
Memetic Algorithms for
Tree Decomposition

Diplomarbeit

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Kevin Bader
Matrikelnummer 0726375

an der Fakultät für Informatik der Technischen Universität Wien

Betreuer: Priv.-Doz. Dr. Nysret Musliu

Wien, am 4.12.2014
(Verfasser) (Betreuer)

Technische Universität Wien, Karlsplatz 13, 1040 Wien, Austria. www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

www.tuwien.ac.at

Memetic Algorithms for
Tree Decomposition

Master's Thesis

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Kevin Bader
Registration number 0726375

to the faculty of Informatics, Vienna University of Technology

Advisor: Priv.-Doz. Dr. Nysret Musliu

Vienna, Dec. 4th, 2014
(Author) (Advisor)

Technische Universität Wien, Karlsplatz 13, 1040 Wien, Austria. www.tuwien.ac.at

www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Kevin Bader
Leystraße 163 Stiege 2 Tür 24, 1020 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, und dass ich
die verwendeten Quellen und Hilfsmittel vollständig angegeben habe. Weiters
habe ich alle Stellen der Arbeit, die anderen Werken im Wortlaut oder dem
Sinn nach entnommen sind, unter Angabe der Quelle als Entlehnung kenntlich
gemacht.

(Ort, Datum) (Unterschrift Verfasser)

v

Danksagung

Ich möchte an erster Stelle meiner Mutter Gertrude dafür danken, dass sie
mir mein Studium ermöglicht hat, und mir stets mit Rat und Unterstützung
zur Seite gestanden ist. Ebenso möchte ich Judith danken, die mir während
meiner ganzen Studienzeit immer wieder den Rücken gestärkt hat, und ohne
die ich heute nicht dort wäre wo ich jetzt bin. Dank gilt auch Eva und
Inge, deren finanzielle und teigwarenartige Unterstützung Gold wert waren im
bescheidenen Studentendasein der letzten Jahre. Dankbar bin ich auch Pascal,
Caro, Thomas und Jakob für ihre Zeit und Geduld.

Natürlich möchte ich mich auch bei meinem Betreuer, Dr. Nysret Musliu,
für die umfassende und motivierende Betreuung bedanken. Danke auch an
Toni Pisjak für den flinken technischen Support während der Durchführung
der Experimente.

vii

Zusammenfassung

Baumzerlegungen kleiner Breite stellen ein mächtiges Werkzeug dar, um der
Komplexität schwieriger Probleme entgegenzutreten. Instanzen des Bedingungs-
erfüllungsproblems können beispielsweise in polynomieller Zeit gelöst werden,
wenn der zugrundeliegende Graph eine geringe Baumweite aufweist. Es
gibt bereits mehrere exakte Algorithmen und Heuristiken, die gute obere
Schranken bezüglich der natürlichen Baumweite eines Graphen finden können.
Da der Abstand zwischen unterer und oberer Schranke für viele Instanzen aber
noch sehr groß ist, sind solche Algorithmen nachwievor Gegenstand aktueller
Forschung. Diese Arbeit untersucht die Brauchbarkeit von memetischen
Algorithmen in Bezug auf dieses Problem.

Diese Arbeit präsentiert drei neue memetische Algorithmen für das Finden
von Baumzerlegungen möglichst kleiner Breite. Die erste Variante verwendet
eine zufällig gewählte Ringstruktur, um eine Population von Lösungen zu
organisieren. Die Auswahl und Kombination der Individuen hängt von ihrer
Umgebung in der Ringstruktur ab. Der zweite Algorithmus ist ein Hybrid
zwischen einem genetischen Algorithmus, der mit einer Plus Strategie und
Elitarismus arbeitet, und einer Heuristik, die auf lokaler Suche basiert, und
in jeder Generation für das Verbessern der besten Lösungen verwendet wird.
Die letzte Variante verwendet einen bestehenden genetischen Algorithmus,
erweitert um lokale Suche, mit der in jeder Generation ein zufällig gewählter
Teil der Population verbessert wird.

Alle drei Varianten wurden mit aktueller Parameter Tuning Software auf die
Instanzen der Second DIMACS Implementation Challenge optimiert. Um den
Einfluss der Parameter besser verstehen zu können, wurden die Korrelationen
zwischen Parametereinstellungen und der Qualität der Ergebnisse untersucht
und visualisiert.

Um die Leistung der Algorithmen abseits der Benchmark Instanzen bewerten
zu können, wurden sie in einem umfassenden Experiment mit einem separaten
Satz Instanzen getestet und verglichen. Die Ergebnisse wurden mit statistischen
Tests auf ihre Signifikanz hin überprüft. Auch wenn unsere memetischen
Algorithmen die aktuell besten Heuristiken nicht dominieren, erweisen sie sich
für die meisten Instanzen durchaus als kompetitiv. Weiters konnten die bis
dato besten oberen Schranken für 8 DIMACS Instanzen von den memetischen
Algorithmen verbessert werden.

ix

Abstract

A tree decomposition of small width represents a valuable tool for tackling
hard problems. For example, instances of constraint satisfaction problems can
be solved in polynomial time if their underlying graph can be transformed into
a tree decomposition of small width. There exist several exact algorithms and
heuristics for finding tree decompositions of small widths for a given graph.
However, developing new methods for finding good upper bounds for tree
decompositions is still an important research issue. This thesis investigates the
application of memetic algorithms, which have, to the best of our knowledge,
not yet been applied to tree decompositions.

We propose and implement three new memetic algorithms for finding tree
decompositions of small width. The first algorithm organizes its population
of solutions in a randomly initialized ring structure, which is used to employ
selection and recombination among the individual solutions according to their
vicinity. Each generation is collectively improved using iterated local search.
The second algorithm is a hybrid between a genetic algorithm that uses elitism
for selection, and iterated local search, which is used to improve the best
individuals of every generation. Finally, the third algorithm implements an
existing genetic algorithm design and also incorporates iterated local search,
which is applied to a random fraction of each generation.

All three variants have been tuned using state-of-the-art parameter tuning
software on instances of the Second DIMACS Implementation Challenge. In
order to achieve a better understanding of the algorithms, the correlation
between parameter settings and solution quality has been examined.

We offer an extensive comparison, which relates the performance of our
memetic algorithms to state-of-the-art solvers for tree decomposition. Featuring
a set of instances different to those used for parameter tuning, the comparison
aims at providing real-world validity. The results have been confirmed using
statistical significance tests. We show that our memetic algorithms do not
dominate the state-of-the-art algorithms for this problem, but they prove to be
competitive on most instances. Furthermore, one of our algorithms has been
able to improve 8 best known upper bounds for the benchmark instances of
the Second DIMACS Implementation Challenge.

xi

Contents

Contents xiii

List of Figures xiv

List of Tables xvi

List of Algorithms xviii

1 Introduction 1
1.1 Research Questions of This Work 6
1.2 Main Results . 6
1.3 Further Organization . 7

2 Related Work 9
2.1 Tree Decomposition and Treewidth 9
2.2 Memetic and Hybrid Algorithms 12

3 Memetic Algorithms for Treewidth Optimization 15
3.1 MA1 . 15
3.2 MA2 . 23
3.3 MA3 . 25
3.4 Implementation . 26

4 Parameter Tuning 29
4.1 Tuning Results . 34
4.2 Parameter Correlation . 35

5 Comparative Experimental Evaluation 55
5.1 Results on DIMACS Benchmark Instances 55
5.2 Algorithm Validation . 58

6 Conclusions 83

A Performance on Validation Instances, continued 85

xiii

Glossary 97

Bibliography 99

List of Figures

1.1 Example CSP graph: kids and their relationships 1

3.1 MA1 Ring Topology . 16

4.1 Parameter influence for MA1 when applied to DSJC1000.9 36
4.2 Parameter influence for MA1 when applied to flat300_26_0 36
4.3 Parameter influence for MA1 when applied to fpsol2.i.2 37
4.4 Parameter influence for MA1 when applied to inithx.i.3 37
4.5 Parameter influence for MA1 when applied to mulsol.i.2 38
4.6 Parameter influence for MA1 when applied to zeroin.i.3 38
4.7 Parameter influence for MA1 when applied to le450_15c 39
4.8 Parameter influence for MA1 when applied to school1 39
4.9 Parameter influence for MA1 when applied to latin_square_10 . . 40
4.10 Parameter influence for MA1 when applied to anna 40
4.11 Parameter influence for MA1 when applied to games120 41
4.12 Parameter influence for MA1 when applied to miles500 41
4.13 Parameter influence for MA1 when applied to queen10_10 42
4.14 Parameter influence for MA1 when applied to myciel7 42
4.15 Parameter influence for MA2 when applied to DSJC500.9 43
4.16 Parameter influence for MA2 when applied to flat1000_76_0 . . . 43
4.17 Parameter influence for MA2 when applied to fpsol2.i.3 44
4.18 Parameter influence for MA2 when applied to inithx.i.3 44
4.19 Parameter influence for MA2 when applied to mulsol.i.2 45
4.20 Parameter influence for MA2 when applied to zeroin.i.3 45
4.21 Parameter influence for MA2 when applied to le450_5c 46
4.22 Parameter influence for MA2 when applied to school1_nsh 46
4.23 Parameter influence for MA2 when applied to latin_square_10 . . 47
4.24 Parameter influence for MA2 when applied to jean 47
4.25 Parameter influence for MA2 when applied to games120 48
4.26 Parameter influence for MA2 when applied to miles1000 48
4.27 Parameter influence for MA2 when applied to queen12_12 49
4.28 Parameter influence for MA2 when applied to myciel6 49

xiv

4.29 Parameter influence for MA3 when applied to DSJR500.1c 50
4.30 Parameter influence for MA3 when applied to flat300_26_0 50
4.31 Parameter influence for MA3 when applied to fpsol2.i.3 50
4.32 Parameter influence for MA3 when applied to inithx.i.3 51
4.33 Parameter influence for MA3 when applied to mulsol.i.1 51
4.34 Parameter influence for MA3 when applied to zeroin.i.3 51
4.35 Parameter influence for MA3 when applied to le450_15c 51
4.36 Parameter influence for MA3 when applied to school1 51
4.37 Parameter influence for MA3 when applied to latin_square_10 . . 52
4.38 Parameter influence for MA3 when applied to jean 52
4.39 Parameter influence for MA3 when applied to games120 52
4.40 Parameter influence for MA3 when applied to miles500 52
4.41 Parameter influence for MA3 when applied to queen10_10 52
4.42 Parameter influence for MA3 when applied to myciel6 53

5.1 Violin plot for instance rl5934 . 62
5.2 Solution quality over time for instance rl5934 62
5.3 Violin plot for instance pcb3038 . 64
5.4 Solution quality over time for instance pcb3038 64
5.5 Violin plot for instance fnl4461 . 65
5.6 Solution quality over time for instance fnl4461 66
5.7 Violin plot for instance fl3795 . 67
5.8 Solution quality over time for instance fl3795 67
5.9 Violin plot for instance link . 68
5.10 Solution quality over time for instance link 69
5.11 Solution quality over time for instance diabetes 70
5.12 Violin plot for instance 1qtn . 71
5.13 Solution quality over time for instance 1qtn 71
5.14 Violin plot for instance BN_16 . 72
5.15 Solution quality over time for instance BN_16 73
5.16 Violin plot for instance BN_20 . 74
5.17 Solution quality over time for instance BN_20 74
5.18 Violin plot for instance BN_30 . 75
5.19 Solution quality over time for instance BN_30 76
5.20 Violin plot for instance BN_42 . 77
5.21 Solution quality over time for instance BN_42 77
5.22 Violin plot for instance BN_47 . 78
5.23 Solution quality over time for instance BN_47 79
5.24 Result of the comparisons . 81

A.1 Solution quality over time for instance pathfinder 86
A.2 Solution quality over time for instance oesoca+ 86
A.3 Solution quality over time for instance pigs 87
A.4 Solution quality over time for instance water 88

xv

A.5 Solution quality over time for instance munin1 89
A.6 Solution quality over time for instance 1ubq 89
A.7 Solution quality over time for instance 1a62 90
A.8 Solution quality over time for instance 1sem 91
A.9 Solution quality over time for instance 1pwt 92
A.10 Solution quality over time for instance 1or7 92
A.11 Solution quality over time for instance 1on2 92
A.12 Solution quality over time for instance 1oai 94
A.13 Solution quality over time for instance BN_0 95

List of Tables

3.1 Information for reproducing the results 28

4.1 Training Set, DSJ Instances . 30
4.2 Training Set, CUL Instances . 30
4.3 Training Set, LAT Instances . 30
4.4 Training Set, REG Instances . 31
4.5 Training Set, LEI Instances . 31
4.6 Training Set, SGB1 Instances . 32
4.7 Training Set, SGB2 Instances . 32
4.8 Training Set, SGB3 Instances . 32
4.9 Training Set, SGB4 Instances . 33
4.10 Training Set, SGB5 Instances . 33
4.11 Training Set, SCH Instances . 33
4.12 MA1’s parameters after parameter tuning by SMAC 34
4.13 MA2’s parameters after parameter tuning by SMAC 34
4.14 MA3’s parameters, with the ranges used by SMAC, and its output 35

5.1 Results on the benchmark instances of the
Second DIMACS Implementation Challenge 56

5.2 Instances 1–12 of the validation set 59
5.3 Instances 13–27 of the validation set 60
5.4 Results for instance rl5934 . 61
5.5 Pairwise comparison of means for instance rl5934 63
5.6 Results for instance pcb3038 . 63
5.7 Pairwise comparison of means for instance pcb3038 64

xvi

5.8 Results for instance fnl4461 . 65
5.9 Pairwise comparison of means for instance fnl4461 66
5.10 Results for instance fl3795 . 66
5.11 Pairwise comparison of means for instance fl3795 67
5.12 Results for instance link . 68
5.13 Pairwise comparison of means for instance link 69
5.14 Results for instance diabetes . 69
5.15 Pairwise comparison of means for instance diabetes 70
5.16 Results for instance 1qtn . 70
5.17 Pairwise comparison of means for instance 1qtn 72
5.18 Results for instance BN_16 . 72
5.19 Pairwise comparison of means for instance BN_16 73
5.20 Results for instance BN_20 . 73
5.21 Pairwise comparison of means for instance BN_20 75
5.22 Results for instance BN_30 . 75
5.23 Pairwise comparison of means for instance BN_30, at a significance

level of 5% . 76
5.24 Results for instance BN_42 . 77
5.25 Pairwise comparison of means for instance BN_42 78
5.26 Results for instance BN_47 . 78
5.27 Pairwise comparison of means for instance BN_47 79

A.1 Results for instance barley . 85
A.2 Results for instance pathfinder . 85
A.3 Results for instance oesoca+ . 86
A.4 Results for instance pigs . 87
A.5 Pairwise comparison of means for instance pigs 87
A.6 Results for instance water . 88
A.7 Results for instance munin1 . 88
A.8 Results for instance 1ubq . 88
A.9 Results for instance knights8_8 . 89
A.10 Pairwise comparison of means for instance knights8_8 90
A.11 Results for instance 1a62 . 90
A.12 Pairwise comparison of means for instance 1a62 91
A.13 Results for instance 1sem . 91
A.14 Results for instance 1pwt . 93
A.15 Results for instance 1or7 . 93
A.16 Pairwise comparison of means for instance 1or7 93
A.17 Results for instance 1on2 . 93
A.18 Pairwise comparison of means for instance 1on2 94
A.19 Results for instance 1oai . 94
A.20 Results for instance BN_0 . 95

xvii

A.21 Pairwise comparison of means for instance BN_0 95

List of Algorithms

3.1 ILS, Part I . 16
3.2 ILS, Part II . 17
3.3 ILS, Part III . 18
3.4 MA1, Part I . 20
3.5 MA1, Part II . 21
3.6 MA1, Part III . 22
3.7 MA2, Part I . 24
3.8 MA2, Part II . 25
3.9 MA3, Part I . 26
3.10 MA3, Part II . 27

xviii

Chapter 1

Introduction

Over the past century, computers have enabled us to quickly solve more and
more problems that had previously been too intricate to be solved at all. With
computing power increasing constantly, it is hard to believe that there are
still problems left that still are hard to be solved. Many interesting problems,
however, seem to be not only hard to solve: in fact, the majority of computer
scientists thinks that many interesting problems will remain intractable forever.

The good news is that even for problems that are proven to be NP-hard (a
class for computationally hard problems), often instances of these problems
can be solved efficiently nevertheless. If the instance is small, it is possible
to simply test all possible solutions in order to find the best one. For larger
instances, often structural properties allow for an efficient search, regardless
of the instance’s size. In this work, we are concerned with exploiting one
particular structural property called treewidth. The problem and the structural
property are best explained using an example.

Nola

Maya

Julia

Fabian

Aaron

Tristan

Figure 1.1: Example CSP
graph: kids and their
relationships.

Consider a typical constraint satisfaction
problem (CSP) that deals with the following
scenario. Assume you are organizing a holiday
camp for kids. Some kids know each other
already, some don’t. You plan to assign the kids
to their dorms in such a way that the kids may
become acquainted with other kids they do not
yet know. Figure 1.1 illustrates the relationships
between the kids.

The drawing shows the relationships as a
graph, where the children are represented by
vertices. The edges between them show the acquaintances, that is, if two kids
know each other, there is an edge between them in the graph.

So our plan is to assign the kids to rooms such that no two kids in any
room have an edge between them in the graph. In this example, is this possible
with two rooms? Indeed, it is: we could give one room to Tristan, Julia and

1

Maya, and another to Nola, Aaron and Fabian.
This is a variant of a problem called Graph Coloring Problem, also known

as Chromatic Number, which asks, given a graph, if it is possible to assign k
colors to the vertices in the graph, such that each edge only connects vertices
that have different colors. In our example, we have asked if this is possible with
k = 2. With more than two colors, the decision version of the Graph Coloring
Problem—e.g., is there a k-coloring with k = 3?—is already significantly harder
to solve; in fact, for k ≥ 3 it is known to be NP-complete (see [48] for an
introduction to complexity theory). The optimization version, i.e., computing
the chromatic number, is NP-hard as well. To give an idea what this means,
consider the example again. Since we have 6 kids and two rooms, there are
26 = 64 possible kids-to-rooms assignments. Despite these 64 possibilities,
we were quick in finding a solution to the example here, so we would expect
that it would not be that hard to solve the same problem for, say, a class
of 25 pupils. However, when asking whether we can assign the 25 pupils to
k = 5 rooms in the same way, we already face 525 = 2.9802322 · 1017 possible
assignments. Assuming that evaluating a single assignment takes a computer
one hundredths of a second, testing all possible assignments would still take
94502544 years. This demonstrates the complexity of NP-complete problems,
where the runtime grows exponentially with the size of the problem instance.

Fortunately, we might still be able to solve such an instance in a reasonable
amount of time, if it has a special structure, as we will see below.

Typically, the Graph Coloring Problem is formulated as a CSP:

Definition 1.1 (CSP). A CSP is a triple 〈V,D,C〉, where V = {v1, . . . , vn}
is a set of variables, D = {d1, . . . , dn} a set of finite domains (which contain
the values that can be assigned to the variables in V , respectively), and
C = {c1, . . . , cm} a set of constraints (each constraint is given as a pair of a set
of k variables ∈ V and a k-ary relation that represents the actual constraint
on these variables). A solution to a CSP is an assignment of values to all
variables, such that all constraint relations are fulfilled.

In the case of the example above, we could use one variable for each kid
(V = {Nola,Tristan, . . .}), and use the room numbers as domains for these
variables (e.g., Nola = 2 means that Nola is assigned to the room 2). The
constraints would be formulas that allow two variables to have the same number
only if they are not connected with an edge in the underlying graph.

Tree Decomposition and Treewidth

It turns out that a CSP instance is tractable if it features certain structural
properties. Either it is tractable due to a restricted structure of the contraint
scopes, or due to particular properties of the constraint relations [22, 49]. In
order to identify and solve tractable CSPs instances, decomposition methods

2

may be used. In this work, we focus on tree decompositions, and a property
called treewidth. Creating a tree decomposition of a graph means to translate
the original graph into another graph, the tree decomposition, according to a
set of rules. The formal definitions of tree decomposition and treewidth are
given in Section 2.1 on page 9.

Interestingly, a small treewidth causes shorter running times: if the
underlying graph has bounded treewidth, the problem can be solved in
O(n · dt+1), where n is the number of variables, d is the maximal domain
size of any variable, and t is the treewidth of the instance [52]. Clearly, the
treewidth has a great impact on the runtime (as t is in the exponent); therefore
the goal is to find a tree decomposition of minimal width, which can then be
used to solve the original problem.

Relating to the school class problem: if we can find a tree decomposition
of the underlying acquaintance graph with a sufficiently small width, we are
able to solve it quickly.

In order to illustrate how tree decompositions may be derived, we consider
the first example again, and develop one possible tree decomposition off
the original graph. A common way to generate a tree decomposition is by
vertex elimination, where vertices are removed from the original graph one
by one, according to an elimination ordering. An elimination ordering then
explicitly defines the resulting tree decomposition. To illustrate the elimination
process, we use the following elimination ordering with the previous example:
Fabian, Julia, Maya, Aaron, Nola, Tristan. Please note that this ordering is
completely arbitrary. Most of the algorithms that solve this problem essentially
do the same: they calculate the width of tree decompositions using the steps
that are illustrated in the following example, according to (intelligently) guessed
elimination orderings. The aim of the algorithms is to be good at finding these
orderings, so that the width of the resulting tree decomposition is as small as
possible.

We start by eliminating the first vertex: Fabian. When removing a
vertex from the original graph (on the left), we create a tree node in the
tree decomposition (on the right) that contains the eliminated vertex and all
its neighbors. When removing Fabian, we create a node that contains Fabian,
Maya and Tristan:

Nola

Maya

Julia

Fabian

Aaron

Tristan

Fabian, Maya, Tristan

After removing a vertex, we connect in the original graph all its previous

3

neighbors with each other. In the case of Fabian, we connect Maya and Tristan.
Then we remove the next vertex: Julia.

Nola

Maya

Julia Aaron

Tristan

Fabian, Maya, Tristan

Julia, Nola, Aaron

A node in the tree decomposition should be connected to the next node that is
created because of the elimination of a vertex that occurs in it. In this case,
Julia does not appear in the first node, so the two nodes are not connected.
We continue with Maya.

Nola

Maya

Aaron

Tristan

Fabian, Maya, Tristan

Julia, Nola, Aaron

Maya, Tristan

Since Maya is contained in the first node, and the first node has not been
connected to a newer node yet, we connect the two nodes. Next: Aaron.

Nola

Aaron

Tristan

Fabian, Maya, Tristan

Julia, Nola, Aaron

Maya, Tristan

Aaron, Nola, Tristan

Aaron’s tree node too gets connected to a previous node. The two remaining
vertices are Nola and Tristan.

4

Nola Tristan

Fabian, Maya, Tristan

Julia, Nola, Aaron

Maya, Tristan

Aaron, Nola, Tristan

Nola, Tristan

Tristan

Fabian, Maya, Tristan

Julia, Nola, Aaron

Maya, Tristan

Aaron, Nola, Tristan

Nola, Tristan

Tristan

Tristan is present in two nodes, which both have not been connected to any
newer nodes yet, so Tristan’s node gets connected to both.

Finally, we may delete all nodes where the vertices are fully contained in a
neighbor node:

Fabian, Maya, Tristan

Julia, Nola, Aaron

Maya, Tristan

Aaron, Nola, Tristan

Nola, Tristan

Tristan

⇒

Fabian, Maya, Tristan

Julia, Nola, Aaron

Aaron, Nola, Tristan

The intuition behind this tree decomposition is that the nodes represent
subproblems, and relating subproblems are connected to each other. In this
example, we can observe that assigning a room to Tristan influences the possible
solutions for the Aaron-Nola-Tristan node; similarly, the assignment for the
latter affects the Julia-Nola-Aaron node. The idea is to divide the problem
into smaller subproblems, and by concentrating on the subproblems, solve the
original problem more efficiently.

5

Unfortunately, just as solving the original problem, finding the treewidth of
a graph (i.e., the minimal width over all tree decompositions; see Definition 2.1)
is NP-hard as well [5]. Consequently, the purpose of the optimization heuristics
that are presented in this thesis is to find good upper bounds on the treewidth
of given graphs.

1.1 Research Questions of This Work
There are different approaches for finding good upper bounds on the treewidths
of graphs, as will be discussed in Chapter 2. To the best of our knowledge,
however, memetic algorithms, which have been applied successfully to other
problems in the past, have not yet been applied to this problem.
This work’s objectives are:

• The development of new memetic algorithms for minimizing upper bounds
on the treewidth of graphs.

• An evaluation of the developed memetic algorithms on benchmark
instances from the literature and the comparison with state-of-the-art
algorithms for tree decompositions.

1.2 Main Results
The main contributions of this work are:

• We propose three memetic algorithms for tree decomposition: MA1, MA2
and MA3. MA1 organizes a population of solutions in a randomly
initialized ring structure, which is used for employing selection and
recombination among the individual solutions according to their vicinity.
Each generation is collectively improved using iterated local search. MA2
is a hybrid between a genetic algorithm that uses elitism for selection,
and iterated local search, which is used to improve the best individuals of
every generation. Finally, MA3 implements an existing genetic algorithm
design and also incorporates iterated local search, which is applied to a
random fraction of each generation. Their parameters have been tuned
using state-of-the-art parameter tuning software, and the correlation
between those parameters and the corresponding solution quality has
been studied.

• Our algorithms have been compared with state-of-the-art solvers for
tree decomposition. The memetic algorithms cannot outperform them,
but they prove to be competitive as they perform equivalently on many
benchmark instances. One of our algorithms (MA3) is able to improve
8 best known upper bounds for instances of the Second DIMACS
Implementation Challenge [14].

6

• Public open-source implementations have been written from scratch and
released under GPLv3. Code quality is ensured by providing high test
coverage.

1.3 Further Organization
In the following, Chapter 2 discusses the related work. Then Chapter 3
introduces our memetic algorithms. Chapter 4 elaborates on parameter
tuning, and also inspects possible parameter correlations. In Chapter 5
the experimental evaluation of the memetic algorithms is presented. Finally,
Chapter 6 gives a conclusion.

Additionally, Appendix A list results from the algorithm validation that
have been omitted in Section 5 for brevity.

7

Chapter 2

Related Work

In this Chapter we present literature related to tree decomposition.

2.1 Tree Decomposition and Treewidth
Treewidth has first been introduced by Robertson and Seymour in 1986.

Definition 2.1 (Tree Decomposition [51, 33]). Let G = (V,E) be a graph. A
tree decomposition of G is a pair (T,X), where T = (I, F) is a tree with node
set I and edge set F , and X = {Xi : i ∈ I} is a family of subsets of V , one for
each node of T , such that

(i)
⋃

i∈I Xi = V

(ii) for every edge vw ∈ E, there is an i ∈ I with v ∈ Xi and w ∈ Xi, and

(iii) for all i, j, k ∈ I, if j is on the path from i to k in T , then Xi ∩Xk ⊆ Xj .

The width of a tree decomposition is maxi∈I |Xi| − 1. The treewidth of a graph
G, […], is the minimum width over all possible tree decompositions of G.

Tree decompositions have successfully been used in solutions to many
different problems, including partial CSPs [35], the Frequency Assignment
Problem [34], Inference Problems in Probabilistic Networks [39], or the Vertex
Cover Problem for planar graphs [2]. More recently, it has been used for
finding differentially regulated subgraphs in biochemical networks [27], or the
analysis of social graphs [1]. A survey on different techniques for computing
treewidth, along with proofs of the underlying theorems, may be found in [10].
Recent work suggests that the treewidth might not be the most important
feature of tree decompositions for solving CSPs, and related concepts are being
introduced, e.g., bag-connected tree decompositions [29].

In the following, different approaches to computing minimal-width tree
decompositions of graphs are discussed.

9

2.1.1 Approximation Algorithms

Polynomial-time approximation algorithms have been found as well. Instead
of looking for an optimal solution, they guarantee that their solutions meet
a certain level of quality. There are approximation algorithms that achieve a
ratio of O(log k), when k is the actual treewidth of the input graph; that is,
they are able to find tree decompositions of a width smaller than O(k log k) [3,
12].

There are also several exponential-time approximation algorithms that are
able to find tree decompositions of width at most ck, where c is some constant;
or they tell that the actual treewidth is higher than some given k. For example,
see [3, 7, 37].

2.1.2 Polynomial-Time Greedy Heuristics

Polynomial-time greedy heuristics do not aim at finding the optimal solution,
but rather look for reasonable solutions that can be found in a short amount of
time. “Greedy” means that the heuristics build up an elimination ordering one
vertex at a time, without ever revoking their decisions. The greedy heuristics
for tree decompositions typically differ only in the criterion by which the next
vertex is selected.

A simple representative is the Minimum Degree heuristic, which always
selects the vertex that currently has the minimum number of unselected
neighbors. The Minimum Fill-in heuristic (also known as the min-fill heuristic),
on the other hand, selects the vertex that causes the minimal number of
additional edges when being removed (recall from Chapter 1 that erasing
a vertex causes additional edges that connects all of its former neighbors
with each other). Another one is Maximum Cardinality Search (MCS) [58].
When choosing the next vertex for inclusion into the elimination ordering,
MCS counts the number of neighbors (in the original graph) that are already in
its current ordering; it then selects the vertex with the most neighbors already
included in the ordering (it initializes the ordering with a randomly selected
vertex). See [33] for further information and additional polynomial-time greedy
heuristics.

2.1.3 Exact Algorithms

In [19], an exponential time algorithm that runs in O∗(1.9601n) time is
presented (for an explanation of this notation and a general introduction
into exponential time algorithms, see [61]). Exponential time algorithms
that run in O∗(2n), can be found, for instance, in [26]. Branch-and-bound
algorithms have independently been developed in [21] and [6]. They tend to
be very efficient, especially for smaller instances. The algorithm in [21] is
designed to be an anytime algorithm, which means that it will always return

10

a valid solution, even when stopped before finding the optimum. Another
branch-and-bound like approach is introduced in [53], based on A* search.

2.1.4 Metaheuristics

Algorithms that perform optimization can either be exact or heuristic. Exact
algorithms will find an optimal solution in a finite amount of time. Heuristics,
on the other hand, lack this guarantee; the solutions they return may in
fact be anything between optimal and very poor. The motivation to use
heuristics stems from complexity: many interesting problems—theoretical
and real-world alike—have been shown to remain forever intractable to exact
algorithms, regardless of the ever increasing computational power, simply due
to unrealistically large running times. [54]

So a heuristic is an algorithm that produces a result to an optimization
problem on a best-effort basis. A metaheuristic is then a template for
constructing heuristics:

“A metaheuristic is a high-level problem-independent algorithmic
framework that provides a set of guidelines or strategies to develop
heuristic optimization algorithms. The term is also used to refer
to a problem-specific implementation of a heuristic optimization
algorithm according to the guidelines expressed in such a framework.”

[54, 55]

The last sentence suggests why there is some confusion about the term: a
metaheuristic is used as a template for designing a heuristic to solve a problem,
but this heuristic is then often referred to as metaheuristic as well.

For a general overview of metaheuristics, see [55]. History and trends of
metaheurstics are highlighted in [54]. Information on metaheurstic methods in
the context of tree decompositions may be found in [25], which features genetic
algorithms (GAs) [53, 46, 38], ant colony optimization [23, 24], and iterated
local search (ILS) [45]. Other metaheuristic approaches include simulated
annealing [32], and tabu search [16].

Iterated Local Search

ILS is a local-search metaheuristic [56, 55]. At its core, it tries to find a good
solution by applying small changes (moves) to a solution so as to gradually
improve it. Eventually, this local search ends up with a local optimum, which
means that there is no better solution available that could be obtained using
these small changes. In order to avoid getting stuck in such a local optimum,
ILS from time to time perturbates the solution—it applies a large, random
change. Due to the perturbation, the local search continues in a different part
of the search space, again improving its solution gradually using small changes.

11

Genetic Algorithms

A GA [55] belongs to the family of evolutionary algorithms, which mimic
evolutionary processes in biology. Evolutionary algorithms in turn are population-
based, which means that instead of alternating a single solution, they consider
multiple solutions (the population) in parallel. In a GA, new solutions are
derived during search by selecting solutions (individuals) from the population
and recombining them, using crossover operators. In addition, possibly
mutation is applied as well, which is a small random change applied to a
solution, using a mutation operator.

2.1.5 Preprocessing

In [9], Bodlaender et al. provide theoretical evidence of the importance of
preprocessing rules for achieving best results. Preprocessing, they argue, has
proven to be valuable, especially for real-world instances. As the focus of
this work is the comparison between algorithms, preprocessing has not been
applied. It remains an open question, however, if different algorithm benefit
equally from preprocessing.

2.2 Memetic and Hybrid Algorithms

In [43], Moscato introduces the concept of memetic algorithms, based on the
notion of a meme as described by Dawkins [18]. Moscato suggests that, in the
realm of memetic algorithms, a meme may be seen as “a structure with internal
consistency”; one or many such memes may comprise a solution. A memetic
algorithm after Moscato is an evolutionary algorithm, and therefore uses a
population of individuals, rather than a single current solution, to traverse
the search space. On top of that, each individual applies a localsearch (LS)
heuristic on its own solution. Eventually, the resulting local improvements are
distributed among the population, according to mechanisms that are similar to
GA’s crossover, mutation, and selection. The paper suggests to use alternating
phases for each individual, as described in Section 3.1 on page 15.

Additional design considerations can be found in a more recent book chapter
on memetic algorithms [44]. They suggest tuning the LS technique to the
characteristics of the search space, and choosing the crossover and mutation
operators accordingly. Apparently, inadequate parameter configuration can
cause a easily solvable instance to turn non-polynomially solvable. Consequently,
(self-)adaptive mechanisms that tune the algorithm to the instance at hand
can be beneficial. Finally, the selection of individuals to run LS on can be an
important choice as well, when not running LS on the whole population; for
instance, by selecting the best individuals, or by using a stratified approach
that selects one individual from each “quality level”.

12

Successful implementations of memetic algorithms have been reported for,
e.g., the Quadratic Assignment Problem [41], the Travelling Salesman Problem
and the Protein Folding Problem [36], the Generalized Travelling Salesman
Problem [11], the Graph Coloring Problem [40, 20], and many others. Another
real-world application can be found in [59, 60] for the break scheduling problem,
which is concerned with finding a shift schedule that conforms to various
constraints as closely as possible. They define a meme as interfering shifts in
such a schedule, using the sum of constraint violations that the meme causes
as its fitness.

The memetic algorithm (MA) for the Graph Coloring Problem by Galinier
and Hao [20] can be described as a GA with random selection, full crossover,
and complete local search instead of mutation. In other words, for every
generation all individuals are created using a crossover operator, with the
parents selected at random (as opposed to the usual k-tournament selection).
After that, all individuals undergo local search instead of mutation. Their
approach has been tested implicitly in this work, by allowing certain parameter
ranges for MA2. In particular, the relevant parameters are

tournament size = 1, Pcrossover = 1, and localsearch fraction = 1.

Notably, the original implementation utilized a different crossover operator
and local search procedure; substituting those with what is used during the
other experiments, however, is done deliberately, as it ensures that the results
reflect the quality of the particular approach, rather than the quality of the
crossover operators and local search techniques.

A definition of, and a survey on, hybrid metaheuristics in general can be
found in [55] and [8], respectively. A taxonomy for classifying hybrid algorithms
can be found in [31].

13

Chapter 3

Memetic Algorithms for
Treewidth Optimization

We have developed three memetic algorithms for finding tree decompositions
of small treewidth. Section 3.1 presents MA1, which closely resembles the
original design considerations of Moscato [43], along with its concept of
partners and opponents. Using a randomly initialized ring structure, selection
and recombination is applied with respect to the individual’s neighborhood.
Section 3.2 on page 23 introduces MA2, which is more similar to a traditional
GA, features elitism for selection, and includes a local search heuristic to
improve the best individuals of each generation. Finally, Section 3.3 on page 25
combines a GA design, borrowed from [53, 46], with iterated local search.

In order to ease comparison, all three GAs share the implementation of
their ILS subroutine, which is based on [45]. For representing solutions they
use elimination orderings, i.e., ordered lists of distinct vertex labels. The fitness
of a solution is determined by applying vertex eliminiation to the given graph,
similar to what is described in Chapter 1, while recording the size of the largest
clique during the process. The implementation, which strives to be as efficient
as possible, is based on the fitness functions used in, e.g., [45, 23, 24].

3.1 MA1

MA1 is a memetic algorithm that is similar to the algorithm for the Travelling
Salesman Problem in [43]. It shares the concepts of population, individuals,
and crossover with GAs, but it imposes a ring structure on the population
(see below), as opposed to GAs, where the population is unstructured. MA1’s
pseudo code is displayed in Algorithms 3.4 to 3.6 on pages 20–22. The ILS
heuristic is presented in Algorithms 3.1 on the following page, 3.2 on page 17,
and 3.3 on page 18. Modifications to the design found in [45] include a different
perturbation size that depends on the size of the population.

15

Algorithm 3.1 ILS, Part I

1 global degradation tolerance ≥ 0, set to 3
2 global maximal nonimproving outer steps > 0
3 global maximal nonimproving inner steps > 0, set to 10
4 global maximal perturbation repetitions > 0, set to 0.05 ∗ number of vertices

. continued on page 17…

As the basis of memetic algorithms, Moscato utilizes Richard Dawkins’
definition of a meme as “a unit of imitation in cultural transmission” [18]. The
idea of using memes for algorithms is similar to the idea of gene transmission
in GAs, but memes are meant to be small consistent parts of a solution rather
than a solution as a whole; additionally, memes are meant to spread faster,
involving multiple individuals, whereas in GAs recombination typically causes
exactly two offsprings off of exactly two individuals.

opponents

partners

Figure 3.1: Examplary ring
topology for MA1, where the
circles represent individuals.
The colored circles depict the
opponents and partners of the
marked individual.

The concept of memes does not seem to
match the problem at hand very well (at least
using elimination orderings as representation),
since a part of an elimination ordering does
not make sense on its own. Nevertheless, it
is possible to apply the concept, such that
parts of the orderings are coined memes and
exchanged between individuals. In fact, since
location and size of a part—the meme—are
arbitrary, crossover operators can be applied
in the usual way: during crossover, randomly
selected ordering positions comprise a meme,
and those memes are exchanged to yield new
individuals.

MA1’s main idea is the emphasis on
communication between individuals, as a
reminiscence to how memes spread between
people in the real world1. Each individual

communicates differently with three distinct groups of individuals: its partners,
its opponents, and the rest of the population. While there is no communication
with the latter group, partners are used for cooperation, and opponents for
competition.

Cooperation is what recombination is to a GA. In fact, the implementation
of MA1 uses the same position-based crossover (POS-crossover) operator for
cooperation as MA2 (Section 3.2) and MA3 (Section 3.3) do for recombination.

1In a multi-threaded architecture, this communication could happen in parallel, like in
the real world, which could potentially lead to great speedups in performance. For the sake
of comparability to the other algorithms, however, all experiments have been executed using
a single-threaded implementation.

16

Algorithm 3.2 ILS, Part II

. …continued from page 16
5 function ILS
6 solution ← random permutation of vertices
7 best ← solution
8 perturbation repetitions ← 1
9 last candidate ← will hold the last iteration’s candidate solution

10 nonimproving steps ← 0
11 while nonimproving steps < maximal nonimproving outer steps do
12 candidate ← min-conflicts tree-search(solution)
13 if fitness(candidate) = fitness(last candidate) then
14 same solution counter ← same solution counter + 1
15 end if
16 last candidate ← candidate
17 if fitness(candidate) < fitness(best) then . improvement!
18 solution ← candidate
19 best ← candidate
20 nonimproving steps ← 0
21 same solution counter ← 0
22 perturbation repetitions ← 1
23 else
24 nonimproving steps ← nonimproving steps + 1
25 if fitness(candidate) = fitness(best) then . quality unchanged
26 solution ← candidate
27 best ← candidate
28 else if fitness(candidate) < fitness(best) + deg. tolerance then
29 solution ← candidate . reuse the slightly worse solution
30 in the next iteration
31 else
32 solution ← best . forget about the candidate and
33 go back to a better state
34 end if
35 end if
36 if nonimproving steps > 0 and same solution counter

nonimproving steps > 20% then
37 perturbation repetitions ← max(perturbation repetitions + 1,

maximal perturbation repetitions)
38 end if
39 solution ← random movements(solution , perturbation repetitions)
40 end while
41 return best
42 end function

. continued on page 18…

17

Algorithm 3.3 ILS, Part III

. …continued from page 17
43 function min-conflicts tree-search(start solution)

. called “LS1” in [45]
44 best ← start solution
45 nonimproving steps ← 0
46 while nonimproving steps < maximal nonimproving inner steps do
47 candidate ← in best , swap the vertex that causes the largest clique

when eliminated during the triangulation (with ties broken
randomly) with another, randomly selected vertex

48 if fitness(candidate) < fitness(best) then . improvement!
49 best ← candidate
50 nonimproving steps ← 0
51 else
52 nonimproving steps ← nonimproving steps + 1
53 end if
54 end while
55 return best
56 end function

57 function random movements(solution , repetitions)
58 for all i ∈ {1, 2, . . . , repetitions } do
59 position 1 ← random position in solution
60 position 2 ← random position in solution that is 6= position 1
61 solution ← move vertex in solution from position 1 to position 2
62 end for
63 return solution
64 end function

When an individual proposes to one of its partners, it subsequently replaces
its partner with their child2, that is, their crossover result.

Competetion is what selection is to a GA. When an individual sends a
challenge to one of its opponents, the fitness of the two is compared. If the
opponent’s fitness is worse, it is replaced by a copy of the challenging individual;
otherwise, the challenge is deemed fruitless and nothing happens.

The core of the algorithm is comprised of the following four steps, which
are executed by each individual in a loop:

1. Improve own solution by applying local search

2. Compete with a random opponent

3. Improve own solution by applying local search

4. Cooperate with a random partner

2No pun intended.

18

Just as with people in the real world, who (should) take their time to think
about what they have heard prior to spreading the news, the individuals in
MA1 are allowed to improve themselves in-between interactions.

In order to select the partners and opponents for each individual, an
artificial ring-like topology is imposed on the population, as shown in Figure 3.1
on page 16. Using this ring topology, each individual’s opponents are its
neighbors, and its partners are a subset of the population that is on the
other side of the ring. Both opponents and partners are connected in this
topology. Furthermore, opponents are selected symmetrically around the
respective individual; accordingly, partners are selected symmetrically around
the individual that is found opposite in the ring.

Moscato suggests that in each phase each individual issues exactly one
request, and receives exactly one request. In MA1, this is implemented by
choosing partners and opponents by sampling without replacement.

3.1.1 Positional Crossover Operator

MA1 makes use of a crossover operator, which is capable of creating a new
solution based on two existing solutions. Crossover operators are problem
specific. In [53, 46], various operators have been tested, and POS-crossover [57]
has found to be the most effective one. We have chosen to use only this operator,
as the main goal for this work is to assess the value of the combination of
the involved (meta)heuristics, rather than the impact of different crossover
operators.

A POS-crossover C may be generated from two solutions A and B using
a two-step procedure. First, a randomly selected subset of A is copied to C,
maintaining the positions. Then the remaining positions of C are filled up
with the missing vertices, in the order in which they occur in B. For instances
that contain more than 500 vertices, this second step is done using a hash-map
containing the vertex positions, which is populated as a preprocessing step.
This has been evaluated empirically.

The pseudo code of POS-crossover is shown as part of MA2 in Algorithm 3.8
on page 25.

19

Algorithm 3.4 MA1, Part I

1 global population size > 0
2 global partner fraction ∈ [0, 1]
3 global opponent fraction ∈ [0, 1]
4 global maximal nonimproving outer steps > 0 . for ILS
5 global maximal nonimproving inner steps > 0 . for ILS

6 function MA1
7 generation ← population size random solutions
8 for each individual in generation do . organize population
9 in a ring topology

10 opponents(individual) ← the population size ∗ opponent fraction nearest
(w.r.t. the ring topology) individuals

11 partners(individual)← the population size ∗partner fraction most distant
(w.r.t. the ring topology) individuals

12 end for each
13 best solution ← random individual in generation
14 loop for 1000 seconds:
15 for each individual in generation do
16 individual ← ILS(individual) . Algorithm 3.1 on page 16
17 end for each
18 best solution ← generation ’s best solution if better than best solution
19 generation ← competitions(generation)
20 for each individual in generation do
21 individual ← ILS(individual) . Algorithm 3.1 on page 16
22 end for each
23 best solution ← generation ’s best solution if better than best solution
24 generation ← cooperations(generation)
25 end loop
26 return best solution
27 end function

. continued on page 21…

20

Algorithm 3.5 MA1, Part II

. …continued from page 20
28 function competitions(generation)
29 for each individual in generation do
30 opponent ← choose opponent(individual)
31 mark individual as challenging opponent
32 end for each
33 for each individual in generation do
34 resolve issued challenge
35 if successful then
36 store individual with the challenged individual,

but do not replace just yet
37 end if
38 end for each
39 for each individual in generation do
40 if individual has lost a successful challenge in the previous step then
41 replace individual with the ordering stored with it in the previous step
42 end if
43 end for each
44 return generation
45 end function

46 function choose opponent(individual)
47 loop
48 opponent ← randomly choose from opponents(individual)
49 if opponent has not yet been challenged in this generation,

and does not challenge individual in this generation then
50 return opponent
51 end if
52 end loop
53 end function

. continued on page 22…

21

Algorithm 3.6 MA1, Part III

. …continued from page 21
54 function cooperations(generation)
55 for each individual in generation do
56 partner ← choose partner(individual)
57 mark individual as proposing to partner
58 end for each
59 for each individual in generation do
60 recombine the two individuals using crossover (POS-crossover)
61 store with addressee of the proposal (do not replace just yet)
62 end for each
63 for each individual in generation do
64 if individual has been proposed to successfully in the previous step then
65 replace individual with the ordering stored with it in the previous step
66 end if
67 end for each
68 return generation
69 end function

70 function choose partner(individual)
71 loop
72 partner ← randomly choose from partners(individual)
73 if partner has not yet received a proposal in this generation,

and does not propose to individual in this generation then
74 return partner
75 end if
76 end loop
77 end function

22

3.2 MA2

Our second memetic algorithm is MA2, which is shown by Algorithms 3.7
on the next page and 3.8 on page 25 in pseudo code notation. MA2 can be
described as a GA that uses the plus strategy for selection (i.e., it is impossible
for both parents and their offspring to survive at the same time; see line 26),
applying either crossover replacement (line 26) or mutation (line 28), but never
both, to each individual in every generation. Additionally, iterated local search
is applied to the generation’s fittest individuals (lines 31–34), using the same
implementation as in MA1.

MA2 uses elitism, meaning that the best individual in each generation is
guaranteed to survive unalteredly, at least until the next selection phase. The
other candidates for the following generation are selected using k-tournament
(lines 21–22).

The parameters of MA2 are listed at the top of Algorithm 3.7. If the
tournament size k is set to 1, the k-tournament selection is effectively transformed
into random selection. When combining this random selection with a crossover
probability of 1 and local search for each individual, the algorithm behaves
very similar to the memetic algorithm that Galinier and Hao presented for
the graph coloring problem [20]. Because of this similarity, their approach is
not modeled explicitly; instead, it is assumed that the tuner will simply shift
MA2’s parameters to these extremes in the case that they are indeed profitable
(as we will see in Chapter 4, this is not the case).

MA2 also uses POS-crossover as its crossover operator, as described in
Section 3.1.1 on page 19.

A similar algorithm has previously been used for the break scheduling
problem [59, 60].

3.2.1 Insertion Mutation Operator

MA2 uses a mutation operator, which applies a small modification to a given
solution. A mutation operator is typically used in GAs for escaping local
optima; the same holds for MAs. Again, we have chosen to use the mutation
operator that has proven to be the most effective one in [53, 46].

The insertion mutation (IM) [42] that is used in two of the MAs simply
moves one vertex from its position in an elimination ordering to another,
randomly selected position.

The pseudo code of IM is shown in Algorithm 3.8 on page 25.

3.2.2 k-Tournament Selection

MA2 uses k-tournament, which is a common, well-performing [47] selection
operator, for selecting the individuals that are carried from one generation to

23

Algorithm 3.7 MA2, Part I

1 global population size > 0
2 global tournament size k > 0 . selection pressure
3 global Pcrossover ∈ [0, 1] . probability for an individual to be replaced
4 by crossover with another individual
5 global localsearch fraction ∈ [0, 1]
6 global maximal nonimproving outer steps > 0 . for ILS
7 global maximal nonimproving inner steps > 0 . for ILS

8 function MA2
9 generation ← population size random solutions

10 best solution ← random individual in generation
11 loop for 1000 seconds:
12 generation ← advance population(generation)
13 elitist ← the generation ’s best individual
14 if fitness(elitist) ≤ fitness(best solution) then
15 best solution ← elitist
16 end if
17 end loop
18 return best solution
19 end function

20 function advance population(generation)
21 elitist ← the generation ’s best individual
22 candidates ← {elitist } ∪

select individuals(generation , population size − 1)
23 for each candidate in candidates \ elitist do
24 if random float ∈ [0, 1) < Pcrossover then
25 partner ← some other, randomly selected individual ∈ candidates
26 candidate ← crossover(candidate , partner)
27 else
28 candidate ← mutate(candidate)
29 end if
30 end for each
31 fittest ← the (population size ∗ localsearch fraction) fittest

individuals ∈ candidates
32 for each individual in fittest do
33 individual ← ILS(individual) . Algorithm 3.1 on page 16
34 end for each
35 return candidates
36 end function

. continued on page 25…

24

Algorithm 3.8 MA2, Part II

. …continued from page 24
37 function select individuals(generation , count)
38 selection ← {}
39 loop for count times:
40 . k-tournament
41 contenders ← k randomly selected, distinct individuals ∈ generation
42 winner ← the contender with the smallest width
43 selection ← selection ∪ {winner }
44 end loop
45 return selection
46 end function

47 function crossover(parent1 , parent2)
48 . POS-crossover
49 selected positions ← randomly select a set of positions of the ordering
50 child ← new elimination ordering where selected positions are copied from

parent1
51 child ← child with empty positions filled with the remaining vertices, in the

order of their occurence in parent2
52 return child
53 end function

54 function mutate(individual)
55 individual ← randomly choose a position in the individual ’s elimination

ordering and move the corresponding vertex to another,
randomly selected position

56 return individual
57 end function

the next. k-tournament randomly chooses k individuals from a generation and
returns the individual with the highest fitness.

The pseudo code of k-tournament selection is also shown in Algorithm 3.8.

3.3 MA3

The third memetic algorithm is called MA3. MA3 is also a combination
between GA and ILS, and has been implemented based on two successful
designs, namely Genetic Algorithm for treewidth (GA-tw) [53, 46] for the GA
part and the Iterative Heuristic Algorithm for treewidth (IHA) [45] related
ILS algorithm that is also used by MA1 and MA2.

The algorithm, which is displayed in Algorithms 3.9 on the next page
and 3.10 on page 27, uses ILS to improve a fraction of each generation. The
members of this fraction are selected at random in every iteration.

MA3 uses the POS-crossover operator as described in Section 3.1.1, the IM

25

operator as described in Section 3.2.1, and the k-tournament selection operator
as described in Section 3.2.2.

Algorithm 3.9 MA3, Part I

1 global population size ← 2000
2 global localsearch fraction ∈ [0, 1]

3 function MA3
4 generation ← population size random solutions
5 best ← random individual in generation
6 loop for 2000 generations:
7 generation ← select(generation)
8 generation ← recombine(generation)
9 generation ← mutate(generation)

10 selection ←(population size ∗ localsearch fraction) individuals ∈ generation ,
selected at random

11 for each individual in selection do
12 individual ← ILS(individual) . Algorithm 3.1 on page 16
13 end for each
14 elitist ← the generation ’s best individual
15 if fitness(elitist) < fitness(best) then
16 best ← elitist
17 end if
18 end loop
19 return best solution
20 end function

21 function select(generation)
22 selection ← {}
23 loop for population size times:
24 . k-tournament with k = 3
25 contenders ← 3 randomly selected, distinct individuals ∈ generation
26 winner ← the contender with the smallest width
27 selection ← selection ∪ {winner }
28 end loop
29 return selection
30 end function

. continued on page 27…

3.4 Implementation
The memetic algorithms have been implemented from scratch, using C++.
To ensure code quality and achieve correctness, state-of-the-art code testing
practices have been employed, using Goole Mock3 and Google Test4 as the

3
https://code.google.com/p/googlemock/

4
https://code.google.com/p/googletest/

26

https://code.google.com/p/googlemock/
https://code.google.com/p/googletest/
https://code.google.com/p/googlemock/
https://code.google.com/p/googletest/

Algorithm 3.10 MA3, Part II

. …continued from page 26
31 function recombine(generation)
32 . the crossover rate is set to 100%
33 for each pair of neighbors in generation do
34 first parent ← first elimination ordering in pair
35 second parent ← second elimination ordering in pair
36 first child ← crossover(first parent , second parent)
37 second child ← crossover(second parent , first parent)
38 in generation , replace first parent with first child
39 in generation , replace second parent with second child
40 end for each
41 return generation
42 end function

43 function crossover(parent1 , parent2)
44 . POS-crossover
45 selected positions ← randomly select a set of positions of the ordering
46 child ← new elimination ordering where selected positions are copied from

parent1
47 child ← child with empty positions filled with the remaining vertices, in the

order of their occurence in parent2
48 return child
49 end function

50 function mutate(generation)
51 . the mutation rate is set to 30%
52 selection ← 30% of generation , selected at random
53 for each individual in selection do
54 individual ← randomly choose a position in the individual ’s elimination

ordering and move the corresponding vertex to another,
randomly selected position

55 in generation , replace original individual with mutated individual
56 end for each
57 return generation
58 end function

supporting toolkits. All other used libraries are taken from the Boost C++

Libraries5 project. The source code is made available online, licensed under
GPLv3. See Figure 3.1 for information needed to reproduce the results found
in this work. Further details can be found in the repository’s README file.

5
http://www.boost.org/

27

http://www.boost.org/
http://www.boost.org/
http://www.boost.org/

Table 3.1: Information for reproducing the results.

Git repository https://github.com/kevinbader/MAtw

Platform x86_64 GNU/Linux (tested on Intel64)
Compiler g++ (GCC) 4.9.1 20140903 (prerelease)
C++ standard library libstdc++ that comes bundled with GCC
Boost 1.56.0
CMake 3.0.2

28

https://github.com/kevinbader/MAtw

Chapter 4

Parameter Tuning

Not unlike other metaheuristics, our algorithms exhibit many parameters,
meant for tuning them to specific problems. To allow for a fair comparison
between the metaheuristics, these parameters ought to be tuned first. In
general, tuning a metaheuristic algorithm means to run it with different
parameter settings, so as to find the best setting for a specific problem. A
simple way to do that is by exhaustive search, which means invoking the
algorithm with all possible combinations of all possible parameter values.
Clearly, this does not scale; in the light of multiple parameters with large
or even infinite sets of possible values, other methods seem more attractive.
For this work, we facilitate an automatic parameter tuner called Sequential
Model-based Algorithm Configuration (SMAC), which uses regression models
to describe the dependence of a target algorithm’s performance on its parameter
settings [28].Given a set of instances for training, SMAC returns the best-
performing parameter configuration it can heuristically find. Somewhat
arbitrarily, a runtime limit of 1000 seconds has been imposed on each run
during the tuning process, which represents a trade-off between the solution
quality of an individual run and the solution quality of the parameter tuning
(assuming that the overall runtime should not exceed a few weeks).

The training instances that have been considered in this work are 79
Graph Coloring instances, most of which stem from the Second DIMACS
Implementation Challenge1 [14]. The instances may be obtained, for instance,
from [15].

Tables 4.1 to 4.3 on pages 30–30 show the instances of the training set.
They list all instances of the respective category, along with the instance’s
number of vertices (|V|) and edges (|E|). Additionally, the number of samples
gathered during parameter tuning is given, with the instance that has been
involved in the most evaluations given in bold typeface.

1The Second DIMACS Implementation Challenges been concerned with the NP hard
problems Maximum Clique, Graph Coloring, and Satisfiability, and has been organized
between 1992 and 1993.

29

Table 4.1: Random graphs used in his paper with Aragon, McGeoch, and
Schevon, “Optimization by Simulated Annealing: An Experimental Evaluation;
Part II, Graph Coloring and Number Partitioning”, Operations Research, 31,
378–406 (1991). DSJC are standard (n, p) random graphs. DSJR are geometric
graphs, and DSJR*.c complements of geometric graphs.

Number of Samples

Instance Name |V| |E| MA1 MA2 MA3

DSJC125.1 125 1472 17 24 19
DSJC125.5 125 7782 18 22 19
DSJC125.9 125 13 922 16 23 29
DSJC250.1 250 6436 21 18 17
DSJC250.5 250 31 336 25 30 22
DSJC250.9 250 55 794 30 24 29
DSJC500.1 500 24 916 14 16 16
DSJC500.5 500 125 248 24 19 25
DSJC500.9 500 224 874 30 31 28
DSJC1000.1 1000 99 258 17 17 19
DSJC1000.5 1000 499 652 23 25 15
DSJC1000.9 1000 898 898 31 34 26
DSJR500.1 500 7110 20 22 14
DSJR500.1c 500 242 550 29 32 39
DSJR500.5 500 117 724 21 15 18

Table 4.2: Quasi-random coloring problem.

Number of Samples

Instance Name |V| |E| MA1 MA2 MA3

flat300_20_0 300 21 375 21 26 26
flat300_26_0 300 21 633 30 21 32
flat300_28_0 300 21 695 16 16 20
flat1000_50_0 1000 245 000 21 19 21
flat1000_60_0 1000 245 830 24 19 22
flat1000_76_0 1000 246 708 27 32 22

Table 4.3: Latin square problem.

Number of Samples

Instance Name |V| |E| MA1 MA2 MA3

latin_square_10 900 307 350 25 20 26

30

Table 4.4: Problem based on register allocation for variables in real codes.

Number of Samples

Instance Name |V| |E| MA1 MA2 MA3

fpsol2.i.1 496 11 654 18 23 18
fpsol2.i.2 451 8691 24 21 18
fpsol2.i.3 425 8688 21 24 27
inithx.i.1 864 18 707 17 20 18
inithx.i.2 645 13 979 15 20 21
inithx.i.3 621 13 969 25 30 25
mulsol.i.1 197 3925 24 24 33
mulsol.i.2 188 3885 33 33 22
mulsol.i.3 184 3916 22 20 19
mulsol.i.4 185 3946 20 19 24
mulsol.i.5 186 3973 22 18 20
zeroin.i.1 211 4100 20 20 21
zeroin.i.2 211 3541 23 19 16
zeroin.i.3 206 3540 35 27 31

Table 4.5: Leighton graphs with guaranteed coloring size. A reference is F.T.
Leighton, Journal of Research of the National Bureau of Standards, 84: 489–505
(1979).

Number of Samples

Instance Name |V| |E| MA1 MA2 MA3

le450_5a 450 5714 23 20 29
le450_5b 450 5734 23 24 19
le450_5c 450 9803 28 31 30
le450_5d 450 9757 21 18 23
le450_15a 450 8168 17 21 18
le450_15b 450 8169 17 21 20
le450_15c 450 16 680 38 29 34
le450_15d 450 16 750 13 24 24
le450_25a 450 8260 16 14 22
le450_25b 450 8263 19 24 22
le450_25c 450 17 343 23 25 20
le450_25d 450 17 425 16 19 13

31

Table 4.6: Book Graphs from Donald Knuth’s Stanford GraphBase. Given a
work of literature, a graph is created where each node represents a character.
Two nodes are connected by an edge if the corresponding characters encounter
each other in the book. Knuth creates the graphs for five classic works: Tolstoy’s
Anna Karenina (anna), Dicken’s David Copperfield (david), Homer’s Iliad
(homer), Twain’s Huckleberry Finn (huck), and Hugo’s Les Misérables (jean).

Number of Samples

Instance Name |V| |E| MA1 MA2 MA3

anna 138 986 31 25 15
david 87 812 25 17 17
homer 561 3258 18 31 23
huck 74 602 20 27 32
jean 80 508 30 35 37

Table 4.7: Game Graph from Donald Knuth’s Stanford GraphBase. A graph
representing the games played in a college football season can be represented by a
graph where the nodes represent each college team. Two teams are connected by
an edge if they played each other during the season. Knuth gives the graph for
the 1990 college football season.

Number of Samples

Instance Name |V| |E| MA1 MA2 MA3

games120 120 1276 23 22 21

Table 4.8: Miles Graphs from Donald Knuth’s Stanford GraphBase. These
graphs are similar to geometric graphs in that nodes are placed in space with
two nodes connected if they are close enough. These graphs, however, are not
random. The nodes represent a set of United States cities and the distance
between them is given by by road mileage from 1947. These graphs are also due
to Kuth.

Number of Samples

Instance Name |V| |E| MA1 MA2 MA3

miles250 128 774 15 18 19
miles500 128 2340 26 23 23
miles750 128 4226 21 23 22
miles1000 128 6432 26 28 21
miles1500 128 10 396 22 23 23

32

Table 4.9: Queen Graphs from Donald Knuth’s Stanford GraphBase. Given an
n by n chessboard, a queen graph is a graph on n2 nodes, each corresponding to
a square of the board. Two nodes are connected by an edge if the corresponding
squares are in the same row, column, or diagonal. Unlike some of the other
graphs, the coloring problem on this graph has a natural interpretation: Given
such a chessboard, is it possible to place n sets of n queens on the board so that
no two queens of the same set are in the same row, column, or diagonal? The
answer is yes if and only if the graph has coloring number n. Martin Gardner
states without proof that this is the case if and only if n is not divisible by either
2 or 3. In all cases, the maximum clique in the graph is no more than n, and
the coloring value is no less than n.

Number of Samples

Instance Name |V| |E| MA1 MA2 MA3

queen5_5 25 320 16 17 15
queen6_6 36 580 26 23 21
queen7_7 49 952 40 26 28
queen8_12 96 2736 17 19 28
queen8_8 64 1456 23 19 21
queen9_9 81 2112 18 21 18
queen10_10 100 2940 41 28 32
queen11_11 121 3960 29 18 24
queen12_12 144 5192 28 31 25
queen13_13 169 6656 17 21 19
queen14_14 196 8372 27 21 28
queen15_15 225 10 360 24 23 26
queen16_16 256 12 640 18 25 20

Table 4.10: Graphs based on the Mycielski transformation. These graphs are
difficult to solve because they are triangle free (clique number 2) but the coloring
number increases in problem size.

Number of Samples

Instance Name |V| |E| MA1 MA2 MA3

myciel3 11 20 20 18 22
myciel4 23 71 16 23 18
myciel5 47 236 23 17 26
myciel6 95 755 26 32 30
myciel7 191 2360 35 28 23

Table 4.11: Class scheduling graphs, with and without study halls.

Number of Samples

Instance Name |V| |E| MA1 MA2 MA3

school1 385 19 095 20 17 23
school1_nsh 352 14 612 17 20 21

33

4.1 Tuning Results

This Section presents the results of parameter tuning. SMAC has applied our
algorithms to the training set for 21 days2 each.

4.1.1 MA1

Table 4.12: MA1’s parameters after parameter tuning by SMAC.

Parameter Range Result

Population size (GA) [10, 2000] ⊂ N 1941
Partner population-fraction [0, 1] ⊂ R .9171
Opponent population-fraction [0, 1] ⊂ R .0072
Max. nonimproving outer steps (ILS) [1, 200] ⊂ N 193
Max. nonimproving inner steps (ILS) [1, 100] ⊂ N 84

Table 4.12 shows the tuning result for MA1. Note that there has been no
restriction on these values that would prevent an individual to use all other
individuals for both cooperation and competition, such that the two groups
would overlap. Indeed, using the result of the parameter tuning, this is not the
case. The opponent population-fraction seems to have turned out quite small,
but considering the population size, each individual faces approximately 14
opponents each round. They are not so few indeed, especially when comparing
this with the size of the k-tournament operator that is used for a similar
purpose in GAs. Other than that, the tuning result does not seem overly
surprising.

4.1.2 MA2

Table 4.13: MA2’s parameters after parameter tuning by SMAC.

Parameter Range Result

Population size (GA) [10, 2000] ⊂ N 15
Tournament size k [1, 5] ⊂ N 3
Pcrossover [0, 1] ⊂ R .9162
Localsearch fraction [0, 1] ⊂ R .4020
Max. nonimproving outer steps (ILS) [1, 200] ⊂ N 82
Max. nonimproving inner steps (ILS) [1, 100] ⊂ N 94

2Arbitrarily chosen as a seemingly large-enough, and thus reasonable, value.

34

Table 4.13 on the preceding page displays the tuning result for MA2. The
tuner has chosen a configuration that causes intense localsearch at the cost of
a smaller population size—a trade-off that goes with limiting MA2’s runtime.

4.1.3 MA3

Table 4.14: MA3’s parameters, with the ranges used by SMAC, and its output.

Parameter Range Result

Population size [10, 2000] ⊂ N 92
Localsearch fraction [0, 1] ⊂ R .7135
Max. nonimproving outer steps (ILS) [1, 200] ⊂ N 4

In order to reduce the number of parameters for tuning, the original
configuration of GA-tw and IHA are used for the respective, similar parts of
MA3. Consequently, there are three parameters relevant to the hybrid: the
size of the population, the number of iterations ILS should run when invoked,
and the fraction of the population ILS is applied to. Table 4.14 shows the
corresponding ranges that have been used during parameter tuning, along with
the tuning result. With relatively few individuals and a high localsearch rate,
the found configuration favors the ILS part of the algorithm over its GA part.

4.2 Parameter Correlation

For each variant, the correlation between its parameter settings and the
corresponding result is explored, using the data gathered during parameter
tuning. Instead of applying statistical tests we utilize graphical representation,
for the small samples sizes prevent us from accounting for confounding variables
properly. Handling these confounders would be important, however, since the
involved parameters can arguably be expected not to be independent from one
another. Consequently, the correlation results can only give an overview of the
relationships, and should not be considered to be exact.

The correlation diagrams include scatter plots of the samples that have been
gathered during the tuning process; additionally, locally weighted scatterplot
smoothing (LOWESS) curves [17] are meant to show a (nonlinear) trend line.
Instance selection has been done to avoid showing 79 similar plots. Instead,
so as to maximize space efficiency without losing information, those instances
have been selected that have been used by the tuner the most, one for each
instance type (identified by the name of the instance).

35

4.2.1 MA1

For MA1, the plots in Figures 4.1 to 4.14 on pages 36–42 do not show great
disposedness towards any particular parameter. Nevertheless, they suggest that
with this variant, smaller population sizes and higher localsearch intensities
are beneficial to the outcome.

500 1000 1500

Population size

990

992

994

996

998

1000

T
re

ew
id

th

0.2 0.4 0.6 0.8

Partner population-fraction

0.2 0.4 0.6 0.8

Opponent population-fraction

50 100 150

Max nonimpr. outer ILS steps

990

992

994

996

998

1000

T
re

ew
id

th

25 50 75

Max nonimpr. inner ILS steps

Figure 4.1: MA1 applied to DSJC1000.9, 31 samples.

500 1000 1500

Population size

280

282

284

286

288

290

T
re

ew
id

th

0.2 0.4 0.6 0.8

Partner population-fraction

0.2 0.4 0.6 0.8

Opponent population-fraction

50 100 150

Max nonimpr. outer ILS steps

280

282

284

286

288

290

T
re

ew
id

th

25 50 75

Max nonimpr. inner ILS steps

Figure 4.2: MA1 applied to flat300_26_0, 30 samples.

36

500 1000 1500

Population size

30

32

34

36

38

40

T
re

ew
id

th

0.2 0.4 0.6 0.8

Partner population-fraction

0.2 0.4 0.6 0.8

Opponent population-fraction

50 100 150

Max nonimpr. outer ILS steps

30

32

34

36

38

40

T
re

ew
id

th

25 50 75

Max nonimpr. inner ILS steps

Figure 4.3: MA1 applied to fpsol2.i.2, 24 samples.

500 1000 1500

Population size

30

35

40

45

50

T
re

ew
id

th

0.2 0.4 0.6 0.8

Partner population-fraction

0.2 0.4 0.6 0.8

Opponent population-fraction

50 100 150

Max nonimpr. outer ILS steps

30

35

40

45

50

T
re

ew
id

th

25 50 75

Max nonimpr. inner ILS steps

Figure 4.4: MA1 applied to inithx.i.3, 25 samples.

37

500 1000 1500

Population size

30

32

34

36

38

40

T
re

ew
id

th

0.2 0.4 0.6 0.8

Partner population-fraction

0.2 0.4 0.6 0.8

Opponent population-fraction

50 100 150

Max nonimpr. outer ILS steps

30

32

34

36

38

40

T
re

ew
id

th

25 50 75

Max nonimpr. inner ILS steps

Figure 4.5: MA1 applied to mulsol.i.2, 33 samples.

500 1000 1500

Population size

30

32

34

36

38

40

T
re

ew
id

th

0.2 0.4 0.6 0.8

Partner population-fraction

0.2 0.4 0.6 0.8

Opponent population-fraction

50 100 150

Max nonimpr. outer ILS steps

30

32

34

36

38

40

T
re

ew
id

th

25 50 75

Max nonimpr. inner ILS steps

Figure 4.6: MA1 applied to zeroin.i.3, 35 samples.

38

500 1000 1500

Population size

360

365

370

375

380

385

390

T
re

ew
id

th

0.2 0.4 0.6 0.8

Partner population-fraction

0.2 0.4 0.6 0.8

Opponent population-fraction

50 100 150

Max nonimpr. outer ILS steps

360

365

370

375

380

385

390

T
re

ew
id

th

25 50 75

Max nonimpr. inner ILS steps

Figure 4.7: MA1 applied to le450_15c, 38 samples.

500 1000 1500

Population size

180

190

200

210

220

T
re

ew
id

th

0.2 0.4 0.6 0.8

Partner population-fraction

0.2 0.4 0.6 0.8

Opponent population-fraction

50 100 150

Max nonimpr. outer ILS steps

180

190

200

210

220

T
re

ew
id

th

25 50 75

Max nonimpr. inner ILS steps

Figure 4.8: MA1 applied to school1, 20 samples.

39

500 1000 1500

Population size

850

852

854

856

858

860

T
re

ew
id

th

0.2 0.4 0.6 0.8

Partner population-fraction

0.2 0.4 0.6 0.8

Opponent population-fraction

50 100 150

Max nonimpr. outer ILS steps

850

852

854

856

858

860

T
re

ew
id

th

25 50 75

Max nonimpr. inner ILS steps

Figure 4.9: MA1 applied to latin_square_10, 25 samples.

500 1000 1500

Population size

10

12

14

16

18

20

T
re

ew
id

th

0.2 0.4 0.6 0.8

Partner population-fraction

0.2 0.4 0.6 0.8

Opponent population-fraction

50 100 150

Max nonimpr. outer ILS steps

10

12

14

16

18

20

T
re

ew
id

th

25 50 75

Max nonimpr. inner ILS steps

Figure 4.10: MA1 applied to anna, 31 samples.

40

500 1000 1500

Population size

30

32

34

36

38

40

T
re

ew
id

th

0.2 0.4 0.6 0.8

Partner population-fraction

0.2 0.4 0.6 0.8

Opponent population-fraction

50 100 150

Max nonimpr. outer ILS steps

30

32

34

36

38

40

T
re

ew
id

th

25 50 75

Max nonimpr. inner ILS steps

Figure 4.11: MA1 applied to games120, 23 samples.

500 1000 1500

Population size

20

22

24

26

28

30

T
re

ew
id

th

0.2 0.4 0.6 0.8

Partner population-fraction

0.2 0.4 0.6 0.8

Opponent population-fraction

50 100 150

Max nonimpr. outer ILS steps

20

22

24

26

28

30

T
re

ew
id

th

25 50 75

Max nonimpr. inner ILS steps

Figure 4.12: MA1 applied to miles500, 26 samples.

41

500 1000 1500

Population size

70

72

74

76

78

80

T
re

ew
id

th

0.2 0.4 0.6 0.8

Partner population-fraction

0.2 0.4 0.6 0.8

Opponent population-fraction

50 100 150

Max nonimpr. outer ILS steps

70

72

74

76

78

80

T
re

ew
id

th

25 50 75

Max nonimpr. inner ILS steps

Figure 4.13: MA1 applied to queen10_10, 41 samples.

500 1000 1500

Population size

60

62

64

66

68

70

T
re

ew
id

th

0.2 0.4 0.6 0.8

Partner population-fraction

0.2 0.4 0.6 0.8

Opponent population-fraction

50 100 150

Max nonimpr. outer ILS steps

60

62

64

66

68

70

T
re

ew
id

th

25 50 75

Max nonimpr. inner ILS steps

Figure 4.14: MA1 applied to myciel7, 35 samples.

42

4.2.2 MA2

The correlation plots, which are shown in Figures 4.15 to 4.28 on pages 43–49,
do not, for the most part, show any big differences in the impact the individual
parameters have on the outcome of the algorithm. Notable exceptions are the
instances le450_5c (Figure 4.21), school1_nsh (Figure 4.22), latin_square_10
(Figure 4.23), and games120 (Figure 4.25), where the plots clearly affirm
SMAC’s results. Interestingly, the crossover parameter, for most instances,
does not seem to have as much effect as initially expected.

500 1000 1500

Population size

490

492

494

496

498

500

T
re

ew
id

th

2 3 4

Tournament size

0.2 0.4 0.6 0.8

Crossover

0.2 0.4 0.6 0.8

LS fraction

490

492

494

496

498

500

T
re

ew
id

th

50 100 150

Max nonimpr. outer ILS steps

25 50 75

Max nonimpr. inner ILS steps

Figure 4.15: MA2 applied to DSJC500.9, 31 samples.

500 1000 1500

Population size

970

975

980

985

990

T
re

ew
id

th

2 3 4

Tournament size

0.2 0.4 0.6 0.8

Crossover

0.2 0.4 0.6 0.8

LS fraction

970

975

980

985

990

T
re

ew
id

th

50 100 150

Max nonimpr. outer ILS steps

25 50 75

Max nonimpr. inner ILS steps

Figure 4.16: MA2 applied to flat1000_76_0, 32 samples.

43

500 1000 1500

Population size

30

32

34

36

38

40

T
re

ew
id

th

2 3 4

Tournament size

0.2 0.4 0.6 0.8

Crossover

0.2 0.4 0.6 0.8

LS fraction

30

32

34

36

38

40

T
re

ew
id

th

50 100 150

Max nonimpr. outer ILS steps

25 50 75

Max nonimpr. inner ILS steps

Figure 4.17: MA2 applied to fpsol2.i.3, 24 samples.

500 1000 1500

Population size

30

32

34

36

38

40

T
re

ew
id

th

2 3 4

Tournament size

0.2 0.4 0.6 0.8

Crossover

0.2 0.4 0.6 0.8

LS fraction

30

32

34

36

38

40

T
re

ew
id

th

50 100 150

Max nonimpr. outer ILS steps

25 50 75

Max nonimpr. inner ILS steps

Figure 4.18: MA2 applied to inithx.i.3, 30 samples.

44

500 1000 1500

Population size

30

32

34

36

38

40

T
re

ew
id

th

2 3 4

Tournament size

0.2 0.4 0.6 0.8

Crossover

0.2 0.4 0.6 0.8

LS fraction

30

32

34

36

38

40

T
re

ew
id

th

50 100 150

Max nonimpr. outer ILS steps

25 50 75

Max nonimpr. inner ILS steps

Figure 4.19: MA2 applied to mulsol.i.2, 33 samples.

500 1000 1500

Population size

30

32

34

36

38

40

T
re

ew
id

th

2 3 4

Tournament size

0.2 0.4 0.6 0.8

Crossover

0.2 0.4 0.6 0.8

LS fraction

30

32

34

36

38

40

T
re

ew
id

th

50 100 150

Max nonimpr. outer ILS steps

25 50 75

Max nonimpr. inner ILS steps

Figure 4.20: MA2 applied to zeroin.i.3, 27 samples.

45

500 1000 1500

Population size

270
280
290
300
310
320
330
340
350

T
re

ew
id

th

2 3 4

Tournament size

0.2 0.4 0.6 0.8

Crossover

0.2 0.4 0.6 0.8

LS fraction

270
280
290
300
310
320
330
340
350

T
re

ew
id

th

50 100 150

Max nonimpr. outer ILS steps

25 50 75

Max nonimpr. inner ILS steps

Figure 4.21: MA2 applied to le450_5c, 31 samples.

500 1000 1500

Population size

150

155

160

165

170

175

180

T
re

ew
id

th

2 3 4

Tournament size

0.2 0.4 0.6 0.8

Crossover

0.2 0.4 0.6 0.8

LS fraction

150

155

160

165

170

175

180

T
re

ew
id

th

50 100 150

Max nonimpr. outer ILS steps

25 50 75

Max nonimpr. inner ILS steps

Figure 4.22: MA2 applied to school1_nsh, 20 samples.

46

500 1000 1500

Population size

850

855

860

865

870

T
re

ew
id

th

2 3 4

Tournament size

0.2 0.4 0.6 0.8

Crossover

0.2 0.4 0.6 0.8

LS fraction

850

855

860

865

870

T
re

ew
id

th

50 100 150

Max nonimpr. outer ILS steps

25 50 75

Max nonimpr. inner ILS steps

Figure 4.23: MA2 applied to latin_square_10, 20 samples.

500 1000 1500

Population size

0

2

4

6

8

10

T
re

ew
id

th

2 3 4

Tournament size

0.2 0.4 0.6 0.8

Crossover

0.2 0.4 0.6 0.8

LS fraction

0

2

4

6

8

10

T
re

ew
id

th

50 100 150

Max nonimpr. outer ILS steps

25 50 75

Max nonimpr. inner ILS steps

Figure 4.24: MA2 applied to jean, 35 samples.

47

500 1000 1500

Population size

30

32

34

36

38

40

T
re

ew
id

th

2 3 4

Tournament size

0.2 0.4 0.6 0.8

Crossover

0.2 0.4 0.6 0.8

LS fraction

30

32

34

36

38

40

T
re

ew
id

th

50 100 150

Max nonimpr. outer ILS steps

25 50 75

Max nonimpr. inner ILS steps

Figure 4.25: MA2 applied to games120, 22 samples.

500 1000 1500

Population size

40

45

50

55

60

T
re

ew
id

th

2 3 4

Tournament size

0.2 0.4 0.6 0.8

Crossover

0.2 0.4 0.6 0.8

LS fraction

40

45

50

55

60

T
re

ew
id

th

50 100 150

Max nonimpr. outer ILS steps

25 50 75

Max nonimpr. inner ILS steps

Figure 4.26: MA2 applied to miles1000, 28 samples.

48

500 1000 1500

Population size

100

105

110

115

120

T
re

ew
id

th

2 3 4

Tournament size

0.2 0.4 0.6 0.8

Crossover

0.2 0.4 0.6 0.8

LS fraction

100

105

110

115

120

T
re

ew
id

th

50 100 150

Max nonimpr. outer ILS steps

25 50 75

Max nonimpr. inner ILS steps

Figure 4.27: MA2 applied to queen12_12, 31 samples.

500 1000 1500

Population size

30

32

34

36

38

40

T
re

ew
id

th

2 3 4

Tournament size

0.2 0.4 0.6 0.8

Crossover

0.2 0.4 0.6 0.8

LS fraction

30

32

34

36

38

40

T
re

ew
id

th

50 100 150

Max nonimpr. outer ILS steps

25 50 75

Max nonimpr. inner ILS steps

Figure 4.28: MA2 applied to myciel6, 32 samples.

49

4.2.3 MA3

Correlation plots for MA3 are shown in Figures 4.29 to 4.42 on pages 50–53.
For “simple” instances like mulsol.i.1, zeroin.i.3, jean, or myciel6, it

seems that the parameter settings do not influence the result at all. The plots
for the other instances show more variety. The population size parameter
seems to induce good performance when chosen to be either low or high, but
appears to have a negative impact over the remaining part of the spectrum.
Lower is better seems to be true for the maximal number of nonimproving
outer steps, albeit there is a trend for higher values to again improve results a
bit.

500 1000 1500

Population size

480

482

484

486

488

490

T
re

ew
id

th

0.2 0.4 0.6 0.8

LS fraction

50 100 150

Max nonimpr. outer ILS steps

Figure 4.29: MA3 applied to DSJR500.1c, 39 samples.

500 1000 1500

Population size

270

275

280

285

290

T
re

ew
id

th

0.2 0.4 0.6 0.8

LS fraction

50 100 150

Max nonimpr. outer ILS steps

Figure 4.30: MA3 applied to flat300_26_0, 32 samples.

500 1000 1500

Population size

30

32

34

36

38

40

T
re

ew
id

th

0.2 0.4 0.6 0.8

LS fraction

50 100 150

Max nonimpr. outer ILS steps

Figure 4.31: MA3 applied to fpsol2.i.3, 27 samples.

50

500 1000 1500

Population size

30

32

34

36

38

40

T
re

ew
id

th

0.2 0.4 0.6 0.8

LS fraction

50 100 150

Max nonimpr. outer ILS steps

Figure 4.32: MA3 applied to inithx.i.3, 25 samples.

500 1000 1500

Population size

49.0

49.5

50.0

50.5

51.0

T
re

ew
id

th

0.2 0.4 0.6 0.8

LS fraction

50 100 150

Max nonimpr. outer ILS steps

Figure 4.33: MA3 applied to mulsol.i.1, 33 samples.

500 1000 1500

Population size

30

32

34

36

38

40

T
re

ew
id

th

0.2 0.4 0.6 0.8

LS fraction

50 100 150

Max nonimpr. outer ILS steps

Figure 4.34: MA3 applied to zeroin.i.3, 31 samples.

500 1000 1500

Population size

350

355

360

365

370

375

380

T
re

ew
id

th

0.2 0.4 0.6 0.8

LS fraction

50 100 150

Max nonimpr. outer ILS steps

Figure 4.35: MA3 applied to le450_15c, 34 samples.

500 1000 1500

Population size

170

180

190

200

210

220

230

T
re

ew
id

th

0.2 0.4 0.6 0.8

LS fraction

50 100 150

Max nonimpr. outer ILS steps

Figure 4.36: MA3 applied to school1, 23 samples.

51

500 1000 1500

Population size

850

852

854

856

858

860

T
re

ew
id

th

0.2 0.4 0.6 0.8

LS fraction

50 100 150

Max nonimpr. outer ILS steps

Figure 4.37: MA3 applied to latin_square_10, 26 samples.

500 1000 1500

Population size

0

2

4

6

8

10

T
re

ew
id

th

0.2 0.4 0.6 0.8

LS fraction

50 100 150

Max nonimpr. outer ILS steps

Figure 4.38: MA3 applied to jean, 37 samples.

500 1000 1500

Population size

30

32

34

36

38

40

T
re

ew
id

th

0.2 0.4 0.6 0.8

LS fraction

50 100 150

Max nonimpr. outer ILS steps

Figure 4.39: MA3 applied to games120, 21 samples.

500 1000 1500

Population size

20

22

24

26

28

30

T
re

ew
id

th

0.2 0.4 0.6 0.8

LS fraction

50 100 150

Max nonimpr. outer ILS steps

Figure 4.40: MA3 applied to miles500, 23 samples.

500 1000 1500

Population size

70

72

74

76

78

80

T
re

ew
id

th

0.2 0.4 0.6 0.8

LS fraction

50 100 150

Max nonimpr. outer ILS steps

Figure 4.41: MA3 applied to queen10_10, 32 samples.

52

500 1000 1500

Population size

30

32

34

36

38

40

T
re

ew
id

th

0.2 0.4 0.6 0.8

LS fraction

50 100 150

Max nonimpr. outer ILS steps

Figure 4.42: MA3 applied to myciel6, 30 samples.

53

Chapter 5

Comparative Experimental
Evaluation

In this chapter we evaluate the performance of the new memetic algorithms by
comparing them to state-of-the-art algorithms. In Section 5.1, the results on
the benchmark instances from the Second DIMACS Implementation Challenge,
which has been used as the training set for parameter tuning, are presented.
The results on the validation instances are examined in Section 5.2.

5.1 Results on DIMACS Benchmark Instances
The benchmark instances of the Second DIMACS Implementation Challenge
are often used to judge the performance of treewidth heuristics. Consequently,
we utilize them as well, in order to show how our memetic algorithms compare
to state-of-the-art algorithms in the field:

• Branch-and-bound algorithm for treewidth
by Bachoore and Bodlaender (BB-tw) [6]

• Branch-and-bound algorithm for treewidth
by Gogate and Dechter (BB-tw) [21]

• Tabu search for treewidth (TabuTW) [16]

• Ant colony system in combination with
iterated local search for treewidth (ACS+ILS) [23, 24]

• Genetic algorithm for treewidth (GA-tw) [53, 46]

• Iterative heuristic algorithm for treewidth (IHA) [45]

Please note that all involved algorithms have been tuned specifically for this
instance set. Therefore, the results do not necessarily apply to other instances
(see Section 5.2).

55

Using their original source code, the results for IHA and GA-tw have
been gathered on the same platform and with the same time limit as for
the memetic algorithms. However, the results for the other algorithms are
presented using the measurements from their respective papers; they have been
executed on different machines, using different running times. Consequently,
the comparison has to be taken with a grain of salt in this regard. Note that
also IHA and GA-tw improve some upper bounds with respect to what has
been reported for them originally. This is due to a faster computing platform,
compared to what was used for the original experiments.

The algorithm runtime has been limited to one hour. For MA1, MA2,
MA3, IHA, and GA-tw, the given numbers represent the best upper bounds
from 20 runs per algorithm and instance.

Table 5.1 displays the result. Upper bounds that are equal to the best
result are typed in boldface. Improvements over the previously best known
upper bounds are highlighted. It is shown that the memetic algorithms perform
well, and are able to improve upper bounds for 8 instances.

The Table shows that MA3 achieves better results than TabuTW and
ACS+ILS on many instances, although, as mentioned above, the results for
the latter have been obtained using different hardware.

IHA and GA-tw both find good results for most instances. Additionally,
we had access to their source code. Because of that, the experiments on the
validation set were conducted using only these two heuristics as competitors
to our approaches.

Table 5.1: Results on the benchmark instances of the Second DIMACS
Implementation Challenge.

|V | |E| M
A

1

M
A

2

M
A

3

IH
A

G
A

-t
w

Ta
bu

T
W

A
C

S+
IL

S
B

B
-t

w
Q

ui
ck

B
B

myciel3 11 20 5 5 5 5 5 5 5 - 5
myciel4 23 71 10 10 10 10 10 10 10 - 10
queen5_5 25 320 18 18 18 18 18 18 18 - 18
queen6_6 36 580 25 25 25 25 25 25 25 - 25
myciel5 47 236 19 19 19 19 19 19 19 - 19
queen7_7 49 952 35 35 35 35 35 35 35 - 35
queen8_8 64 1456 45 45 45 45 45 46 46 - 46
huck 74 602 10 10 10 10 10 10 10 - 10
jean 80 508 9 9 9 9 9 9 9 - 9
queen9_9 81 2112 58 58 58 58 58 58 59 - 59
david 87 812 13 13 13 13 13 13 13 13 13
myciel6 95 755 35 35 35 35 35 35 35 35 35
queen8_12 96 2736 65 65 65 65 65 - - - -
queen10_10 100 2940 72 72 72 72 72 72 73 - 72
games120 120 1276 33 32 32 32 32 33 37 38 -
queen11_11 121 3960 87 87 87 87 87 88 89 - 89
DSJC125.1 125 1472 61 60 60 60 60 65 63 64 64

56

Table 5.1: (continued) Results on the benchmark instances of the Second
DIMACS Implementation Challenge.

|V | |E| M
A

1

M
A

2

M
A

3

IH
A

G
A

-t
w

Ta
bu

T
W

A
C

S+
IL

S
B

B
-t

w
Q

ui
ck

B
B

DSJC125.5 125 7782 108 108 108 108 108 109 108 109 109
DSJC125.9 125 13 922 119 119 119 119 119 119 119 - 119
miles1000 128 6432 49 49 49 49 49 49 50 - 49
miles1500 128 10 396 77 77 77 77 77 77 77 - 77
miles250 128 774 9 9 9 9 10 9 9 - 9
miles500 128 2340 24 23 22 22 24 22 25 - 22
miles750 128 4226 37 36 36 36 37 36 38 - 37
anna 138 986 12 12 12 12 12 12 12 12 12
queen12_12 144 5192 104 103 103 103 104 104 109 - 110
queen13_13 169 6656 122 121 122 121 121 122 128 - 125
mulsol.i.3 184 3916 32 32 32 32 32 32 32 - 32
mulsol.i.4 185 3946 32 32 32 32 32 32 32 - 32
mulsol.i.5 186 3973 31 31 31 31 31 31 31 - 31
mulsol.i.2 188 3885 32 32 32 32 32 32 32 - 32
myciel7 191 2360 66 66 66 66 66 66 66 66 54
queen14_14 196 8372 142 141 142 140 140 141 150 - 143
mulsol.i.1 197 3925 50 50 50 50 50 50 50 - 50
zeroin.i.3 206 3540 32 32 32 32 32 32 33 - -
zeroin.i.1 211 4100 50 50 50 50 50 50 50 - -
zeroin.i.2 211 3541 32 32 32 32 32 32 33 - -
queen15_15 225 10 360 164 162 161 162 161 163 174 - 167
DSJC250.1 250 6436 173 170 168 167 167 173 174 177 176
DSJC250.5 250 31 336 230 230 230 229 230 232 231 - 231
DSJC250.9 250 55 794 243 243 243 243 243 243 243 - 243
queen16_16 256 12 640 187 184 183 184 185 186 201 - 205
flat300_20_0 300 21 375 278 278 279 277 278 - - - -
flat300_26_0 300 21 633 279 278 278 277 279 - - - -
flat300_28_0 300 21 695 279 279 279 278 279 - - - -
school1_nsh 352 14 612 159 153 151 152 156 162 185 - -
school1 385 19 095 190 179 176 178 182 188 228 178 -
fpsol2.i.3 425 8688 32 31 31 31 31 31 31 - 31
le450_15a 450 8168 278 263 259 259 258 272 288 - -
le450_15b 450 8169 275 264 262 258 264 270 292 - 289
le450_15c 450 16 680 362 355 351 351 349 359 368 - 372
le450_15d 450 16 750 365 355 352 351 353 360 371 - 371
le450_25a 450 8260 233 221 220 216 225 234 249 - 255
le450_25b 450 8263 231 216 211 214 222 233 245 - 251
le450_25c 450 17 343 334 323 320 322 320 327 346 - 349
le450_25d 450 17 425 336 330 325 326 326 336 355 - 349
le450_5a 450 5714 263 247 244 245 243 256 304 304 307
le450_5b 450 5734 256 248 246 246 247 254 308 - 309
le450_5c 450 9803 272 265 263 265 264 272 309 - 315
le450_5d 450 9757 269 263 262 265 265 278 290 - 303
fpsol2.i.2 451 8691 32 32 31 31 31 31 31 - 31
fpsol2.i.1 496 11 654 66 66 66 66 66 66 66 - 66
DSJC500.1 500 24 916 410 401 396 396 395 - - - 409

57

Table 5.1: (continued) Results on the benchmark instances of the Second
DIMACS Implementation Challenge.

|V | |E| M
A

1

M
A

2

M
A

3

IH
A

G
A

-t
w

Ta
bu

T
W

A
C

S+
IL

S
B

B
-t

w
Q

ui
ck

B
B

DSJC500.5 500 125 248 477 478 477 477 477 - - - 479
DSJC500.9 500 224 874 492 492 492 492 492 - - - 492
DSJR500.1 500 7110 43 35 33 35 34 - - - -
DSJR500.1c 500 242 550 485 485 485 485 485 - - - 485
DSJR500.5 500 117 724 263 250 246 250 258 - - - 175
homer 561 3258 29 27 27 31 31 31 30 - 31
inithx.i.3 621 13 969 35 35 35 35 35 35 31 35 31
inithx.i.2 645 13 979 35 35 35 35 35 35 31 35 31
inithx.i.1 864 18 707 56 56 56 56 56 56 56 - 56
latin

1 900 307 350 851 851 851 851 851 - - - -
DSJC1000.1 1000 99 258 901 891 882 882 874 - - - 896
DSJC1000.5 1000 499 652 978 975 976 974 975 - - - 977
DSJC1000.9 1000 898 898 991 992 992 991 992 - - - 991
flat1000_50_0 1000 245 000 978 976 975 974 975 - - - -
flat1000_60_0 1000 245 830 978 976 976 975 975 - - - -
flat1000_76_0 1000 246 708 978 976 976 974 975 - - - -

5.2 Algorithm Validation
The algorithms are validated on a set of instances that is deliberately distinct
from the training set used in the previous chapter. This validation set, which is
listed in Tables 5.2 on the next page and 5.3 on page 60, has been taken from
TreewidthLib [13], a website devoted to treewidth benchmark instances (and
algorithms), created by Jan-Willem van den Broek and Hans Bodlaender. Using
two distinct sets of instances ensures that we are able to improve best known
upper bounds on the training instances by specifically tuning for them, and,
at the same time, reason about the universal performance of the algorithms.

The validation runs for GA-tw and IHA have been executed with their
respective original implementation. Merely minor modification have been
applied, which were required for compilation and solution extraction.

By using the exact same instances for all involved algorithms, instance
variability is factored out of the comparison [30] (this method is also known as
blocking on instances [50]).

Due to the architectural differences in the algorithms, there is no natural
metric for measuring their progress. Instead, a limit on their runtime is
imposed. We chose a limit of one hour, which seems reasonable, considering
that the involved algorithms are usually meant for preprocessing a problem
instance before handing over the result to another algorithm that actually
solves the original problem. By forbearing from longer running times, we were

1
latin_square_10

58

Table 5.2: The validation set, instances 1–12. The instance files and the
corresponding descriptions have been taken from [13].

|V| |E|

barley 48 126 The first version of the Barley network, a probabilistic
network developed by Kristensen and Rasmussen in a
project for growing malting barley without use of pesticides.
This is the moralized graph of the network.

rl5934 2048 3087

TSP Graphs from the work of Cook and Seymour.pcb3038 1985 3109
fnl4461 3326 5147
fl3795 2103 3973

pathfinder 109 211 A probabilistic network for assisting surgical pathologists
with the diagnosis of lymph-node diseases. The graph given
here is the undirected graph, obtained from applying
moralization to the directed probabilistic network.

oesoca+ 67 208 Probabilistic network for staging of oesophageal carcinoma,
developed at Utrecht University by L. van der Gaag et al.
The graph given here is the version after the moralization
step.

link 724 1738 Probabilistic network for linkage analysis.

diabetes 413 819 A preliminary model for insulin dose adjustment that
consists of 24 structurally identical subnetworks
interconnected via temporal links. [4]

pigs 441 806 Pedigree of breeding pigs. The pedigree is used for
diagnosing the PSE disease. Created by Claus S. Jensen on
the basis of a data base from Søren Andersen (Danske
Slagterier, Axeltorv Copenhagen).

water 32 123 Preliminary model of the biological processes of a water
purificationplant. The network consists of four structurally
identical subnetworks, each representing a time slice of 15
minutes. The network was developedby Finn V. Jensen,
Uffe Kjærulff, Kristian G. Olesen, and Jan Pedersen. This
is a probabilistic network, given here after the moralization
step.

munin1 189 366 A subset of the Munin network; a probablistic network.
The version here is after the moralization step.

able to gather 20 samples for each of the 5 validated algorithms, for each of
the 106 instances (that includes the runs for Section 5.1), in a time of 10600
hours, or approximately 442 days. In other words, the one hour runtime limit
and the sample size of 20 represent a compromise between the time needed for
the validation, and its informative value.

59

Table 5.3: The validation set, instances 13–27. The instance files and the
corresponding descriptions have been taken from [13].

|V| |E|

1ubq 74 211 A graph from the field of computational biology, where tree
decomposition directs a dynamic programming algorithm
for protein redesign. The graph comes from ubiquitin, a
well studied protein (PDB ID 1ubq). Each vertex represents
a single side chain. Each edge represents the existence of a
pairwise interaction between the two side chains. Copyright
Andrew Leaver-Fay.

knights8_8 64 168 The vertices of this graph correspond to the squares of an 8
by 8 chessboard. There is an edge between vertices if these
are a knights-move away from each other. The origin of this
graph can be found in the more than 1000 years old
knights-tour puzzle: to find a Hamiltonian path or cycle in
this graph.

1a62 122 1516
A graphs from the field of computational biology, where tree
decomposition directs a dynamic programming algorithm for
protein redesign. Each vertex represents a single side chain.
Each edge represents the existence of a pairwise interaction
between the two side chains. Copyright Andrew Leaver-Fay.

1sem 57 570
1qtn 87 788
1pwt 61 657
1or7 180 1875
1on2 135 1527
1oai 58 524

BN_0 100 300 Moralized version of a graph used in the UAI 2006
Inference Evaluation. This is a random modification of the
Alarm network.

BN_16 2127 5581 Moralized version of a graph used in the UAI 2006 Inference
Evaluation. This is a modified form of the Diagnosis graph.

BN_20 2843 8108 Moralized version of a graph used in the UAI 2006
Inference Evaluation. This is a DBN from speech
recognition that is unrolled a fixed amount.

BN_30 1156 3333 Moralized version of a DAG used in the UAI 2006 Inference
Evaluation. The original DAG was a grid.

BN_42 880 1577 Moralized version of a DAG used in the UAI 2006 Inference
Evaluation. The original DAG was from iscas85.

BN_47 661 2131 Moralized version of a DAG used in the UAI 2006 Inference
Evaluation. The original DAG was from iscas89.

60

The experiments have been done on an AMD Opteron 6272 CPU, running
at 2.1GHz, with access to roughly 220GB of memory. Since the CPU speed is
the most important performance factor for this work’s heuristic algorithms,
the following result of the (randomly selected) pystone benchmark may be
taken into consideration when reproducing the presented results:

$ python2 --version

Python 2.7.3

$ python2 -c "from test import pystone; pystone.main()"

Pystone(1.1) time for 50000 passes = 0.71

This machine benchmarks at 70422.5 pystones/second

5.2.1 Results

In the following the results for the validation set are presented. Those instances
on which all tested algorithms perform very similarly are listed in Chapter A
on page 85.

rl5934

Table 5.4: Results for instance rl5934.

Best Average

treewidth seconds treewidth samples

MA1 41 3608.1 45.1± 2.3 20
MA2 36 3600.1 40.6± 2.6 20
MA3 24 3316.0 33.6± 6.9 20
IHA 27 1032.3 33.0± 3.6 20
GAtw 21 2154.5 27.0± 4.4 20

Table 5.4 shows the algorithm results, including the sample means and
standard deviations. Noticeably, with a value of 6.9, MA3’s standard deviation
is almost twice as high as IHA’s.

Figure 5.1 on the next page shows a violin plot of the runs against this
instance. A violin plot combines a boxplot with a kernel density estimate,
which helps us to visually compare the results. In addition to the sample mean,
the 25th and 75th percentiles are also shown in the plots.

The data suggests that even though MA3 might be able to produce good
results, the quality of its results varies heavily. In order to tell whether
the apparent differences in mean values across the different algorithms is
statistically significant, we apply statistical tests.

The first candidate is the one-way analysis of variance (ANOVA), which
requires the samples to be independent, normally distributed, and of equal
variance. The independence is assured as the algorithms do not influence each

61

10 20 30 40 50 60 70

treewidth

GAtw

IHA

MA3

MA2

MA1

Figure 5.1: Violin plot for instance rl5934.

0 600 1200 1800 2400 3000 3600

runtime

0

100

200

300

400

500

tr
ee

w
id

th

10−1 100 101 102 103

runtime

0

500

1000

1500

2000

tr
ee

w
id

th

MA1

MA2

MA3

IHA

GAtw

Figure 5.2: Solution quality over time for instance rl5934 (linear time scale left,
logarithmic time scale right).

other in any way. All five samples are distributed normally according to both
the simple skewness test and the Shapiro-Wilk test, at significance levels of
5% and 2%, respectively. Their variance differs, however, as both the Bartlett
test and the Levene test assure, at significance levels of 5% each. Therefore,
instead of the one-way ANOVA, the Kruskal-Wallis test is chosen, as it does
not require homogeneity of variance.

The Kruskal-Wallis test rejects its null hypothesis, which means that at
least two means are significantly different from each other. In order to find out
which, we deploy two tests: Tukey’s test and a pairwise Welch’s t-test with the
more conservative Bonferroni correction. Tukey’s test assumes homogeneity of
variance, which we do not have, but with equal sample sizes the test should be
robust enough to compensate the variance differences (all other requirements
are fulfilled). For the other test, the Bonferroni correction, which accounts
for the multiple comparison, is calculated using αlocal = 1 − (1 − αglobal)

1/n,

62

where n is the number of tests we execute. With m = 5 variants there are
m(m−1)

2 = 10 possible pairwise comparisons; we omit IHA vs. GA-tw, so we
have n = 9. Both tests have been done twice, for the global α values of 10 and
5. The results are shown in Table 5.5.

Table 5.5: Pairwise comparison of means for instance rl5934.

Tukey’s test Welch and Bonfer.

mean diff. α = 10 % α = 5 % α = 10 % α = 5 %

IHA vs MA1 12.05 distinct distinct distinct distinct
IHA vs MA2 7.5 distinct distinct distinct distinct
IHA vs MA3 0.6 equal equal equal equal

GA-tw vs MA1 18.15 distinct distinct distinct distinct
GA-tw vs MA2 13.6 distinct distinct distinct distinct
GA-tw vs MA3 6.7 distinct distinct distinct distinct
MA1 vs MA2 4.55 distinct distinct distinct distinct
MA1 vs MA3 11.45 distinct distinct distinct distinct
MA2 vs MA3 6.9 distinct distinct distinct distinct

So what we see in Figure 5.1 on the preceding page is evidently statistically
significant. Consequently, on this instance, GA-tw dominates its competitors in
terms of solution quality. Regarding the runtime behavior, which is displayed in
Figure 5.2 on the facing page, GA-tw is still doing well, while MA1 performes
badly, and also MA2 is quite slow on this instance.

pcb3038

Table 5.6: Results for instance pcb3038.

Best Average

treewidth seconds treewidth samples

MA1 39 3607.6 42.2± 1.7 20
MA2 36 3498.2 38.9± 2.2 20
MA3 24 3456.9 28.9± 3.2 20
IHA 25 1859.1 29.6± 3.5 20
GAtw 19 2159.3 20.4± 0.7 20

The results for this instance look very similar to those for the previous one
(see Table 5.6 and Figure 5.3 on the following page).

Since, according to the Shapiro-Wilk test, GA-tw cannot be assumed to be
distributed normally, we use the Mann-Whitney U test, again with Bonferroni
correction. Its results are shown in Table 5.7 on the next page.

63

15 20 25 30 35 40 45 50

treewidth

GAtw

IHA

MA3

MA2

MA1

Figure 5.3: Violin plot for instance pcb3038.

0 600 1200 1800 2400 3000 3600

runtime

0

50

100

150

200

250

300

tr
ee

w
id

th

10−1 100 101 102 103

runtime

0

500

1000

1500

2000

tr
ee

w
id

th

MA1

MA2

MA3

IHA

GAtw

Figure 5.4: Solution quality over time for instance pcb3038 (linear time scale
left, logarithmic time scale right).

Table 5.7: Pairwise comparison of means for instance pcb3038.

Mann-Whitney U test

mean diff. α = 10 % α = 5 %

IHA vs MA1 12.6 distinct distinct
IHA vs MA2 9.25 distinct distinct
IHA vs MA3 0.75 equal equal

GA-tw vs MA1 21.9 distinct distinct
GA-tw vs MA2 18.55 distinct distinct
GA-tw vs MA3 8.55 distinct distinct
MA1 vs MA2 3.35 distinct distinct
MA1 vs MA3 13.35 distinct distinct
MA2 vs MA3 10.0 distinct distinct

64

fnl4461

Table 5.8: Results for instance fnl4461.

Best Average

treewidth seconds treewidth samples

MA1 59 3619.9 67.6± 3.9 20
MA2 61 3600.2 71.0± 5.2 20
MA3 122 3505.5 146.8± 13.1 20
IHA 39 2980.7 48.6± 5.9 20
GAtw 31 2606.6 33.6± 2.3 20

20 40 60 80 100 120 140 160 180 200

treewidth

GAtw

IHA

MA3

MA2

MA1

Figure 5.5: Violin plot for instance fnl4461.

The results for this instance show a great variety—the worst average result
is more than four times as large as the best average result. Again, normal
distribution cannot be assumed. The results of the pairwise Mann-Whitney U
tests with Bonferroni correction are given in Table 5.9 on the following page.

Figure 5.6 on the next page, which shows the time response, shows that
MA1 and MA2 are by far the slowest algorithms for this instance.

fl3795

The results given in Table 5.10 on the following page and Figure 5.7 on
page 67 are obviously quite clearly separated. The results of the pairwise,
Bonferroni-corrected Mann-Whitney U tests (Table 5.11 on page 67), which
are done on the not normally distributed samples, confirm this observation.

65

0 600 1200 1800 2400 3000 3600

runtime

0

100

200

300

400

500

tr
ee

w
id

th

10−1 100 101 102 103

runtime

0

500

1000

1500

2000

2500

3000

tr
ee

w
id

th

MA1

MA2

MA3

IHA

GAtw

Figure 5.6: Solution quality over time for instance fnl4461 (linear time scale
left, logarithmic time scale right).

Table 5.9: Pairwise comparison of means for instance fnl4461.

Mann-Whitney U test

mean diff. α = 10 % α = 5 %

IHA vs MA1 18.95 distinct distinct
IHA vs MA2 22.3 distinct distinct
IHA vs MA3 98.1 distinct distinct

GA-tw vs MA1 34.05 distinct distinct
GA-tw vs MA2 37.4 distinct distinct
GA-tw vs MA3 113.2 distinct distinct
MA1 vs MA2 3.35 equal equal
MA1 vs MA3 79.15 distinct distinct
MA2 vs MA3 75.8 distinct distinct

Table 5.10: Results for instance fl3795.

Best Average

treewidth seconds treewidth samples

MA1 30 3606.7 31.2± 0.8 20
MA2 27 2836.2 29.2± 1.3 20
MA3 21 2932.5 23.6± 1.7 20
IHA 18 1052.0 18.7± 0.6 20
GAtw 13 1910.8 13.7± 0.6 20

66

10 15 20 25 30 35

treewidth

GAtw

IHA

MA3

MA2

MA1

Figure 5.7: Violin plot for instance fl3795.

0 600 1200 1800 2400 3000 3600

runtime

0

50

100

150

200

250

300

tr
ee

w
id

th

10−1 100 101 102 103

runtime

0

500

1000

1500

2000

tr
ee

w
id

th

MA1

MA2

MA3

IHA

GAtw

Figure 5.8: Solution quality over time for instance fl3795 (linear time scale left,
logarithmic time scale right).

Table 5.11: Pairwise comparison of means for instance fl3795.

Mann-Whitney U test

mean diff. α = 10 % α = 5 %

IHA vs MA1 12.45 distinct distinct
IHA vs MA2 10.50 distinct distinct
IHA vs MA3 4.85 distinct distinct

GA-tw vs MA1 17.45 distinct distinct
GA-tw vs MA2 15.50 distinct distinct
GA-tw vs MA3 9.85 distinct distinct
MA1 vs MA2 1.95 distinct distinct
MA1 vs MA3 7.60 distinct distinct
MA2 vs MA3 5.65 distinct distinct

67

link

Table 5.12: Results for instance link.

Best Average

treewidth seconds treewidth samples

MA1 20 3601.6 21.6± 0.9 20
MA2 16 1857.7 17.9± 0.9 20
MA3 14 1635.1 15.5± 1.0 20
IHA 15 731.1 16.8± 1.3 20
GAtw 15 77.9 16.4± 1.4 20

12 14 16 18 20 22 24 26

treewidth

GAtw

IHA

MA3

MA2

MA1

Figure 5.9: Violin plot for instance link.

While the results for all algorithms except MA1 are closely together, as
Figure 5.9 illustrates, the time needed to achieve that result varies largely, as
can be observed by looking at the numbers in Table 5.12 are the corresponding
plots in Figure 5.10 on the next page. Interestingly, manual experiments suggest
that MA1 cannot improve on this result even when given three hours of runtime.

Table 5.13 on the facing page displays the results of the tests that properly
rank the results (again, no common normal distribution can be assumed).
Although MA3 seems to be superior to GA-tw on this instance, the statistical
test cannot reject equality of means, so in the light of statistical significance
they perform equally well.

diabetes

Again, the most obvious feature of the results in Table 5.14 on the next page
and Figure 5.11 on page 70 is the difference regarding the algorithm’s time

68

0 600 1200 1800 2400 3000 3600

runtime

0

20

40

60

80

100

tr
ee

w
id

th

10−1 100 101 102 103

runtime

0

100

200

300

400

500

600

700

tr
ee

w
id

th

MA1

MA2

MA3

IHA

GAtw

Figure 5.10: Solution quality over time for instance link (linear time scale left,
logarithmic time scale right).

Table 5.13: Pairwise comparison of means for instance link.

Mann-Whitney U test

mean diff. α = 10 % α = 5 %

IHA vs MA1 4.8 distinct distinct
IHA vs MA2 1.15 distinct distinct
IHA vs MA3 1.25 distinct distinct

GA-tw vs MA1 5.1 distinct distinct
GA-tw vs MA2 1.45 distinct distinct
GA-tw vs MA3 0.95 equal equal
MA1 vs MA2 3.65 distinct distinct
MA1 vs MA3 6.05 distinct distinct
MA2 vs MA3 2.4 distinct distinct

Table 5.14: Results for instance diabetes.

Best Average

treewidth seconds treewidth samples

MA1 9 3600.4 9.2± 0.4 20
MA2 8 291.0 8.3± 0.5 20
MA3 7 57.4 7.0± 0.0 20
IHA 6 2211.5 6.9± 0.3 20
GAtw 6 22.3 6.0± 0.0 20

69

0 600 1200 1800 2400 3000 3600

runtime

0

5

10

15

20

25

30
tr

ee
w

id
th

10−1 100 101 102 103

runtime

0

50

100

150

200

250

300

350

400

tr
ee

w
id

th

MA1

MA2

MA3

IHA

GAtw

Figure 5.11: Solution quality over time for instance diabetes (linear time scale
left, logarithmic time scale right).

responses. The data is not normally distributed; the comparison results are
shown in Table 5.15.

Table 5.15: Pairwise comparison of means for instance diabetes.

Mann-Whitney U test

mean diff. α = 10 % α = 5 %

IHA vs MA1 2.3 distinct distinct
IHA vs MA2 1.4 distinct distinct
IHA vs MA3 0.1 equal equal

GA-tw vs MA1 3.2 distinct distinct
GA-tw vs MA2 2.3 distinct distinct
GA-tw vs MA3 1.0 distinct distinct
MA1 vs MA2 0.9 distinct distinct
MA1 vs MA3 2.2 distinct distinct
MA2 vs MA3 1.3 distinct distinct

1qtn

Table 5.16: Results for instance 1qtn.

Best Average

treewidth seconds treewidth samples

MA1 24 3508.4 24.6± 0.5 20
MA2 23 2589.6 24.2± 0.6 20
MA3 23 37.7 24.4± 0.7 20
IHA 23 1626.3 23.9± 0.3 20
GAtw 23 1052.5 23.8± 0.4 20

70

21 22 23 24 25 26 27

treewidth

GAtw

IHA

MA3

MA2

MA1

Figure 5.12: Violin plot for instance 1qtn.

0 600 1200 1800 2400 3000 3600

runtime

0

5

10

15

20

25

30

35

tr
ee

w
id

th

10−1 100 101 102 103

runtime

0

10

20

30

40

50

60

70

80

tr
ee

w
id

th

MA1

MA2

MA3

IHA

GAtw

Figure 5.13: Solution quality over time for instance 1qtn (linear time scale left,
logarithmic time scale right).

Table 5.16 on the facing page and Figure 5.12 show the results to be similar.
Without being able to assume normal distributions, at a significance level of
5%, we can only differentiate between IHA and MA1, GA-tw and MA1, and
GA-tw and MA3 (see Table 5.17 on the following page).

BN_16

The results in Table 5.18 on the next page and Figure 5.14 on the following
page show that on this instance GA-tw achieves the best results with the lowest
deviation (significance test of the non-normally distributed data in Table 5.19
on page 73). Figure 5.15 on page 73 shows a time response similar to what we
see for the other instances.

71

Table 5.17: Pairwise comparison of means for instance 1qtn.

Mann-Whitney U test

mean diff. α = 10 % α = 5 %

IHA vs MA1 0.75 distinct distinct
IHA vs MA2 0.35 equal equal
IHA vs MA3 0.45 distinct equal

GA-tw vs MA1 0.8 distinct distinct
GA-tw vs MA2 0.4 distinct equal
GA-tw vs MA3 0.5 distinct distinct
MA1 vs MA2 0.4 equal equal
MA1 vs MA3 0.3 equal equal
MA2 vs MA3 0.1 equal equal

Table 5.18: Results for instance BN_16.

Best Average

treewidth seconds treewidth samples

MA1 60 3616.4 64.6± 3.4 20
MA2 59 3600.1 63.8± 2.9 20
MA3 47 2754.2 49.4± 1.8 20
IHA 50 1041.9 54.0± 3.8 20
GAtw 46 838.3 46.3± 0.5 20

40 45 50 55 60 65 70 75 80

treewidth

GAtw

IHA

MA3

MA2

MA1

Figure 5.14: Violin plot for instance BN_16.

72

0 600 1200 1800 2400 3000 3600

runtime

0

100

200

300

400

500

600

tr
ee

w
id

th

10−1 100 101 102 103

runtime

0

500

1000

1500

2000

tr
ee

w
id

th

MA1

MA2

MA3

IHA

GAtw

Figure 5.15: Solution quality over time for instance BN_16 (linear time scale left,
logarithmic time scale right).

Table 5.19: Pairwise comparison of means for instance BN_16.

Mann-Whitney U test

mean diff. α = 10 % α = 5 %

IHA vs MA1 10.7 distinct distinct
IHA vs MA2 9.8 distinct distinct
IHA vs MA3 4.6 distinct distinct

GA-tw vs MA1 18.35 distinct distinct
GA-tw vs MA2 17.45 distinct distinct
GA-tw vs MA3 3.05 distinct distinct
MA1 vs MA2 0.9 equal equal
MA1 vs MA3 15.3 distinct distinct
MA2 vs MA3 14.4 distinct distinct

Table 5.20: Results for instance BN_20.

Best Average

treewidth seconds treewidth samples

MA1 35 3615.4 37.2± 1.5 20
MA2 34 3600.1 36.4± 1.4 20
MA3 29 3467.5 35.8± 3.8 20
IHA 16 2625.4 17.6± 0.6 20
GAtw 14 3057.9 14.4± 0.5 20

73

10 15 20 25 30 35 40 45 50 55

treewidth

GAtw

IHA

MA3

MA2

MA1

Figure 5.16: Violin plot for instance BN_20.

0 600 1200 1800 2400 3000 3600

runtime

0

50

100

150

200

250

tr
ee

w
id

th

10−1 100 101 102 103

runtime

0

500

1000

1500

2000

2500

tr
ee

w
id

th

MA1

MA2

MA3

IHA

GAtw

Figure 5.17: Solution quality over time for instance BN_20 (linear time scale left,
logarithmic time scale right).

BN_20

Somewhat surprisingly, there is a clear difference between GA-tw and IHA and
their memetic counterparts. Table 5.21 on the next page provides proof for
this observation.

BN_30

With a dense field of results and different variances in Table 5.22 on the facing
page and Figure 5.18 on the next page, once again we rely on statistics to clear
the picture. According to the Shapiro-Wilk tests, we can assume all samples
to be distributed normally (α = 5%). The variances are different, which can
be seen in the violin plot (and tested using the Levene test). For Table 5.23 on
page 76, we have applied the Tukey’s test, the Welch’s t-test (with Bonferroni
correction) and the Mann-Whitney U Test (also with Bonferroni correction) to

74

Table 5.21: Pairwise comparison of means for instance BN_20.

Mann-Whitney U test

mean diff. α = 10 % α = 5 %

IHA vs MA1 19.6 distinct distinct
IHA vs MA2 18.85 distinct distinct
IHA vs MA3 18.2 distinct distinct

GA-tw vs MA1 22.75 distinct distinct
GA-tw vs MA2 22.0 distinct distinct
GA-tw vs MA3 21.35 distinct distinct
MA1 vs MA2 0.75 equal equal
MA1 vs MA3 1.4 equal equal
MA2 vs MA3 0.65 equal equal

Table 5.22: Results for instance BN_30.

Best Average

treewidth seconds treewidth samples

MA1 72 3603.1 76.4± 2.6 20
MA2 64 3222.4 68.6± 3.1 20
MA3 62 3485.3 90.8± 11.7 20
IHA 56 2304.1 63.7± 5.3 20
GAtw 72 3388.6 74.9± 1.9 20

40 60 80 100 120 140

treewidth

GAtw

IHA

MA3

MA2

MA1

Figure 5.18: Violin plot for instance BN_30.

75

0 600 1200 1800 2400 3000 3600

runtime

0

50

100

150

200

250

300

350

400
tr

ee
w

id
th

10−1 100 101 102 103

runtime

0

200

400

600

800

1000

tr
ee

w
id

th

MA1

MA2

MA3

IHA

GAtw

Figure 5.19: Solution quality over time for instance BN_30 (linear time scale left,
logarithmic time scale right).

all algorithm pairs, at a significance level of 5%. Although the Mann-Whitney
U Test is probably more appropriate due to the heterogeneity of variance, we
chose to be conservative and use the result of the Tukey’s Test.

Table 5.23: Pairwise comparison of means for instance BN_30, at a significance
level of 5%.

Diff. Tukey’s test Welch’s t-test
& Bonferroni

Mann-Whitney U
& Bonferroni

IHA vs MA1 12.75 distinct distinct distinct
IHA vs MA2 4.85 equal equal distinct
IHA vs MA3 27.1 distinct distinct distinct

GA-tw vs MA1 1.55 equal equal equal
GA-tw vs MA2 6.35 distinct distinct distinct
GA-tw vs MA3 15.9 distinct distinct distinct
MA1 vs MA2 7.9 distinct distinct distinct
MA1 vs MA3 14.35 distinct distinct distinct
MA2 vs MA3 22.25 distinct distinct distinct

BN_42

The results for BN_42 are given in Table 5.24 on the next page, Figure 5.20
on the facing page, and Figure 5.21 on the next page. Again, the data
cannot be assumed to be distributed normally, according to the Shapiro-Wilk
test. The results of the pairwise comparison using the Bonferroni-corrected
Mann-Whitney U tests are shown in Table 5.25 on page 78.

BN_47

Finally, Table 5.26 on page 78, Figure 5.22 on page 78, and Figure 5.23 on
page 79 present the results for BN_47. The data cannot be assumed to be

76

Table 5.24: Results for instance BN_42.

Best Average

treewidth seconds treewidth samples

MA1 29 3601.7 32.8± 1.6 20
MA2 24 3264.6 26.4± 1.5 20
MA3 22 991.7 23.7± 0.9 20
IHA 23 1005.1 24.0± 0.8 20
GAtw 22 99.3 22.7± 0.9 20

20 22 24 26 28 30 32 34 36 38

treewidth

GAtw

IHA

MA3

MA2

MA1

Figure 5.20: Violin plot for instance BN_42.

0 600 1200 1800 2400 3000 3600

runtime

0

50

100

150

200

tr
ee

w
id

th

10−1 100 101 102 103

runtime

0

100

200

300

400

500

600

700

800

tr
ee

w
id

th

MA1

MA2

MA3

IHA

GAtw

Figure 5.21: Solution quality over time for instance BN_42 (linear time scale left,
logarithmic time scale right).

77

Table 5.25: Pairwise comparison of means for instance BN_42.

Mann-Whitney U test

mean diff. α = 10 % α = 5 %

IHA vs MA1 8.8 distinct distinct
IHA vs MA2 2.35 distinct distinct
IHA vs MA3 0.35 equal equal

GA-tw vs MA1 10.15 distinct distinct
GA-tw vs MA2 3.7 distinct distinct
GA-tw vs MA3 1.0 distinct distinct
MA1 vs MA2 6.45 distinct distinct
MA1 vs MA3 9.15 distinct distinct
MA2 vs MA3 2.7 distinct distinct

Table 5.26: Results for instance BN_47.

Best Average

treewidth seconds treewidth samples

MA1 46 3601.9 47.6± 0.9 20
MA2 44 779.2 44.8± 0.6 20
MA3 44 119.2 44.8± 0.9 20
IHA 44 54.8 44.4± 0.5 20
GAtw 44 70.5 44.8± 0.9 20

42 43 44 45 46 47 48 49 50 51

treewidth

GAtw

IHA

MA3

MA2

MA1

Figure 5.22: Violin plot for instance BN_47.

78

0 600 1200 1800 2400 3000 3600

runtime

0

50

100

150

200

250

tr
ee

w
id

th

10−1 100 101 102 103

runtime

0

100

200

300

400

500

600

tr
ee

w
id

th

MA1

MA2

MA3

IHA

GAtw

Figure 5.23: Solution quality over time for instance BN_47 (linear time scale left,
logarithmic time scale right).

distributed normally; consequently, the Mann-Whitney U test is used to judge
the ranking in Table 5.27.

Table 5.27: Pairwise comparison of means for instance BN_47.

Mann-Whitney U test

mean diff. α = 10 % α = 5 %

IHA vs MA1 3.3 distinct distinct
IHA vs MA2 0.45 distinct equal
IHA vs MA3 0.5 equal equal

GA-tw vs MA1 2.9 distinct distinct
GA-tw vs MA2 0.05 equal equal
GA-tw vs MA3 0.1 equal equal
MA1 vs MA2 2.85 distinct distinct
MA1 vs MA3 2.8 distinct distinct
MA2 vs MA3 0.05 equal equal

79

5.2.2 Discussion

In the following, the algorithms are compared using the mean widths of their
tree decompositions at a significance level of α = 5%. Therefore, the chance
of stating that an algorithm performs better than the other when it is not, is
lower than 5%.

When comparing the memetic algorithms, we see that MA3 outperforms
the other two variants. MA3 finds better results than MA2 on 33.3% of the
instances2, and worse on 11.1% 3. The difference is larger for MA1, where the
results are in favor of MA3 on 40.7% of the instances4, as opposed to the 7.4%
where MA1 takes the lead5. For MA1 and MA2 the difference is even clearer,
for the data is in favor of MA2 for 40.7% of the instances6, and indifferent for
the remaining instances.

MA1 is dominated by both IHA and GA-tw, where it is defeated in 59.3% 7

and 51.2% 8 of the instances, respectively. On a single instance, namely
knights8_8, MA1 wins over GA-tw.

MA2 achieves equal performance on most instances, compared to IHA and
GA-tw. It is outperformed in 48.1% of the instances in the case of IHA 9.
Compared to GA-tw, MA2 is defeated 40.7% of the time10, but manages to
find better solutions for 11.1% of the instances11.

Finally, MA3’s performance is equal to IHA’s on the majority of the
instances (66.6%). It finds better results than IHA on 7.4% of the instances12,
while IHA performs better on 25.9% 13. The performance for MA3 versus
GA-tw is slightly less impressive: 7.4% in favor of MA3 14, and 40.7% in favor
of GA-tw15. Still, on more than half of the instances the algorithms are on
par.

The result is presented graphically in Figure 5.24 on the next page.

2
rl5934, pcb3038, fl3795, link, diabetes, BN_16, BN_42, 1or7, 1on2 3

fnl4461, BN_30,
1a62

4
rl5934, pcb3038, fl3795, link, diabetes, BN_16, BN_42, BN_47, 1a62, 1or7, 1on2

5
fnl4461, BN_30 6

rl5934, pcb3038, fl3795, link, diabetes, BN_30, BN_42, BN_47, 1a62,
1or7, 1on2 7

rl5934, pcb3038, fnl4461, fl3795, link, diabetes, 1qtn, BN_16, BN_20, BN_30,
BN_42, BN_47, knights8_8, 1a62, 1or7, 1on2

8
rl5934, pcb3038, fnl4461, fl3795, link,

diabetes, 1qtn, BN_16, BN_20, BN_42, BN_47, 1a62, 1or7, 1on2 9
rl5934, pcb3038, fnl4461,

fl3795, link, diabetes, BN_16, BN_20, BN_42, knights8_8, 1or7, 1on2, BN_0
10
rl5934,

pcb3038, fnl4461, fl3795, link, diabetes, 1qtn, BN_16, BN_20, BN_42, 1on2
11
BN_30,

knights8_8, 1or7 12
link, BN_16 13

fnl4461, fl3795, 1qtn, BN_20, BN_30, 1a62, BN_0
14
knights8_8, 1or7 15

rl5934, pcb3038, fnl4461, fl3795, diabetes, 1qtn, BN_16, BN_20,
BN_30, BN_42, 1a62

80

MA1

MA2

MA3

IHA

GAtw

MA2

MA3

IHA

GAtw

MA1

MA3

IHA

GAtw

MA1

MA2

Figure 5.24: Result of the comparisons on the validation instances. Dark areas
represent instances where the respective side performs significantly better than
the other (significance level α = 5%). The remaining light areas in between
represent instances where no performance difference could be identified. The
verical black bars signify the result of the respective comparison.

81

Chapter 6

Conclusions

In the course of this work, we have designed three different memetic algorithms.
Their performance has been evaluated by comparing them to each other, as well
as to the state-of-the-art algorithms BB-tw [6], QuickBB [21], TabuTW [16],
ACS+ILS [23, 24], GA-tw [53, 46], and IHA [45].

Our algorithms have been optimized by parameter tuning software. To
ensure that the results represent real-world performance, we have used separate
sets of instances for training/tuning (79 instances) and for validation (27
instances). In order for the results to be meaningful, statistical significance
tests have been employed for ranking the algorithms.

The proposed memetic algorithms differ with respect to solution quality,
i.e., the width of the resulting tree decomposition, where MA3 takes the lead
in almost all instances. They also differ substantially regarding their time
response, with MA3 being quicker than MA2, which is in turn quicker than
MA1. So overall, MA3 turned out to be superior to the more complex variants
MA1 and MA2.

In general, our memetic algorithms are competitive, but they do not
dominate all state-of-the-art solvers for this problem. Nevertheless, MA3 has
been able to find new best known upper bounds on 8 benchmark instances of
the Second DIMACS Implementation Challenge. One of them is also found by
MA2.

The results suggest that memetic algorithms are promising and worth
investigating. Future work includes experiments using parallel implementations
of MAs, where a natural distinction between the phases of a memetic algorithm
can help to optimize for concurrency. Since the way of combining two heuristics
into a MA has such a large impact on the performance, it might be worth
investigating more variants, while aiming at an understanding of the underlying
principles.

83

Appendix A

Performance on Validation
Instances, continued

This Chapter lists those instances that have not been mentioned in Section 5.2.1
on page 61, on which the tested algorithms perform very similarly.

Table A.1: Results for instance barley.

Best Average

treewidth seconds treewidth samples

MA1 7 574.1 7.0± 0.0 20
MA2 7 0.8 7.0± 0.0 20
MA3 7 0.1 7.0± 0.0 20
IHA 7 1.1 7.0± 0.0 20
GAtw 7 0.1 7.0± 0.0 20

Table A.2: Results for instance pathfinder.

Best Average

treewidth seconds treewidth samples

MA1 6 1051.7 6.0± 0.0 20
MA2 6 1.4 6.0± 0.0 20
MA3 6 0.2 6.0± 0.0 20
IHA 6 1.1 6.0± 0.0 20
GAtw 6 0.3 6.0± 0.0 20

85

0 600

runtime

0

1

2

3

4

5

6

7
tr

ee
w

id
th

100 101 102 103

runtime

0

20

40

60

80

100

tr
ee

w
id

th

MA1

MA2

MA3

IHA

GAtw

Figure A.1: Solution quality over time for instance pathfinder (linear time
scale left, logarithmic time scale right).

Table A.3: Results for instance oesoca+.

Best Average

treewidth seconds treewidth samples

MA1 11 723.8 11.0± 0.0 20
MA2 11 1.1 11.0± 0.0 20
MA3 11 0.2 11.0± 0.0 20
IHA 11 1.1 11.0± 0.0 20
GAtw 11 0.3 11.0± 0.0 20

0 600

runtime

0

5

10

15

20

25

30

tr
ee

w
id

th

100 101 102

runtime

0

10

20

30

40

50

60

tr
ee

w
id

th

MA1

MA2

MA3

IHA

GAtw

Figure A.2: Solution quality over time for instance oesoca+ (linear time scale
left, logarithmic time scale right).

86

Table A.4: Results for instance pigs.

Best Average

treewidth seconds treewidth samples

MA1 10 3600.5 10.0± 0.2 20
MA2 10 24.1 10.0± 0.0 20
MA3 9 978.9 10.1± 0.4 20
IHA 9 2173.2 10.0± 0.2 20
GAtw 10 6.9 10.1± 0.3 20

0 600 1200 1800 2400 3000 3600

runtime

0

2

4

6

8

10

12

14

16

tr
ee

w
id

th

10−1 100 101 102 103

runtime

0

50

100

150

200

250

300

350

400

tr
ee

w
id

th

MA1

MA2

MA3

IHA

GAtw

Figure A.3: Solution quality over time for instance pigs (linear time scale left,
logarithmic time scale right).

Table A.5: Pairwise comparison of means for instance pigs.

Mann-Whitney U test

mean diff. α = 10 % α = 5 %

IHA vs MA1 0.1 equal equal
IHA vs MA2 0.05 equal equal
IHA vs MA3 0.15 equal equal

GA-tw vs MA1 0.05 equal equal
GA-tw vs MA2 0.1 equal equal
GA-tw vs MA3 0.0 equal equal
MA1 vs MA2 0.05 equal equal
MA1 vs MA3 0.05 equal equal
MA2 vs MA3 0.1 equal equal

87

Table A.6: Results for instance water.

Best Average

treewidth seconds treewidth samples

MA1 9 353.5 9.0± 0.0 20
MA2 9 0.6 9.0± 0.0 20
MA3 9 0.2 9.0± 0.0 20
IHA 9 1.1 9.0± 0.0 20
GAtw 9 0.2 9.0± 0.0 20

0

runtime

0

1

2

3

4

5

6

7

8

9

tr
ee

w
id

th

100 101 102

runtime

0

5

10

15

20

25

30

tr
ee

w
id

th

MA1

MA2

MA3

IHA

GAtw

Figure A.4: Solution quality over time for instance water (linear time scale left,
logarithmic time scale right).

Table A.7: Results for instance munin1.

Best Average

treewidth seconds treewidth samples

MA1 11 3600.1 11.0± 0.0 20
MA2 11 8.1 11.0± 0.0 20
MA3 11 3.3 11.0± 0.0 20
IHA 11 1.3 11.0± 0.0 20
GAtw 11 1.9 11.0± 0.0 20

Table A.8: Results for instance 1ubq.

Best Average

treewidth seconds treewidth samples

MA1 12 1520.5 12.0± 0.0 20
MA2 12 2.3 12.0± 0.0 20
MA3 12 0.8 12.0± 0.0 20
IHA 12 1.2 12.0± 0.0 20
GAtw 12 0.7 12.0± 0.0 20

88

0 600 1200 1800 2400 3000 3600

runtime

0

5

10

15

20

25

tr
ee

w
id

th

10−1 100 101 102 103

runtime

0

50

100

150

tr
ee

w
id

th

MA1

MA2

MA3

IHA

GAtw

Figure A.5: Solution quality over time for instance munin1 (linear time scale left,
logarithmic time scale right).

0 600 1200

runtime

0

5

10

15

20

tr
ee

w
id

th

100 101 102 103

runtime

0

10

20

30

40

50

60

70

tr
ee

w
id

th

MA1

MA2

MA3

IHA

GAtw

Figure A.6: Solution quality over time for instance 1ubq (linear time scale left,
logarithmic time scale right).

Table A.9: Results for instance knights8_8.

Best Average

treewidth seconds treewidth samples

MA1 16 1238.1 16.4± 0.5 20
MA2 16 89.3 16.3± 0.5 20
MA3 16 3.7 16.2± 0.4 20
IHA 16 11.7 16.0± 0.0 20
GAtw 16 3.2 18.6± 1.3 20

89

Table A.10: Pairwise comparison of means for instance knights8_8.

Mann-Whitney U test

mean diff. α = 10 % α = 5 %

IHA vs MA1 0.45 distinct distinct
IHA vs MA2 0.3 distinct distinct
IHA vs MA3 0.15 equal equal

GA-tw vs MA1 2.2 distinct distinct
GA-tw vs MA2 2.35 distinct distinct
GA-tw vs MA3 2.5 distinct distinct
MA1 vs MA2 0.15 equal equal
MA1 vs MA3 0.3 equal equal
MA2 vs MA3 0.15 equal equal

Table A.11: Results for instance 1a62.

Best Average

treewidth seconds treewidth samples

MA1 37 3600.1 37.6± 0.5 20
MA2 36 160.8 36.2± 0.4 20
MA3 36 23.3 36.8± 0.8 20
IHA 36 6.0 36.0± 0.0 20
GAtw 36 88.6 36.0± 0.0 20

0 600 1200 1800 2400 3000 3600

runtime

0

10

20

30

40

50

60

tr
ee

w
id

th

10−1 100 101 102 103

runtime

0

20

40

60

80

100

120

tr
ee

w
id

th

MA1

MA2

MA3

IHA

GAtw

Figure A.7: Solution quality over time for instance 1a62 (linear time scale left,
logarithmic time scale right).

90

Table A.12: Pairwise comparison of means for instance 1a62.

Mann-Whitney U test

mean diff. α = 10 % α = 5 %

IHA vs MA1 1.6 distinct distinct
IHA vs MA2 0.15 equal equal
IHA vs MA3 0.75 distinct distinct

GA-tw vs MA1 1.6 distinct distinct
GA-tw vs MA2 0.15 equal equal
GA-tw vs MA3 0.75 distinct distinct
MA1 vs MA2 1.45 distinct distinct
MA1 vs MA3 0.85 distinct distinct
MA2 vs MA3 0.6 distinct distinct

Table A.13: Results for instance 1sem.

Best Average

treewidth seconds treewidth samples

MA1 26 1237.5 26.0± 0.0 20
MA2 26 1.9 26.0± 0.0 20
MA3 26 1.4 26.0± 0.0 20
IHA 26 1.2 26.0± 0.0 20
GAtw 26 1.4 26.0± 0.0 20

0 600 1200

runtime

0

5

10

15

20

25

30

tr
ee

w
id

th

100 101 102 103

runtime

0

10

20

30

40

50

tr
ee

w
id

th

MA1

MA2

MA3

IHA

GAtw

Figure A.8: Solution quality over time for instance 1sem (linear time scale left,
logarithmic time scale right).

91

0 600 1200

runtime

0

5

10

15

20

25

30

35
tr

ee
w

id
th

100 101 102 103

runtime

0

10

20

30

40

50

60

tr
ee

w
id

th

MA1

MA2

MA3

IHA

GAtw

Figure A.9: Solution quality over time for instance 1pwt (linear time scale left,
logarithmic time scale right).

0 600 1200 1800 2400 3000 3600

runtime

0

10

20

30

40

50

60

70

tr
ee

w
id

th

10−1 100 101 102 103

runtime

0

50

100

150

tr
ee

w
id

th

MA1

MA2

MA3

IHA

GAtw

Figure A.10: Solution quality over time for instance 1or7 (linear time scale left,
logarithmic time scale right).

0 600 1200 1800 2400 3000 3600

runtime

0

10

20

30

40

50

60

tr
ee

w
id

th

10−1 100 101 102 103

runtime

0

20

40

60

80

100

120

tr
ee

w
id

th

MA1

MA2

MA3

IHA

GAtw

Figure A.11: Solution quality over time for instance 1on2 (linear time scale left,
logarithmic time scale right).

92

Table A.14: Results for instance 1pwt.

Best Average

treewidth seconds treewidth samples

MA1 29 1326.8 29.0± 0.0 20
MA2 29 2.7 29.0± 0.0 20
MA3 29 1.8 29.3± 0.5 20
IHA 29 1.3 29.2± 0.4 20
GAtw 29 1.8 29.0± 0.2 20

Table A.15: Results for instance 1or7.

Best Average

treewidth seconds treewidth samples

MA1 36 3600.2 37.6± 0.6 20
MA2 35 401.6 35.6± 0.7 20
MA3 35 65.1 35.1± 0.4 20
IHA 35 17.4 35.0± 0.0 20
GAtw 36 176.6 36.0± 0.0 20

Table A.16: Pairwise comparison of means for instance 1or7.

Mann-Whitney U test

mean diff. α = 10 % α = 5 %

IHA vs MA1 2.55 distinct distinct
IHA vs MA2 0.6 distinct distinct
IHA vs MA3 0.1 equal equal

GA-tw vs MA1 1.55 distinct distinct
GA-tw vs MA2 0.4 distinct distinct
GA-tw vs MA3 0.9 distinct distinct
MA1 vs MA2 1.95 distinct distinct
MA1 vs MA3 2.45 distinct distinct
MA2 vs MA3 0.5 distinct distinct

Table A.17: Results for instance 1on2.

Best Average

treewidth seconds treewidth samples

MA1 36 3600.1 36.5± 0.5 20
MA2 34 2124.9 35.2± 0.6 20
MA3 34 50.8 34.0± 0.0 20
IHA 34 179.2 34.8± 1.8 20
GAtw 34 281.2 34.0± 0.0 20

93

Table A.18: Pairwise comparison of means for instance 1on2.

Mann-Whitney U test

mean diff. α = 10 % α = 5 %

IHA vs MA1 1.7 distinct distinct
IHA vs MA2 0.4 distinct distinct
IHA vs MA3 0.8 equal equal

GA-tw vs MA1 2.5 distinct distinct
GA-tw vs MA2 1.2 distinct distinct
GA-tw vs MA3 0.0 (equal) (equal)
MA1 vs MA2 1.3 distinct distinct
MA1 vs MA3 2.5 distinct distinct
MA2 vs MA3 1.2 distinct distinct

Table A.19: Results for instance 1oai.

Best Average

treewidth seconds treewidth samples

MA1 22 1414.2 22.0± 0.0 20
MA2 22 4.8 22.0± 0.0 20
MA3 22 2.6 22.0± 0.2 20
IHA 22 2.5 22.0± 0.0 20
GAtw 22 4.2 22.0± 0.0 20

0 600 1200

runtime

0

5

10

15

20

25

30

tr
ee

w
id

th

100 101 102 103

runtime

0

10

20

30

40

50

tr
ee

w
id

th

MA1

MA2

MA3

IHA

GAtw

Figure A.12: Solution quality over time for instance 1oai (linear time scale left,
logarithmic time scale right).

94

Table A.20: Results for instance BN_0.

Best Average

treewidth seconds treewidth samples

MA1 21 3600.1 22.0± 0.2 20
MA2 22 4.4 22.0± 0.0 20
MA3 22 5.5 22.0± 0.0 20
IHA 21 365.2 21.6± 0.5 20
GAtw 22 2.7 22.4± 0.8 20

0 600 1200 1800 2400 3000 3600

runtime

0

5

10

15

20

25

30

35

tr
ee

w
id

th

10−1 100 101 102 103

runtime

0

20

40

60

80

100

tr
ee

w
id

th

MA1

MA2

MA3

IHA

GAtw

Figure A.13: Solution quality over time for instance BN_0 (linear time scale left,
logarithmic time scale right).

Table A.21: Pairwise comparison of means for instance BN_0.

Mann-Whitney U test

mean diff. α = 10 % α = 5 %

IHA vs MA1 1.7 distinct equal
IHA vs MA2 0.4 distinct distinct
IHA vs MA3 0.8 distinct distinct

GA-tw vs MA1 2.5 distinct equal
GA-tw vs MA2 1.2 distinct equal
GA-tw vs MA3 0.0 distinct equal
MA1 vs MA2 1.3 equal equal
MA1 vs MA3 2.5 equal equal
MA2 vs MA3 1.2 (equal) (equal)

95

Glossary

ACS+ILS ant colony system in combination with iterated local search for
treewidth. 56–58, 83
ANOVA analysis of variance. 61, 62

BB-tw branch-and-bound algorithm for treewidth by Bachoore and Bodlaender.
56–58, 83

Competition In MA1: selection mechanism (as in GA) that may replace one
of two involved individuals. 18
Cooperation In MA1: recombination of two individuals using a crossover
operator. 16
CSP constraint satisfaction problem. 1–3, 9

DIMACS Center for Discrete Mathematics & Theoretical Computer Science.
See http://dimacs.rutgers.edu. ix, xi, 6, 29, 55, 83

GA genetic algorithm. 11–13, 15, 16, 18, 23, 25, 29, 34, 35, 97
GA-tw Genetic Algorithm for treewidth. 25, 29, 35, 56–58, 63, 64, 66–76,
78–80, 83, 87, 90, 91, 93–95, 97

IHA Iterative Heuristic Algorithm for treewidth. 25, 29, 35, 56–58, 61, 63, 64,
66, 67, 69–76, 78–80, 83, 87, 90, 91, 93–95, 97
ILS iterated local search. 11, 15, 20, 24, 25, 29, 34, 35
IM insertion mutation. 23, 25

LOWESS locally weighted scatterplot smoothing. 35
LS localsearch. 12

MA memetic algorithm. 12, 13, 23, 83, 97
MA1 MA based on [43]. 6, 15, 16, 19, 23, 25, 30–34, 36–42, 56–58, 63–73, 75,
76, 78–80, 83, 87, 90, 91, 93–95, 97, 98
MA2 MA designed along the lines of [59, 60]. 6, 13, 16, 19, 23, 25, 30–33, 35,
43–49, 56–58, 63–67, 69, 70, 72, 73, 75, 76, 78–80, 83, 87, 90, 91, 93–95
MA3 MA formed by combining GA-tw and IHA. 6, 16, 25, 30–33, 35, 50–53,
56–58, 61, 63, 64, 66–73, 75, 76, 78–80, 83, 87, 90, 91, 93–95
Meme 16

97

http://dimacs.rutgers.edu

NP nondeterministic-polynomial-time complexity class in complexity theory.

Opponent In MA1: individual that is available for competition. 16

P polynomial-time complexity class in complexity theory.
Partner In MA1: individual that is available for cooperation. 16
POS-crossover position-based crossover. 16, 19, 22, 23, 25, 27

QuickBB branch-and-bound algorithm for treewidth by Gogate and Dechter.
56–58, 83

SMAC Sequential Model-based Algorithm Configuration. 29, 34, 43

TabuTW tabu search for treewidth. 56–58, 83
Treewidth 9

98

Bibliography

[1] A. B. Adcock, B. D. Sullivan, and M. W. Mahoney, “Tree
decompositions and social graphs,” arXiv preprint arXiv:1411.1546,
2014 (cit. on p. 9).

[2] J. Alber, F. Dorn, and R. Niedermeier, “Experimental evaluation of a
tree decomposition-based algorithm for vertex cover on planar graphs,”
Discrete Applied Mathematics, vol. 145, no. 2, pp. 219–231, 2005. doi:
10.1016/j.dam.2004.01.013 (cit. on p. 9).

[3] E. Amir, “Efficient approximation for triangulation of minimum
treewidth,” in Proceedings of the Seventeenth Conference on
Uncertainty in Artificial Intelligence, ser. UAI’01, Seattle, Washington:
Morgan Kaufmann Publishers Inc., 2001, pp. 7–15 (cit. on p. 10).

[4] S. Andreassen, R. Hovorka, J. Benn, K. G. Olesen, and E. R. Carson,
“A model-based approach to insulin adjustment,” in Proceedings of the
Third Conference on Artificial Intelligence in Medicine, M. Stefanelli,
A. Hasman, M. Fieschi, and J. Talmon, Eds., Springer-Verlag, 1991,
pp. 239–248 (cit. on p. 59).

[5] S. Arnborg, D. G. Corneil, and A. Proskurowski, “Complexity of finding
embeddings in a k-tree,” SIAM Journal on Algebraic Discrete Methods,
vol. 8, no. 2, pp. 277–284, 1987 (cit. on p. 6).

[6] E. H. Bachoore and H. L. Bodlaender, “A branch and bound algorithm
for exact, upper, and lower bounds on treewidth,” in Algorithmic
Aspects in Information and Management, ser. Lecture Notes in
Computer Science, S.-W. Cheng and C. Poon, Eds., vol. 4041, Springer
Berlin Heidelberg, 2006, pp. 255–266. doi: 10.1007/11775096_24
(cit. on pp. 10, 55, 83, 97).

[7] A. Becker and D. Geiger, “A sufficiently fast algorithm for finding close
to optimal clique trees,” Artificial Intelligence, vol. 125, no. 1–2,
pp. 3–17, 2001. doi: 10.1016/S0004-3702(00)00075-8 (cit. on p. 10).

[8] C. Blum, M. J. B. Aguilera, A. Roli, and M. Sampels, Eds., Hybrid
Metaheuristics, An Emerging Approach to Optimization, vol. 114, ser.
Studies in Computational Intelligence, Springer, 2008 (cit. on p. 13).

99

http://dx.doi.org/10.1016/j.dam.2004.01.013
http://dx.doi.org/10.1007/11775096_24
http://dx.doi.org/10.1016/S0004-3702(00)00075-8

[9] H. L. Bodlaender, B. M. P. Jansen, and S. Kratsch, “Preprocessing for
treewidth: a combinatorial analysis through kernelization,”
SIAM Journal on Discrete Mathematics, vol. 27, no. 4, pp. 2108–2142,
Dec. 17, 2013 (cit. on p. 12).

[10] H. L. Bodlaender and A. M. C. A. Koster, “Treewidth computations I.
upper bounds,” Information and Computation, vol. 208, no. 3,
pp. 259–275, 2010. doi: 10.1016/j.ic.2009.03.008 (cit. on p. 9).

[11] B. Bontoux, C. Artigues, and D. Feillet, “A memetic algorithm with a
large neighborhood crossover operator for the generalized traveling
salesman problem,” Computers & Operations Research, vol. 37, no. 11,
pp. 1844–1852, 2010. doi: 10.1016/j.cor.2009.05.004 (cit. on p. 13).

[12] V. Bouchitté, D. Kratsch, H. Müller, and I. Todinca, “On treewidth
approximations,” Discrete Applied Mathematics, vol. 136, no. 2–3,
pp. 183–196, 2004, The 1st Cologne-Twente Workshop on Graphs and
Combinatorial Optimization. doi: 10.1016/S0166-218X(03)00440-2
(cit. on p. 10).

[13] J.-W. van den Broek and H. Bodlaender. (Dec. 1, 2014). Treewidthlib,
[Online]. Available:
http://www.cs.uu.nl/research/projects/treewidthlib (cit. on
pp. 58–60).

[14] Center for Discrete Mathematics and Theoretical Computer Science.
(Dec. 1, 2014). DIMACS implementation challenges, [Online]. Available:
http://dimacs.rutgers.edu/Challenges (cit. on pp. 6, 29).

[15] ——, (Dec. 1, 2014). Graph-coloring instances, [Online]. Available:
http://mat.gsia.cmu.edu/COLOR/instances.html (cit. on p. 29).

[16] F. Clautiaux, A. Moukrim, S. Nègre, and J. Carlier, “Heuristic and
metaheuristic methods for computing graph treewidth,” RAIRO -
Operations Research, vol. 38, pp. 13–26, 01 Jan. 2004. doi:
10.1051/ro:2004011 (cit. on pp. 11, 55, 83).

[17] W. S. Cleveland, “Robust locally weighted regression and smoothing
scatterplots,” Journal of the American Statistical Association, vol. 74,
no. 368, pp. 829–836, 1979 (cit. on p. 35).

[18] R. Dawkins, The Selfish Gene. Oxford, UK: Oxford University Press,
1976 (cit. on pp. 12, 16).

[19] F. V. Fomin, D. Kratsch, and I. Todinca, “Exact (exponential)
algorithms for treewidth and minimum fill-in,” in Automata, Languages
and Programming, ser. Lecture Notes in Computer Science, J. Díaz,
J. Karhumäki, A. Lepistö, and D. Sannella, Eds., vol. 3142, Springer
Berlin Heidelberg, 2004, pp. 568–580. doi:
10.1007/978-3-540-27836-8_49 (cit. on p. 10).

100

http://dx.doi.org/10.1016/j.ic.2009.03.008
http://dx.doi.org/10.1016/j.cor.2009.05.004
http://dx.doi.org/10.1016/S0166-218X(03)00440-2
http://www.cs.uu.nl/research/projects/treewidthlib
http://dimacs.rutgers.edu/Challenges
http://mat.gsia.cmu.edu/COLOR/instances.html
http://dx.doi.org/10.1051/ro:2004011
http://dx.doi.org/10.1007/978-3-540-27836-8_49

[20] P. Galinier and J.-K. Hao, “Hybrid evolutionary algorithms for graph
coloring,” Journal of Combinatorial Optimization, vol. 3, no. 4,
pp. 379–397, 1999. doi: 10.1023/A:1009823419804 (cit. on pp. 13, 23).

[21] V. Gogate and R. Dechter, “A complete anytime algorithm for
treewidth,” in Proceedings of the 20th Conference on Uncertainty in
Artificial Intelligence, AUAI Press, 2004, pp. 201–208 (cit. on pp. 10, 55,
83, 98).

[22] G. Gottlob, N. Leone, and F. Scarcello, “A comparison of structural
CSP decomposition methods,” Artificial Intelligence, vol. 124, no. 2,
pp. 243–282, 2000. doi: 10.1016/S0004-3702(00)00078-3 (cit. on p. 2).

[23] T. Hammerl, “Ant colony optimization for tree and hypertree
decompositions,” Master’s thesis, Vienna University of Technology, 2009
(cit. on pp. 11, 15, 55, 83).

[24] T. Hammerl and N. Musliu, “Ant colony optimization for tree
decompositions,” in Evolutionary Computation in Combinatorial
Optimization, 10th European Conference, EvoCOP 2010, Istanbul,
Turkey, P. I. Cowling and P. Merz, Eds., Springer, 2010, pp. 95–106. doi:
10.1007/978-3-642-12139-5_9 (cit. on pp. 11, 15, 55, 83).

[25] T. Hammerl, N. Musliu, and W. Schafhauser, “Metaheuristic algorithms
and tree decomposition,” in Handbook of Computational Intelligence. to
appear (cit. on p. 11).

[26] M. Held and R. M. Karp, “A dynamic programming approach to
sequencing problems,” Journal of the Society for Industrial & Applied
Mathematics, vol. 10, no. 1, pp. 196–210, 1962 (cit. on p. 10).

[27] A. Hildebrandt and M. Krupp, “Algorithms for the maximum weight
connected k-induced subgraph problem,” Combinatorial Optimization
and Applications, p. 268, (cit. on p. 9).

[28] F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Sequential model-based
optimization for general algorithm configuration,” in Learning and Intelligent
Optimization – 5th International Conference, LION 5, Rome, Italy, January
17-21, 2011. Selected Papers, C. A. C. Coello, Ed., ser. Lecture Notes in
Computer Science, vol. 6683, Springer, 2011, pp. 507–523. doi:
10.1007/978-3-642-25566-3_40 (cit. on p. 29).

[29] P. Jégou and C. Terrioux, “Tree-decompositions with connected clusters
for solving constraint networks,” in Principles and Practice of
Constraint Programming, Springer, 2014, pp. 407–423 (cit. on p. 9).

[30] D. S. Johnson, “A theoretician’s guide to the experimental analysis of
algorithms,” in Proceedings of the 5th and 6th DIMACS Implementation
Challenges, Goldwasser, Johnson, and McGeoch, Eds., AT&T Labs –
Research, American Mathematical Society, 2002, pp. 215–250 (cit. on
p. 58).

101

http://dx.doi.org/10.1023/A:1009823419804
http://dx.doi.org/10.1016/S0004-3702(00)00078-3
http://dx.doi.org/10.1007/978-3-642-12139-5_9
http://dx.doi.org/10.1007/978-3-642-25566-3_40

[31] L. Jourdan, M. Basseur, and E.-G. Talbi, “Hybridizing exact methods
and metaheuristics: a taxonomy,” European Journal of Operational
Research, vol. 199, no. 3, pp. 620–629, 2009. doi:
10.1016/j.ejor.2007.07.035 (cit. on p. 13).

[32] U. Kjærulff, “Optimal decomposition of probabilistic networks by
simulated annealing,” Statistics and Computing, vol. 2, no. 1, pp. 7–17,
1992. doi: 10.1007/BF01890544 (cit. on p. 11).

[33] A. M. C. A. Koster, H. L. Bodlaender, and S. P. M. Van Hoesel,
“Treewidth: computational experiments,” Electronic Notes in Discrete
Mathematics, pp. 54–57, 2001 (cit. on pp. 9, 10).

[34] A. M. C. A. Koster, S. P. M. van Hoesel, and A. W. J. Kolen, “Optimal
solutions for frequency assignment problems via tree decomposition,” in
Graph-Theoretic Concepts in Computer Science, ser. Lecture Notes in
Computer Science, P. Widmayer, G. Neyer, and S. Eidenbenz, Eds.,
vol. 1665, Springer Berlin Heidelberg, 1999, pp. 338–350. doi:
10.1007/3-540-46784-X_32 (cit. on p. 9).

[35] A. M. C. A. Koster, S. P. M. van Hoesel, and A. W. J. Kolen, “Solving
partial constraint satisfaction problems with tree decomposition,”
Networks, vol. 40, no. 3, pp. 170–180, 2002. doi: 10.1002/net.10046
(cit. on p. 9).

[36] N. Krasnogor and J. Smith, “A memetic algorithm with self-adaptive
local search: TSP as a case study,” in GECCO, 2000, pp. 987–994
(cit. on p. 13).

[37] J. Lagergren, “Efficient parallel algorithms for graphs of bounded
tree-width,” Journal of Algorithms, vol. 20, no. 1, pp. 20–44, 1996. doi:
10.1006/jagm.1996.0002 (cit. on p. 10).

[38] P. Larrañaga, C. M. H. Kuijpers, M. Poza, and R. H. Murga,
“Decomposing bayesian networks: triangulation of the moral graph with
genetic algorithms,” Statistics and Computing, vol. 7, no. 1, pp. 19–34,
1997. doi: 10.1023/A:1018553211613 (cit. on p. 11).

[39] S. L. Lauritzen and D. J. Spiegelhalter, “Local computations with
probabilities on graphical structures and their application to expert
systems,” Journal of the Royal Statistical Society. Series B
(Methodological), vol. 50, no. 2, pp. 157–224, 1988 (cit. on p. 9).

[40] Z. Lü and J.-K. Hao, “A memetic algorithm for graph coloring,”
European Journal of Operational Research, vol. 203, no. 1, pp. 241–250,
2010. doi: 10.1016/j.ejor.2009.07.016 (cit. on p. 13).

102

http://dx.doi.org/10.1016/j.ejor.2007.07.035
http://dx.doi.org/10.1007/BF01890544
http://dx.doi.org/10.1007/3-540-46784-X_32
http://dx.doi.org/10.1002/net.10046
http://dx.doi.org/10.1006/jagm.1996.0002
http://dx.doi.org/10.1023/A:1018553211613
http://dx.doi.org/10.1016/j.ejor.2009.07.016

[41] P. Merz and B. Freisleben, “A comparison of memetic algorithms, tabu
search, and ant colonies for the quadratic assignment problem,” in
On Evolutionary Computation, 1999. CEC 99. Proceedings of the 1999
Congress, vol. 3, 1999, pp. 2063–2070. doi: 10.1109/CEC.1999.785529
(cit. on p. 13).

[42] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution
Programs, ser. Artificial Intelligence. Berlin: Springer, 1992 (cit. on
p. 23).

[43] P. Moscato, “On evolution, search, optimization, genetic algorithms and
martial arts: towards memetic algorithms,” Caltech concurrent
computation program, C3P Report, vol. 158-79, 1989 (cit. on pp. 12, 15,
97).

[44] P. Moscato and C. Cotta, “A modern introduction to memetic
algorithms,” in Handbook of Metaheuristics, Springer, 2010, pp. 141–183
(cit. on p. 12).

[45] N. Musliu, “An iterative heuristic algorithm for tree decomposition,” in
Studies in Computational Intelligence, C. Cotta and J. van Hemert, Eds.,
vol. 153, Springer, 2008, pp. 133–150 (cit. on pp. 11, 15, 18, 25, 55, 83).

[46] N. Musliu and W. Schafhauser, “Genetic algorithms for generalised
hypertree decompositions,” European Journal of Industrial Engineering,
vol. 1, no. 3, pp. 317–340, 2007 (cit. on pp. 11, 15, 19, 23, 25, 55, 83).

[47] V. Nannen, S. K. Smit, and A. E. Eiben, “Costs and benefits of tuning
parameters of evolutionary algorithms,” Parallel Problem Solving from
Nature - PPSN X, pp. 528–538, 2008 (cit. on p. 23).

[48] C. H. Papadimitriou, Computational Complexity. Academic Internet
Publ., 2007 (cit. on p. 2).

[49] J. Pearson and P. G. Jeavons, “A survey of tractable constraint
satisfaction problems,” Royal Holloway, University of London, Tech.
Rep. CSD-TR-97-15, 1997 (cit. on p. 2).

[50] R. L. Rardin and R. Uzsoy, “Experimental evaluation of heuristic
optimization algorithms: a tutorial,” Journal of Heuristics, no. 7,
pp. 261–304, 2001 (cit. on p. 58).

[51] N. Robertson and P. D. Seymour, “Graph minors. II. algorithmic
aspects of tree-width,” Journal of Algorithms, vol. 7, no. 3, pp. 309–322,
1986. doi: 10.1016/0196-6774(86)90023-4 (cit. on p. 9).

[52] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
2nd ed. Pearson Education, 2003 (cit. on p. 3).

[53] W. Schafhauser, “New heuristic methods for tree decomposition and
generalized hypertree decompositions,” Master’s thesis, Vienna
University of Technology, 2006 (cit. on pp. 11, 15, 19, 23, 25, 55, 83).

103

http://dx.doi.org/10.1109/CEC.1999.785529
http://dx.doi.org/10.1016/0196-6774(86)90023-4

[54] K. Sörensen, “Metaheuristics – the metaphor exposed,” International
Transactions in Operational Research, 2013. doi: 10.1111/itor.12001
(cit. on p. 11).

[55] K. Sörensen and F. W. Glover, “Metaheuristics,” in Encyclopedia of
Operations Research and Management Science, Springer, 2013,
pp. 960–970 (cit. on pp. 11–13).

[56] T. G. Stützle, “Local search algorithms for combinatorial problems,
Analysis, improvements, and new applications,” PhD thesis, Technische
Universität Darmstadt, 1998 (cit. on p. 11).

[57] G. Syswerda, “A study of reproduction in generational and steady-state
genetic algorithms,” Foundation of Genetic Algorithms, pp. 94–101, 1991
(cit. on p. 19).

[58] R. E. Tarjan and M. Yannakakis, “Simple linear-time algorithms to test
chordality of graphs, test acyclicity of hypergraphs, and selectively
reduce acyclic hypergraphs,” SIAM Journal on computing, vol. 13, no. 3,
pp. 566–579, 1984 (cit. on p. 10).

[59] M. Widl, “Memetic algorithms for break scheduling,” Master’s thesis,
Vienna University of Technology, 2010 (cit. on pp. 13, 23, 97).

[60] M. Widl and N. Musliu, “The break scheduling problem: complexity
results and practical algorithms,” Memetic Computing, vol. 6, no. 2,
pp. 97–112, 2014. doi: 10.1007/s12293-014-0131-0 (cit. on pp. 13, 23,
97).

[61] G. J. Woeginger, “Exact algorithms for NP-hard problems: a survey,” in
Combinatorial Optimization—Eureka, You Shrink! Springer, 2003,
pp. 185–207 (cit. on p. 10).

104

http://dx.doi.org/10.1111/itor.12001
http://dx.doi.org/10.1007/s12293-014-0131-0

	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Research Questions of This Work
	Main Results
	Further Organization

	Related Work
	Tree Decomposition and Treewidth
	Memetic and Hybrid Algorithms

	Memetic Algorithms for Treewidth Optimization
	MA1
	MA2
	MA3
	Implementation

	Parameter Tuning
	Tuning Results
	Parameter Correlation

	Comparative Experimental Evaluation
	Results on DIMACS Benchmark Instances
	Algorithm Validation

	Conclusions
	Performance on Validation Instances, continued
	Glossary
	Bibliography

