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Abstract

Non-negative matrix factorization - NMF is a Linear Dimensionality Reduction method,
which approximates a high dimensional non-negative data matrix by a multiplica-
tion of two low-ranked matrices that preserves the non-negativity of the data. This
property has proven to be beneficial as it allows for the approximated data to be
interpreted in the same way as the original data. In addition, NMF leads to a part-
based representation of the data, which supports easy identification of the essential
parts/features.

The thesis starts with a short introduction of NMF, which includes a motivation behind
the method, a detailed comparison to the well-known Principal Component Analysis
and the possible generalizations of the ”standard NMF” problem. This is followed
by a chapter presenting an overview of the wide range of NMF algorithms, which
are separated into algorithms based on standard nonlinear optimization schemes
and so called separable NMF. All algorithms of the first group are based on the
two block gradient descent scheme. In contrast, the separable NMF is restricted to
a subclass of matrices characterized by a practical geometrical interpretation which
is exploited in many separable NMF algorithms. The last theoretical chapter focuses
on the description of the key topics that should be considered when applying NMF
such as initialization methods, rank estimation and quality measures to compare the
performance of the algorithms.

The thesis concludes with the analysis of the NMF methods for a spectrometric dataset
consisting of TOF-SIMS measurements taken from meteorites. The ability of NMF to
separate spectra into two dissimilar spectra with one considered as the background
and one as meteorite specific has been analyzed. The obtained results are promising
and give reason to believe that NMF is an adequate method for such tasks. In addition,
the robustness to noise of NMF methods in the context of spectral data has been tested
and finally the task of defining an appropriate factorization rank has been discussed.
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1 Introduction to NMF

This chapter focuses on the purpose, delimitation to other methods of matrix fac-
torization and the basic concepts of NMF - Non-Negative Matrix Factorization. It
should be noted that terms such as Positive Matrix Factorization or Non-Negative Matrix
Approximation sometimes are used instead of NMF in different/other literature . In this
thesis, only the term NMF is used in order to avoid possible misunderstandings.

1.1 Motivation and Delimitation

In today’s world, an enormous amount of information is collected and stored in data
sets which can be represented mathematically as matrices. Witch such huge amounts of
data it can be difficult to keep track of the primary objective. Furthermore, in such cases
data analysis methods, which are suitable for low-dimensional data, should be used
with caution. As a result, methods for extracting essential or fundamental information
from such large amounts of data (matrices) have become increasingly popular in recent
years. These methods are referred to as CLRMA - Constrained Low-Rank Matrix
Approximation, which corresponds to Linear Dimensionality Reduction.

Consider the task of finding a set of r basis vectors wl ∈ Rp (l = 1, 2 . . . , r) and the
corresponding weights hl j for a given set of n data points mj ∈ Rp (j = 1, 2, . . . , n) with
the restrictions that for all j, mj ≈ ∑r

l=1 hl j wl and also r � min(n, p). The low-rank
approximation of matrix M, with

M = [m1 m2 . . . mn] ≈ [w1 w2 . . . wr][h1 h2 . . . hn] = WH,

where each column of M(∈ Rp×n) is a data point, each column of W(∈ Rp×r) is a basis
vector, and each column of H(∈ Rr×n) provides the coordinates of the corresponding
column of M in the basis W, can be considered equivalent to the problem described
beforehand. In other words, linear combinations of the columns of W are used to
approximate each column of M.

Due to the relatively small number of basis vectors compared to the large number of
data points, a good approximation can only be achieved if the basis vectors detect a
latent structure in the data. If dealing with such models in practice, two major choices
emerge:
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1. Measure of the error M−WH.
The use of the standard least-squares error (or Frobenius norm), ‖M−WH‖2 =
∑l j(M−WH)2

l j leads to the well-known principal component analysis (PCA). A
brief explanation of the principal component analysis and a comparison with
NMF will be given in subsection 1.1.1. In practice, it is common that some data
is missing or weights are assigned to the entries of M. Thus, this problem can be
interpreted as a weighted low-rank matrix approximation (WLRA) with error
∑l j Ul j(M−WH)2

l j for some non-negative weight matrix U, where Ul j = 0 if the
entry (l, j) is missing (see Srebro and Jaakkola, 2003). Moreover, the problem
can be referred to PCA with missing data or to low-rank matrix completion
with noise, if U contains only entries in {0, 1}. Another possibility is to use the
sum of absolute values of the entries as error ∑l j |M −WH|l j, which is more
robust to outliers and is sometimes referred to as robust PCA (see Candès et al.,
2011). These few examples will be expanded upon in the following sections by
introducing other measures/cost functions.

2. Constraints that the factors W and H should satisfy.
The setting of these constraints leads to a meaningful interpretation of the fac-
tors and depends on the respective area of application. Consider for instance
k-means1, which equates to the requirement that the factor H in each column
must have a single entry equal to 1, so that the columns of W can be determined
as cluster centroids in this context. Another common variant, which is known as
sparse PCA, is achieved by constraining the factors (W and/or H) to be sparse
(see d’Aspremont et al., 2007), yielding to an easily interpretable and more com-
pact decomposition (e.g., if H is sparse, it follows that each data point is the linear
combination of only a few basis elements). If componentwise nonnegativity is
required for both factors, W and H, the CLRMA is called NMF - Nonnegative
Matrix Factorization.

In fact, the standard NMF problem for M ∈ R
p×n
+ can be formulated in the following

way:

min
W∈Rp×r,H∈Rr×n

‖M−WH‖2 such that W, H ≥ 0. (1.1)

Basically, there are the two main motivations for the application of NMF:

1. Interpretability
The non-negativity constraints allow the basis elements to be interpreted like
the data, while the H entries can be interpreted as activation coefficients or
weightings. Furthermore, non-negativity is a natural requirement for many
practical problems. For example, non-negative entities such as color intensities,
chemical concentrations, frequency counts, signal intensities of ions, etc., can
still be displayed as non-negative measurements after the application of NMF,

1The k-means procedure outputs a set of centroids wk that minimizes the sum of squared distances
between each data point and the closest centroid.
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allowing direct interpretation. In text mining, where each entry Ml j of the
matrix M indicates the importance (e.g., the number of appearances) of word
l in document j, the non-negativity allows the columns of the factor W to be
interpreted as topics, and the columns of the factor H links the documents to
these topics (see Lee and Seung, 1999).

2. Sparseness of factors
The sparseness of factors is naturally achieved by the non-negativity constraints
related to the first-order optimality conditions given for a minx≥0 f (x) problem.
These conditions are:

a) x ≥ 0, ∇k f (x) ≥ 0 ∀k

b) ∇k f (x)xk = 0 ∀k

Hence, the stationary points of (1.1) are expected to have zero entries, which
leads to better compression and interpretability of the data compared to uncon-
strained variants like PCA. The sparse representation of basic factors facilitates
interpretation, because the resulting parts are structurally simple.

1.1.1 PCA vs NMF

Review of PCA

The principal component analysis is one of the most widely used linear reduction
methods, which has a lot to do with its ability to provide the optimal solution of
linear matrix approximation with respect to the standard least-squares error. The
dimensionality reduction of the data matrix M is achieved by finding a few orthogonal
linear combinations (the principal components-PCs) of the original data points, which
are maximizing the variance in the data. Based on the eigenvalue decomposition of
the covariance matrix Σ = MT M/(p− 1) (of the standardized data matrix M):

Σ =
1

(p− 1)
VD2VT, (1.2)

where V = [v1 . . . vn] ∈ Rn×n is the matrix of the orthogonal eigenvectors (in this
context called principal component directions) in descending order and D2 = [d2

1 . . . d2
n] ∈

Rn×n is the diagonal matrix with the corresponding eigenvalues d2
1 ≥ d2

2 ≥ · · · ≥ d2
n,

the principal components are given by

Y = MV. (1.3)

Consequently, the first PC y1 = Mv1 is the linear combination of the original data

with the largest variance (Var(Mv1) =
d2

1
p−1); the second PC y2 = Mv2 is the linear
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combination of the data with the second largest variance (Var(Mv2) =
d2

2
p−1) while

being orthogonal to the first PC, and so forth.

Another possibility to find the principal components is to minimize the least-squares
error (reconstruction error) between data points and their orthogonal projections. This
problem can be solved by a singular value decomposition (SVD) of M:

M = UDVT, (1.4)

where U ∈ Rp×n denotes an orthogonal Matrix, D =
√

D2 with D2 (given in (1.2))
and V consisting of the principal component directions (given in (1.2)).

The main components are the transformed data points of the orthogonal space spanned
by the main component directions. Thus, if only the first r < n principal compo-
nent directions are used for the transformation, the data points are mapped to the
r-dimensional orthogonal subspace. According to the Schmidt and Eckart-Young
theorem (see Stewart and Sun, 1990), the transformed data matrix Y(r) = M[v1 . . . vr]
is the best least-squares rank-r approximation of the original data matrix M:

Y(r) = arg min
rank(G)≤r

‖M− G‖ . (1.5)

In many situations, a big portion of the data variance can be explained by the first two
(or three) PCs, which makes a simple visualization of the approximated data possible.
Conversely, it can be difficult to interpret PCA’s results accurately.

PCA vs NMF

In the following listings the key differences between the Principal Component Analysis
and the Non-Negative Matrix Factorization are highlighted:

• Uniqueness
While PCA is able to reach the global minimum of the corresponding opti-
mization problem, algorithms of NMF generally converge only to local minima
(and even this convergence is not guaranteed, since for many algorithms saddle
points are also possible). For this reason, the set of principal components is
unique, while NMF has several solutions concerning basis and weight matrices.
In Chapter 2, the convergence of algorithms will be discussed in further detail.
To minimize the possibility of being trapped with a bad solution and impose
some sort of uniqueness, many strategies have been developed to find appropri-
ate initial matrices for W and H. A selection of these initialization methods is
described in Section 3.1.

• Ranking
The principal components are naturally ranked according to the quantity of their
explained variance (Naik, 2015). This ranking is not given in NMF as all factors
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are considered equally important. In addition, the NMF factors do not provide an
immediate indication of what an appropriate value of the rank parameter r could
be. The application of PCA does not even require the r value to be specified,
since all the eigenpairs are computed and then the most important principal
components are selected according to the proportion of variance (common values
are 80% and 90%) that should be achieved. Using the NMF procedure, the
parameter r must be specified by the user as an input parameter. In practice,
there are some strategies for assigning an advantageous ranking value r for
a given matrix. This is usually done by running different factorizations with
different rank values to evaluate their factorization performance with respect to
the target matrix. In Section 3.3 some strategies to estimate the rank value are
described.

• Orthogonality
The principal directions, which, as already explained, maximize variance in
the data, form an orthogonal basis. The factors obtained by NMF are positive
vectors that better approximate non-negative data, however they are usually not
orthogonal. The basis factors of NMF have a nice geometrical interpretation as
they are the basis of the hypercone containing all data and they preseve local
data structure in this subspace (see for details Huang et al., 2014). In Figure 1.1 a
simple example is given to illustrate the difference between a basis extracted by
PCA and NMF. In general, orthogonality is a desirable characteristic, but as this
example shows, the elements of the principal components are not all positive due
to forced orthogonality, even if PCA is applied to non-negative data. Moreover, it
can be noted that the non-negativity restriction of PCA is always violated, which
leads to a loss of interpretability of the data when moving from the original data
space to the reduced subspace with low dimensionality.

As has been mentioned, one of the key advantages of NMF over PCA is the in-
terpretability of the obtained factors. As was shown by Lee and Seung (1999), the
parts-based representation is typical for NMF and it leads to more intuitive and un-
derstandable results than PCA. In Figure 1.2 a demonstrative example in the context
of a facial image recognition problem is illustrated.
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Figure 1.1: Comparison PCA vs NMF - In this example the basis components extracted with PCA (left
panel) and those with NMF (right panel) of a non-negative two-dimensional data matrix
are compared. After transforming the samples (all in the positive orthant) by PCA, all the
data points belonging to the line assume negative values. The NMF basis preserves the
non-negativity of data, which leads to a part-based representation (from Naik, 2015).

Figure 1.2: Facial image recognition - PCA vs NMF - In this example the basis components extracted
with PCA (left panel) and those with NMF (right panel) for 6 images of faces are compared.
The eigenfaces obtained by PCA are prototypical faces containing all kinds of facial traits,
while the NMF basis vectors represent particular traits: different kind of eyes, noses, and
mouths (from Naik, 2015).
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1.2 Generalizations of the ”standard NMF” Problem

The decomposition of the original data as combinations of parts is the key feature of
NMF, but without any constraint (”standard NMF”) the parts could lack intuitiveness
and fail to provide the analyst with a clear understanding of the underlying data. Thus,
generalizations of the ”standard NMF” problem (1.1) have the intention to achieve
better interpretable results by imposing additional constraints on the basis matrix W
and/or weight matrix H.

A more general formulation for the NMF problem is given as:

min
W∈Rp×r,H∈Rr×n

‖M−WH‖2 + αJ1(W) + βJ2(H) such that W, H ≥ 0, (1.6)

where the penalty terms J1(W) and J2(H) add constraints to the original problem,
while α and β, so-called regularization parameters, balance the trade-off between the
approximation error and additional constraints (see Naik, 2015). Typically, penalty
terms are added to enforce sparseness (some examples are obtained in Chapter 2) or
to enhance smoothness of the NMF factors.

This formulation could be further generalized by replacing the Frobenius norm ‖ · ‖
with an arbitrary divergence function (or loss function) D(·‖·):

min
W∈Rp×r,H∈Rr×n

D(M‖WH) + αJ1(W) + βJ2(H) such that W, H ≥ 0, (1.7)

The algorithms described in Chapter 2 either use the Frobenius norm or the Kullback-
Leibler-divergence, but many other choices are possible depending on the area of
application.
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2 Algorithms

In this chapter a selection of algorithms for NMF are described, which are considered
as relevant and useful. Besides the basic methodology of the algorithms also their
important properties like the theoretical assumptions, computational efficiency and
stability are shown.

Remark: In general the most widely used convex models are based on the approach
of minimizing the nuclear norm of X:

min
X
‖M− X‖+ λ ‖X‖∗ , (2.1)

where λ > 0 is a penalty parameter and ‖X‖∗ = ∑
min(n,p)
i=1 σi(X) = ‖σ(X)‖1 is the

nuclear norm, with σ(X) being the vector of singular values of X. In case the matrix
M satisfies some conditions depending on the model (M has to be close to a low-rank
matrix), the optimal solution can be guaranteed to recover the solution of the original
problem (minX ‖M− X‖ s.t rank(X) = r). This problem (2.1) can be reformulated as a
semidefinite program and in many cases any stationary point can be guaranteed to be
a global minimum ( see Boumal et al., 2016 and Li and Tang, 2016).

In contrast to other CLRMA varaints (such as robust PCA, sparse PCA, and PCA with
missing data), there does not exist a successful convexification approach for NMF
(Gillis, 2017). It has to be considered that the low-rank approximation X = WH can not
be used directly to define the nuclear norm of X. Since even if the best non-negative
approximation X of non-negative rank r for M is given, it is generally still difficult to
recover the exact NMF (W, H) of X. Due to the symmetry of the problem (permuting
columns of W and rows of H accordingly leads to an equivalent solution) writing
a direct convexification in variables (W, H) seems difficult. Breaking this symmetry
seems nontrivial (see Gillis, 2011).

The NMF algorithms can be divided into two main classes, where one class requires
the M input matrix to be separable (discussed and defined subsequently) and the
other class does not impose this assumption.

9



2.1 Standard Nonlinear Optimization Schemes

These NMF algorithms are based on a two-block coordinate descent scheme, which is a
straightforward and popular way used for CLRMA:

0. Initialize (W, H) ≥ 0.

1. W ← X, where X solves exactly or approximately minX≥0 ‖M− XH‖.

2. H ← Y, where Y solves exactly or approximately minY≥0 ‖M−WY‖.

The two sub-problems to be solved are known as non-negative least squares (NNLS).
The NNLS sub-problems are convex in W or respectively H as W ≥ 0 or respectively
H ≥ 0 are defining convex sets. Therefore, in each step the global minima for the sub-
problem can be determined by applying standard nonlinear optimization techniques.
Nonetheless, this proposed scheme only guarantees convergence, usually to a first-
order stationary point.

The algorithms in this section differ by the approaches applied to solve the NNLS
subproblems.

2.1.1 Lee and Seung: Multiplicative Algorithms

The pioneering papers of Lee and Seung (see Lee and Seung, 1999, 2001) popularized
the NMF problem since they provided simple and efficient algorithms at that point in
time.

The two algorithms of Lee and Sueng are based on iterative multiplicative updates of
W and H, but differ in the cost function they minimize.

Cost Functions and optimization problems

To quantify the quality of the approximation, cost functions need to be defined. A
measure of distance between two non-negative matrices A and B can be used to specify
a cost function. The square of the Euclidean distance between A and B (see Paatero,
1997),

‖A− B‖2 = ∑
ij
(Aij − Bij)

2 (2.2)

appears to be a useful measure and is considered to be the cost function for the NMF
standard problem (1.1). This function fulfils two important properties, namely it is
lower bounded by zero and achieves this bound only if A = B.

10



The measure used for the second algorithm is

D(A‖B) = ∑
ij

(
Aij log

Aij

Bij
− Aij + Bij

)
. (2.3)

Due to the fact that this measure is not symmetric in A and B, it cannot be called a
”distance” and it is therefore referred to as ”divergence” of A from B in literature.
The same two properties of the Euclidean distance are satisfied with zero as the lower
bound, and vanishing if and only if A = B. When ∑ij Aij = ∑ij Bij = 1, the matrices
A and B can be regarded as normalized probability distributions and the measure
reduces to the well-known Kullback-Leibler divergence, or relative entropy.

Consider this two formulations of NMF as optimization problems:

a) NMF standard problem (see (1.1))

b) minW∈Rp×r,H∈Rp×n D(M‖WH) such that W, H ≥ 0.

Despite the functions ‖M −WH‖2 and D(M‖WH) being convex only in W or H,
the convexity is not given in respect to both variables together. Hence, expecting an
algorithm to solve the two optimization problems in the sense of finding global minima,
is problematic. Nevertheless, a variety of techniques from numerical optimization can
be used to find local minima. A simple technique to implement is gradient descent,
which can have a slow convergence rate. Other methods such as conjugate gradient are
proven to convergence faster, but are more complicated to implement than gradient
descent (Lee and Seung, 2001).

Update rules - relation to gradient descent

Lee and Seung proposed the following ”multiplicative update rules”, which are easy
to implement and are used as the basis for many other NMF algorithms.

Theorem 2.1.1 (Lee and Seung, 2001):
The Euclidean distance ‖M−WH‖ is non-increasing under the update rules

Wl j ←Wl j
(MHT)l j

(WHHT)l j
, Hl j ← Hl j

(WT M)l j

(WTWH)l j
. (2.4)

The Euclidean distance is invariant under these updates if and only if W and H are at
a stationary point of the distance.
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Theorem 2.1.2 (Lee and Seung, 2001):
The divergence D(M‖WH) is non-increasing under the update rules

Wl j ←Wl j
∑k Hjk

Mlk
(WH)lk

∑m Hjm
, Hl j ← Hl j

∑k Wkl
Mkj

(WH)kj

∑m Wml
. (2.5)

The divergence is invariant under these updates if and only if W and H are at a
stationary point of the divergence.

Before the proofs to these theorems are outlined, the characteristics of these update
rules are mentioned and compared to the update rules of the gradient decent (method).
As already can be suggested by the name of the update rules, each update is obtained
as the multiplication by a factor. Especially, in case of an exact factorization M = WH
the multiplicative factor is equal to 1, which ensures the perfect reconstruction of M
to be a fixed point of these update rules.

A simple additive update for H, which reduces the squared distance can be written
as

Hl j ← Hl j + ηl j [(WT M)l j − (WTWH)l j]. (2.6)

Considering that ηl j are all set to some sufficiently small positive number this additive
update is equivalent to conventional gradient descent and should reduce ‖M−WH‖.
The update rule for H which is given in Theorem 2.1.1 can be obtained with (2.6) by
diagonally rescaling the variables and setting

ηl j =
Hl j

(WTWH)l j
. (2.7)

Note that this rescaling leads to a multiplicative factor with the positive component of
the gradient in the denominator and the absolute value of the negative component in
the numerator of the factor.

In a very similar way, the relation to the gradient descent is also shown for the
divergence. It can be explained with the diagonally rescaled gradient descent taking
the form

Hl j ← Hl j + ηl j

[
∑
k

Wkl
Mkj

(WH)kj
−∑

k
Wkl

]
. (2.8)

This update should reduce D(M‖WH), if the ηl j are all set to some small positive
number. By setting

ηl j =
Hl j

∑k Wkl
, (2.9)

and insert it in (2.8) the update rule for H can be obtained. Consequently, this rescaling
can be viewed as a multiplicative rule with the positive component of the gradient in
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the denominator and the absolute value of the negative component in the numerator
of the multiplicative factor.

The reason why such a rescaled gradient descent converges and leads to a decrease of
the cost function is not obvious, since the chosen ηl j are not small. In the next section
the proof of convergence is given.

Proofs of update rules convergence

In order to prove the Theorems 2.1.1 & 2.1.2 the concept of auxiliary functions (see Lee
and Seung, 2001) is applied similar to the one used in the Expectation-Maximization
algorithm (see Dempster et al., 1977).

Definition 2.1.3 [Auxiliary function]

A function G(h, h
′
) is called an auxiliary function for F(h) if:

1. G(h, h) = F(h), and

2. G(h, h
′
) ≥ F(h) for all h

′
.

The following lemma illustrates why the concept of auxiliary function can be useful to
minimize F(h) and to find a local minimum.

Lemma 2.1.4 (Iterative minimization, Lee and Seung, 2001):
If G is an auxiliary function, then F is nonincreasing under the update

ht+1 = arg min
h

G(h, ht) (2.10)

Proof: F(ht+1) ≤ G(ht+1, ht) ≤ G(ht, ht) = F(ht) �

Only in case of F(ht+1) = F(ht) a local minimum of G(h, ht) is obtained at ht. This
implies that the derivatives ∇F(ht) = 0, if differentiability and local continuity at
ht of F is given. Thus by iterative application of the update in Eq. (2.10) a sequence
of estimates that converge to a local minimum hmin = argminhF(h) of the objective
function is constructed:

F(hmin) ≤ . . . ≤ F(ht+1) ≤ F(ht) ≤ . . . ≤ F(h2) ≤ F(h1) ≤ F(h0)

With this knowledge the update rules in Theorem 2.1.1 and Theorem 2.1.2 follow from
Eq. (2.10) by defining the appropriate auxiliary functions G(h, ht) for both ‖M−WH‖
and D(M‖WH).
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Lemma 2.1.5 (Lee and Seung, 2001):
If K(ht) is the diagonal matrix

Kab(ht) = δab
(WTWht)a

ht
a

then
G(h, ht) = F(ht) + (h− ht)T∇F(ht) +

1
2
(h− ht)TK(ht)(h− ht) (2.11)

is an auxiliary function for

F(h) =
1
2 ∑

k
(mk −∑

l
Wklhl)

2

Proof: G(h, h) = F(h) follows by definition of G(., .), so only the inequality G(h, ht) ≥
F(h) ∀ht needs to be proven (see Lee and Seung, 2001 for a possible proof). �

With all this preliminary work the proof of the Theorem 2.1.1 can be demonstrated:

Proof (of Theorem 2.1.1): Proof from Lee and Seung (2001). Using the auxiliary function,
which was defined in the previous Lemma and solving the Eq. (2.10) by setting the
gradient to zero leads to the update rule:

ht+1 = ht − K(ht)−1∇F(ht)

According to the Iterative minimization Lemma, F is non-increasing under this update
rule. It can be obtained

ht+1
a = ht

a
(WTm)a

(WTWht)a

by applying the explicit structure of K(ht)−1 and ∇F(ht) = WT(Wht −m). Rewritten
in matrix form this is equivalent to the update rule in Eq. (2.4). In an analogous way
the update rule for W can be shown by reversing the roles of W and H. �
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For the divergence cost function the following auxiliary function need to be consid-
ered:

Lemma 2.1.6 (Lee and Seung, 2001):
Define

G(h, ht) =∑
k
(mk log mk −mk) + ∑

ka
Wkaha

−∑
ka

mk
Wkaht

a

∑b Wkbht
b

(
log Wkaha − log

Wkaht
a

∑b Wkbht
b

)
This is an auxiliary function for

F(h) = ∑
k

mk log
( mk

∑a Wkaha

)
−mk + ∑

a
Wkaha (2.12)

Proof: See Lee and Seung (2001) �

Applying this Lemma and the Iterative minimization Lemma for the proof of Theorem
2.1.2:

Proof (of Theorem 2.1.2): Proof from Lee and Seung (2001). Again the minimum of
G(h, ht) with respect to h is obtained by setting the gradient to zero:

dG(h, ht)

dha
= −∑

k
mk

Wkaht
a

∑b Wkbht
b

1
ha

+ ∑
k

Wka = 0.

Considering that the update rule of Eq. (2.10) takes the form

ht+1
a =

ht
a

∑b Wba
∑
k

mk

∑b Wkbht
b
Wka.

Rewritten in matrix form, this is equivalent to the update rule in Eq. (2.5) and as
known from the Iterative minimization Lemma, F in Eq. (2.12) is nonincreasing under
this update. The update rule for W can similarly be shown to be nonincreasing, by
reversing the roles of W and H. �

Weaknesses and modifications

The statements given in Theorem 2.1.1 and Theorem 2.1.2 to achieve convergence to a
local minimum by applying the multiplicative update rules have been proven to be
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incorrect (see for instance Lin, 2007b). Actually, the proof of Lee and Seung shows only
a continuous descending characteristic, which does not exclude the descent to a saddle
point. To get a better understanding why this is the case it is enough to consider two
basic observations involving the Karush-Kuhn-Tucker optimality conditions. Only the
case of the Euclidean distance f (W, H) = ‖M−WH‖ is discussed, as the divergence
(2.3) has very similar issues.

Firstly, if the initial matrices (W, H) are strictly positive these matrices remain positive
throughout the iterations due to the multiplicative form of the update rules. Secondly,
if for example Hl j > 0 for all iterations and if this element converges to a limit value of

0 with [ ∂ f
∂H ]l j ≥ 0 at (W∗,H∗) then a stationary point (W∗,H∗) with H∗l j can be obtained

according to the Karush-Kuhn-Tucker (KKT) optimality conditions:

W ≥ 0, H ≥ 0,
∂ f
∂H

= 2(WH −M)HT ≥ 0,
∂ f
∂W

= WT(WH −M) ≥ 0,

(WH −M)HT ∗W = 0 WT(WH −M) ∗ H = 0.

In this scenario the corresponding complementary slackness condition ( ∂ f
∂H )(W∗, H∗) ≥

0 must hold. However, it is not obvious how to use the multiplicative update rules
to verify this. When (W, H) converge to (W∗, H∗) and W∗ > 0 and H∗ > 0, then
( ∂ f

∂W )(W∗, H∗) = 0 and ( ∂ f
∂H )(W∗, H∗) = 0. This can be achieved by using the additive

form of the multiplicative updates specified in Eq. 2.6, hence the KKT conditions
of optimality are satisfied and (W∗, H∗) turns out to be a stationary point. The rec-
tified statement about the convergence of the Lee and Seung multiplicative update
algorithms can be summarized as follows:

When the algorithm has converged to a limit point in the interior of the feasible
region, this point is a stationary point. This stationary point may or may not be a
local minimum. When the limit point lies on the boundary of the feasible region,
its stationarity cannot be determined (Berry et al., 2007).

It has to be noted that in comparison to the newer algorithms the multiplicative
algorithms are outperformed, since even if they converge (which occurs often in
practice) it has been repeatedly shown that the convergence is notoriously slow. They
require many more iterations than alternatives like ALS algorithms ( see Subsection
2.1.2) and geometrical algorithms (see Subsection 2.2.3) by having high computational
costs of O(pnr) per iteration. With clever implementations of the occurring matrix
multiplications this can be decreased a bit.

A number of modifications to the original Lee and Seung algorithms have been
introduced with the objective to overcome these shortcomings. For instance, Lin (see
Lin, 2007a) proposed a modification that is guaranteed to converge to a stationary
point, however, this algorithm requires more work per iteration than the already slow
Lee and Seung algorithm.
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A simple modification from Brunet (see Brunet et al., 2004, for more details) is based
on the multiplicative updates for the Kullback-Leibler divergence (KL) ( as in (2.5) )
with an additional stabilisation step to shift up all entries from zero every 10 iterations,
to a very small positive value ε. This approach shows to be appealing as it avoids the
so-called locking phenomenon , i.e. in the case of an element becoming 0 (or is 0 from
the start) during the iterative process of the classical multiplicative update algorithm
it remains 0.

2.1.2 ALS Algorithms

The Alternating Least Squares - ALS algorithms were first introduced by Paatero (see
Paatero and Tapper, 1994) , who initially invented the whole NMF theory.

NMF algorithms of the ALS class can be further separated into two groups, one group
that solves the NNLS problems exactly and the other group which solves the NNLS
approximately by computing the solution of the ordinary least square (LS) and then
afterwards applies a function to enforce non-negativity to the LS solution.

The first group typically uses the fast non-negativity constrained least squares (NNLS)
algorithm (see Van Benthem and Keenan, 2004), which is improved upon by the active
set based NNLS method. As an example of this group, the sparse NMF (SNMFL/L or
R) algorithm (see Kim and Park, 2007) will be introduced later on.

The first algorithm that is considered as the basic ALS algorithm of the second group
is shown:

Algorithm 1 Basic ALS for NMF

1: Initialize W by a initialization method (see Section 3.1).
2: for j ≤ maxiter do
3: Solve for H the LS equation WTWH = WT M.
4: Set all negative elements in H to 0.
5: Solve for W the LS equation HHTWT = HMT.
6: Set all negative elements in W to 0.
7: end for
8: Output W and H

The projection step was implemented as a simple method to insure non-negativity.
It sets all negative elements resulting from the least squares computation to 0. Even
though it’s simple, there are a few benefits as it aids sparsity and it avoids the locking
phenomena, which is a major drawback of most multiplicative algorithms. Since locking
of elements to 0 is restrictive, i.e. as soon as the algorithm starts to go down a path to
a fixed point, regardless of whether it is a bad fixed point or not, it must continue in
this direction.
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In the following subsections two modifications (see Langville et al., 2014), which are
adding sparsity restrictions to the NMF problem, are described.

ACLS

The difference between the Alternating Constrained Least Squares - ACLS algorithm
and the basic ALS algorithm is the objective function that must be solved at each
alternating step:

min
hj≥0,λH≥0

∥∥mj −Whj
∥∥2

+ λH
∥∥hj
∥∥2 , (2.13)

where mj and hj are columns of M and H, respectively. Due to the lower computational
costs it was suggested to solve these non-negative constrained least squares problems
approximately, such as for the basic ALS, by first running a standard (unconstrained)
least squares step and then set all negative elements of the LS solution to 0. The ACLS
algortihm is shown below.

Algorithm 2 ACLS for NMF

1: Input from user λW , λH
2: Initialize W by a initialization method (see Section 3.1).
3: for j ≤ maxiter do
4: Solve for H the CLS equation (WTW + λH I)H = WT M.
5: Set all negative elements in H to 0.
6: Solve for W the CLS equation (HHT + λW I)WT = HMT.
7: Set all negative elements in W to 0.
8: end for
9: Output W and H

The two sparsity parameters λH and λW have to be set by the user. By increasing the
values the sparsity of the two NMF factors is increased, but as no upper-bounds on
these parameters are given, the best values for λH and λW have to be obtained by trial
and error. As a consequence, the application of ACLS is more challenging.

AHCLS

The more advanced Alternating Hoyer-Constrained Least Squares - AHCLS provides
better sparsity parameters with more intuitive bounds. AHCLS replaces the crude
measure ‖x‖2 to approximate the sparsity of a vector x by a more sophisticated
measure, spar(x), invented by Hoyer (see Hoyer, 2004). This measure is based on the
relationship between the L1 norm ‖x‖1 = ∑n

i=1 |xi| and the Euclidean norm:

spar(x) =
√

n− ‖x‖1 / ‖x‖√
n− 1

for x ∈ Rn
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In case of x containing only a single non-zero component this function evaluates at
1, and takes a value of zero if and only if all components are equal (up to signs).
Otherwise it is interpolating smoothly between these two extremes.

For AHCLS the user needs to define two scalars αW and αH in addition to λH and λW
of ACLS. The two additional scalars 0 ≤ αW , αH ≤ 1 represent a user’s desired sparsity
in each column of the factors. As they range from 0 to 1 they match nicely with the
ordinary interpretation of sparsity as a percentage. The positive parameters λW , λH
measure how important it is to the user that spar(Wj∗) = αW and spar(Hj∗) = αH. As
a guideline it was recommended in Langville et al. (2014) to use 0 ≤ λW , λH ≤ 1.
In the following the AHCLS algorithm as proposed in Langville et al. (2014) is shown,
where E is the matrix with all elements equal to one.

Algorithm 3 AHCLS for NMF

1: Input from user λW , λH, αW , αH
2: Initialize W by a initialization method (see Section 3.1).
3: Define βH = ((1− αH)

√
r + αH)

2 and βW = ((1− αW)
√

r + αW)2

4: for j ≤ maxiter do
5: Solve for H the CLS equation (WTW + λHβH I − λHE)H = WT M.
6: Set all negative elements in H to 0.
7: Solve for W the CLS equation (HHT + λW βW I − λW E)WT = HMT.
8: Set all negative elements in W to 0.
9: end for

10: Output W and H

According to the experiments from Langville et al. (2014), AHCLS enforces sparsity
better than ACLS and moreover the four AHCLS parameters are easier to set.

Properties of ACLS and AHCLS

The ACLS and AHCLS are very fast NMF algorithms, even faster than current trun-
cated SVD algorithms due to the fact that each CLS step solves only a small r× r matrix
system. Furthermore, they converge quickly and give very accurate NMF factors as
was shown in Langville et al. (2014).

In general, the convergence of ALS algorithms to a fixed point is proven, but this
fixed point may be a local extremum or a saddle point (see Langville et al., 2014).
Furthermore, it is known that the ACLS and AHCLS algorithms with properly enforced
non-negativity, for example by the NNLS algorithm (as used for SNMF/L or SNMF/R),
convergence to a local minimum (see Lin, 2007b). Nonetheless, it is practical to use the
ad-hoc enforcement of non-negativity (setting all negative values to 0) as it speeds up
the algorithm and improves sparsity.

Theoretically, the ad-hoc enforcement of non-negativity is unattractive, hence some
alternatives should be considered. For instance, the alternating least squares approach
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could be converted to an alternating linear programming approach, but this has the
same problem of lengthy execution time as the NNLS algorithm. The improvement to
incorporate sparsity for both NMF factors by the user leads in many applications to
better interpretability of the results and reduction of storage.

SNMF/L or R with NNLS algorithm

These two algorithms adapt the objective function of the standard NMF problem (1.1)
to enforce either sparseness on either W or H. The sparse NMF - SNMF/L algorithm
is applied to impose sparsity on W (where ’L’ denotes the sparsity imposed on the
left factor). In contrast to this, SNMF/R is applied to impose sparsity on H (where ’R’
denotes the sparsity imposed on the right factor). To enforce sparsity on a factor of
NMF, the L1-norm minimization is utilized. The usage of the L1-norm instead of the
Euclidean norm as measure of sparseness is motivated by the fact that a quadratic
penalty corresponds to Gaussian priors and does not encourage sparsity, but rather
scales the result and gives non-sparse low values.

Formulation of the SNMF/R optimization problem:

min
W,H≥0

1
2
{‖M−WH‖2 + η ‖W‖2 + β

n

∑
j=1

∥∥hj
∥∥2

1}, (2.14)

where hj is the j-th column vector of H, η > 0 is a parameter to suppress ‖W‖2 and
β > 0 is a regularization parameter to balance the trade-off between the the sparseness
of H and the accuracy of the approximation. The two input parameters η and β have
to be chosen by trial and error and are dependent on the application. The SNMF/R
algorithm is shown below, where e1×r is a row vector with all components equal to
one, 01×n is a zero vector, Ir is an identity matrix of size r× r and 0r×p is a zero matrix
of size r× p:

20



Algorithm 4 SNMF/R for NMF

1: Input from user η, β
2: Initialize W by a initialization method(see Section 3.1).
3: for j ≤ maxiter do
4: Solve for H by running the NNLS algorithm on

min
H≥0
‖
(

W√
βe1×r

)
H −

(
M

01×n

)
‖2

5: Solve for W by running the NNLS algorithm on

min
W≥0
‖
(

HT
√

η Ir

)
WT −

(
MT

0r×p

)
‖2

6: end for
7: Output W and H

The SNMF/L algorithm optimizes the following objective function in order to impose
sparseness on W:

min
W,H≥0

1
2
{‖M−WH‖2 + η ‖H‖2 + α

p

∑
i=1
‖wi‖2

1}, (2.15)

where wi is the i-th row vector of W, η > 0 is a parameter to suppress ‖H‖2 and α > 0
is a regularization parameter to balance the trade-off between the accuracy of the
approximation and the sparseness of W. The algorithm for SNMF/L is very similar to
SNMF/R and it is therefore not stated explicitly.

The convergence properties of SNMF/L and SNMF/R are essentially the same, which
is why it is enough to examine the properties of either SNMF/L or SNMF/R. Here,
the case of SNMF/R is discussed shortly. In order to clarify that the objective function
(2.14) is differentiable with respect to W or H, it can be rewritten as

min
W,H≥0

1
2
{‖M−WH‖2 + η ‖W‖2 + β

n

∑
j=1

( r

∑
q=1

hqj
)2}, (2.16)

if η > 0, β > 0, and hqj = |hqj|, which is the case for hqj ≥ 0. The differentiability
and the existence of accumulation points (see Kim and Park, 2007) imply that the
assumptions of Grippo and Sciandrone’s Corollary (see Grippo and Sciandrone, 2000),
which showed that the two-block coordinate method does not require each sub-
problem to have an unique solution for convergence, are satisfied. Therefore, it can be
stated that the algorithm converges to a critical point of the problem shown in (2.16).

As for other ALS algorithms, the convergence speed is superior to that of multiplicative
update rule based algorithms. The computational costs per iteration have been the ma-
jor weakness of the ALS algorithms, which solved exactly the NNLS sub-problems, but
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by further improving the NNLS algorithm the computational costs are acceptable.

2.2 Separable NMF

For separable NMF, the standard NMF problem was restricted by only considering
a subclass of matrices, the so called separable matrices. The paper Arora et al. (2012)
showed that this leads to an easier problem than that of the standard NMF. In this
section, an overview of the theoretical background and algorithms to solve separable
NMFs is given.

2.2.1 Separability Assumption

It is first necessary to introduce the non-negative rank of a matrix M before defining
the separability property of matrices. The non-negative rank of M is defined as:

Definition 2.2.1 [non-negative rank (Gillis, 2017)]
The non-negative rank, rank+(M), of M ∈ R

p×n
+ is the minimum r such that an ”exact

NMF” exists.

The ”exact NMF” problem refers to the problem of finding an exact factorization,
i.e. finding W ≥ 0 and H ≥ 0 such that M = WH. In general, it can be stated that
rank(M) ≤ rank+(M) ≤ min(p, n), since M = MI = IM (I is the identity matrix).

Then the separable matrices can be defined as follows.

Definition 2.2.2 [separable matrix (Gillis, 2017)]
A matrix M is separable if there exists a subset K ⊆ {1, . . . , n} of cardinality r with
r = rank+(M) and a non-negative matrix H such that M = M(:,K)H, where M(:,K)
are the columns of M whose column index is included in the subset K.

Therefore, separability requires each column of the basis matrix W in an NMF decom-
position to be present in the input matrix M, and the weight matrix H must contain
the identity matrix as a sub-matrix. In conclusion, the separable NMF problem can be
reduced to the problem of identifying the subset K. If noise is considered (as obtained
in almost every measurement or observation) on the input matrix M, the subset K is
obtained by minimizing

min
H≥0
‖M−M(:,K)H‖ . (2.17)

Even though this condition/assumption is not easily met, it is advantageous to satisfy
it in some situations as shown in the following examples:
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• Blind hyperspectral unmixing: For each endmember (basis vector), a pixel exists
which contains only that endmember. These pixels are called ”pure” pixels
and this assumption has been used since the 1990s in that community known
as pure-pixel assumption. Several algorithms in this context are based on this
assumption.

• Document classification: for each topic, the existence of a ”pure” (or ”anchor”)
word used only by that topic is required (see Arora et al., 2013)

• Time-resolved Raman spectra analysis: for each substance only a peak in its
spectrum exists, while the other spectra are (close to) zero (see Luce et al., 2016) .

The separability assumption (after normalization of M and W) can be reformulated by
the geometric interpretation of the ”exact NMF” given in the next section.

2.2.2 Geometry of Exact NMF

The geometric interpretation of the ”exact NMF” can be used to develop efficient
algorithms as will be discussed in Subsection 2.2.3.

In case of the ”exact NMF” the following two preprocessing steps can be made without
loss of generality:

• Remove the zero columns of M and W.

• Normalize the entries of M and W so that the entries of each column sum up to
one:

MD−1
M = WD−1

W DW HD−1
M ,

where DM and DW are diagonal matrices with DM(j, j) =
∥∥mj

∥∥
1 and DW(j, j) =∥∥wj

∥∥
1, respectively. This normalization implies also the normalization of H

(
∥∥hj
∥∥

1 for all j) due to the ”exact NMF” equation mj = ∑r
k=1 wkhkj = Whj .

After this normalization the columns of M belong to the convex hull of the columns
of W:

mj ∈ conv(W) ⊆ Mp= {x ∈ Rp|x ≥ 0, ‖x‖1 = 1} ∀j, (2.18)

where conv(W) = {Wx|x ≥ 0, ‖x‖1 = 1}.

Consequently, the ”exact NMF” problem is equivalent to finding a polytope, conv(W),
nested between two given polytopes, conv(M) and the unit simplex Mp (Gillis, 2017).
The inner polytope, conv(M), has a dimension of rank(M)− 1, while the dimension
of the outer polytope, Mp, is p− 1. The dimension of the nested polytope conv(W) is
unknown in advance. If the three polytopes (inner, nested, and outer) have the same
dimension, this problem is referred to as the nested polytope problem - NPP ( see Das
and Joseph, 1990), which is well known in computational geometry.
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If rank(M) = rank(W) is imposed explicitly as an additional constraint on the exact
NMF problem, it can be proven that NPP is equivalent to this restricted variant of
exact NMF (see Gillis, 2017).

From a geometric point of view, the separability assumption is equivalent to conv(W) =
conv(M) considering the ”exact NMF” with the proposed preprocessing steps.

2.2.3 Algorithms

Due to the geometrical interpretation, the separable NMF problem reduces to identify-
ing the vertices of the convex hull of the columns of M, what is considered a relatively
easy geometric problem. If noise is added to the separable matrix the estimation
becomes more challenging.

Many of the algorithms for separable NMF have been developed within the blind
hyperspectral unmixing community (sometimes referred to as pure-pixel search algo-
rithms) and are based on the geometrical interpretation.

Geometric algorithms

Most of the geometric algorithms are not robust to noise, but the fast and robust
recursive algorithms introduced by Gillis and Vavasis (2014) proved to handle noise
appropriately. Therefore, this approach and its characteristics are described in this
section.

The algorithm is based on the fact that over a polytope, a strongly convex function
is always maximized at a vertex. Consequently, the column of M maximizing the
strongly convex function is selected for W (since we assume that the columns of M
are normalized such that conv(W) = conv(M) under the separability assumption).
Then M is updated by projecting each column onto the orthogonal complement of
the selected column (such that this particular column projects onto 0), this amounts
to applying a linear transformation to the polytope. In the case that W has full
rank (geometrically meaning the polytope is a simplex, which is usually the case in
practice), then the other vertices do not project onto 0, and these two steps can be
applied recursively.

The complete algorithm is shown below:
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Algorithm 5 Recursive algorithm for separable NMF

1: Input from user: M, r and a strongly convex function f .
2: Set R = M = (m1, . . . , mn) = (r1, . . . , rn) and J = {}, j = 1.
3: while R 6= 0 and j ≤ r do
4: Set

j∗ = arg max
1≤l≤n

f (rl). †

5: Set wj = rj∗ .

6: Project R to the orthogonal complement of wj: R←
(

I −
wjwT

j

‖wj‖2

)
R.

7: Set J = J ∪ {j∗}.
8: Set j = j + 1.
9: end while

10: Output W = M(:, J).
† In case of a tie, pick the index j such that the corresponding column of the

original matrix M maximizes f . In case of another tie, pick one of these columns
randomly.

The algorithm requires the following two additional assumptions to obtain a suitable
factorization:

• The separable matrix M ∈ Rp×n can be written as M = WH = W[Ir, H
′
], where

W ∈ Rp×r has rank r, H ∈ Rr×n
+ , and

∥∥∥h
′
j

∥∥∥
1
≤ 1 ∀j.

• The function f : Rp → R+ is strongly convex with parameter µ > 0, its gradient
is Lipschitz continuous with constant L, and its global minimizer is the all-zero
vector with f (0) = 0.

The first assumption can be made without loss of generality by permuting the columns
of M, and by a specific normalization scheme of M it can be achieved that

∥∥∥h
′
j

∥∥∥
1
≤ 1 ∀j.

It was verified that f (x) = ‖x‖2 is the optimal choice to reduce the error bounds if
noise is added to M (see Gillis and Vavasis, 2014).

Under these assumption the algorithm recovers a set of indices J such that M(: J) = W
up to a permutation. If noise N is added to the noiseless separable matrix M, then
for M

′
= M + N still the endmembers (basis vectors) can be extracted up to an error

bound (see for details Gillis and Vavasis, 2014). Furthermore, the robustness of noise
can be improved by using strategies such as:

• applying dimensionality reduction, such as PCA, to the columns of M in order
to filter the noise

• perform a precondition based on minimum-volume ellipsoid

• check whether the r identified vertices still maximize f (·) once projected onto
the orthogonal complement of the other vertices and
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• considering the non-negativity constraints in the projection step.

The proposed algorithm has some appealing properties. For example, the computa-
tional costs of the algorithm are very low since the algorithm is linear in n. Another
advantage is the simple implementation and that no parameter needs to be chosen a
priori nor has to be tuned. Even if the input matrix M is not approximately separable,
r columns of M are identified whose convex hull has large volume. This is a key
advantage over other separable NMF algorithms. In general, geometric algorithms
are sensitive to outliers and for this reason, Gillis proposed a simple post-processing
strategy to identify outliers (see Gillis and Vavasis, 2014).

Convex models

In contrary to the general NMF problem it is possible to construct convex models to
solve the separable NMF problem. The separability of M is equivalent to the existence
of an n × n non-negative matrix X with r nonzero rows such that M = MX with
X(K, :) = H. This consideration leads to the following formulation of the separable
NMF problem

min
X≥0
‖X‖row,0 s.t. M = MX,

where ‖X‖row,0 counts the number of nonzero rows of X. In order to achieve a convex
model a standard approach is to use the `1 norm instead of ‖X‖row,0. Other typical
approaches are ∑n

i=1 ‖X(i, :)‖k for some k, for example k = ∞ and k = 2.

Consider the case of M being normalized, then the entries of H are bounded above by
one, since the columns of W are vertices. Hence, another formulation for separable
NMF can be obtained:

min
X≥0
‖diag(X)‖0 s. t. M = MX and xij ≤ xii ≤ 1 ∀i, j. (2.19)

The conditions on X are ensuring that the diagonal entry has to be the largest on
each row and since the goal is to minimize the number of nonzero entries of the
diagonal of X, the optimal solution will contain r nonzero diagonal entries which
implies r nonzero rows. Again by replacing the ‖ · |0 with the `1 norm a convex model
is obtained (see Recht et al., 2012):

min
X≥0

trace(X) s. t. M = MX and xij ≤ xii ≤ 1 ∀i, j, (2.20)

where trace(X) is equal to ‖diag(X)‖1, since X is non-negative. The noiseless case
never occurs in practice, therefore it should be considered the preferable approach
as to how these models need to be modified. The modification can be done by either
replacing the equality term M = MX with ‖M−MX‖ ≤ ε for some appropriate norm
(typically the `1, `2, or Frobenius norm) or by adding the equality term in the objective
function as penalty. It was determined that the two convex models are essentially
equivalent (see Gillis and Luce, 2018).
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The computational costs of these models are very high as n2 variables need to be
optimized. As a consequence, their utilization in hyperspectral imaging for example,
where n is referred to the number of pixels and is typically on the order of millions, is
impractical.
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3 Challenges Arising from NMF

This chapter provides an overview of the main aspects that need to be considered
for the application of NMF methods. Moreover, a collection of quality measures is
described to appropriately compare the wide range of NMF algorithms.

3.1 Initialization Methods

Many NMF algorithms, especially all which are applying the two-block coordinate
descent scheme, need an initialization of the basis matrix W and the coordinate matrix
H, but in this case only W has to be initialized as the initial H can be estimated by
solving the NNLS sub-problem. The sensitivity to the initialization of W and H is
a well-known fact (see Wild, 2004), which explains the intense research interest in
finding a practical seeding method.

In general, two possibilities exist to assess a ”good initialization strategy”: (i) one
that leads to rapid error reduction and faster convergence; (ii) one that leads to
better overall error at convergence. Most of the initialization strategies focus on the
first objective, since the second is more challenging as NMF algorithms typically
converge to a local minimum. In this section, a number of seeding methods that have
been considered beneficial are depicted. The initialization methods can be divided
into two groups: (i) based on randomly chosen variables; (ii) based on deterministic
strategies. These more sophisticated deterministic methods render replication of the
NMF algorithm obsolete. Especially if dealing with big data loads, this feature turns
out to be very helpful, since running an NMF algorithm can be time-consuming.

The strategies outlined in this section are intended to give a good overview on the
wide range of initialization methods. Nevertheless, there are notable strategies, which
do not fit into the framework of the described methods such as the strategy introduced
by Janecek and Tan (2011), which proposes the use of population based algorithms -
PBA.

3.1.1 Random Initialization Strategies

A simple method is given by drawing the entries of each factor from a uniform
distribution over [0, max(M)], where M is the input matrix (whose factorization is
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requested). The generated initial matrices of W and H are dense and take much
storage ,even if M is sparse, since only the maximum is considered in this initialization
strategy. In order to ensure reasonable results, the NMF algorithm has to be repeated
around 1000 times, since different initial matrices could converge to different local
minima. For further analyses only the factorization which performed best, is used.

Two other random strategies suggested by Langville et al. (2014) create sparse initials
out of the given data. The first one, random Acol, creates each column of W by
averaging p randomly chosen columns of M, which tends to maintain sparsity of
the input matrix M. This proposed method is computationally very inexpensive and
lies between pure random initialization and spherical cluster-based initialization (see
Subsection 3.1.4) in terms of performance (Langville et al., 2014).

In contrary to random Acol, the second strategy, random C, restricts the choice to
the q ( this parameter has to be set) longest (in term of the Frobenius norm) columns
of M instead of taking all columns in consideration. The longest columns are the
densest columns, if the matrices considered are sparse, it would be more likely that
these columns are centroids. Similar to Acol it is computationally inexpensive, but is
considered to be not very effective according to Langville et al. (2014).

3.1.2 Nonnegative Double Singular Value Decomposition

The initialization method Nonnegative Double Singular Value Decomposition
(NNDSVD) proposed by Boutsidis and Gallopoulos (2008) is based on singular
value decomposition (SVD). More precisely, two SVD processes are used: While the
first one creates the rank-k approximation, the second one is considered as ”small”
SVD on each of the positive sections of the factors. The behaviour of unit rank matri-
ces appears to be essential for the construction of the initial matrices W and H and
will be explained in detail. The following definitions are required for the upcoming
theorems:

Definition 3.1.1 [Positive and negative section]
Given any vector or matrix variable X ∈ Rp×n, the positive section X+ ≥ 0 of X is
defined as:

X+ =
[
1[xkl≥0]xkl

]
k=1,...,p; l=1,...,n

The negative section X− ≥ 0 of X will be the matrix

X− = X+ − X

By the use of this definition any vector or matrix can be written as X = X+ − X− and
particularly if X ≥ 0 then the negative section X− = 0.
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Strategy

The NNDSVD method starts with the calculation of the SVD and takes advantage of
SVD specific properties. Using SVD, every matrix M ∈ Rp×n of rank r ≤ min(p, n) can
be expressed as the sum of r leading singular factors M = ∑r

l=1 σlulvT
l , where σ1 ≥

. . . ≥ σr > 0 are the non-zero singular values of M and {ul, vl}r
l=1 the corresponding

left and right singular vectors. Then, considering the Schmidt and Eckart-Young
theorem (see Stewart and Sun, 1990), for every k ≤ r, the optimal rank-k approximation
of M with respect to the Frobenius norm, say M(k), can be constructed out of the first
k singular factors and their singular vectors as

M(k) def
=

k

∑
l=1

σlC(l) = arg min
rank(G)≤k

‖M− G‖ , (3.1)

where C(l) = ulvT
l . For NMF the matrices M and M(k) need to be non-negative, but the

singular vectors in general will have negative entries. Hence, a modification of (3.1) was
developed that will produce a non-negative approximation of M. Approximating every
unit rank matrix C(l) by its positive section C(l)

+ leads to a non-negative approximation

of M. These positive sections C(l)
+ are possessing favourable characteristics that play a

key role in the NNDSVD algorithm. In the following their properties will be shown
(Boutsidis and Gallopoulos, 2008):

• Their rank is at most 2 because of the ”set to zero with small rank increment”
property (see Lemma 3.1.2)

• They are the best nonnegative approximations of C(l) in terms of the Frobenius
norm (see Lemma 3.1.6)

• Corresponding singular vectors exist, which are non-negative and readily avail-
able from the singular triplets {σl, ul, vl} of M (see Theorem 3.1.3).

These properties were proven by Boutsidis and Gallopoulos (2008).

Lemma 3.1.2 (set to zero with small increment):
Consider any matrix C ∈ Rp×n such that rank(C) = 1, and write C = C+ − C−. Then

rank(C+), rank(C−)≤ 2.

Proof: Since C has rank 1, it can be written as C = xyT = (x+ − x−)(y+ − y−)T =
(x+yT

+ + x−yT
−)− (x+yT

− + x−yT
+). All four factors are non-negative and for each x, y

the non-zero values of the positive section and the corresponding negative section are
situated at locations that are complementary to one another. Hence, each non-zero
element of C is obtained from exactly one term from the terms on the right, which
leads to C+ = x+yT

+ + x−yT
− and C− = x+yT

− + x−yT
+ with the rank of each one being

at most 2. �
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This property is called ”set to zero with small rank increment” as it states that if
all negative values of a unit rank matrix were set to zero, the resulting matrix will have
rank 2 at most. A similar property for matrices of rank(C) > 1 cannot be achieved (see
for an example, Boutsidis and Gallopoulos, 2008, p. 1353).

The Perron-Frobenius theory (see Catral et al., 2004) ensures the maximum left and
right singular vectors of C+ to be non-negative due to the non-negativity of C+. In
addition, the specific structure of C+ guarantees even the remaining singular vectors
to be non-negative as the following theorem shows.

Theorem 3.1.3
Let C ∈ Rp×n have unit rank, so that C = xyT for some x ∈ Rp, y ∈ Rn. Define

x̂±
def
= x±
‖x±‖ , ŷ±

def
= y±
‖y±‖ as the normalized positive and negative sections of x and y.

Let also µ± = ‖x±‖ ‖y±‖ and ξ± = ‖x±‖ ‖y∓‖. Then the unordered singular value
expansions of C+ and C− are

C+ = µ+ x̂+ŷT
+ + µ− x̂−ŷT

− and (3.2)

C− = ξ+ x̂+ŷT
− + ξ− x̂−ŷT

+ (3.3)

The maximum singular triplet of C+ is (µ+, x̂+, ŷ+) if µ+ =
max(‖x+‖ ‖y+‖ , ‖x−‖ ‖y−‖), otherwise it is (µ−, x̂−, ŷ−). Similarly, the maxi-
mum singular triplet of C− is (ξ+, x̂+, ŷ−) if ξ+ = max(‖x+‖ ‖y−‖ , ‖x−‖ ‖y+‖),
otherwise it is (ξ−, x̂−, ŷ+).

Proof: see Boutsidis and Gallopoulos (2008). �

A direct connection to the concept of non-negative rank can be derived for this
decomposition.

Definition 3.1.4 [non-negative rank Gregory and Pullman, 1983]
The non-negative rank, rank+(A), of A ∈ R

p×n
+ is the smallest number of non-negative

unit rank matrices into which a matrix can be decomposed additively.

This alternative definition of the non-negative rank is equivalent to the definition given
in Subsection 2.2.1. Combining the actually shown properties of C± with the ones
known from previous sections, rank(A) ≤ rank+(A) ≤ min(p, n) and if rank(A) ≤ 2,
then rank+(A) = rank(A), precise estimates regarding the nonnegative ranks of C±
can be stated.
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Corrolary 3.1.5
Consider the matrices C± from Theorem 3.1.3

1. rank+(C±) ≤ 2 .

2. rank+(C±) = rank(C±).

3. If C contains both positive and negative elements, then rank+(C±) = 2.

4. If C ≥ 0 (resp. C ≤ 0) then rank+(C+) = 1 (resp. rank+(C−) = 1).

An explicit construction for the decomposition of C+ as well as a computationally
inexpensive way to perform it is given in Theorem 3.1.3. The next lemma can be
formulated as a direct consequence of the Frobenius norm definition.

Lemma 3.1.6
Let C ∈ Rp×n. Then C+ = arg minG∈R

p×n
+
‖C− G‖.

Considering this Lemma, the best (in terms of the Forbenius norm) nonnegative
approximation of each unit rank term C(l) = u(l)(v(l))T would be the corresponding
C(j)
+ .

The necessary steps for the NNDSVD initialization can be summarized as follows:

1. Compute the k leading singular triplets of M

2. Extract the positive sections of the unit rank singular factor expansion of M as
suggested in Theorem 3.1.3

3. Approximate each of these factors by its maximum singular triplet

4. Initialize (W, H) with the scalar multiples (√σj) of the factors from Step 3

Since the leading singular triplet is non-negative, it can be readily used to initialize
the first column (respectively row) of W (respectively H) and Step 3 is applied from
j = 2 onwards.

Error bound and variants

As the primary objective is to minimize the Frobenius norm of the residual R = M−
WH, it is desirable to provide a bound for this error corresponding to the initial factors
(W, H) obtained by NNDSVD. In the next proposition (Boutsidis and Gallopoulos,
2008) bounds can be determined with the use of the preceding results. Therefore
following notations {σj}r

j=1 for the nonzero singular values of M in non-increasing
order and {σj(C+), xj(C+), yj(C+)} for the singular triplets of C+ are used.
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Proposition 3.1.7

Given M = M(k) + E(k) ∈ R
p×n
+ with E(k) def

= ∑r
j=k+1 σjujvT

j , and the pair (W, H)

initialized by NNDSVD, then the Frobenius norm of R = A−WH = E(k) + Ê with

Ê def
= ∑k

j=2 σjσ2(C
(j)
+ )x2(C

(j)
+ )(y2(C

(j)
+ ))T −∑k

j=2 σjC
(j)
− is bounded as follows:

‖E(k)‖ ≤ ‖R‖ ≤ ‖E(k)‖+
∥∥Ê
∥∥ , (3.4)

where ∥∥Ê
∥∥ ≤ k

∑
j=2

(
σ2(C

(j)
+ ) + 1

)
σj ≤ 2

k

∑
j=2

σj. (3.5)

Proof: These inequalities can be derived from the properties of the singular vec-
tors x1(C+), y1(C+), by the application of the triangle inequality and the fact that∥∥∥C(j)
±

∥∥∥ ≤ 1. For further details, see Boutsidis and Gallopoulos (2008). �

For modified versions of NNDSVD, which generate an initial pair (W f , H f ), where

W f
def
= W + EW , H f

def
= H + EH, (W, H) from the noiseless case and EW , EH are struc-

tured perturbations such that their non-zero elements occur at positions comple-
mentary to those of W and H, respectively, and their Forbenius norm being small
max(‖EH‖ , ‖EW‖) ≤ ε, the error can be bounded by applying the aforementioned
proposition. ∥∥A−W f H f

∥∥ ≤ ‖R‖+ ε(‖W‖+ ‖H‖) = ‖R‖+ 2ε
√

k. (3.6)

Except for the maximum singular vectors, each of the first k singular vectors probably
contains both positive and negative elements, thus the positive sections of them (which
are used for the initialization) are likely to contain a number of zeros. This effect
would be preferred in some cases, e.g. if sparseness is requested, particularly as some
NMF algorithms retain the same sparsity in the iterates that was present in the initial
(W, H).

In case of dense matrices, a large number of zeros may become undesirable, as results
from Boutsidis and Gallopoulos (2008) suggest that the basic NNDSVD algorithm
provides rapid error reductions, but eventually leads to worse errors than RANDOM
initialization. Therefore, modified versions of NNDSVD were developed that rely on
structured perturbations as mentioned in the previous paragraph.
In particular for the variant NNDSVDa the zero values in the original (W, H) are
perturbed by setting all zeros equal to the average of all elements of M (denoted as
mean(M)). For variant NNDSVDar each zero element is replaced by a random value,
which is drawn from an uniform distribution in [0, mean(M)

100 ]. These variants need no
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additional calculation for the basic initialization and lead to error bounds such as in
Eq. (3.6).

When the computation of all leading k singular triplets of M turns out to be difficult
or expensive, Boutsidis and Gallopoulos (2008) recommend a useful extension of
NNDSVD, which uses the fact that not only the maximum but also the trailing
singular triplet, {σ2(C+), x2(C+), y2(C+)}, has strictly non-negative components. This
extension is called 2-step NNDSVD and modifies NNDSVD as follows:

• For j = 2, . . . until all k columns and rows of (W, H) are filled

– if rank(C+(j)) = 1 :
Initialize column j of W and row j of H with scalar multiples of the max-
imum left and right singular vectors of C(j)

+ as it is done in the original
algorithm.

– if rank(C+(j)) = 2 :
Initialize the columns and rows 2j, 2j + 1 of W and H with scalar multiples
of x1(C

(j)
+ ), x2(C

(j)
+ ) and y1(C

(j)
+ )T, y2(C

(j)
+ )T.

If k is odd and all C(2), . . . , C(k+1)/2 have rank-2, then these factors are sufficient to
produce a non-negative initialization for (W, H). The reconstruction of C(j)

+ is exact, as

all singular vectors’ which generate C(j)
+ , participate in the initialization. This leads to a

different upper bound for the residual, if 2-step NNDSVD is applied as initialization.

Corrolary 3.1.8

Given M ∈ R
p×n
+ , and the pair (W, H) initialized as in 2-step NNDSVD, then

‖E(k/2)‖ ≤ ‖R‖ ≤ ‖E(k/2)‖+
k/2

∑
j=2

σj. (3.7)

Computational costs

The two key computational steps of NNDSVD are computing the k largest singular
triplets and computing the maximum singular triplet of the positive section of each
singular factor in the singular expansion of M.

The runtime of NNDSVD can be reduced by any algorithmic improvement of these
two key steps, whereby for dense M a rough estimate of the cost of the first step
is O(kpn). Exploiting the fact of C(j)

+ that the singular triplets are readily available
(see Theorem 3.1.3) the computational cost is rather low with O(p + n). Therefore,
the overall cost for NNDSVD on dense data is O(kpn) (Boutsidis and Gallopoulos,
2008).
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3.1.3 SVD-NMF

In 2015, Qiao introduced a new possibility to initialize the matrices (W, H), which is
called SVD-NMF as it is based on the SVD of the target matrix M (see Qiao, 2015).
Furthermore, a selection rule to compute the rank r of the factorization was suggested,
but this is discussed later in the Subsection 3.3.2. In comparison to NNDSVD, the
SVD-NMF method uses only once the utilization of singular triplet information and
does not exploit properties of the unit rank matrices that are generated from the
singular vectors. The SVD-NMF method has some major benefits as mentioned by
Qiao (2015):

• cheap computational cost as the singular triplets are only computed once

• can reach fast convergence

• simple and easy to implement

• can be easily combined with many NMF algorithms

Strategy

First of all, for any given matrix M ∈ R
p×n
+ the respective SVD can be expressed as

follows:
M = UΣVT, (3.8)

where U is a p× p orthogonal matrix, VT denotes the transposed of the n× n orthog-
onal matrix V (VT orthogonal⇔ V orthogonal) and Σ is a p× n diagonal matrix with
this specific structure

Σ =

(
Σ1 0
0 0

)
. (3.9)

The diagonal entries of Σ1 = diag(σ1, σ2, . . . , σr) are sorted in descending order, i.e.
σ1 ≥ σ2 ≥ . . . ≥ σr > 0, and are considered as the nonzero singular values of M (see
also Section 3.1.2) with r = rank(M).

The SVD-NMF initialization method computes the SVD of the non-negative matrix
M and uses its singular triplets U, Σ, V to obtain good initial matrices for (W, H).
The Schmidt and Eckart-Young theorem (see Stewart and Sun, 1990) ensures that a
unique matrix M(k) = U diag(σ1, σ2, . . . , σk, 0, . . . , 0︸ ︷︷ ︸

n−k

) VT, with k corresponding to the

chosen factorization rank (1 ≤ k ≤ r ≤ n), can be found and is the global minimizer of
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the optimization problem (3.1). This matrix M(k) can be rewritten as:

M(k) = U diag(σ1, σ2, . . . , σk, 0, . . . , 0︸ ︷︷ ︸
n−k

) VT = ŨΣ̃VT (3.10)

where Ũ =


u11 u12 · · · u1k
u21 u22 · · · u2k

...
... . . . ...

up1 up2 · · · upk

 (3.11)

and Σ̃ =


σ1 0 · · · 0 · · · 0
0 σ2 · · · 0 · · · 0
...

... . . . ... . . . ...
0 0 · · · σk · · · 0

 , (3.12)

Ũ ∈ Rp×k and Σ̃ ∈ Rk×n. If all entries of Ũ and Σ̃VT were non-negative, then the
matrix W = Ũ and H = Σ̃VT could instantly be used to initialize W and H for an
NMF algorithm, however, this is usually not the case as the entries of singular vectors
obtained from SVD can be negative. Therefore, the negative elements of matrix Ũ
are replaced by the absolute values of themselves, |Ũ| denotes the matrix, where all
entries of Ũ are their absolute values. For Σ̃VT the same adjustments are made, thus
the matrix |Σ̃VT| is obtained.

Finally, the following initialization formulas of W, H,

W0 = |Ũ|, H0 = |Σ̃VT|,

are used for SVD-NMF with W0H0 ≈ M(k) (Qiao, 2015). It has to be mentioned that
the replacement of the negative entries by their absolute values can lead to better or
worse results, thus an improvement of this method would be achieved by finding a
way to implement the negatives entries.

3.1.4 Clustering Methods

One of the most prominent clustering methods used for the initialization of NMF
algorithms is spherical k-means clustering.Wild (2004) proposed this as a seeding
method for NMF. In 2001, the Spherical K-Means method was first introduced by
Dhillon and Modha (2001) for clustering large sets of sparse text data. A notation
consistent with Wild et al. (2004) is used to depict the clustering method and its
characteristics.
Remark:
{cj}k

j=1 . . . the k centroids (average of all the vectors in subset πj) in Rp

{πj}k
j=1 . . . the k disjoint subsets of the original p× n data matrix M.
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Πk ≡ {πj}k
j=1 . . . the clustering defined by the k subsets.

ι(Πk) . . . an n-long indicator vector, where ιi ≡ j if mi ∈ πj

It should be mentioned that also other clustering methods such as the Fuzzy C-Means
Clustering have been suggested for initialization (see Rezaei and Boostani, 2011).

Strategy

As for the standard K-Means the method tries to find k centroids {cj}k
j=1 that represent

k disjoint subsets of the columns of M with each subset containing all the vectors
in M that are closest to their respective centroid. In contrast to standard K-Means
the column vectors m1, m2, . . . , mn of the original p × n data matrix M need to be
normalized to unit length in the Euclidean (Frobenius) norm. This normalization has
the effect that only the direction of each vector remains as important characteristic.
Furthermore, the data set M is restricted entirely to non-negative elements, which
already constitutes a necessary requirement for the application of NMF. As shown by
Wild et al. (2004)[Theorem 1] any normalization of the basis matrix W has no influence
on the convergence of a NMF algorithm.

Until now, it has not been clarified which measure is used to quantify the similarity
of two vectors. Taking the above considerations into account, it is possible to use the
Cosine Similarity measure

cos(θx,y) = ‖x‖ ‖y‖ cos(θx,y) = xTy, (3.13)

to quantify the similarity of two normalized vectors. The first equality holds due to
the normalization of x and y, and the second is the standard definition of the inner
product. The Cosine Similarity measure is bounded by 0 ≤ cos(θx,y) ≤ 1 (given the
non-negativity of x and y) and values closer to one indicate more similar vectors as
perfect similarity is achieved if the two vectors point in the same direction and the
angle θx,y between the two vectors x and y is equal to 0. Requiring that each centroid
is also of unit length

∥∥cj
∥∥ = 1, the following objective function can be defined, which

Spherical K-Means aims to maximize:

ΘSKM(Πk) ≡
k

∑
j=1

∑
mi∈πj

mT
i cj =

n

∑
i=1

mT
i cιi . (3.14)

ΘSKM seeks to maximize the intracluster coherence while minimizing the intercluster
coherence (Wild et al., 2004). The Spherical K-Means algorithm, which has been proven
(Dhillon and Modha, 2001) to be non-decreasing in the objective function ΘSKM, is
summarized as follows:
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Algorithm 6 Spherical K-Means

1: Initialize k centroids {cj}k
j=1, set t = 0.

2: while clusters change from t to t + 1 do
3: Compute d(t)ij = mT

i c(t)j for 1 ≤ i ≤ n and 1 ≤ j ≤ k.

4: Define the new partition Π(t+1)
k by updating each cluster:

π
(t+1)
j = {mi|j = arg max

l
d(t)il }.

5: Recompute each centroid

c(t+1)
j =

∑mi∈π
(t+1)
j

mi∥∥∥∥∑mi∈π
(t+1)
j

mi

∥∥∥∥ .

6: end while
7: Output the final centroids and partition(

{c(T)j }
k
j=1, Π(T)

k

)

A straightforward way to define an NMF initial based on the clustering Πk obtained
with Spherical K-Means would be to use the final centroids {cj}k

j=1 and the indicator
vector ι(Πk) to define a p× k concept matrix C, whose columns correspond to the k
centroids, and a sparse k× n indicator matrix ∆:

∆i,j ≡
{

1 if ιj = 1
0 else

for j = 1, . . . , n, i = 1, . . . , k. (3.15)

This approximation M ≈ C∆ represents a non-negative rank k approximation of M,
which replaces every column vector mi with its associated cluster’s centroid cj, where
mi ∈ πj. It is assumed that the k centroids {cj}k

j=1 are linearly independent (Dhillon
and Modha, 2001). This initialization with W = C and H = ∆ will result in a fixed
point for Euclidean multiplicative update NMF algorithms (Wild et al., 2004)[Lemma
3], which is the reason why this initialization should be discarded.

Therefore, and as some of the n vectors in M are located near the intersection of two or
more clusters, the idea to use linear (instead of binomial) combinations of the centroids
was considered. This means that as before the concept matrix C is used as W and the
initial H is the solution of the NNLS sub-problem (see Section 2.1) as it minimizes
‖M− CZ‖ under the restriction of Z ≥ 0. This strategy has been proven to provide
NMF initializations that lead to faster convergence of the NMF algorithms than other
clusterings and random initialization (Wild et al., 2004).
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Computational considerations

This initialization leads to sparser basis vectors than the use of random initializations
as the centroids that result from Spherical K-Means reflect the sparsity of the original
data, however, they are usually less sparse than a typical data vector since they
are obtained by averaging several data vectors. As a result, a slight reduction in
computational expenses for the NMF algorithm can be achieved for those algorithms,
in which the locked-in phenomena occurs. The two major reasons to prefer Spherical
K-Means over its more general predecessor, K-Means in this context are:

1. The efficiency and robustness for very large data sets of the Spherical K-Means
algorithm, with refinements (Dhillon and Modha, 2001).

2. Due to normalization inherent to the NMF multiplicative update schemes, the
centroids need to be as different as possible when normalized. As already stated,
the Spherical K-Means is only concerned with the direction of data vectors, which
leads to centroids that considered to be more linearly independent than those
from K-Means (Wild et al., 2004).

In contrast to the SVD based initialization methods, the computational requirements
per iteration of Spherical K-Means is with O(pnk) clearly higher, since for instance
the overall costs of NNDSVD (see Section 3.1.2) are of the same magnitude, and
considering that many iterations could be performed until an optimal clustering is
obtained. To lower the costs, as in general it is the desire to not increase the overall
computational complexity of the initialization-factorization process, it was suggested
to not take the final clustering and instead use the clustering (Concept matrix) resulted
after a fixed number of iterations. The simulations performed by Wild et al. (2004)
indicate that such a stopped clustering results in similar errors for the initials as the
optimal clustering.

Another drawback of the Sperical K-Means clustering is the need of initializing the
centroids, hence to avoid the possibility of not converging to a local minimum, the
clustering should be repeated with different random initial centroids. Every clus-
tering algorithm used to define initials for (W, H) has its major disadvantage in the
computational expensiveness.

3.1.5 ICA Based Initialization

The motivation for using the independent component analysis - ICA (a detailed
introduction of ICA is given in Hyvärinen and Oja, 2000) for the initialization of NMF
lies in its defining property of estimating bases, through which the weights for the
corresponding bases (sources in terminology of ICA) become independent from each
other (or at least as independent as possible). In contrast, initialization methods using
SVD (or respectively PCA) produce orthogonal bases to represent the data matrix
M.
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Furthermore, it has been shown that optimal NMF bases are along the edges of a
convex polyhedral cone, which is defined by the observed points in M, in a p-dimensional
space (Huang et al., 2014). In Figure 3.1 an example of various NMF bases is given
when p = r = 2. This simple example illustrates that orthogonal bases taken from
an SVD (or PCA) may not be a good choice as initial NMF bases, since they possibly
represent a meaningless area. All data points are represented by the optimal bases,
which probably are ICA bases since they tend to be dissimilar but not orthogonal
and the tight bases have struggle to represent all data points due to the non-negative
constraint of the weights.

Figure 3.1: Example of NMF Bases - Geometry of (a) optimal, (b) orthogonal, and (c) tight bases, where
the observed data points are represented by the black dots, the gray area is indicating the
cone defined by the data points, the broken lines are indicating the edges of cone, fk denotes
kth NMF basis, p = k = 2 and n = 10 (Kitamura and Ono, 2016).

Before the strategy to establish estimates for the initials of (W, H) is described, a short
explanation of the basic concept of ICA is given. ICA belongs to the unsupervised
learning methods, particularly to the blind source separation - BSS methods like NMF
and has the goal of finding a linear representation of non-Gaussian data, so that the
components are statistically independent, or as independent as possible. The ICA
model for M ∈ Rk×n can be defined as:

M = AS, (3.16)

with the unknown mixing matrix A = (a1, . . . , ak), where ak is the k× 1 kth ICA basis,
S = (s1, . . . , sk)

T, where sk is the n× 1 kth unknown independent component (source
signal). The assumption for the source signals sk of having a non-Gaussian distribution
is essential to estimating the ICA model, as without non-Gaussianity the mixing matrix
is not identifiable (Hyvärinen and Oja, 2000). The restriction to non-Gaussianity can
be justified as in practice the non-Gaussian components of the underlying data tend
to be more interesting than the Gaussian components, which often are obtained as
noise or some sort of perturbation.

If the mixing matrix A was known, the components could be easily calculated by
S = TM with T = A−1, but since this is not the case, a good estimator of T has to be
found. The basic concept of ICA relies on the classical Central Limit Theorem, as it
states that the distribution of a sum of independent random variables tends towards
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a Gaussian distribution under certain conditions, which basically means that any
sum of independent random variables is more Gaussian than the original variables.
Therefore,the estimator of one of the independent components can be obtained by
maximizing the non-Gaussianity of tT

j M for an arbitrary j ∈ {1, . . . , k}, since the
different independent components are uncorrelated, the next one could be found in
the same manner with the only difference of restricting the search to the orthogonal
complement of the previously estimated components.

For ICA the following two quantitative measures of non-Gaussianity of a random
variable, say y, are used :

(a) absolute value of the kurtosis defined as |kurt(y)| = |E(y4)− 3(E(y2))2|

(b) negentropy J(y) = H(ygauss)− H(y), where ygauss is a Gaussian random variable
of the same covariance matrix as y and H(.) the entropy of a random vector.

As mentioned by Hyvärinen and Oja (2000) the negentropy is in some sense the
optimal estimator of non-Gausianity, as far as statistical properties are concerned, but
computationally very difficult to calculate as an estimate (possibly non-parametric) of
the pdf is required. This issue was solved by using simpler and faster approximations
of negentropy, which also have appealing statistical properties, especially robustness.
Such an approximation is given by

J(y) ∝ [E(G(y))−E(G(v))]2, (3.17)

where v is a standardized Gaussian variable and G(·) a non-quadratic function. The
following choices of G(·) were suggested by Hyvärinen and Oja (2000):

(a) G(u) = log cosh(u) for general purpose.

(b) G(u) = − exp(−u2

2 ) if robustness is a major objective.

A fast and efficient algorithm to estimate the independent components, which uses
the above approximation of the negentropy, is the FastICA algorithm as introduced
by Hyvärinen and Oja (2000). For the FastICA, the matrix M needs to be centered
and whitened, so that the independent component can be obtained at the extrema of
J(tT M) given in (3.17). The update rule of FastICA for a column t of the requested
matrix T ∈ Rk×k is as follows

t←− E(Mg(tT M)T)−E(g
′
(tT M))t, (3.18)

where g(·) is the derivative of G(·), and g
′
(·) is the derivative of g(·). After every

update (3.18), the vectors t1, . . . , tk are orthogonalized either in a Gram-Schmidt-
like procedure or symmetrically. Finally, this algorithm converges to T (often called
demixing matrix) and by matrix multiplying T and M the estimated independent
components S are obtained, which are unique apart from permutations and signs.
It has to be mentioned that the FastICA algorithm has many desirable properties
compared to other ICA algorithms like for instance the cubic convergence (gradient

42



descent methods only have linear convergence) and simple application as there is no
necessity to choose a step size parameter.

In general, the estimated components sources sk tend to be sparse, if a super-Gaussian
distribution (random variables with positive kurtosis) is assumed, which is also the
case for NMF as the sparsity is induced by the non-negative constraint of W.

Strategy

As the traditional ICA do not exclude negative values for the ICA bases ak and the
independent components sk, the non-negativity assumption of the components (sources)
and the ICA bases have to be added. This model is known as non-negative independent
component analysis - NICA (Yuan and Oja, 2004). The NICA is combined with a PCA
as a preprocess to reduce the dimensionality, this reduction can be represented as{

P1M = AS
P2M ≈ 0

, (3.19)

where P = (PT
1 PT

2 )
T is the p× p transformation matrix of PCA with P1 ∈ Rk×p and

P2 ∈ R(p−k)×p. The eigenvectors of the variance-covariance matrix MMT are the row
vectors in P and are arranged in descending order on the basis of their eigenvalues.
Consequently, P1 includes the top k eigenvectors of MMT and P2 the remaining ones.
Moreover, A = (a1, . . . , ak) is a mixing (ICA basis) matrix, S = (s1, . . . , sk)

T is a source
matrix, and 0 is the (p − k) × n zero matrix. Then the NICA is applied on P1M,
which is the representation of the data matrix M corresponding to the first k principal
components.

Plumbley (2002, 2003) has outlined an alternative approach for the ICA problem under
the consideration of the non-negativity assumption. The following definition is needed
for the further analysis:

Definition 3.1.9 [non-negative and well-grounded]
A source si is non-negative if Pr(si < 0) = 0, and well-grounded if Pr(si < δ) > 0 for
any δ > 0; i.e. si has non-zero pdf all the way down to zero.

Using this definition, Plumbley (2002) has proven the following key result:

Theorem 3.1.10
Suppose that s is a vector of non-negative well-grounded independent unit-variance

sources sk, i = 1, . . . , k, and y = Qs where Q is a square orthonormal rotation, i.e.
QTQ = I. Then Q is a permutation matrix, i.e. the elements yj of y are a permutation
of the sources si, if and only if all yj are non-negative.
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Proof: See Plumbley (2002). �

Based on this theorem, the NICA can be reduced to the issue of finding a square
orthonormal rotation matrix T for the noncentered and whitened data for which the
estimated (separated) sources become non-negative:

Y = TZ, (3.20)
Z = VP1M = VAS, (3.21)

where V is a whitening matrix, which adapts the matrix P1M in the way that the
covariance matrix ΣP1 M = P1M(P1M)T − µµT with µ = mean(P1M) becomes the
identity matrix, whereby it is important that this whitening process does not center
the data. The whitening matrix V can be obtained by the eigenvalue decomposition of
ΣP1 M = EDET with E being the orthonormal basis of eigenvectors and D the diagonal
matrix of the corresponding eigenvalues, hence setting V = Σ−1/2

P1 M = ED−1/2ET

provides the desired result. The centering is avoided since it would transform the
non-negative data into data which possess also negative elements (all elements smaller
than the mean would be negative). Moreover, Y = (y1, . . . , yk)

T is a matrix consisting
of the estimated sources yk. The following cost function was suggested as suitable to
find the rotation matrix T (Plumbley, 2002):

J(T) = E(
∥∥Z− Ẑ

∥∥2
) = E(‖Y−Y+‖2) = ∑

k,n
min(0, ykn)

2, (3.22)

where Ẑ = TTY+ is a re-estimate of Z = TTY and the second equality holds since T
has to be a square orthonormal rotation matrix. This cost function will be minimized,
if all the yk are positive, but due to the dimensionality reduction via PCA this global
minimum is not likely to exist (P1M probably has negative entries). A simple method
to solve this minimization problem (3.22) is based on the gradient descent method
(Oja and Plumbley, 2004) , which suggests the following update rule for a column of
T:

tk ←− tk − 2γ ∑
n

min(0, ykn)zkn, (3.23)

where γ is the step-size parameter (a hyperparameter of this algorithm). Each of the
k column vectors tk of T is updated by (3.23) and then the following symmetrical
decorrelation step is applied on T = (t1, . . . , tk):

T ←−
(
TTT)−1/2T, (3.24)

where the inverse square root (TTT)−1/2 is obtained from the eigenvalue decomposi-
tion of TTT = FΛFT as (TTT)−1/2 = FΛ−1/2FT. These two steps are repeated until T
converges. To assess the convergence the following stopping criterion was used (same
as used in FastICA):

D(Told, Tnew) = max
(
|diag(|TnewTT

old|)− 1|
)
, (3.25)
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where Told is the matrix before the update and Tnew the one after the update. Another
possibility to solve the minimization problem (3.22) would be the ”fast NICA” algo-
rithm (Yuan and Oja, 2004), which does not require a hyperparameter such as γ for
the the estimation. Nonetheless, for this initialization method the gradient descent
method is used.

For the initialization of the weight matrix H in the NMF model, the estimated inde-
pendent components (sources) Y = TZ are directly used. Moreover, the estimated
orthonormal (demixing) matrix T can be taken to calculate the initial basis matrix
W of the NMF model. If it is approximately assumed that M = WH, S = Y, and
A = (TV)−1, the following equation can be obtained from (3.19):

PWH ≈
[
(TV)−1

0

]
H. (3.26)

Therefore, after multiplying the equation with the inverse matrix of P from the left side
and the inverse matrix of H from the right side, the basis matrix W can be identified
as

W ≈ P−1

[
(TV)−1

0

]
. (3.27)

The non-negativity of these initial matrices of (W, H) can not be guaranteed, since
the PCA applied for dimensionality reduction likely induced negative entries in
the estimated weight matrix H and for the basis matrix W non-negativity was not
considered in the cost function (3.22) or at any point of the estimation process. The
matrices (W, H) can only be used as initials for a NMF algorithm, if the negative
values of W and H are replaced by non-negative values. To perform this so called
nonnegativization of W and H the following three methods were proposed (Kitamura
and Ono, 2016):

• Nonnegativization 1: W0 = |W|, H0 = |H|,

• Nonnegativization 2: W0 = |W|, H0 = αHWT
0 M,

• Nonnegativization 3: H0 = |H|, W0 = αW MHT
0 ,

where | · | denotes the entrywise absolute operator, and αW and αH are coefficients for
fitting the scale of W0H0 to M. These coefficients can be calculated from

αW = arg min
α
D(M‖αMHT

0 H0), (3.28)

αH = arg min
α
D(M‖αW0WT

0 M), (3.29)

after the proposed initialization of H respectively W, where D(·‖·) denotes an arbitrary
cost function (measure of error) for NMF. For typical cost functions like the Euclidean
distance (EU) or the generalized Kullback-Leibler divergence (KL) the solutions of
(3.28) and (3.29) can be described as follows:
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• For EU-NMF: αW =
∑p,n mpnbpn

∑p,n b2
pn

, αH =
∑p,n mpncpn

∑p,n c2
pn

,

• For KL-NMF: αW =
∑p,n mpn

∑p,n bpn
, αH =

∑p,n mpn

∑p,n cpn
,

where bpn =
[
MHT

0 H0
]

pn and cpn =
[
W0WT

0 M
]

pn.

To get a compact overview of the proposed initialization strategy, the algorithm is
depicted as shown below:

Algorithm 7 NICA for NMF

1: Run a PCA as illustrated in (3.19).
2: Whiten the matrix P1M with V = ED−1/2ET, but do not center.
3: Initialize T ∈ Rk×k by an arbitrary orthonormal rotation matrix
4: while D(Told, Tnew) > tolerance and j ≤ maxiter do
5: Set Y = TZ with Z = VP1M
6: for u = 1 to k do
7: Compute

tu ←− tu − 2γ ∑
n

min(0, yun)zun

8: end for
9: Apply the symmetrical decorrelation for T = (t1, . . . , tk):

T ←−
(
TTT)−1/2T.

10: end while
11: Set

H = Y = TZ

and

W = P−1

[
(TV)−1

0

]
12: Perform one of the suggested Nonnegativizations for W and H
13: Output W and H
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Computational considerations

The most computationally critical parts are the update rule based on gradient descent
(3.23) and the symmetrical decorrelation step (3.24), since the convergence can be slow
and depends on the choice of the hyperparameter γ . A replacement of the gradient
descent procedure with the fastNICA (Yuan and Oja, 2004) algorithm could reduce the
computational costs.

Nevertheless, the computational costs can be seen as not critical compared with the
case of NMF iterations (Kitamura and Ono, 2016). As the experimental comparison
conducted by (Kitamura and Ono, 2016) has shown, the NICA based initialization
provides faster and deeper convergence of the NMF cost function than random
initialization, NNDSVD or PCA-based initialization, but it is computational more
intensive.
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3.2 Quality Measures

Universal quality measures are required to compare the performance of NMF algo-
rithms on a given data set. The performance can be evaluated under different aspects,
such as approximation error, sparseness of the NMF factors, clustering performance
and computational costs. It is common practice to quantify the computational costs by
the CPU time required to perform the factorization.

The performance of the initialization methods used for NMF algorithms can be
sufficiently evaluated by considering the possibly improved final approximation
error and the convergence speed of the NMF algorithm, i.e how many iterations are
performed until the NMF factors (W, H) converge.

3.2.1 Standard Measures

The approximation error is considered as the final value obtained from the objective
function (of the NMF algorithm), but as the algorithms can differ in terms of the
objective function, a comparison of the residuals is not appropriate.

In order to evaluate how well the NMF model reconstructs the original data, the
explained variance - evar is used. Evar is defined as:

evar(WH) = 1− RSS
∑i,j m2

ij
,

where (W, H) are the computed NMF factors, mij are the entries of the data matrix

M and RSS def
= ‖M−WH‖2. Due to the use of the Frobenius norm in the definition

of RSS, a priori NMF algorithms that use the Frobenius norm to measure the error
would be favoured, but on the other hand the results obtained by Pascual-Montano
et al. (2006) show that algorithms not based on the Frobenius norm may still achieve
better values of explained variance.

Sparseness

The sparseness of NMF factors can be an interesting matter as it improves their
interpretability. A sparseness measure is a function, which quantifies how much
energy of a vector is packed into a few components. Considering a normalized scale,
the sparsest possible vector (only a single component is non-zero) should have a
sparseness of one, whereas a vector with all elements equal should have a sparseness
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of zero. As already mentioned in Subsection 2.1.2, a useful sparseness measure was
invented by Hoyer (2004):

spar(x) =
√

n− ‖x‖1 / ‖x‖√
n− 1

for x ∈ Rn

This function interpolates smoothly between the two extremes described above.

Clustering performance

Every NMF can be interpreted as clustering into r clusters (r NMF basis vectors)
as each observation (data point) mj can be assigned to a cluster k by considering
k = arg maxl hl j, i.e. assigned to the basis vector which has the highest weight for the
observation mj. In cases where a prior knowledge of the class assignments is given,
the following two measures (used in Kim and Park, 2007) can be useful to evaluate
the quality of the clustering generated from NMF. The measure Purity is given by

Purity =
1
n

r

∑
q=1

max
1≤j≤l

(nj
q),

where n is the total number of observations, l the number of original classes and nj
q is

the number of samples in the cluster q that belong to original class j. If the clustering
is perfectly reconstructed, purity has the value 1. Otherwise it can be stated the larger
the value of purity is, the better the clustering performance.

The second measure is called Entropy and is defined as follows:

Entropy = − 1
n log2 l

r

∑
q=1

l

∑
j=1

nj
q log2

nj
q

nq
,

where nq is the size of cluster q and the other terms used equally to the definition of
Purity. In contrast to Purity, Entropy reaches 0 for perfect reconstruction and cluster
quality is considered better at a small value.

The well-known silhouette coefficient (see for details and definition Rousseeuw, 1987)
specifies for an observation how good the assignment to the two nearest clusters is. A
silhouette coefficient of almost 1 means that the observation is well clustered, while
a small value (around 0) means that the observation lies between two clusters. If an
observation has a negative silhouette coefficient, it is probably assigned to the wrong
cluster.

Since the solution of the NMF problem is not unique and can depend on the initial
matrices chosen for W and H, the stability of the clusters obtained by NMF can be
of further interest. Consequently, some quality measures are needed to evaluate the
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stability of clustering. For every NMF run a connectivity matrix C of size n× n is
defined by:

cij =

{
1 if samples i andj belong to the same cluster
0 if samples i andj belong to different clusters.

If multiple runs of the same NMF algorithm with different random initializations are
done, the consensus matrix C can be computed as the average connectivity matrix
over these NMF clustering runs. The consensus matrix C has entries that range from
0 to 1, which are reflecting the probability that samples i and j belong to the same
cluster. In case of a stable clustering it would be expected that C will not vary a lot
among runs, hence the entries of C will be close to 0 or 1.

The entries of C can be interpreted as similarity measures, which allows one to define
the Cophenetic Correlation Coefficient ρk(C) as Pearson correlation between the sam-
ple distances induced by the consensus matrix, and the cophenetic distances obtained
by its hierarchical clustering (see Brunet et al., 2004). The Cophenetic Correlation
Coefficient indicates the dispersion of the consensus matrix and equals 1 if a perfect
consensus matrix (all entries equal 0 or 1) is obtained. In case of entries that are
scattered between 0 and 1, the Cophenetic Correlation Coefficient is < 1.

Another possibility to measure the dispersion of a consensus matrix C is given by the
dispersion coefficient (Kim and Park, 2007) :

disp =
1
n2

n

∑
i=1

n

∑
j=1

4 ∗
(
cij −

1
2
)2.

As for the Cophenetic Correlation Coefficient, the Dispersion Coefficient becomes 1 in
case of a perfect consensus matrix and otherwise 0 ≤ disp < 1.

These two cluster stability measures are used in the section to estimate an appropriate
factorization rank r for a given data matrix.
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3.3 Rank Estimation

The rank r of the factorization is a critical parameter for every CLRMA, in case of NMF
it is linked with the non-negative rank of a matrix (see Definition 2.2.1). Every non-
negative matrix has a non-negative rank, but up to now there has been no algorithm
proposed to determine the non-negative rank in ploynomial time (see Gillis, 2017).
Consequently, the factorization rank r has to be estimated.

In general, r should be small to reduce the dimension of M ∈ R
p×n
+ , but on the other

hand for the accuracy of the approximation, r should not be too small, since the
approximation error is increasing by downsizing r. Thus, a method or strategy to
choose r is demanded that considers these two objectives. Usually it is requested that
r is smaller than min{p, n} and satisfies the basic rule (p + n)r < pn (Qiao, 2015). In
the following subsections some methods to find a suitable factorization rank r are
introduced.

3.3.1 Rank Estimation Based on Quality Measures

Given an NMF method and the data matrix D, a common way of estimating the rank
r is to try different values, and compute quality measures (see Section 3.2) of the
calculated NMF in order to choose the best value according to these quality criteria.
In order to get a robust estimate of the factorization rank r, about 30− 50 runs with
random initialization of the given NMF method have to be performed. In the following,
a list of proposed strategies to choose the optimal value of r is given:

• proposed in Brunet et al. (2004): Take the first value of r for which the cophenetic
coefficient starts decreasing. A decrease of the cophenetic coefficient indicates an
unstable clustering of NMF.

• proposed in Hutchins et al. (2008): Take the first value where the RSS curve
presents an inflection point, such a point means that an additional rank does
improve the reconstruction error to a smaller magnitude than the previous rank
increasements.

• proposed in Frigyesi and Höglund (2008): Take the smallest value at which the
decrease in the RSS is lower than the decrease of the RSS obtained from random
data (a possibility to create random data is to randomly permutate the entries
of the data matrix M). In contrast to the other two strategies, this approach
prevents over-fitting of the data as an increase in r is considered relevant if the
information captured by the factorization is greater than that obtained from
random unstructured data, otherwise the increase in r is likely to result in
over-fitting.

The best way to implement these strategies is achieved by plotting the relevant quality
measures. A simple example of an NMF rank survey is given in Figure 3.2, wherein
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a randomly generated (non-negative) data matrix with a non-negative rank of 3 is
analyzed.

Figure 3.2: Rank survey - Here a rank survey for a randomly generated data matrix D with a non-
negative rank of 3 is illustrated. Each point (x-Data) was obtained from 10 runs of the Brunet
algorithm performed on D and each triangle (y-Data) was obtained from 10 runs of the
Brunet algorithm performed on the randomly permutated data matrix. All the proposed
strategies correctly estimate a factorization rank of 3. In addition, further quality measures
are shown to give a good overview of the influence of the factorization rank on NMF
clustering and the factors (W, H).

3.3.2 SVD-based rule

This rule was suggested by Qiao (2015) and is taking the singular values of M into
account to define a rule for the factorization rank r. In particular, a certain amount of
relatively larger singular values is used, and as the singular values of M obtained by
SVD are sorted in descending order, the sum of first few singular values accounts for
a large proportion of the sum of all singular values. According to Qiao (2015) 0.9 was
chosen as the extracting proportion, since it contains enough information of singular
values and avoids the factorization rank being too small to influence the accuracy of
factorization.

At first the sum of all non-zero singular values are summed up, that is sumt =
σ1 + σ2 + . . . + σt, and after this the number of singular values which accounts for 90%
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of all non-zero singular values is evaluated.
That is the r, which holds the following inequalities for sumr = σ1 + σ2 + . . . + σr:

sumr/sumt < 90% and sumr+1/sumt ≥ 90%. (3.30)

As known from the singular value decomposition, the non-zero singular values are the
square root of non-negative eigenvalues of matrix MMT, hence it can be stated that
t ≤ min{p, n}, where p, n are the number of rows respectively columns of matrix M.
According to the numerical experiments conducted by Qiao (2015), it can be obtained
that r � t and the basic rule r < pn

p+n are usually satisfied if this rule is applied.
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4 Simulations

The open source programming environment for statistical computing R (see R-Core-
Team, 2013) is used for all calculations in the subsequently described simulations. The
R package NMF (see Gaujoux and Seoighe, 2010) provides a useful framework for
the application of NMF methods with the possibility of extending the package by
customized algorithms and initialization methods.

In the upcoming simulations the built-in NMF methods of Lee, Brunet and SNMF/L
were applied in combination with the built-in initialization methods random (corre-
sponds to the simple random method described in Subsection 3.1.1) and NNDSVD. In
addition the proposed algorithms of ALS, ACLS, AHCLS and the recursive algorithm
for separable NMF were extended to the functionality of the package in order to
have a consistent framework for all algorithms. Moreover, the proposed initialization
methods of random Acol, random C, SVD-NMF, Spherical k-Means, NICA were added
to the list of initializations. For the analyses different settings of NICA were used, in
reference to the utilized Nonnegativization 1− 3 the terms NICA1, NICA2 or NICA3

are used. All NMF algorithms (built-in or customized) can be applied to a given
dataset by calling the R-function ”nmf” , which allows to specify the initialization
method by an optional parameter. A detailed description on the functionality of the
R-function ”nmf” is given in Gaujoux and Seoighe (2010). Since the recursive algo-
rithm for separable NMF is the only geometric algorithm considered for comparison,
it will be called the GEO algorithm in the coming sections. For AHCLS and SNMF/L,
the hyperparameters were set to the following values after some test runs with the
underlying data: (i) AHCLS: λH = 0.05, λW = 0.01, αH = 0.6, αW = 0.8 (ii) SNMF/L:
β = 0.01 and η = max(D) , where D denotes the data matrix.

In the subsequent simulations, the focus was on investigating the functionality and
properties of the above-mentioned NMF algorithms (and their initializations) in the
context of mass spectrometry. A description of the data set used for the simulations
can be found in the next section.

4.1 Meteorite Data

The dataset used for the simulations originates from the CoMeCS-Project (2017) and
contains spectral information of meteorites. It was provided by Brandstätter, Ferrière,
and Koeberl from the Natural History Museum (Vienna, Austria). The preparation
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of the samples was done by Engrand from the Centre de Sciences Nucléaires et de
Sciences de la Matière (Orsay, France). The TOF-SIMS1 measurements were taken
by Hilchenbach from the Max Planck Institute for Solar System Research (Göttigen,
Germany). In spectrometry, the measurements are called spectra and are typically
visualized in a mass spectrum, which represents the distribution of the ions by mass
(to be more precise mass-to-charge ratio). An example of a mass spectrum is given in
Figure 4.1.

Figure 4.1: Example of COSIMA TOF-SIMS spectrum - The typical form of a mass spectrum is used
with ion mass to charge ratios (m/z) on the x-axis and their relative intensities on the y-axis.
This spectra was measured for meteorite ”Renazzo”, taken from CoMeCS-Project (2017).

In the dataset, 1408 spectra with their 297 intensities of ions at a given mass number
are stored. The mass number is the total number of nucleons (all protons and neutrons)
in an atomic nucleus that uniquely defines an isotope of a chemical element. The
intensities of the mass numbers m23, m115 and m197 were removed for chemical
reasons, consequently only 297 of 300 inorganic mass bins were considered. Within
the context of pre-processing steps, each spectrum was standardized in the sense that
the sum of the relative intensities is always 100.

The data is classified into eleven different classes with ten different meteorites and the
eleventh class, called ”substrate”, which consists of gold spectra. Since the spectral
composition of Gold is distinctive, it should be distinguishable from the spectra of the
meteorite corns. On every gold plate, or also known as target (in total 4), a number of
corns from different meteorites are placed. TOF-SIMS-measurements of the targets
with the placed corns are taken along a grid and resulted in the observed spectra of
the dataset. As can be seen in Figure 4.2 the mesh size of the grid is bigger than the
corns of the meteorites.

Therefore, it has to be clarified if the observed spectra belong to the gold-plate
(”substrate”) or to the meteorite corn, which essentially can be interpreted as a
classification problem with two classes. In order to solve it, kNN (k nearest neighbour)
and a method based on orthogonal distances in the substrate-PCA space were used.

1Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS) is the combination of the analytical
technique SIMS (Secondary Ion Mass Spectrometry) with Time-of-Flight mass analysis. In SIMS a
pulsed beam of primary ions is focused onto a sample surface to remove molecules from its atomic
monolayers (secondary ions). For the Time-of-Flight mass analysis these particles are accelerated into a
”flight tube” and the exact time at which they reach the ctor detector is measured to determine their
mass.
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Figure 4.2: Target 4E1 - Image of Target 4E1 (gold plate) with eleven corns placed upon it. The corns
belong to different corns, taken from CoMeCS-Project (2017).

An intersection of these two estimated class assignments were taken to consider if
a spectrum is corn specific or not. In Table 1 the class assignments for the different
meteorite classes are listed.

Table 1: This table shows the number of total corns, the number of different gold plates (targets)
they were placed on, the total observations for each of the elven classes and how many were
classified by kNN and PCA as meteorite specific

Nr. of corns Nr. of targets Total observations on corn
allende 4 2 213 150

lance 3 2 94 77

mocs 6 2 106 71

murchison 2 2 97 84

ochansk 1 1 115 80

pultusk 11 2 199 107

renazzo 2 1 70 64

substrate - 4 111 -
tamdakht 9 2 163 106

tieschitz 2 1 70 36

tissint 6 1 170 71

Since all the intensities of a spectrum are non-negative (positive) a NMF algorithm
could be applied to estimate two basis spectra, where one basis spectrum should
represent a typical meteorite spectrum and the second basis spectrum should be very
similar to a Gold spectrum. The similarity to a substrate spectra can be determined by
comparing the resulted NMF basis spectra with the spectra of the class ”substrate”,
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which are pure spectra of Gold and as mentioned before should be distinguishable to
spectra from a meteorite. Taking the weight matrix into account each spectrum could
be assigned by its respective weight for the two basis spectra to the corn or substrate
class.

This idea motivates the subject of the next section, but at first it should be stated
which similarity measures were used for the comparison of two spectra. The Pearson
correlation coefficient r between two spectra and the correlation coefficient of the
scaled spectra Is

m = m2 ∗
√

Im (where Im is the intensity on mass number m), which
puts more weight on the higher masses, were referred as popular similarity measures
by Varmuza (2010). The correlation coefficient for the scaled spectra will be called
rscaled in the upcoming analyses. Furthermore, the L1- and L2- error were listed as
typical similarity measures.

4.2 Corn vs Substrate

Since one of the key features of NMF is to separate non-negative data into parts, it
is of interest to analyse how NMF performs on the task of distinguishing between
the spectra of a corn and the substrate (gold-plate). As a reference, to evaluate the
performance, the already performed classification based on kNN (k-nearest neighbour)
and PCA was taken (see Table 1).

In this section, an example of such an analysis is given by considering only the spectra
potentially taken from the meteorite ”ochansk”, where 115 spectra have been measured
as stated in Table 1. In order to get a first insight, the chosen NMF algorithms with 1000
random initializations (seed = 123457) were applied and for each algorithm the best
solution out of these 1000 initializations was kept. This high number of replications
should ensure to achieve reasonable results.

In Table 2 the performance of this NMF algorithms are compared by the proposed
quality measures (see Section 3.2) and their ability of estimating two dissimilar basis
spectra (measured by r and rscaled). All algorithms achieved a very high value of
explained variance in the range of 95% to 97%. Furthermore, the estimated basis
matrices W preserved the sparseness of the target matrix (115 spectra), which is
around 86.73%. In terms of their cluster ability, all performed pretty similar and
reconstructed the reference classification to an acceptable level with purity between
0.70 and 0.76. In terms of their ability to estimate two dissimilar basis spectra, the
SNMF/L method achieved the best result with a correlation coefficient less than 0.1
and even rscaled is considered low with 0.16. Moreover the computation time and
convergence speed of the factorization obtained by SNMF/L was the lowest of all
the methods except from GEO, which is the only non-iterative algorithm. The GEO
algorithm performed surprisingly well in comparison to the other algorithms even
though the separability assumption was not fulfilled. As a result of this first analysis,
the factorization obtained by SNMF/L was considered as the favoured method for
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further investigations. In the following, the obtained basis matrix and weight matrix

Table 2: Quality measures - NMF for meteorite ”ochansk” results are based on 1000 random initializa-
tions

Quality measures
Algorithms Evar (%) Sparsity W/H (%) r r scaled purity entropy CPU time (seconds) niter
LEE 97.53 88.95 / 59.09 0.21 0.41 0.73 0.57 0.61 420
BRUNET 96.57 88.50 / 60.57 0.25 0.51 0.76 0.54 0.67 440
ALS 97.53 88.95 / 61.78 0.21 0.41 0.70 0.65 1.52 600
AHCLS 97.52 88.49 / 63.29 0.28 0.52 0.76 0.53 1.49 600
SNMF/L 97.46 89.89 / 49.26 0.09 0.16 0.75 0.55 0.36 90
GEO 95.29 90.84 / 57.21 0.20 0.22 0.75 0.55 0.11 0

by the best method are denoted as W∗, respectively H∗.

In order to verify, if a deterministic initialization method could achieve better or
similar results for this issue, the proposed seeding methods in combination with the
SNMF/L algorithm have been applied. The results are given in Table 3. To compare the
results to (W∗, H∗), the relative difference in term of the SNMF/L objective function
f (W,H)− f (W∗,H∗)

f (W∗,H∗) , where f (·, ·) is equal to (2.15), the relative Frobineus norm difference
between W∗ and W, respectively H∗ and H have been used. The initialization with
deterministic strategies resulted in all cases apart from NICA2 in an almost identical
solution to the one based on 1000 random initializations. Furthermore, it is not obvious
if the basis matrix obtained with NICA2 method could result in a better separation of
the corn and substrate, but since the (scaled) correlation coefficient were identical to
the correlation coefficients obtained by the solution (W∗, H∗), hence there is no reason
to prefer this method. To summarize the results, every deterministic initialization apart
from NICA2 performed well as it resulted in a solution very close to the best solution
obtained from random initialization and the computation time of the algorithm was
reduced, despite of the increased iteration steps until convergence.

Table 3: Comparison to results of random initialization - NMF for meteorite ”ochansk” results for
SNMF/L with different deterministic initializations

Difference measures
Initializations f (W,H)− f (W∗,H∗)

f (W∗,H∗)
‖W∗−W‖
‖W∗‖

‖H∗−H‖
‖H∗‖ CPU time (seconds) niter

NNDSVD 0.0007 0.0004 0.001 0.14 105
SVD 0.0006 0.0004 0.0009 0.14 105
SPHERICAL 0.0008 0.0005 0.001 0.18 125
NICA1 0.0008 0.0005 0.001 0.17 120
NICA2 0.0007 1.34 1.05 0.16 110
NICA3 0.0008 0.0005 0.001 0.18 130

The dissimilarity between the two basis spectra W∗ = (w∗1 , w∗2) obtained by SNMF/L
can be better understood by the illustration of the two spectra in a mass spectrum (see
Figure 4.3). The L1-error and L2-error between the two basis spectra are computed and
strengthen the opinion of dissimilarity. The high discrepancy between L1-error and
L2-error is caused by the few high peaks, which were emphasized by the L2-error. As
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in Figure 4.3 depicted the highest intensities (so-called peaks) are exclusively obtained
for the first 100 masses. Consequently, a second plot of the spectra restricting to the
first 100 masses is given in Figure 4.4.
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Figure 4.3: Mass spectrum - The typical form of a mass spectrum is used with ion mass to charge
ratios (m/z) on the x-axis and their relative intensity on the y-axis. This illustration enforces
the already computed dissimilarity of the two basis spectra. In addition to the correlation
coefficient the L1-error and L2-error are stated.

The 5 masses, which contribute the most to the spectrum of the respective basis showed
an intersection only in one mass ”m39”-Potassium, but for basis 2 the intensity is about
10% lower. The first basis consists mostly of the masses ”m24”,”m25”,”m26”,”m39”
and ”m56”, where the masses 24 − 26 are all types of Magnesium with different
numbers of neutrons, and mass 56 represents an iron isotope. In contrast, the second
basis contains high intensities of ”m28”-Silicon, ”m39”-Potassium, ”m40”-Argon,
”m41”-Potassium and ”m43”-Calcium.

The application of the NMF procedure would be considered a success if one of the
basis spectra turns out be very similar to the spectra obtained from the substrate.
Therefore, the basis spectra are compared to all substrates measured on the same
target ”4E1” (23 spectra in this sub-class of substrates). The results of this comparison
are stated in Table 4 and indicate that the first basis w∗1 has little in common with all
substrate spectra. In contrast, the second basis w∗2 can be considered similar to the
substrates of the target ”4E1” as it had to at least one of the substrate spectra a nearly
perfect correlation of 0.98 respectively 0.94 for the scaled spectra. In addition, the L1-
and L2-errors are at a low level for the second basis factor.
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Table 4: Comparison to results of random initialization - NMF for meteorite ”ochansk” basis spectra
obtained by SNMF/L compared to substrate of target ”4E1”. Range denotes the interval
between minimum and maximum of the respective similarity measure.

Similarity measures
Basis spectra r range r scaled range L1 range L2 range

W1 [0.07, 0.19] [0.02, 0.26] [139.40, 157.70] [2369, 2960]
W2 [0.83, 0.98] [0.58, 0.94] [25.96, 48.67] [36.23, 295.02]
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Figure 4.4: Mass spectrum of first 100 masses - The typical form of a mass spectrum is used with ion
mass to charge ratios (m/z) on the x-axis and their relative intensity on the y-axis. For every
basis spectra the 5 ions, which contribute the most to the spectrum of the basis factor are
labelled.

The mean spectra of the substrate sub-class ”4E1” was used to illustrate the similarities
respectively dissimilarities to the NMF basis spectra. In Figure 4.5 the mass spectrum
of the NMF basis and the ”mean” substrate were compared with restriction to the first
100 ion masses. As already noted within the first 100 ion masses the most peaks were
observed. For the second basis w∗2 the peaks were observed on the identical position
as the peaks of the mean substrate, hence the mass spectrum visually confirmed the
quantitative results.
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Figure 4.5: Mass spectrum Basis vs Substrate - The typical form of a mass spectrum is used with ion
mass to charge ratios (m/z) on the x-axis and their relative intensity on the y-axis. This
illustration gives further justification on the high similarity between the second NMF basis
and the mean substrate of the subclass ”4E1”. In addition to the correlation coefficient the
L1-error and L2-error are stated, whereby r s is denoted for r scaled.
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Until now only the basis spectra have been analysed, but the weight matrix H∗ is
crucial for the definition of the cluster. The spectrum i belongs to the NMF cluster
of the first basis, which is considered as the spectrum to represent the meteorite
”ochansk”, if the value of h1i is bigger than the value of h2i, the respective weight for
spectrum i of the second basis. Otherwise, the spectrum i belongs to the NMF cluster
of the second basis, which is considered as the spectrum to represent the substrate.
In order to get further insight of the clustering structure the values of the optimal
(normed) weight matrix H∗ were plotted (see Figure 4.6). Due to the form of H∗ it
was revealed that some spectra such as the observations with id 25 and 45 could
be reconstructed solely out of the second basis spectrum. For most cases a clearly
dominating spectrum could be obtained, but for a few spectra almost equal weights of
basis spectra 1 and 2 were obtained.
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Figure 4.6: Structure of the weight matrix H∗ - For every spectrum the two corresponding weights
of the NMF basis spectra were pointed out. Considering this structure there are existing
spectra, which are completely belonging to the corn and others that can be considered as
substrate as they only consist of the second basis spectrum.

Since the exact x- and y-coordinates (on the specific target) of every measured spectrum
are available the NMF clustering could be illustrated under the consideration of the
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spectra position. From the graphic of the target ”4E1” (see Figure 4.2), the spectra
belonging to the substrate should mainly be obtained in the upper right and lower
left corner of the mesh grid. According to the graphs in Figure 4.7 the clustering
imposed by the NMF factors achieved a better performance of locating the corn than
the reference clustering (based on the intersection of PCA and kNN). The spectra with
a high weight for the first basis are located in the center of the mesh grid and only
low weights are considered for the spectra in the corners. In contrast to the reference
cluster no corn specific spectra were located at the upper right corner as it should be
considering the Figure 4.7.
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Figure 4.7: Locating the corn ”ochansk” - The first plot depicted the x- and y- coordinate of the
measured spectra by drawing a circle at the respective position, whereby the size of the
circle depends on the weight of the first NMF basis spectrum assigned for this spectrum.
The second plot can be interpreted in the same manner for the second NMF basis spectrum.
In the last plot only the spectra, which are belonging to corn ”ochansk” according to the
clustering obtained by PCA and kNN, are marked with a circle.
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4.3 MixUp Spectra with/without Noise

The NMF algorithms were applied to spectra, which have been constructed out of the
addition of two known spectra. The NMF algorithms should identify these two known
spectra as their basis spectra W and the weights of the positive linear combination
should match the values of the weight matrix H.

The following two spectra were chosen to construct the spectra:

• ”msub”: the spectrum obtained by taking the mean of all ”substrates” spectra,
which will be referred to as in the subsequent analysis.

• ”mall”: the spectrum obtained by taking the mean of all spectra of meteorite
”allende”, which belong to a measurement on the corn according to the clustering
obtained by PCA and kNN.

As these two spectra will be of further interest their mass spectra were plotted in
Figure 4.8. This first impression indicated that the spectra can be regarded as similar
in some way, which makes the separation of these spectra more complicated. The high
r scaled is influenced by the fact that the major peak differences occur for the low
masses.
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Figure 4.8: Mass spectrum mall vs msub - The typical form of a mass spectrum is used with ion mass
to charge ratios (m/z) on the x-axis and their relative intensity on the y-axis. In addition to
the correlation coefficient the L1-error and L2-error are stated.

In order to examine the major peaks the mass spectra with restriction to the first
100 masses were plotted in Figure 4.9. The masses ”m28”-Silicon and ”m40”-Argon
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appeared to a high intense in both spectra. For the mall spectrum other high peaks
are obtained at the ”m24”-Magnesium and ”m56”/”m57”-iron (different number of
neutrons) isotopes. The other most dominant peaks of the msub spectrum are at
”m39/m41”-Potassium (different number of neutrons) and ”m43”-Calcium isotopes.
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Figure 4.9: Mass spectrum mall vs msub first 100 masses - The typical form of a mass spectrum is
used with ion mass to charge ratios (m/z) on the x-axis and their relative intensity on the
y-axis. For every spectrum the ions, which contribute the most to the spectrum are labelled.

In the upcoming sections these spectra will be used as reference to analyse the
performance of the NMF algorithms.

4.3.1 Mix - without Noise

A positive combination of the spectra msub and mall without any noise was suggested
to be well reconstructed by all the NMF algorithms. In this section it was analysed
if this suggestion was correct. The following linear mixing structure was used to
construct 50 spectra S = (s1, . . . , s50):

si = αi ∗mall + (1− αi) ∗msub, (4.1)

where the coefficient αi = 0.01 + (i− 1) ∗ 0.02 reflects the weight of the mall spectrum
used for the constructed spectra.

In Table 5 the results achieved by the NMF algorithms considering their optimal
solutions (with respect to the underlying objective function) from 1000 random initial-
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ization are stated. The coefficients r1 and r2 are the correlation coefficients between the
estimated NMF basis spectra and the true basis spectra mall and msub (respectively rs1
and rs2 for the scaled variants). All algorithms performed well with almost classifying
all spectra correctly and estimating basis spectra that are (nearly) perfectly correlated
to the true basis spectra. Nevertheless, only the GEO algorithm and SNMF/L classified
all spectra correctly, but as the correlation of the scaled spectrum of the first SNMF/L
basis to the scaled spectrum of mall is low compared to the other with 0.86, the GEO
algorithm will be preferred. The good performance of the GEO algorithm in this case
is no surprise as the underlying data matrix S is almost separable.

Table 5: Quality measures - NMF of S, results are based on 1000 random initializations
Quality measures

Algorithms Evar (%) r1/r2 rs1/rs2 purity entropy CPU time (seconds) niter
LEE 1 0.99 / 0.99 0.99 / 1 0.98 0.12 0.25 440
BRUNET 1 0.99 / 0.99 0.99 / 0.99 0.96 0.21 0.24 430
ALS 1 0.99 / 0.99 0.99 / 0.99 0.94 0.27 1.05 600
AHCLS 0.99 0.99 / 0.99 0.99 / 0.99 0.98 0.12 0.92 600
SNMF/L 0.99 0.98 / 0.99 0.86 / 0.99 1 0 0.24 95
GEO 1 0.99 / 0.99 0.99 / 0.99 1 0 0.17 0
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Figure 4.10: Consensus matrix - A heat map based on the consensus matrix obtained from the 1000
random initializations for the NMF algorithms BRUNET and SNMF/L. While SNMF/L
generates stable clusters, the BRUNET algorithm varies greatly in the cluster assignments
of the spectra, which are influenced almost equally by the two constitutive spectra.
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The stability of the cluster assignments can depend on the chosen random initialization
(since different stationary points potentially lead to different cluster assignments),
despite for the GEO algorithm which does not need any initialization of the basis or
weight matrix. This cluster stability can be analyzed by a so called consensus map (see
Gaujoux and Seoighe, 2010), which creates a heatmap on the basis of the consensus
matrix. As Figure 4.10 shows the BRUNET algorithm has issues to assign the correct
clusters for the spectra, which are almost equally influenced by mall and msub,
whereas SNMF/L reproduces under every random initialization (1000) the correct
clusters. Furthermore, for the clusters assigned by LEE and AHCLS a similar instability
as for BRUNET can be obtained (ALS even shows severe instability).

To complete this analysis, the structure of the optimal weight matrix H∗ obtained by
the GEO algorithm is depicted in Figure 4.11. It confirms the already stated arguments
of achieving nearly perfect reconstruction and in addition the relative error of H∗

(‖H∗−H‖
‖H‖ where H is the matrix containing the true coefficients αi and 1− αi in the i-th

column) is on a low level.
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Figure 4.11: Structure of the weight matrix H∗ - For every spectrum the two corresponding weights
of the NMF basis spectra were pointed out. The linear structure can be almost perfectly
reconstructed with a low relative error of H∗.

4.3.2 Mix - with Additive Noise

In this section the robustness to noise of the NMF methods is analyzed. For this reason
the spectra S constructed by (4.1) are perturbed with noise. Every noise spectrum is
formed by a random poisson vector (of length 297) with λ = mean(mall) and normed
to sum up to 70 (as mentioned in Section 4.1 the ordinary spectra are normed to 100).
The normalization of the noise spectra to 70 should simulate the lesser importance of
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noise compared to the ordinary spectra. For every spectrum si a noise spectrum ni is
added. The perturbed spectra s̃i are represented in the following way:

s̃i = si + ni ∀i = 1, . . . , 50. (4.2)

In Table 6 the obtained results by the NMF methods applied to these perturbed spectra
S̃ are stated. All algorithms still perform well in terms of their cluster ability with a
high purity of 0.98 and low entropy of 0.12, except for the SNMF/L method, which
had a slightly lower purity of 0.96 and higher entropy of 0.24. The two constitutive
spectra still can be reconstructed appropriately with correlation coefficients r1 and
r2 between 0.96 and 0.99, however the correlation coefficients of the scaled spectra
fell off, what indicates that the methods, especially GEO, have trouble to distinguish
between the noise and the constitutive spectra in the higher masses. This effect occurs
since the intensities for the higher masses are on a very low level for the spectra mall
and msub. Considering these results and the good cluster stability (see ??) achieved
by AHCLS, it can be regarded as the best NMF method (W∗, H∗).

Table 6: Quality measures - NMF of S̃, results are based on 1000 random initializations
Quality measures

Algorithms Evar (%) r1/r2 rs1/rs2 purity entropy CPU time (seconds) niter
LEE 0.93 0.99 / 0.99 0.78 / 0.87 0.98 0.12 0.35 840
BRUNET 0.93 0.99 / 0.99 0.75 / 0.87 0.98 0.12 0.41 460
ALS 0.93 0.99 / 0.99 0.78 / 0.86 0.98 0.12 0.97 600
AHCLS 0.93 0.99 / 0.99 0.79 / 0.87 0.98 0.12 1.06 600
SNMF/L 0.93 0.98 / 0.99 0.67 / 0.86 0.96 0.24 0.36 95
GEO 0.89 0.96 / 0.96 0.40 / 0.66 0.98 0.12 0.16 0
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Figure 4.12: Consensus matrix (with noise spectra) - A heat map based on the consensus matrix
obtained from the 1000 random initializations for the NMF algorithms BRUNET and
AHCLS. AHCLS produces stable clusters (despite of two spectra which tend to be difficult
to classify) compared to BRUNET, where some instability could be observed.
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The estimated basis spectra of AHCLS and the spectra of mall and msub are depicted
in Figure 4.13 to get a better impression of their similarities. a As this figure shows,
adaptation to constitutive spectra mall and msub is good, as all peaks have been
reconstructed by the basis spectra.
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Figure 4.13: Mass spectrum W∗ vs mall and msub - The typical form of a mass spectrum is used with
ion mass to charge ratios (m/z) on the x-axis and their relative intensity on the y-axis. In
addition to the correlation coefficient the L1-error and L2-error are stated.
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It remains to examine the structure of H∗ and to what extent the noise influenced
the structure. As shown in Figure 4.14 noise can be treated adequately and the linear
structure can be well preserved. The relative error of H∗ increased compared to the
noiseless case, but is still acceptable.
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Figure 4.14: Structure of the weight matrix H∗ - For every spectrum the two corresponding weights
of the NMF basis spectra were pointed out. The linear structure is still observable for H∗

(from the best AHCLS solution), but not as smooth as in the noiseless case.
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Noise on the coefficients

The scenario (4.2) can be further adjusted by considering a perturbation of the linear
coefficients αi, hence the following imprecision for αi (respectively 1− αi) is consid-
ered:

α̃i = αi ∗ ui, (4.3)

where ui is a random variable which is uniformly distributed in the interval [0.5; 2].

The performance of the NMF method under this additional perturbation are summa-
rized in Table 7. The reconstruction of the two constitutive spectra mall and msub
nearly not changed as it would be expected. The cluster assignment is clearly influ-
enced by this sort of perturbation, but still can be considered high with a purity of
0.92 and an entropy between 0.34 and 0.40. As could be expected the spectra, which
are almost equally influenced by the spectra mall and msub tended to be misclassified
(see Figure 4.15).

Table 7: Quality measures - NMF of S̃ with noisy α̃i, results are based on 1000 random initializations
Quality measures

Algorithms Evar (%) r1/r2 rs1/rs2 purity entropy CPU time (seconds) niter
LEE 0.96 0.99 / 0.99 0.75 / 0.89 0.92 0.34 0.2 430
BRUNET 0.95 0.99 / 0.99 0.74 / 0.88 0.92 0.39 0.39 600
ALS 0.96 0.99 / 0.99 0.75 / 0.89 0.92 0.34 1.08 600
AHCLS 0.96 0.99 / 0.99 0.77 / 0.89 0.92 0.34 1.06 600
SNMF/L 0.96 0.98 / 0.99 0.62 / 0.89 0.92 0.34 0.19 80
GEO 0.94 0.99 / 0.98 0.45 / 0.67 0.92 0.40 0.16 0

Similar to the previous scenario the AHCLS showed the best performance considering
these quality measures. The basis and weight matrix of the best AHCLS solution will
be denoted as (W∗, H∗).

Since this perturbation strategy influences the cluster assignments it is of interest to
analyze the weight matrix H∗. Therefore, the structure of H∗ is plotted in Figure 4.16.
In contrast to the previous perturbation scenario, the linear structure is not so clear,
but a linear trend can still be identified. It is not surprising that the relative error of H
increases further, but it is still quite small.
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Figure 4.15: Consensus matrix - A heat map based on the consensus matrix obtained from the 1000
random initializations for the NMF algorithms LEE and AHCLS. Compared to the previous
analysis the clustering is not that stable any more. The spectra influenced by both spectra
almost equally tended to be wrong classified.
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Figure 4.16: Structure of the weight matrix H∗ - For every spectra the two corresponding weights of
the NMF basis spectra were pointed out. The linear structure is still observable, but the
perturbation is clearly visible.
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4.4 Rank Estimation ”allende”

In this section a brief example is given how a rank estimation for CoMeCS data could
be performed. Consider for instance the task to identify the meteorite specific spectra
of meteorite ”allende”, where 213 spectra were measured from 4 corns and on 2
different targets. Hence, it is not clear if the spectra are homogeneous or if they differ
for every corn. Therefore, a factorization of only two basis spectra, one resembling
the meteorite and one the substrate could deliver misleading results. In order to
decide, which factorization rank r is needed, the proposed methods of Section 3.3
were applied to the data of meteorite ”allende”. The NMF method SNMF/L with 30
random initializations was used to estimate the NMF’s for the ranks from 2 to 7. In
the following, the suggested rank according to the respective method based on the
results depicted in Figure 4.17 and Figure 4.18 is listed:

• Brunets method: The factorization rank of 3 was suggested as optimal since
the cophenetic correlation decreased the first time from 1 to 0.99 for a rank 4
factorization.

• Hutchins method: The inflection point of the rSS curve is detected at rank 3 and
therefore rank 3 considered to be optimal.

• Frigyesi and Höglund method: As shown in Figure 4.18 the NMF of the ran-
domized data resulted in very high rSS, which makes the detection of a decrease
in the rSS curve of the not randomized impossible by a simple glance on the
plot.

The SVD-based rule uses only the singular value decomposition of the data and would
suggest a factorization rank of 69, since the first 70 singular values were necessary to
achieve more than 90% of the total sum of singular values. This high number for the
factorization is rather impractical and as shown in Figure 4.17 the clusters start to be
unstable after rank 3.

These methods only provide a guideline for the estimation, but the final decision has to
be made by the user and is often application dependent. In the obtained example also
rank 4 could be a useful factorization rank considering the high increase of evar, the
still high cophenetic correlation of 0.995, but the rather low silhouette coefficients for
the basis factors and the weight factors (coefficients) indicate instability of the cluster
assignments. In conclusion, the rank 4 NMF factorization is less stable in context of
clusters, but is significantly better approximating the spectra of meteorite ”allende”
than the rank 3 NMF factorization.
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Figure 4.17: Rank survey for ”allende” - The rank survey for the data based on meterorite ”allende”
spectra is illustrated. Each point was obtained from 30 runs of the SNMF/L algorithm
with the respective rank r performed on ”allende” spectra. The measure type ”best fit”
corresponds to the quality measures obtained by the best model obtained from the 30 runs.
”Basis” respectively ”Coefficients” are the corresponding basis factors respectively weight
factors of the best model. The points of ”Consensus” are the values of the consensus matrix
obtained by the 30 runs of the SNMF/L algorithm.
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Figure 4.18: Rank survey for ”allende” - The rank survey for the data based on meterorite ”allende”
spectra is illustrated. Each point (x-Data) was obtained from 30 runs of the SNMF/L
algorithm performed on ”allende” spectra (identical to Figure 4.17) and each triangle
(y-Data) was obtained from 30 runs of the SNMF/L algorithm performed on the randomly
permutated data matrix (consisting of ”allende” spectra). The random permutation of
entries destroys the structure of the spectra, hence NMF results in a bad approximation
since no latent structure could be obtained.

To gain further insight of the cluster structure the consensus maps of the NMF
factorizations with rank 3 and 4 are compared (see Figure 4.19). The clusters of the
factorization with rank 4 are still pretty well separated, however since one cluster is
very small the rank 3 factorization seems more appropriate. It should be mentioned
that the obtained cluster structures of the rank 3 and 4 factorizations are not very
similar. In conclusion, both factorizations could provide useful basis factors, but the
rank 3 factorization seems to be more reliable for this case.
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Figure 4.19: Consensus matrix - A heat map based on the consensus matrix obtained from the 30
random initializations for the NMF algorithm SNMF/L with factorization rank 3 and 4. It
can be obtained that the clusters for rank 4 can still be clearly identified, however they are
not very similar to the cluster obtained by rank 3.
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4.5 Conclusion

In the first numerical experiment carried out in this section it was tried to separate
the spectra of a meteorite from the spectra of substrate. All tested NMF methods
achieved acceptable results. The GEO algorithm, which is based on the assumption
of separability, performed better than most of the other methods. Only the SNMF/L
method estimated basis spectra, which are more dissimilar than the basis spectra of
GEO. These good results for the GEO algorithm were not expected, since the assump-
tion of separability is violated. Moreover, the application of the various deterministic
initialization methods in combination with the SNMF/L method resulted in solutions,
which have been very close to the best solution obtained from 1000 random initial-
izations. Therefore, the use of such initialization methods would be preferred, as it
produces without the need of any replication reasonable results. One basis spectrum
of the best NMF (application of SNMF/L algorithm) has shown to be very similar to
the typical spectrum of substrate, while the other basis spectrum was considered as
dissimilar to the spectrum of substrate. In addition, the obtained weight matrix was
used to compare the clustering results of NMF more closely, in particular with the
clusters based on kNN and PCA. This analysis showed that the clustering imposed by
NMF performs better than the reference clustering for the task of locating the corn
(see Figure 4.7).

The simulations, where two spectra known to be from a meteorite or respectively from
a substrate, have been used to simulate the data by a positive combination of these
two spectra. In the noiseless case all algorithms performed very well. Especially, the
GEO and SNMF/L algorithms were able to perfectly reconstruct the classification.
Then noise was added to test the robustness to noise of the NMF methods. The results
in the case of noise were still very good, as the basis spectra were very similar to the
two constitutive spectra and the linear weighting scheme was still observable.

In the last section, the challenge of estimating the optimal factorization rank was inves-
tigated and it was shown that in the case of spectra observed by multiple corns of the
same meteorite, such rank estimation could be advantageous. It provides information
that the spectra of the different meteorites are possibly not that homogeneous.

In conclusion, the simulations carried out showed that NMF algorithms could be useful
for separating spectra in order to identify, for example, the spectra of a meteorite
corn.
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R Code

At first the R Code of all implemented initialization methods are stated. These functions
could be used as seeding methods for the nmf-function in the NMF package. They all
have the following two parameters in common: (i) target, which denotes for the target
matrix that is required to be factorized, (ii) model, which denotes for the NMF model
and contains information such as the used factorization rank.

############### ACOL ##################

## p .... the number of columns to be used for averaging,

default= n/2 , n...number of columns in the target matrix

rand_ACOL <- function(model, target, p = 1) {

p_a <- NULL

m <- dim(target)[1]

n <- dim(target)[2]

r <- nbasis(model)

j <- 1

W <- matrix(0,m,r)

if(p == 1)

{

p_a = round(n/2)

}

else {

p_a = p

}

cat("It was chosen to take p=",p_a,"as number of columns to average")

while(j <= r)

{

rand_col <- sample(1:n,p_a)

a_col <- apply(target[,rand_col],1,mean)

W[,j] <- a_col

j <- j + 1

}

# initialize basis matrix W according to ACOL with every column

constructed of p randomly chosen column of the target matrix

basis(model) <- W

# initialize weight matrix H by fast NNLS algorithm from Van Benthem

coef(model) <- fcnnls(W,target)$x
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# return updated object

return(model)

}

# Register ACOL init

setNMFSeed(’ACOL’, rand_ACOL, overwrite=TRUE)

########### random C #################

# q .... number of longest columns to be considered

rand_C <- function(model, target, p = 1, q = 5) {

p_a <- NULL

q_a <- NULL

m <- dim(target)[1]

n <- dim(target)[2]

r <- nbasis(model)

j <- 1

W <- matrix(0,m,r)

if(p == 1)

{

p_a = round(n/2)

}

else { p_a = p}

cat("It was chosen to take p=",p_a,"as number of columns to average \n")

if( q == 5)

{

q_a = 5

}

else{ q_a = q}

norms_target <- apply(target,2,function(x){sum(x^2)})

names(norms_target) <- 1:n

sort_norm <- sort(norms_target,decreasing = TRUE)

q_col <- as.numeric(names(sort_norm))[1:q_a]

cat("longest columns:",q_col)

while(j <= r)

{

rand_col <- sample(q_col,p_a,replace = TRUE)

a_col <- apply(target[,rand_col],1,mean)

W[,j] <- a_col

j <- j + 1
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}

# initialize basis matrix W according to ACOL with every column

constructed of p randomly chosen column of the target matrix

basis(model) <- W

# initialize weight matrix H by fast NNLS algorithm from Van Benthem

coef(model) <- fcnnls(W,target)$x

# return updated object

return(model)

}

# Register C init

setNMFSeed(’Rand_C’, rand_C, overwrite=TRUE)

######## SVD seeding ###################

SVD_seeding <- function(model, target) {

r <- nbasis(model)

svd_target <- svd(target)

# initialize basis matrix W with absolute value

of first k columns of U matrix from SVD

basis(model) <- abs( svd_target$u[,1:r])

# initialize weight matrix H with absolute value

of first k rows of singualr values times right singular vectors

coef(model) <- abs( diag(svd_target$d)[1:r,] %*% t(svd_target$v))

# return updated object

return(model)

}

# Register SVD init

setNMFSeed(’SVD’, SVD_seeding, overwrite=TRUE)

######## Spherical k-means seeding ###################

Sp_kmean <- function(model, target) {

if( !require.quiet(’skmeans’) )

stop("Seeding method ’Spherical’ requires package
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‘skmeans‘ to be installed")

r <- nbasis(model)

sk_result <- skmeans(t(target),r)

# initialize W with the centroids obtained from spherical K-Means

basis(model) <- t(sk_result$prototypes)

# initialize weight matrix H by fast NNLS algorithm from Van Benthem

coef(model) <- fcnnls(t(sk_result$prototypes),target)$x

# return updated object

return(model)

}

# Register SVD init

setNMFSeed(’Spherical’, Sp_kmean, overwrite=TRUE)

######## NICA seeding ###################

NICA_1 <- function(model, target, maxIter= 1000, eps_conv=1e-4,

gamma = 0.1, negopt = 1, negdev = "E") {

m <- dim(target)[1]

n <- dim(target)[2]

r <- nbasis(model)

j <- 1

# k eigenvectors of M M^T are the rows in P matrix ,

P_1 the first r eigenvectors

e_M <- eigen(target %*% t(target))

P <- e_M$vectors

P_1 <- e_M$vectors[1:r,]

P_1_M <- P_1 %*% target

mu <- apply(P_1_M,1,mean)

cp_1 <- P_1_M %*% t(P_1_M) - mu %*% t(mu)

# Z matrix calculated like it is suggested in theoretical part

e_PM <- eigen(cp_1)

V <- e_PM$vectors %*% diag( 1 / sqrt(e_PM$values)) %*% t(e_PM$vectors)

Z <- V %*% P_1_M

# initialize with a random orthonormal matrix

if( !require.quiet(’pracma’) )

stop("Seeding method ’NICA’ requires package ‘pracma‘ to be installed")
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T_0 <- randortho(r)

T_1 <- diag(rep(1,r))

lim <- rep(1000,maxIter)

while ( lim[j] > eps_conv && j <= maxIter)

{

if(j > 1)

{

T_0 <- T_1

}

Y <- T_0 %*% Z

for(u in 1:r)

{

T_1[,u] <- T_0[,u] - 2 * gamma * sum(pmin(0,Y[u,])*Z[u,])

}

# symmetrical decorrelation step

T_sW1 <- La.svd(T_1)

T_1 <- T_sW1$u %*% diag(1 / T_sW1$d) %*% t(T_sW1$u) %*% T_1

j <- j + 1

lim[j] <- max(abs(diag(abs(T_1 %*% t(T_0))) - 1))

}

Y <- T_1 %*% Z

i_TV <- inv(T_1 %*% V)

nuler <- matrix(0,m-r,r)

i_TV_0 <- rbind(i_TV,nuler)

W <- inv(P) %*% i_TV_0

# option nr 1

if (negopt == 1 )

{

# initialize basis matrix W with absolute

# value of first k columns of U matrix from SVD

basis(model) <- abs(W)

# initialize weight matrix H with absolute

# value of first k rows of singular values times

# right singular vectors
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coef(model) <- abs(Y)

}

else if(negopt == 2)

{

basis(model) <- abs(W)

c_m <- abs(W) %*% t(abs(W)) %*% target

if( negdev == "E")

{

alpha_H <- sum(target * c_m)/sum(c_m * c_m)

}

else

{

alpha_H <- sum(target)/sum(b_m)

}

coef(model) <- alpha_H * t(abs(W)) %*% target

}

else

{

b_m <- target %*% t(abs(Y)) %*% abs(Y)

if( negdev == "E")

{

alpha_W <- sum(target * b_m)/sum(b_m * b_m)

}

else

{

alpha_W <- sum(target)/sum(b_m)

}

basis(model) <- alpha_W * target %*% t(abs(Y))

coef(model) <- abs(Y)

}

# return updated object

return(model)

}

# Register NICA init

setNMFSeed(’NICA’, NICA_1, overwrite=TRUE)

In the following, the implemented NMF algorithms are stated, which can be used in

88



the framework of the NMF package.

############# Basic ALS #########################

ALS <- function(M, seed, maxIter= 600,eps=.Machine$double.eps) {

j <- 1

stop_c <- 0

W <- basis(seed)

H <- coef(seed)

m <- dim(M)[1]

n <- dim(M)[2]

# Solve alternatively the LS equations

# condition to stop if the LS equation is

# not solveable anymore due to instability of the matrix

while( (stop_c == 0) && (j <= maxIter) &&

(rcond(t(W)%*% W) > 2^(-10)) && (rcond(H %*% t(H)) > 2^(-10)) )

{

# if ( any(rowSums(H)==0) )

# {

# break

# }

# if ( any(colSums(W)==0) )

# {

# break

# }

H_1 <- H

H <- solve(t(W)%*% W,t(W) %*% M)

H <- pmax(H,eps)

#norm(H_1-H) < 2^(-8)

if ( (rcond(H %*% t(H)) < 2^(-10)) || (any(rowSums(H) < 2^(-10)) ))

{

H <- H_1

stop_c <- 1

}

else

{

W_1 <- W

W <- t(solve(H %*% t(H),H %*% t(M)))

W <- pmax(W,eps)

if ( any(colSums(W) < 2^(-10)) )

{

W <- W_1
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stop_c <- 1

}

}

j <- j + 1

}

#W[W == eps] <- 0

#H[H == eps] <- 0

basis(seed) <- W

coef(seed) <- H

seed@extra$iteration <- j-1

# return updated data

return(seed)

}

############# AHCLS #########################

#l_H = 0.2, l_W = 0.3, a_H = 0.5, a_W = 0.7

AHCLS <- function(M, seed, maxIter= 600,eps=.Machine$double.eps, l_H =

0.05, l_W = 0.01, a_H = 0.6, a_W = 0.8) {

j <- 1

stop_c <- 0

m <- dim(M)[1]

n <- dim(M)[2]

r <- nbasis(seed)

W <- basis(seed)

H <- coef(seed)

if( !require.quiet(’pracma’) )

stop("Seeding method ’AHCLS’ requires package ‘pracma‘ to be installed")

b_H <- ((1-a_H)*sqrt(r) + a_H)^2

b_W <- ((1-a_W)*sqrt(r) + a_W)^2

E <- ones(r)

I_1 <- diag(rep(1,r))

temp_x_h <- t(W) %*% W + l_H * b_H * I_1 - l_H * E

temp_y_h <- t(W) %*% M

temp_x_W <- H %*% t(H) + l_W * b_W * I_1 - l_W * E

temp_y_W <- H %*% t(M)
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# W_0 <- W + 1

# Solve alternatively the CLS equations

# condition to stop if the CLS equation

# is not solveable anymore due to instability of the matrix

while( (stop_c == 0) && (j <= maxIter) &&

(rcond(temp_x_h) > 2^(-10)) && (rcond(temp_x_W) > 2^(-10)) )

{

# W_0 <- W

#fcnnls(W,target)$x

# save H before the update

H_1 <- H

temp_x_h <- t(W) %*% W + l_H * b_H * I_1 - l_H * E

temp_y_h <- t(W) %*% M

H <- solve(temp_x_h ,temp_y_h)

H <- pmax(H,eps)

temp_x_W <- H %*% t(H) + l_W * b_W * I_1 - l_W * E

temp_y_W <- H %*% t(M)

if (rcond(temp_x_W) < 2^(-10) || any(rowSums(H) < 2^(-10)))

{

H <- H_1

stop_c <- 1

}

else

{

W_1 <- W

W <- t(solve(temp_x_W,temp_y_W))

W <- pmax(W,eps)

if ( any(colSums(W) < 2^(-10)) )

{

W <- W_1

stop_c <- 1

}

}

j <- j + 1

}
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basis(seed) <- W

coef(seed) <- H

seed@extra$iteration <- j-1

# return updated data

return(seed)

}

######### recursive geometric algorithm ##########

FastSepNMF <- function(M,seed, norm_l = 2){

m <- dim(M)[1]

n <- dim(M)[2]

r <- nbasis(seed)

W <- basis(seed)

H <- coef(seed)

S <- numeric(r)

j <- 1

# Normalization of the columns of M so that the y sum to one

if (norm_l == 1)

{

M_n <- t(as.matrix(apply(M,1, function(x) {x/sum(x)})))

}

else

{

M_n <- M

}

normM <- apply(M_n,2,function(x){sum(x^2)})

nM <- max(normM)

names(normM) <- 1:n

# Perform r recursion-steps (unless the

# relative approximation error is smaller than 10^-9)

# && (max(normM)/ nM > 10^(-9))

while( j <= r)

{
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# select the column of M with largest l2-norm

max_R <- max(normM)

if( j == 1){ norm_M1 <- normM}

# Check for ties up to 1e-6 percision

b <- names(normM)[(max_R - normM)/ max_R <= 10^(-6)]

if ( length(b) > 1)

{

d <- which.max(norm_M1[b])

b <- names(d)

}

# Update index set, and extracted column

S[j] <- as.numeric(b)

W[,j] <- M[,as.numeric(b)]

#cat("S=",S)

# Compute (I-w_{j-1}w_{j-1}^T)...(I-w_1w_1^T) W[,j], that is,

# R^(j)[,S[j]], where R^(j) is the jth residual (with R^(1) = M).

# if(j > 1)

#{

# k <- 1:(j-1)

# W[,j] <- W[,j] - W[,k] * as.numeric(t(W[,k]) %*% W[,j])

#}

if(j > 1)

{

for ( k in 1:(j-1))

{

temp <- W[,k] * as.numeric(t(W[,k]) %*% W[,j])

# cat("temp=",temp)

W[,j] <- W[,j] - temp

}

}

# Normalize W[,j]

W [,j] <- W[,j] / sqrt(sum(W[,j]^2))

# Update the norm of the columns of M after orhogonal projection using

# the formula ||r^(j)_u||^2 = ||r^(j-1)_u||^2 - ( U(:,j)^T m_u )^2 for

# all u.
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normM <- as.numeric(normM - (W[,j] %*% M_n)^2)

names(normM) <- 1:n

j <- j + 1

}

W <- pmax(M[,S],10^(-3))

H <- fcnnls(W,M)$x

basis(seed) <- W

coef(seed) <- H

seed@extra$iteration <- 1

seed@extra$columns <- S

# return updated data

return(seed)

}
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