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Preface

It was during the work on my bachelor thesis with the topic “Der Holomorphiebegriff fiir Clifford-Algebra-
wertige Funktionen” that I first got into contact with non-commutative analysis. I discovered that the
notion of Cauchy-Fueter-regularity allowed to generalize most of the classical results on holomorphic
functions to the higher-dimensional case of quaternion- or Clifford-algebra-valued functions. The associ-
ated function theory had been well developed for a long time and played a fundamental role in the field
of Clifford-analysis.

After the course “Functional analysis 2 1 was fascinated by the idea of a functional calculus: the
fact that it was possible to extend functions from a complex to an operator argument. I wondered
whether it was possible to define an analogue theory for operators on “Banach spaces” over quaternions
or Clifford-numbers and I chose this question to be the topic of my master thesis.

Defining a functional calculus in the quaternionic setting had been an open problem for a long time.
Several mathematicians had considered it over the years without achieving satisfactory results. Fortu-
nately, the discovery of the notion of slice hyperholomorphicity gave new impact to this field and hence,
during the last decade, mathematicians have made great progress in answering the related questions.
When I started to work on my master thesis, the foundations of the theory of slice hyperholomor-
phic functions and the associated S-functional calculus were well established. Many related results had
been developed by Fabrizio Colombo and his collaborators at the Politecnico di Milano. Encouraged
by Michael Kaltenbéck, my supervisor at Vienna, I contacted Fabrizio Colombo and we started a very
interesting and fruitful cooperation.

The aim of my master thesis is to give an overview on the fundamentals of the theory of quaternion-
valued slice hyperholomorphic functions and the S-functional calculus for quaternionic linear operators.
The analogue of the classical resolvent equation, Theorem 4.16, was found during my cooperation with
Fabrizio Colombo. The presented proofs of the product rule and the existence of Riesz-projectors, which
are based on this equation, were also developed in this period.

To keep my master thesis within reasonable bounds, I expect the reader to be familiar with the
fundamentals of complex analysis and functional analysis, as they are taught in introductory courses at
university.
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Chapter 1

Introduction

In the 1930s, Birkhoff and von Neumann showed that the Schrédinger equation can be written using
either complex- or quaternion-valued functions [5]. Since then, many attempts have been made to develop
a quaternionic version of quantum theory. However, in contrast to the complex case, the mathematical
foundations of quaternionic quantum mechanics have been an open question for a long time. In particular,
the identification of the correct notion of spectrum of a quaternionic linear operator and the definition
of a functional calculus that is useful in applications caused difficulties for mathematicians [1]. As a
consequence, it was also not possible to formulate the spectral theorem for quaternionic linear operators
precisely. The theory of slice hyperholomorphic functions and the related S-functional calculus, which
are presented in this master thesis, answer these questions.

In order to explain the difficulties in the quaternionic case, we give a short overview on the situation
in the complex case. This overview is not a complete discussion. It is rather meant to be a motivation
of the approach in the quaternionic case. The proofs of the presented results can be found for instance
in [16, Chapter VII].

1.1 The Riesz-Dunford functional calculus

The most basic functional calculus is the polynomial functional calculus for linear operators on a finite
dimensional Banach space. For a linear operator A on C* and any p(z) = Zg:o anz™ in the set of
complex polynomials C[z], we define

N
p(A) = Z an, A",
n=0

where A° = 7 and T denotes the identity operator as usual.

This polynomial functional calculus is consistent with algebraic operations such as addition and
multiplication and gives a lot of useful information about the operator A. For instance, we may consider
the minimal polynomial m 4 of A, that is, the polynomial with leading coefficient 1 of lowest degree such
that m4(A) = 0. Then a € C is an eigenvalue of A if and only if a is a root of m 4 as it is well known from
linear algebra. Moreover, for any p € C[z] there exist polynomials ¢,r € C[z] with 0 < deg(r) < deg(ma)
such that p(z) = q(z)ma(z) + r(z). Hence, we obtain p(A) = g(A)ma(A) + r(4) = r(A). It is even
possible to specify this observation.

Lemma 1.1. Let A be a linear operator on C*, let o(A) = {\1,...,An} be the set of eigenvalues of A
and let vy,...,vn € N be such that ma(z) = ngl(z — Ap)¥m. A polynomial p € Clz] satisfies p(A) =0
if and only if p has a zero of order at least v, at A\, for anyn=1,...,N.

In particular, p(A) = q(A) for two polynomials p,q € Clz] if and only if p — q has a zero of order at
least v, at N, for anyn=1,..., N, that is, if and only if

p) =a(Mn), POn) =d' )y ooy DY (M) = ¢ (N\,) forn=1,...,N.

It is possible to extend this polynomial calculus to functions that are analytic on an open set that
contains o(A). For such a function f, we can choose a polynomial py € C[z] such that

pr(An) = fn), D3 (n) = f'(An), - -, p(fun)()\n) = fn(\,) forn=1,....N

1



and set f(A) = ps(A). Lemma 1.1 implies that this calculus is well defined and independent of the choice
of the polynomial p;. Note that the set, on which f is holomorphic, does not have to be connected because
T, /), -y f@)(N,) only depend on the values of f on a neighborhood of . Nevertheless, the
essential information is given by the polynomials of degree lower or equal to deg(m ).

If we consider a bounded linear operator 7' on an infinite dimensional complex Banach space V,
then T' does not necessarily satisfy a polynomial equation p(7') = 0. Therefore, the set of polynomials
is too small to provide a complete picture of the operator T. A natural approach to enlarge the class
of admissible functions would be to consider power series of the form P(z) = > 77 a,2" and to define
P(T) =" 5 a,T". However, this method is not satisfactory because it requires additional assumptions
on the radius of convergence of P, which are often too restrictive, in order to ensure the convergence of
the series ZZO:() a,T™. Moreover, this series does not converge at all if the operator T is unbounded.
Therefore this approach can not be generalized to the case of unbounded operators.

To find a different approach, we first recall that, in the finite dimensional case, f(A) depends only on
the values of the function f on a neighborhood of the set of eigenvalues of A. In the infinite dimensional
case, the set of eigenvalues is not sufficient to characterize an operator, as it is well known. It must be
replaced by its spectrum, which coincides with the set of eigenvalues in the finite dimensional case.

Definition 1.2. Let T be a bounded operator on a complex Banach space V. The set p(T) of all
A\ € C such that (N —T)~! exists as a bounded operator on V is called the resolvent set of T. The set
o(T) =C\ p(T) is called the spectrum of T

Lemma 1.3. Let T be a bounded operator on a complex Banach space V. The spectrum o(T) is a
nonempty, compact set that is contained in the ball By (0).

Let U C C be an open set such that its boundary OU consists of a finite number of rectifiable Jordan
curves. If f is a function that is holomorphic on an open set that contains U, then Cauchy’s integral
formula states that ) £6)

f(z) =

27 ou§—2

dg

for any z € U. The idea of the Riesz-Dunford-functional calculus is to replace the variable z in this
formula by the operator T and to define

Oy GCA R IGES (11)

The question is whether this procedure makes any sense.

Lemma 1.4. Let T be a bounded operator on a complex Banach space V. The function p— R, (T) =
(uZ —T)~1 is holomorphic on p(T). It is called the resolvent of T.

This lemma and Cauchy’s integral theorem imply that the integral in (1.1) does not depend on the
set U.
Let us consider the Cauchy kernel 5% For |z| < || it allows the expansion

1 71 1 7}00 —1 nioo ne—n—1
5—2_51—5_12:_5,;(5 ) _;25 (12

because the geometric series ZZO:O q" = %q converges for |g| < 1. Now recall that the Neumann series

YreoT" = (T —T)7! converges for ||T|| < 1. Thus, for |T|| < |A|, we obtain the analogous series
expansion of the resolvent operator, namely

o0 o0

(Z—-X\"'T)= % dTimyr =y Tl (1.3)

n=0 n=0

Let f(z) = 2™ with m € Ny = NU {0} and let U be a ball B,(0) with radius ||T|| < r. Then the
series (1.3) converges uniformly on OU. Hence,

(A -T)" =

> =

1 1 > > 1
— T-T)l¢mde = — e legmge =N T —ntm—lge — m 14
@ terac= g [ S e teras=S s | e ; (14)

21 Jou 27

2



because

1 gmntm=1 ge — {1 ifn=m

2mi 8B,.(0) 0 otherwise.

Therefore, replacing the variable z by the operator T in Cauchy’s integral formula is consistent with the
polynomial functional calculus, which justifies the following definition.

Definition 1.5 (Riesz-Dunford functional calculus). Let T be a bounded operator on a complex Banach
space and let f be holomorphic on an open set O with o(T) C O. Then we define

HT) = /6 RTIfE)

T 2mi

where U is an arbitrary open set such that o(T) C U and U C O and such that OU consists of a finite
number of rectifiable Jordan curves.

Lemma 1.6. Let T be a bounded operator on a complex Banach space. Let f and g be holomorphic
functions on an open set O with o(T) C O and let « and 8 be complex numbers. Then (af + Bg)(T) =
af(T) + Bg(T) and (£g)(T) = F(T)g(T).

Moreover, if f, is a sequence of holomorphic functions on O that converges uniformly to f, then
fn(T) converges to f(T) in the uniform operator topology.

An important application of the Riesz-Dunford-functional calculus is that it allows to identify invari-
ant subspaces. Let us assume that o(T) = 01(T) U 02(T) with dist(o1(7T),02(T)) > 0. Then we can
choose open sets Uy and Us such that o;(T") C U;,7 = 1,2 and U, NU, = (. Since the indicator functions
1y, are holomorphic on U; UUs, we can apply the functional calculus and define P; = 1y, (T') for i =1, 2.
We obtain
P} =1y, (T)1y,(T) = (Ly, - 1,)(T) = 1y,(T) = P (1.5)

K2

and
PT =1y, (T)2(T) = (Ly,2)(T) = (21y, )(T) = 2(T) 1y, (T) = TP, (1.6)

where z denotes the identity function z — z. Thus, the operators P; are projections and they commute
with T. Therefore, the subspaces V; = P(V),i = 1,2 of the Banach space V are invariant under 7.
Indeed, for any v € V;, we have

T(v) = TPl(’U) = PzT(’U) evV.

The operators P; and P, are called the Riesz-projections associated with oy (T") and o2(T).
We conclude our discussion with two important properties of the spectrum of an operator.

Theorem 1.7 (Spectral Radius Theorem). Let T be a bounded operator on a complex Banach space.
The spectral radius of T' is defined as r(T) = sup{|\| : A € o(T)}. It satisfies

H(T) = tim /7"

Note that r(T) < ||T|| because of Lemma 1.3. Moreover, the resolvent of T is holomorphic on
{Ae C:r(T) < |A\} C p(T) by Lemma 1.4. Since limy_, Rx(T) = 0, the Taylor series expansion of
the resolvent at infinity, that is, the series Ry\(T) = ZZOZO T"A~"~! converges in the uniform operator
topology not only for A with ||T|| < |A| but even for A with »(T") < |A].

Theorem 1.8 (Spectral mapping theorem). Let T be a bounded operator on a complex Banach space
and let f be holomorphic on an open set O with o(T) C O. Then

f(o(T)) = o(£(T)).

Theorem 1.9. Let T be a bounded operator on a compler Banach space, let f be holomorphic on an
open set O with o(T) C O and let g be holomorphic on an open set that contains f(o(T)). Then

9(f(T)) = (g0 /)(T).



1.2 Difficulties in the quaternionic setting

We introduce the quaternions, quaternionic vector spaces etc. in the next chapter. For the moment it is
enough to know that the quaternions H are the 4-dimensional real vector space with basis {1,e;, ea,e3}
that is endowed with a non-commutative product such that e? = —1 for i = 1,2,3 and e;e; = —eje;
for i # j and 1 < 4,5 < 3. We shall not be too much concerned about the details of the definitions
of quaternionic vector spaces, quaternionic linear operators etc. since these details are not essential to
understand the following discussion.

When we want to generalize the Riesz-Dunford-functional calculus to the quaternionic setting, we
meet several problems. As in the complex case, we can consider the finite-dimensional case and try
to generalize it to the infinite dimensional one. However, since the quaternionic multiplication is not
commutative, we have to distinguish whether we multiply a vector v with a scalar a € H from the left
or from the right. This leads to two different notions of eigenvalues.

Definition 1.10. Let T be a right linear operator on a quaternionic vector space V', that is, an operator
that is linear with respect to the multiplication with scalars from the right. A quaternion A € H is called
a left eigenvalue of T' if there exists a vector v € V '\ {0} such that

T(v) = \v.
It is called a right eigenvalue if there exists a vector v € V' \ {0} such that
T(v) = v
We denote the set of left and right eigenvalues of T by or,(T) and or(T), respectively.

When one tries to generalize these notions of eigenvalues to a notion of spectrum, one is faced with
a paradoxical situation.

It is the notion of right eigenvalues that is relevant in applications such as quaternionic quantum
theory [1]. Moreover, it allows to prove the spectral theorem for quaternionic matrices [17]. However, the
mapping Rx(T) : v = T'(v) — v is not right linear because

RA(T)[va] = T(va) — vaX # T(v)a — via = RA(T)[v]a

if A and a do not commute. Therefore, it is not possible to associate a right linear resolvent operator to
the set of right eigenvalues and to define a generalized notion of right spectrum as Colombo and Sabadini
point out in [9].

On the contrary, the operator £(T") : v — T'(v) — Av is right linear. Therefore, one can consider the
left resolvent operator £y (T) = (T —AZ)~! and define the left spectrum or,(T) as the set of quaternions
A € H such that £,(T) = T — AZ is not invertible. Unfortunately, the left spectrum does not seem to be
of any relevance in applications.

It is therefore not at all clear how to generalize the notion of eigenvalues of a quaternionic linear
operator to a meaningful notion of spectrum if one starts from the finite dimensional case.

Another approach to define a quaternionic functional calculus is to consider a notion of generalized
holomorphicity and to directly replace the quaternionic variable by an operator in the respective Cauchy
formula. The most successful notion of holomorphicity in the quaternionic setting was the notion of
Cauchy-Fueter-regularity, which is discussed for instance in [20].

Cauchy-Fueter-regularity is based on the observations of the Wirtinger calculus. Let us identify the
complex plane C with R? and let f(2) = u(20,21) + iv(20,21) be a real differentiable function from an
open set U C C to C, where z = zg 4 iz; for any z € C. For small h = hg + ih,, we have

af of

@+ 1) = f(2) =df (2)h + o(|hl)) = Z=-()ho + = (2)hn + o[[1]]) =
- <gzo(z)hoi§i(z)ih1) i <§J;< Vo 4 i §7f( ><¢h1)> o) =

:% (gi)( Yho — %( Yho + g—f( Yihy —igjl(z)im) n
+ 5 (2@ +igemo+ gLecim) + gL im)) + o)



Hence,

fean =10 =3 (s -igh@ ) a5 (L@ rigl@)hvoinn.  an

This observation justifies the following definition.

Definition 1.11 (Wirtinger derivatives). The differential operators

1/ 0 .0 1/ 0 .0
3Z—§ <8201821> (J,’I?,d 82—5 <(%+28Zl)

are called the Wirtinger derivatives with respect to the complexr and the complex conjugate variable,
respectively.

With this definition, the equation (1.7) turns into

f(z+h) = f(2) = 0:f(2)h + 0= (2)h + o(||h]]).

Since a function f is complex differentiable at z if and only if there exists a complex number f’(z), the
derivative of f at z, such that

flz+h) = f(z) = f'(2)h + o(||R]]),
we obtain the following lemma.

Lemma 1.12. A real differentiable function f : U C C — C is holomorphic if and only if O f = 0 on
U. Moreover, in this case, we have f'(z) = 0,f(z) for any z € U.

The idea of Cauchy-Fueter-regularity is to generalize the Wirtinger derivatives and to consider the
operator 0 = 6%0 + Ei:l ¢, instead.

Definition 1.13. For a real differentiable function f:U C H — H, we define
3

91(0) = g o)+ gy o

A function f: U C H — H is called is called Cauchy-Fueter-(left)-regular on U, if 0f =0 on U.

Cauchy-Fueter-regularity allows to generalize a huge part of the classical theory of holomorphic
functions. In particular, Cauchy-Fueter-regular functions allow a series expansion based on Fueter-
polynomials and they satisfy a version of Cauchy’s integral formula. Thus, it is actually possible to
define a functional calculus based on this notion of generalized holomorphicity, if one follows the ideas
n [21]. Nevertheless, this functional calculus has several disadvantages. We just want to point out the
most obvious one: the class of Cauchy-Fueter-regular functions is very specific and does not contain
many of the most important functions in mathematics. In particular, it does not contain polynomials
and power series of the form E _ox"ay, with a,, € H. Indeed, not even the identity function z — x is
Cauchy-Fueter-regular since

B P 3 3 P
dxr = i <x0+;xiei> Jr;ej%j <$0+ZLE161> = 1+Z 2= _2+40

because €2 = —1 for i = 1,...,3. For this reason, the theory of Cauchy-Fueter-regular functions was not
the approprlate starting pomt for the development of a quaternionic functional calculus that is useful in
applications either.

The development of a useful functional calculus for quaternionic linear operators required a new
notion of generalized holomorphicity, so-called slice hyperholomorphicity. Actually, special cases of slice
hyperholomorphic functions were already considered in the 1930s by Fueter in [18] and [19], who used
them to generate Cauchy-Fueter-regular functions, and later for instance by Cullen in [15]. Nevertheless,

5



it took more than 70 years until their potential to define an associated functional calculus was understood;
see [10].

Slice hyperholomorphic functions satisfy an integral formula of Cauchy-type with a modified kernel.
This kernel naturally leads to a new notion of spectrum, the S-spectrum, which coincides with the
set of right eigenvalues in the finite-dimensional case. The associated S-functional calculus for slice
hyperholomorphic functions can be considered as the most natural generalization of the Riesz-Dunford-
calculus to the quaternionic setting since it shares almost all its properties. We point out that, although
only bounded operators are considered in this master thesis, the S-functional calculus can also be defined
for unbounded operators [12].

Moreover, the class of slice hyperholomorphic functions contains polynomials and power series in the
quaternion variable. In particular, it contains the exponential function exp(z) = ZZOZO #x” Thus, the
S-functional calculus allows to define the quaternionic evolution operator and to generalize the classical
Hille-Yoshida-theory of strongly continuous semi-groups [4, 11]. Moreover, recently, a proof of the spectral
theorem for unitary operators on quaternionic Hilbert spaces based on the S-spectrum has been provided
in [3].

We point out that slice hyperholomorphicity can even be defined in a more general setting for functions
defined on the real space R™*! with values in the Clifford-algebra that is generated by n imaginary units.
The theory of these functions is then analogue to the quaternionic case and it allows to define a functional
calculus for n-tuples of not necessarily commuting operators. In the literature, slice hyperholomorphic
functions defined on the space R™t! are also called slice monogenic, whereas slice hyperholomorphic
functions of a quaternion variable are referred to as slice regular. We follow this convention in this
master thesis.



Chapter 2

Fundamentals of quaternions

In this chapter, we introduce the algebra of quaternions and discuss their main algebraic properties.
Then we consider vector spaces and linear mappings in a quaternionic setting and extend certain results
of classical linear algebra. The proof of these results follow the lines of the classical case, but since usually
only vectors spaces over a field are considered in introductory linear algebra courses at university, we
give the proofs for the sake of completeness. Finally, we introduce several well-known objects studied in
classical functional analysis in the quaternionic setting. In particular, we proof the quaternionic version
of the Hahn—Banach theorem.

Most of the results presented in this section can be found in [24]. They can also be found for a more
general setting in [7] and [6]. For basic considerations on quaternionic two-sided vector spaces and on
quaternionic Banach spaces see [23]. Note that therein, quaternionic two-sided vector spaces are referred
to simply as “quaternionic vector spaces”.

2.1 The algebra of quaternions

Definition 2.1. The algebra of quaternions H is defined as the 4-dimensional real vector space with
basis 1, ey, ea and es, that is,

H = {xg + z1€1 + 2262 + z3€3 : x; € R},
endowed with the associative R-bilinear product with unity 1 that satisfies

el =e2=¢e2=—1, (2.1)
€1€y = €3 = —€g€y, €2€3 — €1 — —€3€2 and €361 — €9 — —e€1€3.
Sometimes, when it is more convenient, we will write e instead of 1. Moreover, note that (2.2) is

equivalent to
€1€2€3 = —1. (23)

As in the complex case, we will identify the subalgebra span{1} with the field of real numbers R.
Moreover, we will identify R? with span{e;, ez, e3}. The following definitions are formulated in analogy
to the case of complex numbers.

Definition 2.2. Let x = z¢ + Z?Zl xie; € H.

(i) We call Rex = x the real part of the quaternion x and Imx = x = Zle x;e; the imaginary or
vector part of the quaternion. We call a quaternion x real, if Imax = 0 and we call it (purely)
imaginary if Rex = 0.

(i) We call T = xg — Zle z;e; the conjugate of x.

(i) The norm or absolute value of x is defined as |x| = Z?:o z?.



Proposition 2.3. (i) The quaternionic conjugation is an R-linear involutive antiautomorphism, that
18, for all x,y € H and all A € R, we have

T+y=T+7, Ar = AT, T=ux, and y=yx.
Moreover, T = x if and only if x € R and T = —x if and only if x is purely imaginary.
(ii) Let x,y € H. Similar to the complex case, the following identities hold true:
e Rez = (2 +7) and Imz = L(z — 7),
o Tr = 2T = |z|?,
o [zy| = |z|[yl.

Proof. From the definition, it is clear that the quaternionic conjugation is R-linear and an involution.
Moreover, we have

[

le,=g=¢l=el, i=1,...,3,

and

€1€9 — €3 — —€3 — €961 — (762)(—@1) =éyeq.

Similarly, we get eses = ez e; and eje3 = ez e;. Thus, Ty = ¥ T holds if x and y are elements of the basis
of H. Hence, it holds for any z,y € H because of the R-bilinearity of the quaternionic product.

It is also clear that T = z if and only if Im2 = 0, that is, if and only if z is real, and that T = —z if
and only if Rex = 0, that is, if and only if = is purely imaginary. Therefore, (i) holds true.

The identities in (4) are also easy to show. We have

z+T=Rex+Imz+Rex —Imzx =2Rex

and
r—T=Rex+Imz— (Rex —Imz) =2Imuz.

Since e;e; = —eje; for i # j € {1,2,3}, we get

3 3 3 3 3
Tx = | xg9 — g x;€; xo + g rje; | = x% — g T;To€; + g Toxje; — E T;Tjee5 =
i=1 j=1 i=1 j=1

ij=1

3 3

3
= — Z Z(:clz] —T;x;)ee; — Z:c?ef =ax2+ 2:1722 = |z|?.

i=1 j>i i=1 i=1
Similarly, we obtain 27 = |z|?. Finally,

l2y|? = ayzy = 2yyT = [y[*2 7 = |y|?|2|>.

Hence, |zy| = |z[ |yl.

Corollary 2.4. Every quaternion x € H\ {0} has an multiplicative inverse, namely

1
1 _

In particular, the quaternions form a skew field.

Although the quaternionic multiplication is not commutative, if x or y is real, then zy = yz. As the
next Lemma shows, reals are the only quaternions that commute with any other quaternion. We will
specify this result later.

Lemma 2.5. A gquaternion commutes with every other quaternion if and only if it is real. That is, the
center of H is the real line R.



Proof. Since 1 is the multiplicative neutral element of H, it commutes with every quaternion. Moreover,
as the multiplication is R-bilinear, any « € R = span{1} commutes with every other quaternion, too.

Now, let x = xg + Z?Zl x;e; € H be such that xy = yx for all y € H. In particular, ze; = e;z. But
since

2
e1r = xpe1 + Tr1€e] + xae1e9 + x3€1€3 = Tpe1 — L1 + Toe3 — Tzeg

and

2
rey = xoe1 + xr1€] + Taegey + T3eze = Xpep — T — Taez + XT3ea,
this implies o2 = 0 and z3 = 0. Similarly zes = esx together with
Teg = Xgeg + T1€1€9 = Tog€a + T1€3 and €T = Xpgeg + T1€2€1 = Tg€a — T1€3

yields 1 = 0. Thus, x is real.
O

Lemma 2.6. Let z,y € H\ {0}. Then x and y satisfy xy = —yzx if and only if Rex = Rey =0 and x
and y are orthogonal as vectors in R3.

Proof. Suppose that © = xg+ Z?:l xie; and y = yo+ Z?Zl yje; belong to H\ {0} and satisfy zy = —yz.
Then

Yy = Toyo + Z xiYoei + Zxoyjej + Z Tiyjeie; (2.4)
i=1 j=1 ij=1
and
3 3 3
YT = YoTo + Z YjToe; + Z Yorie; + Z yjrieje; (2.5)
j=1 i=1 ij=1
give
3 3 3 3
0 =zy+ yr = 2x0yo + 2 Z ;yoe; + 2 Z Toyjej + Z ziyj(ee; +eje;) + 2 inyie?.
i=1 j=1 i,j=1 i=1
i#]
From e? = —1 for i € {1,2,3} and e;e; = —eje; for 1 <i,j < 3 with i # j, we conclude

3 3
0=2 (xoyo - Z%%) +2) (wiyo + Toyi)ei, (2.6)

i=1 i=1

which implies iono Zf’ 12y = 0 and 390 + woy; = 0 for i = 1,2,3. If z9p # 0 and yo # 0, then we
have y; = —yo— for i = 1,2,3. Hence,

3 2 3.2
O—xoyo—zwzyz—xoyOJrZyo—xoyo< Z;)
=1 =1 - Yo

2
which is a contradiction because 1+ E i ?7 > (. Therefore, x¢ and yy cannot both be unequal to zero.
0

If on the other hand yo = 0, then (2.6) simplifies to

3 3
0=-2 Z T;Y; + Z 2x0y;e;. (27)
i=1 =1

Since y # 0, there exists an index 1 < 49 < 3 such that y;, # 0. But (2.7) implies 2zoy;, = 0.
Hence, xop = 0. Similarly, o = 0 implies yo = 0. Therefore, we get o = yo = 0 and (2.6) turns into
0=-2 Zle x;y;. Hence, z and y are orthogonal vectors in R3.

9



If on the other hand z and y are orthogonal vectors in R3, then 2?21 zy; =0=— Z?Zl z;y;. Since
e? = —1for i€ {1,2,3} and e;e; = —eje; for 1 <i,j < 3 with i # j, we obtain

3 3 3
Ty = Z xiyjeie; = — Zﬂ?iyi + Z TiYjeicj =
i=1

i,j=1 1,5=1
i#£]
3 3 3
= E TiYi — § Yjri€je; = — E Yjri€je; = —Yx.
i=1 i,j=1 ij=1
i#]

O

Finally, we show that the quaternions do not only form a real vector space. They can also be
considered as a 2-dimensional complex vector space. Indeed, this fact is fundamental for the theory that
we establish.

Definition 2.7. A purely imaginary quaternion with absolute value 1 is called an imaginary unit. We
denote the set of all imaginary units by S, that is,

3 3
S= {Zl‘ieiEHZZJ??:l}.
i=1 i=1
The name imaginary unit is justified by the fact that, for any I € S, we have
I?=-TI=—I?=-1.

Corollary 2.8. For I €S, the plane C; = {x¢ + 211 : 9,21 € R} is isomorphic to the field of complex
numbers C.

Lemma 2.9. Let I,J € S with I L J and set K = IJ. Then K is an imaginary unit and {1,1,J, K}
is a basis of H that satisfies the defining relations of the quaternionic product, that is

P=J=K?>=1JK = —1.

Proof. As I and J are orthogonal, they satisfy IJ = —JI by Lemma 2.6. Hence, K = J
—1J = —K. Therefore, K is purely imaginary by Proposition 2.3. Because of |K| = J
even an imaginary unit.

Since IK =11J =—-1JI = —-KI and JK = JIJ = —IJJ = —KJ, the quaternions I, J and K form
an orthogonal basis of R? by Lemma 2.6. Hence, {1,1,J, K} is a basis of H.

Finally, as I, J and K are imaginary units, we obtain I? = J? = K2 = —1 and IJK = IJIJ =
—I1JJ=-1.

O

Note that the previous lemma states that the basis 1, e;, es and e3 is not canonical. In fact, each
triple I, J and K forms, together with 1, a generating basis of H.
Now let x € H and let us write  in terms of the basis defined in the previous lemma. Then we have

x=x0+ 1] +x2J + 23K = 20+ 211 + (22 + 231)J = 21 + 22, (2.8)
where z1 = xg + 211 and 2z = 25 + 231 are in C;. Moreover, since —K = JI, we also have
x=x9+ a1l + 29 —23(—K) =z + 11 + J(x0 —x3]) =21 + J 22, (2.9)
where z1 = zg + 211 and z3 = z9 — 23] are in C;.

Corollary 2.10. Let I € S. The operations

<' > . (C]XH — H and < > . (CIXH — H
b (a,z) —ax N (a,x) +—za
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define complex scalar multiplications on H, i.e., H is a complex vector space over Cy if it is endowed either
with (-, or with {(-,-)g. In these cases, we call H a left and right vector space over Cyp, respectively.

Moreover, H is isomorphic to the two-dimensional complex vector space (C%. For any J € S with
I 1 J, the mappings

(C] X (C] — H (C[ X (C] — H
L and LR :
(21,22) 21+ 22J (21,22) =21+ J2o

are isomorphism from C% to (H, (-,-)r) and (H,(-,-)r), respectively.

Proof. 1t is straight forward to check that (-, )1, and (-, -) g are actually vector space scalar multiplications.
Moreover, we saw in (2.8) and (2.9) that the mappings ¢;, and (g are bijective.

Let (-,-)c, denote the usual scalar multiplication on C?%, that is, (a,z)c, = (az1,az2)T for any
z = (21,29)7 € C? and any a € C;. For two vectors z = (z1,22) and Z = (Z1, %) in C? and a € C;, we
have

w({a, z)c; + 2) = az1 + 21 + (az2 + 22)J = alz1 + 22J) + 21 + 22J = (a,00(2), )L + 10(2).
Therefore, ¢, is an isomorphism from C? to (H, (-,-)1). Similarly,
tr({a, 2)c, + 2) =az1 + Z1 + J(aza + 22) = (21 + J2z2)a + 21 + J23 = (a,tr(2))r + tr(Z).

Therefore, ¢ is an isomorphism from C?% to (H, (-, ") g).
O

We will omit the notation (-,-)r, and (-,-) g and simply write ax and za instead of {(a,z), and (a,z)g
whenever we consider H as a vector space over C;. However, we have to keep in mind that the vector
space structures do not coincide. The following corollary clarifies their relation.

Corollary 2.11. Let I,J € S with I 1 J and let z € C;. Then zJ = JZ. Moreover, the identity
tr((21,22)") = tr((21,22)")
holds true for any z1,z2 € Cy.
Proof. Let z =x¢+ Ix1 € C;. Then
zJ =xod + IJxy = Jag — JIxy = J(xg — [21) = JZ
because IJ = —JI by Corollary 2.6. Hence,

iL((z1,22)7) = 21 4+ 200 = 21 + JZ2 = (21, 22) 7).

We can now specify Lemma 2.5.

Corollary 2.12. Let z,y € H. Then x an y commute if and only if they belong to the same complex
plane Cy.

Proof. If x or y is real, then  and y commute by Lemma 2.5 and obviously they lie in the same complex
plane. Thus, we assume z,y ¢ R. Let I € S such that x = z¢ + Iz; and let J € S with I L J. Then,
there exist y1,y2 € C; such that y = y; + y2J because of Corollary 2.10. Hence,

xy =2x(y1 +y2J) = iz + yoxJ = 1z + Yo J T and yr = 17 + yo J T,
where we used that xJ = Jx; see Corollary 2.11. Thus, z and y commute if and only if yo = 0, that is,

if and only if y € Cj.
O
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2.2 Quaternionic vector spaces

We establish now some aspects of the theory of quaternionic vectors spaces. The fact that the quaternionic
multiplication is not commutative requires some modifications of the classical theory. In particular, we
have to distinguish between left and right vector spaces over H. Nevertheless, much of the classical
theory of vector spaces extends to the quaternionic setting.

Definition 2.13. A quaternionic right vector space is an additive group (V,+) together with a right
scalar multiplication V x H — V, (v,a) — va such that, for any u,v € V and for any a,b € H, the
identities

(u+v)a=wua+va ul =u

u(a + b) = ua + ub (ua)b = u(ad)

hold true. A quaternionic left vector space is an additive group (V,+) together with a left scalar multi-
plication H x V' — V, (a,v) — av such that for any u,v € V and any a,b € H the identities

alu +v) = au + av lu=u
(a+bd)u =au+ du a(bu) = (ab)u

hold. A quaternionic two-sided vector space is an additive group (V,+) together with a left and a right
scalar multiplication such that (V,+) together with the left scalar multiplication is a quaternionic left
vector space and (V,+) together with the right scalar multiplication is a quaternionic right vector space
and such that av = va for all a € R.

Remark 2.14. Note that any quaternionic right, left or two-sided vector space is a real vector space if
we restrict the scalar multiplication to R. Moreover, any quaternionic right or left vector space is also a
complex vector space if we restrict the scalar multiplication to the complex plane C; for some I € S. In
general, the restrictions to different complex planes C; do not lead to the same complex vector spaces.
Moreover, note that a quaternionic two-sided vector space V' is not a complex vector space if we restrict
the left and the right scalar multiplication to a complex plane C; because in general av # va for v € V
and a € C;. Therefore, the complex scalar multiplication is not well defined. We have to consider either
the left or the right vector space structure to obtain a complex vector space.

Starting from a real vector space Vg, it is easy to construct a quaternionic two-sided vector space.
Let us consider the space Vi formally written as

3
Vﬂgz{v:ZviQ@ei:vieVR}.

=0

This space is an additive group if we define the addition componentwise by (u+v) = Z?:O(ui +v;) Qe
Moreover, we can define a right and a left scalar multiplication on Vi by

3 3

va = Z (a;v;) @ (e;ej) and av = Z (a;v;) @ (eje;)

i,j=0 1,5=0
3 . .
for a = 7% _aje;. These expressions can be written more compactly as

3 3

va = Z v; ® (e;a) and av = Z v ® (ae;), (2.10)

1=0 =0

where the terms in the brackets have to be understood as multiplications within H and where v ® (e;a)
is identified with (va) ® e; for a € R.

It is easy to check that Vi is actually a quaternionic left resp. right vector space with these scalar
multiplications. Moreover, for a € R, we have av = 3°_ v ® (ae;) = 20, v; ® (e;a) = va. Altogether,

we even obtain a quaternionic two-sided vector space.
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Definition 2.15. Let Vg be a real vector space. We denote the quaternionic two-sided vector space Vi
endowed with the left and right scalar multiplications (2.10) by Vg & H.

Example 2.16. Let us consider the set of n-tuples of quaternions H™. It is easy to show that H" is a
quaternionic two-sided vector space if we define the addition, the left and the right scalar multiplication
componentwise, that is,

1 Y1 1+ 1 ary 1 r10
+1:]= , al ¢ | = and o |a=
Tn Un Tn + Yn T axry T, Tna
for (x1,...,20)T, (y1,--,yn)T € H" and a € H.

As a two-sided vector space, H" is isomorphic to R* @ H. If v = (vy,...,v,)T € H" with v; =
Z?:o v; je; € Hfori=1,...,n, then

vy PR 3 (V1 3
v=1|:|= : = Z e = Z vjej,
Un, Z?:O Un,j€j J=0 Un,j 3=0
where v; = (v14,...,v,,;)T € R". For a € H, we have
3
v1a Zj:O V1,5€50 3 V1,5 3
va=|[ 1 |= : =X | i [ea=Dvilea)
Un@ Z?:o Up, €50 I=0 \vn, 5 =0
and 5
avy 2 j—o V1,5a€; 5 [v1 3
aw= |1 |= : => | | ae =D v laey),
avy, Z?:o Up,, ;A€ 3=0 \vp ; =0

because the real components v; ; commute with a. The mapping
H" — R*"®@H
(R 3 3
Z]‘:o vie; — Zj:o v @ €

is a two-sided vector space isomorphism. It is obviously bijective and satisfies ¥ (u + v) = ¢ (u) + ¥ (v)
and ¥(av) = ap(v) for u,v € H” and o € R. For a = 2‘2:0 arer, € H, we have

3 3 3
Y(va) =1 Z’Uj(eja) = Z apvjejer | = Z ar (vjejex) =
3=0 §=0,k=0 §=0,k=0
3 3
= Z arv; ® (ejer) = Zvj ®e; | a=1vY(v)a
7=0,k=0 7=0
and
3 3 3
Y(av) =1 Zv] (agj) | =4 Z agVjeke; | = Z ary (vjexe;) =
3=0 §=0,k=0 §=0,k=0
3 3
= Z arv; ® (exej) =a Zvj ®e; | =ay(v)
Jj=0,k=0 Jj=0

The following result, Lemma 1.5 in [23], implies that any quaternionic two-sided vector space is
isomorphic to a quaternionic two-sided vector space of the form Vg ® H for some real vector space Vi.
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Lemma 2.17. Let V be a quaternionic two-sided vector space and let Vg = {v € V : av = va Va € H}.
Then Vk is a real vector space, called the real part of V', and

defines an R-linear mapping from V onto Vi that satisfies Re o Re = Re. Moreover, any v € V satisfies
the polarization identity

3 3
v = Z Re(gv)e; = ZeiRe(eﬁ-v). (2.11)
i=0 i=0

Proof. 1t is clear that Vg is a real vector space and that Re is R-linear. Obviously, for v € V, we have
eoRe(v) = Re(v) = Re(v)eg. Moreover,

1 1
e1Re(v) = eli(v — ejve; — egley — egves) = Z(elv + vey — egvey + egves)

and

1
Re(’v)el = Z(’U — €e1ve; — egpveg — 63'063)61 = 1(’061 + e1v + egves — 63’062).

Hence, e;Re(v) = Re(v)e;. Analogous calculations show that eaRe(v) = Re(v)es and esRe(v) = Re(v)es.
Thus, for a = E?:o a;e; € H, we have

3 3
aRe(v) = ZaieiRe(v) = Z Re(v)a;e; = Re(v)a,
i=0 i=0
that is, Re(v) € Vk. Moreover, if v € Vg, then
13 13 13
Re(v) = Zzavez = ZZveﬁez = sz =v
1=0 1=0 =0
Therefore, Re : V' — Vg is onto and Re o Re = Re.
Finally, we have
3 313 3 3
Z Re(g;v)e; = Z 1 26767176361 == 267211622 + 1 Z €j eveje;
1=0 =0 7=0 =0 1,7=0
i#£]
For the second sum Sy = Zi# ej e;veje;, we obtain
SQ = — e1ve] — egxley — e3ves3 — e1ve] + e1egveres + ejesvejes—

— €Ve€2 + €2€1V€E2€1 + €2€3VE2€3 — €3VE3 + €3€1VE3€] + €3E2V€E3E2 =
= — e1ve| — exVey — ezves — ejve] + ezves + eavey—

— eqVey + egvesg + ejve; — egves + esvey + eqve; = 0.

Thus,
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Corollary 2.18. Let V be a quaternionic two-sided vector space and let Vg be the real part of V.. Then
V is isomorphic to Vg @ H.

Proof. Let v € V. The polarization identity (2.11) implies v = Z?:O v,e;, with v; = Re(&;v) € Vg. The
mapping
W V —-VreH
: v = E?:O v; Qe;

is obviously R-linear. For a = Zi:o arex € H, we have

3 3 3
Y(va) = Zvj(eja) = Z agvjejer | = Z apy (vjejer) =
j=0

§=0,k=0 §=0,k=0
3 3
= Z arv; ® (ejer) = Zvj ®e; | a=1vY(v)a
§=0,k=0 j=0
and
3 3 3
Y(av) = Zv](aej) =1 Z apvjere; | = Z apy (vjege;) =
3=0 §=0,k=0 §=0,k=0
3 3
= Z arv; ® (exej) =a Zvj ®e; | =ay(v)
§=0,k=0 3=0

Hence, 1 is a two-sided vector space homomorphism. It is surjective because for any vector v® =
Zf:o v; ® e; in Vg ® H, the vector v = Z?:o v;e; belongs to V' and satisfies v® = Y(v). It is even
bijective, and therefore an isomorphism, since ¢(v) = 0 implies v; = 0,i = 0,...,3, and in turn,
3
v=>_,vie;=0.
O

In the following, we identify any tow-sided vector space V with Vg ® H. We also omit the symbol ®
. 3 . 3
and write v =), wvje; instead of v =), v; ®e;.

We show now that certain well known results from linear algebra also hold true for quaternionic
vector spaces. We will mainly restrict our discussion to the case of quaternionic right vector spaces, but
it will be clear that all results are also true for quaternionic left vector spaces if we replace the word
"right” by the word "left” and vice versa.

The following definitions are similar to those for vector spaces over a field known from linear algebra.

Definition 2.19. Let V be a quaternionic right vector space.

o Let vi,...,v, be a finite number of vectors in V with v; # v; for i # j. A wvector of the form
v= Z?Zl v;a; with a; € H is called a right linear combination of v1,...,v,.

o Let AC V. A vector v € V is called right linearly dependent on A, if it can be represented as a
right linear combination of vectors in A. Otherwise, v is called right linearly independent of A.

o A set A CV is called right linearly independent, if every v € A is not right linearly dependent on

A\ {v}.
As in classical linear algebra, we have the following characterization of right linear independence.

Corollary 2.20. Let V be a quaternionic right vector space. A set A C 'V is right linearly independent
if and only if every right linear combination of the zero vector is trivial, that is, Y ., via; = 0 with
v; € A and a; € H implies a; =0 for alli=1,...,n.
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Proof. Let vy,...,v, € A and let Y. v;a; = 0 with a; # 0 for some j € {1,...,n}. Then we have
v = — Eie{l,...,n}\{j} v;a;a; . Thus, the set A is not right linearly independent. On the other hand,
if the set A is linearly dependent, then there exist vo,...,v, € A with v; # v; for ¢ # j, such that
vy = Z;;l v;a;. But then 0 = 2?21 v;a; —vg. Hence, the zero vector can be represented as a non-trivial
right linear combination of vectors in A.

O

Let v = ) ", v;a; be a right linear combination of vectors v; € A, where the set A is right linearly
independent. Then the previous corollary implies that the coefficients a; and the vectors v; are unique.

Definition 2.21. Let V' be a quaternionic right vector space.

o A subset U C V is called a quaternionic right vector subspace if it is closed under addition and
right scalar multiplication, that is, if for any u,v € U and any a € H the vectors uw+ v and va are
in U, too.

o Let A C V. The right linear span of A is the set of all right linear combinations of vectors in A,
that is, spang(A) = {3 via; : v; € A,a; € H,n € N}.

o A right linearly independent set A with spangp(A) =V is called a right basis of V.
Similar to the classical case, every right vector space has a right basis.

Corollary 2.22. Let V be a quaternionic right vector space and let A be a right linearly independent
subset of V. Then there exists a right basis B of V such that A C B. In particular, every quaternionic
right vector space has a basis.

Proof. Let B be the set of all right linearly independent supersets of A. The set B is nonempty as it
contains A itself and it is partially ordered by the set inclusion C. Moreover, for every chain B;,7 € I, in
B, we can consider B* = [J;.; B;. This set must be right linearly independent. Otherwise there would
exist right linearly dependent vectors vy, ...,v, € B*. But since B;,: € I, is totally ordered with respect
to C, there would exist an index 4o such that vq,...,v, € B;,, which is a contradiction because B;, € B.
Thus, B* is a right linearly independent superset of A and of every set B;,7 € I, that is, B* is an upper
bound of the chain B;,7 € I, in B.

Therefore, we can apply Zorn’s lemma to obtain a maximal element B € B. The set B is right linearly
independent because it belongs to B.

Let us assume that there exists a vector vg € V' \ spang (V). Then the set {vg} U B is a right linearly
independent superset of B. But this is a contradiction to the maximality of B. Hence, spang(B) must
already be the entire space V, that is, B is a right basis of V.

O

Remark 2.23. As pointed out before, all these definitions and results can be obtained for quaternionic
left vector spaces by analogous arguments. Nevertheless, when we are working with a quaternionic two-
sided vector space, it is important to keep in mind that the left linear and the right linear structure of
this space do not coincide. Thus, a left linear subspace is not necessarily a right linear subspace, a right
basis of the space is not necessarily a left basis etc. For imaginary units I, J and K as in Corollary 2.9,
let us consider the vectors u = (1,1)T in H? and v = (J, K)T € H2. Then u = vJ. On the other hand
au +bv = 0 implies a +bJ = 0 and al +bK = (a—bJ)I = 0. Consequently, a = b =0 and u and v are
left linearly independent but right linearly dependent. Therefore, not even the left and the right linearly
independent subsets of a two-sided quaternionic vector space coincide.

The next lemma specifies the relation between the left and the right vector space structure of a
quaternionic two-sided vector space.

Lemma 2.24. Let V = Vg @ H be a two-sided quaternionic vector space, where Vi is the real part of V
as in Corollary 2.18.

(i) A quaternionic right subspace of U is a left subspace of V' if and only if there exists a real subspace
Ugr of Vg such that U = Ug ® H.
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(ii) Let B be a left and a right basis, that is, any vector v € V' can be represented uniquely as a right
linear combination v = Z?:l b;a; and as a left linear combination v = Z?:l a;b; of vectors b; € B.
The coefficitents a; and a; coincide for any vector v € V if and only if B is a basis of the real
vector space Vg. Moreover, any basis of the real vector space Vg is a left and a right basis of V.

Proof. If U C V is a left and a right subspace of V, then it is a quaternionic two-sided vector space.
Therefore, by Lemma 2.17 and Corollary 2.18, the set Ug = {u € U : au = ua Va € H} is a real vector
space and U = Ur ® H. Tt is obvious that Uy is a subspace of Vg = {v € V : av = va Va € H}.

Conversely, if Uy is a subspace of Vg, then U = Ugr ® H is a left and a right subspace of V = Vg @ H
by definition. Hence, (i) holds true.

To prove (ii), we assume that the coefficients a; and @; coincide for any v € V. Then ab = ba for any
a € H and any b € B. Hence, B C Vg. Let v be a vector in Vg and let v = Y. a;b; = > ba; be
its representation as a left linear combination of vectors in B. Then fv = vg for any 8 € H. Hence,

z": Bab; = pv =v3 = i: bia;.8
=1 =1

Since the coefficients of any left or right linear combination of vectors in B are unique, we obtain
Ba; = a;B,i =1,...,n, for any § € H. Therefore, the coefficients a; are real by Lemma 2.5, and in turn,
B is a basis of the real vector space Vg.

If on the other hand B is a basis of Vg, then B is right linearly independent in V. Indeed, if

Z?:O b;a; = 0 with a; = Z?:O aije; € H and b; € B,’L =1,...,n, then 0 = Z?:l b; (Z?:O ai,j> € =

Z?:o >k, ba;;)ej. Since Y i ba;; € Vg, this implies > 1 jba;; = 0 for j = 0,...,3, and we
obtain a; ; =0, =1,...,n,5 =0,...,3 because the vectors b;,i = 1,...,n are linearly independent in
Vk. Hence, a; = 0,7 = 1,...,n and Corollary 2.20 implies that B is right linearly independent in V.
Similarly, we obtain that B is left linearly independent in V.

Let v € V. Then we can apply the polarization identity (2.11) to obtain wvg,...,vs € Vg such
that v = Z?:o v;e;. Since B is a basis of Vg, there exist b; € B,j = 1,...,n, and real coeflicients
a;j,t=0,...,3, forany j =1,...,n such that v; = 2?21 bja; ;. Hence,

3 3 n n 3 n
v=> wiei=) Y bjaijei=) b aiei=) bja
i=0 i=0 j=1 j=1 =0 j=1
with a; = Zf:o a; je; € H. Therefore, v € spany(B) and B is a right basis of V. Moreover, since
B C Vg, the vectors b;,j = 1,...,n commute with the coefficients a; and we obtain v = Z?zl a;b;.

Thus, B is also a left basis of V' and the coefficients of the representation as a left and as a right linear

combination of vectors in B coincide for any v € V.
O

Remark 2.25. Note that not any left and right basis of a quaternionic two-sided vector space V is
of the type considered in (ii) of Lemma 2.24. Let for instance I, J and K be imaginary units as in
Lemma 2.9 and consider the vectors (1,1)T and (I,1)7, which form a left and a right basis of H2. Then
the coefficients of the representation of (J, K)T as a left and as right linear combination of this basis do

not coincide because
J 1 I J 1 I
()= () (o v ()=o) =5 (1)

Lemma 2.26. Let V be a quaternionic right vector space, let B = {by,...,b,} be a finite subset of V
such that spang(B) =V and let A be a right linearly independent subset of V.. Then A is finite and its
cardinality satisfies #A < #B.

Proof. By induction, we replace k elements b;,,...b;, of B by k elements ai,...,ar of A such that
the resulting set By, still satisfies spang(By) = V. For k = 0, we can choose By = B. Assume that
By ={a1,...,a}U(B\{b;,,...b;.}) is defined for some k < #B. If A\ B, =0, then A = {a1,...,a;},
which implies #A = k < #B),. Otherwise there exists ap4+1 € A\ By. Since spang(By) =V, we have

k
Ak =Y a0+ > b;f;
=1 i€{l,...,n}\{i1,....ix }
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with «;, 8; € H. Moreover, there exists an index ix4q € {1,...,n}\ {i1,...,ix} such that Sxy1 # 0
because the set A is right linearly independent. In particular, the set {1,...,n}\{i1,...,4} is nonempty
if A\ By, # 0.

We set Byy1 = {a1,...,ar41} U (B\{bi,... b ). Since
k
-1 —1 -1
bik+1 = ak+1/87;k+1 - Z aiaiﬁik+1 - Z bl/BZ Tgp41”
1=1 e{l,..., ni\{i1,..., iht1}

we can transform any right linear combination of vectors in By into a right linear combination of vectors
in Bj4+1. Hence, spang(Biy1) = V.
Since A\ By # 0 implies that {1,...,n}\ {i1,...,%} is nonempty, this algorithm stops after at most
n steps and we obtain #A <n = #B.
O

Corollary 2.27. Let V be a quaternionic right vector space and let B be a finite right basis of V.. Then
any right basis B' of V satisfies # B’ = #B.

Proof. Since spang(B) = V and since B’ is right linearly independent, we can apply Lemma 2.26 and
obtain #B’ < #B. In particular, B’ is finite. Moreover, spang(B’) = V and since B is right linearly
independent. Thus, we can apply Lemma 2.26 again and obtain #B < #B’. Hence, #B’ = #B.

O

Definition 2.28. Let V be a quaternionic right vector space and let B be a right basis of V. If B is
finite, then we call #B the dimension of V' over H. We say that V has infinite dimension if B is infinite.

The dimension of a quaternionic left vector space is defined analogously. If V' is a quaternionic two-
sided vector space, let Vg be the real part of V as in Lemma 2.17 and let B be a basis of Vg. Then B is
a left and a right basis of V' by Lemma 2.24. Hence, the dimension of V' as a left and as a right vector
space coincide.

Moreover, if B is a right basis of a quaternionic right vector space, then the set {be; : b € B,0 < i < 3}
is a basis of V' as real vector space. Thus, the dimension of V' as a quaternionic right vector space and
the dimension of V' as a real vector space satisfy

Corollary 2.29. Let V be a quaternionic right vector space of dimension n. Any right linearly indepen-
dent subset B of V with #B = n is a right basis of n.

Proof. Let B C V with #B = n be right linearly independent. By Corollary 2.22, there exists a right
basis B’ of V with B C B’. But Corollary 2.27 implies #B’ = n, and therefore, B’ = B.
O

Definition 2.30. Let V and W be quaternionic right vector spaces. A mapping T : V. — W s called
quaternionic right linear if T'(u + v) = T'(u) + T(v) and T(va) = T(v)a for allu,v € V and all a € H.
We will denote the set of quaternionic right linear mappings from V to W by Lr(V,W).

As in usual linear algebra, the two conditions for right linearity can be written more compactly as
T(ua+v)=T(u)a+T(v)
for all w,v € V and all a € H.

Remark 2.31. Note that, in general, for two quaternionic right linear vector spaces V and W, the set
Lr(V,W) is not a right linear vector space. Indeed, if T : V' — W is a right linear mapping, we can
define the multiplication of T' with a scalar a € H from the right pointwise by [Ta](v) = T'(v)a for all
v € V. But if a,b € H do not commute and T'(v) # 0, then

[Ta)(vb) = T(vb)a = T(v)ba # T(v)ab = [Ta](v)b.

Thus, the mapping T'a is not right linear.
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On the other hand, if W is a quaternionic two-sided vector space—in particular, if W = H—we can
define a left scalar multiplication pointwise. Then, we have

[aT](vb) = aT(vb) = aT'(v)b = [aT](v)b (2.12)

for all a,b € H and all v € V. Therefore, aT is still right linear and Lr(V,W) is a quaternionic left
vector space.

Finally, if V and W are both two-sided quaternionic vector spaces, then we can define the multipli-
cation of a mapping T € Lr(V, W) with a scalar a € H on the left and on the right by

[aT)(v) = aT(v) and  [Ta](v) = T(av). (2.13)

Then the mapping aT is right linear because of (2.12). Moreover, for any u,v € V and any b € H, we
have
[Tal(ub+ v) = T'(aub + av) = T(auw)b + T(av) = [Ta](uw)b + [Ta](v).

Thus, the mapping T'a is right linear, too. For a € R, we have
[aT)(v) = aT'(v) = T(v)a = T(va) = T'(av) = [Ta](v).

Hence, Lr(V,W) is a two-sided vector space over H.
Note that the identity mapping Z : v +— v on a quaternionic two-sided vector space V' commutes
with any scalar a € H. Indeed, due to the definition of the scalar multiplications in (2.13), we have

[aZ](v) = aZ(v) = av = Z(av) = [Za](v) (2.14)
for any v € V and any a € H.

As in the classical case, a right linear mapping is uniquely determined by its values on a basis of the
space.

Corollary 2.32. Let V and W be quaternionic right vector spaces, let B be a basis of V' and let f be a
function from B to W. Then there exists a unique quaternionic right linear mapping T : V. — W with
Tig=Ff.

Proof. Let v € V. Then there exist unique vq,...,v, € B and ay,...,a, € H such that v = Z?:l v1a;.
Let us define T'(v) = >, f(v;)a;. Obviously, T is a quaternionic right linear mapping from V to W
that extends f.

On the other hand, if S is an arbitrary quaternionic right linear mapping that extends f, we have

n n n

T(v)—Sw)=> T(wi)a;— Y Swi)a;=>_ f(vi)a;— Y f(vi)a; =0.
=1

i=1 i=1 =1

Thus, the mapping T is unique.
O

Note that, as a consequence of this corollary, any right linear mapping defined on a subspace U of a
quaternionic right vector space V' over H can be extended to a right linear mapping on V.

Corollary 2.33. Let V be a quaternionic right vector space of finite dimension. A right linear mapping
T:V =V is injective if and only if it is surjective.

Proof. If T(u) = T'(v) for u # v, then T'(u — v) = 0. Therefore, the mapping T is injective if and only
if the pre-image of {0} is trivial, that is, T7-!({0}) = {0}.
Let by,...,b, be a right basis of V. If "' | T(b;)a; = 0, then

0= ZT(bz)az =T < b,-az) .
i=1 i=1

Therefore, the vectors T'(by),...,T(b,) allow a nontrivial right linear combination of the zero, if and
only if the pre-image of the zero is non-trivial, that is, if and only if T is not injective. Hence, by
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Corollary 2.20, the mapping T is injective if and only if the vectors T'(b1),...,T(b,) are right linearly
independent.

If T is injective, then the vectors T'(by),...,T(b,) are right linearly independent. Therefore, by
Corollary 2.29, they form a right basis of V. Hence, for any v € V| there exist aq,...,a, € H such that
v=>" T(b;)a; and we deduce v =T (>_""_, b;a;). Thus, T is surjective.

If on the other hand T is surjective, then spang({T(b1),...,T(b,)}) = T(V) = V. In particular, the
set {T'(by),...,T(b,)} contains a right basis B of V. Since Corollary 2.27 and Definition 2.28 imply
#B = n, we obtain B = {T'(by),...,T(b,)}. Therefore, the vectors T'(by),...,T(b,) are right linearly
independent, which implies that T is injective.

O

Finally, we show that any right linear mapping between two quaternionic two-sided vector spaces V'
and W allows a representation in terms of R-linear mappings from Vg to Wg, where Vg and Wx are the
real parts of V and W, respectively, as defined in Lemma 2.17.

Lemma 2.34. Let V and W be quaternionic two-sided vector spaces. A mapping T :' V. — W s

quaternionic right linear if and only if, there exist R-linear mappings T; : Vg — Wgr, © =0,...,3, such
that
3
T(v) = Z T;(vj)eie;, (2.15)
3,j=0

where v = vy + 23:1 vje; with v; € Vg,j =0,...,3 as in (2.11).

Proof. Let T : V — W be quaternionic right linear and let Rey, : W — Wy be the projection onto the
real part of W as defined in Lemma 2.17. If we set T;(v) = Rey (€; T'(v)) for any v € Vg and i =0, ..., 3,
then the mappings T; are R-linear and the polarization identity (2.11) implies T'(v) = Z?:o T;(v)e; for
v € Vg. For v =v¢+ 23:1 vje; € V with v; € Vg, we obtain

3 3
T(v) =) T(v;)e; = Y Ti(v))eie;.
i=0 i,j=0

If on the other hand 7" has the form (2.15), then T is R-linear. For two vectors u = ug + 23:1 uje; and

v =1+ Z?:o vje; € V and a € R, we have ua + v = upa + vo + Z?Zl(uja +v;)e;. Hence,

3 3 3
T(ua + ’U) = Z Ti(uja + 'vj)eiej = Z Ti(uj)eieja + Z Ti(uj)eiej = T(u)a + T(’U),
1,j=0 i,j=0 1,j=0

because the mappings T; are R-linear.
Moreover, ve; = vge; — v1 — V€3 + v3eg implies

T(vey) = — To(v1)egeo + To(vo)eger + To(vs)egea — To(v2)epes—
—Ti(v1)ereg + T1(vo)erer + Th(vs)erea — Th(v2)eres—
— Tr(v1)eseqg + To(vg)eser + To(vs)esea — To(va)eses—
— T3(vq)eseg + T3(vo)eser + Tz(vs)ezea — Ts(va)eses

If we factor out e; on the right, we obtain

T(vey) = [ To(v1)eper + To(vo)eoeo + To(vs)epes + To
Ty (v1)erer + Ti(
+T5(v1)eaer + T

Ts(v1)ezer + T3(vo)eseo + T3(v3)ezes + T3

+

) ( (v2)
vo)ereg + Ti(v3)eres + Th(va)erea+
vo)ezep + To(v3)eses + To(vz)

) ( (v2)

+

Similar computations show T'(ves) = T(v)ey and T(ves) = T(v)es. Thus, for a« € H with a =
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3
ao + 51 aje;, we have

Hence, T' is quaternionic right linear.

Lemma 2.35. Let V and W be quaternionic two-sided vector spaces. Then
Lp(V,W) = LRV, Wg) ® H,

where Vg and Wrg are the real parts of V and W defined in Lemma 2.17, respectively, and L®(Vg, Wg)
denotes the set of R-linear mappings from V to W.

Proof. Because of Lemma 2.34, we have Lp(V,W) = L¥®(Vg, Wg)* = L¥(Vg, Wg) ® H as real vector
spaces. Let T' € L, (V,W) and let ¢ = Zj:o aje; € H. By the definition of the right scalar multiplication
on Lr(V,W) in Remark 2.31 and by (2.15), we have

3 3
[Ta](v) =T (av) = T( Z ajvkejek> Zaj (ka6]>ek = Z a;T;(vy)eiejex
J,k=0 i,7,k=0
for any v = Zi:o vper €V, where v, € Vg, k=0,...,3.
If on the other hand we identify 7" with Zf:o Tie; € LR(Vg, Wgr) ® H by Lemma 2.34 and multiply
it with a = Z?:o aje; € H from the right, we obtain

Ta = E Tiajeiej =
17=0

=Toagepey + Tiapgereg + Toageseq + Tzapezeq+
+ Tharege; + Tharerer + Thajeser + Tzaieser+
+ Thaseges + Thaseies + Thaseses + Tsasezes+
+ Thasepes + Thazeres + Thaszeses + Tiazeses =
=(aoTo — a1Th — axTs — asT3)eq + (a1 Ty + aoTy + asTh — aT5)er+
+ (a2Ty — azTy + agTa + a1 Ts)es + (a3To + a1y — a1 Ts + agT3)es
by the definition of the right scalar multiplication on L¥(Vg, Wg) @ H in (2.10). If we apply this operator
towv = Zi:o vier € V, we get

[Ta](v) = Z ((aoTo(vk) —a1Th(vy) — axTa(vi) — asTs(vk))epex+
k=0

+ (a1 To(vi) + aoTi (vi) + asTa(vy) — asT3(vy))erer+
+ (CLQTQ(’U].C) — ang(’Uk) + ang(vk) + a1T3('vk))€2€k+

+ (a3To(v) + aoTi(vy) — a1 To(vy) + a0T3(Uk))€3€k)7
and hence,

3
Z (aoTo vi)eoeoer + arTh(vy)ererer + aoTa(vi)ezezer + azTs(vi)esese,+
k=0

+ alTO('uk)eoelek + a1y ('vk)eleoek + a3T2(’Uk)62836k — ang(vk)egegek—l—
+ axTy(vi)eoezer + asTi(vy)ereser + agTa(vi)eseoer + a1T3(vi)eseren+

+ azTo(vi)eoeser + aoTh(vi)ereser + a1Ta(vi)eserer + ang(Uk))egeoek) =

3
g a;T;(v)e e ep.
4,5,k=0
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Thus, the two right scalar multiplications coincide. A similar computation shows that the left scalar
multiplications coincide, too. Hence, we obtain Lg(V,W) = LR(VR,WR) ® H even as quaternionic
two-sided vector spaces.

O

A result analogue to Lemma 2.35 holds for the space Ly (V, W) of quaternionic left linear mappings
from V to W. Hence, Ly (V,W) = LE(Vg, Wg) @ H = Lr(V,W). Let T = Z?:o Tie; € LR (Vg, Wg) @ H.
If we consider T" as a right linear operator, then Lemma 2.34 states that

3

T(’U) = Z Ti(vj)eiej

4,j=0
for any v = Z?:o v;e; € V. The analogous result for left linear operators states that

3

T(v) = > Ti(vj)ese;

i,j=0

for any v = Z?:o vje; € V. A comparison of these two formulas with the product of two quaternions
€= Z?:o x;e; and y = Z?:o y;e;, that is,

3

TY = E ZiYj€i€y,
i,j=0

suggests the following notation.

Definition 2.36. Let V and W be two-sided quaternionic vector spaces and let T = Ty + 2?21 Tie;
belong to L®(Ve, Wg) ® H. If we consider T as a quaternionic right linear operator, then we say that
T acts on the right and we denote T'(v) by the formal multiplication of T by v on the right, that is,
T(v) =Tv. If we consider T as a left linear operator, we say that T acts on the left and we denote T'(v)
by the formal multiplication of T by v on the left, that is, T'(v) = vT.

T = Z?:o T;e; and S = Z?:o Sie; belong to L*(Vg, Vg) ® H, then we can consider their formal
product T'S = 23 T;Sjeie;. Asin the classical case, we can interpret this product as the composition

4,§=0
of T and S. However, note the convention introduced in Definition 2.36 implies that

3

TSv = Z T;Sjvieiejer = ZTi(Sj(vk))eiejek

i1 k=0 irjok
and
3 3
vT'S = E v, T; S epeiej = E S;(T;(vi))exeie;.
1,5,k=0 1,5,k=0

Thus, T'S denotes T o S if we consider T and S as right linear operators, but it denotes S o T if we
consider them as left linear operators.

2.3 Quaternionic functional analysis

In this section, we extend certain basic results of classical functional analysis to the quaternionic case.
Again, results for right linear operators also hold for the left linear case with obvious modifications.

Definition 2.37. Let V be a quaternionic two-sided vector space. A function || || : V — [0,00) is called
a norm on V', if it satisfies

(i) |lv|l =0 if and only if v =10

(i) ||av|| = ||vall = |a|||v|| for allv € V and all a € H
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(ii1) ||w+v| < |ull + ||v| for all u,v e V.
If V is complete with respect to the metric induced by || - ||, we call V' a quaternionic Banach space.

Corollary 2.38. Let V be a quaternionic Banach space. Then V is a real Banach space, if we restrict
the left and the right scalar multiplication to R. Moreover, if we restrict either the left or the right scalar
multiplication to the complex plane Cy for some imaginary unit I € S, then V is a complex Banach space
over Cj.

Proof. We know from Remark 2.14 that V is a real vector space if we restrict the left and the right scalar
multiplication to R. In this case, the norm || - || on V satisfies the axioms of a norm on a real vector
space and V' is complete with respect to the induced metric. Hence, it is a real Banach space.
Similarly, we know form Remark 2.14 that V is a complex vector space over C; if we restrict either
the left or the right scalar multiplication to C;. Then, the norm || - || on V satisfies the axioms of a
norm on a complex vector space. Since V is complete with respect to the induced metric, it is a complex

Banach space.
O

Note that we only consider spaces with a left and a right vector space structure. We are interested in
(right or left) linear operators on a quaternionic Banach space. Hence, it is of minor interest to consider
only left or right vector spaces over H and endow them with a norm. As we pointed out in Remark 2.31,
in this case, the set of right linear operators does not have the structure of a quaternionic vector space.

Definition 2.39. Let V and W be two quaternionic Banach spaces. We denote the space of all contin-
uous right linear mappings from V to W by BE(V,W) and also by Br(V, W) if there is no possibility of
confusion. We will denote the space of all quaternionic left linear operators by BE(V, W) resp. B, (V,W).
Let V and W be two real Banach spaces. Then we denote the space of all continuous linear mappings
from V to W by BRX(V,W) and we endow it with the usual operator norm.
Finally, if V.= W, we will write BE(V), BE(V) and BX(V) instead of BE(V,W), BE(V,W) and
BR(V, W), respectively.

Remark 2.40. By Corollar 2.38, a quaternionic Banach space is also a real Banach space if we restrict
the scalar multiplication to the real numbers. Moreover, any quaternionic right linear mapping is also
R-linear. Thus, as a real vector space, Ba(V, W) is a subspace of BX(V,W). Moreover, the limit of
a sequence of quaternionic right linear operators in BX(V, W) must be quaternionic right linear, too.
Hence, BE(V, W) is a closed subspace of BX(V, W), and therefore, a Banach space over R. Finally, the
operator norm satisfies the axiom (ii) in Definition 2.37, because

1T (v)

|aT (v)[|w |w
l[aT|| = sup ——+—— = [a|sup ————— = [a| | T
vzo  |[vllv vzo  |[vlv
and
1T (av)||w T (av)||w
[Tall = sup ———— = [a|sup ————— = |a | T
vz0  |[v]lv v£0 |lav|v

for any a € H and any T € Bi(V,W). Therefore, BE(V,W) is a quaternionic Banach space if it is
endowed with the usual operator norm.

We conclude this chapter with the proof of the quaternionic Hahn—Banach theorem, Theorem 4.10.1
in [12], which was first proved by Suchomlinov in [27]. For a linear functional ¢ and a vector v, we use
the notation (¢, v) := ¢(v).

Theorem 2.41 (Hahn-Banach). Let V' be a quaternionic right vector space and let Vi be a right subspace
of V. Let p: V = [0,00) satisfy p(u + v) < p(u) + p(v) and p(ua) = p(u)|a| for all u,v € V and all

a € H. Moreover, let ¢ : Vo — H be a quaternionic right linear functional on Vy such that |{¢p,v)| < p(v)
for all v € V. Then there exists a right linear functional ® : V. — H such that ®|y, = ¢ and such that

[(@,v)] < p(v), for allv e V. (2.16)
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Proof. Let I,J € S with I 1L J. Then V is a complex vector space over C; by Remark 2.14, the space
Vo is a complex linear subspace of V' and p is a seminorm on V. Moreover, H is a complex left vector
space over C; by Corollary 2.10. Therefore, we can consider the coordinate functions z1, 25 : H — Cj
with respect to the basis {1, J} as they are defined in (2.8), such that = = 2z (z) + 2z2(x)J for all z € H.
Since xJ = —z2(x) + z1(z)J, we obtain z3(z) = —z1(xJ).

Let ¢1 = z1 0 ¢ and ¢3 = 22 0 ¢. Then ¢ = ¢ + ¢2J, and hence,

(¢, v) = (01,0) + (¢2,v)] = 21((¢, v)) + 22({(¢,v)) ] =
= 21(<¢av>) - Zl(<¢7v‘]>)‘] = <¢1?'U> - <¢1,’UJ>J.

Moreover, for any a € C; and any u,v € V;, we have
(91, ua + v) + (¢2,ua + v)J = (¢, ua + vy = ($,u)a + (¢, v) =

= <¢17u>a + <¢2,’U,>JCL + <¢1,’U> + <¢27U>J = <Q§17’U,>a + <¢17’U> + <¢2,’U,>J(l + <¢2,’U>J.
eCyr eCrJ

Since 1 and J are linearly independent over Cj, we obtain (¢1,ua + v) = (¢1,u)a + {¢1,v). Thus, ¢; is
Cj-linear. By the classical Hahn—Banach theorem, there exists a Cj-linear functional ®; : V' — Cj that
extends ¢, and satisfies |{®1,v)| < p(v) for all v € V. If we set

(P, v) = (Py,v) — (Py,v])] for all v €'V,

then ® extends ¢ to V and satisfies (®,u + v) = (P, u) + (P, v) for all w,v € V. Moreover, for any
a = aj + asJ € H, we have a;J = Ja; by Corollary 2.11 because a; € C;. Therefore,

(P1,va) — (P1,vad)J = (P1,v(a1 + azd)) — (P1,v(a1J — a2))J =
(®1,v)a1 + (D1, v))ag — (P1,vJ])Jay + (D1, v)asx] =
= (Dy,v)a1 — (Py,v])JasJ — (P1,vJ])Jay + (P1,v)as] =
((®1,v) — (1, v])J) (a1 + azJ) = (D, v)a.
Hence, ® is a quaternionic right linear functional on V.
Finally, if v € V with (®,v) # 0, then set x = (®,v). Let I, € S and zg,z1 € R be such that

x = x0 + L;x1. If we set 1 = mg + Iz, then |27 to;| = 1 and (®, vz~ a;) = (®,v)x~lz; = 21 belongs
to C;. Therefore, (®,vr~lz;) = (®1,vr~12r) and we obtain

(@, 0)| = (@, v)a ™ as] = (@, 02" wr)| = (@1, 02 2p)| < plva™ ar) = p(v)|z ™ 21| = p(v).
O

Definition 2.42. Let V be a quaternionic Banach space. We define Vi, = Br(V,H) and call V}, the
right dual space of V. Similarly, we define V] = Br(V,H) and call V] the left dual space of V.

Corollary 2.43. Let V be a quaternionic Banach space. Then the right dual space and the left dual
space of V' separate points.

Proof. For u,v € V with u # v, we set w = v —u and f(w) = ||w||. Because of Lemma 2.32, there
exists a unique quaternionic right linear functional ¢ on the right subspace spanp{w} = {wa : a € H}
that extends f. Moreover, we have

(¢, wa)| = [{§, w)l |a] = [[w]||a] = [lwal.

Thus, we can apply the quaternionic Hahn—Banach theorem to obtain a quaternionic right linear func-
tional ® that extends ¢ to V and satisfies |(¢, )| < ||t|| for all t € V. We have found ® € V}, such that
(®,v) — (P, u) = (P, w) = ||w| # 0. Hence, V}, separates points.

O
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Chapter 3

Slice regular functions

We introduce now the notion of slice regularity and develop the theory of slice regular functions as far
as it is necessary to define the associated functional calculus. We follow Chapters 2 and 4 of [12], except
for the discussion of Runge’s Theorem, which can be found in [13].

3.1 The definition of slice regular functions

Let I € S be an imaginary unit. By d; and 9, we denote the Wirtinger derivatives with respect to the
complex and the complex conjugate variable on the plane C;, that is, the operators

1/ 0 0 = 1/ 0 0
! 2 (8;100 8901) o ! 2 (8x0 * 81’1)
In accordance with Definition 2.36, they act as follows: Let U C C; be an open set and let f : U — H
be a real differentiable function. If 9; and 0y act on the right, then

Orf(x) = % (3(20f1(x0 +1xy) — Iaixlfj(xo +Ia:1)>

and

Orf(z) = % <£sz(zo + Iz1) + Ia%lf,(xo + Iz1)>

for x = xg+ Iz, € U. If they act on the left, then

100 = 5 (G frloo+ I20) = o fao + 122}
and | 5 )

Recall from Corollary 2.10 that H is a left and a right vector space over the complex plane C; for any
I € S. In accordance with Lemma 1.12, the characterization of holomorphicity in the Wirtinger calculus,
we give the following definition.

Definition 3.1. Let I € S, let U C C; be open and let f : U — H be real differentiable. The function
f is called left holomorphic, if 0;f = 0 on U, that is, if f is a holomorphic function with values in H,
where H is considered a left vector space over Cy. It is called right holomorphic, if f0; = 0 on U, that
is, if f is a holomorphic function with values in H, where H is considered a right vector space over Cy.

Definition 3.2. Let U C H be open and let f : U — H be a real differentiable function. For I € S, we
denote the restriction of f to the set UNCy by fr, that is, fr = flunc,. The function f is called left
slice regular on U if f; is left holomorphic for any I € S, that is, if

Oorfr=0
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on UNCy for all I € S. It is called right slice regular if f; is right holomorphic for any I € S, that is,
fror =0

on UNCy for all I € S. We will denote the set of left slice regular and right slice reqular functions on
an open set U by ME(U) and MT(U), respectively.

Moreover, we say that f is left slice reqular on a closed set C C H, if there exists an open set O with
C C O, such that f is left slice regular on O. We say that [ is right slice reqular on C, if there exists
an open set O with C C O, such that f is right slice regular on O.

The theory of right slice regular functions is analogous to the one of left slice regular functions. We
will state the results for both cases, but we will only give the proofs for the left slice regular one, because
the results for right slice regular functions follow with obvious modifications from these proofs.

Corollary 3.3. Let U be an open subset of H. The set ML (U) of left slice reqular functions on U endowed
with the pointwise addition (f + ¢)(z) = f(2) + g(2) and the right scalar multiplication (fa)(z) = f(2)a
for a € H is a quaternionic right vector space.

The set ME(U) of right slice reqular functions on U endowed with the pointwise addition and the left
scalar multiplication (af)(z) = af(z) for a € H is a quaternionic left vector space.

Proof. Let f,g € M¥*(U) and a € H. Then, for z = 2o + Iz; € U, we have

(fr+g1)(z) = % (820f1($) + aimogl(ff) + I%fl(x) + Iailgl(ff)) = drf1(x) + Orgr(x) = 0
and
0r(f10)(0) = 5 (e frwla + T fr(0)a) = 5 (5 fro) + T fr(o) ) a = @rf(w)a =

Thus, MZ(U) is closed under the pointwise addition and the multiplication with scalars from the right.
O

Note that ME(U) is not closed under multiplication with scalars on the left because, in general,
a € H and 0; do not commute as the following example shows.

Example 3.4. One important difference between the notion of slice regularity and the notion of Cauchy-
Fueter-regularity considered in Definition 1.13 is that polynomials of a quaternionic variable are slice
regular. Indeed, any monomial of the form x™a with n € N and a € H is left slice regular as

Orz"a = 1 (ax"a + Iax"a> =

n—1 2 n—1
+ 1 =
B . o (nx a nx a) 0

1
2
for x = xg 4+ Iz;. By Corollary 3.3, also polynomials of the form Zﬁ;o x™a,, with a, € H are left slice
regular. On the contrary, monomials of the form ax™ are in general not left slice regular. If x = g+ [z
and a ¢ Cy, then a and I do not commute because of Corollary 2.12. Hence,

oraz™ = % <aioaz" + Iailax") = % (an;l:”71 + Ia[nx”fl) #* % (anz"71 + IQmenfl) =0.
Similarly, polynomials of the form Zgzo anz", a, € H are right slice regular, but not left slice regular.

Furthermore, as in the case of Cauchy-Fueter-regularity, the product and the composition of two left
slice regular functions are in general not left slice regular and the product and the composition of two
right slice regular functions are in general not right slice regular. An easy counterexample is the function
f(z) = zaza with a € HI\R. Then f(z) can either be considered as the left slice regular function x — za
multiplied by itself or as the composition of the left slice regular functions x — za and = — z2. But for
x=uz9+ [z, and a ¢ Cy, a and I do not commute, and we obtain

_ 1 1
orfr(x) = 3 (aaxoxaxa + Ia(zlzaxa) =3 (aza + za® + IPaza + Izala) =

(asa2 + Iwa[a) # (:mQ + szaQ) =0.

|~

1
2

Hence, f itself is not left slice regular.
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3.2 Representation formulas and extension theorems

By definition, a function is slice regular, if it is holomorphic on every complex plane C; in H. The
following Lemma specifies this idea.

Lemma 3.5 (Splitting Lemma). Let U C H be an open set and let f : U — H be real differentiable.
Then f is left slice regular if and only if, for any I,J € S with I 1 J, there exist holomorphic functions
fi1,fo: UNC; — C; such that

f1(x) = fi(x) + fo(x)J  for allz € UNCy.

Similarly, [ is right slice regular if and only if, for any I,J € S with I L J, there exist holomorphic
functions f1, fo : UNC; — Cy such that

fi(z) = fi(x) + J fa(2) for all z € UNC;.

Proof. Let f be left slice regular and let I,J € S with I 1 J. By Corollary 2.10, there exist functions
f1, f2: UNCy — Cy such that fr(z) = fi(z) + fo(z)J for all x € UNCy. Since f is real differentiable,
f1 and f, must be real differentiable, too. Moreover, if f is left slice regular, it satisfies d; f = 0. Thus,
for x = xg + Ix1, we have

1 0 0 1 0 0 1 0 0
0=1 (Mfz(x) ¥ Iaxlm)) -1 (axofl(:c) " z%ﬁ(x)) - (axofm) " zaxlfm) J

which implies

) b 0 0
% <6I()f1($> +Iaxlf1($)> =0 and % (Mfz(m) +18:v1f2(m)) =0.

Hence, fi; and fo are holomorphic by Lemma 1.12.
On the contrary, if fi = f1 + foJ, where f; and fy are holomorphic functions from U N C; — Cy,
then 0y f; = 0 and 07 f2 = 0, and in turn,

Orfr =0rf1 +0rf2J = 0.

Hence, if such a decomposition of f; exists for any I,J € S with I 1 J, then f is left slice regular .
O

Slice regular functions allow the development of a rich function theory, if their domains of definition
satisfy certain regularity assumptions.

Definition 3.6. Let U be an open subset of H. Then U is called slice domain if U NR is nonempty and
if UNCy is a domain in Cy, that is an open and connected subset of Cy for all I € S.

Corollary 3.7. Let U C H be a slice domain. Then U is a domain in H.

Proof. The set U = | J;c(UNC;) is the union of connected sets, whose intersection is nonempty because
Nies(UNCr) = UNR # 0. Hence, it is connected itself. Since it is also open by definition, it is a
domain.

O

The condition U NR # 0 in Definition 3.6 is essential as can been seen from the proof of the following
theorem.

Theorem 3.8 (Identity Principle). Let U C H be a slice domain, let f : U — H be a left or right slice
regular function and let Z = {x € U : f(x) = 0}. If there exists an imaginary unit I € S such that
Z N Cy has an accumulation point in U NCy, then f =0 on U.
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Proof. Let f be left slice regular on U, let I € S be an imaginary unit such that Z N C; has an
accumulation point in U N Cy and let J € S with I 1 J. By applying the Splitting Lemma, Lemma
3.5, we obtain holomorphic functions fi, fo : U N C; — Cy such that fr(z) = fi(x) + fa(x)J. Since
Z1={xeUNCy: fi(x) =0} and Zy = {x € UNCy : fa(x) = 0} are supersets of ZNCy, they have an
accumulation point in U NCy, too. Thus, from the identity theorem for holomorphic functions, it follows
that f; =0 and fy = 0. Hence, f =0 on U N Cy. In particular, we obtain that f =0 on U NR.

Now let K € S be an arbitrary imaginary unit. Then the set of zeros of fx has an accumulation point
in Cx as fi|g = 0. Therefore, we can repeat the above arguments to show that fx =0 on UNCg, and
in turn, f =0 on U.

O

By applying the Identity Principle to f — g, we can easily deduce the following corollary.

Corollary 3.9. Let U C H be a slice domain, let f,g € MEU) or f,g € MEU) and let Z =
{z€U: f(z) =g(z)}. If there exists an imaginary unit I € S such that Z N Cy has an accumulation
point, then f =g on U.

The second important regularity assumption on the domain of definition of slice regular functions is
axial symmetry.

Definition 3.10. For a quaternion x € H, we set

— ifz#0
I, ={ |zl
any element of S otherwise,

where x denotes the vector part of x as in Definition 2.2.

Corollary 3.11. Let x € H. Then I, € S and x € C;,_. More precisely, x = xg + I 21 with xo = Re[z]
and x1 = |z|.

Proof. Let x € R. Then x € C; and & = zg + Ix; with g = Re[z] =z and 1 = 0 = |z| for any I € S.
Otherwise, if ¢ R, then |z| # 0 and we have Re[l;] = Re[z]/|z| = 0 and |I,| = |z|/|z] = 1. Hence,
I, € S. Moreover, we have

x

x=Re[z]+z =20+ ﬁ|§| =x0+ I,21.
z

Definition 3.12. For z = x¢ + I,z1 € H, we define
[z] = zo + Sz1 = {xo + [z1 : I € S}.

The set [z] is a 2-sphere of radius 21 = |z| centered at the real point z, which reduces to the point
x = xo if |z| = 0. In particular, when we refer to a 2-sphere in the following, we always include the
degenerated case of a single point.

Definition 3.13. A set Q C H is called axially symmetric if, for any x € Q, the entire 2-sphere [z] is
contained in 2.

It is an important fact, that any slice domain can be extended to a larger slice domain that is axially
symmetric.

Definition 3.14. Let Q C H. We call [ = U, (2] the axially symmetric hull of Q.

Example 3.15. Let © = 2o + I,x1 € H and let € > 0. We determine the axially symmetric hull of the
ball B.(z) C H. Note that B.(z) NCy, = {yo + Izvy1 : (Y0,y1) € Be(xo, 1)}, where B.(xo, 1) is the ball
of radius ¢ centered at (rg,21) in R%. Hence,

[Be(2)] D {yo + Ty1 : (yo, y1) € Be(wo,21)}. (3.1)
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For I €S, set x1 = xo+ Iz € [z]. If y = yo+ I,y1 € H, then we can choose J € S with I, L J such that
I € span{l,, J}. Then x; = xg + &11, + &2J, where z1 = |z;| = \/73 + &3 by Corollary 3.11. Hence,

(o, 1) = (Yo, y1)I> = (zo — 0)® + (x1 — 91)* = (w0 — Y0)* + 2T — 2x191 + 47 =
= (w0 —y0)* + T + 5 — 21/37 + 73 y1 +yi <
< (w0 —y0)? + & + I35 — 281y + 4§ = (20 — y0)° + (#1 —y1)* + 35 = |y — 1],
If I = I, then 1 = x; and &2 = 0 and we obtain a chain of equalities. Hence,

(0, z1) — (yo, y1)|| < dist(y, [z]) = Helf | ly — x| < |y — 21, | = [[(x0, 1) — (3o, 1),
xrr xr

and in turn
dist(y, [z]) = [y — 21, | = [[(z0, 21) — (yo, y1) |- (3.2)

This implies |[(zo,z1) — (yo,¥1)|| = dist(y, [z]) < |y — x| < ¢ for any y = yo + Iyy1 € B:(z). Hence, in
(3.1), the reverse inclusion also holds true. Altogether, we obtain

[Be(z)] = {yo + Iy1 : (Y0,y1) € Be(wo,71)} = B:([z]),
where B ([z]) = {y € H : dist(y, [z]) < e}.
We denote the closed upper half plane in R? by R?, that is RZ = {(zo,z1) € R? : 1 > 0}, and we
define the function
H R2
U TRy (3.3)
x=uz0+ yz1 > (x0,21)

which is a very useful tool for investigating the relation between the topological properties of a a set (2
and its axially symmetric hull [Q].

Corollary 3.16. Let Q C H. Then [ = U—1(T(Q)).

Proof. We have ¥(Q) = {(zo,z1) € R3 : @ = zg + Iyz1 € Q for some I, € S} and U~ (zg,21) =
{zo +Iz1: I €S} = [xg + I,x1]. Hence,

vLe@Q)) = |J  lwo+ L= 2] = [

(z0,21)€¥ () z€eQ
]

Example 3.17. Let us again consider the case of a ball B.(z), where x = xg+ I, 21 as in Corollary 3.11.
Since

B.(z) N Cr, = {yo + Ly1 : (yo,y1) € Be(x0,71)}, (3.4)

we have B (zg,z1) NR3. C ¥(B.(z)). If on the other hand we write y € B.(x) as y = yo+ I, y1 according
to Corollary 3.11, then |[(xo,21) — (y0,%1)|| < € as we have seen in Example 3.15. Since y; = |y| > 0,
this implies (yo,y1) € Be(wo, 1) NR3. Hence,

U(B.(z)) = Be(z0,71) NR3.

The equation (3.4) implies that even W(B.(z) N Cy,) = Be(xo,x1) NR3. As a consequence, we obtain a
more precise description of the axially symmetric hull of B (x) from Corollary 3.16, namely

[B:(z)] = U (¥(B:(2))) = {yo + Iy1 : (Yo, v1) € Be(x0,71) NRY}.

Moreover, for the imaginary unit I, we have

[B-(z) N Cr,] = VY (¥(B-(z) NCr,)) = {yo + Iy1 : (Yo,y1) € Be(wo,21) "R} = [B.(w)].
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Lemma 3.18. The function ¥ defined in (3.3) is continuous, open and closed. Moreover, for any I € S,
the restriction of U to the plane Cj is continuous, open and closed, too.

Proof. By Corollary 3.11, we have ¥(z) = (Re[z], |z|) for x € H. Hence, ¥ is continous. Consequently,
its restriction to a complex plane C; is continuous, too.

Let O C H be open. For (zg,z1) € ¥(0) C R2, there exists I, € S such that x = xg + I,x; belongs
to O. Since O is open, there exists ¢ > 0 such that B.(z) C O. In Example 3.17 we have seen that
U(B.(z)) = B:(wo, 1) NR2, which is a neighborhood of (z¢,z1) in R%. Since ¥(B.(z)) C ¥(0), the
set ¥(0) is open, and in turn, ¥ is an open map. We also have W(B.(z) N C;) = B.(z¢,z1) NR% for
any x = xg + Iz € C;. Hence, the same argument shows that the restriction of ¥ to a complex plane
Cy is open, too.

Finally, assume that C' C H is closed and let (o, z1,0),n € N, be a sequence in ¥(C) such that
(xo,21) = limp_y00(To,n, T1,,) exists. Then there exists a sequence of imaginary units I,,,n € N such
that ©, = o, + Inx1,, belongs to C for any n € N. Since the sequence (x ., 1,,) is convergent, it is
bounded in R?. The identity |2,|* = 2§, + 27 ,, = [[(xon, 1,n)||*, implies that the sequence z,,n € N
is bounded in H. Hence, it contains a convergent subsequence x,,,k € N. The limit z = limp_ 00 Tpn
belongs to C because C' is closed, and the continuity of ¥ implies that (zo, 1) = limg_y00 (To,ng, T1,mp) =
limg_yoo U(xy, ) = ¥(x) belongs to ¥(C). Hence, ¥(C) is closed and ¥ is a closed map. Since the
restriction of a closed map to a closed set is closed again, ¥|c, is closed for any I € S.

O

Lemma 3.19. If Q C H is open (closed, compact), then [Q] is open (closed, compact). Moreover,
sup{|z| : € Q} = sup{|z| : = € [Q]}.
If T €S and Qp C Cy is open (closed, compact) in Cy, then [Qf] is open (closed, compact).

Proof. The function ¥ defined in (3.3) is open, closed and continuous by Lemma 3.18. Hence, the set
() is open (closed), if Q is open (closed), and in turn, by Corollary 3.16, [Q] = ¥~1(¥(()) is open
(closed).

By the Heine-Borel-Theorem a subset of R™ is compact if and only if it is closed and bounded. The
identity |z| = \/x3 + 23 = ||(z0, 21)|| for x = 2o + I,x1 € H implies

supq{|z| : z € Q} = sup{|[(zo, x1)]| : (xo,z1) € U(Q)} = sup{|z|: z € \Ilfl(\Il(Q))} = sup{|z| : x € [Q]}.

Hence, if Q) is compact, then it is closed and bounded, and in turn, the set [(2] is closed and bounded,
too. Therefore, it is compact.
Since U|c, is open, closed and continuous by Lemma 3.18, the same arguments show that 2y is open
(closed, compact) if [Q;] is open (closed, compact) in Cj.
O

Lemma 3.20. Let U C H be a domain in H with U NR # @ or let U C C; be a domain in C; with
UNR # 0 for some imaginary unit J. Then [U] is a slice domain and there exists a domain Dy in R?
that is symmetric with respect to the xo-axis such that xo + Ixy € [U] if and only if (wo,21) € Dyyy. In
particular, [U] = {xo + Iz1 : (x0,71) € Dy}, I € S}.

Proof. The axially symmetric hull [U] of U is open by Lemma 3.19 because U is open in H (resp. Cj).
Consequently, the set [U] N Cy is open in C; for any I € S.

As [U] = 1 (W(U)) = {zo + 21 : (w0,21) € Y(U),I € S}, a quaternion z belongs to [U] N Cy if
and only if x = xg + Iz or © = xg + (—I)z1 with (xg,z1) € Y(U). Since zg + (—1)z1 = xo + I(—x1),
this is equivalent to x = x¢ 4 Ixy with (zo,21) € Djy), where we set Dyy; = ¥(U) U —=¥(U) with
—U(U) = {(z0, —21) : (x0,21) € ¥(U)}.

The set U(U) is open in R because U is open and because U resp. ¥|c, are open mappings by
Lemma 3.18. Consequently, Dy} is open in R? because it is the preimage of ¥(U) under the continuous
mapping (zg, 1) — (2o, |z1|) from R? to R%. Since U is connected and ¥ is continuous, the set ¥(U) is
connected, and in turn, —¥(U) is connected, too. The set ¥(U)N—Y(U) = {(xp,21) € ¥(U) : 1 =0} =
¥ (U NR) is nonempty. Therefore, Dy = ¥(U) U =¥ (U) is connected because the union of connected
sets with nonempty intersection is again connected. Altogether, we obtain that Dy is a domain in R?
that is symmetric with respect to the xg-axis such that [U] = {xo + Iy : (x0,21) € Dpy), I € S}.
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Finally, since 7 : (zo,21) = 2o + Ix1 is a homeomorphism from R? to Cy, the set [U] N C; =
{xo + Iz1 : (20, 21) € Dy} =7(Djy)) is a domain in C; for any I € S and [UJNR D UNR # (. Hence,
[U] is a slice domain.

O

Theorem 3.21 (Representation Formula). Let U C H be an azially symmetric slice domain and let f
be a left slice reqular function on U. If we write x € U as x = xg + Iyx1 according to Corollary 3.11,
then the identity

flz) = % (1= LI f(zo + I21) + % [1+ L1] f(xo — T21) =
1 (3.5)
=3 flzo + Ixq) + f(zo — Laq) + LI[f(xo — Iz1) — f(zo + Iz1)]

holds true for any I € S and any x € U. Moreover, the quantities

a(zg,x1) = %[f(aco +Izq) + f(xzog — Iz1)] and Bz, 1) = %I[f(xo —Ixy) — f(zo + Iz1)] (3.6)

do not depend on the imaginary unit I.
If on the other hand g : U — H is right slice regular on U, then the corresponding identity

1 1
g(z) = 59(370 +Izqy)[1-IL]+ §g(x0 —Ir)[14+11,] =
1

=5 g(xo+ Iz1) + g(xg — T21) + [g(x0 — I21) — gm0 + le)}lll}

(3.7)

holds for any I € S and any x € U. Moreover, the quantities

a(zg, 1) = %[g(mo +Izy) 4+ g(zo — I21)] and Blzg,x1) = %[g(a:o —Izq) — g(xo + T21)]1

do not depend on the imaginary unit 1.
Proof. Let I € S. Writing © = x¢ + I, x1 according to Corollary 3.11, we define the function

plx) = 51U~ LI) f(wo + Ten) + 3 [1+ L1) Fzo — )

for x € U. Since U is axially symmetric, this function is well defined. Moreover, it is left slice regular
because

= 1 1 1o}
281Tg0(x) = 5 [1 — III] 8x0f($0 + Il‘l) + 5 [1 + IEI] T%f(xo — I$1)+
i paot Ton) + 21+ L) fw — 1)
5 x B2y Zo T ole x 024 Zo x1).

Since f is left slice regular, we have -2 f(xo+Ix;) = fI%f(ngrIzl) and a%of(xoflosl) = Ia%lf(l”o*

6330
Izy1). Hence,

21, p(x) =5 (1~ L) (<)oo f(ao + Lz2) + 3 [1 + L] Ia%f(xo e+

o0xq
+ %Iz [1— L] a%lf(xo + Izy) + %Im 1+ I.1] a%lf(zo —Izy) =
:% (-1 — I,] E)%lf(ac0 +Izy) + % I —1,] aixlf(mo — Izq)+
+%[I$+I]8i:cl ($0+1$1>+%[[w—1]6%1 (xo — Iz1) = 0.

Furthermore, for x € U N Cy, we have either I, = I, and in turn

1

p(r) = 3 [1 —12] fxo + Ixq) —|—% [1+12] fleg —Ixy) = f(xo+ Ix1) = f(2),
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or we have I, = —I, which yields

p(x) = % [1+12] fxo + Ixq) Jr% [1 712] fleg —Ix1) = f(xg — Ix1) = f(2).

Thus, from the Identity Principle, Theorem 3.8, it follows that ¢ = f.
To show that a and 8 do not depend on the imaginary unit I, let J € S be an arbitrary imaginary
unit. Applying (3.5), we obtain

(o, 1) = [F (w0 + T2) + (o — I1)] =
=5 |5 o+ Ta) + f(o — Jaa)] + 5T [fwo — Jor) — Flao + Ja)] +
+ % [f (w0 — Ja1) + flzo + Ja)] + I%J [f (w0 + Ja1) = f(ao — Ja1)]| =
=5 o+ J2) + flzo — Jn)]
and similarly
Blao, ) =5 [ (o — Ia) — f(zo + Ta)] =
=31 |3 (o — Jaa) + flao + Jw)] + T2 [f(zo + Jan) — fao — Jar)] -

— 5 o+ Jz1) + fleo = Ju)] = 137 (o — Ji1) = flao + Jan)]| =

L oo~ )~ o+ )
O

Corollary 3.22 (Representation Formula II). Let U C H be an axially symmetric slice domain and
let Dy be the domain in R? such that U = {x¢ + Ix1 : (w9,21) € Dy, I € S} as in Lemma 3.20 with
[Ul=U. A function f:U — H is left slice reqular if and only if there exist two differentiable functions
a, B : D — H that satisfy the conditions

oz, 21) = a(x0, —71) and B(xo,x1) = —B(w0, —71) (3-8)
and the Cauchy-Riemann system
0, _ 9
{6I0a_ 8w1ﬁ (3 9)
o] _ o] .
321 = B P
such that
f(z) = a(zg, z1) + 18(x0, x1) (3.10)

forallr =20+ Iz, €U. R
The function f is right slice reqular if and only if there exist two differentiable functions @, 8 : Dy — H
satisfying the conditions (3.8) and (3.9) such that

o~

f(x) = a(xog, 1) + B(xo, 1)1
forallr =20+ Iz, €U.

Proof. If f is left slice regular, we can apply Theorem 3.21 and define «(xq,x1) and 8(xo,x1) as in (3.6).
Obviously, these functions satisfy (3.8). Furthermore, as f is left slice regular, we have % flag+1Izy) =

f[%f(xo + Iz1) and %f(mo —Ixy) = I%f(xo — Izy1). Hence,

1

0 7] 0
a—xoa(xo,xl) = 5 |:am0f($0 + Iﬂfl) + Txof(l‘o — I.]Zl):| =

= %I |:—ai1f(x0 + Iml) + aixlf(aio - I.’L‘l):| = %B(wo,xl)
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and

0 11 0 0
aixla(x(),xl) = 5 |:ax1 (.’I]O + I.'L']_) + aixlf(l‘o — I.’L’l):| =
1 0 0
_—5_[ |:_8x0 (.’E0+Il'1)+8m)f(xo_1$1):| ——%ﬁ(xo,xl).

If on the other hand « and 8 satisfy (3.8), the function f(z) = a(zo, z1)+I8(xo, z1) for = zo+1x; € U
is well defined on the open set U. In fact, if # = xq+ 1z, € U with (29, 21) € Dy, then (zg, —x1) € Dy
because Dy is symmetric with respect to the x¢-axis, and x = xo — I(—21) where —I € S. However,
the value f(z) does not depend on the chosen representation as

f(on - I(—xl)) = 04(960, —xl) - Iﬁ(xo, —551) = Ol(xoa 351) + Iﬁ(ff(),xl) = f(xl + I$1)~

Finally, because of (3.9), f is left slice regular as

_ 0 9 9 , 0 -
Orf(xo + Ix1) = 8736004(9507%) + 167605(950,%) + [aTCIOé(IO,Il) +1 87315(%7%1) =

0 0 0 0
— a—xoa(aﬁo,xl) — a—xlﬁ(ﬂco,xl) +1 8—%6(:160,:1:1) + 6—95104(900,301) =0.

O

Corollary 3.23. Let U C H be an azially symmetric slice domain, let f : U — H be left slice regular
and let x = xg + [x1 € U. Then there exist a,b € H such that

flxo+Ix1) = a+ Ib,

for all I € S. In particular, the image of the 2-sphere [x] under f is the set {a +Ib: I € S}.
Similarly, if [ is right slice reqular, then there exist a,b € H such that

Flzo + Iz1) = a+bl,

for all I €S. In particular, the image of the 2-sphere [x] under f is the set {Zi+3[ : [ €S}

An important consequence of Theorem 3.21, the Representation Formula, is the fact that any holo-
morphic function defined on a suitable domain can be uniquely extended to a slice regular function.

Lemma 3.24 (Extension Lemma). Let I € S and let D be a domain in Cy that is symmetric with respect
to the real azis and such that D "R # (. Then, the azially symmetric hull [D] of D is a slice domain.
Moreover, if f : D — H is left holomorphic in the sense of Definition 3.1, then the function extr(f),
which is defined by

[f (o + Tz1) + f(wo — I21)] +Iz%I[f($0 — Izy1) — f(xo + Iz1)]

DN | =

ext (f)(x) =

for x € [D], where x = xo + Iyx1 as in Corollary 3.11, is the unique left slice reqular extension of f
to [D]. Similarly, if g : D — H is right holomorphic, then the function extr(g), which is defined by

extr(g)(z) = %[g(xo +1Iz1) + g(xg — le)} + %[g(wo —Ixy) — g(zo + Iml)]flz

for x = xg + I,x1 € [D], is the unique right slice reqular extension of g to [D].

Proof. By Lemma 3.20, the axially symmetric hull [D] of D is a slice domain. The fact that exty (f) is
left slice regular, follows in the same way as the left slice regularity of the function ¢ at the beginning of
the proof of Lemma 3.5. Moreover, if © € C;, we have

exto(1)(w) = 5 [+ Lex) + flaeo = Tea)] = 5 [Flwo = Tox) = flao + Ta1)] = [0 + L1) = f(2)

| —
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if I, =T and

[Flao + ) + flao — )] + 5 [£(o = Lon) = fao + I1)] = flao — 1) = f(a)

N =

extr(f)(z) =

if I, = —I. Therefore, exty(f) extends f. Furthermore, for any other left slice regular extension fof
f, we have extr(f)|p = f = f|p. Theorem 3.8, the Identity Principle, implies exty,(f) = f. Therefore,
extr(f) is the unique left slice regular extension of f to [D].

O

Remark 3.25. Note that in particular any holomorphic function f : D C C; — Cj is both left and
right holomorphic as a function from D to H. Thus, there exist a left and a right slice regular extension
of f. However, it is possible, that these two extensions do not coincide. For instance take I € S and
consider the function f(z) = Iz, which is holomorphic on C;. For z = g + I,z € H, we have

extr(f)(x) = %[I(xo + Izq) + I(wg — Iz1)] + Iﬁél[l(xo —Ixy) = I(zo + Iz1)] = Twg + IIzy = al,
but
extr(f)(z) = %[I(xo + Izq) + I(wg — Iz1)] + %[[I(a:o — Ixy) = I(xo + Iz I, = Iwg + a1, = Ix.

If we consider J € S with J L I, then extr(f)(J) = JI # IJ = extr(f)(J). Hence, extr(f) # extr(f).

In the following, we will only consider slice regular functions that are defined on axially symmetric
slice domains. As we will see in the next lemma, this is no significant restriction because any slice regular
function on a slice domain can be uniquely extended to the axially symmetric hull of this domain. To
prove this lemma, we need the following generalization of the Representation Formula.

Corollary 3.26. Let U NH be an azially symmetric slice domain, let I,J € S with I L J and let us
write v € U as x* = xg + I, 21 according to Corollary 3.11. If f € M*(U) and g € ME(U), then the
following identities hold true for any x € U:

fl@) = = D) I f(xo + Tx1) — J f(wo + Jw1)] + L(I — J) " [f(wo + Ta1) — fwo + Ja1)]  (3.11)
9(x) = [g(xo + Iz1)I — f(zo + Ja1)J|(I = )" + [g(zo + Tw1) — g(zo + J21)|(I = J) "' L. (3.12)
Proof. If we apply Corollary 3.22, we obtain
fxo+ Iz1) = alzo, z1) + 1B(x0, 1) and  f(zo + Jx1) = almo, z1) + JB(x0, 21). (3.13)
If we subtract these equations and multiply the result by (I — J)~! from the left, we obtain
Blwo,a1) = (I = J) " f (w0 + a1 ]) — f(wo + Ja1)].

If we multiply the equations in (3.13) by I and J from the left, subtract them and multiply the result
by (I — J)~! from the left, we obtain

alwg, 1) = (I = J) I f(wo + 211) — J f(z0 + J21)]-

Plugging these expressions back into (3.10), we obtain the desired representation.
O

Lemma 3.27 (Extension Lemma, IT). Let U be a slice domain in H and let f : U — H be left slice
reqular. Then there exists a unique left slice reqular extension of f to the azially symmetric hull [U] of
U. Similarly, for any g € ME(U), there exists an unique right slice reqular extension of g to [U].

Proof. Since U is a slice domain, there exists a point ¢ € U NR. Furthermore, as U is open, there exists
an open Ball B,.(c) C U. If f is left slice regular on U, then the restriction of f to B,(c) is a left slice
regular function defined on an axially symmetric slice domain.

Let us consider the set F of all left slice regular functions £ defined on an axially symmetric
slice domain V such that B,(¢c) C V C [U] and {lynu = flvay. This set is nonempty because

34



(Br(c), f|B,(¢)) € F. It is partially ordered by the set inclusion, that is, (V1,&1) =< (V2,&2) if Vi C Va.
For a chain (Vi, &k )kex in F, we can define

V= U Vi and & (x) =&, (z) forx e V¥, (3.14)
keK

where k, is an arbitrary k € K such that € K. The Identity Principle, Theorem 3.8, implies &3]y, = &1
if V1 C V,. Hence, £ is a well defined left slice regular function on V* that extends f. Moreover, it is
easy to check that V* is an axially symmetric slice domain such that B,.(z) C V* C [U]. Therefore,
(V*,€*) belongs to F and it is an upper bound of the chain (Vi,&k)rex. By Zorn’s lemma, there exits
a maximal element (U*, f*) in F.

In order to show that U* = [U], we assume the converse, U* C [U]. In this case, there exists
y=yo + Iyy1 € [UNOU*. Since y € [U], there exists I € S such that y; = yo + Iy1 € U. Since U is
open, there exists a ball B, (y;) C U. Thus, we can find another imaginary unit J and € < ¢ such that
B.(y;) C U, where y; = yo + Jy1. In particular, the discs B.(yr) N Cr and B.(ys) N C; are contained
in U.

As an easy consequence of Example 3.15, we get [B:(y)] = [B:(yr) N Cy] = [B:(ys) N Cy]. Thus, for
x =x0+ Iyz1 € [Be(y)], we can define

dla) =T = J) " [If(xr) = Jf(xs)] + LI = J) f(xr) — f(z)],
where we set 7 = 29 + Iz and 2y = 29 + Jx1. Then

207, () =(1 — 1) [Iaiof(m - Jaiof(:w)] L) [aiof(m - (,f;of(x.])} +

L) [I(;Zlf(xz) - J(fmﬂm] Ty [(fmfm) - fmlﬂm} |

Since f is left slice regular, we have a%f(m[) = —Ia%lf(xf) and ai%f(xj) = —Ja%_lf(asj) and in turn

20r(x) =(1 — 1) [ff;ﬂm - afm)] L) [Iailf(xz) 2

oz, B f(fUJ)} +

0 0 0 0
-1l 7 9 7. 9 1 pn-1| 9 9 _
L= ) [T ) = T fen)| = (= )7 [ ) = 5 f(e)] <o
Hence, ¢ is left slice regular. Moreover, ¢(x) = f*(z) for all z € U*N[B.(y)] by Corollary 3.26. Therefore,
the function

¢(z) ifze[B(y)\ U

is a well defined left slice regular extension of f to U* U [B.(y)].

The set U* U [B:(y)] is obviously axially symmetric. Moreover, the union of two open and connected
sets is open and connected, if their intersection is nonempty. Hence, U* U [B(y)] is open and connected
because U* and [B.(y)] are open and connected and [y] C U* N [B:(ys)]. Furthermore, for any K € S,
we have {yr,Jx} C U* N Ck, where yx = yo + Ky1. The sets (U* N Ck) and (B:(yx) N Ckg) are
open and connected subsets of Cx whose intersection is nonempty because it contains yx. Hence,
(U* N Ck) U (Be(yrx) N Ck) is open and connected in Cx. The intersection of B.(yx) N Cx and
(U*UCk) U (B:(yx) NCk) contains § and is therefore not empty either. Consequently, the set

(U*U[B:(y)]) NCk = ((B-(yx) NCk) U [(U* UCk) U (B(yx) N Ck)]

W) = {f*(z) ifexeU*

is open and connected in Cx and [U] U B.(y) is an axially symmetric slice domain.
Since B,(c) C U* U [B:(y)] C [U], we have (U* U [B:(y)], h) € F which contradicts the maximality
of U* because U* is a proper subset of U* U [B:(y)]. Therefore, [U] NOU* = @ and, in turn, [U] = U*.
Hence, f* is a left slice regular extension of f to [U].
Finally, it follows from Theorem 3.8, the Identity Principle, that the slice regular extension of f to
[U] is unique.
O
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3.3 Power Series

A power series in the quaternion variable centered at ¢ € H is a series of the form

o0 oo

Z an(x —c)" or Z(x —o)"ay, (3.15)

n=0 n=0

with coefficients a,, € H. Power series in the quaternion variable are more complicated than complex
power series because of the noncommutativity of the quaternionic multiplication. Nevertheless, some
of the classical theory holds also in the quaternionic case. In particular, the same arguments as in the
complex case show that for any series of the form (3.15), there exists a unique R € [0, 0], its radius
of convergence, such that the series converges uniformly on any closed ball B,.(¢) with 0 < r < R and
diverges for any x« € H with |z — ¢| > R. Moreover, the classical formula

1

hm Supn—>oo n\/ |a’n|

R

also holds true in the quaternionic case.
Before we consider power series expansions of slice regular functions, we need to introduce a new type
of derivative for slice regular functions. It is the analogue of the usual derivative ¢’ in complex analysis.

Definition 3.28. Let U C H be an open set and let f be a left slice reqular function on U. Then we
define its slice derivative dsf as

Osf(x) = 0rf(x) if v =x9+ Iz € U.
If f is a right slice regular function on U, then we define its slice derivative 0 f as
s f(x) = (fOr)(z) ifx=x0+ Iz1 €U.

Remark 3.29. Note that the slice derivative is well defined, because it is only applied to slice regular

functions. Indeed, if f is left slice regular, we have %f;(z) = fI%fI(x) for x = zg + Iz1 € U and
therefore vy 5 5 5
; =— (= —I— = — = — . 1
0.1(0) = 5 (5= f1(0) = T 1(0)) = 5= fle) = 5= 1(2) (3.16)

Since the derivative with respect to zy does not depend on the imaginary unit I, the slice derivative is
independent of the representation = xg + Ix; = 29 — I[(—x1) if ¢ R and of the imaginary unit I if
z e R.

The identity (3.16) corresponds to the fact that ¢/(z) = -2-¢(z) for any holomorphic function ¢ and

D2
z=2z9+ 1z, € C.

Recall that the derivative ¢’ of a holomorphic function ¢ is holomorphic itself. The analogue result
is true for the slice derivative of a slice regular function.

Corollary 3.30. The slice derivative Osf of a left slice reqular function f is left slice reqular and the
slice derivative Osg of a right slice regular function g is right slice regular.

Proof. Let f be left slice regular on U and let & = xg + Iz; € U. Then we have 8, f(z) = 52 fi(z) by
(3.16), which implies

0 0 0 0

~ 1 1 0 0 0
0r0s f () = 5 (833083:0f1(x) +18$16x0f1(x)> = 202, <8x0f1(x) JFIamlfl(I)) =0.

O

Remark 3.31. As we have seen in Example 3.4, polynomials of the the form quj:o z"a, with a,, € H are
left slice regular. If we consider a power series of the form p(z) = >_°° ) 2™a,, with radius of convergence
R > 0, then the series converges uniformly on any closed ball B, (0) with 0 < r < R. In particular, the
restriction pr(z) = >..°  2"a,, = € Cr, of p to C converges uniformly on B, (0) NC; for any imaginary

unit I € Sif 0 < r < R . Therefore, if = x¢ + I[z1 € Br(0), we can choose r with || < r < R, and
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since the series p;r converges uniformly on B,.(0) N Cy, we can exchange summation and differentiation

and obtain
Orpr(x 81213 an—z&x an, = 0.

Hence, p is left slice regular on Bg(0). Slmllarly, any power series of the form ) ja,z" is right slice
regular.

However, a polynomial or a power series centered at an arbitrary point ¢ € H is in general not
slice regular. Consider for instance the monomial z2. If we center it at ¢ € H, we obtain (z — ¢)? =

2?2 — zc — cx + 2. For x = xo + Iz, € H, we have

Or(x — ¢)* = 0px® — Orxc — Orcx + 9;c® = dca.

Thus, (x — ¢)? is left slice regular if and only if 9; and ¢ commute for all I € S. By Lemma 2.5, this
implies ¢ € R.

Therefore, we can not wish to find a power series expansion > - (z — ¢)™a, of a left slice regular
function at an arbitrary point c. Nevertheless, at least at any real point, a slice regular function can be
expanded into a power series.

We start with the case ¢ = 0.

Theorem 3.32 (Power Series Expansion). Let B,(0) C H be the open ball with radius r centered at 0.
A function f : B.(0) — H s left slice reqular if and only if it has a power series expansion of the form

@) = Y a" S 10) (317)

converging on B,(0). In particular, if f(z) = 300 2 ayn, then a, = 527 £(0).

n! Ox{)
It is right slice reqular if and only if it has a power series expansion of the form

converging on B,.(0). In particular, if f(z) = 3.0°  ana™, then a, = 2 2= f(0).

n! Ox{)

Proof. If a function admits a series expansion as in (3.17), it is left slice regular on its ball of convergence
as we have seen in Remark 3.31. To prove the converse, we use Lemma 3.5, the Splitting Lemma. Let
I,J €S with I L Jandlet fi,fy: B,.(0)NC; — C; be holomorphic functions such that f; = f1 + faJ.
Since the functions f; and f2 are holomorphic, they permit a Taylor series expansion on B,.(0) N Cj.
Thus, for x € C;, we have

f<"> f(”) o ‘”><o> (o)
Z Z J= Z (A ).

Furthermore, for any holomorphic function ¢ on Cy, the identity ¢'(x) = a%ogz(a:) holds true. Hence, we
obtain
= 1o 1o S >, Lo
fi(@) HZIO‘” (n! oy 1O+ 21 g 20) > nzo oo 10 = nzzox n oy )

In particular, if f(z) = ZZO:O 2" a, there exist ay 1, a2 € Cy for any n € Ny such that a, = an,1+an2J,
cf. Corollary 2.10. Since

fl(x)+f2( J fI Zx an—zx anl"'zx anQJ

for z € C; and since 1 and J are left linearly independent over Cy, we obtain fi(z) = >0 s 2" an k, k = 1, 2.
Hence, an = 4 f(0) = L2 £ (0),k = 1,2, and

n‘da:"
1 o 1 0" 1 o™
n = Qp nod = ———f1(0 ——f5(0)J = ——f(0).
@ On,1 + Gn2 n!&mgfl()+n!8x8f2<) n! 0z (0)
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Corollary 3.33. Let U C H be a slice domain and let f be a function on U with values in H. Let c € U
be a point on the real axis and let B, (c) be the largest ball centered at ¢ that is contained in U. If f is
left or right slice regular, then it allows the power series representation

> 1o /1 0" N
F =D gt o S0 =3 (gel@)e-or e

on By(c), respectively.

Proof. Let f be left slice regular and let t.(xz) = x + ¢. Then z and ¢.(z) lie in the same complex plane
because c is real. Hence,

Orf(te(z)) = %f](x +c)+ Iaixlf](x +¢)=0

for any « = x¢ + Ix; € H with ¢,(c) € U. In particular, f ot. is left slice regular on B,(0). Thus, from
Theorem 3.32, we get

flate) = Fotla) = Yoa" S (F0t)(0) = 30" S fle)
n=0 ’ n=0 :

or

O

Corollary 3.34. Let f(z) = Y 0" (x — ¢)"a, and g(z) = Y " jan(x — )™ be a left and a right slice
reqular power series, respectively. Then

0sf(x) = i(m — )" nay, and 0s9(x) = i nap(z —c)" !
n=1 n=1

and Osf and Osg have the same radius of convergence as f and g, respectively.

)
n=0

Proof. The proof follows the lines of the complex case. Let f(z) = Y
convergence of this series is R = (limsup,,_,o /|an|)™!. For 2 = 2o + Iz; € Bgr(x), we can choose r

(x — ¢)"a,,. The radius of

such that |z —c| < r < R. Then f converges uniformly on B,(c). Therefore, we can exchange summation
and differentiation and obtain

Osf(z) = i aixox"an = i =" na,
n=1

n=0

because d, f(x) = -2 f(x) by (3.16).

= o=
For the radius of convergence p of Oy f, we have

1 1 1

p== == - ; =R
limsup,,_,.o v/|(n+ Dans1] lmuseo ¥/n+ Llimsup, .o V/|ant1]

O

We continue this section with some properties of a privileged class of slice regular functions. The
following corollary will be useful to characterize them.

Corollary 3.35. Let U C H be a slice domain and let f : U — H be left or right slice reqular. If there
exists an imaginary unit I € S such that f(U N Cy) C Cy, then the power series expansion of [ at any

point ¢ € UNR has all its coefficients in Cy. In particular, if there exist two different imaginary units
I,J €S,J# =£1I, such that f(UNCy) CCy and f(UNC;) C Cy, then the coefficients are real.
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Proof. Let f € ME(U). If I € S such that f(U NCy) C Cy, then we have f(z) = fi(z) € C; for any
z € UNR. Therefore, % f(c) € Cy for any n € Ny and any ¢ € U NR and the conclusion follows from
Corollary 3.33.
If J € S is another imaginary unit with f(UNC;) C C;, then the coefficients belong to C;NC; = R.
O
Note that for power series with real coefficients ZZOZO ApLy = ZZOZO T, a, holds true because the
coeflicients a,, commute with the quaternionic variable x. Therefore, they are left and right slice regular.
Moreover, recall that the compositions and the products of slice regular functions are in general not slice
regular as we have seen in Example 3.4. However, for power series with real coefficients, the situation is
different.

Lemma 3.36. Let f,g,h: B,.(0) — H be the power series

fz) = iw"an, g(z) = ix"bn and  h(z) = icnx", (3.19)
n=0 n=0 n=0

where a, € R and by,,c, € H for n € Ng. Then the product fg is left slice reqular and the product hf is
right slice regular.

Proof. Since the coefficients a,, are real, they commute with the quaternion variable z and we obtain

f(z)g(x) = ( Z x"%) (Z xnbn> = Z Z Fapz™ Fb,_y = Z " ( Z akbn—k> ,
n=0 n=0 n=0 k=0 n=0 k=0

which is again a left slice regular power series.
O

Lemma 3.37. Let f: B.(0) - H and g,h : Br(0) — H be power series as in (3.19) such that a,, € R
and by, ¢, € H for n € Ny and such that f(B,(0)) C Br(0). Then go f is a left slice regular power series
and ho f is a right slice regular power series on B,.(0).

Proof. Let I,J € S with I L J. By Corollary 2.10, there exist b, 1, by 2 € C; such that b, = b, 1 + by 2J
for any n € No. Hence, g1(z) = > o g2 n1 + Y g 2 an2J, where g1(z) = >0 2"an,1 and g2(z) =
>0 o 2™an 2 are complex power series that converge on Br(0) N C;. Moreover, the restriction f; of f
to Cy is also a complex power series on C; because its coefficients are real. It converges on B,(0) N C;
and satisfies f;(B,(0) N C;) € Br(0) N C;. Hence, the compositions g; o f; and g o f; are complex
power series that converge on B,(0) N C;. Let d,, 1 € C; and d,, 2 € C; be the coefficients of g; o f; and
g2 © f1, respectively, that is, gy o f1(z) = > 0y dn k2™ for any z € B,(0) NC; and k = 1,2. If we set
dp, =dp1 +dyp2J, then

gro f1(x) =gio fi(x)+gao fo(2)] =D dpaaz" + Y dpoa™J =) a"dy.
n=0 n=0 n=0

In particular, gy o fr(z) is left holomorphic on B,.(0) N Cy, and since I was arbitrary, g o f is left slice
regular. Moreover, the left slice regular extension of a left holomorphic function is unique by Lemma 3.24,
and hence,

go f=extr(gro fr) =extp <Z z”dn> = Zw”dn.
n=0

n=0

The preceding results motivate the following definition.

Definition 3.38. Let U C H be a slice domain. By N (U) we denote the set of all left slice reqular
functions f such that f(UNCy) C C; for every I €S .
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Remark 3.39. By Corollary 3.35, the power series representation of a function f € A(U) at a point
¢ € R has real coefficients. Conversely, if f is a left slice regular function on a slice domain U and there
exists a point ¢ € U N R such that the power series representation of f at ¢ has real coefficients, then
f €N(U). Indeed, if f(z) =Y " (x—c)"ay, on B,(c) with a,, € R, then, for any I € S, we can consider
J € S with I L J and write a,, = an,1 + an2J with a,1,a,2 € C;. We can apply Lemma 3.5, the
Splitting Lemma, to obtain holomorphic functions fi, fo : U N C; — Cj such that f; = f1 + foJ, where
fi(z) =30 o(z—c)"an1 and fao(z) = 307 (2 —¢)"ay,2 on C; N B,(c). But since the coefficients a,, are
real, we have a,,; = a, and a,2 = 0. The identity theorem for holomorphic functions implies fo = 0.
Therefore, f; = f1 and f(UNC;) = f1(UNCy) C Cy.

Corollary 3.40. Let U be a slice domain and let f € N'(U).

(i) The function f is left and right slice reqular. Moreover, if U is axially symmetric and we write
f(@) = a(xo,z1) + 18(x0, z1) for x = xo + Iz1 according to Corollary 3.22, then the functions «
and B have values in R.

(ii) If g € ME(U), then fg is left slice regular. If h € ME(U), then hf is right slice reqular.

(iii) If g € ME(O), where O an open set with f(U) C O, then go f is left slice reqular. Similarly, if
h € ME(O), then ho f is right slice regular.

Proof. By definition, f is left slice regular and satisfies f;(U N Cy) C Cy for every I € S. Therefore,

100(@) = (i) + i) = 5 (e fe) 4 o fr0) ) = Gn(a) =0

for evey * = zg + Ixy, € U, and in turn, f is right slice regular. Moreover, if xzg,z; € R are such
that = o + [z; € U for I € S, then we have a(zo,x1) = 5(f(zo + Iz1) + f(zo — Iz1)) € C; and
B(zo,x1) = I&(f(zo — Iz1) — f(xo + Iz1)) € C; for any I € S. Consequently, a(zo,z1) and B(zo, z1)
are real and (i) holds true.

Let g € MY (U) and let x = x¢ + Ix; € U. Since I and f7(z) lie in C;, they commute and we obtain

1/ 0

01 fi@)an(0) = 5 (Gl @an (o] + T fr@an(o)]) =

3 (51 () + 11015 an) + (T 1)) an0) + M () ) =
= Orf1)(x)g1(x) + f1(2)(Org1)(x) = 0.

To show (iii), we consider g € ML(0), an arbitrary point x = ¢+ Iz; € U and J € S with I 1 J.
By applying Lemma 3.5, the Splitting Lemma, we obtain holomorphic functions f1, fo : UNC; — Cy
and g1,g2 : f(U)NCy — Cy such that fr = f1 + foJ and g5 = g1 + g2J. The fact that f(UNC;) C Cy
implies fo = 0. Hence, f; = f; and

d1(gr o fr)(x) = 0r(g1 © f1)(x) + Ir(g2 © f1)(x)J.

S_ince g1,92 and fi are holomorphic, the functio_ns g1 o f1 and g9 o fi are holomorphic, too. Hence,
Or(g10 f1) =0 and 9;(g2 0 f1) = 0 and, in turn, d(gr o f;) = 0. Therefore, g o f is left slice regular.
O

Corollary 3.41. Let U be an azially symmetric slice domain and let f € N(U). Then f(T) = f(z) for
any z € U.

Proof. Let f € N(U) and let us write f(z) = a(zg, x1) + I8(xo, 1) according to Corollary 3.22. Then
Corollary 3.40 implies that o and § are real-valued, and hence,

f(@) = a(zo, —x1) + 1 B(w0, —71) = a(z0,21) — [B(20,71) = f(2).
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Note that, although f € N (U) implies that f is left and right slice regular, the converse is not true
as the easy example f(z) = ¢ — a with @ € H \ R shows. Obviously, f is left and right slice regular, but
if z and a do not lie in the same complex plane, then f(x) and x do not lie in the same complex plane
either. Nevertheless, any function that is left and right slice regular can be characterized by means of a
function in N'(U).

Lemma 3.42. Let U C H be a slice domain and let f : U — H be left and right slice regular. Then there
exists a constant a € H and a function f € N'(U) such that f = a+ f.

Proof. Let I € S and let z = zg + Iz1 € UNCy. Since 9;f(z) = 3 (a%ofl( )+ (fnlfl( )) =0 and
(for)(z) =3 (azoff( )+ =2 7.7 f1(2) ):0, we have

T f(@) =~ (@) =

. D j@).

8.1‘1

Thus, 8%lf(ﬂc) € C; by Lemma 2.12 and 8%0]"(95) = —Ia%lf(x) € Cy, too. Since the imaginary unit [
was arbitrary, the slice derivative 0, f satisfies 9, f(U N Cy) C Cy for all I € S. Moreover, it is left slice
regular by Corollary 3.30. Thus, 9, f belongs to N'(U).

For c € UNR, set a = f(c) and f=f—a Ona bal B, (c), the function d,f allows the power
series representation 9 f(z) = Yoo (z — ¢)"a, with a,, € R for all n € No. Since a, = 2079, f(c) by
Corollary 3.33, we obtain

S nl n S 77,1 n—1 S nl
znz::lx aasf(c):nz::lx mas 8Sf(c):nz::133x —an-1

for z € B,(c). Thus, the power series expansion of fat c has real coefficients and hence, by Remark 3.39,
the function f belongs to N (U).
O

3.4 The slice regular product and Runge’s Theorem

We are now going to generalize Runge’s Theorem to the slice regular setting. In the classical case, it
reads as follows (see Theorem 13.6 in [26]).

Theorem 3.43 (Runge’s Theorem, complex). Let K C C be a compact set and let 2 be a set that
contains one point in each connected component of (CU{oco})\ K. If f is holomorphic on an open set
with K C Q, then, for any € > 0, there exists a rational function r(z) whose poles lie in the set A such
that

sup{|f(z) —r(2)| : z € K} < e.

As we pointed out before, in general, the pointwise product of two left slice regular functions is not
left slice regular. Therefore, it is not clear how to define a slice regular rational function because the
pointwise quotients p~!(z)q(z) or q(z)p~1(x) of two left slice regular polynomials p(x) and g(z) are not
necessarily slice regular. Indeed, we need a different product to give a meaningful definition of rational
slice regular functions.

We start with an observation. The standard multiplication of polynomials over a skew field

N N
> a"an)(d> a"by) = Z Zakbn s

n=0 n=0 n=0 k=0

as it is discussed for instance in [22], extends naturally to power series. If we apply it to the left slice
regular power series Y- z"a, and > - x"b, with a,,b, € H, we define

(Z :U"an> . (Z x"bn> = Zx" (Z akbnk> , (3.20)
n=0 n=0 n=0 k=0
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which is again a left slice regular power series. To generalize this product, we express it in terms of the
complex component functions obtained by Lemma 3.5, the Splitting Lemma.

Let I,J € S with J L T and let p(z) = Y07 ,z"a, and q(z) = Y .o x"b, with a,,b, € H.
By Corollary 2.10, we can write a, = an1 + ap2J with a,1,a,2 € C; and b, = by 1 + by 2J with
bp,1,bn2 € Cy for n € Ny. Moreover, if we apply Lemma 3.5, we obtain holomorphic functions pq, p and
q1, g2 on Cr such that pr(z) = p1(x) + p2(x)J and qr(z) = q1(z) + g2(x)J if z € C;. Since

pi() + p2(2)J = pr(x Zw an =Y a"an1+ Y 2 an ]
n=0 n=0
and
a1(x) + g2(2) Zz”banxbanzban

n=0 n=0

and since 1 and J are left linearly independent over Cj, the component functions are nothing but the
complex power series pg(z) = Y7 (2" an e and qo(x) = > 0" &™by ¢ for £ = 1,2. Therefore, we have

Z " Z arbp_p = Z z" Z(ak,lbnfk,l +ap1bp—r2J +ag2Jbn_r1 + ar2Jbp_2J) =
n=0 k=0 n=0 k=0

= Z " (Z ak,lbn—k,1> + Z " (Z ak,Qan—k,1> +
n=0 k=0 n=0 k=0
o0 n (o) n
+ Z x" (Z ak71bn_k72J> + Z x" <Z ak,Qan_k,2J> .
n=0 k=0 n=0

k=0

Note that = and the coefficients a1, an 2, by,1 and b, 2 commute because they lie in the same complex
plane C;. Moreover, for any € Cy, we have Jx = TJ by Corollary 2.11. Hence,

oo n

> an Zakbn k= Z z" <Z ak,lbn—k,1> —) an (Z ak,an—kQ) +

n=0 k=0 k=0 n=0 k=0

Z x" <Z ak,lbnk,2> + Z " (Z ak,ankJ)] J =
n=0 k=0 n=0 k=0

= (i xnan,1> (i lﬂbn,l) - <i xnan,2> (i znbn,2> +
n=0 n=0 n=0 n=0
(z) (zb> N (z) (z bﬂ )~
n=0 n=0 n=0 n=0

= p1(0)a1(2) = p2()02(@) + (p1(2)2(2) + po(2) s @) .

Definition 3.44. Let U C H be an axially symmetric slice domain and let I,J € S with I L J. Let
f,9: U — H be left slice reqular and let f1, f2, 91,92 : UNCy — Cy be the holomorphic functions such
that fr = f1+ foJ and g1 = g1 + g2J obtained by Lemma 3.5. Then we define

frogr(x) = fi(z)g1(z) — f2(2)g2(F) + (fl (z)ga(z) + f2($)91(§)) J forallz e UNCy.
This function is left holomorphic on U N Cy with values in H. Hence, by Lemma 3.24, we can define

fog = extr(frogr)

as the unique left slice reqular extension of frogr. The function fog is called the left slice regular product
of f and g.
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On the other hand, if f,g : U — H are right slice reqular, let f1, f2,91,92 : UNC; — Cy be the
holomorphic functions such that f;r = f1 + Jfo and g1 = g1 + Jgo2 obtained by Lemma 3.5. Then we set

f1eg1(x) = fi(x)g1(x) — f2(T)g2(x) + J (fl(l‘)gz(x) + f2(T)gn (x)) forallz e UNCy.

This function is right holomorphic on U N Cy with values in H. Hence, by Lemma 3.24, we can define

fog = extr(frogr)

as the unique right slice regular extension of fregr. The function feg is called the right slice regular
product of f and g.

Note that at the first glance fog and f®g depend on the chosen I,J € S. We will see in Lemma 3.46
that fog and feg are in fact independent of I and J.

Remark 3.45. By the considerations before Definition 3.44, the slice regular product is consistent with
(3.20). Moreover, if f(UNCy) C Cy, then f; = f1 and fo = 0. Therefore, if g is left slice regular, we
have

frog1(x) = fi(x)g1(z) + fi(x)ga(x)J = f1(x)gr(z).

In particular, if f € A(U), the product fg is left slice regular by Corollary 3.40 and therefore fog =
extr(frgr) = fg, that is, the slice regular product of f and ¢ is nothing but the their pointwise product.
Similarly, if f € ME(U) and g € N(U), then fog = fg.

Nevertheless, if f and g are both left and right regular but f,g ¢ N (U), then their left and right
slice regular products do not coincide. Consider for instance the functions f(z) = x+a and g(z) =z +b
with a,b,€ H\ R. Then f and g are obviously left and right slice regular but if a + b ¢ R, then there
exists ¢ € H such that (a + b)a # x(a + b) because of Lemma 2.5. Hence, by (3.20),

fog(z) = 2> + x(a+b) +ab# 2> + (a + b)x + ab = fog(z).

Lemma 3.46. Let U C H be an azially symmetric slice domain and let f and g be left slice reqular
functions on U. Moreover, let « and B resp. v and § be functions as in Corollary 3.22, such that
f(z) = a(zo, z1) + IB(xo, x1) and g(x) = v(zo, x1) + 1d(x0, x1) for all x = xo + Ixy € U. Then

fog = ay— B+ I(ad + By). (3:21)

If on the other hand f and g are right slice reqular functions on U and « and B resp. v and & are
functions on D as in Corollary 3.22, such that f(x) = a(xg,z1) + B(xo,x1) and g(z) = v(xg,x1) +
d(zo,x1)I for allx = xg+ I[z1 € U. Then

fog = oy — 6+ (ad + By)I.

In particular, the left and the right slice reqular product are well defined as they do not depend on the
elements I,J € S.

Proof. We consider again the left slice regular case. First of all note that n = ay — 8§ and p = ad + 5y
satisfy

n(zo, —z1) = (20, —21)¥(T0, —21) — B0, —1)d(20, —T1) =
= a(zo, z1)7Y(20, 21) — (=B(w0, 71))(—0(w0, 71)) = 1(w0, 1)
and
w(xo, —x1) = a(wo, —21)d(0, —71) + B(T0, —21)7(T0, —71) =
= a(zo, x1)(—0(z0, 71)) — B(wo, 21)7(20, 1) = —pu(20, 1)
Since the functions a and S and the functions v and § satisfy the Cauchy-Riemann system (3.9),

on O oy ap o) ap a6 foJel oy ou
! = — L §f - = - - — — =
8370 83307 + aa.’lfo 81’0 ax() E)xl v + aal'l + 8$1 + 8$1 8$1
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and

ou Jda a9 aB 0 ap 0y e 100 an
e e + —— Lol - = = =1
81‘0 81‘0 ta Zo + 81:0’7—'_6310 311 aailil 81’17—’_63171 81‘1

Therefore, by Corollary 3.22, the right-hand side of (3.21), that is, the function
§(x) = n(xo, 21) + Ip(wo, x1)

for x = xg + Iz, is a left slice regular function on U .

Let I € S be an arbitrary imaginary unit and let x € U N C;. Moreover, let J € S with J L I and let
f1, f2,91,92 : UNC; — C; be holomorphic functions such that f; = f1 + foJ and gy = g1 + g2J. Since
zJ = JZ for any z € C;, we have

J1091(@) = i@ (@) ~ L2(2)9:@) + ([1(2)g2(2) + fo(@)gr (@) T
= fi(x)g1(z) + fa(x) Jg2(Z)J + f1(2)g2(2)] + fo(z)Jg1(T).

By adding and subtracting the terms 3 f1(2)g1(7) and 3 f1(x)ga(T)J and the terms § fo(z)Jg1(x) and
1 fa(x)Jga()J, we obtain

f1001(2) =3 F1(0)91(2) + 5 F1(2)02(0) + 3@V In (@) + 3 fo(2) Tgn(a) T+

SR E + 3 @)0@T + 3 ) T0@T + 3 f )0 @)+

2 2
~ SH@G @) ~ SHERET + 3 @) Ig()T + 3 fa(0) T ()~
S A@0E) T 3R] — 320 T0n () - 3 @) T

If we group the terms in each line, we get

—
—
—

(x) + f2(2)J) (91(2) + ga(@) )+

DN | =

frogr(z) =

+

—~

filz) + fz(l")J) (gl(f) + 92@)])“‘

+

— i) + fa(2) ) (91(T) + g2(T)J) +
fi(x) = fa(2)J) (91(x) + ga(x)J) =
(9(z) +9(@) + (= fi(z) + fa(z)J)

+
N =N =N
— —

Il
~
—~
N

(9(@) — g(=))

N
N -

Due to (3.6), we have f(z) = a(xo,z1) + IB(zo,21), ¥(zo,21) = 3(9(x) + g(T)) and &(xo,x1) =
1I(g(@) - g(x)). Hence,

z)y(zo, 21) + (f1(2) — f2(x)J)[(w0, 21) =

z)y(wo, 1) + I(f1(x) + f2(2)J)0 (w0, 71) =

x)y(xo, 1) + I f(2)6(x0,21) =

xo, 1)Y(20, 1) — B(x0,21)d (20, 1) + I(ﬁ(mo, x1)y(xo,21) + a(zo, a:l)é(xo,xl)).
Therefore, £ = frogr and, since the left slice regular extension is unique, we obtain £ = fog. Moreover,
as the imaginary unit I was arbitrary and «, 3, v and d do not depend on I by Theorem 3.21, the slice

regular product is independent of the imaginary units I and J used in its definition.
O

Corollary 3.47. The left and the right slice reqular product are associative and distributive over the
pointwise addition.
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Proof. Let f = a+ I3, let g = v+ I6 and h = n + Iu be left slice regular functions on an axially
symmetric slice domain U. Then

folg+h)=aly+n) — B0 +p)+ (a0 +p)+ By +n) =
=y — B+ I(ad + By) + an — Bu+ (o + 1) = fog + foh

and

(f+gloh=(a+y)n—(B+))p+I((a+y)u+ (B+0)n) =
= an — B+ Iap+ Bn) +yn —op+ I(yu+0n) = fog + foh.

Furthermore, we have

(fog)oh = (ay — B0 + I(ad + fy)oh =
= ayn — Bon — adp — Byp + I(ayp — Bop + adn + Byn) =
= fo(yn —du+ I(yu+n) = fo(goh).

O

Note that in general the left and the right slice regular product are not commutative—except if one
of the functions belongs to N (U).

Corollary 3.48. Let U C H be an azially symmetric slice domain and let f € N(U) and g € M*(U).
Then

f9=fog=gof
Similarly, if f € M®(U) and g € N(U), then

fg = fog = gof.

Proof. Let f € N(U) and g € ME(U). By Remark 3.45, fg = fog. For ¢ € UNR, let f(z) =

> o —¢)"a, and g(z) = Y07 (x — ¢)"b, be the power series representation of f and g on a ball

B,(c) centered at c. Then a, € R because of f € N (U). By the considerations before Definition 3.44,
we obtain

fog(z) = Z x" Z arby_p = Z " Y bnp-rar = gof(x)
k=0 0

n=0 n=0 k=

for any x € B,.(c). By Theorem 3.8, the Identity Principle, we obtain fog = gof.
O

The slice regular product is the proper tool to define slice regular rational functions and to prove
Runge’s Theorem in a slice regular setting.

Definition 3.49. Let U C H be an axially symmetric slice domain and let f = a+ 18 : U — H be a left
slice reqular function as in Corollary 3.22. We call the function

fe=a+1Ip

the left slice regular conjugate of f and the function f°of the symmetrization of f.
If f=a+ 81 :U — H is right slice regular, then the function

fe=a+pl
is called the right slice regular conjugate of f and the function fef€ is called the symmetrization of f.
Remark 3.50. Let f = a+ I3 : U — H be left slice regular. Then we have

a(xg, —x1) = oo, 1) and B(xo, —x1) = —B(x0,21) = —B(20, 21).

Moreover, we have

o ———
aixoa(xovl"l) =

0 0 ——
Tﬁﬂ(fo,xl) = 871:15(950,951)

O‘(‘T()vxl) -

do
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and

] 0 a——+
Dor a—ma(xo,xl)f*%mxo,ml) *8705(930@1)

Hence, according to Corollary 3.22, the function f€ is actually left slice regular.

O‘(x07x1) =

Remark 3. 51 Let again f = a4+ I8 : U — H be left slice regular and let x = x¢g + [x; € U. Since
a(wo, 1) = 5 (f(z) + f(T)) and B(zo,21) = 31 (f(T) — f(x)), we have

1 1 1

ST@ + @) + 151G @) — F@) = 5 (F) + 7@ - 7@+ [F@)1).

f(x) =

If we choose J € S with J L I and apply Lemma 3.5, the Splitting Lemma, to obtain holomorphic
functions f1, fo : UNCy; — Cjy such that fy = f1 + foJ, then we have fo(2)J = J fo(z) = —f2(2)J for
z € UNC;. Hence,

f(z) = (fl( ) = fa(z)J + f1(T) —f2(f)J—Ifl(f)f+ff2(f)ﬂ+ff1($)1—Ifz(fU)JI) =

=5 (ARG - @) + 1@ — L@ + 1@ + £22)] - 1@) - f2(2)]) -

m\»—tm\»—l

Therefore,

(@) = f1(@) - fa(2) ], (3.22)

and in turn
F(@) = (@) = REAE + L@ EE + (RE L@ - L@FE)
But since fi and f5 both have their values in the complex plane C;, they commute and we obtain

(@) = A@) f1(2) + f2(T) fao(2). (3.23)

Furthermore, we also have

fofi(@) = fi(@) [i(@) + fo(2) (@) + (= fi(@) fo(@) + f2(2) fi(2))] = [1(@) fr(x) + fo(@) fo(2).

Consequently,

(@) = fof = fof*. (3.24)
Corollary 3.52. Let c € R and let f(z) =" (z — c)"ay, be left slice reqular power series centered at
¢ that converges on B,.(c). Then f¢(z) =" (z — ¢)"@, for any x € B,(c).
Similarly, if f(z) = >0~ gan(z — )™ is a right slice reqular power series centered at ¢ that converges
on By(c), then f¢(z) =37 qan(z — )" for any x € By(c).

Proof. Let f = ZZOZO(Q: — ¢)"ay, be a left slice regular power series centered at ¢ and let I,J € S with
I 1 J. Then, for each coefficient a,,, there exist a, 1,an2 € C; such that a,, = a,,1 + ay,,2J. Moreover,
fi(z) =32 (@ — ¢)"an1 and fo(z) = Y07 ((x — ¢)"an2 for any x € B,(c) N Cy, where f; and f; are
the holomorphic component functions obtained by Lemma 3.5, the Splitting Lemma. By Corollary 2.11,

we have ap, 2J = Ja,2 = —ay, 2J. Hence, because of (3.22), we obtain
1) = Fi@) — o) = zx—c M — 30— )
n=0
*Z x—c) an1+z x—c) angj Z z—0o)"
n=0

for any = € Cj. Since I was arbitrary, the statement is verfied.

Corollary 3.53. Let U C H be an axially symmetric slice domain and let f be a left or right slice regular
function on U. Then f* € N(U).
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Proof. Let f be left slice regular and let us write it in the form f = o+ I3, according to Corollary 3.22.
Then

[‘of =@ — BB+ 1(aB + fa) = |of* — |B]* + I(@p +ap).
But |a|? — |8|? and 2Re(a3) = a8 + af are obviously real. Hence, f(U NCy) C C; for any I € S.
O

Definition 3.54. A zero x of f is called isolated, if there exists € > 0 such that the ball B<(x) contains
no other zero of f. A two-sphere [x] of zeros is called isolated, if there exists € > 0 such that [B(z)]\ [2]
contains no zero of f, where [Be(x)] is the axially symmetric hull of B:(z), ¢f. Example 3.15.

Theorem 3.55. Let U C H be an axially symmetric slice domain and let f : U — H be a left or right
slice reqular function.

(i) If f(x) =0, then f*(x) = 0. Moreover, f* vanishes identically if and only if f vanishes identically.

(i) Let f # 0. If the set of zeros of f° is nonempty, it consists of the union of isolated 2-spheres of
the form [z] = {xo + Ix1 : I € S}.

(i1i) Let f # 0. If the set of zeros of [ is nonempty, it consists of the union of isolated 2-spheres of the
form [x] and of isolated points.

Proof. Let f be left slice regular and let us write it in the form f = a4 I according to Corollary 3.22.
Assume that
f(@) = a(zo, 21) + IB(z0,21) =0

for some = zy + Iz, € U. If ﬁ(xo,xl) = 0, then a(zg,z1) = 0, which implies that f(z) =
a(xg, 1) —&—Iﬂ(xo,xl) =0 for any ¥ = xo + Iz; € [z]. If on the other hand B(zg,z;) # 0, then
a(zo,r1) # 0 and therefore I = —a(xg,z1)B(z0,71)~ L. Recall from Theorem 3.21 that o and 3 do
not depend on the imaginary unit I. Hence, x = xg + Iz is the unique solution of f(z) = 0 in the
2-sphere [z]. Therefore, if f(z) = 0, then either f(z) = 0 for any ¥ € [z] or f(Z) # 0 for all T € [z]\ {z}.
As we have seen in the proof of Corollary 3.53, f* = as+183,, where oy = |a|?>—|8|? and Bs = @B + aff
are real-valued. Therefore, f*(z) = 0 implies as(xo,z1) = 0 and Bs(xo,z1) = 0. Consequently, the set
of zeros of f*® consists of 2-spheres of the form [z]. Moreover, if f(x) = 0 then either a(xp,z1) =
B(zo,21) = 0, which implies «s (20, 1) = Bs(x0,21) = 0 and therefore also f*(xq,z1) = 0, or a(xg,z1) =
—IB(xg,x1). But in this second case we have

Oés(l‘o,ﬂh) = |Oé(170,9€1)\2 - |5($07$1)|2 = \ - Iﬂ(xo,x1)|2 - |5(I07I1)|2 =0

and

Bs(wo, x1) = a0, 21)B(x0, 71) + B(x0, 21)(T0, 21) = B(20, 1)1 B(W0, 1) — B(%0, 21)IB(T0, 71) = 0,

because o (o, 1) = Bs(x0, 1) (—I) = Bs(x0,21)I. Thus, f(x) =0 always implies f*(x) = 0.

Let us assume that f* =0. Let I,J € S with I 1 J and let f1, fo : UNC; — C; be the holomorphic
functions such that f; = fi; + foJ obtained by Lemma 3.5, the Splitting Lemma. As U is a slice domain,
there exists a point ¢ € U NR. By Corollary 3.18, f allows a power series representation of the form
f(z) =3 (x — ¢)"ay, on a ball B,(c). Moreover, by Corollary 2.10, there exist a,,1,an,2 € C; such
that a, = an,1 + an,2J for each n € Ny. For any « € B,.(¢) N Cy, we have fi(z) = fozo(x —¢)"ap,1 and
fa(z) =307 o(x — ¢)"ay,2. According to (3.23),

(@) = L@ fi(2) + fo(@) fa(x) =

:E x—c"anlg x—c a'nl_'_E J;—c"a 25 x—c ang—
n=0

:E x—c an1§ x—c a,L1—|—E :c—c GHQE :c—c (Ing—
n=0

8

8

g i

n

(@—)" > (@t k1 + T2 anr.2) -
k=0

3
I
o
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If we set ¢, = D) (@1 Gn—k1 + T2 Gn—p,2) = 0, then f* =0 yields ¢, = 0 for all n € Ny. For n =0,
co =Tp1a01+G02a02 = |ap1|?+ |ao2]? = 0 yields ap = 0. Assume, that a =0 for all k =0,...,n—1.
Then we have

2n
_ _ _ _ 2
0=coy = E (@1 G2n—k1 + Q2 A2n—k,2) = Gp 10n,1 + Gn20n2 = |an|”,
k=0
because a1 = ar2 =0for k=0,...,n —1and agp—k,1 = azp—k2 =0for k=n+1,...,2n. Thus, we

obtain a,, = 0 for all n € Ng. But f =0 on B,(c) yields f = 0 by Theorem 3.8, the Identity Principle.
Therefore, (i) holds true.

We have already seen, that the set of zeros of f* is the union of 2-spheres of the form [z]. To prove
that they are isolated, we assume the converse. As [B.(x)] = B:([z]) (see Example 3.15), there exists a
sequence &, = Tno + Intn1,n € N with dist(z,, [z]) = inf{|ZT — z,| : T € [z]} — 0 as n — oo such that
f(zpn) = 0 for all n € N. But this implies f*(zy,0 + I2,,1) = 0 for any I € S and any n € N. Thus, in
each complex plane Cj, we can find an accumulation point of zeros of f°. Hence, f°* = 0 by Theorem
3.8, the Identity Principle. Therefore, (i) holds true.

Finally, we show (iii). We have already seen that f(z) = 0 implies either f(z) = 0 for all Z € [z]
or f(z) #0for all T € [z]\ {z}. Assume that z is the only zero of f in [z] and that it is not isolated.
Then there exists a sequence x,, € U \ [z],n € N of zeros of f with lim,_, z, = 2. But [z] and [x,] are
2-spheres of zeros of f° and [z] is not isolated. Hence, f* =0 by (ii), which implies f = 0 by (7).

If on the other hand [z] is a 2-sphere of zeros of f and it is not isolated, there exists a sequence
(Zn)nen of zeros f with dist(x,, [x]) = inf{|Z — z,| : T € [z]} — 0 as n — oco. Then [z] and [z,] are
again 2-spheres of zeros of f* and [z] is not isolated. Hence, f* = 0 by (%), which implies f =0 by ().

Thus, if f # 0, then its zero set consists of isolated points and isolated 2-spheres.

O

Lemma 3.56. Let U C H be an azially symmetric slice domain and let f : U — H with f #Z 0 be left
or right slice reqular. If we set Zss = {x € U : f*(z) = 0}, then the function x — f*(z)~" belongs to

NU\Z;.).

Proof. Let f € ME(U), let I,J € S with I L J and let f§,fs : UNC; — C; be the holomorphic
functions obtained by the Splitting Lemma, Lemma 3.5, such that f; = f{ + f5J. By Corollary 3.53,
we have f*(UNCy) C Cy for I € S, which implies f§ = 0. Therefore, fi(z) = f{(x) is holomorphic
on U N C;. Moreover, because of (i) in Theorem 3.55, the zero set of f7, that ib the set Z¢ NCp =
{r e UNCy : fi(z) = 0}, consists of isolated points. Therefore, the function —+ is holomorphic on

fS

(U\Zs) NCy. Hence,

5 1/ 0 1 0 1

O fi(x —1:(+I> =0

=5 w75 T
for all z € (U \ Z¢:) N C;. Moreover, f*(UNC) C Cy implies f*((U\ Z¢:)NCyr)~! C Cy.

Since I was arbitrary,  — f*(z)~! belongs to N (U\ Z-).
O

Definition 3.57. Let U C H be an axially symmetric slice domain. For any function f : U — H, we
define Zys = {x € U : f*(x) = 0}. If fis left slice regular, then the function

o=
which is defined on U\Zys, is called the left slice regular inverse of f. If f is right slice reqular, then the
function

FTO=re0e)
which is defined on U\ Zys, is called the right slice regular inverse of f.
Remark 3.58. Let f € N(U). Then f(z) = f(z) for z € U by Corollary 3.41. Moreover, if
we apply Lemma 3.5, the Splitting Lemma, and write f; = f; + foJ with holomorphic functions

f1, f2: UNC; — Cy, then we have fi(x) = fI( ) = f(z) and fa(z) = 0 for any x € U N C;. From
(3.22) and (3.23), we get

@)= [(@) = fole)] = f(x)  and  f(2) = 1i(@)f1(2) + f2(T) o) = f(2)*.

48



Hence,
F7O) = fl2)?f(2) = f(2) 7"
Similarly, we obtain f~®(z) = f(z)~!.

Corollary 3.59. Let U C H be an axially symmetric slice domain and let f be a left slice reqular function
on U. Then
fPof=fof ©®=1 on U\ Zys.

Similarly, if f is a right slice regular function on U, then
fPaf =fof®=1  onU\Z.
Proof. Since (f*)~1 € N (U \ Z;-), Corollary 3.47, Corollary 3.48 and (3.24) imply
[ of = (/)Y of = () 'of) of = () o (fof) = (fof) (fof) =1

and
fof ™0 = fo ((11)7'1°) = fo (o)) = (fof)e(f) " = (fef)(fef) " =1
O
Example 3.60. Let a € H and let us consider f(z) = z + a as a left slice regular function. If we

write f = a + I according to Corollary 3.22, we have a(zo,z1) = 2(f(z) + f(Z)) = 2o + a and
B(zo,x1) = I3(f(@) — f(z)) = a1 for @ = x¢ + Iz1. Hence,

f(z) = a(zo,z1) + IB(zo,21) =z +a

and

fi(z) = f(@)of(z) =
= a(zo, z1)(x0, 1) — B(x0, 21)B(x0, 21) + I (20, 1) B (20, 21) + B0, 21)x(20, 1)) =
= (@4 zp)(a+ o) — :c% +1I((@+ xo)x1 + x1(a+ x0)) =
= |a]® + @xo + zoa + 2 + Iax, + Ixozy + [21a + 2120 =
= |a|* + 2Rela](zo + Ix1) + 22 + 2x021 I — 22 = 2% + 2Rela]x + |al*.
and
(x+a)"® = (2? — 2Re[a)z + |a|*) " (z + ).

On the other hand, if we consider f(x) = 2+ a as a right slice regular function and if we write f = a+ (1
according to Corollary 3.22, then we obtain again a(zo,z1) = 3(f(z) + f(Z)) = 2o + a and B(zg, 1) =

1(f(@) — f(x))I = x1 for & = 2o + Iz1. Thus, as before,

fé(z) = a(zo,z1) + B(xo, 1) =z +a

and

@) = f@)ef(z) =
= a(xg, x1)a(x0, 1) — B0, 21)B(x0, 1) + (X0, 21)B(20, 1) + B0, 21) (0, 21))] =
= (a4 z0)(@+ z0) — 2 + ((@+ x0)z1 + z1(a + 20))] =
= |a]* + 2@ + axg + 2% + ax1 I + xoxi I + x1al + 21201 =
= |a]® + 2Rea](zo + Tz1) + 22 + 22021 ] — 22 = 2 + 2Re[a]z + |a|?.
Hence,
(x+a)"® = (z +a)(2* — 2Re[a)x + |a|*) L.

In particular, we see (z +a)~® # (z + a)~® if a ¢ R. Hence, the left and the right slice regular inverse
of a function that is left and right slice regular on an axially symmetric slice domain U but does not
belong to A (U) do not coincide in general.
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Definition 3.61. A left slice reqular function f is called left rational if there exist two left slice reqular
polynomials p and q such that f = g~ @ep.

A right slice regular function f is called right rational if there exist two right slice reqular polynomials
p and q such that f = peq~®.

A left rational function defined on an azially symmetric slice domain U is called real rational if it
satisfies f(UNCy) C Cy forall I €8S.

Theorem 3.62. Let U C H be a slice domain. A left slice reqular function f : U — H is left rational
if and only if there exist 1,J € S with I L J and rational functions ri,mo : U NC; — Cy such that
fr =71 +roJ. In this case, the holomorphic component functions obtained by Lemma 3.5, the Splitting
Lemma, are rational functions on Cy for any I,J € S.

A right slice reqular function f : U — H is right rational if and only if there exist I,J € S with
I 1L J and rational functions r1,ro : UNCy; — Cy such that fr = r1 + Jro. In this case, the holomorphic
component functions obtained by Lemma 3.5, the Splitting Lemma, are rational functions on Cy for any
I1,J€eS.

A function f is real rational if and only if there exist two polynomials p and q with real coefficients
such that f(x) = p(z)~tq(x). This is equivalent to the fact that f is left slice reqular and that fr is a
rational function with real coefficients on C; for one (and therefore for any) imaginary unit I € S.

Proof. Let f be left rational. Then there exist left slice regular polynomials p(z) = Zivzo x"a, and
q(x) = ZTZIVIZO ", such that f = ¢ Yop = (¢°) '¢ep = (¢°) *(¢°op). For I,J € S with I L J,
there exist ap, 1,an2 € C; such that a, = ap1 + aneJ forn =0,...,N, and b, 1,b,2 € C; such that
by, =0bp1+bp2J forn=0,..., M. Moreover, the holomorphic component functions of p and ¢ obtained
by Lemma 3.5, the Splitting Lemma, satisfy pe(z) = Zg:o z"an ¢ and go(x) = Zano by ¢ for £ =1, 2.
Thus, they are complex polynomials on Cj.

Because of (3.23), we have

q1(x) = q1(T)q1(2) + g2(T) g2 ().

Hence, gs(z) is a complex polynomial on Cy, too. Moreover, ¢f(z) = Zi‘io 2" Cp g — Zﬁio x" @y 2J, and
therefore, its holomorphic component functions

M M
¢i(@) =Y 2" and  g5(x) = > a"(~Tn2)
n=0 n=0

are also complex polynomials on C;. Thus, for x € U N Cy, we obtain

C

fI(fI;) _ (Q§($))_I(Q§($)©p[(x)) _ qf(x>p1(x)s_ qg(x)pg(f) + qf(x)pz(x)s—i— qQ(x)pl(f) J7
q; () q;(z)

with rational component functions

_ G@pi(2) —g(@)p(@) o) = 9i@)p2(2) + ¢5(2) p1 (7)
hio) = 5i@) G 5@) |

Since I, J € S were arbitrary, the holomorphic component functions obtained by Lemma 3.5, the Splitting
Lemma, are rational functions for any I,J € S with I 1 J.

Conversely, assume that f7(z) = % + %J , where a, b, ¢ and d are complex polynomials on Cj.
Then
=24 %= Lidatben = (bd)(da + be)
T T a7 T b = bd(bd)* ’
where (bd)¢(x) = bd(T). Since bd has values in Cy,
1
= ——o(bd)°e(da + beJ

by Remark 3.45. Hence,
[ = (exty (bd)oexty (bd)®) “oextr, ((bd)®)@extr (da + bel).
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If we define p = extr(da + beJ) and ¢ = exty, (bd), then p and ¢ are left slice regular polynomials and
q° = ext ((bd)®). Thus, we obtain

f=(q0¢°) 'og‘op = ¢~ ®

©p-

Finally, we consider the case of a real rational function. Let f be left slice regular and let I € S. If
fr(x) = qr(x)/pr(x) is a rational function, where py and g; are polynomials with real coefficients on Cy,
then their left slice regular extension p = extr,(pr) and p = extr (q) are polynomials with real coefficients
on H. In particular, they belong to A/(H). Therefore, p~! = p~® is left slice regular by Remark 3.58. It
even belongs to N (H \ Z,), where Z, denotes the zero set of p, because x € C; implies p(z) € C; and,
in turn, p(x)~! € C; . Hence, the pointwise product of p~! and ¢ is left slice regular by Corollary 3.40.
Since the slice regular extension is unique by Lemma 3.24, we obtain f = ext(f;) = extL(pflql) =plg.

If on the other hand f(z) = p(z) 'q(z), where p and ¢ are polynomials with real coefficients then
x € Cy implies p(z), ¢(z) € Cr and, in turn, also f(z) = p(z) " 1q(x) € C;. For any I € S, the functions
pr and g are polynomials with real coefficients on C;. Hence, fr(x) = pr(x) tqr(z) = qr(z)/pr(x) is
a rational function on C; with real coeflicients. Consequently, f; is holomorphic for any I € S and f
is left slice regular. Since x € C; implies p(z) € C;, we have f(z) = p(z) 1q(z) = p(x) " Poq(x) by
Remark 3.45 and Remark 3.58. Hence, f is real rational.

Finally, if f = ¢~ ©@p is a real rational function, then let I,.J € S with I L J. Since f is left rational,
we have f; = r; + roJ where 71 and ro are rational functions on C;. But x € C; implies f7(x) € Cj.
Hence, 79 = 0 and f; = r; is a rational function on C;. Since it satisfies f;(Z) = fr(x) by Corollary 3.41,
its coefficients are real.

O

Definition 3.63. Let I €S and let r = r1 +roJ, where r1 and o are rational functions on Cy;. We call
x € CrU{oo} apole of r, if x is a pole of r1 or ra.

Theorem 3.64 (Runge’s Theorem). Let K C H be an axially symmetric compact set and let A be an
azially symmetric set such that ANC # 0 for any connected component C of (HU {oo})\ K. If f is left
slice reqular on an axially symmetric slice domain U with K C U, then, for any € > 0, there exists a left
rational function v such that the poles of r1 lie in AN (CyrU {oo}) for any I € S and such that

sup{|f(z) —r(z)|:z € K} <e. (3.25)

Similarly, if f is right slice reqular on an axially symmetric slice domain U with K C U, then, for
any € > 0, there exists a right rational function r such that the poles of rr lie in AN (CyU{oo}) for any
I €S and such that (3.25) holds true.

Finally, if f € N(U) for some azially symmetric slice domain U with K C U, then, for any ¢ > 0,
there exists a real rational function r such that the poles of r1 lie in AN (Cr U {oco}) for any I € S and
such that (3.25) holds true.

Proof. Let f € ML(U) where U is an axially symmetric slice domain with K C U, let € > 0 and let
I,J € Swith I L J. By applying Lemma 3.5, the Splitting Lemma, we obtain holomorphic functions
fi, f2 : UNCy; — Cy such that f; = fi1 + foJ. The complex Runge’s Theorem implies the existence of
two rational functions r; and 7o with poles in A N (Cy U {oo}) such that

sup{|f1(z) — r1(2)] :zEKﬂC1}<i and sup{|fa(z) —r2(2)|: 2 € KNCy} < Z

We set P = {x € C; : z or T is a pole of r; or ro} and apply Lemma 3.24 to define the function r =
extr(r1 + reJ) on the axially symmetric slice domain [C; \ P] = H \ [P], where [-] denotes the axially
symmetric hull as in Definiton 3.13. By Theorem 3.62, r is left rational. For any J € S, the restriction
r5 of  to the complex plane Cjy is left holomorphic on C5 \ [P]. Therefore, any pole of 5 that lies in C5
belongs to C5 N[P]. Since A is axially symmetric, this is a subset of C5 N A because P C ANC; implies
[P] C [ANC;] = A. Moreover, if oo ¢ A, then oo is no pole of r; and the limit @ = lim|,|_, 71(2) exists.
If we set 1 = g + Iz for x = z¢ + Jx; € Cy, the Representation Formula, Theorem 3.21, implies

1 1 1 1
lim Tj($):§(1_j_[) lim T[(.%‘[)+§(1+jl) lim T[(T[)Z5(1—3])@4—*(14-3[)@:&

|z|—o0 |z|—o00 |z|—o00 2

o1



Hence, oo is no pole of r5 if co ¢ A, and in turn, the poles of 5 belong to AN (C5 U {oc}) for any J € S.
Moreover, for z € K N C;, we have

[f1(x) = ri(2)] = [f1(2) + fo(2)] —ri(x) = ro(2)J] < [fr(2) —ri(@)| + | fa(2) — ra(2)] < %

For x = xog + I, x1 € K, we set again x; = xg + I,x1. Since K is axially symmetric x; and T belong to
K. From the Representation Formula, Theorem 3.21, we deduce

F@) = (@) = 3 10~ LD frlar) + (1 + LDfr) — (U~ Lrg(er) = (14 LI (E)] <
< 0= LD fi(er) = (1= LD+ 510+ LD fi@) — (U+ LDy (77)] <
<|fi(xr) = rr(xr)| + | f1(T7) — 71(F7)| < €.

The case f € MP(U) works analogously.

If f € N(U), then the holomorphic component functions obtained by Lemma 3.5, the Splitting
Lemma, satisfy fi = fr and fo = 0. Hence, we can choose 72 = 0 when we approximate f; and fs
by rational functions 71 and r on Cj, whose poles belong to A N (Cy U {o0}). The function R;(z) =
1(r1(2)+r1(z)) is a rational function on C;, whose poles are contained in the set {z,Z : « is a pole of r; }.
Since A N (Cy U {oo}) is symmetric with respect to the real line, this is a subset of AN (C; U {o0}).
Moreover, Ry has real coefficients because R;(z) = R1(Z), and hence, by Theorem 3.62, the function

R = exty(R1) is real rational. Lemma 3.41 implies f(Z) = f(z), and in turn,

1) = Ra@)] = 51A1(@) + @) —ra(a) ~ @) < 317(@) — @) + 5 [7@) ~ @] <

N ™

for x € K N Cy. Thus, as before, we see that the poles of Ry belong to AN (Cy U {o0}) for any J € S
and that the Representation Formula, Theorem 3.21, implies |f(z) — R(x)| < € for any = € K.
O

3.5 The Cauchy formula

We develop now the analogue of the Cauchy integral formula in the slice regular setting. If we consider
the classical Cauchy formula

_ 1 f(©)
=5 oy 7= C d¢ for z € B, (w),

f(2)

and try to generalize it to the quaternionic situation, we find that the quaternionic function x +— (z—¢)~!
for z € H\ {0} and fixed ¢ € H is in general neither left nor right slice regular. In fact, for a differentiable
function f: U C H — H and a point € U with f(z) # 0, the directional derivative of f~! at x along
veHis

O p ) = Jim 2 (M he) — (@) =
heR

9
ov

S| =

= li -1
lim £~ (2 + hv)
heR

(ﬂw—fw+mwf%m=—f%m( f@Ofluh

because the quaternionic multiplication is not commutative. Therefore, if 2 = 2o+ [z1 and £ ¢ Cy, then
¢ and I do not commute by Corollary 2.12. Hence, we obtain

= 1 1 0 1 0 1 1 _ _ _
afm—§_2(8mx—g+laxlx—§>_2(<x€> P I(e - (@67 £0

and

1 - 170 1 o 1 \ 1
0 =3 (et gl =3 (-0 - @9 -7 2o
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We will choose a different starting point for developing the Cauchy formula for slice regular functions.
Recall that the complex Cauchy kernel allows the power series representation

. 1 ;= > ¢t (3.27)
n=0

for |z| > |¢| as we have seen in (1.2). In the classical case, this property of the complex Cauchy
kernel was crucial when we showed in (1.4) that the Riesz-Dunford functional calculus is consistent with
polynomials. This motivates the following definition.

Definition 3.65. Let x,s € H. We call

o0 o0

E sl and E s lgn

the left and right noncommutative Cauchy kernel series, respectively.

Remark 3.66. From

‘.’13"8_”_1’ — ‘s—n—lmn’ — |x|n |s|—n—1
we get
Sz g (F) e Xz gy (W)
n=0 n=0 |S| n=0 |S|

Therefore, the left and the right noncommutative Cauchy kernel series are convergent for |z| < |s]|.

Theorem 3.67. On the set {(s,z) € H? : |x| < |s|}, the functions
Sp(s,z) = —(x —3) " (2? — 2Re[s]z + |5]?)
and
Sr(s,x) = —(2* — 2Re[s]x + |s|*)(z —3) !
are the multiplicative inverses of the left and right noncommutative Cauchy kernel series, respectively.

Proof. We want to show that

(s,x Zx” = (2 —3) 7 (2 — 2Re[s]z + |5]?) Zx” el

n=0

which is equivalent to

(2% — 2Re[s]z + |s|*) Zx" Tl =3

n=0

As 2Re[s] = s + 5 and |s|? = Ss are real, they commute with z and we get

oo

(xQ—QRe[s]x+|s|2)Z ngmnt Zx”“ —n-l Zx”“ s+3)s " 1—|—Zx Sss "l =
n=0
_ Z l,n+2 —n—1 Z anrl —n Z xn+1 —n—1 + Z "5 =
n=0 n=0
oo oo
_ Z xn+2s—n—l _ Z xn+2s—n—1 —r— Z xn-i—lgs—n—l + Z xn+1§3_”_1 +35=3—z.
n=0 n=0 n=0 n=0

53



Corollary 3.68. Let z,s € H such that |z| < |s|. Then
o0
Z 2"s " = —(2* — 2Re[s]z + |s]*) "' (z —3)
n=0

and

Z s 1" = —(z — 5)(a? — 2Re[s]z + |s]?) 7L

n=0
Remark 3.69. Note that the functions defined by the closed forms of the left and right noncommutative
Cauchy kernel series are defined on the set {(s,z) € H? : 22 — 2Re[s]z + |s|? # 0}, which is larger than
the domain of convergence of the Cauchy kernel series. In order to determine this set, we observe that
22 —2Re[s]z+|s|? depends only on the real part and the absolute value of s. Hence, 2% —2Re[s]z+]s|? = 0
implies 22 —2Re[§]z+|3|? = 0 for any § € H with Re[3] = Re[s] and |3| = |s|. Since 3 satisfies Re[3] = Re][s]
and |3| = |s| if and only if § € [s], the set D, of all s € H such that 2 — 2Re[s]z + |s|?> = 0 is axially
symmetric for any x € H.

If  and s lie in the same complex plane C;, they commute and we obtain

22 — 2Re[s|z + |s]? = 2% — (s +3)x +5s = (x — 8)x —5(x — 5) = (x — 8)(z — 3),
which implies D, N C; = {z,Z} = [¢] N C;. Since D, is axially symmetric, D, = [z]. Therefore,
2% — 2Re[s]z + |s|? = 0 if and only if s € [z], which is equivalent to = € [s].
Definition 3.70. We call the functions
Si (s, x) = —(a% — 2Re[s]x + |s|*) "M (z —3)
and
Spt(s,x) = —(z —3)(2* — 2Re[s]z + |s[*) 71,

which are defined on the set Dg = {(s,x) € H? : x ¢ [s]} the left and right noncommutative Cauchy
kernel, respectively.

Corollary 3.71. Let (s,z) € Dg. Then the equation
— (2% — 2Re[s]z + |s]*) "M (z — 5) = (s — T)(s® — 2Re[z]s + |z]|*) ! (3.28)

holds true, that is,
S;(s,x) = —Sg'(z,5).

Proof. We have

(22 — 2Re[s]z + |s]*)(s — T) = (2> — xs — 25+ 5s)(s — T) =

= xzs — :csz — IS8 +§s2 — x2f+ TST + ST — SST =

= z(zs — s> — 2T) + 3(s* — sT) — 285 + 15T + 15 7.

But from
| 2 _

- 2
x3s =z |s|” = |s|"x =Ssz

and
2T + 25T = 22Re[s|]T = 2Re[s]2T = 2Rels] |z|* = |z|* s + 5 |z|* = 2Ts + 57,
it follows that
(22 — 2Re[s]z + |s]*)(s — T) = x(xs — s* — aT) + 5(s® — ST) — Ssx + 2Ts + STa =
x(xs — 5% — 2T + Ts) + 5(s> — sT — sx +Tx) =
= x(—5% 4 2Re[x]s — 2T) + 5(s> — 2Re[z]s + Tx) =

= —(z —3)(s> — 2Re[z]s + |z[*).

If we multiply this equation by (s2 — 2Re[z]s+ |z|?) ! from the right and by (2% — 2Re]s]z +|s|*) ! from
the left, we obtain (3.28).
O
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Remark 3.72. If we compare Definition 3.70 to the formulas in Example 3.60, then we find that
S;!(s,z) and S5'(s,x) are nothing but the left and right slice regular inverse of the function = — s — z,
respectively.

Moreover, if x and s are elements of the same complex plane C;, they commute and the left and right
noncommutative Cauchy kernels reduce to the standard Cauchy kernel. In this case, we have

(2 —Re[s]z + |s]*) ' = (22 — (s +3)z+35s) ' = ((x —s)z 5z —5) ' =(z —3) Lz —s) "

Therefore, we get
Si(sa)=—(z—5) "z -3 (e -5 =(s—a)

and
Spl(s,z)=—(z—3)(z—3) Yz —s)t=(s—x)""

One could think that the left and the right noncommutative Cauchy kernel can always be simplified.
The next theorem shows that this is not possible.

Theorem 3.73. The left and the right noncommutative Cauchy kernel S;*(s,x) and Sp'(s,z) are
irreducible. In case of the left kernel Sgl(s,x), this means that, for any s € H\ R, it is impossible to
find a polynomial Ps(x) such that

2?2 — 2Re[s]z + |s|? = (x — 5) Ps(z), (3.29)
which would allow the simplification

S (s, z) = Py (2)(x —3) Mz —5) = Py ).

S S

Proof. Assume that a there exists a polynomial Ps(z) such that (3.29) holds true. Comparing the degree
of the highest power, we see that Ps(x) has to be a monic polynomial of degree one, i.e.,

Pi(zx)=x—r (3.30)
with r € H. Then the equation (3.29) turns into
x? — 2Re[s|z + |s|? = (x —3)(z — 1)

which gives

$2—sx—§x+s§:m2—§x—mr+§r.

Hence,
—s(z—3)=—(z—3)r

Solving for r, we finally obtain
r=(x—3)"'s(x—73). (3.31)

If we chonsider x € H that belongs to the same complex plane as s, then  and s commute. Therefore,
r=(x—-3 "'s(x—3) =(x—-3)"Yr—3)s=s (3.32)

But, as s ¢ R, there exist elements x € H that do not commute with s, which implies
r=@—-3"'s(x—3)#(x—3) " (zr—-5)s=s. (3.33)

Hence, a polynomial Ps(z) satisfying (3.29) cannot exists.
O

Proposition 3.74. The left noncommutative Cauchy kernel SZl(S, x) 1is left slice regular in the variable
x and right slice regular in the variable s on its domain of definition.

The right noncommutative Cauchy kernel Sgl(s,x) is right slice regular in the variable x and left
slice reqular in the variable s on its domain of definition.
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Proof. By Remark 3.72, * — S;'(s,z) is the left slice regular inverse and x — Sp'(s, ) is the right
slice regular inverse of the function  — s — . Hence, S;'(s, ) is left slice regular and S;'(s,z) is
right slice regular in the second variable. Consequently, since S; '(s,z) = —Sy'(z, s) by Corollary 3.71,
S (s, ) is right slice regular and S;' (s, ) is left slice regular in the first variable.

O

Lemma 3.75. Let s = sg + Iss; € H\ R and I € S. Then the functions

(C] — H (C] — H
1 and 1
x =S (s2) x =Sy (s,x)

have two singularities at the points sg £ Isy if I # +1,. If I = I5 or I = —1, they have only one
singularity at the point s.

Proof. The singularities of the function z +— (22 — 2Re[s]z + |s|?)~!(z — ) are given by the roots of
z? — 2Re[s]z + |s|? = 0. (3.34)

As we have seen in Remark 3.69, these are exactly the points in C; N [s], i.e., x = s¢ & Isy.
If I =1 0or I =—Ig, then x and s commute and the singularity § = sy — I's1 is removable as we have
seen in Remark 3.72.
O

Although the restrictions of S;'(s,-) and Sz'(s,-) to the plane C;, have a removable singularity at
5, the kernels themselves can not be extended continuously to 5.

Lemma 3.76. For any s € H the limits lim,_,5 Sgl(s,x) and limy,_, Sgl(s,x) do not exist.

Proof. To prove that the limit lim, ,5S; (s, 2) does not exist, we consider S;'(s,5 + ¢) with ¢ =
g0 + Z?:l eje; € H. Since 2Re[s] = s + 5 and |s|? = 5s, we have

(5+¢e)*> —2(F+¢e)Re[s] + |s]°) 'G+e—3) =

Sp(s,5+¢) = (
= (3 +5c4e5+e? —355—35° 1
= (

—es—¢e5+3s) €=
e —es+e’)le=

= (e (se —es+ 62))71 =

— ( -1

€ 36—54—5)_1.

For s € R this expression simplifies to

_ _ -1 _
Spl(s,s+e)=(ctes—s+e) =&t
and, in turn, the limit lim,_,3 Szl(s, x) does not exist.
If we have s ¢ R the expression does not converge either because the term e~'s¢ has no limit. In
fact, choosing € = g¢ € R, we obtain

0l

lim e, 1550 = lim e teps =
e—0 0 0 e—0 0 0
On the other hand, if € = ¢;¢; with e; # I, then s and e; do not commute and

. " .
lim e 'se = lim —(—ei)seie; = lim —e;Se; # —e;e;5 = 3.
e—0 e—0¢; e—0

O

Finally, we prove the Cauchy formula for slice regular functions. We start with the slice regular
version of the Cauchy integral theorem.

Recall that any quaternionic Banach space V' is a real Banach space by Corollary 2.38. In particular,
the quaternions themselves are a real Banach space. Hence, if ¢ : [a,b] — V is piecewise continuous,

then f; @(t) dt is defined in the sense of the integral of a function with values in a real Banach space.
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Recall also that a function ¢ : [a,b] — V is called piecewise continuously differentiable, if

(i) ¢ is continuous and

(ii) there exist a = to < t; < ... < t, = b such that ¢|, ¢,41) is continuously differentiable and the
one-sided limits lim, ¢+ ¢'(t) and lim, ,,— ¢'(t) exist for any i = 1,...,n.

Definition 3.77. Let V be a quaternionic Banach space, let U C H and let f : U — V andg: U — H or
f:U—>Handg:U—V be continuous. For a piecewise continuously differentiable path ~y : [a,b] — U,
we define the quaternionic path integral f7 f(s)dsg(s) as

b
/f(S) dsg(s) = / (@) ) g((1)) dt.
o a
If I €S and v has values in Cy, then we define ds; = —1 ds, that is,
[s6dsigto) == [ st syt
¥ 2l

Corollary 3.78. Let V be a quaternionic Banach space, let Uy, Us C H and let f, g and h be continuous
functions on Uy x Uy C H? such that one of them has values in V and the other two have values in H.
If v : [a,b] = Uy and v, : [¢,d] = Us are piecewise continuously differentiable paths, then

/ F(s,p) ds g(s,p) dph(s,p) = / £(5.p) ds g(s.p) dp (s, p),

where the indices s and p of vs and vy, indicate the respective variable of integration.

Proof. To avoid case analysis, we denote the absolute value of a quaternion and the norm on V' both by
Il The definition of the quaternionic path integral implies

/ f(s,p)dsg(s,p)dph(s,p)=
b d
- / [ / FOra(8), A () Y4 E) G (£), 7 (0)) 7 (1) B (8), 7 () it |l

The functions ||f]|, |lg|l and ||h] are bounded on vs([a, b]) X v,([¢, d]) because they are continuous and
vs([a, b]) x v, ([a,b]) is compact. Since «y, and 7y, are piecewise continuously differentiable, the absolute
values of the derivatives ||74| and ||v,|| are bounded on [a, b] resp. [c,d], too. Consequently,

b d
/ / £y (£, (1)) 71 (8) 9 (8), 1 (10)) 7 (1) By (8, () ]l i < 0

and we can apply Fubini’s theorem, which yields

/ / f(s,p) ds g(s,p) dph(s,p) =
d b
- / [ / f(%(t)mp(U))vé(t)g(%(t)ﬁp(U))%;(U)h(%(t)ﬂp(U))dU] it =
- / f(s,p) ds g(s,p) dp h(s, p).

O
Remark 3.79. Note that, although we can exchange the order of integration, in general

/ f(s,p)ds g(s,p)dph(s,p) # [ f(s,p)g(sap)h(sap)dp] ds #

# [ 5 f(s,p)g(s,p) h(s,p) dS] dp,

Tp

because ds and dp do not commute with the function f, g and h.
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Theorem 3.80 (Cauchy integral theorem). Let U C H be open, let I € S and let f € ME(U) and
g€ MPE(U). Moreover, let Dy € UNCy be an open and bounded subset of the complex plane C; with
Dy C UNCy such that 0Dy is a finite union of piecewise continuously differentiable Jordan curves. Then

/8 | 9(s)dsr £(5) =

Proof. Let J € S with I 1 J. By applying Lemma 3.5, the Splitting Lemma, we obtain holomorphic
functions f1, f2,91,92 : UNC; — Cy such that f; = f1 + foJ and g; = g1 + Jg2. Then we have

[ i) = [ man i)+ (f s h(s)) 7+

(] s )+ ([ s 7)) 7

Let 7 : [a,b] — C; be a parametrization of a Jordan curve, that belongs to dD;. Then f(vy(t)),
g(~v(t)), 7' (t) and I belong to C;. Therefore, they commute and we get

b b
/gl s)dsy fi(s /gi(v(t))lv’(t)fj(v(t))dt=—I/ gi(y (1)) fi(v(t) A/ () dt.

Hence, f gi(s)dsy f;(s) is nothing but the complex path integral of g;(s)f;(s) along v multiplied by
—I and, in turn, faD, gi(s)dsy f;(s) is nothing but the complex path integral of g;(s)f;(s) along 0D;
multiplied by —1.

For 4,7 € {1,2}, the function g;(s)f;(s) is holomorphic because it is the product of two holomorphic
functions. Hence, the usual complex Cauchy integral theorem implies [, D, 9i(8)dsy fj(s) = 0 and we

obtain
/ g(s)ds 1 f(s) =
0Dy
O

Theorem 3.81 (Cauchy formula). Let U C H be an azially symmetric slice domain and let O C H be
an azially symmetric open set such that O C U and such that (O N Cy) is the finite union of piecewise
continuously differentiable Jordan curves for every I € S.

If f € ME(U) and = € O, then the identity

fl@) = — S (s, ) dsr f(s) (3.35)

21 Jaoncy)

holds true for any I € S.
If g € ME(U) and x € O, then, for any I € S, we have

1

— g(s ds; S5t $,T).
27 Joones (s) R (5,2)

g(w) =

Proof. Let I € S. If x € Cy, then SL_l(s, r) = (s — x)~! is nothing but the usual complex Cauchy kernel
for s € C;. We can choose J € S with I 1 J and apply Lemma 3.5, the Splitting Lemma, to obtain
holomorphic functions fi, fo : O N C; — Cj such that f; = f1 + foJ. Therefore, by applying the usual
complex Cauchy formula, we obtain

1 1 1
27 Jocone )SL (s,x)dsy f(s) = . /a(Oﬁ(C )(x—s)_1d31f1( s) + 277/6(00@ )(:c—s)_l dsg fa(s)J =
_ fi(s) 1 fa(s) - -
27l Joone,) T — 8 ds ¥ (W /a(om:I) x—s ds) J = fi(@) + f2(2) ] = f(z).
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For x = zg + I,x1 with I # I, the function s — Sgl(s,x) has the two singularities x; = xo + Iz

and T7 = xg — [z1 on Cy, cf. Lemma 3.75. If £ > 0 is small enough, then B.(xz;) C O and B.(Z7) C O.
Thus, with O, = O \ (B:(x;) U B:(T7)), we get

1

2 a(0NCy)

1
S (s, 2) dsy f(s) = 27r/6(0 - )Sil(s,x) ds; f(s)+
1

1
1 S (s, ) dsr £(s) + = / S7(s,2) dsi f(s).
21 Joa(B.(en)nc) (B (1)NCr)

2T

Since f(s) and Sgl(s,x) are left and right slice regular on O, in the variable s, respectively, it follows
from Theorem 3.80 that the integral over (O, N Cy) equals zero. Hence,

1

o Sil(s,a:) dsy f(s) =
T Jo(ONCr)

_1
21 Jo(B.(z1)nCy)

1
Sgl(s,x) dsr f(s)—l—;/ SZl(s,x) ds; f(s).
T Jo(B.(F1)NCr)

If we parametrize OB, (z1) by s(0) = xg + Iz1 + ce!? with 0 € [0,27], we obtain

Re[s] = xg + e cos b

S=x0— Iz +ee 1

ds; = (ele!?dh)(—1) = ee'df

and
|s|> = 22 + 210z cos 0 + €2 + 22 + 26y sin 6.
Hence,
2 :/ —(2% — 2Re[s]z + |s]*) "Nz —5) ds; f(s) =
O(Be(s+,1))
2
z/ —(2? — 2(20 + £ cosO)x + 2 + 220 cos  + €% + w3 + 2exy sinh) -
0
(@ —xo 4+ Tz —ee 1)l f (o + T2y + ce!?) db.
As
2% — 2(zo + ecos0)x + 22 + 2w cos O + €% + 22 + 2exy sinf =
= x% + 220zl — Jc% - 29&% — 2xox1l — 2e cosBx + x% + 2z9ccos O + % + a:% + 2ex1sinf =
= —2excos 0 + 2xge cos O + €2 + 2ex; sin b,
we get

2m
2nLS :/ —(—2ex cos 0 + 2xpe cos O + €% + 2ex1 sin ) -
0
(r—xo+ Tz + ee_w)aewf(xo + Iri + 5619)d9 =
2m
:/ —(—2xcos § + 2z cosf + € + 2z sin ) -
0

(@ — o+ Txy +ee 1)l f (2o + Ty + cel?) db.
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For ¢ — 0, we get

e—0

2m
lim 75 = / —(—2x cos B + 2z cos O + 22, sin 0) H(z — o + Tz1)e!? f(ag + T21) df =
0

2m
= / (21,21 cos @ — 2z, sin ) Yz — xg + Txy)el® f(zo + T21) db.
0

Since p~! = ﬁp for any quaternion p € H, we have
PRI -1 1 .
(2,1 cosf — 21 8inh) ™ = §(I$x1 cosf —xysinf)™ = 2—2(—wa1 cos ) — x7 sin ),
7

and in turn

(21,x1 cos @ — 2sin le)fl(m —xzo+ Iz1) =

52 (—I,21 cos O —sinOxy ) (Ipz1 + Tx1) =
1

1
=52 (=Iyx1cosOl,x1 —sinbxi [,z — a1 cosOlxy —sinfxilzq) =
Ty

1
=32 (ac% cos @ — 2 sin 01, — 23 cos 01,1 — % sin 0I) =
1

1 1
= Fﬁ (cosO(1 — I,I) —sinf(I, + 1)) = 3 [cosO(1 — I, 1) —sin@(I, I —1)(—1I)] =
1
1
= 5(1 — I,I)(cosf — I'siné).

Therefore,

1 ("1
lim 7% = —/ (1= II)(cos O — Isin@)e’® f(xo + [x1)do =
0

0"t 2 2

1 [*1

=— (1= IL.I)(cosf — I'sinf)(cos @ + Isinf)f(xy)dd =
2 0 2

S 27r1(1—11)( %0 + sin® 0) f(z) db =

=5 3 =1)(cos sin Ty =
1

= 5(1*1}5[)]”(%1)-

With analogous computations, we get
1
lim Z¢ = —(1+4 L.I) f(Z7)-
e—0 2

By Theorem 3.21, the Representations Formula, we finally obtain

1 -1 . 6 . S 1 .
2 Jyones, Sy (s, x)dsrf(s) = lim 75 + lim 7° = 2(1 LI)f(xr) + 2(1 + LD f(TT) = flx).

O

Corollary 3.82. Let U C H be an axially symmetric slice domain such that O(U NCy) is a finite union
of piecewise continuously differentiable Jordan curves for every I € S.
If f € ME(U), then, for any I €S, we have

1

= — Sy (s, x)dsr f(s) for any x € U. (3.36)
27 Jowner)

f(z)

If g € ME(U), then, for any I € S, we have

1
o

f(z) / g(s)dsr Sg' (s, x) for any x € U.
a(UﬁC[)
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Proof. We obtain the statement, if we apply Theorem 3.81 with O = U.
O

Theorem 3.83 (Cauchy formula outside an axially symmetric slice domain). Let U C H be a bounded
slice domain such that U is connected and such that the set AU N Cy) is the union of a finite number
of piecewise continuously differentiable Jordan curves for any I € S. If f € ME(U®) such that f(o0) =
lim|,| o0 f() exists, then, for any I € S, we have

1
2

flw) = 1(eo) /a(UmC Spa)ds f(s)  foranyr €T

If f € ME(U¢) such that f(o0) = lim| o0 f() exists, then, for any I € S, we have

1

f(x) = f(o0) — o /6(UmC )f(S) ds; Sp'(s,z) for any z € U".

Proof. Let f € MY(U°) and let 2 € U". Since U is bounded, z and U are contained in the ball B,(0)
for 7 large enough. Then V, = B,.(0) \ U is an axially symmetric slice domain such that d(V,. N Cy) is
the union of a finite number of piecewise continuously differentiable Jordan curves for any I € S and f
is left slice regular on V,.. Thus, we can apply Corollary 3.82 and obtain for I € S

1
f@) = o Syt (s,x)dsr f(s) =
21 Jav.nep)
1 1
= — S; (s, x)dsr f(s) — —/ S; (s, x)dsr f(s).
21 Ja(m.(0)ncy) 27 Jawncy)
For s = re!?, we get
1 1 L™ i e 10 10
— S; (s ,x)dsy f(s) = —/ Sy (re’?, x)(=1)Ire'” f(re™ ") dd =
27 Jo(s,(0)ncy) ™ Jo
1 27
= o —(2* = 2rcosfz + 1) (x —re )rel? fre %) do =
T Jo
1 27 1 27
— 5 [ @ = 2reostu ) Tarel e 1) d0 o [ (@~ 2rcosta ) (e 1) db.
2 0 27 0

Since lim, o (22 — 2rcosfz + 72)tar = 0 and lim, o0 (22 — 27 cosfz + r2) "2 = 1 uniformly and
since f(co) = lim|y|—o f(7) exists, the integrands converge uniformly. Hence, we can exchange limit
and integration and obtain

2
lim ——/ (2% — 2rcos Oz + r2) " tarel? f(re=1%) do = 0
r—00 T Jo
and
1 o 2 0 2\—1,2 10 do 1 o 1 10 do
— -2 - - = — i - = .
o7 /. (z reosfx +r°) " ref(re”"") 271_/0 rlﬁrrolof(m ) f(o0)
Thus,
1 _
flz) = f(o0) = 5= Syt (s,x) dsr f(s)-
21 Jowner)
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Chapter 4

The S-resolvent operator and the
S-spectrum

In the following, we consider right linear operators on a quaternionic Banach space V. Nevertheless, since
we can identify B (V) and Br(V) the theory of left linear operators on V' coincides with the one for
right linear operators, if we interpret the formulas according to Definition 2.36. However, it is important
to keep in mind that although the obtained resolvent operators etc. are formally the same, they act in
different ways when they are interpreted as left or as right linear operators.

We state all results for both, the left and the right slice regular case, but again we only give the
proofs for the left slice regular one because the proofs for the right slice regular case are similar with
obvious modifications.

The presented results can be found in Chapter 3 and Chapter 4 of [12], except for Theorem 4.16,
which is going to appear in the paper [2] that was recently accepted for publication.

4.1 The S-resolvent operator and the S-spectrum

As in the case of the classical Riesz-Dunford-calculus, we define f(T') for an operator T' by formally
replacing the variable z by the operator T" in the Cauchy formula. The following discussion shows that
this is actually possible. We start by replacing the variable x in the series expansion of the Cauchy
kernel.

Definition 4.1. Let T € Br(V) and let s € H. We call the series

o0 oo
E Trg—1—n and E s imnpm
n=0 n=0

the left and right Cauchy kernel operator series, respectively.

Remark 4.2. As for the scalar Cauchy kernel series, we have

S lrns < S (s and S s < [ Y (s
n=0 n=0 n=0 n=0

Thus, the left and the right Cauchy kernel operator series converge if | T]| < |s].

Recall that we used the fact that £ — 5 is invertible when we determined the inverse of the scalar
noncommutative Cauchy kernel in the proof of Theorem 3.67. To determine the inverse of the Cauchy
kernel operator series, we need the corresponding result for operators.

Theorem 4.3. Let T € Br(V) and let |T|| < |s|. Then the series
oo
Z(silT )sTt
n=0

converges in the operator norm and it is the inverse of sT — T, where I denotes the identity operator
onV.
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Proof. Since >0 |[(s71T)" s = |s| 713002 o (IT][|s] )™ < oo, the series converges in the operator

norm. Moreover, we have

(SI—T)Z( —1Tn—1_sz —1Tn—1 TZ —1Tn—1

n=0
=s Z:(sflT)”sf1 —ss7'T Xz(sflT)"sf1 =

n=0
= Si( TSt - i sTIT)s L = sTs =7
n=0 -
and
<io( - 1) (sZ-T) (f:o(slT)” 1) sT (i( —17)ng 1) T —
f: ST i( Syt = i(S‘lT)" - i(s‘lT)” ~7
=0 n=0 n=0 n=1

Theorem 4.4. Let T € Br(V) and let s € H with ||T|| < |s|. Then

(i) the operator
Si(s,T) = —(T —3I) Y (T? — 2Re[s]T + |s|*T)

is the left inverse of the left Cauchy kernel series

(ii) the operator
Sr(s,T) = —(T? — 2Re[s]T + |s|*T)(T —5I)~*

1s the right inverse of the right Cauchy kernel series.

Proof. We proceed as in the proof of Theorem 3.67 in order to show

oo

T=—(T-5I)""(T% — 2Re[s|T +[s[’T) Y _T"s~ ",
n=0
which is equivalent to
ST —T = (T? — 2Re[s|T + [s|*) > T"s™ '™
n=0

Since 2Re[s] = s + 5 and |s|? = s5 = 3 s are real, they commute with the operator T, and hence,

( —QRE[ }T+| |2I ZTn —n—1 ZTn+2 —n—1 ZTn-H S+S —n— l-l-ZTnSSS n—1 _

n=0 n=0

— i Tn+2s—n 1 Z Tn—i—l —n ZTnﬁ-lf —n—1 + Z Trgs™" —
n=0 n=0

n=0

o0 o0 o0
= Z Tnt2g—n—1 _ Z Trnt2g—n—1 _p_ Z Trtlgs—n—1 4 Z T Hgs " 45T =57 —T.
n=0 n=0 n=0

The previous result motivates the following definitions.
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Definition 4.5. Let T € Br(V). We define the S-resolvent set ps(T) of T as
ps(T) = {s € H:T? — 2Re[s]T + |s|*Z is invertible}
and we define the S-spectrum og(T') of T as
os(T) =H\ ps(T).
Definition 4.6. Let T € Br(V). For s € ps(T), we define the left S-resolvent operator as
S8, T) = —(T? — 2Re[s|T + |s|?°Z) "1 (T — 5 I),
and the right S-resolvent operator as
Spl(s,T) = —(T — 3I)(T? — 2Re[s|T + |s]*T) "
In analogy to Proposition 3.74, we obtain the following result.

Lemma 4.7. The left S-resolvent operator S;l(s,T) is a Br(V)-valued right-slice regular function of
the variable s on ps(T), that is, S;*(s,T)0r = 0 for all I €S and all s € ps(T).

The right S-resolvent operator Si' (s, T) is a Br(V')-valued left-slice regular function of the variable s
on ps(T), that is, 1S5 (s,T) =0 for all I €S and all s € pg(T).

Proof. Let s = 5o+ Is1 € ps(T) and let Q(s) = T? — 2Re[s]T + [s|*Z. Then 52-Q(s) = —2T + 25,7 and

G%IQ(S) = 2s1Z. Hence, Q(s) and %Q(s) commute and a computation as in (3.26) yields %Q(S)_l =

—Q(s)*28%jQ(s) for j = 1,2. Since S;'(s,T) = —Q~*(s)(T — 5Z), we obtain

2 1

iS;l(s, T) = (T? — 2Re[s|T + |s|*T) ~ (—2T + 2soZ)(T — 5Z) + (T* — 2Re[s|T + |s|*Z)

680
and 9
5250 (s.T) = (T° = 2RelsIT + |s°T) 251 (T — 5T) — (T* — 2Re[s|T + |s]°T) "' I.

S1

Therefore, if we apply the operator d; in the variable s from the right, we obtain

- 1/ 0 7]
(s, T)0r == [ =—S; (s, T)+ =—S; (5, T)I ) =
St 10 = 5 (580" 1) + 550 6.7

- ;<(T2 — 2Re[s|T + [s’Z) 7 (2T + 250T)(T — 5I) + (T* — 2Re[s|T + |s[*Z) ' +

+ (T? — 2Re[s]T + |s|21)*2 2s1(T — 7)1 — (T” — 2Re[s|T + |S|QI)*1 12) :

Since 2sg and T' — 5Z commute, we finally get

S (s, T)0r = % ( (T? = 2Re[s|T + |s|*T) " (= 2T(T — 5T) + (T — 5T)(2s0 + 2Is1) )+

+2(T% - 2Re[s|T + |s|°T) ) -
— — (T% — 2Re[s|T + |s[°T) ~* (T% — 2Re[s|T + |s|°T) + (T — 2Re[s|T + [s|T) " = 0.

O

4.2 Properties of the S-spectrum
Many results that hold for the spectrum of an operator in classical functional analysis can be generalized

to the case of the S-spectrum. The first important result is the fact that the S-spectrum is bounded by
the norm of 7.
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Lemma 4.8. Let T € Br(V) and let s € H with ||T|| < |s|. Then the series
L( ) ZTnl‘ —2n— QZSknk
n=0
converges in Br(V') and it is the inverse of the operator T? — 2Re[s]T + |s|*Z.
Proof. We have

n=0

n
Tn|s|—2n—2 ngsn—k

n=0

From ||T|| < |s|, we conclude

n+1 —n—3
I e W O 4 N 4
n—oo ||T|"|s[7"2(n+1)  n=oe (n+1)]s] |s|

Hence, the series above converges absolutely by the ratio test. Moreover

(T? — 2Re[s|T + |s|*Z)L(s,T) = (T? — 2Re[s|T + |s|°T) ZTn| |=2n— 2271@ n—k _
n=0

_ZTn+2| | 2n— 2ZSk n—k ZTn+1| | 2n— QZS S—|—S n— k+ZTn| | 2nzsk n—k _

_ZTn|2nZSk‘ ‘2n2k ZTn‘S' QnZ (S_’_Snlk_’_ZTn'ZnZSknk

<Y T[22 fs™ = DT sl 2 (n+ 1),
n=0 k=0

k=0
n—2 n
:ZTn|S|72n <Zsk525n2k_z (S+S n—1— k Z gFgn— k>
n=2 k=0 k=0
—T|s|~ 2(8+5)+I—|—T|s|_2(§+s).
As
n—2 n—1
Z§k|8|28n—2—k_z (S+8 n—1— k+23kn k _
k=0 k=0
n—2
:ng-i-lnlk Zsknk Zsk+1nlk+zsknk_
k=0
n—1 n—1 n n
— gksnfk _ §k3n k ngsnfk + Zsksnfk _ 0’
k=1 k=0 k=1 k=0
we obtain
(T? — 2Re[s]T + |s|*T)L(s,T) = T.
Since

n n
g ss"k—g FEgn—k = g E shgnk,
k=0 k=0

Corollary 2.3 implies that ZZ:O 5%s"% is real. Thus, the series (4.1) has real coefficients, and therefore,

it commutes with 7', which gives

L(s,T)(T? — 2Re[s]T + |s|°Z) = (T? — 2Re[s]T + |s|*Z)L(s,T) = T.
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Theorem 4.9. Let T € Br(V). The S-spectrum os(T) of T is a nonempty, compact set contained in

the closed ball B)p)(0).

Proof. For ||T|| < r, the series S;'(s,T) = S00, T"s~ "~ converges uniformly on dB,.(0). Thus, for
I € S, we obtain

/ S (s, T)ds = Z T”/ s lds =271 T,
8(B,(0)NCr) s 8(B,.(0)NCr)

because fB(BT(O)ﬁCI) s~ 1ds equals 271 if n = 0 and 0 otherwise.

Recall from Corollary 2.38 that we can consider any quaternionic Banach space as a complex Banach
space if we restrict the right scalar multiplication to a complex plane C;. Hence, by Lemma 4.7 the
map s + S; (s, T) is holomorphic on ps(T) N C;. We conclude (B,(0)NCr) ¢ (ps(T) N Cr) because
otherwise the vector-valued version of Cauchy’s Theorem would imply fa( Sgl(s,T)ds = 0.
Thus, og(T) = ps(T)< # 0.

We can also consider Br(V') as a real Banach algebra if we restrict the scalar multiplication to R. If
we define the map 7 : s — T2 + 2Re[s]T + |s|?Z, then s € ps(T) if and only if 7(s) is invertible. But
the set Inv(Bgr(V)) of invertible elements of a Banach algebra is open (see for instance Theorem 10.12
in [25]). Since 7 is continuous, ps(T) = 7~ (Inv(Br(V))) is open, and in turn, og(7) is closed.

Finally, Lemma 4.8 implies |s| < ||T'|| for any s € og(T). Thus, og(T) is closed and bounded, and
therefore, compact.

B,(0)NCr)

O

As the following result shows, the S-spectrum has a structure that is compatible with the structure
of slice regular functions.

Proposition 4.10. Let T € Br(V). Then os(T) is azially symmetric.
Proof. Let s = sg+ Is1 € 0g(T) and let 5 € [s]. Then Re[s] = Re[s] and |s|? = [5]?, and hence,
T? — 2Re[s]T + |s|*T = T? — 2Re[3]T + [3]*Z.
Thus, s € og(T) if and only if 5 € og(T).
O

Recall from the introduction that there are two different types of eigenvalues in the quaternionic case,
namely left and right eigenvalues which satisfy Tv = Av and Tv = v, respectively, for some v € V.
Moreover, recall that it is the set of right eigenvalues og(T') that is meaningful in applications and that
allows to prove the spectral theorem for quaternionic matrices.

Before we discuss the relation of the g (T") and og(T'), we need an auxiliary lemma (see [8, Section 5]).

Lemma 4.11. Let s € H and let p € [s]. Then there exists w € H \ {0} such that p = w™lsw.

Proof. Let I1,Is € S with I1 L I and set Iy = 1 and I5 = I;I5. By Lemma 2.9, the set {lo, I1, I2, I3} is
an orthogonal basis of H that satisfies (2.1) and (2.3), the defining relations of the quaternionic product,
just as {eg, €1, ea,e3}. Thus, we can write z,y € H as = Zf:o x;I; and y = Zf:o y; I; with x;,y; € R.
For their product, we obtain
xy =zoyololo + xoy1lol1 + zoy2lol2 + xoyslols+

+z1yolilo + zayr iy + z1yaliIo + zays i I3+

+ xoyolalo + way1loly + xoy2lnls + x2yslals+

+ xoyolslo + w3y1 I3y + x3y2l3ls + w3yslsls.

By (2.1) and (2.3), this equals
zy = ToYolo + Toy1 11 + ToY2lo + woy3lz+
+ 21yoly — v1y1do + x1y2l3s — 21y3l2+
+ xoyole — xoy1l3 — woy2lo + xoysli+
+ zoyols + w3y1lo — x3y2ly — x3y3lp.
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If we sort the terms, we finally get

ry =(ToYo — T1Y1 — Tay2 — T3y3)lo+
+ (xoy1 + 1Yo + T2y3 — x3y2) 1+
+ (Toy2 — T1y3 + T2y0 + T3y1) 12+
+ (zoys + T1y2 — T2y1 + T2y0) 3.
Let s € H and let p € [s]. The equation p = w™?
calculation, this is equivalent to the system

sw is equivalent to wp = sw. By the preceding

Wopo — W1pP1 — W2P2 — W3P3 = SowWo — S1W1 — SaWz — S3Ws3
woep1 + wi1po + waPs — w3P2 = Sowi + S1Wo + Sews — S3Wa
WoP2 — wW1P3 + wWaPo + wW3P1 = Sowa — S1W3 + Sawo + S3W1

wop3 + w1p2 — waP1 + wW3Po = Sows + S1Wa — Sa2wi + S3Wo

respectively to

Po—So —p1+S1 —p2+s2 —p3+Ss3 wo 0

P1—81 Po—So P3+S3  —p2—S2 wi| _ [0 (4.2)
P2—82 —pP3—83 pPo—So P1t+S1 wo 0 '
P3—83 P2+S2  —p1L—S81  Po— S0 w3 0

If we choose I; = I, then s = sg + I;51 and s = s3 = 0. Moreover, we can choose I 1 I such that
p € span{l,I1,I5}. Then p = pg + I1p1 + Izpe and p3 = 0. Since p € [s], we also have so = pg. Hence,
the system (4.2) simplifies to

0 —P1 + S1 —p2 0 wo 0

p1 — 81 0 0 —D2 w1 0
= 4.3
D2 0 0 p1+ s1 wWo 0 (4.3)

0 P2 —p1— S1 0 w3 0

The determinant of the matrix M of this system is
det M = pi — 2pist + 2pip5 + s1 — 25103 + p3 = (07 + p3)° + 51 — 251 (0] + p3)-

Since s € [p], the vector parts of s and p have the same absolute value. Hence, s7 = [s|* = [p|* = pi + p3
and
det M = s% + 5411 - 25%5% =0.
Therefore, the system (4.3) has a nontrivial solution (wp,w;,ws,ws)? and w = wy + Z?Zl w;I; satisfies
wp = sw, which implies p = w™'sw.
O

The set of right eigenvalues has a structure that is analogue to the one of the S-spectrum.
Lemma 4.12. Let T € Br(T) and let s € or(T). Then the whole 2-sphere [s] belongs to or(T).

Proof. Since s is a right eigenvalue, there exists a vector v € V such that Tv = vs. Let § € [s]. By
Lemma 4.11 there exists w € H \ {0} such that 5 = w™!sw. If we consider the vector vw, we obtain

T(vw) = T(v)w = vsw = (vw)w ™ 'sw = (vw)3.

Hence, s is a right eigenvalue of T', too.
O

Definition 4.13. Let T € B(V). A quaternion s is called an S-eigenvalue of T if there exists a vector
v € V\ {0} such that
(T? — 2Re[s|T + |s|*Z) v = 0. (4.4)

The following Lemma shows that the S-spectrum can be considered as a generalization of the set of
right eigenvalues, just in the same way as the spectrum of an operator on a complex Banach space can
be considered as a generalization of the set of eigenvalues in classical functional analysis; see [9].
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Lemma 4.14. Let T € B(V). The set of right eigenvalues og(T) coincides with the set of S-eigenvalues
of T. Therefore, or(T) C os(T). If V has finite dimension, then we even have og(T) = or(T).

Proof. Let s be an S-eigenvalue. Then there exists a vector v # 0 such that T?v — 2Re[s]Tv + |s|>v = 0.
If Tv = vs, then s € og(T). Otherwise, w = Tv — vs # 0. Since 2Re[s] = s + 3 commutes with 7" and
v and since |s|? = 53, we obtain

0 = T%v — 2Re[s|Tv + |s|*v = T?v — Tvs — Tvs + vs5 = T(Tv — vs) — (Tv — vs)5 = Tw — W5.

Thus, Tw = ws and 3 is a right eigenvalue of T. By Lemma 4.12, the entire 2-sphere [3] belongs to
or(T). In particular, s is a right eigenvalue of T itself.

If on the other hand s is a right eigenvalue, then there exists a vector v # 0 such that Tv = wvs.
Since 2Re[s] = s + 5 commutes with v and since |s|? = s5, we have

T?v — 2Re[s|Tv + |s|*v = Tvs — 2Re[s|vs + v|s|* = vs? — vs? — vs5 + vs5 = 0.

Hence, s is an S-eigenvalue.

A quaternion s is an S-eigenvalue of T if and only if the operator L(s,T) = T2 —2Re[s]T +|s|*Z is not
injective because in this case L(s, T)v = (T? — 2Re[s]T + |s|>Z)v = 0 for some v € V\{0}. In particular,
L(s,T) is not invertible, and hence, s belongs to the og(T'). Since the set of S-eigenvalues coincides with
the set of right eigenvalues, we obtain or(T') C os(T). Moreover, if V has finite dimension, then L(s,T')
is invertible if and only if it is injective by Corollary 2.33. Hence, in this case, og(T') = os(T).

O

4.3 Resolvent equations

In contrast to the classical case, the quaternionic S-functional calculus involves two different important
types of resolvent equations. The first one substitutes the fact that in the classical Riesz-Dunford calculus
an operator commutes with its resolvent, which is in general not true for the S-resolvent operators.

Theorem 4.15 (Left and right S-resolvent equation). Let T' € Br(V) and let s € ps(T). Then, the left
S-resolvent operator satisfies the left S-resolvent equation

S;Ns, T)s —TS; (s,T) =1 (4.5)
and the right S-resolvent operator satisfies the right S-resolvent equation
sSp (s, T) — Sp'(s, T)T =T. (4.6)
Proof. Since 2Re[s] and |s|? are real, they commute with the operator T. Hence,
T(T? — 2Re[s]T + |s|*T) = (T? — 2Re[s]T + |s|*T)T

and in turn,
(T? — 2Re[s|T + |s|*Z) T = T(T? — 2Re[s|T + |s|°T) " .

Thus,

S (s, T)s —TS; (s,T) =
= —(T% — 2Re[s|T + |s|*Z) YT — 3I)s + T(T? — 2Re[s]T + |s|*Z) (T —57I) =
= (T? — 2Re[s|]T + |s|*Z) " (=T +5Z)s + (T? — 2Re[s|]T + |s|*Z) " 'T(T —31) =
= (T? — 2Re[s]T + |s|?°Z) " (T? — 2Re[s|T + |s|*Z) = Z.

O

The left and the right S-resolvent equation cannot be considered as generalizations of the classical
resolvent equation

RA(T) = Ry(T) = (1 — N RA(T) R (T), (4.7)
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where R)(T) = (AZ — T)~! is the classical resolvent operator and A and y lie in the resolvent set of T
(see Lemma 6 in [16, Chapter VIL.3.5]). In fact, the classical resolvent equation provides a possibility
to split the product of two resolvent operators into a sum of the factors, whereas the left and the right
S-resolvent equation provide a possibility to split the product of T and the left and right S-resolvent
operator, respectively.

The next result, Theorem 3.8 in [2], can be regarded as the generalization of the classical resolvent
equation, which preserves its philosophy. However, it is remarkable that this equation involves both, the
left and the right resolvent operator and that no generalization of (4.7) including just one of them, either
the left or the right resolvent operator, has been found yet.

Theorem 4.16. Let T € Br(V) and let s,p € ps(T). Then the equation

Sk (5, TS (0. T) = [(Sg'(5,7) = Sz (0, 1)) p =5 (S (. 7) = SL" (0, 1))] (0 — 2Relslp + [s|) ™" (4.8)
holds true. Equivalently, it can also be written as

S’ (s, T)SL (. T) = (s* — 2Refpls + [p[*) " [(SL' (. T) = S&' (5. T)) P — 5 (SL" (0 T) = S5 (s, T))] - (4.9)

Proof. We prove the first identity (4.8). The second identity (4.9) follows by analogous computations.
We show that for s,p € pg(T)

Sr'(5,T)SL (0, T) (p° = 2Re[slp + |sI*) = (Sz'(5,7) = Sz (0, 7)) p — 5 (Sx' (s, T) = S (p, 1)) .~ (4.10)

To abbreviate the formulas, we denote
S(s,p,T) = Sx'(s,7)S; *(p, T) (p2 — 2Re[s]p + |s|2) .
The left S-resolvent equation (4.5) implies S;*(p, T)p = T'S;*(p, T) + Z. Hence,

S(s,p,T) = Sg'(5,T)S. ' (0, T)p* — 2Res]S3" (s, T)SL " (0, T)p + IsI*SE (5, T)SL ' (0, T) =
=Sz (s, DTS (p,T) + Ilp — 2Re[s|Sz" (s, T)[TS; (p, T) + I] + |s|*Sz " (5, T)S; ' (. T) =
= S (s DTS, (p.T) + I) + Sg' (5, T)p—
— 2Re[s]S; ' (s, T)TSL (0. T) + ] + |s|*SR (5, 1) S (0, T) =
= SR (s, T)T*S;  (p, T) + Si* (s, T)T + Si' (s, T)p—
= 2Re[s][Sp' (5, T)TSL (0, T) + S (5, 1)) + [s[*Sz ' (5, T) S (. T).
On the other hand, the right S-resolvent equation (4.6) implies Sz*(s,T)T = sSz'(s,T) — Z. There-
fore,
&(s,p,T) = [sS5" (5, T) = T)TS; ' (p,T) + sSx" (5, T) — T+ Sz (s, T)p—
— 2Re[s] [[sSﬁl(s,T) - 71S; (p, T) + Sgl(s,T)] + 2SRz (s, T)SL  (p, T) =
= s[sSz"'(s,T) = I] = T|S; ' (p,T) + sSz" (5, T) — I + Si" (s, T)p—
— 9Re[s][[sS7 (5, T)ST (0, T) — ST (. T)] + S5 (5.T)] + 1551 (5, T)ST (v, T) =
— (s — 2Rels]s + |s[2)S7 (5, T)S. (0 T) + 1S5 (5, T) — S7(p. T)]p — 5[5 (. T) — S5 (. ).

Since s — 2Re[s]s + |s|? = 0, we obtain (4.10).
O
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Chapter 5

The S-functional calculus

The most obvious advantage of the notion of slice regularity over the notion of Cauchy-Fueter-regularity
is the fact that polynomials of a quaternionic variable are slice regular. It is this fact that makes this
class of functions extremely useful for a functional calculus in a quaternionic setting. When we finally
define this functional calculus, we follow again Chapters 3 and 4 of [12], except for the proofs of the
product rule and the existence of the Riesz-projectors, which can be found in [2].

5.1 The definition of the S-functional calculus

We consider again a right linear operator T’ on a quaternionic Banach space V. Before we can define the
S-functional calculus, we have to specify the underlying class of functions.

Definition 5.1 (T-admissible slice domain). Let T € Br(V). A bounded azially symmetric slice domain
U C H is called T-admissible if o5(T) C U and (U N Cy) is the union of a finite number of piecewise
continuously differentiable Jordan curves for any I € S.

Definition 5.2. Let T € Br(V).

(i) A function f is called locally left slice regular on o5(T), if there exists a T-admissible slice domain
U C H such that f € M*(U). We denote the set of all locally left slice reqular functions on os(T)
by M*(05(T)).

(i) A function f is called locally right slice regular on o5(T), if there exists a T-admissible slice domain
U C H such that f € ME(U). We denote the set of all locally left slice reqular functions on os(T)
by M (0s(T)).

(iii) By N(os(T)) we denote the set of all functions f € MY (o5(T)) such that there exists a T-
admissible slice domain U with f(UNCy) C Cy for all I € S.

To show that T-admissible slice domains do actually exist, we need the following result, which is well
known from complex analysis; see Proposition 1.1 in [14, Chapter VIII].

Lemma 5.3. Let G C C be a domain and let K be a compact subset of G. There exists an open set
O such that K C O and O C G and such that 0O consists of a finite number of piecewise continuously
differentiable Jordan curves.

Remark 5.4. Since the result is well known, we omit the proof because it is quite technical. The basic
idea is to cover K with sufficiently small rectangles R;,i € I. Since K is compact, there exists a finite
subset R;,7 =1,...,n that covers K. Then O = U?:1 R; has the desired properties. However, if K and
G are symmetric with respect to the real axis, then we can chose the covering R;,7 € I, and in turn also
the set O, symmetric with respect to the real axis. Adding additional rectangles R;,j = 1,...,m, we
can even chose the set O such that it is connected because G is connected.

Lemma 5.5. Let G be an azially symmetric slice domain and let K be a compact, azially symmetric
subset of G. Then there exists an azially symmetric slice domain U such that K C U and U C G and
such that (U NCy) consists of a finite number of piecewise continuously differentiable Jordan curves for
any I €S.
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Proof. Let I € S. We apply Lemma 5.3 with the compact set KNC; and the domain GNC; and obtain a
domain Uy C Cj that is symmetric with respect to the real axis such that (KNCy) C Ur and Uy C (GNCy)
and such that OU; consists of a finite number of piecewise continuously differentiable Jordan curves. We
set U = [Uy], where [U;] denotes the axially symmetric hull of U;. Since U is symmetric with respect
to the real axis, we have U N C; = U;. Since Uy is also connected, Uy NR # (3, and hence, U is a slice
domain by Lemma 3.20. Finally, (U N Cy) = 9U; consists of a finite number of piecewise continuously
differentiable Jordan curves. For J € S, Lemma 3.20 implies U N C; = {xo + Jx1 : @0 + [21 € U}.
Therefore, also (U N C;) consists of a finite number of piecewise continuously differentiable Jordan

curves.
O

Corollary 5.6. Let T € Br(V). If f is left or slice reqular on an azially symmetric slice domain U with
os(T) C U, then there exists a T-admissible slice domain U" wit U' C U.

Proof. We obtain the U’ by applying Lemma 5.5 with G = U and K = og(T).
O

Lemma 5.7. Let O C H be an azially symmetric open set and let K be an azially symmetric compact
subset of O. Then there exists an azially symmetric open set A with K C A and A C O such that,
for any I € S, the boundary (AN Cy) consists of a finite union of piecewise continuously differentiable
Jordan curves.

Proof. Let O;,i = 1,...,n be the connected components of O with K N O # (). We assume that they
are ordered such that O; MR # P if 1 <i<mand O;NR=0Pif m+1<i<n for somem € {0,...,n}.

If x € O; with ¢ € {1,...,n}, then [z] N O;,j = 1,...,n is a decomposition of [z] into open subsets
whose intersection is empty. « € O; implies [z] C O; and [z] N O; = () for j # i because [z] is connected.
Therefore, the sets O; are axially symmetric domains in H. Since K is axially symmetric and compact
and since O; N O; = 0 if i # j, the sets K; = K N O; are axially symmetric and compact.

Fori=1,...,m, Lemma 3.20 implies that O; is an axially symmetric slice domain because O; N\R # ()
and [0;] = O;. If we apply Lemma 5.5 with K = K; and G = O;, we obtain an axially symmetric slice
domain A; such that K; C A; and A; C O; and such that 9(A4;NC;) consists of a finite union of piecewise
continuously differentiable Jordan curves.

Fori=m+1,...,n, we chose I €S and set C; = {z = zo+ Iz1 € C; : 0 < x1}. The set O, NCy is
open in C;. If there exists two open subsets By and By of (CI< with O; NC; = By UBg and By N By =0,
then, by Lemma 3.19, their axially symmetric hulls [B1] and [Bz] are open and satisfy [B1] U [Bs] = O;
and [B1] N [Bz] = 0. Since O; is connected, either [By] = () or [Bz] = (), and in turn, B; = () or By = (.
Hence, O; N Cy is connected. Moreover, the set K; N C; = K; N Cy is compact in C;. Therefore,
we can apply Lemma 5.3 with G = O; N Cy and K = K; N C;. We obtain an open set A;; such
that K; N Cy C A;; and A;; C O; N Cy and such that dA; ; consists of the finite union of piecewise
continuously differentiable Jordan curves. If we set A; = [A; 1], then A; is open by Lemma 3.19 and
satisfies K; C A; and A; C O;. For any J € S, the boundary 4; NC consists of the union of the disjoint
sets {xo + Jx1 : o + Iz1 € 0A; 1} and {xo — Jz1 : x0 + [z1 € OA; 1}. Hence, it is the finite union of
piecewise continuously differentiable Jordan curves.

Finally, the set A =[J;_, A; has the desired properties.

O

Recall the definition of the integral with respect to ds; in Definition 3.77. The following theorem
motivates the S-functional calculus and shows that it is well defined in the sense that it is compatible
with polynomials of the quaternionic variable.

Theorem 5.8. Let T' € Br(V), let m € Ng = NU {0} and let U C H be a T-admissible slice domain.

Then

1 1
T = — S;H(s, T)dsys™ = — s™dsy Sp' (s, T)
27 Jowner) 7 Jowne)

for any imaginary unit I € S.
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Proof. Let us first consider the case that U is a ball B,.(0) with || T'|| < 7. Then S; '(s,T) = Y00 T"s™"?
for any s € 0B, (0); see Definition 4.1. Moreover, the series converges uniformly on 9B,(0), and hence

1

% 9(B,-(0)NCy)

/ 8—1—n+m dS[ — 0 1f n 7& m
9(B,-(0)NCr) 2m ifn=m

1

% 9(B-(0)NCy)

1 o0
S_l(s,T) dsys™ = — T"/ sTITM M.
o 2m nz:% 8(B,.(0)Cr)

The fact that

gives
S (s, T)dsys™ =T™.

Now let U be an arbitrary T-admissible slice domain. Then there exists a radius 7 such that U C
B,(0). Moreover, if we restrict the right scalar multiplication to the complex plane C;, then Br(V)
is a complex Banach space by Corollary 2.38. By Lemma 4.7, the mapping s — Sgl(s,T)sm is a
Br(V)-valued holomorphic function on C; \ og(T"). Thus, the vector-valued Cauchy theorem implies

1 1
o S_l(S’T)dSISm—*/ S_l(s,T)dslsm:
27 Joem,(0)ncy) - 21 Jownen) -
1
= — SEI(S,T)dS[SmZO
27 Ja(B.(0\U)NC)
and further ) .
— S (s, T)dsy s™ = —/ S (s, T)dsys™ =T™.
21 Jowney) - 2 Jos, e -

The second identity, which involves the right S-resolvent operator S§1 (s,T), follows analogously from
the corresponding series expansion of the right S-resolvent operator.
O

Corollary 5.9. Let T € Br(V), let U be a T-admissible slice domain and let p(z) = ZfLO x"a, with
an € H be a left slice regular polynomial. If we set p(T) = Zg:o T"a,, then
1

=5 S (s, T)dsyp(s) (5.1)
™ Jo(UnCr)

p(T)
for any imaginary unit I € S. Similarly, if p(x) = Zi:;o anz™ with a, € H is a right slice regular
polynomial and we set p(T) = ZnN:o a,T", then

1

p(T) = %

/ p(s)dsy Sgl(s,T) (5.2)
A(UNCy

for any imaginary unit I € S.
In particular, if the polynomial p has real coefficients, the integrals (5.1) and (5.2) define the same
operator.

Proof. Let p(x) = Zf:;o z™a,. Then Theorem 5.8 implies
1 N 4 N
— S (s, T)dsyp(s) = —/ S (s, T)ds;s™| ap =Y T"a, = p(T).
21 Jownen - ,;) 21 Jowney © nz:;)

The case of a right slice regular polynomial follows with analogous computations. Moreover, if p(z) =
N n .
> —o Gnx™ has real coefficients, then

1

27 Jowner)

N N
1
S (s, T) dsp(s) = ZT"an = ZanT" = —/ p(s)ds; Szt (s, T).
a(UNCy)

2w
n=0 n=0
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Theorem 5.10. Let T' € Br(V), let U C H be a T-admissible slice domain and let I € S. Then the

integrals
1

> Sy (s, T)dsy f(s), for f € M*(os(T)) (5.3)
™ Jo(uncy)

and
1

P f(s)dsp Sg'(s,T), for f € M%(o5(T)),
21 Jawney)

do neither depend on the choice of the imaginary unit I nor on the set U.

Proof. Let be Vg be the real part of V as in Lemma 2.17. For any vector v € V there exist vectors
v, € Vg,t = 0,...,3 such that v = Z?:o v;e;. If a quaternionic right linear operator T satisfies

T(v) = T(v) for any v € Vg, then

3 3

T(v) =Y T(vi)e; =Y T(vi)e; = T(v)

=0 i=0

for any v = Z?:o v;e; € V. Hence, two quaternionic right linear operators are equal if and only if they
coincide on Vg.
For v € Vi and for any left linear functional ¢ € V},, we define

Gu.6(8) = <¢7 SEI(S,T)U> for s € ps(T).

Then g, 4 is right slice regular on pg(T) because of Lemma 4.7. Indeed, for s = so + Is1 € ps(T), we
have

9v,¢(5)51 = % <<¢7 820521(57T)’U> + <¢, azlSL_l(s,T)'v> [) =

=5 (0780 0w + (6,58, 6. 110 ) = (0, (51 (5 T)01) ) =0

because the vector v € Vg commutes with any imaginary unit 1.
Moreover, for any ¢ € V}, and any v € Vg, we obtain

1 B 1 _
<¢7 [QW /a(Um«:I) Sp'(s.T)dsr f(s)}v> T on /<9(UﬂC1)<¢7SL1(8’T)v> dsy f(s) =

1
Y a(UNCy) guo(s) dsr f(s).
We first show that the integral (5.3) does not depend on the slice domain U. Let U’ be another
T-admissible slice domain. Applying Lemma 5.7 with the axially symmetric open set U N U’ and the
axially symmetric compact set og(T), we obtain an axially symmetric open set O with og(T) C O and
O C U such that (O N Cy) consists of a finite union of piecewise continuously differentiable Jordan
curves for any I € S.
Applying Cauchy’s Integral Theorem, Theorem 3.80, with D; = (U NCy) \ (O NCy), we obtain

1 1 1

— Gos) st £(5) = 5= [ ganls)dss £5) = o | Go:0(5) dsi £(s) = 0.
21 Jowner) 21 Jaoncy) 21 Ja(wne\(oncy)

Hence,

for all ¢ € V}, and all v € Vg. We know from Corollary 2.43 that V}, separates the points of V. Thus,
(5.4) implies

1 _ 1 _
[271_ /6(Or‘1CI) SL1(57T) dsy f(s)] v = l% ~/8(UOC1) SL1(57T) dsy f(s)] v
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for all v € Vg and, in turn, for all v € V. The same calculation holds true if we replace U by U’.
Therefore,

1

27 Jowner)

1 1
Spls s 1) =5 [ S T s S = o [ s s T s 1(5)
a(0NCy) T Jo(u'ncy)

To show that (5.3) does not depend on the imaginary unit, we consider I,.J € S with / # J and a
T-admissible slice domain U such that f € ML(U). The series Y oo, T"s "~ ! converges uniformly on
the set {s € H: 2||T|| < |s|}. Hence,

o0 o0

lim S;'(s,T) = lim Trs i " = lim T"s '™" = 0.
|s|]—o0 |s|—>oon_O n_o\s|—><>o

By Lemma 5.5, we can choose another T-admissible slice domain U’ such that U’ C U and apply
Theorem 3.83, the Cauchy formula outside an axially symmetric slice domain, to calculate the values of
gov(x) for x € H\ U’. For all ¢ € V}, and all v € Vi, we obtain

1

go.0(@) = or aU'NC.)

9ow(s)dsy Sp'(s,x) forz e H\ U,

and

1 B 1

1 1/ .
= - 9e0(P)dps Sy (p,s)| dsrf(s) =
27 8(U061)l 21 Jowrne,) s:0(P) r ) )
: W dps |5 [ S5 s dss £6)
= 5 9pv\P)OPJ | 5 - p,Ss ST S 5
27 Jowrnce,) o 21 Jowney

where the last equality follows from Lemma 3.78. Since —Sy'(p,s) = S} '(s,p) by Corollary 3.71 and

since f is left slice regular on U, we obtain from Corollary 3.82
1 _ 1 _
=S s dsi 1) = 5= [ SN s ds (5) = £0)
B(Uﬂ(CI)

% a(UﬂCI) B %

As (5.3) does not depend on the set U, we finally derive

1 B 1
<¢>, {% /8 wren Sp'(s,T) dsrf(s)}”> =5 /8 (Ufmmg“b’”(p) dp; f(p) =

= <¢7 {2177 /6 e, St (p, T)dpys f(p)}v> = <¢, {2177 /{9 e St (1) dp.lf(P)}v>

for all ¢ € V} and all v € Vg. By Corollary 2.43, V}, separates the points of V. It follows that
[i fG(Um(CI) Sy (s, T)dsy f(s)} v = [i fa(UﬁC,;) S; (s, T)dsy f(s)} v for all v € Vg, and therefore, for

any v € V. Thus, (5.3) does not depend on the choice of the imaginary unit I € S.
O

Definition 5.11 (S-functional calculus). Let T € Br(V). For any f € MY (os(T)), we define
1 _
FT) = o / S7 (s, T) dsy f(5), (5.5)
T Jo(Uuncy)

where I 1s an arbitrary imaginary unit and U is an arbitrary T-admissible slice domain such that f is
left slice regular on U.
For any f € M (05(T)), we define

A1) = = £(s) dsy S54(s,T), (5.6)
21 Jowner)

where I 1s an arbitrary imaginary unit and U is an arbitrary T-admissible slice domain such that f is
right slice reqular on U.
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Theorems 5.8 and 5.10 show that the S-functional calculus is well defined for any left or right slice
regular function. However, if f is left and right slice regular it is not yet clear that (5.5) and (5.6) give
the same operator. To show this, we need the fact, that the S-functional calculus is consistent with the
limits of uniformly convergent sequences of slice regular functions.

Theorem 5.12. Let T € Br(V). Let fn, f € ME(os(T)) or let fn, f € MB(05(T)) for n € N. If there
exists a T-admissible slice domain U such that f, — [ uniformly on U, then f,(T) converges to f(T)

Proof. Since f,, — f uniformly on U, we can exchange limit and integration and obtain

lim /,(7) = Jim - | e, S M1 ful5) = | ey, SE 8 s (9) = £(D)

O

The following Theorem 5.13 shows that the representations (5.5) and (5.6) are equivalent, if f belongs
to N(os(T)). However, the proof of this theorem uses the product rule for the S-functional calculus
in the special case that f is a polynomial with real coefficients. We prove the product rule later in
Theorem 5.17. The reason why we postpone the proof of the product rule is that it uses the fact that
(5.5) and (5.6) are equivalent for any function in A (U), which is exactly the statement of the following
Theorem 5.13. Nevertheless, this is not circular reasoning because for the special case of a polynomial
with real coefficients, the equivalence of (5.5) and (5.6) has already been shown in Corollary 5.9. Thus,
strictly speaking, we have to proceed as follows:

Step 1) We show that the product rule (f¢)(T) = f(T)g(T) holds in the special case that either f is a
polynomial with real coefficients and g € M (o5(T)) or that f € M (U) and g is a polynomial
with real coefficients. Thereby, we use that the representations (5.5) and (5.6) coincide for any
polynomial with real coefficients by Corollary 5.9.

Step 2) We show Theorem 5.13, where we use Step 1).

Step 3) We show the general product rule, where we use Theorem 5.13, that is, that (5.5) and (5.6)
coincide for f € N(U).

But since the proofs of Step 1) and Step 3) are exactly the same, we only write them down for the general
case in Theorem 5.17, keeping in mind this remark.

Theorem 5.13. Let T € Br(V) and let f € N(os(T)). Then
1 1
o ST\ (s,T) dsy f(s) = / F(s)dst S5 (s.T). (5.7)
™ Jo(uncy) a(UNCy)

T or
Proof. Let p # 0 € N(H) be a polynomial with real coefficients such that p~! € N (os(T)). Then p(T)
is invertible and we have p(T)~! = p~(T'), where

1

27 Jownen)

1

(@) Se s T)dsp 6 = o [ g s)dst S5 (s, ).
T Jo(uncy)

Indeed, by applying Theorem 5.8 and the product rule for the S-functional calculus, we obtain

1
I=_— St (s, T)dsy1 =
21 Jownen -
1 _ _ 1 _ _
T on Sp (s, T)dsyp~ (s)p(s) = [Qﬁ/ Sy (s, T)dsrp™(s)| p(T)
a(UnCr) a(UnCr)
and
1
= — lds; Sp'(s,T) =
27 Jawner) r
1 _ _ 1 _ _
— o [ o s ST =) |5 [ s S e T)
T Jo(UuncCr) ™ Jo(Uuncr)
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Therefore,

1

27 Jawney)

1

5 Sy (s, T)ds;p~*(s) = p(T)~"
™ Jo(uncy)

p~t(s)ds; S (s, T).
In particular, p~*(7T') is well defined. Moreover, if r = ¢~ !p is a real rational function, then p and q have
real coefficients, and we can apply the product rule to obtain 7(T) = ¢~ (T)p(T). Hence, (5.7) holds
also for r. B -

Let f € M(os(T)) and let U be a T-admissible slice domain such that f € N (U). Then U is compact

and therefore Runge’s Theorem, Theorem 3.64, implies the existence of a sequence ry, of real rational
functions in N'(U) such that f = lim,, s 7, uniformly on U. Theorem 5.12 then gives

1

21 Jowner)

1
S; (s, T)dsy f(s) = lim —/ S (s, T)dsyrn(s) =
a(UNCy)

n—00 27

1 1
= lim —/ rn(s)dsy Spt(s,T) = —/ f(s)ds; Spt(s,T).

n—o0 2T Jowncy) R 21 Jowner) "
O

Corollary 5.14. For T € Br(V) and f € ML (0s(T)) N ME(0s(T)), we have
1

21 Jowney)

SV (s, T) dsy f(s) = — / F(s)dst S5 (5. T).
o(UNCy)

T on

Proof. Let U be a T-admissible slice domain such that f € M%(U) N MF(U). By Lemma 3.42, there
exist a constant @ € H and a function f € N(U) such that f = a + f. From Theorem 5.8, we know that

1 1
= — ST l(s, T)ds; = — ds; Sz (s, T).
21 Jawney) g 21 Jowner) r
Hence,
1 _
o SLl(SaT)dSIf(S):
21 Jowney)
1 ~ 1
= — SZl(s,T)dsjf(s)—i——/ S; (s, T)dsja =
21 Jowner) 21 Jawner)
1 ~ 1 ~
= — S (s, T)dsy f(s) + —/ S; (s, T)dsy | a= f(T) + Za.
27 Jowner) 21 Jowner)

Since by (2.14) the identity operator Z commutes with the scalar a, this equals f(T) +aZ. Theorem 5.13
implies

~ 1 ~ 1
) +aT= L F(s)ds; Sz (s,T) +a 7/ ds; S5 (s,T) | =
21 Jawner) 21 Jowner)
1 ~ 1
= — f(s)dsIS_l(s,T)—i-—/ ads; Sz (s, T) =
2w a(UNCy) R 27 a(UNCy) R
1
= — f(s)ds; Sz (s, T).
21 Jowner) ) m

5.2 Algebraic properties

An immediate consequence of Definition 5.11 is that the S-functional calculus for left slice regular
functions is quaternionic right linear and that the S-functional calculus for right slice regular functions
is quaternionic left linear.
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Lemma 5.15. Let T € Br(V).
(i) If f,g € ME(U) and a € H, then

(f+9(T)=f(T)+9(T)  and  (fa)(T) = f(T)a.
(ii) If f,g € ME(U) and a € H, then
(f+9)(T)=f(T)+9(T)  and  (af)(T) = af(T).

Proof. If f,g € ML(U) and a € H, then we have

(P49 =5 [ S T dsr ((5) + 9(s) =
T Jo(UuncCy)
-5 SE (s D) dsi )+ 5 [ 7 (s Ty dsrg(s) = F(T) + (1)
™ Jo(uncy) ™ Jo(uncy)

and

(fa)(T) = % /amm S (s, T) ds f(s)a = <217T /Wm[) S\(s,T) ds,f(s)> a = f(T)a.

O

Since the product of two slice regular functions is not necessarily slice regular, we cannot expect
to obtain a product rule for arbitrary slice regular functions. However, at least if f € N(os(T)) and
g € ME(og(T)) or if f € MBE(og(T)) and g € N(os(T), then fg € ME(U) resp. fg € ME(U). To
show that the S-functional calculus is compatible with the product in these cases, we need the following
lemma. Note that in this lemma, we do not assume that O is a slice domain.

Lemma 5.16. Let B € Br(V), let O be an axially symmetric open set such that (O NCy) consists of
the finite union of piecewise continuously differentiable Jordan curves and let U be an azially symmetric
slice domain such that O C U. If f € N(U), then for any I €S

o F(s)ds1 (5B = Bp)(7 — 2Relslp+ ) ' = BI(p),  peO.
™ Jo(oncy)

Proof. Since s35 = |s|? and s + 5 = 2Re[s] are real, they commute with the operator B. Hence,

(s* — 2Re[p]s + |p|*) (3B — Bp) = s|s|*B — 2Re[p]|s|* B + |p|*5B — s*Bp + 2Re[p|sBp — |p|*Bp =
= sB|s|* — B|s|*2Re[p] + 3B|p|* — s> Bp + sB2Re[plp — Blp|*p =
= sB|s|> — Bp|s|* — [s|*Bp +5B|p|* — s*Bp + sBp* + s B|p|* Blp|*p =
= (sB — Bp)|s|* — s(s +3)Bp+ (s +3)Bpp + (sB — Bp)p*> =
= (sB — BD)|s|” — (sB — Bp)2Re[s|p + (sB — Bp)p* = (sB — Bp)(p* — 2Res]p + |s|*).
Thus,
(3B — Bp)(p* — 2Re[s]p + [s|*) ™" = (s* — 2Re[p]s + [p|*) ™" (sB — Bp).

We calculate

1
2 f(s)ds (5B — Bp)(p” — 2Re[s]p + [s[*) ™" =
T Ja(onCr)
1
= f(s)dsy (s* = 2Re[p]s + [p|*) " (sB — Bp) =
21 Jaoncy)
1 _ _
= F(s)dsr (s* = 2Relpls + |p[*) (s = D) B+
T Ja(oncy) (5.8)
1 .
o f(s)dsr (s* — 2Relpls + p|*) " (pB — BP).
T Ja(oncy)
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For the first integral, we have
1

21 Jaoncy)

1

f(s)dsy (s* = 2Re[p]s + [p[*) (s = p)B = o
™ Jo(oncr)

f(s)dsr Sg'(s,p)B = f(p)B, (5.9)
where we use —Sgl(p, s) = Slgl(s,p)7 cf. Corollary 3.71.

Let us consider the second integral. If we write s = so + Is; and p = pg + I,p1 according to
Corollary 3.11, then the solutions of the equation s2 — 2pgs + |p|?> = 0 in the plane C; are p; = po + Ip;
and p; = po — Ip1. f € N(U) gives f(ONCy) C Cy. Hence, the function f; is holomorphic on O N Cy
and we obtain

1
— f(s)dsy (s* — 2pos + |p|*)"*(pB — Bp) =
27 Jaonc)
1 fi(s) _ _
= ————————ds; (pB — Bp).
27 Jaone,y (8 —pr)(s —b1)
If we denote Fr(s) = %, the residue theorem implies
1
> f(s)dsr (s> = 2Re[p]s + |p|*) "' (PB — Bp) = (Res(F1,pr) + Res(F1,pr)) (PB — BD),
27 Jaonc)
where 7
Res(Fy,pr) = i —p)Fi(z) = —
es(Fr,pr) = _lim  (z—pr)Fi(2) 5, fi(pr)
and 7
S(Fp.p7) = i 1) Fi(2) = — f1(77).
Res(Fr,p1) Z_);%%CI(Z p1)F1(2) o fr(p1)
Therefore,
1 1 _ I _ _ —
— f(s)dsy (s> — 2Relp]s + p|*) ™" (pB — Bp) = —[f(p1) — f(p1))(PB — BD).
21 Jaoncr) 2p1

Recall that by Theorem 3.21 the slice regular function f can be written as f(p) = a(po, p1) + L,B8(po, p1),
where a(po,p1) = 5(f(pr) + f(pr)) and B(po,p1) = I5(f(pr) — f(pr)). Moreover, since f € N'(U), the
functions a and 3 are real-valued by Corollary 3.40. Therefore, if we plug the values of the first and the
second integral into (5.8), we finally obtain

~ 7(s)ds1 (5B~ Bp)(p? — 2Relslp + ") = [(p)B + 5—[/(PF) ~ [(pr)](PB ~ Bp) =
a(0NCy) D1
= a(p0.p1) B+ B(r0,p2) B+ ~B(po.p1) (5 ~ Bp) =
— a(po,p1)B + L8(00, o) B + 222D (50— 1) B~ Blpo — Ip)) =

P1
= B(a(po,p1) + IpB(po,p1)) =
= Bf(p).
L]

Theorem 5.17. Let T € Br(V) and let f € N'(05(T)) and g € M (o5(T)) or let f € M (og(T)) and
g € N(os(T)). Then

(fg)(T) = f(T)g(T).
Proof. Let U, and Us be T-admissible slice domains such that 7]) C U, and such that f € N (78) and
g € ME(U,). The subscripts p and s are chosen in order to indicate the respective variable of integration
in the following computation. For I € S, p € (U, N Cy) and s € (U N Cy), we have

1 1
J@)g(T) T /a(U NCr) fle)dor SEI(S’T) 2 /a(U NCr) SEl(p? dorate) =

1

21 Jow.nen

f(s)dsy [1/ SpM(s,T)S, (p,T) dpr g(p) | -



Applying (4.8), we obtain

1 -1 2 _ 9Rels s|2)~1 _
FT)(T) = [ /@ e J0) /a oy ST — 2Rellp + 57 dpr )

1 _ _
_ L / F(s) ds / 7L (p. T)p(p® — 2Rels]p + |s2) " dpr g(p) | —
(2m)2 Jow.nch) |Jow,ncr)

1 ! :
. / £(s) dsr / 5551 (5, T) (0 — 2Relslp + |s2) " dpr g(p) | +
(2m)2 Jow.nch) |Jow,ncr) ]

1 _ _ 7 _
L / £(s) dst / 55, (p. T)(p* — 2Relslp + |s[2)~"dps 9(p)

(2m)2 Jow.ncy) |Jow,ncr) |

Observe that

1 _ _
07 71995, 57T 16t

_ 1 —1
G /(9 e f(s)ds1S5 (5,T)

—/ dpp(p® — 2Re[s]p + |8|2)‘1Ig(p)1 =0
A(U,NCy)

and

1
(2m)?

/ f(s)dsy V 555" (s,T)(p* — 2Re[slp + |s[*) " dp; g(p)] =
d(U.NCr) a(U,NCy)

1 sgo1
=~ o /z?(USﬁCI)f(S) ds;sSE (s, T)

by the complex Cauchy theorem for vector-valued holomorphic functions, because the functions p —
p(p? — 2Rels]p + |s|*) "1 Ig(p) and p — (p* — 2Re[s]p + |s|?) "'1g(p) are left holomorphic on U, N Cy for

s € OU; as U, C U,. Therefore,

—/ dp (p* — 2Rels]p + ISIZ)lfg(p)] =0
A(UpNCy)

1 -1 2 2\—1
f(M)y(T) =— (277)2/6(U50(C1)f(5) dsg Vawp%) St (p, T)p(p” — 2Re(s]p + [s|) " dpr g(p)]

1
— d S, (. T)(P* — 2R )7l =
e /B(Usmcl)f(S) s1 Vawpnms L @ T)(p e[s]p + Is|°) ng(p)]

1
= dsr[3S; (p,T) — Sy *(p, T)p):
(2m)? /&)(Umc;) [/awpm(cf)f(s) s[5, (1) = 81 (p o)

-(p® — 2Rels]p + |s[*) " dps g(p)]

Since 0U, C U, and since 9U,,0Us; C pg(T), the integrand in the last integral is continuous on
(0U, NCy) x (OUs N Cy). Hence, we can apply Fubini’s theorem to change the order of integration
and obtain

f(T)g(T) =

1 1 _ _ _
=— 7/ f(s)dsi[5S; (0, T) — S;. (0, T)pl(p* — 2Relslp + |s|*) ™" | dpr g(p).-
2 Jow,ncy) | 27 Jaw.ncy)

Applying Lemma 5.16 with B = S;'(p, T, we get

1
o

F(T)g(T) /@ ey SET) I TR)0) = (F9)(T)
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Corollary 5.18. Let T € Br(V) and let f € N(os(T)). If =1 € N(os(T)), then f(T) is invertible
and f(T)~! = f~YT).

Proof. Let U be a T-admissible slice domain such that f and f~! are left slice regular on U. The product
rule implies

1 1
= — S7Ys, T)ds;1 = — STY(s, T)dsy f(s)f~Y(s) =
27 Jownes, L (s T)dsrl= o e L (8,T)dsr f(s)f™ (s)
1 _ 1 _ _ _
== SEN s D) dsi f(9) - [ S s ) dsi £ () = ST
™ Jo(Uuncr) ™ Jo(Uuncy)
and
1 -1 1 —1 -1
= — Sy (s, T)dsrl = — Sy (s, T)dsr f~7(s)f(s) =
21 Jawney) 21 Jawner)
1 _ _ 1 _ _
= 5= Si (s, T)dsr f 1(5)—/ Sp (s, T)dsr f(s) = f~H(T) f(T).
21 Jowner) 21 Jawner)

O

Finally, also the existence of Riesz-projectors onto invariant subspaces generalizes to the case of the
S-functional calculus.

Theorem 5.19. Let T € Br(V) and let 05(T) = 051(T) Uog2(T) with dist(os,1(T),05,.2(T)) > 0. Let
01 and O be two axially symmetric, bounded open sets with O1 N Oy = O such that 0s1(T) C Oy and
0s,2(T) C Oq, such that 0(O; N Cy) is the finite union of piecewise continuously differentiable Jordan
curves for any I € S and j = 1,2. If we define

1
= — S; (s, T) dsr, j=1,2, (5.10)
27 Jao,ncy)
1
T; S (s, T)dsys,  j=1,2, (5.11)

21 Jo(o,nch)
then P; is a projector, that is Pj2 = P;, and satisfies T; = TP; = P;T for j =1,2.

Proof. Note that the functions 1o, and 210, satisfy the Representation formulas (3.5) and (3.7) although
they are left and right slice regular only on an axially symmetric open set, but not necessarily on an
axially symmetric slice domain. Following the lines of the proof of Theorem 3.81, we deduce easily
that they satisfy the Cauchy integral formula. Hence, we can repeat the arguments in the proof of
Theorem 5.10 to see that the integrals in (5.10) and (5.11) do neither depend on the open set O; nor on
the imaginary unit I, see also Remark 5.20. Moreover, we can repeat the arguments in Theorem 3.64 to
approximate 1o, and zlp, by real rational functions and, as in the proof of Theorem 5.12, we obtain

1 1
= ds; S (s, T) = 7/ S p,T) dp;. 5.12
=51 g, B SE T =50 [ s (5.12)
and
1 1
= S (s,T) dsps = — sdsr Sp'(s,T). (5.13)
21 Jao,ncy) T Ja(o,nCr)

The S-spectrum og(T") = 0g,1(T) U og2(T) is compact and axially symmetric by Theorem 4.9 and
Lemma 4.10. Since dist(os,1(T),05,2(T)) > 0, the sets 051(T") and 0g,2(T) are compact. If x € 051 (T),
then dist(os1(T),05.2(T)) > 0 implies [x] N os2(T) = 0, and in turn [z] C 0s1(T), because [z] is
connected. Hence, 0g1(T) is axially symmetric. Similarly, og2(T) is axially symmetric.

Let us fix j € {1,2} and let G}, and G, be two axially symmetric open sets such that og ;(T) C Gp,
G, C G, and G5 C U; and such that (G, NCy) an 9(Gs N Cy) consist of a finite union of continuously
differentiable Jordan curves. We can, for instance, apply Lemma 5.7 with K = og,;(T) and O = O,
to obtain G and then apply Lemma 5.7 again with K = og;(T) and O = G, to obtain G,. The
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subscripts p and s are again chosen in order to indicate the respective variable of integration in following
computation.
By (5.12), we can consider P? written as

1 1
P2 7/ ds; S5t (s, T)— S7 (p.T) dpr =
J 27 8(G.NCy) R 2 9(GpNCy) g

1 / —1 -1
- dsr [ S TS T dr
(2m)2 Jac.ne oGncy o

Applying (4.8), we obtain

1 _ _
pro_L_ / ds; / S (s, T)p(p? — 2Refslp + [s|?) " dp—
(2m)2 Jo(G.ney) 2(G,NCr)

1 _ _

s L s [ ST T - 2Relslp +[sP) " d
(2m)? Joc.ner) a(GyNCr)

1

27)

1 _ _
b [ ds [ S D)0~ 2Relslp 4 [sP)dp,
(2m)2 Jo(c.ncn a(G,NCr)

[ V)

/ dsy / 551;1(5:,T)(p2 — 2Re[s]p + \8\2)_1 dpr +
8(Gsf‘l({:1) 8(Gpﬂ([:1)

—~

Hereby,
1
o) / dsr Sél(s,T)/ p(p® — 2Re(s]p + |s|*) " dpr =0
(2m) 8(GsNCr) (GpNCr)
and
1 _ _
o [ s [ el ) =0
(2m)% Joc.ney) 8(G,NCr)

by the complex Cauchy theorem, because G, C G5 and the functions p — p(p? — 2Re[s]p + |s]?) ™! and
p+— (p? — 2Re[s]p + |s|?)~! are holomorphic on G, N C; for s € G5. We obtain

1 _ _
Preems [ s [ S Tpl - 2Relslp+ (o) dpr
(2m)2 Jo(c.ncy) 8(G,NCr)
1 _ _
v s [ ST - 2Reldp + ) o
(2m)2 Joc.neo) 8(G,NCy)
1 1 _ _ _
- L o [ s ST T) = S e D)~ 2Relslp + s dpr.
21 Jaa,ncr) | 27 Jaa.ncr)

Finally, since 0G, C G, we can apply Lemma 5.16 with B = SL_l(p, T) and f =1 and we get

P21

= S;'(p,T)dpr = Fj.
T om Jog,neyy ¢ !

In order to prove T; = TP; = P;T, we apply the left S-resolvent equation (4.5) to obtain

1 1
TP, = — TS, (s, T)dsy = — [S;1(s,T) s —I]ds; =

27T 8(Ujﬂ(C]) 27T 6(Ujﬁ(C1)
1 1

= — SL_l(s,T)sdsj—If/ ds; =
27T 6(Ujﬂ<C1) 27T a(UijI)
1

= — S (s, T)dsy s =T
27 Jownen - ’

On the other hand, by (5.12) and (5.13), the operators P; and T also allow an integral representation
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based on the right S-resolvent operator. The right S-resolvent equation (4.6) yields

1 1
BT = ds; Sp' (s, T)T = 7 dsr[sSp'(s,T) —I] =
T Jo(u;nCr) T Jo(Uu;NCr)
1 1
= 27 dSISSEl(SvT) — 27/ dSII =
™ S(UjﬂCI) ™ S(UjﬂCI)
1

= — sds;Sp (s, T) = Tj.
271— S(UJﬂCI) r ’

Hence, P;T =1T; =TP;.
O

Remark 5.20. We recall the proof of the existence of Riesz projectors in the complex case. Let us assume
that the spectrum o(7T) of an operator T' on a complex Banach space satisfies o(T") = o1(T") U 02(T)
with dist(c1(T"),02(T)) > 0. Then we can apply the functional calculus to the indicator functions and
define P; = 1y,,¢ = 1,2, for two open sets Uy and Uz with o,(T) C U;,i = 1,2, and dist(Uy, Us) > 0.
The properties P? = P; and P,T = TP; follow immediately from the product rule as we have seen in
(1.5) and (1.6).

This approach is not possible in the case of the S-functional calculus because it is only defined for
functions that are slice regular on an axially symmetric slice domain . Hence, the proof of the existence
of Riesz-projectors is a lot more complicated in the quaternionic setting.

One may wonder whether it is possible to enlarge the class of functions that are admissible for
a quaternionic right linear operator T', such that it also contains functions that are defined on more
general sets. Due to the fact that the S-spectrum is axially symmetric, it is clear that there is no
sense in weakening the condition that the domain of definition of an admissible function must be axially
symmetric. On the other hand, Theorem 3.8, the Identity Principle, holds only for functions, which
are slice regular on a slice domain. This theorem is fundamental in the proof of Theorem 3.21, the
Representation Formula, but it is actually the Representation Formula and not the Identity Principle,
that is the crucial argument in the proofs of Theorem 3.81 and Theorem 5.10, the Cauchy Formula and
the well definedness of the S-functional calculus.

In principle, one could therefore consider a notion of strong slice reqularity that applies to functions
that are slice regular on an arbitrary axially symmetric open set and satisfy the Representation Formula.
Indeed, the Cauchy formula, and therefore also Theorem 5.10, hold true for these functions. Hence, if
we plug a strongly slice regular function that is defined on an axially symmetric open set U, which is
not necessarily a slice domain, into (5.5) or (5.6), the formulas, which define the S-functional calculus,
then the integral still does neither depend on the axially symmetric open set U nor on the choice of the
imaginary unit.

If f is strongly left and right slice regular on an axially symmetric open set O and satisfies f(ONC;y) C
Cy for all I € S, that is f € N*(0), then we can approximate it by real rational functions and obtain
that (5.5) and (5.6), the formulations of the S-functional calculus for strongly left and right slice regular
functions, yield the same operator f(T'). However, since Lemma 3.42 is based on the Identity Principle,
it does not hold for strongly slice regular functions. Thus, for an arbitrary strongly left and right slice
regular function, we do not obtain a decomposition of the form f = f 4+ a with f € N#(U) and a € H
as in Lemma 3.42. Hence, we cannot follow the proof of Lemma 5.14 and it is not clear that both
formulations of the S-functional calculus yield the same operator.

If 05(T) = 051(T) Uose(T) with dist(os1(T),05,2(T)) > 0, then we apply Lemma 5.7 to obtain
axially symmetric open sets U; with og,;(T") C U; for ¢ = 1,2 and Uy NUs = () such that 9(U; NCy) and
d(U2NCy) consist of a finite union of continuously differentiable Jordan curves for any I € S. Obviously,
1y, (T) = P; for i = 1,2. But for the function aly, with a € H\ R, we get

1 / .
= S; (s, T)dsra= Pa
27 Jow.ncy) -

if we consider it as a strongly left slice regular function and

a]lUi (T)

1
aly,(T) = —/ adsiSp'(s,T) = aP;
' 21 Jow.ncr)
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if we consider it as a strongly right slice regular function. In contrast to the case of the identity operator Z,
it is not clear that the projections P; commute with the scalar a. Indeed, since P; is quaternionic right
linear, the invariant subspace V; = P;(V) is a right linear subspace of V. But if P; commutes with any
scalar a € H, then

av = aP;v = Pav € V,

for v € V;. Hence, V; is also a left linear, and therefore a two-sided subspace of V.

We see that, in the case of strongly slice regular functions, which are not necessarily defined on a slice
domain, the equality of both of formulation of the S-functional calculus is not immediate at all. If it
holds true, it will allow new insights into the structure of quaternionic linear operators and it will allow
to generalize further properties of the Riesz-Dunford-functional calculus. The question whether and how
the S-functional calculus can be extended to functions that are not necessarily defined on a slice domain
is currently under investigation.

5.3 The Spectral Mapping Theorem

We conclude with the Spectral Mapping Theorem in the slice regular case and two important conse-
quences. However, in contrast to the complex case, the Spectral Mapping Theorem does not hold for
arbitrary left or right slice regular functions. In fact, it is clear that it can only be true for slice regular
functions that preserve the fundamental geometry of the S-spectrum, that is, the axially symmetry. The
functions, that preserve this property are exactly the functions in N (og(T)).

Theorem 5.21 (The Spectral Mapping Theorem). Let T' € Br(V) and let f € N(os(T)). Then
os(f(T)) = flos(T)) = {f(s) : s € 05(T)}.

Proof. Let U be a T-admissible open slice domain such that f € N (U), let U’ be an axially symmetric
slice domain with U C U’ and f € N(U’) and let s = sg + Iss1 € 0g(T). For x € U’ \ [s], we define

g(z) = (2* = 2Re[s]z + |s|*) ' (f(2)* — 2Re[f(s)]f () + | f(5)*)-

By Theorem 3.62 and Corollary 3.40, the function g belongs to N (U’) \ [s]. Moreover, we can extend
g to a function g € N(U’). Indeed, if s ¢ R and I € S, then the function g; has the singularities
sy = so+1Is1 and 57 = sg — I's; in UNCy. Moreover, if we write f(z) = a(zg, x1) + I8(x0, 1) according
to Corollary 3.22, then « and j are real valued by Corollary 3.40. Hence, Ref(s) = a(sg, s1) = Ref(sr)
and |f(s)|? = |a(so, s1)|? + |B(s0,51)|* = | f(s1)|? for any I € S. Therefore,

lim g7(z) = lim (2% — 2Re[s7]z + [s1|*) 7 (f(2)* — 2Re[f (s1)]f (2) + |f (s1)|*) =

o FGE) = SfG))(f(2) = f(s1) o f(s) = f(sn)
- hm ( _ _ = _fI(SI) = °
Paryy z—sr)(z—31) Sp— 1

As f(s7) = f(s1) by Corollary 3.41, we also have
Jim §(2) = lim (=%~ 2Relsr]z + sy 1?) " (7(2)? ~ 2Relf(s1))(2) + 7 (s1)) =

YO - - fe) o f6T) — FGT)
lim_ G = J1(51)——— :
237 z—31)(z— s1) ST — ST

Thus, s; and $7 are removable singularities of g; and since s7 = s_;, the function

o(z) = {ﬁ(x) ifzeU\[s,

%(z)w if x € [9]

x

is well defined. Obviously, its restriction g; to the plane C; is holomorphic and satisfies g;(U'NC;) C C;
for any I € S. Moreover, g is real differentiable at any point « € U’ \ [s]. It satisfies the Representation
Formula (3.5)

1 1
g(zo + Lpxy) = 5(1 — LD gr(xo + Iz1) + 5(1 + IL.Dgr(zo — Ixq)
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for x € U’ \ [s] and by continuity even for x € [s]. The function g;(xo + Ix1) is a real differentiable
function of xy and x; and = — I, = z/|z| is real differentiable for z ¢ R, where z is the vector part of
x. Hence, g is also real differentiable at any point = € [s]. Therefore, it is left slice regular and belongs
to N(U").

If on the other hand s € R, then the point s is the only singularity of the function g; for any I € S.
Since f(s) = f(3) = f(s) by Corollary 3.41, we also have f(s) € R. Hence, Re[s] = s and Re[f(s)] = f(s),
which implies

lim () = lim (22— 252+ 82)7 (F(2)? — 2f(5)/(2) + £()°) =
~ im <f(z)‘f(5)> = (fi(s))? = (aasf(s))) -

zZ— S

Therefore, the singularity s of gy is removable for any I € S. Since (% f (s))2 does not depend on the
imaginary unit I, the function

o(e) = {g(x) | ife U\ (s},
(Zf(s))” ifx=s

is well defined. It is real differentiable on U’ \ {s} and any restriction gy of g to a complex plane C
is holomorphic on U’ N Cy and satisfies g; (U’ N Cy) C C;. Since U’ is open, there exists an open ball

B,.(s) with B,.(s) C U’. The Taylor series expansion gr(s+h) =~ #ggn)(s) h™ of g; at s converges
absolutely and uniformly for h € B,.(0) N C;.

Any restriction g; of g to a complex plane Cj is holomorphic and therefore infinitely differentiable as
a function of two real variables. Consequently, g is infinitely differentiable at s with respect to xg because

glurnr = grlunr. For arbitrary h = hg + Inhy € H with |h| < r, the equality gg:)(s) = %g;h(s) =
0]

%g(s) implies

gt m) =gn(sth) =3 =2 gy = gls) + +Z L0 synn,

n! 3:10 (“)xo n! ax
n=0
where the uniform convergence of the series implies
< lim = A=) lim | ——— A"t =0
fim WZn.ax 1=t S et 1t = 3 i ot

Hence, the function g is also real differentiable at s because

a(s+ 1) = g(s) + a%gw) h + o)),

where the mapping h — M g(s) h is R-linear. Therefore, it is left slice regular on U’ and belongs to the
class N (U").
The product rule implies

F(T)? = 2Re[f ()] f(T) + | f(s)]’T = (T — 2Re[s]T + |s|*Z)g(T).
Thus, if f(T)% —2Re[f(s)]f(T)+|f(s)|*>Z were invertible, then g(T)(f(T)? —2Re[f(s)]f(T) +|f(s)*T)~!

would be the inverse of T2 — 2Re[s]T + |s|*Z. But this contradicts s € og(T'). Hence, f(s) € as(f(T)).
If on the other hand s ¢ f(os(T)), then we can define the function

h(z) = (f*(2) — 2Re[s]f(2) + [s|*) ™" € N(os(T)).

The set of singularities of h is exactly the set {z € U’ : f(x) € [s]}.

Since f € N(U), the component functions o« and  obtained by Corollary 3.22 are real valued
because of Corollary 3.40. Corollary 3.23 implies f([z]) = [f(z)] for all z € U’. Therefore, we have either
[p] C f(os(T)) or [p] N f(os(T)) = 0 for p € H and s ¢ f(os(T)) implies f(os(T)) N [s] = . Thus, no
point in 65(T) is a singularity of h. Hence, h belongs to N (c5(T)) and we can define h(T). The product
rule implies that h(T) is the inverse of f(T)% — 2Re[s|f(T) + |s|?, that is, s ¢ as(f(T)).

O
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The Spectral Mapping Theorem allows us to generalize the Spectral Radius Theorem, Theorem 1.7,
to the slice regular case.

Definition 5.22. Let T € Br(V'). Then the S-spectral radius of T is defined to be the nonnegative real
number

rs(T) = sup{|s| : s € os(T)}.
Theorem 5.23. For T € Br(V), we have

rs(T) = lim |[T7||%.

Proof. By Theorem 4.9, we have that r¢(T) < ||T||. Recall from Corollary 2.38 that Br(V') is a complex
Banach space, if we restrict the right scalar multiplication to a complex plane C;. Because of Lemma
4.7 and because of lims_,«, Sy '(s,T) = 0, the mapping 77 : s = S;'(s,T) is a Banach space-valued
holomorphic function on (ps(7) N Cy) U {oc}. We know that it allows the series representation 77(s) =
S0 o IT™s™ ™ for |T|| < |s|. Since it is holomorphic not only on {s € C; : ||T|| < s} but even on
{s € C; : r5(T) < s}, this series representation holds for rg(T) < |s|. Thus, the series S;'(s,T) =
Yoo o Ts™ 1™ converges with respect to the norm of Br(V') not only for ||T|| < |s| but even for any s
with rg(T) < |s|. In particular, | T"s~"~1||,n € Ny, is bounded for any s with |s| > rg(T).
Let s € H with |s| > rs(T) and set

Cs = sup [|[T"s "7 Y| < oc.
neNy

Then,

1
lim sup ||T"||%
s

1
= lim sup ||T"H%|s|*% = lim sup ||T”s*”*1||% <limsupCJ =1,

n—oo
and hence, limsup,, . |T"|* < |s|. Since s was arbitrary with |s| > rg(T), we obtain

limsup |77+ < rs(T).
n—oo
Moreover, the Spectral Mapping Theorem, Theorem 5.21, implies 05(T") = o5(T)". By Theorem 4.9,

we obtain
rs(T)" = sup{|s|” : s € 05(T)} = sup{|s| : s € o5(T™)} = rs(T™) < || T"||.

for any n € N. Therefore, we get

rg(T) < liminf |T7||% < limsup |T"||* < rg(T), (5.14)
n—oo n—o00

and in turn rg(7T") = lim, 00 ||T"||%, where (5.14) also implies the existence of the limit.
O

Finally, the Spectral Mapping Theorem, Theorem 5.21 also allows us to generalize the composition
rule corresponding to (i) in Corollary 3.40.

Theorem 5.24. Let T € Br(V), let U be a T-admissible slice domain and let f € N(U). Moreover,

let g € ME(W) or g € ME(W), where W is an azially symmetric slice domain with f(U) C W. Then
g € ME(as(f(T))) resp. g € ME(os(f(T))) and

g(f(T)) = (g o /)(T).

Proof. Let g € ML(W). Since o5(f(T)) = o5(f(T)) by Theorem 5.21, we have f(os(T)) C f(U). By
Corollary 3.40, we have f(xo + [z1) = a(zo,z1) + If(x0,21) where o and § are real-valued because
f € N(U). Hence, f([z]) = [f(z)], and in turn f(U) is axially symmetric. Therefore, we can assume
W to be an f(T)-admissible slice domain. Otherwise, we can apply Lemma 5.5 with K = f(T) and
G = W and switch to an f(T)-admissible slice domain W’ with f(T) ¢ W’ and W’ C W. Consequently,

g € M*(os(f(T))).
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The mapping s +— S;'(p, f(s)) is left slice regular on {s : f(s) ¢ [p]} = {s : p ¢ [f(s)]} by
Corollary 3.40. Hence, s — S} ' (p, f(s)) is left slice regular on o5 (T) if p ¢ o5(f(T)), because f(o5(T)) =
os(f(T)) by Theorem 5.21. By Corollary 5.15, Lemma 5.17 and Corollary 5.18, the S-functional calculus
is compatible with algebraic operations, which implies

St (. f(T)) = —(f(T)* = 2Re[p] f(T) + [p|*Z) " (f(T) — PI) =

= % i (s, T) dsy [~(f(s)? — 2Re[plf(s) + [pI2) " (f(s) - P)] =
a(UNCr)

1 _ _
o Sy (s, T)dsy Sp ' (p, £(s)).
a(UNCy)

Therefore,

dII) =g [ ST D) dprol) =

: [1 / Sp (s, T)dsy SLl(pvf(s))‘| dprg(p) =
o(UsNCy)

2 Jow,ncy) | 27

b

1 1 / -1 —1
= — Sy (s, T)dsr S, (p, f(s)) dpr g(p
2 o l% S (s,7) . (p, f(s) (p)

where W, = W and U, = U and where the subscripts s and p indicate the respective variable of
integration. Since the integrand in the last integral is continuous on 9(W, N Cr) x d(Us N Cy), we can
apply Corollary 3.78 to change the order of integration and obtain

1

27 Jow.ne)

= S7Y(s,T) ds1 g(f(s)) =
™ Jo.nCr)

_ QL Sp(s,T)ds (g0 £)(s) = (g° F)(D).
a O(UsNCr)

9(f(T))

S (s, T)dsy [;ﬁ /8(W - )Sil(p,f(S))dng(p)] =

87



88



Bibliography

S. L. Adler. Quaternionic Quantum Mechanics and Quantum Fields. International Series of Mono-
graphs on Physics 88. New York: Oxford University Press, 1995.

D. Alpay, F. Colombo, J. Gantner, and I. Sabadini. “A New Resolvent Equation for the S-
Functional Calculus”. In: J. Geom. Anal. (2014/15). DOI: 10.1007/512220-014-9499-9.

D. Alpay, F. Colombo, D. P. Kimsey, and 1. Sabadini. The spectral theorem for unitary operators
based on the S-spectrum. preprint. arXiv:1403.0175v1 [math.SP].

D. Alpay, F. Colombo, and I. Sabadini. “Perturbation of the gernerator of a quaternionic evolution
operator”. preprint.

G. Birkhoff and J. von Neumann. “The Logic of Quantum Mechanics”. In: Ann. of Math. (2) 37.4
(Oct. 1936), pp. 823-843.

N. Bourbaki. Algebra I. Chapters 1-3. English. Elements of Mathematics. Reprint of the 1989
English translation. Berlin: Springer, 1998.

N. Bourbaki. Topological vector spaces: Chapters 1 - 5. Trans. by H. Eggleston and S. Madan.
Elements of mathematics. Berlin: Springer, 1987.

J. L. Brenner. “Matrices of quaternions”. In: Pacific J. Math. 1 (1951), pp. 329-335.

F. Colombo and I. Sabadini. “On some notions of spectra for quaternionic operators and for n-tuples
of operators”. In: C. R. Math. Acad. Sci. Paris 350.7-8 (Apr. 2012), pp. 399-402.

F. Colombo and I. Sabadini. “On some properties of the quaternionic functional calculus”. In: J.
Geom. Anal. 19.3 (2009), pp. 601-627.

F. Colombo and I. Sabadini. “The quaternionic evolution operator”. In: Adv. Math. 227.5 (2011),
pp. 1772-1805.

F. Colombo, I. Sabadini, and D. C. Struppa. Noncommutative Functional Calculus. Vol. 289.
Progress in mathematics. Basel: Birkauser, 2011.

F. Colombo, I. Sabadini, and D. C. Struppa. “The Runge theorem for slice hyperholomorphic
functions”. In: Proc. Amer. Math. Soc. 139.5 (2011), pp. 1787-1803.

J. B. Conway. Functions of One Complex Variable. 2nd ed. Graduate Texts in Mathematics 11.
New York: Springer, 1987.

C. G. Cullen. “An integral theorem for analytic intrinsic functions on quaternions”. In: Duke Math.
J. 32 (1965), pp. 139-148.

N. Dunford and J. T. Schwartz. Linear operators. New York: John Wiley & Sons, Inc., 1958.

D. R. Farenick and B. A. F. Pidkowich. “The spectral theorem in quaternions”. In: Linear Algebra
Appl. 371 (2003), pp. 75-102.

R. Fueter. “Analytische Funktionen einer Quaternionenvariablen”. In: Comment. Math. Helv. 4.1
(1932), pp. 9-20.

R. Fueter. “Die Funktionentheorie der Differentialgleichungen Au = 0 und AAu = 0 mit vier
reellen Variablen”. In: Comment. Math. Helv. 7.1 (1934), pp. 307-330.

K. Giirlebeck, K. Habetha, and W. Sproflig. Funktionentheorie in der Ebene und im Raum. Grund-
studium Mathematik. Basel: Birkhauser, 2006.

89


http://dx.doi.org/10.1007/s12220-014-9499-9
http://arxiv.org/abs/1403.0175v1

V. V. Kisil and E. Ramirez de Arellano. “The Riesz-Clifford functional calculus for non-commuting
operators and quantum field theory”. In: Math. Methods Appl. Sci. 19.8 (1996), pp. 593-605.

T.-Y. Lam. A first course in noncommutative rings. 2nd ed. Graduate Texts in Mathematics 131.
New York: Springer, 2001.

C.-K. Ng. “On quaternionic functional analysis”. In: Math. Proc. Cambridge Philos. Soc. 143.2
(Sept. 2007), pp. 391-406.

1. R. Porteous. Topological geometry. 2nd ed. Cambridge: Cambridge University Press, 1981.

W. Rudin. Functional Analysis. 2nd ed. International Series in Pure and Applied Mathematics.
New York: McGraw-Hill, 1991.

W. Rudin. Real and complex analysis. 3rd ed. New York: McGraw-Hill, 1987.

G. A. Suchomlinov. “Uber Fortsetzung von linearen Funktionalen in linearen komplexen Riumen
und linearen Quatenrionrdumen”. Russian. In: Rec. Math. [Mat. Sbornik] N.S. 3(45).2 (1938),
pp. 353-358.

90



	Preface
	Introduction
	The Riesz-Dunford functional calculus
	Difficulties in the quaternionic setting

	Fundamentals of quaternions
	The algebra of quaternions
	Quaternionic vector spaces
	Quaternionic functional analysis

	Slice regular functions
	The definition of slice regular functions
	Representation formulas and extension theorems
	Power Series
	The slice regular product and Runge's Theorem
	The Cauchy formula

	The S-resolvent operator and the S-spectrum
	The S-resolvent operator and the S-spectrum
	Properties of the S-spectrum
	Resolvent equations

	The S-functional calculus
	The definition of the S-functional calculus
	Algebraic properties 
	The Spectral Mapping Theorem

	Bibliography

