
D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.

Unterschrift BetreuerIn

DIPLOMARBEIT

Household Energy Consumption Forecasting

using Recurrent Neural Networks

ausgeführt am Institut für
Angewandte Physik

der Technischen Universität Wien

unter der Anleitung von

Ao.Univ.Prof.Dr. Martin Gröschl
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Abstract

The energy sector is transforming rapidly. The use of distributed renewable energy
sources is fostering the development of more decentralized energy grids. Optimally
using those distributed energy sources in combination with energy storage systems
is the challenge of the future. Advanced metering infrastructure is monitoring and
recording the grid state and the energy consumption of its participants. Making use
of those energy recordings for optimizing the functionality of decentralized grids is
a major objective in the energy sector.
This thesis investigates the usage of machine learning techniques –especially recur-
rent neural networks– for the task of energy consumption forecasting by utilizing
smart meter recordings of individual households.
Good short term forecasts of energy consumption are a vital part in the overall
optimization of decentralized grids –in the form of smart grids and local energy
communities–. The task, however, is challenging due to the volatility of a single
household’s energy consumption.
By comparing various neural network architectures with benchmarks and studying
the effect of data granularity and exogenous features, this thesis is part of the growing
research in the realm of short term energy consumption forecasting.
Recurrent neural networks were found to be slightly advantageous; as is the approach
for using dedicated models for single households. Using the exogenous features did
not result in better forecasts.
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Zusammenfassung

Der Energiesektor unterliegt einem Wandel. Die optimale Nutzung von dezentralen
und erneuerbaren Energiequellen ist eine der großen Herausforderungen für das En-
ergienetz der Zukunft. Die Entwicklung hin zu effizienten dezentralen Smart-Grids
benötigt die optimale Nutzung von dezentraler Energieerzeugung gekoppelt mit En-
ergiespeichern. Smart Meter –intelligente Stromzähler– überwachen den Netzstatus
und werden für das Aufzeichnen der Energieverbrauchsdaten eingesetzt. Analysieren
dieser Energieverbrauchsdaten kann beim optimalen Betrieb von Smart-Grids un-
terstützen.
In dieser Arbeit werden Machine Learning Techniken –insbesondere Recurrent Neu-
ral Networks– verwendet, um mithilfe von Energieverbrauchszeitreihen, möglichst
genaue Vorhersagen des Energieverbrauchs von Einzelhaushalten zu bekommen.
Gute Vorhersagen des Energieverbrauchs sind ein wichtiger Bestandteil für die Opti-
mierung und Ausführung von dezentralen Verbundnetzen. Präzise Vorhersagen für
den Energieverbrauch von Einzelhaushalten ist eine große Herausforderung, beson-
ders wegen der hohen Volatilität der Verbrauchszeitreihen.
Diese Arbeit vergleicht unterschiedliche Neuronale Netze, und untersucht den Ef-
fekt von Zeitauflösung sowie zusätzlicher Information, auf die Qualität der Ver-
brauchsvorhersagen.
Recurrent Neural Networks waren die besten Modelle hinsichtlich der Verbrauch-
sprognosen. Weiters scheint der Ansatz –für einzelnen Haushalte spezifische Mod-
elle zu trainieren– vorteilhaft. Keine Vorteile wurden gefunden für das Nutzen
zusätzlicher Information.
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Chapter 1

Introduction

The energy sector is transforming. The penetration of renewable energies, not only
on the high grid-level but also on the low level of the individual consumer is increas-
ing. Through the installation of photovoltaic modules, using the radiation of the
sun to generate electric energy on private properties, households will increasingly
produce there own share of electricity, using its energy output in times of demand
and taking part in the energy market in times of no self-consumption by selling its
generated energy to the grid. The term prosumers characterizes the idea of individ-
ual customers not only buying from the grid for their energy needs, but taking an
active role in the energy market by generating and providing.

Electric vehicles are becoming widely adopted and pose another challenge to the
grid of the future. The electric power needed for electric vehicles is high and es-
pecially speed charging can jeopardize the stability of the grid, especially at times
of peak demand. Restricting the high power loading curves is a common practice
to circumvent stresses to the grid. This restriction of loading behaviour, however,
can result in a dissatisfaction of the customers, leading to lower adoption of elec-
tric transport technologies, which might play a major role in the global movement
to reduce greenhouse gas emissions and move the transportation sector in a more
sustainable direction.

Heat pumps and solar thermal installations are further parts in the overall energy
mix, which will play an increasing role in the coming years. To deal with these
developments in the grid, innovations, especially in the field of energy storage, are
of importance. Battery Storage Systems are developed to store energy in times of
over-generation and provide the stored energy in times where the generation can
not balance the demand. Energy storage might be especially useful when combined
with photovoltaic modules, where there are relative predictable day and night cycles,
that might allow for optimal charging and discharging schedules of the combined
system. All of this development and innovation is driven by the imperative objection
to drastically reduce greenhouse gas emissions and move the global economy and
lifestyles of billions of people towards a more sustainable way of operation.

An important part of the overall evolution of the energy system is the forming of
more decentralized grids. The growing penetration of renewable energy sources on
every level of the grid, not only onto the High Voltage Grid –through wind farms,
hydropower plants or solar power plants–, but also smaller generations at the house-
hold level in form of photovoltaic or geothermal systems, are increasing the need for
a more decentralized energy system management. The evolution of the present grid

10

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

is, therefore, trending towards smaller scale grids, which can be seen as enclosed
grids, with the idea of virtual power plants orchestrating the generation from dis-
tributed energy sources on the low voltage level. A major challenge of moving to a
more decentralized way of operation is the efficient use of the numerous distributed
energy sources.

This development is going hand in hand with the increase of sensory input that
is derived from the grid itself. The spread of Advanced Metering Infrastructure is
taking place in grids around the world, with the goal of gathering information of grid
parameters on every level, for making informed decisions about grid stability, grid
operations, and future grid modifications. Smart Meters are part of this advanced
metering infrastructure. The major objection of a Smart Meter is to monitor (record
and save) the energy consumption of the circuit it is deployed on. In Austria,
smart meters are deployed on about 80% of households, with the goal of getting the
percentage of households connected to a smart meter device up to 95% by the year
of 2022 according to e-control Austria [1]. Furthermore, European energy policies
are targeting the roll-out of smart metering devices all over Europe, with the goal
of achieving 80% coverage by the year of 2020 [2]. This increase in measurements
of electric energy demand on every grid level yields huge amounts of recorded data.
The goal is to use these measurements to drive informed decisions and take actions
that advance the grid into a more sustainable and efficient mode of operation.
Machine Learning can be used to get insights from this huge amount of recorded
smart meter and sensor readings. Varying machine learning approaches can be
deployed, to analyse the recordings at different voltage levels and with various ob-
jectives in mind. Found insights can then help with the optimal scheduling and
incorporation of emerging technologies, playing a vital role in transforming the grid.
Following operations are especially valuable for an efficient grid:

• Load Scheduling/Demand Response Algorithms

• Managing Charge/Discharge cycles for Energy Storage Systems

• Flexibility Management (Home Energy Management Systems/vehicle-to-grid
technologies)

• Energy Consumption Forecasts

• Anomaly Detection in the Grid

Almost all of these mentioned control schemes, in terms of demand response or grid
management, require short-term electricity demand forecasts to aid in informed
decision making.
This thesis investigates the suitability of a special kind of machine learning method-
ology, namely Recurrent Neural Networks for a day ahead energy consumption fore-
cast of individual households. This work, therefore, partakes in the research of
analysing different machine learning approaches for the task of energy consumption
forecasting on the low voltage level. Accurate forecasts of energy demand play a
crucial part in the goal of making the energy system more stable, more reliable and
more efficient.

This thesis is structured as follows: Chapter 2 describes the motivation of why fore-
casting is important and the challenges with this task. Forecasts play an important
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CHAPTER 1. INTRODUCTION

role in the overall optimization of energy communities. Why they are useful for
utilities, end-consumers, and the environment is mentioned in more detail. Chapter
3 gives an overview of the existing work and the state of the art in the field of
forecasting energy consumption. The aspects in which this thesis is expanding the
current research field are explored, and the main questions this thesis sets out to
answer are motivated. In chapter 4 the theory behind the forecasting methodology
of neural networks used in this work is described. Chapter 5 explains the experi-
mental setup for the task of forecasting short term energy consumption of individual
households. The data of the household recordings, as well as the data processing
steps, are discussed. The feature engineering steps, as well as how the data is pro-
cessed into input and target pairs is explained. After the theoretical background
in chapter 4 and explaining the use of those methods on the task of energy con-
sumption forecasting in chapter 5; chapter 6 presents the results on the different
experiments taken. In chapter 7, important points to consider when working on
the task of forecasting energy consumption profiles on the low level are discussed.
Furthermore, interesting suggestions for future work are pointed out, before a short
ending statement is concluding this final chapter.
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Chapter 2

Problem Definition and
Motivation

This thesis investigates the question if and how a particular machine learning method
can help in optimizing one part of the operational state of the energy grid. In par-
ticular, it looks at the challenging problem of forecasting the energy consumption
profiles of individual households, using recurrent neural networks. Due to the volatile
and dynamic nature of consumption profiles on the low level of individual house-
holds, reasonable accurate forecasts pose a big challenge. This thesis builds open the
research on low-level forecasting and investigates the suitability of recurrent neural
networks for a particular household stock in Vienna with 117 households. Not only
the historic energy consumption but also additional features are regarded to aid in
getting an accurate day-ahead energy consumption forecast. The recurrent neural
network approach –in particular an LSTM (Long Short Term Memory) network–
gets compared to a feedforward neural network. The LSTM network is once pro-
vided with additional information and gets compared to its counterpart with only
the historic energy consumption as input, to evaluate the importance of the addi-
tional information. The neural network methodologies are compared to benchmarks,
to see if the computational expensive methods are actually justifiable. Further, the
question is investigated, if an LSTM network is best used for all households –that
is, using it as a ”General” model to forecast any household in the household stock–;
or if every household should be modeled by its own distinct LSTM network –that is,
using several ”Individual” models–. The theory and experimental set up in chapters
4 and 5 respectively are explaining this in more detail. This chapter expands on
the challenges faced by the current power system and its ongoing development. A
focus is then given on why accurate forecasts matter and what can be gained for the
various energy system participants.

2.1 Motivation

Electricity consumption on the residential level makes up a bigger share in the overall
energy consumption than ever before. According to [3] the residential sector is going
to make up about 30% of the electric energy consumed by the year 2030. Because
of this increasing share of energy used in the residential sector, the optimal energy
strategy for this sector is becoming ever more important. Furthermore, the growing
penetration of renewable energy sources and the transition from the centralized
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CHAPTER 2. PROBLEM DEFINITION AND MOTIVATION

controlled grid to a more decentralized paradigm of smart grids and local energy
community grid comes with the need of optimizing the low voltage level down to
the individual household.
A smart grid is an electricity network that can integrate the actions of all players
connected to it – generators, consumers and those that do both – in order to effi-
ciently deliver sustainable, economic and secure electricity supplies [4]. Smart girds
and local energy communities are, therefore, part of the next-generation power sys-
tem, enabling grid operators to manage electricity demand in a sustainable, reliable
and economical manner.
Due to the rapid growth in data generation, data acquisition and data storage in
power systems, the optimal use of this information will be a paramount challenge
in the coming years. Because of the roll-out of smart meters and the build-up of
advanced metering infrastructure throughout every level in the energy grid, huge
amounts of data are recorded and stored. Machine Learning techniques are increas-
ingly used to analyze and extract useful insights from this sensory data, with the
overall goal of making informed decisions to aid in achieving an ideal operational
state of the grid.
One domain for which machine learning techniques are used in energy systems is
forecasting. Accurate forecasts of demand and generation of electrical energy are
important for the optimization of network operation, demand responses, home en-
ergy management systems, battery energy storage systems and planning of future
infrastructure. However, energy consumption forecasting is a challenging problem,
especially on the level of individual households. The highly volatile and dynamic
nature of the energy consumption profiles on this level makes it difficult. Forecasts
on higher voltage levels like substation level or region level achieve good results.
These forecasts on the high voltage level have been the major focus in the past.
However, due to the ongoing transformation of the energy grid, accurate forecasts
on the low level are becoming more important. Forecasting methodologies, that are
accurate at the high voltage level, are often not suited for the low voltage level.

2.1.1 Challenges for the Grid of the Future

Renewable Energy Sources: The increasing penetration of renewable energy
sources –coming from the usage of wind, solar, hydro or geothermal power– into the
grid causes problems for the save and stable operational state of the energy grid.
Especially the incorporation of the non-steady sources like wind or solar challenge
the balance between generation and consumption at every time in the grid. Nev-
ertheless, the increasing usage of these sources of energy is the main objective in
the development of the global energy system. The challenge of matching generation
with consumption is prevalent on every grid level. Therefore, combining efficient
energy storage technologies with energy production coming from solar or wind is a
promising avenue to mitigate the mismatch in production and consumption.

Households as prosumers: The transformation of the centralized grid towards
a more decentralized way of operation with the integration of numerous players, es-
pecially the active role of individual households as prosumers, is causing challenges
to the stability and of the grid. The term prosumers describe the ability of house-
holds to play the role of a consumer as well as a producer in the energy system.
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2.1. MOTIVATION

Energy system authorities are enabling its costumers with the ability to partake in
the energy market. Households, therefore, are not only consuming energy from the
grid but increasingly play their role in providing decentralized energy to the grid.

HEMS: Home Energy Management Systems (HEMS) are scheduling the optimal
energy usage, regarding time and amount of energy used in the household by con-
trollable appliances. Certain appliances can get scheduled in a way to optimize the
objective function of the Home Energy Management System. Common objectives
are to minimize the overall cost of energy usage per household, maximize customer
comfort or maximizing self-consumption. Home Energy Management Systems can
also be used to communicate with the grid and are therefore playing a role in de-
mand response programs of utilities. This is useful in times of grid strain when
generation and demand are unbalanced. At such times, utilities can take measures
to influence the demand of households, by targeting the Home Energy Management
System of various households.

BEMS: Energy storage technologies are becoming a vital part of the energy sys-
tem. Especially the incorporation of renewable energy sources drives the need to
store access energy in times of overproduction and provide the stored energy in times,
where the energy production coming from renewable sources is not available or can
not match the demand. The dominant energy storage technologies are based on
thermal energy storage, batteries or fuel cells. In the case of individual households,
battery storage technologies are likely to play the dominant role in the future. A
Battery Energy Management Systems (BEMS) schedules the optimal charging and
discharging of available resources. The ideal size of storage capacity and the opti-
mal system deployment –whether used individually for every household or used as
community storage– need to be optimized as well.

Demand Response Programs: Demand Response Programs are actions per-
formed by utilities and network operators to secure stable and safe operation of the
energy grid. Actions commonly performed to ensure the optimal state of the grid
are (a) Peak Shifting, (b) Load Cutting.

Each of the above-mentioned technologies and procedures can greatly benefit in its
operational efficiency from accurate forecasts, either on the generation or on the
consumption side. The combination and optimization of all of these various factors,
merging into an overall efficient operational state of the grid, is the challenge of the
coming years.

2.1.2 Smart Meters

Information about energy consumption and energy demand is coming from record-
ings of smart meter devices. With the roll-out of smart meters and the penetration
of advanced metering infrastructure, the availability of high-quality smart metering
data is increasing. With varying time resolutions, the electric energy consumption
can be recorded at various voltage levels.
Smart meters enable two-way communication. Not only can smart meters save and
transmit energy data from the electric circuits it is deployed on, but it can also
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CHAPTER 2. PROBLEM DEFINITION AND MOTIVATION

operate on commands, and therefore plays a role in demand response programs,
especially if the smart meter is placed on the circuit of individually controllable
appliances like dishwasher, washing machine, or other controllable devices.

2.1.3 Why forecasting

Accurate forecasts can help to utilize the aforementioned technologies and programs
optimally. This benefits both participators in the energy grid, the customers and the
network operators. The third beneficiary is the environment, because the transition
to a more efficient grid, results in less greenhouse gas emissions. The goal of the
future grid is to use as many distributed energy sources as possible and optimize the
scheduling of generation and consumption as well as charging and discharging of all
of its eminent participants while satisfying the safety and stability requirements of
the grid.

Forecasting: A part of Grid Optimization The value of accurate forecasts
comes with the integration of forecasts with the aforementioned optimization pro-
grams and emerging technologies. Newly developed forecasting methods might yield
more accurate forecasts in the range of small percentage points. Acting on those
improvements is the challenge. Precise optimization algorithms, that not only in-
corporate forecasts of energy consumption and energy generation, but additionally
consider weather forecasts, customer preferences, and schedule the optimal energy
policy according to the current and predicted state of the grid, is the value of accu-
rate forecasts. Combining forecasts of energy generation and energy consumption
with home energy management systems (HEMS) and battery energy management
system (BEMS) is crucial for the optimization of smart grids and local energy com-
munities.

The integration and combination of those different technologies is no trivial task.
Many of the technological innovations rely on or might be greatly improved by incor-
porating accurate forecasts. Therefore, developing reliable and precise forecasting
methods of energy generation and energy consumption plays an important role in
moving the grid into a more sustainable direction.
There are three main stakeholders, that benefit in ever better forecasts:

• Utilities: Some of the potential benefits for utilities are:

– Reduction of grid strains, do to peak and overall demand

– Reduced transmission and distribution losses

– Better balancing capabilities of demand and supply

– Reduction of operational costs

• Costumers: The awareness of energy consumption, energy usage, and CO2
footprint, leads customers to regard energy-efficient technology as highly prefer-
able. Furthermore, the transition from traditional consumers to prosumers
allows customers to play an active part in the energy market. Some of the
potential benefits for costumers are:

– Economic savings
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2.2. P2PQ PROJECT

– Reduction of the environmental footprint

– Market participation

– Peer to Peer trading

• Environment: With more accurate forecasts of electric energy consumption
on every level, –nation level, region level, substation level, transformer level,
household level–, the effect of better forecasts will lead to a more efficient
energy system which in turn will be more environmentally friendly. More
accurate forecasts of energy generation coming from renewable sources, and
balancing this generation with the actual (or predicted) energy consumption,
can reduce the dependency on energy generation coming from fossil fuel power
plants, resulting in less CO2 emissions.

2.2 P2PQ Project

In this section, a short introduction to the research project of Peer-to-Peer im
Quartier (P2PQ) 1 is given. This thesis covers a small part of this research project
and focuses on forecasting day-ahead energy demand of individual households with
recurrent neural networks.

The European Commission presented an initial version of the framework Clean En-
ergy for All Europeans on the 30th of November 2016 aiming to help energy mar-
kets include more renewable energy sources, empower consumers and better manage
energy flows across the European Union. [5, 6] In March 2019, the Commission an-
nounced the finalization of negotiations facilitating the clean energy transition and
make the electricity market fit for the future. The main goal is to bring regulatory
certainty through the introduction of national energy and climate plans.

Figure 2.1: Clean Energy Package – Goals for 2030.

1The Peer-to-Peer im Quartier project is funded by the FFG, the Austrian Research Promotion

Agency.
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CHAPTER 2. PROBLEM DEFINITION AND MOTIVATION

Figure 2.1 shows some of the goals for 2030 addressing the following issues:

• Increasing the share of renewable energy sources (RES) to at least 32 percent.

• Increasing energy efficiency by at least 32.5 percent.

• Reduction of greenhouse gas emissions by at least 40 percent.

• Empowerment of consumers.

Within the Austrian research project, Peer-to-peer im Quartier (P2PQ) a Blockchain-
based platform is developed providing the optimization of self-consumption of pho-
tovoltaic (PV) systems and the utilization of community storage as well as the
option to participate in peer-to-peer energy trading within a local energy commu-
nity (LEC). In general, the project addresses the previously mentioned goals of the
European Commission, in the following way:

Increasing the share of renewable energy sources: To be able to reach the
goal of a share of 32 % renewable energy sources, it is necessary to optimize the
utilization of flexible production and consumption. P2PQ addresses these issues by
introducing new management concepts on the level of local energy communities.

Increasing the energy efficiency: The main goal regarding energy efficiency is
the optimal utilization of the available energy as well as the reduction of consump-
tion. P2PQ implements an optimization in the self-consumption of households on
one hand and the optimization of an energy community in Vienna on the other
hand. Within this community, photovoltaic power plants are already available, and
a community battery storage will be implemented. By optimizing the utilization
of the storage –based on consumption, generation, user-preferences, and tariffs– the
self-consumption of the entire quarter will be increased. As a result, the energy
transfer on the grid connection point can be reduced leading to lower energy costs
for all members of the community.

Due to the previously mentioned measures, the energy consumption stemming from
the outer grid can be reduced for every single customer as well as for the entire
energy community. As a result, a higher rate of the consumed energy is provided by
renewable energy sources within the quarter and thus, the energy transfer to and
from the grid connection point is lowered, resulting in lower greenhouse gas emissions
due to the lower need of energy from the grid which is generated by conventional
power plants (e.g., gas power plants with high greenhouse gas emissions).

Empowerment of consumers: The so-far passive consumers of conventional
grids are becoming active (prosumers) due to their generation (e.g., by the installa-
tion of PV power plants on private houses or apartment buildings). The European
Commission aims to strengthen their right of generation, energy storage, consump-
tion, and selling of surplus energy. As a result, prosumers should be permitted to
participate as active members of energy communities or as part of a virtual power
plant (VPP) in controlling the generation and consumption.
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2.2. P2PQ PROJECT

In general, the research project Peer-to-peer im Quartier aims to develop an inno-
vative infrastructure for energy communities –in particular, within a community in
the second district of Vienna, Austria– with the following goals:

• Increasing the self-consumption of households.

• Increasing the self-consumption of energy communities and thus, reducing the
energy transfer on the grid connection point.

• Optimization of community battery storage within energy communities.

• Optimization of charging behavior on the customer level and the community
level.

The optimization of the self-consumption, the utilization of renewable energies and
the community storage are based on forecasts –on the generation and the consump-
tion side–. Since private customers have a volatile energy consumption behavior,
demand forecasting is quite challenging and the quality of many existing approaches
is rather low. In particular, accurate forecasts are necessary to provide realistic in-
put for self-consumption optimization, optimal utilization of battery storage, and
peer-to-peer energy trading with very low amounts of energy.
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Chapter 3

Related Work

3.1 Energy Consumption Forecasting

Before introducing studies concerned with the topic of energy consumption forecast-
ing on the low voltage level, this section gives a short overview of the different areas
in the forecasting domain, leading to a better understanding of the broad field and
the diverse applications that are being developed.

3.1.1 Short-term, Medium-term, Long-term

The first difference in forecasting studies regards the time horizon of the target
prediction. These horizons refer to the length of time into the future the forecast
is made. The final forecast can either be a single prediction point –for instance the
amount of energy consumed during the whole forecasting horizon–, or a consumption
profile, –predicting the whole duration of the forecasting horizon with a predefined
timely resolution–. The four main categories regarding the forecasting horizon are:

• Very-short-term: Minutes to Hours

• Short-term: Hours to Days

• Medium-term: Days to Weeks and Months

• Long-term: Month to Years

3.1.2 High-Level, Medium-Level, Low-Level

The next important distinction in the domain of forecasting is regarding the level
at which the energy consumption or demand is considered. The level is referring to
the voltage level of the grid. Mainly three different voltage levels are mentioned in
the literature referring to various aggregation levels [7]:

• High-voltage level: Energy consumption in the range of several megawatt-
hours is considered. Aggregation level at this stage can be seen as region or
country level.

• Medium-voltage level: Often referring to the substation level or aggregated
feeder level. Amounts of electric energy considered at this level range between
hundreds of kilowatt-hours to megawatt-hours. Aggregation level can be seen
as city or district level.
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3.1. ENERGY CONSUMPTION FORECASTING

• Low-voltage level: This level is referring to the level of individual households.
Here a low energy consumption baseline is common, characterized by a volatile
consumption pattern. The aggregation of several individual households also
falls into this category. The very-low voltage level is sometimes used to refer
to the level of individual appliances.

In addition to the pure distinction of the voltage level, in some studies, there is also
the distinction between different kinds of consumers. That is the differentiation of
households, small business operations, and industrial buildings, due to the obvious
differences in energy consumption patterns regarding those consumers.

3.1.3 MISO and MIMO

Most of the studies in this domain of forecasting energy demand try to leverage cer-
tain information about the systems state to get accurate forecasts. Historic energy
consumption, weather information, temporal information, demographic information
might be considered and used to get a reasonably accurate forecast. This approach
then refers to Multiple-Input. Regarding the output of the forecasting model, many
studies are focusing on predicting a single value, which is only the energy consump-
tion value for a certain time-interval at time-step t into the future. This approach
is often referred to as Single-Output. However, if the task is to forecast energy con-
sumption over a certain period, the output will be a vector. The number of elements
to be predicted depends on the time resolution for which the forecast is performed.
For instance, forecasting two days with a time resolution of one hour, the forecasting
vector consists of 48 elements. Every element corresponding to one particular hour
in the forecasting horizon. This approach then refers to Multiple-Output.

• MISO: Multiple-Input-Single-Output
In this case, the input might either be a vector, matrix or tensor. Usually,
in machine learning terminology every input is referred to as a tensor. The
Single-Output is referring to the fact that the output is a scalar or single value.

• MIMO: Multiple-Input-Multiple-Output
Again the input is a tensor. Mostly a matrix (2d-tensor) or a 3d-tensor. In
the case of the Multiple-Output, the output is commonly a vector.

3.1.4 Further Differences

• Time-resolution: Various time resolutions are considered in forecasting stud-
ies. Hourly time-intervals are often the target time resolution. However, more
emphasis and research in recent years is in forecasting smaller time resolutions
to get a finer granularity of the forecasts. 30-minute, 15-minute and 5-minute
intervals are found in the literature. The smaller the considered time resolu-
tion, the more volatile and erratic the energy consumption profiles become.

• Error- and Performance Metrics: A crucial point in every forecasting study is
the evaluation of the final approach. Often pointwise error metrics are used,
for describing the forecasting performance. However, especially in the case
of the low voltage level, this might not be the ideal solution, and therefore
alternative metrics are being developed in the literature.
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CHAPTER 3. RELATED WORK

• Information as Input: Different studies use varying methodologies and varying
data inputs to those methods. The most common information considered is
(a) historic energy consumption, (b) temporal encodings and (c) weather infor-
mation. Some studies also incorporated demographic information or historic
consumption profiles of individual appliances.

• Size of data sets: The differing data sets considered in the regarded studies vary
from single households over a short time period of several weeks or months, to
bigger household stocks encompassing hundreds of households over a period
of several years.

The variability in the studies leads to difficulties when trying to make valid compar-
isons between different studies and their proposed methodologies. For this reason,
the use of standard data sets might be recommended, on which every study should
test their approach. However, it is not obvious, that the ”best” forecasting method
on the standard data set, is then actually the ”best” for the distinct data set, on
which a certain study is conducted [8].

3.1.5 Formal Definition of Forecasting

After elaborating on some of the main points characterizing the task of forecasting
energy consumption, the following paragraph gives a short introduction to some of
the formal naming conventions in the forecasting domain:

The target of a forecasting problem is referred to as y. In the case of a Single-Output
problem, this value is a scalar. In the case of a Multi-Output problem y is referring
to a vector. The length of the vector y is determined by (a) the time horizon of
the prediction and (b) by the target time resolution. The corresponding prediction
to the true target value y is referred to as ŷ. In the context of Multi-Output, the
target vector y and the predicted vector ŷ are often indexed by t referring to the
time step of the vector, resulting in the convention yt for the true target vector and
ŷt for the corresponding prediction. Where t >= 0 and t < n with n being the
length of the vector. In the case of a 24-hour forecast with a half-hourly resolution,
the target vector yt is of length 48 and one element of this vector yt at time step
t is holding the amount of energy consumed during a particular half-hour; as does
the element of the prediction vector ŷt respectively. In the case of Multi-Output,
the predicted amounts of energy demand can either be (a) forward-looking or (b)
backward-looking. These two distinctions describe if the value ŷt at time step t of ŷ
refers to the time interval from t−1 to t –backward-looking–, or to the time interval
t to t+ 1 –forward-looking–.

This short introduction of some of the main differences in the forecasting domain is
providing a rough understanding of the diversity in energy consumption forecasting.
The field is advancing fast, and efforts are undertaken to distill the best forecasting
approaches for different use cases. However, the ”best” approach for one task is
not automatically the ”ideal” candidate when considering a different voltage level,
different time resolution or different time horizon. This makes it challenging and
the active research in this discipline is trying to distill insights, of when and where
what kind of method is probably the optimal solution. It is crucial to evaluate the
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3.2. RELATED WORK

performance or ”goodness” of different approaches based on a certain metric –or
several metrics–, however, there is no consensus on what the ”best” metrics are,
based on which to compare the different methods, especially for the low voltage
level. Additionally, the ideal methodology is not only dependent on the above-
mentioned characteristics describing the problem task, but also on the considered
household stock itself –the kind of buildings included in the analysis–. Although the
problem is in the same domain, in regard to voltage level, and can be described in
terms of a MIMO problem; there is high variance in the considered buildings and
households itself –stemming from the lifestyle differences of the residents–, which
makes a reasonable comparison challenging.

3.2 Related Work

Numerous projects and studies are done on the task of forecasting energy con-
sumption over different time horizons and different voltage levels with varying time
resolutions. It is important to point out the difference between forecasting on a
higher aggregation level, –the high or medium voltage level– versus dealing with
the task of forecasting individual households. Therefore, this related work section
first introduces some studies that focus on a higher aggregation level, which include
interesting concepts. After this, studies dealing with forecasting on the low voltage
level are considered.

3.2.1 Physical-, Statistical- and Machine Learning- Models

Numerous forecasting methodologies are investigated in the literature on various
forecasting problems. A rough distinction can be made between the following mod-
eling approaches:

• Physical models: Forecasting approaches falling into this category aim at pre-
dicting future energy consumption based on physical principles and their ther-
mal dynamics. These models describe or monitor certain parameters that
might indicate future energy usage. Parameters of interest are air condition-
ing system, HVAC, natural ventilation, passive solar heating, photovoltaic
systems, financial considerations, occupant’s lifestyle, the building’s thermal
properties (insulation), etc.

• Data-driven models:

– Statistical Models: Statistical models tailored to time series forecasting
like ARMA (autoregressive moving average) or ARIMA –a modification
of the ARMA model–, are linear models and are valuable for time series
where trends and seasonality are present.

– Machine Learning Models: Decision Trees, Random Forests, Gradient
Boosted Trees, Support Vector Machines, and Neural Network Models
are some of the common machine learning models used to perform fore-
casts. These models are rather data intensive. Especially neural network
methods require reasonable amounts of data samples to produces reliable
forecasts.
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CHAPTER 3. RELATED WORK

The above list is not conclusive but is mentioning some of the most common ap-
proaches found in the literature on forecasting energy consumption. A clear distinc-
tion between those modeling approaches is not obvious in many cases, and hybrid
approaches are often adopted. Nevertheless, machine learning approaches are see-
ing a growing adaptation in recent years, due to the increase in data availability
as well as the flexibility they provide –due to there capability to model non-linear
data– compared to more classical forecasting approaches –that are often dependent
on predefined feature representations–.

3.2.2 High voltage level

The predictions and forecasts of aggregated energy consumption i.e. on higher
voltage level deliver promising results [9, 10]. At the high aggregation level, different
model approaches like statistical models, physical/functional models or machine
learning models can provide reasonably accurate predictions on short-term, long-
term, on single, as well as multi-output forecasting tasks.

Many of the studies dealing with forecasting on a high level, found that the in-
corporation of weather data (especially ambient temperature and precise weather
forecasts) does help with getting more accurate predictions [11]. Furthermore, it is
found, that temporal information regarding day type (workday, holiday, weekend)
does have predictive power –helping in getting more accurate forecasts–.

Review studies for the field of forecasting energy demand looked at many forecasting
methodologies and found, that a wide variety of modeling techniques do perform well
on the higher level [12, 13]. Statistical time series models like ARMA and ARIMA
are commonly used and achieve satisfying results [14]. These linear models work
well in the presence of trends or seasonality in the time series. Studies investigating
the use of statistical modeling techniques are frequently trying to get the energy
consumption data into the correct shape. For statistical models this often means
differencing, de-trending and de-seasoning the energy consumption time series, to
make the time series stationary. If stationarity can be achieved, these linear modeling
approaches showcase good results on a variety of tasks. All of this de-trending,
differencing and de-seasoning does make sense on the high-voltage level. However,
for individual household consumption profiles, the demand curves become highly
non-linear, and statistical models are mostly replaced by more flexible machine
learning approaches.

It can be said, that on the high voltage level, many different forecasting methods are
reaching good performances, resulting in reliable predictions of energy consumption.
Machine learning techniques seem to be adapted more often than statistical models
in recent years, although not all studies find a superior performance when using
ML-techniques compared to statistical models or even to rather simple benchmarks.
Nevertheless, particular Artificial Neural Networks are adopted by many studies and
are often one of the top-performing models.

3.2.3 Low voltage level

Support Vector Machines (SVM)[15], Random Forests (RF)[16], K-Nearest Neigh-
bors (KNN)[17], and Artificial Neural Networks (ANN)[?, 18] have been regarded
for the task of short-term low voltage level forecasting. ANN and its advanced deep
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3.2. RELATED WORK

learning architectures, especially Recurrent Neural Networks (RNN), are a popular
research topic in recent years and show advantageous performances compared to
more traditional forecasting approaches according to [19, 20, 12, 11, 21, 22].
A lot of difficulties emerge when the considered aggregation level drops from the
high voltage level to the low voltage level. In particular, many modeling approaches
performing well at the high voltage level are not able to deliver satisfying forecasts
at the level of individual households. This is due to the high variability in residential
energy consumption. The lifestyle and daily routines of residents are the primary
impacts on the electricity demand [3]. Not only do the energy consumption patterns
vary drastically from household to household, due to differences in lifestyles, but even
the same household shows high variance on a day to day basis. This diversity in
the energy demand profiles of individual households makes forecasting on the low
voltage level very challenging.
Due to the volatility and non-linearity in residential energy consumption profiles,
standard statistical forecasting models like Autoregressive (AR), Moving Average
(MA) or Autoregressive Integrated Moving Average (ARIMA) are less effective in
this domain [23, 24, 25, 26]. These modeling approaches work well if a few conditions
can be met, they include (a) Stationarity of the profile and (b) strong autocorre-
lation of the profile itself. These assumptions can rarely be satisfied for individual
households. The lower the aggregation level, the more volatile and erratic the energy
consumption profiles become, thus more flexible methodologies are applied in the
low voltage domain, often yielding superior performances.
Another difference between high level and low level is regarding the evaluation of
the forecasts itself. Error metrics that provided useful evaluations on a high level are
not suitable for the low level. In particular the Mean Absolute Percentage Error or
MAPE (see equation 3.1) is a widely used error metric in the realm of high voltage
level forecasting.

MAPE =
1

n

n
∑

t=1

∣

∣

∣

∣

yt − ŷt
yt

∣

∣

∣

∣

(3.1)

However, this error metric is not beneficial for the low voltage level, due to the often
very low baseline consumption, resulting in very large values.
The most common error metric used for evaluating the ”goodness” of a forecast
on the level of single households is the Mean Absolute Error or MAE (see equa-
tion 3.2), describing the average absolute difference between predictions ŷ and true
consumption y at every given time step t for the total length of the forecast n.

MAE =
1

n

n
∑

t=1

|yt − ŷt| (3.2)

However, the MAE is a pointwise error metric. In [27] Haben et al. describe the
problems arising when evaluating forecasts based on a pointwise error metric on
the household level. The authors, therefore, propose an adjusted error metric that
mitigates some of the shortcomings of often used error metrics. The difficulties
coming with a pointwise error metric, especially the effect of the ”double-penalty”
error are discussed in section 7.2.1.
Hybrid approaches are investigated in [10, 9]. Hybrid means combining various
forecasting models, and to merge the different forecasts to get a more ”robust” final
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CHAPTER 3. RELATED WORK

prediction. In the corresponding studies the author’s combined Decision Trees (DT)
and Support Vector Machines (SVM), where the final forecast did perform better
on the total analyzed data set, then any single models on its own.

In [3] the authors investigate the question about aggregation level and its impact
on forecasting performance. By applying various machine learning algorithms for
the task of forecasting 24 hours ahead, they found that regardless of the applied
approach, all models did perform better, the higher the aggregation level. This was
also found by other studies, when comparing region level energy demand, with the
demand of a single household. The region demand follows a more steady and there-
fore predictable pattern. In the study they further found that although forecasting
individual households came with high errors; aggregating the individual forecasts to
a certain level (in the study they aggregated over a number of households, first 10
then 20 then 30 and so on up to 100 households); that the aggregation of the indi-
vidual ”bad” forecasts lead to better results, then when forecasting the aggregation
level directly. The input to the models did not seem useful when regarding single
household predictions, but when aggregating all the forecasts, it seems as though
the information might carry predictive power. Unfortunately, the study did not
compare the single household forecasts once with the features and once only look-
ing at historical load, which would point out the importance of the incorporated
information.

In [8] the authors find that data resolution plays an important role in the forecast-
ing performance. With decreasing data resolution, –broadening the regarded time
intervals–, the forecasting performance of a machine learning model tends to get
better. This can be explained by the fact, that the increase in the time interval re-
sults in an out-smoothing effect, resulting in less volatile consumption profiles. The
more erratic, the more difficult it is for models to distill the functional relationship
between input and target.

Many studies investigate the importance of various features on the forecasting per-
formance. Review studies found, that although weather information and temporal
information do help in getting more accurate forecasts on the high voltage level;
these features do loose their predictive power when looking at the level of individual
households. For individual households, the most relevant factor of energy consump-
tion is the occupant’s lifestyle, which is highly volatile and erratic. For this reason,
temporal or weather features seem to lose their predictive power in comparison to
the dominant influence of occupants’ lifestyle.

Most studies include benchmarks for comparison. To evaluate the ”goodness” of the
proposed methodologies, benchmarks serve as a first baseline, that needs to be im-
proved on, to justify the use of more sophisticated modeling approaches. Commonly
used benchmarks are, the day before (in the case of 24 hour day ahead forecasting) or
the value before (in case of the robust- or persistent-predictor). Some modifications
of those benchmarks like taking the average of previous days, or taking the same
weekday one week before, can be found in the literature, and are found to be difficult
to beat –depending on the evaluation criterion–. Therefore an intelligent benchmark
choice can be a reasonable forecasting model itself. This can be seen in [17], where
the authors used K-nearest neighbors (KNN) and refined its workings. For the task
of forecasting 24 hours day ahead, the first step was to define a similarity measure
based on which to evaluate the ”goodness” of the forecast. As is mentioned in [8]
commonly used pointwise error metrics have drawbacks, therefore the authors used
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3.2. RELATED WORK

the permuted error metric defined in [27]. Based on this error metric, the author
found similar daily consumption profiles and took their successors. The successor
days got merged, according to a defined merging function (that again used the per-
muted error metric as a minimization objective in the merging process), resulting
in the final forecast. This approach builds upon the assumption, that similar days,
have similar successors.

In [10] Hayes et al. give a comparison of various forecasting methods on varying
aggregation levels. The show, that on the high aggregation level of substation level
and higher MAPE rates of 1-3 % can be achieved, whereas on the low voltage level
these MAPE increase dramatically depending on the considered data set. Models
that are found to be useful at the higher aggregation, are not better performing
than ”naive” forecasters. Especially when considering computation time, ease-of-
use and periodic updating of the forecasting system, they question the suitability
of sophisticated methodologies compared to the simpler approaches. The authors
argue further for the limited use of pointwise error metrics in case of the low voltage
level, and advocate for a probabilistic approach, delivering confidence intervals and
ranges, rather than point forecasts, in which system operators can navigate.

Veit et al. [28] take state-of-the-art forecasting methods including ARIMA and
ANN models and compare them critically to persistent benchmarks. The authors
state very high MAPE errors depending on the data set. Furthermore, they argue,
that without extensive tuning the models do often not outperform the persistent
benchmark.

In [8] the author’s group households with similar consumption patterns into dif-
ferent clusters, based on certain statistical properties of the consumption profiles.
This clustering leads to an increase in forecasting accuracy. Next to the clustering,
the authors also looked at varying data resolutions and found that the bigger the
regarded time intervals are, the better the forecasting models do perform.

Lusis et al. [29] investigate the effects of (a) incorporating calendar and weather
variables, (b) data granularity and (c) length of training data on the forecasting
accuracy of energy profiles of residential customers. The study is performed on a
household stock with 27 households, and a 30-minute data resolution for a day ahead
energy consumption forecast. Regression Trees, Support Vector Regression and
Neural Network models are considered, with Support Vector Regression achieving
the lowest normalized root mean square error (NRMSE). The calendar and weather
variables did have very little predictive power on the forecasting performance. No
consistent improvement was found in the models, that incorporated those variables
in addition to historic consumption recordings. Decreasing the granularity from 30
to 60 and 120 minutes lead to more accurate forecasts. Interestingly the authors
found, that no benefit for the forecasting system was drawn, by incorporating more
training data then one year. The comparison if a training data set of one year, with
a three-year-long training data set, found no differences in forecasting performance.
The authors ascribe this finding to the changing and dynamic lifestyles of occupants.
The consumption patterns three years ago, might not have any useful information,
and one year might be enough data for reasonable inferences.
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3.2.4 Neural Network Approaches

In many studies, neural network models are one of the best performing methodolo-
gies. Although the advantage of neural network models is not that apparent when
considering high voltage level domains; the volatile nature of the low voltage energy
demand profiles might favor the more flexible neural network models over other
forecasting methods.
In recent years also recurrent neural networks got more attention in the realm of fore-
casting energy demand. In [25] an overview of different recurrent neural network
architectures is given on three synthetic and three real-world tasks of forecasting
time series. The different recurrent neural network architectures compared in this
study are, (a) ”vanilla” recurrent neural network (RNN), (b) gated recurrent neu-
ral network (GRU), (c) long short term memory network (LSTM), (d) echo state
network and (e) NARX (non-linear autoregressive exogenous input) network. One
of the considered real-world time series are energy consumption profiles on the high
voltage level of several MWh. It was found that the performances of the various ap-
proaches do depend heavily on the task at hand. No recurrent model approach does
perform ”best” in every single task. However, the interesting finding of this exten-
sive review is that the more sophisticated recurrent neural network architectures like
the GRU or LSTM did not out-perform the more simple ”vanilla” recurrent neural
network. The authors argue that, although the LSTM and GRU models reach sig-
nificant improvements over ”vanilla” recurrent neural network in the realm of speech
recognition and language translations, these advantages is not to be seen when fore-
casting energy consumption profiles, due to the less complex temporal dependencies
in energy consumption time series compared to the dependencies encountered in
speech and languages tasks.
Restricted Boltzmann Machines (RBM) –in particular Conditional and Factored
Conditional RBM’s– is another neural network-based modeling approach used by
Mocanu et al. in [20]. Other then neural networks, RBM are trained in an unsu-
pervised fashion trying to learn the ”hidden” data representation in the data itself,
and not learning based on true target values –which is supervised learning–. This
learned data representation is then used to create forecasts, with the goal of gener-
ating forecasts coming from the same ”distribution” as the real profiles it learned
from. The authors found a superior performance of the proposed Factor Conditional
RBM model compared to other considered ML-techniques, including ANN, SVM,
and Recurrent Neural Networks.
An LSTM based sequence to sequence model is proposed in [30]. The authors
compared an LSTM forecasting model with an LSTM based sequence to sequence
model and found that for the very low resolution of 1 minute, the LSTM based
sequence to sequence approach performed better than the normal LSTM model.
For the hourly data resolution, this is not found. The sequence to sequence model
is built on the separation of an encoder and decoder part of the forecasting system.
The first part –the encoder– is taking the inputs and is constructing an output
vector. Based on this output vector of the encoder, the second part –the decoder–
has to infer the forecast. By training this sequence to sequence-structure the encoder
is forced to represent the inputs in an optimal manner. The decoder then takes this
compressed information to construct a reasonable forecast.
In [18] the authors proposed a Long Short Term Memory (LSTM) recurrent neu-
ral network forecasting framework and tested this approach against other machine
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learning models. They found that the more volatile daily consumption profiles are,
the more advantageous the LSTM model is likely to be compared to other methods.
The authors ascribe this finding to the fact, that the LSTM model has higher flexi-
bility due to its numerous parameters, that can ”learn” the erratic patterns better
than the less flexible methods they investigated.

Two interesting concepts, first, the clustering of similar energy consumption profiles,
and second, comparing the forecast on the aggregation profile of single households,
with the aggregation of the single household forecasts are done in [23]. Peng et al.
found, that the aggregation helps in getting better forecasts and that the aggregation
of households belonging to a certain cluster did bring even more beneficial effects.

Yildiz et al. [3] performed a load forecasting study on 14 households. The authors in-
vestigated Artificial Neural Networks and Support Vector Regression models for this
task. They use smart meter recordings, weather data as well as temporal variables
as input to their models. The authors studied the effect of various data resolu-
tion by investigating 5, 15, 30 and 60 minute time intervals, as well as the effect
of varying the forecasting horizon –1,6,12 and 24 hours–. Results show, that both
parameters –the data resolution and the forecasting horizon of the investigated de-
mand profiles– do have a great effect on the forecasting performances. Furthermore,
daily profiles –belonging to a distinct household– are grouped into certain buck-
ets, according to their volatility (measured by the standard deviation of the load
profile), to train models particularly only on similar volatile load profiles. Energy
consumption peaks grow more distinct in magnitude and variance the finer the data
resolution gets. The forecasting models are doing poorly on predicting consumption
peaks. Additionally to the often-used pointwise error metrics, the authors introduce
an accuracy measure by which to assess the goodness of the various models, due to
the inherent shortcomings of pointwise errors for the task of low-level forecasting.

The interesting concept of an Aggregation Error Curve (AEC) is described in [31],
where the authors investigate the effect of various aggregation levels on the forecast-
ing performance by presenting an intuitive scaling law. The study points out some
of the main challenges arising in the field of forecasting when going from the high
aggregation level to the low aggregation level. It emphasizes the ”out-smoothing”
effect that comes with aggregating over single profiles. This leads to a more periodic
signal, thus allowing for more accurate forecasts. However, there is a point, where
further aggregation stops being valuable in regard to forecasting performance.

A Long Short Term Memory (LSTM) network is used in [32] for the task of short
term load forecasting on a university building. The LSTM approach is compared to
SARIMA (Seasonal Auto-Regressive Integrated Moving Average) and NARX (non-
linear autoregressive neural network with exogenous features) models. The forecast
is performed for a 15-minute data resolution. The LSTM approach was the best
performing of the considered models.

In [18] Kong et al. provide an analysis of LSTM networks for a day ahead forecast
of residential customers. The effects of exogenous features (calendar variables) and
the effect of data granularity is investigated. The LSTM approach is compared to
the ”mean” benchmark (statistical mean of on particular household for weekdays or
weekends). The authors also study the effect of aggregating the individual demand
prof. An interesting finding, is the fact, that the aggregation of individual forecasts is
more accurate than the forecast of the aggregated profile. However, they additionally
found that the superior performance of the LSTM network compared to the naive
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CHAPTER 3. RELATED WORK

mean forecaster is stronger on the individual level, then on the aggregated level.
This fact may be explained by the ability of the LSTM network to capture temporal
dependencies in the individual household’s consumption profiles. This advantage
weakens when aggregating the profiles, although the aggregation leads to an ”out-
smoothing” effect of the profile itself, which might help the LSTM network with
extracting more information from the rather noisy single household consumption
patterns.

A recent study [23] investigates the question, of what is more important, the optimal
model or the preprocessing step leading to good forecasts? The authors argue, that
for the very volatile energy demand profiles of individual households, there is a lot of
randomness in the energy consumption profiles –stemming from the unpredictability
of the resident’s behavior– leading the models astray. Various models ranging from
linear regression, gradient boosted regression trees, multi-layer perceptron to more
complex LSTM models are compared and historic smart meter recordings are used
as input variables to the models. The analysis is performed on 1700 residential
households with a data resolution of 30 minutes. One hour ahead and one day
ahead are the considered forecasting horizons. Before diving into finding the most
sophisticated model and tweaking the parameters of the model, it is recommended
to spend time on increasing the predictability of the energy profiles in the first
place. The authors state, that the optimal model might not be the most important
choice in the task of forecasting, but to ensure the fact that the energy profiles are
actually reasonably predictable. For this, they use the approximate entropy, a metric
describing the ”predictability” of time series data. The authors advocate for data
processing steps prior to choosing the optimal model, to decrease the approximate
entropy in the underlying consumption profiles. They show that this can be achieved
by differencing the consumption profiles or by aggregating the individual profiles.

Every method -statistical or machine learning, parametric or non-parametric- has
its advantages and disadvantages. One of the main points arguing against the use
of neural networks was the high computational cost of these models. This draw-
back is decreasing with the development of computational power, especially the
development of GPUs (graphical processing units) and of TPUs (tensor processing
units). With faster inference times, more experiments can be conducted. Due to
the availability of computational resources, many studies are now focusing on using
neural network methodologies. However, in [33] the authors argue, that many of the
proposed methodologies might often be over-parametrized, to generalize well, and
that a rather simple neural network architecture might be sufficient for the task of
forecasting energy demand. Therefore, the superior results of sophisticated neural
network models have to be taken with care, as long as the understanding –or lack of
understanding for that matter– of neural networks is taken into account. However,
the authors state that although they are surprised by the many good results found
when using over-parameterized neural network models not every study does fully
investigate the probable over-fitting effect these kinds of models might have. Nev-
ertheless, the authors are aware, that the problem of over-parameterization is not
well understood in the realm of neural network research, and is a topic of ongoing
research [34].

A conclusion from the many studies related to the topic of energy consumption fore-
casting might be, that there is no optimal model for every task. Not only is the
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3.3. PROGRESS BEYOND THE STATE OF THE ART

ideal model category –physical models, statistical models, machine learning models–
unclear, but also the choice of the individual models itself. All this is to say, that
there is current research effort on finding the optimal approach for forecasting at
various voltage levels. However, it can be said that over the last couple of years,
neural network models gained a lot of attention, and are consistently one of the best
performing methodologies, on the high voltage level, as well as on the low voltage
level. Choosing the appropriate model is only one of the many choices that have to
be considered when dealing with the task of forecasting energy demand. Other con-
siderations encountered in the literature are clustering, aggregating/disaggregating,
varying temporal resolution, forecasting horizons and the incorporation of various
predictor variables.

Based on the promising performance of neural network methodologies, which are re-
peatedly among the ”best” performing models in many studies, this thesis is building
on those findings and investigates the suitability of neural networks. In particular,
a certain kind of neural network methodology, that has shown to be useful for the
task of time series modeling and sequence learning.

3.3 Progress beyond the state of the art

This thesis is building on top of the existing research in the disciple on energy
consumption forecasting and aims at evaluating the suitability of Recurrent Neural
Networks –in particular Long Short Term Memory (LSTM) networks– for a 24-hour
day-ahead energy consumption forecast on individual households. The analysis is
performed on a distinct household stock in the city of Vienna, and the value of
additional exogenous features is investigated. Furthermore, it is analyzed to what
extent Long Short Term Memory networks are best applied to this task. For this
matter, LSTM models are once trained on all households, and once on single distinct
households. Investigating this question might give insights into which approach is
more beneficial for yielding reliable forecasts.

The following listing mentions points in which this thesis is expanding on the cur-
rent state of the art. The exact approaches and empirical questions this thesis is
investigating are described in chapter 5 in more detail.

1. Comparison between (a) LSTM models that are trained with additional fea-
tures, and (b) LSTM models only taking historical consumption profiles as
input, to investigate the importance of the considered additional features.

2. Answering the question of what is the best use case of deploying LSTMmodels.
Comparison of ”General” models with ”Individual” models. Is a ”General”
LSTM model, trained on the total household stock appropriate to forecast ev-
ery household’s energy demand, or is a tailored model for every single house-
hold the better option?

3. Investigating the effect of data resolution on forecasting performance, as well
as on the importance of additional features. (a) 15-minute and (b) hourly time
intervals are considered.

4. Not only regarding one pointwise error metric but also taking a second perfor-
mance measure -daily energy consumption deviation- into account. Evaluating
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CHAPTER 3. RELATED WORK

the forecasting methods based on both metrics helps in getting a more nuanced
assessment of the ”goodness” of competing methods.

5. Comparing feedforward neural networks to LSTM networks, to investigate the
suitability of the sequential processing of the latter approach.

6. Comparing neural network methods to benchmarks. Is the deployment of
neural network models justifiable when taking performance and computational
complexity into account?
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Chapter 4

Theoretical Background

This chapter provides the theoretical background behind the used neural network
methodologies applied in this thesis. The main concepts are introduced, to get an
understanding of the workings of an artificial neural network (ANN). Furthermore,
some of the biggest challenges coming with the use of ANN are discussed. After this
theoretical understanding, the succeeding chapter 5 then explains the usage of those
methodologies tailored to the problem of day-ahead energy consumption forecasting.

4.1 Forecasting Definition

Naming Conventions

Here the problem of a day ahead forecast is described to facilitate the use of machine
learning terminology and notation. In the realm of machine learning and especially
for artificial neural networks it is common to call the inputs and outputs of a model
tensors. The input to the models is commonly made out of a collection of features.
Features are the predictive variables, based on which the models perform a forecast.
Input tensors to the model are denoted as X and are commonly referred to as values,
whereas the output tensors of the model are denoted as ŷ, and are referred to as
predictions. In a supervised machine learning problem, the available true values
–based on which the models are trained and optimized– are denoted as y and are
called targets. Depending on the dimension of the considered tensors, it might be
easier to refer to them directly as matrices (a tensor of dimension two), vectors (a
tensor of dimension one) or scalars. The particular dimension of the tensors is noted,
when needed. The naming conventions can be summed up as follows:

• Inputs: X : values

• Outputs: ŷ : predictions

• Targets: y : targets

In a supervised machine learning problem, the inputs X and targets y get paired
together. Every input gets assigned its corresponding target. In the task of forecast-
ing the energy consumption for the next day, the target y is a tensor ”holding” the
energy consumption profile of the next day, which is to be predicted. The challenge
is in processing and constructing the inputs X in a way, so that the neural network
model is able to learn from the inputs X how to predict the targets y as close as

33

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

CHAPTER 4. THEORETICAL BACKGROUND

possible. Artificial neural networks are known to be universal function approxima-
tors. In theory, an ANN is capable of mirroring any functional relationship between
input and output pairs. In practice, however, there are certain obstacles that hin-
der neural networks to achieve that. These difficulties in applying neural networks
are discussed at the end of this chapter. Applying machine learning models can be
regarded as a functional relationship in the form of:

f(X) = ŷ

where the function f() is the machine learning model. The goal of a machine learn-
ing system is to minimize the error of the prediction ŷ in regard to the truth y.
The internal mechanisms of artificial neural networks for finding those underlying
relationship between X and y is explained further below.

How the inputs X and the corresponding targets y are processed and constructed
to form training pairs for the models is discussed in the next chapter 5.

For the problem of forecasting a day-ahead energy consumption of individual house-
holds, the input tensor X needs to be processed in a form to ”hold” useful informa-
tion to enable the model to infer accurate estimation of y. The prediction of the
model ŷ has the same form (shape or dimension) as the target y.

4.2 Problem Definition

The problem of forecasting the energy consumption for a day ahead is in the simplest
form a multi-output regression problem. Depending on the data resolution, the
model tries to find values of every time interval in the output space to be as close as
possible to the true amount of electric energy consumed during this interval. The
units of the amount of energy consumed per interval are kilowatt-hours (kWh). The
starting error metric on which the forecasting performance is evaluated is the mean
absolute error (MAE) 3.2. The MAE describes how far the model is off on average
overall time steps from the true target value. A mean absolute error of 0.1 kWh
of one forecast to the true target consumption profiles means, that on average for
every interval of the regarded profile the model is off by 0.1 kWh.

The chosen error metric on which to evaluate the performance of different models
is of importance. The error metric should convey an interpretable way of accessing
the performance of the method. Furthermore, there are certain disadvantages that
come with the use of a pointwise error metrics like the MAE. This is discussed in
section 7.2.1 and throughout this thesis. The usage and reliance on one single error
metric can yield outcomes, that might not be ideal in regard to the end-use case
of the forecasting system. This is a problem in the forecasting field, and ongoing
research is trying to develop good forecasting error metrics on the low voltage level
for multi-step ahead forecasts. However, the diversity in household stocks and end-
use cases, makes it challenging to get a consensus on what the best error metrics are
for a particular task. Yilidiz et. al. [8] therefore propose a template for approaching
forecasting studies on the low level, that researchers can use as a guidepost to develop
further consistent research in this field.
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4.3. ARTIFICIAL NEURAL NETWORKS

4.3 Artificial Neural Networks

The models in this thesis are trained in a supervised way. Supervised machine learn-
ing means that the models have the true target available during training. During the
training procedure, the neural network model tries to find the functional relationship
between input X and target y. The training procedure is an iterative process. The
model gets an input X and calculates an output ŷ. The calculations performed by a
neural network are linear transformations in conjunction with non-linear activation
functions. The prediction ŷ than gets compared with the true energy consumption
profile y. During this comparison step, the loss or error of the predictions gets cal-
culated. The loss indicates how far off the prediction is from the true target. Based
on this loss, the model updates its parameters, –weights and biases–, following the
backpropagation algorithm, which changes the parameters ever so slightly in a step-
wise fashion to decrease the loss of the forecast over time. This procedure is done
for every single sample in the data set. A sample is an input/target pair X/y. By
processing all samples of the data set for multiple times, the model is likely to find
optimal parameters that minimize the loss on average for all provided samples.

4.3.1 The Artificial Neuron

The building block of every artificial neural network is the artificial neuron. An
artificial neuron receives an input X and produces one output value.
The neuron takes the inputs and calculates a weighted sum of those input values,
described by equation 4.1. Every neuron is equipped with weights w and one bias b.
All the weights and biases of every neuron in a neural network are the ”learnable”
parameters that characterize the behavior of a neural network.

WeightedSum =
n

∑

i=1

wixi + b0 (4.1)

In equation 4.1 n refers to the size of the input. For instance, the input X might
correspond to a days energy consumption profile encoded as a vector of size n = 24,
where every element xi of this vector holds the amount of energy consumed for
a particular hour of the day. Each element xi of the input X has one weight wi

associated with it. The bias term b0 of a neuron is one more ”learnable” parameter.
The bias, however, is not directly associated with an input element xi. This weighted
sum then gets fed into an activation function to allow the neuron to model non-
linearity.

Activation Functions To provide a neuron with the capability to model non-
linear relationships between input and target, a non-linear activation function must
be provided. This activation function ”squashes” the result of the weighted sum
into a range constrained by the output realm of the activation function. Some of
the most common activation functions used in machine learning problems are listed
below.

1. Logistic or Sigmoid Function: f(x) = σ(x)

σ(x) =
1

1 + e−x
(4.2)

35

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

CHAPTER 4. THEORETICAL BACKGROUND

2. Tanh Function: f(x) = tanh(x)

tanh(x) =
ex − e−x

ex + e−x
(4.3)

3. Rectified Linear Unit (ReLU): f(x) = relu(x)

relu(x) =

{

0 for x ≤ 0

x for x > 0
(4.4)

4. Leaky Rectified Linear Unit: f(x) = leakyrelu(x)

leakyrelu(x) =

{

0.01x for x ≤ 0

x for x > 0
(4.5)

5. Exponential Linear Unit: f(α, x) = elu(α, x)

elu(α, x) =

{

α(ex − 1) for x ≤ 0

x for x > 0
(4.6)

Figure 4.1: Sigmoid, Tanh and ReLU activation function

Each of these activation functions comes with its own characteristics, and therefore
with distinct advantages and disadvantages. The role of the activation function is
crucial for the learning process of one neuron, and therefore for the entire neural
network. Up to this point one neuron gets the input X, calculates the weighted sum
according to 4.1 and inputs this intermediate result into an activation function. The
resulting value is the output of the neuron and is determined by the weights wi, the
bias b0 as well as the chosen activation function.
The formal processing performed by one neuron with the input tensorX, the sigmoid
function σ as activation function, w as its weight vector and b0 as its bias is shown
by equations 4.7 and 4.8:

NeuronOutput =
1

1 + e−(
∑n

i=1
wixi−b0)

(4.7)

or:

NeuronOutput = σ(
n

∑

i=1

wixi + b0) (4.8)

Figure 4.2 shows the informational flow of a single neuron.
This operation of one neuron is the essential building block of all neural network
architectures.
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4.3. ARTIFICIAL NEURAL NETWORKS

Figure 4.2: Single Neuron

4.3.2 Feedforward Neural Networks

The next building block after the single neuron is getting the individual neurons
into a layer.

Neural Network layers: A layer in a neural network is formed by multiple neu-
rons. Every neuron in a layer is receiving the same input values. The output of
one layer is not a single value, but a vector holding all the single output values of
its neurons. This vector processed by one layer is then the input to the neurons in
the subsequent layer. When stacking numerous layers on top of each other, this is
called Deep Learning.

Figure 4.3 shows a simple neural network, where five neurons are forming a layer.
With the combination of multiple neurons to form a layer, and with the stacking of
layers, an arbitrary neural network can be created. The most simple neural network
is the so-called feedforward neural network. This network architecture is simply the
stacking of various layers, where each layer consists of a certain number of neurons.
In this thesis, when talking about neural networks, it is always that the network is
fully-connected.

Fully-connected network: A fully-connected network means, that the output
value at a certain layer gets fed to every single neuron in subsequent layer –but only
to this layer–. The resulting output of this layer is then processed by every single
neuron in its subsequent layer and so on. This fully-connection and the processing
in a straight forward way, layer after layer refers to the neural network architecture
of a fully connected feedforward neural network (FFNN).

Input and Output layers: The input layer of a neural network has to be adjusted
to the size of the input X of the neural network. The output layer is fixed by the
size of the target-output y.

Hidden layers: The layers in between the input and the output layers are called
hidden layers.
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CHAPTER 4. THEORETICAL BACKGROUND

Figure 4.3: Fully connected feedforward Neural Network

Weight-matrices and Biases: With the increase in neurons comes also an in-
crease in the number of parameters the network is equipped with. Every neuron has
its set of weights wi, which has to be equal to the size of the input it receives from
the layer before. Every neuron additionally has one bias term b0. Every connection
in the network from one neuron to another, is weighted by one particular weight
parameter wn

ij, where i describes the i
th Neuron in the nth layer and j describes the

jth Neuron in the (n − 1)th layer. The indices ij, therefore, encode the direction of
the informational flow of one weight connection between two neurons. The biases in
a network layer are commonly encoded with bni , where i describes the ith bias, and
n refers to the nth layer.

To illustrate this point figure 4.4 shows the naming convention of three particular
connections between two subsequent layers. Every weight connection inside a neu-
ral network can be understood as a potential informational path, where the input
can flow through. During training the phase the model might detect that certain
informational pathways are especially relevant for accurate output. The weights
corresponding to each connection gets adjusted, depending on the importance or
the irrelevance of this informational pathway.

The fully-connection between the (n− 1)th layer and the nth layer is described by a
weight matrix Wn. The weight matrix Wn holds the weights of every connection
between all neurons in those two layers. For instance the weight wn

ij in the weight
matrix Wn, describes the weight connecting the jth Neuron in the (n − 1)th layer,
with the ith Neuron in the nth layer.

All these parameters –weights wn
ij and biases bn0– are characterizing the behavior

of a neural network model. During the training process of a neural network, all
its parameters are continually updated to finally emerge at an ”optimal” set of
parameters that describe the functional relationship between inputs X and targets
y as close as possible.

38

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

4.3. ARTIFICIAL NEURAL NETWORKS

Figure 4.4: Weight connections between layers in a Neural Network

Figure 4.5: Finding the optimal parameter by continually applying gradient descent
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CHAPTER 4. THEORETICAL BACKGROUND

Finding the optimal parameters: The most common process for finding the
”optimal” set of parameters in neural networks, is the backpropagation algorithm.
This algorithm relies on the gradient of a Cost- or Loss-function with respect to every
individual parameter of the network. The Loss-function is a chosen function that
describes, by how far the prediction of the neural network ŷ is off from the true value
y. The common notation of the output of the Loss-function is C(y, ŷ). Many Loss-
functions work well for different machine learning tasks. For regression problems
(as in this thesis) the mean absolute error or mean squared error Loss-functions are
common choices. With the gradient-descent step (moving in the opposite direction
of the gradient of the Loss-function with respect to the parameters) the parameters
get continually nudged into the direction, that minimizes the loss C(y, ŷ) –often
referred to as the cost– over time. This process describes the neural network’s
capability to ”learn”. In a supervised setting a neural network receives input, this
input gets processed through the network and is finally returning an output. This
output of the neural network ŷ then gets ”compared” with the actual true value y.
The chosen Loss-function then determines, by how far off the output is from the true
value, and returns the cost C(y, ŷ). This cost is the starting point for the updating
process of the various parameters. The gradient ∇C(y, ŷ) of the cost with respect
to the parameters then gives the opposite direction (depending on the definition of
the Loss-function) in which to update the parameters. Therefore, the quantities of
interest in the updating process of the parameters are:
(a) ∂C(y,ŷ)

∂wn
ij

, and (b) ∂C(y,ŷ)
∂bn

j

. These two terms describe by how much the cost changes,

when the weights and biases are ”wiggled” by a very small amount. The step for
updating the parameters is described by 4.9 for the weights and by 4.10 for the
biases respectively.

wn
ij(new) = wn

ij(old) − η
∂C(y, ŷ)

∂wn
ij

(4.9)

bnj(new) = bnj(old) − η
∂C(y, ŷ)

∂bnj
(4.10)

η in these equations refers to the learning rate of the neural network. The learning
rate describes the magnitude of the parameters update. It is one of the most impor-
tant hyper-parameters for the learning ability of neural network models. Choosing
the learning rate too big can lead to ”overshooting” the optimal solution for the
parameters. On the other hand, choosing the learning rate too small can lead the
neural network to get stuck in local minima of its Loss-function, or taking a very long
time to converge to the ”optimal” solution. Figure 4.5 shows a graphical illustration
of the updating process of one parameter. This is, of course, an oversimplification.
The curvature of a neural network can be extremely complex, and is formed by
thousand or up to millions of parameters.

A lot of research effort is undertaken to develop algorithms, that find the best
parameters in a computationally efficient way. These algorithms are referred to as
optimization algorithms, many of the well known rely on the basic gradient descent
steps outlined above. Various optimization algorithms commonly used for neural
networks are the AdamOptimizer, RMSProp, AdaGrad and SGD. Where each one
has modifications to the workings of the simple gradient descent approach. The most
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4.3. ARTIFICIAL NEURAL NETWORKS

prominent advances are (a) Momentum and (b) adaptive learning rate. For a more
in-depth discussion on optimization algorithms, the interested reader is referred to
[35, 36, 37].

A few notes on the Backpropagation Algorithm: A comprehensive discus-
sion of the backpropagation algorithm is out of the scope of this chapter, however,
a few core ideas are mentioned here to help in understanding the main concepts of
this operation. The interested reader is referred to [38, 39]. Especially in [39] an
example of the detailed calculations performed during backpropagation in a sim-
ple neural network with two input neurons, two hidden neurons, and two output
neurons is given. The main ideas to keep in mind when trying to understand the
backpropagation algorithm are: (a) informational flow forward through the network
in functional stages, (b) the chain rule for decomposing the functional stages, and (c)
backward flow through those functional stages and finding the partial derivatives.
To arrive at the final output of a neural network the input has to flow through all
neurons in the network. The final output depends on the first place on the outputs
of the neurons present in the output layer. However, the output of every neuron in
the output layer depends on the output of every neuron in the layer before, and so
on, until reaching the input layer. Because of this, the final result can be seen as the
output of a big composition function with various parts belonging to different layers
and its neurons. When asking about the partial derivative of a Loss-function of the
neural network in respect to an individual parameter, as in ∂C(y,ŷ)

∂wn
ij

, it is important

to keep in mind, that there are many intermediate steps involved to arrive at this
result. One single parameter wn

ij influences the weighted sum operation performed
in its neuron. The altered result of the weighted sum, in turn, alters the output of
the neuron after traversing through the activation function. It becomes clear, that
altering a single parameter wn

ij leads to a cascade of changes in the information flow
of the network. The backpropagation algorithm deals with these many interrelations
in the network by applying the chain rule step by step for every operation in the
path of ∂C(y,ŷ)

∂wn
ij

.

Only backpropagating one connection back from the neural networks output –that
is finding the partial derivative of the Loss-function with respect to a weight pa-
rameter in the final output layer by applying the chain rule– this term becomes:
∂C(y,ŷ)
∂a(z)

∂a(z)
∂z(w)

∂z(w)
∂wn

ij

, where a(z) refers to the output of one neuron after the activation

function, and z(w) refers to the results of the weighted sum operation prior to the
activation function, w refers to the set of weights (weight-vector) holding the in-
dividual weights of a certain neuron in the output layer, and wn

ij refers to one of
those individual weights. Every single one of these partial derivatives needs to be
calculated and then multiplied to arrive at the rate of change of the cost regarding
one single parameter wn

ij in the output layer. This describes only one connection. In
neural networks, the number of parameters easily exceeds 50.000 and often reaches
the millions. All of these connections have to be taken care of by the backpropaga-
tion algorithm. This results in massive composite functions. However, the building
blocks for performing the backpropagation algorithm are: (a) separating the calcu-
lations into its parts, (b) applying the chain rule to find all partial derivatives of
every dependent calculation in the path and (c) calculating those partial derivatives.
It is because of these huge numbers of calculations necessary for training a neural
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CHAPTER 4. THEORETICAL BACKGROUND

network, that for a long time they were not the preferred machine learning model
in many domains. Only with the increase in computational power, through the de-
velopment of powerful processing units, this shifted, and neural networks are now
widely used.

FFNN Conclusion: The paragraphs above describe the workings of a fully con-
nected feedforward neural network in rough terms and do not cover every aspect
of even the simplest neural networks. However, it should provide a basic under-
standing and an intuitive way to think about the processing steps a neural network
undertakes to ”learn” and find the underlying functional relationship between input
X and target output y. For an in-depth explanation of the inner workings of neural
networks, the interested reader is referred to [37, 36, 38, 40].
Neural networks are known as universal function approximators. They are conjunc-
tions of linear transformations and non-linear activation functions. These consecu-
tive conjunctions allow neural networks in ever more growing complexity to model
functional relationships between input and output. Neural networks are applied in
many domains, ranging from its deployment in the field of quantum physics, where
they are used to model the state wave function of quantum states, to language
translation applications present in every modern smartphone. They are especially
beneficial, if the work of creating good features/predictors for models is difficult due
to lack of knowledge, or simply not feasible due to the amount of data. On the
flip-side of things, this is also one of the biggest shortcomings of using neural net-
works in the first place. They are ”black-boxes” and they are hard to interpret. Just
because they are modeled and inspired by the workings of the human brain does
not guarantee, that the model makes decisions that are aligned with the human
reasoned choice. Examples of this can be seen in the work of image classification,
where when a model, that is trained for a long time on bananas and can predict
those with a high degree of accuracy, suddenly predicts a picture of a banana as a
car. The only change was, that in the image –that the model classified as a car–
the pixel values were minimally changed, what lead to a wrong prediction, although
humans still see a banana. All that is to say, that neural network models function
to a certain extent as black boxes and their inner workings are often non-intuitive,
and not fully understood.
With the most essential building block -the neuron- a neural network with an arbi-
trary number of layers and neurons per layer can be built. Advanced neural network
methods are constructed from this one building block. With the rough understand-
ing of the workings of a normal fully connected feedforward neural network, the next
section gives an introduction to the more sophisticated recurrent neural network.

4.3.3 Recurrent Neural Networks

Recurrent neural networks (RNN) are similar to feedforward neural networks. The
main distinction is, that feedforward neural networks do only allow for informational
flow in one direction –from the input layer to the output layer–. Recurrent neural
networks, on the other hand, allow for information to flow backward. Because of
this kind of processing, recurrent neural networks are capable of holding ”memory”.
Every processing step holds some information from all the preceding steps due to the
”back-feeding” loop inside a recurrent neural network. This capability of having a
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4.3. ARTIFICIAL NEURAL NETWORKS

”memory” makes recurrent neural network especially useful for tasks where sequen-
tial data is considered, and where there is a temporal dependency in the sequence.
Language translation, speech recognition, time-series predictions, are some of the
applications where recurrent neural networks often outperform feedforward neural
networks due to this memorization capability.
The total input tensor to a recurrent neural network X is best thought of as a
sequence of single input tensors xt. The single inputs of the sequence are sequentially
ordered or have a temporal relationship. The single inputs are usually referred to
by xt, where t describes the considered time step of the single input.
The ”back-feeding” loop of a recurrent neural network is achieved by the fact, that
the RNN does not only process the input xt at time step t but also its output yt−1

from the time step before.
The easiest way to think about this fact is to start with a single recurrent neuron.
It is helpful to picture the recurrent operation in a recurrent neuron by ”unrolling”
it through time, which is regarding every processing time step anew as is shown on
the right in figure 4.6. However, the weights w and the bias b of a recurrent neuron
are shared over all time steps. The recurrent neuron performs its mathematical
operation not only on the input xt, but on a combination (stacking together both
values) of the input xt at time step t and the single output yt−1 at time step t− 1.

Figure 4.6: Recurrent Neuron on the left and its ”unrolled” version on the right.

The operation performed by a single recurrent neuron is described by equations 4.11
and 4.12.

RecurrentNeuronOutput → yt = φ(
n

∑

i=1

wi

[

xt

yt−1

]

i

+ b0) (4.11)

or in vector form:

RecurrentNeuronOutput → yt = φ(w

[

xt

yt−1

]

+ b0) (4.12)

Where the function φ() is a chosen activation function. The main difference therefore
from the operation of a normal artificial neuron described in equation 4.8, is the
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CHAPTER 4. THEORETICAL BACKGROUND

stacking of the input xt with the output yt−1. Because of the stacking of those
two values, also the weights w have to change accordingly. When regarding a single
recurrent neuron, the weights w do change, as far as they now have one more weight
connection corresponding to the single output produced by the recurrent neuron. For
the very first processing step, where t = 1 the value for yt=0 is commonly initialized
to 0 –because there is no preceding step yet–.
This single recurrent neuron functions as the building block for more advanced archi-
tectures of recurrent neural networks. For getting a recurrent layer many recurrent
neurons are taken together. The output of the recurrent layer is not a single value,
but a vector with the same length as there are recurrent neurons in the layer. Every
recurrent neuron in this layer then gets not only the input at every time step xt but
also the output of the recurrent layer from the time step before yt−1.
Figure 4.7 shows a recurrent neural network layer, where the five recurrent neurons
each have one output value. These five output values are taken together to form the
recurrent output vector. This recurrent output vector is then stacked together with
the new input at the next time step.

Figure 4.7: Back-feeding inside a Recurrent Neural Network layer

The operation performed by one recurrent layer is defined by equations 4.13 and
4.14. The common notation for the weight matrices Wx and Wy is used. Wx is the
matrix holding the weights, connecting every input xt to the neurons. Every row
in this matrix Wx holds the set of weights w corresponding to one of the neurons
in the layer. The matrix Wy, on the other hand, does connect the ”back-feeded”
output vector yt−1 with the layer. Again, every row in the matrix Wy corresponds
to a set of weights belonging to one recurrent neuron.

RecurrentLayerOutput → yt = φ(Wxxt +Wyyt−1 + b) (4.13)

The more compact form of this equation is:

RecurrentLayerOutput → yt = φ(
[

Wx,Wy

]

[

xt

yt−1

]

+ b) (4.14)
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4.3. ARTIFICIAL NEURAL NETWORKS

The activation function φ() is processing the values of the output of the recurrent
layer element-wise.

Explanatory Example: All this notation is a little bit confusing, and it might
not be obvious how a recurrent network performs one processing step. To clarify
the concept and show the dimensions of the various vectors and matrices involved,
a short example of one processing step is given below.

With X being one input for the recurrent neural network. This can be a sentence,
audio-clip, time-series, every kind of data where the elements hold a temporal de-
pendency and the sequential processing capability of the recurrent neural network is
suitable. For this example, X is a time series, where every element ofX is a vector xt

of size 10 holding the information of this particular time step t. A recurrent neural
network with 5 recurrent neurons is chosen for this task. How is the informational
flow from an arbitrary time step t to the next time step t+ 1 in the network?

The size of the inputs xt of every time step t is 10. The size of the recurring
inputs (the ”back-feeding” outputs of the time step before) is 5, because their are
5 recurrent neurons. The stacked weight matrix [Wx,Wy] in equation 4.14 has
therefore dimensions (5, 15). Every one of the 5 rows corresponds to the set of 15
weights w of one recurrent neuron in the layer. The first ten columns in the stacked
weight matrix [Wx,Wy] are holding the weights responsible for the inputs xt with
size 10. The remaining five columns are holding the weights, responsible for the

recurrent output yt−1 from the previous time step. The stacked vector

[

xt

yt−1

]

is

of length 15. The bias vector b has size 5, holding one bias b0 for every recurrent
neuron.

With this setup, equation 4.14 becomes

yt = φ(
[

Wx,Wy

]

[5×15]

[

xt

yt−1

]

[15×1]

+ b[5×1]) (4.15)

resulting in the output vector yt of length 5 with values bound by the constraints
of the chosen activation function φ(). For the next processing step along the input
sequence this output vector yt then again gets stacked with the input xt+1 and the
calculation 4.15 is performed again. This is done until the end of the sequence X is
reached.

Depending on the task for which the recurrent network is deployed, a specific Loss-
function then calculates the error of the network after the sequence got processed.
This error then, as in the case of the feedforward neural network, is the starting
point for the updating process of the parameters characterising the network. The
process for finding the optimal set of parameters is similar to the one in feedforward
neural network, where the methodology of gradient descent with the backpropaga-
tion algorithm is followed. In recurrent neural networks however, the process of
backpropagating the gradient signal through the network is called backpropagation
through time or (BPTT). Because of this, it is helpful to think of recurrent neural
networks in the ”unrolled” version as is shown in figure 4.8. When unrolling the re-
current neural network through time, the BPTT algorithm can then be regarded as
the normal backpropagation algorithm as is the case in a feedforward neural network
–with the difference, that the weights and biases are shared over all time steps–.
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CHAPTER 4. THEORETICAL BACKGROUND

Hidden state ht: The hidden state of recurrent neural networks ht refers to its
internal state, that ”holds” the memory and is fed back to the network in a recurrent
fashion. In a simple recurrent neural network described above this hidden state ht

is the same as the processed output at every time step yt. However, this those not
have to be the case. In the next section a more powerful recurrent neural network
architecture is introduced, where a cell state ct and a hidden state ht equip the
network with more powerful memorization capabilities.

Figure 4.8: Recurrent Neural Network. On the left the ”recurrent” version, on the
right the ”unrolled” version.

Conclusion Recurrent Neural Networks: Recurrent neural networks are a
special kind of neural networks. Other then feedforward neural networks that process
data in a feedforward way, –running the inputs straight from the first input layer to
the last output layer–; recurrent neural networks process the data sequentially. The
word recurrent stems from the fact, that for each single input in the input sequences,
the same operations are performed again and again. The learned weights and biases
in a recurrent neural network are shared over all time steps. An intuitive way to
think about recurrent neural networks is by ”unrolling” them through time. For the
length of the input sequences, there is one layer per time step. When processing a
sequence of length ten, a recurrent neural network can be thought of, as a ten layer
deep neural network that does not only receive the current time steps single input,
but also the information from the layer before, aka. the time step(s) before. The
weights and biases connecting the layers however, are the same.

The recurrent neural network works well on temporal dependent data, where the
sequential ordering of its elements is import. However, it has one major drawback.
In theory RNNs can learn temporal dependencies in a sequence of arbitrary length.
In practice however, the problem of the vanishing gradient arises, –the fact that
the weight update based on the gradient descent step gets smaller the longer the
sequence is–.
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4.3. ARTIFICIAL NEURAL NETWORKS

The effect of the vanishing gradient problem is, that the signal from the gradient of
the initial cost calculated by the Loss-function at the last layer does not reach the
earlier layers in the network, but only the parameters in the later layers get updated.
For this reason, in long sequences, the information from the start of the sequence
might get lost completely, and the parameters get only updated based on the in-
formation gathered form the latter layers. The solution to this vanishing gradient
problem encountered by RNNs, was proposed by Hochreiter [41] through the de-
velopment of the Long Short Term Memory (LSTM) Network. Due to its inner
structure –the gates, a hidden state, and a cell state– this particular modification of
the RNN can hold and update information for very long sequences without suffering
from the vanishing gradient problem.
In the next section, this kind of recurrent neural network is introduced and its inner
workings are explained. It is the architecture used in the empirical part of this
thesis.

4.3.4 Long Short Term Memory Networks

To circumvent the vanishing gradient problem of RNNs when working on longer
sequences, the LSTM network relies on a special architecture. The main difference
is, that the LSTM network has an inner cell state ct and a inner hidden state ht.
Whereas the hidden state ht of the LSTM network is similar to the hidden state in
a RNN, and can be thought of as holding short term memory; the cell state ct can
be though of as holding long term memory. This more ”robust” memory allows for
backpropagation of the gradient signal over much longer sequences. The internal
cell state ct of the LSTM network gets updated with every step. This continual
updating process of the cell state is performed by specific gates. In particular there
are three gates in a LSTM network responsible for the updating of the cell state.
The three gates are:

• Forget gate: fg

• Input gate: ig

• Output gate: og

Each one of these gates is on its own a recurrent layer with its set of parameters
(weights and biases), that are learned during the training process of the network.
Every gate provides the LSTM network with a different capability of modifying the
internal cell state, –which acts as the information carrier over many time steps–. A
helpful analogy is to see the cell state as a conveyor belt, that transports information
from previous time steps through the network. The information form this conveyor
belt can then either be taken to create an output or it can be modified to change the
internal ”knowledge” of the network. The gates are modifying the cell state with
every time step. These modifications enable the LSTM to either overwrite the cell
state, retrieve information from it, or keep it as it is for the next time step.

Inner Workings of a LSTM network: The workings of a LSTM network are
explained in the following paragraph according to the image 4.9. Although the
architecture of a LSTM can vary depending on the implementation details, this
form of an LSTM network is a common LSTM architecture.
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CHAPTER 4. THEORETICAL BACKGROUND

Figure 4.9: Image of an LSTM cell.

There are four layers in this LSTM network f(t), g(t), i(t) and o(t). Three of these four
layers are the aforementioned gates equipped with the sigmoid/logistic activation
function σ(), namely the forget gate f(t), the input gate i(t) and the output gate o(t).

As in the case with a RNN, the first processing step is in concatenating the current
input xt with the hidden state from the time step before ht−1. The resulting vector
[

xt

ht−1

]

is then transported to every of the four layers and modified by them. The

layers are learned during the supervised training phase of the network. These layers
therefore learn the best strategy to modify the internal cell state. Each gate is a
kind of filtering pipeline with different internal workings. The gates (f(t), i(t), o(t))
are all equipped with the sigmoid/logistic activation function σ(). Values returned
by the σ activation function range between 0 and 1. The gates are therefore can be
thought of as ”closed” for values near zero and ”open” for values closer to one.

The length of the cell state and the hidden state of the LSTM model is determined
by the number of neurons specified in the four different gate layers. The number of
neurons is the same in every gate layer. The dimension of the parameters are fixed
by the length of the input xt and the length of the hidden state ht. The weights
and biases of every gate layer are shared over all time steps of the sequence, however
every gate layer has its own unique set of parameters.

Equations 4.16 to 4.21 describe the informational flow throughout a LSTM network.

ForgetGate → f(t) = σ(
[

Wxf ,Whf

]

[

xt

ht−1

]

+ bf ) (4.16)

InputGate → i(t) = σ(
[

Wxi,Whi

]

[

xt

ht−1

]

+ bi) (4.17)

OutputGate → o(t) = σ(
[

Wxo,Who

]

[

xt

ht−1

]

+ b0) (4.18)
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4.3. ARTIFICIAL NEURAL NETWORKS

Layer → g(t) = tanh(
[

Wxg,Whg

]

[

xt

ht−1

]

+ bg) (4.19)

CellState → c(t) = f(t) ⊗ c(t−1) + i(t) ⊗ g(t) (4.20)

HiddenState = OutputState → h(t) = y(t) = o(t) ⊗ tanh(c(t)) (4.21)

The explanation of the various processing steps is giving bellow:

After forming the concatenated vector

[

xt

ht−1

]

from the input at the current time

step xt, and the hidden state of the previous time step ht−1; the first processing

step of the LSTM given by equation 4.16. The vector

[

xt

ht−1

]

gets modified by

the forget gate ft. In the forget gate this vector, gets multiplied with the weight
matrix Wxf (holding the weight connections of every recurrent neuron in its rows).
The non-linear sigmoid/logistic activation function σ() then squashes the resulting
vector from the matrix-vector (plus bias term bf ) operation into the range between
0 and 1. The last step performed by the forget gate ft is in multiplying this vector
-holding only values between 0 and 1 element-wise with the cell state ct. An entry
in the cell state gets decreased or deleted (is forgotten), if multiplied by a value close
to zero or actually zero, whereas it stays (is remembered) if multiplied by a value
close to or exactly 1. The forget gate therefore acts as a guard, who is looking at
the new input, and according to the ”importance” of the new information, modifies
the cell state to forget or keep information from the previous time steps.
Step two of the LSTM is described by equation 4.17. This modification to the cell
state is performed by the input gate it. Similar to the forget gate, it starts with

the concatenated vector

[

xt

ht−1

]

. The resulting vector is multiplied with the weight

matrix Wxi of the input gate added with the bias terms bi and the resulting vector
is squashed again by the sigmoid activation function into the range between 0 and
1. The next step is where the input gate differs from the forget gate. A second layer
is part of this processing step, namely the layer gt. Its operation is described by
equation 4.19. The parameters in this layer –Wxg and bg– process the concatenated
vector the same way as before, but instead of using an sigmoid activation function
σ(), this layer uses the tanh() activation function, to squash the values into the
range between −1 and 1. The output vectors of (a) the sigmoid path and (b) the
tanh path of this step are then multiplied element-wise resulting in a vector with
values between -1 and 1, where some of the entries where filtered out by the sigmoid
path. Finally, this vector gets added to the cell state ct. While the sigmoid path
does the same as the forget gate; in combination with the tanh path it gives the
LSTM the capability of adding relevant information to the cell state. The LSTM is
therefore able to look at the new information, and decide if the incoming information
is valuable or not. Through addition or subtraction of values between −1 and 1 it
can modify the cell state in this step.
The next processing step involves the output gate ot. This gate does not change
the cell state directly, however it calculates the new hidden state; and is therefore
influencing the cell state for the next time step. To calculate the new hidden state,
the output gate performs the same operations as the forget gate and the input
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CHAPTER 4. THEORETICAL BACKGROUND

gate, although with its own set of parameters –Wxo and bo–, described by equation
4.18. To alter the hidden state ht for the next time step, the output gate gets
multiplied element-wise with the tanh() activated cell state –the cell state that is
already modified by the forget gate and the input gate according to equation 4.20–.
The element-wise multiplication of the output gate with the tanh() activated cell
state is described in equation 4.21. The output gate therefore decides which parts
of the long term memory of the cell state should be outputted at the current time
step.

With all those operations a LSTM network is capable of deleting, adding, and re-
trieving information at every time step from the cell state. Through separating the
idea of memory into a long term part –the cell state ct- and a short term part -the
hidden state ht– the LSTM is capable of learning long term dependencies in the
data.

The search for the optimal set of parameters in a LSTM network is performed in
the same way as in a normal RNN. By unrolling the LSTM network through time,
the backpropagation through time (BPTT) algorithm can be used as the updating
procedure. Iteratively, the backpropagation algorithm is used to backpropagate the
gradient signal throughout the network. The gradient descent step then nudges the
parameters into the direction, that decreases the cost of the LSTM network over
time. It is important to keep the individual functional stages of the network in
mind, when applying the backpropagation process. In the case of a LSTM network
the total composite function yielding the output of the network, is even more in-
terrelated and complex then in the case of a feedforward neural network. For an
example of how the backpropagation works in an LSTM and the numerous steps
involved, the reader is referred to [42], where an example of the backpropagation
algorithm applied to an LSTM network over three time steps is given.

Conclusion of LSTM networks: LSTM networks are a modification to the orig-
inal recurrent neural network. Both networks are capable to hold information in
memory, due to there sequential processing of data and the back-feeding of infor-
mation. For long sequences recurrent neural networks suffers from the vanishing
gradient problem. The vanishing gradient problem is an often encountered effect,
when working on longer sequences, stemming from the fact, that the backpropaga-
tion signal diminishes, and only the latter layers get updated. LSTM networks are
known not to suffer from this problem, due to their internal structure of having a
cell state, a hidden state, as well as three gates: forget-, input- and update-gate.
These gates enable the network to modify the cell state.

An interesting view on the workings of LSTM networks and there specific gate
convention is by Francois Chollet , the Founder of Keras –a deep learning library
[43]–. In his book [44] he argues, that the gates are not doing what humans name
them to do. The reason why the LSTM network performs better then usual recurrent
neural networks is because the LSTM is (because of the gates) equipped with more
representational power, that is suitable for long term sequences. It is not that the
forget gate is crucial or the input gate is the important part. It is just, that the
representational power of an LSTM network is different then the one of a RNN.
This is also pointed out by the fact, that Gated Recurrent Unit (GRU) networks (a
more recent modification to recurrent neural networks then the LSTM network), that
does not have the same gate architecture as the LSTM, does have in many learning
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4.3. ARTIFICIAL NEURAL NETWORKS

tasks similar or superior performances then the LSTM. The GRU does only have
one gate. It is all about the representational power that the model is equipped with.

4.3.5 Problems with Neural Networks

Neural networks are one of the most powerful machine learning models. Especially
due to their often numerous parameters in the thousands or millions, these models
can explore a wide range of functional relationships in the data. Neural networks are
extremely flexible and do not need sophisticated pre-processing or feature engineer-
ing of the data before using them. One of the biggest strengths of neural networks
is that they are capable of extracting hierarchical features by themselves. However,
some disadvantages come along with the power and flexibility of neural network.
Some of the challenges and problems arising when working with neural networks are
mentioned in the following.

Hyperparameters

Neural networks are characterized by their parameters (weights and biases). These
parameters are affecting the informational flow throughout the network, from the
input until arriving at the final output. In addition to that, there are many more
parameters, that need to be chosen to enable the network to learn properly in the
first place. The parameters that are not ”learned” during the training phase of the
model, but need to be specified in advance are called hyperparameters. The choice
of the optimal set of hyperparameters is not trivial. Some of the most important
hyperparameters include:

• Number of hidden layers: The number of hidden layers is responsible for the
level of abstraction a neural network can learn. The deeper a neural network is,
the more hierarchical structures it can find. Each layer allows the network to
represent the functional relationship from input to output, based on the found
relations in the previous layers. This enables to network to build upon its
findings. Especially in the case of computer vision this shows to be extremely
valuable. For instance transfer learning describes the fact, that neural network
layers, that are learned on a specific use case, can be applied for other use cases
as well, if they share some similarities. In computer vision this means, that
although a neural network (in computer vision mostly convolutional neural
networks) is trained to detect cars in an images; earlier layers of this trained
network might be valuable also for the task of recognising faces. This is because
earlier layers extract general features and functional relationships, that apply
to a wide range of use cases. The deeper the network, the more specific the
latter layers and the extracted features become.

• Number of neurons per layer: The number of neurons per layer can be seen as
describing the representational power of every layer. It is a common choice to
decrease the number of neurons with every advancing layer, therefore forcing
the network to find hierarchical representations from layer to layer.

• Training batch size: The training batch size refers to the number of data sam-
ples that are fed to the model at once. After one such batch the model changes
its parameters following the backpropagation and gradient descent steps. The
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CHAPTER 4. THEORETICAL BACKGROUND

batch size can be chosen between 1, that is, the parameters get updated after
every single sample, and the total size of the data set n. Common choices of
the batch size are 16, 32, 64, 128. The size of the batch size therefore describes,
how many samples should be regarded before updating the parameters. The
updates of the parameters are then calculated so that they decrease the cost
of the neural network for the processed batch of samples. This does not au-
tomatically mean, that the updates are a good choice, leading to minimizing
the cost of the network for the totality of all samples. However, with many
iterations, this process usually converges to a good solution.

• Number of Epochs: One epoch refers in machine learning terminology to one
processing of the total available training data. After the fact, that every
single sample in the training data is fed through the network once, one epoch
is completed. By processing the available samples for many epochs, the goal
of the model is to eventually find the parameters (by continually updating
them into a certain direction), that describe the (true) functional relationship
between input and output. Therefore, the more epochs a model trains, the
more it can search for underlying relations in the data. However, too much
training time can lead the model to find relations, that are not ”true” and only
random. This then hinders the model on making good decisions on unseen
data, that is, the models generalizability is poor.

• Optimization algorithm: There are many optimization algorithms to choose
from. Some of the most common are: Stochastic Gradient Descent (SGD),
Adam Optimizer, AdaGrad, RMSProp. There are no clear rules which opti-
mizer is the best choice for different kinds of problems. Often the differing
optimization algorithms are performing similar. All of the mentioned opti-
mizations algorithms are modifications to the idea of gradient descent.

• Learning rate: The learning rate has a big influence on the training process of
the neural network. It is usually chosen to be a default value, depending on the
choice of the optimization algorithm. Choosing the learning rate too big, might
lead to overshooting the ”optimal” set of parameters of the model, whereas
choosing the learning rate too small might lead to non-convergence. Adaptive
learning rates are often applied, to adjust the learning rate alongside with the
advancement of the training process of the model. The learning rate might
decrease with time as the model gets closer to the optimal set of parameters,
therefore updating more precisely and enhancing the likelihood of finding a
optimal solution.

• Activation Function: The choice of activation functions in a neural network
can have a big effect on its learning process. The output range and slope
(when computing the derivatives) are the influential factors of the activation
function. Activation functions equip the network with non-linearity, and cer-
tain constraints. Inside those constraints the neural network has to search for
the optimal parameters for solving the task at hand.

Batch Normalization, and Parameter Initialization are other hyperparameter choices
that can have a significant effect on the performance of a neural network. The ”ideal”
choices of all of these hyperparameters is usually to be found by testing a wide range
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4.3. ARTIFICIAL NEURAL NETWORKS

of different neural network architectures and different sets of optimizers/learning
rates and batch sizes. The goal is to find the neural network, that can generalize
well to ”unseen” data samples, after the training phase of the model is complete.

Overfitting

Generalizability is the ultimate goal of every machine learning model. This means
that the model is not only capable to predict the samples it has seen during training
with accuracy, but also, that it can transfer the performance to new samples (from
the same or similar distribution) it has not seen before. It might be the case that the
models are very good when assessing their performance on the training data, however
when evaluating the models on new data the performance is poor. This discrepancy
between performance on the training data and new data is called overfitting. This
happens, when machine learning models find a functional relationship in the training
data that is random and has nothing to do with the actual true underlying relations
from inputs to targets.
Neural networks are especially prone to overfitting due to their often high number of
parameters. The flexibility that comes with the many paths a neural networks can
use to describe and formulate relations in the data is making overfitting likely. To
mitigate the problem of overfitting, and increase the generalizability of the network,
certain regularization methods can be applied.
Regularization methods are reducing the overfitting effect during the training phase
and increase the generalizability of the model. However, it is not clear from the
beginning which regularization technique is the best or helpful. It highly depends
on the data itself. The ”best” approach for training a model is often, to first provide
the model with many parameters, so it has enough representational power to model
the input target relations precisely. If this then leads to overfitting, the next step is
to prune the model down. This pruning is done by using regularization techniques,
or the reduction in model parameters. Especially in Deep Learning settings the
common approach is first: overfitting the training data, to see if the representational
ability of the model is sufficient for the task. If this is the case, the next step is in
using regularization. These regularization methods constrain the model parameters,
so that the model is less likely to fit its parameters to describe relations in the data,
that are purely random. Typically regularizations like the L1, L2 or Elastic Net
–a combination of the first two–, penalize parameters, if their norm is getting to
big during the training phase. If the model finds, that a certain connection –either
coming from the input, or from successive computations– is of high importance for
a accurate prediction, then the model is going to weight this connection stronger
with every training step. However, this connection might not describe the real
relationship in the data, and might be purely by chance, –either because of the data
itself, or because of the random initialization phase of the model–, thus resulting
in overfitting. To avoid this over-weighing of certain connections, the regularization
methods, keep weights from getting too big. This regularization on the other hand,
can hinder the model from accurately describing the relationship in the data as it
is. It might be the case that a certain connection in the overall model informational
path is of high importance, but the regularization hinders this connection from being
fully exploited. Therefore, neural network models are often trained and tested first
without any regularization. After comparing the performance on the train- and
test-set the generalizability of the model can be assessed. If the generalizability is
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CHAPTER 4. THEORETICAL BACKGROUND

weak, that is the model is overfitting on the train-data; regularization methods can
be applied, and the performances on the different data sets gets compared again.
This incremental experimentation for finding the model, that is the most suitable
for the task at hand is very tricky, and involves a lot of additional hyperparameters
tuning.

Regularization

There are mainly three ways to incorporate regularization in neural networks, to
mitigate the effect of overfitting.

• PenalizingWeight Connections: This regularization technique penalizes weights
that are becoming to big during the training phase. It is tuning back the im-
portance of certain connections, so that no single path in the neural network
gets to much emphasis. Common regularization methods falling into this ap-
proach are the Ridge- (L1), Lasso- (L2) and Elastic Net- (a combination of
both) regularization. All methods work by adding an extra regularization term
(the sum of all weight values) to the Loss-function of the network. Therefore,
the usual optimization steps for minimizing the cost, also tries to minimize
the regularization term, therefore penalize weight values that are becoming to
big.

• Dropout: This regularization methods drops a certain percentage –determined
by the hyperparameter choice of the dropout probability– of neurons in the
network for every processing step. This methods can therefore be seen as a
kind of ensemble learning technique, where with every training step, a different
model gets trained, and in the end all different models are used for the outcome.
By dropping certain connections with every training step, the neural network
is forced to explore a wide range of possible paths, and is not able to rely
on one particular path alone. A common choice of the dropout probability is
between 0.25 and 0.5, meaning that 25% to 50% of neurons are randomly shut
down for every training step. For the final predictions all neurons are then
activated.

• Data Augmentation: This method relies not on changing the internal structure
of the neural network, but in changing the inputs to the model. The method
is especially useful when the number of available training samples is limited.
The augmentation of the input data does two things (a) increases the amount
of data for the model, and (b) forces the model to look at a broader range of
inputs and therefore explore more possibilities.

4.3.6 Conclusion Theoretical Background

This chapter provided the theoretical background to have a basic understanding of
the workings of neural network models. All neural networks can be broken down
into the most basic building block, the neuron. By stacking neurons into layers,
and layers into deeper neural networks, powerful models can be built. These neural
network models should have enough representational power to model the underly-
ing functional relationship form input to target. Feedforward neural networks and
recurrent neural networks differ in their way of processing the input. Recurrent
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4.3. ARTIFICIAL NEURAL NETWORKS

connections equip recurrent neural networks with a kind of memory, making them
useful for temporal dependent data. In the next chapter the implementation of re-
current neural networks and feedforward neural networks for the task of forecasting
electric energy consumption of individual households is described.
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Chapter 5

Experimental Setup

This chapter explains how the neural network methodologies introduced in the pre-
vious chapter are deployed for the task of low level day ahead energy consumption
forecasting. The various neural network models are introduced, and the approach
for comparing and evaluating the differing methods is explained. The main empir-
ical questions this thesis tries to answer are emphasised. The data, on which this
analysis is performed gets introduced, and the various data processing steps are
discussed.

5.1 Problem Definition

The objective of this thesis is to deploy, evaluate and asses the performance of neural
network methods on the task of forecasting the energy consumption of individual
household for one day ahead. The forecasting goal –that is the energy consumption
profile for the next day– starts at 00:00 in the morning and ends at midnight. This
24 hour period is the forecasting target of the different models.
In this thesis the considered energy consumption recordings are analysed for two
sampling rates (a) 15 minutes and (b) 1 hour. The goal is to create a energy
consumption forecast for the next day with the same resolution. The target y is
therefore an array of length 96 in the case of 15 minute time intervals, and of length
24 in the case of hourly intervals. Each entry in the array is corresponding to the
amount of energy consumed during a distinct time interval. The unit of the energy
recordings is kilowatt hours [kWh].
The differing models are outputting a prediction for the next days energy consump-
tion profile ŷ.
Every model is getting a certain input, consisting of information about the historic
energy consumption, as well as –depending on the model– additional features.
Based on the provided input, the model tries to forecast the energy consumption
for the next day of a particular household.
The exact processing of the various inputs for the different models is explained in
section 5.3.

5.1.1 What makes it challenging?

The task of forecasting the electricity demand of individual households is extremely
challenging due to the high volatility and randomness in the energy consumption
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5.2. THE APPROACH

curves of individual residents. Figure 5.1 shows the electricity demand profiles of
three customers within one week in April 2018 with 15 minute time resolution.

Figure 5.1: Electricity demand profiles of three customers. On the left are the con-
sumption profiles for a whole week (Monday-Sunday). On the right is the following
day (Monday) of the same household.

Time of day, weather conditions, information of appliances, costumers or dwelling
specific information have been found to have an impact on the energy consumption
patterns of occupants, and therefore could be valuable for the forecast, if provided
as input the the model. However, the biggest share accounting for the amount of
energy consumed is the residents lifestyle [45].
Therefore, by analysing the historic consumption patterns, as well as exogenous
factors, machine learning models might be able to pick up certain characteristics
that result in reasonable energy consumption forecasts. This is no trivial task, as
the consumption patterns vary drastically from household to household. Even one
household has big variations in its electric energy consumption on a day to day basis.

5.2 The Approach

This section outlines the main questions this thesis is trying to answer. The ex-
perimental setup to answer those questions, the used data and the data processing
methods are explained.

5.2.1 Questions to answer

In the following, the main questions are stated and the process for answering them
is elaborated.

• Question Number 1:
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CHAPTER 5. EXPERIMENTAL SETUP

Are recurrent neural networks useful? In particular, the usefulness of LSTM
networks for low-level energy consumption forecasting is investigated. To an-
swer this question, LSTM models get compared to feedforward neural net-
works. This comparison shows if the memory capability and the sequential
processing of LSTM networks are advantageous compared to the processing
of a feedforward neural network. Both neural network approaches, the LSTM
models as well as the feedforward models get compared to benchmarks com-
monly used in forecasting studies. Using benchmarks as a comparison gives
insights if the use of computational expensive neural networks is actually jus-
tifiable.

• Question Number 2:

What is the effect of additional features on the forecasting performance? To
answer this question two slightly different LSTM networks get compared: One
LSTM model –LSTM all– gets input, carrying information about: Historic
energy consumption data, autoregressive shifts, temporal information (time of
day, day of the week, holiday) and meta-information (apartment size). The
second LSTM model –LSTM one– only receives the historic energy consump-
tion as input. A comparison of the performance of these two models, once
with and once without the additional information identifies the impact of the
additional features on the forecasting quality.

• Question Number 3:

What is the best use case of deploying an LSTM network? General vs. Indi-
vidual approach? To investigate this question, one LSTM model gets trained
on all available data, that is it learns based on all households. This model
called the General model then gets compared with LSTM models that are
only trained on the data of one particular household. These models are called
Individual models. A comparison of the forecasting quality of both methods
on various data sets identifies the most suitable approach. The LSTM all
models are used for this comparison.

• Question Number 4:

What is the effect of the data granularity? In the literature, several different
forecast horizons and sampling rates of the data are regarded. In [3] it is shown
that the shorter the forecasting horizon and the lower the data resolution,
the better artificial neural networks (ANN) are able to perform on pointwise
predictions. This effect is mainly attributed to the out-smoothing of energy
consumption profiles when going from smaller to bigger time intervals. For this
reason, two different data resolutions of the energy consumption recordings
are regarded in this thesis. (a) 15 minute time intervals, and (b) hourly time
intervals. The above-mentioned questions 1, 2 and 3 are investigated for both
time resolutions. This approach gives insights into (a) the effect, that the data
resolution has on the forecasting performance, and (b) if and how the answers
to the questions 1-3 do change with the variation in data granularity.

5.2.2 Implemented Models

The models deployed to answer the above questions are described in the following.
For question 1 and 2 neural network models, as well as benchmarks, get compared to
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5.2. THE APPROACH

each other. Question number 3 uses LSTM models, that are trained with additional
features.

Naming of Neural Network Models:

• LSTM all: This refers to the LSTM approach that is trained with additional
features. The model is trained with the following input information: the
historic energy consumption, autoregressive shifts of the historic consumption
(the hour before, a day before, week(s) before), calendric information (time of
day, day of the week, holiday) and meta-information (apartment size).

• LSTM one: Describes the LSTM approach that is trained only with historic
energy consumption.

• FFNN: This refers to the feedforward neural network model that also only has
the historic energy consumption as input to the model. The FFNN, therefore,
varies from the LSTM one model not by the input it receives, but by the way
the input is processed.

Naming of Benchmark Models: Comparing the neural network models to the
benchmarks gives insights about the usefulness of neural network approaches. These
rather simple benchmarks are found to be difficult to beat by various machine learn-
ing and statistical model techniques in the realm of forecasting the electric energy
consumption of individual households.

• ”naive” Benchmark: This benchmark takes the day before as the predic-
tion for the next day. Often encountered as the persistent benchmark in the
literature.

• ”soph” Benchmark: This benchmark takes the same day the target day one
week before, as its predictions. For example, if the next day to be predicted is
a Monday, the ”soph” benchmark will use the last Monday as its prediction.
The naming convention ”soph” comes from the abbreviation of sophisticated.

• ”mean” Benchmark: This benchmark takes the average consumption of the
week prior to the target day. For instance, if Monday is to be predicted,
the ”mean” benchmark computes the average energy consumption per time
interval of the prior week (Monday to Sunday) and takes this as its forecast.

5.2.3 Error and Performance Metric

To evaluate the forecasting quality of the different methods mentioned, two metrics
are used in this thesis.

The Error Metric

In this thesis the first error metric, based on which to judge the performance of
the varying models is the Mean Absolute Error or MAE described by equation 5.1,
where n refers to the length of the forecast. n is either 24 in case of hourly time
intervals, or 96 in case of 15 minute time intervals.
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CHAPTER 5. EXPERIMENTAL SETUP

MeanAbsoluteError =
1

n

n
∑

t=1

|yt − ŷt| (5.1)

This pointwise error metric is the starting point for evaluating forecasting quality.
This error gives an intuitive first impression of the goodness of the forecast and,
describes by how far off on average the forecast ŷ is from the true energy consumption
y per time interval. However, this pointwise error metric has certain disadvantages
and might not be appropriate for a definitive judgment of the forecast. A more
in-depth discussion, why this error metric alone does not allow for a conclusive
evaluation of the models, is provided in section 7.2.1.

The Performance Metric

Due to the fact, that the pointwise MAE error metric might not capture the per-
formance of the different models in full detail, a second performance measure is in-
troduced here. In combination with the MAE this performance metric named Daily
Energy Consumption Deviation, describes the forecast in a way, that (together with
the MAE) allows for a more nuanced judgment of the differing forecasting perfor-
mances.

Daily Energy Consumption Deviation = |

n
∑

t=1

ŷt −

n
∑

t=1

yt| (5.2)

Where n again is referring to the length of the forecast, and t is referring to a
particular time step. Therefore,

∑n
t=1 ŷt is the predicted total amount of energy

consumed for one day, and
∑n

t=1 yt is the true total amount of energy consumed for
that day.

5.3 Data and Data Processing

The household stock on which this analysis is performed on, is from Aspern Seestadt
Vienna.1 Although this thesis is aimed at investigating the suitability of neural
network forecasting approaches for the P2PQ project mentioned in section 2.2; the
smart meter recordings from the households belonging to the P2PQ project where
limited in quality and time duration. Therefore, a data set with the smart meter
recordings coming from Aspern Seestadt is used. The households in both cases a
comparable in size and demographics. For this reason, insights found on the Aspern
Seestadt data, are likely transferable to similar apartments in the P2PQ project.
There are a total of 127 households ids, with 117 unique dwellings over a three year
time period from January 2016 to December 2018. There are more households ids
then dwellings, due to the fact, that if residents move out during the regarded time
period, the incoming new resident gets a unique id, although living in the same
dwelling. The size of the different dwellings ranges from 40 to 120 square meters.
Not all households have smart meter recordings over the total three year period.
The baseline consumption is very low, due to either low consumption patterns or
high vacancy.

1The data is provided by the ASCR, the Aspern Smart City Research Group.
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5.3. DATA AND DATA PROCESSING

5.3.1 Distinct Data sets

For the investigation of the empirical questions, six distinct data sets are chosen.
Every data set consists of one Train- and one Test- partition. Each data set is made
out of samples. Every sample is to be understood to form one input/target pair for
the neural network models. The exact processing of those samples is explained in
the coming sections. The naming convention of those data sets for the rest of the
thesis and the motivation behind choosing them is given below:

• ”Simple”: This data set includes the samples, of all households that have
valid energy consumption recordings for at least five months. This data set
got filtered only for missing values. Missing values do mess up the training
process of the neural network models, and samples including missing values
are therefore not regarded.

• ”Extra”: This data set is a modification of the ”Simple” data set. It performs
an extra filtering step. Not only samples with missing values and non-valid
recordings get discarded, but also samples, that do not satisfy certain minimum
consumption criteria. These criteria filter for samples that have at least a
moderate amount of consumption happening. A modest energy consumption
threshold of 2 kWh per day on average is used, as well as at least one energy
consumption peak of 0.5 kWh for the hourly data, and 0.125 kWh for the
15-minute data. If those criteria are met by the processed sample, it is part of
the ”Extra” data set; if not it gets dropped, and is only part of the ”Simple”
data set.

The choice of this extra filtering step based on minimum consumption criteria
is motivated by the fact, that a lot of very low consumption profiles are part of
the overall ”Simple” data set. These low consumption profiles, that might not
really convey consumption habits of residents, but just reflect the consumption
profiles of vacant dwellings for long time periods, with the only consumption
recorded being the self-consumption of the smart metering device, or standby
consumption of appliances. By comparing neural network models trained on
the ”Simple” and on the ”Extra” data set, it might be seen if the inclusion of
very low energy consumption profiles messes up the neural network models,
and if there is a change in models forecasting behavior/performance when they
get dropped. It is to be expected, that the exclusion of the lower consumption
profiles does lead the models to train on more ”real” consumption days. For
this reason, models trained on the ”Extra” data set are expected to forecast
higher overall energy consumptions than the models trained on the ”Simple”
data set. By applying this filtering step, roughly 25% percent of samples do
not meet the criteria for the minimum consumption and are therefore not
considered in the ”Extra” data set.

• ”X23”, ”X70”, ”X111” and ”X115” - These data sets corresponds to the
samples of households with id X23, X70, X111, X115.

The motivation behind selecting these particularly four households is, that
they met certain criteria, that made them useful to be included as individual
household data sets. There has to be a minimum amount of data available for
a reasonable evaluation, therefore households with not at least two and a half
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CHAPTER 5. EXPERIMENTAL SETUP

years of correct recorded consumption profiles got discarded. Furthermore,
households should have a regular consumption happening, to be able to draw
conclusions, if the proposed methodology is of any use, for households that
show steady and realistic consumption behavior. There were more households
in the data set meeting those criteria, choosing four households is seen as a
reasonable trade-off between interpretability of the results and being able to
investigate the questions. However, it has to be mentioned that including only
those four individual households does not allow for a conclusive answer. The
limited amount of data available for individual households is an issue. Inferring
distinctive answers from this limited amount of data is not valid. However, it
is investigated, if the amount of samples, especially in the case of individual
household data sets, is sufficient for the task of forecasting based on neural
network methodologies.

In summary: There are six distinct data sets for the analysis. Two, -”Simple”,
”Extra”-, that include all households, that have of at least five months of correct con-
sumption recordings. And four data sets of individual households -”X23”, ”X70”,
”X111” and ”X115”-. It has to be mentioned, however, that the choice of these
six data sets, the filter criterion for the ”Extra” as well as the assumptions for
the individual households -”X23”, ”X70”, ”X111”, ”X115” are somehow arbitrary.
Therefore using different data sets and different filtering criteria can lead to different
outcomes of the analysis. Figure 5.2 shows the daily energy consumption distribu-
tion of the different data sets. It can be seen, that the filtering step for minimum
energy consumption threshold nudges the ”Extra” data set to the right. Moreover,
it can be seen, that the four individual households show a higher consumption than
the average daily energy consumption of all households. The individual households
also vary in their distribution.

Train/Test Split

For assessing the performance of the neural network models, the available data sets
are each split into two parts (a) Train- partition and (b) Test- partition.

The models are trained on the train set and after the training process, -during which
the models find the optimal set of parameters describing the functional relationship
between input and target-, the model is evaluated on the test set. the performance
of the models on the test set gives insights if the models are able to generalize well
to new unseen samples.

The train/test split ration is set to 0.75. Therefore 75% of each data set belongs
to its train partition and 25 percent make up the test partition. Every household
is split based on this ratio. Only households with at least five months of available
data are included for this analysis.

The train/test split is done during the data processing phase, before the actual
filtering for missing values or for minimum consumption is performed. Therefore,
the final data set sizes are slightly off, from the exact 0.75/0.25 split ratio. The split
is done with regard to keeping the temporal order. That means, the train set is before
the test set. Another methodology on which to perform the train/test split could be
to split based on households itself. For instance, choosing all consumption profiles
from the first 80 households of the total data set and use the residual households for
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5.3. DATA AND DATA PROCESSING

Figure 5.2: Daily Energy Consumption Distribution of the six distinct data sets.
The y-axis is describing the normalized count of days over the totality of each data
set, that falls into the corresponding bin. The x-axis describes the amount of energy
consumed per day in [kWh].

the test set. This split method, though would not allow for a per household model
comparison -General vs. Individual - and is therefore not used.

How big are the data sets?

The six distinct data sets, -”Simple”, ”Extra”, ”X23”, ”X70”, ”X111”, ”X115” are
each split into a Train and Test partition. After this split, the amount of data -that
is the number of samples- making up the Train- and Test- partition of every data
set is shown in table 5.1.

Time Interval Partition ”Simple” ”Extra” ”X23” ”X70” ”X111” ”X115”

Train 55.000 40.000 700 600 650 600
15 Minute

Test 20.000 8.800 220 230 180 150

Train 50.000 44.000 650 650 650 650
Hour

Test 23.000 8.600 260 230 210 210

Table 5.1: Size of the train and a test partition of each distinct data set for 15
minute and hourly time intervals.
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CHAPTER 5. EXPERIMENTAL SETUP

Figure 5.3: Graphical illustration of the different forecasting models and different
data sets on which this analysis is performed. Each neural network model is trained
on every of the six data sets.

5.3.2 What is one sample made of?

Input/Target

What does the input to the different models look like and how is the data processed?
To start, the energy consumption profiles of every individual household in the Aspern
Seestadt household stock are processed, to get the pure –only the electric energy
consumption recordings, from the smart meter– data for every household. The
processing steps are undertaken to enrich the data with useful information, that
might hold predictive power, and can be utilized by the models to output accurate
energy forecasts. The bulk of the processing steps is then only used by the LSTM
all model, whereas the LSTM one, as well as the FFNN model, do only take the
historic energy consumption as input. The following steps are performed for every
household:

• temporal encoding: In this step, the temporal aspect of the consumption pro-
file is regarded, and the temporal information gets extracted. Temporal infor-
mation might have an effect on the forecasting ability of the model. Features
generated in this step include:

– hour of the day

– day of the week

– month of the year

All these features might carry predictive power for the models, to perform
reasonable forecasts. The information, if the considered day is a Sunday in
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5.3. DATA AND DATA PROCESSING

winter might have useful information about the consumption patterns, when
compared to a weekday during a different season.

• holiday encoding: This step includes boolean features, if the day is a holiday,
or if the next day is going to be a holiday. The consumption habits are likely
to change on holidays, therefore these two boolean features are included.

• autoregressive features: Autoregressive features, are temporal shifts in energy
consumption to represent certain lags in the energy demand profile of the
household. The temporal shift considered are:

– one hour before

– one day before

– one week before, as well as two weeks before, three weeks and four weeks
before.

It has to be said, that the autoregressive shift performed here, might not
be the optimal shifts for all households. It might be that one household has
different optimal lags, that have the most predictive power. Overall, the above-
mentioned shifts should include additional information about the consumption
habits of the households.

• meta information - The last is the inclusion of meta information. In this
step information from a survey about the inhabitants of the Aspern Seestadt
household stock is used to enrich the input with further details. Information
included in the survey are:

– size of the dwelling

– educational status

– average age of residents

– technology affinity

– appliance information

– household income

Unfortunately, many answers are sparse, and only the dwellings size was avail-
able for all households. Therefore, the size of the dwelling is used as the only
meta feature in this step.

These steps are responsible for enriching the input to the LSTM all model. The other
neural network approaches process only the historic energy consumption feature, this
is schematically shown in figure 5.4. Up to this point, the data is only enriched,
but not yet usable by the neural network models. In the following paragraphs, the
process for getting the data into the right shape, so it can be used by the neural
network models is described.

Look-back Window: The look-back window describes the amount of time that
is regarded from the historic energy consumption profiles of each household. For
example, a look-back window of one day means, that one day gets sampled and
is used as input to the model. This selected time horizon is then enriched with
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CHAPTER 5. EXPERIMENTAL SETUP

Figure 5.4: The differing forecasting models with its different inputs

additional features, according to the processing steps explained above, to make up
the input of one sample. In this thesis, the look-back window is chosen to be one
week. This choice is motivated by the fact, that a whole week might carry useful
information about the consumption characteristics of a household. For 15-minute
data resolution, this results in input with length 672, and for hourly time intervals,
the inputs have length 196.

Sample: One input plus its corresponding target output form one sample. The
different samples are processed by a rolling window approach of one day. Every
sample is made of the input, –a week of historic energy consumption recordings,
(and in the case of the LSTM all model, additional features)–, and one target, –the
true target day, following the input week.

Shape of samples: The different models, –LSTM all, LSTM one, and FFNN–,
have different inputs. The LSTM all processes the historic consumption profiles as
well as the additional features. This model has, therefore, –in the case of 15-minute
data–, an input of shape (672, 53). The first dimension of 672, describes the number
of time steps this input is made out of. Each of those 672-time steps then holds a
feature vector of size 53, that captures the energy consumed at this time step, plus
all the additional features. The 53 values in the feature vector are as follows:

• energy consumption values: the energy consumed at this time step, one hour
before, one day before, one week before, two weeks before, three weeks before
and four weeks before. Resulting in seven features corresponding to historic
energy consumption.

• temporal data: hour of the day, day of the week, the month of the year. These
features are one-hot encoded, resulting in 24 (for hours) + 7 (for days) + 12
(for months) features. In total 43 features dealing accounting for the temporal
data.
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5.4. PROBLEMS AND EXPLANATIONS

• holiday: two boolean features describe if the present day is a holiday and if the
next day is a holiday, resulting in two features dealing with holiday encoding.

• meta feature: one feature in the 53-dimensional feature vector is held by
the scaled size of the household, resulting in one feature dealing with meta-
information.

All these features make up the 53-dimensional feature vector, that is present for
every single time-step of the 672 in the case of 15-minute data, and the 196-time
steps in case of hourly data. The LSTM all model uses all available information,
-historic consumptions, autoregressive, temporal, holiday and meta features-. The
LSTM one model only regards the energy consumption as input, –no additional
features–, but still processes the input in a sequential way. The FFNN model also
only regards historic energy consumption. However, the processing of the input is
not sequential, as in the case of the LSTM models. The shapes of the inputs and
outputs for 15 minute and hourly data of the various models are shown in table 5.2.

Time Interval Model Input Target

LSTM all (672, 53) (96, )

LSTM one (672, 1) (96, )15 Minute

FFNN (672, ) (96, )

LSTM all (168, 53) (24, )

LSTM one (168, 1) (24, )Hour

FFNN (168, ) (24,)

Table 5.2: Shape of input and target arrays for the three different neural network
models.

5.4 Problems and Explanations

Up to this point the main empirical questions, this thesis tries to investigate are
stated. The data sets on which the final analysis is performed and the way they
get processed is mentioned. However, there are caveats in the processing of the
data and in the setup for comparing the various models. This section is meant to
emphasis some of the potential difficulties and help in fostering the understanding
of the various decisions included in this study.

Data Cleaning and Filtering

The data cleaning procedure used in the filtering and processing stage of this work is
rather rude. Samples got processed in the described way to form input/target pairs.
After the samples are created, the cleaning step is performed. Every sample, where
either the input or the target has missing values, is dropped from the data set. This
leads to a 30% loss of samples from the ”raw” data set to the ”Simple” data set.
This is a significant loss of data. This rude cleaning and dropping of samples could
be mitigated by data insertion techniques, or by interpolation methods. However,
due to the fact, that the missing values stretched over various time periods in the

67

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

CHAPTER 5. EXPERIMENTAL SETUP

energy consumption recordings throughout the total household stock, no appropriate
insertion technique was found, that could insert reliable data, and therefore not mess
up the training inference of the models. For this reason, the rude cleaning approach
is chosen.

Scaling

Scaling in the machine learning domain is dealing with the problem of putting the
values (input and target) into a preferable range of the particular machine learning
models. Some machine learning techniques are very sensitive to the range of values,
others are more robust. Neural networks are known to be more sensible, and it is
preferable to get the range of the input and target values into an ideal range so that
the information can flow optimally throughout the network. However, there is no
upfront ideal solution to this task. One of the most obvious problems emerges, if the
output of the activation function in the last layer, is not suited for the range of the
output values. That is if the activation function constrains the output values, and
the real value is outside of this limit. For instance, the sigmoid function bounds its
output to a range between 0 and 1. However, the target values need not be in this
range. When this is the case, it becomes clear that this model would not be able to
learn optimally and predict accurately. For this reason, the first obvious benefit of
scaling is getting the target values into the output range of the preferred activation
function.

The other important point for scaling is the fact, that the signal from the gradient
flow is more stable by scaling the input and target. Usually both, the input and
target values, get scaled into either (a) the range between 0 and 1, –this can be
achieved via Min-Max-scaling–, or (b) get the values standard scaled, forcing the
values into a normal distribution with 0 mean and unit variance.

The problem of scaling in this thesis arises from the fact, that the overall con-
sumption is very low, with most energy consumption values near 0 kWh. Therefore,
when applying one of standard scaling methods like Min-Max-, Robust- or standard-
scaling, the resulting range of outputs either does not fall into the optimal range for
neural networks or is very skewed. After different scaling methods were analyzed,
the approach of not using any scaling is used. Due to the fact, that all energy con-
sumption values recorded of the total household stock over a three year period do
not exceed 1.5 kWh in the case of 15 minute time intervals and 4.0 kWh in the case
of hourly intervals, this approach is chosen as a reasonable option.

Comparison of Models

A fair comparison between the various neural network models is hard to accomplish.
First, there is the comparison between the three neural network models LSTM all,
LSTM one and FFNN ; and second, there is the comparison of the LSTM all models
in terms of regarding the General and the Individual model. Furthermore, there is
a big difference in the size of the various data sets, as well as the difference in the
data points when regarding 15 minute or hourly time intervals.

The optimal model architecture, appropriate for one particular data set, character-
ized by data resolution and size of the data set, might not be the optimal architecture
for a different set of samples.
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5.4. PROBLEMS AND EXPLANATIONS

Therefore it is not appropriate to use the same architecture for the LSTM all, LSTM
one or FFNN model on all data sets, disregarding the size of the available data.
Because a valid comparison between the various use cases of the models is difficult,
a set of heuristics is used, to make a reasonable comparison possible.
For this reason, in this thesis, there are 12 different model architectures proposed
and trained. The first distinction is made in terms of data resolution. Is the model
trained on (a) 15 minute time intervals or (b) on hourly time intervals. The second
distinction is based on the data set it is trained on: is the model trained on one of
the ”General” data sets, that is either ”Simple” or ”Extra”, or (b) on one of the
Individual data sets: ”X23”, ”X70”, ”X111” and ”X115”. For every one of these
four cases: Data resolution either 15 minute time interval or hourly time interval,
and data set either belonging to the General or Individual category, there are the
three different neural network models: LSTM all, LSTM one and FFNN resulting
in twelve models. Every model has one hidden layer.

Model Architecture

The main difference in those 12 models is the number of neurons in the single hidden
layer. With the number of neurons in the hidden layer, the number of parameters
of every model can be set. The main heuristic on which to compare the models is
chosen to be the number of parameters, every model has. Therefore, when comparing
the three different neural network models in the case of 15 minute time intervals
and General data set, all three models are chosen to have a similar magnitude of
parameters, resulting in a comparable representational power. However, due to the
fact, that the LSTM all model does consider the additional features, its number
of parameters is bigger then that of the LSTM one model, although both having
the same number of neurons in the hidden layer. The number of neurons in the
FFNN model are then chosen, so that its number of parameters, is comparable to
the number of parameters of the LSTM one model.
The next heuristic is for choosing the starting point of the number of parameters
in the first place: The number of parameters of the LSTM one model trained on a
General data set is chosen, so that it is close to the number of samples in the Train-
partition of the ”Simple” data set. This means the LSTM one model trained on a
General data set has about 50.000 parameters. Going from there, the number of
parameters gets cut in half when considering Individual data set. Furthermore, the
step down of the number of parameters going from the 15-minute time interval to
the hourly time interval is again by a factor of two. Therefore, the models trained on
a Individual data set and hourly data resolution have approximately a fourth of the
parameters of that are trained on a General data set and 15-minute data resolution.
The number of neurons in the hidden layer and the corresponding number of pa-
rameters of each model for the different cases is shown in table 5.3.
A rule of thumb, to mitigate overfitting, is to build a model with roughly the same
number of parameters as are training samples available for the problem. This is a
very rough rule, and more than matching the number of parameters to the number of
training samples, it is supposed to help in cases where there is limited data available.
In the case of limited data, a model that has drastically more parameters then
training samples, is more likely to overfit. Due to its representational power, it is
able to find relationships in the input to output pairs, that are not true and might be
found purely by chance. The bigger the number of parameters, and simultaneously
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CHAPTER 5. EXPERIMENTAL SETUP

Time Interval Approach Model Type Num. of Neurons Num. of Parameters

LSTM all 90 60.576

LSTM one 90 41.856General

FFNN 50 38.546

LSTM all 60 33.216

LSTM one 60 20.736

15 Minute

Individual

FFNN 25 19.321

LSTM all 50 22.024

LSTM one 50 11.624General

FFNN 50 9.674

LSTM all 30 10.824

LSTM one 30 4.584

Hour

Individual

FFNN 25 4.849

Table 5.3: Number of model parameters

a relatively small data set size, increases the chance of finding random patterns in
the data. The relation of parameters to the number of training samples is not the
only factor playing a role in overfitting; other factors include regularization methods,
training time, or data diversity itself. For this reason, neural network models trained
on one of the Individual data sets are chosen to have fewer parameters then the
models trained on the General data sets, by a factor of two. The three models
LSTM all, LSTM one and FFNN have the same architecture each for the two total
data sets ”simple” and ”extra”, as well as for the four individual household data
sets ”X23”, ”X70”, ”X111”, ”X115”. This is done because the General data sets
have roughly the same size, as have the household data sets, shown in table 5.1.
Furthermore, a distinction of the model architecture for the 15-minute data and
the hourly resolution data is made. This is because the finer resolution comes with
more energy consumption recordings causing a richer representation of the input and
the target. The increase in the number of recordings when looking at the hourly
resolution data to the 15-minute resolution data is by a factor of four. For a fair
comparison of the models and to see what effect the time resolution has one the
overall forecasting performance, the models working with the 15-minute resolution
are chosen to have roughly 2 times more parameters then the hourly resolution data.

Number of hidden layers Another heuristic is used for the choice of the number
of hidden layers. For many applications, a simple model with only one hidden layer
is a reasonable starting point, and the choice of the number of neurons in the one
hidden layer should be between the number of inputs and the number of outputs, to
allow for an abstraction of the feature space in the hidden layer and ultimately use
those abstraction found in the hidden layer to produce the final output. For this
reason, the model architectures for all neural network models are chosen to include
one hidden layer. However, the choice of the number of neurons for the hidden layer
does not allow for its size to be between the input and the output sizes. This is
because more weight is given for the decision to match the number of parameters
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5.4. PROBLEMS AND EXPLANATIONS

(of the LSTM one model) roughly with the number of samples (in the ”Simple”
Train-partition), and scale all other models in relation to this according to the rules
mentioned above.

Hyperparameter Search The above-mentioned choices for the number of pa-
rameters, number of layers as well as the number of neurons per layer might seem
a little bit ”unsophisticated”. Through the empirical work of this thesis, it was
found, that more ”sophisticated” models, equipped with more layers, regularization
methods -L1, L2, elastic net, dropout, recurrent dropout-, batch-normalization did
not increase the model performances. Due to the inherently challenging nature of
forecasting energy consumption profiles of individual households, it was found, that
an increase in ”sophistication” of the models did not come with an increase in model
performance. Other hyperparameter choices were also investigated, like different op-
timizers, -RMSProp, SGD, Adam, AdaGrad,-, different batch sizes during the train-
ing phase -8,16,32,64-, shuffling of the data, number of epochs -25,50,75,100,150- and
different choices of activation functions –tanh, relu, elu, linear–.

Choices of Hyperparameters

Many different sets of hyperparameters where explored during the modeling phase
of this analysis. More sophisticated models, with an additional number of hidden
layers, regularization and batch normalization where included. Experimentation
with different activation functions and Loss-functions were performed. In the end,
a rather modest architecture and set of hyperparameters are chosen for this thesis.
Some of the main explorations, its effect, and the final hyperparameter choices are
listed below:

• Activation Function: The activation function in the LSTM layers is chosen,
as is default in the LSTM implementation in Keras to be the tanh. The
activation function in the FFNN hidden layer is chosen to be the relu. The
activation function for all neural network models in the output layer is chosen
to be the linear. These choices of the activation function showed the most
stability in the training phase. The elu and relu were tried as the activation
function in the output layer, but both lead, depending on the used batch size,
to unstable training. The relu, elu and sigmoid were also tried for the LSTM
layer, however, they did not result in more reliable forecasts.

• Number of hidden layers: The number of hidden layers, were tested to range
from 1− 5. Due to the modest amount of data samples to start with, and the
fact, that a single hidden layer is sufficient for many tasks, only one hidden
layer is chosen. The increase in layers did not bring performance gain.

• Batch Normalization: This did bring a slight performance gain for the FFNN
models; but not for the LSTM models. It is not used in the final model
architecture.

• Regularization: Varying regularization methods were tried during the mod-
eling phase. Dropout, applied to all layers did lead to slightly more stable
results, depending on the chosen batch size. Lasso-, Ridge- or Elastic Net-
regularization did not increase the accuracy of the models. This can be due
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CHAPTER 5. EXPERIMENTAL SETUP

to the fact, that the data of individual household energy consumption profiles
is very volatile to start with. These erratic and volatile profiles function as a
kind of regularization themselves, hindering the models from overfitting. For
this reason, no regularization, but a rather moderate model architecture is
chosen.

• Batch size: This hyperparameter had a big effect on the behavior of the models.
The batch size was chosen to 8, 16, 32 and 64. The batch size of 32 did show
the most reliable and repeatable outputs. 32 is therefore chosen as the batch
size.

• Optimizer: Adam, AdaGrad, RMSProp, and SGD were tried as the optimiza-
tion algorithms for finding the optimal set of parameters in the model. No
significant performance differences, as well as computational time differences,
were observed. The Adam optimizer is chosen as the optimizer for the models.

• Number of Epochs: The number of epochs clearly has one of the biggest effects
on the final model behavior. In the modeling phase, the models got trained
for 25 epochs at a time, up to 150 epochs, and the varying performance and
forecasting characteristic got analyzed after every 25-epoch step. It could be
argued, that after only a few epochs overfitting was starting to take place,
because the error (the mean absolute error) on the test set started to rise,
whereas the error on the train set kept going down. The first two epochs
come with a significant reduction in the mean absolute error. After those first
two initial epochs, the error decreases very slightly. However, the model’s
forecasts become more reliable with more training time. For instance, the
training error does decrease only slightly from epoch five up to epoch twenty,
but the resulting forecasts are in the first case more erratic and are often
in the negatives. Therefore, although the error does not change that much,
the model’s behavior does seem to adapt longer then the training error might
indicate. In the end, the number of epochs is chosen to 50 for all models and
all data sets.

• Cost-function: The used Loss-functions (or Cost-function) were the, mean
squared error Loss-function, and the mean absolute error Loss-function. Both
are point-wise error functions. They showed slight differences in the forecasting
characteristics. At first, during the analysis only the mean-absolute-error was
chosen as the Loss-function, describing the amount of energy (in units of kWh)
that the models are off on average over all time steps. This choice was taken
because the first main error metric based on which to judge the performance
of the various forecasting approaches is the mean absolute error metric 5.1.
However, because the pointwise error metric does not explain the ”goodness”
of a forecast in full detail, especially for the low voltage level, the performance
metric Daily Energy Consumption Deviation is adopted as a second evaluation
metric. When taking both metrics into account, for judging the ”goodness”
of a forecast it was found, that the models trained based on minimizing the
mean absolute error Loss-function, did achieve better results then the models
trained on the mean squared error Loss-function, when evaluated with the
mean absolute error metric. However, after taking both metrics into account,
the models trained via the mean squared error Loss-function look like the
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5.5. GOAL OF THIS ANALYSIS

better choice in many cases, resulting in more accurate predictions of the
amount of energy that gets consumed per day. For this reason, all neural
network models are once trained with the mean absolute error and once with
the mean squared error Loss-function to show this difference in model behavior.

All in this chapter mentioned neural network models got implemented in Keras, the
Python Deep Learning Library [43].

5.5 Goal of this analysis

In this chapter, the main empirical questions were stated. The experimental setup,
the data, and its processing into input/target samples, as well as potential difficul-
ties, were discussed. Before moving to the results in the next chapter, the following
listing gives a short summary of the main concepts this thesis trying to investigate
by the setup discussed in this chapter:

• Is it valuable to use recurrent neural network methodologies for the task of
forecasting day-ahead electric energy consumption on the level of individual
households?

• Is targeting ”Individual” households via their own models reasonable, or is a
”General” model better suited to forecast the energy consumption of house-
holds?

• Are additional features -temporal, weather, demographical, appliance, sensor-
useful for getting more accurate forecasts? This thesis analyses temporal,
autoregressive and the size of the dwelling, as the additional features.

• Taking computational complexity, system complexity, and future develop-
ment into account, what is the most reasonable method? Neural network
approaches, or simple benchmarks?

• Is there a certain point -regarding the data resolution, consumption aggregation,-
where it is found that considering additional features yields superior energy
consumption forecasts?

• Is the sequential processing of the recurrent neural network models superior
to the ”normal” processing of feedforward neural networks?

• Are ”simple” benchmark methods competitive in predicting next days electric
energy consumption?

Not all questions can be answered definitive and conclusive. Nevertheless, this thesis
tries to provide some insights and ongoing development in the challenging research
field of forecasting energy consumption on the low level of individual households.
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Chapter 6

Results

6.1 Explanation of Validation and Results

This chapter shows the results regarding the empirical questions outlined in the
chapter above. The results get presented in the following way:

For both time resolutions (a) 15 minute time intervals and (b) hourly time inter-
vals, the three questions 1 to 3 of section 5.2.1 are investigated and the results are
shown. Every question is analyzed in terms of assessing the different models and
their performances –based on two different metrics– on the six distinct data sets.

In the first step, the performance of the three different neural network models LSTM
all, LSTM one and FFNN, as well as the three benchmark models ”naive”, ”soph”
and ”mean” get assessed on the Train- and Test-partition of the Individual data
set (”X23”) based on the mean absolute error, shown in equation 5.1. After that,
the results are shown for the Test-partitions of all six distinct data sets. (Every of
the six distinct data sets has its six neural network models (three with the mean
absolute error Loss-function, and three with the mean squared error Loss-function)
trained on it, therefore 36 neural network models are part of this analysis step).

Due to the fact, that the pointwise error metric does not explain the goodness of the
different methods in full detail; in the second step the same models and benchmarks
get assessed based on the performance metric Daily Energy Consumption Deviation,
shown in equation 5.2. Again, first, the results on the Train- and Test-partition of
the ”X23” data set get compared before the results on the Test-partition of every
distinct data set are shown.

By taking both metrics into account, more information is regarded for comparing
the various methodologies. These first two steps help to answer questions 1 and 2,
about the value of recurrent neural networks and the impact of additional features.

The third analysis step is investigating the ”General” vs. ”Individual” approach of
LSTM all models. For this, the twelve LSTM all models (for every of the six distinct
data sets two LSTM all models are trained; one with the mean absolute error Loss-
function, the other with the mean squared error Loss-function) get assessed again
first based on the pointwiseMAE error metric, and second based on the Daily Energy
Consumption Deviation performance metric. With this step question 3, about which
approach (”General” or ”Individual”) is more useful, can be answered.

This concludes the analysis of the empirical questions for the 15 minute time interval
data. The same presentation of the results is then performed for the hourly time
intervals. By looking at the differences in performance relation of the various models
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6.2. 15 MINUTE ANALYSIS

from the 15 minute time intervals to the hourly time intervals, the effect of data
granularity gets exposed and question 4, about the impact of data resolution on
forecasting performance can be investigated.

A paraphrasing of the question outlined in section 5.2.1 is stated below to help the
reader keep the general idea in mind while going through the result sections:

• Question 1: LSTM method ”better” then feedforward neural networks?

• Question 2: Are the additional features useful for more accurate forecasts?

• Question 3: ”General” vs ”Individual” model?

• Question 4: What is the effect of data granularity?

6.2 15 Minute Analysis

In this section, the first three out of the four questions get discussed for the energy
recordings with 15 minute time intervals.

Input/Output: One input/target sample for the LSTM all model has the form
of (672, 53)/(96, ). The two dimensional array with shape (672, 53) is the input
to the model. Every one of the 672 time steps holds a feature vector with 53
features, consisting of the encoded data as describe in subsection 5.3.2. An input
sequence [x1,x2,x3, . . . ,x672] is given to the LSTM all models. Each feature vector
per time step -[x1,x2, . . . ,x672]- holds 53 feature values. One xt is made up of
[f1, f2, . . . , f53]. For the LSTM one model the input sequence has the same length
672, however it does not include the full 53 elements of the features vector, but only
the one feature regarding the historic energy consumption. One xt therefore only
contains [f1], where f1 is the value of the energy consumed at the time step t. Other
then the LSTM models -which process the input in a sequential order- the FFNN
does processes it all at once. The input to the FFNN model is therefore a single
vector x of length 672, where each element is the same as in the case of the LSTM
one model, namely the feature f1 holding the amount of energy consumed per time
interval. The output for all models LSTM all, LSTM one and FFNN is a vector
with length 96 of the form output ŷ = [y1, y2, . . . , y96]. Where each element yt of
the prediction vector ŷ contains the predicted amount of energy consumed in the
corresponding 15 minute time interval.

In summary: The inputs for the different models are of the form: X = (672, 53)
for the LSTM all, X = (672, 1) for the LSTM one and x = (672, ) for the FFNN
model. The target as well as the output of every model is a vector ŷ with length
(96, ).

6.2.1 Value of Recurrent Neural Networks, and the Impact

of Additional Features

This subsection sets out to answer, if the LSTM approach is actually useful, and if
the utilization of additional features helps in getting more accurate forecasts.
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CHAPTER 6. RESULTS

Figure 6.1: Train and Test predictions of energy consumption profiles of various
models. The two images on the left are the predictions of the neural network models
(top image) and the benchmark models (bottom image) for the same day, taken from
the Train-partition of data set ”X23”. The two images on the right side are the
predictions on a day from the Test-partition of data set ”X23”. The neural network
predictions are separated from the benchmark predictions, for visual purposes. The
three neural network approaches (LSTM all, LSTM one and FFNN ) are once trained
with the mean absolute error Loss-function (mae, solid line) and once with the mean
squared error Loss-function (mse, dotted line), resulting in six predictions. The true
day is colored in grey. In the upper images the LSTM all models are green, the
LSTM one and FFNN models are coloured in red and blue respectively. For the
bottom images the three differing benchmarks ”naive”, ”soph” and ”mean” (dashed
lines) are coloured green, red and blue.
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6.2. 15 MINUTE ANALYSIS

Mean Absolute Error Performance

To answer these questions the three neural network models LSTM all, LSTM one
and FFNN –once with the mean absolute error Loss-function and once with the
mean squared error Loss-function–, are trained for 50 epochs on the Train-partition
of every of the six distinct data sets, resulting in 36 unique models. After the
training phase, the neural network models and benchmark models are evaluated on
the Test-partitions of the data sets. First the models are assessed based on the point
wise MAE error metric (see equation 5.1).

Prediction Characteristics: By looking at the predictions of the different pro-
posed methods, it can be inferred that the NN-models are not able to predict con-
sumption peaks accurately. Figure 6.1 shows the forecasts of the NN-models and
the different benchmarks. The two images on the left show a day from the train par-
tition of the data set ”X23”. The two images on the right show the more interesting
case of an out-of-sample day, which is a day from the test partition, on which the
”Generalizability” of the models can be tested. The neural network models trained
with the mean squared error Loss-function (dotted line) predict an overall slightly
higher consumption curve than their mean absolute error Loss-function (solid line)
trained counterparts. The ”naive” and ”soph” benchmark models are very erratic
for this particular day. The ”mean” benchmark has a smoother forecast. This is
a forecasting pattern that can be observed over a wide range of days. The neural
network models are not able to predict peaks well. The mean squared error Loss-
function models tend to predict higher overall consumption curves than their mean
absolute error Loss-function counterparts. The ”naive” and the ”soph” benchmark
are highly volatile (simply mirroring prior days). The ”mean” benchmark tends
to return smoother forecasts, due to the averaging of the seven previous days. No
definite conclusions can be drawn from one figure or the visual inspection of several.
However, it gives insights into the overall behavior of the neural network models. For
low consumption days, and relatively smooth profiles the neural network models are
able to pick up this consumption pattern. But they have trouble predicting peaks
in energy consumption. This is a problem when training and evaluating models
based on a point-wise error metric, due to the double penalty error. This problem
and its effects are discussed in section 7.2.1. Furthermore, it can be seen that the
”mean” benchmark performs well in these cases. This emphasizes the point, that it
is difficult in the realm of individual households to beat those kinds of rather simple
benchmarks.

MAE Performance on one data set: In figure 6.2 a comparison of the different
neural network models and benchmarks is given. The left bar chart explains the
performance of the models on the training set, and the right explains the performance
on the test set. The error scale ranging from 0 to 0.12 [kWh] per 15-minute time
interval is the same for both charts. The actual chart of interest is the right one.
It shows the forecasting performance on data samples, that the models did not see
during training. It can be seen that the mean absolute error on the train partition
is lowest for the FFNN model trained with the mean absolute error Loss-function.
However, when looking at the test partition the FFNN ’s error increases. This is an
example of overfitting. Interestingly the overfitting effect seems to be more prevalent
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CHAPTER 6. RESULTS

Figure 6.2: Mean Absolute Error performance of different NN-models and bench-
marks on Train-partition (left) and Test- partition (right) of the ”X23” data set.
The two green bars represent the LSTM all models, the red bars the LSTM one
models and the blue bars the FFNN models respectively. The three benchmarks
”naive”, ”soph” and ”mean” are represented by the grey bars from left to right.
The left bar of each NN-model pair -green, red and blue- is representing the model
that is trained with the mean absolute error Loss-function. The right bar shows the
MAE results of the same model but trained with mean squared error Loss-function.
The lower the bar the better, as the height of the bar indicates the amount of energy
(in [kWh]) the model is off in a 15 minute time interval on average over the total
Train- or Test-partition.
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6.2. 15 MINUTE ANALYSIS

for the FFNN model then for the other two neural network approaches LSTM all
and LSTM one, although all are trained for the same number of epochs. On the
Test-partition, the LSTM all and LSTM one models trained with the mean absolute
error Loss-function are the best performers showing similar results with an average
error of 0.074 kWh per time step interval (see the column representing ”X23” in
table 6.1). From the performance on this particular data set it can be said that
based on the mean absolute error, the LSTM approach does merit a small benefit
compared to the FFNN model. However, there is no difference in performance
between the LSTM all model and the LSTM one model on the test partition. From
these findings, it can be concluded that for this particular data set, and with this
time resolution, the approach of additional features does not help in getting a better
forecast of the energy consumption for the next day, when evaluated based on the
MAE.
Comparing the neural network models with the benchmarks, it can be said that
the best neural network model with a MAE of 0.074 is roughly 43% better relative
to the ”naive” or ”soph” benchmark. Whereas the ”mean” benchmarks error of
0.089 kWh is about 20% worse relative to the best neural network models on this
particular data set.

NN-models and Benchmark Comparison: For an intuitive comparison be-
tween the neural network approaches and the benchmarks, a comparison metric is
introduced here and described the relative performance difference of the best neural
network model to the best benchmark model. This metric is named Performance
Difference in this analysis. It is to be understood as an intuitive way to compare
the NN-methodologies to the benchmarks. The Performance Difference will be used
for both performance metrics (the MAE and the Daily Energy Consumption Devi-
ation) based on which the quality of the different forecasting models is evaluated.
Furthermore, the Performance Difference does show how the performance relation
of NN-models to benchmarks differs from data set to data set, as well as how this
relation does change when going from 15 minute to hourly time intervals. In case of
the above example considering the data set ”X23” the best neural network models
on the Test-partition are the LSTM all (mae) and LSTM one (mae) with a MAE
of 0.074 kWh. The abbreviations mae and mse in parenthesis describe the two dif-
ferent Loss-function which were used to train the models. The best benchmark in
this example is the ”mean” benchmark with a MAE of 0.089 kWh. This results in
a performance difference of 20.3% when calculated according to equation 6.1.

Performance Difference = −
bestnn − bestbm

minimum(bestnn, bestbm)
∗ 100% (6.1)

Where bestnn is the error value of the best neural network model and bestbm is the
error value of the best benchmark model. Looking at this Performance Difference of
the best performing neural network model compared to the best benchmark model,
gives insights if there is a benefit in using the more sophisticated and computational
expansive neural network methods. A big Performance Difference indicates superior
performance of the neural network models, whereas a negative Performance Differ-
ence means the benchmarks are better performing. The Performance Difference
does vary for each data set. It might found that for certain data sets the simpler
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CHAPTER 6. RESULTS

benchmarks are sufficient, whereas for other data sets (household with more volatile
consumption patterns) the NN-models are yielding substantial better performance.
The Performance Difference is meant to function as a rough and quick measure to
judge the suitability of complex NN-models compared to simpler benchmark ap-
proaches.

The analysis above does only look at the ”X23” data set. In the next step, all six
distinct data sets are regarded. The results are shown for the Test-partition of every
data set in table 6.1.

Mean Absolute Error Performance

”Simple” ”Extra” ”X23” ”X70” ”X111” ”X115”

LSTM all (mae) 0.031 0.039 0.074 0.071 0.104 0.091

LSTM one (mae) 0.032 0.038 0.074 0.070 0.101 0.092

FFNN (mae) 0.031 0.039 0.086 0.081 0.122 0.098

LSTM all (mse) 0.037 0.045 0.086 0.072 0.109 0.096

LSTM one (mse) 0.037 0.045 0.084 0.074 0.109 0.100

FFNN (mse) 0.037 0.044 0.087 0.084 0.115 0.103

”naive” bm 0.043 0.055 0.106 0.098 0.140 0.116

”soph” bm 0.044 0.055 0.107 0.098 0.139 0.124

”mean” bm 0.037 0.046 0.089 0.079 0.112 0.098

Table 6.1: Mean absolute error performances of the various models (rows) on the six
distinct data sets (columns). The first three rows tinted in grey are the three neural
network models trained with the mean absolute error Loss-function, indicated with
the (mae). The following three neural network models are trained with the mean
squared error Loss-function, marked with the (mse). The last three rows show the
results form the three benchmarks. The blue coloured cell of every column indicates
the ”best” performer on this particular data set according to the lowest MAE. The
red tinted cell shows the ”worst” performer on every data set respectively.

Summary of mean absolute error Results on 15-minute data: In table 6.1
it can be seen that the neural network models tend to have similar behavior on
all data sets. Especially the LSTM all and the LSTM one models are very alike.
The three neural network models trained to minimize the mean absolute error Loss-
function have a smaller MAE then their mse counterparts. The neural network
models are better performing then the benchmarks based on the MAE. The LSTM
one (mae) model might be the ”best” performer in total, however, the superiority
is minor, especially when compared to the LSTM all (mae). No benefit of regarding
additional features can be seen. However, the LSTM approach does seem to come
with a small performance gain compared to the FFNN approach, especially when
considering the four individual data sets ”X23”, ”X70”, ”X111” and ”X115”. This
means that the consideration of additional features does not help in yielding better
forecasts of energy consumption when evaluated based on the mean absolute error.
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6.2. 15 MINUTE ANALYSIS

The sequential processing of the input in the form of the LSTM all and LSTM
one models, however, seems to be beneficial compared to the processing of the
FFNN model. Furthermore, the neural networks have better forecasts than the
benchmarks; between 21% and 7% relative less error, as can be seen in table 6.2
showing the Performance Difference for the six data sets.

”Simple” ”Extra” ”X23” ”X70” ”X111” ”X115”

PerformanceDifference 19.4% 21.1% 20.3% 12.9% 10.9% 7.7%

Table 6.2: Performance difference of the best neural network model to the best
benchmark model for every data set according to equation 6.1.

Caveat: It has to be noted, that in this thesis the benchmarks do not really stand
a chance in beating the proposed NN-models when evaluated on the mean absolute
error. This is because the benchmarks are formed out of historic energy consumption
recordings, that come from the same input-feature space that is available to the
NN-models. So while the ”naive” or the ”soph” benchmark might be reasonable
benchmarks to choose, it is likely, that if these benchmarks are the ”best” models
based on the pointwise error metric MAE, then the NN-methods would be able to
detect this relationship themselves. If for instance the ”best” method really is the
”naive” forecast, then any of the NN-models would have to take the last 96 or 24
entries in its input. The same goes for the ”soph” and the ”mean” benchmark.
Those benchmarks are formed from the historic consumption up to a week, that
is also available to the NN-models. For this reason, it would be surprising, if the
benchmark models would actually be able to beat the NN-models when evaluated
based on pointwise MAE error, on which the NN-models are distinctly trained on.
However, this does not mean, that the benchmarks are not a valid choice. It is
clear from the literature on forecasting [27, 33], that one error metric alone does not
describe the ”goodness” of any forecasting method in full detail. Therefore, in the
next section, the Daily Energy Consumption Deviation is used and forms a second
measure for evaluating the goodness of a forecast.

Daily Energy Consumption Deviation Performance

Motivation for a additional metric: One error metric alone might not explain
the overall performance of different forecasting methodologies in full detail. For this
reason, it is useful to have a second performance metric bound to the end-use-case
of the forecast, based on which to evaluate the models, in addition to the pointwise
error.

When only regarding the pointwise error metric it can be seen in table 6.1 that the
NN-models perform ”better” then the benchmarks (especially those trained with
the mean absolute error Loss-function). However, this is only one error metric, and
therefore only provides one way to evaluate and look at the problem. Another use-
ful measure to consider is the overall amount of electric energy consumed per day,
and how the predicted amount is deviating from the actual true amount of energy
consumed every day.
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CHAPTER 6. RESULTS

When only considering the pointwise MAE error metric, the ”best” performing
model –based on this error–, might not be useful at all. Especially at the low
voltage level, where the demand profiles of individual households are very volatile.
Taking the pointwise error metric as the only measure for evaluating the forecasting
performance, might result in a forecast, that does not help for the actual end-use-
case, although they might be the ”best” models based on the chosen error metric
[17, 27]. This fact is important in the field of forecasting energy consumption of
individual households and will be discussed in detail in section 7.2.1.

Total Deviation: The Daily Energy Consumption Deviation does explain the
average deviation from the true consumption each day. However, it does not explain
if the consumption is either too high or too low, but only that it is off by this amount
per day. For this reason, an additional metric is introduced here catch over- or under-
prediction over the totality of a data set. Equation 6.2 describes this new additional
metric named Total Deviation.

Total Deviation =
TotalAmounttrue − TotalAmountpred

TotalAmounttrue
∗ 100% (6.2)

Where TotalAmounttrue is
∑n

d=1

∑96
i=1 yi, and describes the sum of total amount of

electric energy consumed over the whole data set partition. Respectively, TotalAmountpred
is

∑n
d=1

∑96
i=1 ŷi and describes the predicted sum of electric energy consumed over

the same data set. d is the index for days in the data set partition with length n.
The index i is describing the time step interval of every day. Here for the 15 minute
time intervals the length of y and ŷ is 96. For the hourly time intervals, this is then
24.
For example, the total amount of electric energy consumed by a particular house-
hold over the total time period of the test data set might be 1000 kWh. The total
predicted amount, however, sums up to only 900 kWh. In this case the value for the
Total Deviation results in 10% according to equation 6.2. A positive Total Deviation
value, therefore, describes too little predicted energy usage compared to the truth,
whereas a positive Total Deviation value is the result of too high energy consump-
tion predictions over the totality of a data set partition.

Interpretation of metrics

The main metrics based on which to evaluate the quality and accuracy of a forecast
in this work are theMAE 5.1 and the Daily Energy Consumption Deviation 5.2. The
two additional metrics, the Performance Difference 6.1 and the Total Deviation 6.2
are introduced to allow for a more nuanced distinctions of the various model perfor-
mances, and to answer the empirical questions from more angles. The Performance
Difference describes the relations between the best neural network model and the
best benchmark on every data set (the relation is taken for both main metrics the
MAE and the Daily Energy Consumption Deviation) The Total Deviation takes the
totality of the different data sets into account. Therefore a more robust assessment
of the competing methods is possible. The MAE describes how far off the forecasts
are on average per time interval; the Daily Energy Consumption Deviation describes
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6.2. 15 MINUTE ANALYSIS

how far off the forecasts are on average per day –both these metrics do not account
for over- or under-prediction–. The Total Deviation describes how far off the sum
of all energy consumption forecasts are, from the true total amount of energy con-
sumed for the whole data set. The Total Deviation metric therefore does account
for over- or under-prediction.
A reasonable forecast does perform well on the average absolute deviation from the
true demand per time interval. In addition to that, the deviation from the predicted
total amount of energy consumed per day to the true daily energy consumption is
also of interest. Where the first pointwise error metric explains by how far the
model is off on average per time interval, the Daily Energy Consumption Deviation
Error 5.2 explains by how far the model is off on average per day. This might seem
redundant, however it is important to keep the double penalty error in mind (see
section 7.2.1). A predicted energy consumption profile, that is actually a very good
forecast, but only slightly shifted in time, and therefore not exactly overlapping with
the actual consumption happening, will get a very high error when evaluated based
on the pointwiseMAE error. However, the total amount of energy consumed for this
particular forecast might be accurate. On the other hand, a model predicting only
a very low consumption curve might perform ”better” then the shifted forecast, due
to the double penalty effect, but when taking the daily amount of energy consumed
into account this low consumption forecast might not be a reasonable forecast at
all. Therefore, it is helpful to look at different error metrics –with the end-use case
in mind–, and not only one error metric to evaluate the models. Relying just on
one single metric might yield sub-optimal results. For this reason, the Daily Energy
Consumption Deviation 5.2 is included as the second main metric in this thesis, to
attain a more robust evaluation. By considering the two main metrics, and the two
additional metrics, a more nuanced discussion of the four questions 5.2.1 emerges.

Figure 6.3: Overview of the metrics for evaluating the different forecasting ap-
proaches. The two main metrics are the mean absolute error or MAE (equation
5.1) and the Daily Energy Consumption Deviation (see equation 5.2). The two ad-
ditional metrics are the Performance Difference (see equation 6.1), and the Total
Deviation (see equation 6.2).

Daily Energy Consumption Deviation Results

When looking at the mean absolute error 6.1 it seems as if the LSTM all approach
does not justify the additional features, and the LSTM approaches do yield slightly
better forecasts then the FFNN models. Furthermore, the neural network methods
seem to be better than the benchmarks. How do these assumptions change when

83

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

CHAPTER 6. RESULTS

taking the Daily Energy Consumption Deviation into account?

First, the two bar charts in figure 6.4 show the Daily Energy Consumption Deviation
performance on the Train- and Test-partition of the data set ”X23”.

Figure 6.4: Daily Energy Consumption Deviation performance on data set ”X23”.
The bar chart on the left is showing the performance of the various models on the
Train-partition. The right image shows the results on the Test-partition. The y-axis
has the same scaling for both charts, ranging from 0 to 5 kWh. The color-coding,
groups the neural network methods. The left bar shows the results from the mean
absolute error Loss-function trained model, the right bar the mean squared error
Loss-function model respectively. The grey bars represent the three benchmarks
”naive”, ”soph” and ”mean” from left to right. The percentage value in parenthesis
on top of every bar shows the Total Deviation performance –the relative deviation
of predicted energy consumed to actual energy consumed over the total data set
partition–, according to equation 6.2.

Next, the Test-partitions of all six distinct data sets are considered. Table 6.3 shows
the Daily Energy Consumption Deviation results as well as the Total Deviation
results of all forecasting approaches on every data set.
One of the most significant findings here is the poor performance of the neural net-
work models trained with the mean absolute error Loss-function. All three of the
proposed neural network models are strongly under-predicting the total amount of
electric energy consumed over the period of the total data set, as is indicated by the
high and positive Total Deviation results. Whereas the mean squared error Loss-
function models are not suffering from this under-prediction.

The Performance Difference (equation 6.1) between the best NN-model and the
best benchmark models for the case of the Daily Energy Consumption Deviation
are shown in table 6.4.
The ”best” performing neural network methods in regard to the mean absolute error
(those trained by minimizing the mean absolute error Loss-function), do not perform
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CHAPTER 6. RESULTS

”Simple” ”Extra” ”X23” ”X70” ”X111” ”X115”

PerformanceDifference 0.0% 0.0% 10.0% 12.0% -8.1% 12.1%

Table 6.4: Performance Difference calculated by equation 6.1 for the case of the
Daily Energy Consumption Deviation.

well when evaluated based on the Daily Energy Consumption Deviation. They are
actually often the ”worst” performers. Clearly, the neural network models trained by
minimizing the mean squared error Loss-function are more accurate in this regard.
Furthermore, they are slightly better than the ”naive” and the ”soph” benchmark,
however, the ”mean” benchmark achieves two out of six times the lowest average
deviation. The LSTM approaches are more accurate than the feedforward neural
network, in the case of the (mse) models. When comparing the LSTM all approach
with the LSTM one no consistent difference emerges and it can be said, that the
additional features do not help in better forecasting the energy demand for the next
day in this setup.
As is found in the literature [10, 3], it seems that the additional information from
the extra features does not help for the task of forecasting energy consumption on
the low-level. At this level, the main driving force is the behavior of occupants
which does not depend too much on exogenous factors as does the consumption on
higher voltage levels, where temporal information and weather information show
to increase forecasting performance. With all that said, it is important to keep
in mind, that this conclusion can only be drawn on the regarded data sets and
with the 15-minute resolution and the used models. When combining the results
from both metrics: (a) the pointwise mean absolute error (see table 6.1), and (b)
the Daily Energy Consumption Deviation performance metric (see table 6.3), it
becomes clear, that the first error metric (a) does not explain the ”goodness” of a
forecasting methodology in full detail. Only considering the performance based on
the MAE metric, might lead to the assumption, that NN-models trained with the
mean absolute error Loss-function are the most reasonable choice. However, when
considering the Daily Energy Consumption Deviation and Total Deviation results,
the NN-models trained with the mean squared error Loss-function or the ”mean”
benchmark are the better choice.

6.2.2 ”General” vs. ”Individual” Approach

After investigating the first two questions about the suitability of LSTM networks
and the impact of additional features for the 15 minute time intervals in the section
above; this section focuses on the third question about the optimal deployment of
LSTM all models. To answer this question, twelve LSTM all models –two LSTM
all models for every data set, trained with the two different Loss-function–, get
compared on the different data sets by the pointwise mean absolute error MAE, and
the Daily Energy Consumption Deviation performance metric.
The goal of this exploration is to see if a ”General” model is suitable for forecasting
a wide range of households, or if the better option is to have specific models for
every household.
The impact of additional features might vary in those two approaches. Maybe the
information does help when focusing on one specific household at a time with rela-
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6.2. 15 MINUTE ANALYSIS

tively consistent consumption patterns (”Individual” model), whereas the additional
information is not valuable by the models trained on all households due to the vari-
ability in occupant lifestyles. Another interesting idea to explore with this setup is if
a model trained on one particular household is able to forecast other households as
well? If this is the case, it might indicate, that similar households can be found, and
dedicated models trained on this group of similar households might provide superior
forecasts.

Mean Absolute Error Performance

First the MAE performance of the twelve different LSTM all models on the Test-
partitions of the six distinct data sets is considered. Table 6.5 shows the mean
absolute error in units of [kWh] for all LSTM all models on the six Test-partitions.

Mean Absolute Error Performance

”Simple” ”Extra” ”X23” ”X70” ”X111” ”X115”

LSTM all (”Simple”) 0.031 0.039 0.078 0.074 0.109 0.094

LSTM all (”Extra”) 0.032 0.039 0.075 0.073 0.109 0.096

LSTM all (”X23”) 0.061 0.064 0.074 0.100 0.114 0.111

LSTM all (”X70”) 0.062 0.063 0.111 0.071 0.116 0.101

LSTM all (”X111”) 0.066 0.065 0.091 0.086 0.104 0.105

LSTM all (”X115”) 0.088 0.083 0.110 0.095 0.134 0.091

LSTM all (”Simple”) 0.037 0.045 0.085 0.081 0.117 0.099

LSTM all (”Extra”) 0.039 0.045 0.090 0.080 0.117 0.104

LSTM all (”X23”) 0.084 0.085 0.086 0.114 0.119 0.109

LSTM all (”X70”) 0.077 0.075 0.106 0.072 0.121 0.101

LSTM all (”X111”) 0.098 0.090 0.097 0.095 0.109 0.102

LSTM all (”X115) 0.096 0.095 0.117 0.115 0.141 0.096

Table 6.5: Mean Absolute Error performance of the twelve different LSTM all mod-
els on the 15 minute data sets in units of [kWh]. The cell of the best performing
model for every data set is coloured in blue, the cell of the worst performing model
is coloured in red respectively. The first six rows tinted in grey represent the LSTM
all models that are trained with the mean absolute error Loss-function. The data
set description in parenthesis is describing the data set on which the model was
trained on for 50 epochs. The last six rows are the LSTM all models trained with
the mean squared error Loss-function.

Although the ”Individual” models (those models trained particularly on one house-
hold only) are for every data set the best performing method. The ”General” models
LSTM all (”Simple”) and LSTM all (”Extra”) are very close or even identical to the
one model that is trained only on this one household. From this, it might be con-
cluded that the ”General” approach –that is regarding the total household stock–
is an equivalent choice with the ”Individual” approach. However, when taking the
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CHAPTER 6. RESULTS

second performance metric into account a more nuanced answer to the question can
be given.

Daily Energy Consumption Deviation Performance

Table 6.6 shows the Daily Energy Consumption Deviation and the Total Deviation
results from the 12 different LSTM all models.

To answer the question if the ”General” or the ”Individual” approach is more suit-
able, it is paramount to consider both evaluation metrics. If only considering the
mean absolute error performance from table ?? it looks as if the LSTM all models
trained on one of the two ”General” data sets –”Simple” or ”Extra”– are as good
as the models dedicated to there own household. However, when taking the Daily
Energy Consumption Deviation into account 6.6, the Individual models are better in
forecasting the overall daily consumption of their households. The Total Deviation
value is nearly always smaller for one of the ”General” LSTM all models, then for
the ”Individual” models. All this is said about the NN-models that are trained with
the mean squared error Loss-function, which fare substantially better than the mean
absolute error Loss-function models.

6.2.3 Summary of 15 Minute Data

• Question Number 1 and Question Number 2 : From the findings of this analysis
it can be said that the use of the LSTM methods does yield slightly better
forecasts than the FFNN methods, which might indicate the suitability of
sequential processing of former methods. However, the LSTM all approach
does not perform better than the LSTM one approach, indicating that the
additional features do no help in getting more accurate forecasts. Although
the neural network models are better than the benchmarks when looking at the
pointwise error metricMAE, when regarding the Daily Consumption Deviation
performance metric the case for using neural network models weakens, as the
”mean” benchmark often achieves similar or better results.

• Question Number 3 : From the comparison of the different LSTM all mod-
els on the six data sets it is found, that based on the mean absolute error
MAE, it appears as if the LSTM all models trained on the ”General” data
sets –”Simple” and ”Extra”– perform better then the ”Individual” models on
the two ”General” data sets, and equally well on the ”Individual” data sets
–”X23”, ”X70”, ”X111”, ”X115”–. Furthermore, it can be said, that the in-
dividual trained models do not generalize well to other household data sets.
However, by additionally looking at the Daily Energy Consumption Deviation
and the Total Deviation it shows that the individual trained models, are bet-
ter then the general trained models, in forecasting the amount of daily energy
consumption for the distinct data set. Because of this, when taking both error
measures into account, it might be said, that the best use case for LSTM all
models might be to have dedicated (mse) models for every household. This, of
course, depends highly on the amount of available energy consumption record-
ings of the individual households.
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6.2. 15 MINUTE ANALYSIS
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CHAPTER 6. RESULTS

Figure 6.5: Predicted consumption profiles of various models. The two images on
the left side are the predictions of the neural network models (top image) and the
benchmark models (bottom image) for the same day, taken from the Train-partition
of data set ”X23”. The two images on the right side are the predictions on a day
from the Test-partition of data set ”X23”. The neural network predictions are
separated from the benchmark predictions, for visual purposes. The three neural
network approaches (LSTM all, LSTM one and FFNN ) are once trained with the
mean absolute error Loss-function (mae, solid line) and once with the mean squared
error Loss-function (mse, dotted line), resulting in six predictions. The true day is
coloured in grey. In the upper images the LSTM all models are green. The LSTM
one and FFNN models are coloured in red and blue respectively. For the bottom
images, the three differing benchmarks ”naive”, ”soph” and ”mean” (dashed lines)
are coloured green, red and blue respectively.

6.3 Hour Analysis

After investigating the first three empirical questions for the case of the 15 minute
time intervals, this section shows the same analysis for the hourly aggregated con-
sumption profiles. Comparing the findings of both data resolutions, gives insights
into the last of the four questions, regarding the impact of data granularity on the
forecasting quality.

The inputs for the different models in the case of the hourly time interval are of
the form: X = (168, 53) for the LSTM all, X = (168, 1) for the LSTM one and
x = (168, ) for the FFNN model. The output is for every model the a vector y with
length (24, ).

In various studies, it is found that the granularity of the consumption recordings has
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6.3. HOUR ANALYSIS

a big impact on the forecasting performance of different predictive models [8, 22].
Models, that perform ”best” on a certain data set with distinct characteristics are
often not the optimal choice any more when consumption patterns with different
characteristics are investigated. Increasing the regarded time interval of the exam-
ined energy consumption recordings is known as a way, to increase the predictability
of time series. With the increase of the time intervals, the randomness and volatil-
ity in the consumption patterns might get reduced, and the predictive power from
additional features might weigh differently, then for the 15-minute case.

6.3.1 Value of Recurrent Neural Networks, and the Impact
of Additional Features

In the 15-minute analysis, some of the key findings are, that the LSTM approach
is slightly superior to the FFNN approach. Using additional features does not
result in better forecasts. And the ”Individual” approach seems better than the
”General” approach. How do these findings change with the ”out-smoothing” of the
consumption pattern by increasing the considered time interval to hourly?

Mean Absolute Error Performance

The performance analysis on the hourly data starts with looking at the point-wise
MAE. Six different neural network models (once trained with the mean absolute er-
ror Loss-function and once trained with the mean squared error Loss-function) are
compared to each other, and the three benchmarks. The architecture of the NN-
models changed regarding the architecture of the models trained on the 15-minute
data. Due to the decrease in data points, the architecture of the models is adjusted.
The number of parameters is reduced by a factor of 2 (see table 5.3) to reduce the
risk of over-parametrization and overfitting. The two bar charts in figure ?? show
the performance of the different neural network models LSTM all, LSTM one and
FFNN as well as the three benchmark models ”naive”, ”soph” and ”mean” on the
Train- and Test-partition of data set ”X23”.

A similar pattern as in the case of the 15-minute data can be seen. An overfit-
ting effect is taking place, as the error on the Train-partition is for the LSTM all
and FFNN models smaller than the error on the Test-partition. Interestingly, the
overfitting effect is not observed for the LSTM one models. The performance of
the different neural network models is very similar on the Test-partition of data set
”X23”.

Table 6.7 shows the MAE results of the various models on the Test-partition of each
data set.

Increasing the time intervals does not alter the performance relation of LSTM all
model to LSTM one and to the FFNN model respectively. The LSTM models are
performing very similar, and slightly better than the FFNN models. The LSTM all
model is not better than the LSTM one model, indicating that, also in the case of
the hourly time interval, the additional features do not help in getting more accurate
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CHAPTER 6. RESULTS

Figure 6.6: Mean Absolute Error performance of different models and benchmarks
on Train-partition (left) and Test-partition (right) on the ”X23” data set. The two
green bars represent the LSTM all models, the red bars the LSTM one models
and the blue bars the FFNN models respectively. The three benchmarks ”naive”,
”soph” and ”mean” are represented by the grey bars from left to right. The left bar
of each NN-model pair –green, red and blue– represents the model, that is trained
with the mean absolute error Loss-function. The right bar is shows the MAE results
of the same model, but trained with mean squared error Loss-function.

Mean Absolute Error Performance

”Simple” ”Extra” ”X23” ”X70” ”X111” ”X115”

LSTM all (mae) 0.110 0.142 0.277 0.373 0.377 0.305

LSTM one (mae) 0.108 0.140 0.274 0.366 0.375 0.304

FFNN (mae) 0.110 0.142 0.285 0.379 0.387 0.313

LSTM all (mse) 0.127 0.162 0.309 0.380 0.386 0.317

LSTM one (mse) 0.121 0.158 0.313 0.343 0.392 0.317

FFNN (mse) 0.132 0.167 0.313 0.369 0.407 0.330

”naive” bm 0.149 0.190 0.357 0.461 0.498 0.378

”soph” bm 0.153 0.190 0.360 0.459 0.499 0.394

”mean” bm 0.138 0.158 0.309 0.367 0.400 0.310

Table 6.7: Mean absolute error performances of the various models (rows) on the
six distinct data sets (columns). The first three neural network models are trained
with the mean absolute error Loss-function, indicated with the (mae). The following
three neural network models are trained with the mean squared error Loss-function
respectively, marked with the (mse). The blue coloured cell shows the ”best” per-
former, the red coloured cell shows the ”worst” performer on every data set.
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6.3. HOUR ANALYSIS

forecasts.
Based on these MAE results it looks as if the increase of the time intervals from
15 minutes to one hour does not change the performance relations from LSTM
models to FFNN and benchmarks respectively. As in the case of the 15 minute
time intervals, the LSTM all approach is not advantageous compared to the LSTM
one method, which means, that the additional features do not help in getting more
accurate forecasts based on these data sets and the used model architectures. The
LSTM one model is, in fact, the best performing models for all data sets. In five out
of the six data sets the LSTM one (mae) model is the best forecaster based on the
MAE metric, and on data set ”X70” the LSTM one (mse) achieves the lowest MAE.
Other than in the case of the 15 minute time intervals, where the best performing
models are found in each NN-methodology, shown in table 6.1. These results are
rather surprising and do not support the hypotheses, that with bigger time intervals
and the out-smoothing of the volatile consumption patterns, additional features
could become more valuable. The results indicate the opposite, as the LSTM one
models do now perform better for every data set.

”Simple” ”Extra” ”X23” ”X70” ”X111” ”X115”

PerformanceDifference 32.4% 12.9% 12.8% 7.0% 6.7% 2.0%

Table 6.8: Performance Difference of the best NN-model and the best benchmark
models based on the MAE metric, according to equation 6.1.

By comparing table 6.8 with table 6.2 no drastic shift in performance relation can
be observed when going from the 15 minute to the hourly time interval. Arguably,
the case for using NN-models weakens, because the Performance Difference value
decreases in five out of six data sets.

Daily Energy Consumption Deviation Performance

Figure 6.7 shows the performance of the different models and the benchmarks on
the Train- and Test-partition of data set ”X23”.

Table 6.9 shows the MAE results of the various forecasting methods on the Test-
partition of all data sets.
By comparing the Performance Difference based on the Daily Energy Consumption
Deviation for both time resolutions (15 minute 6.4, and hourly 6.10), a small shift in
favour of the NN-model can be observed when considering the bigger time intervals.
This could indicate, that with bigger time intervals, the benefit of using NN-models
compared to simpler benchmarks does increase, based on the Daily Energy Con-
sumption Deviation. This shift in favor of the NN-models is not to be found when
the MAE is the metric based on which the comparison is done.

6.3.2 ”General” vs. ”Individual” Approach

To answer the third question about the best deployment method of a LSTM all
model for the case of the hourly data resolution, the performances of the twelve
LSTM all models –six mae-trained and six mse-trained– are compared on all six
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CHAPTER 6. RESULTS

Figure 6.7: Daily Energy Consumption Deviation performance on data set ”X23”.
The bar chart on the left is showing the performance of the various models on the
Train-partition. The right image is showing the results on the Test-partition of the
data set. The y-axis has the same scaling for both charts, ranging from 0 to 5
kWh. The color coding groups the neural network methods. The left bar shows the
mean absolute error Loss-function trained model, the right bar the mean squared
error Loss-function trained model respectively. The grey bars represent the three
benchmarks ”naive”, ”soph” and ”mean” from left to right. The percentage value
in parenthesis on top of every bar shows the Total Deviation results –the relative
deviation of predicted energy consumed to actual energy consumed over the total
data set partition–, according to equation 6.2.
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CHAPTER 6. RESULTS

”Simple” ”Extra” ”X23” ”X70” ”X111” ”X115”

PerformanceDifference 6.1% 3.0% 2.5% 23.0% -0.9% 5.2%

Table 6.10: Performance Difference of the Daily Energy Consumption Deviation
metric describing the relation between best NN-model and best benchmark model
calculated by 6.1.

data sets, based on the MAE metric as well as the Daily Energy Consumption
Deviation metric. It is investigated if one of the ”General” models –trained either
on the ”Extra” or ”Simple” data set–, or the approach of using ”Individual” models
–trained on ”X23”, ”X70”, ”X111” or ”X115”– is the more reasonable approach.

Mean Absolute Error Performance

Table 6.11 shows the performance of the twelve different LSTM all models on the
Test-partitions of all six data sets.

Mean Absolute Error Performance

”Simple” ”Extra” ”X23” ”X70” ”X111” ”X115”

LSTM all (”Simple”) 0.110 0.143 0.284 0.280 0.390 0.318

LSTM all (”Extra”) 0.115 0.142 0.279 0.274 0.386 0.310

LSTM all (”X23”) 0.184 0.206 0.277 0.354 0.414 0.398

LSTM all (”X70”) 0.178 0.198 0.344 0.265 0.437 0.344

LSTM all (”X111”) 0.218 0.236 0.340 0.342 0.377 0.370

LSTM all (”X115”) 0.220 0.240 0.421 0.311 0.455 0.305

LSTM all (”Simple”) 0.127 0.158 0.306 0.288 0.409 0.312

LSTM all (”Extra”) 0.143 0.162 0.320 0.295 0.412 0.318

LSTM all (”X23”) 0.250 0.272 0.309 0.386 0.420 0.402

LSTM all (”X70”) 0.197 0.218 0.368 0.270 0.444 0.337

LSTM all (”X111”) 0.220 0.241 0.338 0.351 0.386 0.350

LSTM all (”X115) 0.231 0.250 0.423 0.362 0.490 0.317

Table 6.11: Mean Absolute Error Performance of the twelve different LSTM all
models on all six data sets for hourly time intervals. The best performing model for
every data set is coloured in blue, the worst performing model is coloured in red.
The first six rows tinted in grey represent the LSTM all models that are trained
with the mean absolute error Loss-function. The data set description inside the
parenthesis is describing the data set on which the model was trained on for 50
epochs. The last six rows are the LSTM all models trained with the mean squared
error Loss-function.

The ”Individual” models trained with the mean absolute error Loss-function are
consistently the best model. However, the ”General” models LSTM all (”Simple”)
and LSTM all (”Extra”) are achieving the best results on the ”General” data sets
”Simple” and ”Extra”, and are only slightly behind then the dedicated ”Individual”
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6.3. HOUR ANALYSIS

models on the single household data sets. Interestingly, as in the case of the 15
minute time intervals, the ”Individual” models due not generalize well to the other
unseen households.

When looking at the daily energy consumption distribution of the different data
sets in figure 5.2 it shows, that ”X70” and ”X111” are more similar in regard of
the shape of the consumption distribution then to the other two households ”X23”
and ”X115”. However, it is not found, that the models trained on each of those
two rather similar households do perform well on the other household, nor are there
performances similar to the remaining data sets. These results do not support
the hypothesis that models trained on similar households, can achieve reasonable
forecasts for each other. This negates the idea that a model trained on one particular
household might be able to generalize well to a household with a similar shape of
daily energy consumption distribution. This statement, however, is based on the
visual similarity of the shape of the energy consumption distribution of the six
distinct data sets.

The same relations are apparent for the hourly data as they are for the 15-minute
data. The ”Individual” models trained particularly on one household are the ”best”
performers in every case. However, as is the case in the 15-minute data, the ”Gen-
eral” models do perform only slightly worse than the ”Individual” models on the
single household data sets. Therefore, the use of ”Individual” models might not
be justified when making the decision based on these results. Because of the addi-
tional complexity that would arise via the training of an individual model for every
household in a household stock, it is preferable to use only one ”General” model for
all those households; provided the ”General” model does forecast reasonable. As
with the 15-minute data, at this point it looks as if the ”General” model LSTM all
(”Extra”) might indeed be the best choice for the case of using a LSTM all model.

In the next step, the Daily Energy Consumption Deviation performance metric gets
included.

The question is if there is information in the input sample of every household, that
enables a ”General” model to learn enough, to forecast the energy consumption for
the next day, regardless of the considered household. Is a neural network model, in
this case, an LSTM model, able to pick up consumption patterns that are universal
to all households? Are there any universal relations from input to output, so that
models can learn these patterns, and forecast the next day’s energy consumption.
Or are households too diverse, so that there are no universal relations that govern
the consumption patterns. It is likely that for any individual household there are
such relations and patterns. However, they might vary drastically from household
to household, and this might hinder a ”General” model from exploiting this kind
of information. Universal patterns in the data samples from input to output would
allow the model to find common relations in the samples, regardless of the considered
household. For instance, regardless of the amount of energy that is recorded and fed
to the models as input, the behavior that might take place in numerous households
like a small consumption spike in the morning then low consumption during the
afternoon, and a spike in energy consumption in early evening hours. Furthermore,
when taking information about the weekday into account, a universal pattern might
be, that the spike in morning consumption does shift to later hours on weekends.
This universal patterns could be exploited by the model if they are occurring often
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CHAPTER 6. RESULTS

enough throughout the processed samples.

Daily Energy Consumption Deviation Performance

Based on the pointwise mean absolute error, the use of ”Individual” models does
not seem to be justifiable. Is the ”General” model still the more reasonable choice
when considering the Daily Energy Consumption Deviation metric? Due to the
fact, that the individual households consumption patterns stray from the general
consumption distributions, it is to be expected, that the ”Individual” models have
different internal weightings of there input parameters than the ”General” models,
which would suggest that a tailored model to every single household is better able
to exploit specific consumption patterns.

Table 6.12 shows, that the ”General” models do perform worse than the ”Individual”
models on the single household data sets. The ”Individual” models are consistently
the ”best” performers for the particular data set on which they were trained. Again
the NN-models trained with the mean absolute error Loss-function are performing
poorly based on the Daily Energy Consumption Deviation and the Total Deviation
metrics.

6.3.3 Summary of Hourly Data

For the hourly time interval, the first two questions regarding the suitability of
theLSTM approach and the effect of additional features can be answered as follows:

• After considering the mean absolute error performance of the models on the six
distinct data sets it can be said, that the LSTM models –LSTM all and LSTM
one– do outperform the FFNN, which indicates, that for the regarded data sets
in this analysis, the sequential processing of the historic energy consumption
does help in achieving more accurate forecasts based on the pointwise MAE.
When also taking the second performance metric into account, the LSTM
models trained with the mean squared error Loss-function are much better in
forecasting the daily energy consumption as well as the total energy consumed
over the whole data set partition. The ”mean” benchmark is close and in
some cases even better than the best NN-model, based on the Daily Energy
Consumption Deviation metric.

• The LSTM all method did not perform ”better” then the LSTM one when
evaluated based on the MAE or the Daily Energy Consumption Deviation.
This indicates that the additional features, as in the case of the 15-minute
data, do not help in getting more accurate forecasts. This might be due to
the fact, that there is no predictive power in the regarded additional features,
or that the randomness and volatility in the data is still the dominant factor.
Therefore, performing actions for increasing the predictability of energy con-
sumption profiles might be a valuable step, to decrease the ”noise” in the data
and extract the ”signal” coming from additional information. The finding,
that there is no performance gain for the LSTM all models, when regarding
the bigger time intervals, is rather surprising, as the out-smoothing of the
consumption profiles was expected to benefit this approach.
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CHAPTER 6. RESULTS

• ”General” vs. ”Individual” approach: When only considering the mean ab-
solute error in table6.11 it seems as if the ”General” models trained on the
data set ”Simple” and ”Extra” are as good as the ”Individual” models trained
and evaluated on the individual household data sets. This might suggest, that
when taking the additional complexity of training many ”Individual” models
into account, the ”General” approach is more appropriate. The big advan-
tage with having one ”General” model that can forecast on a wide range of
households, is the fact, that when a ”new” household with no historic energy
consumption recordings yet available needs to be predicted. In this case, the
”General” model only needs the enough smart meter recordings to process one
input. On the other hand, an ”Individual” model would need many months
or even years of energy consumption recordings to let a neural network model
have sufficient amounts of data to make reasonable forecasts on this one house-
hold. In this regard, the ”General” approach has a big advantage. Still, it can
be seen that the ”General” model –although equal when regarding the mean
absolute error– is not as good as the ”Individual” models when the Daily En-
ergy Consumption Deviation is additionally taken into account. Depending on
the end-use case and the weighing of the different metrics, a decision can be
made, which approach is more reasonable.

• Interestingly there is no actual difference to be found –based on the chosen
metrics– in the performance of the two ”General” models. Both the LSTM
all trained on the ”Simple” data set and the LSTM all model trained on the
”Extra” data set have very similar results for both metrics –the MAE and the
Daily Energy Consumption Deviation–. This is surprising and might conclude,
that the extra filtering step of going from the ”Simple” data set to the ”Extra”
data set, via the minimum consumption filtering criteria does not change the
behavior of the LSTM all models. Although this filtering step dropped roughly
20% of the samples with very low consumption, this step does not help the
LSTM all model trained on ”Extra” to be more accurate in the daily amount
of energy consumed then the LSTM all model trained on the ”Simple” data
set.

• The ”Individual” models are better than the ”General” models in forecasting
the next day’s energy consumption on the individual household data sets.
Therefore, the ”Individual” models are preferable from the standpoint of pure
performance measure –according to both metrics–. However, it has to be
analyzed if the performance advantage is big enough to justify the additional
complexity, that comes with deploying ”Individual” models.

6.4 Comparison of 15 Minute and Hour analysis

By comparing the findings and insights gathered from different time resolutions, the
fourth question about the effect of data granularity on forecasting performance can
be investigated. The main differences and similarities between those two resolutions
are summed up in the listing below:

• The LSTM all approach does not out-perform the LSTM one approach in
both cases. Therefore, it can be said, that the additional features considered

100

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

6.4. COMPARISON OF 15 MINUTE AND HOUR ANALYSIS

in this thesis do not help in getting more accurate day-ahead energy consump-
tion forecasts for individual households. This statement is only valid given
the proposed neural network architecture, the input processing as well as the
metrics based on which the evaluation is performed.

• The LSTM approach with its sequential processing of the inputs does yield
better performances than the FFNN approach.

• The ”Individual” model approach does lead to better forecasts than the ”Gen-
eral” model approach. However, the advantage is small. Interestingly the
”General” models are often more accurate based on the Total Deviation met-
ric.

• The ”mean” benchmark seems to be a good trade-off between ”goodness” of
the forecast and simplicity of deployment.

• The mean squared error Loss-function trained models are better than their
mean absolute error Loss-function trained counterparts, especially for the eval-
uation based on the Daily Energy Consumption Deviation and the Total De-
viation, where the mean absolute error Loss-function models are off by a wide
margin.

• A difference is the fact, that the LSTM one methods are consistently the
best models when considering the hourly data. In the case of the 15 minute
time intervals, the best performing models are more mixed. These results
negate the hypothesis, that with an increase of the time intervals and the
”out-smoothing” of the consumption profiles, the additional features can be
exploited more effectively.

• One of the overall findings for both time resolutions is, that the filtering pro-
cess: -going from ”Simple” data set -filtered only for NaNs to the ”Extra” data
set did not yield a substantial performance difference. The similar performance
of the models trained on ”Simple” and ”Extra” was not to be expected. The
assumption for the filtering step was in the first place, to drop very low con-
sumption profiles, to allow the models to predict higher consumption. Neither
for the 15-minute data sets nor the hourly data sets was it found, that the mod-
els trained on the ”Extra” data set predicted significantly higher consumption
than the models trained on the ”Simple” data set. This finding is surprising.
It might be because the filtering threshold is chosen to conservative, or that
the models find different representations for making their forecasts. This is one
of the biggest shortcomings of neural network models, that they are hard to
interpret and are somewhat black-box models. To shine some light on the in-
ternal behavior of the neural network models it might be reasonable to change
the inputs to the models in small ways and observe the change in the output
accordingly. With this, it might be possible to find the most important input
pathways, based on which the models make their characteristic predictions.

• The results obtained from the Performance Difference regarding both metrics,
are mixed. No distinctive performance gain or drop of the NN-models com-
pared to the benchmark models is observed when varying the time resolution.
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CHAPTER 6. RESULTS

• Consistently it is was found, that the NN-model trained with the mean abso-
lute error Loss-function are the best models when only considering the MAE
for evaluation. However, these models are suffering from the under-prediction
bias (see section 7.2.1). This results in low energy consumption forecasts. As
can be seen in tables 6.3 and 6.9 the Total Deviation value in parenthesis of
the mae-trained models is very high and positive. Which indicates substantial
under-prediction over the total data set. For the NN-models trained with the
mean squared error Loss-function, the under-prediction bias is not a problem.

• It has to be kept in mind, that this empirical study does not allow for defini-
tive answers about whether neural network models and in particular LSTM
networks are suitable for the task of low-level energy consumption forecasting.
The findings of this thesis are specific for the analyzed household stock, as
well as the proposed neural network architecture with the described hyperpa-
rameter choices. Additionally, the processing of the model input/target pairs
plays a major role in the outcomes.

• The inclusion of the additional features, (auto-regressive features, temporal
features, dwelling size) as input to the LSTM all model does not come with
an increase in forecasting quality. This can mean two things: either there is no
actual underlying relationship in the additional features to the true target day,
meaning the additional features do not hold any predictive power, or it could
be that there is too much noise in the data (high variability and randomness
in the consumption profiles) for the LSTM model to extract the underlying
relationship. However, the process of increasing the time intervals to out-
smooth randomness in the consumption profiles and allow for the exploitation
of additional features did not result in better performances of the LSTM all
models.

6.4.1 Results Overview

This final section of the chapter tries to digest the findings and insights in regard to
model performances into helpful and memorable representations. The two overview
tables shown here aim to represent the summaries and points made above in a concise
and intuitive way. The first table 6.13 captures the various models performances
regarding the two metrics MAE and Daily Energy Consumption Deviation for both
time resolutions. This table encompasses the first two empirical questions this thesis
set out to answer, regarding the suitability of the LSTM approach and the value of
additional features. The second overview table 6.14 sums up the results concerned
with question three, about the best deployment of LSTM all models, ”General” vs.
”Individual”. Both tables allow for a comparison of the findings, in respect of the
data resolution. The upper part shows the analysis for the 15 minute time intervals,
the lower part for the hourly time resolution. A simple scoring scheme is used to
allow for a comparison of the different forecasting methodologies.
The scoring scheme is the following: The first value in every cell describes the
performance based on the MAE metric. The second value describes the performance
based on the Daily Energy Consumption Deviation. The possible scores for each
metric are: ++, +, , -, and –. The best model based on the regarded metric gets
++, the second and third best model get a +. The worst model receives the –. The
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6.4. COMPARISON OF 15 MINUTE AND HOUR ANALYSIS

second and third-worst models get a -. The models in between receive a . The final
score of every model in the rightmost column is defined by adding overall scored
points in the row, where ++ = 2, + = 1, = 0, - = -1, and – = -2.

These overview tables, therefore function as a kind of summary of the results chapter.
Furthermore, the rough scoring scheme allows for an ordering of the competing
forecasting methods and their performances for the conducted analysis.

Performance Overview Neural Networks and Benchmarks

15 minute data sets

”Simple” ”Extra” ”X23” ”X70” ”X111” ”X115 Score

LSTM all ++, - +, - ++, – +, – +, - ++, - 1

LSTM one +, – ++, - ++, - ++, - ++, – +, ++ 5

FFNN +, ∼ +, – ∼, - ∼, - -, - ∼, + -3

LSTM all ∼, ++ ∼, + ∼, ++ +, ∼ +, + +, + 10

LSTM one ∼, + ∼, + +, + ∼, ++ +, + ∼, + 9

FFNN -, + ∼, ++ ∼, ∼ -, ∼ ∼, ∼ -, ∼ 0

”naive” bm -, ∼ –, ∼ -, ∼ –, + –, ∼ -, ∼ -8

”soph” bm –, ∼ –, ∼ –, ∼ –, ∼ -, ∼ –, – -13

”mean” bm ∼,++ -, ++ -, + ∼, + ∼, ++ ∼, ∼ 6

hourly data sets

”Simple” ”Extra” ”X23” ”X70” ”X111” ”X115” Score

LSTM all +, - +, ∼ +, ∼ ∼, - +, - +, ++ 4

LSTM one ++, ∼ ++, - ++,∼ +, - ++, ∼ ++, + 10

FFNN +, ∼ +, ∼ +, – ∼, – ∼, ∼ ∼, + 0

LSTM all ∼, + ∼, + ∼, ++ -, + +, + ∼, ∼ 6

LSTM one ∼, ++ ∼, ++ ∼, ∼ ++, ++ ∼, + ∼, ∼ 9

FFNN ∼, ∼ -, ∼ ∼, + ∼, ∼ -, ∼ -, - -3

”naive” bm -, - –, - -, - –, ∼ -, - -, - -13

”soph” bm –, – –, – –, - -, ∼ –, – –, – -20

”mean” bm -, + ∼, + ∼, + +, + ∼, ++ +, ∼ 7

Table 6.13: Performance overview of different forecasting approaches on the six
distinct data sets and two different data resolutions. The first three rows (grey
background) are representing the three NN-models trained with the mean absolute
error Loss-Function. The following three rows (white background) are the same
NN-models but trained with the mean squared error Loss-Function. The row of the
best overall model –scoring the most points, according to the scoring scheme– is
tinted in blue. The worst performing models has its row tinted red.
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CHAPTER 6. RESULTS

Note on Performance Overview Table 6.14: Other then overview table 6.13,
this table does not aim for a comparison of the models itself, but rather on the
comparison of the ”General” with the ”Individual” approach. An interesting point
to see in this table is the fact, that the diagonal entries (hued in light blue for visual
purposes) representing the ”Individual” models do perform best. When summing
the scores of those diagonal entries, the score value reaches 15 (in the 15-minute case)
and 18 (in the hourly case) when the ”best” –with the most points, according to the
scoring scheme– ”Individual” model (either trained with mean absolute error Loss-
function or with the mean squared error Loss-Function) is chosen. This comparison
of the sum of diagonal scores to the overall best model LSTM all (”Simple”) score
would represent the ”Individual” vs. ”General” approach. Another interesting find-
ing can be seen, as the ”Individual” models are poorly performing on ”Individual”
data sets on which there are not specifically trained.
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6.4. COMPARISON OF 15 MINUTE AND HOUR ANALYSIS

Performance Overview of LSTM all models

LSTM all 15 minute data sets

trained on: ”Simple” ”Extra” ”X23” ”X70” ”X111” ”X115” Score

(”Simple”) ++, + ++, + +, ∼ +, - +, - +, ∼ 8

(”Extra”) +, + ++, + +, ∼ +, ∼ +, - +, ∼ 8

(”X23”) ∼, ∼ ∼, ∼ ++, - -, ∼ ∼, – –, - -5

(”X70”) ∼, ∼ ∼, ∼ -, - ++, - ∼, ∼ ∼, - -2

(”X111”) ∼, ∼ ∼, ∼ ∼, - ∼, - ++, - -, – -4

(”X115”) -, - ∼, - -, ∼ ∼, ∼ -, + ++, + -1

(”Simple”) +, ++ +, ++ +, + ∼, ∼ ∼, ∼ ∼, + 9

(”Extra”) +, + +, + ∼, + ∼, + ∼, ∼ -, + 6

(”X23”) -, - -, - ∼, ++ -, ++ -, ++ -, ∼ -1

(”X70”) ∼, ∼ -, ∼ -, + +, + -, + ∼, - 0

(”X111”) –, – -, – ∼, – -, + +, + ∼, ∼ -7

(”X115”) -, - –, - –, ∼ –, – –, ∼ +, ++ -10

LSTM all hourly data sets

trained on: ”Simple” ”Extra” ”X23” ”X70” ”X111” ”X115” Score

(”Simple”) ++, + +, ∼ +, - +, - +, - ∼, ∼ 4

(”Extra”) +, + ++, + +, ∼ +, ∼ +, - +, ∼ 8

(”X23”) ∼, ∼ ∼, + ++, ∼ -, – ∼, – -, – -5

(”X70”) ∼, ∼ ∼, ∼ -, ∼ ++, ∼ -, - ∼, - -2

(”X111”) ∼, - ∼, ∼ ∼, + ∼, - ++, ∼ -, - -1

(”X115”) -, - -, - -, - ∼, + ∼, + ++, ++ 0

(”Simple”) +, ++ +, + +, + ∼, + ∼, ∼ +, + 10

(”Extra”) +, + +, ++ ∼, + ∼, + ∼, ∼ ∼, + 8

(”X23”) –, – –, – ∼, ++ –, ∼ -, + –, - -11

(”X70”) ∼, ∼ ∼, ∼ -, - +, ++ -, + ∼, ∼ 1

(”X111”) -, ∼ -, - ∼, ∼ -, ∼ +, ++ -, ∼ -2

(”X115”) -, - -, - –, – -, - –, ∼ +, + -10

Table 6.14: Performance overview of all twelve LSTM all models for the 15 minute
(top) and the hourly data resolution (bottom). The very left column represents
the 12 different LSTM all models. The data set description in parenthesis tells the
data set on which the LSTM all model got trained on for 50 epochs. The first six
rows (grey background) are the LSTM all models trained with the mean absolute
error Loss-function. The six following models (white background) are trained with
the mean squared error Loss-function. The row of the best overall model –scoring
the most points, according to the scoring scheme– is tinted in blue. The worst
performing models has its row tinted red. The diagonal entries are representing the
”Individual” approach, and are tinted in light blue for visual purposes. 105
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Chapter 7

Discussion

This final chapter first discusses some of the decisions made in this thesis defining
the experimental setup. The effect of these decisions on the results, and hence how
changing them might lead to different outcomes is elaborated. After that, potential
pitfalls worth considering when dealing with the task of low-level energy forecasting
are discussed. Finally, an outlook is given on interesting concepts and ideas that
could be explored in further studies.

7.1 Decisions

7.1.1 Model Architectures and Hyperparameter Choices

As stated in chapter 5 it is difficult to define a fair comparison between different
models, and different methodologies. One possible idea might be to use the same
model architecture –the same number of hidden layers, the same number of hidden
neurons, the same activation functions, etc.– for all data sets. However, this is likely
to lead to an unjust comparison. The final choices of the architecture and hyper-
parameters are therefore based on certain neural network heuristics and resulted in
the 12 different models as described in section 5.4. Some of the points worth con-
sidering regarding model architecture and hyperparameters choices are mentioned
in the listing below:

• The reduction of data recordings from the 15-minute interval to the hourly
interval is by the factor of four, the reduction in parameters for the respective
models is roughly by a factor of two and therefore not exactly matching the
reduction in data points. This might lead the models trained on the hourly
data to be more likely to over-fit. The representational complexity per sample
is different in the two data resolution, but the representational power of the
models those not scale by exactly the same amount.

• The ”optimal” model architecture is likely to vary for the different data sets;
the two ”General” data sets:”Simple”, ”Extra” and the four individual data
sets: ”X23”, ”X70”, ”X111” and ”X115”. The best possible case would be to
tailor the models architecture and its hyperparameters to each distinct data
set.

• Input processing: The way the inputs get processed might not be the op-
timal choice for all households for getting a good forecast. The choice for
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7.1. DECISIONS

taking a whole week as a look-back window (and additionally incorporating
auto-regressive time shifts up to 4 weeks –resulting in energy consumption
information ranging back up to 5 weeks in the case of the LSTM all model)–,
is made to exploit a big time window and learn from its consumption pat-
terns. This might not be the optimal look-back size. And as is found in this
thesis, the additional information concerned with the auto-regressive shift up
to four weeks did not help the LSTM all models to perform superior then
the LSTM one models, which only processed one week’s information. The ef-
fect, the length of the look-back window does have on forecasting quality can
be analyzed by varying its size, and comparing the models forecasting per-
formances. It might be found, that distinct forecasting methodologies work
optimally with different look-back windows. Furthermore, encoding features
in a different way might help the models exploit additional information more
efficiently. The raw historic energy consumption could be represented for ex-
ample by the average amount of energy consumed over the last days, or other
statistical quantities like the minimum and maximum consumption per a de-
fined time interval. These quantities could be used as additional features, or
as the main informational representation.

• Feature Importance: Attention has to be drawn to the fact, that in this thesis
the impact of additional features is not analyzed on a feature to feature basis.
What this means, is that the impact of the various features did not get analyzed
on an individual level. The conclusion, obtained from the results, that the
additional features did not help the LSTM all models to forecast better than
the LSTM one models, allows for the statement that no advantage was to
be found when all additional features were incorporated at the same time.
However, is not valid to conclude, that each additional feature on their own
does not help in getting better forecasts. To inspect the importance of one
feature and its effect on the forecasting quality in more detail, the models
have to be trained on various feature sets. By comparing models trained with
all available features, to models trained with all but one, the effect of the
left-out features on the forecasting performance can be analyzed. Trimming
the number of used features up or down step by step and comparing the
performances after each feature inclusion or exclusion shows the actual impact
of the individual feature in more detail. For example, it might be found that
the incorporation of feature A does help in getting better forecasts. But when
feature A and additionally feature B are used, the forecasting performance
might drop. It is not valid to state from the outcome of the last evaluation
that neither feature A nor feature B do hold predictive power. It is only valid
to conclude, that the incorporation of both features A and B in combination
did not hold predictive power. Therefore, the conclusions drawn in this thesis
about the feature importance can only be made in regard to the totality of
all additional features. To analyze the impact of the auto-regressive shifts,
or the dwelling size on its own, a more nuanced features analysis has to be
performed.

• Over-parametrization: A big issue with neural network models is the huge
number of parameters, that come along with a moderately sized model. There-
fore, a balance between the amount and diversity of the data, with the number
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CHAPTER 7. DISCUSSION

of parameters needs to be achieved. However, this balance is not fully under-
stood. In [33] it is shown that the over-parametrization of models, i.e. using
model architectures that lead to too many parameters compared to the amount
of data, does often result in good models with robust generalizability. It might
be due to the fact, that the high volatility in the energy consumption patterns
acts as a potent regularization tool itself, and therefore the many parameters
are not able to over-fit as might be suspected. The models in this thesis are
equipped with many parameters compared to the number of input samples,
especially in the case of the individual models.

• An additional difficulty emerges in the fact, that overfitting in the realm of
multi-step forecasting can not be spotted as distinctly as in other common
machine learning tasks, like classification or single point regression. As is
elaborated in section 5.4, the Loss of the NN-models drops rapidly during the
first three epochs in the training phase and then continues to decrease very
slowly. For some data sets, the MAE started to rise on its Test-partition after
a few epochs. However, through visual inspection of the predicted consump-
tion profiles, it could be said, that the longer the training time, the more
”reasonable” the forecast became on the Test-partition. This boils down to
the crux of the problem in forecasting low-level energy consumption profiles,
as the error metric based on which to evaluate the quality of a forecast might
not explain the ”goodness” of the forecast satisfyingly.

7.1.2 Data set selection

The selection of the ”Simple” data set is an obvious choice. It incorporates all
households (that have at least five months of consumption recordings, that enable
the input/target processing) into the data set. The other choices, the filtering step
to arrive at data set ”Extra”, and the choices for the four individual households, are
not that obvious. With the filtering step, the effect of dropping very low consump-
tion profiles from the data was investigated. However, the thresholds were chosen
based on domain knowledge and general assumptions about electricity consumption
in single households. The ”Individual” four data sets are selected based on the
statistics on their historic consumption recordings. All four households had long
periods of non-missing smart meter recording available, as well as relatively high
overall consumption, compared to the total household stock. Because of this, the
comparison of ”General” vs. ”Individual” LSTM all models is only performed with
regard to those four households with relatively high energy consumption.

7.2 Future Work & Outlook

7.2.1 Error Metric

As is mentioned throughout this thesis, there is ongoing development in the field
of forecasting energy consumption for the residential level. No consensus is yet
achieved, on what might be the best error metrics to use. The end-use cases for dif-
ferent studies around the world are differing in forecasting horizon, household stock,
data resolution, aggregation level, and forecasting evaluations. Due to these many
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7.2. FUTURE WORK & OUTLOOK

differences, it is hard to establish a definitive consensus on what is the best choice
for evaluating forecasting performance given the differences in the above-mentioned
points. Nevertheless, with more research in this area, driven by (a) the need to
make the transition to a more efficient grid, and (b) the data avalanche coming
with the smart meter and sensor readings; the scientific community will develop er-
ror measures tailored to certain end-use cases and modeling approaches. With this
development, detailed advantages and disadvantages of certain methodologies will
become more obvious and the adoption of proper methods and evaluation metrics
becomes clearer.
Many studies and research activities working on the task of forecasting low-level en-
ergy consumption, evaluate the ”goodness” of the obtained forecasts via a pointwise
error metric. Often times this is either the mean absolute percentage error MAPE,
the root means squared error RMSE or the mean absolute error MAE. There is
nothing wrong with using these error metrics as a calculation on which to evalu-
ate the performances of differing approaches. However, it is important to be aware
of the shortcomings of a pointwise error metric in the realm of forecasting energy
consumption profiles. Knowledge about the potential disadvantage of these error
metrics allows constructing additional metrics on which to evaluate the ”goodness”
of the forecasts. These extra metrics can be tailored explicitly to the task and its
final use case. Therefore, the pointwise error metric can be used as a starting point,
but might not be the best choice when used in isolation.

Unfortunately, there is no one-solution fits all metrics that can be applied to give
a reasonable description of the ”best” forecast. As is shown in [8, 27], the error
metrics have to be tailored to:

1. the end-use case of the problem at hand

2. to the particular household stock that is considered in the study

Therefore, there is no single error metric that will always be the optimal choice.
However, an effort is undertaken to establish consensus in the realm of forecasting
low-level consumption to help make good decisions about error metrics as well as
establishing baseline data sets on which different methodologies and metrics can be
tested and compared.

Problem with a pointwise error metric: The main problem with a pointwise
error metric in the realm of forecasting –especially for low level, multi-step ahead–
is the Double Penalty Error.

Double Penalty Error

The Double Penalty Error describes the situation, in which the true consumption
curve and the predicted consumption curves are actually pretty similar in shape and
magnitude. The two profiles, however, have a time shift compared to each other.
A simple illustration of the Double Penalty Error is shown in figure 7.1. In the
most extreme case, both consumption curves are identical, but the predicted curve
is always one time step before or after the actual true consumption. This forecast
would probably make perfect sense for a lot of use cases, especially when the time
interval is relatively short. However, calculating a point-wise error metric, -that only
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CHAPTER 7. DISCUSSION

compares the true value ytruet and predicted value yforecastt at time step t-, results in
a high error. Not only does the pointwise error metric penalize the forecast for being
wrong at the time step t, but also for the next time step t + 1, therefore the term
Double Penalty Error. To circumvent this problem various alternative error metrics
are introduced in the literature. In [27, 17] the authors use a modified permuted
error metric where they make a slight adjustment to the pointwise error metric
as far, as they not only compare the true value ytruet with the predicted value at
time step t but also with the forecasts at predefined shifts to the left (past) and
to the right (future) of the actual time step. For instance, by specifying a sliding
window of three, the true value is compared to the predicted values at time steps
yt−3, yt−2, yt−1, yt, yt+1, yt+2, yt+3. The time step with the closest values -out of those
seven- to the true value at time step t is then taken to calculate the point-wise error
and this is the error of the forecast for time step t. A further modification of this
permuted error metric is to put weight on the forecasting error, according to the
distance it is off. That is, the closer the forecast value is to the true value in regard
to their time steps respectively, the better. By using this adjusted error metric it
is possible to circumvent the most extreme cases of Double Penalty Error. It has
to be noted, that this error metric, –as many others (accuracy measures, dynamic
time warping, Pearson correlation)– has its advantages and disadvantages. One of
the main issues with using the permuted error metric comes with the additional
complexity of specifying the optimal window size, and the weights according to
every time step. It is not obvious from the start, what might be an ideal choice
of these parameters, and certainly depends on the data resolution and the end-use
case. For instance, for the task of optimizing the charging and discharging cycle of
a battery energy management systems, the weights with respect to particular time
shifts regarding past and future might be different, then when considering the task
of scheduling and providing flexibilities on the energy market via the aggregation of
heat pumps, or the optimal targeting of a fleet of electric vehicles.

Figure 7.1: Illustration of the Double Penalty Error

Underprediction Bias

The training mechanism of neural network models is driven by minimizing a certain
Loss-function. Therefore, models that are encouraged to minimize a pointwise error
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7.2. FUTURE WORK & OUTLOOK

metric are trying to avoid the Double Penalty Error by not predicting consumption
peaks. Resulting in models that only learn moderate consumption characteristics.
This is certainly not advantageous for forecasting systems, where one of the more
important systems estimates is the peak load of the grid. However, models trained
based on the task of minimizing a pointwise error metric are doing poorly for fore-
casting peak energy consumptions. This further results in models with a under-
prediction bias, -that is models, which predict too low consumption profiles overall.
This is especially true for the neural network models trained with the mean abso-
lute error Loss-function. To investigate the underprediction bias for the proposed
NN-models, the difference from the predicted amount of daily energy minus the true
amount of daily energy consumed is analyzed. Other then the absolute difference
regarded in tables 6.3 and 6.9 describing the Daily Energy Consumption Deviation;
for visualizing the underprediction bias the real difference is taken.

Real Daily Difference =

24/96
∑

i=1

ŷi −

24/96
∑

i=1

yi (7.1)

Where the upper limit of the sums is either 24 for the hourly time intervals or 96
for the 15 minute time intervals.
The boxplots in figures 7.2 and 7.3 show the magnitude of the underprediction bias
on the Test-partition of two different data sets –”Extra” and ”X23”– for the neural
network models for both data resolutions (figure 7.2 15 minute time intervals, and
figure 7.3 hourly time intervals). The boxplots are showing the distribution of the
Real Daily Difference values for the various models (see equation 7.1). It can be
seen, that the daily energy consumption forecasts of the NN-models trained with the
mean absolute error Loss-function are consistently under predicting. Interestingly
this is not to be found for the models that are trained to minimize the mean squared
error Loss-function.
When considering only the mean absolute error as the main evaluation metric, the
NN-models trained with the mean absolute error Loss-function seem to be the best
performers. However, these models are suffering severely from the underprediction
bias. Interestingly, this effect is not to be found for the neural network models
trained with the mean squared error Loss-function. This is a surprising finding.
Both Loss-functions are minimizing a pointwise error, therefore their different fore-
casting behavior might not be obvious. The difference in their forecasts can be
attributed to the different parameter updating process during the training phase,
resulting from the different starting point, described by the mean absolute error or
the mean squared error.

To conclude this section on the choice of error metric: There is no one universal
optimal error metric for all energy consumption forecasting tasks. A pointwise error
metric is a useful starting point. However, there are certain shortcomings in these
metrics. Therefore, some custom error metric might be developed, tailored to the
task at hand, to better explain the quality of a forecast. Error metrics developed by
the research community can be chosen as either appropriate support metrics or as
the main metric based on which to evaluate the goodness of competing methods.
The most reasonable approach, therefore, might be in defining upfront what a good
forecast would look like. Does it have to be as exact as possible at every time step?
Is it more important to be close to the true amount of consumption happening over
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CHAPTER 7. DISCUSSION

Figure 7.2: Underprediction bias on the Test-partitions of two different data sets
(”Extra” on the left, and ”X23” on the right). The boxplots show the distribution
of the Real Daily Difference values in unit of [kWh] for the 15 minute time intervals.
The three NN-model approaches –LSTM all (green), LSTM one (red) and FFNN
(blue)– are grouped in coloured pairs. The left boxplot of each pair shows the
distribution of the Real Daily Difference results obtained by the mean absolute error
Loss-function trained model. The right boxplot shows the mse-trained counterpart.

Figure 7.3: Underprediction bias on the Test-partitions of two different data sets
(”Extra” on the left, and ”X23” on the right). The boxplots show the distribution
of the Real Daily Difference values in unit of [kWh] for the hourly time intervals. The
three NN-model approaches –LSTM all (green), LSTM one (red) and FFNN (blue)–
are grouped in coloured pairs. The left boxplot of each pair shows the distribution of
the Real Daily Difference results obtained by the mean absolute error Loss-function
trained model. The right boxplot shows the mse-trained counterpart.
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7.2. FUTURE WORK & OUTLOOK

a certain period? Is the most important factor, to capture peaks in the consumption
profiles, and timely deviations are perfectly acceptable as long as they fall into a
certain range? With a clear idea of what a good forecast has to deliver, the error
metrics most appropriate for capturing this desired behavior can be chosen. Either
one error metric is sufficient, or different metrics get included and combined to arrive
at a reasonable judgment. With this, different metrics might get weighted differ-
ently based on their importance regarding the end-use case, resulting in a nuanced
assessment.

7.2.2 Increasing Predictability

The biggest challenge in forecasting low-level energy consumption of single house-
holds is the volatility of the energy demand profiles itself. The main influencing
factor of energy consumption on the low level is the behavior of the residents. This
behavior certainly has some periodicity and regularity, nevertheless, it is very er-
ratic, and therefore poses big challenges for getting accurate forecasts, especially
when regarding a single household and considering short time intervals. Different
actions can be taken to mitigate this problem and help to increase the predictability
of the consumption profiles. In the following, four possible actions to achieve this are
listed, and provide valuable paths for future studies, for combining and extending
the work of this thesis.

Granularity This aspect is investigated via the two considered time intervals in
this project. (a) 15 minute time intervals and (b) hourly time intervals. A number
of studies have investigated the question of what effect time resolution does have
on the predictability of the consumption profiles, and therefore on the forecasting
performance [8, 3]. The main effect, an increase in the considered time interval
does have on the consumption profiles is the out-smoothing of the consumption
curve. Lifestyle is the driving factor of electric energy consumption at the household
level. Although lifestyle certainly has its regularities and habitual actions, like doing
many things the same way, especially during workdays, the exact time of energy
consumption might vary. When considering short time intervals like 15 minutes this
random behavior becomes obvious. The bigger the time intervals are chosen, more
of the frequent actions fall into this interval. For instance, the energy consumption
in the first three morning hours might be pretty stable for differing households at
workdays and weekends, however, the exact time at which appliances of daily use
are powered might vary in time. This intuitive, but very limited understanding
of human energy consumption can be taken into account when regarding bigger
time intervals. Again, it is important to tailor the considered time intervals to the
end-use case. Therefore the forecasts for a four hour time interval will probably
be more accurate then the ones obtained with the same time period but evaluated
every 15-minute interval, however, it will not be useful for the task of obtaining
optimal electricity prizes. The idea is that the bigger the considered time intervals
are, the smoother the consumption profiles become, which therefore increases the
predictability.
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CHAPTER 7. DISCUSSION

Aggregation Another possible action to increase the predictability of energy con-
sumption profiles is to aggregate the consumption of households together [8, 3]. This
is due to (a) that the baseline consumption of the aggregated profile is higher over-
all, decreasing the effect of the double penalty error at every time step, and (b)
the aggregation of multiple consumption profiles leads to the out smoothing of the
erratic consumption of one single household.
An interesting finding in the work of [18] is, that when comparing (a) the forecast
of an aggregated energy consumption profile of a certain number of households to
(b) the aggregation of individual forecasts of the single households (that were aggre-
gated), the aggregation of the household forecasts performed better than the forecast
of the aggregated household profile. This might indicate that there is valuable in-
formation in individual households, although they are small and the effect is not
that severe. However, this information can be advantageous when aggregating all of
those small informational gains to an overall forecast. Whereas forecasts based only
on aggregated consumption do not have the potential of incorporating information
about individual households.

Filtering Another idea of dealing with the fact of changing the raw energy con-
sumption profiles to make them more predicable is the act of filtering the profiles
according to certain expert knowledge or predefined criteria. This point falls more
into the realm of data processing and data cleaning. This step, however, can help
models learn to predict more reasonable consumption patterns. Outlier detection
and outlier dropping fall into this category of actions. Rare events that are very
extreme in either direction might not help, when incorporated in the training phase
of numerous machine learning models. Especially neural networks are prone to out-
liers, that is they can be strongly affected by single very unusual training samples;
whereas Support Vector Machines (SVM) are known to be more robust in dealing
with outliers.
Knowledge about certain data collection methods and imputing practices, managing
missing data in a reasonable way and filtering data based on certain statistical
characteristics, can all be applied in this step. However, it is crucial to not process
the data in a form that -although the models are now able to predict more reasonable-
most of the data gets actually discarded, and does not yield an overall benefit in
the eye of a long-term deployment of a system. For this reason, a solution must be
thought of, for how to deal with samples, that are dropped during a certain filtering
step.
In the case of this thesis, the filtering step described in the chapter 5 -based on
the minimum consumption threshold filtering- drops a significant portion from the
”Simple” data set. These dropped samples can be regarded as low-consumption
samples, as they do not make the cut for the minimum consumption threshold. A
separate minimum-consumption model can be used (either a neural network model,
a simple benchmark, or a different approach altogether) that is suitable for these
low-consumption samples. During inference time, when a forecast is needed, if the
input gets filtered -by the energy threshold criteria- into the low-consumption data
set the minimum-consumption model performs the forecast for this input.

Clustering A more sophisticated idea for dealing with the predictability of energy
consumption is clustering. The main idea can be summed up as follows: Cluster
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7.2. FUTURE WORK & OUTLOOK

or group ”similar” households together, forming a set of consumption profiles with
”similar” characteristics, and then train models for every distinctly found cluster.
Therefore enabling the models to pick up on characteristic behavior of the households
present in the distinct clusters. This idea assumes that different energy consumption
behaviors mess up the models, resulting in models not being able to forecast properly.

The crux in clustering is in the measure of ”similarity” and the decision of what is the
best metric to perform the clustering on. The most common approach found in the
literature is the well known K-Means clustering algorithm. This algorithm calculates
its similarity score based on the euclidean distance. Therefore this similarity measure
is a pointwise metric. As in the case of the pointwise error metric, this has certain
disadvantages, when grouping or clustering is performed based on this measure. For
instance, the K-means algorithm would give two similar consumption profiles, that
are shifted against each other in time, a very low similarity score. When clustering
based on the K-Means, the number of clusters the algorithm will search for has to be
predefined. It is not obvious what the optimal number of clusters is in advance. The
elbow method or silhouette method are processing techniques that help to find the
optimal number of clusters when applying the K-Means algorithm. Other common
similarity measures that take the shape of the consumption profiles into account are
the Pearson correlation or dynamic time warping. Here the dominating factor is not
the pointwise closeness at each time step, but the overall similarity in shape and
curvature.

Hierarchical clustering is a similar clustering method as the K-means, however, no
upfront decision about the number of clusters has to be made. Hierarchical clustering
comes with a slight increase in complexity, due to the fact, that the kind of linkage-
method has to be selected, based on which clusters are formed during the clustering
phase of the algorithm. Every cluster has the goal to minimize the average distance
of all samples in the cluster to its center. When a new sample gets processed, it
gets assigned to the cluster it is ”closest” to, where ”closest” needs to be specified
by the similarity measure.

The goal of performing clustering in the first place is to find households that depict
similar energy consumption patterns. With grouping them together, each cluster
can then be targeted more specifically. This more specific targeting could mean
using different forecasting methods for different clusters based on their consumption
characteristics.

Not only the similarity measure, based on which to perform the clustering, needs
to be chosen; but also the information based on which the clustering is performed
needs to be considered. The clustering can be performed on (a) The historic energy
consumption profiles of the various households. (b) Statistical quantities describ-
ing the historic energy consumption of the households (mean, min, max, number of
outliers). (c) Demographic and personal information (educational status, age, num-
ber of people living in the household, appliances in the household). Furthermore,
a decision has to be made if the clustering gets performed on the household- or on
the sample- level. That is, should each sample be clustered individually, or should
the households be clustered beforehand, and all samples obtain from a particular
household belong to this cluster. An effort is undertaken to find the most promising
information based on which to cluster, and then find the ideal clustering method for
the chosen information.
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CHAPTER 7. DISCUSSION

Combination of Clustering and Classification: This is a further development
of the idea of clustering. The first step -clustering households together based on a
defined similarity measure- stays the same. After such clusters are formed, samples
belonging to a particular cluster get marked as being a ”member” of this cluster.
The next step is using information about households, demographics, appliance infor-
mation, etc., to observe which information has the most relevance for classifying the
household into the correct cluster. Although the clustering might be performed on
the energy consumption profiles, the classification step takes different information
into account and can show which information is highly associated with a particular
cluster. With this insight, questionnaires can be build to ask residents the most
important questions, that were found to influence the energy consumption behavior
the most, like –educational status, relationship status, appliances, age of residents–
and so on.

All of the above-mentioned steps aim at increasing the predictability of the underly-
ing consumption profiles. In [18] the authors declared the processing of the energy
consumption profiles to make them more predictable, as the most important step;
a necessity before diving into the choices and tweaking of sophisticated forecasting
methodologies. No matter how well the model might be able to forecast, and how
well it is tuned to the task at hand, this all is to no avail, if the underlying data
is extremely volatile, where randomness and stochastic behavior are the dominant
factors in the profile. Therefore, with the above-mentioned steps, the predictability
of energy consumption profiles can be increased, allowing the subsequent modeling
phase to tailor the models effectively.
With the clear end-use case in mind, and the knowledge about what a good forecast
actually looks like, one, two or a combination of all of the above steps can be used to
build a robust forecasting system. For some use cases, it will be suitable to regard
bigger time intervals and aggregate over a certain number of households. Clustering
can be applied beforehand, to only aggregate households that are belonging to the
same cluster. In the end, the optimal forecasting model and processing steps need
to be tailored to the specific use case. The final forecast then gets assessed based
on the appropriate error- and performance-metrics. Keeping all those steps aligned,
does increase the probability to achieve a robust and reliable forecasting system.

7.2.3 More Ideas

After exploring the most common ideas for increasing the predictability of energy
consumption profiles, this section explores some other ideas that might help with
the task of getting more reliable, stable and overall more accurate forecasts of the
electric energy consumption of individual households.

More ”meta” Information This thesis set out to answer the question if the
consideration of additional information does help with the prediction of the next
day’s energy consumption of individual households. The results obtained indicate
that the additional features considered for the LSTM all models do not help in
getting better forecasts. As pointed out, this might be because: (a) the combination
of the additional features do not carry useful information, (b) the models are not
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7.2. FUTURE WORK & OUTLOOK

able to utilize the additional information, due to their parameterization and learning
phase, or a combination of both. Information that is not directly obtainable from
the historic energy consumption profiles and its temporal ordering is often referred
to as ”meta”-data. The size of the dwelling, for instance, is one feature that falls
into the category of ”meta” information. Whereas the auto-regressive features and
the temporal feature encodings do not.

Ongoing research is investigating what information is the most important for fore-
casting the low-level energy consumption. Weather data, temporal data were found
to help for the high voltage level, but its feature importance decreases the lower the
aggregation level gets.

Incorporating more relevant ”meta”-features regarding the household’s energy con-
sumption, is likely to lead to better forecasts. Valuable data could include infor-
mation about the buildings (e.g., age, insulation, heating system, size), appliances
and sensory input (like noise signals, moving sensors), controllable loads, ownership
of electric vehicles and other high consumption devices like HVAC, or information
about the inhabitants itself (e.g. age, profession).

Tailored Cost- / Loss-Function in Neural Networks Additional error and
performance metrics do help in making better assessments about forecasting qual-
ity. However, the underlying behavior of the neural network models itself does not
change, as long as the NN-models are trained via a gradient descent algorithm to
minimize the pointwise Loss-functions.

Creating a custom Loss-function for neural networks tailored to the task of low-
level energy consumption forecasting could be a worthwhile endeavor. Neural net-
works are very powerful machine learning models, they are capable of approximating
any functional relationship there is -provided they have the representational power
needed-. However, neural network models do only what they are told to do. That
is, in the case of this thesis, the LSTM, and the FFNN models, are trained to
minimize two particular Loss-functions (mean absolute error Loss-function and the
mean squared error Loss-function), over the totality of the training partitions. With
the gradient descent algorithm, the weights/parameters of the models are contin-
ually adjusted and updated in a direction to minimize the output of the specified
Loss-function. However, what if the Loss-function is not the best target, to begin
with? Although the models are the ”best” models when evaluated based on the
mean absolute error metric, or mean squared error metric respectively –based on
which they are trained–, this does not mean that they are the overall ”best” model,
when a more nuanced assessment with various useful performance metrics is per-
formed. The idea of using a customized Loss-function is to harness the power of
neural networks for finding the most optimal weights and parameters, based on an
”optimal” Loss-function tailored to the task.

There are certain constraints that a Loss-function of neural networks has to obey.
When the updating process is based on gradient descent, the most obvious one
is that the Loss-function has to be differentiable with respect to the parameters
characterizing the model. Another aspect has to do with the implementation of
the Loss-function itself. The available Loss-functions in deep learning libraries are
highly optimized for the fast processing of large amounts of samples. If a custom
Loss-function is poorly designed, the computational overhead could make the back-
propagation process very slow. However, if those points are considered, a custom
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CHAPTER 7. DISCUSSION

loss metric might harness the power of neural networks for finding the relationship
from input to target and return forecasts that are ”best”, according to the new
custom loss metric.
It can be the case, that by providing a different loss metric to the neural network
models, the importance of additional values does change. That is, although there
is information in the additional features considered, this information can not be
exploited due to the constraints given by the loss metric to minimize the pointwise
error. However, when not being constrained by the pointwise error, but being able to
operate in a different ”frame”, the relationship might become obvious and features
predictive power changes. However, as with the error metric, -based on which the
forecasts are evaluated- there might not exist the ”perfect” Loss-function -based on
which to train neural network models-.

Cumulative Profiles Using the cumulative energy consumption profiles as the
target profile instead of the original consumption profiles might yield improvements
in the forecasting models. The cumulative profile is formed by adding the daily
prior total consumption to the current consumption value at time step t. This re-
sults in an ever-increasing curve, holding the total amount of energy consumed over
the day in its last value. By regarding the cumulative curves, one minor drawback
of considering the original profiles is mitigated, namely that the information of the
daily amount of energy consumed is not directly accounted for. When taking the
cumulative profile into account though, this issue is taken care of, as the amount
of consumption of every day is then provided to the model in its final value cor-
responding to the last time step. It might be interesting to see how changing of
the target profile –from raw energy consumption profiles to the cumulative profiles–
does change the behavior of the neural network models, and if it results in more
accurate forecasts.

Building a robust Forecasting System: To design a robust and reliable fore-
casting system many individual steps have to be considered. The first step is to
clearly define the end-use case of the forecasting system. This clarity is essential to
specify and decide on what makes up a good forecast. This allows for the appropriate
choice of an error metric or a combination of metrics that make a good assessment
of the forecasting quality. The next step might lie in trying to increase the pre-
dictability of the considered consumption profiles. This, of course, is constrained
by the end-use case of the forecasting task. After exploiting the steps for increasing
the predictability, the subsequent modeling phase tries to find and fine-tune the
best models. Each of those steps is getting attention in the research community.
Combining the best and most reasonable approaches increases the chances of getting
robust forecasting systems.
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Chapter 8

Conclusion and Ending Statement

This thesis explored the topic of energy consumption forecasting for individual
households. Why forecasting is an important field of current research, and how
machine learning plays a supportive role in the transition of the power grid is dis-
cussed. Different neural network methodologies were compared and evaluated. Long
Short Term Memory network models were tested against feedforward neural network
models. Testing those NN-models against three benchmarks gave insights about the
usefulness of sophisticated machine learning approaches. Feature importance was
investigated by the incorporation of additional features for the LSTM all model.
The effect of data granularity was examined by looking at both 15 minute and
hourly sampled consumption recordings. The challenges emerging in the field of
low-level energy consumption forecasting were investigated. Especially the conse-
quence of using pointwise error metrics for evaluating the quality of a forecast is
reviewed. The importance of knowing the advantages and disadvantages of certain
error metrics is pointed out, as well as alternative error, and performance metrics
were mentioned. Finally, interesting concepts and ideas are mentioned to expand
on the work of low-level energy consumption forecasting.
Combining powerful machine learning models with expert domain knowledge and
the steady growth of data acquisition is providing opportunities and big challenges
for the advancement of the energy grid. Finding optimal solutions to the arising
challenges by optimizing every aspect of a forecasting system will be a crucial de-
velopment to a more sustainable and efficient energy grid in the coming years.
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