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Abstract 12 

Today, different methods are used to measure two-dimensional (2D) and three-dimensional 13 

(3D) attributes of trees. One of these methods, which is considered in recent years is using 14 

point clouds and a 3D model extracted from Terrestrial Photogrammetry (TP). This study aims 15 

to estimate the 2D and 3D attributes of urban trees at three levels of seedlings, single trees and 16 

sample plot using TP. Structure-from-Motion with Multi-View Stereo-photogrammetry (SfM-17 

MVS) method was used to derive the point clouds and the 3D model. Comparing estimated 18 

values of diameter at the middle of trunk of seedlings and diameter at breast height (DBH) of 19 

trees, using TP with measured values showed that the values of RMSE% were < 2% at three 20 

levels of seedlings, single trees and sample plot. Furthermore, validation of the estimated 21 

values of total height and crown height attributes of seedlings and trees at three levels showed 22 

that the RMSE% did not exceed 4% and 5%, respectively. Considering the overlap of tree 23 

crowns with each other in the sample plot, the average diameter of the crown attribute was 24 

estimated only in seedlings and single tree levels with RMSE%= 6.51% and 9.34%, 25 

respectively. The validation of estimated values of stem volume of seedlings and trees at three 26 

levels showed that the lowest errors were returned from trees within a sample plot with 27 

RMSE%=14.37%, whereas the highest rates of errors were achieved for seedlings with 28 

RMSE%= 20.99%. As an alternative to approaches such as employing laser scanners, this 29 

method is quick, inexpensive, non-destructive, and does not need specialized equipment. 30 

 31 

Keywords: Point clouds, 3D model, SfM-MVS, Sample plot, Urban greening  32 
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Introduction 33 

According to United Nation’s prediction, the urban populations will increase from around 34 

47% in 2010 to 60% by 2030 (United Nation, 2020; Van Delm and Gulinck, 2011). This 35 

increase in population and subsequent increase in the size of urban areas have led to green 36 

space and urban trees to be in the focus of researchers and city managers due to their key role 37 

to provide direct and indirect ecosystem services such as biodiversity protection, carbon 38 

sequestration, reducing air pollution, preventing the formation of thermal islands, maintaining 39 

urban aesthetics, recreational value, reduction of noise pollution, preservation of wildlife 40 

habitat, improving environmental quality and reducing storm water (Bolund and Hunhammar, 41 

1999; Matyieu and Aryal, 2005; Holopainen et al., 2013; Morgenroth and Gomez, 2014; Lee 42 

et al., 2016; Wolf et al., 2020; Song et al., 2020; Gülçin and Konijnendijk van den Bosch, 2021). 43 

It was proven that the access to accurate and up to date information on tree attributes, such as 44 

DBH, height, crown dimension, basal area, stem volume and aboveground biomass help 45 

managers, researchers, governments and environmental organizations for planning and 46 

preservation, biophysical process modelling, ecosystem services assessment and quantifying 47 

the economic value of the urban greening (Matyieu and Aryal, 2005; Nowak et al., 2008; 48 

Morgenroth and Gomez, 2014; Nielsen et al., 2014; Miller et al., 2105; Lee et al., 2016; Mikita 49 

et al., 2016; Mokroš et al., 2018). 50 

To assess tree attributes, traditional inventory techniques often employ mechanical or 51 

optical equipment. However, using these methods is time consuming and expensive, and they 52 

do not have the capacity to directly assess tree attributes like volume and biomass (Marzulii et 53 

al., 2020). Using allometric equations is one of the methods of estimating the attributes of trees, 54 

and estimating 3D attributes with this method is usually associated with error in terms of the 55 

different morphology of trees (Marzulli et al., 2020). Therefore, studies were conducted over 56 

the last several decades to develop replacements for conventional inventory techniques. Using 57 
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point clouds data to generate the 3D structure of trees is one of these techniques. Using 58 

magnetic motion trackers, laser scanners, or photogrammetric techniques, one may build the 59 

3D structure of trees (Surový et al., 2016; Mokroš et al., 2020).  60 

Using a magnetic motion tracker is usually time consuming, since this device must move 61 

near a tree trunk, and it will usually be difficult to measure the attributes of trees at upper part 62 

of the trunk (Mokroš et al., 2020). Regarding the ability of terrestrial laser scanning (TLS) to 63 

accurately estimate trees attributes, many researchers have estimated the 2D and 3D attributes 64 

of trees, such as DBH, height, crown attributes, aboveground biomass and volume using TLS 65 

so far (Moorthy  et al., 2011; Moskal and Zheng, 2012; Kankare et al., 2013; Liu et al., 2018; 66 

Giannetti et al., 2018). Despite the advantages of TLS, the use of these systems has limitations 67 

such as high cost, the requirement for a professional operator and difficulty to move equipment 68 

during the inventory (Mikita et al., 2016; Liang et al., 2016; Marzulii et al., 2020). Therefore, 69 

by considering the advances in image matching algorithms, cameras and computer hardware, 70 

photogrammetry can be considered a cost-effective alternative to laser scanning in the point 71 

clouds generation and 3D structures of the trees (Roberts et al., 2019; Akpo et al., 2021).  72 

The close-range photogrammetry (CRP) is considered as one of the sub-categories of 73 

photogrammetric methods. Hence, the distance of the object from the camera is usually less 74 

than 300 meters (Luhmann et al., 2010), and the images can be captured in terrestrial or aerial 75 

states. 76 

Different methods can be used to derive 3D models; one of which being SfM-MVS method 77 

(commonly abbreviated to SfM) (Iglhaut et al., 2019). This method was introduced by Ullman 78 

in 1979 and later expanded as a low-cost and fast method for making 3D models (Ullman, 79 

1979; Morgenroth and Gomez, 2014; Iglhaut et al., 2019). In this method, overlapping 2D 80 

images are taken from different points and angles of view of the object, and are then converted 81 
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into 3D models (Morgenroth and Gomez, 2014; Miller et al., 2015; Mikita et al., 2016; Marzulii 82 

et al., 2020). 83 

So far, researchers have conducted various studies on the application of 3D models in 84 

estimating different 2D and 3D tree attributes. For example, Sakai et al., (2021) estimated the 85 

height, crown diameter and stump diameter of 10 sample plots using the SfM method. R2 values 86 

were 0.81, 0.89 and 0.94 for stump diameter, canopy height and tree height, respectively.  87 

Mokroš et al., (2020) used SfM to estimate the annual trunk increments of trees of different 88 

species. Comparing estimated perimeters from SfM method with the measured values showed 89 

that the RMSE% did not exceed 1% for all tree species.  Marzulli et al., (2020) estimated the 90 

DBH and stem volume of trees in a sample plot using images taken by a smartphone and the 91 

SfM method. The comparison among 3D models and field data showed the RMSE of 1.9 cm 92 

and 0.094 m3, for DBH and volume, respectively. Miller et al., (2015) estimated the 2D and 93 

3D attributes of 30 small potted trees using handheld camera images and SfM-MVS method. 94 

They reported RMSE% of 3.74%, 11.93%, 9.6% and 14.76% when estimating the height, 95 

crown height, diameter and crown spread using SfM-MVS method, respectively. Besides, 96 

Morgenroth and Gomez (2014) concluded that the SfM-MVS method could estimate the 97 

diameter of trees with RMSE%= 3.7% as well as height with RMSE%= 2.59% by examining 98 

one potted seedling and 2 mature trees. Other studies such as Liang et al., (2014); Forsman et 99 

al., (2016); Mikita et al., (2016); Surový et al., (2016); Mokroš et al., (2018); Piermattei et al., 100 

(2019); Mulverhill et al., (2020) and Bayati et al., (2021) have also surveyed the application of 101 

TP method in estimating different attributes at the single tree, sample plot and stand levels. 102 

These tests revealed that the approach employed in calculating 2D and 3D tree attributes might 103 

be an accurate, rapid, low-cost, and non-destructive method. Most of research mentioned in the 104 

literature review were done in forests, while several studies were conducted in urban greening, 105 

so that 2D and 3D models have been developed only for small potted seedlings and single 106 
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mature trees. Thus, this study aimed to estimate the 2D and 3D attributes of 74 trees of different 107 

species at three levels of seedlings, single trees and trees within the sample plot in urban 108 

greening using TP and SfM-MVS methods. Moreover, this research seeks to answer these 109 

questions: i) As an alternative to TLS, can the TP and SfM-MVS approaches estimate the 2D 110 

and 3D features of urban trees at the seedling, individual tree, and sample plot levels? ii) Does 111 

the diminutive size of seedlings relative to mature trees impact the accuracy of calculating their 112 

2D and 3D attributes? 113 

Materials and methods 114 

 Materials 115 

The measurements of trees were performed at three levels, including 30 seedlings, 30 single 116 

trees and 14 trees located in a sample plot with dimensions of 28 × 11 meters. Seedlings were 117 

selected from urban nurseries and other trees were selected from trees planted in urban green 118 

space of Khorramabad and the Faculty of Agriculture and Natural Resources of Lorestan 119 

University. Khorramabad is the capital of Lorestan province and with an area of 46.94 km2 120 

(33°25´38" to 33° 35´52" N and 48° 18´ 29" to 48° 23´ 39" E) in the southwest of Iran. The list 121 

of different coniferous and broadleaves species studied in this research is presented in Table. 122 

1. 123 

 124 

 125 

 126 

 127 

 128 

 129 

 130 

 131 
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Table. 1. List of species examined in the present study 

 

Number  Scientific name Level 

5 Thuja orientalis  

5 Chamaecyparis lawsoniana  

5 Pinus brutia  

5 Laurus nobilis Seedlings 

5 Populus alba  

3 Ailanthus altissima  

2 Fraxinus excelsior  

12 Pinus eldarica  

3 Cupressus arizonica  

5 Melia azedarach Single trees 

8 Robinia pseudoacacia  

2 Fraxinus excelsior  

14 Pinus eldarica Sample plot 

 

 

Methods 132 

Reference data measurement 133 

 2D attributes 134 

2D attributes, including diameter, height, crown height and average diameter of the crown 135 

of seedlings and trees at three levels were measured. Regarding small size of the seedlings, the 136 

diameter at mid-height of trunk was measured instead of the DBH. The DBH of mature trees 137 

and diameter at mid-height of trunk of seedlings were measured using a caliper. 138 

 The total height and crown height of seedlings were measured using a measuring tape and 139 

these attributes were measured using TruPulse 360 Laser Rangefinder at single trees and 140 

sample plot levels.  141 

The crown diameter of seedlings and trees was measured using a measuring tape in two 142 

perpendicular directions, and the average crown diameter of each seedling or tree was 143 

computed using the average of the measured diameters. Because of the closeness of trees and 144 
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the overlap of tree crowns, it was impossible to compare each tree's crown diameter to the 145 

values calculated in the sample plot (no separation in the acquired images). 146 

3D attributes 147 

Seedling volume was measured using Xylometry (Miller et al. 2015), in which the seedlings 148 

were cut and divided into small pieces after the photogrammetric imaging. Then, the pieces 149 

related to different parts of each seedling were separated, numbered, and packaged. The 150 

wooden sections were submerged in water for 48 hours to saturate and prevent them from 151 

absorbing water. Finally, the volume of each piece was estimated by inserting it in a graduated 152 

cylinder filled halfway with water and measuring the variations in water volume. To accurately 153 

calculate the volume of plots, the volume of plastic strips used for packing was calculated 154 

separately and the volume of pieces was reduced (Miller et al., 2015). 155 

Given the impossibility of cutting the trees, the Smalian formula was used to estimate the 156 

tree's stem volume based on the morphology of the tree stems (Ahmad et al., 2020). To more 157 

accurately estimate the stem volume, the stem length was divided into 65 cm sections using a 158 

measuring tape. The total stem volume of each tree was calculated using Equation 1(Ahmad et 159 

al., 2020). 160 

Equation. 1.                              V = ∑ (𝜋𝑖=𝑛
𝑖=1 × (

𝑑𝑏𝑎𝑠𝑒
2 +𝑑𝑡𝑜𝑝

2

8
) × ℎ𝑖) 

                                                                                                    
Where V represents the stem volume of each tree (cm3), hi denotes the length of each plot 161 

of tree stem (cm), dbase is the initial diameter of each section of tree stem (cm), dtop represents 162 

the final diameter of each section of tree stem (cm), π = 3.14 and n: is the number of  sections 163 

of each stem. 164 

The value of tree crown volume was not compared with the values obtained from TP at 165 

single trees and sample plot levels, in terms of the inability to accurately measure the volume 166 

of tree crowns in terrestrial measurements. 167 
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The mean values of measured attributes of seedlings and trees at each of the three levels are 168 

presented in Fig.1. 169 

 

Fig. 1. The mean value of the measured attributes of seedlings and trees 170 

Image Acquisition 171 

Images were captured using a Canon EOS 700D semi-professional camera equipped with a 172 

30 mm EF-S lens. To maintain the camera's stability during shooting, the camera was placed 173 

on a tripod with adjustable height. In order to increase the quality of the images, the photos 174 

were taken using manual settings (shutter speed= 1/180 second, F= 4.5 aperture and ISO= 175 

automatic). The approach suggested by Morgenroth and Gomez (2014) and Miller et al., (2015) 176 

was used to photograph seedlings and single trees. Therefore, two concentric rings were painted 177 

around the trees. Then, photographs of trees were taken around the circumferences of these 178 

circles at regular intervals. The distances among the shooting points were determined so that 179 

the overlap of each image with the next one is > 50%. Scale is needed in the images to create 180 
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a 3D model in the software environment, therefore, a box with specified dimensions was used 181 

when photographing seedlings, while a levelling staff with a height of 3 meters was used during 182 

photography of single mature trees. Therefore, after preliminary studies, a combination of the 183 

methods proposed by Mokroš et al., (2018) was used in order to obtain the best method of 184 

photographing trees in the sample plot. In order to ensure sufficient overlap among the images, 185 

photos were taken in different directions, including the perimeter and the two diameters of the 186 

sample plot. The distance between the photogrammetric points was approximately 2.5 meters, 187 

whereas the overlap between the images was at least 50%. Therefore, the distance among the 188 

photogrammetric points of the trees was between 1 and 3 meters, depending on the height of 189 

the trees, which in most cases was about 2.5 meters. During imaging, 5 levelling staffs were 190 

placed at the four corners and the center of the sample plot to define the scale during image 191 

processing. 192 

Image processing 193 

We used Photoscan-professional software for the reconstruction of 3D models (Agisoft 194 

LLC, Saint Petersburg, Russia) (Morgenroth and Gomez, 2014). To derive a 3D model of 195 

seedlings and trees using the SfM-MVS method, the position and attributes of the camera and 196 

sparse point clouds were required to be first derived using SfM method (James and Robson, 197 

2012; Miller et al., 2015; Mokroš et al., 2018; Iglhaut et al., 2019). For this purpose, the images 198 

were loaded and aligned in the software. Then, the key points were extracted from the 199 

overlapping of the images and converted to tie points after matching (Mokroš et al., 2018). The 200 

software default values were set to 40000 and 4000 to define the maximum number of key 201 

points and tie points, respectively. Using dense image matching methods and the MVS 202 

approach, the sparse point clouds retrieved in the previous phase were transformed to dense 203 

point clouds in the subsequent step (James and Robson, 2012; Iglhaut et al., 2019). The MVS 204 

technique transforms sparse point clouds into dense point clouds by eliminating noisy data and 205 
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multiplying reconstructed points (Iglhaut et al., 2019). This helps more accurately estimating 206 

the 2D and 3D attributes of trees. Finally, the mesh model of each seedling and tree was 207 

produced using a dense point clouds. Afterwards, 2D and 3D attributes of seedlings or trees 208 

were measured (Miller et al., 2015). To estimate the 3D attributes, unrelated elements such as 209 

pots and ground surface were removed in each model, and the 3D attributes were measured 210 

separately. An example of a 3D model produced for seedlings and trees is shown in Fig. 2 and 211 

Online Resources 1 and 2.  212 
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Fig. 2. Different stages of developing a 3D model of seedlings and trees a) raw images, b) 

sparse point clouds, c) dense point clouds and d) mesh model 
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Statistical Analysis 213 

To compare the estimated and reference data, statistics of coefficient of determination (R2) 214 

(Hobart et al., 2020), Root Mean Square Error (RMSE), Root Mean Square Percentage Error 215 

(RMSE %), Bias, relative Bias % (Roberts et al., 2019), Mean Absolute Error (MAE) and Mean 216 

Absolute Percentage Error (MAE%) (Liu and Zhang, 2018) were used (Table. 2). All 217 

relationships and statistical graphs were processed in SPSS statistics 25 IBM and Microsoft 218 

Excel 2016 software. The flowchart of the research steps is presented in Fig. 3. 219 

 220 

Table. 2. Statistics formula used to compare estimated and measured data 

 

Equation Name 

2 1

2 2

1 1

1
ˆ ˆ( - )( - )

R =
1 1

ˆ ˆ( ( - ) )( ( - ) )

n

i i
i

n n

i i
i i

y y y y
n

y y y y
n n



 



 

 
Coefficient of determination 

RMSE = √
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛

𝑖=1

𝑛
 

Root Mean Square Error 

RMSE% =
𝑅𝑀𝑆𝐸

(
∑ 𝑦̂𝑖

𝑛
𝑖=1

𝑛 )

× 100 Root Mean Square Percentage Error 

1

ˆ( - )

Bias =

n

i i
i

y y

n




 Bias 

Bias% =
𝐵𝑖𝑎𝑠

(
∑ 𝑦̂𝑖

𝑛
𝑖=1

𝑛 )

× 100 Bias Percent 

1

1
ˆMAE -

n

i i
i

y y
n 

  Mean Absolute Error 

MAE% =
1

𝑛
∑ |

𝑦𝑖 − 𝑦̂𝑖

𝑦̂𝑖
|

𝑛

𝑖=1

× 100 Mean Absolute Percentage Error 

In the above equations, 𝑦̂𝑖 =measured values, 𝑦𝑖= estimated values and n= number of trees or seedlings. 
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Fig. 3. Flowchart of the study 

 

 221 
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Results 222 

Comparison of estimated and measured 2D and 3D attributes of seedlings 223 

Comparing estimated values of 2D attributes of seedlings using TP with values measured in 224 

the laboratory showed that the values of RMSE%, Bias% and MAE% for all estimated 2D 225 

attributes were < 7%, which indicated high accuracy to estimate the 2D attributes of seedlings. 226 

Among 2D attributes, diameter at the middle height of trunk and average crown diameter 227 

showed the lowest and highest RMSE% with 1.16% and 6.51%, respectively (Table. 3). 228 

Moreover, the scatter plots of estimated and reference values showed a high correlation, 229 

suggesting R2 of 0.99, 0.98, 0.98 and 0.98 for diameter at middle height of the stem, total 230 

height, crown height and average diameter of the crown of the seedlings, respectively (Fig. 4). 231 

 

Table. 3. Statistics related to comparing estimated and measured 2D attributes of seedlings 
Attributes n RMSE RMSE% Bias Bias% MAE MAE% 

Diameter (cm) 30 0.02 1.16 -0.01 0.70- 0.01 1 

Height (cm) 30 4.22 2.94 1.20 0.83 1.22 1.11 

Crown height (cm) 30 1.96 2.82 0.77 1.11 0.77 1.30 

Average crown diameter (cm) 30 3.04 6.51 -0.06 -0.12 1.88 5.01 
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Fig. 4. Scatter plot between estimated and measured values of 2D attributes of seedlings 

 

The validation of estimated values of 3D attributes of seedlings showed that the lowest 232 

RMSE%, Bias% and MAE% were returned for stem volume (20.99%, -14.96% and 14.83%, 233 

respectively), whereas the highest rates were achieved for crown volume (30.85%, -18.40% 234 

and 15.42%, respectively) (Table. 4). R2 values for the stem volume, crown volume and total 235 

volume attributes were 0.90, 0.82 and 0.88, respectively (Fig. 5). 236 
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Table. 4. Statistics related to the comparison of estimated and measured 3D attributes of 

seedlings 

 
Attributes n RMSE RMSE% Bias Bias% MAE MAE% 

)3Stem volume (cm 30 47.72 20.99 -34 14.96- 65.37 14.83 

)3Crown volume (cm 30 52.60 30.85 -31.36 -18.40 34 15.42 

)3Total volume (cm 30 97.33 24.46 -65.37 -16.43 31.36 14.86 

 

 

Fig. 5. Scatter plot between estimated and measured values of 3D attributes of seedlings 
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Comparison of estimated and measured 2D and 3D attributes of single trees 237 

Comparison of the estimated values of single tree attributes with reference values showed 238 

that 2D attributes were estimated more accurately than 3D attributes. Among all attributes, the 239 

lowest RMSE%, and MAE% were returned for DBH (1.02% and 0.55%, respectively). 240 

Whereas, the stem volume with RMSE%= 17.69% and MAE%= 12.03%, showed the lowest 241 

accuracy (Table. 5). The scatter plot of the estimated and reference values for 2D and 3D tree 242 

attributes suggested R2 values of 0.99, 0.99, 0.98, 0.97 and 0.97 for DBH, total height, crown 243 

height, average crown diameter and stem volume of single trees, respectively (Fig. 6). 244 

 245 

Table. 5. Statistics on comparing estimated 2D and 3D attributes and measured values of 

single trees 

 
Attributes n RMSE RMSE% Bias Bias% MAE MAE% 

DBH (cm) 30 0.12 1.02 -0.05 -0.43 0.05 0.55 

Height (cm) 30 5.81 1.64 3.06 0.87 3.06 0.91 

Crown height (cm) 30 6.55 3.05 2 0.93 3.33 1.51 

Average crown diameter (cm) 30 21.34 9.34 17.8 7.80 18.66 9.26 

)3Stem volume (cm 30 3.47 17.69 0.96 4.90 1.96 12.03 
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246 

Fig. 6. Scatter plot of estimated and measured values of single trees 247 
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Comparison of estimated and measured 2D and 3D attributes of trees at sample plot level  248 

The validation results of estimated DBH, crown height, stem volume of trees in the sample 249 

plot are shown in Table. 6 and Fig. 7. Among all attributes, tree DBH showed the lowest error 250 

rate (RMSE% = 1.72% and MAE% = 1.39%) and tree stem volume returned highest error rate 251 

(RMSE% and MAE% of 14.37% and 15.40%, respectively). Further, the bias% values of all 252 

2D and 3D attributes were < 5%. The calculated R2 suggested a high correlation between the 253 

estimated and the reference 2D and 3D attributes (Fig. 7). 254 

 

Table. 6. Statistics related to comparison of the estimated and measured values of the 

attributes of the trees within the sample plot 

 
attributes n RMSE RMSE% Bias Bias% MAE MAE% 

DBH (cm) 14 0.47 1.72 -0.25 -0.91 0.35 1.39 

Height (cm) 14 20.54 3.64 19.5 3.46 19.5 3.47 

Crown height (cm) 14 20.54 4.75 19.5 4.50 19.5 4.52 

)3Stem volume (cm 14 11.74 14.37 2.57 3.15 9.14 15.40 
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Fig. 7. Scatter plot of the estimated and measured values of trees attributes in the sample plot 

 255 

Comparison of estimated and measured 2D and 3D attributes at three levels 256 

Comparing estimated values of diameter at the middle height of trunk of seedlings and DBH 257 

of trees using TP with measured values showed that the values of RMSE%, Bias% and MAE%, 258 

were < 2% at all three levels. The height of single trees and trees within a sample plot were 259 

calculated using the lowest and highest RMSE% among the three levels (1.64% and 3.64%, 260 

respectively). However, the crown height of seedlings was assessed with more precision than 261 
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the other two levels. Considering the overlap of tree crowns with each other in sample plot, the 262 

average diameter of the crown attribute was estimated in seedlings and single trees with 263 

RMSE%= 6.51% and 9.34%, respectively. The validation of estimated stem volume of 264 

seedlings and trees at three levels revealed that trees within a sample plot had the lowest 265 

RMSE% and Bias% (14.37% and 3.15%, respectively), but seedlings had the highest rates 266 

(20.99% and -14.96%, respectively) (Tables. 3-6). 267 

Discussion 268 

Considering the issues such as population growth, development of urban areas and climate 269 

change, sustainable management of urban greening has nowadays increasingly become 270 

important in terms of its role to increase the physical and mental health of urban inhabitants. 271 

Since the basis of urban sustainable management since access to accurate and up-to-date 272 

information is considered as a basis for urban sustainable management, this study aimed to use 273 

TP and SfM-MVS methods in estimating 2D and 3D attributes of urban trees at three different 274 

levels of seedling, single trees and trees within a sample plot. 275 

Estimation of 2D and 3D attributes of seedlings using TP 276 

Comparing estimated and lab-measured 2D attributes of seedlings using TP and SfM-MVS 277 

method suggested high accuracy of estimating the 2D attributes of seedlings. The results of 278 

both studies of Miller et al., (2015) and Morgenroth and Gomez (2014) were in line with the 279 

results of our research and showed the high accuracy of SfM-MVS method in estimating the 280 

2D seedling attributes. 281 

When estimating the 3D attributes of seedlings, results showed lower accuracy compared 282 

with the 2D attributes. However, the stem volume was more accurately estimate than crown 283 

volume. Considering the irregular shape of the tree crown and the empty space between the 284 

foliage of the seedlings, the estimated crown volume was different from the actual volume 285 

calculated through immersion. Furthermore, since the total volume of each seedling was 286 
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determined from the total stem and crown volumes, this difference had an impact on the 287 

predicted total volume. Due to the narrow diameter of the seedlings, particularly in the region 288 

linking the stem to the crown, the volume associated to the terminal parts of the stem was 289 

calculated with a minor discrepancy. Among few studies conducted to estimate the volume of 290 

seedlings using TP, Miller et al., (2015) can be referred to, in which RMSE% and Bias% of 291 

12.33% and -8.2% were reported for stem volume, while -18.53% and -5.56%, were reported 292 

for total volume of seedlings, respectively. Finally, in line with the results of our study, they 293 

concluded that the accuracy of the TP to estimate 2D attributes is higher those achieved for 3D 294 

attributes. 295 

Estimation of 2D and 3D attributes of single trees using TP 296 

RMSE%, Bias% and MAE% values obtained when estimating the 2D tree attributes 297 

including DBH, average crown diameter, crown height and height showed that our approach 298 

was capable to produce high accuracies. In this regard, Sakai et al., (2021) reported the R2 299 

values of 0.94, 0.89, 0.81 as well as the RMSEs of 0.13 m, 0.33 m and 0.89 cm for estimating 300 

the height, crown diameter and stump diameter of trees using TP, respectively. In addition, the 301 

results obtained by Bayati et al., (2021) in evaluating the performance of SfM-MVS method in 302 

estimating the tree attributes showed R2 = 0.98 for DBH and R2 = 0.89 for tree height. Roberts 303 

et al., (2019) estimated the DBH of single urban trees using TP with a RMSE of 10.37%. 304 

Results from those previous studies were in line with the results of this study in estimating the 305 

2D tree attributes. 306 

Comparing stem volume of the by TP and the SfM-MVS method with the volume calculated 307 

by the Smalian formula showed relatively high accuracy of our method in estimating the 308 

volumetric attributes of single trees. One of the reasons for the lower stem volume estimate 309 

accuracy relative to other features seems to be the impossibility of cutting trees, i.e. precise 310 

field-based stem volume measurement. To resolve this problem, it was attempted to measure 311 
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the stem volume within smaller tree sections. However, using formulas which assume the stem 312 

shape as cylindrical is associated with drawbacks for different species.  Tamaki et al. (2019) 313 

pointed out that TP and SfM-MVS methods have the ability and high accuracy in estimating 314 

the stem volume of trees. Mulverhill et al. (2019) also stated that there is no significant 315 

difference between the stem volume of single trees estimated by TP method and those 316 

calculated by allometric equations. 317 

Estimation of 2D and 3D attributes of trees within the sample plot using TP 318 

In the third part of this study, we examined the efficiency of 3D models using TP along with 319 

the use of SfM-MVS method to estimate the 2D and 3D attributes of trees at the sample plot 320 

level. Due to the overlap of tree crowns with each other and the inability of identifying the 321 

precise range of tree crowns, it was not able to estimate the crown spread of each tree, as 322 

specified in the Methods section. As a result, the DBH of trees was the most accurate attribute 323 

of trees assessed using 3D models. The results showed that the stem volume of trees was 324 

estimated with RMSE%= 14.37%. Comparing estimated stem volume of trees at tree and plot 325 

levels suggested that the accuracy was slightly higher at the sample plot level. This was because 326 

the trees within the sample plot were entirely from the same species and with an almost 327 

"cylindrical" stem shape. However, at the single tree level, tree species were different and thus 328 

were associated with different stem shapes. In this regard, previous studies using TP at sample 329 

plot and stand levels like Mikita et al., (2016) in estimating the attributes of DBH, height and 330 

volume of trees, Forsman et al., (2016), Mokroš et al., (2018), Piermattei et al., (2019) in 331 

estimating the DBH, Marzulli et al., (2020) in estimating the DBH and stem volume, Sakai et 332 

al., (2021) in estimating the height, crown width and diameter of the tree stumps suggested that 333 

the TP method was relatively accurate to estimate the mentioned attributes at the sample plot 334 

level. However, they showed slightly different accuracies in predicting DBH, height, and stem 335 

volume attributes than we did, which might be because the majority of the researches were 336 
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done in natural forests. Besides, factors such as photogrammetric method, stand conditions, 337 

species type, tree dimensions, tree density, physiographic conditions and floor and shrub 338 

coverage can partly influence the results. 339 

The potentials of workflow for practical implementation 340 

2D and 3D attributes of seedlings and trees were estimated using TP and SfM-MVS 341 

methods. According to the results, this method can be suggested as a fast, low-cost and non-342 

destructive method that provides accurate estimates of 2D and 3D attributes of seedlings and 343 

trees as an alternative to methods such as using TLS and traditional mensuration. As well as, 344 

TP method is a hardware low-demanding technique which does not require professional 345 

operator. Moreover, this workflow offers potential for application in urban greenings and 346 

nurseries inventory. 347 

Technical and practical limitations and bottlenecks  348 

One of the constraints discovered during the conducting of this study was the inability to 349 

estimate the average crown diameter attribute of trees within the sample plot due to the high 350 

density of trees and the overlap of tree crowns. Another constraint was the assessment of 351 

seedling trunk volume, which was less precise owing to the seedlings' tiny trunk diameter. Our 352 

review of the relevant literature showed that issues such as image quality, image overlap, and 353 

number of images, environmental conditions during photogrammetry, camera settings, as well 354 

as the applied hardware and software could affect the quality of output 3D models.  The study 355 

of the effect of these factors on the quality of 3D output models could be the subject of our 356 

future research. 357 

Conclusion 358 

Our results showed that the 3D models that were generated using TP by a semi-professional 359 

handheld camera and the SfM-MVS method are capable of accurately estimating 2D attributes 360 

of seedlings and urban trees at three levels of seedlings, single trees and trees within a sample 361 
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plot. According to obtained results, the diameter at the middle height of seedlings and DBH of 362 

trees were estimated with RMSE%< 2% at three levels. 363 

The height of single trees and trees within a sample plot were calculated with the highest and 364 

lowest accuracy, respectively, among the three levels. Nonetheless, seedling crown height 365 

was more precisely measured than the other two levels. The average diameter of the crown 366 

attribute at seedling and single tree levels were estimated with RMSE%= 6.51% and 9.34%, 367 

respectively. In this realm, the applied method estimated the stem volume of single trees and 368 

trees within the sample plot with practically appropriate accuracy, yet the 3D attributes of 369 

seedlings were less accurate (RMSE% more than 20%). This seems to be due to the small size 370 

of the seedlings and the difference in the estimated and measured values of the crown volume 371 

of the seedlings.  372 
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