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Kurzfassung

Diese Arbeit befasst sich mit der rigorosen Herleitung eines Kreuzdiffusions-Systems ausgehend
von einem stochastischen Vielteilchen-Systems. Die Idee und die grundsétzliche Vorgehensweise
stammt aus L. Chens, E. Daus’s und A. Jiingels gleichnamiger Fachpuplikation ”Rigorous
Mean-Field Limit and Cross Diffusion”. Das Ziel dieser Diplomarbeit ist es die dort gefun-
denen Resultate auf den Fall nicht-konstanter Diffusion zu erweitern. Sie enth&lt neben der
eigentlichen Herleitung auch die Existenzbeweise fiir die auftretenden deterministischen und
stochatischen Systeme, sowie Resultate betreffend Eindeutigkeit und globaler Existenz. Des
weiteren wird vorgefiihrt wie die Dichtefunktionen der Losungen der stochastischen Systeme
als schwache Losung der deterministischen Systeme identifiziert werden konnen. Zu guter letzt
enthilt diese Arbeit Fehlerabschiatzungen beziiglich der Differenz unterschiedlicher stochastis-
cher Prozesse, beziechungsweise Funktionen, die als Losungen der unterschiedlichen Differential-
gleichungen auftreten.
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Abstract

This work focuses on the derivation of a special cross-diffusion system starting from a stochastic
many-particle system. The general idea can be found in L. Chens, E. Daus’s and A. Jiingels
same-named publication ”"Rigorous Mean-Field Limit and Cross Diffusion”. The aim of this
thesis is to expand the results found in the aforementioned paper to the case of a non-constant
diffusion term. Hence it contains, beside the main derivation, the proof of existence for the
occurring stochastic and deterministic systems and some results regarding uniqueness and global
existence. Furthermore an idea is given how to identify the probability density function of the
solutions of the stochastic systems with certain weak solutions of the deterministic systems. The
latter part of this work focuses on error estimates regarding the difference of certain stochastic
processes, respectively functions, which occur as solutions of the various differential equations.
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1. Introduction

Cross-diffusion models consist of several coupled reaction-diffusion equations, whose diffusion
matrices are often non-diagonal. These systems are widely used to model the interaction between
certain agents and appear in many applications of mathematical biology or thermodynamics,
to name a few.

This thesis will concentrate on the derivation and analysis of the n-species cross-diffusion system

n d
. . 0 .
Opu; — div (o(z,t);Vu;) = div ;:1 wiaijVuj + lg_l uiaixl(ai)% in RY x [0,7)

(1.1)

Ui o =y, i€{1,2,...,n},

where n,d are natural numbers, 7' > 0 and a;; are real numbers and o; : R? x 0,T) — Réxd
are (weakly) differentiable, matrix-valued functions. This system will be derived, via the mean
field limit, from the stochastic many-particle-system

N

. A . , .

AXy ) = =20 3 VGO — Xy O VAV @ nawt),
Jj=1 =1 .

XpN0)=¢f 1<ij<n, 1<E<N;
where u{ is the probability-density function of the random variable Ef. The stochastic differ-
ential equations above describe the path taken by one of N; € N particles from n different
sub-populations. They are driven by the stochastic processes Wik , which are d-dimensional, in-
dependent Brownian motions. The interaction between particles is regulated by the interaction
potential V;7: R? — R.

This thesis is based on the work [5] and is an attempt to generalize its findings. It is sep-
arated into eight chapters. The first contains the prerequisites and some motivation for the
argumentation later on. The second and third chapter deal with the existence theory concern-
ing the occurring stochastic systems and how the systems of deterministic equations (PDE I)
and (PDE II) originate from them. The prove of the existence of a weak solution of (1.1) is one
of the main results of chapter 6. As there are no compactness results for R? regarding Sobolev-
spaces, at least to the best knowledge of the author, more general approaches are used. These
contain, for example, the application of Banach’s fix-point theorem and evolutional-operators,
which are a generalisation of Cy-semi-groups. Chapter 6 also contains error-estimates for the
difference of the solution u of (1.1) and the weak solution u,, n > 0, of the intermediate system

n d
: . 0 .
Oruy; — div (o(x,t);Vuy,) = div ZUWVV;} * Uy + Zumi%(m).,l in R x [0,7),
; l
J=1 =1
Ui |t=0 = w), ie€{l1,2,...,n}.
(1.3)
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How a solution for this intermediate system can be found is the essence of chapter 4 and 5.
Chapter 7 and 8 focus on how the probability density functions relate to the solution of (1.1)
and (1.3). Additionally, it contains some error-estimates for the difference of the solution of the
stochastic many particle system (1.2) and the stochastic process governed by u, which can be
understood as a probability density.

1.1. Setting of the Problem and Prerequisites

This section is based on [5, Section 1.1]. As hinted in the introduction, we assume that n-sub-
populations of particles exist. Each of these populations consists out of N; € N, i = 1,...,n,
individuals, which move through the whole space R%. The paths taken by these individuals is
a realization of the stochastic processes X:]CZN ¢, which solve the stochastic differential equations

(SDE) Z ZVV” (XEN (1) = XENI (1))t + V2T (XEN (1), 0)dWE (1),
j=1 N;

k,N; k
XT]'L() 517]-<Z]<n ]_<]€<N

Here, as mentioned in the section before, Wik are independent, d-dimensional, Brownian mo-
tions, and ff, k=1,...,N;, are independent, identically distributed, square integrable random
variables with the common probability density function uY. For the diffusion matrix o; we

assume symmetry and uniform coercivity, that is to say
T d
zo(x,t)r>e YreR te[0,T)

for a constant € > 0. As o; is thereby a normal and positive operator, a square-root of o;
exists. It is not strictly necessary to use the square-root ,/o; from a mathematical point of
view. Instead, one can also assume a more general diffusion term 7;, as long as TiT T = 0y,
without needing to change the proofs in this work.

The interaction potential V;7 in (1.2) satisfies

1 T
Vi) = Vsl5). Ve e R

where Vi; € C2(R%), supp Vi; C B,(0) := {z € R?: |z| < n} and Vjj(z) = Vj;(y) whenever
|z| = |y|. The scalar > 0 is a scaling parameter. Notice that the L!-norm of VZ? is invariant
regarding changes of the parameter n. Furthermore, it is chosen in such a way that VZ? converges
in the sense of distributions for n — 0 towards a;;d. Here § denotes the Dirac-delta distribution.

For the next (formal) argument assume the processes X Ni are absolute continuous with respect

to the Lebesgue measure A? on R?. That is to say, there exists a probability density function
Uy, of X klN ‘. Additionally let the particle numbers N;, j = 1...,n be big enough such that the
influence of one particle onto another is infinitesimal small. In other words, let the stochastic
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processes X: jN] be practically independent. Then the law of large numbers would imply

Z VYA () = X5 () ~E [ VY00 ) - X5 (1)

711

=(VV 5 uy ) (X0 (1), ).

This motivates the study of the following intermediate system for fixed n > 0 and large N;, ¢ =
1....n

dXy,(t Zv sy (X5 (8), 8)dt + V2003 (X5 (8), )dWE (),

X} )=££2 1<ij<n, 1<k<N;

in order to approximate the many particle model (SDE 0). Here w,; is the probability density
function of the process dX n ;» which can be shown, via an application of Ito’s lemma, to satisfy
the non-local diffusion system

n
(PDE I Oy — div (o(x,t);Vuy,;) =div Z un,iV T Z Uiz (04).

Ui li—o=u?, i€{1,2,...,n}.

in R% x [0,7]. By theorem 9.10 of [8], the term VV * Uy ; converges for n — 0 towards a;ju;

regarding the L?(0,T; L?)-norm, where a;; = [ V;j(z)dx and u is the weak limit of u,. This
R?
leads to the cross diffusion system (1.1)

(PDE I1) Oyu; — div (o(x,t);Vu,;) = div ;uza”Vu] + Zula o (0i).1

ui im0 =, i€{1,2,...,n},

in R? x [0,T) and the stochastic system

n

A[c — a; U o k ik ,
(SDE II) X7 (0) ; iV (XF (1), )dt + V2o (XE(t), ) dWE (t)

XEN)y=¢F, 1<i,j<n, 1<k<N;.

7
Let now N = 1r<r1i£1 N; and vlog(N) > nQd% with v sufficiently small. Then, for the difference
<i<n
of the solution of (SDE II) and the solution of (SDE 0), the estimate
n A~
sup E (Z sup Xf;lN XF ) <C(t)yn, te(0,T]

1<k<N 7 0<s<t

can be established (see theorem 8.1.1). This is one of the main results of this work and has
been already shown for constant diffusion ¢ > 0 in [5].
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Remark 1.1.1. The most commonly used results on the existence of solutions of stochastic
differential equations demand the coefficients of said SDE’s to be Lipschitz-continuous. So to
ensure existence for the systems (SDE I) and (SDE II), we are searching for solutions u,u,
of (PDE I) and (PDE II) which are elements of L(0,7; H®), where s > % + 2. Due to the
embedding H® — W2 and H® < C?, these are then uniformly Lipschitz-continuous. For the
same reason we also demand o; € L>°(0,T; H®) whenever we study a diffusion-matrix which is
dependent on the space-variable x.
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2. The Stochastic Systems

This chapter focuses on the stochastic systems introduced at the end of the previous chapter.
In the first part, the existence and uniqueness of processes solving the corresponding stochastic
differential equations are established. The later section concentrates on proving the existence
of probability density functions, characterizing the aforementioned processes.

2.1. Existence of the Stochastic Processes

All findings presented in this section build upon the existence result [10, Theorem 5.2.1] for
stochastic differential equations (see also theorem B.1.17). We therefore assume /o; to be
measurable and uniformly Lipschitz-continuous on the considered time-interval [0, T, additional
to the assumptions made in section 1.1. That is to say, there exists a constant C' > 0 such that

IVai(z,t) — Vai(y,t)| < Clz —y|, forall z,y € R and t € [0,T].

d
Here the absolute value of a matrix o € R¥? is understood to be |o| = [ 3° ‘7]2‘1’ Additionally
Jvl:]-

we assume that ,/o; fulfils a linear growth condition:
|\/oi(x,t)] < C(1+ |z]), for all z € R? and ¢ € [0,T).

We will prove the existence of unique solutions of the stochastic differential equations (SDE
0)-(SDE 1II) regarding the filtrations F2-F{!. These are the natural filtrations induced by the
Brownian motions W} and the initial random variables ¢¥, occurring in the corresponding
stochastic differential equations. Here we assume all these stochastic processes and random

variables to be independent from each other.

Theorem 2.1.1. The System

k,Ni "1 k,N; 1N; kN
Xyt ==> v S OVVIHX N () = X () dE+ V240 (X (), ) dW ()
(SDE 0) =N, &
XMy =€ 1<ij<n, 1<k <N

has a unique, F,-adapted, strong solution on the interval [0,T] for any fived choice of n > 0.

Proof. To simplify the notation, we omit the parameter n and IV, i.e. Xl-k = XSZN “ and write o
instead of \/o. We want to use theorem B.1.17. As the system (SDE 0) consists of interdepen-
dent equations, we need to consider the stochastic processes Xik, 1<i<n, 1<k<N,;asone
d - Z;”:l N;- dimensional process instead of several separate ones. We therefore interpret the
Brownian motions Wik as part of a d - Z?Zl Nj-dimensional Brownian motion. This is possible
as we assume that they are independent in a stochastic sense. To organize the processes Xf

into one stochastic vector, we use the mapping ind(-, -) defined by

ind(j,l) = Nj_1+1, 1<j<n, 1<I<N;
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where N; = 23:1 N;. Let X be the stochastic process which satisfies! Xind(j) = le» and W

the corresponding (d - N,,-dimensional) Brownian motion. Intuitively these are the vectors one
obtains by writing all the processes Xf, respectively Wik, among one another. Then problem
(SDE I) reads as

n N
AXn(t) = =3 2 S0 IVig(Xon(0) = Koy ()it + V20, (X (1), )W (1),
=1

m—Ng(n)—1

Xom(0) = &yom)

where 1 < m < N,, and gm):=min{l <i<n: m< ]\71} We define

. .
bm(X) = — Z ~ Z v‘/z] (Xm(t) - Xind(j,l) (t))
j=1 J =1
and
o1(X1,1) 0
Ul(XNl’t)
o(X,t) =
O-n(XNn—1+17t)
0 an(XNn,t)

In order to apply theorem 5.2.1 of [10], we need to show the existence of a constant C' > 0 such
that

b(z, 1) + |o(z,8)] < CA+ |z]), z € RFN ¢ €[0,T] (2.1)
and
b, ) = by, )] + |o (1) — o (y.t)] < Clz —y|, 2,y e RNt [0,T). (2.2)

We start by showing that b(z,t) is uniformly Lipschitz on [0, T]. Let therefore z,y € R4V and
t € [0, T] be arbitrary but fixed. Then we have

Nn
bz, t) = by, )* = D [bm (2, 1) = b (y, 1|
m=1

2
n

Nn N;

1

<> |2 N, > [VVii(@m = Tina) — VVig (Um = YinaGia))|
m=1 \j=1""7 =1

!The indexing organizes the process in terms of d-dimensional vectors.
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By assumption VV;; € C§(R?) with supp V;; C B,(0). In particular VV;; is Lipschitz? with the
Lipschitz-constant L;;:

Nn
b, t) = by, t)* = D [bm (2, 1) = b (v, 1)]
m=1

2
n

Nn N;
1
<D 20w 2o il = vm = winaga) + vinaga)|

m=1 \j=1""7 |=1

Np, n oL N; 2
<> ZN;JZZ;rx—yr < Ko —yl.

m=1 \ j=1

Taking the square root on either side of the inequality proves the Lipschitz continuity of b. For
o we proceed similarly. Due to the identity

Ny
‘O’(.’I),t) - O—(yat)lz - Z ’Jkl<xvt) - O—kl(y7t>‘2
k=1

it suffices to show |oy(x1,t — o1(y1,1))|* < K|z —y|>. But the o; are uniformly Lipschitz by
assumption and condition (2.2) is therefore satisfied.
Similarly we get

lo(z,t)| < C(1+ |z]).
Thus the remaining condition (2.1) follows therefore after a short calculation, from (2.2):

b(z, )| + [o(z, )| < [b(z,t) —b(0,¢)| + [b(0,¢)| + C(1 + |z)
(2.3)
< Clz = 0[+ [6(0,0)[ + C(1 + [z]) < (2C + [b(0,)[)(1 + [z]).

Notice that b does not depend on the parameter t. O

The systems (SDE I) and (SDE II) depend, besides Vj; and o;, on the functions u and w, (see
for example section 1.1). These are defined as the respective solutions of (PDE I) and (PDE
IT). We do not have any existence and regularity results regarding these sets of equations as
of now. We therefore assume, for the sake of the proof of existence for the stochastic systems,
that they are arbitrary elements of L>(0,T; L?(R%,R")), with u satisfying a similar uniform
Lipschitz-condition as o;. We thus suppose the existence of a constant C' > 0 such that

[Vu(z,t) = Vu(y,t)| < Clo —y|

(2.4)
[Vu(z, )| < C(1 + |z]),

for all z,y € R% and t € [0,T).

2This can be seen, for example, by applying the mean value theorem.
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Lemma 2.1.2. Let u, € L>(0,T; L*(R%,R")) for a fived choice of n > 0. Then there exists a
strong, ]-"tl-adapted unique solution of

(SDET) dXy;(t Zv 1y 5 (X (8), )t + V20 (X (1), ) AW (8),

Xi(0) = ;. 1<i,j<n, 1<k<N
on the interval [0,T]. Furthermore, let u fulfil condition (2.4). Then the system

dXF(t) = =" ayVui(XF(t), )dt + V2o (XE(t), t)dW ] (2),
Jj=1
XF0)=¢F 1<ij<n 1<k<N;

(SDE IT)

has a unique strong solution on the interval [0,T], which is f{l—adapted.

Proof. Let 1 < ¢ < n be arbitrary but fixed. Similar to the proof of theorem 2.1.1, we want
to utilize theorem B.1.17. Recall that ,/o; is uniformly Lipschitz-continuous by assumption.
Thus, we only have to show the uniform Lipschitz-continuity of b, and b, which we define by

ZV Py j(x,t)

and
- Z aij Vui(z, 1)
j=1

where (z,t) € R? x [0,T]. Due to Vi€ C2, with supp Vil € By(0), by(-,t) is continuously
differentiable and we have for any choice of j, 1 < j <d

n

Z—vv’" e <vv > * Uy j

‘Bx]

7j=1
<2 (VoY ) xums vav Ll
j=1 =1
17]7 2”“%]‘”@0(@1“;9)
< y/meas(B V—V" HUUHLOO(D,T;L?)SC' (2.5)

Thus, by(-,t) € C}(R?). In particular bn(., t) is Lipschitz continuous. Notice that (2.5) does not
depend on t anymore and that the constant C' > 0 in estimate (2.5) can be chosen independently
from the parameter j. Hence we can find a Lipschitz constant of b(-,¢) which is independent
from ¢. As u is already assumed to satisfy the condition (2.4), the Lipschitz continuity of b is a
simple conclusion.

For the linear growth condition of theorem B.1.17, see (2.3) as b,(0,t) can be shown to be
bounded on [0,T] with the same arguments we used to derive estimate (2.5). O
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2.2. Absolute Continuity

IP this section we establish the existence of the probability density functions of the processes
Xk and XF, solving (SDE I) and (SDE II). These densities are needed later on to make the

mn,t 1
transition from a stochastic differential equation to a deterministic one.

A probability density function of a random variable X is nothing more then the Radon-Nikodym
density of the probability law of X € R? regarding the Lebesgue measure \%. The Radon-
Nikodym density itself exists if and only if the law of X is absolutely continuous with respect
to AL, Proving absolute continuity of X’f;i and )?Zk is therefore sufficient to justify the existence
of a probability density.

Lemma 2.2.1. Let u, € L>®(0,T; L?(R%,R")) for a fived choice of n. Then the solution XT];Z-
of (SDE II) is absolutely continuous with respect to the Lebesgue measure and thus possesses a
probability density function.

Proof. Due to lemma 2.1.2 the stochastic process X’f;i solving (SDE II) exists. Let S := inf{0 <
¢

t<T: Ofx{0<s<T: dot Ui(x,syi(s)s#o}ds > 0} where x is the characteristic function. Theorem

2.3.1 in [11] implies the absolute continuity of the probability law of X’ii in respect to the

Lebesgue-measure A? on R%, as long as S = 0. This condition is equivalent to the denseness

of {0 < s <d: det ,/ai(X’f;’i(s),s) # 0} in [0,0] for an arbitrary 6 > 0. By assumption

o = /o, \/7, is uniformly coercive and in particular positive definite. Hence

(det my = det o;(z,t) #0

for all z € R and 0 < ¢ < T. This implies {0 < s < T : det /0i(X};(s),s) # 0} = [0,T]

and so the law of XZ-’fn is absolute continuous regarding the Lebesgue measure and thus has a
probability density function. a

Repeating the argumentation above, we can prove the same result for )?Zk and (SDE I):

Lemma 2.2.2. Let u satisfy the Lipschitz-condition (2.4). Then the solution )/(\'lk of (SDE I)
1s absolutely continuous with respect to the Lebesgue measure and thus possesses a probability
density function.

Proof. See the proof of lemma 2.2.1. O
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3. Derivation of the Cross-Diffusion Systems

In this short chapter it is shown, how the intermediate system (PDE I) and the cross diffusion
system (PDE II) come about as determining equations for the probability density functions of
the solutions of problem (SDE I) and (SDE II). This is established by an application of Ito’s

lemma.

3.1. Derivation of the Intermediate System (PDE 1)
Let u, € L°(0,T;L*(R%R"™)). Due to lemma 2.2.1 and theorem 2.1.2, problem (SDE II)

is guaranteed to have a solution )_{g’i, which in turn has a probability density u,. Let ¢ €
C2Z(R? x [0, 7). We apply Ito’s lemma to qﬁ(X,’;i(t),t) :

S(Xyi(1),t) =o(&F,0)

d
S 20 (% (5), $)ou (E (), )l

To arrive at a deterministic statement, we apply the expectation on both sides of the last
equation and use the absolute continuity of the law of Xrlf’i:

/qﬁxtunmtda:—/gbxOundea?—i—//a (x,s)Uy(x, s)dzds

0 Rd

//Zng Z, S V *Un,j)(l‘,s)ﬂn(l‘,s)dxds (3.1)

0 Ra =1

// Z 8xk8xl CC § O-Z(x S)klun(iﬂ S)dxds

(3.1) can be interpreted as the weak formulation of a linear partial differential equation. To
show this, and to make our next steps rigorous, we assume u is a smooth function. Then we

11
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/qﬁxtunmtdm—/gba:Ounxde+/¢xtun$tdw—/¢x0unxO)d

//Ms 1z, 5)dzds

0 R4
//Z¢ x, s)div <V *unyj(x,s)&n(x,s» dxds
0 Rd j=1
d
+//qz5(x s Z xkaxl (oi(x, $) ity (z, s)) deds
0 R4 =1

/gb:ctu,]xt

//qzb x,s) —%(w,s) +j§d1v (VV *un,j(w,s)ﬂn(ﬂv,s» dxds

O]Rd

d
//gb x,s) Z Bﬁkﬁxl (oi(x, §) ity (x, 5)) dzds.

0 Rd

Rearranging and cancelling some terms, the above equality reads as

£ n d
ou N 0 .
// un (x,s) —i—Zdlv (VV *umj(a:,s)un(m,s)) + Z 9000, (oi(x, 8)pty(z,s)) | x
0 R

g =1 k=1
¢(z, s)dzds =0

Because ¢ was arbitrary, we apply the fundamental lemma of calculus of variations. This results
in the following partial differential equation

d
(z,s +Zd1v (VV * Uy (2, s)u(z, s) ) + Z amfaxl (i, s)gu(z,s)) = 0.

Jj=1 k=1

au

 Os

for s € [0,t]. We rearrange the third term on the left hand side, to obtain a diffusion term:

k=1 k=1
d d d ~

B 0 003k - 0 ot

N ; 8£Ck lz; < 8xl un> + kzl al‘k lz;(az)kl axl

Q

=div (Z E;ﬂjl) L ) +div (0; V) .

=1

12
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Using the identity above, this then yields the following, more familiar, parabolic equation:
= div (0, Vi) = div Z iy V V! 5y + Z un 8xl in R? x [0, 7. (3.2)

Thus, we have proven:

Lemma 3.1.1. Let u, € L>(0, T} L*(R4,R™)). Then the probability density function i, of the
solution Xf;i of (SDE I) is a weak solution of the linear evolution equation (3.2), in the sense
that

/qﬁxtunmtdx—/quOunde:L‘+//a (x,8)Uy(x, s)dxds

0 Rd

//Zv¢ z,8) - (VV * Uy ;) (@, 8)ly(x, s)drds

(]Rdjl

// Z afrk@xl (x,8)0i(z, 8) g1ty (z, s)dzds

k=1

for all ¢ € CE(RY x [0,T7).

3.2. Derivation of the Cross-Diffusion System (PDE IlI)

One can prove a similar result to lemma 3.1.1 in the case of the stochastic differential equation
(SDE II). To be more precise, one can derive a weak formulation of the equation

d
i [~ 00i) 1) . pd
Frie div (o;Va) = div ZuaijVuj + ;uaxl in R x [0,T] (3.3)
which is satisfied by the probability density function @ of )A(Zk . To ensure the existence of the
solution X¥ of (SDE II) and its density function, we assume u to be again uniformly Lipschitz-
continuous. Then we can apply theorem 2.1.2 and lemma 2.2.2. Using the same techniques as
in the previous section, we arrive at the following result:

Lemma 3.2.1. Let u satisfy the Lipschitz-condition (2.4). Then the probability density function
@ of the solution XF of (SDE II) is a weak solution of the linear evolution equation (3.3) in the
sense that

/¢(w,t)&(x,t)dx —/(b z,0)u(x,0)dz
Rd

//a z, s)i(z s)dazds//ZaU iz, 5)Vu;(z, s) - Vo(x, s)dwds

0 R4 0 pa J=1
// Z (z,s)oi(x, $)pu(z, s)dxds,
0 L ki1 8xk8xl

for all ¢ € CE(RY x [0,T7).

13
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4. The Linear Advection-Diffusion Problem

Due to the non-linearity of the occurring systems (PDE I) and (PDE II), this chapter focuses
on the proof of existence for a linear problem, which was deduced from the intermediate system
(PDE I). Using an evolution operator, a weak solution is constructed on the subinterval [§, 7]
for every 0 < 6 < T. These solutions are then extended to the whole interval [0,7] and shown
to converge towards the solution of the linear problem for § — 0. The final parts of this chapter
deals with the problem of achieving higher regularity of this solution, assuming more regular
coefficients.

4.1. The Linear Advection-Diffusion Problem

In preparation for the proof of existence for our non-local diffusion system (PDE I), we first
concentrate on the following linear parabolic equation:

dyu — div (o (z,t)Vu) =div (uf(z,t)) in R x (0,77,

4.1
u|t=0 ZUO(x)v in Rd ( )

where o(;) is an element of € L>°(0,T} WhHoo(RY, R?*4)), in addition to the assumptions made
in section 1.1. Furthermore, f € L>°(0,T; W1*°(R% R?)) and ug is an element of L?(R? R).

By multiplying (4.1) with ¢ € D(R? x [0,7]) and integrating over the whole space R? x [0, T7,
one can derive the subsequent weak formulation by partial integration, assuming w is smooth
enough:

T
0/8tu,q§ - 1dt+//Vu o(x,t)Vodrdt = //le uf(z,t)) pdxdt. (4.2)

0 Rd

Here, H~! denotes the topological dual of H'(R% R).

Definition 4.1.1 (Weak solution). We say u is a weak solution of (4.1) if
u € WH2(0,T; HY(RY, R), L2(R%, R)), u satisfies (4.2) for all ¢ € L2(0,T, H'(R? R)) and
ult=o = up almost everywhere.

Going forward, we will omit to state the underlying sets of our functional spaces, if it is obvious
from context.

Remark 4.1.2. As u € L?(0,T; H'), one might consider the fulfillment of the initial condition
in definition 4.1.1 as too harsh but due to the continuous embedding of W2(0,T; H', L?) into
C([0,T), L?), written as W12(0, T; H', L?) — C([0, T], L?), the initial condition will be fulfilled
by the weak solution in the L? sense, i.e. almost everywhere.

15
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4.1.1. A-priori estimates and uniqueness

Let u € WH2(0,T; H', L?) be a weak solution of (4.1). For ¢ € D(R?) and v € D([0,T]),
é(z) - (t) is an element of D(RY x [0,T]). It therefore holds that:

T
O/ (O, @) -1t + / / Vul oV darpdt = / / div (uf) ¢pdadt.

0 R4 0 R4

As 1 was an arbitrary element of D[0,T], one can deduce from the fundamental lemma of
calculus of variations

(Opu, @) p—1 —i—/Vu co-Vodr = /div (u- f)pdx (4.3)

R4 R4

for all ¢ € D(R?) and almost every ¢t € [0,7] . This holds also true for ¢ € H'(R?), as one
can easily deduce by approximating ¢ via a sequence of test- functions (¢, )nen, due to the fact
that D(RY) lies dense in H'(R?).

The equation (4.3) serves as basis for a number of a-priori estimates that can be derived for
weak solutions of the system (4.1). Considering that we want to interpret these solutions as
density functions of stochastic processes, the first of the results we are presenting here, regarding
the positivity of u, is of utmost significance. The second theorem however, provides us with
some norm-estimates, which will come in handy for the proof of existence in the later part of
this chapter. Furthermore, the uniqueness of weak solutions will be a direct conclusion from
it.

Theorem 4.1.3 (Positivity). Let u be a weak solution of (4.1)and ug > 0 almost everywhere.
Then u > 0 almost everywhere.

Proof. As mentioned at the beginning of this section u solves equation (4.3) almost everywhere
for all ¢ € H'(R?). By using u~ as test function and applying Gauss’s theorem for Sobolev-
functions on the term on the right-hand side of the equation, we get

(Opu,u™ ) -1 + /VuTaVu_dm = —/u (fVu™)dx
d

Rd

This calculation is rigorous as v € H'(R?) implies u~ € H'(R?), by a well known theorem from
Stampacchia, see A.2.7. Furthermore, it holds that Vu™ = x{,<0} Vu, which leaves us with

(Opu,u™)g—1 + /V(U)TUVudx =— /u (f-Vu~)dz.

Rd

It can be shown (see A.3.22) that ||u~ Hig is absolutely continuous and

d
(Opu,u™ Y g—1 = %HU_H;

16
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Additionally, via Youngs inequality for products (see E.0.1), we get the estimate

1 )
|/ (f-Vu~ )d:c]</|u || f-Vu~ ]dx</25\u\2+2|f-Vu|2dac

R4 R4

S| FII7 _
e o e 7

for all § > 0. Due to the uniform coercivity of o (with constant €), these results amount to

SN N1 oo maxiony) e —
0T 7|2,

d, _ _ _
L s+ T < el 2+

Choosing 0 such that 5Hf\|%oo(RdX[o’T} < ¢, leads therefore to

2+ v < 2

but most importantly to

Ll < |

as §||Vu_\|12 > 0. By applying Gronwalls lemma to the last inequality, we obtain

t

1
a2 < Ju ©[aexp | [ 5ds | =0
0

for all ¢t € [0, T, as we assumed ug > 0.

Theorem 4.1.4 (Rate of growth). Let u be a weak solution of (4.1). Then there ezists a

constant C' > 0, which only depends on f, such that
[u(®)l72 < [luoll72 exp (Ct)
and
2 € 2 2
[u)lL2 + 5IIVulzar2) < luollzz (exp (C1) +1)
for allt € [0,T].
Proof. We start again with equation (4.3) and use ¢ = u as test function to get

(Opu, u) g—1 + / VuloVudz = — /u (f-Vu)dz

R4 R4

by the integration-by-parts formula for Sobolev functions. We will use the identity

d
(O, u) s =l ae


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

and will argue as in the proof of theorem (4.1.3), to show that
d 2 € 2 1 2
gz + 5 IVulze < o flullz (4.4)

for all § < E/HfH%OO(Rdx[O,T]) on the interval [0,7]. Let ¢ from now on be fixed. Integrating
(4.4) from 0 to ¢ yields the inequality

t
2 2 € 2 1
Ju®I3 = [l + 51Vl < 55 [Nl (45)
0
Furthermore, from (4.4) we can also derive

d 2 1 2
Sl < sl

which leads, according to Gronwalls lemma, to
t

22 < 22 / _ , t
[u@®) |72 < [[u(0)[|72 exp 5548 [u(0)[|72 exp %

0
for all t € [0,T]. The right hand side of (4.5) can now be bounded by

t t
s t
Sl ads < [0}z exp (55)ds = o) 225 exp <25>
0 0

This, together with (4.5), amounts to

t
[0l + 51Vl < [0 exp (5 ) + (O

Choosing C' := Ts completes the proof. O
Corollary 4.1.5 (Uniqueness). There exists at most one weak solution u of the linear PDE
(4.1) with the initial condition u|—o = ug € L.
Proof. Let uq,us be two weak solutions with the same initial condition ug. Then for each
i € {1,2} the equation

T T T
/ (Oyus, @) pp—1dt + / / Vul'oVedrdt = / / div (u; f) pdadt

0 0 Rd 0 Rd
is satisfied for all ¢ € L?(0,T; H'). Taking the difference of these two equations leads to

T

T
(Or(u1 — u2), @) g—1dt + V(uy — up) o Vodadt
] s

0 R4

:i/@«m—wﬁmwmmw

0 R4

As up(0)—u2(0) =0 a. e., w := u; —uy is a weak solution of (4.1) with initial condition wg = 0.
By theorem 4.1.4 w = 0, which implies u;(t) = ug(t) a. e. for all ¢ € [0, 7). O

18
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A-priori Estimates of higher Order

In the case of smoother coefficients of our partial differential equation and if the weak solution
u has higher regularity, we can prove the following result, similar to theorem 4.1.4:

Theorem 4.1.6. Let u be a weak solution of (4.1) with initial condition ug € H*(R?) and
u € L2(0,T; H*Y(RY), for s > d/2 + 1. Furthermore, let f € L>®(0,T; WsTLo(RY RY)) N
L>=(0,T; H¥(RY, R?)) and o € L>®(0,T; W (R, R¥*D)). Then there exist constants K, C,c >
0 such that

i) %Hunzs + 5||Vu|]§{5 < K||u||?is almost everywhere.
ii) [lu()|3g < lluollfy exp(Kt), for0<t <T.
i) (w5 + €l Vulfag ey < lluoll (exp(Kt) 1), for0 <t <T.
iv) K =2C (14 (Ifll g + el D*1112)%)).
Proof. The idea of this proof is based partially on the proof of [5, Lemma 4].
The weak solution w fulfils the equation

(Opu, @) -1 dt + /T / Vul oV pdedt = /T / div (uf) pdzdt

0 Rd 0 Rd

St~

for all ¢ € D([0,T] x RY). Let a be a multi-index with |a| < s and ¢ = D) with ¢ €
D([0,T] x R%). Then we get:

T T
/ (Oru, D) g1 dt = / w, D) padt + (u(T), DY(T)) 2 — (u(0), D4(0)) 12
0 0

T
p)lel / (Du, ) p2dt + (D*u(T), &(T)) 12 — (D*u(0), ¥(0)) 12 (4.6)
0

— /T / Vul oV D%dzdt + /T / div (wf) D*dxdt

0 Rd 0 Rd

_ (—1)l _/T/DO‘ (V" o) deacdt—i—/T/Do‘div(uf) Ydrdt

0 Rd 0 Rd

The functions D (Vu - o) and D%div (u - f) are both elements of L?(0,T;L?). This can be
seen, for example, with the product rule. Expression (4.6), as function of 1, can therefore be
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interpreted as element of L?(0,T; H~'). Thus, there exists v € L?(0,T; H~!) such that for all
¢ € D((0,T) x RY),

T T
- /(Dau, 8,51/}>L2dt = — /<’U,1/J>H—1dt.
0 0

This implies! 9;D% = v. Thus, D% € W2(0,T; H',L?) and we can deduce, similar to
equation (4.3),

(O, D“u, ) -1 + /Da (VUTJ) Vipdr = /Do‘div (uf)pdx (4.7)
R4 R4
for arbitrary 1 € H'(R%). Now by writing

D% (oVu) = cD*Vu + Z 5, Do D’Vu (4.8)
181<|a]=1,1<]y|<|e|

which holds almost surely for suitable cg, € {0,1}, and combining (4.7) with (4.8), we arrive
at

(0:D%u, ) 1 + / DVUT o Vipde = — / 3 s, Do DPVu | - Vipds  (4.9)
2 #a \IBISlal-L1< <ol
+/D°‘div (uf)de.
R4

We choose ¢ = D*u and use Youngs inequality and the coercivity of o to get the estimate

2
1d 1 0
oDl + D Vuld < 5ol ST s, DD Va|  + ZIDVul?,
18]<le| =1,1< ]| <] 12
1 DY 2 g D 2
455107 @h)Ez + S1D"VullEa
The first term on the right hand side can be further estimated:

3 5, Do DPVu|| < 3 HD%—D5VuHL2
BI<lal~T1< <ol 2 BI<lal-Li<hi<lal

1/2

2
- S / ‘D%Dﬁvu’ dx

1BI<lal-1,1<]y[<|a| \gd

1Strictly speaking, we can identify the distributional time derivative of D%y with v.
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< /||D7UH ‘D'BVU‘ dx
|BI<le|— 11<|7|<|04\

2
< Y Dol (R/Dﬁw dr
d

18I<]al-1,1<]y|<|a]

=Y 1Dl | PPV, < Ol ol - (4.10)
181<|e| =1,1<]y]<]ef

Altogether we have

1d, . 1
thHD U||L2+6||D VUHL2 Y

=:C(s,d,o(t))eL>([0,T])

5 (03
55 C (8, D)o [[fy00 lullzys + 1D Va7

1 2 4 2
+o5I10% WLz + 5 ID*Vullz.

We now choose 6 = €/4. Then the second and fourth term on the right-hand side can be
absorbed by the corresponding term on the left hand side of the inequality.

1d

a (0% 2 (0%
51Dl + 1D VulEa < Cs.dyo (@) ulfe + - 1D @)l

We use the Moser-type-calculus inequality (see A.2.12) on the last term on the right-hand side.
Notice that because of s > d/2+ 1, we have H® < L, due to the Sobolev embedding theorem.
All in all we get

1d

2
J g 1P IZ2 + *IID‘“VUIILz < O(s,d, o(t))[lul3s + - (lullpoe 1D £l 2 + 1l oo 1Dl 2)

< (€l duo(®) + 2 (11 + D 11209l

< C (14 (1 g +ellD* 1)) Il

almost everywhere, where ¢ > 0 is the respective constant of the Sobolev embedding and C' > 0
depends on s, d, % and (o fo (o 7500y We sum over all multi-indices o, |af < s:

1 d € 2 2 2
5 oellulle + SIVulEe < € (14 (1Sl + ellD? £l e (411)
::%K
This especially implies
Dl < K2 4.12
Sl < Kluly. (412)
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almost everywhere. We can now use Gronwalls lemma to obtain
2 2
[w()lzrs < lluollzs exp(KT)

for 0 <t < T. We furthermore use (4.12) to control the term on the right-hand side of inequality
(4.11) and integrate (4.11) over [0, ¢]:

()77« + el VullZago,p a0y < lluollfy (exp(Et) — 1)

which completes the proof. ]

4.1.2. The abstract Cauchy problem
Let A(t) : D(A(t)) = H? — L? be the family of unbounded linear operators satisfying

A(t)u = —div (o(z,t)Vu)
for all u € H?, and g(u,t) : H! x [0,T] — L? defined by

g(u,t) :=div (f(x,t)u).
Then the linear parabolic problem

Oyu = div (o(z,t)Vau) + div (f(z,t)u) in R? x (0,7,

uli=o = up(z), in RY,
can be written as:
du/dt + A(t)yu = g(u,t), te€[0,T], u(0)=uge L (4.13)
where u = u(t).

This strongly resembles a so called abstract (semilinear) Cauchy problem. These are initial
value problems of the form

du/dt + A(t)u =g(t), t€(0,T], u(0)=upeX (4.14)

where X is some arbitrary Banach space, A(t) : D(A(t)) — X is a family of linear operators
with ¢ € [0,7] and g(t) is a function from [0,7] to X. The standard procedure to solve such
a problem, would be to find the corresponding evolution operator and to prove the existence
of the so called mild solution (see e.g. [3]). Which is, under some rather strict regularity
assumptions on ug and g, even a strong solution of (4.14).

Our approach will be quite similar. We will show the existence of an evolution operator and of
a mild solution on the time interval [, 7] for every 0 < 6 < T'. For 6 — 0 we will then obtain
the desired weak solution on [0, T7.

From now on we will use the following definitions:
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Definition 4.1.7 (Evolution operator?). Let X be a Banach space and A(t) : D(A(t)) C X —
X, t € ]0,T] be a family of not necessarily bounded, linear operators. We call U(t, s) € B[X],
defined for all 0 < s <t < T, an evolution operator regarding A(t), if the following conditions
are held:

i) U(t,s)u is a continuous function from {(¢,s) : 0 < s <t < T} to X for every u € X.

i) U(t,r)U(r,s) =Ul(t,s) forall 0 <s<r <t<T.

iii) U(t,t) = Idx for 0 <t < T, where Idx € B[X] is the identity on X.

i)
i)
i)
)

iv) There exists a constant C' > 0 such that for s < ¢

AU(t,s) € B[X] and |JAR)U(t,s)|| < C(t—s)".
In particular U(t,s)(X) C D(A(t)) for all s <t <T.
v) U(t,s) is differentiable in ¢ for s < ¢ and it holds that

aU(t,s)+ At)U(t,s) = 0.
Remark 4.1.8. Condition 4) of definition 4.1.7 implies the existence of a constant C,, such that

sup ||U(t, s)ullx < Cy
0<s<t<T
for every fixed u € X. In other words the operator- family U(¢,s), 0 < s <t < T, is bounded
point-wise. With the uniform boundedness principle we therefore conclude the existence of a
constant C' > 0 such that

sup U2, s)lgx) < C-
0<s<t<T

Definition 4.1.9 (Mild solution). Let X be a Banach space, A(t) : D(A(t)) € X — X, t €
[0,T], a family of linear operators and U(t, s) the corresponding evolution operator. We call u
a mild solution of the problem (4.14), if it can be written as

t

u(t) = U(t,0)up +/U(t, s)g(s)ds, te€0,T]
0

where the integral is to be understood as a Bochner- integral in X.

Existence of the evolution operator

Most results of functional analysis, regarding the spectrum of operators or spectral theory in
general, demand a complex Hilbert space. In this section we will therefore use the space (C, ||-||,)
as target space for our functions u € L?(R?) and the space (C%, (-, )ca) whenever we have to
deal with vectors. For the linear operators we are interested in most properties like positivity,
symmetry, etc. will survive the transition into this extension.

In the literature evolution operators often have even more properties ascribed to them, e.g. differentiability
in s. We tried to restrict ourselves in this definition to the most necessary ones for us. See e.g. [1] for more
details.
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Ezample 4.1.10 (Uniform coercivity).

Let u € C% and A be a real, symmetric and coercive matrix, i.e. y7 Ay > e|y|2 for some € > 0
and arbitrary y € R?. We want to show u” Aw > e\u\Q. We therefore represent u by u = v +w
with v,w € R Then the desired result follows directly by calculating

ul Au = (v +iw)" Al + iw) = o7 Av + o7 Aiw + iw” Av + iw” Aiw

T T T T 2 2 2
=" Av — A A Aw > = .
vt Av — v’ Aw +iw” Av 4w’ Aw > €|v]” + €lw|” = €|y

=jwT Av

Hence A is coercive regarding (C%, (-, -)¢a).

To obtain an evolution operator for our specific problem, we would like to apply the following
result by Tosio Kato [1]:

Theorem 4.1.11 (Existence of an evolution operator). Let X be a Banach space, A(t) :
D(A(t)) C X — X, t €[0,T] be a family of linear operators. Furthermore, there exist positive
constants 0,C, Cy, C1,Ca, 8 such that for all t € [0,T],

i) A(t) is a densely defined and closed operator with its spectrum o(A(t)) contained in the
sector Sp = {w = |w|e’@I ) € C: |arg w| < § < Z}.

ii) For every A ¢ Sp and t € [0,T], the inequality

H[A(t) B )\IdX]_lH]B[X] = IA|

is satisfied.
i11) 0 ¢ o(A(t)) and

| At < Co

-1
) e
for all t € [0,T].

w) The domain D(A(t)) is independent from t for some o = = with m € N, and it holds
that

HA(t)O‘A(s)_O‘HB[X] <
as well as
| A A(s)™ = Tdx ][5 < Colt = s|”, 5,1 € [0, T].
Additionally, the constants a, 8 fulfil the relation 1 —a < 8 < 1.

Then there exists an evolution operator regarding { A(t)}ie(o,1)-

The prerequisites 7) and i) of theorem 4.1.11 will likely look very familiar for someone who
already has extensively dealt with semigroup theory, as they are often demanded from an op-
erator A to obtain a so called analytic semigroup with infinitesimal generator —A. In this
case, they are also adequate to define the powers of these operators e.g. A® with 0 < a < 1,
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as in condition iv). But we wont need a deeper understanding of them here. For more infor-
mation, as well as for the definition and some properties of closed linear operators, see [3] or A.5.

For arbitrary Banach spaces X, the requirements for theorem 4.1.11 can be quite difficult to
prove for a larger class of operators, especially in respect to point iv), as the fractional powers
of an operator are defined in a very abstract way. But much is known of the spectrum of oper-
ators in the case where X is a Hilbert space, which allows us to prove existence of an evolution
operator in a more practicable setting.

Theorem 4.1.12. Let H be a complex Hilbert space, { A(t) }ejo,7) be a family of closed, densely
defined, self-adjoint, linear operators with A : D(A(t)) € H — H and {a(t) };cjo,r) be a family
of sesquilinear-forms with

a(t)[u, v] = (A(t)u, v)
for allv € D(a(t)) and uw € D(A(t)) C D(a(t)). If it holds that:

a) For a fized e > 0 and 0 < 0 < 7§, the spectrum of A(t) is contained in the ’shifted’ sector
Spc = {w = |w|e"I W) € C: |arg (w —€)| < 0}, for all t € [0,T).

b) a(t) is a regular sesquilinear-form and its domain is independent of t, i.e. D(a(t)) = D

for all t € [0,T7].
¢) There exist constants C > 0 and % < B <1 such that
la(t)[u, u] — a(s)[u, u]] < Clt — || Re a(t)[u, u]]
for alluw € D and s,t € [0,T).

Then there exists an evolution operator regarding {A(t)}icpo,r) on H.
Proof. We will show that the prerequisites i) — iv) of theorem 4.1.11 are fulfilled:
i): As Sp. C Sp, this condition is already satisfied due to assumption a).

i1): It is known from functional analysis that a densely defined and closed self-adjoint operator
A:D(A) C H— H on a Hilbert space H, gives rise to a projection-valued measure (see
theorem A.5.15). Let A be an arbitrary operator with A € {A(t)},cor) and E be its
assigned projection-value measure.
We choose some fixed 61 with § < 61 < 5 and calculate for A € C with A ¢ Sp,:

1 1

2 2
_ -1,12 _ - -
=l = [ ]2 dEu,u(d@g( T A))> [ 148 u(a
o(A) a(A)

- (M) Jul,

for w € H, where dist(\,0(A)) is the shortest distance, regarding the euclidean norm in
C, between A and the set o(A).
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iii)

iv)

26

As X € C, it has the unique representation A\ = |\|e?®, where ¢ € (—m, 7]\ (=61,6;). One
can now show via a geometric argument that

dist(A, Sp) > |A|sin(|¢| — 6).
This leads to the following chain of inequalities if we choose 6 < 26:

dist(\, o(A)) > dist(A, Sp.e) > dist(A, Sp) > |¢i|1;f9 [Alsin(|¢| — ) > |\|sin(6y — 6).
V1

All in all we get

(M) lully < (W) Jull%

and therefore

1

_ -1 I sin(@ — 0)
(A= Ady) HIB(H) = |Alsin(6; — )

Defining C' := m, the operator A fulfils condition #i) of theorem 4.1.11 regarding
the sector Sp,. As A was an arbitrary operator from the family {A(?)};c(o,7), this holds

true for all of them.

From the definition of Sp. we can conclude that B.(0) N Sy = &, where B.(0) is the
ball containing all the elements of C, whose absolute value is smaller then e. Let for this
reason A € C be an element of B.(0). Then Re(\) < e and thus Re(A —€) < 0. This
implies |arg(A —€)| > 5 as

Re(A —€) = |\ — €| cos(arg(A —¢))

which is negativ if and only if arg(A —€) € (5, 7] or arg(X —¢€) € (=7, —5). Either way
larg(A —€)| > 5 and hence B¢(0) N Sy = @. In particular B(0) is part of the resolvent
set of A(t), as o(A(t)) € Sp,e.

For an arbitrary A € {A(t)}ejo,r) and u € H it is therefore justified to calculate

-t = [ 'iszu,uwx)s (1)2 [ 1) = (1)2Huué

o(A) a(A)

which implies HA_lHB(H) < %

This part of the proof demands some knowledge of definitions, terminology and results
we won’t need later on. The interested reader can find the mentioned definitions and
relations in [1],[3] and [4] or A.5.

Let u € H, A € {A(t) }sc0,r1, » € N and A > 0. Then we have

“n, |12 —on 1 1
AT+ A)™u||;, = /|)\+x| 2 By u(dr) < 15 / 1dEu,u(dx):W||u|y§,

o(A) o(A)
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which implies [[(A = (=A4)) " |lgay < 1. Hence, by the theorem of Hille-Yoshida (see
theorem A.5.16), —A is the infinitesimal generator of a contraction semigroup?® for any
A € {A(t)}ejo,r)- This is equivalent to —A being maximal dissipative, respectively A
being maximal accretive (see proposition A.5.17). Due to theorem A.5.11, A(t) is the
unique closed maximal accretive operator associated with the regular sesquilinearform
a(t). By theorem A.5.12, this implies the existence of constants C1, Cs such that

A A) ™ g < O
and
| A@)* A(s) ™ = Idp |5 < Colt - s|?, s,tel0,T)
forall 0 < a < % Hence for a = % condition ¢v) of theorem 4.1.11 is satisfied.

O]

Before we again turn towards our convection- diffusion equation (4.1) we are going to show

some more general results for symmetric operators?.

Lemma 4.1.13 (Spectrum). Let H be a Hilbert space and A : D(A) C H — H a linear, closed
and densely defined operator. If A is symmetric and positive then (—o0,0) C p(A), where p(A)
denotes the resolvent set of A.

Proof. We choose a fixed but arbitrary A < 0 and calculate

1A= Adgr) ull g = [ Aull?y — 2 (Auwhsg + APl > (0Pl
—

>0
for u € D(A), where we used the positivity of A to deduce the last inequality. From this we
can conclude that R;l := A — M dy is one to one and

1
[ Bull < WHUHH (4.15)

for u € ran R;\l.

We want to show that ran R;l equals the whole Hilbert space H. Then R) would be a well
defined, bounded linear operator from H to D(A). This would furthermore imply A € p(A).
We notice that as long as A is symmetric R;l is as well. One can assure oneself of this fact by
writing

(Ry'2,y) = (Az — Mdpa,y) = (Az,y) — (Mdgz,y) = (r, Ay) — Mz, Idy) = (x, Ry'y)

where x,y € D(A). Let now v be an arbitrary element of D(A) N [ran R;']*. As D(A) is dense
in H and for every u € D(A) the equation

0= (R;lu,v>H = <u,R;\11})H

3Contraction semigroups are semigroups which fulfil the condition ||S Ollpx) < 1.

*Notice that A(t) = div (o(z,t)Vu) is symmetric in respect to the L?- scalar product if o(x,t) is a symmetric
matrix.
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is fulfilled, it follows that Ry(v)~! = 0. But R;l is one to one, which implies v = 0 and
furthermore D(A) N [ran Ry '+ = {0}. Hence D(A) C ran R;'. We use the assumption that

D(A) is dense in H to conclude ran Ry' = H. One can therefore approximate any arbitrary
y € H with elements {y,}nen € ran R, such that li_)m Yn =y in H. Due to the convergence,
n—0o0

{Yn }nen is also a Cauchy-sequence in H. Consequently, by using (4.15), we get for any n,m € N

1
HRA(yn - ym)HH < Wnyn - ym”H

So R)y, is a Cauchy-sequence as well and has to converge to some z € H. If now R) were
closed, the proof would be completed, as y was arbitrary and then y € D(R)), Ryy = 2 would
hold. From functional analyses we know a linear densely defined operator, which is injective
and has dense range, is closed exactly when its inverse is as well (see A.5). But R;\1 is closed
as it is the sum of a closed operator and an element of B(H), which completes the proof. O

Lemma 4.1.14 (Self-adjoint operator). Let H be a Hilbert space and A : D(A) C H — H
a linear, closed and densely defined operator. If A is symmetric and 0 € p(A) then A is self-
adjoint.

Proof. v € H is an element of D(A*) if and only if there is a ¢ € H such that
(Au,v)g = (u,g)g, Yu € D(A).
In this case we write® A*v = g. Due to the symmetry of A
(Au, vy = (u, Av)yg, Vu,v € D(A)

we deduce Av = A*v for v € D(A) and D(A) C D(A*) in particular. We now want to show the
converse statement D(A*) C D(A), to get A* = A.
Let therefore v € D(A*) be chosen arbitrarily. Then, for all u € D(A), we can write

(Au,v)y g = (u, A*0) g = (u, AALA*0) g = (Au, A" A*v) (4.16)
because 0 € p(A) implies A~! € B(H). From ran A = H and (4.16) we conclude v = A~1A*v,
which completes the proof as we have shown v € D(A). O

We will now show that the operator-family A(t) := —div (o(z,¢)Vu) gives rise to an evolu-

tion operator corresponding to definition 4.1.12. We will therefore check if the conditions for
theorem 4.1.11 are satisfied and if not, adjust our problem accordingly. The first step will be
to demonstrate that A(t) is densely defined and closed. We defined A(t) on the Hilbert space
H?(RY), which is already dense in L?(R?), because both these spaces are the closure of the set
C>(R%) in their respective norms. To prove that A(t) is closed, by the definition of the closure
of an linear operator, we will have to show that the graph of A(t) is closed in respect to the
'graph-norm’ defined by u — ||ul| ;2 + ||A(t)ul| ;2 for uw € H?. For this endeavour it will be very
helpful to know the equivalence of the norms ||ul| 51 + || A(t)ul| 2 and ||u|| -

Lemma 4.1.15. Let the assumptions at the beginning of this chapter hold. Then there exists a
constant C > 0, such that

lull 2 < C (lull g + [A®)ull2), Vu € HA(R?), vt € [0,T]. (4.17)

This definition of the adjoint of an operator A is well defined as long as D(A) is dense in H.
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Proof. We will show (4.17) for smooth test- functions and then obtain the more general case

via a density argument.
Let therefore be u,¢ € C*(R%) and A = A(t), o(z,t) = o(z) for some fixed but arbitrary ¢.
Then u satisfies the equation

/Vuan)d:z: = /dlv (oVu) pdx = (Au, @) 12, (4.18)
Rd
for any choice of ¢. In particular for ¢ = 0,,04,u, where i € {1,...,d}. Let i now be fixed. Via

integration by parts, or in other words using the definition of a weak derivative, we get

—/VuaV@xiaxiudx = /V@xiuavaziudm—{—/Vu (02,0) VO, udz. (4.19)

Combining (4.18) and (4.19) and shifting some terms around results in

/VB UV, udac—/Au O, Ox udw—/Vu (0z,0) VO, udz.
R4 R4

From there we can use Youngs inequality for products and the uniform Coelrcivity6 of o to obtain

NVl < ol AulZa + 2100, Deul + ol B0l |Vl + IVl (420)

for any § > 0. If we choose ¢ < €/4 and subtract the terms with second order derivatives on
the right-hand side of (4.20), we end up with the following:

€ 2 2 2 2 2
SIVOsullzs < Z AT + 2000 o | VullZ.

The sum over all the (squared) L2-norms of the weak derivatives of second order of u can
therefore be bounded by

N 4d
SoIDulfe < Y 105 Vulf < 5 (14 1000l ey ) (14ullZe + [1Vullfz ) - (421)
= ie{l,...,d}

=:C(e,0)

Furthermore for the whole H?2- norm of u we obtain via (4.21) the upper bounds

lull3e = Nl + D10l < (14 Cle,0)) (Aulfe + uldn) . (422)
a=2

Carrying on we wind up with

e < 0+ €e0)) (1wl + ) < Conwe/TF Cles0) (Al + )

where we took the square root on both sides of (4.22) and used the equivalence of norms on R?
(notice the new constant Cpax).

Hence we have proven (4.17) for u € C°(R?). But these functions are dense in H2(R?) and the
right- and left-hand side of (4.17) consist of H?- continuous functionals. Therefore the desired
statement follows by a simple approximation argument. O

6See exercise 4.1.10.

29


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Lemma 4.1.16. Let the assumptions at the beginning of this chapter hold. Then A(t) is closed
for allt € [0,T7].

Proof. Let {u,}nen € H*(R?) be a sequence which is converging in the graph norm, i.e. there
exist u,v € L?(R?%) such that u, — u and A(t)u, — v with respect to the L?- norm. In or-
der to prove the closure property of A(t) we need to show u € D(A(t)) = H?(R%) and A(t)u = v.

We notice that the H'- norm of w,, is uniformly bounded due to

| Vun|3s = /GVu'Vudx < /Vua(x,t)Vudx/un-A(t)und:r
R4 R4 Rd

= (Un, A(t)un)2 < ||UnHL2HA(t)UnHL2

and the convergence of (u,, A(t)u,). This implies the existence of a constant C' > 0 so as to
|unl g2 < C for all n € N, on account of lemma 4.1.15. As H?(R?) is separable and reflexive,
the (bounded) sequence u,, has a subsequence u,, which is weakly converging in H? to some
u € H?(RY). But the weak convergence in H? implies the weak convergence in L? and due to
the uniqueness of the limit, © = @ almost everywhere. We have therefore shown v € H? (Rd).
To identify A(t)u and v, we use the fundamental lemma of calculus of variations. Let therefore
¢ be an arbitrary element of D(R?). Then the following equality holds:

(A(t)u, @) 2 = /Vua(m,t)Vqux = kli_}m /Vunka(x,t)ngdx = kli_)m (A(t)un,, )2 = (v, @) 2
R4 R4

(4.23)

where we used the the weak convergence of u,, on the left-hand side and the strong convergence
of A(t)up, on the right-hand side of 4.23. As ¢ was arbitrary, A(t)u = v almost everywhere. [

It is an easy exercise to show that A(t) is symmetric, i.e.
(At)u,v)p2 = (u, A(t)v) 2, u,v € H*(R?)
and positive, i.e.
(A(t)u,u) 2 >0, we H*(R?).

The later follows directly from the uniform coercivity of A(t). We can therefore apply lemma
4.1.13 to obtain (—o00,0) C p(A(t)), t € [0,T]. Note that 0 may not be included in the resolvent
set but it is an crucial condition for theorem 4.1.11 and lemma 4.16. We therefore use an
arbitrary but fixed real constant ¢ > 0 to define a new operator

B(t)u := —div (o(z,t)Vu) + cu = A(t) — (—c)u = R”} (4.24)

for all t € [0, 7.

B(t) still keeps all the important attributes, namely coercivity and symmetry, and it is still
closed and densely defined on L?(R%, C). Furthermore, the interval (—oo, ) is now contained in
the resolvent set of B(t). In particular 0 € p(B(t)), which by lemma 4.16 implies that B(¢) is
self- adjoint. Its spectrum is therefore contained in R. This is a well known fact from functional
calculus, which is valid for all self- adjoint operators which are closed and densely defined on a
complex Hilbert space (see [24, Theorem 9.17]).

Another important attribute of B(t) is the equivalence of the norm ||ul| ;- and ||B(t)ul/;2 on
H?*(R%,C):
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Lemma 4.1.17. There exists a constant C' > 0, independent of t, such that
lull gz < ClIB()ullyz,  Yu € HA(RY,C).
Proof. From lemma 4.17 we already know for u € H?(R%),
[ull gz < C (lull o + |A@)ull2) -
or in terms of B(t),
[ull gz < C ([[ull g + 1B(H)u = cullp2) < C([lull g1 + [ BE)ull 2 + cllull2) - (4.25)

The sesquilinerform (o (t)Vu, V)2 + c{u,v) 2 is coercive regarding H', with constant x =
min{e, c}. Hence due to the theorem of Lax-Milgram

1
lull g < Bl (4.26)

Combining now (4.25) and (4.26) leads to

1+c¢

fulls < € (RIBOula + 1Bl + X IB@ul ) =€ (S 41) 15Ol

Summing up we have established:
Corollary 4.1.18.
i) B(t) is positive, closed, densely defined and self- adjoint.
i) o(B(t)) C Sp. for any 0 <6 < T.
iii) || B(t)|| 2 is equivalent to the norm ||| y.
We notice that B(t) already fulfils condition a) of theorem 4.1.12. It turns out we can go all
the way:

Theorem 4.1.19. Let the assumptions made at the beginning of this chapter hold and let B(t)
be defined as in (4.24). If additionally the condition

[y o(z, )y — yTo(z,s)y| < Clt — s’ |y"o(z, s)y

, Vs, te€[0,T],Vx,y € R™ (4.27)
is satisfied for some C' > 0 and % < B <1, then B(t) gives rise to an evolution operator.

Proof. We want to apply theorem (4.1.12). We therefore verify its conditions a-c regarding the
Hilbert space H = L?(R%, C):

a): We already know that the family {B(t)}c[o 7 fulfils point a, as shown in corollary 4.1.18.
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b):

32

Let b(t)[u, v] := (o(t)Vu, Vo) p2+c(u, v) 2 for u,v € HY(R?, C). Additionally let {uy }nen €
H'(RY,C) be a sequence with u, — 2 u for some u € L? and b(t)[un — U, Up — Um] —r 0
for m,n — oo.
Due to the uniform coercivity of o(z,t), and because of
Re b(t)[u,u] = (o(t)Vu, Vu) 12 + clu,u) 2 > €(Vu, Vu) 2 4 cllul|32 > min{e, ¢} ||ul|5
——
ER+
the convergence of Re b(t)[un, — U, un — up] against 0 implies u, — g1 u for n — oo, and

in particular u € H'. As b(t)[,] is continuous with respect to the H'- norm,

lim b(t)[un, un] = b(t)[u, u]

n—o0

follows immediately. Hence Re b(t) is a closed sesquilinearform and since
b(t)[u,v] = (B(t)u,v)2  Yu € H*(RY,C), ve H' (R, C),
condition b) is satisfied by choosing a(t) = b(t).

: For symmetric matrices A € R%? one can prove

2T AZ = (Re )T A(Re ) + (Im z)” A (Im z)

quite similar to exercise 4.1.10. Hence for z,y € C" and s,t € [0,T] the symmetry of o
leads to the following chain of inequalities:

lyTo(e,t)y —y oz, s)y| =

(Re )" o(2,t) (Re y) + (Im y)" o(2,t) (Im y) — Re )" o(x,5) Re y) — (Im y)" o(z,s) (Im y)

< |(Re 9)" (1) (Re y) — (Re )" (. 5) (Re )

| )" o2, 1) (1m ) ~ (I )7 (2, 5) (Im )|

< Clt—s” | |Re y)" o(w,5) (Re y)| + |(Im y)" o(x, s) (Tm y)

.

+ +
eR} er}

=Clt— 5|5‘yTU(x, s)y‘
Notice that in the last step we used the positivity of . We have shown
‘yTJ(az, ty —ylo(x, s)y| < Clt — s|PyTo(z, s)y. (4.28)
For v € H'(R?,C) it holds that,

/Vua(x,t)Vudx—/Vua(x,s)Vuda; < /\Vuo(x,t)Vu—Vua(x,s)Vu|d:1:.
d R4 R4

Therefore setting y = u and integrating over (4.28) results in
10(8) (11, u] = b(s) [, u]| < Clt = s7b(s)[u, u] = C|t — 5| [Re b(s)[u, u]].
This completes the proof.
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Remark 4.1.20. As o is uniform coercive, we have
g2 C 8|, T
Clt = s”lyl” < —It = s”[y" o(s)y]

for all y € R? and s,t € [0,7]. The condition 4.27 can therefore be weakened to

[y o(t)y —yTo(s)y| < Clt —s|°ly®, Vs, t€[0,T],Vy € R

Because B(t) is more manageable we rewrite problem (4.13) in terms of B(t):
du/dt + B(t)yu = g(u,t), t€][0,T], u(0)=upc L? (4.29)

where g(u,t) = div (f(z,t)u) + cu. Every u € L?(0,T; H') that satisfies (4.29) also clearly
satisfies (4.13).

Remark 4.1.21 (Real-valued evolution operator). Let V(t,s) € B(L?(R%,C)) for 0 < s < t be
the operator defined by

V(t,s) =Re U(t,s),
where U(s,t) is the evolution operator regarding B(t).
For V (s, t) the points i),4v), v) of definition (4.1.7) hold. This is because a function u : R — C
is weakly differentiable if and only if the real and imaginary part of u is as well. The linearity
of our differential operators, and the fact that o(x,t) € R¥9, leads therefore to

Re B(t)u = B(t)Re u, u € H*(RY,C).

With this identity, point v) follows immediately and point v) of definition (4.1.7) is a direct
conclusion from

Clt = s Jullfagacy = I BOU(t s)ulfamacy = IB(t) (Re U(t, s)u + ilm U(t, s)u)| 72 c)
= |Re B()U(t, s)u + ilm B()U(t, s)ul| 72 (ga o)
= [Re BOU(t s)ulaggacy + Im BOU(t, s)ul2zgac
— IB()Re U(t,s)ull3aggec) + | BOIm U(t, s)ulZagac).
Furthermore on the space L?(R% R), V(t,t) = Idy: is obviously true and point ) holds due to

the equivalence of converging in C and the simultaneously convergence of the real and imaginary
part in R.
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4.1.3. Existence for the linear advection-diffusion problem

Let 0 < § < T and us(t) solve the fix- point equation

us(t) = V(t,0)up + /V(t,s)ﬁ(u(s),s)ds, teo,T] (4.30)
1

where g is as in (4.29) and V(¢,s) = Re U(t, s) is the real part of the evolution operator’ of
B(t), as shown in(4.24).

We will show that such a us exists and solves PDE (4.1) in a weak sense on the interval [d, T
with the initial condition us(d) = V'(6,0)uo.

Theorem 4.1.22. Let the assumptions of theorem 4.1.19 hold. Then there exists 0 < T* < T
such that for every § < T* and every ug € L?(R%) there is an us € X = L>(6,T*; H(R?),
which has the representation (4.30) fort € [§,T%] .

Proof. Let 0 < § < T™ for some arbitrary 7% < T and let us define the operator F': X — F(X)
by

t
Flz](t) ==V (t,0)up + /V(t, $)g(z(s), s)ds.
é

We would like to apply Banachs fix- point theorem. For this purpose we need to show F(X) C X
and that F' is in fact a contraction for the right choice of 7.

F(X)C X

Let z € X. First of all remember g(z(s),s) = div (f(s)z(s)) + cx(s). We can therefore find a
constant K > 0 satisfying

19(x(s), )l 2 < ldiv f(s)l| oo ()l L2 + 11 F ()l o IV2(S) ] L2 + cllz(s)l 2 < Kl oo (57,21

for all s € [5, T*]. Because of f € L>(0,T; W*) we can choose K independently of §.
We now have for ¢ € [0, T,

IE 2] @) g < [V (£, 0)uoll g1 +/|!V(t, 8)g(2(s), 8)|| g1 ds.

Using the Gagliardo- Nirenberg inequality, see A.2.9, with § = 1/2,j = r = p = ¢ = 2 and
k=1 we get

IE[2)(#)ll g2 < e[V (2, 0)uoll%e [V (2, 0)uoll 2" +C/IIV (t,$)g(x(5), 8) 372 |V (£, 8)3((s), 5)l| 2 ds.

Together with the uniform boundedness of V (¢, s) (see remark 4.1.8), the estimates for B(¢)V (¢, s)
(see remark 4.1.21) and the norm equivalence of ||| ;2 and ||B(t)-|| ;2 we have

] ()] e

"For some properties of V (¢, s) see remark 4.1.21.
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< | B(#)V (¢, 0)uol| 72|V (1, 0)uol| 12 +C/||B g(a(s), s)lI72 IV (t, )g((s). 5)l| 2 ds

t
1 0 1-0 1 ~ 9 |1~ 1-0
SCW“ZLOHL2HUOHL2 +C/|t_8|9||g(x(s)’8)”L2Hg($(3)a3)||L2 ds
5

<C 9HU0HL2 +/‘ 9(95(3)73)”Loo(5,T*;L2)

—(t o)1

1 _
< C1 (gluollpe + (T =)' ) 12l poo (5.0, 101 -
)
The right side of the last inequality does not depend on ¢ anymore, hence F[z] € X.

F' is a contraction:

Let x,y € X, then we have

IF[](t) — Fl)(®) i < / IV (t, )5 (s) — y(s), )] s

(4.31)

where we now used the linearity of g(x, s) regarding x. If we repeat the steps we took to arrive

at the above estimate (4.31), we get

[1E[2](t) = Flyl )]l i < C/HV(t» $)g(w(s), ) pallV (¢, 9)G(w(s) = y(s), s)| 12" ds
é

< C/HB(t)V(t, $)g(x(s) = y(s), 5|22V (¢, $)g((s) = y(s), 8) | 12" ds
0

<C [ =513l - y(s). o) 5 s) - uls). ) 13" ds
0
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*\1—0
< C(T)'" Nz = yll oo s,
——
=L(T*)
If we now choose T* such that L(T*) = C(T*)'"% < 1 and 0 < T* < T, F|z] is a contraction

on the space L>(5,T*; H') as long as § < T*. Hence we can apply Banachs fix- point theorem
to obtain the required result. ]

We can now show

Theorem 4.1.23. Let us € L>(6, T; H'(R?)) be as in (4.30) and let the assumptions of theorem
4.1.19 hold. Then us is a weak solution of (4.1) on the interval [§, T —v] with the initial condition
us(0) =V (6,0)uq, for every 0 <v < T.

Proof. Let uw = us, ¢ € L*(5,T —v; H') and 0 < h < v < T. Then we have

T—v T—v

o= [ = [ G VR 0) = V(0 0) )
4 4

T—v t+h

( / V(t+ h,s)g(u(s), s)ds, ¢)r2dt

t

SR

+/K/iw@+mgvmgmw@JM&@ym+
4 1

S—

= It Ih 1.

i)I0:
Notice that V(¢,0)ug is differentiable in ¢ (see remark (4.1.21)). Hence we get

~

v

T—
(V(t+ h,0) = V(£0)) o, ) podt — /<
)

-V

{

==
==

t+
/ (1,0)updr, ¢) [2dt
t

S—

v

{

S =

T/
é

The inner integral is a Bochner- integral in H'(R?) (see i.e. the proof of theorem 4.1.22). In
particular this Bochner integral is also well defined in L?(R?%) and we can therefore exchange

the Bochner integral and the inner product of the L?- space. Via integrations by parts this
leads to

t+
/ T)V (7, 0)uodr, ) r2dt.
t

v  t+h

T—
/ % / T)V(1,0)ug, ¢) r2drdt
1

t
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T—v t+h v t+h

. / % / (—o(2, 7)YV (7, O)uo,v¢>L2drdt—T/ / (V (7, 0)uo, &) p2drdt
é 1

t t

N

t+h T—v t+h
/ —o(x, 7)VV(7,0)updr, Vo) r2dt — / ( / cV (r,0)updr, @) r2dt. (4.32)
t 5 t

bt 4

{

=
==

I
S—

Remember that V(¢,s) is uniform bounded regarding the operator norm (see remark 4.1.8).
Therefore the last step is rigorous as one can show Bochner- integrability of the term

o(x, 7)VV(7,0)ug

regarding the space L?(R%). This can be accomplished by using the Galiardo- Nirenberg in-
equality, choosing i.e. § = 1/2, and writing

1 t+h 1 t+h
5 [l DTV 0l adr < ol oy [ 1V 0ol

t+h t+h
/ IV (7, 0o |V (7, 0o | 58 dr < C(o) / | BV (. 0)uol|% [V (. O)uuol| 5

t+h
1 1 1 1
<o)y [ Zalulledr < @) gllunle < O@) gllunle < oc. (433)
t

The Bochner- space version of the fundamental theorem of calculus tells us that the term

1 t+h

7 —o(z, 7)VV(T,0)uodr

t

converges in L?(R?) for h — 0 against —o(z,t)VV (t,0)ug for almost every .

With similar (simpler) arguments we also infer the Bochner integrability of the term ¢V (7, 0)ug
t+h

and the convergence of % | eV (1,0)updr against ¢V (¢, 0)ug almost everywhere. Because of the

t
uniform bound 4.31 we can now use the dominated convergence theorem and (4.32) to obtain

—v v

T T—
1
}llir% / <E (V(t+h,0) —V(t,0)) ug, @) r2dt = / (—o(x,t)VV(t,0)ug, Vo) r2dt
—

é 0

v

T—
- / (cV(t,0)ug, @) 2dt.
0
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i) 0

We continue in a similar fashion with the term Ig:

v
AN

oq\
o.\ﬁ
S| =

(V(t + h? 5) - V(tv S)) E(u(s)’ S)dS, ¢>L2dt

§
R

V(r,s)g(u(s), s)drds, ¢)r2dt

—
S| =
\1 “r\+

&
\]

>

|
<

L o

—B(1)V (T, 8)g(u(s), s)drds, ¢) r2dt

S

>

|
<

—_— T — -

Il
\’ﬂ oz\'ﬂ ol\

(=B(T)V (7, 8)g(u(s),s), p)r2drdsdt

N o
N
> =
“\;E W\jrF -+

(—o(z, 7)VV(1,8)g(u(s),s), Vo) 2drdsdt

S| =

Il
S—
m\’lﬂ o

AN

m\“
SRS

t+h

/(cV 7,8)g(u(s), s), ¢) r2drdsdt.
t

As before we will concentrate on the first term on right hand side of the last equation, as the
computations for it are more complex, because of the loss of regularity due to the differential
operator. Similar results hold also for the second term and can be proven in a similar fashion.

We need to show that the portion of the inner integrand on the left of the scalar product
o(x, T)VV(1,38)g(u(s), s) (4.34)

is L?- Bochner integrable in s and 7. Then we can again exchange the inner product with the
Bochner integral. We therefore proceed by

t+h t+h
1 - 1 ~
= / lo (@, PIVV (7, 8)5(u(s), )| 2 < 0]l oorym0) 5 / IV (7, )G (u(s), 8) gadr
t

0)% / 1V (7, 8)G(u(s), s)|| % |V (7, )G (u(s), ) || 2 dr
t+h

o)y [ IBOV(95(u(s), 95V sgtuls). 91 dr
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t+h
<Clo)y [ g A(s). 9 gadr < OO =g 80 s (439)

t

We now know that (4.34) is Bochner integrable in respect to 7. Hence with the estimate (4.35)
we can also show Bochner integrability regarding s:

/t / oz, T)VV (7, s)g(u(s), s)dr | /+ o(z, 7)VV (7, 5)j(u(s), s)|| 2drds
J t 2 5t

< (o) [ G tslau(s). sz < Clongute =)'~
6

< (o, g,u)T. (4.36)

Exchanging the inner product with the inner integrals leads to
t
6
v t
-/
é

With regard to the uniform estimates (4.35) we can use the dominated convergence theorem to
infer

t+h
/( o(x, 7)VV(1,s)g(u(s),s), Vo) r2drdsdt

bt 4

/

SRS

~

/ o(z, T)VV (1, 8)g(u(s), s)drds, V) 2dt.

;“\'—‘

m\

t t+h

lim 1 / —o(x, 7)VV (7, s)g(u(s),s)drds
6 t

t

/ —o(z,t)VV(t,s)g(u(s), s)ds
é
where the convergence is to be understood in the L?- sense. Remember here that
t+h
3 [ —o(x,7)VV(7,5)g(u(s), s)dr converges to —a(z,t)VV (¢, s)g(u(s), s) in L?(R?) for almost
t

all t and that therefore the estimate (4.35) holds for the limit as well. Similar with the uniform
estimate (4.36) and the dominated convergence theorem we get

v

lim T/ ( ] % t/ o (2, 7YV (7, 8)G(uls), s)drds, Vo) 2 dt
4 ) t
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T—v

¢
/(/ —o(x, t)VV (t,8)g(u(s), s)ds, V) radt
5

and if we repeat the steps above for the remaining terms we finally get

}fi% / % (t+ h,8) = V(t, ) Guls), s)ds, &) ot
0

T—v t T—v t
/ </ —o(z, t)VV (t,s)g(u(s),s)ds, V) 2dt — / (| cV(t,s)g(u(s),s)ds,d)rdt

0 § 6

T—uv t T—v t
= /(—J(m,t)V/V(t,s)ﬁ(u(s),s)ds,V¢>L2dt— /(C/V(t, s)g(u(s), s)ds, ¢) r2dt.

é é é é

The exchange of the integral and the V- operator in the last step is justified because the
respective Bochner- integral converges in H'(R?). Because o(x,t) € L>®(R%) does not depend
on s, the matrix o(x,t) can be taken out of the integral as well.

iii) 12
Let G(d,h) with 0 < h < d < v be defined by

t+h

Gld, )[f] = % / V(t+d, $)g(u(s), s)ds.

t
Then I = G(h,h) and for fixed d it holds that
G(d,h) =2 V(t+d,t)g(u(t),t)
almost everywhere if h — 0. Furthermore, if d — 0,
V(t+d,t)g(u(t), ) =2 g(u(t), 1)

due to the continuity of V (¢, s).

Our intention is to compare I with G(d,h) and then passing to the limit h — h and d — 0
to obtain the desired result. We therefore start with arbitrary h,d satisfying 0 < h < d by
computing

T—v T—v t+h
/ (G(d,h) — G(h, h), &) odt = / <% / (V(E+d,h) = V(E+h, ) Guls), ), &) padsdt
) ) t

=[G [ [ 5vesa). s os
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T—v t+ht+d

_ / = / / —B(r)V(r,5)§(u(s), $)dr, §) 2dsdt

6 t t+h

T—v t+hti+d

_ / 1 / / (—B(r)V (1, $)§(u(s), s), ) p2drdsdt
1)

t t+h

T—v t+ht+d

— / ;’L/ /<—a(x,7-)VV(7-,s)ﬁ(u(s),s),V¢>de7dsdt. (4.37)
1)

t t+h

Taking the the absolute value of (4.37), using the triangle inequality and the inequality of
Cauchy- Schwarz, we get

T—v T—v t+ht+d
/(G(d, B) = G(h, ), 8) podt| < / / /| o (2, TV (7, )G (u(s), s), Vo) 1| drdsdt
) t t+h

T—v t+ht+d

<lolmorzn [ 5 [ [I9VE986). e Vol pdrdsit. (138)

é t t+h

For the term ||VV(7,s)g(u(s),s)| ;2 we find an estimate in the same way as in the case of I;
and I with the help of the Gagliardo Nirenberg inequality (3 < 6 < 1):

IVV (7, 8)g(u(s), s)ll 2 < IV (7, )3(u(s), )l g2 < CIV (7, 8)g(u(s), 5)l|pal|V (7, )G (u(s), )| 2

< CIB(7)V (7, 5)g(uls), )72V (. )3 (uls), s) 2

< glaus), $)l2: |V (7, $)g(uls), s)| 2

<
~(1—9)
<K105(u(s) 5) 13

cC . c
< m”g(u(s),s)“m < m”g(u(s)aS)HLOO((S,T;L2)’ (4.39)
Combining (4.39) and (4.38) leads to
T—y T— ul t+ht+d
/(G(d h) — G(h,h),$)2dt| < C(o,g,u / h/ / desHWHdet
5 5 t tth
T— 1/1 t+ 1
C(o,g,u / h/ (t+d—s) -0 _ 0(t+h—s) 1201 ds| V|2 dt
5 t ~~
>0
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T—v t+h

/t+d )10 ds||V | 2 dt
t

%,—/
d19

< C(0,g9,u,0)

o;\
=

T—v

<d*~%C(o,g,u,0) / V| 2dt < d'~?C(o, g,u, ‘9)||V¢||L2(6,T—V;L2)\/m' (4.40)

Notice that in the last step we used Cauchy- Schwarz’s inequality again.
The next step is to show that G(d,h) and V(¢ + d,t)g(u(t),t) converge in L?(5,T — v; L?). Tt
is an easy exercise to show that the L?-norm of G(d, h) is uniformly bounded by

Cllg(u(®), )l Loo(s:L2) (4.41)

for some constant C. In particular, this constant does not depend on ¢, hence this bound can
be used as majorant for the dominated convergence theorem to show

G(d’ h) 7 L2(5,T—v;L2) V(t +d, t)/g\(u(t)v t)
for h — 0 and
V(t +d, t)/g\(u(t)v t) T L2(8,T—v;L2) V(t7 t)/g\(u(t)7 t) = g(u(t)a t)

for d — 0.
Choosing a fixed but arbitrary ¢ > 0, we can therefore find two positive constants h. d. such
that the following inequalities hold for all 0 < h < h:

a) d=0C(o,g,u, OVl L2572y VT — v =6 < § (see (4.40)).

b) ‘ <V(t + d67 t)/g\(u(t)v t) - g('LL(t), t)a ¢>L2(5,T—V,L2) ‘ <

C) ‘<G(d€7 h‘) - V(t + de, t)g(u(t)a t)a ¢>L2(5,T—V,L2)‘ < §

w\m

Now we can use the triangle inequality and (4.40) to compute

(2 = Gu(),0),8) 25:0-012)| = [(G R, R) = Gllt), 1), &) p25 71, 12)

< ‘<G(h’7 h) - G(d€7 h)? ¢>L2((S7T—V,L2)‘ + |<G(d67 h) - V(t + d67 t)/g\(u(t)a t)7 ¢>L2(5,T—V,L2)‘

+[(V(t + de, t)g(u(t), t) — Gu(t), t), §) r2(s7—1,12)| < €.

Because € was arbitrary we have shown

(I8, O 12(6.—wr2) = (Gu(t), 1), ) p2(57—012)

if h — 0, for any ¢ € L?(6,T — v; HY).
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iv) I}
Due to the computations above now we can write

T—v
t+h)—u(t
= /<“( i })L U0 gy padt = 10+ 1b 4 I
0

T—v t+h T—v t+h

_ / = / o, )V (7, 0)uodr, V) padt — / <% / V(7. 0)ugdr, &) 12dt
4 ) t

~+

t+
/ (—o(z, 7)VV (7, 8)g(u(s),s), Vo) 2drdsdt (4.42)

t

Using Cauchy- Schwarz’s inequality and the estimates (4.41), (4.36) and (4.33) we find an
u(t+h)—u(t) ‘ b
y

estimate for 7
L2(8,T—v);H-!

/V<u(t T R) —ull)

h 5 ¢>L2dt

0

1
<SVT—v =5 (0<a>59||uo|rL2||v¢||L2<57T_V;L2> - c<c>r|uo||Lz||¢||L2(5,T_V);L2)

+VT —v—34¢ (0(07 9, U)TlieHvﬁme(é,T—u;L?) + C(o)llg(u(s), S)||Loo(5,T;L2) H¢||L2(57T_,,;L2)>
VT == 303((s). ) e o 16l 25
< C(C7 g,9,u, T: v, 07 5) H(pHLQ(J,T*IJ;Hl)' (443)

Because (4.43) does not depend on h, i.e. the estimate is uniform, we can find a subsequence
hi and an element v of L?(8,T — v; H~') such that
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in L2(5,T — v; H~1). But D? *(u) converges, in the sense of distributions, to dyu which implies
v = Oyu. In particular dyu € L?(6,T — v; H~') holds true.

Putting all the pieces together and passing to the limit in (4.42) with h = hy, we get

T—v T—v T—v
/(&u, ) —1dt = /(—a(w,t)VV(t, 0)ug, V) 2dt — /(cV(t,O)u0,¢>L2dt
6 0 é

T—v

+ 5/< o vjv ,8)ds, V) 2dt — j/@é/tv ,s)ds, ¢) dt

v

T—v

+ [ @), 02
0

T—v T—v T—v
/ (o(x,t)Vu, Vo) 2dt — / (cu, @) r2dt + / (div (f(x, t)u) + cu, @) r2dt
é 1) é

T—v —v

T
S / (o(2,t)Vu, V) p2dt + / (div (f(z, t)u) , ) L2 dt.
é

This is exactly the weak formulation of problem (4.1) on the Interval [§,T — v]. As ¢ was
arbitrary, u is therefore a weak solution. O

For small enough v > 0, theorem 4.1.23 now states the existence of a weak solution on the
interval [0, 7" — v] where T is determined by theorem 4.1.22. With our a- priori estimates (see
theorem 4.1.4), we conclude the existence of a constant C' > 0 such that

€
lus ()17 + §Hvu5”%2(6,t,L2) < V8, 0)ug|z2 (exp (Ct) + 1) (4.44)

for all t € [§,7%] and § < T*. From estimate (4.44) we get in particular an upper- bound for
[usll 257+ ;1) as long as § is bounded. To obtain a function on the whole interval [0, 77], we
redefine ug by writing

~f usaa(t) >0
U§ new = { V((S,O)UO < 5 (445)

We like to remind the reader here that V' (4, 0)ug is continuous in ¢ and hence has a maximum on
[0, T], regarding the L2- norm, which is finite. In regards to (4.44), Us new 18 therefore uniform
bounded in L%(0,T*; H') as

lus ()72 + 5 HVU6HL2(OtL2 < [[V(8,0)u0]| 7 (exp (CT*) + 1) < Cug) (exp (CT*) +1).
(4.46)

Due to the above (uniform) estimate we can find a sequence d,, for which wu;, converges weakly
to some u in L?(0,7*; H'). This function u will be our candidate for a weak solution on [0, T*].
Per definition a weak solution has a, in a sense regular, weak time derivative. To show that is
also the case for u, we need some more estimates for dyug:
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Theorem 4.1.24. Let us be defined as (4.45),where us o4 is a weak solution on the interval
[6,T%) of (4.1). Then us € WH2(0,T*; H*(R?), L?(RY)). Furthermore, there exists a constant
C > 0 such that

10kusl 20,15, -1y < € (4.47)
for all small enough &, whereby T™* is as determined by theorem 4.1.22.

Proof. Let u=us, T* =T,0 < h <v <T —§ and D}u be the discrete time derivative defined
as

Dl = u(t + h})b - u(t)
Then we get the equality
T—v 6—h ) T—v
/(D U, @) r2dt = /(D u, @) r2dt + /(D u, @) r2dt + /(D u, @) r2dt (4.48)
0 0 5—h s

= I + I} + I,

for any ¢ € L?(0,T*; H'). Per definition (see (4.45)), u is constant on the interval [0,6]. I =0
follows therefore immediately. Regarding the term 15” , we can rewrite it as

I =

1)

(DMu, ¢ 2dt = (u(t + h) —u(t), @) p2dL.

I:\On
=
‘m\m

)

Because of the embedding W2(5, T — v; H', L?) — C(6,T — v, L?) the integrand of the last
integral is a continuous function in ¢. The fundamental theorem of calculus hence states that

u(t+h) —u(t), d)r2dt — (u(t) —u(t), @)z =0

S| =
m\m

o—

for h — 0, or in other words }llirr%) Ié‘ = 0. From the proof of theorem 4.1.23 we already know
_>

that there exists a sequence hy such that Df Fu converges weakly in L2(5, T —v; H™1) to yuga,
as hy — 0. Hence we get

T—v T—
lim <D u, ¢ det / <8tuold, Hfldt.
6

v

hk—>0
0
Meaning, the sequence Df Fu converges weakly to® X[5,7)OrUold because ¢ was arbitrary. But

Df "u converges also to Jyu in the sense of distributions, therefore dyu = X(51)9¢uos and in
particular dyu € L2(0,T — v; H™1) for every v > 0.

8Here we use the convention 'undefined’x 0 = 0.
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In order to obtain the estimate 4.47, and in the further course passing to the limit v — 0,
we remember the fact that u is a weak solution on [0, T — v]:

~
S

-V

(o(x,t)Vu, Vo) r2dt +

-V

(div (f(z, t)u) , ) 2dt. (4.49)

v

T—
[ o= -
)

S—
S—

Because the functions V£, f and o are elements of L>((0,T) x R?) and u € L2(0,T —v; H'),
we can find, via Cauchy- Schwarz’s inequality, a constant C(f, o) such that

T—v

/<atua¢>H1dt < C(f,o)llull p20.20—v, 1) 101l L2 07—, 111
5

This leads directly to the upper bound
HatZLHL%O,T—u,H*l) < C(f, U)HUHL2(0,T—V,H1) (4.50)

where C(f, o) is independent of v. In view of (4.46) u is even an element of L?(0,T, H'), which
in turn implies dyu € L?(0, T, H~!). Combining (4.50) (with v — 0) with estimate (4.46) now
completes the proof. O

Remark 4.1.25. As ug is an element of W12(0, T*; H', L?), we can also pass to the limit v — 0
in equation (4.49), obtaining:

T* T* T*
/<8tU5,¢>H_1dt = —/<O‘(I,t)VU§,V¢>L2dt+ /(div (f(x,t)us) , ) 2dt, (4.51)
§ 6 é

for all ¢ € L2(0,T; H').

Due to (4.47) and (4.46), the family {us}o<s<r+ is uniformly bounded in the space
Wh2(0,7*; H', L?). Hence we can find a sequence, say {u, }neny With u, = us, € {uslocs<r*,
so that u, converges weakly towards u in L2(0,T; H') and Osu,, converges weakly to dyu in
L?(0,T; H~1). Additionally, we can assume? 6, — 0, for n — co.

Taking (4.51) into account, we get

T* T*

Ig’ = <8tun, ¢>H—1dt = <8tun, ¢>H—1 dt
[
T T
= —/(a(m,t)Vun,V¢>L2dt + /(div(f(x,t)un) , @) 2dt
on on
T T
= —/(a(m,t)Vun,V¢>det + /(div(f(x,t)un) , @) 2dt
0 0

9Take e.g. a weakly convergent subsequence of w1 .
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on
+ (,t)Vun, Vo) r2dt — / (div (f(z,t)un) , @) r2dt
0

O\:&

= I I3+ I3 + I3

Because u, are uniformly bounded in L%(0,7; H') and &, — 0, the terms I3 and I} converge
towards 0 as n rises to infinity. In the case of the remaining three terms the weak convergence
is enough to pass to the limit. We therefore have

T+ T* T+
/ Oy, &) g dt = — / (0(2, 1)V, V) odlt + / (div (f(z,0u), &) padt,  (4.52)
0 0 0

for any ¢ € L?(0,T; H'). Due to the continuous embedding W2(0, T*; H', L?) — C([0, T*], L?)
we also have u € C([0, T*], L?).

The last thing we need to show in order to prove that u is a weak solution is the fulfilment of
the initial condition ug = ug. For this purpose we make use of the identity

b b

/ (Orv, ) 1t = (v(b), $(b)) 12 — (v(a), B(a)) 2 — / (v, 0h) 2 dt (4.53)

a a

which holds for every pair v, ¢, where v € Wh2(a,b; H', L?) and ¢ € D([a, b] x R?). Let therefore
be ¢ € D([0,T*) x RY). Then we get

T* T* T*
[ (06t = —~(u0), 02 — [ 0,000}t = Jim | ~{un(0): 60N} 1 — [ {un,Br0) o
0 0 0
-
= nh—{go <atuna ¢>H—1dt‘
0

Due to u,(0) = V(dp,0)ug — 12 up and

T* T*
tin [ (s, 016) 2t = / (u, 0,6) p2dt
0 0

this leaves us with

(u(0), $(0)) 2 = (uo, #(0)) 2.

Because the last equality holds for all D([0, %) x R%, it holds in particular for test- functions
of the form ¢(z,t) = ((z) - n(t), where ¢ € D(RY), n € D([0,T*)) and n(0) # 0. Hence we get

(u(0),¢(0)) 2 = (u0,¢(0)) 2

for all ¢ € D(R?). The fundamental lemma of calculus of variations now implies u(0) = ug
almost everywhere.
We therefore have proven:
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Theorem 4.1.26. Let the assumptions of theorem 4.1.19 hold. Then there exists 0 < T* < T
and u € WH2(0,T*; HY(R?), L*(R?%)) such that u is a weak solution of (4.1) on the interval
[0,T%].

Corollary 4.1.27. Let the assumptions of theorem 4.1.19 hold. Then there exists a weak
solution of (4.1).

Proof. The determining factor for how large T™* can be, is theorem 4.1.22. A closer inspection of
the proof shows that T can be chosen independently of the initial condition'® 1y and the point
of time ¢y from where we start from, as long as ¢y € [0,7]. In other words for every ¢y € [0, 7]
and every initial condition uy, € L?, we can find a weak solution which is well defined on the
interval [to, min{to + T, T}], see theorem 4.1.26 and theorem 4.1.24.

Let now u be the weak solution on [0, T*]. Because u € C(0,T*; L?), u(T*) € L? is well defined.
But as we argued earlier, we can now use u(7T™*) as new initial condition at 7%, to extend our
weak solution to the interval [0,27%]. This step can now be repeated with w(27™), etc., until
we extended to the whole interval [0, T7]. O

4.2. Solutions with higher Regularity for the Linear
Advection-Diffusion Problem

In this chapter we are interested in solutions u € C(0,7; H*) N L?(0,T; H**!') of the linear
problem

Oyu = div (o(z,t) - Vu) + div (u - f(x,t)) in R x (0,77,

U’t:(] == u0<x)7 in Rd

for s > %. This is partly due to the embedding H**' < C?, which holds true for s big
enough, and will be essential to prove the results of the next chapter.

To find such a solution, we will need more regular coefficients. We therefore assume from now
on f € L>(0,T; Ws+1°(R? R?)), as well as ug € H*. For o we will concentrate on two cases:

i) o depends only on the time (’space independent diffusion-matrix’), i.e. o € L>(0, T; R%*%),
This case is in particular of interest, as it entails the important case of a ¢ which is con-
stant.

ii) o is an element of C(0,T; H*) and &;0 of C(0,T; H*=2) N L*(0,T; H*™1).

4.2.1. Space independent diffusion-matrix

In this section we assume o(z,t) is independent of x € R? i.e. o(z,t) = o(t). Furthermore,
o(t) is uniformly coercive, symmetric and f € L>(0,T; W*+1:°) 0 L>°(0, T'; H®).

We can find a solution with the desired regularity in a similar fashion as in section 4.1.3.

We will therefore discuss the following key-steps:

1) Finding an evolution operator U(s,t) : H® — H?® regarding the operator family B(t)u :=
div (o(t)Vu) + cu, t € [0, T], for which we restrict the domain to D(B(t)) = H**2. Here c
is some positive constant.

107¢ still has to be an element of L?(RY).
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2) Showing the existence of a 'mild’ é-solution us € L>(8, T, H*T!), which satisfies

t

us() = V(£ 0)uo + / V(t, 5)5(s)ds

0
for 0 <0 <tand g(t) =9g(x,t,u) =div (f(z,t)u(z,t)) + cu(x,t) (see (4.30)).
3) Showing u; is a weak solution on the subinterval [0, T'].

4) Finding uniform estimates regarding us and hence establishing the existence of a subse-
quence u,, converging weakly to some u in W2(0,T; H', L?) and L?(0,T; H**1).

5) Proving u is a weak solution.

Most of the proofs of section 4.1.3 only need minor adjustments. We will therefore only go into
more detail if we deem it necessary and will content ourselves with only pointing out the main
differences if the remaining part of the proof is analogue to the case of lower regularity (H!).

1) Evolution operator

To show the existence of an evolution operator, we want to utilize theorem 4.1.12. We therefore
need to show self- adjointness and the closure property of our operator B(t), defined as in (4.24),
in the Hilbert space H®, regarding its corresponding scalar product and norm. Let now D® be
a differential operator (in z) with |a| < s. Then we have for'! ¢, € D(R):

(D*B(t)¢, D*Y) 12 = (D — div (a(t)V ) , DY) 12 + (D%, D*) 12 (4.54)

and

d d d
D%div (o(t)V¢) = D¢ <Z O, (U(t)v¢)i) = D" Z O Z )ii(V);
- i=1

d d d d
=3 ) 0(t)ijD0x,(Vo); = > Y 0(t)ij0x,D*(Ve); = div (o(t)DV¢). (4.55)
i=1 j=1

i=1 j=1
Combining the tow equations (4.54) and (4.55) gets us

(D*B(t)¢, DY) 2 = (=div (o () DV ), D) 2 + (D¢, DY) [
= (o(t)D*V¢, DV) 2 + (D¢, D)) 12 = (D*V¢,0(t) D*V) 12 + (D), D)) 12

= (D%, B(t)D*Y) 2 = (D%, D*B(t)¢) 2
Hence we have proven the identity

(D*B(t)¢, D) 12 = (D¢, D*B(t)) 2. (4.56)

U1t suffices to show the following statements for elements of D(RY), as these are dense in H**? and we are
dealing only with (H*"2-) continuous functionals here.
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If we now take the sum over all |o| < s in (4.56), we obtain the symmetry of B(t) regarding the
H*- scalar product. Positivity can be shown by using the coercivity of o(t) and writing

(D*B(t)p, Dp) 12 = (DN ¢, 0(t) DNV @) 12 + (DY, D) 12

> min{e, ¢} ((D*V¢, DV @) 12 + (Dp, D ¢)12) .
Again summing over all |a| < s, we get
(B(t)6, @)= > min{e, cH[0][Fo1-

To apply lemma 4.1.14 and lemma 4.1.13 and hence proving that B(t) is selfadjoint, it is
sufficient to show the closure property of B(t).

Lemma 4.2.1. There exists a constant C > 0, independent of t, such that
[ull gro+2 < ClIB()ull e, Vu € HF(RY,C).
Furthermore, B(t) is a closed operator on the Hilbert-space H*(R?, C).

Proof. Let v € H*"? and a a (d-dimensional) multi-index with |a| < s. Then D% € H? and
we can apply theorem 4.1.17:

D[l g2 < C||B(t) D]l 2 = C||ID*B(t)v]| 12 < ClIB(t)v]| g
Because o was arbitrary for every multi-index 7, with |y| < s+ 2, the inequality
D702 < ClIB(E)vll
is satisfied. Hence there exists a constant, which we again name C, such that C > 0 and
[0l o2 < ClIB@)v]| s (4.57)

holds for every v € H*+2,

Let now u,, € H*"2, n € N. Furthermore let u,w € H* satisfy the following conditions:
i) up —pgs u for n — oo.
ii) B(t)u, —pgs w for n — oo.

To show the closure property of B(t), we need to proof B(t)u = w almost everywhere.
Due to the convergence, the sequences u,, and B(t)u, are bounded subsets of H®. Therefore
(4.57) implies

lunll ere < K, VneN

for a constant K > 0. So u, converges weakly towards some 2 in H*"? and because of the
uniqueness of limits, 4 = u € H**2. Let now ¢ € D(RY):

<B(t)u7 ¢>L2 - nlggo<B(t)unv ¢>L2 - <w7 ¢>L2'

The first equality holds true because w, —pgs+2 u, and (B(t)Y, ¢)r2 is a continuous linear
functional for ¢ € H**2. The second equality holds true by assumption ii). Hence B(t)u = w
almost everywhere, due to the fundamental- lemma of calculus of variations. O
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We apply lemma 4.1.14 and 4.1.13 to B(¢). All in all we have shown:

Corollary 4.2.2. Let the assumptions made at the beginning of section 4.2 hold. The operator
B(t) : D(B(t)) = H**?(R%,C) ¢ H*(R% C) — H*(R,CY), defined as (4.24), satisfies the
following:

i) B(t) is a densely defined, closed, linear operator and is selfadjoint.
it) o(B(t)) C (¢, 00).
We prove the existence of an evolution operator regarding B(t), 0 <t <T on H®.

Theorem 4.2.3. Let the assumptions made at the beginning of section 4.2 hold. Then the
operator family B(t), 0 < t < T, gives rise to an evolution operator on H*(R% C), if the
condition

v oty —y"a(s)y| < Clt— sy, Vs,t€[0,T],Vy € R (4.58)
1s satisfied for some C' > 0 and % < p <1

Proof. Let b(t)[u,v] := (6Vu, Vv) s + c(u, v) gs for u,v € H*TH(R,C). Due to lemma 4.2.1 and
as

(u,v)gs = Z (D%, D)2

la|<s

we can reduce the problem to the L?-case, i.e. we can apply the same methods and steps
as in the proof of theorem (4.1.19). Applying and repeating these shows Re b(t) is a closed
sesquilinear- form with (time- independent) domain H**!. Furthermore, it satisfies

[b(t)[u, u] — b(s)[u,u]| < C|t — s|’8|Re b(s)[u, ul|.

Together with corollary 4.2.2 the prerequisites of theorem 4.1.12 are therefore satisfied. O

2) Mild solution

Let V(t,s) := Re U(t,s), where U(t,s) is the evolution operator regarding B(t) (see theorem
4.2.3). For further traits of V(¢,s), look at remark 4.1.21, as these generalize to the Hilbert
space H?® as well.

Theorem 4.2.4. Let the assumptions of theorem 4.2.8 hold. Then there exists 0 < T* < T
such that for every § < T* and every ug € H* there is an us € X = L>=(5, T*; HSTY(RY)), which
has the representation

us(t) = V(t,0)up + /V(t, 5)g(s)ds (4.59)
6

fort €[5, T%].

Remark 4.2.5. Recall that g(t) = g(x,t,u) = div (f(x, t)u(z,t)) + cu(z,t) for some ¢ > 0.
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Proof of theorem 4.2.4.

Let v € L>(4,T; H5™1). We want to show ||g(-, t,v(-, 1)) s < K[|l poo (5,7, prs+1y, for some con-
stant K > 0. Then the proof of theorem 4.1.22 can be reused by simply replacing the spaces
L? with H®, H' with H*T! and choosing'? @ such that :Z% <6h<1.

Let o be a multi- index with |a| < s. Because the functions f and v are solely weakly dif-
ferentiable up to order s+ 1, classical results of differential calculus, as for instance the product
rule and the like, hold almost everywhere:

De(div(fv)) = div(D*(fv)) = div(D® fv + fD)

=div(D*f)v + D fVv + div(f) D% + fVD%

1 D f)v + DY Vo + Z O, [)D% + fVD%, a.e. (4.60)
i=1

”M‘“

The identity (4.60) can be used to estimate the corresponding L?- norm:

ID*(div(fo)llpz < dll fllwsrrool[vll L2 + [ llwsco [0l + @l Fllwree [0l s + 1l oo 0] o

< dHfHL‘X’(O,T;WS'*‘LOO) HUHLoo(ﬁ,T;HSH)'

As « was arbitrary, there exists a constant K > 0 such that

V(g < KL rapesso ol o izysresn

and therefore
18017+ = v (£ s)ul 5)) + el )l g < (K| loeqoravesioo + ) [oll g szsmossy

where K does only depend on d and s. O

3) us is a weak solution on [§, T*]:

Let us € L%(8,T*; H*™!) satisfy representation (4.59) (see theorem 4.2.4). H*T! is continu-
ously embedded in H'. Hence the integrand of the occurring Bochner-integral in (4.59) is also
Bochner- integrable regarding H'. Furthermore, V (¢, s) satisfies similar estimates regarding the
L?-norm, as shown in section 4.1.3 and the example below.

Example 4.2.6.

1 S
1BV (t, s)ull 2 < |BOV(E, s)ull s < Cﬁl!uﬂﬂs, ue H”.

It —

As such the proof of theorem 4.1.23 only needs minor adjustments. In particular one has
solely to replace L? with H® at certain estimates. We therefore wont prove the next theorem
as we deem it not necessary.

Theorem 4.2.7. Let us € L6, T; H*TY(R?)) be as in (4.59) and let the assumptions of
theorem 4.2.3 hold. Then ug is a weak solution of (4.1) on the interval [6,T — v| with the initial
condition us(6) = V(8,0)ug for every 0 < v <T. In particular

us € WH2(6, T — v; HY(RY); L2(R?)).

128ee A.2.9 for the Gagliardo- Nirenberg inequality.
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4) Uniform estimates

Let u,, be defined as

] ug(t) t>1/n
tn = { Vl(/l/n,O)uo t<1/n (4.61)

where u;, is as in theorem 4.2.4 with § = 1/n for n € N. Theorem 4.1.24 and theorem 4.1.6
now imply the existence of constants C, K > 0 such that

”8tun||L2(0,T*;H*1) <C,

()l + el Vunlfeg e < 1V (1/n,0)uol 7y (exp(Kt) — 1)

for t € [0,T*). V(t,0)uq is continuous as a function from [0,7] to H*. Hence ||V (¢,0)uq|| s as-
sumes a maximum on the compact set [0, T]. Therefore the L2(0,T*, H')- and L2(0,T*, H**!)-
norms of the series dwu, and u,, n € N respectively, are uniformly bounded.

Hence there exists a sub-series 1/ny, and a function v € L?(0,T*, H~') N L?(0,T*, H**!) for
which hold:

1) 8tunk ALQ(O,T*,H_I) atu.
11) Unp, _\LQ(O,T*,HS""l) u.
In particular v € W2(0,T; H*t'; H®) C C(0,T; H®), due to H~* € H-(+1),

5) u is a weak solution:

The function u is a weak solution of 4.1, as the calculations'® we have done in the end of

the previous chapter hold here as well. The weak solution can then be extended to the whole
interval [0, 7] as in corollary 4.1.27. We therefore have shown:

Theorem 4.2.8. Let f € L>(0,T; Wst1°(R4 RY), ug € H*(RY) and o € L>(0,T;R¥*9).
Furthermore let o be uniformly coercive and satisfy

ly oty —y o (s)y| < Clt— sy, Vs,t€[0,T],Vy € RY (4.62)
for some C > 0 and % < B < 1. Then there exists a weak solution v € C(0,T; H*(RY)) N

L%(0,T; H5TY(RY)) of

dyu — div (o(z,t) - Vu) =div (u - f(z,t)) in R? x (0,T],

uli—o =up(z), in RY.

4.2.2. Space dependent diffusion-matrix
Let again o(z,t) € L>(0,T; W (R R%*%)) and let it additionally satisfy the following:

i) o(x,t) is symmetric for all z € R and ¢ € [0, 7).

13See the proof of theorem 4.1.26.
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ii) o is uniformly coercive. This means, there exists a constant € > 0 such that y o (z,t)y >
ely|? for all 2,y € R% and ¢ € [0,T].

iii) There exist constants 3,C > 0 such that % <fB<1and
ly o (e, )y =y oz, s)y| < Clt - s°ly[*
for all z,y € R? and s,t € [0, 7).
iv) o € C(0,T; H*) and &0 € C(0,T; H¥=2) N L0, T; H*™1) for a fixed s € N with s > %2,
Remark 4.2.9. The points i) — iii) are prerequisites of theorem 4.1.26 and corollary 4.1.27.
We now prove the next theorem via a ’bootstrapping’- argument:

Theorem 4.2.10. Let f € L>®(0,T; W*>® (R4 RY)) and ug € H*(RY). Then, under the above
assumptions, there exists a weak solution v € C(0,T; H*(R%)) N L2(0,T; H*TY(RY)) of (4.1).

Proof. Let u € WhH2(0,T; H', L?) be the weak solution of (4.1), whose existence is assured by
corollary 4.1.27 and its uniqueness by theorem 4.1.5. Consider now the following linear initial
value problem in v:

: 0 o g 0 : d
O — div(e Vo) + ZZJ: a—xiaz,]a?jv = Zz]: Tmaz’]aiavju +div (u- f(x,t)), (z,t) € R* x[0,T],
(4.63)
v |i—o= uo, x € R (4.64)

Obviously u is also a weak solution to (4.63)-(4.64). For the next argument assume o and v are
smooth functions. Then

0
div(o V) Zaxl Z %0 :Z ”axzax] Zaxz ,Jam (4.65)

= Jj=1 2

Hence (4.63) can also be written as
0 0 .
Z% o 8% = 2; By gy T AV (- f(@. ), () € R x [0,7].  (4.66)

Under our assumptions, the right hand side of (4.66) is an an element of L?(0,T; L?). Choosing
I = 1, theorem D.2.1 guarantees the existence of v € C(0,T; H') N L?(0,T; H?) with dv €
L?(0,T; L?), which solves (4.64)+(4.66). As such it also is a solution of (4.63)+(4.64). Because
the weak solution of (4.63)4(4.64) is unique, see theorem (D.1.1), u = v almost everywhere.

Therefore the right-hand side of (4.66) is even an element of L?(0,7; H'). Which in turn, with
theorem D.2.1 and the same arguments as above, leads to u € C(0,T; H?>)NL?(0,T; H3) and as
such to a even more regular right hand side of (4.66). This argumentation can now be repeated
until w € C(0,T; H%) N L2(0, T; H5H1). O
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5. Existence for the Intermediate System (PDE

)

This chapter focuses on proving the existence of a weak solution u, of the intermediate system
(PDE 1) for fixed n. This non-linear problem is dealt with by an application of Banach’s fix-
point theorem. The later parts of this chapter focus on discussing the extension to a global
solution and the uniqueness of u,,.

5.1. The Non-Local Diffusion System

Let s,n € N with s > % + 2 and v® € H5(R% R"). We turn to the System (PDE I) of non-
linear equations:

9(0i). 1 o TRd
o, in R® x [0, 00),

n d
Oruy; — div (o(x,t); Vu, ;) =div Z quVi?} * Uy i+ Z Un.i
j=1 1=1
Ui li—o=1?, in RY, i€ {1,2,...,n}.

Here o; satisfies the conditions for either theorem 4.2.4 or theorem 4.2.10.! Both these theorems
demand o; to be symmetric and uniform coercive; see section 1.1 for the definitions. Further-
more, we assume Vo; to be an element of L2(0,7; H®) N L>(0,T; W),

To simplify the notation, we set g;j := + Zle a%l(ai).,l. Notice that g;; is therefore an element
of L2(0,T; H*) N L>(0,T; W5).

Remark 5.1.1. If v; € L>(0,T; H®), one can show that fi; := VV] xv; € L=(0, T; W) N
L>(0,T; H®):

Let t € (0,T) be arbitrary but fixed and (¢x)ren € D(R?, R™) be any sequence such that
lim ¢y = v;(¢) in H'(R% R™). Then we get

k—o0

o Fi(et) = (V) * (0] = [V~ y)us()dy
R'/L

. 0
= kli)nolo (%VVZZ)(% —y)or(y)dy
Rn

. d . . .
= Jim [ (~1)5 (VWi —)orl)dy = lim [ TVi(e —y)
R Rn

0
o ox(y)dy

'Both these theorems deal with the existence of a weak solution uw € C(0,T;H®) N L*(0,T; H*') for the
corresponding linear problem.
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0 v,
= /VVZZ(:L’ — y)a—yivj(y)dy = VVZ;7 * aasji ().

The above argument can now iteratively be used to show f;(t) € C*. Because VV;; € C§ one
obtains even f;(t ) € C**1. For the L™ bound we calculate for an arbitrary derivative D of
order |a < s and 5, the estimate

0
ox;

DTV vy / GV = (D% 0) )|y < |

g

As vj € L=(0,T; H?) and V] € C?2, the last expression is uniformly bounded in [0,7]. Hence
fij € L°°(0,T; WetLe). For f;; € L°°(0,T; H®) we apply Young’s convolution inequality (see
A7.1).

o el

0
83%

Vg .
2 el

0
8xi

5.1.1. Local existence and uniqueness

We are interested in finding a unique solution w,, € L>(0;T, H*) N L*(0,T; H**1) for system
(PDE I) for fixed n. We will proceed as in [5]. Hence the next theorem deals with the local
existence and is proven by an application of the Banach fixed-point theorem (see [5, Lemma
4]). The proof of uniqueness afterwards is based on the proof of [5, Lemma 6].

Remark 5.1.2. The higher regularity is necessary because u, is used in the next chapter to
approximate the solution u of (PDE II). This leads to u being an element of L*>(0;T, H®) N
L?(0,T; H**1) as well. Due to the embedding H® < C?, u then satisfies the Lipschitz condi-
tion (2.4), which is a necessary prerequisite for theorem 2.1.2, which deals with the existence
regarding the stochastic system (SDE II).

Theorem 5.1.3 (Local existence). Let s € N and u® = (u),...,u)), where u® € H*(R? R").
If s > T2 then there exists u, € C([0,T%], H*(RY,R™)) N L2(0, T*; H*TL(RY,R™)), so that u,
s a weak solutz’on of (PDE I). The corresponding time T* > 0 depends on the initial value u°
in such a way, that T is bounded from below for small values of Hu and it does not depend
on n. Additionally, there exists a constant C > 0 such that

"l

lan (1375 + Vgl a0 prey < 001 5ge + Cl | (exp(C) = 1), € 0,77, (5.1)

lun @ <1+ |00l t € [0,77). (5:2)

Here C' does not depend on n and € is defined as € = 1mln €i. In the case of u® > 0 almost
<i<y

everywhere, uy(t) is non-negative almost everywhere for all t € [0,T%)

Proof. Let T* > 0 be arbitrary but fixed. Consider the space

X = {ve L®0,T; H*RLR™) :  sup |v(-,t)|5. < M:=1+ HuOHiIS}
0<t<T™*
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which endowed with the norm ||[u — v||, := sup |(u—v)(t)| 2, with u,v € X, can be shown
0<t<T*

to be a Banach- space.

Because the linearity of X’ is obvious, we only prove the completeness of (X, ||-|| ;). Let therefore
vp € X, n € N be a arbitrary Cauchy- sequence regarding |[|-|| .. Hence for any choice of € > 0
there exists ne € N such that

€2 |lvn = vmllxy = sup |[(vn —om)(@)lgz = (v = vm)(s)] 12
0<t<T*

for all n,m > n. and s € (0,7%). Therefore v,(s) is in particular a Cauchy sequence in
L*(R?,R™) and has as such a limit v(s) € L*(R%,R"). Due to the uniform boundedness of
vn(s), n € N regarding the H*- norm, there exists a subsequence vy, (s) which is weakly con-
vergent in H®. Because of the uniqueness of limits and the lower semicontinuity of the norm,
v(s) € H*(RY,R™) and |v]|3. < M. It is now straightforward to verify that v(-) € X and
|lvn, —v|ly — 0 for n — oco. As v,, n € N was an arbitrary Cauchy sequence, (X, ||-]|5) is
therefore complete and hence a Banach space.

We introduce the operator S : X — X, where S(v) = u is the unique weak solution of the
linear-advection problem

n
Opu; = div (0;Vu,) + div Z ui(VVi"]- * Vj + gij) in R% x [0, 00), (5.3)
j=1
u; |i—o= 1Y, inRY ie{1,2,...,n}.

Every fixed-point of S is a weak solution of our non-local diffusion system (PDE I). We show
existence of such a point by applying Banach’s fixed-point theorem. This involves the following
steps:

1)Show S : X — X is well defined.

As fi; = VV;} * v + gi; € L®(0,T; W12 (see remark 5.1.1) we can apply theorem 4.2.4

or theorem 4.2.10, i.e. S(v) : X :— C(0,T; H®) is well defined. Furthermore, theorem 4.1.3

guarantees the non-negativity of S(v) as long as the initial condition u? >0 forall 1 <i<n.

To show S(v) € X, we need to prove sup ||S(v)[~,t]|@ls < M. Due to the fact that S(v); = u;
0<t<T*

is a weak solution of (4.1), we can make use of theorem 4.1.6, i.e.

2

n
+e| DS g luil.  (5.4)
Jj=1 L2

d n
&H“di”?{s +e| Vil fe < C {1+ (1D i
=1

LOO

where ¢, C' > 0 are constants depending only on s, d,% and on HU,'\|LO<,(O7OO;W5,O<,). We sum the
equations (5.4) from ¢ = 1,2,...,n and use the triangle inequality:

2
n

d 2 2 2 &
g [l + ellVullgs < Cllull S+ [ Dol fisll e + el D2 fill o
i=1 j=1
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The remaining terms which depend on f;; can be further estimated by using Young’s convolution
inequality (see A.7.1) and Holder’s inequality:

s U . — n Sy, m
A Pl M PR

. LDl < [V ol

[9v5 v < 9%

ol < et | VY| 0l

where cys< o is the operator norm of the continuous embedding ¢ : H®* — L*°. We thus have

1D°figl = < | VW3

C ol 1193 oo o ;)

Vfidll e < catscsoe [TV 10lze + 11933l oe o 000

Recalling v € X and putting all the above results together, we get
d ~ .
%IIUII?{S + el Vul e < Cllullfr (14 [[vll7:) < COM +1)||uF. (5.5)
or rather
d 2 5 2
el < €M+ 1)lull (5.6)
where the constant C' > 0 does not depend on T*. Applying Gronwall’s lemma to (5.6) leads to
() 1775 < lluollse“ Dt < (M = 1) g e [0, 77). (5.7)

We choose T small enough so that (M — 1)6O(M+1)T* < M. Because (5.7) implies [|u|3. < M,
S(v) = u € X. Notice that because ’
inequality (5.7) in estimate (5.5), integrating the result will lead to estimate (5.1).

= |Vijll 1, T* does not depend on 7. Using the

2)Show S : X — X is a contraction.

Let v,w € X and ¢ € H'. Then S(v); and S(w); satisfy the following equations:

(05 ()i, ) g1 + (0 VS (v)i, V) 1 Z S(v 15 vj + 9i), VO 12, (5.8)

n

(0,8 (w)i, ®) -1 + (0;V S (w)i, V) 2 = — ZS i(VV s w; + gig), Vo) 2. (5.9)

We choose ¢ = S(v); —S(w); and take the difference of (5.8) and (5.9):

(0:(S(v)i = S(w)i), S(v)i = S(w)i) -1 + (iV(S(v)i = S(w)i), V(S(v)i = S(w)i)) 2
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Jj=1 j=1
= =D SVl v;, V(S(v)i = S(w)i)) g2 £ (D S@)i V] w;, V(S(v)i = S(w)i)) 12
j=1 j=1
+(D S(w)iVV]xwj, V(S(v)i = S(w)i)) 2 — (Y )9i5: V(S(v)i — S(w)s)) 12
7=1 7j=1

—(> (S()i = S(w)i)gij, V(S(0)i — S(w)i)) 2

=1

We use the coercivity of g;, the triangle inequality and the Cauchy- Schwarz inequality to obtain

5 dtIIS( v)i = S(w)il 72 + €l V(S(v)i = S(w)i)72

<§]b Vs (o — )| IV(S@)i — Sl

*ZH 0)VV ()| L IV(S(@) = S(w)o)ll e

+ > (S @)i = S(w)i)gijl 2V (S (v)i = S(w)i) | -

Jj=1

With Young’s inequality for products (6 > 0), we separate the terms on the right-hand side

LS ()i~ S)lZs + el V(S — Sw))l2

+ 2195 - S

<> glsenevge e -w,
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+225H DIV (), + SIS~ S

+> 2%5”(5(@)1 — S(w))gijl7- + gHV(S(U)i = S(w)i)lzz-
=1

If we choose § = %, some of the resulting terms cancel each other out:

S @) — Syl

‘S JiVV! —wj)‘ )

<0

7

Z )i — S(w):)gis |22

Summing from ¢ = 1,2, ..., n, and making some rough estimates of the terms on the right hand
side, yields

%\\S(m — S(w)|72 < C(%)X

i_ (Il [ 772 03 = w7, + ) = SChlEs (992« |+ ol ) )

L
(5.10)
where € = {min }ei. We apply Young’s convolution inequality to (5.10) and we recall that
i€{1,2,...n
H?® — L
d 1
L11S() - S)lE: < O, g)x
S(v VL 6o — wp)l2 + IS (w)i — Sl | 1+ [vv Nk
Z [15( HHs || 1 vs = wi)llz2 + 15 (w)i = S)illza | T+ VVig)| | 1(w))l

§M2 <M?

All in all we have

%HS(v) _ S(w)2s < nC( 9) <1 + M2 max

1<2,5<n

VV;}

i) (Hv — w72 + [|S(w) - S(U)H;) ,

=C(M)

Notice here as well that because

. = Vijllp1, C(M) does not depend on 7. Due to

the fact that S(v) and S(w) satisfy the same initial condition, i.e. S(v) [t=o= S(w) |t=o= ",
integrating from 0 to ¢ < 7™ results in

1S()(t) = Sw)(B)[[72 < C(M)E sup_[Ju(s) —w(s)]72 +/C S (w)(s) = S(v)(s) || 72ds.

0<s<T*
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Here we can apply the version of Gronwall’s lemma for Borel measures, see C.3, which leads to:

1S(0)(8) = S(w)(B)]72 < Ct sup flos) = w(s)||z2e“ M

and hence to

sup [[S(v)(s) = S(w)(s)[|72 < C(M)T* sup |[v(s) — w(s)||72¢“D7T".
0<s<T* 0<s<T*

In terms of the X-norm, the last inequality can also be written as
1S(v) = S(w)[lx < CANT* DT [[o = w]| 5.

We choose T* small enough so that C(M)T*eCMT" < 1. Then S : X — X is a contraction
and we can apply Banach’s fixed-point theorem to complete the proof. O

For initial value conditions u°, with sufficiently small norms Huo H s> We can show uniqueness
for the local solution u, of (PDE I):

Lemma 5.1.4 (Uniqueness). Let there exist a constant 0 < vy < €, such that

n
2
€—chssre Y (\/1+ ||u?HHS> ‘V;} L2 (5.11)
i,j=1
where cgs_,1~ 1s the operator norm of the embedding v : H® — L* and ¢ = min ¢;. Then

1<i<n
the non-local solution u,, characterized by theorem 5.1.3, is the unique solution of (PDE I) on
[0, T] for every T < T* in the space L>=(0,T; H*(RY R™)) N L2(0,T; H**1 (R4, R™)).

Proof. We proceed as in [5, Lemma 6]. Let ¢ € L?(0,T; H'(R%,R")) be arbitrary but fixed.
Furthermore let © = w, and let v be another solution of (PDE I), fulfilling the condition
v(0) = u®. Then u; and v; satisfy the equations

(Ovui, $i) -1 + (0iVuy, Vi) 2 = = wi( V] % Vg + gi5), Vébi) 12,
=1

(Owvis @iy + (0 Vi, Vi) 2 = —(Z vi(Vi] % Vs + gi5), Vi) 2.

J=1

We choose ¢ = u — v, use the coercivity of o; and take the difference of the equations satisfied
by w; and v;:
n
3 g llui = villze + €l V(i — 072 <D (Vi * Vg + gi) — 0i(V) % Voj + gij), V(wi — v:)) 2
j=1
n
< Z<qu£ * Vuj — UZVJ * ij, V(uz — Ui)>L2
j=1
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The first term I; on the right hand side can be further estimated using the Cauchy- Schwarz
inequality and Young’s convolution inequality:

I = Z(uZVZ’J7 * Vg — 0Vl x Vg, V(ug — vi)) 2
j=1

n

= Z<UZV2;] * Vu, + uZVZ’J7 * Vv, — UZVZJ * Vo, V(u; —v;)) g2

= Z wi Vi) * V(uj — vj) — (vi — w) Vi} * Vo, V(ug — v3)) 2

IR R T

< (el oo | Vi 90 = 0)| |, + Vi T, o = el ) 190t = w0l 2
j=1
n
(sl | 2| 1905 I, V0l o = will ) 19 G = 032
j=1
< cneey el 19 = ) 2 + 90l g0 = ll ) 9/ = ) o

To the remaining term I we apply the Cauchy-Schwarz inequality:

n

= 1D (s = vi)gi, V(i = v0)) 2| < Nlgi oo s = vill 12|V (i = 03)][ 2.

j=1 j=1
Summing over the index i, where 1 < i < n, yields therefore
1d

Sl vlze + el V(u—v)|2

<cHs L el eIV (= )l g2+ (V0 s + llgisll ) 1o = ull 22) 1V (= 0)l 2

7]_

=CHs<s[,0© ||V(u — U ||L2

d
7‘77

+emcre (90l + 1g,§>§nugz~jnm) o=l 2|V = o)l Z\
,j=1

ij
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where e = min ¢;. We set max HgZ]HLoo := G. Due to theorem 5.1.3, ||[u(t)|| s < 4/1+ Hu%HZS
1<i,y<

1<i<n
for all t € [0, T*]. In particular, by assumption 5.11, the following inequality holds true:

n
2
IRV = Z]v"
ij=1

CHS‘—>L<>° Wl )z

This, together with an application of Young’s inequality for products, results in

1d

5ol = vl + €l 9w = vl

< (e= NIV (u=0)z2 + 6]V (u = v)l|72 + C(6,5,d) (V0| e + C)* o — ull7 Z’

7.]_

ij i

where 0 > 0 is arbitrary. We choose § such that 6 —y < 0. Then we have

1d
2dt

and thus

—llu = vll72 + e V(u = )l[72 < e V(u—0)ll72 +C 6,5, dn) (V0 g + G o — ull7e

—0l|72 < C(8,5,d.0) (| Vol s + G)* flo — ul[72

2d1€H

As v € L*0,T; H*™') and g;; € L°°(0,T; W), the right-hand side of the last inequality is
integrable and we can apply Gronwall’s inequality, see C.3. We therefore get

H(u - U)(ﬂ”%; < 0

for t € [0, T). Hence u(t) = v(t) almost everywhere for ¢t € [0, T]. O

5.1.2. Global solution

Let 0 < T < T* where T* is as in theorem 5.1.3. To extend a local solution whose existence is
guaranteed by theorem 5.1.3 to a global one, we need to make sure that no blow-up occurs. In
particular if for a solution u, of (PDE I), its norm ||u,(t)|| ;. is monotonically non- increasing
on [0,7T], then HUSHHS > ||uy(T)|| ;s and we can use theorem 5.1.3 to extend u, to [0,217] by
using u,(T') as new initial value condition. We will show that under the right circumstances
this argument can be repeated indefinitely, which leads to a global solution.

Let s > 942 ¢ = mln €; and 0 < v < € for some v € R. Going forward we assume that

2
1< z n
the initial condition u? € H* satisfies

n n
e=CY > Dl oz = K D el o Vsl n > (5.12)

i=11<|y|<s ij=1

for a specific constants C > 0 and K > cpscsr, which does only depend on s and d.? The
constant cygs. .0 denotes the operator norm of the embedding ¢ : H® < L°.

2C and K will be determined in the proof of lemma 5.1.7.
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Remark 5.1.5. Recall that ||[Vi;]|,1 = ’

n
Vij

L
Remark 5.1.6. Assumption (6.11) from theorem 5.1.4, can be directly concluded from (5.12).

Lemma 5.1.7. Let s € N, with s > HTQ and u® € H*(RY R™). Furthermore let assumption
5.12 hold and g;j = 0 for 1 < i,j < n. Then for a solution u, € C(0,T;H*(R?,R")) N
L?(0,T; H*tY(RY,R™)) of (PDE I) the following estimate holds:

2
H“n(t)”zs + 2'7||v“n”i2(o,t;Hs) = HUOHHN te[0,T]. (5.13)

Furthermore, ||u,;(t)| 4. is monotonically decreasing for all 1 <1i < n.

n
Proof. Let v = u,. As u; is a weak solution of 4.1, with f = > VVZ;7 * uj, it fulfils equation?
j=1
(4.9):

(8:D%u;, D%ug) g1 + / DVul'o; DVudx = — / > ¢, D70;DPVu; | - VD u;da

Rd Rd [BI< |l =1,]7|< e

—/DO‘ Zulvvg s u; | - VD%;dx,
Rd =1

where cg, € {0,1}, |a| < s and we chose ¢ = D%u;. Applying the Cauchy-Schwarz inequality,
the triangle inequality and using the coercivity of o; leads to

1d
S 1D + €| D* V|72 < s D 0D Vui|| | DV
2 dt

181<lal-1,1<]yI<] ol L2

£ 30|07 (w9 e ws) | L IVD il o
j=1

and due to estimate 4.10, to

1d
sEID e + el DVullle < Y D70 | D7V
1BI< || =1,1<]y|< e

LDVl s

n
+ 3D (u YV ug) || [IVDuq]] o
N———

Jj=1 "
:Vij*Vu]- 12

3See the proof of theorem 4.1.6
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We apply the Moser-type calculus inequality and Young’s convolution inequality to the term
on the right-hand side:

5 1P uillz2 + il D*Vui|l72 < > D703 oo | Vi || s [[ D Vg | 2
1B1<|e]=1,1<]y[<]af

VIeVu| il

VI stujHLQ) IV D% 2

n
+K Y (10wl e

J=1

< > D703l oo IV tti| grs [ D Vi ] 2
18I<|al-1,1<]y|<[a]

V[ Il e+ il

Vi D V) 1DV

n
+K Y (10w e
j=1

<C(al) Y I1D0ill e I Vuill s |1 D* Vil 2
1<py[< ]l

+K(s,d) Y (1D 1o D2 ) 1DV .

Vil IV will s =+ lwill e || Vij

Summing over all «, with |a| < s, yields

1d

2 2
5@““2‘”1% + €l Vuil| s

n
Vi

< IVuillye { €)Y 1D 0l oy + K sy )il e 30|V
j=1

1<|yI<s

and after rearranging some terms we get

1d - - -
s lulye < ~1Vul (= C) X N0l oirimy = Ko )l SV
1<]y|<s J=1
(5.14)
Under assumption (5.12) we have

€ — é(s) > ||D70i||L°°(0,T;L°°) € — 6(5) > ||D70i||L°°(O,T;L°°) -
a 1<]7|<s 1<]y[<s 0
7o - n n - 7 Hs®
< _ - > [l

K(s.d) 3 v K(s.d) 3 [vi
j=1 Lt j=t 9l
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In particular ||u? 2 s < (% ? holds true. We choose a, b as above g = —||Vu; 2 and f = ||uil%.
illH b H H

in the Gronwall-type inequality (see E.0.2). This implies |lu; ;. < ¢ and hence together with
(5.14):

d, 2
Sl <0

almost everywhere. We conclude [|u;(t)| . < ||uf]| ;. for all ¢ € [0,T7], and therefore

1d, .o 9 - - -
S arlluale < —IVal {6 = Cls) S2 1070l — Kl d) [l SV
1<|y|<s Jj=1
< —[|VuillFa-
We sum over all 1 <17 < n and integrate both sides:
2 2 2
lu()I7s = |6 5e < =291Vl T20 4,109

This completes the proof. ]

Corollary 5.1.8. Let the assumption of theorem 5.1.3 and lemma 5.1.7 hold. Furthermore, let
all the assumptions made for o; hold for T = oco. Then there exists a global unique solution
uy € C(]0,00); H¥ (R, R™)) with Vu, € L*(0,00; H*(RY,R™)) of the intermediate system (PDE
I).

Proof. Due to theorem 5.1.3, there exists 7' > 0 and u, € C([0,T], H*) N L*(0,T, H**1) such
that u, is a solution of (PDE I). The term |[|uy| ;. is monotonically decreasing (see lemma 5.1.7).
In particular ||u,(T)|| ;. < Hu%“ s+ As the time 7" does depend on the initial value in such a
way that it is increasing for smaller values of HugH s> We can therefore find a solution of (PDE
I) on the interval [T, 27 with the help of theorem 5.1.3. Hence we can extend u,, to the interval
0,277, As |luy(T)| s < HugHHS, condition 5.12 is satisfied and we can again use lemma 5.1.7
and theorem 5.1.3 to extend to [0,37]. This argumentation can be repeated until we arrive at
uy, € C([0,00); H¥)NL2(0,¢; H**1) for all t > 0. As in particular u, € C(0,t; H¥)NL?(0,t; H5T1),
t > 0, estimate (5.13) holds:

2 2 2
||u,](t)HH5 + 2’7”V“77HL2(0¢;Hs) < HugHHm t>0.

Using the monotone convergence theorem and performing the limit ¢ — oo, shows Vu €

L%(0, 00; H). O
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6. Existence for the Cross-Diffusion System
(PDE 11)

In this chapter the existence of a solution u of the cross-diffusion system (PDE II) is established.
This is accomplished by approximating u with the solutions of the intermediate systems u,,
which can be shown to converge towards a solution of (PDE II) for n — 0. The latter part of
this chapter concentrates on estimates of the difference u — w,,.

6.1. Existence and Uniqueness

Let the assumptions of the previous chapter hold. We focus on the cross- diffusion system (PDE
II):

n
Opui — div (o(z,)iVu;) =div Z u; (a3 Vuj + gij) in R x (0,7,
=1
Upi [i=o=u), nR% ie{l,2,...,n}

where a;; = [ Vij(|z|)dz = f Vii(|lzl)dz, for 1 < 4,j < n. Furthermore, recall that g;; =
R

lzl 18:(:1( )

6.1.1. Local existence

We will see that the system (PDE II) can be seen as the problem obtained by performing the
limit » — 0 in (PDE I).

We proceed as in the proof of [5, Lemma 7]:

Lemma 6.1.1. Let u,,,n € N, be a series of solutions of problem (PDE I) with initial
condition u® € H*(RY R") and lim n, = 0. Furthermore, let Uy, be uniformly bounded in

n—oo

L2(0,T; H*tY(RY R™)) for some T > 0. Then there exists u € L?(0,T; HST(RY, R™)) and a
subseries uy,, , such that up, — u weakly in L%(0,T; HST1(RY,R™)) and Vg" * Vg, i — ai; Vu;
weakly in L?(0,T; L?(R%, R™)).

Proof. Due to the uniform boundedness of the sequence u,, in L?(0,T; H*™!), there exists a

subsequence, which we will again denote with w,,, which converges weakly in L2(0,T; H*+1)
towards some element wu.

We want to show V" * Vuy, ; — a;Vu; weakly in L%(0,T; L?)(R4,R™)). Let therefore
¢ € L?(0,T; L?>(R?,R™)) be arbitrary but fixed. Then we have

T

T
/(VZ;M * Vg, i — a;j Vug, @) p2dt| = // (Vg” * Vunn,j(t) [z] — aijVuj(x,t)) - ¢(x, t)dxdt
0 Rd

67


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

// /Vn” x —y)Vuy, j(y, t)dy — a;jVu;(x,t) | - ¢(x,t)dzdt

0 Rd d

T
///Vn" x —y)o(x, t)dx - Vuy, ;(y,t)dydt — //a,-jVuj(x,t) - p(z, t)dxdt (6.1)
0 Rd R4

0 R4

where we used Fubini’s theorem to exchange the integrals. By assumption V/j(z) = Vj; ('2‘).

Thus VZ? is only depended on the absolute value of x and Vlz’(x—y) = Vg(y —z) for all 2,y € R%.
The term VZ?” * ¢ converges strongly in L?(0,T; L?) towards a;j¢ (see theorem 9.10 in [8]). As
uy, converges weakly in L?(0,T; H**1), the sequence Vu,, converges weakly in L?(0,7; L?)
towards Vu;. Due to the boundedness of ||u,,|| L2(0,1;22) We can therefore pass to the limit
Nn, — 0:

T
o0 <| [ [ [ Vit - a0t 0dn Ty, 0.1y - / [ assot.t) - Vo )t
0

R4 R4 0 Rd

:V;’}*¢(y)

T T
+ / / a6y, 1) - Vg, 5 (v, )dydt — / / a0y, 1) - Vi (y, t)dydt

0 Rd 0 Rd

g

LZ(O,T;LQ)”unn’jHLz(o’T;LQ) + //aijgﬁ(y,t) (Vuy, j(y, 1) = Vu;(y,t)) dydt
0 Rd

Vix ¢ — aijd”

— 0.

O]

Lemma 6.1.2. Let the assumptions of lemma 6.1.1 hold. Then there exists a solution u €
L>(0,T; H¥ (R, R™)), with Vu € L?(0,T; H*(R?, R™*%)), to problem (PDE II). If additionally
the solutions u, of (PDE I) are uniformly bounded in L°°(0,T; H*(R% R™)) for small n, then u
fulfils

sup ||u(t)”HS < SUP”un||Loo(o7T;Hs)- (6.2)
o<t<T 0<n

Furthermore, if gi; = 0 for all 1 < 4,5 < n, then, under assumption (5.12), u satisfies the
estimates

291V ull3a 0 ey < [0 3700 (6.3)
Ol e < O] 6.4
oi?f:r”u( Wigs < J|u’]] s (6.4)
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Proof. Let T' > 0 be arbitrary but fixed and let u and u,, be as in lemma 6.1.1 . Then w,,, ;
satisfies the equation

T T T
/ O, is @) - 1dt+/ iV, i, Vo) 2dt = / Z“nn, ( "k Vg, j —i—gZ]) , V) adt,
0 0 0
(6.5)

for all ¢ € L%(0,T; H'). We therefore have

T
/<8tunn,iv¢>H1dt < Haivunn,iup(oj;m)”V(ﬁHL?(O,T;L?)
0

n
1 .
+;Hunnﬂ‘/ij * Vg, L2(07T;L2)”v¢HL2(O,T;L2)

n
+ Z HuﬂnfigijHL2(07T;L2)HV(b”LQ(O,T;LQ)'
i,j=1

We use estimate (5.13) and the embedding H® — L together with Young’s convolution in-
equality, to conclude uy,, ZV" * Vuy, ;, n € N, bounded in L?(0,T; L?):

TIn .
Huﬁm V * vu"]’m] L2

S Hu"lnyi

" x Vuy
Lo || Vij 3| 20 7 r2)

v

< erpscs o ima il o [V IV l2 < €. (66)

In similar a fashion we get

1wnni9iill L2(0,7:02) < Wil oo 19651 20 7,2y < etz poe [l ill o 93l L2022y < €

Due to the uniform boundedness of u,, ; in L?(0,T; H**1) we thus have

T
/<atunn,ia¢>H—1dt < é||v¢||L2(O,T;L2)
0

where C' > 0 does not depend on n. This implies || 9wy, ;|| L20rH-1) < C and hence the series
Opun, i converges weakly in L(0,7; H~') towards dyu;, because for ¢ € D(R? x (0,7))

T T
hm/ Ogny, iy @) g—1dt = hm /unnz,atgb r2dt = /ul,ﬁtgb r2dt = /8tuz, ) —1dt.
0 0

Let R > 0 be arbitrary but fixed and Bg(0) := {x € R?: |z| < R}. Since Bg(0) is a com-
pact subset of R the embedding H'(Br(0)) — L?(Bgr(0)) is compact (see the theorem of
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Rellich- Kondrachov A.2.11). The sequence Vu,,, is uniformly bounded in W12(0,T; H', L?).
The Aubin lemma (see A.3.21) assures therefore the existence of a subsequence, which we again
denote with u,, , which converges (strongly) in L?(0,T; L?(Bg(0)). Because of the uniqueness of
limits, nligo uy, = uin L?(0,T; L*(Bg(0)), as uy, converges weakly towards u in L?(0,T; H5T1).
Due to the uniform estimate 6.6, we can again restrict ourselves to the subsequence for which ad-
ditionally unnZVg" * Vi, i — v weakly in L?(0,T; L?), where v is some element of L?(0,T; L?).
Summing up the (sub-)sequence u,, has the following properties:

1) uy, — u weakly in WH2(0,T; H'; L?).

\)

uy, — uin L?(0,T; L*(Bg(0))).

w

ViIm s« Vg, j — aijVu; weakly in L*(0,T; L?).

S

ot

)
)
)
) Unp i V * Vuy, ; — v weakly in L?(0,T; L?).
) Un,.igi; — U weakly in L*(0,T; L?).

)

6) up, — u weakly in L2(0,T; H¥T1).

From the points 2) and 3) we conclude uy,, ZV77 * Vg, i — uia;;Vu,; weakly in

LY0,T; LY(Bg(0))). Due to point 4) and the uniqueness of limits, we get u;a;;Vu; = v. Using
the same argumentation, we also see ¥ = u;g;;. From here we can perform the limit 7, — 0 in
6.5 for ¢ € D(Bgr(0) x [0,T7]):

T T

T
/(fml, - 1dt+/ 0V, Vo) p2dt = /Zul (aijVu; + gij) , V@) r2dt. (6.7)
0 0

0 J=1

For every test-function ¢ € D(R? x [0, T]) there exists a » > 0 such that ¢ € D(B,(0) x [0,77]).
Because R was arbitrary, equation (6.7) holds therefore also for ¢ € D(R? x [0,T]). But the set
of test-functions D(R? x [0, T)) is dense in L?(0,T; H') and consequently equation (6.7) holds
true for ¢ € L%(0,T; H') as well. Hence u satisfies the weak formulation of (PDE II). The
estimate 6.3 follows from the lower semi- continuity of the norm and estimate 5.13.

Notice that u € C([0,T*]; H*) due to the embedding Wh2(0,T; H*™!, H®) — C([0,T*]; H®)
and H~! ¢ H~*"! (see proposition A.3.19). Let ¢(z,t) = ¥(x)((t) with ¢ € D(R?) and
¢ € D([0,T)). The initial value condition u |;—o= u" can be confirmed by looking at the term

T T
[ @t is0ya-vde = = [, 5:00) ot — (2. 60) 1
0 0
and performing the limit 7, — 0. Then we have
T T T
— s B it 00,1260 = [ @uas st = — [ s 00t — ()2 C0)
0 0 0

We choose ¢ such that ¢(0) # 0. This implies
(ui(0), )2 = (g, ¥) 12
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for all ¢ € D(R?). Hence we can apply the fundamental lemma of calculus of variations:

ui(0) = uy,

almost everywhere. Additionally we want to show that |u(t)| ;. < suplluy|| Leo(0,He) L€t
0<7] Ly

therefore ¢ € D(0,T], with ¢(T") > 0

T
> (=1l / (Dpty, 1 D**P) -1 Cdt
a<s 0
T
=Y [ (=l / (tty, i Oy D** ) 2Cdt + (Duy, 1(T'), D) 12¢(T)
lo|<s 0
T
=3 (1l / (ttg i D2 p2Cdt + (y, o(T), )11+ (T)
lal<s 0
T
<) '“'“/unn,z'ﬁtDQ‘”szCdH i (D) s N1 175 C(T)
la| SS s ———

S(S)EI;”% oo (0,1 %)

By passing over to the limit n, — 0, we get

T
1)l / Oyuii, D**4p) praCdt = (—1)llH / (us, 0, D) 2Cdt + (ui(T), ) rs(T)
\a|<s la<s 0
T
< (=l / (i, Oy D) 1+ Celt + Supl[tiy | e 0oy 19 115 S ()
|l <s 0 0<n

This holds for all ¢ € D(RY) and in particular for —i. Hence

s, ) 1| < 50t 150 ¥ 3
n

This implies [lui(T)|| = < sup|lugyll oo (g 7.prs)- Due to the fact that all the required conver-
0<n o

gences also hold true on [0,¢] for 0 < ¢t < T, we can argue as above to get ||u;(t)] ;. <
SUPHUnHLoo(o 7.175)- The estimates (6.3) and (6.4) follow now from (5.13). O
0<7] sty

From the previous chapter we know of the local existence of solutions u,) € L*(0,7*(n); H**1)
to the intermediate problem. Here T7*(n) depends on 7 via the initial value ug (see theorem
5.1.3). Thus, if these solutions satisfy the same initial value condition wu, |i—o= u?, then T =
T(n). This leads to an uniform bound in L?(0,T*; H**!) and we can apply lemma 6.1.2. We
therefore have proven:
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Corollary 6.1.3 (Local existence). Let v’ € H*(RL,R") and s > % + 2. Then there exists
0 < T* < T such that there is a series of solutions u,, € L*(0,T*; H**}(R%,R")) of (PDE
1) and a solution u € L(0,T*; H*1(R? R")) of problem (PDE II) with the same initial value
u®. The sequence uy, is bounded in L>(0,T*; H*(RY,R™)) N L2(0,T*; H*H(RY, R")) and the
following estimate holds:

sup ||u(t)”Hs < Sup”unHLoo(QT*;Hs)- (6.8)
o<t<T™* 0<n

Furthermore, if g;j = 0 for all 1 < i,5 < n then, under assumption (5.12), T = T* and u
satisfies the additional estimates

2'Y||VUH%2(0,T;HS) < HUOHZM (6.9)
s < ||| .- 6.10
s a0 < (6.10)

6.1.2. Uniqueness and global existence

As of now, we only have proven the existence of a solution to (PDE II) until a specific finite
time 7'. In theory, two solutions (u1,ug), corresponding to two, possibly different times (77, 7%),
do not have to coincide on the ’shared’ time-interval [0, min{77,75}]. We will therefore show
uniqueness on such intervals, which will then imply u; = ug on [0,min{73,75}]. Under the
assumptions of corollary 5.1.8, this will furthermore lead to a global solution, as the times
T1,T5 can be chosen arbitrarily large in this case.

Lemma 6.1.4 (Uniqueness). Let u be the weak solution of (PDE II) characterized by corollary
6.1.3 and let the constant 0 < v < € be such that

n
e~ o 3 (VI ) Wil 2 (6.11)

,j=1

where cgsc, 1 18 the operator norm of the embedding v : H® — L™ and € = 1r<nj2 €.
<i<n

Then w is the unique solution of (PDE II) on [0,T'] in the space L>®(0,T ; H*(R*,R")) N
L2(0,T; HSTY (R, R™)) for every T' < T*.

Proof. Let v € L*(0,T; H*) N L*(0,T; H**') be another weak solution of problem (PDE II).
Then u; and v; satisfy the following equations for every ¢ € L2(0,T; H') and 1 < i < n:

(Ortis, ) -1 + (05 Vui, Vo) 2 = = uiai;Vuy + gi5), V&) 12,
j=1

n

(Ovi, ) 1 + (03V0i, V@) 12 = =D vilai Voj + gij), Vo) 2.

j=1
We choose ¢ = u; — v;, take the difference of the resulting two equations and sum over all
1 <¢ < n. This yields

n

1d =
ggle - vll72 + ) (0iV(ui —vi), V(g —vi)) g2 = — Y (ui(ai; Vg + gij), V(u; — v;)) 2
i—1 ij=1
+ > (ilagVuj + gij), V(ui — v3) 2
ij=1
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where we recalled that (Oyu; — vi, uj — vi) -1 = % |lu; — viH%z. Using the coercivity of o; and

expanding the left hand side leads to
1d
5 ol = vll2s + 7 (- o)l

n

S - Z <uiaijVuj, V(’U,Z - 1}7;)>L2 + Z <uiaivaj, V(ul - UZ')>L2 + Z <v,-aivaj, V(Uz - Ui))LQ
ij*l i,7=1 i,7=1

- Z i) gij, V(i — v;)) 2

1,j=1

== ) (wiay V(u; — v;), V(ui — v;)) 2 + Z ui)ai; Vv, Vug — v;)) 2

'J—l ,j=1

- Z = 0i)gij> V(ui — vi)) 2
1,j=1
(6.12)

where again € = 1r<r1i£1 ¢;. We use the Cauchy-Schwarz inequality in (6.12) and Young’s inequality
<i<n
for products to get

3z le = vlize + ellV(u = v)L

n
<3 gl I s~ )3 + IV = 02 + o > (a5l — v2)°
i,j=1 3,j=1
1 & 2
+ 55 pa 1(ng‘j\|LooHui—vz‘||L2)

1 n
2 2 2
<CHss Lo Z Vil pallwill o 1V (i = w72 + 08119 (= 0)l72 + 5 D> (gl poe i — vill2)
i,j=1 i,j=1
1 & 2
+ 55 2 (emson=lagllIVo;l ol (wi = vi)ll2) ™
i,j=1

Here > 0 is arbitrary but fixed and cgs< e~ is the constant resulting from the continuous
embedding H® — L°°. Due to the estimates in corollary 6.1.3 and theorem 5.1.3, where we

recall that wu,,n > 0, are unique we have

w(®)|| s < (s)up||u,7HLoo(07T;Hs) <\/1+|[u0)|3s, almost everywhere.
<n

Thus, we can make use of the assumption (6.11):

n n
2
i S Wil il e < carrsoe 3 (\/1 ; ||u°r|Hs) WVils <e—n.

i,j=1 4,j=1
This leads to
1d

2 2
Sz le = vlize + ellV(u = v)L
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2
< (e =7 +n0)|V(u=v)|72 + C(s,d,n,8) (|Voll o + gl oo ) 1w = 072

We choose § < % Then the second term on the left-hand side absorbs the first term on the
right-hand side and we are left with

1d

2 2 2
5 sellu = vl3a < Cls,d ) (190 e + sl o) s = vl

Notice that C(s,d,n,v) (|[Vv] 4= + HginLo@)2 is a integrable function due to v € L?(0,T; H*T1)
and g;; € L>(0,T; W#**). We can therefore apply Gronwall’s lemma to get

lu(t) —v()]|7. <0, tel0,T]
because v and v fulfil the same initial value condition. Thus u = v. O

Corollary 6.1.5 (Global existence). Let the assumption of corollary 6.1.3 hold true. Fur-
thermore, let all the assumptions made for o; in section 1.1 hold for T = oco. If condition
5.12 is fulfilled and g;; = 0 for all 1 < i,5 < n, then there exists a global unique solution
u € L(0,00; H*(RY,R™)), with Vu € L%(0,00; H¥(RY, R™ %)), of the cross diffusion system
(PDE II).

Proof. This is a direct conclusion from corollary 6.1.3 and lemma 6.1.4. O

6.2. Error-Estimate between u and Uy

We have already seen in the proof of lemma 6.1.2 (local existence) that, under the right con-
ditions, there exists a sequence of solutions of the non-local diffusion problem (PDE I), which
converges weakly to the solution u of the cross diffusion system (PDE II) for 7 — 0. But one can
even show general convergence of solutions of (PDE I) towards u in a strong sense as initially
proposed in [5, Proposition 2]:

Theorem 6.2.1 (Error-estimate). Let u,, € L?(0,T*; HSTY(R% R™)) be a series of solutions
of (PDE I) and u € L?(0,T*; HSTY(R?,R™)) be the solution of problem (PDE II) fulfilling the
same initial value condition. Furthermore, let

n
e 0 (VU I ) Vil 22 (6.13)

ij=1
for some v € (0,¢€). Then the following error- estimate holds:
ot = gl 22y + 1900 = )|z gizy < OO, ¢ € 10,771 (6.14)
where C(t) is a continuous function of t and T* is as in theorem 5.1.3.

Proof. We proceed as in the proof of lemma 8 in [5].

u; and u,); fulfil the following equations for every ¢ € L2(0,T*;H') and 1 <1i < n:

(Orui, @) g1 + (0 Vi, V) 2 = (> wi (aijVuy + gij) , Vo) 12 (6.15)
j=1
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(Ortin, B -1 + {03Vt 5, V) 12 = Zu,,, ( ! Vi, +g,~j) Vo) 2. (6.16)

By choosing ¢ = u; — uy; and taking the difference of (6.15) and (6.16), we obtain

(Oui — upiyui — un i) g1+ (0iV (ui — uni), V(g — ugg)) 2

_<Z U; (a,-jVuj + gij) , V(u; — um)>L2 + <Z Ui (‘/z? * Vg ; + gij) , V(u; — um»Lz.
j=1 j=1

We sum from i = 1,2,...,n, expand the term on the right-hand side and use the Cauchy-
Schwarz inequality, as well as the coercivity of o;(e = 11r<m£1 €;). Recall that (Opu; — wy 4, u; —
<i<n

2
Uni) -1 = g5 ggllwi — ugal72:

2 2
s llu— Un”m + €|V (u - Un)”m

—< Z uiaijVuj, V(UZ — un,,-)>L2 + < Z uiaijVun,j, V(uz - um))Lz

i,j=1 i,j=1

+( Z wi Vil * Vg 3,V (u; — up;)) g2 + (Z U i Vii % Vg 3,V (wi — ) 2

i,j=1 i,j=1
n
—(D (ui —uig) gij, V(ui — ug))
i,j=1

= = > (wiayV (uj — ), V(ui = uni)

i,j=1

+ Z w;( V * Vg j — aij Vg ), V(ug — uy;)) 2
,7=1

+ Z ((un,; — uz)VJ * Vg, V(u; — up,i)) 12

i,j=1
- Z — i) Gijs V(Ui — un)) 12
1,5=1
< il peolaig 1V (= g ) 22 IV (i = 1t )| (6.17)

ij=1
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3 il [ (V5 T = V)| IV = )l (618)
ij=1

n
3 Mt = il g2 [ Vi T |97 = i)l (6.19)
ij=1
n
) s = iyl 2195 | oo 1V (s = )] 2 (6.20)
ij=1

The term (6.17) can be further estimated by making use of the fact that H® is continuously
embedded in L. We recall the inequality-chain

lu()|| s < 2up||un||Loo(07T;Hs) <4 /14 Hu0||%[5, almost everywhere, as show in
<n

corollary 6.1.3 and theorem 5.1.3. Then, together with assumption (6.13), we get:

n
2
(6.17) < IV (u — up)l|Tocmsosre Y luillgslas|
ij=1

n
2
<V (u—ug)r2cmsone Y luill ol Vgl o
i,j=1

< (e =NV (u—up)|3,

where we recall a;; = [ Vij(z)de = [ Vi(z)dz.
R4 R4

To estimate the term (6.18), we first want to show H(VZJ * Vg j — aijvun’j)Hm < Cn for some

constant C, by proving ‘((VZ? * Vg j — a;j Vg j),v) 2| < Cnllvl| 2 for all v € L2(RY,R™). Let

therefore v € L2(R%,R") be arbitrary but fixed. Then we have

‘<(V£ * Vg j — aijVun,j),v) 12

= /(VZ;7 * Vg j — aijVuy, ;) - vde

d

= / /Vlzl(y)Vum(:n —y)dy — /Vzg(y)Vum(a:)dy -v(z)dz|.
d d R

= //Vg(y) (Vuy j(z —y) — Vuy j(z)) dy - v(x)dz

d Rd
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[ [ V) (o =) = V@) - vty

¢ By(0)

where in the last step we used supp V;; C B,(0) := {z € R?: |z| < n}. Because s > % +1,
H**t1(Q) is continuously embedded in CZ(f2) for every bounded and open subset of RY. In
particular u, € C%(R?% R™). Hence we can apply the mean value theorem:

= / / Vg(y) (Vg j(z —y) — Vuy j(x)) - v(z)dydx

4 By(0)

d 1 P
- / / VZ-’]?(Q)Z O/vgsgéj(x—yC)dC (=y)u(z)dydx

a / 0%u
[ [ i Y| [ 5o - o) | (o) dyda
0

[ | | v DPusste - so)e@rdydad

0 R? By (0)

10| [ WD = 50)|lo(o)l dodyc

1
</
0 B,(0) Rd
1
<[
0

VI[P 3¢ = 5Ol vl 2y
By(0)

2 ||U||L2dC = 77||Vij”L1 HDQUW,J'HLz ||UHL2'

J 1 ‘ ‘ DQUn»]

1
<17/’
0

Due to u € L*>(0,T*; H®),

‘«VZZ * Vg j — aigVun,j),v) 12

< nllVigll o | D5 2 0] 22 < nClol 2
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for some constant C'. As v was arbitrary, we get

This, together with an application of Young’s inequality for products, leads to

- az‘jvum’ Lo SVl | D% 5| 12 < nC- (6.21)

2

no
(6.18) < 7|]V(u — Un)H 4+ —— =

i * Vg — aij Ww“ .
L
).]_

no
< 5 lIViw - uy)|” + C(8)||uol 71

where 0 > 0 is arbitrary. In the case of the term (6.19) we apply Young’s inequality for products.
Furthermore we make use of the embedding H® — L*°:

(619) < Y g — il

4,j=1

LIVl e [V (i = uni)ll 2

no 2 C s oo 2

< 7”V(U —up)ll72 + L™ ‘—>L Z l[un: — “2HL2 Vn 1||Vun,jHHs

7]7
< @HV(U—U )72 + C@)I Vgl 1wy — ull}
— 2 m)ir2 un Hs un u L2
The remaining term 6.20 undergoes a similar treatment:
n
(6.20) < > [[ui — iyl p2crrses oo llgi | g« IV (s — i)l 2
ij=1
ns ) NCrscy o linax ”ngHLoo (0,T;H¢) )
< 29w — w2 + - s = g2

All in all, we have

2 2
5 7w = unlls + €l V(w = uy)l|7

3nd
< (e =7+ IV (= ug)ll3s + CO)luolen® + C6) (IIVunlfye +1) iy — w2
We choose § = g-. Then some terms on the right hand side get absorbed by the corresponding

term on the left hand side and we end up with

1d

2 v 2 2 2
sl =l + 2NV @ =)z < On2+ C1 (Va3 +1) lluy — ull22
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or alternatively in integral form:

t
Y
(= )OI + J19 0 = u) a0 < ot + Cr [ (IFun(Ol +1) = o)
0
(6.22)

where we recall that u and ugs satisfy the same initial value condition. We apply Gronwall’s
inequality (see C.3)

t t

I(u = wg) ()72 < Cn’t + 01772/Texp(/HVun(C)H?;st)IIVUn(T’)qusdr-
0 r

Because ||Vuy,|| L2(0,7+, 1= 18 by assumption uniformly bounded, we have
(= un) ()22 < Crt + Crtap. (6.23)

Using (6.23) in (6.22) and recalling the uniform boundedness of u, again finishes the proof. [
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7. Intermediate Results

In this chapter the results of the previous chapters are summarized and put into context.
Furthermore, an idea is given how to show that the occurring probability density functions,
corresponding to (SDE I) and (SDE II), are the solutions of the intermediate system (PDE I)
and the cross-diffusion system (PDE II).

7.1. Recapitulation
So far, we showed the existence of weak solutions for two cases:

i) o; € L>°(0,T; L>) where o; does not depend on the space variable 2 € RY, that is to say
oi(x,t) = o4(t) for all t € [0,T].

ii) o; € C(0,T; H®) N L0, T; Wt1°) and 0y0; € C(0,T; H*=2) N L?(0,T; H5~') where s
is a natural number with s > % + 2.

In both cases o; has to be symmetric, uniform coercive and satisfy the following Hélder-condition
(see theorem 4.2.4, theorem 4.2.8 and remark 4.1.20):
There exist constants 3, C' > 0 such that % <fB<1and

vy oi(a, )y — yT o, s)y| < Clt — s/’ |y (7.1)

for all z,y € R% and t € [0, 7.
Additionally, for the existence of solutions to the stochastic systems (SDE 0)-(SDE II), ,/o; has
to satisfy

Voilz,t) = Voily, )] < Cle —yl,
[Vai(e,t)] < C(1+ |z]),

for all 2,3y € R? and t € [0, T] for some C' > 0. The same condition needs to hold for the first
derivative of the solution u of (PDE II) as well. But they are automatically satisfied for Vu
on the interval [0,7*] because H* C C? for s > g + 2, and the second derivative is uniformly
bounded due to u € C(0,7%; H%) and H® — L. Therefore an application of the mean value
theorem yields the Lipschitz condition. The linear growth condition is satisfied due to the
boundedness of Vu which is, due to Sobolev embeddings, an element of L>°(0,T™; Cg). We
therefore have:

(7.2)

Corollary 7.1.1. Let 04, 1 < i < n, satisfy either of the two cases i) or ii) above and let it
fulfil the conditions (7.1) and (7.2). Then there exists 0 < T* < T such that there are unique
stochastic processes which solve the systems (SDE 0)-(SDE II) on the time interval [0,T).
Additionally, the solutions of (SDE I) and (SDE II) have probability density functions. If the
assumptions on o, 1 < i < n, are fulfilled for T = oo and g;; = %Zldzl B%l(ai)wl = 0 then,
under condition 6.11, T =T = oo.
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7.2. Identification of the Probability-Density Functions

In this section we want to give an idea on how to prove that the density functions of the processes
XFand X ,’71 solve the differential equations corresponding to (PDE I) and (PDE II). Because we
do not want to loose ourselves in details, not all of the following arguments are fully worked out.

Let ¢ and k£, with 1 <7 < n and 1 < k < N;, be arbitrary but fixed and s > %—i— 2, s € N.
Furthermore, let 4; be the probability density function of the process Xz-k, which solves the
stochastic differential equation

dXF(t) = - Z ai; Vi (XF(1)dt + V2 /ai(XF(t), ) dW (1)

J=1

XF0) =¢f,

where u is the solution of (PDE II). Then 4, satisfies

/ o (x, )i (x, t)da = / (x, 0)a; (x, 0)da

// s (z, s)ui(z, s)dxds — //Z:a”uZ z,s)Vuj(z,s) - Vo(z, s)dzds

ORdjl

// Z 8xk8xl IL‘ § O-l(x S)k‘luz(x S)d;L‘ds

R k=1

(7.3)
for all ¢ € C2(R? x [0,7*]) and t € [0, 7] (see lemma 3.2.1). Because this is a weak formulation
of (PDE II), 7.3 holds for u; as well. Let u; := 1; — u;. Then we have

o(x, t)u(x, t)de = (z, 8);(z, s)dzds — Zauul z,8)Vu;(x,s) - Vo(x, s)drds
/ [/ [/

° Rd 0 pa J=!
// Z 837k8331 x § 0—1(.%' S)k‘luz(x S)dxds
0 Rd kl_

where we recall that u; |;—o is the density function of £ and therefore u;(z,0) = @;(z,0) almost
everywhere. The above calculation can also be written as

/ (1), £)da
Rd

t

n d
_ 99 ) =S Vs (z. s) ¢ . y
_// e (z,5) jz_:laquy(x,s) V¢($,s)+kzl_:1 8xk8xl(x,s)al(x,s)k, u;(x, s)dxds.
0 Rd = =
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We now assume that for every 1) € D(R%) we can find a smooth solution ¢ of the (backwards)
evolution equation

3¢
85

0x1.0x
=1 RO

d
ZaUVu] (z,s)-Vo(z,s)+ Z 99 (z,s)oi(z, )k =0, (7.4)
7j=1

for (z,t) in R? x [0, T*], with ¢ |s—= 1. Under this assumption, we can apply the fundamental
lemma of calculus of variations. This would yield

Z_Li(l‘, t) =0

almost everywhere for all t € [0,7%] and thus, 4; = u; almost everywhere. Our next step is
therefore to prove the existence of a solution to the problem

Os ’ — 8xk8xl

n

(x,8)oi(x,t — 8)p = — Z a;jVuj(z,t —s)-Vo(x,s) (7.5)
=1

with ¢ |s—o= 1, which is equivalent to (7.4). We rewrite (7.5) to get

‘Z‘ﬁ —div (0, V) = Zawwj Vo — Z (w) : (7.6)

8xk

For (7.6) we can find a weak solution ¢ € L>(0,T; H*)NL?(0,T; H**') with the same techniques
we used for (PDE II), via the modified intermediate system

gd) —div (0;Vo) = ZV *UJ Vo — Z <V¢) ) (7.7)

S

as demonstrated in chapter 6 (see in partlcular theorem 6.1.2 and lemma 6.1.1). For the equation
(7.7) we can forgo as in chapter 4 due to the linearity and the similar multiplicative structure
of the reaction term on the right-hand side. Let ¥ € D(R? x [0,7*]). Then ¢ satisfies

¢

09 _
/<85, V) pg-1ds = —
0

(Vo 0, V) pads — / (a;;Vuj - Ve, U) 2ds

5 (5v0) ¥)sads

k=1

S L O~

t
/le Vol 02 , des—Z/aUVu] Vo, W) ads
0

Jj=1 0
/ )
g
_O/Q; <8xkv¢)k,\p>mds.

f(gf, W) ;;-1ds can therefore be extended to a continuous functional for ¥ € L2(0,¢; L?). Thus,

% € (L%(0,t; L?))" = L?(0,t; L?). Similarly one can show % € L?(0,t; H*~1) by testing with
DYV with |a] < s — 1. Because we need differentiability regarding the time-variable to make
use of the identity (7.3), we approximate ¢ with differentiable functions. Let 6 therefore be an
element of C°(R? x (0,t)) with
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i) 6>0,

ii) supp 6 C B1(0),

iii) 70 J 0(x, t)dzdt = 1.

—00 Rd

We define! 6,(z,t) := rd1+1'9(£ 1), Notice that supp 6, C B,(0). In the case of f € LP, the

rir

family f x 6, € LP converges towards f regarding the LP-norm for r — 0 (see [31, Theorem
19.15]). Let ¢ be defined via

o) s>t
p:={ ¢(s) 0<s<t
$(0) ,s<0

Let 0 < 0 << 1. Then g5, := 6, % (X[,(;’H(;]q;) converges towards X[,(;,H(;]qz in L2(R%x (—4,t+46))

for r — 0. Because we can identify L?(a,b; L?(Q)) with L?(2 x (a,b)), we get convergence
regarding the L?(—4,t + &; L?)-norm as well. For § — 0 we get additionally convergence of
X[—é,t—f—d]d; towards ¢ in L?(0,¢, L?), due to the monotone convergence theorem. Therefore there
exists a sub-series of gs, which converges towards ¢ in L?(0,t, L?). This convergence can be
extended to L%(0,t, H**1) because ¢ € L?(0,t; H**1) and

« (97" * ( —5,t+9)] @fg)) = O x (DQX[fa,Ha]Q;) = 0, x D" ( —6.t+9] @5) =0 x (X[J,H&]Dad;)

where |a| < s+ 1. For the time derivative in particular we get

58 <9r * (X[f5,t+6](5) (3373)> _88& * (X[ 5t+5}¢) (z,5)

/ / 6t+6 )%9 (x —y,s —7)dydr

— 00 Rd
~ a0,
= / /cb(y, T)g(fv —y,8 — T)dydr.

This yields us

885 (97’ * <X[76,t+5} &) (z, s))

'In literature, the family 6,., 7 > 0 is often called a mollifier.
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0 t
= [(0(0). G @ s = e+ [ (00, G =5 = s
0

+ [ (60, 5w = s = D)ds

t
—— GO~ 5= s+ [ %m,er(x — s =) grdr

0
—{@(7),0r(x — ;5 = 7)) g2 [rmg —(&(1),00(x — 5 = 7)) 2 [15]

— 8 —T))pe2dr

QJ‘QJ
RERSE

=(¢(0),0,(x —,s+0))p2 — (Pt +9),0,(x —-, s — 5 — t)) L2+/
0

:<¢(O),9r(1’ — S5+ 5)>L2 — <¢(t + 6);97"(37 — 8 = 6 — t)>L2 + GT * <X[O7t}g(§> (m,s).

In the case of r < ¢ and s € [0, t], we especially get

;S (GT * (X[—a,m}é)) (z,5) = 0, (X[o 1 gd)) (z, 5).

Therefore 2 5e (9 * ( X[- 6,t+6]¢~))) converges in L?(0,t; L?) towards %

With the same argumentation as above we can extend this convergence to L?(0,¢; H5~!) and
due to s > %l + 2, all the considered convergences hold also in L?(0,t; L®) as H*™! < L.
This is necessary as we only have ;(s) € L®(0,7*; L'). Furthermore we get convergence in
C([0,t], H*) due to the continuous embedding W12(0,¢; H5*Y; H®) < C([0,t], H®). As differ-
entiable function, once in time and at least twice in space, gs5,(z,t — s) can be used in (7.3).
The limit? r,§ — 0 leads then to

/ Y (z, t)dr
Rd

/ 8 " 49
= // —g(x,t —5) — ZaijVuj(x, s) - Vo(x,t —s) + Z 833;23:1 (z,t = s)oi(z, s)u | X

0 Rd Jj=1 k=1

X U;(z, s)dxds = 0.
(7.8)
As 1 was arbitrary, u;(-,t) = 4;(-,t) almost everywhere. The same argumentation can be applied
to the probability density function of the solution X’f;i to (SDE I) and the weak solution of (PDE
I). We therefore have:

Corollary 7.2.1. Let the assumptions of corollary 7.1.1 hold. Then the probability density
functions of the processes X’f;i and Xk, characterized by (SDE I) and (SDE II), form the unique
weak solutions of (PDE I) and (PDE II).

2We use the sub-series of (8, r) for which the above convergences hold.
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8. Error-Estimate

This chapter focuses on estimating the mean absolute error made when approximating the
solution X" of (SDE 0) with the solution X of (SDE II).

8.1. Estimate for the Approximation-Error

The stochastic differential equation (SDE III) originates as the formal limit of (SDE I) when
n — 0 and N; >> 1 (see section 1.1). For that reason one might expect that the solution )?Zk
of (SDE III) can be used to approximate the solution XSZN * of (SDE I) in a certain sense. To
make this intuition rigorous we will prove the following error-estimate. A proof of this estimate
for constant diffusion o > 0 can be found in [5](see [5, Theorem 3]).

Theorem 8.1.1. Let the assumptions of theorem 6.2.1 and lemma 2.1.1 hold. Furthermore let

s > %—1— 2,0 < T < T* where T* is as in corollary 6.1.3 with T Zooandlet 0 < v <1

be sufficiently small. If for fited n > 0 and N := 12121 N; the inequality viog N > =244 s
<i<n

satisfied, then

n
sup E Z sup XkN—Xk

7,8
1<k<N — 0<s<t

) < Cp(t)yn, te(0,T] (8.1)

where Cpr () > 0 is a continuous function of t which depends additionally on T . n, ”DQVUHLoo}

”DUiHLoo(o,T;Loo) and u°.

To show the result above, we will proceed as in the proof of theorem 3 of [5]. The left hand
side of (8.1) can be bounded above by

n
sup E Z sup X77 Xik’N‘
1<k<N i—p 0<s<t o

n

EN ok

< sup E E sup Xw' — Xy
1<k<N — 0<s<t

) (8.2)

which can easily be seen by applying the triangle inequality. Here )_(7]; ZN is the solution of the
intermediate stochastic system (SDE II). We will derive error estimates for the two terms on
the right hand side of (8.2) to conclude theorem 8.1.

n
+ sup E Z sup )_(f;i—)?f
1<k<N — 0<s<t! 7

Lemma 8.1.2. Let the assumptions of theorem 8.1.1 hold. Then

sup E ( sup )X i ( (s)’) < CHNCO=NR 1 e (0,17
1<k<N 0<s<t
where C(t) > 0 is a continuous function on [0, T, which depends additionally on n, ||D2VinLoo,
1Dl oo (0,7;.00) and uo-
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Proof. We proceed as in the proof of lemma 13 in [5]. Let 1 < k < N. We define the stochastic
processes SF via

n 2
Sk = sup |X* —XF.(s)] .
t Z: O<SI<)t UK ( ) n, ( )
Subtracting the equation (SDE II) from (SDE I) results in
k,N k,N; 1,N; -
X (s) = /Z N, VV;]-(XT]’@. (r) =X, ;°(r) — VV;] * un,j(X,I;i(r),r)> dr
7=1 =1

Ve / V(XN ), 1) = o (XE (), )W E ()
= 11(8) + I5(s)

which in turn implies

E|sf]| -E

> s ul<s>+12<s>\2]

i—1 0<s<t

n ) _ 2
Zoiugt Xs”;vj(s) - Xkﬂ-(s)‘ ] =F
i=1 s

n

> sup [1(s)P

i—1 0<s<t

<9E +2E

Z sup ’-72(5)12]

i— 0<s<t

where we used the triangle inequality and the fact that 2ab < a? + b?>. We take a closer look at
the first of the two remaining terms:

E sup |11 (s)|?
Z:O<sgt| 1( )| ]
=1
i n S n 1 N] 2
=K Z sup /Z (VV" Ni(py — Xf]’f;’j (r)) — VV[} * Un,j(Xs,i(T),T)) dr
i=1 0<s<t ]:1 ] =1
i 0
no N; 2
<E Z sup / N ZVV” XkN (r) — qu;f;]j (r)) — VV;;? *“n,j(Xf;,i(T)ﬂ“) dr
O<$<t 5 ] 1 Il
l 2
~ 1 kN I,N; _
<k /Z N, Vn X () = X557 (1) = sz;] * un,j(Xg,i(T%T) dr
o J=1""7]i=1

Applying the Cauchy-Schwarz inequality regarding ¢ and j, we get

> su ul<s>\2]

i—1 0<s<t

E
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+E |, /Z?’“; Zvv” X)) = X)) -

2

2

k,Ni vl
X5 (r) = X5,5(r)| dr

tn |- k,N; I,N; ~
<E Z/ N2 Z VV;}(X% (r)— Xn,jj(r)) — VV;J * “n,j(Xj;’i(?”), | dr
_i:l 0 j=1 J =1
R A
n kaNz l,N
=F Z/ ]\Tj2 Z VV?(Xn,i (r) — Xn’jj(r)) — sz?(
=17 j=1 =1

2

t
" " 3tn > vk Ni %
+e|y | WjZW" (X (r) = X3y (r)) = WV (1) = Xy (1) dr
0

2

(VV] ) (Xyyi(r),r)| dr

where in the last step we expanded the innermost term, applied the triangle inequality and used
the inequality (a + b+ c)? < 3(a® 4+ b? + ¢?). Let z,y € R%. Because V;; € CZ(R?), the mean

value theorem implies

~—

VVi(z) = VVI(y ‘— /D2V” z+ (x—y)t)dt(z —y

Hence the Lipschitz-constant L?j of VV;? is bounded by HDng‘
this results in L?j < W%HDQVEJ'HLOO'

obtain the following estimates for the terms I} and I?:

norn 3tn N] —
fse| S [ RS e -,
J

11031

2d+4 lgf}anD VUHLO@ Z / [SUp

3tn? ma ‘ 3tn?
X

=2+ 1< 5<n

2
<Jo;

M) —
Lo’ Due to Vj(z) =

Using Cauchy-Schwarz inequality regarding [, we therefore

LTl

nid%j(%)v

Y0 - XL, \2] dr

t

2 2
DV [ [s]ar = g s D2V, [ B [t as

0
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Here the last equality holds true because SF and S! are identically distributed for all 1 < k,I < n.
Repeating these arguments for the term I? yields the same estimate:

t
3tn?
I < o max, [|D? VUHLOO/E |5%] ds.
0

To assess the term I3, we establish some uniform estimates for VV,L;7 We recall that Vzg’(x) =
-1Vii(5) € CF(R). Thus,

(8.3)

o

ij 1
/r’+

and

1 2 4 1 Cc?
12 2d+2 /‘VVZ] dr = nszrz[WVij(l“N ndx = ﬁlgax ”VVZJHL? < 77
Simplifying notation, we define the stochastic process Y
k,l v Y v
Yii o= VVIXR(r) = X5 5(r) = (VV xu ) (Xa(r), 7).

The term Ii)’ can then be written as

2

3tn - _
=B {3 [ 3 2SOV ) - XL — (T ) (o),
=17 j=1"7 |i=1

E ZYi’fj(r) dr

L =1

I
IM:
=K

S

&
I
-
<

.
<.
Il
—_
<

N;
e
=1

Here we used the relation z - & = (x, )y = |z|*, where z € RY. We will show that the random

variables Y-kl ,Yk " (r) for I # m, are uncorrelated. Then the second term, on the right-hand
i, i,

side of the last equatlon, will vanish and we can use 8.3 and 8.4 to estimate the remaining term.
Let therefore 1 <I,m <n and [ # m. Then we have

t

I
M=
ki

2

J

)]

I
]+
g -
O\{* O\{_‘_ O\(_‘_
&
M=
=
Qa?r
=z
o
3
=<
v =
2

~

o=
—~
3
~—
Do
| S
oW
3
+
NE
png
FE
o _
=
r
~
&
/:
S~—
S
3
—
=
S~—
U
3

@
Il
,_.

K, km
E v o) v )]

< [(VVICRE ) — X 09) — TV # ) (K1) 7))
(VVICRE () ~ X5(0)) — DV 0y ) (K 0. )]
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The stochastic process Xﬁi(r) is adapted to the filtration F¥, which is the filtration initiated

(2

by Wik and ff . As the Brownian motions Wik and the initial values §f are all independent so

are the filtrations F¥ and thus the stochastic processes X];l(r) Hence, in the case i # j, or
i = j where simultaneously k& # m and k # [, the joint distribution of the stochastic vector
(Xf;’i(r),X?lm (r), X;;(r)) is given by the product of their individual probability density’s. In
these instances we get

E [V () 5" )] =B [VVI(EE(r) = Kb 5())) - VVEE () = X))

FE[(VV] 5 g (K (r), ) - TV ) (K (r), )

— B [VVI(ER () = XL, (7)) - (V5 g ) (X (), 7)]

— B [VVI(ER () = X525 () - (V5 ) (X (), 7)]
)

=B [VV(XEi(r) = X5 () - VVI(XE () = X55()|

+E|(VV] 5 un,j)Q(X,’;ﬁi(r), )]
— 9 [VV(EE () — XL 5(r) - (VW wuy )X (), )]

We use the absolute continuity of the stochastic processes X§7i(r) regarding the Lebesgue-
measure to obtain:

B30 v 0] = [ [ [ 9V =0 YV - 2unsta)un () (:)dodyd:
R4 R4 Rd
" / (V! % 2 (@)u() e (8.5)

- 2//VV77 r—y (VV * U ) () U 5 (2w, (y)drdy.
R? Rd

Furthermore, we have

_ / / / TVI@ = y) - TV — 2ty (et ()i 5 (2) vy

Rd Rd Re
= [ [ ]9V = vty 9V = 2w )
Rd RY RY
// (VV] *up ) () - VV (@ — 2)uy,i(2)uy,;(2)dedz
Rd Re

= /(VVl? * Uy ;) ( /V 2)uy j(2)dzuy i(x)dx
Rd

= /(VVZ] * Un,j) (@) - (VV[] * Un, ;) (@) un i (v)dz
R4

:/(VVl? * up )2 (2, )de
Ra
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and thus, together with (8.5),

E[v* (). Yk’m(r)] ~0. (8.6)

,J 1]

The remaining case ¢ = j with k = [ or k = m, can be treated similarly. Therefore (8.6) holds
true for every combination of (i,j,m,l) where m # [ and we obtain

n t N
3tn 2 k.l 2
1= % [ SE ol | o
ij=1""J ¢ I=1
n t N; _
3tn n vk ol n 7 2
=3 S5 [ DB |[VIEE ) = X)) — (VY] g ) (K)o | dr
ij=1"J ¢4 1=1
n t N, L
6tn n vk ol 2 n 7 2
<> [ SE|[IVIEE) = X0+ (V) (i), )| dr
ij=1"J 73 1=1 ‘-

6t ; N 02 2
3 n 5
Il S ]V2/ E |:772d+2 + vaz;] L2Hun,jHL2:| dr
1,5=1 J 0 =1
n 13 Nj 2 2
D Dy [ S A
- 2 p2dvz 2 T llLee 0,1312)
’i,j:l J 0 =1
6n2C% > <~ 1 _ 6n3C242
2d+2 N, — 2d+2
N j=1 NJ NT]
for small 7 > 0 and N = min N;. All in all we have
1<j<n
- 2 thz 9 2 f K 6n30t2
2|2 g WP < o max 1D Vil [B[sHds+ a6
- 0

n
For the remaining term E [Z sup \Ig(s)\z] we recall from stochastic analysis that the pro-
i=10<s<t
jection on the j — th variable

() = V2 [ (Vo). (X% (), 7) = (V0. (X (). W)
0

is a martingale with continuous paths, because I is defined as the Ito-integral of some square-
integrable stochastic process. In particular, |I3;(s)| is a positive sub-martingale. This is a
direct conclusion from the convexity and positivity of |-| in combination with monotony of the
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expectation. Using Doob’s Lp—inequality, we get

) )
E sup |I(s)]?| =E su I
;ksgt' 2 ZO<SI<)tZ| 248
i n d 2
<& |35 p 0 | =33 [ (g )
=1 j= 1 O<s<t i=1 j=1 0<s<t
n d
<43 D E Iy (0)F]
i=1 j=1
n d a U 2
=8 > E|> S (XEN ) 1) — (V) ju(XE (), r)dwh,
i=1 j=1 =1y

i=1 j=1 =1

n d d |
<sad > B || [l
0

(8.8)
Let G% (1) be the Lipschitz-constant of (1/0;);;(r). Using the Ito-isometry yields
n n d t - 5
k‘,Ni v
E Zos;lgtlfz(@l?] <8t Y3 [ 8 || 0mues o - e[ | ar
i=1 %% i=1 j=11=17 -
n d t 9
SBdZZZ/IE 20| xE Xk()”dr
i=1 j=11=17
n d d ¢ r 2
2 k,N; \
<8433 [ 5|10 1.1 510 X550 = X830 | ar
i=1 j=1 I=1 0 L 0<s<r
¢
<8d® e D/l o) [ B [S!
0
(8.9)
Combining the estimates above and (8.7), we have shown that
t
6tn 2 6n3Ct>
k 2 3 2 k
E [St} < <n2d+4 lgja}’énHD Vij|| oo + 8d 1gf?n3}l’§d’\D(ﬁ)mlHLoo(o,T;Loo)) /E |:Ss N
0
and thus
sup E [Stk]
1<k<N
6 / 6n3Ct>
tn 2, 12 3 2 k n°ct
< (772d+4 1211132(”“1) Vij [ + 8 é?f}éd“l)(\/a)mlHLOO(QT;LOO)) /E 1<S]‘€1£N5s ds + Np2d+2
4 <k<
C / Cat?
ot k 2l
< <n2d+4 +Cl> /E o Ss | ds + Np2d+2
0 —v = K2
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1

We apply Gronwall’s inequality and choose N and v such that vlog(N) > T

the inequality chain

N" = exp(vlog(N)) > vlog(N) >

holds true. We therefore obtain for 0 < n < 1:

sup E

[Sk} Cyt? Cot?
1<k<N

=Npd+2 exp(n2d+4 +Cit)

< Cgt2 C(]tz + Cit
=Npd+e exp( 2t )

<Cot’ N" "1 exp((Cot* + C1t)vlog(N))

:CQtQNV_lN(COt2+Clt)V).
We set C(t) := max{Cy, Co }t? + C1t + 1:

sup E [Sﬂ < C(HyNCOv-1,
1<k<N

An application of the Cauchy-Schwarz inequality finishes the proof:

In particular

sup sup ’XkN (s)‘ <vn sup ,|E
1§k§N Y 0<s<t 1<k<N

1 0<s<t

<\/ﬁc(t)N(C(t)u—1)/2.

sup | X%, <>—5<f:,z-<s>(2] E|1]

O

We now show an estimate for the remaining term in (8.2), regarding the difference Xii(s) —

)?Zk(s)

Lemma 8.1.3. Let the assumptions of theorem 8.1.1 hold. Then

sup E (Z sup ‘X,I;l(s) - X’l’“(s)D < C(t)yy, te(0,T]

1<k<N 1 0<s<t

where C(t) > 0 is a continuous function of t, which depends additionally on n, ||D2Vij

1Dl Lo 0,710y and uo-

Proof. We proceed as in the proof of lemma 14 in [5].

As in the proof of lemma 8.1.2, we define

n _ N 2
SEi= 3 sup [ Xk ()~ Ko

j—1 0<s<t
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We take the difference of the two equations (SDE II) and (SDE III) to obtain

X,ﬁi(s) /Z VV. >l< un (X (7"), r) — ai; Vu; (X'lk(r), r)dr
+v2 / VE(XE (1), 1) — E(RE (), r)dW k()
0

= Il(s) + IQ(S)

which implies

n

~ 2
E [Sﬂ =E sup ‘X,’;’l(s) — Xf(s)‘ =E Z sup |11 (s) + Ia(s)[?
1 0<s<t i—1 0<s<t
n n
<2E sup |I1(s 2l +2E sup |I2(s 2],
Z.Z;D<s<t| (®)] ;0<s<t’ (s)]
For the second term on the right-hand side, one can prove the estimate
n t
E L(s)?| < 8d D o (0] o / IE 8.10
;Oiggt\ 2(s)] ] i [1D(/T)jll o o, 0 (8.10)

with the same arguments as in the proof of lemma 8.1.2 (see also (8.8) and (8.9)).
Otherwise, for the first term on the right-hand side we get:

> s |fl<s>|2]

E

i—1 0<s<t

- s n 2
<E Z sup (/ ‘(an * UW,J)(XSJ(T)? ) — aUVu]( ' ‘dr
0

_ =
I n t n 2
<B || [ [TV ) (K100, = Vs (RE ) )
=1\ j=1
) n t n 2
<3E / ’(VVg s u) (XE(r), ) — ai; Vuj (X ‘dr
=1 \p j=1
[ n t n 2_
38 | 3 | [ SV ¢ ) (REG)) = (V) (REG) )]
=1 \y j=1
i n 4 n \ 2
+3E / ‘(vvg} w1 ) (XE(), 1) = (VVT 5wy ) (XE S (r ‘dr
=1\ j=1
=L +G+1
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where we expanded the right hand side used the triangle inequality and applied the inequality
(a+b+c)? < 3a® + 3b% + 3¢2.
We recall the estimates (6.14) and (6.21),

llu — un||Loo(o7t;L2) + ||V (u - un)”L2(0,t;L2) <C(t)n, te [O,T*],

ok Vug — aijVUj’ Lo < HVij”L1HD2ujHL277’ te0,T7],

and thus conclude for the terms I and I%:

Il <32 Z//‘ VV"*UJ (x,7) — aijVuj(z,r)||ui(z,r)|dcdr

=1 jloRd

2
<33 [ 301w - asvus | Il
i=1 \j=1
n 2
2
<30 ps sy poe |ull Lo (0,111 ZH(V‘/QZ *uj) — az‘jVUj’ .

<Cn?,

n

n t
B3y (3 [ |0V ew) ) = WV« ) o) fusto, ) drds
i=1 \J=10 fu

2

n
(| ||L2(0,t,L2)
1

53227? Z‘

j=

n
2
<3n®|[ull 220,112 Z‘

Vil V(uj — Uw‘))

L2(0,4;L2)

2

n
VIikV(iu; — ;
iJ (uj u"%])’ L2(0,T;L2)

2
HV ufl,j)HLZ(o,T;m)

SC( )77

where in the penultimate step we used Young’s convolution inequality. To asses the last term
I3, we recall that V(VZ;7 %y ;) is Lipschitz and its Lipschitz-constant L?j is bounded by

2(
‘D *“n,J)H

7 LlHDQUT)

L < ‘ Lo ‘ ’ HLOO - ‘ lle
where the last inequality is an conclusion of Young’s convolution inequality. Due to the embed-

ding H® — W%, we have Dzun,j € L*(0,T;00). Applying the Cauchy-Schwarz inequality,
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we therefore get

§3tn2 max
1<i,j<n

<tC /t E [Sﬂ ds
0

Adding all the estimates above together, we have

Xk (s) - X, (s)’ZI dr

0<s<r

t
2 2
i L1||D2u’7HL°°(O,T;L°° /E[ sup
0

t
[S’f] <C?+C(t+1) /IE
0
for some C' > 0. Gronwall’s inequality implies
E[St] < Cn?exp(C(t+1)t) < Clt)?

where C(t) is a continuous function of ¢ on [0,7”]. Applying the Cauchy-Schwarz inequality
finishes the proof:

_ ~ 2
sup ’Xk’i(s) - X-k(s))

7

2]

n n
sup E Z sup ’X’f;l(s) — X’f(s)’ <vn sup ,|E Z
1<k<N —; 0<s<t! 7 1<k<N — 0<s<t

<Vn sup +/E[Sf] < C(t)n.

1<k<N
O
Proof of theorem 8.1.
Due to lemma 8.1.2 and lemma 8.1.3, we have
n
kN _ kN
sup E sup | X0 — X" ‘
1<k<N (; o<s<tl T !
n n
< sup E Zsup X:;ZN—Xk + sup E Zsup X,’;l—Xf
1<k<N T 0<s<t 1<k<N T 0<s<t ’
<C(t)NCO=D/2 L (1),
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Because C(t) is continuous on the compact set [O,T/], it is bounded. We can therefore find
v > 0 such that C(t)r — 1 < ¢ < 0 for some constant ¢ and ¢ € [0,7]. Recall that N depends
on v by means of vlog(N) > 712“‘%' We therefore get

1 ) - 2,'72d+4
2n2d+47 = 1 — CO(t)v

N D72 = exp( (Ot — 1) log(N)) < exp((C(0)w — 1)

where, in the last step, we used the inequality exp(—z) < %, z > 0. Altogether, we now have

for0<n<1:
2d+4

- S 2n ~ ~
sup E su Xk’.N—X.k’N‘ <——+Ct)n<C(t)n.
1§£N (; o<sI<)t K g ~1-C(t)w (t)n < C(t)n
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A. Auxiliary Results in Functional Analysis

A.1. Notation

For a Hilbert-space H we denote its inner product by (-,-)g. In the case of a Banach-space X
and its (topological) dual X', we use the same brackets to indicate

(y,z)y =y(z), zeX,yeX'

We denote the space of all bounded linear function of a Banach-space X with B[X]. Let
m € NU{oo} and n € N. For a subset 2 of R™ we use the following notations for important
function-spaces:

o C(Q), the set of all continuous functions with continuous derivatives, up to order m.
o C}"(Q), the set of all bounded functions f € C™(§2) with bounded derivatives.
cr(Q)

™(£2), the set of all functions f € C™(€2) with compact support.

C*(€2), the set of all functions f € C™(Q) with f(z) — 0 for |z| — oo.

D(Q) = C(9), the set of test-functions.

A.2. Sobolev Spaces

Definition A.2.1. Let k,n € N, 2 C R"™ be an open domain and 1 < p < co. Then we denote
by W¥*P(Q) the space of all measurable functions u : £ — R where all derivatives D% with
order |a| < k exist in the weak sense and belong to LP(2). For W*2(Q) we also write H*(Q).
The norm on W*P(Q) for p < oo is given by

1/p 1/p

fulhrn = [ 3 /\Daurpdx = | S o,
lo|<k g la|<k

For p = co we set

— De .
]| yprre,co g@ll | oo

Remark A.2.2. We define the space WHP(Q, R™) as the set of all R™-valued functions u with
u; € WHP(Q) for all 1 < i <n.

Remark A.2.3. Let k € N. The Sobolev spaces H*(Q2) endowed with the scalar product

(U, v) g = Z D*uD%vdx = Z (D*uD®,v)12(), u,vE H*(Q),
lal<k ¢ la|<k

is a Hilbert space.
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Remark A.2.4. The space C™(Q) N WHP(Q) is dense in W*P(Q), see [19, Section 5.3.2 and
5.3.3]. For Q = R” the space C°(Q) N WFP(Q) is dense in W*P(Q), see [20, Chapter 8.

Definition A.2.5. Let kK € N, Q C R" be an open domain and 1 < p < oco. Then we denote
by H~*(Q) the topological dual of H*(Q).

Lemma A.2.6 (Product-rule for Sobolev-spaces). Let Q@ C R™ be an open domain and 1 <
p < co. Additionally let g € WH1(Q) and u € WLP(Q). Then gu € WHP(Q) and V(gu) =
(Vg)u+g(Vu).

Proof. Let ¢ € C°(Q) and v, € C*°(R), where k € N and ¢, — u in WP for k — co. Then

we have for 1 <i < n,
_/ <8¢k¢ 3¢ )d%
ox;
Q

Taking the limit k¥ — oo therefore yields
ou dg 0o
/ <8£L‘ig Oz; > gz = = z; de.
Q Q

Because ¢ was arbitrary, we get ug € WP and

au Bg d(ug)
8@ 83:2 oz’

forall1 <i<n. O

Theorem A.2.7 (Stampacchias Theorem; Lemma 1.1. in [7]). Let @ C R", n € N be a
bounded, open domain with Lipschitz-boundary. Furthermore, let 1 <p < oo and F': R — R be
a Lipschitz-function with F(0) = 0. Then:

i) Foue WlP(Q) for u € Wr(Q).

i1) 8 -Fou=1F'o P U almost everywhere for 1 < i < n, if F' has only a finite number of
discontinuities.

Remark A.2.8. Choose F' = x{;~0} in theorem A.2.7, where x (.~ 1} is the characteristic function
regarding the set RT. Then ut = x,~o(u) € Wl’p(ﬂ) for u € WHP(Q) and Vut = xz>0(u)Vu
almost everywhere.

Theorem A.2.9 (Nirenberg-Gagliardo inequality; Section 1.6 in [3]). Let Q@ C R"™ a open
domain with C1- boundary or Q =R™ and p > q,r > 1. Additionally let 0 < 0 < 1 and

n n 1

k——<6m——)—n(l-0)-,

%<~ ) —n(1-6);

for a fixred k,m € N. Then there exists a constant C > 0 such that for u € W™™(Q) N L"(£2),
0 1-0
lullwre < Cllullyymallull "

Theorem A.2.10 (Sobolev- imbedding theorem; Theorem 4.12 in [21] ). Let m,n € N, 1 <
p < oo and let them satisfy mp > n or, if m=n, p=1. Then, for m > 1 and j € NU {0}, the
following embeddings are continuous:
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i) WP (R™) — Cf(R™)
ii) WMHIP(R") — WIH(R™), for p < q < oo.

Here, Cg C O is the set of all functions, where all derivatives up to order j are bounded. In
particular, the functions itself are bounded.

Theorem A.2.11 (Rellich-Kondrachov; Theorem 2.5.17 in [23]). Let m,n € N, 1 < p < oo and
let Q C R™ be a bounded domain with Lipschitz-boundary. Then, for m > 1 and j € NU {0},
the embedding W™HIP(Q) — W34(Q) is compact in the following cases:

i) mp<n(md1§q§nf75w.
it) mp=n and 1 < g < oo.
i11) mp >n and 1 < g < 0.

Lemma A.2.12 (Moser-type calculus inequality; Proposition 2.1. in [16]). Let s,n € R™ with
s> 5+ 1 and let « € N" a multi-index satisfyingla| < s. Then there exists a constant C' > 0
such that, for f,g € H*(R?),

1D*(f9llL2e < CUf Lo 1D°glI Lz + N9l Lo 1D Fll 2)-

Here, C does only depend on s and n.

A.3. Integrability and Differentiability in Banach-Spaces

Let B be a Banach-space over R and 0 < 7" < co. We denote the Lebesgue measure on [0, 7]
with A.

Remark A.3.1. The results in this chapter are all formulated for the interval [0,7]. This interval
can be replaced by any other subinterval of [0, c0) and any of the following statements still holds
true.

A.3.1. Bochner-Integral

Definition A.3.2 (Simple function). Let n € N, x; € B and let A; be a measurable subset of
[0,T], for all 1 < i <mn. Then a B-valued function f of the form

=1

is called simple.

Definition A.3.3 (Bochner integral for simple functions). Let f be a simple function according
to definition A.3.2. Then we set

T n
/ F(t)dt =3 A (Ay). (A1)
0

=1

(A.1) is called the Bochner-integral of f.
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Definition A.3.4 (Bochner measurable). f:[0,7] — B is called Bochner-measurable, if there
exists a sequence of simple functions s,,n € N, such that

Tim [|£(8) — su(t) 5 = 0.
almost everywhere.

Definition A.3.5 (Bochner-integrable). A Bochner-measurable function f : [0,7] — is called
Bochner-integrable, if there exists a sequence of simple functions s,,n € N, such that

Jim [17@) = s (0)] et =0,

The Bochner-integral of f is thereby defined via
T

T
0/ F#ydt = lim / sn(t)dt.

0

Lemma A.3.6 (Lemma 1.7 in [25]). Let f : [0,T7] — B be Bochner-measurable. Then the
function t — || f(t)|| 5 s Lebesgue-measurable.

Theorem A.3.7 (Bochner criterion; Theorem 1.12 in [25]). A Bochner- measurable function
f is Bochner-integrable if and only if the function ||f(t)| 5 is Lebesque integrable.

Lemma A.3.8 (Corollary 1.14 in [25]). Let f : [0,T] — B be Bochner-integrable. Then it holds
that

T T
/f(t)dt < /Hf(t)HBdt.
0 B 0

Furthermore, let g € B'. Then the following identity holds true:

T T
<%/fmﬁmmﬂ=/@Jmnmmw
0 0

where (g, h)p By = g(h) for h € B.

Theorem A.3.9 (Fundamental theorem of calculus). Let f : [0,7] — B be a Bochner inte-
t

grable function. Then F(t) := Off(s)ds is almost everywhere differentiable and %—f = [ almost

everywhere.

Proof. Let 0 < h <T —t and 0 < t < T|. The statement follows from

t+h t+h

1B+~ F@ls = |y [ feas— 10| =| 5 [ )= ropds
t B t

B
t+h
1
< [156) = @)l sds
t
and the fundamental theorem of calculus for the Lebesgue-integral. O
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A.3.2. [P-Spaces regarding Banach-Spaces

Definition A.3.10 (LP-Space). Let 1 < p < co. We define the space LP(0,T’; B) as all Bochner
measurable functions f : [0,7] — B such that

T
/ 1£(1) 15t < oo.
0

The space L>°(0,T’; B) is the space of all Bochner-measurable functions f, such that

LFOll s < My,

almost everywhere, where My > 0 depends only on f.

Theorem A.3.11 (Completeness; Theorem 1.22 in [25]). Let B be a complete Banach space.
Then, for 1 < p < oo, the space LP(0,T; B) endowed with the norm

T
1l ooz = / 1|15t
0

and the space L*°(0,T'; B) with the norm
11l e 0,78 = esssup|[ ()| 5,
0<t<T

are complete Banach spaces.

Remark A.3.12. Analogous to the standard LP-spaces, the elements of LP(0,T; B) are
equivalence-classes. Two Bochner-measurable functions f, g are in the same equivalence-class
of LP(0,T; B) if |f — gll ooz = 0-

Remark A.3.13. Let H be a Hilber space. Then L?(0,T; H) endowed with the inner product

T

(u, v) 200,111y = /<u(t),v(t)>Hdt, u,v € L(0,T; H),
0

is a Hilbert space.

Lemma A.3.14 (Lemma 1.23 in [25]). The set of simple functions is dense in LP(0,T; B) for
1<p<oo.

Lemma A.3.15 (Proposition 2.15 in [26]). The set C°((0,T), B) is dense in LP(0,T; B) for
1<p<oo.

Proposition A.3.16 (Dual-space; Proposition 23.7 and exercise 23.12d in [18]). Let B be a
reflexive and separable Banach-space and 1 < p < oo, 1 < q < oo with % + % = 1. Then the
following identification of the dual space of LP(0,T; B) holds:

(LP(0,T; B)) = LY0,T; B).

Definition A.3.17 (Evolutionary triple). Let V be a reflexive, separable Banach-space and H
a separable Hilbert space. If V' can be continuously and densely embedded in H, then the triple
V — H < V' is called an evolutionary triple.

103


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Definition A.3.18 (W'P(0,T;V, H)). The space WP(0,T;V, H) is the set of all
u € LP(0,T;V) such that u; € L1(0,T; V"), where % + % =land 1< p<oco.

Proposition A.3.19 (Proposition 1.2 in [28]). Let (V, H, V') be a evolutionary triple and 1 <
p < 0. Then,

i) the space WiP(0,T;V, H) endowed with the norm
lullwrmoryvm = 1l oo ray + oo,  ©eWHP(0,T;V, H),
s a Banach space.
i) WIP(0,T;V, H) can be continuously embedded in C([0,T]; H).

iii) the mapping t — ||u(t)||; is absolute continuous for every u € WHP(0,T;V, H). Further-
more it holds that

ey = 2 (t), ()

almost everywhere.

Proposition A.3.20 (Theorem 8.1.9 in [27]). Let (V,H, V') be a evolutionary triple and 1 <
p < 0o. Then the space C1([0,T],V) is dense in WP(0,T;V, H).

Theorem A.3.21 (Lemma of Aubin; Proposition 1.3 in [28]). Let (V, H, V') be a evolutionary
triple and 1 < p < 0o. Furthermore, let the embedding V — H be compact. Then the embedding
WP(0,T;V,H) — LP(0,T; H) is compact as well.

Proposition A.3.22. Let 2 C R” be an bounded, open domain with Lipschitz boundary, or
Q =R" and let u € W20, T; HY(2), L*()). Then the mapping t — ||U+||iz(ﬂ) is absolute
continuous and

d
@HMH;(Q) = 2(ug, u") -1

Proof. Let g € C}(R) with g(0) = 0. Furthermore, let u € C*([0,T]; H'). By Stampacchias

theorem, g(u) € H', see theorem A.2.7. Let t € (0,T) be arbitrary but fixed. The sequence
1 Cu(t— 1

D/'u = w converges for n — oo towards u; in H' and therefore in particular in L2.

Theorem C.2 now implies the existence of a subsequence nj, =: =, such that D?’“u converges

k
almost everywhere point-wise towards u(t). We show that < (u(t))_Ziu(t_hk)) converges in L?
towards ¢'(u(t))u¢(t). We have

g(u(t)) — g(u(t — hy))
Iy,

u(t) = u(t — )

e ()t

— g (u(®)u(t) = g'(¢)

u(t) — u(t — hg)

— (0 - o) " g (MO ), 4

for some ¢ € (u(t — hg),u(t)). Because Df’“u(x, t) — u(t) for almost all x € Q and therefore
also u(t — hy) — u(t), (A.2) converges almost everywhere towards 0. Furthermore, (A.2) has
the (square)- integrable majorant

u(t) — u(t — hy) u(t) — u(t — hg)
¢ I k+0( h, k_ut(t)>’
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where we notice that, as L?- convergent series “(t)+}(€t7h’“) is bounded in L?. We apply the
dominated converge theorem and get

g(u(t)) — g(u(t = he))

m = g/ (ul(®))ua(t

in L? for k — oco. This implies %(u(t),g(u(t))ﬁz = (u(t), g(u(t))) 2 + (u(t), ¢’ (u(t))us(t)) 12 as
one can assure oneself by writing

%(u(t),g(u(t)»L2 _ hlklglo u(t)g(u(t)) — U(th; hi)g(u(t — hk))d

Q

X

= Jim, g(u(t)) .
Q Q

ORI PN R K5
hy '

We hence have
(u(t), g(u(t))) 2z = (u(0), g(u(0))) 2 +/ 8)))re + (u(s), g (u(s))us(s)) p2ds
0

We set now g.(xz) = xp+ () (\/ 2+ e — e). A straightforward calculations shows that g. €
C}(R) and g.(0) = 0. Additionally g.(x) — z™ for ¢ — 0 and all z € R. Due to

2z

ool < | s

|¢'|| o is uniformly bounded, ¢’(x) — xg+(z) for all > 0 and we get

<2

lim (u(t), ge(u(t))) L2 = lim (u(0), g )z + () z2 + (u(s), ge(uls))us(s)) p2ds

e—0 e—0

o\N

= (uls), ut(5)) 2 = (u(0), p+/ () ge + (u(5), us(s)) p2ds
0
= (u(0), ut m+2/ §)) p2ds
0

= (u(0),u™(0)) 2 +2/ Y-1ds
0

We therefore have shown the statement for u € C(0,T; H'). Because this space is dense in
W2(0,T; H', L?), a simple denseness-argument finishes the proof.
O
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A.4. Weak Compactness and Dense Embeddings for Banach Spaces

Lemma A.4.1 (Exercise 18.6 in [18]). Let X,Y be Banach-spaces, where X lies dense in
Y. Furthermore, let the embedding X — Y be continuous. Then the embedding Y' — X'
is continuous, where X', Y’ denote the respective topological dual. For reflexive Y, Y’ is even
dense in X'.

Remark A.4.2. The space LP is reflexive for 1 < p < oo and separable for 1 < p < co. The
same holds true for the space WP m € N, see [21, Chapter 2].

Theorem A.4.3 (Eberlein-Smuljan, Theorem 21.D in [18]). Let uy, k € N be a bounded sequence
in a reflexive Banach-space X. Then there exists a subsequence uy, such that uyp, converges
weakly i X.

Remark A.4.4. Due to the theorem of Banach-Steinhaus, ||u||y < liminf||ug, ||, where u is the
n—oo

weak limit of wy,, .

A.5. Operator-Theory

Let H, H, Hy be Hilbert-spaces and By, B2 be Banach spaces.

Definition A.5.1 (Linear operator). A linear function A : D(A) C By — By is called a linear
operator, if its domain of definition D(A) is a linear subspace of Bj.

Definition A.5.2. A linear Operator A : D(A) C By — By is called densely defined, if D(A)
is dense in Bj.

Definition A.5.3 (Closed linear operator). A linear Operator A : D(A) C By — Bj is called
closed if its graph gr(A) := {(z, Az) : = € D(A)} is closed reagrding the sum-norm of B; and
Bs.

Definition A.5.4. We call a linear operator A : D(A) C H — H accretive if Re (Au,u)y >0
for all uw € D(A). In this case —A is also called dissipative.

Definition A.5.5. If there is no proper accretive extension (dissipative extension), we call a
accretive (dissipative) linear operator maximal accretive (maximal dissipative).

Definition A.5.6 (Adjoint operator). Let A : D(A) C H; — Hs be a linear, densely defined
Operator. Let € be the set of all y € Hs such that the linear functional

x = (A(z),y)H,, x € D(A)
is bounded. Because A is densely defined, for fixed y € €2 there exists ¢ such that
<A(JZ), y>H2 = <x7 ?j>H1

for all z € D(A). The linear operator A* : D(A*) = Q — H; : y — ¢ is called the adjoint
operator of A.

Definition A.5.7. A linear operator A: D(A) C H — H is called symmetric if

for all z,y € D(A).
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Definition A.5.8. A linear, densely defined operator A : D(A) C H — H is called self-adjoint
if A=A*.

Definition A.5.9. A non- negative, symmetric sesquilinearform f : D(f)x D(f) C HxH — R

is called closed if the existence of a subsequence {uy, }neny € D(f), which satisfies f(un —m, un—

Um) —r 0 and w, —x u, for n,m — oo, implies lim f(up, fu,) = f(u,u) and in particular
n—o0

u € D(f).

Definition A.5.10. A sesquilinearform f : D(f) x D(f) C H x H — C is called regular if:
i) D(f) is dense in H.
ii) Re f is a closed, symmetric, non-negative sesquilinearform.

iii) There exists a constant C' > 0 such that [Im f(u,u)| < CRe f(u,u) for all w € D(f). C
is also called the index of f.

Theorem A.5.11 (Theorem 2.1 in [2]). Let f : D(f) x D(f) € H x H — C be a regular
sesquilinearform. Then there erxists a unique mazimal accretive, closed Operator A : D(A) C
H — H such that D(A) C D(f) and

f(u,v) = (Au,v)
forw e D(A) and v € D(f).

Theorem A.5.12 (Theorem 4.2 in [2]). Let a(t),t € I C R be a family of regqular sesquilin-
earforms with the respective mazimale accretive operators A(t),t € I (see theorem A.5.11) on a
Hilbert-space H. Let D(a(t)) = D be independent of t and let there exist constants C > 0 and
0 < B such that

la(t)[u, u] — a(s)[u,u]| < Ot = s|”|Re a(t)[u, u]|

for all w € D and s,t € 1. Additionally let 0 be in the resolvent set of A(t) for every t € I.
Thenf0r0§a<%

|A®)* Als) ™ = Tdp |5, < Calt — s, stel

—Q

where Cy, > 0 depends only on «. In particular the operator A(t)*A(s)™ is bounded.

Proposition A.5.13 (Theorem 5.1.5 in [22]). Let A : D(A) C H — H be a linear, densely
defined Operator. Then its adjoint operator A* is closed and we have

ker(A*) = ran(A)*,
where ker(A) = {x € H: A(xz) =0} and ran(A) = A(D(A)).

Proposition A.5.14 (Proposition 5.1.7 in [22]). Let A: D(A) C H — H be a linear, densely
defined, closed Operator. If additionally, A is injective and ran(A) is dense, then A* and A~
are densely defined and closed operators. Furthermore, they satisfy

(A*)_l — (A_l)*.
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Theorem A.5.15 (Spectral theorem for self-adjoint operators; Theorem 10.4 in [24]). Let
A : D(A) C H — H be a self-adjoint operator. Then there exists a unique projection-valued
measure E on the spectrum o(A) of A, such that

/ AME(\) = A.
o(A)

Theorem A.5.16 (Theorem of Hille-Yoshida; page 363 in [32]). Let A: D(A) C H — H be a
linear, closed and densely defined operator. If (0,00) C p(A) = o(A)¢ and

n 1
1CA = M) gy <

for everymn € N and A > 0, then A is the infinitesimal generator of a contraction semi-group.

Proposition A.5.17 (Theorem 1.1.3in [4]). If an operator A : D(A) C H — H is the generator
of a contraction semi-group, then A is densely defined and mazimal dissipative.

A.6. Fundamental Lemma of Calculus of Variations

Lemma A.6.1 (Fundamental lemma of calculus of variations, Lemma 3.31 in [21]). Let @ C R"
be a open set and g € L} (). If

/d)gdx =0,

Q

loc
for all ¢ € C(R2), then g = 0 almost everywhere.

A.7. Young’s Convolution Inequality

Lemma A.7.1 (Young’s convolution inequality; Formula (7) on page 107 in [17]). Let n € N
and let 1 < p,q,r < oo satisfy % + % = % + 1. Then, for f € LP and g € L4,

If*gller < 1 Fllzollgll a-
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B. Auxiliary Results in Stochastic Analysis

B.1. Ito Processes and Stochastic Differential Equations

Definition B.1.1 (Probability space). Let © be an arbitrary set, F a o-algebra regarding €2
and P a probability measure on (2, F). Then the triple (Q2, F, P) is called a probability space.

Definition B.1.2 (Stochastic process). Let (£, F, P) be a probability space. A family (Xy,¢ >
0), of random variables X; :  — R defined on (2, F, P), is called a stochastic process.

Definition B.1.3 (Filtration). Let (Q, F, P) be a probability space. A family of o-algebras
(Fi,t > 0), with Fs C Fy C F, s <t,is called a filtration.

Definition B.1.4 (Adapted process). Let (F;,t > 0), be a filtration. A stochastic process
(Xt,t > 0), is called adapted to the filtration (F;, ¢ > 0), if X; is F- measurable.

Definition B.1.5 (Simple process). Let m € N and 0 < i < m. Additionally let X; be
stochastic processes defined on a probability space (Q,F, P) and t; € R with 0 = ¢tg < t1 <
- < tym_1 < t;,. Then stochastic processes of the form

m—1
= Z X[ti,t¢+1)(t)X
=0

are called simple processes, where x4 is the characteristic function of the set A.

Definition B.1.6 (Wiener process). A stochastic process (Wy, ¢ > 0) defined on a probability
space (2, F, P), is called a Wiener process, or Brownian Motion, regarding the filtration (F;, t >
0), if it is adapted to (Fi, ¢t > 0) and satisfies
i) Wy =0,
ii) W(w) is P- almost surely a continuous function in ¢,
iii) The increments (W; — Wy),0 < s < t, of W are independent from Fy,
)

(W —Ws) is N(0,t— s)-distributed for all 0 < s < t. That is to say (W — W) is normally
dlstrlbuted.

v

Definition B.1.7 (Ito integral for simple processes). Let (W;,t > 0), be a Wiener process
regarding the filtration (F;,¢t > 0) and S a (F;,t > 0)-adapted, simple process. Then the
random variable

m—1
Xi(W;
=0

tiv1 — ti)’

is called the Ito integral of S.
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Lemma B.1.8 (Chapter 2 section 1 in [13]). Let B the Borel o- algebra of [0,00) and let
(Wit >0) be a F = (Fy,t > 0)- Wiener process on the probability space (2, F, P). Additionally
let (X¢,t > 0), be a F-adapted, stochastic process, which satisfies

i) (t,w) = X¢(w) is B x F- measurable,
i) [E [|Xt|2] dt < oo.
0

Then there exists a series of square integrable, simple processes S,,n € N, such that

[e.o]

. 2 .
lim [E [th — 8,(t)] } dt = 0.
0

Furthermore ¢(S,,) converges towards some element ¥ in L*(Q, F, P), where ¢(S,) is the Ito
integral regarding (Wy,t > 0).

Definition B.1.9 (Ito integral). Let the assumptions of lemma B.1.8 hold and let X; and ¥ be
as in lemma B.1.8. Then V¥ is called the stochastic integral regarding the F-Brownian motion
(Wi, t > 0), of the process (X, t > 0), . We write

v - 0/ X,dW (2).

Theorem B.1.10 (Ito isometry; Chapter 2 section 1 in [13]). Let the assumptions of lemma
B.1.8 hold and let X; be as in lemma B.1.8. Then

o0 2 o0
E O/XtdW(t) ZO/E[|X,5|2} dt.

Lemma B.1.11 (Chapter 2 section 1 in [13]). Let the assumptions of lemma B.1.8 hold and let
t 00

X, be as in lemma B.1.8. Define ¢y := [ XdW (s) := [ X[0,qXsdW (s). Then ¢ is a martingale
0 0

regarding the filtration F with continuous paths a.e. and
¢
E /XSdW(S) =0,
0

for allt > 0.

Definition B.1.12 (Multidimensional Wiener process). Let F = (F,t > 0), be a filtra-
tion on the probability space (2, F,P). The (multidimensional) stochastic process W; =
(Wi (t), Wa(t),...,Wy(t)) is called a n-dimensional Wiener process, or Brownian motion, if
Wi(t),1 < i < n, are independent, one-dimensional Wiener processes regarding F and the
increments Wy — Wy are N(0, (t — s)Id)-distributed. Here, N (0, Id) is the standard normal
distribution, where Id is the unit-matrix in R™*",

Definition B.1.13 (Correlated Wiener process). The process (W, ¢t > 0), with

Wi = (Wi(t), Wa(t),...,Wy(t)) is called a vector of correlated Wiener processes if W; is a n-
dimensional Wiener process and there exists a matrix B € R™*" such that W; = BWt. Here,
W, is N(0,%) distributed, where ¥ = BBT.
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Definition B.1.14 (Ito process). Let 0 < T and (W%,t > 0) a n-dimensional, vector of uncorre-
lated F-Wiener processes. Additionally let a(t) € R™ and b(t) € R™*"™ be stochastic, F-adapted
processes with

f|aZ )|dt < o0,

f|bw )2dt < oo,

P-almost surely for all 1 <4, j < n. Then a stochastic process (X¢,t > 0) of the form

Xt = ZO+/azsds+Z/bwde tel0,7], 1<i,j<n (B.1)
J= 10

is called an Ito process.

Remark B.1.15. To denote the relation (B.1), we also write

n
dXi,t = a;dt + Zbidej, t e [O,T], 1<4,5<n.
j=1

Theorem B.1.16 (Multidimensional Ito formula regarding a vector of uncorrelated Wiener
processes; [14]). Let (X;,t > 0) a Ito process according to definition B.1.14 and let the cor-
responding Wiener process Wy be a vector of uncorrelated Wiener processes. Additionally let
f:R*"x[0,T) = R, (x,t) — f(x,t), be twice continuously differentiable in x and once in t.
Then (f(X¢,t),t > 0) is a Ito process and satisfies

(X t) = | (Xt +Za Dl Z 8%8% (X D)1 |

Z o, (Ko, )i (AW,

fort €10,T].

Theorem B.1.17 (Uniqueness and existence for stochastic differential equations; Theorem
5.2.1 in [10]). Let T < 0 and a : R™ x [0,T] — R", b : R™ x [0,T] — R™ ™ be measurable
functions which satisfy

la(x,t)| + |b(x,t)| < C(1+ |z|), =e€R" tel0,T],

’a’($7t) - a(yvt)| + |b({1},t) - b(y7t)| < Cf|'r - y|7 T,y € Rn7t € [O7T]?

for some constant C > 0. Let Z be a random variable which is independent from the Wiener
process (Wi, t > 0) and satisfies
E [\Z|2] <
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Then the stochastic differential equation

dXt = a(Xt, t)dt + b(Xt, t)dW(t), t e [0, T],
X ‘t:OZ Z)

has a unique t-continuous solution Xy which is adapted to the filtration F; generated by Z and
(Wi, 0 < s <t). Furthermore

T
/E [|Xt|2} dt < oo.
0

Remark B.1.18. |b| = [ > |bij|2 for b € R™™.
\/ ij=1

B.2. Martingale Inequality’s

Theorem B.2.1. (Doob’s LP- inequality; Theorem II.1.7 in [15]) Let My, t > 0 be martingale
or a positive submartingale with right- continuous trajectories t — M (w); almost everywhere.
Then for allp > 1, T >0 and A > 0, the following inequality holds true:

P

p
sup |Mt|P] < (p) E (M P
0<t<T p—1

112


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

C. Auxiliary Results in Measurement Theory

C.1. Dominated Convergence Theorem

Theorem C.1.1 (Dominated convergence theorem; Theorem 9.33 in [30]). Let (Q, F,v) be
a measure space with the underlying set 2, the o-algebra F and the measure v and let f, be
a sequence of F-measurable functions which converges v-almost everywhere. Furthermore let
there be a F-measurable, integrable function g with |f,| < g. Then the function f = nh_)rgo fn is

integrable and
lim /]fn — fldv =0, lim /fndl/ = /fndl/.
n—oo n—oo
Q Q Q

C.2. Reversal of the Dominated Convergence Theorem

Theorem C.2.1 (Reversal of the dominated convergence theorem; Theorem 4.9 in [20]). Let
(Q,F,v) be a measure space with the underlying set S0, the o-algebra F and the measure v. Let
1<p< o and fn, f € LP(Q,F,v),n € N with f,, — f in LP. Then there exists g € LP and a
sub-series fy, such that

i) | fo, (W)] < g(w) for v-almost every w.

i) fn, (W) = f(w) for v-almost every w.

C.3. Gronwall’s Inequality

Theorem C.3.1 (Gronwall’s inequality for Borel measures; Theorem 5.1 in the appendix of
[29]). Let v be a Borel measure on [0,00), € > 0 and let f be a Borel measurable function which
is bounded on bounded subsets of [0,00). If f satisfies

fO <t [ 1), 120,
0

then

fit) < ee?(0:)
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D. Auxiliary Results regarding Linear PDE’s

D.1. A Useful Uniqueness Result

Theorem D.1.1. Letn € N, f € L?(0,T; L*(R™,R)), up € L*(R",R) and

B € L>(0,T; WL (R™, R™¥™)). Furthermore B(x,t) is symmetric and uniformly coercive for
(z,t) € R* x R, Then the weak solution uw € W2(0,T; H'; L?) of the following linear initial
value problem

B
Oru — div(BVu) + Z(ngu)l =f, i R"x[0,7T), (D.1)
U |g=0= ug, in R" (D.2)
18 unique.
Remark D.1.2.
i ", 0B - o 0
div(BVu) — ' (33«%’ Vu); = Baxi 87%”

i=1 i,j=1

Proof. Assume that v,u € W12(0,T; H', L?) are both weak solutions of (D.1)-(D.2). Due to
the linearity of (D.1) they satisfy

(O(u —v),¢)g—1 + (BV(u—v),V)r2 + (Z(gi Vu—v)i, ¢z =0

%

for arbitrary ¢ € H'. We choose ¢ = u — v and use the uniform coercivity of B:

*Z@i Vi — )iyt — )2 = (Ot = v), 14— 0) g1 + (BY (u— v), V(1w — v)) 2

i

> (Op(u —v),u —v) g1 +el|V(w = )|z

d

2
dt ”u_vHLQ

—1
—2

Let 0 > 0. We use Youngs inequality for products on the term on the left hand side.

= /(Z(giVu—v)z> (u—v)dzx

n 7

OB
<Z(ax'Vu — )i, U — V)2

2
) 0B 1 no 1
<SIDoGEVu =)+ xllu—vll7e < 7||B\|124,1,00HV(u — )| + =

26

2
[ = o] 7z
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All in all we have:
1d

nod
5@”” — 0|3 + el V(u—0)|l72 < ?HBH%}VLOO”V(U v)|l72 + 25|| —v||Z..

If we choose ¢ such that %‘5 ”BH%OO(O,T;WLOO) < € the first term on the right-hand side of the last
inequality can almost everywhere be absorbed by the corresponding term on the left-hand side.
This leaves us with:

d 2 1 2
= vl < Sl = ol

almost everywhere. We apply Gronwalls lemma:

lu—vllze <0,
for all ¢ € [0,T]. This implies that ||u — v||;2 = 0 on [0, T]. Hence u(t) = v(t) almost everywhere
for t € [0, T]. O
D.2. Existence for Linear Parabolic Systems

The following paragraph and the theorem contained therein, was contextually abstracted from
[6]:

Let n,m € N. We focus upon the following initial value problem:

n 92
P v ) +
E Y (2, t) 833281:] = f(x,t), inR" xR, (D.3)

v |t=0= v, in R™. (D.4)
Prerequisites :

i) A € R™*™ is positive definite and symmetric.

ii) B% € R™*™ gatisfy B = B% with 4,7 € {1,2,...,n}. Z B%w;wj is symmetric and
b,j=1
positive for all w € R" with |w| = 1.
iii) v, f,v0 € R™.

iv) I,s e N, with1 <l <sand s> 5 +1.

v) A, B4 € C(0,T; HS(R™), %, 282 € C(0,T; H2)NL*(0,T; H>™Y), f € L*(0,T; H'™Y),
vo € HY(R™).

Theorem D.2.1 (Uniqueness and Existence). Let the above assumptions hold true. Then
problem (D.3) with initial value condition (D.4) has a unique solution v € C(0,T;H') N
L?(0,T; H*Y) with 0 € L*(0,T; H1).
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E. Useful Inequalities

Lemma E.0.1 (Young’s inequality with €; Special case of Young’s inequality for products). Let
a,b e R and e > 0. Thenabgg—i—i—%.

Proof. Set = := % and y := by/e. Then the statement follows from the elementary inequality
zy < %2 + % O

Lemma E.0.2 (Gronwall-type inequality; Lemma 17 in [5]). Let T > 0, g € C([0,T]) with
g:[0,T] — [0,00) and let f : [0,T] — [0,00) be absolute continuous. Furthermore let a,b > 0
and

f1(#) < —g(t)(a = 0/ f (1)), (E.1)

fort € (0,T], where 0 < f(0) < (%)2. Then f(t) > (%)2 for allt € [0,T7.

Proof. We proceed as in the proof of lemma 17 in [5]. We assume that there exists ¢’ € [0, 7]
such that f(t') > (%)2. Due to the absolute continuity of f, there exists some ¢’ € [0, 7] such
that f(t") > 0 and f(¢") < (%)2. But this is a contradiction to (E.1). O
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