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Kurzfassung 
Seit der Entdeckung der Curry-Howard-Korrespondenz kennen wir die tiefliegenden Zusammenhänge 

zwischen Berechenbarkeit und Beweisbarkeit in intuitionistischer Logik. Die konstruktive Mathematik, 

die auf intuitionistischer Logik basiert, ist daher ein vielversprechender Ansatz in der Untersuchung, 

welche Teile der Mathematik computational fassbar sind. Potentielle Anwendungen liegen dabei im Be-

reich der automatischen Deduktion und der automatischen Theorembeweiser. 

Das Ziel der vorliegenden Arbeit ist es, verschiedene Ansätze der konstruktiven Mengenlehre in einer 

verständlichen und in sich geschlossenen Art und Weise zu präsentieren und zu vergleichen und 

dadurch das Potential der Anwendbarkeit in automatischer Deduktion und automatischen Theorembe-

weisern offenzulegen. Das spezielle Augenmerk auf Mengenlehre ist ihrer historischen Rolle als Grund-

lage der gesamten Mathematik geschuldet. 

Die wichtigsten Theorien, die in dieser Arbeit behandelt werden, ist Brouwers Mengenlehre, die durch 

die Zermelo-Fraenkelsche Mengenlehre inspirierten Mengenlehren 𝐈𝐙𝐅  und 𝐂𝐙𝐅 , sowie Martin-Löfs 

Mengenlehre 𝐌𝐋. In einem ersten Schritt werden die Theorien und ihre Axiomatisierungen vom kon-

struktivistischen Standpunkt aus motiviert. Einige grundlegende Resultate werden abgeleitet, um einen 

Eindruck vom Arbeiten in den Theorien und deren Grenzen zu erhalten. Der Schwerpunkt der Untersu-

chung liegt allerdings in der metamathematischen Analyse. 

Die metamathematische Analyse der konstruktiven Zermelo-Fraenkel Mengenlehren wird durch zwei 

semantische Methoden durchgeführt: Realisierbarkeit und topologische Semantik. Erstere baut direkt 

auf Konzepten der Berechenbarkeit auf und ist deshalb geeignet, konstruktivistisch wünschenswerte 

metamathematische Eigenschaften zu untersuchen. Ein Beweis wird präsentiert, der sich auf die Ver-

wendung topologischer Semantik stützt und zeigt, dass das Prinzip der entscheidbaren Bar-Induktion 

unabhängig von einer auf 𝐈𝐙𝐅 basierten Variante der Brouwer’schen Mathematik ist. Schlussendlich 
wird eine sinnbewahrende Interpretation von 𝐂𝐙𝐅 in 𝐌𝐋 – einer Theorie, mit konstruktiv sehr klarem 

und wohlbegründetem Mengenbegriff – diskutiert. Dadurch stellt sich 𝐂𝐙𝐅 nicht nur besonders geeignet 

für den mathematischen Alltag, sondern auch als konstruktiv gerechtfertigte Theorie und dadurch als 

vielversprechende Ausgangbasis für Anwendungen heraus. 
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Abstract 
Since the discovery of the Curry-Howard-correspondence we know of the deep-lying connections be-

tween computability and provability in intuitionistic logic. Hence, constructive mathematics, being 

based on intuitionistic logic, promises to be a fruitful tool in investigating the computational content of 

classical mathematics with potential applications in the areas of automated deduction and automated 

theorem proving. 

The objective of this thesis is to present and compare different approaches to constructive set theories in 

a comprehensible and self-contained fashion and thereby demonstrate its potential for applications in 

automated deduction and automated theorem proving. The particular significance placed here on set 

theory is due to its historically proven relevance in providing the very foundation of mathematics. 

The main theories discussed in the thesis are Brouwerian set theory, the axiomatic Zermelo-Fraenkel-

style set theories 𝐈𝐙𝐅 and 𝐂𝐙𝐅 and Martin-Löf’s set theory 𝐌𝐋. In a first step, the theories and their axio-

matizations are motivated from the constructive standpoint. Some basic results are inferred to get used 

to reasoning and limitations within the respective system. The broadest investigation, however, is con-

ducted by means of metamathematical analysis. 

Metamathematical analysis of constructive Zermelo-Fraenkel set theories is executed by two semantical 

tools: Realizability and topological semantics. The former builds directly on notions from computability 

theory and thus allows for an investigation of metamathematical properties that are constructively de-

sirable. A proof using topological semantics is presented to obtain an independence proof of the principle 

of decidable bar induction from a variant of Brouwer’s mathematics formalized within 𝐈𝐙𝐅. Finally, a 

meaning-persevering interpretation of 𝐂𝐙𝐅 into 𝐌𝐋 – a theory that is considered to give a constructively 

clear and well-justified notions of sets – is discussed. This makes 𝐂𝐙𝐅 not only especially well-suited for 

mathematical practice, but also vindicates its constructive nature and makes it a promising starting point 

for applications. 
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1 Introduction  
Since the discovery of the Curry-Howard-correspondence we know of the deep connections between 

computability and provability in intuitionistic logic. Hence, constructive mathematics, being based on 

intuitionistic logic, promises to be a fruitful tool in investigating the computational content of classical 

mathematics with potential applications in the areas of automated deduction and automated theorem 

proving. For example, Martin-Löf’s intuitionistic type theory was intended as a formalization of the con-
structive set theory 𝐌𝐋. Explicitly based on paradigms from programming, 𝐌𝐋 has inspired program-

ming languages like Agda and Idris and was able to provide concepts for automated proof assistants like 

NuPRL and Coq (see, for example, [43], [2], [33], [39], [BO]). Famously, Gonthier gave a proof of the four-

color theorem in Coq (see [27]) testifying to the efficacy of 𝐌𝐋-based proof assistants. 

The objective of this thesis is to present and compare different approaches to constructive set theories in 

a comprehensible and self-contained fashion and thereby demonstrate its potential for applications in 

automated deduction and automated theorem proving. The particular significance placed here on set 

theory is due to its historically proven relevance in providing the very foundation of mathematics. 

Set theory 
In [14], Georg Cantor defined sets as  

… a gathering together into a whole of definite, distinct objects of our perception or 

of our thought—which are called elements of the set.  

Cantor was the first to start a systematic mathematical analysis of the notion of infinity, that had been 

used informally up to that date. He proved that the set of natural numbers ℕ and the set of rational 

numbers ℚ is equipotent and that the set of real numbers ℝ is uncountable. In 1878 he formulated the 

Continuum Hypothesis, which asserts that every infinite set of real numbers is either countable, i.e., it has 

the same cardinality as ℕ, or has the same cardinality as ℝ. Already with the 1890ies it turned out that 

set theory is capable of providing a foundation of contemporary mathematics. With the discovery of 

Russel’s paradox in 1901, however, it soon became evident that mathematics in general and set theory in 

particular were in desperate need of solid foundations. Mathematics plunged into the Grundlagenkrise. 

As the Grundlagenkrise dissipated, Cantor’s set theory – now formalized by Zermelo and Fraenkel as 𝐙𝐅𝐂 – witnessed its revival. Nowadays, 𝐙𝐅𝐂 is considered as the “classical set theory” and as such the 

foundation of nearly all mathematical activity and is for the most part widely undisputed in this role. As 

Džamonja writes [22]:   

Anecdotal evidence from working mathematicians suggests that this axiom system 

is viewed as more than sufficient for what mathematics needs. While the axiom of 
choice or the continuum hypothesis might still excite some occasional discussion, 

https://www.tuwien.at/bibliothek
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mathematicians in most areas seem to happily accept the ‘‘sufficiency’’ of 𝒁𝑭𝑪 

and with somewhat less assurance, also its ‘‘necessity’’. 

The discipline of metamathematics, founded in the course of Hilbert’s program, provided us with some 

celebrated results. For example, Cohen showed in [16], that the continuum hypothesis independent from 𝐙𝐅𝐂. Hence, Platonists like Gödel tend towards extending this system. 

Constructivism 
Besides Frege’s logicism, also formalism, represented by David Hilbert, and intuitionism competed at 
the Grundlagenkrise. The intuitionistic school of thought, championed by Luitzen Brouwer, criticized Can-

tor’s set theory sharply. Besides a fundamental critique of axiomatic formalizations of mathematics, in-

tuitionism blamed the acceptance of infinite collections of objects as complete mathematical entities for 

the paradoxes. Due to the central role of set theory, however, it was clear to Brouwer that a rethinking of 

mathematics could not circumvent the development of an intuitionistic notion of set. Before a discussion 

how this might be accomplished and why it could be of interest, allow first an illustration of a few aspects 

of the constructivist standpoint. 

Nowadays, concerning mathematical constructivism we understand a summary of several currents of 

mathematical practice, like Russian constructivism, Martin-Löf’s type theory and others (see [65], [41], 

[43]). All these currents, however, can be traced back to Brouwer’s intuitionism and rely on one major 
standpoint: Mathematics is a function of human intellect. Particularly, constructivism criticizes (see [34], 

[9]): 

• Logicism, for favoring the idea of building mathematics on purely logical terms. Constructivism 
claims that logic is part of mathematics and not the other way around. 

• Formalism, for defending the idea that mathematics may be reduced to nothing more but mere ma-
nipulations with strings according to predefined rules. Admittedly, many constructivists see formal 
language as useful tool of communicating mathematical subjects. But the formalism should never be 
mistaken for mathematics itself, which is assumed to be free of any (formal) language. 

• Platonism, for holding that mathematical objects exist in an ideal world, independent of man and time. 
The mathematician’s job is to advance to truths of this world and to describe them. Obviously, intui-
tionism rejects any kind of transcendental existence of mathematical objects. Instead, mathematical 
objects are created by mental constructions of an (ideal) mathematician.  

The last point makes particularly clear, why constructivism rejects the common law of excluded middle 

(𝐋𝐄𝐌). According to this rule, every mathematical statement is either true or false (𝜙 ∨ ¬𝜙). Indeed, this 

could hold in a perfect, Platonist world, but it is incompatible with the spirit of constructivism. Let us 

consider a simple example to illustrate the different roles of time and actual infinity in classical and con-

structive mathematics. We start with a proposition 𝜓 about natural numbers, such that for each 𝑛, a finite 

procedure is known to check whether or not 𝜓(𝑛) holds. Our statement 𝜙 is the assertion that there is 

some natural number 𝑛 satisfying 𝜓(𝑛): ∃𝑛. 𝜓(𝑛). How would a constructive proof of 𝜙 ∨ ¬𝜙 look like? 

If 𝜓 is sufficiently non-trivial, all we can do is to calling the procedure to check 𝜓(𝑛) for each number 𝑛 

https://www.tuwien.at/bibliothek
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after the other. Having found such an 𝑛, we conclude 𝜙. On the other hand, we could at no point stop 

the process and conclude ¬𝜙. Hence, in the second case, this method is not sufficient for constructively 

proving 𝜙 ∨ ¬𝜙. 

To put it positively: If a constructive proof of a statement of the form 𝜙 ∨ ¬𝜙 is given, this will always 

give rise to a decision procedure for checking which one of 𝜙 or ¬𝜙 holds in finitely many steps. 

Classically, the existence of a natural number 𝑛 with property 𝜓(𝑛) could be proved by leading the as-

sumption of ¬∃𝑛.𝜓(𝑛) into a contradiction and concluding with transcendental existence of an 𝑛 with 𝜓(𝑛). This kind of reasoning by contradiction is constructively not justifiable. We give a further investi-

gation of provability in the constructive sense in section 2.1. 

Constructive set theory 
The first attempt at building a set theory as foundation for constructive mathematics is credited to 

Brouwer. We will discuss some of his ideas in sections 2.2 and 6.1. In his book [6], Bishop showed that it 

is possible to justify large parts of mathematics constructively.  

Being based on paradigms from programming, Martin-Löf’s set theory 𝐌𝐋 seems particularly interesting 

to the computer scientist. We have listed some successful implementations of 𝐌𝐋 at the beginning of this 

introduction. We give a introduction to the main ideas of 𝐌𝐋 in section 2.3 and a whole description of 

the theory in chapter 5. 

Another approach to constructive set theory is to restrict the successful system 𝐙𝐅𝐂, with the hope of 

obtaining a theory that is justifiable from the constructive viewpoint. We will motivate the most promi-

nent such theory, 𝐈𝐙𝐅, and its further restriction 𝐂𝐙𝐅 in section 2.4 and further investigate their connec-

tions in chapter 3. 

The ultimate confirmation that these theories are constructive are obtained only metamathematically. It 

is, for example, not clear a priori, whether 𝐈𝐙𝐅 implies unwanted instances of 𝐋𝐄𝐌. Therefore, in chapter 

4, we will discuss realizability-semantics referring directly to the notions of computability. We can thus 

show that 𝐈𝐙𝐅 and 𝐂𝐙𝐅 are suitable starting points for mathematics building on different constructivist 

currents. 

In chapter 5, we show how 𝐂𝐙𝐅 may be interpreted in 𝐌𝐋 in a sense-preserving fashion. Thus, we obtain 

a metamathematical justification of 𝐂𝐙𝐅 as a restriction of 𝐈𝐙𝐅. 

Finally, we introduce topological semantics of 𝐈𝐙𝐅 in chapter 6. With this semantics we can show, that 𝐈𝐙𝐅 is compatible with Brouwerian mathematics. It turns out, that in this context, the schema of bar in-

duction is too strong an assumption for Brouwer’s proof of the Fan-theorem (and in further consequence 

his theorem that every total function [0,1] → ℝ is uniformly continuous). 
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Throughout the thesis, we infer classical and constructive results as well as results of metamathematical 

nature. To prevent confusion, we mark classical results with ⓒ. Metamatheorems usually rely on classi-

cal reasoning and are marked with Ⓜ. 
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2 Set Theory and Constructivism  
In the following, we will discuss some versions of constructive set theory. We start with an informal 

version of set theory, that has not been advocated by any subcurrent of constructivism in particular, but 

can be seen as least common denominator and a good starting point to get used to concepts and operating 

principles of the field. We will continue with a brief introduction to Brouwer’s ideas on set theory as well 
as Martin-Löf’s set theory 𝐌𝐋 and the Hilbert-style systems 𝐈𝐙𝐅 and 𝐂𝐙𝐅. 

2.1 Informal constructive set theory 
However different the schools of constructivism may seem, they all converge on the following: A proof 

of a statement of the form “there is 𝑥 such that 𝐴(𝑥)” must be given by a method (construction of the 
mind, algorithm, etc.) constructing 𝑥 together with a proof of the fact 𝐴(𝑥). To get used to this idea, let 

us informally discuss some classical proofs that would be rejected by constructivists. 

2.1.1 Some non-constructive proofs and notions 

The two most important classes of classical proofs that are problematic in a constructive setting are proofs 

by contradiction and a special form of proof by cases. 

Proof by contradiction Proof by cases ¬¬𝜙𝜙  
𝜓 → 𝜙 ¬𝜓 → 𝜙𝜙  

Of course, both rules rely on the law of excluded middle and are thus not accepted by constructivists. 

We will explain the motivation behind this rejection in the following by examples. 

Proof by contradiction 

Let us consider König’s lemma: 

ⓒKönig’s lemma 2.1 (KL): Each infinite, finitely branching tree contains an infinite path. 

Proof: Let 𝑇 be such a tree. For a node 𝑑 of 𝑇 denote by 𝑇𝑑 the subtree rooted at 𝑑. We “construct” an 

infinite path 𝛼:ℕ → 𝑇 as follows: For 𝛼(0) take the root. Having defined 𝛼(𝑛) suppose, 𝑇𝛼(𝑛) is infinite. 

If for all descendants 𝑑 of 𝛼(𝑛), the trees 𝑇𝑑 were finite, then so would be 𝑇𝛼(𝑛), contradiction. Thus, there 

is a descendant 𝑑 of 𝛼(𝑛) such that 𝑇𝑑 is infinite. We set 𝛼(𝑛 + 1) = 𝑑. Clearly, we can repeat this process 

indefinitely. ∎ 

Why is the word “construct” written in quotation marks? In the proof we seem to construct an infinite 

path, but the word cannot be understood in the sense of constructivism: The crucial point is of course the 

moment when we choose 𝛼(𝑛 + 1): It is impossible, in general decide, which of the 𝑇𝑑 is indeed infinite, 

hence we cannot always explicitly construct the next step of our path. To put it bluntly: The absurdity of 

non-existence of an object alone does not guarantee its existence. What we mean is of course: The ab-

surdity of non-existence of an object does not provide us with a construction. 

https://www.tuwien.at/bibliothek
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In first-order theories, constructivist mathematics can be interpreted as subtheory of a classical one (for 

examples the theories 𝐈𝐙𝐅 and 𝐂𝐙𝐅 are subtheories of 𝐙𝐅𝐂 – we will discuss these theories later). Indeed, 

usually every classical mathematician will accept a constructive proof. This means that all constructive 

theorems and notions can be preserved when passing to the classical setting. The converse, however, 

cannot be expected to be true. Indeed, we will observe the phenomenon of classically equivalent notions 

and theorems to become different in constructivism. To put it positively: Often, constructive mathematics 

distinguishes classically equivalent notions. One example is the Fan theorem, which is classically equiv-

alent to König’s lemma. 

Definition 2.2: A subset of nodes 𝐵 of a tree 𝑇 is called a bar of 𝑇 iff each infinite path of 𝑇 finally passes 

through 𝐵. A bar is called a uniform bar, if there is a number 𝑧 such that each path 𝛼 of length ≥ 𝑧 passes 

through 𝐵 at or before 𝛼(𝑧). 
Fan Theorem 2.3 (FT): If 𝐵 is a bar of a finitely branching tree 𝑇, then it is a uniform bar. 

ⓒTheorem 2.4: König’s lemma is equivalent to the fan theorem. 

Proof: FT→KL: Let 𝑇 be an infinite, finitely branching tree with no infinite path. Let 𝐵 be the set of nodes 𝑣 such that 𝑇𝑣 is finite. Trivially, 𝐵 is a bar and thus, by the Fan theorem, there is some 𝑧 ∈ ℕ such that all 

paths 𝛼 of length ≥ 𝑧 pass through 𝐵 at or before 𝛼(𝑧). Without loss of generality, suppose this 𝑧 is min-

imal. If 𝑧 ≠ 0 and 𝑣 is a node of level 𝑧 − 1, then all its successors 𝑑 have the property that 𝑇𝑑 is finite and 

hence 𝑇𝑣 must be finite. As 𝑣 was arbitrary in level 𝑧 − 1 this shows that actually 𝑧 must be 0, i.e. 𝑇 is 

finite, contradiction. 

KL→FT: Let 𝑇 be a finitely branching tree and let 𝐵 be a bar, but not a uniform bar. Let 𝑇′ be the subtree 

of nodes reachable from the root without passing 𝐵 . 𝐵  not being uniform means that there are un-

bounded paths not passing through 𝐵, i.e. 𝑇′ is infinite. By König’s lemma, 𝑇′ must have an infinite path, 

which shows that 𝐵 cannot be a bar after all. ∎ 

In both directions, the proof is by contradiction and thus rejected by constructivists. As an example of 

classically equivalent but constructively distinguishable notions we give the following definitions: Let (𝑉,<) be a poset. We say that 𝑢 is an upper bound of 𝐴 ⊆ 𝑉 if for all 𝑥 ∈ 𝐴 we have 𝑥 ≤ 𝑢.  

Definition 2.5 of least upper bound, version 1: For 𝐴 ⊆ 𝑉 we say that 𝑙 is the least upper bound of 𝐴 iff 

for each upper bound 𝑢, we have 𝑢 ≤ 𝑙. 
Definition 2.6 of least upper bound, version 2: For 𝐴 ⊆ 𝑉 we say that 𝑙 is the least upper bound of 𝐴 iff 

for each 𝑥 ∈ 𝐴 either 𝑥 = 𝑙 or there is some 𝑦 ∈ 𝐴 such that 𝑥 < 𝑦 ≤ 𝑙. 
Again, classically both notions are equivalent, but every classical proof of this equivalence will not work 

in a constructive setting. When formulating the least upper bound principle in constructive analysis (each 

bounded subset of ℝ has a least upper bound), one usually prefers version 2. An objection to version 1 

https://www.tuwien.at/bibliothek
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could be that this definition is impredicative: The object 𝑙 is defined referring to a collection containing 𝑙 – 

this is problematic according to some constructivists, in the case when this collection is infinite, but more 

on this later. 

Proof by cases (decidability) 

We consider the following simple example: 

ⓒProposition 2.7: There are irrational numbers 𝑎, 𝑏 such that 𝑎𝑏 is rational. 

Proof: If √2√2 is rational, put 𝑎 = 𝑏 = √2. Else, let 𝑎 = √2√2 and 𝑏 = √2. In both cases, 𝑎𝑏 is rational. ∎ 

The problem with this proof is that it does not declare a method how to decide whether or not √2√2 is 

rational1. In conducting these kinds of case distinctions, one must refer to the kind of transcendental 

mathematical truth that is rejected in constructivism.  

Next, we consider an example from set theory. We call two sets 𝐴 and 𝐵 (extensionally) equal and write 𝐴 = 𝐵 if they contain the same elements, i.e. ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵). We define the set-theoretic (Kuratowski) 

ordered pair 〈𝑎, 𝑏〉 ≔ {{𝑎}, {𝑎, 𝑏}}. We have the following simple result: 

Proposition 2.8: If 〈𝑎, 𝑏〉 = 〈𝑐, 𝑑〉, then 𝑎 = 𝑐 and 𝑏 = 𝑑. 

Classical proof: If 𝑎 = 𝑏, then 〈𝑎, 𝑏〉 = {{𝑎}} and thus {𝑎} is the only element of 〈𝑐, 𝑑〉. Hence 𝑎 = 𝑏 = 𝑐 = 𝑑. 

On the other hand, for 𝑎 ≠ 𝑏, the only one-element set of both 〈𝑎, 𝑏〉  and 〈𝑐, 𝑑〉 must be {𝑎}. Hence, 𝑎 = 𝑐. 
The only two-element set both 〈𝑎, 𝑏〉  and 〈𝑐, 𝑑〉 is {𝑎, 𝑏} – we conclude 𝑏 = 𝑑. ∎  
The problem with this proof is that we assume that we can decide whether or not  𝑎 = 𝑏. But this is not 

the case in general: Consider two infinite sets of natural numbers that do not follow any apparent law. 

The only possible procedure of checking if the two sets are equal is to check each element one by one. 

But such a procedure will never tell with certainty if sets are equal indeed, even if they seem to coincide 

after any arbitrarily large number of steps. However, we are able to prove the proposition constructively: 

Constructive proof: {𝑎} is an element of 〈𝑎, 𝑏〉 and 〈𝑐, 𝑑〉 and thus, {𝑎} = {𝑐} or {𝑎} = {𝑐, 𝑑}. In either case, 𝑎 = 𝑐. Again, {𝑎, 𝑏} is contained in both sides and hence, {𝑎, 𝑏} = {𝑐} or {𝑎, 𝑏} = {𝑐, 𝑑}. In either case, 𝑏 =𝑐  or 𝑏 = 𝑑 . If 𝑏 = 𝑐 , then 𝑎 = 𝑏 = 𝑐 = 𝑑  and both 〈𝑎, 𝑏〉  and 〈𝑐, 𝑑〉  are equal. If 𝑏 = 𝑑 , then 〈𝑎, 𝑏〉 ={{𝑎}, {𝑎, 𝑏}} = {{𝑐}, {𝑐, 𝑑}} = 〈𝑎, 𝑏〉. ∎ 

Note that in this proof, we did not make any assumption on the decidability of set equality. We continue 

another pair of classically equivalent definitions that turn out to be different in constructivism:  

 
1 Gelfond and Schneider proved independently that √2√2 is irrational, see [26] 
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Definition 2.9: A set 𝐴 is called (Kuratowski) finite iff there is a number 𝑛 together with a bijective function 𝑓: {0,… , 𝑛 − 1} → 𝐴. The set 𝐴 is called subfinite iff it is a subset of a finite set. 

Clearly, classically both notions coincide. Constructively however, they are different. For example, let 𝑃 

be any unsolved mathematical problem, like Goldbach’s conjecture. Consider the set 𝐴 = {𝑥: 𝑥 = 0 ∨ (𝑥 = 1 ∧ 𝑃)}. 
Clearly, 𝐴 is a subset of the finite set {0,1} and thus subfinite. But to show that 𝐴 is finite we need to know 

whether to define a function with domain {0} or {0,1}, i.e. we would need to solve or reject 𝑃. 

2.1.2 The notion of set 

Following Beeson’s analysis [4], in order to define a set 𝑆, one must 

(i) say what has to be done in order to construct canonical members of 𝑆, 
(ii) say what has to be done to prove two canonical members of 𝑆 equal, 
(iii) and prove that the equality defined in (ii) is an equivalence relation. 

Although merely informal, we cannot leave this definition without remarks. Concerning (i) it seems that 

there is the important objection that given a set 𝐴, the set 𝐵 = {𝑥 ∈ 𝐴:𝜙(𝑥)}, i.e. the subset of elements 𝑥 

of 𝐴 satisfying some property 𝜙(𝑥) is acceptable in constructivist set theories such as Martin-Löf’s or 𝐈𝐙𝐅 

and 𝐂𝐙𝐅 (if required with regard to suitable restrictions on 𝜙)2. In constructing 𝐵 however, one would 

not so much talk about “constructing” the set 𝐵 but rather of “separating the elements of 𝐴” with respect 
to 𝜙.  

Beeson writes that sets coming equipped with an equality is a unique feature of constructive set theory 

distinguishing it from classical set theory, as there is a global relation of equality defined on the universe 𝑉 of all sets. This statement seems imprecise for two reasons: Firstly, in the theories 𝐈𝐙𝐅 and 𝐂𝐙𝐅, equality 

will be a global relation as well (the constructive justification of this, however, is debatable). Secondly, 

although demanding (ii) is certainly true for informal constructive mathematics – so it is for informal 

classical mathematics. For example, in defining the set of real numbers, intuitively, two Cauchy-se-

quences represent the same real if their difference approaches 0. Informally, what one does is to define 

equality on the set of real numbers in this way. Of course, technically, one considers equivalence classes 

(defined according to the “equality” given by intuition) and inherits the global equality from 𝑉 – the 

definition of equality is “hidden” in the equivalence classes. We see that (ii) does not seem to be that a 

unique feature of (informal) constructive set theories after all. 

One example of a set is the set ℕ of natural numbers. Its canonical members are 0 and for each canonical 

member 𝑛, the object 𝑠(𝑛) is canonical too. Two canonical members are equal if their “numbers of 𝑠’s” 
coincides. How would we interpret expressions like 1010  or 3 + 5? Although 1010  is not a canonical 

 
2 Brouwer would reject this, see [62] 
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member of ℕ in the just defined sense, we would like to say that it belongs to the set ℕ and write 1010 ∈ℕ. Intuitively, the expression 1010 stands for a method computing a canonical member of ℕ. 

We thus say that 𝑎 is an element of the set 𝐴 and write 𝑎 ∈ 𝐴 if either 𝑎 is a canonical member of 𝐴, accord-

ing to (i), or 𝑎 is a method giving instructions for its own evaluation and of which we can prove that it 

yields some canonical member of 𝐴. This distinction between canonical and non-canonical elements is 

crucial in Martin-Löf’s set theory – this is why we included the word “canonical” in (i) and (ii). 

As another important example we may consider, given sets 𝐴 and 𝐵 with equalities =𝐴 and =𝐵 respec-

tively, the set 𝐵𝐴 of functions 𝑓: 𝐴 → 𝐵. To give an element 𝑓 of 𝐵𝐴 means to give a way to construct for 

each 𝑎 ∈ 𝐴  a member 𝑏 ∈ 𝐵  in such a way that equalities are respected, i.e. if 𝑎1 =𝐴 𝑎2 , then 𝑓(𝑎1) =𝐵 𝑓(𝑎2). If this is the case, we write 𝑓(𝑎) for the element 𝑏 as usual. To prove two elements 𝑓, 𝑔 ∈𝐵𝐴 equal, one needs to prove that for each 𝑎 ∈ 𝐴, 𝑓(𝑎) =𝐵 𝑔(𝑎). Clearly, this equality is an equivalence 

relation. 

2.1.3 BHK-interpretation 

In constructive mathematics, truth coincides with the notion of provability. The most important compre-

hensible semantics in the spirit of constructivism is the “Brouwer-Heyting-Kolmogorov”-semantics of 

intuitionistic logic (from here on: “BHK”, [31], [29], [37], [30], for a discussion see [4] or [64]). 

We will here give a variant of BHK-semantics tailored for the language of set-theory. We say that 𝑝 

proves  𝑎 ∈ 𝐴, if 𝑝 is a pair 〈𝑥, 𝑞〉, where 𝑥 is a canonical member of 𝐴 and 𝑞 proves that 𝑎 reduces to 𝑥. 𝜙 ∧ 𝜓, if 𝑝 is a pair 〈𝑞, 𝑟〉, where 𝑞 proves 𝜙 and 𝑟 proves 𝜓 𝜙 ∨ 𝜓, if 𝑝 is a pair 〈𝑛, 𝑞〉, where 𝑛 is a natural number and 𝑞 proves 𝜙 if 𝑛 = 0 and 𝜓, else. 𝜙 → 𝜓, if 𝑝 is a method transforming proofs of 𝜙 into proofs of 𝜓. ⊥, never ¬𝜙, if 𝑝 proves 𝜙 → ⊥ ∀𝑥. 𝜙(𝑥), if 𝑝 is a method giving for each object 𝑥 a proof 𝑝(𝑥) of 𝜙(𝑥) ∃𝑥. 𝜙(𝑥), if 𝑝 is a pair 〈𝑥, 𝑞〉, where 𝑥 is a (construction of an) object and 𝑞 proves 𝜙(𝑥) ∀𝑥 ∈ 𝐴. 𝜙(𝑥), if 𝑝 is a method transforming a proof of 𝑎 ∈ 𝐴 into a proof of 𝜙(𝑎) ∃𝑥 ∈ 𝐴. 𝜙(𝑥), if 𝑝 is a triple 〈𝑎, 𝑞, 𝑟〉, where 𝑞 is a proof of 𝑎 ∈ 𝐴 and 𝑟 is a proof of 𝜙(𝑎) 
Note that the clauses for ∃𝑥 𝜙(𝑥) and especially ∀𝑥 𝜙(𝑥) make only sense, if we have specified a certain 

domain of discourse. Only then can we talk about “each object” and “being an object”. Such a domain 
could be the collection of all natural numbers or more abstract notions such as the universe of all sets or 

all constructions of the mind.  
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In the following examples, we will use the 𝜆-calculus informally to make our argumentation clearer. This 

choice is not by chance: Howard proved in 1969 that programs of the simply-typed 𝜆-calculus correspond 

exactly proofs of natural deduction. 

Examples:  

We can give a proof the logical truth (𝜙 ∧ 𝜓) → 𝜙 as follows: Suppose, 𝑝 proves 𝜙 ∧ 𝜓, then 𝑝 is a pair 〈𝑞, 𝑟〉, where 𝑞 proves 𝜙 and 𝑟 proves 𝜓. Thus, pr1(𝑝) proves 𝜙, where pr1 extracts the first component 

of a pair. Hence 𝜆𝑥. pr1(𝑥) proves (𝜙 ∧ 𝜓) → 𝜙. 

We prove (𝑥 ∈ 𝑎 ∧ 𝑎 = 𝑏) → 𝑥 ∈ 𝑏 , where 𝑎 = 𝑏  means extensional equality, i.e. ∀𝑥(𝑥 ∈ 𝑎 ↔ 𝑥 ∈ 𝑏) . 

Here, as usual, “𝜙 ↔ 𝜓” is an abbreviation for 𝜙 → 𝜓 ∧ 𝜓 → 𝜙. If 𝑝 = 〈𝑞, 𝑟〉 is a proof of 𝑥 ∈ 𝑎 ∧ 𝑎 = 𝑏, i.e. 𝑞 proves 𝑥 ∈ 𝑎 and 𝑟 proves 𝑎 = 𝑏, then pr1(𝑟)(𝑥) proves 𝑥 ∈ 𝑎 → 𝑥 ∈ 𝑏. Thus, pr1(𝑟)(𝑥)(𝑞) proves 𝑥 ∈𝑏. Altogether, 𝜆𝑝. pr1(pr1(𝑝))(𝑥)(pr2(𝑝))proves (𝑥 ∈ 𝑎 ∧ 𝑎 = 𝑏) → 𝑥 ∈ 𝑏. 

2.2 Brouwer’s set theory 
Luitzen Brouwer can be seen as the founding father of the intuitionistic school of thought. As the name 

suggests, in his point, mathematics should be based upon intuition rather than language or any kind of 

formalism. The existence of mathematical objects is justified by mental constructions. In [8], Brouwer 

describes the first act of intuitionism as  

Completely separating mathematics from mathematical language and hence from 

the phenomena of language described by theoretical logic, recognizing that intui-

tionistic mathematics is an essentially languageless activity of the mind having its 

origin in the perception of a move of time. This perception of move of time may be 

described as the falling apart of a life moment into two distinct things, one of which 

gives way to the other, but is retained by memory. If the twoity thus born is divested 

of all quality, it passes into the empty form of the common substratum of all twoities. 

And it is this common substratum, this empty form, which is the basic intuition of 

mathematics. 

In particular, Brouwer rejects Cantor’s set theoretic construction of the continuum. According to his early 

standpoint [10], the continuum is given as an intuitive notion. It is impossible to conceive “all” its points, 
as intuition allows us to construct only denumerably many elements. Later however, he recognized the 

need to give a construction of the continuum. In the second act of intuitionism, he accepted two ways of 

constructing new mathematical objects: Choice sequences – infinite sequences whose elements are cre-

ated more or less freely from the preceding ones and species – properties of objects previously acquired. 

Note that in his early writings, he referred to species as “Mengen” (germ. “set”); only later he changed 
this notion to emphasize the difference to classical sets. 
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2.2.1 Species and Spreads 

A species is a (constructive) property 𝑃 of already constructed objects. As usual, we write 𝑎 ∈ 𝐴 if the 

object 𝑎 is an element of the spread 𝐴. Note that the clause “of already defined objects” is essential to 
block paradoxes such as Russel’s. We can thus construct species one step at a time, hence the notion of 

order of a species defined as follows is meaningful: 

(i) Concrete mathematical objects (natural numbers, sequences of natural numbers, rational num-
bers, choice sequences etc.) are species of order 0. 

(ii) If the already constructed objects have order 𝑛, then 𝑃 applied to them has order 𝑛 + 1. 

For example, the spread of all natural numbers, denoted 𝜔, has order 1. A recursive sequence of natural 
numbers (𝛼(𝑛))𝑛∈𝜔  may be represented as species of order 2 , namely the as species of pairs {(𝑛, 𝛼(𝑛)): 𝑛 ∈ 𝜔}. Note that many set-theoretic notions can be developed within this framework. It is 
straightforward to define union, intersection or the empty species. A function between two species 𝐴 and 𝐵 can be defined as a species given by a method constructing from each element of 𝐴 an element of 𝐵 
(although Brouwer reserves these notions for the special case of functions from species generated by a 
spread). In [7], a theory of constructible cardinal and ordinal numbers is developed. However powerful 
this may seem, it does not permit a satisfying construction of the continuum. 

This is the reason, Brouwer developed the notion of spread. A spread 𝑀 = (Λ, Γ) is determined by the two 

laws Λ and Γ: 

(A) The spread law Λ decides if a finite sequence of natural numbers is accepted or not under the follow-
ing restrictions: 

i. It decides which sequences of length one are accepted. 
ii. If (𝑛1, 𝑛2, … , 𝑛𝑘 , 𝑛𝑘+1) is accepted, also (𝑛1, 𝑛2, … , 𝑛𝑘) is accepted. 

iii. If (𝑛1, 𝑛2, … , 𝑛𝑘) is accepted, it decides for each 𝑚, if some sequence (𝑛1, 𝑛2, … , 𝑛𝑘 , 𝑚) is ac-
cepted or not 

iv. If (𝑛1, 𝑛2, … , 𝑛𝑘) is accepted, then there is a natural number 𝑚, such that the successor se-
quence (𝑛1, 𝑛2, … , 𝑛𝑘 , 𝑚) is accepted 

(B) The complementary spread law Γ assigns to any Λ-accepted sequence an already constructed mathe-
matical object:  (𝑛1) ↦ 𝛼1 (𝑛1, 𝑛2) ↦ 𝛼2 ⋮ (𝑛1, 𝑛2, … , 𝑛𝑘) ↦ 𝛼𝑘 ⋮ 

We can think of a spread as tree where each node is labelled by a mathematical object. 𝑀-sequences are 

sequences (𝑛1, 𝑛2, … ), where each initial segment is accepted. The corresponding sequence (𝛼1, 𝛼2, … ) is 

called a choice sequence – Brouwer considers them to be perfectly justified mathematical objects. To each 

spread 𝑀 we can thus define the species [𝑀] of choice sequences of 𝑀. Note that for a choice sequence 𝛽 
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constructed by another spread it is in general undecidable whether or not 𝛽 ∈ [𝑀], since we would need 

to check each initial segment of 𝛽. 

Examples: We give some important examples of spreads: 

• If the spread law permits no choices of natural numbers, we end up with the empty spread. 
• The species of all functions 𝜔 → 𝜔, denoted 𝜔𝜔 can be defined via a spread: The spread law permits 

in each step for every natural numbers to be chosen. The complementary spread law assigns each 
finite sequence to itself, i.e. (𝑛1, 𝑛2, … , 𝑛𝑘) ↦ (𝑛1, 𝑛2, … , 𝑛𝑘). 

• The binary spread allows in each step only choices of 0 or 1. Again, finite sequences are mapped to 
themselves. 

• Given an enumeration of the rational numbers 𝑞1, 𝑞2, … we define the following spread 𝑆 by giving its 
spread law: We accept all sequences of length 1. If (𝑛1, … , 𝑛𝑘) is accepted, then (𝑛1, … , 𝑛𝑘 , 𝑚) is ac-
cepted iff |𝑞𝑛𝑘 − 𝑞𝑚| < 12𝑘+1 . 
Clearly, this law will always permit some successor sequences. The complementary spread law is 
given by the correspondence (𝑛1, … , 𝑛𝑘) ↦ (𝑞𝑛1 , … , 𝑞𝑛𝑘). 

We can think of the elements of [𝑆] as Cauchy-sequences of rational numbers. We define equality on [𝑆] 
as  

𝛼 ≈ 𝛽 ⇔ |𝛼𝑛 − 𝛽𝑛| < 12𝑛   for all 𝑛 ∈ 𝜔. 
Finally, the continuum ℝ is given as the spread of all equivalence classes of [𝑆] under ≈. 

Similarly, we assign to finite binary choices of the binary spread instead intervals, as indicated: 

 

We can thus define the spread of the real unit interval [0,1]. To conclude, we discuss Brouwer’s notion 
of functions: 

0,1
0, 12

0, 14
14 , 24

12 , 0 24 , 34
34 , 44

… 

… 

… 

… 
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2.2.2 Intuitionistic functions 

Given a spread 𝑀, an intuitionistic function 𝜙 from [𝑀] to 𝜔, denoted 𝜙: [𝑀] → 𝜔 is a law 𝜙 that computes 

for each 𝑀-sequence 𝛼 a natural number 𝑁𝛼  and a natural number 𝜙(𝛼) based on the initial segment (𝛼1, … , 𝛼𝑁𝛼). 
From this definition we immediately see the following continuity principle: If 𝜙: [𝑀] → 𝜔 is an intuition-

istic function, then it is continuous in the sense that for 𝛼, 𝛽 ∈ [𝑀]  there exists some 𝑁 such that 𝜙(𝛼) =𝜙(𝛽), whenever (𝛼1, …𝛼𝑁) = (𝛽1, … 𝛽𝑁) – simply put 𝑁 = max(𝑁𝛼 , 𝑁𝛽)).  
Recall the definitions of continuity from analysis: 

Definition 2.10: A function 𝑓:𝐷 → 𝑊 with 𝐷,𝑊 ⊆ ℝ is continuous at 𝑥 ∈ 𝐷, if for each 𝑛 ∈ ℕ there is some 𝑚 ∈ ℕ such that for all 𝑦 ∈ 𝐷: |𝑥 − 𝑦| < 2−𝑚 → |𝑓(𝑥) − 𝑓(𝑦)| < 2−𝑛.  

If we put [𝑀] = ℝ in the above uniformity principle, we can thus say 

Theorem 2.11: Every function 𝑓:ℝ → ℕ is continuous. 

Clearly, this theorem is classically not valid, since the function 𝑓:ℝ → ℕ with 

𝑓(𝑥) = {1, if 𝑥 = 00,         if 𝑥 ≠ 0 

is not continuous. Note however, that intuitionistically speaking, this function is not total, as we cannot 

in general, decide by a finite procedure whether 𝑥 = 0 or 𝑥 ≠ 0. In textbooks, such as [66], the definition 

of an intuitionistic function is formulated as the axiom 

(𝐖𝐂𝐍) ∀𝛼 ∈ 𝜔𝜔. ∃𝑥 ∈ 𝜔. 𝐴(𝛼, 𝑥) → ∀𝛼 ∈ 𝜔𝜔. ∃𝑛, 𝑏 ∈ 𝜔. ∀𝛾 ∈ 𝜔𝜔(�̅�𝑛 = �̅�𝑛 → 𝐴(𝛾, 𝑏)), 
where we abbreviate �̅�𝑛 = (𝛼1, … , 𝛼𝑛). Although clearly incompatible with classical mathematics, this 

axiom may be added to any constructive formalism whenever one wishes to do mathematics Brouwer-

style ( [59]). 

Unfortunately, in defining functions [𝑀] → [𝑁] between two spreads, Brouwer did not stick to the inter-

nal fashion and defined instead a function [0,1] → ℝ to be “a law that, with each of certain point cores of 
the unit continuum, […] and form the “domain of definition” of the function, associates one point core 
of the linear continuum” [11].  

The following approach of defining these functions is more in the spirit of Brouwer’s definition of func-
tions [𝑀] → 𝜔 and can be found in [50]:  A function [𝑀] → [𝑁] is a law which corresponds to each 𝑁-

sequence an 𝑀-sequence based on the law Φ∗ wich correlates finite sequences of naturals such that 
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(i) If 𝑛 < 𝑚, then Φ∗(𝛼1, 𝛼2, … , 𝛼𝑛) ≺ Φ∗(𝛼1, 𝛼2, … , 𝛼𝑚), i.e. Φ∗(𝛼1, 𝛼2, … , 𝛼𝑛) is an initial segment of Φ∗(𝛼1, 𝛼2, … , 𝛼𝑚). 
(ii) Φ∗ is not finally constant 
(iii) Φ(𝛼) = supΦ∗(�̅�𝑛), i.e. Φ(𝛼) is approximated by the segments Φ∗(�̅�𝑛). We say that Φ∗ computes Φ. 

We have the following generalized continuity principle: ∀𝑛 ∈ 𝜔. ∃𝑚 ∈ 𝜔. (𝛼𝑚 = 𝛽𝑚 → (Φ(𝛼))𝑛 = (Φ(𝛽))𝑛) 
This gives us the following result: 

Theorem 2.12: Every real function ℝ → ℝ is continuous. 

In [11], Brouwer, using his more general notion of real function, proved only a negative formulation of 

this result, namely, that a hypothesis of discontinuity of a real function leads to contradiction. 

2.3 Martin-Löf’s set theory 
Axiomatized mathematical theories usually come in two layers: Firstly, a deductive system (some back-

ground logic, be it intuitionistic or classical) and secondly, the particular axioms of the respective theory 

(for example, axioms of set theory). In this sense, there is a divide between the elements of discourse 

(elements of the second layer) and their interplay (propositions, elements of the first layer). In contrast, 

in Martin-Löf’s set theory (𝐌𝐋), both layers come to the same basic notion: sets. In this “logic-free” ap-
proach, 𝐌𝐋 aims to better model the constructive activity of a mathematician: 

The task of proving a theorem is identified with a special case of the mathematical activity of constructing 
an object – we speak of this correspondence as propositions-as-types (or Curry-Howard correspondence). Fol-

lowing this intuition, mathematical objects such as sets, elements and functions are explained in terms 

of concepts from programming such as data structures, data types and programs. Hence, it will come as 

no surprise that various automated proof assistants like NuPRL and Coq and programming languages 

like Agda and Idris have been based on concepts featured in 𝐌𝐋 (see for example [2], [33], [39], [BO]).  

To get used to the ideas involved, let us investigate the division theorem for natural numbers, ∀𝑎, 𝑏 ∈ ℕ [𝑏 > 0 → (∃𝑞, 𝑟 ∈ ℕ 𝑟 < 𝑏 ∧ 𝑎 = 𝑞𝑏 + 𝑟)]. 
Following the BHK-interpretation, this proposition corresponds to an algorithm Φ operating on pairs (𝑎, 𝑏) of natural numbers and converting proofs of 𝑏 > 0 into triples (𝑞, 𝑟, 𝑝), where 𝑞 and 𝑟 are natural 

numbers and 𝑝 is a proof that 𝑟 < 𝑏 and 𝑎 = 𝑞𝑏 + 𝑟. In symbols, we could write: Φ ∶ Π((𝑎, 𝑏):ℕ × ℕ)[𝐺0(𝑏) → (Σ(𝑞, 𝑟: ℕ × ℕ)(I(𝑎, 𝑞𝑏 + 𝑟) × 𝐺0(𝑏 − 𝑟))].  
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Here, “Π” denotes the product indexed by pairs of natural numbers, i.e. the set of functions from ℕ× ℕ 

into the specified codomain. It gives a natural interpretation for the universal quantifier. 𝐺0(𝑏) is the set 

of proofs of “𝑏 > 0”; interpreting implications, “→”, as usually denotes function spaces, “Σ” stands for 
the (generalized) disjoint sum, giving constructive meaning to existential quantification: its index set ℕ× ℕ are witnesses to the formula on the right: I(𝑎, 𝑞𝑏 + 𝑟) are programs executing both 𝑎 and 𝑞𝑏 + 𝑟 

and finding that both computations converge to the same canonical element of ℕ. 

Note that in our example, proving the division theorem comes down to constructing a member Φ of a 

particular set Π((𝑎, 𝑏):ℕ × ℕ)[… ]. Following the constructivist tradition, we have thus equated (the truth 

of) the division theorem with its proof. Φ itself becomes a mathematical object and no longer restricted 

to the metamathematical level. In 𝐌𝐋 we even go a step futher and identify the theorem with the set of 

its proofs. Following Martin-Löf’s early nomenclature, we may thus speak of this correspondence as 
propositions-as-sets (instead of propositions-as-types). Implementing this idea, the assertions or judge-

ments (we will discuss this important notion in Martin-Löf’s theory more rigorously in a moment) “𝐴 set” 
and “𝑎 ∈ 𝐴” can have the following interpretations from [43]:  𝑨 𝐬𝐞𝐭  𝒂 ∈ 𝑨   𝐴 is a set 𝑎 is an element of the set 𝐴 𝐴 is nonempty 𝐴 is a proposition 𝑎 is a proof (construction) of the prop-

osition 𝐴 
𝐴 is true 𝐴 is an intention (expectation) 𝑎  is a method of fulfilling (realizing) 

the intention (expectation) 𝐴 
𝐴 is fulfillable (realizable) 𝐴 is a problem (task) 𝑎 is a method of solving the problem 

(doing the task) 𝐴 
𝐴 is solvable 

In a nutshell, the theory 𝐌𝐋 postulates the existence of certain sets, like ℕ (set of natural number) and ℕ𝑘 

(set with 𝑘 elements) and gives rules for constructing new sets and their canonical elements from given 

ones (there are rules for “→”, "Π”, “Σ” and so on). 

2.3.1 Proposition vs judgement 

From Frege to the Principia the distinction of propositions and judgements has been vital: Although not 

as central in first-order theories, this distinction is still present: Formulas play the role of propositions – 

they stand for statements that can be made within the theory. Theorems on the other hand, representing 

judgements, are formulas that have been identified as true via some (possibly) external formalism or se-

mantics. The only kind of judgements in these theories is therefore of the form “𝜙 is true”.  

In 𝐌𝐋, there are four kinds of judgements: 

1. 𝐴 set (𝐴 is a well-formed set) 
2. 𝐴 = 𝐵 (𝐴 and 𝐵 are equal sets) 
3. 𝑎 ∈ 𝐴 (𝑎 is an element of 𝐴) 
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4. 𝑎 = 𝑏 ∈ 𝐴 (𝑎 and 𝑏 are equal elements of the set 𝐴) 𝐌𝐋 follows our intuitive definition quite closely. An element 𝑎 of a set 𝐴 is a method (or program) which, 
when executed, yields a canonical element of the set 𝐴 as a result. Two arbitrary elements 𝑎, 𝑏 of the set 𝐴 are equal if, when executed, 𝑎 and 𝑏 yield equal canonical elements of the set 𝐴 as results. Thus, actu-
ally, judgement 3. should be read as “𝑎 is a program yielding a canonical element of 𝐴” and judgement 
4. as “𝑎 and 𝑏 are programs yielding equal canonical elements of 𝐴).  

2.3.2 The rules of 𝐌𝐋 

The rules of 𝐌𝐋 postulate the existence of certain sets and describe how new sets may be constructed 
from existing ones. We consider the following example of the Cartesian product 𝐴 × 𝐵 of two sets 𝐴 and 𝐵. 

Example: We define the set 𝐴 × 𝐵 via the following rules:  ×-formation 𝐴 set 𝐵 set𝐴 × 𝐵 set  
𝐴 = 𝐶 𝐵 = 𝐷𝐴 × 𝐵 = 𝐶 × 𝐷  

The rules of ×-formation explain how to construct the set 𝐴 × 𝐵 and when two such constructions lead 

to the same result. ×-introduction 𝑎 ∈ 𝐴 𝑏 ∈ 𝐵(𝑎, 𝑏) ∈ 𝐴 × 𝐵  
𝑎 = 𝑐 ∈ 𝐴 𝑏 = 𝑑 ∈ 𝐵(𝑎, 𝑏) = (𝑐, 𝑑) ∈ 𝐴 × 𝐵  

The introduction rule declares how canonical elements of 𝐴 × 𝐵 look like and when they are equal.  

Remark: In formulating this rule, we should have written down assumptions  𝐴 set and 𝐵 set – without 

these assumptions the expression “𝐴 × 𝐵” does not make any sense. However, assumptions like these 
are obvious and we will avoid writing down any such trivial assumptions in the future. ×-elimination 𝑐 ∈ 𝐴 × 𝐵 (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵)𝑑(𝑥, 𝑦) ∈ 𝐶(𝑥, 𝑦)E(𝑐, 𝑑) ∈ 𝐶(𝑐)  

𝑐1 = 𝑐2 ∈ 𝐴 × 𝐵 (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵)𝑑1(𝑥, 𝑦) = 𝑑2(𝑥, 𝑦) ∈ 𝐶(𝑥, 𝑦)E(𝑐1, 𝑑1) = E(𝑐2, 𝑑2) ∈ 𝐶(𝑐)  

Here, the expressions (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵)𝑑(𝑥, 𝑦) ∈ 𝐶(𝑥, 𝑦)     and     (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵)𝑑1(𝑥, 𝑦) = 𝑑2(𝑥, 𝑦) ∈ 𝐶(𝑥, 𝑦) 
should be read as follows: “Provided 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵, the object 𝑑(𝑥, 𝑦) is an element of 𝐶(𝑥, 𝑦).” and 
“Provided 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵, the objects 𝑑1(𝑥, 𝑦) and 𝑑2(𝑥, 𝑦) are equal elements of 𝐶(𝑥, 𝑦).”, respectively. 
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The elimination rules explain the behavior of elements in 𝐴 × 𝐵. It introduces the E-operator which, in-

tuitively, works as follows on an input 𝑐 ∈ 𝐴 × 𝐵: It executes the method 𝑐 to find a canonical element (𝑎, 𝑏) of 𝐴 × 𝐵. It then returns 𝑑((𝑎, 𝑏)) ∈ 𝐶(𝑎, 𝑏).  ×-equality (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵)𝑎 ∈ 𝐴 𝑏 ∈ 𝐵 𝑑(𝑥, 𝑦) ∈ 𝐶((𝑥, 𝑦))E((𝑎, 𝑏), 𝑑) = 𝑑(𝑎, 𝑏) ∈ 𝐶((𝑎, 𝑏))  

Finally, the rule of ×-equality declares how the E-operator works on canonical elements.  

We can now give our first “proposition-as-set”-interpretation. Namely, a canonical proof of 𝐴 ∧ 𝐵 should 
be a pair (𝑎, 𝑏) of proofs 𝑎 of 𝐴 and 𝑏 of 𝐵. It is therefore natural to identify the proposition 𝐴 ∧ 𝐵 with its 
set of proofs 𝐴 × 𝐵. We therefore define 𝐴 ∧ 𝐵 ≡ 𝐴 × 𝐵. When interpreting proposition as sets, we often 
write 𝐴 prop instead of 𝐴 set and 𝐴 true to indicate that there is some 𝑎 ∈ 𝐴 (some proof of 𝐴). We can 
thus translate the ×-rules into rules familiar form logic: ∧-formation 𝐴 prop 𝐵 prop𝐴 ∧ 𝐵 prop  

∧-introduction 𝐴 true 𝐵 true𝐴 ∧ 𝐵 true  ∧-elimination (𝐴 true, 𝐵 true)𝐴 ∧ 𝐵 true 𝐶 true𝐶 true  

We can now, for example, derive the logical rule 𝐴 ∧ 𝐵 true𝐴 true  

if we substitute 𝐴 for 𝐶 in the rule of ∧-elimination. We will continue discussing the rules of 𝐌𝐋 in chap-

ter 5. 

2.4 𝐈𝐙𝐅 and 𝐂𝐙𝐅 
The idea behind the theories 𝐈𝐙𝐅 and 𝐂𝐙𝐅 is simple: We start with the Zermelo-Fraenkel set theory with 

choice (𝐙𝐅𝐂) – the Hilbert-style theory based on classical logic that most today’s mathematics is encoded 
in. Clearly, 𝐙𝐅𝐂 is constructively not acceptable, so we try to carefully restrict it. Of course, 𝐋𝐄𝐌 will be 

first to fall victim to these restriction – however, even after restricting the original classical background 

logic to intuitionistic logic, it will turn out that there are other axioms of 𝐙𝐅𝐂 that will still get us 𝐋𝐄𝐌 
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back. We will replace these axioms by (classically) equivalent ones – this way we can always put 𝐋𝐄𝐌 

back to restore the initial theory.  Having replaced all these axioms, we end up with the Intuitionistic 

Zermelo-Fraenkel-style set theory 𝐈𝐙𝐅. However, some remaining axioms of 𝐈𝐙𝐅 may still seem problem-

atic form the constructive point of view. This is especially true for impredicative axioms. We further 

restrict our theory and end up with the Constructive Zermelo-Fraenkel-style set theory 𝐂𝐙𝐅. We first 

start with a brief discussion of 𝐙𝐅𝐂. 

2.4.1 Zermelo-Fraenkel set theory 𝐙𝐅𝐂 

The theory 𝐙𝐅𝐂 is based on a classical Hilbert-style logic with equality, no function symbols and the only 

relational symbol being “∈”. We expect axiom systems like this to be known and focus on the set-theo-

retic axioms of our theory: 

Extensionality 

The axiom of extensionality reads ∀𝑥, 𝑦 [∀𝑧(𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦) → 𝑥 = 𝑦]. 
It means that two sets are equal if they contain the same elements. Usually, the background logic contains 

axioms for equality like (𝑥 ∈ 𝑎 ∧ 𝑎 = 𝑏) → 𝑥 ∈ 𝑏 and (𝑥 ∈ 𝑏 ∧ 𝑎 = 𝑏) → 𝑥 ∈ 𝑎. We could replace these ax-

ioms if we instead defined equality via the ∈-relation by 𝑥 = 𝑦 ↔ ∀𝑧(𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦). 
This means, that unlike in 𝐌𝐋, we have a global equality on all sets. Another important application of 

the axiom of extensionality is that we are able to define notions by the ∈-relation – we will see an example 

shortly, when discussion the axiom of pair. 

It turns out that this seemingly innocent axiom already implies some unwanted instances of 𝐋𝐄𝐌. 

Pair 

The axiom of pair or pairing axiom reads ∀𝑥, 𝑦 [∃𝑧∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 = 𝑥 ∨ 𝑤 = 𝑦))]. 
It says that for each two sets 𝑥 and 𝑦 there is a set containing exactly 𝑥 and 𝑦 as elements. Now, by ex-

tensionality such an element does not only exist but is also unique – this justifies writing {𝑥, 𝑦} for the 

pair. The singleton {𝑥} may be defined as {𝑥, 𝑥}. Finite sets of more than two elements are defined simi-

larly. The (Kuratowski) ordered pair of 𝑥 and 𝑦 is defined as 〈𝑥, 𝑦〉 = {{𝑥}, {𝑥, 𝑦}}. A set of ordered pairs 𝑅 is 

called a relation. We often write 𝑎𝑅𝑏 instead of (𝑎, 𝑏) ∈ 𝑅. A relation 𝑓 is called a function iff 𝑥1 = 𝑥2 ∧(𝑥1, 𝑦1) ∈ 𝑓 ∧ (𝑥2, 𝑦2) ∈ 𝑓 → 𝑦1 = 𝑦2. We write 𝑓(𝑥) for the thus unique 𝑦 with (𝑥, 𝑦) ∈ 𝑓. 

Union 

The axiom of union allows us to form unions of sets, i.e. 
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∀𝐴 ∃𝑢 ∀𝑥 [𝑥 ∈ 𝑢 ↔ ∃𝑤(𝑥 ∈ 𝑤 ∧ 𝑤 ∈ 𝐴)]. 
Here, 𝐴 is a collection of sets 𝑢. The union 𝑈 of all these 𝑢 should contain all elements 𝑥 of each 𝑢. In the 

simplest case we are given two sets 𝑎 and 𝑏. By pairing, we may form {𝑎, 𝑏}, now the union of the sets 𝑎 

and 𝑏 contains exactly the elements of 𝑎 and 𝑏. Again, extensionality justifies writing ⋃𝐴 for the union 

of 𝐴 and in our example, 𝑎 ∪ 𝑏 instead of ⋃{𝑎, 𝑏}. 
Empty set 

The axiom of empty set postulates the existence of the empty set, ∃𝑥∀𝑦¬(𝑦 ∈ 𝑥). 
Extensionality justifies writing ∅ for the witness of this formula. This axiom is often also formulated as 

the set existence axiom ∃𝑥(𝑥 = 𝑥) and the empty set constructed as a corollary. 

Infinity 

Before formulating the axiom, we introduce the notation 𝑠(𝑥) = 𝑥 ∪ {𝑥}. This is justified by the axioms of 

union, pair and extensionality (this can be seen by writing 𝑠(𝑥) = ⋃{𝑥, {𝑥, 𝑥}}). Now we can construct the 

set of natural numbers as follows: 0 = ∅ 1 = 𝑠(0) = ∅ ∪ {∅} = {∅} 2 = 𝑠(1) = {∅, {∅}} 3 = 𝑠(2) = {∅, {∅}, {∅, {∅}}}      ⋮ 
The axiom of infinity postulates that there is a set containing these numbers (and these numbers only): ∃𝑥[(∀𝑛 ∈ 𝑥. 𝑠(𝑛) ∈ 𝑥) ∧ ∀𝑛 ∈ 𝑥. (𝑛 = ∅ ∨ ∃𝑚 ∈ 𝑥. 𝑛 = 𝑠(𝑚))]. 
It is clear that this set must be unique by extensionality. We will refer to it as 𝜔. Note that this axiom does 

not suffice for internal induction or recursion on the natural numbers. 

Separation schema 

Given a set 𝑎 and a formula 𝜙 such that 𝑎 is not free in 𝜙, we can form the (unique) set of all elements of 𝑎 that we can prove to possess the property 𝜙: ∀𝑎∃𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝑎 ∧ 𝜙(𝑦)). 
Again, by extensionality, we may write {𝑥 ∈ 𝑎: 𝜙(𝑥)} for 𝑦. As an example, given two sets 𝑎 and 𝑏 we 

define their intersection as 𝑎 ∩ 𝑏 = {𝑥 ∈ 𝑎: 𝑥 ∈ 𝑏}. Another example is the definition of range and domain 

of a function: For a relation 𝑅 and 𝑥𝑅𝑦 note that, because of (𝑥, 𝑦) = {{𝑥}, {𝑥, 𝑦}}, we have 𝑥, 𝑦 ∈ ⋃⋃𝑅. 

Hence, we can set 
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dom(𝑅) = {𝑥 ∈⋃⋃𝑅 :∃𝑦 ∈⋃⋃𝑅 . (𝑥, 𝑦) ∈ 𝑅} range(𝑅) = {𝑦 ∈⋃⋃𝑅 :∃𝑥 ∈⋃⋃𝑅 . (𝑥, 𝑦) ∈ 𝑅}. 
We often write 𝑓: 𝐴 → 𝐵 to mean that 𝑓 is a function with 𝐴 = dom(𝑓) and 𝐵 = range(𝑓). 
Later in this chapter, we will discuss the fact that this axiom is constructively not unproblematic. 

Replacement 

Given a formula 𝜙, such that 𝐵 is not free in 𝜙, we have ∀𝐴[(∀𝑥 ∈ 𝐴. ∃! 𝑦. 𝜙(𝑥, 𝑦)) → ∃𝐵. ∀𝑥 ∈ 𝐴. ∃𝑦 ∈ 𝐵. 𝜙(𝑥, 𝑦)]. 
This axiom means intuitively, that given a function with domain 𝐴, we can form its range 𝐵. As a simple 

example, replacement allows us, given any set 𝐴, to “replace” each 𝑥 ∈ 𝐴 by {𝑥}, thus forming the set 𝐴∗ = {{𝑥}: 𝑥 ∈ 𝐴}. Indeed, we can apply replacement since ∀𝑥 ∈ 𝐴 ∃! 𝑦 𝑦 = {𝑥}. We obtain some 𝐵 con-

taining all these 𝑦s. Using separation, we can form {𝑦 ∈ 𝐵: ∃𝑥 ∈ 𝐴 𝑦 = {𝑥}} = 𝐴∗. 
We can use replacement to give another definition of domain and range of a relation: Since ∀𝑧 ∈𝑅. ∃! 𝑥. (∃𝑦. 𝑧 = (𝑥, 𝑦)), we obtain 𝐵  containing all of these 𝑥 . By separation, we can form dom(𝑅) ={𝑦 ∈ 𝐵: ∃𝑥 ∈ 𝐴 (𝑥, 𝑦) ∈ 𝑅} and similarly range(𝑅). 
Powerset 

We define the subset-relation as 𝑥 ⊆ 𝑦 ↔ ∀𝑧(𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑦). The Powerset-axiom states that, given a set 𝐴, 

there is a set containing all subsets of 𝐴: ∀𝐴. ∃𝑃. ∀𝑥. (𝑥 ⊆ 𝐴 ↔ 𝑥 ∈ 𝑃). 
We write 𝒫(𝐴) for 𝑃. It will turn out that that this axiom is not at all unproblematic from a constructive 

viewpoint. For example, for every formula 𝜙, we can form by separation the set {𝑥 ∈ {∅}:𝜙}. By the Pow-

erset axiom it must be contained in 𝒫({∅}). Of course, classically, {𝑥 ∈ {∅}: 𝜙} = ∅ or {𝑥 ∈ {∅}: 𝜙} = {∅}, 
but this reasoning fails with an intuitionistic background logic. Hence, already the (classically finite and 

easy) set 𝒫(1) turns out to be equivalent to the set of all formulas and hence to be highly non-trivial. 

Foundation 

This axiom says that every set must have an ∈-minial element: ∀𝐴[𝐴 → ∃𝑚(𝑚 ∈ 𝐴 ∧𝑚 ∩ 𝐴 = ∅)]. 
In other words: there are no infinite ∈-chains. This axiom allows us to prove properties by induction 

within the theory. This is usually done as follows: Let 𝜙(𝑥) be any property such that we can prove the 
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induction step ∀𝑎 ((∀𝑥 ∈ 𝑎. 𝜙(𝑥)) → 𝜙(𝑎)). Then 𝜙 must hold for all sets (if it holds for at least one): Be-

cause if it does not hold for all sets, then there is (classical reasoning) a least ∈-least element 𝑎 not satis-

fying 𝜙. By minimality, all its elements satisfy 𝜙 and by the inductive step, so must 𝑎, contradiction. 

These lines already show that we must find a different formulation of this axiom if we want to conduct 

inductive proofs in systems based on intuitionistic logic. As a simple example of the foundation axiom 

in action, let us show that no set can contain itself: 

ⓒLemma 2.13: No set can contain itself. 

Proof: For each set 𝑎, the set {𝑎} must have an element disjoint from itself, but the only possible candidate 

is 𝑎, i.e. 𝑎 ∩ {𝑎} = ∅, i.e. ¬(𝑎 ∈ 𝑎). ∎ 

 

Choice 

Let 𝑠𝑖𝑛𝑔(𝑥) mean that 𝑥  contains only one element, i.e. ∃𝑦[(𝑥 ∈ 𝑦) ∧ ∀𝑧(𝑧 ∈ 𝑥 ↔ 𝑧 = 𝑦)]. The axiom of 

choice (𝐀𝐂) reads: ∀𝑆[((∀𝑠 ∈ 𝑆. 𝑠 ≠ ∅) ∧ (∀𝑠1, 𝑠2 ∈ 𝑆. 𝑠1 ∩ 𝑠2 = ∅)) → ∃𝐶. ∀𝑠 ∈ 𝑆. 𝑠𝑖𝑛𝑔(𝐶 ∩ 𝑠)]. 
It says that for all collection 𝑆 of nonempty sets 𝑠, there is a choice set 𝐶 containing exactly one element 

of each 𝑠. Alternatively, it is easily seen that the axiom of choice has the equivalent formulation  

∀𝐴 [(∀𝑎 ∈ 𝐴. 𝑎 ≠ ∅) → ∃𝑓: 𝐴 →⋃𝐴 . 𝑓(𝑎) ∈ 𝑎], 
saying that for each collection 𝐴 of nonempty sets 𝑎 there is a choice function 𝑓 picking one element of 

each of the sets 𝑎. 𝐀𝐂 is often considered problematic, even from a classical point of view. (We will show 

that it is constructively inacceptable in the next section). Therefore, one often likes to consider the theory 𝐙𝐅 = 𝐙𝐅𝐂 − 𝐀𝐂. Kurt Gödel and Paul Cohen showed that the axiom of choice is independent from 𝐙𝐅, 

see for example [40]. 

2.4.2 From 𝐙𝐅𝐂 to 𝐈𝐙𝐅 – weak counterexamples 

We start restricting 𝐙𝐅𝐂 to obtain a theory compatible with intuitionistic logic. As noted before, the first 

step is to replace our classical background logic with an intuitionistic one. For now, we want to have a 

(more or less) informal discussion, so we skip writing down all the axioms explicitly. Unfortunately 

however it does not suffice to simply remove 𝐋𝐄𝐌 from the background logic as we may observe what 

is called a weak counterexample: We say that a formula 𝜙 in the language of set theory is a weak counter-

example iff 𝜙 implies unwanted instances of 𝐋𝐄𝐌 over some simple set theory. As the background theory 

we take 𝐁𝐒𝐓 – basic set theory – over the constructively unproblematic axioms extensionality, pairing, 

union, empty set and infinity and a restricted version of the separation schema: 
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∀𝑎∃𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝑎 ∧ 𝜙(𝑦)), 
where 𝑎 is not free in 𝜙 and 𝜙 is a restricted formula (or bounded formula), which means that quantifiers 

appear in their bounded forms only, i.e ∀𝑥 ∈ 𝑎 or ∃𝑦 ∈ 𝑏. 𝐁𝐒𝐓 will play the role of an easy to see least 

common divisor of the theories 𝐙𝐅𝐂, 𝐈𝐙𝐅 and 𝐂𝐙𝐅. The unwanted instances of 𝐋𝐄𝐌 are usually full 𝐋𝐄𝐌 

or the weaker version 𝐋𝐄𝐌′, which is 𝐋𝐄𝐌 but only for restricted formulas. 

Foundation as weak counterexample 

Let 𝐋𝐄𝐌′ be the law of excluded middle for bounded formulas. We will show that foundation implies 𝐋𝐄𝐌′. Assuming the full separation axiom, it even implies 𝐋𝐄𝐌: 

ⓂProposition 2.14: Let 𝐋𝐄𝐌′ be the law of excluded middle for bounded formulas. We then have 𝐁𝐒𝐓 ⊢ Foundation → 𝐋𝐄𝐌′, 𝐁𝐒𝐓 + Separation ⊢ Foundation → 𝐋𝐄𝐌. 
Proof: Let 𝜙 be any (bounded) formula and set 𝑆 = {𝑥 ∈ {0,1}: (𝑥 = 0 ∧ 𝜙) ∨ 𝑥 = 1}. Since 1 ∈ 𝑆, by Foun-

dation, there is some ∈-minimal element 𝑠 ∈ 𝑆. If 𝑠 = 0, then 𝜙. If 𝑠 = 1, then ∅ = 1 ∩ 𝑆 = {0} ∩ 𝑆, i.e. 0 ∉𝑆, which means ¬𝜙. Altogether, 𝜙 ∨ ¬𝜙. ∎ 

We have already remarked that using the Foundation axiom to conduct induction proofs will be prob-

lematic in a constructive setting. We will therefore replace it with the more suitable axiom of set-induction: (∀𝑎(∀𝑦 ∈ 𝑎. 𝜙(𝑦)) → 𝜙(𝑎)) → ∀𝑎. 𝜙(𝑎). 
Taking this axiom is also justified by the fact that both axioms are classically equivalent: 

ⓂProposition 2.15: 𝐁𝐒𝐓 + 𝐋𝐄𝐌 ⊢ Foundation ↔ Set-induction 

 “→”: Let 𝜙 be any formula and assume ∀𝑎(∀𝑦 ∈ 𝑎. 𝜙(𝑦)) → 𝜙(𝑎). Towards a contradiction, suppose, 

that there is some set 𝐴 such that ¬𝜙(𝐴). We want to assume that this 𝐴 is ∈-minimal with this property, 

i.e. ∀𝑦 ∈ 𝐴. 𝜙(𝑦). This immediately leads to the contradiction 𝜙(𝐴). 
Let us show that this assumption is justified: If 𝐴 is not ∈-minimal, then 𝐴′ = {𝑏 ∈ 𝐴:¬𝜙(𝐴)} ≠ ∅. By 

Foundation, let 𝑚 ∈ 𝐴′ be such that 𝑚 ∩ 𝐴′ = ∅. Then, for all 𝑦 ∈ 𝑚 ∩ 𝐴: 𝜙(𝑦). We can thus use 𝑚 ∩ 𝐴 in-

stead of 𝐴. 

“←”: Suppose, there is some set 𝑥 without ∈-minimal element. Let 𝜙(𝑡) be the formula “𝑡 ∉ 𝑥” and as-
sume, that for all 𝑦 ∈ 𝑎 𝜙(𝑦). If 𝑎 ∈ 𝑥, then there is some 𝑦 ∈ 𝑎 ∩ 𝑥, hence ¬𝜙(𝑦). This shows that 𝑎 ∈ 𝑥 

is impossible and thus 𝜙(𝑎). By Set-induction, ∀𝑎 (𝑎 ∉ 𝑥), i.e. 𝑥 = ∅. ∎ 

As a simple example of set-induction, let us give an alternative proof in 𝐁𝐒𝐓 + Set induction of the fact 

that no set contains itself (Lemma 2.13): 
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Lemma 2.16: No set can contain itself. 

Proof: Suppose, ∀𝑦 ∈ 𝑎 ¬(𝑦 ∈ 𝑦). Assume, 𝑎 ∈ 𝑎, then by hypothesis, ¬(𝑎 = 𝑎), contradiction.  ∎ 

Axiom of choice as weak counterexample 

Diaconescu showed that that the axiom of choice provides us with another weak counterexample [21]: 

ⓂTheorem 2.17: We have:  𝐁𝐒𝐓 ⊢ 𝐀𝐂 → 𝐋𝐄𝐌′, 𝐁𝐒𝐓 + Separation ⊢ 𝐀𝐂 → 𝐋𝐄𝐌. 
Proof: Let 𝜙 be any (bounded) formula and set 𝑆 = {𝑎, 𝑏}, where 𝑎 = {𝑥 ∈ 2: (𝑥 = 0 ∧ 𝜙) ∨ 𝑥 = 1} and 𝑏 = {𝑥 ∈ 2: 𝑥 = 0 ∨ (𝑥 = 1 ∧ 𝜙)}. 
Let 𝑓: {𝑎, 𝑏} → 2 be a choice function. Then one of the following cases hold: 

• 𝑓(𝑎) = 0, then 0 ∈ 𝑎, we have 𝜙. 
• 𝑓(𝑏) = 1, then 1 ∈ 𝑏, we have 𝜙. 
• 𝑓(𝑎) = 1 and 𝑓(𝑏) = 0. Then 𝑓(𝑎) ≠ 𝑓(𝑏), and, as 𝑓 is a function, 𝑎 ≠ 𝑏. If 𝜙, then 0 ∈ 𝑎 and 1 ∈ 𝑏, so 𝑎 = 2 = 𝑏, so ¬𝜙. ∎ 

The theory 𝐈𝐙𝐅 

Although there are other versions of choice (not necessarily equivalent to 𝐀𝐂) compatible with intuition-

istic logic, we stop at this point and define 𝐈𝐙𝐅 to be all axioms of 𝐙𝐅 but for foundation replaced with 

set induction and separation replaced with the following stronger axiom, called the collection schema: ∀𝐴[(∀𝑥 ∈ 𝐴. ∃𝑦. 𝜙(𝑥, 𝑦)) → ∃𝐵. ∀𝑥 ∈ 𝐴. ∃𝑦 ∈ 𝐵. 𝜙(𝑥, 𝑦)]. 
Showing that this axiom does not go beyond 𝐙𝐅, requires some deeper results and will be postponed to 

another chapter. Also, it is not clear at the moment whether or not one can come up with other, more 

elaborate weak counterexamples, not following directly from one of the axioms – we will answer this 

question in chapter 6 using semantic tools. 

2.4.3 From 𝐈𝐙𝐅 to 𝐂𝐙𝐅 – Predicativity 

The notion of predicativity first emerged in the beginning of the 20th century in writings of Poincaré and 

Russel in an attempt to analyze the newly found paradoxes in Cantor’s naïve set theory. Most famously, 
Russel’s paradox [58] arises when one tries to form, according to Cantor’s notion, the set 𝑅 of all sets not 

containing themselves, 𝑅 = {𝑥: 𝑥 ∉ 𝑥}. We immediately arrive at the absurd equivalence 𝑅 ∈ 𝑅 ⇔ 𝑅 ∉ 𝑅.  
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Other mentionable such paradoxes were Cantor’s paradox (in modern terms: the class of cardinals is not 
a set, [15], [3] Burali-Forti paradox (the class of ordinals is not a set, [12], [17]), König’s paradox [38] or 

Richard’s paradox (Define, by diagonalization, a real number different from all definable real numbers. 
But this number has just been defined in the last sentence. [56] Analyzing these kinds of paradoxes, 

Poincaré [51], [52] found that they arise because  

(i) an object 𝑂 is defined by referring to a totality of objects containing 𝑂, and 
(ii) in each case infinite collections are regarded as “actual” or “completed”. 

In response to Poincaré’s diagnosis, Russel, convinced to hold on to the actual infinite, formulated the 

vicious circle principle (VCP) in order to pick out definitions as in (ii) 

“Whatever contains an apparent variable must not be a possible value of that vari-

able” (Russel, in [57]) 

Definitions like these are called predicative, and impredicative if they contain such a “vicious circle”. Be-

sides the paradoxes, another impredicative definition is the one of greatest lower bound that we know 

from analysis: Given a bounded subset 𝑆 of ℝ, we say that 𝑦 is its greatest lower bound, 𝑦 = glb(𝑆) iff lb(𝑦, 𝑆) ∧ ∀𝑥 (lb(𝑥, 𝑆) → 𝑥 ≤ 𝑦), where lb(𝑥, 𝑆) ≡ ∀𝑠 ∈ 𝑆 𝑥 ≤ 𝑠 says that 𝑥 is a lower bound of 𝑆. This def-

inition is impredicative because 𝑦 is defined in reference to the set of lower bounds – a set that 𝑦 is itself 

a member of. 

Russel’s theory of ramified types was an attempt to give a foundation to mathematics respecting the VCP 

– an attempt that can be regarded today as failed [49]. Despite various other contributions to the question, 

most notably Weyl’s Das Kontinuum [72], the discussion about predicativity abated with the development 

of axiomatic set theory as developed by Zermelo, Skolem and Fraenkel, which gave mathematics a solid 

and coherent foundation. 

So why should a constructivist care about predicativity when formulating his own kind of Zermelo-

Frankel-style set theory? Myhill writes in [48] 

“… because in order to explain what it is to be an element of a certain set, we have 

to explain what it is to satisfy the defining condition of that set; that defining condi-

tion must only refer to sets which were or might have been defined previously, oth-

erwise (on the constructive view that sets only come into being as we define them, 

and were not there "all along") a vicious circle might result.” 

Thus, constructive set theory can be seen as bottom-up attempt at building sets. Two axioms that seem 

especially problematic in light of this paradigm are the axioms of Separation and Powerset. For a detailed 

explanation of predicativity and its history, see [23].  
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Impredicativity of Separation 

Let us make precise our concerns with separation: Given a set 𝐵 and a formula 𝜓(𝑥, 𝑦), we can define 

according to this axiom the set 𝐶 = {𝑥 ∈ 𝐵: ∀𝑦 𝜓(𝑥, 𝑦)}. Notice, that one of the instances of 𝜓 we have to 

check for 𝑥 to be in 𝐶 is 𝜓(𝑥, 𝐶). To avoid this problem, we restrict this axiom scheme to formulas with 

bounded quantification only – this is called the axiom scheme of restriced separation: ∀𝑎∃𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝑎 ∧ 𝜙(𝑦)), 
for any bounded formula 𝜙, where 𝑥 is not free in 𝜙. Let us show, that both bounded and unbounded 

separation are equivalent in the classical context: 

ⓂProposition 2.18 (𝐁𝐒𝐓): The axiom of separation is equivalent to the scheme ∃𝑥 (𝜙 ↔ ∅ ∈ 𝑥), where 𝑥 

is not free in 𝜙. 

Proof: Given separation and a formula  𝜙, let 𝑥 = {𝑦 ∈ {∅}: 𝜙}, where 𝑦 is not free in 𝜙. Then ∅ ∈ 𝑥 ↔ 𝜙. 

For the converse implication, let 𝐴 be a set and 𝜙(𝑦) a formula. By assumption, there is a set 𝑥𝑦 such that 𝜙(𝑦) ↔ ∅ ∈ 𝑥𝑦 and we may assume that 𝑥 ⊆ {∅}. Then 𝑥𝑦 is uniquely determined by 𝑦; hence, by replace-

ment, there is a function 𝑓  defined on 𝐴  with 𝑓(𝑦) = 𝑥𝑦  and thus ∀𝑦 ∈ 𝐴 (𝜙(𝑦) ↔ ∅ ∈ 𝑓(𝑦)) . By re-

stricted separation, form {𝑦 ∈ 𝐴: ∅ ∈ 𝑓(𝑦)} = {𝑦 ∈ 𝐴:𝜙(𝑦)}. ∎ 

ⓂProposition 2.19: 𝐁𝐒𝐓 + 𝐋𝐄𝐌 ⊢ Separation 

Proof: Let 𝜙 be any formula. Because of 𝐋𝐄𝐌, we may define 𝑥 = {∅} if 𝜙 and 𝑥 = ∅ if ¬𝜙. In either case 

we have ∅ ∈ 𝑥 ↔ 𝜙. By Proposition 2.18, this shows Separation. ∎ 

Impredicativity of Powerset 

Again, our concerns with the powerset axiom are similar to what we had before: Given a set 𝐶, form its 

power set 𝒫(𝐶). According to bounded separation, we may form the set 𝐵 = {𝑛 ∈ 𝜔: ∀𝑥 ∈ 𝒫(𝐶).𝜙(𝑛, 𝑥)} 
for any restricted formula 𝜙. Note that in this case in order to check whether 𝑛 ∈ 𝐵 we will have to verify 𝜙(𝑛, 𝐵). Myhill writes in [48]: 

“Power set seems especially nonconstructive and impredicative compared with the 

other axioms: it does not involve, as the others do, putting together or taking apart 

sets that one has already constructed but rather selecting out of the totality of all 

sets those that stand in the relation of inclusion to a given set.” 

Myhill notes that, given the set of natural numbers, it is sufficient for Bishop-style mathematics to have 

sets of functions from one set to another. This is formulated in the exponentiation axiom: The axiom of 

exponentiation states that for two sets 𝑎 and 𝑏, the set 𝑏𝑎 of functions 𝑓: 𝑎 → 𝑏 is a set too. 
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In 𝐂𝐙𝐅 however, we require a generalization of Exponentiation to hold, which itself is a weakening of 

Powerset. This axiom is called the subset collection schema: ∀𝑎, 𝑏 ∃𝐶 ∀𝑢 [∀𝑥 ∈ 𝑎. ∃𝑦 ∈ 𝑏. 𝜙(𝑥, 𝑦, 𝑢) → ∃𝑑 ∈ 𝐶(∀𝑥 ∈ 𝑎. ∃𝑦 ∈ 𝑑. 𝜙(𝑥, 𝑦, 𝑢) ∧ ∀𝑦 ∈ 𝑑. ∃𝑥 ∈ 𝑎. 𝜙(𝑥, 𝑦, 𝑢))], 
The justification for taking this axiom instead of Exponentiation is given by a proof-theoretical interpre-

tation of the notion of predicativity (see for example [24], [61], [60]), which we do not have the space to 

discuss in this thesis. We will make this axiom more comprehensible giving the following definition: 

Definition 2.20: For two sets 𝑎 and 𝑏, we call a relation 𝑅 between 𝑎 and 𝑏 full iff ∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝑥𝑅𝑦. A 

set 𝐶 of subsets of 𝑏 is 𝑎-full iff for each full relation 𝑅 between 𝑎 and 𝑏, there is a 𝑑 ∈ 𝐷 such that the 

inverse relation 𝑅− is full between 𝑑 and 𝑎, i.e.  ∀𝑥 ∈ 𝑎. ∃𝑦 ∈ 𝑏 . 𝑥𝑅𝑦 → ∃𝑑 ∈ 𝐶 (∀𝑥 ∈ 𝑎. ∃𝑦 ∈ 𝑑. 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝑑. ∃𝑥 ∈ 𝑎. 𝑥𝑅𝑦). 
The axiom of fullness is the assertion that for each pair of sets 𝑎 and 𝑏 there is a 𝑎-full set 𝐶. 

ⓂProposition 2.21: 𝐁𝐒𝐓 ⊢ Subset-collection ↔ Fullness 
Proof: “→”: Just use 𝜙(𝑥, 𝑦, 𝑅) ≡ 𝑥𝑅𝑦. 

“←”: Let 𝐶 be 𝑎-full and suppose, that for each 𝑢, ∀𝑥 ∈ 𝑎. ∃𝑦 ∈ 𝑏. 𝜙(𝑥, 𝑦, 𝑢). Then  𝑥𝑅𝑢𝑦 ↔ 𝑥 ∈ 𝑎 ∧ 𝑦 ∈ 𝑏 ∧ 𝜙(𝑥, 𝑦, 𝑢) 
is a set by 𝑅𝑢 ⊆ 𝑎 × 𝑏 and bounded separation. Moreover, it is full; hence, there is 𝑑 ∈ 𝐶 with ∀𝑥 ∈ 𝑎. ∃𝑦 ∈ 𝑑. 𝑥𝑅𝑢𝑦 ∧ ∀𝑦 ∈ 𝑑. ∃𝑥 ∈ 𝑎. 𝑥𝑅𝑢𝑦. 
 ∎ 

Clearly, the powerset of 𝑏 is 𝑎-full: 

Proposition 2.22: 𝐁𝐒𝐓 + Powerset ⊢ Fullness. 
The theory 𝐂𝐙𝐅 

All other axioms seem acceptable form the constructive viewpoint. We thus set the axioms of 𝐂𝐙𝐅 to be 

all axioms of 𝐈𝐙𝐅 but separation replaced by bounded separation, powerset replaced by the subset col-

lection scheme and the collection schema strengthened to the strong collection schema ∀𝐴[(∀𝑥 ∈ 𝐴. ∃𝑦. 𝜙(𝑥, 𝑦)) → ∃𝐵 (∀𝑥 ∈ 𝐴. ∃𝑦 ∈ 𝐵. 𝜙(𝑥, 𝑦) ∧ ∀𝑦 ∈ 𝐵. ∃𝑥 ∈ 𝐴. 𝜙(𝑥, 𝑦)], 
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for all formulas 𝜙, where 𝐵 is not free in 𝜙. Again, we still need to show that 𝐙𝐅 proves this axiom. 

Clearly, constructivist analysis of 𝐂𝐙𝐅 does not end with checking all the axioms. In one of the later chap-

ters we will give a meaning-preserving interpretation of 𝐂𝐙𝐅 into Martin-Löf’s theory 𝐌𝐋 which seems 

to be constructively very well justified. 
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3 Axiomatic constructive set theories – 𝐈𝐙𝐅 and 𝐂𝐙𝐅  
After having motivated 𝐈𝐙𝐅 anf 𝐂𝐙𝐅 in section 2.4, in this chapter, we will discuss these axiomatic set 

theories in more detail. We start with spelling out the whole axiomatization of the theories in section 0. 

Before discussing differences between the theories in 3.3 and 3.4, we give some common concepts in 

section 3.2. Finally, in 3.5 we clear the relationship between 𝐙𝐅𝐂, 𝐈𝐙𝐅 and 𝐂𝐙𝐅. 

3.1 Setting the stage 
For reasons of clarity, we write down all the axioms and inference rules of logical system 𝐇𝐏𝐋 (Heyting’s 
predicate logic) as well as all the axioms and theories we would like to consider. 

3.1.1 Heyting’s predicate logic 𝐇𝐏𝐋 

Axioms 

(HPL1) 𝜙 → (𝜓 → 𝜙) 
(HPL2) (𝜙 → (𝜓 → 𝜒)) → ((𝜙 → 𝜓) → (𝜙 → 𝜒)) 
(HPL3) 𝜙 → (𝜓 → (𝜙 ∧ 𝜒)) 
(HPL4) (𝜙 ∧ 𝜓) → 𝜙 
(HPL5) (𝜙 ∧ 𝜓) → 𝜓 
(HPL6) 𝜙 → (𝜙 ∨ 𝜓) 
(HPL7) 𝜓 → (𝜙 ∨ 𝜓) 
(HPL8) (𝜙 ∨ 𝜓) → ((𝜙 → 𝜒) → ((𝜓 → 𝜒) → 𝜒)) 
(HPL9) (𝜙 → 𝜓) → ((𝜙 → ¬𝜓) → ¬𝜙) 
(HPL10) 𝜙 → (¬𝜙 → 𝜓) 
(HPL11) ∀𝑥 𝜙(𝑥) → 𝜙(𝑐), where 𝑐 is free for 𝑥 in 𝜙. 

(HPL12) 𝜙(𝑐) → ∃𝑥 𝜙(𝑥), where 𝑐 is free for 𝑥 in 𝜙. 

(HPL13) ∀𝑢 ∈ 𝑎. 𝜙(𝑢) ↔ ∀𝑢[𝑢 ∈ 𝑎 → 𝜙(𝑢)] 
(HPL14) ∃𝑢 ∈ 𝑎.𝜙(𝑢) ↔ ∃𝑢[𝑢 ∈ 𝑎 ∧ 𝜙(𝑢)] 

Inference rules 

(DET) 𝜙,𝜙→𝜓𝜓  

(UG)  𝜙→𝜓(𝑐)𝜙→∀𝑥 𝜓(𝑥) where 𝑐 is free for 𝑥 in 𝜙 and occurs free in neither 𝜙 nor 𝜓. 

(EI) 𝜙(𝑐)→𝜓∃𝑥 𝜙(𝑥)→𝜓 where 𝑐 is free for 𝑥 in 𝜙 and occurs free in neither 𝜙 nor 𝜓. 

Axioms of identity 

(ID1) 𝑥 = 𝑥 
(ID2) 𝑥 = 𝑦 → 𝑦 = 𝑥 
(ID3) (𝑥 = 𝑦 ∧ 𝑦 = 𝑧) → 𝑥 = 𝑧 
(ID4) (𝑥 = 𝑦 ∧ 𝑦 ∈ 𝑧) → 𝑥 ∈ 𝑧 
(ID5) (𝑥 = 𝑦 ∧ 𝑧 ∈ 𝑥) → 𝑧 ∈ 𝑦 
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3.1.2 Set axioms 

(1) Extensionality: ∀𝑥, 𝑦 [∀𝑧(𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦) → 𝑥 = 𝑦], 
(2) Pair: ∀𝑥, 𝑦 ∃𝑧 [∀𝑤.𝑤 ∈ 𝑧 ↔ (𝑤 = 𝑥 ∨ 𝑤 = 𝑦)], 

We write {𝑥, 𝑦} for the pair obtained from 𝑥 and 𝑦. This is well-defined by extensionality. 
(3) Union: ∀𝐴 ∃𝑢 ∀𝑥 [𝑥 ∈ 𝑢 ↔ ∃𝑤(𝑥 ∈ 𝑤 ∧ 𝑤 ∈ 𝐴)], 

We write ⋃𝐴 for the union of 𝐴 and 𝑥 ∪ 𝑦 for ⋃{𝑥, 𝑦}. Both definitions are justified by extension-
ality.   

(4) Empty set: ∃𝑥∀𝑦 ¬(𝑦 ∈ 𝑥), 
We denote the (unique) witness of this formula by ∅. 

(5) Infinity: ∃𝜔 [(∀𝑛 ∈ 𝜔 (𝑠(𝑛) ∈ 𝜔)) ∧ (∀𝑛 ∈ 𝜔 (𝑛 = ∅ ∨ ∃𝑚 ∈ 𝜔 (𝑛 = 𝑠(𝑚))) ], 
Here 𝑠(𝑢) ≔ 𝑢 ∪ {𝑢}. This exists by union and pair and is well-defined by extensionality. We will 
refer to the witness of this formula by 𝜔 (again, this is justified by extensionality). 

(6) Separation schema: ∀𝑎∃𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝑎 ∧ 𝜙(𝑦)), 
for any formula 𝜙, where 𝑥 is not free in 𝜙. We write {𝑦 ∈ 𝑎:𝜙(𝑥)} for 𝑥. This is well-defined by 
extensionality. 

(6’’) Bounded separation schema: ∀𝑎∃𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝑎 ∧ 𝜙(𝑦)), 
for any bounded formula 𝜙, where 𝑥 is not free in 𝜙. This means all quantifiers are bounded, i.e. 
of the form ∀𝑥 ∈ 𝐴 or ∃𝑥 ∈ 𝐵.  

(7) Replacement schema: ∀𝐴[(∀𝑥 ∈ 𝐴 ∃! 𝑦 𝜙(𝑥, 𝑦)) → ∃𝐵 ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜙(𝑥, 𝑦)], 
for all formulas 𝜙, where 𝐵 is not free in 𝜙. 

(7’) Collection schema: ∀𝐴[(∀𝑥 ∈ 𝐴 ∃𝑦 𝜙(𝑥, 𝑦)) → ∃𝐵 ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜙(𝑥, 𝑦)], 
for all formulas 𝜙, where 𝐵 is not free in 𝜙. 

(7’’) Strong collection schema: ∀𝐴[(∀𝑥 ∈ 𝐴 ∃𝑦 𝜙(𝑥, 𝑦)) → ∃𝐵 (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜙(𝑥, 𝑦) ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜙(𝑥, 𝑦)] 
for all formulas 𝜙, where 𝐵 is not free in 𝜙. 

(8) Powerset: ∀𝐴 ∃𝑃 ∀𝑥 (𝑥 ⊆ 𝐴 ↔ 𝑥 ∈ 𝑃), 
where we define the relation 𝑥 ⊆ 𝑦 ↔ ∀𝑧(𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑦). We write 𝒫(𝐴) for the powerset-oper-
ation. 

(8’’) Subset collection: ∀𝑎, 𝑏 ∃𝐶 ∀𝑢 [∀𝑥 ∈ 𝑎. ∃𝑦 ∈ 𝑏. 𝜙(𝑥, 𝑦, 𝑢) → ∃𝑑 ∈ 𝐶(∀𝑥 ∈ 𝑎. ∃𝑦 ∈ 𝑑. 𝜙(𝑥, 𝑦, 𝑢) ∧ ∀𝑦 ∈ 𝑑. ∃𝑥 ∈ 𝑎. 𝜙(𝑥, 𝑦, 𝑢))], 
(9) Foundation: ∀𝐴[𝐴 ≠ ∅ → ∃𝑚(𝑚 ∈ 𝐴 ∧ 𝑚 ∩ 𝐴 = ∅)], 

where 𝑥 ∩ 𝑦 ≔ {𝑧 ∈ 𝑥 ∪ 𝑦: 𝑧 ∈ 𝑥 ∧ 𝑧 ∈ 𝑦}. This set is formed by (bounded) separation. 
(9’) Set induction: (∀𝑎(∀𝑦 ∈ 𝑎. 𝜙(𝑦)) → 𝜙(𝑎)) → ∀𝑎 𝜙(𝑎), 

where 𝜙 is any formula. 
 

Definition 3.1: Let 𝐋𝐄𝐌 (law of excluded middle) be the axiom schema 𝜙 ∨ ¬𝜙. We define the theories 𝐙𝐅 

(Zermelo-Fraenkel set theory), 𝐈𝐙𝐅  (intuitionistic Zermelo-Fraenkel set theory), 𝐂𝐙𝐅  (constructive Zermelo-

Fraenkel set theory) and 𝐁𝐒𝐓 (basic set theory) by 
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𝐙𝐅  = (1)-(5)+ (6) + (7) + (8) + (9) +𝐋𝐄𝐌𝐈𝐙𝐅  = (1)-(5)+ (6) +(7′) + (8) +(9′)𝐂𝐙𝐅 = (1)-(5)+(6′′)+(7′′)+(8′′)+(9′)𝐁𝐒𝐓 = (1)-(5)+(6′′)+ (7)  

It is easily seen that 𝐁𝐒𝐓 is the weakest of the four theories.  

3.2 Basic concepts in 𝐁𝐒𝐓 
Definition 3.2: The following definition are justified within 𝐁𝐒𝐓 and are thus meaningful for all the set 

theories just defined: 

• Pairs, unions and the empty set have already been defined above. 
• We define the ordered pair of 𝑥 and 𝑦 by (𝑥, 𝑦) = 〈𝑥, 𝑦〉 = {{𝑥}, {𝑥, 𝑦}}. 
• A set 𝑅 is called relation iff is a set of ordered pairs. Instead of (𝑥, 𝑦) ∈ 𝑅 we usually write 𝑥𝑅𝑦. 
• For any set 𝑅 , define dom(𝑅) = {𝑥: ∃𝑦 [(𝑥, 𝑦) ∈ 𝑅]} and range(𝑅) = {𝑦: ∃𝑥[(𝑥, 𝑦) ∈ 𝑅]}: Note that if (𝑥, 𝑦) = {𝑥, {𝑥, 𝑦}} ∈ 𝑅, then {𝑥}, {𝑥, 𝑦} ∈ ⋃𝑅 and 𝑥, 𝑦 ∈ ⋃⋃𝑅. So, we justify dom(𝑅) and range(𝑅) us-

ing Union and Bounded Separation. 
• We say that a relation 𝑅 is a relation between 𝐴 and 𝐵 iff dom(𝑅) ⊆ 𝐴 and range(𝑅) ⊆ 𝐵. 
• We say that a relation 𝑓 is a function iff (𝑥, 𝑦1) ∈ 𝑓 ∧ (𝑥, 𝑦2) ∈ 𝑓 → 𝑦1 = 𝑦2. We usually write 𝑓(𝑥) = 𝑦 

instead of (𝑥, 𝑦) ∈ 𝑓. We write 𝑓: 𝐴 → 𝐵 and say that 𝑓 is a function from 𝐴 to 𝐵 iff dom(𝑓) = 𝐴 and range(𝑓) ⊆ 𝐵. 
• Given sets 𝑅 and 𝑑, we denote by 𝑅|𝑑  the restriction of 𝑅 to 𝑑 by 𝑅|𝑑 = {(𝑥, 𝑦) ∈ 𝑅: 𝑥 ∈ 𝑑}. Note that dom(𝑅|𝑑) = dom(𝑅) ∩ 𝑑. We will use this notation mainly in the case when 𝑅 is a function. 
• Given two sets 𝐴 and 𝐵, we define its Cartesian product 𝐴 × 𝐵 = {(𝑎, 𝑏): 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}: First use Replace-

ment and bounded Separation to show {𝑎} × 𝐵 is a set for each 𝑎 ∈ 𝐴. Use them again, to show 𝑆 ={𝐴 × {𝑏}: 𝑏 ∈ 𝐵} is a set and finally 𝐴 × 𝐵 = ⋃𝑆 by the Union axiom. 

3.2.1 Classes 

Cantor defined a set as “a gathering together into a whole of definite, distinct objects of our perception 
or of our thought – which are called elements of the set.”, [14]. The modern pendent of this notion in 

axiomatic set theory is the notion of a class: A class 𝐴 is given by a formula 𝜙𝐴(𝑥) and can be thought of 

as containing all sets satisfying 𝜙𝐴(𝑥), i.e. 𝐴 = {𝑥: 𝜙𝐴(𝑥)}.  
Before we go on and convey the expression that we are dealing with some type of higher order logic, let 

us be pedantic for a moment and insist on the fact that a class is actually a strictly metamathematical 

notion, as each class is given by a formula and in fact it is nothing more than a formula. For classes 𝐴 

and 𝐵, we often use terms like “∀𝑥 ∈ 𝐴 𝜓(𝑥)”, “∃𝑥 ∈ 𝐴 𝜓(𝑥)”, “𝐴 ⊆ 𝐵”, “𝐴 = 𝐵”  mimicking the language 

of set theory. However, what we mean by these expressions is ∀𝑥(𝜙𝐴(𝑥) → 𝜓(𝑥)), ∃𝑥(𝜙𝐴(𝑥) ∧ 𝜓(𝑥)), ∀𝑥(𝜙𝐴(𝑥) → 𝜙𝐵(𝑥)) and ∀𝑥(𝜙𝐴(𝑥) ↔ 𝜙𝐵(𝑥)) resp.  

Sometimes we like to think about whether a given “class is a set” or not. How can that be after we insisted 

on classes existing strictly on the metalevel? The statement “𝐴 is a set” can be thought of as a metalin-

guistic abbreviation for ∃𝑥 ∀𝑦(𝜙𝐴(𝑦) ↔ 𝑦 ∈ 𝑥). Classes that cannot are not sets are called proper. For ex-

ample, for a set 𝑎, we can define the formula 𝜙(𝑦) ≡ 𝑦 ∈ 𝑎. Then the class 𝒫(𝑎) = {𝑦: 𝑦 ⊆ 𝑎} is a set in 𝐙𝐅 
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and 𝐈𝐙𝐅 by the powerset-axiom, but the question whether or not this holds true in 𝐂𝐙𝐅 is a nontrivial 

question (it turns out that such “powerclasses” 𝒫(𝑎) are never sets in 𝐂𝐙𝐅). 

Note that paradoxes such as Russel’s cannot arise, when talking about classes, since there is a strict hier-

archy between sets and classes: Proper classes contain only sets, never classes, hence we cannot form 

objects like the class of all classes. 

3.2.2 Ordinals 

The notion of ordinals is central in axiomatic set theory. It generalizes the notion of natural number and 

allows us to talk about ordering of sets in the post-countable setting. 

Definition 3.3: A set 𝑇 is called transitive iff every element is a subset of 𝑇, i.e. 𝑎 ∈ 𝑇 → 𝑎 ⊆ 𝑇. A transitive 

set of transitive sets is called an ordinal. The class of all ordinals is referred to as 𝕆ℕ. As usual, we call (𝐴,≺) a well-order iff it is well-founded, i.e. each subset has a ≺-minimal element and ≺ is irreflexive, 

transitive and satisfies the trichotomy law ∀𝑎, 𝑏 ∈ 𝐴 𝑎 ≺ 𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏 ≺ 𝑎. We call two well-ordered sets (𝐴,≺𝐴)  and (𝐴,≺𝐵) isomorphic iff there is a bijective function 𝑓: 𝐴 → 𝐵  such that 𝑎1 ≺𝐴 𝑎2 ⇔𝑓(𝑎1) ≺𝐵 𝑓(𝑎2).   
As noted, there are many similarities between ordinals and natural numbers. We will prove some basic 

results that resemble properties of 𝜔. For an ordinal 𝛼, we define 𝛼 + 1 ≔ 𝑠(𝛼) = 𝛼 ∪ {𝛼}. 
Proposition 3.4 (𝐁𝐒𝐓):  

1) All elements of an ordinal are ordinals. 
2) 𝛼 + 1 is an ordinal for each 𝛼 ∈ 𝕆ℕ. 
3) ⋃𝑈 ∈ 𝕆ℕ, for each set of ordinals 𝑈. 
4) 𝛼 ∩ 𝛽 is an ordinal for 𝛼, 𝛽 ∈ 𝕆ℕ 
5) 𝜔 is an ordinal. 
6) All the natural numbers are ordinals. 
7) 𝕆ℕ is not a set. 

Proof:  

1) Let 𝛼 ∈ 𝕆ℕ and 𝛽 ∈ 𝛼. By definition, 𝛽 is a subset of 𝛼, hence each element of 𝛽 must be transitive. 
2) This trivial. 
3) Let 𝑥 ∈ ⋃𝑈. This means, there is some ordinal 𝛼 ∈ 𝑈 such that 𝑥 ∈ 𝛼. But 𝛼 is transitive, hence 𝑥 ⊆𝛼 ⊆ ⋃𝑈. This shows that ⋃𝑈 is transitive. But because of 1), and the fact that all its elements are ele-

ments of ordinals, all elements of ⋃𝑈 are transitive too. 
4) This is clear. 
5) Let 𝑛 ∈ 𝜔. Then 𝑛 ∈ 𝑛 + 1 ⊆ 𝜔. 
6) This follows by 1). 
7) Suppose, ∃𝑥 (𝑥 = 𝕆ℕ). By 3), 𝛼 = ⋃𝑥 ∈ 𝕆ℕ. But then 𝛼 ∈ 𝛼 is a contradiction to Lemma 2.16. ∎ 
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3.2.3 Set recursion and the natural numbers 

In this section we justify the fact that ordinals can be seen as generalization of the natural numbers. A set 𝐼 is called inductive iff ∅ ∈ 𝐼 and 𝑥 ∈ 𝐼 → 𝑠(𝑥) ∈ 𝐼. Usually, in 𝐙𝐅 and 𝐈𝐙𝐅, the infinity axiom is formulated 

without the second conjunct, thus stating “there is an inductive set”. One then usually proceeds to define 𝜔 as the least inductive set. However, this requires unbounded Separation or the Powerset axiom which 

is problematic in 𝐂𝐙𝐅. Thus, our formulation of the infinity axiom states “there is a least inductive set”: 

Proposition 3.5: 𝐁𝐒𝐓 + Set induction ⊢ 𝐼 inductive → 𝜔 ⊆ 𝐼. 
Proof: We show by ∈-Induction on the formula 𝜙(𝑥) ≡ 𝑥 ∈ 𝜔 → 𝑥 ∈ 𝐼:  
Suppose, ∀𝑦 ∈ 𝑎. 𝜙(𝑦) and 𝑎 ∈ 𝜔. If 𝑎 = ∅ and we are done. If there is some 𝑛 ∈ 𝜔 with 𝑎 = 𝑠(𝑛), then by 

inductive hypothesis, 𝑎 ∈ 𝐼. By inductiveness of 𝐼, 𝑎 = 𝑠(𝑚) ∈ 𝐼. ∎ 

We therefore obtain our usual principle of natural induction: Let 𝜙 be any property and suppose, we can 

show ∀𝑛 ∈ 𝜔.𝜙(𝑛) → 𝜙(𝑠(𝑛)) and 𝜙(0). In other words, 𝐼 = {𝑛 ∈ 𝜔:𝜙(𝑛)} is an inductive subset of 𝜔. By 

the Proposition it must be equal to the whole of 𝜔. Thus, 

ⓂCorollary 3.6 (𝐁𝐒𝐓 + Set induction, natural induction schema): For any formula 𝜙, we have the rule 𝜙(0) ∀𝑛 ∈ 𝜔.𝜙(𝑛) → 𝜙(𝑠(𝑛))∀𝑛 ∈ 𝜔 𝜙(𝑛).  

What makes the natural numbers different to the ordinals in the intuitionistic setting is that the ordering 

on 𝜔 is trichotomous: 

Lemma 3.7 (𝐁𝐒𝐓 + Set induction): ∀𝑛 ∈ 𝜔 ∀𝑚 ∈ 𝑛 (𝑠(𝑚) ∈ 𝑛 ∨ 𝑠(𝑚) = 𝑛). 
Proof: We use natural induction on 𝑛. Let 𝑚 ∈ 𝑛, then by inductive hypothesis one of the two holds: 

• 𝑠(𝑚) ∈ 𝑛, then 𝑠(𝑚) ∈ 𝑛 ∪ {𝑛} = 𝑠(𝑛). 
• 𝑠(𝑚) = 𝑛, then 𝑠(𝑚) = 𝑛 ∈ 𝑛 ∪ {𝑛} = 𝑠(𝑛). ∎ 

Let us adopt the more usual notations 𝑛 = 𝑚 + 1 for 𝑛 = 𝑠(𝑚) and 𝑚 < 𝑛 for 𝑚 ∈ 𝑛. Also, we often write 

“∀𝑚 < 𝑛” to signify “∀𝑚 ∈ 𝑛”. Using the lemma, we can show the trichotomy law for the relation “<”: 

Proposition 3.8 (𝐁𝐒𝐓 + Set induction): ∀𝑚, 𝑛 ∈ 𝜔: 𝑛 < 𝑚 ∨ 𝑛 = 𝑚 ∨𝑚 < 𝑛. 

Proof: By natural induction on 𝑛. Let 𝑚 ∈ 𝜔. By inductive hypothesis, we have one of the following cases: 

• 𝑛 < 𝑚, then by the last lemma, 
o 𝑛 + 1 < 𝑚, or 
o 𝑛 + 1 = 𝑚, 

• 𝑛 = 𝑚, then 𝑚 < 𝑛 + 1, 
• 𝑚 < 𝑛, then 𝑚 < 𝑛 + 1. 
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Altogether, 𝑛 + 1 < 𝑚 or 𝑛 + 1 = 𝑚 or 𝑚 < 𝑛 + 1. ∎ 

Corollary 3.9 (𝐁𝐒𝐓 + Set induction): Equality on 𝜔 is decidable. 

We will often write 0,1,2, … instead of 0, 𝑠(0), 𝑠(𝑠(0)), …. We will refer to a set 𝑆 as (Kuratowski) finite iff 

there is a numeration of the elements of 𝑠0, 𝑠1, … , 𝑠𝑛−1 of the elements of 𝑆, or to be more precise: A set is 

finite iff there is a natural number 𝑛 ∈ 𝜔 and a bijective function 𝑓: 𝑛 → 𝑆. In 𝐁𝐒𝐓, we can define the set 

of finite sequences of natural numbers, using the axioms of infinity, pairing, separation, collection and 

union: 

Definition 3.10: We define for each 𝑛 ∈ 𝜔, the set of sequences of natural numbers of length 𝑛 as 𝜔𝑛 ={((0, 𝑎0),… (𝑛 − 1, 𝑎𝑛−1)): 𝑎𝑖 ∈ 𝜔} . We define the set of finite sequences of natural numbers as 𝜔<𝑛 =⋃ 𝜔𝑛𝑛∈𝜔 . 

3.3 𝐙𝐅 vs 𝐈𝐙𝐅 or the problem with trichotomy 
In this section we will briefly discuss some similarities and differences of 𝐙𝐅 and 𝐈𝐙𝐅 by the example of 

ordinals. Many of the important applications of ordinals in 𝐙𝐅, like induction and recursion pertain to 

work in 𝐈𝐙𝐅, but (the class of) ordinals fail to be well-orders in 𝐈𝐙𝐅. 

3.3.1 Applications of Foundation – Ordinals in 𝒁𝑭 

The axiom of Foundation says that every set has an ∈-minimal element. Together with 𝐋𝐄𝐌 this will 

make sure the class 𝕆ℕ is well-ordered by ∈. Furthermore, the ordinals in 𝐙𝐅 form paradigms for well-

ordered sets – a role that will be lost in 𝐈𝐙𝐅. 

ⓒLemma 3.11 (𝐁𝐒𝐓 + 𝐋𝐄𝐌+ Foundation): 𝕆ℕ is well-founded, i.e. each nonempty subclass 𝐶 ⊆ 𝕆ℕ has 

an ∈-minimal element. 

Proof: Let 𝛼 ∈ 𝐶. Either 𝛼 is already ∈-minimal, or 𝛼 ∩ 𝐶 ≠ ∅. By Foundation, there is an ∈-minimal ordi-

nal 𝛽 ∈ 𝛼 ∩ 𝐶, which must be ∈-minimal in 𝐶 too. ∎ 

ⓒProposition 3.12 (𝐁𝐒𝐓 + 𝐋𝐄𝐌+ Foundation): (𝕆ℕ, ∈) is a well-order and so is (𝛼, ∈) for each ordinal 𝛼. 

Proof: Irreflexivity and transitivity also hold in the intuitionistic setting and will be shown in Lemma 3.16, 

well-foundedness is exactly the Foundation axiom, so it remains to show the trichotomy law: We say 

that two ordinals 𝜂 and 𝛾 are incomparable iff they are a counterexample to the trichotomy law, i.e. ¬(𝜂 ∈ 𝛾) ∧ 𝜂 ≠ 𝛾 ∧ ¬(𝛾 ∈ 𝜂). Towards a contradiction, suppose that there is such an ordinal 𝛼 incompa-

rable with at least one other ordinal. By Lemma 3.11, we may assume that 𝛼 is ∈-least with this property 

and that 𝛽 is ∈-least among the ordinals 𝛼 is incomparable with. 

All 𝛾 ∈ 𝛽 must by minimality of 𝛽 be comparable to 𝛼, thus 𝛾 ∈ 𝛼, 𝛾 = 𝛼 or 𝛼 ∈ 𝛾. In the last two cases, 

we would have 𝛼 ∈ 𝛽, which is impossible by incomparability. Thus, 𝛽 ⊆ 𝛼. 
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The same argumentation applies to: 𝛾 ∈ 𝛼. By minimality, it must be comparable to 𝛽. In the cases 𝛽 ∈ 𝛾 

and 𝛽 = 𝛾, we would have the impossible 𝛽 ∈ 𝛼. Thus, 𝛾 ∈ 𝛽, i.e. 𝛼 ⊆ 𝛽. Altogether 𝛼 = 𝛽,  contradiction.
 ∎ 

ⓒCorollary 3.13 (𝐁𝐒𝐓 + 𝐋𝐄𝐌 + Foundation): ∈-least elements are unique in 𝕆ℕ (and thus in each ordinal 𝛼). 

Lemma 3.14: Let 𝑓: (𝛼, ∈) → (𝛽, ∈) be an isomorphism. Then 𝑓 is the identity mapping. 

Proof: We first show that for all 𝛾 ∈ 𝛼, 𝑓(𝛾) is an ordinal. It is clear, that 𝑓(𝛾) consists of transitive ele-

ments, so it remains to show that it is transitive itself: Let 𝛿 ∈ 𝑓(𝛾) and let 𝜖 ∈ 𝛿. Since 𝑓 is an isomor-

phism, we may assume that 𝛿 = 𝑓(𝜌) , 𝜖 = 𝑓(𝜂)  and 𝜂 ∈ 𝜌 ∈ 𝛼 . By transitivity, 𝜂 ∈ 𝛼  and hence 𝜖 =𝑓(𝜂) ∈ 𝑓(𝛼). 
Now, suppose, that 𝑓 is not the identity and let 𝛾 ∈ 𝛼 be the least ordinal such that 𝑓(𝛾) ≠ 𝛾. By the iso-

morphism property and our assumption on 𝛾, 𝛿 ∈ 𝛾 ↔ 𝑓(𝛿) ∈ 𝑓(𝛾) ↔ 𝛿 ∈ 𝑓(𝛾). 
We know from above, that 𝑓(𝛾) consists of ordinals only, hence 𝑓(𝛾) must be equal to 𝛾 after all. ∎  

We can now prove the following fundamental theorem of 𝐙𝐅 (details can be found in [40]): 

Theorem 3.15: Every well-ordered set (𝐴,≺) is isomorphic to a unique ordinal 𝛼. 

 Proof: Uniqueness follows from Lemma 3.14. We denote by 𝑎 ↓ = {𝑥 ∈ 𝐴: 𝑥 ≺ 𝑎} the initial segment of 𝐴 

given by 𝑎 Note that 𝑎 ↓ is well-ordered by ≺ as well. Let 𝐺 be the set of elements 𝑎 ∈ 𝐴 such that (𝑎 ↓, ≺) 
is isomorphic to a (unique) ordinal 𝜉𝑎 and form the function 𝑓(𝑎) = 𝜉𝑎 with domain 𝐺 by replacement. 

Note that 𝑓 is in fact an isomorphism between (𝐺, ≺) and ran(𝑓) and ran(𝑓) ∈ 𝕆ℕ. 

If 𝐺 = 𝐴, then (𝐴,≺) is isomorphic to ⋃ 𝜉𝑎𝑎∈𝐴 . If 𝐺 ≠ 𝐴, let 𝑎 ∈ 𝐴 be the least element not in 𝐺. Since 𝑎 ↓ = 𝐺, we have that (𝑎 ↓, ≺) is isomorphic to ran(𝑓) ∈ 𝕆ℕ, a contradiction. ∎ 

3.3.2 Ordinals in 𝐈𝐙𝐅 

Lemma 3.16 (𝐁𝐒𝐓 + Set Induction): (𝕆ℕ, ∈) is irreflexive and transitive and so is (𝛼, ∈) for each ordinal 𝛼. 

Proof: Irreflexivity is Lemma 2.16 and transitivity is guaranteed by definition. ∎ 

The problem with well-ordering ordinals is the trichotomy on 𝕆ℕ, since it would provide us with a weak 

counterexample: 

ⓂProposition 3.17: Trichotomy implies forms of 𝐋𝐄𝐌: 𝐁𝐒𝐓 + Separation ⊢ [∀𝛼, 𝛽 ∈ 𝕆ℕ (𝛼 ∈ 𝛽 ∨ 𝛼 = 𝛽 ∨ 𝛽 ∈ 𝛼)] → 𝐋𝐄𝐌. 𝐁𝐒𝐓 ⊢ [∀𝛼, 𝛽 ∈ 𝕆ℕ (𝛼 ∈ 𝛽 ∨ 𝛼 = 𝛽 ∨ 𝛽 ∈ 𝛼)] → 𝐋𝐄𝐌′. 
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Proof: Let 𝜙 be any (bounded) formula and let 𝛽 = {𝑥 ∈ 1:𝜙} ⊆ 1. Clearly, 𝛽 is an ordinal; hence, by tri-

chotomy we have 1 ∈ 𝛽 ∨ 1 = 𝛽 ∨ 𝛽 ∈ 1 . The first case is impossible, for 1 ∈ 𝛽 ⊆ 1 would contradict 

Lemma 2.16. In the second case we would have 𝜙 and in the third ¬𝜙. ∎ 

3.3.3 Recursive definitions on the ordinals 

We discuss the important applications of defining (class-)functions and classes via recursion on the or-

dinals. A similar proof can be found in [40]. 

ⓂTheorem 3.18 (𝐁𝐒𝐓 + Replacement + Set Induction): Assume, ∀𝛼 ∈ 𝕆ℕ ∀𝑠 ∃! 𝑦 𝜙(𝛼, 𝑠, 𝑦)  and define 𝐺(𝛼, 𝑠) to be the unique 𝑦 such that 𝜙(𝛼, 𝑠, 𝑦). Then there is a formula 𝜓 such that 

1. ∀𝛼 ∃! 𝑦 𝜓(𝑥, 𝑦), so 𝜓 defines a function 𝐹, where 𝐹(𝛼) is the unique 𝑦 with 𝜓(𝛼, 𝑦). 
2. ∀𝛼 ∈ 𝕆ℕ 𝐹(𝛼) = 𝐺(𝛼, 𝐹|𝛼) and 𝐹 is uniquely by this property. 

Proof: First, let us give such a 𝜓. Let us abbreviate App(𝑑, ℎ) ≡ ℎ is a function ∧ dom(ℎ) = 𝑑 ⊆ 𝕆ℕ ∧ ∀𝛼 ∈ 𝑑 ℎ(𝛼) = 𝐺(𝛼, ℎ|𝛼). 
The functions ℎ can be thought as local approximations to 𝐹. Our candidate for 𝜓 is therefore 𝜓(𝛼, 𝑦) ≡ [𝛼 ∈ 𝕆ℕ ∧ ∃𝑑, ℎ [App(𝑑, ℎ) ∧ 𝛼 ∈ 𝑑 ∧ ℎ(𝛼) = 𝑦]]. 
To verify that this works we have to show that the local approximations ℎ agree on their common do-

mains and that for each 𝛼, there is some ℎ defined taking a value on 𝛼. For the first part, we need to show App(𝑑, ℎ) ∧ App(𝑑′, ℎ′) → App(𝑑 ∩ 𝑑′, ℎ ∩ ℎ′). 
We show this by ordinal induction that ℎ(𝛼) = ℎ′(𝛼) for all 𝛼 ∈ 𝑑 ∩ 𝑑′. Suppose, we have ℎ(𝛽) = ℎ′(𝛽) 
for all 𝛽 ∈ 𝑑 ∩ 𝑑′ ∩ 𝛼. Then ℎ(𝛼) = 𝐺(𝛼, ℎ|𝛼) = 𝐺(𝛼, ℎ′|𝛼) = ℎ′(𝛼). So ℎ ∩ ℎ′ indeed forms a function with 

domain 𝑑 ∩ 𝑑′ and App(𝑑 ∩ 𝑑′, ℎ ∩ ℎ′). 
For the second part, let 𝛼 ∈ 𝕆ℕ . We need to define a function ℎ𝛼  defined on 𝑑𝛼  with 𝛼 ∈ 𝑑𝛼  and App(𝑑𝛼 , ℎ𝛼). Again, we do this by Set induction: Suppose, we have defined such function ℎ𝛽 with 𝑑𝛽 =𝛽 + 1 for all 𝛽 ∈ 𝛼 Fixing the domain lets us assume that these functions are unique by what we have 

shown so far. So, by Replacement and Union, we may define ℎ̃ = ⋃ ℎ𝛽𝛽∈𝛼  and �̃� = 𝛼. Clearly, App(ℎ̃, �̃�). 
Finally, we can set ℎ𝛼 = ℎ̃ ∪ {𝐺 (𝛼, ℎ̃|𝛼)} and 𝑑𝛼 = 𝛼 + 1 and conclude App(ℎ𝛼 , 𝑑𝛼). 
For the uniqueness of 𝐹, suppose, we are given two such functions 𝐹 and 𝐹′ and say they agree on all 𝛽 ∈ 𝛼. But then 𝐹(𝛼) = 𝐺(𝛼, 𝐹|𝛼) = 𝐺(𝛼, 𝐹′|𝛼) = 𝐹′(𝛼). We may thus infer by ordinal induction that 𝐹 

and 𝐹′ are identical. ∎  

Example (𝐈𝐙𝐅 or 𝐙𝐅): As an important example we can define the von Neuman universe 𝑉, also called the 

universe of all sets:  
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𝑉𝛼 =⋃𝒫(𝑉𝛽)𝛽∈𝛼 , 
𝑉 = ⋃ 𝑉𝛼𝛼∈𝕆ℕ . 

This definition is justified by Theorem 3.18 as follows: Let 𝜙(𝛼, 𝑠, 𝑦) be the formula 𝑦 = ⋃ 𝒫(𝑦)𝑦∈range(𝑠)  . 
We can now set 𝑉𝛼 = 𝐹(𝛼) and observe 

𝑉𝛼 = 𝐹(𝛼) = 𝐺(𝛼, 𝐹|𝛼) = ⋃ 𝒫(𝑦)𝑦∈range(𝐹|𝛼) =⋃𝒫(𝐹(𝛽))𝛽∈𝛼 =⋃𝒫(𝑉𝛽)𝛽∈𝛼 . 
Let us consider the first few stages of the 𝑉𝛼: 𝑉0 = ∅ 𝑉1 = {∅, {∅}} 𝑉2 = {∅, {∅}, {{∅}}, {∅, {∅}}} 
This simple construction gives us a “bottom up” construction. 𝑉 is then the class of all sets that can be 

obtained is this way starting from the empty set. It turns out that this class is the class of all sets justifying 

the second name of 𝑉: 

Theorem 3.19 (𝐈𝐙𝐅 or 𝐙𝐅): ∀𝑥. 𝑥 ∈ 𝑉, or written out, ∀𝑥. ∃𝛼 ∈ 𝕆ℕ. 𝑥 ∈ 𝑉𝛼. 

Proof: By set induction. Suppose, ∀𝑦 ∈ 𝑥. ∃𝛼𝑦 ∈ 𝕆ℕ. 𝑥 ∈ 𝑉𝛼𝑦. In the case of  𝐈𝐙𝐅, form a set 𝑍 of such 𝛼𝑦 by 

Collection. In the case of 𝐙𝐅, we may assume that the 𝛼𝑦 are ∈-minimal to satisfy the uniqueness require-

ment of the Replacement axiom. We now have 𝑥 ⊆ 𝑉⋃𝑍 and so 𝑥 ∈ 𝑉⋃𝑍+1. ∎ 

Usually, when giving inductive definitions on the ordinals in 𝐙𝐅, the definition is divided into the cases 𝛼 = 0, 𝛼 is a successor ordinal (i.e. of the form 𝛼 = 𝛽 + 1) and 𝛼 a limit ordinal (𝛼 cannot be written in 

the form 𝛼 = 𝛽 + 1). The definition of 𝑉 would thus look like 𝑉0 = ∅, 𝑉𝛽+1 = 𝒫(𝑉𝛽), 𝑉𝜆 = ⋃ 𝑉𝛼𝛼∈𝜆   and 𝑉 = ⋃ 𝑉𝛼𝛼∈𝕆ℕ . Although more readable, this definition like this would make sense in the intuitionistic 

setting as the distinction between successor and limit ordinals requires 𝐋𝐄𝐌. 

3.4 𝐈𝐙𝐅 vs 𝐂𝐙𝐅 or how to live without the powerset operation 
In section 2.4.3 we have discussed that the axiom of Power set may be criticized for being impredicative 

and non-constructive in the sense, that it does not describe any procedure to construct all subsets of a 

given set. Myhill notes [48], that the weaker Exponentiation axiom, thus replacing Powerset in the for-

mulation of 𝐂𝐙𝐅, is enough to do mathematics Bishop-style. The argument, that the Powerset axiom is 

necessary for a solid foundation of mathematics may therefore be rebutted by thorough investigation of 

Bishop’s book. 
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One specific application of the Powerset to mathematics in general and set theory in particular is that the 

class 𝑉 of all sets forms a hierarchy of sets – definitions and proofs of properties on that and similar 

structures may thus be conducted in a recursive fashion. It turns out that – apart from the stages 𝑉𝛼 of 

the hierarchy being sets – most of the recursive character of 𝑉 may be preserved when passing from 𝐈𝐙𝐅 

to 𝐂𝐙𝐅. 

3.4.1 Powerset, Subset Collection, Exponentiation 

We start with formally showing that the Powerset-axiom is indeed stronger than Subset collection, which 

in turn is stronger than Exponentiation. Remember, that we have shown (Proposition 2.21) that the axi-

oms of Subset collection and Fullness are in fact equivalent. For the sake of convenience, we therefore 

use the axiom of Fullness in the following discussion. 

We start with showing that 𝐋𝐄𝐌′ may be reduced to the statement that all sets either contain ∅ or do not 

contain ∅: 

ⓂProposition 3.20: 𝐁𝐒𝐓 ⊢ 𝐋𝐄𝐌′ ↔ ∀𝑥(∅ ∈ 𝑥 ∨ ∅ ∉ 𝑥). 
Proof: The direction from left to right is clear. For the other direction, let 𝜙 be any restricted formula. We 

define 𝑥 = {𝑦 ∈ {∅}: 𝜙} with 𝑦 not free in 𝜙. If ∅ ∈ 𝑥, then 𝜙, if ∅ ∉ 𝑥, then ¬𝜙. ∎ 

Proposition 3.21: 𝐁𝐒𝐓 + Fullness ⊢ Exponentiation 

Proof: Let 𝐶 be an 𝑎-full set of subsets of 𝑎 × 𝑏. For 𝑓: 𝑎 → 𝑏 define 𝑓′: 𝑎 → 𝑎 × 𝑏 by 𝑓′(𝑥) = (𝑥, 𝑓(𝑥)) for 𝑥 ∈ 𝑎. Then 𝑓′ is a full relation between 𝑎 and 𝑎 × 𝑏, hence there is some 𝑑 ∈ 𝐶 according to the fullness 

axiom. But then 𝑑 = {𝑓′(𝑥): 𝑥 ∈ 𝑎} = {(𝑥, 𝑓(𝑥)): 𝑥 ∈ 𝑎} = 𝑓. Thus, 𝑏𝑎 can be identified as a subset of 𝐶 us-

ing restricted separation. ∎ 

It turns out, that the seemingly weak assumption of 𝒫({∅}) to be a set is enough to to deduce the full 

Powerset axiom from the Exponentiation axiom. By "𝒫(𝑎) is a set" we mean the formula ∃𝑧. 𝑧 = 𝒫(𝑎), 
which of course stands for ∃𝑧. ∀𝑏. (𝑏 ⊆ 𝑎 ↔ 𝑏 ∈ 𝑧). 
Proposition 3.22:  𝐁𝐒𝐓 ⊢ Powerset ↔ Exponentiation + "𝒫({∅}) is a set". 
Proof: One direction is clear. For the other, let 𝐴 be any set and define by exponentiation and replacement 

the set 𝐶 = {{𝑥 ∈ 𝐴: ∅ ∈ 𝑓(𝑥)}: 𝑓 ∈ 𝒫({∅})𝐴}. Clearly, 𝐶 ⊆ 𝒫(𝐴). For the other inclusion, let 𝑧 ⊆ 𝐴 and let 𝑓(𝑥) = {𝑦 ∈ {∅}: 𝑥 ∈ 𝑧} for 𝑥 ∈ 𝐴. Then 𝑓 ∈ 𝒫({∅})𝐴 and 𝑧 = {𝑥 ∈ 𝐴: ∅ ∈ 𝑓(𝑥)}. This shows 𝐶 = 𝒫(𝐴). ∎ 

Proposition 3.23: 𝐁𝐒𝐓 + Exponentiation + 𝐋𝐄𝐌′ ⊢ Powerset. 
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Proof: By It turns out, that the seemingly weak assumption of 𝒫({∅}) to be a set is enough to to deduce 

the full Powerset axiom from the Exponentiation axiom. By "𝒫(𝑎) is a set" we mean the formula ∃𝑧. 𝑧 =𝒫(𝑎), which of course stands for ∃𝑧. ∀𝑏. (𝑏 ⊆ 𝑎 ↔ 𝑏 ∈ 𝑧). 
Proposition 3.22, it suffices to show that 𝒫({∅}) is a set. In fact, we show 𝒫({∅}) = {∅, {∅}}. Let 𝑥 ⊆ {∅}. 
By 𝐋𝐄𝐌′, ∅ ∈ 𝑥 ∨ ∅ ∉ 𝑥. In the first case, 𝑥 = {∅}, in the second case, 𝑥 = ∅. ∎ 

The General Uniformity Principle (GUP) is the following schema: ∀𝑎(∀𝑥. ∃𝑦 ∈ 𝑎. 𝜙(𝑥, 𝑦) → ∃𝑦 ∈ 𝑎. ∀𝑥. 𝜙(𝑥, 𝑦)). 
Intuitively, GUP says that every mapping from the universe of all sets into a given set 𝑎, must in fact be 

constant. From the fact that 𝐂𝐙𝐅 is consistent with a weaker version of this axiom (the case 𝑎 = 𝜔) and a 

result from [71], one concludes that GUP is consistent with 𝐂𝐙𝐅. Given this result, one can easily show 

the following: 

ⓂTheorem 3.24: For 𝑎 ≠ ∅, 𝒫(∅) is not a set in 𝐂𝐙𝐅: 𝐂𝐙𝐅 ⊬ 𝑎 ≠ ∅ → ∃𝑧. 𝑧 = 𝒫(𝑎). 
Proof: Towards a contradiction, suppose that 𝐂𝐙𝐅 proves that 𝒫(𝑎) is a set for 𝑎 ≠ ∅. Then so does 𝐂𝐙𝐅 +GUP. We will argue inside the latter theory for the rest of the proof. 

By bounded separation, {𝑤 ∈ 𝑎: ∅ ∈ 𝑥} is a set too, for every set 𝑥. Hence, ∀𝑥. ∃𝑦 ∈ 𝒫(𝑎). 𝑦 = {𝑤 ∈ 𝑎: ∅ ∈ 𝑥}, 
and by GUP,  ∀𝑦 ∈ 𝒫(𝑎). ∃𝑥. 𝑦 = {𝑤 ∈ 𝑎: ∅ ∈ 𝑥}. 
Let this 𝑦 be fixed. 

• For 𝑥 = ∅, 𝑦 = ⋃{𝑤 ∈ 𝑎: ∅ ∈ ∅} = ∅. 
• For 𝑥 = {∅}, 𝑦 = ⋃{𝑤 ∈ 𝑎:∅ ∈ {∅}} = 𝑎. 

Altogether, 𝑎 = ∅, a contradiction.  ∎ 

This is a very strong result: It turns out, that in restricting 𝐈𝐙𝐅 to 𝐂𝐙𝐅 one not only loses the unwanted 

instances of the Powerset axiom, where the 𝒫-operator is applied to infinite sets. For example, it seems 

reasonable to doubt that 𝒫(𝜔) is consecutively justifiable. The peculiar side is that we also lose innocent 

instances where the resulting power-set is classically finite. Intuitionistically – and we have discussed 

this in the section about the Power set axiom in Zermelo-Fraenkel set theory 𝐙𝐅𝐂2.4.1 – already the set 𝒫(1) is equivalent to the set of all formulas of the underlying language of set theory.  
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3.4.2 Inductive definitions 

Note that in defining the sets 𝑉𝛼 we used the Powerset-axiom in a decisive way. In order to give a defi-

nition of this (and other important classes) in 𝐂𝐙𝐅 as well, we need to consider inductive definitions. 

Definition 3.25: An inductive definition is a class of ordered pairs. If 〈𝑥, 𝑎〉 ∈ Φ, we call 𝑥 a premise and 𝑎 a 

conclusion under Φ. For any class 𝑌, we define the class of Φ-conclusions from premises 𝑌, ΓΦ(𝑌) = {𝑎: ∃𝑋 (𝑋 ⊆ 𝑌 ∧ 〈𝑋, 𝑎〉 ∈ Φ}. 
We call a class 𝑌 𝛷-closed iff ΓΦ(𝑌) ⊆ 𝑌. 

The familiar terminology is not accidental: For example, we could consider a logic with some inference 

rule Φ: This rule can be represented as a class of pairs 〈𝑋, 𝑎〉, where 𝑋 is a finite set of premises and 𝑎 is 

the conclusion of 𝑥 under Φ. Then, for any set 𝑀 of formulas, ΓΦ(𝑀) is the class of all formulas that can 

be inferred from 𝑀 by Φ in one step. We will be interested in the smallest Φ-closed class: In our example, 

it is the deductive closure of 𝑀 with respect to Φ.  

ⓂTheorem 3.26 (inductive definition Theorem): For any inductive definition Φ, there is a smallest Φ-

closed class 𝐼. It can be written as 

𝐼 =⋃𝐼𝑎𝑎∈𝑉 , 
where the 𝐼𝑎s satisfy 

𝐼𝑎 = ΓΦ (⋃𝐼𝑏𝑏∈𝑎 ). 
Furthermore, we have the following induction principle: ∀𝑎 (∀𝑏 ∈ 𝑎. ∀𝑥 ∈ 𝐼𝑏 . 𝜙(𝑥) → ∀𝑥 ∈ 𝐼𝑎 . 𝜙(𝑥))∀𝑥 ∈ 𝐼. 𝜙(𝑥)  

Before we prove the existence-part in a separate lemma, let us introduce some notation: We define for a 

set 𝑋 and a class (or set) 𝑀, 𝑀𝑋 = {𝑎: 〈𝑋, 𝑎〉 ∈ 𝑀}, 𝑀∈𝑋 = {𝑎: ∃𝑌 ∈ 𝑋 〈𝑌, 𝑎〉 ∈ 𝑀} =⋃𝑀𝑌𝑌∈𝑋 . 
ⓂLemma 3.27 (𝐁𝐒𝐓 + Collection): There is a class 𝐽 such that  

𝐽𝑎 = ΓΦ (⋃𝐽𝑏𝑏∈𝑎 ). 
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Proof:  We call a set 𝐺 of ordered pairs good iff  〈𝑋, 𝑎〉 ∈ 𝐺 → 𝑎 ∈ ΓΦ(𝐺∈𝑋), 
Let 𝐽 = ⋃{𝐺: 𝐺 is good}. The lemma in our new notation reads 𝐽𝑋 = ΓΦ(𝐽∈𝑋). We show this as follows: 

Let 𝑎 ∈ 𝐽𝑋. Then 〈𝑋, 𝑎〉 ∈ 𝐺 for some good set 𝐺, which means 𝑎 ∈ ΓΦ(𝐺∈𝑋). Since 𝐺∈𝑋 ⊆ 𝐽∈𝑋  it follows 

that 𝑎 ∈ ΓΦ(𝐽∈𝑋). Thus, 𝐽𝑋 ⊆ ΓΦ(𝐽∈𝑋). 
For the other inclusion, let 𝑎 ∈ ΓΦ(𝐽∈𝑋). Then 〈𝑌, 𝑎〉 ∈ Φ for some 𝑌 ⊆ 𝐽∈𝑋, i.e. ∀𝑦 ∈ 𝑌 ∃𝑥 ∈ 𝑋 𝑦 ∈ 𝐽𝑥, so ∀𝑦 ∈ 𝑌. ∃𝐺. 𝐺 is good and 𝑦 ∈ 𝐺∈𝑋. 
By collection, there is a set 𝑍 such that  ∀𝑦 ∈ 𝑌. ∃𝐺 ∈ 𝑍. 𝐺 is good and 𝑦 ∈ 𝐺∈𝑋. 
Let 𝐺 = {〈𝑋, 𝑎〉} ∪ ⋃𝑍. Then ⋃𝑍 is good and because of 〈𝑌, 𝑎〉 ∈ Φ and 𝑌 ⊆ 𝐺∈𝑋 also 𝑎 ∈ ΓΦ(𝐺∈𝑋); hence 𝐺 is good. As 〈𝑋, 𝑎〉 ∈ 𝐺, we have 𝑎 ∈ 𝐽𝑋. Thus ΓΦ(𝐽∈𝑋) ⊆ 𝐽𝑋. ∎ 

Proof of the theorem: Let the 𝐽𝑎s be as in the lemma. Of course, we set 𝐼𝑎 = 𝐽𝑎 and 𝐼 = ⋃ 𝐼𝑎𝑎∈𝑉  and claim 

that this does the job. Indeed, let 〈𝑋, 𝑎〉 ∈ Φ and 𝑋 ⊆ 𝐼. Then for each 𝑥 ∈ 𝑋 there is some 𝑦 such that 𝑥 ∈𝐼𝑦. So, by collection, there is a set 𝑌, such that ∀𝑥 ∈ 𝑋. ∃𝑦 ∈ 𝑌. 𝑥 ∈ 𝐼𝑦, 
which shows that 𝑋 ⊆ ⋃ 𝐼𝑦𝑦∈𝑌  and hence 𝑎 ∈ ΓΦ(⋃ 𝐼𝑦𝑦∈𝑌 ) = 𝐼𝑌 ⊆ 𝐼. 
To show minimality, let 𝐼′ be another Φ-closed class. We show 𝐼𝑋 ⊆ 𝐼′ by set induction (the other inclu-

sion is trivial). Suppose, 𝐼𝑥 ⊆ 𝐼′ for all 𝑥 ∈ 𝑋. But by monotonicity of ΓΦ, 

𝐼𝑋 = ΓΦ (⋃𝐼𝑦𝑥∈𝑋 ) ⊆ ΓΦ(𝐼) ⊆ 𝐼′. 
The induction principle is nothing more but set induction: Assume, ∀𝑎 (∀𝑏 ∈ 𝑎. ∀𝑦 ∈ 𝐽𝑏 . 𝜙(𝑦) → ∀𝑥 ∈𝐽𝑎 . 𝜙(𝑥)). By set induction, ∀𝑎. ∀𝑥 ∈ 𝐽𝑎 . 𝜙(𝑥) and thus ∀𝑥 ∈ 𝐽. 𝜙(𝑥). ∎ 

We give another formulation of Theorem 3.26 in terms of ordinals: 

ⓂTheorem 3.28 (inductive definition on ordinals): For any inductive definition Φ, there is a smallest Φ-closed class 𝐽. Furthermore, 

𝐼 = ⋃ 𝐼𝛼𝛼∈𝕆ℕ , 

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

Comparison and Analysis of Constructive Set Theory  WS 2019/20 

 

~ 47 ~ 
 

where the 𝐼𝛼s satisfy 

𝐼𝛼 = ΓΦ (⋃𝐼𝛽𝛽∈𝛼 ). 
Furthermore, we have the following induction principle ∀𝛼 ∈ 𝕆ℕ(∀𝛽 ∈ 𝛼. ∀𝑥 ∈ 𝐼𝛽 . 𝜙(𝑥) → ∀𝑥 ∈ 𝐼𝛼 . 𝜙(𝑥))∀𝑥 ∈ 𝐼. 𝜙(𝑥)  

Proof: Effectively, all we need to show is that the smallest Φ-closed class 𝐼 from Theorem 3.26 can be 

written as ⋃ 𝐼𝛼𝛼∈𝕆ℕ . So, let 𝐼′ = ⋃ 𝐼𝛼𝛼∈𝕆ℕ , we show that indeed 𝐼 = 𝐼′. Obviously, 𝐼′ ⊆ 𝐼. For the other 

inclusion we show that 𝐼′  is Φ-closed. Let 〈𝑋, 𝑎〉 ∈ Φ, where 𝑋 is a subset of 𝐽. We have ∀𝑥 ∈ 𝑋 ∃𝛼 ∈𝕆ℕ 𝑥 ∈ 𝐼𝛼. By collection, there is some 𝐵 containing all these 𝛼s. Hence, by Proposition 3.4 it holds that 𝑋 ⊆ 𝐽𝛾, where 𝛾 = ⋃𝐵 + 1. By definition, 𝑎 ∈ ΓΦ(𝐼𝛾) = 𝐼𝛾+1. 

The induction principle follows easily. ∎ 

Example: Let Φ be the class of pairs 〈𝑋, 𝑎〉, where 𝑋 is any set and 𝑎 ⊆ 𝑋. We set 𝑉𝛼 = ⋃ 𝐼𝛽𝛽∈𝛼  and show 𝑉𝛼 = ⋃ 𝒫(𝑉𝛽)𝛽∈𝛼  for all 𝛼. Suppose, this holds true for all 𝛽 ∈ 𝛼, then 

𝑉𝛼 =⋃𝐽𝛽𝛽∈𝛼 =⋃ΓΦ(⋃𝐽𝛾𝛾∈𝛽 )𝛽∈𝛼 =⋃𝒫(⋃𝐽𝛾𝛾∈𝛽 )𝛽∈𝛼 =⋃𝒫(𝑉𝛽)𝛽∈𝛼 . 
In later chapters, we will often prove statements by double recursion for an inductive class 𝐼. This is the 

scheme 

∀𝛼 ((∀𝛽 ∈ 𝛼 ∀𝑥 ∈ 𝐼𝛽  𝜙(𝑥)) → ∀𝑥 ∈ 𝐼𝛼  𝜓(𝑥)) ∀𝛼 ((∀𝑥 ∈ 𝐼𝛼 𝜓(𝑥)) → ∀𝑥 ∈ 𝐼𝛼  𝜙(𝑥))∀𝑥 ∈ 𝐼. 𝜙(𝑥) ∧ 𝜓(𝑥)  

and it is easily entangled into two separate inductions for 𝜙 and 𝜓. However, it will be convenient to 

choose double induction over two single inductions. 

3.5 Relation between the theories 
For the sake of completeness, we would like to establish the looming relationship between the theories 𝐂𝐙𝐅, 𝐈𝐙𝐅 and 𝐙𝐅. First, we need some results about the interplay between the axioms of replacement, 

collection and strong collection – the only axioms that are strengthened when passing from 𝐙𝐅 to the 

weaker theories. 
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3.5.1 Replacement, Collection, Strong Collection 

ⓂⓒProposition 3.29: 𝐙𝐅 ⊢ Collection 

Proof: Suppose, ∀𝑥 ∈ 𝐴. ∃𝑦. 𝜙(𝑥, 𝑦). Then ∀𝑥 ∈ 𝐴. ∃𝛼𝑥 ∈ 𝕆ℕ. ∃𝑦 ∈ 𝑉𝛼𝑥 . 𝜙(𝑥, 𝑦). 
And we may assume that 𝛼𝑥 is the smallest such 𝛽. By replacement, form the set 𝐵 of all such 𝛼𝑥. Then 𝛼 = ⋃𝐵 is an ordinal and 𝑉𝛼 = ⋃ 𝑉𝛼𝑥𝑥∈𝐴  and therefore ∀𝑥 ∈ 𝐴. ∃𝑦 ∈ 𝑉𝛼 . 𝜙(𝑥, 𝑦). ∎ 

ⓂProposition 3.30: 𝐈𝐙𝐅 ⊢ Strong collection 

Proof: Suppose, ∀𝑥 ∈ 𝐴. ∃𝑦. 𝜙(𝑥, 𝑦). By collection, we get a set 𝐵′ such that ∀𝑥 ∈ 𝐴. ∃𝑦 ∈ 𝐵′. 𝜙(𝑥, 𝑦). To ob-

tain a set 𝐵 such as required in the strong collection schema, set 𝐵 = {𝑦 ∈ 𝐵: ∃𝑥 ∈ 𝐴. 𝜙(𝑥, 𝑦)} by separa-

tion. ∎ 

3.5.2 Proofs of inclusion 

We can now gather together our results from the previous sections to establish: 

ⓂTheorem 3.31: We have the strict inclusions 𝐂𝐙𝐅 ⊊ 𝐈𝐙𝐅 ⊊ 𝐙𝐅 

and the equations 𝐂𝐙𝐅 + 𝐋𝐄𝐌 = 𝐈𝐙𝐅 + 𝐋𝐄𝐌 = 𝐙𝐅. 
Proof: Ⓜ𝐂𝐙𝐅 ⊊ 𝐈𝐙𝐅: 𝐈𝐙𝐅 proves Strong Collection by Proposition 3.30 and Subset Collection by Proposi-

tion 2.22 and Proposition 2.21. By Theorem 3.24, the Powerset axiom does not hold in its full generality 

in 𝐂𝐙𝐅, which shows that the inclusion is strict. 

Ⓜ𝐈𝐙𝐅 ⊊ 𝐙𝐅: 𝐙𝐅 proves Collection by Proposition 3.29 and Set induction by Proposition 2.15. We will 

show in Corollary 4.27, that 𝐋𝐄𝐌 is indeed not derivable in 𝐈𝐙𝐅 (and hence so are all weak counterexam-

ples of this chapter and the previous one). 

ⓒ𝐈𝐙𝐅 + 𝐋𝐄𝐌 = 𝐙𝐅: Foundation follows from Proposition 2.15. 

ⓒ𝐂𝐙𝐅 + 𝐋𝐄𝐌 = 𝐙𝐅: Separation follows from Proposition 2.19 and Power set from Proposition 3.23. ∎
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4 Metamathematical properties of constructive axiomatic set 

theories  
In this chapter we will discuss some metamathematical properties that we expect an axiomatic construc-

tive set theory to possess. Many of these properties arise naturally from the BHK-semantics, others (such 

as Markov’s or Church’s principles) can be seen as starting point of a subbranch of constructivism. We 

will be able to show that 𝐂𝐙𝐅 and 𝐈𝐙𝐅 indeed satisfy some of these properties. For this purpose, we will 

use the concept of realizability – which itself can be seen as a specification of the BHK-interpretation (see  

based on effective computability. We will start the chapter with a short section recalling some notions 

from computability theory needed later on. 

4.1 Some aspects of computability theory 
In this section we will recall some notion and concepts from computability theory. We assume that the 

reader is familiar with the basic concepts and will therefore be relatively brief. The most prominent mod-

els of computability are Turing-machines, the lambda-calculus and recursive functions. It has been 

shown in [36] and [67], that the three models turn out to be equivalent, i.e. they describe the same class 

of functions. Additionally, as all three concepts make minimal assumptions and seem to model the gen-

eral idea of computability pretty well, it is reasonable to believe that all effectively computable functions 

can be given in terms of one of these concepts (this assumption is known as Church-Turing-thesis). In the 

further discussion we will hence, when referring to programs, algorithms or effectively computable functions, 

actually mean recursive functions, the lambda-calculus or Turing-machines and use a lambda-calculus-

style notation.  

We will write 𝐾𝑙 (after Kleene) for the structure being able of forming lambda-terms and generously 

containing as constants all natural numbers and standard operators such as 𝐬, 𝐤, 𝐢,  𝐩 (pairing) 𝐥 and 𝐫 
(left and right projections), logical operators etc. We will write 𝜏 ≃ 𝑛 if the term 𝜏 converges to the natural 

number 𝑛. For terms 𝜏, 𝜃, we write 𝜏 ≃ 𝜃 if the terms converge to the same term (if they do converge). 

The expression 𝜏 ↓ means that 𝜏 converges (to any term) and for a formula 𝜙(𝑥) on natural numbers, we 

write 𝜙(𝜏) if 𝜏 converges to 𝑛 and 𝜙(𝑛) holds. As usually, the set of all terms is countable, and we may 

assume that there is a Gödel-numbering of these terms. We write {𝑒} for the term with number 𝑒. Often, 

we will not clearly distinguish between a term and its Gödel-number and write 𝑒𝑓 instead of {𝑒}𝑓, where 

this is not problematic. Let us recall some basic results: 

Theorem 4.1 (Recursion): There is a term 𝜏fix (the fixed-point combinator) such that for all terms 𝜎, 𝐾𝑙 ⊨ 𝜏fix𝜎 ≃ 𝜎(𝜏fix𝜎). 
Proof: Let 𝜏fix ≡ 𝜆𝑧. (𝜆𝑦. 𝑧(𝑦𝑦))(𝜆𝑦. 𝑧(𝑦𝑦)). We verify the property: 
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𝜏fix𝜎 ≃ (𝜆𝑦. 𝜎(𝑦𝑦))(𝜆𝑦. 𝜎(𝑦𝑦)) ≃ 𝜎 ((𝜆𝑦. 𝜎(𝑦𝑦))(𝜆𝑦. 𝜎(𝑦𝑦))) ≃ 𝜎(𝜏fix𝜎). ∎ 

Theorem 4.2 (Fixed-point): All terms 𝜏(𝑥) with 𝑥 free have a fixed-point 𝑖, this means 𝐾𝑙 ⊨ 𝜏(𝑖) ≃ 𝑖. 
Proof: Let 𝜎 ≡ 𝜆𝑥. 𝜏(𝑥) and 𝑖 ≡ 𝜏fix𝜎. Indeed, by the recursion theorem, 𝑖 ≡ 𝜏fix𝜎 ≃ 𝜎(𝜏fix𝜎) ≡ 𝜎𝑖 ≡ (𝜆𝑥. 𝜏(𝑥))𝑖 ≃ 𝜏(𝑖). ∎ 

Lemma 4.3 (Double recursion): For terms 𝜎1(𝑥, 𝑦) and 𝜎2(𝑥, 𝑦) there are 𝜏1 and 𝜏2 such that  𝐾𝑙 ⊨ 𝜏1 ≃ 𝜎1(𝜏1, 𝜏2) ∧ 𝜏2 ≃ 𝜎2(𝜏1, 𝜏2). 
Proof: Given 𝜎1 and 𝜎2, apply the Fixed-point theorem to find a fixed point 𝑖 of 𝐩𝜎1(𝐥𝑥, 𝐫𝑥)𝜎2(𝐥𝑥, 𝐫𝑥). 
Set 𝜏1 ≡ 𝐥𝑖 and 𝜏2 ≡ 𝐫𝑖. We check the first property: Using the fixed-point property, we have 𝜏1 ≡ 𝐥𝑖 ≃ 𝐥(𝐩𝜎1(𝐥𝑖, 𝐫𝑖)𝜎2(𝐥𝑖, 𝐫𝑖)) ≃ 𝜎1(𝐥𝑖, 𝐫𝑖) ≡ 𝜎1(𝜏1, 𝜏2). ∎ 

Definition 4.4: The lest number operator 𝜇 is known from recursive functions. For a term 𝜏, we define 

by 𝜇𝑚. 𝜏 the least number 𝑚 such that 𝜏(𝑚) ≃ 0. 

4.2 Metamathematical properties 
In this section we will discuss some metamathematical properties that we expect proper constructive set 

theory to possess. In the following discussion, let 𝐓 be a theory over a language containing the relation 

“∈”, some constant 𝜔 denoting the set of natural numbers and constants 0,1,2,… denoting its elements. 

Furthermore, we assume that 𝐓 decides equality on 𝜔 in the usual way and that some form of computa-

bility may be formalized within 𝐓.  

4.2.1 Disjunction property 

The disjunction property is the property that whenever the theory 𝐓 proves 𝜙 ∨ 𝜓, it must actually prove 

one of 𝜙 or 𝜓:  

If 𝐓 ⊢ 𝜙 ∨ 𝜓, then 𝐓 ⊢ 𝜙 or 𝐓 ⊢ 𝜓. 
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Following the BHK-interpretation, a proof 𝑝 of 𝜙 ∨ 𝜓 must indeed be a pair 〈𝑛, 𝑞〉, where 𝑛 is a natural 

number and 𝑞 proves 𝜙 if 𝑛 = 0 and 𝜓, else. Hence, it is reasonable to expect for a constructive theory to 

possess the disjunction property (indeed, we will show, that both 𝐂𝐙𝐅 and 𝐈𝐙𝐅 have the disjunction prop-

erty). 

For the classical set theory 𝐙𝐅𝐂, this property does not hold: Take any statement independent of 𝐙𝐅𝐂, like 

the continuum hypothesis 𝐂𝐇 . Then, by 𝐋𝐄𝐌 , 𝐙𝐅𝐂 ⊢ 𝐂𝐇 ∨ ¬𝐂𝐇 , but famously neither 𝐙𝐅𝐂 ⊢ 𝐂𝐇  nor 𝐙𝐅𝐂 ⊢ ¬𝐂𝐇. 

4.2.2 Existence property and numerical existence property 

A theory 𝐓 has the existence property if whenever 𝐓 ⊢ ∃𝑥 𝜙(𝑥), then there is a formula 𝜃(𝑥) with exactly 𝑥 free such that 𝐓 ⊢ ∃! 𝑥 [𝜃(𝑥) ∧ 𝜙(𝑥)]. This means that the witness of the formula 𝜙 can be constructed 

by the formula 𝜃. The numerical existence property is a weakening of this: Whenever 𝐓 ⊢ ∃𝑥 ∈ 𝜔.𝜙(𝑥), then 

there has to be a natural number 𝑛 such that 𝐓 ⊢ 𝜙(𝑛). Again, both properties can be expected of a con-

structive theory. For example, consider the BHK-interpretation: A proof 𝑝 of ∃𝑥 𝜙(𝑥) should provide us 

with a construction of a witness 𝑦 along with a proof of 𝜙(𝑦). 
Note that the disjunction property is actually a special case of the numerical existence property: Let 𝜃(𝑛) 
be the formula (𝑛 = 0 → 𝜙) ∨ (𝑛 ≠ 0 → 𝜓). If 𝐓 has the numerical existence property and proves 𝜙 ∨ 𝜓 

then it also proves ∃𝑛 ∈ 𝜔. 𝜃(𝑛). Now one can decide whether 𝐓 proves 𝜙 or 𝜓 by inspecting the witness 𝑛 of 𝜃, given by the numerical existence property. In particular, this shows, that 𝐙𝐅𝐂 does not possess the 

numerical existence property. 

Surprisingly, the existence property does not hold neither for 𝐂𝐙𝐅 nor for 𝐈𝐙𝐅 ( [25], [63]), which may 

seem unsatisfactory. However, the theory 𝐂𝐙𝐅 may still be defended by the fact that there is a natural 

interpretation of 𝐂𝐙𝐅 in Martin-Löf’s type theory, which does allow us to extract witnesses from proofs. 
We will discuss this interpretation in chapter 5. 

But both 𝐂𝐙𝐅 and 𝐈𝐙𝐅 have the numerical existence property – which we will show in sections 4.6 and 

4.7. 

4.2.3 Unzerlegbarkeits-rule and variants 

The Unzerlegbarkeits-rule (UzR) states that the universe of sets is unzerlegbar3 by a property: Whenever  𝐓 ⊢ ∀𝑥[𝜓(𝑥) ∨ ¬𝜓(𝑥)], then 𝐓 ⊢ ∀𝑥 𝜓(𝑥) ∨ ∀𝑥 ¬𝜓(𝑥). In the words of McCarty in [44], this rule says that 

if you have two colors, “the only way to color all the sets in the [...] universe is to make everything the 

same color!” 

A generalization is the case where you have countably many colors, formulated in the Uniformity-rule 

(UR): If whenever 𝐓 ⊢ ∀𝑥 ∃𝑦 ∈ 𝜔.𝜓(𝑥, 𝑦), then 𝐓 ⊢ ∃𝑦 ∈ 𝜔. ∀𝑥 𝜓(𝑥, 𝑦). This is indeed a generalization: If 
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a theory 𝐓  has the Uniformity rule and proves ∀𝑥[𝜓(𝑥) ∨ ¬𝜓(𝑥)] , then it must also prove ∀𝑥. ∃𝑦 ∈𝜔. 𝜃(𝑥, 𝑦), where 𝜃(𝑥, 𝑦) ≡ (𝜓(𝑥) ∧ 𝑦 = 0) ∨ (¬𝜓(𝑥) ∧ 𝑦 ≠ 0). By Uniformity, we either have ∀𝑥 𝜓(𝑥) or ∀𝑥 ¬𝜓(𝑥), depending on 𝑦. 

Clearly, 𝐙𝐅𝐂 does not enjoy any of the two properties: Take for example the formula 𝜓(𝑥) ≡ 𝑥 = ∅. Of 

course, 𝐙𝐅𝐂 ⊢ ∀𝑥[𝑥 = ∅ ∨ 𝑥 ≠ ∅], but both ∀𝑥. 𝑥 = ∅ and ∀𝑥. 𝑥 ≠ ∅ are absurd in 𝐙𝐅𝐂4. 

4.2.4 Church’s rule 

Church’s rule (CR, do not confuse with Church-Turing-thesis) says that all total rules on 𝜔 are given by 

effectively computable functions: whenever 𝐓 ⊢ ∀𝑥 ∈ 𝜔. ∃𝑦 ∈ 𝜔.𝜙(𝑥, 𝑦), then there is some number 𝑒 

with 𝐓 ⊢ ∀𝑥 ∈ 𝜔.𝜙(𝑥, {𝑒}(𝑥)). 
This seems as a reasonable assumption in the intuitionistic case, but classically this is clearly not true. 

For example, the Halting-problem inspires the following function in 𝐙𝐅𝐂:   

𝑓(𝑛,𝑚) = {1, if {𝑛}(𝑚) converges,0, otherwise.  

Due to 𝐋𝐄𝐌, this function is total in 𝐙𝐅𝐂. From Turing’s famous argument ( [68]), this function is not 

computable. Hence, there is no way to effectively compute witnesses for the formula ∀𝐱 ∈ 𝜔. ∃𝑧 ∈{0,1}. 𝑓(𝐱) = 𝑧, (we may assume that 𝐱 codes the pair (𝑥, 𝑦)). 
This reasoning shows a clear incompatibility of Church’s rule with the axiom 𝐋𝐄𝐌.  

4.2.5 Markov’s rule 

Markov’s rule (MR), central to Russian Constructivism, says that if we can prove that it is impossible that 

a program is never terminating, then it does terminate: If  𝐓 ⊢ ∀𝑛 ∈ 𝜔(𝜙(𝑛) ∨ ¬𝜙(𝑛)) ∧ ¬∀𝑛 ∈ 𝜔.¬𝜙(𝑛), 
then 𝐓 ⊢ ∃𝑛 ∈ 𝜔.𝜙(𝑛). 
This is the first rule we discussed, that holds (trivially) in the classical setting.  

4.2.6 Rules vs. Principles 

Note that all rules so far (Unzerlegbarkeit, Church, Markov) came in the form  

If 𝐓 ⊢ 𝐴, then 𝐓 ⊢ 𝐵. 

We can associate to every such rule a principle, of the form 𝐓 ⊢ 𝐴 → 𝐵. 
For example, we can formulate the Unzerlegbarkeits-principle as 

 
4 This counterexample does not work in 𝐂𝐙𝐅 or 𝐈𝐙𝐅, as we cannot, in general, decide for each set 𝑥, whether 𝑥 = ∅ 
or 𝑥 ≠ ∅. 
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𝐓 ⊢ ∀𝑥[𝜓(𝑥) ∨ ¬𝜓(𝑥)] → [∀𝑥 𝜓(𝑥) ∨ ∀𝑥 ¬𝜓(𝑥)]. 
Both formulations may seem similar in description, but differ significantly in content: To show that a 

theory follows a rule, we must show how to transfer 𝐓-proofs of 𝐴 into 𝐓-proofs of 𝐵. For the correspond-

ing principle, however, we must give 𝐓-proofs of 𝐴 → 𝐵. Clearly, the principles imply their correspond-

ing rules, but the converse is not the case: 

For example, as both 𝐂𝐙𝐅 and 𝐈𝐙𝐅 are subtheories of 𝐙𝐅𝐂, where Church’s principle conflicts with 𝐋𝐄𝐌, 

both theories cannot possibly follow Church’s principle. We will show, however, that they follow the 
corresponding rule. We can think of this situation as the fact that 𝐂𝐙𝐅 and 𝐈𝐙𝐅 do not “know” that each 
rule is effectively computable. Metamathematically, however, we can transform every proof of ∀𝑥 ∈𝜔. ∃𝑦 ∈ 𝜔.𝜙(𝑥, 𝑦) into a procedure 𝑒 computing for each 𝑥 ∈ 𝜔 some {𝑒}(𝑥) ∈ 𝜔 such that 𝜙(𝑥, {𝑒}(𝑥)). 
Knowing about the Curry-Howard correspondence, this fact is perhaps not too big a surprise. 

Although 𝐂𝐙𝐅 and 𝐈𝐙𝐅 cannot follow Church’s principle, will show that both theories are are compatible 

with it, i.e. we can consistently extend 𝐓 to a theory 𝐓′ following this principle. Of course, 𝐓′ ⊈ 𝐙𝐅𝐂 (and 

also 𝐙𝐅𝐂 ⊈ 𝐓′). 
We denote the Unzerlegbarkeits principle, Uniformity principle, Church’s principle and Markov’s prin-
ciple as UzP, UP, CP and MP respectively. 

4.3 Realizability of 𝐂𝐙𝐅 
Realizability is a semantical method inspired by the BHK-interpretation. While the latter leaves open the 

precise notion of proof, realizability interprets proofs as elements of a certain “proof structure”. In our 
discussion this proof structure will 𝑉∗ and proofs will be interpreted as effectively computable functions. 

Not further specifying our domain of discourse (let it be an abstract 𝒱 for now), and leaving out the 

atomic case and bounded quantification, we can transfer the rules in the BHK-semantics: 𝑒 ⊩ 𝜙 ∧ 𝜓  iff (𝑒)0 ⊩ 𝜙 ∧ (𝑒)1 ⊩ 𝜓  𝑒 ⊩ 𝜙 ∨ 𝜓  iff [(𝑒)0 = 0 ∧ (𝑒)1 ⊩ 𝜙] ∨ [(𝑒)0 ≠ 0 ∧ (𝑒)1 ⊩ 𝜓]  𝑒 ⊩ ¬𝜙  iff ∀𝑓[¬(𝑓 ⊩ 𝜙)]  𝑒 ⊩ 𝜙 → 𝜓  iff ∀𝑓[(𝑓 ⊩ 𝜙) → ({𝑒}(𝑓) ⊩ 𝜓)]  𝑒 ⊩ ∀𝑥 𝜙  iff ∀𝔞 ∈ 𝒱 [𝑒 ⊩ 𝜙(𝔞)]  𝑒 ⊩ ∃𝑥 𝜙  iff ∃𝔞 ∈ 𝒱 [𝑒 ⊩ 𝜙(𝔞)]  
 𝑒 ⊩⊥ iff ⊥  

If 𝑒 ⊩ 𝜙, we say that 𝑒 realizes 𝜙 or that 𝑒 is a realizer for 𝜙. 

4.3.1 The proof structure 𝑉∗ 
Let us now motivate the atomic case. As in section 2.1.2, we imagine a set 𝔞 to be given not only by its 

elements 𝑥, but also by (coding of) proofs 𝑛 of the fact that 𝑥 ∈ 𝔞. Thus, what we can do is to identify the 
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set 𝔞 with all such pairs 〈𝑛, 𝑥〉. The problem, however, is that if we want sets to be foundational, the ele-

ment 𝑥 itself must be of this shape. To follow this idea, one will thus have to define inductively the uni-

verse 𝑉(𝐾𝑙) as: 𝑉(𝐾𝑙) = {〈𝑛, 𝔞〉: 𝑛 ∈ 𝜔 ∧ 𝔞 ∈ 𝑉(𝐾𝑙)}. 
Note that this is actually an inductive definition and justified by Theorem 3.28. This structure is studied 

in [44] and [54]. For our purposes, however, we will use a similar, but slightly more complicated struc-

ture, presented in [55]. The reason for this is, that in order to verify the rules of section 4.2, we want to 

refer to truth inside 𝐂𝐙𝐅 in our definition of realizability. Define for a pair 〈𝑎,𝑚〉 the expressions 〈𝑎,𝑚〉° =𝑎 and 〈𝑎,𝑚〉∗ = 𝑚. The definition of the universe 𝑉∗ looks as follows: 𝑉𝛼∗ =⋃{〈𝑎,𝑚〉: 𝑎 ∈ 𝑉𝛽 ∧ 𝑚 ⊆ 𝜔 × 𝑉𝛽∗ ∧ ∀𝑥 ∈ 𝑚. (𝑥∗)° ∈ 𝑎}𝛽∈𝛼 , 
𝑉∗ = ⋃ 𝑉𝛼∗𝛼∈𝕆ℕ . 

We can now give the definitions of realizability for atomic formulas 𝔞 ∈ 𝔟 and 𝔞 = 𝔟. This definition is by 

simultaneous recursion and incorporates the extensionality axiom: 𝑒 ⊩ 𝔞 ∈ 𝔟  iff 𝔞° ∈ 𝔟° ∧ ∃𝔡[〈(𝑒)0, 𝔡〉 ∈ 𝔟 ∧ (𝑒)1 ⊩ 𝔞 = 𝔡]  𝑒 ⊩ 𝔞 = 𝔟  iff 𝔞° = 𝔟° ∧     ∀𝑓, 𝔡[(〈𝑓, 𝔡〉 ∈ 𝔞 → {(𝑒)0}(𝑓) ⊩ 𝔡 ∈ 𝔟) ∧ (〈𝑓, 𝔡〉 ∈ 𝔟 → {(𝑒)1}(𝑓) ⊩ 𝔡 ∈ 𝔞)]  
We will want to carry out these constructions inside 𝐂𝐙𝐅 (definition inside 𝐈𝐙𝐅 is less problematic). We 

do this in the following lemma: 

Lemma 4.5: The classes 𝑉𝛼∗ and 𝑉∗ are definable in 𝐂𝐙𝐅. 

Proof: For each set or class 𝑋, define 𝑋′ = {𝑎: ∃𝑚. 〈𝑎,𝑚〉 ∈ 𝑋}. We use Theorem 3.28 to define the 𝑉𝛼∗ and 

at the same time show inductively that (𝑉𝛼∗)′ = 𝑉𝛼. 

Let Φ be the inductive definition with 〈𝑋, 〈𝑎,𝑚〉〉 ∈ Φ   iff    𝑎 ∈ 𝑋′ and 𝑚 ⊆ 𝜔 × 𝑋, where ∀𝑥 ∈ 𝑚. (𝑥∗)° ∈ 𝑎, 
and suppose, (𝑉𝛽∗)′ = 𝑉𝛽  for all 𝛽 ∈ 𝛼 . By Theorem 3.28, we have 𝐽 = ⋃ 𝐽𝛼𝛼∈𝕆ℕ  and for each 𝛼 , 𝐽𝛼 =ΓΦ(⋃ 𝐽𝛽𝛽∈𝛼 ). Let 𝑉𝛼∗ ≔ ⋃ 𝐽𝛽𝛽∈𝛼 . Then, 

𝑉𝛼∗ =⋃𝐽𝛽𝛽∈𝛼  

=⋃ΓΦ(⋃𝐽𝛾𝛾∈𝛽 )𝛽∈𝛼  
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=⋃{〈𝑎,𝑚〉: 𝑎 ∈ (⋃𝐽𝛾𝛾∈𝛽 )′ ∧ 𝑚 ⊆ 𝜔 ×⋃𝐽𝛾𝛾∈𝛽 ∧ ∀𝑥 ∈ 𝑚. (𝑥∗)° ∈ 𝑎}𝛽∈𝛼  

=⋃{〈𝑎,𝑚〉: 𝑎 ∈ (𝑉𝛽∗)′ ∧ 𝑚 ⊆ 𝜔 × 𝑉𝛽∗ ∧ ∀𝑥 ∈ 𝑚. (𝑥∗)° ∈ 𝑎}𝛽∈𝛼  

=⋃{〈𝑎,𝑚〉: 𝑎 ∈ 𝑉𝛽 ∧ 𝑚 ⊆ 𝜔 × 𝑉𝛽∗ ∧ ∀𝑥 ∈ 𝑚. (𝑥∗)° ∈ 𝑎}𝛽∈𝛼  = 𝑉𝛼∗. 
The inductive step follows from 

(𝑉𝛼)′ = (⋃𝐽𝛽𝛽∈𝛼 )′ 
= {𝑎: ∃𝑚. 〈𝑎,𝑚〉 ∈ (⋃𝐽𝛽𝛽∈𝛼 )′} 

= {𝑎: ∃𝑚. 〈𝑎,𝑚〉 ∈ ⋃{〈𝑎,𝑚〉: 𝑎 ∈ 𝑉𝛽 ∧ 𝑚 ⊆ 𝜔 × 𝑉𝛽∗ ∧ ∀𝑥 ∈ 𝑚. (𝑥∗)° ∈ 𝑎}𝛽∈𝛼
′} 

⊇ {𝑎: 〈𝑎, ∅〉 ∈ ⋃{〈𝑎,𝑚〉: 𝑎 ∈ 𝑉𝛽 ∧ 𝑚 ⊆ 𝜔 × 𝑉𝛽∗ ∧ ∀𝑥 ∈ 𝑚. (𝑥∗)° ∈ 𝑎}𝛽∈𝛼 } 

= {𝑎: 𝑎 ∈ ⋃𝑉𝛽𝛽∈𝛼 } = 𝑉𝛼 , 
and the other inclusion is clear. ∎ 

Also, the definition of the clauses for 𝑒 ⊩ 𝔞 = 𝔟 and 𝑒 ⊩ 𝔞 ∈ 𝔟 must be justified: Again, we invoke the 

inductive definition theorem: Let 〈𝑥, 𝑎〉 be a member of Φ iff  𝑎 = 〈𝔞, 𝔟, 0, 𝑒〉, where 𝔞° = 𝔟° and ∀〈𝔡, 𝑓〉 ∈ 𝔞 (〈𝔡, 𝔟, 1, {(𝑒)0}𝑓〉 ∈ 𝑥) ∧ ∀〈𝔡, 𝑓〉 ∈ 𝔟 (〈𝔡, 𝔞, 1, {(𝑒)1}𝑓〉 ∈ 𝑥), or 𝑎 = 〈𝔞, 𝔟, 1, 𝑒〉, where 𝔞° ∈ 𝔟° and ∃𝔡[〈𝔡, (𝑒)0〉 ∈ 𝔟 ∧ 〈𝔞, 𝔡, 0, (𝑒)1〉 ∈ 𝑥], 
and in both cases 𝔞, 𝔟 ∈ 𝑉∗ , 𝑒 ∈ 𝜔 . The smallest Φ -closed class 𝐽  defines the relations 𝑒 ⊩ 𝔞 = 𝔟  iff 〈𝔞, 𝔟, 0, 𝑒〉 ∈ 𝐽 and 𝑒 ⊩ 𝔞 ∈ 𝔟 iff 〈𝔞, 𝔟, 1, 𝑒〉 ∈ 𝐽. 
4.3.2 Definition of realizability 

We can now give the definition of realizability we will work with. As we want to prove that 𝐂𝐙𝐅 and 𝐈𝐙𝐅 

follow the rules discussed in Section 4.2, our kind of realizability needs so refer to truth inside those 

systems. What we define is hence a variant of “realizability with truth” from [55].  
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For 𝜙 = 𝜙(𝔞1, … , 𝔞𝑛) with all the free variables shown, we define 𝜙° by 𝜙(𝔞1° , … , 𝔞𝑛° ). The full definition of 

realizability reads as follows: 

Let 𝔞, 𝔟, 𝔡 range over 𝑉∗ and 𝑒, 𝑓, 𝑐 over 𝜔. We define recursion 𝑒 ⊩ 𝔞 ∈ 𝔟  iff 𝔞° ∈ 𝔟° ∧ ∃𝔡[〈(𝑒)0, 𝔡〉 ∈ 𝔟∗ ∧ (𝑒)1 ⊩ 𝔞 = 𝔡]  𝑒 ⊩ 𝔞 = 𝔟  iff 𝔞° = 𝔟° ∧ ∀𝑓, 𝔡[(〈𝑓, 𝔡〉 ∈ 𝔞∗ → {(𝑒)0}𝑓 ⊩ 𝔡 ∈ 𝔟) ∧ (〈𝑓, 𝔡〉 ∈ 𝔟∗ →{(𝑒)1}𝑓 ⊩ 𝔡 ∈ 𝔞)]  𝑒 ⊩ 𝜙 ∧ 𝜓  iff (𝑒)0 ⊩ 𝜙 ∧ (𝑒)1 ⊩ 𝜓  𝑒 ⊩ 𝜙 ∨ 𝜓  iff [(𝑒)0 = 𝟎 ∧ (𝑒)1 ⊩ 𝜙] ∨ [(𝑒)0 ≠ 𝟎 ∧ (𝑒)1 ⊩ 𝜓]  𝑒 ⊩ ¬𝜙  iff (¬𝜙°) ∧ ∀𝑓[¬(𝑓 ⊩ 𝜙)]  𝑒 ⊩ 𝜙 → 𝜓  iff (𝜙° → 𝜓°) ∧ ∀𝑓[(𝑓 ⊩ 𝜙) → ({𝑒}𝑓 ⊩ 𝜓)]  𝑒 ⊩ ∀𝑥 ∈ 𝔞. 𝜙(𝑥) iff ∀𝑥 ∈ 𝔞°. 𝜙°(𝑥) ∧ ∀〈𝑓, 𝔠〉 ∈ 𝔞∗ [{𝑒}𝑓 ⊩ 𝜙(𝔠)] 𝑒 ⊩ ∃𝑥 ∈ 𝔞. 𝜙(𝑥) iff ∃𝔠[〈(𝑒)0, 𝔠〉 ∈ 𝔞∗ ∧ (𝑒)1 ⊩ 𝜙(𝔠)] 𝑒 ⊩ ∀𝑥 𝜙  iff ∀𝔡 [𝑒 ⊩ 𝜙(𝔡)]  𝑒 ⊩ ∃𝑥 𝜙  iff ∃𝔡 [𝑒 ⊩ 𝜙(𝔡)]  
 𝑒 ⊩⊥ iff ⊥  

We write 𝑉∗ ⊨ 𝜙 iff there is some 𝑒 ∈ 𝜔 such that 𝑒 ⊩ 𝜙. Note that unbounded and bounded quantifiers 

are treated as semantically different types of quantifiers in our definition of realizability. This is not 

merely for cosmetical reasons: In giving realizers for the axioms of 𝐂𝐙𝐅, it will be crucial to find a witness 

of a bounded existential statement ∃𝑥 ∈ 𝔟. 𝜙(𝑥) not somewhere in the class 𝑉∗ but rather in the set 𝔟. 

4.4 A simple Completeness Theorem 
Owing to our reference to truth within the system, we can now easily prove the completeness of realiza-

bility: 

Theorem 4.6 (Completeness): If 𝑉∗ ⊨ 𝜃, then 𝐂𝐙𝐅 ⊢ 𝜃°. 
Before proving the theorem, we need the following notion of standard representatives of sets of 𝐂𝐙𝐅 

within 𝑉∗: 
Definition 4.7: We define for every set 𝑥 its standard representative 𝑥 in 𝑉∗ by recursion: 𝑥 = 〈𝑥, {〈0, �̂�〉: 𝑢 ∈ 𝑥}〉. 
The property (𝑥)° = 𝑥 is shown by simple recursion. 

We are now ready to give the proof of the completeness-theorem: 

Proof of Theorem 4.6: By induction on 𝜃. The base cases are clear by definition and so are the cases of 

implication, negation, unbounded existential and bounded universal quantification. 
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Suppose 𝑒 ⊩ ∀𝑥 𝜙(𝑥). Thus, for any 𝔞 ∈ 𝑉∗, 𝑒 ⊩ 𝜙(𝔞). By induction hypothesis, 𝐂𝐙𝐅 ⊢ (𝜙(𝔞))°. In partic-

ular, for any set 𝑥, we obtain that 𝐂𝐙𝐅 proves (𝜙(𝑥))° and thus 𝜙°(𝑥), showing the case for unbounded 

universal quantification. 

For restricted existential quantification, suppose 𝑒 ⊩ ∃𝑥 ∈ 𝔞. 𝜙(𝑥). This means, there is 𝔡 ∈ 𝑉∗ such that 〈(𝑒)0, 𝔡〉 ∈ 𝔞∗ ∧ (𝑒)1 ⊩ 𝜙(𝔡).  By definition, 𝔡° ∈ 𝔞°  and by induction hypothesis, 𝜙°(𝔡°) . Altogether we 

have (∃𝑥 ∈ 𝔞. 𝜙(𝑥))° ≡ ∃𝑥 ∈ 𝔞°. 𝜙°(𝑥). ∎ 

4.5 Soundness Theorem 
The next sections we will spend with proving the soundness theorem: 

ⓂTheorem 4.8 (Soundness): For every theorem 𝜃 of 𝐂𝐙𝐅, there exists a closed application term 𝑡, such 

that 𝐂𝐙𝐅 ⊢ (𝑡 ⊩ 𝜃). 
All we have to do is to give realizing terms for the underlying axioms and inference rules of 𝐇𝐏𝐋 with 

equality and then do the same for the axioms of 𝐂𝐙𝐅. 

4.5.1 Realizing equality 

Lemma 4.9 (closure):  

(1) 𝔟 ∈ 𝑉𝛼∗ → ∃𝛽 ∈ 𝛼. ∀𝔠 (𝑉∗ ⊨ 𝔠 ∈ 𝔟 → 𝔠 ∈ 𝑉𝛽∗) 
(2) (𝔞 ∈ 𝑉𝛼∗ ∧ 𝑉∗ ⊨ 𝔞 = 𝔟) → 𝔟 ∈ 𝑉𝛼∗ 

Proof: By simultaneous induction. To prove (1), the inductive hypothesis is that for all 𝛽 ∈ 𝛼, (𝔡 ∈ 𝑉𝛽∗ ∧ 𝑉∗ ⊨ 𝔠 = 𝔡) → 𝔠 ∈ 𝑉𝛽∗. 
For 𝔟 ∈ 𝑉𝛼∗, there is, by definition, some 𝛽 ∈ 𝛼, s.t. 𝔟∗ ⊆ 𝜔 × 𝑉𝛽∗. Let 𝑒 ⊩ 𝔠 ∈ 𝔟. This means, ∃𝔡[〈(𝑒)0, 𝔡〉 ∈ 𝔟∗ ∧ (𝑒)1 ⊩ 𝔠 = 𝔡]. 
By the inductive hypothesis, we conclude 𝔠 ∈ 𝑉𝛽∗. 
Now for (2), assume (1) for 𝛼. Let 𝔞 ∈ 𝑉𝛼∗ and choose 𝛽 ∈ 𝛼 such that ∀𝔠(𝑉∗ ⊨ 𝔠 ∈ 𝔟 → 𝔠 ∈ 𝑉𝛽∗).  If 𝑒 ⊩ 𝔞 =𝔟, then for all 〈𝑓, 𝔡〉 ∈ 𝔟∗, (𝑒𝑓)1 ⊩ 𝔡 ∈ 𝔞, which gives 𝔡 ∈ 𝑉𝛽∗. Altogether, 𝔟∗ ⊆ 𝜔 × 𝑉𝛽∗. Also 𝑒 ⊩ 𝔞 = 𝔟 en-

tails 𝔞° = 𝔟° and hence 𝔟 ∈ 𝑉𝛼∗. ∎ 

Theorem 4.10: There are 𝐢𝒓, 𝐢𝒔, 𝐢𝒕, 𝐢𝟎, 𝐢𝟏 ∈ 𝜔 such that for all 𝔞, 𝔟, 𝔠 ∈ 𝑉∗, 
1) 𝐢𝒓 ⊩ 𝔞 = 𝔞 
2) 𝐢𝒔 ⊩ 𝔞 = 𝔟 → 𝔟 = 𝔞 
3) 𝐢𝒕 ⊩ (𝔞 = 𝔟 ∧ 𝔟 = 𝔠) → 𝔞 = 𝔠 
4) 𝐢𝟎 ⊩ (𝔞 = 𝔟 ∧ 𝔟 ∈ 𝔠) → 𝔞 ∈ 𝔠 
5) 𝐢𝟏 ⊩ (𝔞 = 𝔟 ∧ 𝔠 ∈ 𝔞) → 𝔠 ∈ 𝔟 
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Moreover, for each formula 𝜙(𝑥) there exists 𝐢𝝓 ∈ 𝜔 such that for all 𝔞, 𝔟, 𝔠1, … , 𝔠𝑛 ∈ 𝑉∗ 𝐢𝝓 ⊩ (𝔞 = 𝔟 ∧ 𝜙(𝔞, 𝔠1, … , 𝔠𝑛)) → 𝜙(𝔟, 𝔠1, … , 𝔠𝑛). 
Proof: It goes without saying that throughout the proof we need not bother about truth in 𝐂𝐙𝐅, as all the 

corresponding axioms of identity hold in 𝐂𝐙𝐅. For 1 we use the Fixed-Point Theorem to define 𝐢𝝓 to be 

such that 𝐢𝝓 ≃ 𝐩(𝜆𝑦. 𝐩𝑦𝐢𝝓)(𝜆𝑦. 𝐩𝑦𝐢𝝓) . Let 𝔞 ∈ 𝑉𝛼∗  and assume 𝐢𝝓 ⊩ 𝔟 = 𝔟  for all 𝔟 ∈ 𝑉𝛽∗  with 𝛽 ∈ 𝛼 . If 〈𝑓, 𝔟〉 ∈ 𝔞, then (𝐢𝝓)0𝑓 ≃ 𝐩𝑓𝐢𝝓. As 〈(𝐩𝑓𝐢𝝓)0, 𝔟〉 ∈ 𝔞 and (𝐩𝑓𝐢𝝓)1 ⊩ 𝔟 = 𝔟, we have shown (𝐢𝝓)0𝑓 ⊩ 𝔟 ∈ 𝔞 
and thus 𝐢𝝓 ⊩ 𝔞 = 𝔞.  
For 2, let 𝐢𝒔 ≡ 𝜆𝑥. 𝐩(𝐫𝑥)(𝐥𝑥). This term swaps entries of a pair, which is all we need. 

Axioms 3 and 4 are shown by simultaneous induction on the structure of 𝑉∗. We first need to define 

application terms 𝜏1-𝜏6 as follows: 𝜏1(𝑥, 𝑦) ≡ 𝐫(𝐥(𝐥𝑦)𝑥) 𝜏2(𝑦) ≡ 𝐥(𝐫𝑦) 𝜏3(𝑥, 𝑦) ≡ 𝐫(𝐫(𝐫𝑦)𝑥) 𝜏4(𝑥, 𝑦) ≡ 𝐫(𝐥𝑦)(𝐥(𝐫(𝐫𝑦)𝑥)) 𝜏5(𝑥, 𝑦) ≡ 𝜏2(𝑦)(𝐥(𝐥(𝐥𝑦)𝑥)) 𝜏6(𝑦) ≡ 𝐩(𝐥𝑦)(𝐫(𝐫𝑦))  
Let 𝜎1 and 𝜎2 be defined as follows: 𝜎1(𝑎, 𝑏) ≡ 𝜆𝑦. 𝐩 (𝜆𝑥. 𝑎(𝐩𝜏1(𝑥, 𝑦)𝜏5(𝑥, 𝑦))) (𝜆𝑥. 𝑎(𝐩𝜏4(𝑥, 𝑦)𝜏5(𝑥, 𝑦))) , 𝜎2(𝑎, 𝑏) ≡ 𝜆𝑦. 𝐩 (𝜏2(𝑦)(𝑏𝜏6(𝑦))). 
By Lemma 4.3 (Double recursion) on double recursion, there are 𝐢𝒕 and 𝐢𝟎 such that 𝐢𝒕 ≃ 𝜎1(𝐢𝒕, 𝐢𝟎) and 𝐢𝟎 ≃ 𝜎2(𝐢𝒕, 𝐢𝟎). 
For 3 the induction hypothesis is that for all 𝔠 ∈ 𝑉𝛼∗,  𝐢𝟎 ⊩ (𝔞 = 𝔟 ∧ 𝔟 ∈ 𝔠) → 𝔞 ∈ 𝔠. 
Let 𝔢 ∈ 𝑉𝑉𝛼∗, 〈𝑔, 𝔤〉 ∈ 𝔡 and ℎ such that 

 ℎ ⊩ (𝔡 = 𝔢 ∧ 𝔢 = 𝔣)   

then ((ℎ)0)0𝑔 ⊩ 𝔤 ∈ 𝔢  
then ∃𝔦 〈(((ℎ)0)0𝑔)0, 𝔦〉 ∈ 𝔟 and (((ℎ)0)0𝑔)1 ⊩ 𝔤 = 𝔦 
then ((ℎ)0)1(((ℎ)0)0𝑔)0⏟            𝑖 ⊩ 𝔦 ∈ 𝔣,  since (ℎ)1 ⊩ 𝔢 = 𝔣, where by the closure lemma (2), we 

may assume 𝔣 ∈ 𝑉𝛼∗. 
then 𝐢𝟎𝐩((((ℎ)0)0𝑔)1𝑖) ⊩ 𝔤 ∈ 𝔣 by induction hypothesis 
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As (((ℎ)0)0𝑔)1 ≡ 𝜏1(𝑔, ℎ) and 𝑖 ≡ 𝜏5(𝑔, ℎ) we have shown 𝐢𝟎(𝐩𝜏1(𝑔, ℎ)𝜏5(𝑔, ℎ)) ⊩ 𝔤 ∈ 𝔣. A similar argu-

ment shows 𝐢𝟎(𝐩𝜏4(𝑔, ℎ)𝜏5(𝑔, ℎ)) ⊩ 𝔤 ∈ 𝔡 for all 〈𝑔, 𝔤〉 ∈ 𝔣. Altogether, we have 𝐢𝒕 ≃ 𝜎2(𝐢𝒕, 𝐢𝟎) ⊩ 𝔡 = 𝔣. 
For (4), the inductive hypothesis is that for all 𝛽 ∈ 𝛼 and 𝔢 ∈ 𝑉𝛽∗, 𝐢𝒕 ⊩ (𝔡 = 𝔢 ∧ 𝔢 = 𝔣) → 𝔡 = 𝔣. 
Let 𝔠 ∈ 𝑉𝛼∗ and ℎ such that 

 ℎ ⊩ (𝔞 = 𝔟 ∧ 𝔟 ∈ 𝔠)   

iff (ℎ)0 ⊩ 𝔞 = 𝔟  and (ℎ)1 ⊩ 𝔟 ∈ 𝔠  

iff (ℎ)0 ⊩ 𝔞 = 𝔟 and ∃𝔡 〈((ℎ)1)0, 𝔡〉 ∈ 𝔠 ∧ ((ℎ)1)1 ⊩ 𝔟 = 𝔡, where by the closure lemma (1), 
we may assume 𝔟 ∈ 𝑉𝛽∗ for some 𝛽 ∈ 𝛼 

then 𝐢𝟎(𝐩(ℎ)0((ℎ)1)1) ⊩ 𝔞 = 𝔡  by inductive hypothesis 
then 𝐩(((ℎ)1)0)(𝐢𝟎(𝐩(ℎ)0((ℎ)1)1)) ⊩ 𝔞 ∈ 𝔠  

We can compute 𝐩(((ℎ)1)0)(𝐢𝟎(𝐩(ℎ)0((ℎ)1)1)) ≃ 𝐩(𝜏2(ℎ)) (𝐢𝟎(𝜏6(ℎ))) ≃ 𝜎1(𝐢𝒕, 𝐢𝟎)ℎ ≃ 𝐢𝟎ℎ, 
thus, we have shown 𝐢𝟎ℎ ⊩ 𝔞 ∈ 𝔠. As ℎ was arbitrary, 𝐢𝟎 ⊩ (𝔞 = 𝔟 ∧ 𝔟 ∈ 𝔠) → 𝔞 ∈ 𝔠. 
Finally, for 5, the term 

𝐢𝟏 ≡ 𝜆𝑥. 𝐢𝟎 (𝐩(𝐫(𝐫𝑥)) (𝐥(𝐥𝑥)(𝐥(𝐫𝑥)))) ≃ 𝐢𝟎(𝐩((ℎ)1)1(((ℎ)0)0((ℎ)1)0)) 
does the job: Let ℎ ⊩ (𝔞 = 𝔟 ∧ 𝔠 ∈ 𝔞), let 〈((ℎ)1)0, 𝔡〉 ∈ 𝔞 such that ((ℎ)1)1 ⊩ 𝔡 = 𝔠. Then ((ℎ)0)0((ℎ)1)0 ⊩ 𝔡 ∈ 𝔟. 
With the properties of 𝐢𝟎, we have that 𝐢𝟏ℎ ⊩ 𝔠 ∈ 𝔟. 

The term 𝐢𝝓 is constructed by recursion on 𝜙. The inductive steps are easy and the base cases are pro-

vided by 𝐢𝒓, 𝐢𝒔, 𝐢𝒕, 𝐢𝟎 and 𝐢𝟏. ∎ 

4.5.2 Soundness Theorem for 𝐇𝐏𝐋 

Theorem 4.11: If 𝐇𝐏𝐋 ⊢ 𝜙, then 𝑉∗ ⊨ ∀̅𝜙. 

Proof: Let us show soundness for some of the axioms and inference rules. Again, truth in 𝐂𝐙𝐅 is guaran-

teed automatically. 

For HPL8, we claim that ℎ ≡ 𝜆𝑥𝜆𝑦𝜆𝑧. 𝐝(𝑦(𝐫𝑥))(𝑧(𝐫𝑥))(𝐥𝑥) does the job. Assume 𝑒 ⊩ 𝜙 ∨ 𝜓. Then, either (𝑒)0 = 𝟎 ∧ (𝑒)1 ⊩ 𝜙 or (𝑒)0 = 𝟏 ∧ (𝑒)1 ⊩ 𝜓. Assume, 𝑓 ⊩ 𝜙 → 𝜒 and 𝑔 ⊩ 𝜓 → 𝜒. Then ℎ𝑒𝑓𝑔 ≃ 𝐝(𝑓(𝐫𝑒))(𝑔(𝐫𝑒))(𝐥𝑒)𝟎. 
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By the properties of 𝐝,  

ℎ𝑒𝑓𝑔 ≃ {𝑓(𝐫𝑒), , if (𝑒)0 = 𝟎𝑔(𝐫𝑒) , if (𝑒)0 ≠ 𝟎} ⊩ 𝜙. 
For HPL9, let 𝑒 ⊩ 𝜙 → 𝜓 , 𝑓 ⊩ (𝜙 → ¬𝜓)  and assume 𝑔 ⊩ 𝜙 . Thus, 𝑒𝑓 ⊩ 𝜓 , 𝑒𝑔 ⊩ ¬𝜓 . This shows 𝑒𝑔(𝑒𝑓) ⊩⊥, and finally ¬(𝑔 ⊢ 𝜙) for all 𝑔 ∈ 𝜔. 

For HPL13, let 𝑒 ⊩ ∀𝑢 ∈ 𝔞. 𝜙(𝑢). This means, for all 〈𝑓, 𝔠〉 ∈ 𝔞, 𝑒𝑓 ⊩ 𝜙(𝔠). If ℎ ⊩ 𝔲 ∈ 𝔞, then there is some 〈(ℎ)0, 𝔠〉 ∈ 𝔞 with (ℎ)1 ⊩ 𝔠 = 𝔲. This implies 𝐢𝝓(𝐩((ℎ)1)(𝑒(ℎ)0))𝑒(ℎ)0 ⊩ 𝜙(𝔲).  

Conversely, if 𝑒 ⊩ ∀𝑢[𝑢 ∈ 𝑎 → 𝜙(𝑢)] and 〈𝑓, 𝔠〉 ∈ 𝔞, then 𝐩𝑓𝐢𝒓 ⊩ 𝔠 ∈ 𝔞. Thus, 𝑒(𝐩𝑓𝐢𝒓) ⊩ 𝜙(𝔠).  

Altogether, we have shown that 𝐩(𝜆𝑒𝜆ℎ. 𝐢𝝓 (𝐩(𝐫ℎ)(𝑒(𝐥ℎ))) 𝑒(𝐥ℎ)) (𝜆𝑒𝜆𝑓. 𝑒(𝐩𝑓𝐢𝒓)) realizes this axiom. 

For EI, assume 𝑒 ⊩ ∀𝑥(𝜙(𝑥) → 𝜓). This shows that for all 𝔞 ∈ 𝑉∗, 𝑒 ⊩ 𝜙(𝔞) → 𝜓. Assume 𝑔 ⊩ ∃𝑥𝜙, i.e. 

there is 𝔟 ∈ 𝑉∗ such that 𝑔 ⊩ 𝜙(𝔟). Altogether, 𝑒𝑔 ⊩ 𝜓. We have seen that we can take 𝜆𝑥. 𝑥 to realize EI.
 ∎  

4.5.3 Realizing the set axioms of 𝐂𝐙𝐅 

In the course of realizing the set axioms we will often be in the situation to construct a witness to a 

formula in 𝑉∗. We will therefore apply the following result: Given a subset 𝐴 ⊆ 𝑉∗, we define  𝐴𝑐 = {𝔠°: ∃𝑘 〈𝑘, 𝔠〉 ∈ 𝐴}. 
Lemma 4.12: Let 𝐴 be a subset of 𝜔 × 𝑉∗. Then 〈𝐴, 𝐴𝑐〉 and any 〈𝐴, 𝐵〉 with 𝐵 ⊇ 𝐴𝑐 is in 𝑉∗. 
Proof: For each 〈𝑘, 𝔠〉 ∈ 𝐴 there is some 𝛽 such that 〈𝑘, 𝔠〉 ∈ 𝜔 × 𝑉𝛼∗. Using collection, form the set 𝐶 of all 

such 𝛽s and let 𝛼 = ⋃𝐶 . Then 𝐴 ⊆ 𝜔 × 𝑉𝛼∗. Also, for each 〈𝑘, 𝔠〉 ∈ 𝐴, 𝔠° ∈ 𝐴𝑐  and hence 〈𝐴, 𝐴𝑐〉 ∈ 𝑉𝛼∗. In-

creasing the set 𝐴𝑐 does not change this.  ∎ 

Extensionality 

Let 𝐢𝒓 be as in the last section and  𝑒 ≡ 𝜆𝑦. 𝐩(𝜆𝑥. 𝐥𝑦(𝐩𝑥𝐢𝒓))(𝜆𝑥. 𝐫𝑦(𝐩𝑥𝐢𝒓)). 
If ℎ ⊩ ∀𝑧(𝑧 ∈ 𝔞 ↔ 𝑧 ∈ 𝔟) and 〈𝑓, 𝔡〉 ∈ 𝔞. As 𝐩𝑓𝐢𝒓 ⊩ 𝔡 ∈ 𝔞, we have that (𝑒ℎ)0𝑓 ≃ (ℎ)0(𝐩𝑓𝐢𝒓) ⊩ 𝔡 ∈ 𝔟. The 

other direction is symmetric and truth in 𝐂𝐙𝐅 is apparent.  

Pairing 

We need to find a realizer 𝑒 such that given 𝔞, 𝔟 ∈ 𝑉∗ there is some 𝔭 with 𝑒 ⊩ 𝔞 ∈ 𝔭 ∧ 𝔟 ∈ 𝔭. We define 𝔭 

by 𝔭° = {𝔞°, 𝔟°} and 𝔭∗ = {〈0, 𝔞〉, 〈0, 𝔟〉}. By Lemma 4.12, 𝔭 ∈ 𝑉∗. Obviously,  ∀𝑤(𝑤 ∈ 𝔭° ↔ (𝑤 = 𝔞° ∨ 𝑤 = 𝔟°)), 
and we easily see that 𝑒 ≡ 𝐩(𝐩𝟎𝐢𝐫)(𝐩𝟎𝐢𝐫) does the job of realizing the axiom. 
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Union 

Invoking Lemma 4.12, we define for 𝔞 ∈ 𝑉∗, the set Un(𝔞) ∈ 𝑉∗ by Un(𝔞)° =⋃𝔞° , Un(𝔞)∗ = {〈ℎ, 𝔶〉: ∃〈𝑓, 𝔵〉 ∈ 𝔞∗. 〈ℎ, 𝔶〉 ∈ 𝔵}. 
Clearly, for all 𝔵 ∈ 𝑉∗, 𝔵° ∈ Un(𝔞)° ↔ ∃𝑤(𝔵° ∈ 𝑤 ∧ 𝑤 ∈ 𝔞°). 
Let ℎ ⊩ 𝔶 ∈ 𝔵 ∧ 𝔵 ∈ 𝔞. This means ∃𝔠[〈((ℎ)0)0, 𝔠〉 ∈ 𝔵 ∧ ((ℎ)0)1 ⊩ 𝔶 = 𝔠], ∃𝔡[〈((ℎ)1)0, 𝔡〉 ∈ 𝔞 ∧ ((ℎ)1)1 ⊩ 𝔵 = 𝔡]. 
Putting things together, we have that 〈((ℎ)0)0, 𝔠〉 ∈ Un(𝔞) and thus 𝜆𝑥. 𝐩(𝐥𝐥𝑥)(𝐫𝐥𝑥) ⊩ ∀𝑦(∃𝑤(𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝔞) → 𝑦 ∈ Un(𝔞)). 
Empty set 

The representative of the empty set is just ∅̂ = 〈∅, ∅〉 ∈ 𝑉1∗. Its property is realized by every application 

term and obviously ¬(𝔶° ∈ 〈∅, ∅〉°). 
Infinity 

To represent 𝜔 in 𝑉∗, we define for 𝑚 ∈ 𝜔 + 1, 𝑚 = 〈𝑛, {〈𝑘, 𝑘〉: 𝑘 < 𝑛}〉, 
(the base case 0 = 〈∅, ∅〉 = ∅̂ is implicit). Then 𝜔 ∈ 𝑉𝜔+1∗ . Of course, for all 𝑛 ∈ 𝜔 + 1, (𝑚)° = 𝑚. 

Lemma 4.13: For all 𝑛 ∈ 𝜔 + 1 there are realizers 𝑒1, 𝑒2 and 𝑒3 such that 

1) 𝑒1(𝑘) ⊩ 𝑘 ∈ 𝑛 for all 𝑘 < 𝑛. 
2) 𝑒2 ⊩ 𝑚 ⊆ 𝑛, for all 𝑚 ≤ 𝑛. 
3) 𝑒3(𝑛) ⊩ ∀𝑦 ∈ 𝑛 + 1. (𝑦 ∈ 𝑛 ∨ 𝑦 = 𝑛), for 𝑛 ∈ 𝜔. 

Proof: Let 𝐢𝒓 be the realizer with 𝐢𝒓 ⊩ 𝔞 = 𝔞 for all 𝔞 ∈ 𝑉∗ from Theorem 4.10. 

1) 𝑒1(𝑘) ≡ 𝐩𝑘𝐢𝒓 ⊩ 𝑘 ∈ 𝑛, since clearly (𝑘)∘ = 𝑘 ∈ 𝑛 = (𝑛)° and as 〈𝑘, 𝑘〉 ∈ 𝑛∗. 
2) Again,  (𝑘)∘ = 𝑘 ⊆ 𝑛 = (𝑛)°. The realizer we need is 𝑒2 ≡ 𝜆𝑥. 𝑒1(𝑥) by 1). 
3) Truth in 𝐂𝐙𝐅 is again easy. Let 𝐝 be the operator with 𝐝𝑎𝑏𝑚𝑛 ≃ 𝑎 iff 𝑚 = 𝑛 and 𝐝𝑎𝑏𝑚𝑛 ≃ 𝑏 iff 𝑚 ≠ 𝑛. 

Then, by 1), we have that 𝑒3(𝑛) ≡ 𝜆𝑥. 𝐝𝐢𝒓(𝐩𝑘𝐢𝒓)𝑥𝑛 realizes ∀𝑦 ∈ 𝑛 + 1. (𝑦 ∈ 𝑛 ∨ 𝑦 = 𝑛). ∎ 

With this lemma it is now easy to realize 𝑚 + 1 = 𝑠(𝑚). Note that for 𝑛 “to be a successor of 𝑚” is actu-
ally the formula 
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      𝑛 = 𝑠(𝑚) ↔ 𝑛 = 𝑚 ∪ {𝑚} ↔ [𝑛 ⊆ 𝑚 ∪ {𝑚}] ∧ [𝑛 ⊇ 𝑚 ∪ {𝑚}] ↔ ∀𝑦 ∈ 𝑛 (𝑦 ∈ 𝑚 ∨ 𝑦 = 𝑚) ∧ ∀𝑦 ∈ 𝑚 (𝑦 ∈ 𝑛) ∧ 𝑚 ∈ 𝑛.  
Hence, gathering all the realizers in the proof of the lemma, 𝓈(𝑚) = 𝐩[𝐩(𝑒3(𝑚))𝑒2][𝑒1(𝑚)] ⊩ 𝑚 + 1 = 𝑠(𝑚). 
Realizing the axiom of infinity is now easy: Truth in 𝐂𝐙𝐅 is trivial and  𝜆𝑛. 𝓈(𝑛) ⊩ ∀𝑛 ∈ 𝜔. 𝑠(𝑛) ∈ 𝜔, 𝜆𝑛. 𝐝𝐢𝒓(𝐩(𝑛 − 1)𝓈(𝑛 − 1))𝑛0 ⊩ ∀𝑛 ∈ 𝜔 (𝑛 = 0 ∨ ∃𝑚 ∈ 𝜔. 𝑛 = 𝑠(𝑚)). 
Bounded Separation 

Given 𝔞 ∈ 𝑉∗ and any formula 𝜙, we define Sep𝜙(𝔞) by Sep𝜙(𝔞)∗ = {〈𝐩𝑓𝑔, 𝔠〉: 〈𝑓, 𝔠〉 ∈ 𝔞∗ ∧ 𝑔 ⊩ 𝜙(𝔠)}, Sep𝜙(𝔞)° = {𝑥 ∈ 𝔞°:𝜙°(𝑥)}. 
This definition needs some justification: First note that Sep𝜙(𝔞)∗  is indeed a set, as quantification is 

bounded. For 〈𝐩𝑓𝑔, 𝔠〉 ∈ Sep𝜙(𝔞)∗, we have that 𝑔 ⊩ 𝜙(𝔠) and hence by Completeness, 𝜙°(𝔠°). By defini-

tion of 𝑉∗, 𝔠° ∈ 𝔞° and hence 𝔠° ∈ Sep𝜙(𝔞)°. By Lemma 4.12 we can conclude that Sep𝜙(𝔞) ∈ 𝑉∗. 
We need to find 𝑒, ℎ with  𝑒 ⊩ 𝔵 ∈ Sep𝜙(𝔞) → 𝔵 ∈ 𝔞 ∧ 𝜙(𝔵), ℎ ⊩ 𝔵 ∈ 𝔞 ∧ 𝜙(𝔵) → 𝔵 ∈ Sep𝜙(𝔞). 
As for truth, 𝔵° ∈ Sep𝜙(𝔞)° is equivalent to 𝔵° ∈ 𝔞° ∧ 𝜙°(𝔵°). To find 𝑒, note that 𝑘 ⊩ 𝔵 ∈ Sep𝜙(𝔞) means 

that (𝑘0) = 𝐩𝑓𝑔 and (𝑘)1 ⊩ 𝔠 = 𝔵 for some 〈𝑓, 𝔠〉 ∈ 𝔞∗ and 𝑔 ⊩ 𝜙(𝔠). Hence, 𝐩𝑓(𝑘)1 ⊩ 𝔵 ∈ 𝔞 and with  𝐢𝝓 

from Theorem 4.10, 𝐢𝝓(𝐩(𝑘)1𝑔) ⊩ 𝜙(𝔵). 
On the other hand, 𝐩𝑘𝑚 ⊩ 𝔵 ∈ 𝔞 ∧ 𝜙(𝔵) means that 〈(𝑘)0, 𝔠〉 ∈ 𝔞∗ and (𝑘)1 ⊩ 𝔵 = 𝔠 for some 𝔠. As before, 𝐢𝝓(𝐩(𝑘)1𝑚) ⊩ 𝜙(𝔠). All of this shows that we can take 𝑒 and ℎ to be 𝑒 ≡ 𝜆𝑘. 𝐩(𝐩(𝐥𝐥𝑥)(𝐫𝐥𝑥)) (𝐢𝝓(𝐩(𝐫𝑥)(𝐫𝐥𝑥))) , ℎ ≡ 𝜆𝑥. 𝐩 (𝐩(𝐥𝐥𝑥) (𝐢𝝓(𝐩(𝐫𝐥𝑥)𝐫𝑥))) (𝐫𝐥𝑥). 
Strong collection 

Let 𝔞 ∈ 𝑉∗ and suppose, 𝑒 ⊩ ∀𝑥 ∈ 𝔞. ∃𝑦. 𝜙(𝑥, 𝑦). In particular, ∀𝑥 ∈ 𝔞°. ∃𝑦. 𝜙°(𝑥, 𝑦). Applying strong col-

lection in 𝐂𝐙𝐅 to the latter formula yields a set 𝐸 such that ∀𝑥 ∈ 𝔞°. ∃𝑦 ∈ 𝐸. 𝜙°(𝑥, 𝑦) ∧ ∀𝑦 ∈ 𝐸. ∃𝑥 ∈ 𝔞°. 𝜙°(𝑥, 𝑦). 
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Also, 𝑒 ⊩ ∀𝑥 ∈ 𝔞. ∃𝑦. 𝜙(𝑥, 𝑦) means that  ∀〈𝑓, 𝔵〉 ∈ 𝔞∗. ∃〈𝑓, 𝔡〉. (𝑒𝑓 ⊩ 𝜙(𝔵, 𝔡)). 
Again, invoking strong collection in 𝐂𝐙𝐅, there is a set 𝐷 such that [∀〈𝑓, 𝔵〉 ∈ 𝔞∗. ∃〈𝑓, 𝔡〉 ∈ 𝐷. (𝑒𝑓 ⊩ 𝜙(𝔵, 𝔡))] ∧ [∀〈𝑓, 𝔵〉 ∈ 𝐷. ∃〈𝑓, 𝔡〉 ∈ 𝔞∗. (𝑒𝑓 ⊩ 𝜙(𝔵, 𝔡))]. 
We claim that if we define Col𝜙(𝑥,𝑦) by Col𝜙(𝑥,𝑦)∗ = 𝐷, Col𝜙(𝑥,𝑦)° = 𝐸 ∪ 𝐷𝑐 , 
this will do the job. Indeed, we have 𝜆𝑓. 𝐩𝑓(𝑒𝑓) ⊩ ∀𝑥 ∈ 𝔞. ∃𝑦 ∈ Col𝜙(𝑥,𝑦). 𝜙(𝑥, 𝑦), 𝜆𝑓. 𝐩𝑓(𝑒𝑓) ⊩ ∀𝑦 ∈ Col𝜙(𝑥,𝑦). ∃𝑥 ∈ 𝔞. 𝜙(𝑥, 𝑦), 
as for the first line ∀𝑥 ∈ 𝔞°. ∃𝑦 ∈ 𝐸. 𝜙°(𝑥, 𝑦) 
and for the second, ∀𝑦 ∈ 𝐸. ∃𝑥 ∈ 𝔞°. 𝜙°(𝑥, 𝑦)   and   ∀𝑦 ∈ 𝐷𝑐 . ∃𝑥 ∈ 𝔞°. 𝜙°(𝑥, 𝑦), 
where all facts follow from the definitions of 𝐸 and 𝐷 and completeness. 

Finally, the axiom is realized iff  ∀𝑥 ∈ 𝔞°. ∃𝑦. 𝜙°(𝑥, 𝑦) → ∃𝐶[∀𝑥 ∈ 𝔞°. ∃𝑦 ∈ 𝐶. 𝜙°(𝑥, 𝑦) ∧ ∀𝑦 ∈ 𝐶. ∃𝑦 ∈ 𝔞°. 𝜙°(𝑥, 𝑦)], 
but this is clear from strong collection in 𝐂𝐙𝐅. 

Subset collection 

Let 𝔞, 𝔟 ∈ 𝑉∗ 𝜙 be any formula. 

Set 𝐵 = {〈𝐩𝑒𝑓, 𝔡〉: 𝑒, 𝑓 ∈ 𝜔 ∧ 𝑒𝑓 ↓ ∧ 〈(𝑒𝑓)0, 𝔡〉 ∈ 𝔟∗} 
and let 𝜓(𝑒, 𝑓, 𝔠, 𝔲, 𝑧) be the formula 𝔲 ∈ 𝑉∗ ∧ 𝑒, 𝑓 ∈ 𝜔 ∧ 𝑒𝑓 ↓ ∧ ∃𝔡 (〈𝐩𝑒𝑓, 𝔡〉 = 𝑧 ∧ 〈(𝑒𝑓)0, 𝔡〉 ∈ 𝔟∗  ∧ (𝑒𝑓)1 ⊩ 𝜙(𝔠, 𝔡, 𝔲)). 
By subset collection in 𝐂𝐙𝐅, there exist a set 𝐷 such that 
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∀𝔲 ∀𝑒 [∀〈𝑓, 𝔠〉 ∈ 𝔞∗. ∃𝑧 ∈ 𝐵. 𝜓(𝑒, 𝑓, 𝔠, 𝔲, 𝑧) → ∃𝑤𝔲∈ 𝐷(∀〈𝑓, 𝔠〉 ∈ 𝔞∗. ∃𝑧 ∈ 𝑤𝔲. 𝜓(𝑒, 𝑓, 𝔠, 𝔲, 𝑧) ∧ ∀𝑧 ∈ 𝑤𝔲. ∃〈𝑓, 𝔠〉 ∈ 𝔞∗ ∈ 𝑎.𝜓(𝑒, 𝑓, 𝔠, 𝔲, 𝑧))]. 
Note that we may assume that 𝐷 ⊆ 𝐵. Using subset collection in 𝐂𝐙𝐅, there is a set 𝐶 such that ∀𝔲[∀𝑥 ∈ 𝔞°. ∃𝑦 ∈ 𝔟°. 𝜙°(𝑥, 𝑦, 𝔲°) → ∃𝑣𝔲 ∈ 𝐶(∀𝑥 ∈ 𝔞°. ∃𝑦 ∈ 𝑣𝔲. 𝜙(𝑥, 𝑦, 𝔲°) ∧ ∀𝑦 ∈ 𝑣𝔲. ∃𝑥 ∈ 𝔞°. 𝜙°(𝑥, 𝑦, 𝔲°))]. 
We can now define the witness: 𝒲 = {〈𝑣 ∪ 𝑤𝑐 , 𝑤〉: 𝑣 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷} 𝐸 = 𝐶 ∪ {𝔷°: 𝔷 ∈ 𝒲} 𝐸+ = {〈0, 𝔷〉: 𝔷 ∈ 𝒲} 𝔢 = 〈𝐸, 𝐸+〉 
First, we need to show that indeed 𝔢 ∈ 𝑉∗. First note, that clearly, 𝒲 ∈ 𝑉∗ by Lemma 4.12. Invoking 

Lemma 4.12 another time, we can conclude that 𝔢 ∈ 𝑉∗, since 𝔷 ∈ 𝜔 × 𝑉∗ and 𝔷° ∈ 𝐸 for all 〈0, 𝔷〉 ∈ 𝐸+.  

We are now ready to find a realizer for the axiom. Let 𝔲 ∈ 𝑉∗ and suppose 𝑒 ⊩ ∀𝑥 ∈ 𝔞. ∃𝑦 ∈ 𝔟. 𝜙(𝑥, 𝑦, 𝔲). 
This means 

 𝑒 ⊩ ∀𝑥 ∈ 𝔞. ∃𝑦 ∈ 𝔟. 𝜙(𝑥, 𝑦, 𝔲)  ⇒ ∀〈𝑓, 𝔠〉 ∈ 𝔞∗. ∃𝔡. 〈(𝑒𝑓)0, 𝔡〉 ∈ 𝔟∗ ∧ (𝑒𝑓)1 ⊩ 𝜙(𝔠, 𝔡, 𝔲) (so 𝑧 = 〈𝐩𝑒𝑓, 𝔡〉 ∈ 𝐵) ⇔ ∀〈𝑓, 𝔠〉 ∈ 𝔞∗. ∃𝑧 ∈ 𝐵. 𝜓(𝑒, 𝑓, 𝔠, 𝔲, 𝑧)  ⇔ ∀〈𝑓, 𝔠〉 ∈ 𝔞∗. ∃𝑧 ∈ 𝑤𝑢. 𝜓(𝑒, 𝑓, 𝔠, 𝔲, 𝑧) and ∀𝑧 ∈ 𝑤𝑢. ∃〈𝑓, 𝔠〉 ∈ 𝔞∗. 𝜓(𝑒, 𝑓, 𝔠, 𝔲, 𝑧) ⇔ ∀〈𝑓, 𝔠〉 ∈ 𝔞∗. ∃〈𝐩𝑒𝑓, 𝔡〉 ∈ 𝑤𝑢. (〈(𝑒𝑓)0, 𝔡〉 ∈ 𝔟∗ ∧ (𝑒𝑓)1 ⊩ 𝜙(𝔠, 𝔡, 𝔲))  
      and ∀〈𝐩𝑒𝑓, 𝔡〉 ∈ 𝑤𝑢 . ∃〈𝑓, 𝔠〉 ∈ 𝔞∗. (〈(𝑒𝑓)0, 𝔡〉 ∈ 𝔟∗ ∧ (𝑒𝑓)1 ⊩ 𝜙(𝔠, 𝔡, 𝔲)) 

On the other hand, 𝑒 ⊩ ∀𝑥 ∈ 𝔞. ∃𝑦 ∈ 𝔟. 𝜙(𝑥, 𝑦, 𝔲) . Implies ∀𝑥 ∈ 𝔞°. ∃𝑦 ∈ 𝔟°. 𝜙°(𝑥, 𝑦, 𝔲°)  and hence, 𝔷𝑢 =〈𝑣𝑢 ∪ 𝑤𝑢𝑐 , 𝑤𝑢〉 ∈ 𝒲. Continuing the chain of implications, ⇔ ∀〈𝑓, 𝔠〉 ∈ 𝔞∗. ∃〈𝐩𝑒𝑓, 𝔡〉 ∈ 𝔷𝑢∗ . (〈(𝑒𝑓)0, 𝔡〉 ∈ 𝔟∗ ∧ (𝑒𝑓)1 ⊩ 𝜙(𝔠, 𝔡, 𝔲))  
      and ∀〈𝐩𝑒𝑓, 𝔡〉 ∈ 𝔷𝑢∗ . ∃〈𝑓, 𝔠〉 ∈ 𝔞∗. (〈(𝑒𝑓)0, 𝔡〉 ∈ 𝔟∗ ∧ (𝑒𝑓)1 ⊩ 𝜙(𝔠, 𝔡, 𝔲)) 
 ⇒ ∀〈𝑓, 𝔠〉 ∈ 𝔞∗. ∃𝔡. (〈𝐩𝑒𝑓, 𝔡〉 ∈ 𝔷𝑢∗ ∧ (𝑒𝑓)1 ⊩ 𝜙(𝔠, 𝔡, 𝔲))  
      and ∀〈𝑔, 𝔡〉 ∈ 𝔷𝑢∗ . ∃𝔠(〈(𝑔)1, 𝔡〉 ∈ 𝔞∗ ∧ ((𝑔)0(𝑔)1)1 ⊩ 𝜙(𝔠, 𝔡, 𝔲)) 
 ⇒ 𝑚0(𝑒) ≡ 𝜆𝑓. 𝐩 (𝐩(𝑒𝑓)(𝐫(𝑒𝑓))) ⊩ ∀𝑥 ∈ 𝔞. ∃𝑦 ∈ 𝔷𝔲. 𝜙(𝑥, 𝑦, 𝔲)  
     and 𝑚1 ≡ 𝜆𝑔. 𝐩 ((𝐥𝑔) (𝐥((𝐥𝑔)(𝐫𝑔)))) ⊩ ∀𝑥 ∈ 𝔷𝔲. ∃𝑦 ∈ 𝔞.𝜙(𝑥, 𝑦, 𝔲)  

The last implication follows because  ∀𝑥 ∈ 𝔞°. ∀𝑥 ∈ 𝔞. ∃𝑦 ∈ 𝔷𝔲°. 𝜙°(𝑥, 𝑦, 𝔲°)   and   ∀𝑥 ∈ 𝔷𝔲°. ∀𝑥 ∈ 𝔞. ∃𝑦 ∈ 𝔞°. 𝜙°(𝑥, 𝑦, 𝔲°). 
With these ingredients, 𝜆𝑒. 𝐩0(𝐩𝑚0(𝑒)𝑚1) realizes  ∀𝑥 ∈ 𝔞. ∃𝑦 ∈ 𝔟.𝜙(𝑥, 𝑦, 𝔲) → ∃𝑑 ∈ 𝔢(∀𝑥 ∈ 𝔞. ∃𝑦 ∈ 𝑑. 𝜙(𝑥, 𝑦, 𝔲) ∧ ∀𝑦 ∈ 𝑑. ∃𝑥 ∈ 𝔞. 𝜙(𝑥, 𝑦, 𝔲)), 
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if only  ∀𝑥 ∈ 𝔞°. ∃𝑦 ∈ 𝔟°. 𝜙°(𝑥, 𝑦, 𝔲°) → ∃𝑑 ∈ 𝔢° (∀𝑥 ∈ 𝔞°. ∃𝑦 ∈ 𝑑. 𝜙°(𝑥, 𝑦, 𝔲°) ∧ ∀𝑦 ∈ 𝑑. ∃𝑥 ∈ 𝔞°. 𝜙°(𝑥, 𝑦, 𝔲°)) 
holds in 𝐂𝐙𝐅. But we can simply choose 𝑑 = 𝑣𝔲, as 𝑣𝔲 ∈ 𝐶 ⊆ 𝔢°.   

Set induction 

Lemma 4.14: Let 𝜙 be any formula. If 𝑉∗ ⊨ ∀𝔞[(∀𝑥 ∈ 𝔞.𝜙(𝑥)) → 𝜙(𝔞)] for all 𝔞 ∈ 𝑉∗, then 𝜙°(𝑥) holds for 

all sets 𝑥. 

Proof: If 𝑉∗ ⊨ ∀𝔞[(∀𝑥 ∈ 𝔞. 𝜙(𝑥)) → 𝜙(𝔞)], then by the completeness theorem, ∀𝑥 ∈ 𝔞°. 𝜙°(𝑥) → 𝜙°(𝔞°) for 

all 𝔞 ∈ 𝑉∗. This is true in particular for 𝔞 = �̂� which shows that ∀𝑥 ∈ 𝑎. 𝜙°(𝑥) → 𝜙°(𝑎). We can therefore 

conclude by set induction in 𝐂𝐙𝐅 that ∀𝑎. 𝜙°(𝑎).  ∎  

Set induction certainly holds for 𝜙°, i.e. the formula ∀𝑎[(∀𝑦 ∈ 𝑎 𝜙°(𝑦)) → 𝜙°(𝑎)] → ∀𝑎. 𝜙°(𝑎) 
Is valid in 𝐂𝐙𝐅, hence we do not need to care about truth. 

Let 𝑒 be a fixed point of 𝜏(𝑧) ≡ 𝜆𝑢. 𝑢(𝜆𝑥. 𝑧𝑢). We show by induction that  𝑒 ⊩ ∀𝑎[(∀𝑦 ∈ 𝑎 𝜙(𝑦)) → 𝜙(𝑎)] → ∀𝑎. 𝜙(𝑎). 
Let 𝑔 ⊩⊩ ∀𝑎[(∀𝑦 ∈ 𝑎. 𝜙(𝑦)) → 𝜙(𝑎)]. The induction hypothesis is that 𝑒𝑔 ⊩ 𝜙(𝔟) for all 𝔟 ∈ 𝑉𝛽∗ and 𝛽 ∈𝛼. If 𝔞 ∈ 𝑉𝛼∗, then 〈ℎ, 𝔵〉 ∈ 𝔞∗, then 𝔵 ∈ 𝑉𝛽∗ for some 𝛽 ∈ 𝛼. Thus, by the induction hypothesis and the last 

lemma, 𝜆𝑥. 𝑒𝑔 ⊩ ∀𝑦 ∈ 𝔞.𝜙(𝑦), 𝑔(𝜆𝑥. 𝑒𝑔) ⊩ 𝜙(𝔞). 
As 𝑒𝑔 ≡ (𝜆𝑢. 𝑢(𝜆𝑥. 𝑒𝑢))𝑔 ≃ 𝑔(𝜆𝑥. 𝑒𝑔), this completes the proof. 

4.6 Proof of metamathematical properties 
Having proved completeness and soundness of our realizability structure, we are now ready to prove 

that 𝐂𝐙𝐅 possesses some of the metamathematical properties discussed in Section 4.2. 

4.6.1 Disjunction and Numerical existence property 

This section is devoted to proving the numerical existence property for 𝐂𝐙𝐅: 

ⓂTheorem 4.15: Let 𝜙(𝑥) be a formula with at most 𝑥 free. If 𝐂𝐙𝐅 ⊢ ∃𝑛 ∈ 𝜔 𝜙(𝑛), then there is some 𝑛 ∈𝜔 such that 𝐂𝐙𝐅 ⊢ 𝜙(𝑛). 
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Proof of Theorem 4.15: Let 𝐂𝐙𝐅 ⊢ ∃𝑛 ∈ 𝜔.𝜙(𝑛). By the soundness theorem, 𝑉∗ ⊨ ∃𝑛 ∈ 𝜔.𝜙(𝑛). When real-

izing the infinity axiom we have shown that 𝑉∗ ⊩ 𝜔 = 𝜔 and hence, by Theorem 4.10, 𝑉∗ ⊨ ∃𝑛 ∈ 𝜔.𝜙(𝑛). 
Let 𝑡 ⊩ ∃𝑛 ∈ 𝜔.𝜙(𝑛), this means that (𝑡)0 = 𝑛 for some 𝑛 ∈ 𝜔 and (𝑡)1 ⊩ 𝜙(𝑛). By completeness, 𝐶𝑍𝐹 

proves 𝜙°(𝑛°) ≡ 𝜙(𝑛). ∎ 

As we have noted in Section 4.2.2, the numerical existence property implies the disjunction property. 

Hence, we immediately have: 

ⓂCorollary 4.16: If 𝐂𝐙𝐅 ⊢ 𝜙 ∨ 𝜓, then 𝐂𝐙𝐅 ⊢ 𝜙 or 𝐂𝐙𝐅 ⊢ 𝜓. 

4.6.2 Unzerlegbarkeits- and Uniformity-rule 

Lemma 4.17: Let 𝜙(𝑥) be any formula with all free variables shown. If 𝑡 ⊩ ∀𝑎 𝜙(𝑎), then 𝐂𝐙𝐅 ⊢ ∀𝑎 𝜙(𝑎). 
Proof: 𝑡 ⊩ ∀𝑎 𝜙(𝑎) means that 𝑡 ⊩ 𝜙(𝔞) for all 𝔞 ∈ 𝑉∗. This is true in particular for 𝔞 = 𝑥, where 𝑥 is a set. 

By the completeness theorem, we obtain 𝐂𝐙𝐅 ⊢ 𝜙°((𝑥)°) for all 𝑥, i.e. 𝐂𝐙𝐅 ⊢ ∀𝑥 𝜙(𝑥).  ∎ 

ⓂTheorem 4.18: Whenever 𝐂𝐙𝐅 ⊢ ∀𝑥. ∃𝑦 ∈ 𝜔.𝜓(𝑥, 𝑦), then 𝐂𝐙𝐅 ⊢ ∃𝑦 ∈ 𝜔. ∀𝑥. 𝜓(𝑥, 𝑦). 
Proof: Suppose 𝐂𝐙𝐅 ⊢ ∀𝑥. ∃𝑦 ∈ 𝜔.𝜓(𝑥, 𝑦). By the soundness theorem, there is a closed application term 𝑡 
such that 𝐂𝐙𝐅 ⊢ 𝑡 ⊩ ∀𝑥. ∃𝑦 ∈ 𝜔.𝜓(𝑥, 𝑦), i.e. 𝐂𝐙𝐅 ⊢ ∀𝔞 ∈ 𝑉∗ [𝑡 ⊩  ∃𝑦 ∈ 𝜔.𝜓(𝔞, 𝑦)]. As we know that 𝑉∗ ⊨𝜔 = 𝜔 we even have 𝐂𝐙𝐅 ⊢ ∀𝔞 ∈ 𝑉∗ [𝑡 ⊩ ∃𝑛 ∈ 𝜔.𝜓(𝔞, 𝑛)].  

This means in turn that there is some 𝔶 ∈ 𝑉∗ such that 〈(𝑡)0, 𝔫〉 ∈ 𝜔 and (𝑡)1 ⊩ 𝜓(𝔞, 𝔫). But by the defini-

tion of 𝜔, 𝔫 has to be one of the �̅�s and hence cannot depend on 𝔞. By Lemma 4.17, we conclude 𝐂𝐙𝐅 ⊢∀𝑥. 𝜓(𝑥, 𝑛). ∎ 

As we know, Uniformity-rule is just a special case of Unzerlegbarkeit. We therefore have: 

ⓂCorollary 4.19: Whenever 𝐂𝐙𝐅 ⊢ ∀𝑥. 𝜓(𝑥) ∨ ¬𝜓(𝑥), then 𝐂𝐙𝐅 ⊢ ∀𝑥 𝜓(𝑥) ∨ ∀𝑥 ¬𝜓(𝑥). 
4.6.3 Church’s rule 

ⓂTheorem 4.20: If 𝐂𝐙𝐅 ⊢ ∀𝑥 ∈ 𝜔. ∃𝑦 ∈ 𝜔.𝜙(𝑥, 𝑦), then there is some natural number 𝑒 with 𝐂𝐙𝐅 ⊢ ∀𝑥 ∈𝜔.𝜙(𝑥, {𝑒}(𝑥)). 
Proof: We may assume that 𝐂𝐙𝐅 ⊢ ∀𝑥 ∈ 𝜔 . ∃𝑦 ∈ 𝜔.𝜙(𝑥, 𝑦). By the soundness theorem, there is some 𝑡 ∈𝜔 with 

 𝑡 ⊩ ∀𝑥 ∈ 𝜔. ∃𝑦 ∈ 𝜔.𝜙(𝑥, 𝑦).  
then If 〈𝑚,𝑚〉 ∈ 𝜔∗, then 𝑡𝑚 ⊩ ∃𝑦 ∈ 𝜔. 𝜃(𝑚, 𝑦).  
then If 𝑚 ∈ 𝜔, then 𝑡𝑚 ⊩ ∃𝑦 ∈ 𝜔. 𝜃(𝑚, 𝑦). 
then If 𝑚 ∈ 𝜔 then ∃𝑛 ∈ 𝜔 with (𝑡𝑚)0 = 𝑛 and (𝑡𝑚)1 ⊩  𝜃(𝑚, 𝑛). 

Set 𝑠 = 𝜆𝑢. (𝑡𝑢)1. Then 𝐂𝐙𝐅 ⊢ 𝜆𝑢. (𝑡𝑢)1 ≃ 𝑒 for some natural number 𝑒. We can conclude by completeness 
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𝐂𝐙𝐅 ⊢ ∀𝑥 ∈ 𝜔.𝜙(𝑥, {𝑒}(𝑥)). ∎ 

4.6.4 Markov’s rule 

ⓂTheorem 4.21: If 𝐂𝐙𝐅 ⊢ (∀𝑥 ∈ 𝜔.𝜙(𝑛) ∨ ¬𝜙(𝑛)) ∧ (¬¬∃𝑛 ∈ 𝜔.𝜙(𝑛)), then 𝐂𝐙𝐅 ⊢ ∃𝑛 ∈ 𝜔.𝜙(𝑛). 
Proof: We may assume that there are terms 𝑡  and 𝑢with 𝑡 ⊩ ∀𝑥 ∈ 𝜔.𝜙(𝑛) ∨ ¬𝜙(𝑛)  and 𝑢 ⊩ ¬¬∃𝑛 ∈𝜔.𝜙(𝑛). The first means that for each 𝑛 ∈ 𝜔, either (𝑡𝑛)0 = 0 and (𝑡𝑛)1 ⊩ 𝜙(𝑛), or (𝑡𝑛)0 ≠ 0 and (𝑡𝑛)1 ⊩¬𝜙(𝑛). The second means (by classical reasoning), that there is some term 𝑝 with 𝑝 ⊩ ∃𝑛 ∈ 𝜔.𝜙(𝑛), 
which means (𝑝)1 ⊩ 𝜙 ((𝑝)0). 
Hence, (𝑡(𝑝)0)0 = 0 and (𝑡(𝑝)0)1 ⊩ 𝜙 ((𝑝)0). This shows that with 𝑟 ≡ 𝜇𝑝. (𝑡(𝑝)0)0 with 𝜇 being the least 

number operator from Definition 4.4, 𝐩(𝐥𝑟)(𝐫𝑒𝐥𝑟) ⊩ ∃𝑛 ∈ 𝜔.𝜙(𝑛). ∎ 

4.7 Further results 
With the work so far, it is easy to obtain further results while only slightly adjusting the realizability 

structure 𝑉∗. 
4.7.1 Metamathematics of 𝐈𝐙𝐅 

Notice, that our realizability refers to truth (for example in the clause for implication). In the formulation 

of the soundness theorem is becomes clear, that this truth refers to truth inside 𝐂𝐙𝐅. If we change this to 

mean truth in 𝐈𝐙𝐅, we can easily transfer all proofs to this context.  

There is nothing to do to alter the completeness theorem: 

ⓂTheorem 4.22: If 𝑉∗ ⊨ 𝜃, then 𝐈𝐙𝐅 ⊢ 𝜃°. 
The soundness theorem requires more work, as we need to check the additional set axioms: 

ⓂTheorem 4.23 (Soundness): For every theorem 𝜃 of 𝐈𝐙𝐅, there exists a closed application term 𝑡, such 

that 𝐈𝐙𝐅 ⊢ (𝑡 ⊩ 𝜃). 
Proof: We need to give realizers for the axiom schemas of (unbounded) separation and powerset. 

Separation schema 

This proof is almost identical to the proof of bounded separation. The only difference in this case is that 

we do not need to pay attention to the involved formulas to be bounded. 
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Powerset 

For 𝔞 ∈ 𝑉∗, we define Pow(𝔞) by Pow(𝔞)∗ = {〈𝑒, 𝔠〉: 𝑒 ⊩ 𝔠 ⊆ 𝔞} and Pow(𝔞)° = Pow(𝔞) ∪ 𝒫(𝔞°). Note that 

since in 𝐈𝐙𝐅, the 𝑉𝛼𝑠 and 𝑉𝛼∗s are sets, so must be Pow(𝔞)∗ and therefore Pow(𝔞) is a well-defined element 

of 𝑉∗. If 𝑔 ⊩ 𝔠 ⊆ Pow(𝔞), then 〈𝑔, 𝔠〉 ∈ Pow(𝔞)∗ and hence 𝐩𝑔𝐢𝒓 ⊩ 𝔠 ∈ Pow(𝔞). Of course, 𝔠° ⊆ 𝔞° implies 𝔠° ∈ Pow(𝔞)° and hence 𝜆𝑔. 𝐩𝑔𝐢𝒓 realizes the axiom.  ∎ 

ⓂTheorem 4.24: 𝐈𝐙𝐅 has the disjunction and numerical existence property. It follows the rules of Un-

zerlegbarkeit, Uniformity and Church. 

4.7.2 Compatibility with Principles 

Changing our realizability structure to not refer to truth inside 𝐂𝐙𝐅 in 𝐈𝐙𝐅, comes at the cost of giving up 

the completeness theorem. On the other hand, we gain some leeway in that our realizability structures 

may possesses some properties, that cannot be proved in the theories. In particular, it is especially easy 

to transform the proofs we conducted in Section 4.6 into proofs of the corresponding principles (see Sec-

tion 4.2). We formulate our results in terms of the following theorem: 

ⓂTheorem 4.25: If 𝑉∗ ⊨ 𝜙, then Cons(𝐈𝐙𝐅) ⇒ Cons(𝐈𝐙𝐅 + 𝜙) and similarly for 𝐂𝐙𝐅. 

Proof: Towards a contradiction, suppose that 𝐈𝐙𝐅 + 𝜙 is inconsistent. Then 𝐈𝐙𝐅 + 𝜙 ⊢ ⊥. By the soundness 

theorem and by 𝑉∗ ⊨ 𝜙, there is some 𝑡 ∈ 𝜔 with 𝐈𝐙𝐅 ⊢ 𝑡 ⊩ ⊥. But by definition of realizability, 𝐈𝐙𝐅 ⊢∀𝑛 ∈ 𝜔.¬𝑛 ⊩ ⊥, contradiction.  ∎ 

We can now show that 𝐈𝐙𝐅 and 𝐂𝐙𝐅 are equiconsistent with the theories augmented by the principles UZ, UzP, CP and MP: 

ⓂTheorem 4.26: Cons(𝐈𝐙𝐅) ⇒ Cons(𝐈𝐙𝐅 + UP + UzP + CP +MP) and similarly for 𝐂𝐙𝐅. 

Proof: Let 𝐓 be either 𝐂𝐙𝐅 or 𝐈𝐙𝐅. Given a proof of the property of the form 

If 𝐓 ⊢ 𝐴, then 𝐓 ⊢ 𝐵, 

we can now easily transform it into a proof of the rule 𝐓 ⊢ 𝐴 → 𝐵. 
We realize the rule with a term 𝜆𝑥. 𝜏 mapping realizers of 𝐴 to realizers of 𝐵. The crucial point is that 

when realizing 𝐴 → 𝐵 we now need not refer to truth inside 𝐓 of the statement 𝐴° → 𝐵° and simply use 

the same term to realize 𝐴 → 𝐵. 

For example, let us show how to show the Uniformity-rule: Suppose 𝑒 ⊩ ∀𝑥. ∃𝑦 ∈ 𝜔.𝜓(𝑥, 𝑦). This means, 

that for all 𝔞 ∈ 𝑉∗, 𝑒 ⊩ ∃𝑦 ∈ 𝜔. 𝜓(𝔞, 𝑦). We know that internal 𝜔 is represented by 𝜔 and hence, 𝑡 ⊩ ∃𝑛 ∈𝜔.𝜓(𝔞, 𝑛) for all 𝔞 ∈ 𝑉∗.  
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This means that there is some 𝔶 ∈ 𝑉∗ such that 〈(𝑒)0, 𝔫〉 ∈ 𝜔 and (𝑒)1 ⊩ 𝜓(𝔞, 𝔫). But by the definition of 𝜔, 𝔫 has to be one of the �̅�s and hence both 𝔫 and 𝑒 cannot depend on 𝔞. By Lemma 4.17, we conclude 𝑒 ⊩ ∀𝑥. 𝜓(𝑥, 𝑛) and therefore 𝜆𝑒. 𝑒 ⊩ (∀𝑥. ∃𝑦 ∈ 𝜔. 𝜓(𝑥, 𝑦)) → (∀𝑥. 𝜓(𝑥, 𝑛)).  
Comparing these lines to the proof of Theorem 4.18, we see that the proof follows the schema indicated 

above.  ∎ 

We have discussed in section 4.2.6 that 𝐋𝐄𝐌 is incompatible with CP. Therefore, we immediately get the 

following Corollary: 

ⓂCorollary 4.27: 𝐈𝐙𝐅 ⊬ 𝐋𝐄𝐌. 

In light of this result, all weak counterexamples of sections 2.4.2 and 3.3 like the foundation axiom or the 

well-ordering of 𝕆ℕ turn out to be unprovable statements in 𝐈𝐙𝐅 and 𝐂𝐙𝐅. 
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5 Martin-Löf’s set theory  
As promised, in chapter 2.3, we will take a closer look on Martin-Löf’s set theory 𝐌𝐋. We will describe 

all rules and briefly discuss some application. In the final section of this chapter, we will give an inter-

pretation of 𝐂𝐙𝐅 into 𝐌𝐋. It should be noted that all concepts are closely related to type theory. In fact, it 

is exactly type theory, if we refer to sets as “types”. Martin-Löf changed his notation accordingly in his 

later work and so will we starting with section 5.2. For now, let us stick with his early notation to em-

phasize that the presented theory presented defines a set theory on its own right. 

5.1 Formulating 𝐌𝐋 
5.1.1 Rules of equality 

Reflexivity 𝑎 ∈ 𝐴𝑎 = 𝑎 ∈ 𝐴 
𝐴 set𝐴 = 𝐴 

Symmetry 𝑎 = 𝑏 ∈ 𝐴𝑏 = 𝑎 ∈ 𝐴 
𝐴 = 𝐵𝐵 = 𝐴 

Transitivity 𝑎 = 𝑏 ∈ 𝐴 𝑏 = 𝑐 ∈ 𝐴𝑎 = 𝑐 ∈ 𝐴  
𝐴 = 𝐵 𝐵 = 𝐶𝐴 = 𝐶  

Equality of types 𝑎 ∈ 𝐴 𝐴 = 𝐵𝑎 ∈ 𝐵  
𝑎 = 𝑏 ∈ 𝐴 𝐴 = 𝐵𝑎 = 𝑏 ∈ 𝐵  

 

5.1.2 Substitution rules 

We put down the following rules of substitution. Expressions like 
(𝑥 ∈ 𝐴)𝐵(𝑥) set should be read as follows: 

“𝐵(𝑥) is a well-formed set under the assumption that 𝑥 is in the set 𝐴”. 

 (𝑥 ∈ 𝐴)𝑎 ∈ 𝐴 𝐵(𝑥) set𝐵(𝑎) set  

(𝑥 ∈ 𝐴)𝑎 = 𝑐 ∈ 𝐴 𝐵(𝑥) set𝐵(𝑎) = 𝐵(𝑐)  

 (𝑥 ∈ 𝐴)𝑎 ∈ 𝐴 𝐵(𝑥) = 𝐶(𝑥)𝐵(𝑎) = 𝐶(𝑎)  

 

 (𝑥 ∈ 𝐴)𝑎 ∈ 𝐴 𝑏(𝑥) ∈ 𝐵(𝑥)𝑏(𝑎)  ∈ 𝐵(𝑎)  

(𝑥 ∈ 𝐴)𝑎 = 𝑐 ∈ 𝐴 𝑏(𝑥) ∈ 𝐵(𝑥)𝑏(𝑎) = 𝑏(𝑐)  ∈ 𝐵(𝑎)  

 (𝑥 ∈ 𝐴)𝑎 ∈ 𝐴 𝑏(𝑥) = 𝑐(𝑥) ∈ 𝐵(𝑥)𝑏(𝑎) = 𝑐(𝑎) ∈ 𝐵(𝑎)  
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5.1.3 𝛱-rules 

As a first example of rules allowing for a construction of sets, we discuss Π-rules. They prescribe how to 

construct, given a set 𝐴 and for each 𝑥 in 𝐴 some set 𝐵(𝑥), the set (Π𝑥 ∈ 𝐴)𝐵(𝑥). One can think of this set 

as the set of all functions mapping 𝑥 ∈ 𝐴 into 𝐵(𝑥): 𝚷-formation (𝑥 ∈ 𝐴)𝐴 set 𝐵(𝑥) set(Π𝑥 ∈ 𝐴)𝐵(𝑥) set  

(𝑥 ∈ 𝐴)𝐴 = 𝐶 𝐵(𝑥) = 𝐷(𝑥)(Π𝑥 ∈ 𝐴)𝐵(𝑥) = (Π𝑥 ∈ 𝐶)𝐷(𝑥) 𝚷-introduction (𝑥 ∈ 𝐴)𝑏(𝑥) ∈ 𝐵(𝑥)𝜆𝑥. 𝑏(𝑥) ∈ (Π𝑥 ∈ 𝐴)𝐵(𝑥) (𝑥 ∶ 𝐴)𝑏(𝑥) = 𝑑(𝑥) ∈ 𝐵(𝑥)𝜆𝑥. 𝑏(𝑥) = 𝜆𝑥. 𝑑(𝑥) ∈ (Π𝑥 ∈ 𝐴)𝐵(𝑥) 𝚷-elimination 𝑐 ∈ (Π𝑥: 𝐴)𝐵(𝑥) 𝑎 ∈ 𝐴Ap(𝑐, 𝑎) ∈ 𝐵(𝑎)  
𝑐 = 𝑑 ∈ (Π𝑥: 𝐴)𝐵(𝑥) 𝑎 = 𝑏 ∈ 𝐴Ap(𝑐, 𝑎) = Ap(𝑑, 𝑏) ∈ 𝐵(𝑎)  

𝚷-equality (𝑥 ∈ 𝐴)𝑎 ∈ 𝐴 𝑏(𝑥) ∈ 𝐵(𝑥)Ap(𝜆𝑥. 𝑏(𝑥), 𝑎) = 𝑏(𝑎) ∈ 𝐵(𝑎) 𝑐 ∈ (Π𝑥 ∈ 𝐴)𝐵(𝑥)𝜆𝑥. Ap(𝑐, 𝑥) = 𝑐 ∈ (Π𝑥 ∈ 𝐴)𝐵(𝑥) 
The right column explains equality between the constructed sets and their elements. In the case of Π-

introduction, two sets (Π𝑥 ∈ 𝐴)𝐵(𝑥) and (Π𝑥 ∈ 𝐶)𝐷(𝑥) are equal if 𝐴 = 𝐶 and for all 𝑥 ∈ 𝐴, 𝐵(𝑥) = 𝐶(𝑥).  
The rules of Π-introduction declare how to give canonical elements of (Π𝑥 ∈ 𝐴)𝐵(𝑥), or in other words, 

how to give a function mapping 𝑥 ∈ 𝐴 into 𝐵(𝑥). This is done in giving a method computing for each 𝑥 ∈𝐴 an element 𝑏(𝑥) ∈ 𝐵(𝑥). The function 𝑥 ↦ 𝑏(𝑥) thus defined is denoted by 𝜆𝑥. 𝑏(𝑥). The column on the 

right explains when two such canonical elements are equal: This is the case if the two associated functions 

agree on every input. 

The symbol Ap can be explained as follows: Given an element 𝑐 ∈ (Π𝑥 ∈ 𝐴)𝐵(𝑥), we know it yields some 

canonical element 𝜆𝑥. 𝑏(𝑥). Ap(𝑐, 𝑎) computes this element and returns 𝑏(𝑎). Thus, the elimination rules 

describe how elements of the type just defined behave. 

Finally, the rules of Π-equality show how Ap operates on canonical elements. Note that they correspond 

to the rules β-reduction and γ-conversion of λ-calculus. 

We will usually write 𝑐(𝑎) instead of Ap(𝑐, 𝑎), when we know that 𝑐 is of a corresponding Π-set. If the 

family 𝐵(𝑥) does not depend on 𝑥, we will simply write 𝐴 → 𝐵 instead of (Π𝑥 ∈ 𝐴)𝐵. 

In the propositions-as-sets interpretation “→” plays the same role as its logical counterpart. Thus, the Π-

rules translate nicely into logical rules about implication. As suggested in the starting example, one role 

of the Π-type is to give an interpretation to universal quantification: One defines the set ∀𝑥 ∈ 𝐴 𝐵(𝑥) to 
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be (Π𝑥 ∈ 𝐴)𝐵(𝑥). Let us translate the Π-rules into the context of plain implication and universal quanti-

fication: We write 𝐴 prop instead of 𝐴 set. Capturing the constructive standpoint that truth corresponds 

directly to provability, we write 𝐴 true iff there is some 𝑐 ∈ 𝐴, i.e. there is some proof of the proposition 𝐴. Now the Π-rules take the following forms familiar from predicate logic: ∀-formation (𝑥 ∈ 𝐴)𝐴 prop 𝐵(𝑥) prop(∀𝑥 ∈ 𝐴)𝐵(𝑥) prop  

→-formation 𝐴 prop 𝐵 prop𝐴 → 𝐵 prop  

∀-introduction (𝑥 ∈ 𝐴)𝐵(𝑥) true(∀𝑥 ∈ 𝐴)𝐵(𝑥) true →-introduction (𝐴 true)𝐵 true𝐴 → 𝐵 true ∀-elimination (∀𝑥 ∈ 𝐴)𝐵(𝑥) true 𝑎 ∈ 𝐴𝐵(𝑎) true  →-elimination 𝐴 → 𝐵 true 𝐴 true𝐵 true  

 

Example: Let us verify the logical axiom (𝐴 → (𝐵 → 𝐶)) → ((𝐴 → 𝐵) → (𝐴 → 𝐶)). One way to do this is 

in a derivation tree-like syntax to find an element (=proof) of the set (𝐴 → (𝐵 → 𝐶)) → ((𝐴 → 𝐵) →(𝐴 → 𝐶)) applying diretly the Π-rules from above: 

 

If we use →-rules instead we get see how this proof of membership turns into a proof of intuitionistic 

logic in a Curry-Howard-style fashion: 

 

The way we introduced the Π-rules is paradigmatic: All rules in the following will contain formation 

rules, explaining how to construct the set under discussion from other sets. Introduction rules explain 

how its canonical elements are formed and elimination rules describe their behavior. Finally, equality 

[𝑥 ∈ 𝐴 → (𝐵 → 𝐶)]1 [𝑧 ∈ 𝐴]2𝑥(𝑧) ∈ 𝐵 → 𝐶                [𝑦 ∈ 𝐴 → 𝐵]3 [𝑧 ∈ 𝐴]2𝑦(𝑧) ∈ 𝐵𝑥(𝑧)(𝑦(𝑧)) ∈ 𝐶𝜆𝑧. 𝑥(𝑧)(𝑦(𝑧)) ∈ 𝐴 → 𝐶𝜆𝑦𝜆𝑧. 𝑥(𝑧)(𝑦(𝑧)) ∈ (𝐴 → 𝐵) → (𝐴 → 𝐶)𝜆𝑥𝜆𝑦𝜆𝑧. 𝑥(𝑧)(𝑦(𝑧)) ∈ 𝐴 → (𝐵 → 𝐶) → ((𝐴 → 𝐵) → (𝐴 → 𝐶))
 

(Π-elim)  
(Π-intr), [2]   

(Π-intr), [3]  
(Π-intr), [1]  

(Π-elim)  (Π-elim)  

[𝐴 → (𝐵 → 𝐶) true]1 [𝐴 true]2𝐵 → 𝐶 true    [𝐴 → 𝐵 true]3 [𝐴 true]2𝐵 true𝐶 true𝐴 → 𝐶 true(𝐴 → 𝐵) → (𝐴 → 𝐶) true𝐴 → (𝐵 → 𝐶) → ((𝐴 → 𝐵) → (𝐴 → 𝐶)) true
 

(→-elim)  (→-elim)  (→-elim)  (→-intr), [2] (→-intr), [3] (→-intr), [1] 
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rules relate introduction and elimination rules. Note that the rules of the right column explaining equal-

ity of the constructed sets and their canonical elements always follow the same pattern. We do therefore 

not write them down explicitly in the following discussion. 

Another remark we need to make is that beginning with the rule of Π-introduction, we skipped some of 

the assumptions of the rule. In this particular case, they should have included 𝐴 type  and 𝐵(𝑥) type (𝑥 ∈ 𝐴). For the sake of readability, we will not write down these obvious lines.  

5.1.4 𝛴-rules 

We continue with rules for Σ-sets that one can think of as generalized disjoint union of a family of sets. 

If we have a set 𝐴 and for each 𝑥 of set 𝐴 some set 𝐵(𝑥), we can form the disjoint union of the 𝐵(𝑥) in-

dexed by 𝐴. We denote this by (Σ𝑥 ∈ 𝐴)𝐵(𝑥). 𝚺-formation 

 

(𝑥 ∈ 𝐴)𝐴 set 𝐵(𝑥) set(Σ𝑥 ∈ 𝐴)𝐵(𝑥) set  

𝚺-introduction 𝑎 ∈  𝐴 𝑏 ∈ 𝐵(𝑎)(𝑎, 𝑏) ∈ (Σ𝑥 ∈ 𝐴)𝐵(𝑥)  

𝚺-elimination (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵(𝑥))𝑐 ∈ (Σ𝑥 ∈ 𝐴)𝐵(𝑥) 𝑑(𝑥, 𝑦) ∈ 𝐶(𝑥, 𝑦)E(𝑐, 𝑑) ∈ 𝐶(𝑐)  

𝚺-equality (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵(𝑥))𝑎 ∈ 𝐴 𝑏 ∈ 𝐵(𝑎) 𝑑(𝑥, 𝑦) ∈ 𝐶(𝑥, 𝑦)E((𝑎, 𝑏), 𝑑) = 𝑑(𝑎, 𝑏) ∈ 𝐶((𝑎, 𝑏))  

The canonical elements of (Σ𝑥 ∈ 𝐴)𝐵(𝑥) are of the form (𝑎, 𝑏), where 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵(𝑎). The symbol E 

operates as follows: It computes 𝑐 ∈ (Σ𝑥 ∈ 𝐴)𝐵(𝑥) to find its associated canonical element of the form (𝑎, 𝑏), where 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵(𝑎). It then substitutes the values into 𝑑 to obtain 𝑑(𝑎, 𝑏) of 𝐶((𝑎, 𝑏)). 
The case where we start this procedure with a canonical element (𝑎, 𝑏) instead of a general 𝑐 is written 

down in the rule of Σ-equality. 

Example: Let us set 𝑑(𝑥, 𝑦) ≡ 𝑥 and 𝐶(𝑥, 𝑦) ≡ 𝐴 in the rule of Σ-elimination. We then obtain the left pro-

jection as 𝑝(𝑐) ≡ E(𝑐, 𝑑) ∈ 𝐴. By Σ-equality it has the property 𝑝((𝑎, 𝑏)) = 𝐸((𝑎, 𝑏), 𝑑) = 𝑑(𝑎, 𝑏) = 𝑎. Sim-

ilarly, the right projection 𝑞(𝑎, 𝑏) = 𝑏 ∈ 𝐵(𝑎) is defined. 

If 𝐵(𝑥) does not depend on 𝑥 we write 𝐴 × 𝐵 for (Σ𝑥 ∈ 𝐴)𝐵. In the propositions-as-sets interpretation 

“×” plays the role of conjunction. Indeed, a proof of 𝐴 ∧ 𝐵 must be a pair (𝑎, 𝑏) where 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵. 

In the case of existential quantification, we can define (∃𝑥 ∈ 𝐴)𝐵(𝑥) to be (Σ ∈ 𝐴)𝐵. Here, (𝑎, 𝑏) consists 
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of a witness 𝑎 and a proof 𝑏 of 𝐵(𝑎). Indeed, if we have a 𝑐 ∈ (∃𝑥 ∈ 𝐴)𝐵(𝑥), then 𝑝(𝑐) ∈ 𝐴 and 𝑞(𝑐) ∈𝐵(𝑥). If we again translate the rules, we have 

∃-formation (𝑥 ∈ 𝐴)𝐴 prop 𝐵(𝑥) prop(∃𝑥 ∈ 𝐴)𝐵(𝑥) prop  

∧-formation 𝐴 prop 𝐵 prop𝐴 ∧ 𝐵 prop  

∃-introduction 𝑎 ∈ 𝐴 𝐵(𝑎) true(∃𝑥 ∈ 𝐴)𝐵(𝑥) true  
∧-introduction 𝐴 true 𝐵 true𝐴 ∧ 𝐵 true  

∃-elimination (𝑥 ∈ 𝐴, 𝐵(𝑥) true)(∃𝑥 ∈ 𝐴)𝐵(𝑥) true 𝐶 true𝐶 true  

∧-elimination (𝐴 true, 𝐵 true)𝐴 ∧ 𝐵 true 𝐶 true𝐶 true  

As an example, let us verify that this interpretation respects the logical rule 𝐴 ∧ 𝐵 → 𝐴: By the example 

before, we have that 𝑝(𝑐) ∈ 𝐴 whenever 𝑐 ∈ 𝐴 ∧ 𝐵. Thus, 𝜆𝑐. 𝑝(𝑐) ∈ 𝐴 ∧ 𝐵 → 𝐴 by Π-introduction. Alter-

natively, we can use rules for → and ∧: 

 

5.1.5 +-Rules 

Given sets 𝐴 and 𝐵, we can construct their disjoint union 𝐴 + 𝐵: +-formation 𝐴 set 𝐵 set𝐴 + 𝐵 set  +-introduction 𝑎 ∈  𝐴𝑖(𝑎) ∈ 𝐴 + 𝐵 

 𝑏 ∈ 𝐵𝑗(𝑏) ∈ 𝐴 + 𝐵 

 +-elimination (𝑥 ∈ 𝐴) (𝑦 ∈ 𝐵)𝑐 ∈ 𝐴 + 𝐵 𝑑(𝑥) ∈ 𝐶(𝑖(𝑥)) 𝑒(𝑦) ∈ 𝐶(𝑗(𝑦))D(𝑐, 𝑑, 𝑒) ∈ 𝐶(𝑐)  

+-equality (𝑥 ∈ 𝐴) (𝑦 ∈ 𝐵)𝑎 ∈ 𝐴 𝑑(𝑥) ∈ 𝐶(𝑖(𝑥)) 𝑒(𝑦) ∈ 𝐶(𝑗(𝑦))D(𝑎, 𝑑, 𝑒) = 𝑑(𝑎) ∈ 𝐶(𝑖(𝑎))  

⬚ (𝐴 true, 𝐵 true)[𝐴 ∧ 𝐵 true]1 𝐴 true𝐴 true𝐴 ∧ 𝐵 → 𝐴 true  (→-intr), [1] (∧-elim) 
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(𝑥 ∈ 𝐴) (𝑦 ∈ 𝐵)𝑏 ∈ 𝐵 𝑑(𝑥) ∈ 𝐶(𝑖(𝑥)) 𝑒(𝑦) ∈ 𝐶(𝑗(𝑦))D(𝑏, 𝑑, 𝑒) = 𝑒(𝑏) ∈ 𝐶(𝑗(𝑏))  

The canonical elements of 𝐴 + 𝐵 are the “labeled” elements of 𝐴 and 𝐵 denoted by 𝑖(𝑎) and 𝑗(𝑏). The op-

erator D decides whether the canonical element associated to 𝑐 ∈ 𝐴 + 𝐵 is of the form 𝑖(𝑎) or 𝑗(𝑏). In the 

first case it computes 𝑑(𝑎), in the second 𝑒(𝑏). 
One might think that the disjoint union 𝐴 + 𝐵 may be eliminated in favor of (Σ𝑥 ∈ ℕ2)𝑓(𝑥), where ℕ2 is 

a type containing two elements 0 and 1 and  

𝑓(𝑥) = {𝐴, 𝑖𝑓 𝑥 = 0,𝐵, 𝑖𝑓 𝑥 = 1. 
However, as Beeson remarks in [4], one runs into difficulties in defining in such an 𝑓, so Martin-Löf 

found it more convenient to include these extra rules for the disjoint union of two sets.  

In the context of logic, + takes the role of disjunction: If we write 𝐴 ∨ 𝐵 for 𝐴 + 𝐵 we have the rules: 

 ∨-formation 𝐴 prop 𝐵 prop𝐴 ∨ 𝐵 prop  ∨-introduction 𝐴 true𝐴 ∨ 𝐵 true 
 𝐵 true𝐴 ∨ 𝐵 true 
 ∨-elimination (𝐴 true) (𝐵 true)𝐴 ∨ 𝐵 true 𝐶 true 𝐶 true𝐶 true  

5.1.6 𝐼-rules 

We will not make direct use of I-rules, nevertheless, we will briefly discuss them in this section. Note 

that although we have judgments asserting the equality of two elements with respect to some type, i.e. 

judgements of the form 𝑎 = 𝑏 ∈ 𝐴, we cannot formulate such judgement as propositions. Indeed, it turns 

out that without I-rules one cannot even formulate arithmetic within 𝐌𝐋. 

Given a type 𝐴 and two elements 𝑎 and 𝑏 of type 𝐴, I(𝐴, 𝑎, 𝑏) is the set (or in this case, rather the “propo-
sition”, set of proofs) asserting that 𝑎 and 𝑏 are equal elements of 𝐴: 𝐈-formation 𝐴 set 𝑎 ∈ 𝐴 𝑏 ∈ 𝐴I(𝐴, 𝑎, 𝑏) set  
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 𝐈-introduction 𝑎 = 𝑏 ∈ 𝐴r ∈ I(𝐴, 𝑎, 𝑏) 𝐈-elimination 𝑐 ∈ I(𝐴, 𝑎, 𝑏)𝑎 = 𝑏 ∈ 𝐴  𝐈-equality 𝑐 ∈ I(𝐴, 𝑎, 𝑏)𝑐 = r ∈ I(𝐴, 𝑎, 𝑏) 
If indeed, 𝑎 = 𝑏 ∈ 𝐴, then I(𝐴, 𝑎, 𝑏) contains a canonical proof r of this fact. On the other hand, if I(𝐴, 𝑎, 𝑏) 
contains an element, then 𝑎 = 𝑏 ∈ 𝐴. Finally, the equality rule says that r is the only element of I(𝐴, 𝑎, 𝑏) 
up to equality. 

As an example, let us verify (∀𝑥 ∈ 𝐴)I(𝐴, 𝑥, 𝑥) true saying that all elements of 𝐴 are equal to themselves. 

Given 𝑥 ∈ 𝐴, we know that r ∈ I(𝐴, 𝑥, 𝑥) and thus 𝜆𝑥. r ∈ (∀𝑥 ∈ 𝐴)I(𝐴, 𝑥, 𝑥). 
5.1.7 ℕ𝑘-rules 

The ℕ𝑘-rules are the only rules so far guaranteeing the existence of sets without any assumptions. For 

each 𝑘, we postulate the existence of a 𝑘-element set: ℕ𝒌-formation ℕ𝑘  set ℕ𝒌-introduction 𝑚 ∈ ℕ𝑘 
for 𝑚 = 0,… , 𝑘 − 1. ℕ𝒌-elimination 𝑐 ∈ ℕ𝑘 𝑐0 ∈ 𝐶(0) ⋯  𝑐𝑘−1 ∈ 𝐶(𝑘 − 1)R𝑘(𝑐, 𝑐0, … , 𝑐𝑘−1) ∈ 𝐶(𝑐)  

ℕ𝒌-equality 𝑐0 ∈ 𝐶(0) ⋯  𝑐𝑘−1 ∈ 𝐶(𝑘 − 1)R𝑘(𝑚, 𝑐0, … , 𝑐𝑘−1) = 𝑐𝑚 ∈ 𝐶(𝑚) 
for 𝑚 = 0,… , 𝑘 − 1. 

In the elemination rule, 𝑅𝑘 operates as follows: It executes 𝑐 to find out to which element 𝑚 it converges. 

It then returns the corresponding element 𝑐𝑚. 

The type ℕ0 corresponds to the empty set and takes the role of ⊥ in the proposition-as-sets interpretation. 

We set ⊥ ≡ ℕ0 and observe the rule ⊥-elimination ⊥ true𝐶 true 
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This is the usual rule of ex falso quodlibet. As usual, we can define negation as ¬𝐴 ≡ 𝐴 →⊥. The rule 𝐴 →¬¬𝐴 is proved as usually: 

 

5.1.8 ℕ-rules 

The ℕ-rules postulate the existence of the set of natural numbers: ℕ-formation ℕ set ℕ-introduction 0 ∈ ℕ 𝑛 ∈ ℕ𝑠(𝑛) ∈ ℕ ℕ-elimination (𝑥 ∈ ℕ, 𝑦 ∈ 𝐶(𝑠(𝑥))𝑐 ∈ ℕ 𝑐 ∈ 𝐶(0) 𝑒(𝑥, 𝑦) ∈ 𝐶(𝑠(𝑥))R(𝑐, 𝑑, 𝑒) ∈ 𝐶(𝑐)  

ℕ-equality (𝑥 ∈ ℕ, 𝑦 ∈ 𝐶(𝑠(𝑥))𝑑 ∈ 𝐶(0) 𝑒(𝑥, 𝑦) ∈ 𝐶(𝑠(𝑥))R(0, 𝑑, 𝑒) = 𝑑 ∈ 𝐶(0)  

(𝑥 ∈ ℕ, 𝑦 ∈ 𝐶(𝑠(𝑥))𝑎 ∈ ℕ 𝑑 ∈ 𝐶(0) 𝑒(𝑥, 𝑦) ∈ 𝐶(𝑠(𝑥))R(𝑠(𝑎), 𝑑, 𝑒) = 𝑒(𝑎, 𝑅(𝑎, 𝑑, 𝑒)) ∈ 𝐶(𝑠(𝑎))  

successor 𝑥 ∈ ℕI(ℕ, 𝑠(𝑥), 0) ∈ ⊥ 

The R in the above rules gives us the possibility of recursive definitions: If 𝑐 ∈ ℕ it executes 𝑐 to see 

wether it yields 0  or not. If 𝑐  converges to 0 , R(𝑐, 𝑑, 𝑒)  returns 𝑑 ∈ 𝐶(0) . Otherwise, 𝑐 = 𝑠(�̅�)  and R(𝑐, 𝑑, 𝑒) will be computed recursively by 𝑒(�̅�, 𝑅(�̅�, 𝑑, 𝑒)). In this sense, the rules for ℕ-equality define 

two rewrite rules. The successor rule tells us that there is no proof of the statement that 0 is a successor 

of 𝑠(𝑥). 
5.1.9 𝐌𝐋 in action – Real numbers and the axiom of choice 

We give two examples to see how to work in 𝐌𝐋. The first is a construction of the set of real numbers. 

The rational numbers, as well as basic operations on them are obtained from ℕ in the usual way. We 

would now like to form ℝ as the set of all Cauchy-sequences ℕ → ℚ. To accomplish this, we will use Σ-

[𝐴 true]1 [𝐴 →⊥ true]2⊥ true(𝐴 →⊥) →⊥  true𝐴 → ((𝐴 →⊥) →⊥) true  

(→-elim)  (→-intr), [2] (→-intr), [1] 
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rules to separate the Cauchy-sequences from all functions in ℕ → ℚ. Generally speaking, if we want to 

form the set {𝑥 ∈ 𝐴: 𝐵(𝑥)}, i.e. the set of all elements of 𝐴 satisfying some condition 𝐵, this will correspond 

to a set of pairs (𝑎, 𝑝𝑎), where 𝑎 is an element of 𝐴 and 𝑝𝑎 is a proof of 𝐵(𝑎). In the propositions-as-sets 

interpretation, this means 𝑎 ∈ 𝐴  and 𝑝𝑎 ∈ 𝐵(𝑎) . Thus, (𝑎, 𝑝𝑎) ∈ (Σ𝑥 ∈ 𝐴)𝐵(𝑎)  and we can identify {𝑥 ∈ 𝐴:𝐵(𝑥)} with this set. In our case we can set ℝ ≡ (Σ𝑥 ∈ ℕ → ℚ) Cauchy(𝑥), 
where Cauchy(𝑥) ≡ (∀𝑒 ∈ ℚ)(𝑒 > 0 → (∃𝑛 ∈ ℕ)(∀𝑚 ∈ ℕ)(|𝑥(𝑛) − 𝑥(𝑚 + 𝑛)| < 𝑒)). 
Note that 𝑝 ∈ Cauchy(𝑥) is a modulus of convergence, i.e. a method computing to each 𝑒 > 0 a some spe-

cific 𝑛 ∈ ℕ such that ∀𝑚 ∈ ℕ we have |𝑥(𝑛) − 𝑥(𝑚 + 𝑛)| < 𝑒. 

As another example let us consider the axiom of choice. It turns out that this axiom takes very divergent 

roles and strengths in different versions of set theory, sometimes extending the theory to be highly non-

constructive. Interestingly, in 𝐌𝐋, its strongest formulation 𝐀𝐂 ≡ (∀𝑥 ∈ 𝐴)(∃𝑦 ∈ 𝐵(𝑥))𝐶(𝑥, 𝑦) → (∃𝑓 ∈ (Π𝑥 ∈ 𝐴)𝐵(𝑥))(∀𝑥 ∈ 𝐴)𝐶(𝑥, 𝑓(𝑥)), 
turns out to be derivable: Suppose, 𝑐 ∈ (∀𝑥 ∈ 𝐴)(∃𝑦 ∈ 𝐵(𝑥))𝐶(𝑥, 𝑦) . By Π -elimination, 𝑐(𝑎) ∈ (∃𝑦 ∈𝐵(𝑥))𝐶(𝑥, 𝑦) for 𝑎 ∈ 𝐴. Using projection functions, 𝑝(𝑐(𝑎)) ∈ 𝐵(𝑎) and 𝑞(𝑐(𝑎)) ∈ 𝐶 (𝑎, 𝑝(𝑐(𝑎))). Thus, 

we can define the function 𝑓 to be 𝜆𝑎. 𝑝(𝑐(𝑎)). This shows that 𝜆𝑐. (𝜆𝑎. 𝑝(𝑐(𝑎)), 𝜆𝑎. 𝑞(𝑐(𝑎))) ∈ 𝐀𝐂. 

Here is how a derivation tree would look like: 

 

5.2 Additional rules 
In order to give an interpretation of 𝐂𝐙𝐅 into 𝐌𝐋 we need to discuss some further rules which will in-

crease the expressivity of our system. As announced at the beginning of the chapter, slightly change our 

terminology. From now on, we will refer to sets as types – and we will correspondingly write “𝐴 type” 
instead of “𝐴 set”5 and “𝑎 ∶ 𝐴” instead of “𝑎 ∈ 𝐴” and say that “𝑎 is of type 𝐴” instead of “𝑎 is an element 

 
5 Martin-Löf himself changed his terminology in this way. 

[𝑐 ∈ (∀𝑥 ∈ 𝐴)(∃𝑦 ∈ 𝐵(𝑦))𝐶(𝑥, 𝑦)]1 [𝑎 ∈ 𝐴]2𝑐(𝑎) ∈ (∃𝑦 ∈ 𝐵(𝑦))𝐶(𝑎, 𝑦)𝑝(𝑐(𝑎)) ∈ 𝐵(𝑎)𝜆𝑥. 𝑝(𝑐(𝑥)) ∈ (Π𝑥 ∈ 𝐴)𝐵(𝑥)
   [𝑐 ∈ (∀𝑥 ∈ 𝐴)(∃𝑦 ∈ 𝐵(𝑦))𝐶(𝑥, 𝑦)]1 [𝑎 ∈ 𝐴]4𝑐(𝑎) ∈ (∃𝑦 ∈ 𝐵(𝑦))𝐶(𝑎, 𝑦)𝑞(𝑐(𝑎)) ∈ 𝐶 (𝑎. 𝑝(𝑐(𝑎)))𝜆𝑥. 𝑞(𝑐(𝑥)) ∈ (∀𝑥 ∈ 𝐴)𝐶(𝑥, 𝑝(𝑐(𝑥))(𝜆𝑥. 𝑝(𝑐(𝑥)), 𝜆𝑥. 𝑞(𝑐(𝑥))) ∈ (∃𝑓 ∈ (Π𝑥 ∈ 𝐴)𝐵(𝑥))(∀𝑥 ∈ 𝐴)𝐶(𝑥, 𝑓(𝑥))𝜆𝑐. (𝜆𝑥. 𝑝(𝑐(𝑥)), 𝜆𝑥. 𝑞(𝑐(𝑥))) ∈ 𝐀𝐂

 

(Π-elim)  (Π-elim)  (Σ-elim)  (Σ-elim)  
(Σ-intr)  (Π-intr), [2] (Π-intr), [4] 

(Π-intr), [1] 
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of 𝐴” (we could thus add another line to the table we discussed in chapter 2.3. This will be convenient to 

prevent confusion, as in order to interpret the language of 𝐂𝐙𝐅 we will introduce a special type 𝑉 in 𝐌𝐋 

containing these sets and using the ∈-sign accordingly. 

5.2.1 𝒲-rules 

As noted, the rules discussed so far are enough to develop a constructive set theory on its own. It misses, 

however, the recursive character of 𝐂𝐙𝐅, as there is no way to conduct induction on sets within the sys-

tem. In the following we will thus discuss the missing ingredients. We start with 𝒲-rules (here, 𝒲 stands 

for “well-order”). Although we will need only a special instance of these rules, understanding the general 
case will help us in understanding.  

Before explicitly stating the rules, let us discuss the following example from algebra: Suppose, we are 

given constants 𝑎 and 𝑏, the unary operation symbol 𝑠 and the binary operation symbol +. We can then 

form the term algebra given by 𝑎, 𝑏, 𝑠, +: It consist of terms, where “term” is defined as result of applying 
operation symbols to terms. Clearly, this has recursive character and would yield an empty result if we 

did not have any functions of arity 0 . Thanks to them, examples of terms are 𝑎 , 𝑏 , 𝑠(𝑎) , 𝑠(𝑎) + 𝑏 , 𝑠(𝑠(𝑎) + 𝑏) and so on. 

In general, let 𝐴 be a set of operations and for each operation ∗ of 𝐴, let 𝐵(∗) be a set with cardinality 

equal to the arity of ∗ . In our example 𝐴 = {𝑎, 𝑏, 𝑠, +}  and 𝐵(𝑎) = 𝐵(𝑏) = ∅ , 𝐵(𝑠) = {1𝑠}  and 𝐵(+) ={1+, 2+}. We can then define the term algebra 𝒯 as all functions from 𝐵(∗) → 𝒯, where ∗ is an operation 

of 𝐴. In our example, some terms are represented in the following way: 

term corresponds to 𝒂 empty function 𝐵(𝑎) → 𝒯 𝒃 empty function 𝐵(𝑏) → 𝒯 𝒔(𝒂) 1𝑠 ↦ 𝑎 𝒔(𝒂) + 𝒃 1+ ↦ 𝑠(𝑎), 2+ ↦ 𝑏 

Writing these ideas as rules, we have (we write sup(𝑎, 𝑏) to label the function 𝑏: 𝐵(𝑎) → 𝒯) 𝓦-formation (𝑥 ∶ 𝐴)𝐴 type 𝐵(𝑥) type(𝒲𝑥:𝐴)𝐵(𝑥) type  𝓦-introduction 𝑎 ∶ 𝐴 𝑏: 𝐵(𝑎) → (𝒲𝑥:𝐴)𝐵(𝑥)sup(𝑎, 𝑏) ∶ (𝒲𝑥:𝐴)𝐵(𝑥)  

How do we recursively define a function 𝐹 on the term algebra 𝒯? First, we declare its value on all con-

stants. In our example, we need to fix values 𝐹(𝑎) and 𝐹(𝑏). Next, we define how 𝐹 behaves in the in-

ductive step, i.e. we need rules of the form 𝐹(𝑠(𝑡)) = 𝑓(𝑡, 𝐹(𝑡)) and 𝐹(𝑡1 + 𝑡2) = 𝑔(𝑡1, 𝑡2, 𝐹(𝑡1), 𝐹(𝑡2)) for 

appropriate functions 𝑓 and 𝑔.  
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To fix ideas, let us think of 𝒯 as coding terms in the language of arithmetic. Say, we interpret 𝑎 as 0, 𝑏 as 1, 𝑠 as the successor function and + as addition function and we want to denote by 𝐹 the function 𝑥 ↦2𝑥 of multiplication by 2 Thus, we would define 𝐹(𝑎) = 𝑎, 𝐹(𝑏) = 𝑠(𝑏), 𝐹(𝑠(𝑡)) = 𝑡 + 𝑠(𝑏), 𝐹(𝑎 + 𝑏) = 𝐹(𝑡1) + 𝐹(𝑡2). 
Note that technically speaking, we could include the base case (the case for operations with arity 0) into 

the inducive step. If we define 𝑑 to be the function computing all inductive steps, and T for the recursion 

operator (in our case 𝐹(⋅) = 𝑇(⋅, 𝑑)) we can write  𝓦-elimination (𝑥 ∶ 𝐴, 𝑦 ∶ 𝐵(𝑥) → (𝒲𝑥:𝐴)𝐵(𝑥), 𝑧 ∶ (Π𝑣: 𝐵(𝑥))𝐶(𝑦(𝑣)))𝑐 ∶ (𝒲𝑥:𝐴)𝐵(𝑥) 𝑑(𝑥, 𝑦, 𝑧) ∶ 𝐶(sup(𝑥, 𝑦))T(𝑐, 𝑑) ∶ 𝐶(𝑐)  𝓦-equality  (𝑥 ∶ 𝐴, 𝑦 ∶ 𝐵(𝑥) → (𝒲𝑥:𝐴)𝐵(𝑥), 𝑧 ∶ (Π𝑣: 𝐵(𝑥))𝐶(𝑦(𝑣)))𝑐 ∶ (𝒲𝑥:𝐴)𝐵(𝑥) 𝑏 ∶ 𝐵(𝑎) → (𝒲𝑥:𝐴)𝐵(𝑥) 𝑑(𝑥, 𝑦, 𝑧) ∶ 𝐶(sup(𝑥, 𝑦))T(sup (𝑎, 𝑏), 𝑑) = 𝑑(𝑎, 𝑏, 𝜆𝑣. T(𝑏(𝑣), 𝑑)) ∶ 𝐶(sup (𝑎, 𝑏))  

5.2.2 𝑈-rules 

Intuitively, 𝑈 can be thought of as the “type of all types”. However, such a definition would clearly result 

in a paradox like Russel’s. What we can do however, is to define 𝑈 as the type of small types – basically 

all types constructible from ℕ and the ℕ𝑘 without using 𝒲-rules. 𝑼-formation 𝑈 type 𝑼-introduction (𝑥 ∶ 𝐴)𝐴 ∶ 𝑈 𝐵(𝑥) ∶ 𝑈(Π𝑥: 𝐴)𝐵(𝑥) ∶ 𝑈  

(𝑥 ∶ 𝐴)𝐴 ∶ 𝑈 𝐵(𝑥) ∶ 𝑈(Σ𝑥: 𝐴)𝐵(𝑥) ∶ 𝑈  

𝐴 ∶ 𝑈 𝐵 ∶ 𝑈𝐴 + 𝐵 ∶ 𝑈  

ℕ ∶ 𝑈 ℕ𝑘 ∶ 𝑈 for all 𝑘 𝑼-elimination 𝐴 ∶ 𝑈𝐴 type 
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5.3 Interpreting 𝐂𝐙𝐅 in 𝐌𝐋 

5.3.1 The universe 𝑉 

Finally, we are ready to define the type of sets, 𝑉 ≡ (𝒲𝑥:𝑈)𝑥. From the 𝒲-rules we can infer the follow-

ing 𝑉-rules (we write {𝑓(𝑥)|𝑥 ∶ 𝐴} instead of sup(𝑎, 𝑏)):  𝑽-formation 𝑉 type 𝑽-introduction 𝐴 ∶ 𝑈 𝑓 ∶ 𝐴 → 𝑉{𝑓(𝑥)|𝑥 ∶ 𝐴} ∶ 𝑉  

𝑽-elimination (𝐴 ∶ 𝑈, 𝑓 ∶ 𝐴 → 𝑉, 𝑧 ∶ (Π𝑣: 𝐴)𝐶(𝑓(𝑣)))𝑐 ∶ 𝑉 𝑑(𝐴, 𝑓, 𝑧) ∶ 𝐶({𝑓(𝑥)|𝑥 ∶ 𝐴})T(𝑐, 𝑑) ∶ 𝐶(𝑐)  

𝑽-equality (𝐵 ∶ 𝑈, ℎ ∶ 𝐴 → 𝑉, 𝑧 ∶ (Π𝑣: 𝐵)𝐶(ℎ(𝑣)))𝐴 ∶ 𝑈 𝑓 ∶ 𝐴 → 𝑉 𝑑(𝐵, ℎ, 𝑧) ∶ 𝐶({ℎ(𝑥)|𝑥 ∶ 𝐵})T({𝑓(𝑥)|𝑥 ∶ 𝐴}, 𝑑) = 𝑑(𝐴, 𝑓, 𝜆𝑣. T(𝑓(𝑣), 𝑑)) ∶ 𝐶({𝑓(𝑥)|𝑥 ∶ 𝐴})  

In the following we will often use recursion on 𝑉  in the following way to define a function 𝐹 ∶(Π𝑥: 𝑉)𝐶(𝑥): Suppose, we have defined 𝐹(𝛽) for all 𝛽 = 𝑓(𝑥) for 𝑥 ∶ 𝐴. We then set 𝐹({𝑓(𝑥)|𝑥 ∶ 𝐴}) =𝑑(𝐴, 𝑓, 𝜆𝑣. T(𝑓(𝑣), 𝑑)), where 𝑑 is such that 𝑑(𝐴, 𝑓, 𝜆𝑣. T(𝑓(𝑣), 𝑑)) ∶ 𝐶({𝑓(𝑥)|𝑥 ∶ 𝐴}). 
5.3.2 The interpretation 

To interpret propositions in the language of set theory into appropriate types, we define by an easy re-

cursion {𝑓(𝑥)|𝑥 ∶ 𝐴}̃ = 𝜆𝑥. 𝑓(𝑥)  and {𝑓(𝑥)|𝑥 ∶ 𝐴}̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝐴  (with 𝑑(𝑥, 𝑦, 𝑧) = 𝑥  in the first and 𝑑(𝑥, 𝑦, 𝑧) =𝜆𝑥. 𝑦(𝑥) in the second case). Now we define ‖𝜶 = 𝜷‖ (Π𝑥: �̅�)(Σ𝑦: �̅�)‖�̃�(𝑥) = �̃�(𝑦)‖ × (Π𝑦: �̅�)(Σ𝑥: �̅�)‖�̃�(𝑥) = �̃�(𝑦)‖ ‖𝜶 ∈ 𝜷‖ (Σ𝑥: �̅�)‖𝛼 = �̃�(𝑥)‖ ‖⊥‖ ℕ0 ‖𝝓 → 𝝍‖ ‖𝜙‖ → ‖𝜓‖ ‖𝝓 ∧ 𝝍‖ ‖𝜙‖ × ‖𝜓‖ ‖𝝓 ∨ 𝝍‖ ‖𝜙‖ + ‖𝜓‖ ‖(∀𝒙 ∈ 𝜶)𝝓(𝒙)‖ (Π𝑥: �̅�)‖𝜙(�̃�(𝑥))‖ ‖(∃𝒙 ∈ 𝜶)𝝓(𝒙)‖ (Σ𝑥: �̅�)‖𝜙(�̃�(𝑥))‖ ‖∀𝒙𝝓(𝒙)‖ (Π𝛼: 𝑉)‖𝜙(𝛼)‖ ‖∃𝒙𝝓(𝒙)‖ (Σ𝛼: 𝑉)‖𝜙(𝛼)‖ 

It is clear that this definition needs some justification. Let us, however, start with some simple examples 

to get used to the notions: 
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Examples: Let 𝑒 ∶ ℕ0 → 𝑉 be the canonical empty function. Intuitively, emp = {𝑒(𝑥)|𝑥 ∶ ℕ0} should rep-

resent the empty set and we will prove this in section 5.3.4. If 𝑒𝑝𝑥 ∶ ℕ0 → (Σ𝑦 ∶ ℕ0)‖𝑒(𝑥) = 𝑒(𝑦)‖ is the 

canonical empty function and if we define 𝑒𝑝𝑦 similarly, then for 𝑒𝑝 ≡ (𝜆𝑥. 𝑒𝑝𝑥, 𝜆𝑦. 𝑒𝑝𝑦) we have that  𝑒𝑝 ∶ ‖emp = emp‖. Note that these lines of proof do not work with some other type 𝐴 instead one of the ℕ0. 

As a slightly more interesting example, let 𝛼 ∶ 𝑉 be given by �̅� = ℕ1, where �̃�(0) = emp and 𝛽 ∶ 𝑉 by �̅� =ℕ2, where �̃�(0) = emp and �̃�(1) = emp. Intuitively, 𝛼 and 𝛽 represent the sets {∅} and {∅, ∅} and should 

thus be identified. Indeed, with 𝑒𝑝 as above, 

(𝜆𝑥. ((0̅, 𝑒𝑝)) , 𝜆𝑦. ((0̅, 𝑒𝑝))) ∶ (Π𝑥:ℕ1)(Σ𝑦:ℕ2)‖emp = emp‖ × (Π𝑦:ℕ2)(Σ𝑥: ℕ1)‖emp = emp‖, 
and this type stands for ‖𝛼 = 𝛽‖. 

Let us now justify the definition of ‖𝛼 = 𝛽‖. This type clearlyy aims to mimic the axiom of extensionality. 

It is defined using recursion with 𝐶 ≡ 𝑉 → 𝑈 and 𝑑(𝐵, ℎ, 𝑧) = 𝜆𝛽. [(Π𝑥: 𝐵)(Σ𝑦: �̅�)𝑧(𝑥) (�̃�(𝑦)) × (Π𝑦: �̅�)(Σ𝑥: 𝐵)𝑧(𝑥) (�̃�(𝑦))]. 
Indeed, 𝑑(𝐵, ℎ, 𝑧) ∶ 𝑉 → 𝑈 and we have with 𝐹(𝑥) ≡ T(𝑥, 𝑑): 𝐹({𝑓(𝑥)|𝑥 ∶ 𝐴}) ≡ 𝑑(𝐴, 𝑓, 𝜆𝑣. 𝐹(𝑓(𝑣))≡ 𝜆𝛽. [(Π𝑥: 𝐴)(Σ𝑦: �̅�)𝐹(𝑓(𝑥)) (�̃�(𝑦)) × (Π𝑦: �̅�)(Σ𝑥: 𝐴)𝐹(𝑓(𝑥)) (�̃�(𝑦))]. 
We then set ‖𝛼 = 𝛽‖ ≡ 𝐹(𝛼)(𝛽),  ‖𝛼 = 𝛽‖ ≡ 𝐹(𝛼)(𝛽) ≡ (Π𝑥: �̅�)(Σ𝑦: �̅�)𝐹(�̃�(𝑥)) (�̃�(𝑦)) × (Π𝑦: �̅�)(Σ𝑥: �̅�)𝐹(�̃�(𝑥)) (�̃�(𝑦))≡ (Π𝑥: �̅�)(Σ𝑦: �̅�)‖�̃�(𝑥) = �̃�(𝑦)‖ × (Π𝑦: �̅�)(Σ𝑥: �̅�)‖�̃�(𝑥) = �̃�(𝑦)‖. 
By these observations and an easy induction on the structure of formulas we obtain: 

ⓂLemma 5.1: For each restricted formula 𝜙, ‖𝜙‖ has small type. 

Definition 5.2: A sentence 𝜙(𝑥1, … , 𝑥𝑛) is valid iff there is an expression 𝑎(𝛼1, … , 𝛼𝑛) such that 𝑎(𝛼1, … , 𝛼𝑛) ∶  ‖𝜙(𝛼1, … , 𝛼𝑛)‖   (𝛼1 ∶ 𝑉, … , 𝛼𝑛 ∶ 𝑉). 
ⓂTheorem 5.3: All theorems of 𝐂𝐙𝐅 are valid. 

To prove this theorem, we must find validating expressions for all logical axioms as well as inference 

rules and finally all axioms of 𝐂𝐙𝐅, which we will do in the following. 

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

Comparison and Analysis of Constructive Set Theory  WS 2019/20 

 

~ 83 ~ 
 

5.3.3 Validating 𝐇𝐏𝐋 

Note that our interpretation of the logical connectives is the same as in the propositions-as-types inter-

pretation. Regarding logical axioms, we thus content ourselves with the axioms ‖𝜙 ∧ 𝜓 → 𝜙‖  and ‖(𝜙 → (𝜓 → 𝜒)) → ((𝜙 → 𝜓) → (𝜙 → 𝜒))‖ we have dealt with before. 

As for rules of inference, we already have established the Modus Ponens rule. (UG) and (EI) take inter-

esting forms (in (EI), 𝑎 does not depend on 𝑐): (𝑎 ∶ ‖𝜙‖, 𝑐 ∶ 𝑉)𝑏(𝑎, 𝑐) ∶  ‖𝜓(𝑐)‖𝜆𝑎𝜆𝑐. 𝑏(𝑎, 𝑐) ∶  ‖𝜙 → ∀𝑥 𝜓(𝑥)‖  (UG)        (𝑎 ∶ ‖𝜙(𝑐)‖)𝑏(𝑎) ∶  ‖𝜓‖𝜆𝑎. 𝑏(𝑎) ∶  ‖∃𝑥 𝜙(𝑥) → 𝜓‖ (EI) 
Finally, we need to verify the axioms of identity. Naturally, this is done via recursion and for this reason 

will be rather technical. We will skip the technical details to make the argumentation a bit more compre-

hensible: 

To give a validating expression 𝑟0(𝛼) ∶  ‖𝛼 = 𝛼‖ we may assume 𝑟0(�̃�(𝑥)) ∶  ‖�̃�(𝑥) = �̃�(𝑥)‖. Thus, we will 

set 𝑟0(𝛼) = 𝜆𝑥. ((𝑥, 𝑟0(�̃�(𝑥))) , (𝑥, 𝑟0(�̃�(𝑥)))). 
For transitivity, assume, 𝑐0 (�̃�(𝑥), �̃�(𝑦)) ∶  ‖�̃�(𝑥) = �̃�(𝑦) → �̃�(𝑦) = �̃�(𝑥)‖ . Let us abbreviate 𝑒𝑙(𝑐, 𝑦) ≡𝑝(𝑞(𝑐)(𝑦))  and 𝑝𝑟(𝑐, 𝑦) ≡ 𝑝(𝑞(𝑐)(𝑦)) . Then for 𝑐 ∶  ‖𝛼 = 𝛽‖ and 𝑦 ∶   �̅� , 𝑒𝑙(𝑐) = 𝑥 ∶ �̅�  with 𝑝𝑟(𝑐, 𝑦) ∶  �̃�(𝑥) = �̃�(𝑦). Thus, 𝑐0 (�̃�(𝑥), �̃�(𝑦)) (𝑝𝑟(𝑐, 𝑦)): ‖�̃�(𝑦) = �̃�(𝑥)‖. We will therefore define   

𝑐0(𝛼, 𝛽) ≡ 𝜆𝑐. (𝜆𝑦. 𝑐0 (�̃�(𝑒𝑙(𝑐, 𝑦)), �̃�(𝑦)) (𝑝𝑟(𝑐, 𝑦)), … ), 
where “…” is defined symmetrically to the left member of the pair. Note that technically speaking, this 

construction should be carried out by a kind of double recursion we used to define ‖𝛼 = 𝛽‖. 

As a final example, us give a validating expression for 𝑤0 ∶  ‖𝛼 ∈ 𝛽 ∧ 𝛽 ∈ 𝛾 → 𝛼 ∈ 𝛾‖. Here, we do need 

to make direct use of recursion: Let 𝑐 ∶  ‖𝛼 ∈ 𝛽 ∧ 𝛽 ∈ 𝛾‖, and set 𝑒𝑙1(𝑐) ≡ 𝑝(𝑝(𝑐)) and 𝑝𝑟1(𝑐) ≡ 𝑞(𝑝(𝑐)). 
Then 𝑒𝑙1(𝑐) ∶  �̅�  and 𝑝𝑟1(𝑐) ∶  ‖𝛼 = 𝛽(𝑒𝑙1(𝑐))‖ . If we go on to set 𝑒𝑙2(𝑐, 𝑥) ≡ 𝑞(𝑞(𝑞(𝑐))(𝑥)) , then 𝑒𝑙2(𝑐, 𝑥) = 𝑦 ∶  �̅�  and 𝑝𝑟2(𝑐) ≡ 𝑝(𝑞(𝑞(𝑐))(𝑥)) ∶  ‖𝛽(𝑥) = 𝛾(𝑦)‖ . Altogether, we will define with 𝑡0  as 

above, 

𝑤0 ≡ 𝜆𝑐. (𝑒𝑙2(𝑐, 𝑒𝑙1(𝑐)), 𝑡0 (𝛼, 𝛽(𝑒𝑙1(𝑐)), 𝑒𝑙2(𝑐, 𝑒𝑙1(𝑐))) (𝑝𝑟1(𝑐), 𝑝𝑟2(𝑐, 𝑒𝑙1(𝑐)))). 
Note that by the above expressions we can, by an easy induction on the structure of the formula 𝜙 find 

a validating expression 𝑒𝜙 of 𝑥 = 𝑦 → (𝜙(𝑥) ↔ 𝜙(𝑦)). 
ⓂLemma 5.4: For any formula 𝜙 there is a validation expression 𝑒𝜙 of ∀𝑥∀𝑦 [𝑥 = 𝑦 → (𝜙(𝑥) ↔ 𝜙(𝑦))]. 
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5.3.4 Validating the axioms of 𝐂𝐙𝐅 

Before starting to validate the axioms, we need a simple observation: 

Definition & Lemma 5.5: If we set 𝛼∗ ≡ 𝜆𝑥. (𝑥, 𝑟0(�̃�(𝑥)) with 𝑟0  as before, i.e. 𝑟0(𝛼) ∶  ‖𝛼 = 𝛼‖ , then 𝛼∗(𝑥) ∶  ‖�̃�(𝑥) ∈ 𝛼‖  (𝛼 ∶ 𝑉, 𝑥 ∶ �̅�) 
Extensionality 

The validation of extensionality will of course exploit the fact that the definition of ‖𝛼 = 𝛽‖ is tailored in 

such a way to satisfy this axiom: Let 𝛼 and 𝛽 be sets and 𝑐 ∶  ‖∀𝑧 (𝑧 ∈ 𝛼 ↔ 𝑧 ∈ 𝛽)‖. Then for 𝑥 ∶ �̅� we have 𝛼∗(𝑥) ∶  ‖�̃�(𝑥) ∈ 𝛼‖ and thus 𝑝 (𝑐(�̃�(𝑥))) (𝛼∗(𝑥)) ∶  ‖�̃�(𝑥) ∈ 𝛽‖ ≡ (Σ𝑦: �̅�)‖�̃�(𝑥) = �̃�(𝑦)‖. The other direc-

tion is symmetric. 

Pair 

Given sets 𝛼 and 𝛽, define 𝑓(𝑐) = 𝑅2(𝑐, 𝛼, 𝛽), i.e. 𝑓 ∶ ℕ2 → 𝑉 with 𝑓(0) = 𝛼 and 𝑓(1) = 𝛽. Let 𝛾 be the set {𝑓(𝑥)|𝑥 ∶ ℕ2}. Then, 𝛾∗(0) ∶  ‖𝛼 ∈ 𝛾‖ and 𝛾∗(1) ∶  ‖𝛽 ∈ 𝛾‖. Therefore, (𝛾, (𝛾∗(0), 𝛾∗(1))) is of the desired 

type ‖∃𝑧(𝛼 ∈ 𝑧 ∧ 𝛽 ∈ 𝑧)‖. 

Union 

Let 𝛼 be a set and define 𝛾 ≡ {𝑔(𝑧)|𝑧 ∶ 𝐴}, where 𝐴 ≡ (Σ𝑥: �̅�)�̃�(𝑥)̅̅ ̅̅ ̅̅  and 𝑔((𝑥, 𝑦)) = �̃�(𝑥)̃(𝑦) (by Σ-rules). 

Now if we have 𝑐 ∶  ‖𝛽 ∈ 𝛾‖, then 𝑝(𝑐) = (𝑥, 𝑦) and (𝑦, 𝑞(𝑐)) ∶  ‖𝛽 ∈ �̃�(𝑥)‖ and (𝑥, 𝛼∗(𝑥)) ∶  ‖�̃�(𝑥) ∈ 𝛼‖. 

On the other hand, let 𝛿 ∶ 𝑉, 𝑎 ∶ ‖𝛽 ∈ 𝛿‖ and 𝑏 ∶ ‖𝛿 ∈ 𝛼‖. Then 𝑝(𝑎) = 𝑧 ∶ 𝛿̅ with 𝑞(𝑎) ∶ ‖𝛽 = 𝛿(𝑧)‖ and 𝑝(𝑏) = 𝑥 ∶ �̅� with 𝑞(𝑏) ∶ ‖𝛿 = �̃�(𝑥)‖. The latter yields 𝑝(𝑞(𝑏))(𝑧) = 𝑦 ∶  �̃�(𝑥)̅̅ ̅̅ ̅̅  with 𝑞(𝑞(𝑏))(𝑧) ∶  ‖𝛿(𝑧) =�̃�(𝑥)̃(𝑦)‖. Using a validating expression for transitivity of equality, we can validate 𝛽 = �̃�(𝑥)̃(𝑦). 
Empty set 

Set 𝑒𝑚𝑝 ≡ {𝑓(𝑥)|𝑥 ∶ ℕ0}, where 𝑓 is the canonical empty function ℕ0 → 𝑉. If 𝛼 ∶ 𝑉, then 𝑐 ∶ ‖𝛽 ∈ 𝑒𝑚𝑝‖ is 

impossible, since there is no 𝑥 ∶ ℕ0 that could be used to validate ‖𝛽 ∈ 𝑒𝑚�̃�(𝑥)‖. This shows that 𝜆𝑥. 𝑥 

validates ‖¬(∃𝑥 𝑥 ∈ 𝑒𝑚𝑝)‖. 

Infinity 

ⓂLemma 5.6: For each set 𝛼 we can find an expression 𝑆(𝛼) and validate the formula 𝑆(𝛼) = 𝑠(𝛼) say-

ing that 𝑆(𝛼) is the successor of 𝛼. 

Proof: Let 𝛼  be a set and define 𝑆(𝛼) ≡ {ℎ(𝛼)(𝑦)|𝑦 ∈ �̅� + ℕ1} , where ℎ(𝛼)(𝑖(𝑥)) = �̃�(𝑥)  for 𝑥 ∶ �̅�  and ℎ(𝛼)(𝑗(1)) = 𝛼.  Note that 𝑆(𝛼) = 𝑠(𝛼) in fact stands for ∀𝑥(𝑥 ∈ 𝑆(𝛼) ↔ (𝑥 ∈ 𝛼 ∨ 𝑥 = 𝛼)). 
Now if 𝑐 ∶ ‖𝛽 ∈ 𝑆(𝛼)‖, then  

• Either 𝑝(𝑐) = 𝑖(𝑥) ∶ �̅� + ℕ1, i.e. 𝑥 ∶ �̅�. But then 𝑞(𝑐) ∶  ‖𝛽 = �̃�(𝑥)‖ which shows (𝑙(𝑝(𝑐)), 𝑞(𝑐)) ∶  ‖𝛽 ∈𝛼‖ (where 𝑙 is defined on 𝐴 + 𝐵 as 𝑙(𝑖(𝑎)) = 𝑎 and 𝑙(𝑗(𝑏)) = 𝑏) 
• Or 𝑝(𝑐) = 𝑗(1) ∶ �̅� + ℕ1. Then 𝑞(𝑐) ∶  ‖𝛽 = 𝛼‖ 
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Altogether, 𝜆𝑐. D (𝑙(𝑝(𝑐), (𝑙(𝑝(𝑐)), 𝑞(𝑐)) , 𝑞(𝑐)) validates the implication from left to right. 

The other direction is similar: Let 𝑐 ∶ ‖𝛽 ∈ 𝛼 ∨ 𝛽 = 𝛼‖. 

• If 𝑐 ∶ 𝑖(𝑏) with 𝑏 ∶ ‖𝛽 ∈ 𝛼‖, then 𝑝(𝑏) = 𝑥 ∶ �̅� with 𝑞(𝑏) ∶ ‖𝛽 = �̃�(𝑥)‖ and also 𝑞(𝑏) ∶  ‖𝛽 = 𝑆(𝛼)̃(𝑥)‖. 
• If 𝑐 ∶ 𝑖(𝑏) with 𝑏 ∶ ‖𝛽 = 𝛼‖, then 𝑏 ∶  ‖𝛽 = 𝑆(𝛼)̃(1)‖. 

Combining these two cases, we find the validating expression 𝜆𝑐. D (𝑙(𝑝(𝑐)), (𝑝(𝑙(𝑐)), 𝑞(𝑙(𝑐)), 𝑙(𝑐)). ∎ 

We can now set 𝜔 ≡ {Δ(𝑛)|𝑛 ∶ ℕ}, where Δ is defined by recursion on ℕ as Δ(0) = 𝑒𝑚𝑝 and Δ(𝑠(𝑛)) =𝑆(Δ(𝑛)). The last equality shows that, for any 𝑛 ∶ ℕ,  𝜔∗(𝑠(𝑛)) ∶  ‖𝑆(Δ(𝑛)) ∈ 𝜔‖. But in the last lemma we 

have shown how to validate 𝑠(Δ(𝑛)) = 𝑆(Δ(𝑛)). We can thus combine this with validating expression for 

equality to validate 𝑠(Δ(𝑛)) ∈ 𝜔. 

On the other hand, let 𝑛 ∶ ℕ. We can easily validate ‖Δ(𝑛) = 0 ∨ (∃𝑚 ∈ 𝜔) Δ(𝑛) = 𝑠(𝑚)‖ using recursion 

on ℕ: 

• If 𝑛 = 0 ∶ ℕ, then Δ(𝑛) = 𝑒𝑚𝑝 and we can use the validating expression for the axiom of Empty set to 
validate Δ(𝑛) = ∅. 

• If 𝑛 = 𝑠(𝑚) , we can use 𝑚 , the fact Δ(𝑛) = Δ(𝑠(𝑚)) = 𝑆(Δ(𝑚))  and a validating expression for 𝑠(Δ(𝑚)) = 𝑆(Δ(𝑚)) from the lemma to validate (∃𝑚 ∈ 𝜔)(𝑛 = 𝑠(𝑚)). 
Bounded separation 

Let 𝛼 be a set and 𝜙 a bounded formula. We set 𝛾 ≡ {𝑔(𝑢)|𝑢 ∈ 𝐴}, where 𝐴 ≡ ‖∃𝑥 ∈ 𝛼. 𝜙(𝑥)‖ is a small 

type by Lemma 5.1 and 𝑔 ∶ 𝐴 → 𝑉 is defined by 𝑔((𝑥, 𝑣)) = �̃�(𝑥) for 𝑥 ∶ �̅� and 𝑣 ∶ ‖ 𝜙(�̃�(𝑥))‖. Then for 𝑐 ∶ ‖𝛽 ∈ 𝛾‖ we have 𝑝(𝑐) = (𝑥, 𝑣) ∶  �̅�, where 𝑞(𝑐) ∶ ‖𝛽 = �̃�(𝑥)‖, where 𝑣 ∶  ‖𝜙(�̃�(𝑥))‖. We can use this to-

gether with ⓂLemma 5.4 to validate 𝛽 ∈ 𝛼 ∧ 𝜙(𝛽). 
On the other hand, for 𝑐 ∶  ‖𝛽 ∈ 𝛼 ∧ 𝜙(𝛽)‖ we have 𝑝(𝑝(𝑐)) = 𝑥 ∶ �̅� with 𝑞(𝑝(𝑐)) ∶  ‖𝛽 = �̃�(𝑥)‖. The ex-

pression 𝑞(𝑐) ∶ ‖𝜙(𝛽)‖ will yield a validation for ‖𝜙(�̃�(𝑥))‖ and all in all, we would have expressions 

validating 𝛽 ∈ 𝛾. 

Strong collection 

Let 𝛼 be a set, 𝜙(𝑥, 𝑦) a formula and 𝑐 ∶  ‖(∀𝑥 ∈ 𝛼)∃𝑦 𝜙(𝑥, 𝑦)‖. Define 𝛽 ≡ {𝑏(𝑥)|𝑥 ∶ �̅�}, where we set 𝑏 ≡𝜆𝑥. 𝑝(𝑐(𝑥)). Now for all 𝑥 ∶ �̅� (= �̅�), we have 𝑞(𝑐)(𝑥) ∶  ‖𝜙 (�̃�(𝑥), �̃�(𝑥))‖. This shows that  

(𝜆𝑥. (𝑥, 𝑞(𝑐)(𝑥)), 𝜆𝑦. (𝑦, 𝑞(𝑐)(𝑦))) ∶  ‖[(∀𝑥 ∈ 𝛼)(∃𝑦 ∈ 𝛽) 𝜙(𝑥, 𝑦)] ∧ [(∀𝑥 ∈ 𝛽)(∃𝑦 ∈ 𝛼) 𝜙(𝑥, 𝑦)]‖. 
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Subset collection 

Given sets 𝛼  and 𝛽 , define 𝛾 ≡ {𝑔(𝑧)|𝑧 ∶ �̅� → �̅�} , where 𝑔 ≡ 𝜆𝑧. {�̃�(𝑧(𝑥)|𝑥 ∶ �̅�} . Let 𝜂  be a set and 𝑐 ∶ ‖∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜙(𝑥, 𝑦, 𝜂)‖. We define 𝛿 ≡ 𝛾 (𝜆𝑥. 𝑝(𝑐(𝑥))) ≡ {�̃� (𝑝(𝑐(𝑥))) |𝑥 ∶ �̅�}. Then, by Lemma 5.5, 𝛾∗ (𝜆𝑥. 𝑝(𝑐(𝑥))) validates 𝛿 ∈ 𝛾. If 𝑥 ∶ �̅� (= 𝛿), then 𝑞(𝑐(𝑥)) ∶ ‖𝜙(�̃�(𝑥), 𝛿(𝑥), 𝜂)‖. This shows 

(𝜆𝑥. (𝑥, 𝑞(𝑐(𝑥))) , 𝜆𝑦. (𝑦, 𝑞(𝑐(𝑦)))) ∶ ‖∀𝑥 ∈ 𝛼. ∃𝑦 ∈ 𝛿. 𝜙(𝑥, 𝑦, 𝑢) ∧ ∀𝑦 ∈ 𝛿. ∃𝑥 ∈ 𝛼. 𝜙(𝑥, 𝑦, 𝑢)‖. 
Set induction 

Naturally, this is validated using recursion: Let us abbreviate 𝐵 ≡ ‖∀𝑎(∀𝑦 ∈ 𝑎 𝜙(𝑦) → 𝜙(𝑎))‖, i.e. 𝐵 ≡ (Π𝛼 ∶ 𝑉) ((Π𝑥 ∶ �̃�)‖𝜙(�̃�(𝑥))‖ → ‖𝜙(𝛼)‖). 
Suppose, we have defined ℎ such that ℎ(𝛼) = 𝜆𝑏. 𝑏(𝛼) (𝜆𝑥. ℎ(�̃�(𝑥))(𝑏)) ∶ 𝐵 → ‖𝜙(𝛼)‖. Since for 𝛼 ∶ 𝑉, 𝑏(𝛼) ∶  ‖𝜙(�̃�(𝑥))‖ → ‖𝜙(𝛼)‖, 
and for 𝑏 ∶ 𝐵, 𝜆𝑥. ℎ(�̃�(𝑥))(𝑏) ∶ (Π𝑥 ∶ �̅�)‖𝜙(�̃�(𝑥))‖, 
we have that  𝑏(𝛼) (𝜆𝑥. ℎ(�̃�(𝑥))(𝑏)) ∶  ‖𝜙(𝛼)‖. 
This shows that 𝜆𝑏. 𝜆𝛼. ℎ(𝛼)(𝑏) does the job. 
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6 Topological Semantics and Independence of Bar induction 
We will show in this section, that the Decidable Bar Theorem, that plays a central role in Brouwer’s 
mathematics, is independent from 𝐈𝐙𝐅. We will start with a brief discussion of the Bar Theorem in 6.1. 

Our main tool will be topological semantics, where each logical statement is interpreted as open set in a 

topological space. We will motivate the usage of topological semantics by generalizing the classical Bool-

ean-valued semantics to Heyting-valued semantics in section 6.2. In section 6.3 we will describe the top-

ological model that we will use in the independence and consistency proofs in 6.4-6.6. 

6.1 Bar induction in Brouwer’s mathematics 
In order to obtain the Uniform Continuity Theorem (every function 𝑓: [0,1] → ℝ is uniformly continu-

ous), Brouwer showed in a proof of rather metamathematical fashion the Decidable Bar Theorem BID 

from which he obtained as a corollary the Fan Theorem 𝐅: 

(BID) 
[bar(𝐵,𝜔𝜔) ∧∀𝑢 ∈ 𝐵 𝑄(𝑢) ∧∀𝑢 ∈ 𝜔<𝜔(∀𝑘 ∈ 𝜔 𝑄(𝑢 ∗ 〈𝑘〉) → 𝑄(𝑢))] → 𝑄(〈 〉), 
 

(𝐅) [fan(𝑇) ∧bar(𝐵, 𝑇)] → ∃𝑧 ∈ 𝜔 ∀𝛼 ∈ 𝑇 ∃𝑥 ≤ 𝑧. 𝛼|𝑥 ∈ 𝐵. 
  

Here, bar(𝐵, 𝐴)  means 𝐴 ⊆ 𝜔𝜔  and 𝐵  is a decidable bar in 𝐵 , i.e. ∀𝛼 ∈ 𝐴 ∃𝑛 ∈ 𝜔. 𝛼|𝑛 ∈ 𝐵  and ∀𝑢 ∈𝐴 (𝑢 ∈ 𝐵 ∨ 𝑢 ∉ 𝐵). Although constructively not unproblematic, as it requires the acceptance of actual in-

finity, we will remain agnostic about this proof and follow Heyting, Kleene, Trolestra, Dummet and oth-

ers in accepting BI𝐷 itself as constructively sensible6 and adopting it as an axiom. For the original proof 

and thorough analysis and discussion of BI𝐷 and 𝐅, see [70] or [50]. From BI𝐷, we can derive the Fan 

theorem and the Uniform Continuity Theorem: 

Fan-Theorem 6.1: BI𝐷 implies 𝐅.  

Proof: 𝑄(𝑢) be the formula ∃𝑧 ∈ 𝜔. ∀𝛼 ⊇ 𝑢. ∃𝑥 ≤ 𝑧. 𝛼|𝑥 ∈ 𝐵. It satisfies the two conditions of (BI𝐷) and we 

thus obtain 𝑄(〈 〉), which is exactly the consequence of 𝐹. ∎ 

In chapter 2.2 we defined, in Brouwer’s spirit, the real numbers ℝ as members of the spread 𝑆 of Cauchy-

sequences of rational numbers. Similarly, the closed unit interval [0,1] can be given as binary spread with 

nodes labelled by [ 𝑖2𝑘 , 𝑖+12𝑘 ] for 𝑖 < 𝑘 and 𝑘 > 0. With these definitions we can now prove Brouwer’s Uni-

form Continuity Theorem: 

 
6 Brouwer himself admitted this in footnote 7 in [11] 
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Theorem 6.2 (𝐈𝐙𝐅 +𝐖𝐂𝐍+ 𝐅): Every function 𝑓: [0,1] → ℝ is continuous. 

Sketch of proof: Given 𝑓, we define the functions 𝑓𝑘: [0,1] → ℕ as 𝑓𝑘(𝛼) = 𝑓(𝛼)𝑘, i.e. 𝑓𝑘 assigns to 𝑓 its 𝑘-th 

value of its expansion as element of the spread 𝑆. By 𝐖𝐂𝐍, for each 𝛼, there is some 𝑛 such that 𝑓𝑘(𝛼) =𝑓𝑘(𝛽), if only 𝛼|𝑛 = 𝛽|𝑛. Effectively, we can write 𝑓𝑘(𝛼) = 𝑓𝑘(𝛼|𝑛). By 𝐅, applied to the formula 𝜙(𝑢) ≡ ∀𝑣(𝑢 = 𝑣 → 𝑓𝑘(𝑢) = 𝑓𝑘(𝑣)), 
we conclude that there is some 𝑚 such that for all 𝛼, 𝛽 and some 𝑛 < 𝑚, we have 𝛼|𝑛 = 𝛽|𝑛 → 𝑓𝑘(𝛼|𝑛) =𝑓𝑘(𝛽|𝑛). Translating this into the language of analysis, this means that for all 𝑘, there is some 𝑚 such that  |𝑥 − 𝑦| < 2𝑚+1 → |𝑓(𝑥) − 𝑓(𝑦)| < 2𝑘+1, 
which shows that 𝑓 is uniformly continuous.7  ∎ 

The rest of the chapter is devoted to showing that in the context 𝐈𝐙𝐅, the assumption of BI𝐷 is too strong, 

i.e. both Fan theorem and Uniformity Theorem can be proved without BI𝐷. 

6.2 Heyting-valued semantics 
Heyting-valued semantics (in the literature also referred to as “Heyting-algebra semantics”, [28]) are the 

most natural semantics for intuitionistic logic and can be seen as generalization of Boolean-valued se-

mantics. Recall, that the Boolean algebra 𝐵0,1 is defined on the set {0,1} with the usual operations of ∧, ∨, → and ¬. A Boolean-valued interpretation of propositional logic is a mapping from the set of propositional 

variables into {0,1}. The truth value of a formula in the propositional language is then computed inside 𝐵0,1. As it is known, formula is classically derivable iff its truth value is 1 under every Boolean-valued 

interpretation. For example, the law of excluded middle 𝐋𝐄𝐌, holds true in classical logic, as is easily 

seen by the following truth table: 𝒂 ¬𝒂 𝒂 ∨ ¬𝒂 𝟎 1 𝟏 𝟏 0 𝟏 

Because of this validity of 𝐋𝐄𝐌 in every Boolean algebra, we will have to pass from Boolean algebras to 

Heyting-algebras if we want to give a similar semantics for intuitionistic logic. Bluntly speaking, a 

Heyting-algebra is a Boolean algebra, but without 𝐋𝐄𝐌 required to hold. 

Definition 6.3: A Heyting-algebra (𝐻, 0,1,∧,∨,≤) is a bounded lattice such that the pseudo-complement of 𝑎 

with respect to 𝑏,  𝑎 → 𝑏 ≔ ⋁{𝑥: 𝑥 ∧ 𝑎 ≤ 𝑏} always exists. We define the pseudo-complement of 𝑎 as ¬𝑎 ≔𝑎 → 0. A Heyting-algabra is a Boolean algebra iff 𝑎 ∨ ¬𝑎 = 1 for all 𝑎.  

 
7 Actually, it remains to explain why |𝑥 − 𝑦| < 2𝑚+1 means that we may assume that 𝑥|𝑚 = 𝑦|𝑚. 
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A Heyting-valued interpretation of a propositional language ℒ = is a mapping 𝑝 ↦ 𝑝(𝐻) of propositional 

variables of ℒ into a Heyting-algebra 𝐻. As usual, this interpretation extends naturally to a mapping 𝜙 ↦⟦𝜙⟧𝐻 of all formulas of ℒ into 𝐻: ⟦𝑝⟧𝐻 = 𝑝(𝐻) ⟦⊥⟧𝐻 = 0 ⟦⊤⟧𝐻 = 1 ⟦𝜙 ∧ 𝜓⟧𝐻 = ⟦𝜙⟧𝐻 ∧ ⟦𝜓⟧𝐻 ⟦𝜙 ∨ 𝜓⟧𝐻 = ⟦𝜙⟧𝐻 ∨ ⟦𝜓⟧𝐻 ⟦𝜙 → 𝜓⟧𝐻 = ⟦𝜙⟧𝐻 → ⟦𝜓⟧𝐻 ⟦¬𝜙⟧𝐻 = ⟦𝜙⟧𝐻 → 0 

We say that a formula 𝜙 is valid under a Heyting-valued interpretation iff ⟦𝜙⟧𝐻 = 1. 

With this definition we now have a similar completeness proof as in the classical case (however the spe-

cial role of the two-valued algebra vanishes):  

ⓂTheorem 6.4: A formula is derivable in intuitionistic propositional logic iff it is valid in every Heyting-

valued interpretation.  

Sketch of proof: The completeness proof is very similar to the classical case. For soundness, let us show 

how to verify the axiom 𝑝 → (𝑞 → 𝑝), i.e. ⟦𝑝 → (𝑞 → 𝑝)⟧𝐻 = 𝑝(𝐻) → (𝑞(𝐻) → 𝑝(𝐻)) = 1 for every Heyting-

valued interpretation. Indeed, for 𝑎, 𝑏 ∈ 𝐻, by the definition of “→”, we have that 𝑎 → (𝑏 → 𝑐) = 1 iff 1 ∧𝑎 ≤ (𝑏 → 𝑎). But this is clearly the case, as 𝑏 → 𝑎 is the largest element 𝑥 with 𝑥 ∧ 𝑎 ≤ 𝑏. Our a is such an 𝑥 and we are done. 

Let us show the DET-rule: If ⟦𝜙⟧𝐻 = 1  and ⟦𝜙 → 𝜓⟧𝐻 = 1 , then ⟦𝜓⟧𝐻 = 1 . But ⟦𝜙 → 𝜓⟧𝐻 = ⟦𝜙⟧𝐻 →⟦𝜓⟧𝐻 = 1 means that ⟦𝜙⟧𝐻 ≤ ⟦𝜓⟧𝐻, and we immediately conclude 𝑞 = 1. ∎ 

Given this completeness result (actually soundness suffices) we are ready to give another independence 

result of  𝐋𝐄𝐌: 

Theorem 6.5: The law of excluded middle (𝐋𝐄𝐌) does not hold in all Heyting-algebras. Hence, it cannot 

be derived in propositional intuitionistic logic. 

Proof: Consider the Heyting-algebra 𝐻 with the underlying set {0, 12 , 1} and the usual ordering. Then, 

with 𝑝(𝐻) = 12 for a propositional variable 𝑝, 

⟦𝑝 ∨ ¬𝑝⟧𝐻 = 𝑝(𝐻) ∨ ¬𝑝(𝐻) = 12 ∨ ¬12 = 12 ∨ 0 = 12 ≠ 1. 
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By soundness of Heyting-valued semantics, 𝐋𝐄𝐌 cannot be derivable.  ∎ 

Before we pass on to first-order logic, we prove some easy, but useful facts about Heyting-algebras: 

Lemma 6.6: In any Heyting-algebra 𝐻 and for any 𝑎, 𝑏, 𝑐 ∈ 𝐻 the following rules hold: 

1. 𝑎 → 𝑎 = 1. 
2. 𝑎 → (𝑏 ∧ 𝑐) = (𝑎 → 𝑏) ∧ (𝑎 → 𝑐) 
3. If 𝑎 ≤ 𝑏, then 𝑎 → 𝑏 = 1. 
4. If 𝑎 ≤ 𝑏, then 𝑐 → 𝑎 ≤ 𝑐 → 𝑏. 
5. If 𝑎 ≤ 𝑏, then 𝑎 → 𝑐 ≥ 𝑏 → 𝑐. 

Proof:  

1. Obvious from the definition. 
2. [𝑎 → (𝑏 ∧ 𝑐)] ∧ 𝑎 ≤ 𝑏 ∧ 𝑐 , hence 𝑎 → (𝑏 ∧ 𝑐) ≤ (𝑎 → 𝑏) ∧ (𝑎 → 𝑐) . The other direction follows from  [(𝑎 → 𝑏) ∧ (𝑎 → 𝑐)] ∧ 𝑎 = [(𝑎 → 𝑏) ∧ (𝑎 → 𝑐)] ∧ (𝑎 ∧ 𝑎) = [(𝑎 → 𝑏) ∧ 𝑎] ∧ [(𝑎 → 𝑐) ∧ 𝑎] = 𝑏 ∧ 𝑐. 
3. Using 2 in the third step, 1 = 𝑎 → 𝑎 = 𝑎 → (𝑎 ∧ 𝑏) = (𝑎 → 𝑎) ∧ (𝑎 → 𝑏) = 1 ∧ (𝑎 → 𝑏) = 𝑎 → 𝑏. 
4. Since (𝑐 → 𝑎) ∧ 𝑐 ≤ 𝑎 ≤ 𝑏, we also have 𝑐 → 𝑎 ≤ 𝑐 → 𝑏. 
5. 𝑎 ∧ (𝑏 → 𝑐) ≤ 𝑏 ∧ (𝑏 → 𝑐) = 𝑏 ∧ 𝑐 ≤ 𝑐 and hence, 𝑏 → 𝑐 ≤ 𝑎 → 𝑐. ∎ 

6.2.1 Heyting-semantics for first-order logic 

We take the mimicking of classical semantics a bit further and consider classical models. In addition to 

the symbols ∧, ∨, → and ¬, one interprets functions, relations and quantifier symbols as functions func-

tions from a given domain 𝒟 onto itself, functions from tuples of elements of 𝒟 to {0,1} and the truth 

values ⋁ 𝜙(𝑑)𝑑∈𝒟  for existential and ⋀ 𝜙(𝑑)𝑑∈𝒟  for universal quantifiers. While in the Boolean-algebra 𝐵0,1 these large infima and suprema always exist, we will have to postulate this for Heyting-algebras:  

Definition 6.7: A Heyting-algebra is called complete if it is a complete lattice and it satisfies the following ∧ ⋁-distributive law: 

𝑝 ∧⋁𝑞𝑖𝑖∈𝐼 =⋁(𝑝 ∧ 𝑞𝑖)𝑖∈𝐼 , 
for all index sets 𝐼, 𝑝 ∈ 𝐻 and {𝑞𝑖: 𝑖 ∈ 𝐼} ⊆ 𝐻.  

Definition 6.8: Given a first-order language ℒ = (Var, Con, Rel, Fun)  of variables Var , constants Con , 

realtions Rel and functions Fun, we define a Heyting-valued interpretation of ℒ to be a mapping 𝑎 ↦ 𝑎(𝐻) 
of constant symbols, 𝑅 ↦ 𝑅(𝐻)  of relation symbols, 𝐹 ↦ 𝐹(𝐻)  of function symbols such that 𝑎(𝐻) ∈ 𝒟 , 𝑅(𝐻): 𝒟𝑛 → 𝐻 if the arity of 𝑅 is 𝑛 and 𝐹(𝐻):𝒟𝑛 → 𝒟, if the arity of 𝐹 is 𝑛. 

We define an 𝐻-term by the following rules: All variables of Var are 𝐻-terms and so are all 𝑎(𝐻) for 𝑎 ∈Con. If 𝑡1, … , 𝑡𝑛 are 𝐻-terms, then so is 𝐹(𝐻)(𝑡1, … , 𝑡𝑛), if 𝐹 ∈ Fun and the arity of 𝐹. 𝐻-formulas are defined 

as usually: ⊥ and ⊤ are 𝐻-formulas and so is 𝑅(𝐻)(𝑡1, … , 𝑡𝑛), whenever 𝑡1, … , 𝑡𝑛 are 𝐻-terms, 𝑅 ∈ Rel and 
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the arity of 𝑅 is 𝑛. If 𝜙 and 𝜓 are 𝐻-formulas, then so are 𝜙 ∧ 𝜓, 𝜓 ∨ 𝜓, ¬𝜓, ∀𝑥 𝜙 and ∃𝑥 𝜙. As usual, we 

write 𝜙(𝑥) if the variable 𝑥 occurs freely in 𝜙 and 𝜙(𝑑) for the result of substituting 𝑑 ∈ 𝒟 for 𝑥 in 𝜙. 

Note that 𝐻-formulas may or may not be members of 𝐻 . We can now extend the Definition 6.3 of 

Heyting-interpretations of propositional logic to first-order logic8: For simplicity, we write 𝑥(𝐻) for 𝑥 ∈Var. ⟦𝑅(𝑎1, … 𝑎𝑛)⟧𝐻 = 𝑅(𝐻) (𝑎1(𝐻), … , 𝑎𝑛(𝐻)) ,   for 𝑎1, … 𝑎𝑛 ∈ Var ∪ Con ⟦⊥⟧𝐻 = 0, ⟦⊤⟧𝐻 = 1, ⟦𝜙 ∧ 𝜓⟧𝐻 = ⟦𝜙⟧𝐻 ∧ ⟦𝜓⟧𝐻 , ⟦𝜙 ∨ 𝜓⟧𝐻 = ⟦𝜙⟧𝐻 ∨ ⟦𝜓⟧𝐻 , ⟦𝜙 → 𝜓⟧𝐻 = ⟦𝜙⟧𝐻 → ⟦𝜓⟧𝐻 , ⟦¬𝜙⟧𝐻 = ⟦𝜙⟧𝐻 → 0, ⟦∀𝑥 𝜙(𝑥)⟧𝐻 =⋀⟦𝜙(𝑑)⟧𝐻𝑑∈𝒟 , ⟦∃𝑥 𝜙(𝑥)⟧𝐻 =⋁⟦𝜙(𝑑)⟧𝐻𝑑∈𝒟 . 
We say that a formula 𝜙(𝑥1, … 𝑥𝑛) is valid under a Heyting-interpretation iff ⟦𝜙(𝑐1, … 𝑐𝑛)⟧𝐻 = 1 for all 𝑐1, … , 𝑐𝑛 ∈ 𝒟. Note that the Tarski-semantics is just a special case of this definition, where 𝐻 = 𝐵0,1. It will 

therefore come as no surprise, that the proof of completeness of this semantics known from classical first-

order logic can be carried over to the intuitionistic setting, see [69]: 

ⓂTheorem 6.9: A formula is derivable in intuitionistic firsr-order logic iff it is valid in every Heyting-

valued interpretation.  

Proof: Let us again exemplarily verify some first-order axioms: Let 𝐻 be a complete Heyting-algebra and 𝒟 a domain.  

We verify the axiom ∀𝑥 𝜙(𝑥) → 𝜙(𝑐), where 𝑐 is free for 𝑥 in 𝜙 and suppose the existence of ⟦∀𝑥 𝜙(𝑥)⟧ is 

guaranteed. The verification of the axiom can be now done in one line: ⟦∀𝑥 𝜙(𝑥)⟧ =⋀⟦𝜙(𝑑)⟧𝑑∈𝒟 ≤ ⟦𝜙(𝑐(𝐻))⟧ = ⟦𝜙(𝑐)⟧, 
and hence ⟦∀𝑥 𝜙(𝑥) → 𝜙(𝑐)⟧ = 1 by Lemma 6.6. 

 
8 Whether or not the expressions for universal and existential quantification are well-defined, depends on the spe-
cific domain 𝒟. Although it is certainly true if 𝒟 is a set, our 𝒟 will be a proper class. 
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We show that the UG-rule holds: Suppose, ⟦𝜙 → 𝜓(𝑐)⟧ = 1 (i.e. ⟦𝜙⟧ ≤ ⟦𝜓(𝑐)⟧) holds in any complete 

Heyting-algebra 𝐻, where 𝑐 is free for 𝑥 in 𝜙 and occurs free in neither 𝜙 nor 𝜓. In particular, for given 𝐻 and domain 𝒟, we may interpret 𝑐 as we please and hence ⟦𝜙⟧ ≤ ⋀ ⟦𝜓(𝑑)⟧𝑑∈𝒟 . We conclude ⟦𝜙⟧ ≤⟦∀𝑥 𝜓(𝑥)⟧ and thus, ⟦𝜙 → ∀𝑥 𝜓(𝑥)⟧ = 1.  ∎ 

We will need the next lemma, to show that the interpretations of quantifiers exist, even if the underlying 

domain is a proper (hierarchical) class: 

ⓂLemma 6.10: Let 𝐻 be a complete Heyting-algebra and 𝐹:𝕆ℕ → 𝐻 an increasing or decreasing (class) 

function. Then there is a least 𝛼 ∈ 𝕆ℕ such that 𝐹 is constant above 𝛼, i.e. 𝐹(𝛽) = 𝐹(𝛼) for all 𝛽 ≥ 𝛼. 

Proof: Let 𝐹 be an increasing function, the proof for decreasing functions is similar. If 𝐹 is never constant, 

we can define a strictly increasing class function 𝐺:𝕆ℕ → 𝐻 by recursion: 𝐺(0) = 0𝐻 , 𝐺(𝛼 + 1) = 𝐹(𝛾),              where 𝛾 is least with 𝛾 > 𝛼 and 𝐹(𝛾) > 𝐹(𝛼)  𝐺(𝜆) =⋁𝐺(𝛼)𝛼<𝜆 ,     for limit ordinals 𝜆. 
Hence, 𝐺 is a bijection between the proper class 𝕆ℕ and Im(𝐺) ⊆ 𝐻. This shows that 𝐻 must be a proper 

class as well, contradiction.  ∎ 

In the sections 6.4-6.6 we will prove that BI𝐷 is not needed to prove the uniform continuity theorem from 𝐈𝐙𝐅. These results rely on the following theorem: 

ⓂTheorem 6.11: Let 𝐓 be any first-order theory over the language ℒ of set theory. Suppose that in ℒ we 

can define a set 𝐻 (as witness of a formula ∃! 𝑥 𝜃(𝑥)) such that 𝐙𝐅𝐂 ⊢ 𝐻 is a complete Heyting-algebra       and 𝐙𝐅𝐂 ⊢ ⟦𝜏⟧𝐻 = 1𝐻                                                 for each theorem 𝜏 of 𝐓. 
Then Cons(𝐙𝐅𝐂) ⇒ Cons(𝐓). 
Proof: If 𝐓 is inconsistent, then, 𝐓 ⊢ ⊥ and by hypothesis, 𝐙𝐅𝐂 ⊢ ⟦⊥⟧𝐻 = 1𝐻 . 
But we know 𝐙𝐅𝐂 ⊢ ⟦⊥⟧𝐻 = 0𝐻 and hence 𝐙𝐅𝐂 ⊢ 0𝐻 = 1𝐻, showing ¬Cons(𝐙𝐅𝐂). ∎ 

In section 6.3.2, we will show that Heyting algebras give rise to Heyting-valued models of 𝐈𝐙𝐅, i.e. ⟦𝜏⟧𝐻 =1 for all theorems of 𝐈𝐙𝐅. In sections 6.4-6.6 we will investigate a special Heyting-algebra, where ⟦BI𝐷⟧ =0 and ⟦𝐅⟧ = ⟦𝐖𝐂𝐍⟧ = 1. Hence, Theorem 6.11 will yield Cons(𝐙𝐅𝐂) ⇒ Cons(𝐈𝐙𝐅 + ¬BI𝐷 + Uniform continuity theorem). 
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6.2.2 Topologies as examples of Heyting-algebras 

The most important examples of a Heyting-algebra will be topological spaces. Let us recall the following 

definitions: 

Definition 6.12: Let 𝑋 be a set. A topology or topological space on  𝑋  or simply topology is a set 𝒯 ⊆ 𝒫(𝑋) 
such that 

1) ∅ ∈ 𝒯, 𝑋 ∈ 𝒯. 
2) For 𝒯′ ⊆ 𝒯: ⋃𝒯′ ∈ 𝒯. 
3) For 𝒯𝑓𝑖𝑛′ ⊆ 𝒯 with 𝒯𝑓𝑖𝑛′  finite: ⋂𝒯𝑓𝑖𝑛′ ∈ 𝒯. 

The elements of 𝒯 are called open sets.  

Lemma 6.13: Every topology defines a complete Heyting-algebra, if we interpret the order as set-inclu-

sion and the operations 𝑂1 ∨ 𝑂2 = 𝑂1 ∪ 𝑂2 and 𝑂1 ∧ 𝑂2 = 𝑂1 ∩ 𝑂2. 

Proof: Note that an arbitrary intersection of open sets it is not guaranteed to be open. Hence, we can easily 

check that for 𝒪 ⊆ 𝒯, ⋀𝒪 = int(⋂𝒪). Pseudo-complements are given like this: 

𝑂1 → 𝑂2 =⋃{𝑂 ∈ 𝒯:𝑂 ∩ 𝑂1 ⊆ 𝑂2}. 
It is easy to check that this forms a complete lattice. Moreover, the ∧ ⋁-distributive-law holds, as 

  𝑥 ∈ 𝑂 ∩ ⋃𝑈𝑈∈𝒰  

iff   𝑥 ∈ 𝑂 and 𝑥 ∈ 𝑈0 for some 𝑈0 ∈ 𝒰 
iff  𝑥 ∈ 𝑂 ∩ 𝑈0 for some 𝑈0 ∈ 𝒰 
iff  𝑥 ∈ ⋃(𝑂 ∩ 𝑈)𝑈∈𝒰 . ∎ 

Example: For any set 𝑋, {∅, 𝑋} and 𝒫(𝑋) are topologies on 𝑋, called the trivial and discrete topology re-

spectively. 

Definition 6.14: Let 𝒯 be a topological space on 𝑋. Then ℬ is called a basis for 𝒯 if for all 𝑈 ∈ 𝒯 there is ℬ′ ⊆ ℬ with 𝑈 = ⋃ℬ′ or equivalently, if for all 𝑂 ∈ 𝒯 and 𝑥 ∈ 𝑂 there is 𝑈 ∈ ℬ with 𝑥 ∈ 𝑈 ⊆ 𝑂. 

Proposition 6.15: Let ℬ ⊆ 𝒫(𝑋). Then ℬ is the basis of a topology iff 

1) ⋃ℬ = 𝑋. 
2) For 𝑂, 𝑈 ∈ ℬ there is ℬ′ ⊆ ℬ with 𝑂 ∩ 𝑈 = ⋃ℬ′.  

Equivalently: For all 𝑂1, 𝑂2 ∈ ℬ and 𝑥 ∈ 𝑂1 ∩ 𝑂2 there is 𝑈 ∈ ℬ with 𝑥 ∈ 𝑈 ⊆ 𝑂1 ∩ 𝑂2. 
Proof: Set 𝒯 = {⋃ℬ′ |ℬ′ ⊆ ℬ}.  ∎ 
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The archetype of a topological space is the Euclidean topology of the real line: 

Example 6.16: Let ℬ = {(𝑎, 𝑏)|𝑎, 𝑏 ∈ ℝ} then ℬ is the basis of a topology on ℝ since 

1) ⋃ℬ ⊇ ⋃{(𝑛, 𝑛 + 1)|𝑛 ∈ ℤ} = ℝ. 

2) (𝑎, 𝑏) ∩ (𝑐, 𝑑) = {  
  ∅, if 𝑑 ≤ 𝑎 or 𝑏 ≤ 𝑎 or 𝑑 ≤ 𝑐(𝑐, 𝑑), if 𝑎 ≤ 𝑐 < 𝑑 ≤ 𝑏,(𝑐, 𝑏), if 𝑎 ≤ 𝑐 < 𝑏 ≤ 𝑑,(𝑎, 𝑑), if 𝑐 ≤ 𝑎 < 𝑑 ≤ 𝑏,(𝑎, 𝑏), if 𝑐 ≤ 𝑎 < 𝑏 ≤ 𝑑.  

The following example on the space ℕ∗ of finite sequences of natural numbers will play an important 

role for us: 

Example 6.17: We define for 𝑢 ∈ ℕ∗ and 𝜆 ∈ ℕℕ with 𝜆|dom 𝑢 = 𝑢 (an infinite path through 𝑢), define 𝑈𝑢,𝜆 = {𝑢} ∪ {𝑣 ∈ ℕ∗|𝑣 ⊇ 𝑢 and 𝑣(𝑖𝑣,𝜆) > 𝜆(𝑖𝑣,𝜆) for the least 𝑖𝑣,𝜆 ∉ dom(𝑣 ∩ 𝜆)}. ℕ∗ is best thought of as a tree. The 𝑈𝑢,𝜆 can be pictured as set of all nodes of sequences extending 𝑢 and 

lying to the right of 𝜆:  

 

We can also think of 𝑈𝑢𝜆 as nodes with length at least dom(𝑢) and coming after 𝜆 in the lexicographical 

ordering. Let us check that this defines a topology 𝒯 on ℕ∗: 
1) ⋃𝑈𝑢,𝜆 = ℕ∗ is clear. 
2) Let 𝑤 ∈ 𝑈𝑢,𝜆 ∩ 𝑈𝑣,𝜇, w.lo.g. 𝑣 ⊇ 𝑢. Let 𝑖 = max{𝑖𝑣,𝜆, 𝑖𝜇,𝜆}. Then for 𝛾 = max{𝜆, 𝜇} we have  𝑤 ∈ 𝑈𝑤,𝛾 ⊆ 𝑈𝑢,𝜆 ∩ 𝑈𝑣,𝜇. 

According to Lemma 6.13, we can define for each topology (𝑋, 𝒯) a Heyting-algebra 𝐻(𝑋,𝒯). We can also 

define a mapping in the other direction: Given a Heyting-algebra 𝐻 , and ℎ ∈ 𝐻 , we define 𝑂ℎ =

𝑢 

𝜆 

𝑈𝑢,𝜆 

… 

… 
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{𝑤 ∈ 𝐻:𝑤 ≤ ℎ}. We may invoke Proposition 6.15 to show that the 𝑂ℎ form a basis of a topology 𝒯𝐻 on 𝐻: 

Indeed, ⋃ 𝑂ℎℎ∈𝐻 ⊇ 𝑂1 = 𝐻 and 𝑂ℎ1 ∩ 𝑂ℎ2 = 𝑂ℎ1∧ℎ2. We thus have: 

Theorem 6.18: Heyting-algebras and topological spaces are in 1-1 correspondence.  

Also, it is clear that both constructions are inverses of one another. To show that both categories are dual, 

one must pass from general topologies to a certain subcategory of Heyting-spaces, see [46].  

 

6.2.3 More facts about topology 

In this section we will recall some basic definitions and facts about topological spaces. All of it and more 

on topology can be found in introductory books on the topic, like [47] or [35]. 

Let (𝑋, 𝒯) be a topological space. We call complements of open sets closed. Sets that are both open and 

closed are referred to as clopen. For any set 𝑀 ⊆ 𝑋, we define its interior int(𝑀) to be the largest open set 

contained in 𝑀, i.e. int(𝑀) = ⋃{𝑂 ∈ 𝒯:𝑂 ⊆ 𝑀} and its closure cl(𝑀) to be the least closed set containing 𝑀, i.e. cl(𝑀) = ⋂{𝐴: 𝐴 closed ∧ 𝐴 ⊇ 𝑀} (note that arbitrary intersections of closed sets are always closed). 

A set 𝑈 is called neighborhood of 𝑥 iff there is an open set 𝑂 with 𝑥 ∈ 𝑂 ⊆ 𝑈. A set 𝑀 is called compact iff 

each open cover of 𝑀 has a finite subcover, i.e. (𝒪 ⊆ 𝒯 ∧ ⋃𝒪 ⊇ 𝑀) → (∃𝒪′ ⊆ 𝒪. 𝒪′ finite ∧ ⋃𝒪′ ⊇ 𝑀). The 

topological space (𝑋, 𝒯) is called compact iff 𝑋 is compact. A set 𝒮 ⊆ 𝒯 is called subbasis iff every open 

set can be written as arbitrary union of finite intersection of members of 𝒮. 

Definition 6.19: Let (𝑋, 𝒯𝑋) and (𝑌, 𝒯𝑌) be topological spaces and 𝑥 ∈ 𝑋. A function 𝑓: 𝑋 → 𝑌 is called con-

tinuous at 𝑥 iff for each neighborhood 𝑂 of 𝑓(𝑥) there is some neighborhood 𝑈 of 𝑥 such that 𝑓(𝑦) ∈ 𝑂 for 

all 𝑦 ∈ 𝑈. With the definition of the pointwise image 𝑓[𝐴] = {𝑓(𝑥): 𝑥 ∈ 𝐴} we can write this as 𝑓[𝑈] ⊆ 𝑂. 

A function is called continuous if it is continuous at 𝑥 for each 𝑥 ∈ 𝑋. 

We easily see that a function 𝑓  is continuous iff preimages of open sets are open sets: 𝑓−1[𝑂] ≔{𝑥 ∈ 𝑋: 𝑓(𝑥) ∈ 𝑈} ∈ 𝒯𝑋 for all 𝑂 ∈ 𝒯𝑌. Also, it is clear that our attention in both characterizations may be 

restricted to basic or subbasic open sets. We have the following simple fact: 

Proposition 6.20: Let 𝑓: 𝑋 → 𝑌 be a continuous function. If 𝑋 is compact, then so is 𝑓[𝑋]. 
Proof: Let 𝒪 be an open cover of 𝑌. Then {𝑓−1[𝑂]: 𝑂 ∈ 𝒪} is an open cover of 𝑋. By compactness, there is 

a finite subcover {𝑓−1[𝑂]: 𝑂 ∈ 𝒪′} of 𝑋. Then 𝒪′ must be an open cover of 𝑓(𝑋), since 

𝑓[𝑋] ⊆ 𝑓 [⋃ 𝑓−1[𝑂]𝑂∈𝒪′ ] = ⋃ 𝑓[𝑓−1[𝑂]]𝑂∈𝒪′ ⊆ ⋃ 𝑂𝑂∈𝒪′ . 
∎ 
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Proposition 6.21: A closed subset of a compact topological space is compact itself. 

Proof: Let 𝐴 be a closed subset of the compact space 𝑋. Let 𝒪 be an open cover of 𝐴, then 𝒪 ∪ {𝑋 ∖ 𝐴} is an 

open cover of 𝑋. By compactness, there is a finite subcover 𝒪′ (possibly containing 𝑋 ∖ 𝐴). But then 𝒪′ ∖{𝑋 ∖ 𝐴} is a finite cover of 𝐴. ∎ 

Lemma 6.22: Let 𝑋, 𝑌 be topological spaces and 𝑔 and ℎ continuous functions 𝑋 → 𝑌. Let 𝑂 be an open 

set in 𝑋 and define 

𝑓(𝑥) = {𝑔(𝑥),   if 𝑥 ∈ 𝑂,ℎ(𝑥),   if 𝑥 ∉ 𝑂, 
then 𝑓 is continuous iff it is continuous on 𝜕𝑂 = cl(𝑂) ∖ 𝑂. 

Proof: For each 𝑥 ∈ 𝑂, continuity of 𝑓 at 𝑥 follows from the continuity of 𝑔, for 𝑥 ∈ 𝑋 ∖ cl(𝑂), from ℎ. All 

that is left to show is continuity at 𝜕𝑂. ∎ 

Definition 6.23: We say that a sequence (𝑥𝑛)𝑛∈𝜔 ⊆ 𝑋 converges to 𝑥 ∈ 𝑋 iff for each neighborhood 𝑈 of 𝑥, 

there is some 𝑚 such that for all 𝑛 > 𝑚, 𝑥𝑛 ∈ 𝑈. 

6.3 Heyting-valued interpretation of 𝐈𝐙𝐅 

Using the ideas from section 6.2, we will define Heyting-valued models for the set theory 𝐈𝐙𝐅. Much of 

the concepts and proofs are slight adaptations of the treatment of 𝐙𝐅 and Boolean-valued models in [5]. 

We will define an underlying domain 𝑉(𝐻) which will be a reflection of the hierarchical system of all sets 𝑉. In interpreting our only relational symbols ∈ and =, and constructing 𝑉(𝐻), we are guided by the fol-

lowing idea: Note that for any set 𝐴, all information about this set is carried by its characteristic function 

(classically speaking). We define for all sets 𝑥: 

𝟙𝐴(𝑥) = {1,   if 𝑥 ∈ 𝐴,0,   if 𝑥 ∉ 𝐴. 
We may thus as well identify 𝐴 with its characteristic function. What hinders us to set our domain to be 

the class of all such functions (and generalizing them to take values inside a complete Heyting-algebra 

rather than 𝐵0,1) is the fact, that the domain of 𝟙𝐴 does itself not consist of such Heyting-valued valued 

functions. Sticking to our 2-valued case, we therefore define the class 𝑉(0,1) to be the class of functions 𝑉(2) → 𝐵0,1. Actually, this definition is by recursion on ordinals 𝛼: 𝑉0(2) = ∅, 𝑉𝛼(2) = {𝔞|𝔞 is a function ∧ ran(𝔞) ⊆ {0,1} ∧ ∃𝜉 < 𝛼: dom(𝔞) ⊆ 𝑉𝜉(2)} , 𝑉(2) = ⋃ 𝑉𝛼(2)𝛼∈𝕆ℕ . 
Allowing the functions to take values in a complete Heyting-algebra, we define the universe 𝑉(𝐻) by 
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 𝑉𝛼(𝐻) = {𝑓|𝑓 is a function ∧ ran(𝑓) ⊆ 𝐻 ∧ ∃𝜉 < 𝛼: dom(𝑓) ⊆ 𝑉𝜉(𝐻)} , 𝑉(𝐻) = ⋃ 𝑉𝛼(𝐻)𝛼∈𝕆ℕ . 
How do we interpret the ∈- and =-relation? To incorporate the axiom of extensionality as well as the 

logical truth 𝔲 ∈ 𝔳 ↔ ∃𝑦 ∈ 𝔳. 𝔲 = 𝑦 we should have ⟦𝔲 = 𝔳⟧ = ⟦∀𝑥 ∈ 𝔲 𝑥 ∈ 𝔳 ∧ ∀𝑦 ∈ 𝔳 𝑦 ∈ 𝔲⟧, ⟦𝔲 ∈ 𝔳⟧ = ⟦∃𝑦 ∈ 𝔳 𝔲 = 𝑦⟧. 
Also, it is reasonable to wish, in the case of bounded quantification, to be able to restrict our attention to 

elements of the given domain of the set of consideration only, i.e. ⟦∀𝑥 ∈ 𝔳. 𝜙(𝑥)⟧ = ⋀ [𝔲(𝔵) → ⟦𝜙(𝔵)⟧]𝔵∈dom(𝔳) , 
⟦∃𝑥 ∈ 𝔲. 𝜙(𝑥)⟧ = ⋃ [𝔲(𝑥) ∧ ⟦𝜙(𝔵)⟧].𝔵∈dom(𝔲)  

We will later see that this is compatible with the interpretation of unbounded quantification. Combining 

these two observations, we should set for equality and set-membership: ⟦𝔲 = 𝔳⟧ = ⋀ [𝔲(𝔵) → ⟦𝔵 ∈ 𝔳⟧]𝔵∈dom(𝔲) ∧ ⋀ [𝔳(𝔵) → ⟦𝔵 ∈ 𝔲⟧]𝔵∈dom(𝔳) , 
⟦𝔲 ∈ 𝔳⟧ = ⋁ [𝔳(𝔵) ∧ ⟦𝔲 = 𝔵⟧]𝔵∈dom(𝔳) . 

For the sake of completeness, we give a full list of all clauses of the Heyting-valued interpretation of the 

language of set theory. 

List of clauses Heyting-valued interpretation of 𝐈𝐙𝐅 ⟦𝔲 = 𝔳⟧ = ⋀ (𝔲(𝔵) → ⟦𝔵 ∈ 𝔳⟧)𝔵∈dom(𝔲) ∧ ⋀ (𝔳(𝔵) → ⟦𝔵 ∈ 𝔲⟧)𝔵∈dom(𝔳)  

⟦𝔲 ∈ 𝔳⟧ = ⋁ 𝔳(𝔵) ∧ ⟦𝔲 = 𝔵⟧𝔵∈dom(𝔳)  ⟦⊥⟧ = 0 ⟦⊤⟧ = 1 ⟦𝜙 ∧ 𝜓⟧ = ⟦𝜙⟧ ∧ ⟦𝜓⟧ ⟦𝜙 ∨ 𝜓⟧ = ⟦𝜙⟧ ∨ ⟦𝜓⟧ ⟦𝜙 → 𝜓⟧ = ⟦𝜙⟧ → ⟦𝜓⟧ ⟦¬𝜙⟧ = ⟦𝜙⟧ → 0 ⟦∀𝑥 𝜙(𝑥)⟧ = ⋀ ⟦𝜙(𝔡)⟧𝔡∈𝑉(𝐻)  
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⟦∃𝑥 𝜙(𝑥)⟧ = ⋁ ⟦𝜙(𝔡)⟧𝔡∈𝑉(𝐻)  

⟦∀𝑥 ∈ 𝔲. 𝜙(𝑥)⟧ = ⋀ (𝔲(𝔵) → ⟦𝜙(𝔵)⟧)𝔵∈dom(𝔲)  

⟦∃𝑥 ∈ 𝔲. 𝜙(𝑥)⟧ = ⋁ (𝔲(𝔵) ∧ ⟦𝜙(𝔵)⟧)𝔵∈dom(𝔲)  

 

6.3.1 Some useful facts about 𝑉(𝐻) 
In this section we will gather some useful (but rather technical) results about our interpretation of 𝐈𝐙𝐅. 

All of the results are slight adaptations of [5]. Some of them will be the justification of the informal dis-

cussion (and the resulting definitions) of the last section. For example, it is a-priori not clear that the 

expressions for unbounded quantification are justified, since we are taking suprema and infima over 

proper classes. The following results show that this definition is reasonable: 

ⓂLemma 6.24: For each formula 𝜙(𝑥), there is a least 𝛼 such that ⋁ ⟦𝜙(𝔡)⟧𝔡∈𝑉(𝐻) = ⋁ ⟦𝜙(𝔡)⟧𝔡∈𝑉𝛼(𝐻)  and 

similarly for infima. 

Proof: The function 𝐹:𝕆ℕ → 𝐻 defined by 𝐹(𝛼) = ⋁ ⟦𝜙(𝔡)⟧𝔡∈𝑉𝛼(𝐻)  is increasing. By Lemma 6.10, it must 

eventually be constant. The case for infima is similar.  ∎ 

ⓂLemma 6.25: For 𝔞, 𝔟, 𝔵, 𝔶, 𝔲, 𝔳, 𝔴 ∈ 𝑉(𝐻) and formulas 𝜙, we have  

1. ⟦𝔟 = 𝔟⟧ = 1 
2. ⟦𝔞 ∈ 𝔟⟧ ≥ 𝔟(𝔞) for 𝔞 ∈ dom(𝔟) 
3. ⟦𝔞 = 𝔟⟧ = ⟦𝔟 = 𝔞⟧ 
4. ⟦𝔵 = 𝔶⟧ ∧ ⟦𝔶 ∈ 𝔴⟧ ≤ ⟦𝔵 ∈ 𝔴⟧ 
5. ⟦𝔵 ∈ 𝔳⟧ ∧ ⟦𝔳 = 𝔴⟧ ≤ ⟦𝔵 ∈ 𝔴⟧ 
6. ⟦𝔲 = 𝔳⟧ ∧ ⟦𝔳 = 𝔴⟧ ≤ ⟦𝔲 = 𝔴⟧ 
7. ⟦𝔲 = 𝔳⟧ ∧ ⟦𝜙(𝔲)⟧ ≤ ⟦𝜙(𝔳)⟧ 
8. ⟦∃𝑦. 𝑦 = 𝔵 ∧ 𝜙(𝑦)⟧ = ⟦𝜙(𝔵)⟧ 

Proof: 1 and 2 are shown by simultaneous induction: Suppose 2. Holds for 𝔟 ∈ 𝑉𝛼(𝐻), then, ⟦𝔟 = 𝔟⟧ = ⋀ 𝔟(𝔞) →𝔞∈dom(𝔟) ⟦𝔞 ∈ 𝔟⟧ = 1. 
Now suppose, 1. holds for all 𝔟 ∈ 𝑉𝛽 with 𝛽 < 𝛼 and let 𝔞 ∈ dom(𝔟). 

⟦𝔞 ∈ 𝔟⟧ = ⋁ (𝔟(𝑦) ∧ ⟦𝔞 = 𝑦⟧)𝑦∈dom(𝔟) ≥ 𝔟(𝔞) ∧ ⟦𝔞 = 𝔞⟧ = 𝔟(𝔞). 
3 Holds by symmetry of the definition. 
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The numbers 4-6 are shown by induction: Assume that for all 𝔲, 𝔳, 𝔴 ∈ 𝑉𝛼(𝐻) and all 𝛽 < 𝛼 and for 𝔵, 𝔶, 𝔷 ∈𝑉𝛽(𝐻), (𝐼𝐻1)    ⟦𝔵 = 𝔶⟧ ∧ ⟦𝔶 ∈ 𝔴⟧ ≤ ⟦𝔵 ∈ 𝔴⟧, (𝐼𝐻2)    ⟦𝔵 = 𝔶⟧ ∧ ⟦𝔶 = 𝔷⟧ ≤ ⟦𝔵 = 𝔷⟧, (𝐼𝐻3)    ⟦𝔵 ∈ 𝔲⟧ ∧ ⟦𝔲 = 𝔳⟧ ≤ ⟦𝔵 ∈ 𝔳⟧. 
Then, we can infer 4, ⟦𝔵 = 𝔶⟧ ∧ ⟦𝔶 ∈ 𝔴⟧ = ⟦𝔵 = 𝔶⟧ ∧ ⋁ (⟦𝔷 = 𝔶⟧ ∧ 𝔴(𝔷))𝔷∈dom(𝔴)= ⋁ (⟦𝔵 = 𝔶⟧ ∧ ⟦𝔶 = 𝔷⟧ ∧ 𝔴(𝔷))𝔷∈dom(𝔴) ≤𝐼𝐻2 ⋁ (⟦𝔵 = 𝔷⟧ ∧ 𝔴(𝔷))𝔷∈dom(𝔴) = ⟦𝔵 ∈ 𝔴⟧. 
And 5, ⟦𝔵 ∈ 𝔳⟧ ∧ ⟦𝔳 = 𝔴⟧ = ⟦𝔳 = 𝔴⟧ ∧ ⋁ (𝔳(𝔶) ∧ ⟦𝔵 = 𝔶⟧)𝔶∈dom(𝔳) = ⋁ (⟦𝔳 = 𝔴⟧ ∧ 𝔳(𝔶) ∧ ⟦𝔵 = 𝔶⟧)𝔶∈dom(𝔳)

≤ ⋁ (( ⋀ (𝔳(𝔞) → ⟦𝔞 ∈ 𝔴⟧)𝔞∈dom(𝔳) ) ∧ 𝔳(𝔶) ∧ ⟦𝔵 = 𝔶⟧)𝔶∈dom(𝔳)≤ ⋁ ((𝔳(𝔶) → ⟦𝔶 ∈ 𝔴⟧) ∧ 𝔳(𝔶) ∧ ⟦𝔵 = 𝔶⟧)𝔶∈dom(𝔳)≤ ⋁ (⟦𝔶 ∈ 𝔴⟧ ∧ ⟦𝔵 = 𝔶⟧)𝔶∈dom(𝔳) ≤𝐼𝐻1 ⋁ (⟦𝔶 ∈ 𝔴⟧ ∧ ⟦𝔵 = 𝔶⟧)𝔶∈dom(𝔳) = ⋁ (⟦𝔵 ∈ 𝔴⟧)𝔶∈dom(𝔳)= ⟦𝔵 ∈ 𝔴⟧. 
And finally 6,  ⟦𝔲 = 𝔳⟧ ∧ 𝔲(𝔵) ∧ ⟦𝔳 = 𝔴⟧ ≤ ⟦𝔲 = 𝔳⟧ ∧ ⟦𝔵 ∈ 𝔲⟧ ∧ ⟦𝔳 = 𝔴⟧ ≤𝐼𝐻3 ⟦𝔵 ∈ 𝔳⟧ ∧ ⟦𝔳 = 𝔴⟧ ≤𝐼𝐻3 ⟦𝔵 ∈ 𝔴⟧ 
Hence, ⟦𝔲 = 𝔳⟧ ∧ ⟦𝔳 = 𝔴⟧ ≤ 𝔲(𝔵) → ⟦𝔵 ∈ 𝔴⟧ 
and similarly, ⟦𝔲 = 𝔳⟧ ∧ ⟦𝔳 = 𝔴⟧ ≤ 𝔴(𝔷) → ⟦𝔷 ∈ 𝔳⟧ 
And altogether, ⟦𝔲 = 𝔳⟧ ∧ ⟦𝔳 = 𝔴⟧ ≤ ⋀ (𝔲(𝔵) → ⟦𝔵 ∈ 𝔴⟧)𝔵∈dom(𝔲) ∧ ⋀ (𝔴(𝔷) → ⟦𝔷 ∈ 𝔳⟧)𝔶∈dom(𝔷) = ⟦𝔲 = 𝔴⟧. 
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7 is shown by induction on 𝜙. The base cases are 4.-6., all other cases except for “→” are easy. Implication 
is shown like this: ⟦𝔲 = 𝔳⟧ ∧ ⟦𝜙(𝔲) → 𝜓(𝔲)⟧ ∧ ⟦𝜙(𝔳)⟧= ⟦𝔲 = 𝔳⟧ ∧ ⟦𝜙(𝔲) → 𝜓(𝔲)⟧ ∧ ⟦𝜙(𝔳)⟧ ∧ ⟦𝔲 = 𝔳⟧ ≤𝐼𝐻 ⟦𝔲 = 𝔳⟧ ∧ (⟦𝜙(𝔲)⟧ → ⟦𝜓(𝔲)⟧) ∧ ⟦𝜙(𝔲)⟧= ⟦𝔲 = 𝔳⟧ ∧ ⟦𝜓(𝔲)⟧ ≤𝐼𝐻 ⟦𝜓(𝔳)⟧, 
and hence, ⟦𝔲 = 𝔳⟧ ∧ ⟦𝜙(𝔲) → 𝜓(𝔲)⟧ ≤ ⟦𝜙(𝔳)⟧ → ⟦𝜓(𝔳)⟧. 
Finally, for 8, we use 7: ⟦∃𝑦. 𝑦 = 𝔵 ∧ 𝜙(𝑦)⟧ = ⋁ ⟦𝔡 = 𝔵 ∧ 𝜙(𝔡)⟧𝔡∈𝑉(𝐻) ≤ ⋁ ⟦𝜙(𝔵)⟧𝔡∈𝑉(𝐻) = ⟦𝜙(𝔵)⟧, 
on the other hand, clearly ⟦𝜙(𝔵)⟧ = ⟦𝔵 = 𝔵⟧ ∧ ⟦𝜙(𝔵)⟧ is bounded by the above supremum.  ∎ 

ⓂLemma 6.26: Let 𝑓: 𝑉(𝐻) → 𝐻 be a (set) function. Then 𝑓 ∈ 𝑉(𝐻). 
Proof: For each 𝑥 ∈ dom(𝑓) there is some (least) 𝛼𝑥 such that 𝑥 ∈ 𝑉𝛼𝑥(𝐻). By replacement, we can form 𝛾 =⋃{𝛼𝑥: 𝑥 ∈ dom(𝑓)}. Hence, dom(𝑓) ⊆ 𝑉𝛾(𝐻). ∎ 

The next lemma shows that our definition of the interpretation of bounded quantification is compatible 

with the unbounded case: 

ⓂLemma 6.27:  

1. ⟦∃𝑥 ∈ 𝔲. 𝜙(𝑥)⟧ = ⟦∃𝑥. 𝑥 ∈ 𝔲 ∧ 𝜙(𝑥)⟧ 
2. ⟦∀𝑥 ∈ 𝔲. 𝜙(𝑥)⟧ = ⟦∀𝑥. 𝑥 ∈ 𝔲 → 𝜙(𝑥)⟧ 

Proof:  For 1., we compute ⟦∃𝑥. 𝑥 ∈ 𝔲 ∧ 𝜙(𝑥)⟧ = ⋁ ⟦𝔡 ∈ 𝔲 ∧ 𝜙(𝔡)⟧𝔡∈𝑉(𝐻) = ⋁ (⟦𝔡 ∈ 𝔲⟧ ∧ ⟦𝜙(𝔡)⟧)𝔡∈𝑉(𝐻)= ⋁ (( ⋁ 𝔲(𝔵) ∧ ⟦𝔡 = 𝔵⟧𝔵∈dom(𝔲) ) ∧ ⟦𝜙(𝔡)⟧)𝔡∈𝑉(𝐻) = ⋁ ( ⋁ 𝔲(𝔵) ∧ ⟦𝔡 = 𝔵⟧ ∧ ⟦𝜙(𝔡)⟧𝔵∈dom(𝔲) )𝔡∈𝑉(𝐻)= ⋁ ( ⋁ 𝔲(𝔵) ∧ ⟦𝔡 = 𝔵⟧ ∧ ⟦𝜙(𝔡)⟧𝔡∈𝑉(𝐻) )𝔵∈dom(𝔲) = ⋁ 𝔲(𝔵) ∧ ( ⋁ ⟦𝔡 = 𝔵 ∧ 𝜙(𝔡)⟧𝔡∈𝑉(𝐻) )𝔵∈dom(𝔲)= ⋁ 𝔲(𝔵) ∧ ⟦∃𝑦. 𝑦 = 𝔵 ∧ 𝜙(𝑦)⟧𝔵∈dom(𝔲) = ⋁ 𝔲(𝔵) ∧ ⟦𝜙(𝔵)⟧𝔵∈dom(𝔲) = ⟦∃𝑥 ∈ 𝔲. 𝜙(𝑥)⟧, 
where the last step is by Lemma 6.25. For 2., we apply this lemma again together with Lemma 6.6: 
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⟦∀𝑥 ∈ 𝔲 𝜙(𝑥)⟧ = ⋀ (𝔲(𝔵) → ⟦𝜙(𝔵)⟧)𝔵∈dom(𝔲) ≥ ⋀ (⟦𝔵 ∈ 𝔲⟧ → ⟦𝜙(𝔵)⟧)𝔵∈dom(𝔲) ≥ ⋀ (⟦𝔵 ∈ 𝔲⟧ → ⟦𝜙(𝔵)⟧)𝔵∈𝑉(𝐻)= ⟦∀𝑥. 𝑥 ∈ 𝔲 →  𝜙(𝑥)⟧. 
On the other hand, for any 𝔶 ∈ 𝑉(𝐻), 
⟦𝔶 ∈ 𝔲⟧ ∧ ⋀ (𝔲(𝔵) → ⟦𝜙(𝔵)⟧)𝔵∈dom(𝔲) = ( ⋁ 𝔲(𝔷) ∧ ⟦𝔶 = 𝔷⟧𝔷∈dom(𝔲) ) ∧ ( ⋀ (𝔲(𝔵) → ⟦𝜙(𝔵)⟧)𝔵∈dom(𝔲) )

= ⋁ (𝔲(𝔷) ∧ ⟦𝔶 = 𝔷⟧ ∧ ( ⋀ (𝔲(𝔵) → ⟦𝜙(𝔵)⟧)𝔵∈dom(𝔲) ))𝔷∈dom(𝔲)≤ ⋁ (𝔲(𝔷) ∧ ⟦𝔶 = 𝔷⟧ ∧ (𝔲(𝔷) → ⟦𝜙(𝔷)⟧))𝔷∈dom(𝔲) ≤ ⋁ (⟦𝜙(𝔷)⟧ ∧ ⟦𝔶 = 𝔷⟧)𝔷∈dom(𝔲) ≤ ⋁ ⟦𝜙(𝔶)⟧𝔷∈dom(𝔲)= ⟦𝜙(𝔶)⟧. 
And hence, ⟦∀𝑥 ∈ 𝔲 𝜙(𝑥)⟧ = ⋀ (𝔲(𝔵) → ⟦𝜙(𝔵)⟧)𝔵∈dom(𝔲) ≤ ⟦𝔶 ∈ 𝔲⟧ → ⟦𝜙(𝔶)⟧ ≤ ⋀ (⟦𝔶 ∈ 𝔲⟧ → ⟦𝜙(𝔶)⟧)𝔶∈𝑉(𝐻)= ⟦∀𝑥. 𝑥 ∈ 𝔲 →  𝜙(𝑥)⟧. ∎ 

6.3.2 Soundness theorem for 𝐈𝐙𝐅 

ⓂTheorem 6.28: Every theorem 𝜏 of 𝐈𝐙𝐅 are valid, i.e. ⟦𝜏⟧ = 1. 
Proof: We have given examples of validity of propositional axioms as well as examples of proofs of va-

lidity of first-order axioms and rules in 6.2. Validity of axioms of equality has been shown in Lemma 

6.25. It remains to show validity of set axioms, which we will do in the following. ∎ 

Extensionality ⟦∀𝑧. 𝑧 ∈ 𝔲 ↔ 𝑧 ∈ 𝔳⟧ = ⟦(∀𝑧 ∈ 𝔲. 𝑧 ∈ 𝔳 ∧ ∀𝑧 ∈ 𝔳. 𝑧 ∈ 𝔲)⟧= ( ⋀ (𝔲(𝔷) → ⟦𝔷 ∈ 𝔳⟧)𝔷∈dom(𝔲) ∧ ⋀ (𝔳(𝔷) → ⟦𝔷 ∈ 𝔲⟧)𝔷∈dom(𝔳) ) = ⟦𝔲 = 𝔳⟧, 
and hence, ⟦∀𝑧(𝑧 ∈ 𝔲 ↔ 𝑧 ∈ 𝔳)⟧ → ⟦𝔲 = 𝔳⟧ = 1. 
Pair 

Let 𝔲 ∈ 𝑉𝛼(𝐻), 𝔳 ∈ 𝑉𝛽(𝐻) and let {𝔲, 𝔳}(𝐻) be defined on {𝔲, 𝔳} as 𝔲 ↦ 1 and 𝔳 ↦ 1. By Lemma 6.26, {𝔲, 𝔳}(𝐻) ∈𝑉(𝐻). 
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We have 

⟦𝔴 ∈ {𝔲, 𝔳}(𝐻) ⟧ = ⋁ {𝔲, 𝔳}(𝐻) (𝔵) ∧ ⟦𝔴 = 𝔵⟧𝔵∈dom({𝔲,𝔳}(𝐻) ) = (1 ∧ ⟦𝔴 = 𝔲⟧) ∨ (1 ∧ ⟦𝔴 = 𝔳⟧), 
Hence ⟦𝔴 ∈ {𝔲, 𝔳}(𝐻)  ↔ (⟦𝔴 = 𝔲⟧ ∨ ⟦𝔴 = 𝔳⟧)⟧ = 1. 

 

Union 

Let 𝔄 ∈ 𝑉𝛼(𝐻).  We give Un(𝔄) as dom(Un(𝔄)) = ⋃{dom(𝔴):𝔴 ∈ dom(𝔄)} and Un(𝔄)(𝔵) = ⟦∃𝑤 ∈ 𝔄 (𝔵 ∈𝑤)⟧. This is a well-defined element of 𝑉(𝐻) by Lemma 6.26. Also, we have ⟦∀𝑥 ∈ Un(𝔄) ∃𝑤 ∈ 𝐴. 𝑥 ∈ 𝑤⟧ = ⋀ (Un(𝔄)(𝔵) → ⟦∃𝑤 ∈ 𝔄. 𝔵 ∈ 𝑤⟧)𝔵∈dom(Un(𝔄))= ⋀ (⟦∃𝑤 ∈ 𝔄. 𝔵 ∈ 𝑤⟧ → ⟦∃𝑤 ∈ 𝔄. 𝔵 ∈ 𝑤⟧)𝔵∈dom(Un(𝔄)) = 1. 
We have that for 𝔵 ∈ dom(𝔴), 𝔴(𝔵) ≤ ⟦𝔵 ∈ 𝔴⟧ and hence 

𝔄(𝔴) ∧ 𝔴(𝔵) ≤ 𝔄(𝔴) ∧ ⟦𝔵 ∈ 𝔴⟧ ≤ ⋁ (𝔄(𝔴) ∧ ⟦𝔵 ∈ 𝔴⟧)𝔴∈dom(𝔄) = ⟦∃𝑤 ∈ 𝔄. 𝔵 ∈ 𝑤⟧ = Un(𝔄)(𝔵). 
This shows 

⟦∃𝑤 ∈ 𝔄. 𝔵 ∈ 𝑤⟧ = ⋁ 𝔄(𝔴) ∧ ⟦𝔵 ∈ 𝔴⟧𝔴∈dom(𝔄) = ⋁ 𝔄(𝔴) ∧ ( ⋁ 𝔴(𝔵) ∧ ⟦𝔶 = 𝔵⟧𝔶∈dom(𝔴) )𝔴∈dom(𝔄)= ⋁ ( ⋁ 𝔄(𝔴) ∧ 𝔴(𝔵) ∧ ⟦𝔶 = 𝔵⟧𝔶∈dom(𝔴) )𝔴∈dom(𝔄) ≤ ⋁ ( ⋁ Un(𝔄)(𝔵) ∧ ⟦𝔶 = 𝔵⟧𝔶∈dom(𝔴) )𝔴∈dom(𝔄)= ⋁ (Un(𝔄)(𝔵) ∧ ⟦𝔶 = 𝔵⟧)𝔶∈⋃{dom(𝔴):𝔴∈dom(𝔄)} = ⟦𝔵 ∈ Un(𝔄)⟧, 
and hence ⟦∃𝑤 ∈ 𝔄 (𝔵 ∈ 𝑤) → 𝔵 ∈ Un(𝔄)⟧ = 1. 

Empty set 

For a set 𝑥, define by recursion 𝑥 = {〈�̂�, 1〉: 𝑦 ∈ 𝑥}. It is shown by induction on the rank of 𝑥 that this is an 

element of 𝑉(𝐻). We show that ∅̂ is a suitable witness for the empty set axiom: Since dom(∅̂) = ∅ and ⋁∅ = 0, we have 
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⟦∀𝑦 ¬(𝑦 ∈ ∅̂)⟧ = ⋀ ¬⟦𝑦 ∈ ∅̂⟧𝑦∈𝑉(𝐻) = ⋀ (¬⟦𝑦 ∈ ∅̂⟧ → 0)𝑦∈𝑉(𝐻) = ⋀ (¬ ⋁ ∅̂(𝔵) ∧ ⟦𝑦 = 𝔵⟧𝔵∈dom(∅̂) )𝑦∈𝑉(𝐻)= ⋀ ¬0𝑦∈𝑉(𝐻) = 1. 
Infinity 

We show that �̂� does the job: 𝑉(𝐻) ⊨ (∀𝑛 ∈ �̂�. 𝑠(𝑛) ∈ �̂�) ∧ (∀𝑛 ∈ 𝜔. 𝑛 = ∅ ∨ ∃𝑚 ∈ �̂�. 𝑛 = 𝑠(𝑚)). 
ⓂLemma 6.29: Define for 𝔲 ∈ 𝑉(𝐻), 𝔰𝔲 = 𝔲 ∪ {〈𝔲, 1〉}. Then ⟦𝔰𝔲 = 𝑠(𝔲)⟧ = 1, or in more detail, ⟦∀𝑥. 𝑥 ∈ 𝔰𝔲 ↔ (𝑥 ∈ 𝔲 ∨ 𝑥 = 𝔲)⟧ = 1. 
Proof: Indeed,  ⟦𝔵 ∈ 𝔰𝔲⟧ = ⋁ (𝔰𝔲(𝔶) ∧ ⟦𝔵 = 𝔶⟧)𝔶∈dom(𝔰𝔲) = (𝔰𝔲(𝔲) ∧ ⟦𝔵 = 𝔲⟧) ∨ ⋁ (𝔲(𝔶) ∧ ⟦𝔵 = 𝔶⟧)𝔶∈dom(𝔲) = ⟦𝔵 = 𝔲⟧ ∨ ⟦𝔵 ∈ 𝔲⟧. 

∎ 

ⓂLemma 6.30: For all 𝑛 ∈ 𝜔, ⟦𝑛 + 1̂ = 𝑠(�̂�)⟧ = 1. 

Proof: It is clear that ⟦𝑛 + 1̂ = 𝔰�̂�⟧ = 1, so the result follows by transitivity. ∎ 

We can now verify the infinity axiom: ⟦∀𝑥 ∈ �̂�. 𝑠(𝑥) ∈ �̂�⟧ = ⋀(�̂�(�̂�) → ⟦𝑠(�̂�) ∈ �̂�⟧)𝑛∈𝜔 = ⋀⟦𝑠(�̂�) ∈ �̂�⟧𝑛∈𝜔  

For any 𝑛 ∈ 𝜔, ⟦𝑠(�̂�) ∈ �̂�⟧ = ⋁⟦𝑠(�̂�) = �̂�⟧𝑚∈𝜔 ≥ ⟦𝑠(�̂�) = 𝑛 + 1̂⟧ = 1. 
On the other hand, ⟦∀𝑛 ∈ 𝜔. 𝑛 = ∅ ∨ ∃𝑚 ∈ 𝜔. 𝑛 = 𝑠(𝑚)⟧ = ⋀(⟦𝑛 = ∅⟧ ∨ ⟦∃𝑚 ∈ 𝜔. 𝑛 = 𝑠(𝑚)⟧)𝑛∈𝜔 . 
Now for 𝑛 = 0, we already know that ⟦0̂ = ∅⟧ = 1. For 𝑛 = 𝑚 + 1, 

⟦∃𝑚 ∈ 𝜔 (�̂� = 𝑠(𝑚))⟧ = ⋁⟦�̂� = 𝑠(�̂�)⟧𝑚∈𝜔 ≥ ⟦𝑚 + 1̂ = 𝑠(�̂�)⟧ = 1. 
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Separation 

For 𝔞 ∈ 𝑉(𝐻) and a formula 𝜙(𝑥), set Sep𝜙(𝑥)(𝔞) = {〈𝔵, ⟦𝜙(𝔵)⟧ ∧ 𝔞(𝔵)〉: 𝔵 ∈ dom(𝔞)}. Then for 𝔶 ∈ 𝑉(𝐻), 
⟦𝔶 ∈ Sep𝜙(𝑥)(𝔞)⟧ = ⋁ (Sep𝜙(𝑥)(𝔞)(𝔵) ∧ ⟦𝔶 = 𝔵⟧)𝔶∈dom(Sep𝜙(𝑥)(𝔞)) = ⋁ (𝔞(𝔵) ∧ ⟦𝜙(𝔵)⟧ ∧ ⟦𝔶 = 𝔵⟧)𝔶∈dom(𝔞)= ⟦∃𝑥 ∈ 𝔞 (𝜙(𝑥) ∧ 𝔶 = 𝑥)⟧ = ⟦∃𝑥 ((𝑥 ∈ 𝔞 ∧ 𝜙(𝔵)) ∧ 𝔶 = 𝑥)⟧ = ⟦𝔶 ∈ 𝔞 ∧ 𝜙(𝔶)⟧. 

Powerset 

Let 𝔞 ∈ 𝑉(𝐻)  and define Pow(𝔞)  by dom(Pow(𝔞)) = 𝐻dom(𝔞)  and Pow(𝔞)(𝔵) = ⟦𝔵 ⊆ 𝔞⟧  for 𝔵 ∈dom(Pow(𝔞)). By Lemma 6.26, Pow(𝔞) ∈ 𝑉(𝐻). ⟦∀𝑥 ∈ Pow(𝔞). 𝑥 ⊆ 𝔞⟧ = ⋀ (Pow(𝔞)(𝔵) → ⟦𝔵 ⊆ 𝔞⟧)𝔵∈dom(Pow(𝔞)) = ⋀ (⟦𝔵 ⊆ 𝔞⟧ → ⟦𝔵 ⊆ 𝔞⟧)𝔵∈dom(Pow(𝔞)) = 1. 
On the other hand, define for 𝔵 ∈ 𝑉(𝐻), 𝔵′ = {〈𝔶, ⟦𝔶 ∈ 𝔵⟧〉: 𝔶 ∈ dom(𝔞)}. We need the following two claims: 

Claim 1: ⟦𝔵 ⊆ 𝔞 → 𝔵 = 𝔵′⟧ = 1. 

Proof: For any 𝔶 ∈ 𝑉(𝐻), we have 

 ⟦𝔶 ∈ 𝔵′⟧ = ⋁ (𝔵′(𝔷) ∧ ⟦𝔶 = 𝔷⟧)𝔷∈dom(𝔵′) = ⋁ (⟦𝔷 ∈ 𝔵⟧ ∧ ⟦𝔶 = 𝔷⟧)𝔷∈dom(𝔞) ≤ ⟦𝔶 ∈ 𝔵⟧, 
hence ⟦𝔵′ ⊆ 𝔵⟧ = ⟦∀𝑦 (𝑦 ∈ 𝔵′ → 𝑦 ∈ 𝔵)⟧ = 1. Furthermore, ⟦𝔶 ∈ 𝔞 ∧ 𝔶 ∈ 𝔵⟧ = ⟦𝔶 ∈ 𝔵⟧ ∧ ⋁ (𝔞(𝔷) ∧ ⟦𝔶 = 𝔷⟧)𝔷∈dom(𝔞) = ⋁ (𝔞(𝔷) ∧ ⟦𝔶 = 𝔷⟧ ∧ ⟦𝔶 ∈ 𝔵⟧)𝔷∈dom(𝔞)≤ ⋁ (⟦𝔶 = 𝔷⟧ ∧ ⟦𝔶 = 𝔷⟧ ∧ ⟦𝔶 ∈ 𝔵⟧)𝔷∈dom(𝔞) ≤ ⋁ (⟦𝔶 = 𝔷⟧ ∧ ⟦𝔷 ∈ 𝔵⟧)𝔷∈dom(𝔞)= ⋁ (⟦𝔶 = 𝔷⟧ ∧ 𝔵′(𝔷))𝔷∈dom(𝔵′) = ⟦𝔶 ∈ 𝔵′⟧. 
and therefore, ⟦𝔞 ∩ 𝔵 ⊆ 𝔵′⟧ = 1. Putting these things together, ⟦𝔵 ⊆ 𝔞⟧ = 1 ∧ ⟦𝔵 ⊆ 𝔞⟧ ∧ 1 = ⟦𝔵′ ⊆ 𝔵⟧ ∧ ⟦𝔵 ⊆ 𝔞⟧ ∧ ⟦𝔞 ∩ 𝔵 ⊆ 𝔵′⟧ = ⟦𝔵′ ⊆ 𝔵⟧ ∧ ⟦𝔵 ⊆ 𝔞 ∧ 𝔞 ∩ 𝔵 ⊆ 𝔵′⟧≤ ⟦𝔵′ ⊆ 𝔵⟧ ∧ ⟦𝔵 ⊆ 𝔵′⟧ ≤ ⟦𝔵 = 𝔵′⟧, 
which shows the claim. ∎ 

Claim 2: ⟦𝔵 ⊆ 𝔞 → 𝔵′ ∈ Pow(𝔞)⟧ = 1. 

Proof:  
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⟦𝔵 ⊆ 𝔞⟧ = ⟦∀𝑦. 𝑦 ∈ 𝔵 → 𝑦 ∈ 𝔞⟧ = ⋀ (⟦𝔶 ∈ 𝔵⟧ → ⟦𝔶 ∈ 𝔞⟧)𝔶∈𝑉(𝐻) ≤ ⋀ (𝔵′(𝔶) → ⟦𝔶 ∈ 𝔞⟧)𝔶∈dom(𝔵′) = ⟦∀𝑦 ∈ 𝔵′ (𝑦 ∈ 𝔞)⟧= ⟦𝔵′ ⊆ 𝔞⟧ = Pow(𝔞)(𝔵′) ≤ ⟦𝔵′ ∈ Pow(𝔞)⟧. ∎ 

Using both claims, we can finally validate the other direction of the powerset axiom: 

⟦∀𝑥. 𝑥 ⊆ 𝔞 → 𝑥 ∈ Pow(𝔞)⟧ = ⋀ (⟦𝔵 ⊆ 𝔞 → 𝔵 ∈ Pow(𝔞)⟧)𝔵∈𝑉(𝐻)≥ ⋀ (⟦𝔵 ⊆ 𝔞 → 𝔵 = 𝔵′⟧ ∧ ⟦𝔵 ⊆ 𝔞 → 𝔵′ ∈ Pow(𝔞)⟧)𝔵∈𝑉(𝐻) = 1. 
Collection schema 

Let 𝔲 ∈ 𝑉(𝐻) and 𝜙(𝑥, 𝑦) be any formula. For each 𝔵 ∈ 𝑉(𝐻), there is a least 𝛼𝔵 such that 

⋁ ⟦𝜙(𝔵, 𝔶)⟧𝔶∈𝑉(𝐻) = ⋁ ⟦𝜙(𝔵, 𝔶)⟧𝔶∈𝑉𝛼𝔵(𝐻) . 
By collection in 𝑉, we can set 𝛼 = ⋃{𝛼𝔵: 𝔵 ∈ dom(𝔲)} and Col𝜙(𝑥,𝑦)(𝔲) = {〈𝔶, 1〉: 𝔶 ∈ 𝑉𝛼(𝐻)}. As in the valida-

tion of the previous axioms, this set is a well-defined member of 𝑉(𝐻) by  Lemma 6.26. Furthermore, 

⟦∀𝑥 ∈ 𝔲. ∃𝑦. 𝜙(𝑥, 𝑦)⟧ = ⋀ (𝔲(𝔵) → ⟦∃𝑦. 𝜙(𝔵, 𝑦)⟧)𝔵∈dom(𝔲) = ⋀ (𝔲(𝔵) → ⋁ ⟦𝜙(𝔵, 𝔶)⟧𝔶∈𝑉(𝐻) )𝔵∈dom(𝔲)
= ⋀ (𝔲(𝔵) → ⋁ ⟦𝜙(𝔵, 𝔶)⟧𝔶∈𝑉𝛼𝔵(𝐻) )𝔵∈dom(𝔲) ≤ ⋀ (𝔲(𝔵) → ⋁ ⟦𝜙(𝔵, 𝔶)⟧𝔶∈𝑉𝛼(𝐻) )𝔵∈dom(𝔲)
= ⋀ (𝔲(𝔵) → ⋁ (Col𝜙(𝑥,𝑦)(𝔲)(𝔶) ∧ ⟦𝜙(𝔵, 𝔶)⟧)𝔶∈𝑉𝛼(𝐻) )𝔵∈dom(𝔲)= ⋀ (𝔲(𝔵) → ⟦∃𝑦 ∈ Col𝜙(𝑥,𝑦)(𝔲). 𝜙(𝔵, 𝑦)⟧)𝔵∈dom(𝔲) = ⟦∀𝑥 ∈ 𝔲. ∃𝑦 ∈ Col𝜙(𝑥,𝑦)(𝔲). 𝜙(𝑥, 𝑦)⟧. 

The validity of the collection schema follows.  

Set induction 

Obviously, this is shown by induction: Let 𝔞 ∈ 𝑉(𝐻) and suppose that for all 𝛽 < 𝛼 and 𝔶 ∈ 𝑉𝛽(𝐻), ⟦∀𝑥 (∀𝑦 ∈ 𝑥 𝜙(𝑦) → 𝜙(𝑥))⟧ ≤ ⟦𝜙(𝔶)⟧. 
But then  
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⟦∀𝑥 (∀𝑦 ∈ 𝑥 𝜙(𝑦) → 𝜙(𝑥))⟧ ≤ ⋀ ⟦𝜙(𝔶)⟧𝔶∈dom(𝔞) ≤ ⋀ (𝔞(𝔶) → ⟦𝜙(𝔶)⟧)𝔶∈dom(𝔞) = ⟦∀𝑦 ∈ 𝔞. 𝜙(𝑦)⟧, 
hence, ⟦∀𝑥 (∀𝑦 ∈ 𝑥 𝜙(𝑦) → 𝜙(𝑥)⟧ ≤ ⟦∀𝑥 (∀𝑦 ∈ 𝑥 𝜙(𝑦) → 𝜙(𝑥)⟧ ∧ ⟦∀𝑦 ∈ 𝔞 𝜙(𝑦)⟧= ⋀ ⟦∀𝑦 ∈ 𝔵 𝜙(𝑦) → 𝜙(𝔵)⟧𝔵∈𝑉(𝐻) ∧ ⟦∀𝑦 ∈ 𝔞 𝜙(𝑦)⟧ ≤ ⟦∀𝑦 ∈ 𝔞 𝜙(𝑦) → 𝜙(𝔞)⟧ ∧ ⟦∀𝑦 ∈ 𝔞 𝜙(𝑦)⟧≤ ⟦𝜙(𝔞)⟧. 
This shows ⟦∀𝑥 (∀𝑦 ∈ 𝑥 𝜙(𝑦) → 𝜙(𝑥)⟧ ≤ ⋀ ⟦𝜙(𝔞)⟧𝔞∈𝑉(𝐻) = ⟦∀𝑥 𝜙(𝑥)⟧. 
6.3.3 Internal set of natural numbers 

As we have seen, when validating the axiom of infinity, �̂� plays the role of the set of natural numbers in 

the model 𝑉(𝐻) (we also say that internally, �̂� is the set of natural numbers). We will need one simple 

lemma saying that the order on the natural numbers is definite inside the model mirroring the fact that 

the order is decidable in 𝐈𝐙𝐅: 

ⓂLemma 6.31: For all 𝑛,𝑚 ∈ 𝜔, we have 

1. ⟦�̂� = �̂�⟧ = {1, if 𝑛 = 𝑚,0, if 𝑛 ≠ 𝑚. 
2. ⟦�̂� ∈ �̂�⟧ = {1, if 𝑛 < 𝑚,0, else.  

Proof: 1. and 2. Are shown by simultaneous induction: Suppose that 1. holds for all 𝑘 < 𝑛, then 

⟦�̂� ∈ �̂�⟧ = ⋁ [�̂�(𝔵) ∧ ⟦�̂� = 𝔵⟧]𝔵∈dom(�̂�) =⋁⟦�̂� = �̂�⟧𝑘∈𝑛 = {1,  if 𝑚 ∈ 𝑛,0,  if 𝑚 ∉ 𝑛. 
On the other hand, suppose, 2. holds for all 𝑘 < 𝑚 and 𝑙 < 𝑛. Then 

⟦�̂� = �̂�⟧ = ⋀ [�̂�(𝔵) → ⟦𝔵 ∈ �̂�⟧]𝔵∈dom(�̂�) ∧ ⋀ [�̂�(𝔵) → ⟦𝔵 ∈ �̂�⟧]𝔵∈dom(�̂�) =⋀⟦�̂� ∈ �̂�⟧𝑘∈𝑛 ∧⋀⟦�̂� ∈ �̂�⟧𝑙∈𝑚 = {1,  if 𝑚 = 𝑛,0,  if 𝑚 ≠ 𝑛. 
∎ 

6.3.4 Internal Cross product 

When validating the axiom of pair, we have verified that the internal pair of 𝔲, 𝔳 ∈ 𝑉(𝐻) is given by {𝔲, 𝔳}(𝐻), where dom({𝔲, 𝔳}(𝐻)) = {𝔲, 𝔳} and {𝔲, 𝔳}(𝐻)(𝔲) = {𝔲, 𝔳}(𝐻)(𝔳) = 1. It is then clear that the internal 

ordered pair of 𝔲, 𝔳 is given as (𝔲, 𝔳)(𝐻) = {{𝔲, 𝔲}(𝐻), {𝔲, 𝔳}(𝐻)}(𝐻). In this section, we will show that the cross 

product of 𝔞, 𝔟 ∈ 𝑉(𝐻) can be given as  
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cp(𝔞, 𝔟) = {〈(𝔲, 𝔳)(𝐻), 𝔞(𝔲) ∧ 𝔟(𝔳)〉: 𝔲 ∈ dom(𝔞), 𝔳 ∈ dom(𝔟)}, 
hence avoiding taking internal collection and separation. 

ⓂLemma 6.32: For 𝔞, 𝔟 ∈ 𝑉(𝐻), the just defined cp(𝔞, 𝔟) gives us the internal cross-product. 

Proof:  We know that all theorems of 𝐈𝐙𝐅 hold inside 𝑉(𝐻), hence is suffices to verify that 𝑉(𝐻) ⊨ ∀𝑤 (𝑤 ∈ cp(𝔞, 𝔟) ↔ ∃𝑥 ∈ 𝔞 ∃𝑦 ∈ 𝔟 𝑤 = (𝑥, 𝑦)). 
So, let 𝔴 ∈ 𝑉(𝐻), then ⟦𝔴 ∈ cp(𝔞, 𝔟)⟧ = ⋁ [cp(𝔞, 𝔟)(𝔶) ∧ ⟦𝔶 = 𝑤⟧]𝔶∈dom(cp(𝔞,𝔟)) = ⋁ [𝔞(𝔲) ∧ 𝔟(𝔳) ∧ ⟦(𝔲, 𝔳)(𝐻) = 𝔴⟧]𝔲∈dom(𝔞)𝔳∈dom(𝔟)= ⋁ [𝔞(𝔲) ∧ 𝔟(𝔳) ∧ ⟦(𝑢, 𝔳) = 𝔴⟧]𝔲∈dom(𝔞)𝔳∈dom(𝔟)

= ⟦(∃𝑥 ∈ 𝔞 ∃𝑦 ∈ 𝔟 𝔴 = (𝑥, 𝑦))⟧ 
As 𝔴 was arbitrary, this shows the lemma.  ∎ 

The special case that is important for us is the internal cross product cp(𝜔,𝜔). Since cp(𝜔,𝜔) = 𝜔 × �̂�, 

the lemma implies that 𝑉(𝐻) ⊨ 𝜔 × 𝜔 = 𝜔 × �̂�. 

6.3.5 Internal set of finite sequences of natural numbers 

It is easy to see that internally, 𝜔�̂� = 𝜔𝑛. To define the set of finite sequences of natural numbers, we may 

mimic the definition of 𝜔𝜔in 𝐈𝐙𝐅,  using the axioms of separation, union and collection. We thus imme-

diately get that 𝑉(𝐻) ⊨ 𝜔<𝜔 = Un(Sep∃𝑛 𝑦=𝜔𝑛 (Col𝑦=𝜔𝑛(𝜔))). In this section, we want to prove that 𝜔<𝜔 

has a simpler internal representative, namely 𝜔<�̂�. 

ⓂLemma 6.33: 𝑉(𝐻) ⊨ {𝜔𝑛: 𝑛 ∈ 𝜔}̂ = Sep∃𝑛 𝑦=𝜔𝑛 (Col𝑦=𝜔𝑛(𝜔)) 
Proof:  

⟦𝜔�̂� ∈ Sep∃𝑛 𝑦=𝜔𝑛 (Col𝑦=𝜔𝑛(𝜔))⟧ = ⋁ [Sep∃𝑛 𝑦=𝜔𝑛 (Col𝑦=𝜔𝑛(𝜔)) (𝔶) ∧ ⟦𝜔�̂� = 𝔶⟧]𝔶∈𝑉𝜔(𝐻) =
= ⋁ [⟦∃𝑛 𝔶 = 𝜔𝑛⟧ ∧ ⟦𝜔�̂� = 𝔶⟧]𝔶∈𝑉𝜔(𝐻) ≥ ⟦∃𝑛 𝜔�̂� = 𝜔𝑛⟧ ∧ ⟦𝜔�̂� = 𝜔�̂�⟧ = 1. 

On the other hand, for 𝔶 ∈ 𝑉𝜔𝐻 ⟦∃𝑛 𝔶 = 𝜔𝑛⟧ → ⟦𝔶 ∈ {𝜔𝑛: 𝑛 ∈ 𝜔}̂ ⟧ = ⟦∃𝑛 𝔶 = 𝜔𝑛⟧ → ⋁⟦𝜔�̂� = 𝔶⟧𝑛∈𝜔 = 
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= ⟦∃𝑛 𝔶 = 𝜔𝑛⟧ → ⟦∃𝑛 𝔶 = 𝜔�̂�⟧ = 1. ∎ 

ⓂProposition 6.34: 𝑉(𝐻) ⊨ 𝜔<�̂� = Un(Sep∃𝑛 𝑦=𝜔𝑛 (Col𝑦=𝜔𝑛(𝜔))) and hence 𝑉(𝐻) ⊨ 𝜔<𝜔 = 𝜔<�̂� 

Proof: In the light of the last lemma, it suffices to show that  𝑉(𝐻) ⊨ 𝜔<�̂� = Un({𝜔𝑛: 𝑛 ∈ 𝜔}̂ ). 
Recall, that the domain of 𝑈 = Un({𝜔𝑛: 𝑛 ∈ 𝜔}̂ ) is given by the union of the domains of 𝐿 = {𝜔𝑛: 𝑛 ∈ 𝜔}̂  

and 𝑈(𝔵) = ⟦∃𝑤 ∈ 𝐿. 𝔵 ∈ 𝑤⟧, for 𝔵 in one of these domains. 

So let ((0, 𝑎0),… (𝑛 − 1, 𝑎𝑛−1))̂ ∈ dom(𝜔<�̂�), then 

⟦((0, 𝑎0), … (𝑛 − 1, 𝑎𝑛−1))̂ ∈ 𝑈⟧ = ⋁ (⟦∃𝑤 ∈ 𝐿. 𝔵 ∈ 𝑤⟧ ∧ ⟦((0, 𝑎0),… (𝑛 − 1, 𝑎𝑛−1))̂ = 𝔵⟧)𝔵∈dom(𝑈)≥ ⟦∃𝑤 ∈ 𝐿. ((0, 𝑎0), … (𝑛 − 1, 𝑎𝑛−1))̂ ∈ 𝑤⟧ ≥ ⟦((0, 𝑎0), … (𝑛 − 1, 𝑎𝑛−1))̂ ∈ 𝜔�̂�⟧ = 1. 
On the other hand, let 𝔵 ∈ dom(𝑈), then 𝑈(𝑥) → ⟦𝔵 ∈ 𝜔<�̂�⟧ = ⟦∃𝑤 ∈ 𝐿. 𝔵 ∈ 𝑤⟧ → ⋁ ⟦𝔵 = ((0, 𝑎0), … (𝑛 − 1, 𝑎𝑛−1))⟧𝑛∈𝜔𝑎0,…,𝑎𝑛−1∈𝜔  

   = ⋁ ⟦𝔵 = ((0, 𝑎0), … (𝑛 − 1, 𝑎𝑛−1))⟧𝑛∈𝜔𝑎0,…,𝑎𝑛−1∈𝜔 → ⋁ ⟦𝔵 = ((0, 𝑎0), … (𝑛 − 1, 𝑎𝑛−1))⟧𝑛∈𝜔𝑎0,…,𝑎𝑛−1∈𝜔 = 1. 
∎ 

6.3.6 Internal function space 

We want to find a representative for the internal function space 𝜔𝜔. Externally, this space is defined as 

subset of 𝒫(𝜔 × 𝜔). Hence, if we repeat this construction inside 𝑉(𝐻) i.e. if we set  𝔴𝜔 = Sep𝛼 is total ∧𝛼 is single-valued (Pow(𝜔 × �̂�)), 
 where 𝛼 is total ≡ ∀𝑚 ∈ 𝜔 ∃𝑛 ∈ 𝜔. (𝑚, 𝑛) ∈ 𝛼, 𝛼 is single-valued ≡ ∀𝑚 ∈ 𝜔 ∀𝑛1, 𝑛2 ∈ 𝜔 (((𝑚, 𝑛1) ∈ 𝛼 ∧ (𝑚, 𝑛2) ∈ 𝛼) → 𝑛1 = 𝑛2). 
we immediately get 𝑉(𝐻) ⊨ (𝜔𝜔 = 𝔴𝜔). However, another representation of 𝜔𝜔 will be useful in the case 

where the underlying Heyting-algabra has a clopen basis. Note that dom(𝔴𝜔) is the whole set 𝐻𝜔×�̂�. We 

want to restrict our attention to those 𝛽 ∈ 𝐻𝜔×�̂�, where ⟦𝛽 is total⟧ ∧⟦𝛽 is single-valued⟧ = 1: 
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ⓂTheorem 6.35: Let 𝐻 be a complete Heyting algebra with clopen basis. Then 𝔉, defined as dom(𝔉) ={𝛽 ∈ 𝐻𝜔×�̂�: ⟦𝛽 is total⟧ ∧ ⟦𝛽 is single-valued⟧ = 1} and 𝔉(𝛽) = 1, for 𝛽 ∈ dom(𝔉), is another representa-

tive of internal 𝜔𝜔, i.e. 𝑉(𝐻) ⊨ (𝔉 = 𝜔𝜔). 
We will show the rather technical proof of ⟦𝔉 = 𝔴𝜔⟧ = 1 in a sequence of several lemmas. We start with 

calculating the following values: 

ⓂLemma 6.36: For all 𝛼 ∈ 𝐻𝜔×�̂�, the following hold 

1. ⟦(𝑚, 𝑛) ∈ 𝛼⟧ = 𝛼((𝑚, 𝑛)̂ ), for all 𝑚,𝑛 ∈ 𝜔, 
2. ⟦𝛼 is total⟧ = ⋀ ⋁ 𝛼((𝑚,𝑛)̂ )𝑛𝑚 , 

3. ⟦𝛼 is single-valued⟧ = ⋀ ¬(𝛼((𝑚,𝑛1)̂ ) ∧ 𝛼((𝑚,𝑛2)̂ ))𝑚𝑛1≠𝑛2  

Proof: Using Lemma 6.31, we have for 1., ⟦(𝑚, 𝑛) ∈ 𝛼⟧ = ⋁ [𝛼(𝔵) ∧ ⟦(𝑚, 𝑛)̂ = 𝔵⟧]𝔵∈dom(𝛼) = ⋁ [𝛼((𝑙, 𝑘)̂) ∧ ⟦(𝑚, 𝑛)̂ = (𝑙, 𝑘)̂⟧]𝑙,𝑘∈𝜔 = 𝛼((𝑚, 𝑛)̂ ) ∧⟦(𝑚, 𝑛)̂ = (𝑚, 𝑛)̂ ⟧ = 𝛼((𝑚, 𝑛)̂ ). 
Using this, ⟦𝛼 is total⟧ = ⟦∀𝑚 ∈ 𝜔 ∃𝑛 ∈ 𝜔. (𝑚, 𝑛) ∈ 𝛼⟧ = ⟦∀𝑚 ∈ �̂� ∃𝑛 ∈ �̂�. (𝑚, 𝑛)̂ ∈ 𝛼⟧ =⋀⋁⟦(𝑚, 𝑛)̂ ∈ 𝛼⟧𝑛𝑚=⋀⋁𝛼((𝑚, 𝑛)̂ )𝑛𝑚 . 
And finally, ⟦𝛼 is single-valued⟧ = ⟦∀𝑚 ∈ 𝜔 ∀𝑛1, 𝑛2 ∈ 𝜔 (((𝑚, 𝑛1) ∈ 𝛼 ∧ (𝑚, 𝑛2) ∈ 𝛼) → 𝑛1 ≠ 𝑛2)⟧= ⟦∀𝑚 ∈ �̂� ∀𝑛1, 𝑛2 ∈ �̂� (((𝑚, 𝑛1)̂ ∈ 𝛼 ∧ (𝑚, 𝑛2)̂ ∈ 𝛼) → 𝑛1 ≠ 𝑛2)⟧= ⋀ [(⟦(𝑚, 𝑛1)̂ ∈ 𝛼⟧ ∧ ⟦(𝑚, 𝑛2)̂ ∈ 𝛼⟧) → ⟦𝑛1 ≠ 𝑛2⟧]𝑚,𝑛1,𝑛2= ⋀ [(𝛼((𝑚, 𝑛1)̂ )∧ 𝛼((𝑚, 𝑛2)̂ )) → 0]𝑚𝑛1,𝑛2 = ⋀ ¬(𝛼((𝑚, 𝑛1)̂ ) ∧ 𝛼((𝑚, 𝑛2)̂ ))𝑚𝑛1,𝑛2 . 

∎ 

ⓂLemma 6.37: Let ℎ ∈ 𝐻 be clopen and 𝛼 ∈ 𝐻𝜔×�̂� such that ℎ ≤ ⟦𝛼 is total⟧ ∧ ⟦𝛼 is single-valued⟧. Then 

there is some 𝛽ℎ,𝛼 ∈ 𝔉 such that ℎ ≤ ⟦𝛼 = 𝛽ℎ,𝛼⟧. 
Proof: For the sake of readability of this proof, let us write 𝛼(𝑚, 𝑛) instead of 𝛼((𝑚, 𝑛)̂ ). In the light of 

Lemma 6.36, the hypothesis ℎ ≤ ⟦𝛼 is total⟧ ∧ ⟦𝛼 is single-valued⟧ reads 
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ℎ ≤⋀⋁𝛼(𝑚, 𝑛)𝑛𝑚 ∧ ⋀ ¬(𝛼(𝑚, 𝑛1) ∧ 𝛼(𝑚, 𝑛2))𝑚𝑛1≠𝑛2 . 
We define the element 𝛽ℎ,𝛼 = 𝛽 as 𝛽(𝑚, 0) = (𝛼(𝑚, 0) ∧ ℎ) ∨ ¬ℎ, 𝛽(𝑚, 𝑛) = 𝛼(𝑚, 𝑛) ∧ ℎ                   for 𝑛 > 0. 
Let us first show that 𝛽 ∈ dom(𝔉), i.e. ⟦𝛽 is total⟧ ∧ ⟦𝛽 is single-valued⟧ = 1. 

For totality, we have for each 𝑚, 

⋁𝛽(𝑚, 𝑛)𝑛 = 𝛽(𝑚, 0) ∨⋁𝛽(𝑚, 𝑛)𝑛>0 = (𝛼(𝑚, 0) ∧ ℎ) ∨ ¬ℎ ∨⋁(𝛼(𝑚, 𝑛) ∧ ℎ)𝑛>0 = ¬ℎ ∨ (ℎ ∧⋁𝛼(𝑚, 𝑛)𝑛 )= ¬ℎ ∨ ℎ = 1. 
Note that ⟦𝛽 is single-valued⟧ = 1 means that 𝛽(𝑚, 𝑛1) ∧ 𝛽(𝑚, 𝑛2) = 0 for 𝑛1 ≠ 𝑛2. We will use the fact 

that ℎ ≤ ¬(𝛼(𝑚, 𝑛1) ∧ 𝛼(𝑚, 𝑛2)), i.e. ℎ ∧ (𝛼(𝑚, 𝑛1) ∧ 𝛼(𝑚, 𝑛2)) = 0 for 𝑛1 ≠ 𝑛2. Indeed, for 𝑛 > 0, 𝛽(𝑚, 0) ∧ 𝛽(𝑚, 𝑛) = [(𝛼(𝑚, 0) ∧ ℎ) ∨ ¬ℎ] ∧ (𝛼(𝑚, 𝑛) ∧ ℎ)= [(𝛼(𝑚, 0) ∧ ℎ) ∧ (𝛼(𝑚, 𝑛) ∧ ℎ)] ∨ [¬ℎ ∧ (𝛼(𝑚, 𝑛) ∧ ℎ)]≤ [(𝛼(𝑚, 0) ∧ 𝛼(𝑚, 𝑛)) ∧ ℎ] ∨ [¬ℎ ∧ ℎ] = 0 ∨ 0 = 0. 
For 𝑛1, 𝑛2 ≠ 0 and 𝑛1 ≠ 𝑛2, 𝛽(𝑚, 𝑛1) ∧ 𝛽(𝑚, 𝑛2) = (𝛼(𝑚, 𝑛1) ∧ ℎ) ∧ (𝛼(𝑚, 𝑛2) ∧ ℎ) = (𝛼(𝑚, 𝑛1) ∧ 𝛼(𝑚, 𝑛2)) ∧ ℎ = 0, 
hence 𝛽 ∈ dom(𝔉). Finally, again invoking Lemma 6.36, ⟦𝛼 = 𝛽⟧ = ⋀ [𝛼(𝑚, 𝑛) → ⟦(𝑚, 𝑛) ∈ 𝛽⟧](𝑚,𝑛) ∧ ⋀ [𝛽(𝑚, 𝑛) → ⟦(𝑚, 𝑛) ∈ 𝛼⟧](𝑚,𝑛)= ⋀ [𝛼(𝑚, 𝑛) → 𝛽(𝑚, 𝑛)](𝑚,𝑛) ∧ ⋀ [𝛽(𝑚, 𝑛) → 𝛼(𝑚, 𝑛)](𝑚,𝑛) . 
We easily see that 𝛼(𝑚, 𝑛) ∧ ℎ ≤ 𝛽(𝑚, 𝑛) and 𝛽(𝑚, 𝑛) ∧ ℎ ≤ 𝛼(𝑚, 𝑛) for all 𝑚, 𝑛 . Hence, ℎ ≤ 𝛼(𝑚, 𝑛) →𝛽(𝑚, 𝑛) and ℎ ≤ 𝛽(𝑚, 𝑛) → 𝛼(𝑚, 𝑛) which shows that ℎ ≤ ⟦𝛼 = 𝛽⟧. ∎ 

Having shown this lemma, the proof of Theorem 6.35 follows easily: 

Proof: Clearly, for 𝛽 ∈ 𝔉, we have ⟦𝛽 ∈ 𝔴𝜔⟧ = ⋁ [𝔴𝜔(𝛼) ∧ ⟦𝛽 = 𝛼⟧]𝛼∈dom(𝔴𝜔) = ⋁ [⟦𝛼 is total⟧ ∧ ⟦𝛼 is single-valued⟧ ∧ ⟦𝛽 = 𝛼⟧]𝛼∈𝐻𝜔×�̂�≥ ⟦𝛽 is total⟧ ∧ ⟦𝛽 is single-valued⟧ ∧ ⟦𝛽 = 𝛽⟧ = 1. 
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Using Lemma 6.37, and writing for 𝛼 ∈ 𝐻𝜔×�̂� , the element ⟦𝛼 is total⟧ ∧ ⟦𝛼 is single-valued⟧ as join of clo-

pen elements, ⋁𝐵′, we have ⟦𝛼 ∈ 𝔉⟧ = ⋁ [𝔉(𝛽) ∧ ⟦𝛼 = 𝛽⟧]𝛽∈dom(𝔉) ≥ ⋁⟦𝛼 = 𝛽ℎ,𝛼⟧ℎ∈𝐵′ ≥ ⋁ ℎℎ∈𝐵′ = ⟦𝛼 is total⟧ ∧ ⟦𝛼 is single-valued⟧. 
Putting these things together, ⟦𝔉 = 𝔴𝜔⟧ = ⋀ [𝔴𝜔(𝛼) → ⟦𝛼 ∈ 𝔉⟧]𝛼∈dom(𝔉) ∧ ⋀ [𝔉(𝛽) → ⟦𝛽 ∈ 𝔴𝜔⟧]𝛽∈dom(𝔉)= ⋀ [⟦𝛼 is total⟧ ∧ ⟦𝛼 is single-valued⟧ → ⟦𝛼 ∈ 𝔉⟧]𝛼∈dom(𝔉) ∧ ⋀ ⟦𝛽 ∈ 𝔴𝜔⟧𝛽∈dom(𝔉) = 1 ∧ 1 = 1. 

∎ 

6.4 Independence of Bar induction 
In this chapter, we will show that  

Using this theorem, we will show using the topology 𝒯 on ℕ∗ from Example 6.17 that  Cons(𝐙𝐅) ⇒ Cons(𝐈𝐙𝐅 + ¬BID). 
The proofs in this and the next two chapters is taken from [59]. In order to apply Theorem 6.35, we need 

an observation about the basic open sets 𝑈𝑢,𝜆: For simplicity, consider the finite path 𝑢 = 〈2,2〉. In the 

image we mark 𝑈𝑢,𝜆 in red and 𝑈〈 〉, 𝜇 in green, where 〈 〉 is the empty sequence and 𝜇 = 〈2,3,0,0,0,… 〉. 

 

𝑢 

𝜇 

𝜆 

… … 

… … 
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Note that 𝑈𝑢,𝜆, 𝑈〈 〉, 𝜇 and the grey area are disjoint and their union is ℕ∗. The grey area may be written as ⋃ {𝑣: 𝑣 ⊇ 𝑥}𝑥∉𝑈𝑢,𝜆∪𝑈〈 〉,𝜇 . Since {𝑣: 𝑣 ⊇ 𝑥} = 𝑈𝑥,𝑥∗0̅, where 0̅ = 〈0,0,0,… 〉, this shows that 𝑈𝑢,𝜆 is clopen. Let 

us formalize this argument: 

Proposition 6.38: The basic sets 𝑈𝑢,𝜆 are clopen and so are the sets 𝑂𝑢 = ℕ∗ ∖ {𝑣: 𝑣 ⊇ 𝑢} for 𝑢 ∈ ℕ∗. 
Proof: Let 𝑢 be of length 𝑛, i.e. 𝑢 = 〈𝑢0, … , 𝑢𝑛−1〉. We define the infinite path 𝜇 = 〈𝑢0, … , 𝑢𝑛−1 + 1,0,0,… 〉. 
Notice that 𝑈𝑢,𝜆 and 𝑈〈 〉,𝜇 are disjoint and all points not in 𝑈𝑢,𝜆 ∪ 𝑈〈 〉,𝜇 lie to the left of it.  

Hence, we may write ℕ∗ as the following disjoint union of open sets: ℕ∗ = 𝑈𝑢,𝜆 ∪ 𝑈〈 〉,𝜇 ∪ ⋃ {𝑣: 𝑣 ⊇ 𝑥}𝑥∉𝑈𝑢,𝜆∪𝑈〈 〉,𝜇 , 
Each 𝑂𝑢 is clopen: This works almost the same as before: Set 𝜆 = 𝑢 ∗ 0̅, then {𝑣: 𝑣 ⊇ 𝑢} = 𝑈𝑢,𝜆 and let 𝜇 be 

as before. Again, we can write: 

ℕ∗ = 𝑈𝑢,𝜆 ∪ 𝑈〈 〉,𝜇 ∪ ⋃ {𝑣: 𝑣 ⊇ 𝑥}𝑥∉𝑈𝑢,𝜆∪𝑈〈 〉,𝜇⏟                  ,𝑂𝑢
 

where all three sets are clopen and disjoint. ∎ 

ⓂLemma 6.39: Let 𝑡 ∈ ℕ∗, 𝛼 ∈ 𝔉 and 𝑚 ∈ 𝜔. Then there is some 𝑢𝑡 ∈ 𝜔<𝜔 such that 𝑡 ∈ ⟦𝛼|𝑚 = 𝑢�̂�⟧. 
Proof: 𝛼 ∈ 𝔉 means that for each 𝑛, 

⋃𝛼((𝑛, 𝑘)̂)•
𝑘 = ℕ∗. 

Since this union is disjoint, for each 𝑛, there is a unique 𝑘𝑛 such that 𝑡 ∈ 𝛼((𝑛, 𝑘𝑛)̂ ). In particular, the set 𝑈 = ⋂ 𝛼((𝑛, 𝑘𝑛)̂ )𝑛<𝑚  is an open neighborhood of 𝑡. Let 𝑢𝑡 be the sequence (𝑘𝑛)𝑛<𝑚, then ⟦𝛼|𝑚 = 𝑢�̂�⟧ = ⋀ [𝛼((𝑛, 𝑘)̂) → ⟦(𝑛, 𝑘)̂ ∈ 𝑢�̂�⟧](𝑛,𝑘)̂∈dom(𝛼|𝑚) ∧ ⋀ [𝑢𝑡((𝑛, 𝑘)̂) → ⟦(𝑛, 𝑘)̂ ∈ 𝛼⟧](𝑛,𝑘)̂∈dom(𝑢𝑡)= ⋀ [¬𝛼((𝑛, 𝑘)̂)](𝑛,𝑘)̂∈dom(𝛼)𝑢𝑡(𝑛)≠𝑘𝑛<𝑚
∧ ⋂ 𝛼((𝑛, 𝑘𝑛)̂ )𝑛<𝑚 . 

We already know that 𝑡 is contained in the second conjunct. For each 𝑛 < 𝑚, 𝛼((𝑛, 𝑘𝑛)̂ ) ⊆ ¬𝛼((𝑛, 𝑘)̂) for 𝑘 ≠ 𝑘𝑛, by disjointness. Hence, 
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𝑡 ∈ 𝑈 ⊆ 𝛼((𝑛, 𝑘𝑛)̂ ) ⊆ ⋀ [¬𝛼((𝑛, 𝑘)̂)](𝑛,𝑘)̂∈dom(𝛼)𝑢𝑡(𝑛)≠𝑘
, 

for each 𝑛 < 𝑚, which shows that the first conjunct is an open neighborhood of 𝑡 as well. ∎ 

We can now show that the special case of BID 

[∀𝛼 ∈ 𝜔𝜔. ∃𝑛 ∈ 𝜔. 𝛼|𝑛 ∈ 𝔅 ∧∀𝑢 ∈ 𝜔<𝜔 (𝑢 ∈ 𝔅 ∨ 𝑢 ∉ 𝔅) ∧∀𝑢 ∈ 𝜔<𝜔(∀𝑘 ∈ 𝜔 𝑢 ∗ 〈𝑘〉 ∈ 𝔅 → 𝑢 ∈ 𝔅)] → 〈 〉 ∈ 𝔅, 
is not valid in 𝑉(𝒯) . Here 𝔅  is given by dom(𝔅) = dom(𝔴<𝜔)  and 𝔅(�̂�) = 𝑂𝑢 , where 𝑂𝑢 = ℕ∗ ∖{𝑣 ∈ ℕ∗: 𝑣 ⊇ 𝑢}. Note that for 𝑢 ∈ 𝜔<𝜔, we have that ⟦�̂� ∈ 𝔅⟧ = ⋃ [𝔅(�̂�) ∩ ⟦�̂� = �̂�⟧]𝑣∈𝜔<𝜔 = 𝔅(�̂�) = 𝑂𝑢. 
We will show that all the antecedents evaluate to ℕ∗ while the consequent has truth value ∅. Indeed, we 

immediately get that ⟦〈 〉 ∈ 𝔅⟧ = 𝑂〈 〉 = ℕ∗ ∖ {𝑣 ∈ ℕ∗: 𝑣 ⊇ 〈 〉} = ℕ∗ ∖ ℕ∗ = ∅.  
For the first antecedent, let 𝛼 ∈ 𝔉. For each 𝑡 ∈ ℕ∗ let 𝑚 = length(𝑡) + 1. Then clearly, 𝑡 ∈ 𝑂𝑢 for each 𝑢 ∈ℕ∗. As in Lemma 6.39, let 𝑢𝑡 ∈ 𝜔<𝜔 be such that 𝑡 ∈ ⟦𝛼|𝑚 = 𝑢�̂�⟧. Then 𝑡 ∈ ⟦𝛼|𝑚 = 𝑢�̂�⟧ ∩ 𝑂𝑢𝑡 = ⟦𝛼|𝑚 = 𝑢�̂�⟧ ∩ ⟦𝑢�̂� ∈ 𝔅⟧ ⊆ ⋃ [⟦𝛼|𝑚 = 𝑢⟧ ∩ ⟦𝑢 ∈ 𝔅⟧]𝑢∈𝜔<𝜔 ⊆ ⋃ ⋃ [⟦𝛼|𝑛 = 𝑢⟧ ∩ ⟦𝑢 ∈ 𝔅⟧]𝑢∈𝜔<𝜔 𝑛∈𝜔 = ⟦∃𝑛 ∈ 𝜔. ∃𝑢 ∈ 𝜔<𝜔(𝛼|𝑛 = 𝑢 ∧ 𝑢 ∈ 𝔅)⟧= ⟦∃𝑘 ∈ 𝜔. 𝛼|𝑘 ∈ 𝔅⟧. 
The second antecedent is basically the fact that the 𝑂𝑢s are clopen ( 

Note that 𝑈𝑢,𝜆, 𝑈〈 〉, 𝜇 and the grey area are disjoint and their union is ℕ∗. The grey area may be written as ⋃ {𝑣: 𝑣 ⊇ 𝑥}𝑥∉𝑈𝑢,𝜆∪𝑈〈 〉,𝜇 . Since {𝑣: 𝑣 ⊇ 𝑥} = 𝑈𝑥,𝑥∗0̅, where 0̅ = 〈0,0,0,… 〉, this shows that 𝑈𝑢,𝜆 is clopen. Let 

us formalize this argument: 

Proposition 6.38): Let 𝑢 ∈ ℕ∗, then ⟦�̂� ∈ 𝔅 ∨ �̂� ∉ 𝔅⟧ = 𝔅(�̂�) ∪ ¬𝔅(�̂�) = 𝔅(�̂�) ∪ Int(ℕ∗ ∖ 𝔅(�̂�)) = 𝑂𝑢 ∪ Int(ℕ∗ ∖ 𝑂𝑢) = 𝑂𝑢 ∪ (ℕ∗ ∖ 𝑂𝑢) = ℕ∗. 
Finally, the third antecedent: For 𝑢 ∈ ℕ∗, we have 
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⟦∀𝑘 ∈ 𝜔. 𝑢 ∗ 〈𝑘〉̂ ∈ 𝔅⟧ =⋀⟦𝑢 ∗ 〈𝑘〉̂ ∈ 𝔅⟧𝑘∈𝜔 =⋀⟦𝑢 ∗ 〈𝑘〉̂ ∈ 𝔅⟧𝑘∈𝜔 = Int (⋂𝑂𝑢∗〈𝑘〉𝑘∈ℕ )
= Int (⋂ℕ∗ ∖ {𝑣 ∈ ℕ∗|𝑣 ⊇ 𝑢 ∗ 〈𝑘〉}𝑘∈ℕ ) = Int (ℕ∗ ∖⋃{𝑣 ∈ ℕ∗|𝑣 ⊇ 𝑢 ∗ 〈𝑘〉}𝑘∈ℕ )= Int({𝑢} ∪ (ℕ∗ ∖ {𝑣 ∈ ℕ∗|𝑣 ⊇ 𝑢})) = ℕ∗ ∖ {𝑣 ∈ ℕ∗|𝑣 ⊇ 𝑢} = 𝔅(𝑢) = ⟦�̂� ∈ 𝔅⟧. 

where the equality before the last holds, since any open set containing 𝑢 must also contain some 𝑢 ∗ 〈𝑘〉. 
We thus have ⟦∀𝑘 ∈ 𝜔. 𝑢 ∗ 〈𝑘〉̂ ∈ 𝔅 → �̂� ∈ 𝔅⟧ = ⟦∀𝑘 ∈ 𝜔. 𝑢 ∗ 〈𝑘〉̂ ∈ 𝔅⟧ → ⟦�̂� ∈ 𝔅⟧ = ⟦�̂� ∈ 𝔅⟧ → ⟦�̂� ∈ 𝔅⟧ = ℕ∗. 
This concludes the proof of independence of BID. 

6.5 Compatibility with the Fan theorem 
In this section we will show that 𝐈𝐙𝐅 is compatible with the fan theorem. To be more precise, we will use  

Theorem 6.11 and the topology 𝒯 on ℕ∗ from Example 6.17 to show: 

ⓂTheorem 6.40: Cons(𝐙𝐅) ⇒ Cons(𝐈𝐙𝐅 + 𝐅). 
We will start with discussing some equivalent formulations of the fan theorem. 

6.5.1 Fan theorem and equivalent formulations  

First, we want to topologize any fan in the following way: Let 𝑇 be a fan (thought of as infinite paths of 

the underlying tree). We define the following topology on 𝑇 : Let 𝑇<𝜔  denote the set of finite paths 

through 𝑇, starting at the root. For each 𝑢 ∈ 𝑇<𝜔, let 𝑈𝑢 = {𝛼 ∈ 𝑇: 𝛼 ⊇ 𝑢}. Then ℬ = {𝑈𝑢: 𝑢 ∈ 𝑇<𝜔} forms 

a basis of a topology on 𝑇. By 𝑇2 we denote the important case of the binary tree. We consider the follow-

ing versions of the fan theorem: (∀𝛼 ∈ 𝑇 ∃𝑛 ∈ 𝜔 𝜙(𝛼|𝑛)) → (∃𝑚 ∈ 𝜔 ∀𝛼 ∈ 𝑇 ∃𝑛 < 𝑚 𝜙(𝛼|𝑛))  (𝐅𝑇) 
The space 𝑇 is compact. (𝐅𝑇𝐜) (∀𝛼 ∈ 2𝜔 ∃𝑛 ∈ 𝜔 𝜙(𝛼|𝑛)) → (∃𝑚 ∈ 𝜔 ∀𝛼 ∈ 2𝜔 ∃𝑛 < 𝑚.𝜙(𝛼|𝑛))  (𝐅2) 
The space 𝑇2 is compact. (𝐅2𝐜) 

We will show in the following that all these formulations come down to the same thing. We start with 

the following two results: 

Lemma 6.41: Each fan 𝑇 is homeomorphic to a subfan of 𝑇2. 

Proof: We can think of the underlying tree of 𝑇 as subtree of 𝜔𝜔, where the nodes are labelled by finite 

sequences of natural numbers in such a way that 𝑢 ∗ 〈𝑘〉 ∈ 𝑇<𝜔 → 𝑢 ∗ 〈𝑖〉 ∈ 𝑇<𝜔 for all 𝑖 < 𝑘. Given 𝑢 ∈𝑇<𝜔 of length 𝑛, we define Φ(𝑢) as the finite sequence 
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0,… ,0⏟  𝑢(0)+1many , 1, … ,1⏟  𝑢(1)+1many , 0, … ,0⏟  𝑢(2)+1many , 1,… ,1,⏟  𝑢(3)+1many … , ∗, … ,∗⏟  𝑢(𝑛−1)+1many . 
Then Φ:𝑇 → 𝑇2 is defined by Φ(𝛼) = ⋃ Φ(𝛼|𝑛)𝑛∈𝜔 . By our assumption on the structure of 𝑇, Φ is a map-

ping of fans, i.e. Φ[𝑇] is a fan as well. Clearly, Φ is injective. Given 𝛼 ∈ 𝑇 and an open neighborhood 𝑈 

of Φ(𝛼), we may assume that 𝑈 is of the form 𝑈Φ(𝛼|𝑛). Then for all 𝛽 ∈ 𝑈𝛼|𝑛, we have that Φ(𝛽) ∈ 𝑈.  

For the continuity of Φ−1  the fact that 𝑇  is finitely branching is crucial: For each 𝑛 , let 𝛽𝑖 =max{𝛼(𝑖): 𝛼 ∈ 𝑇}. Now, for any open neighborhood 𝑈 of 𝛼 (again, assume 𝑈 = 𝑈𝛼|𝑛), we have to find a 

neighborhood 𝑉 of Φ(𝛼) such that for all 𝛽 ∈ 𝑉, Φ−1(𝛽) ∈ 𝑈. Such a 𝑉 can be given as 𝑈Φ(𝛼|𝑚), where 𝑚 = ∑ 𝛽𝑖𝑛−1𝑖=0 + 𝑛. ∎ 

Lemma 6.42: Every subfan 𝑇′ of a fan 𝑇 is closed. 

Proof: For each path 𝛼 ∈ 𝑇 not in 𝑇′, there is some initial segment 𝛼|𝑛 ∉ 𝑇𝑛. Hence 𝑈𝛼|𝑛 is an open neigh-

borhood of 𝛼 disjoint from 𝑇. We can write 𝑇 ∖ 𝑇′ as the union of all such neighborhoods. ∎ 

We can now establish equivalence of the different versions of the fan theorem: 

Theorem 6.43: For each fan 𝑇, 𝐅𝑇 and 𝐅𝑇𝐜 are equivalent over 𝐈𝐙𝐅. 

Proof: 𝐅𝑇𝐜 → 𝐅𝑇: Suppose, ∀𝛼 ∈ 𝑇. ∃𝑛 ∈ 𝜔.𝜙(𝛼|𝑛). We construct an open cover 𝒪 for 𝑇 : Add for each 𝛼 

and 𝑛 with 𝜙(𝛼|𝑛) the set 𝑈𝛼|𝑛 to 𝒪. By the premise and the fact 𝛼 ∈ 𝑈𝛼|𝑛, 𝒪 is indeed an open cover. By 

compactness, there are 𝛼0, … , 𝛼𝑘−1 ∈ 𝑇  and 𝑛1, … , 𝑛𝑘−1 ∈ 𝜔  such that (𝑈𝛼𝑖|𝑛𝑖)𝑖<𝑘  covers 𝑇 as well. Let 𝑚 = max{𝑛𝑖: 𝑖 < 𝑘}. For each 𝛼 ∈ 𝑇, there is some 𝑖 < 𝑘 such that 𝛼 ∈ 𝑈𝛼𝑖|𝑛𝑖 . Since 𝜙(𝛼𝑖|𝑛𝑖) holds, and 𝛼𝑖|𝑛𝑖 = 𝛼|𝑛𝑖, we conclude 𝜙(𝛼|𝑛𝑖).  𝐅𝑇 → 𝐅𝑇𝐜: We show that every open cover of basic sets has a finite subcover: Let 𝒪 ⊆ ℬ with ⋃𝒪 = 𝑇. We 

define the formula 𝜙 on finite sequences as 𝜙(𝑢) ≡ 𝑈𝑢 ∈ 𝒪. Since 𝒪 covers 𝑇,        ∀𝛼 ∈ 𝑇. ∃𝑈𝑢 ∈ 𝒪. 𝛼 ∈ 𝑈𝑢 ⇔ ∀𝛼 ∈ 𝑇. ∃𝑢 ∈ 𝑇<𝜔. (𝛼|dom(𝑢) = 𝑢 ∧ 𝜙(𝑢)) ⇔ ∀𝛼 ∈ 𝑇. ∃𝑛 ∈ 𝜔. 𝛼 ∈ 𝜙(𝛼|𝑛). 
Hence, there is some 𝑚 ∈ 𝜔 such that for all 𝛼 ∈ 𝑇, there is some 𝑛 ∈ 𝜔 with 𝜙(𝛼|𝑛). This means that for 

each 𝛼 ∈ 𝑇, 𝑈𝛼|𝑛 ∈ 𝒪 for some 𝑛 < 𝑚. As 𝛼 ∈ 𝑈𝛼|𝑛, we have shown that the finite set {𝑈𝑢 ∈ 𝒪: length(𝑢) <𝑚} covers 𝑇. ∎ 

Proposition 6.44: Let 𝑇′ be a subfan of 𝑇. Then 𝐈𝐙𝐅 ⊢ 𝐅𝑇 → 𝐅𝑇′. 
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Proof: 𝐅𝑇 → 𝐅𝑇𝐜. 𝑇′ is a closed subset of a compact space, hence compact itself. This shows 𝐅𝑇′𝒄  and there-

fore 𝐅𝑇′. ∎ 

Theorem  6.45: 𝐈𝐙𝐅 ⊢ 𝐅𝑇𝐜  for each fan 𝑇 ↔ 𝐅2𝐜. 
Proof: The direction from left to right is trivial. Let 𝑇2 be compact and 𝑇 any fan. We show that 𝑇 is com-

pact as well. By Lemma 6.41, 𝑇 is homeomorphic to a subfan 𝑇′ of 𝑇2. By Lemma 6.42, 𝑇′ is closed and 

by compactness of 𝑇2 and Proposition 6.21 it is compact itself. We conclude that 𝑇 is compact by Propo-

sition 6.20. ∎ 

Corollary 6.46: Over 𝐈𝐙𝐅, all the formulations of the fan theorem are equivalent. 

6.5.2 Proof of compatibility 

We are now ready to our proof of compatibility: 

ⓂProposition 6.47: 𝑉(𝒯) ⊨ 𝑇2̂ is compact. 
Proof: Let 𝒪 ⊆ ℬ and let 𝑡 ∈ ℕ∗ and 𝑡 ∈ ⟦∀�̂� ∈ 2�̂� ∃�̂� ∈ �̂� �̂� ∈ �̂�⟧, i.e. for each 𝛼 ∈ 𝑇2, 

      𝑡 ∈ ⋃⟦�̂� ∈ �̂� ∧ �̂� ∈ �̂�⟧𝑂∈𝒪  

⇔ 𝛼 ∈ ⋃ 𝑂𝑡∈⟦�̂�∈�̂�⟧ . 
This means that {𝑂 ∈ 𝒪: 𝑡 ∈ ⟦�̂� ∈ �̂�⟧} is an open cover of 2𝜔. Classically, König’s lemma 2.1 holds and is 

equivalent to the fan theorem (Theorem 2.4). This implies that 𝑇2 is externally compact (i.e. provably 

compact in 𝐙𝐅). Hence, there is some finite subcover 𝑂1, …𝑂𝑛 of 2𝜔. This shows 𝑡 ∈ ⟦𝑂1 ∈ 𝒪 ∧ …∧ 𝑂𝑛 ∈ 𝒪⟧ ∧ ⟦∀𝛼 ∈ 2𝜔. (𝛼 ∈ 𝑂1 ∨ …∨. 𝛼 ∈ 𝑂𝑛)⟧. 
As 𝑡 was arbitrary, this concludes the proof.  ∎ 

We would want to apply Corollary 6.46 to conclude that 𝐅2 (and hence 𝐅𝑇 for all trees 𝑇) holds in 𝑉(𝒯). 
However, at this point, all we can say is the following weaker version: 

ⓂCorollary 6.48: 𝑉(𝒯) ⊨ (∀𝛼 ∈ 𝑇2̂ ∃𝑛 ∈ 𝜔 𝜙(𝛼|𝑛)) → (∃𝑚 ∈ 𝜔 ∀𝛼 ∈ 𝑇2̂ ∃𝑛 < 𝑚 𝜙(𝛼|𝑛)). 
To infer the general form of 𝐅2, let us argue inside 𝑉(𝒯): Suppose, the weaker form of 𝐅2′ of the previous 

Corollary holds. Then, if ∀𝛼 ∈ 𝑇2 ∃𝑛 ∈ 𝜔 𝜙(𝛼|𝑛), then in particular, the premise of the weak 𝐅2′ is satis-

fied, Hence,  ∃𝑚 ∈ 𝜔 ∀𝛼 ∈ 𝑇2̂ ∃𝑛 < 𝑚 𝜙(𝛼|𝑛). 
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We will show that this 𝑚 works for 𝑇2 as well: Let 𝛼 ∈ 𝑇2. We know that for each 𝑛 < 𝑚, there is some 

some 𝑢𝑛 ∈ 𝑇2<𝜔 such that 𝛼|𝑛 = 𝑢𝑛. But 𝑇2<𝜔 = 𝑇2<�̂� and hence 𝜙 must hold true for one of the 𝑢𝑛s, say 𝑢�̃�. We can therefore conclude 𝜙(𝛼|𝑛). Formally, the proof looks like this: ⟦∀𝛼 ∈ 𝑇2 ∃𝑛 ∈ 𝜔 𝜙(𝛼|𝑛)⟧ ≤ ⟦∀𝛼 ∈ 𝑇2̂ ∃𝑛 ∈ 𝜔 𝜙(𝛼|𝑛)⟧ ≤ ⟦∃𝑚 ∈ 𝜔 ∀𝛼 ∈ 𝑇2̂ ∃𝑛 < 𝑚.𝜙(𝛼|𝑛)⟧≤ ⟦∃𝑚 ∈ 𝜔 ∀𝛼 ∈ 𝑇2̂ ∃𝑛 < 𝑚 𝜙(𝛼|𝑛)⟧≤ ⟦∃𝑚 ∈ 𝜔 ∀𝛼 ∈ 𝑇2 ∃𝑢 ∈ 𝑇2�̂� (𝑢 = 𝛼|𝑚 ∧ (∃𝑛 < 𝑚.𝜙(𝑢|𝑛))⟧≤ ⟦∃𝑚 ∈ 𝜔 ∀𝛼 ∈ 𝑇2 ∃𝑛 < 𝑚 ∃𝑢 ∈ 𝑇2�̂� (𝑢 = 𝛼|𝑛 ∧ 𝜙(𝑢|𝑛))⟧≤ ⟦∃𝑚 ∈ 𝜔 ∀𝛼 ∈ 𝑇2 ∃𝑛 < 𝑚 𝜙(𝛼|𝑛)⟧. 
This shows that 𝑉(𝒯) ⊨ 𝐅2′ (and thus 𝑉(𝒯) ⊨ 𝐅𝑇 for any tree 𝑇) and concludes the proof of Theorem 6.40. 

6.6 Compatibility with the Weak Continuity Principle 
In this section, we will show that the Weak Continuity Principle 𝐖𝐂𝐍 is compatible with 𝐈𝐙𝐅: 

ⓂTheorem 6.49: Cons(𝐙𝐅) ⇒ Cons(𝐈𝐙𝐅 +𝐖𝐂𝐍) 
Lemma 6.50: There are continuous functions  

1. 𝑓:ℕ∗ → {𝑣: 𝑣 ⊇ 𝑢} with 𝑓|{𝑣:𝑣⊇𝑢} = id{𝑣:𝑣⊇𝑢}. 
2. 𝑔1: ℕ∗ → {𝑣: 𝑣 ⊇ 𝑢} homeomorphism with 𝑔1(〈 〉) = 𝑢, 
3. 𝑔2: ℕ∗ → 𝑈𝜆,𝑤 homeomorphism with 𝑔2(〈 〉) = 𝑤, 
4. ℎ:ℕ∗ → 𝑈𝜆,𝑤 with ℎ|{𝑣:𝑣⊇𝑢}: {𝑣: 𝑣 ⊇ 𝑢} → 𝑈𝜆,𝑤 homeomorphism and ℎ(𝑢) = 𝑤. 

Proof: Let length(𝑢) = 𝑛. We define 𝑓 as follows: For any 𝑣 ∈ ℕ∗, we set  𝑓(𝑣) = 𝑢,                                                             if length(𝑣) < 𝑛 𝑓(𝑣) = 𝑢0, … , 𝑢𝑛−1, 𝑣𝑛, … , 𝑣length(𝑣)−1,       if length(𝑣) ≥ 𝑛. 
This 𝑓 is continuous: Let 𝑓(𝑣) ∈ 𝑈𝜆,𝑤. Without loss of generality, 𝑤 ⊇ 𝑢. Let �̃� = 𝑢 ∗ 〈𝜆𝑛, 𝜆𝑛+1, … 〉. Then 

for all 𝑥 ∈ 𝑈�̃�,𝑣, we have that 𝑓(𝑥) ∈ 𝑈𝜆,𝑤. 𝑔1 is defined as 𝑔1(𝑣) = 𝑢 ∗ 𝑣 and is clearly continuous and 𝑔2 is defined similarly. Finally, for ℎ, we can 

set ℎ = 𝑔2 ∘ 𝑔1−1 ∘ 𝑓. ∎ 

ⓂProposition 6.51: Let ℎ:𝐻 → 𝐺 be a homomorphism of complete Heyting-algebras. Then for each for-

mula 𝜙(𝑥1, … , 𝑥𝑛) with all free variables shown and 𝔞1, … , 𝔞𝑛 ∈ 𝑉(𝐻), we have that ℎ(⟦𝜙(𝔞1, … , 𝔞𝑛)⟧) = ⟦𝜙(𝔞1ℎ , … , 𝔞𝑛ℎ)⟧, 
where 𝔞ℎ is defined recursively by 𝔞ℎ = {〈𝔟ℎ, ℎ(𝔞(𝔟))〉: 𝔟 ∈ dom(𝔞)}. 
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Proof: This is shown by a straightforward induction on the structure of 𝜙, the cases for atomic 𝜙 are 

shown by simultaneous induction.  ∎ 

Remember, that in our topology on ℕ∗, the function space 𝜔𝜔, as given by 𝔉 from Theorem 6.35, is the 

set of all 𝛼 ∈ 𝜔 × �̂� such that for all 𝑛, 

⋃𝛼((𝑛,𝑚)̂ )•
𝑚 = ℕ∗. 

Hence, for each 𝑡 ∈ ℕ∗ and each 𝑛, there is a unique 𝑚 such that 𝑡 ∈ 𝛼((𝑛,𝑚)̂ ). Hence, externally, 𝛼 de-

fines a map �̃�: ℕ∗ → 𝜔𝜔. If we equip 𝜔𝜔 with the usual tree topology from the last section, we see that �̃� 

is continuous: Note that the sets 𝑉𝑛,𝑚 = {𝛼 ∈ 𝜔𝜔: 𝛼(𝑛) = 𝑚} form a subbasis, so we need to check conti-

nuity only for these sets. We have �̃�−1[𝑉𝑛,𝑚] = {𝑡 ∈ 𝑇: �̃�(𝑡) ∈ 𝑉𝑛,𝑚}                     = {𝑡 ∈ 𝑇: �̃�(𝑡)(𝑛) = 𝑚}                     = {𝑡 ∈ 𝑇: 𝑡 ∈ 𝛼((𝑛,𝑚)̂ )}                     = 𝛼((𝑛,𝑚)̂ ). 
On the other hand, let 𝜂: ℕ∗ → 𝜔𝜔 be continuous, then �̃� defined as �̃�(𝑛,𝑚) = 𝜂−1[𝑉𝑚,𝑛] defines a function 𝜔 × 𝜔 → ℕ∗. Clearly both constructions are inverses of one another and we have proved 

Proposition 6.52: The assignment 𝛼 ↦ �̃� is a 1-1 correspondence between continuous functions ℕ∗ → 𝜔𝜔 

and functions 𝜔 ×𝜔 → ℕ∗. 
In regard with this proposition and Proposition 6.51, we may ask how �̃� behaves under continuous func-

tions: As any continuous function ℕ∗ → ℕ∗ gives rise to the homomorphism of complete Heyting-alge-

bras of the topological spaces 𝑓−1. We can thus apply Proposition 6.51 to get that 𝑓−1(⟦𝜙(𝔞1, … , 𝔞𝑛)⟧) =⟦𝜙 (𝔞1𝑓−1 , … , 𝔞𝑛𝑓−1)⟧. We are interested how the elements of 𝔉 look like under this mapping: 

ⓂLemma 6.53: Let 𝛼 ∈ 𝔉 and 𝑓: ℕ∗ → ℕ∗ continuous. Then �̃�𝑓−1 = �̃� ∘ 𝑓. 

Proof: We have the chain of equivalences       �̃�𝑓−1(𝑡)(𝑚) = 𝑛 ⇔ 𝑡 ∈ 𝛼𝑓−1((𝑚, 𝑛)̂ ) ⇔ 𝑡 ∈ 𝑓−1[𝛼((𝑚, 𝑛)̂ )] ⇔ 𝑓(𝑡) ∈ 𝛼((𝑚, 𝑛)̂ ) ⇔ �̃�(𝑓(𝑡))(𝑚) = 𝑛, 
That show the desired equality of functions.  ∎ 
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With these preparations, we are now ready to prove the main result of this section: 

Proof of Theorem 6.49: We will show that 𝑉(𝒯) ⊨ 𝐖𝐂𝐍, where 𝒯 is again the topology from Example 6.17. 

Suppose, towards a contradiction, that for some 𝑈𝑢,𝜅 we have 𝑈𝑢,𝜅 ⊆ ⟦∀𝛼 ∈ 𝜔𝜔 ∃𝑥 ∈ 𝜔 𝜙(𝛼, 𝑥)⟧, but 𝑈𝑢,𝜅 ⊈ ⟦∀𝛼 ∈ 𝜔𝜔∃𝑦, 𝑏 ∈ 𝜔 ∀𝛿 ∈ 𝜔𝜔 [∀𝛿 ∈ 𝜔𝜔 𝜉|𝑚 = 𝛿̅(𝑚) → 𝜙(𝛿, 𝑛)]⟧= int( ⋂ ⟦∃𝑦, 𝑏 ∈ 𝜔 [∀𝛿 ∈ 𝜔𝜔. 𝜉|𝑚 = 𝛿|𝑚 → 𝜙(𝛿, 𝑛)]⟧𝜉∈𝜔𝜔 ). 
As the interior of a set is the largest open set contained in it, this means that there is some 𝑡 ∈ 𝑈𝑢,𝜅 and 𝜉 ∈ 𝜔𝜔 such that 𝑡 ∉ ⟦∃𝑦, 𝑏 ∈ 𝜔 [∀𝛿 ∈ 𝜔𝜔. 𝜉|𝑚 = 𝛿|𝑚 → 𝜙(𝛿, 𝑛)]⟧. 
Hence, for all 𝑚, 𝑛 ∈ 𝜔, 𝑡 ∉ ⟦∀𝛿 ∈ 𝜔𝜔. 𝜉|𝑚 = 𝛿|𝑚 → 𝜙(𝛿, 𝑛)⟧. As in Proposition 6.52, we may interpret 𝜉 

as continuous function 𝜉:ℕ∗ → 𝜔𝜔. By this continuity, for every 𝑚 ∈ ℕ there exists a basic open 𝑈𝑤𝑚,𝜆𝑚 ⊆𝑈𝑢,𝜅 with 𝑡 ∈ 𝑈𝑤𝑚,𝜆𝑚 and 𝑡 ∗ 〈𝑚〉 ∉ 𝑈𝑤𝑚,𝜆𝑚 such that for every 𝑥 ∈ 𝑈𝑤𝑚,𝜆𝑚 we have 𝜉(𝑥)(𝑚) = 𝜉(𝑡)(𝑚). 
Claim: There are 𝑡𝑚𝑛 ∈ 𝑈𝑤𝑚,𝜆𝑚 and 𝑡𝑚𝑛 ∈ 𝜔 such that   ⟦𝜉|𝑚 = 𝜂𝑚𝑛 |𝑚⟧ = ℕ∗ and 𝑡𝑚𝑛 ∉ ⟦𝜙(𝜂𝑚𝑛 , 𝑛)⟧. 
Proof: As 𝑡 ∉ int(⋂ ⟦𝜉|𝑚 = 𝛿|𝑚 → 𝜙(𝛿, 𝑛)⟧𝛿∈𝔉 ), for each 𝑚, 𝑛 we can use a form of the axiom of choice to 

obtain some 𝑡𝑚𝑛 ∈ 𝑈𝑢,𝜅 but not in the intersection. Hence there are 𝜂𝑚𝑛 ∈ 𝔉 such that 𝑡𝑚𝑛 ∉ ⟦𝜉|𝑚 = 𝜂𝑚𝑛 |𝑚⟧ → ⟦𝜙(𝜂𝑚𝑛 , 𝑛)⟧ = (ℕ∗ ∖ ⟦𝜉|𝑚 = 𝜂𝑚𝑛 |𝑚⟧) ∪ ⟦𝜙(𝜂𝑚𝑛 , 𝑛)⟧ 
Possibly redefining 𝜂𝑚𝑛  by 𝛽𝑚𝑛 , we can assume that ⟦𝜉|𝑚 = 𝜂𝑚𝑛 |𝑚⟧ = ℕ∗: We simply define 𝛽𝑚�̃�  as 

𝛽𝑚�̃� (𝑡)(𝑘) = {𝜉(𝑡)(𝑘),       for 𝑘 < 𝑚,𝜂𝑚𝑛 (𝑡)(𝑘),   for 𝑘 ≥ 𝑚.  
Then clearly ⟦𝜉|𝑚 = 𝛽𝑚𝑛 |𝑚⟧ = ℕ∗. If 𝑡𝑚𝑛  were in ⟦𝜙(𝛽𝑚𝑛 , 𝑛)⟧, then 𝑡𝑚𝑛 ∈ ⟦𝜙(𝛽𝑚𝑛 , 𝑛)⟧ = ⟦𝜙(𝛽𝑚𝑛 , 𝑛)⟧ ∩ ℕ∗ = ⟦𝜙(𝛽𝑚𝑛 , 𝑛)⟧ ∩ ⟦𝜉|𝑚 = 𝛽𝑚𝑛 |𝑚⟧ = ⟦𝜙(𝛽𝑚𝑛 , 𝑛)⟧ ∩ ⟦𝜂𝑚𝑛 = 𝛽𝑚𝑛 ⟧⊆ ⟦𝜙(𝜂𝑚𝑛 , 𝑛)⟧, 
a contradiction.  ∎ 

Let (𝑛𝑖)𝑖∈𝜔 be a sequence of natural numbers such that each 𝑛 ∈ 𝜔 appears in it infinitely many times. 

Set 𝑠𝑖 = 𝑡 ∗ 〈𝑖〉 and 𝑉𝑖 = {𝑣 ∈ ℕ∗: 𝑣 ⊇ 𝑠𝑖}. By Lemma 6.50, there are continuous functions 𝜌𝑖: ℕ∗ → 𝑈𝑤𝑖,𝜆𝑖 
such that 𝜌𝑖(𝑠𝑖) = 𝑡𝑖𝑛𝑖 and 𝜌|𝑉𝑖: 𝑉𝑖 → 𝑈𝑤𝑖,𝜆𝑖 are homeomorphisms. 

We define 𝜂:ℕ∗ → 𝜔𝜔 by 
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𝜂(𝑠) = {𝜂𝑖𝑛𝑖  (𝜌𝑖(𝑠)), if 𝑠 ∈ 𝑉𝑖,𝜉(𝑠), if 𝑠 ∉⋃𝑉𝑖𝑖∈𝜔 . 
𝜂 is well defined, as the 𝑉𝑖 are mutually disjoint. To show that it is continuous it suffices to show that it 

is continuous at 𝜕(⋃ 𝑉𝑖𝑖∈𝜔 ) = cl(⋃ 𝑉𝑖𝑖∈𝜔 ) ∖ ⋃ 𝑉𝑖𝑖∈𝜔 = {𝑡} (Lemma 6.22): Given 𝑘, we need to find an open 

neighborhood 𝑈 of 𝑡 such that 𝜂(𝑥)|𝑘 = 𝜂(𝑡)|𝑘 = 𝜉(𝑡)|𝑘  for all 𝑥 ∈ 𝑈. Let 𝜆 be the path 𝑡 ∗ 〈𝑘, 0,0,0,… 〉. 
We check that 𝑈 = 𝑈𝜆,𝑡  does the job: Indeed for 𝑥 ≠ 𝑡, 𝑥 ∈ 𝑈𝜆,𝑡  means that 𝑥 ∈ 𝑉𝑖  for some 𝑖 ≥ 𝑘. Thus 𝜂(𝑥) = 𝜂𝑖𝑛𝑖(𝜌𝑖(𝑥)) and 𝜌𝑖(𝑥) ∈ 𝑈𝑤𝑖,𝜆𝑖. Hence, 𝜂(𝑥)|𝑖 = 𝜂𝑖𝑛𝑖(𝜌𝑖(𝑥))|𝑖 = 𝜉(𝜌𝑖(𝑥))|𝑖 = 𝜉(𝑡)|𝑖. 
Since 𝑡 ∈ 𝑈𝑢,𝜅 ⊆ ⟦∀𝛼 ∈ 𝜔𝜔. ∃𝑥 ∈ 𝜔.𝜙(𝛼, 𝑥)⟧ for 𝛼 = �̃�, there is an 𝑛 ∈ 𝜔 with 𝑡 ∈ ⟦𝜙(�̃�, 𝑛)⟧. The 𝑠𝑖 = 𝑡 ∗ 〈𝑖〉 
converge to 𝑡  and since 𝑛  appears infinitely many times in (𝑛𝑖)𝑖∈𝜔 , there is some 𝑖 ∈ 𝜔  with 𝑠𝑖 ∈⟦𝜙(�̃�, 𝜂𝑖𝑛𝑖)⟧, where 𝑛𝑖 = 𝑛. 

As 𝑡𝑖𝑛𝑖 = 𝜌(𝑠𝑖) ∈ ⟦𝜙(�̃� ∘ 𝜌𝑖−1, 𝑛𝑖)⟧  (Lemma 6.53) and 𝑡𝑖𝑛𝑖 ∈ ⟦�̃� ∘ 𝜌𝑖−1 = 𝜂𝑖𝑛𝑖⟧ , we conclude, that 𝑡𝑖𝑛𝑖 ∈⟦𝜙(𝜂𝑖𝑛𝑖 , 𝑛𝑖)⟧, a contradiction to how the 𝑡𝑚𝑛  were constructed. ∎ 

Conclusion 
In this thesis we have analyzed and compared three different kinds of set theories: Brouwerian set theory, 

Martin-Löf’s set theory 𝐌𝐋 and the constructive axiomatic set theories 𝐈𝐙𝐅 and 𝐂𝐙𝐅. 

Being explicitly based on paradigms from programming, 𝐌𝐋 seems to be the best suited for applications 

in programming languages and automated proof assistants. Various implementations like Agda, Idris, 

NuPRL and Coq have been given in the past (see, for example, [2], [33], [39], [BO]). 

There are two main ideas behind the axiomatic set theories 𝐈𝐙𝐅 and 𝐂𝐙𝐅: First, they are based on the most 

common and widely accepted formalization of mathematics, namely 𝐙𝐅𝐂. Hence, their usage is oriented 

towards existing everyday mathematical practice. Second, the two theories are tailored to meet different 

levels of constructive demand. As discussed in section 2.4, the rather minimalistic requirement for 𝐈𝐙𝐅 is 

that it does not go beyond the realm of intuitionistic logic, i.e. 𝐈𝐙𝐅 ⊬ 𝐋𝐄𝐌. The ultimate confirmation that 

this is indeed so, is given only in chapter 4 via the metamathematical tool of realizability.  

The motivation behind 𝐂𝐙𝐅 to further restrict 𝐈𝐙𝐅 is to end up with a theory that is predicative. Giving a 

justification that 𝐂𝐙𝐅 is indeed fully predicative, however, is more intricate. Schütte and Feferman have 

developed a proof-theoretical analysis of the notion of predicativity (see [23]), but presenting it would 

have been a thesis on its own. Instead we have justified 𝐂𝐙𝐅 in chapter 5, by giving a meaning-preserving 

interpretation of 𝐂𝐙𝐅 into 𝐌𝐋 – a theory that is considered to give a constructively clear and well-justified 

notion of sets. 
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Another result of chapter 4 was that both 𝐂𝐙𝐅 and 𝐈𝐙𝐅 possess the disjunction- and numerical existence 

property – a feature that it certainly expected from constructive theories. Anyways, it has been shown 

by more elaborate metamathematical tools, that the stronger existence property does not hold for 𝐈𝐙𝐅 

and 𝐂𝐙𝐅 (see [25], [63]). This may raise doubts for the aptness of 𝐈𝐙𝐅 and 𝐂𝐙𝐅 as constructive set theories. 

At least in the case of 𝐂𝐙𝐅 this doubt is cleared up by the aforementioned interpretation of 𝐂𝐙𝐅 in 𝐌𝐋, 

where witnesses can be constructed.  

A further interesting question is which mathematical loss we have when passing form 𝐙𝐅𝐂 to the weaker 

theories 𝐈𝐙𝐅 and 𝐂𝐙𝐅. Since 𝐋𝐄𝐌 is not derivable in 𝐈𝐙𝐅, it follows that all weak counterexamples of sec-

tion 2.4.2 are actually underivable statements in 𝐈𝐙𝐅. For example, 𝐈𝐙𝐅 ⊬ Foundation. As a more interest-

ing, not purely set theoretical result, we have shown in chapter 6, that 𝐈𝐙𝐅 ⊬ BI𝐷. As for 𝐂𝐙𝐅, we have 

shown, relying on the result that 𝐂𝐙𝐅 is compatible with 𝐆𝐔𝐏, that the powerset axiom does not hold 

true in 𝐂𝐙𝐅 in section 2.4.3. The implications are far-reaching: The 𝑉𝛼s in the hierarchical structure of the 

universe of all sets 𝑉 are not sets any more. The mathematical discipline of topology has to be dealt with 

in a different way in 𝐂𝐙𝐅. Instead of topological spaces one passes to point-free topologies, thus preserv-

ing many results from classical topology relying on the set-character of topological spaces and especially 

the axiom of choice, like Tychonoff’s theorem. It turns out however, that existence of the Stone-Cech 

compactification is not always guaranteed in 𝐂𝐙𝐅 (see, for example [19], [20]). 

In section 2.2, we have discussed some basic concepts of Brouwerian set theory, enough to understand 

Brouwer’s justification of the continuum and his fundamentally different approach to continuous func-
tions. Brouwer’s set theory goes far beyond what we have sketched in this thesis: In [7], he develops 

concepts like ordinals and cardinals. It would be interesting to see how his notions differ from their vis-

à-vis in 𝐈𝐙𝐅 and 𝐙𝐅𝐂. 

We have shown in chapter 6, that Brouwerian analysis is, in principle, compatible to 𝐈𝐙𝐅. The principle 

of bar induction BI𝐷 turns out to be to strong an assumption for Brouwer’s proof of the fan theorem. This 
result, showing that 𝐈𝐙𝐅 may be equiconsistently extended with the fan theorem, Brouwer’s continuity 
principle and ¬BI𝐷 has been proved by Ščedrov in [59]. Another result of this paper that we have not 

dealt with in this thesis is, that the same holds true for BI𝐷 in place of ¬BI𝐷 making Bar induction inde-

pendent from Brouwerian analysis based on 𝐈𝐙𝐅. 

Another topic that we touched only marginally is that of choice principles in constructive set theories. 

The classical axiom of choice 𝐀𝐂 plays very different roles in the set theories at hand. This is due to the 

different ways to interpret its meaning. While 𝐀𝐂 is a weak counterexample and hence extends 𝐈𝐙𝐅 to 

full 𝐙𝐅𝐂 (section 2.4.2), it is an easy theorem in 𝐌𝐋 (section 5.1.9).  Further choice principles are the axi-

oms of countable choice, dependent choice 𝐃𝐂, the representation axiom and the regular extension axiom 𝐑𝐄𝐀 (for an overview, see [53]). Actually, interpretation of 𝐂𝐙𝐅 into 𝐌𝐋 works as well for 𝐂𝐙𝐅 + 𝐃𝐂, and 

our realizability structure for 𝐈𝐙𝐅 and 𝐂𝐙𝐅 from section 3.3 works for 𝐈𝐙𝐅 + 𝐑𝐄𝐀 and 𝐂𝐙𝐅 + 𝐑𝐄𝐀, too (see 
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[1], [55]). Hence both extensions also enjoy the metamathematical properties and compatibilities with 

principles we discussed in chapter 4. 
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