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Abstract

This work investigates the turbulent flow in the high head Francis turbine of the
Tokke model. The geometry and measurement data of the herein considered Tokke
scaled down model are published on the Francis 99 workshop homepage [1]. Based
on this data steady-state and unsteady flow simulations are set up in commercial
code and unsteady flow simulations are set up in OpenFOAM at the BEP (best
efficiency point) condition.

The whole domain is meshed in Ansys ICEM CFD using a block structured grid
and grid refinement towards the hydraulic smooth walls. The wall boundary layer
is resolved by y+

mean ∼ 30 and automatic wall functions. Turbulent flow behav-
ior is modeled by applying the shear stress transport model, kω-SST. The grid
convergence method verifies the ability of monotonic convergence. All further
computations are based on this grid type meeting computational efficiency and
validity of the calculated quantities. In contrast to the one passage model setup of
the grid error estimation, the further simulations are performed on the full turbine
model with 5M cells.

Commercial code: The efficiency is predicted accurately in the BEP and HL
(high load) condition in the steady-state and unsteady simulation, with a maxi-
mum total deviation of η% < 1.5%. In the PL (part load) regime no obvious trend
emerges for the global quantities. The averaged static pressure at the probes is
estimated in accordance with the literature [2], [3], [4]. The tendency of underpre-
dicting the probes in the draft tube and overpredicting the pressure in the runner
domain, holds for all operating conditions. The computed mean velocity profiles
coincide for the steady-state and unsteady CFD (computational fluid dynamics)
simulation. In PL the velocity is captured accurately, whereas in the two other
operating points, local effects are predicted incorrectly. However, the simulation
results are consistent with [4], [5]. The main features of the pressure fluctuations
are captured in the vaneless space. The efficiency losses in the distributor and the
draft tube are evaluated according to [6] in all three operating points.

OpenFoam: is not capable of predicting the global quantities compared to the
experimental data and commercial code. The efficiency deviates by η% = −13.2%.
However, the local static pressure data is estimated similar to commercial code.
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Kurzfassung

In dieser Arbeit werden die turbulenten Strömungsverhältnisse in der Francis
Modellturbine des Tokke Kraftwerks untersucht. Die Geometriedaten und ex-
perimentell ermittelte Daten des Tokke Modells wurden im Zuge des Francis 99
Workshops öffentlich zugänglich gemacht [1]. Basierend auf diesen Daten wurden
stationäre und transiente Strömungssimulationen mit Commercial Code und eine
vergleichende transiente Rechnung in OpenFOAM im Bestpunkt durchgeführt.

Das Rechengebiet wurde in Ansys ICEM CFD mit einem blockstrukturierten Git-
ter vernetzt. Zu den Gebietsübergängen und zur Wand hin ermöglicht eine struk-
turierte Netzverfeinerung eine angemessene Auflösung der physikalischen Phänomene.
In Wandnähe wird eine erste Zellhöhe von y+

mean ∼ 30 als angemessene Auflö-
sung bewertet. Das kω-SST Turbulenzmodell mit automatischen Wandfunktio-
nen beschreibt das turbulente Verhalten im Fluid. Die durchgeführte Netzun-
abhängigkeitsstudie verifiziert die monotone Konvergenzeigenschaft der erstell-
ten Netze. Das Netz mit mittlerer Feinheit aus dem Abschnitt der Netzunab-
hängigkeitsstudie wird für die weiteren Rechnungen herangezogen. Im Unterschied
zur Netzunabhängigkeitsstudie wurde jedoch die ganze Turbine für alle weiteren
Berechnungen betrachtet und nicht das vereinfachte Sektorenmodell.

Commercial Code: Sowohl die stationäre als auch die transiente Simulation
konnte den hydraulischen Wirkungsgrad der Francis Turbine mit einer maximalen
Abweichung von η% < 1.5% im BEP und im HL gut abbilden. Die erfassten
mittleren Druckdaten in den Messpunkten streuten ähnlich wie in einschlägiger
Literatur [2], [3], [4]. Bei den simulierten Strömungsprofilen konnten keine do-
minierenden transienten Effekte ermittelt werden, da die stationäre Rechnung mit
der transienten sehr gut übereinstimmt. Im Bereich zwischen Leitapparat und
Laufrad wurden die Druckschwankungen mit ausreichender Genauigkeit vorherge-
sagt. Die Anteile der hydraulischen Verluste im Leitapparat und im Saugrohr
stimmen sehr gut mit der verfügbaren Referenzliteratur[6] überein.

Im Gegensatz zum Commercial Code weichen die Ergebnisse der globalen Größen
in OpenFoam stärker von den experimentellen Daten ab (η% = −13.2%). Jedoch
weisen die Resultate der simulierten statischen Drücke in OpenFoam eine ähnliche
Abweichungstendenz, wie die Commercial Code Ergebnisse auf.
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1 Introduction

For thirty years numerical fluid dynamics has been used to simulate hydraulic
turbo-machines successfully [7]. In the early stages, problem-specific numerical
code predicted simple estimations of flow fields. This first step led to powerful
numerical simulation tools, having implemented a wide range of different numer-
ical schemes and physical models. Recently simulation of multi-physics problems
(one and two-way fluid structure interaction) and multi-phase flow are mostly
investigated using the available numerical packages.

Simulation of fluid dynamics is known under the acronym CFD, computational
fluid dynamics. Compared to simulations based on scaled down hydraulic turbo-
machine models, CFD simulations are rather cost efficient and flexible. If one
wants to perform an optimization of a turbine by testing prototypes, it will take
quite a lot of time and money. Thus, virtual flow analysis is used to optimize the
turbine shape in terms of the complex design criteria. The optimal design shape
is then tested as a scaled down model. Measurements during that tests are again
used to improve the numerical capabilities of the simulation software.

Recently hydro power plant operators compensate the volatile power supply of
other green energy sources. Hydro power plants are fast power units providing
frequency and voltage support, making them one of the essential grid units. Finan-
cially, providing grid stability is more beneficial, though mechanically the turbines
are stressed due to fluid-dynamical sub-optimal loading conditions. Sub-optimal
hydraulic loading conditions go in line with mechanical vibrations and intensely
stressed material.

This complex environment of the power plant operators, as well as competition of
the manufacturer, drives the development of CFD. The main geometrical quantities
are fixed by the flow simulation, maintaining an optimal flow characteristic over
a wide range of set points. As additional design criteria, material stress and
dynamic excitation amplitudes shall be held within specified limits. The fluids
physical conservation laws are the starting point of all further investigations. The
CFD method describes the treatment of the conservation laws by temporal and
spatial numerical discretization.
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CHAPTER 1. INTRODUCTION 2

A robust simulation considers two important simulation feedback loops, namely
verification and validation. Validation and verification of the code are essential to
guarantee the accuracy of the outcomes with respect to the implemented equations.
Commercially distributed software packages are generally verified and validated
by the provider considering several test cases. Despite this, validation is part of
the simulation to benchmark the physical model of the simulation as an accurate
reference. This reference quantity can either be experimental data or outcomes of
a higher instance model. High quality of the applied methods and errors are fixed
via this final, essential simulation step.

Generally, a flow simulation contains several individual assignments. Initially, the
desired geometry of the flow domain is assembled to generate the grid. Establishing
a hexahedron block structured grid is one of the main workloads during a flow
simulation. The quality of the grid shall fall within specified quality boundaries
to ensure good convergence during the computation. Before the computation is
started the initial physical state is defined and the numerical and physical models
are chosen. After these pre-processing steps, the runable model is started, and the
solver processes the model. Finally, the generated output data is analyzed and the
results are validated against measurements.

In recent years steady-state and unsteady flow simulation were performed on the
Tokke scaled down model [8], [9]. During the Francis 99 workshop, steady-state
investigations are performed using different solvers commercial code and FOAM as
well as a various turbulence models in the three operating points [4]. Contemporary
investigations predict flow phenomena in the BEP and HL accurately, though
deviations occur in the PL regime. For this reason, this work addresses unsteady
simulation and additional grid refinement towards a y+

mean ∼ 30.

S. J. Schoder



CHAPTER 1. INTRODUCTION 3

1.1 Problem outline

The practical part in commercial code covers the listed steady-state and unsteady
flow simulations.

• A Grid convergence study based on Richardson extrapolation quantifies the
numerical uncertainties due to uniform grid refinement. The model domain
of this steady-state simulation is one passage of the turbine. Three different
refinement stages are considered to evaluate the grid error. This error quan-
tity supports the decision which of the three y+

mean ∼ 30 grids is chosen for
further simulations.

• Based on the chosen grid, steady-state single phase (water) simulations of
the full Tokke model turbine are carried out. The three given operating
points (PL, BEP and HL) are examined.

• In addition to the steady-state simulations, unsteady single phase simulations
investigate the unsteady behavior of the Tokke model in the three operating
points (PL, BEP and HL).

Since OpenFOAM is a cost free alternative flow simulation tool, the unsteady
simulation capabilities of this software shall be investigated in this work.

• Thus, an unsteady single phase flow simulation of the full model is set up. In
OpenFOAM only the BEP conditions are considered and integral quantities
are evaluated.

S. J. Schoder



2 Theory

The theoretical part of this thesis is motivated by the application of CFD in the
field of hydraulic turbines. The fundamentals of Francis turbines are presented,
including the application boundaries of such power plants and recent realizations.
The concept of energy transformation is recapitulated and the necessary integral
quantities (torque, head and efficiency) are derived. The second part includes a
brief introduction to the computational and numerical methods used to model and
solve the algebraic system of equations. The well known Navier-Stokes equations
are interpreted, and two equation turbulence models are motivated to close the
RANS equations with respect to the computational effort. Finally, a systematic
simulation and validation framework is presented in the section simulation the-
ory.

2.1 Hydro power - Francis Turbine

Hydro power is Austria’s largest source of renewable electric energy [10]. The
conventional potential is already well exploited in the whole country. The topology
allows the three main hydraulic turbine types to be used in Austria: power plants
with Kaplan-runners on the Danube and high head turbines (Francis and Pelton)
in the Alps. In this work a scaled down model Francis turbine is considered. The
corresponding full scale turbine is installed in the Tokke power plant in Norway.

2.1.1 Power plants

Francis turbine power plants are generally used for heads from 15m to 600m and
medium discharge [11]. Today Francis runners are built with a maximum possible
power transfer up to 800MW [12]. In the Tokke power plant, four Francis turbines
with a total power of 430MW are installed, producing 2130GWh of annual electric
energy. The power plant was built in 1961 and is supplied by a 17km long water
piping system. [13]
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CHAPTER 2. THEORY 5

Compared to the classical Tokke power plant, recent hydro power plants are often
built as pump-storage power plant units. During excess energy production, the
power plant is able to store electrical energy. Currently, storing water in a reservoir
is the cheapest way to store electric energy. In 2011 the construction of the pump
storage power plant Limberg II in Kaprun was completed. Ever since, two vertical
Francis pump turbines with an installed power of 480MW and a discharge of
72m3/s per turbine, have been supporting the electric gird in Austria. [14]

Figure 2.1: Francis power plant, (1) Francis runner, (2) distributor, (3) spiral
casing and (4) elbow draft tube [15]

All Francis turbines consist of a spiral casing (3), a distributor (2), a runner (1)
and a draft tube (4). These components are essential for an optimum performance
of the power plant. The numbers of the components in this paragraph refer to
figure 2.1.

Spiral casing The spiral casing links the pressure pipe of the power plant with
the distributor of the turbine. The design of the spiral, redirects the flow from
a linear flow to a swirled flow. The dimensions of the spiral casing are based
on some restrictive assumptions. The flow leaving the spiral casing shall be axi-
symmetric and the pressure distribution nearly constant. Furthermore, the angular
momentum at the interface shall be constant. With these constraints the spiral
casing is designed with respect to a constant angular momentum (a nonlinear
relationship links the cross-section and the angle) or constant fluid velocity in
every spiral cross section (linear reduction of the cross section with respect to the

S. J. Schoder



CHAPTER 2. THEORY 6

angle). Due to stability reasons, the spiral casings are often built with stay vanes.
These vanes should not interfere for the flow passing through the spiral casing.

Guide vane Downstream the spiral casing, the distributor accelerates and ap-
plies the flow optimally towards the runner, considering the energy transformation
process. The guide vanes are adaptable to the necessary operating points of the
turbine. The guide vanes specified angular position, controls the incident angle of
the flow into the runner passages and the discharge of the turbine by widening or
reducing the distributors discharge area. As previously mentioned, the stay vanes
of the spiral casing should not limit the distributor in its operational capability.

Francis runner The Francis runner is the core of the energy transformation pro-
cess, but cannot act individually. The turbine’s blades are connected by the hub
at the top and by the shroud at the bottom. In the case of the Tokke power plant,
the Francis runner has full length blades and splitter blades. Full length blades
trap the flow in a channel from the turbine entry towards the exit. In the middle
of every full blade passage, a splitter blade is located to regulate the velocity and
pressure field in the runner’s flow channels. The runner transforms the kinetic
energy of the fluid flow into mechanical energy. A shaft connects the runner to
the electric generator.

Draft tube The draft tube of the Francis turbine is located downstream the
runner. Without a draft tube, the flow would exit the turbine with a spatial mean
velocity in stream-wise direction cexit. This exit velocity is not necessarily as low as
the flow velocity of the river. Thus, a part of the kinetic energy is not transformed
into mechanical energy by the turbine. To avoid this energy loss, a diffuser is
added after the runner, which is called a draft tube. The draft tube decelerates
the flow towards the river stream and recovers the otherwise lost energy. There are
two restrictions to deceleration. The first, local pressure in the draft tube has to
be higher than the vapor pressure of the medium to avoid cavitation. The second,
the diffuser cone cannot be too steep so as to prevent flow separation.

2.1.2 Energy transformation

The energy transformation process represents the core purpose of the hydraulic
turbo-machine. The available energy of the fluid stored in a reservoir is trans-
formed into mechanical energy by the runner. The process efficiency determines

S. J. Schoder



CHAPTER 2. THEORY 7

the main application ranges of most modern energy production devices and makes
them economically and ecologically acceptable.

Available power The available energy of the stored fluid in the reservoir is quan-
tified by the Bernoulli equation,

c2

2 + p

ρ
+ gz = constant (1)

which represents the conservation of the specific energy. c describes the absolute
velocity of the fluid, p the static pressure, ρ the fluid density, z the vertical coor-
dinate with respect to a reference sea level and g the gravitational factor. After
Bernoulli, the mass specific energy in the upper reservoir (subscript 1) is equal
to the mass specific energy in the lower basin (subscript 2) and the transformed
energy of the Francis runner Y .

c2

2 + p

ρ
+ gz1 = c2

2 + p

ρ
+ gz2 + Y (2)

The physical quantities z1, z2 are defined in figure 2.1. Since the ambient pressure
acts on both water surfaces and the streaming velocity is equal to the river stream,
these terms vanish which leads to

Y = g(z1 − z2) = gH (3)

with the net head H = z1 − z2.

The total available power Pav of the streaming flow is

Pav = ρQY = ρQgH (4)

where ρ is the density andQ is the total discharge of the fluid. This is the maximum
of transformable energy in the ideal case.

Velocity graphs Based on the turbine’s main geometry, the absolute velocity in
the turbine can be split in two components.

c = u + w (5)

The velocity component u in the rotating coordinate frame is represented as

S. J. Schoder



CHAPTER 2. THEORY 8

u = πωrDr (6)

with the runners rotational angular frequency ωr and the runner diameter Dr. In
difference to u the component w is measured relatively to the turbine coordinate
system. Due to discharge, the meridian component of the absolute velocity cm is
fixed by the discharged cross-section 2πDrl.

cm = Q

2πDrl
(7)

The velocity components are illustrated at the runner inlet and outlet in figure
2.2.

Figure 2.2: Definition of geometrical quantities and the velocity decomposition
c = u + w in a Francis turbine [10]

In the three main different loading conditions (PL, BEP and HL), the absolute
velocity’s components develop differently. Figure 2.3 displays the velocity graphs
of the Tokke turbine at the inlet side. The angles α and β, defined in figure 2.2, are
marked in the velocity graph of the BEP in figure 2.3. The runner blade angle β
is the same for all three operating points, since it is assumed that the flow follows
the blade geometry smoothly.

The velocity graphs at the runners outlet side, are given in figure 2.4. In the
BEP, the turbine is usually designed so that no angular momentum, which forms
a swirl, leaves the turbine. This is not the case for the Tokke turbine. In PL and
HL the direction of the swirl, relative to the runner’s rotation, is estimated by the
tangential velocity cu. In PL the swirl rotates in the same direction as the runner.
In the HL the swirl is counter-rotating.

S. J. Schoder



CHAPTER 2. THEORY 9

PL

u1
cm1

c1w1 cu1

BEP

u1

cm1

c1

w1 cu1

β1 α1

HL

u1

cm1

c1

w1 cu1

Figure 2.3: Velocity graphs at the Tokke runner inlet, c = u + w, u in black, c
in blue, w in green

PL

u2
cm2

c2w2 cu2

BEP

u2

cm2 c2w2

cu2

HL

u2

cm2 c2w2

cu2

Figure 2.4: Velocity graphs at the Tokke runner outlet, c = u + w, u in black, c
in blue, w in green

These velocity graphs help to predict the power generated by the turbine. The
derivation of the Euler turbine equation is outlined in the following and uses the
conservation of angular momentum.

Euler turbine equation A rough estimation of the turbines torque is found by
the Euler turbine equation, assuming steady-state flow conditions. Furthermore,
gravity is neglected and it is assumed that the flow follows the blade geometry
smoothly. The blades are considered to be infinitely thin and positioned through-
out the whole runner, where all flow channels develop similarly throughout the
runner.

The conservation of the angular momentum Li = εijkRjpk =
∫
V(t) εijkRjckρdV in

figure 2.2 yields to

Li,Dt =
[∫
V(t)

εijkRjckρdV
]
,Dt

=
∑

Ti (8)

L represents the angular momentum, t the time, V the control volume, εijk the
Levi-Civita symbol, Rj the runner radius and T the mechanical torque. Using the
Reynolds transport theorem the conservation of momentum is written as

∫
V(t)

[εijkRjckρdV],t +
∫
A(t)

clεijkRjckρdAl =
∑

Ti (9)

S. J. Schoder



CHAPTER 2. THEORY 10

Steady-state flow reduces the equation to the relevant boundary terms at the
boundary A.

∫
A(t)

clεijkRjckρdAl =
∑

Ti (10)

The velocity decomposition c = u + w simplifies the cross product at the bound-
aries, leading to the Euler turbine equation. Thus, the torque transmitted to the
runner shaft is estimated as

Tr = ρQ(R1c1 cosα1 −R2c2 cosα2) (11)

The geometrical properties and the definition of the relative velocity in the rotating
coordinate frame as well as the absolute velocity are given in figure 2.2. Subscript
1 refers to the inlet and 2 to the outlet of the runners passage. [10]

Power generation and efficiency Using the torque, the power transmission Pt
can be derived

Pt = Trωr = ρQ(u1c1 cosα1 − u2c2 cosα2) (12)

Since the Euler turbine equation incorporates no losses, an efficiency factor is
introduced. Compared to the ideal assumption, the efficiency factor quantifies the
occurring power dissipation. The main mechanical losses in a hydraulic turbo-
machine are:

• Hydraulic losses (Blade thickness, viscosity, turbulence, leakage, tribological
losses)

• Mechanical losses (Vibration noise, losses in bearings and losses due to ro-
tation in air and in the generator)

The efficiency factor η is defined as a ratio of the power output to the available
power.

η = Pt
Pav

= Trωr
ρgHQ

(13)
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2.2 Computational fluid dynamics

Computational fluid dynamics is a discipline merging analytic fluid mechanics and
numerical mathematics with the purpose of deriving a general solving strategy for
arbitrary flow phenomena. Regarding the practical part of the thesis, the fluid is
assumed to be incompressible and Newtonian.

Using the conservation of mass and the Reynolds transport theorem the continuity
equation is derived.

ρ,t + (ρci),i = 0 (14)

The incompressiblity assumption (ρ,t = 0) simplifies the continuity equation 14
tremendously to 15. A constant temporal and spatial mass density imposes a
divergence free flow field.

ci,i = 0 (15)

A divergence free flow field is also called solenoidal or incompressible, referring
to the incompressibility assumption. Such fields can be expressed by a vector
potential A as solenoidal part of the Helmholtz decomposition.

ci = εiklAl,k (16)

These important simplifications even hold for compressible (more realistic) fluids
at low temperature and low Mach-numbers (<0.3). The divergence free velocity
field constraint simplifies the manipulation of the incompressible Navier-Stokes
equations, with respect to two equation turbulence models.

2.2.1 Navier-Stokes equations

To derive the Navier-Stokes equation, the balance of linear momentum is applied to
a physical domain, the control volume. The Reynolds transport theorem is applied
to the control volume to quantify the change of linear momentum. According to
Newton’s law, this change is due to a volume force density fi and surface forces
Σijnj.

∫
V

[ρci],t dV +
∫
A
ρcicjdAj =

∫
A

ΣijdAj +
∫
V

[ρfi] dV (17)
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General rules of the material law theory fit the stress tensor Σij to the following
form for incompressible fluids [16]. The dynamic viscosity µ associates the shear
stresses with the shear velocity rates in a linear manner. The Newtonian material
law is expressed by this constitutive equation in three dimensions.

Σij = −pδij + µ(ci,j + cj,i) (18)

All the diagonal elements of the stress tensor are normal stresses and the off diag-
onal components tangential stresses with respect to the surface. The divergence
of the stress tensor is written as

Σij,i = −p,i + µ(ci,jj) (19)

Applying the divergence integral theorem to the area integrals of the linear mo-
mentum balance 17, the boundary (area) integrals are transformed into a volume
integral.

∫
V

[ρci,t + ρ(cicj),j + p,i − µci,jj − ρfi] dV = 0 (20)

Since the equation holds for arbitrary control volumes, the integrand has to vanish.
This leads to the Navier-Stokes equations in the local strong formulation.

ρci,t + ρ(cicj),j = −p,j + µci,jj + ρfi (21)

The Navier-Stokes equation describes two structurally different flow phenomena
laminar and turbulent flow. A limited range of length scales occurs during compu-
tation of a laminar flow, making it straightforward to compute. With increasing
Reynolds number Re, the viscous forces are unable to keep the laminar layers to-
gether, hence turbulence mixing forming eddies occurs in the flow. These turbulent
flow properties have a wide range of different length scales.

To simplify the resolution of all these eddy scales, two equation turbulence models
are applied to close the Reynolds averaged Navier-Stokes equations (RANS). These
models describe the turbulent quantities by two transport equations. The reason
for using transport equations is due to the conformity with the conservation laws
and the ability to use the same sort of solvers as for the Navier-Stokes equations.

S. J. Schoder
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2.2.2 Reynolds averaged Navier-Stokes equations

Turbulent flow is a chaotic fluctuating flow at high Reynolds numbers, described
by the Navier-Stokes equations. However, the resolution of the different length
and time scales of the existing eddies requires tremendous computational power.
Thus, simplifications are made to model the computationally expensive equations
by using adjusted transport equations. The equations predict the turbulent flow
field in terms of mean quantities.

The turbulent flow field is assumed to follow a stochastic process evolving over the
spatial and temporal domain. As in theory of stochastic quantities, the ergodic
stochastic process can be split into a mean component and a fluctuating compo-
nent. This decomposition is known in fluid dynamics as Reynolds decomposition

c(x, t) = c̄(x) + c′(x, t) (22)

Since the process is ergodic, the temporal, spatial and ensemble mean are equal for
the flow field [17]. Thus, the two field properties are defined by the mean operator
as

c̄(x) := lim
τ→∞

1
2τ

∫ τ

−τ
c(x, t)dt c′(x, t) = 0 (23)

The RANS are derived by applying the following mathematical manipulations:
[18]

• Neglect the volume force density of the Navier-Stokes equations, without
losing any generality.

• Insert the Reynolds decomposition into the Navier-Stokes equations and into
the continuity equations.

• Take the mean operator over the whole equation.

• Use the continuity equation to simplify the RANS.

The obtained RANS equation is

ρc̄i,t + ρ(c̄ic̄j + c′ic
′
j)j = −p̄,i + µc̄i,jj (24)

Since the Navier-Stokes equations couple the velocity and pressure field, a second
equation system is found to describe the link to the pressure. The Poisson pressure
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equation is derived by applying the divergence to the Navier-Stokes equations.
Using the continuity equation for incompressible flow leads to

(ρcicj),ji = −p,ii (25)

the Poisson pressure equation.

These two coupled equations guarantee solvability of the velocity and pressure
field.

The RANS equation characterizes turbulent flow, but differently to the laminar
case it is not possible to solve it in terms of the mean quantities without addi-
tional knowledge. The occurring problem of too few equations is known as closure
problem in literature.

The critical, but important difference to the laminar case are the correlations of
the fluctuating velocity components, also known as Reynolds stresses τReij .

τReij = −ρc′ic′j (26)

Without this fluctuating quantities the mean flow Navier-Stokes equation is the
same as in the laminar case. Therefore, the Reynolds stresses make a crucial
difference.

One strategy is to model the Reynolds stresses by Boussinesq eddy viscosity hy-
potheses. The constitutive model is assumed in analogy to the Newtonian fluid.

τReij = 2µtsij −
2
3ρkδij (27)

µt is the turbulent dynamic viscosity and k the turbulent kinetic energy. Since
the second term of the Boussinesq Reynolds stress model is incorporated in any
offset pressure, only the deviatoric stresses sij have to be modeled by the closure
equations. [19]

2.2.3 Two equation turbulence models

To close the Navier-Stokes equations computationally efficient, different turbu-
lence models are proposed. The simplest models try to estimate turbulence by
correlation considerations, more advanced schemes are based on averaged trans-
port equations. Herein, two equation eddy viscosity models, are derived using the
Navier-Stokes equations and Reynolds averaging. The denotation, two equation
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eddy viscosity models, is based on the fact that two transport equations are used
to predict the eddy viscosity.

The two additional quantities characterizing the flow are the turbulent kinetic
energy k

k := 1
2c
′
ic
′
i (28)

and the dissipation ε

ε := µc′i,jc
′
i,j = 2µe′ije′ij (29)

with the strain rate tensor eij.

To derive the equation for the turbulent kinetic energy, the following steps are
applied to the Navier-Stokes equations: [18]

• Multiply the Navier-Stokes equations by ci and average the result.

• Multiply RANS by ci .

• Take the difference of both equations.

• Model the remaining transportation terms as −c′ip′ − 1
2c
′
ic
′
jc
′
i ≈ + µt

σk

∂k
∂xi

.

• Model the production term as −c′ic′j ∂ci
∂xj

= τReij
∂ci
∂xj
≈ Pk

After simplification, the k equation is found.

ρk,Dt = ∂

∂xi

[(
µ+ µt

σk

)
∂k

∂xi

]
+ Pk − ρε (30)

The equation for the dissipation is derived by using the following steps:

• Subtract the RANS from the Navier-Stokes equation, so we get an equation
for the fluctuating velocity component.

• Take the spatial derivative (.),k of the obtained equation, multiply the equa-
tion with ci,j and average the result over time.

• Multiply the equation by 2µ.

• Interpret the transportation, production and loss term as for the k equation,
by simplified expressions.
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The ε equation is obtained

ρε,Dt =
[(
µt
σε

+ µ
)
ε,i

]
,i
− Cε1Pk

ε

k
− Cε2ρ

ε2

k
(31)

The eddy viscosity is modeled by

µt = Cµρ
k2

ε
(32)

The standard kε model closure coefficients are Cε1 = 1.44, Cε2 = 1.92, Cµ = 0.09,
σk = 1.0 and σε = 1.3 [18].

Since the Reynolds stresses are assumed to be symmetric, errors occur at the walls.
Hence, special wall treatment is required.

kω and kω-SST model Wall functions are needed in the kε model to adapt the
flow field to wall boundaries. To be able to apply the wall functions numerically,
the first cells’ dimensionless wall distance y+ must be between 30 and 500 [20], so
that the whole viscous sublayer is located in the first cell. Unlike the kε model,
the kω model is capable of resolving the viscous sublayer. Thus, the grids y+ value
shall be very small (near to one). The kω model uses a second transport equation
for the specific turbulent dissipation ω, which is related to the kε model.

ω := ε

k
(33)

Since the kω model is sensitive to free stream values of the initial ω, Mentner pro-
posed his kω-SST model. The shear stress transport model (SST) uses the benefits
of both models by introducing a switching function. This function gradually drives
the model to the kω or the kε model where it is necessary. Furthermore, the turbu-
lent viscosity accounts for the principal shear stress transport [21].Often the SST
model is implemented with automatic selection of the wall functions depending on
the actual y+ value.

y+ := |cτ |ycell
ν

(34)

cτ is the wall shear velocity, ycell the height of the first cell at the wall and ν the
kinematic viscosity.
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Turbulent model parameters in CFD As for the velocity and pressure field, two
additional initial and boundary conditions are set for the two turbulence modeling
parameters. The turbulent intensity I :=

√
3k
2c̄2 can be estimated in a long pipe

flow by

I = 0.16Re−1/8
Dh

(35)

with the Reynolds number Re considering the hydraulic diameter Dh [22].

The turbulent length scale lt as [20]

lt = 0.07Dh (36)

Different gadgets in the piping system of the turbine (valves, rake) increase the
turbulent intensity and length scales. Since this flow properties are difficult to
measure, no robust estimation values are given for the turbulent model parame-
ters.

2.2.4 Numerical schemes

The basic equations in fluid dynamics are well known balance equations conserv-
ing different continuous properties (mass, momentum, energy). These equations
are represented locally by partial integral differential equations. The finite volume
approach discretizes the spatial domain of the balance equation. The physical
quantities are approximated with a desired polynomial of a specific order. Main
fluid dynamic codes use first or second order schemes. The second area of alge-
braization takes place on the semi-infinite temporal domain. An implicit or explicit
finite difference scheme approximates the time derivative of the balance. Due to
stability purposes, time and spatial discretization have to be tuned accordingly.

Generally, CFD solvers work over two loops. The first loop steps forward in time.
Whereas the second loop solves the nonlinear spatial problem iterative until the
residues are sufficiently low. Both loops have to solve algebraic systems of equa-
tions.

Temporal discretization

Time dependent balance equations use implicit or explicit finite difference schemes
to approximate the time derivative. The semi-infinite temporal domain is fitted by
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different schemes of first or higher order (Euler, Crank Nicolson, Adam Bashford).
Since the domain is semi-infinite, only initial conditions have to be set at time
zero. This initialization can be rather simple or a more educated guess, e.g. a
steady-state flow simulation field. A rule of thumb suggests to resolve a spatial
rotation of one degree with the time discretization.

Spatial discretization

A generic balance equation consists of two main terms, the temporal change in
the volume, which balances the second term and the surface discharges. These
equations are represented locally by partial integral differential equations. The
finite volume approach discretizes the spatial domain of the balance equation. The
integral form of the balance equation is transformed by the divergence theorem.
This lowers the order of spacial derivative and widens the functional space of the
solution.

The basic steps deriving a finite volume method are applied to following equa-
tions:

u,t + u,xx + u,yy = 0 t ∈ [0, T ] V ∈ ([0, 1]× [0, 1]) (37)
u(0, x, y) = 0 (38)
u(t, 0, y) = u(t, 1, y) = u(t, x, 0) = u(t, x, 1) = 0 (39)

• Similarly to other discretization methods, the finite volume method starts
by integrating the partial differential equation over the whole domain and
applying the divergence theorem.

∫
V
u,tdV +

∫
A

(u,xdAx + u,ydAy) = 0 (40)

• The domain is split into sub-domains. In the center of each, a grid point is
located, where the field variables are approximated.

∫
Vi
u,tdV +

∫
Ai

(u,xdAx + u,ydAy) = 0 (41)

• The continuous field is approximated at three different mathematical levels.
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– Quadrature of the integral:
∫
Vi

dV = Vi (42)

– Interpolation of the cell center values (full integer values) to the faces
(half values):

u(i+1/2,j),x = u(i+1,j) − u(i,j)

x(i+1,j) − x(i,j)
(43)

– Finite difference approximation of the time derivatives:

Vi
uτ+∆t − uτ

∆t +
∑
Ai

(uτ,xdAx + uτ,ydAy) = 0 (44)

The incompressible Navier-Stokes equations are solved in the same way. The PDE
(partial differential equation) is cast into a algebraic system of the velocity and
pressure field. The two sets of coupled equations are then solved together.

2.3 Simulation theory

The simulation process consists of three main steps: modeling, solving and vali-
dation of the results. The modeling step suits the natural process into a physical
model describing the phenomena. The physical problem is then transformed into a
mathematical model. Usually there are no analytic solutions available in the case
of nonlinear partial differential equations defined on complex boundaries. Hence,
the model is solved numerically. In the simulation step, the numerical mathemat-
ical model is solved and the post processor provides modified output data. The
final validation checks the model assumptions and ensures a high model quality.
[23]

Figure 2.5 shows the principal steps during a simulation. This simulation process
is not straight forward and has to be overcome in an iterative manner.

2.3.1 Natural process

The denotation natural process describes any transformation of states occurring
in the real world. Often the processes cannot be observed directly, only inputs
and outputs are measurable. The real world input and output data is used during
the model validation, which is part of the simulation procedure. In the considered
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Figure 2.5: Generic simulation procedure, modeling a natural process in physics

simulation the natural process is the flow trough the Francis turbine of the Tokke
model.

2.3.2 Physical model

The physical model aims to represent the problem in terms of physical expressions,
not necessarily as equations. From these laws and assumptions a mathematical
model is derived. In experimental modeling a lot of tools are available to ob-
tain models. Based on conservation laws and continuum theory, a classical way is
chosen to express the physical model through partial differential equations. The
conservation of mass is expressed by the continuity equation, whereas conservation
of momentum is expressed by the Navier-Stokes equations. This coupled nonlinear
boundary and initial value problem, challenges mathematicians all over the world.
Fortunately, numerical solvers can cope with these types of problems. However,
these mathematical models are based on assumptions, simplifying the natural pro-
cess. With every assumption a particular party of reality is lost. So the results of
the physical model deviate from experimental data systematically. If some model
parameters are estimated experimentally, the model should not be over-fitted to
something it cannot describe.
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2.3.3 Simulation

The simulation procedure is the core step in solving the natural process. Numerical
computation is used to solve the mathematically expensive equations, for which
no analytic solutions are available. The main advantage of numerical code is
its flexibility, coping with a lot of different mathematical problems and complex
domains. The numerical simulation tools described herein, use a mesh-grid to
simplify the domain shape. The simulation step consist of three sub-steps. Pre-
processing starts with the generation of the computation domain and the grid.
Following this, the user specifies the numerical set up of the computation and the
output control procedure. The solver analyzes the pre-processed files and computes
the desired results. In the final step, post processing, the solver output is modified
taking into account the simulation objectives.

Pre-processor Pre-processing is the most time consuming and challenging part
of numerical simulation. It starts with providing the relevant geometry of the
model. The engineer decides the required extension of the computation domain
by considering the relevant influences. With this geometry a grid is generated.
Generally, two types of structurally different grids are worth considering. An
unstructured grid is calculated automatically with medium mesh quality, but the
invested time to mesh the domain is low. Alternatively, a block structured grid
can be adapted with nearly no automation. After a first computation, a structured
mesh refinement is performed to resolve physically interesting domains. Generally,
the mesh grid shall be finer in the areas of huge gradients. During grid generation,
grid quality parameters are considered to obtain a high quality grid.

The next step in pre-processing is the set up of the numeric model. First, initial
values and the boundary values of the equations have to be set. The desired
numerical schemes and the output values are defined during pre-processing. After
the total model setup, a run check on the established model is carried out to
determine basic simulation errors.

With the final simulation setup, a grid convergence study is performed to check
the convergence capabilities of the set up.

Solver The model is solved on a server or any other computers with reasonable
resources to perform a fast calculation of the problem. The solving processes have
to be splittable to distribute them on a multi-core machine. This step requires
computational power to interpret and solve the predefined human input.
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The solver has to tackle initial value problems. This can be either processed implic-
itly or explicitly. Generally, implicit solvers are slower but more stable. Boundary
values are incorporated in the solving procedure, which requires to solve a spatial
algebraic system. The algebraic system of equations is obtained by discretizing
the partial differential equations. The solver overcomes the problem in an itera-
tive manner. Stepping one time interval into the future (first computational loop)
and then evaluating the spacial algebraic system in an iterative manner (second
computational loop) until it fulfills the applied convergence criteria.

The final process at each time step, or after a number of time steps, is to write
the required results into the output files.

Post-processor After solving the model, output specific action is required to
extract relevant data from the results. Here the resolution of physical interesting
regions is judged. If it is too low the mesh is adapted adequately. The main
post-processing outputs are tables of global and local variables, contour plots on
surfaces and special model specific plots.

2.3.4 Validation of the results

The post processing provides and modifies the computational data to validate the
results. The computed results are either validated against experimental data or
against results of a more realistic model. During validation, two main checks are
considered:

• Are the assumptions of the model valid?

• Is the established model capable of predicting the natural process?

The validation is the most important part of the whole simulation chain. It ensures
a model that can reproduce the real world with a specific confidence.

Finally, do not confuse the term verification with validation:

• Verification is to check the correct implementation of the physical model
as code. It ensures that the computation finds a solution to the physical
model, not the real world problem.

• Validation is to check that the models assumptions hold and that the model
has the same transformation behavior as the real process.
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2.3.5 Grid convergence method

The uncertainty of the mesh is quantified by a grid convergence study. The con-
vergence properties and the error of the computational grid are of main interest.
Thus, one coarser and one finer grid are meshed. On the basis of these grids
the uncertainty of the computational grid is quantified [24]. With this method the
error of the solution is bound to a specific value expressed by the GCI (grid conver-
gence index) of the extrapolated value. The extrapolation is based on Richardson
extrapolation of the physical quantity G.

Gext ≈ G1 + G1 −G2

rpG − 1 (45)

Furthermore, a procedure using three grids is able to verify the code’s order of
convergence [24].

To standardize the reporting of uncertainty, ASME (American society of mechan-
ical engineers) [25] proposed a guideline of reporting uncertainty in fluid dynam-
ics.
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3 Test rig

The test rig, illustrated in figure 3.1, is a scaled down model of the Tokke power
plant in Norway. Details about the Tokke power plant are given in the theo-
retical section 2.1.1. The corresponding model is located in Trondheim and the
runner, as the core part of a hydraulic turbo-machine with a diameter of 0.349m,
was designed at NTNU (Norges teknisk-naturvitenskapelige universitet). All mea-
surements were carried out using the Tokke model in open loop mode. During
measurement process, the control units ensured steady-state operating conditions.
The test rig consists of a pressure vessel providing an equivalent pressure to 12 me-
ters of water. A piping system links the pressure tank to the spiral casing. Seven
long and seven short stay vanes stabilize the spiral casing mechanically. Coming
through the spiral the water is applied to the runner by 28 adjustable guide vanes.
The runner, consisting of 15 full length blades and 15 splitters, transfers the energy
of the flow into electric energy via the generator. After the runner, the flow passes
an elbow draft tube due to efficiency purposes and finally leaves the hydraulic
turbo-machine to the downstream tank. The information provided in this section
is based on the Francis 99 workshop webpage[1].

Figure 3.1: Tokke test rig at NTNU in open loop mode[1]
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Geometry of the Tokke model

The geometry of the computational model is provided by the Francis 99 workshop
and includes every physical part between the inlet of the spiral casing and the
outlet of the draft tube. The turbine’s shape is uniquely defined by 2D-drafts.
The physically imposed structure of the simulation domain is illustrated in figure
3.2 with two separate stationary domains and a rotating domain.

Inlet

Outlet

Stationary domain I

Stationary domain II

Rotating domain

Interfaces

Figure 3.2: Structure of the hydraulic turbine model Tokke, provided by the
Francis 99 workshop[1]

Operating conditions

Table 3.1 summarizes the presented operation conditions of the three operating
points of the Tokke Francis turbine model. The quantities in the table are evalu-
ated experimentally. The kinematic viscosity ν is 9.57 · 10−7m2/s for all operating
points. The gravitational constant g is 9.821m/s2 in Trondheim.
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Table 3.1: Operating conditions proposed for the Francis-99 workshop; Operat-
ing conditions for the LDA measurements (∗) [4]

Objective Unit PL BEP HL PL∗LDA BEP∗LDA HL∗LDA

H m 12.290 11.910 11.840 12.290 12.77 12.61
Q m3/s 0.071 0.203 0.221 0.071 0.21 0.23
n 1/s 6.770 5.590 6.160 6.770 5.74 6.34
α deg 3.910 9.840 12.440 3.91ß0 9.84 12.44
ηM % 71.690 92.610 90.660 72.500 92.40 91.00
T Nm 137.520 619.560 597.990 - - -
Tfr Nm 6.540 8.850 7.630 - - -
∆p kPa 120.394 114.978 114.033 - - -
pin kPa 219.930 216.540 210.010 - - -
ρ kg/m3 999.230 999.190 999.200 999.230 999.19 999.20

Experimental data

Measurements of fluid velocity and pressure are provided by the workshop to val-
idate the CFD simulation against physics. Pressure sensor positions are summa-
rized in table 3.2 and illustrated in figure 3.3. The abbreviations used in the table
refer to the location in the corresponding figure.

Table 3.2: Cartesian coordinates of pressure sensors

Cart. Pressure Sensors
Coord. Unit VL01 S51 P42 P71 DT11 DT21

- - - - - - - -
x mm 262.3 -80.0 0.07 -66.6 -90.4 90.4
y mm 193.5 83.8 179.40 42.3 156.6 -156.6
z mm -29.6 -50.9 -52.90 -86.0 -305.8 -305.8

The sensor VL01 is located in the vaneless space between the guide vanes and the
runner blades. Sensors DT11 and DT21 are positioned near the wall in the draft
tube entrance immediately after the runner outlet. P42 and P71 are two sensors
measuring the static pressure on the pressure side of the runner’s main blade. S51
is placed at the runner’s blade suction side.
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Figure 3.3: Pressure sensor positions[1]

The velocity measurements were carried out by Laser Doppler Anemometry (LDA)
along two lines in the draft tube (figure 3.3 and table 3.3). The first line is located
next to the runner draft tube interface and the second line further along the draft
tube, but prior to the elbow. The origins of the two lines are given in table 3.2. In
the best efficiency point and in the high load point, vibrations interfered the mea-
surements. Thus, the operating conditions were changed consistently to the one
of table 3.1. All columns with a LDA subscript display the current measurement
conditions of the available velocity data.

Table 3.3: Cartesian coordinates of the LDA measurement points

Cart. Coord. Unit Top Line Bottom Line
- - Start End Start End
x mm 0 -178.9 0 -196.5
y mm 0 0 0 0
z mm -243.4 -243.4 -561.4 -561.4

Negative axial components of the velocity is towards the stream-wise direction
in the draft tube and positive radial direction in the runner’s rotational direc-
tion. Several LDA measurements were carried out along these lines for the three
operating conditions and the data was provided via the workshops webpage.
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4 Numerical setup

4.1 Numerical setup - Grid independence study

A grid convergence study, based on Richardson extrapolation, quantifies the nu-
merical uncertainties due to uniform grid refinement. The domain of this steady-
state simulation is one rotational periodic passage of the turbine model. The
numerical error due to the discretization and the actual order of convergence, are
evaluated by three uniform grid refinement stages. The blocking of the components
was provided by [4].

Grid

The one passage model’s inlet domain mesh is embedded in a simplified periodic
slice of the geometry, with a pitch angle of π/7. Figure 4.1 shows the obtained
final grid, with y+

mean ∼ 30.

Figure 4.1: One passage model’s inlets mesh grid structure y+
mean ∼ 30
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The guide vane mesh is seeded in one of the 28 passages. Figure 4.2 shows the
obtained grid. The guide vane is meshed separately for all three operating points
(PL, BEP, HL), with a slightly tilted guide vane.

Figure 4.2: One passage model’s guide vanes mesh grid structure y+
mean ∼ 30

The runner’s mesh of the one passage model is ingrained in a simplified periodic
geometry, with a pitch angle of 2π/15 (figure 4.3).

Figure 4.3: One passage model’s runners mesh grid structure y+
mean ∼ 30

The one passage model’s mesh of the draft tube, is a block structured grid consist-
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ing of 30 hexahedron blocks. Figure 4.4 shows the reference grid. The cells grow
towards the draft tube outlet to minimize the total cell number.

Figure 4.4: Grid structure y+
mean ∼ 30 of the draft tube’s mesh

Table 4.1: Summary of the one passage model’s mesh grid with three uniform
refinements

coarse medium (reference) fine
Total Cells 213k 504k 1227k
Grid refinement factor - 1.33 1.35
Determinant >0.3 >0.22 >0.17
Angle >12◦ >12◦ >11.7◦
Refinement ratio 1.3 1.3 1.3

Solver setup

The grid convergence study is set up in commercial code. The flow domain (figure
4.5) is separated into the relevant sub-domains (stay vane inlet, guide vane, runner
and draft tube). The solver domain and the rotor-stator interface are based on
the findings in paper [4], where no significant differences occur between the model
domain setup and the type of the rotor-stator interface. The fluid properties are
chosen according to the operation point in table 3.1. The turbulence is modeled
based on the RANS, which is closed by the two equation turbulence model kω-
SST, using automatic wall functions. A simple subsonic mass flow is applied at
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Figure 4.5: Total mesh of the one passage model

the inlet with an incident angle of 9 degrees. This angle places the stagnation
point in the center of the stay vane. A uniform turbulent intensity of 0.05 and a
turbulent length scale of 0.01m are set at the inlet condition, considering medium
turbulence in the incoming flow. All walls are enhanced with no slip boundaries and
are assumed to be perfectly smooth. The general grid interface (GGI), connects
the opposing periodic faces of the distributor and the runner. The stationary
parts of the Francis turbine are also connected via the general grid interfaces. The
frozen rotor interface connects the rotating and stationary domain by conserving
the interface flux. The outlet is modeled with the opening condition allowing a
reentering flow, with a Dirichlet boundary condition for the pressure (0Pa). The
fully coupled solver’s convergence is assessed by a number of criteria (monitor
points and global variables) and the solver aborts the run automatically, after
satisfying the specified minimum residues. The defined monitoring points and the
global variables are set according to the available experimental data. The solver
setup is briefly summarized in table 4.2.
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Table 4.2: Computation model summary of the steady-state commercial code one
passage model

Computational Domain One passage
Operating point BEP
Cells Hexahedron
Grid type Block structured grid, structured refinement
y+
mean 30
Code Commercial code
Analysis type Incompressible steady-state
Advection term High resolution
Turbulence High resolution
Convergence criteria residue of 10−8

Turbulence model kω-SST
Inlet subsonic mass flow inlet
Oulet opening condition, Dirichlet BC for the pressure
Walls smooth, no slip
Interfaces Stator/rotor (GGI) Frozen rotor, conservation of

flux; Stator/stator (GGI)
Fluid continuous incompressible isothermal Newtonian

water

4.2 Grid independence study - steady-state
simulation

In the BEP, a grid independence study shows monotonic convergence for global
quantities using three different refinement states based on y+

mean ∼ 30. Index 1
corresponds to the fine grid, index 2 refers to the medium (reference) mesh density
and index 3 to the coarse mesh. As suggested in the corresponding guideline,
a uniform grid refinement ratio of greater than 1.3 is used. The performed grid
convergence procedure follows the ASME guideline of reporting uncertainties in
fluid dynamics [25]. To avoid computational costs the grid study is performed with
the one passage model.

The three different grid refinements of the y+
mean ∼ 30 grid are reported in table 4.4.

In order to limit computational costs, a total cell number of 5M for the full model
is the overall goal. The uncertainty of this grid is quantified by the GCI, based on
Richardson extrapolation with three grids. Having three uniformly refined grids,
the order of convergence pG is calculated and judged by the formal order of the
numerical scheme. One coarser and one finer discretized solution, estimate the
medium grids numerical uncertainty, as suggested by Roache to quantify the error
of the computational grid. The grid convergence study is summarized in table
4.3.
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Table 4.3: Summary of the grid convergence method of the y+
mean ∼ 30 grid;

numerical uncertainty of the net head and the efficiency

Quantity G Unit H η

Measurement - 11.91 92.61
r21 - 1.35 1.35
r32 - 1.33 1.33
G1 - 13.61 87.88
G2 - 13.82 87.57
G3 - 14.11 86.79
Gext - 13.13 88.08
pG - 1.22 3.21
GCI32 % 6.02 0.69
GCI21 % 4.43 0.28

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

13.2

13.4

13.6

13.8

14

14.2

Normalized grid space hi

N
et

he
ad

Extrapolation
Commercial code

Figure 4.6: Monotonic convergence of the net head

The net head and the efficiency of the Tokke turbine show monotonic convergence,
as illustrated in figure 4.6 and 4.7, respectively. The net heads order of convergence
is 1.22. The tendency of the estimated net head directs towards the experimental
value. The GCI of the extrapolated net head

Hext ≈ H1 + H1 −H2

rpH − 1 (46)

is in the tolerated range for the y+
mean ∼ 30 grid with a value of 6%.

The order of convergence for the efficiency is higher than the order of the numerical
scheme. Since the efficiency is a combination of two global quantities, the order of
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Figure 4.7: Monotonic convergence of the net efficiency

convergence depends on two individual global quantities.

ηext ≈ η1+η1 − η2

rpη − 1 ≈ C
T1 + T1−T2

rpT−1

H1 + H1−H2
rpH−1

≈ C
T1

H1
+C T1 − T2

H1 −H2

 1
C

1
rpT−1

(
1 + H1−H2

H1(rpH−1)

)
H1

H1−H2
+ 1

rpH−1


(47)

From this equation the formal order of convergence for the efficiency is estimated
by

pη ≈

log


 1
C

1
rpT −1

(
1+ H1−H2

H1(rpH−1)

)
H1

H1−H2
+ 1
rpH−1

−1

+ 1


log(r) = 3.3 (48)

. This value is very close to the computed efficiency convergence order. Since the
order is high, the GCI value is in the superior range with 0.7% for the reference
grid. An additional possibility of a high convergence order might originate from
the cancellation of errors [24].

The grid convergence method verifies the ability of monotonic convergence of the
medium (reference) grid. All further computations are based on this grid type
meeting computational efficiency and validity of the calculated quantities. In con-
trast to the domain extension of the grid study, the following numerical studies are
conducted by considering the full model domain and the medium mesh refinement
of the grid study.
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4.3 Numerical setup - Steady-state simulation

Grid

The full model’s distributor mesh is separated at two additional interfaces. One
interface is located between the outer spiral case (SC) and the stay vane section
(SV). The second interface connects the stay vanes and the adjustable guide vanes
(GV) of the distributor. Figure 4.8 shows the obtained final grid of the SC and
SV section. The blocking of the components was provided by [4].

Figure 4.8: Mesh structure y+
mean ∼ 30 of the full model’s spiral case

The guide vane’s mesh differs slightly for all three operating points (PL, BEP and
HL), since the guide vane angle changes. The one passage model’s medium meshes
of the guide vane and the runner (RN) are mapped to a fully rotational domain
(figure 4.9) to fit the full model setup. The draft tube’s (DT) medium mesh of the
one passage model, propagates the flow towards the outlet boundary.
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Table 4.4: Mesh grid summary of the full model’s grid

Grid Full model
Spiral case 511k
Stay vanes 610k
Guide vanes 1695k
Runner 2177k
Draft tube 268k
Total cells 5260k
Determinant >0.22
Angle >12◦
Refinement ratio 1.3

Figure 4.9: Mesh details of the full model’s grid

Solver setup

The full model’s mesh is used to set up a steady-state flow simulation in commercial
code. The flow domain is separated into the relevant sub-domains (spiral case, stay
vane, guide vane, runner and draft tube). During the steady-state simulation all
three operating conditions are considered to show the capabilities of the simulation
tool in the characteristic conditions. The fluid properties are chosen according
to the operation points (PL, BEP and HL) in table 3.1. The RANS equations
are closed by the two equation turbulence model kω-SST, using automatic wall
functions. A simple subsonic mass flow is applied at the inlet perpendicular to
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the inlet surface of the spiral case. A uniform turbulent intensity of 0.05 and a
turbulent length scale of 0.01m, are set at the inlet condition, considering medium
turbulence in the incoming flow. All walls are enhanced with no slip boundaries
and are assumed to be perfectly smooth. The stationary parts of the Francis
turbine are connected at the interface through general grid interfaces. Mixing
plane interfaces, connect the rotating and stationary domain by the stage average
velocity downstream constraint at the interfaces. The turbine axis of rotation
is the negative z-axis of the coordinate frame. The outlet is modeled with the
opening condition allowing a reentering flow, with a Dirichlet boundary condition
for the pressure (0Pa). The fully coupled solver’s convergence is assessed by a
number of criteria (minimum residues, monitory points and global variables). The
defined monitoring points and the global variables are set according to the available
experimental data. The solver setup is briefly summarized in table 4.5.

Table 4.5: Computation model summary of the steady-state commercial code full
model

Computational Domain Full model
Operating points PL, BEP and HL
Cells Hexahedron
Grid type Block structured grid, structured refinement
y+
mean 30
Code Commercial code
Analysis type Incompressible steady-state
Advection term High resolution
Turbulence High resolution
Convergence criteria residue of 10−8

Turbulence model kω-SST
Inlet Subsonic mass flow inlet
Oulet Opening condition, Dirichlet BC for the pressure
Walls Hydraulically smooth, no slip
Interfaces Stator/rotor (GGI) Stage mixing model, stage av-

erage velocity; Stator/stator (GGI)
Fluid Continuous incompressible isothermal Newtonian

water
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4.4 Numerical setup - Unsteady simulation

4.4.1 Solver setup - Commercial code

The grid is the same as the one used in the steady-state simulation, with 5M cells.
During the unsteady simulation all three operating conditions are considered to
show the capabilities of the simulation tool in the characteristic conditions. The
fluid properties are chosen according to the operation points (PL, BEP and HL) in
table 3.1. Initialization of the fluid domain is based on the steady-state simulation
results. A total time corresponding to one rotation is chosen with a resolution
of 1.006 degree in the BEP condition. The time is discretized by a second order
backward Euler scheme. The remaining parameters of the unsteady simulation are
chosen according to the steady-state simulation.

The stationary parts of the Francis turbine are connected at the interface via a
general grid interfaces.

Table 4.6: Computation model summary of the unsteady commercial code full
model

Computational Domain Full model
Operating points PL,BEP and HL
Cells Hexahedron
Grid type Block structured grid, structured refinement
y+
mean 30
Code Commercial code
Analysis type Incompressible unsteady, total computation time

corresponding to one rotation of the turbine, with
a resolution of 1.006 degree in the BEP condition

Transient num. Second order backward Euler
Advection term High resolution
Turbulence num. High resolution
Convergence criteria max residue of < 10−8

Turbulence model kω-SST
Inlet Subsonic mass flow inlet
Oulet Opening condition, Dirichlet BC for the pressure
Walls Hydraulically smooth, no slip
Interfaces Stator/rotor (GGI) Unsteady rotor-stator inter-

face, conservation of interface flux; Stator/stator
(GGI)

Fluid Continuous incompressible isothermal Newtonian
water

Unsteady rotor-stator interfaces connect the rotating and stationary domains by
conserving the interface flux. The solver setup is briefly summarized in table 4.6.
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4.4.2 Solver setup - OpenFoam

To investigate the capabilities of the free software package OpenFoam, an unsteady
flow simulation is set up. The grid is the same as the one used in the commercial
code simulations, to maintain comparability. In OpenFoam only the BEP condi-
tion is investigated. The Newtonian fluid properties are chosen according to the
operation condition in table 3.1.

Table 4.7: Computation model summary of the unsteady OpenFOAM full model

Computational Domain Full model
Operating point BEP
Cells Hexahedron
Grid type Block structured grid, structured refinement
y+
mean 30
Code OpenFoam 2.3.1
Analysis type Incompressible unsteady, total computation time

corresponding to five rotations of the turbine, with
a resolution of CFL<5

Transient num. Second order backward
Advection term Second order
Turbulence num. Second order
Convergence criteria resp < 10−7 and resU,k,ω < 10−5

Turbulence model kω-SST
Inlet U,k,ω Dirichlet; p Neumann
Oulet U,k,ω Neumann; p Dirichlet
Walls Hydraulically smooth, no slip
Interfaces cyclicAMI
Fluid Continuous incompressible isothermal Newtonian

water

Initialization of the fluid domain is based on uniform fields for the variables p, U, k
and ω. A total time corresponding to five rotations1 is taken with a variable time
resolution corresponding to a CFL-number (Courant-Friedrichs-Lewy-number) less
than five. The turbulence is modeled by a RANS two equation kω-SST turbulence
model, using automated wall functions. A uniform Dirichlet inlet condition for the
velocity (Uin = Q/Ain=2.323m/s) is set perpendicular to the inlet surface of the
spiral case. A uniform turbulent intensity of I = 0.05

kin = 3
2(UinI)2 = 0.0203m2

s2 (49)

1The lengthy computation was not carried out until the preferable final time, since the compu-
tational process showed typical convergence.
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and a turbulent length scale of lt = 0.01m

ωin = C−1/4
µ

√
k

lt
= 26.031

s (50)

is set at the inlet condition, considering a medium turbulence in the incoming
flow.[26]

All walls are enhanced with no slip boundaries and are assumed to be hydraulically
smooth. The separated parts of the Francis turbine are connected at the interface
via an arbitrary mesh interface (AMI). The outlet is modeled with a Neumann
boundary for the velocity, and a Dirichlet boundary condition for the pressure
(0Pa, reference). Combining the SIMPLE (relaxation factors to increase stability)
and PISO algorithm (PIMPLE), convergence is assessed by the residuals (resp <
10−7 and resU,k,ω < 10−5). Second order schemes are chosen to evaluate the
numerical approximations. The defined monitoring points and the global variables
are set according to the available experimental data. The solver setup is briefly
summarized in table 4.7.
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5 Results

In this section the results of the previously discussed model setups are presented
and compared to the experimental data. At first, the deviations of the global quan-
tities and the mean values of the static pressure are validated against the provided
data. Thereafter, the velocity data is investigated and compared to available lit-
erature of the Tokke model turbine. The unsteady properties of the fluctuating
pressure in the turbine are discussed in the time domain and the frequency domain.
Finally, the losses in the distributor and the draft tube are pointed out.

5.1 Integral quantities

The measured data of the integral quantities are summarized in table 3.1 for
all three operating points. The relative deviations G% of the computed integral
quantities GCFD to the experimental data GEXP

G% = GCFD −GEXP

GEXP

(51)

are reported in table 5.1. The integral values H and T are computed by the mass
flow average of the local quantities on the corresponding surfaces. All unsteady
simulation results are averaged over the last 180 time steps, corresponding to one
half rotation. The steady-state simulation quantities are averaged over the last
100 iterations. The hydraulic efficiency, estimated with the CFD software ηCFD,
is given by the equation

ηCFD = (T − Tfr)ωr
ρgHQ

(52)

incorporating the friction torque of the seals. The deviation to the experimental
value reported in table 5.1 is defined as

η% = ηCFD − ηEXP (53)

Commercial code: Both the unsteady and steady-state simulation, obviously show
correlations in the results at the BEP and HL regime. Generally, the torque and
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the net head are overestimated by commercial code at these operating points. The
deviations of the estimated values lie in a range G% < 10%. The two global
quantities are not captured well, but since they deviate in a similar way, the
estimated hydraulic efficiency is predicted surprisingly well, with η% < 1.5%.

In PL no obvious trend of the integral quantities is evident. Generally, the devia-
tions are higher compared to the other operating points. Due to stability problems
in commercial code the numerical scheme modeling turbulence was reduced to first
order. The steady-state simulation in commercial code underestimates the abso-
lute value of the integral quantities, whereas the unsteady simulation overestimates
those quantities.

The general tendency of over-estimating the global quantitiesH, T goes back to the
fact that several losses are ignored. The friction torque and leakage flow through
the seals are not considered in the CFD simulation, but result in additional losses.
Thus, losses due to the friction are compensated by the experimental friction
torque. Jošt et al. [6] estimated the friction and the volumetric losses using the
kω-SST-CC-KL turbulence model in their CFD simulation, which can be used for
further compensation. Generally, the finer grid’s solution has a smaller deviation
from the experimental values compared to the simulation results of Lenarcic et
al. [4]. The unsteady results behave qualitatively similarly as in the simulation
presented by Trivedi et al. [8].

OpenFoam deviates more than the commercial code simulation results for the head
and the hydraulic efficiency, and deviates less for the torque.2

Table 5.1: Relative deviations of integral quantities between computed results
and measurements using OpenFoam(OF)/Commercial code(COM),
steady-sate(S)/unsteady(US) simulation

OP Config Unit H T η

PL COM,S % -4.38 -10.38 -8.99
COM,US % 6.38 18.47 4.87

BEP
OF,US % 20.11 2.23 -13.22
COM,S % 8.36 8.86 -0.33
COM,US % 9.29 9.99 -0.16

HL COM,S % 2.28 3.96 1.11
COM,US % 3.07 5.09 1.4

2The computation was not carried out until the preferable final time, since the computational
process showed typical convergence.
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Summary global quantities Both the unsteady and steady-state simulations,
show obvious parallels in their results at the BEP and HL regime. Generally
the torque and the net head are overestimated by commercial code at these two
operating points. The deviations of the estimated values lie in a range G% < 10%.
The two global quantities are not captured well, but since they deviate similarly,
the estimated hydraulic efficiency is predicted surprisingly well η% < 1.5%. In PL
no obvious trend of the integral quantities is evident, but the deviations are higher
compared to the other operating points η% < 9%. The simulation using a finer
grid allowed more accurate results compared to the simulation results of Lenarcic
et al. [4]. The unsteady results behave qualitatively similar to the simulation
presented by Trivedi et al. [8]. Including the runner side spaces may result in a
further improvement of the predicted global quantities. OpenFoam is not capable
of predicting the efficiency compared to the experimental data and commercial
code. The efficiency deviates by η% = −13.2%.

5.2 Mean static pressure

The measured time series data of the static pressure probes, is available on the
Francis 99 workshop webpage [1]. The time averaged pressure values at the eval-
uated locations are summarized in table 5.2.

Table 5.2: Pressure data at the pressure sensor locations (VL01, DT11, DT21,
P42, P71, S51)

OP Unit VL01 S51 P42 P71 DT11 DT21
PL kPa 175.45 94.66 104.91 88.77 101.55 101.38

BEP kPa 171.64 103.70 117.65 100.11 102.78 102.28
HL kPa 182.64 103.82 118.10 99.43 101.65 100.78

The relative deviations p% of the computed pressure probes pCFD compared to the
experimental values pEXP

p% = pCFD − pEXP
pEXP

(54)

are reported in table 5.3. The pressure level is adjusted according to the mismatch
between the experimental data and the Dirichlet boundary condition of the static
pressure in the numerical simulation. The static pressure data is averaged over
the last 180 physical time steps in the unsteady simulation, or over the last 100
iterations of the steady-state simulation.
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Table 5.3: Relative deviations of static pressure between computed results
and measurements using OpenFoam(OF)/Commercial code(COM),
steady-sate(S)/unsteady(US) simulation

OP Config Unit VL01 S51 P42 P71 DT11 DT21

PL COM, S % 0.36 3.65 7.83 4.43 -2 -1.86
COM,US % 2.36 5.45 7.29 5.12 -2.03 -2.14

BEP
OF,US % 8.4 -1.6 6.2 -2.9 -6.6 -6.5
COM, S % 4.36 8.56 4.17 4.67 -2.64 -2.15
COM,US % 5.26 8.47 4.18 4.64 -2.64 -2.14

HL COM, S % -2.44 4.86 2.53 0.16 -7.34 -6.52
COM,US % -1.85 5.08 2.91 0.2 -7.34 -6.51

In commercial code a maximum relative deviation of the static pressure occurs at
the measuring point S51 on the suction side of the runner blade, with a value of
p% < 8.6%. Generally, the static pressure data is conform to the experimental
data. The CFD simulation overestimates the average static pressure in the ro-
tating domain, and underestimates the average static pressure in the draft tube.
In summary, some flow phenomena are not captured by the flow simulation in
the region of the runner draft tube interface. The information of the fluctuating
pressure is discussed in section 5.4.

These results are in accordance with the simulation of Nicolle and Cupillard [2]
and Buron et al. [3]. Compared to the simulation results of Lenarcic et al. [4], the
relative pressure deviation of the steady-state and unsteady flow simulation show
no improvement and the same tendency.

Compared to the results of commercial code, OpenFoam predicts the pressure data
in the acceptable range. The highest deviation occurs at the sensor location VL01
with a static pressure deviation of p% < 9%.

Summary mean pressure In the commercial code simulation a maximum relative
deviation of the static pressure occurs at the location S51 on the suction side of the
runner blade with a value of p% < 8.6%. Since the pressure probes in the runner
are overpredicted and in the draft tube underpredicted some flow phenomena are
not captured accurately in this region. These results are in accordance with the
simulation of Nicolle and Cupillard [2],Buron et al. [3] as well as Lenarcic et al. [4].
The local static pressure data estimated by OpenFoam shows a similar tendency
as the results of the commercial code simulation.

S. J. Schoder



CHAPTER 5. RESULTS 45

5.3 Averaged velocity field in the draft tube

The time averaged data of the velocity measurements at the top and bottom line
in the draft tube are available on the Francis 99 workshop webpage [1]. The time
averaged velocity data in figure 5.1 to figure 5.3 are labeled as LDA. A abscissa
value of r/r0 = 0 indicates the center of the draft tube, whereas a value of r/r0 = 1
refers to the smooth wall of the draft tube. The CFD velocity data is averaged to
mimic the provided averaged LDAmeasurement data and illustrate the similarities.
The steady-state simulation results are averaged over the 100 most recent values
and the unsteady time average values are computed by considering the last 100
time steps. The velocity probes’ locations of the experiment and CFD simulation,
coincide to maintain comparability of the results. Between the simulation results
linear splines fit a continuous curve through the estimation. In PL and HL only
steady-state and unsteady simulations in commercial code are performed.

At PL, the CFD data captures the experimental velocity profile accurately (figure
5.1), even though the order of the turbulent numerical scheme was lowered to the
first order. In the PL condition the characteristic swirl rotating in the runner’s
direction is captured correctly in the draft tube. The maximum is located in the
near wall region. The stream-wise velocity profile indicates that in the middle of
the draft tube reverse flow occurs until a normalized diameter of about r/r0 <

0.7. Outside this stagnation zone a strongly discharged region is located between
0.7 < r/r0 < 1. This phenomena is typical for the top and the bottom line in the
draft tube. Compared to the BEP and HL, the discrepancy in the PL condition is
surprisingly low. This fact meets the results of several papers [4], [5]. Towards the
wall the kω-SST turbulence model with automatic wall functions cannot capture
the boundary layer in stream-wise direction. As mentioned by Lenarcic et al.
[4] this can be attributed by the applied standard wall functions, limiting the
resolution of the boundary layer. At the bottom line, the circumferential velocity
component is slightly underestimated. Generally, steady-state and time averaged
unsteady results correspond, indicating no unsteady effects in the draft tube.

The commercial code simulation in the BEP condition (figure 5.2) captures the
experimental velocity profile in the stream-wise direction precisely, except for the
region near the runner’s rotational axis r/r0 < 0.2. However, the experimental
velocity decreases only moderately in this region. A strong counter-rotating swirl is
predicted incorrectly by the CFD simulation. This swirl may be the reason for the
deviation in the stream-wise direction near the rotational axis. The circumferential
velocity profile overestimates the experimental data in the region (0.1 < r/r0 <

0.7) of the swirl strongly. The steady-state and time averaged unsteady result are
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Figure 5.1: Results of the axial velocity (top) and circumferential velocity (bot-
tom) on the top line (left) and bottom line (right) at operating point
PL

0 0.2 0.4 0.6 0.8 1

−3

−2

−1

c w
(m

/s
)

LDA
COM S
COM US

0 0.2 0.4 0.6 0.8 1

−3

−2

−1

h LDA
COM S
COM US

0 0.2 0.4 0.6 0.8 1

−2

−1

0

r/r0

c θ
(m

/s
)

LDA
COM S
COM US

0 0.2 0.4 0.6 0.8 1

−2

−1

0

r/r0

h LDA
COM S
COM US

Figure 5.2: Results of the axial velocity (top) and circumferential velocity (bot-
tom) on the top line (left) and bottom line (right) at operating point
BEP

in good accordance at the BEP. The additional refinement considered in this work
does not affect the simulated averaged velocity profile significantly, compared to
Lenarcic et al. [4]. Compared to the experimental data, the swirl intensity is
predicted incorrectly, since a stronger vortex is formed in the simulation at BEP
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condition and not at the HL condition. The discrepancy of the circumferential
velocity is addressed by Aakti et al. [5].

The simulation of the HL condition (figure 5.3), captures the experimental velocity
profile in the stream-wise direction precisely, except for the region near the runner’s
rotational axis r/r0 < 0.2. Due to the small deviation in the prescribed operating
point, the results of the HL condition and the BEP condition are very near to
one another. A counter-rotating swirl is predicted by the CFD simulation, which
correspond to the measurement data at the HL regime.
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Figure 5.3: Results of the axial velocity (top) and circumferential velocity (bot-
tom) on the top line (left) and bottom line (right) at operating point
HL

The over-prediction of swirl in the region 0.1 < r/r0 < 1 can be the reason of the
deviation in the stream-wise direction at the rotational axis. In difference to the
BEP, the concentrated swirl is predicted slightly better. The prediction of the top
and the bottom line are similar. Steady-state and time averaged unsteady result
agree highly at the HL operating point. As for the BEP, the averaged velocity
components are similar to the results of Lenarcic et al. [4].

Summary mean velocities Steady-state and time averaged unsteady results are
in excellent correlation, indicating no unsteady effects in the draft tube velocity
profile. The velocity profiles in the PL condition are estimated surprisingly well.
At the BEP and the HL conditions, a strong swirl is predicted, which has no
similarities to the experimental data. The computed velocity profile coincides
with the profiles computed by Lenarcic et al. [4] and Aakti et al. [5].
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5.4 Pressure fluctuation

Furthermore, time dependent pressure data at the described probe locations was
provided by the Francis 99 workshop in the three given operating conditions (PL,
BEP and HL). The unsteady CFD simulation was also set up for PL, BEP as well
as HL and the time dependent pressure data was estimated at the same locations.
The simulated and the experimental data at all three operating points are depicted
in figure 5.4 to 5.6.

Generally, the characteristic sinusoidal frequency of the pressure fluctuations p′ is
captured with respect to time domain. The probes at the wall of the draft tube
are insufficiently reproduced in all three operating conditions. In the other points,
the dominant frequency and the amplitudes are captured, but pressure peaks are
highly damped out. Thus, the pressure spikes at the suction and pressure side of
the full length blade, are not estimated at all by the CFD simulation.

Using FFT the temporal data set is transformed to the frequency-amplitude do-
main. The pressure amplitudes p̂ are plotted as a function of the normalized
frequency fFT/n, where fFT corresponding to the frequency and n to the run-
ner’s rotational frequency. The pressure fluctuations in the frequency domain are
illustrated in figure 5.7 to 5.10.

The mean components of the static pressure data (presented in section 5.2) are
subtracted from the unsteady pressure data to reveal only the fluctuating pat-
tern.

p′ = p− p (55)

The pressure probes name’s (DT11, DT21, VL01, S51, P42 and P71), indicate the
location of the measuring points. In the figure’s legends these denotations refer to
the experimental data.

5.4.1 Pressure time domain

The characteristic unsteady pressure fluctuations in PL condition, are summarized
in figure 5.4 for the six pressure probe locations. At the two measuring points in
the draft tube DT11 and DT21, a long wave pattern can be recognized, referring
to the swirl in the draft tube. Higher frequency components are not accurately
captured by the simulation. In the vaneless space VL01, the general behavior
of the pulsations are reproduced. At the three runner blade sensors, the sinu-
soidal pattern is estimated, but the less frequent pressure peaks are insufficiently
resolved.
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Figure 5.4: Pressure data at operating point PL in real time

The temporal data of the pressure fluctuations in the design point BEP is pre-
sented in figure 5.5. The pressure probes at the draft tube’s wall and the higher
frequent pressure pulsations are insufficiently reproduced by the CFD simulation.
At the other locations (VL01, S51, P42 and P71), the dominant frequency and its
amplitudes are well captured. The lower frequent pressure spikes at the suction
and pressure side of the full length blade are fully dampened.
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Figure 5.5: Pressure data at operating point BEP in real time

The unsteady pressure fluctuations in HL condition are summarized in figure 5.6.
At the draft tube’s wall DT11 and DT21, the computed pattern of the CFD
simulation has no similarities to the experimental data. In the vaneless space
VL01, the general behavior of the pulsations are reproduced accurately. At the
three runner blade locations, the general pattern is captured by the simulation.
Only the lower frequent pressure spikes are insufficiently resolved in the runner
domain. As expected, the two off-design conditions (PL and HL) produce higher
pressure amplitudes.
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Figure 5.6: Pressure data at operating point HL in real time

5.4.2 Pressure frequency domain

The fluctuating pressure data of the experiments and the CFD simulation is ex-
amined in the frequency domain, investigating the linear superposition of charac-
teristic sinusoidal functions. The expected characteristic normalized frequencies
fFT/n are described in table 5.4.

The Fourier coefficients are processed using the FFT (fast Fourier transformation)
and extracting data up to the Nyquist frequency, which depends on the sample
frequency in the time domain. The resolution of the frequencies increases with the
total sample size Np.

p̂ = 2
Np

|F(p′)| (56)

The computed pressure amplitudes p̂ correspond to the illustrated time domain
data. The strongest vibrations are in the PL operating condition at the pressure-

S. J. Schoder



CHAPTER 5. RESULTS 52

Table 5.4: Dominant normalized frequencies fFT/n occurring in the rotor-stator
interaction (RSI)

fFT/n Description
1 The swirl in the draft tube induces a low frequent

pressure fluctuation at the draft tube probes DT11
and DT12.

15 Full length blades, splitter blades cause fluctua-
tions at the locations VL01, S51, P42 and P71.

30 Sum of the full length blades and splitter blades
indicate high amplitudes at the locations VL01,
S51, P42 and P71. (blade passing frequency)

14 The stay vanes have no clear visible influence on
the pressure fluctuation.

28 The 28 guide vane pressure peaks are visible on the
pressure and suction side of the full length blades
(S51, P42 and P71).

multiples Multiples of these frequencies occur to all that
dominant normalized frequency components listed
above.

side of the blade at the location P42.

The Fourier transformed data of the PL condition is presented in figure 5.7. Some
of the main frequency components are captured quite well with strong discrepan-
cies at other main features. The deviations are already pointed out in the time
domain data at the locations S51, P42 and P71. High pressure peaks occur with
a normalized frequency of 15 and 30, which are insufficiently reproduced. The
smooth harmonic with a normalized frequency of 28, corresponding to the guide
vanes number, is captured in these three locations. In the draft tube the low
frequent fluctuation’s tendency is predicted referring to the rotation of the swirl.
The back-propagation of the passing runner blades is estimated well at the location
VL01.

The pressure fluctuations in the BEP condition are presented in figure 5.8. The
main components of table 5.4 are captured in the vaneless space VL01. As already
pointed out while discussing the time domain data, some frequency components
at the locations S51, P42 and P71 are not present at all. As indicated for the
other operating points, the high pressure peaks at a normalized frequency of 15
and 30 are not predicted. The smooth harmonic with a normalized frequency of
28 corresponding to the guide vanes number is captured in these three locations.
In the draft tube, no significant pattern is estimated by the simulation. The
simulation results agree with the results obtained by Stoessel and Nilsson [27] using
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Figure 5.7: FFT of the pressure data at the PL operating condition

the kε turbulence model and Buron et al. [3] using Spalart-Almaras turbulence
model.

Figure 5.9 shows the pressure field in the BEP in the vaneless space. At the
contours of the plot the blade passing frequency of the pressure fluctuations is
clearly visible.
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Figure 5.8: FFT of the pressure data at the BEP operating condition

Figure 5.9: Pressure fluctuations at the BEP in the region of the vaneless space

The Fourier transformed pressure fluctuations in the HL condition are shown in
figure 5.7. The back-propagation of the passing runner blades is estimated well
at the location VL01. The probes at the draft tube location (DT11 and DT21)
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reveal no information in the frequency domain. The CFD simulation estimates the
influence of the guide vanes on the runner blades, which corresponds to the blade
passing frequency. The high peaks at the normalized frequency 19 and 38 corre-
spond to the electric grid frequency of 50Hz. This discrepancy is already pointed
out in the discussion of the time series data of the pressure fluctuations. Overall,
the simulation results in the HL condition coincide with the results obtained by
Buron et al. [3], using the Spalart-Almaras turbulence model.
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Figure 5.10: FFT of the pressure data at the HL operating condition

Summary pressure fluctuation The pressure probes at the draft tube’s wall
DT11 and DT21 are insufficiently reproduced by the CFD simulation. In the PL
condition the performance is slightly better since the frequency pattern induced
by the rotation swirl is estimated. All in all, higher frequency components are
not accurately captured. In the vaneless space VL01 the general behavior of the
pulsations trend is reproduced in all three operating points. The first characteris-
tic frequency (15) and the second characteristic frequency (30), are estimated in
agreement with the experimental data. At the three runner blade locations (S51,
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P42 and P71), a highly damped sinusoidal pattern is estimated with a frequency
of (28). But in all three operating points, the high pressure spikes occurring in the
full length blade with a frequency of 15 are not captured at all.

5.5 Flow energy losses

In this section, the energy losses of the steady-state simulation over the different
parts of the turbine are evaluated and compared to the estimations simulated by
Jošt et al. [6]. The distributor efficiency losses as well as the draft tube losses are
investigated at the three operating conditions (PL, BEP and HL). The available
power at the Francis turbine model is listed in table 5.5.

Table 5.5: The predicted total available power at the Tokke model Francis tur-
bine

OP Unit Power
PL kW 8.18

BEP kW 25.68
HL kW 26.23

5.5.1 Distributor

Table 5.6 compares the losses in the distributor simulated by steady-state and
unsteady computations to the work of Jošt et al. [6]. Overall, the losses in the HL
regime are the lowest. As expected, the highest hydraulic losses occur in the PL
condition. Figure 5.11 displays the flow properties around the stay vane and the
guide vane in the PL regime. The figure highlights the strong vortex structures in
gray, which appear around the stay and the guide vanes. These vortices lead to
the severe energy losses.

Table 5.6: Estimated losses in the distributor, steady-state (S) and unsteady
(US) CFD simulation using Commercial code compared to literature
data(?) [6]

OP Unit Loss US Loss S Loss?

PL % 7.9 7.5 4.6-6.9
BEP % 4.3 4.2 4
HL % 3.2 3.3 3
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Furthermore figure 5.11 shows the flow fields in the BEP condition and the HL
condition. Both subfigures show very similar flow structures around the blades.
The vortex formation on the trailing edge of the guide vane is slightly lower in the
HL regime, leading to fewer losses.

Generally, the trend of the estimations for the efficiency losses in the fluid domain
are in accordance with literature and the expectations.

Figure 5.11: Velocity field (left side) and vorticity (right side) in the distributor
at PL (top), BEP (middle) and HL (bottom), velocity scale (0 to
12 m/s) and vorticity scale (0 to 500 1/s)
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5.5.2 Draft tube

The efficiency losses in the draft tube, estimated by the executed CFD simulation,
are presented in table 5.7. The simulation results of the steady-state and unsteady
simulation coincide with the literature data [6] in all three operating points.

Table 5.7: Estimated losses in the draft tube, steady-state (S) and unsteady
(US) CFD simulation using Commercial code compared to literature
data(?) [6]

OP Unit Loss US Loss S Loss?

PL % 7.5 7.8 6.65-8.9
BEP % 0.47 0.42 0.46-0.6
HL % 0.53 0.47 0.56-0.65

In PL the strong vortex formation (figure 5.12) causes intensive power losses in
the draft tube. Compared to PL, in the BEP and the HL regime, a small swirl
is produced indicating fewer losses. This fact is revealed by looking at the stream
lines propagating straight through the draft tube.

Summary efficiency losses Strong vortex structures around the stay and guide
vanes cause severe energy losses (∼ 8%) in the distributor at PL. In the BEP and
the HL condition fewer hydraulic losses occur (< 4%). The energy loss in BEP is
slightly higher than in HL due to the long vortex on the trailing edge of the guide
vane. In PL the strong vortex formation causes also high power losses (∼ 8%) in
the draft tube. In the BEP and the HL regime, a small swirl is produced indicating
fewer losses (∼ 0.5%) in the draft tube. The estimation of the losses coincide with
the reference literature [6].
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Figure 5.12: Propagating stream line in the draft tube at the three operating
conditions
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6 Further investigations - Outlook

OpenFoam The simulation in OpenFOAM was set up according to the descrip-
tion in the BEP condition. Additional computations may target the other operat-
ing conditions and the RSI.

Commercial code As pointed out for OpenFOAM, the FFT simulations in com-
mercial code are expected to compute more time steps to refine the frequency axis
of the FFT graphs.

Additional task 1 Furthermore, as pointed out in the result section, some flow
phenomena around the runner draft tube interface are not accurately captured.
The investigation of these properties would improve the model’s capabilities and
the quality of the results.

Additional task 2 The pressure fluctuation plots of the FFT considered the raw
measurement data, which is polluted by the grid frequency. A major problem
occurs in the PL condition as illustrated in table 6.1. The typical pressure fluctu-
ations interfere with the normalized grid frequency.

Table 6.1: Normalized grid pollution frequencies in the pressure sensor data

OP Unit First Second S Fourth
PL − 7.4 14.8 29.6

BEP − 8.9 18.8 37.6
HL − 8.2 16.4 32.8
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7 Conclusion

This work investigates the turbulent flow in the high head Francis turbine of the
Tokke model. The geometry and measurement data of the herein considered scaled
down Tokke model, are published on the Francis 99 workshop homepage [1]. Based
on this data, steady-state and unsteady flow simulations are set up in commercial
code and in OpenFOAM. In addition to Lenarcic et al. [4], further grid refinement
and unsteady CFD simulations are considered in this work. The blocking of the
components was provided by [4].

The whole domain is meshed in Ansys ICEM CFD using a structured grid and
structured grid refinement towards the domain interfaces and hydraulic smooth
walls. The wall boundary layer is resolved by y+

mean ∼ 30 and automatic wall
functions. Turbulent flow behavior is modeled by applying the shear stress trans-
port model, kω-SST with a medium turbulent intensity at the inlet (I = 0.05 and
lt = 0.01m). The three proposed operating conditions are investigated by steady-
state and unsteady simulations in commercial code. In OpenFOAM only the BEP
is addressed by an unsteady CFD simulation.

The grid convergence method verifies the ability of monotonic convergence of the
medium grid with a wall resolution y+

mean ∼ 30. All further computations are based
on this grid type meeting computational efficiency and validity of the calculated
quantities. The flow domain of the grid convergence study is based on a rationally
periodic one passage model. In contrast to the one passage model setup of the grid
error estimation, the further simulations are performed on the full turbine model
with 5M cells.

The results of the discussed model setups are presented and compared to experi-
mental data. Global quantities, the mean pressure deviations and mean velocity
profiles as well as the pressure fluctuations are investigated. Furthermore, the
flow properties and the efficiency losses in the distributor and the draft tube are
evaluated and compared to literature [6].

Both the unsteady and steady-state simulations, show obvious parallels in their
results of the global quantities at the BEP and HL regime. Generally the torque
and the net head are overestimated by commercial code at these two operating
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points. The two global quantities are not captured well, but since they deviate
similarly, the estimated hydraulic efficiency is predicted surprisingly well. In PL
no obvious trend of the integral quantities is evident, but the deviations are higher
compared to the other operating points. The simulation using a finer grid allowed
more accurate results compared to the simulation results of Lenarcic et al. [4].
The unsteady results behave qualitatively similar to the simulation presented by
Trivedi et al. [8]. OpenFoam is not capable of predicting the hydraulic efficiency
compared to the experimental data and commercial code.

In the commercial code simulation a maximum relative deviation of the static
pressure occurs at the location S51 on the suction side of the runner blade. The
results are in accordance with the simulation of Nicolle and Cupillard [2],Buron
et al. [3] as well as Lenarcic et al. [4]. The local static pressure data estimated
by OpenFoam shows a similar tendency as the results of the commercial code
simulation.

Steady-state and time averaged unsteady mean velocity results are in excellent
correlation, indicating no unsteady effects in the draft tube velocity profile. The
computed velocity profile coincides with the profiles computed by Lenarcic et al.
[4] and Aakti et al. [5].

The pressure fluctuations at the draft tube’s wall DT11 and DT21 are insufficiently
reproduced by the CFD simulation. All in all, higher frequency components are
not accurately captured. In the vaneless space VL01 the general behavior of the
pulsations trend is reproduced in all three operating points.

Strong vortex structures around the stay and guide vanes cause severe energy
losses in the distributor at PL. In PL the strong vortex formation causes also high
power losses in the draft tube. In the BEP and the HL regime, a small swirl is
produced indicating fewer losses in the draft tube. The estimation of the losses
coincide with the reference literature [6].
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