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Abstract This paper aims at proposing aTimoshenko-

likemodel forplanarmultilayer (i.e., non-homogeneous)

non-prismatic beams. Themain peculiarity ofmultilayer

non-prismatic beams is a non-trivial stress distribution

within the cross-section that, therefore, needs a more

careful treatment. In greater detail, the axial stress

distribution is similar to the one of prismatic beams and

can be determined through homogenization whereas the

shear distribution is completely different from prismatic

beams and depends on all the internal forces. The

problem of the representation of the shear stress

distribution is overcame by an accurate procedure that

is devised on the basis of the Jourawsky theory. The

paper demonstrates that the proposed representation of

cross-section stress distribution and the rigorous proce-

dure adopted for the derivation of constitutive, equilib-

rium, and compatibility equations lead to Ordinary

Differential Equations that couple the axial and the shear

bending problems, but allow practitioners to calculate

both analytical and numerical solutions for almost

arbitrary beam geometries. Specifically, the numerical

examples demonstrate that the proposed beam model is

able to predict displacements, internal forces, and

stresses very accurately and with moderate computa-

tional costs. This is also valid for highly heterogeneous

beams characterized by thin and extremely stiff layers.

Keywords Non-homogeneous non-prismatic beam �
Tapered beam � Beam of variable cross-section �
First order beam model � Arch shaped beam

1 Introduction

According to the terminology introduced by Balduzzi

et al. (2016), the definition multilayer non-prismatic

beam refers to a continuous body made of layers of

different homogeneous materials, in which the geom-

etry of each layer can vary arbitrarily along the

prevailing dimension of the beam. Both researchers

and practitioners are interested in non-prismatic

beams since they allow to reach extremely important

optimization goals such as the desired strength with

the least material usage. Furthermore, multilayer non-

prismatic beams are nowadays more and more

employed in different engineering fields since the

workability of materials (like steel, aluminum, com-

posites, wooden or plastic products) and modern

production technologies (e.g., automatic welding

machines, 3D printers) allow to manufacture elements

with complex geometry without a significant increase

of production costs. As an example, the technologies

G. Balduzzi (&) � M. Aminbaghai � J. Füssl
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for the manufacturing of wooden or composite

beams allow to produce bodies made of materials

with different mechanical properties (Frese and

Blaß 2012). Furthermore, existing elementary

model assumptions include that steel and aluminum

beams with I or H cross-section behave under the

hypothesis of plane stress whereas the variable beam

depth is considered by proportional variation of the

different mechanical properties within the cross-

section (Schreyer 1978; Li and Li 2002; Shooshtari

and Khajavi 2010). In both cases, a planar model

capable to tackle multilayer non-prismatic beams

i.e., the object of this document, represents a

necessary tool for the modeling and first design of

such bodies as well as the starting point for the

development of more refined 3D beam models.

Furthermore, the usage of optimized non-pris-

matic beams for several engineering applications

leads the investigation and the modeling of their

behavior to be a critical step for both researchers

and practitioners. First and foremost, the possibility

to optimize the behavior of non-prismatic beams is

a significant advantage of these particular structural

elements, but, at the same time, this must be treated

with caution. As an example, let us consider a non-

prismatic beam designed in order to exploit exactly

the desired material strength in every cross-section

of the beam according to a performed sophisticated

analysis. On the one hand, such an optimization

reduces the cross-section sizes and saves material

but, on the other hand, it reduces also the structure

robustness since all the cross-sections are near to

their limit states. In particular, every small varia-

tion of the stress distribution not caught by the

analysis could lead to premature failure or to

serviceability problems of the structural element

(Paglietti and Carta 2007, 2009; Beltempo et al.

2015b). Finally, optimization processes are often

based on recursive analysis (see e.g., Allaire et al.

1997; Lee et al. 2012). Therefore, the availability

of models that are simultaneously accurate and

computationally cheap is a crucial aspect for

optimized structure designers since it allows to

reduce significantly the costs. As a consequence,

also nowadays the development of effective and

accurate models for non-prismatic structural ele-

ments represents a crucial research field continu-

ously seeking for new contributions.

1.1 Literature review

With respect to planar non-prismatic beam modeling,

several researchers (Bruhns 2003; Hodges et al. 2010;

Balduzzi et al. 2016) have shown with different

strategies that the main effect of the cross-section

variation is a non-trivial stress distribution. Besides,

the influence of cross-section variation on stress

distributions can be predicted by exploiting several

analytical solutions of the 2D elastic problem for an

infinite long wedge known since the first half of the

past century (Atkin 1938; Timoshenko and Goodier

1951). In particular, the equilibrium on lateral surfaces

requires that shear at the cross-section boundaries is

not vanishing, but must be proportional to the axial

stress and the boundary slope (Hodges et al. 2010).

Therefore, the shear distribution not only depends on

the vertical internal force V as usual for prismatic

beams, but also on the bending moment M and the

horizontal internal force H determining the magnitude

of axial stresses (Bruhns 2003, Section3.5).

As a consequence of the non-trivial stress distribu-

tion, also the beams’ shear strain depends on all the

internal forces H, V, and M and, due to the symmetry

of constitutive relations, both the curvature and the

beams’ axial strain depend on the vertical internal

force V (Balduzzi et al. 2016). The numerical exam-

ples discussed by Balduzzi et al. (2016) demonstrate

that the so far introduced relations deeply influence the

whole beam behavior and can not be neglected.

Furthermore, they confirm that non-prismatic beam-

models differ from prismatic ones not only in terms of

variable cross-section area and inertia, but they

especially result in more complex relations between

the independent variables.

A diffused approach for non-prismatic beam mod-

eling consists in using prismatic beam Ordinary

Differential Equations (ODEs) and assuming that the

cross-section area and inertia vary along the beam axis

(Portland Cement Associations 1958; Timoshenko

and Young 1965; Romano and Zingone 1992; Fried-

man and Kosmatka 1993; Shooshtari and Khajavi

2010; Trinh and Gan 2015;Maganti and Nalluri 2015),

neglecting the effects of boundary equilibrium on

stress distributions and the resulting non trivial

constitutive relations. The so far introduced approach

received criticisms since the sixties of the past century

(Boley 1963; Tena-Colunga 1996) and, as a conse-
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quence, several researchers propose alternative strate-

gies trying to improve the non-prismatic beam mod-

eling (El-Mezaini et al. 1991; Vu-Quoc and Léger

1992; Tena-Colunga 1996). Extending for a moment

the discussion to plates, it is worth noticing that the

idea of using variable stiffness for accounting the

effects of taper is quite diffused (Edwin Sudhagar

et al. 2015; Süsler et al. 2016), but enhanced modeling

approaches exist also for this class of bodies (Ra-

jagopal and Hodges 2015). Further problems that

affect non-prismatic beam models, reducing even

more their effectiveness, come from the use of coarse

numerical techniques for the solution of beam model

equations e.g., the attempts to use prismatic beam

Finite Element (FE) in order to model non-prismatic

beams (Banerjee andWilliams 1985, 1986; Tong et al.

1995; Liu et al. 2016).

To the author’s knowledge, the most enhanced

modeling approaches that seem capable to overcome all

the so far discussed limitations have been presented by

Rubin (1999), Hodges et al. (2008, 2010), Auricchio

et al. (2015), Beltempo et al. (2015a), and Balduzzi

et al. (2016). In greater detail, Rubin (1999), Hodges

et al. (2008, 2010) limit their investigations to planar

tapered beams whereas Auricchio et al. (2015), Bel-

tempo et al. (2015a), and Balduzzi et al. (2016)

consider more complex geometries. On the one hand,

the beam model proposed by Rubin (1999) seems to

achieve the best compromise between simplicity and

effectiveness. On the other hand, both the derivation

procedure and the resulting models proposed by

Auricchio et al. (2015) and Beltempo et al. (2015a)

seem sometimes scarcely manageable and computa-

tionally expensive. Finally, Balduzzi et al. (2016)

propose a simple and effective modeling approach

capable to describe the behavior of a large class of non-

prismatic homogeneous beam bodies using the inde-

pendent variables usually adopted in prismatic

Timoshenko beam models. As discussed within the

paper, Balduzzi et al. (2016) generalize effectively the

model proposed by Rubin (1999), providing also an

alternative strategy for the evaluation of the constitutive

relations’ coefficients and leading to a more accurate

estimation of the shear strain energy.

1.2 Paper aims and outline

The models introduced in Sect. 1.1 refer only to

homogeneous beams and are therefore effective for an

extremely limited family of structural elements usu-

ally adopted in practice. Unfortunately, to the author’s

knowledge, effective models for multilayer non-

prismatic beams are not available yet. Once more,

the main problems of available modeling solutions are

the incapability to predict the real stress distribution

within the cross-section and the use of inaccurate

constitutive relations. The most advanced attempts for

the modeling of multilayer non-prismatic beams have

been presented by Vu-Quoc and Léger (1992), Rubin

(1999), and Aminbaghai and Binder (2006) which,

nevertheless, consider only tapered I beams.

This document provides a generalization of the

modeling approach discussed by Balduzzi et al.

(2016) to multilayer non-prismatic beams. Specifi-

cally, the proposed approach exploits the Timoshenko

kinematics and develops a simple and effective beam

model that differs from the Timoshenko-like homo-

geneous beam model proposed by Balduzzi et al.

(2016) mainly by a more complex description of the

cross-section stress distribution. In particular, within

the proposed model the horizontal stress distribution is

determined through homogenization techniques, usu-

ally adopted also for non-homogeneous prismatic

beams (Li and Li 2002; Shooshtari and Khajavi 2010;

Frese and Blaß 2012) and successfully applied also to

functionally graded materials (Murin et al. 2013a, b),

whereas the non-trivial shear distribution is recovered

through a generalization of the Jourawsky theory

(Jourawski 1856; Bruhns 2003). As a consequence, the

present paper not only relaxes the hypothesis on beam

geometry but provides also an alternative, more

rigorous, and more effective strategy for the recon-

struction of the cross-section stress distribution.

The document is structured as follows: Sect. 2

introduces the problem we are going to tackle, Sect. 3

derives the equations governing the behavior of

multilayer non-prismatic beam, Sect. 4 demonstrates

the proposedmodel accuracy through the discussion of

suitable numerical examples that highlight also pos-

sible limitations of the proposed modeling approach,

and Sect. 5 resumes the main conclusions and

delineates further research developments.

2 Problem formulation

This section introduces the details necessary for the

derivation of the ODEs describing the behavior of a
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multilayer non-prismatic beam. Specifically, Sect. 2.1

introduces the beam geometry we are going to tackle,

Sect. 2.2 defines the corresponding 2D equations of

the elastic problem used within the proposed beam

model, and Sect. 2.3 tackles the inter-layer equilib-

rium that results to be a crucial aspect for an effective

stress analysis.

2.1 Beam’s geometry

The object of our study is the beam body X—depicted

in Fig. 1—that behaves under the hypothesis of small

displacements and plane stress state. In particular, we

assume that the beam depth b is constant within the

whole domainX and all the fields do not depend on the

depth coordinate z that therefore will never be

considered in the following. Finally, the material that

constitutes the beam body obeys a linear-elastic

constitutive relation.

The beam longitudinal axis L is a closed and

bounded subset of the x-axis, defined as follows

L :¼ x 2 0; l½ �f g ð1Þ

where l is the beam length.

Being n 2 N the number of layers constituting the

beam, we define n þ 1 inter-layer surfaces hi : L ! R

for i ¼ 1. . .n þ 1 stored in the vector h. We assume

that all the interlayer surfaces are continuous functions

with bounded first derivative and h1 xð Þ\h2 xð Þ
\ � � �\hi xð Þ\. . .\hnþ1 xð Þ 8x 2 L. Finally, we

assume that l � hiþ1 xð Þ � hi xð Þj j8x 2 L and 8i 2
1. . .n½ � noticing that this ratio plays a central role in

determining the model effectiveness, as usual in

prismatic beam modeling.

The layer cross-section Aj xð Þ is defined as

Aj xð Þ :¼ yj8x 2 L ) y 2 hj xð Þ; hjþ1 xð Þ
� �� �

for j ¼ 1. . .n
ð2Þ

and consequently the beam cross section A xð Þ reads

A xð Þ :¼
[n

j¼1

Aj xð Þ ð3Þ

It is worth noticing that Definitions (2) and (3)

introduce a small notation abuse, in fact Aj xð Þ and

A xð Þ are sets and not functions. Nevertheless, we

decided to adopt this notation in order to highlight the

dependence of set definition on the axis coordinate. In

particular, every function c : A xð Þ ! R defined on the

cross-section will depend explicitly on the y coordi-

nate, but it will implicitly depend also on the axis

coordinate x due to the domain’s definition. Both the

dependencies will be indicated in the following

equations i.e., the function defined on the cross-

section will be denoted as c x; yð Þ without further

specifications on the implicit and explicit

dependencies.

Furthermore, the beam layer Xj is defined as

Xj :¼ x; yð Þjx 2 L; y 2 Aj xð Þ
� �

ð4Þ

and consequently the problem domain X reads

X :¼
[n

j¼1

Xj ð5Þ

The Young’s and shear moduli (E : A xð Þ ! R and

G : A xð Þ ! R, respectively) are assumed to be con-

stant within each layer and therefore can be defined as

piecewise-constant functions

E x; yð Þ ¼ Ei for y 2 Ai xð Þ; for i ¼ 1. . . n

G x; yð Þ ¼ Gi for y 2 Ai xð Þ; for i ¼ 1. . . n
ð6Þ

Figure 1 represents the domain X, the adopted

Cartesian coordinate system Oxy, the layer interfaces

y ¼ hi xð Þ for i ¼ 1. . .n þ 1, the beam layers Xj for

j ¼ 1. . .n, and the beam centerline c xð Þ (see Eq. 14).

2.2 2D elastic problem

Being oX the domain boundary—such that

oX :¼ A 0ð Þ [ A lð Þ [ h1 xð Þ [ hnþ1 xð Þ—, we introduce

the partition oXs; oXtf g, where oXs and oXt are the

displacement constrained and the loaded boundaries,

respectively. As usual in beam-model formulation, we

assume that the lower and upper limits belong to the

loaded boundary (i.e., h1 xð Þ and hnþ1 xð Þ 2 oXt)

whereas the initial and final sections A 0ð Þ and A lð Þ
may belong to the displacement constrained boundary

O x

y

l

hn+1 A(x̃) c(x)

x̃

hn
hn−1

hi h2

h1

En,Gn

En−1,Gn−1
Ei,Gi

Ei−1,Gi−1
E1,G1Ω1

Ωi−1

Ωi

Ωn−1

Ωn

Fig. 1 2D beam geometry, coordinate system, dimensions and

adopted notations
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oXs that, anyway, must be a non-empty set. Finally, a

distributed load f : X ! R2 is applied within the

domain, a boundary load t : oXt ! R2 is applied on

the loaded boundary, and a suitable boundary dis-

placement function s : oXs ! R2 is assigned on the

displacement constrained boundary.

Being R2�2
s the space of symmetric, second order

tensors, we introduce the stress field r : X ! R2�2
s ,

the strain field e : X ! R2�2
s , and the displacement

field s : X ! R2. Thereby, the strong formulation of

the 2D elastic problem corresponds to the following

boundary value problem

e ¼ rss in X ð7aÞ

r ¼ D : e in X ð7bÞ

r � rþ f ¼ 0 in X ð7cÞ

r � n ¼ t on oXt ð7dÞ

s ¼ s on oXs ð7eÞ

where the operatorrs �ð Þ provides the symmetric part

of the gradient, r � �ð Þ represents the divergence

operator, �ð Þ : �ð Þ denotes the double dot product, and
D is the fourth order tensor that defines the mechanical

behavior of the material. Equation (7a) describes the

2D compatibility, Equation (7b) shows the 2D mate-

rial constitutive relation, and 2D equilibrium is

represented by Equation (7c). Equations (7d) and (7e)

represent the boundary equilibrium and the boundary

compatibility conditions where n is the outward unit

vector, defined on the boundary.

It is important to mention that, since the beam body

X is assumed to have no imperfections (e.g., interlayer

delaminations, cracks), the displacement field s is

assumed to be continuous within the whole domain.

Conversely, since the mechanical properties of the

material are defined as piecewise constant functions

(6), according to the 2D material constitutive relation

(7b), the stress field r is expected to be discontinuous

within the domain. Specifically, the discontinuities of

stress field are expected to correspond to the interlayer

surfaces.

2.3 Inter-layer equilibrium

As illustrated in Fig. 2, the upward unit vectors on the

inter-layer surfaces are given by

njhi xð Þ xð Þ ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h0

i xð Þð Þ2
q �h0

i xð Þ
1

� �
ð8Þ

where �ð Þ0 indicates the derivative with respect to the

independent variable x.

Focusing on the i-th inter-layer surface, the equi-

librium between the i � 1 and the i layers can be

expressed as follows:

r�x s�

s� r�y

	 

nx

ny

� �
þ rþx sþ

sþ rþy

	 

�nx

�ny

� �
¼ 0

0

� �

ð9Þ

where, for simplicity, the dependencies on spatial

coordinates and the point where we are evaluating the

function �ð Þjhi xð Þ is not specified. Furthermore, the

notations �ð Þ� and �ð Þþ distinguish between stress

components evaluated at the layer interface from

below and from above, respectively, according to

�ð Þ�¼ lim
y!hi xð Þ�

�ð Þ; �ð Þþ¼ lim
y!hi xð Þþ

�ð Þ ð10Þ

By developing the matrix-vector products and col-

lecting the unit vector components we obtain

r�x � rþx
� �

nx þ s� � sþð Þny ¼ 0

s� � sþð Þnx þ r�y � rþy


 �
ny ¼ 0

(

ð11Þ

Finally, denoting the magnitude of a stress jump at a

inter-layer surface as s � t ¼ �ð Þ�� �ð Þþ
� �

we obtain

sst ¼ � nx

ny

srxt

sryt ¼
n2

x

n2
y

srxt

8
>><

>>:
)

sst ¼ h0
i xð Þsrxt

sryt ¼ h0
i xð Þ

� �2
srxt

�

ð12Þ

As usual in beam modeling and consistently with

Saint-Venant assumptions, we assume that the bound-

ary load distribution t : oXt ! R2 vanishes on lower

O x

y
nx

ny

n

1

hi(x)

h′
i(x)

Fig. 2 Upward unit vector evaluated on an interlayer function

h0
i xð Þ
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and upper limits (i.e., tjh1;nþ1
¼ 0). Assuming also that

all the stress components vanish outside the beam

domain X, Equation (12) recovers also the stress

constraints coming from boundary equilibrium (7d).

Then, the same relations as described in Auricchio

et al. (2015) and Balduzzi et al. (2016) are obtained.

Considering a multilayer prismatic beam, both

standard and advanced literature states that the hori-

zontal stress has a discontinuous distribution within the

cross-section, in case of different mechanical properties

between the layers, whereas the shear stress has a

continuous distribution (Bareisis 2006; Auricchio et al.

2010; Bardella and Tonelli 2012). In contrary, the inter-

layer equilibrium (12) indicates a discontinuous cross-

section distribution of axial as well as shear stresses.

Furthermore, generalizing the results already discussed

by Auricchio et al. (2015) and Balduzzi et al. (2016),

the horizontal stress rx could be seen as the indepen-

dent variable that completely defines the stress state on

the interlayer surfaces. Finally, generalizing the

results discussed by Boley (1963) and Hodges et al.

(2008, 2010), the shear stress jumps within the cross-

section depend on the variation of the mechanical

properties of the material—determining the jumps of

horizontal stress—and on the slopes of the interlayer

surfaces h0
i xð Þ. Therefore the latter seem to be crucial

for the determination of the beam behavior.

3 Simplified 1D model

This section derives the ODEs describing the behavior

of the multilayer non-prismatic beam. The model

consists of 4 main elements:

1. the compatibility equations,

2. the equilibrium equations,

3. the stress representation, and

4. the simplified constitutive relations.

Figure 3 graphically represents the derivation path

described in this section.

It is worth recalling that the proposed model

represents all the quantities only with respect to a global

Cartesian coordinate system. Therefore, the concept of

‘‘beam axis’’ (usual in standard and advanced literature

for both prismatic and curved beams)will not be used in

the following. Furthermore, compatibility and equilib-

rium equations are derived following the procedure

detailed in (Balduzzi et al. 2016). For this reason, their

exact derivation is not given in this section, but readers

may find details in the cited literature.

3.1 Beam’s mechanical properties and loads

In the definition of classical prismatic beam stiffness,

cross-section area and inertia (i.e., geometrical prop-

erties) are required. Conversely, due to the complexity

of the problem we are tackling, it is more useful to

define directly the beam centerline and two quantities

that present strong analogies with the prismatic-beam

stiffnesses.

We start introducing the ‘‘horizontal stiffness’’ A� :
L ! R and the first order of stiffness S� : L ! R

defined as

A� xð Þ ¼ b

Z hnþ1 xð Þ

h1 xð Þ
E x; yð Þdy;

S� xð Þ ¼ b

Z hnþ1 xð Þ

h1 xð Þ
E x; yð Þydy

ð13Þ

Consequently, the beam centerline c : L ! R reads

c xð Þ ¼ S� xð Þ
A� xð Þ ð14Þ

Finally, we define the ‘‘bending stiffness’’ I� : L ! R

Fig. 3 Flow chart of model derivation and application:

specification of input and output information
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I� xð Þ ¼ b

Z hnþ1 xð Þ

h1 xð Þ
E yð Þ y � c xð Þð Þ2dy ð15Þ

It is worth recalling that, despite the strong analogy

with prismatic beam coefficients, Definitions (13) and

(15) are not sufficient to define the stiffness of the non-

prismatic beam (see Sect. 3.5). In oder to highlight this

discrepancy, the definition’s names are placed within

quotation marks.

Being fx x; yð Þ and fy x; yð Þ the horizontal and vertical
components of the distributed load f , the resulting

loads are defined as

q xð Þ ¼ b

Z hnþ1 xð Þ

h1 xð Þ
fx x; yð Þdy;

p xð Þ ¼ b

Z hnþ1 xð Þ

h1 xð Þ
fy x; yð Þdy

m xð Þ ¼ b

Z hnþ1 xð Þ

h1 xð Þ
fx x; yð Þ c xð Þ � yð Þdy

ð16Þ

where q xð Þ, p xð Þ, and m xð Þ represent the horizontal,

vertical, and bending resulting loads, respectively.

3.2 Compatibility equations

We assume the kinematics usually adopted for pris-

matic Timoshenko beam models. Therefore, the 2D

displacement field s x; yð Þ is represented in terms of

three 1D functions, indicated as generalized displace-

ments: the horizontal displacement u : L ! R, the

rotation u : L ! R, and the vertical displacement

v : L ! R. Specifically, the beam body displacements

are approximated as follows

s x; yð Þ � u xð Þ þ y � c xð Þð Þu xð Þ
v xð Þ

� �
ð17Þ

Furthermore, we introduce the generalized strains i.e.,

the horizontal strain e0 : L ! R, the curvature

v : L ! R, and the shear strain c : L ! R, respec-

tively, which are defined as follows

e0 xð Þ ¼ 1

hnþ1 xð Þ � h1 xð Þ

Z hnþ1 xð Þ

h1 xð Þ
ex x; yð Þdy

v xð Þ ¼ � 12

hnþ1 xð Þ � h1 xð Þð Þ3
Z hnþ1 xð Þ

h1 xð Þ
ex x; yð Þ y � c xð Þð Þdy

c xð Þ ¼ 1

hnþ1 xð Þ � h1 xð Þ

Z hnþ1 xð Þ

h1 xð Þ
exy x; yð Þdy

ð18Þ

where ex and exy are the components of the strain tensor

e.
Subsequently, the beam compatibility is expressed

through the following ODEs

e0 xð Þ ¼ u0 xð Þ � c0 xð Þu xð Þ ð19aÞ

v xð Þ ¼ �u0 xð Þ ð19bÞ

c xð Þ ¼ v0 xð Þ þ u xð Þ ð19cÞ

3.3 Equilibrium equations

With the internal forces (i.e., the horizontal internal

force H : L ! R, the vertical internal force

V : L ! R, and the bending moment M : L ! R,

respectively) defined as

H xð Þ ¼ b

Z hnþ1 xð Þ

h1 xð Þ
rx x; yð Þdy

V xð Þ ¼ b

Z hnþ1 xð Þ

h1 xð Þ
s x; yð Þdy

M xð Þ ¼ b

Z hnþ1 xð Þ

h1 xð Þ
rx x; yð Þ c xð Þ � yð Þdy

ð20Þ

the equilibrium ODEs read

H0 xð Þ ¼ �q xð Þ ð21aÞ

M0 xð Þ � H xð Þ � c0 xð Þ þ V xð Þ ¼ �m xð Þ ð21bÞ

V 0 xð Þ ¼ �p xð Þ ð21cÞ

3.4 Stress representation

The representation of stress distributions needs several

definitions. We start by introducing the horizontal-

stress distribution functions dH
r : A xð Þ ! R and

dM
r : A xð Þ ! R, which define the horizontal stress

distributions induced by horizontal forces and bending

moments, respectively,

dH
r x; yð Þ ¼ E x; yð Þ

A� xð Þ ; dM
r x; yð Þ ¼ E x; yð Þ

I� xð Þ c xð Þ � yð Þ

ð22Þ

Exploiting Definitions (22), the horizontal stress

distribution can be defined as follows
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rx x; yð Þ ¼ dH
r x; yð ÞH xð Þ þ dM

r x; yð ÞM xð Þ ð23Þ

Inorder to recover the shear stress distributionwithin the

cross-section we resort to a procedure similar to the one

proposed initially by Jourawski (1856) and nowadays

adopted in most standard literature (Bruhns 2003).

Specifically, we consider a slice of infinitesimal

length dx of a non prismatic beam, as illustrated in

Fig. 4.

First we focus on the lower boundary of the cross-

section i.e., the triangle depicted in blue in Fig. 4a. The

horizontal equilibrium of this part of the domain can

be expressed as

sjh1dx � rxjh1h
0
1dx ¼ 0 ) sjh1¼ h0

1rxjh1 ð24Þ

where we do not indicate the dependencies on spatial

coordinates for simplicity. Equation (24) is also valid for

the upper boundary hnþ1 and leads to the same relation

as obtained through the boundary equilibrium in

Balduzzi et al. (2016) (see Eq. 8a). By inserting

Eq. (23) into Eq. (24) we obtain the following

expression

s x; yð Þjh1¼ h0
1 xð ÞdH

r x; yð Þ
��
h1

H xð Þ
þ h0

1 xð ÞdM
r x; yð Þ

��
h1

M xð Þ ð25Þ

Next we focus on the rectangle depicted in green in

Fig. 4b for which the horizontal equilibrium can be

expressed as

�sdx þ sþ s;y dy
� �

dx � rxdy þ rx þ rx;xdx
� �

dy ¼ 0

ð26Þ

where again we do not indicate the dependencies on

spatial coordinates for simplicity and the notations

�ð Þ;x and �ð Þ;y indicate partial derivatives with respect

to x and y, respectively. Few simplifications and

integration with respect to the y variable lead to

s x; yð Þ ¼ �
Z

rx;x x; yð Þdy ð27Þ

Inserting the horizontal stresses definition (23) into

Equation (27), calculating the derivative of rx, recall-

ing the beam equilibrium (21b), and neglecting the

contributions of bending load and beam eccentricity

(i.e., assuming m xð Þ ¼ c0 xð Þ ¼ 0) yield the following

expression

s x;yð Þ¼�
Z

dH
r ;x x;yð ÞH xð Þdy�

Z
dM
r ;x x;yð ÞM xð Þdy

�
Z

dM
r x;yð ÞV xð ÞdyþC ð28Þ

where the constant C results from the boundary

equilibrium on inter-layer surfaces.

Finally, we focus on the i interlayer surface

depicted in Fig. 4c from which the horizontal equilib-

rium between the two infinitesimal triangles belonging

at two different layers can be read as

� s�dx þ sþdx � rþx h0
idx þ r�x h0

idx ¼ 0 )
sst ¼ h0

isrxt ð29Þ

where again we do not indicate the dependencies on

spatial coordinates for simplicity. Equation (29)

recovers exactly the interlayer equilibrium (12),

confirming the robustness of the proposed proce-

dure. By inserting the horizontal stresses definition

(23) into Equation (29) the following expression is

obtained

ss x; yð Þt ¼ h0
i xð ÞsdH

r x; yð ÞtH xð Þ
þ h0

i xð ÞsdM
r x; yð ÞtM xð Þ ð30Þ

It is worth highlighting once more that Equa-

tions (25), (28), and (30) lead the shear stress

distribution to depend on all the internal forces.

Aiming at providing an expression of shear stress

distribution similar to the one introduced for hori-

zontal stress (23), we collect all the terms of

Equations (25), (28), and (30) that depend on H xð Þ,
M xð Þ, and V xð Þ, respectively.

dx

h′
idx

h′
1dx

dy

(a)

(b)

(c)

σx|h1 τ |h1
τ

τ + τ ,y dyσx

σx +σx,xdx

τ−

τ+σ+
x σ−

x

Fig. 4 Equilibrium of a slice of beam of length dx: a equilibrium
evaluated at the lower boundary, b equilibrium evaluated within

a layer cross-section, and c equilibrium evaluated at an

interlayer surface
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Than, the shear-stress distribution dV
s : A xð Þ ! R,

defining the shear stress distributions induced by

vertical internal force V xð Þ, can be identified as

dV
s x; yð Þ ¼ �

Z y

h1 xð Þ
dM
r x; tð Þ dt ð31Þ

It is worth mentioning that the so far introduced

definition of shear stress distribution corresponds to

the one provided by Bareisis (2006).

In order to define the shear-stress distributions dH
s :

A xð Þ ! R and dM
s : A xð Þ ! R induced by horizontal

internal force H xð Þ and bending moment M xð Þ
respectively, some additional tools are required. We

start introducing a vector field D : A xð Þ ! Rnþ1. Each

term Di of the vector D is defined as

Di x; yð Þ ¼ d y � hi xð Þð Þh0
i xð Þ ð32Þ

where the notation d y � hi xð Þð Þ indicates a Dirac

distribution. Analogously, we define the vectors RH :

L ! Rnþ1 and RM : L ! Rnþ1 as follows

RH
i xð Þ ¼ sdH

r x; yð Þt
��
y¼hi xð Þ; RM

i xð Þ ¼ sdM
r x; yð Þt

��
y¼hi xð Þ

ð33Þ

Therefore, we define the functions ~dH
s ;

~dM
s : A xð Þ ! R

~dH
s x; yð Þ ¼

Z y

h1 xð Þ
D x; tð Þ � RH xð Þ � dH

r ;x x; tð ÞÞ
� �

dt

~dM
s x; yð Þ ¼

Z y

h1 xð Þ
D x; tð Þ � RM xð Þ � dM

r ;x x; tð Þ
� �

dt

ð34Þ

and their resulting area

DH
s xð Þ ¼

Z hnþ1 xð Þ

h1 xð Þ
~dH
s x; yð Þdy

DM
s xð Þ ¼

Z hnþ1 xð Þ

h1 xð Þ
~dM
s x; yð Þdy

ð35Þ

As a consequence, the shear-stress distribution func-

tions dH
s and dM

s , defining the shear stress distributions

induced by horizontal forceH xð Þ and bendingmoment

M xð Þ, read

dH
s x; yð Þ ¼ ~dH

s x; yð Þ � DH
s xð ÞdV

s x; yð Þ
dM
s x; yð Þ ¼ ~dM

s x; yð Þ � DM
s xð ÞdV

s x; yð Þ
ð36Þ

According to all so far introduced definitions, the shear

stress distribution can be defined as follows

s x; yð Þ ¼ dH
s x; yð ÞH xð Þ þ dM

s x; yð ÞM xð Þ þ dV
s yð ÞV xð Þ

ð37Þ

The following statements summarize the key aspects

of the proposed formulation.

• Equations (25), (28), and (30) allow to take into

account the dependency of the shear distribution

within the cross-sections on all the internal forces

H xð Þ, M xð Þ, and V xð Þ.
• Furthermore, also the shear stress s exhibits a

discontinuous distribution within the cross-sec-

tion, confirming that a non-prismatic beam

behaves differently from prismatic ones and

according to inter-layer equilibrium discussed in

Sect. 2.3.

• Definitions (31) and (36) satisfy boundary, inter-

nal, and interlayer equilibriums ((25), (28), and

(30), respectively).

• Definition (36) does not ensure that the equilib-

rium on the upper boundary hnþ1 is satisfied. In

particular, it does not guarantee that

lim
y!hnþ1 xð Þ�

dH
s x; yð Þ

�� �� ¼ Dnþ1 x; yð ÞRH
nþ1 x; yð Þ

�� ��

lim
y!hnþ1 xð Þ�

dM
s x; yð Þ

�� �� ¼ Dnþ1 x; yð ÞRM
nþ1 x; yð Þ

�� ��

ð38Þ

Fortunately, it is possible to proof that Equa-

tion (38) is naturally satisfied since the variation of

the cross-section geometry, inducing the jumps,

compensates with the variation of stress

magnitudes.

• Definition (36) leads

Z hnþ1 xð Þ

h1 xð Þ
dH
s x; yð Þdy ¼

Z hnþ1 xð Þ

h1 xð Þ
dM
s x; yð Þdy ¼ 0

ð39Þ

As a consequence, only the shear-stress distribu-

tion functions dV
s x; yð Þ depends on the vertical

force V xð Þ, leading to a simpler stress

representation

• Considering an homogeneous beam, the stress

representation provided within this section lead to

the same result as the recovery procedure proposed

in (Balduzzi et al. (2016), Section 3.3). Neverthe-

less, with respect to this reference, the recovery

procedure proposed within this document follows

a more rigorous path.
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3.5 Simplified constitutive relations

To complete the Timoshenko-like beam model we

introduce some simplified constitutive relations that

define the generalized strains as a function of the

internal forces.

Therefore, we consider the stress potential, defined

as follows

W� x; yð Þ ¼ 1

2

r2x x; yð Þ
E x; yð Þ þ s2 x; yð Þ

G x; yð Þ

� �
ð40Þ

Substituting the stress recovery relations (23) and (37)

in Equation (40), the generalized strains result as the

derivatives of the stress potential with respect to the

corresponding internal forces, reading

e0 xð Þ ¼b

Z hnþ1 xð Þ

h1 xð Þ

oW� x; yð Þ
oH xð Þ dy ¼

eH xð ÞH xð Þ þ eM xð ÞM xð Þ þ eV xð ÞV xð Þ
ð41aÞ

v xð Þ ¼b

Z hnþ1 xð Þ

h1 xð Þ

oW� x; yð Þ
oM xð Þ dy ¼

vH xð ÞH xð Þ þ vM xð ÞM xð Þ þ vV xð ÞV xð Þ
ð41bÞ

c xð Þ ¼b

Z hnþ1 xð Þ

h1 xð Þ

oW� x; yð Þ
oV xð Þ dy ¼

cH xð ÞH xð Þ þ cM xð ÞM xð Þ þ cV xð ÞV xð Þ
ð41cÞ

where

eH xð Þ ¼ b

Z hnþ1 xð Þ

h1 xð Þ

dH
r x; yð Þ

� �2

E x; yð Þ þ
dH
s x; yð Þ

� �2

G x; yð Þ

 !

dy

eM xð Þ ¼ vH xð Þ ¼ b

Z hnþ1 xð Þ

h1 xð Þ

dH
r x; yð ÞdM

r x; yð Þ
E x; yð Þ dy

þ b

Z hnþ1 xð Þ

h1 xð Þ

dH
s x; yð ÞdM

s x; yð Þ
G x; yð Þ dy

eV xð Þ ¼ cH xð Þ ¼ b

Z hnþ1 xð Þ

h1 xð Þ

dH
s x; yð ÞdM

s x; yð Þ
G x; yð Þ dy

vM xð Þ ¼ b

Z hnþ1 xð Þ

h1 xð Þ

dM
r x; yð Þ

� �2

E x; yð Þ þ
dM
s x; yð Þ

� �2

G x; yð Þ

 !

dy

vV xð Þ ¼ cM xð Þ ¼ b

Z hnþ1 xð Þ

h1 xð Þ

dM
s x; yð ÞdV

s x; yð Þ
G x; yð Þ dy

cV xð Þ ¼ b

Z hnþ1 xð Þ

h1 xð Þ

dV
s x; yð Þ

� �2

G x; yð Þ dy

Equation (41) highlights that curvature and shear

strains depend on both bending moment and vertical

internal force through a non-trivial relation, substan-

tially different from the one that governs the prismatic

beam. This aspect was grasped by Romano (1996) and

was treated more rigorously by Rubin (1999) and

Aminbaghai and Binder (2006) even if their model

uses different coefficients within the constitutive

relations, leading to a coarse estimation of the shear

deformation energy. Furthermore, Equation (41) also

highlights that horizontal and bending stiffnesses non

only depend on the Young’s modulus E, but also on the

shear modulus G.

3.6 Remarks on beam model’s ODEs

Following the notation adopted by Gimena et al.

(2008) the beam model’s ODEs (19), (21), and (41)

can be expressed as

ð42Þ

• The resulting ODEs have the same structure as the

ones obtained by Balduzzi et al. (2016), but differ

due to a more complex definitions of both the

centerline c xð Þ and the constitutive relations.

• Furthermore, the matrix that collects equations’

coefficients has a lower triangular form with

vanishing diagonal terms. As a consequence, the

analytical solution can be easily obtained through

an iterative process of integration done row by

row, starting from H xð Þ and arriving at u xð Þ.
• The extremely simple assumptions on kinematics

(17) and internal forces (20) do not allow to tackle

any boundary effect (as usual for most standard

beam models). Therefore the proposed beam

model has not the capability to describe the

phenomena that occurs in the neighborhood of

constraints, concentrated loads, non-smooth

changes of the beam geometry.
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• Considering a beam made of a single homoge-

neous layer, the herein proposed model recovers

exactly the equations derived by Balduzzi et al.

(2016). Nevertheless, Balduzzi et al. (2016)

recover the shear stress distributions by means of

a suitable (but arbitrary) interpolation of the shear

evaluated at the boundary. On the contrary, the

stress representation provided by Sect. 3.4 rigor-

ously justifies the shear-stress distribution within

the cross-section on the basis of a solid theoretical

background.

• The beam compatibility (19) can be recovered

substituting displacement representation (17) in

2D compatibility (7a) and than inserting the

obtained strains in Equation (18).

• Similarly, the beam equilibrium (21) can be

recovered substituting stress representation (23)

and (37) in 2D equilibrium (7c) and than inserting

the obtained stresses in Equation (20).

For further comments on the resulting ODEs, readers

may refer to Balduzzi et al. (2016).

4 Numerical examples

This section aims at providing further details on the

obtained model capabilities. In particular we consider

three examples: (i) a prismatic cantilever under shear

load, (ii) a non homogeneous tapered beam under

shear load, and (iii) an arch shaped beam under

complex load.

In the following subsections, the stress distributions

will be given with respect to the dimensionless

coordinate y� defined as

y� ¼ y

hnþ1 xð Þ � h1 xð Þð Þjx¼xi

ð43Þ

4.1 Prismatic homogeneous beam

The numerical example provided in this section will

demonstrate that the proposed modeling approach has

the capability to recover the solution of simpler

problems which represents a necessary condition for

proofing the model effectiveness.

We consider a prismatic and homogeneous can-

tilever of length l ¼ 104 mm, thickness h ¼ 103 mm,

and depth b ¼ 1mm made up of 5 layers of non-

constant thickness. The inter-layer surfaces are

defined as follows

h ¼ �500; �400� 10

11l
x; �250� 3

4l
x þ 1

l2
x2;

�

166þ 5

8l
x � 2

3l2
x2; 400� 1

10l
x; 500

�
ðmmÞ

ð44Þ

and the mechanical properties read

E x; yð Þ ¼ 105 MPa 8y 2 A xð Þ
G x; yð Þ ¼ 4� 104 MPa 8y 2 A xð Þ

ð45Þ

Finally, we consider the following boundary condi-

tions corresponding to a clamped cantilever

u 0ð Þ ¼ 0; u 0ð Þ ¼ 0; v 0ð Þ ¼ 0

H lð Þ ¼ 0; V lð Þ ¼ 103 N; M lð Þ ¼ 0
ð46Þ

As expected, the model recovers exactly the classical

solution of a prismatic Timoshenko beam, obtaining

the following results:

u lð Þ ¼ 0; v lð Þ ¼ � Pl3

3EI
� Fl

kGA
¼ 40:3mm

u lð Þ ¼ Pl2

2EI
¼ �0:006

ð47Þ

Specifically, due to the fact that the beam cross-section

is homogeneous, the Young’s E x; yð Þ and shear

modulus G x; yð Þ (6) are continuous and constant

functions. Therefore, also the horizontal stress distri-

bution functions (22) are continuous, independent

from the axis coordinate x, and equal to the horizontal

stress distribution usually adopted for the prismatic

beams. As a consequence, the vectors RH and RM (33)

and the shear stress distributions dH
s and dM

s (36)

vanish, whereas the shear stress distribution dV
s (31)

assumes the usual parabolic shape. Finally, the

coefficients eM , eV , and vV vanish, whereas the

coefficients eH , vM and cV assumes the usual values

for prismatic beams.

It is worth noticing that, following the proposed

procedure, the coefficient cV is obtained by

6=5Gb hnþ1 xð Þ � h1 xð Þð Þ, providing the exact shear

correction factor. In the authors opinion this is a great

advantage of the proposed model which leads natu-

rally to energetically consistent results without any

further corrections.

Planar Timoshenko-like model

123



4.2 Non-homogeneous tapered cantilever

Let us consider the multilayer tapered beam, depicted

in Fig. 5, with a beam length of l ¼ 104 mm and a

depth of b ¼ 1mm.

The inter-layer surfaces are defined as follows

h ¼ �625þ 3

64
x; �375þ 9

320
x;

�

375� 9

320
x; 625� 3

64
x

�
ðmmÞ

ð48Þ

and the mechanical properties read

E x; yð Þ ¼ 8� 105 for y 2 A1;3 xð Þ
5� 104 for y 2 A2 xð Þ

�
ðMPaÞ

G x; yð Þ ¼ 3:2� 105 for y 2 A1;3 xð Þ
2� 104 for y 2 A2 xð Þ

�
ðMPaÞ

ð49Þ

Finally, we consider the following boundary condi-

tions corresponding to a clamped cantilever

u 0ð Þ ¼ 0; u 0ð Þ ¼ 0; v 0ð Þ ¼ 0

H lð Þ ¼ 0; V lð Þ ¼ 103 N; M lð Þ ¼ 0
ð50Þ

As expected, using equilibrium equations (21) the

analytical expression of internal forces are:

H xð Þ ¼ 0; M xð Þ ¼ 103x � 104ðNmmÞ
V xð Þ ¼ �F ¼ �103 N

ð51Þ

Figures 6, 7, and 8 depicts the distributions of the

stresses rx and s in the cross-sections A xið Þ for

xi ¼ 0:25 l, 0:5 l, and 0:9 l, respectively. The apex

mod indicates the stress distribution obtained using

Equations (23) and (37), whereas the apex ref indicates

the 2D FE solution, computed using the commercial

software ABAQUS (Simulia 2011), considering the

full 2D problem, and using a structured mesh of

quadrilateral elements with a characteristic length of

5mm.

Figures 6, 7, and 8 demonstrate that the proposed

procedure for the reconstruction of stress distributions

is extremely accurate in most cases. Only Fig. 8b

allows to detect a difference between the model and

the reference solution (maximum relative error around

5%). This might be explained by the presence of local

effects at the end of the beam, that are caught by the

2D FE model but not by the proposed beam model.

Figures 6a, 7a, and 8a show that the horizontal

stress distribution has the same shape within every

cross-section. In contrast, Figs. 6b, 7b, and 8b show

that the shear distribution can vary drastically moving

from one cross-section to the other. This behavior is

completely unexpected for an engineer used to tackle

O x

y E1,G1

E2,G2

l

F

Fig. 5 Tapered beam: cartesian coordinate system, geometry,

and boundary condition definitions. l ¼ 104 mm;F ¼ 103 N;

E1 ¼ 8� 105 Mpa;G1 ¼ 3:2� 105 Mpa;E2 ¼ 5� 104 Mpa,

and G2 ¼ 2� 104 Mpa

−60 −40 −20 0 20 40 60
−0.5

0

0.5

y∗

mod
ref

σx

−2.5 −2 −1.5 −1 −0.5
−0.5

0

0.5

y∗

mod
ref

τ

(a)

(b)

Fig. 6 Horizontal (a) and shear (b) stresses cross-section

distributions, evaluated in A 0:25lð Þ for a symmetric tapered

beam with a vertical load F ¼ 103 N applied in the final cross-

section A lð Þ. a Horizontal stress rx cross-section distribution.

b Shear stress s cross-section distribution
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prismatic beams and must be considered carefully. In

fact, the maximum shear stress does not occur in the

middle of the cross-section and, as a consequence, it is

not possible to know a-priori the position of the

maximum shear. Furthermore, differently from pris-

matic beams, the maximum shear could occur at the

same position as the maximum horizontal stress (see

Fig. 6). As a consequence, the identification of the

most stressed point (e.g., in order to verify the beam

strength) is a non-trivial procedure that requires more

accurate considerations than for prismatic beams.

Since H xð Þ ¼ 0, eHH xð Þ ¼ vHH xð Þ ¼ cHH xð Þ ¼
0; moreover, since c xð Þ ¼ 0 also eM ¼ eV ¼ 0 as

expected. Fig. 9 depicts the plots of the generalized

strains v xð Þ and c xð Þ obtained using constitutive

relations (41).

It is interesting to notice that both the curvature

induced by the vertical internal force vVV xð Þ and

the shear strain induced by the bending moment

cMM xð Þ are not negligible. On the contrary, they

significantly reduce the magnitude of the total curva-

ture and the total shear strain, respectively. Finally,

both the curvature and the shear strains have a non-

trivial distribution along the beam axis, showing

several critical points usually not existing in prismatic

beams.

Table 1 contains the maximum displacements of the

cantilever beam obtained using compatibility equa-

tions (19), showing that the proposed beam model has

the capability to provide an extremely accurate

prediction of the beam displacements.

The results reported in this section clearly demon-

strate that (1) a non-prismatic beam—even if with a

simple geometry—exhibits an extremely complex

behavior and (2) the proposed model—despite its

simplicity—has the capability to catch all the signif-

icant phenomena that occurs within the beam.

−60 −40 −20 0 20 40 60
−0.5

0

0.5

y∗

mod
ref

σx

−2.5 −2 −1.5 −1
−0.5

0

0.5

y∗

mod
ref

τ

(a)

(b)

Fig. 7 Horizontal (a) and shear (b) stresses cross-section

distributions, evaluated in A 0:5lð Þ for a symmetric tapered beam

with a vertical load F ¼ 103 N applied in the final cross-section

A lð Þ. a Horizontal stress rx cross-section distribution. b Shear

stress s cross-section distribution

−40 −20 0 20 40
−0.5

0

0.5

y∗

mod
ref

σx

−3 −2.8 −2.6 −2.4 −2.2
−0.5

0

0.5

y∗

mod
ref

τ

(a)

(b)

Fig. 8 Horizontal (a) and shear (b) stresses cross-section

distributions, evaluated in A 0:9lð Þ for a symmetric tapered beam

with a vertical load F ¼ 103 N applied in the final cross-section

A lð Þ. a Horizontal stress rx cross-section distribution. b Shear

stress s cross-section distribution.
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4.3 Robustness analysis

The numerical results presented in this section shows

the capability of the proposed beam model with

respect to more complex geometry. In particular, for a

thin walled beam (e.g., a steel beam), flanges can be

modeled within a planar beam model as thin and

extremely stiff layers, as depicted in Fig. 10.

With the beam length l ¼ 104 mm, the depth

b ¼ 1mm, and the asymptotic thickness defined as

has xð Þ :¼ 1000� 3

4l
x ð52Þ

the inter-layer surfaces are defined as

h ¼ has xð Þ
2

�1

�1

1

1

8
>>><

>>>:

9
>>>=

>>>;

þ k

�1

1

�1

1

8
>>><

>>>:

9
>>>=

>>>;

0

BBB@

1

CCCA
ð53Þ

where k is a positive-definite, vanishing parameter

defined as the ratio between the flange hl and the

asymptotic has thicknesses. The mechanical properties

read

E x; yð Þ ¼
1

k
2� 105 for y 2 A1;3 xð Þ

k 2� 105 for y 2 A2 xð Þ

8
<

:
ðMPaÞ

G x; yð Þ ¼
1

k
8� 104 for y 2 A1;3 xð Þ

k 8� 105 for y 2 A2 xð Þ

8
<

:
ðMPaÞ

ð54Þ

Finally, the following boundary conditions are

prescribed

u 0ð Þ ¼ 0; u 0ð Þ ¼ 0; v 0ð Þ ¼ 0

H lð Þ ¼ 0; V lð Þ ¼ 103 N; M lð Þ ¼ V lð Þ � l

3

ð55Þ

corresponding to a vertical load applied at the point

where all the interlayer surfaces cross each other.

The asymptotic analysis consists in reducing pro-

gressively the value of k. Considering the limit

situation in which k ! 0þ, we obtain the following

asymptotic values of the stiffness coefficients

lim
k!0þ

hnþ1 xð Þ � h1 xð Þð Þ ¼ has xð Þ

lim
k!0þ

A� xð Þ ¼ 1

5
2� 105has xð Þ

lim
k!0þ

I� xð Þ ¼ 2

5
2� 105h3

as xð Þ

ð56Þ

Therefore we expect that, considering vanishing

values of k the solution converges to the one obtained

using the so far specified mechanical properties.

Unfortunately, it is not possible to compute the

analytical solution in the limit situation. Therefore,

we limit our investigation to 1=64	 k	 1=4 and, for
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−4
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0

1 x 10−7
χ
( x
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m
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x/l
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χ (x)
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γ(
x )
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(a)

(b)

Fig. 9 Curvature (a), and shear strain (b) x distributions,

evaluated for a multilayer tapered cantilever with a shear load

F ¼ 103 N applied in the final cross-section. a Curvature v xð Þx
distribution. b Shear strain c xð Þx distribution

Table 1 Mean value of the vertical displacement evaluated on

the final section and obtained considering different models for

a symmetric tapered cantilever of lenght l ¼ 104 mm with a

vertical load P ¼ 103 N applied in the final section

Prop. model Ref. solution Rel. error

v lð ÞðmmÞ �8:383� 100 �8:428� 100 5:3� 10�3

u lð Þð�Þ 1:866� 10�3 1:876� 10�3 5:3� 10�3

u lð ÞðmmÞ 0:000� 100 0:000� 100 0:0� 100
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every considered k, the reference solution is computed

using the commercial software ABAQUS (Simulia

2011), considering the full 2D problem and using a

structured mesh of quadrilateral elements with a

characteristic length of 5mm.

Figure 11 shows the relative errors for the rotation

u lð Þ and the vertical displacement v lð Þ evaluated at

x ¼ l.

The relative errors in predicting both rotation and

vertical displacement are smaller than 2% in most

cases, even considering small values of k. As a

consequence, we can conclude that the proposed

model is effective and capable to cover most cases of

practical interest.

4.4 Arch shaped beam

The numerical results reported in this section will show

that the proposed beam model can tackle more general

cases, considering generic loads and boundary conditions.

Therefore, the multilayer arch-shaped beam

depicted in Fig. 12 is considered.

With a beam length l ¼ 104 mm and a depth

b ¼ 1mm, the inter-layer surfaces are defined as

h ¼ 363

2000

1

l
x2 � 25;

9

50

1

l
x2; 500� x

20
;

�

525� x

20
; 600

o
ðmmÞ

ð57Þ

whereas the mechanical properties read

E x; yð Þ ¼
4� 107 for y 2 A1;3 xð Þ
1:6� 106 for y 2 A2 xð Þ
1:2� 107 for y 2 A4 xð Þ

8
><

>:
ðMPaÞ

G x; yð Þ ¼
1:538� 107 for y 2 A1;3 xð Þ
6:154� 105 for y 2 A2 xð Þ
5:217� 106 for y 2 A4 xð Þ

8
><

>:
ðMPaÞ

ð58Þ

As a consequence, using Equation (14) the centerline

reads

c xð Þ ¼ 7353x4 þ 6:23� 1011x2 þ 4:5� 1015x � 2:4125� 1019

8� 105 87x2 � 1:3� 106x þ 9:25� 1011ð Þ
ð59Þ

Finally, let us consider a distributed load p ¼
�1N=mm and the following boundary conditions

u 0ð Þ ¼ 0; H lð Þ ¼ �5� 103 N

v lð Þ ¼ 0; V 0ð Þ ¼ 0

u 0ð Þ ¼ 0; M lð Þ ¼ H lð Þ h1 lð Þ � c lð Þð Þ ¼ 7:953� 106 Nmm

ð60Þ

where the horizontal force H lð Þ and the bending

moment M lð Þ applied at the end of the beam are

O x

y E1,G1
E2,G2

l l/3
F

M
has

hl

Fig. 10 Tapered beam: geometry and boundary condition

definition. h0 ¼ 103 mm; hl ¼ 1
2k h0; l ¼ 104 mm ;F ¼ 103 N,

and M ¼ F � l
3

4 8 16 32 64

10−3

10−2

1/λ

e r
el

erel ϕ (l)
erel v(l)

Fig. 11 Relative errors evaluated for different values of the

parameter k

O x

y

E1,G1
E2,G2
E3,G3

l

p

M

H

Fig. 12 Arch shaped beam: reference coordinate system,

geometry, and boundary condition definition. l ¼ 104 mm;N ¼
5� 103 N; M ¼ �7:953� 106 Nmm; p ¼ 1N=mm;E1 ¼ 4�
107 Mpa;G1 ¼ 1:538� 107 Mpa;E2 ¼ 1:6� 106 Mpa;G2 ¼
6:154� 105 Mpa;E3 ¼ 1:2� 107 Mpa;G3 ¼ 5:217� 106 Mpa
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equivalent to an horizontal force—represented with a

dotted line in Fig. 12—applied at the lower boundary

of the final cross-section.

The distribution of internal forces along the

beam axis, calculated using beam equilibrium

(21), are reported in Fig. 13. Figure 13a clearly

illustrates that the internal forces have the

expected distribution i.e., a constant horizontal

internal force H xð Þ, equal to the load applied in the

final cross-section and a linear distribution of the

vertical internal force V xð Þ. Conversely, Fig. 13b

show that the bending moment M xð Þ is the sum of two

contributions: the former
R

H xð Þ � c0 xð Þdx accounts for

the boundary condition M lð Þ and the moment induced

by the horizontal load due to the variation of the

center-line position within the beam and the latterR
V xð Þdx accounts for the bendingmoment induced by

the vertical load p.

Figures 14, 15, and 16 depict the distributions of

the stresses rx and s in the cross-sections A xið Þ where
xi ¼ 0:25 l; 0:5 l; and 0:75 l respectively obtained

using Eqs. (23) and (37). The apex mod indicates the

stress distribution obtained using Equations (23) and

(37), whereas the apex ref indicates the 2D FE

solution, computed using the commercial software

ABAQUS (Simulia 2011), considering the full 2D

problem, and using a structured mesh of quadrilateral

elements with a characteristic length of 5mm.

Figures 14, 15, and 16 demonstrate that the

proposed procedure for the reconstruction of stress

distribution is extremely accurate in most cases. In

particular, Figs. 6b, 7b, and 8b show that the shear

stress distributions vanish at y ¼ h5 xð Þ, confirming

observations reported in Sect. 3.4 and the goodness of

the proposed stress representation procedure. Only
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−5000
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(a)

(b)

Fig. 13 x distribution of internal forces for an arch shaped beam

under complex load condition. a Horizontal H xð Þ and vertical

V xð Þ internal forces x distribution. b Bending moment M xð Þx
distribution
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Fig. 14 Horizontal (Fig. 6a) and shear (Fig. 6b) stresses cross-

section distributions, evaluated in A 0:25lð Þ for an arch shaped

beam under complex load condition. a Horizontal stress rx

cross-section distribution. b Shear stress s cross-section

distribution
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Figs. 8a, b show a small difference between the model

and the reference solution: the proposed stress recov-

ery procedure overestimates the real stresses with a

maximum relative error of about 20%. Nevertheless,

the error concentrates in the first layerX1, which is the

most distorted and thin.

Furthermore, it is worth noticing that in X1 the

shear has a negative value, opposite to the values in all

the other cross-section’s points and also to the vertical

internal force V xð Þ. Finally, looking at Figs. 13a, 6b,

and 8b, it is possible to see that

V 0:25 lð Þ
V 0:75 lð Þ �

1

3
whereas

maxx¼0:25l s x; yð Þj j
maxx¼0:75l s x; yð Þj j � 4

ð61Þ

i.e., the vertical internal force V xð Þ in A 0:25 lð Þ is three
times smaller than in A 0:75 lð Þ, but the maximum

shear stress is four times bigger. The few observations

so far introduced confirm once more that the stress

distribution within a non-prismatic beam is absolutely

non-trivial and need an accurate and rigorous analysis

that the proposed model has the capability to effec-

tively perform.

Figure 17 depicts the plots of the generalized strains

e xð Þ, v xð Þ, and c xð Þ as obtained from beam constitutive

relation (41).

Once more, it is worth noticing that the axial strain,

the curvature, and the shear strains have a non-trivial

distribution along the beam axis, showing several

critical points usually not existing in prismatic beams.

Furthermore, Fig. 17(a) shows that the axial strain e xð Þ
vanishes in the neighborhood of x=l ¼ 6, despite the

presence of a constant horizontal load. Similarly,

Fig. 17(c) shows that the shear strain c xð Þ is negative
in the neighborhood of x=l ¼ 0, despite the vertical

internal force vanishes at x=l ¼ 0 and is positive in the

neighborhood.
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−0.5

0

0.5

y∗

mod
ref

σx

−140 −120 −100 −80 −60 −40 −20 0 20
−0.5

0

0.5

y∗

mod
ref

τ

(a)

(b)

Fig. 15 Horizontal (Fig. 7a) and shear (Fig. 7b) stresses cross-

section distributions, evaluated in A 0:5lð Þ for an arch shaped

beam under complex load condition. a Horizontal stress rx

cross-section distribution. b Shear stress s cross-section

distribution

−50 0 50 100 150
−0.5

0

0.5
mod
ref

σx

−40 −30 −20 −10 0 10
−0.5

0

0.5

y∗
y∗

mod
ref

τ

(a)

(b)

Fig. 16 Horizontal (Fig. 8a) and shear (Fig. 8b) stresses cross-

section distributions, evaluated in A 0:75lð Þ for an arch shaped

beam under complex load condition. a Horizontal stress rx

cross-section distribution. b Shear stress s cross-section

distribution
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Table 2 contains the maximum displacements of the

arch shaped beam, showing that the proposed beam

model has the capability to provide an accurate

prediction of the beam displacements, reasonable for

most engineering applications.

It is worth noticing that the applied loads induce

two contrasting phenomena: (i) the horizontal load

induces negative displacements whereas (ii) the dis-

tributed vertical load tends to reduce the centerline

curvature, leading to a beam’s elongation. It is worth

recalling that the former is the only phenomena that

influences horizontal displacements of prismatic

beams whereas the latter is peculiar of curved and

non-prismatic beams and can not be tackled by all the

prismatic-like models. In the case we are discussing,

the latter prevails, leading to a resulting positive

horizontal displacement, despite the negative load.

Once more, the proposed model describes both

phenomena and effectively estimates the right hori-

zontal displacement.

The results reported in this section confirm that

(i) non-prismatic beams have an extremely complex

behavior and (ii) the proposedmodel has the capability

to catch all the significant phenomena that occurs

within the beam also considering more complex

geometry, boundary conditions, and loads.

5 Conclusions

The modeling of a generic multilayer non-prismatic

planar beam proposed in this paper was done through 4

main elements

1. compatibility equations

2. equilibrium equations

3. stress representation

4. simplified constitutive relations

The main conclusions highlighted by the derivation

procedure and the discussion of practical examples are

resumed in the following.

• The model uses as independent variables the ones

usually adopted in prismatic Timoshenko beams,

resulting therefore extremely cheap from the

computational point of view.

• Conversely, the extremely simple kinematics

assumptions do not allow to tackle boundary

effects (as usual for most standard beam models).
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Fig. 17 Horizontal strain (a), curvature (b), and shear strain

(c) x distributions, evaluated for an arch shaped beam under

complex load condition.

Table 2 Mean value of the vertical displacement evaluated on

the final section and obtained considering different models for

a symmetric tapered cantilever of length l ¼ 104 mm with a

vertical load P ¼ 103 N applied in the final section

Prop. model Ref. solution Rel. error

v 0ð ÞðmmÞ �4:675� 100 �4:656� 100 4:1� 10�3

u lð Þð�Þ �5:884� 10�4 �5:843� 10�4 7:0� 10�3

u lð ÞðmmÞ 3:252� 10�1 3:210� 10�1 1:3� 10�2
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Therefore the proposed beam model has not the

capability to describe the phenomena occurring in

the neighborhood of constraints, concentrated

loads, and corners.

• The proposed stress representation highlights that

the shear distribution not only depends on vertical

internal force (as usual fo prismatic beams) but

also on horizontal internal force and bending

moment.

• The complex geometry of multilayer non-pris-

matic beams causes each generalized strain to

depend on all internal forces. The proposed

simplified constitutive relations allow to effec-

tively describe these phenomena, leading to a

consistent and robust beam model.

• The examples discussed in Sect. 4 highlights that

non-prismatic multilayer beams could behave very

differently than prismatic ones.

• Furthermore, numerical examples demonstrate

that the model is effective, robust, and accurate

also for complex geometries (like highly hetero-

geneous beams with extremely thin layers), loads,

and boundary conditions, leading the model to be a

promising tool for practitioners and researcher.

Further developments of the present work will include

the application of the proposed model to more realistic

cases, the consideration of both dynamic and buckling

behaviors, the development of a non-prismatic beam

FE formulation, and the generalization of the proposed

modeling procedure to 3D beams.
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Berücksichtigung der M- und Q- Verformungen.

Bautechnik 83, 770–776 (2006)

Atkin, E.H.: Tapered beams: suggested solutions for some

typical aircraft cases. Aircr. Eng. 10, 371–374 (1938)

Auricchio, F., Balduzzi, G., Lovadina, C.: A new modeling

approach for planar beams: finite-element solutions based

on mixed variational derivations. J. Mech. Mater. Struct. 5,
771–794 (2010)

Auricchio, F., Balduzzi, G., Lovadina, C.: The dimensional

reduction approach for 2D non-prismatic beam modelling:

a solution based on Hellinger–Reissner principle. Int.

J. Solids Struct. 15, 264–276 (2015)

Balduzzi, G., Aminbaghai, M., Sacco, E., Füssl, J., Eberhard-
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