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Abstract

For the construction of new types of atomic clocks, the metastable tho-
rium isotope 229mTh has been proposed due to its extremely low excitation
energy, which lies in the range of electronic transitions. This type of clock
may realize time measurements with unparalleled precision. Since this
thorium isotope is very rare, it needs to be doped into a host crystal.
To measure the core transition energy, it is necessary that the crystal is
transparent in that energy regime.

A possible host for the thorium isomer is magnesium fluoride with the
chemical formula MgF2, which was simulated using the Vienna Ab-initio
Simulation Package (VASP). The theoretical background of VASP is Den-
sity Functional Theory, which is summarized in this work, in addition to
the numerical treatment of molecular dynamics. The electronic structure
and optical properties of MgF2 were studied and it was determined whether
thorium will be accepted as a dopant and which charge compensations oc-
cur. Energetically, the most favorable compensation is a substitutional
doping of thorium with the interstitial placement of two fluorine atoms.
Furthermore, the size of the band gap was determined for different con-
figurations to see if MgF2 stays transparent for the isomer energy. It is
shown that the gap preserves its size for the most probable configurations.
Additionally, the first excited states originate almost exclusively from the
thorium atom. It may therefore be possible that the nucleus is excited
via the electron-bridge mechanism, which serves as an outlook for further
theoretical and experimental work.



Kurzfassung

Für die Konstruktion einer neuartigen Atomuhr wurde das metastabile
Thorium Isotop 229mTh vorgeschlagen, weil es eine sehr niedrige Anre-
gungsenergie besitzt, die in der Nähe von elektronischen Übergängen liegt.
Diese Art von Uhr würde Zeitmessungen mit bisher unerreichter Präzision
ermöglichen. Da dieses Thorium Isotop extrem selten ist, muss es in einen
Kristall dotiert werden. Um die Anregungsenergie des Kerns zu messen, ist
es zudem erforderlich, dass der Kristall transparent für diesen Energiebere-
ich ist.

Ein mögliches Trägermaterial ist Magnesiumfluorid mit der chemischen
Formel MgF2, das mit dem Vienna Ab-initio Simulation Package (VASP)
simuliert wurde. Der theoretische Hintergrund von VASP ist die Dichte-
funktionaltheorie, die in dieser Arbeit zusammengefasst ist. Zusätzlich
wird die numerische Behandlung von Moleküldynamik diskutiert. Die
elektronischen und optischen Eigenschaften von MgF2 wurden in dieser
Arbeit erforscht. Es wurde bestimmt, ob Thorium vom Trägermaterial
als Dotand akzeptiert wird und welche Art der Ladungskompensation am
wahrscheinlichsten stattfindet. Die energetisch günstigste Konfiguration
ist der subsitutionale Einbau von Thorium und der interstitielle Einbau
von zwei Fluor Atomen. Weiterhin wurde die Größe der Bandlücke für
verschiedene Konfigurationen berechnet um zu überprüfen, ob MgF2 trans-
parent für die Isomerenergie bleibt. Es wird gezeigt, dass die Bandlücke
ihre ursprüngliche Größe für die wahrscheinlichsten Konfigurationen na-
hezu behält. Zusätzlich stammen die ersten angeregten Zustände beinahe
ausschließlich vom Thorium Atom. Es könnte daher möglich sein, dass der
Kern über den Elektronenbrückenmechanismus angeregt wird, was einen
Ausblick auf weitere theoretische und experimentelle Arbeit eröffnet.
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Chapter 1

Introduction

The fundamental unit of time, the second, is since 1968 defined by the
International System of Units as the following:

The second is the duration of 9 192 631 770 periods of the
radiation corresponding to the transition between the two
hyperfine levels of the ground state of the caesium 133 atom.

It was later added that the caesium atom is at rest at 0 K [dPeM06].

At first it might seem unnatural to assign such an intricate definition
for a mundane quantity as the second. Yet the reason is the accuracy of
the time measurement using a caesium atomic clock. The energy emitted
by the transition between the two hyperfine levels is 3.8 · 10−5 eV, corre-
sponding to a wavelength of 32.6 mm, which lies in the microwave length.
The best clocks of this type achieve a relative uncertainty in their time
measurement in the order of 10−16 [Bur16, Par10, KLR+12].

However, a new type of atomic clock emitting light in the visible range
has since been proposed, that may outperform caesium clocks by several or-
ders of magintude [ODD+06]. The major advantage of these optical clocks
is that the atom can be fixed in the experiment, allowing for longer and
more stable measurements [KLR+12]. In 2005, the Nobel Prize in Physics
for theoretical and experimental work concerning optical lasers has been
awarded to Roy J. Glauber, John L. Hall and Theodor W. Hänsch [Nobb],
who opened up possibilities to build an optical atomic clock. Since then, a
number of different atoms and techniques were studied to realize such a de-
vice. In principle, the first generation of atomic clocks consist of either sin-
gle trapped ions or neutral atoms confined in an optical lattice [ODD+06].
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With the former system, it was already possible to perform a time mea-
surement with an uncertainty of 3 · 10−18 [HSL+16].

Nonetheless, the accuracy might be improved even further. The isotope
thorium-229 has a nuclear isomer state 229mTh [vdWSL+16], which lies
extremely close to the ground state (for a short discussion of isomer states,
see section A.1). Recent measurements predict an energy difference of
7.8± 0.5 eV [BWB+09, BBB+07, KSS17, vdWSL+16], corresponding to a
wavelength of approximately 160 nm, which is in the vacuum ultraviolet
(VUV) region. This is by far the lowest ground-state doublet of all known
nuclei [Des16, vdWSL+16]. In fact, the energy is in reach of modern optical
laser spectroscopy methods and thus might be experimentally viable. It
was suggested that this isomer could be used as an atomic clock of highest
precision [PT03, PZOT08]. A particular advantage is that the clock is
not based on an electronic but rather a nuclear transition and thus, the
electron shell shields the core from external fields.

Additionally, confining 229mTh in a lattice would have the tremendous
advantage to work with a macroscopic number of thorium atoms, com-
pared to only one in the ion trap. With this method, it is predicted that
an unprecedented uncertainty level of 10−19 might be reached [KLR+12].
A critical component of the feasibility is that the host crystal should be
transparent in the VUV region and therefore its band gap must exceed the
predicted isomer energy.

In this work we simulated magnesium fluoride (MgF2), a possible host
to 229mTh, with the Vienna Ab-initio Simulation Package (VASP) [KH93,
KH94, KF96b, KF96a, KJ99]. A summary of the theory behind VASP
and its methods can be found in Chapter chapter 2. The results of the
calculations are presented in chapter 3. For MgF2 the electronic proper-
ties including the band structure and optical features were determined.
When MgF2 is doped with 229mTh, it was investigated which type of dop-
ing and which charge compensation is energetically favored. Finally it is
demonstrated if and under which conditions the material is suitable for the
construction of a new atomic clock. Possible applications and an outlook
to other fields of research are discussed in chapter 4.
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Chapter 2

Theory

2.1 Introduction

2.1.1 Schrödinger Equation

To describe properties that arise from quantum theory in any physical
system, it is necessary to solve the Schrödinger equation

∂

∂t
|Ψ〉 = H |Ψ〉 (2.1)

to find a suitable wave function, which contains the full set of posi-
tions R and spin variables σ of the particles of the system. Often it is
sufficient to look at stationary states and thus rule out the time depen-
dence of the Hamiltonian H, such that we are left with the eigenvalue
problem

H |Ψ〉 = E |Ψ〉 . (2.2)

The Hamiltonian H represents an operator for the total amount of en-
ergy in the system. To describe interactions between nuclei and electrons,
we can construct H as [ED11]

H = Tn + Vn−n +He + (Vn−field), (2.3)
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where the index n refers to nuclei and the index e to electrons. The
kinetic energy of the nuclei Tn is the sum over all K individual nuclei with
mass Mα

Tn =
K∑
α=1

(−i~∇Rα)2

2Mα

, (2.4)

while the potential energy Vn−n is due to Coulomb forces and creates
a correlation between all the nuclei

Vn−n =
K∑

α,β=1;α<β

ZαZβe
2

|Rα −Rβ|
. (2.5)

The Hamiltonian He for the electronic system can be split up into the
following contributions

He = Te + Vn−e + Ve−e + (Ve−field). (2.6)

Likewise, the kinetic energy of the N electrons with mass m is

Te =
N∑
a=1

(−i~∇a)
2

2m
. (2.7)

When describing chemical bonds between different atoms, the Coulomb
force plays the dominant role. Besides the Coulomb attraction of the
electrons and the nuclei

Vn−e = −
K∑
α=1

N∑
a=1

Zαe
2

|Rα − ra|
, (2.8)

there is also a repulsion between electrons

Ve−e =
N∑

a,b=1;a<b

e2

|ra − rb|
. (2.9)
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In the following work, the contributions to H in terms of external elec-
tric or magnetic fields Vfield are not discussed.

In the context of the many different contributions to the Hamiltonian
discussed earlier, with each of them making the problem more and more
complicated, finding a solution for equation (2.2) is a very demanding task.
For systems with more than two particles, an analytic solution is impossible
to calculate. Even a numeric solution poses great difficulties for systems
typically found in a solid state, due to the interaction of a large number
of particles. It is thus necessary to look for suitable approximations. In
a crystal for example, atoms are arranged in a lattice, which has distinct
symmetries that are utilized to a high degree.

2.1.2 Band Gap

A particularly important property of an insulating material is the band
gap ∆: When solving the Schrödinger equation for electrons on a crystal
lattice, it turns out that due to translational symmetry there is an infinite
number of wave functions Ψa(k) and energy levels Ea(k) that depend on
the wave vector k. These functions are commonly called energy bands.
The distance between the highest energy below the Fermi level EF and the
lowest energy above the Fermi level is the band gap ∆. The bands above
the Fermi level are the conduction bands, whereas the bands below the
Fermi level are the valence bands. For metals there is no band gap and ∆ =
0, as opposed to insulators, where the gap can be large. When discussing
band gaps, an important property is the density of states (DOS), which
is the number of energy states per energy interval and thus an integrated
quantity over the k-dependent Ea(k). Obviously, at the gap the DOS is
zero, whereas the DOS obtains finite values for regions where bands exist.

The system of interest in this work is magnesium fluoride with the
formula MgF2. It is an insulator and was measured to have a band gap
of at least ∆ = 10.8 eV [BCA+11, AO, Rob79, SCLR69]. Thus, the band
gap is large enough to be transparent for the 229mTh transition energy.

Calculating the band gap ∆ requires solving the Schrödinger equa-
tion (2.2), which turns out to be a huge effort for systems with a large
number of particles as we have discussed in the previous subsection 2.1.1.
In the following, we will introduce a theoretical approach that enables a
numerical treatment of this problem. The Born-Oppenheimer approxima-
tion is the foundation of a big field of physics that considers the simulation
of atomic systems and sets up the stage for all subsequent deliberations.
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2.1.3 Born-Oppenheimer Approximation

First we choose an appropriate basis to write the abstract |Ψ〉 as a function
depending on the nuclei positions Rα, electron positions ri and the spin σ
of the electrons. The time-independent Schrödinger equation (2.2) then
has the form

HΨa (R1, . . . ,RK ; r1σ1, . . . , rNσN) =

EaΨa (R1, . . . ,RK ; r1σ1, . . . , rNσN) .
(2.10)

We use a shorthand notation for the position and spin vectors

R1, . . . ,RK ≡ R

r1σ1, . . . , rNσN ≡ rσ
(2.11)

to write the Schrödinger equation (2.10) as

HΨa(R; rσ) = EaΨa(R; rσ) (2.12)

Because the nuclei have significantly more mass than the electrons, they
are a lot more inert. Due to this property, the electronic movement takes
place on different timescales than the ionic movement. It is therefore a
valid assumption to keep the positions of the ions fixed during an electronic
relaxation and to separate the total wave function in an electronic part and
an ionic part [BO27]

Ψa(R, rσ) ∼= Ψn
a(R)Ψe

a(R; rσ). (2.13)

Because the Schrödinger equation is linear, it is possible to calculate
the electronic part separately from the nuclear part [MKE+]

HeΨ
e
a(R; rσ) = Ee

a(R)Ψe
a(R; rσ) (2.14)

(TN + Vn−n + Ee
a(R))Ψn

a(R) = En
aΨn

a(R). (2.15)

This is the so-called Born-Oppenheimer approximation and serves as
the foundation of all subsequent calculations. Since we can treat the elec-
tron and ionic movements separately, it is much more accessible to find ap-
propriate simplifications. For example, quantum effects such as the Pauli
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exclusion principle can be more easily considered when the electronic part
is treated independently. Due to the strong localization of the ionic wave
functions, it is even feasible to calculate their movement classically and
therefore save a big amount of computing power. Obviously, every simpli-
fication has a drawback in accuracy for the calculation.

In the following section 2.2, a selection of simplifications and its errors
will be introduced and discussed. In section 2.4 we will have a look at some
of the computational tools available for the calculation of the problem
depicted above. For an in-depth look of selected topics, section A.2 –
section A.4 will be referenced.
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2.2 Density Functional Theory

2.2.1 Hartree-Fock Equations

Now that we have decoupled the ionic from the electronic movement we
want to introduce a theory based on the simplifications suggested by gen-
erations of physicists for the many-body electron problem given by the
electronic part of the Schrödinger equation (2.14). A starting point is
the construction of an electronic wave function. It is a well known con-
sequence of quantum theory that particles such as electrons are fermions
and according to the Pauli exclusion principle, two fermions cannot oc-
cupy the same quantum state at the same time. When two electrons get
close, they will experience an additional repulsive force, which will increase
the total energy. This change in energy is commonly called exchange en-
ergy. Mathematically speaking, the wave function of fermions needs to
be antisymmetric: When two electron coordinates are exchanged the sign
of the wave function has to change as well [BPM14]. An elegant way to
express this behavior is to use the properties of the determinant function
since by swapping two rows or columns of a matrix the determinant func-
tion changes its sign as well. Therefore, we will write a matrix of single
electron wave functions φi(ri, σ) and take the determinant to construct an
arbitrary wave function for a many-electron system.

Ψe(rσ) =
1√
N !

∣∣∣∣∣∣∣
φ1(r1σ1) · · · φ1(rNσN)

...
. . .

...
φN(r1σ1) · · · φN(rNσN)

∣∣∣∣∣∣∣ (2.16)

This wave function is called Slater determinant [Sla29] and ensures
that the wave function is antisymmetric. The factor 1/

√
N ! takes care of

the appropriate normalization. Because section 2.2 is concerned with the
electronic part of the Hamiltonian only, we will subsequently drop the index
e, which would refer to an electron in contrast to the nucleus n. Now that
we have constructed a wave function, we want to find the corresponding
equations of motion. The Ritz method (see section A.2) states that we can
write the energy as

E[Ψ] =
〈Ψ|H |Ψ〉
〈Ψ|Ψ〉 . (2.17)
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For this theorem it is not required for the wave function to be normal-
ized. Alternatively, one can as well normalize the wave function with

|Ψ̃〉 =
1√
〈Ψ|Ψ〉

|Ψ〉 . (2.18)

Note that this is a rather general statement, so we have not written any
indices and dependencies. Since the energy is a scalar value and takes the
wave function as an input, we write it as a functional of Ψ (for an overview
on the theory of functionals see section A.3). We seek a stationary solution
of the energy functional with respect to a variation of the function Ψ

δE[Ψ]

δ(〈Ψ|) = 0. (2.19)

The variation for the abstract bra and ket vectors can be treated by
means of ordinary differential calculus [Buron]

δE[Ψ]

δ(〈Ψ|) = H
1

〈Ψ|Ψ〉 |Ψ〉 −
〈Ψ|H|Ψ〉
〈Ψ|Ψ〉

1

〈Ψ|Ψ〉 |Ψ〉 = 0. (2.20)

It follows quickly that

H |Ψ̃〉 = E |Ψ̃〉 , (2.21)

which means we end up at the equations of motion of the system when
calculating δE = 0. For the wave functions it makes sense to plug in the
Slater determinant we have constructed earlier (2.16). It is important to
note that expressing the wave function by a single Slater determinant is
already an approximation in itself and forms the basis of Hartree-Fock the-
ory. In more accurate models, a linear combination of Slater determinants
has to be used.

Since we only deal with a single Slater determinant, correlation is not
included. This means for an electron, that it moves freely in the electric
field v(r) produced from the other nuclei and electrons. After some calcu-
lation which we will not discuss in this work, we end up with the equations
of motion, called the Hartree-Fock (HF) equations [Cap02]

[
− ~2

2m
∇2 + v(r)

]
φHFi (r)− e2

∫
d3r′

γ(r, r′)

|r− r′|φ
HF
i (r′) = EHF

i φHFi (ri),

9



(2.22)

where γ(r, r′) is a density matrix. This equation is technically quite
accurate. In fact, it accounts for the exchange energy exactly by defini-
tion. However, due to the simplifications made we are often left with an
unsatisfactory result as a calculation can lead to a large deviation from
experimental data. Additionally, the computational effort can be very de-
manding, since it is necessary to solve the Slater determinant as well as
the 2N coupled integro-differential Hartree-Fock equations. However, the
HF-equations still have an important role in the simulation of materials.
Several approaches to include electron correlation to the wave function are
collectively called post Hartree-Fock methods. In this work we will discuss
the HF-equations again in subsection 2.2.8 when we introduce the concept
of Hybrid Functionals.

2.2.2 Hohenberg-Kohn Theorem

As we discussed, there are some practical problems when applying the HF-
equations to a real system. Therefore, alternative ways to find a solution
to the many-body Schrödinger equation have been found. At the heart
of the highly successful and widely applied [Giu14, KH00, Eug90] Density
Functional Theory (DFT) lies the Hohenberg-Kohn (HK) theorem, first
proposed in 1964 [HK64]. The theorem proved to be so useful, that Walter
Kohn was awarded the Nobel Prize in Chemistry in 1998 [Noba]. It states
that [BPM14, Cap02]:

• The ground state energy Ev,0 of a system of N identical particles in
an external potential v(r) can be expressed uniquely as a functional
of the particle density n(r), such that Ev,0 = E[n(r)].

• This functional has its minimum with respect to a variation δn(r)
of the particle density for the ground state density n0(r) for a given
external potential.

A short summary of the variations of functionals can be found in sec-
tion A.3. Given a ground state density n0(r) it is therefore in principle
possible to calculate the corresponding ground state wave function

Ψ0(r1, r2, . . . , rN) = Ψ[n0(r)] (2.23)
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and as a consequence, all ground state observables too

O0 = O[n0] = 〈Ψ[n0]|O |Ψ[n0]〉 . (2.24)

Additionally, if a particle density n is different from the ground-state
density n0 in a potential v(r), then the wave functions Ψ that produce
this n differ from the ground-state wave function Ψ0. The corresponding
energy Ev[n] will be, in accordance with the variational principle,

Ev[n0] ≤ Ev[n]. (2.25)

2.2.3 Thomas-Fermi Theory

In the course of the HK-theorem, we express the energy of the system in
its different contributions

Ev[n] = T [n]+Ve−e[n]+Vn−e[n] = T [n]+Ve−e[n]+

∫
n(r)v(r) d3r. (2.26)

Beforehand, it is not clear what the functional form of these different
parts will look like. To find suitable expressions, the greatest challenge is to
find valid approximations. Starting with the most simple, we approximate
T [n] and Ve−e[n] first. For Ve−e[n] one can use the electrostatic repulsion
of electrons with charge distribution n(r)

Ve−e[n] ≈ V H
e−e[n] =

e2

2

∫
d3r

∫
d3r′

n(r)n(r′)

|r− r′| . (2.27)

The approximation for the kinetic energy is done corresponding to the
Thomas-Fermi theory [Tho27a, Tho27b]. Here, it is assumed that there are
parts in space, where the kinetic energy density is that of a homogeneous
and interacting system thom(n(r)) with constant density n. Note that the
use of lower case letters indicate a density, whereas an upper case letter
represent the total amount of a quantity. This term is not known explicitly,
so there is another approximation where the electrons are assumed to be
non-interacting, denoted by the index s. This energy is known explicitly
and it is thoms (n) = 3~2(3π2)2/3n5/3/10m. It is assumed, that these parts in
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space are infinitesimally small such that an integral over all these regions
yields the total kinetic energy.

T [n] ≈ TLDA[n] =

∫
d3r thom(n(r)) ≈

∫
d3r thoms (n(r)) (2.28)

2.2.4 Energy Functional

The Thomas-Fermi approximation for the kinetic energy has proven not
to be very good but we can use the concept and try to improve the theory.
It is instructive to separate T [n] into two parts: One includes the kinetic
energy of non-interacting electrons while the other one solely takes the
correlations into account,

T [n] = Ts[n] + Tc[n]. (2.29)

This time we write Ts[n] in terms of single particle orbitals φi(r) such
that

Ts[n] = − ~2

2m

N∑
i

∫
d3r φ∗i (r)∇2φi(r). (2.30)

The exact energy functional is now

E[n] = T [n]+Ve−e[n]+Vn−e[n] = Ts[{φi[n]}]+V H
e−e[n]+Exc[n]+Vn−e[n],

(2.31)

where Exc[n] contains the differences T−Ts = Tc and Ve−e−V H
e−e = V xc

e−e.
This exchange-correlation energy difference can also be decomposed to
Exc = Ex +Ec where Ex is the exchange energy due to the Pauli principle
and Ec is due to correlations. The advantage is now that we can write the
exchange energy Ex explicitly as

EHF
x [{φi[n]}] = −e

2

2

∑
jk

∫
d3r

∫
d3r′

φ∗j(r)φ∗k(r
′)φj(r′)φk(r)

|r− r′| (2.32)
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a result that can be found in the Hartree-Fock equations (2.22), but
modified only in a way that the Hartree-Fock orbitals φHFi (r) were sub-
stituted by Kohn-Sham orbitals φi(r), also called Fock-term. The Kohn-
Sham orbitals are the solutions to the Kohn-Sham equations, which will
be discussed in the next section.

For the correlation energy Ec a general expression is not known. There
exist a number of different approaches on how to approximate Ec which
can be found in reference [Cap02], but exceed the dimensions of this work.

However, it is instructive to look at the exchange-correlation energy
Exc further. To be precise, it shows a derivative discontinuity with respect
to the total particle number,

δExc[n]

δn(r)

∣∣∣∣
N+δ

− δExc[n]

δn(r)

∣∣∣∣
N−δ

= v+
xc(r)− v−xc(r) = ∆xc, (2.33)

where δ is an infinitesimal small shift of the electron number N and ∆xc

is a shift of the exchange-correlation potential vxc(r). Furthermore, the
non-interacting kinetic energy also exhibits this property

δTs[n]

δn(r)

∣∣∣∣
N+δ

− δTs[n]

δn(r)

∣∣∣∣
N−δ

= εN+1 − εN = ∆KS, (2.34)

where εN+1 and εN are the single particle Kohn-Sham energy eigen-
values of the highest occupied and lowest unoccupied eigenstate. The
energy gap ∆KS is simply the single-particle energy difference between the
HOMO (highes occupied molecular orbital) and LUMO (lowest unoccu-
pied molecular orbital). It turns out that the fundamental energy gap,
that is ∆ = E(N + 1) + E(N − 1)− 2E(N), is the sum [SS83, ED11]

∆ = ∆KS + ∆xc =
δE[n]

δn(r)

∣∣∣∣
N+δ

− δE[n]

δn(r)

∣∣∣∣
N−δ

. (2.35)

Speaking in this frame, the Thomas-Fermi theory or local density ap-
proximations generally predict ∆xc = 0 and thus estimate the energy gap
to be too low as depicted in Figure 2.1.

So far, the energy functional Ev[n] we have constructed in equation
(2.31) is exact. In the big picture, the initial goal was to find an alternative
way to the Thomas-Fermi theory. We will apply the HK-theorem again,
but try a more sophisticated approach for the different contributions to
the energy.
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Figure 2.1: Schematic depiction of discussed energy eigenvalues.

2.2.5 Kohn-Sham Equations

The HK-theorem tells us that we find the ground state energy by minimiz-
ing the total energy with respect to the particle density. Using the exact
energy functional (2.31) we get

0 =
δE[n(r)]

δn(r)

∣∣∣∣
n(r)=n0(r)

=
δTs[n]

δn(r)
+
δVn−e[n]

δn(r)
+
δV H

e−e[n]

δn(r)
+
δExc[n]

δn(r)

=
δTs[n]

δn(r)
+ v(r) + vH(r) + vxc(r).

(2.36)

Now we consider a system of non-interacting particles with energy
Es[n], moving in a potential vs(r). For this problem, minimizing the energy
results in

0 =
δEs[n(r)]

δn(r)

∣∣∣∣
n(r)=n0(r)

=
δTs[n]

δn(r)
+
δVs[n]

δn(r)

=
δTs[n]

δn(r)
+ vs(r).

(2.37)

Comparing both equations, we see that it is possible to find the same
solution if

vs(r) = v(r) + vH(r) + vxc(r). (2.38)
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Thus it is possible to construct an auxiliary system which enables to
find a solution to a single-particle Schrödinger equation

[
− ~2

2m
∇2 + vs(r)

]
φi(r) = εiφi(r), (2.39)

which yields the same particle density n as the original system

n(r) ≡ ns(r) =
N∑
i

fi|φi(r)|2, (2.40)

where f is the occupation number of the i’th orbital. Equations (2.38) –
(2.40) are the so-called Kohn-Sham equations. Essentially, they substitute
the problem that arise when calculating many-body physics with a single-
particle problem, just like mean-field theory. Because these equations are
coupled in a non-linear way, they are usually solved by iteration also known
as the self-consistency cycle. The procedure is as follows:

1. Making a guess for the particle density n(r).

2. Calculating the corresponding single particle potential vs(r).

3. Solving the single particle Schrödinger equation (2.39).

4. Calculating a new particle density (2.40).

5. Repeat from step 2 until convergence is reached at n0(r).

The ground state energy can be found in the same way as we found
the HF-energy (2.32). Using the different contributions to the energy it is
possible to re-write the attraction of the nuclei and electrons as

Vn−e[n] =

∫
d3r v(r)n(r) =

∫
d3r [vs(r)− vH(r)− vxc(r)]n(r)

= Vs[n]−
∫

d3r [vH(r) + vxc(r)]n(r)

(2.41)

and therefore, the ground state energy turns out to be

E0 =
N∑
i

εi−
e2

2

∫
d3r

∫
d3r′

n0(r)n0(r′)

|r− r′| −
∫

d3r vxc(r)n0(r)+Exc[n0].
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(2.42)

2.2.6 Local Density Approximation

As we discussed earlier in subsection 2.2.3, the LDA is inferior to the KS-
theory when applied to the kinetic energy. However, it turns out that there
is an application for it when applying LDA within the KS-equations. In
particular, for vxc[n] a good approximation can be found.

For a homogeneous electron gas, the exchange energy is known exactly

ehomx (n) = −3e2

4

(
3

π

)1/3

n4/3 and

ELDA
x [n] =

∫
d3r ehomx (n) = −3e2

4

(
3

π

)1/3 ∫
d3r n(r)4/3,

(2.43)

where the change to a lower case letter again refers to a quantity per
volume. The correlation energy proves to be a more complex subject and
has to be studied on its own [Cap02]. As we have introduced in subsec-
tion 2.2.3, independent of its approximation, the general way of LDA for
the exchange-correlation energy consists of

Exc[n] ≈ ELDA
xc [n] =

∫
d3r ehomxc (n)

∣∣∣∣
n→n(r)

=

∫
d3r ehomxc (n(r)), (2.44)

where ehomxc = ehomx + ehomc with the corresponding potential

vLDAxc [n](r) =
∂ehomxc (n)

∂n

∣∣∣∣
n→n(r)

. (2.45)

The big advantage of implementing LDA in this particular way is that
it performs strikingly well when doing calculations even for systems which
are very much different from the reference frame of the electron liquid. The
reason for it is that LDA usually overestimates Ex and underestimates Ec
so that the sum yields good values and the errors cancel out. While this
procedure is quite effective there have been a lot of efforts to increase the
accuracy and improve the methods. In the following, we will briefly intro-
duce two popular improvements: the Generalized Gradient Approximation
(GGA) and Hybrid Functionals.
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2.2.7 Generalized Gradient Approximation

In the LDA we approximate an inhomogeneous system with a locally ho-
mogeneous one. Therefore it would of course be instructive to not only take
the particle density n(r) into account, but also its variation in space∇n(r).
This is precisely the idea behind the Generalized Gradient Approximation.
A GGA is therefore of the form

EGGA
xc =

∫
d3r f(n(r),∇n(r)). (2.46)

Different GGAs differ by their choice of f(n,∇n). While there is only
one LDA, there exist multiple forms of GGAs. The most popular and
widely used GGAs are PBE [PBE96, XI04] (denoting the functional pro-
posed by Perdew, Burke, Ernzerhof), which is fully expressed in section A.4
and BLYP [LYP88] (denoting the correction to Becke’s functional by Lee,
Yang and Parr). Recently, the Strongly Constrained and Appropriately
Normed functional (SCAN) has been developed [SRP15], which obeys all
17 known constraints for a GGA. It has been confirmed to greatly enhance
results obtained by the other GGA’s at a comparable computational effort
[SRZ+15, PYSP15, ZSPW17].

2.2.8 Hybrid Functionals

Although there are many sophisticated approaches in DFT, the approxi-
mations are subject to errors that can sometimes not be neglected [AG98].
Many theories were developed that go beyond LDA, like DFT + U or the
GW -approach. In this section we shortly discuss a popular alternative,
namely Hybrid Functionals.

The idea behind Hybrid Functionals is to use, in parts, the exact cal-
culation of Ex as given by the HF-equations and then a combination of
GGAs or LDAs to improve the result even further. A proper starting point
is the adiabatic connection formula [Bec93a, Bec93b, PEB96]

Exc =

∫ 1

0

dλExc,λ, (2.47)

where

Exc,λ = 〈Ψλ|Vee|Ψλ〉 −
e2

2

∫
d3r

∫
d3r′

n(r)n(r′)

|r− r′| (2.48)
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is λ−1 times the potential energy of exchange and correlation for elec-
tron – electron interaction λe2/|r− r′| in a system whose external potential
vλ(r) is adjusted to hold the electron density n(r) fixed at its physical λ = 1
value. Ψλ is the ground-state wave function of this system. At λ = 0, the
Kohn-Sham non-interacting system is recovered.

An obvious first approximation for the λ dependence of the integrand
in equation (2.47) is a two-point approximation

Exc =
1

2
E0
xc +

1

2
E1
xc, (2.49)

where the first term is the exchange-correlation potential energy of the
non-interacting system, which is exactly known and the second term is the
exchange correlation potential energy of the fully interacting real system,
which can be approximated by LDA. Therefore, the idea is to mix exact
Hartree-Fock exchange (2.32) and local density energies. The simplest such
hybrid functional is [Phi]

Ehyb
xc = aEexact

x + (1− a)EGGA
x + EGGA

c , (2.50)

where the constant a can be fitted or estimated theoretically.

A popular example that can improve the band gap is the HSE (Heyd-
Scuseria-Ernzerhof) [HSE03] exchange-correlation functional

EHSE
xc = aEHF,SR

x (ω) + (1− a)EPBE,SR
x (ω) +EPBE,LR

x (ω) +EPBE
c , (2.51)

where SR and LR stand for ”short range” and ”long range” respectively,
a is a mixing coefficient and ω is an adjustable parameter governing the
extent of short-range interactions.

2.3 Ionic Movement

In the previous sections, we have discussed how to treat the electronic
part of the Schrödinger equation (2.14). Naturally, that is only half of
the picture because once the electronic movement is solved and a ground
state has been found, the forces on the ions will need to be updated. In

18



this section, we will have a look at the atomic part of the Schrödinger
equation (2.15).

As we have discussed in subsection 2.1.3, the main idea behind ab-initio
molecular dynamics is the classical treatment of the ions. Instead of the
Schrödinger equation, we will use Newton’s second law for the equations
of motion [Tuc02, Gro00, Laa13, MKE+]

Mα
d2Rα

dt2
= Fα(R) (2.52)

The force Fα is expressed in terms of the electronic ground state and
the ion-ion interaction

Fα(R) = −∇Rα (Ee(R) + Vn−n(R)) . (2.53)

To determine the first term, we can e.g. use DFT to calculate Ee(R) =
minΨ 〈Ψ0|He(R)|Ψ0〉. Because the electronic ground state depends on the
positions of the nuclei R there needs to be an electronic relaxation as
discussed in subsection 2.2.5 after each ionic step. In practice, this process
is repeated iteratively until the forces (2.53) are minimized in a hopefully
global minimum, such that

Fα(R) ≈ 0. (2.54)

The classical treatment of the nuclei (2.52), together with using a GGA
or a hybrid functional for the electronic part, makes it possible to simulate
complex systems numerically. With computing power becoming exponen-
tially better for the same price over the years [Wgs], there is rapid progress
in the simulation of materials. While it was only possible to simulate simple
unit cells several decades ago, calculations with systems including hundreds
of atoms are nowadays standard procedure using modern parallel machines
and specialized software. It is indeed a fascinating outlook, what will be
possible in several decades from now.

In the next section, selected numerical methods required for the simu-
lation will be introduced and their validity is discussed.
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2.4 Methods

2.4.1 Basis Sets

To perform the calculations, in practice the Kohn-Sham orbitals are ex-
panded in a suitable set of basis functions. VASP uses plane waves due to
their periodicity which work well when there are periodic boundary condi-
tions. Among other advantages is that the Fast Fourier transform can be
done exceptionally efficient with plane waves. On the other hand, conver-
gence is often slow and a high number of plane wave coefficients is required
to describe the wave function especially when there are rapid oscillations
as is the case near the ionic cores [MKE+]. To circumvent the problem of
the strong oscillations near the cores pseudopotentials are introduced.

2.4.2 Pseudopotentials

The main idea behind pseudopotentials is that core electrons retain, to a
good approximation, their original configuration in a many body formation
such as a crystal. This means that it is feasible to treat the core electrons
by means of an atomic calculation and consider the valence electron density
nv only. The core electrons are expressed in the external potential vPP

ext such
that the single particle potential becomes

vPP
s [nv] = vPP

ext + vH [nv] + vxc[nv]. (2.55)

The determination of vPP
ext involves two steps: At first, one calculates

in an auxiliary reference configuration an effective pseudopotential (PP)
to find vPP

s and then compares this to an all-electron KS calculation of
the same atom outside a cutoff radius rv, to see if the valence orbitals
agree. If the particle densities in this region agree, we label them with
nat
v and continue to the next step. Now one subtracts the atomic valence

contribution and the exchange-correlation potential from the single particle
potential to obtain

vPP
ext = vPP

s [nat
v ]− vH [nat

v ]− vxc[nat
v ]. (2.56)

This pseudopotential can then be used in the actual calculation, to-
gether with vH [nv] and vxc[nv] taken at proper valence densities for these
systems [Cap02]. In principle, valence wavefunctions tend to have large
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oscillations near the nuclei. The method of using a pseudopotential makes
these regions more smooth, so that a lower number of Fourier components
is needed. In VASP, the method of Projector Augmented Wave (PAW)
pseudopotentials [Blö94] is implemented.

2.4.3 Brillouin Zone Sampling

There are many cases in DFT, where it is required to perform integrals
in k-space i.e. over the first Brillouin zone. When performing numerical
integration the integration space has to be sampled on a grid and some
summation rule has to be used. Similar to a Gaussian integration, a proper
choice of the k-points set, reduces the necessary sampling size. Often there
are averages over the Brillouin zone with integrals of the type

f̄ =
Ω

(2π)3

∫
BZ

f(k)d3k, (2.57)

where f(k) is a function that has the complete symmetry of the lattice.
We can thus express the function in the form of a Fourier expansion as

f(k) = f0 +
∞∑
m=1

fmAm(k), (2.58)

where

Am(k) =
∑
|R|=Cm

eikR, m = 1, 2, . . . (2.59)

The crucial idea is that if it was possible to find a vector k0 such that

Am(k0) = 0, m = 1, 2, . . . (2.60)

we would immediately have [CC73]

f̄ = f0 = f(k0). (2.61)

Unfortunately, such a point does not in fact exist. The remedy is to
impose other conditions on the points ki

N∑
i=1

αiAm(ki) = 0, m = 1, 2, . . . , N, (2.62)
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where the αi are weighting factors and satisfy

N∑
i=1

αi = 1. (2.63)

Combining equations (2.58), (2.62) and (2.63) the value of the integral
is

f0 =
N∑
i=1

αif(ki)−
∑
m

′
∑
i

αifmAm(ki), (2.64)

where the prime indicates that the first m to appear is fN+1. The
expansion coefficients fm normally drop rapidly when m becomes large,
and by making N large enough and disregard the second term we have a
good approximation [CC73]

f0 =
N∑
i=1

αif(ki). (2.65)

Apparently the points ki exhibit the special property that the integra-
tion can be reduced to a small number of points. The method to find these
points as implemented in VASP is the Monkhorst-Pack scheme [MP76].
The construction rule proposed is

kprs = upb1 + urb2 + usb3, (2.66)

where

ur =
2r − qr − 1

2qr
, r = 1, 2, . . . , qr. (2.67)

Here, qr is an integer that determines the number of special k-points in
the r-direction. This gives q3 distinct points uniformly spaced in the BZ.
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2.4.4 Smearing

Often, an integration has to be performed over the Brillouin zone over
functions that are discontinuous at the Fermi level. This means that a high
number of Fourier-components and therefore a dense grid are needed to
accurately reproduce the integration numerically. Obviously such a task is
computationally quite demanding. A possible way around this is known as
smearing. Essentially, the discontinuity is replaced by a smoother function.

As an example, consider the occupancies of energy levels at a tem-
perature T , which can be determined by the Fermi-Dirac Distribution
n̄i = (exp [(Ei − µ)/kBT ] + 1)−1. According to the Pauli principle, the
there is a sudden cutoff at the Fermi level, except when there is a non-zero
temperature when the function changes from a step function to a smooth
function. In a way, the denominator kBT = τ can thus be seen as the
smearing parameter

fFD

(
Ei − µ
τ

)
=

1

exp
(
Ei−µ
τ

)
+ 1

. (2.68)

Obviously, this is not the only possibility of how smearing can be done.
Discontinuities of energy levels can also be smoothed out by a Gaussian
function

fG

(
Ei − µ
τ

)
=

1

2

[
1− erf

(
Ei − µ
τ

)]
. (2.69)
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Figure 2.2: Different types of smearing with a smearing parameter τ =
0.05. The black line represents the exact Fermi Dirac distribution, the blue
and red lines are the smearing functions (2.68) and (2.69) respectively. For
T = 0 the zero point on the energy scale is equivalent to the Fermi energy.

To circumwent the smearing method, an interpolation scheme between
calculated k-points is also possible. One example is the linear tetrahedron
method [BJA94]. In this method, the k-space is divided into tetrahedra
and functions are interpolated inside them, removing the discontinuity.
This scheme is in particular applicable to insulators and metals with a
complicated shape of the Fermi surface.

2.4.5 Differential Equations

VASP uses a variety of algorithms to solve the differential equations that
arise with ionic relaxations. One of them is called the Direct Inversion in
the Iterative Subspace (DIIS) [SM07] scheme. This illustrates the proce-
dure for descent algorithms.

In DIIS the minimization scheme not only considers the current steepest
descent of the function to minimize, but also mixes the information of all
previous steps, which is also known as Pulay-mixing. Consider the real
minimum to be at x0.

1. The starting position of the iteration is labeled with x1. For the first
iteration, we move along the gradient g1 = ∂f/∂x1 and find the next
point x2 = x1 − λg1.
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2. Now, we construct an optimal gradient gopt, which contains all the
information from the previous gradients {g1,g2, ...,gN} multiplied
by weighting coefficients

∑N
i=1 αi = 1

gopt =
N∑
i=1

αigi. (2.70)

The coefficients will be chosen such that the gopt is minimized. The
corresponding position vector is then

xopt =
N∑
i=1

αixi (2.71)

3. Now the next point in the iteration is calculated by moving from xopt

along the gradient gopt, such that x3 = xopt − λgopt [MKE+].

This method can greatly improve the convergence speed [RS11] over
simple steepest descent methods, where in principle one repeats step num-
ber 1 from the DIIS scheme.

Other possibilities for the minimization procedure are the conjugate
gradient algorithm and damped molecular dynamics. The former is con-
cerned with finding a set of vectors si, which are conjugate with respect
to the Hessian matrix, i.e. siBsj = δij, where B is defined as the Hessian
matrix of the function to minimize f(x) = a + 1

2
(x − x0)B(x − x0). The

main idea is to minimize the function along the direction of si, instead
of going along gopt in DIIS. In damped molecular dynamics, the Forces
are not minimized using a procedure like in DIIS or CG, but rather seen
as accelerations and an additional friction term is introduced. In that
sense, the position xi is rolling with friction in the potential towards the
minimum [MKE+].
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Chapter 3

Results

The results were obtained with VASP versions 5.4.1. and 5.4.3. In
VASP, there are four files required, which set the input parameters for the
calculations:

• INCAR: This file handles the most important flags for the calculation,
i.e. which algorithm will be used, what the precision is, etc.

• POSCAR: The initial positions of the ions are set in this file.

• KPOINTS: The mesh in k-space will be generated according to the
flags set in the KPOINTS file.

• POTCAR: This file does not handle any input parameters but it con-
tains the pseudopotentials for each element.

3.1 Convergence Studies

Before starting the actual calculations, it is crucial to determine the input
flags for VASP accordingly. On the one hand, values such as the energy
cutoff of the plane wave basis should be large enough to simulate the
physical reality accordingly and on the other hand they should not be too
large or otherwise the performance will be severely slowed down.

3.1.1 Cutoff Convergence

The energy cutoff determines the maximum energy VASP uses for the
plane wave basis set. It can be controlled by the flag ENCUT in the INCAR
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file. The value should be chosen large enough to yield accurate results, but
alas the computational demand scales heavily with this value. As a rule of
thumb, it is recommended to set it higher than the maximum cutoff ENMAX

used for the computation of the pseudopotential found in the POTCAR file
for good results.

In this case the highest ENMAX was from the fluorine potential (dated
April 8th, 2002) with a value of 400 eV. Eventually, the cutoff ENCUT was
chosen to be 450 eV after some additional analysis (see Figure 3.1).
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Figure 3.1: The parameter ENCUT varies the cutoff energy for the plane
wave basis set and can be seen on the x-axis. On the y-axis the energy
quotient between the current cutoff and the maximum cutoff investigated
at 950 eV was determined. The calculation was iterated for a 1×1×1 and
a 2×2×2 unit cell respectively. A relative convergence in the order of 10−3

is already viable and additionally both curves exhibit a remarkably close
value of the final energy at a cutoff 450 eV. Because both curves are very
similar in their functional form, it can be assumed that the cutoff chosen
is sufficient even for larger cells.

3.1.2 k-Space Mesh

Sampling the Brillouin-zone with a right mesh can significantly improve
the calculation speed. All meshes in the following were generated using the
Monkhorst-Pack scheme [MP76]. Different cell sizes were also investigated.
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Note that the volume of the Brillouin zone VΩ reduces in size compared to
the volume of the primitive cell Vc with the relation

VΩ ∝
1

Vc
. (3.1)

Thus, the number of points in k-space needed to make an accurate
calculation reduces when the volume of the primitive unit cell increases.
For large supercells, it can even be sufficient to consider the Γ-Point (i.e.
the origin) only. When having such a system, the calculation simplifies
and the computational time needed will reduce greatly. In this case, all
simulations with 4 × 4 × 4 unit cells were performed with only the Γ-
point (see Figure 3.2) after some additional verification as will be shown
in subsection 3.6.2.
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Figure 3.2: The energies were compared for different mesh sizes of the
Monkhorst-Pack [MP76] scheme in reciprocal space. The orange dots rep-
resent a 1 × 1 × 1 unit cell of MgF2. For this cell, a reference calculation
with a large amount of points in k-space has been performed. Note the
discontinuity in the x-axis marked by the dashed vertical line 5 × 5 × 5
followed by 20×20×20. There is almost no difference compared to smaller
grid sizes. The blue squares try to find the right grid size for a 2×2×2 unit
cell. There is a sudden change in accuracy for the 3×3×3 Monkhorst-Pack
mesh, which is why this value was chosen for the calculations. The green
triangles account for a 4× 4× 4 super cell of thorium doped MgF2. Since
a Γ-only calculation saves a lot of computation time, it was important to
determine if the sampling is not too small (see subsection 3.6.2).
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3.2 Structure

The material MgF2 exhibits an exceptionally wide transparency range from
a few µm into the VUV region. It crystallizes into a simple tetragonal
cell [JAG76, AO] with a rutile structure (see Figure 3.3) [Rob79]. Its
melting point is at about 1535 K [CTT97].

(a) The unit cell of MgF2 is depicted.
In total, it consists of 2 magnesium and
4 fluorine atoms.

(b) This 2×2×2 super cell makes it pos-
sible to see the periodicity of the crystal
structure more easily.

Figure 3.3: Visual depiction of the structure of MgF2. The coloring was
chosen such that magnesium is displayed in orange and fluorine in a faint
blue. All figures in this work that depict lattice structures were made with
the software VESTA [MI11].

The lattice vectors were obtained by performing a volume scan and
considering the minimum for the energy. To do so, each of the lattice
vectors was varied and subsequently, the energy was fitted in terms of a
quadratic function in accordance with Hooke’s law

f(x;A,B, x0) = A (x− x0)2 +B, (3.2)

where A,B and x0 are the fit parameters, with x0 being the minimum
of the lattice vector length. This process was done iteratively until a
convergence was reached. The results are shown in Table 3.1.
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Lattice Vector VASP Expt[Bau76] Expt[AO]

a = b (Å) 4.70 4.62 4.64
c (Å) 3.10 3.05 3.06

Table 3.1: This table contains the calculated lattice parameters and a
comparison of experimental values. Here VASP estimates the vectors
to be larger than in the experiment, but the average relative increase is
only 1.5%.

3.3 Electronic Configuration

The band structure for MgF2 was determined using a variety of different
functionals. A comparison of the results for the band gap can be found in
Figure 3.4. The band structures determined can be found in Figure 3.5.
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Figure 3.4: In orange, the band gaps ∆ calculated with different function-
als are depicted. In faint blue are reference values [BCA+11]. It is evi-
dent, that for the PBE functional the band gap is underestimated. SCAN
shows a small improvement and lies directly between PBE and HSE. As
expected, the full Hartree-Fock calculation overestimates the experimental
value [AG98]. Thus, the mixing was adjusted denoted by the star * for the
HSE functional (see Figure 3.6) to fit the experimental value. The closest
value to the experiment without any tweaking is provided by G0W0 [AG98].
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3.3.1 Band Structure
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Figure 3.5: The band structure of different functionals was compared.
On the x-axis is the k-vector distance, on the y-axis the energy eigenvalue.
The functional form of the bands did not change much when using different
functionals, especially in the region near the gap and for the first excited
states.

The HSE functional includes a mixing parameter for the exact Hartree-
Fock correlation amount. As is shown in Figure 3.4, a pure Hartree-Fock
calculation overestimates the band gap and thus, this mixing parameter
can be increased to fit the result to the experimental data (see Figure 3.6).
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Figure 3.6: On the left side, the band gap ∆ was determined with HSE
calculations when the mixing parameter for Hartree-Fock type interactions
was varied. In VASP, this mixing parameter is controlled by the flag AEXX

in the INCAR file. The resulting values (orange dots) have a surprisingly
strong linear dependence and were fitted accordingly (blue line). Using
this fit, an optimal value for the mixing of AEXX = 0.4275 was determined
to match the experimental value [BCA+11]. On the right side, the band
structure was evaluated for the HSE functional with exactly this mixing,
denoted by HSE*. The resulting band gap turned out to be ∆ = 10.794 eV.
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3.3.2 Density Of States
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Figure 3.7: The density of states is compared for two cases. On the left side,
the calculation was done using the HSE potential with an adjusted mixing
parameter for HSE (see Figure 3.6) and on the right side the calculation
was done with G0W0. The band gap is highlighted by the dashed lines.
The functional form is roughly similar. Note that the number of points
k-points for the G0W0 calculation is smaller and the smearing parameter
was chosen to be larger. At the lower end of the gap, almost all of the
states are populated by fluorine electrons.

3.4 Optical Studies

Optical properties are intersting to study as well. In this section we exam-
ine the dielectric tensor (for a short review, see section A.5) in two ways:
One calculation was done with the PBE functional. For better results in
optical studies it is often required to include well calculated excited states,
which is beyond the reach of PBE. Therefore, the GW -approach with the
Random Phase Approximation (RPA) was used. The approach is simi-
lar to the HF-approach, as discussed in subsection 2.2.1, but the major
difference is that the Coulomb interaction is dynamically screened. For a
certain number of cases, this can lower the band gap compared to a pure
HF-calculation and improve the results. Indeed, the GW approach is quite
sophisticated and exceeds the scope of this work. For a short description
of the approach see reference [AG98].
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Figure 3.8: The optical properties of MgF2 were studied using the PBE
functional and the RPA within the GW -approach. The plots on the left
side depict the imaginary part of the diagonal elements of the dielectric
tensor, while the right side show the real part. The crystal exhibits two
optical axes, due to the symmetry. Off-diagonal elements of the tensor
were nearly zero and thus not shown in this plot. Remarkably, PBE shows
a similar result in the energy range shown. Since the computational effort
increases greatly for GW , the energy sampling was much lower and as a
consequence the curve is smoothed.
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3.5 Total Energies

To compare different configurations it is required that the systems con-
sist of the same particles to take all energy contributions into account.
Therefore, the energies of F2 and O2 in the gas phase were calculated be-
cause they are either ejected and go into the gas phase or get stored in the
bulk during the formation of the crystal due to charge compensation (for
possible charge compensations, see subsection 3.7.1).

It is possible to calculate the energies of gases in VASP by setting
the lattice constant in the POSCAR file to a very high value, such that
interactions between the different unit cells can be neglected. To test if
this is really the case, the lattice constant was varied up to very high
lengths as shown in Figure 3.9.
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|E
x
/E

m
a
x
−

1|

PBE F2 SCAN F2

PBE O2 SCAN O2

Figure 3.9: This figure shows the change in energy when the size of the
unit cell containing only one molecule is increased. The calculations were
performed with PBE and SCAN. Note that the y-axis is logarithmic and
thus the reference value Emax for a set of calculations cannot be shown in
this plot. It is save to assume that the interaction between two unit cells
becomes negligible for all systems at about 8 Å.

For Mg it was assumed that it will stay in the bulk. The final values
for the total energies for different functionals are shown in Table 3.2.
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Energy (eV)
Element PBE SCAN HSE

Gas
F2 -3.563800 -5.26599 -4.75428
O2 -9.85702 -12.16702 -13.51708

Bulk
Mg -2.72891 -9.08088 -2.34225
Th -7.344270 -95.716845 -8.809780
MgF2 -31.47584 -46.95527 -38.44715

Table 3.2: This table summarizes the total energies of the elements needed
for the charge compensation. As a reference, the bulk energy of MgF2

can be found in the last row. For the calculation of the molecules the gas
phase, the distance to the next atoms were determined as demonstrated
in Figure 3.9.

Usually, binding energy is released when the crystal forms, which is
also called heat (or enthalpy) of formation (HoF). To validate the results
obtained for the individual atoms, the heat of formation for MgF2 was
compared with experimental data, as shown in Table 3.3.

Functional
PBE SCAN HSE Expt.[Cha98]

HoF (eV) 10.8 13.67 13.30 11.69

Table 3.3: The heat of formation (HoF) of magnesium fluoride is compared
with an experimental value. While PBE is slightly below, SCAN and HSE
overestimate the energy. Remarkably, SCAN and HSE yield almost the
same value.

3.6 Doping

Now, the thorium atom will be introduced as a dopant. Doping can essen-
tially take place in one of two ways (see Figure 3.10):

(a) Substitutional Doping: The dopant will replace an atom of the orig-
inal lattice and thus sits on one of the lattice sites.

(b) Interstitial Doping: The dopant will sit in a position in between the
other atoms.

37



(a) Substitutional doping (b) Interstitial doping

Figure 3.10: The two different types of doping are depicted. The intro-
duced thorium is shown in a green color and its size is exaggerated for
demonstrative purposes.

Doping Type Total Energy (eV)

Substitutional -2014.8757
Interstitial -2011.6581

Table 3.4: This table compares the energy difference of substitutional and
interstitial doping in a 4 × 4 × 4 unit cell of MgF2 with Th doping. The
energy difference between the two doping types is ∆E = 3.22 eV. Calcu-
lations were performed with the PBE functional.

As we can see in Table 3.4, substitutional doping is energetically pre-
ferred. Still, external parameters such as temperature might still make it
possible that an energetically adverse configuration is created. It is possible
to determine the probability that this is the case by means of statistical
physics. Let PI and PS be the probability that interstitial or substitu-
tional doping is realized respectively. Its quotient can be calculated with
PI/PS = exp (−∆E/(kBT )). As an example, at T = 300 K and an energy
difference ∆E = 3.22 eV taken from Table 3.4 it follows that

PI
PS

= e
− ∆E
kBT = 6.27 · 10−55. (3.3)

Therefore, interstitial doping will be almost certainly never realized.
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3.6.1 Cell Size

Next, it was determined how large the super cell size will have to be chosen.
When thorium is implanted in the crystal, it will shift atoms in the near
vicinity. In the experiment, the concentration of thorium atoms is severely
lower than what is possible to simulate on a computer. It is crucial that the
cell is chosen large enough such that the natural periodicity of the crystal
is restored at the border of the unit cell, which is centered at the thorium
atom (i.e. the atoms at the borders do not ”feel” the thorium atom), to
get as close as possible to the experiment.

Unfortunately, increasing the volume of the unit cell and therefore the
number of atoms has an enormous impact on the computation time. The
largest unit cell investigated was a 5 × 5 × 5 super cell with 750 atoms.
The results are shown in Figure 3.11.
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Figure 3.11: The shift of atoms in the area around the central thorium
atom was compared for different unit cell sizes. It was determined by
investigating atoms in a sphere around Th with a diameter of 3.11 Å and
then looking at their average displacement compared to the 5×5×5 super
cell. Because the average displacement was quite small for the 4 × 4 × 4
super cell with 384 atoms, it was the system of choice for all subsequent
calculations.

With all forms of iterative relaxations, it can happen that somehow the
calculation converged at a local minimum, rather than the global minimum.
We rule out this possibility by displacing the thorium atom slightly and
then checking if it converges back into its initial position (see Table 3.5).
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Starting Position ∆d̄/Atom (Å) Energy (eV)

At Minimum 0.0037 -2014.8757
Displaced 0.013 -2014.8757

Table 3.5: The thorium atom was displaced in each direction by 1 % of the
cell size corresponding to 0.3 Å and the effects are presented in this table.
Atoms around Th shifted a little bit more but the energy stayed the same.
Additionally, the Th atom moved back into its initial position. Therefore,
it is confirmed, that the positions are not a local minimum but rather a
global one.

3.6.2 Γ-only k-mesh

As discussed in subsection 3.1.2, there is a possibility for a big decrease
in computing time, when it is valid to use a single k-point to sample the
whole Brillouin-zone, located at the Γ-point. The results of this analysis
are discussed in Table 3.6.

KPoint-Mesh
2× 2× 2 1× 1× 1

CPU Time (h): 23.3 3.3
Energy/Atom (eV): -5.24697 -5.24762
∆d̄/Atom (Å): 0.0037 0.017

Table 3.6: In this table we discuss the validity of using a single k-Point
at Γ for the calculation of 4 × 4 × 4 super cells. The system analyzed is
MgF2 with substitutional doping of Th and the PBE functional was used.
Remarkably, the CPU time required is about seven times lower than for the
bigger cell. Since the energy difference per atom is ∆E = 6.523 · 10−4 eV
and the shift of atoms around the center gets larger by ∆d̄ = 1.33 · 10−2 Å
the resulting error is negligible. All subsequent calculations of 4 × 4 × 4
super cells were done with a single point in k-space at Γ and the SCAN
functional.
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3.7 Charge Compensation

3.7.1 Overview

Thorium has an oxidation number of +4. As we have found in Table 3.4, it
will replace a Mg atom, which has an oxidation number of +2. Therefore,
two electrons will be available to form bonds with some other atoms which
will be located in the vicinity of the defect.

Practically, there are four possibilities on how this compensation can
take place.

(a) 1 Interstitial Oxygen:

An additional oxygen (oxidation number −2) atom will rest some-
where in between the lattice sites.

(b) 2 Substitutional Oxygen:

Oxygen can replace two fluorine atoms, which have an oxidation
number of −1.

(c) 2 Interstitial Fluorine:

The two charge compensation atoms can as well be two fluorine sit-
ting in between the lattice sites. The positions can be assumed to
be similar to the interstitial oxygen atoms due to the shape of the
lattice.

(d) 1 Vacancy of Magnesium:

The oxidation number of magnesium is +2 and therefore it is also
possible that one magnesium atom will be removed from the lattice.

An overview of the calculations done for the different types of charge
compensations can be found in Table 3.7.
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# Position Emax − E (eV) ∆ (eV)

01020 4 6 8

+1 O (int.):

1 {0.5, 1, 0.5} 6.86 5.43

2 {0.85, 0.85, 0.5} 6.31 5.42

3 {0.3, 0.7, 1} 7.29 5.09

4 {1, 1.5, 0.5} 8.44 3.26

+2 O (subs.):

5
{0.7, 0.7, 0},

13.68 5.7{0.7, 0.7, 1}

6
{0.2, 0.8, 0.5},

11.25 5.53{0.7, 0.7, 1}

7
{0.3, 0.3, 0},

14.26 4.77{0.7, 0.7, 1}

8
{0.3, 0.3, 1},

13.64 5.82{0.7, 0.7, 1}
+2 F (int.):

9
{0.5, 1, 0.5},

0.88 6.48{0.5, 0, 0.5}

10
{0.5, 1, 0.5},

1.06 6.46{1, 0.5, 0.5}

11
{0.15, 0.15, 0.5},

1.85 6.37{0.85, 0.85, 0.5}

12
{0.3, 0.7, 0},

2.37 5.85{0.3, 0.7, 1}

13
{0.7, 0.3, 1},

1.71 6.31{0.3, 0.7, 1}
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14
{0.7, 0.3, 0},

1.52 5.91{0.3, 0.7, 1}

15
{0.15, 0.15, 0.5},

0.87 6.4{0.5, 1, 0.5}

16
{0.3, 0.7, 1},

0.78 6.06{0.5, 1, 0.5}

17
{0.15, 0.15, 0.5},

0.52 5.93{0.3, 0.7, 1}

18
{0.5, 1, 0},

0.59 6.76{0.5, 1, 1}

19
{0.5, 0, 0},

0 6.51{0.5, 1, 1}

20
{0.5, 1, 1},

1.04 · 10−2 6.6{0.5, 0, 1}

21
{0.5, 1, 1},

0.4 6.41{1, 0.5, 1}

22
{0.5, 1, 1},

0.12 6.81{1, 0.5, 0}

23
{0.5, 1, 1.5},

3.36 4.58{0.5, 1.5,−0.5}

24
{0.5, 1, 0.5},

0.2 6.34{0, 0.5, 0}

25
{0.5, 1, 0.5},

0.29 6.56{0.5, 0, 0}
−1 Mg (vac.):

26 {0.5, 1.5, 0.5} 12.98 5.36

27 {0, 1, 1} 14.36 4.71

28 {0.5, 1.5, 0.5} 14.69 4.73

29 no doping 8.2 7.62
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Table 3.7: This table compares various different types of charge compensa-
tions, their ground state energy and band gap ∆. In the first column, the
number serves as an identifier, since the respective calculation including
the final position of the atoms as well as the density of states can be found
in Appendix C. The second column shows the initial position of the charge
compensation before the relaxation. The values in the curly brackets in-
dicate the x, y and z position in fractional coordinates in the 1 × 1 × 1
unit cell, where the thorium atom lies in its center. For a visual depic-
tion of the charge compensation in combination with the notation, please
see the Figures in section C.2. The third column is concerned with the
energy of the ground state and therefore related via Boltzmann factors to
the probability for the charge compensation to occur in the respective con-
figuration. The value 0 was chosen to be the energetically most favorable
configuration. As a consequence, configurations with higher values, i.e.
longer bars are more unlikely to occur. The energetically most favorable
type is the interstitial doping of +2F. Its configuration will subsequently
be highlighted with a green color. In the final column is the value for the
gap ∆. It is required for the gap to be larger than the isomer energy, such
that the crystal stays transparent for the core transition energy. Note that
all the calculations were done using SCAN. It is important to mention
that, as we have discussed in Figure 3.4, SCAN underestimates the band
gap. When compared to a bulk calculation of MgF2, thorium doping with
charge compensation has a lower energy, as can be seen in the last row.
This means that the crystal will accept thorium as a dopant.
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Figure 3.12: The density of states for the most probable configuration
19 of +2F interstitial is shown. The resulting band gap is estimated by
the SCAN functional to be 6.51 eV. Notice, that the first excited states
originate almost solely from the thorium atom.

A complete collection of all calculations with charge compensation,
including a depiction of the final ionic positions, a plot for the density of
states and tables for the total energies are shown in Appendix C.

3.8 Electric Field Gradient

The quadrupole interaction of a nucleus with an external electric field is de-
scribed by the quadrupole tensor and the electric field gradient [AAB+90].
The latter is a second rank tensor given by the partial spatial derivatives
of the electrostatic potential V that is external to the nucleus, evaluated
at the nucleus

Vij =
∂2V

∂xi∂xj

∣∣∣∣
nucleus

. (3.4)

Evidently, this tensor is symmetric and can therefore be diagonalized
to have the diagonal values Vxx, Vyy and Vzz, which are conventionally
ordered such that |Vzz| ≥ |Vyy| ≥ |Vxx|. Furthermore, it is traceless and
thus only two parameters are independent. Usually these are given by Vzz
and the asymmetry parameter

η =
Vxx − Vyy

Vzz
. (3.5)
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For a more detailed discussion and notably for the case that the electron
wave function has an overlap with the nucleus, see reference [KV79]. The
electric field gradient can be calculated numerically [PBBS98] and the
result is shown in Table 3.8.

# η Vzz (V/A2)

0 0.5 1 1.5 −4,000−2,000 0 2,000 4,000 6,000

1 9.6 · 10−2 4,148

2 0.73 231

3 0.64 493

4 1.5 · 10−2 1,970

5 0.59 −952

6 0.55 446

7 4.7 · 10−2 501

8 0.23 −2,138

9 0.1 −539

10 0.77 −526

11 0.19 −609

12 0.54 −1,045

13 0.12 −1,110

14 0.49 780

15 0.87 −544

16 0.38 899

17 0.31 423

18 2.3 · 10−2 477

19 0.92 439

20 0.54 −400

21 0.83 −394

22 0.87 −525
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23 0.63 −343

24 7.4 · 10−2 405

25 0.41 −420

26 0.24 −268

27 0.51 −590

28 0.54 −187

Table 3.8: In this table, the electric field gradient at the thorium atom
is shown for different charge compensations. For an explanation of the
charge compensation in each row, please see Table 3.7 or section C.2. The
energetically favored type of compensation is shown with a green identifier
number.

47



48



Chapter 4

Discussion

In this work, we have demonstrated a basic approach to ab-initio simu-
lations of materials. The lattice parameters of MgF2 are in good agree-
ment with the experiment. A comparison of various energy functionals re-
veals that only computationally demanding approaches such as the G0W0-
scheme or a HSE calculation with appropriate mixing, lead to values similar
to the experimental value of the gap. The optical studies not only confirm
the transparency of the crystal for the investigated energy range, but also
display that the PBE functional leads to remarkably similar results in com-
parison with GW . The enthalpy of formation was also in accordance with
the experiment, while the SCAN functional yields almost the same energy
as the HSE functional. We have shown that upon introducing thorium as
a dopant, it will substitute a magnesium atom. We have demonstrated
that the use of a 4 × 4 × 4 super cell with a Γ-only calculation is a very
reasonable trade-off between computing speed and accuracy.

As the simulated data reveal MgF2 will accept thorium as a dopant
and the most probable configuration for charge compensation is the inter-
stitial placement of +2F. Fortunately, the size of the gap is also preserved.
Therefore, the direct excitation of the thorium nucleus could be possible
according to our calculations. For the experimental realization it is im-
portant to mention that the charge compensation of oxygen reduces the
gap and therefore, the impurity might lessen the crystals transparency. A
magnesium vacancy is very unlikely to occur. It is energetically favorable
if the charge compensation stays in the vicinity, but not too close to the
thorium atom. Interestingly, the interstitial final position of the oxygen or
fluorine atoms often converges in a position that breaks the symmetry of
the lattice.
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We have calculated that there is a large energy difference between the
undoped MgF2 and some type of doping. We note, that this does not
necessarily mean that the crystal easily accepts thorium and the charge
compensation with a great release of energy because usually, there is an
energy barrier for the atoms to overcome when entering the crystal.

The most important unknown variable is the energy of the isomer state
of 229mTh. As we can see in the density of states, the energies just above
the gap are almost exclusively occupied by thorium states for all types of
charge compensations. It might be possible, that the nucleus cannot be
excited directly because the electrons will absorb the photons instead.

However, there is a possibility that the core will be indirectly excited
by an excited electron if only the overlap between the nucleus and the elec-
tron wavefunction is large enough [HSNOP13, PFPT10, BKM+17]. This
process is called electron-bridge. The huge advantage is, that the elec-
tron orbitals are much greater in size than the nucleus and therefore the
absorption of a photon is more likely, due to its larger cross section. Ad-
ditionally, if the energy of 229mTh is below the gap, one could in principle
place oxygen into MgF2 deliberately to tailor the gap to a specific value.

The experiment is thus far concerned with the CaF2 crystal, which
shows a similar behavior as MgF2 [Des16]. The current data show a high
amount of luminescence in the core transition range, which might result
from the excitation of thorium electrons above the gap [SSS15]. Further
studies should calculate the overlap of these electrons with the nucleus.
The choice of the host system could therefore not only be dependent on
the gap, but also on the overlap of the electron wave function with the
thorium nucleus if the electron-bridge mechanism can be realized.
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Appendix A

Theory

A.1 Isomer states

This section aims to give a qualitative discussion about metastable nuclear
states, called isomer states.

When a nucleus is excited, it means that one or more of its protons or
neutrons reach states with higher energy levels. Usually these are states
with far higher energy than electronic excitations. There are several ways
how the state decays into the ground state, most prominently by the emis-
sion of a photon. For these types of decay it is important to note that
the angular momentum has to be conserved. In almost all cases it can
be assumed, that the photon can carry away one unit of angular momen-
tum, since it is a boson and thus the nuclear spin cannot change by more
than one unit in the decay. These processes of so-called electric dipole
transitions are defined by the term allowed decays.

What happens if the excited nucleus has more than one unit of spin?
These processes are magnetic transitions and can still take place but take
much more time. It is estimated that each additional unit of angular
momentum decreases the rate by about 5 orders of magnitude [vD11].
Thus, the nucleus shows a metastable excited state, denoted with an m
next to its atomic mass number. Typically, they decay in the order of
10−9 s [MWJC07]. In particular, there are two interesting isomer states,
namely 180mTa and 229mTh.

The former one is a state that has nine units of spin. The decay is thus
extremely unlikely to occur. While its ground state decays with β-decay
with a half life time of about 8 hours, the metastable state is estimated
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to have a half life time of more than 1015 years. No decay of 180mah has
ever been observed and it is the only excited nucleus state, that is in fact
stable.

The latter one, 229mTh, is the main topic of this work. It is extraordi-
nary due to its extremely small excitation energy that lies several orders
of magnitude below what isomers usually have, as depicted in Figure A.1.
In addition, due to its predicted long half life time, it would result in an
immensely small natural linewidth of ∆E/E ≈ 10−20 eV [vdWSLT17].

Figure A.1: This plot depitcs the energy of isomer states on a logarithmic
y–axis. 229mTh shows by far the lowest energy difference to its ground
state and makes it perfect to study in terms of a potential atomic clock.
The figure was taken from [vdWSL+16].

Because the energy is in the range of optical lasers, the excitation
could potentially lead to many interesting applications, for example test-
ing the stability of fundamental constants [vdWSL+16, Fla06, RDG+10,
LFDF09], studies of material properties and it may be used for builiding
a laser [BKM+17, Tka11].
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A.2 Ritz Method

The Ritz method states that the lowest energy eigenvalue, i.e. the ground
state, satisfies the following relation

E0 ≤
〈Ψ|H |Ψ〉
〈Ψ|Ψ〉 . (A.1)

The equality is only satisfied in the case of |Ψ〉 = |Ψ0〉, where |Ψ0〉 is the
ground state wave function.

Proof.

〈Ψ|H|Ψ〉 =
∑
n

〈Ψ|H|Ψn〉 〈Ψn|Ψ〉

=
∑
n

En 〈Ψ|Ψn〉 〈Ψn|Ψ〉

≥ E0

∑
n

〈Ψ|Ψn〉 〈Ψn|Ψ〉

= E0 〈Ψ|Ψ〉

(A.2)

A.3 Functionals

Functionals are a widely applied mathematical concept in physics. Infor-
mally speaking, a functional takes a function as an input and produces a
scalar value as the output. Let V be a vector space of K ∈ {R,C}. Then
F is a functional if [BFK+15]

F : V → K (A.3)

As an example [Cap02], consider the particle number, which is also dis-
cussed in this work

N =

∫
n(r) d3r = N [n]. (A.4)

The square brackets denote, that the variable n is in fact a function
n(r). The integral operation reduces the particle density n to the scalar
value of the total particle number N .
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Functional variation

Consider a functional in one variable y = f(x) [Cap02]. To construct
a meaningful formula for the variation, there are two types of variations
to consider. When the functional dependence f(x) is fixed, the usual
approach is the differential dy, which is a quantity that measures how y
changes as a result of a variation x → x + dx of the variable x. On the
other hand, if the value x is fixed, we can study how the value y changes
at this point by a variation of f(x), which is expressed by the functional
variation δf

f̃(x) = f(x) + δf(x). (A.5)

f̃(x) is different only for an infinitesimal perturbation δy(x) from y(x)
for all x ∈ [x0, x1]. An important condition is that the values on the
borders are held fixed δf(x0) = δf(x1) = 0.

Functional derivative

The differential of a functional is defined to be the part of the difference
F [f + δf ]−F [f ] that depends on δf linearly [PW94]. Because each δf(x)
may contribute to this difference we write for small δf

δF =

∫
δF

δf(x)
δf(x) dx. (A.6)

Notice the similarities to the total differential of a functionG(x1, x2, . . . ) :
dG =

∑
i ∂G/∂xi dxi. In fact, equation (A.6) can be seen as an extension

to the total differential.

The quantity δF/δf(x) is the functional derivative of F with respect
to f at the point x. It is possible to determine a functional derivative by
expanding F [f + δf ]−F [f ] in terms of δf and keeping only the first order
term. Thus a functional F [f ] is differentiable if δF/δf(x) exists in the
sense of

lim
ε→0

F [f + εφ]− F [f ]

ε
=

{
d

dε
F [f + εφ]

}
ε=0

=

∫
δF

δf(x)
φ(x) dx. (A.7)
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A practical formula can be found that is applicable for most cases of
interest. For a functional F [n] =

∫
f(n, n′, n′′, . . . ;x) dx the derivative can

be found to be [GFS00]

δF [n]

δn(x)
=
∂f

∂n
− d

dx

∂f

∂n′
+

d2

dx2

∂f

∂n′′
− d3

dx3

∂f

∂n′′′
+ · · · (A.8)

A.4 PBE Functional

The PBE functional can be written as [XI04]

EPBE
xc =

∫
d3r n(r)ε0

x(n)Fxc(rs, ζ, s), (A.9)

where rs is the local Wigner-Seitz radius defined as rs = [(4π/3)n(r)]1/3,
the local spin polarization ζ = (n↑−n↓)/n and s is a dimensionless density
gradient, defined as s = |∇n|/(2kFn), where kF is the Fermi wave vector.
The enhancement factor

Fxc(rs, ζ, s) ≡ Fx(s) +
ε0
c(rs, ζ)

ε0
x(n)

Fc(rs, ζ, t), (A.10)

where t = |∇n|/(2gksn), with g = [(1 + ζ)2/3 + (1 − ζ)2/3]/2 and ks =
(4kF/π)1/2 is the Thomas-Fermi screening wave vector.

FPBE
x (s) = 1 + κ− κ

1 + µ
κ
s2
, (A.11)

where κ = 0.804 and µ = 0.21951.

Fc(rs, ζ, t) ≡ 1 +
H(rs, ζ, t)

ε0
c(rs, ζ)

(A.12)

and

HPBE = g3 β
2

2α
ln

[
1 +

2α

β

t2 + At4

1 + At2 + A2t4

]
, (A.13)

where α = 0.0716 , β = 0.066725, A = 2α/(β exp[−2αε0
c(rs, ζ)/(g3β2)]).
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A.5 Optics

When an electric field E enters a medium, the atoms and molecules will be
polarized and thus create a field D, that weakens the original field E. The
strength of this weakening is described by the relative permittivity ε(ω)

D = ε(ω)E. (A.14)

In SI-Units the vacuum formally has a permittivity, denoted by ε0. In
a material, the relative permittivity εr(ω) is a dimensionless number, with
the relationship

εr =
ε(ω)

ε0

. (A.15)

In anisotropic media, the relative permittivity is a second rank tensor,
but for simplicity we assume a scalar value for εr. Generally speaking,
the relative permittivity is a complex number, with εr(ω) = εRe

r (ω) −
iεIm
r (ω). In the following, we will see that the imaginary part describes

the absorption of an electromagnetic wave. To improve readability, we will
drop the obvious dependencies of functions.

Solving Maxwell’s inhomogeneous equations in the case of zero charge
and current, we end up with the wave equation for E and B respectively

∇2E− εµ∂
2E

∂t2
= 0 (A.16)

∇2B− εµ∂
2B

∂t2
= 0 (A.17)

We know, that the solution of wave equations propagate with a speed
given by the factor in front of the derivative. In vacuum this would lead
to 1/c2 = εµ. In this case, we use equation (A.15) and get

v =
1√
εµ

=
1√
εrµr

c =
c

n
, (A.18)

with the index of refraction being

n =
√
εrµr. (A.19)
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Considering an electromagnetic plane wave

E = Re
{
E0ei(k·x−ωt)} (A.20)

and plugging it into the wave equation (A.17), we get a dispersion
relation

ω2 =
εµ

k2
, (A.21)

and since ω = 2πν = 2πc
λ

it follows that

k =
2π

λ
n. (A.22)

Now, if we plug in k into the plane wave (A.20), we see that the imag-
inary part of n results in a damping of the wave

E = Re
{

E0ei( 2π
λ
nx−ωt)

}
= e−

2π
λ

Im{n}x Re
{

E0ei( 2π
λ

Re{n}x−ωt)
}
. (A.23)
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Appendix B

Optimization

B.1 Compilation

For this thesis the compilation of VASP from the source code was needed.
During the compilation, the Intel compiler offers an optimization flag -O,
where the subsequent number increases the speed of computation. It
was determined, whether this flag produced significant improvements and
whether it will be more prone to errors (see Table B.1). After the analysis,
it was determined that the -O1 flag was practically as efficient as -O2 while
execution errors can be more easily avoided.

Time (s) Page Faults
CPU Total Minor Major

-O1 13.2 14.8 24941 28
-O2 13.1 14.0 25454 46

Table B.1: For a test calculation, the two optimization flags are compared.
While the total elapsed time decreased by about 5 %, the major page faults
increased by 64 %.

B.2 Ionic Relaxation Parameters

Because the minimization procedure is done iteratively, a proper setting
for the minimization scheme (time steps and algorithms) is important for
convergence. A study thereof is shown in Table B.2. In conclusion, the
CG-method outperforms the DIIS scheme by far and was thus used for
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most of the calculations.

IBRION=1 IBRION=2

POTIM (fs) Time (min) # steps Time (min) # steps

0.1 418 400 145 99
0.2 419 400 140 95
0.3 379 400 153 104
0.4 384 400 187 141
0.5 280 284 144 99

Table B.2: In this table the parameter POTIM was varied for different
IBRIONs. The case IBRION=1 corresponds to the DIIS scheme, while
IBRION=2 uses the CG method, as mentioned in subsection 2.4.5. The
system used for the computation was a 2F interstitial 2× 2× 2 super cell
of MgF2 with Th doping and a 3×3×3 Monkhorst-Pack mesh in k-space.
The maximum number of ionic steps is controlled by the NSW-tag and was
set to NSW = 400. The functional behavior of POTIM remains unclear but
it is obvious, that the CG method converges much faster and more reliable
than DIIS for the case studied.

B.3 Paralellization

The calculations in DFT and beyond often need massively parallel ma-
chines to simulate systems with many atoms. There are a number of ways
to increase computation speed with VASP with the architecture in mind.
The flag NPAR controls how the calculation of the bands is distributed
among the nodes. It was determined that the best optimization for the
system is at NPAR = 4 (see Figure B.1).
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Figure B.1: The performance of a MgF2 with Th doping was compared
for different numbers of NPAR. The unit cell was 2× 2× 2 in size and the
k-points grid was chosen to be a 3 × 3 × 3 Monkhorst-Pack mesh. It can
be seen, that NPAR = 4, lies at a clear minimum.
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Appendix C

List of Calculations

This section includes a comprehensive list of the calculations made for
the different charge compensations. The respective position of the charge
position is given in fractional units of the 1× 1× 1 unit cell with thorium
at its center.

C.1 Total Energies

To compare different systems energetically, there must be the same number
of particles in it. Covering all discussed cases, the total ensemble consists
of:

127 Mg 256 F 1 Th 1 O2 1 F2

C.1.1 +O (Interstitial)

Inside the crystal we have: 127 Mg 256 F 1 Th 1 O

To get the total energy one needs to calculate

E = VASP +
1

2
O2 + F2 (C.1)
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# Position Energy (eV)

1 {0.5, 1, 0.5} -3115.0862
2 {0.85, 0.85, 0.5} -3115.6279
3 {0.3, 0.7, 1} -3114.6551
4 {1, 1.5, 0.5} -3113.4985

Table C.1: Total energies for interstitial oxygen as charge compensation.

C.1.2 +2O (Substitutional)

Inside the crystal we have: 127 Mg 254 F 1 Th 2 O

To get the total energy one needs to calculate

E = VASP + 2 F2 (C.2)

# Position Energy (eV)

5 {0.7, 0.7, 0} {0.7, 0.7, 1} -3108.2650
6 {0.2, 0.8, 0.5} {0.7, 0.7, 1} -3110.6901
7 {0.3, 0.3, 0} {0.7, 0.7, 1} -3107.6791
8 {0.3, 0.3, 1} {0.7, 0.7, 1} -3108.3002

Table C.2: Total energies for substitutional oxygen as charge compensa-
tion.

C.1.3 +2F (Interstitial)

Inside the crystal we have: 127 Mg 258 F 1 Th

To get the total energy one needs to calculate

E = VASP + O2 (C.3)
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# Position Energy (eV)

9 {0.5, 1, 0.5} {0.5, 0, 0.5} -3121.0604
10 {0.5, 1, 0.5} {1, 0.5, 0.5} -3120.8772
11 {0.15, 0.15, 0.5} {0.85, 0.85, 0.5} -3120.0877
12 {0.3, 0.7, 0} {0.3, 0.7, 1} -3119.5722
13 {0.7, 0.3, 1} {0.3, 0.7, 1} -3120.2324
14 {0.7, 0.3, 0} {0.3, 0.7, 1} -3120.4227
15 {0.15, 0.15, 0.5} {0.5, 1, 0.5} -3121.0771
16 {0.3, 0.7, 1} {0.5, 1, 0.5} -3121.1610
17 {0.15, 0.15, 0.5} {0.3, 0.7, 1} -3121.4223
18 {0.5, 1, 0} {0.5, 1, 1} -3121.3496
19 {0.5, 0, 0} {0.5, 1, 1} -3121.9421
20 {0.5, 1, 1} {0.5, 0, 1} -3121.9317
21 {0.5, 1, 1} {1, 0.5, 1} -3121.5454
22 {0.5, 1, 1} {1, 0.5, 0} -3121.8244
23 {0.5, 1, 1.5} {0.5, 1.5,−0.5} -3118.5821
24 {0.5, 1, 0.5} {0, 0.5, 0} -3121.7396
25 {0.5, 1, 0.5} {0.5, 0, 0} -3121.6544

Table C.3: Total energies for interstitial fluorine as charge compensation

C.1.4 −Mg (Vacancy)

Inside the crystal we have: 126 Mg 256 F 1 Th

To get the total energy one needs to calculate

E = VASP + Mg + O2 + F2 (C.4)

# Position Energy (eV)

26 {0.5, 1.5, 0.5} -3108.9670
27 {0, 1, 1} -3107.5857
28 {0.5, 1.5, 0.5} -3107.2527

Table C.4: Total energies for a magnesium vacancy as charge compensa-
tion.
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C.1.5 No Doping

Inside the crystal we have:

128 Mg 256 F

To get the total energy one needs to calculate

E = VASP− 1Mg + 1Th + 1F2 + 1O2 (C.5)

# Energy (eV)

29 -3113.7467

Table C.5: Total energy for a 4× 4× 4 cell of MgF2 without doping.

C.1.6 PBE

For the most probable configuration, a PBE calculation was also performed
to validate the result.

# Energy (eV) EMgF2
− E (eV) ∆ (eV) η Vzz (V/A2)

19 (PBE) -2032.4862 3.03 5.82 1.00 436
19 (SCAN) -3121.9421 8.20 6.51 0.92 439

Table C.6: In this table, a comparison of the PBE and the SCAN functional
is demonstrated. As expected, PBE underestimates the band gap ∆. The
values for the electric field gradient are in good accordance with SCAN.
However, we are surprised to find a large deviation in the energy difference
of the undoped MgF2.
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Figure C.1: The density of states for the most probable configuration
calculated with PBE is shown. The band gap is ∆ = 5.8464 eV.
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C.2 Plots

On the top of each page is a figure that shows the displacement of the
atoms when the dopant and charge compensations are introduced. Note
that the sizes of the atoms are not to scale. The charge compensations
and the thorium atom are highlighted by making the sphere larger.

At the bottom of each page the DOS for each element is depicted
separately and the region around the gap ∆ is zoomed in. The number
of samples for the whole DOS is controlled by the NEDOS flag in VASP. It
was set to NEDOS=3000 and therefore, a lot of spikes appear due to some
isolated and relatively flat energy bands. The spikes are an artifact from
calculation only the Γ-point.

70



C.2.1 O Interstitial

# 1

(a) Initial Position (b) Final Position

Figure C.2: Initial position of the interstitial oxygen: {0.5, 0.5, 1}.
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Figure C.3: ∆ = 5.4285 eV
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# 2

(a) Initial Position (b) Final Position

Figure C.4: Initial position of the interstitial oxygen: {0.85, 0.85, 0.5}.
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Figure C.5: ∆ = 5.4221 eV
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# 3

(a) Initial Position (b) Final Position

Figure C.6: Initial position of the interstitial oxygen: {0.3, 0.7, 1}.
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Figure C.7: ∆ = 5.0928 eV
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# 4

(a) Initial Position (b) Final Position

Figure C.8: Initial position of the interstitial oxygen: {1.5, 1.5, 0.5}.
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Figure C.9: ∆ = 3.2613 eV
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C.2.2 O Substitutional

# 5

(a) Initial Position (b) Final Position

Figure C.10: Initial positions of the substitutional oxygens: {0.7, 0.7, 0}
and {0.7, 0.7, 1}.
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Figure C.11: ∆ = 5.7029 eV
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# 6

(a) Initial Position (b) Final Position

Figure C.12: Initial positions of the substitutional oxygens: {0.2, 0.8, 0.5}
and {0.7, 0.7, 1}.
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Figure C.13: ∆ = 5.5298 eV
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# 7

(a) Initial Position (b) Final Position

Figure C.14: Initial positions of the substitutional oxygens: {0.3, 0.3, 0}
and {0.7, 0.7, 1}.
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Figure C.15: ∆ = 4.767 eV
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# 8

(a) Initial Position (b) Final Position

Figure C.16: Initial positions of the substitutional oxygens: {0.3, 0.3, 1}
and {0.7, 0.7, 1}.
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Figure C.17: ∆ = 5.8164 eV
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C.2.3 F Interstitial

# 9

(a) Initial Position (b) Final Position

Figure C.18: Initial positions of the interstitial fluorine: {0.5, 1, 0.5} and
{0.5, 0, 0.5}.
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Figure C.19: ∆ = 6.4807 eV
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# 10

(a) Initial Position (b) Final Position

Figure C.20: Initial positions of the interstitial fluorine: {0.5, 1, 0.5} and
{1, 1, 0.5}.
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Figure C.21: ∆ = 6.4631 eV
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# 11

(a) Initial Position (b) Final Position

Figure C.22: Initial positions of the interstitial fluorine: {0.15, 0.15, 0.5}
and {0.85, 0.85, 0.5}.
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Figure C.23: ∆ = 6.3693 eV
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# 12

(a) Initial Position (b) Final Position

Figure C.24: Initial positions of the interstitial fluorine: {0.3, 0.7, 0} and
{0.3, 0.7, 1}.
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Figure C.25: ∆ = 5.8464 eV
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# 13

(a) Initial Position (b) Final Position

Figure C.26: Initial positions of the interstitial fluorine: {0.7, 0.3, 1} and
{0.3, 0.7, 1}.
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Figure C.27: ∆ = 6.3056 eV
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# 14

(a) Initial Position (b) Final Position

Figure C.28: Initial positions of the interstitial fluorine: {0.7, 0.3, 0} and
{0.3, 0.7, 1}.

−10 −5 0 5 10 15 20
0

10

20

30

40

E − EF (eV)

D
en

si
ty

of
S
ta
te
s Mg Th

F

−10 −5 0 5 10 15 20
0

10

20

30

40

E − EF (eV)

D
en
si
ty

o
f
S
ta
te
s Mg Th

F

Figure C.29: ∆ = 5.9133 eV
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# 15

(a) Initial Position (b) Final Position

Figure C.30: Initial positions of the interstitial fluorine: {0.15, 0.15, 0.5}
and {0.5, 1, 0.5}.
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Figure C.31: ∆ = 6.4008 eV
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# 16

(a) Initial Position (b) Final Position

Figure C.32: Initial positions of the interstitial fluorine: {0.3, 0.7, 1} and
{0.5, 1, 0.5}.

−10 −5 0 5 10 15 20
0

10

20

30

40

E − EF (eV)

D
en

si
ty

of
S
ta
te
s Mg Th

F

−10 −5 0 5 10 15 20
0

10

20

30

40

E − EF (eV)

D
en
si
ty

o
f
S
ta
te
s Mg Th

F

Figure C.33: ∆ = 6.0628 eV
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# 17

(a) Initial Position (b) Final Position

Figure C.34: Initial positions of the interstitial fluorine: {0.15, 0.15, 0.5}
and {0.3, 0.7, 1}.
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Figure C.35: ∆ = 5.9309 eV
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# 18

(a) Initial Position (b) Final Position

Figure C.36: Initial positions of the interstitial fluorine: {0.5, 1, 0} and
{0.5, 1, 1}.
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Figure C.37: ∆ = 6.761 eV
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# 19

(a) Initial Position (b) Final Position

Figure C.38: Initial positions of the interstitial fluorine: {0.5, 0, 0} and
{0.5, 1, 1}.
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Figure C.39: ∆ = 6.5103 eV
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# 20

(a) Initial Position (b) Final Position

Figure C.40: Initial positions of the interstitial fluorine: {0.5, 0, 1} and
{0.5, 1, 1}.
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Figure C.41: ∆ = 6.6002 eV
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# 21

(a) Initial Position (b) Final Position

Figure C.42: Initial positions of the interstitial fluorine: {0.5, 1, 1} and
{1, 0.5, 1}.
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Figure C.43: ∆ = 6.4141 eV
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# 22

(a) Initial Position (b) Final Position

Figure C.44: Initial positions of the interstitial fluorine: {0.5, 1, 1} and
{1, 0.5, 0}.
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Figure C.45: ∆ = 6.8147 eV
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# 23

(a) Initial Position (b) Final Position

Figure C.46: Initial positions of the interstitial fluorine: {0.5, 1.5, 1.5} and
{0.5, 1.5,−0.5}.
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Figure C.47: ∆ = 4.581 eV
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# 24

(a) Initial Position (b) Final Position

Figure C.48: Initial positions of the interstitial fluorine: {0.5, 1, 0.5} and
{0, 0.5, 0}.
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Figure C.49: ∆ = 6.3362 eV
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# 25

(a) Initial Position (b) Final Position

Figure C.50: Initial positions of the interstitial fluorine: {0.5, 1, 0.5} and
{0.5, 0, 0}.
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Figure C.51: ∆ = 6.5602 eV
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C.2.4 Mg vacancy

# 26

(a) Initial Position (b) Final Position

Figure C.52: The magnesium vacancy: {0, 1, 1}.
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Figure C.53: ∆ = 5.3627 eV
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# 27

(a) Initial Position (b) Final Position

Figure C.54: The magnesium vacancy: {0.5, 0.5, 1.5}
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Figure C.55: ∆ = 4.7093 eV
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# 28

(a) Initial Position (b) Final Position

Figure C.56: The magnesium vacancy: {0.5, 1.5, 0.5}
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Figure C.57: ∆ = 4.7307 eV
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