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Abstract

Security of computer systems is designed and engineered over the years using castle
analogies and perimeter defenses. Network ports are well-monitored and protected
entry points for system security and network-based defenses steadily improve over time.
In contrast, USB ports remain more often than not an unmonitored entry point for
malevolent actors. In this setting, malicious or even criminal actions can be launched
internally, beyond the reach of network perimeter defenses, rendering the operating
systems that interface the USB ports as the last line of defense. Even if such actions
are detected in first place, incident response teams are overwhelmed with the amount of
information that must be analyzed to detect, mitigate and recover from the attacks.

In this thesis, we design, engineer, and evaluate holistic operating system-level defenses
against USB-based attacks. We focus on three attack surfaces: (i) data leakage through
unmanaged USB storage media files; (ii) information hiding in filesystem metadata; and
(iii) system compromise through fake USB devices with modified firmware.

The contributions of this thesis significantly improve both the resilience of modern
operating systems against USB attacks and the response time once an incident arises
in an enterprise environment. We also invent automated defense techniques that can
proactively protect end users without involving them in the trust decision.
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Kurzfassung

Die Sicherheit von Computersystemen wird seit jeher nach dem Vorbild von Burgen
entworfen und entwickelt – ein Angreifer ist dabei gezwungen Perimeter für Perimeter zu
überwinden. Netwerkanschlüsse sind hervorragend abgesicherte und überwachte Eintritts-
punkte in die Sicherheit von Systemen, da sich netzwerkbasierte Sicherheitsstrategien im
Laufe der Zeit konstant verbessert haben. Im Gegensatz dazu, bieten USB Anschlüsse
häufig unüberwachten Zutritt für Angreifer. Hierbei ist es Angreifern möglich bösartige
oder sogar kriminelle Handlungen aus dem Inneren des Netzwerks heraus zu starten,
außer Reichweite eines schützenden und überwachten Perimeters. Dieser Umstand macht
Betriebssysteme, welche die Daten angeschlossener USB Geräte verarbeiten zur letzten
Verteidigungslinie. Jedoch, auch im Fall einer Erkennung einzelner Ereignisse sind soge-
nannte Computer Security Incident Response Teams (CSIRTs) überschwemmt mit der
Flut an Daten, welche ausgewertet werden müssten, um tatsächliche Angriffe zu erkennen,
zu mitigieren und die Sicherheit der Systeme und Netzwerke wiederherstellen zu können.

In dieser Arbeit werden allumfassende Verteidigungsstrategien gegen USB-basierte An-
griffe auf Betriebssystemebene entworfen, entwickelt als auch evaluiert. Der Fokus liegt
dabei auf drei Angriffsflächen: (i) Datenexfiltration durch unverwaltete Dateien auf USB
Massenspeichergeräten; (ii) Datenverschleierung in Dateisystemmetadaten; als auch (iii)
Kompromittierung von Systemen durch USB Geräte mit veränderter Firmware.

Die hier vorliegende Arbeit verbessert die Widerstandsfähigkeit moderner Betriebssys-
teme gegen USB-basierte Attacken und die Erkennung von derartigen Ereignissen in
einem Unternehmensnetzwerk signifikant. Zudem wird eine automatisierte Methode zur
Verhinderung dieser Art von Attacken beschrieben, welche den Benutzer nicht in die
Sicherheitsentscheidung miteinbezieht.
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CHAPTER 1
Introduction

1.1 Motivation

The idea of a computer virus can be traced back to the age of the first computer itself,
as described in 1966 in the seminal work of John von Neumann [153]. Two decades later,
Cohen proved the undecidability of computer viruses and, hence, the impossibility of
completely secure computer systems [34]. The first virus was just an experimental code
that displayed a message and moved between mainframe computers [29]. However, the
motivations of virus authors soon shifted from curiosity-driven academic experiments to
malevolent intentions [61, 43, 75].

Nowadays, viruses are just one category of the wide range of malicious software (malware).
Not only the malware intentions shift towards nefarious operations but the sophistication
of their attacks is increasing. So does the cost of defending against them [137, 28].

According to the recent cybercrime reports, malware is a prevalent issue [45, 124, 134, 108].
The monetary loss globally is reported as high as 600 billion USA dollars in 2017 and
projected to reach 6 trillion by 2021 [79, 96, 64]. Specifically highlighted is ransomware, i.e.,
malicious software asking for ransom to release captured files. More than 4,000 attacks by
ransomware are reported every day [152]. The most severe example, “WannaCry”, infected
more than 300,000 computer systems across 150 countries in just a few days [143, 145].
Such observations led to a need for detection of information technology bypasses on
multiple levels, such as the network level, the software level but also as deep as a device’s
firmware level [26].

The problem posed by advanced malware intensifies when considering intrusion surfaces
beyond the established ones. A common entry point into a network is breaking through
its border router connecting with the Internet [154]. An attacker can deliver the malicious
payload by creating advanced pieces of malware that evade modern system mitigations,
including antivirus software, operating-system-level defenses (e.g., Address Space Layout

1
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1. Introduction

Randomization (ASLR) [159] and Data Execution Prevention (DEP) [100]), and binary-
level defenses (e.g., Control Flow Integrity (CFI) [1]).

Universal Serial Bus (USB) devices are an even greater threat, especially in the era of
bring-your-own-device (BYOD) in enterprise environments. Such devices are blindly
trusted and plugged-in by their users wherever possible. Hence, they become the perfect
intermediary for payload delivery [149]. Modern USB-based attacks are not bound to
delivering malware via their storage media. The “BadUSB” attack modifies (reflashes)
the firmware of a USB device to attack without having stored anything on the storage
media [119]. The attack is carried out by the malicious firmware that acts as a USB
keyboard and automatically injects keystrokes into the victim’s system. This way,
antivirus protection and other common defenses are not able to cope with BadUSB [86].

“Stuxnet”, the most sophisticated worm to date, demonstrated the ineffectiveness of
“airgapped systems” as a security defense [104, 82]. This malware was delivered into
Iranian uranium enrichment centrifuges by contractors, closing the airgap to highly-
secured and critical systems by using reflashed USB devices [84]. Other cases were the
airgaps were closed by trusted parties include the incidents of IBM and the International
Space Station (ISS). In the former case, IBM shipped USB devices for configuring
its enterprise storage solutions; these otherwise trusted devices were shown to deliver
malware to IBM customers [30]. In the latter case, ISS systems were infected by a Russian
cosmonaut carrying an unchecked USB device containing malware from our planet all
the way up to the ISS in orbit [57].

USB devices are not only used for active exploitation by leading technology companies,
spaceship crew, and state actors. In some cases, these actors are targeted themselves.
In mid 2017, a hacker group called “The Shadow Brokers” revealed exploits and other
software which they have stolen during their (to date) most successful raid: Classified
documents, highly sophisticated file-less malware and exploit frameworks of the National
Security Agency of the USA (NSA) [138, 37, 58]. Seven of those stolen assets have been
chained together and utilized by the ransomware “EternalRocks” only a few weeks after
their release [117, 99]. Agency internal teams, similar to computer security incident
response teams (CSIRTs) traced the attack back to an NSA insider [141]. Considering
this incident and modern steganographic techniques, USB based attacks become an even
more prevalent threat. In this case, data exfiltration from highly secured environments,
including agencies themselves [115, 90, 156, 55].

A USB port is truly universal in consumer-grade digital products used in smart homes
and the devices that form the Internet of Things (IoT). This port is used for charging,
for updating their software, and for interfacing their peripherals. All these consumer
IoT devices exhibit fierce competition, decreasing times-to-market, and lack a regulatory
framework for their operation, maintenance (including security updates), and overall
lifecycle management. Such constrained devices are exposed to maliciously-reflashed
USB devices, forming an entry point to our private home and beyond. In this modus
operandi, we must avoid transforming the USB port to the “Universal Security Bypass”
in the enterprise and the consumer IoT worlds.

2
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1.2. Aims

It is of utmost importance to enhance the cybersecurity incident response and cybercrime
defense capabilities. In this context, the main research question we address in this thesis
is: How can we be more efficient and effective in detecting and responding to malicious
actions and events?

1.2 Aims

In this thesis, we design, engineer, and evaluate operating system-level defenses against
USB-based attacks. We follow a holistic approach to address the information security
engineering challenge, taking into account the timeliness, cost, and risk dimensions to
prioritize the focus areas, as depicted in Figure 1.1.

The first aim of this thesis is to devise solutions that massively reduce the post-incident file
corpus to be analyzed and therefore improve the analysis performance. Cybercriminals

Figure 1.1: Response phase and timeliness vs. estimated security impact; thesis focus
points.
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1. Introduction

use computer files for exploitation, to store malware, and to leak sensitive data via
USB storage media files. Commodity hardware with double-digit-terabyte capacities
and big data cloud storage systems are easily available with an appropriate budget at
hand. This poses a significant challenge to computer security incident response teams and
investigators. Proper incident handling requires backup and working copies for verification
reasons, which intensifies the problem of analysing the exponentially increasing amounts
of data for suspicious files. This volume of data actively hinders the analysis efforts and
results in the need of smart processing techniques to exclude unneeded files from further
processing.

The second aim of this thesis is to analyze filesystem metadata as a means to create
steganographic channel. If this is feasible in first place, we aim to devise smart detection
techniques to reveal such malicious manipulations of filesystem metadata. Cybercrimes
do not necessarily involve file contents only. Hence, a file-contents-based investigation
might not bring insightful results. File metadata is a potential but often neglected carrier
to hide information.

The third aim of this thesis is to devise kernel-level defenses against USB reflashing
attacks so as to detect and prevent keystroke injection attacks. Also, to aid the CSIRTs
efforts during post-incident analysis of a BadUSB-like attack in an enterprise environment,
where the amount of possibly infected workstations is unmanageable with established
procedures. In the age of bring-your-own-device (BYOD) practice, CSIRTs are not only
faced with malware stored on stationary hard disks. More often than not, they must cope
with malware on unmanaged, non-stationary devices, especially USB storage devices.
In fact, USB devices are a trusted entry point into the enterprise network beyond the
reach of managed security solutions. Attacks based on reflashing the firmware of USB
devices in combination with the plug-and-play capability of USB are more prevalent, e.g.,
the BadUSB attack. These attacks leave no file trace and minimal logs at the operating
system level. Hence, early detection and indicators of compromise are necessary.

1.3 Methodology

Throughout the thesis, we follow a multi-step procedure to appropriately address the
main research question.

As a first step, we perform a literature review. We review the published literature and
state of the art.

The second step is the defense design. We devise a holistic security solution that
appropriately defends against the identified security threats and matches the engineering
constraints of the application domain, as for example the available time-to-analyze for a
CSIRT.

In the third step, we collect and generate datasets for empirical evaluation and
validation of our designs. This step involves large-scale operations, including Internet-
wide scanning, longitudinal studies, and laboratory studies with human participants.

4
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1.4. Main Results

The next two steps are the prototype design, where a proof-of-concept for the devised
defense is designed to perform validation and evaluation experiments, and the actual
prototype implementation.

The final step is the security evaluation, where the devised solution is evaluated under
different conditions in regards to correct operation, scalability, and performance.

1.4 Main Results

We proposed a novel smart whitelisting technique to exclude known files from further
processing of post-incident corpora during an incident response analysis. Our proposal
involves the utilization of available databases, such as the NIST National Software
Reference Library and files, which are cross-correlated from multiple sources within the
investigation corpus, to filter known files. Our method improves the investigation process,
not only in terms of reduced processing time but also in terms of data volume to process.
The theoretical approach was further evaluated using a prototype implementation and
real-world corpus compiled in the course of this research. Our findings were published
in [111, 112].

A second proposal towards this direction was to enrich the incident response analysis with
the sub-file hashes contained in data fragments that are publicly-available on Torrents
of globally-spanning peer-to-peer (P2P) networks. We built and released databases
containing over 6 billion sub-file hashes from more than 4.8 million torrents. Utilizing
those datasets, the identification of more than 5 petabytes of data (64 million files) within
a forensic corpus is possible. Our findings were published in [113].

We analyzed how modern operating systems represent and store file timestamps in
filesystem metadata. We identified that the sub-second part of these timestamps contains
unused information that can be manipulated without affecting normal system operations.
Hence, one can hide information in them and evade information leakage detection.
We described how an information channel of steganographic strength can be built
using USB disks, utilizing encoding, error correction, and encryption. We devised a
proof-of-concept implementation of this system. We also performed a real-world study
in different environments, analyzing the channel capacity and proposing appropriate
detection techniques. Our findings were published in [115] and [116].

We proposed a new technique to fast triage computer systems in an enterprise environment
after a security incident involving USB devices. An information collection, analysis, and
visualization aid for authorized personnel was also developed to aid the analysis. Our
findings were published in [114].

We proposed USBlock, a highly-efficient and effective kernel-level defense against mali-
cious USB devices. USBlock can detect fake keyboard devices in only a few milliseconds
and by analyzing only a few (fake) keystrokes. This allows to detect and protect against
such attacks automatically, at the system level, without requiring any user participation
in the security decision. This constitutes a unique characteristic of USBlock compared to
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1. Introduction

published literature. An extensive user study validated the soundness of our proposal.
Our findings were published in [114].

The results of the research comprising this Ph.D. thesis were published in the proceedings
of international peer-reviewed journals and conferences:

1. S. Neuner, A. G. Voyiatzis, S. Fotopoulos, C. Mulliner, and E. R. Weippl. US-
Block: Blocking USB-based Keypress Injection Attacks. In 32nd Annual Conference
on Data and Applications Security and Privacy (DBSec 2018), IFIP WG 11.3, 2018.

2. S. Neuner, A. G. Voyiatzis, M. Schmiedecker, and E. R. Weippl. Timestamp
hiccups: detecting manipulated filesystem timestamps. In 12th International
Conference on Availability, Reliability and Security (ARES 2017), ACM ICPS,
pages 33:1–33:6, 2017.

3. S. Neuner, A. G. Voyiatzis, M. Schmiedecker, S. Brunthaler, S. Katzenbeisser,
and E. R. Weippl. Time is on my side: Steganography in filesystem metadata.
Digital Investigation, 18(7):76–86, 2016.

4. S. Neuner, M. Schmiedecker, and E. R. Weippl. PeekaTorrent: Leveraging P2P
Hash Values for Digital Forensics. Digital Investigation, 18(7):149–156, 2016.

5. S. Neuner, M. Schmiedecker, and E. R. Weippl. Effectiveness of file-based dedupli-
cation in digital forensics. Security and Communication Networks, 15(9):2876–2885,
2016.

6. S. Neuner, M. Mulazzani, S. Schrittwieser, and E. R. Weippl. Gradually improving
the forensic process. In 10th International Conference on Availability, Reliability
and Security (ARES 2015), pages 404–410. IEEE, 2015.

The following contributions were also made in the course of my studies:

7. P. Kieseberg, S. Neuner, S. Schrittwieser, M. Schmiedecker, and E. R. Weippl.
Real-time Forensics through Endpoint Visibility. In International Conference on
Digital Forensics & Cyber Crime, 2017.

8. G. Merzdovnik, M. Huber, D. Buhov, N. Nikiforakis, S. Neuner, M. Schmiedecker,
and E. R. Weippl. Block me if you can: A large-scale study of tracker-blocking
tools. In IEEE European Symposium on Security and Privacy (EuroS&P 2017),
2017.

9. M. Schmiedecker and S. Neuner. On Reducing Bottlenecks in Digital Forensics.
ERCIM News, 106:54–54, July 2016.

10. S. Neuner, V. van der Veen, M. Lindorfer, M. Huber, G. Merzdovnik, M. Mulaz-
zani, and E. R. Weippl. Enter Sandbox: Android Sandbox Comparison. In Mobile
Security Technologies, 2014.
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1.5. Structure

11. C. Kadluba, M. Mulazzani, L. Zechner, S. Neuner, and E. R. Weippl. Windows
installer security. In ASE International Conference on Privacy, Security, Risk and
Trust, 2014.

12. M. Mulazzani, S. Neuner, P. Kieseberg, M. Huber, S. Schrittwieser, and E. R.
Weippl. Quantifying windows file slack size and stability. In IFIP International
Conference on Digital Forensics, 2013.

Whenever possible, we openly released collected and processed datasets and prototype
implementations, following the best practices in open science and ensuring reproducibility
of our research. The following list points the interested reader to the repositories:

A. PeekaTorrent: Leveraging P2P Hash Values for Digital Forensics:
https://peekatorrent.org/

B. Time is on my side: Steganography in filesystem metadata:
https://www.sba-research.org/dfrws2016/

C. Timestamp hiccups: detecting manipulated filesystem timestamps:
https://www.sba-research.org/ares2017hiccups/

1.5 Structure

The remainder of this thesis is structured as follows. We note that for the sake of coherence
and easy reference, the literature review for each addressed topic is incorporated in the
respective chapter.

Chapter 2 presents our novel smart whitelisting technique to exclude known files from
further processing during an incident response analysis.

Chapter 3 presents the use of Torrents from globally spanning peer-to-peer-networks as a
means to enhance the performance of (sub-) file analysis, during an incident response
analysis.

Chapter 4 presents the novel steganographic channel to hide information in filesystem
metadata (sub-second file timestamps), its strength against normal filesystem use in
different environments, and detection techniques that reduce its information capacity.

Chapter 5 presents our novel kernel-level defense against keystroke-injection attacks
from fake USB devices. Also, a method is presented to fast-triage computer systems in
enterprise environments after a security incident.

Finally, Chapter 6 presents the conclusions of this thesis and discusses future directions
of research.
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CHAPTER 2
Enhanced File Whitelisting for

Incident Response

Investigators in digital forensics are facing several issues throughout their daily analysis
routines. One of the biggest issues is the increasing amount of commodity hardware
affordable for everybody. Commodity 3.5” SATA hard drives come with a maximum
capacity of up to 8 terabytes per hard drive, while memory cards for smartphones and
digital cameras can have up to 256 gigabytes. USB thumb drives have a current maximum
capacity of two terabytes. Observing the past trend, Kryder et al. [81] expect this trend to
increase even further than posited by Moore’s Law [20]. Considering the stated numbers
and the average number of devices per household, a forensic investigator would have to
deal with tens of terabytes of data. This amount of data has to be securely acquired,
processed and stored in several copies. Garfinkel et al. [52] predicted this problem
years ago. However, so far this issue was not tackled in-depth in research and neither
was it adapted into the forensic process of investigators nor in the corresponding standards.

This chapter not only aims to enhance well-known standards like the RFC 3227 [19] or
the NIST SP-800-86 [74] with the recommendations proposed in this chapter, but also
aims to proof the proposed performance improvements by reducing the to-be-acquired
data in an early stage of the investigation. Those recommendations specifically tackle
storage capacity issues during an investigation and therefore also reduce the needed
processing power, workload and time to handle the data.

Therefore the contributions of this chapter are as follows:

• We propose an advanced forensic process for digital investigations, taking into
account some of the most pressing limitations for investigators.
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2. Enhanced File Whitelisting for Incident Response

• We discuss different analysis techniques which scale well and can be used to limit
backend storage requirements for analysts.

• We evaluate our process with an exemplary use case and show that the overall
storage requirement for that case can be decreased by 78%.

• Conducting an evaluation on a real-world dataset, we show that storage reductions
of over a third are possible.

2.1 Background

The usual image acquisition approach in digital forensics as defined in [74, 19] creates
two images of a hard drive of interest, while hashing the source and destination multiple
times to prove that the integrity of the source hard drive has not been tainted and the
underlying data has not been modified. As such, the created images are exactly the same
size as the hard drive, which is one of the yet unsolved problems in digital forensics [52]:
hard drives with 8 terabytes capacity are nowadays a commodity, and can be readily
obtained online and in retail stores.

A major problem with the current forensic process as practiced today is its duration.
It can take days to acquire and analyze large data repositories. Even though highly
parallelized approaches have been proposed recently [53], they are not yet incorporated
in commercial tools or the process itself, where open source products are heading in the
right direction as shown by the well-known tool bulk_extractor1. Moreover, the large set
of software, data formats and as devices restrict the possibility of having fully automated
approaches [25]. As such, the images created are still bit-by-bit exact copies of the hard
drive to be analyzed.

File whitelisting is a common approach in digital forensics, during which each file on the
hard drive is hashed using e.g. SHA-1 and compared against a list of well-known, benign
files. The largest corpus of benign files is the NIST National Software Reference Library
(NSRL) with their Reference Data Set (RDS). To build it, NIST installs all kinds of
software in virtual machines and monitors the files that are created during installation.
This allows the RDS to map each stored hash value to a specific file and furthermore to
which software package containing it. The RDS is published quarterly, the most recent
version at the time of writing being the RDS 2.49 from June 2015, containing more than
42 million unique hash values.

1Online at https://github.com/simsong/bulk_extractor
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2.2. Improvements to the Forensic Process

2.2 Improvements to the Forensic Process

This section is split into two parts: In the first part we explain theoretical techniques
which can be leveraged to cope with the ever increasing digital forensics investigation
case sizes. In the second part, we evaluate an artificial corpus with respect to existing
forensic analysis recommendations.

2.2.1 Individual Improvements

The first proposed enhancement of the forensic process is already done in practice: two
physical copies are not always required. While a working copy and at least one
backup copy should always be in place, less stringent rule enforcement is needed when
the data source drives are not bound to time requirements to get back to their owners
or into production. This is particularly the case for investigations by law enforcement,
where the data sources themselves are confiscated and no temporal pressure exists to
return them to the owner. We do not have concrete numbers on how this is done in
practice, but this can be very effective for reducing storage requirements. It is more like
a logical enhancement to the standard processes, since it is not in all cases that the data
needs to go back to production systems as soon as possible. Of course, for production
systems where downtime is an issue and hard constraints exist that these systems stay
online, a second copy is needed for backup. This is of relevance for example all kinds of
server systems like e-mail or web servers. Sometimes it can be also sufficient to create an
image of the current files in the file system, omitting the free space and possible file slack.
This depends on the context of the investigation, and the actual questions to be answered.

Another strategy which is missing so far in the process descriptions is the rigorous use
of file whitelisting. Files irrelevant to the investigation can be easily excluded in the
early stages due to the use of cryptographic hash functions like MD5 or SHA-1, whereas
files of particular interest can be identified if they are known a-priori to the investigator.
In the forensic community, the most notable example for the former case is the NIST
national software reference library (NSRL) with their reference data set (RDS) [98]. It
uses default software installations of operating systems and end user software to derive a
list of hash values on a file basis. The most recent version of the RDS 2.49 (as of June
2015) contains more than 42 million unique hash values. An example for the latter is
PhotoDNA which computes a visual fingerprint for pictures and compares it with known
pictures of child abuse. It was developed by Microsoft and Dartmouth University and
is used by large software companies like Facebook or Twitter. Most recently, a REST
API was introduced to query the PhotoDNA database online2. Due to the availability of
cheap storage and processing power, we argue that any investigator could and should
set up their own list of hash values for files of interest. This could include all files
from intra-company file shares, possibly malicious files from anti-virus quarantine, web
pages (including pictures and thumbnails) or company-wide e-mail attachments. De-

2Online at http://www.microsoft.com/en-us/photodna
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2. Enhanced File Whitelisting for Incident Response

pending on the local privacy laws there are hardly any limitations on which files to include.

The improvement on the storage backend which this chapter proposes is the creation of a
reduced working copy. It is created as soon as all known, benign files are identified,
as they can be safely excluded from the need to store them (except for their metadata).
All other files are stored according to the file system metadata, and additionally all
portions of the free space are extracted and stored as well. At worst, this can be a very
large fraction of the original drive capacity. At best, a vast majority of files can be
excluded in a fully automated process and without any interaction of the investigator.
Since this process is strictly monotonous (the resulting working copy can only be at most
the capacity of the drive), the resulting working copy will always be smaller than the
full capacity of the storage drive. All further analysis steps can be done on this reduced
working copy, and the original drive(s) can be locked securely away as the backup. If
the drive(s) need(s) to go back into production use, a second copy is to be created using
a bitwise copy. The second large improvement on the storage backend is the rigorous
use of deduplication, at the very least across devices within each case. This step should
also include the application of fuzzy hashing [130], since files which are similar but not
the same until the very last bit cannot be identified using cryptographic hash functions.
While the most commonly found fuzzy hash functions are ssdeep [80] and sdhash [129],
there is still no common ground which is the best for specific use cases, and specialized
similarity hash functions are still an active field of research [18], for example mrsh-v2 [16]
which can identify file fragments.

Hashing each file per device by default can be used to easily identify the same files
across devices and reduces the need for storing them multiple times. This results in
storage savings at the investigators backend due to deduplication. In particular with
the use of cloud storage solutions like Dropbox or iCloud, many devices nowadays share
local files which are kept synchronous across devices. However, the file system metadata
of all copies needs to be preserved. Across cases and in the near future, efficient and
privacy-preserving mechanisms will be needed to share hash value lists between multiple
parties. Even though there are current mechanisms available to facilitate private set
intersection [39], i.e. using zero-knowledge proofs [22], it is not yet known if they can
be used for digital forensics and handle millions of hash values in practice. File system-
as well as enhanced analysis of file metadata should be used in this step to compare
file timestamps, EXIF metadata or other information sources in order to identify data
sources and sinks and to reconstruct the flow of information across devices (and users).
In very large environments with thousands of computers and users, this can be challenging.

Finally, the process should include the acquisition from various online accounts and
the retrieval of the associated data and metadata using forensic methods. Online services
like Facebook, Twitter, Apple or Google Services have hundreds of millions of users,
and these online accounts are often tied to smartphones. While these companies have
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2.2. Improvements to the Forensic Process

mechanisms in place to aid law enforcement, this source of information is not available to
foreign civil law suits or other third-party investigations. Even though approaches have
been recently proposed to acquire the data without the explicit aid of service operators,
e.g. using APIs [68] or based on observed network traffic [35] [109], they have not yet
been incorporated in the standard processes. Cloud computing [11] can pose another,
although related type of problem for digital forensics. Compared to online services
and SaaS platforms, acquisition in IaaS cloud services is more related to the standard
forensic process in direct comparison [92]. An obstacle is often how the investigator can
access these services and whether or not the credentials needed for authentication can be
obtained from the suspects, the hard drives or by other means. In most cases user consent
is needed, and even though Great Britain is among the few countries that can convict a
suspect if he/she is not releasing a password, this is not commonly found elsewhere.

2.2.2 Improved Forensics Process

Our improved steps for automated data analysis so far only enhance the current standards,
in particular NIST SP-800 86. While RFC 3227 stops after the data acquisition, NIST
SP-800 86 states specific steps to reduce the amount of files and data to analyze, i.e.
using the NIST NSRL hash value collection. However, fuzzy hashing and cross-device
checking are not mentioned, as well as the importance of online accounts for data storage
and online services. It only exemplifies the use of multiple sources for data gathering,
within a confined scope.

The core improvement in this chapter is the parallelized calculation and evaluation of hash
values, and the reduced working copy. As before, the data should be acquired according
to the order of volatility, and using a hardware write blocker to prevent manipulations
(accompanied by rigorous documentation). Before the image is created, file system
metadata is parsed and all files in the file system hashed numerous times, including
cryptographic hash functions like SHA-1 and fuzzy hash functions like ssdeep or sdhash.
These hash values are then stored in some form of database and automatically evaluated
with the proposed improvements: known, benign files are excluded using e.g. the NIST
NSRL dataset, and multiple copies of the same file are detected across devices. Similarity
hash values are used to detect similar files and present a set of candidates that seem
related. This information can be embedded and enriched within an automatic timeline
creation from file system metadata in the acquisition steps. Deleted files where the data
has not yet been overwritten should be extracted and hashed similar to the other files.
Furthermore, known malicious files can be found using hash value black listing. In the
future, additional hash value calculations can be added as well as additional hash value
sources. This can include novel fuzzy hash functions, other cryptographic hash functions
like the upcoming SHA-3 or new hashing methodologies like sector hashing as proposed
in [161].
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2. Enhanced File Whitelisting for Incident Response

Acquisition

Metadata / 

Timeline

File Hashing

Similiarity 

Hashing Whitelisting Cross Device

Online 

Accounts

Reduced Copy

Data Evaluation

Full Data Set

Reduced Data Set

Figure 2.1: Improved Steps for the Forensic Process

After the automatic exclusion of files, the remaining files, folders and regions of free space
are copied into the reduced working copy. Depending on the context of the analysis,
this is expected to be sufficient for many cases. The use of cryptographic hash functions
allows the argumentative exclusion of known files, since for each and every file there
is a line of argumentation why this file was removed and ignored in further analysis
steps. The final step is the optional extraction of online credentials from browsers, stored
passwords or artefacts from online data services like e.g. Dropbox or iCloud. The entire
process is visualized in Figure 2.1. Please note that the individual processing steps can
be run concurrently: hashing the files may happen on the same byte stream as extracting
the file system metadata, thus reducing the amount of read requests to the hard drive
to the original bytewise copy as used today in digital forensics. Also, the extraction of
online account information is considered optional, thus the different representation in the
figure.

Most importantly, all of the steps discussed so far have the ability to run automatically
and present their findings in an understandable format to the investigator as well as in
machine-readable form for further analysis steps. The computational overhead is very
likely to be negligible compared to the additional insights using automated analysis as
well as the possible reduction in the number of files and file fragments needing manual
inspection.
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2.3. Evaluation

2.3 Evaluation

In this section we first describe the theoretical approach as described by Neuner et
al. [111]. This first part describes an artificial scenario. However, the specifics we used
were derived during our ongoing informal discussions with law enforcement officials as
well as forensic investigators. Building upon this theory and conducting an evaluation to
proof the statement on a real-world corpus, the second part of this section shows the
practicability of the proposed deduplication approach as well as storage and performance
improvements on 16 disks.

2.3.1 Theoretical Approach for Deduplication

On the theoretical basis we consider some form of of malicious online activity as the
initial reason for an investigation. The investigator is tasked with the acquisition of
a relatively small number of devices from the following set, all devices which can be
found in a modern household: computers or notebooks, smartphones respectively tablets,
external storage devices like USB thumb drives or external hard drives, and lastly digital
cameras. Furthermore numerous accounts at online services, e.g. Facebook, Google,
Flickr or Twitter (just to name a few) which are out of scope for our evaluation.

For the evaluation of our theoretical approach we used the following setup. We consider
the investigated person to have the following devices in use: Two computers, whereas
one computer is a Desktop PC and one computer is a Laptop. The Windows PC is
based on Windows 8 which uses roughly 160,000 files. We consider an additional total
of 50,000 files to be from the user, including temporary working files and installed
software. As described by Rowe et al. [133], commonly found hard drives include 18%
Microsoft-related system files, 25% graphics (e.g. camera images), 4.7% documents (e.g.
spreadsheets, presentations, etc.) and 4.3% executables to name the most important
types. For mobility reasons the user has a Laptop computer with files daily mirrored with
the Desktop computer and therefore these corpus’ share 80% of the same files. He/she
uses an Android smartphone with about 13,000 multimedia files such as images, photos,
videos and music files as described by Lessard et al. [87], 2,000 files which are related to
different installed Apps (assuming about 300 files per App) and 20,000 files which are
either related to running Google services or related to the Android operating system itself.

In addition to the mentioned computation devices (computers, smartphone) the specified
setup includes two digital cameras with 2000 photos in total, split across three SD cards
and several external storage devices used for backup. Those external storage devices
include two external hard drives with half a terabyte and one terabyte in capacity, and
three USB thumb drives from various manufacturers and with different capacities. These
external hard drives contain the backed-up files from the Desktop PC as well as the
notebook, respectively. The Desktop PC was used for backing up the files from the
cameras and the smartphone, meaning that these files are found in the backup on the
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2. Enhanced File Whitelisting for Incident Response

one terabyte hard drive as well. The USB thumb drives include an additional 20,000
files which are unique with respect to the other devices. Finally data is spread over the
computers and the smartphone via a cloud service (e.g. Dropbox) and kept in sync with
a remote copy. Therefore a large number of the user files are available on Desktop PC,
Laptop as well as the smartphone. Please note that most of the specific numbers were
chosen at random, they would differ in reality due to the different user’s age distribution,
usage patterns, personal preferences, professional background and other factors. The
overall capacity and number files for each device can be seen in Table 2.1.

Table 2.1: Overview of devices and storage capacities

Device Storage Capacity # of files used capacity

Windows 8 PC 1 TB 210k 250 GB
Windows 8 Notebook 500 GB 190k 180 GB
Android Smartphone 32 GB 35k 15 GB
SD Cards {8|8|16} GB 2k 10 GB
external hard drive {500GB|1TB} 400k 430 GB
USB thumb drive {4|8|16} GB 20k 32 GB

Sum: 3.16 TB 857k 917 GB

2.3.2 Evaluation of the Theoretical Approach

The regular forensic process would need to acquire and copy each device at least once,
resulting in the need to store roughly a little more than three terabytes of data only for
the device images. If a backup copy is needed, this adds up to 6.2 terabytes of storage
capacity needed. Overall, this would also mean extracting and analyzing 857,000 files. In
the improved forensic process, however, an overall list for the entire case and thus all the
devices is created which contains file names and hash values of all the unique files. This
list also includes all metadata for the deduplicated files. To further reduce the number of
files to be extracted for the working copy, the content is compared to available software
reference lists like the NSRL. These steps allow to drastically reduce the numbers. The
first reduction is caused by having redundant device contents on multiple devices. The
Desktop computer and the Laptop both have their backup exclusively on their external
USB backup drives. 80% of the Laptop user files (30,000) are duplicates from the Desktop
PC, leaving 20% or 6,000 unique files as difference between the user files on the Desktop
PC and the Laptop (due to cloud sync and working copies). As such, and starting with
the acquisition on the Desktop PC, 210,000 files are to be extracted from the Desktop PC
while the acquisition of the Laptop deduplicates the operating files and most of the user
files. Therefore 184,000 files are duplicates and not added to the reduced working copy.

One cloud service is in use which synchronizes files over the Desktop PC, the Laptop
computer as well as the smartphone, including the pictures of the user. A typical Desktop
PC contains about 7.6% camera images as of [133], which would be in this particular case
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2.3. Evaluation

roughly 16,000 pictures on the PC. This is a superset of the pictures from the smartphone,
including the audio and video files outside of the synced folders, leaving 22,000 files on
the smartphone to be included in the reduced working copy. The 2,000 pictures on the
digital cameras (stored on three different SD cards) were already synced to the Desktop
and are thus duplicates in this case.

The last step is the removal of commonly found files e.g., by using the NIST NSRL RDS.
According to Rowe [132], 32% of a typical hard drive can be matched with files contained
in the RDS set. This reduces the 210,000 files from the Desktop PC to roughly 143,000
files, and the files uniquely found on the Laptop to 4,080 files. Table 2.2 illustrates
files to be extracted per source in the corpus. Grayscale areas mark the proportion
of files that have to be extracted from that specific source, whereas white areas are
duplicates that do not have to be taken into account for the created reduced working copy.

Table 2.2: File extraction distribution per source in corpus.

Desktop PC 68%
Laptop 2%
ext. USB devices 5%
SD card / camera
Cloud
Smartphone 63%

2.3.3 Real-World Evaluation Corpus

The evaluation was carried out on a real-world dataset from 16 participants captured
in an IT consulting company and research institution respectively. This company has a
managed network, which is used to install the latest, stable Windows operating system
on all clients as well as the corresponding updates. To be more precise, Windows 8 or
Windows 8.1 was installed on all captured disks respectively. To capture the data stored
on the disks the tool tsk_loaddb3 was used which is included in the well-known sleutkit
(TSK) [24] forensic investigation software. This tool stores important information about
every file and directory on-disk to a sqlite database, above all a cryptographic checksum
(MD5) and the size. Two important modifications were made to the corpus: To reduce
the size of the corpus and store only the data needed for evaluation (checksums and
sizes) all tables except the table tsk_files were dropped. Furthermore, database rows
containing temporary Windows files were deleted. This deletion process includes files
such as $BadClus:$Bad which is a sparse file, including a named stream created by
NTFS [135]. Additionally, the columns name and parent_path were filled with NULL to

3Online at: http://wiki.sleuthkit.org/index.php?title=Tsk_loaddb
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2. Enhanced File Whitelisting for Incident Response

preserve the privacy of the participants. Considering those 16 captured disks and only
the remaining table, the corpus contains roughly ten million database rows in total.

2.3.4 Real-World Evaluation Design

Considering those millions of files the evaluation setup is as follows: The platform the
evaluation was performed on is an Ubuntu Server with 16 physical cores and 72 gigabytes
of memory. The developed evaluation application is written in Python. It reads all
databases stored by tsk_loaddb and stores them in Python lists or dictionaries respectively.
Keeping all of this information in memory, the comparing steps are faster and not I/O
bound. Otherwise, the limiting factor would be reading the databases from disk.

The following describes the different evaluations carried out on the dataset to show the
effectiveness of the proposed approach:

NSRL Reduction: The NSRL Reference Data Set (RDS)4 in its minimal version stores
over 42 million unique hashes for identification of known files. Making use of this
dataset, the first part of the evaluation covers the comparison of our corpus to the
NSRL RDS.

Cross Comparison: This evaluation step covers the comparison of one corpus database
to the remaining databases.

Incremental Reduction: To show the distribution of reductions over every database,
this part of the evaluation shows the incremental reduction of one database to the
remaining databases. In more detail, let D be the databases from one to n, n be
the total number of databases and x the database to be compared, then:

D = {1...n}

Πi = {x|x ∈ D \ Di}

f(i,j) = Di ∆ Πi,j

Figure 2.5 shows this as an average distribution over all databases in the corpus.

2.4 Results

Considering the evaluation in Section 2.3 being split into two parts, this section is
split in the same manner: The theoretical approach as well as the evaluation on the
real-world corpus. The first part describes the results of the theoretical approach on the
artificial dataset; in the second part we show that deduplication at the time of acquisition
significantly reduces the number of to-be-saved as well as the required storage.

4Online at http://www.nsrl.nist.gov/Downloads.htm
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2.4. Results

2.4.1 Results of the Theoretical Approach

As described in the previous section, the working copy of the artificial dataset will
finally contain 189,000 files. This means a total reduction of 78% compared to the full
dataset. Furthermore considering the average size of 1.1 megabytes per file, the working
copy is reduced by 709 gigabytes. Since a reduction of size also means a reduction in
computing power (e.g. hashing of files) an investigator experiences an overall performance
enhancement. The percentages of the overall reduction in files and storage space on the
artificial dataset are represented in Figure 2.2.

Figure 2.2: File reduction in the reduced working copy

2.4.2 Results of the Real-World Corpus

To state the improvement of the proposed approach, Table 2.3 shows the number of hashes
(and therefore number of hashable files and directories) as well as the corresponding sizes
for each database in the corpus.

In regards to the evaluation design the results of the evaluation are splitted into three
parts.

NSRL Reduction: Figure 2.3 shows the deduplication rate when comparing each
database of the corpus to the NSRL RDS dataset. The NSRL RDS dataset used in
this evaluation contains 42,060,541 unique MD5 hashes (RDS minimal version) not
including any size information.

As indicated by Figure 2.3 every database in the corpus can be reduced in terms of
hashes as well as size when compared to the NSRL RDS dataset. The black bars
show the duplication in percent for the hashes, whereas the gray bars show the
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2. Enhanced File Whitelisting for Incident Response

Table 2.3: Corpus Details

Database Total # of Hashes Total Size [GB]

1.sqlite 199255 243.63
2.sqlite 244499 238.82
3.sqlite 222561 304.11
4.sqlite 224166 238.03
5.sqlite 503764 242.16
6.sqlite 382571 122.49
7.sqlite 309853 90.90
8.sqlite 618218 171.16
9.sqlite 497088 249.42
10.sqlite 713162 147.07
11.sqlite 203187 244.03
12.sqlite 226521 244.01
13.sqlite 708268 302.76
14.sqlite 304996 470.73
15.sqlite 623331 244.63
16.sqlite 334121 83.13

duplication in percent for the size. Database 1 is the rare case of having the same
relative amount of duplication in hashes and size at 4.59% (meaning a possible
deduplication of 14,210 files/directories and 4.18 GB). In contrast 31.60% of the
hashes within database 8 can also be found in the NSRL dataset, which corresponds
to 2.42% of its (database 8) size (5.45 GB).

Cross Comparison: When e.g. acquiring large amounts of data a high number of
semi-identical disks, duplicates exist. Figure 2.4 proves this assumption.

It shows reductions in hashes and size for every database compared to the sum
of all remaining databases. Two strong outliers are database 5 and 16 with
66.81% (336,570 hashes) and 66.28% (221,465 hashes) possible hash deduplication
respectively. Those numbers correspond to reductions of 23% and 35.16% in size,
meaning absolute reductions of 55.59 GB and 29.23 GB respectively.

Incremental Reduction: To show the distribution of duplication throughout the cor-
pus related to every database, Figure 2.5 illustrates an average over the incremental
comparison as described in Section 2.3. The gray line corresponds to the average
duplication in percent of the hashes, whereas the black line corresponds to the
average duplication in percent in regards to the size of the databases. The x-axis
describes the compared database to the initial database. To ensure the comparison
of always the same sequence of databases, the Python built-in function sort() was
used to pre-process the sequence (e.g. comparing the numbers [1,2,3,10], the sorted
list according to Python sort() would be [1,10,2,3]).
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2.4. Results
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Figure 2.3: Deduplication rate of the corpus databases to NSRL RDS

To be more clear, describing this on the example of the first comparison: 1.sqlite
is the initial database, then i + 1 is database 10.sqlite and so forth until 16.sqlite,
which is the predecessor of 2.sqlite. In this example, i + 15 corresponds to 9.sqlite,
meaning the sum of all databases in the sequence from two to 16.

Figure 2.5 illustrates that the comparison of any database xj to the remaining
databases and their sum is an increasing trend. As expected, the highest number of
the same hashes are found in the first compared database and slightly increasing with
every incremented database. On average, the percentage of similarity is between
three to five percent from the comparison of the initial database to the next and
the comparison of the initial database to the sum of all remaining databases (step
i+15 in Figure 2.5).

2.4.3 Discussion

Those improvements can be applied to the data acquisition process, since they are totally
transparent to the user applying them, e.g. the forensic investigator. Since we proved
our stated, theoretical approach on a real-world corpus, we argue that this workflow can
be beneficial to the majority of forensic cases. However, when comparing the theoretical
and tested results, we have shown that the amount of file and size reduction is highly
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2. Enhanced File Whitelisting for Incident Response
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Figure 2.4: Deduplication rate of each corpus database to the remaining databases

dependent on the underlying data corpus. If the number of unique files is low, or the
unique files are large in size, the resulting improvements will be lower. Therefore, the
NSRL RDS is a good start, but the overall reduction depends on the quality of the
whitelist(s) applied by the investigator.

2.4.4 Limitations

Our evaluation is based on largly homogenous set of computers which share the same
operating system; our findings can, however, be transferred to cross-platform investigations
that are common in real-world cases. In this chapter we clearly demonstrated the trend
and showed the possibilities of file-based deduplication during image creation.

2.5 Conclusion

In this chapter we not only showed how an improved forensic process can be used to reduce
the amount of storage requirement for forensic investigations by using file whitelisting and
cross-device deduplication. While the metadata of duplicate files has to be preserved, our
process is particularly useful in cases where the focus of the investigation lies on referenced
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2.5. Conclusion
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Figure 2.5: Average over the incremental deduplication rate

files in the file system. We described an exemplary use case where file deduplication and
file whitelisting were used to save 78% respectively 700 gigabytes of storage capacity.

Additionally we showed on a real-world data corpus consisting of 16 disks that file
exclusion during the acquisition process saves storage and therefore processing power.
When excluding files found within the NSRL RDS the reduction is about 3.5%, when
cross-comparing the databases to each other the reduction is over 22% in regards to their
size. Overall we hope that our improved process will lead to interesting discussions in
the community as well as an improved standard forensic process in the near future.
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CHAPTER 3
Improving Incident Response

with Sub-file Hashes from Open

Sources

As shown in the previous chapter, file whitelisting harbours a great potential to enhance
the process of analysing huge amounts of files. However, it is limited in numerous ways:
for one, there is currently just one large corpus of hash values which is publicly shared –
the NIST National Software Reference Library, containing 42 million file hashes. Secondly,
these file hash values rely on hashing an entire file, and are thus unusable to identify
files that are partially modified, or files which have been deleted respectively partially
overwritten.

To cope with these problems, we present peekaTorrent, a methodology to identify files
and file fragments based on data from publicly available file-sharing networks. It is based
on the open-source forensic tools bulk_extractor and hashdb and can be readily integrated
into the processes. It improves the current state-of-the-art on sub-file hashing [54] twofold:
for one the hashed sub-file parts are larger than pure sector-based hashes, and thus
less prone to false-positives for files that share common data segments. Secondly, we
solve the problem that an a-priori sub-file hash database is required by creating one that
can be shared openly. Lastly, no participation in file-sharing activity is needed as the
torrent metadata or “metainfo”, which is stored in the torrent file, already contains all
the necessary information including the sub-file hash values. This information can then
be used for file and fragment identification and effective file whitelisting, as well as for
other use cases. As such, the contributions of this chapter are as follows:

• We present a scalable methodology to identify files and file fragments based on
sub-file hashing and P2P file sharing information.
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3. Improving Incident Response with Sub-file Hashes from Open Sources

• We collect and analyze more than 2.3 million torrent files, rendering up to 2.6
petabyte of data identifiable using that information.

• We identify several use cases for file (fragment) identification in the context of both
file-whitelisting and blacklisting with that data.

• All obtained data and created source code is available online at
https://www.peekatorrent.org.

3.1 Background

Digital forensics relies on a multitude of information sources to gain knowledge, ranging
from hard drives and file system artifacts [23] to the dynamic content of RAM [89] to the
user files and programs that store information in log files, SQLite databases, or digital
images. This leaves the investigator with a broad spectrum of places where to look, where
each investigation depends in its specific context and questions to be answered. The
general process outline has been defined in both [19] and [74], whereas a great number of
current challenges has been discussed in [52]. Another problem is the increasing spectrum
of used devices, ranging from smartphones [66] to smart TVs to numerous other types
of devices. Most pressing, however, is the general problem that the average case size is
constantly increasing [131]. For one this is due to increasing storage capacities of hard
drives, with modern hard drives being able to store many terabytes of data that need to
be analyzed with respect to the traditional approach of digital forensics. Secondly, cloud
storage services commonly push information automatically from device to device, like
pictures taken or files edited, leading to duplicate files across devices. Lastly, the density
of digital devices surrounding us is increasing, which is also true for the average number
of devices per user.

In recent years, numerous forensic models and publications were specifically targeted to
reduce the manual work in investigations with large amounts of data. Among them is the
concept of forensic triage, which was initially presented in 2006 [128] and more recently
quantified in [131] regarding the expected amount of computational power needed. The
basic idea is that instead of analyzing all the data there is, only a specific subset of files
which are known to be of interest are inspected. Only recently the concept of sifting
collectors was proposed [125] in which the amount of data to be analyzed is reduced
by ignoring known areas on hard drives that are of no particular interest, while still
retaining the ability to create bit-identical images if needed. Our approach is different in
that it extends the traditional process of forensic imaging by identifying large volumes of
both files and file fragments to be either of particular interest (blacklisting), or not of
any interest at all as the file is a known, good file (whitelisting).

Both bulk_extractor and hashdb are two very powerful open-source tools which were
published by Simson Garfinkel. Bulk_extractor [53] recursively scans hard drive content,
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3.2. P2P Networks for Hash Values

and is able to retrieve information in compressed as well as embedded files like PDFs. It is
extremely fast and can use all available cores on a machine to parallelize the task at hand.
Hashdb [54] uses efficient algorithms to build a lookup database of hash values much
faster than any relational or NoSQL-style database system. It can reliably identify the
presence of a given list of target file hash values, and builds on previous work that showed
that there is only a small percentage in shared file content on the sector level [161].

3.2 P2P Networks for Hash Values

The basic idea of our approach is to extend the existing knowledge and applicability on
sub-file hashing and hash-based carving by leveraging vast amounts of publicly available
hash values. While hashing was previously mainly used to uniquely identify entire files of
arbitrary size, our concept presented here extends this to hashing variable-sized sub-file
portions. Sub-file hashing [161] as well as hash-based carving [51] allow investigators to
search for file fragments by hashing either each hard drive sector or aligned blocks of data.
This can also be used if there is not enough time available to prove stochastically the
presence or absence of specific files, e.g., in well below an hour and with only a relatively
small error margin. We extend these concepts by mapping sub-file hashes with data from
peer-to-peer file sharing networks with variable block sizes, both usable for black- and
whitelisting of large volumes of files as well as sampling. We thus extend existing tools and
concepts, such as bulk analysis of forensic media using bulk_extractor [53] and hashdb[54].

Peer-to-peer (P2P) file sharing applications and protocols rely heavily on hashing for
integrity and as a foundation for parallelization, i.e., simultaneously downloading multiple
parts of a file from different users for increased performance. While we used the popular
BitTorrent file format for our evaluation, in many cases any application that uses sub-file
hashing is directly usable: Dropbox for example, a popular cloud storage service, hashes
blocks of 4 megabytes using SHA-256 and stores them in a local SQLite database [78, 106].
These sub-file hash databases can also be privately created and maintained, for example
based on files and information within a company or an investigative bureau, but across
cases. Our particular contribution is to propose that these pre-computed hash lists can
be used to identify files and sub-files on hard drives. With millions and millions of torrent
files publicly shared online, peekaTorrent uses the fact that each and every torrent file
indexes all files and also contains their corresponding SHA-1 hash values. For efficiency,
the files are split into equally sized pieces or chunks, solely depending on the overall size
of information to be shared [33] in powers of 2 starting with 16kb. Thus, by splitting
the hard drives into equally sized chunks and hashing them using SHA-1, it becomes a
matter of comparing hash values to possibly identify hard drive content without relying
on file system metadata. Also, this information is freely available without participating
in any form of file sharing activities, but leveraging the initial seeders computing power
in hashing any form of content.
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3. Improving Incident Response with Sub-file Hashes from Open Sources

Torrent files have a rather simple structure [33]: they contain generic information, e.g.,
when the torrent was created, which software was used and the specific information of
the data to be shared. This includes the size of the blocks, their SHA-1 hash values,
and how many there are. During the creation of the torrent file, all containing files are
concatenated, and this stream of data is then split into equally sized blocks (except
for the last one which does not need to be aligned with the block length). By default,
the data is split into 256-kilobyte blocks, but the user can specify arbitrary block sizes
during the creation of the torrent file. The size of the torrent file depends mostly on the
number of blocks, because it contains an SHA-1 hash value of 20 Bytes for each block. To
uniquely identify the torrent for clients and trackers, an SHA-1 hash value is calculated
over a subset of the torrents’ stored information: the so-called info_hash. Figure 3.1
shows a graphical representation of the file format as well as an example from a specific
torrent file. The dashed line is the information which is hashed to obtain the info_hash
value, while for each file the dictionary files contains the relative path and the length of
the file. Piece length is the block size in which the data is split (in the order specified in
the files field), and the field pieces contains the concatenated SHA-1 hash values.

Figure 3.1: File content in a torrent file

3.2.1 Problem of Non-Aligned Files

One of the problems when using torrent files is the way these files are created: prior to
hashing all chunks, the files are concatenated (in arbitrary order). If a chunk contains
parts of two files, we cannot use the resulting hash value. This means that only files which
are larger than the piece length can be identified, thus biasing the general applicability
towards large files (which is obvious when looking at content from file sharing networks).
Figure 3.2 shows a representation of block hashes in torrents, with the same content as
Figure 3.1: the SHA-1 value of the first piece is usable, as codec.exe spans into the second
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3.2. P2P Networks for Hash Values

piece. As such, it can be used to uniquely identify that this file has been stored on the hard
drive by hashing any hard drive with the same hashing window as the piece_length of
the torrent. This can be readily integrated into bulk_extractor, which already facilitates
the necessary requirements by default. If the first file is longer than in our example, and
spans, e.g., n pieces in the torrent file, any of these areas on disc can identify the file as
long as the data is consecutively stored somewhere. The second piece in Figure 3.2 is not
usable for our proposed methodology, as it contains content from both the first and the
second file. While it could theoretically happen that the operating system allocates the
information in such a way that the hash value could be used, this is not necessarily the
case as the files can be stored at different locations on the hard drive and in different
orders. The third piece (i.e., the second piece that contains content from movie.mkv in
our example) is usable if the missing length of the file in the beginning is used for offset
hashing – it is no longer the piece_length which can be used for chunk hashing during
acquisition, but rather aligned to the hard drive sectors, which tremendously increases
the hash values to be calculated during analysis. Again, this is already integrated in
bulk_extractor and the problem remains CPU-bound, which means it is solvable if
enough computation power is at hand. The hash value for the last piece is unusable, as
it must not be of the same length as the others [33], i.e., there is no padding for torrent files.

Figure 3.2: Chunk hashes

In the following, we discuss the different use cases where such a vast amount of file
fragment information can be of use in the particular context of digital forensics. Other
protocols are probably equally suitable, but have not been investigated in detail for this
work, e.g., Kademlia [94] as well as distributed hash tables in general [139] often use
SHA-1 hash values for searching.
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3. Improving Incident Response with Sub-file Hashes from Open Sources

3.2.2 Use Case 1: File Whitelisting

File whitelisting is a well-known technique to identify files that are common and of
no particular interest during an early phase in digital investigations. One of the most
commonly used databases of hash values is the NIST National Software Reference Library
(NSRL) reference data set1 which comprises at the time of writing of more than 43
million file hash values. Most of these hash values include binaries and program libraries
for software on Windows, whereas our collected data contains information of relevance
independent of the used operating system, and of much larger file size. While NIST also
releases block hash values for the first 4k and 8k of about 13 million files, our dataset is
able to identify popular files like movies, TV episodes or other commonly shared files on
file sharing networks, even if they are deleted and some sectors were already overwritten
by the file system.

3.2.3 Use Case 2: File Blacklisting

File blacklisting is used to find and identify files of particular interest for a specific
investigation. While in our evaluation the usability of our data is mostly limited to cases
of copyright infringement, it is still of use for investigations in general and might lead to
new insights. Nonetheless, building a private sub-file hash database is always a possibility
if a script can be used to hash blocks of arbitrary length of, e.g., all e-mail attachments in
a company, all files on a Sharepoint server or source code within a company. This could
also include illegal material like pictures and videos related to child pornography. Instead
of using perceptional hashing [17] – as used by online services like Twitter and Facebook
to detect such files [70] – sub-file hash values of variable block length can further identify
files like these without access to such perceptionally hashed data.

3.2.4 Use Case 3: File Fragment Identification

By default, file systems in modern operating systems do not overwrite files once they are
deleted, but rather delete the index pointing to the data or mark the affected storage
areas as free-to-use [23]. Depending on the operating system and the file system in
use, as well as the actual user behavior, it is usually unpredictable when a specific area
will be overwritten. Both methods in our approach described so far work for partially
overwritten files, as they do not rely on file system metadata. This was already argued
in [161] for sector hashing. As long as the data on a disc is not completely overwritten
and leaves at minimum the piece length of the torrent files untouched, peekaTorrent will
find it.

3.2.5 Shifting the Bottleneck

Considering these three use cases, the overall performance scales linearly with the number
of available CPU-cores, similar to bulk_extractor. Sub-file hashing can leverage multi-

1Online at http://www.nsrl.nist.gov/
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3.3. Evaluation

core CPUs and scales with the number of available cores. As the file system metadata is
not needed, there is also no need for disk seek operations. All the data from the hard
drive can be split in constantly sized chunks, and processed recursively using the hashdb
scanner within bulk_extractor.

3.3 Evaluation

To evaluate our methodology we implemented all the steps of the processing outline
described above. This includes software we wrote to collect torrent files from the Internet
and tools to process and use them within the context of a forensic investigation, see
https://www.peekatorrent.org. This section shows and underlines the applica-
bility of the proposed approach and the methods applied for gathering torrents on a large
scale.

3.3.1 Data Collection

Collecting a large number of torrents from the Internet is non-trivial, as new torrents are
added constantly and older torrents become unavailable once they are no longer shared.

Only a minority of websites hosts the torrent files containing all the sub-file hash values
themselves, but rather rely on sharing magnet links that point to the information in the
completely decentralized distributed hash tables (DHTs) [163].

To collect torrent files we focused on the following three main sources: (i) The Pirate
Bay2, (ii) kickassTorrents3, and (iii) various data dumps, e.g., from openBay4. For
(i) and (ii) we implemented a crawling framework which recursively crawls and parses
both websites for every magnet link listed there. After that we extracted the torrent
info_hashes from the magnet links and constructed a download link for the torrent cache
website https://torcache.net/. For (iii) and those torrent files which were not
hosted at torcache.net we implemented a DHT lookup service, similar to the one Wolchok
et al. used in their work [158]. The crawlers for (i) and (ii) were crawling the entire
websites, including all subcategories to get the full archive for a specific point in time
(January 2016 in our case).

From the various openBay dumps we were able to extract close to 30 million info_hashes.
The dataset from isohunt contained 7.8 million info_hashes, while the complete archive
for openBay included 23.5 million hashes. Both data sets were created after the police
raid against Pirate Bay in December 2014 caused the website to be shut down. Previously
generated data sets also include one notable xml dump of the Pirate Bay from February
2013 (about 2 million info_hash values). Not all of these files were retrievable using the

2https://thepiratebay.org/ and its alternative TLDs
3https://kickass2.biz/
4https://github.com/isohuntto/openbay-db-dump
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3. Improving Incident Response with Sub-file Hashes from Open Sources

DHTs, in fact only a small fraction and in particular only newer files. The biggest fraction
of torrent files we collected came from kickassTorrents and torcache.net, as torcache.net
is used by default to distribute torrent files on behalf of kickassTorrents. So far we have
collected 2.3 million torrent files. Our data collection is still going on, and as such the
data we collected can only be considered a snapshot in time. Further processing was
then done using Python as well as hashdb, which was used to efficiently store and query
the sub-file hash values.

3.3.2 Theoretic Evaluation

Fragmentation of files can be a limiting factor using real cases, as for each time a file is
fragmented one chunk (of arbitrary length) is no longer identifiable. Since there is no
public instance of a SHA-1 pre-image attack, finding a small number of chunks using
peekaTorrent has a very small likelihood to be coincidental and can be used for further
analysis steps during the investigation. Compared to previous work [161, 54], the number
of false positives is greatly reduced, as the block length used for hashing is larger than the
previously used sector/cluster size of 512 or 4096 bytes. Hashing a larger file block, e.g.,
256 kilobytes, drastically reduces the probability of resulting in the same hash value (for
all files independent of each other). This also implies that shared file content across files,
such as the ramping structure for Microsoft Office files as discussed in [161], is evaded as
the block length increases.

3.4 Results

Overall, we collected and analyzed more than 2.3 million torrent files. These torrents
comprise 3.3 billion block hash values. From these 3.3 billion block hash values, approx-
imately 48% (or 1.62 billion hash block values) are usable to identify millions of files
using various block length. Another 50% (or 1.66 billion hash block values) are usable
even though the files do not align with the torrent chunking. 1.1% of the 3.3 billion hash
values (or 39 million hash block values) are not usable for our approach, as the blocks
and their corresponding hashes comprise content of two or more files. The exact numbers
for the most popular torrent block lengths of 2n (for various n) is shown in Table 3.1,
with exotic chunk sizes omitted (n=2,871) for the sake of brevity.

From the 2.3 million torrent files we are able to identify 2.6 petabytes of data using Peeka-
Torrent, or 32 million files. Regarding only the most common chunk sizes with 100,000 or
more torrent files found using our methodology, we are left with 2.1 million torrents. The
pre-computed hashdb databases as well as the raw torrent files and the source code used
for this chapter can be found on our website https://www.peekatorrent.org.
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3.4. Results

block length torrents chunks usable chunks offset chunks unusable chunks

16k 75k 146m 123m 84% 22m 15% 305k
32k 95k 171m 112m 65% 58m 34% 662k
64k 335k 217m 124m 57% 90m 41% 2m
128k 201k 227m 115m 50% 109m 48% 2m
256k 669k 1.329b 631m 47% 690m 51% 8m
512k 297k 401m 201m 50% 194m 48% 5m
1024k 307k 357m 165m 46% 187m 52% 5m
2048k 170k 201m 75m 37% 121m 60% 4m
4096k 161k 229m 58m 25% 162m 70% 8m
8192k 18k 27m 8m 30% 17m 65% 975k
16384k 2k 3m 315k 9% 2m 84% 198k

Sum: 2.3m 3.314b 1.615b 48% 1.658b 50% 39m

Table 3.1: Results of data collection for 2.3 million torrent files

3.4.1 hashdb

We then imported the usable sub-file hash values for all torrents with a piece length of
256k into hashdb [54]. As it can be seen in Table 3.1, this sums up to 631 million hash
values. From these 631 million only 474 million are unique, because of duplicate sub-file
hash values. This is due to the fact that the same files can be contained in different
torrents, e.g., duplicates for each kickassTorrents and Pirate Bay. Torrent files that
became repackaged with different files or file ordering can be another reason to cause
this rather large discrepancy. hashdb can then be used to deny that a given sub-file hash
value is part of the database using Bloom filters. Otherwise the database is queried, and
both filename and info_hash are returned if a corresponding hash value is found. All the
features and APIs provided by hashdb are thus fully usable, and the entire project is
well documented and active5.

While the majority of sub-file hash values are unique within the data we collected (474
million), the long tail of duplicates can be seen in Figure 3.3. The x-axis accounts for the
number of duplicates found, starting from hash values with 10 duplicates or more. Note
that the y-axis is log-scale. In the data there are also 17.8 million distinct sub-file hashes
that occur twice, 2.5 million that occur three times, and about 440,000 that occur four
times. We speculate that these hashes are again caused by some form of release group
information or an embedded URL. The by-far largest number of duplicates observed was
caused by one particular hash that occurs 8,462,788 times. We would speculate that this
is caused by the “null” hash, for data areas that contain only zeros.

5https://github.com/NPS-DEEP/hashdb
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3. Improving Incident Response with Sub-file Hashes from Open Sources

Figure 3.3: Distribution of sub-file hash duplicates

3.4.2 Real Runtime on Limited Hardware

To evaluate our approach further, we took a 5-year old notebook and created a one
gigabyte image from a USB thumb drive. The notebook was a Lenovo X200s, with a Core
2 Duo processor (L9400), 4 GB of RAM and a regular hard drive. On the thumb drive we
stored the ISO file for the current version of Ubuntu Desktop, which we downloaded over
BitTorrent. We created a fresh hashdb database, and seeded it with the extracted SHA-1
hashes of the torrent file. Overall, we extracted 1158 hash values for the Ubuntu image,
the chunk size was 512k. We then used a custom module for bulk_extractor to generate
SHA-1 hashes of all blocks bulk_extractor processes, and disabled all other plugins.

Running bulk_extractor with solely the SHA-1 plugin activated on the notebook took 220
seconds to process the 1 GB image file. Since the CPU has two cores, two threads were
spawned to process the image. From the 1158 chunks, 1154 were successfully identified
using peekaTorrent. Three chunks could not be found since the file was stored fragmented
in three fragments (verified manually using fiwalk), and the last hash value is unusable
as it has a different chunk length. Running the same analysis on a modern Xeon with 8
cores plus Hyper-Threading took less than 23 seconds. Running the same image against
the hashdb database of all 474 million chunk hashes took 38 seconds. Since we do not
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3.5. Discussion

aim to evaluate the performance of either bulk_extractor or hashdb, we do not go into
details of further performance numbers. Also, the average fragmentation on hard drives
depends heavily on the type of usage, size and operating system. Measuring this for the
average case is beyond the scope of this thesis.

3.5 Discussion

Our results show that a rather large number of block hash values is usable to identify
files based on the data we collected from BitTorrent files, somewhere close to 98%. Due
to the nature of file sharing networks and the content distributed there we assume that
this is possibly biased, that these networks commonly share large files like movies in high
quality. We did not investigate the distribution of filenames and file sizes to what extent
one can expect that the largest file is the first in the torrent file. We assume that this
is specific to the application that created the torrent, as this is not specified in the file
format of BitTorrent [33].

Half of the usable chunk hashes come with an arbitrary offset due to the placement of
the affected files. This is caused by the particularities of BitTorrent files. However, since
bulk_extractor processes pages of memory without any file system information, these
artifacts are also retrievable (as long as the file is larger than the chunk size). Other
sources for sub-file hashing have to be investigated, like other P2P protocols or cloud
storage solutions such as Dropbox. We expect similar functionality from other cloud
storage solutions like Google Drive, OwnCloud or Microsoft OneDrive as well, where the
local data structures could be used as a source for history hash values. Still, using the
data we collected we can identify up to 2.6 petabytes of data for 3.3 billion chunks. We
expect these values to increase, as we will keep collecting data and publishing it on our
website.

Regarding the forensic application and typical use case, many scenarios come to mind.
First, it depends on the data sources used for seeding the sub-file hashing – this can
be for example all sent e-mail attachments in a company, a stack of sensitive corporate
documents or encrypted data blobs in the corporate context. Secondly, this can be easily
enlarged by investigators via adding data from private repositories of interesting files, file
archives or any other data source at hand – like USB thumb drives – or portable hard
drives, and hashing it in sub-file chunks. Another example could be the cross-linking
of files between hard drives: if any of the hard drives during an investigation is hashed
with a particular chunk size, all other related drives can use this information to identify
non-fragmented overlaps. After all, this was obviously the original motivation behind the
tight connection between bulk_extractor and hashdb. Foremost, peekaTorrent allows for
hard drives without any meta information at all to find clues on the content – as long as
the hard drive is not encrypted.
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3. Improving Incident Response with Sub-file Hashes from Open Sources

3.5.1 Limitations

While 2.6 petabytes of identifiable files sounds like a lot, its usefulness depends on the
particular kind of investigation. If the goal is to whitelist as many files and file fragments
as possible on a diverse set of machines, our approach looks promising. As always in
digital forensics, it depends, however, on the specific context of the investigations and the
questions of interest. For more specific investigations it depends on the type and volume
of data – creating sub-file hash values of variable block length is easily scriptable, so if
a large repository of files is available, our methodology is applicable. This can be, for
example all attachments from an e-mail server, malicious files like malware from anti-virus
companies, or even smaller sets of files with a direct connection to an investigation.

Another limitation is the behavior of storage devices, operating systems and file systems:
SSDs regularly delete artifacts within the free space using the TRIM command [15], and
depending on the operating system and file system, fragmentation can occur. There are
no current numbers on the amount of fragmentation happening, with the latest study on
file system metadata being already close to a decade old [2]. Also, the approach only
works for files which have at least a file size bigger then the hashing window respectively
the torrent piece length. Based on our findings with peekaTorrent, only files with a
minimal size of 16 kilobytes are identifiable, while a vast amount of files needs to have at
least 256 kilobytes due to the nature of the seeding data.

3.6 Conclusion

In this chapter we have demonstrated how vast amounts of sub-file hash values can be
of use in digital forensics. We evaluated the idea of using torrent files from popular file
sharing platforms and collected more than 2.3 million torrent files for our analysis. Based
on these torrent files we extracted more then 3 billion SHA-1 sub-file hash values and
were able to identify up to 32 million files or 2.6 petabytes of information using this data
set. Both the collected data and the written software tools are available under open
source licenses.
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CHAPTER 4
Filesystem Timestamp

Steganography Detection

The previous chapters lined out how to cope with the analysis of exponentially increas-
ing amounts of data. But cybercrimes do not necessarily involve file contents only.
Steganographic techniques are able to hide the existence of information passing through
communication channels or resting in storage media for later access. These techniques are
useful in a wide range of real-world scenarios, including but not limited to: circumventing
censorship and restrictions imposed by governments and other adversaries [3, 6], assisting
whistleblowers when disclosing documents [59], and supporting businesses to protect
strategic corporate information during transmission [38].

Numerous steganographic techniques have been proposed and analyzed in the research
literature [164]. The analysis focuses on criteria such as the achieved secrecy on specific
application scenarios, the steganographic channel capacity, and the information channel
utilization.

Storage or format-oriented steganographic techniques hide information in logical channels
by utilizing redundant or unused fields in format specifications. This includes, among
others, the master boot record (MBR) of non-bootable hard disks and the unused disk
space caused by the misalignment of hard disk sector size and file size [77].

Modern filesystems support a wealth of operations that span beyond the primitive of
mapping files into sequences of hard disk sectors. The filesystem specifications define
additional data structures (i.e., “metadata”) to describe information like the owner, the
access permissions, and the date and time when important file events took place.

We therefore propose and explore in this chapter, to the best of our knowledge for the
first time in literature, the applicability of filesystem timestamps as a steganographic
channel. Additionally, we evaluate the steganographic capabilities of such channels and
propose techniques to aid digital forensic investigations.
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4. Filesystem Timestamp Steganography Detection

More specifically, in this chapter, we make the following contributions:

1. We analyze the granularity of the timestamps that modern filesystems implement,
and we evaluate their applicability for steganographic applications.

2. We propose the use of timestamps as a means to hide information in NTFS and
other filesystems with sub-second timestamp granularity.

3. We describe a system design and a proof-of-concept implementation that support
different levels of possible capacity to securely hide data on NTFS volumes.

4. We validate the proposed system using real-world and synthetic datasets, and we
show that the embedded steganographic information cannot be distinguished from
the information produced by normal filesystem operations.

5. We discuss the digital forensics implications of this new steganographic method.

Furthermore, in this chapter, we answer the following questions:

1. How do different storage media and connection interfaces affect the timestamp
patterns?

2. How do different file creation approaches affect the timestamp generation patterns?

3. How does the regular use of the filesystem affect the capacity of the channel over
the sub-second part of the timestamps?

4. How do practices followed in enterprise environment affect the channel capacity?

5. How can we utilize these information to design appropriate detection techniques
and mechanisms?

4.1 Background

4.1.1 Data Hiding

Early works on digital steganography focused on hiding data in the clear, deriving and
discussing different methods of embedding data, and arguing how steganography is and
probably will be used in the present and in the near future [73, 164]. Such works did not
anticipate the widespread use of the personal digital devices and the role of the Internet
in our daily lives [48, 8].

A considerable amount of research was devoted to embedding unobservable communication
within normal network traffic, ranging from the utilization of TCP/IP timestamps [56] to
the more general usage of TCP/IP fields [107]. Many implementations of steganography
hide encrypted data in innocent-looking network traffic (e.g., ptunnel [140]), header
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4.1. Background

fields [136], or use timing intervals and artificial transmission delays for information
transmission [85, 14, 95]. While it has been shown that secure steganographic protocols
are feasible, we are still lacking functional implementations and widespread use of such
tools [67].

A second line of research focused on embedding unobservable information within the
contents of stored files, introducing undetectable degradation of multimedia quality (e.g.,
manipulating the low-significance bits of pixel representation in images [13]), the color
palettes in GIF images [49], or (possibly) encoding information in YouTube videos that
look like static snow [157].

4.1.2 Filesystems

A plethora of different filesystems is available, including FAT and NTFS for Microsoft-
Windows-based devices, ext4 and btrfs for GNU/Linux systems, and HFS+ for Apple OS
X and iOS devices1. Most of them store different artefacts at various levels of granularity
and detail, collectively known as “filesystem metadata”.

Filesystem metadata can be classified in five categories: file system, application, file name,
content, and generic metadata [23]. File system metadata are information on how the
filesystem is to be read and where the important data structures reside. Application
metadata are information useful for the application utilizing the filesystem, such as
the file owner and the file access permissions. File name metadata are information for
the human-readable names mapping to logical data locations. Content metadata are
information about the logical addressing of the files, the file allocation status, and the
actual data of the files. Generic metadata are information mostly used internally by the
filesystem for its operations. This includes information such as the timestamps of various
events in the lifecycle of a file.

4.1.3 Steganography using Filesystem Metadata

The topic of hiding data in filesystem metadata was heavily discussed in the late 1990s [7].
Back then, export restrictions on the use of strong cryptographic algorithms outside the
USA were in place, and there was an increased concern by the public regarding key escrow.
StegFS, a steganographic filesystem compatible with the Linux ext2 filesystem, was
developed [97, 120]. This filesystem achieved plausible deniability of the hidden content
thanks to its indistinguishability from unused content. This behavior was achieved
by applying encryption on the content under the assumption that a good encryption
algorithm ensures that encrypted data appear as random data. However, the use of
StegFS is not undetectable as the needed filesystem driver is not hidden. Additionally,
there is no integrity check of the data. Thus, StegFS cannot recover from any kind of
intrusive data modifications.

1An exhaustive list is provided in the Wikipedia entry available at https://en.wikipedia.org/
wiki/Comparison_of_file_systems.
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4. Filesystem Timestamp Steganography Detection

Encoding (hiding) information in the order that a filesystem indexes the file names is
explored in [12]. The approach is applicable only in the case of a FAT filesystem and
cannot be generalized. The file fragmentation is explored in [77]. This approach introduces
significant performance penalties, more evident in magnetic storage media, in the form of
delays when accessing the file contents. This delay is due to the heavy file fragmentation
that is enforced in order to create the steganographic channel. The delay and the heavy
fragmentation can serve as indicators for the presence of steganographic information, thus
defeating the steganography. Furthermore, (automatic) defragmentation of the storage
medium can destroy the steganographic information.

Application metadata (e.g., the file owner or the file access permissions) can encode
only a few bytes of information and the encoding is easily detected. For example, it is
technically feasible to attach an arbitrarily large list of user–permission pairs in an NTFS
file, even by referencing non-existent users [121]. However, the mismatch of the users
mentioned in the system user list and the user–permission pairs, on top of having such
long lists in first place, would raise suspicions in a forensics investigator.

The file name cannot be considered as a good candidate for steganographic operations.
Indeed, an odd pattern of filenames will look instantly suspicious.

Mixing steganographic information with the actual contents of a file is studied exten-
sively [73, 27, 88, 4, 69]. Format containers for multimedia content (e.g., audio or video)
are transparent to and independent of the underlying filesystem that hosts the multi-
media file. Thus, a filesystem-level analysis will not be able to disclose the presence
of steganographic information in a format container. Also, we note that multimedia
transcoding can effectively destroy the steganographic information without significantly
affecting the original information channel.

Generic metadata, such as temporal information describing the lifecycle of a file, are very
sensitive to both the actions of the user and the operating system itself. For example,
certain timestamps of file events can be overwritten at any moment while using the
filesystem in a normal way. This includes a timestamp of the (last) file modification and
(last) access of the file. The fragility of the temporal information might be the reason why,
to the best of our knowledge, timestamps have not yet been explored as a steganographic
means.

4.2 Timestamps in Modern Filesystems

We analyze in the following paragraphs how modern filesystems use timestamps. The
assumption we seek to validate is that there is unused (redundant) capacity in timestamps
that is sufficient enough to create a logical channel with steganographic strength.

NTFS is the standard filesystem for Microsoft Windows operating systems. NTFS uses
the number of 100 nanoseconds passed since January 1, 1601 for its timestamps [102].
The timestamps are saved as 64-bit values in the $Standard_Information field
of the Master File Table (MFT). Additionally, they are saved in the NTFS attribute
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4.2. Timestamps in Modern Filesystems

$FILE_NAME. Each file has four 64-bit timestamps: (i) creation of the file, (ii) last access
of the file, (iii) last modification of the file, and (iv) last modification of the corresponding
MFT entry.

ext4 is the successor of the Linux standard filesystem ext3. Ext4 uses 64-bit values to
represent timestamps with nanosecond granularity [93, 46, 76]. Ext4 uses the following
four timestamps per file: (i) creation of the file, (ii) last modification of the file, (iii) last
access of the file, and (iv) the last attribute modification of the file (e.g., permissions or
ownership).

btrfs is the upcoming major filesystem for the Linux operating systems [126]. It is
a “copy-on-write” filesystem based on B-trees. All file timestamps in btrfs support
nanosecond granularity and are saved as 64-bit values [123]. The first 32 bits of the
timestamps are the seconds since the epoch (January 1, 1970) and the remaining 32 bits
are the nanoseconds since the beginning of the second. The provided per-file timestamps
include: (i) creation, (ii) last modification, (iii) last modification of the file’s attributes
(e.g., permissions or ownership), and (iv) last access.

ZFS is intended to be a highly performing, decentralized filesystem [127]. The following
per-file timestamps of ZFS have a nanosecond granularity, saved in 64 bits each: (i) cre-
ation, (ii) last modification, (iii) last access, and (iv) the last attribute modification [142].

FAT32 is the predecessor filesystem of NTFS on the Microsoft Windows operating
system. FAT32 uses three different timestamps per file: (i) creation, (ii) last modification,
and (iii) last access. The first two timestamps are saved as 32-bit values and the last
one is saved as a 16-bit value. The difference comes from the fact that the first two
timestamps are provided with a granularity of two seconds, whereas the date of last
access is provided with a granularity of one day [50].

HFS+ is the standard filesystem for the Apple Macintosh and iOS devices. HFS+ uses
the following per-file timestamps: (i) creation, (ii) content modification, (iii) last attribute
modification, (iv) last access, and (v) the last backup [21]. All of these timestamps have
a granularity of one second and are saved as 32-bit values.

ext3 is the successor of the ext2 filesystem and enhances it by providing journaling
capabilities. Ext3 uses three timestamps per file: (i) last access, (ii) last modification,
and (iii) last attribute modification. The timestamps have a granularity of one second
and are saved as 32-bit values. The use of the undocumented large-size inode feature
can increase the granularity of the timestamps to one nanosecond [10].

Table 4.1 summarizes our analysis. We confirm that many modern filesystems use 64-bit
values as timestamps and offer sub-second granularity [10]. This statement covers all
filesystems that mainstream consumer operating systems use or access nowadays (e.g.,
Apple OS X, Google Android, GNU/Linux, and Microsoft Windows) with the exception
of the HFS+.
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4. Filesystem Timestamp Steganography Detection

Three file timestamps, namely creation, access, and modification are supported by
almost all the analyzed filesystems. All three timestamps store date and time information
with sub-second granularity (one or 100 ns).

The nanosecond precision is not communicated, explicitly or implicitly, to the end users
who access the filesystem. They are confronted with file timestamp information that
resolves to a second granularity, as depicted in Figure 4.1. Thus, there is an information
gap between how timestamps are stored and how they are used.

(a) (b)

(c)

Figure 4.1: How file timestamps are displayed to the users: (a) Ubuntu Linux, (b)
Microsoft Windows, (c) Apple OS X.
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4.3. Steganography Based on File Timestamps

The creation timestamp is by and large a static piece of information, as it refers to a
unique event, the creation of the file itself. The access and modification timestamps are
updated each time a file is accessed or modified.

Modern operating systems are exploiting latest advances in storage technologies to deliver
increased performance and reliability while reducing costs. USB flash drives and SSD
storage media are commonplace. In this setting it is advisable, if the application scenario
allows so, to reduce filesystem overheads for timestamp housekeeping. This includes
disabling the update of per-file access and/or modification timestamps. Such an approach
can increase both the performance and the lifetime of a storage medium. Yet, in most
consumer-grade usage scenarios, we can expect that only the access timestamp remains
intact.

The analysis above validates the first part of our initial assumption: there is unused
(redundant) capacity in filesystem timestamps. Depending on the filesystem and usage
scenario, this capacity ranges from one to nine bytes per file. With modern filesystems
hosting hundreds of thousands or even millions of files, this provides enough capacity for
storing up to a few megabytes of extra information. In the next sections, we explore how
the available capacity can be utilized to create a logical channel with steganographic
strength.

4.3 Steganography Based on File Timestamps

We assume a threat model where the attackers can inspect the file contents and can
manipulate the filesystem metadata. Also, the attackers can freely remove, rename, or
insert new files in the filesystem, and they accept the associated risk of thereby disclosing
their presence.

We aim for a steganographic storage system based on file timestamps, namely TOMS
(Time-On-My-Side) that is stealthy, robust, and applicable in a wide range of scenarios.
“Stealthy” means that the attacker cannot deduce the presence or absence of stegano-
graphic information by examining the timestamps. Thus, the attackers are left only
with the option of a denial-of-service attack i.e., to overwrite all timestamps and destroy
the steganographic channel, thereby disclosing their presence. “Robust” means that
the system can sustain and recover from file manipulation attacks. “Widely applicable”
means that the system can be configured to match different operation scenarios, balancing
performance and secrecy.

4.3.1 System Design

The aim of the TOMS system is to hide an input (the message) inside the metadata of the
hosting filesystem (the carrier). For the sake of clarity, we assume that the system can
identify the necessary space (i.e., the file timestamps to use) and that all the necessary
space is already available. We will return on this issue at the end of the design description
(cf. Section 4.3.2).
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4. Filesystem Timestamp Steganography Detection

Table 4.1: Characteristics of filesystem timestamps.

Filesystem File timestamp Size Granularity

NTFS creation 64 bits 100 ns
access 64 bits 100 ns
modification 64 bits 100 ns
modif. of MFT entry 64 bits 100 ns

ext4 creation 64 bits 1 ns
access 64 bits 1 ns
modification 64 bits 1 ns
attribute modif. 64 bits 1 ns

btrfs creation 64 bits 1 ns
access 64 bits 1 ns
modification 64 bits 1 ns
attribute modif. 64 bits 1 ns

ZFS creation 64 bits 1 ns
access 64 bits 1 ns
modification 64 bits 1 ns
attribute modif. 64 bits 1 ns

FAT32 creation 32 bits 2 sec
access 16 bits 1 day
modification 32 bits 2 sec

HFS+ creation 32 bits 1 sec
access 32 bits 1 sec
modification 32 bits 1 sec
attribute modif. 32 bits 1 sec
backup 32 bits 1 sec

ext3 access 32 bits 1 sec
modification 32 bits 1 sec
attribute modif. 32 bits 1 sec

The design of TOMS follows a layered approach. From top to bottom, the system
comprises: (i) a storage container layer for the message, (ii) an error correction layer for
redundancy, and (iii) an encryption layer.

4.3.1.1 Storage Container Layer

The storage container layer maps the message into the underlying file timestamp metadata
elementary storage units. The naïve approach for keeping track which files and directories
have been used to embed the information is to keep an encrypted metadata file with
the absolute paths of the files and directories used. The metadata file approach has the
benefit that the correct ordering of the files to extract the information is trivial. Also,
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4.3. Steganography Based on File Timestamps

this file does not necessarily need to be stored in the same filesystem with the hidden
data. Rather, it can be stored in another storage media altogether. This is beneficial,
since the very presence of a metadata file inside the examined filesystem is neither elegant
nor stealthy, even if its contents are encrypted. On the contrary, such an encrypted file
can raise further suspicions.

A second option is to reliably embed and extract information only based on the files and
their timestamps. This can be realized using oblivious replacements on whole filesystems
(e.g., an NTFS volume) or on the subfolder level (e.g., an NTFS non-root directory). In
this case, all files and directories are sorted by their creation timestamp, either globally
(filesystem level) or locally (subfolder level). This ordering defines a (logically) continuous
storage space that can be used to write and later read the hidden data.

4.3.1.2 Error Correction Layer

The normal use of the storage medium hosting the filesystem as well as the actions of
the attackers may remove some of the files stored on the filesystem. Also, the attackers
might intentionally change the creation timestamps of some of the files. Such actions,
deliberate or not, cause a new ordering of the creation timestamps, which results in the
inability to either access the input file segments in the correct order or altogether.

The error correction layer augments the initial representation of the input file with
additional information that can cope with the aforementioned issues. As a first step,
an error correcting code (ECC) is appended to the representation. The ECC can both
detect and reconstruct missing information. As a second step, this layer enforces a start
offset for the used files. This allows the program to start from a random point in the
ordering and use both older and newer files. Thus, not only old files are used to hide
information.

The selection of an appropriate ECC is left to the implementation. By and large, an
ECC should not introduce significant storage overhead.

4.3.1.3 Encryption Layer

The error correction layer introduces data redundancy. This redundancy comes on top of
the structured information needed to represent the links from timestamp to timestamp
in order to form a logically continuous storage space. These can be sources that result in
timestamps with patterns. If patterns are detected, the whole steganographic system
will collapse, since they reveal the existence of hidden information.

The role of the encryption layer is twofold: On the one hand it protects the hidden
information from disclosure. Only somebody in possession of the related cryptographic
key(s) can access the encrypted and hidden information. On the other hand the confusion
and diffusion properties of a (good) secure cipher ensure that hardly any pattern will
exist in the output allowing it to appear totally random.
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4. Filesystem Timestamp Steganography Detection

The encryption layer uses symmetric-key cryptographic algorithms to encrypt the infor-
mation of the two previous layers. Stream ciphers, as for example AES-OFB or RC4,
can be used in this layer. The advantage of stream ciphers over block ciphers is that the
former do not need to expand the output of the operation and that they can recover to a
certain point from errors (e.g., missing timestamps) at a bit rather than a block (i.e.,
dozens of bytes) level.

4.3.2 Information Representation: The Case of NTFS

We can now describe how the TOMS components work together to hide a message in
the file timestamps. In the following, we will use the NTFS filesystem as an example.
However, the description is valid for any other filesystem with similar characteristics.
Figure 4.2 depicts the NTFS inode data structure used to represent various filesystem
objects, including a file and a directory. In the following, we will use the term “file” to
refer to NTFS inodes.

struct _ntfs_inode {

uint64 mft_no;

MFT_RECORD *mrec;

ntfs_volume *vol;

unsigned long state;

FILE_ATTR_FLAGS flags;

uint32 attr_list_size;

uint8 *attr_list;

uint32 nr_extents;

union {

ntfs_inode **extent_nis;

ntfs_inode *base_ni;

};

uint64 data_size;

uint64 allocated_size;

ntfs_time creation_time;

ntfs_time last_data_change_time;

ntfs_time last_mft_change_time;

ntfs_time last_access_time;

uint32 owner_id;

uint32 security_id;

uint64 quota_charged;

uint64 usn;

};

offset seconds nanoseconds

i01

02363

234

i . . . index
0 − 4 . . . stored bytes

Figure 4.2: Overview of storing data in the nanoseconds part of the timestamp fields.

Two file timestamps can be used by TOMS in the case of NTFS: the creation and the last
access. Each timestamp uses 24 bits to represent its nanoseconds part. Thus, a total of
six bytes per file can be used to hide information. This constitutes the elementary storage
unit (ESU) for the TOMS system. We assume that the size of the input (steganographic)
message, M , is much larger than the size of an ESU. First, an error correcting code
function is applied to the input message, E = ECC(M). Then n, the number of ESUs
needed to store E, is prepended (n||E).
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4.4. Evaluation of the TOMS System

4.3.2.1 Information Hiding

The information hiding process works as follows. The encoded message (E) is fragmented
into n blocks of five bytes each (B1, B2, . . . , Bn). Then, every block is prepended with one
byte that is used as a block index (i ∈ {1, . . . , n}). The special value of 0x00 for the index
byte is used to prepend a block of five bytes that contains the number of needed ESUs,
n. The resulting structure is a linked list of six-byte blocks: (0, n), (1, B1), . . . , (n, Bn).
This structure is then encrypted with a stream cipher and a secret key, producing an
output list of six-byte blocks: C0, C1, . . . , Cn.

TOMS constructs the list of candidate files that they can be used as carriers. The list,
F , is ordered based on the creation timestamp of each file, and a start offset, s, is chosen
randomly. The ordered list of files, Fs = {fs, fs+1, . . . , fs+n} ⊆ F , will be used as the
carrier. TOMS then proceeds and replaces the nanoseconds part of the creation and
access timestamps of each file in Fs with the six-byte encrypted chunk Ci.

4.3.2.2 Large Message Handling

Using just one byte as index limits the length of the hidden message (E) to only 255 bytes.
We overcome this limitation by allowing multiple index bytes to share the same value
(overflow upon reaching the value 0xFF and restart numbering from 0x01). Whenever
an overflow occurs, an ESU is consumed in order to store the length of the whole message,
using again an index byte of 0x00. Thus, every ESU with an index byte holding the
value 0x00 contains the total length of the message.

4.3.2.3 Recall of Hidden Information

The information recall process works as follows. The timestamps for all the files in
the filesystem are extracted, sorted by their creation time, and then saved as a list G.
For every list entry, the nanoseconds part of the creation and the access timestamps
are decrypted by applying the same stream cipher and key material used during the
information hiding process. If the decrypted first byte of the creation timestamp equals
the index byte value 0x00, the respective timestamps are added in an offset list L and the
number of ESUs, n, is recovered. Then, the next n list entries are processed, recovering
the respective index (i.e., 0x01, 0x02, . . . , n) and the structure H. Next, the error
correction code function is applied on H, recovering the original (hidden) message M .

4.4 Evaluation of the TOMS System

In this section, we evaluate the design principles of the TOMS system. Our evaluation is
based on theoretical, experimental, and evidence-based analysis of the steganographic
strength of TOMS under the assumed threat model (cf. Section 4.3).
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4. Filesystem Timestamp Steganography Detection

4.4.1 Stealthiness

“Stealthiness” describes the degree to which the very existence of hidden information is
disguised, irrespectively of the ability to recover the hidden message(s). We analyze the
two factors defining the stealthiness of the TOMS system in the following.

4.4.1.1 Timestamp Handling by Operating Systems

The use of the encryption layer ensures that the steganographic information are not recov-
erable without having access to the key material of the stream cipher used. Furthermore,
a good stream cipher ensures that each output bit will be a one or a zero with equal
probability. But how do modern operating systems handle the timestamp information
in first place? Do they fill these data structures with sub-second-precise information or
do they opt for a different strategy? If the former, what is the precision of the provided
time information? We sought the answer to these questions using three approaches.

4.4.1.2 Code Audit

As a first approach, we performed a code audit of the NTFS-3g implementation of the
NTFS filesystem [150]. This is the default driver for accessing NTFS volumes from
within the Linux and Apple OS X operating systems, and it is an open source code. A
similar code audit for the NTFS implementation of the Microsoft Windows operating
system was beyond our reach, since the source code is not publicly available. The code
audit revealed that the NTFS-3g fills the related timestamp structures with nanosecond-
granular information provided by the Linux system clock which also has a nanosecond
granularity.

4.4.1.3 Synthetic Data

The second approach was to create synthetic data for experimentation, which is online
at the authors website together with the most recent version of the code used for this
purpose2. We created files in batches using a Python script on a Linux system accessing
an NTFS volume via NTFS-3g. Each batch created 100,000, one million, or ten million
different files. Half of the files were created with a random delay of one to two seconds
between each creation. The other half of the files were created with zero delay, i.e., as
fast as the computer system could handle the requests.

Our “synthetic” dataset contains 117 million files. We collected the three timestamps
(create; access; and modify, all equal to each other) for this dataset as well. We conducted
an exploratory data analysis to determine if the timestamp distribution was uniformly
distributed. Results for the Kolmogorov-Smirnov goodness-of-fit test for uniformness
indicated that the timestamp distribution did not deviate significantly from a uniform
distribution (D = .99, p = 2.2 × 10−16).

2https://www.sba-research.org/dfrws2016/
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4.4. Evaluation of the TOMS System

The source code audit and the experiments validate that the Linux operating system uni-
formly uses the full spectrum of the 24-bit sub-second granularity to store the timestamp
information.

4.4.1.4 Real Data

The third approach was to collect evidence from Microsoft-Windows-based systems that
are actively used to perform day-to-day tasks (“real-world systems”). We therefore
collected the file timestamp information from a sample of 70 filesystems (NTFS volumes)
from multiple Microsoft Windows computers available at our research lab. On average,
each filesystem of our sample contained about 290,000 files and 40,000 directories;
the largest one contained over 2.2 million files and directories. The majority of the
sampled filesystems (n=63) were actually “system volumes”, i.e., they contained the
files of the Microsoft Windows operating system (e.g., those files commonly found in
the C:\Windows directory) and (most likely) of the majority of installed software (e.g.,
those files commonly found in the C:\Program Files directory). Only seven systems
contained more than one NTFS volume (i.e., “non-system volumes”). Such volumes
are often used as storage for work or personal data (e.g., documents, spreadsheets, and
pictures). In total, our “real-world” dataset contains the timestamps of 22,261,386 files
and directories.

We analyzed the timestamps contained in this dataset and we noticed some irregularities
in their distribution. Creation timestamps that are filled with zeroes in their nanoseconds
parts were disproportinally more frequent than expected. This is the case when files are
migrated into NTFS volumes from FAT32 filesystems. The latter use a granularity of two
seconds at best, hence the zeroes. This assumption was empirically tested and further
confirmed by Microsoft’s documentation regarding timestamp changes [101].

4.4.1.5 Time of Filesystem Inspection

In the previous paragraphs, we saw that the timestamps can be used as stealthy informa-
tion carriers, since the sub-second information follows a uniform distribution, as does
the output of a stream cipher encryption. Before replacing any timestamps, one should
consider if and how often the filesystem is inspected by an attacker. As an example, we
consider the case of (operating) system files. These files are installed once and are seldom,
if ever, touched again (e.g., only when operating system updates are installed). Thus, if
their timestamps are proactively collected, any future modification by the TOMS system
will be easily detected.

In a forensics analysis scenario, we can assume that the investigator will inspect the
metadata after the message was hidden in the timestamps. We can also assume that the
investigator does not have access to earlier versions of the filesystem metadata information.
Thus, existing timestamps can be utilized to hide steganographic information. In a
scenario where the filesystem can be proactively inspected, already existing files might
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4. Filesystem Timestamp Steganography Detection

not be good candidates for carriers. Thus, only new files (i.e., generated after the last
inspection) can be utilized to hide steganographic information.

We assume for our subsequent analysis a more conservative scenario, in which the
filesystem is proactively inspected. In this case, one should exlude all system files and
all files with timestamps containing zeroes in the sub-second part. Applying this to our
initial real-world dataset, it resulted in an almost 50% drop of available files, down to 11
million files spanning 70 NTFS volumes.

4.4.2 Robustness

“Robustness” refers to the ability of the TOMS system to cope with changes in the filesys-
tem contents. The information hiding and recall procedure of TOMS is straightforward
when the initial ordered list of files Fs remains intact between information hiding and
information recall(s). In the following, we analyze how the TOMS system defends against
actions that result in modifications of Fs.

4.4.2.1 Encrypted Metadata

This is the simplest of the the proposed storage container layers. The ordered list of files
Fs is not affected by operations on the filesystem level (assuming that these operations
do not touch the timestamps). Should some files have been removed from the filesystem,
or some timestamps are updated, the encryption and the error correction layers may be
able to recover the lost information thanks to the use of the stream cipher and the ECC.
If and how the recovered information is stored back to the timestamps (e.g., insert new
files, re-encode information, or even fix the “corrupted” timestamps) is a decision to be
made taking into account the severity of the errors and the assumed time and frequency
of inspection.

4.4.2.2 Oblivious Replacements

In this approach the ordered file list Fs results from sorting the timestamps that are
provided by the filesystem. Thus, it might be the case that the TOMS system unknowingly
uses a different list F ′

s for information recall instead of the one originally used for
information hiding. If some files were removed between information hiding and recall(s),
the same arguments as in Section 4.4.2.1 apply.

We assume that some additional files, Fa, are included in the F ′

s = Fs ∪ Fa list, and that
the computing system has a proper clock. If oblivious replacement is applied globally
(filesystem level), the TOMS system will always recover the correct Fs. This is feasible
because the file creation timestamp is immutable on an NTFS volume, i.e., it does not
change when the file is copied, renamed, or moved within the same NTFS volume [23].
Thus, even if files are moved across different NTFS folders, their creation timestamp will
not change. Also, these additional files Fa will have more recent creation timestamps
than those already contained in the original Fs and allow therefore a clear separation of
the two sets.
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4.4. Evaluation of the TOMS System

If oblivious replacement is applied locally (subfolder level), then it is possible that the
ordering of Fa is intermixed with the ordering of Fs. This is the case where files are
moved to the specific subfolder containing Fs; as mentioned earlier, the file creation
timestamps are immutable. This situation is accommodated by the use of the encryption
and the error correction layers. Assume that a file fm ∈ Fa is inserted in the ordered list
Fs. First, the ESUs of fm must decrypt correctly and not be rejected by the encryption
layer. Then, the value of the index byte contained in the (erroneously) decrypted ESUs
must match the currently expected sequence number in order to not be rejected by the
error correction layer. Finally, the payload information contained in the ESUs must pass
through the ECC. Only then, these information are accepted as valid. If the processing of
fm fails, the error correction layer provides the necessary protection to recover from the
error. Thus, the two layers provide an adequate defense (up to a certain point) against
such (deliberate or not) insertion attacks. The amount of redundant information handled
by the ECC defines this protection level. An oblivious replacement at the subfolder level
requires a stronger ECC compared to the filesystem level.

4.4.3 Applicability

“Applicability” refers to the degree to which the TOMS system can be utilized in various
application scenarios. The layered design of TOMS provides an initial indication of its
wide applicability. The TOMS system supports three different storage layers and is
agnostic to the ECC used as well as to the stream cipher. Furthermore, TOMS can be
easily applied to any modern filesystem that supports sub-second timestamp granularity;
while the basic description supports two timestamps often found in modern filesystems
(namely, creation and last access), there is no design constraint regarding the number of
timestamps or the use of filesystem-specific timestamps (e.g., last attribute modification
for ext4). The design of the TOMS system allows to explore various performance
tradeoffs in order to match the secrecy requirements of the selected application. We
discuss these tradeoffs in the following paragraphs.

The application scenario defines the use of existing files or opts to create new ones to
embed a steganographic message. In the latter case, it is advisable to generate small files
that act as carriers (e.g., files in the range of few thousands bytes).

The use of an ECC introduces an overhead of 10-20%. If the risk of information loss can
be sustained, the use of an ECC can be omitted altogether.

The selection of the storage container type is important. If an encrypted metadata file is
used, one must decide if the contents of the file should be embedded in the filesystem or
stored elsewhere. The resulting size of this metadata file can be a decisive factor. When
embedding about 1.5 MB of data into 175,000 timestamps, the corresponding metadata
file takes about 215 KB of disk space. A benefit of this approach is that there is no need
to store index bytes to rebuild the ordered list of carrier files and recover the hidden
information. Also, file reordering is not a threat in this case (unless someone is tampering
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4. Filesystem Timestamp Steganography Detection

with the metadata file) and thus the performance requirements for an ECC are more
relaxed (or can be omitted altogether).

The oblivious replacement approach mandates the use of index bytes. Each ESU uses
one index byte per five payload bytes (ratio of 1:5). If only one timestamp is available
for each file, the ratio becomes 1:2, which may cause a lot of overhead. On the other
hand, if three timestamps are available, this ratio becomes 1:8, which is quite efficient.
Compared to an encrypted metadata approach, oblivious replacement needs between
12.5% (two timestamps) and 20% (three timestamps) more files in order to store the
same amount of hidden information.

4.5 Experimental System Validation

We developed a proof-of-concept implementation of the TOMS system for the experimental
validation of our steganographic proposal. The implementation targets the NTFS
filesystem and is based on the Python language version 2.7 for flexibility and increased
portability. Our implementation can be delivered as a stand-alone executable and does
not require the installation of special software or any modifications of the Linux kernel.
It realizes the layered design described in Section 4.3 and can be easily ported to work
with any filesystem that uses a nanosecond timestamp granularity.

The development and experimentation platforms are based on Xubuntu Linux 15.04
64-bit, running kernel version 3.19.0-25, the latest stable one at the time of writing. The
underlying disk on which the operating system is installed is a solid state disk (SSD)
for faster I/O access. As NTFS is Microsoft-proprietary, we opt for NTFS-3g in its
current version. The steganographic executable application takes care of all information
management tasks. The application is assumed to have full access to the NTFS volume
(filesystem).

The application supports the use of two- and three-file timestamps. The file creation
and last access timestamps are not modified by the operating system: starting with
Microsoft Windows Vista, the default value of NtfsDisableLastAccessUpdate is
set to one [65]. The corresponding mount option in Linux is noatime; in most of the
popular Linux distributions this option is not activated by default. The file last modified
may be modified under normal use, so it is up to the users to decide if they enable it
(and pay attention not to destroy the related information during the normal use of the
filesystem).

4.5.1 Information Hiding and Recall

The typical work flow for information hiding is as follows: the user starts the Python
application and provides (i) the message to be hidden, (ii) a key to encrypt the message,
(iii) the method for hiding (metadata file, oblivious replacements on volumes, oblivious
replacements on subfolders), and (iv) the number of different timestamps to use (either
two: creation and access or three: creation, access, and modification). Once the necessary

52

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

4.5. Experimental System Validation

Listing 4.1: Embedding data in timestamps.

1 def hide ( path , msg , key ) :
2 r s= calcReedSolomon (msg)
3 m= msg · r s
4 C= chunk (m, 5)
5 index= 0
6 temp= ∅
7 for c ∈ C :
8 s= c
9 i f index = 0 or index % 255 = 0 :

10 s= length (m)
11 temp= temp · index · s
12 index++
13 f i l e s=s o r t ( recEnumFiles ( path ) , by=creat ion_time )
14 o f f s e t= calcRandomOffset ( )
15 while o f f s e t :
16 f i l e s . pop ( )
17 em= encrypt ( temp , key , mode=RC4)
18 C= chunk (em, 6)
19 for c ∈ C :
20 f= f i l e s . pop ( )
21 f . c reat ion_time . nsec= c [ 0 : 3 ]
22 f . access_time . nsec= c [ 3 : 6 ]

information are collected, the application performs the following steps: (i) it concatenates
the message with the error correction code, (ii) adds the index bytes to the resulting
data (if the chosen hiding method is not the metadata file), (iii) encrypts the data with
the stream cipher, and (iv) embeds the encrypted data into the timestamps. On the
information recall path, the user enters the encryption key and the application displays
the decrypted message.

Listing 4.1 and Listing 4.2 outline in pseudocode the two work flows for information
hiding and recall respectively.

4.5.2 Metadata File Information Protection

All information processed by the application are held in memory (RAM) and are encrypted
with AES-256-CBC using a user-provided key. This is a precautious measure in order to
protect against extraction of the plain metadata file during a forensics analysis of the
storage medium, e.g., in the slackspace of the hard disk [105].

After the information has been embedded, the metadata file is built from the information
kept in RAM so far. Before writing this information to the disk, it is compressed using
gzip and encrypted with the AES algorithm using a user-provided password. Our
implementation supports the use of different passwords for the metadata file and the
actual data.
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4. Filesystem Timestamp Steganography Detection

Listing 4.2: Extracting data from timestamps.

1 def e x t r a c t ( path , key ) :
2 F= s o r t ( recEnumFiles ( path ) , by=creat ion_time )
3 em= ∅
4 for f ∈ F :
5 c= f . creat ion_time . nsec · f . access_time . nsec
6 em= em · c
7 m= decrypt (em, key , mode=RC4)
8 C= chunk (m, 6)
9 i , l= 0 ,0

10 for ( i , c ) ∈ enumerate(C) :
11 i f c [ 0 ] 6= 0x00 :
12 continue

13 l= int ( c [ 1 : 6 ] )
14 break

15 S= s o r t (C[i : l] , by=f i r s t _ b y t e )
16 temp= ∅
17 for ( i , c ) ∈ enumerate(S) :
18 t= c [ 1 : 6 ]
19 i f c [ 0 ] 6= i :
20 t= 0x00 × 5
21 temp= temp · t
22 return decodeReedSolomon ( temp )

We take care not to accidently write the unencrypted metadata file to the disk, as this
could leave persistent traces which particular files were modified. During the embedding
process the information resides unencrypted in the RAM, and we did not implement
countermeasures to prevent the operating system to store the corresponding memory
pages on the disk, e.g., due to paging or hibernation. However, our application supports
the encryption of information on a per-path basis, right after embedding the information
in order to minimize the time the unencrypted information resides in the RAM, at the
cost of creating a much larger metadata file due to the lack of compression.

4.5.3 Performance

Two of the main considerations of steganographic systems are the undetectability and
the confidentiality of the hidden data [103]. The performance of the system is also an
important factor with respect to applicability.

We performed a series of experiments to gain insights regarding the performance of TOMS
when embedding and extracting information using volume-wide oblivious replacement.
Table 4.2 summarizes our findings. The reported figures are the averages of ten consecutive
executions of hiding (embedding) and recall (extracting). The amount of space used to
embed data is reported as a percentage of the overall available storage space provided by
the ESUs (i.e., 6 bytes per file). The time needed to hide (embed) the information is
almost constant, irrespective of the data volume. On the other hand the time to recall
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4.6. Steganographic Capabilities of TOMS

Table 4.2: Time to embed and extract information on filesystem.

Space used 15% 30% 50%

Timestamps needed 78,687 157,325 264,193

Time to embed [sec] 74.78 76.17 76.33

Time to extract [sec] 20.19 36.92 60.29

(extract) the information is almost linear to the percentage of embedded data. In both
cases the time ranges in dozens of seconds, which might be considered too high. Upon
closer inspection, it appears that the calculation of the Reed-Solomon ECC dominates
the processing time for both. However, since the file metadata are extracted from the
MFT, which resides in the RAM, the average time to extract is lower than the average
time to embed. This lower time is caused by performing the vast majority of filesystem
operations within the RAM instead of directly accessing the hard disk.

4.5.4 Effect on Actual Filesystem Operation

As a final consideration, we examined if the filesystem remained operational for normal
use after manipulating the stored file timestamps. We mounted and unmounted the
NTFS volumes that were modified by our proof-of-concept implementation using the
drivers provided by Linux, Microsoft Windows, and Apple OS X operating systems. We
did not notice any problems in using the volumes, and no error messages were logged
by the operating systems. We also performed regular file operations in the volumes and
did not notice any issues. Recall of the steganographic information after the regular use
succeeded without any problems as well.

The analysis validates our initial assumption: typical usage scenarios of modern filesystems
allow to persistently store additional information in file timestamps without affecting
their normal use.

4.6 Steganographic Capabilities of TOMS

4.6.1 Methodology and Datasets

We designed three experiments to study the characteristics of the TOMS steganographic
channel. We derived one dataset per experiment: a synthetic (artificially-generated)
dataset, a consumer-grade dataset contributed by individual volunteers, and an enterprise-
grade contributed by a collaborating company. We describe in the following the experi-
ments and the collected information in greater detail.
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4. Filesystem Timestamp Steganography Detection

4.6.1.1 Synthetic Dataset

We used the same laptop computer running Microsoft Windows 10 64-bit build 1607 for
all the steps described below. The laptop computer has an Intel i3 with 2.1 GHz and 4
GB RAM.

Storage Media: We used five different storage media, namely a mechanical, spindle
disk (HDD), a solid-state disk (SSD), two external hard disks (E1 and E2), and a USB flash
drive (U1). The HDD is manufactured by Hitachi (model number: HTS541010G9SA00).
It has a storage capacity of 100 GB and spins with 5,400 rpm (revolutions per minute).
The SSD is manufactured by Micron (model number: MTFDDAK256MAY). It has a
storage capacity of 256 GB. Both E1 and E2 disks drives were mechanical, spindle
disks hosted in a separate case. E1 is manufactured by Western Digital (model number:
WD2500I032-001). It has a storage capacity of 240 GB and spins with 5,400 rpm. An
IDE connector is used to mount the disk inside the case. E2 is manufactured by Seagate
(model number: STDR2000200). It has a storage capacity of 2 TB and spins with 5,400
rpm. A SATA connector is used to mount inside the case. Finally, U1 is manufactured by
Kingston (model number: DTR30G2, Datatraveler). It has a storage capacity of 16 GB.

Connectors and Interfaces: The two internal disks (HDD and SSD) were connected
over a SATA bus. The two external disks were connected over a USB 2.0 (E1) and a
USB 3.0 (E2) interface. A USB 3.0 port was used to connect the USB flash drive. We
also used the HDD in a different setup (eS), connected to the system through an external
SATA (eSATA) connector.

Manual File Copy from External Sources: After the initial setup of the operating
system, several files were delivered using a USB flash drive. Some of those files were then
installed to provide a basis for scripted file generation described in Section 4.6.1.1. The
exact sequence was as follows:

1. Copy the Python 3.5 .msi installer to the disk.

2. Copy the Python 2.7 .exe installer to the disk.

3. Copy the Python and the Powershell file creation script to the disk.

4. Copy the timestamp derivation application to the disk.

5. Install Python 2.7.

6. Install Python 3.5.

7. Execute the file creation script.

8. Execute the file timestamp extraction application.

9. Collect the log files for further analysis.
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4.6. Steganographic Capabilities of TOMS

Scripted File Generation: We used two scripts to generate files3, one based on
Python and one based on Microsoft Powershell. The Python script utilized the default
packages, such as “os”. The Microsoft Powershell script relied on no external packages.

Both scripts accept as an input parameters the path to create the files (e.g., C:\tmp);
the number of files to create; and, optionally, a delay between each file creation. For
the latter script, we suppressed the default behavior of printing the created files in the
standard output (stdout), for performance (speed) reasons and for compliance with
the behavior of the former script.

Automated File Generation Process: We proceeded with the file generation as
follows. First, we formatted the storage media and created an NTFS volume (filesystem)
on them. Then, we did a fresh install of the operating system from a readily-available
Microsoft Windows 10 image available on a spare external USB drive. We repeated the
same procedure at the start of each experiment described below. This approach ensured
a common starting point for all the experiments and a ground truth for the files of the
operating system.

The format step in the beginning is a necessary step to ensure that the MFT is reset
and all experiments start from the same point. Indeed, the MFT is a special file on
NTFS-based filesystems. It contains a record for every file and directory ever contained
in the filesystem. As such, a growing-in-size MFT impacts the read and write time of the
files, due to the longer access time to the MFT. Hence, the more files are created by its
iteration of script execution, the longer the access time becomes.

The following list summarizes the experiments we ran:

• One set of 100,000 files created with the Python script on the HDD and SSD with
a random (uniform) delay of 0.1 to 1.0 second between each file creation. The same
using the Microsoft Powershell script.

• Two sets of 100,000 files each created with the Python script on the HDD, SSD,
E1, E2, U1, and eS with no delay between each file creation, i.e., as fast as possible.
The same using the Microsoft Powershell script.

File Timestamp Extraction: We developed a Python script based on the stat

subpackage of os to extract the file timestamps from each file on the filesystem. We
extracted the creation (C), last accessed (A), and last modified (M) timestamps of each
file and directory with a granularity of 100 nanoseconds. The outputs of the script were
saved on an external disk for later processing. Once logs were collected, the storage
media under test was wiped out, formatted, and the process concluded.

3The scripts are available at https://www.sba-research.org/ares2017hiccups/
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4. Filesystem Timestamp Steganography Detection

4.6.1.2 Consumer Dataset

The second dataset was derived by four individuals that volunteered to participate in
our study through personal invitations. We explained to the volunteers the aim of our
study and shared with them the source code of the Python script used to extract the
file timestamps for review before getting their consent. To protect the innocent, the
script parsed through the SHA3 hashing algorithm both the filename and its path; the
information collected are the hash output and the three timestamps (C, A, and M) for
each file.

In the first round, the volunteers executed the timestamp extraction Python script
on their personal computers and laptops running a version of the Microsoft Windows
operating system and hosting at least one NTFS filesystem. We label these partitions as
consumer-grade. The partitions span diverse uses, such as playing computer games, IT
freelancing, leisure activities (e.g., Internet surfing and movie watching), backup storage
for valuable personal information (e.g., photographs and long documents), and mobile
computing.

The script outputs were written in text files and the volunteers shared back these files.
The volunteers contributed timestamp information for ten NTFS partitions and 2.5
million files in total.

In the second round, we contacted the volunteers again after ten weeks and asked them
to perform the same steps again. All the participants responded within one week. The
combined logs provided information for 2.6 million files in total, i.e., a 100,000 increase
in the number of files.

4.6.1.3 Enterprise Dataset

The third dataset was contributed by a collaborating company that agreed to participate
in our study. The company policy dictates common rules for each computer (e.g.,
automated installation of licensed software packages) and centralized administration by
authorized personnel.

Using the same script as in the case of the individual volunteers, the company personnel
responsible for its IT infrastructure extracted and shared with us the timestamps for
more than 22 million files of 70 different computers and NTFS partitions.

In this enterprise environment, we assume that the file timestamps for a large number
of files across different computers will be the same, as the files come from the same
installation media.

4.6.2 Analysis

Our analysis is based on the three types of datasets we collected (synthetic, consumer,
and enterprise). We focus on the following parameters: effect of the underlying storage
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4.6. Steganographic Capabilities of TOMS

Table 4.3: Average and standard deviation of the occurrences of unique timestamps in
the synthetic dataset (delayed creation)

Storage Python Powershell

HDD 1.00 (0.02) 1.51 (0.62)
SSD 1.00 (0.02) 1.55 (0.68)

technology and creation techniques, effect of the regular use of the filesystem, and effect
on large-scale installations.

For the sake of readability, hereafter we use the term “timestamp” to refer to the 24-bit
sub-second part of each file’s 64-bit “full timestamp”. Recall that NTFS stores this parts
of information with a granularity of 100 nanoseconds. Hence, there are in principle 10
million unique timestamps.

4.6.2.1 Storage Technology and Scripted Creation

We analyzed the extracted creation (C) timestamps for the six storage media used to
produce our synthetic dataset. Since the files are not accessed or modified afterwards, we
do not discuss in the following the access (A) and last-modified (M) timestamps. They
are the same as the creation timestamp.

The first step relates to the delayed creation of 100,000 files in the two internal disks
(HDD and SSD). It took one minute and 35 seconds for the Python script to create
all these files, and 31 seconds less for the Powershell script. Table 4.3 summarizes the
average and standard deviation number of occurrences of each unique timestamp included
in this part of the synthetic dataset.

In the case of the Python script on the HDD, the distribution is quite uniform (average
1.0) and there are 100,000 unique full timestamps. In the case of the Powershell script
on the HDD, the situation is slightly different. There are multiple repeating timestamps
and only 66,397 unique full timestamps. This number is significantly low. There are even
more than 4,300 cases where three files share the exact same full timestamp.

The situation is similar in the case of the SSD. The distribution is quite uniform for
Python and all the 100,000 files have a unique full timestamp. Again, the Powershell script
results in repeating timestamps and there are only 64,668 unique full timestamps. There
are even more than 6,800 cases where three files share the exact same full timestamp.

We conclude from the above that the storage media and connectors do not affect the
timestamp distribution. However, it appears that the scripting language used to generate
the files does affect the produced timestamps.

The second step relates to the creation of two sets of 200,000 files in each of the six
available setups described in Section 4.6.1.1. In general, the creation of the files was faster
using Powershell rather than Python, as summarized in Table 4.4. It took a Powershell
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4. Filesystem Timestamp Steganography Detection

Table 4.4: Time in minutes to create a set 200,000 files for the synthetic dataset (no
delay)

Storage Python Powershell

HDD 1:35 1:04
SSD 1:34 1:01
E1 0:59 1:01
E2 1:01 1:00
U1 0:59 0:24
eS 0:58 0:57

close to one minute to generate the 200,000 files of each set. This is quite an interesting
observation: it is almost the same time needed in the first step to generate the 100,000
files. Python exhibited the same performance as before for both HDD and SSD. It
exhibits similar performance to Powershell in the case of the externally-connected disks
E1, E2, and eS. The latter is also worth-mentioning, as the storage media is the same as
HDD; changing just the connector from internal SATA to external eSATA, it takes 33%
less time to create the files. The case of U1 is also interesting in that for Python it takes
the same time (about one minute) like the other externally-connected. However, it takes
less than half a minute for Powershell to create the files on it.

We proceed with an analysis of the 400,000 creation timestamps for each of the six
storage media used to produce our synthetic dataset. Table 4.5 summarizes the average
and standard deviation number of occurrences of each unique timestamp included in
this part of the synthetic dataset. The situation now is quite different compared to
that summarized in Table 4.3. The Powershell script results in an average number of
occurrences that is close to 2.0 and a standard deviation less than 0.6. On the other hand,
both the average and the standard deviation of occurrences is significantly high in the
case of the Python script, ranging from about 3.5 for the USB flash drive (U1) to 31 for
the hard drive connected over an eSATA connector (eS). We also observe that the same
device has an average of almost 13 when connected through the internal SATA interface
(row “HDD”). Figures 4.3-4.6 visualize these striking differences in the distribution of
timestamps for the four cases of HDD and eS using Python and Powershell.

The aforementioned information suggests that an analysis of the distribution of the
(sub-second) creation timestamp part may reveal both the scripting language and the
storage media type and connector used when the files were created. This can be useful
to detect if a set of files were originally created on the disk under investigation or were
transferred to it through other means (e.g., copy from another media, which might
disclose a data leakage).
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4.6. Steganographic Capabilities of TOMS

Table 4.5: Average and standard deviation of the occurrences of unique timestamps in
the synthetic dataset (creation without delay)

Storage Python Powershell

HDD 12.95 (2.09) 1.99 (0.37)
SSD 13.52 (1.62) 1.97 (0.39)
E1 3.93 (2.04) 1.80 (0.50)
E2 17.31 (2.80) 1.68 (0.56)
U1 3.46 (0.94) 1.50 (0.52)
eS 31.00 (6.13) 2.15 (0.52)

 0

 5

 10

 15

 20

 25

C

Figure 4.3: Creation time (C), Synthetic, HDD, no delay, Python
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4. Filesystem Timestamp Steganography Detection

 1

 1.5

 2

 2.5

 3

C

Figure 4.4: Creation time (C), Synthetic, HDD, no delay, Powershell

4.6.2.2 Regular Use of the Filesystem

The first part of our analysis, described in Section 4.6.2.1, justified that is it feasible to
generate a large numbers of files in a short time. This does allow the fast creation of a
steganographic channel to hide information.

In the second part of the analysis, we study the effect of the day-to-day use of a filesystem
on the timestamps. We use the consumer-grade dataset for this analysis. There are
information for ten NTFS volumes (filesystems).

Table 4.6 summarizes the number of unique create (C) and last-access (A) timestamps
observed (C-bins and A-bins respectively) in each volume of the consumer dataset at the
beginning of the experiment (Round 1) and after ten weeks (Round 2). There are some
interesting observations to further discuss in the next paragraphs.

A first observation is that there is a thirtyfold difference in size among the ten volumes
in the number of C-bins, as demonstrated in the case of A2 and T2 in Round 2. This
indicates different usage patterns for the volumes (e.g., storing only the operating system
files and using it a working space).
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4.6. Steganographic Capabilities of TOMS
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Figure 4.5: Creation time (C), Synthetic, eSATA, no delay, Python

Table 4.6: Number of unique timestamps (bins) of files in the consumer-grade dataset
filesystems

id Round 1 Round 2
C-bins A-bins C-bins A-bins

S1 66,146 83,907 74,897 92,662
S2 57,920 92,405 104,538 68,224
T1 67,787 103,290 76,182 113,017
T2 132,149 138,917 625,753 766,984
T3 127,086 135,902 127,086 135,902
T4 270,206 317,427 270,273 317,503
M1 385,088 384,961 292,000 317,906
M2 206,461 287,538 194,620 297,097
A1 184,367 207,896 88,782 113,356
A2 - - 20,745 21,811
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4. Filesystem Timestamp Steganography Detection
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Figure 4.6: Creation time (C), Synthetic, eSATA, no delay, Powershell

A second observation is that number of unique timestamps heavily fluctuated between
the two rounds of the experiment. There are NTFS volumes that remain almost intact
(e.g., T3 and T4), volumes that rapidly expand (e.g., S2 and T2), or shrink (e.g., M1
and A1).

A third observation is that in all but two cases (M1 in Round 1 and S2 in Round 2),
the are more A-bins than C-bins. It appears that many files share the same creation
timestamp but there access times are modified later on. This is further supported by
the evidence provided in Table 4.7. The average number of occurrences for the C-bins is
greater than the one of A-bins for all cases. As the total number of creation and last-access
timestamps are equal, this is an expected finding. However, the standard deviation is
quite bigger than the average value. This is an indication that the distributions deviate
from a uniform one (even for the reduced number of available bins) and there might be a
significant number of outliers.

Our assumption is valid, as depicted in Figure 4.7 and Figure 4.8. The Figures depict
the histogram of C- and A-bins for two NTFS volumes, namely S2 and A1. There are a
lot of outliers values, reaching even 900 occurrences. Similar trends are observed in all
volumes of our dataset. They are not reported here due to space limitations. One of the
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4.6. Steganographic Capabilities of TOMS

Table 4.7: Average and standard deviation of the occurrences of unique timestamps in
the consumer-grade dataset (aggregated)

id Round 1 Round 2
C-bins A-bins C-bins A-bins

S 3.80 (17.44) 2.73 (9.53) 3.60 (8.96) 2.56 (8.96)
T 2.87 (37.81) 2.40 (7.53) 2.21 (56.91) 1.80 (10.33)
M 2.36 (59.62) 2.08 (37.66) 2.47 (64.04) 1.96 (33.09)
A 2.02 (5.29) 1.79 (3.58) 3.07 (34.43) 2.45 (4.75)

volunteers kindly agreed to share the file names and paths of the whole NTFS volume
(identified as S1) for the purpose of this thesis.

Our analysis indicates that a large number of files are part of software installations
on the volume (e.g., an office productivity suite and a computer game). Such files are
installed from compressed archives and/or DVD/CD-ROM media. As such, the original
timestamps are preserved when copied to the NTFS volume. The original media do
not support 100-nanosecond granularity4, the “hiccups” in the histogram hence. These
hiccups do not invalidate the TOMS steganographic channel. Rather, an attacker must
carefully select a subset of files that exhibit a smooth, uniform distribution and avoid
specific paths that come from installation media (e.g., the C:\Program Files\ folder).
Another approach would be to create a new set of files altogether for hiding information
in their timestamps.

4.6.2.3 Enterprise Environment

In the third and last part of the analysis, we study the effect of a homogeneous environment
on the distribution of the file timestamps. We use the enterprise-grade dataset for this
analysis. There are information for 70 NTFS volumes.

Our analysis revealed that a large number of files are, as in the case of the consumer-grade
dataset, part of software installations from compressed archives and UDF volumes. There
are stronger patterns now, as these installations are instrumented from a central location
and from the same installation media.

Figures 4.9-4.18 depict the distribution of the create (C) and last-access (A) timestamps
for ten randomly-selected volumes; all the 70 volumes exhibit the same patterns and are
not reported here due to space constraints. The “hiccups” are evident once more but a
TOMS-based attack is again possible.

We note that in the case of an enterprise environment, the attackers have a harder
task to solve, as the channel capacity is further reduced. Indeed, the IT administrators

4The UDF filesystem supports microsecond granularity (Source: http://www.osta.org/specs/
pdf/udf260.pdf).
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4. Filesystem Timestamp Steganography Detection
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Figure 4.7: Histogram of C-bins and A-bins for S2

can compare the distribution of timestamps of an investigated volume with many more
available in the enterprise - this is not possible in the case of single consumer-grade
volume as there is no “reference” volume available to compare against. Furthermore,
company policies can reduce the number of volumes and paths where an attacker can
place the files for the TOMS channel, further minimizing (but not eliminating) the risk
of an attack.

4.7 Implications for Forensics Analysis

Responsible research in steganography involves both developing new techniques for
information hiding and detection (steganalysis). The issue of detection is increasingly
important for digital forensics examiners, as criminal activities through digital means ara
becoming prevalent [44].

Embedding information in file timestamps is feasible. As discussed in Section 4.4, these
information are indistinguishable from that of normal operations, provided that a stream
cipher is used in the encryption layer. Thus, a statistical analysis of file timestamps
should be incorporated in the forensics examination procedures as a first line of defence.
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4.7. Implications for Forensics Analysis
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Figure 4.8: Histogram of C-bins and A-bins for A1

This analysis can provide hints for the presence of information hidden in the timestamps,
if one opts to disable the encryption layer of the TOMS system.

There may be additional artefacts and implementation details which can assist a forensics
investigator in disclosing the presence of hidden information. A fully-functional TOMS
demands careful implementation and operation decisions. The developer must ensure that
the application leaves no installation or execution traces that could reveal its presence. If
a backup image of the filesystem contents at an earlier time is available to the examiners,
they can compare the timestamps regarding unjustifiable modifications, especially for
the case of the creation timestamps. Furthermore, the generation of new files to use
them as carriers must be justifiable from a modus operandi point of view. For example,
if modification timestamps are utilized, it must be justifiable why they differ from the
creation timestamps – this would be suspicious if it occurs in the same second for a
large batch of files. It is advantageous to check for modus operandi violations during the
forensics examination process.

Another approach for the investigation procedure is the correlation of an installation
timeline for an operating system and its well-known application files (e.g., the Microsoft
Office suite). If such files are used to hide information and if they share the same
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4. Filesystem Timestamp Steganography Detection
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Figure 4.9: Histogram of C- and A-bins in enterprise volume 9
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Figure 4.10: Histogram of C- and A-bins in enterprise volume 15
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4.7. Implications for Forensics Analysis
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Figure 4.11: Histogram of C- and A-bins in enterprise volume 18
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Figure 4.12: Histogram of C- and A-bins in enterprise volume 40
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4. Filesystem Timestamp Steganography Detection
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Figure 4.13: Histogram of C- and A-bins in enterprise volume 42
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Figure 4.14: Histogram of C- and A-bins in enterprise volume 45
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4.7. Implications for Forensics Analysis
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Figure 4.15: Histogram of C- and A-bins in enterprise volume 48
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Figure 4.16: Histogram of C- and A-bins in enterprise volume 60
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4. Filesystem Timestamp Steganography Detection
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Figure 4.17: Histogram of C- and A-bins in enterprise volume 65
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Figure 4.18: Histogram of C- and A-bins in enterprise volume 67
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4.8. Conclusions

timestamp up to the second part, an installation timeline can reveal that the creation
order of some files does not match the expected one.

The filesystem data structures are not the only place where timestamps are stored.
If an operating system records file-related events in its system logs with nanosecond
precision, a digital forensics investigator can perform a correlation analysis between
these two information sources in order to detect unjustifiable mismatches [32, 40, 41].
Operating systems also use transaction logs (journals) for recovery processes (e.g., the
NTFS Transaction Log $LogFile [31]). These can also be used for correlation analysis.
Wiping out such log files or carelessly modifying them can raise further suspicions and
assist aiding the investigation along.

In the case of NTFS, an informed decision in our proof-of-concept (PoC) implementation
was to modify only the filename attribute of the MFT. However, the same information
are maintained in the standard information attribute as well. Thus, an investigator can
compare the two attributes and detect the use of the PoC implementation.

4.8 Conclusions

In this chapter, we proposed and explored the applicability of file timestamps as a
steganographic channel. Based on our analysis of how modern operating systems store
timestamps for file events in filesystem data structures and how they are displayed to the
users, we reveal a redundant space to hide information. We described how this space can
be utilized as a steganographic channel using a layered design that offers stealthiness,
robustness, and wide applicability. We evaluated our design through theoretical, evidence-
based, and experimental analysis in the case of the NTFS filesystem with datasets
containing millions of files: the hidden information are statistically indistinguishable
from timestamps produced during normal use. We also validated the applicability of our
proposal through a proof-of-concept implementation targeting the NTFS filesystem. We
furthermore discussed the implications of this new steganographic technique for digital
forensics analysis.

Additionally, we assessed the feasibility of building such channels using different stor-
age media and connectors and evaluated the attainable channel capacity in artificial
(synthetic), consumer, and enterprise environments.

We confirm that TOMS is a feasible threat. However, the attacker has to spend significant
effort to hide the manipulations from a proper digital forensic investigation, either by
disabling the TOMS encryption layer or by choosing those files that exhibit a uniform
distribution of timestamps already. The capacity of the steganographic channel is further
reduced in an enterprise environment with centralized administration, where different
NTFS volumes can be compared with each other for irregularities in timestamp patterns.
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CHAPTER 5
System-level Detection of

Keystroke Injection Attacks

As attackers are proceeding with their attacks to lower levels of the computer system
architecture, also this thesis is. Therefore, in this chapter we provide insights on how
kernel-level USB-based attacks work and explore how their attack patterns can be detected
at the system level, without involving the user into the trust decision.

The Universal Serial Bus (USB) is by far the most widely-used connector for modern
computer systems. It is used to connect a plethora of peripheral devices to computers,
including keyboards, mice, cameras, printers, and storage media. Many different attack
vectors abuse the pervasiveness of USB, as for example dropping USB thumb drives on
parking lots for users to pick up and attach on their computers [149]. As network-based
defenses steadily improve and can block efficiently the malicious network traffic reaching
an organization, USB becomes an attractive entry point for penetrating an organization.

Under the hood, USB is more than a simple connector. It is a complex communication
protocol, often implemented and offered as a firmware. Lately, there are devices on the
market with the ability to update their USB firmware. This capability has been exploited
as a subtle attack vector, hiding malicious functionality on an abstraction layer that
modern computer antivirus cannot cope with. BadUSB1 and Rubber Ducky2 classes of
attacks are successful demonstrations of the attack feasibility. The associated threat is
rather high: at this level the device interfaces directly with device drivers that run in
the most privileged level of modern consumer-grade operating systems (e.g., as ring-0
modules of the Linux kernel).

1https://srlabs.de/badusb/
2https://github.com/hak5darren/USB-Rubber-Ducky
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5. System-level Detection of Keystroke Injection Attacks

We make the following contributions:

• We study the behavioral characteristics of Rubber Ducky and BadUSB classes of
attacks.

• We devise criteria for automating their detection.

• We design, implement, and evaluate a simple yet very effective and extensible
system-level countermeasure based on USB packet traffic analysis to detect and
defend against such attacks without requiring user intervention.

• We explore how network-wide analysis tools for monitoring the spread of USB
devices across an enterprise network can further enhance the detection of attacks
and the incident response efforts.

5.1 Background

5.1.1 The USB protocol

USB is the most widely-used computer peripheral connector today. USB 3.2 is its latest
revision. The USB device communication is based on a tiered-star topology with one
dedicated master controller. Besides the controller, a hub manages the connected USB
devices. If the master controller acts as a hub too, then the hub is called the “root hub”.
Every USB hub uses seven bits to address connected USB devices. This leads to a limit
of 127 attachable USB devices per hub.

The connection of a USB device to a hub works as follows3: The USB hub waits for new
devices to be plugged in. Upon connection, channels for communication are created: the
so-called “endpoints”, acting as sources and sinks of data. The endpoints are logically
grouped together to “interfaces” and are announced to the host via “interface descriptors”.

The USB communication is realized by exchanging “USB packets” over the shared serial
bus. The USB protocol defines four transfer types (Control, Isochronous, Interrupt, and
Bulk) and three packet types (Token, Data, and Status).

Modern operating systems, including Microsoft Windows, Linux, and Apple Mac OS,
utilize the information collected by the hub from the connected USB devices to (dy-
namically) load the appropriate device drivers. For each announced interface descriptor
of a device, the operating system combines the device-provided device class, interface
class, and vendor and product identifiers (VID and PID respectively) to decide which
capabilities are provided by the device and to bind the appropriate device driver(s).

As an example, a modern USB mouse may offer the capabilities of a human interface
device (HID) and those of a display (e.g., to display its sensitivity level). Or a USB
headset may offer the capabilities of an audio output device and that of a constrained

3http://www.beyondlogic.org/usbnutshell/usb3.shtml
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5.1. Background

HID for its volume up/down and mute buttons. In such cases, the devices will have two
different interfaces and each of them will get a different driver bound to it.

5.1.2 USB Protocol Security

The USB protocol does not dictate a form of device authentication. Rather, every
USB hub blindly trusts any information announced by the connected device about their
capabilities. We note that modern USB devices incorporate, for legitimate reasons,
multiple functionalities (e.g., a mouse announcing itself also as a display device). Such
functionalities are hard for a user to link together and reason for any associated risk.
These combined with the wide prevalence of USB devices, render USB an attractive
attack vector [5, 155].

In the past, the entry barrier for realizing attacks based on the inherent weaknesses of
the USB protocol was very high. It dropped significantly by the time USB firmware
chips with reflashing capabilities became available on the open market4. On the one
hand, firmware updates for consumer products are often a necessity due to shortened
time-to-market and insufficient testing. The alternative would be a product recall which
would cause a logistics nightmare. On the other hand, firmware updates significantly
lower the resources and expertise for launching USB-based attacks.

Figure 5.1 depicts the principle of a USB device and endpoint setups, which occur during
the Control transfer phase using Setup packets. In this example, the device announces
support for two functionalities, namely a mass storage and a keyboard (HID device). The
former seems like a normal behavior, assuming that the user plugged in a USB thumb
drive or external disk. In this case, the user expects that the operating system (host)
will load the mass storage device driver and be able to further interact with the storage
device. However, we note that without having knowledge of the device specifics, this
announcement could also have been an attack vector.

The latter announcement forces the host to bind a keyboard driver as well. If the
announcement comes from a modified, malicious firmware, then the first step of the
attack is already successful. The firmware then launches the second step of its attack.
This involves sending keypresses from the (non-existent) keyboard. This “USB-based
keypress injection attack” assumes that the system interaction caused by these keypresses
will go unnoticed by the user and, thus, will succeed to deliver the malicious actions (e.g.,
download from the Internet or access from the USB storage and then execute a zero-day
malware).

So far, various attacks exploiting the inherent weaknesses of the USB protocol have been
proposed [118]. We review the most characteristic of them in the following paragraphs.

4https://adamcaudill.com/2014/10/02/making-badusb-work-for-you-derbycon/
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5. System-level Detection of Keystroke Injection Attacks

Figure 5.1: USB packet sequence diagram (malicious behavior)

5.1.3 BadUSB and IRON-HID

The BadUSB attack enables a USB storage device to act not only as a SCSI device (mass
storage), but also as an HID one. By acting as a keyboard, the data coming from the
connected USB device is interpreted as keypresses. An attack can install a backdoor to
the host system or “call home” over the network for example. From that point on, the
attacker has total control over the infected host system.

Researchers and practitioners work both on improving BadUSB-like attacks and reducing
their attack surfaces. In the so-called “IRON-HID” attack, additional programmable
hardware (e.g., a Teensy board5) is hidden in places like keyboards and portable USB
batteries [63]. By connecting a smartphone to the crafted USB battery via a crafted USB
On-The-Go cable, the smartphone is switched into USB host mode. From that moment
on, the smartphone is able to eavesdrop on all USB communications. IRON-HID can be
used also to inject fake keypresses with the aim to brute-force the Android screen unlock
PIN.

5.1.4 Rubber Ducky

The Rubber Ducky is a physical device designed by the Hak5 group6. The Rubber
Ducky works as a normal keyboard when it comes to driver binding: it simply needs the

5https://www.pjrc.com/teensy/
6https://hak5.org
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5.1. Background

operating system’s HID driver to work. However, the Rubber Ducky delivers USB-based
payloads (keypresses pre-defined by an attacker) upon being connected to the victim
system.

The pre-defined keypresses are written in Ducky Script, a simple-to-use scripting language7.
Once the payload is developed, it is compiled into a binary and placed on the microSD card
of the Rubber Ducky device. Upon connecting the Rubber Ducky to a host computer, the
built-in Atmel AT32UC3B1256 chip of Rubber Ducky emulates the pre-defined keypresses
in the fastest rate the USB port can deliver and the device driver of the attacked system
can handle.

5.1.5 BadAndroid

BadAndroid8, like BadUSB, adds malicious functionality to an otherwise benign Android
device. In contrast with BadUSB, the firmware of the Android device needs not be
flashed.

A possible attack scenario using BadAndroid looks like the following: using social
engineering, an attacker pretends that she needs to charge the battery of her Android
smartphone and asks to plug it in to the target’s laptop. While the smartphone is
connected for charging, BadAndroid actually alters the routing table of the host (laptop)
system without the user noticing, i.e., it changes the default network gateway of the
laptop to be the IP address of the Android smartphone. From that moment on, all
the network traffic of the laptop is routed via the smartphone, enabling the attacker to
inspect and alter the whole bi-directional network traffic.

In a second attack scenario, BadAndroid could change the entries for the laptop’s DNS
servers and, therefore, redirect the laptop’s traffic to servers controlled by the attacker.

5.1.6 BadBIOS

A maliciously-crafted BIOS hidden on the USB device could be installed on the computer
by emulating keypresses at boot time9. This BadBIOS overrides the original BIOS and
becomes the default BIOS to boot from. This allows an attacker to execute commands
even before the actual operating system is loaded.

The applicability of BadBIOS is demonstrated10 for modern Smart TVs. In this case,
a Smart TV is forced to produce high-frequency audio signals. These signals contain
information which is then transmitted to other devices.

7https://github.com/hak5darren/USB-Rubber-Ducky/wiki/Duckyscript
8https://opensource.srlabs.de/projects/badusb/wiki/BadAndroid
9https://srlabs.de/wp-content/uploads/2014/11/SRLabs-BadUSB-Pacsec-v2.pdf

10https://nakedsecurity.sophos.com/2015/11/16/badbios-is-back-this-time-on-your-tv/
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5. System-level Detection of Keystroke Injection Attacks

5.1.7 Other Attacks

The published literature includes USB-based attacks that exploit weaknesses beyond the
ones spawned by BadUSB. The teensy USB development board11 is designed to instrument
and audit USB drivers, ports, and related software. This board is reprogrammable and can
be used to launch attacks that are based on emulating keypresses and mouse movements.

The current version of the USBdriveby attack tool12 targets Apple iOS devices. Once
successful, USBdriveby alters the routing entries of the attacked system so as to redirect
traffic to spoofed websites. The tool also installs a backdoor for the case the user detects
the route modifications and changes them back to the legitimate ones.

5.1.8 Defenses Against USB-based Attacks

There have been proposals in the literature for defending against USB-based attacks,
especially after the Stuxnet malware, which spread via infected USB drives and penetrated
air-gapped systems [83, 62]. A first attempt towards more organizational security of USB
device security is described in [160]. There, a trust management scheme, namely TMSUI,
is proposed. TMSUI protects an ICS by allowing the connection of USB storage devices
only on certain protected terminals and only for a specific amount of time.

ProvUSB is an architecture for fine-grained provenance collection and tracking on smart
USB devices [147]. ProvUSB aims at environments where the use of pre-approved-only
USB drives can be controlled and enforced.

UScramBle is a proposal for protecting against eavesdropping attacks that are feasible
due to the broadcast nature of (pre-USB 3.0) hub-to-device communication [110]. It can
be used to defend against reverse engineering of legitimate devices.

A line of defense against BadUSB-like attacks incorporates the user into the trust decision.
One example is USBWall [72]. USBWall uses a Beagle Board13 in order to enumerate
USB devices on behalf of the operating system. As soon as the enumeration is carried
out, the user is asked to decide whether the USB device must be removed from the
system or is safe for further use. USBCheckIn is a hardware-based approach, where the
user is forced to actively interact with the HID using guided patterns so as to authorize
its use [60].

The “G DATA USB Keyboard Guard” software14 is another system that relies on the
users’ decision whether a USB device is malicious or benign. There, when a new HID
device is connected to the protected computer, the software asks the user to decide if the
device interface(s) are to be trusted or not. Once a decision is made, the device (in fact,
the combination of product and vendor identifiers) is either whitelisted or blacklisted
so as to avoid asking again in the future. If an attacker flashes a malicious device to

11https://www.pjrc.com/teensy/
12http://samy.pl/usbdriveby/
13https://beagleboard.org
14https://www.gdatasoftware.com/en-usb-keyboard-guard
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5.2. A Novel Approach for Detection of USB-based Keypress Injection Attacks

present with a previously whitelisted combination of product and vendor identifiers (e.g.,
a legitimate keyboard), then their attack will go unnoticed.

GoodUSB is a similar approach described in [146]. GoodUSB includes a Linux kernel
module that maps USB devices to specific whitelisted drivers. Upon connection of a
new USB device, GoodUSB involves the user to decide if it should allow or deny the
new device. If the user marks the device as malicious, the control is transferred to a
virtualized USB honeypot running on QEMU-KVM. This allows to monitor and profile
the activity of the USB device for further analysis.

USBFILTER is a packet-level filter (firewall) for USB communications developed for the
Linux kernel space [148]. The user defines access rules in USBTables, the userland
component of USBFILTER and the kernel-space component checks each USB packet
received for match with one of the rules and decides to either forward or drop it. By
design, USBFILTER supports only per-packet processing. Given the simplicity of the
supported rules, attackers can evade the rules by adjusting their behavior accordingly;
overall USBFILTER is a deterministic solution that detects already known attacks and
does not have any anomaly detection capabilities [118].

Cinch is an approach similar in principles to USBFILTER [9]. However, Cinch isolates all
USB devices from the host and passes communication through a virtual machine acting
as a gateway that enforces the access policies.

SandUSB offers a GUI for the users to mark a newly plugged-in device as malicious
or benign [91]. Should the users consider the device being malicious, they can either
blacklist it or redirect it to a USB sandbox for further analysis.

5.2 A Novel Approach for Detection of USB-based

Keypress Injection Attacks

We consider a keypress injection attack as the most severe USB-based threat to system
security. This is because a carefully-crafted attack, launched through innocent-looking
keypresses, leverages the powerful resources and flexibility of the host system so as to
take over the full control of the system itself.

The proposed defenses against keypress injection attacks have in common that they rely
at some point on user decisions. The user insights in such low-level system trust decisions
is not an optimal solution. This is especially true when such interactions break their
mental model for the primary task at hand, so as to cope with a secondary one [42, 47].
For example, when users try to help and connect a visitor’s USB thumb drive to print a
file, one should not expect them to pay any attention to notifications and questions about
an extra device; this is just an obstacle that blocks or delays them from their primary
task.

In the following, we explore how we can detect and defend against USB-based keypress
injection attacks by performing USB packet traffic analysis at the system level, without
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5. System-level Detection of Keystroke Injection Attacks

involving the user in the decision loop. Our aim is to simplify attack detection and offer
neutralization upon connection of a malicious USB device that acts as a keyboard. This
includes fast detection and no user involvement in the security decision.

5.2.1 Threat Model

We assume an enterprise environment where computers are equipped with USB ports
and the users are free to plug in and unplug USB devices for their day-to-day work duties
(e.g., mass storage devices, headsets, and web cameras for teleconferences).

We further assume that the attackers succeed in connecting a crafted device with a
malicious USB firmware to one or more of these computers. This can be achieved by
the attackers themselves, if they have physical access to the targeted computer, inside or
outside the premises of the enterprise. Or, by handing in a malicious device to legitimate
users and exploit their curiosity (e.g., drop a USB thumb drive in their postal mailbox)
or apply a social engineering attack vector (e.g., “can you please print the file from my
USB thumb drive?”).

We do not consider attack vectors such as USB storage media loaded with malware
(e.g., exploit the “autorun” feature). Mitigations for such attacks are already offered
by commercial antivirus products [122]. We also do not consider attacks that exploit
(unknown) vulnerabilities of the USB device drivers of the host operating system triggered
by malformed USB packets [71]. Instead, we assume that all USB packets are well-formed
and valid according to the USB protocol.

5.2.2 Patterns of Keypress Injection Attacks

The first step for developing appropriate defenses is to get a better understanding of
the keypress injection attack patterns. Towards this direction, we experimented with
two USB device types that their firmware can be updated and for which appropriate
reflashing tools are available. The first one was a Rubber Ducky device (cf. Figure 5.2a).
The second one was a Toshiba USB 3.0 USB drive (cf. Figure 5.2b). The latter includes
the Phison PS2251-03 micro-controller chip built-in, which is known to support firmware
reflashing15.

In the case of Rubber Ducky, it sufficed to compile a new firmware, which contained an
attack payload, by using the provided compiler and then copy the firmware on its SD
card.

The case of the benign Toshiba USB drive required some additional steps. First, the
original firmware of the device was dumped, then the attack payload was integrated
in the firmware, and finally the firmware was written back to the chip. This was not
an error-free process. Our first attempts ended up with unusable (bricked) devices and
unreliable functionality of the controller chip resulting in unstable behavior.

15https://github.com/brandonlw/Psychson/wiki/Known-Supported-Devices
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5.2. A Novel Approach for Detection of USB-based Keypress Injection Attacks

(a) Rubber Ducky drive (b) Toshiba USB drive

Figure 5.2: A Rubber Ducky USB drive featuring an additional 128 MB SD card (left)
and a Toshiba USB drive featuring a Phison PS2251-03 chip (right)

We also prepared a desktop computer that acted as the host for the attacks. We used
the Wireshark network protocol analyzer16 to monitor the USB connections and collect
the related USB packet traces for further analysis.

As an attack demonstration scenario, we opted to use the automatic launch of a text
editor in the Linux operating system, including some text filling. Once connected, the
malicious devices registered themselves as keyboards and sent the necessary keypresses.
The sequence of events was as follows:

1. An artificial delay of 500 milliseconds.

2. Send the ALT key followed by the F2 key in order to prepare an application launch.

3. An artificial delay of 500 milliseconds.

4. Send a string of characters for launching a text editor (e.g., gEdit or mousepad),
followed by the ENTER key.

5. An artificial delay of 500 milliseconds.

6. Send one paragraph of text comprising 515 characters from the Bacon Ipsum
(http://baconipsum.com/) text.

16https://wireshark.org/
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5. System-level Detection of Keystroke Injection Attacks

Listing 5.1 depicts the attack script in the Ducky Script language17.

Listing 5.1: Attack demonstration in Ducky Script.

1 DELAY 500

2 ALT F2

3 DELAY 500

4 STRING mousepad

5 ENTER

6 DELAY 500

7 STRING Bacon ipsum do lo r amet [ . . . ]

8 ENTER

Albeit not malicious in nature, the attach scenario above serves as a baseline for building
weaponized attacks, such as opening a terminal, disabling any running antivirus service,
and running a wget command to download malicious code to the attacked system. The
artificial delays are necessary to provide the operating system with enough time to
successfully respond to issued commands, e.g., opening the text editor. The attack script
sends 526 keypresses in total.

We ran each attack (BadUSB and Rubber Ducky) ten times and collected in total 20
Wireshark traces. We analyzed these traces and focused on the timing patterns of the
KEY_DOWN events that are sent when a key on a keyboard is pressed.

Figure 5.3 depicts the distribution of the distance between each of the 5,260 recorded
events (i.e., the interarrival time of the keypresses) for each of the ten repetitions of each
attack in box-and-whisker diagrams. There are only a couple of outliers for each trace
(Capture ID), which are at about 1.35 seconds (in the case of BadUSB) and 1.00 seconds
(in the case of Rubber Ducky) as depicted in Figure 5.3a and Figure 5.3b. The median
value in both cases is about 6 ms and almost all values are concentrated in a narrow
band around this value, as depicted in Figure 5.3c and Figure 5.3d.

This was a stable behavior in all traces and for both attacks; Rubber Ducky exhibits a
greater variability, but still within the narrow band. We ran repeated experiments with
all the payloads made available by the Rubber Ducky authors18. There were in total more
than 70 different payloads at the time of writing. The analysis of the traces revealed that
all of the payloads produced the keypresses with no delay, i.e., the USB-based keypress
injection attacks try to conclude their malicious actions as fast as possible.

From an attack point of view, it is a rational choice to inject keypresses as fast as possible:
for an attack to be successful, all the events of the script must execute without being
interrupted by any user-initiated typing activity. Since the attacked system has two
keyboards now, it is possible that the user continues their typing activity. In this case,
typing will intermix with the (fake) keypresses of the attack script and, thus, neutralize the

17The Bacon Ipsum text is truncated for the sake of readability.
18https://github.com/hak5darren/USB-Rubber-Ducky/wiki/Payloads
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5.2. A Novel Approach for Detection of USB-based Keypress Injection Attacks
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(a) BadUSB timings including outliers
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(b) Rubber Ducky timings including outliers
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(d) Rubber Ducky timings

Figure 5.3: Interarrival times of KEY_DOWN events in collected traces (outliers exclused
for the sake of clarity)

latter by accident (and possibly frustrate the user with the extra characters). The less the
time in between the (fake) keypresses, the more the probability of a successfully-launched
attack. This is a key observation for the design of our defense.

5.2.3 Keystroke Dynamics

Research in keystroke dynamics (or keystroke-based biometrics) suggests that human
typing patterns exhibit variations and these “typing dynamics” can be strong enough to
be used for authentication or identification purposes [144]. Also, human beings cannot
perform better than 80 ms between their keypressess [151]. In contrast, our analysis
reveals that BadUSB-like attacks inject keypresses at an almost stable rate of 6 ms.
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5. System-level Detection of Keystroke Injection Attacks

These two rates differ by an order of magnitude.

5.2.4 USBlock: Blocking Malicious USB Packet Traffic

USBlock is a defense we devised that exploits the temporal gap between human and
BadUSB-like attack typing dynamics. The design assumption is that a USB host monitor
(i.e., USBlock) has access to precise timing information of received USB packets and is
able to distinguish fast between the normal typing behavior of human beings and the
abnormal keypress sequence (AKS) timings of BadUSB-like attacks.

A simple case of an AKS is a “rapid (keypress) event sequence” (RES). We define a RES
using two components, a time threshold value t and a sequence threshold value s. We
say that a RES occurred whenever we observe a sequence of s consecutive keypresses
with an interarrival time less than t seconds between each of them. If a RES occurs, a
defense action must be taken.

The selection of the exact values for t and s is a design choice. The t-threshold can be any
value 0.006 < t < 0.08, i.e., anything between the 6 ms median value of the BadUSB-like
attacks and the lower limit of 0.08 seconds for humans. A t close to the lower bound
of 0.006 makes USBlock more prone to false negatives, thus, risking a successful attack
going unnoticed. Yet, it reduces the probability of false positives, as humans cannot type
that fast. In contrast, a t close to the upper bound 0.08 makes USBlock more prone to
false positives, thus, risking user complaints on legitimate usage scenarios. Our analysis
of the collected attack and human-typing traces (cf. Section 5.3) suggests that a t = 0.02
is a sufficient threshold for the current generation of BadUSB-like attacks.

An s = 1 makes USBlock blindly aggressive (many false positives), penalizing even in
a single occurrence of a keypress under the timing threshold. In contrast, a large s

(e.g., over 100) allows USBlock to make confident decisions on the presence of an AKS.
However, one must account two additional points. First, if the decision algorithm does
not react in real-time, it risks to allow an attack to have occurred already by the time a
(correct) decision is made. This is unacceptable from a security point of view. Second,
the length of the attack vector, i.e., the number of keypresses injected to realize the
attack, might be lower than s (e.g., only 20 or 30 keypresses compared to an s = 100).
In this case, USBlock will fail to detect the attack altogether, as there are not enough
“malicious” keypresses present to react on.

Our analysis of the available traces suggests that a short s = 3 offers the clear advantage
that a keypress injection attack is detected and prevented just after the very first few
fast keypresses are sent. The attack traces contained not a single case where two or more
outlier values came in pairs or bursts. Furthermore, to the best of our knowledge, no
attack vector can be realized with only three keypresses. Hence, s = 3 is an excellent
choice.

The capabilities of USBlock are better demonstrated with an example of a defense
realization against current generation of Ducky Script malicious payloads. A USB
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5.2. A Novel Approach for Detection of USB-based Keypress Injection Attacks

monitor runs as a piece of software on the host system and measures the interarrival
times of keypresses sent by each connected USB device for a RES, using the t and s

parameters. When a RES is detected, the USB monitor instructs the USB hub to switch
off the power of the USB port for some (e.g., ten) seconds (configurable). It also instructs
the operating system to unload (unbound) the respective device driver. This in effect
blocks access to the suspicious device. We highlight that no additional piece of hardware
is needed for performing these actions. The disconnection approach ensures that no
user involvement is required in restoring the connectivity of other USB devices that are
possibly attached to the specific USB port where the attack occurred.

One may argue that the design opts for a rather aggressive reaction to suspicious events.
We believe that our two-step disablement approach accommodates this. It is better
for users to notice an occasional interruption of their normal flow (in case the events
are indeed produced that fast by human beings) rather than risking an infection by a
malicious device. If the interruptions become too frequent, it is an indication of an attack
in progress (e.g., a USB drive trying to relaunch the attack). In this case, it would be
better for the IT support personnel to inspect the offending system.

5.2.5 USBlock Defenses Against Advanced Attacks

USBlock with RES defends currently against all known malicious Ducky Script payloads.
The approach of USBlock is generic enough and allows to realize and integrate new
defenses against new attacks. As the cat-and-mouse game between attackers and defenders
might evolve for BadUSB-like attacks, RES can be replaced by a more complex AKS
detection logic. Such logic will push attackers to adjust keypress injection rates to
mimic human behavior. This task will be more and more difficult to both realize in the
constrained environment of USB firmware and to match specific user typing patterns. At
the moment, this is not deemed necessary and would incur additional and unnecessary
processing overhead.

We note that USBlock with RES cannot be defeated by malicious firmware that delays
the launch of the payload (i.e., the start of the attack), once the fake device is plugged
in. USBlock is continuously monitoring for keypress events. Hence, when a RES occurs,
USBlock will detect it, no matter how long ago the fake device was plugged.

One may argue that a malicious Ducky Script can introduce delays between keypresses
to avoid detection. However, the constant interarrival time of the keypresses is an
easily-detectable AKS pattern. Should a Ducky Script generate random delays between
keypresses, these must occur as a human typing pattern, sparse in time. At this rate, they
will become intermixed with the normal typing activity of the user (and thus, neutralized)
or they will become noticeable by the user, as the attacks do not happen “in the blink of
an eye” anymore (e.g., the cursor is moved or the focus of the working window is lost).
Should the user be incapable or unwilling to notice the additional typing activity on
their monitor, we must rely on enterprise network security defenses that might be able
to detect the malicious activity of the attacked system, once infected.
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5. System-level Detection of Keystroke Injection Attacks

Clearly, analyzing the typed command strings (from humans or scripts) and reasoning
about their (possibly) malicious intentions is beyond the scope of USBlock. Such fine-
grained keypress analysis will probably not be acceptable by the users, as it severely
violates their privacy, effectively creating an Orwellian feeling of constant monitoring.

One may argue that a malicious USB firmware can monitor the status of the operating
system and launch the payload during periods of user inactivity (e.g., when there is no
typing activity for a long time). We are not aware of such capabilities for Ducky Scripts
and, to the best of our knowledge, such information cannot be requested by the USB
firmware from the operating system over USB packets. Even if such capabilities exist
in first place, USBlock is on the side of the operating system. Thus, it can also access
such information and integrate them into its decision logic to block malicious USB traffic.
We further note that such an attack cannot be launched at all if the screen is locked
(e.g., due to inactivity or a precautious measure by the user when plugging an untrusted
device).

5.2.6 Limitations of USBlock

While USBlock defends successfully against keypress injection attacks, it is not free of
limitations. USBlock lies and relies on information at the level of the operating system.
As such, it cannot defend against attacks launched at the BIOS level, as is the case of
BadBIOS discussed in Section 5.1.

Hardware keys, like Yubico YubiKey19, are a popular means of two-factor authentication.
Such devices identify themselves to the operating system as keyboards and “type” one-
time passwords and other sensitive information on behalf of their owner. Hence, USBlock
will interpret the YubiKey rapid keypresses as an attack. To overcome this, USBlock
implements internally the following check for YubiKey devices: if a connected USB
device reports a (VID, PID) of Yubico, the RES logic is disabled for this device. Rather,
USBlock monitors the USB device traffic to ensure that the USB packet payload comprise
exclusively “MODHEX” characters20. This is an improved approach over (VID, PID)
whitelisting [146], as anyone can fake the reported (VID, PID). As discussed earlier
in Section 5.1, these are inherent limitations of the USB protocol itself rather than of
USBlock. The host system must blindly trust the information provided by peripheral
devices without any authentication support.

5.3 Proof-of-concept Implementation and Evaluation

We now describe a proof-of-concept implementation of the designed system and its
evaluation in realistic environments. The evaluation comprises two parts: the first part
relates to the long-term stability of the prototype and to evaluating the effect of the

19https://www.yubico.com/products/yubikey-hardware/
20The modified hexadecimal characters are {b, c, d, e, f, g, h, i, j, k, l, n, r, t, u, v}, cf. https:

//developers.yubico.com/OTP/.
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5.3. Proof-of-concept Implementation and Evaluation

temporal variations in typing habits; the second part explores the typing dynamics of
different users.

5.3.1 Proof-of-concept Implementation

We realized a proof-of-concept implementation for the Linux operating system comprising
two parts. The first part is a Linux loadable kernel module (for kernel version 4.2) that
monitors for the keypresses. Being in the kernel, this part is as close as possible to the
raw information about keypresses received from the USB device and enriches them with
very precise timings. The kernel module then forwards the enriched information to the
second part residing in userland. The communication between the two parts occurs over
a netlink socket that is registered in both the kernel space and userland. This is an
approach similar to the one of [148]. However, the latter does not support timestamps
and multi-packet processing, which are necessary for our aims.

The second part is a Python script. This part implements the rapid event sequence
(RES) detection logic and is responsible for unbinding the offending USB driver from
the kernel. This effectively disconnects the device interface from the system. If the
driver of the device is automatically re-bound (as part of an ongoing attack), then, as
an additional protective measure, the driver for the corresponding USB hub on which
the device is connected is also unbound for ten seconds. This effectively removes all the
devices connected on this hub. The unbind/re-bind procedure is repeated until a user
action is initiated or a system administrator takes over. We note that the USB packet
processing, from kernel capture to RES detection (via the Python script) and reaction,
requires on average about 0.3 ms per packet. Hence, it takes 1 ms to detect an s = 3
RES. This is more than enough processing time, given that the median interarrival time
for BadUSB-like keypress injections is about 6 ms.

Listing 5.2: Help output of the USBlock userland tool.

1 usage : USBlock . py [−h ] [−− s t a r t ] [−−stop ][−−daemonize ] [−−boot ]
2 [−− t h r e s h o l d ] [−−keycounter ][−−debug ] [−− l o g f i l e ] [−v ]
3

4 o p t i o n a l arguments :
5 −h , −−help show t h i s he lp message and e x i t
6 −−s t a r t Sta r t the user land part o f
7 USBlock
8 −−stop Stop the user land part o f
9 USBlock

10 −−daemonize Sta r t the user land part as a
11 daemon
12 −−boot Sta r t the daemon on boot time
13 −−t h r e s h o l d Set the d e t e c t i o n t h r e s h o l d f o r
14 USBlock . Defau l t i s 0 .03 seconds
15 −−keycounter Set the number o f s u c c e s s i v e
16 k e y s t r o k e s to be with in the
17 t h r e s h o l d
18 −−debug Enable debug output . Defau l t
19 output i n t o / var / log / kern . l og
20 −− l o g f i l e Change the log f i l e d e s t i n a t i o n .
21 −v , −−v e r s i o n show program ’ s v e r s i o n number and
22 e x i t
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5. System-level Detection of Keystroke Injection Attacks

(a) (b)

Figure 5.4: Pictures of the research prototype system used for the user study

Listing 5.2 displays the USBlock usage message output, when launched with the help
option. The default actions, if the application is launched with no arguments, are to
log the collected keypress timings to the /var/log/kern.log file and to start it as a
“root daemon” with the default threshold of t = 0.03 seconds. The latter is a precautious
measure to prevent non-privileged users from stopping the application.

5.3.2 Evaluation of Temporal Variations

We evaluated the effect of temporal variations in typing as follows. We installed the
prototype in one of the authors’ computers, a notebook running Ubuntu 15.10. The
notebook was used on a day-to-day basis with a USB-connected keyboard for a period of
three months. The aim was twofold: on the one hand, to evaluate the stability of the
prototype and to discover any problems that it might cause; on the other hand, to study
the user’s typing behavior in the course of a long period that involved a multitude of
typing activities including code development, debugging, system administration tasks,
scientific paper writing, preparation of talks and presentations, shell scripting, email
typing, and web browsing.

The architecture of the monitoring infrastructure is depicted in Figure 5.5a. We instru-
mented the kernel module usbmon [162] to collect and log the USB events and act as a
middleware between the kernel and our offline analysis tools. In userland, the TShark
part of the Wireshark bundle was used to “listen” to USB events sent by usbmon. A
Python script was used to generate pcap-formatted files containing all the USB-related
events. A second Python script was then used to process the files and store the collected
information into a database for later analysis.

Overall, we did not experience any kind of stability problems while operating the
prototype and the additional monitoring infrastructure. Neither we experienced any kind
of measurable performance degradation. It did not cause any side effects (at least that we
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5.3. Proof-of-concept Implementation and Evaluation

(a) (b)

Figure 5.5: Architecture for monitoring infrastructure (a) evaluation of temporal variations
and (b) evaluation of typing dynamics.

became aware of). Thus, the temporal variations in typing did not affect the operation
of the prototype.

We collected in total timing information for more than 466,000 keypresses over more
than 60 working days. Less than 1% of them were below the t = 0.02 second threshold,
while the vast majority ranked quite higher as depicted in Figure 5.6. The median value
of interarrival times was 0.10 seconds, while the average time was 0.21 seconds.

There was no single case of three or more consecutive keypresses with an interarrival time
below the defined threshold. Thus, it was never the case that the prototype unbound the
USB keyboard device driver, i.e., we experienced no false positives.
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5. System-level Detection of Keystroke Injection Attacks
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Figure 5.6: Interarrival times for the long-term typing experiment

5.3.3 Evaluation of Typing Dynamics

The second phase of the evaluation was a study on the effect of the typing dynamics. We
designed a small-scale user study so as to collect evidence about typing patterns and
compare them against the behavior of the Rubber Ducky and BadUSB attacks as well as
published literature for typing dynamics.

We developed a research prototype system comprising a headless Raspberry Pi Model
2B running Ubuntu server 15.10, a USB keyboard, and a battery pack for autonomous
operation. Figure 5.4a and Figure 5.4b depict our research prototype system and a
close-up of the headless system. Similarly to the previous evaluation, we used a kernel
module to collect the keypress timing information and send them to a userland application.
The latter collected and aggregated the information prior to storing them into a database
for later processing. The architecture of the monitoring infrastructure is depicted in
Figure 5.5a.

We recruited 33 volunteers from our organization for this experiment. We visited each
participant at their desk and asked them to type a short text in the comfort of their desk
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5.3. Proof-of-concept Implementation and Evaluation

using our research prototype system. We offered the participants the option to either plug
in their keyboard or use the keyboard of our prototype. All but one participants opted
to use our keyboard, as it felt more convenient for them not to unplug their keyboard, or
because they were using laptops and docking stations.

We asked the participants to type the same, randomly-selected paragraph of the Bacon
Ipsum text comprising 71 characters. Figure 5.7 depicts the distribution of the distance
between each of the 71 recorded events (i.e., the keypresses interarrival time) produced
by each participant in box-and-whisker diagrams. The diagrams indicate that each
participant exhibited different typing patterns. Almost all diagrams contain a large
number of outliers towards larger numbers. Delays of one or even three seconds between
keypresses are noticed. The overall median value was 0.20 seconds and the average time
reached 0.30 seconds. Despite the per-participant differences, there was not a single case
where our research prototype detected erroneously a RES, i.e., once more, there were
zero false positives.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
Participant ID

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ti
m
e 
[s
]

Figure 5.7: Temporal variations in the typing dynamics experiment.

Our typing dynamics analysis results are in alignment with published literature [144].
Hence and for the sake of research efficiency and economy, we opted not to expand the
study to more participants.
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5. System-level Detection of Keystroke Injection Attacks

The second part of the evaluation confirmed that typing dynamics are quite stable among
users, despite some unavoidable differentiations. More importantly, even in short texts,
the human typing dynamics are clearly above the detection threshold we have defined
and clearly distinguishable from that of the Rubber Ducky and BadUSB attacks (cf.
Figures 5.7 and 5.3). Thus, such information can serve as a heuristic for detecting and
defending against the attacks.

5.4 Enriching Incident Response for BadUSB-like Attacks

A malicious USB firmware attack does not necessarily involve information transmission
through a network. Rather, it may steal information from the attacked computer and
store them in the USB drive or even hide them in filesystem metadata, as recently
demonstrated [115]. In this setting, a computer antivirus is not able to detect the
malicious piece of software, as it neither executes on the computer system nor it generates
network traffic.

We now turn our focus to improving the incident response procedures. In an enterprise
environment, should a BadUSB-like attack evades detection or an incident is indeed
recorded, it is important to triage the available computing systems for further analysis.
Efficient and effective incident handling relies on identifying quickly which systems are
possibly exposed to the (unknown) threat. This is especially true if a USB-based attack
is part of an advanced persistent threat campaign.

Towards this end, we devised a prototype analysis tool for automating the report of the
spread of USB devices and tested it with a help of a company network that volunteered
to participate in our study.

5.4.1 Reference Dataset Creation

Nowadays, multiple enterprise-grade system administration tools are available that allow
for automated remote administration of multiple systems. For our case, the company
IT administrators parsed the Microsoft Windows registry and collected the history of
the USB device connected to 60 managed computers using the Microsoft System Center
Configuration Manager. The whole procedure was fully scripted and automated, requiring
minimal intervention by the administrators. Other equally suitable options could have
been the Microsoft PowerShell and the GRR by Google [36]. The collected information
were pseudo-anonymized to protect the innocent, before processing the data for the needs
of our study.

The collected information includes: the USB device name; its product identifier; its
vendor identifier; its serial number; the date of first and last connection (plug-in); the
USB class; and the driver version. For the needs of our study it sufficed to use the
tuple <vendor ID>:<product ID>:<serial number> so as to uniquely identify
each device. As per definition, a serial number by itself should be an unique identifier.
However, we observed that USB serial numbers are not unique across all devices and
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5.4. Enriching Incident Response for BadUSB-like Attacks

in rare cases not even unique for devices of the same vendor. Therefore we opted for
a tuple including the vendor ID and product ID. We used the stated tuple of each
USB device to uniquely identify the device across the network. We excluded all USB
devices that did not provide either part of this tuple.

5.4.2 Analysis of USB Device Propagation

We devised multiple visualization styles, for aiding administrators to identify USB
devices and client computers. An example visualization is depicted in Figure 5.8. This
visualization style allows to easily spot “hub” hosts (clients) that attract many visits (a
lot of USB devices are connected). Such hosts are possibly exposed to bigger threats
and appropriate prioritization of protection efforts towards them can help reduce any
associated risk.

Figure 5.8: Alternative visualization style for tracking connected USB devices. Visits of
devices (red) to multiple clients (black).
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5. System-level Detection of Keystroke Injection Attacks

However the default visualization style is depicted in Figure 5.9. In the first step, the IT
administrators have an initial view of the offending computer that reported the incident.
Then, the tool reports all the USB devices that were attached to this computer, including
the one that caused the incident. The administrators can then view which systems this
device has visited last in a timeline. Finally, they can have a view of all possibly infected
computers. This gives a sense of the exposure scale, an indication for prioritizing their
analysis efforts, and a means to build a chain of events for further investigation.

Figure 5.9: Prototype analysis tool. Visualize incident computer C_14 (1), report of
connected USB devices (2), timeline of USB device visits (3), and complete view of
triaged computers of company network (4)

.

5.5 Conclusions

BadUSB-like attacks are a realistic threat. Yet, system-level defenses cannot be realized
in the form of malware analysis tools for USB firmware. USB device whitelisting can
offer some protection in specific scenarios, but its applicability is hindered when scaling
in enterprise-level networks. Proposed defenses in the literature mandate the user
involvement in the trust decisions. This is a suboptimal, error-prone design choice.

In this chapter, we studied the temporal characteristics of BadUSB-like attacks. We
proposed USBlock to block malicious USB packet traffic. Our proposal is extensible
and can integrate additional features for coping with future, advanced attacks. Residing
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5.5. Conclusions

on the side of the operating system, USBlock has an advantage over a malicious USB
firmware payload executing on a peripheral device and interacting with the main system.

We implemented a proof-of-concept defense module for the Linux kernel. We evaluated
its stability under different usage patterns for three months and studied the user temporal
variations and typing dynamics in a small-scale study. The collected evidence suggest
that our implementation caused no issues while human typing behavior was clearly
distinguishable from that of the existing known attacks.

Our findings indicate that it is feasible to realize advanced defense mechanisms for
BadUSB-like attacks by integrating system-level temporal characteristics and without
involving the user in the trust decisions.
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CHAPTER 6
Conclusions and Future Work

Computer-related crimes are increasing over the time. Not only in quantity but also in
sophistication, thereby increasing the associated effort and accompanying monetary costs
to defend against them. It is becoming widely acceptable that fully secure systems cannot
be designed and engineered, especially when these systems do not exist in isolation but
rather as crucial components of complex socio-technical systems including human beings
and their actions. In such a modus operandi, the interest shifts towards reducing the
associated risks and minimizing the attack surface.

In this thesis, we designed, engineered, and evaluated operating-system-level defenses
against USB-based attacks, following a holistic approach, with the aim to increase the
response capabilities of CSIRT’s and related bodies in case of security incidents arising
from cybercriminals. Our contributions revolve around three critical components.

We proposed a novel, file-based whitelisting approach, which utilizes available databases
and cross-correlated files to exclude already known files from an investigative corpus.
In our case study, we have been able to filter 78% of files known to be benign. Such
an enormous reduction without any performance penalty significantly upgrades the
operational capabilities of CSIRT’s in terms of effectiveness and efficiency, both in time
and space, allowing faster response times and improved allocation of available resources
and focus towards potentially suspicious cases, which would go unnoticed otherwise.

To further reduce the investigative corpus of a forensic analysis, we proposed the use of
sub-file hashes contained with every Torrent file. These readily-available information
allow to exclude fast large portions of files-under-investigation. We constructed and
openly-released datasets of more than 6 billion sub-file hashes. These hashes can be
used by any CSIRT to properly identify and whitelist more than 60 million different
files. The datasets are steadily growing and provided to interested researchers for further
experimentation.
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6. Conclusions and Future Work

File contents are not the only place a malware author can hide malicious code or use
as an exfiltration channel to bypass network perimeter and leak information outside an
organization. We were the first to identify that file timestamps, a special form of filesystem
metadata, in modern operating systems can be utilized to construct a leakage channel of
steganographic strength. This channel can be further enhanced using error-correcting
codes and modern encryption to further hinder prevention and detection techniques
of examiners. The robustness of the steganographic channel was further validated in
realistic usage scenarios spanning multiple weeks of filesystem operations and involving
actions such as file reordering, deletions, and additions. This previously unreported
channel can now be incorporated in standard CSIRT investigations to identify potential
exfiltration, hence, improving their operational capabilities. Furthermore, we devised
techniques that can significantly reduce the channel capacity, if properly integrated in
day-to-day operations of an organization, thus, further reducing the attack surface and
the associated risk.

Files and filesystem metadata are not the only information carriers of malicious actions.
Peripheral devices with USB interfaces contain firmware implementations of the USB
protocol, which directly interacts with modern operating system at the kernel level
bypassing all network perimeter defenses. We devised USBlock, a novel method to
defend against keystroke-injection attacks launched by malicious USB firmware. USBlock
is the very first approach in the literature to exclusively rely on system-level decisions;
it does not involve the user at any trust decision for the prevention and detection of
an attack. This not only allows more accurate reaction but also reduces the incident
response time.

There are multiple directions of future research in the topics addressed by this thesis.
More and more datasets and even whole virtual computing infrastructures producing
these datasets are becoming publicly available as part of open science initiatives. At the
same time cloud storage and large hard drives are becoming affordable to all consumers.
We consider an interesting direction to explore the possibility of integrating such open
sources in the whitelisting-corpora. Also, to explore use of novel data structures and
constructions, including blockchains, to efficiently store and retrieve information sub-file
hashes.

Another direction of research is towards new filesystem and related operating-system
metadata without excess capacity, thus, removing the possibility of new steganographic
channels and eliminating existing, undisclosed ones. In parallel, more generic anomaly
detection techniques, based on recent advances in machine learning and artificial intelli-
gence, are needed to identify abnormal or unexpected distributions of characteristics of
files and filesystems. Such techniques can provide early warnings signals and fast triage
of artifacts to be analyzed for information leakage via unknown steganographic channels.

Keypress-injection attacks are just one class of potential threats that modified USB
firmware can deliver. As USB directly interacts with the most trusted parts of the oper-
ating system kernel, further research on security threats and low-latency countermeasures
is necessary. Along this line of research, it is interesting to explore low-overhead in-kernel
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isolation of USB protocol parsing and interaction processing. The USB protocol variants
and newer versions do not incorporate system security in their design. It is insecure by
design. Sooner or later, USB will be replaced by a next-generation protocol interface,
with a physical or wireless connector. It is of utmost importance to research ahead
of time the protocol characteristics so that it provides both “Security-by-Design” and
“Privacy-by-Design” and not as an afterthought.
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