  was  compared  to  the  original  neurophysiology
report.
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Results.  —  In  three  out  of  five  patients  with  reported  seizures,  all  seizures  were  reported  cor-
rectly. In  two  patients,  several  subtle  clinical  seizures  with  unclear  EEG  correlation  were  missed.
Lateralized  periodic  patterns  (LPD)  were  correctly  found  in  2/2  patients  and  EEG  slowing  was
correctly  found  in  7/9  patients.  In  8/10  patients,  additional  EEG  features  were  found  including
LPDs,  EEG  slowing,  and  seizures.
Conclusion. — The  use  of  automatic  pattern  detection  will  assist  in  review  of  EEG  and  increase
efficiency. The  implementation  of  bedside  surveillance  devices  using  our  detection  algorithm
appears  to  be  feasible  and  remains  to  be  confirmed  in  further  multicenter  studies.
© 2015  Elsevier  Masson  SAS.  All  rights  reserved.
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Résumé
Buts  de  l’étude.  — L’EEG  continu  (cEEG)  des  patients  en  unité  de  soins  intensifs  doit  être  évalué
plus efficacement  pour  optimiser  le  traitement.  Nous  présentons  une  méthode  informatique  de
détection  de  patterns  rythmiques  et  périodiques.  Celle-ci  est  basée  sur  la  terminologie  de  soins
intensifs  (CCET)  de  l’American  Clinical  Neurophysiology  Society  (ACNS).  Le  but  est  de  montrer
que  la  détection  de  ces  patterns  permet  aux  experts  d’écrire  plus  facilement  des  rapports
neurophysiologiques.
Méthodes  et  matériaux.  — Dans  un  premier  temps,  trois  études  de  cas  illustrent  la  procédure
d’évaluation  en  utilisant  des  détections  présentées  graphiquement.  Ensuite,  187  heures  d’EEG
venant  de  dix  patients  d’unités  de  soins  intensifs  ont  été  introduites  dans  une  étude  compara-
tive.  Pour  chaque  patient,  le  résultat  d’une  session  de  révision  utilisant  l’EEG  et  la  détection
des  patterns  a  été  comparé  avec  le  rapport  neurophysiologique  original.
Résultats. — Parmi  les  cinq  patients  ayant  eu  des  crises  épileptiques,  les  crises  de  trois  patients
ont été  reconnues  correctement.  Les  deux  autres  patients  avaient  des  crises  cliniques  très
subtiles  et  sans  corrélation  claire  dans  l’EEG.  Les  patterns  périodiques  latéralisés  (LPD)  ont
été  correctement  reconnus  chez  les  2  patients  concernés  et  un  ralentissement  du  EEG  a  été
correctement  reconnu  dans  7/9  cas.  Pour  8/10  patients  des  caractéristiques  additionnelles  ont
été  identifiées,  incluant  des  patterns  périodiques  latéralisés,  un  ralentissement  de  l’EEG  et  des
crises.
Conclusion.  —  L’utilisation  d’algorithmes  de  détection  automatique  basés  sur  la  CCET  assisteront
dans la  révision  de  l’EEG  et  augmenteront  son  efficacité.  L’implémentation  de  dispositifs  de
surveillance  utilisant  notre  algorithme  sera  possible  et  sera  montré  dans  de  futures  études
multicentriques.
©  2015  Elsevier  Masson  SAS.  Tous  droits  réservés.

Introduction

Over  the  past  decade,  a  considerable  amount  of  research
effort has  been  expended  to  study  the  prevalence  in  EEG  of
nonconvulsive seizures  (NCS)  or  nonconvulsive  status  epilep-
ticus (NCSE)  in  acutely  ill  patients.  In  1999,  a  publication
by Kaplan  [14,15]  showed  that  the  extended  use  of  con-
tinuous EEG  (cEEG)  revealed  many  patients  with  NCS/NCSE
that would  have  been  undiagnosed  without  cEEG.  Several
years later,  Claassen  et  al.  reported  that  the  percentage  of
patients in  the  intensive  care  unit  (ICU)  undergoing  cEEG
monitoring who  were  found  to  have  seizures  was  19%  [4]
with a  very  high  percentage  (92%)  of  these  seizures  being
nonconvulsive. A  recent  cohort  study  at  11  North  Ameri-
can sites  showed  that  30%  of  pediatric  ICU  patients  had
seizures and  11%  of  the  patients  had  NCSE  [1].  Continuous
EEG remains  the  gold  standard  for  diagnosis  of  NCS/NCSE.
CEEG is  beginning  to  be  used  in  ICU  seizure  treatment  stud-
ies [12]  and  has  been  shown  to  be  favorably  associated  with
good outcome  [18].  Recently,  it  has  also  been  reported  that
not only  patients  with  primary  neurological  diseases  but  also
medical/surgical ICU  patients  with  secondary  neurological
complications benefit  from  cEEG  monitoring  [3,13].

There is  significant  cost  associated  with  cEEG  monitor-
ing. EEG  recording  equipment,  network  connections,  MRI
and CT  compatible  electrodes  [5],  and  24-hour  EEG  tech-
nologist support  for  connecting  and  maintaining  electrodes
are needed.  However,  another  significant  source  of  cost  is
the physician  effort  needed  to  review  the  cEEG  signal,  which
is recorded  by  approximately  20  sensors  over  a  time  period
of hours  to  days.  Optimal  diagnosis  would  involve  continuous
analysis of  this  signal  to  detect  seizures,  but  this  is  unfeasi-
ble for  conventional  ICU  staffing  models.  In  clinical  practice,
manual analysis  of  cEEG  recordings  is  done  by  reviewing
pages showing  10  to  20  seconds  of  EEG.  In  order  to  review
this much  data,  the  physician  reviewer  often  has  to  view
the cEEG  recording  very  rapidly,  which  makes  it  easy  to  miss
brief seizures.  An  automated  detection  system  could  evalu-
ate the  cEEG  continuously  and  present  results  in  real-time.
Detailed analysis  of  EEG  segments  labeled  by  an  automated
detection system  could  replace  continuous  evaluation  of  the
full EEG  and  avoid  an  error-prone  accelerated  review  of
long-term EEGs.

Quantitative  EEG  (QEEG)  was  a  first  step  towards  an
automatic and  objective  interpretation  of  the  EEG  signal
to assist  in  evaluation  and  decision-making.  QEEG  allows
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Table  1  Summary  of  the  critical  care  EEG  terminology  (CCET).

Main  term  1  Main  term  2  Plus  (+)  modifier

G:  generalized  PD:  periodic  discharges  No  +
L:  lateralized  RDA:  rhythmic  delta  activity  +F:  superimposed  fast  activity
BI: bilateral  independent  SW:  rhythmic  spike-and-wave  OR

Rhythmic  sharp  and  slow  wave  OR
Rhythmic  polyspike  and  wave

+R: superimposed  rhythmic  activity

Mf: multifocal +S:  superimposed  sharp  waves  or  spikes,  or
sharply  contoured  -  applies  to  RDA  only
+FR:  if  both  subtypes  apply  -  applies  to  PD  only
+FS:  if  both  subtypes  apply  -  applies  to  RDA  only

a  time-compressed  view  at  a  scale  of  a  few  hours  using
measures like  median  amplitude  or  asymmetry  that  are  sup-
posed to  capture  clinical  important  information  from  the
EEG. Numerous  applications  and  assessments  of  QEEG  have
been reported  in  the  literature  [6—8,15,16,19,21].  A  com-
mon problem  is  artifacts  and  physiological  EEG  patterns  that
contribute to  the  QEEG  measure  in  the  same  way  as  patho-
logical EEG  patterns  [20].  For  example,  the  mean  amplitude
of the  EEG  cannot  differentiate  between  high  amplitude
artifact and  seizure  activity,  for  which  reason  the  interpre-
tation of  this  single  measure  is  highly  ambiguous.

There  is  a  need  to  standardized  EEG  patterns  in  order
to avoid  misinterpretation  between  staff  members  and  dif-
ferent clinical  sites.  The  standardized  critical  care  EEG
terminology (CCET)  of  the  ACNS  [11]  lays  a  foundation  for
a common  nomenclature  for  ICU  EEG  by  defining  clinically
relevant EEG  patterns.  Table  1  summarizes  the  available
codes to  describe  rhythmic  and  periodic  EEG  patterns.  The
codes for  pattern  localization  (main  term  1)  and  pattern
type (main  term  2)  are  concatenated  to  give  a  single  pattern
code, e.g.  ‘‘LRDA’’  for  lateralized  rhythmic  delta  activ-
ity. These  CCET  codes  showed  a  high  interrater  agreement
[9,17]. In  this  work,  we  present  a  computational  method  for
automatic detection  of  clinically  significant  EEG  patterns
in cEEG  recordings  from  ICU  patients  based  on  the  CCET
criteria.

Materials and methods

We  developed  a  computational  method  to  detect  rhythmic
and periodic  patterns  according  to  ACNS  CCET.  Pattern  loca-
tions and  pattern  types  are  defined  for  all  detections  in  a
time interval  of  a  few  seconds.  In  addition  to  EEG  patterns
defined in  CCET,  rhythmic  patterns  with  frequencies  of  more
than 4  Hertz  are  detected.

The automatic  detection  algorithm  was  developed  by
utilizing long-term  EEG  recordings  from  a  neurological  inter-
mediate  care  unit  and  a  neurological  ICU  as  development
dataset. This  development  dataset  was  recorded  at  the  2nd
Neurological Department  of  the  Neurological  Center  Rosen-
huegel (NCR)  and  the  Department  of  Neurosurgery  at  the
Medical University  of  Vienna  (MUV)  using  the  international
10—20 electrode  placement  system  at  a  sampling  rate  of
256 Hz.

The goal  of  this  computational  approach  is  to  transcribe
automatic detections  to  clinically  established  wording.  This

contrasts  with  conventional  QEEG  methodology,  which  eval-
uates the  EEG  to  report  technical  measurements.  The  link
between technical  measurements  and  EEG  patterns  of  inter-
est is  not  always  so  clear.  For  example  periodic  patterns
(PD) and  spike  wave  activity  (SW)  at  1  Hertz  have  a  similar
rhythm in  a  time-frequency  plot  but  they  are  very  differ-
ent clinical  patterns  and  have  different  implications  for  the
patient. Another  advantage  of  a  tool  such  a  method  is  a
strong data  reduction  property  since  it  provides  high-level
data extraction.  A  periodic  pattern  (PD)  can  stretch  over
minutes or  hours  without  changing  frequency  or  amplitude.
A computational  method  that  recognizes  PDs  can  define  the
start and  the  end  of  the  pattern  instead  of  reporting  the
same detection  at  short  fixed  intervals.  This  data  compres-
sion property  of  the  detection  algorithm  allows  the  graphical
representation of  several  days  of  EEG  on  a  few  pages.

Implementation  of  automatic  pattern  detections
based on  CCET

The  definitions  of  rhythmic  and  periodic  EEG  patterns  in
the CCET  [11]  are  given  using  clinical  wording  that  specifies
only limited  technical  details  in  terms  of  signal  morphology.
Because of  this,  a  detailed  description  of  the  way  CCET  was
implemented by  our  detection  algorithm  will  be  given  in  this
section.

Main term  1  of  the  CCET  defines  several  categories  for
the localization  of  EEG  patterns.  First  of  all,  rhythmic  and
periodic patterns  can  be  generalized  (G)  or  lateralized
(L). In  addition  predominant  areas  can  be  specified.  The
implementation of  recognition  of  the  main  term  1  in  our
detection algorithm  supports  generalized  (G)  and  lateral-
ized (L)  pattern.  A  pattern  qualifies  as  lateralized  (L),  if
the maximum  amplitude  of  the  pattern  in  one  hemisphere
is at  least  50%  higher  than  in  the  contralateral  hemisphere,
based on  bipolar  transverse  and  longitudinal  montages  only.
If not  qualified  as  lateralized,  the  pattern  is  generalized.
If a  generalized  pattern  has  50%  higher  amplitude  in  the
frontal, midline,  or  occipital  area  compared  to  a  contralat-
eral or  bilateral  reference  area,  the  pattern  is  predominant.
Frontally, midline,  and  occipital  predominant  patterns  are
therefore detected  according  to  the  CCET  definition  except
that again  only  bipolar  longitudinal  and  bipolar  transverse
montages are  used.

The CCET  defines  various  types  of  rhythmic  and  periodic
patterns in  main  term  2  (see  Table  1).  These  pattern  types
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are  periodic  discharges  (PD),  rhythmic  delta  activity  (RDA),
and repetitive  spike-and-wave  or  sharp-and-wave  (SW)  pat-
terns.  PDs  are  defined  as  uniform  discharges  repeating  in
regular intervals  with  a  clear  inter-discharge  interval  (IDI).
Only discharges  with  waveforms  having  less  than  4  crossings
of the  baseline  are  allowed  in  order  to  distinguish  peri-
odic from  burst  suppression  patterns.  The  average  frequency
allowed for  PDs  ranges  from  0.2  to  3  Hz.  The  so-called
‘‘relative amplitude’’  is  defined  as  the  average  discharge
amplitude divided  by  the  average  amplitude  between  the
discharges. The  value  of  the  relative  amplitude  of  a  periodic
pattern has  to  be  above  1.6  to  be  detected.  Rhythmic  delta
activity (RDA)  is  defined  as  repeating  discharges  with  uni-
form morphology  without  an  inter-discharge  interval.  The
computational detection  of  RDA  conforms  to  this  defini-
tion. Several  modifiers  to  the  main  term  2  pattern  types
are defined  in  the  standardized  terminology  that  describes
variants in  the  morphology.  The  modifier  ‘‘+S’’  is  defined  as
a pattern  with  frequent  intermixed  sharp  waves/spikes  or
a sharply  contoured  pattern  and  is  only  applicable  to  pat-
terns of  type  RDA.  These  ‘‘RDA  +  S’’  patterns  are  detected  if
at least  one  unequivocal  spike  is  included  in  a  RDA  pattern
or the  pattern  has  a  sharply  contoured  morphology.  Spike-
and-wave or  sharp-and-wave  (SW)  patterns  are  defined  as
polyspike, spike  or  sharp  wave  consistently  followed  by  a
slow wave  in  a  regularly  repeating  and  alternating  pattern.
The automatic  detection  of  SW  is  based  on  detected  RDA  +  S
patterns and  requires  in  addition  that  20%  of  the  discharges
in the  RDA  +  S  pattern  coincide  with  unequivocal  spike-and-
waves or  sharp-and-waves.  This  is  a  more  relaxed  condition
compared to  the  CCET  and  increases  the  robustness  of  the
automatic detection.  Finally,  a  frequency  up  to  4  Hertz  is
allowed to  qualify  for  SW  in  our  method.  The  detection  of
rhythmic theta  and  rhythmic  alpha  patterns  (RTA,  RAA)  is
logically equivalent  to  the  RDA  detection  but  requires  more
than 6  successive  discharges  and  frequencies  between  4—7.5
or 7.5—12  Hertz,  respectively.  The  modifier  ‘‘amplitude’’  is
defined as  the  average  amplitude  of  all  discharges  in  the
pattern. The  discharge  amplitude  is  defined  as  the  minimum
of the  two  peak-to-peak  voltages  measured  from  the  start
of the  discharge  to  the  maximum  and  from  the  maximum
to the  end  of  the  discharge.  The  modifier  ‘‘frequency’’  is
determined as  the  average  distance  between  consecutive
discharges in  a  pattern.

Our automatic  detection  method  does  not  capture  the
full depth  of  the  CCET.  The  main  term  1  types  bilateral  inde-
pendent (BI)  and  multifocal  (Mf)  are  not  implemented.  This
means that  patterns  of  this  main  term  1  type  are  assigned  to
generalized or  lateralized  patterns,  depending  on  the  exact
amplitude distribution  over  channels.  The  modifiers  ampli-
tude and  frequency  are  implemented  but  other  modifiers
and EEG  background  are  not  evaluated  in  this  version.

Calculation  procedure

The  following  is  a  description  of  how  the  detection  algo-
rithm processes  EEG  data.  At  the  beginning,  EEG  artifacts
are removed  using  the  PureEEG  algorithm  [10].  The  PureEEG
algorithm is  based  on  a  neurophysiological  model  and  utilizes
an iterative  Bayesian  estimation  scheme  to  remove  typi-
cal scalp  EEG  artifacts  like  movement,  muscle,  line  noise,

Figure  1  The  three  major  steps  of  the  detection  algorithm:  1)
Artifact removal  using  the  PureEEG  algorithm.  2)  Channel  wise
discharge segmentation.  3)  Combination  of  discharge  segments
over several  channels  followed  by  grouping  in  time.  The  final
pattern groups  represent  EEG  patterns  with  multiple  discharges
in a  certain  spatial  area.

and  loose  electrode  artifacts.  The  output  of  the  PureEEG
algorithm is  a  clean  EEG  signal  that  is  solely  used  for
further analysis.  This  approach  assumes  that  all  following
pattern detections  are  of  cerebral  origin.  Frequencies  below
0.4 Hertz  and  above  70  Hertz  are  then  removed  by  a  finite
impulse response  filter.  Bipolar  longitudinal  and  transverse
montages are  created  according  to  ACNS’  proposal  for  clin-
ical EEG  montages  [2].  The  signal  in  each  bipolar  channel  is
divided into  segments  that  represent  spikes,  waves,  or  any
other discharge  item  with  durations  between  40  milliseconds
and 1.5  seconds  and  amplitudes  above  20  microvolts.  The
wave segmentation  procedure  scans  the  EEG  signal  in  the
time domain  for  arbitrary  peaks  with  more  than  20  mV.
Each peak  is  then  extended  on  both  sides  as  long  as  the
waveform lies  above  two  projection  lines  that  start  at  the
borders of  the  starting  peak  and  have  20%  reduced  slope
value. All  resulting  wave  segments  below  40  milliseconds
and above  1.5  seconds  are  dropped.  These  single-channel
segments are  then  combined  over  several  channels  to  build
multi-channel segments.  The  spatial  distribution  of  poten-
tials within  multi-channel  segments  is  checked  and  segments
with non-cerebral  origin  are  discarded.  All  multi-channel
segments are  then  marked  as  spike,  sharp  wave,  or  non-spike
segment by  a  spike-detection  algorithm.  The  multi-channel
segments are  also  used  to  build  groups  of  representing  RDA,
RDA +  S,  SW,  RTA,  RAA,  and  PD  segments  as  described  above.
Whether a  pattern  meets  minimal  requirements  for  duration
and the  number  of  discharges  is  checked  and  patterns  that
do not  meet  criteria  are  discarded.  The  spatial  location  of  all
detected patterns  is  analyzed  and  a  main  term  1  definition
is assigned.  Finally,  segments  of  equal  pattern  type  are  con-
catenated to  groups  with  a  maximal  duration  of  30  seconds.
Fig. 1  summarizes  the  major  calculation  steps  of  the  algo-
rithm. These  groups  are  displayed  in  the  main  term  1  and  2
plot of  the  graphical  user  interface.

Graphical  detection  user  interface

A  graphical  user  interface  (GUI)  was  created  to  present
information of  the  detected  patterns  to  a  reviewer.  This
detection user  interface  simplifies  review  session  by  allow-
ing visual  recognition  of  clusters  with  similar  information.
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Figure  2  The  detection  user  interface  showing  of  2  hours  of  EEG  recording.  The  graphical  interface  displays  rhythmic  and  periodic
pattern  detections  with  colors  corresponding  to  main  term  2  (PD,  rhythmic  delta  activity  [RDA],  RDA  +  S,  SW)  or  faster  rhythmic
activity  (rhythmic  theta  activity  [RTA],  rhythmic  alpha  activity  [RAA]).  The  ‘‘localisation’’  plot  shows  the  predominant  areas  of
the  activity.  Lateralized  patterns  are  displayed  using  a  box  with  small  height  on  the  correspondig  lateralization  line  (right,  left).
Generalized  patterns  may  have  a  predominance  in  a  specific  area  (frontal,  midline,  occipital)  and  will  be  displayed  using  a  box
with  small  height.  A  generalized  pattern  without  anterior-posterior  predominance  is  shown  as  rectangle  spanning  over  the  positions
of  ‘‘frontal’’,  ‘‘midline’’,  and  ‘‘occipital’’.  The  frequency  and  amplitude  of  all  patterns  are  shown  on  the  second  and  third  plots,
respectively.  This  zoomed  detection  plot  of  case  1  shows  right  lateralized  rhythmic  activity  (LRDA,  LRDA  +  S)  at  the  beginning  and
near  the  16:30  timepoint.  An  electrographic  seizure  with  a  spike-and-wave  morphology  (GSW  and  LSW,  red  colored  markers)  can
be  observed  at  17:30.  Post-ictal  slowing  is  marked  by  LRDA  and  LRDA  +  S  (violet  and  magenta  markers).

Fig.  2  shows  an  example  of  the  GUI  from  a  2-hour  EEG  recor-
ding. It  displays  periodic  discharges  (PD),  rhythmic  delta
activity (RDA),  and  spike-and-wave  patterns  (SW),  rhyth-
mic theta  activity  (RTA),  and  rhythmic  alpha  activity  (RAA)
as color-coded  bars.  All  detected  patterns  are  presented
on separated  but  time  aligned  plots  showing  localization,
frequency, and  amplitude.

The localization  of  the  pattern  (main  term  1)  can  be
observed on  the  upmost  plot.  Predominant  patterns  are
plotted as  rectangle  in  one  of  the  five  possible  vertical  pos-
itions, which  are  labeled  as  ‘‘right’’,  ‘‘left’’,  ‘‘frontal’’,
‘‘midline’’, and  ‘‘occipital’’.  A  generalized  pattern  with-
out predominance  is  shown  as  rectangle  spanning  over  the
positions of  ‘‘frontal’’,  ‘‘midline’’,  and  ‘‘occipital’’.  This
kind of  visualization  enables  the  observation  of  trends  in
the spatial  distribution  of  pattern  potentials.

Frequency  and  amplitude  of  all  patterns  are  shown  on
the second  and  third  plots,  respectively.  The  vertical  posi-
tion indicates  the  frequency  and  amplitude  of  the  patterns
on logarithmic  scales,  respectively.  Trends  in  frequency  or
amplitude might  reveal  additional  information  that  can  be
uncovered on  these  plots.  The  underlying  EEG  can  be  viewed
in an  EEG  viewer  by  clicking  on  a  time  position  in  the  GUI.

Assessment  methodology

We  assessed  the  performance  of  our  detection  method  in
two parts.  In  the  first  part,  three  cases  from  neurologi-
cal ICUs  are  presented  that  were  retrospectively  analyzed
with our  computer  algorithm.  We  summarized  the  origi-
nal EEG  reports  and  compared  them  with  the  detections
shown on  the  detection  user  interface,  to  exemplify  the
evaluation procedure  and  to  show  differences  and  additions

between  the  neurophysiological  report  and  automatic  cal-
culated detections.

In the  second  part,  we  present  the  results  of  a  preliminary
evaluation of  the  ability  of  our  detection  algorithm  to  cap-
ture ACNS-defined  features  of  the  cEEG  from  ICU  patients.
For this  study,  we  randomly  selected  10  ICU  patients  includ-
ing 187  hours  of  EEG  with  an  associated  clinical  EEG  report
from the  Comprehensive  Epilepsy  Center,  Medical  Univer-
sity of  South  Carolina  (MUSC)  recorded  between  October
2011 and  April  2012.  All  EEGs  were  recorded  using  the  inter-
national 10—20  electrode  placement  system  at  a  sampling
rate of  256  Hz.  The  average  age  of  the  patients  was  57  years
(min. 25,  max.  74)  and  the  average  recording  duration
was 19  hours  (min.  11  h,  max.  30  h).  The  clinical  indication
for long-term  EEG  recording  included  altered  mental  sta-
tus, intercerebral  hemorrhage,  history  of  status  epilepticus
with new  onset  seizures,  and  stroke.  The  neurophysiology
reports from  MUSC  included  general  EEG  annotations  and
statements but  no  ratings  according  to  CCET  terminology.
We asked  a  clinical  neurophysiologist  from  the  Neurologi-
cal Center  Rosenhuegel  (NCR)  blinded  to  the  original  EEG
report and  naive  to  these  EEGs  to  write  reports  using  our
detection user  interface  (and  the  raw  EEG,  if  needed)  using
only 10  minutes  of  time  per  patient.  These  detection-guided
reports (DGR)  were  then  compared  to  the  original  clinical
reports (CR)  from  MUSC.  All  of  the  reports  from  MUSC  were
generated by  academic  clinical  neurophysiologists  board
certified by  the  American  Board  of  Clinical  Neurophysiology.
A comparison  of  the  reports  was  done  manually  by  matching
keywords like  ‘‘slowing’’,  ‘‘seizure’’,  and  ‘‘periodic  dis-
charge’’. Interictal  patterns  with  less  than  6 cycles  [like
temporal intermittent  rhythmic  delta  activity  (TIRDA)]  were
excluded  because  they  are  not  covered  by  the  CCET  nomen-
clature. If  older  terms  were  used,  which  predated  the  ACNS
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Figure  3  The  detection  user  interface  of  case  1  shows  the  result  of  20  hours  of  EEG  from  a  49-year-old  female  patient  with  a  brain
abscess.  Marker  1  shows  the  time  point  of  an  electrographic  seizure  with  repetitive  spike-and-wave  (SW)  activity.  The  short-term
seizure  event  stays  clearly  visible  on  a  large  time  scale  because  of  the  color-coded  pattern  morphology.

terminology  [such  as  ‘‘periodic  lateralized  epileptiform  dis-
charges’’ for  lateralized  periodic  discharges  (LPDs)],  these
were considered  equivalent.  The  localization  information  in
both reports  was  matched  based  on  lateralization  or  gen-
eralization. More  precise  localization  terms  referring  to  a
region (i.e.  frontal-temporal)  were  excluded  from  compari-
son.

Results

Case  reports

Case  1:  patient  with  brain  abscess
The patient  is  a  49-year-old  female  with  history  of  a
brain abscess.  The  video-EEG  monitoring  procedure  revealed
focal, right  hemispheric  delta  slowing  and  a  single  electro-
graphic seizure  at  17:25:57.  The  screenshot  on  Fig.  3  shows
detections of  RDA  and  RDA  +  S  from  the  beginning  of  the
recording by  displaying  violet  and  magenta  colored  bars,
respectively. The  location  of  these  patterns  is  mostly  on  the
right hemisphere  indicated  by  most  boxes  drawn  at  the  label

‘‘right’’.  The  corresponding  EEG  segments  show  interictal
delta waves  at  approximately  2c/s  with  amplitudes  of  50  uV.
The  most  prominent  group  of  spike-and-wave  detections  (in
red at  marker  1)  corresponds  to  the  electrographic  seizure
mentioned in  the  original  EEG  report.  The  segments  with-
out detected  patterns  did  not  show  any  clinically  relevant
abnormal EEG  activity.  This  case  shows  that  the  detection
algorithm is  able  to  pinpointing  to  clinically  interesting  EEG
segments.

Case 2:  patient  with  stroke  and  abnormal  movements
The  patient  is  a  59-year-old  female  with  a  history  of  stroke
and repetitive  movements  of  the  right  forearm.  During
video-EEG monitoring,  left  hemispheric  slowing  together
with LPDs  on  the  left  parasagittal  region  were  reported.  No
seizures occurred.  The  detection  result  on  Fig.  4  confirms  a
continuous LPD  in  the  left  hemisphere  (PD  colored  in  light
blue) for  the  first  4  hours  of  recording  with  a  sudden  decay
in frequency  in  the  evening  at  20:10  (marker  1).  In  addition,
occasional rhythmic  delta  activity  with  sharp  morphology
(RDA +  S,  colored  in  magenta)  was  found  in  the  same  time
span on  the  same  hemisphere.  After  a  pause  of  two  hours,
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Figure  4  Case  2  is  a  59-year-old  female  with  a  history  of  stroke  and  repetitive  movements  of  right  forearm.  Left  hemispheric
lateralized periodic  patterns  with  decaying  frequency  can  be  observed  (marker  1).  During  the  same  time,  rhythmic  delta  activity
with  sharp  morphology  (rhythmic  delta  activity  +  S,  magenta  color)  can  be  seen.  Periodic  activity  reappears  after  pauses  of  several
hours  (marker  2  and  marker  3).

occasional  LPD  can  be  seen  at  23:00  (marker  2)  and  at  03:00
in the  morning  of  the  next  day  (marker  3).  It  is  interestingly
to note  the  trend  of  the  LPD  frequency  over  time  and  the
clusters of  PD  patterns  shown  in  the  GUI.

Case 3:  patient  with  NCSE  after  ICH
The patient  is  a  74-year-old  female  with  history  of  intracra-
nial hemorrhage  (ICH)  and  nonconvulsive  status  epilepticus
(NCSE). The  report  from  video-EEG  monitoring  at  MUSC
described diffuse  arrhythmic  delta  slowing  and  frequent
spikes from  the  left  temporal  region.  At  least  nine  seizures
were identified  from  21:22  to  22:23.  The  screenshot  of  the
detection GUI  on  Fig.  5  shows  an  initial  period  with  abundant
spike-and-wave patterns  in  the  left  temporal  region  (LSW,
shown in  red)  together  with  rhythmic  theta  activity  (RTA,
in orange).  The  time  position  of  these  very  brief  subclini-
cal seizures  can  be  observed  by  the  SW  markings  (example
marker 1).  All  seizure  events  are  lateralized  to  the  left  side.
In addition  to  the  findings  reported  at  MUSC  a  segment  of
LPD from  the  left  hemisphere  can  be  seen  in  the  detection
GUI analysis  (marker  2).  An  interesting  point  is  that  a  basic

change  in  the  EEG  patterns  can  be  observed  on  a  large  time
scale.

Comparison  between  manual  and  detection-guided
EEG review

The  evaluation  of  the  trial  study  comparing  the  detection-
guided report  (DGR)  using  10-minute  review  time  and  the
clinical report  (CR)  is  summarized  in  Table  2.  The  CR  was
written using  the  evaluation  of  video,  which  allows  a  more
reliable decision  between  seizure  and  artifact  given  an
ambiguous EEG  segment.  Some  patterns  in  the  DGR  were
therefore described  as  ‘‘episode  of  rhythmic  theta  activity
at 6c/s’’  instead  of  ‘‘seizure  with  6c/s’’  but  were  considered
to be  equivalent.

The major  items  in  both  reports  are  described  and  addi-
tional findings  in  the  DGR  and  detections  missed  in  the  DGR
are outlined  for  each  patient.  A  comparison  between  the
DGR and  the  CR  shows  that  in  three  out  of  five  patients
with reported  seizures  (patients  P1,  P3,  and  P6)  all  seizures
from the  original  report  were  found.  In  patients  P5  and  P6,
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Figure  5  Case  3  is  a  74-year-old  female  patient  with  history  of  intracranial  hemorrhage  and  now  with  nonconvulsive  status
epilepticus. The  detection  user  interface  shows  an  initial  period  with  many  repetitive  spike-and-wave  patterns  on  the  left  temporal
region  (LSW  shown  in  red,  i.e.  at  marker  1)  together  with  sharply  contoured  rhythmic  delta  activity  (rhythmic  delta  activity  +  S,
magenta).  A  period  of  lateralized  periodic  patterns  (marker  2,  light  blue)  can  be  observed  over  the  same  hemisphere,  which
continues  for  more  than  3  hours.

additional  seizures  were  found  during  the  guided  review.
In one  patient  (P4),  all  14  clinical  seizures  were  missed
because 12  seizures  showed  no  clear  EEG  correlation  and
two showed  only  minor  electrographic  correlations.  The
seizures could  only  be  picked  up  with  extensive  video  mon-
itoring showing  a  slight  head  movement  and  a  movement
of the  right  arm.  The  events  were  then  annotated  as  com-
plex partial  seizures.  Another  patient  (P7)  had  one  seizure
with poor  electrographic  correlation,  which  was  missing
in the  DGR.  LPDs  were  coincided  in  the  reports  of  2/2
patients (P1,  P2).  In  three  patients  (P4,  P5,  and  P10),  LPDs
were additionally  found  in  the  DGR.  In  patient  P7,  LPD
was reported  by  the  MUSC  reviewer  but  GPD  was  reported
in the  DGR.  The  reports  of  EEG  slowing  by  MUSC  inter-
preters were  in  agreement  in  7/9  patients  (missing  in  DGR
of P2  and  P10).  In  two  patients  (P6  and  P8),  episodes  of
generalized rhythmic  theta  activity  were  reported  in  the
DGR, which  had  not  been  mentioned  in  the  MUSC  clini-
cal report.  In  one  patient  (P2),  a  focal  slowing  was  not
detected and  reported  in  the  DGR  review  because  of  the
missing background  evaluation  capability  in  the  detection
method.

Discussion

In  this  article,  we  presented  an  automated  computer  algo-
rithm that  detects  rhythmic  and  periodic  patterns  in  ICU
EEG recordings  based  on  ACNS  standardized  critical  care
EEG terminology  (CCET)  [11].  This  terminology  was  defined
by a group  of  experienced  neurologists  using  standardized
clinical wording.  Detection  results  are  displayed  on  a  graph-
ical detection  user  interface  to  simplify  review  sessions.
The interpretation  of  the  detections  on  the  user  interface
is then  based  on  these  clinically  defined  terms,  therefore
avoiding mathematical  or  technical  nomenclature.  A  clini-
cal application  of  such  a  detection  user  interface  will  allow  a
quick overview  of  several  hours  of  EEG  without  overwhelm-
ing medical  staff  with  technical  information.

Due  to  the  complexity  of  the  EEG  signal,  in  current  clini-
cal practice  EEG  can  only  by  analyzed  by  highly  trained  EEG
experts. These  experts  have  limited  time  for  EEG  review
and, due  to  the  recent  expansion  in  ICU  EEG  monitoring,
they are  currently  be  overwhelmed  by  the  amount  of  EEG
that needs  to  be  reviewed  at  medical  centers  which  are
able to  implement  ICU  EEG  monitoring.  Pre-analysis  of  EEG
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Table  2  Comparison  between  10  EEG  reports  written  after  time  unlimited  clinical  video-EEG  review  (CR)  and  after  a  10-minute
EEG  review  using  automatic  detections  of  rhythmic  and  periodic  patterns  (DGR).

ID  Clinical  video-EEG  report
(CR)

Detection-guided  report
(DGR)

Additional  in  DGR  Missed  in  DGR  Rating

P1  Right  side  PLEDS  which
improve over  time;  brief
electrographic seizures.
Slowing

Frequent 0.5—1/s  right
LPD, slowing,  and  many
brief electrographic
seizures

—  —  =

P2  Left  hemisphere  slowing,
PLEDS in  the  left
parasagittal  region,
epileptiform  discharges
occurring at  2  Hz,
twitching  of  the  right
hand

Left fronto-temporal  LPDs
until 9  pm  disappearing  for
4 h,  and  reappearing  at  1
am with  increasing
frequency.  No  seizures

Time  course  of
LPD, frequency
changes

Slowing ±

P3  Focal  right
frontal-temporal
hemispheric  delta
slowing. One
electrographic  seizure  at
5:25 pm  on  4/5/12

Slowing  on  the  right,
seizure with  3/s  GRDA/GSW
at  05:25  pm  on  4/5/12

—  —  =

P4  Right  parasagittal  delta.
Multiple subtle  seizures

Occasional  right  LPD
starting at  00:00  h,
intermittent  slowing  on  the
right

LPD  right
(matching  right
parasagittal  delta)

14  clinical
seizures,  only  2
with EEG  correlate

±

P5  Diffuse  arrhythmic  delta
slowing, TIRDA,  no
seizures

Intermittent  slowing,
abundant 1/s  left  LPD  until
approx. 11:00  pm,  one
brief electrographic  seizure

One  brief
electrographic
seizure,  LPD

TIRDA (too  short)  +

P6  Independent  left  and
right temporal  spike
waves, one
electrographic  seizures

Intermittent  slowing,  3
electrographic seizures

1  additional
electrographic
seizure,  slowing,
increasing  theta
activity at  the  end

Spikes  left
temporal

±

P7 Intermittent  right
frontal-central  bursts  of
2—3 Hz  delta  slowing,
PLEDS,  intermittent
right frontal  sharp  wave
discharges, one
electrographic  seizure

Occasional GPD,  rhythmic
theta at  7:00  pm,
generalized  slowing,  no
seizures

—  1  focal  right
seizure

—

P8 Continuous  bilateral,
frontally predominant
generalized  sharp  waves,
5—6  Hz  theta  slowing  of
the  background
bilaterally

Slowing,  GPD  11:30  pm  to
4:15 am,  3—4/s  GSW  from
09:20 pm  to  10:30  pm

Theta  pattern  from
beginning  to  1:00
am. GPD,  GSW

—  ++

P9  Diffuse  arrhythmic  delta
slowing, triphasic  waves

Slowing, continuous  1—2/s
GRDA/GRDA +  S/GSW  of
1—10  s  duration  with
fluctuating  morphology
starting from  11:00  pm,
which matches  NCSE
criteria

Time  course,  more
detailed pattern
description

— ++

P10  Periods  of  intermittent
generalized  delta
slowing

Very few  episodes  of  low
amplitude left  LPD  at  0.5/s
or less,  no  background
activity

LPD  Intermittent
slowing

±

LPD: lateralized periodic patterns; PLEDS: periodic lateralized epileptiform discharges; TIRDA: temporal intermittent rhythmic delta
activity.
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performed  by  computer  algorithms  may  speed  the  process  of
this EEG  review  and  perhaps  allow  personnel  with  less  EEG
training to  accomplish  thorough  EEG  review.

The  results  of  the  trial  study  provide  some  evidence  that
review of  long  EEG  recordings  using  our  computer  algorithm
is possible  in  a  short  time  period.  In  the  limited  series  of
cases presented,  most  of  the  important  elements  in  the
EEG were  automatically  detected  in  a  short  review  time.
The detection-guided  reviewer  had  only  10  minutes  time
to evaluate  11  to  28  hours  of  EEG.  Given  this  substantial
time restriction,  we  think  that  the  high  detection  accu-
racy we  found  is  promising.  The  detection  accuracy  for  PD
and RDA  was  almost  100%  compared  to  the  extensive  video
analysis of  the  EEG,  in  fact,  additional  PD  patterns  were
detected in  many  patients.  In  addition,  generalized  rhyth-
mic theta  was  detected  in  two  patients  that  were  missed  by
the MUSC  reviewer.  The  detection-guided  reviewer  missed
several subtle  seizures  in  one  patient  that  did  not  show
clear EEG  correlation.  These  seizures  could  only  be  picked
up using  video-EEG  and  could  not  be  detected  by  an  auto-
mated system  that  only  examined  EEG.  On  the  other  hand,
the detection-guided  reviewer  found  additional  informa-
tion about  pattern  trends  over  a  long  time  period.  Manual
analysis of  highly  complex  EEG  tends  to  pick  out  spo-
radic events  to  describe  the  patient  status.  The  results
show that  systematic  digital  analysis  of  patterns  addition-
ally enables  to  capture  trends  hidden  in  complex  EEG
data. This  information  is  emphasized  in  the  reports  of
the detection-guided  review  of  patients  P2,  P6,  P8,  and
P9.

We envision  the  use  of  our  automatic  detection  sys-
tem for  monitoring  of  intensive  care  patients,  where  EEG
recording equipment  would  send  the  digitized  EEG  data
in real-time  during  the  recording.  Sudden  changes  in  the
EEG could  then  be  observed  through  periodic  checks  of
the detection  user  interface  by  the  ICU  staff.  The  visual
combination of  detection  representing  rhythmic  and  peri-
odic patterns  in  combination  with  other  neuromonitoring
parameters such  as  intracerebral  pressure  (ICP)  on  the
same time  scale  could  potentially  reveal  additional  infor-
mation.

Our computer  algorithm  detects  patterns  according  to
CCET nomenclature  only.  Information  about  normal  patterns
present in  the  EEG  is  not  reported.  In  the  future,  we  would
like to  add  additional  features  that  would  evaluate  and
report features  of  the  normal  background  EEG  such  as  con-
tinuity, dominant  frequency,  and  background  amplitude.  In
such an  approach,  every  EEG  segment  would  be  evaluated
without exception.

We are  aware  that  the  study  design  has  several  signifi-
cant weaknesses.  First,  there  were  only  a  limited  number
of cEEG  recordings  studied  and  these  recordings  were  not
collected prospectively.  Second,  the  standard  EEG  reports
to which  the  detection-guided  report  was  compared,  were
based on  only  one  MUSC  reviewer  and  this  MUSC  reviewer
was different  for  many  of  the  EEG  recordings.  Third,
only a  single  expert  reviewer  performed  the  detection-
guided review.  However,  the  high  agreement  between  MUSC
and the  detection-guided  reports  and  the  high  percent-
age of  detection-guided  reports  with  additional  information
encourage the  initiation  of  a  comprehensive  prospective
study.

Conclusion

A  computational  method  to  detect  rhythmic  and  periodic
patterns based  on  the  ACNS’  standardized  critical  care  EEG
terminology was  presented.  The  results  of  three  patient
cases showed  the  potential  of  this  system  to  review  EEGs
of critical  care  patients.  An  objective  comparison  in  a  pre-
liminary trial  study  of  10  long-term  EEG  recordings  showed
that the  utilization  of  a  detection-guided  review  system
could possibly  assist  with  clinical  EEG  analysis.  Further  mul-
ticenter studies  including  larger  prospectively  acquired  EEG
recordings and  validation  using  multiple  expert  EEG  review-
ers are  needed  to  validate  our  computational  method.
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h i g h l i g h t s

� Fully automatic computational method to detect burst suppression patterns in critical care EEG.
� Insensitivity to EEG artifacts and periodic patterns makes the system suitable for clinical use in

real-time patient monitoring.
� Multi-centric evaluation including the EEG of 88 patients showed high sensitivity and specificity.

a b s t r a c t

Objective: To develop a computational method to detect and quantify burst suppression patterns (BSP) in
the EEGs of critical care patients. A multi-center validation study was performed to assess the detection
performance of the method.
Methods: The fully automatic method scans the EEG for discontinuous patterns and shows detected BSP
and quantitative information on a trending display in real-time. The method is designed to work without
setting any patient specific parameters and to be insensitive to EEG artifacts and periodic patterns. For
validation a total of 3982 h of EEG from 88 patients were analyzed from three centers. Each EEG was
annotated by two reviewers to assess the detection performance and the inter-rater agreement.
Results: Average inter-rater agreement between pairs of reviewers was j = 0.69. On average 22% of the
review segments included BSP. An average sensitivity of 90% and a specificity of 84% were measured
on the consensus annotations of two reviewers. More than 95% of the periodic patterns in the EEGs were
correctly suppressed.
Conclusion: A fully automatic method to detect burst suppression patterns was assessed in a multi-center
study. The method showed high sensitivity and specificity.
Significance: Clinically applicable burst suppression detection method validated in a large multi-center
study.
� 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights

reserved.

1. Introduction

Burst suppression is an electroencephalogram (EEG) pattern
consisting of intermittent periods of very low voltage brain electri-
cal activity (‘‘suppression”), alternating in a quasi-periodic fashion

with periods of higher amplitude activity (‘‘bursts”). Burst suppres-
sion patterns (BSP) are found in a wide range of pathological and
clinically-induced conditions, including anesthetic-induced coma,
hypothermia (Pagni and Courjon, 1964; Nakashima et al., 1995)
deep (Ching et al., 2012; Westover et al., 2015), or arising sponta-
neously as a result of anoxic brain injury (Niedermeyer et al., 1999;
Rossetti et al., 2012). The definition for burst durations and for sup-
pression amplitudes varies depending on patient age and clinical
context, ranging from 0.5 to 30 s for the duration of a burst and
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from 5 to 20 lV for suppression amplitudes (Shellhaas et al., 2011;
Zschocke and Hansen, 2011; Hirsch et al., 2013). Although com-
monly described as a generalized phenomenon, BSP can be asyn-
chronous across the cortex and can occur in limited cortical
regions. Local cortical dynamics of BSP were analyzed in Lewis
et al. (2013) and are reported in Sperling et al. (1986), Lazar
et al. (1999) and Mader et al. (2014).

Manual evaluation of BSP in the EEG is a widely used but
impractical approach. Manual evaluation lacks objectivity, and is
not feasible for continuous monitoring over multiple hours. Several
automatic or semi-automatic detection methods exist in the liter-
ature. The recent work of Murphy analyzed burst and suppression
segments of pre-term infants using various mathematical features
(Murphy et al., 2015). The method was validated using preselected
EEG segments and resulted in high agreement compared to three
reviewers. A detection method based on the line length feature
using the EEG of 10 pre-term infants was presented in Koolen
et al. (2014). An automatic classification method for burst and sup-
pression events was validated in (Westover et al., 2013) on 20 crit-
ical care EEG recordings that were selected based on clinical EEG
reports. The detection algorithm was trained on these 20 EEGs
and showed high agreement compared to human annotations.
Numerous other methods exist in literature that use various math-
ematical features to detect BSP (Thomsen et al., 1991; Lipping
et al., 1995; Bruhn et al., 2000, 2006; Jaggi et al., 2003; Liang
et al., 2014) but include a limited number of patients.

This work will present a fully automated detection method to
find burst suppression patterns in multi-channel EEG. The method
is insensitive to EEG artifacts and periodic patterns and can be cal-
culated in real-time. We present detection performance results
from an evaluation of continuous EEG recordings from 88 adult
patients from three intensive care units.

2. Methods

2.1. Automatic detection method

A computational method is presented that automatically
detects burst suppression patterns (BSP) in digital multi-channel
electroencephalograms (EEGs). The method works fully automati-
cally without the use of training data and without estimation of
patient-specific parameters. Data is analyzed in real-time to allow
continuous patient monitoring. The goal is to graphically visualize
the detection results over large time scales of up to several days in
a quantitative EEG interface similar to the approach shown in
(Fürbass et al., 2015a). Fig. 1 shows examples of burst suppression
and periodic pattern detections of a 20 h EEG recording.

The major steps in the whole detection procedure are outlined
in Fig. 2. First, the EEG is segmented into consecutive and non-
overlapping detection segments of 15 s. All further processing is
based on these detection segments. Scalp EEG artifacts are
removed using the PureEEG method (Hartmann et al., 2014). The
PureEEG method is based on a neurophysiological model and uti-
lizes an iterative Bayesian estimation scheme to remove artifacts
like movement, muscle, line noise, and loose electrode artifacts.
Further analysis is based solely on the output of the PureEEG mod-
ule. All subsequent detection and classification steps therefore
assume that the activity measured in the EEG channels are of cere-
bral origin. The EEG channels are converted to bipolar longitudinal
and transversal montages following ACNS recommendations
(American Clinical Neurophysiology Society, 2006).

Next, a channel-wise detection of burst suppression events is
performed. In each EEG channel xt the peak-to-peak amplitude is
measured by subtracting the minimum from the maximum digital
value in non-overlapping chunks of 0.4 s. Only EEG samples of the

current detection segment are used. The peak-to-peak time series
of channel xt is smoothed by a moving average filter resulting in
ySt ¼ 1

n

Pn
i¼1jxtþij. The length of the averaging window n is chosen

so that the minimum time for a suppression event is covered. Here,
a minimum duration of 1.5 s for suppression events is assumed.
The same procedure but with a window length of 0.5 s is repeated
resulting in the time series yBt . The samples of the time series ySt and
yBt are then used to detect suppression events in the channel. An
event may include several chunks of 0.4 s. A chunk is defined as
part of a suppression event if either a chunk with double amplitude
follows in 1.5 s ðyBtþ1:5=ySt > 2Þ or if a chunk with double amplitude
precedes with 1.5 s distance ðyBt�1:5=ySt > 2Þ. All remaining chunks
in the detection segment are part of a suppression event if their
amplitude is below the amplitude of the initially detected suppres-
sion chunk. All chunks that are not marked as part of a suppression
event at this processing step are part of a burst event if the peak-
to-peak amplitude is higher than double amplitude of the sur-
rounding suppression chunks. Fig. 3 shows the processing steps
of the channel-wise detection procedure.

The channel-wise detection information is then used as input to
a hierarchical cluster algorithm to find spatial groups of the same
activity type. The k � k distance matrix MS includes the time dis-
tance between the middle points of k suppression chunks. The
variable k is the total number of suppression chunks in the detec-
tion segment. Chunks that were neither marked as suppression nor
burst do not contribute to the distance matrix and are also not con-
sidered further. The distance matrix is then used to create a hierar-
chical cluster tree. The Euclidean distance between two chunk

positions a ¼ Mi;j
S and b ¼ M

�i;�j
S defined as dða; bÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
iðai � bjÞ2

q
is

used to measure the distance between two chunks. The
unweighted average distance algorithm using the cluster linkage
criteria 1

jAjjBj
P

a2A
P

b2Bdða; bÞ defines the dissimilarity between two

groups of suppression chunks A and B. The same procedure is
repeated for chunks of burst activity. The normalized cluster tree
is cut with a constant cutoff factor to create burst and suppression
clusters. By solely utilizing the middle point as distance metric an
influence of the spatial location of the suppression or burst activity
is avoided. This also means that channels used to build up a cluster
do not have to be spatially adjacent (e.g. cluster C4

SUPP in Fig. 2). In a
next step the best fitting cluster for each time point is determined.
Clusters are sorted descending according to their duration. Starting
with the longest cluster and by elaborating each cluster in the
sorted list, the first cluster that covers a time point is accepted.
Subsequent overlapping clusters are reduced in time to be non-
overlapping with accepted clusters. Clusters with durations less
than the minimum requirement for burst or suppression will be
discarded. This approach will discharge parts of the suppression
or burst chunks that are not time aligned with the majority of
the other chunks in the cluster. This also means that there is no
need for a single channel to fully cover the time span of the cluster.
All channels are treated equally, the method do not exploit the spa-
tial location of the involved channels. The resulting clusters repre-
sent burst or suppression detections that span several EEG
channels and extend over a certain time period. In this method
clusters need to span at least 40% of the cortical area covered by
electrodes to be further used in the detection procedure. The min-
imum coverage value of 40% was determined empirically and
serves as a sensitivity parameter of the method (see Section 4).

An important task in automatic detection of BSP is to avoid false
detections of other EEG patterns that consist of discontinuous
waveforms. A defining feature of periodic patterns is that they con-
tain regularly repeating waveforms of duration less than 0.5 s. The
inter discharge interval of PDs range from a fraction of a second to
several seconds and can therefore share some features of burst
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suppression patterns. When repeating EEG waveforms occur on a
low voltage (<10 lV) background that last no longer than 0.5 s or
exhibit no more than 3 baseline crossings, the critical care EEG ter-
minology of the ACNS (Hirsch et al., 2013) defines the pattern as
one of periodic discharges rather than burst suppression. By con-
trast, bursts in burst suppression patterns need to have durations
of at least 0.5 s and at least 4 baseline crossings. Fig. 4 outlines
the differences between burst suppression and periodic patterns
and also shows some borderline examples. In this work we apply
the definitions of the ACNS critical care EEG terminology by count-
ing the number of waveform crossings of the baseline in each EEG
channel of the burst cluster and by measuring the length of the
bursts. All burst clusters with a length of less or equal 0.5 s and less
than 4 phases are considered as periodic patterns and are dropped.
This behavior is also in concordance with the method for automatic
detection of periodic patterns presented in (Fürbass et al., 2015a;
Herta et al., 2015).

The average length of the bursts sBURST and the length of the
inter burst intervals sIBI as well as the average suppression and
burst amplitude AIBI and ABURST are calculated. These values are
stored in the detection result and can be used to characterize the
BS patterns. For example the ratio of burst to suppression length
is commonly used to measure the depth of pharmacologically
induced coma sedation.

Detection segments are marked as a burst suppression pattern
if two conditions apply: first, at least one suppression cluster
was detected with AIBI 6 10 lV and sIBI P 1:5 s. Second, one burst
cluster with ABURST of more than two times the lowest suppression
cluster amplitude and sBURST P 0:5 s was found in the detection
segment. The quantity of these parameters follow the definitions
in the ACNS’ critical care EEG terminology (Hirsch et al., 2013).
An exception is the value of 1.5 s for sIBI which was found empiri-
cally through extensive manual evaluation of BSP during algorithm
development.

Fig. 1. Quantitative EEG interface (NeuroTrend, www.encevis.com) showing the detection results of a 20 h EEG recording registered in the intensive care unit. (A) The upper
plot show periodic pattern detections (Fürbass et al., 2015a) which are continuously present for approx. 5 h in this patient. The lower plot labeled ‘‘burst suppression”
represents the automatically detected burst suppression patterns. (B) The EEG at time point 1 shows an example of a periodic pattern; the EEG at time point 2 gives an
example of a burst suppression pattern.
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The method was implemented in the programming language
C++ to allow fast calculation and integration in the detection user
interface shown in Fig. 1. The software module is able to analyze

24 h of EEG in 20 min on a standard PC hardware and is therefore
72 times faster as the recording speed. The method uses consecu-
tive detection segments of 15 s length, each detection segment can

Fig. 2. Block diagram of the automatic burst suppression detection method with the resulting clusters visualized in an EEG segment. The burst and suppression clusters CBURST
(dashed line) and CSUPP (solid line) do not overlap in time and may include several channels. The EEG sample shows a bihemispheric and asynchronous burst suppression
pattern where each burst covers approximately 50% of the EEG channels. The detection segment was correctly classified as a burst suppression pattern. The calculation
procedure involves: (I) segmentation of the EEG, (II) artifact removal using the PureEEG module, (III) channel-wise detection of burst suppression chunks, (IV) building of
spatial clusters using the time position of the detected burst and suppression chunks, (V) detection and removal of periodic patterns, (VI) burst suppression classification.

Fig. 3. Processing steps of the channel-wise burst suppression event detection. (A) The peak-to-peak amplitudes measured for each chunk of 0.4 s length are shown as dots.
(B) Based on a smoothed time series of these chunk amplitudes each chunk with a preceding double amplitude chunk is marked as part of a suppression event (circle markers
on the suppression chunks). The same is done for chunks followed by a double amplitude chunk (cross markers showing the double amplitude chunks). (C) All suppression
events are expanded to include all chunks with amplitudes below the initially detected suppression chunks. (D) The final channel wise detection of bursts chunks (star
markers) and suppression chunks (square markers) after expansion of the burst.
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be analyzed in about 200 ms. The output of the method is based on
a single detection segment without using any future information or
other detection segments. Together with the delay to wait for 15 s
of EEG data the overall processing delay sums up to 15.2 s. Hence,
‘‘realtime” monitoring of patients with a constant time delay of
15.2 s is possible.

2.2. Clinical validation

We determined the detection performance by comparing detec-
tion results of the presented computational method with EEG
annotations of several reviewers. Sensitivity (SE), specificity (SP),
positive predictive value (PPV), and negative predictive value
(NPV) are measured as defined in Eqs. (1)–(4) of Table 1. The
inter-rater agreement (IRA) between human annotations and
detection results was also quantified (see below).

EEG data of adult critical care patients from three different
centers was used for evaluation and is summarized in Table 2.
Video-EEGs from the neurological ICU of the Neurological Center
Rosenhuegel Vienna and the neurosurgical ICU of the General
Hospital Vienna were recorded using a Micromed EEG system (Sys-
temPLUS Evolution 1.04.95) betweenMarch 1, 2013 and September
1, 2014. Data was recordedwith a sampling rate of 256 Hz using the
international 10–20 electrode system. The initial purpose of the
recordings was the validation of a method for detection of rhythmic
and periodic patterns (Fürbass et al., 2015a; Herta et al., 2015). The
data of these two centers was combined for the dataset named

VIEN. The EEG data of the third center was recorded at the Mas-
sachusetts General Hospital (MGH) between August 2010 and
March 2012. The EEGs from critically ill neurological patients were
identified by retrospective review of clinical EEG reports. All of
these EEGs included burst suppression activity and were used to
validate a real-time burst suppression segmentation method
(Westover et al., 2013). All these EEGs were recorded at 256 Hz
using XLTEK clinical EEG equipment (Natus Medical Inc., Oakville,
Canada) with silver/silver chloride electrodes in the international
10–20 electrode system. In this work the dataset was named MGH.

The EEGs of the dataset VIEN were independently annotated by
two clinical neurophysiologists (JH, JK). To reduce the workload for
annotation of long-term recordings the first minute of each hour
was annotated resulting in 3969 annotation segments. The EEG
software package encevis (www.encevis.com) was used to anno-
tate these one-minute EEG segments. The reviewers were able to
choose between the choices ‘‘EEG with burst suppression patterns”
and ‘‘EEG without burst suppression patterns” for each segment.

The EEGs of the dataset MGH were likewise independently
annotated by two experienced clinical neurophysiologists (BW,
MS). They were asked to mark the beginning and end of all sup-
pression events; all non-suppression segments were defined as
bursts (Westover et al., 2013). For this work the result of the anno-
tation procedure at MGH was available as time series defining one
of three states for each time point: (1) BW and MS agree on sup-
pression, (2) BW and MS agree on burst, (3) disagreement between
BW and MS. The EEGs from MGH where then split into consecutive

Fig. 4. EEG examples showing morphology differences between burst suppression and periodic pattern detections. (A) Burst suppression pattern; both bursts have a length of
one second and more than 3 phases. (B) Burst suppression pattern; the very low burst amplitude requires increased amplitude sensitivity for visual inspection. The last burst
includes a single discharge of higher amplitude. (C) Periodic pattern; repetitive high amplitude waveforms of less than 0.5 s length with a surrounding low amplitude burst
suppression pattern. As the amplitude of the surrounding burst suppression waveform is negligible, the EEG segment was detected as periodic pattern. (D) Periodic pattern;
although the length of the discharges sometimes reaches the limit of burst suppression patterns (0.5 s) all discharges have less than 3 phases and are therefore periodic
patterns. The pattern could be misinterpreted as burst suppression by an automatic detection system if the number of phases is not evaluated. (E) Periodic pattern; the low
amplitude discharges repeat with an inter discharge interval of less than 1 s.

Table 1
Statistical equations.

Sensitivity SE ¼ TP
TPþFN (1)

Specificity SP ¼ TN
TNþFP (2)

Positive predictive value PPV ¼ TP
TPþFP (3)

Negative predictive value NPV ¼ TN
TNþFN (4)

95% CI for probabilities p̂ (SE, SP, PPV, NPV)
CI95%;p̂ ¼ p̂� 1

2nþ 1:96
ffiffiffiffiffiffiffiffiffiffiffi
p̂ð1�p̂Þ

n

q� �
(5)

Cohen’s j value j ¼ ðpo�peÞð1�peÞ
(6)

Standard deviation of Cohen’s j value SDj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
poð1�poÞ
nð1�peÞ2

q
(7)

95% CI for Cohen’s j value CI95%;j ¼ j� 1:96SDj (8)

The numbers of true positive (TP), false positive (FP), true negative (TN), and false negative (FN) events are used to calculate
sensitivity, etc. The confidence interval for point estimates of probabilities like the sensitivity (SE) involves the number of
samples (n) that were used to calculate the parameter (i.e. TP + FN for SE). The 95% confidence interval of the Cohen’s j value is
given by the approximated standard deviation SDj .
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segments of one-minute where the annotation ‘‘EEG with burst
suppression patterns” was assigned to segments including at least
one event of type 1 (BW and MS agree on suppression) and one
event of type 2 (BW and MS agree on burst). For all other one-
minute segments the annotation ‘‘EEG without burst suppression
patterns” was assigned.

The burst suppression detection method was applied to all EEGs
using a computer cluster that processed the digital EEG data using
the detection software module. The results are stored in an SQLite
(www.sqlite.org) database format with one detection result for
each non-overlapping EEG segment of 15 s length. The results of
the annotation sessions and the results of the computational anal-
ysis were read by an evaluation script written in Matlab (Natus,
MA). Statistical formulas were calculated in Matlab.

2.3. Statistical analysis

Statistical analysis of detection performance was done by com-
paring the annotations in the one-minute annotation segments to
the detection results of the computational method. Each EEG seg-
ment annotated as ‘‘EEG with burst suppression” with overlapping
any burst suppression detection of 15 s length was defined as a
true positive (TP) event. EEG segments annotated as ‘‘EEG with
burst suppression” without any overlapping burst suppression
detection were defined as false negatives (FN). Segments anno-
tated as ‘‘EEG without burst suppression patterns” and with over-
lapping burst suppression detection were defined as false positives
(FP). All other segments were defined as true negatives (TN).

The statistical parameters SE, SP, PPV, and NPV were calculated
including the events of all annotation segments of the respective
dataset (Eqs. (1–4) of Table 1). The utilization of an arithmetic
mean over patient wise results to estimate the expected value
was avoided (see Section 3.2). To define the 95% confidence inter-
val for these measures the equation for confidence interval calcu-
lation of probabilities (Weiß and Rzany, 2013) is used (Eq. (5)).

The inter rater agreement (IRA) was evaluated by matching the
human annotations segments with the detection segments of the
same kind calculated by the computational method. The Cohen’s
j value was used to quantify the IRA, which is calculated by com-
paring the difference of the agreement observed, po, and the esti-
mate of the expected percent agreement, pe, divided by the
normalization value ð1� peÞ (Eq. (6) of Table 1). The confidence
interval for the Cohen’s j value uses an approximation formula
for the standard deviation (Cohen, 1960) and is given in Eqs. (7)
and (8) of Table 1.

2.4. Analysis of periodic pattern rejection ratio

Periodic patterns represent another important type of electro-
graphic activity that is frequently found in the EEG of critically ill
patients. The morphology of periodic pattern can show similarities
to BSP but is categorized separately in the ACNS critical care EEG

terminology (see Section 1). Periodic patterns were annotated in
the dataset VIEN by two EEG reviewers in the previous work of
Herta (Herta et al., 2015). These annotations were used to investi-
gate how sensitively the burst suppression detection method
reacts to periodic patterns. Annotation segments that were concor-
dantly annotated by two reviewers as ‘‘EEG without burst suppres-
sion patterns” and were concordantly annotated in our previous
work as EEG with a periodic pattern are compared to the results
of the automatic burst suppression method. The number of these
segments without detection divided by the number of all such seg-
ments defines the periodic pattern rejection ratio. High values
imply robustness of the method against confusing periodic pat-
terns with burst suppression patterns.

3. Results

3.1. Inter-rater agreement of annotations

The EEGs in dataset VIEN were annotated by two reviewers (JH,
JK) that were able to choose between BS (EEG with burst suppres-
sion) and �BS (EEG without burst suppression). The inter-rater
agreement shows substantial agreement with a j value of 0.71
(0.68–0.74). Table 3 shows the detailed results.

The EEGs of the dataset MGH were annotated by the two
reviewers (BW, MS) which had to mark the start and end time
points of burst and suppression events. The inter-rater agreement
of the two reviewers was analyzed in (Westover et al., 2013) and
showed an average j value of 0.57 (min 0.05, max 0.89).

By weighting the 3969 review segments from dataset VIEN with
j = 0.71 and the 774 review segments from dataset MGH with
j = 0.57 an average agreement of all review segments can be calcu-
lated with the equation: �j ¼ 0:71 3969

4743þ 0:57 774
4743 ¼ 0:687. The aver-

age agreement of the burst suppression annotations of two
reviewers on 4743 one-minute review segments is therefore
�j = 0.69.

3.2. Suitable statistical analysis for burst suppression patterns

The kind of statistical analysis that is suitable for a problem
depends on the distribution and prevalence of the events under
investigation. To gain more insight into the prevalence of burst
suppression patterns we analyzed the percentage of segments with

Table 2
Summary of EEG data used for validation.

Recording site Dataset name Patients (n) Hours of EEG monitoring (h)
(min, mean, max)

Annotation
segments (n)

Segments with consensus
annotations (n) (%)

Neurological Center Rosenhuegel Vienna,
General Hospital Vienna

VIEN 68 3969 (4, 74, 388) 3969 440 (11%)

Massachusetts General Hospital Boston MGH 20 12.9 (0.34, 0.63, 1.26) 774 597 (77%)
R VIEN + MGH 88 3982 4743 1037 (22%)

The recording sites with the resulting datasets and the number of annotation segments that were each reviewed by two EEG experts are shown. The number of segments with
burst suppression patterns (BSP) is low (11%) for centers that prospectively collected data without using an exclusion criteria on the content of the EEG. The high number of
segments including BSP of EEGs from MGH (77%) is based on retrospective review and selection of patients with BSP. The dataset combining all three recording centers is
called VIEN + MGH and includes EEGs of 88 patients having BSP in 22% of the annotation segments.

Table 3
Inter-rater agreement of annotations in dataset VIEN.

JK

BS BS

JH BS 440 199

BS 91 3239

j = 0.71 (0.68–0.74)
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burst suppression patterns per patient. We used all segments with
concordant annotations of both reviewers to define the number of
segments with and without burst suppression patterns. Fig. 5
shows the percentage of burst suppression segments for each
patient in dataset MGH and VIEN. The use of statistical values
based on a very small number of samples is problematic and has
to be avoided. The calculation of the sensitivity solely uses seg-
ments with burst suppression annotations which are marginally
represented in 30 patients (34%) of the study (shown in Fig. 5). A
similar situation arises for the calculation of the specificity which
is based on annotation segments without burst suppression pat-
terns. In this study 10 patients (11%) included only a marginal
number of annotation segments without burst suppression pat-
terns. Overall, the patient-wise statistic of 41 patients (47%) would
be based on very small number of samples. The detection perfor-
mance is therefore analyzed including all annotation segments of
all EEGs without using patient wise statistics.

3.3. Performance of the automatic detection method

The results of the automatic burst suppression detection
method were compared to the manual annotations of the review-
ers. Table 4 summarizes the results of the measured detection per-
formance of the automatic method. The detection performance
was analyzed for each reviewer in the dataset VIEN (reviewer JH
and JK) and for their consensus annotations (JH + JK). The consen-
sus annotations only include annotation segments with agreement.
The results are quite similar for annotations of rater JH and JK with
sensitivities of 89% and 88% and specificities of 84% and 81%
respectively. The consensus annotations JH + JK of dataset VIEN
result in a higher sensitivity of 92% and a specificity 85% as some
segments with more difficult patterns have no agreement and
are dropped. The detection performance measured on the annota-
tions of the dataset MGH showed a similar sensitivity as the VIEN
dataset but a lower specificity of 68%. The positive predictive value

Fig. 5. Prevalence of segments with burst suppression patterns (BS) for each patient in dataset MGH (A) and dataset VIEN (B). Patients with less than 5% or more than 95% of
burst suppression segments are marked in grey color.
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of 90% shows the percentage of correct detections in this dataset.
The result of the combined dataset VIEN + MGH using the consen-
sus annotations of JH + JK for the EEGs of VIEN and BW + MS for the
EEGs of MGH show a sensitivity of 90% and a specificity of 84%.

3.4. Rejection ratio of periodic patterns

The dataset VIEN was used to evaluate the periodic pattern
rejection ratio of the burst suppression detection method. The
results of the burst suppression annotation session from two
reviewers (JH, JK) were compared to consensus annotations of peri-
odic and rhythmic patterns created in Herta et al. (2015). Of 3969
annotations segments only 17 (0.43%) were annotated as burst
suppression and as periodic pattern EEG simultaneously. This
shows that periodic patterns and burst suppression patterns are
well established terms that are differentiated in clinical practice.
We found 230 annotation segments that were concordantly anno-
tated as EEG with periodic patterns and without burst suppression
patterns by human reviewers. Only 11 of these 230 segments (5%)
included burst suppression detections. 95% included no burst sup-
pression detection. The periodic pattern rejection ratio of the
method was therefore 95%.

4. Discussion

Long-term EEG monitoring of critically ill neurological patients
has recently received increased attention in the scientific commu-
nity and in clinical practice. Automatic evaluation of the EEG by
computer methods can reduce the burden of visual evaluation
and can further raise acceptance of long-term EEG in the critical
care unit but needs to be validated in studies with clinical rele-
vance. Burst suppression patterns (BSP) are commonly found in
EEGs of anesthetized patients or during pharmacologically induced
coma in the treatment of status epilepticus. In this work we eval-
uated an automatic burst suppression method that was designed
to work in the clinical setting.

The initial objective of this work was to develop a robust and
universally applicable method for automatic detection and quan-
tification of BSP. The presented computer method and clinical val-
idation methodology contribute in several ways to ongoing work in
the field of automatic EEG evaluation.

First, the number of EEG recordings used in this clinical valida-
tion study of a BSP detection method exceeds the number used in
previous works. We believe that the utilization of EEGs recorded
under various clinical and technical conditions contributes to the
generalizability of the results. The small confidence intervals of
the statistical performance measures confirm that the number of
patients was large enough of this detection problem (see supple-
mentary data of Fürbass et al. (2015b)). The annotation of the data
was done by different reviewers for the EEGs in dataset VIEN and
dataset MGH. Although this may be criticized as problematic, the

diverse educational backgrounds of reviewers acts as additional
randomization which is generally considered a positive feature.
Morphologies of BSP are an especially widely discussed topic in lit-
erature as different anesthetics agents and different pathological
conditions lead to wide variations in the duration of inter burst
intervals and amplitudes (see Section 1), and in the character of
activity within bursts. Despite the quite general definition of BSP
in the critical care EEG terminology (Hirsch et al., 2013) Zschocke
and Hansen (2011) defines three basic types of BSP based on clin-
ical observations. The inter-rater agreement of j = 0.71 for a com-
monly generalized and prolonged EEG pattern like BSP confirms
uncertainties in the visual analysis of these patterns.

The EEGs of dataset VIEN were recorded prospectively for the
work presented in Herta et al. (2015). The detection performance
shows high values for sensitivity and specificity of 92% and 85%
which we interpret as an excellent result for a fully automatic
detection method. The large percentage of EEG segments without
burst suppression help to reduce the confidence interval of the
specificity (4% for SE vs. 3% for SP in dataset VIEN + MGH). The
result of the j agreement between human reviewers and the auto-
matic method is more diverse. The highest agreement could be
measured between reviewers JH and JK with 0.71 where the high
number of segments without burst suppression have a strong bias
on this value. Comparing the results of the automatic method to
these reviewers resulted in j values of 0.56 and 0.47 which is sig-
nificantly lower (p < 0.05) but with an acceptable absolute value.
The patient wise j agreement between the reviewers BW and
MS was 0.57 with outliers of 0.05 and 0.95. We like to emphasize
that the j value of the human annotations in dataset MGH is based
on annotations of separate burst and suppression events which
holds more detailed information then the annotations of one-
minute segments for dataset VIEN. The lower j value of annota-
tions in dataset MGH compared to the j value of annotations in
dataset VIEN is therefore based on differences in the time resolu-
tion during review. The agreement of the automatic method in
dataset MGH could only be measured on the combined annotations
of BW and MS and showed a j value 0.62. This data supports the
thesis that automatic detection of BSP can be done with high sen-
sitivity and specificity and at a level of agreement similar to that of
two human experts.

This work thoroughly investigates the spatial coverage of BSP
with respect to the utilized electrode system. EEG settings with
few channels are commonly used to monitor sedation depth and
do not require solutions to multi-channel issues of automatic eval-
uation. The full 10–20 electrode system is used to monitor criti-
cally ill patients with suspected seizures to increase the
detection sensitivity for focal patterns of brain activity in the
EEG. Lateralized burst suppression or bilateral asynchronous burst
suppression can only be properly analyzed by computer methods
that allow for BSP with a reduced spatial profile. Another
frequently observed issue is that human reviewers tend to recog-

Table 4
Performance of the automatic burst suppression detection method.

Performance measures Reviewers and EEG data

SE (%) (CI95%) SP (%) (CI95%) PPV (%) (CI95%) NPV (%) (CI95%) j (%) (CI95%) Rev. (n) Rev. IDs Dataset

89 (86–91) 84 (83–85) 51 (48–54) 97 (97–98) 56 (53–59) 1 JH VIEN
88 (85–91) 81 (80–83) 42 (39–45) 98 (97–98) 47 (44–51) 1 JK VIEN
92 (89–95) 85 (84–87) 46 (43–49) 99 (98–99) 54 (50–58) 2 JH + JK VIEN
88 (85–91) 68 (61–75) 90 (88–93) 63 (55–70) 62 (55–68) 2 BW + MS MGH
90 (88–92) 84 (83–86) 64 (61–66) 96 (96–97) 65 (63–68) 2 JH + JK, BW + MS VIEN + MGH

Detection performance and agreement between the detection algorithm and the EEG reviewers is shown. Sensitivity (SE), specificity (SP), positive predictive value (PPV), and
negative predictive value (NPV) are calculated based on annotations defined by one or two reviewers. The Cohen’s j value measures the level of agreement between the
reviewer and the result of the detection algorithm. The number of reviewers (Rev.) of each EEG sample, their IDs and the annotated datasets are shown.
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nize patterns based on clear cut activity seen in very short time
intervals or in a few channels and by extrapolation of this subjec-
tive opinion to a more stretched time–channel area. EEG activity
like BSP can show altered level of amplitudes over channels that
forces the computer method to detect the activity based on the
more pronounced EEG channels alone. We are convinced that both
reasons explain the fact that our presented computer method
needed to allow detections of BSP with an electrode coverage as
low as 40%. Further experiments on these settings have shown that
by increasing this value to 50% the sensitivity decreased by approx-
imately 10%.

In contrast, automatic detection of spatially limited patterns
will reduce the specificity of the detection result in general, by
causing a reduced signal-to-noise ratio. As we pointed out in
Section 1, the a priori reduction of EEG artifacts with the PureEEG
method is used by our detection system. The experimental deacti-
vation of this pre-processing step resulted in decreased specificity
and sensitivity, which is explained by the raised level of artifacts
that trigger detection as well as artifacts that resemble physiolog-
ical EEG patterns.

Another contribution of this work is the ability to distinguish
between burst suppression patterns and periodic patterns auto-
matically. The critical care EEG terminology of the ACNS (Hirsch
et al., 2013) clearly defines these two types of patterns. Periodic
and burst suppression patterns may occur in the same patient as
reported for some patients with coma following cardiac arrest
(Hofmeijer et al., 2014). At least three EEGs recorded in this study
exhibited both patterns, as Fig. 1 exemplifies. The clustering
approach of this work is able to combine all EEG activity belonging
to one burst into a single information unit which leads to simple
and robust classification of periodic discharges. Previous reports
of automated burst suppression analysis are based on channels-
wise analysis that results in a feature time series following the
methodology of ‘‘single-channel classification with late integra-
tion” which differs from this work that is based on early integra-
tion of multiple channels (Hunyadi et al., 2011). In summary, the
channel-wise detections of burst suppression events, the combina-
tion with a spatial clustering algorithm and the use of rejection
algorithms for artifacts and periodic patterns represent the key
innovation of this work.

5. Conclusion

We presented a fully automated method for detection of burst
suppression EEG patterns. The detection performance on EEGs
from 88 adult patients from three independent recording sites
showed high sensitivity and specificity, comparable to expert–
expert levels of inter-rater agreement. The method is able to detect
burst suppression patterns even when occurring over limited cor-
tical regions, and is insensitive to EEG artifacts and periodic pat-
terns. In addition the method quantifies the duration of burst
and suppression events and works in real-time. The high detection
performance on prospectively collected data without the need for
patient-specific parameter tuning shows that utilization for clinical
patient monitoring of burst suppression patterns is feasible.
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h i g h l i g h t s

� Automatic seizure detection assessing efficacy of EEG/ECG/EMG signals for seizure documentation.
� Multi-center evaluation including 92 patients with 494 seizures comparing full to reduced montages.
� Using 8 frontal and temporal electrodes will significantly improve conventional seizure reporting.

a b s t r a c t

Objective: This study investigated sensitivity and false detection rate of a multimodal automatic seizure
detection algorithm and the applicability to reduced electrode montages for long-term seizure documen-
tation in epilepsy patients.
Methods: An automatic seizure detection algorithm based on EEG, EMG, and ECG signals was developed.
EEG/ECG recordings of 92 patients from two epilepsy monitoring units including 494 seizures were used
to assess detection performance. EMG data were extracted by bandpass filtering of EEG signals.
Sensitivity and false detection rate were evaluated for each signal modality and for reduced electrode
montages.
Results: All focal seizures evolving to bilateral tonic-clonic (BTCS, n = 50) and 89% of focal seizures (FS,
n = 139) were detected. Average sensitivity in temporal lobe epilepsy (TLE) patients was 94% and 74%
in extratemporal lobe epilepsy (XTLE) patients. Overall detection sensitivity was 86%. Average false
detection rate was 12.8 false detections in 24 h (FD/24 h) for TLE and 22 FD/24 h in XTLE patients.
Utilization of 8 frontal and temporal electrodes reduced average sensitivity from 86% to 81%.
Conclusion: Our automatic multimodal seizure detection algorithm shows high sensitivity with full and
reduced electrode montages.
Significance: Evaluation of different signal modalities and electrode montages paces the way for semi-
automatic seizure documentation systems.
� 2017 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights

reserved.

1. Introduction

Seizure documentation and quantification represents the pri-
mary outcome measure of epilepsy therapy including antiepileptic

drug treatment, epilepsy surgery, and neurostimulation. Presently,
patients document their seizures using seizure diaries without sys-
tematic and objective validation approach by physicians. Recent
publications showed that manual seizure counting suffers from
underreporting with sensitivities of 50% during day and as low as
30% during night and can therefore be considered as highly unreli-
able (Blachut et al., 2015). This inaccuracy represents a major issue
for the assessment of treatment efficacy including drug trials.
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We propose a semi-automatic system for seizure documenta-
tion and quantification based on computer methods to scan
biomedical signals for epileptic seizures followed by a manual
evaluation of these detections by trained staff. For this application
a low number of sensors should be used to assure patient compli-
ance and to simplify hardware design. On the other hand, data
from ictal events needs to be recorded with a reasonable number
of sensors to allow post-hoc analysis for correct seizure identifica-
tion. A prerequisite for this approach is a wearable electrophysio-
logical hardware setup that can be utilized over long time
periods. Secondly, and with utterly importance, a clinically vali-
dated computer based detection method has to be used. This
method has to ensure high sensitivity and low false detection rates,
to pay off additional efforts of neurophysiological measurements
with numerous EEG electrodes and other sensors.

EEG represents the gold standard in epilepsy diagnosis and to
prove the epileptic nature of seizures which makes it the primary
modality for automatic seizure documentation. Automatic seizure
detection methods based on surface EEG recorded during inpatient
epilepsy monitoring showed high sensitivity in multi-center stud-
ies (Fürbass et al., 2015a; Hopfengärtner et al., 2014). Reduced EEG
electrode sets showed a rapid drop in detection sensitivity for
rhythmic patterns (Herta et al., 2017) which has to be considered
for wearable documentation devices.

ECG can be utilized as another modality for seizure detection.
Epileptic seizures cause an activation of the central autonomic net-
work (CAN) resulting in changes in heart rhythm at seizure onset.
Ictal tachycardia (ITC) represents the most frequent change in
heart rhythm and can be observed in 65–86% of seizures
(Eggleston et al., 2014; Leutmezer et al., 2003). Furthermore, a lar-
ger affected brain area was reported to define the degree and rate
of ITC (Stefanidou et al., 2015). ITC occurs early during seizure evo-
lution and often even precedes EEG changes visible on scalp-EEG
(Leutmezer et al., 2003). The high sensitivity of ITC, its early occur-
rence, and the easy technical setup for ECG measurement makes
this biomarker highly promising for automatic seizure detection
devices.

Other modalities for automatic seizure detection were investi-
gated recently, including methods based on surface EMG
(Beniczky et al., 2016) and motion sensors (Conradsen et al.,
2012) as well as gyroscopic sensors and dermal skin conductance
sensors (Banks et al., 2014).

In this study we present a multimodal automatic seizure detec-
tion method using information from EEG, ECG assessing ictal
tachycardia and EMG measuring ictal tonic muscle activity. We
investigated this method both with a full 10–20 electrode set as
well as a reduced number of EEG electrodes suitable for ambula-
tory settings. We assessed strengths and weaknesses of this
approach in patients with specific seizure and epilepsy types.

2. Methods

2.1. Data

We retrospectively analyzed 92 long-term EEG/ECG/EMG
recordings from two epilepsy monitoring units including at least
21 EEG electrodes and at least one ECG channel. Signed informed
consent was obtained from all patients. We included all available
EEG recordings with one or more epileptic seizure during the
recording period resulting in a total of 11,978 h of data with 494
epileptic seizures of various types (min per patient = 23 h, max
per patient = 547 h). From 92 patients included in our study 55
patients had temporal lobe epilepsy (TLE) and 37 patients had
extratemporal lobe epilepsy (XTLE). Data were recorded with a
Micromed (Veneto, SpA) and an ITmed (Natus Medical Incorpo-

rated) system at a 256 Hz sampling rate using gold-disc electrodes
placed according to the international 10–20 system with addi-
tional temporal electrodes. To mimic the behaviour of prospective
data, digital EEGs were analyzed without manual pre-processing,
data selection or data cutting.

The effect of reduced scalp electrode montages was simulated
by removing electrodes from the digital EEG file before further
analysis. Two different montages with reduced number of elec-
trodes were assessed: the 8 electrode forehead montage includ-
ing electrodes FP1, F7, T7, FP2, F8, T8, FZ, ECG and the 7
electrode posterior montage including electrodes T7, P7, O1, T8,
P8, O2, ECG. Fig. 1 shows standard electrode positions (circles) as
well as electrodes of forehead montage (dashed circles) and elec-
trodes of posterior montage (shaded circles).

2.2. Performance evaluation methodology

Seizures were annotated following standard protocols of the
two epilepsy monitoring units using both clinical and EEG informa-
tion. The first three seizures of each patient were categorized
according to the ILAE operational seizure classification (http://www.
ilae.org/Visitors/Centre/documents/ClassificationSeizureILAE-2016.
pdf) in order to facilitate performance evaluation according to
seizure type. Seizure markers were set based on standard EMU
review procedure using video, EEG, and other clinical information
including manual validation of seizures by an experienced clinical
epileptologists (HS, SP, or CB). Only validated seizure markers were
used to define seizure epochs as basis for assessing detected and
undetected seizures. Each seizure epoch ranged from 30 s before
the clinical seizure marker to 180 s after this marker resulting in
a total 210 s intervals of single seizure epochs.

Our seizure detection algorithm provided both time points and
modality of detection. Time points of detected events were com-
pared to the visually identified seizure epochs. Seizure epochs
were defined as true positive (TP) if at least one detection occurred
within the epoch time range. Detections outside of seizure epochs
were defined as false positives (FP). Seizure epochs without a
matching detection were defined as false negative (FN). For assess-
ment of detection performance according to seizure types we dis-
tinguished between focal seizures (FS group) and focal seizures
evolving to bilateral tonic-clonic (BTCS group). The first three sei-
zure epochs including seizure type annotations in each patient
were evaluated, consecutive seizure epochs and detections over-
lapping these epochs were ignored. Patients with at least one sei-
zure of a certain type were included in the corresponding seizure
type group. Patients having two different seizure types were
included in both seizure type groups.

Sensitivity (SE) was defined as the ratio between the number of
true positives (#TP) and the number of all seizures (#TP + #FN) and
was calculated for each patient. False detection rate was defined as
the number of false detections per 24 h (FD/24 h).

A paired t-test was used as test statistic between performance
results of two detector types or electrode sets.

2.3. Computer algorithm

The computer algorithm detects seizures using EEG, surface
EMG, and ECG signals that were recorded using scalp EEG and
chest ECG electrodes. Fig. 1 gives an overview of the detection
system.

EEG is able to pick up pathologic brain activity by showing
rhythmic signal components, but patient movements and loose
electrode contacts can cause signal artefacts with similar morphol-
ogy. Before applying the EEG seizure detection algorithm artefacts
were removed applying PureEEG, a fully automatic artefact
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removal method (Hartmann et al., 2014). A rhythmic pattern
detection algorithm described previously (Fürbass et al., 2015b;
Herta et al., 2015) was then used to detect rhythmic activity
between 1.8 and 12.5 Hz and to measure amplitude and frequency
of these patterns. Amplitude baseline was estimated using the 50%
percentile of all rhythmic patterns that occurred in the previous
four minutes. Rhythmic patterns that were classified as ictal EEG
patterns (Fig. 1, (B)) and that had a 40% higher amplitude com-
pared to EEG baseline were defined as seizure detections.

Automatic seizure detection on EMG was based on the occur-
rence of sustained and excessive EMG activity. EMG signals were
extracted from data recorded on EEG electrodes by bandpass filter-
ing the signals between 30 and 60 Hz. Signal strength was quanti-
fied using the line length method defined as the sum of distances
between each consecutive data sample in non-overlapping 0.5 s
windows. Seizure events were defined as high absolute line length
values (LL), a steady increase over 5 s, and a 500% increase com-
pared to maximum line length in a four minute baseline window
(LL_ref).

ECG signals from a single chest electrode were used for measur-
ing heart rate and for automatic detection of ictal tachycardia. We
defined ictal tachycardia as a heart rate above 100 beats per min-
ute (bpm). The detection algorithm first resampled ECG signals to
500 Hz and then high pass filtered the signal with a cut off fre-
quency of 8 Hz to remove T wave components. Then a detection
algorithm designed to find periodic patterns scanned for QRS com-
plexes (Fürbass et al., 2015b). The exact time position of R peak
was defined at the maximum of the QRS complex. Consecutive R
to R time intervals (RR intervals) of the last 10 s were used to
define the average bpm at each time point. Cardiac baseline activ-
ity was defined as average heart rate during four minutes before
the current time point. To differentiate physiologic from ictal activ-
ity the modified cardiac sympathetic index based on previous 100
RR intervals (CSI100) was calculated (Jeppesen et al., 2014) as fol-
lows: given the Lorenz plot of RR intervals the longitudinal length
(L) and the transversal length (T) was estimated as four times the
standard deviation. The value of CSI100 was then calculated by
L2 divided by T. An elevated heart rate of more than 100 bpm
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Fig. 1. Multimodal Seizure Detection System: Signal modalities EEG, surface EMG, and ECG are derived from scalp EEG and chest ECG leads. For each modality, seizure specific
features of the current time point are compared to past values to detect an increasing seizure likelihood called degradation (A) and for real time seizure classification (B).
Detection events were defined as logical AND of conditions A and B. For EEG the increasing rhythmic signal amplitude (A) with a high absolute amplitude compared to an
average EEG spectrum (B) triggered detections; for EMG an elevated Line Length (LL) compared to baseline (LL_ref) (A) and steady increasing tonic activity for more than 5 s
with high absolute values (B) triggered detections; for ECG elevated heart rate (HR) compared to baseline (A) and increased heart rate above 100 beats per minute (bpm) with
a high cardiac sympathetic index of 100 beats (CSI100) (B) triggered detections.

1468 F. Fürbass et al. / Clinical Neurophysiology 128 (2017) 1466–1472



and a minimum increase of 30% compared to baseline as well as a
CSI100 value above 5 defined a seizure event.

The logical OR combination of the three detection modalities
was used for evaluation of the overall system performance. Detec-
tion results can be obtained in real time with less than 10% CPU
usage of a standard PC; or equivalently a 24 h EEG recording needs
approximately 2 h of calculation time. The algorithmwill be part of
the encevis EEG software package (www.encevis.com).

3. Results

3.1. Detection performance

Assessment of overall detection performance in 92 patients
including 494 epileptic seizures resulted in 86% sensitivity (SE)
and an average of 16.5 false detections per 24 h (FD/24 h). Evalua-
tion of TLE patients including 284 epileptic seizures resulted in 94%
SE and 12.8 FD/24 h, XTLE patients (n = 37) including 210 seizures
showed a sensitivity of 74% and 22.2 FD/24 h. Evaluation according
to seizure types involved a maximum of 3 epileptic seizures per
patient (see Section 2.2). The focal seizure (FS) group included 64
patients with 139 seizures and resulted in 89% SE and 16.4
FD/24 h. On the other hand, evaluation of 35 patients with 50 focal
seizures evolving to bilateral tonic-clonic seizures (BTCS) resulted
in 100% SE and 14.1 FD/24 h.

ECG based seizure detection resulted in low sensitivities (TLE:
40%, XTLE: 8%, FS: 27%, BTCS: 43%). EMG based seizure detection
reached high sensitivity for BTCS (93%) but low sensitivities for
other patients and seizure types (TLE: 25%, XTLE: 35%, FS: 8%).
EEG based seizure detection showed high sensitivities in general
(TLE: 91%, XTLE: 74%, FS: 88%, BTCS: 97%).

Electrode set reduction using a 8 electrode forehead montage
including frontal and temporal as well as ECG electrodes (FP1, F7,
T7, FP2, F8, T8, FZ, ECG) resulted only in statistically non-
significant lower detection sensitivity (p > 0.05) for XTLE (�6%
SE), FS (�5% SE), and BTCS (�3% SE). Significant reduction by
�5% was found when all patients and seizures were used (group
ALL) with p = 0.02 and for TLE (�6% SE) with p = 0.01.

Reduction to 7 electrode posterior montage including tempo-
ral and occipital as well as ECG electrodes (T7, P7, O1, T8, P8, O2,
ECG) showed even lower detection sensitivity which was non-
significant (p > 0.05) only for patients with BTCS (�6% SE), whereas
ALL (�12% SE), TLE (�10% SE), XTLE (�15% SE), and FS (�11% SE)
showed a significant reduction (p < 0.05).

Table 1 summarizes the results separate for different detection
modalities (EEG, ECG, EMG), combination of modalities (EEG
+ EMG, COMB defined as EEG + ECG + EMG) based on data of five
different evaluation groups (ALL, TLE, XTLE, FS, BTCS). Detection
performance using the full 10–20 electrode set including 21 EEG
and 1 ECG electrode (22 electrode montage) as well as the 8 elec-
trode forehead montage and the 7 electrode posterior montage are
shown.

Fig. 2 visualizes detection performance by receiver operating
characteristic plots (ROC) for full 22 electrode and the 8 electrode
forehead montage. The 95% confidence intervals for sensitivity val-
ues are shown using vertical error bars of the COMB detector. Com-
paring COMB performance to EEG + EMG combination shows the
added value of an ECG based detection system.

3.2. Detection delays

Time delay of seizure detections are of minor importance to our
proposed semi-automatic seizure documentation approach but
will be in focus of ambulatory seizure alarming devices. In this sec-
tion we elaborate on detection delays to get more insights into this
closely related and important topic. Comparing time delays of
automatically calculated detections to visually selected seizure
markers indicated a correlation of average delays with detection
modalities. Fig. 3 shows boxplots of detection delays in seconds
of all detected seizures based on the full 22 electrode montage.
ECG based detections had a median delay of only 19 s (min = �22 s,
max = 75 s) followed by EEG based detections (median = 26 s,
min = �10 s, max = 165 s), and surface EMG based detections
(median = 45 s, min = 6 s, max = 141 s). Negative delays indicate
detection of seizures prior to visual identification on scalp-EEG or
video, and were found in 16 seizures (ECG = 12, EEG = 4, EMG =
0 seizures). In this work the detection horizon prior to visual

Table 1
Detection performance of our automatic seizure detection algorithm based on data of a 22 electrode montage and two reduced electrode montages (rows). Average sensitivity in
percent (SE (%)) and false detections per 24 h (FD/24 h) are shown for five different evaluation groups (columns). Group ALL includes all patients, TLE and XTLE patients with
respective epilepsy types, FS (focal seizure) and BTCS (focal seizures evolving to bilateral tonic-clonic) patients with respective seizure types. Number of patients (n) and number
of seizures (nSz) are shown for each evaluation group. Combined detector (COMB) performance was defined as the combination of EEG, ECG, and surface EMG based detections.

Automatic seizure detection performance

ALL
n = 92 nSz = 494

TLE
n = 55 nSz = 284

XTLE
n = 37 nSz = 210

FS
n = 64 nSz = 139

BTCS
n = 35 nSz = 50

SE (%) FD/24 h SE (%) FD/24 h SE (%) FD/24 h SE (%) FD/24 h SE (%) FD/24 h

22 electrode montage
EEG 84 15.6 91 11.9 74 21.2 88 15.5 97 13.3
ECG 27 0.6 40 0.6 8 0.6 27 0.7 43 0.4
EMG 29 0.4 25 0.3 35 0.6 8 0.4 93 0.5
EEG + EMG 84 16.0 92 12.2 74 21.7 88 15.9 100 13.8
EEG + ECG + EMG (COMB) 86 16.5 94 12.8 74 22.2 89 16.4 100 14.1

8 electrode forehead montage
EEG 79 11.5 87 8.5 67 16 82 11 97 11.2
ECG 27 0.6 40 0.6 8 0.6 27 0.7 43 0.4
EMG 34 1.6 29 1.3 41 2.1 17 1.4 96 2.4
EEG + EMG 81 12.1 90 9.1 67 16.6 84 11.6 97 11.5
EEG + ECG + EMG (COMB) 81 13.5 90 10.3 68 18.3 84 12.8 97 13.7

7 electrode posterior montage
EEG 68 4.2 76 3.4 55 5.4 72 4.0 94 3.8
ECG 27 1.2 40 0.6 8 0.6 27 0.7 43 0.4
EMG 28 1.2 23 1.2 35 1.5 8 1.1 93 1.7
EEG + EMG 69 5.4 77 4.5 58 6.9 73 5.1 94 5.4
EEG + ECG + EMG (COMB) 74 6.0 84 5.1 59 7.4 78 5.7 94 5.8
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Fig. 2. Detection performance by means of sensitivity and false detections per 24 h (FD/24 h) shown in ROC plots. The left upper corner of each plot defines the theoretical
optimum point with 100% sensitivity and no false detections. Results for our seizure algorithm based on different modalities (EEG, EMG, ECG) and their logical OR
combination (COMB) are shown. Data of the 22 electrode montage (boxes) and the 8 electrode forehead montage (crosses) is shown. Both montages include the same ECG
data wherefore ECG based detection performance results in the same values (box overlaid with cross labelled ECG). Vertical error bars on the COMB values indicate the 95%
confidence intervals of sensitivities. All focal seizures evolving to bilateral tonic-clonic (BTCS) are detected with the 22 electrode montage and 97% of BTCS using a reduced
forehead montage. The ECG based detector stays below 43% sensitivity in all evaluation groups with false alarm rates below 0.7 FD/24 h.
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Fig. 3. Box plots represent time delay of seizure detections for different modalities compared to seizure markers set by clinicians. Whiskers of each box plot include the
minimum and maximum value.
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identification on scalp-EEG or video was limited to 30 s because of
the definition of the seizure epoch (see Section 2.2).

Fig. 3 shows that some detections triggered by the ECG or EEG
signal even occurred before clinical onset (whiskers include the
minimum and maximum value). Median delays of ECG (19 s),
EEG (26 s), and EMG (45 s) detections show that ictal ECG features
appear earlier in time compared to EEG based features (although
less frequent, see Fig. 2), and that surface EMG has the largest med-
ian delay.

4. Discussion

Automatic seizure documentation for outpatients has to proof
high sensitivity and needs post-hoc manual evaluation for reliable
seizure identification. Low false detection rates are mandatory to
reduce workload of manual evaluation procedure. We present a
multimodal seizure detection algorithm working in real time that
is able to detect epileptic seizures with high sensitivity using
EEG, EMG, and ECG signals.

Our results show very high detection sensitivity of 94% for TLE
and overall detection sensitivity of 86% using the 22 electrode
montage (21 EEG electrodes plus one ECG). Furthermore, the algo-
rithm was able to detect all focal seizures evolving to bilateral
tonic-clonic (n = 50). Therefore, our automatic seizure detection
system potentially increases sensitivity of seizure documentation
compared to manual procedures in all patient and seizure groups.

Reduced electrode montages for automatic seizure documenta-
tion assures patient compliance in long-term outpatient settings. E.
g. omitting posterior electrodes will increase sleep comfort and
therefore positively influences EEG quality of nocturnal events.
Furthermore, setup time of ambulatory EEG is a major cost factor
besides data evaluation which is reduced by a factor of three when
using 7 EEG electrodes only. We found lower sensitivities com-
pared to the full 10–20 electrode montage (forehead �5% SE, pos-
terior �12% SE). Based on our results we conclude that the 8
electrode forehead montage is most beneficial for this application.
Similar montages showed high sensitivities for emergency and
prehospital care application (Jakab et al., 2014). Also our previous
work using EEG from intensive care unit patients showed promis-
ing results of automatic pattern detection based on forehead EEG
montages (Herta et al., 2017).

False detection rates of reduced electrode montages dropped
down only by �3 FD/24 h for forehead but by �10 FD/24 h for pos-
terior montages showing a positive correlation between the num-
ber of electrodes and false detection rate that is more pronounced
for posterior electrodes.

Results therefore encourage the use of reduced electrode sets
based on frontal and temporal electrodes for long-term seizure
documentation. Even XTLE patients showing the lowest sensitivity
in our study (68% SE), true seizures counts can be significantly
improved as compared to manual seizure counting sensitivity of
50% (Blachut et al., 2015).

Reduction of EEG electrodes will negatively influence visual
inspection and seizure validation. It is important to limit electrode
reduction to maintain interpretability of the EEG. We therefore
avoid electrode reduction below 6 EEG electrodes or sole use of
non-EEG signals which would not allow seizure validation at all.

We found significantly lower sensitivities for XTLE patients as
compared to TLE patients which can be explained by differences
in ictal EEG patterns. Visual analysis of false negatives in XTLE
showed that these seizures include low amplitude beta, gamma
activity, or high amplitude muscle artefacts but only marginal
rhythmic activity. The high rate of interictal abnormal EEG activity
in these patients is the reason for the high false detection rate of 22
FD/24 h in this evaluation group.

In our study absolute values of ECG based seizure detections
were low (TLE: 40%, XTLE: 8%, FS: 27%, BTCS: 43%). These results
are in good agreement with previous publications (Eggleston
et al., 2014). Discrepancies as compared to other studies
(Leutmezer et al., 2003) can be explained by differences in the def-
inition of ictal tachycardia (Eggleston et al., 2014).

Added value of ECG based seizure detection is marginal when
full 10–20 EEG is available. Data shows that sensitivity increases
by only a few percent or not at all when adding ECG based detec-
tions to 21 electrode EEG based detections (TLE: +2%, XTLE: 0%, FS:
+1%, SGTC: 0%). Similar results were found for detections based on
8 electrode forehead montage. ECG based detections gain impor-
tance only for the less sensitive 7 electrode posterior montage
(ALL: +5%, TLE: +7%, XTLE: +1%, FS: +5%, GTCS: 0%). This shows that
low sensitive EEG setups can partly recover sensitivity by using
other signal modalities like ECG.

EMG signals were extracted from EEG data via a bandpass filter.
An important point of this work was to reduce effort of the electro-
physiological setup. Furthermore, dedicated EMG signals were not
available in the data of this work. Detection sensitivity for focal sei-
zures evolving to bilateral tonic-clonic solely using derived EMG
signals was very high (93%) and an additional surface EMG sensor
is therefore avoidable. A further advantage of EEG electrode based
EMG detection is that recorded EEG data can be used to validate
the EMG based seizure alarms which is impossible with accelerom-
eter data alone.

Accelerometer sensors are able to detect clonic or tonic-clonic
seizures with high sensitivity. Detection performance of 66% sensi-
tivity and 1.1 false detections per night was reached (Van de Vel
et al., 2016). Combination of accelerometer data and electrodermal
activity (EDA) reached 89% sensitivity and 93% specificity on data
of 8 patients (Heldberg et al., 2015). In this work EMG based sei-
zure detections reached 93% for SGTC and showed a shorter detec-
tion delay than accelerometer based detectors.

Comparing detection performance of the presented multimodal
seizure detection algorithm to the online seizure detection method
EpiScan (Fürbass et al., 2015a) shows that a higher sensitivity for
TLE (94–83%) and XTLE patients (74–64%) but also a higher false
detection rate (TLE 12.8–6.7, XTLE: 22.2–7.3 FD/24 h) can be
reached. On the other hand comparing results of our study to
results of a study published by Hopfengärtner et al. (2014) shows
higher sensitivity for TLE (94–89%) but lower sensitivity for XTLE
(74–77%). False alarm rate reported in (Hopfengärtner et al.,
2014) is lower compared to results of our study (12.8–4.5
FD/24 h). The higher sensitivity of the multimodal seizure detec-
tion algorithm and low CPU calculation time fit the use case of
semi-automatic seizure documentation. In turn, the very low false
alarm rate of EpiScan and similar algorithms is well suited for trig-
gering acoustic alarms for patient surveillance.

In this work we presented an automatic seizure detection algo-
rithm and results of retrospective data analysis. We are fully aware
that a complete seizure documentation infrastructure has to
include wearable electrode systems for monitoring, storing
detected seizure periods, and IT infrastructure as well as software
for transmitting and reviewing stored seizure data for final
validation.

5. Conclusion

We presented an automatic multimodal seizure detection algo-
rithm for long-term seizure documentation. Evaluation of detec-
tion performance on 92 long-term EEG/ECG/EMG recordings from
two epilepsy monitoring units including 11,978 h of data and
494 seizures resulted in high detection sensitivity. The effect of dif-
ferent signal modalities on detection performance and detection

F. Fürbass et al. / Clinical Neurophysiology 128 (2017) 1466–1472 1471



delay was analyzed in detail. The effect of reduced electrode mon-
tages on detection performance showed the superiority of frontal
and temporal EEG electrodes for automatic seizure detection. The
work showed that improved long-term seizure documentation is
possible using automatic seizure detection algorithms based on
only 8 frontal and temporal as well as one ECG electrode. We con-
clude that using semi-automatic seizure documentation will
improve seizure documentation in general and justifies the addi-
tional electrophysiological effort.
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h i g h l i g h t s

� Proposal and guidance on how a computer algorithm may be used by ICU staff as a cEEG bedside
monitor.

� High interrater agreement among nurses for EEG patterns that may indicate subclinical seizures.
� Large amount of prospectively recorded, randomized long-term video EEG data from two neuro ICUs.

a b s t r a c t

Objective: To assess whether ICU caregivers can correctly read and interpret continuous EEG (cEEG) data
displayed with the computer algorithm NeuroTrend (NT) with the main attention on seizure detection
and determination of sedation depth.
Methods: 120 screenshots of NT (480 h of cEEG) were rated by 18 briefly trained nurses and biomedical
analysts. Multirater agreements (MRA) as well as interrater agreements (IRA) compared to an expert
opinion (EXO) were calculated for items such as pattern type, pattern location, interruption of recording,
seizure suspicion, consistency of frequency, seizure tendency and level of sedation.
Results: MRA as well as IRA were almost perfect (80–100%) for interruption of recording, spike-and-
waves, rhythmic delta activity and burst suppression. A substantial agreement (60–80%) was found for
electrographic seizure patterns, periodic discharges and seizure suspicion. Except for pattern localization
(70.83–92.26%), items requiring a precondition and especially those who needed interpretation like con-
sistency of frequency (47.47–79.15%) or level of sedation (41.10%) showed lower agreements.
Conclusions: The present study demonstrates that NT might be a useful bedside monitor in cases of sub-
clinical seizures. Determination of correct sedation depth by ICU caregivers requires a more detailed
training.
Significance: Computer algorithms may reduce the workload of cEEG analysis in ICU patients.
� 2017 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights

reserved.

1. Introduction

Continuous electroencephalography (cEEG) is used in the inten-
sive care unit (ICU) to detect subclinical seizures and to monitor
sedation depth in cases of refractory seizures or elevated intracra-
nial pressure (Eisenberg et al., 1988; Friedman et al., 2009; Sutter
et al., 2013). Previous studies showed that subclinical seizures
occur more often than anticipated in the ICU (Kaplan, 1999) and
frequently develop at an early stage of acute brain injury
(Claassen et al., 2004). Since mortality increases exponentially with
seizure duration in critical care patients, proper application and
instant interpretation of cEEG is crucial in this setting (Young

http://dx.doi.org/10.1016/j.clinph.2017.04.002
1388-2457/� 2017 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

Abbreviations: AC1, Gwet’s multirater agreement coefficient of first-order; AIT,
Austrian Institute of Technology; aEEG, amplitude integrated electroencephalogra-
phy; BMA, biomedical analyst; BS, burst suppression; CCET, American Clinical
Neurophysiology Society’s Standardized Critical Care EEG Terminology; cEEG,
continuous electroencephalography; ESP, electrographic seizure pattern; EXO,
expert opinion; FIRDA, frontal intermittent rhythmic delta activity; GCS, Glasgow
coma scale; ICU, intensive care unit; IRA, interrater agreement; MRA, multirater
agreement; NT, NeuroTrend; PD, periodic discharge; qEEG, quantitative electroen-
cephalography; RAA, rhythmic activity in the alpha range, ‘‘rhythmic alpha
activity”; RDA, rhythmic delta activity; RDA+S, rhythmic delta activity plus
seizures; RTA, rhythmic activity in the alpha range, ‘‘rhythmic theta activity”;
SIRPIDs, stimulus-induced rhythmic, periodic, or ictal discharges; SW, spike wave.
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et al., 1996; Vespa et al., 1999). Its use has been associated with a
favorable outcome in the critically ill (Ney et al., 2013). But cEEG
monitoring is not available in the majority of hospitals as it
requires a lot of resources.

To minimize the diagnostic effort of visually screening hours of
cEEG the Austrian Institute of Technology (AIT) has developed a
computer algorithm called NeuroTrend (NT) with a strong ability
to visualize rhythmic and periodic patterns in a time compressed
fashion (Fürbass et al., 2015, 2016). A possible field of application
lies in the use of NT as a bedside monitor. However, in contrast
to other ICU monitors, an automatic alarm system for seizures
would be ineffective, as false alarms would be too frequent in an
environment that contains a plurality of possible EEG artefacts.
In addition, NT data needs interpretation as it also displays trend
data of patterns that are not clearly ictal. Therefore, trained nurses,
taking care of the same patient over several hours would be best
suited to use and interpret the computer results.

The present study investigated whether briefly trained ICU
caregivers can read and interpret NT cEEG data correctly. To test
this hypothesis, 15 ICU nurses and 3 biomedical analysts (BMA)
not familiar with EEG, had to evaluate NT cEEG data from
patients with acute brain injury. The evaluations were then com-
pared between the respondents as well as with an expert opinion
(EXO) and tested for their consistency. The main parameters
tested for consistency were: (1) Identification of seizures occur-
rence and seizure progression (2) Assessment of the sedation
depth.

2. Methods

2.1. Dataset

A dataset of 83 prospectively recorded continuous video-EEGs
(6733 h, mean 73 h) from a neurological (Neurological Center
Rosenhuegel) and a neurosurgical ICU (General Hospital Vienna)
was used. All recordings were obtained from patients older than
18 years with a median age of 58.5 years. EEGs were recorded
using a Micromed EEG system (SystemPLUS Evolution 1.04.95,
Micromed S.p.A., Veneto, Italy) with a sampling rate of 256 Hz,
placing 21 electrodes according to the international 10–20 system.
Only video-EEGs with a duration of more than 24 h and a suffi-
cient EEG signal quality over the whole recording period were
used in this study. Patients were selected using the NeuroTrend
(NT) Analysis Database. This database was established in 2011
with its main focus of investigating rhythmic and periodic EEG
patterns of ‘ictal-interictal uncertainty’ as well as subclinical sei-
zures and status epilepticus (Koren et al., 2015). All cEEGs regis-
tered in the database were reviewed by board certified
neurophysiologists and screened for electrographic seizure pat-
terns (ESP), spike wave (SW), rhythmic delta activity (RDA), peri-
odic discharges (PD), burst suppression (BS) patterns and patterns
mimicking artefacts as described elsewhere (Herta et al., 2015).
EEG changes in frequency, prevalence, localization and morphol-
ogy were reevaluated every 24 h according to the guidelines of
the American Clinical Neurophysiology Society’s Standardized
Critical Care EEG Terminology (CCET) (Hirsch et al., 2013). Addi-
tional information included treatment protocols, patient charac-
teristics, certain neurologic scores and follow up data (Glasgow
Outcome Score after six month). From this database 20 patients
were randomly selected with a predefined split into the following
six groups: PD (n = 3), ESP (n = 3), SW (n = 3), RDA (n = 3), BS
(n = 3) and none of the above-mentioned patterns (n = 5). If a
patient showed more than one pattern type he or she could be
randomized into multiple groups but overall could not be selected
more than once.

2.2. NeuroTrend

Included cEEGs were analyzed by the computer algorithm NT.
This algorithm detects and visualizes rhythmic and periodic EEG
patterns with a strong emphasis on data and time compression
as well as artefact rejection (Hartmann et al., 2014; Fürbass
et al., 2015, 2016). A color code displays the following patterns:
periodic discharges (PD), rhythmic delta activity (RDA), rhythmic
delta activity plus superimposed sharp waves or spikes (RDA + S),
rhythmic activity in the theta range (RTA), rhythmic activity in
the alpha range (RAA) and spike wave (SW). Pattern localization,
pattern frequencies, frequency bands (beta, alpha, theta and delta
range) and amplitude integrated EEG (aEEG) are calculated and
displayed on a graphical user interface. The definition of rhythmic
and periodic EEG patterns follows the guidelines of the CCET add-
ing unequivocal electrographic seizures including generalized
spike-wave discharges at 3 Hz or faster, evolving discharges that
reach frequencies of more than 4 Hz as well as BS patterns
(Hirsch et al., 2013). A validation of NT was recently published
elsewhere (Herta et al., 2015). NT is part of the encevis software
package. Version V1.3 of encevis was used in this study (http://
www.encevis.com).

2.3. NT training and data preparation

Nurses and BMAs (in the following referred to as ‘‘respondents”)
from a neurosurgical ICU were asked to volunteer for the study. A
total of 18 respondents, including 3 BMAs and 15 nurses, then
compiled a questionnaire where they were asked about work expe-
rience, experience with EEG, computer skills, experience in playing
computer games and presence or absence of color blindness. All
personal data were anonymized for further analysis. All respon-
dents underwent a brief educational course of approximately one
hour. Features of NTs graphical user interface and the study design
were explained. Samples of cEEG and NT data were presented. The
presentation files as well as a short rating manual were handed out
to the respondents (available as Supplementary material).

Shortly thereafter each respondent was asked to rate the pres-
elected NT data. The rating manual could be used during the eval-
uation process. During the assessment, the time needed to evaluate
the NT data of 20 patients was measured. NT data were presented
to the respondents by an editable Microsoft

�
PowerPoint slideshow

(Fig. 1). A brief patient history was given, including information
about admission diagnosis, operative procedures undertaken and
their time course, seizures prior to EEG, anesthetics and antiepilep-
tic drugs administered, clinical features that may indicate subclin-
ical seizures (Husain et al., 2003) and Glasgow Coma Scale (GCS) at
cEEG start. Subsequently, results of NT analysis were presented in a
mask that allowed simultaneous ratings of each slide. Slides dis-
played 6 consecutive NT screenshots for each patient with a length
of 4-h each, giving in total 120 screenshots or 480 h of cEEG.

2.4. NeuroTrend review scheme

Rating possibilities were grouped into 4 categories and could be
selected by check boxes. In category one the patterns recognized
by NT (PD, RDA, RDA + S, RTA, RAA, SW) had to be identified
(Fig. 1a). The selection of multiple patterns for each 4-h segment
was possible. For each pattern the principal location had to be
defined. If the pattern was not clearly localized to the left or right
hemisphere, generalized had to be selected. Furthermore, for each
pattern the consistency of frequency had to be indicated (Fig. 1b). A
consistent frequency was assumed if the frequency remained the
same or increased/decreased continuously over a longer recording
period of at least 30 min.

J. Herta et al. / Clinical Neurophysiology 128 (2017) 1000–1007 1001



In the second category respondents had to check if they sus-
pected a seizure (Fig. 1c). Seizures were defined by presence of
SW, RTA and/or RAA. More equivocal patterns like PD, RDA and
RDA + S had to be rated as possible seizures if these patterns
occurred continuously over a long-time period with a consistent
frequency. This definition was established in order not to oversee
the third non-convulsive seizure criterion introduced by Chong
et al. which includes sequential rhythmic, periodic, or quasi-
periodic waves at 1/sec with an unequivocal evolution in fre-
quency, morphology or location (Chong and Hirsch, 2005). If sei-
zures were present the tendency (unchanged, improvement,
deterioration) between the current and the consecutive slide of a
patient had to be specified (Fig. 1d). Improvement was defined
by absence of seizures or a decline in seizure frequency. Deteriora-
tion was defined by occurrence of new seizures or increase of sei-
zure frequency.

BS patterns could be selected in category three (Fig. 1e). In case
of BS it had to be specified if anesthesia depth was adequate. Anes-
thesia depth was defined as adequate if: (1) the BS pattern
occurred with a nearly simultaneous change in the anesthetic reg-
imen after seizures were treated. (2) If the BS pattern were present
while the patient suffered from elevated ICP. Administered anes-
thetics were displayed under the timeline of the NeuroTrend inter-
face. Elevated ICP was mentioned in the patient history.

Finally, in category four, respondents had to choose if an inter-
ruption of the recording had occurred, best seen in an abrupt dis-
continuation of the aEEG (Fig. 1f).

The same editable slideshow was evaluated by a board-certified
neurophysiologist who was familiar with NT. Not only NT results
but also the raw EEG and chart reviews were accessible to the neu-
rophysiologist during the rating process to establish an ‘‘expert
opinion” (EXO).

For further analysis, the NT detections of type RDA and RDA + S
were merged into RDA and RTA and RAA into ESP. There was no
reason to differentiate these patterns for the present study.

2.5. Statistical evaluation

For statistical evaluation, an interrater agreement (IRA) was cal-
culated. Seven independent, as well as twenty dependent items,
were assessed by the IRA. Independent items included occurrence
of specific patterns (SW, PD, RDA, ESP, BS), seizure suspicion and
interruption of recording. Dependent items included seizure ten-
dency, pattern localization and adequacy of BS. The terms ‘‘depen-
dent items” and ‘‘independent items” refer to the fact that
dependent items serve to further describe and sub-classify inde-
pendent items. For example, if we choose a specific pattern like
‘‘SW” as the independent item, it can be further sub-classified by
the dependent item ‘‘pattern localization” into ‘‘lateralized” or
‘‘generalized”.

To categorize the IRA, ranges of agreement have been defined as
0.01–0.20 for a slight agreement, 0.20–0.40 for a fair agreement,
0.40–0.60 for a moderate agreement, 0.60–0.80 for a substantial
agreement and 0.80–1.00 for a perfect agreement (Blood and
Spratt, 2007). To quantify the rating agreement of the respondents
Gwet’s multirater agreement coefficient of first-order (MRA AC1)
was used (Gwet, 2014). The same method was used to measure
the rating agreement in each category between the respondents
with the EXO (IRA AC1). All IRA AC1 were then averaged over the
respondents to allow further comparisons that consider the whole
study population. The same approach was used for dependent
items if the precondition (independent item) of the respondent
met the precondition of the EXO. Because of a given EXO, sensitiv-
ity and specificity of all rating items were calculated for every

Fig. 1. Example of a rating slide. The slide is divided into two parts. On the right side a 4-h sample of NeuroTrend (NT) with additional information concerning anesthetics and
antiepileptic drugs is presented to the respondent. On the left side a rating matrix which is divided into four categories was implemented (white boxes). The information sign
at the left bottom gives the respondent a short summary about the medical record of the patient. In this case a comatose patient suffered from subclinical seizures due to a
large left parietal metastasis of a lung carcinoma. EEG was used during the weaning process after resection of the metastasis. Even after resection the NT screenshot displays
left sided periodic discharges (PD) (a) with a stable frequency (b) which was interpreted as ongoing seizure activity (c). Because of an increase in pattern occurrence (PD) the
tendency was rated as ‘‘seizure deterioration” (d). No burst suppression (BS) occurred during the recording period (e). EEG was continuously recorded as there is no
discontinuity in the aEEG (f).
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respondent. The respondents’ answer was counted as a true posi-
tive or a true negative if there was an agreement with the EXO. Fur-
thermore, for each respondent individual performance scores were
calculated. The individual performance score was composed by the
averaged IRA between a respondent and the EXO of all indepen-
dent items excluding the item ‘‘disruption of recording”. Only inde-
pendent items were used for this analysis because the number of
ratings was equal for all respondents. The individual performance
score was used to determine differences and correlations in the
rating behavior of the respondents. Sex, profession, preexisting
experience with EEG and computer gaming experience were eval-
uated by an independent two-sided t-test. Computer skills were
assessed by a one-way analysis of variance. Pearson correlation
coefficient was used for age and work experience (in years). Signif-
icance levels of 0.05 were applied for all statistical tests.

The two non-binary items ‘‘seizure tendency” and ‘‘pattern
localization” were displayed using confusion matrices. For each
item the percentage of agreement (true positive and true negative
ratings to all ratings) for every available category was presented as
a heat map and compared with the EXO ratings.

Statistical calculations were performed by using MATLAB (The
MathWorks, Natick, MA, U.S.A.) and its Statistics toolbox as well
as IBM SPSS Statistics V23.

2.6. Ethics approval and consent

The study protocol was approved by the institutional ethics
commission. Informed consent was given by all nurses and BMAs
that volunteered for the study. Patients included in the NT data-
base were mainly not able to give consent during EEG recordings.
Therefore, the ethics commission requested that all patients that
were not able to give consent and their relatives receive a written
patient information and/or were informed about the study and the
possibility to withdraw their personal data in the future.

3. Results

The mean time for the evaluation of the 120 screenshots was
1 h and 22 min. In Table 1 the IRA of dependent as well as indepen-
dent items is shown. We observed the following multirater agree-
ment coefficients (MRA AC1) for independent items: interruption
of recording (92.72%), spike wave (91.74%, SW), rhythmic delta
activity (85.53%, RDA) and burst suppression (80.39%, BS) showed
perfect agreements, while electrographic seizure patterns

(69.91%, ESP), periodic discharge (66.82%, PD) and seizure suspi-
cion (60.9%) showed substantial agreements. All independent
items also were compared to the ‘‘expert opinion” (EXO) by averag-
ing the interrater agreement (IRA) of the respondents. As expected,
slightly higher IRAs could be achieved with a perfect agreement for
interruption of recording (93.97%), SW (92.03%), RDA (90.25%) and
BS (85.63%). Again, a substantial agreement was observed for ESP
(77.96%), PD (74.93) and seizure suspicion (67.45%). Fig. 2 illus-
trates the differences between the multirater agreement (MRA)
and the averaged IRA of the respondents compared to the EXO.
We observed that independent items with a high MRA like SW or
interruption of recordings do not differ as much from the EXO as
items with a lower MRA like seizure suspicion. Similar effects were
obtained in the receiver operating characteristic of all independent
items (Fig. 3A). Seizure suspicion (79.10%), ESP (88.69%) and PD
(87.98%) achieved lower specificities under 90% in comparison
with SW (95.33%), BS (92.44%); RDA (93.88%) and interruption of
seizures (99.04). Except PD (79.25%) all items obtain sensitivities
over 80% with RDA (93.18%) and BS (92.82%) exceeding sensitivi-
ties of 90%.

In general, dependent items showed lower agreements as inde-
pendent items with a perfect agreement for the localization of ESP
(92.26%) and substantial agreements for the localization of PD
(75.68%), the localization of SW (71.81%), the localization of RDA
(70.83%) and seizure tendency (61.40%) (Table 1). Assessment of
frequency consistency was highly dependent on the evaluated pat-
tern type and showed agreements between 47.47% and 79.15%. The
question whether the level of sedation was adequate in the pres-
ence of BS patterns achieved only a barely moderate agreement
(41.10%). Dependent items with more than two choices are dis-
played as confusion matrices in Fig. 4. We obtained an acceptable
result with a diagonal line of agreement for seizure tendency
(Fig. 4B). All patterns were analyzed for pattern localization
(Fig. 4A). We observed that generalized patterns were distin-
guished clearly from lateralized patterns but in many cases respon-
dents could not assign the correct side for lateralized patterns.

Fig. 5 gives a detailed overview of all assessed items. Agree-
ments of every single respondent compared to the EXO are dis-
played as a heat map. For every respondent, the individual
performance score is displayed next to the respondent rank.
Accordingly, Fig. 3B depicts how sensitive and specific the respon-
dents’ ratings were.

The respondent characteristics including sex, age, profession,
gaming experience, EEG experience, work experience or computer

Table 1
Interrater and multirater agreement for tested items.

Item Dependent item Choices Multirater agreement, AC1 (%) Averaged IRA to EXO, AC1 (%)

Periodic discharge Yes, no 66.82 74.93
Localization L,G,R 75.68
Consistency of frequency Yes, no 47.47

Rhythmic delta activity Yes, no 85.53 90.25
Localization L,G,R 70.38
Consistency of frequency Yes, no 79.15

Spike wave Yes, no 91.74 92.03
Localization L,G,R 71.81
Consistency of frequency Yes, no 64.53

Electrographic seizure pattern Yes, no 69.91 77.96
Localization L,G,R 92.26
Consistency of frequency Yes, no 79.63

Burst suppression Yes, no 80.39 85.63
Level of sedation Adequate, inadequate 41.10

Seizures suspicion Yes, no 60.90 67.45
Seizure tendency T+, T=, T� 61.40

Interruption of recording Yes, no 92.72 93.97

AC1, agreement coefficient of first order; EXO, expert opinion; IRA, interrater agreement; L, left; R, right; G, generalized; NA, not available; T+, improvement; T=, unchanged;
T�, deterioration.
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skills had no significant influence on the individual performance
score of each respondent. A detailed overview of characteristics,
statistical tests used and results is given in Table 2. No respondent
suffered from color blindness.

4. Discussion

The applicability of NeuroTrend (NT) as a continuous EEG
(cEEG) bedside monitor was evaluated by multirater agreement
(MRA) and interrater agreement (IRA). Perfect agreement was
found for spike waves (SW), rhythmic delta activity (RDA) and
burst suppression (BS) while electrographic seizure patterns
(ESP), periodic discharges (PD) and seizure suspicion achieved sub-
stantial agreement among the respondents. Similar agreements
were found when we compared the choices of the respondents
with the expert opinion (EXO). Furthermore, sensitivity and speci-
ficity for all independent items showed results over 80% with two
exceptions: sensitivity for PD with 79.25% and the specificity for
seizure suspicion with 79.10%. These high agreements, high sensi-

tivities and high specificities achieved for independent items indi-
cate that with NT, briefly trained ICU personal can identify the
occurrence of rhythmic and periodic EEG patterns that may indi-
cate seizures. Also, over or under dosage of sedative drugs may
be identified adequately.

NT displays trend data and not every short-lasting detection
should be interpreted as an event. This provides an opportunity
for interpretation and raises the question why some patterns
showed higher agreements than others. SW and RDA had the high-
est agreements because they were mostly present over longer time
periods and were therefore easy to detect, if displayed by the algo-
rithm. The same is true for BS patterns where in some cases inter-
pretation was facilitated if large amounts of anesthetic drugs were
administered at the same time the pattern occurred. One possible
source of error could have been that anesthetic drugs given at short
notice for nursing care caused short periods of BS. Respondents
knew only about the continuous application of intravenous anes-
thetics and were blinded to these short applications. This might
have caused disagreement during the rating process. PD were the
most difficult to evaluate pattern. PD occurred frequently with lots

Fig. 2. Percentage of agreement (% agreement) on independent items. The multirater agreement coefficient of first order (MRA AC1; black bars) gives the agreement between
the respondents. The interrater agreement coefficient of first order (IRA AC1; white bars) presents the averaged agreement between the respondents and the expert opinion.
BS, burst suppression; PD, periodic discharge; RDA, rhythmic delta activity; ESP, electrographic seizure pattern; SW, spike wave.

Fig. 3. Receiver operating characteristic. (A) shows the mean sensitivity and mean specificity for seven independent items calculated from the answers of 18 respondents. (B)
illustrates the sensitivity and specificity for seizures of every respondent (R). To calculate sensitivity and specificity answers of the respondents were compared to the expert
opinion. BS, burst suppression; PD, periodic discharge; RDA, rhythmic delta activity; ESP, electrographic seizure pattern; SW, spike wave; IR, interruption of recording; SZ,
seizure suspicion; R, respondent.
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of short-lasting detections. Only PD with a consistency in fre-
quency over a period of 30 min should selected. This created a
great scope for interpretation for example f single patterns
appeared successively over longer periods of time. ESP on the con-
trary are patterns that are very rarely displayed incorrectly by NT.
The difficulty is that these patterns, if present, mostly occurred in

short periods of time and were therefore difficult to distinguish
from misdetections resulting in an agreement of 77.96%.

Obviously, items that needed interpretation like seizure suspi-
cion, seizure tendency, consistency of frequency and level of seda-
tion showed lower MRAs/IRAs than items that had to be selected
by mere presence, no matter if items were dependent or indepen-

Fig. 4. Color coded confusion matrices for dependent items with more than two choices. Choices are shown on the vertical and horizontal axes while heat map intensities
indicate the percentage of respondents choosing an available option. Only annotations were used if the required dependent item was previously chosen correctly. A dark red
diagonal line from upper left to lower right would indicate a perfect result. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 5. The heatmap shows detailed individual scores of agreement coded by color according to the color bar on the right. For each respondent seven independent items (bold)
and twenty dependent items (italic) have been tested. Scores for each item are calculated as percentage of answers in agreement between the respondents and the expert
opinion. Additionally, on the left the individual performance score (IPS) of each respondent is displayed which takes all independent items except interruption of seizures into
account. BS, burst suppression; PD, periodic discharge; RDA, rhythmic delta activity; ESP, electrographic seizure pattern; SW, spike wave; G, generalized; L, lateralized to the
left; R, lateralized to the right. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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dent. Here we want to emphasize that only a brief presentation of
the study protocol was chosen to train the respondents. This
approach was not only chosen to recruit as many respondents as
possible but also in order to test the feasibility and usability of
our newly designed NT review scheme for nurses. We are con-
vinced that better agreements are achievable with longer and
repetitive trainings, especially for items that demand interpreta-
tion. Moreover, it has to be emphasized that the less well recog-
nized dependent item ‘‘consistency of frequency” might have had
a negative influence on the ratings of seizure suspicion and seizure
tendency for patterns like PDs and RDA as they needed a consistent
frequency to classify for seizures.

The strengths of our study are (1) the large amount of prospec-
tively collected continuous EEG data, (2) a large number of respon-
dents who rated the NT results and (3) a study design that is
implementable in everyday clinical life. Implementation is not only
possible from a technical point of view but also because we pre-
sented an applicable NT review scheme for ICU staff members.
On the one hand, most of the nurses and biomedical analysts
(BMA) at our hospital work in 12-h shifts, making it easy and fea-
sible to check the NT monitor every 4 h. On the other hand, a 4-h
period is easily readable on the NT screen and small EEG changes
are still detectable. The mean time it took the respondents to eval-
uate the 120 slides was 1 h and 22 min. Therefore, a brief screening
of a 4-h segment is not time consuming and can be completed in
less than one minute.

The short time period in which respondents had to learn and
understand the assessment process may be an advantage in terms
of simulating ‘real life’ conditions but also limits our conclusions
concerning items that needed more interpretation and instruc-
tions. For example, the independent item BS showed a perfect
MRA and IRAs. In contrast the corresponding and therefore depen-
dent item ‘level of sedation’ had an IRA of only 41.10%. In our study
protocol an adequate level of sedation was defined by the occur-
rence of BS patterns at the time a patient suffered from ongoing
seizures or showed an elevated ICP. The low level of agreement
in this case reflects the insecurities concerning certain definitions
that had not been sufficiently internalized by the respondents.

Automatic seizure detection is still rarely used in the ICU
because of the many false alarms. NeuroTrend therefore tries to
present the complex EEG in simplified form. When it comes to
abnormalities, trained staff will alert the specialist. Ideally, a learn-
ing process should be initiated and the rate of false alarms should
be reduced. This has yet to be verified in future studies. Our expe-
rience has shown that increased awareness increases the number
of detected seizures in the ICU. Whether this results in over treat-

ment is still to be evaluated and currently discussed by experts
(Jordan and Hirsch, 2006; Ferguson et al., 2013).

Artefacts were neglected in the study because they were (1)
either detected by the algorithm and removed, or (2) of such a
short duration that they did not meet the seizure criteria of the
study. Likewise, patterns such as frontal intermittent rhythmic
delta activity (FIRDA) and stimulus-induced rhythmic, periodic,
or ictal discharges (SIRPIDs), which are frequently encountered in
the ICU, have not been dealt with in detail, since it is always nec-
essary to carry out a careful medical examination in case of seizure
suspicion. Thus, an initial alert by the nursing staff, even if it is a
false alarm, is welcome if these patterns occur.

Because we wanted to simplify the rating process, next to the
pattern types SW, RDA, PD and BS we implemented the term
ESP where we summarized fast, rhythmic and unequivocal seizure
patterns in the alpha and theta range (labeled ‘‘rhythmic theta
activity; RTA” and ‘‘rhythmic alpha activity; RAA” in NT) according
to CCET and non-convulsive seizure criteria (Chong and Hirsch,
2005; Hirsch et al., 2013). These patterns are highly suspicious
for the presence of subclinical or non-convulsive status epilepticus
in neurological critical care patients, because normal alpha activi-
ties nearly never occur in this highly selective patient cohort. Fur-
thermore, pathological alpha and theta patterns like alpha and
theta coma would be misinterpreted by the algorithm but at least
recognized by the responsible physician (Westmoreland et al.,
1975; Synek and Synek, 1984). Therefore, and to simplify matters
for the respondents involved we defined the NT labels ‘‘rhythmic
theta activity” (RTA) and ‘‘rhythmic alpha activity” (RAA) as clear
seizure patterns aware of a possible error. Another weakness of
the study is that only one neurophysiologist formed the EXO.
However, this shortcoming must be put into relation, since the
study is about the recognition and interpretation of displayed pat-
terns and not about the assessment of the computer algorithm
itself.

Overall, we believe patients may benefit from the use of com-
puter algorithms like NT as a bedside monitor. We showed that
most ICU staff members can easily read and interpret the NT
results after a brief training with no restrictions concerning their
age, their computer skills or their work experience. Ultimately, this
may lead to an increased use of continuous EEG at ICUs as well as
to an increased awareness of frequently occurring subclinical sei-
zures and non-convulsive status epilepticus. In many ICUs cEEG
is not applied because of the enormous amount of data and the
resulting effort of tedious interpretation. NT can facilitate and fas-
ten the evaluation process and with the help of trained ICU person-
nel cEEG may lose its arduous character and develop into an easy

Table 2
Influences of respondent characteristics on the individual performance score.

Respondent characteristics (n = 18) Number of /mean Statistical test P value (a = 0.05)

Sex Male: 5 Independent t-test of unequal variance ns (0.141)
Female: 13

Age (in years) �x = 35.44 Pearson’s correlation coefficient (0.033) ns (0.909)
Profession Nurse:15 Independent t-test of unequal variance ns (0.514)

BMA: 3
Gaming experience Available: 10 Independent t-test of unequal variance ns (0.828)

Not available: 8
EEG experience Available: 3 Independent t-test of unequal variance ns (0.514)

Not available: 15
Work experience (in years) �x = 8.83 Pearson’s correlation coefficient (�0.006) ns (0.958)
Computer skills Very good: 2 One way ANOVA ns (0.623)

Good: 10
Satisfactory: 6
Sufficient: 0
Not sufficient: 0

ANOVA, analysis of variance; BMA, biomedical analyst; ns, not significant.
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applicable, non-invasive tool to detect seizures and monitor seda-
tion depth.

5. Conclusion

In the present study, the applicability of a computer algorithm
called NeuroTrend (NT) as a bedside monitor for ICU patients
who undergo long-term EEG monitoring was assessed. In this
specific scenario, NT results were assessed by briefly trained nurses
(n = 15) and biomedical analysts (n = 3). Occurrence of patterns
that could indicate seizures as well as evaluation of sedation depth
were of particular interest. Detection of seizure patterns showed
perfect to substantial agreement in the multirater (MRA) as well
as the interrater agreement (IRA). While burst suppression (BS)
patterns were clearly identified among the respondents the inter-
pretation of an adequate sedation could only reach moderate
agreement. We therefore assume that NT is perfectly suited as a
bedside neuro-monitor used by various ICU staff members if an
adequate amount of time is invested in staff trainings.
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Background: NeuroTrend is a computational method that analyzes long-term scalp EEGs in the ICU according to
ACNS standardized critical care EEG terminology (CCET) including electrographic seizures. At present, it attempts
to become a screening aid for continuous EEG (cEEG) recordings in the ICU to facilitate the review process and
optimize resources.
Methods: A prospective multicenter study was performed in two neurological ICUs including 68 patients who
were subjected to video-cEEG. Two reviewers independently annotated the first minute of each hour in the
cEEG according to CCET. These segments were also screened for faster patterns with frequencies higher than
4 Hz. The matching annotations (2911 segments) were then used as gold standard condition to test sensitivity
and specificity of the rhythmic and periodic pattern detection of NeuroTrend.
Results: Interrater agreement showed substantial agreement for localization (main term 1) and pattern type (main
term 2) of the CCET. The overall detection sensitivity of NeuroTrend was 94% with high detection rates for periodic
discharges (PD = 80%) and rhythmic delta activity (RDA = 82%). Overall specificity was moderate (67%) mainly
because of false positive detections of RDA in cases of general slowing. In contrast, a detection specificity of 88%
for PDs was reached. Localization revealed only a slight agreement between reviewers and NeuroTrend.
Conclusions:NeuroTrendmight be a suitable screening tool for cEEG in the ICUandhas thepotential to raise efficiency
of long-term EEG monitoring in the ICU. At this stage, pattern localization and differentiation between RDA and
general slowing need improvement.

This article is part of a Special Issue entitled “Status Epilepticus”.
© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The increased use of continuous EEG (cEEG) in the intensive care
unit (ICU) for patients with critical illness has been propagated lately

by many authors [1–7]. This is due to the fact that nonconvulsive sei-
zures (NCSs) and nonconvulsive status epilepticus (NCSE) occur more
often than previously anticipated [8]. Sutter et al. revealed that, after
implementing cEEG into clinical practice, the rate of NCS diagnosis in-
creased significantly compared with previous diagnostics. This might
be not only due to higher observer awareness and greater availability
of EEG but also due to longer observation periods [1]. Incident rates di-
verge a lot, as the studied patient populations are seldom homogeneous
and inclusion criteria for cEEG vary between studies. i.e., 19% of the
patients had NCSs in a study from Claassen [5] compared with 34%
found in a study of Jordan [9]. Patients who suffered from convulsive
status epilepticus often convert to NCSE after their convulsions
have stopped [10]. Also, patients with altered state of consciousness
and clinical features like subtle motor activity and abnormal eye
movements may suffer from NCE or NCSE [11]. Privitera could demon-
strate that in 198 patients with altered state of consciousness, 37%
had NCSs [12]. In comatose patients, there is nearly no evidence of
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seizure activity without EEG. Towne showed that in 236 coma
patients with unclear genesis, 8% had NCSE [13]. Therefore, cEEG
still remains the gold standard for reliable diagnosis of NCSs and
NCSE. Whether NCSE is a predictor for bad outcome in patients
with critical illness is difficult to assess because treatment effects,
causative medical disorder, and complications are difficult to sepa-
rate. Until now, seizure duration and delayed diagnosis of NCSs and
NCSE are the only two independent parameters known to increase
morbidity and mortality [14].

Recently, the use of cEEG in patients with critical illness has been re-
ported to be associated with a favorable outcome [15]. Continuous anal-
ysis of cEEG by a trained expert reviewing segments of 10 s each is
virtually impossible but would enable early and adapted treatment for
the patient. Quantitative EEG (QEEG) addressed this important problem
by evaluating the EEG in real time and by showing amplitude, power,
frequency, and rhythmicity in compressed time scales [16]. The down-
side of QEEG techniques is the oversimplified approach to extract
EEG information. This leads to a predisposition to false positive errors,
and seizure activity can be missed in the shadow of high-amplitude
artifacts [17].

For a long time period, many authors tried to define and classify
NCSs and NCSE including or excluding EEG patterns frequently seen in
patients with critical illness such as periodic discharges and fluctuating
rhythmic patterns [5,11,14,18–21]. In 2013, the American Clinical
Neurophysiology Society (ACNS) developed a standardized critical
care EEG terminology (CCET) to facilitate communication between
researchers [19].

Based on the CCET, the computational encephalography research
group of the Austrian Institute of Technology (AIT) developed an auto-
mated detection and trending method called NeuroTrend (NT) with
the aim to assist and facilitate the review process of cEEG [22]. In
this work, we evaluate the performance of NT in terms of sensitivity,
specificity, and interrater agreement.

2. Methods

NeuroTrend (NT) is a computational method that automatically
detects rhythmic and periodic patterns in surface EEG and visualizes
the results graphically. The definition of rhythmic and periodic patterns
follows the guidelines of the American Clinical Neurophysiology Society
Terminology [19]. Additionally, rhythmic patterns ofmore than 4Hz are
detected to cover the whole spectrum of electrographic seizure pat-
terns. The aim of this work is to evaluate the sensitivity and specificity
of detected patterns compared with manual-annotated EEG segments.
The technical methodology used in the rhythmic and periodic pattern
detection was described recently by Fürbass [22]. In this work,
NeuroTrend version 1.1 was used for the calculation of all detections
(NeuroTrend V1.1, www.eeg-vienna.com).

2.1. Data acquisition and patient selection

We prospectively recorded long-term video-EEGs (n = 68) using
the international 10–20 electrode system with a sampling rate of
256Hz. The recordingwas done at the neurological ICU of theNeurolog-
ical Center Rosenhuegel (NCR) and the neurosurgical ICU of the General
Hospital Vienna (GHV) using a Micromed EEG recording system
(SystemPLUS Evolution 1.04.95) betweenMarch1, 2013 and September
1, 2014. Only cEEGs with a recording period longer than 20 h were in-
cluded. At least nineteen of twenty-one cup electrodes (including refer-
ence and ground electrode) had to be functional over the whole
recording period. Gold cup electrodes (Genuine Grass Gold Disc elec-
trodes) aswell as conductive plastic cup electrodes (Ives EEG Solutions)
were used for recordings. Gold cup electrodes were used preferentially.
Plastic cup electrodes were used in cases where CT scans had to be car-
ried out regularly.

The treating physician conducted patient selection according to the
following criteria:

a) Remote eye movement abnormalities or subtle myoclonus
b) Short time period since patient's admission and neurologic injury
c) Low Glasgow Coma Scale (GCS).

The criteria applied were expected to filter out as many cases of
NCSs/NCSE as possible according to Husain et al. [11] and Claassen
et al. [5]. Patients younger than 18 years and patients with a high risk
of infection (e.g., because of expanded wounds) were excluded from
the study.

2.2. Validation strategy

In a first step, two clinical neurophysiologists from the recording
centers NCR and GHV were asked to annotate the first minute of each
hour in the video-EEG recording of their own center. The reviewers
who were naïve to these video-EEGs had to screen for mechanical ven-
tilation artifacts, electrocardiogram artifacts, and rhythmic movements.
Electroencephalography pieces including these artifacts were labeled
accordingly. Video and sound data were then separated from the EEG,
and the EEGs were anonymized. The anonymized EEGs from both
sites were then merged, resulting in a dataset of 68 long-term EEG
recordings.

In a second step, both evaluators were asked to annotate rhythmic
and periodic patterns in the one-minute annotation segments of all 68
EEGs from both centers. The definition of these patterns followed the
main term 2 definition (MT2) in the CCET guidelines [19]. The MT2 def-
inition was extended to include rhythmic pattern of more than 4 Hz.
Both reviewers were firm with the recent version of CCET and had
used ACNS training slides several times. The reviewers could use the
EEG viewer without any restriction in relation to montage or filters.
Several nonoverlapping annotations were allowed. Each annotation
may have an arbitrary start and an end position but has to be fully in-
cluded in the annotation minute. For each annotation, the reviewer
was allowed to choose between one of the following pattern types:
periodic discharges (PDs), rhythmic delta activity (RDA), rhythmic
theta activity (RTA), rhythmic alpha activity (RAA), and rhythmic
spike-and-wave activity (SW). If the reviewer did not insert any an-
notation in the one-minute interval, it was counted as no pattern
(NOPAT).

In addition to the pattern type, a localization property had to be de-
fined. This property was defined according to the CCET [19] as main
term 1 (MT1): generalized (G), lateralized (L), multifocal (MF), and bi-
lateral independent (BI).

The annotations from the two reviewers were then used as gold
standard condition to test the sensitivity and specificity of the rhythmic
and periodic pattern detection of NT. Evaluation scriptswere used to au-
tomatically read the reviewer annotations and to calculate the detection
performance numbers. Artifact annotations from the first annotation
step were only assessed if no other markers were placed in the annota-
tion segment.

2.3. Statistical methods

The detection performance was defined by assigning one of four
possible test conditions to each annotation minute: true positive (TP),
false positive (FP), true negative (TN), and false negative (FN). A pattern
was counted as TP if one of the detected patterns in the annotationmin-
ute matched the gold standard annotation. A gold standard annotation
was defined as an agreement between both reviewers. If no agreement
between the two reviewers was met, the annotation interval was ex-
cluded from the calculation. A gold standard annotation without a
matching detection in the annotationminute was counted as FN. An an-
notation segment with one or several detections that do not match the
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Fig. 1. Explanation of validation strategy: a) shows 16 s of raw EEGwith left-sided rhythmic theta activity (RTA). The same EEG at the same time point is represented as a vertical red line in
theNeuroTrend data illustration underneath. b) Demonstrates the usage of NeuroTrend as it displays 4 h (variable adjustment of time) of cEEG color-coded on one page. A clear repetition
of RTA (orange bars, color code is displayed at the right side) occurring nearly every 15min can be seen in the left hemisphere. AEEG also shows the 15-minute intervals but not the type of
the pattern. c) One minute was extended out to illustrate the assessment process. The whole 1-minute interval shows detections of RTA (orange) and RDA + S (violet) when used for
sensitivity and specificity calculation respectively. When divided into 20-second segments, segments 1, 2, and 3 show RTA, but only segment 3 includes RDA detection. For calculation
of Cohen's kappa (κ) values, the pattern type and localization with the highest percentage of time coverage are used. The 1-minute segment, therefore, counts as lateralized RTA (*).
The 20-second segments are counted twice as lateralized RTA and once as frontal RDA.
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gold standard annotation was counted as FP. An annotation segment
without gold standard annotation (NOPAT) and without any detection
was counted as TN. Sensitivity (SE) and specificity (SP) were calculated
according to the following formulas:

SE %½ � ¼ TP
TPþ FN

� 100

SP %½ � ¼ TN
TNþ FP

� 100:

To verify the interrater agreement between both reviewers, kappa
(κ) values were calculated for each annotation interval. The same ap-
proach was used for the comparison between reviewers and NT for
the categorical parameters MT1 and MT2. Both κ-statistics were calcu-
lated in two passes. First, the standard annotation interval of 60 s was
used. Second, the same segment was divided into three shorter seg-
ments of 20 s, each offering a more detailed analysis. In each annotated
segment, the annotationwith the longest duration timewas used to cal-
culate κ-statistics. The rationale behind having two different evaluation
intervals lies in NT's intentional usage as trending software and is dem-
onstrated in Fig. 1.Whilewe hypothesize that the 20-second time inter-
val gives us a statement about the actual hit rate, the 60-second time
interval should reflect the progression of EEG patterns and their trend.

The following qualitative classifications are used to categorize κ values
into different ranges: poor agreement: ≤0; slight agreement: 0.01–0.20;
fair agreement: 0.20–0.40; moderate agreement: 0.40–0.60; substantial
agreement: 0.60–0.80; and almost perfect agreement: 0.80–1.00 [23].

3. Results

3.1. Patient characteristics

In the study period, 80 patients were monitored with continuous
video-EEG. Five patientswere excluded from the study because of insuf-
ficient data quality, long time periods with detached electrodes, or less
than 17 electrodes at the beginning of recording. Another 7 patients
were excluded because of a recording duration of less than 20 h. The
mean age was 58 (±16.5) years with a female to male ratio of 35:33.
Plastic cup electrodes were used in 27 cases, while the majority of pa-
tients (n = 41) were monitored with gold cup electrodes. Continuous
Electroencephalography (cEEG) of 4813 h were recorded in total with

a median length of 48 h. This led to 2911 segments of 1 min each avail-
able for evaluation purposes.

3.2. Interrater agreement

Interrater agreement of main term 1 (MT1) as well as main term 2
(MT2) according to standardized critical care EEG terminology (CCET) as
well as electrographic seizures was performed between the two
reviewers [19]. Main term 1 showed a substantial agreement in both
short (20-second) and long (60-second) annotation intervals. The same
Cohen's kappa (κ) values could be found for MT2 and are presented in
Table 1. A good agreement between reviewerswas crucial to enable further
validation between reviewers and automated pattern detection. Looking at
eachMT2pattern separately, rhythmic delta activity (RDA)was the pattern
with the highest disagreement between reviewers and deteriorated further
in the more detailed 20-second analysis (Fig. 2). Rhythmic alpha activity
(RAA), spike-and-wave activity (SW), and rhythmic theta activity (RTA)
showed a good agreement but occurred in very low numbers.

3.3. Validation of main term 2 (MT2)

Sensitivity and specificity of NeuroTrend (NT) for MT2 patterns are
shown in Fig. 3. While sensitivity for the detection of any MT2 pattern is
high (0.94), specificity is low(0.67) for 60-second annotationswith a pos-
itive predictive value of 0.2 and a negative predictive value of 0.99. In the
shorter 20-second time interval, sensitivity declines to 0.84, while speci-
ficity rises to 0.78. The same can be seen for periodic discharges (PDs)
and RDA. Sensitivity declines from 0.8 to 0.59 for PD and 0.82 to 0.71 for
RDA if compared between the 60-second annotation interval and the
shorter 20-second annotation interval. Specificity inversely rises
from 0.88 to 0.93 for PD and from 0.72 to 0.83 for RDA. Rhythmic
theta activity and rhythmic spike-and-wave activity showed high
specificity and sensitivity, while RTA was detected with a high spec-
ificity solely. Because of the low number of RTA, SW, and RAA in our
study, no serious conclusions can be drawn for these patterns.

κ-Statistic showed similar results in regard to the agreement be-
tween NT and the reviewer gold standard (Table 2). Included segments
in which no patterns were found (NOPAT) κ-statistic revealed a fair
agreement between NT and the gold standard with a decline of agree-
ment from 0.38 for 60-second annotations to 0.24 for 20-second anno-
tations. This decline cannot be reproduced if no patterns (NOPATs) are

Table 1
Interrater agreement of main term 2 according to standardized critical care EEG terminology including electrographic seizures between two independent reviewers. The results of the lon-
ger sixty-second evaluation intervals are shown as opposed to the shorter twenty-second intervals. Overall, there is substantial agreement between the two reviewers regardless of the
chosen evaluation interval. It is evident that rhythmic slowing of the EEG is often difficult to differentiate from RDA. Numbers of RAA and RTA are too low tomake a reasonable statement.
NOPAT= no pattern, PD = periodic discharge, RAA= rhythmic alpha activity, RDA= rhythmic delta activity, RTA = rhythmic theta activity, SW= rhythmic spike-and-wave activity.

60 sec. 20 sec. 60 sec. 20 sec. 60 sec. 20 sec. 60 sec. 20 sec. 60 sec. 20 sec. 60 sec. 20 sec.

NOPA 1489 7149 38 168 0 3 24 57 1 3 0 2

PD 21 105 242 393 0 0 4 9 1 2 0 0

RAA 0 0 0 0 2 3 0 0 1 2 0 0

RDA 43 103 6 5 0 0 74 109 0 0 1 2

RTA 0 1 2 2 0 0 1 2 5 10 0 0

SW 2 4 0 0 1 2 0 0 1 0 8 13

0.79 0.67

Re
ve

w
er

 1

Cohens 
Kappa: 

Reviewer 2

NOPA PD RAA RDA RTA SW
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excluded from the calculation. This is mainly due to the fact that NT
often detected RDA falsely when NOPATwas assigned. This observation
was getting worse if a higher time resolution was used for calculation.

3.4. Validation of main term 1 (MT1)

While MT1 showed a substantial agreement (0.79) between re-
viewers, κ between reviewers and NT is poor (0.16) if NOPATs are not
included in the statistic.

3.5. Artifacts

Artifacts in cEEG play a major role in the ICU and can disturb auto-
matic pattern detection heavily. NeuroTrend, therefore, uses an artifact
rejection module called “PureEEG” which has been described recently
[24]. During the review process, cEEGs were reviewed for artifacts in
the annotation segments with the help of video and sound recordings.

Artifacts weremarked but not excluded in NT analysis. During evaluation
of these segments, it could be seen that NT was relatively stable for arti-
facts with 664 (60.3%) detections as NOPAT out of 1102 artifact markers
resulting in 438 (39.7%) falsely labeled segments. In terms of pattern,
mainly NT's RDA detection was triggered by artifacts and reached 295
(67.3%) false detections. False detection rate of an artifact as a rhythmic
or periodic pattern was 108 (24.7%) for PD, 32 (7.3%) for RTA, and 3
(0.7%) for SW. Artifacts were never detected falsely as RAA.

4. Discussion

In this article, we assessed and validated the rhythmic and periodic
pattern detection performance of an automated computer algorithm
called NeuroTrend (NT) [22]. The aim of NT is the quick visualization
of several hours of cEEG recordings based on ACNS standardized critical
care EEG terminology (CCET) including rhythmic patterns with fre-
quencies higher than 4 Hz [19].

While conventional QEEG displays compressed raw EEG in terms of
technical measurements, NT transcribes automatic detections into neu-
rophysiological established wording [24]. Another big difference be-
tween QEEG and NT consists in the prior usage of artifact rejection.
Therefore, QEEG may facilitate the review process of larger cEEG
files but comprises the risk of false interpretation due to processed arti-
facts. Both methods have got a strong data compression property.
NeuroTrend allows the graphical representation of large cEEG files, giv-
ing the reviewer the possibility to screen several hours to days of cEEG
on a few pages. It is important to stress that NT's focus lies in displaying
trend data. It should depict changes in EEG over longer time periods and
not exact values at a certain time point. That is why an unconventional
approach to assess correct pattern analysis has been chosen. While
most studies assess monitoring devices by interrater agreement at
preselected time points, we tried to approach real cEEG testing condi-
tions by using unselected time intervals [25,26]. Furthermore, final cal-
culations of agreement were automated to minimize confounders. A
time interval of 1min every hourwas randomly chosen regardless of re-
cording quality, presence or absence of artifact, and EEG pattern. To en-
able the evaluation of correct EEG pattern detection during this minute,
we separately analyzed a segment of 60-second as well as three 20-
second fragments. It might seem that the detection of shorter segments

Fig. 2. The number of interrater agreements (Rev1 = Rev2) as well as disagreements
(Rev1, Rev2) is shown for rhythmic delta activity (RDA) and periodic discharges (PDs)
separately for 20- and 60-second annotation intervals. PDs show a substantial agreement
with an even rise in agreements and disagreements in both annotation intervals. Agree-
ment for RDA on the contrary deteriorates with more detailed analysis.
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Fig. 3. Detection performance of NeuroTrend. NeuroTrend has a high sensitivity compared with the gold standard of two reviewers (60 s) for PD, RDA, and ANY patterns. Therefore, it is
suitable as a screening tool. Specificity for PD is high,while specificity for RDAand, therefore, also for ANY ismoderate. The shorter 20-secondannotation interval showedus a shift towards
a higher specificity at the cost of a lower sensitivity. For the patterns SW, RTA, and RAA, not enough data were collected to be significant. PD= periodic discharge, RAA= rhythmic alpha
activity, RDA = rhythmic delta activity, RTA = rhythmic theta activity, SW= rhythmic spike-and-wave activity, ANY = all patterns previously mentioned together.
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is more precise to predict the hit rate and, therefore, sensitivity and
specificity. However, in contrast to spike detection and other alarm de-
vices, the detection of a single measurement by the algorithm is not its
primary purpose. Similar to a human EEG reviewer who has the ability
to focus on relevant EEG changes, NT should display the progression of
predominant ongoing patterns. That is why our primary study outcome
wasmeasured by the longest pattern available during 60 s as presented
in Fig. 1.

Because the validation process should be as close to real screening
conditions as possible, all cEEG data were recorded prospectively, no
cEEG file was used for preceding algorithm development, and artifacts
were not removed.

Interrater agreement between both reviewers showed a substantial
agreement (0.6–0.8) in MT1 andMT2. A good agreement was essentially
required to establish a gold standard condition againstwhich NT could be
tested. Ourfindings of a high interrater agreement correspond toprevious
interobserver studies that tested the 2012 version of the ACNS nomencla-
ture [27,28].

Because EEG segments were not preselected, the marker NOPAT for
EEG segments without rhythmic or periodic pattern was introduced.

The assessment of NT showed that itmight be a useful screening tool
for cEEG. On the one hand, NT revealed a high overall sensitivity (0.94)
for MT2 patterns and a low rate of false negative detections. On the
other hand, overall specificity (0.67) was low with only one true hit
out of five detections. It should not be overlooked that sensitivity de-
clines and specificity rises when the shorter 20-second interval is used
for evaluation. Specificity for PD is good (0.88) while specificity for
any pattern and RDA is moderate. Table 2 illustrates nicely the large
number of false positive RDA detections in segments where the re-
viewers assigned NOPAT. Likewise to moderate results in specificity
for RDA in our study and poor raw percentage of positive agreement
for RDA (57%), a recent study showed that RDA is often difficult to dis-
tinguish from general slowing [29].

Evaluation ofMT1 revealed thatNThas a tendency to detect patterns
as lateralized. Patternswith anterior - posterior lag and hemispheric dif-
ferences are the cause of this behavior.

Electroencephalography is prone to artifacts, and many forms of ar-
tifacts in cEEG at the ICU have been described [30]. Like already outlined
above NT can distinguish itself from other screening tools by an artifact
rejection property called “PureEEG” [24]. Artifacts can falsely trigger
pattern detections of NT in 39.7% of all prior labeled artifacts. Especially
RDAwas triggered by artifacts, which lead to a high false positive detec-
tion of RDA.

Limitations of the study can be seen in a small number of patients
and the unequal distribution of patterns. These issues had to be con-
doned to enable a prospective study. Furthermore, it could be argued
that including only segments where solely two reviewers gave an
agreement may exclude potential difficult patterns from evaluation.
Once again, it has to be stressed that interrater agreement for CCET
has been proven high in our as well as in previous studies [27,28].

5. Conclusion

NeuroTrend might become a suitable screening tool for cEEG and
has the potential to raise the efficiency of long-term EEG monitoring
in the ICU. As it still offers the possibility to switch between trend data
and raw EEG, it does not interfere the review process and can be used
complementary to raw EEG, which remains gold standard for EEG inter-
pretation. At this stage, pattern localization and differentiation between
RDA and general slowing need further improvement.
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Table 2
Kappa statistic ofmain term2 according to standardized critical care EEG terminology including electrographic seizures between reviewers (gold standard) andNeuroTrend. The results of
the longer sixty-second evaluation intervals are shown as opposed to the shorter twenty-second intervals. Overall, there is a fair agreement with a considerable drawback in the shorter
evaluation interval. This is due to the increased number of false positive detections, especially for RDA. Excluding NOPAT and considering only intervals where reviewers and NeuroTrend
found a pattern highlight this finding. No difference can be found in Cohen's kappa between the sixty-second evaluation and the twenty-second evaluation anymore. NOPAT=nopattern,
PD = periodic discharge, RAA = rhythmic alpha activity, RDA = rhythmic delta activity, RTA = rhythmic theta activity, SW= rhythmic spike-and-wave activity.

60 sec. 20 sec. 60 sec. 20 sec. 60 sec. 20 sec. 60 sec. 20 sec. 60 sec. 20 sec. 60 sec. 20 sec.

NOPA 1052 5607 130 438 0 10 300 999 7 77 0 18

PD 18 73 155 216 0 0 58 85 0 0 12 21

RAA 0 0 0 0 0 1 0 0 3 3 0 0

RDA 3 15 17 19 0 0 58 74 2 1 0 0

RTA 0 0 5 6 0 0 2 6 1 2 0 0

SW 0 0 2 4 0 0 2 4 0 0 4 5

0.38 0.24

0.38 0.36
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h i g h l i g h t s

� First study that systematically evaluates the effect of automated electrode reduction on pattern
detection.

� Effect of electrode reduction on pattern detection sensitivity was evaluated by a computer algorithm.
� Guidance which reduced EEG array may offer the highest detection results in specific situations.

a b s t r a c t

Objective: To investigate the effect of systematic electrode reduction from a common 10-20 EEG system
on pattern detection sensitivity (SEN).
Methods: Two reviewers rated 17130 one-minute segments of 83 prospectively recorded cEEGs accord-
ing to the ACNS standardized critical care EEG terminology (CCET), including burst suppression patterns
(BS) and unequivocal electrographic seizures. Consensus annotations between reviewers were used as a
gold standard to determine pattern detection SEN and specificity (SPE) of a computational algorithm
(baseline, 19 electrodes). Electrodes were than reduced one by one in four different variations. SENs
and SPEs were calculated to determine the most beneficial assembly with respect to the number and
location of electrodes.
Results: High automated baseline SENs (84.99–93.39%) and SPEs (90.05–95.6%) were achieved for all pat-
terns. Best overall results in detecting BS and CCET patterns were found using the ‘‘hairline + vertex”
montage. While the ‘‘forehead + behind ear” montage showed an advantage in detecting ictal patterns,
reaching a 15% drop of SEN with 10 electrodes, all montages could detect BS sufficiently if at least nine
electrodes were available.
Conclusion: For the first time an automated approach was used to systematically evaluate the effect of
electrode reduction on pattern detection SEN in cEEG.
Significance: Prediction of the expected detection SEN of specific EEG patterns with reduced EEG
montages in ICU patients.
� 2017 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights

reserved.
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1. Introduction

Continuous EEG (cEEG) allows noninvasive monitoring of brain
function with a high temporal resolution. Especially in the inten-
sive care unit (ICU) it can add important information where con-
clusions from clinical examination may often be limited. For
many applications, such as the detection of nonconvulsive seizures
(NCS), the guidance of seizure treatment and the management of
pharmacological induced coma, cEEG is considered the primary
diagnostic tool (Jordan, 1999; Friedman et al., 2009). But even with
an increased awareness of seizures in the ICU and huge advance-
ments in computer technology, the use of EEG remains limited in
everyday clinical practice. This is mainly due to the significant
efforts associated with EEG. Besides the negligible costs of the
recording device, personnel resources represent the major limiting
factor. On the one hand, specially trained, 24-h available physi-
cians are needed to review several hours of EEG. On the other hand,
EEG technician must attach and maintain the electrode setup. In an
ICU setting a trained EEG technician needs about 30–45 min to
setup 19 cup electrodes. But collodion will dry out within the first
six hours and needs accurate maintenance (Young et al., 2006). To
increase availability and simplify the EEG setup, several studies
assessed the possibility to work with a reduced number of elec-
trodes (Bridgers and Ebersole, 1988; Foldvary et al., 2000; Tekgul
et al., 2005; Kolls and Husain, 2007; Shellhaas and Clancy, 2007;
Wusthoff et al., 2009; Young et al., 2009; Karakis et al., 2010;
Nitzschke et al., 2011; Rubin et al., 2014; Tanner et al., 2014;
Brenner et al., 2015; Lepola et al., 2015; Muraja-Murro et al., 2015).

A reduced electrode setup may have more potential benefits
than just time saving. It can come in handy for patients where
proper lead placement due to head wounds or drains is not possi-
ble. Furthermore, it may encourage physicians to use cEEG more
frequently and consolidate acceptance among nursing staff. Previ-
ous studies reported frequent delays in the diagnosis of NCS
(Dunne et al., 1987). Since mortality increases with seizure dura-
tion (Young et al., 1996) a reduced and easy applicable electrode
setup should facilitate prompt diagnosis of NCS and benefit critical
care patients.

Until now various approaches of electrode reduction have been
published, that can be roughly summarized into three groups.
Group-one tried to use a single-channel EEG (e.g. C3, C4). This
was mainly used in neonates where most of seizures originate
from the central midline (Schultz et al., 1992; Shellhaas and
Clancy, 2007; Wusthoff et al., 2009). Group-two tried to cover as
much of the scalp as possible, maintaining the 10–20 system based
locations of electrodes (e.g. F3, F4, T7, Cz, T8, O1, O2) (Foldvary
et al., 2000; Tekgul et al., 2005; Kolls and Husain, 2007; Karakis
et al., 2010; Rubin et al., 2014; Lepola et al., 2015). Group-three’s
main interest was to develop an electrode setup which was easy
to use and fast to apply in emergency cases (Bridgers and
Ebersole, 1988; Young et al., 2009; Brenner et al., 2015; Muraja-
Murro et al., 2015). In this setting it should be possible to place
electrodes, without the help of an EEG technician, under the hair-
line on the forehead and behind the ear (e.g. Fp2, Fp1, F8, F7, Sp1,
Sp2, T9, T10). Concerning seizure detection, nearly all major stud-
ies showed a tendency towards poor sensitivity (SEN). The com-
mon denominator of all these studies was to predefine a reduced
electrode setup and compare its seizure detection rates with that
of a standard 10–20 system.

In the present study, we reduced the electrodes of the Interna-
tional 10–20 EEG system systematically one by one, which to the
best of our knowledge has never been done before. A computa-
tional algorithm assessed each reduction step. Four different
variations of final electrode arrays, mainly derived from previously
published reduced EEG montages were evaluated. Detection

sensitivities (SEN) and specificities (SPE) for unequivocal electro-
graphic seizures (spike-wave > 3 Hz, evolving discharges > 4 Hz),
patterns defined by the ACNS Standardized Critical Care EEG Ter-
minology (CCET) and burst suppression patterns (BS) were calcu-
lated (Hirsch et al., 2013). The aim of the study was to observe
and illustrate the change in detection SEN and SPE for every
reduced electrode and pattern of interest, to allow an individual
assessment in cases where reduced setups are needed.

2. Methods

2.1. Dataset

A dataset of 92 prospectively recorded cEEGs in a neurological
and a neurosurgical ICU (Neurological Center Rosenhuegel, General
Hospital Vienna) was used. EEGs were recorded with a Micromed
EEG recording system (SystemPLUS Evolution 1.04.95, Micromed
S.p.A., Veneto, Italy) using the International 10–20 electrode sys-
tem with a sampling rate of 256 Hz. Inclusion criteria for this study
were 1) recordings longer than 24 h and 2) artefact-free recordings
from a full set of 19 electrodes for more than 90% of the overall
recording time. 7 EEGs were recorded with less than 19 electrodes.
Another 2 patients had a recording time under 24 h. This left 83
patients for the study (6733 h, mean individual recording duration
73 h). Two types of electrodes were used for recordings: gold cup
electrodes (Genuine Grass Gold Disc electrodes) and conductive
plastic cup electrodes (Ives EEG Solutions). Research was prior
approved by the institutional ethics committee.

2.2. NeuroTrend

NeuroTrend is a computational method that facilitates screen-
ing of long-term EEGs. It automatically detects rhythmic and peri-
odic patterns in surface EEG and displays their localization and
frequency in a graphical user interface. Results are visualized with
a focus on data and time compression. Therefore, hours of cEEG can
be compressed and displayed on a single screen. The definition of
rhythmic and periodic EEG patterns follows the guidelines of CCET
adding unequivocal electrographic seizures including generalized
spike-wave discharges at 3 Hz or faster as well as evolving dis-
charges that reach frequencies of more than 4 Hz and BS (Hirsch
et al., 2013). Fürbass et al. (Fürbass et al., 2015) described the tech-
nical background of the algorithm, while Herta et al. (Herta et al.,
2015) recently performed a validation of NeuroTrend. For this
study a newer version of the algorithm was used. Especially RDA,
which showed a high rate of false positive detections due to gen-
eral slowing in the past, improved in terms of detection SEN and
SPE as seen in Table 1. NeuroTrend is part of the encevis software
package, in this work version V1.3 of encevis was used (http://
www.encevis.com).

2.3. Data processing and statistical methods

The first minute of each hour of the raw cEEG recordings were
identified and reviewed by two clinical neurophysiologists. In
these segments the reviewers could assign one of four possible
labels (1) periodic discharge (PD), (2) rhythmic delta activity
(RDA), (3) ictal group (4) burst suppression patterns (BS). In each
one-minute EEG segment multiple annotations could be made if
they occurred consecutively. If no annotation was made the speci-
fic segment was labeled no pattern (NOPAT). Periodic and rhythmic
delta patterns were rated according to the CCET guidelines. The
ictal group included unequivocal electrographic seizures including
generalized spike-and-wave discharges at 3 Hz or faster as well as
evolving discharges that reach frequencies of more than 4 Hz.
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Because BS typically lasted for longer periods, the whole one-
minute segment was annotated either as a segment with or with-
out BS. All other patterns could only be present for a few seconds.
Therefore, annotations of these patterns were split into three non-
overlapping 20-s segments.

Cohen’s kappa statistic was used to calculate an interrater
agreement. All segments that showed agreement between the
two reviewers were considered as consensus annotations and used
for further analysis. 10–20 system based cEEGs with 19 electrodes
(excluding reference and ground electrode) were analyzed by the
computer algorithm NeuroTrend. Consensus annotations were
compared with the results of NeuroTrend. Detection performance
of NeuroTrend was assessed by assigning one of four possible
results to each annotation: True positive, false positive, true nega-
tive and false negative. A pattern was counted as true positive if
one of the patterns detected by NeuroTrend in the annotation seg-
ment matched the consensus annotations of the reviewers. A con-
sensus annotation without a matching NeuroTrend detection in the
annotation minute was counted as false negative. An annotation
segment with one or several NeuroTrend detections that did not
match the consensus annotations was counted as false positive.
An annotation segment without consensus annotation and without
any detected pattern by NeuroTrend was counted as true negative.
SEN and SPE were calculated according to the following formulas:

SEN ½%� ¼ True Positive
True Positiveþ False Negative � 100

SPE ½%� ¼ True Negative
True Negativeþ False Positive � 100

2.4. Electrode reduction

After having established an automated baseline for SEN and SPE
using all 19 leads according to the International 10-20 EEG system
(Fp1, F3, C3, P3, O1, Fp2, F4, C4, P4, O2, F7, T7, P7, F8, T8, P8, Fz, Cz,
Pz), electrodes were reduced in a stepwise fashion. SEN, SPE and
their confidence intervals were calculated separately for each elec-
trode eliminated from the setup. Four variations of electrode
reductions, depending on their local distribution, were used and
labeled ‘‘forehead + behind ear montage” (FOM), ‘‘hairline + vertex
montage” (HAM), ‘‘banana montage” (BAM) and ‘‘crown montage”
(CRM). 12 to 13 reduction steps were calculated leaving six or
seven electrodes for final calculations. Below, the steps of electrode

reduction are shown as superscript numbers. The final EEG mon-
tages are shown in bold (Fig. 1):

Forehead + behind ear montage (FOM, Fig. 1A):

O11-O22-P33-P44-Pz5-T76-T87-C38-C49-Cz10-F311-F412 - Fp1-
Fp2-F7-Fz-F8-P7-P813

Hairline + vertex montage (HAM, Fig. 1B):

P71-P82-F73-F84-P35-P46-F37-F48-Fz9-Pz10-C311-C412 - Fp1-
Fp2-T7-Cz-T8-O1-O213

Banana (= Longitudinal) montage (BAM, Fig. 1C):

Cz1-Pz2-Fz3-P74-P85-F76-F87-T78-T89-P310-P411-F312-F413 -
Fp1-Fp2-C3-C4-O1-O214

Crown (= Transversal) montage (CRM, Fig. 1D):

Cz1-O12-O23-Fp14-Fp25-C36-C47-T78-T89-P310-P411-F312-F413 -
F7-Fz-F8-P7-Pz-P814

The detection results based on the EEGs of each reduction step
were compared to the consensus annotations of the reviewers. SEN
and SPE were quantified and the number of electrodes for which
detection SEN dropped more than 15% (D15) was determined.

2.5. Validation of computational results

To validate the computational NeuroTrend results a single
reduced EEG dataset was annotated a second time by the two
reviewers. For reevaluation, we chose the montage that achieved
a D15 with the least number of electrodes for every evaluated pat-
tern. Furthermore, the number of electrodes was reduced to the
half (reduction step 10, 9 electrodes). For this reduced montage
50 EEG segments from each of the four pattern groups and 50
EEG segments without patterns were randomly selected resulting
in 250 EEG segments.

The same reviewers who established the primary consensus
annotations annotated the 250 segments again. They were blinded
to the distribution of patterns. The reduced montages were pre-
sented to the reviewers as short 20-s EEG segments. Switching
between longitudinal, transversal and referential montages was
allowed during the review process.

Table 1
Detection performance of NeuroTrend. Two reviewers rated multiple segments of cEEG. Interrater agreement between the
reviewers was calculated by Cohen’s kappa (j) statistics. Agreements were used as consensus annotations and compared to the
detection results of the computer algorithm ‘‘NeuroTrend”. Corresponding interrater agreement between the algorithm and the
reviewers as well as detection sensitivity and specificity of the algorithm are shown. As a baseline calculation, a standardized
10-20 EEG system with 19 electrodes was used.

BS, burst suppression; j, Cohens Kappa; PD, periodic discharges; RAA, rhythmic alpha activity; RDA, rhythmic delta activity;
RTA, rhythmic delta activity; SW, spike-wave.
aConfirmed electrographic seizure activity in theta or alpha range.
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The review results of the 250 EEG samples with the reduced 9
electrodes were compared to the primary consensus annotations
with the full electrode setup to determine if samples were anno-
tated equally. SEN of these annotations was calculated for each
reviewer to quantify the loss of SEN and agreement.

Then consensus annotations between the two reviewers based
on the reduced nine electrodes EEG samples were determined
and classified as correct or incorrect by using the primary consen-
sus annotations. The computational result was evaluated on the
same samples to define correct or incorrect detections. The number
of samples with correct annotations and incorrect computer result
are defined as c. The number of samples with incorrect annotations
and correct computer result are defined as b. To prove that no sta-
tistically significant difference between human and computational
annotations exist the McNemar test with the test statistic

v2 ¼ ðjb�cj�1Þ
2

bþc and a critical value of 3.841 for a ¼ 0:95 was used
on this paired nominal data.

3. Results

3.1. Detection performance of NeuroTrend

17,130 20-s annotations showed agreement between the two
reviewers and were considered as consensus annotations. In these
17,130 segments 1578 rhythmic and periodic EEG patterns were

found and compared with the detection results of the computer
algorithm. Baseline detection SENs and SPEs of NeuroTrend were
calculated with a full set of 19 electrodes. Table 1 illustrates the
consensus annotations found for different pattern groups as well
as the detection performance of NeuroTrend. For BS 5710 60-s
annotations showed agreement between the reviewers. 653 BS
were found and compared to the computer algorithm (Table 1).

3.2. Electrode reduction

For most pattern categories and reduction montages, a reduc-
tion of electrodes caused a continuous decline in SEN, while SPE
increased as illustrated in Fig. 2. Table 2 shows the number of elec-
trodes used for which a D15 occurred in different pattern types and
corresponding montages.

3.2.1. Periodic discharge (PD)
We detected a stable decrease in SEN for PD, no matter which

electrode reduction montage was used (Fig. 2B). PDs occurred with
58.52% disproportionately often considering the distribution of all
pattern groups. D15 was encountered in the HAM (SEN: 76.32%,
SPE: 92.61%) with 13 electrodes, which was the best result com-
pared to all other montages. A stable decline in SEN occurred until
the 9th electrode was removed (10 electrodes remaining), a rapid
decrease was observed thereafter. After the final reduction step,
very poor SENs were observed, ranging from 42.76% to 53.26%.

Fig. 1. Four different variations of electrode reductions from a common 10-20 EEG montage are shown. The different shades of gray (Reduction Step) numbers the succession
of lead reduction starting with ‘step 1’ in white. The final electrode array is shown striped and boldly encircled (‘step 13’ or ‘step 14’), labeling the different final montages. (A)
A ‘‘forehead + behind ear” EEG montage (FOM), also known as ‘‘subhairline” montage, is shown. Because it is quickly installed and easy to use, it is commonly used in the
emergency department. (B) The ‘‘hairline + vertex” montage (HAM) tries to cover the whole scalp but leads to double distances between electrodes in the final reduced
montage. (C, D) A longitudinal ‘‘banana” montage (BAM) as well as a transversal ‘‘crown” montage (CRM) is shown. They were thought to be advantageous in detecting
patterns with different local distributions.
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3.2.2. Ictal group (RTA, RAA, SW)
In the ictal group the overall best performing reduction mon-

tage was FOM with a D15 at 10 remaining electrodes (SEN:
76.82%, SPE: 98.38%). Further reduction of electrodes caused a
slight but not explainable detection increase in some montages
with final SENs between 64.24% and 72.85% (Fig. 2A).

3.2.3. Rhythmic delta activity (RDA)
RDA was the only group where different reduction montages

diverged strongly. HAM and BAM nearly showed no decrease of

SEN and even did not reach a D15 with the last reduction step.
With the final array, HAM showed the best detection SEN of
88.43% (SPE: 93.67%). On the contrary FOM reached a D15 with
10 remaining electrodes and CRM with 15, respectively. Low SENs
of 69.42% and 61.16% made these two montages unsuitable for the
detection of RDA with only 6 to 7 leads (Fig. 2C).

3.2.4. Burst suppression patterns (BS)
In all reduction montages BS showed a uniform decline after a

D15 with eight to nine electrodes remaining. The best montage

Fig. 2. Changes in detection sensitivity (left) and specificity (right) of NeuroTrend with a decreasing number of electrodes are illustrated for different pattern types and
different reduction montages. BAM, banana montage; CRM, crown montage; FOM, forehead + behind ear montage; HAM, headband + vertex montage; PD, periodic discharge;
RDA, rhythmic delta activity; Ictal group, spike-wave >3 Hz or evolving discharges >4 Hz; BS, burst suppression.
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at D15 was BAM with a SEN of 78.10% and a SPE of 92.27% with 8
leads after which an exponential decline occurred (Fig. 2D). The
final array with BAM showed a SEN of 53.29% and a SPE of
92.55%, which was slightly inferior to the final array of FOM, which
revealed a SEN of 56.51% and a SPE of 96.03%.

3.3. Validation of computational results

The overall most sensitive montage at reduction step 10 (nine
remaining electrodes) was HAM with a SEN of 76.12% and a SPE
of 87.58%. At this reduction step, the computer algorithm calcu-
lated a SEN of 68.21% for the ictal group, 88.43% for RDA, 68.74%
for PD and 72.44% for BS. Corresponding SPE were high with
97.76 for the ictal group, 92.62 for RDA, 94.52 for PD and 91.69
for BS. Results with confidence intervals are shown in Fig. 3 (Neu-
roTrend; 9 electrodes). With the same reduced set of nine elec-
trodes, 250 EEG segments were reevaluated by the two reviewers
to validate the calculations of the computer algorithm.

In the ictal group the two reviewers reached detection SENs of
82% (SPE 94%) and 78% (SPE 98%), respectively. RDA could be
detected with SENs of 84% (SPE 90% & 100%) each. Lower agree-
ments were seen for PD with SENs of 82% (SPE 100%) and 64%
(SPE 100%) as well as BS with SENs of 80% (SPE 94%) and 56%
(SPE 98%). The detection SEN of NT calculated with nine electrodes
compared to 19 electrodes declined between a range of 5–22% for
different pattern groups. For the reviewers, comparing annotations
with 9 electrodes with the consensus annotations, a decline
between 16–44% was found.

The elimination of EEG segments without consensus annota-
tions from the two reviewers resulted in overall n ¼ 156 EEG seg-
ments that were used for the test statistic. The initial 50 samples of
each pattern group reduced to nPD ¼ 38, nRDA ¼ 42, nictal group ¼ 38,
nBS ¼ 38 samples. The hypothesis that no statistically significant
difference between the consensus annotations of two reviewers
and the computational results existed could not be rejected for
all four subgroups (v2

PD¼0:57; v2
RDA¼0:5; v2

ictal group¼3:2; v2
BS ¼1:2Þ

and for the combined 156 samples (v2 ¼ 0:41Þ. This shows that
the average detection SEN based on computational and human
review has to be considered as equal.

4. Discussion

The present study aims to investigate the effect of electrode
reductions from a standard 10-20 EEG system. Unlike previous
studies this was done automatically by a computer algorithm,
making it feasible (1) to determine detection SENs for every single
electrode that was removed (2) to observe the effect of different

sequences in which electrodes were removed. This automated
and technical approach of analyzing the effect of decremental elec-
trode reduction on pattern detection, distinguishes the study from
others. The vast majority of previous studies used more clinically
orientated approaches to determine if a certain number of prede-
fined electrodes were sufficient to detect seizures (Bridgers and
Ebersole, 1988; Foldvary et al., 2000; Tekgul et al., 2005; Kolls
and Husain, 2007; Shellhaas and Clancy, 2007; Wusthoff et al.,
2009; Young et al., 2009; Karakis et al., 2010; Nitzschke et al.,
2011; Rubin et al., 2014; Tanner et al., 2014; Brenner et al.,
2015; Lepola et al., 2015; Muraja-Murro et al., 2015). These studies
only gave a brief insight into a small selection of existing possibil-
ities because they missed the flexibility to change montages or add
and remove electrodes. Furthermore, their main goal was to detect
seizures, while the effect of electrode reduction on other patterns
was not investigated. Our study on the other hand should be seen
as a proof of concept. We tried to demonstrate that automation is a
feasible and reasonable method to asses reduced electrode arrays,
taking also patterns defined by CCET into account. The results may
be expected but have never been accurately illustrated. Most of the
previously published studies used between four to ten electrodes.
According to our data a clear decline in pattern detection begins
after the 10th electrode is removed. Therefore, our results form a
foundation for further, more clinically oriented studies.

HAM outperformed all other reduction montages by reaching a
D15 with the lowest number of electrodes. Best results could be
achieved with six electrodes for ictal group patterns and RDA as
well as nine electrodes for PD. HAM is easy and fast to apply
because anatomic landmarks can be used to estimate correct elec-
trode placement. Important drawback of the montage is the poor
performance in detecting BS, which could be used to monitor treat-
ment effects and estimate sedation depth in the ICU. Detection
rates (SEN 72.85%, SPE 97.51%) of HAMmatch previous studies that
used similar reduced arrays. Rubin et al. reviewed 50 ictal and 50
non-ictal EEG records for the presence or absence of seizures
(Rubin et al., 2014). They used the electrodes F3, F4, T7, Cz, T8,
O1, O2 and reviewed the EEG with transverse, longitudinal and ref-
erential to Cz montages. A detection SEN of 70% and SPE of 96% for
seizures was found. They concluded that this was an unacceptable
poor SEN for seizure detection. The same was suggested by Kolls
and Hussain after the review of 120 preselected ‘‘clear” pattern
clips by five epileptologists (Kolls and Husain, 2007). A six-
channel montage including the electrodes Fp1, Fp2, F7, F8, T3, T4,
T5, T6 (longitudinal bipolar, referential to ipsilateral ear, referential
to contralateral ear) was used. Reviews were compared to medical
records and showed SEN rates of 72% for seizures and 54% for PDs.
Higher detection rates were shown by Karakis et al. (Karakis et al.,
2010). They reviewed 38 preselected EEG samples, including only

Table 2
Number of electrodes for which detection sensitivity dropped more than 15%.

Category Item ‘‘Banana” montage
(BAM)

‘‘Crown” montage
(CRM)

‘‘Forehead + behind ear”
montage (FOM)

‘‘Hairline + vertex”
montage (HAM)

PD (periodic discharge) Number of electrodes 15 15 14 13
SEN (%) 75.56 76.70 77.01 76.32
SPE (%) 93.40 93.26 92.28 92.61

Ictal Group (electrographic seizures) Number of electrodes 15 16 10 15
SEN (%) 80.13 82.78 76.82 77.48
SPE (%) 97.63 97.45 98.38 96.78

RDA (rhythmic delta activity) Number of electrodes 6 15 10 6
SEN (%) 85.95 88.43 85.12 88.43
SPE (%) 93.97 94.10 94.76 93.67

BS (burst suppression) Number of electrodes 8 8 8 9
SEN (%) 78.10 75.96 73.51 72.43
SPE (%) 92.79 91.79 94.09 91.82

SEN, sensitivity; SPE, specificity.
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10 samples with seizures. A seizure detection rate of 85% was
found with a six-channel EEG (Fp1, Fp2, T3, T4, O1, O2, Cz; double
diamond, circumferential, referential to Cz) compared to 92.5% for
the 10-20 EEG. The difference in the detection SEN of approxi-
mately 10–15% compared to our data could be explained by the
general lower detection rate of the computer algorithm compared
to consensus annotations in our study.

FOM has found application in the emergency department and
predefined electrode bands that adhere to the skin of the forehead
and behind the ear are already available (Myllymaa et al., 2013;
Muraja-Murro et al., 2015). In our study P7 and P8 had to replace
the electrodes behind the ear. The overall performance of FOM
was mediocre with a D15 ranging between 8 to 14 electrodes
depending on the pattern type observed. Nevertheless, there may
be a potential use for the FOM in the emergency department as
detection SEN was high in the ictal group before reducing the
10th electrode (SEN of 76.82%). Similar detection rates were shown
by Young et al. (Young et al., 2009). Two epileptologists reviewed
70 cEEGs of 24 h with a standard 10–20 system as well as with a
reduced array of four frontal channels. 31 patients suffered from
seizures which were detected in 68% of all cases by the reduced
montage. PDs showed lower rates of 39%, which can be confirmed
by our observation (44.67%). A lower SEN was found by Tanner
et al. (Tanner et al., 2014) who retrospectively reviewed 170
patients of which 8% had seizures. They found a seizure detection
rate of 54% with a reduced setup of seven to eight leads. Contradic-
tory findings were presented by Bridgers and Ebersole (Bridgers
and Ebersole, 1988). They performed an interrater agreement

assessing 25 patients with epileptiform abnormalities. One epilep-
tologist reviewed 16 channel EEG data while the other epileptolo-
gist had only seven channels available. 91% of all epileptiform
complexes were detected by reviewing seven channels with a false
positive rate of 10% and a false negative rate of 8%. Other studies
that investigated the influence of FOM on detection rates were
affected by small numbers of evaluated patients or a low incidence
of seizures (Brenner et al., 2015; Lepola et al., 2015; Muraja-Murro
et al., 2015).

CRM and BAM were not previously described as reduced mon-
tages in literature. They were thought to offer advantages in
detecting strictly localized patterns such as PD. This hypothesis
was not met as both arrays showed a poor performance for PDs
and were mediocre in detecting patters of the ictal group. Interest-
ingly both montages scored highest in detecting BS while diverging
in the detection of RDA. CRM showed a steep decline in SEN after
frontopolar and occipital electrodes were removed. This may be
explained by over-interpretation of RDA in the consensus annota-
tions if generalized frontal slowing occurred. When interpreting
the raw EEG, double distances between electrodes must be consid-
ered as they strongly influence the EEG curve. The used computer
algorithm could handle these double distances by calculating
results with a common average of remaining electrodes even
though it is based on visual detection of EEG data.

Validation of NeuroTrend results showed that the computer
algorithm scored a little worse than the reviewers except for
RDA but no significant discrepancies could be observed. This time,
no consensus annotations between the reviewers were established,

Fig. 3. Detection sensitivities (SEN, bars) and specificities (SPE, circles) for different pattern groups are shown. Bars & circles with oblique stripes illustrate SENs/SPEs of the
computer algorithm (NeuroTrend) for 19 and 9 electrodes, respectively. Filled bars and circles illustrate SENs/SPEs of two different reviewers for 9 electrodes. PD, periodic
discharge; RDA, rhythmic delta activity; Ictal group, spike-wave >3 Hz or evolving discharges >4 Hz; BS, burst suppression.
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as this would have biased the validation by leaving only clear and
easy to recognize patterns. On the one hand, persistent low detec-
tion rates of the algorithm in comparison to the reviewers would
have implied an unusable poor algorithm. On the other hand, per-
sistent high detection rates compared to the reviewers might have
indicated an implausible result since the algorithm is based on
visual analyzes. Results between the two reviewers varied a lot
for PDs and BS indicating difficulties in annotating these patterns
with a reduced number of electrodes.

The strength of the study, to keep the focus on clinical relevant,
non-selected data comprises some limitations. Because of the huge
amount of work in annotating hours of cEEG to establish consensus
annotations, a limited number of patients (n = 83) was enrolled.
‘‘Real-world” conditions immanent are numerous EEG segments
with no specific patterns and an unequal distribution of patterns
(Table 1).

The study lacks information about pattern localization because
the algorithm showed a low performance in distinguishing lateral-
ized from generalized patterns in a previous study (Herta et al.,
2015). This limits the statement about the advantages and disad-
vantages of the individual assemblies. Furthermore, it must be
stressed that all observed patterns frequently occur together during
cEEG in the ICU. It would be misguided to assume that in a given
patient a certain montage may be superior to another montage for
clinicalmonitoring purposes based upon these results. For example,
if seizure detection is the primary goal, not only ictal group patterns
but also PD and RDA may classify as seizures and in the further
course of treatment the detection of BS may become of interest.

The ACNS does not recommend the use of less than 19 elec-
trodes as well as deviations of the International 10-20 system
placement but recognizes the need of a smaller number of elec-
trodes in some situations (ACNS, 1994). Hence it is very difficult
to give recommendations for the use of a reduced EEG array, as sei-
zures may not be detected at all if standard EEG is not available or
not applicable as argued by Young et al. (Young et al., 2009).

Our aim was to demonstrate a new approach of testing the
usability of reduced EEG montages. Clear advantages of an auto-
mated assessment comprise the possibility of rapidly processing
huge amounts of data, clear visualization, exact determination of
frequencies and amplitudes as well as identification of pattern
localization. Abilities that may not only find application in research
and science but also in clinical practice.

5. Conclusion

For the first time a computer algorithmwas successfully used to
evaluate the effect of decremental electrode reduction from the
international 10-20 EEG system. The findings roughly reflect which
reduced assembly may be the most appropriate in specific situa-
tions where a full 10-20 EEG system cannot be applied. However,
studies on how the reduced montages perform in individual
patients still have to be carried out. In the future, we expect more
detailed and specific analyzes by our algorithm taking new vari-
ables as for example pattern localization into account.
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