
An integration middleware for
the Internet of Things

DISSERTATION

zur Erlangung des akademischen Grades

Doktor der technischen Wissenscha�en

eingereicht von

Dipl.-Ing. Markus Jung
Matrikelnummer 0525643

an der

Fakultät für Informatik der Technischen Universität Wien

Betreuung: Ao. Univ. Prof. Dr. techn. Wolfgang Kastner

Diese Dissertation haben begutachtet:

(Ao. Univ. Prof. Dr. techn.

Wolfgang Kastner)

(Privatdoz. Dr. techn. Karl

Göschka)

Wien, 04.12.2014

(Dipl.-Ing. Markus Jung)

Technische Universität Wien

A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

An integration middleware for
the Internet of Things

DISSERTATION

submi�ed in partial fulfillment of the requirements for the degree of

Doktor der technischen Wissenscha�en

by

Dipl.-Ing. Markus Jung
Registration Number 0525643

to the Faculty of Informatics

at the Vienna University of Technology

Advisor: Ao. Univ. Prof. Dr. techn. Wolfgang Kastner

The dissertation has been reviewed by:

(Ao. Univ. Prof. Dr. techn.

Wolfgang Kastner)

(Privatdoz. Dr. techn. Karl

Göschka)

Wien, 04.12.2014

(Dipl.-Ing. Markus Jung)

Technische Universität Wien

A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Dipl.-Ing. Markus Jung
Gattring 11, 3143 Pyhra

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit
- einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet
im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als
Entlehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschri� Verfasser)

i

Acknowledgements

This PhD thesis covers the research work of several years performed at the Institute of Com-
puter Aided Automation, part of Vienna University of Technology. During this time, the Au-
tomation Systems Group part of the department was a welcoming working place that made this
thesis possible. My deepest gratitude goes to my supervisor Ao. Univ. Prof. Wolfgang Kast-
ner. His feedback and guidance were always valuable and motivating. I also want to thank my
colleagues at the Automation Systems Group which provided a friendly working environment
and were always open for problem discussions.

Several master- and bachelor-students supported and helped me by performing proof of
concept implementations and simulations. Out of the numerous students, I want to thank es-
pecially Jürgen Weidinger, Philipp Raich, Daniel Schachinger, Gregor Ryba and Thomas Hofer
for providing valuable contributions to the research work.

A great acknowledgement is dedicated to the consortium of the European IoT6 research
project. The project cooperation provided me valuable insights into the IoT research commu-
nity and allowed me to get into contact with leading researchers in the �eld.

I want to show my appreciation to Prof. Yann Bocchi and Prof. Dominique Guinard for
hosting my research visit in at the University of Applied Sciences in Western Switzerland and
Prof. Daeyoung Kim for hosting my stay at KAIST in Korea. I always received a warm welcome
and strong support at these research locations which made it possible to deepen the research
cooperations.

Special thanks go to my family and Sandra for their patience and motivating support. With-
out them the creation of this thesis would not have been possible.

iii

Abstract

The Internet of Things (IoT) will improve our environment by means of smart objects that are
equipped with sensors and actuators, embedded in everyday objects and linked in a ubiquitous
way. They enable exciting application scenarios in heterogeneous application domains such
as Smart Grids, logistics, factories, tra�c management, homes, and buildings. In this context,
proprietary communication stacks as well as the heterogeneity of existing home and building
automation technologies lead to high integration costs and are an inhibitor for the realization
of the IoT.

This thesis presents an integration middleware for the IoT consisting of a communication
stack, an integration approach, and a Service-oriented Architecture (SoA) with focus on home
and building automation technologies. The main challenge is the optimization of Internet- and
Web-technologies to enable energy e�cient operation within smart objects. Heterogeneous
features, interaction patterns, and semantics of existing technologies need to be supported.
Finally, non-functional properties such as scalability, security, and privacy have to be taken
into account.

The SoA presented in this thesis includes the design of a centralized core-infrastructure as
well as a generic and decentralized access-control concept. It can be used to provide security
and �ne-grained access control to ensure security and privacy in scenarios where appliances
are made available to third-party application providers. Furthermore, an IoT communication
stack is presented to o�er interoperability between smart objects based on optimized Internet-
and Web-technologies. Here, main contributions are a peer-to-peer communication model rest-
ing upon Internet Protocol Version 6 (IPv6) multicasting and the concept of a Web-based engi-
neering tool that provides methods to create sophisticated control logic by graphical program-
ming. Finally, an integration concept regarding the most relevant wireless and wired home
and building automation technologies, identi�cation technologies, smart meter protocols, and
other important information sources in the context of the IoT is presented.

Compared to the state of the art and related work, the datapoint-centric integration ap-
proach in combination with a generic information model and the peer-to-peer interaction
model provides interoperability without the need for any domain-speci�c information mod-
els. The usability, performance, and availability can be signi�cantly improved by the concept
of a graphical logic editor and the avoidance of centralized controllers.

A proof of concept implementation and a case study demonstrate the feasibility and appli-
cability of the concepts. The implementation is released as open source project named IoTSyS.
Scalability of the stack and the integration approach is analyzed by means of analytic models
and simulation.

v

Kurzfassung

Das Internet der Dinge (IoT) wird unseren Alltag durch intelligente Objekte verbessern. Diese
sind mit Sensoren und Aktuatoren ausgestattet und werden in alltägliche Gegenstände inte-
griert und universell vernetzt. Sie ermöglichen vielfältige Anwendungen in verschiedensten
Bereichen wie beispielsweise Smart Grids, Logistik, Produktion, Verkehrsmanagement, Woh-
nen und Gebäude. Diese Bereiche werden zurzeit von einer Vielzahl proprietärer Heim- und
Gebäudeautomationstechnologien beherrscht.

Die vorliegende Arbeit präsentiert eine Integrations-Middleware für das IoT, bestehend aus
einem Kommunikationsstack, einem Integrationskonzept und einer Service-orientierten Archi-
tektur (SoA) mit Fokus auf Heim- und Gebäudeautomationstechnologien. Eine Herausforde-
rung ist in diesem Zusammenhang die Optimierung von Internet- und Web-Technologien für
den energiee�zienten Einsatz innerhalb von intelligenten Objekten. Zahlreiche Funktionen,
Interaktionsmuster und die Semantik von bestehenden Technologien müssen integriert und
Anforderungen hinsichtlich Skalierbarkeit, Sicherheit und Privatsphäre berücksichtigt werden.

Die vorgestellte SoA beinhaltet das Design einer zentralisierten Infrastruktur sowie einen
generischen und dezentralisierten Datenschutzmechanismus. Dadurch können Sicherheit und
umfassende Zugri�skontrolle in Szenarien gewährleistet werden, bei denen Geräte für Drittan-
bieter von Applikationen zur Verfügung gestellt werden. Weiters wird ein IoT-Kommunikations-
stack präsentiert, der Interoperabilität zwischen intelligenten Objekten auf Basis von optimier-
ten Internet- und Web-Technologien sicherstellt. Wesentliche Beiträge sind hier ein Peer-to-
Peer Kommunikationsmodell aufbauend auf IPv6 Multicasting und das Konzept eines Web-
basierten Tools, welches durch graphische Kon�guration die Realisierung von komplexen Kon-
trollszenarien ermöglicht. Letztlich wird ein Integrationskonzept für relevante Heim- und Ge-
bäudeautomationstechnologien, Identi�kationstechnologien, Smart Meter Protokolle und an-
dere wichtige Informationsquellen im IoT-Kontext vorgestellt.

Verglichen mit dem Stand der Technik und anderen verwandten Arbeiten ermöglicht der
Datenpunkt-zentrische Integrationsansatz in Kombination mit einem generischen Informati-
onsmodell und dem Peer-to-Peer Interaktionsmodell umfassende Interoperabilität und vermei-
det domänenspezi�sche Informationsmodelle. Benutzerbarkeit, Performance, und Verfügbar-
keit werden durch ein graphisches Kon�gurationstool und der Vermeidung von zentralen Kon-
trollinstanzen signi�kant verbessert. Zur Demonstration der Anwendbarkeit der vorgestellten
Konzepte wird eine Implementierung durchgeführt, die als Open-Source Projekt mit dem Na-
men IoTSyS verö�entlicht wurde. Die Skalierbarkeit des Kommunikationsstacks und des Inte-
grationskonzepts wird durch analytische Modelle und Simulation untersucht.

vii

Contents

1 Introduction 1
1.1 The wireless embedded Internet and the Web of Things 2
1.2 Building automation systems integration and Smart Grids 4
1.3 Problem statement and hypothesis . 8
1.4 Methodological approach . 13
1.5 Thesis outline . 14

2 State of the art and related work 17
2.1 Web service technologies . 17
2.2 Integration in the IoT and semantic interoperability 23
2.3 Web of Things . 32
2.4 Related work . 34

3 A service-oriented architecture for the Internet of Things 39
3.1 Requirements . 39
3.2 Architecture overview and alternatives . 41
3.3 A service-oriented architecture for the Internet of Things 51
3.4 IoT SoA core components and roles . 55
3.5 Access control in the IoT SoA . 57
3.6 Implementation . 63
3.7 Evaluation . 69

4 An IoT communication stack 81
4.1 Smart objects . 82
4.2 Requirements . 83
4.3 Stack overview . 86
4.4 Media and data link . 86
4.5 IPv6 . 89
4.6 6LoWPAN . 90
4.7 Message exchange and information encoding 92
4.8 Application services & information model . 95
4.9 IoT peer-to-peer communication and Web-based commissioning 112
4.10 Implementation . 115

ix

4.11 Evaluation . 122
4.12 Conclusion . 135

5 An IoT integration middleware 137
5.1 Requirements . 137
5.2 Integration middleware architecture . 140
5.3 Integration of KNX . 142
5.4 BACnet . 146
5.5 EnOcean . 152
5.6 Wired and wireless M-Bus . 156
5.7 EPCIS and RFID . 158
5.8 Weather data . 162
5.9 Implementation . 163
5.10 Integration middleware case study . 170
5.11 Scalability analysis . 178
5.12 Conclusion . 189

6 Conclusion and further outlook 191
6.1 Contributions . 191
6.2 Discussion . 192
6.3 Future challenges . 194

A Use case description for integration middleware case study 203

B Gateway scalability analysis results 207
B.1 Scenario 2 . 208
B.2 Scenario 3 . 210
B.3 Scenario 4 . 212
B.4 Scenario 5 . 214

Bibliography 217

x

CHAPTER 1
Introduction

The IoT is an emerging paradigm that extends the existing Internet infrastructure to the most
constrained devices and the embedded world. Smart objects equipped with Information- and
Communication-Technologies (ICT)-intelligence become citizens of a world wide Internet based
communication infrastructure that interconnects appliances, sensors and actuators, mobile de-
vices, wearables, identi�cation tags, smart objects and cloud based information systems and
services.

The term IoT has been �rst raised in 2001 [1] by the Auto-ID center of the MIT, which
mainly focused on the Electronic Product Code (EPC) based on Radio-Frequency Identi�ca-
tion (RFID) tags on objects and later the EPC network which formed an information system to
manage this kind of Internet of Things. Within the �rst use of this terminology, the existing In-
ternet and its communication technologies like the Internet Protocol (IP) were not in particular
focus. However, it can be observed that in the recent years the terminology is used for di�erent
aspects and seen in a broader context of providing pervasive and ubiquitous interconnection
of objects and systems.

In [2], the IoT vision as illustrated in Figure 1.1 is extending the current core and fringe
Internet to the IoT for di�erent application domains. Whereas the core Internet is made of
servers and routers and the fringe Internet covers currently most of the nodes like personal
computers, laptops or smart phones, the IoT will interconnect IP-enabled embedded compo-
nents such as sensors, machines, active positioning tags, RFID tag readers, and also building
automation equipment [2].

Atzori [3] identi�ed three main aspects of the IoT research and development. “Things”-
oriented visions focus on the identi�cation and Near Field Communication (NFC) technologies
equipping everyday objects with intelligence typically based on embedded micro-controllers,
sensors and actuators. Another aspect deals with the “Internet”-oriented visions that mainly
focus on the communication related aspects like communication protocols such as IP and the
use of IP directly on smart objects. Further, the idea of not only using IP and providing further
integration and interoperability by using Web technologies such as the Hypertext Transfer
Protocol (HTTP) can be summarized in the ongoing activities around establishing a Web of

1

Internet of Things
Trillion of nodes

Fringe Internet
Billion Nodes

Core Internet
Million Nodes

Building
Automation

Phones

Personal
sensors

Transportation

Logistics

Industrial
Automation

Smart
metering

Figure 1.1: IoT Vision [2]

Things (WoT). Finally, it is not only about interconnecting objects and devices. The gathered
data need to be processed. Upon the analysis of these data decisions need to be made and appli-
cations and services for the smart objects need to be provided. This can be summarized within
the more “Semantic”-oriented visions of the Internet of Things which deal with semantic mid-
dleware concepts and execution environments, and reasoning and data analysis of the available
information. This thesis extends these views [4] to cover also the relevance of existing Building
Automation System (BAS) appliances and the widespread use and gaining importance of IPv6
as shown in Figure 1.2.

1.1 The wireless embedded Internet and the Web of Things

A subset of the Internet of Things that is in the scope of this thesis is the wireless embedded
Internet based on IPv6 [2]. In this domain, the focus resides on how the Internet especially
based on IPv6 can be deployed on wireless operated micro-controllers embedded in objects in
order to create a scalable and ubiquitous communication infrastructure. The beginning of this
development can be seen in the �rst work of Adam Dunkels who presented an implementation
of a full TCP/IP communication stack �tting into an 8-bit micro controller architecture [5].
With this �rst step, showing that embedded devices can be connected through the Internet, a
�rst milestone for the IoT was set. In parallel, communication technologies for Wireless Sensor
and Actuator Networks (WSANs) became popular. With IEEE 802.15.4, a wireless communi-
cation standard has been set designed to interconnect sensors and actuators within a meshed

2

„Things“ oriented visions

„Semantic“ oriented visions

RFID

UID

Spimes

Smart
Items

NFC Everyday
objects

Wireless
Sensors and

Actuators

WISP

Smart
Semantic

Middleware

Smart
Technologies

Reasoning
over data

Semantic
execution

environments

Connectivity

Communication

INTERNET
OF

THINGS
IP for smart

objects

Internet 0

Web of
Things

„Internet“ oriented visions

Building automation systems

IPv 6

Figure 1.2: Aspects of the Internet of Things ([4] based on [3])

wireless communication network in a cheap and energy e�cient way. The �rst main user of
this standard was ZigBee, which up to date did not make a true breakthrough on the market.
Soon the idea of using IP communication within WSANs was born, but due to the large num-
ber of devices the issue of the exploited Internet Protocol Version 4 (IPv4) address space arose.
Therefore, the use of IPv6 became inevitable. The extended addressing space the IPv6 header
provides is large enough to identify all possible smart objects, but comes at the cost of a signif-
icantly bigger protocol header compared to the IPv4 protocol header making further optimiza-
tions necessary. Here, IPv6 over Low Power Wireless Personal Area Networks (6LoWPAN) [6]
provides an optimization layer that makes it feasible to use IPv6 within constrained wireless
environments, such as within an IEEE 802.15.4 wireless network. Figure 1.31 illustrates the
type of micro-controllers and dimensions that are capable of hosting an optimized IPv6 com-
munication stack together with an IEEE 802.15.4 radio. Using IPv6 as communication protocol
for the IoT provides at least interoperability at the network layer and a potential end-to-end
connectivity between globally distributed devices.

Beside having only IPv6 connectivity, there are also developments towards a Web of Things
communication architecture which aim at bringing down the Web to embedded devices. In [7],
a Web of Things application architecture is presented that allows to integrate physical objects
of the real-world into the Web. Web service based communication following the Representa-
tional State Transfer (REST) paradigm [8] can be used to provide an interoperable communica-

1The image shows the so-called Merkurboard of the Vienna open source domotics user group which is based
on an 8-bit 16 MHz AVR micro-controller with 128KB �ash and 16KB RAM memory. More details can be found at
http://www.osdomotics.com/.

3

Figure 1.3: IoT device micro-controller hosting a full IPv6 stack and IEEE 802.15.4 radio

tion interface to smart objects and to existing technologies. The main idea behind using IPv6
and Web technologies is to solve the interoperability problem that can be found in nowadays
home and building automation systems, wireless sensor network technologies, and identi�-
cation and near �eld communication technologies. The REST paradigm has been de�ned by
Roy Fielding [8] and is not a standard or technology by itself. Instead, it de�nes a design pat-
tern for the communication interfaces within a distributed information system, that resides on
the basic principles of the Web allowing to create powerful and scalable interfaces that rely on
standard Internet and Web technologies. Having HTTP and the underlying Transmission Con-
trol Protocol (TCP) as communication protocol makes the use of REST based communication
quite expensive for constrained devices and communication networks. This problem has been
addressed by Zach Shelby by proposing a User Datagram Protocol (UDP) based equivalent to
HTTP called Constrained Application Protocol (CoAP) [9] that allows to e�ciently us RESTful
Web service communication within constrained devices [10, 11].

1.2 Building automation systems integration and Smart Grids

Commercial buildings being responsible for about 23% of the worldwide energy consumption
are receiving high attention within current research on how energy e�ciency can be improved
and how renewable energy sources can be used to cover the energy demands of buildings [12].
Therefore, building automation systems are a key technology in order to address the ambitious
energy goals that have been set by several regional and national governmental institutions.

A further key application domain of the IoT can be found within Smart Grids. The rising
costs for energy and the increased usage of renewable energy sources put a huge stress on the
current power grid. Smart Grids are the next step in the evolution of the traditional power
grid. Information and communication technologies (ICT) are added to support integration of
variable and renewable energy sources, electric mobility, to provide customers with feedback
on energy consumption and to improve the grid stability. Within the future Smart Grid, nu-
merous applications depend on information provided by multiple stakeholders and gathered
from heterogeneous technical infrastructures (cf. Figure 1.4 on page 6).

There are several Smart Grid use cases resting upon an integrated IoT communication in-

4

frastructure such as providing energy feedback, demand side management, home and building
automation and e-mobility.

• Energy feedback: Domestic energy consumption is responsible for about 40 % of the
overall energy demands of our society [13]. Providing customers with detailed feed-
back on their energy consumption has been suggested to support them to save energy.
Meta-analysis comparing numerous empirical evaluations on the e�ectiveness of di�er-
ent types of energy feedback showed possible energy savings ranging from 0% to 20%
depending on the quality and the level of detail of provided information [14].

• Demand side management and load management: Demand side management and
load management both aim to reduce load peaks in the power grid and also to shed loads
in situations where grid stability is at stake. Several processes, like heating or cooling,
have a certain degree of freedom that allows to manage, shift or curtail the consumption
of electricity. Interaction of multiple stakeholders is needed to realize this challenging
use case within the Smart Grids.

• Home and building automation: A requirement for managing energy consumption
within buildings is to employ an integration with automation technology, typically pro-
viding automation for the domains i) Heating, Ventilation and Air Conditioning (HVAC),
ii) security and safety, and iii) consumer electronics. In the residential domain, these
technologies add value regarding comfort or ambient assisted living.

• E-mobility: E-mobility will further increase load in the Smart Grid that needs to be
managed through the usage of smart charging mechanisms, but at the same time the
accumulators of electric vehicles can act as a �exible storage if there is a local overpro-
duction from renewable energy sources.

The use cases require an integrated communication infrastructure that extends the local
building automation control network. Buildings and appliances need to be managed in an
inter-organizational way spanning large geographic areas.

The relevance of home and building automation technologies within the Smart Grid and
the problem of lacking standards and interoperability have also been addressed by a NIST
framework and roadmap [15] which aims at a guidance for establishing interoperability in a
Smart Grid communication infrastructure.

Existing BAS technologies following a multi-tiered architecture with a separation between
�eld communication protocols and management layer interfaces do not ful�l the requirements
on such a communication. Numerous technologies exist and some of them focus only on a cer-
tain domain of building automation. Interoperability and ease of integration within IT systems
is not given.

There are several main international standardized home and building automation tech-
nologies in use [16]. Although, a certain regional dominance of standards can be seen. The
standards usually have a focus on one or two layers of the multi-tiered automation architec-
ture, which has a �eld layer with sensors and actuators connected to an automation layer with

5

211

 Customer Domain 10.2.

The customer is ultimately the stakeholder that the entire grid was created to support. This is the
domain where electricity is consumed (see Figure 10-2). Actors in the Customer domain enable
customers to manage their energy usage and generation. Some actors also provide control and
information flow between the customer and the other domains. The boundaries of the Customer
domain are typically considered to be the utility meter and the Energy Services Interface (ESI).
The ESI provides a secure interface for Utility-to-Consumer interactions. The ESI in turn can act
as a bridge to facility-based systems, such as a Building Automation System (BAS) or a
customer’s Energy Management System (EMS).

Figure 10-2. Overview of the Customer Domain

The Customer domain is usually segmented into sub-domains for home, commercial/building,
and industrial. The energy needs of these sub-domains are typically set at less than 20kW of
demand for Home, 20-200 kW for Commercial/Building, and over 200kW for Industrial. Each
sub-domain has multiple actors and applications, which may also be present in the other sub-
domains. Each sub-domain has a meter actor and an ESI, which may reside in the meter, in an
EMS, or outside the premises, or at an end-device. The ESI is the primary service interface to the
Customer domain. The ESI may communicate with other domains via the Advanced Metering
Infrastructure (AMI) or via another means, such as the Internet. The ESI provides the interface to

Figure 1.4: Overview over the Smart Grid customer domain [15]

programmable logic controllers, and �nally a management layer that integrates multiple con-
trollers and connects to the enterprise IT systems. KNX is a major internationally standard-
ized [17] home and building automation system with the highest market share in Europe being
the biggest player in German speaking countries. Di�erent physical media can be used by
KNX, although the twisted pair bus cable (KNX TP1) is the most dominant solution. Existing
power cabling can be reused and a wireless communication option is also available for KNX.
KNX de�nes a custom media access, network and transport layer. Unicast addresses are used
for point-to-point communication, but for process communication between appliances a group
communication mechanism based on logical addressing is used that relies on multicast-based
communication between devices. A strength of this mechanism is that control logic is dis-
tributed in the �eld layer at the devices and no centralized controller is required. A weakness
is that no central point of control exists and that no state is persisted that can be used by an
external management interface.

A wireless communication standard with gaining popularity is EnOcean [18]. One of the
main features is the energy harvesting capability of EnOcean devices. For example, a push but-
ton can be operated without wiring or battery just collecting the required energy to transmit a
frame through the kinetic energy by pressing the button. Due to the limited energy it uses short
telegrams of 14 bytes. A best-e�ort communication approach is provided through replacing ac-
knowledgement messages through multiple re-transmissions with a random interval. Further,
meshed networking is also not supported by EnOcean.

For Smart Grids, and especially smart metering the Metering Bus (M-Bus) provides a Eu-
ropean norm to interface with smart meter devices and to collect meter readings. It de�nes a

6

wired physical layer based on a master/slave medium access scheme and a wireless communi-
cation mechanism. The wireless mechanism uses the 868 MHz ISM band and further speci�es
security features to protect the transmitted data.

At the automation and management layer, BACnet is one of the currently most impor-
tant international standardized protocols [19, 20]. BACnet de�nes a standardized network and
application layer. The network layer is in principle agnostic to the used physical layer and
medium access technology. The application layer follows an object-oriented approach, with a
set of standardized generic BACnet object types. To modify the properties of objects, alarming,
event handling, �le access, remote device management several services are standardized.

A main trend that can be found in nowadays building automation systems is the adoption
of the IP protocol and wireless technologies. While IP technology is well-established at the
management tier of automation systems, it is still not treated as a �rst class citizen. State of
the art technologies, like for example KNX, are using IP to tunnel their custom network layer,
transport layer and application layer technologies. Further, IP technologies ease the integra-
tion with enterprise and IT systems and can be one enabler for crossing the borders between
di�erent technologies. However, the adoption of IP technologies does not necessarily require
an integration with the Internet, although this would allow to fully exploit the potential of
having IP in place. IP can also be operated in closed networks, still leaving the main advantage
of using mature technologies with several implementations and tools available [12]. Technolo-
gies such as 6LoWPAN re�ect the trend of using IPv6 in wireless networks, which is also taken
into account for recent standardization activities as it can be seen for ZigBee/IP [21].

The advantage of using IP in the �eld layer can be summarized as [22]:

• Interoperability: The IP communication stack is designed to provide interoperability
at the network layer of a communication infrastructure. Di�erent link-layer technolo-
gies are supported. The protocol is also adopted and available on most platforms and
operating systems used on servers, PCs, smart-phones, mobile and embedded devices.

• Evolvability and versatility: The IP architecture is evolvable and can be used to run
versatile applications. The key to this advantage resides in the end-to-end principle of
IP, which allows application layer protocols to evolve independently of the underlying
network layer protocols and mechanisms. No application level information is required
for routing within the network.

• Scalability: The scalability of the IP architecture is �eld-proven, due to its successful
operation of the public Internet in the recent years.

• Con�guration andmanagement: Because of its maturity and wide-spread use several
protocol exist for network con�guration and management.

• Avoiding gateways: Where gateways seem like a promising alternative to adopting IP
in the �eld layer, they are on the long term a less �exible and inherent complex solution,
showing poor scalability.

There are several alternatives to the IP architecture for networking in constrained devices
where alternative layering approaches in the network stack and sometimes the strict layering

7

Region 2013 2014 2015 2016 2017 2018 2019 CAGR% (2014-2019)
NA 1.37 1.94 2.59 3.27 4.02 5.07 6.36 28.6%
LA 0.62 0.85 1.10 1.32 1.57 1.93 2.39 22.8%
Europe 2.05 2.86 3.80 4.76 5.89 7.39 9.09 26.0%
APAC 1.92 2.80 3.87 5.02 6.46 8.45 11.06 31.7%
MEA 0.89 1.35 1.93 2.58 3.32 4.41 5.67 33.2%
Total 6.84 9.81 13.30 16.95 21.26 27.25 34.57 28.6%

Table 1.1: IoT gateway market forecast by region in billion $ [15]

are violated due to optimizations [23–25]. However, the history of the recent years shows a
strong trend towards the use of the IP architecture, because of its bene�ts such as modularity
and separation of concerns [26–29].

Meantime, building management follows the cloud computing mainstream and local build-
ing maintenance tools are shifted away from a local operation to managed processes provided
by third parties. Software-as-a-Service (SaaS) paradigms allow to move the energy manage-
ment, operation and maintenance of buildings into the cloud.

There is signi�cant research and standardization e�ort ongoing to solve this interoperabil-
ity problem and to provide a standardized way of integrating home and building automation
systems into the Internet of Things.

The interoperability problem cannot only be solved by using IP and Web communication.
Also the application layer and information models need to be standardized. Therefore, a stan-
dardized communication stack is required. Further, there are several approaches to de�ne
gateways that integrate existing technologies and provide a link from local communication
to cloud-based IT services. Here, a seamless integration of IoT devices and existing appliances
needs to be found.

The task of gateway components is to act as local data collector concentrator with control,
�ltering and aggregation capabilities, supporting multiple IoT relevant technologies [30]. Ta-
ble 1.1 provides a forecast on the IoT gateway market grouped by regions. Signi�cant e�orts
will be placed in this area of IoT gateways and integration middlewares in order to solve the
interoperability problems within the IoT.

1.3 Problem statement and hypothesis

As identi�ed within [15], the use of closed or proprietary standards leads to high integration
costs and can be an inhibitor for the realization of the IoT or an application domain like Smart
Grids. For true interoperability, not only physical and syntactical interoperability needs to be
established, also the semantic interoperability needs to be provided through agreeing on com-
mon information models and application services. Use cases requiring this interoperability are,
for example, the energy e�cient operation of HVAC-systems. Here, the HVAC control system
needs to be interfaced which resides on the automation layer of a typical BAS. At the same time
room automation and appliances need to be integrated and controlled. In this case, wireless

8

automation technologies are becoming more relevant due to the ease of installation. Driven
through the evolution towards a Smart Grid, smart metering devices also need to be consid-
ered, as they provide information about the current energy consumption. In future, information
about the power grid, energy market and other information such as weather forecasts have to
be taken into account by the BAS to optimally plan the energy usage of a building or residen-
tial home. Further use cases can be seen in the home automation domain. A gaining need for
the integration of di�erent technologies can be seen in the area of lighting control, safety and
security, comfort and convenience, energy management, remote management and assisted liv-
ing [22]. The integration of these technologies is a challenging technical problem, since most
of the protocols and systems are optimized towards their usage domain. They use di�erent
physical media and media access protocols, further they provide di�erent capabilities for mes-
sage exchange and means to structure the exchanged information. Chapter 5 focuses on the
analysis of the di�erent technologies and their capabilities. The challenge is here, to identify a
concept that is generic enough to provide a common integration layer but at the same time be-
ing powerful enough to provide the capabilities required for the di�erent application domains
and use cases. This thesis will focus on the problem of �nding such an integration concept for
providing interoperability amongst the heterogeneous technologies of the IoT. The di�erent
levels of interoperability are illustrated in Figure 1.5. This thesis aims at providing technical
and informational interoperability towards the level of semantic understanding within the IoT.

Problem statement 1. Within the IoT application scenarios such as Smart Grids, heterogeneous
stakeholders, technologies and data sources need to be integrated. Access to systems needs to be
provided to third-party application providers.

There are several di�erent integration styles that can be used as a basis to tackle the interop-
erability challenge. From an IT system integration point of view, the main architectural styles
are to use either a shared database amongst heterogeneous systems, remote procedure calls,
distributed object middlewares, a message bus or �le transfer [31]. Most of these architectural
approaches can be seen in state of the art IoT integration approaches and middlewares. Cen-
tralized cloud-platforms follow the approach of providing a shared database for all stakeholders
and appliances. Other technologies such as Message Queueing Telemetry Transport (MQTT)
or Extensible Messaging and Presence Protocol (XMPP) follow the message-oriented middle-
ware approach. A detailed overview of state of the art technologies, a survey and comparison
are provided within Chapter 2 and Chapter 3. However, it will be shown that a service-oriented
architecture based on Web services is the most promising solution for realizing an IoT com-
munication infrastructure. In an inter-enterprise communication context, SOAP-based Web
services provide a feature-rich stack that o�ers strong standardized management, discovery
and security protocols.

Hypothesis 1. A SoA based on Web services o�ers the most �exible solution for an integration
layer that makes it possible to reuse existing information sources for a variety of application sce-
narios.

The history of home and building automation systems shows that the adoption and use of
these technologies is far behind the expected market growth. This can be explained due to the

9

large number of closed standards being incompatible to each other [22].

Problem statement 2. Proprietary communication stacks lead to high integration costs and are
an inhibitor for the realization of an Internet of Things.

Organizational

Informational

Technical

3: Syntactic
Interoperability

2: Network
Interoperability

1: Basic Connectivity

4: Semantic
Understanding

5: Business Context

6: Business
Procedures

7: Business
Objectives

8: Economic/
Regulatory Policy

Political and economic objectives as
embodied in policy and regulation

Strategic and tactical objectives shared
between businesses

Alignment between operational
business processes and procedures

Awareness of the business knowledge
related to a specific interaction

Understanding of the concepts contained in
the message data structures

Understanding of data structure in messages
exchanged between systems

Mechanism to exchange messages between
multiple systems across variety of networks

Mechanism to establish physical and logical
connections between systems

Figure 1.5: The GridWise Architecture Council’s eight-layer stack provides a context for de-
termining interoperability requirements [15]

The IP architecture and especially IPv6 can be an enabler due to the enhanced addressing
space and the feasibility of use within WSANs thanks to the optimization o�ered by 6LoWPAN.
Further, Web services can provide the required interoperability to realize interoperable end-to-
end connectivity between di�erent appliances and also a seamless integration with IT based
services. Moreover, a complete system stack is required that also speci�es the services, in-
formation models and semantics of the application layer. Existing technologies such as OPC
Uni�ed Architecture (OPC UA), Open Building Information eXchange (OBIX) or BACnet Web
services (BACnet/WS) aim to provide the required abstraction layer for a uni�ed integration
and common application layer. Within this thesis, an OBIX based modeling approach is taken.
The rationale behind this is explained within Chapter 4 and Chapter 5. OBIX is used to de�ne
a generic ontology capable to represent most of the existing BAS which is powerful enough to
realize complex application use case scenarios.

10

Hypothesis 2. A holistic integration concept taking into account all layers of a communication
stack based on IPv6 and Web technologies is the most promising way to provide interoperability
at the device level.

The problem introduced through the heterogeneity of existing home and building automa-
tion technologies has been identi�ed within a market analysis for home energy management
systems [32], which can be one application within the IoT.

Problem statement 3. The heterogeneity of existing home and building automation technologies
is currently an inhibitor for a successful realization of IoT and Smart Grid applications.

For a seamless integration of new IoT appliances, gateways o�er a transition path to a
full deployment of IoT-enabled devices. A gateway concept is required, which maps the exist-
ing communication technologies to an IoT communication stack in a component-oriented and
modular way. Details of such a gateway concept are covered in Chapter 5.

Hypothesis 3. A gateway concept including a mapping between di�erent communication prin-
ciples towards a common communication stack based on Internet and Web technologies can solve
the interoperability problem with existing home and building automation technologies, and ease
and simplify the engineering process of such systems.

The use of IP and Web services assumes a certain computational capability of appliances
and a certain Quality of Service (QoS) of communication links. Devices are to be considered
as always active and links are expected to provide a su�cient bandwidth with a low packet
loss to successfully operate IPv6. These assumptions generally do not hold in an IoT context.
Further, the message size of Web services and text-based encoding increase the message size
signi�cantly and lead to an according demand of bandwidth, memory and CPU power. The
future IoT is supposed to host billions of devices, therefore system scalability is of utmost
importance.

Problem statement 4. Existing Web-services-based communication is too heavy weight for the
usage within constrained environments like embedded devices or wireless sensor and actuator net-
works and cannot fully exploit the communication features provided by IPv6. Further, scalability is
signi�cantly reduced by the heavy-weight communication and interaction patterns such as polling
or unicast-based message exchange.

There are several performance studies of using traditional HTTP- or Simple Object Access
Protocol (SOAP)-based Web services on embedded devices [33] [34]. It can be seen that the
resource e�ort and the energy consumption are signi�cant and the average performance that
can be achieved is poor. Although the continuously decreasing costs can be observed for CPUs
and memory, the main challenge, especially in the domain of battery operated smart objects,
is the energy e�ciency. So even if more computing power is becoming available at a reason-
able price the energy consumption is the main inhibitor of using more powerful computing
resources in the IoT.

11

Hypothesis 4. Applying optimizations toWeb services and applying communication principles of
state of the art building automation technologies allow to create scalable communication interfaces
based on IPv6 and Web services that �t even on constrained devices.

Within Chapter 4, a communication stack is presented, capable to use RESTful Web ser-
vice communication based on CoAP and OBIX on constrained devices and further standard-
izing several additional features such as service discovery and security. Compared to other
Web service based communication approaches using Web sockets, Device Pro�le for Web Ser-
vices (DPWS) or Universal Plug and Play (UPnP) the advantage of Web services are combined
with powerful interaction principles such as asynchronous- and group communication. This
is especially important since information polling and unicast-based message exchange have a
severe performance and scalability impact on WSANs. The advantage of the communication
stack, regarding its performance, is shown by simulation and covered in Chapter 4.

Another important aspect for an IoT stack is the ease-of-use and ease-of-con�guration.
Current approaches mainly rely on script-engines demanding strong software engineering
skills.

Problem statement 5. Script-based IoT application demands high domain and technical knowl-
edge from the end-user and decreases the usability.

Through a datapoint centric information model and concepts that allow to synchronize
the state of datapoints amongst heterogeneous devices, control logic can be con�gured in a
simple way without the need of any scripting logic or data type transformation. More complex
application logics like closed loop controllers, such as Proportional-Integral-Derivative (PID)-
controllers, can be contained within logic objects o�ering simple datapoints for interaction.

Hypothesis 5. Datapoint centric information modeling together with logic objects and state syn-
chronization increase the usability of an IoT communication stack by avoiding any scripting e�ort
for the end-user.

The IoT stack concept de�ned in Chapter 4 follows this design approach. A graphical con-
trol logic editor tool proves the feasibility of scripting-less control logic editing for selected use
cases evaluated in a case study within Chapter 5.

The openness and interoperability of IoT communication stacks come with the problem of
exposing sensitive appliances and interfaces in the Internet.

Problem statement 6. Interoperable and easy to access interfaces impose a security and privacy
risk in the IoT context.

For enforcing security, several state of the art mechanisms can be applied such as asym-
metric or symmetric encryption schemes. Challenges arise in the management of keys and
maintaining trust in the heterogeneous IoT environment. Security can be introduced at dif-
ferent layers of a communication stack for example at the transport layer being transparent
to applications or at the application layer leading to a higher coupling between applications.
Privacy issues need to be taken into account and controlled which stakeholders gain access to
which data asset.

12

Hypothesis 6. A �ne-grained access control concept and state of the art security mechanism at
the inter-enterprise communication level enable a secure and privacy-aware communication in an
IoT communication infrastructure.

1.4 Methodological approach

This section describes how the stated hypotheses are tested within this thesis. First, the require-
ments on an integration concept for the IoT are acquired. A survey of state of the art of inte-
gration architectures for the IoT is performed and related research work is summarized. Also a
survey on the communication principles of existing home and building automation technolo-
gies is conducted in order to identify the best-practices for e�cient communication for control
networks. Based on the �ndings, a system architecture is derived by evaluating di�erent ar-
chitectural alternatives. Further, an IoT stack is developed that solely relies on open Internet
and Web protocols but comes with optimizations that allow a usage within constrained envi-
ronments found in WSAN. For this IoT stack, a mapping to existing communication protocols
is de�ned. The feasibility of the integration architecture and the IoT stack is shown through a
case study based on a proof of concept implementation. To analyze the scalability properties,
analytic and simulation models are used.

Technical requirements engineering methodology

Technical requirements (TR) on an IoT SoA and an IoT integration middleware are identi�ed
by interviewing domain experts in the context of a research project [35]. For gathering the
requirements, the following methodology is applied. First, the domain experts are recruited in-
cluding technical experts from an energy utility, transmission and distribution system domain,
commercial building �eld and a large-scale enterprise for electrical engineering. A workshop is
conducted with the domain experts to identify functional and non-functional requirements on
an IoT ICT infrastructure. Therefore, use cases of several di�erent example applications that
should be realized on top of such a communication infrastructure are identi�ed and formalized
using UML [36]. The UML use cases served to de�ne the scope of the required ICT infrastruc-
ture, the involved stakeholders and the required data assets. Based on the de�ned UML use
cases generalizable non-functional technical requirements are de�ned.

State of the art survey and BAS technology selection

A state of the art survey for IoT integration architectures is conducted and according tech-
nologies and standards are identi�ed. The di�erent approaches are described regarding their
communication principles and application use cases. Further, most relevant existing home and
building automation technologies are studied, in order to identify the best practices of exist-
ing control network protocols. For the evaluation, only protocols based on open standards are
taken into consideration.

13

Software architecture and IoT stack design

The existing identi�ed integration architecture and communication principles led to a collec-
tion of architectural decisions [37,38] that are evaluated and �nally decided in order to design
an integration software architecture and the IoT communication stack. The rationale behind
the decision is explained and the software architecture is described using UML [36] and the
4+1 view model proposed by Kruchten [39].

Proof of concept implementation and case study

To evaluate the integration architecture and the IoT communication stack, a proof of concept
implementation is performed and evaluated within a case study that covers selected use cases
identi�ed within home and building automation and for which the IoT integration provides an
obvious added value. The proof of concept implementation of the IoT SoA is mainly based on
the Java platform, partly using a Platform as a Service (PaaS) cloud platform, the JBoss appli-
cation server and an OSGI-based gateway. For the implementation of the IoT communication
stack, the open source operating system Contiki [40] acts as platform.

Scalability analysis methodology

To analyse the scalability of the proposed integration architecture and the IoT communication
stack, several quality-of-service metrics can be measured. Besides scalability, typical metrics of
interest are response time, throughput, availability, reliability, security, and extensibility [41].
The performance engineering methodology presented in [42] is used to analyze the expected
performance characteristics of a system throughout the whole system lifecycle, starting at the
early stage of design.

There are di�erent types of models for modeling the workload and performance behavior of
a system and usually the di�erence is how complex and accurate these models are and further
how costly it is to create them. The most accurate model is a concrete implementation of
the system, which is quite costly while scalability can only be analyzed at a very late state of
the system development. Otherwise analytic modeling based on queuing network models or
Markov chains [43,44] or simulation models [45] using discrete-event simulation environments
can be used. For the analysis of the presented IoT SoA and integration middleware, an analytic
approach based on queuing network models is taken, whereas for the analysis of the stack
within a WSAN a discrete-event simulation [46] approach is chosen.

1.5 Thesis outline

This work presents a concept for an Internet of Things integration which includes a holis-
tic communication stack based on IP and Web technologies. The stack can be deployed on
most constrained devices. An integration middleware for existing home and building automa-
tion, smart meters, RFID and Internet information sources o�ers a similar interface for existing
state of the art technologies. Chapter 2 provides an overview of the state of the art and other

14

IoT-related communication stacks and integration approaches. The Web of Things applica-
tion architecture of Dominique Guinard [7] is discussed and set into relation with the concept
and architecture presented here. Furthermore, relevant standards for IoT integration architec-
tures are analyzed and related research work is compared [47, 48]. Also, di�erent Web service
technologies are evaluated and discussed. An IoT system architecture based on the service-
oriented architecture principle is presented within Chapter 3. The system architecture contains
an overall ICT architecture that identi�es several core components that need to be operated
within a global IoT system. The main contributions are the composition and architecture of
technologies and a �ne-grained access control mechanism that is generic enough to be ap-
plied to heterogeneous domains [49], addressing the privacy threats within the IoT. A proof
of concept implementation is presented and a scalability analysis based on a benchmark and
queuing network analysis is used to identify potential bottlenecks. An evaluation of a cloud-
based access control component shows that a scalable system setup can be achieved. The IoT
communication stack providing an interoperable and uni�ed communication interface for the
IoT is presented in Chapter 4. Existing Web and Internet technologies can be used to create a
uni�ed communication interface. Domain speci�c information models can be de�ned resting
upon a common interoperable information meta-model. IPv6 speci�c features like multicasting
can be used to built a communication stack that allows e�cient peer-to-peer interaction with
Web service based communication [50,51]. The integration middleware concept that provides a
seamless integration to existing home and building automation technologies is covered within
Chapter 5 [4, 52]. For several technologies out of the home and building automation domain,
it is shown how a mapping to the IoT communication stack can be done. The uni�ed integra-
tion layer can ease the engineering phase of home and building automation technologies [53].
An evaluation of the developed integration middleware concept regarding interoperability and
scalability is included within the chapter. Further, a case study with several use cases found
for home and building automation control scenarios spanning heterogeneous technologies and
information sources is presented. A proof of concept implementation of the proposed concepts
and architectures is described within each of the chapters. It covers an implementation based
on Java for the gateway deployed on an embedded PC platform like the Raspberry PI and a
Contiki-based implementation for constrained devices [40]. For the evaluation of the scalabil-
ity, an analytic queuing network model allows to estimate the performance of the gateway and
a discrete event simulation is used to analyze the scalability properties of the communication
stack within a wireless sensor and actuator network. Within Chapter 6 the thesis is closed with
a critical discussion of the results and an outlook on future work.

15

CHAPTER 2
State of the art and related work

This chapter summarizes the state of the art and related work in context to this thesis. First,
an overview of Web service technologies is performed together with a quantitative and qual-
itative comparison as published in [48]. Secondly, state of the art IoT integration approaches
with a focus on home and building automation technologies are analyzed based on the work
within [47]. Thirdly, theWeb of Things research �eld is de�ned and related work to the concepts
within this thesis is discussed. The chapter is concluded with an overview and comparison of
related work.

2.1 Web service technologies

Web services are an important building block of the IoT in order to provide interoperable mes-
sage exchange between di�erent communication partners. This is also identi�ed within the
Smart Grid context by the NIST [15].

Regarding data exchange in the IoT, several standards are identi�ed to be important for the
realization, which are SOAP [54], WSDL [55], XML [56], XSD [57, 58], EXI [59] and CIM [60].
Before these standards are put into context with each other a brief overview of the history of
Web services is provided.

Web services originated in the area of enterprise IT with the goal of easy integration of
heterogeneous software systems also known as enterprise application integration. Platform
speci�c communication middlewares that fall into the Remote Procedure Call (RPC)-based in-
teraction style like Java Remote Method Invocation (RMI), .NET remoting or Distributed Com-
ponent Object Model (DCOM), make it hard to interact with software systems that run on other
platforms. These technologies are typically based on custom protocols with a binary encoding
of messages making them hard to be used in cross-enterprise scenarios with multiple stake-
holders and a variety of platforms. Web services try to overcome these issues by being based on
platform neutral technologies and furthermore by following the principles of service-oriented
computing. Services can be de�ned in the following way:

17

“Services are self-describing, open components that support rapid, low-cost com-
position of distributed applications.”

[61]

Service providers implement the services and o�er service descriptions that describe the
capabilities and the protocols to interact with a service. In order to provide loose coupling
between the service provider and service consumer, a service registry is used to publish service
descriptions and to discover services and lookup service provider interfaces. The application
of this interaction pattern and the adhering to the requirements of the service design allow to
build a SoA that �ts well a cross-enterprise application integration scenario that is likely to be
found in future Smart Grid ICT infrastructures. Smart metering data is one core data asset that
is to be involved in a variety of business processes that span multiple enterprises.

Web services aim at being platform neutral and either allow an RPC- or message-based
interaction. In the case of a SoA, reliable asynchronous message-based communication is the
typical usage scenario.

Figure 2.1 lists the protocol stacks of the di�erent existing Web service technologies, which
are SOAP-based Web services or the so-called WS-* stack and Web services following the REST
style. REST Web services can be further divided into HTTP Web services and optimized REST
Web services for constrained networks and devices using CoAP as communication protocol.

TCP/IP, HTTP, SMTP, FTP, ... Transport

Messaging

Description

Quality of Service

Composition

SOAP, WS-Adressing

WSDL WS-Policy

WS-Reliable
Messaging

WS-Security
WS-Transaction

WS-Coordination

WS-BPEL WS-CDL

U
D

D
I, W

S-A
d

d
ressin

g,
W

S-M
etad

ataExch
an

ge

UDP/DTLS

CoAP HTTP

TCP

WADL
CoRE Link

Format

C
o

R
E R

eso
u

rce
D

irecto
ry,

D
N

S-SD
, m

D
N

S

WS-* Stack REST

Figure 2.1: WS-* and (Constrained) REST overview

WS-* (SOAP)

Web services based on SOAP can be considered as one industry standard and are widely adopted
in enterprise IT system landscapes. SOAP uses eXtensible Markup Language (XML) for mes-
sage serialization in order to provide a platform neutral representation. This advantage of
platform neutrality and human-readability of XML comes at the cost of less e�ciency regard-

18

ing message size and required computational resources for handling SOAP messages. SOAP
supports a feature-rich stack building the WS-* stack as presented in Figure 2.1.

The core standards are SOAP and Web Service Description Language (WSDL). They are
accompanied by several other standards that provide additional features for specifying policies
that allow to describe the QoS attributes and required security levels for the interaction with
a service. WS-Reliable Messaging provides mechanisms to reliably deliver a SOAP message in
the presence of component, system or network failures. Security at the message level indepen-
dent of the transport layer is standardized within WS-Security using XML encryption and XML
signature. In this way, security mechanisms are interoperable between di�erent vendor imple-
mentations. With WS-Transaction and WS-Coordination, the outcome of distributed actions
can be coordinated in order to provide distributed atomic transactions.

For the context of enterprise processes, standards such as WS-BPEL and WS-CDL are de-
�ned that allow to compose several services to business processes and also to coordinate inter-
enterprise interactions. SOAP enables a variety of message exchange patterns. A classic client/-
server request/response interaction model is o�ered, as well as asynchronous messaging or
broker-based communication following the publish-subscribe interaction style.

With UDDI, WS-Addressing and WS-MetaDataExchange, the process of service discovery
and interfaces for service registries is standardized.

Representational State Transfer (REST)

A di�erent architectural style compared to SOAP Web services are RESTful Web services that
follow the representational state transfer architecture style presented by Roy Fielding [62].
HTTP is an architectural style built on top of existing protocols. REST guides how to design
the architecture of an application by using resources that are identi�ed by URIs and interac-
tion to these resources through the usage of HTTP in respect to the verbs that are de�ned by
HTTP. The HTTP verbs GET, PUT, POST, DELETE need to be properly used to adhere to the
REST style. The Web Application Description Language (WADL) is meant to provide compara-
ble service description capabilities like WSDL but does not come to the same maturity, which
can also be seen that WADL is still a W3C submission and not a recommendation like WSDL.
HTTP does not come with speci�c security facilities. For security, transport level security by
using HTTP Secure (HTTPS) has to be used. This can be considered as point-to-point security
which leads to problems if intermediaries or proxies are involved in the communication. The
interaction model for REST based services are limited to a request/response protocol. There-
fore, asynchronous communication and scenarios where a server pushes updates to a client
are only realizable through workarounds based on pull-based approaches. Furthermore, group
communication is also not possible with REST based services. REST does not come with sepa-
rate standards beside existing Web technologies for service discovery or service registries.

Constrained Application Protocol (CoAP)

The Constrained Application Protocol has been recently rati�ed as IETF RFC [9] handled via
the IETF working group on Constrained RESTful Environments (CoRE). As the name suggests
it is about bringing the REST architecture to constrained devices like sensor or actuators.

19

From a layered system view, CoAP resides on the same level as HTTP and provides similar
functionality. The main di�erence is that it uses UDP instead of TCP which comes with sev-
eral advantages and disadvantages. First, it reduces the computational requirements of a stack
implementation compared to TCP. Furthermore, the reliable connection-oriented communi-
cation provided by TCP is at the one hand desirable but has severe drawbacks in constrained
communication links like wireless networks (e.g., based on IEEE 802.15.4). CoAP complements
the idea of having IP-based communication for constrained devices, e.g. within wireless sensor
networks, with an application protocol. To achieve having IP addresses on embedded devices,
6LoWPAN provides the required optimizations as layer between the wireless data link layer
and IPv6. The available payload on such networks is quite limited making UDP based proto-
cols the preferable choice compared to TCP based protocols. CoAP supports reliable and non-
reliable communication either in a request/response interaction model but also asynchronous
push-based and multicast-based group communication. Regarding security, CoAP shifts the
responsibility to the transport layer using either Datagram Transport Layer Security (DTLS)
or IPSecurity (IPSec). For service discovery in Constrained RESTful Environments (CoRE), the
domain name system with service discovery capabilities standardized within DNS Service Dis-
covery (DNS-SD) can be used. Beside this, a central resource repository can be provided by a
standardized interface based on the CoRE resource directory speci�cation which is at the time
being still at IETF draft state [63].

Qualitative comparison

This section provides a qualitative comparison of the Web service technologies.

Criteria

For the comparison the following criteria are used as de�ned in [48].

• Open Standard: In contrast to proprietary protocols, the use of open standards ensures
�exibility, maintainability and extensibility in the long term while preventing data/ven-
dor lock-in situations. Hence, a communication technology based on open standards has
considerable advantages over proprietary protocols, especially in the �eld of Smart Grids
where long-term planning is required.

• Complexity: The more complex a communication technology or standard is, the more
e�ort has to be put into its implementation and maintenance. Therefore, when compar-
ing two technologies that both o�er adequate features and have suitable properties the
less complex one might be the more advantageous one.

• Platform neutral: Communication technologies that are only available on one vendor
platform can lead to higher integration costs and de�nitely o�er less �exibility.

• Interface description: Technologies featuring machine readable interface descriptions
have the advantage that platform speci�c APIs (e.g., .NET, JAVA) may be generated au-
tomatically.

20

• Shared library: A shared library that is required to communicate imposes a tight cou-
pling between a server and a client while a loose coupling in general o�ers more �exi-
bility and better suits to the service-oriented paradigm.

• Service discovery: An important feature of a Web service based SoA is service dis-
covery. Service descriptions are published by service providers in order to be discovery
by service consumers. One way to realize this is to create service directories, which
can be used by a service provider to register services and by a service consumer to
search for certain capabilities and to locate a service endpoint. The discovery can ei-
ther by done at the design-time of a system by the engineer or at run-time through a
dynamic binding to a service endpoint. Directories can be hosted at a central entity
or distributed amongst multiple stakeholders in peer-to-peer or hierarchical structure.
Further, directory-less approaches that solely rely on local peer-to-peer discovery mech-
anisms can also be used [64].

• Message exchange pattern: Depending on the exact use case, synchronous (request/re-
sponse) or asynchronous communication (publish-subscribe, eventing) is more conve-
nient.

• Security: Some technologies already come with built-in security facilities while other
depend on a secure transport layer.

• Transport: The transport layer that can be used for the communication technology in
question.

• Application scenario: A Web service or communication technology can be categorized
for certain application scenarios, e.g. enterprise service bus, cross-enterprise SoA, mon-
itoring and control applications, rich client platforms (RCP) vs. thin clients.

Evaluation

Table 2.1 shows the results of a qualitative comparison based on literature research of the
various technologies.

Discussion

The results show that every Web service technology comes with speci�c advantages and fea-
tures. Where WS-*-based Web services show their strengths in enterprise IT environments due
to the rich feature set provided by the stacks, their resource demand is a problem for embedded
devices. For protecting the privacy of persons in the IoT, the WS-*-stack o�ers the required
features and technologies to provide a secure access to appliances for third-parties. The fea-
tures are used within Chapter 3 to create a �ne-grained access control mechanism. Certain
interaction patterns (e.g., asynchronous communication or group communication) cannot be
realized properly with technologies that use HTTP as transport layer. RPC protocols provide
more freedom in interaction patterns but tend to be proprietary and platform speci�c. Recent
developments like CoAP and E�cient XML Interchange (EXI) try to combine the advantages

21

W
eb

service
technology

W
S-*

R
EST

(H
T
T
P)

R
EST

(C
oA

P)
O
pen

standard
Yes

N
o

D
raft

C
om

plexity
M

edium
Low

Low
Platform

neutral
Yes

Yes
Yes

Interface
description

Yes
N

o
Yes

Shared
library

N
o

N
o

N
o

Service
discovery

Yes
N

o
Yes

Security
Yes

N
o

(H
TTPS)

N
o

(IPsec)
M
essage

exchange
pattern

Sync
Sync

Sync/Async
T
ransportlayers

H
TTP

TCP
UD

P
Targetapplication

platform
Enterprise

A
pp.

Thin
clients

M
2M

Table
2.1:Q

ualitative
com

parison
[48]

22

of Web services, e.g. ease of integration and standardization, with the e�ciency of binary RPC
protocols. This makes the use of Web service technologies feasible and allows to use IP based
communication throughout the whole IoT communication infrastructure directly on embedded
devices. Especially, the opportunity for group communication of CoAP enables a peer-to-peer
interaction of IoT devices.

2.2 Integration in the IoT and semantic interoperability

This section describes which state of the art approaches for the integration of heterogeneous
technologies in the IoT exist and how semantic interoperability can be provided for communi-
cation stacks directly deployed on embedded devices [47].

For BAS technologies, existing standards deal with the problem of interoperability. The
main standards found in this area are OPC UA, OBIX and BACnet/WS. Other approaches that
aimed to bring Web services down to home automation devices are DPWS and UPnP.

The di�erent standards have their strengths and weaknesses for di�erent application use
cases. However, all of them might be a potential candidate to realize semantic interoperability
within an IoT SoA.

IPSO application framework

The IPSO application framework de�nes the application layer based on RESTful Web services
to be used on constrained IP smart objects found in home automation, building automation
and general M2M applications. The information model is structured in function sets. A func-
tion set is speci�c to a type of resource and de�nes a human readable name, a path template,
a resource type used for discovery, the interface de�nition, and the data type and the allowed
value range. Several function sets are speci�ed for example to represent management capa-
bilities of the device or more domain speci�c such as light control or sensors. The message
encoding is using either a plain text encoding or the Sensor Markup Language (SenML). For
SenML as default encoding Javascript Object Notation (JSON) is suggested. The framework
aims at being complementary to existing standards such as the ZigBee smart energy pro�le 2
or OBIX. Since the framework does not intend to be an IoT standard the achievable interoper-
ability is questionable. Further, no standardization body is taking care for the maintenance of
the application framework. Furthermore, the capabilities for information modeling are rather
puristic. For these reasons, the IPSO application framework is not considered for the de�nition
of an IoT stack within this thesis.

Message Queue Telemetry Transport (MQTT)

MQTT is an open message protocol for Machine to Machine (M2M) communication that en-
ables the transferring of telemetry-style data in the form of messages from pervasive devices
or constrained networks to a server or small message broker. Pervasive devices may range
from sensors and actuators, to mobile phones, embedded systems on vehicles, or laptops and
full scale computers.

23

There are a couple of speci�cations for the MQTT protocol. The MQTT v3.1 speci�ca-
tion enables a publish/subscribe messaging model in an extremely lightweight way. It is useful
for connections with remote locations where a small code footprint is required and/or network
bandwidth is at a premium. Based on the MQTT v3.1 speci�cation, an Organization for the Ad-
vancement of Structured Information Standards (OASIS) standardization process was started
in March 2013 to make MQTT an open, simple and lightweight standard protocol for M2M
telemetry data communication.

MQTT for Sensor Networks (MQTT-S) v1.2 speci�cation for sensors is aimed at embedded
devices on non-TCP/IP networks, such as ZigBee. MQTT-S is a publish/subscribe messaging
protocol for Wireless Sensor Network (WSN), with the aim of extending the MQTT protocol
beyond the reach of TCP/IP infrastructures for sensor and actuator solutions.

MQTT is not fully overlapping with CoAP and Lightweight Open Mobile Alliance (OMA)
Device Management (DM), since MQTT is a telemetry protocol. CoAP is a resource access pro-
tocol, while OMA Lightweight M2M (LWM2M) is a device management protocol. Therefore,
they are not designed to satisfy the same requirements and use cases.

MQTT is more focused on publishing events with a subscribe mechanism. In contrast,
CoAP is designed to integrate RESTFul architectures in constrained environments.

In conclusion, due to the centralized architecture of MQTT, even when considering that it
will play a key role in the telemetry market, it is not likely to reach a critical mass in the rest
of the use cases and application scenarios where the IoT and M2M are involved. The message-
oriented middleware approach with a central message broker works well for sensor networks,
where the information distribution to interested client is within the problem scope. However,
for actuation the round-trip to the message broker is suboptimal. Datapoint-centric systems
suit better the RESTful Web service design paradigm. Therefore, MQTT is not considered as
communication protocol for the IoT communication stack de�ned in Chapter 4.

OBIX

The OBIX speci�cation is maintained by OASIS. The main goal of OBIX is to provide an open
Web service interface for accessing any kind of building automation systems. As a platform
independent technology, OBIX can be used on top of any existing technology. To exchange
data, OBIX de�nes a small set of Web services that can be used over SOAP or HTTP binding.
The object model is concise but very �exible due to its support for object-oriented concepts.

The basic elements within OBIX are objects. Each object is of a certain object type. Cur-
rently, 17 standard object types have been speci�ed where each type directly maps to an XML
element name. Typical examples are objects that model single data items like bool, int, real,
and str as well as objects types for time and date representations (e.g., date and time). In addi-
tion to model normal data (e.g., datapoints of type real or bool), OBIX provides the concept of
operations (op). Operations are methods that can be invoked by a client.

An important concept of OBIX is the use of so called contracts. Contracts can be compared
to templates. They are used to de�ne new object types but also provide a possibility to specify
default values.

Objects are identi�ed by either a name, a hyper-reference, or both. Names are used to
de�ne the role of an object and used as programmatic identi�ers. The name of an object is

24

represented by the name attribute and should not be used for display purposes. Instead the
displayname facet shall be used.

In addition to these basic information modeling concepts, the OBIX speci�cation provides
a Core Contract Library. Within this library, basic objects like Units and Weekdays are already
de�ned. Furthermore, OBIX de�nes the following concepts:

• Points: Points provide an abstraction of the datapoint concept within the automation
system.

• Watches: Watches are used by clients to register to dedicated objects for monitoring
object changes.

• Alarming: Concepts for querying, watching, and acknowledging of alarms are also part
of OBIX.

• History: OBIX supports mechanisms to retrieve the history of object values.
OBIX is based on a service-oriented client/server architecture where OBIX clients can ac-

cess the data of an OBIX server using Web services. It follows more strictly the RESTful design
paradigm and provides a read, write and invoke service to be used for interacting with OBIX
objects identi�ed through a Uniform Resource Identi�er (URI).

Within this thesis, OBIX is identi�ed as the most promising technology to provide a base
for an IoT stack. The features are suitable for the integration of state of the art communication
technologies. Together with an optimized protocol binding the technology can be used within
constrained embedded devices [2]. The communication stack de�ned in Chapter 4 uses OBIX
for de�ning an IoT information model and extends the standard with several optimizations and
a peer-to-peer interaction model.

Lightweight OMA device management

Lightweight OMA Device Management is a protocol for device management of M2M devices
in 3GPP LTE-A networks.

This represents a stable take o� point for device management in cellular networks, due
to the considerations to support IoT/M2M communications in the release 10 of the LTE-A
standard. The application of this protocol in the M2M-domain requires e�cient message for-
mats and transport replacement such as CoAP and the CoRE link format. For that reason,
Lightweight OMA DM has chosen CoAP as message exchange protocol.

In addition, it focuses on providing mechanisms for asynchronous and synchronous com-
munication, store, forward and caching mechanisms for optimizing the communication, and
security features mechanisms to provide two way authentication and secure communication
channels. Lightweight OMA DM is supported by oneM2M, which provides an international
initiative that will play a relevant role to propose the standards for the syntactic and semantic
information.

oneM2M de�nes an abstraction layers using a common format. This will ease the creation
of the higher-layers for the IoT and M2M that enables a high-level modeling of real world
entities, development of applications, and �nally huge quantities of data collection. oneM2M
will also o�er support and solutions to facilitate the development of vertical industries and new
markets.

25

The oneM2M standard follows a similar approach as presented within this thesis, however
custom information models are de�ned and important features such as peer-to-peer interaction
are not provided.

ETSI M2M

ETSI M2M is a service-oriented architecture to build the Service Capabilities Layer (SCL) for
M2M/IoT devices, M2M/IoT Gateways, and M2M/IoT servers.

ETSI M2M standardizes the resource tree structure that resides on the M2M SCL from each
one of the components. These components exchange information by means of reference points.
The reference points enable the interoperability between the mentioned components such as
devices, gateways and servers [65].

ETSI M2M interfaces are being implemented following the RESTful architectures style over
HTTP and CoAP. The information is represented by a tree of resources, that uses XML-based
or JSON-based representations for information interchange.

The dIa interface speci�es the communication between the devices and the gateways (M2M
Gateway Service Capability - GSCL), the mId interface between the gateways and the servers
(M2M Network Service Capabilities Layer - M2M NSCL), and the mIa interface between the
M2M NSCL and the network applications.

These interfaces provide the functionality for the registration of devices/gateways to the
backend, the authorization mechanism to read or write a resource, subscription and noti�ca-
tions for speci�c events, and device management operations.

In addition to the interfaces, ETSI M2M o�ers the identi�cation of the application and
devices requirements for asynchronous and synchronous communications, quality of service
mechanisms based on policies for optimizing the communication, and security for mutual au-
thentication between M2M NSCL and device/gateways and secure channel establishment for
data transportation.

ETSI M2M is re-using existing and well-de�ned standards for the device management. Fi-
nally, ETSI M2M implementations are being deployed by projects such as FI-WARE which has
developed preliminary instances of the M2M interface [66], and by companies such as Radisys,
Grid2Home, Intecs, Intel, InterDigital, Sensinode and Telecom Italia [67]. They have tested
several types of devices for di�erent applications, and the integration with technologies such
as ZigBee, WiFi and cellular networks.

For integrating of existing technologies, ETSI M2M proposes a gateway concept residing
on OBIX. However, within this thesis a di�erent device modeling approach is taken and further
features are de�ned.

BACnet Web Services (BACnet/WS)

BACnet/WS is an international standard maintained by the American Society of Heating, Re-
frigerating and Air-Conditioning Engineers (ASHRAE). It is an extension to the Data Commu-
nication Protocol for Building Automation and Control Networks (BACnet) speci�cations.

26

Although the intention of BACnet/WS was to enrich the BACnet protocol with a Web
service interface, BACnet/WS is not limited to the BACnet protocol. Due to its generic design,
BACnet/WS can in principle be used for any kind of technology.

The fundamental elements of the data model in BACnet/WS are nodes. Except the root
node which represents the entry point of the underlying data model, each node has exactly
one parent node and may have an arbitrary number of children. Using this way of arranging
nodes, a hierarchy can be de�ned which structures the underlying data model.

A node represents a data primitive within the data model. The network visible data of
a node is represented as a set of attributes. Attributes are used to describe nodes and may
themselves have attributes. While it is possible to specify proprietary attributes, BACnet/WS
de�nes a �xed set of standard attributes.

The communication concept of BACnet/WS is based on the client/server model. In BACnet/WS
a set of services is de�ned to provide read and write access to the node hierarchy. Currently,
11 di�erent Web services are de�ned which are mainly used to read and write the attributes of
nodes or to retrieve information about the attributes (e.g., the array size). Typical examples are
the getValue() and getValues() services to read the value of an attribute as well as the setValue()
and setValues() services that are used to change the value of an attribute. Other means like
services to change the data model (e.g., add or delete nodes) or to query the node hierarchy are
not supported (browsing the node hierarchy has to be done by reading the Children attribute).

Although the BACnet/WS speci�cation also follows a RESTful Web service approach as
OBIX, the speci�cation was at the time of de�ning the IoT stack and system concept presented
in Chapter 4 less mature. Also the, extensibility provided by OBIX through the contract mech-
anism cannot be found.

OPC uni�ed architecture (OPC UA)

OPC UA is the successor of the popular OLE for process control (OPC). OPC provides a
uni�ed interface to automation systems and uses the Windows speci�c Component Object
Model (COM)/DCOM for data exchange, which introduces an interoperability problem if other
platforms than Windows should be used. By OPC UA the interoperability of OPC is addressed
through specifying a platform neutral binary message format for exchanging messages and a
SOAP-based Web service protocol binding. OPC UA is an international standard that consists
of multiple sub-parts, such as a part that describes the information modeling capabilities, a part
of the speci�cation taking care of the data access interfaces, a part for alarming and conditions
and parts for historical access and data programs.

To model information in OPC UA, a so-called address space model is introduced that pro-
vides the following features [68]:

• The address space model supports object-oriented mechanisms allowing the de�nition
of type hierarchies and inheritance.

• The modeling concept allows a de�nition of models that consist of full-meshed nodes.
• Information models are de�ned server-side and so, clients do not need to be aware of the

models since they are able to retrieve them from the server.
• Type information and type hierarchies can be accessed by clients since they are exposed

like normal data.

27

• A key concept of OPC UA information modeling is that the OPC-speci�c information
model can be extended by de�ning own models on top of existing ones.

Information modeling in OPC UA is based on de�ning nodes and references between them.
Nodes are used to model any kind of information. This includes the representation of data
instances or the de�nition of data types. Depending on the node class, a node has several at-
tributes that describe it. Some attributes are common to all nodes like the NodeId (uniquely
identifying a node within the address space), the NodeClass (de�ning the node class), the Dis-
playName (localized text that can be used by a client for displaying the name), and the Browse-
Name (identifying a node when browsing the address space). Other attributes are only avail-
able for certain node classes. For example, variables have the attribute Value that represents
the value of the variable and the attribute DataType that indicates the data type of the Value
attribute.

OPC UA is completely based on the client/server model. The communication is performed
in sessions. To gain access to data, an OPC UA client establishes a connection to one or more
OPC UA servers. In OPC UA, devices can choose one of two di�erent transport protocols for
communication. To secure the communication, a secured channel is set up during session es-
tablishment. This secured channel is provided by the OPC UA communication layer which is
located between the transport layer and the application layer. Based on these secure transport
protocols, OPC UA de�nes di�erent services that are used by OPC UA clients to communicate
with the servers and vice versa. These services are grouped into so called services sets. Typical
service sets are the Attribute Service Set which contains services to read and write attributes of
nodes as well as the Session Service Set that consists of services to open and close a session.

OPC UA provides a powerful and feature rich system speci�cation. However, it follows
more the approach of heavy-weight SOAP Web services which have not seen a broad accep-
tance in the area of WSANs, due to the high resource demands. The OPC UA information mod-
eling and communication services can be considered as incompatible to the design paradigm
of RESTful Web services. Therefore, a de�nition of OPC UA over CoAP is not possible in a
meaningful way, which leads to the conclusion of not considering OPC UA for the de�nition
of the IoT stack within this thesis.

Comparison of standard capabilities

This section provides a qualitative comparison of di�erent application layer IoT standards
based on a literature research. The used criteria are explained in the following paragraphs
and the comparison is provided in a tabular form.

The information modeling criterion refers to the capabilities of the used meta-modeling ap-
proach that can be used to represent di�erent concepts and their relationship and to express
information. This includes comprehensiveness, �exibility, extensibility, semantic capabilities and
complexity which refer to the fact of how many concepts are provided by the meta-model. This
concerns, for example, if an object-oriented-modeling approach is available and whether only
generic concepts are provided or the meta-model is already aligned to certain domains. Fur-
thermore, it is addressed if the meta-model can be modi�ed or extended and which semantics
can be provided for human beings. Finally, a criteria states how complex it is to use the tech-
nology in practice. These aspects are chosen, since they are heavily in�uencing whether a

28

technology can be applied in di�erent domains and if information models can be extended and
customized for certain application scenarios.

For the provided communication services, the amount of services (e.g., data access, device
management and con�guration, discovery) are accounted and the possible transport mecha-
nisms and encodings are outlined. The built-in security capabilities are also used as a criterion.
These aspects are especially important if a technology needs to be applied in a constrained en-
vironment. If a technology only provides a rudimentary set of communication services, custom
extensions are required leading to a degradation of the interoperability of a technology.

Finally, the maturity is evaluated by comparing the amount of available implementations,
industry adoptions and standardization status. Table 2.2 summarizes the assessment results.
These criteria are important if a technology is selected for a product, since the development
costs are strongly depending on them.

Comparison of resource representation and data formats

In general, the information encoding could either be text-based or binary-based. Whereas text-
based encodings are desirable for human interaction and allow for investigating exchanged
messages with standard tools, binary encodings are far more e�cient for machine-to-machine
communication. The encoding e�ciency re�ects the ratio between the pure information pay-
load and the overhead introduced with the encoding. For example, some encodings (e.g., XML-
based) are rather verbose, since meta-information might be provided in a redundant way within
a message. If meta information related to exchanged messages is separately exchanged in order
to keep the message format small, a strong communication partner coupling is introduced, since
the message formats have to be kept synchronized between all communicating entities. Encod-
ings should be standardized in order to provide long-term interoperability and should provide
platform independence by not being limited to a speci�c platform. Table 2.3 summarizes the
assessment results.

29

IP
SO

A
pp

.
Fr
am

e.
M
Q
T
T
(-
S)

O
B
IX

on
eM

2M
ET

SI
M
2M

B
A
C
ne

t/
W

S
O
PC

U
A

In
f.

m
od

el
in

g

Co
m

pr
eh

en
siv

en
es

s
Lo

w
M

ed
iu

m
M

ed
iu

m
M

ed
iu

m
M

ed
iu

m
Lo

w
H

ig
h

Fl
ex

ib
ili

ty
Lo

w
M

ed
iu

m
H

ig
h

H
ig

h
H

ig
h

M
ed

iu
m

H
ig

h
Ex

te
ns

ib
ili

ty
Lo

w
M

ed
iu

m
H

ig
h

M
ed

iu
m

M
ed

iu
m

M
ed

iu
m

H
ig

h
Se

m
an

tic
ca

pa
bi

lit
ie

s
Lo

w
M

ed
iu

m
M

ed
iu

m
H

ig
h

H
ig

h
M

ed
iu

m
M

ed
iu

m
Si

m
pl

ic
ity

H
ig

h
M

ed
iu

m
M

ed
iu

m
M

ed
iu

m
Lo

w
M

ed
iu

m
Lo

w

Co
m

m
.s

er
vi

ce
s

A
m

ou
nt

Lo
w

M
ed

iu
m

Lo
w

H
ig

h
H

ig
h

M
ed

iu
m

H
ig

h
Tr

an
sp

or
t

H
TT

P,
Co

A
P

TC
P,

UD
P

H
TT

P,
Co

A
P

H
TT

P,
Co

A
P

H
TT

P,
Co

A
P

H
TT

P
TC

P

En
co

di
ng

Pl
ai

nt
ex

t,
JS

O
N

M
Q

TT
Bi

-
na

ry
XM

L,
O

BI
X

Bi
na

ry
EX

I,
JS

O
N

XM
L,

JS
O

N
XM

L,
JS

O
N

XM
L

XM
L,

O
PC

UA
Bi

n.

Se
cu

rit
y

N
on

e
(T

ra
ns

po
rt)

W
ea

k
N

on
e

(T
ra

ns
po

rt)
H

ig
h

(A
pp

lic
at

io
n)

H
ig

h
(A

pp
lic

at
io

n)
N

on
e

(T
ra

ns
po

rt)
H

ig
h

(A
pp

lic
at

io
n)

M
at

ur
ity

Av
ai

l.
im

pl
em

en
ta

tio
ns

Lo
w

M
ed

iu
m

M
ed

iu
m

M
ed

iu
m

M
ed

iu
m

Lo
w

M
ed

iu
m

In
du

st
ry

ad
op

tio
n

M
ed

iu
m

M
ed

iu
m

Lo
w

H
ig

h
H

ig
h

Lo
w

M
ed

iu
m

St
an

da
rd

iz
at

io
n

st
at

us
N

ot
st

an
-

da
rd

iz
ed

Up
co

m
in

g
OA

SI
S

st
an

da
rd

OA
SI

S
st

an
da

rd
O

M
A

,
3G

PP
an

d
ET

SI
st

an
da

rd
s

ET
SI

,
O

M
A

an
d

Br
oa

db
an

d
Fo

ru
m

st
an

da
rd

s

IS
O

st
an

da
rd

IE
C

st
an

da
rd

Ta
bl

e
2.2

:C
om

pa
ris

on
of

in
te

gr
at

io
n

st
an

da
rd

s

30

Pl
ai
n
Te

xt
JS
O
N

X
M
L

R
D
F

EX
I

EX
I(
sc
he

m
a-
in
fo
rm

ed
)

C
us

to
m

bi
na

ry
In

fo
rm

at
io

n
en

co
di

ng
Te

xt
Te

xt
Te

xt
Te

xt
Bi

na
ry

Bi
na

ry
Bi

na
ry

En
co

di
ng

e�
ci

en
cy

M
ed

iu
m

M
ed

iu
m

Lo
w

Lo
w

H
ig

h
H

ig
he

st
H

ig
he

st
Co

m
m

un
ic

at
io

n
pa

rtn
er

co
up

lin
g

N
o

N
o

N
o

N
o

N
o

Ye
s

Ye
s

St
an

da
rd

iz
ed

N
o

N
o

Ye
s

Ye
s

Ye
s

Ye
s

N
o

Pl
at

fo
rm

in
de

pe
nd

en
ce

H
ig

h
H

ig
h

H
ig

h
M

ed
iu

m
M

ed
iu

m
M

ed
iu

m
Lo

w

Ta
bl

e
2.3

:M
es

sa
ge

en
co

di
ng

ev
al

ua
tio

n

31

2.3 Web of Things

The term Web of Things (WoT) refers to the integration of physical and every-day objects into
the World Wide Web. The WoT is the next evolution step of the IoT. Whereas the IoT mainly
focuses on interconnecting objects using IP, the WoT goes further and uses Web technologies
to interconnect objects. The term was �rst discussed at the Internet of Things conference in
2008, by researchers like Dominique Guinard [69, 70], Vlad Trifa [71], Erik Wilde [72], Dave
Ragett [73] and others.

Within his PhD thesis, Dominique Guinard presents “A Web of Things Application Archi-
tecture - Integrating the Real World into the Web” [7]. Figure 2.2 gives an overview of the four
layers of the WoT architecture, which are i) accessibility, ii) �ndability, iii) sharing and iv)
composition. Above these layers the applications reside and are o�ered to end users.

11

Figure 2.1: The four layers of the Web of Things architecture: Accessibility, Findability,
Sharing, Composition. Applications can be built on top of each layer, but as we go up the
layers they become more accessible to a broader community of developers and users. The figure
provides an overview of the deliverables of this thesis. On the left-side are the architectural
building-blocks. On the right-side the applications and prototypes.

Figure 2.2: A Web of Things Application Architecture [7]

The device accessibility layer de�nes how a consistent and uniform access to all kinds of
connected objects can be provided. Guinard uses RESTful Web services based on HTTP 1.1 to
create such a uniform access API. The advantages of using Web technologies for the IoT and a
�rst realization of a Web of Things are presented in [74] and in [74].

The main two requirements for a device to participate in the Web of Things are:

1. Implementation of the TCP/IP protocols ideally over an IEEE 802.3 (Ethernet)
or IEEE 802.11 (WiFi) network.

32

2. Implementation of a Web server supporting HTTP 1.1 protocol.
[7]

For machine-to-machine communication, JSON is used to encode the device and object
representation. Within his thesis, he already identi�ed the problem of using heavy-weight
TCP/IP and HTTP 1.1 communication on constrained nodes. Therefore, two mechanisms are
presented that allow a real-time noti�cation of Web clients if devices update their status. The
�rst option is to use so-called Web hooks, which are simply HTTP call-back addresses that
can be used by a device to notify clients. The other approach is to use Web Sockets, which
allows to switch an HTTPs connection to a full duplex communication using TCP/IP. Guinard
also identi�es the need of integrating existing technologies not capable of Web communication
through smart gateways also called reverse proxies [75]. The overall integration architecture is
given in Figure 2.3.22 The Web of Things

Figure 2.5: Web and Internet integration with Smart Gateways (left), direct integration
(right). The Smart Gateways are small software application servers containing: Device Drivers
to understand the low-level smart things, core services to create Web-APIs, pluggable services
to offer additional functionality and a Web server.

As an example, a POST request on /generic-nodes/1/sensors/humidity returns a 405

status code. The client understands the status code as the notification that “the method

specified in the request is not allowed for the resource identified by the request URI”.

A concrete example of mapping domain-specific exceptions to Status Codes is provided

in Chapter 4.3.2 where RFID exceptions are mapped to HTTP status codes.

2.1.2 Implementation Strategy: Connecting Things to the Internet

For a device to be part of the Web of Things, there are two basic requirements:

1. Implementation of the TCP/IP protocols ideally over a IEEE 802 (Ethernet) or

IEEE 802.11 (WiFi) network.

2. Implementation of a Web server supporting the HTTP 1.1 protocol.

While an increasing number of embedded devices are supporting these two requirements

natively, not all of them do, mainly because their computational, memory and communi-

cation bandwidth are too limited. Hence, in this section we propose two alternatives to

integrate smart things to the Internet and the Web.

Figure 2.3: Web and Internet integration with Smart Gateways (left) and direct integration
(right) [7]

The integration architecture foresees existing devices or devices which are very unlikely
to become TCP/IP and HTTP enabled to be integrated using the smart gateway which has a
modular design. It is consisting of core modules providing pure device access and additional
optional modules that can be used for discovery, storage and other translation services. Further,
there are devices that directly operate TCP/IP and HTTP. For Web clients, the integration
architecture is transparent.

33

The �ndability layer, as described by Guinard, is related to the local and global discovery
services described in Chapter 3. Guinard puts more emphasize on how to describe devices and
according meta-models and how a search can be realized upon such a semantic description
layer. The sharing layer deals with how an access to the services of devices and things can be
passed to third parties. The concept mainly relies on using existing social network infrastruc-
tures and an authorization protocol such as the OAuth 2.0 Authorization Framework (OAuth).
Finally, the composition layer deals with the fact how applications can be built based on Web-
mash-ups using the discovery devices. Therefore, two approaches are presented. The �rst
approach is based on a physical mash-up engine where a script-based approach allows to build
application logic. The second approach is based on Widgets which are components typically
based on HTML and JavaScript code.

Within the present thesis, a similar but more advanced approach to the device accessibility
layer is presented compared to the work of Guinard. The IoT stack in Chapter 4 describes
how a uniform communication interface for the IoT can look like. However, the approach
does not stop at the message exchange or message encoding. It takes further into account
a standardized meta-model for information modeling and standard application layer services
that are common in the context of the IoT. In this way, a major contribution towards more
interoperability within the IoT is reached. Further, the communication e�ciency is increased
by providing a peer-to-peer interaction mechanism based on group communication. Chapter 5,
with the concept of an IoT integration middleware, is related to the smart gateway approach
of Guinard. However, more focus is put on how existing BAS communication stacks can be
integrated and information sources like the EPC Information System (EPCIS).

Similar concepts to the �ndability and sharing layer are part of this thesis, although there
are signi�cant di�erences regarding the technical mechanisms and protocols to achieve the
functionality. Finally, the concept for creating control logic through a Web-based commis-
sioning tool provides a script-less approach to build applications and further allows to decen-
tralize the application logic on multiple devices in order to make the system more reactive and
fault-tolerant. This provides a signi�cant contribution compared to the architecture of Guinard
which can be considered as the state of the art of a Web of Things architecture.

2.4 Related work

IoT gateways

In [10], Shelby presents how RESTful Web services can be adopted for a deployment on con-
strained devices connected through wireless networks. The paper introduces the standardiza-
tion work done by the IETF CoRE working group, with CoAP as a main contribution. The
interaction through CoAP with native IoT devices is sketched and the possible architecture is
outlined. [2] deals with the implications of constrained data links that operate IPv6 on the
upper application layer protocols. Furthermore, this book provides �rst ideas how to integrate
various application layer protocols in the IoT.

How CoAP and EXI can be used to deploy Web services on constrained devices is described
in [11]. The experimental evaluation gives �rst insights in the footprint of the CoAP stack

34

implementation and packet size improvements that can be gained by the use of EXI. In [76],
it is shown how CoAP can be used as transport binding for SOAP Web services using DPWS
on top of the implementation. Both papers present possible protocol stacks for native IoT
devices. In contrast, this thesis presents how existing BAS devices can be integrated through a
transparent gateway in such novel systems.

State of the art integration of BAS using Web service technologies like OPC UA, BACnet/WS
and OBIX are presented in [77], [78] and [79]. The work in�uenced the architectural decisions
within this thesis. The implications of using IPv6 as network layer for the integration of BAS
in the IoT are analyzed in [4], which is also incorporated into the design of the proposed IoT
stack.

Semantic problems that arise when di�erent application layer protocols are integrated, and
a solution to these problems based on ontologies and semantic Web technologies are addressed
by e.g. [80] and [81]. The de�ned approaches there show how di�erent systems can be modeled
through a generic abstraction layer. Semantic Web technologies can be considered as future
work to extend the IoT stack. However, due to the computational e�ort such an integration
must consider the use of gateway devices with the according computational resources.

Group communication

In [82], a RESTful runtime script container for IoT applications is presented. The concept is
based on a JavaScript execution engine that is extended with CoAP capabilities to perform asyn-
chronous communication. For creating control logic, the runtime container acts in a client/-
server model with the CoAP enabled devices. For control logic that involves the interaction
between two di�erent devices, all the information has to be transported to the application
server from the one device and back to the other device. Although it is shown that using
asynchronous communication this can be done quite e�ciently, still a single-point of failure is
introduced. The group communication model presented in this thesis avoids this single point
of failure and the additional round trip of information.

A �rst standard draft on using IPv6 multicast for CoAP group communication is provided
in [83]. The document guides how to use CoAP in the context of group communication. Fur-
thermore, it includes di�erent use cases and protocol �ows that illustrate the group communi-
cation. The standard proposes the use of a speci�c group communication resource that should
be o�ered by a CoAP endpoint. A group may consist of one or more CoAP endpoints. A CoAP
endpoint can join multiple groups. This can be identi�ed as misconception that limits the use
of group communication scenarios, because in the concept of this thesis a group is not based
on CoAP endpoints instead it is based on datapoints, where one CoAP endpoint can provide
multiple datapoints. Having CoAP as message exchange protocol does not provide a standard-
ized information model of resources, no normalized datapoint semantics are speci�ed. This is
covered by the application layer service speci�ed in this stack through OBIX, enhanced with a
novel group communication extension.

An alternative solution for group communication in CoAP is analyzed in [84]. There, virtual
entities are introduced that provide a group endpoint for multiple resources within the wireless
sensor network. The mechanism is realized through the use of CoAP unicast messages. As will

35

be shown in this thesis, the latency for synchronizing a state amongst a group of devices can
be strongly reduced if IPv6 multicasting is used.

The relevance of multicast communication for peer-to-peer interaction in wireless net-
works for home and building automation has already been identi�ed in [85]. The authors
present how dynamic core based multicast routing protocol for ad-hoc wireless networks can
improve the routing of multicast requests in ZigBee networks. Similarly, [86] also presents an
e�cient multicast routing mechanism. The principles can be seen related to the concept pre-
sented in this thesis. However, for the most e�cient solutions also the upper layers above the
network layer need to be considered to provide a meaningful way of group communication.

In [87], a new protocol named stateless multicast RPL forwarding (SMRF) is described.
The proposed concept optimizes the multicast forwarding de�ned by RPL. By simulation the
authors show, that compared to Trickle [88] based multicasting, the delay and the energy e�-
ciency can be improved at the cost of increased packet loss. This multicast routing protocol is
also considered for the group communication model shown in Chapter 4 and its performance
is evaluated within the simulation.

Control approaches in the Internet of Things

A centralized control approach based on a RESTful runtime script container is presented in [82]
where a JavaScript execution engine is used as runtime container and acts a client/server-model
with CoAP enabled devices. This introduces a single point of failure and a further source of
delay since for all control interactions a round-trip to the central control unit is required.

WoTKit [89] provides a framework to create IoT mash-ups. Its architecture is based on a
Java Web application using the Spring Framework. For exchanging sensor data between com-
ponents, a Java Messaging Service (JMS) broker is used. A graphical editor allows wiring logic
modules similar to the popular Yahoo Pipe Web mash-up editor. A user can use Python as
scripting language to create new control modules. Within this architecture, also a centralized
component is responsible to execute the control logic which is a disadvantage compared to the
approach presented in this thesis. The graphical wiring of modules provides a more conve-
nient way to create control logic but due to the high �exibility of the data model of exchanged
messages, it is not as �exible as the datapoint-centric approach in this thesis.

There are several Internet of Things platforms like Paraimpu [90], Xively1 (known as COSM
or Pachube) or ThingSpeak2. What they have in common is a centralized cloud platform that
is used to collect sensor data and information about devices. Usually control logic is executed
at the server side and more or less user-friendly scripting approaches are available. In contrast,
this thesis presents a concept that avoids the use of a centralized cloud platform for executing
control logic. Furthermore, it presents the concept of a graphical control logic editor that avoids
the use of scripting and increases the usability for the end user.

1https://xively.com/
2https://www.thingspeak.com/

36

Smart grids and service-oriented architectures

Interoperability among heterogeneous technologies and stakeholders within the Smart Grid is
a key issue which has been addressed by the NIST Framework and Roadmap for Smart Grid In-
teroperability Standards [15]. Web services using SOAP for message exchange with HTTP used
as transport layer and XML for message encoding are key technologies to provide interoper-
ability. Open and interoperable message interfaces are one aspect, but for true interoperability
also the information models and semantics on the application layer need to be addressed. For
this purpose, technologies and standards like OPC UA and OBIX provide standardized service
interfaces, information models and data representations. OPC UA provides a core information
model but can be extended with custom information models for certain domains or to map
other technologies. The focus of OPC UA resides in the area of industrial automation systems.
Its importance for Smart Grids is outlined in [15]. OPC UA provides beside a custom binary
protocol also a protocol binding to SOAP for message exchange and XML for data encoding.
OBIX can be seen as an alternative to OPC UA which focuses on the domain of building au-
tomation system. It favours a RESTful protocol design and comes with a standard object model
that can be used to represent appliances found within home and building automation systems.
It supports also a powerful way to extend the existing object model with custom types using
the concept of contracts.

For interoperable information models in the Smart Grid, the Common Information Model
(CIM) [91] provides a common vocabulary and basic ontology using UML for the electric power
industry. In theory, the CIM would be applicable within the IoT context, however the current
focus is more on the energy distribution network domain and more IoT speci�c models would
be required to provide a true bene�t within the IoT context.

In [92], di�erent views on service-oriented architectures in the context of Smart Grids are
outlined. Within the inter-enterprise view, a SoA based on OPC UA, CIM and semantic Web
services is presented. More details on the created SoA are provided within [93]. This concept
can be seen as alternative architecture compared to the service-oriented architecture developed
within this thesis. In an inter-enterprise context the proposed technologies have their advan-
tage and especially the semantic Web technologies open the �eld for interesting application
scenarios. However, the applicability for embedded devices is not taken into account and can
be considered as nearly infeasible with the proposed technology stack.

[94] presents use cases for the application of OPC UA in the Smart Grid and shows the fea-
sibility of using OPC UA within an ICT infrastructure for the Smart Grid. Also, implementation
details regarding the integration with business process engines are described. The interesting
aspect is the close integration with business processes. This can also be achieved with the
technology stack proposed in this thesis. There are several business process engines that allow
a direct integration of RESTful Web services.

Access control in federated service-oriented architectures and Smart Grids

AWeb Service Architecture for Enforcing Access Control Policies is described in [95]. Within this
paper, a concept is presented how authorization for Web service requests can be handled. It is

37

based on user access rights and uses the Extensible Access Control Markup Language (XACML)
and WS-Policy.

How access control can be realized in a cross-organizational context is shown in [96], where
Web services of di�erent service providers are composed in order to realize business function-
ality. Di�erent access control frameworks for a SoA are evaluated and a 2-level access control
architecture is proposed that overcomes the limitations of the evaluated frameworks. The ar-
chitecture is in general similar to the presented access control architecture within Chapter 3,
but details on the policy structure are not stated. Within this thesis, a concrete and generic
policy structure is given and also the integration of BAS technologies is considered within
this generic policy structure. Furthermore, a performance evaluation is conducted within this
thesis and provides also insights into the scalability of such an architecture.

Challenges regarding the authentication and authorization for Smart Grid application inter-
faces are addressed by [97]. Key questions are outlined regarding the possibility of losing the
authenticated user identity if various application interfaces are in use, privilege escalation and
the challenge of de�ning and enforcing consistent authorization policies. Furthermore, the pa-
per describes interoperable standards that can be used in a reference architecture to address
these challenges. Similar technologies have been identi�ed as applicable for the SoA de�ned
in this thesis, but the paper does not come with any implementation or evaluation details.

A Public Key Infrastructure (PKI) trust model is evaluated and a Smart Grid PKI is presented
in [98]. The presented PKI model can complement the SoA access control concept described
within this thesis.

38

CHAPTER 3
A service-oriented architecture for

the Internet of Things

In the future Smart Grid, numerous stakeholders within the electric power grid need to ex-
change information in order to realize applications like customer energy feedback, billing and
invoicing of variable tari�s, demand side management and e�cient charging of electric vehi-
cles. This chapter presents a SoA for the IoT with a concrete instantiation for Smart Grids.
Using a SoA based on Web services promises a convenient way to provide a data infrastruc-
ture capable to realize the required interactions in a �exible way. A main concern in such an
architecture is how access to data can be controlled in order to prevent security or privacy
violations. Access control depends strongly on authentication and authorization mechanisms.
Therefore, this chapter presents �rstly a SoA for the Smart Grid, and secondly an access control
mechanism taken into consideration from the early beginning of the system design. A proof
of concept implementation and a scalability analysis are used to investigate the requirements
on computational resources in a large scale deployment.

3.1 Requirements

For gathering the requirements on a SoA for Smart Grids, a user survey has been conducted
in the scope of a research project (Smart Web Grid [35]) and several consumer-driven require-
ments on such a communication infrastructure have been identi�ed. Further, technical experts
have been interviewed to identify technical and non-functional requirements. The following
subsections provide an overview of the results whereas more details on the conducted study
and methodology can be found within [35].

Consumer-driven requirements

• The trustworthiness of an authority responsible for storing energy data is a key require-
ment of consumers (CR1).

39

• Private consumers dislike a centralized storage and management of data due to the po-
tential privacy threats. The data should be kept local and stored as decentralized as
possible (CR2).

• Also the consumer wants to know what happens with the data, which third-party has
access to the data stored within a trustworthy platform and for which purpose the access
is granted. Therefore, it has to be transparent to the user, which data are collected (CR3)
and how they could be used (CR4). This requirement has also been identi�ed within [99]
and [100] for context aware homes.

• The fears of private consumers and the concern of business consumers about unautho-
rized access to their data require strong access control mechanisms. Here, the require-
ment is that not only it is visible who has access to the data. Thus, the user needs to be
in control if the access is granted or not and also in which level of detail (CR5).

• For an IoT SoA, secure data transmission (CR6) and adjustable data granularity (CR7) of
transmitted data need to be provided.

The privacy threat within the IoT is immanent. Having numerous sensors deployed, such
as smart meters, enables the detection of user patterns and behaviours.

Technical requirements

• Interoperable interfaces (TR1): The infrastructure shall be based on interoperable inter-
faces providing platform and vendor neutrality in order to create an ICT infrastructure
that can be easily extended and maintained to avoid the risk of a vendor lock-in situation.

• Internet protocol based connectivity (TR2): The Internet Protocol should be used to in-
terconnect data sources and applications within the Smart Grid ICT infrastructure. As
outlined in [15], the advantages of using an IP-based network infrastructure are the ma-
turity of a large number of IP standards, the availability of tools and applications, and
the widespread use of IP technologies in private and public communication networks.

• Security (TR3): Communication between di�erent stakeholders over the Internet should
be based on strong security mechanisms regarding encryption and authentication in or-
der to avoid eavesdropping of exchanged data and to protect interfaces from unautho-
rized usage (cf. [101]).

• Single-sign on user authentication (TR4): For end users, only a single set of credentials
should be required for applications based on the Smart Grid ICT infrastructure, otherwise
the user is required to memorize multiple account credentials. This leads usually to
a simpli�ed set of predictable user identi�ers and passwords, which can be exploited
through brute force attacks as stated in [101].

• Application portal (TR5): Smart Grid applications shall be bundled within an application
portal to provide a trustworthy entry point to the users.

40

• Third-party applications (TR6): The ICT infrastructure should create applications and
allow third-parties to provide applications based on the data sources and systems of the
Smart Grid environment. This is a main requirement also identi�ed in [101], since the
utility companies will not take over all service provider responsibilities that will be avail-
able in the future Smart Grid.

3.2 Architecture overview and alternatives

Figure 3.1 presents an overview on the di�erent stakeholders within an IoT SoA and their pro-
vided services. The fundamental building blocks of the IoT SoA are the services and capabilities
o�ered by the di�erent stakeholders. Beside these interfaces, several auxiliary functionalities
are required. Due to the central position in a Web service based SoA we call it IoT SoA core.

Data sources

Data sources

Internet

Identity Store

Policy Store

BuildingsBuildings

Energy
production

Transmission,
Distribution

SEC-ACL-
PROXY

SEC-ACL-
PROXY

SEC-ACL-
PROXY

SEC-ACL-
PROXY

SEC-ACL-
PROXY

SEC-ACL-
PROXY

Identity
Provider (SSO)

Access Policies

Service
Repository

Certification
Authority

Application
Registory

Third-party
application provider

Third-party
application provider

Third-party
application provider

Third-party
application provider

Third-party
application provider

Third-party
application provider

Use
services

Use
services

Register applications,
retrieve certificate

Discover services and
lookup service endpoints

Legend

ServerServer

ServerServer

ServerServer

IoT
communicatoin
endpoint

Web interface
(user)

Data source

IoT SoA
core infrastructure

IoT SoA
core infrastructure

Register
services

Enforce access
policies

Residential HomesResidential Homes

IoT gatewayIoT gateway Wireless Sensor and
Actuator Networks

Energy markets Energy markets Energy utilityEnergy utility

Weather forecastWeather forecast

Figure 3.1: Architecture overview

The architecture follows the paradigm of a service-oriented architecture for integrating the
various data sources and systems (e.g., smart meter readings and histories, home and building
automation appliances, electric vehicle charging infrastructures) that are characteristic for the

41

Smart Grid environment. As illustrated in Figure 3.1, there is a huge heterogeneity on exist-
ing technologies and protocols (e.g., KNX, BACnet, ZigBee, 6LoWPAN) used within building
automation systems. Also for smart metering various protocols and technologies already ex-
ist (e.g., Wireless M-Bus). A similar situation can be found for other Smart Grid data sources
like weather forecasts, energy market prices or information about the current distribution grid
status. For the integration of these heterogeneous data sources, SOAP-based Web services
can be used. For existing interfaces, a gateway concept provides a mapping to a uni�ed com-
munication standard which can further be complemented with a generic security and access
control proxy element (SEC-ACL-PROXY) that can be placed transparently between SOAP ser-
vice consumers and providers. The Web service endpoints for the data sources are registered
at a centralized infrastructure named IoT core, which provides features such as identity man-
agement for communication partners and users, a service repository, data access policies and
a Web platform that provides access to applications. The architecture allows to integrate third
party applications which can use the core infrastructure to discover and access the data sources
in a secure way. A detailed description of the architecture and its components is provided in
the following subsections. First, an overview of possible technologies to realize such compo-
nents is given, taking into account security and privacy from the early beginning of the design
phase and several architectural decisions and technology alternatives.

Data storage

A central architectural decision is where the data within an IoT architecture should be stored.
One architecture is to provide a centralized typically cloud-based data platform, to which all
the data are transferred. Xively [102] is such a public IoT cloud platform to which a private
or commercial customer can push its sensor data. The platform provides several APIs based
on REST Web services, raw sockets or MQTT to store data and to retrieve data. The cus-
tomer can decide which data streams should be kept private and which should be available to
the public. Based on the centralized data store, data analysis and business intelligence can be
operated and third-party application providers can provide additional services. The central-
ized data architecture bene�ts regarding ease of data processing and analysis. Resting upon a
central cloud-based component might lead to failures or times at which the service becomes
unavailable either due to a network connectivity issue. A di�erent approach is to use a decen-
tralized data storage architecture, to keep the data of a private or commercial customer stored
locally at a gateway component and to o�er a per-application based access to third-party ser-
vice providers. The decentralized architecture holds bene�ts regarding scalability and privacy
but comes with higher costs regarding maintenance, commissioning and organization e�ort to
manage the interaction between the di�erent components.

Building automation systems integration

For the integration of building automation systems, di�erent standardized approaches exist
that o�er also a standardized application layer for interfacing in a homogeneous way di�erent
building automation technologies. The main existing standards for this integration are OBIX,

42

OPC UA, BACnet/WS, MQTT, ETSI M2M (ETSI M2M), Internet Protocol for Smart Objects
(IPSO) pro�le as outlined in Chapter 2.

Message exchange technology

There are several Web service technologies available ranging from the feature rich but complex
WS-* stack based on SOAP Web services and the accompanying standards or basic RESTful Web
services relying plainly on HTTP and XML. For SOAP-based Web services, DPWS provides
optimizations that allow to use this type of technology also within constrained environments.
Further, recently RESTful Web services for constrained environments based on CoAP are a
convenient alternative to HTTP based Web services. The simplicity of RESTful Web services
comes however with shortcomings regarding meta-data exchange about interfaces, security
and enterprise related features like business process orchestration. Web services are an alter-
native to other communication technologies like platform speci�c object middlewares (.NET,
Java RMI) or message-oriented middleware (JavaMQ, MQTT, XMPP) approaches. Finally, still a
popular way of providing message exchange is to de�ne a custom socket-based protocol either
using TCP or UDP for message exchange.

Message encoding

Encoding of exchanged messages can be handled in di�erent ways within a distributed in-
formation system. In general, two approaches can be identi�ed. Either a binary information
representation or a text-based information representation can be used. Binary information rep-
resentation provides the most e�cient way of representing information at the cost of requiring
message parsers and encoders available at all involved platforms that deal with the speci�c
message formats. Most technologies provide a custom encoding format. Some approaches also
aim at a framework for any type of message exchange such as for example Google Protocol
Bu�ers [103]. For text-based encoding, the most prominent technology is to use XML or more
recently JSON. The main advantage is that not only the data itself can be conveyed within the
message but also additional meta-data and structure information can be included. This comes
however at the cost of increased message sizes and increased resource demands, which can be
addressed by compressed message encodings such as EXI.

Networking

For networking, IPv4 or IPv6 are the main available choices, since inter-network communi-
cation in a global way is required for the IoT. Some BAS technologies provide a custom net-
work layer adjusted for the very domain speci�c needs of the according protocol. For inter-
networking reasons, these types of network layer protocols are not an optimal choice.

Wireless communication technology

For the wireless communication technology of IoT devices, several alternatives exist. The most
prominent technologies are either to use WiFi, Bluetooth Low Energy (BluetoothLE) or meshed

43

networks based on IEEE 802.15.4. To use IPv6 in such a constrained environment, optimizations
are required like o�ered by 6LoWPAN.

Global and local service discovery

For the service discovery, several di�erent technologies are available depending on the used
Web service technology. For WS-* Web services, Universal Description, Discovery and Integra-
tion (UDDI) or Electronic Business using XML (ebXML) provide means to realize a discovery
infrastructure. For RESTful based approaches, Domain Name System (DNS) or the modi�ed
variant DNS-SD can be used. DPWS can provide a customized discovery mechanism applying
the WS-Discovery standard. Beside these standardized solutions, custom mechanisms can be
de�ned to mediate the interaction between service providers and service consumers.

Application platform

The client application platform could be a Web-based application hosted on a centralized Web
application server, a rich-client application or a mobile application. The architecture of the
IoT SoA has strong implications on the software development e�ort. Some technology choices
might lead to features that are not available for certain platforms.

IoT SoA core platform

Di�erent platforms and technologies can be used to realize a core infrastructure for the IoT. The
main platforms to realize such an infrastructure are the Java or .NET platform which host the
required communication stacks for Web services and Web applications. Also the technologies
for authentication and authorization need to be available. Alternatives like C or C++ are not
suitable for such centralized platforms since the introduced software development e�ort would
be too high and the resource constraints are not that high to mandate for a native application
development. Further, the support for Web services, Web development and enterprise features
is limited for these types of platforms.

IoT SoA cloud paradigm

It is possible to operate such an infrastructure on premise, or base it on a cloud deployment
model. Cloud computing supports technologies like virtualization, Web services and distributed
databases and allows to dynamically allocate required computational resources for applica-
tions. According to [104], there are di�erent delivery models available which identify �ve
characteristics, three service models and four deployments models.

The �ve characteristics are on-demand self-service, broad network access, resource pool-
ing, rapid elasticity and measured service. For the service models either Software as a Ser-
vice (SaaS), PaaS or Infrastructure as a Service (IaaS) are available. Figure 3.2 illustrates the
di�erent levels of user control when it comes to the deployment according to one of the ser-
vice models. Within the IaaS service model, the customer keeps control of most of the layers of
the platform, whereas for the SaaS service model the customer is only a user of the applications
hosted by the cloud provider. Finally, as deployment model either a private cloud, community

44

Applications

Data

Runtime

Middleware

O/S

Virtualization

Servers

Storage

Networking

Applications

Data

Runtime

Middleware

O/S

Virtualization

Servers

Storage

Networking

Applications

Data

Runtime

Middleware

O/S

Virtualization

Servers

Storage

Networking

Applications

Data

Runtime

Middleware

O/S

Virtualization

Servers

Storage

Networking

(On-Premises)
Infrastructure as a

Service
Platform as a

Service
Software as a

Service

Customer

controls

Customer

controls

Provider

controls

Customer

controls

Provider

controls

Provider

controls

Figure 3.2: Cloud delivery models

cloud, public cloud or hybrid cloud can be used. Within a private cloud deployment, the whole
computational resources are provided by the customer and the only bene�ts are internal shar-
ing of resources between di�erent business units and �exibility for assigning the computational
resources. Within a community cloud, the cloud infrastructure is shared between consumers
of di�erent organizations having a common concern. A public cloud provides open access to
any type of organizations. A hybrid cloud deployment model is a mixture of two or more cloud
deployment models.

Security

Security related architectural decisions deal with requirements on providing the communica-
tion security primitives like con�dentiality, non-repudiation, integrity and authenticity between
communication partners. Further, the access to data needs be controlled so only authorized
communication partners get access to sensitive data. Therefore, authorization and �ne-grained
access control can also be considered as a security relevant topic.

For ensuring the security primitives, symmetric and asymmetric cryptography mechanisms
are one of the most relevant fundamental technologies. Symmetric cryptography relies on a
shared key for encrypting exchanged messages. This can also be used for authentication pur-
pose to only allow communication between parties that share the key. There are several shared
key encryption algorithms like DES, 3DES or AES which have adequate security for an IoT
communication infrastructure. Shared key encryption is mainly used to ensure con�dentiality
between two communication partners. To ensure integrity, non-repudiation and authenticity,
asymmetric key encryption based on a private and public key pair is used. Here, the public key
is shared between communication partners and can be used to decrypt information which is
encrypted using the private key. There are several asymmetric encryption algorithms available
although the most popular ones are RSA, DSA or ECC. Since asymmetric encryption is quite
resource intensive it is not suitable to encrypt large data sets or complete messages. Instead
hashing functions like MDA or SHA1 are used to create a digital �nger print of a large message
and only this �ngerprint is encrypted using asymmetric cryptography algorithms. A key chal-

45

lenge of using public-/private-key-based encryption is the maintenance and the commissioning
of the keys and their exchange between communication partners. Therefore, a public-key in-
frastructure is required with a root certi�cation authority that establishes a trust relationship
between all the communication partners. Alternatively, a Web of Trust approach can be used
to realize such a trust relationship in a decentralized way. The main standard to exchange pub-
lic keys is by using an X.509v3 based certi�cate that can be passed to another communication
partner.

System authentication

For the system authentication, several di�erent alternatives are available. The system authenti-
cation refers to the validation of the identity of communicating devices like servers, computers,
mobile devices, or sensors and actuators. Here, the most basic way to achieve such an authen-
tication is to use user-name and password based authentication or to rely on properties of the
transport level like network or medium address (e.g., IP address or Ethernet MAC address)
of the device. Stronger authentication mechanisms either rely on symmetric or asymmetric
cryptographic mechanisms.

User authentication

For the user authentication in general, the same means as for the system authentication can
be used, although user-name and password are the most popular means of providing user cre-
dentials.

Distribution of authentication logic

The authentication of a communication entity is usually done within a security domain, in
which an identity provider is responsible for managing user accounts or system identi�cation
and according credentials to authenticate an entity. For Single-Sign On (SSO) solutions, an
identity provider acts as central authentication instance and all service providers (e.g., appli-
cations) trust the identity provider. If multiple security domains of di�erent enterprises and
stakeholders need to be integrated, a cross-domain federation of identity providers can be used
to realize a global SSO. The two alternatives are illustrated in Figure 3.3a and Figure 3.3b. Au-
thenticated entities are mutually accepted if they are authenticated at one identity provider of
an arbitrary security domain [105].

For issuing assertion about authentication at a certain trust domain, the Security Assertion
Markup Language (SAML) provides a standardized way of exchanging such trust assertions
between di�erent security domains.

Authorization technology

The authorization technology deals with the way how access policies are structured and eval-
uated. Technologies in this domain are the Enterprise Privacy Authorization Language (EPAL)
or XACML. EPAL is proposed by IBM and still in standardization. XACML is an OASIS stan-
dard and provides more functional capabilities than EPAL. XACML supports at the one side a

46

(a) Federation of service providers with one identity
provider

(b) Federation of cross-domain identity providers

Figure 3.3: Federation of security domains [105]

language to de�ne access policies and on the other side a reference architecture and a data �ow
model which specify how to evaluate access policies within a distributed information system.
In general, both technologies provide the same features, although EPAL is for most features,
such as data types, functions, decision requests, combining algorithms for policy rules, sub-
jects with multiple attributes and target description and error handling, a functional subset of
XACML. Other features, such as nested policies, policy references and XML attribute values
within policies and multiple responses, are completely missing within EPAL [105]. The core
components of an XACML architecture as presented in Figure 3.4 are a Policy Enforcement
Point (PEP), context handler, Policy Decision Point (PDP), Policy Information Point (PIP), and
a Policy Administration Point (PAP).

• Policy Enforcement Point: This component is responsible for the enforcement of the
access policies at the data source or next to the service provider. It translates domain
speci�c terminology and request types into XACML decision requests.

• Policy Decision Point: Access policies are evaluated at this component. XACML based
decision requests are accepted, evaluated by checking all policies and �nally the PDP
either returns a permit, deny or not applicable message.

• Policy Administration Point: The PAP is used to create XACML policies and to put
them into a policy store which is provided to the PDP.

Centralized or decentralized policy evaluation

The access control policies could either be kept centralized or also distributed within the com-
munication architecture. If only a central component is used scalability, availability and also
performance issues might arise. Alternatively, policies could be distributed, for example at

47

5. attribute queries

10. attributes

11. response context

Access
Requester

Policy
Enforcement

Point

Obligations
Service

Context
Handler

Policy
Information

Point

Policy
Administration

Point

Policy
Decision

Point

Subjects Environment

2. access request

1. define policy

4. request notification

3. request

13. obligations

12. response

6. attribute
query

8. attribute

7a. subject attributes

Resource
9. resource content

7c. resource attributes

7b. environment attributes

Figure 3.4: XACML architecture [106]

gateway components. This however, introduces the threat of potential local manipulations
and might annul the security concept.

Authorization policy administration

The policy con�guration could either be kept in a static way or just in-time when a third-party
requires access to data assets within the IoT SoA.

Summary

Table 3.2 on page 52 summarizes the di�erent architectural alternatives for realizing an IoT
SoA. The architectural choices made for a proof of concept implementation within the scope
of this thesis are highlighted in the table, and discussed within the following subsections.

The results of a comparison of REST vs. WS-* Web services for the Internet of Things based
on a survey [107] are given in Table 3.1. The overview can act as guideline to choose a service
platform.

48

Requirement REST WS-* Justi�cation
Mobile & embedded + - Lightweight, IP/HTTP support
Ease of use ++ - Ease to learn
Foster third-party adoption ++ - Ease to prototype
Scalability ++ + Web mechanisms
Web integration +++ + Web is RESTful
Business + ++ QoS & security
Service contracts + ++ WSDL
Advanced security - +++ WS-Security

Table 3.1: Guidelines for choosing a service architecture for IoT platform [107]

Benchmark

For a quantitative comparison of the various Web service technologies, a Web service interface
for each technology is implemented and evaluated within a testbed regarding two scenarios.
For the benchmark, a SOAP Web service and RESTful Web services based on HTTP and CoAP
are implemented. As baseline for comparison, two TCP socket-based binary protocols are im-
plemented using Google Protocol Bu�ers and EXI for message encoding. The performance
metrics that are of interest are i) CPU demand per request, ii) I/O demand per request, and iii)
costs per request. These performance metrics allow to determine the required computational re-
sources for certain scenarios. As methodological approach for the benchmark the operational
analysis [108] is taken.

Scenario: There are two smart gird scenarios used for the evaluation which are i) passing a
full day smart meter history of �fteen minute intervals’ readings to an energy consumer, and
ii) returning a single ad-hoc smart meter measurement for live feedback. End user feedback
typically contains the current load and the consumed energy. This scenario is used since the
national law of Austria [109] that implements the European Union directive [110] for smart
metering demands that a daily energy feedback should be provided to the customer using a
�fteen minute interval for the provided meter readings.

In the taken scenario, a client requests smart meter readings throughout a period of 10
minutes from a server o�ering a Web service interface. The Web service interface provides
randomized data and a simple interface to query meter readings for a certain meter device and
given period. It returns a list of meter measurements containing the average load and energy
consumption.

Results: The Central Processing Unit (CPU) demands are represented in CPU seconds re-
quired to process a certain amount of requests. Figure 3.5a lists the CPU demands for each
Web service technology. As expected, Web service technologies that are based on an XML-
based message encoding show worse performance compared to binary RPC approaches. The
di�erences regarding CPU demands show that the di�erence between SOAP and REST is ne-
glectable, since most of the e�ort resides in the XML serialization. Since both technologies

49

 0

 5

 10

 15

 20

SOAP REST COAP Protobuf EXI

C
P

U
 s

ec
on

ds

Web service technology

CPU demand for 1k requests

Full day (24h) feedback Ad-hoc feedback

(a) CPU demand

 0

 5

 10

 15

 20

SOAP REST COAP Protobuf EXI

K
B

yt
e

Web service technology

Outgoing network demand for response messages

Full day (24h) feedback Ad-hoc feedback

(b) I/O demand

 0

 0.5

 1

 1.5

 2

SOAP REST COAP Protobuf EXI

C
os

ts
 in

 $
 p

er
 1

 M
io

. r
eq

ue
st

s

Web service technology

Full day (24h) feedback Ad-hoc feedback

(c) Costs

Figure 3.5: Benchmark of Web service technologies

are based on HTTP they show comparable performance. The slightly higher CPU demands of
REST can be explained with implementation speci�c issues, since the reference SOAP stacks
have a higher maturity. CoAP shows better performance due to the usage of UDP and the low
packet-loss in the local network of the testbed. If a higher-rate of packet loss or failure could
be expected the performance gains of using UDP would be reduced. Protobu�er and EXI have
been compared using the same custom de�ned TCP/IP protocol. It can be seen that EXI plays
in the same performance class.

The I/O demands represent the required outgoing network bandwidth to send the response
to a requesting client. This is of main interest since here the most tra�c occurs and the message
encoding shows big di�erences. The signi�cant di�erence of XML based and binary or com-
pressed encodings becomes evident if time series of a full-day energy feedback are exchanged.
However, for ad-hoc access the di�erences are low. This can be explained that XML compres-
sion is not e�ective if only a small amount of data needs to be exchanged. Also the overhead
of SOAP and XML becomes neglectable.

For the cost estimation, a simple linear cost model is used:

• CCPU : Costs for a CPU second.

• CIO−OUT : Costs for one KByte of outgoing network tra�c.

50

• CIO−IN : Costs for one KByte of incoming network tra�c.

• CR: Total costs per request.

• DCPU : Total average time spent of a request at the CPU.

CR = CCPU ∗DCPU + CIO−OUT ∗DIO−OUT
1 + CIO−IN ∗DIO−IN (3.1)

The costs are calculated using the simple cost model presented above. For the full-day
energy feedback, the costs are mainly driven by the I/O costs, for ad-hoc requests the CPU costs
take a larger proportion of the costs. These costs represent a server-side infrastructure. As a
simple calibration of the cost model, a snapshot of the pricing of the Amazon EC2 cloud is taken.
The presented numbers only show the costs that occur due to the interface technology which
is responsible for marshalling and un-marshalling network packets. The number is relatively
small but within a system with millions of requests the costs can become signi�cantly higher.

Discussion

The results prove the expectation that technologies based on an XML-based encoding show a
poor performance compared to binary RPC based protocols. EXI seems to make heavy weight
enterprise IT technologies feasible for direct communication with smart meters allowing to
use the same interface technologies throughout the whole Smart Grid ICT infrastructure and
therefore easing integration of metering and control networks with IT systems of di�erent
stakeholders. The presented performance benchmarks are based on a prototype implementa-
tion model, therefore the results may vary for di�erent stack implementations but the magni-
tude of di�erent resource demands of the di�erent technologies can be seen. Furthermore, this
evaluation provides a methodology that can be reused for concrete implementations in order
to estimate the resource demand and the subsequent costs. The calibration of the cost model
may di�er between scenarios where data needs to be exchanged between enterprises through
the Internet where network I/O is reasonable cheap and expensive connectivities (e.g., a GSM
modem for a multi-utility controller).

Table 3.3 illustrates which requirements are satis�ed through the architectural decisions
and which technology is used to implement this decision. More details about the implementa-
tion will be provided throughout this chapter.

3.3 A service-oriented architecture for the Internet of Things

In order to interconnect di�erent systems (cf. TR1), a service-oriented architecture (SoA) is a
state of the art approach. Interoperable interfaces are required due to the large heterogene-
ity of technologies found within the Smart Grid and at the di�erent stakeholders. As an ar-
chitectural pattern, it is possible to realize a SoA using di�erent technologies, but the most

1The demand for IO is represented in KByte.

51

A
rchitecturaldecision

A
lternatives

D
ata

&
C
om

m
unication

D
ata

storage
Centralized

D
ecentralized

Building
autom

ation
system

sintegration
O

BIX
O

PC
UA

BACnet/W
S

M
Q

TT
ETSI

IPSO
M

essage
exchange

protocol
SOA

P
H

TTP
CoA

P
M

essage
encoding

XM
L

JSO
N

EXI
Protobuf

Binary
N

etw
orking

IPv6
IPv4

D
ata

and
m

edia
accesslayer

IEEE
802.15.4

Bluetooth
LE

W
iFi

Globaland
localservice

discovery
UD

D
I

ebXM
L

D
N

S-SD
Custom

ized

Platform
Targetapplication

platform
W

eb
application

Rich
ClientPlatform

N
ative

m
obile

app
IoT

core
platform

Java
.N

ET
C

C++
IoT

core
cloud

paradigm
O

n
prem

ise
IaaS

PaaS
SaaS

Security
System

authentication
PKI

Usern.&
Pass.

Transportlevel
Token

based
Userauthentication

PKI
Usern.&

Pass.
Transportlevel

Token
based

D
istribution

ofauthentication
logic

Centralized
Federated

A
uthorization

Authorization
technology

XACM
L

EPA
L

Custom
ized

Authorization
distribution

Centralized
D

ecentralized
Authorization

policy
adm

inistration
Staticadm

in.
O

n-dem
and

auth.
N

one

Table
3.2:IoT

SoA
architecturalalternatives

52

Io
T
So

A
R
eq

ui
re
m
en

t
A
rc
hi
te
ct
ur

e
D
ec
is
io
n

Te
ch

no
lo
gy

D
ec
is
io
n

CR
1

tru
st

w
or

th
y

au
th

or
ity

TR
5

ap
pl

ic
at

io
n

po
rta

l
TR

6
th

ird
-p

ar
ty

ap
pl

ic
at

io
ns

Ce
nt

ra
lp

or
ta

la
nd

ap
pl

ic
at

io
n

re
gi

st
ry

Ja
va

,J
Bo

ss
ap

pl
ic

at
io

n
se

rv
er

TR
1

in
te

ro
pe

ra
bl

e
in

te
rfa

ce
s

TR
2

IP
ba

se
d

co
nn

ec
tiv

ity
Se

rv
ic

e-
or

ie
nt

ed
ar

ch
ite

ct
ur

e
ba

se
d

on
W

eb
se

rv
ic

es
an

d
op

en
st

an
da

rd
s

SO
A

P
W

eb
se

rv
ic

es
,

O
BI

X

CR
2

de
ce

nt
ra

liz
ed

as
po

ss
ib

le
Ga

te
w

ay
ap

pr
oa

ch
an

d
Io

T
in

te
gr

at
io

n
m

id
dl

ew
ar

e
Ja

va
,R

as
pb

er
ry

PI
bo

ar
d

w
ith

te
ch

no
lo

gy
co

nn
ec

to
rs

CR
3

w
ha

td
at

a
is

co
lle

ct
ed

CR
4

ho
w

it
is

us
ed

CR
5

ac
ce

ss
co

nt
ro

lm
ec

ha
ni

sm
fo

rI
oT

da
ta

CR
7

ad
ju

st
ab

le
gr

an
ul

ar
ity

Ac
ce

ss
co

nt
ro

lp
ol

ic
ie

s
Po

lic
y

de
ci

sio
n

po
in

t
XA

CM
L

CR
6

se
cu

re
da

ta
tra

ns
m

iss
io

n
TR

3
se

cu
rit

y

Se
cu

rit
y

an
d

ac
ce

ss
co

nt
ro

lp
ro

xy
,

W
eb

se
rv

ic
em

es
sa

ge
le

ve
ls

ec
ur

ity
,e

nc
ry

pt
io

n
an

ds
ig

-
na

tu
re

s,
PK

Ic
er

ti�
ca

te
s

W
S-

Se
cu

rit
y;

sh
ar

ed
ke

y
en

cr
yp

tio
n:

3D
ES

,A
ES

pu
bl

ic
ke

y
en

cr
yp

tio
n:

RS
A

,D
SA

TR
5

SS
O

us
er

au
th

en
tic

at
io

n
SA

M
L

v2
W

eb
SS

O
,

Id
en

tit
y

pr
ov

id
er

Ja
va

,J
Bo

ss
Pi

ck
et

lin
k

XA
CM

Lv
2

fra
m

ew
or

k

Ta
bl

e
3.3

:I
oT

So
A

ar
ch

ite
ct

ur
al

de
ci

sio
n

fu
l�

lli
ng

co
ns

um
er

-d
riv

en
an

d
te

ch
ni

ca
lr

eq
ui

re
m

en
ts

53

Domain specific IoT interfaces
(e.g. smart grid interfaces, building automation, ...)

SOAP

Custom APIs

Service R
ep

o
sito

ry

Service D
isco

very

Core Infrastructure

WSDL

C
ertificatio

n
 A

u
th

o
rity

A
p

p
licatio

n
 R

egistry

Existing Protocols

OPC UA OpenADRMeter
Readings

Customer
Data

. . .

A
u

th
en

ticatio
n

A
u

th
o

rizatio
n

Service
Layer

System
 Layer

. . .

User Applications
Administration

Interface
Customer
Interface

A
p

p
licatio

n
 Layer

Control Applications

Tarifs oBIX

Figure 3.6: Layered functional overview

reasonable choice is to build a SoA based on Web services using the WS-* stack with SOAP
and the Web Service Description Language (WSDL) at the core of the protocol stack. Using
HTTP for message transfer and XML for message encoding, Web services provide a platform
neutral way of providing interfaces to data sources and systems. The selection of SOAP-based
Web services directly a�ects the security and privacy preserving mechanisms. The WS-* stack
has a feature-rich technology set for enforcing strong security and privacy requirements. Fur-
thermore, WSDL allows to have well-de�ned interfaces and type speci�cations of exchanged
messages which is of advantage if it comes to technically specifying access control policies and
enforcing them.

Figure 3.6 illustrates a layered functional overview of the architecture. Existing Smart Grid
and IT infrastructure are integrated based on SOAP Web service endpoints including a WSDL
description. The centralized services that are required to operate the Smart Grid ICT infras-
tructure are covered within the core infrastructure. On top of the services applications, user
interfaces and application interfaces are provided.

For the SOAP service de�nitions, existing protocol and data representations have been
used. For the integration of building automation systems, sensor networks or more general
machine-to-machine (M2M) information into a service-oriented architecture based on Web
services, OBIX is the approach that is used within this IoT SoA. It o�ers an XML language for
representing information provided by appliances using further enterprise friendly technologies
HTTP and URIs. Another goal is to provide a standardized representation for common M2M
features like datapoints, histories and alarms and extensibility for custom enhancements. OBIX
can be used on embedded devices or on gateway devices that o�er access to building automa-
tion systems or smart meter infrastructures. For building automation systems, like KNX, BAC-
net, EnOcean, ZigBee and smart meters using Wireless M-Bus, a gateway concept is presented
in Chapter 5.

The service endpoints are either hosted at centralized infrastructures, e.g. the meter data
management systems or an enterprise service bus, or in a decentralized manner at a Web ser-

54

vice gateway at the residential or commercial customer. By using the Internet and IP as net-
work infrastructure, interworking is provided at the network layer and new data sources of
stakeholders and application providers can be easily connected and integrated (cf. TR2). This
approach allows keeping the data as decentralized as possible and under the control of the data
owner (cf. CR2).

A data owner represents a natural person or a legal entity to which several data assets
(e.g., smart meter readings) can be linked. A so-called data owner identi�er which is a random
generated identi�er is linked to all data assets and used to register service endpoints at the
service repository. It is then possible for an application to lookup the endpoint location of
a certain service type for a data owner. Taking smart meter data as an example, for some
customers the data might be provided by gateway devices operating at the site of the customer.
For other customers, the data might be provided from central data stores like a meter data
management system at the energy utility. The data owner identi�er is also used within access
control policies that specify which application is allowed to access certain data sets linked to
the data owner (cf. CR5). Finally, the data owner identi�er is also used as pseudo-identi�er for a
centralized user single-sign on. In this way, a user can authenticate at a third-party application
without exposing any further identity information. If an application accesses SOAP endpoints
it can link only the data owner identi�er to the retrieved data, e.g. smart meter data, which
further allows to protect the privacy of a data owner.

3.4 IoT SoA core components and roles

This section provides a closer look on the core components of an IoT SoA and its respective
roles. A motivating use case for the discussion of the roles and components is taken out of the
Smart Grid application domain. The chosen use case is the sharing of smart meter readings
collected in a residential home to a third-party energy advisor providing consulting services.

Within this use case, the data owner, smart meter gateway, energy utility, core platform,
service registry, application registry, identity provider, policy administration point and the
third-party energy advisor are involved. The details of the roles and components are discussed
in the following subsections. In the chosen example, the data owner wants to use an energy
advisor application o�ered through the IoT SoA application platform. Therefore, the local smart
meter reading’s Web service endpoint needs to be registered at the service registry. The energy
advisor needs to register as application provider in order to receive a certi�cate that can be
used for further authentication purposes. The core platform provides an identity provider that
can be used for user authentication purposes. The core platform further comes with a policy
administration point and policy decision point, which are used by the data owner to con�gure
the access rights to data assets and to check the authorization of a service consumer at request
time.

Data owners

A central entity in the IoT SoA concept is the data owner. The data owner is a natural person
or legal entity where certain information (e.g., smart meter readings) or interfaces (e.g., home

55

Energy UtilityEnergy UtilityDistribution System OperatorDistribution System Operator

Identity
Provider &

Policy
Administration

Residential and Commercial Customer (Data Owner)Residential and Commercial Customer (Data Owner)

Energy Advisor

CustomersCustomers TariffsTariffsMeter ReadingsMeter Readings

Policy
Decision

Point

Identity StoreIdentity StorePolicy StorePolicy Store

IoT SoA core infrastructureIoT SoA core infrastructure

IoT PKI -
Certificate Authority

IoT PKI -
Certificate Authority

Service
Repository

Residential
Customer

Residential
Customer

Meter
Readings

Meter
Readings

Home
Automation

Home
Automation

Application
Registry

Meter
Readings

Meter
Readings

Customer
Data

Customer
Data

Meter
Readings

Meter
Readings

Customer
Data

Customer
Data

TariffsTariffs

IoT gatewayIoT gateway

Commercial CustomerCommercial Customer

DRAS ClientDRAS Client

Building AgentBuilding Agent

Building AutomationBuilding Automation

Building Operator (Data owner)Building Operator (Data owner) Grid OperatorGrid Operator

Car Charging Home Automation Demand Response
Interfaces

DRAS control
application

User Authentication &
Policy Administration

Core Adminstration

Core OperatorCore Operator

Home
Automation

Interface

Home
Automation

Interface

Figure 3.7: Overview of core IoT SoA components

automation) are linked to. Web service endpoints are registered for a data owner. Applications
(service consumers) can look up the service endpoint for a certain data owner at runtime.
Data owners can specify access policies that de�ne which application is allowed to access data
related to the data owner. The data owner concept is important in the scenario where third-
party applications are used by a customer. Another scenario within the SoA is the machine-to-
machine communication, e.g. based on OpenADR communication.

Identity provider & policy administration point

The identity provider allows the various users of the SoA to authenticate themselves. There
are several user roles ranging from the residential customer acting as data owner, to system
and grid operators over to SoA administrators. The identity provider is based on an identity
store (e.g., Lightweight Directory Access Protocol (LDAP) or relational database) that holds
the user credentials. The SoA provides user-name and password authentication as well as
user authentication based on signed public keys stored within X.509 certi�cates, likely to be
equipped on a smart card.

The identity provider can be used to establish on a SSO context between the IoT core in-
frastructure and third-party application providers. In that way, a customer only needs one set
of credentials for authentication in the IoT context. Since the user authentication happens at
the IoT core infrastructure it is secure to let the data owner administrate access control polices.
For this reason, the policy administration point provides a Web-based user interface.

56

Global and local service discovery

A central component within a SoA is the global service discovery component. It acts as service
registry and allows a service provider to register a Web service. Service consumers may use
the service registry to discover services and service descriptions at the design time of a system,
and furthermore use the registry to look up service endpoints (e.g., URLs) at runtime. For the
realization of a service registry, several alternatives are available like UDDI, ebXML or DNS-SD.
Service discovery might also be realized in a local way using WS-Discovery, UPnP or Multicast
DNS (mDNS). The service repository in the presented architecture is a custom implementation
and acts as a lightweight variant of UDDI taking some concepts of WS-Discovery as input. The
reason is to align the registry to the speci�c needs of access control and privacy protection.

Application registry

The application registry is used to register applications, which works in a similar way to the
registration of service consumers. Each application provider creates a private and public key
pair and let the public key be signed by the core certi�cation authority to receive an X.509 cer-
ti�cate. The X.509 certi�cate contains the signed public key and can be used for authentication
of application requests. These certi�cates are used for authentication at the system level.

Certi�cation authority

The certi�cation authority is the core of the IoT SoA PKI and provides certi�cates containing
signed public keys to users and systems for the purpose of authentication.

3.5 Access control in the IoT SoA

This section contains a detailed view on how access control is handled by the IoT SOA. To
illustrate the interactions and the details of the involved components, the handover of meter
readings to a third-party energy advisor application is taken as use case. The access control
concept applies SAML and XACML as state of the art technology, but extends these technolo-
gies for the speci�c requirements of this SoA.

Component overview

Figure 3.8 provides an overview of the components involved in the access control mechanism
and at which node they are located. In this generalized overview, only a single service provider
and service consumer are presented as placeholder for multiple concrete data interfaces and
applications. The service provider in this case can be the IoT gateway o�ering an interface to
an energy advisor application provided by a third party.

The Service Provider (SP) o�ers a SOAP based Web service to access data or an interface
to some capabilities. The interface does not need to be adapted for the access control concept.
Instead, a generic PEP is used as SOAP intermediary between the Service Consumer (SC) and
the SP following the XACML data �ow model. The task of this component is to interpret the

57

<
<

device>
>

Io
T

 S
o

A
 co

re in
frastru

ctu
re

<
<

com
ponent>

>
S

W
G

 S
ervice

E
n

d
p

o
in

ts
D

atab
ase

<
<

executionE
nvironm

ent>
>

Java V
M

<
<

com
ponent>

>
S

ervice R
eg

istry

<
<

com
ponent>

>
Id

en
tity S

to
re

<
<

com
ponent>

>
P

o
licy S

to
re

<
<

com
ponent>

>
C

o
re C

ertificatio
n

A
u

th
o

rity

<
<

executionE
nvironm

ent>
>

J2E
E

 C
o

n
tain

er (JB
o

ss A
S

 6)

<
<

com
ponent>

>
Id

en
tity P

ro
vid

er &
P

o
licy

A
d

m
in

istratio
n

P
o

in
t

<
<

com
ponent>

>
P

o
licy D

ecisio
n

P
o

in
t

<
<

executionE
nvironm

ent>
>

J2E
E

 C
o

n
tain

er (JB
o

ss A
S

 6)

<
<

com
ponent>

>
Id

en
tity P

ro
vid

er &
P

o
licy

A
d

m
in

istratio
n

P
o

in
t

<
<

com
ponent>

>
P

o
licy D

ecisio
n

P
o

in
t

<
<

com
ponent>

>
P

o
licy D

ecisio
n

P
o

in
t

X
A

C
M

L
/S

A
M

L
 p

ro
to

co
l b

in
d

in
g

<
<

com
ponent>

>
C

o
re C

ertificatio
n

A
u

th
o

rity

<
<

com
ponent>

>
Id

en
tity P

ro
vid

er &
P

o
licy

A
d

m
in

istratio
n

P
o

in
t

<
<

com
ponent>

>
P

o
licy S

to
re

<
<

com
ponent>

>
Id

en
tity S

to
re

<
<

executionE
nvironm

ent>
>

Java V
M

<
<

com
ponent>

>
S

ervice R
eg

istry
<

<
com

ponent>
>

S
ervice R

eg
istry

<
<

com
ponent>

>
S

W
G

 S
ervice

E
n

d
p

o
in

ts
D

atab
ase

S
Q

L

R
eg

istryS
ervice

<
<

device>
>

E
n

erg
y D

ata S
erver

<
<

executionE
nvironm

ent>
>

Java V
M

<
<

com
ponent>

>
P

o
licy E

n
fo

rcem
en

t
P

o
in

t

<
<

executionE
nvironm

ent>
>

W
eb

 S
ervice C

o
n

tain
er

<
<

com
ponent>

>
E

n
erg

y D
ata

S
ervice

<
<

executionE
nvironm

ent>
>

W
eb

 S
ervice C

o
n

tain
er

<
<

com
ponent>

>
E

n
erg

y D
ata

S
ervice

<
<

com
ponent>

>
E

n
erg

y D
ata

S
ervice

<
<

executionE
nvironm

ent>
>

Java V
M

<
<

com
ponent>

>
P

o
licy E

n
fo

rcem
en

t
P

o
in

t

<
<

com
ponent>

>
P

o
licy E

n
fo

rcem
en

t
P

o
in

t

E
n

erg
yD

ataS
ervice (P

ro
tected

)

<
<

device>
>

Io
T

 g
atew

ay

<
<

executionE
nvironm

ent>
>

Java V
M

<
<

com
ponent>

>
P

o
licy E

n
fo

rcem
en

t
P

o
in

t (2)

<
<

com
ponent>

>
E

n
erg

y D
ata S

ervice

<
<

device>
>

S
m

art M
eter

<
<

com
ponent>

>
W

-M
B

u
s M

o
d

u
l

<
<

com
ponent>

>
W

-M
B

u
s M

o
d

u
l

W
-M

B
u

s

<
<

com
ponent>

>
E

n
erg

y D
ata S

ervice

E
n

erg
yD

ataS
ervice(2)

<
<

executionE
nvironm

ent>
>

Java V
M

<
<

com
ponent>

>
P

o
licy E

n
fo

rcem
en

t
P

o
in

t (2)

<
<

com
ponent>

>
P

o
licy E

n
fo

rcem
en

t
P

o
in

t (2)

H
T

T
P

 S
A

M
L

 B
in

d
in

g

S
Q

L
(2)

S
Q

L
(3)

Io
T

 o
B

IX
 in

terface

<
<

device>
>

E
n

erg
y A

d
viso

r S
erver

<
<

executionE
nvironm

ent>
>

J2E
E

 C
o

n
tain

er

<
<

com
ponent>

>
E

n
erg

y A
d

viso
r

<
<

executionE
nvironm

ent>
>

J2E
E

 C
o

n
tain

er

<
<

com
ponent>

>
E

n
erg

y A
d

viso
r

<
<

com
ponent>

>
E

n
erg

y A
d

viso
r

Figure
3.8:IoT

SoA
accesscontrolcom

ponents

58

incoming SOAP request and send an authorization decision request to the PDP. The PDP o�ers
an XACML SAML protocol binding based on SOAP for such decision requests. In the backend,
it uses a policy store that holds the XACML policies used to evaluate the access control request.
The policies are maintained by the data owner using a third party application. The third party
application has to be registered at the IoT SoA core infrastructure. The third party creates
a public-private key pair and the public key is signed by the core infrastructure in order to
create a trust relationship. For authorizing third party service consumers’ access, the data
owner is redirected to the Identity Provider (IDP) that authenticates at the user level. The IDP
also acts as PAP allowing a user to administrate the access control policies. The IDP provides
a SSO interface for the third party application provider using the SAML Web Browser SSO
Pro�le with the HTTP redirect protocol binding for the exchange of SAML assertions. The
communication interfaces between the various components are either based on HTTP if a
human actor is involved. For all other machine to machine communications, SOAP is used.
The SOAP interface o�ered by the service provider is domain speci�c and does not need to be
altered since a generic access control mechanism is employed.

Generic access control concept

XACML policy language: The XACML policy language as outlined in Figure 3.9 provides
a powerful way for specifying policies. An XACML policy structure consists of one or many
policy sets that can be recursively encapsulated and contain one or multiple policies. Within a
policy set, the policy combining algorithm de�nes the �nal result of the evaluation. A policy set
or a single policy may address a certain target which can be identi�ed through specifying the
resource, the subject, the action or the environment. Within a policy, rules can be speci�ed.
A rule consists of a target, a condition and an e�ect. The condition element allows re�ning
the applicability of the rule based on XACML built-in functions. The e�ect in this use case is
simple: either permit or deny.

Policy structure: To have a generic access control mechanism, the policies are based on the
information that is available within a SOAP request without referring to any domain or protocol
speci�c vocabulary. The policy model is structured as follows. The various data sources in the
Smart Grid for each data owner represent the resource. The resource identi�er has therefore
two attributes: �rstly, the data owner identi�er which is a random-generated UUID pseudo-
identi�er; secondly, the service name which is based on a standard terminology used within
the IoT SoA. The service name could be represented through a URI that identi�es a certain
SOAP port type. A subject is identi�ed through the available public key information which
is represented through a hash identi�er based on the used public key. In this way, the access
control concept can be kept generic and independent of which public key encryption algorithm
is used for signing messages. The action is represented through the according SOAP action that
a service consumer wants to call on the Web service. For each data owner identi�ed, a policy set
is used that targets the certain data owner identi�er. This policy set contains multiple children
policy sets, where each policy set targets the available data sources represented through the
service name. Then for each application represented through the hash identi�er of the public

59

� � � � ��� � � � �� � � �

� � � � � 	 � � �

 � �
 � 	
� � � ��� � � �

� � � � � �� � � � � �
 � 	 � � �
�

�
�

� � � �� � � � �� � 	 � � �� � � � � � � �� � � � � � 	

� � � � � ! " #�
� � � �

� � � � � � � �� � $ � � � � �
� � �
 � � � 	 % $
� � � �� � $ � � � � �
� �
 � � � 	 % $�

� � � ��
� � � � ��

& ' ' � � 	� �
& � (� � � � $ � � 	� � � � �

�� � � �

Figure 3.9: XACML language model [106]

60

key, a policy �le resides that contains a rule specifying which SOAP operation is allowed to
be used. In this way, a �ne grained and generic authorization mechanism based on XACML is
possible. For SOAP Web services that are rather generic like for example the OBIX read and
write operation the policy structure can be extended to also cover the URI of a certain OBIX
object, e.g. the smart meter object or the power history object.

Authorization decision request: The policy enforcement point that resides locally at the
Web service endpoint is responsible to create an according XACML authorization decision
request and constructs it in the following way. Take as an example the SOAP request provided
in Listing 3.1. The request queries the smart meter object as given in Listing 3.2 using the OBIX
SOAP Web service. For simplicity and illustration, the example request is not encrypted.

Listing 3.1: Smart meter request
<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/" xmlns:sec="http

://schemas.xmlsoap.org/soap/security/2000-12">
<s:Header>
<sec:Signature>
<ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
<ds:SignedInfo>...</ds:SignedInfo>
<ds:SignatureValue>...</ds:SignatureValue>
<ds:KeyInfo>
<ds:KeyValue>...</ds:KeyValue>

</ds:KeyInfo>
</ds:Signature>
</sec:Signature>
</s:Header>
<s:Body>
<read xmlns="http://obix.org/ns/wsdl/1.1"

href="http://iotgateway/smartmeter" />
</s:Body>
</s:Envelope>

Listing 3.2: OBIX object smart meter
<obj href="/simMeter" is="iot:SmartMeter">
<real name="power" href="power" val="125.0"

unit="obix:units/watt"/>
<real name="energy" href="energy" val="3215.0"

unit="obix:units/kilowatthours"/>
<ref name="power history" href="power/history"

is="obix:History"/>
<ref name="energy history" href="energy/history"

is="obix:History"/>
</obj>

The request provides all information to decide if a request is allowed or denied. The subject
identi�er is represented through generating a hash value of the public key which can be found
in the ds:KeyInfo �eld of the WS-Security header. The signature is used to ensure the integrity
of the request and that it was created by the owner of the according application that owns the
public and private key pair. The resource is identi�ed through the SOAP port type which is
in this case http://obix.org/ns/wsdl/1.1 and the data owner identi�er which in this case has to
be con�gured in the OBIX gateway. If a Web service o�ers data for multiple data owners, it
needs to be extracted either out of the SOAP header or of an argument within the called SOAP

61

operation. The resulting XACML decision request is provided in Listing 3.3 and illustrates how
the information is used to generically create an XACML decision request. This request is sent
to the policy decision point using the SOAP binding. This request is also secured through a
signature and by encrypting the payload.

Listing 3.3: XACML decision request
<samlp:RequestAbstract
xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol"
xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion"
xmlns:xacml-samlp="urn:oasis:xacml:2.0:saml:protocol:schema:os"
xmlns="urn:oasis:names:tc:xacml:2.0:context:schema:os" ID="ID_a9bd16e8-bfa2-450d

-b131-2d953adae395"
Version="2.0"
IssueInstant="2012-04-23T16:36:50.764+02:00"
xacml-samlp:InputContextOnly="true"
xacml-samlp:ReturnContext="true"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xs="http://www.w3.

org/2001/XMLSchema"
xsi:type="xacml-samlp:XACMLAuthzDecisionQueryType">
<Request
xmlns="urn:oasis:names:tc:xacml:2.0:context:schema:os"

xmlns:ns2="urn:oasis:names:tc:xacml:2.0:policy:schema:os">
<Subject xmlns="urn:oasis:names:tc:xacml:2.0:context:schema:os"

SubjectCategory="urn:oasis:names:tc:xacml:1.0:subject-category:access-subject">
<Attribute xmlns="urn:oasis:names:tc:xacml:2.0:context:schema:os"

AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id" DataType="http://
www.w3.org/2001/XMLSchema#string" Issuer="smartwebgrid">

<AttributeValue xmlns="urn:oasis:names:tc:xacml:2.0:context:schema:os">
PUBLIC_KEY_HASH</AttributeValue>

</Attribute>
</Subject>
<Resource xmlns="urn:oasis:names:tc:xacml:2.0:context:schema:os">
<Attribute xmlns="urn:oasis:names:tc:xacml:2.0:context:schema:os"

AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id" DataType="http://
www.w3.org/2001/XMLSchema#string" Issuer="smartwebgrid">

<AttributeValue xmlns="urn:oasis:names:tc:xacml:2.0:context:schema:os">
DATAOWNERIDENTIFIER</AttributeValue>

</Attribute>
<Attribute xmlns="urn:oasis:names:tc:xacml:2.0:context:schema:os"

AttributeId="urn:tuwien:auto:smartwebgrid:resource:servicetype" DataType="http://
www.w3.org/2001/XMLSchema#string" Issuer="smartwebgrid">

<AttributeValue xmlns="urn:oasis:names:tc:xacml:2.0:context:schema:os">http
://obix.org/ns/wsdl/1.1</AttributeValue>

</Attribute>
<Attribute xmlns="urn:oasis:names:tc:xacml:2.0:context:schema:os"

AttributeId="urn:tuwien:auto:smartwebgrid:resource:resource-object" DataType="
http://www.w3.org/2001/XMLSchema#string" Issuer="smartwebgrid">

<AttributeValue xmlns="urn:oasis:names:tc:xacml:2.0:context:schema:os">/
smartmeter</AttributeValue>

</Attribute>
</Resource>
<Action xmlns="urn:oasis:names:tc:xacml:2.0:context:schema:os">
<Attribute xmlns="urn:oasis:names:tc:xacml:2.0:context:schema:os"

AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"
DataType="http://www.w3.org/2001/XMLSchema#string" Issuer="smartwebgrid">
<AttributeValue xmlns="urn:oasis:names:tc:xacml:2.0:context:schema:os">read<

/AttributeValue>
</Attribute>

</Action>
</Request>

62

</samlp:RequestAbstract>

Interaction

Figure 3.10 illustrates the interaction between the various stakeholders in the IoT SoA in respect
to the access control concept. The �rst step happens when a user wants to access a Web-based
application. The browser of the customer is redirected to the central identity provider where
the user is authenticated using either a user-name and password or mutual authentication
based on signed public keys (X.509 certi�cate). On the �rst usage of an application, the user
is redirected to the policy administration point where the access rights of the application on
the user data sources can be administrated and transformed from a domain speci�c terminol-
ogy into the generic XACML access policy structure. After the user is authenticated an SAML
assertion based on the SAML Web single sign-on pro�le is returned to the browser of the cus-
tomer including the data owner identi�er as identity attribute. The application server receives
this SAML assertion and creates an authentication context for the customer. Based on the data
owner identi�er it queries the service repository for the required Web service endpoints. The
application server then issues the according SOAP requests, e.g. a query to the smart meter
object o�ered by the OBIX interface. The SOAP request is encrypted and signed by the applica-
tion. The PEP acts as a SOAP intermediary in front of the Web service endpoint that provides
the interface to the data source. It extracts all information to create an XACML decision request
and sends it to the central PDP. The PDP evaluates the policies and decides whether access is
permitted or denied and returns the decision. Based on the decision, the original SOAP request
is forwarded by the PEP and processed. Otherwise a SOAP fault message is returned to the
application server.

3.6 Implementation

Within this section a proof of concept implementation of the IoT SoA is presented which
demonstrates the feasibility of the proposed concepts.

The IoT SoA core infrastructure is implemented within a testbed using Java 6 and the JBoss
application server. The IDP and PDP are based on the open source JBoss Picketlink framework,
but customized for the speci�c needs of the IoT SoA core. The description of the implementa-
tion follows the 4+1 view model proposed by Kruchten [39]. Further, a cloud-based implemen-
tation of the PDP is also performed in order to analyze the increased scalability. Therefore, the
Appscale PaaS framework is used [111].

The data assets stored by the core database concern information about the user (e.g., data
owner) including contact information, name, address and organization and a data owner acting
as a unique pseudo identi�er. The user data is linked to a user role which identi�es the user
as data owner, service provider or application provider. Further, the database stores a service
context which identi�es the relationship between a data owner, service provider and service
consumer. The service context allows to register certain types of services and further specialize
the target scope to certain service providers and consumers. For each service context, a service
description holds information about the type of the service, a version and a link to a WSDL

63

lo
o

p

P
o

licy
D

ecisio
n

 P
o

in
t

W
eb

 S
ervice

E
n

d
p

o
in

t
P

o
licy E

n
fo

rcem
en

t
P

o
in

t
S

ervice
R

ep
o

sito
ry

P
o

licy
S

to
re

Id
en

tity P
ro

vid
er &

P
A

P
A

p
p

licatio
n

B
ro

w
ser

C
u

sto
m

er19: u
se ap

p
licatio

n

10: au
th

o
rize access

7: en
ter u

sern
am

e &
p

assw
o

rd

30:

20: ap
p

licatio
n

 req
u

est

18: ap
p

licatio
n

 U
I

28: S
O

A
P

 R
esp

o
n

se

27: S
O

A
P

 R
eq

u
est

25: evalu
ate p

o
licy

24: X
A

C
M

L
 p

o
licy

23: retrieve P
o

licy (S
Q

L
)

26: X
A

C
M

L
 P

o
licy D

ecisio
n

 S
tatem

en
t

22: X
A

C
M

L
 P

o
licy au

th
o

rizatio
n

 req
u

est

29: S
O

A
P

 resp
o

n
se

21: S
O

A
P

 req
u

est

17: S
ervice en

d
p

o
in

t

16: lo
o

ku
p

 service en
d

p
o

in
ts fo

r p
ro

vid
ed

 S
W

G
 ID

15: H
T

T
P

 req
u

est + S
A

M
L

 to
ken

13:

12: u
p

d
ate access p

o
licies

14: p
ro

vid
e S

A
M

L
 to

ken
 + S

W
G

 ID

11: au
th

o
rize access

9: d
isp

lay req
u

ested
 services

8: p
ro

vid
e u

ser n
am

e an
d

 p
assw

o
rd

6: d
isp

lay au
th

en
ticatio

n
 fo

rm

5: S
A

M
L

 req
u

est + req
u

ested
 services

4: red
irect to

 Id
en

tity P
ro

vid
er

3: R
eq

u
est au

th
en

ticatio
n

 an
d

 au
th

o
rizatio

n

2: H
T

T
P

 req
u

est
1: U

se ap
p

licatio
n

Figure
3.10:Accesscontrolinteraction

64

alt

Web service providerPolicy decision pointPEP policy enforcement point
interceptor

PEP membrane routerWeb service
consumer

10: Exception

9: deny access to service

8: deny

7: response

6: Web service call

5: permit access to service

4: permit

3: authorize

2: handleMessage()
1: Web service call

Figure 3.11: Sequence diagram describing PEP‘s mechanism [112]

document describing the interface in a machine-interpretable way. Furthermore, a public key
is provided that can be used to send encrypted requests to the service endpoint. Finally, the
database holds a policy set for each data owner in order to restrict the access to the provided
data sources of the data owner.

For the discovery of services and mediation of the connection phase between a service
consumer and service provider, the service registry plays an essential role. The Web service
registry provides a single point of information about where the service Uniform Resource Lo-
cator (URL) and the WSDL are located. The main purpose of the registry is to o�er features for
registration, de-registration and lookup of services providing certain capabilities.

The sequence diagram in Figure 3.11 illustrates the behavior of the PEP in more detail. The
PEP is another key component of the IoT SoA core and acts as a router between the service
provider, service consumer and the policy decision point.

When a request �ts the speci�cation, the dataOwnerId and the function name get extracted
and enveloped in an XACML decision request that is sent with an authorize() method to the
PDP awaiting the evaluation result. If the requester is permitted to retrieve the Web service‘s
return values, the router forwards the request. If the request does not ful�l the requirements,
an exception is thrown.

Figure 3.12 shows the abstraction of the policy decision point work �ow when an XACML
request reaches the service and what happens while processing the request. A speciality of the
PDP is that no exceptions reach the outside. Due to the speci�cation, the PDP could reply with
four answers.

• Deny

65

• Permit

• NotApplicable

• Indeterminate

Deny and Permit are the answers that are normally expected by the requesters. According
to [113], Not Applicable is sent when no policy or policy set is applicable to the incoming re-
quest. Moreover, Indeterminate means that no exact solution for the request could be evaluated
for a given policy which often indicates an error in the policy or the request. This means to the
requester that no matter what error occurs the access is denied. The message that can be in-
terpreted from the possible error-like states is that either something went wrong or the access
gets denied.

XACMLRequest received

throw
InvalidRequestException

send NOT_APPLICABLE

Extract dataOwnerId

throw
DataOwnerIdNotFoundException

lookup database

evaluate XACML
policy on request

throw PolicyNotFoundException

send DENY

send PERMIT

true

true

false

entry found

false

dataOwnerId found

Valid request Invalid request

Figure 3.12: Activity diagram of the PDP [112]

66

SOAP call intercepted

check signature
throw

InvalidSignatureException

search dataOwnerId

throw DataOwnerIdNotFoundException

extract method name

create XACMLRequest

send XACMLRequest

throw
AccessDeniedException

forward SOAP request

found

rejected

analyse request

rejected

rejected

Figure 3.13: Activity diagram of the PEP [112]

Related to Figure 3.11, Figure 3.13 shows the activity diagram of the PEP describing the �ow
of recognizing an incoming request, validating and processing SOAP messages. A con�gured
listener awaits incoming SOAP messages that comply with the parameters of the con�guration.
If the request is directed to the service the PEP is sitting in front of, the assigned signature
is evaluated. After extracting the dataOwnerId and the method name an XACML request is
created and synchronously sent to the given policy decision point. When the decision request
gets permitted the PEP forwards the original request to the original Web service and �nishes
the processing of this request.

Besides the centralized policy decision point, the policy enforcement point is the interface

67

to request the PDP. Each service provider has to put the PEP in front of the service.
If the PEP resides on the same device that facilitates the service or if the device is an em-

bedded system equipped with low memory and a weak CPU, the enforcement point shall be
put on a gateway that communicates with the service-providing gadget or tool. In the given
�gure, only the scenario with a smart meter device and a separated PEP is presented. The
service registry is used by every provider and client. Therefore, the deployment of the policy
enforcement point could be realized with three di�erent scenarios.

1. The policy enforcement point is deployed on a single machine for one service if the
underlying service causes heavy tra�c.

2. A set of policy enforcement points is deployed on a single machine for a set of corre-
sponding small services with low tra�c.

3. The policy enforcement point is installed on the same machine as the protected service
if the machine meets the requirements for the expected demands.

Cloud-based implementation

In order to increase the scalability of the central IoT SoA core components, a cloud-based imple-
mentation of certain components is performed. Realization of the proof of concept prototype
consisted of con�guration and deployment of Appscale and the implementation of the PDP
and PAP components deployable in Appscale. Code creation was conducted locally with the
use of the Google App Engine (GAE) plug-in2 for Eclipse. This environment enables functional
tests to be undertaken locally. A Dell Power EDGE R715 server was set up with Xen hyper-
visor3, an open source standard for virtualization. The Appscale virtual machine images were
downloaded and con�gured according to the instructions given on the Appscale homepage.

Implementation of the PDP component

In order to communicate with the outside world, the PDP component publishes a Web service,
that implements the interfaces speci�ed in the XACML-SAML pro�le. The parsed decision
requests evaluated against a policy according to the rules de�ned in the XACML standard.
Since there are already existing implementations, that have shown their compliance with the
standard, it was decided to port such a component to Appscale. After screening the available
implementations, the Picketlink project from the JBoss Community4 was identi�ed as the most
appropriate one. It o�ers full compliance with the XACML-SAML pro�le 2.0 and is published
as open source project. Most of the Picketlink code could be adopted one-to-one although
several components had to be rebuilt to missing support of certain Java API classes which
are not available in the GAE. Parsing of the messages had to be adapted to comply with the
whitelist of allowed Java classes used by GAE. The mechanism of the whitelist was introduced
to prevent the usage of unsafe classes, that could break the sandbox environment of GAE.

2https://developers.google.com/appengine/docs/java/tools/eclipse
3http://www.xen.org/products/xenhyp.html
4http://www.jboss.org/picketlink

68

During parsing the key attributes resourceId and serviceName are extracted. Each policy can
be identi�ed distinctively by the use of these attributes. Therefore, they are necessary for
determining the correct policy for evaluation of the received request later on.

Apart from just porting Picketlink to Appscale the policy lookup mechanism was changed
signi�cantly. In its original version, Picketlink bootstraps its PDP with all available policies.
These are loaded and kept in memory through the whole runtime of the program. The Poli-
cyLookup mechanism was adjusted to conform with the mechanism proposed in the designed
architecture. When evaluating a received request, a PolicyFinder is responsible to return the
right policy. Normally, Picketlink would search its cached policies for the desired policy by
matching the targets. In this implementation, the database based PAP is queried for the right
policy by supplying the key attributes, that have been extracted from the request. The resulting
policy is then returned to the PolicyFinder.

Implementation of the PAP component

The PAP component was developed based on the distributed database support of Appscale.
For data exchange, a Web service and a Web form were implemented. The DatastoreService
o�ered by GAE is used for storing and retrieving the policies. The key attributes as well as the
policy in plain text are added as properties for storage of the policy. For retrieving a policy,
the key attributes have to be supplied. These are then used to create a query, that returns the
appropriate policies. After completing the �rst round of tests, a second implementation for
policy retrieval was created incorporating the memcache service. It is used to cache policy data
retrieved from the database to save processing time in case the same policy is requested in the
near future.

Authorization as a service

The centralized administration, storage and evaluation of policies introduces a bottleneck in
the system. A cloud-based deployment of a central component like the XACML PDP and PAP
can address the scalability requirements [114]. For the IoT SoA, a deployment of core compo-
nents based on the PaaS cloud service model is used. Figure 3.14 illustrates the cloud based
deployment. An IaaS framework provides a �exible layer of computational resources that can
be used by the PaaS framework which provides a load balancer, worker nodes and database
nodes. Finally, on top of these frameworks the PDP and PAP reside.

3.7 Evaluation

For the evaluation of the IoT SoA, a scalability analysis of the core components is performed
for an on-premise and a cloud-based implementation.

Performance evaluation

Deploying a central component like the IoT SoA core requires high performance and scalable
architecture. In order to evaluate the required computational resources, a performance evalu-

69

PaaS Framework

IaaS Layer

PaaS
Layer

Application

Hardware Virtualization Layer

Load Balancer Worker Nodes Database Nodes

PDP PAP

Figure 3.14: Authorization as a Service [114]

ation based on a testbed is done and an analytic Queueing Network (QN) is setup.
Especially the access control and policy evaluation engine is identi�ed as bottleneck in the

core infrastructure. For a performance evaluation, a workload and a QN model are required.
Figure 3.15 shows the used QN model of the PDP. The model consists of two servers, one
application server and one database server. For establishing a QN, the resources of interest and
request types need to be identi�ed.

In case of the PDP, this includes the di�erent policy decision requests that might lead to
a Permit, Deny or Not Applicable result. Following the operational analysis methodology by
Denning [108], the service demands on resources imposed by di�erent request classes can be
obtained through a benchmark on a concrete implementation.

Operational analysis

For the operational analysis, di�erent request types are executed against a concrete system
implementation for a given time period and based on system monitoring the utilization of
resources is measured. Based on the measured utilization, the service demands for one request
can be derived.

The following notation is used for this analysis.

• T : observation period

• A0: total number of requests sent to the system

70

CPU

disk

CPU

disk

Application Server

Database Server

incoming requests

Figure 3.15: Queuing network model

• C0: total number of requests completed by the system

• ρ: utilization

• λ: average arrival rate

• T : response time

With the service demand law the service demand Di can be calculated based on the system
utilization ρ and the throughput X0.

Di =
ρi
X0

(3.2)

Xi =
Ci
T

(3.3)

Di =
T × ρi
Ci

(3.4)

For performing this analysis, the core infrastructure is deployed on a virtualized server
using a 64-bit Linux 3.0.0 operating system with 4 GB of RAM and a 2 GHz AMD Opteron 6128

71

Permit Deny Not Applicable
CPU 0.1070 0.1062 0.1034

Table 3.4: Service demands in CPU seconds of the three classes for a CPU at the application
server requesting the PDP.

CPU core. A representative set of 100,000 policies is used for the operational analysis. Table 3.4
lists the service demands identi�ed within the analysis. The demands on the database server
are negligible compared to the e�ort for processing the XML-based policies at the application
server. Further, it can be seen that the initial assumption that the di�erent types of policy
evaluation results lead to di�erent service demands does not hold true and a quite similar
service demand can be measured.

Analytic model

For a QN model the utilization the average response time can be calculated based on Equa-
tion 3.5 using the measured service demands. The service demands Di can also be used to
calculate the device utilization Ui for a given request arrival rate (cf. Equation 3.6).

Rr =

K∑
i=1

Di,r

1− Ui
(3.5)

Ui =
R∑
r=1

λ ∗Di,r (3.6)

(3.7)

The results in Figure 3.16 present the calculated response times for di�erent resource con-
�gurations. A simple approximation is done for multi-core setups. Instead of adding more
resources and more queues to the model, the service demands are simply divided depending
on the number of cores to re�ect the impact of additional computational resources.

Benchmark

With a benchmark, the validity of the used analytic model is tested. Therefore, the impact
of increasing load on the average response time is investigated for di�erent computational
resource scenarios. Multiple instances of the JMeter benchmarking tool are used to execute
the requests. The setup deployment is shown in Figure 3.17. Randomized requests leading to
di�erent policy evaluation results are sent to the PDP.

The results are given in Figure 3.18. In the �gure, the benchmark results are compared
to the calculated expected response times. It can be seen the analytic model provides a good
estimation for the scalability of the system.

These results allow to state a lower bound on the required computational resources de-
pending on the expected workload of the access control mechanism.

72

● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

●

●

●

● Permit
Deny
Not Applicable

arrival rate

se
co

nd
s

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

● ●
●

●
●

●

●

●

● Permit
Deny
Not Applicable

arrival rate

se
co

nd
s

0 1 2 3 4 5 6 7 8 9 10 12 14 16 18

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

● Permit
Deny
Not Applicable

arrival rate

se
co

nd
s

0 2 4 6 8 10 13 16 19 22 25 28 31 34 37

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

● ●
●

●

●

● Permit
Deny
Not Applicable

arrival rate

se
co

nd
s

0 4 8 12 17 22 27 32 37 42 47 52 57 62 67 72

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Figure 3.16: Calculated response time based on the QN model for di�erent computational re-
sources [112]

Cloud-based components evaluation

For evaluation of the cloud-based implementation, a setup of Appscale was used together with
a JMeter client sending continuous requests. During a test routine, this machine communicates
with the Appscale application and executes a de�ned testplan. Appscale was executed on an
Xen server capable of running multiple virtual machines. Each database o�ered by Appscale,
except MySQL Cluster, was tested with multiple Appscale deployments ranging from one node
up to a maximum of four nodes. A MySQL Cluster con�guration requires the mode of replica-
tion to be divisible by the number of nodes (e.g., with six nodes, two or three times replication).
Therefore, a deployment for MySQL Cluster in a four nodes’ Appscale setup was not possible
and test runs were only conducted for one, two and three nodes. Table 3.5 lists the details of
the used test setup.

73

JMeter server
instance 1

JMeter server
instance x

Database

JMeter controlling instance (client)

Policy Decision Point

Figure 3.17: Setup of the benchmarking environment.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 20 40 60 80 100 120

A
v
e
ra

g
e
 r

e
sp

o
n
se

 t
im

e
 (

se
c)

PDP decision service arrival rate (req/sec)

QN model 1 core
QN model 2 core
QN model 4 core
QN model 8 core

Benchmark 1 core
Benchmark 2 core
Benchmark 4 core
Benchmark 8 core

Figure 3.18: Comparing analytic calculations with benchmark results

Closed workload test

The closed workload test was designed to issue decision requests to the PDP interface of the
access control system. The requests are created based on a CSV �le containing 10.000 randomly
generated unique IDs. The test runs alternately send requests that shall result in a Permit and
a Deny decision. The load induced by the tests is controlled through the amount of threads

74

Xen server

Dell Power EDGE R715
16 x 2GHz AMD Opteron 6128 CPUs
2 processor sockets, 8 cores per socket
16374, 14 MB RAM
Linux
(GNU/Linux 2.6.32-5-xen-amd64 x86_64)

Appscale instances

2 vCPUs
3500 MB RAM
Ubuntu 10.04.3
(GNU/Linux 2.6.32-305-ec2 x86_64)

JMeter server

2 vCPUs
2048 MB RAM
Ubuntu 11.10
(GNU/Linux 3.0.0-12-generic x86_64)

On-premise server

2 vCPUs
2048 MB RAM
Ubuntu 12.04.1
(GNU/Linux 3.2.0-32-generic x86_64)

Table 3.5: Cloud hardware test setup

issuing requests. The count of threads is increased by one every �ve minutes until a maximum
count of 36 is reached. The maximum load is maintained for another 5 minutes until the test
run is �nished. Because of the closed workload characteristic of this testplan the number of
requests issued to the system is partly controlled by the response times generated by the system
under test.

Table 3.6 displays the results gathered from the test runs. When comparing the test runs of a
one node Appscale deployment with multi-node deployments, a clear decrease of performance
can be observed. This behavior can be explained by the fact, that a one node setup does not have
to process any load balancing tasks. All Appscale components are placed on one node and there
is no need for complex supervision logic. Hypertable and Cassandra showed the appearance
of “Service Unavailable” responses. These are triggered as soon as a request is queued and hits
the mark of 60 seconds. MySQL Cluster showed the best performance from all databases tested
with Appscale. The load created by the test runs did not lead to the appearance of “Service
Unavailable” responses as observed with the other databases. The increase in performance from
two to three nodes’ MySQL Cluster deployments already results in a higher performance than
in a one node deployment. The replication tasks performed by MySQL Cluster are seemingly
not as costly as the ones performed by the other databases. With MySQL Cluster, Appscale
seems to deliver the scalability at a far better ratio than with the other databases tested.

After changing the target of the testplans the same test runs were executed against the
on-premises solution developed for comparison. The maximum capacity of the on-premises
system yields to about 630 positive responses per minute. In these test runs, no errors of any

75

Node(s) Hypertable Cassandra MySQL Cluster On-Premises
1 22 tpm 44 tpm 185 tpm 630 tpm
2 5 tpm 19 tpm 178 tpm -
3 11 tpm 22 tpm 325 tpm -
4 16 tpm 27 tpm - -

Table 3.6: Estimated maximum transactions per minute for the tested databases

type were recorded.

Open workload test

After analysis of the closed workload test, an open workload test was con�gured. This test
induced a constant load on the system for ten minutes to produce a desired arrival rate. After
each of these phases, a cool down period of �ve minutes followed. For the next load phases,
the desired arrival rate was increased in an interval step size of 0.25. This test was executed
against the system with 10.000 respectively 30.000 stored policies.

Figure 3.19 illustrates the comparison between an Appscale deployment concerning one,
two and three nodes with an on-premises solution. The upper diagram is based on 10.000 stored
policies whereas the lower diagram is based on 30.000 stored policies. All graphs show a slow
increase in the beginning that turns into an exponential growth.

The upper boundary of the graph for 10.000 policies is reached at the following numbers:

• 206 tpm (transactions per minute) for Appscale with one node

• 203 tpm (transactions per minute) for Appscale with two nodes

• 364 tpm (transactions per minute) for Appscale with three nodes

• 706 tpm (transactions per minute) for the on-premises solution

The upper boundary of the curves for 30.000 policies is reached at the following numbers:

• 155 tpm (transactions per minute) for Appscale with one node

• 70 tpm (transactions per minute) for Appscale with two nodes

• 230 tpm (transactions per minute) for Appscale with three nodes

• 75 tpm (transactions per minute) for the on-premises solution

76

Processing times at the application server

In order to gain more knowledge about the numbers received in the conducted tests, the actual
processing times at the AppServer component were analyzed. For this purpose, statements
logging a timestamp were placed at relevant points in the program code. This approach enabled
the measurement of the time needed to execute the Java code in order to process a request.
To further highlight the di�erences between the databases used, the timespan for querying
the database was investigated. In Table 3.7, the aggregated data for the databases MySQL
Cluster and Cassandra are shown. Two major di�erences are clearly visible when comparing
the numbers of MySQL Cluster with the numbers of Cassandra. The processing times logged
for MySQL Cluster are nearly identical in each of the con�gurations, whereas the processing
times for Cassandra are increasing signi�cantly if more than one node is used in the Appscale
deployment. More importantly, the times measured for database access are below one second
for MySQL Cluster in contrast to the times measured for Cassandra that are ranging from seven
to fourteen seconds. These high numbers are leading to the bad performance results that have
been observed in all of the Cassandra test runs compared to the test runs for MySQL Cluster.

Node(s) MySQL Cluster MySQL Cluster Cassandra Cassandra
DB Access Full Request DB Access Full Request

1 0,2 sec 0,96 sec 7,26 sec 8,13 sec
2 0,32 sec 0,99 sec 8,67 sec 9,56 sec
3 0,23 sec 0,99 sec 14,66 sec 15,85 sec
4 - - 14,27sec 15,44sec

Table 3.7: Processing times measured at the AppServer

Considering the time for database access plays such a crucial role in the gathered results,
a PAP component using memcache for caching purposes was analyzed as well. To test the
caching mechanism, the initialization phase of the test runs was extended to load 100 policies
into the cache. Since a memcache service is instantiated for each AppServer instance, the test
repeated requesting the same policy until each instance had cached the policy. The actual test
workload was limited to requests concerning policies that were already loaded into the cache.
The tests were conducted with a Cassandra deployment. The results are shown in Table 3.8.
Accessing the cached policies is only taking three milliseconds. This performance increase is
decreasing the overall processing time for all deployments.

Node(s) Cached Cached
DB Access Full Request

1 0,003 sec 0,75 sec
2 0,003 sec 0,69 sec
3 0,003 sec 0,67 sec
4 0,003 sec 0,65 sec

Table 3.8: Processing times with caching mechanism

77

Conclusion

This section provided an evaluation of the proposed IoT SoA that can be used for application
use cases such as a Smart Grid scenario. It has been shown how an architecture can be cre-
ated that provides a platform which mediates the interaction between di�erent partners and
stakeholders in an IoT SoA in a secured, trustworthy and interoperable way. A focus is put on
a generic access control mechanism that protects the data access on the arbitrary data sources
and services to be found within an IoT SoA. The proposed access control mechanism is ana-
lyzed regarding its scalability using an analytic model and experimental evaluation based on
proof of concept implementations.

78

Figure 3.19: Response time with increasing transactions per minute for 10.000 and 30.000 poli-
cies

79

CHAPTER 4
An IoT communication stack

This chapter covers an IoT communication stack that provides interoperability amongst smart
objects.

Further, the requirements on a system for creating easy control logic without the need
for developing speci�c applications or control logic scripts avoiding the use of a centralized
controller are de�ned. A set of communication protocols and interaction principles that enable
an e�cient message exchange for sensors and actuators within a WSAN are identi�ed. It is
shown how the requirements for a scripting-free distributed control logic execution can be
reached.

The main contribution is an IoT communication stack. It reuses existing standards and
technologies such as 6LoWPAN, CoAP and OBIX. The main contributions are the de�nition of
a standardized set of object de�nition based on OBIX for the IoT, a peer-to-peer communication
model resting upon IPv6 multicasting and the concept of a Web-based engineering tool that
provides means to create sophisticated control logic through a graphical programming way.
Further, a proof of concept implementation is presented and by simulation the scalability, the
performance and energy-consumption impact of the communication stack are analyzed.

A stack might refer to the set of layered communication protocols as well as to a concrete
implementation as a piece of software as stated in the following de�nition.

“The smart object software must implement the communication protocols used by
the smart objects. Because these protocols are designed in a layered style, where
each layer is stacked on top of each other, communication protocols are typically
known as a stack. The software that implements the protocol is also called a stack.”

[22]

81

119

 Smart Object Hardware and
Software 11

CHAPTER

 Smart objects are defi ned both by their physical appearance (the hardware) and by their behavior (the
software). In this chapter we discuss the typical hardware design of a smart object, the various ways
that the software of the smart objects typically is designed, and the implications of software mecha-
nisms on the power consumption of the smart objects.

 11.1 HARDWARE
 Smart objects contain a piece of hardware, which is a set of electrical circuits. The hardware consists
of four main components, as shown in Figure 11.1 :

 ● Communication device: This gives the smart object its communication capabilities. It is typically
either a radio transceiver with an antenna or a wired connection.

 ● Microcontroller: This gives the smart object its behavior. It is a small microprocessor that runs the
software of the smart object.

 ● Set of sensors or actuators: These give the smart object a way to interact with the physical world.
 ● Power source: This is needed because the smart object contains electrical circuits.

Radio Micro-
controller

Sensors,
actuators

Sensors,
actuators

Power

Wired
comm.

Micro-
controller

Power

 FIGURE 11.1
 The hardware architecture of two smart objects: a radio-equipped, wireless smart object (left) and a smart
object with wired communication (right).

Figure 4.1: Smart object hardware architecture [22]

4.1 Smart objects

Within this section the de�nition of a smart object is clari�ed and also an impression of the
hardware category is given that constrains the capabilities of an IoT stack and its implementa-
tion. The following technical de�nition can be used to describe smart objects.

“A smart object is an item equipped with a form of sensor or actuator, a tiny mi-
croprocessor, a communication device, and a power source. The sensor or actuator
gives the smart object the ability to interact with the physical world. The micro-
processor enables the smart object to transform the data captured from the sensors,
albeit at a limited speed and at limited complexity. The communication device en-
ables the smart object to communicate its sensor readings to the outside world and
receive input from other smart objects. The power source provides the electrical
energy for the smart object to do its work. For smart objects, size matters. They
are signi�cantly smaller than both laptops and cell phones. For smart objects to
be embedded in everyday objects, their physical size cannot exceed a few cubic
centimetres.”

[22]

The exact meaning of smart objects depends on the concrete application scenario and the
behavior of a smart object. A smart object within transportation or logistics might look very
di�erently from a smart object deployed within smart cities or building automation. What is
common to all these objects is i) the interaction with the physical world, and ii) the communi-
cation capabilities. A typical hardware architecture for the design of smart objects is given in
Figure 4.1. The hardware consists of a power source, a micro-controller, sensors or actuators,
and wired or wireless communication modules.

An example platform following this architecture is the Zolertia Z1 platform (cf. Figure 4.2a),
used for proof of concept implementations within this thesis. The platform provides a micro-
controller, radio and an on-board temperature sensor and accelerometer. Further, it provides
additional bus interfaces to connect further IO-modules as illustrated in Figure 5.22. Such I/O

82

modules range over a variety of sensors and actuators, customizable for a concrete application
scenario.

(a) Zolertia Z1 platform (b) 4 Analog Outputs (c) 16 Digital Inputs (d) Touch element (e) Sound sensor

Figure 4.2: Example I/O modules from www.phidgets.com

The most common micro-controllers used for smart objects are listed in Table 4.1. The list
includes just a few examples and is quite likely to change over time.

Name Manufacturer RAM (kB) ROM (kB) Current consumption (active/sleep) mA
MSP430xF168 Texas Instruments 10 48 2/0.001

AVR ATmega128 Atmel 8 128 8/0.02
8051 Intel 0.5 32 30/0.005

PIC18 Microchip 4 128 2.2/0.001

Table 4.1: Microcontroller in smart objects [22]

4.2 Requirements

The aim of the IoT stack is to provide a common communication interface amongst all tech-
nologies found in the Internet of Things environment. This section presents requirements on
an IoT stack and an overview of the stack and how the identi�ed requirements are addressed.

Datapoint-centric information representation

The information modeling facilities of an automation system de�ne how devices are repre-
sented. This includes concepts to represent entities, their capabilities and relations and further
de�nes low-level means to de�ne data types and their representation. Datapoint-centric in-
formation modeling can be seen as an approach that relies on simple base input and output
datapoints that are o�ered by devices or functional elements. All the device interaction mainly
relies on reads and writes on these datapoints which change the current state of the underly-
ing I/O signal or memory value. In this way, the device interaction can be kept stateless. Each
operation is idempotent and self-contained. A di�erent approach would be an object-oriented
or operation-oriented where the capabilities of devices are expressed using a more functional
orientation. In such systems, commands are exchanged between communication partners and
usually APIs provide a de�ned way to interact with the devices. The operation-oriented mod-
eling of device interface tends to introduce a state between di�erent calls. Stateful interfaces

83

increase the complexity and performance requirements since a session needs to be maintained
between the client and a server. Furthermore, an object-oriented approach can also lead to a
mixture in which devices are represented using basic properties as datapoints and more so-
phisticated functionality as operation. However, to support interoperability and to provide a
scripting-free way of specifying control logic, a datapoint based interaction is required (R1).

Generic base information model

For a system to support interoperability, a standard base information model needs to be de-
�ned that speci�es the meta-model used to represent entities (R2). The most important aspect
is to have a set of common data types that specify the format and encoding of information
datapoints, since all the process communication between di�erent devices will rely upon this
speci�cation. Furthermore, this leads to the convenient situation that only the de�nition of the
base data types needs to be standardized to allow interworking between di�erent devices. It
enables the opportunity to create generic user interfaces by providing input elements aligned to
the available base data types. Optionally, it is desirable to have standardized means to express
the capabilities of entities like devices and to standardize the set of input and output datapoints
o�ered. This can be done, for example, in a domain-speci�c way and would ease the creation
of domain speci�c applications.

Simple application layer communication services

The communication services at the application layer need to be standardized and �xed. For
datapoint centric systems, this requires the de�nition of services to read and write a datapoint
(R3). The exchanged payload for this service only carries values encoded to the basic data types
de�ned in the generic base information model. For building control logic, these services are
su�cient and allow wiring output and input datapoints together into one communication re-
lationship. The communication model here follows the semantics that if the state of an output
datapoint is changed the wired input datapoints are also updated. The whole functionality is
encapsulated within the communicating entities which are either representing physical devices
or virtual entities that represent functionality solely. A system might provide more sophisti-
cated services, which can be supported by a graphical control engineering tool. But if these
services are extensible, then a control editor must support some kind of scripting for the engi-
neering process.

Group communication interaction model

A group communication interaction model is essential for realizing distributed control logic
that avoids the use of a central controller (R4). Aligned to the datapoint semantics, a com-
munication group consists of a set of datapoints that share the same group communication
identi�er. If a datapoint is changed, e.g. through a physical sensor signal, it transmits the up-
date to all other datapoints in the group based on the simple write service with the datapoint
payload on a group address identi�er. The complete control logic in such a system can be based
on the group tables that map the group address to datapoints. Group tables are directly main-

84

tained on involved devices. No centralized controller with further application logic is required.
Although it would be possible to realize such interaction model also with unicast-based mes-
saging it would be more complicated to maintain the according addressing information and
keep it synchronized. The communication e�ort is signi�cant if a high number of entities
participate within a single group.

Logic and virtual entities

Logic entities are essential in a datapoint centric system. More sophisticated application logic
is contained in these entities but the interaction with them is based solely on reads and writes
on input or output datapoints (R5). Logic entities may reside on centralized controllers but
can also be deployed on constrained physical devices. Virtual entities are quite similar to logic
entities and can represent interfaces to other systems.

Communication principles

Within RFC 6568, the design and application spaces for 6LoWPAN are de�ned. Similarly, RFC
6606 provides a problem statement and requirements for 6LoWPAN routing. The use cases
taken in these RFCs can be used to de�ne some generalized requirements for the required
communication principles of an IoT stack. The analyzed use cases are industrial monitoring,
structural monitoring, connected home, healthcare, vehicle telematics and agricultural mon-
itoring, which all come with speci�c characteristics regarding the required communication
principles. In general, a communication stack needs to support point-to-multipoint, point-to-
point, and multipoint-to-point interaction (R6). The point-to-multipoint use case is especially
for building automation use case of relevance, whereas the multipoint-to-point interaction is
required for use cases that involve the data gathering of a large number of sensors towards a
single data sink.

Ease of use

State of the art automation usually requires the installation of dedicated software applications
in order to commission the devices and to engineer control logic. Typically, this type of soft-
ware comes with high licensing costs and might impose complicated installation steps. Further,
the software usually only runs on a certain platform and operating system making it hard to
migrate to other systems. Therefore, it is desirable to have a Web-based application for con�g-
uring devices and the creation of control logic (R7).

Energy and memory e�ciency

Since battery-operated and constrained nodes might be in use, energy and memory e�ciency
are important aspects. At the one side this puts constraints on the computational resources
in use (CPU, memory), and on the other hand on the design of the communication protocols.
The main requirement here is to optimally design the communication stack regarding stack
implementation and memory size (R8) and to use radio-duty cycling mechanisms in order to

85

keep the radio of the node switched o� most of the time. The right balance between energy
e�ciency and achievable quality-of-service needs to be found and depends on the concrete
application domain.

Scalability

A communication stack for the IoT needs to be capable of supporting billions of devices. Scal-
ability is a crucial requirement that needs to be supported by the system architecture and the
communication stack. This includes features such as a su�cient large addressing space (R9)
and an e�cient communication and architecture that is able to provide a certain quality of ser-
vice if a large numbers of nodes are added under the assumption that enough computational
resources are available.

Security

The IoT reaches out to various application domains including private homes and critical system
infrastructure. Security is an essential aspect that needs to be considered. Appliances need to
be protected from unauthorized external access in order prevent fraud or critical damages (R10).

4.3 Stack overview

Smart objects shall directly provide communication interfaces based on this stack. For existing
technologies, a gateway can o�er a similar interface. Figure 4.3 illustrates the horizontal layers
of the stack and the vertical services o�ered by the stack. The stack includes the capabilities for
service discovery of smart objects, service description of the provided communication inter-
faces, a generic and homogeneous data access service for reading and writing object properties
and querying time series information. Finally, security needs to be taken into consideration for
the overall communication concept.

The following sections will describe the details of the horizontal layers and the provided
functionality. Section 4.4, Section 4.5 and Section 4.7 are intended to provide an overview
of the constraints imposed through the data-link layer, the details of the required features of
IPv6 and an overview of message exchange protocols and information encoding technologies.
The main contributions can be found in the following subsections describing the OBIX-based
information models, the peer-to-peer interaction model and the graphical scripting-less control
logic editor concept. Furthermore, the overall composition can be considered as contribution.
Table 4.2 summarizes the requirements on the system stack and how they are addressed by the
proposed IoT stack.

4.4 Media and data link

For IoT devices as long as IPv6 communication is provided any type of link can be used. Most
prominent are technologies such as IEEE 802.15.4, Bluetooth Low Energy and WiFi. The main

86

Application services &
information model

Information encoding

Message exchange

Networking

Media and
data link

mDNS,
DNS-SD

UDP

IEEE 802.15.4

6LoWPAN

IPv6

DTLS/SSL

XML Encryption,
XML Signature

XML

OASIS OBIX
IoT OBIX
contracts

JSON EXI Binary

CoAP HTTP

TCP

SOAP WS-Security

IEEE
802.3

Ethernet

Service
discovery

Service
description

Data
access

Group
comm.

Security Authorization

XACML

WiFi
BT

(LE)

IPSec

Figure 4.3: IoT stack overview

IoT stack requirement Design decision

R1 Interoperability
Datapoint centric information representation
R2 Generic base information model
R3 Standardized application layer services

OASIS OBIX
CoAP message exchange (REST)

R4 Group communication interaction model CoAP and IPv6 multicast

R5 Logic and virtual entities OBIX contracts for logic blocks

R6 Interaction styles
Point-to-point
Point-to-multipoint
Multipoint-to-point

IPv6 unicast, IPv6 multicast

R7 Ease of use
Web based user interface and
commissioning tool,
graphical control logic editor

R8 Energy e�ciency
Radio-duty cycling
Optimized message encoding
Optimized application layer

R9 Scalability
and addressing space IPv6 networking, decentralized control logic

R10 Security AES encryption, XACML-based authorization

Table 4.2: IoT stack design decision ful�lling requirements

87

Technology Range Speed Power Use Cost
WiFi 100m nn Mbit/s high $$$

Bluetooth 10-100m n Mbit/s medium $$
802.15.4 10-100m 0.n Mbit/s low $

Table 4.3: Comparing wireless link layer technologies

di�erence between these technologies is the energy consumption, range, throughput and costs
for communication components as summarized in Table 4.3.

For the IoT stack, IEEE 802.15.4 is further considered. IEEE 802.15.4 is a standard for
low-power, low-data-rate and low-cost wireless sensor networks. It speci�es the physical and
medium access control layer. Several higher layer standards such as ZigBee, ISA100a, Wire-
lessHART and 6LoWPAN rely on it for the physical and data access layer. The maximum packet
size in IEEE 802.15.4 is 127 bytes. Depending on the MAC header only 86 or 116 bytes are avail-
able for the upper layer protocols depending on the MAC security options. This limit imposes
strong constraints of the higher layer of the IoT stack that follow in the next subsections.

Regarding the transmission power, it is important to identify the major energy consumers
within smart objects. For battery operated objects, this is a very critical property that needs to
be as much optimized as possible. Taking into account the measurements given in Figure 4.4
it is important to note that listening consumes as much as power as transmitting.158 CHAPTER 12 Communication Mechanisms for Smart Objects

 12.4 IEEE 802.11 AND WIFI
 IEEE 802.11 is a wireless communication standard originally designed as a high-speed, short-range
communication mechanism for laptops and general purpose PCs. IEEE 802.11 was introduced in the
late 1990s and several versions of the standard have been released since its inception. Each new ver-
sion of the standard has enabled a higher transmission rate. The fi rst version of the standard, which
was released in 1997, has a maximum transmission rate of 1 Mbit/s. The latest version of the standard,
802.11g, has a maximum transmission rate of 54 Mbits/s.

 WiFi is a brand name of the WiFi Alliance. The purpose of the WiFi brand is to identify equipment
and software that is compatible with other WiFi and 802.11 systems. With early 802.11 equipment, it
was not certain that this equipment from different vendors would interoperate with each other. With
the WiFi brand, this is no longer an issue. In this book, we use the name 802.11 to distinguish that we
are discussing the underlying technology and not the interoperability aspects.

 IEEE 802.11 and WiFi are used in many homes and offi ces to provide wireless Internet connec-
tivity. Today’s laptops have integrated 802.11 circuits. 802.11 base stations are low cost and avail-
able worldwide. Many home broadband routers and DSL modems contain an 802.11 base station.
Smartphones such as the iPhone contain 802.11 transceivers. It has been estimated that the number of
802.11 devices worldwide by 2012 will be counted in billions.

 For smart objects, 802.11 has many positive aspects. The widespread adoption of 802.11 makes
deployment of smart objects easy. In locations where an 802.11 network exists, no additional infra-
structure is needed to support an 802.11 smart object network. Also, the availability of 802.11 chip-
sets, routers, and network access cards reduces the cost of hardware for 802.11-enabled smart objects.
Furthermore, the widespread adoption and availability of 802.11 has led to a widespread knowledge
and understanding of 802.11. For smart object businesses, this provides a large market of skilled net-
work architects and engineers.

 Because 802.11 was designed for high-speed transport for laptops and PCs, it has had a reputation
for being power-hungry. Compared to 802.15.4 transceivers, 802.11 transceivers typically have an
order of magnitude higher power consumption.

0

10

20

30

40

50

60

Idle Listen Transmit,
low power

Transmit,
full power

P
o

w
e
r

c
o

n
s
u

m
p

ti
o

n
 (

m
W

)

 FIGURE 12.10
 The power consumption of the
CC2420 IEEE 802.15.4 radio
transceiver.

Figure 4.4: Power consumption of a IEEE 802.15.4 radio (TI CC2420) [22]

Therefore, for energy optimization it is not enough to simply reduce the amount of data
that is transmitted. Instead, the radio needs to be set in idle mode as often as possible. However,
since this would mean no messages could be received a mechanism is required to coordinate
all senders and receivers in a wireless network to turn the radio on at the right time in order
to receive all transmitted messages. This mechanism is called radio duty cycling. There are
several ways to realize radio duty cycling. One approach is to use a time synchronization in
order to synchronize senders and receivers. There are synchronous and asynchronous radio

88

Mechanism Type of mechanism Typical radio on-time (%)
X-MAC Asynchronous 1.4

Arch Rock Asynchronous 0.65
ContikiMAC Asynchronous 0.45

TSMP Synchronous 0.32
Dozer Synchronous 0.16

Table 4.4: Comparing radio duty cycle mechanisms [22]

duty cycling mechanisms. The asynchronous low-power listening protocol is used in the X-
MAC protocol [115]. Within this procedure, the radio is switched o� most of the time and
periodically switched on for a short time duration to receive potential transmissions. The
con�guration of the o�-time depends on the type of tra�c pattern to expect and the average
delay that is acceptable for a transmission to be received at the destination node. If a sender
wants to transmit a message it �rst sends a sequence of short packages, so-called strobe packets.
These packets need to be sent for a full idle duration of a potential receiver. Once the receiver
wakes up and recognizes the strobe packages it sends a strobe acknowledgement which leads
then to the full transmission of the message. In this way, the energy consumption can be
signi�cantly reduced at the receiver side and most of the e�ort is put at the sender side. The
main advantage of asynchronous radio duty cycling mechanisms is their simplicity. They can
be improved by synchronous mechanisms which rely on time synchronization. An example
for this is TSMP used by WirelessHART and ISA100a. In TSMP, all nodes are synchronized
within 50 µs. The time is divided into slots in which a node can be listening, transmitting or
sleeping. A node that wants to transmit a packet sends �rst a short time synchronization byte,
that determines if a receiver has to stay on-line. By doing so, the energy consumption can be
signi�cantly reduced.

4.5 IPv6

IPv6 is a standard speci�ed by the IETF in 1998. According to the speci�cation, the primary
changes concerning its antecessor IPv4 fall into the categories i) expanded addressing capabil-
ities, ii) header format simpli�cation, iii) improved support for extension and options, iv) �ow
labeling capability, and v) authentication and privacy.

• Expanded addressing capabilities: The address space of IPv6 is extended from 32 to
128 bit. The calculation provided in [13], 2128 /(4 * π * 63781372) = 6.6 ∗ 1023 indi-
cates the number of possible devices per square meter using such a large address space.
This allows providing each device with an IPv6 address, to use it for identi�cation in
the future IoT and to avoid any overlay mechanism with custom addressing schemes
and overlay routing mechanisms. With the extended address space, additional improve-
ments regarding auto-con�guration of nodes and the scalability of multicast routing are
de�ned. Furthermore, a new address type called anycast is introduced, which o�ers to
send a packet to any one of a group of nodes.

89

• Header format simpli�cation: The header simpli�cations introduced in IPv6 make
the protocol more attractive for deployments on embedded or constrained devices.

• Flow labeling capability: The new �ow labeling supports a sender to label the packets
of particular �ows and to request certain QoS properties. For example, real-time in the
sense of non-interrupted video streaming or voice over-IP are use cases for the �ow
label. However, in this context, the term real-time should not be confused with real-time
constraints known from certain control network applications where timing guarantees
need to be met by control devices. In the area of building automation, the �ow label
capability might be useful.

• Authentication and privacy: IPv6 comes with an extension to provide authentication,
data integrity and data con�dentiality, all features that are de�nitely required in the
future IoT.

4.6 6LoWPAN

6LoWPAN is an acronym for IPv6 over Low-power Wireless Personal Area networks (LoW-
PAN). This subsection summarizes the most relevant information about 6LoWPAN in the con-
text of this thesis based on [16]. Its idea is to deploy IP even on most constrained devices with
limits regarding memory and processing power which are wirelessly connected with narrow
bandwidth and strong requirements on energy e�ciency [116]. 6LoWPAN is not a fully speci-
�ed protocol stack, it is more a framework of standards that respectively address several issues
of the IoT. As stated in [6], several problems have to be addressed if IPv6 is used on top of IEEE
802.15.4 networks.

Since devices within a LoWPAN have limited resources, usually no user interfaces are avail-
able. Thus, it is required to keep the con�guration and management e�orts as low as possible.
In the best case, the protocols provide bootstrap mechanisms without manual con�guration.

6LoWPAN provides an adaptation layer that makes it possible to use IPv6 on constrained
links. A popular link for 6LoWPAN is for example provided by IEEE 802.15.4 networks. Addi-
tionally, e�cient mechanisms for multicast and unicast routing are speci�ed which facilitate a
special neighbor discovery approach.

Routing

Routing is a crucial aspect of IP-based network communication. For LoWPANs, approaches for
unicast and multicast routing in IPv6 based wireless networks are de�ned.

For unicast communication, two di�erent routing approaches are applicable. On one hand,
routing can be performed at the data link layer by the underlying mesh-network. In this case,
the adoption layer ensures that a pairwise communication is possible. However, it is not speci-
�ed which routing mechanism is applied. On the other hand, a routing protocol at the network
layer can be taken that addresses the special demands of wireless sensor and actuator networks.

For this purpose, the Routing Protocol for Low-Power and Lossy Networks (RPL) as spec-
i�ed in RFC 6550 [117] is used. The routing mechanism is based on a Destination Oriented

90

Directed Acyclic Graph (DODAG). Every graph has exactly one destination node (root), where
every path in the graph �nally leads to. The graph is stored in a distributed way, whereas the
building process is initiated by the root node. For the computation and maintenance of the
graph, ICMPv6 messages are used. Generally, messages are sent upwards in the graph, but it
is also possible that the root node sends messages to its children. RPL operates either in a non-
storing mode or storing mode. In the case of P2P tra�c all downward tra�c in the non-storing
mode has �rst to reach the DODAG root. For the storing mode, a routing node processes the
Destination Advertisement Object (DAO) messages and constructs downward routes. This im-
proves the P2P tra�c by allowing a packet to be transmitted via a common ancestor between
the source and the destination before reaching the DODAG root.

Immediate communication among nodes in di�erent paths of the tree is not possible. Thus,
some routes are far more expensive in terms of the used metric than the optimal one. If such
links are frequently used, the overall performance drops. In order to overcome this issue, multi-
ple instances of RPL can be de�ned. Each instance constructs its own DODAG using a di�erent
metric or a di�erent root node, however an RPL node has to belong to at most one DODAG
within an RPL instance.

IPv6 multicasting in 6LoWPAN

Within the informational RFC 6568 [118], the design and application spaces for IPv6 over Low-
Power Wireless Personal Area Networks are investigated. One aspect of the design space is the
tra�c pattern which can be roughly categorized into point-to-multipoint (P2MP), multipoint-
to-point (MP2P) and point-to-point (P2P) communication. Within traditional wireless sensor
networks, P2MP tra�c typically occurs for updating �rmware on devices. Otherwise, the main
tra�c at the operation time is MP2P tra�c, in which collected sensor readings are transmitted
to a data sink behind the border router of a 6LoWPAN. However, for the home automation use
case, multicasting and multiple P2MP connections within the network play an important role.

For 6LoWPAN, there are di�erent options to realize multicasting. The most dominant net-
work routing protocol up to now is the RPL. RPL is based on a DODAG. The graph is stored in
a distributed way amongst the participating nodes and ICMPv6 messages are used to maintain
the graph. RPL operates either in a non-storing mode or storing mode. In the case of P2P tra�c,
all downward tra�c in the non-storing mode has �rst to reach the DODAG root. The storing
mode can be operated with multicast or without multicast support. With multicast support,
DAOs are used to relay group registrations up towards the DODAG root. In contrast to unicast
tra�c in which a packet is forwarded only to a single child node multicast tra�c is forwarded
to all children nodes that have registered to a multicast group. Multicasting routing states are
therefore installed on each router between the listeners and the DODAG root.

A di�erent approach is provided by the Multicast Protocol for Low power and Lossy Net-
works (MPL) [119] which, at the time being, is still in draft state. MPL avoids the creation and
maintenance of a multicast forwarding topology. It uses the Trickle algorithm for controlling
packet and control information transmissions. Trickle optimizes the propagation of informa-
tion e�ciently and mainly speci�es when messages need to be transmitted, without de�ning
a concrete frame format or even the overall purpose the Trickle algorithm is used for. The
basic idea is that when two neighbors are consistent (e.g., share the same state information),

91

Bits 8 4 4 32
Field pre�x �ags (transient) scope group ID

Table 4.5: Optimized 6LoWPAN multicast address format

the message exchange rate between them is slowed down exponentially. For this purpose, the
so called trickle timer is used. If a node receives consistent information, it increases this timer.
If an inconsistency is detected, the trickle timer is reset. This dynamic behavior prevents from
“wasting” messages and allows to propagate changes within milliseconds.

The main di�erence between RPL and MPL based multicasting is that in the case of RPL a
multicasting topology is maintained while in case of MPL only a per packet state is preserved.
This leads to several advantages and disadvantages of the mechanisms regarding scalability,
performance and complexity. A thorough evaluation is provided within [87]. Since MPL is still
in a draft state the protocol can be expected to be improved.

Oikonomou and Philipps [87] also propose a new protocol named stateless multicast RPL
forwarding (SMRF). The concept optimizes the multicast forwarding de�ned by RPL. By simu-
lation the authors show that compared to Trickle based multicasting the delay and the energy
e�ciency can be improved at the cost of increased packet loss.

Alternatively, the most simple way to realize multicasting in 6LoWPAN networks is to
use �ooding, by having each node that receives a multicast message retransmitting it once.
Therefore, a sequence number stored in the LOWPAN_BC0 �eld of the 6LoWPAN header can
be used to avoid multiple retransmission. Although, �ooding seems to be the worst option
regarding network congestion and energy e�ciency, the main advantage of this mechanism
resides in the simplicity of its implementation.

For LLNs it is not optimal to transmit the full 128 bits IPv6 multicast address therefore for
6LoWPAN the LOWPAN_IPHC provides stateless multicast address compression allowing to
compress the address to either 48 bits or 32 bits carrying inline the �ag and scope �eld or to
8 bits without the �ag and scope �eld �xed to the link-local scope. In order to avoid con�icts
with well-known addresses1 the transient �ag must be set. In that case, it is possible to use the
48 or 32 bits representation with an address space of either 32 bits (cf. Table 4.5) or 16 bits for
group communication relationships within local networks.

4.7 Message exchange and information encoding

For message exchange, either HTTP, CoAP or SOAP can be used. The SOAP binding is appro-
priate if enterprise systems need to interact with IoT devices. HTTP and CoAP can be used
for RESTful interaction. Both are similar, but HTTP uses TCP as underlying transport layer
protocol. This provides reliability but limits the communication to a connection-oriented point-
to-point communication and can be considered as heavy-weight communication protocol for
sensor networks regarding bandwidth and computational resources of nodes. Furthermore,

1http://www.iana.org/assignments/ipv6-multicast-addresses/ipv6-multicast-addresses.xml

92

HTTP only allows a request/response interaction using a client/server communication model.
In contrast, CoAP uses UDP as transport layer. This provides unreliable packet-oriented com-
munication with group communication and asynchronous interaction within the client/server
communication model. Due to these di�erences, CoAP provides means for non-con�rmed and
con�rmed message exchange and furthermore extends the regular HTTP protocol with an
observe mechanism. The enhancement supports observing a resource and avoids frequently
polling of resources such as event streams or alarms. Further, it is possible to rely on IPv6
multicasting for a group communication mechanism.

For the IoT stack, the application payloads can be encoded using di�erent technologies.
XML is a dominant encoding for message encoding due to the broad platform support and the
interoperability. XML is a text-based encoding conveying semi-structured information. Beside
the information itself also some meta-data about the structure are included in a message. The
strong advantage of XML is the possibility to de�ne a message structure and custom language
based on XML schema. This meta-information can be used to create platform speci�c message
parsers and encoders. However, the encoding based on XML is quite verbose due to being
based on a text-based encoding. A similar but slightly more e�cient encoding is JSON, which
is becoming more popular in the WoT context. The main advantage of JSON is in the area
of Web-based applications involving JavaScript. JSON-encoded objects can be directly parsed
to JavaScript objects without the need of any message encoding or decoding libraries. A nice
alternative to XML is EXI, which can be used to binary encode XML based documents. It does
this by building up a grammar that introduces binary codes for literals found within an XML
document. It can be operated in a schema-informed or non-schema information way. If a
schema can be provided the information encoding becomes most e�cient.

The message encoding has to be aligned with the design of the application layer services
and information models. If OBIX (cf. Section 4.8) is used there are several alternative message
exchange and information encodings de�ned. The standard and information modeling capa-
bilities of OBIX are strongly aligned to XML since the OBIX object model is de�ned through an
XML schema document. The need for optimized encodings for the requirements of constrained
environments such as 6LoWPAN has been identi�ed by the OBIX technical committee and a
binary encoding for OBIX has been speci�ed. The OBIX binary encoding provides a very ef-
�cient way of exchanging messages, but comes with the disadvantage of requiring message
encoders and parsers implemented on every platform that should be supported.

Figure 4.5 and Figure 4.6 provide a comparison regarding message size, and throughput [50,
120]. For the evaluation of the protocol binding message size, a benchmark is used. All available
stack objects are instantiated and a client performs a read and write request on all available ob-
jects and datapoints with the various protocol bindings and information encodings. As server,
a Java based implementation, as described in Section 4.10, hosts the di�erent objects and im-
plements the di�erent protocol bindings and encodings. The message encodings are evaluated
by measuring the CPU demands of decoding message payloads. For this evaluation, direct
message parsers for the basic OBIX value types bool, int, real and str (with 10 characters) are
used.

Regarding message size, it can be seen that CoAP clearly outperforms HTTP. However,
the main di�erence resides between text-based and binary message encodings. Here, binary

93

 150

 250

 500

 1000

 2000

 2500

GET full object GET data point PUT full object PUT data point

C
on

ve
rs

at
io

n
S

iz
e

in
 B

yt
es

OBIX Protocol Binding

Protocol Evaluation

HTTP/XML
HTTP/JSON

HTTP/EXI
HTTP/EXI SCHEMA INF.

HTTP/OBIX BINARY

CoAP/XML
CoAP/JSON

CoAP/EXI
CoAP/EXI SCHEMA INF.

CoAP/OBIX BINARY

Figure 4.5: Protocol binding message size evaluation [120]

94

 5000

 10000

 15000

 20000

 25000

 30000

 35000

EXI (sch.inf.) over XML

EXI over XML

JSON
XML

EXI (sch.inf.) direct

oBIX Binary

C
P

U
 ti

m
e

(m
ic

ro
se

co
nd

s)

oBIX decoder

Bool
Int

Real
Str

Figure 4.6: Message encoding throughput evaluation [50]

Message exchange Encoding Use Case
SOAP XML Enterprise IT integration
CoAP EXI, XML, JSON M2M communication
HTTP JSON Browser based access

Table 4.6: Protocol binding use case

message encodings provide the most relevant improvements regarding message size e�ciency.
Surprisingly, the schema-informed EXI encoding for OBIX performs slightly better than the
custom OBIX binary encoding.

The computational resources required for the di�erent encodings are shown in Figure 4.6.
For arbitrary EXI payloads, �rst a conversion to XML has to be done, therefore the compu-
tational e�ort for decoding these payloads is the highest. Unexpectedly, the JSON decoder
performs slightly worse than the XML decoder. This can be explained by the fact of better
platform support and more mature implementations for XML parsers. The best performance
is achieved by the direct schema-informed EXI decoder and the OBIX binary decoder.

4.8 Application services & information model

Within the Internet, HTTP is the most prominent application layer protocol used for the Web
and also for Web services. However, beside HTTP numerous other protocols play an important
role such as Simple Network Management Protocol (SNMP), File Transfer Protocol (FTP),

95

OBIX

RDF SOAP OGC

SLP MQTT-S

CAP SNMP RTP NanoWS SIP HTTP FTP

UDP TCP

6LoWPAN/IPv6

Figure 4.7: Potential application layer protocols for the Internet of Things [2]

Session Initiation Protocol (SIP) or Real Time Protocol (RTP). For the Internet of Things, the
same protocols should be used. Due to the resource demands some of them might not be
applicable to be used within constrained environments like micro-controllers and 6LoWPAN
based wireless networks. The overview presented in Figure 4.7 discusses possible application
layer protocol candidates for the IoT identi�ed by [2]. Most suitable candidates for the IoT are
protocols such as the ZigBee Compact Application Protocol (CAP), MQTT-S and OBIX.

Further, other industry protocols are mentioned such as BACnet, KNX, ANSI C12.19 or
DLSM/COSEM. Shelby et al. [2] identify that OBIX with an e�cient communication binding
could be an alternative to run industry or domain speci�c protocols within the IoT. The reason
for that lies in RESTful design of OBIX and the generic meta-information-model that can be
used for a variety of di�erent domains.

“Instead of running a control network speci�c building automation protocol such
as BACnet/IP or KNX over 6LoWPAN, OBIX together with compression and UD-
P/IP binding may be a solution. Careful design of the OBIX objects and elements
used would be important to keep packet sizes reasonable.”

[2]

This approach is followed within this thesis. The proposed IoT communication stack is
based on OBIX. The OBIX architecture contains concepts for information modeling of M2M

96

+display : string
+displayName : string
+href : anyURI
+icon : anyURI
+is : contract
+name : NMTOKEN
+null : boolean
+obj : Obj[0..*]
+status : status = ok
+writable : boolean = false

Obj

+max : int
+min : Int
+of : contract = obix:obj

List

+in : contract = obix:Nil
+out : contract = obix:Nil

Op

+in : contract = obix:Nil
+of : contract = obix:obj

Feed

Ref

Err

+val : anyURI

Uri

+disabled
+fault
+down
+unackedAlarm
+alarm
+unacked
+overridden
+ok

«enumeration»
status

+max : dateTime
+min : dateTime
+tz : string
+val : dateTime

AbsTime

+max : duration
+min : duration
+val : duration = PTOS

RelTime

+max : time
+min : time
+val : time

Time

+max : date
+min : date
+val : date

Date

+range : anyURI
+val : NMTOKEN

Enum

+max : string
+min : string
+val : string = ""

Str

+max : double
+min : double
+precision : int
+unit : anyURI
+val : double = 0

Real

+max : int
+min : int
+unit : anyURI
+val : int = 0

Int

+range : anyURI
+val : boolean = false

Bool

Figure 4.8: OBIX object model

information using a standardized syntax, for interaction in order to transfer M2M information
within a network and �nally, a normalized representation of typical BAS features such as data-
points, histories, and alarms. OBIX is in line with RESTful design and provides a REST-binding
to HTTP since the very early beginning. In the �rst version only an XML based informa-
tion encoding is provided but has recently been extended to JSON and EXI. Further, there
are now protocol bindings for CoAP and Web Sockets which make OBIX more suitable for
the IoT. The CoAP protocol binding and the message encodings for JSON and EXI for OBIX
have been proposed within the work performed in this thesis [52] and also contributed to the
standard [121, 122].

The OBIX meta-information model or so-called object model can be used to represent de-
vices and entities out of the domain of building automation as OBIX objects. Everything in

97

OBIX is an object. According to the RESTful design every object is identi�ed through a URI
and an object may contain multiple child objects and reference other objects. The standard
further distinguishes between basic value objects for representing simple boolean, numeric,
character or time information and more complex structures as lists or feeds. Finally, complex
objects can be created based on an arbitrary aggregation of the other object types. The object
model is kept generic so that any type of BAS can be represented and beside this also other
information sources. This generic approach is on the one side interoperable, since a simple
meta-model is common to all objects, but on the other side no semantic information for spe-
ci�c BAS domains such as lighting, HVAC, shading, safety or security is present.

To create a standardized structure for objects and to convey some contract information be-
tween communication partners, so-called OBIX contracts provide a template mechanism that
allows to de�ne requirements on certain properties or data structures. Contracts contain type
information that can be used by a client to rely on the presence of object properties or opera-
tions.

To illustrate this concept, Listing 4.1 shows an XML representation of an OBIX object for a
room thermostat taken from the speci�cation [123]. The room thermostat is identi�ed through
the URI http://myhome/thermostat and contains three nested child objects which are repre-
sented through basic value objects. With the is attribute the contracts of objects can be speci-
�ed. In this case for all the child objects a datapoint semantic is given. Following the RESTful
design, the object can be queried with an HTTP get request and modi�ed through an HTTP put
request. The payload of these requests is the full XML encoded object representation. If only a
single datapoint is of interest, HTTP get or put requests on http://myhome/thermostat/setpoint
could be used to modify only the current desired room temperature setpoint. As it can be seen
in the example, further information about the unit can be represented as an additional attribute
and the current value is provided within the val attribute.

Listing 4.1: OBIX example [123]
<obj href="http://myhome/thermostat/">

<!-- spaceTemp point -->
<real name="spaceTemp" is="obix:Point"

val="70.0"
unit="obix:units/fahrenheit"/>

<!-- setpoint point -->
<real name="setpoint" is="obix:Point"

val="72.0"
unit="obix:units/fahrenheit"/>

<!-- furnaceOn point -->
<bool name="furnaceOn" is="obix:Point" val="true"/>

</obj>

Information models

The OBIX meta-model is kept quite generic and does not o�er any domain speci�c information
models. For an IoT communication stack, it is desirable to have further standardized semantics

98

such as the capabilities of a smart object. A capability might be a temperature sensor or a
switching actuator. For a client, it is of interest, for example, how to query the datapoint object
representing the temperature and to know which unit will be used. Similar for the switching
actuator it is required to know how to trigger a state switch.

A datapoint is an atomic unit of information within a building automation system and can
either be a hard datapoint or a soft datapoint. A hard datapoint represents either a physical
input or output signal. In contrast, a soft datapoint represents a software variable within the
control system, such as for example a setpoint within a PID controller.

For modeling device capabilities, either a command-oriented or datapoint-oriented ap-
proach can be taken. A light switch can be represented either through a boolean �eld rep-
resenting the switch state or by two operations like turnOn and turnO�. Both approaches are
valid, however the datapoint centric approach is superior since �rstly, it �ts better to a re-
source centric design, and secondly, the interoperability problem can be relaxed. Communica-
tion partners only need to agree on a basic set of write and read operations and a standardized
type system for representing datapoint information. For the command-oriented approach, any
kind of operation needs to be standardized and agreed between all vendors. By having ven-
dors de�ning their own operations, it would be quite unlikely to achieve a common level of
interoperability.

For representing devices, two approaches can be identi�ed. Firstly, a generic device repre-
sentation, where a device o�ers an arbitrary list of input and output datapoints. Secondly, a
capabilities-oriented approach where the device can provide one or multiple capabilities and a
capability exactly de�nes the number and types of datapoints. A capability could be for exam-
ple a 4-fold push button. Figure 4.9 illustrates the two approaches.

Capability-based device contractGeneric device contract

-vendor : String
-rom : Integer
-ram : Integer
-datapoints : List<Obj>

Device

«datatype»
List<Obj>

Datapoint

1

0..*

-vendor : String
-rom : Integer
-ram : Integer

Device

-datapoint1
-datapoint...
-datapointN

CapabilityContract1 -datapoint1
-datapoint...
-datapointN

CapabilityContract2

-datapoint1
-datapoint...
-datapointN

CapabiltyContractN

Figure 4.9: Device modeling approaches

99

Generic device abstraction

Within the generic device abstraction a device is represented through a basic set of properties
with information about the device capabilities and the vendor. A list of available datapoints
provides access to the device capabilities. This representation can be applied on any type of
device but does not o�er much semantic information about the capabilities although syntactical
interoperability can be guaranteed. Only the datapoint type information is available and might
be enriched with semantic annotations.

Domain speci�c device abstraction

For the IoT stack, a set of domain speci�c OBIX contracts have been de�ned. OBIX contracts
allow a common abstraction amongst heterogeneous technologies and devices. Further, they
can be used to de�ne platform speci�c types in an object-oriented type system. A thing is the
most basic abstraction and further sub-divided into a sensor and actuator, which provides a
capability in a certain domain (e.g., light switch actuator).

Figure 4.10 provides an overview of a possible capability hierarchy for an IoT communica-
tion stack.

100

C
ap

ab
ili
ty

-l
o

ca
ti

o
n

 :
Lo

ca
ti

o
n

Ty
p

e

Se
n
so
r

-l
o

ca
ti

o
n

 :
Lo

ca
ti

o
n

Ty
p

e

A
ct
u
at
o
r

-a
ct

iv
e

: B
o

o
l

A
ct
iv
it
yD

e
te
ct
o
r

-p
re

se
n

ce
 :

B
o

o
l

P
re
se
n
ce
D
e
te
ct
o
r

-v
al

u
e

: B
o

o
l

P
u
sh
B
u
tt
o
n

-t
em

p
 :

R
ea

l

Te
m
p
e
ra
tu
re
Se
n
so
r

-b
ri

gh
tn

es
s

: R
ea

l

B
ri
gh
tn
e
ss
Se
n
so
r

-p
o

w
er

 :
R

ea
l

-e
n

er
gy

 :
R

ea
l

Sm
ar
tM

e
te
r

+I
n

d
o

o
r

=
In

d
o

o
r

+O
u

td
o

o
r

=
O

u
td

o
o

r
+R

o
o

m
 =

 R
o

o
m

+F
lo

o
r

=
Fl

o
o

r

«
en

u
m

er
at

io
n

»
Lo
ca
ti
o
n
Ty
p
e

Lo
gi
cB
lo
ck

-f
re

sh
A

ir
V

al
u

e
: R

ea
l

-s
u

p
p

ly
A

ir
V

al
u

e
: R

ea
l

-d
is

ch
ar

ge
A

ir
V

al
u

e
: R

ea
l

-e
xt

ra
ct

A
ir

V
al

e
: R

ea
l

A
ir
D
am

p
e
rA
ct
u
at
o
r

-e
n

ab
le

d
 :

B
o

o
l

B
o
ile
r

-v
al

u
e

: R
ea

l

D
im

m
in
gA

ct
u
at
o
r

-e
n

ab
le

d
 :

B
o

o
l

C
h
ill
e
r

-v
al

u
e

: R
ea

l

Fa
n
Sp
e
e
d
A
ct
u
at
o
r

-v
al

u
e

: R
ea

l

H
e
at
P
u
m
p
A
ct
u
at
o
r

-v
al

u
e

: B
o

o
l

Sw
it
ch
A
ct
u
at
o
r

-v
al

u
e

: B
o

o
l

Li
gh
tS
w
it
ch
A
ct
u
at
o
r

-v
al

u
e

: B
o

o
l

D
o
o
rO

p
e
n
e
r

-m
o

ve
U

p
 :

B
o

o
l

-m
o

ve
D

o
w

n
 :

B
o

o
l

Su
n
B
lin

d
A
ct
u
at
o
r

-v
al

u
e

: S
tr

Te
xt
D
is
p
la
y

-i
n

p
u

t1
 :

R
ea

l
-i

n
p

u
t2

 :
R

ea
l

-r
es

u
lt

 :
R

ea
l

-e
n

ab
le

d
 :

B
o

o
l

-o
p

er
at

io
n

Ty
p

e
: B

in
ar

yO
p

er
at

io
n

Ty
p

e

B
in
ar
yO

p
e
ra
ti
o
n

+A
D

D
 =

 +
+S

U
B

 =
 -

+M
U

L
=

*
+D

IV
 =

 /
+M

O
D

 =
 %

«
en

u
m

er
at

io
n

»
B
in
ar
yO

p
e
ra
ti
o
n
Ty
p
e

-i
n

p
u

t1
 :

B
o

o
l

-i
n

p
u

t2
 :

B
o

o
l

-r
es

u
lt

 :
B

o
o

l
-e

n
ab

le
d

 :
B

o
o

l
-o

p
er

at
io

n
Ty

p
e

: B
in

ar
yL

o
gi

cO
p

er
at

io
n

Ty
p

e

Lo
gi
cB
in
ar
yO

p
e
ra
ti
o
n

+A
N

D
 =

 A
N

D
+N

A
N

D
 =

 N
A

N
D

+O
R

 =
 O

R
+N

O
R

 =
 N

O
R

+X
O

R
 =

 X
O

R

«
en

u
m

er
at

io
n

»
B
in
ar
yL
o
gi
cO

p
e
ra
ti
o
n
Ty
p
e

-i
n

p
u

t1
 :

R
ea

l
-i

n
p

u
t2

 :
R

ea
l

-r
es

u
lt

 :
B

o
o

l
-e

n
ab

le
d

 :
B

o
o

l
-o

p
er

at
io

n
Ty

p
e

: B
in

ar
yL

o
gi

cO
p

er
at

io
n

Ty
p

e

N
u
m
e
ri
ca
lC
o
m
p
e
ra
to
r

+E
Q

U
A

LS
 =

 =
+L

ES
ST

H
A

N
 =

 <
+L

ES
ST

H
A

N
EQ

U
A

LS
 =

 <
=

+G
R

EA
TE

R
TH

A
N

 =
 >

+G
R

EA
TE

R
TH

A
N

EQ
U

A
LS

 =
 >

=
+N

O
TE

Q
U

A
LS

 =
 !

=

«
en

u
m

er
at

io
n

»
N
u
m
e
ri
ca
lO
p
e
ra
ti
o
n
Ty
p
e

-i
n

p
u

t1
 :

St
r

-i
n

p
u

t2
 :

St
r

-r
es

u
lt

 :
B

o
o

l
-e

n
ab

le
d

 :
B

o
o

l
-o

p
er

at
io

n
Ty

p
e

: S
tr

in
gC

o
m

p
ar

at
o

rT
yp

e

St
ri
n
gC
o
m
p
e
ra
to
r

-s
et

p
o

in
t

: R
ea

l
-t

em
p

er
at

u
re

 :
R

ea
l

-c
o

n
tr

o
lV

al
u

e
: R

ea
l

-e
n

ab
le

d
 :

B
o

o
l

-t
o

le
ra

n
ce

 :
R

ea
l

-s
et

p
o

in
tA

d
ju

st
m

en
t

: R
ea

l
-s

av
eE

n
er

gy
Fa

ct
o

r
: R

ea
l

-s
av

eE
n

er
gy

En
ab

le
d

 :
B

o
o

l

Te
m
p
e
ra
tu
re
C
o
n
tr
o
lle
r

+E
Q

U
A

LS
 =

 e
q

u
al

s
+S

TA
R

TS
W

IT
H

 =
 s

ta
rt

sW
it

h
+E

N
D

SW
IT

H
 =

 e
n

d
sW

it
h

+C
O

N
TA

IN
S

=
co

n
ta

in
s

«
en

u
m

er
at

io
n

»
St
ri
n
gC
o
m
p
ar
at
o
rT
yp
e

Fi
gu

re
4.1

0:
Io

T
ca

pa
bi

lit
y

hi
er

ar
ch

y

101

The advantage of this approach is that semantic information about the type of devices
and capabilities can be expressed for a communication client. However, the question is if this
information is required or useful. If the client’s features only rely on the simple OBIX object
model or the basic datapoint type abstraction, then the further semantic information provides
no use. Further, the problem is that a common standardization of the capabilities needs to
be de�ned, which might be hard to identify within a heterogeneous vendor environment and
di�erent types of devices.

Below is a selection of some OBIX contracts for this capability hierarchy. The device ab-
straction ranges from a set of simple devices with only a single datapoint up to more complex
mappings in which devices provide further datapoints and operations.

Listing 4.2: OBIX example contracts
<obj href="iot:TemperatureSensor">
<real name="value" href="value" val="0.0" unit="obix:units/celsius"/>

</obj>
<obj is="iot:LightSwitchActuator">
<bool name="value" href="value" val="false" writable="true"/>

</obj>
<obj is="iot:PushButton">
<bool name="value" href="value" val="false"/>

</obj>
<obj is="iot:Cooler">
<bool name="enabled" href="enabled" val="false" writable="true"/>

</obj>
<obj is="iot:Boiler">
<bool name="enabled" href="enabled" val="false" writable="true"/>

</obj>
<obj is="iot:Pump">
<int name="value" href="value" val="0" writable="true" min="0" max="100"/>

</obj>
<obj is="iot:FanSpeedActuator">
<int name="fanSpeedSetpointValue" href="fanSpeedSetpoint" val="0" writable="true

" unit="obix:units/percent"/>
<bool name="enabled" href="enabled" val="false" writable="true"/>

</obj>
<obj is="iot:HumiditySensor">
<real name="value" href="value" val="50.0" unit="obix:units/percent"/>

</obj>
<obj is="iot:LightIntensitySensor">
<real name="value" href="value" val="1000.0" unit="obix:units/lumen"/>

</obj>
<obj href="iot:SunblindActuator">

<bool name="moveDownValue" href="sunblindMiddleA/moveDownValue"
val="false" writable="true" />

<bool name="moveUpValue" href="sunblindMiddleA/moveUpValue" val="false"
writable="true" />

</obj>

Datapoint object

A datapoint object is the most simple data object within the IoT stack. The purpose of a data-
point object is to host an atomic piece of information representing either an I/O-signal or a
variable of the software process. OBIX foresees for this case a contract named obix:Point to
re�ect this datapoint semantic. According to the KNX speci�cation [17], a datapoint object

102

type needs to de�ne the data type consisting format and encoding and dimension which holds
a unit and a range (Figure 4.11). The format could for example de�ne whether the datapoint is
represented through a boolean or �oating point �eld. For �oating point information, multiple
encodings exist. Depending on the required granularity, more or less bits are used for repre-
senting the �eld. The dimension is a very important aspect of a datapoint. For example, taking
a temperature sensor it is important to know which unit is used and if the value is represented
in Fahrenheit, Kelvin or Celsius. The range is similar important for datapoints representing
actuators in order to provide the information for clients which values can be taken by the
actuator.

Datapoint Type

Data Type Dimension

Format Encoding Range Unit

Figure 4.11: Datapoint object type [17]

There are several ways to realize datapoint objects in OBIX. Firstly, the information can be
encoded in basic value objects like bool, real, int or str. This approach is shown in Listing 4.3.
While for the real object the format, dimension and range information can be provided it is
not possible for the bool object. There is no information whether the �eld represents the on/o�
or open/close state for an actuator. Such information would be valuable for a client interacting
with a device.

Listing 4.3: Datapoint Objects
<bool is="obix:Point" name="channelA" href="channelA" writable="true" val="false"

/>

<real is="obix:Point" name="setpoint" href="setpoint" unit="/units/celsius" min="
-273" max="670760" writable="true" val="false"/>

A more sophisticated way to represent datapoint objects in OBIX would be to use a complex
object together with a type hierarchy. For a boolean datapoint, the plain information is stored
within a bool object hosted by a complex object representing the datapoint. Within a subtype
further semantic information about the encoding can be provided by using a enum �eld that
holds encoding information for the whole value domain of the datapoint type.

Listing 4.4: Datapoint Objects
<obj href="iot:Bool" is="iot:Datapoint">
<bool name="value" href="value" writable="true"/>

103

</obj>

<obj href="iot:BoolOnOff" is="iot:BoolOnOff iot:Datapoint">
<enum name="encoding" href="encoding" range="/encodings/onoff" writable="true"/>

</obj>

<list href="encodings/onoff/" of="obix:bool" is="obix:Range">
<bool name="on" href="onoff/on" val="true" displayName="On"/>
<bool name="off" href="onoff/off" val="false" displayName="Off"/>
</list>

However, the more complex datapoint type representation provides only additional ben-
e�ts for client communication partners and is especially useful for user interfaces. For inter-
operability and interworking between di�erent devices, solely a common datapoint format is
required.

Interaction pattern

The data access services de�ne how smart objects based on the IoT stack can interact with each
other and how external clients can access smart objects in order to modify control states or to
collect sensor readings. For accessing data within the IoT stack, multiple interaction patterns
are possible.

Many-to-OneOne-to-ManyOne-to-One

Figure 4.12: Communication interaction patterns [22]

In general, the communication mechanisms can be divided into one-to-one, one-to-many
and many-to-one communication [22] as illustrated in Figure 4.12. For one-to-one commu-
nication, smart objects or nodes communicate directly with each other, having other smart
objects only involved for forwarding messages or responses. Another interaction pattern is
one-to-many communication in which a message from one smart object needs to be transmit-
ted to multiple receivers or even all smart objects within a network. There are several ways
to realize one-to-many communication within a WSAN. Whether reliability is an issue or not,
simple �ooding can be used in which each node simple retransmits the message in order to
have the message eventually relayed to all nodes. Many-to-one communication is usually used
if so-called sink nodes collect sensor data from multiple smart objects.

Furthermore, the interaction can be divided into request/response-based interaction, asyn-
chronous communication and publish/subscribe-based communication. Furthermore, end-to-
end connectivity should be provided for communication partners.

104

The HTTP binding provides only a request/response-based interaction. For updating an
actuator or reading a sensor value, it is always necessary for a client to send a request in order
to initiate a response. There is no unsolicited message sent from a server. This interaction
pattern is state of the art for Web services but has a huge drawback within a sensor network,
where several sensors need to be monitored. The client needs to poll the smart object to re-
ceive the latest sensor value which is ine�cient and leads to a lot of tra�c in the network and
in consequence to congestion and high energy consumption. More e�cient is asynchronous
communication in which a smart object sends updated values in an unsolicited response to a
client. Comparable is the publish/subscribe interaction pattern which is used within message-
oriented middlewares such as MQTT but slightly di�erent. Here, a communication partner
can subscribe to a topic of interest at a message broker and smart objects can publish latest
sensor readings at the topic. Asynchronous communication is supported in this interaction
mechanism, however a message broker is required which relays the communication.

This leads to the next communication principle that should be applied by a communica-
tion stack which is end-to-end communication. Within end-to-end communication only the
communicating partners should deal with the application layer part of a message and no other
nodes in between should work on the application layer. Some protocols de�ne intermediate
nodes or proxies which act di�erently depending on the application payload. For the pro-
posed IoT stack in this thesis, both principles can be found. For the CoAP binding, end-to-end
connectivity is provided but for certain communication use cases involving commissioning or
external clients based on HTTP or SOAP, a gateway component can translate between the
di�erent communication protocols.

Within the presented IoT stack, a one-to-one communication is supported through the
HTTP and CoAP binding with a smart object, preferable using the CoAP binding in order
to provide an e�cient communication. The HTTP binding follows a request/response-based
interaction, which is also possible with the CoAP binding. The CoAP binding o�ers further
interaction mechanisms such as asynchronous communication and group communication in
order to realize a one-to-many communication. A many-to-one communication could be real-
ized also using the group communication mechanism. For this interaction style, a one-to-one
communication with an asynchronous subscription to sensor readings is more meaningful.

Object identi�cation based on URIs

Since OBIX follows a RESTful system architecture, the addressing of entities rests upon URIs.
A URI is based on a hierarchical sequence consisting of a scheme, authority, path, query and
fragment as illustrated in the following listing.

Listing 4.5: URI scheme
URI = <scheme name> : <authority> / [path] [? <query>] [# <fragment>]

The scheme type de�nes the URI-type and is used to interpret the following content of the
URI. If the scheme de�nes a protocol like HTTP or CoAP then the URI can be taken as a URL
that can be used to access the resource by the speci�ed protocol. For the authority, either a
DNS name or an IPv6 address can be used as proposed in [52].

105

The URI scheme for a device depends on the taken modeling approach. For a generic device
model, the scheme looks as follows:

Listing 4.6: Generic device addressing
Generic device URI scheme = <scheme name> : <authority> "/" path
path = <device-property> | "datapoints/" <datapoint-id> "/" <datapoint-object>

Consider for example a device that o�ers a temperature and humidity sensor. For the
generic device modeling approach, two datapoints would be represented in the device data-
point list. A concrete example for CoAP addressing these two datapoints is given in Listing 4.9.
This scheme does not distinguish between sensors and actuators. This di�erentiation can be
done within the datapoint object representing the I/O signals marked either as writeable or
only readable. The datapoint object is either a simple OBIX value object or a complex data-
point object.

Listing 4.7: Addressing scheme example
URI: coap://[2008:db8::1]/datapoints/1/temperature
Identified object:
<real is="obix:Point" name="setpoint" href="setpoint" unit="/units/celsius" min="

-273" max="670760" writable="true" val="false"/>

URI: coap://[2008:db8::1]/datapoints/2/light
Identified object:
<obj href="iot:BoolOnOff" is="iot:BoolOnOff iot:Datapoint">
<bool name="value" href="value" writable="true"/>
<enum name="encoding" href="encoding" range="/encodings/onoff" writable="true"/>

</obj>

Capability-based device modeling leads to the scheme in Listing 4.8. In this case, a func-
tional IoT contract speci�es the capability of a device, for example, the capability of being a
switching actuator. This approach induces a �at addressing scheme, however problems might
arise through naming con�icts of capabilities having similar datapoint object names and URI
identi�ers.

Listing 4.8: Capability-based addressing
Capability URI scheme = <scheme name> : <authority> "/" path
path = <device-property> | <capability-name><capability-id> / capability-subpath
capability-subpath = <capability-property> | <datapoint-object>

Listing 4.9: Addressing scheme example for capability-based modeling
URI: coap://[2008:db8::1]/light1/
Identified object:
<obj is="iot:LightSwitchActuator">
<bool name="value" href="value" val="false" writable="true"/>

</obj>

URI: coap://[2008:db8::1]/temperature1/
Identified object:
<obj href="iot:TemperatureSensor">
<real name="value" href="value" val="27.0" unit="obix:units/celsius"/>

</obj>

106

IPv6 addressing proxy: Depending on the used protocol and media the URI takes a large
part of the protocol header since the authority- or path-part can be represented using a text-
based encoding. Therefore, it is desirable to reduce the protocol header and to use pure IPv6
addressing only. This can be achieved by using an IPv6 addressing proxy which allows to
assign an IPv6 address not only on the device level but also at the resource level. In this way,
not only devices can be identi�ed through an IPv6 address but also capabilities or datapoint
objects. IPv6 provides the required address space for these application scenarios. The proxy
mechanism can either be based on IPv6 unicast addresses or IPv6 multicast addresses, which
will be used for the group communication mechanism later on. Through the proxy mechanism,
the message size can be decreased since an arbitrary long text-based URI-path can be avoided.
Figure 4.13 shows the impact of URIs within CoAP based message exchange for IEEE 802.15.4
wireless networks.

Figure 4.13: Impact of URI on IEEE 802.15.4 frame size [51]

Further, the frame size can be signi�cantly reduced if only IPv6 addresses are used for
addressing datapoint objects.

Data access

For data access, OBIX foresees to use the operations read, write, and invoke which can be
mapped to the various protocol verbs according to Table 4.7. For updating object states, the
put method of the protocols can be used. For the transmission, a one-to-one communication
or one-to-many communication is possible. The one-to-many communication is only possible
with the CoAP protocol binding, which does not provide a reliable means of communication
and rests upon a best e�ort delivery of messages.

107

OBIX Operation HTTP CoAP Target
Read GET GET Any accessible object
Write PUT PUT Any writeable object
Invoke POST POST Any operation (OBIX type op)
Delete DELETE DELETE Any writeable object

Table 4.7: Data access methods

Histories

Within monitoring and analysis of buildings, histories of datapoints play an essential role. OBIX
standardizes the representation of time series and their resource representation. An OBIX
history object collects datapoint values and provides a standardized interface to query, �lter
and aggregate them. The contract for the object is given in Listing 4.10.

Listing 4.10: OBIX history contract
<obj href="obix:History">
<int name="count" min="0" val="0"/>
<abstime name="start" null="true"/>
<abstime name="end" null="true"/>
<str name="tz" null="true"/>
<list name="formats" of="obix:str" null="true"/>
<op name="query" in="obix:HistoryFilter" out="obix:HistoryQueryOut"/>
<feed name="feed" in="obix:HistoryFilter" of="obix:HistoryRecord"/>
<op name="rollup" in="obix:HistoryRollupIn" out="obix:HistoryRollupOut"/>
<op name="append" in="obix:HistoryAppendIn" out="obix:HistoryAppendOut"/>

</obj>

For numeric datapoint time series, an aggregation can be performed calculating simple
statistic values. This can be useful if a series of values needs to be calculated for sensor values
of interest. Consider a smart meter collecting the historic meter readings. The rollup operation
can be used to receive an aggregated result.

Histories further provide means to query event feeds and to retrieve latest events. Data can
also be actively pushed to history objects by clients by using the append operation.

Watches

Watches introduce an important OBIX feature for HTTP-based clients. Since an HTTP client
needs to continuously poll for updates on new information such as the latest sensor reading, a
lot of tra�c is generated which puts load on the network and the server. For this problem, OBIX
foresees the use of per-client state objects or so-called watches which keep track of changes
for a dedicated client. A client can create an arbitrary number of watches and register URIs of
objects that should be tracked. The main contracts are listed in Listing 4.11. The watch object
takes a list of object URIs passed within a WatchIn object through the add operation. With the
pollChanges operation the latest changes of the observed objects can be retrieved.

Listing 4.11: OBIX watch
<obj href="obix:Watch">

108

<reltime name="lease" min="PT0S" writable="true"/>
<op name="add" in="obix:WatchIn" out="obix:WatchOut"/>
<op name="remove" in="obix:WatchIn"/>
<op name="pollChanges" out="obix:WatchOut"/>
<op name="pollRefresh" out="obix:WatchOut"/>
<op name="delete"/>

</obj>

<obj href="obix:WatchIn">
<list name="hrefs" of="obix:WatchInItem"/>

</obj>

<uri href="obix:WatchInItem">
<obj name="in"/>

</uri>

<obj href="obix:WatchOut">
<list name="values" of="obix:obj"/>

</obj>

Alarming

The observation of datapoints and monitoring for certain alarm conditions is an important
feature for safety and security use cases in the IoT. OBIX standardizes the representation of
alarming by providing alarming contracts and also specifying a mechanism for stateful alarm
representation which can persist the information when the alarm state has entered and when it
has been reset to normal. Further, alarms can support an acknowledgement mechanism which
can be used by a client to con�rm the reception of the alarm.

Service discovery

Service discovery within the IoT stack can occur at multiple layers and for di�erent interaction
scenarios. Firstly, there is a global discovery mechanism and service repository as described
within Chapter 3. Secondly, there are local discovery mechanisms that can be used within a
local wired or wireless network to discover devices and their capabilities. Thirdly, a device
needs to express its capabilities and service interfaces to a client that wants to interact.

For RESTful Web service DNS-SD [124] can be used to realize service repositories and
mDNS [125] for discovery within a local network. DNS is a hierarchical distributed naming
system for computers, services or resources connected to the Internet. With DNS, names can
be assigned to these entities and clients do not need to use IP addresses. A DNS name consists
of a set of labels separated by a label, where each label can have a maximum length of 63
characters. The length of the complete name is limited to 255 characters. The name space is
organized as a rooted tree. The labels of a path name identify the nodes within the name space
tree, a subtree identi�es a domain and the root node of a sub tree represents the domain name.
Resource records represent the contents of a domain and convey information such as the IP
address of the host representing this node (A record), mail server for the node (MX record) and
relevant for DNS-SD records for speci�c services provided (SRV record), the canonical name of
a host (PTR record) and arbitrary information (TXT record). Within DNS-SD, it is standardized
how DNS and DNS resources can be used to facilitate service discovery. Given a certain service

109

type and domain at which this type of service is provided, a client looking for the service can
lookup instances hosting this service. Domain names used for this mechanism take the form
given in Listing 4.12.

Listing 4.12: DNS-SD domain names
<sn>._tcp . <servicedomain> . <parentdomain>.
<Instance> . <sn>._tcp . <servicedomain> . <parentdomain>.
<sub>._sub . <sn>._tcp . <servicedomain> . <parentdomain>.

The service name (<sn>) consists of a pair of DNS labels. The �rst label starts with an un-
derscore following with a service name according to [126]. The service name should identify
what the service does and which application protocol is used. An example given in the standard
for such a DNS-SD name is “_http._tcp.example.com.”, which allows clients to discover all Web
servers at example.com domain. The _tcp and _udp have been identi�ed in retrospect as not
good design choices and a generic _srv label might have been a better choice. If an implemen-
tation wants to fully stick with the standard one of these labels has to be used. Although the
authors of the standard argue against the use of custom labels for other application protocols
such as SOAP it makes sense in the context of the IoT stack. The subtype (<sub>) can be used
to identify a subset of service instances ful�lling certain properties.

For the IoT stack, the DNS-SD service domain could be either _http, _coap, or _soap and
the service type would be a standardized name representing the stack such as _obix or _iot.
Further, the sub name could be linked to the capability hierarchy. In this way, multiple service
discovery scenarios can be realized as illustrated with the examples in Listing 4.13.

Listing 4.13: DNS-SD service discovery examples
_obix._http.auto.tuwien.ac.at // All service instances and devices providing an

OBIX service based on the HTTP binding in the domain of the Automation
Systems Group

_obix._coap.floor3.auto.tuwien.ac.at // All service instances and devices at
floor 3 providing an OBIX service based on the CoAP binding

_lightswitchactuator._obix._coap.floor3.auto.tuwien.ac.at // All devices
providing a light switch actuator capability

The service discovery can be managed based on DNS-SD in a hierarchical manner. As can
be seen in the example it can be used to advertise the services at a certain site or building
represented through a domain which is further subdivided into zones.

If devices need to discover each other in a peer-to-peer interaction style without the pres-
ence of any domain name server mDNS can be used. In this case, “.local.” is used as top-level
domain and a DNS resolver issues a multicast request based on IPv4 or IPv6 in order to query
the network for service providers. In [127], an optimized lightweight version of mDNS and
DNS-SD is presented for discovery of IPv6 based resources in the WoT.

Once a device is discovered, the OBIX lobby can be used to discover the resources hosted by
the device. The lobby is provided through a standardized URI and provides a list of references
to available objects and their contracts. An example of such a listing is given in Listing 4.14.

Listing 4.14: OBIX lobby
<obj href="obix/">
<ref name="about" href="obix/about"/>

110

<ref href="watchService" is="obix:WatchService"/>
<ref href="alarms" is="obix:AlarmSubject"/>
<ref href="IoTDevices/IndoorBrightnessSensor" is="iot:IndoorBrightnessSensor"/>
<ref href="IoTDevices/OutsideTemperatureSensor" is="iot:OutsideTemperatureSensor

"/>
<ref href="IoTDevices/Presence" is="iot:PresenceDetectorSensor"/>
<ref href="IoTDevices/PushButton" is="iot:PushButton"/>
<ref href="IoTDevices/RoomRelativeHumiditySensor" is="iot:

RoomRelativeHumiditySensor"/>
<ref href="IoTDevices/RoomTemperatureSensor" is="iot:RoomTemperatureSensor"/>
<ref href="IoTDevices/TemperatureSensor" is="iot:TemperatureSensor"/>
<ref href="IoTDevices/SunIntensitySensor" is="iot:SunIntensitySensor"/>
<ref href="IoTDevices/SwitchingSensor" is="iot:SwitchingSensor"/>
<ref href="IoTDevices/SmartMeter" is="iot:SmartMeter"/>
<ref href="IoTDevices/SimpleHVACvalveActuator" is="iot:SimpleHVACvalveActuator"/

>
<ref href="IoTDevices/ComplexSunBlind" is="iot:ComplexSunblindActuator"/>
<ref href="IoTDevices/SunblindMiddleA" is="iot:SunblindActuator"/>
<ref href="IoTDevices/SunblindMiddleB" is="iot:SunblindActuator"/>
<ref href="IoTDevices/FanSpeed" is="iot:FanSpeedActuator"/>
<ref href="IoTDevices/BrightnessActuator" is="iot:BrightnessActuator"/>
<ref href="IoTDevices/HVACvalveActuatorImpl" is="HVACvalveActuator"/>
<ref href="IoTDevices/AirDamperActuatorImpl" is="iot:AirDamperActuator"/>
<ref href="IoTDevices/LightSwitchActuator" is="iot:LightSwitchActuator"/>
<ref href="IoTDevices/PumpActuatorImpl" is="iot:Pump"/>
<ref href="IoTDevices/DimmingActuatorImpl" is="iot:DimmingActuator"/>
<ref href="IoTDevices/CoolerActuatorImpl" is="iot:Cooler"/>
<ref href="IoTDevices/BoilerActuatorImpl" is="iot:Boiler"/>

</obj>

Security

For security, con�dentiality, non-repudiation, integrity and authenticity between communica-
tion partners need to be provided as already stated in Chapter 3. Similar security mechanisms
can be applied for securing the communication of the IoT stack. However, the memory and
computational constraints of embedded devices impose limits on the applicability of several
security methodologies. For example, key distribution and the maintenance of a public-key in-
frastructure might be too expensive for constrained devices such as micro-controllers. Further,
the available memory might impose limits on the used key size, also the implementation size of
protocols such as key-exchange protocols. If no special hardware such as a cryptographic co-
processor is available, asymmetric encryption mechanisms might be not practical to be used.
Therefore, most common are symmetric encryption mechanisms such as AES for smart objects
due to the low computational e�ort. The security can be realized at multiple layers, starting
from the link layer, over the network layer to the transport layer or �nally the application layer.
Link layer security can be provided by IEEE 802.15.4 through AES symmetric encryption. The
problem with link layer security is that security can only be provided over a single hop but
security needs to be ensured preferable in an end-to-end way between two communication
partners including all hops and routers in-between. End-to-end security can be handled by
IPSec or TLS. IPSec can be used within IPv4 or IPv6. The IPSec architecture consists of two
protocols, the Authentication Header (AH) and the Encapsulating Security Payload (ESP). AH
provides integrity for IP packets and ESP supports integrity and con�dentiality. IPSec only
takes care on security on a per-packet level. For securing the full stream of a communication,

111

Transport Layer Security (TLS) can be used. The main advantage of application layer security
is that it is agnostic of the underlying transport protocol, however it needs to be speci�cally
taken into account at the protocol design time and supported by communication partners. For
SOAP-based message exchange, the full standardized features of WS-Security can be used. For
XML-based messages, XML Encryption or XML Signature can be used to secure the exchange
of payloads, but if other message encodings such as JSON are in use these standardized capa-
bilities are not available. In this case, either custom security facilities need to be de�ned or the
application layer has to rely on transport layer security facilities.

Authorization

For authorization, the XACML access control architecture can be used taking into account
the object model and the capabilities o�ered by devices and smart objects. An XACML PEP
component might be deployed on a 6LoWPAN border router or gateway component evaluating
the access on devices and their resources. The XACML PDP component might be operated on
a gateway or on central infrastructure components.

4.9 IoT peer-to-peer communication and Web-based
commissioning

This section presents how a novel group communication protocol binding for OBIX can be used
to realize distributed control logic. It is inspired by the group communication facilities found
in nowadays home and building automation technologies, such as KNX or LonWorks, which
rely on this design paradigm to e�ciently realize the process data exchange between di�erent
devices of heterogeneous vendors. The information model of these systems is modeled around
the concept of datapoints that represent the basic data structures of I/O signals or software
variables of a device.

A similar group communication concept is presented for CoAP and IPv6 based communi-
cation. For establishing this group communication relationship within the IoT system archi-
tecture, a local Web-based commissioning tool can be used.

Group communication in CoRE

The IETF working group on constrained RESTful environments aims at providing e�cient Web
service based communication for low-power and lossy wireless networks (LLNs) with limited
bandwidth and constraints regarding energy consumption. CoAP [9] is a key application pro-
tocol that provides an optimized UDP based alternative to HTTP for realizing RESTful Web
service endpoints on constrained nodes. By being based on UDP it opens the opportunity
to use IPv6 multicast packets for message exchange, which can be e�ciently used for group
communication. An IETF draft on group communication with CoAP [83] aims at exploiting
this interaction pattern for CoAP based devices. However, the proposed approach assigns IPv6
multicast addresses on the device level and further uses a group URI identi�er that �nally ad-

112

dresses the data item that participates in the communication group. Several weaknesses can
be identi�ed in this approach.

Firstly, due to the use of IPv6 multicast addresses on the device level it is required to use
further URI identi�ers to identify a group communication endpoint. This is rather verbose since
the URI identi�er is text-based and verbose URIs have a severe impact on the CoAP header size,
since no compression can be provided for the URI identi�er. Secondly, the approach requires
all devices to con�gure a new resource and URI identi�er at runtime, which is not supported by
most of the existing CoAP implementations out of the box. Further, all nodes have to share the
same URI path identi�er, which is error-prone and may lead to con�icts within the addressing
scheme.

Finally, the standard leaves open the exchanged data format, so the current CoRE stan-
dardization falls short on providing true interoperability by leaving this important aspect of
the application layer open.

IPv6 multicasting and CoAP based communication

For e�cient group communication, devices need to be represented as objects following a datapoint-
centric information model in contrast to a command-oriented design. A datapoint can be a
boolean �eld that represents the state of a push button or switching actuator or a numeric �eld
that represents a temperature or a setpoint of a room-thermostat. The RESTful Web service
interaction model �ts very well to this design approach, by o�ering simple service to read and
write on resources, like datapoints.

To realize the concept of a shared network variable based on IPv6 and CoAP, a datapoint
may now participate in one or more groups by assigning an IPv6 multicast addresses to it. An
IPv6 multicast address is therefore not used to identify a common service or protocol at the
device, instead it is used to identify a communication relationship between multiple devices.
The device may o�er a list of datapoints. A datapoint maintains a list of group addresses that
can be changed dynamically at runtime. For the assignment of group addresses, a standardized
interface needs to be provided.

So the paradigm should not follow to assign IPv6 multicast address on every device, instead
IPv6 multicast addresses on every datapoint should be assigned. By doing so, the identi�ca-
tion of group endpoints is simpli�ed to an IPv6 multicast address instead of having an IPv6
multicast address combined with a URI based group identi�er. Since 6LoWPAN also provides a
compression scheme for multicast addresses the advantage regarding the protocol header size
is signi�cant.

The state of the data structure is synchronized between the di�erent devices by making a
CoAP PUT request directly on the transient link-local IPv6 multicast address. If a 6LoWPAN
network is combined with other technologies the use of the site-local scope FF15::/16 could
allow to exchange the group messages amongst heterogeneous links.

Shared network variable

For the de�nition of an e�cient group communication based on IPv6 multicasting and CoAP,
the paradigm of shared network variables needs to be used. A shared network variable is a

113

Object type CoAP payload ex. XML bytes EXI bytes
Bool <bool val=’false’/> 20 3
Int <int val=’58’/> 15 4

Real <real val=’58.12’/> 19 6

Table 4.8: Group communication payload

design paradigm for inter-process communication. In contrast to explicit remote procedure
calls or Web service calls, the inter-process communication is managed by synchronizing sim-
ple data structures amongst distributed processes that need to interact. The data structures
usually have a simple data type representing either a boolean, integer, numeric or string value
and are typically encoded with a few bytes. If such a data structure is updated in one process
the new value is transmitted through an underlying framework to other processes that have an
association to the shared variable. By doing so the interaction between di�erent devices can be
reduced to this simple synchronization of basic data structures. For ensuring interoperability
between di�erent vendors, only a common encoding of the data structures and the interfaces to
synchronize the values are required. The standardized interface includes the message exchange
protocol and the application layer services required for the synchronization.

Standard object model and e�cient message encoding

To have a standardized datapoint-centric object representation, the object model of OBIX is
used. The object model provides a standardized XML-based representation of basic datapoints.
Table 4.8 provides some examples and also lists the according encoding size for XML and
schema-informed EXI.

Furthermore, OBIX provides a way to de�ne operations that allow a datapoint to join or
leave a group. Therefore, contracts are used to standardize the interface across heterogeneous
vendors.

Listing 4.15: Group communication contract
<obj name="groupComm" href="iot:GroupComm">

<list name="groups" href="groups" of="obix:str"/>
<op name="joinGroup" href="joinGroup" in="obix:str" out="obix:list"/>
<op name="leaveGroup" href="leaveGroup" in="obix:str" out="obix:list"/>

</obj>

Logic objects

Virtual logic objects provide functionality that is used to create complex control scenarios. This
can range from simple numerical functions, boolean operators to more sophisticated functions
like PID controllers.

A set of logic elements is illustrated in Table 4.9. The binary numerical operation with
two input data types and a binary numerical operation can be selected out of a de�ned enu-
meration. A result datapoint provides the numerical outcome of the operation. The binary

114

numerical comparator can be used to compare two input datapoints. Depending on the numer-
ical comparator type, the output is represented through a boolean output datapoint. For logical
comparisons, the binary logical operation can be used. For simple HVAC control, a temperature
controller is provided based on a simple two-point control logic. It provides an output between
+100% and -100% acting as the control value for heating or cooling units. It further comes with
an eco-mode functionality that is triggered by a boolean �ag and reduces the control output
by a given value. Furthermore, it provides an input �eld for setpoint adjustment that can be
triggered through a room-control panel. All logic objects host a boolean �ag that allows to
enable or disable the control logic.

Containers and device classes

The overall concept and components of a shared network variable concept are illustrated in
Figure 4.14. Within the concept di�erent device classes can be identi�ed. Base class devices
only host the data access services of the IoT stack in order to interact with the device and
its capabilities. Extended class devices may further host service discovery capabilities, more
enhanced security components and authorization components. Full feature class devices o�er
all capabilities of the IoT stack including di�erent protocol bindings, security components,
authorization policy stores, a persistence layer based on a database, history and watch services,
a proxy module for other devices and a user interface component. Such devices are typically
too heavy-weight for a deployment on micro-controller based devices. Therefore, an embedded
PC platform or standard PC platform is most suitable. In this case, these devices may also act
as a 6LoWPAN border router to connect the WSAN to an existing network infrastructure.

The design of these devices as illustrated in Figure 4.14 consists of base class devices of the
typical components of a smart object, such as a micro-controller, radio, sensor/actuator I/Os,
CoAP REST and multicast engine, an OBIX device object with several child objects having
the group communication capability. Full feature class devices additional o�er the REST and
SOAP engine and implement all message encodings. Further, proxy modules allow to integrate
devices with less features in order to mimic the capabilities for them. For example, a virtual IoT
device representation could be used to o�er a SOAP endpoint for a device which is not directly
capable of exchanging SOAP messages. Based on the HTTP and JSON protocol bindings, a
Web based control and monitoring interface can be provided that o�ers a user the capability
to interact with the IoT devices and to create control logic by grouping devices together.

4.10 Implementation

For realizing the IoT stack on constrained devices, a 6LoWPAN based platform is used which
comes with a micro-controller and an IEEE 802.15.4 transceiver. To realize the �rmware, the
Contiki operating system is used which provides an optimized implementation for IPv6 and
further comes with a CoAP reference implementation. Based on this implementation, an IoT
application has been developed that provides an OBIX based object representation of sensors
and actuators, attached to device and further implements the IPv6 based group communication
mechanism.

115

Logic
elem

ent
O
perations

Param
eters

In/O
ut

Type
Encoding

exam
ples

Binary
num

ericaloperation
+

,∗,:,%

input1
In

N
um

erical
<realval=’5.0’/>

input2
In

N
um

erical
<intval=’5’/>

enabled
In

Boolean
<boolval=’true’/>

operationType
In

Enum
eration

<enum
val=’+’/>

operationType
O

ut
N

um
erical

<realval=’10.0’/>

Binary
num

ericalcom
parator

=
,<

,>
,≤

,≥

input1
In

N
um

erical
<realval=’5.0’/>

input2
In

N
um

erical
<intval=’5’/>

enabled
In

Boolean
<boolval=’true’/>

operationType
In

Enum
eration

<enum
val=’+’/>

result
O

ut
Boolean

<realval=’10.0’/>

Binary
logicaloperation

∧,∨,⊕
,N

O
R,N

A
N

D

input1
In

Boolean
<realval=’5.0’/>

input2
In

Boolean
<boolval=’false’/>

enabled
In

Boolean
<boolval=’true’/>

operationType
In

Enum
eration

<enum
val=’or’/>

result
O

ut
operation

result
<boolval=’true’/>

Tem
perature

controller
Tw

o-pointcontroller

setpoint
In

N
um

erical
<realval=’25.0’/>

setpointAdjustm
ent

In
N

um
erical

<realval=’2.0’/>
tolerance

In
N

um
erical

<realval=’2.0’/>
tem

perature
In

N
um

erical
<realval=’20.0’/>

enabled
In

Boolean
<boolval=’true’/>

safeEnergyEnabled
In

Boolean
<boolval=’true’/>

safeEnergyFactor
In

N
um

erical
<realval=’20.0’/>

controlValue
O

ut
N

um
erical

<realval=’100.0’/>

Table
4.9:Logicobjects

116

Device Object

Data Point 1 Data Point 2 Data Point N

REST
Engine

Multicast
Handler

Multicast
CoAP
Client

I/O

Device Object

Data Point 1 Data Point 2 Data Point N

REST
Engine

Multicast
Handler

Multicast
CoAP
Client

I/O

D
e

vi
ce

 O
b

je
ct

 1

D
at

a
P

o
in

t
1

D
at

a
P

o
in

t
2

D
at

a
P

o
in

t
n

R
ES

T
En

gi
n

e
 (

C
o

A
P

)
R

ES
T

En
gi

n
e

(H

TT
P

)
M

u
lt

ic
as

t
H

an
d

le
r

Te
ch

n
o

lo
gy

 C
o

n
n

e
ct

o
r

1

D
e

vi
ce

 O
b

je
ct

 2

D
at

a
P

o
in

t
1

D
at

a
P

o
in

t
2

D
at

a
P

o
in

t
n

Lo
gi

c
O

b
je

ct
 1

D
at

a
P

o
in

t
1

D
at

a
P

o
in

t
2

D
at

a
P

o
in

t
n

Te
ch

n
o

lo
gy

 C
o

n
n

e
ct

o
r

2

M
u

lt
ic

as
t

C
o

A
P

C

lie
n

t

Te
ch

n
o

lo
gy

d

ri
ve

rs
H

TM
L5

U
I

Sensor / Actuator NodeSensor / Actuator Node Sensor / Actuator NodeSensor / Actuator Node
IoT gateway / border routerIoT gateway / border router

Link local IPv6
multicast address (e.g FF12::1)

Site-local IPv6
multicast address (e.g. FF15::1)

Link-local IPv6
multicast address (e.g. FF12::2)

Group Comm Object

Join
Group

Operation

Leave
Group

Operation

IPv6
multicast

addr. 1

IPv6
multicast

addr. 2

IPv6
multicast
addr. n

IPv6
multicast
addr. list

H
is

to
ry

 S
e

rv
ic

e

W
at

ch
 S

e
rv

ic
e

Se
rv

ic
e

 D
is

co
ve

ry

A
la

rm
 S

e
rv

ic
e

Figure 4.14: Shared network variable components [51]

Since Contiki 3.0, IPv6 multicasting based on di�erent multicast engines (MPL, SMRF) is
available. Further, a modi�ed version of a �ooding-based implementation is used that relies on
the LOWPAN_BC0 header to avoid duplicate retransmission of packets and allows to customize
the multicast forwarding based on the proposed concept relying on transient IPv6 site-local
multicast addresses. The Erbium framework has been extended to support multicast-based
communication and to allow an application framework to register a handler routine for group
communication messages that are received via IPv6 multicast packets.

For the implementation of the shared network variable concept, the proposed OBIX con-
tract for the group communication object is optimized due to the memory constraints and only
the post based operation requests for joining and leaving groups on a datapoint are imple-
mented. An internal data structure keeps track of the mapping between the multicast addresses
and the datapoint resource representation. As soon as a datapoint joins an IPv6 multicast ad-
dress, the node is lined to the communication group. If requests arrive the basic OBIX value
object is parsed and the internal value is updated. Similarly, if a change on a sensor input value
is detected and the resource is linked to a multicast group, a CoAP non-con�rmable put request

117

/leds

 /blue <bool val=“false“/>

/groupComm ...

 /red <bool val=“false“/>

/groupComm

 /green <bool val=“false“/>

/groupComm

/button

 /value <bool val=“true“/>

 /groupComm

 /groups <list of=“obix:str“/>

 /joinGroup <op in=“obix:str“/>

 /leaveGroup <op in=“obix:str“/>

FF12::1

IoT gateway /
border router

HTML5 control logic editor

Linking a single sensor to
multiple actuators

Figure 4.15: Test environment

is sent.
To forward site-local transient IPv6 multicast packets, the border router is modi�ed to

forward these requests to the tunnel interface of the host platform. The further routing resides
in the responsibility of the host operating system. Furthermore, a Java-based gateway resides at
the border router and provides additional protocol bindings for the sensors and actuators, and
hosts services for service discovery, histories, watches and alarms. It provides also a persistence
layer and hosts the Web-based commissioning tool. The gateway might also act as integration
middleware for other technologies as described within Chapter 5.

Testbed

A testbed based on the Zolertia Z1 motes is used for an experimental evaluation. A mote o�ers
a temperature sensor, accelerometer and button functionality on board. The proposed concept
allows to wire multiple Z1 motes together, by linking for example the button of one mote to the
LEDs of multiple other motes. For a direct user interaction, the user interface at the gateway
can be used for wiring the button to the LEDs. The graphical control logic wire tool is used to
download the addressing assignments. Figure 4.15 provides an overview of the used testbed.

118

Web-based commissioning and control logic editor

For commissioning of control logic, a Web-based control logic editor is implemented named
Obelix. Obelix is an HTML5 control engineering interface based on JavaScript and CSS. It
is a generic OBIX client that directly operates on the Web service interfaces provided by the
gateway component. It is deployed as standalone �le served by the gateway component and
uses the HTTP and JSON protocol binding for OBIX. As the complete user interface is executed
within the client browser there is no performance impact on the gateway.

The HTML5 control logic editor allows direct user control of devices and provides further
means to con�gure communication relationships based on the IPv6 multicasting mechanism.
The user interface consists of the following components illustrated in Figure 4.16.

Object browser: The object browser is the entry point for a user. It lists the available objects
based on a query using the OBIX lobby. Since everything in OBIX is an object which may
have an arbitrary number of subobjects the structure is recursively analyzed and an entry is
displayed in the object browser based on the name. The user can drag an element out of the
browser into the object canvas for display and to update values.

(a) Obelix obj. browser (b) Obelix object component

Figure 4.17: Obelix oject browser and object component

Object component: The object component as illustrated in Figure 4.17b can be used to dis-
play an OBIX object. Following the OBIX object model, an object consists of subobjects which
are either base value types like, for example, bool, int, real, str, or complex objects. An object is
rendered as component that provides HTML5 input elements for all base value types. For ren-
dering the object, a simple get request is performed on the object URI and the object structure

119

Buildings Residential Homes

Low-power and lossy network
with IoTSyS nodes

6LoWPAN border router

[FF12:1::2]
CoAP/EXI

[FF12:1::1]
CoAP/EXI

[FF15:1::3]
CoAP/EXI

[FF15:1::3]
CoAP/EXI

Group Comm Table
DPT, IPv6 M. Addr.
DPT, IPv6 M. Addr.
DPT, IPv6 M. Addr.
DPT, IPv6 M. Addr.

Group Comm Table
DPT, IPv6 M. Addr.
DPT, IPv6 M. Addr.

Group Comm Table
DPT, IPv6 M. Addr.

Group Comm Table
DPT, IPv6 M. Addr.

1

2

3

4

5

· Logic objects
· Histories
· Alarms
· Web-based user interface
· Protocol bindings and

encodings mapper

Figure 4.16: Obelix Overview

120

is parsed dynamically. On a change of a base value property, an according put request is per-
formed and the object is updated at the server side. All objects represented in the object canvas
are added to a watch that is used to monitor the current state of an object. This mechanism is
required since the HTTP binding is used which requires to poll the gateway for updated states.
The user interface does not depend on any domain speci�c object contracts and is therefore
completely generic and reusable for any IoT application domain.

(a) Wire mechanism to create control logic (b) Obelix user authentication

Figure 4.18: Obelix wire mechanism and user authentication

Wire mechanism to create control logic: The object component allows a simple interac-
tion with devices and virtual objects represented through OBIX objects. For engineering the
group communication relationships, a graphical wire tool allows to group datapoints of di�er-
ent objects together. Whether a datapoint can participate in group communication or not is
determined through a group communication object that is attached as child object to the basic
value object. This is determined dynamically by the user interface. If such an object is present,
connectors are displayed that can be used to graphically wire objects using a drag and drop
mechanism as illustrated in Figure 4.18a. Once a connection is established, a dedicated IPv6
multicast address is added to the according group communication objects. If a connection is
removed the multicast addresses are also released. For IoT “native” devices, the multicast ad-
dress is added directly on the device using the HTTP/CoAP proxy mechanism. Once a device
detects a change on the datapoint an according IPv6 multicast message using a CoAP put is
sent to the multicast address and all receivers with a datapoint in the same address update their
internal state.

Security: The Web commissioning tool is secured through HTTPSs and requires a user au-
thentication through user-name and password (cf. Figure 4.18b). For external access, further
authentication and security mechanism are provided as described within Chapter 3.

Obelix implementation: Obelix is implemented on top of the AngularJS framework2 with
heavy use of the two-way data binding capabilities provided by the framework which follows
the Model-View-Controller (MVC) design pattern.

The execution on the client starts with an almost empty Document Object Model (DOM).
Then, as JSON responses from the server are parsed into JavaScript objects representing the

2http://angularjs.org

121

model layer, AngularJS evaluates our declarative template and builds up the DOM (the view
layer) to graphically represent the models. The template also establishes the binding between
events on the DOM elements (such as a user clicking or dragging a device) and the controller,
which handles these actions.

Several other frameworks are used to abstract lower level DOM manipulation and deal with
cross browser compatibility, such as jQuery UI3 which is used for drag and drop support and
jsPlump4 for visualizing and manipulating connections between DOM elements.

The resulting application consists of three single �les: an Hypertext Markup Language
(HTML) document containing the AngularJS template, the JavaScript �le containing applica-
tion source concatenated with the framework sources, and the Cascading Style Sheets (CSS)
�le. These static �les are served by the built-in Web server with minimal performance over-
head. The whole implementation is provided as open-source within the IoTSyS project5.

4.11 Evaluation

A scalability analysis of the IoT stack within a WSAN is conducted within this section. There-
fore, a simulation based on the COOJA simulation environment of the Contiki operating sys-
tem is used. This methodology is used since the COOJA simulation environment uses for the
emulation of nodes the same �rmware binaries that can be used on real hardware. In this
way, compared to an analytic approach, higher e�ort has to be put on a proof of concept im-
plementation but with the bene�t of having more accurate and realistic results. The goals of
the simulation are, �rstly to analyze the impact of di�erent protocol bindings and encodings,
secondly to discuss the scalability limits, and thirdly to evaluate the impact of the group com-
munication mechanism based on IPv6 multicasting. The metrics of interest are the latency,
average response time, message failure rate and the energy consumption. The latency is im-
portant if information needs to be disseminated quickly amongst a group of appliances. The
average response time needs to be kept under a certain time in order to reach quality-of-service
goals if a client/server communication takes place.

COOJA wireless sensor network simulator

The COOJA network simulator [46] is a cross-level simulation environment that provides the
capability of a holistic simulation at di�erent levels within a wireless sensor network. COOJA
is a Java-based simulator designed to simulate a network based on sensor nodes running the
Contiki operating system [40]. As illustrated in Figure 4.19a, there are several alternatives that
focus on di�erent levels of simulation. NS2 or OM-Net++ are popular network level simulation
frameworks. TOSSIM can be used to simulate TinyOS based nodes [128]. For instruction level
simulation, ATEMU [129] or Avrora [130] provide a similar functionality. However, a simu-
lation on all these di�erent levels is only possible with COOJA. Therefore, COOJA is used to
analyze the IoT stack regarding performance and scalability implications.

3http://jqueryui.com
4http://jsplumbtoolkit.com/home/jquery.html
5http://www.iotsys.org

122

COOJA can simulate di�erent types of nodes. Contiki programs can be executed either
as native code of the COOJA host platform or an instruction-level TI MSP430 emulator can be
used. Further, nodes can be implemented completely in Java if the focus is more on the network
communication protocol and the evaluation of distributed algorithms. Nodes can either be
simulated at the network level, operating system level or machine code instruction set level
but mixed in a certain simulation scenario. The network level is of interest if for example
routing protocols or application speci�c protocols need to be evaluated. In this case, the speci�c
hardware is not in focus of the simulation and other factors like the utilization of the radio
medium, radio devices and duty cycles of sensor nodes might be in the scope of the evaluation.
The operating system level is relevant if features of the operating system are modi�ed and
the proper function needs to be evaluated without the need of using real hardware. Finally,
the machine code instruction level allows to evaluate compiled �rmware for real hardware in
a preliminary study. In this way, the development and test cycle can be signi�cantly reduced
and the e�ort of evaluating the �rmware in a large scale deployment can be reduced. In certain
cases, the required hardware for large-scale deployment tests might not be available so COOJA
provides a convenient way to analyze the scalability of communication protocols.

COOJATOSSIM

AVRORA

Network
(Application)

Operating
System

Machine Code
Instruction Set

GloMoSim

ATEMU

NS2 OM-Net++

(a) COOJA cross level simulation (b) Simulation user interface

Figure 4.19: COOJA simulation

Within the COOJA environment, di�erent arbitrary network topologies can be instantiated
with multiple node instances of a similar node type. Figure 4.19b provides a screen shot of the
graphical display. The environment allows to log certain simulation events and further to
collect the log output of the nodes. The simulation is based on a discrete event time that is
incremented where the simulation speed can be adjusted to follow a real-world speed. This is
especially of use if the network tra�c is visualized and a human can observe the process of
network establishing and communication.

Simulation use cases

The following use cases inspire the simulation scenarios:

• Query or update of sensor/actuator: This use case represents the common situation
that an external client queries a sensor. For example, the collection of temperature sen-

123

sor values from a set of sensors can be such a use case. In the case of a cloud based
monitoring system, the client could reside externally somewhere in a datacenter. Simi-
larly, an external client might activate an actuator. For example, the control of a set of
light switch actuators could represent such an interaction. For this client/server-based
interaction it is of interest which average response time can be achieved, depending on
the protocol binding. It is of interest how CoAP performs in comparison to HTTP and
how the di�erent message encodings impact the overall communication performance.

• Group communication between sensors and actuators: This simulation scenario is
focusing on local peer-to-peer communication between sensors and actuators. In con-
trast to the client/server communication paradigm, here the producer/consumer paradigm
is taking place. A concrete use case could be a push button transmitting an updated value
to a set of actuators. Latency between the �rst transmission of an updated information
until the successful receive at all consumers is a relevant metric. Energy e�ciency is
essential and optimal routing of the updated information between involved communica-
tion partners, since battery-operated devices might be in use. For 6LoWPAN, the perfor-
mance of di�erent multicast routing protocols is of interest regarding latency and energy
e�ciency.

For the simulations, the following notation is used when describing the network topology
of di�erent communication scenarios. Figure 4.20 shows an example topology that consists of
the following four node types. The communication range of the nodes is illustrated through
the circled area around each node.

• Server/Consumer: A communication node providing access to its resources through
an IoT stack communication interface or receiving message from a producer.

• Client/Producer: A communication client which sends requests to a server or acts as
producer of messages in a group communication scenario.

• Router: A border router for a 6LoWPAN network, acting as root of the RPL DODAG.

• Hop: An intermediate 6LoWPAN node that can be an arbitrary node but beside the
forwarding of messages without any speci�c responsibility within the communication
for the simulation scenario.

Next to the used topology for a simulation scenario, the used communication con�guration
parameters are relevant for the interpretation of the simulation results. Especially for WSANs
based on 6LoWPAN and IEEE 802.15.4, the radio duty cycling (RDC) mechanism has a strong
in�uence on the performance and energy consumption. For all simulations, the ContikiMAC
radio duty cycling mechanism is used.

There are several metrics of interest that can be studied within the WSAN simulation based
on COOJA.

124

client router server

hop server

hop

Figure 4.20: Example topology for simulations [131]

HTTP vs. CoAP

This �rst section compares Web service based communication within WSANs based on HTTP
or CoAP. Di�erent simulations are executed to compare metrics like average response time,
message failure and energy e�ciency. The results will show why CoAP based Web services
are necessary within WSANs and also quantify the di�erence regarding the de�ned metrics.

Latency and average response time

The latency of a request represents the time between the �rst fragment of the message was
transmitted and the last fragment of the message is �nally delivered at the receiver’s side. For
a client/server-based interaction, the response time represents the time between the transmit
of the request and the time when the fully response is delivered at the sender’s side.

Message failure rate

The message drop metric represents the number of messages that are either not successfully
received by the receiver or if a client receives no response within a certain time range.

Energy consumption

The energy consumption is important for the operational costs of a WSAN. Most of the nodes
are considered to be operated using batteries. Having nodes draining the available energy too
fast leads to high maintenance costs. Within COOJA emulated nodes, the used energy cannot
be measured directly. Instead the required CPU cycles provide a way to compare di�erent
communication mechanisms regarding their energy e�ciency. The CPU cycles are used to
measure three energy consumption relevant metrics:

• CPU time: represents the time while the CPU is active.

• Radio TX time: measures the time while the radio is active for sending.

• Radio RX: measures the time while the radio is active for receiving.

125

Average response times

A �rst study is performed on the latency and power usage implications introduced by the
HTTP and CoAP protocol binding. Two topologies are used for the evaluation and illustrated
in Figure 4.21. Within the networks one or multiple servers are queried with a get request of
the according protocol. A resource payload with a variable payload is returned by the servers.
A sequence of 10 requests is issued per simulation and every simulation is repeated 5 times.
The average response time is measured at the border router.

client

router

server

(a) 1 hop

client

router

server

(b) 2 hops

Figure 4.21: Simulation topologies CoAP vs. HTTP - latency [131]

Figure 4.22 contains the resulting average response time if either two or four parallel re-
quests are issued in the two hop scenario. For this simulation, a 128 bytes payload is used.
The average response time is signi�cantly di�erent. For the scenario where 2 requests are per-
formed in parallel in multiple threads, the CoAP based communication outperforms the HTTP
based communication by a factor of 8, but decreases to a factor of 3.5 to 4 for four parallel
requests. A more detailed evaluation is given in Figure 4.23. In contrast, Figure 4.24 shows the
impact of adding additional hops for a given number of parallel requests.

Both �gures show that the scalability of HTTP is strongly limited within a WSAN and sig-
ni�cant performance degradation can be observed already for a low number of parallel requests
or a low number of hops within the network topology.

Message failure rate

Within the simulation, the response timeout limit needs to be relaxed in order to get comparable
results. Considering a response time exceeding 10 seconds for message failure delivery, the
failure rates illustrated in Table 4.10 can be observed. The results show that HTTP quickly
su�ers under the conditions found within WSANs. The very poor performance of HTTP can
be explained due to the fact that with higher number of concurrent requests the underlying

126

HTTP CoAP

0

2000

4000

6000

8000

10000

12000

14000

16000

t
i
m

e
(
m

s
)

(a) 2 requests

HTTP CoAP

0

5000

10000

15000

20000

25000

30000

t
i
m

e
(
m

s
)

(b) 4 requests

Figure 4.22: Distribution for latency for HTTP and CoAP, 2 hops, 128B [131]

TCP performs poorly and leads to a congestion of the network. The impact of the payload size
is neglectable. For CoAP, every response arrived within the 10 seconds threshold.

2 requests 4 requests
64B 0% 9.2%
128B 0% 7.6%

(a) 1 hop

2 requests 4 requests
64B 0.4% 49.6%
128B 2.8% 56.4%

(b) 2 hops

Table 4.10: Request failure rate for HTTP [131]

Energy consumption

Furthermore, the energy consumption is a metric of high interest if the communication stack
is deployed in a WSAN. For the evaluation, get requests of the HTTP and CoAP protocol are
issued at a request rate of one request per 10 seconds, to a server node o�ering varying payload
sizes between 2,4, 64 and 128 bytes. Figure 4.25 outlines the topology used for evaluating the
energy consumption.

The power consumption was measured at the server node. Figure 4.26 presents the results
of the simulation and shows that the CoAP-based message exchange has signi�cant energy
savings compared to the HTTP based interaction. This can be explained due to the expensive
establishment of TCP-based communication for HTTP. The message payload size has not much
e�ect on the HTTP-based interaction, since the initial communication e�ort is already high.
In contrast, the increased payload size can be seen in the results for the CoAP protocol. As
soon as fragmentation takes place additional communication e�ort is also visible for the CoAP
protocol.

127

1
re

quest

2
re

quest
s

4
re

quest
s

0

2000

4000

6000

8000

10000

t
i
m

e
(
m

s
)

HTTP

CoAP

(a) 64 bytes, 1 hop

1
re

quest

2
re

quest
s

4
re

quest
s

0

2000

4000

6000

8000

10000

12000

14000

16000

t
i
m

e
(
m

s
)

HTTP

CoAP

(b) 64 bytes, 2 hops

1
re

quest

2
re

quest
s

4
re

quest
s

0

2000

4000

6000

8000

10000

t
i
m

e
(
m

s
)

HTTP

CoAP

(c) 128 bytes, 1 hop

1
re

quest

2
re

quest
s

4
re

quest
s

0

2000

4000

6000

8000

10000

12000

14000

16000

t
i
m

e
(
m

s
)

HTTP

CoAP

(d) 128 bytes, 2 hops

Figure 4.23: Average response time for HTTP and CoAP [131]

Conclusion

This section has compared Web-service-based communication based on HTTP and CoAP. The
results show that HTTP cannot be considered for communication within WSANs since the
scalability is not given due to the high average response time as soon the communication load
is increased and further the energy consumption is too high.

CoAP scalability

The previous section shows that the scalability limits of HTTP are reached very early in a
WSAN deployment and cannot be taken into consideration for Web service based communica-
tion. Therefore, this section investigates the scalability of the CoAP communication protocol.
Especially the average response time depending on the number of hops within the network
topology and the payload size are investigated. The scalability limits are analyzed regarding
average response time limits and message failure rates. Finally, also an evaluation regarding
the energy e�ciency is conducted. The topology used for the simulation is illustrated in Fig-

128

1 hop 2 hops

0

1000

2000

3000

4000

t
i
m

e
(
m

s
)

HTTP CoAP

(a) 64 bytes, 1 request

1 hop 2 hops

0

1000

2000

3000

4000

5000

6000

7000

8000

t
i
m

e
(
m

s
)

HTTP CoAP

(b) 64 bytes, 2 requests

1 hop 2 hops

0

5000

10000

15000

t
i
m

e
(
m

s
)

HTTP CoAP

(c) 64 bytes, 4 requests

1 hop 2 hops

0

1000

2000

3000

4000

t
i
m

e
(
m

s
)

HTTP CoAP

(d) 128 bytes, 1 request

1 hop 2 hops

0

1000

2000

3000

4000

5000

6000

7000

8000

t
i
m

e
(
m

s
)

HTTP CoAP

(e) 128 bytes, 2 requests

1 hop 2 hops

0

5000

10000

15000

t
i
m

e
(
m

s
)

HTTP CoAP

(f) 128 bytes, 4 requests

Figure 4.24: Average latencies for HTTP and CoAP, by hops [131]

ure 4.27.

Average response time

The e�ect of the number of hops and the payload on the average response time is presented in
Figure 4.28. A major di�erence in the measured average response time can be observed if the
payload is increased above 64 bytes which can be explained by the fragmentation of messages.
The e�ect of increased hop counts shows a higher impact on the observed average response
time. The e�ect is even increased if fragmentation takes place.

Message failure rate: The message failure rate starts to increase signi�cantly after a server
is requested that is more than 10 hops away from the client. After 14 hops it was nearly impos-
sible to receive response messages from the server. This can be explained by the �xed response
time threshold of 10 seconds. Responses that take more time than that time limit lead to an
increase of message failures. The main reason for this is the use of radio-duty cycling which

129

client

router server

(a) 1 hop

client

router server

(b) 4 hops

Figure 4.25: Simulation topologies CoAP vs HTTP - power usage [131]

introduces latency between each hop. This leads to a severe delay, including retransmission of
requests if con�rmed CoAP communication is in use. This �nally results in congestion within
the network and response times that exceed the response time limit.

Energy consumption

The energy consumption depending on the number of hops and the payload size is given in
Figure 4.30 on page 133. As soon as one more hop is involved, the energy consumption is
increased but stays at a stable level. A more signi�cant in�uence has the packet size. As soon
as fragmentation and dropped messages need to be retransmitted an overall decrease in the
energy e�ciency can be seen.

Conclusion

The simulation results show that the performance of CoAP strongly depends on the number of
hops between a client and server but much more on the payload size. Therefore, the payload
size has to be kept as small as possible in order to keep the whole WSAN communication
functional.

IoT group communication based on IPv6 multicasting

A central focus of the scalability evaluation is put on the IoT group communication mecha-
nism. Therefore, di�erent group communication scenarios are simulated. For the simulation, a
group of 5 devices interacting with each other is considered. Figure 4.31 on page 134 provides
an overview of the used simulation scenarios. One client sends a put request to 4 servers. In
the �rst scenario, one communication group is considered where the servers are out of range

130

1hop 4hops

0.0

0.2

0.4

0.6

0.8

1.0

c
y
c
l
e
s

p
e
r

m
i
n

u
t
e

1e5 2B

1hop 4hops

64B

HTTP CoAP

1hop 4hops

128B

(a) CPU active time

1hop 4hops

0.0

0.5

1.0

1.5

2.0

c
y
c
l
e
s

p
e
r

m
i
n

u
t
e

1e4 2B

1hop 4hops

64B

HTTP CoAP

1hop 4hops

128B

(b) Radio transmit time

1hop 4hops

0

1

2

3

4

5

6

c
y
c
l
e
s

p
e
r

m
i
n

u
t
e

1e4 2B

1hop 4hops

64B

HTTP CoAP

1hop 4hops

128B

(c) Radio listen time

Figure 4.26: Power consumption HTTP vs. CoAP - RDC enabled [131]

client router server. . .

Figure 4.27: Simulation topology CoAP [51]

to each other. In the second scenario, the servers are in range of each other and also receive the
message of neighboring servers. In the third scenario, three communication groups are con-
sidered. For the evaluation, unicast-based communication on dedicated client/server requests
are compared to multicast-based group communication. The unicast-based communication
represents the state of the art communication for CoAP-based communication and requires
a blocking client request to each of the servers in the communication group. The multicast-
based mechanism relies on the multicast mechanism using transient IPv6 site-local multicast
addresses which only requires a single request to synchronize the state amongst all involved
devices. The di�erence between the various multicasting routing algorithms is also taken into
consideration.

A client is grouped with multiple servers into a communication group with servers having
one intermediary node between. Within the WSAN, multiple communication groups co-exist.
The client sends periodic updates to a dedicated group communication address used within

131

hops

8

4

2

1

b
y
te

s

2

4

8

16

32

64

128

l
a
t
e
n

c
y

(
m

s
)

1
e
3

0

1

2

3

4

Figure 4.28: CoAP average response time depending on hops and payload size [51]

10 hops 11 hops 12 hops 13 hops 14 hops

0

5

10

15

20

25

30

35

40

%
d

r
o

p
p

e
d

Figure 4.29: Dropped messages for CoAP - RDC enabled, 128B payload, 10s timeout [51]

the communication group. A concrete example can be a push button that sends a message to
a number of switching actuators. For the evaluation, this scenario is realized �rst with unicast
messaging based on the state of the art mechanism provided by the current implementation
of Erbium. The main disadvantage is that the client has to send a unicast message to all re-
ceivers. In contrast, using the multicast-based interaction, only a single datagram needs to be
transmitted by the client.

A 16 bytes payload is sent within a 10 seconds interval and the results are averaged over 5
repeated simulation runs. The latency represents the time when all servers have received the
message and updated their internal resource state. MPL, Stateless Multicast Forwarding with
RPL (SMRF) and LOWPAN_BC0 compared to unicast-based message exchange have been eval-
uated. As illustrated in Figure 4.32, the custom multicast-based interaction on LOWPAN_BC0
mechanism clearly outperforms the state of the art approach, which is based on unicast mes-
sages and also the other multicast routing algorithms. This can be explained by the fact that
MPL is designed to distribute state information amongst a set of nodes in a periodic way. An
example use case is the distribution of application �rmwares within a WSAN. The performance
is considerably bad due to the fact that every multicast message has to pass the MPL seed in

132

hops

8

4

2

1

b
y
te

s

2

4

8

16

32

64

128

c
y
c
l
e
s

/
m

i
n

1
e
4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

(a) CPU active time

hops

8

4

2

1

b
y
te

s

2

4

8

16

32

64

128

c
y
c
l
e
s

/
m

i
n

1
e
3

2

3

4

5

6

(b) Radio transmit time

hops

8

4

2

1

b
y
te

s

2

4

8

16

32

64

128

c
y
c
l
e
s

/
m

i
n

1
e
4

1.3

1.4

1.5

1.6

1.7

(c) Radio listen time

Figure 4.30: Energy consumption of CoAP based communication [51]

order to be distributed amongst all participating nodes. Further, the trickle timer has a strong
impact on the perceived performance. For MPL, the Imin value is set to 125 ms. The same value
is used for SMRF which shows a good performance in the taken simulation scenario. However,
although SMRF works for this simulation scenario, a use case that involves the upward routing
in a 6LoWPAN DODAG would not be possible. The best performance is shown by the �ooding-
based LOWPAN_BC0 mechanism, due to the direct forwarding to neighboring nodes, without
any protocol dependent delay.

Further, the impact on the energy consumption is compared regarding the additional CPU
utilization and the time the radio of a node is in transmit mode, both measured in CPU cycles.
Figure 4.33a shows the di�erences regarding energy consumption between the unicast-based
approach and the group communication using di�erent multicast engines. According to the
evaluation, SMRF followed by LoWPAN_BC0 behaves most energy e�cient.

133

RPL root producer

consumer

Figure 4.31: Simulated network topology [51]

Memory requirements

The impact of the proposed group communication mechanism using di�erent multicast engines
regarding ROM and RAM requirements of servers can be seen in Figure 4.33b. The implemen-
tation of the group communication based on LOWPAN_BC0 and SMRF shows only a minimal
impact on the ROM and RAM requirements. MPL can be considered as the most heavy-weight
solution.

134

Figure 4.32: Comparing latency of unicast vs. multicast-based message exchange [51]

(a) Comparison of energy consumption (b) Memory constraints

Figure 4.33: Multicast evaluation regarding energy and memory consumption [51]

4.12 Conclusion

Within this chapter a communication stack for the Internet of Things has been presented.
Several requirements on the stack are identi�ed such as interoperability, scalability, versatile
interaction styles, energy e�ciency, security and ease of use. A stack ful�lling these require-
ments is described following a bottom-up approach. The essential �ndings are that for media
and data link wireless technologies IEEE 802.15.4 together with 6LoWPAN act as an enabler for
a wireless Internet of Things. IPv6 o�ers global end-to-end connectivity combined with pow-
erful multicasting capabilities that can be exploited by the application layer for peer-to-peer
interaction styles. For message exchange and the application layer, CoAP together with OBIX
provide an interoperable communication stack supporting the required application layer ser-

135

vices. A concept for a Web-based control logic engineering tool is presented, which shows how
usability and an easy-to-use interface for interacting with IoT appliances and commissioning
control logic can be provided. A proof of concept implementation together with a simulation-
based evaluation illustrate that Web services using HTTP are too heavy weight for embedded
appliances and constrained communication networks. Further, the scalability limits of CoAP
based communication are identi�ed and the performance of the presented group communica-
tion mechanism is evaluated. Here, also the impact of di�erent multicast routing algorithm is
investigated, where the di�erent algorithms have their advantages and disadvantages regard-
ing achieved minimal latency at the cost of energy e�ciency.

136

CHAPTER 5
An IoT integration middleware

The IoT stack presented in the previous chapter can be used for smart objects that are directly
integrated into the IoT. Within certain application domains such as building automation, the
lifetime of appliances and devices is in the magnitude of decades. Therefore, a turnover to new
IoT technologies will take time. Even in new buildings, due to the lack of available and mature
IoT smart objects, it is quite likely that non-IP technologies will be in use for the next years.
Also, a hybrid deployment scenario can be expected which will be in place until a full transition
to an IoT-only scenario is achieved. In order to integrate non-IoT technologies, gateway devices
will be required to translate between di�erent technologies and protocols.

Although gateways might be an alternative to deploying IP at all, several reasons can be
identi�ed against their usage. The main problems or gateways are the inherent complexity
and the lack of �exibility and scalability [22]. The complexity arises through the di�erent
protocol stacks coming with custom mechanisms for message exchange, routing, quality of
service, transport, management and security. The �exibility and scalability problem occurs
due to gateways becoming the bottleneck of the overall system. Nevertheless, gateways are
for the �rst era of the IoT inevitable. Furthermore, as mentioned in the design of the IoT stack,
some features can only be provided by devices with more computational power. Therefore,
some type of gateway device will always be part of the architecture although their complex
protocol translation functionality will become less relevant in the future.

This chapter will present an integration concept that provides a transparent integration
of most relevant technologies and data sources such as wireless and wired home and building
automation technologies, device identi�cation technologies (e.g., RFID), smart meter protocols
and other information sources such as weather data [4, 52, 132] into the IoT.

5.1 Requirements

The following subsections state the requirements of an IoT integration middleware.

137

Integration style

Typical BAS de�ne several layers of the ISO/OSI reference model and contain a speci�c ap-
plication model. The application models usually follow a datapoint-centric approach, meaning
that every device is expressed as a collection of input and output datapoints of well de�ned data
types. Datapoints are often grouped into functional blocks which de�ne desired capabilities
(e.g., light switch actuator with multiple channels). The meta data and semantics of functional
blocks are provided in a human readable way. Furthermore, the application layer protocols are
strongly aligned to the custom network and data link layers of the underlying BAS technology,
which typically requires a variety of interaction styles like client/server, producer/consumer,
or publish/subscribe communication. The network layer of a BAS is usually kept quite simple.
However, reliable and non-reliable data transfer, point-to-point, multicast- or broadcast-based
communication should be supported.

To integrate BAS into the IoT, it is not possible to simply put application layers of building
automation technologies on top of a common network layer. These technologies usually de�ne
custom protocols for the transport and network layer. Instead, gateway devices are necessary.
As shown in Fig. 5.1, these gateways may operate either following a N-to-N protocol mapping
approach or may map all technologies to one protocol (R1) following a N-to-1 approach.

BACnet

KNX RFID

EnOcean

...M-Bus

BACnet

KNX RFID

EnOcean

...M-Bus

IoT
Stack

Figure 5.1: N-to-N or N-to-1 BAS integration

For N-to-N integration, two BAS are made compatible with each other through gateways
featuring di�erent network options. In the best case, the gateway is not visible for the other
BAS system. If two BAS technologies rest upon the same network layer, multi-protocol devices
may come into play as presented in [133]. However, for this kind of integration, N∗(N−1)

2
mappings are required in the worst case.

The N-to-1 integration approach refers to the integration of di�erent building automation
systems to a common target system. The mapping e�ort is reduced to N mappings, since all
technologies have to be integrated only into one new technology. The problem remains to
identify the commonly accepted technology stack.

Mapping communication principles

Figure 5.2 shows a N-to-1 mapping of two BAS representatives (e.g., BACnet and KNX) to the
IoT, where IPv6 acts as a common IoT network layer. An integration middleware needs to

138

map the various functionalities found on the di�erent layers of the technologies to the features
provided by a common stack. Some features might be lost or not easily representable.

TP1

KNX Datalink Layer

KNX Network Layer

KNX Transport Layer

KNX Application Layer

KNX Application
Interface Layer

PL
110

RF
KNX

IP

ISO 8802-2

ISO
8802-3

AR
CN
ET

MS/
TP

EIA-
485

PTP

EIA
232

Lon
talk

BVLL

UDP/
IP

BACnet Network Layer

BACnet Application Layer

Equivalent
OSI Layers

Application

Presentation

Session

Transport

Network

Datalink

Physical

IPv6

6LoWPAN

IEEE 802.15.4
ISO 802.3

??

??

??

KNX BACnet IoT Stack

Figure 5.2: Integration challenges

Application layer service and information model

The various application layer services and information models need to be mapped by an inte-
gration middleware. Common application layer features such as datapoint-centric information
representation (R2), support for histories (R3), alarming (R4) need to be provided.

A datapoint-centric information model is required with a type system for representing
common signal types and information of automation systems. The information model capa-
bilities need to o�er a generic meta-model (R5) that can be used for representing all di�erent
technologies. An extension mechanism (R6) to specify domain and technology speci�c infor-
mation models is required.

Naming and addressing

Naming is required to provide unique symbolic identi�ers for entities and resources at the
application layer. Depending on the BAS, a more or less �ne-grained namespace is used. Some
use hierarchical alphanumeric namespaces, whereas other technologies purely rely on numeric
identi�ers. Addressing deals with the identi�cation of devices and communication partners at
the network level within the BAS. Here, a su�ciently large address space (R7) needs to be used
for an integration middleware.

139

Communication interaction patterns

The communication interaction patterns refer to the messaging facilities that are available in
the various BAS. Typically, these systems have their own network and transport layer facilities
supporting di�erent interaction patterns. Most relevant communication interaction patterns
include reliable point-to-point communication which is used for client/server communication
(R8). Further, point-to-multipoint communication is required for group communication includ-
ing a producer/consumer interaction pattern (R9).

Service discovery and metadata exchange

An integration middleware must use service discovery mechanisms of the integrated BAS in
order to provide automatic resource provisioning (R10). For some technologies, run-time dis-
covery services can be used, whereas for other technologies static project con�guration �les
may be used and �nally, only manual con�guration might be applicable in some use cases.

Integration of Internet information sources

Several Internet information sources can be considered as relevant for the IoT. Weather data
and forecasts (R11) are relevant for uses cases found in home and building automation and the
Smart Grid. For example the expected solar radiation of the next hours or the expected wind
allow forecasting the expected energy production through renewable energy data sources. If
a bad weather front is expected, open windows or doors may cause a safety issue and might
require the attention of a human person. The integration of RFID-based identi�cation and
according information systems (e.g., EPCIS) are highly relevant (R12) if logistics and building
automation need to be combined. Further, the auditing and building maintenance process can
be simpli�ed through an integration.

Quality of service

An integration middleware must provide a certain quality of service. Here, especially the av-
erage response time of requests issued by external clients needs to stay within a certain limit
(R13).

5.2 Integration middleware architecture

The integration middleware architecture addresses the heterogeneity of existing technologies
in the IoT environment. For providing interoperability amongst heterogeneous technologies
and also for new IoT devices directly communicating using IPv6, the IoT stack provides a com-
mon message format, message exchange protocol and vocabulary to ensure interoperability.
Within the architecture several components are responsible to ensure multi-protocol interop-
erability. The gateway component, which can be deployed on an embedded PC or within a local
control and monitoring system, provides an integration middleware for existing relevant tech-
nologies. It implements a mapping of the IoT stack to each technology that shall be integrated

140

and o�ers a communication interface according to the IoT stack for devices of these technolo-
gies. By adhering to this integration approach, a uni�ed communication interface for the other
components, such as cloud computing or mobile computing, can be provided. Figure 5.3 il-
lustrates the overall architecture of the multi-protocol integration approach. Within the scope
of the integration middleware are building automation technologies (KNX [134], BACnet [19],
EnOCean [18]), Smart Grid technologies (W-MBus [135]), identi�cation technologies (RFID,
EPCIS) and Internet information sources (weather data).

BuildingsBuildings Residential HomesResidential Homes

GatewayGateway

{http|coap}://[2001:db8:1::3]

{http|coap}://[2001:db8:1::2]

{http|coap}://[2001:db8:1::1]

{http|coap}://[2001:db8:2::3]

{http|coap}://[2001:db8:2::2]

{http|coap}://[2001:db8:2::1]

<obj href="coap://[2001:db8::1]" is="iot:TemperatureSensor">
<real name="value" href="value" val="28.39" unit="obix:units/celsius"/>

</obj>

Internet (IPv6)

Wireless Sensor and
Actuator Networks

RESTful Web
service Interface
(CoAP or HTTP)

IoT
Stack

Figure 5.3: Multi-protocol integration architecture

Technologies considered within the integration architecture have been presented in Chap-
ter 2. This section will focus on how the various communication principles and protocols can
be mapped to the IoT stack. Further, it will be investigated how an automated mapping process
can take place. Such a process allows an automated con�gured access to the various technolo-
gies through the IoT stack without the need for human supervision. Table 5.1 summarizes how
the identi�ed requirements are addressed by the integration middleware concept.

The following subsection contains details on the mappings of home and building automa-
tion technologies (KNX, BACnet, EnOCean), Smart Grid technologies (W-MBus), identi�cation
technologies (RFID, EPCIS) and Internet information sources (weather data) to the IoT stack.

141

Integration middleware requirement Design decision

R1 N-to-1 integration Integration mapping towards IoT stack

R2 datapoint-centric information model
R3 support for histories
R4 support for alarming
R5 Generic meta-model

OASIS OBIX for standardized integration

R6 Extension mechanism for
domain and technology information models OBIX contracts

R7 Su�cient large address space IPv6 addressing at the network layer
URIs at the application layer

R8 Reliable point-to-point client/server communica-
tion RESTful HTTP Web service communication

R9 Group communication following producer/con-
sumer interaction pattern RESTful CoAP Web services with IPv6 multicast

R10 Automatic resource provisioning
Automatic run-time service discovery
Static service discovery
Manual con�guration depending on technology capa-
bilities

R11, R12 Integration of Internet information sources
(weather data, EPCIS)

IoT-stack mapping for weather data API and
lightweight EPCIS interface

R13 Quality-of-service assurance Analytic model to predict computational requirements

Table 5.1: IoT stack design decision ful�lling requirements

5.3 Integration of KNX

The interworking-model of KNX relies on the concept of group communication based on group
communication objects (GO). These group communication objects are used by the end devices
to exchange process data within the KNX network. In this way, communicating devices are
linked together without the need of knowing a concrete communication endpoint. Figure 5.4
illustrates the KNX group communication concept.

If the so-called user application (�rmware at device) recognizes a change on an input state
the group object is updated. The network stack then checks all assigned group addresses to
this group object and transmits a group value write application service request to the associated
addresses using an unreliable network broadcast. The addressing scheme of KNX uses a 16 bit
identi�er, which is further sub-structured for organizational structuring of the address space.
Other devices receive these updates and the network stack checks if there are associated group
objects. If these associated group addresses are found, the state of the group object is updated
and the user application performs the change on the output state. An important advantage of
this communication mechanism is that multiple devices can interact with each other without

142

KNX 41-7

purpose, it maintains an association table between AL service access points (SAPs), that is, GO identi!-
ers, and TL SAPs (which correspond one-to-one to DL group addresses). "us, a group address describes
a group of GOs in a communication relationship with each other. Every node is aware which groups it
belongs to and treats messages accordingly.

Usually, data sources will actively publish new data via the AL GroupValue _ Write service. If a
user application changes the value of a GO and A _ GroupValue _ Write.req is invoked, the net-
work stack determines the group address this information is to be sent to. "e user application is not
aware of the group addresses associated with a GO (implicit addressing). In receivers that recognize this
group address as one of their own, the AL generates an A _ GroupValue _ Write.ind for the AL SAPs
bound to this group address, providing the user data from the GroupValue _ Write PDU (protocol
data unit). "e application environment (KNX application interface layer) updates the GOs accordingly
and noti!es the user application. "is mechanism allows passing a piece of information to an arbitrary
number of recipients by way of a single message. For a single receiver only, it is shown in Figure 41.3.
GroupValue _ Write is an uncon!rmed service. Message delivery is not guaranteed. If exactly-once
semantics are required, con!rmations have to be obtained by the user application.

In this mode of communication, senders do not need to know which nodes will actually be receivers
of their messages. "e knowledge concerning which nodes participate in any particular communica-
tion relationship is distributed over all nodes in the system. In KNX, it has traditionally even been
impossible (or at least infeasible) for any node to determine which other nodes will accept and process
messages to any speci!c group address. "is pattern is sometimes referred to as the producer/consumer

1: 3: User application recognizes
 change of state at input port

2:

6: KNX network stack

GO 2

Group addr.

GO 1 GO 3

KNX
network

User application

KNX network stack

GO 2

Group obj. ID
GO 1
GO 2

Group addr.
2/8/1
5/1/6

GO 1

4: User application updates
 associated group object

Application environment
recognizes group object
update

User application

Network stack recognizes
destination address of L_Data
frame as one of its own

Network stack determines which
group object is associated with this
group address

10:

11: User app. performs associated
 action (activates output signal)

12: 13: Lamp lights up

Group obj. ID
Network stack sends L_Data
frame (with GroupValue_Write
PDU) to this address

5:

7:

8:

9:

Application environment
updates appropriate group
object with value received
and notifies user application

Network stack looks up
group address associated
with this group object

Wall switch is
pushed

Device receives
signal

Signal energizes
relay

GO 1
GO 2
GO 3

1/1/2
4/7/3
2/8/1

FIGURE 41.3 GroupValue _ Write—end-to-end overview.

K10148_C041.indd 7 8/20/2010 6:09:05 PM

Figure 5.4: KNX interworking model [136]

the need of a centralized controller. Further, all the process related device interactions are in-
dependent from each other. So if one device fails, the communication of other related devices is
not a�ected. However, this type of communication makes a mapping to a RESTful client/server
interaction problematic. If a device-centric view on resources should be provided it might not
be possible without side-e�ects, since there might be more than one device associated with the
group address.

To realize a standardized set of device features, KNX uses the concept of function blocks.
A function block de�nes a set of input and output datapoints that a device needs to implement
in order to ful�l the contract de�ned by the function block. Typically, such input and output
datapoints are related to the physical I/O signals of the device, but also so-called soft datapoints
can be provided. For example, a setpoint value of a temperature controller is realized as such a
datapoint that provides access to a variable in memory. The function block of a device provides
a good starting point for a resource-centric representation of a KNX device. In this case, the
OBIX contract mechanism can be used to de�ne similar contracts like KNX function blocks as
illustrated in Figure 5.5. The OBIX object provides a stateful representation of the associated
KNX group objects. Therefore, it is required to keep the stateful representation synchronized

143

with the bus events that occur.

<obj href="iot:LightSwitchActuator" is="iot:Actuator">

 <bool name="lightSwitch" href="lightSwitch" val="false" writable="true"/>

</obj>

Inputs

(SOO) Info On Off (IOO)

(TSS)

 (FO)

 (LD)

(SN)

(SC)

 mandatory

 optional

Outputs

FB Light Switching Actuator Basic (LSAB)

Switch OnOff

Timed Start Stop

Forced

Lock Device

Scene Number

Scene Control

Figure 5.5: Mapping KNX function blocks to OBIX contracts

Besides the group communication interaction pattern, it is also possible to have reliable
point-to-point communication. However, this type of communication is not for runtime pro-
cess data exchange and only used for �rmware download and con�guration and commissioning
purpose.

Mapping KNX datapoint types

To map the KNX bus system, the functional blocks provide a device centric view. For the
associated datapoints, a mapping of the KNX datapoint types needs to be de�ned.

Format: 1 bit: B1

Range: b = {0,1}

Unit: None

ID: Name: Encoding: b

1.001 DPT_Switch 0 = Off

1 = On

1.002 DPT_Bool 0 = False

1 = True

1.003 DPT_Enable 0 = Disable

1 = Enable

1.004 DPT_Ramp 0 = No ramp

1 = Ramp

Datapoint Types

Datapoint Types B1

Figure 5.6: KNX datapoint type main type 1 [17]

A KNX data type includes a format and encoding information, and a dimension with a range
and unit. Figure 5.6 provides an example of a KNX data type that can be used to represent a
simple boolean datapoint. For the main datapoint type, the information is encoded using a 1
bit representation with the given format. Further, the semantics of a “1” or “0” state are fully
speci�ed through the subdatapoint types. For example, a logical “1” or “0” can either have the

144

meaning associated of “on” or “o�”, or “enabled” or “disabled”, “open” or “closed”. The concrete
semantics is speci�ed through the KNX standard.

The KNX main types and formats can be directly mapped to the OBIX value datapoint types
(cf. Table 5.2). Range and unit information can be provided using a standard unit attribute
provided by OBIX and the use of “enum” objects to represent the range and also the semantic
information about the encoding.

KNX datapoint type OBIX base type

Boolean Value (DPT_B) bool
Unsigned Value (DPT_U) int
Float Value (DPT_F) real
Character (DPT_A) string
String (DPT_A) string
Time abstime
Date abstime

Table 5.2: Mapping KNX datapoint types to OBIX value object types [137].

A more sophisticated mapping is shown in Listing 5.1 which illustrates how the KNX main
and subtypes can be represented using OBIX contracts and further semantics can be preserved
by representing the encoding.

Listing 5.1: KNX datapoint mapping with encoding information
<obj name="P-0341-0_DI-3_M-0001_A-9803-03-3F77_O-3_R-4" href="switch_channel_a/"

is="knx:DPST-1-1 knx:DPT-1 knx:Datapoint" display="On / Off"
displayName="Switch, Channel A">
<bool name="value" href="switch_channel_a/value" val="false"

displayName="On / Off" null="true" writable="true" />
<enum name="encoding" href="switch_channel_a/encoding" val="off"

null="true" writable="true" range="/encodings/onoff" />
</obj>

<list href="onoff/" of="obix:bool" is="obix:Range">
<bool name="on" href="onoff/on" val="true" displayName="On" />
<bool name="off" href="onoff/off" val="false" displayName="Off" />

</list>

Automatic run-time discovery

KNX does not provide any discovery services that allow an automatic discovery of KNX de-
vices at the bus during runtime. Without a priori knowledge of the available devices, their
installed application �rmware and group address relationships, it is usually not possible to de-
rive the semantics of messages that are exchanged on the bus. Only the length of the binary
exchanged application payload allows anticipating the type of communication. Due to the am-
biguity of the semantics only the knowledge of a human observer could provide the required
meta-information about the con�guration.

145

Discovery based on KNX project con�guration

For KNX, the engineering tool ETS o�ers the means to con�gure devices, to download the
application �rmware on devices and to con�gure communication endpoints. Therefore, all
required information to create an automated mapping to the IoT stack is available within the
ETS project �le. The ETS allows exporting an XML-based description of the KNX bus system
that can be used for automated con�guration of the gateway.

5.4 BACnet

BACnet is a prominent representative of a building automation technology for commercial
buildings. By having a collapsed protocol architecture of 4 layers (as shown in Figure 5.7) it is
tailored and optimized to the speci�c needs of a building automation control network.

BACnet Application Layer

BACnet Layers Equivalent
OSI Layers

Application

BACnet Network Layer Network

ISO 8802-2 (IEEE 802.2)
Type 1

ISO 8802-3
(IEEE 802.3)

ARCNET

MS/TP

EIA-485

PTP Data Link

PhysicalEIA-232

Lo
n

Talk

BVLL

UDP/IP

Figure 5.7: BACnet collapsed architecture

The BACnet application layer uses an object-oriented information model to o�er access
to the control network. The application layer services provide all required functionalities for
inter-process and end-to-end communication between BACnet enabled devices. Every infor-
mation asset or interface is modeled in an object-oriented way. Each BACnet device holds
one or more BACnet objects. Every object can contain a list of standardized properties. A set
of standardized property and object types is available. Further, a property might be optional,
mandatory but read-only, or mandatory and read as well as writeable. A minimum set of re-
quired properties are theObject_Identi�er, theObject_Name and theObject_Type which must be
provided by each BACnet object. The BACnet standard de�nes an enumeration of the available
property identi�ers.

BACnet follows an object-oriented approach in modeling its devices and datapoints. A
BACnet device can be seen as a collection of objects. Every device must have the special
“device”-object that provides additional information about itself, including its device identi-
�er, its name, and a list of all objects available on the device. The BACnet standard de�nes
a number of object types. These objects can represent physical points or describe processes
or internal operations. The Program object type, for example, represents a process running
within a BACnet device. Physical points can be modeled using generic object types for binary
and analog values.

146

There are also separate object types for input, output and value objects, resulting in a to-
tal of 6 object types: AnalogInput, AnalogOutput, AnalogValue, BinaryInput, BinaryOutput and
BinaryValue. Input objects receive their value from an external source (e.g., sensors) and there-
fore are not writeable. Output objects are writeable and represent control outputs. Value and
output objects can be used as setpoints e.g. the target temperature in a heating system. Every
object has a collection of properties. Among these properties are name and type of the object,
as well as a description. For analog objects, a property provides a way to specify the units
of the value. There are a number of other properties, and each object type has its own set of
properties that are useful for that type.

Present value property: An important property is the Present_Value. If this property is
writeable, then the properties Priority_Array and Relinquish_Default are also present on the
object. These properties are part of the prioritization mechanism. The priority array is a read-
only array property of 16 values which correspond to 16 available levels of priority. The el-
ements are in order of decreasing priority, so the �rst element (priority 1) has the highest
priority. An entry in the priority array can be either a value or NULL. The non-NULL value
with highest priority gets mapped to the Present_Value property. If there is no non-NULL value,
then the value of the Relinquish_Default property is used. To set entries in the priority array, a
WriteProperty request including the priority to override is issued on the Present_Value property.
To clear entries, the value of the WriteProperty request shall be NULL. If no priority is speci�ed
on the request, a default priority of 16 (the lowest priority) is assumed.

Object identi�er: Objects within a device are identi�ed through their object identi�er. This
identi�er consists of two parts: The object type and an instance number. In order to uniquely
identify a property of an object inside a BACnet network three values are required: the device
identi�er of the device, the object it is residing on, the object identi�er (object type and instance
number) and the property identi�er.

Mapping BACnet object types

A way to represent a BACnet network and its devices and objects inside an OBIX server is
desired in order to be able to access and manipulate them through an OBIX representation. To
achieve this, BACnet objects can be mapped to OBIX objects. Within this thesis, a closer look
on the the mapping of the BACnet object types AnalogInput, AnalogOutput, AnalogValue, Bina-
ryInput, BinaryOutput and BinaryValue to OBIX objects is done, as they are su�cient to model
a wide variety of devices and applications, including sensor, actuator values and setpoints. The
object hierarchy is illustrated in Figure 5.8.

Data types: First, the mapping of data types is examined. The group of analog objects in
BACnet is of the data type real, which maps directly to the real OBIX object type. BACnet
binary objects are of the data type BACnetBinaryPV, which can take the values active and in-
active. These values map to true and false of the OBIX object type bool. To create a functional
mapping, the present value is the only mandatory property. Therefore, it is possible to de�ne

147

BacnetObj

AnalogBacnetObj BinaryBacnetObj

AnalogInput AnalogOutput AnalogValue BinaryInput BinaryOutput BinaryValue

Figure 5.8: OBIX BACnet object hierarchy

basic OBIX contracts corresponding to the BACnet objects. These contracts are shown in List-
ing 5.2. BACnet input objects are by default not writable, while output objects are writable by
default. This is re�ected in the contract de�nition.

Listing 5.2: Basic OBIX contracts corresponding to BACnet object types
<obj href="iot:AnalogInput">

<real name="value" val="0" writable="false" />
</obj>
<obj href="iot:AnalogOutput">

<real name="value" val="0" writable="true" />
</obj>
<obj href="iot:AnalogValue">

<real name="value" val="0" />
</obj>
<obj href="iot:BinaryInput">

<bool name="value" val="false" writable="false" />
</obj>
<obj href="iot:BinaryOutput">

<bool name="value" val="false" writable="true" />
</obj>
<obj href="iot:BinaryValue">

<bool name="value" val="false" />
</obj>

Name: Every object has an Object_Name property. A name is unique within the BACnet
device that contains the object. In OBIX, the direct children of an object must have unique
names, too. Names in BACnet are restricted to printable characters only, and a minimum length
of one character. OBIX imposes stricter constraints on names and only allows ASCII letters,
digits, underbars, and dollar signs. Additionally, a digit must not be used as �rst character.
Invalid characters have to be stripped from the Object_Name before it can be used as name

148

for the OBIX object. The problem of duplicate names from di�erent BACnet objects is largely
avoided by structuring the OBIX representation as discussed in the next chapter.

Description: BACnet also provides a description property. This property can be useful to
understand the purpose of the object and can be included in the constructed OBIX object.
To this end, a new child object of type str is added to the object. The name of the object is
“description” and its value is the value obtained from the description property by a ReadProperty
service request. No conversion of the obtained string is required, as it is only restricted to
printable characters.

Units: A unit is required to interpret analog values correctly. Both BACnet and OBIX pro-
vide means to specify the units for a value. In BACnet, the Units property of the data type
BACnetEngineeringUnits represents the units of the Present_Value property. BACnetEngineering-
Units is an enumeration of many units from di�erent domains, such as acceleration, area, cur-
rency, electrical, energy, enthalpy, entropy, force, frequency, humidity, length, light, mass, mass
�ow, power, pressure, temperature, time, torque, velocity, volume, volumetric �ow and oth-
ers. Units with an enumerated value in the range 0-255 have been reserved for de�nition by
ASHRAE, values in the range 256-65535 may be used freely. OBIX features a �exible way to
de�ne units mathematically. Dimensions are speci�ed using the obix:Dimension contract using
the seven fundamental SI units and their exponent (Listing 5.3).

Listing 5.3: OBIX dimension contract
<obj href="obix:Dimension">

<int name="kg" val="0" />
<int name="m" val="0" />
<int name="sec" val="0" />
<int name="K" val="0" />
<int name="A" val="0" />
<int name="mol" val="0" />
<int name="cd" val="0" />

</obj>

An actual unit is represented with the obix:Unit contract (Listing 5.4). It contains a di-
mension that can be scaled and o�set (unit = dimension * scale + o�set) and the unit symbol.
Listing 5.5 shows how a kilowatt can be expressed using this system.

Listing 5.4: OBIX unit contract
<obj href="obix:Unit">

<str name="symbol" />
<obj name="dimension" is="obix:Dimension" />
<real name="scale" val="1" />
<real name="offset" val="0" />

</obj>

Listing 5.5: KiloWatt as OBIX unit
<obj href="obix:units/kilowatt" display="kilowatt">

<str name="symbol" val="kW" />
<obj name="dimension">

<int name="m" val="2" />

149

<int name="kg" val="1" />
<int name="sec" val="-3" />

</obj>
<real name="scale" val="1000" />

</obj>

Some units do not �t into this model, like logarithmic units or units dealing with angles.
Such units should use a dimension where every exponent is set to zero. OBIX provides a
database of prede�ned units. If possible, BACnetEngineeringUnits should be mapped to the cor-
responding unit in this database. New units can be de�ned. For example, BACnet revolutions-
per-minute (with an enumerated value of 104) maps to obix:units/revolutions_per_minute. BAC-
net has a special enumerated value representing the absence of a unit called no-units. This
value can be mapped by simply omitting the unit attribute of the OBIX object.

Complete OBIX object representation: By mapping these additional properties, a much
more meaningful object is obtained as illustrated in Listing 5.6.

Listing 5.6: Complete BACnet object contract
<obj name="lfan" href="/BACnet/10003/AnalogOutput1" is="iot:AnalogOutput">

<real name="value" href="value" val="4200"
units="obix:units/revolutions_per_minute" writable="true" />

<str name="description" href="description" val="left fan speed setpoint" />
</obj>

Mapping of read and write requests

Assuming the address of a BACnet object is known, the appropriate OBIX contract can be
chosen for an OBIX object since the object type is part of the address. To get the current value
of the BACnet object when reading a mapped OBIX object, the OBIX read request has to be
mapped to the BACnet ReadProperty service. The ReadProperty service takes three arguments:
object identi�er of the object to read from, the property identi�er of the property to be read,
and optionally a property array index. The object identi�er is already known. The property
identi�er to choose is the identi�er of the Present_Value property. The property array index
is only needed if the property being read is an array. As the present value is a single value
this argument is omitted. The response of the service contains the read property value. Its
data type is either REAL or BACnetBinaryPV, depending on the object type. The value can be
interpreted as previously discussed. For write requests, a similar mapping has to be de�ned.
The write request maps to the WriteProperty service. This service takes �ve arguments: the
object identi�er, property identi�er, property array index, property value and priority. For the
identi�er, property identi�er and property array index, the same considerations described for
the ReadProperty service apply. The property value argument contains the value we want to
write to the object. As priority an integer in the range 1-16 can be chosen. If priority is omitted,
a priority of 16 (lowest priority) is implied. The highest priorities should be reserved for life
safety emergency overrides, so a mid-range priority of around 10 is suggested. The priority
mechanism allows to override a value with a lower priority, later revoke the new high priority
value and return to the original value. To revoke a value with a certain priority, its entry in the

150

priority array has to be reset to NULL. OBIX does not have a null object, instead it uses a facet
or attribute to indicate a null value. Therefore, writing to an OBIX object with a null value can
be used to reset its value. In this case, the BACnet NULL data type is the property value to be
used in the WriteProperty service request.

The contract de�nitions already set the default of the writeable facet for each object type.
However, under certain circumstances the present values of Input and Value objects can be-
come writeable. In order to correctly re�ect this in the OBIX object, these conditions have to
be checked. Output objects are always writeable. Input objects are writeable, if the property
Out_Of_Service is set to TRUE or if the Present_Value property is commandable, otherwise they
are read only. The boolean property Out_Of_Service indicates whether physical input to the
object is currently in service. If the Present_Value is commandable, then the properties Prior-
ity_Array and Relinquish_Default are both present on the object, too. To check if these prop-
erties are available, a ReadProperty service request can be attempted. If they are not available,
the request will result in an UNKNOWN_PROPERTY error, indicating that the Present_Value
property is not commandable.

These conditions have to be repeatedly checked every time the OBIX object is read, as they
can change over time. Using the techniques described so far, a BACnet object can be mapped
to a functional OBIX object that can be read and written. An example of an object using this
mapping is shown in Listing 5.7.

Listing 5.7: Example OBIX object representing a BACnet Analog Output object
<obj href="/BACnet/10003/AnalogOutput1" is="iot:AnalogOutput">

<real name="value" href="value" val="100" writable="true" />
</obj>

Automated mapping of BACnet devices

BACnet remote device management services: These services provide a number of func-
tions, including operator control and auto-con�guration functions. Among them two can be
used to discover devices, the Who-Is and Who-Has services. They eliminate the requirement
to program the network addresses of other devices into each device. The service messages are
broadcast in the BACnet network to every device, and the receiving devices may respond with
an acknowledgement message containing their address.

Who-Is and I-Am: TheWho-Is service is used to determine the device identi�er, the network
address, or both of other BACnet devices that are on the same network as the device issuing
the service request. It is an uncon�rmed service, meaning that it does not require a response.
There are multiple ways of using the service. It can be used to determine the device object
identi�er and network addresses of all devices on the network. If a device object identi�er is
already known, then the service can be used to determine the address of the corresponding
device. The I-Am service informs other devices about its sender. It broadcasts an uncon�rmed
request containing the device identi�er among other information. The service may be used at
any time. Usually, an I-Am request is sent after a device has initialized to inform other devices
about its availability. When a device receives a Who-Is request whose parameters include the

151

device, then it answers with an I-Am service request. Another way to locate devices on the
network is provided by the uncon�rmed services Who-Has and I-Have. The Who-Has service
is similar to the Who-Is service. It can be used to ask for the device identi�er of devices that
contain an object that has a given object name or object identi�er. In response, devices that
have the requested resource send an I-Have service request, containing the device identi�er, as
well as both the object name and object type of the requested object.

Device instance ranges: Optionally, a range of device instances can be speci�ed as an argu-
ment for the Who-Is and Who-Has service requests. If the range is omitted, then every device
that receives the request will process it. Otherwise, only devices whose device object’s instance
number are within the speci�ed range will answer. In large networks, an unbound Who-Is re-
quest to all devices at once would result in a lot of answers at the same time and a sudden
network load. As a consequence, packets containing the I-Am response are more likely to be
dropped on their way to the requesting device, and since the I-Am service is uncon�rmed, the
packets will not be resent. This may lead to not all devices being discovered. The device in-
stance ranges provide a solution to this problem. Instead of one Who-Is request to all devices,
the request can be split into several smaller requests, thereby reducing the network load per
request.

Device objects and object lists: Every BACnet device is required to have a device object.
Its instance number is the same as the device identi�er. The device object o�ers a property
called Object_List. It is an Array type property that contains all objects available on the device.
This makes it possible to query all the objects contained in a device which has previously been
discovered by the Who-Is service.

5.5 EnOcean

EnOcean is a wireless automation technology that is gaining importance, due to the fact that
it relies mainly on energy harvesting mechanisms to power its sensors. The energy can be
harvested from mechanical processes, like pressing a button, or by retrieving the energy from
solar panels. The EnOcean alliance stands behind the technology and it aims at establishing
an international standard. Within ISO/IEC 14543-10, the physical, data link layer and network
layer are standardized. The stack is illustrated within Table 5.3.

The EnOcean speci�cation covers multiple parts as outlined in Figure 5.9. There is the
EnOcean Radio Protocol (ERP), which speci�es the frame format for radio transmissions. Fur-
ther, there is a speci�cation for the communication between EnOcean RF modules and hosts
based on the EnOcean Serial Protocol (ESP).

Most relevant for interoperability amongst di�erent devices and vendors is the EnOcean
Equipment Pro�le (EEP), which de�nes the structure of exchanged application data. The char-
acteristics of a device are speci�ed through the ERP radio telegram type (RORG), the basic func-
tionality (FUNC) of the data content and the type of the device and its individual characteristics
(TYPE). The EEP is identi�ed through a 21 bit number structured in the way as illustrated in
Figure 5.10 and expressed using hexadecimal numbers.

152

Wireless short-packet protocol (WSP) stack
Standard Layer Services Data units

Not de�ned
in this
standard

Application
Presentation
Session
Transport

ISO/IEC
14543-3-10

Network

Destination addressed telegrams
(Encapsulation/Decapsulation)

Switch telegram conversion
(RORG and STATUS processing)

Repeating (STATUS processing)

TELEGRAM

Data Link Layer

Sub telegram structure
Hash algorithm
Sub telegram timing
Listen before talk

SUBTELEGRAM

Physical Encoding/Decoding (INV and SYNC)
Wireless receiving/transmitting) BITS/FRAME

Table 5.3: EnOcean speci�cation

ESP

EEP

ERP

EEP

U
A

R
T EnOcean

RF module

EEP = EnOcean Equipment Profiles
ERP = EnOcean Radio Protocol
ESP = EnOcean Serial Protocol

Figure 5.9: EnOcean speci�cation overview

Due to the constraints imposed by the required energy e�ciency the protocol is kept quite
simple. It is the goal to keep these pro�les as generic as possible in order to avoid vendors need
to add additional pro�les, which would decrease the overall interoperability.

The standard de�nes several telegram types as given in Table 5.4, where the telegram types
for repeated switch communication (RPS), 1 byte communication (1BS), and 4 byte communi-
cation are the most relevant for the mapping to the IoT stack. For the RPS and 1BS telegram
only 1 byte of user data is available. The rest of the telegram consists of a 1 byte telegram type
identi�er, a 4 byte sender identi�er and a 1 byte status �eld.

For example, the EEP code F6-02 is used for rocker switches with 2 rockers. The type �eld
is then used to further distinguish between di�erent application styles, like whether a blind
control is included or not. D5-00 is used for simple contacts and switches. Only one concrete
EEP exists here, which is D5-00-01 (single input contact). For temperature sensors, the A5-02

153

RORG FUNC TYPEEEP 2.5:

Range (hex): 00 … FF 00 … 3F 00 … 7F

8 bit 6 bit 7 bit

Figure 5.10: EnOcean Equipment Pro�le (EEP) structure

Telegram RORG
RPS F6 Repeated Switch Communication
1BS D5 1 Byte Communication
4BS A5 4 Byte Communication
VLD D2 4 Variable Length Data
MSC D1 Manufacturer Speci�c Communication
ADT A6 Addressing Destination Telegram
SM_LRN_REQ C6 Smart Ack Learn Request
SM_LRN_ANS C7 Smart Ack Learn Answer
SM_REC A7 Smart Ack Reclaim
SYS_EX C5 Remote Management
SEC 30 Secure telegram
SEC_ENCAPS 31 Secure telegram with R-ORG encapsu-

lation

Table 5.4: EnOcean telegram types

group of EEPs, is another example. Here, the speci�c types categorize the temperature range.
A5-02-01 is for temperature sensors with a range between -40°C and 0°C, whereas A5-02-01
identi�es a temperature sensor with a range between -30°C and +10°C.

Mapping EnOcean equipment pro�les

EnOcean does not come with a strong de�nition of an information model. Instead, every EEP
has its own de�nition for interpreting the information conveyed in the telegram. The infor-
mation is structured into a valid range, a scale and unit or into an enumeration of a �xed value
de�nition for the binary code. Table 5.5 shows an example de�nition of an EEP for a temper-
ature sensor. Here, the �rst identi�er A5 refers to a 4 byte telegram, and the subidenti�er 02
groups all temperature sensors together. The subidenti�er 01 refers to the type, which is in this
case specifying the range of the temperature sensor. The other types within the temperature
sensor subgroup just specify other scales for the 1 byte data �eld representing the temperature.
For this speci�c EEP, a lot of bits are unused, but other types add further information, such as
for example a humidity �eld in the case the sensor support temperature and humidity as well.

Table 5.6 gives an example for another EEP, which is a contact sensor. The telegram type
foresees 1 byte for user data. For representing whether the contact is opened or closed, a one
bit �eld is used. The exact semantics of the 1 bit �eld is represented in the enumeration, which
is custom de�ned within every EEP.

For the mapping of the EnOcean information model to the IoT stack, either the IoT con-

154

Size Bit range Data ShortCut Description Valid
Range

Scale Unit

16 DB3.7 ...
DB2.0

Not used (=0)

8 DB1.7 ...
DB1.0

Temperature TMP Temperature
(linear)

255...0 -40...0 °C

4 DB0.7 ...
DB0.4

Not used (=0)

1
DB0.3 LRN Bit LRNB LRN Bit

Enum:
0: Teach-in telegram
1: Data telegram

Table 5.5: A5-02-01 Temperature Sensor Range -40°C to 0°C

Size Bit range Data ShortCut Description Valid
Range

Scale Unit

1 DB0.3 Learn Button LRN ...
Enum:
0: pressed
1: not pressed

1
DB0.0 Contact CO ...

Enum:
0: open
1: closed

Table 5.6: D5-00-01 Contact Sensor

tracts or an EnOcean speci�c mapping can be used. Due to the lack of a generic standardized
information model it is only possible to map every EEP type to a custom OBIX contract, rep-
resenting this EEP. Listing 5.8 shows an OBIX representation of the D5-00-01 EEP.

Listing 5.8: EnOcean
<obj name="EasyclickWindowContact" href="EasyclickWindowContact/" is="enocean:

Entity" display="null" displayName="Window contact" writable="true">
<str name="manufacturer" href="EasyclickWindowContact/manufacturer" val="

PEHA"/>
<list name="datapoints" href="EasyclickWindowContact/datapoints" of="obix:

ref enocean:Datapoint">
<obj name="SingleInputContact" href="EasyclickWindowContact/datapoints

/single_input_contact" is="enocean:DPTBoolOpenClosed enocean:
DPTBool enocean:Datapoint" display="Open/Closed" displayName="
Single Input Contact">

<bool name="value" href="EasyclickWindowContact/datapoints/
single_input_contact/value" val="true" null="true"/>

<enum name="encoding" href="EasyclickWindowContact/datapoints/
single_input_contact/encoding" val="closed" null="true"
range="/encodings/openclosed"/>

</obj>
<obj name="TeachIn" href="EasyclickWindowContact/datapoints/

teachin_mode" is="enocean:DPTBoolOnOff enocean:DPTBool enocean:
Datapoint" display="On/Off" displayName="TeachIn mode">

<bool name="value" href="EasyclickWindowContact/datapoints/
teachin_mode/value" val="false" null="true"/>

<enum name="encoding" href="EasyclickWindowContact/datapoints/
teachin_mode/encoding" val="off" null="true" range="/
encodings/onoff"/>

155

</obj>
</list>

</obj>

The EnOcean telegram type can be seen as equivalent to the KNX main type, since both
represent the number of transmitted bits. However, for KNX the main type is usually associ-
ated with a single datapoint. For EnOcean multiple datapoints might be encoded within the
telegram, which makes a more generic mapping infeasible. Here, the mapping has to be done
separately for each EEP.

Auto discovery

For creating the mapping of an EnOcean installation, an automatic discovery of devices is not
possible. Due to the energy constraints, a sender might be only identi�ed at runtime with its
sender ID. Further, the telegram type can be automatically inferred but the concrete semantics
require the knowledge of the EEP which is not contained in the frame.

5.6 Wired and wireless M-Bus

Smart grids are an important application scenario for the IoT. A popular communication pro-
tocol for automated meter read-out is the M-Bus protocol suite, which can be used for wired
and wireless communication. The M-Bus protocol stack only uses three layers and builds upon
the standard de�ned by IEC EN 61334-4-1. Wireless-M-Bus systems enable the communication
between measurement entities and non-stationary units (for example, master devices such as
a laptop acting as a data collector). To achieve the communication, several operation types
are speci�ed, such as stationary operation method (S), frequent send operation method (T) and
time frequent receiver operation method (R), which align the protocol towards certain inter-
action scenarios.

Body

Body Header CRC Body Payload

CI Acc S Sig CRC Body Payload

Header

L C M A

3E 44 2C 4C 74 44 00 15 1E 02 7A 07 00 30 85 87 01 B1 B2 D2 97 F3 ….

Figure 5.11: Wireless M-Bus frame [138]

The Wireless M-Bus telegram consists of a header and body part. Within the header part, a
length �eld, control �eld, manufacturer �eld and address �eld are provided. Within the body,
the control information �eld identi�es the application payload and contained information. For
parsing the telegram, the Advanced Encryption Standard (AES) decryption needs to be used.

156

For M-Bus, there are two alternatives for the application layer protocol. To represent smart
meter information either the M-Bus speci�c application layer format or the Device Language
Speci�cation (DLMS)/Companion Speci�cation for Energy Metering (COSEM) can be used.
COSEM uses the concept of interface classes, following an object-oriented approach. An in-
terface class speci�es methods and attributes an object instantiation has to provide in order
to ful�l the class. Figure 5.12 gives an example for a generic Register interface class and two
example objects instantiating this class and providing access to the current energy and to the
current �ow temperature value. The logical_name attribute uses the Object Identi�cation Sys-
tem (OBIS) identi�er scheme. The value attribute contains the current value, with a format
speci�c to the actual object instance. OBIS is a hierarchical structured identi�cation code. The
identi�er is built based on six value groups (A to F), describing in a hierarchical way the detailed
meaning of a value.

Energy, current
value, total: Register

Logical_name = [5.0.1.0.0.FF]
Value = 1845
...

Flow temperatures,
current value: Register

Logical_name =
[5.0.A.0.FF.FF]
Value = 76
...

Register class_id=3

Logical_name = [5.0.1.0.0.FF]
Value = 1845
...

reset (data, …)Methods

Attributes

Class

Class identifier
Instantiation Object

Figure 5.12: COSEM interface class and instance example [138]

Another, information representation is standardized by the dedicated M-Bus application
layer. Here, the speci�cation de�nes di�erent application payload types. For variable payloads,
the structure illustrated in Table 5.7 is used. The application payload consists of a data record
header with semantic information about the application data. The information consists of a
data information block and a value information block. Both blocks consist of an information
�eld (DIF, VIF) and an extension �eld (DIFE, VIFE). The data information block speci�es the
format of the payload including the number of transmitted bits and data representation format.
The value information block further completes the semantic information, such as range, scale
and unit of the data.

157

DIF DIFE VIF VIFE Data
1 byte 0 to 10

(each 1
byte)

1 byte 0 to 10
(each 1
byte)

0 to N byte

Data information block (DIB) Value information block (VIB)
Data record header

Table 5.7: M-Bus dedicated application layer format [138]

Application layer mapping

To integrate DLMS/COSEM into the IoT, a mapping based on OBIX speci�c contracts can be
used to represent the COSEM interface classes. The OBIS identi�cation code can be used for
the URI to address objects.

The dedicated M-bus application layer consisting of a raw data �eld information is mapped
to generic IoT smart meter contracts as given in Listing 5.9, with a �at mapping of the typical
registers o�ered by a smart meter. The OBIX base value object types can be used to represent
the di�erent register values. Through the unit attribute further semantics about the �eld value
is o�ered to a client.

Listing 5.9: Smart meter
<obj href="smartmeter/" is="iot:SmartMeter">

<real name="power" href="smartmeter/power" val="0.0" unit="obix:units/watt"/
>

<real name="volume" href="smartmeter/volume" val="0.0" unit="obix:units/
liter"/>

<real name="energy" href="smartmeter/energy" val="0.0" unit="obix:units/
kilowatthours"/>

</obj>

5.7 EPCIS and RFID

Low-cost passive RFID tags are replacing traditional barcodes for physical object identi�cation
and are heavily used within logistics and trade. They are an essential aspect of identifying
physical objects, therefore an integration into the IoT is required. EPCIS refers to the infor-
mation system that tracks objects and provides standardized interfaces, for RFID readers and
external application clients that want to access the information. This section explains how the
current EPCIS can be integrated into the IoT, extending it to a so called Smart Things Infor-
mation System (STIS) [139]. The integration follows a two-fold approach. On the one side,
the information of the EPCIS is made available for IoT devices and services, by providing a
lightweight query interface. On the other side, the information of non-RFID related devices,
such as sensors and actuators of home and building automation systems are made available to
EPCIS. Figure 5.13 shows the architecture of the STIS that includes the original EPCIS. There
are three layers in the STIS, the device layer at the bottom where smart physical things reside, a
�lter and collection middleware in the middle, and an application layer, where application logic

158

Client Applications

Capturing Applications STIS Repo

RFID devices event
Filtering and collection

Non-RFID device data
Filtering and collection

RFID interface adaption Data interface adaption

Alien LLRP
Other

readers

RFID networks (e.g., C1G2)

RFID readers

OBIX-enabled
devices

WSN
gateway

IoT
gateway

Proprietary
devices

IoT stack (CoAP/OBIX)

ALE (SOAP)

Lightweight
query

interface

Data interface
(SOAP)

Figure 5.13: STIS components [139]

is hosted. The extension includes additional communication modules to acquire information
related to things. These modules use a communication stack according to the IoT stack.

EPC scheme

The EPC is designed as universal identi�er for physical objects. It supports up to 7 di�erent
formats for identi�cation keys. An EPC can be represented in a canonical form through a URI.
For example, the Global Returnable Asset Identi�er (GRAI) provides a unique identi�cation for
individual objects, whereas the Global Trade Item Number (GTIN) only identi�es the product
type or the stock-keeping unit. In order to identify an individual instance of a product, the
Serialized Global Trade Item Number (SGTIN) adds a further serial number to the GTIN. List-
ing 5.10 and Listing 5.11 illustrate the syntax and provide an example EPC for these coding
schemes.

Listing 5.10: Global Returnable Asset Identi�er
urn:epc:id:grai:CompanyPrefix.AssetType.SerialNumber

159

Figure 5.14: Sample ALE Event: Using extension in EPC standard event [139]

urn:epc:id:grai:0614141.12345.400

Listing 5.11: Serialized Global Trade Item Number
urn:epc:id:sgtin:CompanyPrefix.ItemRefAndIndicator.SerialNumber
urn:epc:id:sgtin:0614141.112345.400

For linking building automation systems and the EPCIS, OBIX can be used to represent
devices and appliances and an EPC code could be linked to the OBIX object as further meta-
data allowing a unique identi�cation within the EPCIS.

IoT to EPCIS integration

To integrate IoT-related data into the EPCIS, either an IoT-gateway or standalone IoT-stack-
enabled objects can be used. A plugin is required at the STIS, which can interface with the
presented stack. The plug-in retrieves the data represented as OBIX objects and the Filter and
Collection (FnC) component generates an Application Level Event (ALE) that will be forwarded
to capturing applications. The ALE event follows the EPCIS speci�cation using the EPCIS
extension for storing product data. Figure 5.14 shows how the extension is used to incorporate
product data into normal ALE events. The sample ALE event incorporates an extension �eld
called “temperature” with a value of “24” and some other information such as data type and
format. This ALE event is captured by the STIS repository. Finally, the data is made available
to end users or physical devices.

For the integration with the STIS the datapoint centric representation and the history con-
tract are most relevant. One option is to let a sensor or gateway device actively push sensor
information to the STIS. Another option is to register datapoints and their URIs at the STIS
which will then continuously poll for new sensor data.

For the push based interaction, the STIS can provide an OBIX history object linked to a
certain sensor metric (e.g., temperature, location) of an object identi�ed through an EPC code.

160

Tomcat Container

OBIX/CoAP Binding OBIX/HTTP Binding

Lightweight, Restified Resource

Lightweight event
object

Lightweight
location object

Lightweight EPC
object

...

EPCIS Repository Relational Database

Business loc. Business step Business trans. EPC events ext.

Read point EPC class
EPC events time,

action, ...
...

Figure 5.15: STIS lightweight query interface [139]

In this case, the sensor or the gateway pushes the new sensor reading to the EPCIS server. The
address of the server object has to be provided within the sensor. To realize this interaction,
the lightweight-query interface of the STIS makes the interaction feasible since only a CoAP
client library is required at the sensor level.

EPCIS to IoT integration

The EPCIS interfaces are designed as heavy-weight enterprise-level Web service interfaces typ-
ically using SOAP over HTTP. For IoT smart objects, it is desirable to make the EPCIS accessible
for constrained devices. For example, physical objects can subscribe to data streams of other
objects in order react to certain conditions or to ful�l a certain control purpose. Therefore, a
lightweight interface adhering to the IoT stack can be used. Figure 5.15 shows the structure of
the lightweight interface. Only a part of the most relevant data is made accessible through a
resource URI. In most cases the clients are mainly interested in the contextual data of the prod-
ucts. The accessible part of the EPCIS repository is grouped into lightweight resource objects
such as a lightweight EPC event object, a lightweight location object, and a lightweight EPC
object. These lightweight resource objects are designed to give client applications a minimum

161

set of most necessary information. For example, the lightweight EPC event object has only
three properties: event time, event action and event data extension, which are useful for track-
ing the current contextual status of the object without knowing other information such as the
read point or business location of the event. The lightweight location object holds information
about the location of the reader where the event occurred.

5.8 Weather data

For the weather data, several free services o�er an XML-based representation of weather fore-
casts for the most important areas in the world. Relevant information is, for example, the
perception of rainfall and the expected wind speed. This information is important in the smart
home context and allows to warn the inhabitants, if windows or doors are open. Temperature
information is relevant to plan the required energy consumption that can be expected to heat or
cool a residential home or building towards a desired setpoint. Information such as cloudiness,
fog and wind speed help again to estimate the local energy production of renewable energy
sources.

For the integration of the weather data, a free weather data Application Programming In-
terface (API) of the Norwegian Meteorological Institute1 is used. It provides access to weather
data in a REST-style. An XML schema document is provided together with the structure of
the weather data. The weather data service provides a weather data element that holds a time
series of weather forecasts for a certain location.

To represent weather data for the IoT, an OBIX-based representation following the struc-
ture given in Listing 5.12 is used. Figure 5.16 illustrates the mapping as class diagram. To make
the weather data available to IoT smart objects and applications, a weather forecast object con-
sists of a location object and an upcoming weather forecast object. The upcoming weather
forecast o�ers a time series of future weather forecasts as OBIX history. A weather forecast
consists of a predicted temperature, wind direction, wind speed, humidity, pressure, cloudi-
ness, fog, cloudiness and dew point temperature. As can be seen, the simple elements of the
weather forecast are mapped to OBIX basic value objects where the unit attribute provides
further information of the semantics.

Listing 5.12: Weather data representation in OBIX
<obj name="yr.no" href="vienna/" is="iot:WeatherForecast">

<obj name="location" href="vienna/location" is="iot:WeatherForecastLocation"
>

<str name="description" href="vienna/location/description" val="Vienna
" />

<real name="latitude" href="vienna/location/latitude" val="48.21"
unit="obix:units/degree" />

<real name="longitude" href="vienna/location/longitude" val="16.37"
unit="obix:units/degree" />

<int name="height" href="vienna/location/height" val="171"
unit="obix:units/meter" />

</obj>
<obj name="upcoming" href="vienna/upcoming" is="iot:UpcomingWeather">

<abstime name="timestamp" val="2014-03-25T15:00:00.000+01:00"

1http://www.yr.no

162

WeatherForecast

-description
-latitute
-longitute
-height

Location

-timestamp
-temperature
-humidity
-pressure
-percipitation
-cloudiness
-fog
-windSpeed
-windDirection
-dewpointTemperature

Upcoming

-timestamp

HistoryRecord

11 1 1

1

-Forecast

*

1

1

Figure 5.16: Mapping of weather data

tz="Europe/Berlin" />
<real name="temperature" href="vienna/upcoming/temperature" val="9.7"

unit="obix:units/celsius" />
<real name="humidity" href="vienna/upcoming/humidity" val="40.0"

unit="obix:units/percent" />
<real name="pressure" href="vienna/upcoming/pressure" val="1009.0"

unit="obix:units/hectopascal" />
<real name="precipitation" href="vienna/upcoming/precipitation"

val="0.0" unit="obix:units/millimeter" />
<real name="cloudiness" href="vienna/upcoming/cloudiness" val="96.1"

unit="obix:units/percent" />
<real name="fog" href="vienna/upcoming/fog" val="0.0"

unit="obix:units/percent" />
<int name="windSpeed" href="vienna/upcoming/windspeed" val="1"

unit="obix:units/beaufort" />
<str name="windDirection" val="W" />
<real name="dewpointTemperature" href="vienna/upcoming/

dewpointTemperature"
val="-3.5" unit="obix:units/celsius" />

</obj>
<ref name="upcoming forecast" href="vienna/upcoming/forecast" is="obix:

History" />
</obj>

5.9 Implementation

Figure 5.17 illustrates a closer view on the required components of the integration middle-
ware gateway. The gateway provides interfaces according to the IoT stack for several existing
state of the art technologies, which are non-IPv6 based. It has a common interface for direct

163

browser-based interaction with these devices, for control and monitoring systems, for Cloud-
based software-as-a-service interaction, for global discovery services and interfacing through
mobile computing. Multiple HTTP and CoAP handlers are o�ered and bound to virtual and
physical network interfaces. An HTTP and a CoAP handler can be used to o�er a central-
ized interface conforming to the traditional OBIX approach to interact with devices. In case
of HTTP, this is fully compliant to the OBIX standard, at the same time per-device interfaces
can be o�ered with HTTP and CoAP. The HTTP interfaces remain OBIX compliant and the
CoAP interfaces are compliant to the CoRE standards. The message encoding and decoding
are accomplished transparently between the HTTP and CoAP handlers and the OBIX server.
As encoding XML, JSON, EXI or OBIX binary encoding can be used to encode the transferred
OBIX objects. The OBIX server takes care of read, write and invoke requests to the OBIX ob-
jects that are internally controlled by an object broker. The OBIX server is independent of the
protocol that is used to interact with the objects. The object broker takes care about OBIX
watches, histories and alarms. The OBIX watches can be used to monitor changes of objects
and follows the observer pattern to realize this functionality. In case of a CoAP get request with
an observe option, it also takes care of sending asynchronous responses whenever changes oc-
cur. For clients, the traditional OBIX polling, the CoAP observe approach or both ways can be
used to observe a resource. Furthermore, the OBIX broker publishes the represented devices
through the traditional OBIX lobby which can be easily mapped to the CoAP /.well-known
listing of available resources according to the CoRE link format [140]. Beside this centralized
device access approach, the OBIX handler also publishes each device using a separate HTTP
and CoAP handler on a per-device IPv6 address. It is even possible to o�er centralized and
per-device access in parallel, since requests to all endpoints will be handled by the same OBIX
objects. Further, the IPv6 address can be assigned on a more �ne-grained level by using as-
signing it to any kind of OBIX object. IPv6 multicast addresses can be assigned to basic OBIX
value objects.

For realizing the IoT stack group communication mechanism, a group communication ser-
vice intercepts the requests that arrive at the CoAP handler and directly interacts with the
object broker to update the internal states of the objects. Further, it maintains a group com-
munication address table and monitors the OBIX objects which are linked to an IPv6 multicast
address. On a state change, the according update is sent to the network using a non-con�rmable
CoAP put request. Beside this, the object broker uses a discovery service client to register the
available devices and resources at the IoT global discovery service. The protocol adapters (e.g.,
KNX Adapter) are key components of the gateway architecture. They provide the interface to
the BAS speci�c application layer protocol. Depending on the underlying technologies the con-
nections to di�erent physical and data link layers need to be provided. Furthermore, the map-
ping of BAS speci�c concepts to the generic objects adhering to the IoT-OBIX contracts hap-
pens here. These contracts allow to map various technologies into a common object-oriented
representation. Next to the BAS-speci�c adapters, also other data sources are integrated based
on this mechanism. For example, the weather data service or IoT logic blocks.

164

IoT Gateway

<<component>>
HTTP Handler

<<component>>
CoAP Handler

<<component>>
Message Encoder/Decoder

<<component>>
oBIX Server

<<component>>
IoT Objects

<<component>>
KNX

Adapter

<<component>>
BACnet Adapter

<<component>>
Wireless M-Bus

Adapter

<<component>>
ZigBee Adapter

<<component>>
SOAP Handler

<<component>>
HTML5 Local

Control Editor

<<component>>
EnOcean
Adapter

<<component>>
RFID Adapter

<<component>>
CoAP Proxy

Adapter

<<component>>
Browser-based

Interaction

<<component>>
Weather Data

Adapter

<<component>>
Control &

Monitoring
System

<<component>>
SaaS Interaction

<<component>>
Discovery Service

<<component>>
Mobile

Computing

<<component>>
Wired M-Bus

Adapter

<<component>>
IoT Logic

components

<<component>>
Discovery

Service Client

<<component>>
Group

Communication
Service

<<component>>
Object Broker

<<component>>
Authorization Module

Per-device interfaces (HTTP)

Centralized HTTP interface

Per-device interfaces (CoAP)

Centralized CoAP Interface

<<use>>

Figure 5.17: Gateway architecture

Gateway implementation

The implementation of the gateway is based on Java 7, which acts as a reference implementa-
tion of the developed IoT integration middleware. The OBIX implementation is based on the
OBIX toolkit. Tomcat is used as HTTP server. The open source implementation Californium
acts as CoAP server. For the implementation, the Open Service Gateway Initiative (OSGi) ser-
vice framework requires a component-oriented development and a modularization of the dif-
ferent connectors to the integrated technologies. The communication drivers and connectors
as well as technology-speci�c mappings of OBIX objects based on the generic abstraction are
handled via so called protocol bundles. A protocol bundle is required to o�er its devices through
a mapping to OBIX objects. The protocol bundle needs to implement a connector interface, al-
though the gateway is agnostic of available protocols. The gateway provides an object broker
that can be used by protocol bundles to register its OBIX objects. In this way, the dependency

165

at.ac.tuwien.ac.obix.observer

+ObjObserver()
+update(currentState : Object) : void
+getEvents() : LinkedList<null>
+objectChanged() : boolean
+getSubject() : Subject
+setSubject(object : Subject) : void
+setExternalObserver(extObserver : ExternalObserver) : void

ObjObserver

+update(state : Object) : void
+setSubject(object : Subject) : void
+getSubject() : Subject

<<Interface>>
Observer

+objectChanged(fullContextPath : String) : void

<<Interface>>
ExternalObserver

+attach(observer : Observer) : void
+detach(observerObserver) : void
+notifyObservers() : void
+getCurrentState() : Object

<<Interface>>
Subject

at.ac.tuwien.auto.obix.conectors.knx

+notifyWatchDog(apdu : byte []) : void

<<Interface>>
KNXWatchDog

+KNXConnector(routerHostname : String, routerPort : int, localIP : String)
+connect() : void
+addWatchDog(observation : GroupAddress, knxWatchDog : KNXWatchDog) : void
+isConnected() : boolean
+write(a : GroupAddress, value : int, scaled : String) : void
+write(a : GroupAddress, value : boolean) : void
+readInt(a : GroupAddress, scaled : String) : int
+readBool(a : GroupAddress) : boolean
+disconnect() : void

KNXConnector

KNXListener

obix

-extObserver : ExternalObserver

+setExternalObserver(extObserver : ExternalObserver) : static void

Obj

<<Interface>>
IObj

at.ac.tuwien.auto.obix.server

+ObixObservingManager()
+notifyObservers(resourcePath : String) : void

ObixObservingManager

at.ac.tuwien.auto.obix.objects.iot.sensors

+value() : Real

<<Interface>>
TemperatureSensor

<<Interface>>
Sensor

at.ac.tuwien.obix.objects.iot.sensors.impl

at.ac.tuwien.obix.objec.iot.sensors.impl.knx

+TemperatureSensorImplKnx(connector : KNXConnector, observation : GroupAddress)
+createWatchDog() : void

TemperatureSensorImplKnx

SensorImpl

+TemperatureSensorImpl()
+writeObject(input : Obj) : void

TemperatureSensorImpl

at.ac.tuwien.auto.calimero

+confirmation(e : FrameEvent) : void

<<Interface>>
NetworkLinkListener

+indication(e : FrameEvent) : void
+linkClosed(e : CloseEvent) : void

<<Interface>>
LinkListener

*1

Figure 5.18: KNX protocol bundle internals [141]

is shifted to the protocol bundle provider and all the gateway services. Group communication
for example can be kept generic for all technologies. The device representation of an integrated
technology needs to follow the internal designs. The object refresh and noti�cation mechanism
are central mechanisms within the gateway. If the technology comes with a request/response
communication mechanism the object refresh can lead to a direct read request, otherwise if
the technology is event-based then an object noti�cation mechanism needs to be used. This is
important for gateway services, such as the watch service in order to provide near real-time
updates to subscribed clients. To illustrate the details of a protocol bundle and the internal
gateway mechanisms, the KNX protocol bundle is described in more details in the following
subsection.

KNX protocol bundle

The KNX protocol bundle reuses the open source KNX Java library Calimero2. The class di-
agram in Figure 5.18 shows the concept of how the KNX bus is monitored and the mapping
to the OBIX objects is performed. Since the bus communication of KNX relies on transient
event-based communication that might not provide a state based read access, it is required to
provide an according OBIX object that retains the state of the current bus communication.

Due to the RESTful nature of the IoT stack it is required to provide a resource that keeps the
current state of the KNX device. To reach this goal, group communication on the KNX bus is
monitored and the OBIX objects mapped to the group communication address are updated. To

2https://github.com/calimero-project

166

alt

CoAPServer

CoAP Client

ObixServer TemperatureSensorImplObjectBroker

1.1: readObj

1.3: CoAP RESP_CONTENT

1: CoAP GETRequest
Temperature

1.2: ret:encodedObj (Obix
XML)

1.1.3: readValue (Obix Real)

1.1.1: pullObj

1.1.2: ret:temperatureSensorImpl

1.1.3: ret:err (Object not found)

1.1.4: ret:value (ObixReal)

Figure 5.19: Get temperature

provide an example for this process, Figure 5.19 illustrates the concept for a KNX temperature
sensor. The KNX connector of the KNX protocol bundle provides a Java API to interface the
bus. Part of the connector is a watchdog mechanism that follows the observer design pattern
and allows an interested client to be noti�ed if an update on a KNX group address occurs. A
client is in this case another Java object that will get noti�ed. The base OBIX object contract
is de�ned through the Java interface TemperatureSensor, which provides a simple datapoint
value with the current temperature and directly inherits from the base OBIX IObj interface.
This representation is technology-agnostic and a generic implementation is provided through
TemperatureSensorImpl. This allows to instantiate the object within the gateway and to perform
OBIX related requests on the object representation. A technology-speci�c implementation, as
it is done for KNX, has to subclass the implementation and to provide the related KNX connec-
tor API calls, in the case a read or write on the object occurs. The TemperaturSensorImplKnx
provides this implementation and further relies on the watchdog mechanism to get noti�ed if
an update on the bus occurs.

The UML sequence diagram (cf. Figure 5.19) illustrates the read of a KNX temperature sen-
sor by issuing a CoAP get request. The request is �rst handled by the CoAP server which relies
on the message decoder/encoder to parse the message. The OBIX read or write message is then
passed to the ObixServer which retrieves the according OBIX object through the ObjectBrowser.

Further, another application of the observer design pattern is done within the gateway.
Other OBIX related services like the watch service of OBIX or the CoAP get with observe
option want to be noti�ed if an object state has changed. For that purpose, a client object can
subscribe to the changes on any subclass of OBIX Obj types. Based on this mechanism the
OBIX watch service and the history service are realized. They automatically keep track of the
changes and the history of objects. Also the CoAP server implementation maintains a session

167

ref

pullObj

ref

pullObj

CoAP Client

CoAPServer ObixServer ObjectBroker KNXListener

KNXWatchDog

TemperatureSensorImplKNX

KNXTemperature Sensor

ObixObservingManager

3.2: addObj(temperatireSensorImplKnx)

3.1: createWatchDog

3: ret:temperatireSensorImplKnx

1: new: TemperatureSensorImplKnx(GroupAddress)
2: CoAP GETRequest
Temperature Observe

2.2: readObj

4.1: notifyWatchDog
4: GroupValue_Write PDU

5.1.1: Obj value.set (Obix Real)
5.1: notifyWatchDog

5: GroupValue_Write PDU

4.1.1: Obj value.set (Obix Real)

2.4: CoAP RESP_CONTENT
2.3: ret:encodedObj (Obix XML)

5.1.1.1.2.1: ret:encodedObj
(Obix XML)

2.1.1: ret:
observingRelationship

5.1.1.1: objectChanged

5.1.1.1.2: readObj

5.1.1.1.1: notifyObservers

5.1.1.1.2.1.1: CoAP RESP_CONTENT

2.1: addObserver

Figure 5.20: Temperature observe

for the CoAP clients that observe resources. The following sequence diagram illustrates the
full interaction and the di�erent observe relationships between the IoT gateway and the KNX
bus and between the CoAP client and the IoT gateway.

Gateway con�guration and device discovery

The gateway can be con�gured dynamically regarding the active protocol bundles. In an OSGi
container the bundles can be added or removed at runtime. For discovery of devices, a static
XML con�guration can be provided, which contains the information about the bus-speci�c
communication addresses of the various technologies to the IoT gateway. Beside this static
information source, for some technologies an automatic discovery of devices can be realized
at run-time. The so-called devices.xml de�nes the information on how technology speci�c
address information is mapped to the OBIX based implementation. If the gateway is started in
a standalone mode without an OSGi container a device loader section in the XML �le allows
to con�gure which technologies should be used. Listing 5.13 gives an example of how the
con�guration can be done for the KNX bus system. Either a static mapping of the KNX group
addresses or an automated mapping based on the KNX project �le export can be used.

Listing 5.13: devices.xml example
<devices>

<!-- Configure which technologies should be loaded -->
<deviceloaders>

<device-loader>at.ac.tuwien.auto.iotsys.gateway.connectors.knx.
KNXDeviceLoaderImpl

</device-loader>
...

</deviceloaders>

<!-- static mapping between OBIX objects and KNX bus system -->
<knx>

<connector>
<name>KNX</name>

168

<enabled>false</enabled>
<router>

<ip>192.168.1.14</ip>
<port>3671</port>

</router>
<localIP>auto</localIP>

<device>
<type>at.ac.tuwien.auto.iotsys.gateway.obix.objects.iot.

actuators.impl.knx.TextDisplayActuatorImplKnx
</type>
<address>null, 0/0/3</address>
<href>textDisplay</href>
<historyEnabled>true</historyEnabled>
<historyCount>200</historyCount>

</device>
</connector>

</knx>

<!-- automated configuration based on ETS project file -->
<knx-ets>

<connector>
<name>KNX</name>
<enabled>false</enabled>
<knx-proj>knx-config/projects/KNX.knxproj</knx-proj>
<forceRefresh>false</forceRefresh>
<router>

<ip>192.168.1.100</ip>
<port>3671</port>

</router>
<localIP>auto</localIP>

</connector>
...

</knx-ets>
</devices>

Security and privacy

For ensuring security and privacy, the gateway rests upon state of the art encryption and au-
thentication methods. The Tomcat server container can be con�gured to protect the HTTP-
based tra�c. Therefore, the cryptography provider of the the underlying Java platform is
used [142]. To authenticate clients either user-name and password or a client certi�cate can be
taken. Various asymmetric algorithms such as RSA, DSA and ECC are available, where espe-
cially ECC is attractive due to the reduced key size, bandwidth and power requirements [143].
Once authenticated, the exchanged payload is encrypted using a transport-layer security ap-
proach. Here, various symmetric algorithms and cypher suites are available. The selection of
the cypher suite mainly depends on the interoperability requirements with respective clients.
A reasonable secure and e�cient algorithm for symmetric encryption is for example provided
by the AES algorithm. For SOAP-based access, the security proxy presented in Chapter 3 can
be used. It intercepts incoming calls and authorizes the request either using a local or remote
policy decision point. The gateway itself includes an XACML policy decision point.

169

5.10 Integration middleware case study

To evaluate the multi-protocol integration, a case study is conducted based on a real-world
testbed. Therefore, the Java-based gateway is operated using an OSGi framework on an em-
bedded PC platform. The case study, is performed with a standard Raspberry PI platform and
a custom board developed within the IoT6 research project3.

Evaluation use cases

In order to test the multi-protocol interaction, a set of representative interaction use cases
found within a typical building automation system is used (cf. Figure 5.21). To illustrate and
to show the feasibility of a common multi-protocol integration, heterogeneous technologies
have been taken to realize the de�ned use cases. The test environment involves state of the art
non-IPv6 based technologies combined with new IoT enabled sensors and actuators.

For testing the multi-protocol interaction as methodology, an experimental evaluation based
on a real testlab is done. The aim of these scenarios is to show the bene�ts of the taken inte-
gration approach based on the IoT gateway using the IoT stack. The use cases are described in
more details in the appendix in Table A.1 to Table A.4 based on the casual use case description
template of Cockburn [144].

Test environment

For the multi-protocol interaction tests, a lab environment is used. The lab consists of several
home and building automation testbeds including a room model for KNX, a BACnet HVAC-
model connected to a W-MBus smart meter. The room itself is automated using KNX including
a presence sensor, window contact sensor, a fan coil unit, a user control panel, light switch
actuators and a door access control. An RFID tag reader mounted next to the lab door provides
access to lab room with further system equipment. In the following, the speci�c testbeds are
shortly described.

KNX equipment: The KNX lab environment provides typical room automation devices, in-
cluding a presence sensor, room lights, push buttons, a room thermostat, an air conditioning
unit, a sun blind actuator, a window contact sensor and a room lighting model.

(a) KNX light and pres-
ence sensor

(b) KNX room control
unit

(c) KNX room HVAC (d) KNX window contact
sensor

Figure 5.22: Smart object hardware architecture and example platform

3www.iot6.eu

170

IoT integration middleware

HVAC

Life safety
IoT peer to peer

interaction

Inhabitant

KNX EnOcean BACnet RFID

Weather warning

«extends»

Commissioning of
control logic

User authentication

«uses»

Access control and
smart office

Energy efficient
HVAC

Light control

Weather data

W-MBus

Administrator

Monitor devices

Control devices

«uses»

«uses»

Devices

6LoWPAN

Figure 5.21: Use cases of the case study

171

BACnet environment: A BACnet-based HVAC model as illustrated in Figure 5.23 can be
used to test the HVAC use case scenario. The model consists of a boiler and chiller device to
heat or cool dedicated water cycles, which are pumped into heating or cooling registers. Fans
and valves control the air circulation over registers, in order to heat or cool a miniaturized
room environment.

Figure 5.23: BACnet HVAC model

The room model is further enhanced with a 6LoWPAN temperature sensor that measures
the current room temperature and an electricity smart meter. A wireless M-Bus meter measures
the current power load in real-time.

EnOceanwireless room automation: Several actuators and sensors based on EnOcean (cf.
Figure 5.24a) are available to test the room automation integration.

(a) EnOcean testbed (b) 6LoWPAN testbed

Figure 5.24: EnOcean and 6LoWPAN testbed

172

6LoWPAN testbed: A 6LoWPAN testbed (cf. Figure 5.24b) is deployed within the research
group o�ce area.

Gateway platform Figure 5.25 provides an overview of the taken platforms for the experi-
mental evaluation of the integration middleware. The use of Java as application platform comes
at the cost of having no access to hardware speci�c APIs. This is a problem, if a direct inter-
action with device drivers for bus connectivity is required. However, the use of virtual serial
interfaces provides a convenient way to avoid this problem and to use Java as gateway plat-
form. For the connection to the heterogeneous technologies and bus systems, various USB-
based connectors are available, which provide a virtual serial interface. By using the RXTX
library support for Java, this universal serial interface can be used to exchange telegrams with
the di�erent technologies (e.g., KNX, EnOcean, W-MBus, RFID).

Figure 5.25: IoT gateway platforms (custom smart board and Raspberry Pi)

Interoperability tests

This sections describe how the di�erent use cases are instantiated with the components created
in the proof of concept implementation. Integration tests are performed in order to validate
the interoperability amongst the heterogeneous technologies.

Light control: For the lighting control scenario, the group communication of the IoT stack is
used. The boolean datapoint representation of the EnOcean push button, the KNX light switch
actuator and the BACnet light switch actuator are assigned to the same IPv6 multicast address
(e.g., FF12::1). As soon as the EnOcean push button is pressed, the IoT gateway receives the
telegram and checks internally the group communication table. It transmits the new value by
sending a CoAP PUT on the multicast address. It receives the multicast request itself and checks
again the related OBIX objects that reside in the same group and updates the corresponding
values. This leads to the transmission of a KNX telegram on the according KNX group address.
Similarly, a write property request is performed for the related BACnet object.

HVAC control scenario: One of the more sophisticated interaction scenarios is the HVAC
control scenario. It uses the BACnet-based HVAC process model that operates on the vari-
ous devices to control the room temperature. The process model is enhanced by a 6LoWPAN

173

BACnet light
switch actuator

KNX light switch
actuator

IoT gatewayEnOcean
push button

4: Send BACnet telegram

3: Send KNX telegram

2: Transmit CoAP PUT

1: Button pressed frame

Figure 5.26: Light control scenario

temperature sensor that monitors the current room temperature. A logic object realizes a tem-
perature controller inside the gateway and operates on the OBIX object representation of the
various technologies. It observes the current room temperature, the current energy consump-
tion with the W-MBus smart meter and the state of an EnOcean window contact sensor. A
KNX room thermostat allows adjusting the desired setpoint with a relative value. It controls
the BACnet control devices if the current room temperature is not close to the desired setpoint.
If the window is opened the HVAC process is set to stand-by. This is visualized on the KNX
room thermostat. Further, if a certain threshold of the current power consumption is reached
the control value is reduced to a relative value.

174

al
t

al
t

al
t

[C
ur

re
nt

 p
ow

er
 e

xc
ee

ds
 a

 c
er

ta
in

 tr
es

ho
ld

]

[W
in

do
w

 o
pe

ne
d]

[if
 r

oo
m

 te
m

pe
ra

tu
re

 is
 a

bo
ve

 s
et

 p
oi

nt
]

K
N

X
 r

oo
m

 th
er

m
os

ta
t

S
m

ar
t

m
et

er
T

em
pe

ra
tu

re
 c

on
tr

ol
le

r
(t

w
o

po
in

t c
on

tr
ol

le
r)

Io
T

 g
at

ew
ay

E
nO

ce
an

 w
in

do
w

co
nt

ac
t

B
A

C
ne

t h
ea

tin
g

pu
m

p
B

A
C

ne
t c

oo
lin

g
pu

m
p

B
A

C
ne

t
va

lv
es

B
A

C
ne

t
fa

ns
B

A
C

ne
t b

oi
le

r
B

A
C

ne
t

ch
ill

er
6L

oW
P

A
N

 te
m

pe
ra

tu
re

 s
en

so
r

23
: v

is
ua

liz
e

cu
rr

en
t m

od
e

8:
 a

dj
us

t r
el

at
iv

e
se

tp
oi

nt

12
: v

is
ua

liz
e

cu
rr

en
t m

od
e

27
: r

es
to

re
 c

on
tr

ol
 v

al
ue

26
: r

ed
uc

e
co

nt
ro

l v
al

ue
 to

 5
0%

25
: c

ur
re

nt
 p

ow
er

 c
on

su
m

pt
io

n
24

: t
ra

ns
m

it
cu

rr
en

t p
ow

er

22
: r

es
to

re
 c

on
tr

ol
 v

al
ue

20
: s

et
 c

on
tr

ol
 v

al
ue

 to
 0

21
: w

in
do

w
 c

lo
se

d

19
: w

in
do

w
 o

pe
ne

d

5:
 O

bs
er

ve
 r

oo
m

 te
m

pe
ra

tu
re

4:
 O

bs
er

ve
 w

in
do

w
 c

on
ta

ct

2:
 O

bs
er

ve
 s

m
ar

t m
et

er

18
: B

A
C

ne
t w

rit
e

pr
op

er
ty

 if
 c

on
tr

ol
 v

al
ue

 is
 n

ot
 0

17
: B

A
C

ne
t w

rit
e

pr
op

er
ty

 if
 c

on
tr

ol
 v

al
ue

 is
 n

ot
 0

16
: B

A
C

ne
t w

rit
e

pr
op

er
ty

 w
ith

 in
ve

rt
ed

 c
on

tr
ol

 v
al

ue

15
: B

A
C

ne
t w

rit
e

pr
op

er
ty

 w
ith

 in
ve

rt
ed

 c
on

tr
ol

 v
al

ue

14
: B

A
C

ne
t w

rit
e

pr
op

er
ty

 w
ith

 c
on

tr
ol

 v
al

ue

10
: S

et
 c

on
tr

ol
 o

ut
pu

t t
o

-
10

0%

13
: B

A
C

ne
t w

rit
e

pr
op

er
ty

 w
ith

 c
on

tr
ol

 v
al

ue

11
: t

ra
ns

m
it

up
da

te
 o

n
co

nt
ro

l v
al

ue

9:
 S

et
 c

on
tr

ol
 o

ut
pu

t t
o

+
10

0%

7:
 u

pd
at

e
cu

rr
en

t r
oo

m
 te

m
pe

ra
tu

re

6:
 T

ra
ns

m
it

up
da

te
 o

n
ro

om
 te

m
pe

ra
tu

re

3:
 C

oA
P

 r
es

po
ns

e
w

ith
 c

ur
re

nt
 te

m
pe

ra
tu

re

1:
 C

oA
P

 G
E

T
 w

ith
 O

bs
er

ve
 o

pt
io

n
on

 te
m

pe
ra

tu
re

 d
at

a
po

in
t

Fi
gu

re
5.2

7:
H

VA
C

co
nt

ro
ls

ce
na

rio

175

Alarming scenario: For the alarming scenario, the weather data is required. In case of an
approaching storm, the user receives a warning. This is realized through a KNX text display
that provides a �ashing light together with a simple text message. The user needs to manually
acknowledge the warning. If a storm is approaching and a window is open, an acoustic alarm
is added that requires the immediate attention of a resident.

EnOcean window
contact sensor

Weather controller KNX text
display

IoT
gateway

Upcoming
weather

10: display alarm

9: update KNX text display with alarm message

8: notify about open window

7: window opened

6: display warning

5: update KNX text display with warning message

4: notify about wind speed

2: Observe window contact

1: Observe wind

3: Upcoming wind > 9 Beafort

Figure 5.28: Alarming scenario

Access control and roomenvironment settings scenario: In this scenario, an RFID reader
is combined with a KNX-controlled door opener. Based on the employee card or the passport
the access to the lab room is granted and further the environment is adjusted to the prede�ned
settings for the person.

KNX sun blind
actuator

KNX room
thermostat

IoT
gateway

KNX door
opener

RFID tag
reader

5: open windows

4: adjust room set point

3: activate door opener

2: check ID

1: transmit RFID tag code

Figure 5.29: Access control scenario

176

Life safety: By linking a 6LoWPAN accelerometer sensor to a KNX alarm signal and text dis-
play, a life safety use case can be demonstrated. Therefore, an IPv6 site-local multicast address
is assigned to the boolean datapoint representing the free fall and linked through the gateway
to an according alarming datapoint at a KNX text display. As soon a free fall is detected, the
alarm is raised and a rescue person has to manually acknowledge the alarm.

Rescue personInhabitant

KNX text
display

IoT
gateway

6LoWPAN border
router

6LoWPAN free fall sensor

8: manually acknowledge alarm

1: Falling

7: accustic notification

6: send KNX telegram (text message)

5: send KNX telegram (activate alarm)

4: Forward CoAP PUT (multicast)

3: Transmit CoAP PUT (multicast)

2: Detect free fall

Figure 5.30: Life safety

IoT peer-to-peer interaction: In this use case scenario, multiple 6LoWPAN devices are
linked together by grouping boolean datapoints representing a push button and LED data-
points. The gateway is used for engineering the group communication relationship. However,
for run-time interaction no gateway is required. A human user can switch o� the gateway
and tap the 6LoWPAN push button. The changed state is transmitted using an IPv6 multicast,
which is received by all nearby devices. The devices check the internal address assignment and
update the according datapoints.

6LoWPAN
LEDs

6LoWPAN
LEDs

Actor

IoT
gateway

6LoWPAN
LEDs

6LoWPAN push
button

6: Transmit CoAP PUT (multicast)

5: Transmit CoAP PUT (multicast)

9: check internal LEDs
assignment and

toggle update LEDs

8: check internal LEDs
assignment and

toggle update LEDs

7: check internal LEDs
assignment and

toggle update LEDs

4: Transmit CoAP PUT (multicast)

3: Tap

2: Shutdown

1: Power off

Figure 5.31: Peer-to-peer interaction

177

5.11 Scalability analysis

For the scalability analysis of the proposed integration middleware, a queuing network model
of the gateway allows to predict the resource demand and the performance behaviour. There-
fore, the di�erent request types that impose load on the gateway are analyzed, measured and
used to establish and quantify an analytic model that allows to estimate the scalability of the
gateway in certain load scenarios.

Figure 5.32: Gateway evaluation scenario

Notation

The following notation is used throughout this chapter:

• K : number of devices or service centers of the model

• R: number of classes of customers

• Mr: number of terminals of class r

• Zr: think time of class r

• Nr: class r population

178

• λr: arrival rate of class r

• Si,r: average service time of class r customers at device i

• Vi,r: average visit ratio of class r customers at device i

• Di,r: average service demand of class r customers at device i; Di,r = Vi,r ∗ Si,r

• R′i,r: average residence time of class r customers at device i (i.e., the total time spent by
class r customers at device i over all visits to the device); R′i,r = Vi,r ∗Ri,r

• ni,r: average number of class r customers at device i

• ni: average number of customers at device i

• Xi,r: class r throughput at device i

• X0,r: class r system throughput

• Rr: class r response time

Mixed queuing network model for gateway analysis

A mixed queuing network model is taken to analyze the scalability. This model approach and
according algorithms to solve this type of model follow the methodology presented in [41]. A
mixed model consists of set ofR customers, that is mixture of open and closed class customers.
C denotes the set of closed class customers and O denotes the set of open classes, where R =
C ∪O. In this way, the mixed model can be seen as a combination of independent sub-models
that share the same computing resources. For the speci�cation of the load intensity, the closed
and the open model need to be de�ned. The closed model is speci�ed through a vector −→C =
(N1, N2, ..., NC) that de�nes the customer population, the open model is represented through
a vector of arrival rates, −→O = (λ1, λ2, ..., λO). Therefore, the vector pair (−→C ,−→O) speci�es the
load intensity of the overall mixed model.

For the analysis of the gateway, a model needs to be de�ned. The gateway has to deal with
various request types that are represented through the di�erent customer types and queuing
network models. The gateway needs to deal with requests that represent the process data
exchange. Group communication used for creating distributed control logic scenarios falls
into this category. Also read and write requests on OBIX objects and datapoints for creating
application logic can be categorized into this type of tra�c. Furthermore, human users may
interact with the gateway in order to directly interact with objects or to create further control
logic applications.

A mixed queuing network model can be taken to represent these di�erent types. A closed
model re�ects the interactive user requests that are placed on the gateway. An open model is
used to represent related requests to the process data exchange. The resource of interest is the
CPU of the gateway.

179

User browser requests

Gateway

Waiting
Line

CPU

Departing
customers

Arriving
customers

A

B

R

...

Arriving
requests

Completed
requests

Input
parameters Results

Nr

Di,r

Zr

Mr

λr

Ri,r

ni,r

xi,r

Rr

Nr

Figure 5.33: QN model of gateway

Closed model The closed model is represented through the load intensity vector−→N and the
relevant class descriptor parameters of (Di,r,Mr, Zr). R is de�ned with the set of possible re-
quest types R = (WatchService,Read,Write,GroupManagement). The WatchService
customer class represents the recurring requests that occur through the OBIX watch service,
issued by a client to update the user interface. In case of the HTTP binding of the gateway,
this service can be polled for updates that happened since the last poll. The watch service
comes with two di�erent request types. The pollChanges operation provides a delta of changes
since the last poll and the pollRefresh operation provides a complete list of the objects that are
currently monitored by the watch. The computational e�ort strongly depends on the required
number of OBIX objects that need to be encoded. The positive e�ect of the pollChanges further
depends on the update ratio of the represented objects. If the update ratio is higher than the
polling interval, no improvement of pollChanges compared to pollRefresh can be observed.

Table 5.8 provides the service demands measured on di�erent hardware platforms oper-
ating the gateway. For the evaluation a x86 PC platform is compared to a custom developed
embedded smart board and the popular Raspberry PI platform. The smart board was developed
within the IoT6 research project. For acquiring the measurements the operational analysis
methodology presented in [108] is used.

Class Service Demand CPU (ms) Pi Smart Board x86 PC
WatchService 159.13 41 1
Write 95.45 32 2
Read 51.54 17.7 7
Group Management 57.71 31 2.5

Table 5.8: Service demands

For the analysis of the closed model, it is important to know the number of concurrent
transactions of these request classes at the same time. A single human user might impose one

180

transaction at the same time for all these request types. So if one user opens the Web-based
UI, the session is linked to a watch service, further the user might at the same time perform
read, write and group management activities. The think time is another important parameter
for interactive jobs within the closed model.

For solving a closed queuing network model, alternative ways for modelling and solving
the model can be used. A classic approach would be to use a Markov model with a state space
description. However, the problem with Markov models is that they are exposed to state space
explosion. The main problem is here the set of linear equations, since each state is described
through a set of linear equations. An alternative technique is the Mean Value Analysis (MVA)
that allows to iteratively derive device performance metrics (e.g., response time). It is based
on the fact that given the average number of customers at each device with (n− 1) customers
in the system, the device residence times when there are n customers in the network can be
derived. The MVA algorithm for a single class system is described by Algorithm 5.1 illustrates
the iterative process of calculating the performance metrics.

1 Initialize the average number of customers at each device i: ni = 0.
2 for each customer population n = 1, 2, ...N do
3 calculate the average residence time for each device i:
4 R′i(n) = Vi ∗ Si ∗ [1 + ni(n− 1)] = Di ∗ [1 + ni ∗ (n− 1)]
5 calculate the overall system response time:
6 R0(n) =

∑K
i=1[Vi ×Ri(n)] =

∑K
i=1R

′
i(n)

7 calculate the overall system throughput:
8 X0(n) =

n
R0(n)

9 calculate the throughput for each device i:
10 Xi(n) = Vi ×X0(n)
11 calculate the utilization for each device i:
12 Ui(n) = Si ×Xi(n)
13 calculate the average number of customers at each device i:
14 ni(n) = X0(n)×R′i(n)
15 end

Algorithm 5.1: The MVA algorithm
In order to make the algorithm usable for a closed multi-class model, several enhancements

need to be done. The following equations provide the base of the enhanced MVA algorithm for
multi-class models.

X0,r(
−→
N) =

Nr

Zr +
∑K

i=1R
′
i,r(
−→
N)

(5.1)

Equation 5.1 is used to calculate the overall system throughput for every request class. It
can be calculated by dividing the number of customers in this request class through the sum
of all residence times at the di�erent devices and the think time of the request class.

181

ni,r(
−→
N) = Xi,r(

−→
N) ∗Ri,r(

−→
N)

= X0,r(
−→
N) ∗ Vi,r ∗Ri,r(

−→
N)

= X0,r(
−→
N) ∗R′i,r(

−→
N)

(5.2)

The overall system throughput for a request class can be used as outlined in Equation 5.2
to calculate the average number of customers of a certain request class at a given device.

ni(
−→
N) =

R∑
r=1

ni,r(
−→
N)

=
R∑
r=1

X0,r(
−→
N) ∗R′i,r(

−→
N)

(5.3)

The average number of customers of a certain request class at a given device can be summed
up to get the overall number of average customers at a given device (cf. Equation 5.3). The key
equation of the MVA technique is based on the fact that the response time depends on the
customers’ service time and the time to complete the number of customers already queued
upon arrival. Equation 5.4 shows how to calculate the response based on nAi,r , which is the
average queue length at device i seen by a customer of request class r.

Ri,r(
−→
N) = Si,r[1 + nAi,r(

−→
N)]

Vi,r ∗Ri,r(
−→
N) = Vi,r ∗ Si,r[1 + nAi,r(

−→
N)]

R′i,r(
−→
N) = Di,r[1 + nAi,r(

−→
N)]

(5.4)

Using Equation 5.2 to Equation 5.4, the MVA algorithm for a single class of request types
can be extended for multiple types as given in Listing 5.4. The key idea of the algorithm is
similar to the idea of the single-class MVA algorithm. The expected response time is calculated
incrementally using the customer population starting from zero, (cf. line 4 to 7). Beginning
from zero the service demands are taken to calculate the residence time (cf. line 13), which
is used to calculate the request class throughput (cf. line 19). Using the throughput for the
customer class, the average number of customers at a certain device can be calculated (cf. line

182

22).
1 Input Parameters: Di,r and Nr

2 Initialization: For i = 1 to K to n(−→0) = 0
3 Iteration Loops:
4 for j1 = 0 to N1 do
5 for j2 = 0 to N2 do
6 ...
7 for jR = 0 to NR do
8 N = (j1, j2, ..., jR)

9 if
−→
N 6= −→0 then

10 for r = 1 to R do
11 if jr > 0 then
12 for i = 1 toK do

13 R′i,r(
−→
N) =

{
Di,r delay

Di,r[1 + ni(
−→
N −−→1r)] LI

14 end
15 end
16 else
17 R′i,r(

−→
N) = 0

18 end
19 X0,r(

−→
N) = jr

Zr+
∑K

i=1 ∗R′
i,r(
−→
N)

20 end
21 for i = 1 toK do
22 ni(

−→
N) =

∑R
r=1 ∗X0,r(

−→
N)R′i,r(

−→
N)

23 end
24 end
25 end
26 end
27 end

Algorithm 5.2: Exact MVA algorithm for multiple classes

Openmodel For the requests related to process data exchange, an open model is used, since
requests may originate within the local network by devices directly sending requests and also
local or remote applications that perform control logic scenarios. The open model is repre-
sented through R customer classes with a load intensity vector

−→
λ = (λ1, λ2, ..., λR) on K

devices, where λr indicates the arrival rate of class r customers.
Table 5.9 illustrates the service demands measured at the gateway for the open model.
Algorithm 5.3 provides the solution to solve models with multiple open classes. The uti-

lization of a device i by a customer class r can be calculated using the arrival rate and the
service demands. The sum of the device utilization per customer class leads to the overall de-

183

Class Service Demand CPU (ms) Pi Smart Board x86 PC
Datapoint Write 298 52 12
Datapoint Read 259 45 1
Object Write 334 51 13
Object Read 265 44 1
Group Communication Write 72 41 16
Bus Event 3 6 1

Table 5.9: Service demands open model

vice utilization (cf. line 3-6). The average residence and response time are calculated using the
service demands of a certain customer class on a device and the overall device utilization (cf.
line 7-9). The utilization can also be used to calculate the average number of customers of a
certain customer class at a device i (cf. line 10-12).

1 Input Parameters: Di,r and λr
2 Steps:
3 Calculate the utilization per device and per customer class for the given load vector:
4 Ui,r(

−→
λ) = λrVi,rSi,r = λrDi,r

5 Determine the overall device utilization:
6 Ui(

−→
λ) =

∑R
r=1 Ui,r(

−→
λ)

7 Based on the overall device utilization derive the average residence time per device and
customer class:

8 R′i,r(
−→
λ) =

{
Di,r delay
Di,r

1−Ui(
−→
λ)

LI

9 Rr(
−→
λ) =

∑K
i=1R

′
i,r(
−→
λ)

10 Calculate the average customer population per device and per customer class and for
the overall device population:

11 ni,r(
−→
λ) =

Ui,r(
−→
λ)

1−Ui(
−→
λ)

12 ni(
−→
λ) =

∑R
r=1 ni,r(

−→
λ)

Algorithm 5.3: Algorithm for solving a QN with multiple open classes

Mixed Model To solve the combined model of the multi-class open and multi-class closed
model, the principle approach is to solve the independent models. In order to represent the
in�uence of the di�erent models on each other, �rst the utilization of the resources due to the
open class model is calculated and depending on the utilization, the service demand of the
closed model is elongated. The closed model with the modi�ed service demand is then solved
and the average customer queue length of the closed model customers is used for calculating

184

the response times of the open model.
1 Input Parameters: Di,r , Nr and λr
2 Steps:
3 Solve the open submodel and obtain the device utilization per device and request class:
4 Ui,r(

−→
O) = λrDi,r∀r ∈ {1, 2, ..., O}

5 Determine the overall device utilization in the open model:
6 Ui,open =

∑O
r=1 Ui,r

7 Elongate the service demands of the closed classes:
8 De

i,r =
Di,r

1−Ui,open
,∀r ∈ {1, 2, ..., C}

9 Using the MVA algorithm, compute performance results for the closed model:
10 R′i,r(

−→
O) =

∑C
r=1 ni,r(

−→
C)

11 Determine the average customer population per device in the closed model:
12 ni,closed(

−→
C) =

∑C
r=1 ni,r(

−→
C).

13 Compute the average residence time for the open submodel:

14 R′i,r(
−→
O) =

Di,r[1+ni,closed(
−→
C)]

1−Ui,open(
−→
O)

15 Determine the average customer population per device in the open model:
16 ni,open(

−→
O) = λrR

′
i,r(
−→
O)

Algorithm 5.4: Algorithm for mixed multiclass models
The algorithm to solve the mixed class QN model is implemented in Java and calculates the

expected gateway response time for certain load scenarios.

Evaluation results

For the evaluation, di�erent scenarios are taken into the account. The main input parameters
are the arrival rate of the open class request, the think time and the number of closed class
customers. To keep the complexity of the model reasonable the same think time is used for
all closed class requests. For the open class requests, the arrival rate is grouped into an ar-
rival rate for process related communication that consists of group communication and bus
communication, and further into a group that represents ad-hoc communication generated
through external applications which operate through client/server based communication with
datapoints and objects. The process communication takes place at run-time without the in-
volvement of any system engineer. With the IoT stack, this might be traditional non-IP bus
communication, as well as IP-based communication using CoAP. The following results show
the average response time to be expected for a certain arrival rate and number of clients for
the Raspberry Pi platform.

185

Scenario 1 - High ad-hoc communication and high user interaction: In this scenario,
an equal distribution of process communication related requests and ad-hoc communication re-
quests is considered. A think time of one second represents a high frequent interaction through
the user interface and a fast update cycle of the user interface. As it can be seen in Figure 5.34
and Figure 5.35, the average response time in this load scenario is acceptable for up to 2 con-
current users if the overall request arrival rate for the open model requests is around 2 requests
per second. The main bottleneck are the expensive ad-hoc communication requests based on
CoAP. The impact on the process communication is severe after more than two concurrent
users are accessing the gateway. Figure 5.34 illustrates the average response time for the closed
class request types. Figure 5.35 shows the according results for the open class request types.

Figure 5.34: Scenario 1 - Closed class expected response time

186

Figure 5.35: Scenario 1 - Open class expected response time

Scenario 2 - High ad-hoc communication and medium user interaction Within this
scenario, the load imposed through the human interaction is lowered through doubling the user

187

think time to 2 seconds. The e�ect on the experienced average response time is slightly im-
proved. Although, a signi�cant performance improvement cannot be achieved (cf. Section B.1).

Scenario 3 - High ad-hoc communication and low user interaction In this scenario,
the user interaction is limited through a think time of 3 seconds, which imposes a signi�cant
delay for refreshing user interface objects and mediocre user activity. Again, an improvement
is measurable but no signi�cant improvement can be achieved (cf. Section B.2).

Scenario 4 - High process communication and medium user interaction In this sce-
nario, the process communication represents 80% of the incoming requests of the open cus-
tomer class. By avoiding too much ad-hoc communication a signi�cant improvement can be
achieved (cf. Section B.3).

Scenario 5 - Highest process communication and medium user interaction The best
performance can be achieved if ad-hoc communication can be reduced around 10%, leading to
a signi�cant performance improvement (cf. Section B.4).

Scenario comparison As the previous scenario shows, the achieved gateway performance
strongly depends on the pattern and composition of the tra�c and the user interaction. Taking
the Raspberry Pi platform, the worst case performance can be observed if the process commu-
nication is disturbed by high load imposed through ad-hoc communication requests and high
user interaction. Reducing the ad-hoc communication to 20% and decreasing the user delay
provides a signi�cant performance improvement, but the best performance can be achieved if
the ad-hoc communication is limited to 10% and the user interaction is kept at a low interaction
rate.

For the comparison of di�erent tra�c scenarios, the average response time of the process
communication based on CoAP/XML is used.

Figure 5.36: Scenario comparison

Platform comparison The previous results only focused on the Raspberry Pi platform. The
results below show the di�erence between the other hardware platforms that have been con-
sidered. A custom developed smart board within the IoT6 research project shows a much better
performance compared to the Raspberry Pi platform

188

Figure 5.37: Scenario comparison - smart board

However, the performance of an x86 based PC platform is still a magnitude better. The cost
di�erence for the various platforms is also signi�cant.

Figure 5.38: Scenario comparison - X86 platform

Figure 5.39: Scenario comparison - X86 platform

5.12 Conclusion

This chapter covered an IoT integration middleware, which can integrate state of the art home
and building automation technologies, object identi�cation technologies and Internet informa-
tion sources into the IoT SoA. A gateway concept design is introduced, mapping the various

189

technologies to the IoT communication stack presented in Chapter 4. The component-oriented
design of the gateway makes it easy to plug new technology connectors into the gateway and
to add additional services based on the generic abstraction layer. The gateway is usable also
in an IoT-only deployment, since it hosts services that demand more computational resources
such as a database for persisting historic values, watch and alarming services, a group com-
munication service, security and authorization components and a user interface to enable the
engineering of constrained devices. The gateway concept is analyzed regarding its scalability
through an empirical benchmark and a mixed-class analytic queuing network model. The re-
sults show that user-based interaction or external unicast-based communication degrades the
performance and should be avoided in favor of process communication resting upon multicast-
based group communication.

190

CHAPTER 6
Conclusion and further outlook

This chapters summarizes the main contributions of the thesis and provides an outlook on open
issues and challenges within the context of the Internet of Things.

6.1 Contributions

This thesis presented an integration middleware consisting of an overall ICT infrastructure for
the IoT, a communication stack for future IoT devices and an integration concept for state of
the art technologies out of various domains relevant for the IoT. Instead of focusing on a very
detailed problem, the holistic system architecture is taken into consideration in order to address
the major problems of interoperability and scalability for IoT communication infrastructures.

• IoT SoA: Di�erent requirements on an ICT infrastructure for the IoT are identi�ed in
the context of the Smart Grid application use case and architectural design decisions are
evaluated [47,48,120]. A SoA based on Web services is identi�ed as promising solution to
reduce the integration e�ort within the IoT. Several application use cases can be realized
on top of a such a SoA. The need for a secure and privacy aware communication infras-
tructure is addressed through a generic access control concept for IoT data sources [49].

• IoT communication stack: A holistic communication stack for the IoT is presented
that demonstrates how interoperability can be achieved through providing a standard-
ized information model and application layer services built around existing Internet and
Web standards following the RESTful design paradigm. A key contribution is the concept
of an e�cient peer-to-peer interaction style between IoT devices through IPv6 multicas-
ting [50, 51]. Latency and reliability can be signi�cantly increased through this concept
and the control logic can be stored in a decentralized way avoiding central controllers
which might impose a single point of failure. A proof of concept implementation run-
ning on the open source operating system Contiki shows the feasibility of realizing the
proposed communication stack on constrained devices. Further, the performance and

191

scalability of the communication stack, especially the group communication feature in
constrained WSANs is evaluated using a discrete-event simulation environment.

• Web-based commissioning: A concept for a Web-based commissioning tool [53] shows
how the communication stack can be used to provide a generic user interface for any IoT
domain and how a scripting-free control logic editor and commissioning tool can support
the linking of di�erent technologies.

• Integration middleware: The integration concept for existing home and building au-
tomation, Smart Grid and RFID technologies beside other information sources enables
a smooth path towards a large-scale deployment of IoT devices in di�erent application
domains [4, 52, 139]. With this concept, interoperability can be achieved amongst exist-
ing appliances and heterogeneous standards [132]. The integration middleware is im-
plemented using an OSGi framework on the Java platform. Di�erent technologies of a
real-world test lab are used to execute case studies on several use cases that require the
interaction of heterogeneous technologies in the context of an IoT. Furthermore, an ana-
lytic mixed-class queuing network model is used to analyze the scalability of the gateway
component taking into account di�erent hardware platforms.

• IoTSyS: The proof of concept implementations performed within this thesis have been
released as open source project called “IoTSyS”1 including the communication stack for
constrained devices and the Java-based middleware. The project has been demonstrated
within academic conferences [145, 146] as well as at industry fairs and IoT-related com-
petitions2.

• Standardization: The concept and results gathered within the thesis have been partly
standardized as new protocol bindings for the OBIX standard [121, 122].

6.2 Discussion

The proposed IoT SoA can be applied to various application use cases within the Smart Grid,
for example to provide access to home and building automation appliances to realize demand
response interaction with third-party providers, or to o�er energy feedback and being a base
for energy consulting. The architecture identi�es central components that are required to op-
erate this infrastructure, but the question which stakeholder should ful�l this role and host
the required components for mediating the various service consumers and service clients is
still to be answered. A trustworthy entity needs to be found, especially due to the important
role of hosting data access policies and protecting the privacy of consumers. The proposed
access control mechanism is analyzed regarding its scalability using an analytic model and ex-
perimental evaluation based on proof of concept implementations. Here, it can be seen that a
cloud-based deployment of a central policy decision point signi�cantly improves the scalability

1www.iotsys.org
2http://www.ipso-alliance.org/challenge/ipso-challenge-2014-interviews/iotsys

192

of the overall systems. Nevertheless, a hierarchical system design would be bene�cial, where
certain policy sets are distributed to local components residing next to the data sources.

The de�ned policy structure is capable to specify access control policies for arbitrary SOAP-
based Web services in a generic way. This general applicability is on the one side nice, since
any data source can be protected, but on the other side no further domain speci�c semantics
and information can be used for specifying the policy. For the end-user, it is hard to under-
stand the technical terminology which is still present in formulating the policies. Although
it is shown how for example OBIX-services can be controlled with the mechanism, it is still
an integration e�ort to support other application layer protocols. Further, the access control
mechanism heavily relies on the WS-* stack features, where a holistic concept also integrating
RESTful Web services is required.

The presented IoT communication stack and system design are capable of replacing state
of the art BAS with IoT devices. The requirements on the stack such as interoperability, scal-
ability, versatile interaction styles, energy e�ciency, security and ease of use can be ful�lled.
The essential ingredients for this stack are wireless technologies. IEEE 802.15.4 together with
6LoWPAN may act as an enabler for a wireless Internet of Things. IPv6 o�ers global end-to-end
connectivity combined with powerful multicasting capabilities that can be exploited by the ap-
plication layer for peer-to-peer interaction styles. For message exchange and the application
layer, CoAP together with OBIX provide an interoperable communication stack supporting
the required application layer services. The presented stack has a strong focus on home and
building automation scenarios, other domains such as wearable devices, consumer electron-
ics, industrial components or devices from the tra�c management domain are a bit neglected.
Here, it is questionable if the OBIX meta-model is the right choice. Finally, although it is feasi-
ble to deploy such a Web service based and interoperable stack on constrained devices, it can be
seen that the resource demand is signi�cant and only due to heavy optimizations it is possible
to make the complete �rmware �tting on resource limited nodes. For the proof of concept and
simulations, several features required for discovery and security have been omitted in order
to �t the application program. It is essential not only to focus on the functional aspects of the
application program, but also on the non-functional features required in a real-world deploy-
ment. To �nd the right balance between the services operated on a constrained device will be
a challenging task.

The Web-based control logic engineering tool contributes a signi�cant step towards an end-
user ready IoT environment. The realized application use case scenarios show the feasibility
of realizing complex control scenarios. Nevertheless, for operating a complete building further
enhancement of the tool would be required. For example, it will be necessary to structure
the control logic to multiple domains. Furthermore, currently there are no means to provide
additional communication-related properties to datapoints whether they are only intended to
transmit or receive signals. Here, there is also a lack for an algorithm that identi�es control
logic cycles that lead to an in�nite control loop and make the complete system unstable.

The group communication mechanism can show the direction how a peer-to-peer inter-
action scheme for the IoT could look like in future. The datapoint centric communication
approach makes signi�cant improvements regarding message size e�ciency or the amount of
exchanged messages and also regarding memory requirements on constrained nodes. How-

193

ever, through the evaluation of di�erent communication mechanisms the lack of an e�cient
IPv6 multicast mechanism within 6LoWPAN networks has been identi�ed. The simple im-
plementation of a �ooding based mechanism is used for demonstration of the feasibility of
the overall peer-to-peer interaction model but more research on e�cient multicasting for this
kind of interaction pattern needs to be found in order to increase the energy e�ciency. The
performed simulations make the performance improvement and the impact on energy con-
sumption apparent.

The IoT integration middleware can integrate state of the art home and building automa-
tion technologies, object identi�cation technologies and Internet information sources into the
IoT SoA. The gateway concept design allows to easily plug new technology connectors into the
gateway and to add additional services based on the generic abstraction layer. The gateway
concept is analyzed regarding its scalability through an empirical benchmark and a mixed-
class analytic queuing network model. The results show that user-based interaction or exter-
nal unicast-based communication degrades the performance and should be avoided in favor of
process communication resting upon multicast-based group communication. The proposed
concept uses transient IPv6 multicast addresses in an innovative way in order to realize a
smooth integration of native IoT devices and legacy devices. Nevertheless, the current con-
cept lacks to incorporate a multi-gateway setup which would be required in the context of a
large deployment within commercial buildings.

6.3 Future challenges

(Semantic) interoperability: This thesis presented a concept that achieves interoperability
by using a standardized application layer information model with complementing application
services. Therefore, the existing OBIX standard is used and brought down to the most con-
strained devices within WSANs further enhanced by a peer to peer interaction mechanism. In
principle, this could be achieved with several other competing standards. However, no domi-
nant technology has emerged, yet. Also it has been identi�ed that the RESTful design paradigm
suits well for the IoT and the integration of existing home and building automation systems.
Furthermore, the achieved interoperability resides in the syntactical layer by specifying stan-
dardized exchange formats and also in the semantic layer through the use of annotated OBIX
contracts to express the type of capabilities of a device. In this way, a semantic Web of Things
needs to be established [147]. However, the current semantic interoperability is only accessible
for human beings. As a next step, this semantics needs to be available in a machine-processable
format. Expressing the information in a formalized way, opens the application to automatic
control logic engineering, eases data mining and knowledge extraction in order to create, for
example, behavioral pro�les.

E�cient and reliable group communicationWSANs: The results within this thesis show
promising results for using group communication mechanisms within WSANs. It can be seen
that there is still a huge standardization e�ort for optimal routing in WSANs. The support for
multicasting is still in its infancy for networks based on 6LoWPAN. Also, the use of multicasting
for communication between sensors and actuators is not well established [51, 87, 148]. The

194

performance results show that there is a need for new multicasting routing protocols that take
into account the commissioning information which devices take part in the communication
in order to optimize the communication e�ort. Further, the CoAP communication mechanism
only provides best e�ort message delivery. It is still an open topic to address reliable group
communication mechanisms with adjustable layers of quality-of-service depending on given
constraints regarding the on energy e�ciency.

Privacy-preservation and security: The proposed generic authorization mechanisms re-
lies on SOAP-based message exchange and can be used to secure the inter-enterprise commu-
nication and the data exchange with third-parties. Here, also e�ective mechanisms have to be
found that enable a �ne-grained access control within constrained RESTful environments. This
open research scope is also identi�ed within [149]. There, the requirements for a policy lan-
guage are stated, capable to de�ne policies for di�erent IoT domains and powerful to express
di�erent types of data assets and context of the data access. Within this thesis, a contribution
towards such an IoT privacy language and privacy protection mechanism has been performed
but there are still open research topics and challenges. One of these challenges are how to
specify a language capable of expressing the di�erent types of context in the environment,
also to express the types of di�erent data owners and a privacy language support for di�erent
types of physical entities. Further, the required openness to interconnect various systems in
an IoT communication infrastructure leads to security problems [149], which have been partly
addressed within this thesis, but leaving still signi�cant space for future research.

Scalability: The used performance models provide an estimation of the scalability of an IoT
gateway and communication stack but leave ample room for incorporating and modeling more
system details. It is desirable to have further queuing network models that take beside the gate-
way also the connected WSANs into account and the control networks of integrated state of
the art technologies, in order to make more accurate predictions on the system scalability. Such
models could be especially useful for analyzing the impact of di�erent routing mechanisms and
di�erent deployment scenarios such as a multi-gateway scenario. In general, there are no limits
on the complexity of specifying such models, although a reasonable balance between simplic-
ity and accuracy of the models have to be found in order to keep the modeling and solving
e�ort reasonable. Nevertheless, the presented analysis in this thesis provides a methodology
how to assess the scalability of an IoT system deployment and a �rst estimation of the system
scalability bounds. The used performance models provide an estimation of the scalability of an
IoT gateway and communication stack but leave place for incorporating and modeling more
system details. It is desirable to have further queuing network models that take beside the
gateway also the connected WSANs into account and the control networks of integrated state
of the art technologies, in order to make more accurate predictions on the system scalability.
Such models could be especially useful for analyzing the impact of di�erent routing mecha-
nisms and di�erent deployment scenarios such as a multi-gateway scenario. In principle, there
are no limits on the complexity of specifying such models, although a reasonable balance be-
tween simplicity and accuracy of the models has to be found in order to keep the modeling and
solving e�orts reasonable. Nevertheless, the presented analysis in this thesis provides a sound

195

methodology how to assess the scalability of an IoT system deployment and a �rst estimation
of the system scalability bounds.

196

Glossary

6LoWPAN IPv6 over Low Power Wireless Personal Area Networks

AES Advanced Encryption Standard

AH Authentication Header

ALE Application Level Event

API Application Programming Interface

BluetoothLE Bluetooth Low Energy

BACnet Data Communication Protocol for Building Automation and Control Networks

BACnet/WS BACnet Web services

BAS Building Automation System

CAP Compact Application Protocol

CIM Common Information Model

CoAP Constrained Application Protocol

CoRE Constrained RESTful Environments

COM Component Object Model

CPU Central Processing Unit

COSEM Companion Speci�cation for Energy Metering

CSS Cascading Style Sheets

DAO Destination Advertisement Object

DCOM Distributed Component Object Model

DLMS Device Language Speci�cation

197

DM Device Management

DNS Domain Name System

DNS-SD DNS Service Discovery

DODAG Destination Oriented Directed Acyclic Graph

DOM Document Object Model

DPWS Device Pro�le for Web Services

DTLS Datagram Transport Layer Security

ebXML Electronic Business using XML

EEP EnOcean Equipment Pro�le

EPAL Enterprise Privacy Authorization Language

EPC Electronic Product Code

EPCIS EPC Information System

ERP EnOcean Radio Protocol

ESP Encapsulating Security Payload

ETSI M2M ETSI M2M

EXI E�cient XML Interchange

FnC Filter and Collection

FTP File Transfer Protocol

GAE Google App Engine

GRAI Global Returnable Asset Identi�er

GTIN Global Trade Item Number

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

HTTPS HTTP Secure

HVAC Heating, Ventilation and Air Conditioning

IaaS Infrastructure as a Service

ICT Information- and Communication-Technologies

198

IDP Identity Provider

IoT Internet of Things

IP Internet Protocol

IPSec IPSecurity

IPSO Internet Protocol for Smart Objects

IPv4 Internet Protocol Version 4

IPv6 Internet Protocol Version 6

JSON Javascript Object Notation

LDAP Lightweight Directory Access Protocol

LWM2M Lightweight M2M

mDNS Multicast DNS

MPL Multicast Protocol for Low power and Lossy Networks

MQTT Message Queueing Telemetry Transport

MQTT-S MQTT for Sensor Networks

MVA Mean Value Analysis

MVC Model-View-Controller

M2M Machine to Machine

NFC Near Field Communication

OASIS Organization for the Advancement of Structured Information Standards

OAuth OAuth 2.0 Authorization Framework

OBIS Object Identi�cation System

OBIX Open Building Information eXchange

OMA Open Mobile Alliance

OPC OLE for process control

OPC UA OPC Uni�ed Architecture

OSGi Open Service Gateway Initiative

PaaS Platform as a Service

199

PAP Policy Administration Point

PDP Policy Decision Point

PEP Policy Enforcement Point

PID Proportional-Integral-Derivative

PIP Policy Information Point

PKI Public Key Infrastructure

QN Queueing Network

QoS Quality of Service

RDC Radio Duty Cycling

RMI Remote Method Invocation

RPC Remote Procedure Call

REST Representational State Transfer

RFID Radio-Frequency Identi�cation

RTP Real Time Protocol

RPL Routing Protocol for Low-Power and Lossy Networks

SaaS Software as a Service

SAML Security Assertion Markup Language

SC Service Consumer

SenML Sensor Markup Language

SGTIN Serialized Global Trade Item Number

SIP Session Initiation Protocol

SMRF Stateless Multicast Forwarding with RPL

SNMP Simple Network Management Protocol

SoA Service-oriented Architecture

SOAP Simple Object Access Protocol

SP Service Provider

SSO Single-Sign On

200

STIS Smart Things Information System

TCP Transmission Control Protocol

TLS Transport Layer Security

UDDI Universal Description, Discovery and Integration

UDP User Datagram Protocol

UPnP Universal Plug and Play

URI Uniform Resource Identi�er

URL Uniform Resource Locator

WoT Web of Things

WSAN Wireless Sensor and Actuator Network

WADL Web Application Description Language

WSDL Web Service Description Language

WSN Wireless Sensor Network

XACML Extensible Access Control Markup Language

XML eXtensible Markup Language

XMPP Extensible Messaging and Presence Protocol

201

APPENDIX A
Use case description for integration

middleware case study

This chapter contains a detailed description used for the integration middleware case study
based on the casual use case description de�ned by Cockburn [144].

Title: User authentication
Primary actor: Administrator
Scope: System
Level: User goal

Story:

The administrator opens with the Web browser the HTML5 user interface. A
username and a passphrase are provided. If the username and passphrase are
correct, the user is authenticated as administrator. The user can end the session
through a logout.

Table A.1: User authentication

Title: Commissioning of control logic
Primary actor: Administrator
Scope: System
Level: User goal

Story:

The administrator opens the object browser and drags device objects to the
canvas. Further, logic blocks are added to the canvas. By graphically wiring
datapoints of device objects and logic blocks together the control logic is cre-
ated.

Table A.2: Commissioning of control logic

203

Title: Monitor devices
Primary actor: Administrator
Scope: System
Level: User goal

Story:

The authenticated administrator can browse the available device objects
and drag them into the canvas area of the user interface.
Datapoint values of sensors and actuators, are updated in real-time.
Historic values are graphically illustrated.

Table A.3: Monitor devices

Title: Control devices
Primary actor: Administrator
Scope: System
Level: User goal

Story:

The authenticated administrator can browse the available device objects and
drag them into the canvas area of the user interface. For datapoint values of
sensors and actuators input widgets like check-boxes, text-boxes are displayed.
The administrator can modify values and the involved devices change their
state.

Table A.4: Monitor devices

Title: Light control
Primary actor: Light controls
Scope: System
Level: User goal

Story:

The most simple interaction scenario is the use of heterogeneous light switch
actuators combined with push buttons of other technologies. For this scenario,
KNX switching actuators are combined with an EnOcean push button and a
6LoWPAN sensor also acting as push button.

Table A.5: Light control

Title: Life safety
Primary actor: Free fall sensor, Alarm text display
Scope: System
Level: User goal

Story:

The life safety use case includes an accelerometer sensor that is linked to an
alarm signal and a text display. If an accident of an inhabitant is detected,
an alarm is raised and a text message is displayed. A human person needs to
manually acknowledge the alarm.

Table A.6: Life safety

204

Title: HVAC
Primary actor: Inhabitant, Devices
Scope: System
Level: User goal

Story:

In this scenario, an existing HVAC control process based on BACnet is en-
hanced with KNX room automation devices and 6LoWPAN temperatures sen-
sors. The BACnet controller is responsible for controlling a water boiler to cre-
ate heating water and a chiller, which is used for the cooling process. The hot
and warm water are circulated using pumps that are also controlled through
BACnet. Heating and cooling registers are combined with fans and valves
that allow the air �ow and �nally cool or heat a room to a desired setpoint.
Through the IoT architecture, the closed BACnet HVAC process can be en-
hanced with KNX devices. A KNX room thermostat allows adjusting the de-
sired room setpoint and can further be used to visualize the current mode (com-
fort or standby) of the HVAC process. An EnOcean window contact sensor can
be used to activate the standby mode if a window is opened. Further, a smart
meter can measure the current energy consumption in real-time and depend-
ing on a given policy the HVAC process can be adjusted to reduce the energy
consumption. This can be done either in an indirect way by overwriting the
room setpoint, or directly by adjusting the mode of the chiller, boiler, fans and
pumps.

Table A.7: HVAC

Title: Energy e�cient HVAC
Primary actor: Inhabitant, Devices
Scope: System
Level: User goal

Story:
This use case extends the HVAC use case through an energy safe mode that can
be activated at the temperature controller. If the measured power consumption
exceeds a certain threshold the safe energy mode is activated.

Table A.8: Energy e�cient HVAC

Title: Access control and smart o�ce
Primary actor: Light controls
Scope: System
Level: User goal

Story:

In this scenario, an RFID reader is combined with a KNX switching actua-
tor that controls an automated door opener. An employee identity card or a
passport can be used for identi�cation and upon a successful identi�cation the
door is opened. Further, personalized settings of the card holder can be used
to con�gure the room temperature setpoint and lighting scenario.

Table A.9: Access control and smart o�ce

205

Title: Weather warning
Primary actor: Device, Weather data
Scope: System
Level: User goal

Story:

For the alarming scenario, the weather data can be used to inform the resi-
dents of an upcoming storm. If a storm is approaching and the windows are
closed a simple visual noti�cation and warning using a KNX text display can
be done. If the EnOcean window contact sensor indicates an opened window
at that time an acoustic signal is also provided to warn the inhabitants about
the approaching storm.

Table A.10: Weather warning

Title: IoT peer to peer interaction
Primary actor: Inhabitant, 6LoWPAN devices
Scope: System
Level: User goal

Story:

The IoT peer to peer interaction demonstrates the group communication capa-
bilities. A communication relationship between a 6LoWPAN push button and
a 6LoWPAN LED actuator is established and the IoT gateway is switched o�.
The interaction between the devices keeps working.

Table A.11: IoT peer to peer interaction

206

APPENDIX B
Gateway scalability analysis results

This chapter contains all results related to the scalability analysis of the integration middleware
gateway.

207

B.1 Scenario 2

Figure B.1: Scenario 2 - Closed class expected response time

208

Figure B.2: Scenario 2 - Open class expected response time

209

B.2 Scenario 3

Figure B.3: Scenario 3 - Closed class expected response time

210

Figure B.4: Scenario 3 - Open class expected response time

211

B.3 Scenario 4

Figure B.5: Scenario 4 - Closed class expected response time

212

Figure B.6: Scenario 4 - Open class expected response time

213

B.4 Scenario 5

Figure B.7: Scenario 5 - Closed class expected response time

214

Figure B.8: Scenario 5 - Open class expected response time

215

Bibliography

[1] D. Brock, “The Electronic Product Code (EPC),” A Naming Scheme for Physical Objects,
2001.

[2] Z. Shelby and C. Bormann, 6LoWPAN: The wireless embedded Internet. John Wiley &
Sons, 2011, vol. 43.

[3] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A survey,” Computer Net-
works, vol. 54, no. 15, pp. 2787–2805, 2010.

[4] M. Jung, C. Reinisch, and W. Kastner, “Integrating building automation systems and IPv6
in the Internet of Things,” in International Conference on Innovative Mobile and Internet
Services in Ubiquitous Computing. IEEE, 2012, pp. 683–688.

[5] A. Dunkels, “Full TCP/IP for 8-bit architectures,” in Proceedings of the International Con-
ference on Mobile systems, Applications and Services. ACM, 2003, pp. 85–98.

[6] Internet Engineering Task Force (IETF), “IPv6 over Low-Power Wireless Personal Area
Networks (6LoWPANs): Overview, Assumptions, Problem Statement, and Goals – RFC
4919,” Aug. 2007.

[7] D. Guinard, “A Web of Things Application Architecture – Integrating the Real-World
into the Web,” Ph.D. thesis, ETH Zurich, 2011.

[8] R. Fielding, “Representational state transfer,” Architectural Styles and the Design of
Network-based Software Architecture, pp. 76–85, 2000.

[9] Internet Engineering Task Force (IETF), “The Constrained Application Protocol (CoAP)
– RFC 7252,” 2014.

[10] Z. Shelby, “Embedded Web Services,” Wireless Communications, IEEE, vol. 17, no. 6, pp.
52–57, 2010.

[11] A. Castellani, M. Gheda, N. Bui, M. Rossi, and M. Zorzi, “Web Services for the Inter-
net of Things through CoAP and EXI,” in Proceedings of the International Conference on
Communications Workshops. IEEE, 2011, pp. 1–6.

217

[12] D. Emmerich and E. Bloom, “Commercial Building Automation Systems - Security and
Access, HVAC Controls, Fire and Life Safety, Building Management Systems and Light-
ing Controls: Global Market Analysis and Forecasts,” 2012.

[13] C. Petersdor�, T. Boermans, and J. Harnisch, “Mitigation of CO2 emissions from the
EU-15 building stock. Beyond the EU directive on the energy performance of buildings,”
Environmental Science and Pollution Research, vol. 13, no. 5, pp. 350–358, 2006.

[14] S. Darby et al., “The e�ectiveness of feedback on energy consumption,” A Review for
DEFRA of the Literature on Metering, Billing and direct Displays, vol. 486, pp. 1–24, 2006.

[15] NIST, “Framework and Roadmap for Smart Grid Interoperability Standards, Release 2.0,”
NIST special publication, vol. 1108, 2012.

[16] W. Kastner, M. Jung, and L. Krammer, “Future Trends in Smart Homes and Buildings,” in
Industrial Communication Technology Handbook, Second Edition, R. Zurawski, Ed. CRC
Press, Inc., 2014, ch. 59.

[17] “KNX Speci�cations, Version 2.0,” Konnex Association, 2009.

[18] International Electrotechnical Commission, “Information technology – Home electronic
system (HES) architecture – Part 3-10: Wireless short-packet (WSP) protocol optimised
for energy harvesting – Architecture and lower layer protocols,” IEC 14543-3-10, 2012.

[19] “BACnet – A Data Communication Protocol for Building Automation and Control Net-
works,” ANSI/ASHRAE Std. 135, 1995–2010.

[20] “Building automation and control systems (BACS) – Part 5: Data communication proto-
col,” ISO 16484-5, 2012.

[21] “ZigBee IP Speci�cation,” ZigBee Alliance, 2013.

[22] J.-P. Vasseur and A. Dunkels, Interconnecting smart objects with IP: The next Internet.
Morgan Kaufmann, 2010.

[23] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “Tag: A tiny aggregation
service for ad-hoc sensor networks,” ACM SIGOPS Operating Systems Review, vol. 36,
no. SI, pp. 131–146, 2002.

[24] P. J. Marrón, D. Minder, A. Lachenmann, and K. Rothermel, “TinyCubus: An Adaptive
Cross-Layer Framework for Sensor Networks (TinyCubus: Ein Adaptives Cross-Layer
Framework für Sensornetze),” it-Information Technology, vol. 47, no. 2, pp. 87–97, 2005.

[25] J. Heidemann, F. Silva, C. Intanagonwiwat, R. Govindan, D. Estrin, and D. Ganesan,
“Building e�cient wireless sensor networks with low-level naming,” in ACM SIGOPS
Operating Systems Review, vol. 35, no. 5. ACM, 2001, pp. 146–159.

218

[26] O. Gnawali, K.-Y. Jang, J. Paek, M. Vieira, R. Govindan, B. Greenstein, A. Joki, D. Estrin,
and E. Kohler, “The tenet architecture for tiered sensor networks,” in Proceedings of the
International Conference on Embedded Networked Sensor Systems. ACM, 2006, pp. 153–
166.

[27] A. Dunkels, F. Österlind, and Z. He, “An adaptive communication architecture for wire-
less sensor networks,” in Proceedings of the 5th International Conference on Embedded
Networked Sensor Systems. ACM, 2007, pp. 335–349.

[28] D. E. Culler, P. Dutta, C. T. Ee, R. Fonseca, J. Hui, P. Levis, J. Polastre, S. Shenker, I. Sto-
ica, G. Tolle et al., “Towards a sensor network architecture: Lowering the waistline,” in
HotOS, 2005.

[29] C. T. Ee, R. Fonseca, S. Kim, D. Moon, A. Tavakoli, D. Culler, S. Shenker, and I. Stoica,
“A modular network layer for sensorsets,” in Proceedings of the Symposium on Operating
Systems Design and Implementation. USENIX Association, 2006, pp. 249–262.

[30] MarketsandMarkets, “Internet of Things (IoT) & Machine-to-Machine (M2M) communi-
cation market,” 2014.

[31] C. Pautasso, O. Zimmermann, and F. Leymann, “Restful Web services vs. big Web ser-
vices: making the right architectural decision,” in Proceedings of the International Con-
ference on World Wide Web. ACM, 2008, pp. 805–814.

[32] N. Strother and B. Gohn, “Home Energy Management – In-Home Displays, Networked
HEM Systems, Standalone HEM Systems, Web Portals, and Paper Bill HEM Reports:
Market Analysis and Forecasts,” 2012.

[33] C. Groba and S. Clarke, “Web services on embedded systems – a performance study,” in
Proceedings of the International Conference on Pervasive Computing and Communications
Workshops. IEEE, 2010, pp. 726–731.

[34] D. Schall, M. Aiello, and S. Dustdar, “Web services on embedded devices,” International
Journal of Web Information Systems, vol. 2, no. 1, pp. 45–50, 2006.

[35] M. Berger, T. Hofer, F. Judex, M. Jung, G. Kienesberger, M. Meisel, M. Pich-
ler, S. Prost, W. Prüggler, and K. Röderer, “SGMS – Smart Web Grid,”
http://www.smartgridssalzburg.at/forschungsfelder/ikt/smart-web-grid/, 2014.

[36] D. Pilone and N. Pitman, UML 2.0 in a Nutshell. O Reilly Media, Inc., 2005.

[37] J. Tyree and A. Akerman, “Architecture decisions: demystifying architecture,” IEEE soft-
ware, vol. 22, no. 2, pp. 19–27, 2005.

[38] A. Jansen and J. Bosch, “Software architecture as a set of architectural design decisions,”
in Proceedings of the Conference on Software Architecture. IEEE/IFIP, 2005, pp. 109–120.

219

[39] P. B. Kruchten, “The 4+1 view model of architecture,” Software, IEEE, vol. 12, no. 6, pp.
42–50, 1995.

[40] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a lightweight and �exible operating
system for tiny networked sensors,” in Proceedings of the International Conference on
Local Computer Networks. IEEE, 2004, pp. 455–462.

[41] D. A. Menasce, V. A. Almeida, L. W. Dowdy, and L. Dowdy, Performance by design: com-
puter capacity planning by example. Prentice Hall Professional, 2004.

[42] D. A. Menascé and V. Almeida, Capacity Planning for Web Services: metrics, models, and
methods. Prentice Hall PTR, 2001.

[43] F. Baskett, M. Chandy, R. Muntz, and F. Palacios, “Open, closed, and mixed networks of
queues with di�erent classes of customers,” Journal of the ACM (JACM), vol. 22, no. 2,
pp. 248–260, 1975.

[44] L. Kleinrock, Queueing Systems, Volume I: Theory. Wiley Interscience, 1975.

[45] G. Bolch, S. Greiner, H. de Meer, and K. S. Trivedi, Queueing Networks andMarkov Chains.
John Wiley & Sons, Inc, 2000.

[46] F. Osterlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt, “Cross-Level Sensor Net-
work Simulation with COOJA,” in Proceedings of the IEEE Conference on Local Computer
Networks. IEEE, 2006, pp. 641–648.

[47] A. J. Jara, A. C. Olivieri, Y. Bocchi, M. Jung, W. Kastner, and A. F. Skarmeta, “Semantic
Web of Things: an analysis of the application semantics for the IoT moving towards the
IoT convergence,” Journal of Web and Grid Services, vol. 10, pp. 244 – 272, 2014.

[48] M. Jung, W. Kastner, G. Kienesberger, and M. Leithner, “A comparison of Web service
technologies for smart meter data exchange,” in Proceedings of the IEEE PES Innovative
Smart Grid Technologies Europe Conference. IEEE, 2012, pp. 1–8.

[49] M. Jung, T. Hofer, W. Kastner, and S. Döbelt, “Protecting data assets in a Smart Grid SoA,”
Journal of Internet Technology and Secured Transactions, vol. 2, pp. 155 – 166, 2013.

[50] M. Jung and W. Kastner, “E�cient group communication based on Web services for re-
liable control in wireless automation,” in Proceedings of the Conference of the Industrial
Electronics Society. IEEE, 2013, pp. 5716–5722.

[51] M. Jung, P. Raich, and W. Kastner, “The relevance and impact of IPv6 multicasting for
Wireless Sensor and Actuator Networks based on 6LoWPAN and Constrained RESTful
Environments,” in Proceedings of the International Conference on the Internet of Things,
2014.

220

[52] M. Jung, J. Weidinger, C. Reinisch, W. Kastner, C. Crettaz, A. Olivieri, and Y. Bocchi, “A
transparent IPv6 multi-protocol gateway to integrate Building Automation Systems in
the Internet of Things,” in Proceedings of the International Conference on Green Computing
and Communications. IEEE, 2012, pp. 225–233.

[53] M. Jung, E. Hajdarevic, W. Kastner, and A. J. Jara, “Short Paper: A Scripting-Free Control
Logic Editor for the Internet of Things,” in Proceedings of the IEEEWorld Forum on Internet
of Things. IEEE, 2014, pp. 193–194.

[54] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. Nielsen, S. Thatte,
and D. Winer, “Simple object access protocol (SOAP) 1.1,” W3C Note, 2000.

[55] “Web Services Description Language (WSDL) 1.1,” W3C Note, 2001.

[56] “Extensible Markup Language (XML) 1.1,” W3C Recommendation, 2006.

[57] “XML Schema Part 1: Structures,” W3C Recommendation, 2004.

[58] “XML Schema Part 2: Datatypes,” W3C Recommendation, 2004.

[59] “E�cient XML Interchange (EXI) Format 1.0,” W3C Recommendation, 2004.

[60] International Electrotechnical Commission, “Common Information Model (CIM) / En-
ergy Management,” IEC 61970-301, 2003.

[61] M. Papazoglou and D. Georgakopoulos, “Service-oriented computing,” Communications
of the ACM, vol. 46, no. 10, pp. 25–28, 2003.

[62] R. Fielding, “Architectural styles and the design of network-based software architec-
tures,” Ph.D. thesis, University of California, 2000.

[63] “CoRE Resource Directory,” IETF draft, 2013.

[64] G. Alonso, F. Casati, H. Kuno, and V. Machiraju, Web services. Springer, 2004.

[65] European Telecommunications Standards Institute, “Machine-to-Machine communica-
tions (M2M); mIa, dIa and mId interfaces - ETSI TS 102 921 V1.1.1,” Feb. 2012.

[66] FI-WARE, “ETSI M2M mId Open RESTful API Speci�cation,” 2012.

[67] Interdigital, “White paper: Standardized Machine-to-Machine (M2M) Software Develop-
ment Platform,” 2012.

[68] W. Mahnke, S.-H. Leitner, and M. Damm, OPC uni�ed architecture. Springer, 2009.

[69] D. Guinard, V. Trifa, F. Mattern, and E. Wilde, “From the Internet of Things to the Web
of Things: resource-oriented architecture and best practices,” in Architecting the Internet
of Things. Springer, 2011, pp. 97–129.

221

[70] D. Guinard, V. Trifa, and E. Wilde, “A resource oriented architecture for the Web of
Things,” in In Proccedings of the International Conference on Internet of Things. IEEE,
2010, pp. 1–8.

[71] V. Trifa, D. Guinard, V. Davidovski, A. Kamilaris, and I. Delchev, “Web messaging for
open and scalable distributed sensing applications,” in Proceedings of the International
Conference on Web Engineering, 2010, pp. 129–143.

[72] E. Wilde, “Putting things to rest,” School of Information, 2007.

[73] D. Raggett, “The Web of Things: Extending the Web into the real world,” in SOFSEM
2010: Theory and Practice of Computer Science. Springer, 2010, pp. 96–107.

[74] D. Guinard and V. Trifa, “Towards the Web of Things: Web mashups for embedded de-
vices,” in Proceedings of the International World Wide Web Conferences, 2009, pp. 1–8.

[75] V. Trifa, S. Wieland, D. Guinard, and T. Bohnert, “Design and implementation of a gate-
way for Web-based interaction and management of embedded devices,” in Proceedings of
the International Workhop on Sensor Network Engineering, 2009.

[76] G. Moritz, F. Golatowski, and D. Timmermann, “A Lightweight SOAP over CoAP Trans-
port Binding for Resource Constraint Networks,” in Proceedings of the International Con-
ference on Mobile Adhoc and Sensor Systems (MASS). IEEE, 2011, pp. 861–866.

[77] D. van der Linden, W. Granzer, and W. Kastner, “OPC Uni�ed Architecture (OPC UA) new
opportunities of system integration and information modeling in automation systems,”
in Proceedings of the International Conference on Industrial Informatics. IEEE, 2011.

[78] W. Kastner and S. Szucsich, “Accessing KNX networks via BACnet/WS,” in Proceedings
of the International Symposium on Industrial Electronics. IEEE, 2011, pp. 1315–1320.

[79] M. Neugschwandtner, G. Neugschwandtner, and W. Kastner, “Web Services in Building
Automation: Mapping KNX to oBIX,” in Proceedings of the International Conference on
Industrial Informatics. IEEE, 2007.

[80] C. Reinisch, W. Granzer, F. Praus, and W. Kastner, “Integration of Heterogeneous Build-
ing Automation Systems using Ontologies,” in Proceedings of the Conference Industrial
Electronics Society, IEEE, 2008.

[81] D. P�sterer, K. Romer, D. Bimschas, O. Kleine, R. Mietz, C. Truong, H. Hasemann,
M. Pagel, M. Hauswirth, M. Karnstedt et al., “SPITFIRE: toward a semantic Web of
Things,” Communications Magazine, vol. 49, no. 11, pp. 40–48, 2011.

[82] M. Kovatsch, M. Lanter, and S. Duquennoy, “Actinium: A RESTful Runtime Container for
Scriptable Internet of Things Applications,” in Proceedings of the International Conference
on the Internet of Things, 2012, pp. 135–142.

[83] A. Rahman and E. Dijk, “Group Communication for CoAP,” IETF Draft, 2014.

222

[84] I. Ishaq, J. Hoebeke, F. Van den Abeele, I. Moerman, and P. Demeester, “Group Commu-
nication in Constrained Environments Using CoAP-based Entities,” in Proceedings of the
International Conference on Distributed Computing in Sensor Systems, 2013, pp. 345–350.

[85] C. Reinisch, W. Kastner, and G. Neugschwandtner, “Multicast communication in wireless
home and building automation: ZigBee and DCMP,” in Proceedings of the International
Conference on Emerging Technologies and Factory Automation. IEEE, 2007, pp. 1380–
1383.

[86] O. Gaddour, A. Koubaa, O. Cheikhrouhou, and M. Abid, “Z-Cast: a multicast routing
mechanism in ZigBee cluster-tree wireless sensor networks,” in Proceedings of the In-
ternational Conference on Distributed Computing Systems Workshops. IEEE, 2010, pp.
171–179.

[87] G. Oikonomou and I. Phillips, “Stateless multicast forwarding with RPL in 6LoWPAN
sensor networks,” in Proceedings of the International Conference on Pervasive Computing
and Communications Workshops. IEEE, 2012, pp. 272–277.

[88] Internet Engineering Task Force (IETF), “The Trickle Algorithm – RFC 6206,” Mar. 2011.

[89] M. Blackstock and R. Lea, “IoT mashups with the WoTKit,” in Proceedings of the Interna-
tional Conference on the Internet of Things, 2012, pp. 159–166.

[90] D. C. Pintus, Antonio and A. Piras, “Paraimpu: a platform for a social Web of things,” in
Proceedings of the International Conference Companion on World Wide Web. ACM, 2012.

[91] International Electrotechnical Commission, “Energy management system application
program interface (EMS-API) - Part 301: Common information model (CIM),” IEC 61970-
301, 2007.

[92] M. Postina, S. Rohjans, U. Ste�ens, and M. Uslar, “Views on service oriented architectures
in the context of smart grids,” in Proceedings of the International Conference on Smart Grid
Communications. IEEE, 2010, pp. 25–30.

[93] S. Rohjans, M. Uslar, and H. Appelrath, “OPC UA and CIM: Semantics for the Smart Grid,”
in Proceedings of the Transmission and Distribution Conference and Exposition. IEEE,
2010, pp. 1–8.

[94] A. Claassen, S. Rohjans, and S. Lehnho�, “Application of the OPC UA for the Smart
Grid,” in Proceedings of the International Conference and Exhibition on Innovative Smart
Grid Technologies. IEEE, 2011, pp. 1–8.

[95] C. Ardagna, E. Damiani, S. De Capitani di Vimercati, and P. Samarati, “A Web service ar-
chitecture for enforcing access control policies,” Electronic Notes in Theoretical Computer
Science, vol. 142, pp. 47–62, 2006.

223

[96] M. Menzel, C. Wolter, and C. Meinel, “Access control for cross-organisational web service
composition,” Journal of Information Assurance and Security, vol. 2, no. 3, pp. 155–160,
2007.

[97] S. Lakshminarayanan, “Authentication and authorization for Smart Grid application in-
terfaces,” in Proceedings of the Power Systems Conference and Exposition. IEEE, 2011, pp.
1–5.

[98] T. Baumeister, “Adapting PKI for the Smart Grid,” in Proceedings of the International Con-
ference on Smart Grid Communications, 2011, pp. 249 –254.

[99] S. Meyer and A. Rakotonirainy, “A survey of research on context-aware homes,” in Pro-
ceedings of the Australasian Information SecurityWorkshop Conference on ACSWFrontiers.
Australian Computer Society, Inc., 2003, pp. 159–168.

[100] F. Mäyrä, A. Soronen, I. Koskinen, K. Kuusela, J. Mikkonen, J. Vanhala, and M. Za-
krzewski, “Probing a proactive home: Challenges in researching and designing everyday
smart environments,” Human Technology: An Interdisciplinary Journal on Humans in ICT
Environments, vol. 2, no. 2, pp. 158–186, 2006.

[101] T. Flick and J. Morehouse, Securing the Smart Grid: next generation power grid security.
Elsevier, 2010.

[102] Xively. Business solutions for the Internet of Things.

[103] Google Inc., “Google Protocol Bu�ers.”

[104] P. Mell and T. Grance, “The NIST de�nition of cloud computing,” National Institute of
Standards and Technology, vol. 53, no. 6, pp. 1–3, 2009.

[105] C. Steel, R. Nagappan, and R. Lai, Core Security Patterns: Best Practices and Strategies for
J2EE, Web Services, and Identity Management. Pearson Education, 2006.

[106] T. Moses, “eXtensible Access Control Markup Language (XACML) Version 2.0,” 2005.

[107] D. Guinard, I. Ion, and S. Mayer, “In search of an Internet of Things service architecture:
REST or WS-*? A developer’s perspective,” inMobile and Ubiquitous Systems: Computing,
Networking, and Services. Springer, 2012, pp. 326–337.

[108] P. J. Denning and J. P. Buzen, “The operational analysis of queuing network models,”
ACM Computing Surveys, vol. 10, no. 3, 1978.

[109] “Intelligente Messgeräte-AnforderungsVO (IMA-VO 2011),” Bundesgesetzblatt für die
Republik Österreich, 2011.

[110] “Directive 2009/72/EC of the European parliament and of the council of 13th July 2009
concerning common rules for the internal market in electricity and repealing directive
2003/54/EC,” O�cial Journal of the European Union, 2009.

224

[111] N. Chohan, C. Bunch, S. Pang, C. Krintz, N. Mostafa, S. Soman, and R. Wolski, “App-
Scale: Scalable and Open AppEngine Application Development and Deployment,” in
Cloud Computing, ser. Lecture Notes of the Institute for Computer Sciences, Social In-
formatics and Telecommunications Engineering. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2010, vol. 34, ch. 4.

[112] T. Hofer, “Secure and privacy aware data exchange in a service-oriented architecture,”
Master’s thesis, Vienna University of Technology, 2012.

[113] S. Procter, “A brief introduction to XACML,” 2003.

[114] G. Ryba, M. Jung, and W. Kastner, “Authorization as a Service in Smart Grids: Evaluating
the PaaS Paradigm for XACML Policy Decision Points,” in Proceedings of the International
Conference on Emerging Technologies & Factory Automation. IEEE, 2013.

[115] M. Buettner, G. V. Yee, E. Anderson, and R. Han, “X-MAC: a short preamble MAC protocol
for duty-cycled wireless sensor networks,” in Proceedings of the International Conference
on Embedded Networked Sensor Systems. ACM, 2006, pp. 307–320.

[116] G. Mulligan, “The 6LoWPAN architecture,” in Proceedings of the Workshop on Embedded
Networked Sensors. ACM, 2007, pp. 78–82.

[117] Internet Engineering Task Force (IETF), “RPL: IPv6 Routing Protocol for Low-Power and
Lossy Networks – RFC 6550,” Mar. 2012.

[118] ——, “Design and Application Spaces for IPv6 over Low-Power Wireless Personal Area
Networks – Informational RFC 6568,” Apr. 2012.

[119] “Multicast Protocol for Low Power and Lossy Networks (MPL) (Internet-Draft, ver-
sion. 04),” IETF draft, 2013.

[120] M. Jung, J. Weidinger, W. Kastner, and A. Olivieri, “Building automation and smart cities:
An integration approach based on a service-oriented architecture,” in Proceedings of the
International Conference on Advanced Information Networking and Applications Work-
shops. IEEE, 2013, pp. 1361–1367.

[121] “Bindings for OBIX: REST Bindings Version 1.0,” OASIS Committee Speci�cation Draft,
2014.

[122] “Encodings for OBIX: Common Encodings Version 1.0,” OASIS Committee Speci�cation
Draft, 2014.

[123] “OBIX Version 1.1,” OASIS Committee Speci�cation Draft 02, 2013.

[124] Internet Engineering Task Force (IETF), “DNS-Based Service Discovery – RFC 6763,”
2013.

[125] ——, “Multicast DNS – RFC 6762,” 2013.

225

[126] ——, “Internet assigned numbers authority (IANA) procedures for the management of
the service name and transport protocol port number registry – RFC 6335,” 2011.

[127] A. J. Jara, P. Martinez-Julia, and A. Skarmeta, “Lightweight multicast DNS and DNS-
SD (lmDNS-SD): IPv6-based resource and service discovery for the Web of Things,” in
Proceedings of the Conference on Innovative Mobile and Internet Services in Ubiquitous
Computing. IEEE, 2012, pp. 731–738.

[128] P. Levis, N. Lee, M. Welsh, and D. Culler, “TOSSIM: Accurate and scalable simulation of
entire TinyOS applications,” in Proceedings of the International Conference on Embedded
Networked Sensor Systems. ACM, 2003, pp. 126–137.

[129] J. Polley, D. Blazakis, J. McGee, D. Rusk, and J. S. Baras, “ATEMU: a �ne-grained sensor
network simulator,” in Proceedings of the Communications Society Conference on Sensor
and Ad Hoc Communications and Networks. IEEE, 2004, pp. 145–152.

[130] B. L. Titzer, D. K. Lee, and J. Palsberg, “Avrora: scalable sensor network simulation with
precise timing,” in Proceedings of the International Symposium on Information processing
in Sensor Networks. IEEE, 2005, pp. 1–6.

[131] P. Raich, “Scalability Analysis of a Web-based IoT Stack for Automation Systems,” Mas-
ter’s thesis, Vienna University of Technology, 2015.

[132] M. Jung, J. Weidinger, W. Kastner, and A. Olivieri, “Heterogeneous device interaction
using an IPv6 enabled service-oriented architecture for building automation systems,”
in Proceedings of the Symposium on Applied Computing. ACM, 2013, pp. 1939–1941.

[133] W. Granzer, W. Kastner, and C. Reinisch, “Gateway-free integration of BACnet and KNX
using multi-protocol devices,” in Proceedings of the International Conference on Industrial
Informatics. IEEE, 2008, pp. 973–978.

[134] “Information technology – Home electronic system (HES) architecture,” ISO/IEC 14543,
2006-2007.

[135] International Electrotechnical Commission, “Communication systems for meters and re-
mote reading of meters,” EN 13757, 2002.

[136] W. Kastner, F. Praus, G. Neugschwandtner, and W. Granzer, “KNX,” in The Industrial Elec-
tronics Handbook-Industrial Communications Systems, 2nd ed., Bogdan M. Wilamowski,
J. David Irwin, Ed. CRC Press, 2012, ch. 42.

[137] M. Neugschwandtner, G. Neugschwandtner, and W. Kastner, “Web services in building
automation: Mapping KNX to oBIX,” in Proceedings of the International Conference on
Industrial Informatics. IEEE, 2007, pp. 87–92.

[138] “Communication systems for and remote reading of meters – Part 3: Dedicated applica-
tion layer,” DIN EN 13757-3:2005-02, 2011.

226

[139] G. Nam, S. H. Kim, D. Kim, M. Jung, and W. Kastner, “Extending the EPCIS with Building
Automation Systems: a New Information System For the Internet of Things,” in Proceed-
ings of the International Workshop on Extending Seamlessly to the Internet of Things, 2014,
pp. 1–6.

[140] Internet Engineering Task Force (IETF), “Constrained RESTful Environments (CoRE)
Link Format – RFC 6690,” Aug. 2012.

[141] M. Jung, J. Weidinger, and W. Kastner, “A seamless integration of KNX into Constrained
RESTful Environments,” in Proceedings of the KNX Scienti�c, 2012, pp. 1–13.

[142] “Java Cryptography Architecture Oracle Providers Documentation for JDK 8,”
https://docs.oracle.com/javase/8/docs/technotes/guides/security/SunProviders.html, ac-
cessed: 2014-11-26.

[143] T. Eisenbarth, S. Kumar, C. Paar, A. Poschmann, and L. Uhsadel, “A survey of lightweight-
cryptography implementations,” IEEE Design & Test of Computers, vol. 24, no. 6, pp. 522–
533, 2007.

[144] C. Alistair, Writing e�ective use cases. Addison-Wesley, 2001.

[145] M. Jung, J. Weidinger, D. Bunyai, C. Reinisch, W. Kastner, and A. Olivieri, “Demonstra-
tion of an IPv6 multi-protocol gateway for seamless integration of Building Automa-
tion Systems into Constrained RESTful Environments,” in Proceedings of the International
Conference on Internet of Things. IEEE, 2012, pp. 242–243.

[146] M. Jung, J. Chelakal, J. Schober, W. Kastner, L. Zhou, and K. N. Giang, “IoTSyS: an integra-
tion middleware for the Internet of Things,” in Proceedings of the International Conference
on Internet of Things. IEEE, 2014, pp. 1–2.

[147] M. Ruta, F. Scioscia, and E. Di Sciascio, “Enabling the Semantic Web of Things: Frame-
work and Architecture,” in Proceedings of the International Conference on Semantic Com-
puting, 2012, pp. 345–347.

[148] T. Clausen and U. Herberg, “Comparative study of RPL-enabled optimized broadcast in
wireless sensor networks,” in Proceedings of the International Conference on Intelligent
Sensors, Sensor Networks and Information Processing. IEEE, 2010, pp. 7–12.

[149] J. Stankovic, “Research Directions for the Internet of Things,” Internet of Things Journal,
vol. 1, no. 1, pp. 3–9, 2014.

227

Page 1/ 5 - Curriculum Vitae
Jung Markus

Markus Jung, MSc.
Research Assistant

Vienna University of Technology
Institute of Computer Aided Automation

mjung@auto.tuwien.ac.at
Tel. +43 1 58801-18322
Fax +43 1 58801-18391

Curriculum Vitae

Personal information

Address Gattring 11, 3143 Pyhra

E-Mail markus.jung85@gmail.com

Nationality Austria

 Compulsory Military Service Served (2004 to 2005)

Date of birth 22.02.1985

Personal skills and

competences

Mother tongue German

Foreign languages English (Fluent), Korean (Basic)

Social Actions Since 07/2009 part of the TU Buddy network, NGO - supporting exchange students

Other Interests Mountain biking, Running, Piano

Driving License Yes

Page 2/ 5 - Curriculum Vitae
Jung Markus

Awards, Certificates, Activities

and International Experience

International Experience  Visiting researcher at Real-Time and Embedded Systems Lab at Korean Advanced Institute of
Science and Technology (KAIST), 07/2013 to 09/2013

 Visiting researcher at Institute of Information Systems, University of Applied Sciences Western
Switzerland, 07/2012 to 09/2012

Awards  IPSO Challenge 2013 – semi-finalist, IPSO Challenge 2014 – semi-finalist with IoTSyS Internet of
Things integration middleware

 IEEE conference IECON 2013 – best paper in session award for paper “Efficient group communication
based on Web services for reliable control in wireless automation”

 Winner Team (Austria) of the Accenture Campus Challenge 2007 (Development of a business case
and prototype for wireless sensor networks)

Standardization and Open Source Activities

 OASIS Open Building Information Exchange – Editor for protocol bindings and message encodings
specifications: SOAP binding, REST binding, Encodings

 Lead for open source project IoTSyS - Internet of Things integration middleware for home and building
automation technologies (www.iotsys.org, blog)

 Google Summer of Code 2014 – Mentor for IoTSyS projects (A lightweight yet scalable persistent
layer for IoTSyS gateway, IoTSyS security)

 Google Summer of Code 2013 – Mentor for IoTSyS projects (oBIX 1.1 Specification WD
Implementation, a discovery service in OBIX standardization)

 Google Summer of Code 2011 – Student Implementation of a cross-site request forgery protection
module for Apache Tapestry 5

Certificates  Java Certified Programmer

 Java Certified Developer

 Stock trader diploma for the spot market of the Vienna Stock Exchange

Training  Volksbanken Academy– Basic banking knowledge (Basic@l)
GNC – Oracle SQL and PL/SQL Goodies – speed up your Application

Work experience

 Vienna University of Technology

Date Since May 2011

Position Research Assistant

Institute Computer Aided Automation

Research projects IoT6, Smart Web Grid, Networked miniSPOT

Lectures Home and Building Automation, Wireless in Automation

 TeleTrader Software AG

Date August 2010 - April 2011

Position Software Architect & Product Manager

Main activities and responsibilities Product management for Web services and database infrastructure

Type of Business Software and data services provider in the financial sector

 Santander Consumer Bank Austria (formerly GE Money Bank GmbH)

Date August 2008 - June 2010

Position Application developer

Main activities and responsibilities Implementation of an online banking platform (https://service.santanderconsumer.at/eva/)
Project Management, Software Architecture and Design, Security Audits

Technologies Java EE (EJB 3.0, Hibernate, Web Services, …), Struts, Grails, Oracle, Ajax (Prototype, Yahoo UI)

Type of Business Bank – IT

 Volksbank AG

Date September 2007 – December 2008

Position Project Manager, Digital Signature Coordinator

Page 3/ 5 - Curriculum Vitae
Jung Markus

Main activities and responsibilities Project management, Responsibility for the online representation of the Volksbank AG (www.volksbank.at,
www.volksbank.com)

Type of Business Bank – Organisation Department/Project Management Group

 Xion IT Systems AG

Date Mai 2005 – August 2007

Position Software Developer

Main activities and responsibilities Software projects, Java development in the area of online sports betting (www.wettpunkt.com),
Testing and quality assurance (Federal Ministry of the Interior - central population register)

Technologies Java EE (EJB 2.1, RMI), Flash, Linux

Type of Business IT service provider

Education

 Vienna University of Technology – PhD candidate

Date since 05/2011

Field of study and research Computer Science, Smart Grids & Internet of Things

 Vienna University of Technology – Computer Science, Master - passed with distinction

GPA 4.0 of 4.0

Date 09/2008 - 09/2010

Field of study Software Engineering & Internet Computing

 Vienna University of Technology – Computer Science, Bachelor - passed with distinction

Date 09/2005 – 07/2008

Field of study Software & Information Engineering

 Federal Secondary College of Engineering St. Pölten, Department Electronic Data Processing and
Economics

Date September 1999 – July 2004

Principal subjects Programming, Database development, Network administration, Project management, Accounting

Page 4/ 5 - Curriculum Vitae
Jung Markus

Publications

Conference papers Markus Jung, Jomy Chelakal, Jürgen Schober, Wolfgang Kastner, Luyu Zhou, and Giang Ky Nam. IoTSyS: an

integration middleware for the Internet of Things. In Proceedings of the 4th International Conference on the

Internet of Things (IoT 2014), Cambridge, MA, USA, October 2014

Markus Jung, Philipp Raich, Wolfgang Kastner. The relevance and impact of IPv6 multicasting for Wireless

Sensor and Actuator Networks based on 6LoWPAN and Constrained RESTful Environments. In

Proceedings of the 4th International Conference on the Internet of Things (IoT 2014), Cambridge, MA, USA,

October 2014

Giang Nam, Seong Hoon Kim, Daeyoung Kim, Markus Jung, Wolfgang Kastner. Extending the EPCIS with

Building Automation Systems: a New Information System For the Internet of Things. In International

Workshop on Extending Seamlessly to the Internet of Things (esIoT), Birmingham, UK, July 2014

Markus Jung, Esad Hajdarevic, Wolfgang Kastner, Antonio J. Jara. Short Paper: A Scripting-Free Control Logic

Editor for the Internet of Things. In Proceedings of the IEEE World Forum on Internet of Things, Seoul,

Republic of Korea, March 2014

Markus Jung and Wolfgang Kastner. Efficient group communication based on Web services for reliable

control in wireless automation. In Proceedings of the 39th Annual Conference of the IEEE Industrial

Electronics Society, Vienna, Austria, November 2013 (Best paper in Session Award)

Gregor Ryba, Markus Jung, and Wolfgang Kastner. Authorization as a Service in Smart Grids: Evaluating the

PaaS Paradigm for XACML Policy Decision Points. In Proceedings of the 18th IEEE International Conference

on Emerging Technologies & Factory Automation, Cagliari, Italy, September 2013

Markus Jung, Jürgen Weidinger, Wolfgang Kastner, and Alex Olivieri. Building automation and smart cities:

An integration approach based on a service-oriented architecture. In Proceedings of the 27th IEEE

International Conference on Advanced Information Networking and Applications, Barcelona, Spain, March 2013.

Markus Jung, Jürgen Weidinger, Wolfgang Kastner, and Alex Olivieri. Heterogeneous device interaction using

an IPv6 enabled service-oriented architecture for building automation systems. In Proceedings of the 28th

ACM Symposium on Applied Computing, Coimbra, Portugal, 2013

Markus Jung, Jürgen Weidinger, Christian Reinisch, Wolfgang Kastner, Cedric Crettaz, Alex Olivieri, and Yann

Bocchi. A transparent IPv6 multi-protocol gateway to integrate Building Automation Systems in the

Internet of Things. In Proceedings of the IEEE International Conference on Internet of Things (iThings 2012),

Besancon, France, November 2012

Markus Jung, Thomas Hofer, Susen Döbelt, Georg Kienesberger, Florian Judex, and Wolfgang Kastner. Access

control for a Smart Grid SOA. In Proceedings of the 7th IEEE Conference for Internet Technology and Secured

Transactions, London, UK, December 2012

Markus Jung, Christian Reinisch, and Wolfgang Kastner. Integrating Building Automation Systems and IPv6

in the Internet of Things. In Proceedings of the 2012 IEEE International Conference on Innovative Mobile and

Internet Services in Ubiquitous Computing (IMIS' 12), Palermo, Italy, July 2012

Markus Jung, Jürgen Weidinger, Dominik Bunyai, Christian Reinisch, Wolfgang Kastner, and Alex Olivieri.

Demonstration of an IPv6 multi-protocol gateway for seamless integration of Building Automation

Systems into Constrained RESTful Environments. In Proceedings of the IEEE International Conference on

Internet of Things (IoT 2012), Wuxi, China, October 2012.

Markus Jung, Wolfgang Kastner, Georg Kienesberger, and Manuel Leithner. A comparison of Web service

technologies for smart meter data exchange. In Proceedings of the 2012 IEEE PES Innovative Smart Grid

Technologies (ISGT) Europe Conference, Berlin, Germany, October 2012

Georg Kienesberger, Thomas Hofer, Markus Jung, and Susen Döbelt. Smart Web Grid - Eine serviceorientierte

Informationsdrehscheibe für Smart Grids. In Proceedings of the ComForEn 2012, Wels, Austria,

September 2012

Georg Kienesberger, Markus Jung, Susen Döbelt, Florian Judex, and Thomas Hofer. Smart Web Grid: Eine

Informationsdrehscheibe für Smart Grids. In Proceedings of the Smart Grids Week, Bregenz, Austria,

May 2012

Markus Jung. Multi-Stakeholder-Datenaustausch in zukünftigen Smart Grids: Smart Web Grid. In

Proceedings of the ComForEn 2011, FH Oberösterreich, September 2011

Georg Kienesberger, Markus Jung, Friederich Kupzog, and Wolfgang Kastner. Smart Web Grid: Eine

integrierte Informationsdrehscheibe für das Smart Grid. In Smart Grids Week, Linz, Austria, May 2011.

Page 5/ 5 - Curriculum Vitae
Jung Markus

Industry conference papers Markus Jung, Jürgen Weidinger, and Wolfgang Kastner. A seamless integration of KNX into Constrained

RESTful Environments. In Proceedings of the KNX Scientific, Las Palmas, Spain, November 2012.

Markus Jung ,Christian Mauser, Wolfgang Kanster, BACdroid - A versatile platform for building automation,

Droidcon, Germany, March 2012

Articles Antonio J. Jara, Alex C. Olivieri, Yann Bocchi, Markus Jung, Wolfgang Kastner, Antonio F. Skarmeta, Semantic

Web of Things: An analysis of the application semantics for the IoT. Moving towards the IoT convergence

in International Journal of Web and Grid Services, 2014

Markus Jung and Thomas Hofer and Wolfgang Kastner and Susen Döbelt. Protecting data assets in a Smart

Grid SOA. Journal of Internet Technology and Secured Transactions (JITST), 2:155 - 166, 2013.

Books Wolfgang Kastner, Markus Jung, and Lukas Krammer. Future Trends in Smart Homes and Buildings. In

Richard Zurawski, editor, Industrial Communication Technology Handbook, Second Edition, chapter 59. CRC

Press, Inc., 2014

Markus Jung, Wolfgang Kastner, and Susen Döbelt. The Smart Web Grid project. In Smart City: Viennese

expertise based on science and research, pages 174-180. Erich Schmidt Verlag, 2013

Sebastien Ziegler, Cedric Crettaz, Latif Ladid, Srdjan Krco, Boris Pokric, Antonio F. Skarmeta, Antonio Jara,

Wolfgang Kastner, and Markus Jung. IoT6 - Moving to an IPv6-Based Future IoT, volume 7858 of Lecture

Notes in Computer Science. Springer Berlin Heidelberg, 2013.

	Introduction
	The wireless embedded Internet and the Web of Things
	Building automation systems integration and Smart Grids
	Problem statement and hypothesis
	Methodological approach
	Thesis outline

	State of the art and related work
	Web service technologies
	Integration in the IoT and semantic interoperability
	Web of Things
	Related work

	A service-oriented architecture for the Internet of Things
	Requirements
	Architecture overview and alternatives
	A service-oriented architecture for the Internet of Things
	IoT SoA core components and roles
	Access control in the IoT SoA
	Implementation
	Evaluation

	An IoT communication stack
	Smart objects
	Requirements
	Stack overview
	Media and data link
	IPv6
	6LoWPAN
	Message exchange and information encoding
	Application services & information model
	IoT peer-to-peer communication and Web-based commissioning
	Implementation
	Evaluation
	Conclusion

	An IoT integration middleware
	Requirements
	Integration middleware architecture
	Integration of KNX
	BACnet
	EnOcean
	Wired and wireless M-Bus
	EPCIS and RFID
	Weather data
	Implementation
	Integration middleware case study
	Scalability analysis
	Conclusion

	Conclusion and further outlook
	Contributions
	Discussion
	Future challenges

	Use case description for integration middleware case study
	Gateway scalability analysis results
	Scenario 2
	Scenario 3
	Scenario 4
	Scenario 5

	Bibliography

