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ABSTRACT 

This thesis deals with questions of data quality control based on the principles 

of mass conservation. The focus is entirely on operational data from 

wastewater treatment plants. The goal was to provide a practically applicable 

method for the determination of well-balanced time periods associated with 

high data quality in historic data. CUSUM charts were found to be an 

appropriate way to evaluate the error vector of mass balances on a day-to-day 

basis. This method was called “Continuous mass balancing” and can also be 

applied for quasi-online monitoring of current operational data. Contrary to 

static mass balancing as commonly applied in the field of wastewater 

treatment, continuous mass balancing allows to incorporate the temporal 

redundancy contained in the data and can therefore detect even minor 

systematic errors. Flow dynamics (hydraulic retention), leading to delayed 

output of influent mass flows, have to be considered to achieve good balancing 

results. Accumulation would normally also need to be considered in short term 

balances. However, on the time scale relevant for continuous mass balancing 

its calculation was found to cause too much noise in the balancing error. 

In addition to continuous mass balancing an algorithm was developed that 

allows the calculation of all possible balancing equations upon definition of the 

plant layout and measured and unmeasured variables in all streams. Flow is 

treated as an individual variable and therefore balancing equations are 

bilinear. The developed algorithm is based on structural redundancy analysis 

as known in data reconciliation. 

There is hope that this thesis may help to close the existing gap between data 

quality evaluation in wastewater treatment and the powerful methods of data 

reconciliation developed in the field of process engineering. 



 

 

 

 

CONTENTS 

 

Introduction .................................................................................................................... 4 

Problem statement ........................................................................................................ 4 

Quality evaluation for off-line data – an overview .......................................................... 7 

Goals .......................................................................................................................... 10 

Methods ...................................................................................................................... 12 

Article summary .......................................................................................................... 15 

Scientific contribution .................................................................................................. 19 

Conclusions ................................................................................................................ 21 

References not cited in articles ................................................................................... 25 

 

Articles .......................................................................................................................... 26 

Article 1 – Advanced Mass Balancing for Wastewater Treatment Data Quality Control 
Using CUSUM Charts ................................................................................................. 27 

Article 2 – Structural redundancy of data from wastewater treatment systems. 
Determination of individual balance equations ............................................................ 38 

Article 3 – Quality control of wastewater treatment operational data by continuous mass 
balancing: Dealing with missing measurements and delayed outputs ......................... 54 

 

 

 

 



 

Problem statement 

 

4 

INTRODUCTION 

Problem statement 

Wastewater treatment is a key factor in modern water quality management. 

High legal standards in many countries require state-of-the-art technical 

solutions for municipal and industrial wastewater treatment. In sensitive areas 

of the EU, according to the Water Framework Directive 2000/60/EG, the "best 

available technique" has to be applied and in many regions of the world the 

necessary reuse of wastewater requires treatment to comparable technical 

standards. 

This high standard of wastewater treatment fundamentally relies on well 

trained personnel. Experience shows that motivated personnel with a thorough 

understanding of the physical, chemical and biological processes are a key 

factor for reliable, sustainable and successful plant operation. To understand 

the behavior of the treatment plant in relation to the current requirements at 

any time, personnel depend heavily on measurement data. This is partly a 

consequence of the high level of automation but also of the fact that the 

characteristics of wastewater and sludge composition are not otherwise 

accessible for human perception. Reliable and correct measurement data 

therefore is an essential component of good wastewater treatment plant 

operation. 

Besides plant operation there are, of course, more and equally important 

requirements for good measurement data quality. The design and especially 

the upgrading of wastewater treatment plants depend on sound measurement 

data. This applies to tank volumes, strongly correlating with construction costs, 
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but also to equipment such as pumps and blowers. For the latter, adequate 

design is even more important as operating costs and even lifetime depend on 

optimal operation. So far, however, no scientific consensus has been reached 

upon the question which magnitude of (systematic) error is acceptable for 

wastewater treatment operational data. 

Mathematical simulation of biological treatment processes has become a 

common tool for optimization of design and operation. The results of simulation 

studies follow the simple principle "garbage in - garbage out". As a 

consequence, the necessity of reliable input data is obvious. Until now, major 

simulation projects have usually relied on additional measurement campaigns 

to generate the input data. This is a very costly approach and probably has led 

to a considerable amount of simulation projects never being started. Additional 

measurement campaigns in most cases are only representative for a short 

time span and do not cover the year-round operational conditions of 

wastewater treatment plants. It follows that a method able to continuously 

ensure high reliability and correctness of all available operational data would 

strongly enhance the value of simulation tools for all purposes. 

Last but not least, the documentation of the compliance with legal 

requirements has to be based on high quality data. Monitoring by the 

authorities can only be performed on a limited number of sampling occasions. 

This cannot be enough information for the continuous control of plant 

operation. If effluent quality is directly linked to fees for pollution loads (as is 

the case in Germany) this leads to the necessity of continuous control of the 

reported measurement data. 
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 All these requirements on the quality of operational data from wastewater 

treatment plants are not met at the current situation. The characteristics of 

(municipal) wastewater, particularly the variability of flow and composition, 

make it difficult to obtain reliable and representative measurement data. In the 

reality of plant operation, the laboratory analysis itself can be one relevant 

source of error in measurement data. But even with the best level of quality 

assurance at the laboratory, sampling and sample treatment of wastewater 

and sludge still remain major sources of systematic and random errors. This is 

due to the unequal distribution and varying amount of solids. In addition 

automatic flow measurements, too, do not result in reliable and correct data all 

the time. From process benchmarking investigations in Austria (e.g. Lindtner 

2008) it is well known that on municipal wastewater treatment plants an 

average of 5% - 10% of operating costs are spent for monitoring. 

It can be concluded that the development of a method for continuous quality 

control of the monitoring data will contribute to better and more efficient design 

and operation of waste water treatment plants. 
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Quality evaluation for off-line data – an overview 

The basis for good data quality is, once more, laid by reliable, well trained 

personnel. If workers on wastewater treatments plant know why a 

measurement is taken and how it can be biased, and if they are possibly even 

involved in the decision making that is based on their sampling and analysis, 

this is the perfect environment to achieve reliable data. According to the goals 

defined below, the following is mainly concerned with offline data, usually 

measured in laboratories. 

Additional parallel measurements to verify data are not common on 

wastewater treatment plants due to two reasons. First, these measurements 

would in many cases be prone to the same type of errors as the original 

(operational) measurements. And secondly, with the considerable costs 

invested into monitoring already, additional measurements are difficult to 

convey. Therefore data quality should be assessed mainly within the existing 

data itself. 

The trivial approach is simply by plausibility testing. Are the data values 

within a typical range? Is the temporal variability of data reasonable? Are there 

unexplained gaps in the data? 

The more profound approach is to incorporate redundancy within the data. 

Redundancy can exist when similar measurements are taken in the same 

place, e.g. total nitrogen and ammonium in the influent or biological and 

chemical oxygen demand in any stream. Typical ratios between such 

measurements are known and can be verified. Another type of redundancy is 

derived from the principals of mass conservation. The total amount of an 

inert compound (e.g. an element) entering a system will either leave the 
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system again or become accumulated in that system. If all mass flows of such 

a compound into and out of a system and the difference in the stored amount 

of that compound are measured over a certain time span, the sum of all mass 

flows into the system plus the possibly released load equals the sum of all 

mass flows out of the system plus the possibly accumulated load. This concept 

is known as mass balancing. If the laws of conservation are not obeyed by the 

measured mass flows, this indicates systematic measurement errors (or an 

erroneous system description, a case that should be ruled out at an early 

stage). 

 

Figure 1: Simple balancing layout. Several fluxes may enter or leave a  
  system, accumulation (ΔS) is possible. 

 

Mass balancing is the basis for and therefore closely related to data 

reconciliation, which aims at improving overall data quality by finding the best 

approximate for each measurement so that all constraints (e.g. mass 

balances) are obeyed. This field has been widely investigated in process 

engineering and powerful methods have been developed. The question arises, 

as to which extend use could be made of these techniques regarding data 

from wastewater treatment. Three aspects relate to this question. First, data 

reconciliation requires relatively high quality data to begin with, e.g. 
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measurement variability is vital to be known. This is usually not a given fact in 

wastewater treatment facilities. Secondly, the dynamics of wastewater flow 

and composition as well as the bilinear nature of the data require more 

sophisticated approaches to reconcile data (nonlinear and dynamic methods). 

This relates to the third aspect. Operators of wastewater treatment plants are 

usually not experts in process engineering, but still need a profound 

understanding of the biological and physical processes taking place at their 

plants. Methods for data quality control therefore gain practical relevance with 

simplicity. The goal is not to provide operators with streamlined error-free data 

but to support fault localization and thus the process of understanding. 

Simple mass balancing is an established and well known method in 

wastewater treatment, not so much data reconciliation. However, the 

implications and special requirements of mass balancing in wastewater 

treatment have hardly been investigated. Relevant contributions were made by 

Nowak (2000; see Spindler 2014) and Thomann (2002; see Spindler 2014). 

Both focus on static mass balances over long time spans that allow the 

assumption of steady state processes. Thomann (2002) also suggests 

including accumulation in order to allow balancing on a day-to-day basis, 

which he calls "dynamic balancing". 
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Goals 

Even though the focus of this thesis changed slightly with time, it always 

remained concentrated on the interpretation of (real) operational data in regard 

to their quality. The original motivation came from the question, which 

deviation between input and output streams of a (static) mass balance would 

be admissible. Among experienced colleges, an error of 10% was widely 

accepted, up to 20% appeared reasonable. It soon became clear, that these 

assumed limits did not hold in light of the experience made during the course 

of this work. To achieve the maximum performance however, the temporal 

redundancy in data must not be neglected in mass balancing. This led to the 

main concern of this work changing towards a more continuously applicable 

method of data quality control. 

This became indeed the main goal: to develop and proof the applicability of a 

method that allows both, the determination of error-free time periods in historic 

data and to continuously monitor the quality of data from wastewater 

treatment. "Continuous" in this context is restricted to the meaning of "on a 

day-to-day basis" because (offline) concentrations are usually measured in 

24h composite samples giving one value per day. The naming "continuous 

mass balancing" was chosen mainly to convey the idea that operators at each 

given day, that means "always", could check on the quality of the data they are 

basing their decisions on. 

Some aspects of so-called "continuous mass balancing" were investigated 

along with the development of the method itself. One fundamental aspect is to 

determine the complete set of theoretically possible and practically applicable 

balancing equations. While the latter part of this goal remains to be achieved, 
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this type of structural (and hopefully later also practical) redundancy analysis 

also aids the determination of possibly sensible additional measurements. 

Another aspect is to investigate the possibilities of handling mass balances on 

a day-to-day basis, when the assumption of a steady state process cannot be 

maintained. While accumulation is the classical aspect that comes to mind in 

short term balancing, the effect of hydraulic retention also has to be 

considered on this time scale. 
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Methods 

The work on this thesis started as a quest for a statistical basis for mass 

balancing wastewater treatment operational data. It wasn't clear in the 

beginning, what kind of methods would be used or which approaches would be 

followed. In fact, data reconciliation as such was totally unknown to the author. 

There had hardly been any applications of it in the scientific literature on 

wastewater treatment. And obviously no process engineer had taken on the 

challenge to establish a link between the two worlds. It wasn't until the author 

stumbled upon a paper by Van der Heijden (1994; see Spindler 2014) that he 

got in touch with this world. This paper wasn't actually very representative for 

process engineering and its state of research at the article's time, because it 

only translated the process oriented approach to elemental mass balances 

around a lab fermenter. It did, however, point to the determination of 

balanceability and calculability of measured and unmeasured data by matrix 

algebra. From there on it was clear that it would be worthwhile to further 

pursue the original question. 

During the author's following stay with the modelEAU group of the Canadian 

Research Chair on Water Quality Modeling it still wasn't clear for a long time, 

on which basis the (systematic) error of a mass balance should be evaluated. 

Only towards the end of this visit the application of CUSUM charts (Page 1954; 

see Spindler and Vanrolleghem 2012) led the way to answer this question. It 

had become clear, that the temporal redundancy of data in time series would 

have to be taken into account. With some knowledge about the classical 

methods of data reconciliation, however, there did not seem to be any way 

around the necessity of knowing all the measurements' variances. And 

because of the strong intention to use only readily available operational data, 
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the possibility of multiple measurements for the determination of variances was 

ruled out. CUSUM charts are a method of statistical process control. 

Calculated as a special cumulative sum of consecutive measurement values, 

they signal when the process mean significantly deviates from its expected 

value. To apply CUSUM charts, balances had to be calculated on a daily basis 

which led to the introduction of the error vector (of day-to-day balances) and 

suddenly one was dealing with an expectedly stationary process, whose 

variability could be calculated easily. 

Because CUSUM charts also consider past values, even minor deviations from 

the expected mean (in relation to the process's variance) can be detected 

reasonably fast and reliably. In the application to mass balances, the expected 

process mean (of the error vector) is always zero. 

Because certain data (sludge concentrations of balanced components) are 

usually not measured in practice, some statistical assessments were required. 

The intention was to determine usually unmeasured variables from frequently 

measured data such as suspended solids. Data sets from three different large 

Austrian wastewater treatment plants where available for investigation, which 

was very important to remain in conformity with the intention of working with 

real data only. In these data sets all required sludge components had been 

measured at least weekly, in some cases as additional analyses in the author's 

institute's laboratory. Monte Carlo simulation was then applied to determine 

the minimum frequency of such measurements to ensure good approximations 

for the typically unmeasured data. 

When the algorithm for an automated determination of balance equations was 

developed, the existing methods of data reconciliation were finally abandoned. 
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Individual balance equations are simply not necessary in data reconciliation. 

They do have the advantage of being more intuitively applicable for the 

practitioner who might not be a process engineer. Based on a matrix 

representation of all possible subsystem combinations of a given plant layout 

(the extended incidence matrix, Spindler 2014), individual equations were 

derived from the classification into redundant and non-redundant measured 

variables and calculable and non-calculable unmeasured variables. The 

necessary symbolic calculations to derive the individual balancing equations 

were executed by a computer algebra system, substituting calculable 

unmeasured variables with measured variables. Especially when 

concentrations of multiple compounds are measured, the resulting equations 

can be complex and therefore difficult to find otherwise.  
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Article summary 

This thesis is composed of three articles, all written by the (first) author and 

supervised by the second author. The investigation of CUSUM charts for mass 

balancing of wastewater treatment operational data led to two articles, Spindler 

and Vanrolleghem (2012) and Spindler and Krampe (2015). A third article 

(Spindler, 2014) was written with the focus on structural redundancy of 

measurement data, providing a method for an automated setup of bilinear 

balancing equations. This article also intends to strengthen the connection 

between mass balancing as known and applied in wastewater treatment and 

the field of data reconciliation, broadly investigated in the process engineering 

domain. 

The principal applicability of CUSUM charts for daily operational data from 

wastewater treatment was shown in Spindler and Vanrolleghem (2012). 

CUSUM charts were introduced and explained using a synthetic example. 

Practical application to two sets of flow data, one comprised of several 

influents and one effluent of a treatment plant, the other a flow balance over an 

anaerobic digester, revealed that measurement data that appears sufficiently 

well balanced on average over a long time period might very well consist of 

several poorly balanced shorter time periods with the single errors adding up 

to (almost) zero. The CUSUM chart, basically an integration of positive and 

negative errors, conveniently displays well balanced and poorly balanced time 

periods. The focus on flow data only allowed ruling out additional issues like 

accumulation or hydraulic retention. It also underlined the importance of well-

balanced flow data, because these measurements are the basis for the 

calculation of mass flows from measured concentrations. Daily cumulative 

values for flow are usually available on virtually every wastewater treatment 
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plant and mostly measured online. During this first investigation of CUSUM 

charts for mass balancing based on daily values it also turned out that the 

variability of the error vector (resulting from the single day-to-day balances) is 

an important indicator of data quality itself. A low variability of the error vector 

(with an expected mean of zero) indicates similar results for the single 

balances. This facilitates the detection even of small systematic errors by the 

method which inspires more confidence in overall data quality than wildly 

scattered random errors with a mean value of zero. 

While the application of CUSUM charts for mass balancing was labeled 

"dynamic balancing" in the first article, this naming was subsequently changed 

to "continuous balancing". The term "dynamic" is strongly associated with 

biological modelling where "dynamics" are expressed by kinetic rates of 

microbial growth and chemical reactions. "Continuous" is also not quite exact 

as described above. However, the term "discrete step mass balancing" is 

likewise hardly suited to communicate an easily applicable method to the 

practitioner. 

The second article on the application of CUSUM charts (Spindler and Krampe, 

2015) was based on a research project financed by the Austrian Federal 

Ministry of Agriculture, Forestry, Environment and Water Management. 

Several aspects of great practical relevance are investigated. Generally, this 

article is concerned with (bilinear) mass balances rather than (linear) flow 

balances and gives a number of real data examples. Typically balanced 

sewage sludge components such as COD, TP and TN are usually measured 

rarely, sometimes not at all. Statistically analyzing data sets for primary sludge, 

waste activated sludge and digested sludge from three different treatment 

plants, it was shown that in most cases these sludge components can be 
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determined reliably from practically more convenient and therefore more 

regular measurements of (total or volatile) suspended solids. The precondition 

for this determination is the monthly measurement of the relevant sludge 

components which will usually have to be carried out by an external laboratory. 

A linear dependency between total or volatile suspended solids and the 

respective sludge component had to be superimposed by a seasonal 

component in most combinations of sludge types and components to give the 

best results. 

The second aspect of continuous mass balancing covered in Spindler and 

Krampe (2015) deals with the influences from accumulation and hydraulic 

retention. Accumulation (release) in reactors with a fixed volume occurs, when 

a component's concentration rises (drops). Stemming from the first aspect 

introduced above, this often has to do with increased suspended solids 

concentrations in tanks. Surprisingly, the consideration of accumulation led to 

a deterioration of the error vector variability. This in turn made it more difficult 

to distinguish well balanced from poorly balanced time periods. It is assumed 

that this effect was caused by the daily accumulation being calculated from 

differentials, and their integration (by the CUSUM method) is known to amplify 

noise. And the measurement of suspended solids itself is quite likely to 

introduce that noise into the equation, as representative sludge samples are 

often difficult to obtain. 

When hydraulic retention was regarded instead of accumulation, continuous 

balancing gave considerably better results. Owing to the nature of wastewater 

and sludge treatment (to a large extend based on phase separation) there are 

usually at least two output streams from a subsystem. Often one of those 

carries components that have a retention time well above one day. Therefore it 
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is clear that component loads entering such a subsystem on one day will not 

necessarily leave it entirely on the same day but rather distributed over a long 

period depending on the retention time of that component in that subsystem. 

With the assumption of an ideal CSTR for the respective subsystem under 

evaluation, this behavior can be integrated into mass balancing and the 

expected output load (calculated from the measured input load and the starting 

concentration in the tank) is balanced against the measured output load. 

The third article (Spindler, 2014), chronologically the second, covers an aspect 

of mass balancing independent from the measured data itself. Derived from 

the methods of structural redundancy analysis and based on a complete 

system description together with the information about the availability of 

measurements in each stream and reactor, a method is introduced that allows 

to automatically set up all theoretically possible mass balance equations for a 

system. Due to the bilinear nature of mass flows this can result in non-trivial 

solutions, especially when multiple components are allowed. In these cases, 

missing flow measurements can be substituted by available concentration 

measurements. The method also allows for a simple investigation about the 

effect of additional measurements on the overall balanceability (redundancy) of 

the system. 
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Scientific contribution 

As of today, a clear distinction has to be made between data reconciliation in 

the world of process engineering and data quality evaluation in wastewater 

treatment. In process engineering the profit driven development has produced 

a vast amount of powerful techniques for the reconciliation of measurement 

values that supports ever more precise control of production. However, while 

the knowledge of each measurement's variability is a crucial element in most 

of these techniques and variability of (mass) flows is in most cases reduced to 

the minimum in most process engineering applications, the contrary is the 

case in wastewater treatment. The main disturbance to the whole system is 

the more or less uncontrollable influent (flow and composition!). Adding to this 

is the fact that wastewater treatment is a negligible economic factor, driven by 

legal requirements and the demand for environmental protection. The effect of 

these preconditions are simply less frequent and less reliable measurement 

values. This thesis has been an attempt to maximize the information contained 

in typically available operational data from wastewater treatment by aiding 

operators and other stakeholders to verify the data quality. It therefore belongs 

to the gross error detection part of data reconciliation. 

There has so far not been a profound investigation on the application of 

CUSUM charts for mass balancing in the field of wastewater treatment. Zaher 

and Vanrolleghem (2003; see Spindler and Vanrolleghem, 2012) named this 

possibility among others without going into details. CUSUM charts have now 

been proven suitable for continuous mass balancing even though a number of 

open questions remain to be answered. Although not addressed directly in this 

thesis, the possibility of the application of CUSUM charts to characteristic 

values calculated from plant data is obvious. Characteristic values (sometimes 
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also known as expert knowledge) such as the specific amount of volatile 

suspended solids in digested sludge (around 18 g VSS/pe/d) or the typical 

specific energy demand for aeration can be used as a target value (instead of 

the mean balancing error) of a CUSUM chart. Their usefulness is comparable 

to that of classical balances but they often require less input data. 

The determination of component loads in sludges from total or volatile 

suspended solids, though regularly applied under the assumption of direct 

proportionality, has never been based on a thorough statistical examination. 

As it turned out, direct proportionality is sometimes given but cannot be 

expected in every case. The range of typical ratios (when direct proportionality 

is suitable) varies considerably which implies a low probability of free 

assumptions to be correct. Operators can clearly improve the general 

balanceability of their wastewater treatment plants by having samples of their 

sludges analyzed monthly in an external laboratory. 

Regarding the automatic determination of bilinear balancing equations, to the 

author's knowledge no such algorithm has been published before in 

wastewater treatment literature or related fields. This probably results from 

process engineering's data reconciliation aiming at entire datasets at once, not 

at individual (subsystem) balances. Non-trivial balancing equations have until 

now hardly been used in wastewater treatment practice. 
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Conclusions 

Continuous mass balancing has the potential to define a new standard in 

quality control of wastewater treatment operational data. It gives plant 

operators a possibility to evaluate the general integrity of their measurements 

on a daily basis. The real data analyzed so far allows the conclusion that 

continuous mass balancing can easily determine even minor systematic errors 

in data (well below 5% of the input load when hydraulic retention is 

considered). This means, the commonly assumed 10% permissible error (or 

more) should be abandoned. In scientific studies based on plant data the proof 

of good data quality should become a matter of course before any conclusions 

are drawn. 

A considerable number of aspects remain to be dealt with. Until now, 

accumulation and hydraulic retention in continuous mass balances have been 

dealt with separately. Although the calculation of accumulation has been 

shown to increase random error, it might be feasible to include along with 

hydraulic retention if data are filtered in an appropriate way. Typically Kalman 

filtering would be used in this case. It remains to be shown if accumulation 

does play a significant role when data are analyzed on a daily basis. Negligible 

on long term balances, accumulation is likely to have its maximum significance 

in balancing periods of around one sludge retention time of the balanced 

subsystem. 

More practical experience is needed, although continuous mass balancing 

gave good results with the real data it has already been applied to. It would be 

especially beneficial if detected faults in data could be confirmed by expert 

knowledge. The recently much intensified application of the Benchmark 
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Simulation Model (Gernaey et al., 2014) in many areas of wastewater 

treatment study would probably be an appropriate way to better assess the 

reliability of systematic errors detected by continuous mass balancing. It could 

also be applied to answer a number of additional questions. 

Still missing is a general assessment of the practical possibility of quality 

control for the single variables measured in a wastewater treatment system. It 

appears quite likely, that a number of measurements remain practically not 

redundant. For example total phosphorus or COD in the effluent have such 

minor effect on their respective balances, that quality control of these data 

might remain inaccessible by the means of mass balancing. This question is 

similar to the determination of identifiability of individual parameters in 

modelling and could probably also be investigated using the Benchmark 

Simulation Model. The developed algorithm for automatic determination of 

balance equations could also be extended by an appropriate sensitivity 

analysis. Further improvement of this algorithm is probably possible by the 

application of graph theory (Deo, 1994) to determine the initial set of 

theoretically possible balance equations. 

If, as expected, some typical measurement values in fact do remain non-

verifiable by mass balancing, other means of verification should be applied 

regularly. In the case of effluent concentrations this is usually realized already 

through external control by the authorities. Further, the question of missing 

data has not yet been properly addressed. In smaller wastewater treatment 

plants operational data are typically not measured on a daily basis and 

therefore much information is missing. It might, however, still be feasible to 

ignore missing data and to find a compromise about the minimum time span 

that gives one data point for continuous mass balancing. A monthly average of 
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available data values might actually proof a suitable input for the CUSUM chart 

and provide a still more detailed analysis than a static balance when the 

considered time span is long enough, maybe 2 years or more. 

Finally, the influence of autocorrelation on CUSUM charts in their proposed 

application remains to be investigated. CUSUM charts are known to be 

sensitive to autocorrelation. Wastewater treatment data is clearly 

autocorrelated. However, it is not clear that the error vector of a continuous 

mass balance is autocorrelated, too. Even under consideration of hydraulic 

retention which itself is calculated in an autoregressive way, the error vector of 

a continuous mass balance should actually be only noise as long as no 

systematic error is present. The investigation into this question is probably best 

considered after the practical applicability of continuous mass balancing has 

been confirmed further. 

In this thesis the intention was not to avoid the merits of data reconciliation. 

Obviously, the connection between two similar, though not equal, fields - 

wastewater treatment and process engineering - is not very strong at this time. 

There is hope that this work will help to bridge the existing gap. It would be a 

great success, too, if this work would stimulate contributions by scientists who 

are well familiar with data reconciliation but at the same time well aware of the 

special implications of wastewater treatment. 

In the future, plant operators, administration, engineers and scientists should 

no longer be in doubt upon first contact with plant data. It is at the hands of 

operators to have their measurements organized and monitored in such a way, 

that reliable data quality can be proven at any time. This will considerably 

shorten the time of typical data evaluations including the corresponding cost 
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savings. For simulation studies, virtually no additional effort should be 

necessary any more, once the simulation model has been initially set up and 

calibrated. Today we are still a considerable distance away from this situation. 

It is the firm conviction of the author, that the here described methods and 

approaches open a practically feasible way to achieve this scenario. 
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Abstract 

Mass balancing is a widely used tool for data quality control in wastewater treatment. It can effectively detect 
systematic errors in data. To overcome the limitations of the mean balancing error as a measure of data 
quality a well-established method for statistical process control (the CUSUM chart) is adopted for application 
on the error vector of balancing data. Two examples show how time periods with stable low mass balancing 
errors can be detected by the method. The detectability of such time periods depends on the variability of the 
balancing error which is an important measure for the precision of the data. 

 

Keywords 

data quality control; fault detection; mass balancing; statistical process control 

 

INTRODUCTION 

On wastewater treatment plants (WWTP) data is routinely collected for reasons of treatment 
performance evaluation as well as process monitoring and control. The collected data can be a 
valuable source of information for process redesign, treatment plant extension or simulation. It 
usually provides a long term record of the plant performance and is readily available to the engineer. 
Typically, concentrations of in- and effluents are measured in 24h composite samples and flows are 
recorded as daily sums. The advantage of routine data is their availability for long time periods at 
no extra cost. In contrast, dedicated measurement campaigns might provide a higher sampling 
frequency but are costly in terms of time and labor and can only cover a comparably short period of 
time. 

To serve as a basis for further engineering tasks, the quality of the routine collected data has to be 
controlled. Simple or advanced plausibility tests as well as mass balancing are generally applied to 
meet this requirement (Rieger et al., 2010). Plausibility testing is necessary but not sufficient in 
terms of redundancy. Plausible values can still be (systematically) wrong and sometimes right 
values might not be plausible. Redundant verification is therefore necessary. Mass balancing can 
often effectively detect systematic errors in data. Thomann Haller (2002) showed a possibility of 
testing the significance of the mean balancing error. 
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Basics of mass balancing 

Typical compounds for mass balancing include water H2O (as flow), and elemental fluxes such as 
chemical oxygen demand (COD), total phosphorus (P), total nitrogen (N) and iron (Fe). Other 
compounds can be balanced over systems in which they are not subject to reactions, e.g. total 
suspended solids (TSS) in dewatering stages. 

The mass balance over a system for one compound and for a time period of n days is calculated 
from all mean fluxes F̅ entering (positive) or leaving (negative) the system (Figure 1). It yields the 
mean balancing error ē for the particular time period. If accumulation (storage ΔS) of the compound 
occurs in the system, it has to be considered, too (1a, b). 

 
Figure 1. Simple balancing layout. Several fluxes may enter or leave a system, accumulation (ΔS) 
is possible. 

 
It is easily understood that the mean balancing error ē can be calculated in two distinct ways due to 
the distributive property of the mean: 

i. as sum of vector means 
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ii. as mean of a vector of sums 
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In (1a) the means of all single time series of fluxes F in and out of the system as well as the mean 
accumulation are computed and then added. In (1b) however, balances are calculated for each time 
step (usually 1 day) thus giving a vector e of (daily) balancing errors of length n, the error vector, 
the mean of which is calculated at the end to give ē. 

From ē, the relative mean balancing error ērel is computed by normalization with the mean flux 
through the system. As a matter of common agreement, the mean influent flux is chosen. 
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Measures for data quality 

Accuracy and precision are the quality criteria for good data. They correspond to systematic and 
random errors, respectively. Although mass balancing has been accepted as a method of choice for 
redundant data quality control in the field of wastewater treatment (with a focus on accuracy), little 
has been said about decision criteria. 

The mean balancing error ē is mainly perceived as most important decision variable. Thomann 
Haller (2002) also focused on this measure and showed how to find a confidence interval for ē to 
test its significance. However, an insignificant difference between ē and zero does not determine 
high data quality alone. A small (relative) mean balancing error can still be significantly different 
from zero if the precision of the single measurements is high. Low precision might accordingly 
yield a large confidence interval for ē thus leading to the misinterpretation of a large ērel as not 
significantly different from zero. Acceptability of a certain mean relative error therefore seems to be 
more important than significance. The level of acceptability depends on the task that is addressed 
using the data. 

Another aspect is dynamic variability. While a large ērel certainly signals low data quality (or poor 
system description), a low ērel could still have been calculated from an error vector e that drifts in 
time from unacceptably high to unacceptably low values. If data quality is checked relying only on 
the mean, not much can be said about the data quality in the time series. This is of special 
importance, when historic data is to be used as input for simulation. 

The CUSUM method is suggested to approach the dynamic behavior of the error vector. In 
literature, only Zaher and Vanrolleghem (2003) are known to have used this method in the same 
context, however without explicitly investigating it. Among other control charts, CUSUM is one of 
the more sensitive. EWMA charts (exponentially weighted moving average), another sensitive type 
of control chart, had been investigated, too, but didn't yield results of comparable quality. The 
detectability of changes of the balancing error by the CUSUM method depends on the variability of 
the error vector and therefore on the precision of the data. This will become clear in the course of 
this paper. 

 

THE CUSUM CHART 

CUSUM charts, introduced by Page (1954), are used widely in statistical process control to detect 
small changes (e.g. shifts or drifts) in the mean µ (the target value) of a monitored process variable 
(Montgomery, 2009). Small in this context means changes of less than one standard deviation. 

CUSUM charts are designed to detect one-sided changes (increase or decrease) of the monitored 
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variable X. For the two-sided case (increase and decrease), one upper (positive) and one lower 
(negative) CUSUM chart have to be combined. For convenience, data is normalized to zero mean 
and standard deviation one. The CUSUM is a modified cumulative sum of a process variable X, 
consecutively adding up the values xt, t=1,…,n where n is the length of vector X. The two 
modifications are: 

i. The upper (positive) CUSUM may not drop below zero, the lower (negative) CUSUM may 
not rise above zero. 

ii. A smoothing parameter (reference value k) restricts the sensitivity of the method by  
constantly drawing the CUSUM series towards the target value (zero for normalized data). 

The two-sided CUSUM for normalized data may be defined as: 
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ttt

x+k+Cmin=C
x+kCmax=C

-
1

-

+
1

+

0,

0,

−

− −
 with C0 = 0  (3) 

 

The CUSUM series signals an undesired shift Δµ of the process mean by exceeding a chosen 
control limit (+h or -h). Thus, the reference value k and the control limit h are the two parameters 
which determine the behavior of the CUSUM chart. The optimal value of k is Δµ/2, half the size of 
the shift to detect (Lucas and Crosier, 1982). The control limit h may then be chosen according to 
the desired average run length ARL0 of the CUSUM series (Montgomery, 2009). 

The average run length ARL0 is the average number of time steps (i.e. data points) after which the 
CUSUM series will give a signal even though the true shift of the mean is zero (false alarm). Indeed, 
due to the probabilistic nature of the data (random errors), a long enough CUSUM series will 
eventually exceed any control limit. This corresponds to the type I error (false positive) in statistical 
tests. Therefore, a compromise has to be made. In the past, ARL0 was chosen as 370 which is 
equivalent to a 3σ control limit on a Shewart control chart (Montgomery, 2009). 

When k and h have been chosen, the average run length ARLΔµ (for detection of a true shift Δµ of 
the mean) can be calculated (Knoth, 2009). ARLΔµ increases with decreasing values of k (when h is 
adjusted to keep a constant ARL0) and therefore with smaller shifts Δµ. In statistical process control 
a fast response, i.e. low ARLΔµ is desirable. 

 

Synthetic example 

Figure 2 depicts data of a synthetic example on its left side. The time series has length 200. At 
intervals [1:40] and [91:140] the random data is N(0,1) distributed. In the interval [41:90] the target 
value (mean) was changed to +0.5. From data point 141 to the end of the series, the mean drifts 
from 0 to -1. On the right side the results of a CUSUM chart applied to the data are shown. The 
reference value k was chosen to 0.25 for optimal detection of a shift of ±0.5. ARL0 is kept at 370 
with a control limit h of ±8.01  The crucial parts of the CUSUM series are those, where it moves 
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away from zero crossing the control limit. In the example the faulty periods would be interpreted as 
occurring in intervals [45:100] and [165:200]. 

 
Figure 2. Left: Synthetic N(0,1) data including a shift and a drift and its 7-day moving average. 
Right: CUSUM chart of the data. Plotted slopes indicate interpreted faulty periods. 

 

Application of the CUSUM method to the error vector of a mass balance 

When applying the CUSUM method for the analysis of the error vector of a mass balance, several 
special characteristics have to be considered: 

i. Historic data is being used. The fastest possible detection of a change of the target is 
therefore not crucial. This allows for a trial and error approach at specifying the design 
parameters k and h and for more sensitive detection. 

ii. The length of the CUSUM series is determined by data availability. This influences the 
possible average run length before detection of a true change. 

iii. The CUSUM series does not stop or cause corrective action upon a signal. Therefore, the 
behavior of the series after a signal is of interest, too (as in the synthetic example). 

iv. The process mean (target) is known a priori. The expected value of the error vector of a 
mass balance is always zero. 

 

The ratio between the standard deviation se of the error vector before normalization and the total 
mean input into the system will be shown to be an important indicator for the setup of the CUSUM 
chart. If the standard deviation of the error vector is relatively high, the data lacks precision. A 
small shift in the mean of the error vector of less than 0.5se (which is hard to detect) might then 
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already mean a considerable change in one of the fluxes associated with the balance. Therefore, a 
small reference value k has to be selected. A smaller reference value at constant ARL0 causes a 
higher  ARLΔµ. 

The CUSUM method can be applied quite straightforwardly to flow data. The application becomes 
more challenging, when daily changes in storage have to be considered, too. This is the case with all 
other measured variables, i.e. elemental flux balances. Since storage is strongly coupled with TSS 
concentrations, reliable and representative measurements of this variable are important. 

 

RESULTS OF APPLICATION TO REAL DATA 

The CUSUM method was applied to existing routine data of a large WWTP (170.000 PE). The 
plant has 6 influents. The two major influents are one municipal and one industrial (refinery). 
Another two influents stem from the nearby airport (wastewater and surface water). The industrial 
wastewater (about half of the influent flow) is pretreated in a high-load aerobic stage before joining 
the aerobic/anoxic treatment for nutrient removal. Because flow Q is the basis for the calculation of 
fluxes the examples given are 1) a flow balance over the entire treatment plant and 2) a flow 
balance over the anaerobic digester. Unfortunately, it was not possible to include a phosphorus 
balance as well due to missing data in some fluxes. 

The error vectors were calculated from daily flow balances over the two systems for a time period 
of n=366 days. Table 1 gives the absolute and relative mean flow balance errors and the standard 
deviation of the error vectors. Figure 3 illustrates the error vectors themselves. 

 

Table 1. Influent and effluent flow sums for the two examples, absolute and relative mean 
balancing error and standard deviation of the balancing error. 
 Whole Plant 

flow balance 
Anaerobic Digester 
flow balance 

mean influent flow ΣFi,in  24,648 m³/d  139.6 m³/d 
mean effluent flow ΣFj,out - 25,237 m³/d  146.9 m³/d 
mean balancing error ē = ΣFi,in + ΣFj,out -      589 m³/d -     7.3 m³/d 
relative mean balancing error ērel = ē / ΣFi,in -          2.4 % -     5.3 % 
standard deviation se       848 m³/d    74.2 m³/d 
 

Both balances have relatively small mean errors of 2.4% and 5.3%, respectively. The ratio of 
standard deviation se to total mean influent flow, however, is relatively small for the flow balance 
over the whole WWTP (3.4%) but large for the flow balance over the anaerobic digester (53%). 
Therefore, the reference value k was chosen differently for each of the two examples. Table 2 
illustrates the steps for the setup of the CUSUM chart. 

For the whole plant flow balance k was chosen for optimal detection of a shift in the mean of 
Δµ=±1.0 se (k=0.5). For the flow balance over the anaerobic digester a more sensitive choice was 
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necessary. The reference value was chosen as k=0.15 in order to optimally detect shifts in the mean 
of Δµ=±0.3 se. Note that the detectable relative mass balance errors (i.e. optimally detectable shifts, 
step 5 in Table 2) are very different. Even though the example of the anaerobic digester was set up 
for more sensitive detection only balancing errors of about 16% can be optimally detected. 

Figure 3. Error vector e and its 7-day moving average for the two examples 
 

The control limits h were chosen to give an ARL0 of 370. The resulting ARLΔµ are ARL1.0=9.2 and 
ARL0.3 = 51 (Knoth, 2009). For the flow balance over the anaerobic digester, a “design shift” would 
be detected approximately 51 data points after its occurrence. Given the length of the error vector 
(366 data points) this seems to be a reasonable compromise between detectability and run length for 
detection. 

Figure 4 shows the CUSUM graphs for both balances. For the whole WWTP two time periods of 
worse than average balancing performance can be distinguished. Those are the intervals [20:135] 
and [280:366]. In these time periods the relative mean balancing errors are -3.0% and -4.1%, 
respectively. Between these two time periods, the mean balancing error drops to -0.3%. 

As shown in the synthetic example, the faulty time periods were approximated by following back 
the slopes of the CUSUM chart. For the anaerobic digester the relative mean balancing error is 
largest in the time period [120:225] amounting to -28%. At data point 269 the CUSUM series 
shows a considerable jump, suggesting a major single erroneous data point. Excluding data point 
269, the mean relative error for the anaerobic digester in the time period [226:366] is +2.3%. 
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Table 2. Steps for setup of CUSUM charts for the two examples (for N(0,1) normalized data se = 1). 
Step Whole Plant 

flow balance 
Anaerobic Digester 
flow balance 

0. consideration of ratio se/ΣF̅i,in se,rel = 3.4 % se,rel = 53 % 
1. choice of optimally detectable shift Δµ Δµ = 1.0 se Δµ =   0.30 se 
2. reference value k = Δµ/2 k = 0.5 se k =   0.15 se 
3. calculation of control limit h to give desired ARL0 h = 4.77 se h = 11.0 se 
4. verification of ARLΔµ ARL1.0 = 9.2 d ARL0.3 = 51 d 

5. calculation of relative optimally 
detectable mass balance error 

 
Δµ/ΣF̅i = ± 3.4 % 

 
Δµ/ΣF̅i = ± 16 % 

 

 
Figure 4. Two-sided (positive and negative) CUSUM charts for the two examples 
 

 

DISCUSSION 

The flow balance over the anaerobic digester obviously contains an error that cannot be neglected. 
Following the analysis, it was possible to diagnose the source of this error. Interviews with staff 
pointed to a faulty flow meter in the effluent of the digester. Data from an alternative flow meter 
was available. Its analysis showed considerably less systematic error (Figure 5). While the standard 
deviation of the error vector stays at 74.7 m³/d, the relative mean balancing error drops to as little as 
+0.2% and is constant throughout the entire time period. For the balance over the whole plant, the 
error apparently stays small enough to be neglected in any practical application of the data. It might 
for example be due to minor miscalibration of the flow sensors. 
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Figure 5. Error vector and two-sided CUSUM chart for the corrected Q balance over the anaerobic 
digester. Control limits h for the CUSUM chart are outside the visible range of the y-axis at ±11. 
 

From the two examples it becomes obvious that the calculation of the mean balancing error is not 
sufficient for determining the quality of routine data from WWTP. In both examples the overall 
mean balancing error seems relatively small and therefore acceptable at first sight. The application 
of the CUSUM method clearly showed time periods of varying performance of the error vector. In 
example 2 (anaerobic digester) a relative mean error of -28% over almost one third of the entire 
time series was disguised by the rest of the data. 

A 7-day moving average (Figure 3) may already give a good idea about intervals of different 
performance of the error vector. The CUSUM method however has the advantage of freely 
selectable control limits and gives a clearer picture. Additionally, the selection of the parameters for 
the CUSUM method allows for the calculation of the optimally detectable mass balance error. 

The actually detected mass balance error can still be smaller than the optimally detectable mass 
balance error. This is the case in the first faulty period in example 1 (whole WWTP). The optimally 
detectable mass balance error is not a strict limit for detectability but does give a good idea to the 
user. This reflects the probabilistic nature of random errors which do have a certain unpredictable 
influence on the performance of the CUSUM method. 

When applying the CUSUM method to elemental flux balances, it becomes necessary to consider 
storage in the balances, too. This will mostly be done using daily TSS data and known ratios 
between the balanced element and TSS. However, representative measurement of TSS is not easily 
achieved and the resulting error vector might show too high variability. Smoothing of TSS data, i.e. 
by means of a moving average might solve this problem. Research in this respect is still going on. 
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CONCLUSIONS 

When mass balances are used to determine the quality of routine data from WWTP and to search 
for systematic errors it is also necessary to consider the error vector of the balance rather than the 
mean balancing error alone. It has been shown that the CUSUM method can be applied to 
determine time periods of good balancing performance and to calculate the detectability limits for 
errors. The variability of the balancing error vector, preferably expressed as ratio between standard 
deviation and total mean input load into a system, is an important indicator for these detectability 
limits.  
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Abstract 

Although data reconciliation is intensely applied in process engineering, almost none of its powerful methods 
are employed for validation of operational data from wastewater treatment plants. This is partly due to some 
prerequisites that are difficult to meet including steady state, known variances of process variables and 
absence of gross errors. However, an algorithm can be derived from the classical approaches to data 
reconciliation that allows to find a comprehensive set of equations describing redundancy in the data when 
measured and unmeasured variables (flows and concentrations) are defined. This is a precondition for 
methods of data validation based on individual mass balances such as CUSUM charts. The procedure can also 
be applied to verify the necessity of existing or additional measurements with respect to the improvement of 
the data's redundancy. Results are given for a large wastewater treatment plant. The introduction aims at 
establishing a link between methods known from data reconciliation in process engineering and their 
application in wastewater treatment. 

 

Keywords 

data validation; gross error detection; mass balancing; observability; redundancy 

 

INTRODUCTION 

This work discusses a fundamental approach to the validation of operational data from wastewater 
treatment plants through mass balancing. Historic records of plant data reflect the performance of a 
treatment plant and are regularly exploited for monitoring, benchmarking and simulation, to adjust 
control strategies and to plan for process redesign or plant extension. However, poor quality of 
historic data records is the main obstacle for these tasks. This has been agreed upon widely in 
literature (e.g. Rieger et al., 2010; Puig et al., 2008; Meijer et al., 2002; Barker and Dold, 1995) as 
well as different IWA workshops on this question (e.g. Mont Sainte-Anne 2010, Budapest 2011). 

The type of operational data typically used for these tasks are daily flow volumes and 
concentrations measured in 24h-composite samples (where flow-proportionality is required for 
matching balances, especially in flows with strongly varying concentrations such as the influent). 
Higher frequency sensor data is more relevant in automated process control and therefore not of 
primary interest here. However, sensor readings are usually adjusted to the less frequent but more 
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reliable laboratory measurements. Therefore, the validation of operational data from composite 
samples is also of considerable relevance for plant control. 

Spindler and Vanrolleghem (2012) showed that the application of CUSUM charts is a suitable 
approach to continuous mass balancing1 and detects off-balance periods more reliably than mass 
balances based on long term averages of data. Continuous mass balancing following this method 
requires individual balance equations which describe redundancy of the measured data. 

This work will provide a procedure for the computational determination of the complete set of 
possible redundancy equations (also: balance equations) for a given plant layout. This aim is 
different from, but closely related to the principles and objectives of data reconciliation. With mass 
balancing as the key to data reconciliation and gross error detection, there appears to exist a gap 
between development and application of methods used in process engineering and wastewater 
treatment. Therefore a very short overview and comparison of the developments in both fields is 
given in the following parts of the introduction. After the presentation of the proposed method 
results will be given for its application to a large and complex wastewater treatment plant. 

 

Data reconciliation in process engineering 

Data reconciliation has developed mainly in the field of (chemical) process engineering. It allows 
improving the measured values of process variables such as flows and concentrations based on the 
laws of conservation. Data reconciliation requires redundancy of the measured variables which 
means that they can also be calculated from other measured variables. 

A vast amount of literature exists. Research began some 50 years ago when the concept of data 
reconciliation was introduced by Kuehn and Davidson (1961). Further research developed initially 
in two lines – the topology oriented approach first presented by Václavek (1969; Václavek and 
Louĉka, 1976) and the equation oriented approach, represented among others by Crowe (1986; 
Crowe et al., 1983). Some of the most recent progress in the field has been achieved by Kelly (e.g. 
1998; 2004). Four comprehensive books have been written (Madron and Veverka, 1992; 
Narasimhan and Jordache, 2000; Romagnoli and Sánchez, 2000; Bagajewicz, 2010). Good 
overviews about research development are also provided in Crowe (1996) and Ponzoni et al. (1999). 

A basic step in data reconciliation is the classification of the process variables. A process variable 
can either be directly measured (observed) or unmeasured. Unmeasured refers to variables that 
could be measured (at least theoretically) but are not for some reason. A process variable is 
observable, if it can be calculated from a subset of other measured variables. Measured observable 
process variables are called redundant. Crowe (1989) also classifies barely observable (unmeasured) 
variables which require at least one non-redundant measured variable to be calculated. Structural 
redundancy refers only to the theoretical calculability of a measured variable while practical 
redundancy also considers numerical and statistical accuracy of this calculation. The following 
short example is given to illustrate the difference between structural and practical redundancy. 

                                           
1 The application of CUSUM charts had originally been labelled “dynamic mass balancing” to differentiate from the 
established approaches. But because it does not actually target kinetic rates this naming will be avoided in the future. 
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The volume of dewatered sludge is negligible compared to influent and effluent of a wastewater 
treatment plant. For structural redundancy of the overall flow it would, however, still be required to 
be measured. Obviously the amount of dewatered sludge cannot be reconciled from this balance as 
the propagation of errors would pose a very high uncertainty on this calculation. On the other hand, 
in- and effluent would still be practically balanceable without the amount of dewatered sludge being 
measured. 

 

Data validation in wastewater treatment 

So far the concept of data reconciliation has received little attention in wastewater treatment. This 
becomes obvious in the terminology. The term mass balance is prevalent, possibly inspired by the 
work of Nowak (1994; 1999). Rieger et al. (2010) actually refer to the order of redundancy as 
“overlapping balances”. It reveals the practitioner's perspective where the individual mass balances 
receive higher attention than the reconciliation of the entire data set. This will be discussed further 
in the following section. 

Literature in wastewater treatment focuses mainly on sensor fault detection and so far hardly 
regards redundancy of measurements. Until recently wastewater related literature cited only two 
works from the field of data reconciliation in process engineering (Meijer et al., 2002; Puig et al., 
2008; Schraa et al., 2006). 

Van der Heijden et al. (1994) adapt research from the field of chemical process engineering and 
apply it to elemental mass balances in fermentation processes. Following works in the field of 
wastewater treatment (Meijer et al., 2002; Puig et al., 2008) apply the methods of Van der Heijden 
et al. (1994) thus re-adapting them back into process oriented applications where they originally 
stem from. Meijer (2002) stress the importance of validation of operational data for use in 
simulation studies. Puig et al. (2008) point out that the dynamic nature of wastewater treatment 
makes mass balancing difficult. Both works rely exclusively on the method developed by Van der 
Heijden et al. (1994) which was implemented in the software Macrobal (Hellinga, 1992). However, 
when applying data reconciliation to elemental mass balances (Macrobal's purpose) the composition 
of substances is exactly known (fixed) which is not the case for the composition of wastewater 
treatment streams. Hence only in volumetric and mass flow rates the measurement variability was 
accounted for, but not in measured concentrations. Additionally, the high variability of flow 
measurements (around 50% relative standard deviation) includes process dynamics which is 
disputable given the fact the steady state is a prerequisite for the applied method of data 
reconciliation. 

Schraa, et al. (2006) does mention data reconciliation citing Crowe (1996) but focuses on sensor 
fault detection. He did investigate data reconciliation in an earlier publication (Schraa and Crowe, 
1998) when he was not yet involved with wastewater treatment. 

Very recently two papers on redundancy classification and fault detection based on mass balances 
where published by Villez et al. (2013a; 2013b). In both papers the methods of data reconciliation 
are explicitly applied to (synthetic) data from wastewater treatment. The basic applicability of these 
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methods is proven for the situation of sludge thickening in a settler. In the paper on redundancy 
classification (Villez et al., 2013a) influent TSS is concluded to be observable when measurements 
are taken only in the activated sludge tank, the wastage sludge and the effluent. The example 
obviously refers to inorganic TSS in a plant without chemical phosphorus precipitation. 

 

Data reconciliation vs. individual mass balancing 

In data reconciliation the aim is to adjust the entire data set to fit the constraints. To achieve this, the 
remaining random error (after removal of gross errors) is distributed over all variables according to 
an allowance that is defined by the variance of the single measurement errors. The variance of the 
measurement error needs to be known. Steady state is another frequent requirement for the 
established methods of data reconciliation. Even though approaches to integrated data reconciliation 
and gross error detection exist, considerable difficulties remain in dynamic systems (Narasimhan 
and Jordache, 2000). 

In many industrial applications the preconditions for data reconciliation are met closely enough for 
its successful application. Substance influents to processes are usually controlled and set point 
changes of such controlled variables have rather low frequencies. In contrast, the influent is the 
main disturbance to the process of wastewater treatment and makes the dynamic adjustment of 
actuators such as pumps and blowers a constant challenge. Therefore wastewater treatment plants, 
especially those with combined sewer influent, are dynamic systems. This is also true if the 
measured data consists of daily means of the process variables (flow sums / composite samples). 
Another important difference to many industrial processes are the low concentrations and 
significant heterogeneity (dissolved/suspended) of the relevant compounds. The various sources of 
measurement random errors (representative sampling, interference from additional compounds, 
range of expected values, dynamic flows and concentrations) add up to comparatively larger 
uncertainty and make it complex and time-consuming, if not impossible, to determine the random 
measurement error variances. 

Continuous balancing by means of CUSUM charts avoids these two main obstacles. The input 
variable to this method is the error vector of daily mass balances and therefore error distributions of 
the single measurements do not need to be known a priori. Continuous mass balancing has been 
proven suitable for gross error detection in dynamic systems (Spindler and Vanrolleghem, 2012). It 
requires individual balance (redundancy) equations, the determination of which is addressed in the 
following. 

 

METHODS 

The single steps to determine individual redundancy equations which consist only of measured 
variables are provided below. While the setup of the incidence matrix and classification of 
redundancy and observability (steps 1a and 2) are typical for data reconciliation, steps 1b and 3 
(incidence matrix expansion and elimination of observable variables) are characteristic for the 
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algorithm described here. It follows the idea, that an observable (i.e. calculable) variable can be 
removed from an equation by expressing it in terms of other (measured) variables. If the observable 
variable can be calculated in various ways, several different redundancy equations are found. 

 

Step 1: Incidence matrix setup and expansion 

The description of a flow network is commonly given as directed incidence matrix M, where 
columns represent streams (edges in the network graph) and rows represent single subsystems 
(nodes in the network graph). The environmental node (Mah et al., 1976) is the source and sink of 
streams coming into and leaving the overall system, it represents the outside world. The values aij 
of matrix M are: 

• 1, if stream j enters node i, 

• -1, if stream j leaves node i and 

• 0, if stream j is not incident with node i. 

 

A complete incidence matrix M consists of m independent rows where m is equal to the number of 
nodes in the process network. In its most evident form the rows of the incidence matrix represent 
the single nodes themselves (or subsystems, e.g. an activated sludge tank). The representation of a 
single node in the incidence matrix can be directly transformed into linear and bilinear equations 
describing (mass) flow in and out of the corresponding subsystem. 

Following its setup, the incidence matrix M is expanded to represent all possible combinations of 
single subsystems of the given process network. This is achieved by finding all XOR-combinations 
of the m linearly independent rows in M. The new resulting matrix is M2. It needs to be reduced to 
M3 in an extra step because M2 is likely to contain rows of zero, double entries and rows that 
represent combinations of subsystems which do not share any stream and thus are physically 
independent of one another. For example, thickening and dewatering facilities of a wastewater 
treatment plant usually do not share any input or output streams. When setting up redundancy 
equations, these types of balances should be avoided. The procedure to clean M2 of the latter type 
of unnecessary rows is simply by stepwise comparison of each row with all other rows. If other 
rows have entries different from zero in exactly the same columns as the current row (and maybe 
more) they can be deleted. A graph theoretical approach to finding the relevant set of subsystem 
combinations might proof more efficient but was not investigated here. 

 

Step 2: Classification of redundancy and observability 

In wastewater treatment, the equations that describe a balance around a node can be of two types. 
Flow balances contain only measured (volumetric) flows and are therefore linear. Mass balances of 
a specific compound are calculated from the products of flows and the compound's concentration in 
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each stream and are therefore bilinear (a linear structure composed of simple products). Mass flows 
that are not bound to a water flow such as methane, nitrogen and oxygen uptake (digested COD) are 
linear parts of otherwise bilinear balance equations. Mass flow or concentration of a compound can 
also be zero in certain streams such as phosphorus in the gas phase. This can be relevant when 
equations are actually set up in step 3. 

The linear and bilinear nature of the equations that describe flow and mass flow in wastewater 
treatment simplifies the classification of observability and redundancy (as opposed to sometimes 
nonlinear equations in process engineering). A straightforward classification method for the bilinear 
case has been described by Ragot et al. (1990). They base their classification of observability on a 
simple analysis of measured and unmeasured flows and concentrations around the single nodes. It 
yields that only one unmeasured concentration of a compound can be calculated from a single 
balance equation and only if all flows of that balance are observable. Flows on the other hand might 
be calculated from known concentrations, too. As proposed in Ragot et al. (1990) the procedure is 
iterative and stops when no further observable variables are found. Here, the algorithm is adapted to 
determine both redundancy and observability in each node (row of M3). The necessity of iteration is 
met in step 3. 

For a single node it might be possible to directly set up a flow or mass balance equation, to set up a 
balance equation through elimination of (an) unmeasured flow(s), or to calculate a flow, 
concentration or mass flow. The rules are: 

(1) If all flows Q are measured, a redundancy equation can be set up. 

(a) If additionally all concentrations or mass flows of one compound are measured, another 
redundancy equation can be set up. 

(b) If only one concentration or mass flow of a compound is unmeasured, it can be 
calculated in this node (for later elimination in another node). 

(2) If only one flow Q is unmeasured it can be calculated from the other flows in this node (for 
later elimination in another node). 

(3) If one or more flows Q are unmeasured and 

(a) there are as many or more compounds with all concentrations / mass flows measured 
than missing flows, the missing flows can be eliminated and a redundancy equation for 
this node be set up. 

(b) the number of compounds with all concentrations / mass flows measured is one less than 
the number of unmeasured flows Q , the missing flows can still be calculated in this 
node (for later elimination in another node). 

(c) only one concentration or mass flow of a compound is unmeasured and the number of 
other compounds with all concentrations / mass flows measured is not less than the 
number of unmeasured flows Q, still all unmeasured values can be calculated in this 
node (for later elimination in another node). 
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Some additional attention has to be paid to nodes such as splitters, where a compounds 
concentration is equal in all streams. Therefore unmeasured flows cannot be calculated from known 
concentrations in a splitter. The only meaningful redundancy equations for these nodes are those for 
flow Q. Splitters have to be indicated separately. In a system with only 3 streams, no storage and 
just one compound X the classification can be illustrated easily (Figure 1). 

 
Figure 1. Single system with 2 input streams and 1 output stream, carrying 1 component (X) 

 

The balance equations are: 

1a32 e=Q+Q+Q1   (1a) flow balance 

b32 e=XQ+XQ+XQ 13211  (1b) mass balance 

Each balance equation yields an error e with an expected value of zero. 

When Q1, Q2, Q3, X1 are measured and X2, X3 unmeasured, only the flows Q are redundant (eq. 1a). 
When another concentration, e.g. X2 is measured, the remaining concentration X3 becomes 
observable but all concentrations are still not redundant. 

When X1, X2, X3, Q3 are measured, none of them are redundant and all flows are (barely) observable. 
When another flow, e.g. Q2 is measured, the concentrations become redundant, Q2 and Q3 are 
redundant and Q1 is observable. The redundancy equation becomes: 

( ) 321131211 , XXXe=XQ+QXQ+XQ c22 ≠≠− (1c) 

The method this classification of observability and redundancy is based on (Ragot et al. 1990) is 
especially obvious and simple to follow. Other methods – which give the same classification results 
– often require more involved mathematics and/or are part of the iterative reconciliation process 
thus depending on measurement data. A good overview is given in Bagajewicz (2010). 

 

Step 3: Elimination of observable variables and setup of redundancy equations 

For the computerized setup of the actual redundancy equations software capable of symbolic 
calculations is beneficially applied. First, for each row in M3 that contains variables observable in 
that node, one or several equations that solve for this variable can be written. After one cycle 
through the rows of M3 there exists an incomplete set of equations that can be used to calculate 
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observable variables. With the observable variables assumed to be measured, another cycle starts 
after the repetition of step 2. This is repeated until no further equations to solve for observable 
variables are found. 

Finally, for each balance in M3 that contains no unobservable variables the redundancy equations 
are set up with the observable variables being replaced by their solving equations. Each balance 
equation then consists only of redundant variables. In case several equations are available for the 
calculation of an observable variable, multiple redundancy equations will be set up for this balance. 
It is advisable to limit the number of replaced observable variables in the redundancy equations to 
control complexity of the resulting equations. 

The procedure was implemented using the Sage Mathematics Software (Stein et al., 2012). Sage 
itself relies on a number of other computational programs out of which use has primarily been made 
of The R Project for Statistical Computing (R Core Team, 2013) as well as Singular (Decker et al., 
2011) and Maxima (2013) for symbolic calculations. 

 

Simple sensor placement 

The expansion of M into M3 can also be applied to determine useful additional measurements. 
Assuming that in order to establish redundancy of a measured variable the new redundancy 
equation should be simple and contain only few variables, it follows that it will be taken directly 
from a row in M3. Therefore, the linear and bilinear redundancy equations resulting from M3 
simply need to be scanned for those that contain both the variable that should become redundant 
and at the same time the minimum number of unmeasured variables, preferably only one. This 
unmeasured variable(s) need to be measured additionally. While this approach to sensor placement 
is utile due to its simplicity, it is also limited. It does not guaranty the smallest possible number of 
additional measurements in order to establish overall redundancy of a given variable but does 
provide for a simple redundancy equation. It does not aim at data reconciliation either. 

 

RESULTS 

Results are presented for the application of the above method to a large two-stage wastewater 
treatment plant (160.000 p.e.). The numbering of the subsections is in accordance with the single 
steps in the methods section. 

The plant layout of the application example is given in Figure 2. The plant treats wastewater from 
various municipal (M1-M4) and industrial (I1-I4) sources. For a full analysis, all flows regardless of 
their size are included with only the polymer and precipitant dosage being neglected. For example, 
the main industrial source (I3) is sampled in a side stream and for that reason a splitter can be found 
in the plant layout. The mass flows leaving AST1 and AST2 and labelled “gas” refer to oxygen 
uptake and elementary nitrogen. Because each activated sludge tank and its clarifier are one 
functional unit they are not separated. 
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Figure 2. Plant layout of the application example. 

 

Step 1: Incidence matrix setup and expansion 

The incidence matrix M resulting from the plant layout is given in Table 1. It has 11 independent 
rows (subsystems) and 36 columns (streams). 

The variables' division into measured and unmeasured flows and concentrations is indicated in 
Figure 2 and explicitly given in Table 2. Note that for the splitter, all concentrations are known 
(measured) despite only one sampled. 

The expansion M2 of Matrix M yields a total of 2047 different combinations of subsystems (2m-1, 
m=11). The number of subsystem combinations increases exponentially with the number of 
independent subsystems. When reduced to M3, 688 combinations of subsystems remain for which 
linear and bilinear balance equations could be set up. 
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Table 1. Incidence matrix M describing the example plant layout. 

 1 
M1 

2 
M2 

3 
M3 

4 
M4 

5 
I1 

6 
I2 

7 
I3 

8 
I3a 

9 
I3b 

10 
I4 

11 
Co 

12 
stw 

13 
PCeff 

14 
PS 

15 
PSth 

16 
WAS1 

17 
WAS2 

18 
WASth 

PC 1 1 · · 1 · · · · · · · -1 -1 · · · · 
PS thick. · · · 1 · · · · · · · · · 1 -1 · · · 
AST1 · · 1 · · · · 1 · · · · · · · -1 1 · 
AST2 · · · · · 1 · · · · · · 1 · · · -1 · 
WAS thick. · · · · · · · · · · · · · · · 1 · -1 
AD · · · · · · 1 · · · 1 · · · 1 · · 1 
DS storage · · · · · · · · · · · · · · · · · · 
Dewatering · · · · · · · · · · · · · · · · · · 
split · · · · · · · -1 -1 1 · · · · · · · · 
merge · · · · · · · · 1 · · 1 · · · · · · 
Gas engine · · · · · · · · · · · · · · · · · · 
env. node -1 -1 -1 -1 -1 -1 -1 · · -1 -1 -1 · · · · · · 

 
19 
gas 

AST1 

20 
gas 

AST2 

21 
Eff1 

 

22 
Eff2 

 

23 
stor 

AST1 

24 
stor 

AST2 

25 
gas 
AD 

26 
DS 

 

27 
stor 
AD 

28 
stor 
DS 

29 
DS 

press 

30 
DS 
dew 

31 
PS 
rej 

32 
WAS 

rej 

33 
DS 
rej 

34 
scum 

 

35 
rej 
 

36 
el.en 

 
PC · · · · · · · · · · · · · · · · 1 · 
PS thick. · · · · · · · · · · · · -1 · · · · · 
AST1 -1 · -1 · 1 · · · · · · · · · · · · · 
AST2 · -1 1 -1 · 1 · · · · · · · · · -1 · · 
WAS thick. · · · · · · · · · · · · · -1 · · · · 
AD · · · · · · -1 -1 1 · · · · · · · · · 
DS storage · · · · · · · 1 · -1 · -1 · · · · · · 
Dewatering · · · · · · · · · · -1 1 · · -1 · · · 
Split · · · · · · · · · · · · · · · · · · 
merge · · · · · · · · · · · · 1 1 1 1 -1 · 
Gas engine · · · · · · 1 · · · · · · · · · · -1 
env. node 1 1 · 1 -1 -1 1 · -1 1 1 · · · · · · 1 

 

 

Table 2. Classification of measured and unmeasured flows, concentrations and mass flows. 
Flow  COD  

zero: 19,20,23,24,25,27,36 zero: --- 
     concentration  

measured: 1,2,3,4,5,6,7,10,11,14,15,16, 
1 18 22 28 29 30 33 3 3  

measured: 1,2,3,5,6,7,8,9,10,13,15,16, 
1 18 21 22 26 28 29 30 3  unmeasured: 8,9,12,13,21,26,31,32 unmeasured: 4,11,12,14,31,32,33,34 

     mass flow  
  measured: 19,20,23,24,25,27,36 
  unmeasured: --- 

Phosphorus  Nitrogen  
zero: 19,20,25,36 zero: 25,36 

   concentration     concentration  
measured: 1,2,3,5,6,7,8,9,13,15,16, 

 
measured: 1,2,3,5,6,7,8,9,10,13,15,16, 

 unmeasured: 4,10,11,12,14,31,32,33,34 unmeasured: 4,11,12,14,31,32,33,34 
   mass flow     mass flow  

measured: 23,24,27 measured: 23,24,27 
unmeasured: --- unmeasured: 19,20 
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Step 2: Classification of observability and redundancy 

Overall, there are 96 measured and 35 unmeasured variables in the example. Of the measured 
variables 81 are redundant and 22 unmeasured variables are observable. There are 21 measured 
flows (all but one redundant) and 75 measured concentrations and mass flows out of which 14 
remain structurally not redundant. The 8 unmeasured flows in the example are all observable and 
out of the 27 unmeasured concentrations or mass flows 14 can still be calculated from other 
variables. Because the classification of observability and redundancy is not the primary aim of this 
work, the detailed results for each individual variable are not included here. 

 

Step 3: Elimination of observable variables and setup of redundancy equations 

Based on the division into measured and unmeasured variables, only 4 linear balance equations out 
of the 688 different subsystem combinations can be readily calculated with all their components 
being measured. Three of those are the equations describing flow balances around the anaerobic 
digester and the dewatering facilities (see Figure 2 for comparison). The validation of flows 10, 11, 
15, 18, 28, 29, 30, 33 is possible from these equations. Only one directly available redundancy 
equation for a compound can be found. It is the simple balance around the gas engine, where the 
methane content of the gas and the electrical efficiency of the engine are needed to calculate the 
COD mass flows (superscript mf refers to “mass flow”). The respective equations are: 

2d

2c33DSrej30DSdew28storDS10I4

2b29DSpress28storDS10I4

2a33DSrej30DSdew29DSpress

e=
e=
e=
e=

mf
36el.en

mf
25gasAD

18WASth15PSth11Co

18WASth15PSth11Co

CODCOD
QQQQ+Q+Q+Q

QQQ+Q+Q+Q
QQQ

−
−−−

−−
−−

  (2a-d) 

It can be verified from Figure 2 that for the linear flow balance equations (2a-c) the corresponding 
bilinear balance equations describing mass flow cannot be set up due only to missing values for the 
co-substrate and the reject from dewatering. 

Two valid redundancy equations can be found directly through the elimination of unmeasured flows 
from within the same node. They describe balances of the high load activated sludge tank (AST1) 
and its combination with the splitter (eq. 3a-b). In these two cases there are 2 flows unmeasured but 
2 concentrations (COD and P) fully measured in all streams giving 3 equations with 2 unknowns 
which combine to 1 redundancy equation. Owing to the splitter, equation 5b contains the term 
(COD7-COD9)·Q7  that effectively yields zero. 
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( ) ( )
( ) ( )
( )

( ) ( )
( )

( ) ( )
( ) ( ) ( )
( )

( ) ( ) ( )
( ) 3b21
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171616733
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  (3a-b) 

 

Equations 4a and 4b are again mass balances around the storage tank, but the missing flow rate 
from the anaerobic digester, Q26, is calculated from the flow balances around other neighboring 
subsystems. In the same way, equation 4c balances flows around the system PC-merge-AST1-
AST2 where flow Q8 is missing and can be calculated from the combination of flow and COD 
balances around AST1. 

( )
( )

( ) ( )
( )

( ) 4c
16

173

342216141

4b1028

4a2828

e=

e=
e=

821mf
23

mf
192116

2117321

635532

26181511292928

263330292928

CODCOD
CODCOD+QCODCOD+

QCODCODQCODCOD
QQQQQ+Q+Q+Q+Q+Q

CODQ+Q+Q+QCODQ+CODQ
CODQ+Q+QCODQ+CODQ

−÷








−⋅−

⋅−−⋅−
−

−−−−

⋅−⋅⋅
⋅−⋅⋅

  (4a-c) 

Equations 5a-b show examples, where two observable variables had to be replaced in order to set up 
redundancy equations: 

( ) ( ) ( )
( ) ( )

( ) ( ) ( )[ ] ( )
( ) ( ) ( )
( )

( ) 5b921
2316916

17917393797

821231621161721163321

163

5a14

1411

2355

e =

e=

CODCOD
CODCODQCODCOD

QCODCODQCODCODQCODCOD
PPPQPPQPPQPP

Q+QQ

QCOD+QCOD+QCOD+QCOD
QCOD+Q+Q+Q+QQCODQCODCOD

QCODCOD+QCODCOD+QCODCOD

mfmf
19

mf
17

5535352213

11535213131

2133513513

−÷








+−⋅−−

⋅−+⋅−+⋅−
−

−÷−⋅−+⋅−−⋅−−
−

⋅⋅⋅⋅−
⋅−⋅−⋅−−

⋅−⋅−⋅−

 (5a-b) 

 

Obviously, the number and complexity of equations increases with the number of replaced 
observable variables allowed per equation. At the same time, practical usability is likely to 
deteriorate. While only 10 redundant variables can be put in four balance equations when solutions 
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of observable variables where not allowed, this number increases to 31 with those two additional 
equations where observable variables are eliminated within the same node. With one observable 
variable calculated from another node, there are 21 distinct equations expressing redundancy of 57 
variables. Equations including solutions for two observable variables yield 199 distinct equations 
for 74 redundant variables. 

 

Sensor placement 

When the incidence matrix expansion into M3 is scanned to improve overall redundancy, it turns 
out that the additional measurement of the reject flow from primary sludge thickening (Q31) and 
sampling of the scum (COD34, P34, N34) would have the greatest effect on overall structural 
redundancy. While before the introduction of these additional measurements there were 81 
variables redundant out of 96 measured, this ratio increases to 96 redundant variables out of 100 
measured. For this structural analysis, reasonability of the suggested additional measurements was 
not regarded. 

 

 

DISCUSSION 

The computational determination of bilinear redundancy equations has been shown for the case of 
structural redundancy. It allows to set up suitable mass balances for data validation procedures that 
require individual balance equations such as CUSUM charts. This is of particular interest when the 
dynamic nature of wastewater treatment is considered where reliable gross error detection is still a 
challenge. The computational approach also provides equations that might not be obviously visible 
to the expert's eye, particularly for large and complex wastewater treatment systems. This way, 
substantially more process variables become accessible to the data validation procedure. In the 
example only 10 out of 81 redundant variables could be expressed in simple balance equations 
whereas 74 redundant variables became accessible when the calculation of 2 observable variables 
per equation was allowed. Additionally, the approach of incidence matrix expansion allows for a 
simple investigation about the placement of additional measurements to provide redundancy of 
chosen variables. 

The expansion of the incidence matrix M is possible even for large and complex wastewater 
treatment plants. However, the number of subsystems even in those wastewater treatment plants is 
rather limited compared to some chemical industries. Due to the exponentially growing 
computational effort, the approach of incidence matrix expansion might not be feasible in other 
fields. 

For practical applicability of the method further research is necessary. As most of the resulting 
redundancy equations (such as eq. 5b) are very complex and include many variables, some criteria 
will be needed to select equations that are actually useful for data validation. A sensitivity analysis 
could reveal which variables in such equations can be validated and for which variables in such 
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equations no conclusions can be drawn. Much alike, many redundancy equations cannot be set up 
because they include variables that are in fact negligible. In the example, neglecting Q8 (the flow of 
the sampling side stream of the industrial influent 7_I3) would allow the setup of a flow balance 
around the primary clarifier and the activated sludge tanks AST1 and AST2. However, flow Q8 
might not be negligible with respect to the merging of the various reject waters. These questions 
address practical redundancy in addition to structural redundancy of the variables. An extension of 
the above described algorithm should be possible to find approximate redundancy equations. This 
would be based on an estimation of all variables, where possible by the classical methods of data 
reconciliation. Following an analysis of sensitivity, for each equation in M2 the negligible terms 
would be eliminated before solutions for observable variables and redundancy equations are 
calculated. Investigations in this direction shall be the objective of a subsequent paper. 

 

CONCLUSIONS 

An algorithm is presented that allows the determination of all structurally possible redundancy 
equations for a given plant layout and classification of measured and unmeasured variables. Due to 
the separate treatment of flows and concentrations not only linear redundancy equations can be 
found. The algorithm is derived from data reconciliation methods which are applied extensively in 
the field of (chemical) process engineering but so far hardly present in wastewater treatment. 
Because of a possibly large number and high complexity of the resulting redundancy equations, the 
investigation of practical redundancy appears necessary. The underlying concept of incidence 
matrix expansion also allows a simple investigation on the effect of additional measurements. 

It has been shown, that the setup of individual redundancy equations for data validation based on 
mass balancing can be fully computerized. This is an important step in the development of 
automated data validation in wastewater treatment systems. 
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Abstract 

Continuous mass balancing defines a new standard in data quality validation. Likewise relying on the 
principles of mass conservation it outperforms long term static mass balancing approaches because 
faults in data can be assigned to their time of occurrence. This research was carried out with practical 
application to routine operational data in mind and two major aspects are investigated to make this 
application feasible. Sludge concentrations of typically balanced components (COD, TN, TP) are not 
routinely measured in wastewater treatment plants. Therefore they need to be determined from 
alternative, more frequent measurements such as TSS. To provide the necessary statistical basis for 
such determination, monthly sludge sampling was found sufficient. Further, contrary to long term 
static mass balancing, the effects of delay between input and output loads must not be neglected in 
continuous mass balancing based on daily data. While a storage/release approach did not give the 
desired results, the consideration of hydraulic retention (first-order flow dynamics) fundamentally 
improved the performance of the proposed method. 

 

Keywords 

continuous mass balancing; data quality control; fault detection; statistical process control 

 

INTRODUCTION 

Two fundamental aspects of continuous data quality control by mass balancing of operational 
data are addressed in this work. One is the determination of the concentration of components 
of sludge flows by using alternative measurements, the other is the influence of storage and 
retention on short term balances. The aim is to provide a simple method for practical 
implementation of continuous data quality control. 

Mass balancing is a means of gross error detection in measurement data and the fundamental 
idea behind data reconciliation. Relying strictly on the laws of mass conservation, mass 
balances must only be carried out for conservative components that can be measured in all 
input and output streams of a system. Pure elements are always conservative in wastewater 
treatment and one typical balanceable element is (total) phosphorus. Nitrogen balances are 
also possible, however when denitrification is involved, off-gas nitrogen is usually not 
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measured. Another typically balanceable “component” is COD, which is basically a sum 
parameter for free electrons. Other commonly measured components are not conservative and 
therefore subject to reactions. Mass balancing based only on measuring the concentrations of 
such components is not generally possible. An example is TSS, because biomass grows 
converting dissolved organic material into particulate material. For appropriate subsystems 
(such as a dewatering unit when TSS is considered) the conservative property of such 
components might, however, be given. Water itself, expressed as flow Q, can also be balanced 
neglecting the influence of evaporation. 

Common approaches to mass balancing require steady state data (Narasimhan, 2000). For 
highly dynamic wastewater treatment systems this is usually achieved by considering mean 
values over rather long time periods (at least two sludge ages, typically several months). In 
perfect steady state, the total input load of a component into a system is equal the total output 
load when no accumulation or release occurs. The value of mass balancing as the most 
important approach to redundant data quality control is widely agreed upon in literature (e.g. 
Barker and Dold, 1995; Nowak et al., 1999; Puig et al., 2008; Rieger et al., 2010; Villez et al., 
2013). 

Continuous mass balancing , contrary to the static approaches typically used in wastewater 1
treatment, reveals the temporal behavior of the balancing error. It allows to distinguish 
unbalanced from well-balanced time periods in a data set or to continuously monitor the 
integrity of operational data. The CUSUM chart, a control chart based on a modified 
cumulative sum and first introduced by Page (1954), has been proven suitable for continuous 
balancing of flow data from wastewater treatment plants (WWTPs) by Spindler and 
Vanrolleghem (2012). In their study the variance of the vector of (daily) balancing errors was 
found to be an important indicator for good data quality. It also influences the applicable 
parameters (and therefore sensitivity) of a CUSUM chart. A high variance of the vector of 
balancing errors requires a higher sensitivity of the CUSUM chart in order to detect off-
balance periods, which leads to slower detection and vice versa. See appendix A for a short 
introduction to CUSUM charts. The present paper investigates the application of CUSUM 
charts to general mass flow data from wastewater treatment with a focus on requirements 
regarding the handling of sludge loads. 

In practice concentration measurements at WWTPs are usually conducted in flow 
proportional 24h composite samples. Daily loads are then calculated from the product of this 
average concentration and the cumulated flow of the respective day. Therefore, in this 
research continuous mass balancing is applied to daily loads. It follows, that measurements 
are preferably taken daily, without interruption. This requirement is commonly met for most 
flows and the concentrations of influent, effluent and reject water but hard to achieve for 
concentrations in primary sludge (PS), waste activated sludge (WAS) or digested sludge (DS). 
Measurement of typical balanceable sludge components (TP, TN, COD) is complicated 
because it requires thorough disintegration of the samples and small but representative sample 
                                           
1  The application of CUSUM charts for mass balancing was labeled “dynamic mass balancing” in a 
previous paper (Spindler and Vanrolleghem, 2012) to differentiate from the established approaches. However, as 
this approach does not actually target process dynamics, the naming was changed to “continuous mass 
balancing”. 
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volumes which are difficult to obtain. Therefore and because these data are circumstantial for 
daily plant operation, this type of measurement is usually not carried out in practice. 

Due to the nature of wastewater treatment, sludge streams are part of virtually every 
balanceable subsystem of a WWTP. For operation and documentation they are usually 
characterized by volume and concentration of TSS (total suspended solids). Organic and 
inorganic constituents of sludge are measured as volatile and nonvolatile suspended solids 
(VSS and NVSS). TSS, VSS and NVSS are routine parameters and regularly measured on a 
daily basis. Grab samples are usually sufficient because sludge characteristics change only 
slowly. Only primary sludge is subject to faster fluctuations but thickened primary sludge can 
be analyzed instead or online TSS measurement is employed to determine an average value. 

A common approach to quantify balanceable sludge components is their determination from 
TSS or VSS, assuming stable proportionality between the two factors. This is a rational 
approach, particularly for nitrogen and COD concentrations of WAS and DS, because 
nitrogen is a constituent and COD a property of the biomass which only the organic fraction 
of sludge is composed of. Phosphorus, on the other hand can also be chemically precipitated, 
thus becoming a constituent of the inorganic fraction of WAS and DS. Ekama (2009) includes 
an overview of literature values on COD and nitrogen concentrations of primary and activated 
sludge: COD/VSS ratios of activated sludge vary between 1.42 and 1.55, for primary sludge 
the range is even larger. Nitrogen and phosphorus are also often analyzed to determine 
nutrient levels for agricultural application. Their concentration in sludge depends heavily on 
the wastewater composition and treatment and ranges between less than 1% and 10% of TSS 
(Scharf et al., 1997). The temporal stability of the relations between balanceable sludge 
components and VSS or TSS within a single sludge is decisive for the reliability of this 
approach and determines the necessary measurement frequency. Both issues are addressed in 
this work. 

As a second fundamental aspect the influence of delay on short term mass balances is 
investigated. “Delay” in this work is not meant in its strict meaning referring to flow through 
an idealized plug-flow reactor. It is rather used to describe the general effect of loads leaving 
a reactor distributed over a certain time span. For short term mass balances the precondition 
of steady state, as mentioned above, is not satisfied. Loads entering a reactor on one day do 
not necessarily leave it on the same day. This can be accounted for by the concept of storage 
(also: accumulation) and release. These occur when the input load to a balanced subsystem is 
unequal to the output load in a given time period. For example, the amount of sludge in an 
activated sludge unit (including clarifiers) depends on the organic influent load and waste 
sludge flow. When less waste activated sludge is withdrawn from the system, a higher COD, 
TN and TP load is stored with the sludge. 

As it turned out that this storage/release approach is highly sensitive to measurement errors, 
another concept to account for delayed outputs was investigated. Hydraulic retention (or first-
order flow dynamics) can be used to calculate the effluent concentration from a (perfectly 
mixed) tank, depending on the influent concentration. Here, a constant tank volume was 
assumed which is typical in wastewater treatment. The assumption of a constant influent flow 
is derived from the frequency of the measurements the balancing approach is based on (1/d). 
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In continuous balancing based on daily loads the effect of hydraulic retention can be 
neglected only for streams with very short retention times (less than one day) such as methane 
or nitrogen gas production. For the effluent with a retention time of roughly one day 
neglecting this delay is also allowed because it contains only a small proportion of the daily 
input load and has little influence on the balance. 

 

METHODS 

Regression analysis 

To investigate the determination of COD, TN and TP from different fractions of suspended 
solids (SS), three different data sets were used. Data set A contains weekly (at least) routine 
data from a large Austrian WWTP and covers a time span of almost three and a half years. 
Data set B stems from a pilot scale anaerobic digestion stationed at another large Austrian 
WWTP. Sludge concentrations were measured during 47 consecutive weeks. Data set C 
contains values from sludge samples that were analyzed supplementary to routine operational 
data in order to achieve balanceability of yet another Austrian WWTP. These samples were 
taken 21 times over a period of 24 weeks. Plant A and C are subject to strong influence from 
industries, mainly chemical, accounting for up to 50% of the organic load. Concentrations 
were measured in the (waste) activated sludge (AS), primary sludge (PS) and digested sludge 
(DS). On plant B, waste activated and primary sludge are mixed (AS&PS). 

Simple and multiple linear regressions with and without intercept are applied to determine 
concentrations of COD, TN and TP from SS. Different SS fractions are considered, namely 
total (TSS), volatile (VSS) and nonvolatile (NVSS) suspended solids. For consideration of 
temporal behavior, the inclusion of trend and seasonality is compared to simple linear 
dependency from SS. The investigated and here reported regression models are of the 
following types:  

𝑐𝑥 = 𝑎1 ∙ 𝑐𝑆𝑆             eq. (1) 

𝑐𝑥 = 𝑎1 ∙ 𝑐𝑆𝑆 + 𝑎2          eq. (2) 

𝑐𝑥 = 𝑎1 ∙ 𝑐𝑆𝑆 + 𝑎2 ∙ sin(𝜔𝜔) + 𝑎3 ∙ cos(𝜔𝜔) + 𝑎4 ∙ 𝜔 + 𝑎5      eq. (3) 

 

For evaluation of significance of the regression three different parameters are used: the 
coefficient of determination (R², calculated as explained variance), Akaike’s Information 
criterion (AIC, for balancing model fit and complexity, accounting for the number of model 
parameters) and the relative two standard deviation range around the mean (2σres/µ, 
containing about 95% of the measured values). 

The large number of data points in data set A also allows for evaluation of lower 
measurement frequencies by Monte Carlo simulation. This was done by investigating the 
probability of only slightly deteriorated results (an increase of the relative two standard 
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deviation range of not more than 10%) when determining the regression models from only 
monthly or quarterly (instead of weekly) measured data. 

 

Continuous balancing under the influence of delay 

In the second part of this work some exemplary balances are calculated for plant C based on 
the adequate determination of sludge concentrations. The balancing error e for a chosen 
subsystem is calculated from the difference between the sum of all input loads and the sum of 
all output loads (ΣFin and ΣFout). This error can be related to the total input load, giving the 
relative balancing error erel. The determination of balancing equations for large and complex 
plants can be facilitated using an automated approach (Spindler, 2014). For continuous 
balancing, it is the vector of daily balancing errors that needs to be calculated instead of an 
overall mean balancing error. This error vector is then analyzed using CUSUM charts (see 
below). An example is given in the results section.  

When wastewater treatment balances are calculated on a daily basis, the delay between input 
and output loads has to be considered. Two different approaches to account for this delay are 
investigated, i.e. the concept of storage and release and the concept of hydraulic retention. For 
better comparison of these different approaches each continuous balance will be calculated 
three times: one directly (without delay), one including storage and release (based on the SS 
concentration in the reactor) and one under consideration of hydraulic retention. 

Storage (∆S) is calculated for component loads (TN, TP, COD) contained in sludge (eq. 4). 

∆𝑆𝑖 = 𝑉 ∙ (𝑥𝑖 − 𝑥𝑖−1)    i = 1…n     eq. (4) 

 ∆𝑆𝑖+ = 𝑚𝑎𝑥(0,∆𝑆𝑖)         eq. (4a) 

 ∆𝑆𝑖− = |𝑚𝑚𝑚(0,∆𝑆𝑖)|        eq. (4b) 

 

An increasing sludge concentration (storage, ∆Si
+) is counted as an additional output mass 

flow; a decrease in sludge concentration (release, ∆Si
-) is counted as an additional input mass 

flow (see results). This way, storage and release loads are regarded as physical streams which 
makes interpretation (e.g. of the magnitude of average storage and release) more intuitive. It 
also facilitates the automatic determination of balancing equations according to Spindler 
(2014).  

Note that for a correct determination of daily storage, a component's concentration would 
actually have to be known exactly at the beginning of each 24h composite sampling cycle. 
This is not always the case in practice. For sludge, for example, grab samples are commonly 
used and representativeness for the corresponding composite sample has to be assumed. 

Because the storage/release approach did not give the desired results (see below), another 
approach to account for a delayed output load was investigated. The effect of hydraulic 
retention is taken into consideration by calculating an "expected output mass flow" from the 
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initial concentration of a component (x0) in the reactor, its influent concentration (xin, assumed 
constant), the flow rate (Q) and the reactor volume (V). The expected output mass flow can 
then be balanced against the measured output. Assuming an ideal CSTR the expected output's 
concentration after a given time (t) is calculated as follows: 

𝑑𝑥𝑜𝑜𝑜
𝑑𝑑

= 𝑄/𝑉 ∙ (𝑥𝑖𝑖 − 𝑥𝑜𝑜𝑑)         eq. (5) 

 

With τ = V/Q (hydraulic retention of the balanced compound) integration yields 

𝑥𝑜𝑜𝑑 = 𝑥𝑖𝑖 − (𝑥𝑖𝑖 − 𝑥0) ∙ exp �− 𝑑
𝜏
�        eq. (6) 

 

Equation (5) describes the hydraulic transport through an ideal CSTR. Obviously, this is a 
purely hydraulic model and reactions must not be regarded. Mass balancing is based on the 
laws of mass conservation (of a component). Reactions only alter the distribution of a 
component between different output paths, they do not change its total sum. 

For the calculation of the daily error vector, the expected mean output concentration for one 
day (t=1, index i) is calculated assuming a constant (mean) influent concentration and flow 
and a constant volume (Qin=Qout=Q):  

�̅�𝑜𝑜𝑑,𝑒𝑥𝑒𝑒𝑒𝑑𝑒𝑑,𝑖 = �̅�𝑖𝑖,𝑖 − 𝜏𝑖 ∙ (�̅�𝑖𝑖,𝑖 − �̅�𝑜𝑜𝑑,𝑒𝑥𝑒𝑒𝑒𝑑𝑒𝑑,𝑖−1) ∙ (1 − exp �− 1
𝜏𝑖
�)   eq. (7) 

 

The expected output load is calculated from the expected mean output concentration. 

𝐹𝑜𝑜𝑑,𝑒𝑥𝑒𝑒𝑒𝑑𝑒𝑑,𝑖 = 𝑄�𝑜𝑜𝑑,𝑖 ∙ �̅�𝑜𝑜𝑑,𝑒𝑥𝑒𝑒𝑒𝑑𝑒𝑑,𝑖       eq. (8) 

 

This expected output load, which is basically calculated from the measured input load (see 
eq. 7), is then balanced against the measured output load. An example is given in the results. 

In case two output paths exist, retention needs to be considered for the slow path only (usually 
related to the sludge). For example, methane is produced almost instantly from the organic 
input load in an anaerobic digester. The delay between input and gas production (fast output 
path) can be neglected when dealing with daily mean data. The digested sludge, however, has 
a rather long retention time and delay has to be accounted for. This is achieved by calculating 
a virtual input concentration discounting the fast output load from the actual input load. In this 
way, equation (5) has to be solved only for one xout, which is the way it was specified. 

�̅�𝑖𝑖,𝑣𝑖𝑣𝑑𝑜𝑣𝑣,𝑖 = (�̅�𝑖𝑖,𝑖 ∙ 𝑄�𝑖𝑖,𝑖 − �̅�𝑜𝑜𝑑,𝑓𝑣𝑓𝑑,𝑖 ∙ 𝑄�𝑜𝑜𝑑,𝑓𝑣𝑓𝑑,𝑖)/𝑄�𝑜𝑜𝑑,𝑓𝑣𝑜𝑠,𝑖    eq. (9) 
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One important question remains: How should the initial concentration in the tank be chosen? 
It could either be the measured or the previously predicted concentration. In eq. (7), the latter 
(xout,expected,i-1) was chosen. This value has great influence on xout,expected,i. In fact, with long 
hydraulic retention, xout,expected,i depends almost entirely on the initial concentration (It holds: 
lim(exp(-x), x→0) = 1-x). If measured values are used, the expected output concentration 
xout,expected,i is heavily influenced by the measured output concentration xout,i-1. This leads to 
deterioration of the actual balance (where xout,i is balanced against xout,expected,i). Therefore, only 
the initial value xout,0 is taken from measurements, thereafter this value is taken from 
xout,expected,i-1 of the previous day. This way, all xout,expected are (almost) only calculated from the 
input which is a precondition for balancing against the measured values xout. 

CUSUM charts were calculated according to Spindler and Vanrolleghem (2012, see the 
appendix for an introduction). In this previous work the method was found to reliably detect 
even small deviations of the balancing error from the expected zero mean in the case of 
systematic measurement errors. The CUSUM parameters have to be chosen carefully. Once 
the choice of an average in control run length ARL0 is made, the control limit h depends only 
on the reference value k. It was calculated using the spc package (Knoth, 2009) for R (R Core 
Team, 2013). When the CUSUM chart exceeds the control limit h, it signals a significant 
deviation from the expected value (0), i.e. an off-balance situation. For ARL0, the classical 
value 370 (Montgomery, 2009) was chosen. Small reference values k lead to higher sensitivity 
(smaller optimally detectable error Δµopt) at the cost of slower detection (increasing ARL). 
Practice has shown that a good choice of k gives Δµopt within 10%-20% of the input load. As 
the variance of the error vector becomes larger, k is chosen smaller (but not below 0.2) to 
facilitate detection. Error vectors with a small variance are a good indicator of high data 
quality themselves. In these cases k can be chosen higher to avoid signals at minor 
disturbances. 

 

RESULTS & DISCUSSION 

The first part of this work was concerned with the determination of sludge component 
concentrations (TP, TN, COD) from frequent alternative measurements, namely fractions of 
suspended solids (SS). For application of continuous balancing based on CUSUM charts, 
daily values for these components are required, a precondition usually not met in practice. 
The determination of sludge components from fractions of SS does not mean performing 
balances of SS (in the second part of the results section) which is not generally possible. 

 

Regression analysis for determination of non-measured concentrations 

P, N and COD where determined from fractions of SS for three different WWTPs (A,B,C). 
Data were collected weekly for plants B and C and at least weekly for plant A. Results for the 
three regression models (eq. 1-3) are given in Table 1. The third regression model also takes 
into account possible temporal behavior (trend and seasonality) of the variables. The best 
available model is indicated by “++”. In most cases, this is the model including seasonality. If 
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a simpler model reaches comparable significance, this is indicated by “+”. Significance is 
given by the coefficient of determination R² and the relative two standard deviation range 
around the mean. AIC was also calculated but did not give any additional evidence and is 
therefore not shown in Table 1. 

VSS turned out to be the best choice of a SS fraction for the determination of COD. For 
determination of TN and TP, other fractions give slightly better results in some cases but VSS 
always remains a good alternative for determination of TN and in most cases for TP, too. 
Only for the determination of TP in digested sludge (DS) of plant C the volatile fraction alone 
is not a suitable parameter. In some cases the best results are achieved by assuming VSS and 
NVSS to be independent, i.e. not constrained by TSS. 

Data set A reveals poorer overall regression quality than data sets B and C. It should be kept 
in mind, however, that this data set covers a time span of almost three and a half years and 
external influences on sludge characteristics during this period are quite likely. Still, 95% of 
the residuals lie within ±15% to ±25% of the mean concentration for data set A with the 
exception of TN and TP values for primary sludge (PS). 

Data set B, covering almost one year and analyzed in the laboratory of the authors' home 
institution, yields coefficients of determination between 0.69 and 0.95. The residuals lie 
mostly within ±6% to ±13% of the mean concentration. Only for TP determination in mixed 
sludge (AS&PS) this interval is ±19% of the mean. Data set C, covering only 24 weeks and 
also analyzed in the authors' home institution, gives similar results. Coefficients of 
determination lie between 0.60 and 0.96 with one exception (0.43 for TP in PS). The range of 
residuals is mostly within ±5% to ±9% of the mean concentrations. Again, exceptions occur 
only for determination of TN and TP in PS. 

The determination of COD gives mostly acceptable results (residuals range ±25% or lower), 
with simple linear regression models being sufficient. In two cases the intercept must not be 
neglected. Only for the activated sludge (AS) of plant C the temporal behavior requires 
consideration, too. For determination of TN and TP from data sets B and C acceptable results 
are achieved in AS and DS. For plant A, the poorer quality of regression models is attributed 
to the higher number of data as stated above. For the PS however, meaningful regression 
seems harder to achieve, especially for TP but also for TN. 

It is important to notice that this assessment is purely statistical. Therefore, extrapolation of 
results into different ranges of SS concentrations (e.g. from AS to thickened AS) or time 
periods is not reliable. The regression can be applied to determine concentrations of less 
frequently measured sludge components from more frequently (preferably every day) 
measured fractions of SS. An obvious deterministic relation exists only for direct 
proportionality between COD (as well as TN) concentrations in sludge and VSS. But although 
such a relation seems reasonable for these sludge components, counterexamples (mainly for 
TN) are found in the results. 
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Table 1. Results from the regression analysis for determination of COD, TN and TP from SS 
fractions. “++” best result (along with R² and 2σres/µ); “+” close to best results but less 
parameters; “(…)” alternative SS fraction for similar accuracy; AIC not shown; 
AS…activated sludge, PS…primary sludge, DS…digested sludge. 

variable sludge Plant n a1·cSS a1·cSS+a2 a1·cSS+a2·sin(ωt) 
+a3·cos(ωt)+a4·t+a

5 

suitable SS fraction R² 2σres/µ 

COD AS A 175 + ++  VSS 0,59 17% 
COD AS&PS B 47 +  ++ VSS 0,95 8% 
COD AS C 21   ++ VSS 0,6 7% 
COD PS A 188 ++   VSS 0,82 25% 
COD PS C 21 + ++  VSS 0,96 5% 
COD DS A 367  + ++ VSS 0,43 17% 
COD DS B 47 ++   VSS 0,69 13% 
COD DS C 21 ++   VSS 0,94 5% 
TN AS A 177   ++ VSS 0,47 23% 
TN AS&PS B 47 +  ++ TSS (VSS) 0,89 11% 
TN AS C 21   ++ VSS (TSS) 0,67 9% 
TN PS A 185 ++   VSS 0,67 35% 
TN PS C 21 +  ++ VSS (& NVSS) 0,6 31% 
TN DS A 365   ++ VSS 0,52 16% 
TN DS B 47   ++ TSS (VSS) 0,87 6% 
TN DS C 21  + ++ VSS (& NVSS) 0,72 8% 
TP AS A 177   ++ VSS 0,34 23% 
TP AS&PS B 47 +  ++ TSS (VSS) 0,69 19% 
TP AS C 21 +  ++ TSS (VSS&NVSS) 0,87 6% 
TP PS A 189   ++ VSS 0,49 53% 
TP PS C 21   ++ VSS (& NVSS, TSS) 0,43 41% 
TP DS A 369  + ++ VSS 0,53 15% 
TP DS B 47  + ++ NVSS (TSS,VSS) 0,83 7% 
TP DS C 21  + ++ NVSS (& VSS, TSS) 0,95 5% 

 

Some regressions are obviously less reliable. This regards mainly TP and TN in PS. The 
reason for this remains not totally clear. It probably has to deal mainly with the high 
variability of primary sludge composition. The third example of the following results section 
(Continuous balancing) could be an indication that continuous balancing might not be as 
successful when component concentrations in sludges are not reliably determined. 

The required minimum measurement frequency for sludge components (along with fractions 
of SS) was analyzed by Monte Carlo simulation (MCS). It reveals that for data set A similar 
regression results as in Table 1 can be achieved when the regression is based on monthly data 
instead of weekly measurements. The probability for the residuals’ two standard deviation 
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range to increase by more than 10% above its original value is below 3% in all cases (data not 
shown).  MCS was based on the best available model for each sludge and concentration, in 
most cases including seasonality. When only quarterly data is simulated, these results cannot 
be reproduced. Only data that is not influenced by seasonality can be reliably determined from 
measurements at this low frequency. 

 

Continuous balancing 

Following the determination of sludge components from daily measured SS fractions, three 
different continuous balances were calculated for plant C. Those are the NVSS and COD 
balances of the anaerobic digester and the total phosphorus balance of the combination of 
primary clarifier and activated sludge tank (including secondary clarifier). Performing and 
NVSS balance for the anaerobic digester is in line with the requirement of conservative 
components as precipitation is negligible. Each balance was calculated three times: 

 (I) Without consideration of storage and retention 
 (II) With storage based on daily SS-fluctuations 
 (III) With hydraulic retention 

A calculation example is given for the COD balance of the digester (for data see appendix B): 

Daily input loads (calculated from flow and concentration): 

∑ Fin,i = FCo,i
COD + FPS,i

COD + FWAS,i
COD   

 

Daily output loads: 

∑ Fout,i = FDS,i
COD + Fgas,i

COD  

 

The error vector without consideration of storage and retention follows as: 

(I) erel,i = (∑ Fin,i − ∑ Fout,i)/F�in 

 

Storage and release are easily integrated into (I) as additional loads: 

(II) erel,i = (∑ Fin,i + ∆Si− − ∑ Fout,i − ∆Si+)/F�in 

 

For consideration of hydraulic retention, the two output paths have to be considered 
separately. Methane is produced from input COD practically without delay (fast output path). 
Hydraulic retention occurs for the digested sludge (slow output path). The virtual input 
concentration is therefore calculated from the difference between input load and the fast 
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output load: 

xin,virtual,i = (∑ Fin,i − Fgas,i
COD)/QDS,i  

 

The expected output load results from the virtual input concentration (the digester volume for 
calculation of τi is 8000 m³): 

Fout,expected,i = �xin,virtual,i − τi ∙ (x�in,virtual,i − x�out,i−1) ∙ (1 − exp (−
1
τi

)� ∙ QDS,i 

 

Finally, the error vector under consideration of hydraulic retention is: 

(III) erel,i = (Fout,expected,i − FDS,i
COD)/F�out,expected 

 

Results are given in figures 1-3. The figures include the relative error vector (dark points left 
side) and the relative input and output loads (grey lines left side). On the right side, the 
CUSUM charts are depicted; reference value k and control limit h along with the optimally 
detectable error (∆µopt) and the average run length (ARL∆µ) are given. The CUSUM chart 
signals (dots turning from grey to black) when the control limit is exceeded either on the 
positive or on the negative side. 

The first example is the NVSS balance of the anaerobic digester. The hydraulic retention time 
is very high at 47 days. The relative standard deviation of the error vector in case (I) is 0.34 
and the CUSUM chart signals two off-balance periods, once between days 50-60 and then an 
almost constant systematic error (linear slope) starting after day 90. The consideration of 
storage, case (II), leads to a much higher relative standard deviation of 1.24. The average 
storage load is around ±700 kg/d, more than 1/3 of the influent and effluent load. Because of 
the high standard deviation of the error vector the CUSUM parameters were chosen for 
maximum sensitivity. Still, the optimally detectable error is very high at 47% of the mean 
influent load and the average run length (ARL) for this error is at 42 days. The CUSUM chart 
does not signal in case (II). In case (III), considering retention of the input NVSS load leads to 
a very low relative standard deviation of only 0.06. Accordingly, CUSUM parameters can be 
chosen less sensitive which results in an optimally detectable error of 8.5% and an ARL of 
only 5 days. The CUSUM chart shows a long period of stability until day 120 after which the 
system goes out of balance, in the same way as in case (I). Because of the low standard 
deviation of the error vector, this is even visible, though not as clearly, from the balancing 
error plot itself. 
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Figure 1. Error vector (left) and two-sided CUSUM chart (right) for the anaerobic digester 
NVSS balance. (I) without consideration of storage and retention, (II) with storage based on 
daily SS-fluctuations, (III) with hydraulic retention. Along with the error vector (left, black 
dots) the total input and output loads are given as grey lines (normalized to mean 1). The 
CUSUM charts (right) signal an off-balance situation (indicated by color changing from grey 
to black), when the upper or lower graphs exceed their control limit h. 

 

The second example is again for the anaerobic digester, this time considering COD which has 
two output streams (methane gas and sludge) contrary to NVSS in the first example (only 
sludge). In cases (I) and (II) (the balance without consideration of delay and the balance 
considering storage), do not give a (clear) signal. The system seems well balanced. Again, the 
relative standard deviation of the error vector is higher in case (II) than in case (I). However, 
when retention is taken into account (III), the analysis changes. The relative standard 
deviation of the error vector drops again to a low value (0.10) allowing for reliable detection 
of even small errors. The CUSUM chart signals a constant error starting from around day 70. 
When calculated only for the first 70 days, the mean balance error is 0.2% (not shown in 
figure). For days 70 to 162 it jumps to 16% (not shown), indicating a systematic error in (at 
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least) one of the input or output loads. It was verified in a separate balance (not shown) that 
this error is not in the flow. Anyway, a flow error would influence both the NVSS balance and 
the COD balance in the same direction, which is not the case. With COD in sludges (PS, 
WAS, DS) being calculated from VSS, the error could lie in TSS measurement, however, the 
two charts (NVSS and COD) start signaling at different times, indicating (an)other source(es) 
of error. For the COD balance, this could well be in the COD concentration of the co-
substrate as this value was interpolated from very few measurements. 

 
Figure 2. Error vector (left) and two-sided CUSUM chart (right) for the anaerobic digester 
COD balance. (I) without consideration of storage and retention, (II) with storage based on 
daily SS-fluctuations, (III) with hydraulic retention. See figure 1 for a detailed explanation. 
 
The third example is the phosphorus balance around the combination of the primary clarifier 
and the aeration tank (including secondary clarifiers). Just like the second example it was 
based on a regression model for the determination of sludge loads. In example three, however, 
there is one component (TP in PS) for which the regression model did not fit the data very 
well. Due to the low load (around 50% of design capacity) sludge retention time (SRT) is long 
at this stage (33 days). The SRT determines the hydraulic retention of the slow output path 
(waste activated sludge). The primary sludge and the effluent together thus constitute the fast 
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output paths with hydraulic retention of around one day. The relative standard deviation of the 
error vector is again higher in case (II) than in case (I) and does not allow for enough 
sensitivity of the CUSUM chart to detect off-balance periods. Considering retention (case III), 
the standard deviation improves slightly compared to the direct balance but remains higher 
than in the previous two examples. This may be connected to the lower quality of the 
regression model for TP in PS. The CUSUM chart leads to a very different interpretation. 
While the most stable time period in case (I) is between days 30-85, this changes to days 85-
130 when retention is accounted for. Both charts give a second signal on the negative side 
following a sudden drop after day 130. 

 
Figure 3. Error vector (left) and two-sided CUSUM chart (right) for the PC/AST TP balance. 
(I) without consideration of storage and retention, (II) with storage based on daily 
SS-fluctuations, (III) with hydraulic retention. See figure 1 for a detailed explanation. 
 
The results emphasize that flow dynamics must not be neglected in continuous balances. 
Under consideration of retention, the variability of the error vector is smaller than without. 
Small error vector variability indicates similar trends of input and output loads, a sign of little 
noise in data. This leads to much higher sensitivity of the CUSUM chart and strengthens 
confidence in its (off-balance) signals. Hydraulic retention can be calculated sufficiently 
under assumption of an ideal CSTR and based on daily flow values. In cases where the 
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hydraulic flow through reactors is better described by a plug flow, the methodology can be 
adopted accordingly. The calculation of storage from daily fluctuations in SS concentrations 
appears to be not feasible as it leads to an increased variance of the error vector. There are 
some reasons that might explain this observation. First, the method relies on daily SS 
concentration measurements which are not very accurate with random errors of around ±10% 
to be assumed. This has a great effect especially for reactors with long HRT as the stored 
mass is much larger than daily input and output mass flows. Secondly, storage and release are 
calculated from differentials (actual and previous day), the integration of which is known to 
amplify noise. Filtering might reduce this effect but could also lead to deletion of information 
contained in data. As a third aspect, SS concentrations should actually be known at a fixed 
time corresponding to 24h composite sampling to accurately calculate the stored amount of 
sludge but in practice only grab samples are available. A simple simulation study (results not 
shown) revealed a considerable influence of using the correct sampling time for the 
calculation of the stored sludge amounts (which is another source of error). For activated 
sludge systems, measurement of SS concentrations is also subject to large random errors as 
sludge can be temporarily stored in the clarifiers. All these influences increase the random 
error of the calculated storage and therefore lead to larger balancing error variability. The 
hydraulic retention approach on the other hand, depends on a measurement only for the 
generation of a starting value and after that determines the effect of delay from the retention 
model. The choice of the starting value for the concentration in the balanced reactor is of 
relatively little influence. In case of a systematic measurement error for this measurement 
(which is also the measurement for the slow response output path) a signal of the CUSUM 
chart will soon occur. If only the starting value was chosen wrong and the following values 
are free of systematic errors, the CUSUM chart might signal initially but would soon turn 
back towards zero. 

This work, as it is presented here, omits to a large extend its connection to data reconciliation 
as known and widely applied in process engineering. Some readers might draw the conclusion 
that these results might have been reached more efficiently by direct application of existing 
methods for dynamic, nonlinear data reconciliation. There are a number of reasons for this 
omission. First, wastewater treatment is very different from the majority of process 
engineering applications in the way that the influent to the system is the main disturbance 
rather than a controlled variable. Secondly, in data reconciliation (as the name implies) the 
correction of measurements is the main focus, with gross error detection as a prerequisite or a 
byproduct. In practical wastewater treatment applications it is, however, sufficient to become 
aware of faults in data, possibly along with a conclusion as to which measurement is 
corrupted. The CUSUM chart offers a very descriptive and easily implementable way to 
enable operators to draw their own conclusions about the state of their measurements. And as 
a third aspect, the methods of data reconciliation have not yet been proven to be applicable to 
operational data from wastewater treatment. With delight the authors would see a process 
engineer taking on the challenge to improve gross error detection in wastewater treatment data. 
For this reason, the data used in the second example is included in the appendix. 

 

 



ARTICLE 3 

69 

CONCLUSIONS 

Continuous mass balancing requires the consideration of the temporal delay between input 
and output mass flows to correctly determine the quality of operational data. Neglecting this 
delay is likely to yield erroneous interpretations. While the calculation of storage and release 
(calculated from fluctuations in SS concentrations) does not seem feasible as it leads to an 
increased variability of the error vector, hydraulic retention does adequately account for this 
effect. For the future it would be desirable to investigate further into the correctness of off-
balance signals given by CUSUM charts. Because this is often complicated with real data, the 
application of the Benchmark Simulation model might be appropriate for this task. 

The determination of COD, TN and TP from SS fractions is possible in most cases. Purely 
statistical analysis, in most cases also considering time dependency, yields the best results. 
Therefore, special care has to be taken when these models are applied; extrapolation beyond 
the underlying range of time and SS concentrations is not advisable. For long term data, 
multiple determination is likely to be more appropriate than determination of one single 
parameter set. Further investigation into this question might be useful. It was found that 
monthly grab samples are sufficient for the determination of sludge concentrations of COD, 
TN and TP along with TSS and VSS. 

Through this study, the practical applicability of continuous mass balancing has been proven. 
For a successful outcome of any data evaluation effort including mass balancing, WWTP 
operators need to be encouraged to ensure balanceability of their measured operational data. 
This is best achieved by practically calculating those balances that contain the most important 
measurements but can also be facilitated by redundancy evaluation. In most cases, additional 
external measurements of sludge components and the corresponding, more frequent, on-site 
TSS and VSS measurements will be required. 

Continuous mass balancing, mastering the insufficiencies of static balances, has the potential 
to become a standard for data quality verification not only in practice but also in future pilot 
or technical scale scientific research within the field of wastewater treatment. 
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 APPENDIX – Sludge loads for the COD balance of the anaerobic digester (kg/d) 

day (i) F
COD
Co

 
F

COD
PS  F

COD
WAS  F

COD
DS  F

COD
gas  

∆SCOD QDS [m³/d] day (i) F
COD
Co

 
F

COD
PS  F

COD
WAS  F

COD
DS  F

COD
gas  

∆SCOD QDS[m³/
d] 

1 435 5274 2258 6509 3699 6091 249 82 1930 2963 3563 5855 4341 698 226 
2 735 3680 3701 5582 3719 -483 214 83 1939 2229 3217 4849 4439 698 187 
3 1035 4236 4360 6142 3940 -483 236 84 2134 3607 3628 3690 4432 698 142 
4 1035 5038 1940 3138 3704 -483 121 85 2746 2827 3241 5421 5099 698 207 
5 435 2183 23 1838 3704 -483 71 86 2952 3875 4831 4624 5245 5593 184 
6 435 1670 18 0 3348 -483 0 87 2823 2979 4649 5228 6305 210 208 
7 1215 4043 1554 3432 3320 -483 133 88 1645 4038 3374 5092 7697 210 202 
8 3007 4970 2998 6466 4151 -9606 239 89 1031 1813 3081 4979 6202 -5140 190 
9 3028 3592 3584 3328 4646 3096 125 90 1043 2546 3604 5215 5459 -5123 191 

10 1391 5883 4100 3092 4113 6133 120 91 1733 2213 4292 5239 5353 227 192 
11 735 4128 3385 4098 3850 54 159 92 1731 2288 4662 5249 5590 227 192 
12 735 2642 3099 6219 3915 54 242 93 1902 2404 5970 5060 5291 5543 192 
13 585 3063 2602 2670 3853 54 104 94 848 3015 8949 3257 4471 465 123 
14 735 3625 2591 1952 3680 -6016 73 95 602 4860 8731 4898 3937 5746 192 
15 2334 3871 3116 6058 4056 6124 235 96 1134 2662 4985 4622 4071 -4815 174 
16 2921 3871 3416 1840 4226 376 71 97 1283 2421 3845 5105 4131 465 192 
17 3234 3713 2800 4309 4157 1383 168 98 1859 2933 5163 4919 5023 5692 192 
18 3808 3868 2433 4001 4476 1378 156 99 2481 1825 2338 5226 5552 -7366 192 
19 4134 2670 2507 4236 4396 1374 166 100 3102 3243 3125 2708 5937 -7384 94 
20 3409 3394 2569 4014 4278 1369 158 101 2223 7051 3395 5344 6553 5608 192 
21 4185 3962 2631 4256 4516 1365 168 102 1795 2845 5152 5255 6344 2996 192 
22 4125 4760 2527 4426 5541 1360 176 103 1816 3900 3785 5371 6079 -12462 179 
23 3482 3551 2137 3617 6743 6323 149 104 1838 1804 3373 0 6123 6860 0 
24 2793 4411 1915 3339 6416 58 138 105 1859 3881 2597 3633 5948 6822 132 
25 2741 4420 2004 3351 6300 58 138 106 2481 3004 5335 5248 6092 2957 194 
26 2690 2978 2100 2951 6064 -5896 117 107 2802 6253 2700 3402 5994 -393 126 
27 2638 3817 2178 3682 6252 60 146 108 2073 5497 2574 3521 6710 4739 136 
28 2886 5875 2676 4692 6403 60 186 109 1945 3471 3713 5359 6105 -10671 192 
29 2985 4250 2769 4237 6571 3034 171 110 1966 2256 3786 5834 5857 -13313 191 
30 2933 8074 3356 4816 6562 -2838 191 111 1988 2137 3358 4760 5876 7320 165 
31 2731 4793 3714 3677 6568 136 145 112 2009 4648 3864 5224 5672 4769 188 
32 2680 3201 3789 5401 7016 136 214 113 2781 4991 3727 4011 5539 -3011 142 
33 2778 2601 3774 4853 7111 136 192 114 3402 2424 5084 3609 5549 -415 128 
34 2577 4054 3751 2860 7047 136 113 115 3269 3433 3206 4325 5551 2913 156 
35 2375 4604 4112 3415 6259 -3414 132 116 2959 2127 3688 5231 5667 2902 192 
36 2323 4384 2967 5042 6910 -2226 192 117 1926 1407 4321 4611 6020 296 169 
37 2422 3435 3128 4690 6993 6048 185 118 1944 1848 5087 15 5904 296 1 
38 2070 5998 3539 4990 6918 -2750 192 119 1775 3994 6651 4151 5463 296 152 
39 2018 4036 2948 4347 7425 1379 167 120 1714 3826 3982 4321 4596 2874 161 
40 1967 3269 2341 4363 7180 3702 170 121 1765 4186 5865 5565 4206 393 207 
41 1915 2692 2270 0 6467 777 0 122 1613 3512 8298 7538 4978 393 279 
42 1863 3765 3356 3603 5785 777 139 123 1912 5012 7704 6769 5907 393 250 
43 3012 5388 3720 4982 6061 777 192 124 1611 2280 6059 5755 6346 393 213 
44 2960 4386 3573 4974 5907 777 191 125 1609 2667 4631 5707 6149 393 210 
45 2773 3943 3792 4892 5755 2955 191 126 1757 3641 4861 5498 5749 393 202 
46 3036 5139 3989 4347 5904 -2747 167 127 1906 4386 4716 5222 5742 393 192 
47 2400 3131 3967 3517 5942 2951 137 128 2955 4465 5117 5235 5966 393 192 
48 2063 3469 1539 4958 5816 -1605 191 129 3103 4452 5597 5453 6015 -4361 192 
49 2026 2922 3743 5091 5606 -3878 191 130 2801 3597 4986 5470 5906 673 192 
50 2289 4915 4000 4953 5176 105 186 131 1900 3421 5067 5171 5855 673 181 
51 2102 2272 3068 4803 4658 8624 191 132 1899 2406 3550 3728 5958 673 130 
52 2666 2797 2563 4891 4854 3182 198 133 1560 3415 5307 5719 5605 -4237 192 
53 2629 2749 2183 4959 5180 -2484 196 134 1559 5555 6997 5739 5629 698 192 
54 2742 1958 2133 3440 5042 349 136 135 1221 2786 1921 4647 5530 698 155 
55 1297 2427 1952 695 4895 349 27 136 1034 3395 2820 3614 5072 4912 125 
56 1744 3886 539 3126 4841 349 123 137 1297 2396 4801 5249 5090 -4804 175 
57 1085 1995 1186 4921 4859 -2450 190 138 997 2698 4346 6 5328 2481 0 
58 2121 3135 2640 2634 4262 8523 108 139 846 2560 4090 3632 5258 2479 126 
59 1934 4082 2494 3288 4588 126 134 140 1410 5082 3199 5501 4730 52 190 
60 524 2512 2187 4699 3956 126 192 141 2195 4983 3562 5516 4462 52 191 
61 374 3293 2279 1398 4041 126 57 142 1895 12083 3745 5679 4241 52 196 
62 524 3665 2371 3012 3917 126 123 143 1444 4868 3777 5428 4738 2305 191 
63 795 3622 2920 4706 4100 126 192 144 843 10727 4829 5452 4532 -119 192 
64 2200 5476 3552 4446 4570 126 181 145 843 5691 4914 5375 5031 2311 193 
65 1494 4096 4266 4448 4535 126 181 146 991 2746 4683 5110 5077 4748 191 
66 1325 4674 4853 4759 4640 48 194 147 840 3575 3682 5324 4962 -4981 191 
67 374 5990 3365 4240 4303 48 172 148 1589 5412 2974 5091 4661 2320 187 
68 374 3219 2635 4645 4282 48 189 149 1889 3752 3999 5114 4731 -12371 171 
69 374 2409 2437 4891 4525 -5502 191 150 1289 5721 4536 3746 4516 4699 130 
70 652 3707 2396 3660 4570 50 143 151 1888 6746 3703 3736 4429 4712 135 
71 994 3150 3453 8 4512 50 0 152 1320 5010 3136 5468 4676 -4095 191 
72 851 3303 2469 2320 4354 50 91 153 869 3504 3087 4048 4555 -1161 141 
73 1308 4749 2937 6980 4447 2772 278 154 1018 3542 2994 5537 4530 -181 193 
74 865 2076 3007 4722 4673 2772 192 155 1467 2812 3295 6337 6678 -181 221 
75 971 6671 1852 4203 4746 0 171 156 1317 4920 3733 8073 7569 -181 281 
76 980 2582 2976 4959 5216 0 201 157 866 7126 4142 7005 6125 -906 245 
77 1193 2900 3217 4458 4275 -5545 174 158 1015 5176 4108 6993 6213 -906 246 
78 1354 4494 2352 4328 3734 0 169 159 865 5063 4027 8024 6177 -906 283 
79 1065 3989 4134 3203 3505 0 125 160 1014 6002 4227 6895 5345 -906 244 
80 3520 4642 4274 5587 3657 698 217 161 1013 10235 4775 5843 4969 -11096 193 
81 2096 4511 4632 5168 4414 698 200 162 863 9189 5210 9691 5531 4155 334 
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