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grateful to Ondřej Chum for his feedback concerning my chapter on geometry, and to him and
Zuzana Kúkelová for their help (in part over a memorable glass or two of exquisite Moravian
wine) in getting my head around pulling rigid body motions out of the 5 point algorithm. I also
thank Anita Sellent for providing feedback on my scene flow chapter, and to Cäcilie Kovács,
whose help in translating my abstract into German was invaluable in keeping my broken German
off the printed page.

A number of my close friends and colleagues deserve special mention as well, owing in no
small measure to what they put up with in the weeks (and months) leading up to my deadlines.
In Vienna, no such list could be complete without mention of Milene Pacheco, Márton János,
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Abstract

The problem of correspondence search (or matching) remains a central focus of research in a
variety of domains of computer vision. To date, the overwhelming tendency in the literature has
been to rely on either the assumption of brightness constancy, or on the assumption of patchwise
local surface planarity. However, among aspects of matching that render the task challenging as
displacements become large, there figure the tendency for these two assumptions to ultimately
break down, together with the combinatorial explosion of the resulting space of possible mo-
tions, or labels. In this thesis, we tackle three domains that call for performing matching at large
displacements: (i) depth super resolution (SR), (ii) RGB-D scene flow, and (iii) optical flow,
whereby we carry out correspondence search (i) within a single depth map, (ii) across a pair of
RGB-D frames, and (iii) across a pair of color images, respectively. For optical flow and RGB-D
scene flow, we relax reliance on brightness constancy by focusing attention in the available color
images on image gradients. Recognizing for all three that 2D motion in the image plane is ul-
timately a function of 3D motion in the underlying scene, we overparameterize the 2D motions
that patches of pixels are allowed to undergo in the image plane in terms of 3D rigid body mo-
tions applied to patches of 3D points: a geometrically motivated form of correspondence search.
For depth SR and RGB-D scene flow, we apply these 3D rigid body motions directly to patches
of 3D points encoded in the available depth maps, thereby overcoming the assumption of local
surface planarity; for optical flow, we recover 3D points for all pixels of a patch of pixels by
intersecting respective pixel viewing rays with a 3D plane, and have the resulting 3D points
undergo a 3D rigid body motion. In the former case, we accordingly seek—individually for
each pixel—a 6 degree of freedom (DoF) 3D rigid body motion describing the motion of the
patch of points associated with the pixel; in the latter, we similarly assign to each pixel a 3 DoF
3D plane in addition to a 6 DoF rigid body motion, for a total of 9 DoF. In both cases, even a
coarse discretization of these high-dimensional, continuous label spaces would lead to spaces of
a daunting number of labels to consider exhaustively as displacements become large, a problem
we succeed in overcoming by instead calling on variants of the simple yet effective PatchMatch
correspondence search algorithm to grow and refine sparse correspondence seeds in a manner
tailored to our 6 DoF and 9 DoF motion models.
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Kurzfassung

Das Problem der Korrespondenzsuche (oder des Matchings) stellt einen sehr aktiven Forschungs-
schwerpunkt in mehreren Teilgebieten des Bereichs Computer Vision dar. Bislang hat man sich
in der Literatur hauptsächlich auf die Annahme der Brightness Constancy oder der lokalen Ober-
flächenplanarität gestützt. Werden die Abstände größer, wird die Korrespondenzsuche jedoch
zu einer größeren Herausforderung, da man sich nicht mehr auf diese zwei Annahmen verlassen
kann, und auch aufgrund der kombinatorischen Explosion des Raumes der möglichen Bewegun-
gen, oder Labels. In dieser Dissertation beschäftigen wir uns mit drei Bereichen, wo Matching
entlang größerer Abstände benötigt wird: (i) Depth Super Resolution (SR), (ii) RGB-D Scene
Flow, und (iii) Optical Flow. In diesen Bereichen wird das Matching (i) innerhalb einer einzigen
Tiefenkarte, (ii) zwischen zwei RGB-D Bildern, und (iii) zwischen zwei Farbbildern durch-
geführt. Für Optical Flow und RGB-D Scene Flow lockern wir die Annahme der Brightness
Constancy, indem wir unsere Aufmerksamkeit in den vorhandenen Farbbildern auf die Gradien-
ten des Bildes richten. Nachdem wir für alle drei Bereiche erkennen, dass eine 2D-Bewegung
in der Bildebene letztendlich eine Funktion einer 3D-Bewegung in der Szene ist, überpara-
metrisieren wir die erlaubten 2D-Bewegungen mittels 3D-Starrkörperbewegungen von Patches
von 3D-Punkten: eine geometrisch motivierte Art der Korrespondenzsuche. Für Depth SR und
RGB-D Scene Flow, wenden wir diese 3D-Starrkörperbewegungen direkt auf Patches der 3D-
Punkte an, die in den vorhandenen Tiefenkarten kodiert sind, wodurch wir die Annahme der
lokalen Oberflächenplanarität überwinden; für Optical Flow stellen wir 3D-Punkte für alle Pi-
xel eines Patches wieder her, indem wir die jeweiligen Pixel-Sehstrahlen mit einer 3D-Ebene
schneiden und unterziehen die daraus entstandenen 3D-Punkte einer 3D-Starrkörperbewegung.
Im ersten Fall suchen wir—einzeln für jedes Pixel—eine 3D-Starrkörperbewegung mit 6 Frei-
heitsgraden (Engl. degrees of freedom, oder DoF), die die Bewegung des mit dem jeweiligen
Pixel verbundenen Patches von Punkten beschreibt; im zweiten Fall schreiben wir auf ähnliche
Weise zusätzlich zu der Starrkörperbewegung mit 6 DoF jedem Pixel eine 3D-Ebene mit 3 DoF
zu. In beiden Fällen hätte man bei größeren Abständen sogar durch eine grobe Diskretisierung
dieser hochdimensionalen, kontinuierlichen Labelräume eine Anzahl von Labels, die zu groß ist,
um sie vollständig berücksichtigen zu können. Dieses Problem gelingt es uns zu bewältigen, in-
dem wir uns stattdessen des PatchMatch Korrespondenzsuchalgorithmus bedienen, um spärliche
Korrespondenzen entsprechend unseren 6 DoF- und 9 DoF-Bewegungsmodellen zu propagieren
und zu verfeinern.
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CHAPTER 1
Introduction

1.1 Motivation

In his rather memorable foreword to Hartley and Zisserman [HZ06], Olivier Faugeras notes
that “making computers see” was thought in the 1960s by leading experts in the field of artificial
intelligence to be at the level of difficulty of a summer student’s project, a point of view Faugeras
proceeds to attribute to the problem of naïve introspection. Admittedly, matching a patch of
pixels in one image of a sequence to its correspondence in a second image—in essence, the
very subject of this thesis—itself perhaps seems, at least in principle, a task fit for a small child.
Appearances aside, the problem of correspondence search (or matching) remains a central focus
of research in several domains of the field of computer vision; examples we address ourselves in
the pages of this thesis involve (i) depth super resolution (SR), (ii) RGB-D1 scene flow, and (iii)
optical flow in Chapters 5, 6, and 7, respectively. An illustrative example application of dense
matching is provided in Figure 1.1, where an intermediate frame is interpolated using the dense
matches obtained between a pair of RGB-D frames of a moving scene using our RGB-D scene
flow approach from Chapter 6.
The overwhelming tendency in the literature on dense matching has been to rely on either
the assumption of brightness constancy (cf. Figure 1.2)—which is to say the assumption that
corresponding pixels share the same brightness—or on the assumption of patchwise local sur-
face planarity (cf. Figure 1.4a) implicit in all traditional patch motion models. In addition to
the perennial difficulty of seeking correspondences for inadequately discriminative patches—
as is the case, e.g., for patches over untextured surfaces—aspects of matching that render the
task challenging as displacements between correspondences become large include the ultimate
breakdown of the classical assumptions of brightness constancy and local surface planarity, and
the explosion of the space of possible motions. In the remainder of this section, we outline the

1An RGB-D image is merely a conventional color image provided in conjunction with a corresponding depth
map, as illustrated in Figure 1.1a. The role of this depth map is to map each pixel x = (x, y)> in the image to the
depth Z of the 3D point X = (X,Y, Z)> that projects to x, respectively.

1
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RGB D (depth)

1

2

(a) Input pair of RGB-D frames.

2

1

(b) Original viewpoint.

2

1

(c) Novel viewpoint.

Figure 1.1: Large displacement view interpolation from dense matches between two RGB-D
frames—visualized at original and novel viewpoint, in order to emphasize the availability of 3D
points—recovered in both directions simultaneously (frame 1 to frame 2, frame 2 to frame 1)
using our RGB-D scene flow approach (cf. Chapter 6). Points of the two input RGB-D frames
are shown with transparency for reference. Original penguin mesh model from http://www.

3dxtras.com/3dxtras-free-3d-models-details.asp?prodid=5568.

http://www.3dxtras.com/3dxtras-free-3d-models-details.asp?prodid=5568
http://www.3dxtras.com/3dxtras-free-3d-models-details.asp?prodid=5568
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Figure 1.2: Brightness constancy assumption. The tendency of the assumption of brightness
constancy to break down as displacements become large is especially easy to see in the presence
of rotation, whether due to rotational motion of the scene relative to the camera or—unless
the scene is genuinely Lambertian [Ang06], whereby shading is invariant to the pose of the
camera—to that of the camera relative to the scene. Intuitively, differences in shading are due
to the further penguin being illuminated frontally, while the closer one is illuminated from the
side (figure best viewed in the electronic version of this thesis).

elements of a typical dense matching pipeline—encompassing the definition of what is meant
by patches, the model according to which a patch may be understood to undergo motion, the
energy that is being minimized, and the optimization according to which the minimization is
performed—and how we in this thesis address the problems of dense matching that arise as
displacements become large.

Patches. The traditional form of a patch associated with a pixel x = (x, y)

> is that of an n⇥n
square of pixels in image space centered on x. An immediate advantage of such a notion of a
patch is the ease of its implementation; a glaring disadvantage is that the pixels of such a patch
may well straddle an object boundary, as illustrated in Figure 1.3a, thereby calling for some
form of special handling (e.g., adaptive support weighting [YK05]). While smaller patches are
less prone to this problem of straddling object boundaries (indeed, a patch that consists only of
the pixel x itself is free of this problem altogether), smaller patches may be less discriminative
(more ambiguous) than larger ones. We suggest that in the presence of dense depth data (i.e.,
depth maps), a fruitful alternative to traditional square patches of pixels is to reason instead in
terms of the points encoded in the depth map at hand that lie inside a sphere centered on the
point encoded at x. We reason in terms of such patches in Chapters 5 and 6, with the advantages
of jointly ameliorating the problem of straddling object boundaries and of providing additional
robustness to shot noise, as we illustrate in Figure 1.3b.

Motion Model. The model according to which the pixels (or points) that constitute a patch
undergo motion can take any of a number of forms. A hierarchy of image space motion models
that can be described in terms of 2D homographies is presented in Section 2.2, beginning with
2 degree of freedom (DoF) translations and ending with 8 DoF projectivities at the most general.
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(a) The points that constitute a traditional n⇥ n image space patch centered on a pixel x, comprising all
points encoded in the depth map that lie inside the unbounded pyramid determined by the camera center
as apex and the respective viewing rays corresponding to the four corners of the patch.

(b) The points encoded in the depth map that—in our manner—constitute a patch as the inliers of a
sphere, centered on the point encoded in the depth map at the same pixel x. Note that the sphere radius
was chosen in order to match the pixel extent in image space of the n⇥ n patch above (cf. Section 6.2).

Figure 1.3: Patches as pyramids contrasted with patches as spheres, again in the presence of
dense depth data. (a) While identifying the points encoded in the depth map that constitute a
patch in terms of the pixels occupied by a traditional n ⇥ n image space patch has the advantage
of being easy to implement, a glaring disadvantage of such patches is that they occupy all points
inside the unbounded pyramid determined by the camera center (cf. Section 2.4) and the four
corners of the patch, with the problem of including points straddling object boundaries and
points corrupted by noise. (b) Our manner of proceeding instead to identify the points encoded
in the depth map that constitute a patch as the inliers of a sphere has the advantage of jointly
ameliorating the problem of straddling object boundaries and of providing robustness to shot
noise. Time of flight (ToF) depth map provided by Oisin Mac Aodha.
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(a) Matching under the assumption of local surface planarity, with motion in the image plane expressed in
terms of a homography parameterized as a 3 DoF 3D plane undergoing a 6 DoF 3D rigid body motion g,
for a total of 9 DoF.

g
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(b) Matching with respect to the 3D points encoded in the available depth maps, with the points that
constitute a patch—here comprising, in our manner, the inliers of a sphere—undergoing the same 6 DoF
3D rigid body motion g as above.

Figure 1.4: Relaxing the local surface planarity assumption, in the presence of dense depth data.
(a) While at small displacement even a traditional n⇥ n patch undergoing strictly translational
motion in image space can be expected to capture a correspondence, as displacements become
large even plane-induced homographies (cf. Section 2.6) may ultimately fail. (b) In addition to
allowing for larger-displacement matching over non-planar geometry than is possible in general
on the assumption of local surface planarity, reasoning in terms of 3D rigid body motions applied
directly to the available 3D points additionally allows for optimizing over fewer degrees of
freedom and allows for comparing point similarity in terms of Euclidean distances in world
space. The value of identifying the points that constitute a patch of points as the inliers of a
sphere is illustrated in Figure 1.3.
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With 9 DoF, a homography can be overparameterized to model a 3 DoF 3D plane undergoing
a 6 DoF 3D rigid body motion (cf. Figure 1.4a and Section 2.6), a parameterization turn to in
Chapter 7 to compute optical flow from a pair of RGB frames. As 2D motion in the image plane
is ultimately a function of 3D motion in the underlying scene, an interesting attribute of such a
parameterization is that it allows for matching patches of pixels in image space by reasoning in
terms of possible underlying 3D rigid motion in world space. In Chapters 5 and 6, we likewise
reason in terms of 6 DoF 3D rigid body motions, with the difference that we apply such motions
directly to points encoded in the available depth maps (cf. Figure 1.4b); in addition to allowing
for larger displacements over geometry that is not planar in the extent of the patch, proceeding
in such a manner has the advantage of allowing for optimizing over fewer degrees of freedom
and for evaluating point similarity by computing Euclidean distances directly in world space.

Energy. A fruitful way of thinking about correspondence search is in terms of energy mini-
mization over a label space, where a label is understood to index a possible motion derived from
a chosen motion model (indeed, we shall often use the terms motion and label interchangeably
in the pages of this thesis). Given a patch associated with a pixel x, the ‘goodness’ of the match
specified by a particular label is computed by evaluating some form of matching cost function
over the pixels (or points) of the patch with respect to the motion indexed by the label. Such a
function is called a unary potential since it is a function of only a single label, and the energy
of a labeling is computed by summing over the respective unary potentials of each pixel in the
reference image. In order to promote smoothness of the labeling, the energy might addition-
ally encompass higher-order terms such as pairwise potentials that are a function of the labels
assigned to neighboring pixels. We rely heavily on image gradients in Chapters 6 and 7 in the
aim of ameliorating the problem of the assumption of brightness constancy breaking down as
displacements become large.

Optimization. Taking into account even only 2 DoF translational motions, in order to tackle
large displacements even an unacceptably coarse discretization of the label space may result
in a prohibitively large number of possible labels to consider exhaustively for dense matching.
Consider a source image with a spatial resolution of w ⇥ h pixels, such that any pixel x is able
to undergo a 2 DoF motion to any of the w ⇥ h pixels of a target image (thus giving a total of
w ⇥ h labels), where w and h denote image width and height, respectively. Taking into account
unary terms alone, the logarithmic complexity of exhaustive 2 DoF matching for all w ⇥ h
pixels of the source image is O

�
(h ⇥ w)

2

�
; taking into account higher-order interactions, the

worst-case complexity of exhaustive matching becomes O
�
(h ⇥ w)

h⇥w

�
. On the example of a

moderate spatial resolution of 320 ⇥ 480, dense exhaustive matching in the former setting calls
for evaluating a total of 23,592,960,000 candidate configurations; in the latter, dense exhaustive
matching calls for evaluating a number of candidate configurations that exceeds the estimated
number of atoms in the observable universe.2 For large enough w and h, the daunting size of the
space of possible configurations of motions for even a pixel-accurate discretization of the 2 DoF
space considered above is only intensified in the context of our continuous 6 DoF and 9 DoF

2An estimate of the number of atoms in the observable universe is set between 1078 and 1082 at http://www.
universetoday.com/36302/atoms-in-the-universe/.

http://www.universetoday.com/36302/atoms-in-the-universe/
http://www.universetoday.com/36302/atoms-in-the-universe/
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settings. In order to keep this problem of dense matching in high-dimensional, continuous label
spaces tractable, our strategy is to proceed to grow and refine sparse seeds in the manner of the
PatchMatch correspondence search algorithm [BSFG09, BSGF10], which is to say by means
of a combination of tailored spatial propagation (cf. Figure 1.5) and randomization (a form of
resampling, to use the language of Chapter 3) applied to initial sparse correspondence seeds.

1.2 Contributions
Our main contribution is to show that variants of PatchMatch can be well-suited to obtaining
dense correspondence fields in our continuous, high-dimensional label spaces that arise from
geometrically motivated reasoning, understood to mean casting the motion of pixels in terms
of the motion of points—whether encoded in a depth map or parameterized by a 3D plane—
undergoing 3D rigid body motions. To be able to reason in such a manner is attractive since
2D motion in the image plane is ultimately a function of 3D motion in the scene. In applying
3D rigid body motions directly to patches of 3D points encoded in the available depth maps, we
succeed in overcoming the local surface planarity assumption. A list of secondary contributions
per domain—depth SR, RGB-D scene flow, and optical flow—is provided below.

Depth SR. We present a depth SR method that differs from all previous depth SR methods in
that we make no use of ancillary data like a color image at the target resolution, multiple aligned
depth maps, or a database of high-resolution depth patches. Instead, we reason only in terms
of matches across depth between patches of the points encoded in the single input depth map,
consisting of the inliers of spheres and undergoing respective 6 DoF 3D rigid body motions. We
show that our results are highly competitive with those of alternative techniques that do leverage
ancillary data.

RGB-D Scene Flow. Building upon the spherical patches introduced in our work on depth
SR, we are able to show attractive scene flow results on challenging synthetic and real-world
scenes that push the practical limits of the assumptions of brightness constancy and local surface
planarity. An important novelty over the spherical patches of our depth SR work is to reason
not in terms of a single fixed sphere radius r, but in terms of adaptive radii r

x

at each pixel x;
proceeding in this manner allows for ameliorating the problem of sphere inlier counts varying as
a function of sphere depth, thereby in turn allowing for a more uniform matching quality than is
possible for fixed r. Additionally, as a consequence of our approach our output is a dense field
of 6 DoF 3D rigid body motions, in contrast to the 3D translation vectors that are the norm in
scene flow.

Optical Flow. We show that a variant of PatchMatch presents itself as an effective optimizer
for what is ostensibly an extreme overparameterization of 2 DoF optical flow in terms of 9 DoF
plane-induced homographies, such that each pixel be assigned a 3 DoF 3D plane and a 6 DoF
3D rigid body motion that the plane undergoes. Proceeding in this manner has the advantage of
reasoning about matching in a pair of RGB frames in terms of possible 3D motions, recognizing
that 2D motion in the image plane is ultimately a function of 3D motion in the scene.
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Figure 1.5: Geometric rationale of PatchMatch spatial propagation with respect to 6 DoF 3D
rigid body motions. PatchMatch spatial propagation adapted to 6 DoF rigid body motions con-
sists in considering the adoption, at a pixel x, of the respective motions presently assigned to
pixel neighbors of x. To proceed in this manner is sensible because if two instances of an object
are related (locally) by a 3D rigid body motion g, then so too is any (local) pair of correspon-
dences related by the very same motion g. Note that on the example of the rigidly moving
penguin above, each pair of corresponding patches of 3D points is related by the same 6 DoF
3D rigid body motion g that describes the 3D rigid motion of the penguin itself.
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1.3 Resulting Publications

The following peer-reviewed publications [HRGR13,HFR14,HBK+14] resulted from the work
presented in this dissertation, all three of which were accepted to top-tier computer vision
venues:

(i) Michael Hornáček, Christoph Rhemann, Margrit Gelautz, and Carsten Rother. Depth
Super Resolution by Rigid Body Self-Similarity in 3D. In IEEE Conference on Computer
Vision and Pattern Recognition, pages 1123–1130, 2013.

(ii) Michael Hornáček, Andrew Fitzgibbon, and Carsten Rother. SphereFlow: 6 DoF Scene
Flow from RGB-D Pairs. In IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 3526–3533, 2014.

(iii) Michael Hornáček, Frederic Besse, Jan Kautz, Andrew Fitzgibbon, and Carsten Rother.
Highly Overparameterized Optical Flow Using PatchMatch Belief Propagation. In Euro-
pean Conference on Computer Vision, pages 220–234, 2014.

Additionally, paper (ii) was accepted in modified form under the name Locally Rigid RGB-D
Scene Flow as an out-of-proceedings peer-reviewed workshop paper (with oral) at the 2014
Computer Vision Winter Workshop (CVWW) held in Křtiny, Czech Republic.

Note on Authorship. Chapters 5, 6, and 7 are taken largely from papers (i), (ii), and (iii),
respectively, with the addition of the newly added Sections 5.4, 6.4, and 7.4 intended to reveal
insights on algorithm performance that did not make it into the respective published papers.
Appendix A is an adaptation of supplementary material provided with paper (ii). Note addi-
tionally that an earlier version of paper (iii) had been submitted elsewhere but subsequently
withdrawn, with Frederic Besse as first author and myself as second. My contribution to the
paper was primarily to integrate geometrically motivated reasoning, including the two geometri-
cally motivated initialization modes, geometrically motivated refinement, view propagation, and
the requirement that normals point to the camera that led to improving the results. The question
of the value of these additions is taken up in Section 7.4, as exemplified on three image pairs by
showing the effect of rolling back these changes one at a time to the state of the algorithm prior
to my involvement.

1.4 Thesis Organization

The seven chapters (and single appendix) that remain of this dissertation are organized in the
manner outlined below:

Chapter 2. The chapter on geometric foundations aims to explain concepts from geometry
that are central to understanding the chapters ahead. These include a discussion of introductory
projective geometry, 2D homographies, 3D rigid body motions, the finite projective camera,
epipolar geometry, and plane-induced homographies, which we derive in a manner that confirms
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the intuition that fixed plane, moving camera and fixed camera with plane undergoing the inverse
motion give rise to the same plane-induced homography, a fact called upon in Chapter 7. The
discussion draws mainly on Hartley and Zisserman [HZ06], and to a lesser extent on Ma et al.
[MSKS03] and on the highly readable tutorial introduction to projective geometry for computer
vision of Birchfield [Bir98].

Chapter 3. In the chapter on MAP inference using PatchMatch and PatchMatch Belief Prop-
agation (PMBP), our aim is to derive the energy minimization frameworks—which is to say
PatchMatch and PMBP—that we call on to carry out dense matching in the chapters that follow
in terms of MAP inference by means of message passing. The chapter begins with a review
of basic concepts from probability theory and probabilistic graphical models, proceeds to in-
troduce message passing on trees, and then addresses message passing for graphs that contain
loops. PMBP and PatchMatch are finally derived, similarly to Besse et al. [BRFK12], in terms
of a flavor of message passing for loopy graphs tailored to MAP inference in continuous label
spaces. We draw mainly on Bishop [Bis06] and Nowozin and Lampert [NL11] for the sections
leading up to (and including) message passing for loopy graphs.

Chapter 4. The literature review is intended to outline the major trends across the field of
computer vision in correspondence search. We consider methods for sparse matching, optical
flow, stereo, and scene flow. A general reference for this chapter was the textbook of Szeliski
[Sze11]. Section 4.2 on optical flow draws in particular on Fleet and Weiss [FW06]. We defer an
overview of the literature on depth SR to Chapter 5, since only a subset of depth SR techniques
involve matching.

Chapter 5. The chapter on depth super resolution (SR) relates our first paper, which attempts
to address the question of just how far one can push jointly increasing the spatial resolution and
apparent measurement accuracy of an input low-resolution, noisy, and perhaps heavily quantized
depth map, using only the information available in the input depth map itself. Accordingly, our
method is different from all previous depth SR techniques in that we make no use of ancillary
data like a color image at the target resolution, multiple aligned depth maps, or a database
of high-resolution depth patches. Inspired by the ‘single image’ SR approach of Glasner et
al. [GBI09] for super resolving a color image by matching patches of pixels across scale, we
instead proceed by merging patches—matched across depth under respective 6 DoF 3D rigid
body motions—of the 3D points encoded in the depth map, understanding a patch to comprise
the points that lie within a radius of a center point encoded at some pixel. Notably, we show that
our results are highly competitive with those of alternative techniques that do leverage ancillary
data. We add detail not included in the paper owing to paucity of space, in particular a far more
thorough explanation of the patch upscaling and merging step.

Chapter 6. The chapter on RGB-D scene flow relates our second paper, where we expand
upon the dense matching in terms of patches as the 3D points that are inliers of spheres that we
introduced in our work described in the previous chapter, tailoring the matching to the problem
of computing scene flow from a pair of RGB-D frames. As a consequence of our approach, our
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output is a dense field of 6 DoF 3D rigid body motions, in contrast to the 3D translation vectors
that are the norm in the literature on scene flow. Reasoning in our manner additionally allows
for us to carry out occlusion handling using a 6 DoF consistency check for the flow computed in
both directions (frame 1 to frame 2, frame 2 to frame 1), and to promote smoothness of the flow
fields using an intuitive 6 DoF local rigidity prior. We show attractive flow results on challenging
synthetic and real-world scenes that push the practical limits of the assumptions of brightness
constancy and local surface planarity.

Chapter 7. The chapter on highly overparameterized optical flow relates the third and final
paper, which computes optical flow from an RGB image pair in a manner that attempts to rea-
son in terms of the 3D motion in the scene that gives rise to the 2D motion in the image plane.
Accordingly, we propose to compute 2 DoF optical flow using what is ostensibly an extreme
overparameterization: depth, surface normal, and frame-to-frame 6 DoF 3D rigid body mo-
tion at every pixel, giving a total of 9 DoF. The advantages of such an overparameterization
are twofold: first, geometrically meaningful reasoning can be called upon in the optimization,
reflecting possible 3D motion in the underlying scene; second, the ‘fronto-parallel’ assumption
implicit in traditional pixel window-based matching is ameliorated because the parameterization
determines a plane-induced homography at every pixel. We show that the resulting flow fields
compare favorably to the state of the art on a number of small- and large-displacement datasets,
giving especially competitive results as displacements become large.

Chapter 8. The final chapter contains the concluding remarks of this thesis. Additionally, the
chapter provides a list of suggestions for directions for future work.

Appendix A. The single appendix gives a derivation of the relationship used extensively in
Chapter 6 relating the Euclidean distance between two points both situated at equal depth and
that depth when the two points project to neighboring pixels. The appendix was included in the
corresponding paper’s supplementary material.

1.5 Notational Conventions
Throughout this thesis, we attempt to remain consistent with the familiar notational conventions
of Hartley and Zisserman [HZ06]. Accordingly, scalars x are expressed in italics, vectors x

in bold, and matrices K in typewriter font. Additionally, vectors are by default understood to
be column vectors, and so are written out as (x

1

, . . . , x
n

)

>. In Euclidean space, we express
2D points x = (x, y)

> 2 R2 using small letters, and 3D points X = (X, Y, Z)

> 2 R3 us-
ing capitals; we express their homogeneous counterparts as ˜

x ⇠ (x, y, 1)

> 2 P2 and ˜

X ⇠
(X, Y, Z, 1)

> 2 P3, respectively. Where we depart from their notational conventions is that we
place a tilde on vectors ˜

x that express the homogeneous coordinates of a point, omitting a tilde
on vectors that express a point’s Euclidean coordinates, which is the opposite of Hartley and Zis-
serman’s convention. In Sections 3.2 and 3.3 on probabilisitic graphical models and inference by
message passing on trees, respectively, we try to remain consistent with the notation of Nowozin
and Lampert [NL11]. Section 4.2 on optical flow attempts to remain broadly consistent with
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the notation commonly used in the optical flow literature in referring to the image intensity at a
pixel x = (x, y)

> in an image acquired at time step t as I(x, y, t), and to its correspondence in
an image acquired at time step t +�t as I(x + u

x

, y + v
x

, t +�t), with (u
x

, v
x

)

> the 2D flow
vector originating at x that relates the two.



CHAPTER 2
Geometric Foundations

Recognizing that 2D motion in the image plane is ultimately a function of 3D motion in the
underlying scene, we proceed to overparameterize the 2D motions that candidate matches are
allowed to undergo in the image plane in terms of 3D rigid body motions applied to patches of
3D points, the sense in which we qualify our matching as geometrically motivated. This chapter
is accordingly of necessity in large part about the finite projective camera, a generalization of
the pinhole camera model that models central projection using projective geometry, finite in the
sense that the center of projection be modeled to lie at a finite distance from the image plane.
The pinhole camera model describes the projection of a 3D point as the intersection with the
image plane of the ray passing from that point through an infinitesimal aperture (or ‘pinhole’),
in the manner of an idealized camera obscura. With this formalism in hand, we are able to
reason about mapping a point to its projected pixel in the image plane, and a pixel back to the
ray along which the projecting point is required to lie. The motion of 2D pixels can then be
described in terms of the motion of 3D points, which throughout this thesis we model in terms
of 3D rigid body motions.
We begin this chapter in Section 2.1 with an introduction to homogeneous coordinates, a gen-
eralization of Euclidean coordinates that will allow us to cast the 3D rigid motion of points and
their projection to the image plane—both non-linear transformations over points expressed in
Euclidean coordinates—as linear transformations, in turn conveniently allowing for reasoning
about such transformations using matrix algebra. Next, we discuss projective transformations
in 2D and 3D, focusing our attention in Section 2.2 on the classical motion models defined in
terms of homographies over pixels expressed as points in projective 2-space, and in Section 2.3
on the rigid body motions over projective 3-space that underlie our reasoning about motion. We
then proceed to detail the finite projective camera in Section 2.4. Epipolar geometry and the
constraints on matching pixel correspondences between a pair of views is treated briefly in Sec-
tion 2.5. Finally, in Section 2.6, we address the action of 3D rigid motion on points and planes
given a pair of cameras, by means of plane-induced homographies.

13
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>
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0
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>
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Figure 2.1: The projective plane P2. The points ˜

x, ˜x0 2 P2 in projective 2-space both express
the same point (x, y)

> 2 R2 in Euclidean 2-space. The line l 2 P2 expresses the same line as
l ⇢ R2, which is obtained by the intersection of Z = 1 with the plane through the origin 0 whose
normal vector is l, called the line’s interpretation plane. Points and lines are thus expressed as
the intersection of rays and planes with Z = 1.

2.1 Homogeneous Coordinates

Points in Pn. A point in Rn is expressed as an n-dimensional vector (x
1

, . . . , x
n

)

>, the fa-
miliar Euclidean coordinates of the point. The same point can be expressed in homogeneous
coordinates as any (n + 1)-dimensional vector (kx

1

, . . . , kx
n

, k)

> 2 Pn

= Rn+1 \ {0}, k 6= 0.
We indicate that two homogeneous vectors ˜

x, ˜x0 2 Pn are members of the same equivalence
class by ˜

x ⇠ ˜

x

0 , 9k 6= 0 :

˜

x = k˜

x

0 (read ‘is proportional to’), which is to say they represent
the same point. Note that for brevity, we shall often refer to these vectors simply as points,
recognizing that they are in fact vectors that represent points. Given a point expressed in homo-
geneous coordinates (kx

1

, . . . , kx
n

, k)

> 2 Pn, k 6= 0, its analogue in Euclidean coordinates is
x = (x

1

/k, . . . , x
n

/k)

> 2 Rn. Note that any point in Rn can be expressed in Pn.
Homogeneous vectors of P2 scaled such that x

3

= 1 lie in the plane x
3

= 1.1 The plane x
3

= 1

can be thought of as an embedding of the Euclidean plane R2 (also known as Euclidean 2-space)
in P2, obtained by the unit translation of the Euclidean plane R2 along the positive x

3

-axis of the
3-dimensional Euclidean coordinate frame (cf. Figure 2.1). The vector space P2 is accordingly
called the projective plane (or projective 2-space). Henceforth, we shall refer to points in R2

and P2 by (x, y)

> and (x, y, 1)

>, respectively, rather than use the above subscript notation.

1In this thesis, we do not consider points at infinity, which are points (x
1

, . . . , x

n

, 0)> 2 Pn.
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0

n

X

n

d

knk

Figure 2.2: A plane ⇡ = (n

>,�d)

> 2 P3. Any point (X

>, 1)

> 2 P3 that satisfies the equation
n

>
X� d = 0 is in the plane ⇡. Note that the quantity n

>
X happens to be the scalar projection

of the vector X onto the vector n (both shown in gray), expressed in units of knk.

By analogy, P3 is referred to as projective 3-space, and we refer to points in R3 and P3 by
(X, Y, Z)

> and (X, Y, Z, 1)

>, respectively.

Lines in P2. Let us consider the familiar general form2 equation of a line l ⇢ R2 in the
Euclidean plane,

ax + by + c = 0. (2.1)

Rewriting Equation (2.1) as the scalar product of two vectors,

(a, b, c)(x, y, 1)

>
= 0, (2.2)

expresses an incidence relation between the homogeneous vector of a 2-dimensional point ˜

x =

(x, y, 1)

> 2 P2 and a second vector l = (a, b, c)> 2 P2, with two vectors qualified as incident
if they are orthogonal. A geometric interpretation of this incidence relation is of l as the normal
vector of a plane passing through the origin 0 of the coordinate frame, with ˜

x a homogeneous
vector orthogonal to l and hence lying in the plane (cf. Figure 2.1). The intersection of this plane
with x

3

= 1 gives l. Since scaling the vector l by a non-zero scalar has no effect on its incidence
with ˜

x, the vector l is itself homogeneous. Accordingly, we understand the vector l 2 P2 to
represent the same line as l ⇢ R2.

Planes in P3. The analogue in projective 3-space of the incidence relation expressed in Equa-
tion (2.2) can be interpreted geometrically as one between a 3D point (X

>, 1)

> 2 P3 and a 3D
plane ⇡ = (n

>,�d)

> 2 P3,
(n

>,�d)(X

>, 1)

>
= 0. (2.3)

This immediately gives the familiar Hessian normal form n

>
X � d = 0 of the plane, where

n 2 R3 denotes the plane’s normal vector and d the distance in units of knk from the origin of
2In slope-intercept form, the same line is expressed as y = �(a/b)x� c/b.
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(a) Translation (2 DoF).

(b) Euclidean (3 DoF). (c) Similarity (4 DoF).

(d) Affinity (6 DoF). (e) Projectivity (8 DoF).

Figure 2.3: Different classes of homographies over P2. Only those patches of an image whose
motion can be explained by mappings of lines to lines can have their motion explained using
a homography. Note that it is in this sense that homographies over P2 implicitly invoke the
assumption of local surface planarity.

the coordinate frame to the plane, as illustrated in Figure 2.2. Any point X0 2 R3 for which
n

>
X

0 � d = 0 holds is likewise in the plane ⇡.

2.2 Homographies in 2D

A homography is defined as an invertible mapping H : P2 7! P2 such that if three points
˜

x

1

, ˜x
2

, ˜x
3

2 P2 are collinear, then so too are the transformed points H(

˜

x

1

), H(

˜

x

2

), H(

˜

x

3

). It
follows immediately from the definition of a homography as a mapping of lines to lines in P2

that only those patches of an image whose motion can be explained by mappings of lines to lines
can have their motion explained using a homography (cf. Figure 2.3). It can be shown that any
homography H can be expressed in terms of a corresponding invertible 3 ⇥ 3 matrix H. As a
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consequence, if the points ˜

x

i

are collinear with a line l, then the transformed points ˜

x

0
i

= H˜

x

i

lie
on precisely the line l

0
= H�>

l, since

l

0>
˜

x

0
i

= (H�>
l)

>H˜

x

i

= l

>H�1H˜

x

i

= l

>
˜

x

i

= 0, (2.4)

thereby preserving point-line incidence. Note that the matrix H is itself homogeneous, since
scaling H by a non-zero scalar amounts to scaling a vector to which H is applied by the same fac-
tor. A homography H at its most general can be described using 8 DoF, since 8 ratios determine
the matrix H up to a non-zero scalar. We examine below a hierarchy of possible homographies,
beginning with the translations as the most specialized that we consider and building up through
the Euclidean motions, similarities, and affinities to the projectivities, which are the most general
homographies.

Translations. The simplest class of homographies we consider are the 2D translations. A
general translation is expressed, in matrix form, as a linear transformation over P2 is given by

HT =

2

4
1 0 t

x

0 1 t
y

0 0 1

3

5
=


I t

0

>
1

�
(2.5)

which encodes a translation by t = (t
x

, t
y

)

>. Translations are 2 DoF transformations.

Euclidean Motions. The 2D Euclidean3 motions encompass planar rotations and translations.
The form of the general matrix form of a rigid body motion is

HE =

2

4
cos ✓ � sin ✓ t

x

sin ✓ cos ✓ t
y

0 0 1

3

5
=


R t

0

>
1

�
, (2.6)

where R is a 2 ⇥ 2 rotation matrix parameterized by ✓ and t 2 R2 a translation vector, for a
total of 3 DoF. Note that rotation (about the origin of the coordinate frame) is carried out first,
translation second.

Similarities. The 2D similarities encompass uniform scaling in addition to rotations, transla-
tions and reflections. The matrix form of a general similarity transformation is

HS =

2

4
s cos ✓ �s sin ✓ t

x

s sin ✓ s cos ✓ t
y

0 0 1

3

5
=


sR t

0

>
1

�
, (2.7)

where s 2 R is a scaling factor. Like general isometries, similarities have 4 DoF.
3Another name for a Euclidean motion is a rigid body motion. Note, however, that in order to avoid confusion,

we shall in this thesis understand a rigid body motion to refer to a 6 DoF 3D rigid body motion, which we describe
in Section 2.3, rather than to a 3 DoF 2D rigid body motion as described here.
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Affinities. In addition to uniform scaling, rotations, translations and reflections, the 2D affini-
ties additionally allow for non-uniform scaling, and are expressed in matrix form as

HA =

2

4
a
11

a
12

t
x

a
21

a
22

t
y

0 0 1

3

5
=


A t

0

>
1

�
, (2.8)

a 6 DoF transformation.

Projectivities. At their most general, homographies can also capture central projection and all
compositions of projectivities. We have already seen that a general 2D projectivity is given by
an arbitrary invertible 3 ⇥ 3 matrix; the matrix form differs from that of the affinities in that the
last row is unrestricted:

HP =

2

4
a
11

a
12

t
x

a
21

a
22

t
y

v
1

v
2

v

3

5
=


A t

v

> v

�
, (2.9)

and, as explained above, can be described using 8 DoF.

2.3 Rigid Body Motions in 3D

In 3D, our interest in projective transformations in this thesis lies squarely with the 3D analogue
of the 2D Euclidean motions described in the previous section: 3D rigid body motions. We
shall call on such motions to relate world and camera coordinate frames in Section 2.4, and
again in Section 2.6 to explain the motion of points in 3D lying on a 3D plane, of which we
later make use in Chapter 7. In Chapters 5 and 6 we use such motions to explain the motion
of patches of 3D points identified as the inliers of spheres in 3D. Accordingly, we restrict our
attention here to 3D rigid body motions and their attributes of interest for the chapters ahead.
Let g = (R, t) 2 SE(3) be the notation used to denote a 3D rigid body motion, expressed as a
linear transformation over P3 in the form of a 4 ⇥ 4 matrix as

T
E

=


R t

0

>
1

�
, (2.10)

where R 2 SO(3) here denotes a 3 DoF 3 ⇥ 3 3D rotation matrix—encoding a 1 DoF angle of
rotation per axis of the coordinate frame—and t 2 R3 a 3 DoF 3D translation vector, together
giving a total of 6 DoF. Applying a point ˜

X = (X

>, 1)

> 2 P3 to (2.10) transforms the point
according to the mapping

✓
X

1

◆
7!
✓
RX + t

1

◆
=


R t

0 1

�✓
X

1

◆
, (2.11)

which, similarly as by (2.6), has the effect of first rotating X about the origin of the coordinate
frame by R and then translating the resulting point by t.
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Inversion. Given a rigid body motion g = (R, t), the inverse rigid body motion g�1 is given
in matrix form by 

R t

0

>
1

��1

=


R�1 �R�1

t

0

>
1

�
. (2.12)

Accordingly, if g = (R, t) denotes a rigid body motion, we write g�1

= (R�1,�R�1

t) to denote
the inverse motion.

Perturbation. In Chapters 5, 6, and 7, we shall want to try gently perturbing a given 3D rigid
body motion g = (R, t) in order to determine whether doing so improves a patch matching cost.
Suppose for illustration that g describes the motion of a plane passing through a point X 2 R3

whose normal vector is denoted by n 2 R3. Achieving the effect of perturbing RX + t by a
translational displacement t0 while keeping the transformed normal Rn fixed can be achieved by
simply replacing g with g0 = (R, t+ t

0
). However, achieving the effect of perturbing the normal

direction by a rotational displacement R0 while keeping RX + t fixed is more tricky. One way
to correctly achieve the effect is by computing the perturbed motion g0 according to the matrix
concatenation T

3

T
2

T
1

T
E

of rigid body motions, where T
E

denotes the matrix form of g in (2.10),
the matrix T

1

serves to translate from RX + t to the origin 0 of the coordinate frame,

T
1

=


I �RX� t

0

>
1

�
, (2.13)

the matrix T
2

applies the desired rotational perturbation R0,

T
2

=


R0 0

0

>
1

�
, (2.14)

and the matrix T
3

serves finally to translate from the origin 0 of the coordinate frame back to
RX + t,

T
3

=


I RX + t

0

>
1

�
. (2.15)

2.4 Finite Projective Camera
Given a scene, let us understand a view to encompass an image of the scene and a camera that
produced the image, which is to say a mathematical description of the mapping from points
in the scene to pixels in the image plane. Let us first consider a classical camera obscura,
consisting of only a dark chamber with a small aperture at one end and an image plane at the
other. As we shrink the aperture, in the limit only those rays of light reflecting from a points
outside the chamber that pass directly through the aperture are allowed to reach the image plane.
The resulting idealized construction is called a pinhole camera. Let the camera center C 2
R3 denote the position of the infinitesimal aperture, placed at the origin 0 of the coordinate
frame, and let Z = �f denote the image plane. The Z-axis is termed the optical axis, and its
intersection with the image plane is called the principal point. Given a point X = (X,Y, Z)

> 2
R3 expressed in this coordinate frame, the projection of X is obtained by intersecting the image
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0

Z

f X

Y

X

x

y

x

Figure 2.4: The pinhole camera, modeling an idealized camera obscura with infinitesimal aper-
ture. The point X 2 R3 projects to x 2 R2, obtained by intersecting the image plane at Z = �f
with the line through X and the camera center C = 0 2 R3, which models the location of the
aperture. Note that with the image plane at Z = �f , images appear flipped about the image
plane’s x- and y-axes.

plane with the line joining C and X, called central projection. Since we desire that image
coordinates be indexed such that x grow from left to right and y grow from top to bottom,
the coordinate frame is placed such that the Y -axis point downwards (cf. Figure 2.4). Note,
however, that like a genuine camera obscura, the image of a scene appears to be flipped along
the x- and y-axes of the image plane. The effect of undoing this image flip is achieved by placing
the image plane instead at Z = f , giving rise to the frontal pinhole camera. The projection
x = (x, y)

> 2 R2 of a point X = (X,Y, Z)

> 2 R3 can be computed by similar triangles
(cf. Figure 2.5), giving the mapping

(X, Y, Z)

> 7! (fX/Z, fY/Z)

>, (2.16)

expressed in the same world units as those of the projecting 3-dimensional points (e.g., mm).
Note that the division by Z in (2.16)—called perspective division—renders the mapping non-
linear in X, Y, Z; for convenience, this non-linear mapping can be expressed in terms of a linear
transformation from P3 to P2, since

0

BB@

X
Y
Z
1

1

CCA 7!

0

@
fX/Z
fY/Z

1

1

A ⇠

0

@
fX
fY
Z

1

A
=

2

4
f 0 0 0

0 f 0 0

0 0 1 0

3

5

0

BB@

X
Y
Z
1

1

CCA . (2.17)
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(b) y
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Figure 2.5: The frontal pinhole camera. Placing the image plane at Z = f has the ef-
fect of undoing the flipping of the image characteristic of the pinhole camera. Note that the
projection x

cam

= (x
cam

, y
cam

)

>
= (fX/Z, fY/Z)

> 2 R2 in camera coordinates of a
point X = (X, Y, Z)

> 2 R3 to the image plane can be obtained by similar triangles.

The 3 ⇥ 4 matrix in (2.17), denoted by P, is called a camera projection matrix. This matrix can
be further decomposed as

P =

2

4
f 0 0 0

0 f 0 0

0 0 1 0

3

5
=

2

4
f 0 0

0 f 0

0 0 1

3

5

2

4
1 0 0 0

0 1 0 0

0 0 1 0

3

5
= K[I | 0], (2.18)

where the right 3 ⇥ 4 matrix [I | 0] in (2.18) is called the canonical projection matrix, and the
left 3 ⇥ 3 matrix K is called a camera calibration matrix,

K =

2

4
f 0 0

0 f 0

0 0 1

3

5 . (2.19)

World-to-Camera Coordinates. Projection by (2.18) assumes points X 2 R3 are expressed
relative to the coordinate frame of the camera at hand, whereby the camera center C is situated
at the origin 0 of the coordinate frame, the image plane is situated at Z = f , and the x- and
y-axes of the image plane are aligned with the X- and Y -axes of the coordinate frame. Let this
standard camera pose of the camera be called the canonical pose. More generally, projecting
points expressed in the world coordinate frame to a camera at arbitrary pose can be achieved by
transforming the points by the very rigid body motion (R, t) that transforms the camera in non-
canonical pose to canonical pose (cf. Figure 2.7). Given a point ˜

X = (X

>, 1)

> 2 P3 expressed
in the world coordinate frame, the same point ˜

X

cam

2 P3 expressed in that camera’s coordinate
frame is given by

˜

X

cam

=

✓
RX + t

1

◆
=


R t

0 1

�✓
X

1

◆
=


R t

0 1

�
˜

X. (2.20)
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p
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(b) Image coordinates x
im

= (x
im

, y
im

)

>.

x

px
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px
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y
im
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(c) Pixel coordinates x
px

= (x
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, y
px

)

>.

Figure 2.6: An image expressed in camera, image, and pixel coordinates. (a) In camera co-
ordinates, the origin of the coordinate system of the image plane is situated at the principal
point, obtained by the intersection of the image plane with the optical axis. Note that the projec-
tion x

cam

= (fX/Z, fY/Z)

> 2 R2 is expressed in the same world units (e.g., millimeters) as
the projecting point X = (X, Y, Z)

> 2 R3. (b) The projection x

im

= (x
cam

+x
0

, y
cam

+y
0

)

> 2
R2 in image coordinates places this origin of the image plane’s coordinate system at the top left
of the image plane, where (x

0

, y
0

)

> gives the location of the principal point in image coordi-
nates. (c) Let world units be millimeters. Image coordinates in terms of pixel units are obtained
by expressing the projection x

px

= (m
x

x
im

, m
y

y
im

)

> 2 R2 in terms of pixel coordinates,
where m

x

= w [px] /w [mm] and m
y

= h [px] /h [mm], where in turn h [mm] and w [mm] are the
CCD height and width in world units and h [px] and w [px] the height and width of the image
plane in pixels, respectively.
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Figure 2.7: Projection (x

>, 1)

> ⇠ K(RX+t) = K[R | t](X>, 1)

> of a point X 2 R3 to a camera
in non-canonical pose expressed by P = K[R | t]. Projecting X by P calls for first expressing
X in the camera coordinate frame of P, which is achieved by transforming X by the rigid body
motion (R, t). Note that the pose of the camera itself relative to canonical pose is given by the
inverse motion (R�1,�R�1

t), giving camera center C = R�1

0� R�1

t = �R�1

t.

Combining (2.20) and (2.18) gives the projection ˜

x ⇠ (x

>, 1)

> 2 P2 of the point ˜

X expressed
in world coordinates as

˜

x ⇠ K[R | t] ˜X = K[I | 0]


R t

0 1

�
˜

X = K[I | 0]

˜

X

cam

. (2.21)

The corresponding camera matrix P for a camera in non-canonical pose then takes the form

P = K[R | t] = K[I | 0]


R t

0 1

�
. (2.22)

The rigid body motion (R, t) constitutes the extrinsic parameters (or extrinsics) of the cam-
era. Note that the pose of the camera itself relative to canonical pose is given by the inverse
motion (R�1,�R�1

t), with camera center C = R�1

0 � R�1

t = �R�1

t. If the camera is in
canonical pose, (R, t) is simply the identity motion (I,0), giving exactly (2.18) for (2.22).
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Camera-to-Image Coordinates. The projection by (2.16) of a point X = (X, Y, Z)

> 2 R3

expressed in the camera coordinate frame is expressed in terms of the the principal point as the
origin of the coordinate frame of the image plane (cf. Figure 2.6a). In order to instead place this
origin at the top-left corner of the image—as is the convention in image indexing—the camera
calibration matrix K in (2.19) is generalized to

K =

2

4
f 0 x

0

0 f y
0

0 0 1

3

5 , (2.23)

where (�x
0

,�y
0

)

> are the coordinates of the upper-left corner of the image plane when the
origin is at the principal point, and hence (x

0

, y
0

)

> are the coordinates of the principal point
when the origin is at the upper-left corner. The focal length f and principal point (x

0

, y
0

)

> con-
stitute the intrinsic parameters (or intrinsics) of the camera. The mapping in (2.16) accordingly
becomes

(X, Y, Z)

> 7! (fX/Z + x
0

, fY/Z + y
0

)

>, (2.24)

as illustrated in Figure 2.6b.

Image-to-Pixel Coordinates. The units of a projection x = (x, y)

> 2 R2 obtained by (2.24)
of a point X = (X, Y, Z)

> 2 R3 expressed in the camera coordinate frame remain the same
as those of the projecting point. Suppose, without loss of generality, that these world units are
millimeters. Let m

x

= w [px] /w [mm] and m
y

= h [px] /h [mm], where in turn h [mm] and
w [mm] are the CCD height and width in world units and h [px] and w [px] the height and width
of the image plane in pixels, respectively. In order to obtain the projection in units of pixels, the
mapping in (2.24) becomes

(X, Y, Z)

> 7!
�
m

x

(fX/Z + x
0

), m
y

(fY/Z + y
0

)

�>
, (2.25)

as illustrated in Figure 2.6c. This effect is achieved by adjusting the camera calibration matrix K

in (2.23) to

K =

2

4
m

x

f 0 m
x

x
0

0 m
y

f m
y

y
0

0 0 1

3

5 . (2.26)

World-to-Pixel Coordinates. By (2.22) and (2.26), the final world-to-pixel 3 ⇥ 4 camera
projection matrix P is given by

P =

2

4
m

x

f 0 m
x

x
0

0 m
y

f m
y

y
0

0 0 1

3

5

2

4
1 0 0 0

0 1 0 0

0 0 1 0

3

5

R t

0 1

�
= K[R | t]. (2.27)

Note that in practice it is typically taken for granted that m
x

= m
y

, which holds when pix-
els are square. The quantity m

x

f = m
y

f then gives the focal length in units of pixels, and
(m

x

x
0

, m
y

y
0

)

> gives the principal point, likewise in pixels. Note that as of this point for the
remainder of this thesis, when we refer to the focal length f or principal point (x

0

, y
0

)

> we shall
understand them to be expressed in units of pixels.
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Back-projection. The vector in R3 (such that Z = 1) from the origin 0 in the direction of the
location of the pixel x = (x, y)

> 2 R2 in the image plane expressed in the camera coordinate
frame is called the back-projection of x, and is determined in closed form by

K�1

0

@
x
y
1

1

A
=

2

4
1/f 0 �x

0

/f
0 1/f �y

0

/f
0 0 1

3

5

0

@
x
y
1

1

A
=

0

@
x�x

0

f

y�y

0

f

1

1

A , (2.28)

where, as indicated above, f is the focal length and (x
0

, y
0

)

> the principal point, each expressed
in units of pixels.

Pre-image. The back-projection determines the orientation of the ray in the camera coordinate
frame through 0 along which any point projecting to the pixel x 2 R2 is required by central
projection to lie. Since the Z-coordinate of (2.28) is 1, it follows that the point X 2 R3 situated
at depth Z projecting to x is given by

Z · K�1

(x

>, 1)

>. (2.29)

This point X can be considered the pre-image of x given Z.

2.5 Epipolar Geometry
The epipolar geometry between two views determines the mapping between a pixel in one view
and the space of the pixel’s possible correspondences in the other. That space takes the form of a
line, and is used especially in stereo matching to restrict the search for correspondences to only
those pixels that lie along that line. Let P = K[I | 0] and P0 = K0[R | t] be two camera projection
matrices encoding the cameras of two such views, which for convenience of language we shall
call the left and right views, respectively, and where the right camera is expressed relative to the
camera coordinate frame of the left. Let X 2 R3 denote a point about which we know only
that it projects to the pixel x in the left view. The epipolar constraint expresses the requirement
that the projection x

0 of X to the right view lie on the epipolar line l

0 2 P2 corresponding to x,
determined by the intersection of the right view’s image plane with the plane ⇡ through the ray
along the back-projection K�1

(x

>, 1)

> of x and the two camera centers C = 0,C0
= �R�1

t

(cf. Figure 2.8).

Relative Pose. Let P = K[R | t] and P0 = K0[R0 | t

0
] be two camera projection matrices

encoding the cameras of two views, such that neither camera is in canonical pose. Expressing
P0 relative to P is achieved by right multiplying P0 with the matrix form of the inverse of (R, t),
since by (2.22)

K[R | t]

R t

0

>
1

��1

= K[I | 0]


R t

0

>
1

� 
R t

0

>
1

��1

= K[I | 0]. (2.30)
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e

0

x

l

0

e

C

0
C

⇡

Figure 2.8: Epipolar geometry. The 3D point projecting to the pixel x in the left view is required
to lie along the ray from the camera center C of the left camera in the direction of the back-
projection of x. Accordingly, the epipolar constraint states that the projection x

0 of that point to
the right view must lie along the epipolar line l0 corresponding to x, obtained by intersecting the
image plane of the right view with the plane ⇡ through that ray and the camera centers C,C0.

The camera projection matrix of the right view expressed relative to the camera coordinate frame
of the left is, additionally by (2.12), accordingly

K0[R0 | t0]

R t

0

>
1

��1

= K0[I | 0]


R0 t

0

0

>
1

� 
R t

0

>
1

��1

= K0[I | 0]


R0 t

0

0

>
1

� 
R�1 �R�1

t

0

>
1

�

= K0[I | 0]


R0R�1 �R0R�1

t + t

0

0

>
1

�

= K0[R0R�1 | �R0R�1

t + t

0
]. (2.31)

The ability to express any pair of cameras in terms of the camera coordinate frame of one of
them allows us to reason in terms of the relative pose of the two cameras, of which we make use
in our discussion of the essential matrix below.

The Essential Matrix. Let ˜

m = K�1

(x

>, 1)

> 2 P2 and ˜

m

0
= K0�1

(x

0>, 1)

> 2 P2, called the
normalized coordinates of the pixels x 2 R2 and x

0 2 R2 in the left and right view, respectively.
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Given a pair of cameras P = K[I | 0], P0 = K0[R | t], the 3 ⇥ 3 essential matrix E = [t]⇥R
4

encodes the epipolar geometry between P and P0 such that the epipolar line l

0 2 P2 in the right
view corresponding to the pixel x in the left is given by

l

0
= E ˜

m, (2.32)

and, similarly, the epipolar line l 2 P2 in the left view corresponding to the pixel x0 in the right
is given by

l = E> ˜

m

0. (2.33)

Note that if x,x0 satisfy the epipolar constraint, it follows by point-line incidence that

˜

m

0>E ˜

m = 0. (2.34)

We refer the reader to other texts for a derivation of E = [t]⇥R, as well as for a discussion and
derivation of the closely related fundamental matrix F = K0�>

[t]⇥RK
�1 (e.g., Hartley and Zis-

serman [HZ06] or Birchfield [Bir98]). The key point we wish to make here is that an essential
matrix E can be computed from sparse image correspondences in normalized coordinates using
any of a variety of so-called minimal algorithms. One way to proceed is to use the 5 point algo-
rithm [Nis04], which estimates a matrix E from five such correspondence pairs, in combination
with RANSAC [FB81], whereby candidates for E are computed from five correspondence pairs
chosen at random, returning finally the candidate for which the subset of total correspondence
pairs deemed inliers of E is maximized. Assuming the left camera is expressed in canonical
pose, such a matrix E can be decomposed using SVD into four possible choices of rigid body
motion (R, t) for the right camera, based on two possible choices of rotation matrix R and two
possible signs for the translation vector t (cf. Hartley and Zisserman [HZ06]), among which one
is chosen such that both recovered cameras point in the same direction. It is in this manner that
we proceed in Chapter 7 to recover a dominant rigid body motion to explain motion in the scene
from sparse correspondences between a pair of RGB frames.

Rectification. Given a view, the effect of rotating the corresponding camera—expressed in
canonical pose and with camera calibration matrix K—about its camera center according to a 3D
rotation matrix R can be achieved by means of a homography encoded in the form of a 3 ⇥ 3
matrix by

KRK�1, (2.35)

which serves to map a pixel in the rotated view to its correspondence in the unrotated original
view. Warping the images of a two-view setup such that pixels in one view and their corre-
sponding epipolar lines in the other lie on the same horizontal scanline (cf. Figure 2.9) is termed
rectification, and rectifying homographies can be computed using any of a number of techniques

4If a = (a
1

, a

2

, a

3

)> and b = (b
1

, b

2

, b

3

)> then a⇥ b = [a]⇥b, where

[a]⇥ =

2

4
0 �a

3

a

2

a

3

0 �a

1

�a

2

a

1

0

3

5
.
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Figure 2.9: Rectified epipolar geometry. The images are projectively warped by applying ap-
propriate rectifying homographies with the effect of having rotated the corresponding cameras
about their respective camera centers, such that the epipolar line l

0 corresponding to any pixel x
lie on the same scanline as x. Note that the majority of stereo algorithms assume assume the
input image pair has been rectified.

(e.g., Bouguet’s algorithm [Bou]). Let B denote the Euclidean distance between the two camera
centers, termed the baseline, and let the rotated right camera be expressed relative to the rotated
left camera in canonical pose. Given a point X 2 R3, its projections x,x0 2 R2 to the rectified
left and right views, respectively, are given according to

x = (x, y)

>
=

�
fX/Z + x

0

, fY/Z + y
0

�> (2.36)

and
x

0
= (x0, y)

>
=

�
f(X �B)/Z + x

0

, fY/Z + y
0

�>
. (2.37)

The horizontal displacement x � x0 � 0 is termed the disparity between x and its correspon-
dence x

0. Observe that

Bf

x� x0 =

Bf

f
�
X � (X �B)

�
/Z + x

0

� x
0

= Z, (2.38)

which gives a convenient expression for the relationship between a pixel correspondence in a
rectified setting and the depth of the corresponding projecting point. For the majority of stereo
algorithms (cf. Section 4.3), the input is assumed to be a rectified image pair, and the output
takes the form of a disparity map encoding the disparities per pixel of one of the two rectified
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images with respect to recovered correspondences in the other. The corresponding depth map
can easily be computed by applying (2.38), and a corresponding point cloud by subsequently
applying (2.29).

2.6 Homography Induced by the Plane
Let ⇡ = (n

>,�d)

> 2 P3 denote a plane in 3D. Let X 2 R3 denote a point about which we
know only that it lie in that plane and that it project to the pixel x 2 R2. A plane-induced
homography gives a mapping x $ x

0 with the effect of recovering the point X by intersecting
the plane ⇡ with the ray along the back-projection p = K�1

(x

>, 1)

> of x, then transforming X

according to a 3D rigid body motion (R, t), and finally projecting the transformed point X0
=

RX + t back to image space. The homogeneous counterpart ˜

X = (p

>,�)

> 2 P3 of X encodes
precisely this ray along the back-projection p of x, parameterized by �. Since the point X lies in
the plane ⇡, it follows that ⇡>

(p

>,�)

>
= n

>
p�d� = 0, which gives � = n

>
p/d. Noting that

by (2.28) the Z-coordinate of p is 1, the depth Z of the inhomogeneous point X then happens
to be 1/� = d/n>

p, giving X by (2.29) as

X = p/� =

d

n

>
p

K�1

(x

>, 1)

>, (2.39)

a fact used to generate Figure 1.4a. The desired mapping x $ x

0, however, can be expressed
without explicitly recovering the three coordinates of the point X, since we can write

(x

0>, 1)

> ⇠ K[R | t]
⇣
p

>,�
⌘>

= K[R | t]
⇣
p

>,n>
p/d

⌘>

= K
⇣
Rp + tn

>
p/d

⌘

= K
⇣
R + tn

>/d
⌘
p

= K
⇣
R + tn

>/d
⌘
K�1

(x

>, 1)

>.

Accordingly, the final homography over P2 induced by the plane ⇡ = (n

>,�d)

> 2 P3 (3 DoF)
and 3D rigid body motion (R, t) (6 DoF) can be expressed as the 3 ⇥ 3 matrix

K
⇣
R + tn

>/d
⌘
K�1, (2.40)

giving a total of 9 DoF for camera calibration matrix K fixed. Note that such a homography
can be interpreted in terms of a plane undergoing rigid motion relative to a single fixed camera
P = K[I | 0], or in terms of a fixed plane viewed by two cameras P = K[I | 0] and P0 = K[R | t]
(cf. Figure 2.10). On the latter interpretation, note that for P0 = K0[R | t] (2.40) becomes

K0
⇣
R + tn

>/d
⌘
K�1. (2.41)
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(a) Interpretation as fixed camera, moving plane.
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(b) Interpretation as fixed plane, moving camera.

Figure 2.10: Two interpretations of a plane-induced homography. (a) A point in the plane—
obtained by intersecting the plane with a pixel’s back-projection—undergoes a 3D rigid body
motion (R, t) and is then projected back to image space. (b) The source camera is in the canoni-
cal pose, the pose of the destination camera relative to canonical pose is given by (R�1,�R�1

t);
projection of the same point in the plane to the destination view calls for expressing the point in
the camera coordinate frame of the destination camera, which is achieved by transforming the
point likewise by the motion (R, t).



CHAPTER 3
MAP Inference by PatchMatch

and PMBP

A fruitful way to approach the problem of dense correspondence search is to cast it as a la-
beling problem solved in terms of maximizing a joint probability distribution, which is to say
by maximum a posteriori (MAP) inference. A label is understood here to serve as an index to
one of a subset of conceivable motions defined, perhaps, in terms of 2 DoF translations or, as
in the chapters that follow, in terms of 6 DoF 3D rigid body motions or 9 DoF plane-induced
homographies. The aim is to assign such a label to each pixel of an image such that the result-
ing labeling be optimal with respect to a chosen objective function defined over the label space
and the space of input images. More precisely, such an objective function might be defined,
for example, in terms of only functions called unary potentials intended to penalize labelings
that are inconsistent with the given image data, or perhaps additionally by means of pairwise
potentials intended to promote smoothness of the recovered correspondence field. Probabilis-
tic graphical models provide a framework for reasoning about such labeling problems in terms
of maximizing a joint probability distribution such that conditional independence properties of
the joint distribution are encoded in a graph. Exploiting these very conditional independence
properties is a key ingredient in many inference algorithms. In general, however, the problem
of computing such a labeling is NP-hard [BVZ01], with many popular approximative algo-
rithms intended for tackling only discrete label spaces (e.g., graph cuts [BVZ01, KZ04], loopy
belief propagation [YFW00], or tree-reweighted message passing [Kol06]), often having the
consequence of requiring a coarse discretization of the underlying space of conceivable mo-
tions. The recently introduced PatchMatch Belief Propagation (PMBP) algorithm [BRFK12]
is an approximative method that provides an avenue to recovering dense correspondences over
continuous label spaces by leveraging PatchMatch [BSFG09, BSGF10] for exploiting spatial
coherence characteristic of typical correspondence fields by sampling motions from pixel neigh-
bors (termed spatial propagation), and a flavor of loopy belief propagation called particle belief
propagation (PBP) for explicitly promoting smoothness.

31
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The objective of this chapter is to give a self-contained derivation—drawing mainly on Bishop
[Bis06] and Nowozin and Lampert [NL11]—of PMBP and PatchMatch1 in terms of maximiz-
ing joint probability distributions by message passing. This is in contrast to [BRFK12], where
PMBP is derived in a considerably more high level manner in terms of a formulation of PBP
the authors themselves qualify as spartan. We begin this chapter in Section 3.1 with a brief re-
view of some essential concepts of probability theory. We then introduce probabilistic graphical
models in Section 3.2. Message passing for exact inference on graphs that do not contain loops
is treated in Section 3.3, and extended to loopy graphs in Section 3.4. Finally, in Section 3.5 we
detail PMBP and PatchMatch, in terms of which we carry out our correspondence search in the
chapters to come.

3.1 Variables, Events, and Probabilities
Let X denote a discrete random variable, which is a variable in the sense that X can take on
any of a set L = {x1, . . . , xK} of possible values (or labels) x 2 L, discrete in the sense that
the number |L| = K of possible values of X is finite, and random in the sense that rather than
be known with certainty, the occurrence of an event X = x has associated with it a probabil-
ity p(X = x). The probability p(X = x) associated with each event X = x is described by a
function p : L! R+ [ {0}, which is a probability distribution and as such is required to satisfyP

x2L p(X = x) = 1. Let us introduce the notation xi 2 L, such that i 2 {1, . . . , K}, in order
to be able to speak, when needed, in clearer terms about a particular member of the set L. The
probability p(X = xi

) of an event X = xi is then defined by n
i

/n, where n
i

is the number of
times the event X = xi occurs from a total of n trials, taken in the limit as n!1. Let X

1

, X
2

denote a pair of discrete random variables, and let X now denote a discrete random variable
such that X = x be understood to denote X

1

= x
1

, X
2

= x
2

, where x = (x
1

, x
2

) 2 L
1

⇥ L
2

.
The joint probability distribution p(X = x) = p(X

1

= x
1

, X
2

= x
2

) of X
1

= x
1

and X
2

= x
2

is defined by
p(X

1

= xi

1

, X
2

= xj

2

) =

n
ij

n
, (3.1)

where p(X
1

= x
1

, X
2

= x
2

) is understood to mean p(X
1

= x
1

and X
2

= x
2

) and n
ij

is the
number of trials for which both X

1

= xi

1

and X
2

= xj

2

as n ! 1. Suppose the variable X
1

represents a marble’s color, and X
2

the box to which the marble belongs. The number n
ij

is
then the number of marbles of color xi

1

belonging to box xj

2

.

Conditional Probability. Suppose it is known that X
1

= xi

1

. We obtain the conditional
probability distribution of X

2

= x
2

given X
1

= xi

1

as

p(X
2

= xj

2

| X
1

= xi

1

) =

p(X
1

= xi

1

, X
2

= xj

2

)

p(X
1

= xi

1

)

=

n
ij

/nP
j

n
ij

/n
=

n
ijP
j

n
ij

, (3.2)

1As in [BRFK12], we treat PatchMatch as a specialization of PMBP.
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where
P

j

is shorthand for
P

j2{1,...,|L
2

|}. In our example, (3.2) would give the number n
ij

of
marbles of color xi

1

belonging to the box xj

2

as a fraction of the number
P

j

n
ij

of marbles of
color xi

1

contained across all possible boxes x
2

2 L
2

. Note that both joint probability distribu-
tions and conditional probability distributions generalize to arbitrary numbers of variables.

Sum Rule. The marginal probability distribution p(X
s

= x
s

) of a joint probability distribu-
tion p(X

1

= x
1

, . . . , X
N

= x
N

) for a variable X
s

of the joint distribution can be computed by
applying the sum rule of probability:

p(X
s

= x
s

) =

X

x

1

· · ·
X

x

s�1

X

x

s+1

· · ·
X

x

N

p(x
1

, . . . , x
s�1

, x
s

, x
s+1

, . . . , x
N

), (3.3)

where p(x
1

, . . . , x
N

) is shorthand for p(X
1

= x
1

, . . . , X
N

= x
N

) and
P

x

t

is shorthand forP
x

t

2L
t

. Accordingly, summation is carried out over the joint probabilities of all |L
1

| ⇥ · · · ⇥
|L

s�1

|⇥ |L
s+1

|⇥ · · ·⇥ |L
N

| possible events X = x such that x 2 L
1

⇥ · · ·⇥ L
s�1

⇥ {x
s

}⇥
L
s+1

⇥ · · ·⇥ L
N

for X
s

= x
s

fixed. This process is called marginalization. In our example of
marbles and boxes, it follows that the marginal p(X

1

= x
1

) is obtained by

p(X
1

= xi

1

) =

X

x

j

2

2L
2

p(X
1

= xi

1

, X
2

= xj

2

) =

X

j

n
ij

n
, (3.4)

giving the probability of choosing a marble of color xi

1

.

Product Rule. It can be shown by induction that any joint probability distribution p(X
1

=

x
1

, . . . , X
N

= x
N

) can be factorized into a product of conditional probabilities:

p(X
1

= x
1

, . . . , X
N

= x
N

) = p(x
N

| x
1

, . . . , x
N�1

) · · · p(x
3

| x
1

, x
2

)p(x
2

| x
1

)p(x
1

),
(3.5)

where p(x
2

| x
1

) is shorthand for p(X
2

= x
2

| X
1

= x
1

). This gives the product rule (or chain
rule) of probability. By (3.2) and (3.4), the joint probability distribution p(X

1

= x
1

, X
2

= x
2

)

from our example factorizes accordingly as

p(X
1

= xi

1

, X
2

= xj

2

) =

n
ij

n

=

n
ijP
j

n
ij

·
P

j

n
ij

n
= p(X

2

= xj

2

| X
1

= xi

1

)p(X
1

= xi

1

) (3.6)

=

n
ijP
i

n
ij

·
P

i

n
ij

n
= p(X

1

= xi

1

| X
2

= xj

2

)p(X
2

= xj

2

), (3.7)

where
P

i

is shorthand for
P

i2{1,...,|L
1

|}.

Independence. Given a joint probability distribution p(X
1

= x
1

, X
2

= x
2

), to write of a
particular configuration (x

1

, x
2

) 2 L
1

⇥ L
2

that

p(X
1

= x
1

| X
2

= x
2

) = p(X
1

= x
1

) (3.8)
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is to say that knowing X
2

= x
2

reveals nothing about the probability of X
1

= x
1

. The two
events X

1

= x
1

, X
2

= x
2

are called independent if and only if, by 3.5 and (3.8), it holds that

p(X
1

= x
1

, X
2

= x
1

) = p(X
1

= x
1

| X
2

= x
2

)p(X
2

= x
2

)

= p(X
1

= x
1

)p(X
2

= x
2

). (3.9)

Conditional Independence. Two random variables X
1

, X
2

of a joint probability distribu-
tion p(X

1

= x
1

, X
2

= x
2

, X
3

= x
3

) are said to be conditionally independent given a third
variable X

3

if and only if for all configurations (x
1

, x
2

, x
3

) 2 L
1

⇥ L
2

⇥ L
3

, it holds that

p(X
1

= x
1

, X
2

= x
2

| X
3

= x
3

) = p(X
1

= x
1

| X
3

= x
3

)p(X
2

= x
2

| X
3

= x
3

). (3.10)

In words, (3.10) states that for each such configuration (x
1

, x
2

, x
3

) the events X
1

= x
1

, X
2

= x
2

are independent in their joint distribution conditioned on the event X
3

= x
3

. Note that, in
conjunction with (3.8), it follows that

p(X
1

= x
1

| X
2

= x
2

, X
3

= x
3

) = p(X
1

= x
1

| X
3

= x
3

), (3.11)

which is to say that, given any X
3

= x
3

, no X
2

= x
2

has any impact on the probability of the
occurrence of any X

1

= x
1

. Similarly,

p(X
2

= x
2

| X
1

= x
1

, X
3

= x
3

) = p(X
2

= x
2

| X
3

= x
3

). (3.12)

This conditional independence property over the variables X
1

, X
2

, X
3

for all configurations
(x

1

, x
2

, x
3

) 2 L
1

⇥ L
2

⇥ L
3

is expressed more compactly using the notation

X
1

? X
2

| X
3

. (3.13)

Bayes’ Theorem. Observe that by equating (3.6) and (3.7), it follows for a joint probability
distribution p(X

1

= x
1

, X
2

= x
2

) that

p(X
2

= x
2

| X
1

= x
1

) =

p(X
1

= x
1

| X
2

= x
2

)p(X
2

= x
2

)

p(X
1

= x
1

)

, (3.14)

where the denominator p(X
1

= x
1

) can be obtained from p(X
1

= x
1

, X
2

= x
2

) by applying
the sum rule in (3.3), which in conjunction with (3.7) gives

p(X
1

= x
1

) =

X

x

2

2L
2

p(X
1

= x
1

, X
2

= x
2

)

=

X

x

2

2L
2

p(X
1

= x
1

| X
2

= x
2

)p(X
2

= x
2

). (3.15)

Note that each constituent probability distribution of (3.14) is given a name, such that

posterior =

likelihood · prior
evidence

. (3.16)
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3.2 Probabilistic Graphical Models

Computing the marginal distribution p(X
s

= x
s

) of a joint probability distribution p(X
1

=

x
1

, . . . , X
N

= x
N

) for a variable X
s

of the joint distribution by the sum rule in (3.3) is a
process that calls for exhaustively enumerating all possible configurations x = (x

1

, . . . , x
N

) 2
L = L

1

⇥ · · · ⇥ L
N

, and hence takes O(KN

) time if |L
1

| = · · · = |L
N

| = K. Exploiting
conditional independence properties between variables of the joint distribution offers a way
around the exponential cost of exhaustively enumerating possible configurations. Probabilistic
graphical models provide an avenue to identifying conditional independence properties of a joint
probability distribution by reading those properties out from an appropriately structured graph.
Let G = (V, E) denote a graph, defined in terms of a tuple comprising a set V of vertices (or
nodes) s 2 V ⇢ Z+ and a set E of edges linking a subset of pairs of vertices s, t 2 V . Two
common classes of probabilistic graphical models are Bayesian networks (or directed models)
and Markov random fields (or undirected models). We shall—reflecting the aim of this chapter
to derive PMBP and PatchMatch—concern ourselves here with only the latter, expressed using
directed graphs whereby the edges {s, t} 2 E do not encode order, contrary to the ordered
edges (s, t) 2 E of a Bayesian network.

Markov Random Fields. Let G = (V, E) denote an undirected graph, such that for each
random variable X

1

, . . . , X
N

of a joint probability distribution p(X
1

= x
1

, . . . , X
N

= x
N

)

there be a corresponding vertex in V = {1, . . . , N}, with the edge set E serving to encode
probabilistic relationships between the variables. A clique of the graph G is a subset V

C

⇢ V of
the vertices of G such that there exists an edge {s, t} 2 E between every pair of vertices s, t 2
V
C

, which is to say that the subgraph G
C

= (V
C

, E) spanned by the clique is connected. A
clique is qualified as maximal if there exists no vertex s 2 V \ V

C

such that there exists an
edge {s, t} 2 E for each vertex t 2 V

C

. The joint distribution is a Gibbs distribution if it
factorizes over maximal cliques of G as

p(X = x) =

1

Z

Y

C2C(G)

 
C

(x
C

), (3.17)

where p(X = x) = p(X
1

= x
1

, . . . , X
N

= x
N

), and C(G) serves as an index set of the
set
S

C2C(G)

{V
C

} of maximal cliques of G, and where functions  
C

: L
C

! R+—called
potential functions (also known as potentials or factors)—are defined over the possible configu-
rations x

C

2 L
C

=⇥
s2V

C

L
s

for C 2 C(G). Note that the configuration x
C

2 L
C

in the right
hand side of (3.17) is read out from the configuration x = (x

1

, . . . , x
N

) 2 L = L
1

⇥ · · ·⇥ L
N

provided in the left hand side. The partition function Z in (3.17) is obtained by

Z =

X

x2L

Y

C2C(G)

 
C

(x
C

), (3.18)

computed by summing over all possible configurations x 2 L, and serves to ensure that (3.17)
satisfy

P
x2L p(X = x) = 1. By slight abuse of notation, let us understand p(

S
s2V X

s

= x
s

)

to express p(X
1

= x
1

, . . . , X
N

= x
N

). By the Hammersley-Clifford theorem, it follows
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that the graph G specifies a Markov random field (MRF), with the property—called the local
Markov property—that for any variable X

s

of p(X
1

= x
1

, . . . , X
N

= x
N

) and any configura-
tion (x

1

, . . . , x
N

) 2 L
1

⇥ · · · ⇥ L
N

, it holds that p(X
s

= x
s

|
S

t2V\{s} X
t

= x
t

) = p(X
s

=

x
s

|
S

t2N
s

X
t

= x
t

), where N
s

⇢ V denotes the set of vertices t 2 E such that {s, t} 2 E . By
similar slight abuse of the notation of conditional independence, this is to say that

X
s

?
[

t2V\N+

s

X
t

|
[

t2N
s

X
t

, (3.19)

where N+

s

= N
s

[ {s}. More generally, the Hammersley-Clifford theorem states that the set of
distributions that are consistent with the conditional independence properties encoded in an MRF
specified by an undirected graph G is identical to the set of distributions that can be factorized
over the maximal cliques of G as in (3.17), provided that  

C

(x
C

) > 0 for each x
C

2 L
C

, C 2
C(G). Accordingly, it is convenient to define the potentials in terms of exponential functions,
such that

 
C

(x
C

) = exp

�
� E

C

(x
C

)

�
, (3.20)

where E
C

: L
C

! R is called an energy function.

Conditional Random Fields. The factorization of the joint distribution in (3.17) can be writ-
ten more generally to reflect conditioning on an observation Y = y, giving

p(X = x | Y = y) =

1

Z(y)

Y

C2C(G)

 
C

(x
C

; y), (3.21)

where the partition function Z(y) now depends on y:

Z(y) =

X

x2L

Y

C2C(G)

 
C

(x
C

; y). (3.22)

Such an observation Y = y can be understood to encode, e.g., a depth map, a pair of RGB-D
frames, or a pair of images, as in the chapters that follow. Note that we may write conditioning
explicitly as in (3.21), or understand it from the context to be encoded implicitly in the potential
functions of the factorization in (3.17). If the conditioning is written explicitly, the corresponding
MRF is called a conditional random field (CRF).

Pairwise MRFs. Note that nothing speaks against a clique potential  
C

: L
C

! R+ in (3.17)
being itself defined in terms of a product of potentials over the variables corresponding to V

C

.
Suppose, for instance, that L

C

= L
1

⇥L
2

; a conceivable factorization of  
C

(x
1

, x
2

) might then
take the form

 
C

(x
1

, x
2

) =  
1

(x
1

) 
1,2

(x
1

, x
2

), (3.23)

where  
1

: L
1

! R+ is called a unary potential and  
1,2

: L
1

⇥ L
2

! R+ a pairwise
potential. Of particular interest in computer vision and in this thesis are Gibbs distributions that
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factorize—subject to an underlying factorization over maximal cliques—into a product of unary
potentials  

s

(x
s

; y) conditioned on an observation Y = y and pairwise potentials  
s,t

(x
s

, x
t

),

p(X = x | Y = y) =

1

Z(y)

Y

s2V
 
s

(x
s

; y)

Y

{s,t}2E

 
s,t

(x
s

, x
t

), (3.24)

giving rise to what are called pairwise MRFs. The topology of the undirected graph G = (V, E)

that specifies the MRF corresponding to (3.24) is that of a lattice, such that vertices s 2 V can
be arranged in the form of a regular 2D grid and E =

S
s2V

�
{s, t} | t 2 N

s

 
, where N

s

⇢ V
here denotes the set of 4-connected vertex neighbors of s 2 V . Pairwise MRFs are accordingly
commonly used to carry out inference over images, such that nodes are made to correspond to
pixels and edges to interactions between 4-connected pixel neighbors. Note that such a graph G
is an example of what is called a loopy graph, since there exists at least one pair of vertices in V
for which there exists more than one sequence of edges in E connecting the two. By analogy to
(3.16), the four constituent terms of (3.24) are given names; specifically, p(X = x | Y = y) is
called the posterior, with

Q
s2V  s

(x
s

; y),
Q

{s,t}2E  s,t

(x
s

, x
t

), and Z(y) called the likelihood,
prior, and evidence, respectively.

3.3 Message Passing on Chains and Trees
The task of computing the marginal distribution p(X

s

= x
s

) for a variable X
s

of a joint prob-
ability distribution p(X

1

= x
1

, . . . , X
N

= x
N

) can be solved exactly by applying the sum
rule in (3.3). However, as we saw in Section (3.2), if |L

1

| = · · · = |L
N

| = K, then com-
puting the marginal takes O(KN

) time, exponential in the number N of variables of the joint
distribution. In this section, we introduce message passing for getting around this exponential
complexity on the example of exactly computing a marginal distribution of a joint probability
distribution whose corresponding undirected graph takes the form of a chain, a process that takes
only O(NK2

) time by exploiting the conditional independence properties encoded in the graph.
Proceeding in a similar vein, we show how to obtain a MAP configuration on such a joint distri-
bution, likewise in O(NK2

) time. We then generalize message passing to undirected graphs that
take the form of trees—i.e., undirected graphs that are connected and that do not have loops—
by introducing the sum-product algorithm for computing marginal distributions, and the closely
related max-product algorithm for obtaining a MAP configuration.

3.3.1 Inference on Chains

A joint probability distribution p(X
1

= x
1

, . . . , X
N

= x
N

) corresponds to an MRF specified
by an undirected graph G = (V, E) that takes the form of a chain if the factorization of the joint
distribution over the cliques of G takes the form

p(X = x) =

1

Z
 
1,2

(x
1

, x
2

) · · · 
N�1,N

(x
N�1

, x
N

), (3.25)

where x 2 L = L
1

⇥ · · · ⇥ L
N

. We consider two questions: the question of how to exactly
compute the marginal distribution p(X

x

= x
x

) of any variable X
s

of the joint distribution, and
that of how to obtain the configuration x⇤ 2 L that maximizes the joint probability.
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Marginals. By the sum rule in (3.3), the marginal distribution p(X
s

= x
s

) for a variable X
s

of the joint distribution in (3.25) is evaluated in O(KN

) time according to

p(X
s

= x
s

) =

1

Z

X

x

1

· · ·
X

x

s�1

X

x

s+1

· · ·
X

x

N

(3.26)

 
1,2

(x
1

, x
2

) · · · 
s�1,s

(x
s�1

, x
s

) 
s,s+1

(x
s

, x
s+1

) · · · 
N�1,N

(x
N�1

, x
N

),

where
P

x

t

is again shorthand for
P

x

t

2L
t

. Observe, however, that in (3.26) only the potential
 
N�1,N

: L
N�1

⇥L
N

! R+ depends on x
N

2 L
N

, and so can be replaced by a function m
�

:

L
N�1

! R+ called a message, defined by

m
�

(x
N�1

) =

X

x

N

 
N�1,N

(x
N�1

, x
N

), (3.27)

which can be encoded as a vector in R|L
N�1

| with one element per x
N�1

2 L
N�1

. While
there is no requirement that the size of the label set of each variable of the joint distribu-
tion be the same, let us again assume that |L

1

| = · · · = |L
N

| = K, in order to derive the
claim asserted in the opening paragraph of this section that computing marginals on chains
can be carried out by message passing in O(NK2

) time. The cost of computing the mes-
sage in (3.27) is then determined by evaluating the factor  

N�1,N

(x
N�1

, x
N

) for all K2 pos-
sible configurations (x

N�1

, x
N

) 2 L
N�1

⇥ L
N

and then summing over each x
N

2 L
N

for x
N�1

2 L
N�1

fixed, and so is performed in O(K2

) time. Observe now that since only
 
N�2,N�1

(x
N�2

, x
N�1

) 
N�1,N

(x
N�1

, x
N

) depends on x
N�1

, we can replace it in turn with
its own message m

�

: L
N�2

! R+:

m
�

(x
N�2

) =

X

x

N�1

 
N�2,N�1

(x
N�2

, x
N�1

)

 
X

x

N

 
N�1,N

(x
N�1

, x
N

)

!

=

X

x

N�1

 
N�2,N�1

(x
N�2

, x
N�1

)m
�

(x
N�1

), (3.28)

which takes an additional O(K2

) time over the O(K2

) time for precomputing (3.27). Pro-
ceeding analogously for all N � 1 edges in the chain, we find that we can obtain the marginal
distribution p(X

s

= x
s

) in (3.26) recursively by

p(X
s

= x
s

) =

1

Z

0

@
X

x

s�1

 
s�1,s

(x
s�1

, x
s

)

 
· · ·
X

x

2

 
2,3

(x
2

, y
3

)

 
X

x

1

 
1,2

(x
1

, x
2

)

!!1

A ·

0

@
X

x

s+1

 
s,s+1

(x
s

, x
s+1

)

 
· · ·
X

x

N

 
N�1,N

(x
N�1

, x
N

)

!1

A

=

1

Z

0

@
X

x

s�1

 
s�1,s

(x
s�1

, x
s

)m
↵

(x
s�1

)

1

A

| {z }
m

↵

(x

s

)

·

0

@
X

x

s+1

 
s,s+1

(x
s

, x
s+1

)m
�

(x
s+1

)

1

A

| {z }
m

�

(x

s

)

,

(3.29)
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where the function m
�

: L
s

! R+ is called a backward message and the function m
↵

:

L
s

! R+ a forward message, thus giving an expression for the marginal distribution of X
s

that can be interpreted in terms of message passing and evaluated in O(NK2

) time, having
computed N � 1 messages in total. This is a significant improvement over the exponential
complexity of computing the marginal distribution by naïvely applying the sum rule in (3.3),
and is achieved by exploiting the conditional independence properties encoded in the graph.
The partition function Z in (3.29) is given by

Z =

X

x

s

2L
s

m
↵

(x
s

)m
�

(x
s

). (3.30)

Note that independently invoking (3.29) to compute each marginal for all N nodes in the graph
takes O(N2K2

) time, but happens to involve wasteful repeated computation of identical mes-
sages. Alternatively, by sweeping the chain forwards to precompute a forward message per
node, and proceeding analogously to precompute a backward message per node, computing
each marginal for all N nodes requires only twice the number of message computations as to
evaluate a single marginal in the manner of (3.29), and thus remains O(NK2

). The partition
function Z must be computed only once, for any arbitrary s 2 V .

MAP Configurations. Given the same joint distribution p(X
1

= x
1

, . . . , X
N

= x
N

) whose
factorization corresponds to an MRF specified by a chain, it happens to be the case that similar
reasoning in terms of messages to that applied to obtaining the marginals of the joint distribution
can be used to exactly obtain a configuration2 x⇤ 2 L = L

1

⇥ · · ·⇥L
N

that maximizes the joint
probability, so that

x⇤
= arg max

x2L
p(X = x)

= arg max

x2L

1

Z
 
1,2

(x
1

, x
2

) · · · 
N�1,N

(x
N�1

, x
N

)

= arg max

x2L

1

Z
 
1,2

(x
1

, x
2

) · · · 
N�1,N

(x
N�1

, x
N

), (3.31)

which is to say that p(X = x⇤
) gives the MAP probability of the joint distribution, and so x⇤

is a MAP configuration. Note that (3.31) does not require computation of the partition function,
since multiplying a function by a nonzero scalar factor only scales the respective values of the
function’s extrema, but does not change where those extrema occur. Observe that

max

x2L
p(X = x) = max

x2L
 
1,2

(x
1

, x
2

) · · · 
N�1,N

(x
N�1

, x
N

)

= max

x

1

· · ·max

x

N

 
1,2

(x
1

, x
2

) · · · 
N�1,N

(x
N�1

, x
N

), (3.32)

where max

x

s

is shorthand for max

x

s

2L
s

. As it was with the scope of the summation
P

x

N

in
(3.26) for computing marginals, the fact that only the potential  

N�1,N

: L
N�1

⇥ L
N

! R+

2The subtlety is a noteworthy one: for a given joint distribution p(X
1

= x

1

, . . . , X

N

= x

N

), there may well
exist more than one configuration in L

1

⇥ · · ·⇥ L
N

that maximizes the joint probability.



40 CHAPTER 3. MAP INFERENCE BY PATCHMATCH AND PMBP

is in the scope of max

x

N

allows for replacing max

x

N

 
x

N�1

,x

N

(x
N�1

, x
N

) in (3.32) with the
message m : L

N�1

! R+,

m(x
N�1

) = max

x

N

 
x

N�1

,x

N

(x
N�1

, x
N

). (3.33)

Proceeding analogously to compute a message for each of the N � 1 edges in the chain gives
the MAP probability recursively as

max

x2L
p(X = x) = max

x

1

✓
max

x

2

✓
 
1,2

(x
1

, x
2

) · · ·max

x

N

✓
 
N�1,N

(x
N�1

, x
N

)

◆◆◆

| {z }
m(x

1

)

(3.34)

in O(NK2

) time, provided |L
1

| = · · · = |L
N

| = K. The MAP configuration x⇤ itself can be
obtained by having stored the maximizing value of each maximization involved in recursively
computing (3.34). Retrieving these stored values is called back tracking.

3.3.2 Sum-Product Algorithm

An undirected graph G = (V, E) is a tree if it is connected and if for each pair of vertices s, t 2
V , there exists at most one path in E that joins s with t, which is to say that G does not contain any
loops. The message passing algorithm for exactly computing marginals over joint probability
distributions that correspond to MRFs specified by undirected graphs that are chains general-
izes to joint distributions that correspond to MRFs specified by trees,3 giving the sum-product
algorithm. The marginal p(X

s

= x
s

) for a variable X
s

of such a joint probability distribu-
tion p(X

1

= x
1

, . . . , X
N

= x
N

) is then computed, in the same vein as (3.29), by multiplying
over all incoming factor-to-variable messages m

C!s

: L
s

! R+ of X
s

:

p(X
s

= x
s

) =

1

Z

Y

C2N
s

m
C!s

(x
s

), (3.35)

where N
s

⇢ C(G) indexes the clique potentials that are functions of x
s

2 L
s

. The factor-to-
variable messages—from whose form the sum-product algorithm derives its name—are given
by

m
C!s

(x
s

) =

X

x

C

2Lx

s

C

0

@ 
C

(x
C

)

Y

t2N
C

\{s}

m
t!C

(x
Ct

)

1

A , (3.36)

where Lx

s

C

denotes the set of all configurations in L
C

such that X
s

= x
s

and x
Ct

2 L
t

denotes
the value of X

t

as encoded in x
C

2 L
C

, and N
C

⇢ V indexes the variable nodes over which
the clique potential  

C

: L
C

! R+ is defined. The factor-to-variable messages are defined in
terms of variable-to-factor messages m

s!C

: L
s

! R+:

m
s!C

(x
s

) =

Y

C

02N
s

\{C}

m
C

0!s

(x
s

), (3.37)

3Note that the sum-product algorithm, like the max-product algorithm that we treat next, is applicable to an even
larger class of graphs than only to undirected graphs that are trees, namely to tree-structured factor graphs. We omit
factor graphs from our discussion for the benefit of simpler and more focused presentation, and instead refer the
reader to Bishop [Bis06] or Nowozin and Lampert [NL11] for more details.
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which are themselves defined recursively in terms of factor-to-variable messages. Note that to
start the recursion, variable-to-factor messages for variables that correspond to leaves of the tree
are initialized to 1. The partition function Z in (3.35) is given by

Z =

X

x

s

2L
s

Y

C2N
s

m
C!s

(x
s

). (3.38)

As in the case of chains, proceeding in the above manner separately for each variable in the joint
distribution to compute the corresponding marginal involves wasteful repeated computation,
since identical messages are recomputed unnecessarily. A less expensive way to proceed is to
choose an arbitrary s 2 V and recursively compute each of the incoming messages from the
leaves of the tree to s by (3.35). Next, compute outgoing messages from s to the leaves of
the tree. In this manner, every node t 2 V will have received a factor-to-variable message for
each C 2 N

t

, thereby giving each marginal in only twice the number of message computations
needed to compute a single marginal. As for chains, the partition function Z must be computed
only once, for any arbitrary s 2 V .

3.3.3 Max-Product Algorithm

Closely related to the sum-product algorithm is the max-product algorithm, which—given a
joint probability distribution p(X

1

= x
1

, . . . , X
N

= x
N

) whose factorization corresponds to
an MRF specified by a tree—returns a MAP configuration x⇤ 2 L = L

1

⇥ · · · ⇥ L
N

, com-
puted at some arbitrarily chosen node s 2 V , again in terms of all incoming factor-to-variable
messages m

C!s

: L
s

! R+ of X
s

:

p(X = x⇤
) =

1

Z
max

x

s

2L
s

Y

C2N
s

m
C!s

(x
s

)

/ 1

Z
max

x

s

2L
s

Y

C2N
s

m
C!s

(x
s

), (3.39)

where N
s

⇢ C(G) indexes the clique potentials that are functions of x
s

2 L
s

. The factor-to-
variable messages—from whose form, in turn, the max-product algorithm takes its name—are
defined by replacing the summation in (3.36) with a maximization, giving

m
C!s

(x
s

) = max

x

C

2Lx

s

C

0

@ 
C

(x
C

)

Y

t2N
C

\{s}

m
t!C

(x
Ct

)

1

A , (3.40)

where Lx

s

C

again denotes the set of all configurations in L
C

such that X
s

= x
s

and x
Ct

2 L
t

denotes the value of X
t

as encoded in x
C

2 L
C

, and N
C

⇢ V indexes the variable nodes
over which the clique potential  

C

: L
C

! R+ is defined. The variable-to-factor mes-
sages m

s!C

: L
s

! R+ in terms of which (3.40) is defined are themselves defined in the
same manner as in (3.37). As in the sum-product algorithm, variable-to-factor messages for
variables that correspond to leaves of the tree likewise initialized to 1 to start the recursion. The
MAP configuration x⇤ itself can be obtained by having stored the maximizing value of each
maximization involved in recursively computing (3.39).



42 CHAPTER 3. MAP INFERENCE BY PATCHMATCH AND PMBP

MAP Inference as Energy Minimization. If a > b holds then so too does log a > log b, and
so it follows that finding a configuration that maximizes the joint probability can be cast in terms
of energy minimization in log-space:

arg max
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log

�
p(X = x)

�
= arg max

x2L
log
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!
(3.41)

where the factors 
C

(x
C

) are defined as in (3.20) in terms of respective energy functions E
C

(x
C

)

and E(x) =

P
C2C(G)

E
C

(x
C

). Expressing (3.39) as a minimization in log-space gives
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E
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M
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), (3.42)

where the log-space factor-to-variable messages M
C!s
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! R are given by
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with the log-space variable-to-factor messages M
s!C

: L
C

! R in terms of which (3.43) is
defined given by

M
s!C
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s

) =

X

C

02N
s

\{C}

M
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0!s

(x
s

). (3.44)

In order to start the recursion, the log-space variable-to-factor messages that correspond to leaf
nodes of the tree are initialized to log(1) = 0. Practically speaking, reasoning in log-space
provides an avenue to ameliorating problems of numerical underflow potentially caused by mul-
tiplying together many small probabilities in the process of computing (3.39).
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3.4 Max-Product Loopy Belief Propagation
Of particular interest in computer vision and in this thesis is the recovery of MAP configurations
for joint probability distributions whose factorization takes the form (3.24), which we rewrite
here with the conditioning expressed implicitly in the factors:

p(X = x) =

1

Z

Y

s2V
 
s

(x
s

)

Y

{s,t}2E

 
s,t

(x
s

, x
t

), (3.45)

where E =

S
s2V

�
{s, t} | t 2 N

s

 
, and where in turn N

s

⇢ V denotes the set of 4-connected
vertex neighbors of s 2 V given an arrangement of the vertices in V as a regular 2D grid. The
corresponding MRF—called a pairwise MRF—is specified by a graph that contains loops, since
for any pair of vertices s, t 2 V there exists more than one path in E joining the two. While
the max-product algorithm presented in Section 3.3 is guaranteed to give a MAP configuration
only for graphs that do not contain loops, applying message passing to loopy graphs has been
observed in many settings to be an effective heuristic for approximative MAP inference. More
concretely, a MAP configuration for (3.45) is estimated iteratively by maximizing the belief bn

s

:

L
s

! R+ at each node s 2 V for iteration n:
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), (3.46)

computed in terms of incoming messages mn
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: L
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! R+, defined recursively by
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Note that the incoming messages in (3.46) serve as weights on the possible values x
s

2 L
s

of
X

s

. The messages are initialized for n = 0 to 1 for each x
s

2 L
s

, and are stored after being
computed in order to prevent wasteful recomputation. Updating the beliefs in (3.46) calls for
deciding on a schedule according to which the nodes s 2 V are visited over the course of an
iteration; for example, the classical PatchMatch schedule has nodes visited in scanline order
from the upper-left to the lower-right for odd iterations n, and in the opposite order for iterations
when n is even. The estimated MAP configuration x̂ = (x̂

1

, . . . , x̂
N

) 2 L = L
1

⇥ · · · ⇥ L
N

,
after n

max

iterations, is then obtained by evaluating

x̂
s

= arg max

x

s

2L
s

bnmax

s

(x
s

) (3.48)

for each node s 2 V .
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Energy Formulation. Casting the problem of MAP inference for a joint distribution that fac-
torizes as (3.45) in terms of energy minimization in log-space, the objective becomes to find a
configuration x⇤ 2 L that minimizes the energy function E : L! R, which is defined by

E(x) =

X

s2V
E

s

(x
s

) +
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{s,t}2E

E
s,t

(x
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), (3.49)

where E again denotes the set
S

s2V
�
{s, t} | t 2 N

s

 
of all 4-connected neighbors. Accord-

ingly, expressed in log-space the belief bn
s

: L
s

! R+ in (3.46) becomes the log-disbelief Bn
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where E
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s

) = � log

�
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(x
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)

�
. The log-disbelief at a node s 2 V for iteration n is computed

in terms of incoming log-space messages Mn

t!s

: L
s

! R—based on (3.47)—that are defined
recursively according to
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where, similarly, E
s,t

(x
s

, x
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) = � log
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�
. The log-space messages are initialized for

n = 0 to 0 2 R|L
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|. After n
max

iterations, the estimated minimizer x̂ 2 L of the energy in
(3.49) is then obtained by computing the minimization
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), (3.52)

again for each node s 2 V .

Max-Product PBP. Note that choosing a fixed set L
s

= {x1

s

, . . . , xK

s

} of K possible labels
for each node s 2 V might of necessity call for a coarse discretization of the label space, in order
to take into account considerations of runtime or memory for inference. Rather than keep each
set L

s

fixed, the max-product particle belief propagation (PBP) variant [KPS11] of max-product
belief propagation maintains, for each node s 2 V , a set Pn

s

= {x(1)

s

, . . . , x(P )

s

} of P labels
called particles, which are sampled from an underlying continuous label space. Each such
particle is allowed to undergo change between successive iterations in what amounts to a form
of Markov Chain Monte Carlo (MCMC) sampling around the given particle. Restricting our
attention to the formulation of max-product PBP in terms of energy minimization in log-space,
the messages Mn

t!s

: L
s

! R defined in (3.51) are instead defined in terms of Mn
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! R,
such that
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where the minimization is carried out over the particle set assigned to t 2 V in the previous iter-
ation, since it is over the particle sets of the previous iteration that the messages of the previous
iteration—in terms of which (3.53) is in turn calculated—were themselves computed and stored.
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Note that if |Pn�1

t

| = 1, the incoming messages of node t have no impact on the minimization
in (3.53), thereby allowing for (3.53) to be replaced with
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), (3.54)

where x
t

is the single member of Pn�1

t

. The log-disbeliefs Bn
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: Pn

s

! R are computed as in
(3.50), with the difference that the domain of Bn

s

becomes Pn
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in order to match the domain Pn
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over which the messages defined in (3.53) are computed and stored. After n
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iterations, the
estimated minimizer x̂ 2 Pn
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is obtained, for each s 2 V , from (3.52) by
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). (3.55)

Let S denote a set and f(S) = {f(s) | s 2 S} the application of a function f : S ! R to
each of the set’s members s 2 S . Additionally, let �n : V ! Z denote a schedule function, so
that t 2 V is visited before s 2 V if �n(t) < �n(s), and let �n

s

= {t | �n(t) < �n(s), t 2 V}
denote the corresponding predecessor set of s 2 V for iteration n. Making use of these terms,
we give pseudocode for max-product PBP in Algorithm 3.1, juxtaposed with the pseudocode of
the PMBP and PatchMatch algorithms that we finally describe in the section that follows.

3.5 PatchMatch and PMBP
Closely related to the max-product PBP algorithm from Section 3.4—intended for minimizing
continuous labeling problems defined over both unary and pairwise terms—is the PMBP energy
minimization algorithm of Besse et al. [BRFK12], with the major difference with respect to max-
product PBP being the integration of a spatial propagation step borrowed from PatchMatch. The
PatchMatch algorithm of Barnes et al. [BSFG09, BSGF10] was first introduced as a method for
obtaining dense approximate nearest neighbor (ANN) fields given a pair of images, assigning
to each pixel in one image a label drawn from a continuous label space mapping the patch cen-
tered on that pixel to a matching patch in the other image. PatchMatch comprises a random
(or semi-random) initialization step followed by a number of iterations of spatial propagation
(a form of sampling from neighboring nodes) coupled with refinement (a form of resampling
at a given node, drawing samples around the current label assignment). In each step of Patch-
Match, a candidate label is adopted at a given pixel if doing so yields a lesser unary matching
cost with respect to the label currently assigned. While the majority of (semi-)random label
assignments are likely to be incorrect, the PatchMatch algorithm is quick to converge in practice
owing especially to the fact that the spatial propagation step serves to exploit spatial coherence
characteristic of typical correspondence fields by carrying out what amounts to a form of seed
growing. However, the PatchMatch algorithm is only a unary optimizer and as such cannot call
on pairwise terms to explicitly promote smoothness of the output labeling, which is the aim of
PMBP. We present pseudocode for PMBP and PatchMatch in Algorithm 3.1, juxtaposed with
the pseudocode for max-product PBP.

Log-disbeliefs. Computation of log-disbeliefs Bn

s

(x
s

) in PMBP differs from that in max-
product PBP in that the messages Mn

t!s

(x
s

) at iteration n are computed not based strictly on the
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messages Mn�1

t!s

(x
s

) of the preceding iteration n� 1 as in (3.53), but rather in terms of the most
recent available messages. Accordingly, the log-disbelief Bn

s

(x
s

) of a typical node s 2 V is
computed in terms of incoming messages themselves computed at iteration n from the nodes in
N

s

\ n

s

, in addition to incoming messages computed at n�1 from the nodes in N
s

\{N
s

\ n

s

}.
To proceed in this manner in computing log-disbeliefs is arguably closer in spirit to PatchMatch
than is the case in (3.53).

PMBP as PatchMatch. Note that having set all pairwise terms to naught, the PMBP algorithm
reduces to the PatchMatch algorithm even though the incoming messages in terms of which the
log-disbelief Bn

s

in (3.50) at a node s 2 V is computed remain non-zero in general. This is
because in the absense of pairwise terms, messages in (3.53) become independent of the value
of x

s

2 Pn

s

:
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) = min
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, (3.56)

and so the minimum of Bn

s

over the labels in Pn

s

is determined uniquely by the value of E
s

.
Note that the number of particles P per node is understood to be 1 in classical PatchMatch.
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Algorithm 3.1 Max-Product PBP (A), PMBP (B), and PatchMatch (C)
A B C

1: • • • for each node s 2 V do
2: • • • initialize P0

s

with P particles, drawn from some proposal distribution
3: • • - for each neighbor node t 2 N

s

do
4: • • - initialize each message M0

t!s

to 0 2 RP

5: • • - end for
6: • • • end for
7: • • • for each iteration n 2 {1, . . . , n

max

� 1} do
8: • • • for each node s 2 V , ordered by �n

s

do
9: • • • Pn

s

 Pn�1

s

10: - • • for each neighbor particle x
t

2
S

t2N
s

\ n

s

Pn

t

do
11: - • - x

s

 arg max

x

s

2Pn

s

Bn

s

(Pn

s

)

12: - - • x
s

 arg max

x

s

2Pn

s

E
s

(Pn

s

)

13: - • - if Bn

s

(x
t

) < Bn

s

(x
s

) then
14: - - • if E

s

(x
t

) < E
s

(x
s

) then
15: - • • replace x

s

in Pn

s

with x
t

{spatial propagation}
16: - • • end if
17: - • • end for
18: • • • for each particle x

s

2 Pn

s

do
19: • • • xh0i

s

 x
s

20: • • • for each iteration m 2 {1, . . . , m
max

} do
21: • • • xhmi

s

 xhm�1i
s

22: • • • x̄hmi
s

 sample around xhmi
s

23: • - - if Bn

s

(x̄hmi
s

) < Bn

s

(xhmi
s

)� log(rand) then
24: - • - if Bn

s

(x̄hmi
s

) < Bn

s

(xhmi
s

) then
25: - - • if E

s

(x̄hmi
s

) < E
s

(xhmi
s

) then
26: • • • xhmi

s

 x̄hmi
s

27: - • • replace x
s

in Pn

s

with xhmi
s

{refinement}
28: • • • end if
29: • • • end for
30: • - - replace x

s

in Pn

s

with xhm
max

i
s

31: • • • end for
32: • • • end for
33: • • • end for
34: • • • for each node s 2 V do
35: • • - x̂

s

 arg min

x

s

2Pn

max

s

Bn

max

s

(x
s

) {output}
36: - - • x̂

s

 arg min

x

s

2Pn

max

s

E
s

(x
s

) {output}
37: • • • end for





CHAPTER 4
Literature Review

This chapter aims to outline the major trends from across the field of computer vision in what
concerns correspondence search. Absent modeling every process involved in giving rise to an
image, any algorithm designed with the intention of recovering correspondences in a scene from
data in images will make simplifying assumptions—whether implicitly or by design—about
those underlying processes. These simplifying assumptions are useful if they render matching
simpler, faster, or more robust, but come at the cost of restricting the scenarios about which
one can hope to reason using a given algorithm. Two of the most common such assumptions
permeating the literature in what concerns matching are the assumptions of brightness constancy
and of local surface planarity, both of which tend to break down as displacements become large.
It is in part for this reason that matching at large displacements has traditionally been the domain
of sparse methods—which are the subject of Section 4.1—where matching is restricted only to
sparse keypoints described in terms of features designed to offer some invariance to changes in
appearance that arise at large displacements; another is the rapid growth of the space of possible
displacements to consider as displacements become large, as introduced in Section 1.1. In the
sections that follow we consider dense methods, which differ with respect to one another to
a large extent in what knowledge about the scene is available and in how that knowledge is
incorporated. For a pair of images, we begin with the most general in Section 4.2, where we
treat the problem of computing optical flow from a pair of images of a scene, where the aim
is to recover, for each pixel in one image of the pair, the 2D translation vector mapping the
pixel to its correspondence in the other image. In Section 4.3 we treat the problem of stereo
matching, which differs from computing optical flow primarily in that the motion in the two
images—called a stereo pair—is known to be due strictly to the 3D rigid motion of the camera.
In Section 4.4 we provide a treatment of the recovery of scene flow, which is the 3D translational
motion that gives rise to 2D optical flow in the image plane, and which is typically computed
over either a pair of stereo pairs or a pair of RGB-D frames.

49
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4.1 Sparse Matching

The classical two-image sparse matching pipeline involves first (i) identifying, per image, a set
of pixels of interest termed keypoints (also known as corners or interest points), (ii) comput-
ing respective descriptors (or features) to characterize each of those keypoints, and finally (iii)
matching features between the two images in the aim of recovering correspondences from among
keypoint pairs. Such keypoints tend to be defined as pixels where image properties—perhaps
image intensity, color, or texture—differ in some sense from their immediate neighborhood,
ideally focusing attention on locations in the image that are in some sense unique and thus eas-
ier to match. In order to handle large displacements, an ideal sparse matching pipeline would
in each step be invariant to image space appearance changes characteristic of large displace-
ments, which is to say invariant to non-linear changes in color (cf. Figure 1.2) and to projective
distortions over arbitrary geometry undergoing 3D motion in the scene (cf. Figure 1.4). An
immediate advantage in principle of sparse matching is that by in effect discretizing the search
space by focusing attention only on possible pairs of sparse keypoints, the search space can
remain manageable—allowing, perhaps, for even exhaustively comparing all possible keypoint
pairs—even as displacements become large.

Keypoint Detectors. An effective way to determine whether a keypoint situated at a pixel x =

(x, y)

> can be expected to be stable under translations if the n ⇥ n patch centered on the key-
point compared against itself under a variety small translational displacements yields a small
cumulative dissimilarity. Among the oldest keypoint detectors widely in use today is the ven-
erable Harris corner detector [HS88], which computes local image intensity gradients at every
pixel and identifies those pixels with strong gradients in two distinct directions, and thus of-
fers invariance to image space translations and rotations. The Harris-Laplace, Hessian-Laplace,
and Difference of Gaussians (DoG) keypoint detectors additionally offer invariance to scale
changes [MS04a, MS01, Low04]. Other keypoint detectors, including Harris-affine or Hessian-
affine [MS02], and Maximally Stable Extremal Regions (MSER) [MCUP04] offer invariance
to affine distortions; a comparison of affine keypoint detectors is provided in Mikolajczyk et
al. [MTS+05].1

Keypoint Descriptors and Matching. Having identified keypoints, the simplest keypoint de-
scriptor is a vector of image pixels corresponding to an n⇥n patch centered on the keypoint, with
matching carried out with respect to some elementwise (dis)similarity measure over vector pairs.
The Scale Invariant Feature Transform (SIFT) of Lowe [Low04] combines a keypoint detector
based on DoG that is invariant to rotation, translation, and scale, with a descriptor that offers
partial invariance to illumination changes, noise, and affine distortion in addition to invariance
to rotation, translation, and scale. Variants of SIFT include PCA-SIFT [KS04] and Speeded Up
Robust Features (SURF) [BTG06]. More recently the Affine SIFT (ASIFT) algorithm of Morel
and Yu [MY09] promises full invariance to affine distortions. Combining sparse matching that
offers robustness to affine motions and enforcement of the epipolar constraint (cf. Section 2.5)

1Supporting publications and code are available at http://www.robots.ox.ac.uk/~vgg/research/
affine/.

http://www.robots.ox.ac.uk/~vgg/research/affine/
http://www.robots.ox.ac.uk/~vgg/research/affine/
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Figure 4.1: The relationship between optical flow (green) and scene flow (orange). The
pixel (x, y)

> is the projection of the point X
t

2 R3 at time t. At time t + �t, the corre-
sponding point has moved to X

t+�t

2 R3, which projects in turn to the pixel (x+u
x

, y +v
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)

>.
The vector X

t+�t

�X

t

is the scene flow at I(x, y, t) with respect to the image I(t +�t); the
vector (u

x

, v
x

)

>
= (x + u

x

, y + v
x

)

> � (x, y)

> is the optical flow at I(x, y, t) with respect to
the image I(t +�t), and is the projection to image space of the scene flow.

gives rise to what amounts to a fast form of stereo matching suited to recovering sparse corre-
spondences that arise from wide-baseline camera motion in a static scene [MOC02, MCUP04].
In Chapter 6, we seed our 6 DoF dense correspondence fields with sparse matches, promoting
the propagation of good initial matches in the aim of avoiding local minima; in Chapter 7, we
obtain seeds for our 9 DoF correspondence fields by additionally considering sparse matches
obtained by enforcing the epipolar constraint with the advantage of allowing for triangulating
respective pairs of matches (cf. Figure 7.2).

4.2 Optical Flow

Let
�
I(t), I(t + �t)

�
denote an ordered pair of images of a scene acquired at time steps t

and t + �t, respectively. Let I(x, y, t) denote the image intensity in image I(t) at pixel x =

(x, y)

>, and let X
t

2 R3 denote the 3D point that gives rise to I(x, y, t). Additionally, let
I(x + u

x

, y + v
x

, t +�t) denote the 2D correspondence of I(x, y, t) in image I(t +�t), itself
the projection of a point X

t+�t

2 R3 that is the 3D correspondence at t + �t of X

t

. The
optical flow (u

x

, v
x

)

> at x in I(t) with respect to the image I(t +�t) describes the 2D motion
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Figure 4.2: 2D flow coloring. 2D flow is typically visualized by coloring each pixel according
to the above color wheel, where hue and saturation represent the direction and magnitude, re-
spectively, of the pixel’s 2D flow vector. Shown is the ground truth optical flow corresponding
to the first frame of the street1Txtr1 image pair of the UCL optical flow data set (black indicates
pixels that are occluded in the second frame).

in the image plane between (x, y)

> at t and its correspondence (x + u
x

, y + v
x

)

> at t +�t.2

Accordingly, this optical flow at x can be thought of as the projection of the underlying 3D
displacement X

t+�t

�X

t

(cf. Figure 4.1), which is in turn termed the scene flow [VBR+05].
Such 2D flow is typically visualized by coloring each pixel according to a color wheel such
that hue and saturation represent the direction and magnitude, respectively, of the pixel’s flow
vector [Hor86] (cf. Figure 4.2). The two pioneering techniques in optical flow are the work of
Lucas and Kanade [LK81] and that of Horn and Schunck [HS81], both of which are intensity
gradient-based methods. The basic assumption underlying both methods is the assumption of
brightness constancy, which states that correspondences share the same intensity:

I(x, y, t) = I(x + u
x

, y + v
x

, t +�t). (4.1)

2Note that while this is the usage of Baker et al. [BSL+11] for ‘ground truth flow’ in the Middlebury optical flow
benchmark, Horn [Hor86] defines optical flow as the apparent motion of brightness patterns in the image plane, and
refers to the projection of 3D translation vectors relating points in scene instead as the motion field of an image. We
drop this arguably dated distinction and simply understand the goal of computing the optical flow to be the recovery
of the motion field.
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Figure 4.3: The optical flow constraint. The partial derivatives I
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constrain the optical
flow (u
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)

> at a pixel x = (x, y)

> to lie on a line (green) orthogonal to the intensity gradient
vector (I

x

, I
y

)

>. The component of the optical flow along (I
x

, I
y

)

> is called the normal flow,
and is fully determined by I

x

, I
y

, I
t

; the component along the direction (I
x

,�I
y

)

> orthogonal
to the intensity gradient vector remains free. It is for this reason that relying on brightness
constancy alone at a single pixel renders the problem of computing the optical flow ill-posed.

The optical flow can be expressed—when displacements are small—in terms of a first-order
Taylor expansion applied to the right hand side of (4.1) with higher order terms omitted:

I(x, y, t) = I(x, y, t) +

@I(x, y, t)

@x| {z }
I

x

�x +

@I(x, y, t)

@y| {z }
I

y

�y +

@I(x, y, t)

@t| {z }
I

t

�t, (4.2)

which in turn gives the optical flow constraint (or gradient constraint equation)
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Figure 4.4: Independently for each pixel x, the Lucas-Kanade method [LK81] solves for the
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orthogonal to the intensity gradient vector remains free. It is because only the normal flow
can be uniquely determined that relying on the brightness constancy constraint alone renders the
problem of solving for the optical flow (u
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, v
x

)

> ill-posed. The Lucas-Kanade method is a local
technique in that it overcomes this ill-posedness of computing the optical flow, individually for
each pixel x, by aggregating constraints locally in a patch (or window) centered on x; in contrast,
the Horn-Schunck method is a global technique in the sense that recovering the optical flow is
cast in terms of a energy minimization problem over data and smoothness terms encompassing
the entirety of the image.

Lucas-Kanade. The Lucas-Kanade method [LK81] overcomes the ill-posedness in computing
the flow (u
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, v
x

)

> at a pixel x = (x, y)

> by seeking, independently for each pixel x, an optimal
(in a least squares sense) point of intersection to the optical flow constraint lines corresponding,
respectively, to each of the pixels x

i

2 W
x

in an n ⇥ n patch centered on x, as illustrated in
Figure 4.4. The Lucas-Kanade method is thus a local method, driven by the assumption that the
pixels in the patch undergo similar motion in the image plane. Expressed more formally, the aim
is to find, independently for each pixel I(x, y, t), a 2D flow vector (u

x

, v
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> that minimizes the
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objective function
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then left-multiplying both sides of (4.6) by A>, giving the normal equations
 P

n

i=1

I
x

(x

i

)I
x

(x

i

)

P
n

i=1

I
x

(x

i

)I
y

(x

i

)P
n

i=1

I
x

(x

i

)I
y

(x

i

)

P
n

i=1

I
y

(x

i

)I
y

(x

i

)

�

| {z }
A>A

✓
u
x

v
x

◆
=


�
P

n

i=1

I
x

(x

i

)I
t

(x

i

)

�
P

n

i=1

I
y

(x

i

)I
t

(x

i

)

�

| {z }
A>b

, (4.7)

from which the least squares fit of (u
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)

> to the overconstrained system of linear equations
in (4.6) is obtained by
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The right hand side of (4.8) can be evaluated when the 2 ⇥ 2 matrix A>A has full rank, which
occurs in patches with intensity gradients running in two dominant directions. The occurrence
of rank defficiency of A>A is a manifestation of the aperture problem (cf. Figure 4.5). A first
2D flow field is obtained by evaluating (4.8) at each pixel I(x, y, t); a second iteration is then
carried out, initialized with the previous iteration’s flow field, and the process is repeated until a
maximum number of iterations is reached or until the changes in the flow fall below a threshold.
The assumption that neighboring pixels undergo similar motion in the image plane is called
the assumption of spatial coherence, and holds for 2 DoF translational motion insofar as the
underlying surface captured by the moving patch is fronto-parallel3 and is undergoing motion
that is strictly translational in 3D relative to the motion of the camera. One way to address flow
discontinuities at object boundaries is to use a weighted variant of (4.8):
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where W = diag
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1

), . . . , w(x,x
n

)

�
, and where in turn w(x,x

i

) is some weighting func-
tion. Another disadvantage of reasoning only in terms of a fixed window around x is that dis-
placements that exceed the window size are impossible to capture. One common workaround
for addressing larger motions is to pre-compute an image pyramid for both frames, respectively,
and compute the optical flow in a coarse-to-fine manner with patch size fixed. Bouguet [Bou00]

3A surface is fronto-parallel if it is planar and is parallel with the image plane.
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x

Figure 4.5: The aperture problem. The 2D motion of the line segment—green at time step t, or-
ange at time step t+�t—is due to the displacement indicated by the arrow in black, but judging
by only the information available in the gray patch—fulfilling here the role of an ‘aperture’—
centered on the pixel x the apparent motion of the segment can likewise be explained by any
displacement from x to the portion of the orange segment visible in the patch, as exemplified by
the arrows in gray.

gives implementation details for a pyramidal variant of the Lucas-Kanade method, intended for
tackling larger displacements. Other variants of Lucas-Kanade involve the use of more expres-
sive motion models (cf. Section 2.2) than the 2D translational model implied in (4.5), such as
rigid or affine (e.g., [BM04, JAHH92, BA96]).

Horn-Schunck. Most state-of-the-art techniques are variants of the Horn-Schunck method
[HS81] in that they cast the problem of recovering optical flow in terms of a global energy min-
imization over data and smoothness terms [VRS13], in which regard the method for computing
optical flow that we present in Chapter 7 is no exception. In [HS81], the global energy to be
minimized is formulated as
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where � � 0 controls the relative influence of the data and smoothness terms. An advantage
of global smoothing is that it can allow for propagating flow over poorly textured areas, poten-
tially across large displacements. Alternative data term formulations, e.g., in terms of filtered
images or gradients, and alternative smoothness term formulations, e.g., in terms of a robust
approximation of the L

1

norm [BWS05, PBB+06] (also called total variation), offer additional
robustness to larger displacements or flow discontinuities at object boundaries. A recent com-
parative evaluation of data term formulations is provided in [VRS13]. Optimization in global
optical flow techniques is often a variation of gradient descent, applied in a coarse-to-fine (pyra-
midal) manner in order to tackle larger displacements. A notable discrete-continuous alternative
is the FusionFlow method [LRR08], which proceeds by fusing proposal flow results computed
independently by (continuous) optical flow algorithms, e.g., Lucas-Kanade or Horn-Schunck,
casting the fusion as a discrete labeling problem over the available proposals.
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4.3 Stereo Matching

Under known relative camera geometry, recovering a correspondence pair (x,x0
) across a pair

of images—acquired at different viewpoints of a static scene—allows for triangulating the
point X 2 R3 that gives rise to x and x

0 (cf. Section 2.5). Such an image pair is termed a
stereo pair. As in optical flow, the problem of stereo matching reduces to searching for dense
correspondences between a pair of images; the key difference in stereo matching with respect to
algorithms tackling optical flow is that knowledge of relative camera geometry allows for reduc-
ing the search space for a single pixel’s correspondence from one encompassing a search across
the entirety of image space to one restricted to a search along a single corresponding epipolar
line (cf. Figure 2.8). This constraint renders stereo matching a much easier task in general than
the problem of recovering optical flow: on the example presented in Section 1.1 of an pair of
images both at a spatial resolution in height by width of 320 ⇥ 480, exhaustive search for dis-
cretized, pixel-accurate optical flow using a 2 DoF translational motion model for unary terms
only called for evaluating a total of 153,600 candidate configurations individually for each of the
320 ⇥ 480 pixels, while at most only 480 would need to be evaluated individually per pixel for
stereo. Most stereo matching algorithms expect input stereo pairs to have undergone prior pro-
jectively warping called rectification—giving rise to a rectified stereo pair—such that respective
correspondences more conveniently lie on the same horizontal scanline (cf. Figure 2.9). Given
a pixel in the rectified left image, the search for its correspondence in the rectified right image
then reduces to finding the horizontal disparity relating the two. Note that in the refinement step
in Chapter 7, we alternate in perturbing 9 DoF plane-induced homographies (cf. Section 2.6)
between fixing depth and normal and allowing the 3D rigid body motion to undergo change, and
fixing the rigid motion and allowing change to depth and normal; the latter variant amounts to
a form of unrectified stereo matching.
The influential survey paper of Scharstein and Szeliski [SS02] presents a taxonomy of stereo
algorithms in terms of (i) matching cost computation and aggregation (energy), (ii) disparity
computation (optimization), (iii) and disparity refinement (post-processing). For local algo-
rithms, computing a dense disparity map reduces to minimizing, independently for each pixel x,
a cost function—called a data term since it is intended to measure the consistency of the can-
didate motion with the available data—defined over some form of neighborhood around x and
in terms of a set of motions the pixels in the neighborhood are allowed to undergo; the overall
minimization is accordingly carried out with respect to an energy function comprising such data
terms. Reasoning in terms of patches implicitly makes the assumption that all pixels in the patch
undergo the same motion, thereby encoding an implicit form of smoothness assumption. In con-
trast, global algorithms promote smoothness explicitly by minimizing a global energy function
comprising both data and smoothness terms, and the tendency in such methods has accordingly
been to compute matching cost not over the pixels in a neighborhood centered on a pixel x, but
as a function of only the single pixel x itself.

Local Methods. Local stereo matching algorithms typically perform what amounts to a ‘win-
ner takes all’ optimization at each pixel, placing the emphasis on the design of the local cost
function and on the notion of what constitutes a window. The most common pixelwise cost
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functions involve computing squared or absolute differences in color, intensity, color or inten-
sity gradient, some combination of the three, and perhaps with some form of truncation for
added robustness to noise or illumination changes; these pixelwise costs can then be aggregated
over the pixels of a traditional n ⇥ n patch, using shiftable windows [FRT97, BI99], windows
with adaptive size [KSC01, Vek03], or with respect to a color segmentation [TMdSA08]. The
challenge being addressed by these various formulations is the confounding desire for windows
to be large in order to be adequately discriminative, but at the same time for them to be small
in order to mitigate the problem of straddling object boundaries. Another approach to aggre-
gating the pixelwise costs over a window associated with a pixel x is to weight the influence
of the respective pixelwise costs as function of the corresponding pixel’s similarity or distance
with respect to x, a strategy termed adaptive support weighting [YK05]. A comparison of local
aggregation techniques is provided in [GYWG07,TMdSA08]. Overparameterizing the disparity
in terms of more expressive motion models (cf. Section 2.2) provides an avenue to ameliorating
the fronto-parallel assumption; an example of such an approach is PatchMatch Stereo [BRR11],
which overparameterizes disparity in terms of 3 DoF slanted planes and uses PatchMatch to
obtain a labeling without discretization of the continuous label space.

Global Methods. Global stereo matching algorithms often do not perform any aggregation
over windows, as they instead promote smoothness by means of some explicit smoothness con-
straint. A sizable proportion of global methods are formulated in terms of an energy mini-
mization framework over a discrete label space taking into account smoothness terms E
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where d
x

denotes the label assigned to x as encoded in d and L
x

denotes a set of possible
labels—usually understood to denote possible disparities—at x, � � 0 serves to control the
relative influence of data and smoothness terms and where E denotes the set
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, with N

x

typically understood to denote the set of 4-connected neighbors of x. Other
possibilities include understanding N

x

to instead denote the set of 8-connected neighbors of
x [BK03], or to take into account second-order smoothness terms [WTRF09]. Having defined a
global energy, any of a number of optimization frameworks may be of interest as candidates for
minimizing that energy, including simulated annealing [MMP87], graph cuts [BVZ01], or loopy
belief propagation [SSZ03].

4.4 Scene Flow
The term ‘scene flow’ is due to Vedula et al. [VBR+05], and is understood to denote the trans-
lational motion in 3D between points in a scene, with optical flow simply the projection of this
scene flow to image space (cf. Figure 4.6). Traditionally, the input to scene flow algorithms
has been a pair of stereo pairs (i.e., four RGB images) from a calibrated rig. With the advent
of inexpensive 3D cameras like the Microsoft Kinect, investigating scene flow approaches that
take as input a pair of RGB-D frames has become an increasingly practical pursuit. For rigid
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scenes, sparse 3D structure and 6 DoF motion can be obtained using structure from motion (e.g.,
Pollefeys et al. [PKG99]).

RGB Methods. Notable RGB scene flow methods include Huguet and Devernay [HD07],
Min and Sohn [MS06], Zhang and Kambhamettu [ZK01], Basha et al. [BMK13], Čech et
al. [vSRH11], and Vogel et al. [VSR11]. Basha et al. use a 3D point cloud representation to
directly model the desired 3D unknowns, allowing smoothness assumptions to be imposed di-
rectly on the scene flow and structure. Čech et al. compute scene flow across sequences of
stereo pairs by growing correspondence seeds. Vogel et al. carry out regularization by encour-
aging a locally rigid 3D motion field using a rigid motion prior, avoiding systematic biases of
2D isotropic regularization. Pons et al. [PKF07] introduce a variational framework for multiple-
view motion-stereo estimation that works directly in world space, evolving a 3D vector field to
register the input images captured at different times. Carceroni and Kutulakos [CK02] model the
scene as a set of surfels, with each surfel described by shape, reflectance, bump map, and affine
motion. They recover surfel parameters by maximizing photoconsistency, but require knowledge
of relative camera geometry and of the illumination scenario. Devernay et al. [DMG06] likewise
proceed by tracking surfels. In both cases, surfels imply the local surface planarity assumption.
Vogel et al. [VSR13] assign rigidly moving planes to image segments, parameterized in terms of
plane-induced homographies. Wedel et al. [WRV+08] explicitly decouple the position (stereo)
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and velocity estimation steps and estimate dense velocities using a variational approach while
reporting frame rates of 5 FPS on standard consumer hardware.

RGB-D Methods. Letouzey et al. [LPB11] claim novelty for using RGB-D data obtained from
a Kinect. They use sparse feature points to help guide the motion field estimation for wide dis-
placements and use dense normal flow for short ones. Hadfield and Bowden [HB13] use a par-
ticle filter while assuming brightness constancy. Herbst et al. [HRF13] compute RGB-D scene
flow using a variational technique, which they apply to rigid motion segmentation. Quiroga
et al. [QDC13] likewise use a variational technique, combining local and global constraints to
compute RGB-D scene flow.



CHAPTER 5
Depth Super Resolution

In this chapter, we tackle the problem of jointly increasing the spatial resolution and apparent
measurement accuracy of an input low-resolution, noisy, and perhaps heavily quantized depth
map. In stark contrast to earlier work, we make no use of ancillary data like a color image
at the target resolution, multiple aligned depth maps, or a database of high-resolution depth
exemplars. Instead, we proceed by identifying and merging patch correspondences within the
input depth map itself, exploiting patchwise scene self-similarity across depth such as repetition
of geometric primitives or object symmetry. Rather than reason in terms of patches of 2D pixels
as others have before us, our key contribution is to proceed by reasoning in terms of patches
of 3D points, with matched patch pairs related by a respective 6 DoF 3D rigid body motion.
We begin in Section 5.1 by introducing our methodology and by placing our algorithm in the
context of earlier work. Next, we detail out algorithm in Section 5.2, followed by an evaluation
in Section 5.3 showing our results to be highly competitive with those of alternative techniques
leveraging even a color image at the target resolution or a database of high-resolution depth
exemplars. In Section 5.4 we attempt to emphasize the key elements of the algorithm in what
concerns performance, finishing off with concluding remarks in Section 5.5.

5.1 Introduction

With the advent of inexpensive 3D cameras like the Microsoft Kinect, depth measurements are
becoming increasingly available for low-cost applications. Acquisitions made by such consumer
3D cameras, however, remain afflicted by less than ideal attributes. Random errors are a common
problem. Low spatial resolution is an issue particularly with time of flight (ToF) cameras, e.g.,
200⇥ 200 for the PMD CamCube 2.0 or 176⇥ 144 for the SwissRanger SR3000. In depth maps
recovered using stereo techniques, depth resolution decreases as a function of increasing depth
from the camera. Common avenues to jointly increasing the spatial resolution and apparent
measurement accuracy of a depth map—a problem referred to as depth super resolution (SR)—
involve leveraging ancillary data such as a color or intensity image at the target resolution,

61
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Figure 5.1: Shaded mesh of nearest neighbor upscaling (top) of a noiseless synthetic input depth
map and the super resolved output of our algorithm (bottom), both by a factor of 3. In our
approach, fine details such as the penguin’s eyes, beak, and the subtle polygons across its body
are mapped from corresponding patches at lesser depth, and boundaries appear less jagged than
in the upscaled counterpart.

multiple aligned depth maps, or a database of high-resolution depth exemplars (patches). Such
ancillary data, however, is often unavailable or difficult to obtain.
In this work, we consider the question of how far one can push depth SR using no ancillary
data, proceeding instead by identifying and merging patch correspondences from within the in-
put depth map itself. Our observation is that—even in the absence of object repetition of the
sort exemplified in the idealized target scenario in Figure 5.1—real-world scenes tend to ex-
hibit patchwise ‘self-similarity’ such as repetition of geometric primitives (e.g., planar surfaces,
edges) or object symmetry (consider a face, a vase). Man-made scenes or objects are often ‘self-
similar’ by design; consider, for instance, the keys of a keyboard. It is primarily this observation
that we exploit in this work, coupled with the fact that under perspective projection, an object
patch at lesser depth with respect to the camera is acquired with a higher spatial resolution than
a corresponding patch situated at greater depth. Our main contribution is to proceed not by
reasoning in terms of patches of 2D pixels, but rather in terms of patches of 3D points. Addi-
tionally, we introduce a new 3D variant of PatchMatch to obtain a dense correspondence field in
reasonable time and a simple, yet effective patch upscaling and merging technique to generate
the output SR depth map from the correspondences.
The notion of ‘single-image’ SR has already successfully been applied in the context of color
and intensity images in the work of Glasner et al. [GBI09]. Their guiding observation is that
within the same image there is often a large across-scale redundancy at the 2D pixel patch level;
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Patches in Input Image

Matches in Pyramid

(a) Patches of 2D pixels in an image (pixels inside
solid squares), matched within and across scale in
the ‘single image’ image SR approach of Glasner et
al. Generating the SR output image involves merg-
ing high resolution versions of the matches (dashed
squares).

(b) Our patches of 3D points encoded in a depth
map (points inside spheres), matched within and
across depth. Generating the SR output depth map
in our ‘single image’ depth SR approach involves
mapping closer patches backward and merging the
resulting points.

Figure 5.2: ‘Single image’ super resolution. (a) The ‘single image’ SR approach for color and
intensity images of Glasner et al. [GBI09] seeks correspondences between small, conventional
n ⇥ n pixel patches within and across scale. (b) In our depth SR approach, we seek correspon-
dences between patches of 3D points within and across depth. Advantages of reasoning in terms
of such patches of 3D points for depth SR include an allowance for patches and displacements to
be larger, robustness to noisy points situated outside the sphere, and that major object boundaries
are handled in a natural way. (The image in (a) is adapted from [GBI09].)

for instance, an image of a leafy forest is likely to contain a large number of small patches with
various configurations of greens and browns that happen to recur across scales of the image.
Their strategy is to search for corresponding 5 ⇥ 5 pixel patches across a discrete cascade of
downscaled copies of the input image and to exploit sub-pixel shifts between correspondences.
Taking their framework to depth SR, three fundamental problems of matching 3D points using
n ⇥ n pixel patches treating depth values as intensity present themselves, even at potentially
valuable ground truth correspondences in idealized scenarios such as Figure 5.1: patch pairs (i)
are situated at different depths or (ii) are subject to projective distortions owing to perspective
projection, or (iii) they straddle object boundaries. The problem of projective distortions calls
for a small patch size (such as the 5 ⇥ 5 patches of Glasner et al.), but this renders matching
particularly sensitive to noise in depth (cf. Figure 1.3), which tends to be more pronounced
than noise in color or intensity images. We overcome these problems by reasoning in terms
of patches of 3D points, which we define as the respective inliers—from among the 3D points
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encoded in the input depth map—within a fixed radius r of a center point and which we match
with respect to 3D point similarity over 6 DoF rigid body motions in 3D. Additionally, the
availability of depth information suggests reasoning in terms of across-depth redundancy rather
than redundancy across scale; accordingly, for each such patch of 3D points, what we seek is a
matching patch at equal or lesser depth with respect to the camera, as illustrated in Figure 5.2.

5.1.1 Related Work

A number of surveys of image SR techniques are available elsewhere, e.g., in van Ouwerk-
erk [vO06] or Tian and Ma [TM11]. Glasner et al. [GBI09], Yang et al. [YWHM10], and
Freeman and Liu [FL11] are image SR techniques against which we compared our algorithm in
Section 5.3, by treating input depth maps as if they were ordinary intensity images. Freeman
and Liu et al. and Yang et al. both rely on an external database of patches. Broadly speaking,
previous work on depth SR can be categorized into methods that (i) use a guiding color or in-
tensity image at the target resolution, (ii) merge information contained in multiple aligned depth
maps, or (iii) call on an external database of high-resolution depth exemplars, each of which
accordingly use ancillary data to compute a super resolved output depth map. We devote the
remainder of this section to a discussion of representative or seminal techniques from the depth
SR literature.

Image at Target Resolution. The most common depth SR strategy involves using an ancillary
color or intensity image at the target resolution to guide the reconstruction of the SR depth map.
The underlying assumption is that changes in depth are colocated with edges in the guiding im-
age. Yang et al. [YYDN07] apply joint bilateral upscaling on a cost volume constructed from
the low resolution input depth map, followed by Kopf et al. [KCLU07] in a more general frame-
work. Diebel and Thrun [DT05] propose an MRF-based approach with a pairwise smoothness
term whose contribution is weighted according to the edges in the high-resolution color image.
Park et al. [PKT+11] take this idea further and use a non-local, highly-connected smoothness
term that better preserves thin structures in the SR output.

Database of Depth Exemplars. Most closely akin to ours is the work of Mac Aodha et al.
[MCNB12]. They propose to assemble the SR depth map from a collection of depth patches.
Our approach likewise carries out depth SR by example, but with significant differences. One
major difference is that we use patches only from within the input depth map itself, whereas Mac
Aodha et al. use an external database of 5.2 million high-resolution synthetic, noise-free patches.
Another difference is that they carry out their matching in image space over 3 ⇥ 3 patches pixel
patches, while ours can have arbitrary size depending on the scale, density, and relative depth
of point features one aims to capture. Accordingly, their approach is subject to the problems
discussed in Section 5.1 that our reasoning in terms of 3D point patches overcomes. Note that
enlarging the patches in their database would lead to an explosion of its size.

Multiple Depth Maps. The Lidarboost approach of Schuon et al. [STDT09] combines several
depth maps acquired from slightly different viewpoints. The KinectFusion approach of Izadi et
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al. [IKH+11] produces outstanding results by fusing a sequence of depth maps generated by a
tracked Kinect camera into a single 3D representation in real-time.

5.2 Algorithm

Owing to the perspective projection that underlies image formation, object patches situated at a
lesser depth with respect to the camera are imaged with a higher spatial resolution (i.e., a greater
point density) than corresponding object patches at greater depth. Our depth SR algorithm con-
sists of two steps: (i) find, for each patch in the input depth map, a corresponding patch at lesser
or equal depth with respect to the camera, and (ii) use the dense correspondence field to gen-
erate the SR output. We begin, in Section 5.2.1, by presenting our notion of ‘3D point patch’
and the matching cost we propose to minimize. Next, we detail the first step of our algorithm in
Section 5.2.2, and the second in Section 5.2.3.

5.2.1 3D Point Patches

Let x = (x, y)

> be a pixel of the input depth map. The goal of the dense correspondence search
algorithm in Section 5.2.2 is to find an optimal rigid body motion g

x

= (R
x

, t
x

) for each pixel x,
mapping the patch corresponding to x to a valid matching patch at lesser or equal depth with
respect to the camera. We shall understand the 3D point patch corresponding to the pixel x—the
further1 patch, for brevity—to be the set S

x

⇢ R3 of 3D points encoded in the depth map within

1We acknowledge that this is something of an abuse of terminology since, strictly speaking, two points can be
situated at equal depth with respect to the camera center but be at different distances from it. Notwithstanding, it is
in this sense that we shall mean ‘closer’ and ‘further’ in this work.
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g�1

S
x

S 0
x

Figure 5.4: Matching cost is computed as a convex combination of ‘forward’ cost and ‘back-
ward’ cost. Shown is an illustration of the ‘backward’ cost, which, given a candidate rigid body
motion g, is a function of the ‘backward’-transformed points g�1

(S 0
x

) of the closer patch S 0
x

; the
‘forward’ cost is computed analogously as a function of the ‘forward’-transformed points g(S

x

)

of the further patch S
x

.

a radius r of the point P
x

= Z
x

· K�1

(x

>, 1)

> 2 R3 of x, where Z
x

is the depth encoded at the
pixel x in the input depth map and K is the 3 ⇥ 3 camera calibration matrix (cf. Section 2.4).
We carry out radius queries using a kd-tree [ML14]. The 3D points of the corresponding closer
patch S 0

x

are those within the same radius r of the point P0
x

= g
x

(P

x

). An illustration of these
notions is provided in Figure 5.3.

Matching Cost. A common strategy in the literature on iterative closest point (ICP) algorithms
for evaluating the similarity of two point sets is to compute the sum of squared differences (SSD)
over each point in one point set with respect to its nearest neighbor (NN) point in the other
(cf. Rusinkiewicz and Levoy [RL01]). We proceed in a similar manner to quantify the similarity
of two 3D point patches, but normalize the result and allow for computing SSD in both directions
in order to potentially obtain a stronger similarity measure, noting that we might be comparing
point sets with significantly different point densities owing to relative differences in patch depth.
Let NNS(P) denote the function that returns the nearest neighbor to the point P in the set S .
The function Eb

x

(g) evaluates normalized SSD over the points of the further patch S
x

subject to
each point’s respective nearest neighbor among the ‘backward’-transformed points g�1

(S 0
x

) of
the closer patch S 0

x

:
Eb

x

(g) =

X

P2S
x

��
P�NN

g

�1

(S0
x

)

(P)

��2
2

/|S
x

|. (5.1)

Analogously, the function Ef

x

(g) evaluates normalized SSD over the points of the closer patch S 0
x

subject to their respective nearest neighbors among the ‘forward’-transformed points g(S
x

) of
the further patch S

x

:

Ef

x

(g) =

X

P

02S0
x

��
P

0 �NN

g(S
x

)

(P

0
)

��2
2

/|S 0
x

|. (5.2)

For g to be deemed valid at x, we require that the depth of the sphere center point of the matched
patch be less than or equal to the depth assigned at the pixel x in the input depth map. Addition-
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ally, we require that their relative distance be at least r in order to avoid minimizing cost trivially
by matching to oneself, and that |S 0

x

| � |S
x

| � 3 in order to benefit from greater point density
or from sub-pixel point shifts at equal density, and for reasons discussed below. Given a pixel x
and a 3D rigid body motion g, we compute the matching cost E

x

(g) as a convex combination of
the ‘backward’ cost Eb

x

(g) (5.1) and the ‘forward’ cost Ef

x

(g) (5.2) according to

E
x

(g) =

⇢
↵ · Eb

x

(g) + ↵0 · Ef

x

(g) if valid
1 otherwise , (5.3)

where ↵ 2 [0, 1] and ↵0
= 1 � ↵. It is for ↵ to control the relative influence of the ‘backward’

cost and ‘forward’ cost that the two constituent costs are normalized with respect to the size
of S

x

and S 0
x

, respectively. The absence of this normalization would introduce a bias towards
matches where |S

x

| t |S 0
x

|, which has a tendency to occur when P

x

and P

0
x

are situated at
similar depth.

5.2.2 Dense 6 DoF Matching via PatchMatch

We introduce a new 3D variant of the PatchMatch algorithm of Barnes et al. [BSFG09,BSGF10]
in the aim of assigning to each pixel x of the input depth map a 6 DoF 3D rigid body motion,
mapping S

x

to a valid matching patch S 0
x

at equal or lesser depth with respect to the camera. A
common thread between variants of PatchMatch—in which ours is no exception—is a random
(or semi-random) initialization step followed by i iterations of propagation and refinement. We
explain each step in greater detail in the remainder of this section. An example of a projected
displacement field obtained using our 3D variant of PatchMatch is visualized in Figure 5.5.

Semi-Random Initialization. In contrast to PatchMatch variants that carry out initialization
using altogether random states, we adopt a semi-random initialization strategy. In our experi-
ments, we found this led to faster convergence when dealing with our high-dimensional state
space. Specifically, for each pixel x we randomly select another pixel x0 of the input depth map
such that the depth assigned to x

0 is less than or equal to that of P
x

, giving us a translation vector
(3 DoF). We then compute the rotation minimizing arc length between the patch normal vectors
at P

x

and P

x

0 , respectively, (2 DoF) and choose a random angular perturbation around the nor-
mal vector of P

x

0 (1 DoF). We pack these elements into a rigid body motion. An illustration of
this process is provided in Figure 5.6. A normal vector for each point P

x

is precomputed via
RANSAC [FB81] plane fitting over the 3D points in the 3D point patch S

x

(and is the reason
why we require that |S

x

| � 3 in Section 5.2.1), which is made to point towards the camera
center.

Spatial Propagation. In keeping with the traversal schedule used in classical PatchMatch (cf.
Barnes et al. [BSFG09, BSGF10]), we traverse the pixels x of our input depth map in scanline
order—upper left to lower right for even iterations, lower right to upper left for odd—and adopt
the rigid body motion assigned to a neighboring pixel if doing so yields an equal or lower cost.
Note that as a consequence, we propagate over pixels for which |S

x

| < 3, which we treat as
so-called flying pixels, since such pixels are always assigned infinite cost by E

x

(g) in (5.3). The
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(a) Input (shown as disparity map). (b) Projected 3D displacements.

Figure 5.5: Visualization of projected 3D displacements of the output of our dense matching.
(a) A filled variant of the disparity map of the Middlebury cones data set as input to our depth
SR algorithm (after conversion to a depth map). We use this filled variant of the disparity map
in the evaluation because the algorithms against which we compared ourselves in Section 5.3.1
were run on it; our algorithm can easily handle background values by simply ignoring them.
(b) A visualization of projected 3D displacements of the output of our dense correspondence
search using conventional 2D flow coloring (cf. Figure 4.2). Note that the flow field is spatially
coherent.

geometric rationale underlying spatial propagation in our 6 DoF setting can be understood by
observing that if two objects are related by a rigid body motion, then any corresponding pair of
3D point patches is related (modulo noise or sampling) by precisely the same motion.

Refinement. Immediately following propagation at a given pixel x, we independently carry
out k iterations of additional initialization and of perturbation of the translational and rotational
components of the assigned motion g

x

(cf. Section 2.3), adopting the initialization or perturba-
tion if doing so yields an equal or lower cost. Translational perturbation (3 DoF) consists of
checking whether hopping from P

0
x

to one of its k-NN points P
x

0—which we obtain by again
making use of a kd-tree—yields an equal or lower cost. Rotational perturbation, which we carry
out in a range that decreases with every iteration k, consists of random rotation around the nor-
mal at P

x

(1 DoF) and of random perturbation of the remaining two degrees of freedom of the
rotation. We carry out and evaluate all three types of perturbations independently.

5.2.3 Patch Upscaling and Merging

Having assigned a motion g
x

2 SE(3) to each pixel x of the input depth map, we generate an SR
depth map by merging interpolated depth values of the ‘backward’-transformed points g�1

x

(S 0
x

)

of each valid matched patch. We begin, for each x, by (i) determining—with the help of contour
polygonalization—the spatial extent of S

x

at the target resolution, giving an ‘overlay mask’
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P

x

P

x

0

1

Z

(a) Randomly pick a point P

x

0 at equal or lesser
depth with respect to that of P

x

.

3 DoF2

(b) Translate accordingly.

2 DoF

3

(c) Rotate the source normal vector onto the destina-
tion normal vector.

1 DoF

4

(d) Randomly rotate around the destination normal.

Figure 5.6: Semi-random initialization of a 6 DoF rigid body motion g at a pixel x, with the
objective of restricting initialization to plausible states (most importantly meaning never initial-
izing to empty space). (a) Randomly pick a point P

x

0 at equal or lesser depth with respect to
that of the point P

x

encoded at x. (b) Obtain the 3 DoF translation from P

x

0 �P

x

. (c) Obtain
2 DoF of the 3 DoF rotation from the rotation between the local normal vectors. (d) Obtain the
remaining 1 DoF of the 3 DoF rotation by random rotation around the normal.
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(a) Mask at input resolution.

2x

(b) 2x NN mask.

2x

(c) 2x overlay mask.

Figure 5.7: Overlay masks. (a) A patch of points S
x

in the input point cloud and its corre-
sponding pixel mask in the raster of the input depth map (depicted in yellow). (b) Nearest
neighbor upscaling of the depth map and mask by a factor of 2 (giving the target resolution).
(c) Corresponding polygon approximation (polygonalization) of the nearest neighbor upscaled
mask, which we term the ‘overlay mask’ corresponding to x. In the merging step, it is only
the pixels ˆ

x at the target resolution of the overlay mask of x that the ‘backward’-transformed
points g�1

x

(S 0
x

) of the matched patch are allowed to influence.

over which we then (ii) generate an ‘overlay patch’ by interpolating depth values from the
points g�1

x

(S 0
x

). Next, we (iii) populate the SR depth map by merging the interpolated depth
values of overlapping overlay patches, with the influence of each valid overlay patch weighted
as a function of patch similarity. Finally, we (iv) clean the SR depth map in a post-processing
step, removing small holes that might have arisen at object boundaries as a consequence of
polygonalization. The pseudocode for steps (i-iii) is provided in Algorithm 5.1; the remainder
of this section is dedicated to detailing each of the steps (i-iv).

Overlay Masks. The 2D pixels x of the input depth map to which the 3D points of S
x

project
define the spatial extent of S

x

at the input resolution (cf. Figure 5.7). It is only these pixels—at
the input resolution—that we wish the ‘backward’-transformed points g�1

x

(S 0
x

) of the matched
closer patch to influence in generating an output depth map, since it is over these pixels that we
computed the matching cost. Upscaling the mask by the SR factor using NN interpolation gives a
mask at the target resolution, but introduces disturbing jagged edges. Accordingly, we carry out
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Algorithm 5.1 Patch Upscaling and Merging
1: initialize ⌦

ˆ

x

and Z
ˆ

x

to 0 for all pixels ˆ

x at the target resolution
2: for all pixels x at the input resolution (i.e., in the input depth map) do
3: if |S

x

| � 3 then
4: !

x

 exp

�
� � · Eb

x

(g
x

)

�

5: if Eb

x

(g
x

) > � then
6: g

x

 identity motion g
I

= (I,0)

7: end if
8: for all pixels ˆ

x at the target resolution in overlayMask

x do
9: overlayPatch

x

ˆ

x

 interpolated Z-value from g�1

x

(S 0
x

) at ˆ

x

10: Z
ˆ

x

 Z
ˆ

x

+ !
x

· overlayPatch

x

ˆ

x

11: ⌦

ˆ

x

 ⌦

ˆ

x

+ !
x

12: end for
13: end if
14: end for
15: for all pixels ˆ

x at the target resolution do
16: if ⌦

ˆ

x

> 0 then
17: Z

ˆ

x

 Z
ˆ

x

/⌦
ˆ

x

18: end if
19: end for

a polygon approximation [PD73] of this NN upscaled mask, constrained such that approximated
contours be at a distance of at most the SR factor—which corresponds to a single pixel at the
input resolution—from the NN upscaled contours. We ignore recovered polygonalized contours
whose area is less than or equal to the square of the SR factor, thereby removing flying pixels.
This polygonalized mask—to which we refer as the overlay mask of x—consists of all pixels ˆ

x

at the target resolution that fall into one of the remaining polygonalized contours but fall into no
contour that is nested inside another, in order to handle holes like in the lamp in Figure 5.7.

Overlay Patches. We interpolate, for the pixels ˆ

x at the target resolution of the overlay mask
corresponding to the input pixel x, depth values from the ‘backward’-transformed points g�1

x

(S 0
x

)

of the closer patch S 0
x

. This gives what we term the overlay patch of x, and it is in this sense
that we perform patch ‘upscaling’. Since the points g�1

x

(S 0
x

) are not guaranteed to project to a
regular grid the way S 0

x

do, we compute depth values for the pixels of the overlay mask by inter-
polating over the depth values of the points g�1

x

(S 0
x

) using barycentric coordinates with respect
to a Delaunay triangulation of the projections of those transformed points to image space. This
amounts to a form of interpolation over an irregular grid [SBM95]. Our interpolation scheme is
illustrated in Figure 5.8.

Merging of Overlay Patches. The SR depth map is computed by working out, for each pixel ˆ

x

at the target resolution, a weighted average of the corresponding interpolated depth values from
the overlapping overlay patches. The weight !

x

of the interpolated depth value at each ˆ

x in the
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(a) Projection of g�1

x

(S 0
x

) to image space. (b) Delaunay triangulation.

x
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ˆ
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(c) Barycentric coordinates (↵,�, �) of the centered
pixel ˆ

x

0
=

ˆ

x+ (0.5, 0.5)

> with respect to the trian-
gle ˆ

x↵ˆ

x�ˆ

x� enclosing ˆ
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0.

Figure 5.8: Interpolating a depth Z
ˆ

x

for a pixel ˆ

x at the target resolution for the overlay patch
corresponding to the input pixel x given the ‘backward’-transformed points g�1

x

(S 0
x

) of the
closer patch S 0

x

. Having computed the Delaunay triangulation of the projections at the target
resolution of the points g�1

x

(S 0
x

), the interpolated depth Z
ˆ

x

= ↵ ·Z
ˆ

x

↵

+� ·Z
ˆ

x

�

+� ·Z
ˆ

x

�

is com-
puted as the weighted sum of the depths Z

ˆ

x

↵

, Z
ˆ

x

�

, Z
ˆ

x

�

of the points in g�1

x

(S 0
x

) projecting to the
pixels ˆ

x

↵

, ˆx
�

, ˆx
�

at the target resolution that enclose the centered pixel ˆ

x

0
=

ˆ

x + (0.5, 0.5)

> as
a triangle in the Delaunay triangulation. The weights (↵,�, �),↵+�+ � = 1, are the Barycen-
tric coordinates of ˆ

x

0 with respect to the enclosing triangle ˆ

x

↵

ˆ

x

�

ˆ

x

�

. Note that projecting to the
target resolution effectively calls for scaling the focal length and principal point in the camera
calibration matrix K by the SR factor.
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(a) Before post-processing. (b) After post-processing.

Figure 5.9: Post-processing for 2x SR on the cones data set (shown as depth map). (a) The
output of the merging stage can contain holes (indicated in black), owing to the fact that there
is no guarantee that each pixel at the target resolution will be covered by some polygonalized
overlay mask. (b) Post-processing by iterative morphological dilation.

overlay patch assigned to the pixel x is given by

!
x

= exp

✓
� � · Eb

x

(g
x

)

◆
, (5.4)

where � 2 R+ controls the falloff to 0. If Eb

x

(g
x

) > �, � 2 R+, we instead use the overlay
patch at x given by the identity motion g

I

= (I,0)—which amounts to simply using S
x

to
generate the overlay patch at x—in the aim of preventing patches for which no good match was
found from undergoing heavy degradation. We check against Eb

x

(g
x

) from (5.1) since it gives
an indication of how satisfied the input points are with the match without penalizing the addition
of new detail from S 0

x

. As in Section 5.2.2, if |S
x

| < 3 then we consider x a flying pixel, and
set !

x

= 0.

Post-processing. Since our polygon approximation guarantees only that the outlines of the
polygon be within the SR factor of the outlines of the NN upscaled mask, it is possible that
no overlay mask cover a given pixel ˆ

x at the target resolution. Such holes can be filled using
morphological dilation carried out iteratively, with the dilation affecting only pixels identified as
holes (cf. Figure 5.9). Another possible cause for holes is if pixels within an overlay mask could
not be interpolated owing to the spatial distribution of the projected points. In that event, we
dilate within the overlay mask with highest weight, again only over pixels identified as holes.
Note that no post-processing was performed in the output in Figure 5.1. Occasional gentle
overlap of overlay masks can cause streaking artifacts; if in the input point cloud fewer than 3
points lie within the radius r of the point P

ˆ

x

assigned to a pixel ˆ

x at the target resolution, we
likewise treat ˆ

x as a hole and fill it using dilation in the manner outlined above.
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5.3 Evaluation

We evaluate our method using depth data from stereo, ToF, laser scans and structured light. We
carry out a quantitative evaluation in Section 5.3.1, and provide a qualitative evaluation in the
section thereafter. Unless otherwise stated, we performed no preprocessing. In all our experi-
ments, we carried out 5 iterations of PatchMatch, with k = 3. Setting appropriate parameters
r, ↵, �, and � is largely intuitive upon visualization of the input point cloud, and depends on
the scale, density, and relative depth of point features one aims to capture. In Section 5.3.1, all
algorithm parameters were kept identical across Middlebury and laser scan tests, respectively.
We detail, in Figures 5.19-5.26, the fixed radius algorithm parameters used for the Middlebury
data sets.

5.3.1 Quantitative Evaluation

Following the example of Mac Aodha et al. [MCNB12] we provide a quantitative evaluation of
our technique on cones, teddy, tsukuba and venus of the Middlebury stereo data set (cf. Scharstein
and Szeliski [SS03]). For Middlebury tests, we ran our algorithm on filled ground truth data—
the same used in Mac Aodha et al.–downscaled by NN interpolation by a factor of 2 and 4 and
subsequently super resolved by the same factor, respectively, which we compared to ground
truth. In Table 5.1, we provide percent error scores—giving the percentage of pixels for which
the absolute difference in disparity exceeds 1—for Middlebury. Table 5.2 shows root mean
squared error (RMSE) scores. Note that although popular in the depth SR literature, RMSE
scores over depth or disparity maps are dominated by misassignments at the boundaries of ob-
jects separated by large depth differences; given two data sets with equal percent error, a data set
where boundaries are gently blurred will have lower RMSE than one with boundaries that are
sharp. Even so, our RMSE scores fare very competitively with those of alternative techniques.
In percent error, we are the top performer among example-based methods, and on a few occa-
sions outperform the image-guided techniques. Among depth SR methods that leverage a color
or intensity image at the target resolution, we compared against Diebel and Thrun [DT05] and
Yang et al. [YYDN07]; among techniques that make use of an external database we compared
against Mac Aodha et al., and against Yang et al. [YWHM10] and Freeman and Liu [FL11]
from the image SR literature. Additionally, we compared against the ‘single-image’ image SR
approach of Glasner et al. [GBI09]. For completeness, we compared against NN upscaling
to provide a rough baseline, although it introduces jagged edges and does nothing to improve
the apparent depth measurement accuracy. Table 5.2 additionally gives RMSE scores for three
depth maps obtained from laser scans detailed in Mac Aodha et al., which were downscaled and
subsequently super resolved by a factor of 4. For the laser scans we compared to the original
resolution since ground truth data was not available. All RMSE and percent error scores were
computed on 8 bit disparity maps. The data sets—with the exception of results on the algorithm
of Glasner et al. [GBI09]—and the code used in carrying out the quantitative evaluation are from
Mac Aodha et al. [MCNB12].2

2The RMSE scores published in Mac Aodha et al. [MCNB12] were subject to a subtle image resizing issue.
Details and updated numbers are available at http://visual.cs.ucl.ac.uk/pubs/depthSuperRes/
supp/index.html.

http://visual.cs.ucl.ac.uk/pubs/depthSuperRes/supp/index.html
http://visual.cs.ucl.ac.uk/pubs/depthSuperRes/supp/index.html
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Percent Error. Let ⌦ denote the set of valid pixels in the ground truth disparity map, which
is to say pixels for which a valid disparity is available. Moreover, let disp

ˆ

x

and disp

ˆ

x

GT

denote
the disparity at the pixel ˆ

x at the target resolution in a recovered—meaning, in our context,
super resolved—disparity map and in a ground truth (GT) disparity map, respectively. The
percent error is an error measure borrowed from the stereo literature (e.g., [SS02]), and gives the
percentage of pixels ˆ

x 2 ⌦ for which the absolute difference
��
disp

ˆ

x

� disp

GT

ˆ

x

�� exceeds 1:

percent error =

1

|⌦|
X

ˆ

x2⌦

⇢
0 if

��
disp

ˆ

x

� disp

GT

ˆ

x

��  1

1 otherwise
. (5.5)

Note that percent error is applicable only where a disparity map is available.

Root Mean Squared Error (RMSE). Let ⌦, disp

ˆ

x

, and disp

ˆ

x

GT

denote the same as for
percent errror. The RMSE between a recovered disparity map and a GT disparity map—reusing
the notation introduced above—is computed by

disparity RMSE =

s
1

|⌦|
X

ˆ

x2⌦

⇣
disp

ˆ

x

� disp

GT

ˆ

x

⌘
2

. (5.6)

The RMSE between a recovered depth map and a GT depth map is computed analogously,

depth RMSE =

s
1

|⌦|
X

ˆ

x2⌦

⇣
Z
ˆ

x

� ZGT

ˆ

x

⌘
2

, (5.7)

where Z
ˆ

x

and ZGT

ˆ

x

denote the recovered—again, in our context meaning super resolved—and
GT depth at pixel ˆ

x, respectively.

5.3.2 Qualitative Evaluation

In Figure 5.10 we show results on a data set of two similar egg cartons situated at different
depths, obtained using the stereo algorithm of Bleyer et al. [BRR11], and follow in Figures
5.11-5.14 with results using 2x nearest neighbor upscaling and 2x SR with our algorithm, the
algorithm of Glasner et al. [GBI09], and that of Mac Aodha et al. [MCNB12], respectively. Input
to NN upscaling and to the three SR algorithms is the 2x downscaled version of the disparity
map in Figure 5.10. Our result is visually superior to that of our competitors, and is the only
one to succeed in removing noise. Note the disturbing patch artifacts for Mac Aodha et al. In
Figure 5.15, we consider a noisy ToF data set from [MCNB12]. We see that although our depth
map appears pleasing, it in fact remains gently noisy if shaded as a mesh, owing to the great
deal of noise in the input. However, if we apply the same bilateral filtering as Mac Aodha et
al. [MCNB12], our result when shaded—although not as smooth over the vase—preserves edges
better (e.g., at the foot) without introducing square patch artifacts. Note that Glasner et al. do
not succeed in removing visible noise in their depth map, and introduce halo artifacts at the
boundaries. Figure 5.16 provides a comparison over the noiseless, yet quantized Middlebury
Cones data set. Note that although Glasner et al. [GBI09] perform well in RMSE, their method
produces poor object boundaries, as can additionally be seen in Figures 5.19-5.26.
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Y1 FL G MA Ours NN DT Y2
Middlebury 2x

Cones 61.617 6.266 4.697 2.935 2.018 1.713 3.800 2.346
Teddy 54.194 4.660 3.137 2.311 1.862 1.548 2.786 1.918

Tsukuba 5.566 3.240 3.234 2.235 1.644 1.240 2.745 1.161
Venus 46.985 0.790 0.940 0.536 0.377 0.328 0.574 0.250

Middlebury 4x
Cones 63.742 15.077 8.790 6.541 3.271 3.121 7.452 4.582
Teddy 55.080 12.122 6.806 5.309 4.234 3.358 6.865 4.079

Tsukuba 7.649 10.030 6.454 4.780 2.932 2.197 5.118 2.565
Venus 47.053 3.348 1.770 0.856 3.245 0.609 1.236 0.421

Table 5.1: Percent error scores. Y1 = Yang et al. [YWHM10] (Y1), FL = Freeman and Liu
[FL11], G = Glasner et al. [GBI09], MA = Mac Aodha et al. [MCNB12], NN = nearest neighbor
upscaling, DT = Diebel and Thrun [DT05], Y2 = Yang et al. [YYDN07]. Our method is the
top performer among example-based methods and on a few occasions outperforms Diebel and
Thrun [DT05] and Yang et al. [YYDN07]. Results provided for Yang et al. [YWHM10] suffer
from incorrect absolute intensities. Cell colors indicate ranking among the five methods, from
best to worst: green, light green, yellow, orange, red. Gray cells are shown for comparison but
are not included in the ranking.

5.4 Discussion

A major drawback of reasoning in terms of spheres of a single fixed radius r is that the sphere
inlier count then tends to vary as a function of depth, as illustrated in Figures 5.17 and 6.2. To
be supplied with a radius r for which spheres at large depth from the camera contain enough
inliers for matching to be sensible—while at the same time not allowing spheres at small depth
to contain so many points that patch upscaling and merging smoothes away interesting detail—is
accordingly a key assumption of the algorithm. An even more important issue in what concerns
our numerical results, however, is that patches that contain few inliers are prone to be discarded
in the polygonalization step, as illustrated in Figure 5.18. Of course, the extent to which it is
even possible to find a radius r that is neither too big nor too small is a function of the depth
range of the given scene, and varies in general with every input depth map. Proposing a way to
adaptively set the radius r

x

of the sphere at each pixel x in terms of a fixed radius r
pix

expressed
instead in pixel units is one of the contributions of Hornáček et al. [HFR14], the details of which
we defer to Chapter 6 and Appendix A. In addition to making sphere inlier counts more uniform,
proceeding in this manner has the advantage of making the choice of radius more intuitive. In
Tables 5.3 and 5.4, we compare our reported results from Tables 5.1 and 5.2, respectively, on
Middlebury (i) for fixed radius r = 1.35 (in the manner of the published algorithm) with (ii) our
results having fixed the radius of each sphere adaptively to r

pix

= 5 and r
pix

= 10. Additionally,
on the intuition that the error measures considered in Section 5.3.1 are sensitive especially to
errors at major object boundaries, we provide RMSE and percent error scores having fixed each
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Y1 FL G MA Ours NN DT Y2
Middlebury 2x

Cones 2.027 1.447 0.867 1.127 0.994 1.094 0.740 0.756
Teddy 1.420 0.969 0.596 0.825 0.791 0.815 0.527 0.510

Tsukuba 0.705 0.617 0.482 0.601 0.580 0.612 0.401 0.393
Venus 0.992 0.332 0.209 0.276 0.257 0.268 0.170 0.167

Middlebury 4x
Cones 2.214 1.536 1.483 1.504 1.399 1.531 1.141 0.993
Teddy 1.572 1.110 1.065 1.026 1.196 1.129 0.801 0.690

Tsukuba 0.840 0.869 0.832 0.833 0.727 0.833 0.549 0.514
Venus 1.012 0.367 0.394 0.337 0.450 0.368 0.243 0.216

Scan 4x
Scan 21 0.030 0.019 1.851 0.017 0.021 0.018 N/A N/A
Scan 30 0.035 0.017 1.865 0.017 0.018 0.016 N/A N/A
Scan 42 0.054 0.075 1.764 0.045 0.030 0.040 N/A N/A

Table 5.2: Root mean squared error (RMSE) scores. Yang et al. [YWHM10] (Y1) and Freeman
and Liu [FL11] (FL) are image SR methods and Mac Aodha et al. [MCNB12] (MA) a depth SR
method, all of which require an external database. Diebel and Thrun [DT05] (DT) and Yang et
al. [YYDN07] (Y2) are depth SR methods that use an image at the target resolution. Glasner et
al. [GBI09] (G) is an image SR technique that uses patches from within the input image. For
most data sets, our method is competitive with the top performer. Laser scan tests on the image-
guided techniques were not possible for want of images at the target resolution. Best score is
indicated in bold for the example-based methods, which we consider our main competitors. Cell
colors indicate ranking among the five methods, from best to worst: green, light green, yellow,
orange, red. Gray cells are shown for comparison but are not included in the ranking.

rigid body motion g
x

to the identity motion g
I

= (I,0), thereby placing the onus in the patch
upscaling and merging step solely on mask polygonalization. Note that while setting each g

x

to the identity motion keeps major object boundaries sharp and accordingly has little impact
on numerical results, proceeding in such a manner fails to improve detail on object surfaces
themselves (beyond perhaps removing shot noise), as exemplified in Figure 5.27.

5.5 Conclusion

Inspired by the work of Glasner et al. [GBI09] on ‘single-image’ super resolution for color and
intensity images, we presented a tailored ‘single-image’ depth super resolution algorithm, rea-
soning in terms of only the information contained in the single input depth map. We introduced a
new 3D variant of the PatchMatch algorithm [BSFG09,BSGF10] for recovering a dense match-
ing between pairs of closer-further corresponding 3D point patches related by 6 DoF 3D rigid
body motions, and presented a technique for upscaling and merging matched patches that pre-
dicts sharp object boundaries at the target resolution. In our evaluation, we showed our results
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(a) Rectified left image. (b) Rectified right image.

(c) Disparity map.

Figure 5.10: The egg carton data set stereo pair. A disparity map is computed for the rectified left
image using the algorithm of Bleyer et al. [BRR11]. The output disparity map is downscaled by
a factor of 2 (which can be seen scaled back up by 2x nearest neighbor upscaling in Figure 5.11a)
before being provided as input to our algorithm and the algorithms of Glasner et al. [GBI09] and
Mac Aodha et al. [MCNB12].

to be highly competitive with methods that make use of ancillary data such as a color image at
the target resolution or a database of high-resolution depth exemplars.
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(a) Output as disparity map.

(b) Output as shaded mesh.

Figure 5.11: 2x nearest neighbor upscaling of the 2x downscaled disparity map of the egg carton
data set, which we use as input to our algorithm and to the algorithms of Glasner et al. [GBI09]
and Mac Aodha et al. [MCNB12].
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(a) Output as disparity map.

(b) Output as shaded mesh.

Figure 5.12: Our 2x SR result on the egg carton data set. Our algorithm succeeds in remov-
ing noise better than our competitors, while contours in our disparity map come closest to the
contours of the original disparity map.
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(a) Output as disparity map.

(b) Output as shaded mesh.

Figure 5.13: 2x SR result of Glasner et al. [GBI09] on the egg carton data set. While edges in
the disparity map are smooth, the algorithm fails to remove noise.
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(a) Output as disparity map.

(b) Output as shaded mesh.

Figure 5.14: 2x SR result of Mac Aodha et al. [MCNB12] on the egg carton data set (prepro-
cessed). While edges in the disparity map are more smooth than by using nearest neighbor
upscaling, the algorithm introduces disturbing patch artifacts clearly visible in the shaded mesh.
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(a) Nearest neighbor. (b) Our result. (c) Mac Aodha et al.
[MCNB12] (PP).

(d) Glasner et
al. [GBI09].

(e) Yang et
al. [YWHM10].

(f) Freeman and Liu
[FL11].

(g) Nearest neighbor (PP). (h) Mac Aodha et
al. [MCNB12] (PP).

(i) Our result (PP). (j) Our result (not PP).

Figure 5.15: Results on the ToF dove data set. Above, we provide zoom ins on a region of inter-
est of the noisy PMD CamCube 2.0 ToF data set shown in Figure 5.2b for 4x nearest neighbor
upscaling in (a) and 4x SR otherwise. A depth map zoom in for Mac Aodha et al. was available
only with bilateral preprocessing (window size 5, spatial deviation 3, range deviation 0.1). Be-
low, we show shaded meshes for the preprocessed result of Mac Aodha et al. and for our method
with and without the same preprocessing ((h) is not aligned with the other meshes because the
rendering is not ours). Note that although we in (i) perform worse than (h) on the vase, we
preserve fine detail better and do not introduce square patch artifacts. PP = preprocessed.



84 CHAPTER 5. DEPTH SUPER RESOLUTION

(a) Nearest neighbor. (b) Our result.

(c) Glasner et al. [GBI09]. (d) Mac Aodha et
al. [MCNB12].

(e) Nearest neighbor. (f) Our result.

(g) Glasner et al. [GBI09]. (h) Mac Aodha et
al. [MCNB12].

Figure 5.16: Results on the Middlebury cones data set. Above, zoom ins on a region of interest of
the noiseless, though quantized Middlebury Cones data set. 2x SR was carried out (in our case,
using the parameters from the quantitative evaluation) on the 2x nearest neighbor downscaling
of the original, depicted in (a). Our method has the sharpest edges. Below, the corresponding
shaded meshes. Our method performs the best smoothing even after quantization (particularly
at the cones), although it lightly smooths away the nose for the parameters used.
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(a) r = 1.35. (b) r
pix

= 5. (c) r
pix

= 10.

Figure 5.17: Apparent spatial extent of 3D point patches on venus. Note that for fixed radius r =

1.35, the sphere at large depth (top row) contains only a single inlier; at small depth (bottom
row), the spatial extent of the sphere is almost the same as for r

pix

= 5. In general, a challenge
of reasoning in terms of a single fixed radius r is to ensure that spheres at large depth from the
camera contain enough inliers for matching to be sensible, while at the same time not allowing
spheres at small depth to contain so many points that patch upscaling and merging smoothes
away interesting detail.
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(a) r = 1.35. (b) r
pix

= 5. (c) r
pix

= 10.

(d) r = 1.35. (e) r
pix

= 5. (f) r
pix

= 10.

Figure 5.18: Before post-processing for 4x SR on the venus and teddy data sets. Unfilled areas—
indicated in black, and subsequently to be filled by post-processing—arise because polygonal-
ization discards pixels that form a mask that at the source resolution is only one pixel high or
wide. Note that it is due to these large unfilled areas that performance is poor for 4x SR on venus
and teddy for r = 1.35.
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r
pix

= 5 r
pix

= 5, g
I

r
pix

= 10 r
pix

= 10, g
I

r = 1.35

Middlebury 2x
Cones 1.926 1.702 2.018 1.772 2.018
Teddy 3.555 3.344 1.845 1.658 1.862

Tsukuba 1.641 1.472 1.634 1.520 1.644
Venus 0.340 0.239 0.336 0.269 0.377

Middlebury 4x
Cones 3.162 2.541 3.294 2.934 3.271
Teddy 4.667 4.667 3.218 3.190 4.234

Tsukuba 2.901 2.464 2.877 2.647 2.932
Venus 0.542 0.542 0.223 0.218 3.245

Table 5.3: Supplemental percent error scores for our approach, with r
pix

= 5 and with r
pix

= 10,
such that each g

x

be recovered using our algorithm and each g
x

be set to the identity motion g
I

,
respectively. Green cell color indicates that the result performs at least as well in percent error as
our result for fixed radius r = 1.35 from Table 5.1; red indicates that the performance is worse.
Bold indicates that, disregarding our result for fixed radius r = 1.35, the result outperforms all
other competitors in Table 5.1.

r
pix

= 5 r
pix

= 5, g
I

r
pix

= 10 r
pix

= 10, g
I

r = 1.35

Middlebury 2x
Cones 1.017 1.113 0.988 1.091 0.994
Teddy 0.986 1.006 0.800 0.784 0.791

Tsukuba 0.556 0.610 0.571 0.597 0.580
Venus 0.252 0.239 0.221 0.237 0.257

Middlebury 4x
Cones 1.405 1.402 1.315 1.332 1.399
Teddy 1.279 1.279 1.013 1.003 1.196

Tsukuba 0.719 0.749 0.736 0.770 0.727
Venus 0.258 0.258 0.220 0.227 0.450

Table 5.4: Supplemental root mean squared error (RMSE) scores for our approach, with r
pix

= 5

and with r
pix

= 10, such that each g
x

be recovered using our algorithm and each g
x

be set to
the identity motion g

I

, respectively. Green cell color indicates that the result performs at least
as well in RMSE as our result for fixed radius r = 1.35 from Table 5.2; red indicates that the
performance is worse. Bold indicates that, disregarding our result for fixed radius r = 1.35, the
result outperforms all other competitors in Table 5.2.
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(a) Nearest neighbor. (b) Our result for fixed ra-
dius r = 1.35 (published alg.).

(c) Our result for r
pix

= 5. (d) Our result for r
pix

= 10.

(e) Our result for r
pix

= 5 with
g
x

= gI , 8x.
(f) Our result for r

pix

= 10

with g
x

= gI , 8x.

(g) Glasner et al. [GBI09]. (h) Mac Aodha et
al. [MCNB12].

Figure 5.19: 4x SR results on cones, with focal length f = 150, baseline B = 10, ↵ = 0.5,
� = 0.025, � = 10 and disparities of the 4x NN downscaled original disparity map divided by
a factor of 4. Given this choice of focal length and baseline, sphere radius at minimum, median,
and maximum depth Z for r

pix

= 1 is 0.181818, 0.314961, 0.655738, respectively.



5.5. CONCLUSION 89

(a) Nearest neighbor. (b) Our result for fixed ra-
dius r = 1.35 (published alg.).

(c) Our result for r
pix

= 5. (d) Our result for r
pix

= 10.

(e) Our result for r
pix

= 5 with
g
x

= gI , 8x.
(f) Our result for r

pix

= 10

with g
x

= gI , 8x.

(g) Glasner et al. [GBI09]. (h) Mac Aodha et
al. [MCNB12].

Figure 5.20: 4x SR results on teddy, with focal length f = 150, baseline B = 10, ↵ = 0.5,
� = 0.025, � = 10 and disparities of the 4x NN downscaled original disparity map divided by
a factor of 4. Given this choice of focal length and baseline, sphere radius at minimum, median,
and maximum depth Z for r

pix

= 1 is 0.190476, 0.322581, 0.666667, respectively.
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(a) Nearest neighbor. (b) Our result for fixed ra-
dius r = 1.35 (published alg.).

(c) Our result for r
pix

= 5. (d) Our result for r
pix

= 10.

(e) Our result for r
pix

= 5 with
g
x

= gI , 8x.
(f) Our result for r

pix

= 10

with g
x

= gI , 8x.

(g) Glasner et al. [GBI09]. (h) Mac Aodha et
al. [MCNB12].

Figure 5.21: 4x SR results on tsukuba, with focal length f = 150, baseline B = 10, ↵ = 0.5,
� = 0.025, � = 10 and disparities of the 4x NN downscaled original disparity map divided by
a factor of 4. Given this choice of focal length and baseline, sphere radius at minimum, median,
and maximum depth Z for r

pix

= 1 is 0.178571, 0.5, 0.5, respectively.
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(a) Nearest neighbor. (b) Our result for fixed ra-
dius r = 1.35 (published alg.).

(c) Our result for r
pix

= 5. (d) Our result for r
pix

= 10.

(e) Our result for r
pix

= 5 with
g
x

= gI , 8x.
(f) Our result for r

pix

= 10

with g
x

= gI , 8x.

(g) Glasner et al. [GBI09]. (h) Mac Aodha et
al. [MCNB12].

Figure 5.22: 4x SR results on venus, with focal length f = 150, baseline B = 10, ↵ = 0.5,
� = 0.025, � = 10 and disparities of the 4x NN downscaled original disparity map divided by
a factor of 4. Given this choice of focal length and baseline, sphere radius at minimum, median,
and maximum depth Z for r

pix

= 1 is 0.254777, 0.677966, 1.66667, respectively. Note that for
r = 1.35, around maximum depth spheres contain only a single inlier, causing polygonalization
to discard the corresponding singleton patches of points and thereby leading to the corresponding
areas of the SR output in (b) to be filled purely by post-processing.
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(a) Nearest neighbor. (b) Our result for fixed ra-
dius r = 1.35 (published alg.).

(c) Our result for r
pix

= 5. (d) Our result for r
pix

= 10.

(e) Our result for r
pix

= 5 with
g
x

= gI , 8x.
(f) Our result for r

pix

= 10

with g
x

= gI , 8x.

(g) Glasner et al. [GBI09]. (h) Mac Aodha et
al. [MCNB12].

Figure 5.23: 2x SR results on cones, with focal length f = 300, baseline B = 10, ↵ = 0.5,
� = 0.025, � = 10 and disparities of the 4x NN downscaled original disparity map divided by
a factor of 4. Given this choice of focal length and baseline, sphere radius at minimum, median,
and maximum depth Z for r

pix

= 1 is 0.0909091, 0.15625, 0.327869, respectively.
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(a) Nearest neighbor. (b) Our result for fixed ra-
dius r = 1.35 (published alg.).

(c) Our result for r
pix

= 5. (d) Our result for r
pix

= 10.

(e) Our result for r
pix

= 5 with
g
x

= gI , 8x.
(f) Our result for r

pix

= 10

with g
x

= gI , 8x.

(g) Glasner et al. [GBI09]. (h) Mac Aodha et
al. [MCNB12].

Figure 5.24: 2x SR results on teddy, with focal length f = 300, baseline B = 10, ↵ = 0.5,
� = 0.025, � = 10 and disparities of the 2x NN downscaled original disparity map divided by
a factor of 2. Given this choice of focal length and baseline, sphere radius at minimum, median,
and maximum depth Z for r

pix

= 1 is 0.0947867, 0.16129, 0.344828, respectively.
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(a) Nearest neighbor. (b) Our result for fixed ra-
dius r = 1.35 (published alg.).

(c) Our result for r
pix

= 5. (d) Our result for r
pix

= 10.

(e) Our result for r
pix

= 5 with
g
x

= gI , 8x.
(f) Our result for r

pix

= 10

with g
x

= gI , 8x.

(g) Glasner et al. [GBI09]. (h) Mac Aodha et
al. [MCNB12].

Figure 5.25: 2x SR results on tsukuba, with focal length f = 300, baseline B = 10, ↵ = 0.5,
� = 0.025, � = 10 and disparities of the 4x NN downscaled original disparity map divided by
a factor of 4. Given this choice of focal length and baseline, sphere radius at minimum, median,
and maximum depth Z for r

pix

= 1 is 0.0892857, 0.25, 0.25, respectively.
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(a) Nearest neighbor. (b) Our result for fixed ra-
dius r = 1.35 (published alg.).

(c) Our result for r
pix

= 5. (d) Our result for r
pix

= 10.

(e) Our result for r
pix

= 5 with
g
x

= gI , 8x.
(f) Our result for r

pix

= 10

with g
x

= gI , 8x.

(g) Glasner et al. [GBI09]. (h) Mac Aodha et
al. [MCNB12].

Figure 5.26: 2x SR results on venus, with focal length f = 300, baseline B = 10, ↵ = 0.5,
� = 0.025, � = 10 and disparities of the 4x NN downscaled original disparity map divided by
a factor of 4. Given this choice of focal length and baseline, sphere radius at minimum, median,
and maximum depth Z for r

pix

= 1 is 0.127389, 0.338983, 0.833333, respectively.
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(a) 2x nearest neighbor. (b) 2x SR with r = 1.35.

(c) 2x SR with r
pix

= 5. (d) 2x SR with r
pix

= 10.

(e) 2x SR with r
pix

= 5 and g
x

= gI , 8x. (f) 2x SR with r
pix

= 10 and g
x

= gI , 8x.

Figure 5.27: Meshes for our 2x SR on cones at various radii. Note that for our results with g
x

fixed to the identity motion g
I

for all pixels x, object surfaces do not appear to undergo any
improvement relative to NN upscaling.



CHAPTER 6
RGB-D Scene Flow

In this chapter, we take a new approach to computing dense scene flow between a pair of consec-
utive RGB-D frames. We exploit the availability of depth data by seeking correspondences with
respect to patches specified not as the pixels inside traditional square windows in image space,
but—as in Chapter 5—in terms of the 3D points that are the respective inliers of spheres in world
space. Our primary contribution is to show that by reasoning in terms of such patches of points
undergoing 6 DoF rigid body motions in 3D, we succeed in obtaining compelling scene flow re-
sults at displacements large and small without relying on either of two simplifying assumptions
that pervade much of the earlier literature: brightness constancy or local surface planarity. As a
consequence of our approach, our output is a dense field of 3D rigid body motions, in contrast to
the 3D translations that are the norm in scene flow. In Section 6.1, we introduce our methodology
and place our algorithm in the context of earlier work. We then proceed to detail out algorithm
in Section 6.2, and show, in Section 6.3, attractive flow results on challenging synthetic and real-
world scenes that push the practical limits of the aforementioned assumptions. In Section 6.4
we attempt to emphasize the key elements of the algorithm in what concerns performance, and
end with concluding remarks in Section 6.5.

6.1 Introduction

The growing consumer-level availability of RGB-D data—in particular since the introduction
of the inexpensive Microsoft Kinect camera—has made solving computer vision problems by
jointly exploring cues in color and depth an increasingly practical pursuit. We present a substan-
tially new way of computing the dense 3D motion field between a pair of consecutive RGB-D
frames of a (perhaps non-rigidly) moving scene, making neither of the traditional assumptions
of brightness constancy or local surface planarity. The assumption that corresponding pixels
have the same color is perhaps the most common simplifying assumption in scene flow, and
breaks down as displacements become large. An alternative it to aggregate intensity information
over patches of pixels. Traditionally, however, patch-based methods have relied on motion mod-
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els that assume local surface planarity, which imposes limits on the size of such patches over
geometry that is not planar.
In stark contrast to previous patch-based scene flow techniques, ours exploits the availability of
3D points in RGB-D data by reasoning in terms of so-called ‘3D point patches’. Our main con-
tributions derive from how we reason about patches. By identifying the points constituting our
patches as the inliers of spheres and relating such patches using 6 DoF 3D rigid body motions,
we are able to: (i) overcome the local surface planarity assumption, allowing for larger patches
over non-planar surfaces than are possible with traditional motion models; (ii) introduce a 6 DoF
consistency check for the flow recovered in both directions; (iii) introduce a patchwise silhouette
check to help reason about alignments in occlusion areas; and (iv) introduce an intuitive local
rigidity prior to promote smoothness. Finally, a consequence of our approach is that (v) our
output is a dense field of 6 DoF 3D rigid body motions, rather than one of 3D translation vectors
as is the norm in scene flow.

6.1.1 Related Work

The term ‘scene flow’ is due to Vedula et al. [VBR+05], who introduced it as a dense field of
3D translation vectors for each point in the scene. Traditionally, scene flow has referred to tech-
niques that take RGB images as input and recover 3D structure in addition to 3D motion. Among
these techniques, we briefly mention in this section only work against which we evaluate our al-
gorithm in Section 6.3; we refer the reader to a broader treatment in Section 4.4. RGB scene flow
methods against which we evaluate our algorithm comprise Huguet and Devernay [HD07] and
Basha et al. [BMK13]. Huguet and Devernay and Basha et al. both use a variational technique.
RGB-D scene flow methods in our evaluation comprise Hadfield and Bowden [HB13], Herbst
et al. [HRF13], and Quiroga et al. [QDC13]. The approach of Hadfield and Bowden operates
instead on pairs of RGB-D frames, and uses a particle filter; Herbst et al. and Quiroga et al. both
compute RGB-D scene flow using a variational technique. Each one of these methods invokes
the assumption of brightness constancy.

6.2 Algorithm
We begin by obtaining a dense 6 DoF correspondence field in both directions (frame 1 to frame
2, frame 2 to frame 1), using a new variant of the PatchMatch algorithm building on the work
of Barnes et al. [BSFG09, BSGF10], Hornáček et al. [HRGR13] (described in Chapter 5), and
Bleyer et al. [BRR11]. We detail this step in Section 6.2.2. In Section 6.2.1, we present our
3D point patches and the matching cost we aim to minimize, from which the majority of our
contributions derive. In Section 6.2.3, we detail the second step of our algorithm, optimized
using ↵-expansion [BVZ01], which refines the correspondence fields by handling occlusions
and promoting 6 DoF smoothness.

6.2.1 3D Point Patches

We carry out our correspondence search by reasoning in terms of so-called ‘3D point patches’
undergoing 6 DoF 3D rigid body motions as in Hornáček et al. [HRGR13], but extend the
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Figure 6.1: The Euclidean distance Z/f in world space between two points P,P0 2 R3 both
situated at depth Z—with respect to the camera center C—and projecting to neighboring pix-
els x,x0 2 R2 in image space, respectively, obtained by similar triangles.

matching cost presented in their formulation to include the influence of 2D image gradients re-
coverable from the available RGB. Image gradients allow for matching salient texture features
without relying on brightness constancy, while our 3D point patch formulation allows for better
alignment of such gradients over non-planar surfaces than is possible using traditional motion
models that assume local surface planarity (cf. Section 2.2). Additionally, our formulation al-
lows us to compare depth between potential correspondences in a manner that borrows from
the ICP literature (cf. Rusinkiewicz and Levoy [RL01]), which would also not be possible with
traditional image space motion models. Recognizing that object boundaries encoded in depth
can be noisy or poorly aligned with RGB, we additionally integrate an optional adaptive support
weighting scheme in our matching cost. Finally, we overcome a shortcoming of the formulation
in [HRGR13] that effectively tied the number of inlier points constituting a 3D point patch to its
corresponding sphere’s depth (cf. Figure 6.2), enabling us to ensure a more uniform matching
quality across the scene.

Formal Definition. Let g
x

= (R
x

, t
x

) denote a 6 DoF rigid body motion in 3D to be assigned
to the pixel x = (x, y)

> by our algorithm. Given one of the two input views as the source
view, and the other as the destination view, let P ⇢ R3 denote the set of 3D points encoded in
the depth map of the source view, and the 3D point patch S

x

denote the subset of points in P
situated within a radius r

x

of the point P
x

= Z
x

· K�1

(x

>, 1)

> 2 R3, where Z
x

is the depth
encoded at the pixel x and K is the 3 ⇥ 3 camera calibration matrix (cf. Section 2.4). Our goal
is to assign a rigid body motion g

x

to each valid pixel x, mapping the 3D point patch S
x

in the
source view to its counterpart in the destination view. A pixel x is deemed valid only if a depth
value is encoded at x in the input depth map. In practice, we carry out spatial queries using a
kd-tree [ML14].
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Figure 6.2: Apparent spatial extent of 3D point patches on cones. Left: fixed sphere radius r
renders apparent spatial extent a function of sphere depth. Right: proposed per-pixel radius r

x

,
obtained as a function of the depth Z

x

of P
x

. In this manner, spheres can be expected to contain a
more uniform number of inlier points than for fixed r, thereby providing more uniform matching
quality across the scene.

Radius r
x

. It can be shown by similar triangles that the distance in world space between two
points both situated at depth Z projecting to neighboring pixels in image space is given by Z/f
(cf. Figure 6.1; an alternative derivation is provided in Appendix A), where f is the camera’s
focal length in units of pixels. Accordingly, the number of points constituting a 3D point patch
given a fixed radius r can on average be expected to decrease as depth increases, and with it so
too can confidence in the strength of any matching score based on such points (cf. Figure 6.2). In
order to alleviate this problem of reasoning in terms of a fixed radius r, we assign to each pixel x
a tailored radius r

x

, obtained as a function of the depth Z
x

encoded at x in the depth map, such
that all resulting spheres appear to have the same size from the viewpoint of the camera:

r
x

= r
pix

· Z
x

/f, (6.1)

where r
pix

is a fixed radius in pixels and f is the camera’s focal length, likewise in units of pixels.
The quantity Z

x

/f gives the distance in world space corresponding to a one-pixel displacement
in image space. In this manner, each sphere appears to have equal size from the viewpoint of the
camera, and thus the spheres can be expected to contain a more uniform number of inlier points
than for fixed r.

Matching Cost. Let I, I 0 and G, G0 be the source and destination color and gradient images,
respectively, and let ⇡,⇡0 denote projection (cf. Section 2.4) into the source and destination
views. We compute gradient similarity by projection and interpolation, promoting sub-pixel
accuracy with respect to salient texture edges in image space:

Egr

x

(g) =

X

P2S
x

w
�
x,⇡(P)

�
·
��G(⇡(P))�G0

(⇡0(g(P)))

��2
2

, (6.2)
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where w(x,x0
) = exp

�
�k(I(x)�I(x

0
))k

2

/�
�

implements a form of adaptive support weight-
ing (cf. Yoon and Kweon [YK05]), which is valuable when object boundaries in the depth map
are noisy or poorly aligned with RGB. We compute L2 color distance for adaptive support
weighting in the CIE L*a*b color space. Let NNS(P) denote the nearest neighbor point to
P in the set S ⇢ R3. We compute 3D point similarity by

Ept

x

(g) =

X

P2S
x

w
�
x,⇡(P)

�
·
��g(P)�NNP 0

�
g(P)

���2
2

, (6.3)

where P 0 denotes the set of points encoded in the depth map of the destination view. Reasoning
in terms of nearest neighbors in 3D for point similarity allows for handling shot noise and invalid
pixels without special treatment, which would not be possible by projection and interpolation.
Moreover, it allows for a natural delineation of boundaries at depth discontinuities, insofar as
object boundaries encoded in the input depth maps are of reasonable quality. We compute the
final matching cost according to

E
x

(g) =

⇢
Ept

x

(g) + ↵ · Egr

x

(g) if x is valid
1 otherwise

, (6.4)

where ↵ is a fixed weight.

6.2.2 Dense 6 DoF Matching via PatchMatch

We turn to PatchMatch (cf. Barnes et al. [BSFG09, BSGF10]) to carry out our dense 6 DoF
matching, building primarily upon the PatchMatch variant introduced in Hornáček et al. [HRGR13]
for depth super resolution, and upon that introduced in Bleyer et al. [BRR11] for stereo. Our
goal is to assign a rigid body motion g

x

to each valid pixel x, mapping the 3D point patch S
x

in the source view to its counterpart in the destination view. We begin with a semi-random ini-
tialization step, assigning a first guess to each valid pixel. Next, for i iterations, we visit each x,
carrying out (i) spatial propagation, (ii) j additional semi-random initializations, (iii) k refine-
ments, and (iv) view propagation. In each of the steps (i-iv), a candidate rigid body motion is
adopted at x if doing so yields equal or lesser matching cost. For the first of the two views, we
visit its pixels in scanline order, upper left to lower right for even iterations, lower right to upper
left for odd. A contribution of ours—applicable to stereo as well as to scene flow—is to promote
convergence via view propagation by traversing the pixels of the second view in the opposite
order, in parallel with the first view. We describe the individual steps in greater detail below.

Semi-Random Initialization. For each valid pixel x in the source view, we randomly pick
a point P

x

0 in the destination view within a search radius v of P

x

, giving a 3D translation
vector P

x

0 � P

x

(3 DoF). Additionally, we obtain candidate 3D translations by carrying out
SURF feature matching [BTG06] in image space. We obtain the remaining 3 DoF by computing
the rotation minimizing arc length between the surface normal vector at P

x

and that at P
x

0

(2 DoF), and choosing a random around-normal angular perturbation (1 DoF). An illustration of
this process is provided in Figure 6.3. A normal vector for each point P

x

is precomputed via
RANSAC [FB81] plane fitting in a local neighborhood of points, and is made to point towards
the camera center.
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v

source

destination

P

x

P

x

0

1

(a) Randomly pick a point P

x

0 in the destination
view within a search radius v of P

x

.

3 DoF2

(b) Translate accordingly.

2 DoF

3

(c) Rotate the source normal vector onto the destina-
tion normal vector.

1 DoF

4

(d) Randomly rotate around the destination normal.

Figure 6.3: Semi-random initialization of a 6 DoF rigid body motion g at a pixel x, with the
objective of restricting initialization to plausible states (most importantly meaning never initial-
izing to empty space). (a) Randomly pick a point P

x

0 in the destination view within a search
radius v of the point P

x

encoded at x in the source view. (b) Obtain the 3 DoF translation from
P

x

0 � P

x

. (c) Obtain 2 DoF of the 3 DoF rotation from the rotation between the local normal
vectors. (d) Obtain the remaining 1 DoF of the 3 DoF rotation by random rotation around the
normal.
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Spatial Propagation. Given a traversal from upper left to lower right, we consider at x the
rigid body motions g

x

n

, g
x

w

, where x

n

= (x, y � 1)

>,x
w

= (x � 1, y)

>, and adopt a motion
if doing so yields equal or lesser matching cost. Analogously, for a traversal from lower right to
upper left, we consider g

x

s

, g
x

e

, where x

s

= (x, y + 1)

>,x
e

= (x + 1, y)

>. As in Hornáček
et al. [HRGR13], the geometric rationale behind spatial propagation in our 6 DoF setting can
be understood by observing that if two objects are related by a rigid body motion, then any
corresponding pair of 3D point patches is related (modulo noise or sampling) by precisely the
same motion.

Refinement. We aim of to improve upon the assigned motion g
x

by considering a gentle per-
turbation of g

x

(cf. Section 2.3). We build our candidates as in the semi-random initialization
step, but try different combinations of changing the translation by hopping to a neighboring
point in the destination view (3 DoF), altering the rotation to reflect a different destination nor-
mal (2 DoF), or modifying the around-normal rotation (1 DoF). With each try, we adopt the
resulting candidate motion if doing so gives equal or lesser matching cost, and progressively
reduce the allowed range of deviation from the current best.

View Propagation. As a last step when visiting a pixel x, we project g
x

(P

x

) to the nearest
integer pixel x0 in the destination view, where we evaluate the inverse g�1

x

of g
x

provided that
x

0 is valid. We adopt g�1

x

at x0 if doing so gives equal or lesser matching cost. Since we carry
out our variant of PatchMatch in parallel in both directions while traversing pixels in opposite
order, by the time a pixel is reached in one view the most recent match available from the other
has already been propagated. In contrast, Bleyer et al. [BRR11] treat views sequentially, with
the effect of carrying out their form of view propagation after a full iteration is completed.

6.2.3 Occlusion Handling and Regularization

The dense correspondence search algorithm from Section 6.2.2 is reasonable only over points
visible in both views, and can be expected to fail in areas where occlusions arise. We introduce a
6 DoF consistency check in the aim of distinguishing good matches from bad. In a first occlusion
handling step, we assign to each valid pixel x that failed the check for g

x

the motion g
x

0 , such
that P

x

0 is the nearest neighbor point to P

x

corresponding to the subset of pixels that passed,
drawn from the same view. Next, we carry out regularization of the motion field, which we
reduce to a labeling problem optimized using ↵-expansion [BVZ01] over unary and pairwise
potentials. Recognizing that over pixels that failed the consistency check, our unary potentials
cannot rely on any criterion derived from our matching cost, we introduce a silhouette check to
promote at least patchwise edge alignment from the viewpoint of the camera. We introduce an
intuitive local rigidity prior as our pairwise potential. In contrast to Section 6.2.2, we carry out
all steps in this section sequentially: first for the first view, then for the second.

Consistency Check. For a motion g under consideration at a pixel x—by analogy to the left-
right consistency check over disparity in stereo (e.g., Bleyer et al. [BRR11])—we project g(P

x

)

to the nearest integer pixel x0 in the destination view and fail our check if x0 is not valid or if
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Figure 6.4: 6 DoF consistency check for g at x. We project g(P

x

) to the nearest integer pixel x0

in the destination view, where we obtain the assigned motion g
x

0 . We transform a unit tripod
centered on the point P

x

(black) forward by g (blue) and then backward by g
x

0 (red). The check
fails if any one of the distances in world space indicated by the three dashed lines exceeds a
threshold.

the distance in image space between x and the projection of g
x

0(g(P

x

)) back into the source
view exceeds 1 pixel. However, such a check is by itself unsatisfactory: the distance in world
space corresponding to a pixel displacement in image space grows as depth increases, and such
a check ignores the rotational components of g, g

x

0 . Accordingly, we additionally fail the check
if 9v 2 {ˆi,ˆj, ˆk} such that

��
(P

x

+ v)� g
x

0
�
g(P

x

+ v)

���
2

> �, (6.5)

where ˆ

i,ˆj, ˆk are the standard (unit) basis vectors for R3. We set � to Z
med

/f (cf. Section 6.2.1),
where Z

med

is the median depth across both views, however this does not preclude alternative
schemes for choosing a threshold. An illustration of the geometry of (6.5) is provided in Fig-
ure 6.4. Finally, we fail the check if |S

x

| < n or |S
x

0 | < n in order to ensure a minimum
matching support.

Initial Labeling. Each valid pixel x that passed the consistency check for g
x

is assigned its
own unique label l. For each valid pixel x that failed the consistency check, we instead assign
to x the label assigned to the pixel x0 such that P

x

0
= NN

˜P(P

x

), where ˜P denotes the set of
points corresponding to the set ˜X of valid pixels that passed the consistency check for the view
under consideration.

Regularization. We formulate our regularization as an energy minimization problem, taking
the form:

E(l) =

X

x2X
D

x

(l
x

) +

X

{x,x0}2N

V{x,x0}(lx, l
x

0
), (6.6)



6.2. ALGORITHM 105

gl
x

0 (
¯

P{x,x0} +

ˆ

k)

gl
x

0 (
¯

P{x,x0} +

ˆ

i)

gl
x

0 (
¯

P{x,x0} +

ˆ

j)

gl
x

(

¯

P{x,x0} +

ˆ

j)

gl
x

(

¯

P{x,x0} +

ˆ

k)

¯

P{x,x0} +

ˆ

i

¯

P{x,x0} +

ˆ

k

gl
x

0

gl
x

¯

P{x,x0} +

ˆ

j

gl
x

(

¯

P{x,x0} +

ˆ

i)

¯

P{x,x0}

Figure 6.5: 6 DoF local rigidity prior. Given a pixel x and a neighboring pixel x0, {x,x0} 2 N ,
and the rigid body motions g

l

x

, g
l

x

0 corresponding to the labels l
x

, l
x

0 , the prior returns the sum
of squares of the distances in world space indicated by the three dashed lines.

where X denotes the set of pixels in the image and N the set of its 4-connected pixel neighbors,
and where D

x

(l
x

) denotes the unary potential at x and V{x,x0}(lx, l
x

0
) the pairwise potential

between x,x0. For pixels x that are not valid, we set D
x

(l
x

) = 0. Otherwise, if the consistency
check was passed at x for the motion g

x

assigned in our dense matching stage, D
x

(l
x

) takes the
form Dp

x

(l
x

):

Dp

x

(l
x

) =

⇢
0 if g

l

x

passes consistency check at x
⇢ otherwise , (6.7)

where ⇢ reflects the trust we lend to the assigned motions that satisfied the consistency check,
recognizing that they were the strongest matches that PatchMatch succeeded in finding. In future
work, we plan to address the merits of setting Dp

x

(l
x

) to our matching cost when the check is
passed; here, we opt instead for an approximation with the advantage of speed. If the consistency
check was failed at x for g

x

, D
x

(l
x

) instead takes the form Df

x

(l
x

):

Df

x

(l
x

) =

⇢
0 if g

l

x

passes silhouette check at x
 otherwise , (6.8)

where  weighs the influence of the silhouette check against the pairwise potentials. Our pair-
wise potentials reduce to 3D point SSD analogously to (6.3), but are computed over the axes of
a unit tripod transformed according to the motions g

l

x

, g
l

x

0 :

V{x,x0}(lx, l
x

0
) = �{x,x0} ·

X

v2{ˆi,ˆj,ˆk}

��g
l

x

�
¯

P{x,x0} + v

�
� g

l

x

0

�
¯

P{x,x0} + v

���2
2

. (6.9)

We set �{x,x0} to a fixed weight � if both x,x0 are valid and kP
x

� P

x

0k
2

 r
pix

· Z
med

/f
(cf. Section 6.2.1), to 0 otherwise. This has the effect of regularizing only over pixels whose
corresponding points could both be inliers of a sphere at depth Z

med

. Our manner of proceeding
does not preclude alternative schemes for choosing a maximum radius. We set ¯

P{x,x0} = (P

x

+
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1

(a) Consistency check (passing pixels in white).

2

(b) Initial labeling.

3

(c) Final output labeling.

Figure 6.6: Occlusion handling and regularization. (a) Having computed a dense correspon-
dence field in both directions, determine which pixels pass the 6 DoF consistency check. (b)
Each passing pixel xp is assigned its own unique label and each failing pixel xf is assigned
that of the passing pixel whose point is closest in 3D to P

x

f

. (c) A final output labeling is
obtained via ↵-expansion over 25 labels chosen at random from among the labels in the ini-
tial labeling, regularized with respect to our 6 DoF local rigidity prior (optimized by means of
QPBO [LRRB10]).
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P

x

0
)/2, noting that the energy formulation in (6.6) implies that V{x,x0} = V{x0

,x}, and that the
local effect of the motions g

l

x

, g
l

x

0 on ¯

P{x,x0} can be expected to approximate their effect on
P

x

,P
x

0 when the two points are spatial neighbors in 3D belonging to the same object, which is
precisely the target scenario. We illustrate the geometry of our local rigidity prior in Figure 6.5.
We minimize our energy via the ↵-expansion algorithm [BVZ01], using QPBO [LRRB10] to
compute the expansions. Labels l are drawn at random (without replacement) from the set of
pixels for which the consistency check was satisfied in the initial labeling.

6.3 Evaluation
There exists at present no benchmark tailored to evaluating RGB-D scene flow. In Section 6.3.1,
we accordingly give a quantitative evaluation following the example of Huguet and Devernay
[HD07] by using the color images and ground truth disparity maps available with frames 2 and 6
of the Middlebury cones, teddy, and venus (cf. Scharstein and Szeliski [SS03]) stereo data sets,
respectively, to compare against the known ground truth motion. In Section 6.3.2, we present
qualitative results for the Middlebury data, and for challenging synthetic and real-world (Kinect)
data sets.

6.3.1 Quantitative Evaluation

The 3D scene motion for the static cones, teddy, and venus data sets is due entirely to the motion
of the camera and is purely translational in the X-direction of the camera coordinate frame, in
the magnitude of the baseline relating the stereo pair (cf. Section 2.5). While that motion in
3D is simple, the matching problem is nevertheless confounded by occlusions and geometry of
varying complexity. Let the vector

�
u
x

, v
x

�> 2 R2 denote the 2D flow vector corresponding to
the pixel x obtained by projecting the point g

x

(P

x

) to image space, so that
�
u
x

, v
x

�>
= ⇡

�
g
x

(P

x

)

�
� x. (6.10)

Similarly, the ground truth 2D flow vector
�
uGT

x

, vGT

x

�> 2 R2 corresponding to the pixel x is
obtained as in (6.10), but having replaced the rigid body motion g

x

recovered by our algorithm
with the ground truth motion gGT 2 SE(3) that all points in the left view undergo, expressed in
matrix form—following (2.10)—as

TGT

E

=

2

664

1 0 0 �B
0 1 0 0

0 0 1 0

0 0 0 1

3

775 , (6.11)

where B denotes the chosen baseline. Note that this gives the apparent 3D motion of all points
encoded in the left view, having interpreted the pose of the right camera as identical with that
of the left. We compare our results with respect to ground truth motion against Huguet and
Devernay [HD07] and Basha et al. [BMK13]—who use only RGB images as input—in end
point error (RMS-OF) and average angular error (AAE) over the 2D optical flow vectors ob-
tained by projecting the output 3D displacements to image space. Following the example of
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Hadfield and Bowden [HB13],1 we additionally compute disparity change error (RMS-Vz)
for the RGB-D scene flow techniques, namely for Hadfield and Bowden [HB13], Quiroga et
al. [QDC13], and our method. All three metrics—whose respective definitions we defer until
after this paragraph—are computed for the respective left view over the set ⌦ of valid pixels,
which is to say over only those pixels for which a non-zero disparity value is encoded in the
corresponding ground truth disparity map. For reference, we compute numbers for the RGB
optical flow techniques of Brox and Malik [BM11] and Xu et al. [XJM12]. Our results placed
our method as the top performer among scene flow algorithms considered in our quantitative
evaluation. Numbers and additional explanation are provided in Table 6.1.

End Point Error (RMS-OF). The RMS-OF (more commonly referred to as EPE outside
of the literature on scene flow) is simply the RMSE with respect to the Euclidean distance,
over the pixels x 2 ⌦, between the recovered 2D flow (u

x

, v
x

)

> and the ground truth 2D
flow (uGT

x

, vGT

x

)

>:

RMS-OF =

s
1

|⌦|
X

x2⌦

���
�
u
x

, v
x

�> �
�
uGT

x

, vGT

x

�>���
2

2

. (6.12)

Disparity Change Error (RMS-Vz). Let Z : R3 ! R denote the function that returns the
depth Z of a point (X, Y, Z)

>. The disparity change error is given by the RMSE with respect to
the absolute difference, over the pixels x 2 ⌦, between the disparity corresponding to g

x

(P

x

)

and that corresponding to gGT

(P

x

):

RMS-Vz =

vuut 1

|⌦|
X

x2⌦

�����
Bf

Z
�
g
x

(P

x

)

� � Bf

Z
�
gGT

(P

x

)

�
����� 00

=

vuut 1

|⌦|
X

x2⌦

�����
Bf

Z
�
g
x

(P

x

)

� � Bf

Z
x

�����. (6.13)

Average Angular Error (AAE). We compute the AAE in precisely the same manner as in
Huguet and Devernay [HD07], which is to say according to its form as provided in their publicly
available2 source code:

AAE =

1

|⌦| ·
180

⇡

X

x2⌦

����arctan

✓
u
x

· vGT

x

� uGT

x

· v
x

u
x

· uGT

x

+ vGT

x

· v
x

◆���� . (6.14)
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B HD HB Q Ours BM X
Cones

RMS-OF 0.58 1.10 1.24 0.57 0.54 2.83 1.66
RMS-Vz N/A N/A 0.06 0.05 0.02 1.75† 1.15†

AAE 0.39 0.69 1.01 0.42 0.52 0.39 0.21
Teddy

RMS-OF 0.57 1.25 0.83 0.69 0.35 3.20 1.7
RMS-Vz N/A N/A 0.03 0.04 0.01 0.47† 0.5†

AAE 1.01 0.51 0.83 0.71 0.15 0.39 0.28
Venus

RMS-OF 0.16 0.31 0.36 0.31 0.26 0.72 0.3
RMS-Vz N/A N/A 0.02 0.00 0.02 0.14† 0.22†

AAE 1.58 0.98 1.03 1.26 0.53 1.28 1.43

Table 6.1: Quantitative evaluation on RMS-OF (end point error), RMS-Vz (disparity change
error), and AAE (average angular error). The topmost two methods are RGB optical flow al-
gorithms; the next two are RGB scene flow algorithms that compute 3D translational flow and
depth jointly. The remaining three are RGB-D scene flow techniques. Results were computed
over all valid pixels, here meaning that GT disparity is nonzero and the pixel is marked as un-
occluded in the Middlebury GT occlusion map. † indicates that RMS-Vz was computed by
estimating 3D translational flow by interpolating depth encoded at the start and end points given
its 2D flow vector. Accordingly, for the two optical flow techniques, we also ignored pixels at
which the recovered 2D flow pointed to pixels with GT disparity of 0, since no end point depth
could be interpolated. For Hadfield and Bowden, we additionally deemed pixels for which no
flow was recovered as invalid. Cell colors indicate ranking among the five methods, from best
to worst: green, light green, yellow, orange, red. Gray cells are shown for comparison but are
not included in the ranking.

6.3.2 Qualitative Evaluation

We visualize the recovered correspondence fields by projecting the 3D displacements to 2D flow
vectors, and coloring those vectors in the conventional manner (cf. Figure 4.2). In Figure 6.7,
we show our intermediate and final results, contrasted with ground truth 2D flow colorings.
In Figure 6.8, we show analogous results for large displacement Kinect data sets of varying
complexity, and compare against the results of the RGB-D scene flow techniques of Hadfield
and Bowden [HB13], Herbst et al. [HRF13], and Quiroga et al. [QDC13]. In Figure 6.9 we
visualize our results—as in Figure 1.1—by flowing all 3D points in both frames for our final
results on the data set in Figure 6.9 to intermediate points in time, demonstrating the visual
credibility of our recovered motions. Finally, in Figure 6.10 we provide our results for four pairs

1Note that we borrowed their naming of end point error and disparity change error as RMS-OF and RMS-Vz,
respectively. More commonly, end point error is referred to as EPE. In Chapter 7, we refer to end point error as EPE,
which is the usual practice in the optical flow literature.

2Source code available at http://devernay.free.fr/vision/varsceneflow/.

http://devernay.free.fr/vision/varsceneflow/
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(b) Teddy.
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(c) Venus.

Figure 6.7: Results on Middlebury cones, teddy, and venus. 2D optical flow coloring by projec-
tion of 3D displacements to image space, for the left (blue) and right (red) views. Numbers in
Table 6.1 correspond to the left view.

of the penguins data set, showing outstanding flow results on complex non-planar geometry at
large displacements.

6.3.3 Algorithm Parameters

Radius r
pix

was set to 15 for all data sets. For our variant of PatchMatch, j was set to 3, k to
5. Number of iterations i was 2 for Kinect data, 1 otherwise. Search radius v was set to com-
fortably exceed the maximum displacement across the data sets. Recognizing that the relative
magnitudes of the point and gradient similarity terms Ept

x

, Egr

x

are a function of the distances
between neighboring points, the weight ↵ between Ept

x

and Egr

x

in (6.4) was set adaptively ac-
cording to 0.001 · (Z

med

/f)

2 (cf. Section 6.2.1), where Z
med

is again the median depth across
both views. We set � for adaptive support weighting to 10 like Bleyer et al. [BRR11]. For
regularization,  was fixed to 1, and ⇢ and � were set to 10000 and 5 for Kinect data (giving a
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(b) Dance.
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(c) Wave.

Figure 6.8: Results on Kinect couple, dance, and wave.
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(a) Hadfield and Bowden [HB13].

(b) Herbst et al. [HRF13]

(c) Quiroga et al. [QDC13]

(d) Our final output.

Figure 6.9: 3D flow visualization at a novel viewpoint of results on the Kinect wave data set.
All points encoded in the two input RGB-D frames are flowed to a common point in time, in the
same manner as in Figure 1.1.
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Figure 6.10: Large displacement synthetic penguins data set from Hornáček et al. [HRGR13]
(featured in Chapter 6) for which assumptions of brightness constancy and local surface planarity
(for discriminative patch size) fail pronouncedly. We run our algorithm on consecutive penguin
pairs and visualize our results at a novel viewpoint by flowing all points, respectively, to an
intermediate point in time. Original points shown with transparency for reference.
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large degree of trust to the output of our PatchMatch variant, with gentle regularization), to 1 and
10000 otherwise (promoting a heavily regularized solution). Minimum sphere inlier count n was
set to 10. Pixel masks for the silhouette check were dilated by 5 pixels for Kinect data (owing
to poor edge quality in Kinect depth maps), 1 otherwise. We considered a total of 25 labels for
↵-expansion, independently for both views.

6.4 Discussion
The essence of PatchMatch is to grow (cf. Figure 1.5) and refine sparse correspondence seeds,
where obtaining these seeds by indiscriminate randomization is shown in [BSFG09] to lead to
attractive flow results in a 2 DoF translational setting. Whether this strategy scales to 6 DoF rigid
body motions, however, is left an open question. As detailed in Section 6.2.2, the strategy we
pursue to initialize our correspondence fields is to obtain the translational 3 DoF of a 6 DoF 3D
rigid body motion by combining radius search with sparse feature matching, and the rotational
3 DoF by taking into account local surface normals. In Figures 6.11-6.20, we give 2D flow
colorings for two iterations for each of the data sets presented in this chapter, comparing results
given initialization (i) by radius search and sparse matching (i.e., in the manner of the published
algorithm, as outlined in Section 6.2.2), (ii) by radius search alone, (iii) by sparse matches alone
(at pixels where no sparse match is available, we initialize to a dummy state with infinite cost),
and (iv) by indiscriminate randomization (translational 3 DoF by randomly choosing from all
valid pixels in the destination view, with rotational 3 DoF chosen otherwise fully at random).
Initialization by indiscriminate randomization clearly gives the slowest convergence, with the
exception of the wave data set in Figure 6.11 and of the penguin data sets in Figures 6.17-6.20,
for which the search space is restricted to a much smaller set of valid pixels, respectively, than is
the case for Kinect and Middlebury. While radius queries may be conceptually attractive from a
physical point of view and typically lead to faster convergence than by indiscriminate random-
ization, initializing only where sparse matches are available appears to give comparable results
in most cases without the computational expense of densely computing radius queries using a
kd-tree. The merits of combining radius search with sparse matching are most clearly visible in
Figure 6.11, where combining the two gives faster convergence than for only radius search or
sparse matching, respectively. Note in all cases the importance of the occlusion handling and
regularization stage for obtaining the final results we present in Section 6.3, most notably for the
penguin data sets in Figures 6.17-6.20, where on the whole the majority of pixels are occluded.

6.5 Conclusion
We presented a technique for densely computing continuous 6 DoF scene flow between a pair of
consecutive RGB-D frames. Rather than rely on brightness constancy or local surface planarity
as in most previous work in the literature on scene flow, we proceed instead to reason instead in
terms of patches of 3D points identified as inliers of spheres, which we match with respect to
6 DoF 3D rigid body motions. We showed highly competitive results on the Middlebury cones,
teddy, and venus data sets together with state of the art results on challenging real-world (Kinect)
and synthetic scenes.
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Frame 1, Iteration 1 Frame 1, Iteration 2 Frame 2, Iteration 1 Frame 2, Iteration 2

(a) Initialization by radius search and sparse matches (published algorithm).

Frame 1, Iteration 1 Frame 1, Iteration 2 Frame 2, Iteration 1 Frame 2, Iteration 2

(b) Initialization by only radius search.

Frame 1, Iteration 1 Frame 1, Iteration 2 Frame 2, Iteration 1 Frame 2, Iteration 2

(c) Initialization by only sparse matches.

Frame 1, Iteration 1 Frame 1, Iteration 2 Frame 2, Iteration 1 Frame 2, Iteration 2

(d) Initialization by indiscriminate randomization.

Figure 6.11: Initialization schemes compared on wave.
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Frame 1, Iteration 1 Frame 1, Iteration 2 Frame 2, Iteration 1 Frame 2, Iteration 2

(a) Initialization by radius search and sparse matches (published algorithm).

Frame 1, Iteration 1 Frame 1, Iteration 2 Frame 2, Iteration 1 Frame 2, Iteration 2

(b) Initialization by only radius search.

Frame 1, Iteration 1 Frame 1, Iteration 2 Frame 2, Iteration 1 Frame 2, Iteration 2

(c) Initialization by only sparse matches.

Frame 1, Iteration 1 Frame 1, Iteration 2 Frame 2, Iteration 1 Frame 2, Iteration 2

(d) Initialization by indiscriminate randomization.

Figure 6.12: Initialization schemes compared on couple.
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Frame 1, Iteration 1 Frame 1, Iteration 2 Frame 2, Iteration 1 Frame 2, Iteration 2

(a) Initialization by radius search and sparse matches (published algorithm).

Frame 1, Iteration 1 Frame 1, Iteration 2 Frame 2, Iteration 1 Frame 2, Iteration 2

(b) Initialization by only radius search.

Frame 1, Iteration 1 Frame 1, Iteration 2 Frame 2, Iteration 1 Frame 2, Iteration 2

(c) Initialization by only sparse matches.

Frame 1, Iteration 1 Frame 1, Iteration 2 Frame 2, Iteration 1 Frame 2, Iteration 2

(d) Initialization by indiscriminate randomization.

Figure 6.13: Initialization schemes compared on dance.
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Frame 1, Iteration 1 Frame 1, Iteration 2 Frame 2, Iteration 1 Frame 2, Iteration 2

(a) Initialization by radius search and sparse matches (published algorithm).

Frame 1, Iteration 1 Frame 1, Iteration 2 Frame 2, Iteration 1 Frame 2, Iteration 2

(b) Initialization by only radius search.

Frame 1, Iteration 1 Frame 1, Iteration 2 Frame 2, Iteration 1 Frame 2, Iteration 2

(c) Initialization by only sparse matches.

Frame 1, Iteration 1 Frame 1, Iteration 2 Frame 2, Iteration 1 Frame 2, Iteration 2

(d) Initialization by indiscriminate randomization.

Figure 6.14: Initialization schemes compared on cones.
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Frame 1, Iteration 1 Frame 1, Iteration 2 Frame 2, Iteration 1 Frame 2, Iteration 2

(a) Initialization by radius search and sparse matches (published algorithm).

Frame 1, Iteration 1 Frame 1, Iteration 2 Frame 2, Iteration 1 Frame 2, Iteration 2

(b) Initialization by only radius search.

Frame 1, Iteration 1 Frame 1, Iteration 2 Frame 2, Iteration 1 Frame 2, Iteration 2

(c) Initialization by only sparse matches.

Frame 1, Iteration 1 Frame 1, Iteration 2 Frame 2, Iteration 1 Frame 2, Iteration 2

(d) Initialization by indiscriminate randomization.

Figure 6.15: Initialization schemes compared on teddy.
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Frame 1, Iteration 1 Frame 1, Iteration 2 Frame 2, Iteration 1 Frame 2, Iteration 2

(a) Initialization by radius search and sparse matches (published algorithm).

Frame 1, Iteration 1 Frame 1, Iteration 2 Frame 2, Iteration 1 Frame 2, Iteration 2

(b) Initialization by only radius search.

Frame 1, Iteration 1 Frame 1, Iteration 2 Frame 2, Iteration 1 Frame 2, Iteration 2

(c) Initialization by only sparse matches.

Frame 1, Iteration 1 Frame 1, Iteration 2 Frame 2, Iteration 1 Frame 2, Iteration 2

(d) Initialization by indiscriminate randomization.

Figure 6.16: Initialization schemes compared on venus.
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Frame 1, Iteration 1 Frame 1, Iteration 2 Frame 2, Iteration 1 Frame 2, Iteration 2

(a) Initialization by radius search and sparse matches (published algorithm).

Frame 1, Iteration 1 Frame 1, Iteration 2 Frame 2, Iteration 1 Frame 2, Iteration 2

(b) Initialization by only radius search.

Frame 1, Iteration 1 Frame 1, Iteration 2 Frame 2, Iteration 1 Frame 2, Iteration 2

(c) Initialization by only sparse matches.

Frame 1, Iteration 1 Frame 1, Iteration 2 Frame 2, Iteration 1 Frame 2, Iteration 2

(d) Initialization by indiscriminate randomization.

Figure 6.17: Initialization schemes compared on penguins 1-2.
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Frame 1, Iteration 1 Frame 1, Iteration 2 Frame 2, Iteration 1 Frame 2, Iteration 2

(a) Initialization by radius search and sparse matches (published algorithm).

Frame 1, Iteration 1 Frame 1, Iteration 2 Frame 2, Iteration 1 Frame 2, Iteration 2

(b) Initialization by only radius search.

Frame 1, Iteration 1 Frame 1, Iteration 2 Frame 2, Iteration 1 Frame 2, Iteration 2

(c) Initialization by only sparse matches.

Frame 1, Iteration 1 Frame 1, Iteration 2 Frame 2, Iteration 1 Frame 2, Iteration 2

(d) Initialization by indiscriminate randomization.

Figure 6.18: Initialization schemes compared on penguins 2-3.
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Frame 1, Iteration 1 Frame 1, Iteration 2 Frame 2, Iteration 1 Frame 2, Iteration 2

(a) Initialization by radius search and sparse matches (published algorithm).

Frame 1, Iteration 1 Frame 1, Iteration 2 Frame 2, Iteration 1 Frame 2, Iteration 2

(b) Initialization by only radius search.

Frame 1, Iteration 1 Frame 1, Iteration 2 Frame 2, Iteration 1 Frame 2, Iteration 2

(c) Initialization by only sparse matches.

Frame 1, Iteration 1 Frame 1, Iteration 2 Frame 2, Iteration 1 Frame 2, Iteration 2

(d) Initialization by indiscriminate randomization.

Figure 6.19: Initialization schemes compared on penguins 3-4.
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Frame 1, Iteration 1 Frame 1, Iteration 2 Frame 2, Iteration 1 Frame 2, Iteration 2

(a) Initialization by radius search and sparse matches (published algorithm).

Frame 1, Iteration 1 Frame 1, Iteration 2 Frame 2, Iteration 1 Frame 2, Iteration 2

(b) Initialization by only radius search.

Frame 1, Iteration 1 Frame 1, Iteration 2 Frame 2, Iteration 1 Frame 2, Iteration 2

(c) Initialization by only sparse matches.

Frame 1, Iteration 1 Frame 1, Iteration 2 Frame 2, Iteration 1 Frame 2, Iteration 2

(d) Initialization by indiscriminate randomization.

Figure 6.20: Initialization schemes compared on penguins 4-5.





CHAPTER 7
Highly Overparameterized

Optical Flow

2D motion in the image plane is ultimately a function of 3D motion in the scene. In this
chapter, we propose to compute optical flow using what is ostensibly an extreme overparam-
eterization: depth, surface normal, and frame-to-frame 3D rigid body motion at every pixel,
giving a total of 9 DoF. The advantages of such an overparameterization are twofold: first, geo-
metrically meaningful reasoning can be called upon in the optimization, reflecting possible 3D
motion in the underlying scene; second, the ‘fronto-parallel’ assumption implicit in traditional
pixel window-based matching is ameliorated because the parameterization determines a plane-
induced homography at every pixel. Our main contribution is to show that optimization over this
high-dimensional, continuous state space can be carried out using an adaptation of the recently
introduced PatchMatch Belief Propagation (PMBP) energy minimization algorithm [BRFK12].
We begin in Section 7.1 by introducing our methodology and placing our algorithm in the con-
text of earlier work. Next, we detail our algorithm in Section 7.2. In Section 7.3, we show
that our flow fields compare favorably to the state of the art on a number of small- and large-
displacement datasets. In Section 7.4 we attempt to emphasize the key elements of the algorithm
with regard to performance, ending with concluding remarks in Section 7.5.

7.1 Introduction

One statement of the goal of optical flow computation is the recovery of a dense correspon-
dence field between the pixels of a pair of images (cf. Section 4.2). Sun et al. [SRB10] argue
that classical models such as Horn and Schunck [HS81] can achieve good performance when
coupled to modern optimizers. They point out the key elements that contribute to quality of the
solution, including image pre-processing, a coarse-to-fine (multiscale) scheme, bicubic interpo-
lation, robust penalty functions, and median filtering, which they integrate into a new energy
formulation. Xu et al. [XJM12] observe that while a large number of optical flow techniques

125
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use a multiscale approach, pyramidal schemes can lead to problems in accurately detecting the
large motion of fine structures. They propose to combine sparse feature detection with a clas-
sic pyramidal scheme to overcome this difficulty. Additionally, they selectively combine color
and gradient in the similarity measure on a per pixel basis in the aim of improving robustness.
Similarly, Brox and Malik [BM11] integrate SIFT feature matching [Low04] into a variational
framework in order to guide the recovered flow towards large displacements.
Another way to define a correspondence is in terms of the similarity of pixel windows centered
on each image pixel. Immediately, the size of the window becomes an important algorithm
parameter: a small window offers little robustness to intensity variations such as those caused by
lighting change, differences in camera response, or image noise; a large window can overcome
these difficulties but most published work suffers from what we loosely term the ‘fronto-parallel’
(FP) assumption, according to which each pixel in the window is assumed to undergo the same
2D translation. The robustness of small-window models can be improved by means of priors
over motion at neighboring pixels, but first-order priors themselves typically imply the fronto-
parallel limitation, second-order priors are expensive to optimize for general energies [WTRF09]
although efficient schemes exist for some cases [TPCB08]. Beyond the second order, higher-
order priors impose quite severe limitations on the state spaces they can model. In the case of
optical flow, the state space is essentially continuous, and certainly any discretization must be
very dense.
An alternative strategy to relax the FP assumption is to overparameterize the 2 DoF motion
field (cf. Section 2.2). Previous work in optical flow has considered 3 DoF similarity trans-
formations [BSGF10], 6 DoF affine transformations [NBK08], or 6 DoF linearized 3D motion
models [NBK08]. In the case of stereo correspondence, the 1 DoF disparity field has been over-
parameterized in terms of a 3 DoF surface normal and depth field [BRFK12, BRR11, LZ06].
With such models, even first order priors can be expressive (e.g., piecewise constant surface
normal is equivalent to piecewise constant depth derivatives rather than piecewise constant
depth). However, effective optimization of such models has required linearization of brightness
constancy [NBK08] or has suffered from local optimality [LZ06]. Recently, however, algo-
rithms based on PatchMatch [BSFG09, BSGF10] have been applied to 3 DoF (depth+normal)
stereo matching [BRFK12, BRR11, HKJK13] and 6 DoF (3D rigid body motion) RGB-D scene
flow [HFR14] (described in Chapter 6), and it is to this class of algorithms that ours belongs.
In this work, our main contribution is to employ an overparameterization not previously applied
to the computation of optical flow, assigning a 9 DoF plane-induced homography to each pixel.
In addition to relaxing the FP assumption, such a model allows for geometrically meaningful
reasoning to be integrated in the optimization, reflecting possible 3D motion in the underlying
scene. Vogel et al. [VSR13] recover scene flow over consecutive calibrated stereo pairs by
jointly computing a segmentation of a keyframe and assigning to each segment a 9 DoF plane-
induced homography, optimized using QPBO [LRRB10] over a set of proposal homographies.
For optical flow from a pair of images without strictly enforcing epipolar geometry, we show that
PatchMatch Belief Propagation (PMBP) of Besse et al. [BRFK12] can be adapted to optimize
the high-dimensional, non-convex optimization problem of assigning a 9 DoF plane-induced
homography to each pixel and that the resulting flow fields compare favorably to the state of the
art on a number of datasets. The model parameterizes, at each pixel, a 3D plane undergoing rigid
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body motion, and can be specialized for piecewise rigid motion, or indeed for a single global
rigid motion [VBW08, WPB+08].

7.2 Algorithm

Let (I
1

, I
2

) be an ordered pair of images depicting a static or moving scene at different points
in time and/or from different points of view, and let (G
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, G
2

) be the analogous gradient images,
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remainder of this section, we proceed first to introduce the parameterization and the data term,
and follow by detailing the smoothness term.

7.2.1 Model and Data Term

Ignoring for the moment the details of the parameterization, let I
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implements a form of adaptive support weighting (cf. Yoon and Kweon [YK05]), and ↵ 2 [0, 1]

controls the relative influence of the color and gradient components of the data term. The data
term is scaled by 1/|W

s

| in the aim of rendering the strength of the smoothness term in (7.1)
invariant to the patch size.
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Casting the standard FP model in these terms, one could define ✓FP
= (�
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We take the parameterization a step further, parameterizing not only a 3D plane at each pixel,
but also a 3D rigid body motion transforming the points in that plane. Let n
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denote the unit
surface normal of a plane in 3D and Z
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the depth of the point of intersection of that plane with
the back-projection p
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, where K is the 3 ⇥ 3 camera calibration
matrix (cf. Section 2.4). The point of intersection is then given by Z
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, we obtain the familiar
homography induced by the plane (cf. Section 2.6), with plane ⇡
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> 2 P3. For
static scenes undergoing only camera motion, (R
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) determines the pose of the camera of the
destination view, expressed in the camera coordinate frame of the source view (cf. Figure 2.7).
More generally, such a homography lends itself to interpretation as (R
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, t
s

) applied to the point
obtained by intersecting ⇡

s

with a pixel back-projection in the source view, and projecting the
resulting point into the destination view (cf. Figure 7.1), with the pose of both cameras kept
identical. On this interpretation, we may reason about scenes undergoing pure camera motion,
pure object motion, or joint camera and object motion in the same conceptual framework, as
illustrated in Figure 2.10.

Validity Check. Recognizing that a plane whose normal does not point toward the camera is
meaningless, and one that is close to orthogonal to the look direction is of no practical use in
obtaining matches, we additionally wish to flatly reject such invalid states without taking the
time to compute the data term in (7.2). Accordingly, a homography H(✓

s

) is deemed invalid
if the source and destination normals n

s

, R
s

n

s

do not both face toward the camera, if it en-
codes negative source or destination depth, or if H(✓

s

) ⇤ x
s

lies outside the destination image.
Homographies deemed invalid are assigned an infinite matching cost.

7.2.2 Smoothness Term

The role of the smoothness term E
s,t

is to encourage the action of the homographies parametrized
by states ✓

s

, ✓
t

assigned to neighboring pixels to be similar. One approach to defining a such a
smoothness term could be to define distances between the geometric quantities encoded in the
state vectors, specifically depth, normal, and rigid body motion. Reasoning directly in terms of
the similarity of the parameters of the model would introduce a number of algorithm tuning pa-
rameters, as the natural scales of variation of each parameter type are not commensurate. While
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Figure 7.1: Depiction of the geometric interpretation of a homography H(✓
s

), ✓
s

=

(Z
s

,n
s

, R
s

, t
s

), assigned to a pixel x
s

as a 3D plane with unit normal n
s

intersecting the back-
projection of the pixel x

s

at depth Z
s

and undergoing the rigid body motion (R
s

, t
s

). Ap-
plying H(✓

s

) to an arbitrary pixel x
t

has the effect of intersecting the back-projection of x

t

with this plane to obtain a point P
t

2 R3, transforming P

t

by the motion (R
s

, t
s

) to obtain
P

0
t

= R
s

P

t

+ t

s

, and finally projecting P

0
t

back to image space.

these could be determined using a training set, a large training set may be required. We instead
focus our attention directly on the smoothness of the resulting 2D flow—since it is a smooth 2D
flow field that we aim to obtain as output of our algorithm—and introduce a considerably more
intuitive smoothness term:
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, (7.5)

where � � 0 is a smoothness weight and  > 0 is a truncation constant intended to add robust-
ness to large state discontinuities, particularly with object boundaries in mind. This smoothness
term has only two parameters (� and ) and is in units of pixels.

7.2.3 Energy Minimization

While it may be easy to formulate a realistic energy function, such a function is of little prac-
tical use if it cannot be minimized in reasonable time. Minimization of the energy in (7.1) is
a non-convex optimization problem over a high-dimensional, continuous state space. The re-
cently introduced PatchMatch Belief Propagation (PMBP) algorithm of Besse et al. [BRFK12]
provides an avenue to optimizing over such a state space by leveraging PatchMatch [BSFG09,
BSGF10] for exploiting the underlying spatial coherence of the state space by sampling from
pixel neighbors (spatial propagation), and belief propagation [YFW00] for the explicit promo-
tion of smoothness.
We adapt PMBP in the aim of assigning to each pixel x

s

an optimal state ✓
s

, mapping the
projectively warped patch centered on x

s

in the source view to its analogue in the destination
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Figure 7.2: Inlier (green) and non-inlier (blue) ASIFT matches, with respect to the dominant
3D rigid body motion (RE, tE) recovered using the 5 point algorithm with RANSAC. Note that
ordinary SIFT matching fails to capture the matches on the cubes (not shown).

view. Since our parameterization has a geometric interpretation in terms of rigidly moving
planes in 3D, we are able to tailor PMBP to make moves that are sensible in 3D. We begin by
(i) initializing the state space in a semi-random manner, making use of knowledge about the
scene that we are able to recover from the input image pair (initialization). Next, for i iterations,
we traverse each pixel x

s

in scanline order, first (ii) attempting to propagate the states assigned
to neighbors of x

s

(spatial propagation) and then (iii) trying to refine the state vector (random
search), in each case adopting a candidate state if doing so yields lower disbelief than the current
assignment. We do this in both directions (view 1 to view 2, view 2 to view 1) in parallel and
in opposite traversal orders, and as a last step when visiting x

s

we additionally (iv) attempt to
propagate the state at x

s

from the source view to H(✓
s

) ⇤ x
s

in the destination, rounded to the
nearest integer pixel (view propagation); accordingly, by the time a pixel is reached in one view,
the most recent match available from the other has already been considered.

Semi-Random Initialization. In order to promote convergence to correct local minima, we
constrain our choice of initializing state vectors using knowledge we are able to recover from
the input image pair. We estimate the dominant rigid body motion of the scene by feeding
pairs of keypoint matches obtained using ASIFT1 [MY09] to the 5 point algorithm [Nis04] with
RANSAC [FB81], giving an essential matrix E = [tE]⇥RE that we subsequently decompose into
a rigid body motion (RE, tE) (cf. Section 2.5 and Figure 7.2). One might consider iteratively
recovering additional dominant rigid body motions by culling inlier matches and re-running the
5 point algorithm with RANSAC on the matches that remain, or consider alternative rigid motion
segmentation techniques [DOIB12]. We triangulate the ASIFT matches that are inliers of the
recovered dominant motion, giving seed points for which only the plane normal n

s

remains a

1The publicly available ASIFT code carries out a form of epipolar filtering using the Moisan-Stival Optimized
Random Sampling Algorithm (ORSA) [MS04b]. We remove this feature in order to obtain all matches recovered by
the ASIFT matcher.
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triangulation and n
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as the only free parameter. (b) Initialization from general ASIFT match
pairs (x
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), constrained in that x
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; an alternative expression of this constraint
is the requirement that Z

s

R
s

p

s

+ t

s

project exactly to the pixel x
s

0 .

free parameter (cf. Figure 7.3a). Since we wish to allow deviation from recovered dominant
motions yet would like to leverage all of the available ASIFT matches, we additionally use
the full set of ASIFT match pairs (x

s

,x
s

0
) for seeding by estimating, for each pair, a tailored

rigid body motion constrained by the requirement that x
s

0
= H(✓

s

) ⇤ x
s

(cf. Figure 7.3b), with
depth Z

s

in addition to normal n
s

as free parameters. At pixels where more than one such seed is
available, we choose one at random. For unseeded pixels, we set (R

s

, t
s

) to one of the recovered
dominant motions, with depth Z

s

and normal n
s

again free.

Spatial Propagation. In the usual manner of PatchMatch [BSFG09, BSGF10, BRFK12], we
traverse the pixels of the source image in scanline order and consider, at the current pixel x

s

, the
subset of states {✓

t

| t 2 N
s

} assigned to the 4-connected neighbors of x
s

that have already been
visited in the iteration, and adopt such a state ✓

t

if doing so gives lower disbelief than the current
assignment. Note that owing to our parameterization, adopting the state ✓

t

= (Z
t

,n
t

, R
t

, t
t

) at
pixel x

s

calls for recomputing the depth by intersecting the plane ⇡
t

with the back-projection of
x

s

; the remaining components of the state vector ✓
t

are simply copied.

Random Search. We perturb, at random, either depth Z
s

and normal n
s

or the rigid body
motion (R

s

, t
s

) of the state vector ✓
s

currently assigned to the pixel x

s

. When (R
s

, t
s

) is
locked, we are effectively carrying out stereo matching. When Z

s

,n
s

are locked, we perturb
the translational component of the motion with the effect of sampling within a 3D radius around
Z
s

R
s

p

s

+ t

s

; perturbation of the rotational component serves in effect to change the normal of
the transformed plane (cf. Figure 7.4 and Section 2.3). We carry out several such perturbations
of the four components of the assigned state vector, reducing the search range with every try.
We adopt a proposed perturbation if doing so gives lesser disbelief than the current assignment.
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View Propagation. Most similarly to [HFR14] (as described in Section 6.2.2), which in turn
builds upon [BRFK12,BRR11], as a last step when visiting a pixel x

s

and given its assigned state
vector ✓

s

= (Z
s

,n
s

, R
s

, t
s

), we propose the inverted state ✓0
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) in the destination
view. We compute ✓0
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t; the depth Z 0
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is obtained by
intersecting the transformed plane with the back-projection of Z
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p
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s

projected to the
nearest integer pixel, which is where in the destination view we then evaluate ✓0

s

. Geometrically,
this amounts to considering the inverse rigid body motion applied to the transformed plane.
Since we carry out our algorithm on both views in parallel and in opposite traversal orders,
the most recent corresponding match available from the destination view has thus already been
considered by the time x

s

is reached.

7.2.4 Post-processing

In areas of the scene that are occluded in one of the two views, subject to the aperture problem,
or poorly textured, our algorithm is likely to assign states that do not correspond to the correct
flow (cf. Figure 7.5). If flow is computed in both directions, we can identify inconsistent state
assignments by running a consistency check over ‘forward’ and ‘backward’ flow, labelling as
inconsistent each pixel x

s

that fails the following condition:
��
x

s

�H(✓b
s

) ⇤
�
H(✓f

s

) ⇤ x
s

���  1, (7.6)

where ✓f
s

determines the forward flow assigned in the source view to pixel x
s

, and ✓b
s

the back-
ward flow assigned in the destination view to the pixel ✓f

s

⇤ x
s

rounded to the nearest integer
coordinates. This generates a pixel mask that identifies pixels that subsequently undergo post-
processing. For each x

s

that failed the check, we first consider the pixels in a window around
x

s

that passed, adopting the homography of the pixel that is closest in appearance. Next, for



7.3. EVALUATION 133

(a) Raw. (b) Inconsistent pixels.

(c) Post-processed. (d) Ground truth.

Figure 7.5: Post-processing, on the example of Crates1Htxtr2 from the UCL data set. Only the
pixels that fail the consistency check (indicated in gray) undergo post-processing.

pixels x
s

that still fail the check, we seek the nearest pixels above and below x

s

that passed, and
adopt the homography of the pixel closest in appearance. Finally, we proceed similarly for left
and right.

7.3 Evaluation

We tested our method on the UCL optical flow data set [MHPB13] and on a subset of the Middle-
bury optical flow benchmark [BSL+11] for which ground truth flow was available. Accordingly,
we considered data sets exhibiting flow at small and large displacements (we set the threshold
between the two at 25 pixels) and undergoing rigid, piecewise rigid, and non-rigid motions. A
comparison over end point error (EPE)—computed according to (6.12)—is provided in Table 7.1
with respect to four competing methods. We ran our algorithm on all data sets in the table with
a patch size of 21 ⇥ 21 for three iterations on a single particle. As in [BRFK12, BRR11], we
set the weight ↵ that balances the influence of gradient over color in (7.2) to 0.9, and � in the
adaptive support weighting to 10. The truncation constant  of the smoothness term in (7.5) was
set to 1 in all our experiments. Only a single dominant rigid body motion was recovered per
data set, in the manner described in Section 7.2.3. Minimum depth was fixed to 0; maximum
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depth per view was set to the maximum depth of triangulated matches that were inliers of the
dominant motion. In the random search stage, maximum allowable deviation from the current
rigid body motion was set to 0.01 for both the rotational (expressed in terms of quaternions) and
translational components of the motion. Analogously to [BRFK12, BRR11], we set maximum
flow per dataset. Camera calibration matrix K was fixed such that the focal length was 700 pixels
and the principal point was in the image center.
Our method performs particularly well on the large displacement cases of the UCL dataset,
and produces reasonable results for smaller displacements. Quantitative results show that our
technique outperforms all four other methods in ca. 1/3 of the data sets (ca. 1/2 of the cases
for large motion), while the end point error is lower than that of TV and LD in most of the
cases. The color scheme used in Table 7.1 indicates that our approach is the one that is most
frequently ranked in the first two positions (ca. 2/3 of the cases), when compared to the other four
techniques. A visual comparison for four data sets by means of conventional 2D flow coloring
(cf. Figure 4.2) with ground truth occlusion areas blacked out is given in Figure 7.6. The effect
of the smoothness term can be seen in Figure 7.7, where we compare the resulting 2D flow for
our algorithm with � = 0 (no smoothness) and � = 0.005 on the Middlebury dimetrodon data
set. Additionally, we give the EPE results for � = 0 and � = 0.01 for all data sets in Table 7.1.

(Piecewise) Unrectified Stereo. For scenes undergoing only a single dominant rigid body
motion, one could run our algorithm with no deviation allowed from the recovered dominant
rigid body motion (RE, tE). We show precisely such a reconstruction for the Brickbox2t2 data
set in Figure 7.8, providing a coloring of the recovered normal vectors, the depth map, and a
colored point cloud rendered at a novel view. Locking the motion reduces our algorithm to an
unrectified stereo matcher with slanted support windows, most closely akin to [BRFK12].
In order to give an impression of the limits of the approach, we recover the dominant rigid
body motion on the street1Txtr1 data set in the manner described in Section 7.2.3 and obtain
motions on the three independently moving cubes by manually supplying correspondences to the
5 point algorithm using RANSAC (cf. Figure 7.9). We show the result for allowing deviations
from those four motions, and for allowing no deviation. We additionally show the resulting
point cloud where no deviation is allowed. Note that the three cubes are not reconstructed with
commensurate size; this is a consequence of each piecewise reconstruction being individually
up to a scale ambiguity.

Radial Flow. Certain types of camera motions can be difficult to handle for flow methods that
use a 2D parameterization. For instance, camera zoom induces a radial flow pattern around
the viewing direction, which conflicts with a smoothness assumption that promotes neighboring
flow vectors to be similar. However, our approach is flexible enough to recover the homographies
induced by this motion, as illustrated in Figure 7.10.

Limitations. We kept the patch size identical across all our experiments, regardless of image
size or scale. As in patch-based stereo techniques, our approach is sensitive to the aperture prob-
lem, and more generally to poorly textured surfaces. It is this problem of inadequate match dis-
criminability that accounts for the comparatively poor performance of our algorithm for Robot,
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Brickbox2t2 - 1 Brickbox2t2 - 2 drop9Txtr2 - 1 drop9Txtr2 - 2

MDP (EPE 0.56) CN (EPE 2.19) MDP (EPE 1.115) CN (EPE 2.71)

Ground truth Ours (EPE 0.22) Ground truth Ours (EPE 0.65)

street1Txtr1 - 1 street1Txtr1 - 2 roll9Txtr2 - 1 roll9Txtr2 - 2

MDP (EPE 3.19) CN (EPE 4.09) MDP (EPE 0.020) CN (EPE 0.014)

Ground truth Ours (EPE 0.92) Ground truth Ours (EPE 0.01)

Figure 7.6: 2D flow colorings for a subset of the UCL optical flow data set. EPE = End Point
Error. CN = Secrets of Optical Flow [SRB10]. MDP = Motion Detail Preserving Optical Flow
[XJM12]. Results correspond to Table 7.1.
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TV LD CN MDP Ours�=0.005 Ours�=0 Ours�=0.01

UCL Large Displ.
Crates1 3.46 3.10 3.15 1.65 2.37 2.62 2.9
Crates2 4.62 2.51 10.4 1.35 1.71 1.84 1.73
Mayan1 2.33 5.56 1.71 0.48 0.16 0.17 0.18

Robot 2.34 1.21 1.53 0.7 1.85 2.14 1.96
Crates1Htxtr2 1.11 0.54 1.64 0.28 0.29 0.39 0.3
Crates2Htxtr1 3.13 0.81 8.8 0.37 0.47 0.45 0.64

Brickbox1t1 1.09 2.6 0.22 0.2 0.15 0.16 0.15
Brickbox2t2 7.48 3.51 2.19 0.56 0.22 0.2 0.22

GrassSky0 2.1 1.04 1.3 0.47 0.27 0.3 0.27
GrassSky9 0.72 0.51 0.27 0.29 0.25 0.34 0.26

blow19Txtr2† 0.53 0.32 0.19 0.26 0.22 0.23 0.27
drop9Txtr2† 5.2 4.37 2.71 1.15 0.65 0.75 0.86

street1Txtr1† 3.65 2.66 4.09 3.19 0.92 1.72 1.45
UCL Small Displ.

Mayan2 0.44 0.35 0.21 0.23 0.17 0.19 0.18
YosemiteSun† 0.31 0.18 0.23 3.79 0.33 0.35 0.38

GroveSun 0.58 0.48 0.23 0.43 0.24 0.24 0.23
Sponza1 1.01 0.91 1.1 1.08 2.75 2.84 2.8
Sponza2 0.53 0.48 1.6 1.77 2.61 2.58 2.61

TxtRMovement 3.17 0.36 0.13 0.19 1.71 1.7 1.72
TxtLMovement 1.52 0.6 0.12 0.23 1.73 1.76 1.76

blow1Txtr1† 0.09 0.08 0.03 0.05 0.04 0.04 0.04
drop1Txtr1† 0.12 0.08 0.05 0.06 0.04 0.04 0.04
roll1Txtr1† 0.004 0.002 0.002 0.002 0.002 0.002 0.002
roll9Txtr2† 0.04 0.02 0.01 0.02 0.01 0.01 0.01
Middlebury

Dimetrodon† 0.211 0.117 0.115 0.153 0.169 0.174 0.17
Grove2 0.220 0.149 0.091 0.15 0.184 0.187 0.3
Grove3 0.745 0.657 0.438 0.53 0.517 0.455 0.97

Hydrangea† 0.196 0.178 0.154 0.164 0.222 0.207 0.234
RubberWhale† 0.135 0.120 0.077 0.09 0.114 0.12 0.125

Urban2 0.506 0.334 0.207 0.32 0.3 0.312 0.29
Urban3 1.132 0.600 0.377 0.42 0.905 1.27 1.03

Venus 0.408 0.433 0.229 0.28 0.342 0.342 0.434

Table 7.1: End point error (EPE) scores. TV = A Duality Based Approach for Realtime TV-
L1 Optical Flow [ZPB07], LD = Large Displacement Optical Flow [BM11], CN = Secrets of
Optical Flow [SRB10], MDP = Motion Detail Preserving Optical Flow [XJM12]. Cell colors
indicate ranking among the five methods, from best to worst: green, light green, yellow, orange,
red. Gray cells are shown for comparison but are not included in the ranking. † indicates that
the scene is non-static.
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(a) � = 0 (EPE: 0.175). (b) � = 0.005 (EPE: 0.169).

(c) Ground truth.

Figure 7.7: The effect of the smoothness term on dimetrodon for � = 0 (no smoothness) and
� = 0.005. Inlay shown with contrast stretch; results best viewed zoomed in. 2D flow coloring
and EPE without post-processing.

Sponza1, Sponza2, TxtRMovement, and TxtLMovement. An obvious way to alleviate this prob-
lem where applicable is to set the patch size appropriately. A direction for future work could be
to develop a smoothness term that promotes not only smoothness of the 2D flow, but explicitly
exploits the geometric interpretation of the parameterization to promote similarity of the 9 DoF
states themselves.

7.4 Discussion

Similarly to the case of 6 DoF 3D rigid body motions (cf. Section 6.4), the value of restricting
attention to 9 DoF plane-induced homographies that can be judged geometrically plausible—
again in contrast to proceeding in a more strictly randomized fashion as in the manner of classi-
cal PatchMatch [BSFG09], whether for initialization or refinement—has the advantage of pro-
moting convergence. In Figures 7.11-7.25, we compare results—having set � = 0.005—for two
iterations on Brickbox2t2 (rigid), street1Txtr1 (piecewise rigid), and Dimetrodon (non-rigid), (i)
in the manner of the published algorithm (as outlined in Section 7.2), (ii) by initializing labels
without sparse matches, such that (R

s

, t
s

) be obtained by sampling randomly around (RE, tE),
(iii) by independently perturbing each of the four components of ✓

s

= (Z
s

,n
s

, R
s

, t
s

), (iv)
without enforcing the validity check, which requires that source and destination 3D planes both
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(a) Ground truth normals. (b) Recovered normals.

(c) Recovered depth. (d) Colored point cloud at novel viewpoint.

Figure 7.8: Restriction to the recovered dominant rigid body motion (RE, tE) for the Brickbox2t2
data set. Estimation of the plane normals and depth on a static scene, and rendering as a colored
point cloud.

point towards the camera, and (v) without view propagation. Note that in (ii) and (iii), sampling
around a rigid body motion is carried out not as in Figure 7.4, but by randomly perturbing the
respective rotation and translation independently; notably, (ii), (iii), (iv), and (v) each addition-
ally aim illustrate the impact of a number of my more major personal technical contributions
to the joint paper upon which this chapter is based [HBK+14], relative to the state prior to my
involvement (cf. the note on authorship in Section 1.3).
While for each of the five cases considered on the example of Brickbox2t2 in Figures 7.11-
7.15—with the exception of (iii) in Figure 7.13—the quality of recovered 2D flow appears almost
indistinguishable to the human eye, the same cannot be said of the recovered depth and normals.
On the example of street1Txtr1 in Figures 7.16-7.20, convergence is fastest for (i) in Figure 7.16;
the algorithm fails to capture the motion of the three cubes within two iterations if propagation
is carried out as in (iii) or in the absence of view propagation, as illustrated in Figures 7.18
and 7.20, respectively. In Figures 7.21-7.25, the example of the Dimetrodon data set likewise
underscores the effectiveness in recovering 2D flow of our form of refinement over its more
indiscriminately randomized form in (iii), as shown in Figure 7.23; in what concerns depth and
normals, however, results appear unsatisfactory for each of the five cases. These comparatively
poor depth and normals can perhaps be explained by the fact that object moving in the image
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(a) Manual seeds. (b) Unrestricted (EPE 0.73).

(c) Restricted (EPE: 0.468). (d) Restricted.

Figure 7.9: Result obtained on street1Txtr1 by seeding with the dominant motion obtained by
the 5 point algorithm with RANSAC on all ASIFT matches and on the three additional sets of
manually provided matches (indicated in red, yellow, and green), giving four motions in total.
Results shown for deviation allowed from those four motions, and for no deviation allowed.
Otherwise, we used the same parameter settings to compute our results as in Table 7.1.

plane can be explained in 3D as a small object situated close to the camera undergoing slow
motion or as a large object far from the camera undergoing fast motion, a problem perhaps
less pronounced in the case of (piecewise) rigid object motion because spatial propagation is
carried out prior to refinement. Note that the apparent unimportance of initialization using sparse
matches in the manner of our published algorithm relative to (ii)—where labels are initialized
without sparse matches—is itself explained largely by the fact that our published algorithm’s
refinement strategy itself makes heavy use of sparse matches, thereby replacing many of the
initial labels in (ii) with labels based in turn on sparse matches themselves.

7.5 Conclusion

We have presented a new optical flow technique that uses a geometrically motivated motion
model and exploits that model to carry out the optimization in a manner that aims to focus
attention on geometrically plausible motions. While the model lives in a continuous, high-
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(a) Image 1. (b) Image 2. (c) CN (EPE: 38.25).

(d) MDP (EPE: 1.02). (e) Ours (EPE: 0.42). (f) Ground truth.

Figure 7.10: Result on a challenging case with large displacement camera zoom, causing a radial
flow pattern. Note that this sequence is not part of the published UCL optical flow data set. We
used the same parameter settings to compute our results as in Table 7.1.

dimensional space that would prove challenging to optimize using conventional methods, we
show PMBP to be well suited for the task. We obtain 2D flow that compares favorably to
other state-of-the-art techniques and manage to handle both small and large displacements. Our
smoothness term helps promote smoothness of the obtained 2D flow fields. A side effect of our
approach is that—provided rigid body motions are reasonable—depth can be directly extracted
from the parameterization, which can in turn be used to construct a point cloud.
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Frame 1, Iteration 1 Frame 1, Iteration 2

(a) 2D flow colorings.

Frame 1, Iteration 1 Frame 1, Iteration 2

(b) Normals.

Frame 1, Iteration 1 Frame 1, Iteration 2

(c) Depth.

Figure 7.11: Brickbox2t2, published algorithm.



142 CHAPTER 7. HIGHLY OVERPARAMETERIZED OPTICAL FLOW

Frame 1, Iteration 1 Frame 1, Iteration 2

(a) 2D flow colorings.

Frame 1, Iteration 1 Frame 1, Iteration 2

(b) Normals.

Frame 1, Iteration 1 Frame 1, Iteration 2

(c) Depth.

Figure 7.12: Brickbox2t2, erstwhile initialization.
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Frame 1, Iteration 1 Frame 1, Iteration 2

(a) 2D flow colorings.

Frame 1, Iteration 1 Frame 1, Iteration 2

(b) Normals.

Frame 1, Iteration 1 Frame 1, Iteration 2

(c) Depth.

Figure 7.13: Brickbox2t2, erstwhile refinement.
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Frame 1, Iteration 1 Frame 1, Iteration 2

(a) 2D flow colorings.

Frame 1, Iteration 1 Frame 1, Iteration 2

(b) Normals.

Frame 1, Iteration 1 Frame 1, Iteration 2

(c) Depth.

Figure 7.14: Brickbox2t2, no validity check.
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Frame 1, Iteration 1 Frame 1, Iteration 2

(a) 2D flow colorings.

Frame 1, Iteration 1 Frame 1, Iteration 2

(b) Normals.

Frame 1, Iteration 1 Frame 1, Iteration 2

(c) Depth.

Figure 7.15: Brickbox2t2, no view propagation.



146 CHAPTER 7. HIGHLY OVERPARAMETERIZED OPTICAL FLOW

Frame 1, Iteration 1 Frame 1, Iteration 2

(a) 2D flow colorings.

Frame 1, Iteration 1 Frame 1, Iteration 2

(b) Normals.

Frame 1, Iteration 1 Frame 1, Iteration 2

(c) Depth.

Figure 7.16: street1Txtr1, published algorithm.
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Frame 1, Iteration 1 Frame 1, Iteration 2

(a) 2D flow colorings.

Frame 1, Iteration 1 Frame 1, Iteration 2

(b) Normals.

Frame 1, Iteration 1 Frame 1, Iteration 2

(c) Depth.

Figure 7.17: street1Txtr1, erstwhile initialization.



148 CHAPTER 7. HIGHLY OVERPARAMETERIZED OPTICAL FLOW

Frame 1, Iteration 1 Frame 1, Iteration 2

(a) 2D flow colorings.

Frame 1, Iteration 1 Frame 1, Iteration 2

(b) Normals.

Frame 1, Iteration 1 Frame 1, Iteration 2

(c) Depth.

Figure 7.18: street1Txtr1, erstwhile refinement.
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Frame 1, Iteration 1 Frame 1, Iteration 2

(a) 2D flow colorings.

Frame 1, Iteration 1 Frame 1, Iteration 2

(b) Normals.

Frame 1, Iteration 1 Frame 1, Iteration 2

(c) Depth.

Figure 7.19: street1Txtr1, no validity check.
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Frame 1, Iteration 1 Frame 1, Iteration 2

(a) 2D flow colorings.

Frame 1, Iteration 1 Frame 1, Iteration 2

(b) Normals.

Frame 1, Iteration 1 Frame 1, Iteration 2

(c) Depth.

Figure 7.20: street1Txtr1, no view propagation.
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Frame 1, Iteration 1 Frame 1, Iteration 2

(a) 2D flow colorings.

Frame 1, Iteration 1 Frame 1, Iteration 2

(b) Normals.

Frame 1, Iteration 1 Frame 1, Iteration 2

(c) Depth.

Figure 7.21: Dimetrodon, published algorithm.
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Frame 1, Iteration 1 Frame 1, Iteration 2

(a) 2D flow colorings.

Frame 1, Iteration 1 Frame 1, Iteration 2

(b) Normals.

Frame 1, Iteration 1 Frame 1, Iteration 2

(c) Depth.

Figure 7.22: Dimetrodon, erstwhile initialization.
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Frame 1, Iteration 1 Frame 1, Iteration 2

(a) 2D flow colorings.

Frame 1, Iteration 1 Frame 1, Iteration 2

(b) Normals.

Frame 1, Iteration 1 Frame 1, Iteration 2

(c) Depth.

Figure 7.23: Dimetrodon, erstwhile refinement.
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Frame 1, Iteration 1 Frame 1, Iteration 2

(a) 2D flow colorings.

Frame 1, Iteration 1 Frame 1, Iteration 2

(b) Normals.

Frame 1, Iteration 1 Frame 1, Iteration 2

(c) Depth.

Figure 7.24: Dimetrodon, no validity check.
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Frame 1, Iteration 1 Frame 1, Iteration 2

(a) 2D flow colorings.

Frame 1, Iteration 1 Frame 1, Iteration 2

(b) Normals.

Frame 1, Iteration 1 Frame 1, Iteration 2

(c) Depth.

Figure 7.25: Dimetrodon, no view propagation.





CHAPTER 8
Conclusions and Future Work

We showed tailored variants of PatchMatch to serve as effective optimizers for dense large dis-
placement correspondence field estimation in continuous, high dimensional label spaces, where
2D motion in the image plane was cast terms of the rigid motion of points in 3D. Notably, where
depth maps are available, we proposed patches of the points encoded in such depth maps as a
way to circumvent the traditional assumption of local surface planarity. The essence of the ef-
fectiveness of PatchMatch is to grow and refine sparse correspondence seeds, whether obtained
at random in the manner of classical PatchMatch [BSFG09] or calling on some form of prior
knowledge; we showed obtaining sparse correspondence seeds derived from sparse matching in
image space to be an effective strategy for promoting convergence with respect to the number
of iterations of PatchMatch (cf. Sections 6.4 and 7.4). Proceeding in this manner can be thought
of as part of a broader strategy of focusing attention to (geometrically) plausible labels. A list
of secondary contributions per domain addressed in this thesis—depth SR, RGB-D scene flow,
and optical flow—is provided below; in the section that follows, we additionally outline some
potential directions for future work.

Depth SR. Our depth SR method differs from all previous depth SR methods in that ours
makes no use of ancillary data, such as a color image at the target resolution, multiple aligned
depth maps, or a database of high-resolution depth patches. We instead reason only in terms
of matches across depth between patches of the points encoded in the single input depth map,
consisting of the inliers of spheres and undergoing respective 6 DoF 3D rigid body motions. We
show our results to be highly competitive with those of alternative techniques that do leverage
ancillary data.

RGB-D Scene Flow. Building upon the spherical patches introduced in our work on depth
SR, we succeed in showoing attractive scene flow results on challenging synthetic and real-
world scenes that push the practical limits of the assumptions of brightness constancy and local
surface planarity. An important novelty over the spherical patches of our depth SR work is to
reason not in terms of a single fixed sphere radius r, but in terms of adaptive radii r

x

at each
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pixel x; proceeding in this manner allows for ameliorating the problem of sphere inlier counts
varying as a function of sphere depth, thereby in turn allowing for a more uniform matching
quality than is possible for fixed r. As a consequence of our approach, our output is a dense field
of 6 DoF 3D rigid body motions, in contrast to the 3D translation vectors that are the norm in
the literature on scene flow.

Optical Flow. We show that a variant of PatchMatch presents itself as an effective optimizer
for what is ostensibly an extreme overparameterization of 2 DoF optical flow in terms of 9 DoF
plane-induced homographies, such that each pixel x be assigned a 3 DoF 3D plane and a 6 DoF
3D rigid body motion that the plane undergoes to describe motion in the image plane of the
respective patch centered on x. Proceeding in this manner has the advantage of reasoning about
matching in a pair of RGB frames in terms of possible underlying 3D motions, recognizing that
2D motion in the image plane is ultimately a function of 3D motion in the scene.

8.1 Future Work

We broadly outline below a number of potential directions for future work in geometrically mo-
tivated, dense, continuous, and large displacement matching by means of growing and refining
sparse correspondence seeds. These encompass improved handling of untextured areas, use of
explicit motion segmentation, further investigation of the relaxation of the epipolar constraint
for the reconstruction of non-rigid scenes, the leveraging of 3D features, and consideration for a
9 DoF smoothness term.

Untextured Areas. To carry out PatchMatch refinement (perturbation) in areas of low or in-
discriminative texture (e.g., over an untextured wall or a cloudless blue sky) is certain to lead to
getting one trapped in local minima situated far from the genuine correspondence. Instead, con-
sider allowing only propagation in such areas (i.e., disallow refinement), in the aim of instead
permitting refinement only in areas where it is possible to decide—by virtue of discriminative
texture—whether or not the perturbation of a label yields a better match. Additionally, consider
initializing untextured pixels with a dummy motion of infinite cost, and disallow perturbation of
this dummy motion.

Motion Segmentation. For computing our 9 DoF optical flow (cf. Chapter 7), consider re-
covering additional 3D rigid body motions (and triangulating additional corresponding sparse
seed points) using a motion segmentation algorithm. For computing our 6 DoF scene flow (cf.
Chapter 6), consider feeding the output of our PatchMatch variant to a motion segmentation al-
gorithm, and subsequently promoting or enforcing the resulting motions of the segmentation in
a post-processing step.

Relaxed Stereo. The best point cloud shown in Chapter 7 is in Figure 7.8, where the 3D rigid
body motion is fixed to the recovered dominant rigid body motion (RE, tE) of the static scene,
whereby our algorithm in effect carries out a form of unrectified stereo matching. The reason
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this is effective is because it reduces the search space from 9 DoF to only 3 DoF, rendering
the matching problem considerably simpler, and in effect further restricting attention only to
plausible labels. To recover better points and normals over non-rigid scenes, rather than choose
randomly between (i) fixing the current 3D rigid body motion and perturbing only the depth and
normal, and (ii) fixing the current depth and normal and perturbing only the rigid motion, let
(i) dominate. Note, however, that this strategy may fail to capture motions that deviate substan-
tially from the single recovered dominant 3D rigid body motion; accordingly, it is something to
consider in conjunction with a motion segmentation (above).

3D Features. For depth SR and SphereFlow in Chapters 5 and 6, respectively, consider (addi-
tionally) using 3D features to obtain sparse correspondence seeds for initialization, in order to
exploit what information is available in depth.

9 DoF Smoothness Term. In the aim of tailoring the approach presented in Chapter 7 to
obtaining attractive point clouds rather than only focusing attention on 2D flow, it could be
valuable to consider smoothness terms that take into account all 9 DoF of the parameterization.
Note that as it was the case that attention in Chapter 7 was directed at 2D flow, we chose in that
work to opt instead for a simpler 2 DoF smoothness term.





APPENDIX A
Arriving at Z/f

We state in Section 6.2.1 that, by similar triangles, the distance between two points P,P0 2 R3

both situated at the same depth Z and projecting to neighboring pixels x,x0 is given by Z/f ,
where f is the camera’s focal length in units of pixels (cf. Figure 6.1). An alternative derivation
in the x- and y-directions of the image plane is obtained by computing the distance between the
point P at depth Z projecting to the pixel (i, j)>, and the points at the same depth Z projecting to
the pixel neighbors (i+1, j)>, (i, j+1)

>, respectively. The point P is given by Z ·K�1

(i, j, 1)
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where K is the 3 ⇥ 3 camera calibration matrix (cf. Section 2.4):
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Horizontal Neighbors. We first consider the Euclidean distance �
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between two points both
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Vertical Neighbors. Finally, we consider the analogous Euclidean distance �0
Z

for the vertical
pixel neighbors (i, j)>, (i, j + 1)
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