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Preface

n this thesis we present gradient flows on a topological space X. In case of Euclidean space R”, a
I gradient flow admits a simple characterization via the differential equation v" = —VF(v)
for a given potential F : R" — R. Itis well known that under certain regularity assumptions
on F for every initial value v, there exists a unique solution v of this equation. The family
of integral curves (v()),(0yere is then called a gradient flow with respect to F.

It is not to difficult to generalize this concept to Banach spaces. Indeed, one can formulate
the characterizing differential equation by means of the Fréchet derivative. On the other
hand, the situation severely complicates if X merely is a metric space. A priori the notion
of a derivative or a gradient makes no sense in such a setting. However, one may start with
X = R" and assume that the potential F is convex. One obtains the following equivalent
characterization of a gradient flow:

d

53 M - x> <F(x)—F(v(t)  Vx€R", Vte R,

The inequality stated above is a special case of the so called evolution variational inequality
(EVI). Actually, it is straightforward to interpret the expressions in (I) in a general metric
setting. Thus, one arrives at

1dp

53 (v(t),x) < F(x) — F(v(t)) Vx € X, Vt € R*.

We want to study properties of curves v, satisfying (2); in particular, we deal with unique-
ness and existence results. Hence, inequality (2) (in a slightly more general form) plays a
major role throughout most parts of this paper.

The first chapter is devoted to gradient flows on general metric spaces. We start with the
development of tools, required for the formulation of weaker variants of the EVI character-
ization. To this aim, we introduce the metric differential due to Kirchheim [34], and the notion
of slopes which can be seen as metric equivalent of the usual gradient.

We present three variants of gradient flows in metric spaces, including the aforementioned
EVI. Although all three definitions agree on Euclidean space, it turns out, that they are not
equivalent on arbitrary metric space. We show that EVI is strongest. Moreover, gradient
flows in the EVI sense possess a strong contraction property, which implies that there exists
at most one gradient flow with respect to a given functional.

Nevertheless, an existence theory — involving deep variational interpolation arguments —
may not easily be archived at this level of generality. Therefore, we content ourselves by
presenting only principal definitions of the so-called minimizing movements scheme which
provides a variational interpolation technique for gradient flows in the metric setting. We
conclude this chapter with a brief overview of convergence results of the minimizing move-
ments.

In the second chapter we approach the theory of optimal transport. We focus on the Kan-
torovich problem which is a relaxation of the Monge problem. Both problems arise in various
guises and are formulated in a measure theoretic context. However, in its simplest form,
the Kantorovich problem reduces to linear programming. This allows the very intuitive in-
terpretation of transports by means of e.g. delivering goods from factories to stores along
the most cost effective routes.

We show that the Kantorovich problem (unlike the Monge problem) admits an optimal
solution under very general assumptions. As a result, one may utilize the theory of optimal
transportation to define a family of metrics on a certain subset in the class of probability
measures on a metric space. These metrics are known as Wasserstein distances — a distorted
transliteration of Vaserstein who used one of these metrics in the paper [45]. Although the
denotation Kantorovich distances, mainly used in the Russian literature, seems to be more
appropriate.
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The resulting family of metric spaces equipped with the aforementioned distances — called
Wasserstein spaces — inherits to a great extend the topological and geometrical structure of
the underlying metric space. Therefore, it seems reasonable to investigate gradient flows in
these spaces. The last part of this paper is devoted to the existence of EVI gradient flows
in a Wasserstein space over R". The proof of the existence result provided here relies on
rather strong assumptions and provides only a suboptimal convergence rate of the corre-
sponding minimizing movements scheme. Nevertheless, the class of admissible functionals
is sufficiently large for comprehensive application within the theory of partial differential
equations. In a concluding example we show the main ideas applied to the heat equation.

Two appendices provide the required background in measure theory as well as an elemen-
tary introduction to flows.
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Gradient Flows in General Metric Spaces

Absolutely Continuous Curves and the Metric Derivative

We will start with a definition of absolutely continuous curves taking values in a complete
metric space (which may lack the additive structure of a vector space).

—— Notation
In this chapter, by (a,b) we denote a possibly unbounded interval on R and by (X,d) an
arbitrary complete metric space.

Definition (Absolutely continuous curves) Given a curve v : (a,b) — X, we say that v
belongs to ACP((a,b), X), 1 < p < oo, if there exists a function m € L?((a,b), R) such that

t
d (v(s),0(t) < jmd/\ V(s t):a<s<t<b.

We say that v belongs to ACP ((a,b),X),1 < p < oo, if for every t € (a,b) there exists an

loc
interval (4,b) € 4(x) such that v|u e ACP ((d, B),X).
In the case p = 1 we say that v is absolutely continuous or locally absolutely continuous
and simply write AC((,b), X) or AC,_.((a,b),X) for the corresponding space, instead of
AC!((a,b), X) or ACL .((a,b), X), respectively.
The following lemma is well known from measure theory (see a.e. Theorem 2.5.7 in [12])
and will be particularly useful in the proofs of the next results.

Lemma (Absolute continuity of the integral)  Let (X, A, i) be a measure space and consider a
functionv € LP (X, u, R) for p € [1,+o0]. Then, for every € > O there exists 6 > 0 such that

f|v|dA<e VD e A : AD) < 6.
D

Proof For every ¢ > 0, there exists a simple function ¢(x) = > l:l=1 aly, (%) with measur-
able sets A, C X and numbers a; € R for all k < n, such that |jv — ¢>||p <e.

&€

As a result, by choosing D € A with (D) < min {W'

with g € [1, oo] such that % + % =1, we obtain

1} and applying Holder’s inequality
[ dd < [lo— ¢l dA+ [ Ig] dA <AD) o~ gl + AD) g, < 2e.
D D D

It is yet not clear whether the definition given above is equivalent to Definition A.2.I for
real-valued curves in Appendix A. The following simple proposition gives answer to this
question.

Proposition Let a real-valued curve v : (a,b) — R be given. Then v belongs to AC ((a, b), R) iff
for every € > O there exists 6 > 0 such that

Z |o(b;) —v(a;)| < €
i=1

for every finite collection of pairwise disjoint intervals (a;, b;) C (a,b) with Z?:l |b; —a;| < 6.

Proof Assume that v satisfies (1.2) for every finite collection of pairwise disjoint intervals.
Due to Theorem A.2.4, this is equivalent to the existence of a function m € L'((a,b), R) such
that

(1.1)

(12)
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X
v(a) — v(x) :fmd)\ Vx € [a,b].
a
Hence, we have

t t
o(t) — v(s)| = |!mdA‘ < £|m| dl < oo V(s b C (ab).

Conversely, assume v € AC((a,b), R) and let ¢ > 0 be given. According to Definition 1.1.1,
there exists m € L1 ((a,b), R) such that (I.1) holds. Note that m(x) > 0 A-a.e. in (a,b).

Due to Lemma 1.1.2, we can choose § > 0 such that

i

n b
me —fmd/\<€
i:lai U1]<ab)

for every finite collection of pairwise disjoint intervals (a;,b;) C (a,b) with

(U(al,b>) Z i — ] < 6.

We conclude

n n b;
Z| (b)) —ov(a)| < ijd/\<e.
i=1

i=1a;

Facts Consider a curve v € ACP((a,b), X).
Note that for every & > 0, there exits 6 > 0 such that

t t
d (v(s),v(t) < fmd/\:f|m| di<e Vs te@b):ls—t <3,
S S

due to Lemma I.1.2. Hence, v is uniformly continuous on (a, b).

Consider the case when the interval (a,b) is bounded. Let (a,,),cn be a sequence in (a,b)
such that hm a, = a. Since v is uniformly continuous on (4,b), (v(a,)), ey inherits the
Cauchy property from (a,,),en- Hence, the limit lim v(a,,) € X exists due to the complete-
ness of (X, d).

We conclude that the right-sided limit lxlgll v(x), and similarly the left-sided limit lirrbl v(x)
X/
existin (X, d).

Assume, that 1 < p < oo. By applying Holder’s inequality with 1 < g < oo such that
% + % = 1, we obtain the estimate

t t
d(v(s),v(t) < fmd/\ = f Im| dA < A(s, D) llmll, = llmll, - Is =t Vs,t € (a,b).
S S
Hence, v is Lipschitz continuous with a Lipschitz constant C Lip = ||m||p.

Although metric spaces lack the linear structure of vector spaces, it is possible to define a
certain generalization of a derivative of functions taking values in arbitrary metric spaces.
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Definition (Metric differential) A function f : (a,b) — X is said to be metrically differen-
tiable at a point t € (a, b) if the limit

d(f (s),f ()

- (1.3)

If| () = lsl_r}}
does exist. Then [f'| (t) € R is called the metric differential or metric derivative of f att.

Example Consider a function f : (a,b) — Y where (Y, |-|y) is a Banach space. Then f is
metrically differentiable at a point ¢ if f is Fréchet differentiable at ¢, since

H REBI] I —f®lly

Idf Ay = = lim —————— = |f'| ().

st s — f]

Y

Concerning the following theorem, recall that the limit inferior of a function ¢ : X - R U
{400} at a point x € X is defined as 11m mf(p(y) = supinf ¢(U), where U (x) denotes the
neighborhood filter of x. Uedx)

Theorem For any curve v € ACP((a,b), X) the metric differential [v'|(t) exists A-a.e. in (a,b)
and satisfies the following properties:

The function |v'| belongs to L ((a,), R).
[v'| is an admissible integrand for the right-hand side of (1.1.1).

The metric differential is minimal in the following sense that [v'|(t) < m(t) A-a.e. in (a,b), for each
function m € LP((a,b), R) satisfying (1.1.1).

Proof As R is separable, there exists a countable set (y,,),,cn Which is dense in the interval
(a,b). Furthermore, (v(y,, ))n e I8 also dense in ran v, due to continuity of v.

Define functions d, (t) = d(y,,, v(t)) for every n € N. Since we have
t
|d,, () — d, (D] = 1d(Y,,, v(s) — Ay, v(t)| < d(v(s),v(t) < jmd/\ Vs, t € (a,b),

each d,, is absolutely continuous in (4, b). Note that each 4,, is also an absolutely continuous
real-valued function in the sense of Definition A.2.1, due to Proposition I.1.3. Henceforth, we
can apply Fact A.2.5.i to assure that each derivative d,(t) is well-defined A-a.e. in (a,b).

As the union of countable many A-null sets in (4, b) is again a A-null set, the function
d:(a,b)— RY U {}

t —— sup |d;(1)|
neN

is finite A-a.e. in (a, b).
Now, let t € (a,b) be a point where all d,, are differentiable. Notice that, since d(v(s), v(t)) >
|d, (s) —d(t)| for all n € N, we have

d(v(s), v(t) [4,(5) — d (B)]

d,(s) —d,(t
s—t Is — £ ”eN = Is — £ neN S—t Is — ¢

= d(t).

Next, consider a function m € LP((a,b), X) which satisfies (1.1) and choose ¢ € (a,t). To-
gether with Theorem A.2.6, the inequality above shows
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d f
46 < liminf 20 2O g
s—t Is — | sot [s—t 4

mdA < (1.4)

. 1 t s d t .
Sllm—(!mdA—lmdA):almM:m(t) Aa.e. in (a,b).

st §—1

Hence, we have d(t) < m(t) A-a.e. in (a,b), which shows (MD2). Moreover, it is clear that d
is A-measurable on (a,b) and we infer & € L¥((a,b), R).

On the other hand, for every t € (a,b) there exists a subsequence (v, )ken Of (V) nen Such
that l}im Yng = t. Therefore, we obtain

d(v(s),0(h) = lim |d(0(y,), 0() = d@(y,), 0] Vs € (ab).

Together with the reverse triangle inequality d(v(s), v(t)) > |[d(v(z),v(s)) — d(v(z),v(t))| for
alls,t,z € (a,b), this yields

d(v(s),o(t) = lim |d(©(Y,), 0(5) = d (), 0(D)] = (15
= sup|d(v(y,),v(s) —d(v(y,),v(t)| = sup|d,(s) —d, )] Vs, t € (a,b).

neN neN

Moreover, Theorem A.2.4 and Fact A.2.5.i show that

neN

t t
sup |4, (s) — d, ()| < supUd,gd;q < fdd/\ Vst € (a,b) s <t.
neN % S

Thus, with Theorem A.2.6 and any ¢ € (g, t) we obtain

t
lim sup M < limsup dda < (1.6)
st Is — £l oot IS =t

s—t § —

. 1 t S d t .
< lim — (ldd/\—!dd)\) - aid‘d/\:d(t) Ma.e. in (a,b).

Both (1.4) and (1.6) imply that

lsi—r}} % = d(t) Aa.e. in (a,b).

Therefore, we have shown (MD1), as well as (MD3). [ ]

Lemma (Lipschitz and arc-length reparametrization) Let v € AC ((a,b), X) be an absolutely con-
tinuous curve with length L := fab [o'| dA.

Forevery e > 0and L, := L + e(b —a) there exists a strictly increasing, absolutely continuous map
Ge:(a,b) - (0,L,) with limg,(t) =0 and limg.(t) =L,
tNa t b
and a Lipschitz curve

o]
0.:(0,L,) - X, suchthat v=9, and |0.|oc, =
& ( €) € | Sl g& e + |U/|

€ L>((a,b),R). (1.7)

Moreover, the map g, admits a Lipschitz continuous inverse T, : (0,L,) — (a,b) with a Lipschitz
constant e =" such that o, = v o T,.
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There exists an increasing, absolutely continuous map

¢:(ab) - [0,L] with lim¢(t) =0 and lim¢g(t) =1L,
tNa t b

and a Lipschitz curve

0:[0,L] » X, suchthat v="0o¢ and |[0'|=1 Aae. in[0,L]. (1.8)

Proof First, we will show (i) and consider ¢ > 0. Define the map ¢, : (2,b) —» R with

t
C.(t) = js +1]0'] dA. (1.9)

a

Since (¢ + [v']) € L'((a,b), R), we infer by Theorem A.2.4 that ¢, is absolutely continuous on
(a,b). Thus, we have ran¢, = (0,L,) and the estimate ¢, = ¢ + [v| > € A-a.e. in (a,b) holds.
Moreover, g, is strictly increasing by monotonicity of the integral.

As aresult, g, is a bijection and admits an inverse map 7, : (0,L,) — (a,b). Via the estimate

t
lce(t) — g ()| = f€+ [v'| dA > €|t — 5| Vs, t € (a,b) :s <t

S

we obtain
IGe © Te(X) = Ge o T (W) =[x —y| = &[T (%) — T (y)| Vx,y € (0,L,).

Hence, 7, is Lipschitz continuous with e lasa Lipschitz constant. Therefore, T, has a finite
derivative A-a.e. in (0, L,), due to Example A.2.1| and Fact A.2.5.i.

Consider a point t € (a,b) such that both ¢, and 7, are differentiable at ¢ and g, (f), re-
spectively. Applying the chain rule of differentiation to the expression t = 7, o ¢, (t) gives
us

1=Tp06.(x) 6e(x) = Tp oG (x) - (e + [0 (%)) .
This establishes

Aa.e. in (a,b). (1.10)

Now define the mapping 9. : (0,L,) — X via 9, := vo 7,. For every pair of points s = 7.(x),
t = 1.(y)in (a,b) with0 < x < y < L, we have s < t since 7, inherits the strict monotonicity
from g,. Thus,

t
d (0. (0),0,() = d (0(s),0(1) < [ o' dA < (I.11.a)
SGe(t) —ge(s) —e(t—=s) =y —x—e(t—s) <y —x. (1.11.b)

Consequently, 9, is Lipschitz continuous with Lipschitz constant 1. Moreover, 0, can be

extended to [0,L,.] as lim 0, (x) = limv(t) and lim 9,(x) = limv(f), whereas the one-sided
N0 tNa x L, t b

limits of v exist, due to Fact 1.1 .4.ii.

Regarding (1.11) we obtain

d(f)s(y)/@s(x)) <1_€i’—S _1_€T£(y)_T£(x)
y—x - y—x y—x
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Passing to the limit (y — x) in the equation above, we get [0;] < 1— eT.. Moreover, by virtue
of (1.10), we gain the estimate
['|

€
Olloc, <1— = Aa.e. in (a,b).

Conversely, due to change of variables (see Corollary A.2.8 in Appendix A) as well as the relations
X = ¢G.(s) and y = ¢, (t), one has

Ge(h) y t
d (0(s),0() = d (2,(x),0.w) < [ [l A = [[off o ge-crdd = [[orl oge- (e + oD A (112)
Ge(s) x §

Henceforth, by choosing c € (a,t), we infer

e d@s), o) 1 o f ,
|v|(t)—lsl_r}‘thS£1£I}:<_I|vg|og£-(€+|v|)d/\— (1.13.2)
~ [oo e+ e+ 1) dA) = oLl o (B (e + o] (1) (113b)

for Ma.e. t € (a,b). Together, (I.11) and (1.13) yield the second equality in (1.7).
Now we will show (ii): Analogously to (1.9), we define the map ¢ : (a,b) — [0, L] with

t
c(t) = j|v'| da. (1.14)

a

Clearly, ¢ is an increasing absolutely continuous map, according to Theorem A.2.4. More-
over, ¢ is onto by definition.

Consider the quantile function of ¢, i.e. T : [0,L] — [a,b] with
T(x) :=inf{s € [4,b] : x < ¢(s)} = min{s € [a,b] : x = ¢(s)}. (1.15)

Note that 7 is a left-continuous, increasing map. However, T needs not to be continuous as
we may not assume that ¢ is strictly increasing.

Moreover, the quantile function T satisfies the property that go 7(x) = x forevery x € [0, L].
On the other hand, one has T o ¢(t) < t forall t € [a,b].

Recall from part (i) of the proof that v can be extended to the closed interval [4,b]. Thus,
according to the definition of g, we have

t
d(voTog(h),v(t) < f [o'] dA = ¢(t) —goTog(t) =c(t) —g(t) =0.
Tog(t)

Hence, we obtain v o T o ¢ = v on [, b]. Setting  := v o T, this establishes the first equation
in (1.8).
Furthermore, due to the estimate

T(Y)
d(f)(x),f)(y))§f|v’|d/\:gof(y)—gor(x):y—x vVx,y € [0,L]:x<y, (l.16)
T(x)
one infers that 9 is Lipschitz continuous with 1 as a Lipschitz constant.

Multiplying the inequality in (I.16) with |x — y|_1 and taking the limit (y — x) yields
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d (o(x),0(y))

[o'] =
y=x |y —y

<1  Mae. in[0,L]. (1.17)

Conversely, in a similar fashion to (I.12) and (I.13) one obtains the estimate

d (v(s),0(t) _ . o)

/ : oy : 1 i N4 / o/ /
[v|(t) = 15111}— <lim — j)|v | dA = 1515? . ! [o'|og-[0"| dA = [0'eg()-[0"|(t)  (I.18)

|s — ¢ st t—3s t—
(s
for A-a.e. x € [0,L]. Since ran¢g = [0,L] = dom [¢'|, the inequalities (1.17) and (I.18) com-

bined yield the second equation in (1.8). [ ]

1.2 Weak and Strong Upper Gradients

In this section we consider functionals which are defined on a metric space X. Lacking
linear structure, one cannot hope for defining the gradient of such a functional in a point in
terms of a linear mapping.

However, the following example will give rise to a definition which generalizes the norm of
a gradient.

1.2.1 Example Let (Y,|lly) be a Banach space and consider a Fréchet differentiable function
¢:Y - R. Then forany g : Y — R one has:

Vol <g iff YoeC¥(@ab),Y):[(¢pov)|<gev-[ofy. (1.19)

Recall that the Fréchet derivative V¢ (y) of ¢ ata point y € Y is a bounded linear functional
fromY toR,ie. V¢ :Y - B(Y,R). Hence,

Vo)l = sup [V (y)x|

llxlly=1

denotes the operator norm on the space B(Y, R).

Proof of (1.19)  Due to the chain rule, we have (¢ o v)'(t) = V¢ (v(t)) v'(t) € B(R, R) at any
point t € (a,b). As a result, the sub-multiplicity of the operator norm gives us the estimate

[(pov) (O] <[V ® - "By vVt € (a,b). (1.20)

Now assume that we have [V¢| < g in every point of Y. Then one easily obtains the right
statement in (1.19) by means of (1.20).

To prove the converse implication, consider any two points x,y € Y with ||x|ly, = 1. Define a
smooth curve v : (a,b) — Y via v(t) := tx + y. Clearly, we have v'(t) = x for every t € (a,b).
Without loss of generality, we may assume 0 € (a,b). Hence,

g) =g ov(0) - [[v'(0)|ly = [(¢°v) (0)] =V (v(0)) ' (0)] = [V (y)x].

Since the estimate above remains true for all x € Y with |lx|y = 1, we obtain g(y) > [[V¢(y)||
as desired.

Note that the expression on the right side of (1.19) still makes sense if we assume that Y is
merely a complete metric space and interpret [[v'], as the metric differential [v'| of the curve
v (cf. also Example 1.1.6).
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For practical reasons we will consider only functionals which take values on the extended
real line:

—— Notation
In this section we denote by ¢ : X - R U {+co} an extended real functional with proper
effective domain, i.e. the effective domain dom ¢ := {x € X : ¢(x) < +o0} of ¢ is nonempty.

First, we introduce the following notion, based on a pointwise A-a.e. formulation of the
right-hand side in (1.19).

Definition A functiong : X — [0, +oc] is called a weak upper gradient for ¢ if every curve
v € AC((a,b), X) with the properties

gov-v'| € L'((ab),R),

¢ o v is of essential bounded variation on (a,b), .i.e. there exists a function ¢ : (4,b) —
R U {400} of bounded variation such that ¢ o v(t) = ¢(t) A-a.e.in (a,b),

one has |¢'(t)| < g o v(t) - [v'| (1) Na.e.in (a,b).

There is also a stronger integral formulation of the right-hand side in (I.19).

Definition A function g : X — [0, +oo] is a strong upper gradient for ¢ if every curve
v € AC((a,b), X) the function g o v is Borel measurable and

¢
|¢ov(t)—4>ov(s)|ngov-|v’|d)\ Vs, t € (a,b) :s <t (1.21)

The relation between these two definitions is as follows.

Facts Consider a function g : X — [0, +oo].

Let ¢ be a strong upper gradient for ¢. If moreover we have g o v - [v/| € L((a,b), R) for
every absolutely continuous curve v : (a,b) — X, then ¢ o v is also absolutely continuous
according to Definition I.1.1. Hence, the derivative of ¢ o v is finite A-a.e. in (a,b) and by
Theorem A.2.6 one obtains

[(pov) ()| <gouv(t)-|0](H) Aa.e.in (a,b).

Thus, one can choose ¢ = ¢ o v in Definition 1.2.2 and as a result g is also a weak upper
gradient for ¢.

Now let ¢ be a weak upper gradient for ¢. If for every absolutely continuous curve v :
(a,b) - X we have ¢ o v € AC((a,b),R), then ¢ o v = ¢. In this case, clearly (I1.21) holds.
Hence, g is also a strong upper gradient for ¢.

Among all possible choices of upper gradients we will consider particular ones, called slopes.
Regarding the following definition, recall that (f)" and (f)~ denote the positive part and the
negative part of a real-valued function f, respectively.

Definition We call

(p(x) — )"

[0¢p|(x) == hr;:s;lp i) x € dom ¢
the local slope of ¢. Similarly,
(900 — )"
[ = - ed
¢(x) squltla? iy X om ¢

is called the global slope of ¢.
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Theorem (Slopes are upper gradients) The local slope |0¢| is a weak upper gradient for ¢.

If ¢ is lower semi-continuous, i.e. 11m inf p(y) = P(x) for every x € X, then 1, is also a strong
upper gradient for ¢.

For the proof of the theorem above we need the following lemma from the theory of Sobolev
spaces (cf. Example A.2.10 for a brief overview of the occurring definitions):

Lemma Let g € L((a,b),R)and g € L' ((a,b), R}) be such that
lp(s) — ()] < (g(s) + (1)) Is — ¢ for dae. s, t € (a,b).
Then ¢ belongs to the Sobolev space W' ((a, b)).

Proof Define the linear functional T : C°((a,b)) —» R with

b
T(Q):=[¢-'dd  {€C(ab).

Due to Lebesgue’s dominated convergence theorem as well as change of variables and, if necessary,
arbitrarily extending the functions ¢, {, ¢ to the real line, we obtain the estimate

@) = Jim jb <p<t>wcwt>‘= (1222)
= lim fq)(t)g(t;h) dAt) —j(pm@ d/\(t)‘ - (1.22.b)
= lim j PEM =90 16 ans)| < (122
< limsup f (g(s — 1) + () [ ()] dAs) = (1.22.d)
=2 f g |7()] dAs) < 2[gll, - Il (1.22.¢)

Hence T is continuous on CZ°((a,b)). Since C,.(a,b) is a dense subspace of Cy((a, b)) with
respect to |||, the space of continuous functions on (4, b) which vanish at 2 and b, we may
invoke continuous linear extension (cf. a.e. Theorem 1.9.1 in [41]), i.e. there exists a unique
extension of T to a continuous linear functional T on Co((a, b)) such that ||T|| = Tl

Now we can apply the Riesz-Markov theorem (see Theorem A.3.3 in Appendix A). Thus, there
exists a unique regular countably additive signed Borel measure y on (a,b) such that

b
T = fédy V{ € Co((a,b)).
a
Moreover, we have [Tl = IT|| = |u|((a, b)) < 2|gll,- Clearly, (1.22) also gives the estimate
b b
Ugdﬂlﬁzf|§|‘|g|d/\ Vi eCZ(ab)).

Next, let A C (a,b) be a Borel set. Then there exists a sequence ({,,),en in Cqy((a, b)) such
that 7}1_{130 C, (1) = 14(t) pointwise in (a,b). As a result,

b
(A = lim,
a

n—-oo

d#‘<hm2f|€n|-lgld/\=2flgld/\-
A
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Furthermore, for any finite partition (4;),c; of A into disjoint measurable subsets A; we have

Y lnApl <2 [IgldA = [ lg] da.
A

iel i€l 4,

Consequently, |¢| « A and with regard to the Radon-Nikodym theorem one yields an inte-
grable density j—i € L'((a,b), R) with

b b
ray o (9K w
lqa-gcm_lg dA VI eC>(ab).

Hence, % is a weak derivative of ¢ and ¢ belongs to W1 ((a,b)). [

Now we are ready to proof the main result.

Proof of Theorem 1.2.6 First, we show that |0¢)| is a weak upper gradient for ¢: Consider a
curve v € AC((a,b), X) which satisfies (WUGI) and (WUG?2) of Definition 1.2.2 and define
the set

A:={t€ (a,b):pouv(t) = ¢(t) and J¢'(t) and I|0'| (t)}.

We immediately obtain that (4,b) \ A is a A-null set since the derivative ¢’ and the metric
differential 0| exist A-a.e. in (4, b).

Now consider a point t € A. In case that ¢’ () = 0, the inequality |¢'(t)| < [9¢| (t) - [0'| ()
from Definition 1.2.2 is clearly satisfied. Therefore, assume @' (t) # 0.

Fix a point t € A and note that

pov(s)—¢ou(t)

s—t # 0.

P'(t) = 151£It1
SEA

Hence, there exists a neighborhood U, () such thatv(s) # v(t), orequivalently d(v(s), v(t)) #
0, foralls € U.(t) N A\ {t}. Leta; := sgn¢'(t). Then

pouv(t) —pouv(s) ¢ ov(t) — powv(s)d(v(t),v(s)) <

9" (D] = a9"(H) = a; lim s = & i e ,0) —s =
sEA seEA
m(geuh) —gou(s) | d(t),o(s) ,
< meup e b o) o < [99le v D
seEA sEA

This establishes the first result.

Next, we show that [¢ is lower semi-continuous in X: To this aim, consider two different
points x, ¥ € X, x # y. Then for every sequence (x,,),cy in X which converges to x, one has
x, # y for almost all x,,. As we required ¢ to be lower semi-continuous, we obtain

() — oW (900 — ¢

l1mlo£1f lp(x,) = h}}l%{,‘f A1) > i) Vye X:y#x.
Henceforth, we infer
. (¢(x) = p(y)"
1 fl > - T = ,
Dl () 2 sup = = ()

which establishes the lower semi-continuity of [, in X.
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Now we are ready to check that [, is a strong upper gradient for ¢: Assume a curve v €
AC((a,b), X) is given such that lpov- [0'| belongs to L'((a,b),R).

Recall thata functionf : X — RU{+oo} is lower semi-continuous iff for every « € R U{+co}
the sublevel set {x € X : f(x) < a} is closed in X (cf. a.e. Lemma |.24.ii in [6]). Since v is
continuous, this means that the composition [4, o v is lower semi-continuous; in particular
this shows that [povis Borel.

Due to Lemma 1.1.8.ii, there exists an arc-length reparametrization
o9=vo71:(0,L) - X,

where 7 is the quantile function of a absolutely continuous increasing map ¢ : [a,b] — [0, L]
as defined in (I.15), and L the length of the curve v. Define

@i=¢o0:(0,L) > RU {+o0} and g = [¢06:(0,L)—>RU{+00}.

As 9| =1 Aa.e.in (0,L), ¢ is 1-Lipschitz, due to Theorem 1.1.7 (MD3) and Fact I.1 4.iii. Then
by definition of the global slope [, one has

4 A RPN s — f| A PRV
((p(S) — 4)(t)) = (()b o 0(s) — ()b o Z)(t)) < W ((j) o 0(s) — (p o Z)(t)) <
(¢ 00(s) — o (1) (¢ 0 0(s) = p(0)"
R TS 15 R A Te YO 3% s =8
D =D(5) X#0(s)

for every choice of points s,t € (0,L) such that ©(s) # 0(t). This immediately gives us
(p(s) —pt)'<Is—tg(s) Vs te (0,L), (1.23)
and
lp(s) — )| = (¢(s) — go(t))++ (p(s) — gp(t))+§ Is — £ (g(s) + g(t) Vs, t € (0,L). (1.24)

Moreover, via change of variables with transformation ¢ we have

L 5(b) b b
[gdr=[1y00dh=[1 000 (tog) - ¢'dA= [l 00 [0/ dA < +,
0 G(a) a a

where we used that (1.14) establishes [v'| = ¢’ A-a.e.in (a,b). Hence, g belongs to L1(0,L), R).
Moreover, (1.24) allows us to apply Lemma 1.2.7 to obtain that ¢ belongs to the Sobolev space
WO, L).

Now we check that ¢ is a continuous representative of the corresponding equivalence class
in WL1(0,L)): To this end, fix a point ty € (0,L) and € > 0 such that B,.(ty) C (0,L). By
virtue of Lemma 1.1.2, there exists § > 0 such that 6 < ¢ and

fgd/\ <e  VteB.(t).
Bs(1)

As a consequence of this estimate and (1.23) we obtain
1f 1 ¢
_ _ + _ +
%£|q)(t+s) — p(B)] dA(s) = 25£(¢(t+s) P + (p(t) — p(t +5)TdA(s) < (1.25.a)

<

ST

S 1 o 1 [
; [ 151 (gt + ) +g(t) dAcs) < Ejg(t+s)d)x(s) +3 [ghdAes) <e  (125b)
5 5 [



GRADIENT FLOWS IN GENERAL METRIC SPACES

for all points t € B, (ty). This shows that the open interval B, (¢;) consists only of Lebesgue
points, i.e. ¢ satisfies

t+e

lim [ pdA =0  Vte& B (k).

exo
t—e

Moreover, the estimate in (1.25) is uniform with respect to t € B, (t;). Due to Fact A.2.7.v, we
infer that for every point ¢ in (0,L) there exists a neighborhood U C (0, L) of ty such that
@ is uniformly continuous on U. In particular ¢ is continuous on (0, L).

Now we may infer from Example A.2.10 that ¢ is indeed an absolutely continuous represen-
tative of the corresponding equivalence class in WL1(0,L)). Since Fact I.1.4.iii shows that
the composition ¢ o g is absolutely continuous as well, we conclude from ¢ov = pod = gog
the absolute continuity of ¢ o v. Finally, we apply Fact 1.2.4.i to [d¢| and use that [0¢| < [, in
X to ascertain that

t t
|¢ov<t>—¢ov<s>|gj|a<p|ov-|v'| dAgj[¢ov-|v’|d/\ Vs, t € (a,b) 15 <t.
S S

In the general case that the integrand I, o v - [v'| is only Borel, it suffices to consider all

integrable restrictions of the form ( lpov-[v'| )| to intervals (4, b) C (a,b). Otherwise the

(a,b)
inequality in (1.21) is trivially satisfied.

This establishes that [, is a strong upper gradient for ¢.

Gradient Flows

In this section, our starting point is a gradient flow in Euclidean space. To this end, we
identify the flow with its flow curves, i.e. we consider differentiable curves v : (0, +c0) —
R", starting from ltin(} v(t) = xg € R", which solve

N

v'(t) = =VF(v(t))  VteE (0,+)

for a given differentiable potential F : R” — R. Abrief introduction to the theory of gradient
flows in the Euclidean setting is given in Section B.2 of Appendix B.

The aim of this section is to generalize the notion of gradient flows to a metric setting. This
will be accomplished in two steps:

In Step 1 we will focus on gradient flows in an Euclidean framework and introduce various
equivalent characterizations of a gradient flow. Since (1.26) makes no sense in a general
metric setting, we will make use of these characterizations in Step 2 to establish a metric
notion of gradient flows for Aconvex functionals.

—— Notation
In this section we will regard R" as a real Hilbert space, endowed with a (not necessarily
standard) inner product (:,-) and the norm |-l induced by (-, -).

Step |  First wenote that, for any given curvev € C!((0, +o0), R"), starting from ltirg o(t) =
N
xo € R", and potential F € C L(R", R), equation (1.26) can be utilized to obtain

d
FF(o®) = (VE(o0),' () = = [VF(e®)|" = =[0I Vt € (©+w).

(1.26)

(1.27)
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This equation is called energy identity of the gradient flow. Note that (1.27) may also be
written as

d
FFem) = ——||VF(v(t))|| ~ B Ve (0 +), (1.28)

or its weaker integral form
F(v(s)) — F(o(h)) = f o'l dA + 5 j IVE(0)|[* ste(040):s<t, (129

which are called energy dissipation equality and its weak formulation.
There exist also variants of (1.28) and (1.29); these are the energy dissipation inequality

5 F(e®) < —-IIVF(v<t>)II — Sl ®IF Ve (0, +), (1.30)
and its weak formulation

1 1 ¢
F(v(s)) — F(o()) > Ej||z;'||2 dA + Ej||vz¢(v)||2 A\ ste 0 +00):s<t  (131)

respectively.

A different characterization of (1.26) can be established by the notion of A-convexity which is
a slight generalization of the usual concept of convexity.

Definition Let H be a real Hilbert space. We say that a function F : H - R U {+c0} is
Aconvex with respect to A € R if

A
E((1=Dx+1y) < (1= OF@) +F(y) = 3HL =D | = yI>  Vx,yeH, Vte[0,1].

In the case 4 = 0, we simply call the function F convex.
Facts
Let H be areal Hilbert space. For any two pointsx,y € H and t € R we have the expressions

HL =6 [x =yl = (1= Hx —y), Hx — y))
and
A —tHx+ 1fy||2 ={(x+ty—x),x)+ {(x +ty —x), Yy —x)),
which can be added to obtain the identity
1= Bx + tyl = (1 =) Il + ty|* — £ = £) |x — y]*. (1.32)
Note that, by setting t = % above, one obtains the well-known parallelogram law:
o+ Y1+ I = yI* = 21001 + 2|y

Hence, (1.32) holds exactly when the norm |-|| is induced by an scalar product. In this case,
one can utilize (1.32) to infer that a functional F : H - R U {+o0} is Aconvex iff the function

A
x——F(x) - 3 Ilx[1?
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is convex.

Consider a functional F which belongs to C 2(R",R). Then we have the following charac-
terization of A-convexity, due to Brunn and Hadamard (see Theorem 2.10 in [30] for the convex
case):

Fis kconvex iff y" HessF(x)y > Ay'y Vx,y € R". (1.33)

Proof of (1.33) Assume that F is &convex and fix two points ¥, € R". Then the function
G(h) :==F((1—h)X +hj) = F(X + h(j — %))

belongs to the class C 2(R,R). Aconvexity of F gives us for

=5, x=I+h(-%), y=i-h{G-1, heR,
the estimate
2F(E) <F(R+h(@f—%) + F(x—h(i—%) — M2 |§— %> VheER,
which is equivalent to

o F(X+h(f—2x) + F(Xx—h(j—X)) —2F(X) Gh) + G(—=h) —2G(0)
M- < EHGZ D P FEZ MG - 0) 23R ] .

As a result, we obtain for the second order derivative of G at 0 that
A7 —=I* < G"(0). (1.34)

On the other hand, the chain rule yields

" Rf(x+h—-%),_ ..
G"(h) = Z ( axx, ) (7; — xi)(y]- —-%).
ij

Together with (1.34) this establishes the result

92f (%)
77 axiax]‘
/]

(7 — %) Hess F(%) (i — %) = (7 = %) (7 — %) = G"(0) 2 A(F — ) (§ — %).

To prove the converse statement, assume that Hess F — A1d is positive semi-definite. Con-
sider two points x,y € R". Then a second order Taylor expansion of F at [, := (1 —t)x +ty,
t € [0,1] implies
1
F(x) = F(ly) + (x = 1)TVE(,) + 5= In"Hess F(I; + 8(x — 1)) (x = ;) > (1.35.a)
A
> F(l) + Hx = y) VF(p) + 51 [y - x| (1.35.b)
for a suitable ¢ € [0, 1]. Similarly, we obtain

A
E(y) 2 ) = (1= 0=y VEQ) + 51 = 02|y - 2. (1.36)

Multiplying the inequalities (1.35) and (1.36) with (1 — t) and ¢, respectively, and adding
them up results in
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A 2
(1= DF@) +F(y) 2 ) + 5t =0 |y =,
which corresponds to the A-convexity of F.

Setting t = 1 in (1.35) results in the so-called subgradient inequality
A
(VF(y),x —y) = F(x) — F(y) — 5 ly — x|? Vx,y € R". (1.37)

Note that for functionals F, which belong to C2(R",R), inequality (1.37) holds precisely
when F is A-convex.

Yet another characterization of Aconvexity can be established by switching the positions of
x and y in (1.37) and adding both versions, which results in

(VF(x) —=VF(y),x—y) > AJx—y|*  Vx,y e R (1.38)

This inequality is known as Amonotonicity of VF. Observe that setting x = y + txg in (1.38)
leads to

(VF(y + txg) — VE(y), tx0) > Alltxl>  Vxg,y € R, £ > 0.

Hence, dividing by 2 > 0 results in
1 2
T(VEW +txo) = VE@W), x0) 2 Allxo”,

where we can pass to the limit (f \ 0) to obtain
xg Hess F(y)xo = (Hess F(y)xg, Xo) > x| Vxo,y € R™.
We conclude that for C?-functionals (1.38) is again equivalent to the A-convexity of F.

Note that that for every x € R” the matrix Hess F(x) is symmetric. Hence, there exists a
spectral decomposition

Hess F(x) = Z AP,

AED,

where o, denotes the spectrum of Hess F (x), consisting only of real eigenvalues, and P, the
orthogonal projection onto the eigenspace corresponding to the eigenvalue A. Therefore,
we have

y" Hess F(x)y = Z AYyT Py > min g, ZyTPAy =mino,-y'y VyeRL

AEO, A€,

Thus, by virtue of (1.33), the largest possible A € R such that F is Aconvex, can be charac-
terized by

A = infmino,.
max ~ Cpa x

Consider again a gradient flow as in (1.26) such thatv & cl ((O, +00), ]R”) andF € C? (R",R).
For every y € R" we can use the subgradient inequality from Fact 1.3.2.iii to obtain the esti-
mate
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d
3 o =yl = (@', 0(t) = y) = (VE(o(t),y = o()

N =

A
< F(y) = F(o(h) = 5 loth — yif*.

Thus

1d 2 A 2
5qo® —ylIF <F(y) —F(o) - 5 o) -yl VyeR",
which is called evolution variational inequality of the gradient flow.

The following result summarizes the relations between the various characterizations of a
gradient flow, presented so far.

Proposition Let v be a curve which belongs to CL((0,4+0),R") and let F : R" —» R bea
C2-functional.

The curve v is a solution of (1.26) iff it satisfies the energy dissipation inequality (1.30) or its weak
formulation (1.31).

The curve v is a solution of (1.26) iff it satisfies the enerqy dissipation equality (1.28) or its weak
formulation (1.29).

Under the additional assumption that the functional F is }convex, v is a solution of (1.26) iff it
satisfies the energy variational inequality (1.39).

Proof To prove (i), assume that v satisfies the weak form (I.31) of the energy dissipation

inequality. The chain rule implies
¢

F(o(h) = F(v(s) = [ (VF(0),0')dA Vst € (0,+0) :s <L,

S

Thus (1.31) yields
1 i ’ 2 1 3 2 2 i /
5 [+ VE@)P dr = 5 [ 101 + V@) dr + [ (VE (o), o) da <.
S S S
This means that v'(t) = —VF(v(t)) for Aa.e. t in (0, +o0). Due to the C'-smoothness of v,

we infer that v solves (1.26) for all t € (0, +o0).

For (ii) we show that, whenever the energy dissipation inequality (1.30) is satisfied, actu-
ally equality holds: Note that for any C!-curve v the Cauchy-Schwartz inequality and the
inequality of arithmetic and geometric means (AM-GM inequality) imply

d ’ ’ 1 2 1 ’

FF (o) = (VE(u(1),v' (1)) = = [VF(ot)| - o' (t)]| > —5 IVEe®)[" = 5 o Ol
Together with (1.30), this estimate yields (1.28). In a similar way one obtains the equivalence
of the weak formulations of the energy dissipations inequality and equality.

Concerning (iii), let v be a curve which solves (1.39). Evaluating this inequality at the point
I, :=0v(t) + ey for e > 0 and y € R" establishes

[

1 A
~(@'(h,y) = —(@'(h,0() ~ L) < = (F(I) = F(o(t)) = e5 Iyl
Passing to the limit (¢ N 0) implies

—(v'(t),y) < <VF(v(t)),y> Vy € R”,

which means that —v(t) = VF(v(t)) for all t € (0, +o0).
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It is worth mentioning that the evolution variational inequality along every flow curve en-
forces the A-convexity of the gradient flow’s potential.

Proposition Let F : R" — R be a C?-potential of a gradient flow as in (1.26) and fix A € R.
Suppose, for every xo € R there exists a unique flow curve v € C1((0, +0), R") such that
lti\rg v(t) = xg and v satisfies the evolution variational inequality (1.39). Then F is d-convex.

Proof Letl, := (1—¢e)x+ ey, ¢ € R for arbitrary x,y € R" and let v, (t) be the unique flow
curve, starting from lting v, (t) = I,. Then, by virtue of (1.26), we have
N

A 2
<F(y) —Fx) - 5 [x —y|® = (1.40.2)

’ 1d 2
(VE@,y =x) = =00 @y =) = 5.3 (oo 4l | <

—Alx—y|* = (1.40.b)
t=0

= —(©'1(0),x —y) — A|x —y|> = (VF(),y — x) — Aljx —y|, (1.40.c)

A 1d
= ~(F00 —Fy) = 5 [ =yl* < =5 (I =01 (0I)

where we used the evolution variational inequality in line (1.40.a) as well as in line (1.40.b).
Note that the estimate in (1.40) implies

(VE(y) —VF(x),y —x) = Alx—y|*  VxyeR",

which is exactly the Amonotonicity of VF, as seen in Fact |.3.2.iv. This establishes the A-con-
vexity of the functional F. a

Before moving to the general metric framework, we investigate the connection between gra-
dient flows and subdifferentials.

Remark The subgradient inequality (1.37) motivates the notion of a subdifferential with
respect to a possibly non smooth A-convex function. To this end, consider a real Hilbert
space H and let F : H - R U {+c0} be a &convex functional. Then a vector v € H is called
subgradient of F at the point x € dom F if

A 2
(0,x=y) SFO) = F@) = 5 Ix -yl Vy € H. (1.41)

The set of all subgradients of 4
F atx € domF is called subd-
ifferential of F at x, commonly
denoted by oF (x).

In the case that the functional
F belongs to C?(R", R), (1.37)
shows that VF(x) is a subgra-
dient of F at all points x € R".

The notion of subdifferentials
of convex functions (i.e. A =
0) has been introduced in the
1960s by Moreau and Rockafel-
lerin [42] and [ 18] respectively, 9 b >
and is well established in the .
theorv of convex optimization Figure I.1 The subdifferential with respect to a A-convex functional
y P " F:R - R: In this case the underlying inequality (1.37) can be expressed
With this concept athand, one  as 2 |x — y* < (—v,1)7(x — y, F(x) — F(y)) = ab,. Here the vector (~v,1)
is able of establishing a gener- with length a can be interpreted as normal of the line, going through the
point (x, F (x)) with slope v. Note thatin the case A > 0, as depicted above,
the line has to be everywhere either touching or below the graph of F.

alized gradient flow with re-
spect to Hilbert space valued
A-convex functionals:
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We say that v : (0, +o0) — R" is the flow curve, starting from xy € H, of a gradient flow for
a Aconvex functional F : H — R if v is absolutely continuous and

limo(t) = x € H, (1.42.2)
v’ (t) € OF (v (1)) Aa.e.in (0, +00). (1.42.b)

A fruitful theory of such gradient flows in Hilbert spaces has been developed, under the
additional requirement of F being lower semi-continuous by Komura [35], Crandall and Pazy
[25], Crandall and Liggett [24], Bénilan [I 1], Lions [38] amongst others. We cite here some main
uniqueness and existence results of Barbu [5] and Brézis [16]:

Assume that the functional F : H - R U {400} is Aconvex and lower semi-continuous. Then the
following statements hold:

~v>  For all starting points xy € dom F the gradient flow (1.42) has a unique solution v which belongs
to AC((0, +00), H).

~>  For every x € H the subdifferential OF (x) is closed and convex. Henceforth, as long as oF (x) is
non-empty, there exists a unique element v, in OF (x) such that the set {|[v| : v € OF (x)} attains
its minimum at ||vyin . The element vy, is usually denoted by VF (x).

~»>  The real-valued functions t — o(t)|l, t — |[VF(v(t))| belong to LZ (0, +o0), R) and t — F(v(t))
belongs to AC,_ (0, +o0), H), such that the energy dissipation equality holds:

loc
14 . 14 ’
F(o©) —Fo) = 5 [ 17 di+ 5 [ [VF@)[T dd ste ©,+):s<t.

~v>  The curve v is the unique solution of the evolution variational inequality

1d A
5 o) - yI* < F(y) — F(a(t) — 5 o) = yI?  Vy€H, dae t € (0,+),

amongst all curves v of the class AC,__((0, +o0), H), which start from ltino1 o(t) = xq.
N

loc

Step 2 We move on to a metric framework: We already noted that (1.26) admits no di-
rect formulation in such a setting. However, one may utilize the tools developed in Section
I.I and Section 1.2 to carry over the gradient flow characterizations (1.31), (1.29) and (1.39)
to a metric space (X, d). To this aim, it is sufficient to require that the curve v belongs to
AC,,.(0,+00),X). Then Theorem 1.1.7 assures that the metric derivative [v'| exists A-a.e.
in (0,4+o0) and is Borel. Moreover, since the reverse triangle inequality implies, for fixed
y € X, that

ld(v(s),y) —d(v(t),y)| < d(v(s),v(t)) Vs, t € (0,4),

we obtain that the real-valued function t — d(v(t),y) is locally absolutely continuous and
therefore differentiable A-a.e. in (0, +o0). By virtue of Fact A.2.5.ii, this holds also true for the
map t — a2 (v(t), y). Thus we can establish the following definitions:

1.3.6 Definition Assume that a functional ¢ : X — R U {400} with proper effective domain
dom ¢ is given.

(EDI) A curve v € AC (0, +o0), X), starting from lti\rg v(t) = xy € dom ¢, satisfies the energy
dissipation inequality (EDI) if

14 14
5 j o' dA + 5 j P9 cvdA < p(xg) — p(v(t)  tE (0, +00), (1.43.2)
0 0
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and
1{ 1f
5 f |v’|2 dA + 3 f |a¢|2 ovdA < ¢(v(s)) — p(v(h) Mae.s,t € (0,400):5s<t.  (1.43.b)

By abuse of terminology, we call such a curve gradient flow in the EDI sense.

A curve v € AC .
dissipation equality (EDE) if

((0, +0), X), starting from ltirg v(t) = xg € dom ¢, satisfies the energy
N

t t
%f o[> dA + % [l cvdr = g(v(s) = p(oh) Vst € (O, +00)is<t (144)

By abuse of terminology, such a curve is called gradient flow in the EDE sense.

A curvev € AC, (0, +o0), X), starting from lti\rB v(t) = xo € dom ¢, satisfies the evolution
variational inequality (EVI) with respect to a given 4 € R if

1d

5 dtdz(v(t),y) < o) — ¢(v(t) — %dz(v(t),y) Vy € X, kae.t € (0,+0).  (1.45)

By abuse of terminology, we say such a curve is a gradient flow in the EVI sense with respect
to A.

Note that a gradient flow in the sense of the definition above, may not depict a flow as in
Definition B.1.l1. However, if one can show the existence and uniqueness of such a curve
vy, with respect to every given initial datum x, then a global flow on X is induced via the
identity

Uxo(—t) te (—O0,0),
nt(xg) =1 x t=0,
0y (D) t e (0,+00).

Therefore, we will explore minimal existence and uniqueness assumptions on the metric
space X and the functional ¢ in the next section.

First Results in a General Metric Setting

In this section we provide some results on existence and uniqueness of a gradient flow
according to Definition 1.3.6. However, the particular choice of the underlying definition
(EDI),(EDE) or (EVI) plays an important role in the general metric framework. In particular,
there exists no equivalent to Proposition 1.3.3 for gradient flows on metric spaces.

Our minimal assumption in this section will be the lower semi-continuity of the functional
¢. In this context we will show that a gradient flow in the (EVI) sense is the strongest of the
presented formulations. To this end, we regard the following result towards uniqueness of
the (EVI) flow.

Proposition Consider two curves v,w :€ AC (0, +o0), X), both of which solve the evolution
variational inequality (1.45) with respect to some A € R and assume that ¢ is a lower semi-con-
tinuous functional with proper effective domain. Then v and w satisfy the following contraction

property:

d(o(t), w(t)) < e =9 d(v(s), w(s)) st € (0,+0):s< L
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In particular, for every initial datum x, € dom ¢ there exists at most one gradient flow in the EVI
sense.

Proof Letu : (0,+c0) — X be a locally absolutely continuous curve satisfying (EVI) and
note that the map ¢ o u is lower semi-continuous on (0, +o0). Therefore u is Borel and
bounded from below on every compact subset of (0, +c0). On the other hand, ¢ o u is
bounded from above by a locally integrable function since the corresponding terms in (1.45)
are locally absolutely continuous with respect to t. We conclude that ¢ o u belongs to
L (0, +), R).

Now integration of (1.45) over the interval (f — h, t) establishes the following weak formu-
lation

1 1 1
a2 (), y) + £d? (it =1, y) + 7 [ A2 (u(s),y) +29(u(s) dAs) <20() Yy X (146)
t—h
for any /1 > 0. The lower semi-continuity of ¢ o u implies

hmsup h j(,b oudA > hmsupf 1nf4> ° u(s)) dA > hmmf(p ou(t) > ¢pou(t)
- oy R

at every point t € (0, +o0). Thus, we may invoke Fact A.2.7.ii and the the estimate given
above, to pass to the limit superior (h \ 0) in (1.46) and yield

d2(u(t A2(ult —h
L (it y) o= limsup L) + Pt =10, y)

i , - < 2(y) — Ad>(u(t),y) = 2¢(u(t)  (1.47)
hNO

forallt € (0,+o0) and y € X. Here, the expression %_dz (u(t),y) denotes the upper left Dini
derivative of the function t — d?(u(t),y).

In a similar fashion, one can integrate (1.45) over the interval (¢,f + h) and thus obtain an
estimate for the right difference quotient

<2¢(y) — Ad>(u(t),y) — 2¢(u))  (1.48)

¥y d2(u(t +h),y) + d2(u(t),
L2ty ) o= limsup L+ 1Y) + d2(ut)y)
- N0 h

forallt € (0,+c)and y € X, where denotes the upper right Dini derivative of t —
d?(u(t),y).

Now setting u(t) := v(t), y := w(t) in (1.47) and u(t) := w(t), y := v(t) in (1.48), and adding
both inequalities up, implies

- +
% dz(v(s),w(t))+% d?(v(t),w(s)) < —2Ad?(v(t),w(t))  VtE (0,+o0).  (1.49)

s=t s=t

We want to show that d 2(t) is a lower bound for the left-hand side of (1.49) on (0, +c0),

where d(t) = d(v(t), w(t)) To this aim, note that 4 is locally absolutely continuous, due to
the estimate

d(s) —dt)| = |d(w(s),v(s)) — d(w(s),v(t) +d(w(s),v(t)) —d(w(t), v(t)| <
< d(v(s),v(h) + d(w(s), w(t))

for all s,t € (0,+o0). Therefore, the map d 2 also belongs to AC (0, +o0), R) by virtue of
Fact 1.1.4.ii.

Next, fix anon-negative bump function { € C((0, +00)), acompact interval [4, f)] C (0, +0)
and / > 0 such that
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dist (supp ¢, R \ (4, b)) > 2h.
Then change of variables (see Corollary A.2.8 in Appendix A) implies
40

Jt+h) — () gt + h)

- de(t) - dA(t) = ja‘Z(t)—dA(t) - jdz(t) A\ =  (1.50a)
0 0
X 2 A2+ o0 2 _ A2 _
= fC(s)d ) Z Ul dA(s) = fg(s)d (W), v) Z (w(s — ), v(s) dA(s) + (1.50.b)
0 0

—_ ]2 _ _
+j€() 2(w(s — h),v(s)) Z (w(s — h),v(s — h)) dA(s) = (1:50.0)

) d?(w(s),v(s)) — Zz(w(s —h),v(s))

dA(s) + (1.50.d)

0

oo 2 _ 2
+f§(r+h)d (w(r),v(r+h)21 d2(w(r),v(r)) A (150,

0

Clearly, one can apply the dominated convergence theorem to pass to the limit (4 — 0) in the
first integral of (1.50.2). On the other hand, we can invoke Definition I.1.1 for the curve w to

obtain a function m € Ll oc((0,+20), R) and the estimate

t
[d(wt),y) = d(wit —h,y)| S d(wt),wt—1) < [mdd Vil e ©,+c),  (151)
t—h

uniformly with respect to all maps t — d(w(t),y), y € X. Thus we can apply Lemma A.2.3
to arrive at an uniform estimate for the map t — dz(w(t), y), ie.

¢
d2(w(t),y) —d?(w(t —h),y)| < fnd/\ Vy € X, Vt,h € (0, +o0),
th

where 1 belongs to IOC((0 +o0),R). Seti(t) = ]l(u+h b h)(t)n(t) and assume that Z is a
primitive of ¢ on (0, +00). By virtue of Theorem A.2.4, the real-valued map t — f i, dA s

absolutely continuous on (d4,b) with derivative t — 7i(t) — 7i(t — h) M-a.e. on (d4,b). Hence
integration by parts (see Corollary A.2.9 in Appendix A) implies

fg(t) (fnd)\) dA(t) = —fZ(t) Aty — it — ) dA(H) = (1.52.2)
t—h
b b
f Z(t+ hyf(t) dA(t) — f ZHi) dA(t) = f (Z(t+h) — Z(B)Act) dA(E),  (1.52b)
where we used the fact that 7i vanishes outside of the interval (4 +h, b —h). Note that we can

utilize the mean value theorem to obtain an estimate for the integrand on the right hand-side
of (1.52.b):

(Z(t+ 1) = ZW)Am] < hsup L&) 1A
se

As this bound clearly belongs to L1(0, +), R), we can multiply (1.52) by h~! and invoke
the dominated convergence theorem to obtain

lim > fg(t) (Ind)\) dAt) = fg(t)n(t) dA(h). (1.53)

t—h
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Next, choosing y = v(f) in (1.51) establishes

d2(w(t),v(t)) —d?(w(t —h),v(t))

Ah(t) = 7

f dA =: By, (#) Vt € supp(;

FI*—‘

in particular, we have B, — A;, > 0 on supp ¢. Thus, we can invoke Fatou’s lemma to pass to
the limit superior (4 \ 0) in (1.50.d):

o0

J‘g”(t)ﬁ(t)d/\(t) —hmsupfat)Ah(s)dA(t) = mgl\ionffg(t)(Bh(t) — Ap(b) dA(H) >

0
> [ ¢t liminf (B, (1) = Ay(h) dA(t) = fat)n(t) dA(t) - j g(t)— dz(v<s>,w<t>) dA(),
0
ie.
) d?(v(s), w(t)) dA(t).
s=t

Since a similar argument allows one to pass to the limit superior (2 N 0) in (1.50.e), we
ultimately arrive at

o0

jgm( d2(t>) dA(t) = — f( g”(t))d‘z(t)d)\(t)< (1.54.2)

(e}

dz(v(t),w(s)) dA(t), (1.54.b)

S=

d2 P (009, w(h) dA) + f (s

[e ]
<]
0

where we used integration by parts to obtain the equality in (1.54.a). Since our choice of the
non-negative test function { € C°(R) was arbitrary in (1.54), the inequality

+
% d?(o(t), w(s)) Aa.e.t € (0, 4+00) (1.55)

d ., d-
i dAt) <

d?(v(s), w(t)) +
s=t

s=t

follows. Henceforth, plugging (1.49) and (1.55) together, results in

%dz(w(t),v(t)) +2Ad%(w(t),v(t) <0 Aae.t € (0,+o0).

2At

Moreover, multiplying this inequality with e=*" and applying the chain rule yields

T e d2(wt),v(t) <0 Xae.t € (0,+).

As this means that the continuous map t — e?* d2(w(t), v(t)) is non-increasing everywhere
in (0, +o0), we conclude that

e2 d2(w(s),v(s)) < M d?(w(t),v(t)) Vst € (0,40):s <t (1.56)

Finally, in the case that the curves v and w have the same initial datum ltin01 o(t) = ltirgl o(t) =
N N
xg, (1.56) shows that v and w necessarily coincide on (0, +0). [ ]

Corollary Assume that ¢ is lower semi-continuous functional with proper effective domain. If a
curve v € AC,; (0, +o0), X) solves (1.45) with respect to some . € R, then v is locally Lipschitz.
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Proof Note that for any fixed & > 0 the curve 9, (t) := v(t + h) belongs to AC
and solves (1.45) as well. Hence, Proposition |.4.1 implies that

(0, +00), X)

loc

w < e A9 w Vs, t € (0,40) :s <t (1.57)

Letting (h \ 0) in (1.57), we can invoke Theorem I.1.7 to obtain
[0 (t)| < e *=9) [0/ (s)] Xae.s, t € (0,+00):s <t

In particular, we have for any compact interval [4, b] c (0,+) and any point ¢ € (0,4)
where the metric differential [0| (s) exists, the estimate

svt
d(o(s),0(t) < f W) dA <0 ()ls—H Vs te[4b]
SAt ]

When comparing the notions of (EDI) and (EDE), the following implication is obvious:

Fact Let ¢ : X - R U {40} be a functional with proper effective domain and v &€
AC,,.(0,+0),X) be a curve, starting from x, € X. If v is a gradient flow in the EDE
sense, then v satisfies also (EDI).

On the other hand, the following result, namely, that (EVI) is the strongest of the three no-
tions of gradient flows in a metric setting, is a non-trivial consequence of Proposition 1.4.2.
Proposition Let ¢ : X — R U {+co} be a lower semi-continuous functional with proper effective
domain and v € AC,__((0, +0), X) be a curve, starting from x, € X. If v is a gradient flow in the
EVI sense with respect to some A € R, then v satisfies (EDI) and (EDE).

Proof By means of Corollary 1.4.2, we may assume that v is a locally Lipschitz curve. In the
first part of the proof we will show that in this case the map ¢ o v is also locally Lipschitz
on (0, +o0):

We start with the reverse triangle inequality, implying for any k > 0 that

d(v(t+h),y) —d(vt),y) - _d(v(t +h),0(b))
h - h

Vy e X, Vte (0, +). (1.58)
Hence, by taking the limit (4 \ 0) in the inequality above, we infer for every y € X that

1d d
Eadz(v(t),y) = d(v(t),y)ad(v(t),y) > —d(v(t),y) | ()  Arae. te (0,4),  (1.59)

where we used the chain rule in the first equality above.

Fix a compact interval [4, b] C (0, +o0) and let C be a Lipschitz constant of v on [4, b]. Then
we have h=1d(v(t+h),v(t)) < L forallt € [4,b]. Hence, taking the limit (1 \. 0) establishes L
as an upper bound for the metric differential [v'| A-a.e. in [4, b]. In particular, (1.59) becomes

%%aﬂ(v(t),y) > -Cd(v(t),y) VyeX, raete (0,+c).

Now plugging this inequality into (1.45) yields
A
p(0(h) — ¢(y) < Cd(o(t),y) - 5d*(v(h,y)  VyeEX, (1.60)

for every t € [4, b] \ N, where N is a suitable A-null set in [4, b]. Since the lower semi-con-
tinuity of ¢ implies
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limitnf > ¢(t) VtEe N,
SN

we infer that (1.60) holds for all t € [4,b].
Choosing t = sy and iy = v(s,) in (1.60) results in

A
P(v(s1)) — p(v(s)) < Cd(v(sy),v(sp)) — Edz(v(sl),v(sz)) Vs1,8, € (0, +00),

whereas choosing t = s, and y = v(s1) result in the same inequality with the terms ¢(v(s;))
and ¢(v(s)) on the left-hand side reversed. Thus

A
[¢(vis1) = P(0(s2))| < Cd(v(s1), 0(52)) — 52 (0(51),0(5) <
|A] Al
<C?(1+ Sl —sl)lsr =2l S C2 (14 F b =) ) sy — 5o

for all s1,s, € (0, +o0). Hence, we have established the local Lipschitz continuity of ¢ o v.

In particular, the map ¢ o v has a derivative A-a.e. in (0, +o0). Henceforth, the AM-GM
inequality implies

d (ot + ) — (o)
- a4>(v(t)) = ]lg% - = (1.61.a)
i ((/)(v(t +m) — (o) d(vt + h),v(t))) - (1:616)
=0\ d(v(t+h), o)) h

< limsup ¢(U(t * h)) _ ¢(U(t)) imsup M < (1.61.c)

10 d(v(t +h),o(t) h—0 h

1 1

< Pl (o) 101 (1) < 51991 (0(1) + 5 o' (1) (161.d)

for Aa.e. t € (0, +o0). Thus we have established that v satisfies a A-a.e. pointwise formula-
tion of (EDI).

To show that v is also a gradient flow in the EDE sense, we need an estimate for the local
slope of ¢ along the curve v:

Plugging (1.45) and (1.59) together, leads to
A
—d(v(t),y) [ (1) < py) — p(v(t)) — EdZ(zJ(t),y) Vy e X, dae.t € (0, +).

Therefore, dividing this inequality by d(v(t),y) and taking the limit superior (y — v(t))
pointwise for every t € (0, +0), gives the desired estimate

06| (0(8) = limsup 20N = 9D

< [0’ () Aa.e. t € (0, +00). 1.62
y—o(t) d(v(t),y) i (165

Now we are well-equipped to prove that v satisfies (EDE):

Fix a compact interval [4, b] C (0, +0) and a A-null set N C [4, b] such that the derivative
of ¢ o v and the metric differential [0’| exist at every point in [4,b] \ N. Via integration of
(1.45) over (t,t + h) for some i > 0 and afterwards setting y = v(t), one obtains for every
t € [4,D] the estimate
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1 t+h A t+h
582 (0tt +1),0(1) < [ 9(0(t) = p(0(s) dA(s) = 5 [ d2(v(s),0(1) dA(s) < (1.63.2)
t t
t+h A t+h , t+h |A| C2
< [ #(0(h) — 9(0() dAs) — 5 { C2ls — 2 dA(s) < [ 9(o(1) = 9(0(s) dA(S) + T, (1.63b)

where we used that v is Lipschitz continuous with Lipschitz constant C on [4 — h, b + h].
Moreover, a change of variables in the last integral of (1.63.b) implies

vt e [4,b].

d2(v(t+h),0t) b ¢(vt) — (ot + hr)) |A| C2

W2 = ! ! ir Nm+ 7

Since the expression i1 [p(v(t)) — ¢(v(t + hr))]| is bounded on [4, b] by C , we can invoke

the dominated convergence theorem to take the limit (b — 0) in the inequality above and arrive
at

1, 0 d ! 1d .
Sl < —$¢(v(t))£rd/\<r> = -5 #(eh) Ve[ hI\N.

Now we can apply (1.62) and yield

d 1 /2 1 [2 1 12 1
) Z ST O+ PTG 2507 1+ 50l (v(h)  rae t € (0,+00).

Together with (1.61), this estimate shows that v satisfies (EDE). [ ]

The following elementary example shows that the implication in Proposition |.4.4 cannot be
reversed.

Example Consider the space (Rz, ||-||Oo) and define a smooth functional on R2 by ¢(xq,x5) =
x1. Clearly, ¢ is convex and [0¢| = V¢ = 1.

Next define a family (v;);cpr+ of smooth curves with joint initial datum (0, 0) by

t .
0,1 [0, +00) > B2, vi(t) = (—t,l—+i> Vi € [0, +),

and note that ¢(v;(t)) = —t and [v'| (£) = ||’ (#)||, = 1 foralli € R*. Now it is immediate to
check that every v; satisfies (1.44) as well as (1.43). On the other hand, the lack of uniqueness
of the flow curve v; and Proposition 1.4.1 imply that the family (v;);cg+ does not belong to
(EVI) as v(t) = (t,0) depicts the unique gradient flow for ¢ in the EVI sense. In particular,
Proposition 1.3.3 cannot be applied since the norm ||-||,, does not induce any inner product
on R”, q

The difference between (EDI) and (EDE) in general metric setting — apart from Fact 1.4.3 —is
more subtle. We just refer to Example 3.15 in [2]. By making use of the minimizing movement
scheme which will be introduced in the next section, this example shows that there exists a
gradient flow in the EDI sense, that does not satisfy (EDE).

A Glimpse on the Minimizing Movements Scheme

In this short section we investigate an discrete approximating scheme which plays a major
role in the existence theory of gradient flows in metric spaces.

At first we introduce a uniform partition of (0, +co):
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—— Notation
Denote with P, := (n7T)en, the uniform partition of (0, +0) into left-open, right-closed
intervals I” := ((n — 1)7,n7], n € N of size T > 0.

1.5.1 Definition Letalowersemi-continuous functional ¢ : X — RU{+ o0} with proper effective
domain dom ¢ be given, where (X, d) is a Polish metric space. Define the functional

P: Rt xdom¢px X — R U {+o0} (1.64.2)
(t,M,x) —> zdez(x,M) + ¢(x). (1.64.b)

For any given time step T > 0 and discrete initial datum M € dom ¢, a T-discrete minimizing
movement starting from M? is a sequence (M), cy in dom ¢ which satisfies

O(T, ML, M") < d(t,M"1,x) VxeX, VneN.

A discrete solution is the piecewise constant interpolant

Mo(t) =) M!'u(t)  VtE (0,+00).

n=1

In general, the existence of a discrete minimizing movement (M), cy cannot be assured
without further assumption on the functional ¢. However, in case of existence of such a
sequence for every T > 0, one hopes to find a limit curve as (v \ 0) which satisfies the
definition of a gradient flow in some sense.

For instance, a rather elementary convergence result could be obtained if one requires all
sublevel sets of ¢ to be locally compact. Then there exists a sequence of times steps (7,,) ,en
with corresponding discrete minimizing movements such that their discrete solutions con-
verge to a gradient flow in the EDI sense as (7,, N 0) (cf. Theorem 3.14 in [2] or Corollary
24.11 in [3]).
Nevertheless, we are interested in the stronger notion of (EVI) gradient flows for the remain-
der of this section. We have already noted in Section 1.3 (see Proposition 1.3.4) that gradient
flows in the sense of (EVI) are closely related to the A-convexity of the underlying functional
¢. However, in a general metric setting the existence of such a gradient flow does not only
depend on ¢ but also on the geometrical structure of the metric space (X, d). This leads to
the following the following definitions.

1.5.2 Definition Let (X,d) be a metric space. A curve 7 : [0,1] — X is called (constant-speed)
geodesic if

d(7y(s),y(h) = It —sld((0),v(1)) Vs, te[0,1].

We call a functional ¢ : X - R U {+oo} l-convex along a curve 7y : [0,1] - X if

A
p(7(H) < A=HP(7(0) +tp(y(D) = FHA = Hd>(y(0),7(1))  tE0,1].  (1.65)

In particular, ¢ is called geodesically A-convex if for every pair of points x,y € dom ¢ there
exists a geodesic v with end-points y(0) = x, (1) = y such that ¢ is Aconvex along .

The definitions presented so far allow us to cite the following theorem due to Ambrosio, Gigli,
Savaré regarding the existence of gradient flows.

1.5.3 Theorem (Existence of EVI gradient flows) Let (X,d) be a Polish metric space and ¢ : X —
R U {400} be a lower semi-continuous functional with proper effective domain dom ¢. Assume
that ® defined in (1.64) satisfies the following property:
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(CON)  For every triple of points M, x,x; € dom ¢ there exists a curve 7y : [0,1] — X with end-points
Y(0) = x, ¥(1) = xq such that ®(t,M,-) is (T~ + A)-convex along <y for every T > 0 with
% > —min {0, A}.
Then the following statements hold:
(i)  For every discrete initial datum M? = uy € dom ¢ and every time step T > 0 with 1+ TA > 0
there exists a discrete minimizing movement (M), cy in dom ¢.
(i) The corresponding discrete solutions M, converge compactly to a limit curveu € AC
as (T N 0).
(i) The limit curve u is the unique gradient flow in the EVI sense, starting from .
(iv)  Forevery T > 0 there exists a constant C, 1 > 0 such that the following error estimate holds:

(0, +00), X)

loc

d(u(t), M (t)) < C, r[9¢| (ug)t VYt € [0,T].

A proof of this theorem may be found in Chapter 5 of [3]. For a more accessible sketch of
proof see also Theorem 3.25 in [2].

Finally, we mention a geometrical class of metric spaces in which the property (CON) seems
to be very natural.

1.5.4 Remark (Non-positively curved geodesic spaces) ~ We call a metric space (X, d) geodesic space
if for every pair of points x, x; € X there exists a constant-speed geodesic y with end-points
7(0) = xp, 7(1) = x1.
Then a geodesic space is said to be non-positively curved (NPC) in the sense of Alexandrov if for
every constant speed geodesic y and every point x € X the following inequality holds:

d?(y(t),x) < (1= Hd?(y(0),x) + td?(y(1),x) —t(1 — Hd?(y(0),y(1))  Vte[0,1]. (1.66)

Clearly, above inequality holds precisely when the functional %d 2(-,x) is l-convex along 7.

Now assume that a geodesically A-convex functional ¢ : X — R U {+o0} on an NPC space
(X, d) is given and fix T > 0. Then for every pair of points xy, x; € X there exists a geodesic
7 with end-points y(0) = xq, ¥(1) = xq such that (1.65) holds. Therefore, we may add the
inequalities (1.66) multiplied by 21_1 and (1.65) up to obtain that the functional ®(7, M, -) is
(t~! + A)-convex along <. Thus, in NPC spaces geodesics seem to be the natural choice of
curves required in (CON).

However, it turns out that Wasserstein spaces over R" do not satisfy (1.66). Hence, a different
class of curves has to be considered in such spaces.

More information regarding NPC spaces and the geometry of metric spaces may be found
in Papadopoulos [44] or in Burago, Burago, Ivanov [19].
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2.1.1

Gradient Flows in Wasserstein Spaces

The Kantorovich Transportation Problem

Our starting point in this chapter is the Kantorovich transportation problem.

Recall that for any two given measurable spaces (X1, A;) and (X,, Ay), (X7 x X5, A1 ® Ay)
denotes the product measurable space equipped with the tensor-product o-algebra A ® A, i.e.
the o-algebra on X; x X, generated by A; x A,. Since the projections 77’ : X1 x X, —» X;, i €
{1,2} are measurable maps, we can consider the pushforward 7[1;0 = oo (rth) - of an arbitrary
measure ¢ on (X; x X5, A; ® A,), which then induces a measure on (X;, A;).

—— Notation
For any two probability measures y; on (X;, A1) and y, on (X5, A,) we denote by IT(u1, p5)
the set of all probability measures ¢ on (X; x X5, A; ® A,) such that 7Ti0 = p; fori € {1,2}.

Definition (Kantorovich problem) Let (Xq, Aq, t1) and (X5, Ay, ji») be two measure spaces
and assume that there is given a measurable map / : X; x X; = R{ U {+c0}. The elements
of Il(ytq, o) are called admissible plans (of transportation). We say that 0,,,;,, € I1(yy, o)
is an optimal plan (of transportation) if o,;, minimizes the functional

K(lﬁr}iz,(f) = f]’ldU (= RO U {400},
X1xXo

ie. K(py, M2, Omin) = infoeriqu,uy) K(#1, 12, 0). The map h is called cost function of the
Kantorovich problem (2.1).

It is clear that there always exists an admissible plan for the Kantorovich problem since the
product measure i1 x i, belongs to I1(3q, p2). However, note thatinf, ey, ) K(p1, pi2, o)
need not be finite. Nevertheless, the Kantorovich problem has a solution under rather gen-
eral assumptions:

Theorem  For any two Radon probability measures yy and p, on Tychonoff spaces (X, 1) and
(Xa, J5), and any lower semi-continuous cost function h : X x X5 — R U {+0c0} the Kantorovich
problem admits an optimal plan.

The proof of this result relies heavily on the fact that weak convergence of measures is closely
related to the concept of uniformly tight measures, introduced in Section A.4 of Appendix A.

Lemma Let (y;)ic; and (v;);eq be uniformly tight families of Radon probability measures on
topological spaces (X1, 7{) and (X, j;). Then the set Uie[ II(p;, v;) is uniformly tight.

Proof For every ¢ > 0 there exist compact sets K; C X; such that y;(X; \ K;) < €/2 and
v;(X5 \ Ky) < /2 for every i € I. Therefore, we have

7i((X1 % Xp) \ (Ky x Kp) = 0 (1) 7 (X4 N Kp) 0 ()7 06\ Ky)) <
<o (7)) X \NKD) + 0y (72) T (Xa \ Kp)) =
= 1oy (X \ Ky) + m20;(Xp \ Kp) = (X3 \ Ky) + ;X \ Kyp) < ¢
uniformly forall o; € Il(y;, v;), i € I. Clearly, Kq xKj; is compact in X x X5, due to Tychonoff’s

theorem.

The following result (cf. Theorem 8.6.7 in [12]) shows that one implication of Prokhorov’s
theorem (cf. Theorem A.4.7 in Appendix A) also holds under the more general assumption that
the underlying space is merely Tychonoff.

@.1)
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Lemma Let N be a uniformly tight family of non-negative Radon measures on a Tychonoff space
(X, I). If N is uniformly bounded in total variation, then the closure of N in the weak-* topology
o (Cp(X), Cp (X)) is compact and can be represented as a family of non-negative Radon measures.

Proof We consider N as a linear subspace of the topological dual space C{ (X). As N is
uniformly bounded in total variation, it is also bounded in C| (X). Thus, we can invoke the
Banach-Alaoglu theorem to infer that the closure of N is compact in C{ (X) with respect to the
weak-* topology ¢ (C},(X), C, (X)).

Now let (0;);e; be a net in N such that (0;);c; converges weakly to some functional F in
C(X). We have to show that F can be represented by a non-negative Radon measure. At
this point the uniform tightness of N comes into play: For every ¢ > 0 there exists a compact
set K, C X such that [c|(KS) < ¢ for all o € N. Thus

F(f)| = im ([ £ doy)| < limsup | [Fdo| <elfl, V€ CoX)if] =0

iel Ke icl Ke €
shows that condition (RAD) in Theorem A.3.5 is satisfied. Moreover, the functional F is pos-
itive, i.e. F(f) > Ofor all f € C,(X; xX5), f = 0 since every o;, i € I depicts a positive
functional in C[ (X). Therefore, F is represented by some non-negative Radon measure
on X and ¢; % o, i.e.

1ljé?ifdai =ifda Vf € Cp(X).

Proof of Theorem 2.1.2  First observe that the projections i i e {1,2} separate points on
the product space X; x X,. Hence, X; x X, inherits the Tychonoff property from the spaces
X1 and Xj. Clearly, for every o € I1(yy, 1) we have total variation

|‘1/l|(X1 X Xz) = ]/I(Xl X Xz) =1.

Hence, IT(1, p12) is bounded in C; (X; x X,). Moreover, [1(p, ji5) is uniformly tight since
the Radon property assures that each y; and y; is (uniformly) tight and we may invoke
Lemma 2.1.3. As a result, Lemma 2.1.4 implies that I1(y, #,) has compact closure in the
weak-* topology ¢ (C}, (X7 x X5), Cp (X7 x X5)).

Now we have to show that I1(j4, y) is closed and therefore compact in C[ (X; x X;). Let
(07);e1 be anetinI1(pq, yy) such that (0;),;c; converges weakly to some non-negative Radon
measure 0, i.e.

lime; [fdo; = [fdo  Vf € Cp(Xy x Xp).
X1xX5 X1xXo

In particular, we may choose f = 1in (2.2) to observe that ¢ (X; x X;) = 1. This shows that
0 is a probability measure.

Since the projections 77! and 772 are continuous maps, we have

f.fdyjzllié?(f'fdniai) :lljéxll(ffonfdai) :ffonfda:ffdng;n Vf € Cp(X))

X; X; X, xX, X %X X;

forj € {1,2}. Hence, 1 and 7'(1 o represent the same functional in C];(Xj). Thus, Theorem

A3.5 implies that Hi = 711(7 on X; for j € {1,2}. We conclude that ¢ belongs to I1(yq, y»),
which shows that I1(yq, p5) is compact with respect to the weak-* topology.

Finally, it remains to prove that the functional

2.2)
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H(,”’lf Ho) — R

o — K(py, piz, 0)

is lower semi-continuous on I1(jq, ) with respect to the weak-* topology. Once this is
shown, it is easy to see that K(y1, ji», ) admits a minimum on the compact set IT(pq, #5)
(see a.e. Theorem 7.3.1 in [36]).

In case, the lower semi-continuous cost function / is bounded, Proposition A.4.5.ii immedi-
ately implies

liglianfj hdg> [hdo Vo €, ),
X1xX5 X1xX>o

which is exactly the lower semi-continuity of K(pq, pto, *).

In the general situation, let (h,,),cn be a sequence of bounded functions /,, := min(h, n).
Apparently, we have

liryrlixnfhn () = min(lilérl)@fh(y),n) > min(h(x),n) = h,(x) Vx € X; x Xy, Vn €N,

which implies the lower semi-continuity of each &,,. Since we have already observed that
the functionals

K, (o) = fhnda Vo € Tl(py, pp), n € N
X1xXo

are lower semi-continuous for bounded cost functions /,,, we can invoke monotone conver-
gence to write K (1, pt, ) as

Ky, 1p,0) = f sup,, oyl do = sup, j h,do Vo e Il(uq, ps).
X xX5 X1xXp

Hence, lower semi-continuity of K(q, i, -) follows. [ ]

Now we bring up an important relationship of the Kantorovich problem and its dual prob-
lem.

Remark (Kantorovich duality)  In the setting of Definition 2.1.1, we formulate the related dual
problem as follows: Consider the functional

Ju,v, @, ¢) = f pdu + f pdv Y(p, ) € Ll(Xl,y,R) X Ll(XZ,V,R).
X1 Xo

Then a pair (@, ) in the set
@, = {(¢, ) € LY (X1, 1, R) x LY (Xp, v, R) : @(x1) + 9(xp) < h(xq, %)}

is called optimal if [ (u, v, §, ) = SUP (, e, TG, v, ,9).

Now the Kantorovich duality asserts that under certain conditions the optimal value of the
functional K equals the optimal value of . The earliest result of such an equality goes back
to Kantorovich’s seminal paper [32]. Indeed, the dual problem is vividly inspired by linear
programming where duality is well understood. However, the class of spaces, for which
equality between the Kantorovich and its dual problem is archived, is considerably large
(see a.e. a recent series of papers [7], [8], [9], [10] by Beiglbock, Schachermayer and Léonard).

Here we cite a version due to D. Edwards which admits a rather simple proof (cf. Theorem
4.1 in [28]):
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Let h: Xy x Xy = R U {400} be a lower semi-continuous cost function. Then

M 1, ) K(P1, 12, 0) = SUP 0o TV, 9, ). (23)
Note that the value on the right-hand side of (2.3) need not be attained in ®;, and the value
+o0 is not excluded.
The statement also holds for other function classes than ®;,. For instance, one may consider

¥y, = {(g, ) € BL(Xy) x By (Xp) : ¢(x1) + P(x3) < h(xqy, %)},

where By (X;) denotes all bounded Borel measurable real-valued functions on X;, for i €
{1,2}. Then one may invoke monotone convergence to obtain an analogous result (cf. Corollary
3.2in [29]):
Let h: Xq x Xy = R U {400} be a lower semi-continuous cost function. Then

min(TEH(],t],],tz) K(}’lll l’l2/ 0’) = Sup(q)’lp)e\yh ](,u/ v, §0/ lp) (24)
At the end of this section, we mention the Monge problem, a transportation problem closely
related to the one of Kantorovich.
Remark (Monge Problem)  In the setting of the Kontorovich problem, consider two measure
spaces (X1, Ay, p1) and (X5, Ay, pp) and let b @ Xy x X, —» R} U {+o0} be a measurable
cost function. We denote by T(pq, jt,) the class of all measurable mapst : X; — X, with
pushforward t, 1 = y,. The elements in T(yq, ) are called admissible transport maps.
A transport map t,,;, € T(pq, pp) is called optimal if it minimizes the Monge problem

My, pio, ) = fh(x,t(x)) dyy (x) € Ry U {+00}, (2.5)

X3

ie. M(py, po bmin) = infiet (g, 1) M(p1, pio, 1)

It is clear, that every given transport map t.,;, € T(yq, #») induces an admissible plan in
the set I1(j1, ptp) of the corresponding Kantorovich problem by means of the pushforward
(d,¢),p1. However, unlike the Kantorovich problem, the Monge problem may not admit
an optimal solution in even very simple settings.

For example, one may consider X; = X, = [-1,1]

with the quadratic cost function h(xq,x,) = |x; — x2|2 ~ 4
and measures piq = 8y, Hp = 271(6_1 + 61). Then ~ -

I1(p1, 4o) consists only of one admissible plan o = N

2-1 (6(0,-1) + 60,1))- Hence, the Kantorovich prob- \\v/

lem admits a unique solution. 7

On the other hand, there exists no admissible trans-

portmapt € T(yq, ) in the corresponding Monge | ! }
problem since ¢ would be required to take values at 0

+1 at the same time (see Figure 2.1). Figure 2.1 When y, charges single points,
a single-valued transport map ¢ may not exist.

The key argument in the example given above is
the fact that the measure y/; gives mass to a single
point. If one avoids such situations, one can ex-

This means that the Monge problem does not
admit any split of mass, whereas mass splitting
transport plans are generally admissible in the
corresponding Kantorovich problem.

pect results on the existence of an optimal transport
map.

We cite the following theorem due to Brennier [I5] and McCann [40]. To this aim, recall
that every convex function ¢ : R" — R is locally Lipschitz continuous. In particular, the
coordinate functions (pi, i € {1,...n} are absolutely continuous on every compact interval
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[a,b] C R. Therefore, Fact A.2.5.i implies that the gradient V¢ exists A-a.e. in R”. Moreover,
we denote by ¢* (x) = SUP, e {(x,y) — @)} the convex conjugate of ¢.

Theorem (Brennier) Let puq and i, be two Borel probability measures on R such that |-> €
Ll(R”,yi, R) for i € {1,2} and py(B) = 0 for every A,-null set B € B(R"). Consider the

quadratic cost function h : R" x R" — RJ, h(x1,x5) = |xq — x,|*. Then the following statements
hold:

There exists a Borel measurable transport map t € T(uy, pp), such that t = V¢ for some convex
function ¢ : R" — R. The transport map t is uniquely determined up a y-null set in R".

t = Vo is the unique optimal transport map of the corresponding Monge problem.

Under the additional assumption that pi,(B) = 0 for every A,-null set B € B3.(R"), there exists a
map ¢ € T(uy, up) with ¢ = Vo* such that Vp* o Vo = 1d pq-a.e. in R" and Vo o Vp* = Id
Up-a.e. in R™.

For a proof see a.e. Theorem 2.12 in Villani [46].

The Structure of Wasserstein Spaces

Consider a Radon probability measure y on a metric space (X,d) and set dy(x) =d(x,y)
for x,y € X. ltis clear that in the case that 4, belongs to LP (X, u, R) for some y, € X, the
triangle inequality

dy(x) =d(x,y) < d(x,y0) +dY,Yo) Vx,y € X

implies d, € LP(y, X, R) forall y € X. This justifies the following notation.

—— Notation
Given a metric space (X,d), PP (X) denotes the set of all Radon probability measures y such
that x — d(x,y,) belongs to L¥ (X, u, R) for some y, € X. The set 27 (X) does not depend
on the choice of yy € X.

The set PP (X) can be equipped with a certain family of metrics. The idea is to consider the
Kantorovich problem (2.1) with the metric d or, more generally, d”, p > 1 as cost functions.
As every metric space is Tychonoff, there always exists an optimal plan.

Definition Let (X, d) be a metric space. Then for every p > 1 the quantity

1/p
Wyt v) = infoerigy ([d7 () doey)) Vi, v € PP(X)
XxX

is called Wasserstein distance or Kantorovich distance of order p on PP (X). The space
(;Df (X)), Wp) is called Wasserstein space of order p over X.

The fact that Wp defines a metric on Qf (X) for all p > 1 is not completely trivial.
Proposition Let (X, d) be a metric space. Then for every p > 1 the Wasserstein distance W,
defines a metric on PF (X).

For the verification that W, satisfies the triangle inequality, we need the following lemma
which assures that certain compatible measures can be “glued together”.

Lemma (Coupling)  Let X1, X5, X5 be Tychonoff spaces and assume, there are two Radon proba-
bility measures oy 5 and o, 5 on the product spaces Xy x X, and X, x X5 with projections 272 :
X x Xy = Xy and 2372 : X5 x X5 — X, such that

1,22 _ 232
7T*(7—1,2 = 7'[*0—2,3.

(2.6)
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Then on the product space Xy x X, x X5 there exists a Radon probability measure  with projections
2 Xy x Xy x X5 = Xy x Xy and w23 : Xg x Xy x X5 — Xy x X5 such that

iy =0y, and 23y = 0y .
Proof In the first step we assume that the spaces X;, X5, X3 are compact. Consider the
linear subspace
C:={f(x1,x) +8(xp,x3) : f € C(X1 xX3),8 € C(Xp x X3)} C C(Xy x X5 x X3),

where we can define the linear functional

L(f+9):= _[fdfﬁ,z + ffdaz,3 V(f+g) eC.

X1 xX5 XoxX3

We have to assure that L is well-defined. To this aim, let f +¢ and f +§ be two representatives
of the same element in C, i.e.

fx,x0) + g(xa,x3) = f(x1,%7) + §(x0,X3).

Then f —f does not depend on x; and we can write ¢ (x,) = f(x1,x5) —f(xl, X5). This means

ff —fd‘?'l,z = f pdoy, = f pdoy3 = ff —fd02,3,

X1xX5 X1xX>o XoxX3 XoxX3

which implies

Lf+8)—Lf+2) = [f=fdo,+ [g-gdoys = [f—f+g—gdos =0.
X1xXp X2><X3 XZXX3
Hence, L is well-defined.

Next, we show that the linear functional L is bounded: For any (f+g) € Csuchthatf+g <1
we have

fx1,%) +supg(x,,x3) <1 and (x5, x3) —supg(xp,x3) < 0.
X3EX3 xX3EX3

Thus, we obtain

f(x1,x2) +8(x2,x3) = f(x1,Xp) +supg(xp,x3) + g(xp,x3) —supg(xy,x3) < 1.
xX3EX3 xX3EX3
Together with L(1) = 1, this estimate implies that ||L|| = SUP| o <1 L(f +¢g) =1, which
means that L is a contraction. b

Now we can invoke (a corollary of) the Hahn-Banach theorem to extend L to a linear functional
£ on C(X; x X, x X3) with norm [|£]| = 1. By virtue of Theorem A.3.3, the functional £ can
be represented by some unique Radon measure v with total variation [v[(X; x X, x X3) = 1.
Since £(1) = L(1) = 1, it is clear that v depicts a Radon probability measure.

Finally, we obtain

jfd‘fl,z = L(f) = L(f o 7'[1’2) = J‘f orrl2dy = ff o dT[:'zl/ Vf S C(X1 X X2)
X1 xX5 X1xXpoxXg X1xX,

and

fgdazs =L(g) =L(gon??) = jg or?3dv = fg odn?3y Vg e C(Xyx X3).
XoxX3 X1xXoxX3 XoxX3

(2.7.2)

(2.7.b)



41 GRADIENT FLOWS IN WASSERSTEIN SPACES

Clearly, (2.7) implies that both ¢y 5 and 71}?v, as well as ¢ 5 and 7723V represent the same

functionals in C'(X; x X5) and C'(X, x X3), respectively. Due to Theorem A.3.3, we infer
o1, =nl2v and  0p3 =23y,

which proofs the existence of the required coupling in the compact case.

T
7l 12 1,22 X 23,2 23 23,3 X

12
Xq 2
n
L L
! BXy x X, Iz BX, x BX3 >
v
BXq - /},2 BX> - /},2 BX3

PXq x BX5 x pX3
Figure 2.2 The underlying projections and embeddings of Lemma 2.2.3.

We turn now to the general case: Since the measures ¢ , and ¢, 5 are Radon, we may assume
that the spaces Xy, X,, X3 may be represented as countable unions of compact sets: Indeed,
there exists a sequence (K,*) _ - of compact sets K> C X; x X; such that

1
012((X1 x X) \ K, < - Vn € N.

Setting K2 := |, .y K%, this immediately implies that ¢y 5(K1?) = 07 ,(X; x X5). In
particular, the measure 07 , does not give any mass to sets in (K2)¢. As countable union
of measurable sets, K2 belongs to B.(X; x X;). Repeating this construction for the Radon
measure 0, 3 on the space X, x X3, one also obtains a set K22 € B.(X,xX3) with 0, 5(K?3) =
02,3(Xp x X3).

Now we consider the Stone-Cech compactifications fX; with continuous embeddings ¢; :
X; — BX; fori € {1,2,3} (cf. also with Example A.3.6 in Appendix A). The projections 1?71,
12712 2373 and therefore also the compositions 11012711, 1012712, 13023713, are continuous
maps. Thus, the set

K' =1 o V271 (K12) = 4y 0 1'2711(U Kiz) = U (Ll o 1'2711(K7}'2))

neN neN
turns out to be Borel in the space 8X;. Similarly, we obtain that K2 := 1, o 127r2(K12) and
K3 := I3 0 23713 (K23) belong to B.(8X;) and B (BX3), respectively. Since the measures o ,
and 0, 3 are concentrated on the Borel sets 171 (K1) x 151 (K?) and 15 (K?) x 151 (K3), we can
extend these two Radon measures to fX; x BX, and BX, x fX3 by the formulas
of,(B) = 112(Bn (K1 xK?) VB e B(BX; x pX)
and

of (B) = 23(BN (K2xK®) VB e B(BX, x fXa),

where 112(x1,xp) = (11(x1), 12(x2)) and 123 (xp,x3) = (1a(xp), 13(x3)). It is obvious that
0'{3 , and Uf 5 are again Radon probability measures on the compact spaces X; x X, and
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BX> x pX3. Hence, we can appeal to the compact case in the first part of the proof to obtain
a Radon probability measure v# on fX; x BX, x X5, where the projections

757 BXy x PXp x X5 = BXy x pXy  and i1 Xy x Xy x BX5 = PX; x fX3

induce the pushforwards

0’52 = i2uP and 053 = 23vP. (2.8)

As a result, we have
VP(KY x K2 x BX3) = mi2vP (K1 x K?) = of (K1 xK?) =1
and

vB(BXy x K2 x K3) = m22vP (K2 x K%) = 0§, (K2 x K%) =1,

which shows that v# is concentrated on K! x K? x K3. Thus, the restriction v| K2
induces a Radon probability measure with the required pushforwards on X; x X, x X3. ]

Proof of Proposition 2.2.2  We have to check that for every p > 1 the Wasserstein distance
W, satisfies the axioms of a metric on the set PF(X):

First, to infer that Wp takes only values in R}, it suffices to show that (x,y) — d(x,y) belongs
to LP(X x X, 7, R) for every choice of o € Iy, v). This follows from the estimate

1 1 1 P 1 1
wdP ) < (Ed(x,yo) + zd(yo,y)> < 547 yo) + 54" (o, ), 2.9)

where we used the convexity of t — t”. Now (2.9) immediately implies

f dP(x,y)do(x,y) < 2Pt f dP (x,yo) do (x,y) +2°71 f av(yo,y)do(x,y) =

XxX XxX XxX

=pr-1 f dP (et (x,y),y0) do(x,y) + 2p-1 f dP (yo, m2(x,y)) do(x,y) =
XxX XxX

=r-1 f ar (x,yg) dp(x) + or-1 jd?’(yo,y) dv(y) < +oo.
X X

Clearly, we have W, (u,v) = Wp( U, v) by definition of (2.6).

Next, we show that y = v precisely when W, (y, v) = 0. In fact, the pushforward g, under
the diagonal embedding g : x — (x, x) is an admissible plan since it satisfies 77} (g, 1) = (g ©
'), u = pfori € {1,2}. Asthe metricd vanishes on the diagonal D := {(x,y) € X x X : x =y}
and the measure g,y is concentrated on D, we obtain W, (u, 1) = 0.

On the other hand, Wp( u,v) = 0 implies, that the optimal plan c,,;, € II(p, v) (whose
existence is guaranteed by Theorem 2.1.2) is concentrated on the diagonal D. Thus

T O min(B) = Omin(P N (71 71(B)) =
Omin(P N (12)7Y(B)) = 1200 (B) = v(B)

u(B)

for all B € B(X).

Finally, it remains to show the triangle inequality: For any given measures jiq, yopiz €
PF(X), let oy , be an optimal plan in IT(y4, yp); likewise, let o, 5 be optimal in IT(p, pi3).
By virtue of Lemma 2.2.3, there exists a Radon probability measure # on the product space
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X x X x X with pushforwards 7}?y = ¢ , and 23y = 05 5. Since the projections in Fig-
ure 2.2 commute accordingly, this implies 7t/ = y; for all i € {1,2,3}. In particular, 71}y
belongs to I1(y4, pt3). Henceforth,

1/

1p p
W, (11, pt3) < (fd”(x1,x3)dﬂ,}'377(x1,x3)) = (fd”(xl,xg) d77(x1,x2,x3)> <
XxX XxXxX

1/p
< (f(d(xl,xz) +d(x2,x3))pd17(x1,x2,x3)> <
XxXxX
1/p 1/p
< (fd”(xl,xz)dn(xl,xpx@) + (fd”(xz,x3>d17(x1,x2,x3)) =
XxXxX XxXxX
1/p 1/p
= (jdp(xllxz)dal,z(xl/x2)> + <jdr’(x2,x3)d(72,3(x2,x3)) =
XxXxX XxXxX

= W, (u1, 12) + Wy (s, p13)- [ ]

Next we show two important estimates for the Wasserstein distances.
2.2.4 Proposition Let (X,d) be a metric space. Then for every p > 1 and all y,v € PP (X) we have
the following inequalities:
(i)  For every choice of p < q the estimate W, (u, v) < W, (, v) holds.
(i)  For every yo € X we have

1
+-=1
q

7p 1
W) <24 ([ Gy dlu = i) -
X

Proof The inequality in (i) follows readily from Hélder’s inequality: Due to Theorem 2.1.2,
there exists an optimal plan 0,,,;,, € I1(y, v) with respect to the cost function d7(x, y). There-
fore,

W, (n,v) < (fdp(x,w dtfmm(x,w)l/p <
XxX

= (.fl d‘Tmin(X,y)>1/(ﬁq) (jdpq(x,y) dUmin(x,y))l/(W)
XxX XX

=W,(w,v),

where f, § > 1 such that g = p§ and % + % =1
Concerning (ii), we define a measure ¢ on X x X by
0c(AxB)=u(ANB) —y*(ANB) + %17+(A)17‘(B) V(AxB) e B(X)® B(X),
where 77 := y — v with a unique Jordan decomposition y = n* —n~ and and a positive constant
ci=n"(X) =77(X) = (= )(X) =5 (X).

Due to the minimality property of the Jordan decomposition, we have y — ™ > 0. Together
with 0(X x X) =1, this implies that ¢ is a probability measure. Moreover, we have

c(BxX) =u(B)—nt(B)+nyt(B) = u(B) B e B(X)
and

c(XxB)=u(B)—n*t(B)+y (B) =v(B) B e BX).
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Hence, ¢ has the required pushforwards and belongs to I1(, v). Now recall that (2.9) im-
plies the estimate

dP (x,y0) < 2P71(dP (x,y0) + 47 (Yo, ). (2.10)
Thus,
(Wp(y,V))p < fd”(x,y) do(x,y) = 2.11.2)
XxX
1
= [dr e d(u-nt) + Eﬂ 4P (x,y) dy* (x) dy~(y) < 2.11b)
X XZ
p-1l p p + -
<2771 [ dP (o) + 4P (o, ) i () dp () < 2.11.0)
XZ
<27 ([P ye) dit ) + [ @ (o, dip ) = @.11.d)
X X
=2r-1 fd”(x,yo) d(yt +n7)(x) =2r71 f dP (x,yo) dlp — v|(x), (2.11.e)
X X
where we used Fubini’s theorem. [

Now we investigate a useful characterization of the Wasserstein distance W.
2.2.5 Theorem (Kantorovich-Rubinstein) Let (X, d) be a metric space. Then we have

Wy (p,v) :sup{jfd(y—v) :fELipl(X)} Vu,v e PHX).
X

The proof of this theorem relies heavily on the Kantorovich duality, introduced in Remark
2.1.5.

Proof In the first part of the proof we show the identity
Wy (p,v) = sup {fld(y —v):le (X)), I(x) —I(y) < d(x,y)}. (2.12)
X
To this aim, we may invoke (2.4) to obtain the inequality

sup { [1d(u = v) : 1€ Cp(X), 1(0) = Iy) < d(x,y)} < (2.132)
X
<sup{[fdu+ [gdv:f,g € Bu(X), f(0) +g) <Ay} = Wimv).  (213b)
X X
This means that for every ¢ > 0 there existf,g € B}, (X) with f (x) + g(y) < d(x,y) such that

Wipv) —e< [fdu+ [ gdv. (2.14)
X X

Now define a functionk : X - R, k(x) := infyeX {d(x,y) — g(y)}. Then the estimate
k(xg) — k(yo) = inf { sup {d(xp,x) —d(yo,y) — g(x) + gW}} <
xeX yEX

< sup{d(xo,y) —d (o, y)} < d(xg,Yo)
yeX

shows that |k(xg) — k(yg)| < d(xg,Y) for all xg,y9 € X. Thus, k belongs to Lip; (X). Fur-
thermore,
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f) <k(x) <d(x,x) —gx) =—-g(x) VxeX (2.15)

and the fact that f,g belong to 8,,(X) imply that k is bounded on X. In particular, (2.15)
shows that f(x) + g(y) < k(x) —k(y) for all x,y € X. Together with (2.14) and (2.13), this
inequality may be used to obtain

Wy (i, v) — € < jf dy + jgdv = ff(x) + g do(x,y) < fk(x) —k(y) do(x,y) =
X X XxX XxX

= [kdp— [kdv<sup{[fdu—v):f € Co(X), () = f ) S dx,p} < Wi(p,v),
X X X

where ¢ denotes an arbitrary admissible plan in II(y, v). This estimate shows (2.12) and
completes the first part of the proof.

Next observe that for every | € Lip; (X) and fixed y5 € X we have
10| < I(yg) + [1(x) = I(ye)| < 1(yg) + d(x,yp) Vx e X.

As j1,v belong to P!(X), this shows that +/ € L'(X, 1, R) N L}(X, v, R). In particular, the
pair (I, —I) belongs to the class ®,; as defined in Remark 2.1.5. Thus, (2.12) and (2.3) imply
the final estimate

Wi (p,v) = sup fld(y —v):l€ Gu(X), I(x) = I(y) < d(x,y)} =
X

< sup

Wasserstein spaces inherit to a great extend the topological structure of the underlying met-
ric space:

2.2.6 Proposition Let (X,d) beametric space. Then foreveryp > 1the Wasserstein space (ﬁf (X), Wp)
inherits the following properties from X:

(i)  The space (PP (X), Wp) is complete if (X, d) is complete.
(i)  The space (PF (X), W,) is separable if (X, d) is separable.

In particular, the Wasserstein space over a Polish metric space is again Polish.

The key ingredient in the proof of (i) is the following lemma.

2.2.7 Lemma Let (X,d) be a complete metric space and p > 1. Then every Cauchy sequence in
(Pr(X), Wp) is tight.

For the proof of this lemma recall that in a complete metric space (X, d) a set K is compact,
precisely when K is closed and totally bounded, i.e. for every € > 0, K may be written as finite
union of of sets (K,,),,<n, K;, € K with diameter diam(K,,) < e.

Proof Denote by (yt,),en @ Cauchy sequence in (L2/(X),W,). By virtue of Proposition
2.2.4., (1) ,en is also a Cauchy sequence with respect to W.

First, we show that for every e > 0 there exist finitely many points xy, ... xp in X such that
Hu(Boe(x1) U... UBpe(xpy)) >1—2¢  VneEN. (2.16)

To this end, let ¢ > 0 be given and fix N € N such that
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Wy (un, i) <€ VkeEN:k>N. (2.17)

Since N := {jtq, ... pin} is uniformly tight as finite family of Radon probability measures,
there exists a compact set K, C X such that ;(KS) < ¢ for all #; € N. The compactness of
K. implies that there exist finitely many points x4, ... x;; in X with

K c Bg(xl) U...U BE(xM) =:U.
Now define
U, = {x € X : dist(x,U) < &} C By, (x1) U ... U By (xp1)

and set ¢(x) = (1 — e~ Ldist(x, ll))J.r In case, that ¢ does not vanish at two points x,y € X,
the inverse triangle inequality implies

1 1
lp(x) —p(y)| = - |dist(x, U) — dist(y, U)| < Ed(x,y). (2.18)
On the other hand, if ¢(x) = 0, then d(x, U) > ¢. Therefore
1 1 1
pG) = pl =1 - -, W) < - (A W) —dw, W) < <dxy)  VYEX:p@) £0.  (219)
Together, (2.18) and (2.19) imply that ¢ is Lipschitz continuous with a Lipschitz constant
e~1. Henceforth, we may assume that ¢ belongs to Lip; (X). Moreover, ¢ is bounded such

that 1;; < ¢ < 1y;_. Thus, we may invoke the monotonicity of the integral and Theorem 2.2.5
to obtain

1
pn(Ue) 2 f ¢dp, = f ¢dui+ - (fesbdﬂn - fﬂ/)dyi) 2 (2:20.2)
X X X X
1 1
> [ i = ZWaGuy i) 2 i) = S Wi Gt 1) (2208)
X

for all i,n € N. We need to find an estimate for the right-hand side of (2.20): By choice of
K., we have

Uy > u(K)>1—¢ Yy € N. 2.21)

Moreover, we may choose i(n) := min {n, N} for every n € N in (2.20). Thus, (2.17) implies
that Wy (j1,,, i) < €2 for every n € N. Together with (2.20), this estimate and (2.21) result
in

2
yn(Ug)Zl—s—Zzl—Zs Vi eN,
which completes the first part of the proof.
In the second part of the proof we construct for every e > 0 a compact set S C X such that

1, (X \ S) < e: By virtue of the first part, for all k € N there exists a finite family of points

k ko
Xy, Xy, D X such that

P (XN (B ) U U By (3, ) <27%¢ - VneN.

Hence, we may set

S = ﬂ (Bz—k(xlf) U...U Bz_k(xllt/lk))/
keN
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to obtain that 1, (X \ S) < € for all # € N. It is clear that S is closed as intersection of
closed sets. Furthermore, for every 6 > 0 the set S is covered by the finite union B 5(x{‘) U
.U Bé(x]’f/[k), where k € N such that 275 < §. This shows that S is totally bounded and
therefore compact. "

The following proof is closely related to the arguments used in the proof of Theorem 2.1.2.

Proof of Proposition 2.2.6  Concerning (i), let (j1,,) ,en be a Cauchy sequence in (PF (X), Wp).
By virtue of Lemma 2.2.7, we may assume that (,,) ey is uniformly tight. Invoking Lemma
2.1.4, we obtain a subsequence (j,, )ren Of non-negative Radon measures, weakly converg-
ing to anon-negative Radon measure y on X. In particular this means that y(X) = p,, (X) =
1 for all k € N. Hence, y is also a probability measure. However, it is still unclear, whether
1 belongs to PP (X).

Now denote by 7, ,, the optimal plan in I1(p,,, pt,, ) for k,I € N such that

ko

W, (M ) = f dP(x,y) doy, . (X, Y).
XxX

Due to uniform tightness of (j, )rcn, Lemma 2.1.3 implies that for every I € N the family
(T4, ken is uniformly tight. Hence, for every choice of | € N, Lemma 2.1.4 may be applied
once more to extract a weakly converging subsequence (0, )i~ One may argue as above
to infer that the limit 0, is again a Radon probability measure on X x X.

. w* . .
In particular, Ty = O, implies

[fap=timy_ [fdu, =tim_ [forlde, , = [forlde,  VfeECyX)
X X XxX XxX

and

[fapy, =timy_ [fon?do, ,, = [forn?do, — VfECp(X).
X XxX XxX

Thus, one may apply Theorem A.3.5 to obtain y = 7l0, ,and p,, = n2o, ;- This means that

Ty, belongs to IT(y, Hn,) for every I € N.

Recall that we have already observed in the proof of Theorem 2.1.2 that Proposition A.4.5.ii

holds also for non-negative integrands without an upper bound since the functional ¢

[ XxX dP(x,y) do(x,y) arises as supremum of lower semi-continuous functionals, i.e
f dar(x,y)do(x,y) = SUPyen j min {N,d (x,)} do(x,y),

XxX XxX

by monotone convergence. Thus, we may use that ¢, is an admissible plan to infer for every
I € N that

(Wt 1) < [ P e, y) oy () < (2.222)
X1xX5
< lim inf f dar (x,y) doy, ,, (x,y) = liminf (Wp(ynk,ynl))r.] (2.22.b)
k— oo k—oco
X1xXo

Since (py,) ey is still a Cauchy sequence, for every ¢ > 0 there exists N, € N such that
Wp(‘unk,ynl) < eforallk, > N,. Together with (2.22), this implies lim;_, ., Wp(y,ynl) = 0.
Moreover, this shows p € LPF (X) since we can use (2.10) to obtain the estimate
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fd"’(x,yo)dy(x) = fd*’(x,yo) do,, (x,y) <
X X

<ot f dP (x,y) do, (x,y) +2°~! f d? (yo,y) do, (x,y) <
XxX XxX

<2 e+ [ dP (o, ) dpty, (1) < +o0
X

for arbitrary / > N,.
Finally, Wy, () < Wp( o ty,) + Wp( oy ) shows that the whole sequence (,),,en con-
verges to y with respect to the Wasserstein metric Wp. Hence, (@f (X)), Wp) is complete.

Now we turn to (ii): Let & > 0 and a measure y € L7 (X) be given. Due to our premise, there
exists a countable, dense subset D C X; fix xg € D. By absolute continuity of the integral
(see Lemma I.1.2) and the Radon property of 1, there exists a compact set K, in X with

fdp(xo,x) dpu(x) < eP. (2.23)
KC

By compactness of K., there exist finitely many points x4, ... Xy in D such that K, C B, (x1) U
.U BS(xN)' Via

Bi:=B.(x)\ [ JBc(x)) Vi<N
j<i
we obtain a finite covering of K, with disjoint sets By, ... By. Therefore, the function

) = [ %fxEKgﬁBi,
X0 lf.X$Kg,

is well-defined on X. In particular, we have d(a(x), x) < € for all x € K, since B; C B,(x;).
Together with (2.23), this implies

[ @@, dpeo = [ dP @), dpu) + [ dP @), %) dp) < (2.242)
X K, Ke

< [erdpco + [ dP(xo,x) dpx) < 267 (2.24.b)
K, K<

Clearly, the pushforward a, y is a probability measure on X. Moreover, a, ¢ is Radon as the
measure is concentrated on the compact set {x; : 0 < i < N}. Since

fd”(x,xo) da, p(x) = fdp(a(x),xo) du(x) < 8112?\?( {dP (x;,x9)} < 400,
% <

€

we infer that a, y belongs to P/ (X). Define g : X — X x X, B(x) = (a(x),x). Then B,u
depicts an admissible plan in IT(a,, ;1) and therefore (2.24) implies
1/

Wytap ) < (@ y) dﬁm(x,w)”p = ([# @), 0 dpeo) " < 2e. (2.25)
XxX X

This shows that the measure ;2 may be approximated in (2} (X), Wp) by measures &,y which
can be represented by Dirac measures in the form of

N
A p = Za,ﬁxi, a; = a, pu({x;}). (2.26)
i=0
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However, the set of all measures of the form (2.25) is still not countable. To this end, let
by, ... b be coefficients in Q such that |a; — b;| < € for all 0 < i < N. Then both (2.25) and

Proposition 2.2.4.ii imply

N
;0x, V) =
i=0

i=

N N N
(3 v ) = W30, 30 )
i= = =

N
1
<2l ( dP (x;, xo) |b; — ai|) P 4 <21/ max {d(x;,x0)} (Ne)YP 4 2.
i=1 =

This shows that the countable set of measures of the form

N
Zbiéxi' bi (S Q, X;i (S D, N e NO
i=0

is dense in (P?(X), Wp).

2.3 Towards the Existence of Gradient Flows in Wasserstein Spaces

In this section we invoke the minimizing movements scheme, introduced in Section 1.5, to
obtain an existence result of gradient flows in the EVI sense in the quadratic Wasserstein
space over R”. In order to simplify the existence theory to a great extend, we make the

following assumptions on the functional ¢:

—— Notation

From now on, ¢ denotes a non-negative, lower semi-continuous functional with proper
effective domain dom ¢ on the Wasserstein space (@rz(]R”), Wz)- Moreover, we will assume

that ¢ meets the following requirements:

(REQI) Every probability measure # € dom |d¢)| is absolutely continuous with respect to the Lebes-

gue measure A,, on R".

(REQ2) There exists a constant ¥ > 0 such that the functional ® (7, j1, -) defined in (1.64) admits at

least one minimum g, in P2 (R") for every choice of T € (0, ) and y € P?(R™").

2.3.1 Facts

() Note that, since R" depicts a Polish space, the class of Borel probability measures coincides
with the class of Radon probability measures on R". Nevertheless, we will stick with the

notation QE(R”) for consistency.

(i) Let (¢t¢) r<z be aminimizer as in (REQ2). Thenforall p, v € QE(R”) we obtain the estimate
1
P(v) — puy) = P(T, 1, v) — O(T, 4, ) + E(sz(yf,y) - Wi, w) =

1
> 5= (W3 (e i) = W3 (v, ) 2

1
> 5 (Wa e DWa iz, v) = Wo (v, i) = Waw, 1) (Wajug, 1) + Wa i, 1) 2
1
> _sz(,”'n V)(WZ(VT/}‘) + W2(1/,]l))‘

By a rearrangement of the terms in (2.27) we have

P(py) — Pp(v) < 1

Wo(pe,v) 7 E(Wz(”“”) +Wo(v, ) Vv € PR 1V # g
Tr

(2.27.2)
(2.27.b)
(2.27.¢)

(2.27.d)
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Now taking the limit superior (v — p,) in the inequality above yields

W (pe,
[0¢|(p7) < % <400 VTE(0,1), Vv eE PHR") 1 v # g

Hence, (REQI) implies that the minimizer () ;. is absolutely continuous with respect to
the Lebesgue measure A, on R".

As noted in Remark 1.5.4, the characterizing inequality (1.66) of NPC spaces, together with
geodesic Aconvexity of ¢, immediately implies that geodesics satisfy (CON) which is a key
assumption for the existence of gradient flows in the EVI sense. However, the following
example shows that geodesics may not be the right choice of interpolating curves in the
Wasserstein space (P2 (R™), W, ).

Example The Wasserstein space (@rz(Rz), Wz) is not an NPC space.

Proof Define the probability measures

1
Ho = §<5(1'1) + 5(5,3))’ (O/O)
0,-4)
=580 +0-53)), - . “

1
2
1 u(1/2) I
V= —(5(0,0) + 5(0,_4)). \
’ ol ey
Clearly, j; belongs to @rz(Rz) fori e (-1,1) (1,1) R2

{1,2,3}. Since all admissible plansin <
each of the sets T(pig, 1), (3o, v), Figure 2.3 For t = 1/2, the hnks- between the atoms of Trhe

measures /() and v represent an optimal plan of transportation
H(po, v) are concentrated on at most with respect to quadratic costs |- Note that the depicted optimal
four pOintS in R4/ eXpliCit computa- plan is not uniquely determined, due to particular symmetry of
tions of the distances are elementary the transport problem at t = 1/2.

and one obtains
W2 (po, 1) =40, W3 (g, v) =30, W3(up,v) = 30.

Moreover, one easily shows that

(8c1-6t1+26) + O(5-6t3-21)) vt e [0,1]

N =

u(t) =
depicts a constant-speed geodesic with end-points y(0) = g and p(1) = y; (see Figure 2.3).
Now

30 30 40  W2(ug,v)  W2(uy,v) W2, p)
2 . _ % o 2 2 _ 2
W3 (u(1/2),1) =40>20= 5 + 5 — 5 + 5 7]

shows that inequality (1.66) does not hold. q

In their seminal book [3] Ambrosio, Gigli, Savaré considered a different class of interpolating
curves in (QE(RZ), Wz), which is more promising. To this aim, we will make use of the
transport maps introduced in Remark 2.1.6.

Definition For i € {0,1} let y, 0; be in QE(R”) such that y « A,,. We denote by t";f the
optimal -a.e. uniquely determined transport map in T(y, 0;), such that

L% (x) — x 2dy(x) = W2 (u,0y). (2.28)
o

The existence of t; and validity of (2.28) is ensured by Theorem 2.1.7.
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The interpolating curve

o(s) = (1- s)t]i'o + st]‘jl)*‘u Vs € [0,1] (2.29)
in P2(R") is called generalized geodesic connecting ¢y and o with base point .

Exacting a convexity assumption along generalized geodesics, we are eventually able give
a relatively brief proof for existence of gradient flows in the EVI sense:

Theorem (Existence of gradient flows in the quadratic Wasserstein space) Let ¢ : ;@rz(R”) -
R U{+ 00} be a non-negative, lower semi-continuous functional with proper effective domain dom ¢.
Assume that ¢ satisfies (REQI), (REQ2) and the following property:

For every y € dom |0¢| and all 0y, 0y € dom ¢ the functional ¢ is h-convex along the generalized
geodesic o (s) connecting oy and o with base point y.

Then for every initial datum py € dom ¢ there exists a unique gradient flow p(s) in the sense of
(EVI), starting from lin(} u(s) = ug.
SN

Proof First, notice that the geodesic o (s) is well-defined since the base point of ¢ (s) belongs
to dom|9¢| and (REQI) assures that the optimal transport maps in (2.29) exist.

Next, (REQI) implies that for every T € (0, ) and discrete initial datum M 2 € dom ¢ there
exists a T-discrete minimizing movement (M), cy in ;Df(]R”), recursively defined by

M!:=min®(t,M!"1,M) VneN,
MEeP2(R")

where the functional ® is defined as in (1.64). Moreover, Fact 2.3.Lii yields that M < A,

n-1
for all n € Nj. Hence, the optimal transport maps ¢ := t]]\\/l/fz are well-defined for every
n € N, due to Theorem 2.1.7.

A basic inequality for the distance between y and o (s): Inserting definition (2.29) of the gener-
alized geodesic o (s) yields

2
W3 (p,0(s)) = ﬂ(l = )L (x) + sE7 (x) — x‘ du(x) = (2.30.a)
R‘H
2
= [[a =)t —x) +s(t71x) = x)[ dpc). (2.30.b)
R‘n

We may invoke the elementary identity (1.32) with respect to (R",|-|) to write the integral
in (2.30.b) in the form

2 2 2
f(l —9) ‘tlfo (x) — x‘ +s |t;{1 (x) — x| —s(1—s) |tﬂ”0(x) — (x)| dyu(x) = 2.31.2)
R’l
= (1= )W, 00) +sW(,00) —s(1 =) [ =y d(t0,t0) uxry).  (231b)
RIXR!

Since (t]‘f 0, t}i’ 1 )* p is an admissible plan in I1(cy, 07), we infer

flx —y? d(t50,67) p(x,y) < W3 (g, 07).
RMXRH

Together with (2.30) and (2.31), this inequality shows

W3 (1, 0(s)) < (1 =)W (p,00) + sW3(u, 1) — s(1 — ) W3 (0, 07) Vs e [0,1].  (2.32)
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A discrete version of (EVI) for the minimizing movements: Inserting Definition 1.5.2, our assump-
tion (SCON) implies

A
P(0(s) < (1 =95)P(0g) +s¢p(07) — Es(l —8)d%(0g, 1) < (1 =8)Pp(0y) + s¢p(0y).

Now adding this estimate and (2.32) multiplied by % up, yields

1
5z W2 (p,0(8)) + (0 (s)) < (1 —s) ( W2, 09) + ¢((70)>

1 1
s (szz(;ufl) + q>(01)> — sl - s)W3 (00, 01),
which may be written more compactly as
1
D(t,p1,0(5) < (1 =8)P(T, 4, 00) +sP(T, i, 07) — Es(l —5)W3 (0, 01) Vs € [0,1]. (2.33)

Choosing u :== M"™1, 0y := M in (2.33) and invoking the definition of the minimizing
movements (M), oy, we find that

(T, M1, M) < D(T, M1, 0(s)) <
_ _ 1
<A =9)@(t, M1, M") +s@(t,M" L, 0y) — Es(l —s)WZ(M", 0y).
Actually, the terms in this estimate may be rearranged such that
1
0< ®(t, M1, 0q) —@(t, M1, M) — 5o (- SYWZ(M",00)  Vse(0,1]. (234

Now taking the limit (s \ 0) in (2.34) implies

1

0< CI)(T,M;l_l,(Tl) — q)(T,M;l_llM?) 57

W3(M?,0y) Vo € dom¢. (2.35)

Inserting the definition of the functional @, this inequality may also be written as a discrete
analogue of (EVI):

1 1
52 (W2(M!,0q) —W2(M,0q)) < Po)—p(M?)—5-W3 (M}, 01) Voy €dom¢. (236)

A continuous version of (EVI) for the minimizing movements: In this step of the proof we move
towards a continuous version of (2.36). To this aim, we introduce the linear interpolant on
the interval (a,b] C R between two points x,y € R:

b—t t—a
I(a b](t) = _ax + my Vit e (ﬂ,b].

This notion allows us two define the following piecewise linear functions with respect to
the uniform partition P, of (0, +0) as introduced at the beginning of Section 1.5:

> n-1 n
Po(t) = Z MM iy V€ (0, +0);

n=

2 n— 1 2 n
W2(t,0) = ZIW MO WEMED 1y e (0,400), Vo € dom .

Clearly, the function WTZ(-, ) is smooth on each interval . Therefore, we may write
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1
SW2,0) = < (W3(M2,0) - W3 (ML 0))  VEELl, VneN.

Together with (2.36) and choosing ¢ = o, this identity yields

%%Wf(t,n) < ¢(o) —p(MF) — %W%(M’Tq,a) <o) —¢p(MF") teRT\P. (237
Introducing the residual
FRe) = o) = p(M7) = " p(Mpt) + =D (M) - () =
= T ety + DT Ty = T (gt - g(ua)),
inequality (2.37) becomes
%%wgu,m < Pploy) — P (D) + %RT(t) te RF\ P, Vo € dom ¢. (2.38)

Finally, note that the residual R, is non-negative since setting oy = M ?‘1 in (2.36) immedi-
ately implies that ¢(M”~1) — ¢(M") > 0, in case that M"~! € dom ¢.

Comparison of two different time steps: Now we introduce a different time step 7 > 0 with
corresponding minimizing movements (M ;’7‘) ren on the partition P”. For comparison with
(M),,en, we consider yet another piecewise linear interpolating function, namely

> 2 k 2 k-1
W2 (ts) = Y LM VM ) s € (0, 4+00). (2.39)
M = 1}7

Unwrapping the definitions of the terms in (2.39), we observe for t € [, s € }’7‘ that

s— =Dy W2(t, M) = (2.40.2)

kn —
Wf/”(t,s) = ’777 SWf(t,Mj;) +

s—(k—-1ny (m-1T-—

t kn — t— -1
= W (M M) s

SWa(MILME) + (2400)

U U T
kn—s nt—t 3 s—(k-Lny t—m-Dt 3
= P WH(METL M) + v : - WZ (M2, My~ = (2.40.¢)
=T by iy ¢ EE T DTy ety oz g (2.40.d)
- T nA\Tt T nA\TT T e

Obviously, this computation shows that we have Wflﬁ(t,s) = W;?,T(s, t) for all t,s > 0. Fur-
thermore, we may choose t = nt, s = kz in (2.40) to infer that Wf’”(nr, k) = W22 (M’;,Mf; )
forallk,n € N.
Now we take a convex combination of (2.38) on I ]’7‘ :Fixsel }’7‘ ; then adding the two inequal-
ities
kn—s

"7 7

(2.38) with ¢ = M¥, multiplied by

s—(k—=1)y
7

(2.38) witho =M Z]‘_l, multiplied by

up, yields
19 (kn—s_ , o S—(k=Dn_ 5 k1

kn—s
< WTqb(Mf]‘) -

s—(k—1y -1 1
P — ¢ + SR (D),
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which may be also written more clearly as

1
EEW%U(t,s) S ¢y(8) = ¢ () + 5R(D  Vhs € (0, +00) 1t & Pr. (2.41)

Moreover, reversing the roles of 7 and # in (2.41) and recalling the identity W%/ y(£8) =
W; (s, 1), we also obtain

)
53 W2, (55) < @r(h) = ¢y (s) + R,7(s) Vt,s € (0,+) :s & B, (2.42)

Thus, summing (2.41) and (2.42) results in

%WZ (t,8) + aWZ ,(£:8) S Re(h) + Ry (s) Vt,s € (0,+0) 1t E P, s & Py

Setting t = s in this inequality and applying the chain rule, we eventually arrive at

%WZ (t,£) < R (8) + R, (t) Vt e (0,+0) \ (P UP,). (2.43)

Since all terms in (2.43) are continuous outside the A-null set P, U P,, we may write (2.43) in
an integrated form, which results in

T
W2, (T,T) W2, (0,0) [ R, +R,dA VT € (0, +c0). (2.44)
0

To establish an estimate for the right-hand side of this inequality, observe that, by definition
of R;, we have for every N € N

de/\ ZfR IZV: (M2 = p(m2)) | T_td/ut)

nl[n

N
< ) TP —¢(M7)) = 7 (p(M7) — p(MY)).
n=1
In particular, the non-negativity of the functional ¢ implies
[ RedA < Tg(M0). (2.45)
0
Since an analogous estimate also holds for 7, (2.44) ultimately becomes
W2 (T, T) < W2 (0,0) + 7p(M?) +¢p(MD) VT € (0, +e0). (2.46)
Convergence of the minimizing movements: Choosing ¢y = M?‘l in (2.36) yields
1
< SWEMPEMETY) S p(MET!) — (M) < ¢(MPTY) - VnEN.
This estimate immediately implies ¢(M”) < ¢p(M?) for all n € N, as well as
Wi (M2,MP7) < ¢(M?) and W3 (M), M)~') < (M) VneN. (2.47)

We need an appropriate estimate for the interpolating function W ,,. Therefore, we observe
that, in general, we have
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x/\ySI(’;’,Z](t)SxVy vVt € (a,b], Vx,y € R.
Assuming for the moment that x < y, these bounds imply
y=I, 0@ STy + =0+ (I, 00 —x) =20 O+ @y -2x)  Vie @bl
In the general situation, this estimate becomes

xVy <2+ (xvy =2 Ay)  VieE @bl (2.48)

Recall that the elementary inequality (2.9) with p = 2 immediately yields the following
variant of the reverse triangle inequality for our minimizing movements:

W2(M?P=L, o) v WE(M?,0) =2 (WML, 0) AWZ(M?,0)) <2WZ (M1, M")  (2.49)

for all ¢ € dom ¢ and k,n € N. Similarly,
W3 (M2, ME1) v WR (M2, ME) =2 (W2 (M2, ME-1) A W2 (M2, ME)) < (250a)
< 2WZ (M, M) (2.50.b)

for all k,n € N. Now consider P, U P, as refinement of both partitions P, and P, and
assume thatt € I’ N1 1’7‘ Then combining (2.48) with (2.50) implies

W,?(TIT,M}};), I/\/Tz(n'r,M,’;*1

W2 (nT, k) = " (k) < (2.51.2)
<S2WZ, (nT, ) + W2 (nT, Mf™) v W2 (nt, M)7) — (2.51.b)
= 2(W2(nt,ME-1) A W2(nT,ME)) = 2.51.c)
=2WZ, (nT, 1) + W3 (M2, M;~") v W3 (M2, Mf) — (2.51.d)
—2(W3(M2,MEY) AWZ (M2, ME)) < (251.¢)
<2WZ (nT, ) + 2W3 (M1, MF). @519

It remains to establish an estimate for the first term in (2.51.f): Repeating the same argument
as before, we may use (2.48) together with (2.49) to obtain for o € {M ,]7‘_1, M ]’1‘ } that

, W2 (MZ,0) (n1) <

W?(I’IT, o) = 112]22(1\/1?*1,(7)
<2W2(t o) + W2 (MIL o) v W2(M!", o) -2 (wzz(Mg—l,a) A sz(Mg,a)) <
<2W2(t,0) + 2WZ(MI=1, M)

This estimate readily implies

ki —t t—(k—1)y
W2 (nt,t) = — W2(nt,M}) + ————=WZ(nt,Mf) < (2.52.2)
K=t vk o E T K= DT et ) — .
= 7 T(t’ 17)+ - 5 T(t’Mq)+ Z(MT ’MT)_ (2.52.b)
2 k 2 k-1
- ZII;W”EMW WO (1) 4 2WZ(METY, M) = 2W2 (1 ) + 2WR(METL M), (2.52.0)

Putting together (2.51) and (2.52), we finally arrive at

W2 (T, ki) SAWZ (5 1) + 4WF(M7P~H, MP) +2W3 (M~ M) Viell Nl (253)
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Using (2.47), the fact that the discrete solutions M, A_/I,1 are constant on each I’ N I é‘ and
recalling from the beginning of the previous step the identity W2 (M”, M }’7‘ ) = W2 (T kn),
(2.53) results in

W3 (M (t), My (h) <4W2 (1) +4Tp(MD) +2Tp(M)) V€ (0, +00).
Combining this estimate with (2.46), we easily get
W3 (M (1), M, (1) < 4W3 (M2, M) +8Tp(M7) +6T¢(M))  VtE (0,+00). (2.54)
Now taking M? = M 1‘7) in (2.54) yields

sup W3 (M (1), M, (1)) < +8T¢(M?) + 6T (M), (2.55)
t>0

which shows that for every sequence (7,,),cy, converging to zero in R¥, (A_/ITn (t))N is a
Cauchy sequence in the complete space (P2 (R"), W, ), uniformly with respect to t € R{.
Therefore, there exists a limit curve p(t) in (;@rz(]R” )) such that Ai_mrr.l.ﬂrn(t) = pu(t) for all
te R{.

In particular, for every choice of 7 > 0, t € P, we may pass to the limit (7 \ 0) in (2.46) to
obtain a rough error estimate on every partition P,:

susz( o H(D) S WF(M2, u(0) + T9p(M?). (2.56)

The limit curve y(t) satisfies an integrated form of (EVI): Fix an arbitrary ¢ € dom ¢. Recalling
that the expressions in (2.38) are continuous outside the A-null set P,, we may integrate (2.38)
over any bounded interval (a,b) C R* to get

1w2(b o) — Wz(a o)+ f ¢ dA < (2.57.2)

< (b-a)po) + % j RydA < (b—a)p(o) + %¢(M$), (2.57.b)

where we used (2.45) and the fact that R, depicts a non-negative function. Observe that we
have

lim W2(t, o) = W3 (u(t),0), liminf. = ¢p(u(t), limp(M?) = ¢p(p(0)) < +oo.  (2.58)
Thus, Proposition A.4.5.ii yields
b b
_l[max (N, p(u(t)} dA(H) < lirzp\ionfl‘max (N,¢)} dA(h  VNeN.
and therefore, by monotone convergence,
fb4> (#) dA(H) = hmmff ¢, dA(D).
a

Using this estimate together with (2.58), we may pass to the limit (7 \ 0) in (2.57) and imme-
diately obtain the evolution variational inequality with respect to 45 = 0 in the integrated
form

1 1 b
EWZZ(y(b),U) — EW22(y(a),a) + j p(pt) dA) < (b —a)p(o) Vo € dom¢. (2.59)
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u(t) is a gradient flow in the EVI sense: It remains to be shown that y(t) is an EVI gradient flow
in the sense of Definition 1.3.6: First note that for every pair s,t > 0 we may choose 7 > 0
and n € N such thats, t € I!. Thus, M. (t) = M. (s) implies

W2 (u(t), u(3) < 2W2(u(t), M (1)) + 2W2(1u(s), M (s)).

Since the estimate in (2.55) is uniform with respect to ¢, we easily infer from the inequality
given above that y(t) is a continuous curve in P"(R"). Consequently, ¢(p(t)) is lower
semi-continuous.

Our next claim is that ¢(p(t)) < ¢(p(0)) for all t > 0. We prove this statement by contra-
diction: To this aim, assume that gb( u(ty )) > qb( y(O)) for some t > 0. Consider

A= {t € (0,t) : p(p(t) < ¢(1(0))} C dom ¢
and set T := sup A. Then the lower semi-continuity of ¢((t)) implies

¢(u(T) < liminf ¢ (p(1) < ¢(u(0)-

teA

Therefore, T belongs to the set A and u(T) € dom¢. In particular, we have ¢(p(s)) >
¢(p(0)) forall s € (T, ty]. Hence,

to
[ ¢(u(s) drcs) > (tg = Tg(u(T)). (2.60)
T

On the other hand, choosing (a,b) = (T, ty) and ¢ = u(T) in (2.59), immediately implies

to
[ ¢(u(s) dacs) < (tg = rg(u(T)). (261)
T

Since (2.60) and (2.61) contradict each other, our claim is proven.
It is clear from (2.59) that ¢(u (1)) belongs to Ll (R, R} U {+oo}) and thus u(t) € dom ¢

loc
for A-a.e. t > 0. However, one readily infers that y(t) € dom ¢ forall t > 0: For every t > 0
there exists a sequence (t,,),,cy in (0, +o0) withr!i_r)gotn =tand u(t,) € dom¢ foralln € N.

Now we may use our claim stated above and the lower semi-continuity of ¢((#)) to infer

P(u(h) < liminf $(pu(t,) < P(p(0)) < +oo.

Finally, we are able to show that y(t) belongs to AC,_. ((0, +00), PH(R" )): Indeed, for any
bounded interval (a,b) C R™, setting o = p(a) in (2.59) at once yields

b
W2(p@), p(b)) < 2(b = (@) < [ 20(1(0)) dA(E) < +o0,

a

Having established that y(t) is locally absolutely continuous, the reverse triangle inequality
and Fact |.1.4.ii imply that t » W2(u(t), o) belongs to AC,,_((0, +o0), R) for all ¢ € dom ¢.
Fix any Lebesgue point ty € (0, +o0) of ¢(p(t)) such that t » W3 (u(t), o) is differentiable
at . Then, recalling Fact A.2.7.ii, we may seta = ty — ¢, b = ty + ¢ in (2.59), divide this
inequality by 2¢, and ultimately pass to the limit (¢ \ 0) to obtain the variational evolution
inequality in the desired form (1.45) with respect to 4g = 0. ]

Although the P2 (R") does not belong to the class of NPC spaces, it is entirely possible to
apply the general existence theory we have introduced in Section 1.5.
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Remark (Convexity along generalized geodesics) Recall from (2.3.2) that (1.66) does not hold
for every geodesic y in 22(IR?). However, one can show that (1.66) does hold for general-
ized geodesics, which another fine property of these interpolating curves. Then one may
require (SCON) to hold for a lower semi-continuous functional ¢ to deduce that ®(7, M, )
as defined in Definition |.5.2 satisfies condition (CON). Thus, one is able to invoke the general
existence theory of Theorem 1.5.3.

In particular, Theorem 1.5.3.iv yields the optimal error estimate W, (u(t), M (t)) < O(1),
whereas the proof of Theorem 2.3.4 provides only the subpar bound O(/T) for the rate of
convergence by means of (2.56).

The approach, relying on the general existence theory, is due to Ambrosio, Gigli, Savaré and
can be found in Section 9.2 of [3].

We conclude this chapter with an fundamental example that illustrates a promising appli-
cation of gradient flows in Qf(]Rz) within the field of partial differential equations.

The subsequent discussion will only provide an informal prospect on an important applica-
tion of the theory developed so far and will be kept at a sketchy level. However, everything
can be done rigorously; we refer to Section 3.3 in [2] or Chapter 10 in [3] for the details.
Example (Heat equation) We introduce the Entropy functional E : ;DTZ(R”) - R U {400},
defined by

E(w) =1

f %nlog(%”) dA,, ifr<a,
oo,

otherwise,

where % denotes the Radon—Nikodym derivative of v with respect to A,,. Now fix any initial

datum pg € ﬁrz(R”) with pg « A, and assume for every T > 0 there exists a minimizing
movement o, i.e.

O(7,00,0¢) < O(T,00,v)  VveE PR,

Moreover, we assume that p, is absolutely continuous with respect to A,,.
Now we claim that p, satisfies

1
pe f ¢d(or —po) = fmpdpf +0(1)  VoeCZ(R").
Rﬂ RH

This identity shows that p. is a first order approximation of the distributional solution,
starting at p, of the homogeneous heat equation

dp
It can be shown that the Entropy functional E satisfies the assumptions of Theorem 2.3.4.
Then one may infer that the discrete solutions of the corresponding minimizing movements
with initial datum p converge to a limit curve p(t) which depicts a distributional solution of
(2.62). Since Theorem 2.3.4 implies that p(t) is a gradient flow in the EVI sense, p(s) satisfies
the contraction and regularizing properties obtained in Section |.4. In particular, p(t) is
locally Lipschitz continuous and the unique solution of the heat equation.

(2.62)
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Appendix A

I n this appendix we state some important results from basic measure theory without proof. Basi-
cally, we will follow the exposure of Bogachev, sections 5.2 to 5.6 of [12], although almost
any other text about measure theory should cover the following results as well.

Section A.3 is devoted to measure theory on topological spaces with emphasis on the Riesz
representation theorems. The material from this section is borrowed from Bogachev (chapter 7
in [12]), as well as Cohn (chapter 7 in [22]).

In Section A4 a brief overview of the weak convergence of measures on topological spaces is
given. An elaborate treatment of this topic can be found in chapter 8 of [12].

Functions of Bounded Variation

Definition A functionf:T — R, T C R is of bounded variation if one has
n
V(F,T) :=sup ) |f(ti1) —f ()] < o0,
i=1

where the supremum is taken over all finite collections t; < t, < -+ < t,,1in T. The
non-negative quantity V (f, T) is called variation of f on T.

A functionf : T — R is of essential bounded variation if there exists a functiong : T —» R
of bounded variation such that f (x) = g(x) A-a.e. in T. In this case we set V(f, T) := V (g, T).

Facts Letf :[a,b] - R be of bounded variation.
The functions V : x » V(f,[4,x]) and U : x —» V(x) — f (x) are non-decreasing on [a, b].

The function V is continous at a point xq € [a,b] iff the function f is continuous at this
point.

For every c € (a,b) one has V(f, [a,b]) = V(f,[a,c]) + V(f, [c,b]).

A continuous function of bounded variation is the difference of two continuous non-de-
creasing functions.

Every function of bounded variation has at most countably many points of discontinuity.

Finally, we have the following important result, concerning differentiability of functions of
bounded variation.

Proposition Let f : [a,b] — R be a function of bounded variation. Then f has a finite derivative
almost everywhere on [a,b].

Absolutely Continuous Functions on the Real Line

In this section we consider only functions with values in R.

Definition A function f : [4,b] — R is called absolutely continuous if for every ¢ > 0
there exists 6 > 0 such that

n
Y If b —fapl <e
i=1
for every finite collection of pairwise disjoint intervals (a;, b;) C [a,b] with Z;Z:l |b; —a;| <.

Facts Let absolutely continuous functions f, g : [4,b] — R be given.

(A1)
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We immediately deduce from the definition above that every absolutely continuous func-
tion is also uniformly continuous.

The functions fg and f + g are absolutely continuous. Moreover, if ¢ > ¢ > 0, then f/g is
absolutely continuous.

Consider two absolutely continuous functions f : [2,b] - R and g : [c,d] — [a,b]. Then,
under the additional hypothesis that g is monotone on [c, 4], the composition f o ¢ is again
absolutely continuous.

The statements in Fact 1.1.4.ii are simple implications of this rather technical lemma.

Lemma Let (f;);c; be a family of uniformly absolutely continuous functions f; : [a,b] —
R, i €1, i.e. for every e > 0 there exists 6 > 0 such that (A.2) holds for every for every f;, i € I and
every finite collection of pairwise disjoint intervals (a;,b;) C [a,b] with Y | |b; —a;| < 8. Then
the following statement holds:

Suppose that i : U — R is a Lipschitz map and (I;) <, a finite collection of index sets I; C I such
that (f; (x),....f; (x)) € U C R" for all x € [a,b] and all ij € I;, 1 < j < n. Then the function
W(fi,s - fi,) is absolutely continuous on the interval [a,b] for every choice of (fi,, ... f;)-

Note that a finite family (f;);c; absolutely continuous functions f; : [4,b] - R,i € I is
trivially uniformly absolutely continuous.

The following crucial characterization of absolutely continuous functions is a generalization
of the classical fundamental theorem of calculus.

Theorem A function f : [a,b] — R is absolutely continuous iff there exists ¢ € L'([a,b], R)
such that

fx) =f(a) + j gdA,  Vxe[abl.

We proceed in this section with some results which show that an absolutely continuous
functions is closely related to its variation.

Facts Letf :[a,b] - R be absolutely continuous.

Then f is of bounded variation. In particular f has a finite derivative A-almost everywhere
on [a,b] and necessarily f'(x) = g(x) A-almost everywhere on [a,b], where g is given as in
(A2).

The function V : x — V(f, [a,x]) is absolutely continuous as well.

If (A.2) holds, then

b
V(f,[a,b]) = [ g dA.

Under the assumption that the integrand ¢ in (A.2) is continuous, it is well known that g
can be recovered by means of differentiation of f. Non surprisingly, a slightly weaker result
holds under the broader assumption of mere integrability of g. Then one can show that
the function x — fax g dA is absolutely continuous on [4,b] and one arrives at the so-called
Newton-Leibniz formula.

Theorem (Newton-Leibniz)  Let a function f € L' ([a,b], R) be given. Then

d X
e fdA =f(x) Aalmost everywhere on [a, b].
a

(A2)

(A3)
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Facts Consider a function f : R” — R such that f is integrable on every ball B, (x) in R”.

Since all balls B, (x) are relative compact sets in R”, f does not need to be integrable on the
whole space. Nevertheless (A.3) holds in the case n = 1 because the differentiability of a
function is a local property.

In the the one-dimensional case the derivative in (A.3) may be written in terms of a sym-
metric difference quotient which results in

X+ée

181&} ng_AE fdA =f(x) for A-almostevery x € R.

Moreover, in the general case n € N, Theorem A.2.6 admits a multidimensional generaliza-
tion to

lim ——— dA, = f(x) for A, -almostevery x € R".
O A, (B, (), (x{ n=f " y

The equality in (A.4) holds iff x is a Lebesgue point of f, i.e. iff x satisfies

) 1 ~
ey 3 B, f()lf W) —F ()| dA,w) = 0.

Hence, A,,-almost every point in R" is a Lebesgue point of f.

The function f is uniformly continuous on R" iff the limit in (A.5) is uniform with respect
to the variable x.

Note that the premise of uniformity of the limit cannot be weakened and one cannot even
expect f to be continuous in this case (cf. chapter 2 in [33] for an counterexample and the
generalization of this result to Holder continuous functions).

A useful corollary of Theorem A.2.6 is the change of variables formula for absolutely continuous
transformations.

Corollary (Change of variables) Let ¢ : [c,d] — R be an increasing absolutely continuous
function. Then for every f € L'([a,b], R) such that F([c,d]) C [a,b] for F(x) = fuhf dA, the
function f o @ - ¢’ also belongs to L ([c,d], R) and one has

@(d) d
[far=[fop-g'ar
¢(c) ¢

This assertion remains true for unbounded intervals of the form (—oo,d], [c, +00), and (—oo, +00).

There exists also a version of the integration by parts formula for absolutely continuous func-
tions.

Corollary (Integration by parts)  For every choice of absolutely continuous functionsf, g : [a,b] —
R we have

b b
[Fgdh =fb)gb) — f@g@) — [ f' dA.

Another application of Theorem A.2.6 is the following characterization of the Sobolev space
WUL1((a,b)). For a more elaborate treatment confer section 7.2 in [37].

(A4)

(A.5)
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A.2.10 Example (Absolute continuity vs. Sobolev spaces) Recall that the Sobolev space W11 ((a, b))

A.2.11

consists of the subset of functions f & L'((a,b), R) such that their weak derivative also
belong to L'((a,b),R). We say that u € L'((a,b),R) is a weak derivative of the function
f el (ab),R)if

b b
fugd/\z —ffg'd/\ Ve Cx(@a,b)).

We denote the weak derivative of f, in accordance with the classical derivative, with f”.
For a given function f € W1 ((a, b)) we set

t
gty i=[fdA  Vte @b).

We immediately notice that g absolutely continuous, due to Theorem A.2.4. Moreover, g
belongs to W'1((a, b)) since integration by parts and the Newton-Leibniz formula give us

b b b
[s¢rdr=—[gidr=—[fgdr VvieCT(ab).
As ¢’ = f'" la.e.in (a,b), we obtain
b b
[e-hrrdr= [ —fean=0  viec(ab), (A6)

Since C°((a, b)) is dense in C ((a, b)) with respect to the uniform norm ||, the equality in
(A.6) extends to all functions { € C ((4,b)). As a result, setting

b X
P(x) = n(x) — bia J;iyd/\ and P(x) = l. P dA Vx € (a,b)

for 7 € C((a, b)), we obtain
b b
l(g ~frypdr = l(g — )¢’ dA =0.
Utilizing Fubini’s theorem, this can be written in the form
b b 1 b
0= l(g—f)zpdx\:fq(g—f+mlg—fd)x)d/\ Vi € C((a,b)).

a

Hence, we conclude that f is A-a.e. equal to an absolutely continuous function g + ¢ with the
1 b
constant ¢ = — [ "¢ — f dA. q

We conclude this section with the following example which shows the connection between
absolute continuous and Lipschitz continuous functions.

Example (Absolute continuity vs. Lipschitz continuity on the real line)

Consider a function f : [a,b] — R which is Lipschitz continuous, i.e. there exists a constant
Crip > 0 such that

f(s) —fHl < CLip s — ¢t Vs, t € [a,b]. (A7)
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Clearly, from (A.7) follows that f also satisfies Definition |.I.| of absolute continuity on the
real line.

Moreover, recall from Fact A.2.5.i that f is differentiable A-almost everywhere on [a,b], and
lett € [a,b] be a point where the derivative of f exists. Then we have the estimate

‘f(S) (t)‘

pyr <CrLip Vs, t € [a,b] :s # t.

We infer that [f(t)] < Cpp-

On the other hand, let an absolute continuous function f : [4,0] — R and a constant C > 0
be given such that f'(t) < C A-almost everywhere on [4, b]. Due to Theorem A.2.4, we obtain

t t
IF () — f(s)] < j|f'|d/\5fccmzcu—s| Vs, t € [a,b]:s <t.
S S

Thus, f is Lipschitz continuous on [a, b].

Measures on Topological Spaces

A topological spaces carries a natural c-algebra which is closely related to the topology of
the space:

Definition The Borel o-algebra 3 (X) of a topological space (X, I ) is the smallest c-algebra
which contains all open sets of X. The elements of J3(X) are called the Borel sets in X.

A mapping f : X — Y between topological spaces (X, J) and (Y, O) is called Borel (or Borel
measurable) if f =1 (B(Y)) C B(X).

Clearly, every continuous function f : X — Y is also Borel.
Next, we will consider two important classes of signed measures on topological spaces:
Definition Let (X, J) be a Hausdorff space.

A countably additive signed measure on the Borel o-algebra 83 (X) is called a Borel measure
on X.

A Borel measure y on X is called a (finite) Radon measure if its variation || is finite and for
every Borel set B € B3.(X) and € > 0, there exists a compact set K, C B such that

[u[(B\ Ky) < e.

Obviously, every Radon measure is also a Borel measure. Although the converse statement
is not true on arbitrary topological spaces, the class of Borel measures with finite variation
and the class of Radon measures coincide on Polish spaces.

Every Radon measure # on a compact Hausdorff space (K, I) defines a continuous linear
functional on the Banach space C(K) equipped with the uniform norm ||-||,, via the formula
f = Jif du. The following version of the Riesz representation theorem shows that the converse
statement is also valid.

Theorem Let (K, 1) be a compact Hausdorff space. Then for every continuous linear functional
L on the Banach space C(K), there exists a unique finite Radon measure y such that

L) = [fdu  VfeCK.
K

(A8)
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Moreover, L is a positive functional precisely if y is a non-negative measure.

More generally, one can state a similar result for locally compact Hausdorff spaces. To this
end, recall that Cy(X) denotes the space of continuous functions which vanish at infinity,
i.e. for every function f € Cy(X) and € > 0, there exits a compact set K, C X such that
[f(x)] <eonX\ K.

Theorem (Riesz-Markov)  Let (X, ) be a locally compact Hausdorff space. Then for any contin-
uous linear functional L on the space Cy(X), there exists a unique Borel measure p on X such that
 is Radon on all sets of finite measure and

L) =[fdu  VfeCo(X.
X

The functional L is positive precisely if the Borel measure y is non-negative.

In the even more general case that the topological space (X, J) is not locally compact, one
can still establish a one-to-one correspondence between Radon measures and certain con-
tinuous linear functionals on Cy, (X), provided that (X, T)is Tychonoft.

Recall that a Tychonoff space is a Hausdorff space such that any closed set C and any point
x ¢ C can be separated by a continuous function. It turns out that every locally compact
Hausdorff space as well as every metric space is Tychonoff.

Theorem Let (X, ) be a Tychonoff space. Then

Lify=[fdu  Vfe€Cu(X) (A9)
X

establishes a one-to-one correspondence between Radon measures y on X and the class of continuous
linear functionals L on Cy,(X) which satisfy the following condition:

For every € > 0 there exists a compact set K, such that
LOI<elfl,  Yf € CoX):f] =0.

In particular, formula (A.9) establishes a one-to-one correspondence between non-negative Radon
measures y on X and all positive linear functionals L on Cy,(X) which satisfy (RAD).

Another option is to consider the Stone-Cech compactification of a non-compact Tychonoff
space, where Theorem A.3.3 is applicable.

Example (Stone-Cech compactification)  Consider a Tychonoff space (X, 7J). Then there
exists a compact Hausdorff space X, together with an embedding : : X — X, i.e. the map
1 is a homeomorphism onto its image, such that the following universal property is satisfied:

For every compact Hausdorff space K and every continuous map f : X — K there exists a
unique continuous lifting Bf : X — K such that the following diagram commutes:

X;l»ﬁx

/ of

K

The space BX is called Stone-Cech compactification of X. Note that in general ¢(X) need not be
open in BX. However, the embedding ¢ depicts an open map precisely when the underlying
space X is locally compact Hausdorff.

In this situation, every set O which belongs to the subspace topology J,xy, is also open in
BX. Therefore, we obtain

B(I,x) ={BNuX):Be B(PX)}.
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Hence, one can extend any given Borel measure # on (X, J) to X by the formula
pp(B) = L, u(BNX) = (71 (BN X)) VB € B(BX).

In particular, y14 is Radon iff i is Radon. q

Remark Consider a finite Radon measure  on a locally compact Hausdorff space (X, J).
Property (A.8) of 1 means that the measure can be approximated on a Borel set B € 3.(X)
from within by compact subsets of B. A similar property holds for the approximation of p
from without by open supersets of B:

To this end, regard the complement BC := X \ B of a Borel set B. By definition, for every
¢ > 0 there exists a compact subset K, C B€ such that

H(BENK,) = u((BUK)C) = u(KE\ B) <,

where K€ is an open superset of B.
This property of i extends to (possibly non-finite) Borel measures via

#(B) = sup {u(K) : K C B, K compact} VB e B(X). (A.10.2)
Likewise, one can reformulate (A.8) for (possibly non-finite) Borel measures:

#(B) = inf{u(0):0€ I, OCB}  VBe B(X). (A.10.b)

A Borel measure i which satisfies (A.10.a) is called inner reqular. If u satisties (A.10.b), it is
called outer regular. A measure which is both inner and outer regular is simply called regular.
By definition, finite Radon measures are regular. Hence, one can reformulate the theorems
presented above for regular Borel measures with finite variation.

Weak Convergence of Measures

In this section we consider another important o-algebra on topological spaces, different from
the aforementioned Borel c-algebra.

Definition The Baire o-algebra Ba (X) onatopological space (X, ) is the smallest o-algebra
on X with respect to which all functions f € C},(X) are measurable. The elements of Ba (X)
are called the Baire sets in X.

A countably additive signed measure on the Baire o-algebra Ba (X) is called a Baire mea-
sure on X.

Since Ba(X) is generated by all sets in {f~1(0) : f € C,(X), O C Risopen} C I, we
clearly have Ba (X) C 8(X). In particular, Ba (X) coincides with 8.(X) if X is a metric
space. Hence, a measure i on a metric space is Baire, precisely when y is Borel.

Recall that the weak-* topology on the continuous dual space C{ (X) is the weak topology
U(C};(X),Cb(X)), i.e. the initial topology on C};(X) with respect to 1(C, (X)), where ¢ :
Cp(X) — C*(X) is the canonical embedding of Gy, (X) into the bidual space C;* (X).
Denote by M, (X) the linear space of all Baire measures on (X, 7T) with finite variation.
Then we can identify M, (X) with a subspace of C| (X) by means of formula (A.9) for all
1 € Ba(X). Hence, we may consider convergence of Borel measures on X with respect to
o (CL(X), Cp(X))
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Definition A net (y;);cr in M, (X) is called weakly convergent to a measure u € M, (X)
if (31;);c; converges to p with respect to the weak-* topology ¢ (C/ (X), C,(X)). In this case
we write p; > p.

Anet (j1;) ;<1 of Borel measures on X is said to be weakly convergent if the restriction p;] Ba(X)
to the Baire o-algebra Ba (X) converge weakly in the sense above.

Facts Let (y1;);c; be a netin M, (X).
A more concise characterization of weak convergence can be given as follows: For every
u € M, (X) we have

*

TR iff  lim [ fdp = [fdp VfECyX).
X X

iel

A stronger notion of convergence of measures is given by the total variation |u|(X) of a
measure y on X. Indeed, the space of all signed measures on X with finite variation forms
a Banach space with respect to |-|(X).

If (u;);e; converges in the total variation to a measure y € M, (X), then (y;); ¢; converges
also weakly to y1. The following elementary example shows that the converse statement is
not true in general.

Example Letp € L'[®R, R) be a probability density and define probability measures v,,
with densities p,, := np(nt), n € N. Then we infer that (v,,)y is weakly convergent to the
dirac measure Jy by means of dominated convergence applied to

lim [ fBp, b dA® = lim [ f(s/bp(s)dAs) =f(0) = [fddy  Vf € Cu(R).
R R R

On the other hand, we have |v, — §p|(R) = 2 for all n € N. Hence, (v,,),en does not
converge in total variation. q

In case, a given function on X is only semi-continuous, one implication of the characteriza-
tion in Fact A.4.3.i may be somewhat relaxed.

Proposition  Suppose that a net (1;);c; of Borel probability measures on a Tychonoff space (X, J)
converges weakly to a Radon probability measure p. Then for every bounded function f : X - R
the following statements hold:

If f is upper semi-continuous, then
lim sup jf dy; < J.fdy.
iel "~y %
Iff is lower semi-continuous, then

lirlr'leilnfif du; > if dp.

Weak convergence of measures is closely related to uniform tightness of measures.

Definition A family N of finite Radon measures on a topological space (X, J) is called
uniformly tight if for every e > 0 there exists a compact set K, such that

(X \K,) < ¢ Vi e N.

In particular, every finite family N of Radon measures is uniformly tight since the finite
union of compact sets is again compact in X.
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The following theorem relates uniform tightness to relative compactness in the space of
Radon measures on a complete metric space. Recall that the notions of Radon and Borel
measures coincide on Polish spaces.

A.4.7 Theorem (Prokhorov) Let X be a complete metric space and let N be a family of Radon measures
on X. Then the following conditions are equivalent:
(i)  Every sequence () cn in N contains a weakly convergent subsequence.
(i)  The family N is uniformly tight and uniformly bounded in total variation norm ||(X).
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Appendix B

his appendix is devoted to a brief introduction of vector flows. For simplicity we will eschew
the notion of flows on smooth manifolds and confine ourselves to the basic theory for
Euclidean space R”, right after we have established the fundamental definitions for general
topological spaces.
To this end, we will follow Alongi and Nelson [I] where the theory of flows in the context of
manifolds is treated as well.

Flows

Definition A local flow in a topological space X is a continuous function » : (2,b)xX — X
such that

0 € (a,b) and »(0,x) = x forall x € X,
n(t+s,x) = u(s, u(t,x)) forallx € X and s,t € (a,b) such thats +t € (a,b).
In the case that (a, b) is the real line, x is called a complete flow on X.

The topological space x is called phase space of the flow x.

—— Notation
It is custom to denote the flow by n!(x) instead of »(t,x). As a result, (i) can be expressed
as 1¥ being the identity on x and (i) becomes 3! = %* o 5!

Facts Let »! be a complete flow on a topological space X.

Recall that a (left) group action of a group G on a set M is a mapping GxM — M, (g, m) — g-m
such that

81 (g2-m)=(g182) m and e-m=m Vg, G VmeM,

where e denotes the identity element of G.

Hence, the flow (t,x) — x!(x) is a continuous group action of the topological group (R,+)
on X.

From (i) in Definition B.1.1 follows that for each t € R the flow ! is invertible with contin-
uous inverse (xf)~! = L. Thus, %! is a homeomorphism on X for every t € R.

In particular, the family {» : t € R} forms a continuous group of continuous maps.

The notion of flows arises naturally in the study of ordinary differential equations, as the
following example shows.

Example Let F : R" :» R" be a Lipschitz continuous vector field. By the well-known
Picard-Lindeldf theorem, there exists a unique curve v € ct ((—s, g), R" ), ¢ > 0, which is the
solution of the initial value problem

v(0) = xy € R?,
v'(t) = F(o(t)) YVt E (—¢,¢).

Then »!(xy) = v(t) is a local flow of the vector field F. In this case, the integral curves t —
n!(xp) are called flow curves of F.

The image of a flow curve t — x!(x) leads to a natural generalization for flows on topolog-
ical spaces:

Definition If %! is a complete flow on a topological space X and x a point of X, then the
orbit of x with respect to »! is the set
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R-x:={xf(x):t € R};
the forward orbit of x with respect to ! is the set
Ry -x:={nt(x): t e RY};
the backward orbit of x with respect to %! is the set

Ry -x:={u'(x):t € Rj}.

Obviously, the orbit, as well as the forward orbit and backward orbit, of a point with respect
to a flow are path-connected spaces.

Moreover, two orbits coincide when they have non-empty intersection.

1 (x)
1 R - X1
X2 Ra— * Xo
X
X s (0 (0) = Hp5(0) Ry - x3 ’
(@) (b)

Figure B.l (a) depicts the group property (i) of Definition B.1.1; (b) illustrates the orbit, as well as the
forward and backward orbit of a complete flow.

B.2 Gradient flows in Euclidean space

B.2.1

Consider a moving particle in Euclidean space R” with smooth position functionv : R —
R" with respect to time and consider the potential energy ¢ : R” — R of the particle as a
smooth function of the particle’s position.

Assuming that the particle moves to decrease its potential energy most rapidly, the ordinary
differential equation

v'(t) = =V (v(h))

models the particle’s motion accordingly.
This gives rise to the following definition:

Definition A vector field F : R" — R" is called a gradient vector field if there exists a
differentiable function ¢ : R” — R such that

F=-V¢.

A complete flow »! is a gradient flow if t — ' (x) is differentiable for each x € R" and there
exits a gradient vector field F = —V¢ such that

%%t(x) =F(n!(x)) = =V¢ (%' (v)).

In this case, ¢ is called potential for the vector field F or the flow »".
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Example
Consider a complete flow % on R", defined by

wl(x) = e tx,
and the function
¢:R"— R
L
X — 5 lIxll5 + ¢

t

for an arbitrary ¢ € R. Then x' is a gradient flow and ¢ is a potential for »".

On the other hand, define a smooth vector field F : R” — R" such that

oF, , o,

1

ox/  ox!

for some indices 1 < i < j < n. Then there exists no potential for F and » cannot be

expressed as a gradient flow.

<
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