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Abstract The motion of a heavy finite-size tracer is numerically calculated in a two-dimensional shear-driven
cavity. The particlemotion is computed using a discontinuousGalerkin-finite-elementmethod combinedwith a
smoothed profile method resolving all scales, including the flow in the lubrication gap between the particle and
the boundary. The centrifugation of heavy particles in the recirculating flow is counteracted by a repulsion from
the shear-stress surface. The resulting limit cycle for the particle motion represents an attractor for particles
in dilute suspensions. The limit cycles obtained by fully resolved simulations as a function of the particle size
and density are compared with those obtained by one-way coupling using the Maxey–Riley equation and an
inelastic collision model for the particle–boundary interaction, solely characterized by an interaction-length
parameter. It is shown that the one-way coupling approach can faithfully approximate the true limit cycle if
the interaction length is selected depending on the particle size and its relative density.

Keywords Particle–boundary interaction · Shear stress · Fully resolved simulation · DG-FEM · SPM ·
Particle accumulation · Limit cycle

1 Introduction

Dispersed multiphase flows arise in a wide range of natural phenomena [1]. The problem is strongly character-
ized by the interaction between two fluid phases, a fluid and a particulate phase, or by both. Particle-laden flows
are dealing with a continuously connected fluid phase and an immiscible dispersed phase made of particles.
Examples for such flows are sand storms, debris flows, and transport of volcanic ash [2]. Particle-laden flows
are also important in many technical processes like combustion [3], steel making [4], drug delivery and other
biological applications [5]. Owing to the abundance of particle-laden flows their understanding, prediction and
control has become an active research field for theoretical, experimental and computational fluid dynamics.

In experimental fluid mechanics, small particles suspended in the fluid are frequently used to visualize the
flow [6]. The underlying assumption is a nearly perfect advection of the suspended particles. This condition
is typically satisfied if the Stokes number is very small, the volume fraction of the particles is small and if
the particles moves sufficiently far from the boundaries. While the application of this technique is not very
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complicated, a numerical simulation of the problem with even a single particle can be very demanding if all
relevant length scales must be fully resolved. These scales range from the large scales of the global flow, over
themedium scales for the flow around the particle, down to the scales of the flow in the lubrication film between
the particle and the boundary. For a numerical solution of such problems, the use of efficient and accurate
numerical methods is of crucial importance, in particular, for the simulation of the particle motion.

For very small particle volume fraction and lowStokes numbers, a numerical treatment by one-way coupling
[3] seems to be justified. Within this approach, the feedback of the particles on the flow and particle–particle
interactions are neglected. The uncoupling of the fluid flow from the particle motion makes this method
extremely efficient, and a large number of problems have been treated successfully. However, a conventional
one-way coupling approach may fatally fail to predict the behavior of particles if they experience repeated
interactions with boundaries, even if the volume fraction and the Stokes number are small. Particle–boundary
interactions become increasingly important in closed flows when the streamlines are compressed toward a
smooth boundary. This situation typically arises in lid-driven cavities or surface-tension-driven flows. If the
thickness of the layer of high volume flux adjacent to the boundary becomes of the order of the particle size the
frequency of particle–boundary interactions for an individual particle can become very high in such recirculat-
ing closed flows. Since the domain of motion of the particle centroid in a typical one-way coupling approach
is not restricted by the particle size, a dedicated theoretical model of particle–particle and particle–boundary
interactions can make the difference between a realistic and a poor numerical prediction [7]. For this reason,
the present study is devoted to the particle–boundary interaction via a fully resolved numerical simulation.

The finite particle size has been taken into account for the particle–boundary interaction in particular
settings. These concern the settling of particles in a quiescent fluid in a gravity field (see, e.g., [8,9]) and particles
moving near a vertical wall [10,11]. To the best of the authors’ knowledge, the interaction between a particle
and a boundary on which a shear stress is imposed in a recirculating flow has not been treated. Since particle–
particle collisions aremuchmore frequent than particle–boundary interactions in dispersed particle-ladenflows,
more attention has been paid to fully resolve particle–particle collisions. In corresponding simulations, the
largest scales taken into account have been the typical particle scales [12–14]. Most of these studies served the
purpose to derive models for particle–particle interactions mimicking colloidal forces in simulations in which
the lubrication scales between the particles are not resolved for computational cost reasons (see, e.g., [15]).

In the following section, the problem of particle motion in a shear-driven cavity will be formulated math-
ematically. In Sect. 3 the numerical methods of investigation are introduced. In Sect. 4 the results of the
numerical calculations are presented, focusing on the role of the particle–boundary interaction. Based on the
comparison of the fully resolved simulations with results obtained by one-way coupling supplemented by
the particle–surface interaction (PSI) model of Hofmann and Kuhlmann [16] (see also [7,17]), an improved
particle–surface interaction model is suggested which closely approximates the particle-motion attractors
obtained by the fully resolved simulations. The influence of the particle radius and the particle-to-fluid density
ratio on the particle–boundary interaction is investigated for a constant shear Reynolds number Re = 1000.
Finally, Sect. 5 is dedicated to summary and conclusions.

2 Problem formulation

We consider a shear–stress-driven square cavity filled with an incompressible Newtonian liquid with density
ρf and kinematic viscosity ν. The length of the cavity sidewalls is L . A plane flow is driven by a constant shear
stress imposed along one side of the cavity. Figure 1 shows a sketch of the setup.

For the mathematical formulation of the problem, a viscous scaling is employed

x̂ = Lx, t̂ = L2

ν
t, û = ν

L
u, p̂ = ρfν

2

L2 p, (1)

where x, t , u and p are the position vector, time, velocity field and pressure field, respectively. The caret
indicates dimensional quantities. The non-dimensional Navier–Stokes and continuity equations read

(∂t + u · ∇) u = −∇ p + ∇2u, (2a)

∇ · u = 0. (2b)

The flow field must satisfy the no-slip and constant-stress boundary conditions

x = ±1/2 : u = v = 0, (3a)
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Fig. 1 Sketch of the two-dimensional shear–stress-driven square cavity. The particle sizes considered are shown to scale

y = −1/2 : u = v = 0, (3b)

y = 1/2 : ∂yu = −Re, v = 0, (3c)

where the Reynolds number Re = (L2/ρfν
2)τ0 is a non-dimensional measure of the imposed shear stress τ0.

The constant-shear-stress boundary condition is approximately realized in an open differential-heated low-
Prandtl-number cavity due to the thermocapillary effect when the pressure due to the mean surface tension
dominates all other normal stresses [18]. For a thermocapillary-driven flow the local shear stress on y = 1/2 is
τ(x) = −γ ∂T (x)/∂x with the scale τ0 = γΔT/L , where T is the temperature, ΔT an imposed temperature
difference and γ the negative surface tension coefficient, thus Re = γΔT L/(ρfν

2).
If the cavity is seeded with rigid particles, the above equations must be solved in the domain occupied by

the fluid together with no-slip conditions on the surfaces of the particles. Themotion of the particles (numbered
by i) with mass Mi and moment of inertia Ii is governed by

Fi = Mi V̇ i , (4a)

Ti = IiΩ̇i , (4b)

where Fi and Ti are the force and torque, respectively, acting on the i-th particle and V i and Ωi denote its
translational and angular velocities, respectively. The coupling between the two phases results from the no-slip
condition on the surfaces of the particles.

Buoyancy forces acting on the particulate phase are neglected. This assumption holds true under weight-
lessness conditions or when the settling time of the particle is large compared to the characteristic time of
the flow. The latter condition is met when the particles are sufficiently small as, e.g., in the experiments of
Schwabe et al. [19].

3 Methods of investigation

The motion of a single finite-size particle is computed numerically, resolving all length and time scales rang-
ing from the scales of the shear-driven flow over the scales of the particle to the scales of the lubrication gap
between the particle and the boundaries. In addition, the flow is calculated in the absence of a particle and
the particle motion is calculated by one-way coupling supplemented by a suitable particle–surface interaction
(PSI) model when the particle moves close to any of the boundaries.

3.1 Fully resolved simulations

To solve the full problem, we use an Eulerian approach in which the flow-field equations are solved by a dis-
continuous Galerkin-finite-element method (DG-FEM) coupled to a smoothed profile method (SPM). In SPM
particles are represented via a smooth concentration function φ, called smoothed profile. The smoothed profile
method was originally proposed by Nakayama and Yamamoto [20] for simulating the interaction between
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fluid and particles in colloidal dispersions. The method has been devised to be used in combination with high-
order methods and has successfully been employed for the simulation of particle-laden flows [13,14,21–23],
electro-charged colloids and electrophoresis of dense dispersions [24–30].

The space discretization is based on the discontinuousGalerkin–finite-elementmethod. For all cases treated
in the following, a nodal approach is adopted. Following Hesthaven and Warburton [31], triangular unstruc-
tured grids and a warp-blend distribution of nodes are employed. It has been shown by Luo et al. [32] that the
convergence properties of this spectral/hp method are transferred to the SPM. This beneficial property pro-
vides a high flexibility via an element-wise mesh refinement (h-convergence) or a polynomial-order refinement
providing exponential convergence (p-convergence). The details of the DG-FEM-SPM code are described in
Romanò and Kuhlmann [33] including a comprehensive verification study.

Althoughwe shall be concerned with a single particle only, the formulation will be given for a finite number
Np of rigid particles. In the smoothed profile method, the particle and fluid subdomains are described by an
indicator function φ. It takes the value 1 in the particle domain, 0 in the fluid domain, and it varies smoothly
between these values in a transition zone between both phases. Following Nakayama and Yamamoto [20], the
boundary between a particle and the fluid is smoothed by employing the smoothed profile for the single-particle
indicator function

φi (x, t) = 1

2

[
1 + tanh

( − di (x, t)

ξi

)]
, (5)

where the index i enumerates all particles. The quantity di is the signed minimum distance of x from the
centroid P i of the i-th particle. It is defined such that it is positive outside and negative inside the particle.
The thickness of the transition layer for the i-th particle is denoted ξi . The profile (5) has been shown to yield
very good results for a wide range of flows [33]. For non-overlapping particles, the global indicator field φ is
defined as the linear combination of all single-particle indicator functions φi . Thus, for Np rigid bodies,

φ(x, t) =
Np∑
i=1

φi (x, t). (6)

The rigid-body motion of a set of non-overlapping particles is then represented by a global particle velocity
field up which satisfies [32]

φ(x, t)up(x, t) =
Np∑
i=1

[
V i + Ωi ez × (x − P i )

]
φi (x, t). (7)

The total flow field u defined in both the fluid and the solid domain is written as a combination of the particle
(up) and the fluid-phase velocity fields (uf) using the indicator function as a weight

u(x, t) = φ(x, t)up(x, t) + [1 − φ(x, t)] uf(x, t). (8)

It can be shown that the particle velocity field (7) is exactly solenoidal [20] and no-slip and no-penetration
conditions are automatically satisfied by a smooth blending of both flow fields [20,32,33].

For the time integration of the global flow field, we employ the second-order stiffly stable splitting scheme
of Karniadakis et al. [34]. The time discretization of (2) and (4) then leads to the following algorithm

Pn+1
i = Pn

i + Δt
K∑

k=0

akV
n−k
i (9a)

On+1
i = On

i + Δt
K∑

k=0

akΩ
n−k
i ez (9b)

γ0ũ − α0un − α1un−1

Δt
= −β0

[
N(un, un)

] − β1
[
N(un−1, un−1)

]
(9c)

∇2 p∗ = γ0

Δt
∇ · ũ (9d)
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∂p∗

∂ n̂
= −β0n̂ · ((

un · ∇)
un + ∇ × ωn) − β1n̂ · [(

un−1 · ∇)
un−1 + ∇ × ωn−1] (9e)

−∇2u∗ + γ0

Δt
u∗ = γ0

Δt
ũ − ∇ p∗ (9f)

Fn
i = 1

Δt

∫
Ω

ρfφ
n+1
i

(
u∗ − unp

)
dx (9g)

T n
i = 1

Δt

∫
Ω

rn+1
i ×

[
ρfφ

n+1
i

(
u∗ − unp

)]
dx · ez (9h)

V n+1
i = V n

i + M−1
i Δt

K∑
k=0

akF
n−k
i (9i)

Ωn+1
i = Ωn

i + I−1
i Δt

K∑
k=0

akT
n−k
i (9j)

φn+1un+1
p =

Np∑
i=1

φn+1
i

[
V n+1

i + Ωn+1
i ez ×

(
x − Pn+1

i

)]
(9k)

∇2 pp = γ0∇ ·
⎡
⎣φn+1

(
un+1
p − u∗

)
Δt

⎤
⎦ (9l)

∂pp
∂ n̂

= γ0

Δt

[
φn+1

(
un+1
p − u∗)]

· n̂ (9m)

γ0un+1 − γ0u∗

Δt
=

γ0φ
n+1

(
un+1
p − u∗

)
Δt

− ∇ pp, (9n)

where

N(u, u) = ∂
(
u2

)
∂x

+ ∂ (vu)

∂y
(9o)

represents the nonlinear termwritten in conservative form. The vectors r i and O i are the instantaneous position
and rotation rate vectors, respectively, of the i-th particle. The perturbation-flow field caused by the particles is
denoted up, and the superscript ∗ refers to the flow field obtained without updating the positions and velocities
of the particles. The coefficients ak are derived from the backward-differentiation formula used for integrating
the particle positions and velocities. The total pressure field can be reconstructed by pn+1 = p∗ + pp and the
coefficients γ0, α0, α1, β0, β1 are tabulated in Karniadakis et al. [34].

For small solid-to-liquid volume ratios φV < 10−3 particle–particle interactions can be neglected. For a
fully resolved approach it is, therefore, sufficient to investigate the motion of a single circular particle only.
In the following, the method is applied to the two-dimensional motion of a single circular particle in the
shear-driven square cavity, because the two-dimensional case is the logical first step and greatly facilitates a
variation of the particle parameters which could be extremely costly in three dimensions when the lubrication
gap becomes very small. The fully resolving code has been extensively verified in two dimensions by Romanò
and Kuhlmann [33] who have reproduced numerous two-dimensional benchmarks with high accuracy.

3.2 One-way-coupled simulations

In addition to the fully resolved simulations of circular particles in the two-dimensional shear-driven cav-
ity, one-way-coupled simulations of spherical particles in a steady two-dimensional flow are carried out. An
approximation to the steady flow is obtained by solving (9)c to (9)f until changes of the flow field have become
negligible. A steady state is assumed to be reached once the convergence criterion

max
x, j

∣∣u j (x, t) − u j (x, t − Δt)
∣∣

Δt
≤ 10−6 (10)

was satisfied, where j is the number of grid points.
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3.2.1 One-way-coupled particle motion

The motion of particles of sufficiently small size and volume fraction is frequently modeled by the Maxey–
Riley equation [35]. Neglecting the Basset term, the Saffman and Faxén corrections and gravitational forces,
the Maxey–Riley equation reads

ÿ =
(

1

 + 1/2

) [
− 

St
( ẏ − u) + 3

2

Du
Dt

]
, (11)

where we have used the same scaling (1) as before, y is the position vector of the particle and D/Dt is the
substantial derivative. In (11) we neglect finite-Reynolds-number corrections. This approximation is motivated
in the “Appendix”. The non-dimensional groups are the particle-to-fluid density ratio and the Stokes number
defined as

 = ρp

ρf
and St = 

2a2

9L2 , (12)

respectively, where a is the radius of a spherical particle.
For a given steady flow field (11) is solved by a standard fourth-order Runge–Kutta method and time step

Δt = 10−6. To verify the Maxey–Riley solver according to (11), we consider the motion in the Taylor–Green
vortex flow [36] with amplitude A

u = −A cos x sin y, v = A sin x cos y. (13)

Figure 2 shows a comparison of the present results with those of Domesi and Kuhlmann [37] for a spherical
particle whose centroid velocity is initiallymismatched to the unperturbed fluid velocity. The agreement is very
good in view of the sensitive dependence of the trajectory from the initial conditions due to the abundance of
hyperbolic points in the flow. The simulation parameters are given in the caption of Fig. 2. The integration time
was selected to demonstrate the high accuracy of the solver for a time windowwhich is ten times larger than the
typical integration time employed for integrating a particle in the investigated shear–stress-driven cavity flow.

The Maxey–Riley equation is valid for small Stokes numbers St � 1 and small particle Reynolds numbers
Rep = a| ẏ − u|/ν � 1. Moreover, the particle is assumed to move far from any boundary. Therefore, it
is necessary to supplement (11) with a model which takes care of the particle–boundary interaction. This is
particularly important in shear-driven flows, e.g., thermocapillary flows, because the highest velocity arises
near the stress interface causing a very high volume flux near the liquid–gas interface. Therefore, suspended
particles will be frequently transported very close to the interface. This necessitates a dedicated modeling of
the boundary effect on the particle motion which will be presented in Section 4.2.1.
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Fig. 2 Verification of the integrator used for solving the Maxey–Riley equation (11). a Trajectory (full line) in the Taylor–
Green flow (streamlines are dashed) with A = 100 for St = 0.2,  = 1 and initial conditions y(t = 0) = (−1.67, 0) and
ẏ(t = 0) = (15, v) during t ∈ [0, 1] (present solver). b Position coordinates of the particle as function of time: present result
(lines) and result of [37] (circles)
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4 Results

We consider the motion of a circular particle near the stress boundary in a steady two-dimensional shear-stress-
driven cavity flow introduced in Sect. 2. In such a closed vortex flow counteracting forces on the particle, due
to inertia on the one hand side and due to the boundary effect on the other hand, can lead to a limit cycle for
the particle motion. The parameter dependence of the limit cycle is investigated, and a model is proposed to
take into account the boundary effect within a one-way coupling approach.

For all fully resolved simulations, we employ ξ = 0.05a and select Δt according to Luo et al. [32]. This
choice of parameters is intended to minimize the numerical error [33]. We employ fifth-order polynomial basis
functions and a structure of elements which guarantees that all relevant flow scales are resolved. To meet with
the latter requirement, two different grids are used. When the particle is moving near the stress boundary, the
relevant scales to be resolved are the particle and the lubrication-gap length scales. Therefore, the computational
mesh is designed to always have at least five elements (i.e., ∼100 grid points) between the surface of the
particle and the shear-stress boundary and at least ten elements (i.e., ∼200 grid points) inside the rigid-body
domain. When the particle moves further away from the shear-stress surface in the bulk of the liquid, a second
computational grid is employed which only needs an accurate resolution of the particle scale. Passing from one
grid to the other is accomplished by spectral interpolation. A representative example of the two computational
grids is depicted in Fig. 3. The structure is motivated by the streamlines of the flow shown in Fig. 4.

4.1 Particle motion near a shear-stress boundary: fully resolved simulations

4.1.1 Poincaré maps

The motion of a circular particle in a shear-driven cavity of Re = 1000 is considered. The main closed stream-
lines of the steady two-dimensional flow in the absence of the particle are shown in Fig. 4. The streamlines
are bounded by a separating streamline along the wall which also separates the small and weak viscous corner
eddies near (x, y) = (±1/2,−1/2) (not shown) from the main recirculation. The streamlines are crowded
toward the shear-stress boundary at y = 1/2 where the highest velocities arise. Due to the no-slip boundary
conditions on the remaining walls and the associated reduction in the mass flow rate, the streamlines are much
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Fig. 3 Example for a computational grid used for fully resolved simulations and a = 0.03. a Mesh employed to solve the particle
trajectory in the bulk of the cavity for y < 0.3. b Elements grid for the particle motion in the surface region y > 0.3 (only every
10th element vertex per space direction is shown)
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Fig. 4 Streamlines for the shear–stress-driven cavity at Re = 1000

wider near the solid walls than near the stress boundary. Therefore, the shear-stress boundary is much more
important for the particle motion than the no-slip boundaries.

To distinguish between the effects on the particle motion caused by the shear-stress boundary and those
caused by the solid walls including the bulk motion we consider Poincaré maps on yP = 0.3 (dashed line in
Fig. 4). This plane subdivides the full domain into a region yP ≤ y < 1/2 near the shear-stress surface and its
complement (bulkmotion). The streamlines in y ≥ yP have a small curvature near x ≈ 0 and becomemore and
more rectilinear the closer they are to the shear-stress surface. The streamlines in y < yP , on the other hand,
are approximately circular. The small particles considered below have trajectories which do not deviate very
much from the streamlines. The deviations from the nearly straight streamlines in y > yP are expected to be
primarily caused by forces on the particle due to the proximity of the shear-stress surface, whereas for y < yP
centrifugal forces are the primary cause for deviations from the streamlines. The choice of yP = 0.3 thus
allows to approximately decouple the surface effects from the inertial effects and also guarantees a complete
coverage of all trajectories of interest.

To analyze the particle motion the Poincaré section on yP is calculated for two Poincaré points when
the particle is initiated at ysbs < yP , where the subscript s indicates the start position and the superscript sb
refers to the motion in y > yP near the stress boundary. The Poincaré map Psb : x sbin → x sbout = Psb(x sbin )
defines a surface map which is primarily due to the particle–surface interaction (Fig. 5a). The bulk map
Pb : xbin → xbout = Pb(xbin) with ybs > yP defines a bulk map (Fig. 5b).

Due to the small Stokes numbers considered, the velocity of the particle relaxes from its initial value much
faster than any other time scale involved [38]. Therefore, the initial velocity does not practically affect the
mappings, in particular, if the particle is initialized velocity-matched and sufficiently far from yP . It turns out
that initializing the particle’s centroid velocity-matched at ysbs = 0.2 < yP is sufficient for the surface map.
For the bulk map we select ybs = 0.4 > yP .

The overturning motion for a full revolution of the particle is described by the oriented Poincaré map
P : xn → xn+1 = P(xn) = Pb[Psb(xn)]. It is equivalent to the combined maps consisting of the bulk and
the stress-boundary maps Psb(x) and Pb(x), respectively (Fig. 5c).

4.1.2 Existence of a globally stable limit cycle

To reduce the parameter space, Poincarémaps are investigated for a heavy particle with particle-to-fluid density
ratio  = 2 and for Re = 1000. Three particle radii, a = 0.01, 0.03 and 0.05, are considered.

To establish the Poincaré maps, fully resolved simulations are performed for a set of initial conditions
imposed at (xs, ys) such that the first Poincaré point on yP is approximately covering the range x ∈ [0.2, 0.45].
Figure 6 shows the stress-boundary map Psb (open symbols) and the inverse bulk map [Pb]−1 (full symbols).
The particle size is indicated by the type of symbol. A typical mapping along yP = 0.3 is illustrated by arrows
for a = 0.05 (triangles). From x0 = 0.255 (open diamond) the particle is mapped via Psb(x0) = −0.39 to
x1 = Pb[Psb(x0)] = 0.318 (full diamond) by the motion along the stress boundary (A,B) and the bulk (C, D).
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Fig. 5 Sketches illustrating the stress boundary, bulk and iterative maps Psb, Pb and P , respectively, as well as the notation used.
Poincaré points are indicated by small dots

If the particle were only advected with the flow it would return to its initial position, i.e., x1 = x0. The
corresponding maps Psb

ψ and [Pb
ψ ]−1 are indicated by a dotted curve in Fig. 6. Since the slope of these advec-

tion maps is less than one, |∂x Psb
ψ | = |∂x [Pb

ψ ]−1| < 1, the Poincaré points and thus fluid elements become
compressed in x during the motion along the stress boundary, and dilated by the same amount during the bulk
motion. This trivial effect is due to the asymmetry of the streamlines (Fig. 4).

We find the absolute value of the slope of the inverse bulk map for the particle motion always to be larger
than that of the inverse map for the streamlines, |∂x [Pb]−1| > |∂x [Pb

ψ ]−1|. Therefore, the dilatation of particle
trajectories is less during motion in the bulk than that of the streamlines. This means that the particle trajecto-
ries are compressed in x relative to the streamlines. This behavior can be explained by the larger centrifugal
displacement a particle experiences in the bulk (y < yP) when moving closer to the vortex core as compared
to a particle moving further away from the vortex center. For the motion along the stress boundary, particle tra-
jectories become even more compressed in x than the streamlines, because |∂x Psb| < |∂x Psb

ψ |. Obviously, this
effect is caused by the increasing repulsion force a particle experiences the closer it moves to the shear-stress
surface. Therefore, the distance between any two particle trajectories, measured by the distance |xn+1 − xn|
of the corresponding Poincaré points, is monotonically shrinking with n, i.e., in time.

Interestingly, the graphs of Psb and [Pb]−1 intersect (Fig. 6) yielding a fixed point for the combined map P
for a full revolution of the particle shown in Fig. 7. Therefore, the combined map P has a single fixed point x∗
for each particle size (Fig. 7). Since the combined Poincarémap P(x) is monotonic with slope 0 < ∂x P(x) < 1
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Fig. 6 Poincaré maps for a = 0.01 (circle), 0.03 (square) and 0.05 (triangle). Stress-boundary Poincaré maps Psb are indicated
by open symbols and dashed lines, while inverse bulk maps [Pb]−1 are shown by filled symbols and solid lines. Arrows indicate
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Fig. 7 Oriented Poincaré map xn+1 = P(xn) on yP = 0.3 for a full overturn. The parameters are Re = 1000,  = 2 and a = 0.01
(circle), 0.03 (square) and 0.05 (triangle). The dotted line indicates the bisector

for all particle sizes, the corresponding limit cycle of the particle motion is stable and globally attracting. From
the slopes P ′(x∗) (Fig. 7) the asymptotic rate of attraction is larger the larger the particle. Evidence for the
existence of a stable, global limit cycle has been provided by [39] who found two-dimensional axisymmetric
particle accumulation structures in cylindrical thermocapillary liquid bridges.

The existence of a stable limit cycle for heavy particles  > 1 can also be heuristically understood by the
competition of two effects. As long as the particle is transported far away from the stress boundary, the inertia
effect dominates and the particle is centrifuged out of the center of the vortex. As the particle is transported
to the outer streamlines of the vortex, it experiences a repulsive force from the stress boundary. The repulsion
dominates for particles moving very close to the wall and the stress boundary. For a specific intermediate
trajectory centrifugal forces and surface repulsion exactly balance in the mean along the limit cycle.

4.1.3 Parameter dependence of the limit cycle

The limit cycles for Re = 1000 and  = 2 are shown in Fig. 8 for a = 0.01, 0.03, and 0.05. Close to the stress
boundary the particle’s trajectory is nearly parallel to the boundary, and the liquid film between the particle and
the stress boundary is much smaller than the radius of the particle. A characteristic quantity of the limit cycle
is the minimum distance of the particle’s centroid from the stress boundary. We thus introduce the interaction
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of the particle radius a for  = 2

length Δ = a + δ where δ is the minimum film thickness between the surface of the circular particle and the
shear-stress surface.

Figure 9 shows the normalized interaction length Δ/a as a function of the particle radius (open squares).
The normalized lubrication gap width δ/a = (Δ/a) − 1 exhibits a strong monotonic dependence on the
particle radius a: the larger the particle the more it is capable, in proportion, of squeezing the lubrication gap
(a1 > a2 ⇒ δ1/a1 < δ2/a2). In all cases investigated the lubrication gap is less than 25% of the particle
radius. On the other hand, the absolute lubrication gap width δ (full squares in Fig. 9) takes a local minimum.
Since centrifugal inertia increases with the particle radius like ∼a2 (for the two-dimensional fully resolved
simulations), the lubrication gap δ should decrease with a. This effect seems to hold for sufficiently small a.
However, the equilibrium orbit also depends on a. As the particle radius increases, the local curvature of the
closed orbit just before approaching the stress boundary and the particle velocity decrease. Both effects reduce
the centrifugal inertia and could thus contribute to the increase of δ(a) beyond the minimum.

To establish the dependence of the limit cycle and the associated interaction length on the particle-to-fluid
density ratio nine different density ratios  ∈ [1.2, 2] have been considered for Re = 1000 and a = 0.05.
As before, the limit cycles are obtained as fixed points of the Poincaré maps P shown in Fig. 10b obtained
combining the stress-boundary and the bulkmaps presented in Fig. 10a. The locus x∗ of the limit cycle depends
sensitively on the density ratio. Since the slopes of the combined maps P ′(x∗) at the fixed points do not vary
much, the asymptotic attraction rate to the limit cycle is nearly independent of the density ratio. Note, however,
that the curvature P ′′(x∗) > 0. Therefore, the approach of the limit cycle due to inertia from the bulk (for
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x < x∗) is slower than the attraction due to boundary repulsion from the surface (for x > x∗). This shows that
the boundary effect acts on a faster time scale, for the present parameters, than the inertia effect.

The stable periodic orbits are shown in Fig. 11. Due to the inertia of heavy particles with  > 1 (centrifugal
forces) the periodic orbits are larger the larger . We find the limit cycles for different  to be continuously
nested. Moreover, as the density becomes smaller the minimum distance of the limit cycle from the stress
boundary is significantly larger than the particle radius a. The normalized interaction length Δ/a is shown in
Fig. 12 as function of . As expected from Fig. 11, the lubrication gap increases significantly as the particle
density is approaching the fluid density from above ( ↓ 1). To fit the data, we consider the limit of large and
small relative density. For  → ∞, the inertial forces will squeeze the lubrication gap completely. Therefore,
Δ/a should admit an horizontal asymptote Δ/a = 1. Moreover, if  = 1, the boundary repulsion will not be
opposed by inertia. In this case, the particle is expected to move far away from the boundaries on a trajectory
in the vicinity of the vortex core which is determined by some equilibrium between the repulsive actions due
to the four boundaries of the cavity. In the limit a → 0 such a condition becomes a vertical asymptote for
Δ/a. These considerations suggest the fit

Δ

a
= 1 + A[

 − B(a)
]s , (14)

where A and s are constant fit parameters and B(a) is a function of the particle radius with lima→0 B = 1.
For a = 0.05, we find the least squares fit (full line in Fig. 12)

A = 0.746247, s = 3.68698, B(0.05) = 0.129455. (15)

The functional dependence of the interaction length Δ = f (a, ) on the particle radius a, relative particle
density  and, possibly, on the flow parameters can be exploited to construct a simplified model for the forces
acting on the particle when its motion is approximated by one-way coupling.

4.2 Particle motion near a shear-stress boundary: one-way coupling

In view of the numerical effort required to simulate the flow and themotion of finite-size particles fully resolved
on all length scales, a one-way coupling method is highly desirable for practical reasons in which the boundary
effect on the particle motion can be approximated by a simple model. For no-slip boundary conditions along
rigid walls such a model has been suggested by Brenner [40]. For dilute suspensions in a flow driven by a
constant shear stress on a boundary, however, the particle–boundary interaction is much more important than
the particle–wall interaction. Since we are not aware of any model valid near a shear-stress surface derived
from first principles, we build on the inelastic collision model introduced by Hofmann and Kuhlmann [16].
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4.2.1 Modeling the particle–boundary interaction

In order to model the strong repulsion forces a finite-size particle experiences during its motion near a free
surface subject to thermocapillary shear stresses, Hofmann and Kuhlmann [16] have proposed the particle–
surface interaction (PSI)model for one-way-coupled simulations. In theirmodel, the particlemotion is assumed
to be governed by the Maxey–Riley equation up to the point at which the surface of the particle makes contact

δ

a

a

Δ

release impact

Fig. 13 Illustration of the particle–surface interaction (PSI) model. The solid line symbolizes the trajectory of a circular particle
(its size is indicated by dashed circles) obtained using theMaxey–Riley equation disregarding the boundary effect. The dotted line
represents the trajectory of the centroid of the same particle when the PSI model is applied. The interaction length Δ, comprising
of particle radius a and the minimum lubrication gap width δ, defines the size of a prohibited region in which the particle’s
centroid cannot enter (dark gray area). Dots particle centroids, circles impact and release points, dashed line stress boundary
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with the free surface, assumed to be non-deformable. The lubrication gap was thus assumed to be vanishingly
small. After an inelastic contact the particle is assumed to slide along the free surface, being pushed toward it by
the outward-normal velocity component of the flow at the particle centroid, up to the release point at which the
surface-outward-normal velocity component of the flow turns negative upon which the particle detaches from
the free surface. Introducing the interaction lengthΔ, Mukin and Kuhlmann [17] pointed out that the minimum
distance of the centroid of the particle from the free surface is necessarily larger than the particle radius and the
lubrication gap must be included in Δ. Such PSI model is also justified by the observation that the true particle
trajectory is nearly rectilinear and parallel to the stress boundary over quite some distance for small and heavy
particles. The model can be understood as a contact force acting at a distance Δ from the boundary which
instantaneously annihilates any component of the velocity which is directed outward normal to the boundary.

Figure 13 depicts a sketch of the PSI model in a two-dimensional flow. At the impact point, which has a
distance Δ from the stress boundary, the trajectory of the particle centroid (dotted line) is assumed to deviate
from the trajectory predicted by the Maxey–Riley equation (solid line). Within the model, the particle centroid
cannot enter the layer of thickness Δ on the boundary (shaded in dark gray). At the release point at which
the surface-outward-normal velocity turns negative on y = 1/2 − Δ the particle centroid detaches from the
prohibited region.

The results of the fully resolved coupled simulations presented in Sect. 4.1.3 suggest a refinement of the
PSI model by including the lubrication gap width in the interaction parameter Δ. As an approximation to the
true lubrication gap, we shall use the lubrication gap obtained for the limit cycles during the fully resolved
simulations of the particle–boundary interaction process. This approximation insures that the minimum dis-
tance from the stress boundary of a periodic orbit obtained by the fully resolved simulation will be identical
to that of the periodic orbit obtained from one-way coupling. However, the dynamics of the approach to the
periodic orbit will still differ between both methods.

4.2.2 Comparison of fully resolved simulations with one-way coupling approximations

Figure 14 shows a comparison of limit cycles from fully resolved simulations (full line with markers) with
those obtained by solving the Maxey–Riley equation (11) together with the PSI model (full line without mark-
ers). In the PSI model the minimum distance of the particle centroid from the stress boundary is enforced to
be the interaction length Δ = a + δ. For  = 2, Re = 1000 and a = 0.05, we find a good agreement of the
corresponding limit cycles. For a = 0.03, the agreement is still reasonable and for the smallest particle size the
agreement between the limit cycles is good as well. We conclude that, for the range of parameters investigated,
limit cycles obtained by fully resolved simulations are good approximations to the true limit cycles if the PSI
model is used taking into account the lubrication gap. In addition, the trajectory of the particle centroid is shown
as a dashed line for the case when theMaxey–Riley equation (11) is solved without the PSI model. The particle
was initialized velocity-matched to the flow at (x, y) = (x∗, yP), where x∗ is the fixed point of the combined
Poincaré map (Fig. 7). As can be seen, a limit cycle is absent when ignoring the particle–boundary interaction
and the trajectory is asymptotically approaching the separating streamline, a result which is completely wrong.

A further comparison is made between the limit cycle of the fully resolved simulation and that of the
Maxey–Riley equation combined with the PSI model for a = 0.05 and  = 2. Figure 15 depicts the coordinate
of the particle’s centroid normal to the stress boundary (upper row), its normal velocity (middle row), and its
normal acceleration (lower row) as functions of time during the approach, interaction and release from the
stress boundary. The origin of time is the instant at which the particle centroid passes the line yp for x > 0.
From the lower row, it can be seen that the deceleration of the particle in the fully resolved simulation (full line
with triangles) reached a significant maximum just before t ≈ 0.01 during the approach of the stress boundary.
In contrast, the particle moving according to theMaxey–Riley equation (full line without triangles) experiences
a much smaller deceleration. Within the PSI model, this lack of deceleration is compensated by an impulsive
acceleration at t ≈ 0.01 slightly after the maximum deceleration of the particle in the fully resolved simula-
tion. Obviously, the impulsive acceleration and the PSI model lead to instantaneously transferring the particle
practically to the same distance from the stress boundary as the particle in the fully resolved simulations attains
somewhat later (upper row). As a result of the PSI model the velocity normal to the stress boundary returns
to zero instantaneously (middle row), whereas the normal velocity of the particle smoothly tends to zero in
the fully resolved simulation. In both cases, the normal velocity is exactly (or close to) zero for a considerable
period of time. It is seen that the departure (release) of the particle from the boundary is slightly premature as
compared to the fully resolved simulation. This hints at a possible improvement of the release condition within
the PSI model which currently is defined by the zero of the normal acceleration of the fluid at the location
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of the particle (dotted curve in the bottom row). Comparing the dynamics obtained from the Maxey–Riley
simulation without the PSI model [dashed lines, initiated velocity matched at (x∗, yp)] leads to the following
deficits as compared to both the fully resolved simulation and results of the Maxey–Riley equation with PSI
modeling: (a) without PSI model the particle approaches the stress boundary much too closely (upper row). (b)
the deceleration during the approach of the stress boundary is much too small compared to the fully resolved
simulation (lower row). (c) The release from the stress boundary is too premature and occurs even earlier than
in case of the PSI model. (d) The Maxey–Riley equation without PSI modeling does not exhibit a non-trivial
limit cycle in a certain distance from the stress boundary. This shows that the PSI model in combination with
the Maxey–Riley equation yields a much better approximation to the result of the fully resolved simulation
than the Maxey–Riley equations without PSI modeling which completely fails for t → ∞.

The influence of the relative particle density  on the limit cycles obtained using different approximations
is shown in Fig. 16. Only the near-surface region is displayed. Shown are results obtained by fully resolved
simulations (full lines with symbols), by one-way coupling (11) using the PSI model with Δ = a (dashed
lines), and by one-way coupling employing the PSI model with Δ = a + δ including the lubrication gap (full
lines without symbols). As before, Δ = a + δ yields a good approximation of the limit cycle for all density
ratios. Disregarding the lubrication gap width in one-way coupling is a reasonable approximation for a large
particle-to-fluid density ratio. However, as the density ratio  decreases, the uncorrected interaction parameter
Δ = a is no longer a good approximation to the distance of the limit cycle from the stress boundary which
results in an appreciable error in the shape and location of the limit cycle. The inclusion of the lubrication gap
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Fig. 14 Particle trajectories for Re = 1000,  = 2 and a a = 0.05, b 0.03, and c 0.01. Full line with markers fully resolved
simulations, full line without markers one-way coupling using the PSI model with Δ = a + δ, dashed lines one-way coupled
trajectories for t ∈ [0, 2] initialized at (x, y) = (x∗, yP )
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into the interaction parameter Δ is particularly important when the particle density becomes comparable to
the fluid density, i.e., for  ≤ 1.2 (see Fig. 16e).

5 Discussion and conclusions

The motion of finite-size particles in the closed recirculating flow inside a square cavity has been investigated.
The flow was driven by a constant shear stress with Re = 1000 which was imposed along one of the four
boundaries. The simulations were carried out for heavy circular particles of different radius and different rel-
ative densities. The flow has been resolved on all length scales including scales smaller than the thickness of
the lubricating film between the particle and the stress boundary.

A first key result is the existence of a global limit cycle for the motion of heavy particles of finite size.
It is created by opposing centrifugal and boundary-repulsion forces. The attraction is due to the dominance
of centrifugal forces in the mean if the particle centroid moves in the flow region enclosed by the limit cycle
(near the vortex center). Particles with centroids outside of the limit cycle are attracted to it by the dominance
in the mean of the repulsive forces from the boundaries.

The limit cycle is characterized by its minimum distance Δ from the stress boundary, the repulsion from it
being the dominant boundary effect. The interaction length Δ(, a) was found to depend significantly on the
particle radius a and on its relative density . The functional dependence ofΔ obtained from the fully resolved
simulations was used to correct the particle-surface interaction (PSI) model of Hofmann and Kuhlmann [16]
by including the lubrication gap of width δ between the particle and the stress boundary in the interaction
parameter Δ = a + δ. Limit cycles in the square cavity by one-way coupling using Δ = a + δ were found to
be in good agreement with the limit cycles by fully resolved simulations, whereas limit cycles obtained using
one-way coupling with the uncorrected interaction length Δ = a deviated significantly from the reference
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Fig. 15 Particle motion normal to the stress boundary for a = 0.05,  = 2 and Re = 1000 comparing the limit cycles obtained
by fully resolved simulation (full lines and triangles) and by the Maxey–Riley equation with PSI modeling (full lines without
markers). Also shown is the result obtained from the Maxey–Riley equation without PSI modeling (dashed lines) when the
particle’s centroid is initiated at (x∗, yP ). Shown are the coordinate yp (upper row), the velocity component normal to the stress
boundary ẏp (middle column), and the acceleration normal to the stress boundary ÿp (lower column). The downward pointing
arrow indicates the impulsive force due to the PSI model marking the particle–boundary collision. The dotted line indicates the
acceleration of the fluid in the absence of the particle evaluated at the particle position obtained by the Maxey–Riley equation
with the PSI model
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Fig. 16 Limit cycles for Re = 1000 and a = 0.05 close to the shear-stress surface for different density ratios  = 2, 1.8, 1.6,
1.4, and 1.2 (from a to e). Lines with symbols: fully resolved simulations; full lines: one-way coupling using the PSI model with
Δ = a + δ according to Fig. 12; dashed lines: one-way coupling using the PSI model with Δ = a. The dark and bright gray bars
indicate the minimum distance of the respective one-way-coupled limit cycle from the stress boundary

limit cycle. The smaller the particle radius and the smaller the density difference between particle and fluid
with  > 1 the more important, relative to the particle radius, becomes the lubrication effect on Δ and, thus,
on the location and shape of the limit cycle.

A second key result is the demonstration that one-way coupling combined with the PSI model can pre-
dict periodic orbits in two dimensions with good accuracy. It is concluded that the particle/stress-boundary
interaction can be effectively modeled, for the parameters investigated, by one-way coupling using the PSI
model if the lubrication-gap width is properly taken into account. A one-way coupling approach without any
particle–surface interaction model is not able to reproduce the non-trivial limit cycle and will thus miss this
essential feature of particle accumulation.

The PSI model for one-way coupling with Δ = a + δ can well describe the location and shape of the limit
cycle. However, it does not correctly reproduce the dynamics of the attraction to the limit cycle. This applies
particularly to particles which are initially located on the outer side of the limit cycle. Within the PSI model
these particles are immediately transferred to the limit cycle upon a first interaction with the stress boundary,
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Fig. 17 Particle Reynolds number for a = 0.05,  = 2 and Re = 1000

whereas the fully resolved simulations show the particles to only asymptotically approach the limit cycle. The
attraction of particles from the interior of the limit cycles is expected to be very similar in the framework of
both the PSI model and the full simulation, because their motion is primarily determined by inertia as these
particles are centrifuged toward the limit cycle.

Several extensions would be of interest. In order to broaden the database for the interaction parameter fur-
ther, fully resolved simulations are required to study the effect of other governing parameters like the Reynolds
number. Moreover, not only the particle/stress-boundary interaction has to be modeled in a one-way coupling
approach, but also the lift forces which a shear-flow over a wall exerts on the particle when the particle moves
close to it. Finally, particle–particle interaction can be of crucial importance to understand the dynamics and
stability of particles densely occupying the limit cycle, after they have been attracted to it essentially by a
single-particle mechanism.
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Appendix

To motivate the simplified approach employed in (11), we compute the particle Reynolds number Rep =
Urela/ν along the limit cycle. The relative velocity of the particle Urel is calculated as the absolute value of
the difference vector between the centroid velocity obtained by the fully resolved simulation and the fluid
flow velocity in the absence of the particle. Figure 17 shows Rep for the heaviest and largest particle, i.e.,
for a = 0.05 and  = 2. The Reynolds number for the particle is always less than about Rep < 0.5, except
for the time t ∈ [0.01, 0.025]. Comparing Fig. 15 with Fig. 17, the highest particle Reynolds numbers in the
fully resolved simulations arise during the phase in which the PSI model is operative (t ∈ [0.01, 0.025]) in the
extended Maxey–Riley modeling. However, during the collision phase the magnitude of the particle Reynolds
number does not enter the PSI model. Since the particle Reynolds number is less than 0.5 for the remainder
of the particle motion, there is not necessity to include a finite-Reynolds-number correction in (11).
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