
Micropolygon Rendering on the
GPU

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Visual Computing

eingereicht von

Thomas Weber
Matrikelnummer 0526341

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Associate Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer
Mitwirkung: Associate Prof. John D. Owens

Wien, 4.12.2014
(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Micropolygon Rendering on the
GPU

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Visual Computing

by

Thomas Weber
Registration Number 0526341

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Associate Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer
Assistance: Associate Prof. John D. Owens

Vienna, 4.12.2014
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Thomas Weber
Zieglergasse 27, 1070 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -
einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i

Acknowledgements

I’d like to thank Anjul Patney, Stanley Tzeng, Julian Fong, and Tim Foley for their valuable
input. Another “thank you” goes to Nuwan Jayasena of AMD for supplying me with testing
harware and giving support on driver issues.

This thesis was supported by a scholarship from the Austrian Marshall Plan Foundation.

iii

Abstract

Recent advances in graphics hardware have made it feasible to consider implementing alterna-
tive rendering algorithms on the GPU. One such candidate would be Reyes, an algorithm that
subdivides surfaces into sub-pixel sized polygons called micropolygons before rasterizing them.
This allows rendering of curved and displaced surfaces without any visible geometric artifacts.

While the overall Reyes pipeline seems to map well to the data-parallel programming mode
of GPUs, implementing a Reyes renderer on the GPU has so far been hampered by several fac-
tors. One of those reasons is that current rendering hardware is not designed for sub-pixel sized
polygons. Another problematic component of Reyes is its bound-and-split phase, where sur-
face patches are recursively split until they are smaller than a given screen-space bound. While
this operation has been successfully parallelized for execution on the GPU using a breadth-first
traversal, the resulting implementations are limited by their unpredictable worst-case memory
consumption and high global memory bandwidth utilization.

This thesis presents a full Reyes renderer implemented in the GPU programming language
and platform OpenCL. All surface tessellation, shading, and rasterization is performed as a
kernel on the GPU. A software rasterizer specialized for drawing micropolygons is used for
rasterization. Our major contribution is a data-parallel implementation of bound-and-split that
allows limiting the amount of necessary memory by controlling the number of assigned worker
threads. This allows us to render scenes that would require too much memory to be processed
by the breadth-first method.

v

Kurzfassung

Die zunehmenden Flexibilität und Leistung von Grafikhardware macht es möglich über die Im-
plementierung alternativer Renderingalgorithmen nachzudenken. Ein Kandidat hierfür ist Reyes,
ein Algorithmus bei dem Oberflächen in Polygone kleiner als Pixel unterteilt werden, bevor sie
rasterisiert werden. Das erlaubt die artefaktfreie Darstellung gekrümmter Oberflächen mit Dis-
placement Mapping.

Obwohl sich die Komponenten der Reyes-Pipeline generell gut in das datenparallele Model
aktueller GPUs integrieren, gibt es einige Faktoren die die Implementierung eines praxistaugli-
chen Reyes-Renderers auf der GPU verhindert haben. Ein solcher Grund ist, dass die Rasterisie-
rungshardware von aktuellen GPUs nicht darauf ausgelegt ist, sehr kleine Polygone effizient zu
rendern. Ein weiteres Problem stellt die „Bound-and-Split” Phase von Reyes dar, in der Ober-
flächen so lange rekursiv geteilt werden, bis sie kleiner als eine vorgegebene Größe auf dem
Bildschirm haben. Zwar wurde dieser Schritt bereits erfolgreich parallelisiert, indem man die
tiefenorientierte Traversierung der Oberflächen in eine breitenorientierte umwandelt, aber der
resultierende Algorithmus ist insofern limitiert, dass sein Speicherverbrauch schwer vorherzu-
sehen ist. Schlimmstenfalls kann mehr Speicher benötigt werden als zur Verfügung steht.

Diese Diplomarbeit präsentiert einen GPU-basierten Reyes-Renderer, der in OpenCL pro-
grammiert wurde. Sämtliche Oberflächenunterteilung, Shading und Rasterisierung ist als GPU-
Kernel implementiert. Zur Rasterisierung der Mikropolygone wird ein GPU-basierter Softwa-
rerasterizer verwendet, der auf diesen Anwendungsfall spezialisiert ist. Allem voran präsentieren
wir einen parallelen Unterteilungsalgorithmus, der es möglich macht, den maximalen Speicher-
verbrauch zu kontrollieren, indem man die Anzahl an parallel bearbeiteten Oberflächen limitiert.
Das erlaubt es uns, Szenen darzustellen die einen unannehmbaren Speicherverbrauch mit rein
breitenorientierter Unterteilung hätten.

vii

Contents

1 Introduction 1

2 Overview 5
2.1 Reyes . 5
2.2 General Purpose Computing on the GPU . 8

3 Related Work 13
3.1 Surface Tessellation . 13
3.2 Micropolygon Rasterization . 17
3.3 Real-Time Tessellation of Catmull-Clark surfaces 19

4 Adaptive Subdivision on the GPU 23
4.1 Introduction . 23
4.2 Adaptive Subdivision with Bounded Memory 24
4.3 Storing Intermediate Surfaces in Work-Group Local Storage 29

5 Dicing, Shading, and Rasterization 31
5.1 Dicing . 31
5.2 Shading and Back-face Culling . 32
5.3 Rasterization . 34

6 Implementation 37
6.1 Source Code Overview . 37
6.2 Class Overview . 38
6.3 The micropolis package . 46
6.4 Supporting Infrastructure . 47
6.5 Usage . 47

7 Performance Evaluation 51
7.1 Adaptive Subdivision . 51
7.2 Rendering . 58

8 Conclusion 67

ix

Bibliography 69

x

CHAPTER 1
Introduction

The demand for ever-increasing visual fidelity in computer graphics has led to the development
of incredibly powerful hardware. Current graphics processors are highly parallel devices that can
process thousands of individual work items using hundreds of individual cores. Graphics devices
have also become more flexible. While early GPUs used very specialized hardware to solve very
specific render tasks quickly, later hardware has become more and more programmable to the
point where current GPUs can be considered general-purpose compute hardware with some
added functionality specific to rendering problems.

This is why it is now becoming common to use graphics hardware for performing tasks
other than rendering. Thus APIs specialized for programming these general-purpose applica-
tions on graphics hardware like OpenCL or CUDA have been developed. This new flexibility
also makes it feasible to step away from the classic real-time graphics pipeline based on polygon
rasterization and think about implementing alternative rendering algorithms on these powerful
devices.

One domain to look for such alternative approaches is in production rendering, which is the
branch of computer graphics that is concerned with creating visuals for film and print. These
applications usually require very high image quality in terms of detail and freedom from visual
artifacts. The rendering algorithm that is most commonly associated with production rendering
is Reyes [6].

While the real-time rendering pipeline can only draw scenes composed of planar triangles
and polygons, Reyes is able to draw arbitrary curved surfaces without any visible artifacts. It
does this by tessellating the surfaces into sub-pixel sized polygons, which are then drawn to the
screen. Using these tiny polygons – also called micropolygons – as intermediate representation
allows rendering a large array of different, possibly displaced surface types without any geomet-
ric artifacts while using a single back-end for shading and sampling. Reyes performs surface
shading on the polygon-level, with the sampler only performing simple color interpolation. De-
coupling shading from surface sampling also allows for higher-order rasterization techniques
like for instance stochastic rasterization of motion blur.

1

Figure 1.1: Example of an object rendered using our real-time implementation of Reyes. The
teapots are defined using 32 Beziér surface patches with the version on the right having addi-
tional procedural displacement applied. Note that the teapot’s silhouettes are perfectly smooth
and no artifacts can be seen in the displaced version.

The flexibility of Reyes and the fact that many content pipelines for production rendering
are tooled for this algorithm make it an interesting candidate for implementation on the GPU.
Having a full micropolygon rendering pipeline running on graphics hardware would allow for
some very impressive visuals. It would also free artists from some performance optimization
tasks necessary when designing assets for current graphics pipelines. A GPU-accelerated version
of Reyes would also be invaluable for production rendering artists, since it would allow them to
do more rapid design iterations.

Furthermore, the overall structure of Reyes generally maps well to the nature of the GPU,
exposing ample parallelism that can be taken advantage of. Especially the surface evaluation and
shading phases are a very good match for parallel computing, since they operate on grids that
can be easily vectorized. In fact the first implementations of Reyes were designed to perform
shading on special vector hardware for this very reason.

Despite this, we have yet to see Reyes being used for applications in the real-time domain.
One reason for this is that current rasterization hardware is inefficient when rendering microp-
olygons, since it performs triangle coverage tests and shading in tiles. This has the effect that a
large number of cores are occupied even for polygons that only cover a single pixel.

Another problem lies in how Reyes performs the initial subdivision of surface patches. This
phase recursively subdivides surfaces until they are smaller than a defined screen-bound. In a
sequential implementation this can be implemented as a depth-first traversal with a stack for
storing intermediate surfaces. However, this is poorly suited for parallelization on the GPU. It
is possible to turn the depth-first traversal into a breadth-first operation, by always operating on
all surfaces [28]. This shows good parallel performance, but suffers from the problem that it can
have a very high worst-case memory consumption.

Figure 1.2 demonstrates how the memory consumption for breadth-first bound-and-split can
look as a camera moves through a scene. (Figure 7.1 shows the same data as a regular graph
with axis labels.) Note how this value stays at a mostly constant level for most of the path, with
a small number of sharp spikes in memory consumption at certain locations. Properly rendering

2

Figure 1.2: Illustration of the memory usage for breadth-first adaptive subdivision as a camera
moves through a scene. The thumbnails in the scene show the view from the camera at the
highlighted positions. While the overall memory consumption of breadth-first remains mostly
constant, there are locations where significantly more memory can be necessary. Scene courtesy
of Zinkia Entertainment, S.A.

from views such as these can easily exceed the memory budget of an application or even the
available physical memory.

In this thesis we present a renderer based on the Reyes algorithm that is implemented in
pure OpenCL. All subdivision, dicing, shading and rasterization is implemented in software as
a kernel. Our rasterizer is optimized for processing batches of micropolygons instead of single
large triangles.

Furthermore, we present a method that allows choosing the memory budget for parallel
bound-and-split. When there is enough available memory, the performance and behavior of the
algorithm is the same as the breadth-first approach. In case the breadth-first memory require-
ments exceed our memory budget, we can get a smooth, asymptotic tradeoff between memory
usage and performance. This makes it possible to write rendering systems that perform well in
the general case, while still being robust enough to render arbitrary scenes and viewpoints at
reasonable performance.

3

CHAPTER 2
Overview

This chapter is intended to give the reader an overview of this thesis and to explain some concepts
that will be necessary later on.

Chapter 3 discusses work related to the topic of GPU-based Reyes rendering. Chapters 4
and 5 describe the methods used in our implementation. Chapter 4 can be seen as the central
part of this thesis, since this is where we describe our major contribution: A method for efficient
parallel subdivision with a bounded memory usage. Chapter 5 discusses how we implement
micropolygon-conversion, shading, and rasterization once the subdivision phase has been per-
formed.

Chapter 6 describes the source architecture of our renderer and gives details on our imple-
mentation. The performance of our implemenation is discussed in detail in Chapter 7. This
focuses primarily on the performance of adaptive subdivision, since this was chosen to be the
focus of this thesis, but overall render performance and its interplay with subdivision is also
discussed.

Chapter 8 concludes this work with an overview of our findings and discusses directions for
future work.

The rest of this chapter will give an overview on the Reyes rendering architecture in Section
2.1. Section 2.2 gives a short introduction to the terminology and concepts of GPU computing
as they are used in this thesis.

2.1 Reyes

The seminal paper on the Reyes image rendering architecture was published by Cook, Carpenter,
and Catmull in 1987 [6]. It described an image rendering system developed during the 1980s at
a computer animation group at LucasFilm Ltd., which would later form the computer animation
studio Pixar. From its inception, Reyes had very high quality and performance requirements.

It was designed for rendering digital imagery for animation in motion pictures. As such it
had to be able to render very complex and diverse geometry while still being fast enough to

5

model bound

split

cull

dice shade sample

Figure 2.1: The Reyes pipeline

render an entire 2 hour movie within about a year. At 24 frames per second, this allows for a
render time of about 3 minutes per frame. It had to perform this with the very limited hardware
available at the time.

This is the algorithm that was used for all major Pixar films throughout the 1990s and 2000s.
The first critical success was Pixar’s 1986 short film Luxo Jr., which received an Academy Award
nomination for best animated short film. The 1995 movie Toy Story – also by Pixar – was the
first fully computer-animated feature-length film and both a critical and financial success. Both
films were animated using Renderman, Pixar’s implementation of Reyes.

Reyes draws surfaces by converting them into grids of polygons smaller than individual pix-
els, which are then shaded and rasterized with a z-buffer. These sub-pixel sized polygons are
called micropolygons and form the basis of the Reyes approach. By converting all surfaces into
a single common representation before performing shading and rasterization, a large amount of
different primitives can be supported with a single optimized back-end for shading and point-
sampling. This approach also lends itself well to vectorization since the generated micropoly-
gons share a large amount of locality. It also avoids having to perform complex intersection tests
or perspective corrected texture interpolation.

The target micropolygon size of the original Reyes algorithm was a side length of about
half a pixel along both axes. This was chosen since it represents the Nynquist limit for the
sampled geometry. By going below this and performing multisampling when rasterizing the
polygons, any aliasing due to sampling of the shaded microgeometry can be prevented. However,
all current production implementations target a side length of a whole pixel and perform per-
vertex shading with Gouraud interpolation of the final color instead. This reduces the amount of
shading calls by about a factor of four.

Figure 2.1 gives an overview on the Reyes pipeline. Reyes tessellates surfaces into microp-
olygons using a two-stage approach. The first phase is a bound-and-split operation that estimates
the eye-space bound of a surface and checks if the surface is visible and diceable. If it is not
visible, then the surface can be culled and no further rendering has to be performed. In case the

6

surface is diceable, the adaptive subdivision phase is over and the surface is ready to be diced.
A surface is not considered diceable if micropolygon conversion would create a grid with too
many polygons or if the surface shows a large amount of distortion. If the surface is not ready
to be diced, then it needs to be subdivided. For parametric surfaces, this usually means splitting
the surface patch in half along an iso-parametric axis. Chapter 4 describes how we map adaptive
subdivision to the GPU.

After this, the surfaces are evaluated at uniform grid positions to create the micropolygons.
This phase is also called dicing. The user can also supply a program for applying procedural
displacement at this point. If this is the case, then this displacement also needs to be considered
when calculating the bound during adaptive subdivision. Since dicing converts single primitives
into a large number of micropolygons, it can be considered a data-amplification phase. Our
implementation of dicing is described in Section 5.1.

The reason for separating tessellation into these two steps is that it results in more uniformly
sized polygons and better vectorization than either step could achieve on its own [11]. Applying
only dicing would lead to problematic over- or under-tessellation for parts of surfaces that are
strongly distorted, for instance, due to perspective projection. On the other hand, while doing full
subdivision up to the micropolygon level is possible, this leads to unnecessary over-tessellation
since surfaces can only be halved, effectively limiting the dicing rates to powers of two. Having
dicing as a separate phase avoids this, since the optimal dicing rate for every bounded surface
can be chosen. Performing shading and rasterization on grids instead of single polygons is also
desirable for parallelization, since vertex and face operations can be vectorized.

As already mentioned, Reyes is able to handle a large array of different input primitives.
All that needs to be supported for a new primitive type is a method for estimating the eye-space
bound, a method for splitting the primitive into smaller ones, and a method for performing dic-
ing. If this is supported, then Reyes is able to convert the primitive into grids of micropolygons.
The most straightforward primitive types for this are parametric surfaces, but other primitives
like subdivision surfaces, particles or even blobby objects can be supported just as well.

Surface shading is then applied at the micropolygon level. The original Reyes paper used
flat-shaded polygons with the surface shader evaluated at the polygon centers. This makes the
numeric estimation of derivatives and surface normals trivial. Current production renderers usu-
ally perform the shading at the vertex positions so that Gouraud shading can be used. This allows
for slightly larger micropolygons and reduces shading overhead. However, this also makes the
estimation of variable derivatives slightly more complicated, especially on grid boundaries. We
chose to stick to the flat-shaded method with our implementation. You can find more details on
this in Section 5.2.

Reyes was designed for programmable shading from the beginning. Since micropolygon
grids are highly regular and exhibit a large amount of locality, they are well suited to perform
shading in a vectorized manner. Pixar even manufactured a specialized SIMD-based computer
system to perform this task in the 1980s [1].

After surface shading, the micropolygons are ready for rasterization. The micropolygons are
sampled in screen-space and the final color is updated for the given sample position. In the most
basic approach, a z-buffer is used for hidden-surface removal. Multiple jittered samples can be
used to remove aliasing artifacts (“jaggies”). More advanced implementations can use stochastic

7

Figure 2.2: The OpenCL platform model. Picture from OpenCL specification [16]

rasterization for rendering surfaces with motion blur or adding depth of field. These advanced
rasterization modes can be easily added since shading is separated from sampling, and all that
needs to be rasterized are colored polygons with an optional alpha value. Scenes with complex
transparency can also be rendered by using an A-buffer approach where a sample position keeps
track of a list of fragments. Our implementation only implements simple z-buffered rasterization
as described in Section 5.3.

2.2 General Purpose Computing on the GPU

This section is intended to give the reader a short overview on how general-purpose computing
on the GPU works and to define the terminology used in this thesis. The specific vocabulary
varies slightly between APIs. We are going to use OpenCL terminology, since this is what we
used for our implementation.

An OpenCL system is called a platform. A platform is composed of a host and one or more
devices as shown in Figure 2.2. The host is the main CPU process that sends compute tasks to
the devices and controls memory transfers. The host portion of an application is programmed
using a general-purpose programming language like C, C++, Java, or Python, making use of the
OpenCL runtime API.

A device can be any of a large array of device types, among them GPUs, FPGAs, special
accelerator modules, or even just a CPU backend. We will focus on GPUs for this thesis. These
devices are programmed in the OpenCL C Language, a subset of C, which can be compiled at
runtime to the target device. There exists a binary intermediate format called SPIR, which is

8

Figure 2.3: The work range an OpenCL kernel is divided into work-groups, which are them-
selves composed of work-items. Picture from OpenCL specification [16]

based on LLVM and can also be used for device programming.
Each device is composed of several compute units, which are themselves a group of pro-

cessing elements, the smallest unit of computation. For a vectorized CPU device, a compute
unit can be thought of as a single core, with the processing elements being the individual SIMD
elements. In a modern GPU device, a compute unit is composed of a large number of SIMD or
MIMD registers that get processed at once. Recent AMD GPUs use 64 processing elements per
compute unit, for instance.

The host can submit compute tasks to devices by creating a command queue for a device
and enqueuing memory transfers and kernel executions to it. A kernel is a function in a device
program, which is executed in parallel over a large range of work-items, each having its own
index. This index range or can be one-, two-, or three-dimensional and is itself evenly divided
into smaller work-groups. This can be seen in Figure 2.3.

The entire range is processed by many compute units with each work-group being worked
on by a single unit. Work-items within a work-group can synchronize to each other and share
information. A work-group can be larger or smaller than the number of processing elements in a
compute unit. However, for best performance its size should be a multiple of this number. There
is usually a device-specific upper limit to the number of work-items in a work-group.

While kernels usually don’t have access to host memory, there are several types of memory
available within a device as shown in Figure 2.4. The most basic is perhaps global memory,

9

Figure 2.4: The OpenCL memory model. Picture from OpenCL specification [16]

which is shared between all compute units. This is also the only type of memory that the host
can access by performing memory transfers or mapping buffers into host memory. Constant
memory can be though of as a read-only variant of global memory, which can make use of more
aggressive caching within the compute units.

Global memory is shared between devices, making memory objects allocated in it visible
from all devices. However the memory coherency guarantees for concurrent kernels from dif-
ferent devices accessing the same buffer are rather loose. This allows keeping memory objects
on a single device’s memory in most cases, with device-to-device memory transfers being done
implicitly where necessary.

Each work-group can allocate a small amount of local memory, which can be accessed by
all work-items in the work-group. This allows communication between work-items within a
work-group. Combined with the work-group synchronization function available in OpenCL C,
this allows complex cooperation between work-items. Synchronization between work-items that
don’t share a work-group is generally not possible. The only way to make sure that all work-
items within a kernel have passed a certain synchronization point is to wait for the entire kernel
invocation to terminate and to start another.

Work-items can also allocate a small amount of private memory, which is only accessible to

10

this work-item. The general variables defined within the kernel functions can also be thought of
as part of private memory. In GPU devices, these values are usually stored in registers.

The total amount of local and private memory used by a kernel affects its runtime perfor-
mance. This is because compute units have a fixed amount of memory and registers available
and kernels which need only little memory allow them to keep more work-groups in-flight. By
processing several work-groups at once, the compute unit’s hardware scheduler can hide mem-
ory latency by rapidly switching between work-groups.

Recent hardware and the newest version of OpenCL also allows the sharing of memory
objects between host and device memory. This is called shared virtual memory – or SVM – and
was introduced in OpenCL 2.0. However, our implementation does not use this feature, since no
stable OpenCL 2.0 driver was available for our hardware at time of writing.

11

CHAPTER 3
Related Work

3.1 Surface Tessellation

Owens et al. were the first to talk about the possibility and challenges of implementing Reyes
on graphics hardware [26]. In their 2002 paper they compare the typical real-time triangle
rasterization pipeline to an implementation of Reyes on the Imagine stream architecture, a high-
performance programmable processor specialized for media applications. While this experimen-
tal architecture was not identical to current graphics processors, it still shared many similarities.
Like current GPUs it consisted of a large number of ALUs which process data in parallel. The
programming model for Imagine also was also already making use of the kernel concept. Their
finding was that adaptive subdivision, which they implemented in a depth-first manner, was the
major bottleneck in their renderer

In a very short 2003 paper Stephenson describes the implementation of Reyes on the Sony
Playstation 2 game console [33]. This uses the vector units of the PS2’s Emotion Engine pro-
cessor for dicing and shading. The shaded grids are then sampled using the system’s hardware
rasterizer. Adaptive subdivision is apparently performed in a depth-first manner. The major
limitations they mention is the limited available memory and the output quality of the hardware
rasterizer due to coordinate rounding errors.

By transforming the typical depth-first recursive traversal of split surfaces into a breadth-first
operation, Patney & Owens are able to parallelize adaptive subdivision for the GPU [28]. Their
CUDA-based implementation processes all surfaces at each iteration. Each surface is bounded
and a kernel decides whether it is diceable, requires further splitting, or can be culled. If splitting
is necessary it is performed and the result is written to an output buffer. After this step the output
buffer needs to be compacted, so that it can once again be used as input for the next iteration.
This is done using parallel prefix sum and a copy kernel. Figure 3.1 outlines a single iteration of
their subdivision algorithm.

While this performs well on the GPU, using a breadth-first traversal means that the peak
memory consumption of this algorithm rises exponentially with the number of splits [11,19,35].
To alleviate this problem Patney & Owens suggest splitting the screen into a number of buckets

13

Figure 3.1: Schematic overview of the phases of breadth-first adaptive subdivision. Patney &
Owens 2008 [28]

so that rendering is only performed at a part of the screen at a time. This reduces memory
consumption, but obviously at the cost of parallelism. The per-bucket load and thereby the
resulting memory consumption and performance is also non-trivial to predict. Sanchez et al. [30]
also note the disadvantages of breadth-first scheduling (compared to other scheduling strategies)
with respect to memory usage and locality. Nevertheless, several papers build on this method.

This thesis will present a generalization of the breadth-first adaptive subdivision algorithm
that gives control over the maximum amount of memory used. Our method should work as a
drop-in replacement for all applications that use breadth-first subdivision.

Zhou et al. use breadth-first adaptive subdivision as part of a full GPU-based Reyes renderer
called RenderAnts [35]. While not real-time they are able to achieve interactive frame rates for
simple scenes and is able to handle very complex scenes and shaders. Their renderer is also
able to distribute the work-load over several GPUs and handle out-of-core textures using. It
is implemented in BSGP, a general purpose GPU programming language of their design [14].
The out-of-core texture fetching is making use of BSGP’s GPU interrupt mechanism based on
a compiler technique that automatically splits kernels into several programs at interrupt points.
RenderAnts uses dynamic scheduling to ensure bounded memory usage for fragment processing.
However, no such bound is given for adaptive subdivision.

Patney et al. [27] use the breadth-first approach for crack-free view-dependent tessellation
of Catmull-Clark subdivision surfaces, and Eisenacher et al. [9] adopt the same breadth-first
approach for parametric surface subdivision, but also consider surface curvature, resulting in
considerably fewer surfaces being created.

14

Figure 3.2: Example of different dicing patterns presented in DiagSplit paper. The classic Reyes
approach is to choose tessellation factors once for each parameter axis (UVDICE). By restricting
tessellation factors to powers of two (BINDICE) is an easy way to avoid surface cracks, however
this leads to unnecessary over-tessellation. Both surface cracks and over-tessellation can be
avoided by allowing separate dicing rates for all surface edges and the inside (EDGEDICE).
Fisher et al. 2009 [11]

Tzeng et al. [34] consider adaptive subdivision from a scheduling point of view. They make
use of persistent kernels and distribute the total work over many work-groups. To ensure load
balance, they advocate a scheduling strategy based on work-stealing and work-donation. This
approach has the advantage of avoiding host-device interaction for enqueueing additional itera-
tions. However, while general memory consumption is greatly reduced with their approach, the
peak memory usage remains unpredictable.

In a different application domain, Hou et al. consider the problem of memory-efficient par-
allel tree traversal during k-d tree construction [13]. With similar motivation to this work, they
propose a partial breadth-first search traversal scheme that only evaluates a limited number of
leaves in a tree.

Software-based Reyes renderers build a connectivity graph and add stitching geometry when
the surfaces have been diced [1]. To do this, the renderer needs to keep the shaded micropolygon
vertices available. This works in CPU-systems where virtual memory is plentiful and subdivi-
sion is performed in a sequential manner. Building and using such a data-structure in a highly
parallel GPU environment is problematic.

Another method to avoid surface cracks is to restrict dicing rates to powers of two. That way
adjacent grids can be made to agree on the tessellation level and in case of differing tessellation
the grid edge with the higher tessellation factor can be truncated to the lower-tessellation edge.
However this still results in T-junctions and results in over-tessellation by about a factor of two.

The dicing phase of Reyes maps to hardware tessellation supported on recent graphics APIs
and GPUs [31]. This feature works well and is commonly used in current games. Hardware tes-
sellation also allows the selection of separate tessellation levels for the inside and each boundary
edge of a surface in order to avoid surface cracks. An example for this can be found in Fig-
ure 3.2 under the name EDGEDICE. In a system where no bound-and-split is performed, all that
is necessary to avoid cracks between surfaces is for surfaces that share an edge to agree on the
tessellation factor for this edge.

15

Figure 3.3: Split patterns described in the DiagSplit paper. In case an edge is labeled non-
uniform or if it has an even dicing rate it can be split in half. If the dicing factor is odd, then
the split interval must be trucated so that it aligns with one of the sample points near the edge’s
center. In this case the split line will be diagonal to the iso-parametric line. Fisher et al. 2009 [11]

Fisher et al. [11] present DiagSplit, a method for efficiently avoiding surface cracks during
subdivision by combining the scheme used in hardware tessellation with Reyes. This allows
crack-avoidance for hardware-accelerated Reyes without needing to keep track of surface con-
nectivity while subdividing. However in order for integer tessellation levels between adjacent
surfaces to align, it is necessary to take special care when performing split operations.

The algorithm works by first estimating the length of the edges. If it is above a certain
threshold, it is marked non-uniform. If it is below this threshold, then the rounded edge length
is used as the dicing rate of this edge. Now if the surface requires further split operations to be
performed and a dicing rate has already been selected, then it might be necessary to subdivide
the surface along a diagonal line in parameter space, so that the surface’s new corners coincide
with a vertex on the edge. This is illustrated in Figure 3.3.

Allowing splitting along non-isoparametric lines can be done by keeping track of the sub-
surface’s corner points in parameter space. Once the surface is found to be diceable, it is trans-
formed into micropolygons using the EDGEDICE pattern based on the estimated per-edge dicing

16

rates. While this is an elegant solution to avoiding surface cracks, one slight draw-back of this
is that surface sample points for shading aren’t aligned in a neat iso-parametric grid anymore.
This makes the calculation of differentials for things like texturing and normal estimation less
straight-forward. This is especially the case for the vertices on the edge. EDGEDICE also re-
quires, that surfaces can be evaluated at arbitrary positions in parameter space.

Fisher et al. also discuss the scalability issues of breadth-first subdivision and give this as a
reason for their decision to implement their adaptive subdivision on the CPU using multithread-
ing and balanced stacks. This gives excellent memory scalability and good locality, but does not
scale well beyond a relatively small number of concurrent threads.

As mentioned the irregular grids created by the EDGEDICE pattern used in DiagSplit is
problematic when numerically calculating differentials while shading. This is addressed by
Burns et al. [3]. Their solution is decoupling the shading from surface evaluation so that surface
shading still happens in a regular grid. The rasterizer will then look up the correct position in the
shading grid for the point intersected by a sample. This also allows avoiding shading of hidden
grid points by performing shading after rasterization and only evaluating grid points which are
needed by generated fragments.

3.2 Micropolygon Rasterization

Hardware rasterization is robust and gives excellent performance when rendering typical trian-
gular scenes. However as the size of polygons becomes smaller, this performance advantage
quickly drops. This is because hardware rasterizers perform rasterization and shader evaluation
in screen tiles. Even for micropolygons that only cover a single pixel, a complete screen tile
needs to be evaluated. Figure 3.4 demonstrates this behavior. A tile size of 2× 2 pixels is rela-
tively small by hardware standards. 4×4 or 8×8 is more common. A micropolygon overlapping
a single 8× 8 tile would have a sample test efficiency of less than 2 percent.

One option to avoid this inefficiency is to sidestep the hardware rasterizer altogether and
implement rasterization on the GPU as a software kernel. For general purpose triangle raster-
izers this leads to a performance loss of about 50% compared to hardware rasterization [18].
However for micropolygons it is possible to get better efficiency than hardware rasterization by
implementing a kernel specialized for rendering grids of micropolygons.

Fatahalian et al. implement the rasterization of micropolygons in a data-parallel manner [10].
They achieve good performance for micropolygons by transposing how the sampling loops are
vectorized. Instead of only processing a single polygon per work-group and testing several sam-
ple points in parallel, several polygons are processed at once with each sample point overlapping
the bounding box of a micropolygon being tested in sequence. This is justified, since microp-
olygons are so small that only a few sample points are considered candidates.

They also extend their rasterization to higher-order sampling for motion-blur and depth-of-
field effects. For 4D or 5D space the number of sample points inside the bounding box of a
micropolygon can quickly become very large, with only few of them actually intersecting the
polygon. To avoid this, the time and lens dimensions are split into intervals and a separate
bounding box is calculated and tested. This is shown in Figure 3.5.

17

Figure 3.4: Hardware rasterizers find screen-tiles overlapping a polygon and then test each sam-
ple point within this tile for intersection. This approach works well for larger triangles, but is
highly inefficient for micropolygons that only cover a single sample point. The values listed are
the sample test efficiency (STE) which describes the percentage of samples tested that actually
intersect the polygon. Fatahalian et al. 2009 [10]

One issue their paper doesn’t discuss is the processing of resulting fragments. Their im-
plementation also appears to be a CPU-based simulation of their algorithm, with benchmark
results only showing relative execution times. The software rasterizer described in this thesis
makes use of their finding that parallelization over many polygons gives better performance for
micropolygons.

A CUDA-based micropolygon rasterizer is described by Eisenacher and Loop [8]. Their
implementation takes a sort-middle approach where surface grids are assigned to tiles they over-
lap. For each of these tiles a work-group is started where all assigned grids are iterated over
and tested. Each pixel of a tile is assigned to a work-item and all micropolygons within a grid
are tested for intersection. While this is easy to implement, this approach should give poor
performance due to the large number of needlessly tested polygons per pixel.

Their implementation is part of a larger paper about a full CUDA-based Reyes renderer by
Loop and Eisenacher [19]. Bound-and-split is performed using the breadth-first approach. They
mention the potentially high memory consumption of this method and subdivide surfaces in
parameter space for this reason. They also describe a simple method for hiding surface cracks
by displacing boundary vertices to cover them.

Brunhaver et al. [2]describe a hardware implementation of specialized micropolygon rasteri-
zation based on the method by described by Fatahalian et al. This is implemented as a specialized
ASIC design. They found that specialized hardware could effectively rasterize micropolygons
with motion blur and defocus and would only require a very small fraction of the overall die

18

(a) All points in the polygon’s bounding box are tested.

(b) The time dimension is split into even intervals and separate bounding boxes are tested

Figure 3.5: Sampling of a polygon in the time dimension. Splitting the time dimension into
separate intervals and sampling the covered bounding boxes of these sub-intervals helps reducing
the total number of tested candidate samples. Fatahalian et al. 2009 [10]

area and power consumption of a GPU. This circuitry could be used as an alternative rendering
path next to the regular triangle rasterization hardware. However no graphics card on the market
supports this at the moment.

3.3 Real-Time Tessellation of Catmull-Clark surfaces

Catmull-Clark subdivision surfaces are one of the most commonly used graphics primitives in
production rendering. They can be considered a generalization of bi-cubic B-Spline surfaces
which allow for control meshes with arbitrary topology [4]. Surface meshes are adaptively
refined with a fixed set of rules until they approach their limit surface. Figure 3.6 shows an ex-
ample of this. This allows creating detailed detailed curved surfaces that can be easily animated.
A later extension of this adds support for semi-smooth creases by [7].

19

Figure 3.6: Catmull-Clark refinement stages a simple polygonal mesh. (a) is the base mesh, (b)
is after one refinement step, (c) after two, (d) represents the limit surface after an infinite number
of refinements. DeRose et al. 1998 [7]

Figure 3.7: Avoiding T-junctions when adaptively subdividing Catmull-Clark surfaces. Patney
et al. 2009 [27]

20

Figure 3.8: Example how a subdivision surface mesh can be evaluated. Faces sharing the same
color can be directly evaluated as B-Spline surface. Note the contraction around extraordinary
vertices and creased edges. Nießner et al. 2012 [24]

The ability to split Catmull-Clark surfaces allows for them to be integrated in a Reyes ren-
derer. Bound-and-split is straightforward to implement since subdivision is supported out of the
box and the bound can be computed from the convex hull of the control points. Dicing is more
complicated, since direct evaluation at arbitrary parameter positions – while possible [32] – is
usually not done due to the computational complexity and poor numeric stability. Instead, a
surface is subdivided several times to create a grid of points, which are then projected onto the
limit surface.

This approach is problematic on the GPU, due to its high memory usage. It also does not
mesh well with DiagSplit, since it requires the ability to evaluate a surface at arbitrary parameter
position. Because of this, several methods for approximating Catmull-Clark surface have been
developed [17, 20, 21]. Newer variants of these work well, but are limited insofar that they
don’t exactly match the limit surface of actual Catmull-Clark surfaces. The renderer described
in this thesis uses the Gregory patch approximation described by Loop et al. [21] for displaying
Catmull-Clark surfaces.

Patney, Ebeida, and Owens present a method for crack-free view-dependent tessellation of
Catmull-Clark surfaces based on the breadth-first subdivision algorithm [27]. They are able to
avoid surface cracks from T-junctions by keeping track of the subdivision level in the neigh-
borhood of a face (Figure 3.7). However their method performs adaptive subdivision all the
way down to the micropolygon level without doing dicing. This leads to a rather high memory
bandwidth consumption and general computational overhead.

Another method for the real-time tessellation of Catmull-Clark surfaces on the GPU was
presented by Nießner et al. [24]. They avoid having to fully subdivide all surfaces by directly
tessellating regular faces as B-Spline surfaces and only applying further subdivisions to faces
containing an extraordinary vertex (Figure 3.8). This allows them to greatly reduce the overall
memory consumption. In a follow-up paper, they discuss how semi-sharp creases can be handled
efficiently [25].

21

CHAPTER 4
Adaptive Subdivision on the GPU

4.1 Introduction

The classic Reyes pipeline implements adaptive subdivision as a recursive operation. Reyes
estimates the screen-space bound of a surface to decide whether the surface needs further subdi-
vision or can be sent to the next pipeline stage for dicing. If further subdivisions are necessary,
Reyes splits the surface and recursively calls bound-and-split on the new sub-surfaces. This pro-
cess can be thought of as the depth-first traversal of a tree (“split tree”). While this is easy to
implement on regular CPUs and requires minimal memory (O(N+k), where N is the number of
input surfaces and k is the maximum depth of the split tree), this approach is not suitable for the
GPU since it is inherently sequential. Due to this exponential growth in memory consumption,
the static preallocation of memory for this operation quickly becomes unfeasible.

Patney and Owens [28] parallelize the Reyes split phase by transforming this depth-first
operation into a breadth-first traversal of the split tree. This way, a single iteration of the adaptive
subdivision can be implemented using a parallel bound kernel, prefix sums, and a copy kernel.

p = 1 p = 20 p = 100 p =∞

Figure 4.1: Comparison of evaluation order of surfaces for different batch sizes (p is the number
of surfaces in a batch). Surfaces that are created in the same iteration are shaded in the same
color. This shows the locality-preserving property of our subdivision algorithm: surfaces that
are spatially close together are evaluated in the same iteration.

23

Figure 4.2: Schematic overview of breadth-first subdivision. Each row represents the state of
the surface buffer during one iteration. Each surface can either be culled (red), split (yellow), or
drawn (green). For each split surface in the previous iteration, two new surfaces are generated
in the following iteration. This always happens for all surfaces in the surface buffer.

These are then iterated until all surfaces have been successfully bounded. Figure 4.2 gives an
overview on how this approach works.

While this is simple to implement and yields excellent speedup, this approach suffers from
high peak memory usage. Since all nodes of a single depth in the split-tree have to be held in
memory, the worst-case memory consumption is the number of possible leaves of a binary tree
of maximum depth k. This is O(N · 2k), where N is the number of input surfaces processed
at once. Due to this exponential growth in memory consumption, the static preallocation of
memory for this operation quickly becomes unfeasible.

It is possible to split the input surfaces into several batches that are subdivided separately.
This slightly reduces the worst-case memory consumption, but the overall memory consumption
can still be very high, especially since the total memory consumption of the individual input
surfaces varies highly due to perspective projection. The results section presents the test scene
EYESPLIT, which has a very high memory requirement despite only containing a single surface.
Furthermore, reducing the batch size also reduces the overall performance especially during the
first few iterations.

4.2 Adaptive Subdivision with Bounded Memory

Instead, we propose an adaptation of this approach where the number of surfaces processed at a
given iteration is limited by a constant value p. The buffer of surfaces is used as a parallel last-

24

Figure 4.3: Schematic overview of how our memory-bounded subdivision operates. Unlike in
Figure 4.2, the number of active surfaces at each iteration is constant (in this case, p = 4). The
other surfaces are inactive and shaded in gray.

in-first-out data structure where surfaces are read from the end of the buffer, and any generated
sub-surfaces are appended back to the end. By using this approach, we can bound the peak
memory consumption by O(N + p · k). Figure 4.3 illustrates how this approach works.

Adding the batch size p as a tweakable parameter in the subdivision process allows us to
balance between memory consumption and performance. Figure 7.2 shows the impact the cho-
sen batch size and the amount of assigned memory have on the overall subdivision time. As
the batch size increases, the subdivision time asymptotically approaches that of breadth-first
subdivision. Our approach also preserves locality, as can be seen in Figure 4.1.

In our implementation, a bound kernel first copies the last p surfaces into a temporary buffer
and estimates the screen-space bound for each of them. Depending on this bound, the kernel
decides an action to be taken on this surface (draw, split, or cull), which is stored as a flag value
in a separate buffer.

Whether a surface is ready to be drawn depends on the size of its screen-space bound, which
is estimated by the kernel. Surfaces are culled when they are outside of the camera frustum
or a surface has been split the maximum number of times. More advanced systems may also
support occlusion culling, for instance by accessing a hierarchical depth buffer in GPU memory,
however our implementation does not at the moment.

Procedural displacement also affects the screen-space bound of a surface. While there exist
methods to efficiently estimate the bounds of displaced surfaces [22, 23], our renderer is limited
to a configurable safety margin to avoid erroneous culling of displaced surfaces near the screen
edge.

25

The temporary storage is necessary to avoid surfaces being overwritten by split surfaces
before they have been read. This is not necessary in breadth-first subdivision, which uses a ping-
pong buffer approach. While our temporary storage requires one additional write operation, the
performance cost is minimal.

We then apply a prefix-sum operation to these flag buffers to calculate write locations. The
split kernel checks the flag buffer and either copies the bounded surface into the output buffer or
applies a split operation and places the resulting sub-surfaces at the end of the surface buffer.

For a surface P , the split-results P ′
0 and P ′

1 are placed at address a0 = S + fc · 2 + 0 and
a1 = S + fc · 2 + 1 respectively, where S is the current size of the surface buffer and fc is the
prefix sum of the split flags. Using this particular order is necessary to prove the memory bound
of our algorithm.

The flags accumulated by the prefix-sum operator are then used in a subsequent copy ker-
nel to find the correct location for writing in the global-output and surface buffers. Surfaces
remaining in the surface buffer will be further split by subsequent iterations of our subdivision
algorithm, until the surface buffer is empty. The output surfaces of a single iteration are copied
to an output buffer from where they are ready to be used by subsequent dicing and rasterization
kernels.

In our implementation, the output surfaces are immediately consumed by subsequent pipeline
stages. This way, we can make sure that the maximum number of surfaces that have to be pro-
cessed in later stages is p. It is also possible to collect the output of several iterations before
passing it on. However, collecting the entire output of the algorithm before passing it along fur-
ther is not recommended, since this might once again lead to unbounded memory consumption
due to the unpredictable amount of output surfaces.

Algorithm 4.1 gives an overview of our method. Note that this omits the handling of culled
surfaces, which requires an additional flag buffer and prefix-sum operation.

Keeping the children of a surface that has been split close together also improves locality.
Figure 4.4 shows the difference between placing the sub-surfaces in the order used by Patney
and Owens as depicted in Figure 3.1 (NONINTERLEAVED) with our approach (INTERLEAVED).

Active surfaces are always read from the end of the surface buffer, and their potential chil-
dren in the subdivision tree are always put back at that end again. As a result, and since the local
order of the split products mirrors that of their parents, we can always expect that the surface
buffer is sorted by subdivision level. This means that surfaces closer to the beginning of the
buffer have had fewer subdivisions applied to them than those at the end.

There can be at most p surfaces for any subdivision level in the buffer (safe for the root and
top levels). This is because one iteration of the subdivision algorithm consumes p surfaces and
appends at most 2p surfaces back to the buffer, which are guaranteed to have a higher subdivision
level than the ones that were consumed. Since we are actively limiting the maximum allowed
subdivision level to k and there can be at most p surfaces per subdivision level, we can make
sure that there are at most O(N + p · k) surfaces in the buffer at any point in time.

Proof: Peak Memory Bound

To give a more formal proof for our asserted peak memory consumption of O(N + p · k), we
consider the state of the ordered surface buffer St = {s0, . . . , sn} at every iteration t ∈ N. If we

26

Data: maximal subdivision level k
Data: number of processors p
Data: surface buffer S of size N + k · d, containing N input surfaces
Data: flag buffer F of size p
Data: temp buffer T of size p
Data: output buffer O of size p

1 while N > 0 do
2 c← min(p,N)
3 N ← N − c
4 for i ∈ {0, . . . , c− 1} in parallel do
5 s← S[N + i]
6 T [i]← s
7 if s is bounded then
8 F [i]← 0
9 else

10 F [i]← 1
11 end
12 end
13 G← scan(F)
14 csplit ← G[c]
15 cdraw ← c− csplit
16 for i ∈ [0, c− 1] in parallel do
17 if F [i] = 1 then
18 j ← G[i]
19 s′1, s

′
2 ← split(T [i])

20 S[N + 2j + 0]← s′1
21 S[N + 2j + 1]← s′2
22 else
23 j ← i−G[i]
24 O[j]← T [i]

25 end
26 end
27 N ← N + 2 · csplit
28 draw the cdraw surfaces in O

29 end
Algorithm 4.1: Adaptive-subdivision with a bounded amount of memory

27

INTERLEAVED NONINTERLEAVED

Figure 4.4: Illustration of the effect the placement order after split has on the locality of gener-
ated surfaces. Surfaces created during the same iteration share the same color. INTERLEAVED

is the order described in this section while NONINTERLEAVED uses the order of the Patney and
Owens paper.

can show that
∀t ∈ N0 : ‖St‖ < N + p · k (4.1)

then the general memory consumption must also be bounded, since the size of all other buffers
apart from St remains constant throughout execution. The split level d : St → N0 gives the
number of subdivisions that have so far been applied to a given surface. For example, for a
fresh input surface s, d(s) = 0. If we split this surface into two sub-surfaces sl and sr, then
d(sl) = d(sr) = 1. If we split sl further into sll and slr, then d(sll) = d(slr) = 2 and so on. We
also define the operator Di(St) = ‖{s ∈ St|d(s) = i}‖, which gives the number of surfaces in
St that have subdivision level i. We will prove this memory bound via induction. To do so we
will show that the following invariants are fulfilled at every iteration t:

∀s ∈ St : d(s) < k (4.2)

∀si, sj ∈ St, i < j : d(si) ≤ d(sj) (4.3)

D0(St) ≤ N (4.4)

∃m ∈ N1 :
∀i ∈ N1, i 6= m : Di(St) ≤ p,
Dm(St) ≤ 2p−

∑
j>k Dj(St)

(4.5)

(4.2) asserts that no surface in the surface buffer may have been divided more than k times.
This can be ensured by always culling or drawing surfaces that have already received k − 1
subdivisions. (4.3) requires that the surfaces in the buffer are ordered by their subdivision level.
(4.4) ensures that there can never be more than the initial number of surfaces with subdivision
level 0 in S. Invariant (4.5) is the most important one. It requires that there always exists one

28

positive subdivision level m so that all other positive subdivision levels i 6= m must occur at
most p times in S. m may occur up to 2p times, but only if there exist no surfaces with a higher
subdivision level in the buffer. Otherwise the number of these is subtracted from 2p to give the
number of allowed occurrences of m. The memory invariant (4.1) must be fulfilled when (4.2),
(4.4), and (4.5) are fulfilled, since there can be at most k subdivision levels which occur at least
once; among those, one can occur at most N times, one can occur at most 2p times, and the
rest can occur at most p times. It should be easy to see that all invariants are fulfilled for S0.
Now we take a look at an arbitrary iteration t so that St fulfills all invariants. When we take
the last p items from St, potentially split them if they have a subdivision level below k + 1,
and append the split patches back at the end of the surface buffer, we get St+1, the state of the
surface buffer in the next iteration. We can be sure that (4.2) is fulfilled for St+1 since we take
special care to never split surfaces that have already been split k + 1 times. Similarly, (4.4)
should be easy to see, since we can only increase the subdivision level of surfaces, so D0(St+1)
can only be smaller than D0(St). Since we know that St is sorted by subdivision level, we know
that the p surfaces we took for subdivision must have the maximal amount of subdivisions for
St. By splitting them, we can only increase this, so the split surfaces we put back at the end
are guaranteed to be larger than all of the remaining ones. And thanks to the specific order
described in Section 4.2, we can ensure that if two split surfaces are in a specific order relative
to each other, then the split products must also be in that order, only with their subdivision level
incremented by one. Thus (4.3) is fulfilled for St+1. To see that (4.5) is fulfilled, we must
consider the special subdivision level m for St. The range of surfaces with subdivision level m
can start at most 2p elements away from the end of the buffer. At most p surfaces of this range
can be outside the last p elements of the buffer. If we now remove the last p surfaces P and split
them in any way, the resulting subsurfaces must have a subdivision level greater than m. This
means that the number of remaining surfaces with tessellation level m must now be ≤ p. m
is no longer a special depth in St+1. What remains to be seen is that there can be at most one
new level m′ for which there are more than p surfaces in St+1, and that it must be at the end of
the buffer. Since what remains of the old level m has ≤ p surfaces after the iteration, and the
other surfaces of St are known to have ≤ p, the new m′ can only belong to the surfaces created
from P . For any combination of non-overlapping ranges in P , there can be at most one subset
that contains more than p/2 surfaces. If this range is x surfaces away from the end, then it can
contain at most p−x surfaces. If we now subdivide this range and maintain the order of the split
products for this range, they must form the subdivision level m′, fulfilling invariant (4.5). �

4.3 Storing Intermediate Surfaces in Work-Group Local Storage

Section 4.2 describes an implementation that stores all surfaces (including intermediate surfaces)
in GPU global memory. To reduce the amount of host interventions, we also explored a vari-
ant of our algorithm that keeps control within kernel work-groups. Instead of having a single
surface buffer in global memory, each work-group keeps its own surface buffer in local on-chip
memory. Single iterations of the subdivision algorithm described in Section 4.2 are performed
in a loop within the work-group. Communication and flow control of threads within the group is
done using local memory, work-group-local prefix sums, and barriers. Surfaces that have been

29

successfully bounded are transferred to an output buffer in global memory. With this approach,
no explicit host intervention is necessary to start another iteration of the subdivision algorithm,
thus global memory bandwidth is reduced.

Instead of having to read and write surface data to and from global memory, the only times
when surfaces need to be transferred out of local memory is during the initial reading of input
surfaces and when writing the final bounded surfaces to the destination buffer. We can store the
entire intermediate surface buffer in work-group local memory, since the amount of necessary
memory for this derives from our memory bound O(p · k), where p is the work-group size of
this kernel. In practice, this should be set to the native SIMD width. As an example, for recent
AMD GPUs, this is 64. Let’s say we allow a maximum subdivision level of 20. We would have
to allocate enough shared memory to store 64 · 20 = 1280 surfaces. If one surface requires 24 B
of storage, the total amount of necessary shared memory would be 30 KiB. If this exceeds the
amount of available work-group local memory, then a small amount of global memory can be
allocated for spill buffers.

Our implementation uses a single global input queue to store work and performs well for our
test cases. While no load-balancing is necessary between threads within a work-group, it is still
possible that some work-groups run out of work more quickly than others. In this case, a load
balancing strategy similar to the one described by Tzeng et al. [34] could be used, but this was
not implemented. If the output buffer is full and there is still work to be done, then the kernel
must stop operation and return control back to the host so it can render the generated patches.
The content of the work-group local surface buffer needs to be backed up to global memory so
that it can be recovered once operation is resumed.

While this can reduce the overall subdivision time for very small data-sets, we found that
using work-group storage local is usually outperformed by our regular algorithm for reasonably
sized scenes. The main reasons for this are the missing load-balancing and the relative com-
plexity of the persistent kernels, which is a source of overhead and impedes the GPU’s hardware
scheduler. This will be further explored in Section 7.1.

30

CHAPTER 5
Dicing, Shading, and Rasterization

Once adaptive subdivision has been performed, the surfaces have been subdivided to have a
screen-space bound smaller than the configured value and are ready to be tessellated into grids
of polygons. After this, they can be shaded and rasterized to generate the final image. One
option at this point is to perform these operations using a standard graphics API like OpenGL
or Direct3D. Another option is to implement these components as OpenCL kernels and only
use OpenGL to display the final result. The reason why one might want to do this is that,
while the rasterization hardware used in modern graphics APIs has excellent performance for
larger polygons, it quickly becomes inefficient for smaller ones like the pixel-sized ones we are
generating. This is due to the way rasterization is implemented in hardware, where the smallest
unit for testing triangle coverage usually is an 8 × 8 sceen tile. For polygons that only cover a
single pixel, this would mean that 63 out 64 compute threads are wasted.

Dicing and Shading is, for the most part, a straightforward vectorization of the basic Reyes
algorithm. The partitioning of grids into 8×8 blocks and the way backface culling is performed
is based on our own findings. The structure of the rasterizer is based on the findings by Fatahalian
et al. The way fragment compositing is performed is based on our own sort-last design using
tile-locking.

5.1 Dicing

Dicing is implemented as a kernel that evaluates the surfaces at uniform intervals at a fixed
resolution. The kernel is called for a three-dimensional work-range with the x and y dimen-
sions being the position in the surface grid and the z dimension giving the surface number. The
maximum value of x and y is therefore the dicing resolution. Work groups are flat layers with
a depth of one so that the individual threads can make use of memory caching when reading
control-point data from the surface buffer. The dicing rate can have a larger size than the max-
imum work-group size supported by an OpenCL implementation. In that case the grid will be
evaluated in tiles.

31

Surface information is stored in two parts. The actual control-point information for the
unsubdivided surfaces, which remains unchanged during subdivision, and a buffer of surface
ranges, which contain a surface ID, as well as an isoparametric sub-range of the [0, 1] × [0, 1]
parameter interval in the original surface. This sub-interval is encoded as two 2D points pmin

and pmax. The dicing kernel reads this information and calculates the exact parameter position
from these values and its x and y global position.

Once the kernel thread has determined its location on the patch surface, it evaluates the
surface patch at this position as shown in Figure 5.1. All threads in a work group operate on the
same surface and there are no potentially diverging control structures used in the kernel. We can
therefore be certain that all threads in a work-group access the same control-point information
at the same time. This should mean that only a single memory transfer per control-point should
need to be necessary on recent graphics hardware. The base functions used for surface evaluation
depend on the type of surface used. For our implementation this can either be cubic Beziér
surfaces (16 control points per surface) or Gregory surfaces (20 control points per surface).
Different dice kernels are generated for these function types, and the application part picks the
correct one on demand.

This is the time where procedural surface displacement might happen. After the final points
have been calculated, they are projected into pixel coordinates using a supplied projection ma-
trix. These pixel coordinates are converted into fixed-precision integer numbers. This is done
because this is a more robust format for rasterization. All raster operations will be performed in
fixed-point arithmetic. Both the three-dimensional surface point, the two-dimensional projected
points, as well as the depth value of each vertex are stored in an output grid buffer.

5.2 Shading and Back-face Culling

While the dicing kernel is called once for each grid vertex, the shading kernel is executed once
for each polygon between the vertices. The main task of the shading kernel is to calculate the
surface color for the individual polygons. The result of this shading operation is then stored in
a global color buffer. A renderer that supports programmable shading would need to generate a
separate shade kernel for each material type used. The shade kernel as well as the following
sample kernel are set up to operate on 8 × 8 tiles of polygons within the grids (Figure 5.2).
These units we will call blocks from this point forward. If the grids produced by the dicing
kernel are larger than this, then they are processed as several blocks. We have chosen the 8× 8
size because 64 is the native SIMD width of current AMD graphics processors.

Our renderer performs per-face shading using a normal calculated from the eye-space vertex
positions of the polygons. The subsequent sample kernel then just uses this constant color
when drawing the polygon. While this simplifies the construction of our renderer and makes
it easier to correctly handle procedural displacement, this is not usually the approach taken in
production rendering systems. Instead, the surface is shaded at each vertex of the grid and the
calculated color is interpolated over the polygon’s area using Gouraud shading. In practise, this
allows reducing the necessary polygon density by about a factor of two and therefore this is
something that should be done for a production-ready system. However, we chose to restrict our
renderer to flat shading for simplicity and robustness. Our surfaces still appear to be perfectly

32

Figure 5.1: Surface evaluation in the dicing kernel. The parametric surface patch is evaluated
at positions in a regular grid. The number of samples is 17 per axis to get a 16 × 16 grid of
polygons.

smooth, and arbitrary displacement can be applied without having to recalculate the surface
normals explicitly.

Apart from this, the shade kernel is also the place where grids are checked if they face
away from the camera. This is done by each thread in the work-group checking the screen-space
winding of its assigned polygon. The result of this is collected in an atomic work-group-local
Boolean flag. If all surfaces are back-facing, the block can the culled and will not be shaded
or rasterized. OpenCL 2.0 introduces the work-group wide voting function work_group-
_all(), which could also be used for doing this.

The shade kernel also has the task of calculating the screen-space bounding rectangle for
each block. This is also done using work-group local atomic variables. Every thread determines
the minimum and maximum screen coordinate for its polygon and updates the local variables
using the built-in atomic_min() and atomic_max() functions. The resulting bounding
rectangle is saved in a per-block buffer and will be used by the sample kernel when determining
the framebuffer tiles that need to be considered during rasterization.

While it may seem more intuitive to calculate the bounding rectangle in the dice kernel,
this is problematic since some of the grid vertices belong to several shading blocks.

33

Figure 5.2: Grids are separated into 8× 8 tiles, called blocks, which are shaded separately. The
shade kernel also calculates the bounding rectangle for its block.

5.3 Rasterization

Once the position and final shade of the micropolygons has been determined and the bounding
rectangle of the individual blocks has been calculated, the surfaces are ready to be rasterized.
This is the task of the sample kernel, which calls a work group for each block.

To avoid unstructured global access patterns and the requirement for complex locking, the
rasterizer will first work on a work-group local 8× 8 canvas tile, which will be written to global
memory after rasterization is done. Since we use z-buffering, it is necessary to lock a tile before
writing the canvas contents to global memory. Other work-groups must wait for their turn if they
want to access the same tile during this. The kernel finds the tiles that need to be considered for
this by reading the bounding rectangle of the block.

Unlike general graphics hardware, which tests the intersection of a single polygon against
many pixels, our kernel assigns a single thread to each polygon. This is more efficient since we
know that one micropolygon can only overlap a small number of sample points. Every polygon
iterates over the sample points overlapping its bounding box. The sample point is then tested for
polygon intersection using their edge equations. The quadrangular polygons are split into two
triangles for this. This approach is based on the paper by Fatahalian et al. [10].

If a polygon intersects a sample point, the depth value of the polygon will be interpolated for
this position. This depth value is then compared against the current depth for the sample stored
in the local canvas tile. If the depth value is smaller, then the sample is shaded in the polygon’s
color. This test-and-set operation needs to happen in an atomic fashion. Our implementation
uses per-sample locks based on atomic_xchg() for this.

While most literature uses sort-middle rendering for software rasterization on the GPU [8,
10, 18], a sort-last approach is used in our implementation. This should avoid load-balancing
issues and avoids the need for intermediate storage for bucket lists of grids covering a tile. Sort-
middle rendering would have the advantage that all fragment processing and compositing could

34

Figure 5.3: The sample kernel iterates over every framebuffer tile and checks the pixels within
the bounding box for each micropolygon.

be serialized and performed locally. Our approach instead requires locking, which can cause a
significant overhead for complex scenes as will be discussed in Chapter 7.

Algorithm 5.1 gives an overview on the sample kernel’s structure. Figure 5.3 illustrates
the units the kernel is operating on visually.

After all surfaces have been rasterized in this manner, the framebuffer is ready to be dis-
played on screen. This is done by copying its content to the OpenGL back buffer and performing
a buffer swap. Ideally, we would want sample to be able to write directly to the OpenGL back
buffer, but this is currently not possible.

35

Data: 8× 8 block of polygons B
Data: work-group local 8× 8 canvas tile C

1 for framebuffer tile T overlapping B do
2 clear C
3 for polygon p ∈ B in parallel do
4 calculate bounding rectangle of p
5 for pixel t ∈ T overlapping p’s bounding rectangle do
6 if t intersects p then
7 lock t
8 update the color of t in C
9 unlock t

10 end
11 end
12 end
13 lock T
14 update T with the content of C
15 unlock T

16 end
Algorithm 5.1: Pseudo-code for sample kernel.

36

CHAPTER 6
Implementation

For this thesis, we have implemented Micropolis, a real-time Reyes renderer written in C++11
and OpenCL C. Micropolis is open-source and freely available at https://github.com/
ginkgo/micropolis.

6.1 Source Code Overview

The general folder structure of the Micropolis source code looks as pictured in Figure 6.1. The
C++ source code can be found in the src directory. The folder kernels contains OpenCL
kernel source code. shaders is the location of OpenGL shader files. The tools folder
contains various tools for code generation, format conversion, and performance testing, which
are for the most part written in the programming language Python.

micropolis

src

kernels

shaders

tools

testcene

external

Figure 6.1: Overview of the top-level folder structure of Micropolis source code

37

https://github.com/ginkgo/micropolis
https://github.com/ginkgo/micropolis

src

base

GL

CL

Reyes

micropolis

Figure 6.2: The contents of the src folder.

external contains the OpenCL header files and the header-only 3D math library GLM [5],
which is used throughout the code base. The testscene folder is where various test scenes in
our own file format along with their original Blender files are located.

Micropolis makes heavy use of source-code generation. OpenGL bindings are generated
using flextGL, a Python-based tool that parses the OpenGL XML specification files and gen-
erates source code that is compiled along with our project. For configuration-file parsing, we are
using another Python tool that reads XML files describing the configuration values and gener-
ates code for parsing configuration files and command-line arguments. This makes it very easy
to add additional configuration values during development and testing.

Another use case for source generation is the mscene file format,which we use for loading
scene data. For this we use the Cap’n Proto [15] interchange format, which takes a format
description and generates parser code for various languages including C++ and Python. This is
useful since it allows us to write and manipulate mscene files using Python while loading them
with C++ with very good performance.

The C++ source folder itself is structured into five subfolders as shown in Figure 6.2. Apart
from the base folder, which is the location of basic utilities and common header files, each of
these folders represents a C++ namespace which is more or less independent from the others.
GL contains wrapper classes for OpenGL concepts like shaders, textures, and buffer objects. CL
does the same for OpenCL.

The Reyes namespace contains the major bulk of the implementation. This is where the
Reyes algorithm, or at least the C++ part of it, is implemented. It makes use of both CL and GL.

The micropolis namespace can be thought of as the application side of Micropolis. It
contains the program entry point and takes care of window creation, device setup and user inter-
action. This is also where scene loading and management is implemented. Reyes and the other
namespaces are used from here.

6.2 Class Overview

This section will give a more detailed overview of the individual packages and the classes they
contain.

38

Device
context: cl_context
device: cl_device_id
share_GL: bool
Device(platform_idx, device_idx)
insert_event(): Event
dump_trace()
release_events()
check_extension(name): bool

CommandQueue
queue: cl_command_queue
parent_device: Device
name: string
CommandQueue(parent_device, name)
enq_kernel(): Event
enq_GL_acquire(): Event
enq_GL_release(): Event
enq_write_buffer(): Event
enq_read_buffer(): Event
wait_for_events(events: Event)
finish()
flush()

Program
program: cl_program
Program()
define(macro: string, statement: string)
set_constant(name: string, value)
compile(device: Device, filename: string)
get_kernel(name: string): Kernel

Kernel
kernel: cl_kernel
Kernel(program, device, kernelname)
set_arg<T>(index: cl_uint, value: T)
set_args<...>(...)

Buffer
buffer: cl_mem
flags: cl_mem_flags
size: size_t
device: Device
Buffer(device, size, flags)
Buffer(device, gl_buffer)
get(): cl_mem
get_size(): size_t
resize(new_size: size_t)

TransferBuffer
host_ptr: void*
host_ptr<T>(): T*
host_ref<T>(): T&

Event

PrefixSum
pyramid: vector<Buffer>
program: Program
reduce: Kernel
accumulate: Kernel
PrefixSum(device, max_size)
apply(): Event
resize(new_size)

Exception
msg: string
file: string
line: int
Exception(err_code: cl_int, file, line)
Exception(msg, file, line)

Figure 6.3: Classes in the CL package.

The CL Package

This package provides an object-oriented C++ wrapper to the OpenCL C API. CL wraps con-
cepts like devices, command queues, kernels, or memory buffers in C++ classes for easier devel-
opment. There now exists a semi-official C++ wrapper for OpenCL 1.2 supported by Khronos,
but this was not available at the time of writing, and many features of CL are not supported by it.
Figure 6.3 gives an overview of the classes of this package. The interrelations of these classes
often mirror those of the respective OpenCL concept.

The first thing that a program using CL usually has to do is to create an instance of the
Device class. This wraps an OpenCL context and a device into a single combined object.
Multiple devices with a shared context are not supported. The constructor takes the platform
and device index and sets up the associated OpenCL objects. If the program is configured to use
OpenGL buffer sharing, this will also be set up with the current OpenGL context, if possible.
After construction, applications can query a Boolean flag to check if OpenGL buffer sharing is
supported by the device. Apart from being the C++ representation of OpenCL devices, this class
also keeps track of Event objects, which will be discussed later.

OpenCL memory objects can be handled using the Buffer object. To allocate memory
on an OpenCL device, an application simply needs to call the constructor with a device, the re-
quired buffer size in bytes and a cl_mem_flags value to define the buffer’s accessibility. This
creates buffer objects that can be used by the various wrappers in CL. An alternative constructor
that takes an OpenGL buffer object handle to create a shared buffer also exists. There exists a
specialized TransferBuffer class that inherits from Buffer, which has to be used when
doing host-device memory transfers or when mapping memory. This subclass adds a host buffer
that can be used as source and destination for read and write operations. If a platform supports
zero-copy memory, then this host pointer should map directly to the contents of the OpenCL
buffer.

39

To create executable OpenCL kernels, a program first needs to load and compile an OpenCL
C program from which it can then extract the kernel objects. This is wrapped in the Program
object. The simplest application of this class is to create an instance of it and call compile()
with the selected device and the file name of the program’s source code as parameters. This will
look for the source code in the configured kernel folder and compile it for the given device. The
OpenCL compiler supports preprocessor includes and is configured to look in the kernel folder
for header files. After a program has been compiled, the wanted Kernel object can simply be
created by calling the get_kernel() method with the kernel’s name in the program. Another
feature of Program is the ability to define compile-time constants and macros, which are ap-
pended at the beginning of the source code before compilation. This is useful for setting global
parameters that don’t change throughout the program’s life-time.

While the Kernel object itself cannot be used for invocation, it is needed for setting kernel
parameters. The class supplies the generic set_arg() and set_args() methods for doing
this. set_arg() takes a parameter index as the first argument, and the passed argument value
as the second. Template specialization is used to determine the correct action for the passed
argument. If it is a primitive type, then clSetKernelArg() will be called with the data as-
is. In case the argument is a Buffer object, then the wrapped cl_mem object will be passed
to OpenCL. Since calling set_arg() with an index for each argument is verbose and prone
to copy-paste errors, Kernel also supplies the variadic template method set_args(). This
takes an arbitrary number of arguments and will call set_arg() for each of them with an
incrementing index.

Objects of the CommandQueue class are needed to actually execute kernels on a device and
start memory transfers. They are created from a device and a name, which is only used for de-
bugging. Once a command queue object has been created, it can be used to call kernels, enqueue
memory transfers, or acquire or release buffers from OpenGL sharing. These operations won’t
happen immediately but will be enqueued to be performed as soon as possible. The methods
will finish immediately, returning Event objects that can be used to check if an operation has
finished. The wait_for_events() method can be used to wait for certain events. Applica-
tions can call the finish() method to make sure that all operations up to this point have been
performed. Command queues often collect several commands before submitting them to the
device for performance reasons. The flush() can be used to make sure that the commands
up to a given point have been submitted. This can be necessary for fine-grained host-device
synchronization.

Events are a concept used throughout OpenCL for synchronizing various kernel invocations
and device transfers at a fine-grained level. They are also used for querying profiling informa-
tion after an event’s associated operation has been performed. This is also Event’s function
here. Every enqueue call to CommandQueue takes an Event object as its last argument. The
OpenCL driver has to wait until all operations associated with the passed events have been fin-
ished before performing an operation. However, unlike the OpenCL C API, where events only
represent a single operation and enqueue operations take an array of cl_event handles, our
C++ wrapper only requires a single Event object. Instead, Events can be combined using
the | operator to create Event objects representing a conjunction of the individual events.

The place where events are created and kept track of is the Device class. This is nec-

40

essary to have a single location to acquire profiling traces if necessary. The list of events in
Device grows over time. An application has to call the release_events() method to
clear this list. This usually happens at the end of each frame for Micropolis. The Device
method dump_trace() can be used to write a trace with precise timing information for each
device operation to the file-system.

The OpenCL C API is designed in such a way that each operation immediately returns a
value indicating if the operation was successful or if there has been an error. While this is good
design for a C API, checking all operations for success can become tedious quite quickly. The
CL package supplies an Exception class to alleviate this problem. All internal C API calls
are checked and an exception is raised in case of an error. The constructor of Exception also
takes care of converting the integer error flag into a human-readable message. Having a single
piece of code that is called in case of an error is also useful for placing a debugger break-point.
This makes finding bugs a lot easier since the compiler stops at the exact location where an error
has been detected.

The PrefixSum class does not wrap a specific OpenCL concept. It is a utility class that im-
plements the important prefix-sum operation. This class loads the necessary OpenCL kernels and
allocates the buffer pyramid needed for this operation on a device. kernels/prefix_sum.cl
contains the OpenCL C code for the kernels used by PrefixSum. The apply() operation
enqueues the necessary succession of kernels to compute the prefix sum for a given input array.

The GL Package

Like CL for OpenCL, this package provides C++ wrappers for the OpenGL graphics API. Fig-
ure 6.4 gives an overview of GL’s classes. It should be easy to see that this only exposes a very
limited part of OpenGL’s functionality.

Shader wraps shader objects. The compiler takes a shader name and searches the con-
figured shader in the Micropolis source tree for the shader files with this name, compiles
them and links them into an OpenGL program object. The shader directory is automatically
checked for vertex, fragment, geometry, and tessellation shader files, and the relevant features
are activated on demand. This can then be used by binding it with bind() and performing any
OpenGL draw call. Uniforms can be set using the generic set_uniform() method. This
works in a fashion similar to Kernel::set_arg() in that template specialization is used to
find the correct behavior for the passed argument. Shader also supports the binding of shared
buffer objects using set_buffer().

There exists a specialized ComputeShader class that inherits from Shader. This is
used for compiling and dispatching OpenGL compute shaders. These can be thought of as the
OpenGL equivalent to OpenCL kernels. ComputeShader mainly adds the dispatch()
methods which are called by the application to dispatch compute tasks. Uniforms and shared
buffer objects are set using the methods exposed in Shader.

OpenGL buffer objects are wrapped in the Buffer class. A buffer object is allocated in the
class constructor and can be used immediately. The class supplies methods for manipulation of
the buffer content(send_data(), read_data()) and for binding them for a particular pur-
pose in the OpenGL pipeline(send_data(), read_data()). The naked buffer handle can
also be extracted using get_id(). This is useful for setting up buffer sharing with OpenCL,

41

Shader
program: GLuint
uniform_map: map<string,GLint>
Shader(shader: string)
bind()
unbind()
set_uniform<T>(name: string, value: T)
set_buffer(name: string, buffer: Buffer)

ComputeShader

dispatch(group_count: ivec3)
dispatch(group_count: int)
dispatch(w: int, h: int)
dispatch(group_count: ivec2)
dispatch(w: int, h: int, d: int)

Buffer
buffer: GLuint
size: size_t
target: GLenum
index: int
Buffer(size)
get_id(): GLuint
resize(new_size)
bind(target)
bind(target, index)
unbind()
send_data(data, size)
read_data(data, size)

Tex
texture_name: GLuint
bound_unit: GLenum
target: GLenum
bind()
unbind()

Texture

TextureBuffer
buffer:Buffer
TextureBuffer(size, format)
get_buffer(): Buffer
load(data)

VBO
buffer: Buffer
vaos: map<GLuint,GLuint>
vertices: vector<vec4>
vertex_count: size_t
VBO(vertex_count)
clear()
vertex(v: vec234)
send_data()
draw(mode:GLenum, shader:Shader)

Figure 6.4: Classes in the GL package.

where the constructor of CL::Buffer needs this handle. The Buffer class also supplies a
templated bind_all() function which helps with binding a number of buffers to an indexed
target by picking the individual indices for us.

Both regular textures as well as texture buffers are implemented as sub-classes of the Tex
base class, which take care of texture-name creation and keeping track of used texturing units
for binding and unbinding(). The classic Texture class implements this class. This supports
one to three-dimensional textures with arbitrary pixel formats and allows the configuration of
typical filtering and wrapping modes. TextureBuffer wraps the concept of texture buffers,
flat buffers that can be bound like textures in OpenGL and used by shaders for both reading and
writing.

The VBO class is a very simple utility class for setting up a vertex buffer object and sending
geometry data to the GPU. All that Micropolis needs to draw is a single screen-filling quad, but
since core OpenGL dropped support for immediate-mode rendering, the geometry data for this
has to be loaded using the regular VBO+VAO approach. VBO helps with this.

The Reyes Package

This package is where the major algorithmic part of the Micropolis rendering code is imple-
mented. Figure 6.5 gives an overview of the classes in Reyes.

Applications mainly interact with the Reyes package through the Renderer interface,
of which RendererCL is the major implementation. The exposed interface is rather com-
pact. Parametric surface meshes can be loaded into device memory using the method load-

42

<<interface>>

Renderer

prepare()
finish()
load_patches()
draw_patches()

RendererCL

<<interface>>

BoundNSplitCL

init()
done(): bool
finish()
do_bound_n_split(event): Batch

BoundNSplitCLCPU

BoundNSplitCLBreadthfirst

BoundNSplitCLLocal

BoundNSplitCLMultipass

Framebuffer
size: ivec2
buffer: CL::Buffer
shader: GL::Shader
program: CL::Program
clear_kernel: CL::Kernel
clear(): CL::Event
get_buffer(): CL::Buffer
acquire(): CL::Event
release(): CL::Event
show()

PatchIndex

enable_load_texture()
enable_load_opencl_buffer()
enable_retain_vector()
load_patches(h, ...)
delete_patches(h)
get_patch_vector(h): vector<vec3>
get_patch_texture(h): GL::TextureBuffer
get_opencl_buffer(h): CL::Buffer
get_patch_count(h): CL::Buffer
get_patch_type(h): PatchType

<<enumeration>>

PatchType

BEZIER
GREGORY

Figure 6.5: Classes in the Reyes package.

_patches(). The application can supply an arbitrary void* handle, which will be used for
referring to the given mesh when rendering. Two types of surface mesh are supported: One
is composed of cubic Beziér surfaces and the other is using Gregory patches for approximat-
ing Catmull-Clark subdivision surfaces. The renderer differentiates between these two types of
geometry using the PatchType enumeration type.

There is a simple protocol to using Renderer. Once the renderer has been instantiated
and the necessary geometry data has been loaded, the application can start rendering by calling
the prepare() method. This will prompt the renderer to do the necessary preparations before
rendering. After this, an arbitrary number of calls to draw_patches() can be performed.
This method takes a handle, a model-view matrix, a projection, and the object’s material color
and will render the surface mesh with the defined transformation to the screen. After all scene
objects have been rendered, the scene rendering is ended by a call to finish(), which will
wait for completion of any pending draw operations and perform any necessary final steps, like
blitting the finished frame to the screen. In code, this might look as shown in Algorithm 6.1

RendererCL is a concrete implementation of Renderer that uses OpenCL to display
the surfaces. This class sets up the necessary OpenCL buffers and kernels in its constructor.
Management of surface meshes is handled in a separate PatchIndex object. RendererCL
contains an object of type Framebuffer, which is the target for render operations. Adaptive
subdivision is encapsulated in objects of the BoundNSplitCL interface, which is used by
RendererCL to subdivide surfaces before rendering.

PatchIndex keeps track of surface meshes in the application. Different implementa-
tions of BoundNSplitCL and Renderer may need the patch-data to be stored in a dif-
ferent way (in host memory, as OpenCL buffer, or as an OpenGL texture buffer). Because
of this, PatchIndex supplies the methods enable_load_texture(), enable_load-

43

renderer.prepare();

for (obj : scene.objects) {
mat4 mv = obj.model * scene.view;
Projection p = scene.projection;
renderer.draw_patches(obj.handle, mv, p, obj.color);

}

renderer.finish();

Algorithm 6.1: Drawing the objects in a scene using an instance of Renderer.

_opencl_buffer(), and enable_retain_vector(), which have to be called after
PatchIndex has been constructed. This affects the way a mesh is stored when load-
_patches() is called. Rendering classes can then call the relevant getter methods with a
handle to access the relevant data, if available. Alongside this, PatchIndex also keeps track
of the number of patches in a surface mesh and the used patch type.

The Framebuffer class encapsulates an OpenCL buffer that can be written to by Ren-
dererCL. It also implements methods for clearing the framebuffer (clear()) and displaying
the rendered surface (show()). This is done using a shared OpenGL buffer if possible. When
OpenGL sharing is not supported, Framebuffer will read the framebuffer contents back onto
host memory before writing it back to the OpenGL framebuffer. The framebuffer is organized
in 8 × 8 pixel tiles, which are themselves organized in rows. The blit operation is performed
using the tex_draw OpenGL shader, which will calculate the correct location in the flattened
framebuffer texture for each pixel location.

As mentioned before, Renderer uses BoundNSplitCL to perform adaptive subdivision.
This is encapsulated in an abstract interface so that the performance of different implementa-
tions can be compared. Like the Renderer interface, this is intended to be used in a cer-
tain manner as shown in Algorithm 6.2. To subdivide a mesh, the renderer first needs to call
init(), which will initialize the working buffers and internal counters. After this, the renderer
can call do_bound_n_split() to subdivide a chunk of the total data which can then be
diced and rasterized. This has to be done as long as there is work left, which can be checked
using the done() method. The nested Batch structure, which is returned by do_bound_n-
_split(), is a structure that contains the number of output patches, references to the OpenCL
buffers to read from, and an Event that will be triggered when subdivision is done (since the
subdivision may work in an asynchronous fashion). At the very end, when all surfaces have
been rendered, the renderer will call finish(), which allows the subdivider to perform some
clean-up operations.

There exist several implementations of BoundNSplitCL. The most basic one is Bound-
NSplitCLCPU, which does subdivision on the CPU. All surfaces are kept track of in an
std::vector, and subdivision happens in a simple push-pop manner. This was the first
subdivider to be implemented and it proved useful for testing purposes.

BoundNSplitCLCPU is designed to perform subdivision while the renderer backend is

44

bound_n_split.init(handle, mv, p);

while (!bound_n_split.done()) {
Batch batch = bound_n_split.do_bound_n_split(ready);

ready = process_batch(batch);
}

...

// After all meshes have been drawn
bound_n_split.finish();

Algorithm 6.2: Using BoundNSplitCL for subdividing surface meshes.

still busy drawing the previous batch. Several output buffers are allocated that are used so that
the subdivider can write to an output buffer while the dicing kernel can read from the old output
buffer. This setup gives good render performance for very small scenes since both the CPU
and GPU can be utilized and the host never has to wait for results from the GPU when issuing
commands. However, even for slightly larger scenes or screen resolutions, the CPU tends to
become the limiting factor when processing surfaces.

BoundNSplitCLMultipass implements the adaptive subdivision algorithm described
in Section 4.2. This uses three OpenCL kernels as well as CL::PrefixSum to perform the
algorithm. At first, the init_ranges() kernel sets up the surface buffer with the initial
unsubdivided surfaces. Each iteration then calls bound_kernel() on a configured num-
ber of surfaces at the end of the buffer. This will calculate the screen bound of the surfaces
and creates decision flags depending on this bound. These flags are then accumulated using
prefix-sums, and the move() kernel then uses these flags to split the surfaces and copy them
to their correct position at the end of the surface buffer. These kernels can be found in the file
kernels/bound_n_split_multipass.cl.

Two variants of the bound-kernels are loaded to differentiate between Beziér and Gregory
surfaces. This is done by loading and compiling the OpenCL program twice, each time with
a different preprocessor definition for the surface evaluation function. The subdivider knows
which kernel to call, since the patch type of a mesh is always known in advance. The same
preprocessor-based method is used in other places in the code where OpenCL kernels need to
handle a specific patch-type.

The BoundNSplitBreadthFirst class is the basic breadth-first subdivision algorithm,
which always processes all surfaces in device memory. The memory consumption of breadth-
first subdivision is unbounded. This is why BoundNSplitBreadthFirst has to resize the
internal buffers on the fly. In case there is not enough device memory available, the program
will fail. Apart from this, the source code of this is similar to BoundNSplitCLMultipass.

BoundNSplitLocal uses persistent work kernels and work-group-local memory for sub-
dividing surfaces. The algorithm for this is described in Section 4.3. This only requires two

45

kernels. One for setting up the input buffers and distributing the surfaces to the different work
groups (init_range_buffers) and one for doing the adaptive subdivision (bound_n-
_split). The bound_n_split kernel performs the subdivision within the individual work-
groups and copies the fully bounded patches to the output buffer. In case the output buffer is
full, the bound-and-split kernel copies its local surface buffer back to the input buffer and stops
operation so that the renderer can consume the surfaces in the output buffer. Surface subdivision
will be resumed afterwards. One practical flaw in the implementation of this is that there is no
load balancing between work-groups. This can lead to very poor performance relative to the
other implementations for some use cases.

Once the surfaces have been fully bounded, the renderer calls a dice kernel, which eval-
uates the surfaces at the points of a regular grid and saves the locations in a grid-buffer. These
grids are then processed in a subsequent shade kernel, which calculates the shade for each
polygon in the surface grid and computes the tight screen-space bounds for each 8 × 8 block
within the grids. The actual rasterization happens in the sample kernel, with a work group for
each of these blocks. The sample kernel iterates over all framebuffer tiles that a block overlaps
and finds the pixels that are covered by the individual micropolygons. Each micropolygon is
assigned its own thread within the work-group for this. Once the coverage of a tile has been
processed, the kernel locks this tile in the framebuffer and writes its local results to it. There
used to be a sort-middle variant of this where blocks are assigned to tiles, with a work group for
each tile. This didn’t need tile locking, but it suffered from sub-optimal load-balancing and the
performance was worse overall.

6.3 The micropolis package

This package doesn’t contain many classes. Its most important content is the main.cpp file,
which contains the program’s entry point. This loads the configuration files sets up the OpenGL
and OpenCL contexts, loads the scene file, creates the renderer class and performs the render
loop. Apart from this, the only significant part of micropolis is the Scene class, which is
a very simple scene representation composed of a list of meshes, object instances with world
transforms, light sources, and a camera objects. Figure 6.6 gives an overview of the Scene
class and its helper structures.

Our scene description is very simple and only supports the bare necessities at the moment.
Loading and saving of scenes happens over a binary format described as a Cap’n Proto schema.
This description file can be found in src/micropolis/mscene.capnp, with the only
major difference being that objects refer to their meshes by name instead of pointer. Its structure
mirrors that of Scene. The different objects are kept track of in flat lists. We use a separate
list for each object type because this made it easier to mirror the behavior of the Cap’n Proto
schema, which is somewhat limited in its expressiveness. There can be several cameras within
a scene, with one of them being set as active. By default this is the first camera in the list. The
draw() method takes a Renderer as argument and uses it to draw all objects in the scene.
The implementation of this looks more or less as the code fragment shown in Algorithm 6.1.

46

Scene
cameras: vector<Camera>
lights: vector<DirectionalLight>
objects: vector<Object>
meshes: vector<Mesh>
active_cam_id: size_t
Scene(filename:string)
active_cam(): Camera
draw(renderer: Renderer)
save(filename:string, overwrite)

DirectionalLight
name: string
dir: vec3
color: vec3

Mesh
name: string
patch_data: vector<vec3>
type: PatchType

Object
name: string
transform: mat4
color: vec4
mesh: Mesh*

Camera
name: string
transform: mat4
projection: Projection

Figure 6.6: The Scene class.

6.4 Supporting Infrastructure

Micropolis uses a number of scripting tools for compiling and profiling the application. The
one that interacts with the source code the most is the configuration-file generator script. This
Python program generates a configuration file loader written in pure C++ from a simple XML
description of configuration values. The result is a class file with a single global instance that
is accessible from every point in the application. Each package has its own set of configura-
tion values contained in their own class (CLConfig, GLConfig, ReyesConfig, Config).
The XML files for these can be found in the source folders of the individual packages. There
exists a separate configuration file for each of these in the source root folder (cl.options,
gl.options, reyes.options, micropolis.options). These parameter values can
also be supplied as a command line arguments.

The ability to modify many configuration values from the command-line is used heavily by
the profiling programs in the tools folder for testing the performance of various combinations.
Micropolis can be configured in such a way that it will dump performance metrics to a file
and exit after a defined number of frames. The benchmark programs execute the Micropolis
application several times to collect the necessary data.

The testscene folder contains the Python script mscene_export.py, which can be
used in Blender to convert the current scene into an .mscene file. The method described by
Loop et al. [21] is used to convert subdivision surface meshes into Gregory patches. This takes
advantage of using a Cap’n Proto schema for defining our scene file format. Reading and writing
scene files in Python is as easy as importing the schema and calling Scene.read() because
of this.

6.5 Usage

Once the program has been built, it can be started by simply executing the generated binary in
the root folder. The user can change the configuration in the described configuration files or
locally override configuration values with a command line argument.

47

> ./micropolis --parameter="value"

It would take too much space to discuss all configuration values. What follows is a list of
some of the more useful ones.

• opencl_device_id
Two integers giving the platform and device index for the OpenCL device that is to be
used.

• window_size
Size of the render window in pixels. (Two integers)

• input_file
The scene file that will be loaded.

• bound_n_split_limit
The screen-space bound all surfaces will be subdivided to in pixels.

• bound_n_split_method
Defines which subdivision method should be used. One of CPU, MULTIPASS, BREADTH-
FIRST, or LOCAL.

• reyes_patch_size
The resolution all surfaces are tessellated in. Ideally, this should be the same value as
bound_n_split_limit.

• reyes_patches_per_pass
This controls the batch size used for subdivision and rasterization. (Single integer)

This will create a simple window displaying the selected scene (Figure 6.7). The user can
move the camera through the scene using the WASD keys and change the viewing direction by
dragging the mouse cursor. When holding the left SHIFT key, the camera moves faster.

PGUP and PGDOWN control the subdivision bound. F9 dumps a kernel trace file. F12 saves
the scene with the current camera view to a file. PRINT creates a screenshot.

48

Figure 6.7: Screenshot of the micropolis application in action

49

CHAPTER 7
Performance Evaluation

7.1 Adaptive Subdivision

We have implemented both the breadth-first adaptive subdivision and our own subdivision ap-
proach with bounded memory guarantees for comparison purposes.

BREADTH implements the breadth-first approach of Patney and Owens [28]. In case this
algorithm runs out of memory, it will allocate further memory on-the-fly. This is necessary since
the worst-case memory consumption of breadth-first subdivision is so high that preallocation is
not possible. This exact situation is what we want to avoid. Since we allow for a certain number
of rendered frames before measurement, the necessary time-overhead for this does not affect the
measured subdivision times.

BOUNDED implements adaptive subdivision with bounded memory as described in Chap-
ter 4.

TEAPOT HAIR COLUMNS ZINKIA

N 32 10 000 12 850 999 812

Table 7.1: Overview of the different test scenes used for performance analysis. N is the number
of surface patches in a scene before applying adaptive subdivision. Not pictured is the synthetic
test scene EYESPLIT, because all that can be seen is a white rectangle over the entirety of the
frame buffer. ZINKIA scene courtesy of Zinkia Entertainment, S.A.

51

scene method batch size time memory max patches processed processing rate
[ms] [MiB] [M patches/s]

TEAPOT BREADTH 5030 1.72 0.52 5030 22172 12.92
TEAPOT BOUNDED 10000 1.69 4.88 5030 22172 13.11
TEAPOT BOUNDED 40000 1.70 19.53 5030 22172 13.03
TEAPOT BOUNDED 200000 1.69 97.66 5030 22172 13.11

HAIR BREADTH 150958 1.79 16.27 150958 430958 240.37
HAIR BOUNDED 10000 6.98 5.08 49000 430958 61.71
HAIR BOUNDED 40000 2.98 19.73 115488 430958 144.51
HAIR BOUNDED 200000 1.80 97.86 150958 430958 239.91

COLUMNS BREADTH 38712 3.02 4.14 38712 293178 96.98
COLUMNS BOUNDED 10000 5.98 5.15 22326 293178 49.00
COLUMNS BOUNDED 40000 3.02 19.80 38712 293178 97.03
COLUMNS BOUNDED 200000 3.01 97.93 38712 293178 97.25

ZINKIA1 BREADTH 999812 6.21 107.78 999812 1402768 225.78
ZINKIA1 BOUNDED 10000 29.25 24.91 999812 1402768 47.95
ZINKIA1 BOUNDED 40000 12.50 39.56 999812 1402768 112.20
ZINKIA1 BOUNDED 200000 7.48 117.69 999812 1402768 187.50

ZINKIA2 BREADTH 3847162 18.92 414.74 3847162 9284930 490.81
ZINKIA2 BOUNDED 10000 138.89 24.91 999812 9284930 66.85
ZINKIA2 BOUNDED 40000 55.51 39.56 999812 9284930 167.26
ZINKIA2 BOUNDED 200000 25.62 117.69 1040464 9284930 362.44

ZINKIA3 BREADTH 9766796 33.90 1052.81 9766796 20946484 617.89
ZINKIA3 BOUNDED 10000 315.62 24.91 999812 20946484 66.37
ZINKIA3 BOUNDED 40000 120.62 39.56 999812 20946484 173.66
ZINKIA3 BOUNDED 200000 51.05 117.69 1305212 20946484 410.33

EYESPLIT BREADTH 1950752 9.25 210.28 1950752 4024029 434.89
EYESPLIT BOUNDED 10000 62.99 4.88 85236 4024029 63.89
EYESPLIT BOUNDED 40000 23.68 19.53 260960 4024029 169.90
EYESPLIT BOUNDED 200000 11.43 97.66 843844 4024029 352.01

Table 7.2: Test results for various combinations of test scenes and subdivision method. max sur-
faces is the maximum amount of surfaces stored in memory at any given point in time. processed
is the total number of surfaces processed during subdivision including intermediate surfaces. The
processing rate is the number of processed surfaces divided by the subdivision time.

Table 7.1 shows the test scenes we used for evaluating our renderer. TEAPOT contains a
single large object composed of a small number of surfaces. HAIR is a single mesh with a large
number of surfaces and moderate depth complexity. COLUMNS contains about the same number
of surfaces as HAIR, but has a lower depth complexity. The ZINKIA scene is very detailed and
contains almost a million surfaces.

We have prepared three different viewpoints to evaluate ZINKIA. These three views are
extracted from a straight path that has the camera move along a line through the ZINKIA scene

52

0 100 200 300 400 500
frame number

0

200

400

600

800

1000

1200

m
em

or
y

us
ag

e
[M

iB
]

Figure 7.1: Memory usage of BREADTH as the camera moves along a straight path through the
ZINKIA scene. Figure 1.2 gives the position and local context for the features in this graph.

as shown in Figure 1.2. Figure 7.1 shows the breadth-first memory usage at each position of this
path. The views we chose are one representing the average case (ZINKIA1), one for the highest
memory spike near the tree (ZINKIA2), and one for the 1 GiB spike close to the cliff (ZINKIA3).
Larger screenshots of ZINKIA1, ZINKIA2, and ZINKIA3 can be found in Figures 7.12, 7.13, and
7.14 at then end of this chapter.

In addition, we have also prepared a synthetic test scene called EYESPLIT, which cannot
be reasonably pictured. This is intended to demonstrate the possible worst-case behavior of
our subdivision algorithms. EYESPLIT contains a single planar surface patch with the camera
placed in such a way that the split axis of the surface falls onto the camera’s eye plane. This
has the effect that the subdivision of the surface does not terminate before the allowed number
of recursive splits has been exhausted and the surface gets culled. The eye-split problem is
an intrinsic property of the Reyes pipeline, and artists have learned to avoid it in production
rendering [1]. Nevertheless, it is important that such a configuration can be evaluated without
the subdivision pipeline stage of a renderer exceeding its memory budget.

All benchmarks have been measured on a system with an AMD Radeon R9 290 GPU and a
3.4GHz Intel Core i5-4670K CPU. The graphics driver used was Catalyst 14.9 on a 64-bit Linux

53

system.
Table 7.2 lists the execution results for various combinations of adaptive subdivision meth-

ods and test models. The scenes are rendered at a resolution of 1280 × 720 and surfaces are
split until they are smaller than 8 pixels along each dimension. For BOUNDED, three different
batch sizes (low: 10000, medium: 40000, medium: 200000) are evaluated. The batch size of
BREADTH is defined by the scene and view itself. The maximum number of recursive subdivi-
sions k has been set to 23.

Note that the memory consumption of BREADTH is the actual amount of necessary memory,
while BOUNDED is configured to allocate enough memory for the worst-case possible memory
consumption. Especially for simple scenes, this can mean that the conservative amount of mem-
ory allocated by BOUNDED exceeds the amount of memory actually needed by both BREADTH

and BOUNDED. The average case is usually a lot better. A good example for this is HAIR,
which actually only requires at most 7 subdivisions to any surface in the scene. This can also
be seen from the max patches value in Table 7.1, where the actual amount of stored patches for
BOUNDED always remains lower than for BREADTH.

A variant of BOUNDED that reallocates memory buffers on-the-fly like BREADTH does could
significantly reduce the amount of necessary memory for these scenes. Our own focus was more
on handling extreme cases gracefully while accepting a constant memory budget for anything
lower. This is why we have not implemented this.

For configurations where the view-inherent batch size of BREADTH does not exceed the
configured batch size, we can achieve a similar performance with BOUNDED. This is expected,
since the exact same amount of computation kernels with the same dimensions are executed.
In case the assigned batch size of BOUNDED is lower than that of BREADTH, we get a smooth
transition from low to high depending on the amount of assigned memory. Especially for scenes
with high memory demand like ZINKIA3, assigning just 11% of the memory necessary for
BREADTH can give 66% of the overall performance.

The 1 GiB spike of ZINKIA3 shows that doing naive breadth-first subdivision is not feasible
for real-world graphics applications. The Zinkia scene is in no way extreme in what is to be
expected of Reyes rendering for interactive applications, and the render settings we have chosen
should be reasonable for the scene at hand. 1 GiB of memory is 25% of the total physical
memory of a top-of-the line desktop GPU, and considering we are only rendering at 720p, this
value would grow for higher resolutions. Figures like these seem especially prohibitive in the
mobile space where such a memory consumption can easily exceed the total available memory
on current devices.

Figure 7.2 demonstrates the impact of the chosen batch size on the performance of BOUNDED.
The achievable processing rate depends highly on the intrinsic parallelism of a scene, with sim-
pler scenes very quickly reaching a plateau. The performance of complex scenes like ZINKIA2/3
and EYESPLIT asymptotically approaches that of BREADTH when more memory is assigned.
The curve of HAIR shows how the processing rate quickly rises with more assigned resources,
starts to go flat, and then remains almost constant past a certain point. This is the point at which
the batch size is large enough to keep all surfaces active at all times. It can be seen that the other
curves mirror this behavior at different scales.

Note that the memory values used for the horizontal axis in Figure 7.2 don’t include the

54

50 100 150 200
memory usage [MiB]

0

100

200

300

400

500

600

700

pr
oc

es
si

ng
ra

te
[M

pa
tc

he
s/

s]

TEAPOT

HAIR

COLUMNS

ZINKIA1
ZINKIA2
ZINKIA3
EYESPLIT

100000 200000 300000 400000 500000
batch size

Figure 7.2: Subdivision performance for our test scenes depending on the amount of assigned
memory and batch size. The X axis shows the amount of used memory on the bottom axis and
the batch size on top. Smaller scenes very quickly level out, while larger scenes show asymptotic
growth. The dashed horizontal lines represent the processing rate achievable by BREADTH and
the upper bound for BOUNDED.

constant memory requirement for the initial number of patches. This is done to make the memory
usage and batch-size axes align. If we didn’t do this, the plot would be shifted on the x axis, with
the ZINKIA plot being the only one with a clearly visible shift by about 20 MiB to the right. The
constant offsets of the other scenes are relatively small with at most 0.27 MiB for COLUMNS.

Exact performance comparisons against previous implementations are difficult because of
different rendering parameters, but our overall performance appears competitive modulo differ-
ences in hardware and rendering parameters:

• Patney and Owens [28] give times for the adaptive subdivision of TEAPOT (6.99 ms) and
KILLEROO (3.46 ms). They perform fewer split operations (512×512 resolution with a
16-pixel bound) and use a significantly less powerful NVIDIA GeForce 8800 GTX for
measurement. Under this configuration our subdivision times are 1.43 ms for TEAPOT

and 0.30 ms for KILLEROO with BREADTH. The subdivision times for BOUNDED are

55

essentially the same.

• Tzeng et al. [34] give overall frame render times including shading and rasterization for
TEAPOT (51.81 ms), BIGGUY (90.50 ms), and KILLEROO (54.11). They render at res-
olution 800 × 800 and use a 16-pixel bound. Micropolis is considerably faster in this
configuration (TEAPOT: 3.08 ms, BIGGUY: 3.11 ms, KILLEROO: 5.94 ms). However
this is once again hard to compare since Tzeng et al.’s renderer uses complex transparency
and 16× multisampling.

Work-group local Subdivision

104 105

batch size

100

101

102

103

pr
oc

es
si

ng
ra

te
[M

pa
tc

he
s/

s]

TEAPOT

HAIR

COLUMNS

ZINKIA1
ZINKIA2
ZINKIA3
EYESPLIT

Figure 7.3: Performance comparison of the BOUNDED and LOCAL depending on batch size.
Solid lines represent LOCAL and dashed lines represent BOUNDED. LOCAL tends to outperform
BOUNDED for small scenes and batch sizes, but for larger scenes BOUNDED quickly becomes
faster.

Figure 7.3 shows the performance of the work-group local algorithm (LOCAL) compared to
that of BOUNDED. For small scenes like TEAPOT, LOCAL performs considerably better, due to
not having to return to the host for the first iterations. LOCAL performs especially well for scenes
with many small individual objects like TREE and PILLARS. For larger scenes like HAIR and

56

0 5 10 15 20 25 30
processor ID

0

5000

10000

15000

20000

25000

30000

pr
oc

es
se

d
pa

tc
he

s Possible speedup: 26.3 percent

COLUMNS

0 5 10 15 20 25 30
processor ID

0

5000

10000

15000

20000

25000

pr
oc

es
se

d
pa

tc
he

s

Possible speedup: 3.8 percent

HAIR

0 5 10 15 20 25 30
processor ID

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

pr
oc

es
se

d
pa

tc
he

s

Possible speedup: 31.3 percent

ZINKIA1

0 5 10 15 20 25 30
processor ID

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

pr
oc

es
se

d
pa

tc
he

s

Possible speedup: 95.9 percent

ZINKIA2

Figure 7.4: Illustration of the per work-group load of LOCAL for various test scenes. Ideally,
all compute units should do the same amount of work. If one compute unit takes significantly
longer, all other units have to wait. The red horizontal lines show the average load which is also
the amount of work every processor would perform in an ideally balanced system.

COLUMNS, BOUNDED starts off worse, but tends to catch up to LOCAL, since less internal logic
has to be performed and the work-load is implicitly balanced. BOUNDED severely outperforms
LOCAL for all batch sizes for the ZINKIA scenes and especially for EYESPLIT. This is because
our implementation of LOCAL evenly assigns the initial workload to the different work-groups
without doing any load balancing during operation. In case one work-group takes significantly
longer than the others, it will stall the entire kernel, which is the case for the mentioned scenes.
Figure 7.4 illustrates this issue. Explicit load balancing between work-groups as described by
Tzeng et. al. [34] would be necessary to alleviate this problem.

This should demonstrate that BOUNDED should be the method of choice. The only situation
when LOCAL shows better time behavior is when host-device interactions dominate the total
render time. This case can be seen for TEAPOT in Figure 7.5, where the GPU is idle for more
than 25 percent of the frame. Kernel-side enqueue as supported in the new OpenCL 2.0 standard
could be used to avoid this.

57

TEAPOT HAIR COLUMNS ZINKIA1 ZINKIA2 ZINKIA3
scene

0

20

40

60

80

100

pe
rc

en
ta

ge
of

re
nd

er
tim

e
sample shade dice subdivision clear idle

Figure 7.5: Relative amount of time spent for individual tasks when rendering various test
scenes. Larger scenes are usually dominated by the surface evaluation and rasterization, while
less complex scenes can spend a significant amount of time in subdivision. This also shows that
there is a significant amount of time the GPU is idle since it’s waiting for intervention from the
CPU. ZINKIA3 is special insofar as it contains an eye-split so that lots of subdivided surfaces are
generated that end up culled due to exceeding the maximum number of splits. The subdivision
algorithm used was BOUNDED.

7.2 Rendering

The benchmarks in the previous section only measure the time spent subdividing and ignore
overall rendering performance including dicing, shading, and rasterization. In this section we
will give an overview on how much time is spent in the individual rendering stages. Figures 7.8
and 7.9 list kernel traces for the overall rendering process of a single frame for various scenes.
The traces show timing information for both BOUNDED and LOCAL. BOUNDED performs adap-
tive subdivision in a succession of kernel calls that do bounding, apply prefix sums and then split,
while LOCAL is implemented in a single large kernel.

What can be seen is that for reasonably sized scenes, only a small part of the time is spent
in subdivision. This is also illustrated in Figures 7.5 and 7.6, which show the relative amount

58

TEAPOT HAIR COLUMNS ZINKIA1 ZINKIA2 ZINKIA3
scene

0

20

40

60

80

100

pe
rc

en
ta

ge
of

re
nd

er
tim

e

sample shade dice subdivision clear idle

Figure 7.6: Relative amount of time spent for individual tasks when rendering various test
scenes. The subdivision algorithm used was LOCAL.

of time spent in individual stages. The stages spent most time in are dicing and polygon sam-
pling. Subdivision can take up a significant proportion of the frame render time for small and
subdivision-heavy scenes like ZINKIA3, however. For BOUNDED, there is also a significant
chunk of the overall time where the GPU has to idle since it has to interact with the CPU. LO-
CAL, by comparison, requires fewer iterations and can thereby reduce the number of necessary
host interventions when processing. However, we can see that the missing load balancing of
LOCAL makes it perform very poorly for scenes like ZINKIA1 and ZINKIA2.

One thing that can be noticed is that the later stages have a significantly more uniform per-
formance for LOCAL than for BOUNDED. One reason for this is probably that the amount of
processed surfaces remains constant with LOCAL. This would indicate that it might be desirable
to have BOUNDED collect the output of several iterations and only send them to the dicing stage
once certain number of surfaces have been generated. This is something not implemented at the
moment.

Another difference between the traces for BOUNDED and LOCAL is the relative amount of
time spent dicing and sampling. BOUNDED spends significantly more time in the sample kernel.
The reason for this is due to locality and a performance limitation of our sampling kernel. Tile

59

clear framebuffer

clear depthbuffer

initialize projection buffer

init patch ranges

bound patches

reduce

accumulate

buffer map

split patches

dice

shade

sample

0 ms 10 ms 20 ms 30 ms 40 ms 50 ms 60 ms 70 ms 80 ms

Figure 7.7: Kernel trace for the ZINKIA scene with BOUNDED when disabling tile-locking in
the sample kernel

locking is used for applying the fragments generated in the kernel to the framebuffer. In case
another work-group has acquired a the lock, the kernel has to wait. The output surfaces of
LOCAL are less close to each other, since the overall scene is split up between individual work-
groups that concurrently write to a single output buffer. This is visualized in Figure 7.11 and
Figure ??, where the surface color indicates its output time. High locality of output surfaces
is a desirable property that should improve performance for concurrent read accesses as used
when dicing or for texture mapping. But it also demonstrates a serious limitation of our sort-last
approach and current implementation of the sample kernel.

Figure 7.7 shows the kernel trace for the ZINKIA scene and BOUNDED when commenting
out locking of tiles in the sample kernel. While this will potentially result in render artifacts, the
time spent in the sample kernel is significantly reduced. This indicates that further work will be
necessary on the rasterization part of the renderer. However, we chose to put the focus of this
thesis on efficient and robust surface subdivision and weren’t able to further explore this due to
time constraints.

One thing to note is that we still use pixel-level locking within the innermost loop in Figure
7.7, but this does not pose much of a performance problem, since polygons within a grid tend to
have only little overlap. This might be different for procedurally displaced surfaces, however.

60

clear framebuffer

clear depthbuffer

initialize projection buffer

init patch ranges

bound patches

reduce

buffer map

split patches

accumulate

dice

shade

sample

0.00 ms 0.25 ms 0.50 ms 0.75 ms 1.00 ms 1.25 ms 1.50 ms 1.75 ms 2.00 ms 2.25 ms 2.50 ms 2.75 ms 3.00 ms

(a) TEAPOT

clear framebuffer

clear depthbuffer

initialize projection buffer

init patch ranges

bound patches

reduce

accumulate

buffer map

split patches

dice

shade

sample

0 ms 2 ms 4 ms 6 ms 8 ms 10 ms 12 ms 14 ms 16 ms 18 ms

(b) HAIR

clear framebuffer

clear depthbuffer

initialize projection buffer

init patch ranges

bound patches

reduce

accumulate

buffer map

split patches

dice

shade

sample

0 ms 2 ms 4 ms 6 ms 8 ms 10 ms 12 ms 14 ms 16 ms 18 ms

(c) COLUMNS

clear framebuffer

clear depthbuffer

initialize projection buffer

init patch ranges

bound patches

reduce

accumulate

buffer map

split patches

dice

shade

sample

0 ms 20 ms 40 ms 60 ms 80 ms 100 ms 120 ms 140 ms

(d) ZINKIA

Figure 7.8: OpenCL timing traces for various test scenes using BOUNDED for subdivision.

61

clear framebuffer

clear depthbuffer

initialize projection buffer

initialize counter buffers

initialize range buffers

Clear out_range_cnt

bound & split

read range count

dice

shade

sample

read processed counts

0.00 ms 0.25 ms 0.50 ms 0.75 ms 1.00 ms 1.25 ms 1.50 ms 1.75 ms 2.00 ms

(a) TEAPOT

clear framebuffer

clear depthbuffer

initialize projection buffer

initialize counter buffers

initialize range buffers

Clear out_range_cnt

bound & split

read range count

dice

shade

sample

read processed counts

0 ms 2 ms 4 ms 6 ms 8 ms 10 ms 12 ms 14 ms 16 ms 18 ms

(b) HAIR

clear framebuffer

clear depthbuffer

initialize projection buffer

initialize counter buffers

initialize range buffers

Clear out_range_cnt

bound & split

read range count

dice

shade

sample

read processed counts

0 ms 2 ms 4 ms 6 ms 8 ms 10 ms 12 ms 14 ms 16 ms

(c) COLUMNS

clear framebuffer

clear depthbuffer

initialize projection buffer

initialize counter buffers

initialize range buffers

Clear out_range_cnt

bound & split

read range count

dice

shade

sample

read processed counts

0 ms 20 ms 40 ms 60 ms 80 ms 100 ms

(d) ZINKIA

Figure 7.9: OpenCL timing traces for various test scenes using LOCAL for subdivision.

62

Figure 7.10: The ZINKIA scene subdivided using BOUNDED with the output order of surfaces
indicated by color. Geometric locality is preserved. Zinkia Entertainment, S.A.

Figure 7.11: The ZINKIA scene subdivided using LOCAL with the output order of surfaces
indicated by color. Geometric locality is not preserved. Zinkia Entertainment, S.A.

63

Figure 7.12: The ZINKIA1 scene. Surface colors indicate the output order. Zinkia Entertain-
ment, S.A.

Figure 7.13: The ZINKIA2 scene. Surface colors indicate the output order. Zinkia Entertain-
ment, S.A.

64

Figure 7.14: The ZINKIA3 scene. Surface colors indicate the output order. Zinkia Entertain-
ment, S.A.

65

CHAPTER 8
Conclusion

This thesis has presented a hardware-accelerated implementation of the Reyes algorithm in
OpenCL. Our major contribution is a method for implementing adaptive surface subdivision
on the GPU with a bounded peak memory consumption. The output order of generated surfaces
also preserves locality. We believe the memory advantages of our algorithm over previous GPU
implementations of bound-and-split may make adaptive surface subdivision more tractable for
real-time usage, in particular for constrained rendering environments like mobile platforms.

The performance of BOUNDED could be greatly improved by using device-side enqueue, as
supported in version OpenCL 2.0. This is because a lot of the overhead of performing more
iterations comes from the necessary host-device interactions. If this overhead were negligible,
then even relatively small batch sizes should be able to fully utilize all available parallelism for
a given graphics processor. Figure 7.5 shows the amount of time spent idling during rendering
of a frame, most of which should be avoidable with kernel-side enqueue. However, at the time
of writing AMD only released a preliminary driver supporting OpenCL 2.0, which is why we
weren’t able to fully explore this.

As we have seen in the previous chapter, bound-and-split only accounts for a small portion
of the overall render time. It may therefore be feasible to set aside a small portion of a GPU’s
compute units just for this task, so that subdivision and rendering can be performed concurrently
in a true pipeline.

Robust adaptive subdivision has many possible uses. Hanika et al. [12] present a method
for ray-tracing polygons using a two-level approach with ray reordering. This method may be
well-suited for implementation on the GPU using our described method for geometry genera-
tion. Integrating adaptive subdivision into a larger GPU graphics pipeline would also allow for
interesting optimization possibilities like culling occluded surfaces during subdivision.

We have chosen a sort-last approach in conjuction with tile-level locking for our implemen-
tation of micropolyon rasterization. While this approach works reasonably well, we have found
that lock congestion is a serious source of overhead in some of our configurations. Further work
would be necessary to improve this inefficiency. Lock-free approaches for parallel fragment
composition like the one described by Patney et. al. [29] could be explored for this.

67

Many alternative GPU-based software rasterizers instead opt for a sort-middle approach,
where primitives are assigned to screen tiles and then a rasterization kernel is called for each tile.
However, this requires further record keeping and may suffer from load imbalances when certain
screen areas have a significantly higher depth complexity than others. Hardware rasterizers
use special silicon to perform fragment merging and do not suffer from these inefficiencies.
If this functionality could be exposed to compute kernels or if rasterization hardware simply
added support for handling micropolygons efficiently then this would be the ideal solution to
this problem.

The source code for Micropolis, the OpenCL Reyes renderer described in this thesis, can be
found at https://github.com/ginkgo/micropolis.

68

https://github.com/ginkgo/micropolis

Bibliography

[1] Anthony A. Apodaca and Larry Gritz. Advanced RenderMan: Creating CGI for Motion
Picture. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1st edition, 1999.

[2] J. S. Brunhaver, K. Fatahalian, and P. Hanrahan. Hardware implementation of microp-
olygon rasterization with motion and defocus blur. In Proceedings of the Conference on
High Performance Graphics, HPG ’10, pages 1–9, Aire-la-Ville, Switzerland, Switzerland,
2010. Eurographics Association.

[3] Christopher A. Burns, Kayvon Fatahalian, and William R. Mark. A lazy object-space
shading architecture with decoupled sampling. In Proceedings of the Conference on High
Performance Graphics, HPG ’10, pages 19–28, Aire-la-Ville, Switzerland, Switzerland,
2010. Eurographics Association.

[4] Edwin Catmull and James H. Clark. Recursively generated B-spline surfaces on arbitrary
topological meshes. Computer-Aided Design, 10(6):350–355, November 1978.

[5] Christophe Riccio. Opengl mathematics, http://glm.g-truc.net. Accessed:
2014-11-03.

[6] Robert L. Cook, Loren Carpenter, and Edwin Catmull. The Reyes image rendering ar-
chitecture. In Computer Graphics (Proceedings of SIGGRAPH 87), pages 95–102, July
1987.

[7] Tony DeRose, Michael Kass, and Tien Truong. Subdivision surfaces in character anima-
tion. In Proceedings of the 25th Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH ’98, pages 85–94, New York, NY, USA, 1998. ACM.

[8] Christian Eisenacher and Charles Loop. Data-parallel micropolygon rasterization. In Ste-
fan Seipel and Hendrik Lensch, editors, Eurographics 2010 Annex: Short Papers, May
2010.

[9] Christian Eisenacher, Quirin Meyer, and Charles Loop. Real-time view-dependent ren-
dering of parametric surfaces. In Proceedings of the 2009 Symposium on Interactive 3D
Graphics and Games, I3D ’09, pages 137–143, 2009.

69

http://glm.g-truc.net

[10] Kayvon Fatahalian, Edward Luong, Solomon Boulos, Kurt Akeley, William R. Mark, and
Pat Hanrahan. Data-parallel rasterization of micropolygons with defocus and motion blur.
In Proceedings of the Conference on High Performance Graphics 2009, HPG ’09, pages
59–68, New York, NY, USA, 2009. ACM.

[11] Matthew Fisher, Kayvon Fatahalian, Solomon Boulos, Kurt Akeley, William R. Mark,
and Pat Hanrahan. DiagSplit: Parallel, crack-free, adaptive tessellation for micropolygon
rendering. ACM Transactions on Graphics, 28(5):150:1–150:10, December 2009.

[12] Johannes Hanika, Alexander Keller, and Hendrik P. A. Lensch. Two-level ray tracing with
reordering for highly complex scenes. In Proceedings of Graphics Interface 2010, GI ’10,
pages 145–152, 2010.

[13] Qiming Hou, Xin Sun, Kun Zhou, Christian Lauterbach, and Dinesh Manocha. Memory-
scalable GPU spatial hierarchy construction. IEEE Transactions on Visualization and Com-
puter Graphics, 17(4):466–474, April 2011.

[14] Qiming Hou, Kun Zhou, and Baining Guo. BSGP: Bulk-synchronous GPU programming.
ACM Trans. Graph., 27(3):19:1–19:12, August 2008.

[15] Kenton Varda. Cap’n proto, https://kentonv.github.io/capnproto/. Ac-
cessed: 2014-11-03.

[16] Khronos OpenCL Working Group. OpenCL 1.2 API and C Language Specification,
November 2012.

[17] Denis Kovacs, Jason Mitchell, Shanon Drone, and Denis Zorin. Real-time creased ap-
proximate subdivision surfaces. In Proceedings of the 2009 Symposium on Interactive 3D
Graphics and Games, I3D ’09, pages 155–160, New York, NY, USA, 2009. ACM.

[18] Samuli Laine and Tero Karras. High-performance software rasterization on gpus. In Pro-
ceedings of the ACM SIGGRAPH Symposium on High Performance Graphics, HPG ’11,
pages 79–88, New York, NY, USA, 2011. ACM.

[19] Charles Loop and Christian Eisenacher. Real-time patch-based sort-middle rendering on
massively parallel hardware. Technical Report MSR-TR-2009-83, Microsoft Research,
May 2009.

[20] Charles Loop and Scott Schaefer. Approximating Catmull-Clark subdivision surfaces with
bicubic patches. ACM Transactions on Graphics, 27(1):8:1–8:11, March 2008.

[21] Charles Loop, Scott Schaefer, Tianyun Ni, and Ignacio Castaño. Approximating subdi-
vision surfaces with Gregory patches for hardware tessellation. ACM Transactions on
Graphics, 28(5):151:1–151:9, December 2009.

[22] Jacob Munkberg, Jon Hasselgren, Robert Toth, and Tomas Akenine-Möller. Efficient
bounding of displaced Bézier patches. In Proceedings of the Conference on High Per-
formance Graphics, HPG ’10, pages 153–162, 2010.

70

https://kentonv.github.io/capnproto/

[23] Matthias Nießner and Charles Loop. Analytic displacement mapping using hardware tes-
sellation. ACM Transactions on Graphics, 32(3):26:1–26:9, July 2013.

[24] Matthias Nießner, Charles Loop, Mark Meyer, and Tony Derose. Feature-adaptive
GPU rendering of Catmull-Clark subdivision surfaces. ACM Transactions on Graphics,
31(1):6:1–6:11, February 2012.

[25] Matthias Nießner, Charles T. Loop, and Günther Greiner. Efficient evaluation of semi-
smooth creases in Catmull-Clark subdivision surfaces. In Eurographics (Short Papers),
pages 41–44, 2012.

[26] John D. Owens, Brucek Khailany, Brian Towles, and William J. Dally. Compar-
ing Reyes and opengl on a stream architecture. In Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS Conference on Graphics Hardware, HWWS ’02, pages 47–56,
Aire-la-Ville, Switzerland, Switzerland, 2002. Eurographics Association.

[27] Anjul Patney, Mohamed S. Ebeida, and John D. Owens. Parallel view-dependent tessel-
lation of Catmull-Clark subdivision surfaces. In Proceedings of the Conference on High
Performance Graphics, HPG ’09, pages 99–108, 2009.

[28] Anjul Patney and John D. Owens. Real-time Reyes-style adaptive surface subdivision.
ACM Transactions on Graphics, 27(5):143:1–143:8, December 2008.

[29] Anjul Patney, Stanley Tzeng, and John D. Owens. Fragment-parallel composite and filter.
Computer Graphics Forum (Proceedings of EGSR 2010), 29(4):1251–1258, June 2010.

[30] Daniel Sanchez, David Lo, Richard M. Yoo, Jeremy Sugerman, and Christos Kozyrakis.
Dynamic fine-grain scheduling of pipeline parallelism. In Proceedings of the 2011 Interna-
tional Conference on Parallel Architectures and Compilation Techniques, PACT ’11, pages
22–32, October 2011.

[31] Michael Schwarz and Marc Stamminger. Fast GPU-based adaptive tessellation with cuda.
Computer Graphics Forum, 28(2):365–374, 2009.

[32] Jos Stam. Exact evaluation of catmull-clark subdivision surfaces at arbitrary parameter val-
ues. In Proceedings of the 25th Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH ’98, pages 395–404, New York, NY, USA, 1998. ACM.

[33] Ian Stephenson. Implementing RenderMan on the Sony PS2. In ACM SIGGRAPH 2003
Sketches &Amp; Applications, SIGGRAPH ’03, pages 1–1, New York, NY, USA, 2003.
ACM.

[34] Stanley Tzeng, Anjul Patney, and John D. Owens. Task management for irregular-parallel
workloads on the GPU. In Proceedings of the Conference on High Performance Graphics,
HPG ’10, pages 29–37, 2010.

71

[35] Kun Zhou, Qiming Hou, Zhong Ren, Minmin Gong, Xin Sun, and Baining Guo. Render-
Ants: Interactive Reyes rendering on GPUs. ACM Transactions on Graphics, 28(5):155:1–
155:11, December 2009.

72

	Introduction
	Overview
	Reyes
	General Purpose Computing on the GPU

	Related Work
	Surface Tessellation
	Micropolygon Rasterization
	Real-Time Tessellation of Catmull-Clark surfaces

	Adaptive Subdivision on the GPU
	Introduction
	Adaptive Subdivision with Bounded Memory
	Storing Intermediate Surfaces in Work-Group Local Storage

	Dicing, Shading, and Rasterization
	Dicing
	Shading and Back-face Culling
	Rasterization

	Implementation
	Source Code Overview
	Class Overview
	The micropolis package
	Supporting Infrastructure
	Usage

	Performance Evaluation
	Adaptive Subdivision
	Rendering

	Conclusion
	Bibliography

