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Abstract

The interaction of a solid with an electromagnetic field, or from a quantum point of view with photons,
gives rise to new quasi-particles coined polaritons. For semi-conductors the exciton is the generic po-
lariton, whose characteristics are well investigated. Dominant polaritons in strongly correlated system
however, might be of a very different nature. Using parquet equations, which are not biased in favour
or against certain channels or physics, new polaritons in Hubbard-like systems can be observed: π-tons.
These π-tons manifest themselves in vertex corrections to the optical conductivity that are dominated
by the contributions in the particle-hole transversal channel. They consist of two particle-hole pairs
glued together by anitferromagnetic or charge density wave fluctuations.
In order to investigate the π-ton contributions in detail and without the necessity of a cumbersome
numeric analytic continuation we develop a simplified real frequency formalism that approximates the
vertex function Fkk′q. That is, we include all two particle scattering processes by an effective vertex
Fq which only depends on one frequency ω and one momentum vector q. The formalism requires the
self energy and effective vertex as input, hence granting us control over the diagrams included and thus
physical processes investigated.
Motivated by the picture of π-tons feeding upon antiferromagnetic and charge density wave fluctuations
we employ a particle-hole transversal ladder in the random phase approximation (RPA) as effective ver-
tex. Indeed we are able to show that this RPA-ladder correctly reproduces the low-frequency behaviour,
which comprises the majority of the vertex corrections to the optical conductivity. Hence the core fea-
tures of these π-tons can be reproduced by an RPA-ladder in the particle-hole transversal channel,
which supports our current picture of these novel quasi particles.
Furthermore we show that the low-frequency vertex corrections can be understood in terms of an
additional broadening of the Drude peak in the optical conductivity, which exhibits a characteristic
temperature dependence. This means that scattering rate determined from the optics deviates char-
acteristically from the one-particle scattering rate as determined from the self-energy or from angular
resoled photoemission spectroscopy (ARPES). With this we provide a first link to verifying π-tons
experimentally.
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Kurzfassung

Durch die Wechselwirkung eines Festkörpers mit einem elektromagnetischen Feld, oder aus quanten-
mechanischer Sicht mit Photonen, entstehen neue Quasiteilchen, genannt Polaritonen. Für Halbleiter
ist das Exciton das generische Polariton, dessen Eigenschaften genau untersucht sind. Die dominan-
ten Polaritonen in stark korrelierten Systemen könnten jedoch ganz anderer Natur sein. Durch Lösen
der Parkett-Gleichungen, die weder spezielle Kanäle noch Physik bevorzugen, konnten in Hubbard-
ähnlichen Systemen neue Polaritonen beobachtet werden: π-tonen. Diese π-tonen manifestieren sich
in den Vertexkorrekturen zur optischen Leitfähigkeit, dievon Beiträgen im Teilchen-Loch transveralen
Kanal dominiert werden. Sie bestehen aus zwei Teilchen-Loch Paaren, die durch antiferromagnetische
Spinfluktuationen oder Fluktuationen von Ladungsdichtewellen zusammengehalten werden.
Um die Beiträge der π-tonen detailliert und ohne die Notwendigkeit einer mühsamen numerischen ana-
lytischen Fortsetzung zu untersuchen, leiten wir einen vereinfachten Formalismus in reellen Frequenzen
her, der die Vertex-Funktion Fkk′q approximiert. In unserer Näherung beschreiben wir alle Zweit-
eilchenstreuprozesse durch eine effektive Vertex-Funktion Fq, die nur von einer Frequenz ω und einem
Impulsvektor q abhängt. Der Formalismus benötigt die Selbstenergie und den effektiven Vertex als
Input, über die wir die enthaltenen Diagramme und damit die untersuchten physikalischen Prozesse
kontrollieren können.
Motiviert durch das Bild, dass π-tonen durch antiferromagnetische Spinfluktuationen und Fluktuatio-
nen von Ladungsdichtewellen erzeugt werden, verwenden wir eine Teilchen-Loch transversale Leiter in
der Random-Phase-Approximation (RPA) als effektiven Vertex. Damit können wir zeigen, dass diese
RPA-Leiter das Niederfrequenzverhalten korrekt beschreibt, das den Großteil der Vertexkorrekturen
der optischen Leitfähigkeit beinhaltet. Dadurch können die Kernmerkmale dieser π-tonen durch eine
RPA-Leiter im Teilchen-Loch transversalen Kanal reproduziert werden, was unser aktuelles Bild dieser
neuen Quasiteilchen bekräftigt.
Weiters zeigen wir, dass die niederfrequenten Vertexkorrekturen durch eine zusätzliche Verbreiterung
des Drude-Peaks in der optischen Leitfähigkeit verstanden werden können, der eine charakteristische
Temperaturabhängigkeit aufweist. Dies bedeutet, dass die, über optische Wege ermittelte Streurate
charakteristisch von der Einteilchen-Streurate abweicht, die über die Selbstenergie oder durch winkel-
aufgelöste Photoemissionsspektroskopie (ARPES) bestimmt werden kann. Damit können wir einen
ersten Versuch zum experimentellen Nachweis von π-tonen vorschlagen.
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1. Introduction and motivation

Condensed matter physics is an exceptionally rich field which includes the study of remarkable phenom-
ena such as superconductivity, quantum criticality or electronic correlations in general1. It contains not
only fundamental research though, but also applications requiring materials with exceptional properties.
Theoretical condensed matter physics develops methods and tools needed to describe the properties
of (ideally) any solid imaginable and also uses those tools in combination with physical intuition to
describe properties and features of novel materials. However, no all-in-one method suitable for every
purpose exists as of yet - not even for crystals, i.e. solids that are constructed via repeating a unit-
cell, which is one major focus of modern condensed matter physics. In the case of weak electronic
correlations the Density Functional Theory (DFT) approach of Walter Kohn and Pierre Hohenberg2

proved to be a powerful method3. This changes in the presence of strong electronic correlations, as
DFT is no longer applicable. To cope with such systems different methods have been developed, one
being the Dynamical Mean Field Theory (DMFT)4,5. Even tough DMFT handles local correlations
non-perturbativly, it neglects all non-local correlations. One way to address this issue are so called
diagrammatic extensions of DMFT6. In this thesis we will only be dealing with the Dynamical Vertex
Approximation (DΓA) developed by Alessandro Toschi, Andrey Katanin and Karsten Held7.
The methods above can be used not only to describe structural features like bands or density of states
(DOS), but also to predict the response of a system to external perturbations. This thesis focuses
on the optical conductivity (OC), the response to an external alternating electrical field. We describe
the electronic system via non-relativistic many body quantum field theory (MB-QFT) and introduce
coupling to the external field classically using the Perierl’s substitution8.
The arguably simplest interaction of light with any material is the photoelectric effect9, where photons
simply excite an electron over the band gap, thus creating an electron-hole pair. However, the interac-
tion may also involve more complex bosonic polarized quasi-particles coined polaritons. One of these
polaritons is the exciton10,11, an excited electron-hole pair bound by the Coulomb interaction. Char-
acteristics and features of excitons10,11 have been studied to great extend and it is believed to be the
dominant polariton contributing to the OC in semiconductors. A recent study12 employs the parquet
equations to investigate the OC in strongly correlated systems (like the Hubbard or Falikov-Kimball
model). The observation of dominant vertex-corrections from the particle-hole transversal ph channel
motivates new polaritons. Moreover, almost all of the corrections are from k-points in the vicinity of
(π, π, ...), thus the name π-ton has been proposed. A visual representation using Feynman diagrams is
displayed in Fig. 1.1.
However, parquet calculations suffer from two major drawbacks: first the calculations (like most of
such diagrammatic approaches) are performed using imaginary (Matsubara) frequencies, which evokes
the need for a numerical analytic continuation - an ill posed problem for noisy data. The maximum
entropy (MaxEnt) method tends to smear out features in the best case and create additional peaks in
the worst case13,14. Second, parquet equations generate all possible diagrams with an approximation
to the fully irreducible vertex Λ as a building block. With this being the major merit of the method, a
later association of features with certain classes of diagrams is often not possible.
In order to address the issues mentioned above we develop in this thesis a simplified real time formu-
lation for the ph-ladder diagrams contributing to the OC and also a code to perform the necessary
calculation. This code is capable of handling any ph-channel one-frequency vertex as input granting us
control over which diagrams and thus physical processes shall be investigated. Additionally via using
a real frequency formalism, numeric analytic continuation is naturally avoided.
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1. Introduction and motivation

This thesis is organised as follows: In Chapter 2 we first give a short introduction to the used model
Hamiltonian and a review of MB-QFT. The last section will also contain information regarding methods
for analytic continuation. Those methods will be used in Chapter 3 to derive a simplified real frequency
expression for the OC from linear response theory. In that context we will also briefly talk about the
f -sum rule and Drude conductivity. Moving on, Chapter 4 introduces the used effective vertices and
Green’s functions. Results of our calculations and comparison to parquet DΓA12 results are presented
in Chapter 5. Concluding remarks are given at the end in Chapter 6.

Figure 1.1.: Sketch of the physical processes (top) and Feynman diagrams (bottom) behind an exciton
(left) and a π-ton (right). The yellow wiggled line symbolizes the incoming (and outgoing)
photon which creates an electron-hole pair denoted by open and filled circles, respectively.
The Coulomb interaction between the particles is symbolized by a red wiggled line; dashed
line indicates the recombination of the particle and hole; the dotted line denotes the creation
of a second particle-hole pair (right); black lines represents the underlying bandstructure
(top panels). [Taken from Ref. 12 ]
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2. Models and methods

The main approach of this work to study the optical conductivity is based on the Green’s function (GF)
method and the associated Feynman diagrams. Feynman diagrams are of particular use, as they allow
one to better visualize the physical processes behind observations. As basis we will first talk about the
solid state Hamiltonian in general and then move on to an approximation of it coined the Hubbard
model. Then we introduce the one-particle Green’s functions, from which the spectral function as well
as all other one-particle observables can be calculated. A natural extension to two-particle observables
are the two-particle Green’s functions, which are connected to the physical response of the system to
an external perturbation. Since we use a real frequency formulation to avoid the numerical analytic
continuation, a technique to perform such transformations using pen, paper and contour integrals is
discussed at the end.

2.1. Solid state Hamiltonian

In solid state physics one usually considers a system of ionic cores, which are aligned in a periodic
crystal structure surrounded by electrons. For all practical purposes the whole system can be described
by a Hamiltonian consisting of three terms15:

Hs = He +Hi +Hei. (2.1)

Hs is the full solid-state Hamiltonian, He is the contribution stemming from the electrons, Hi is the
contribution from the ionic cores and Hei is the interaction between the cores and the electrons. Even
tough each of the contributions can be written down exactly, it is impossible to compute the true
many-body wave-function of the system due to the sheer number of particles involved, usually of the
order of 1023.
The main problem which prohibits an exact solution are two-particle interactions [electron-electron (e-
e) and electron-ionic core (e-ion)]. While e-ion interactions can, for many systems, be treated employing
the Born-Oppenheimer approximation16, a similar approach is not applicable for e-e correlations. To
circumvent this problem two major approaches have been developed17: One can either use a so-called
model Hamiltonian instead of Eq. (2.1) which greatly simplifies the Hamiltonian itself and then try to
solve it, or one can use direct approximations to one of the terms in Eq. (2.1), which usually means
approximations for the electronic correlations. DFT2 is the most notable and widely employed technique
within the second approach, but will not be discussed further in this theses. Instead, we focus on a
model Hamiltonian, namely the Hubbard model.

2.2. Hubbard model

One of the simplest models to describe the competition between kinetic energy and electronic correla-
tions is the Hubbard-model18:
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2. Models and methods

H1 =
∑

ijσ

tijc
†
jσciσ +

∑

i

Un̂i↑n̂i↓. (2.2)

Here U denotes the on-site Coulomb interaction and tij are hopping amplitudes from site i to site

j. ciσ (c†iσ) denote the fermionic annihilation(creation) operators at site i with spin σ. The Hubbard
model is of particular interest as it is believed to be a sufficient model to describe high temperature
superconductivity in cuprates and nicklates19,20. However, the study of the exact mechanism behind
this form of high temperature superconductivity is still an active field of research21 and not yet fully
understood.

2.3. Many body quantum field theory

We use a Green’s function approach to MB-QFT and employ Feynman diagrams to describe types of
interactions effectively. At this point we want to emphasise that even tough Feynman diagrams emerge
from a perturbation series it is possible to capture certain classes of diagrams non-perturbativly. We
will mostly do this by constructing so called ladder-diagrams [one well known example would be the
random-phase-approximation (RPA)], while a more sophisticated approach to do so would be DΓA7.

2.3.1. Green’s function methods

Since monitoring the movement and behaviour of roughly 1023 electrons in the system is a hopeless task
and even if we could manage to do so, it would be equally difficult to extract useful information. Hence
another approach to problem needs to be developed. This gives rise to the idea to instead monitor a
single electron that is added to the system at time t and removed again at a later time t′. The object
which does that is coined the causal (or sometimes time-ordered) Green’s function:

GC(r
′, t′; r, t) = −iΘ(t′ − t)〈ψ(r′, t′)ψ†(r, t)〉±iΘ(t− t′)〈ψ†(r, t)ψ(r′, t′)〉. (2.3)

Where ψ†(r, t) (ψ(r, t)) are field operators that create (annihilate) a particle at position r and time
t. The plus (minus) corresponds to fermions (bosons) and is due to the required symmetry of the
wave-function. Using the Wick time ordering operator T this can be written in a compact notation,

GC(r
′, t′; r, t) = −i〈T ψ(r′, t′)ψ†(r, t)〉. (2.4)

Here, the average 〈〉 denotes the thermal average over a grand-canonical ensemble

〈X〉 = 1

Z
· Tr[e−β·HX], (2.5)

where Z is the grand-canonical partition sum

Z = Tr[e−β·H], (2.6)

β denotes the inverse temperature β = 1
TkB

H is the Hamiltonian of the system and Tr[] denotes
the standard trace. When working on a lattice instead of a continuous space it is convenient to write
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Eq. (2.4) not in terms of field operators but instead of creation and annihilation operators for lattice
sites or orbitals i, j

GC(j, t
′; i, t) = −i〈T c(j, t′)c†(i, t)〉. (2.7)

The physical interpretation of Eq. (2.7) is as follows: in the case of t′ > t GC(j, t
′; i, t) describes the

amplitude of finding a particle at site j and time t′ if a particle has been inserted at site i and time t
. For t′ < t it describes the amplitude of finding a hole at site i and time t if a hole has been inserted
at site j and time t′. In this context the insertion of a hole is equivalent to the removal of a particle.
In the following chapter the connection to the spectral function will be discussed, which is one major
reason why one-particle Green’s functions are of interest.

2.3.2. Matsubara formalism

When working at finite temperature it is convenient not to work in real but imaginary time instead
,t → −iτ ,22. This transformation is described by a Wick-rotation in the complex plane. The time
evolution operator then reads e−τH and Eq. (2.7) becomes

GT (j, τ
′; i, τ) = −〈T c(j, τ ′)c†(i, τ)〉 (2.8)

and is coined temperature Green’s function. T now orders imaginary times τ the same way it ordered
real times before. The advantage of this transformation becomes apparent when one looks at the time
evolution of the creation and annihilation operators in combination with the thermal average. As
illustrated in Fig. 2.1 both the Boltzmann factor as well as the imaginary time propagation lie now on
the same axis.

0

ττ ′β

c†(i)c(j)

e−Hτe−H(τ ′−τ)e−H(β−τ ′)

1
Figure 2.1.: Imaginary time propagation. The Boltzmann factor from the thermal average can here be

interpreted as another propagation in (imaginary) time from τ ′ to β.

The temperature Green’s function in Eq. (2.8) is only defined for 0 ≤ τ(τ ′) < β, as otherwise the
propagators shown in Fig. 2.1 would diverge in the (general) case of a Hamiltonian with no upper
bound. Under the condition that H does not explicitly depend on the time, one can show that Eq. (2.8)
is homogeneous in time (i.e. it only depends on the time difference τ ′− τ =̂ τ and −β < τ < β). Using
the cyclic properties of the trace one can now further show that G(τ) is anti-periodic for fermions and
periodic for bosons, i.e. G(−τ) = ±G(β − τ). Thus τ is restricted to the range,

0 ≤ τ < β. (2.9)
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2. Models and methods

Eq. (2.9) now gives rise to a very neat property when Fourier transforming to frequency space. Since
the temperature Green’s function is restricted in τ , the (imaginary) frequencies necessarily have to be
discrete. Those discrete frequencies are the Matsubara frequencies:

wn =

{
2nπ
β (bosons)

(2n+1)π
β (fermions).

(2.10)

2.3.3. One-particle quantities

In Eq. (2.8) we already defined the one-particle Green’s function in imaginary times. A non-interacting
Hamiltonian for a crystal is given by

H0 =
∑

k

ǫkc
†
k
ck, (2.11)

where c†
k

(ck) is the creation (annihilation) operator in k-space. They are defined via a discrete Fourier
transform

c†
k
=

1√
N

∑

xi

e−ikxic†i ,

ck =
1√
N

∑

xi

eikxici,

(2.12)

with N being the number of lattice sites and xi = i ·a, where a is the lattice spacing and i = (ix, iy, iz)
labels the lattice site. ix/y/z runs over all lattice sites in the corresponding direction. The Green’s
function can be calculated explicitly in momentum-space and is given in frequency representation as:

G0(k, iwn) =
1

iwn − ǫk
, (2.13)

where ǫk is the dispersion relation. However if the Hamiltonian has an interacting part,

H = H0 +HI, (2.14)

the Green’s function can in general no longer be calculated analytically. Thus the problem is usually
addressed in terms of a perturbation series in the interaction. In the following let us introduce the
interaction picture15 which represents the time evolution of operators in terms of the non-interacting
Hamiltonian H0

ck(τ) = eH0τ cke
−H0τ . (2.15)

Requiring that expectation values of operators are identical in all pictures (Schrödinger, Heisenberg,
Interaction), yields the expression for the time evolution operator

S(τ) = eH0τe−Hτ . (2.16)
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Using Eqs. (2.15) and (2.16), as well as the cyclic properties of the trace, one can rewrite Eq. (2.8)
(after going to momentum space)

GT (k, τ) = −
Tr[e−βH0T ck(τ)c

†
k
S(β)]

Tr[e−βH0S(β)]
. (2.17)

All operators in Eq. (2.17) are to be understood in terms of the interaction picture as in Eq. (2.15).
Any trace where the Boltzmann factor contains H0, like in Eq. (2.17), will be denoted as 〈〉0. Using
the equation of motion for the time propagation operator S(τ), a formal solution can be obtained

S(τ) = 1−
∫ τ

0
dτ ′HI(τ

′) +

∫ τ

0
dτ1

∫ τ1

0
dτ2HI(τ1)HI(τ2)− ... (2.18)

which is usually denoted as

S(τ) = T e−
∫ τ
0
dτ ′HI(τ

′). (2.19)

Let now consider the interaction part of the Hamiltonian to be a generic two-particle interaction term

HI =
∑

kk′qσσ′

c†
k+q,σc

†
k′−q,σ′

V (q)

2
ck′,σ′ck,σ. (2.20)

Here, V (q) denotes an arbitrary (possibly momentum dependent) interaction and σ denotes the spin
index. Inserting the Taylor expansion of Eq. (2.18) into Eq. (2.17) and using the expression of Eq. (2.20)
for Hi gives a series of non-interacting expectation values of products of creation and annihilation
operators:

GT (k, τ) = −
1

〈S(β)〉0
·

∞∑

n=0

(−1)n
n!

∫ β

0
dτ1

∫ β

0
dτ2...

∫ β

0
dτn

〈

T ck(τ)c
†
k
HI(τ1)...HI(τn)

〉

0

. (2.21)

According to Wick’s theorem23 a non-interacting expectation value 〈〉0 of n creation and annihilation
operators is equivalent to all possible contractions of pairs of operators. Since the average is with
respect to the non-interacting Hamiltonian, all pairs which contain an unequal number of creation than
annihilation operators vanish. This is a direct consequence of particle number conservation in H0. Also,
in the non-interacting case k is a good quantum number. This means that 〈c†

k
ck′〉0 = δk,k′〈c†

k
ck〉0. To

provide a better insight into the perturbation expansion and subsequent translation to diagrams, we
illustrate this by performing the first order expansion explicitly. Time arguments are only explicitly
listed if a contraction contains two operators with different time arguments.
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2. Models and methods

〈

T ck(τ)c†kc
†
k′+q(τ1)c

†
k′′−q(τ1)

V (q)

2
ck′′(τ1)ck′(τ1)

〉

0

=
V (q)

2

[

〈

T ck(τ)c†kc
†
k′+q(τ1)c

†
k′′−q(τ1)

V (q)

2
ck′′(τ1)ck′(τ1)

〉

0

=̂

〈

T ck(τ)c†k
〉

0

〈

c†k′+qck′

〉

0

〈

c†k′′−qck′′

〉

0

+

〈

T ck(τ)c†kc
†
k′+q(τ1)c

†
k′′−q(τ1)

V (q)

2
ck′′(τ1)ck′(τ1)

〉

0

=̂

〈

T ck(τ)c†k
〉

0

〈

c†k′+qck′′

〉

0

〈

c†k′′−qck′

〉

0

+

〈

T ck(τ)c†kc
†
k′+q(τ1)c

†
k′′−q(τ1)

V (q)

2
ck′′(τ1)ck′(τ1)

〉

0

=̂

〈

T ck(τ)c†k′′−q(τ1)

〉

0

〈

T c†kck′′(τ1)
〉

0

〈

c†k′+qck′

〉

0

+

〈

T ck(τ)c†kc
†
k′+q(τ1)c

†
k′′−q(τ1)

V (q)

2
ck′′(τ1)ck′(τ1)

〉

0

=̂

〈

T ck(τ)c†k′+q(τ1)

〉

0

〈

T c†kck′(τ1)
〉

0

〈

c†k′′−qck′′

〉

0

+

〈

T ck(τ)c†kc
†
k′+q(τ1)c

†
k′′−q(τ1)

V (q)

2
ck′′(τ1)ck′(τ1)

〉

0

=̂

〈

T ck(τ)c†k′′−q(τ1)

〉

0

〈

T c†kck′(τ1)
〉

0

〈

c†k′+qck′′

〉

0

+

〈

T ck(τ)c†kc
†
k′+q(τ1)c

†
k′′−q(τ1)

V (q)

2
ck′′(τ1)ck′(τ1)

〉

0

=̂

〈

T ck(τ)c†k′+q(τ1)

〉

0

〈

T c†kck′′(τ1)
〉

0

〈

c†k′′−qck′

〉

0

]

(2.22)

Since it is rather tedious to write all these contractions in the general case, a diagrammatic represen-
tation is usually used. In this work we will be using Feynman diagrams which are constructed from
non-interacting Green’s functions (=̂ G0) and interactions (=̂ V (q)). Using those
elements, Eq. (2.22) can be expressed in four distinct diagrams:

〈

T ck(τ)c†kc
†
k′+q(τ1)c

†
k′′−q(τ1)

V (q)

2
ck′′(τ1)ck′(τ1)

〉

0

= (2.23)

0 k τ

τ1,k′

V (0)
2

τ1,k′′

+

0 k τ

τ1

k′k′ + q

τ1

V (q)
2

+

0
k

τ1

k
τ

k′, τ1

V (0) +

0

k
τ1 k − q τ1

k

τ

V (q)

1

In Eq. (2.23) the first two terms are called disconnected diagrams, since not all Green’s functions are
connected by either fermionic or interaction lines. The third term is called Hartree-term and represents
interaction with the "background" electron density, which is represented by the bubble {k′, τ1}. The
fourth term is called Fock-term and can be interpreted as the interaction of a particle with itself at a
later time. It can be shown, that all disconnected diagrams are cancelled by the partition sum 〈S(β)〉0
in the denominator, which is called "linked cluster theorem".
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After having introduced the tools to compute the one-particle Green’s functions we can now discuss
the connection to the spectral function A(ω,k) . The relation is given by,

A(ω,k) = − 1

π
ℑ
(
GR(ω,k)

)
. (2.24)

In the interacting case it encodes all interactions on the single particle level, i.e. the expectation value
of any single particle operator Ô =

∑

α,β Oα,βc
†
αcβ can be calculated directly from the spectral function.

The sum over k yields the local spectral function

A(ω) = − 1

π
ℑ
(
∑

k

GR(ω,k)

)

, (2.25)

which is in absence of two-particle interactions identical to the common non-interacting DOS.

2.3.4. Two-particle quantities

While one-particle quantities yield important information about the one-particle spectrum, the response
of the system to external perturbation is given by two-particle quantities.
In the following we analyse the linear response to a perturbation. Let H0 be a time-independent
Hamiltonian of the system and Vt a time-dependent part originating from a external perturbation. Vt
couples to the operator Â via

Vt = −Âa(t), (2.26)

where a(t) is any function of t, which has to hold |a(t)| ≪ |〈Ĥ0〉|

|〈Â〉|
in order to apply linear response theory.

The response of the system is expressed by a change of the expectation value of an operator of interest
B̂. To express the relation between the change of 〈B̂〉 and a(t), the susceptibility χBA is introduced,

〈B̂〉V (t)− 〈B̂〉V=0 =

∫ ∞

−∞
dt′ χBA(t− t′) a(t′) + O(a(t)2). (2.27)

Please note that the time dependence of 〈B̂〉V (t) originates from the time-dependent perturbation Vt.
From Eq. (2.27) the well known Kubo-Nakano equation can be derived15

χBA(t− t′) =
−1
i~

Θ(t− t′)〈
[
B̂(t), Â(t′)

]
〉V=0. (2.28)

B̂(t) and Â(t′) are now to be understood in the interaction picture. Eq. (2.28) has two important
properties. First χBA does not depend on the perturbation function a(t), but only on the operator
Â, which the perturbation couples to. Second, if B̂ and Â are one-particle operators, i.e. given by
∑

α,β c
†
α(τ1)cβ(τ2), we can introduce a generalized susceptibility χνν′ω

kk’qσσ′ which is connected to the
two-particle Green’s function

G
(2)
i1i2i3i4

= 〈Tτ [ci1(τ1)ci2(τ2)c†i3(τ3)c
†
i4
(τ4)]〉. (2.29)

This connection is displayed using Matsubara frequencies as6
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2. Models and methods

χνν′ω
kk’qσσ′ = G

(2),νν′ω
kk’qσσ′ − βGkνGk’ν′δω0δq0

= χνν′ω
0,kk’q −GkνG(k+q)(ν+ω)F

νν′ω
kk’qσσ′Gk’ν′G(k’+q)(ν′+ω).

(2.30)

In Eq. (2.30) the label (2) denotes that it is a two-particle Green’s function. χ0 is the bare susceptibility
and F is called the vertex function which encodes all two-particle interaction diagrams. This repre-
sentation is applicable for most practical purposes like, spin, magnetic or charge susceptibility and can
also be represented diagrammatically. This depicted in Fig. 2.2 employing the "4-notation" in which
each k also implicitly includes the corresponding frequency ν, thus k := {k, ν}.

χ
kk′q
σσ′

= −βδkk′δσσ′

Gk+q

Gk

+ F
kk′q
σσ′

1
Figure 2.2.: Diagrammatic representation of the generalized suszeptibility. The first term on the right

hand side represents the bare susceptibility χ0 and the second term illustrates the vertex
corrections. [recreation after Ref. 6]

The vertex function F can be decomposed in so-called channels: fully irreducible Λ, particle-hole Φph,
particle-hole transversal Φph and particle-particle Φpp. Each diagram that is not fully irreducible is
two-particle reducible in exactly one of the other three channels, i.e. it can be split into two parts by
cutting two fermionic lines. This decomposition is illustrated in Fig. 2.3.

F
1

2

4

3

= Λ
1

2

4

3

+ Φph

S

S

1

2

4

3

+ Φ
ph

S

S

1

2

4

3

+
Φpp

S

S

4

2

1

3

1

Figure 2.3.: Decomposition of the vertex function F in the 4 channels. From left to right: fully irre-
ducible Λ, particle-hole Φph, particle-hole transversal Φph and particle-particle Φpp. The
scissors indicate cutting lines to separate diagrams. [Recreation after Ref. 24]
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2.3.5. Analytic continuation to real frequencies

As mentioned before the Matsubara formalism provides a convenient way of dealing with Green’s
functions. However, imaginary frequencies or times have two obvious drawbacks: First, their physical
interpretation is difficult, and second, direct comparison with any experiment is impossible. Thus, the
so-called analytic continuation is unavoidable. Analytic continuation is the extension of an analytic
function to whole region where it is analytic, i.e. infinitely many times differentiable.
For an object which depends on one frequency only, the relation between Matsubara and real frequency
is given by a simple substitution of the Matsubara frequency iωn → z. However, one needs to be careful
since three distinct Green’s function exist in real space (retarded, advanced, causal), while there is only
one (temperature) in Matsubara space. Each Green’s function corresponds to a different contour and
thus requires a different substitution of iωn, i.e

iωn →







ω + i0+ ; retarded

ω − i0+ ; advanced

ω + sgn(ω)i0+ ; causal

(2.31)

The definitions for Green’s functions in real and imaginary times was introduced in Eqs. (2.7) and (2.8),
however can easily be extended to the general case. Using this definition for real and imaginary times
χR(ω) can be obtained by two ways: either via Fourier transforming the χR(t− t′) Eq. (2.32)(i), o via
Fourier transform of χ(τ) and subsequent substitution iωn → w + i0+ Eq. (2.32)(ii)

χR
BA(ω) =







+i
∫ +∞
0 dt ei(ω+i0+)t〈[B̂(t), Â(0)]〉V=0 ; real time (i)

∫ β
0 dτ e

ω+i0+τ 〈Tτ B̂(τ) Â(0)〉V=0 ; imaginary time (ii).

(2.32)

The consistency of the two definitions in Eq. (2.32) can be proven via means of contour integration,
which is graphically displayed in Fig. 2.4. The upper (lower) contour connects the retarded (advanced)
function to the imaginary time function. The integral along the path has to be zero, as the function
is analytic within. The path labelled (1a/b) corresponds to the imaginary time representation (ii)
in Eq. (2.32), while the paths (2a/b & 4a/b) create the two parts of the commutator for (i). Only
remaining is the path (3a/b), which corresponds to ℑ

(
τ
)
≡ t = ±∞ and vanishes due to the exponential

suppression of the term e∓0+t. Hence, we could show the equivalence of the two formal definitions (i)
and (ii) in Eq. (2.32).
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2. Models and methods

0 β
ℜ
(

τ
)

≡ τ

ℑ
(

τ
)

≡ t ∞

∞

(1a)

(1b)

(3a)

(3b)

(2a)

(2b)

(4a)

(4b)

iωn → ω + i0+

iωn → ω − i0+

1
Figure 2.4.: Path in the complex plane to show the identity of the two formal definitions (i) and (ii) for

Eq. (2.32). For a detailed explanation see text.

2.3.6. Evaluation of Matsubara sums

While the substitution presented in Eq. (2.31) is perfectly adequate for one-frequency objects, for many
practical applications it is not. First for many-frequency objects one has to be very careful in which order
the limits lim0+→0 are performed. In that case, terms with 0+1 − 0+2 may arise and it is challenging to
correctly deal with such expressions. Second for numerical data the scheme presented above is inherently
not applicable. To deal with numerical data, numerical analytical continuation algorithms are used,
like MaxEnt14 or Padé-interpolation25 . And third, many equations (like the parquet equations or
the Schwinger-Dyson equation) have been derived in Matsubara frequencies. Instead of performing the
same derivation in real time it is often more practical to use the analytic continuation. However, in
such equations, sums over Matsubara frequencies appear frequently. A procedure to replace those sums
over imaginary frequencies by an integrations over real frequencies is presented below. A pedagogical
introduction to analytic continuation can also be found in Ref. 1.
Let us consider a generic function f ∈ C∞(D−∪D+) with D± = {z ∈ C : ℑ(z) >

< 0}, i.e. the function is
analytic in the upper(lower) complex plane. Let us now consider the Matsubara sum over this function
∑

n f(iνn). We can use the residue theorem

∮

C
f(z)dz = 2πi

N∑

k=1

Res(f(z), ak), (2.33)

to replace a sum of residuals by an contour integration around the poles. N is the number of poles of
the function f(z) within the contour C. The residue of a simple pole at ak is defined via Eq. (2.34).

Res(f(z), ak) = lim
z→ak

(
(z − ak)f(z)

)
(2.34)

Since the Fermi (Bose) function ηF (ηB) has poles at the fermionic (bosonic) Matsubara frequencies we
use the residue theorem in "reverse" to write a Matsubara sum as:

1

β

∑

νn

f(iνn) =
−1
2πi

∮

C
dz ηF (z)f(z). (2.35)
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The contour consists of circles just around the poles. Further deformation of this contour is shown in
Fig. 2.5.

Figure 2.5.: Contour in the complex plane to rewrite a Matsubara sum as an integral. (a) The x-marks
label the discrete Matsubara frequencies. Those points are also the poles of the Fermi
function ηF . First the contour is chosen to enclose only the poles. (b) Circles are stretched
and deformed into rectangles and paths between the poles cancel pairwise. (c) The final
contour is made of two closed half-circles in the upper and lower complex plane, which is
obtained by simply stretching the rectangles of (b)

In Fig. 2.5(c) the half-circles can be suppressed by introducing a regulator e±iz0+ , leaving only the
integration lines from −∞→∞. Hence we can write:

1

β

∑

n

f(iνn) =
−1
2πi

(∫ ∞

−∞
dν ηF (ν + i0+)f(ν + i0+) +

∫ −∞

+∞
dν ηF (ν − i0+)f(ν − i0+)

)

=
−1
2πi

∫ ∞

−∞
dν ηF (ν)

(
fR(ν)− fA(ν)

)
.

(2.36)

In Eq. (2.36) we used for the last equality the naming convention from Eq. (2.31). However, it is
important to note that the function f(z) may have branch-cut along the real axis and hence the contour
may not cross it. When dealing with more complex objects several such branch-cuts may appear in
which case the integral has to be split in as many sections accordingly.
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3. Optical conductivity

In this chapter we will present a short derivation of the current-current correlator, from which the
optical conductivity can be calculated. We will first derive a general expression and then assume the
vertex function F to depend only on one bosonic frequency. This will allow us to derive a real-frequency
expression for the current-current correlator. At the end of this chapter there will be a short remark
on the f -sum rule and Drude conductivity.

3.1. Expression for the optical conductivity

The optical conductivity σ is defined as the coefficient relating the current J to an external field E
oscillating with frequency ω

J(ω) = σ(ω)E(ω). (3.1)

Through the use of the Kubo-Nakano equation Eq. (2.28) an explicit expression for σ can be obtained26:

〈J(ω)〉E =
χjj,q − q2nq

m

i[ω + i0+]
︸ ︷︷ ︸

σ(ω)

E(ω). (3.2)

χjj,q is the current-current correlation function, nq is the electron density, m the electron mass and
0+ stems from the analytical continuation to real frequencies. Since we are talking about response
functions the contour is chosen to yield a retarded quantity (Eq. (2.31)). Since we are only interested
in the real part of σ(ω), we use Plemelj’s formula, 1

x+i0+
= P

x − iπδ(x) to find

ℜ
(
σ(ω)) = Pℑ(χjj,q)

ω
− πδ(ω)

[

ℜ(χjj,q)−
q2nq
m

]

. (3.3)

In Eq. (3.3) the second term is usually called "diamagnetic term" and only contributes to σ(ω = 0)
and will be neglected further on. Moving on we will write σ(ω) as a substitute for ℜ

(
σ(ω)

)
, as the

imaginary is not considered in this thesis.

3.2. Current-current correlator from linear response

The first term in Eq. (3.3) is called the paramagnetic contribution and is directly linked to the paramag-
netic current-current correlator, which is given by Eq. (2.28) with B̂ = jr,t and Â = jr’,t′ . In frequency
and momentum space it is given by
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3. Optical conductivity

χjj,q =

∫ β

0
eiωnτ 〈jq(τ)j-q〉J=0. (3.4)

The current jr is given by the usual expression

jr =
−iq
2m

ψ†(r)
(−→∇ −←−∇

)
ψ(r), (3.5)

where ψ and ψ† are field operators. For square lattice systems Eq. (3.5) is given in momentum repre-
sentation by26

jq = it
∑

σk

[

e−i(k+q)aα − eikaα

]

c†
kσckσ

q=0
= 2 t

∑

σk

sin(kaα)c
†
kσckσ, (3.6)

where c†(c) are creation (annihilation) operators in momentum space defined in Eq. (2.12). t is the
hopping amplitude and aα is the direction of the electric field. 2 t sin(kaα) can conveniently be written
as ∂ǫk

∂kα
, where ǫk is the dispersion relation for a tight binding square lattice model as given in Eq. (3.7).

ǫk = −2 t
(
cos(kxa) + cos(kya)

)
. (3.7)

Using Eqs. (3.4) and (3.7) together with Eq. (2.30) one can arrive at the final expression for the
current-current correlator26.

χ(ω,q) = − 2

β

∑

k

[
γk
α

]2
Gk+qGk −

2

β

∑

kk′

γk
αγ

k′

α GkGk+qFkk′qGk′Gk′+q, (3.8)

where γk
α = ∂ǫk

∂kα
and we used the compact "4-vector" notation k = {k, iνn}. If the electric field is

varying slowly on the scale of the lattice it is sufficient to restrict to q = 0. Moving on we will always
consider χ(ω,q = 0) if no explicit q dependence is stated. The Feynman diagram for Eq. (3.8) is
depicted in Fig. 4.1.

χω,q =

γk
α

Gk+q

Gk

γk
α

+

γk
α γk′

α

Gk+q

Gk

Gk′+q

Gk′

Fkk′q

Figure 3.1.: Feynman diagram for Eq. (3.8). Straight lines denote the Green’s functions and the wiggly
lines are the operators corresponding to the electric field. The left diagram corresponds to
the bubble contribution χbub and the right one to the vertex corrections χvert. α denotes
the direction of the electric field.
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3.3. Analytical continuation of a simplified current-current correlator

In this section we will consider a simplified version for the current-current correlator Eq. (3.8), where

we assume that the full vertex Fkk′q can be approximated by a one-frequency object Fk−k′

iνn−iνn′
. This

is motivated by the ph diagrams, which have been identified to be responsible for the majority of the
vertex-corrections12. In the ph channel it is presumed, that dominant diagrams are ladder diagrams
which are of reduced frequency dependence and can be written as a one-frequency object. At this
point we want to stress, that our real-frequency formalism allows for direct calculation of the vertex-
corrections and thus a higher resolution. Approaches using Matsubara frequencies, as in Ref. 12, have
to continue the result to real frequencies. This, however, cannot be done for the vertex corrections
alone, but only for σbub and σ, i.e. only the bubble only or bubble plus corrections. Hence, to obtain
the vertex corrections two quantities, which have been analytically continued, have to be subtracted:
σvert = σ − σbub. Since both σ and σbub are prone to errors due to the analytic continuation, results
are not as reliable.

3.3.1. Bubble contribution

In Eq. (3.8) the first part is the contribution of the bubble χbub(ω)

χbub(iωn,q) = −
2

β

∑

k

[
γk
α

]2
Gk+qGk. (3.9)

The branch-cuts in Eq. (3.9) are at

z =

{

ν,

ν − iωn.
(3.10)

Using the expression from Eq. (2.36) we can rewrite Eq. (3.9) as,

χbub(iωn,q) = −2
∑

k

[
γk
α

]2 −1
2πi

∫ +∞

−∞
dν ηF (ν)

[

Gk+q
ν+iωn

(
Gk

ν+i0+ −Gk
ν−i0+

)
+

Gk
ν−iωn

(
Gk+q

ν+i0+
−Gk+q

ν−i0+

)
]

.

(3.11)

Where Gν+i0+(Gν−i0+) is the retarded(advanced) Green’s function Eq. (2.31). Eq. (2.25) can be used

to rewrite GR,k
ν −GA,k

ν = (−2πi)Ak
ν . Additionally using q = 0 and iωn = ω + i0+ we arrive at a final

expression

χR
bub(ω,q = 0) = −2

∑

k

[
γk
α

]2
∫ +∞

−∞
dν ηF (ν)A

k
ν

[
GR,k

ν+ω +GA,k
ν−ω

]
. (3.12)

Eq. (3.12) is the real-frequency representation for the bubble contribution to the optical conductivity.
We want to stress that in order to obtain this expression no simplifications or assumptions have been
made. Any simplification are for the vertex-corrections only.
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3. Optical conductivity

3.3.2. Vertex corrections

The second part in Eq. (3.8) is coined vertex correction and reads with the one-frequency vertex

χvert(iωn,q) = −
2

β2

∑

kk′

γkαγ
k′

α GkGk+qFk−k′Gk′Gk′+q. (3.13)

Analytic continuation of Eq. (3.13) is algebraically more involved, but follows the same scheme and
procedure as for the bubble contribution. Thus some steps will be omitted in the derivation. First let us
consider the evaluation of the iνn′ Matsubara sum. Since branch-cuts appear in both the Green’s func-
tion G and the one-frequency vertex F , when the imaginary part of the frequency argument vanishes,
three will arise which are at:

z =







ν ′ + iνn, (i)

ν ′, (ii)

ν ′ − iωn (iii).

(3.14)

The first one in Eq. (3.14) originates from the vertex Fk−k′

iνn−z
z→ν′+iνn= Fk−k′

−ν′ in Eq. (3.13). Branch-cuts

Eq. (3.14) (i) and Eq. (3.14) (ii) are from the two Green’s functions Gk′

z and Gk′+q
z+iωn

, respectively.
However, special care has to be taken since the first branch-cut in Eq. (3.14) is on top of a pole. Thus
the point iνn = iνn′ has to be explicitly excluded from the Matsubara sum and treated differently. This
is graphically visualized in Fig. 3.2.

Figure 3.2.: The three branch-cuts for the analytical continuation ( iν ′n → z) of the first Matsubara
sum of Eq. (3.13). The red cross marks the Matsubara frequency iνn = iνn′ which has to
be excluded from the sum and treated separately. The ζ mark their respective integration
contours (or in case of ζ1 the single Matsubara frequency).
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We remove the Matsubara frequency iνn = iν ′n , denoted by the red cross in Fig. 3.2, from the sum to
write Eq. (3.13) as,

χvert(iωn,q) = −
2

β2

∑

kk′

γkαγ
k′

α

[

Fk−k′

0

∑

iνn

Gk
iνnG

k+q
iνn+iωn

Gk′

iνnG
k′+q
iνn+iωn

+

∑

iνn

∑

iνn′ 6=iνn

Gk
iνnG

k+q
iνn+iωn

Fk−k′

iνn−iνn′
Gk′

iνn′
Gk′+q

iνn′+iωn

]

.

(3.15)

After replacing the iν ′n Matsubara sum by the contours displayed in Fig. 3.2, Eq. (3.14) can be written
as

χ|vert(iωn,q) = −
2

β

∑

kk′

γkαγ
k′

α

∑

iνn

[

ζ1
︷ ︸︸ ︷

Fk−k′

0

β
Gk

iνnG
k+q
iνn+iωn

Gk′

iνnG
k′+q
iνn+iωn

+

i

2π

∫ +∞

−∞
dν ′

[

ζ2
︷ ︸︸ ︷

ηB(ν
′)Gk

iνnG
k+q
iνn+iωn

Gk′

ν′+iνnG
k′+q

ν′+iνn+iωn

(
FR,k−k′

−ν′ − FA,k−k′

−ν′

)
+

·

ζ3p4
︷ ︸︸ ︷

(−2πi)ηF (ν ′)
(
Ak′

ν′G
k
iνnG

k+q
iνn+iωn

Gk′+q

ν′+iωn
Fk−k′

iνn−ν′ +Ak′+q

ν′ Gk
iνnG

k+q
iνn+iωn

Gk′

ν′−iωn
Fk−k′

iνn+iωn−ν′

) ]
]

.

(3.16)

The contributions from the different branch-cuts and the excluded Matsubara frequency have been put
in brackets and will be referred to as ζ1, ζ2 and ζ3p4 moving on. Note that ζ3 and ζ4 from Fig. 3.2 has
been combined to ζ3p4. Conveniently, the two branch-cuts for the analytic continuation of the iνn sum,

originate from Gk
z (i) and Gk+q

z+iωn
(ii), which appear in all three contributions. Hence, the branch-cuts

are identical for all contribution at:

z =

{

ν,

ν − iωn.
(3.17)

Following the same procedure as for the iν ′n Matsubara sum we replace the iν sum by the contour
integration lines at z = ν ± i0+ and z = ν − iωn± i0+. Since the response of the system to an external
perturbation is a retarded quantity, we perform the analytic continuation of the last frequency ω by
the simple substitution iωn = ω + i0+. The vertex corrections to the susceptibility at q = 0 can then
be written as

χR
vert(ω,q = 0) = −2

∑

kk′

γkαγ
k′

α

∫ +∞

−∞
dν

[
ζkk′

1 (ω) + ζkk′

2 (ω) + ζkk′

3p4 (ω)
]
. (3.18)
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3. Optical conductivity

The three contributions ζ1, ζ2 and ζ3p4 evaluate to:

ζ1(ω)
kk′

=
i

2π

Fk−k′

0

β

[
GR,k

ν+ωG
R,k′

ν+ω +GA,k
ν−ωG

A,k′

ν−ω

][
GR,k

ν GR,k′

ν −GA,k
ν GA,k′

ν

]
, (3.19a)

ζ2(ω)
kk′

=
−1
4π

∫ +∞

−∞
dν ′ηB(ν

′)
[
FR,k−k′

−ν − FA,k−k′

−ν

][
GR,k

ν+ωG
R,k′

ν+ν′+ω +GA,k
ν−ωG

A,k′

ν+ν′−ω

]

[
GR,k

ν GR,k′

ν −GA,k
ν GA,k′

ν

]
,

(3.19b)

ζ3p4(ω)
kk′

=
i

2π

∫ +∞

−∞
dν ′ηF (ν

′)Ak′

ν′

[
[
GR,k

ν+ωG
R,k′

ν′+ω +GA,k
ν−ωG

A,k′

ν′−ω

][
GR,k

ν FR,k−k′

ν−ν′ −GA,k
ν FA,k−k′

ν−ν′

]
+

(−2πi)Ak
ν

[
GR,k′

ν′+ωG
A,k
ν−ωF

A,k−k′

ν−ν′−ω +GA,k′

ν′−ωG
R,k
ν+ωF

R,k−k′

ν−ν′+ω

]
]

.

(3.19c)

In Eq. (3.19b) the divergence of ηB(ν
′) at ν ′ = 0 is cancelled by

[
FR,k−k′

−ν − FA,k−k′

−ν

]
which is 0 for

ν ′ = 0. Eq. (3.12) and Eqs. (3.18) and (3.19) are the main equations used in the following chapters. At
this point we want to stress that any one-frequency vertex-function can be used, not just an RPA-ladder
approximation as will mostly be discussed later on.

3.4. f -sum rule

Using the Kramers-Kronig relations

χR(ω) =
1

iπ
P
∫ +∞

−∞

χR(ω′)

ω′ − ω dω
′, (3.20)

where χR(ω) is retarded function, the optical conductivity σ(ω) can be directly linked to the zeroth
Matsubara frequency (ω0 = 0) current-current correlation function

∫
dω

π
σq =

∫
dω

π

ℑ(χq)

ω
=

∫
dω

π

ℑ(χq)

ω − iω0
= χq,ω0

. (3.21)

Eq. (3.21) can for q = 0 be further rewritten and for next-nearest-neighbour hopping (nnh) be connected
to the kinetic energy of the system20,

∫
dω

π
σq=0 =

1

β

∑

k

∂2ǫk
∂k2α

Gk
nnh
=
−1
2β

∑

k

ǫkGk =
−Ekin

2
. (3.22)

In the following we will show, that if the self energy is purely local, i.e. ∂Σ(ω,k)
∂ki

= 0 ∀i ∈ {x, y, z}, and

the operator γα is the derivative of the dispersion relation ∂ǫk

∂kα
, the full optical weight is given by the

bubble contribution. Hence, vertex corrections may only shift weight but not add any. This allows one
to benchmark the code for such self-energies and gives valuable feedback about the simplifications one
has made with respect to the vertex-corrections.
In order to show the aforementioned statement, we perform analytical continuation for the bubble term
of the current-current correlator Eq. (3.23),
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χbub(q, iωn) = −
2

β

∑

k

[
γk
α

]2
Gk+qGk

q=0,iωn=iω0=0
= − 2

β

∑

k

[
γk
α

]2
GkGk. (3.23)

Recalling Eq. (3.12), Eq. (3.23) can after some algebraic rearrangements be written as,

χbub(q = 0, iωn = 0) = − i

2π

∑

k

[
γk
α

]2
∫ +∞

−∞
dν ηF (ν)

[
GR,k

ν GR,k
ν −GA,k

ν GA,k
ν

]
. (3.24)

In the case of a purely local self-energy we can write the derivative of the Green’s function with respect
to kα as

∂G
R/A,k
ν

∂kα
=
∂G

R/A,k
ν

∂ǫk

∂ǫk
∂kα

=
∂ǫk
∂kα

∂

∂ǫk

(
1

ν − ǫk +ΣR/A(ω)

)

=
∂ǫk
∂kα

(
GR/A,k

ν

)2
. (3.25)

With Eq. (3.25) we can rewrite Eq. (3.24),

χbub(q = 0, iωn = 0) = − i

2π

∑

k

∂ǫk
∂kα

∫ +∞

−∞
dν ηF (ν)

∂

∂kα

[
GR,k

ν −GA,k
ν

]
. (3.26)

Assuming, that the k-sum is sufficiently dense, a transition to an integral is justified 1
N

∑

k → 1
(2π)d

∫
dk,

and using the common relation GR,k
ν − GA,k

ν = −2πi Ak
ν , we can use partial integration to move the

partial derivative from A to ǫ.

χbub(q = 0, iωn = 0) = −
∫

d{k 6= kα}
∂ǫk
∂kα

∫ +∞

−∞
dν ηF (ν)A

k
ν

∣
∣
∣

2π

0
+

∫

dk
∂2ǫk
∂k2α

∫ +∞

−∞
dν ηF (ν)A

k
ν . (3.27)

Here d{k 6= kα} denotes the integration over all components of k except kα which has been eliminated
by the partial integration. For the square lattice tight binding model ∂ǫk

∂kx/y
= 2t sin(kx/y) which vanishes

at the boundaries {0, 2π}. Hence, we can write the final expression to be,

χbub(q = 0, iωn = 0) = +

∫

dk
∂2ǫk
∂k2α

∫ +∞

−∞
ηF (ν)A

k
ν =

∫
dω

π
σq=0. (3.28)

In the last equality of Eq. (3.28) we used the fist equality of Eq. (3.22). Thus for a local self-energy the
full optical weight is given by the bubble contribution alone and (consistent) vertex corrections may
only shift the weight.
The code used for all results concerning the real-frequency calculations has been benchmarked with
respect to this sum-rule. Within the numerical error the sum rule is fulfilled with the bubble contribution
alone.
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3. Optical conductivity

3.5. Drude conductivity for the disordered electron gas

Even tough the Drude conductivity Eq. (3.29) is a classical theory, Drude peaks are often used to fit
the low ω behaviour of optical conductivity spectra27,

σ(ω) =
ne2

m

1

iω − 1/τ
, (3.29)

where τ is the lifetime of the scattering particles, n the electron density and m the electron mass.
Moreover, this behaviour can also be recovered by means of quantum field theory. See for instance
Altland-Simons1 chapter 7.4.1 ’Longitudinal conductivity of the disordered electron gas’. In the following
we will give a short outline of the approximations, but redirect the reader to the book1 for a more in-
depth view.
The derivation starts from Eq. (3.8) and neglects the vertex-corrections. The aforementioned self-energy
is chosen to be Σ = i

2τ , i.e. just a constant imaginary part describing a finite lifetime of the states.
After analytical continuation, Eq. (3.12) is obtained which can be rewritten using frequency shifts and
using the approximation sin(k) = k to yield

σω =
1

π

∫ +∞

−∞
dν
ηF (ν)− ηF (ν + ω)

ω

∑

k

k2iG
A,k
ν GR,k

ν+ω. (3.30)

Eq. (3.30) can be further simplified, by assuming the k-grid is sufficiently dense, so that 1
N

∑

k →
1

(2π)d

∫
dk is justified. This integral can then be changed into an integral over the dispersion relation

ǫk, assuming that f(ǫk) is only a function of the dispersion relations ǫk and does not explicitly depend
on the momenta kx, ky, kz,

∫

dk f(ǫk) =

∫

dǫ N (ǫ)f(ǫ), (3.31)

where N (ǫ) is the density of states (DOS) of the system and f(ǫ) is any function. With Eq. (3.31) we
can write

∑

k

k2iG
A,k
ν GR,k

ν+ω =

∫

dǫ(ǫ+ µ)N (ǫ)GA,ǫ
ν GR,ǫ

ν+ω. (3.32)

Here, µ has been absorbed into ǫ. Eq. (3.32) can be evaluated under the following assumptions:

1. The Green’s function G
R/A,ǫ
ν = 1

ν−ǫ± i
2τ

is strongly peaked around ǫ, i.e. τ−1 ≪ µ. Hence,

(ǫ + µ) ≃ µ and the energy variation of N (ǫ) on the effective interval is negligible. Thus N (ǫ)
can be approximated by N (ǫ) ≃ N (ǫ = µ).

2. At low temperatures ηF (ν) − ηF (ν + ω) will be very compact. Since G = 1
ν−ǫ+ i

2τ

and the ν

integration has an effective compact support, ν can be absorbed into ǫ in Eq. (3.30) and the ν

integration simplifies to
∫
dν ηF (ν)−ηF (ν+ω)

ω ≃ 1.

3. For completeness we also state the approximation sin(k) ≃ k that has been used before and yields
the factor k2i .

Using the approximations listed above, Eq. (3.30) can be evaluated and yields the known Drude con-
ductivity in Eq. (3.29).
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One practical application of this result is the ability to benchmark codes for low temperatures. The τ
in the Drude peak of the conductivity has to be (almost) identical to the τ used as a constant imaginary
part of the self energy.
In the following chapter we will discuss the used one-frequency vertices and self-energies and why we
believe those approximations to be justified. Chapter 5 will then use the methods developed in this
chapter to obtain the optical conductivity for strongly correlated metals.
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4. Simplified vertices for vertex corrections

In Section 3.3.2 analytical continuation has been performed using an effective one-frequency vertex
function as in Eq. (3.18). This chapter will provide an overview and discussion of the used one-frequency
vertices and Green’s functions.

4.1. RPA-ladder

Since parquet DΓA calculations12 indicate, that the major contribution stems from the ph channel it
seems natural to test diagram classes in this channel. A simple, yet often used, approximation is the
random phase approximation (RPA), which is the infinite sum of all ladder diagrams. Fig. 4.1 (top)
depicts the corresponding diagrams and it is easy to see that those diagrams are two-particle reducible
in the ph channel when compared to the definition in Fig. 2.3.

Figure 4.1.: (top) Series of Feynman diagrams that create the ph-RPA ladder series. (bottom) Feynman
diagram with the ph-RPA ladder as effective one-frequency vertex.

The first order diagram of Fig. 4.1 is given by

F
RPA,(1)

ph,k−k′
= U2χ0

k−k′ , (4.1)

where χ0
k−k′ is the bubble Eq. (4.2).

χ0
k−k′ = −

1

β

∑

k1

Gk1Gk1+(k−k′) (4.2)

Since each term after the first one just yields an additional Uχ0
k−k′ , the RPA series gives the well known

geometric series which can be evaluated analytically:
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4. Simplified vertices for vertex corrections

FRPA
ph,k−k′

(
=∧ U2χRPA

q

)
= U2χ0

k−k′

∞∑

n=0

(
U χ0

k−k′
)n

=
U2χ0

k−k′

1− U χ0
k−k′

. (4.3)

A typical example of the structure of the RPA-vertex function of Eq. (4.3) is displayed in Fig. 4.2(a/c).
Fig. 4.2(b/d) displays the Ornstein-Zernike (OZ) correlation function (Eq. (4.4)) which will be intro-
duced in the next section.

(a) (b)

(c) (d)

Figure 4.2.: RPA (Eq. (4.3)) and OZ vertex function (Eq. (4.4)). (a) RPA vertex for different k-points
vs. ω. (b) OZ vertex for different k-points vs. ω. (c) RPA vertex for ω = 0 different ky vs.
kx. (d) OZ vertex for ω = 0 different ky vs. kx.
Parameters: RPA-{T = 0.1, U = 1.8, ∆ = 0.18}; OZ- {T = 0.1, A = 9.3, ξ = 0.7,
λ = 5, ∆ = 0.18}

4.2. Ornstein-Zernike correlation function

The Ornstein-Zernike function (OZ) in Eq. (4.4) is often used as a fit for the vertex function in order
to extract a correlation length ξ 28. In order for this correlation function to be valid, the material has
to be isotropic and the anomalous critical exponent has to be close to zero. Furthermore, the function
is constructed for q - points near (π, π), small ω and parameters for which the system is near the
anti-ferromagnetic phase transition29,30,31,32. The OZ susceptibility reads:
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FOZ
q

(
=∧ U2χOZ

q

)
=

A

ξ−2 + (q− π)2 + λ|ω| , (4.4)

where A is a parameter which (linearly) scales the magnitude of the vertex corrections and ξ is the
correlation length. The additional parameter λ affects the relative importance of ω compared to q.
A large λ can also be used in combination with a large A to suppress the q dependence. Eq. (4.4) is
displayed in Fig. 4.2(b/d).

Since the Ornstein-Zernike function if mainly used to extract parameters, like the correlation length ξ
a typical fit of the OZ to the RPA-ladder is shown in Fig. 4.3. The fitting procedure is first carried out
for ξ and A, by fitting at ω = 0. After ξ and A are determined, λ is extracted by fitting to the full
ω-dependent vertex.

RPA

OZ-fit

(a)

RPA

OZ-fit

(b)

RPA

OZ-fit

(c)

RPA

OZ-fit

(d)

Figure 4.3.: Fit of the OZ to the RPA-ladder vertex. (a) T = 0.0556 and ky = π (b) T = 0.0556 and
ky = 25π

24 . (c) T = 0.1 and ky = π. (d) T = 0.2 and ky = π. Note that (a) is near
the phase transition and hence the function is peaked around k = (π, π) and is fitted well
by the OZ. For higher temperatures like in (d), further away from the phase transition,
larger deviations can be observed. Also note that (b) is away from (π, π) and thus larger
deviations can be observed.
Parameters: U = 1.9, ∆one-particle = 0.16
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4. Simplified vertices for vertex corrections

Fig. 4.3(a) shows, that near the phase-transition, which is between 0.05 < T < 0.0556 for
∆one-particle = c + a T 2; {c = 1.6368, a = 0.1547}, the OZ agrees very good with the RPA-ladder for
k = (π, π). For k-points deviating from (π, π) quite substantial deviations can be observed Fig. 4.3(b),
here the example is for ky = 25π

24 .

4.3. Green’s function of the disordered electron gas

The simplest form of a self-energy is given by a constant imaginary part ΣR(ω,k) = i∆, where ∆
corresponds to the broadening of the spectral function, or the inverse lifetime and thus encodes a finite
lifetime of the states. Using this simple self energy the retarded (advanced) Green’s function is of the
form,

GR/A,k
ν =

1

ν − ǫk ± i∆
. (4.5)

Such a typical form of the self-energy can for example be obtained via an approximation for the so-
called disordered electron gas, which describes quasi-free electrons scattering at static impurities. For a
detailed derivation and display of made assumptions see chapter 6.5 from Ref. 1. The spectral function
corresponding to Eq. (4.5) is given by a lorentzian,

Ak
ν =

1

π

∆

(ν − ǫk)2 +∆2
, (4.6)

where ∆ is simply the width of the curve, which denotes the inverse life-time. Eq. (4.6) is graphically
visualized in Fig. 4.4 (dashed yellow).

4.4. DΓA self-energy

Although, Eq. (4.5) provides a useful basic tool to understand the characteristics of π-tons, the corre-
sponding spectral function A(ω) of the 2D square lattice tight-binding model is quite featureless. In
order to truly understand the importance of ph ladder diagrams, we also used the self-energy obtained
by the DΓA33 calculations in Ref. 12. Thus we can separate the contributions of the ph diagrams
from all other diagrams and study their characteristics. However, the DΓA self energy is given in
Matsubara frequencies. Hence numerical analytical continuation has to be performed. This was done
using the python library ana-cont 34,35. However, as the self-energy from Ref. 12 is only known on a
6x6 k-grid, but we know the analytic expression of the dispersion relation, we use the commonly used
practice of coarse graining36. This procedure simple interpolates the self-energy, for which we used
nearest-neighbour interpolation as Ref. 12, which allows for more direct comparison of the results. The
spectral function for this DΓA self-energy is displayed in Fig. 4.4 (solid lines).
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(a)

0

1

2

3

(b)

(c)

Figure 4.4.: (a) Spectral function. DΓA self-energy at T = 0.2 as input (blue), DΓA self-energy at
T = 0.1 as input (red) and Σ = i∆; ∆ = 0.2) at T = 0.1 (dotted orange). All spectral
functions are for the square lattice Hubbard model at U = 4. (b) Spectral function k

resolved along a path in the Brillouin zone for DΓA self energy and T = 0.1. (c) A(ω,k)
for k = (π, π)(blue) and k = (0, 0) (red) for T = 0.1. In (a) Hubbard bands are clearly
visible around ω ≃ 4 for DΓA.
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5. Characteristics of ph vertex corrections for

strongly correlated materials

In this section we present the results using Eq. (3.12) and Eq. (3.18) in order to describe vertex
corrections to the optical conductivity in a real-frequency formalism. Implementation of the code is
in the programming language C. Vector-matrix operations are performed using the intel MKL library.
This chapter is organised as follows: in section Section 5.1 the general characteristics of the vertex
corrections are displayed, as well as their dependence on interaction strength U and inverse temperature
β. Section 5.2 treats the same dependencies for the parameters of the Ornstein-Zernike correlation
function namely A, ξ and λ. In Section 5.3 characteristics of the vertex corrections from RPA are
compared to DΓA. This has been done using the same self-energy in RPA as for DΓA and thus we can
separate the exact contribution from the ladder diagrams from all other vertex corrections. At this
point we also want to note that all numeric values for parameters are given in units of the hopping
parameter t, which is set to t ≡ 1.

5.1. Characteristics and parameter dependence of vertex corrections using

the RPA-ladder

We first study the parameter dependence of the optical conductivity using a Green’s function with a
simple broadening Eq. (4.5) and an RPA-ladder as effective vertex Eq. (4.3). This allows us to get
an intuition of how σ(ω) behaves. Fig. 5.1 and Fig. 5.2 depicts the full OC σ(ω), the part from the
bubble only σ0(ω) and the part from the vertex corrections σvert(ω) for a range of U and β using a
temperature dependent scattering rate (∆ = c + aT 2; {c = 1.6368, a = 0.1547}). This scattering rate
has been obtained via fitting a Drude peak (Eq. (3.29)) to σ0(ω) from Ref. 12. In Fig. 5.1(a) one can
notice that the peak structure of the OC is indeed very close to a Drude peak as predicted in chapter
Section 3.5. Fig. 5.1(b) shows a rather interesting temperature dependence of the vertex corrections.
At low frequencies they are increasing for temperature up to T ∼ 0.17, they decrease again afterwards.
This is even more evident in Fig. 5.3 and Fig. 5.5 when extracting the Drude broadening. Dependence
on U in Fig. 5.2 is rather straight forward, as is expected since the RPA-ladder scales roughly with U2.
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5. Characteristics of ph vertex corrections for strongly correlated materials

(a) (b)

Figure 5.1.: (a) Optical conductivity with and without vertex corrections. σ(ω) and σ0(ω), as a function
of ω for a selected range of T . (b) Vertex contribution to the optical conductivity σvert(ω)
as a function of ω for a selected range of T . Note how in (b) at the low frequencies the
vertex corrections decrease again for low T .
Parameters: U = 1.8 and ∆ = c+ aT 2; {c = 1.6368, a = 0.1547} for both plots.

(a) (b)

Figure 5.2.: (a) σ(ω) and σ0(ω) as a function of ω for a selected range of U . (b) σvert(ω) as a function
of ω for a selected range of U .
Parameters: T = 0.1 and ∆ = 0.18 for both plots.

The characteristic of the vertex corrections in Fig. 5.1(b) and Fig. 5.2(b) can simply be understood as
a suppression of the OC at low frequencies and an enhancement at higher frequencies. This effectively
behaves like an additional artificial broadening and surprisingly does not change the Drude characteristic
of the peak. Hence, σ(ω) and σ0(ω), the former with an additional artificial broadening ,seem to be
almost indistinguishable. To measure the "strength" of the vertex correction we therefore use two
features. First the width ∆Drude = 1

2τ of a Drude-fit (Eq. (3.29)), which is identical to the one one-
particle scattering rate ∆one-particle for the bubble, but differs when vertex corrections are present.
Second, we use the magnitude of σvert(ω = 0). ∆Drude is displayed in Fig. 5.3 as a function of T 2 and
in Fig. 5.4 as a function of ∆one-particle (which itself is also just a function of T 2).
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0.005 0.01 0.015
0.15

0.2

0.25

Figure 5.3.: Width of the Drude peak ∆Drude vs. T 2. Note that for the bubble contribution ∆0 is almost
identical to ∆one-particle. When vertex corrections are added (∆), a temperature dependent
additional broadening appears. Note the qualitative difference between U = 1.9, which has
an anti-ferromagnetic phase transition at low temperatures and U = 1.8, for which this
phase transition does not exist. The bubble and vertex corrected broadening of DΓA are
denoted by ∆DΓA

0 and ∆DΓA, respectively.

0.16 0.17 0.18

0.16

0.18

0.2

0.22

Figure 5.4.: Width of the Drude peak ∆Drude vs. ∆one-particle. Note that for the bubble contribution ∆0

is almost identical to ∆one-particle. When vertex corrections are added (∆), a temperature
dependent additional broadening appears. Note again the qualitative difference between
U = 1.9, which has an anti-ferromagnetic phase transition at low temperatures and U = 1.8,
for which this phase transition does not exist.

One can clearly see, that for the bubble contribution, ∆Drude is nearly identical to ∆one-particle, which
was shown in chapter Section 3.5 to hold for ∆one-particle → 0 and also served as a benchmark for
the code. When adding vertex corrections however, an additional temperature dependent broadening
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5. Characteristics of ph vertex corrections for strongly correlated materials

appears. The contribution from the vertex corrections is almost 0 at high temperature which is expected.
However, at very low temperatures (T < 0.01) and moderate U = (1.7, 1.8) a decrease can be observed.
Note how this behaviour is also present in the DΓA calculations. However, for U = 1.9 a totally
different behaviour can be observed. Not only do the vertex corrections remain strong at very low
temperatures, they even increase and hint at a divergence. Indeed for U = 1.9 the Stoner criterion
(1 − Uχ0 ) for the anti-ferromagnetic phase transition of the RPA-ladder is met at a temperature
between 0.05 < T < 0.0556. We also show in Section 5.2, that for U = 1.9 the correlation length
diverges roughly with T−2 near the anti-ferromagnetic phase transition. However, at this point it
should be mentioned, that the anti-ferromagnetic phase transition (at least at finite temperatures) is
due to the mean-field character of the RPA.

(a) (b)

Figure 5.5.: (a) Additional broadening of σ(ω) due to vertex corrections. (b) Vertex corrections at
ω = 0, σvert(ω = 0), i.e. the suppression of the DC conductivity. Both features share the
same tendencies. Note also the qualitative agreement of the RPA-ladder (U = 1.8) with
the DΓA calculations. U = 1.9, which has an anti-ferromagnetic phase transition at low
temperatures, however displays a completely different behaviour.

When going to low temperatures two effects concerning the vertex corrections compete. One is indirect,
as ∆one-particle decreases as temperature decreases, which causes the vertex F to be more sharply
peaked, see Fig. 5.6(d). All other things kept constant this increases the additional broadening created
by the vertex corrections, as displayed in Fig. 5.6(b). By contrast, when keeping ∆one-particle fixed,
the additional broadening of the vertex corrections decreases rapidly towards low temperatures, see
Fig. 5.6(a). This however cannot be linked to F directly, as its behaviour in Fig. 5.6(c) mirrors that in
Fig. 5.6(d), whereas the behaviour of the broadening in Fig. 5.6(a) has the opposite trend of Fig. 5.6(b).
As external Green’s functions (in real frequency formulation, as in Eq. (3.19)), are not temperature
dependent for a fixed ∆one-particle themselves, the only other temperature dependence originates from
the Fermi/Bose function. These factors effectively decide on which frequency part the Green’s functions
contribute.
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(a) (b)

(c) (d)

Figure 5.6.: (a) ∆Drude vs. T 2 for a fixed ∆one-particle = 0.18. (b) ∆Drude vs. ∆one-particle for constant
temperature (T = 0.1). (c) FRPA vs. T 2 at ω = 0 and q = (π, π). (d) FRPA vs. ∆one-particle

at ω = 0 and q = (π, π). Note the different scale for the imaginary part (red). If not
explicitly noted otherwise we use U = 1.8.

5.2. Parameter dependence of vertex corrections using the

Ornstein-Zernike correlation function

In the previous chapter we studied the basic parameter dependencies of an ph RPA-ladder to the vertex
corrections of the optical conductivity. To understand the behaviour close to the anti-ferromagnetic
phase-transition we fitted an Ornstein-Zernike correlation function (Eq. (4.4)) to the RPA vertex. We
can next study the dependence of A, ξ and λ on β and U . The merit of this procedure is a much
easier interpretation of the OZ parameters as exact dependencies are known. Fig. 5.7 displays all three
parameters of the OZ as a function of β (a,b,d) and ξ also as a function of U (b). Since it is known that
ξ has to diverge proportional to T−2 near the phase transition for an RPA-ladder, we can conclude that
for U = 1.9 we are already quite near a phase transition, in contrast to U = 1.8. U = 2 is already past
the phase transition for low T and has thus not been used. Fig. 5.7(c,d) show a large increase of both
A and λ at high temperatures. This effectively suppresses the q dependence of the OZ function, which
is to be expected since the RPA will become flat at higher temperatures. Note that in Fig. 5.7(a) ξ is
shown as a function β = T−1 to better emphasise the difference between U = 1.9 and U = 1.8.

43

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

5. Characteristics of ph vertex corrections for strongly correlated materials

(a) (b)

(c) (d)

Figure 5.7.: Dependence of the OZ parameter when fitted to an RPA-ladder. (a) ξ vs. β. (b) ξ va. U .
(c) A vs. T . (d) λ vs. T . For all plots ∆one-particle = c+ aT 2; {c = 1.6368, a = 0.1547}.

We also investigated the vertex corrections, when using an OZ function directly as vertex. Even tough
the OZ function is rather featureless (Fig. 4.2) the vertex corrections in Fig. 5.8 show very similar
characteristics as for the RPA-ladder with constant self energy in Figs. 5.1 and 5.2. Fig. 5.8(a) shows
the strong dependence of the vertex corrections with the correlation length ξ which is expected. The
parameter λ however appears to have little impact if all other parameters are kept constant Fig. 5.8(b).
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(a) (b)

Figure 5.8.: Structure of the vertex corrections to the optical conductivity σ(ω) using an Ornstein-
Zernike correlation function as effective vertex. (a) σvert(ω) for a range of correlation
lengths ξ at λ = 5.7. (b) σvert(ω) for a range of λ at ξ = 0.7. For both plots T = 0.1,
A = 9.3 and ∆one-particle = 0.18

The parameter dependence observed in Fig. 5.8 is mirrored in the additional broadening of the Drude
peak, which is displayed in Fig. 5.9. We can observe a linear rise of ∆Drude with ξ2, which is expected
from the form of the OZ function (Eq. (4.4)).

(a) (b)

Figure 5.9.: Width of the Drude peak ∆Drude for the bubble contribution ∆0 and the full optical con-
ductivity ∆ as a function of (a) ξ2 and (b) λ. In both plots T = 0.1, A = 9.3 and
∆one-particle = 0.18

5.3. Direct comparison of RPA-ladder and DΓA

Up until now we studied effective characteristics, like the additional Drude peak broadening from the
vertex corrections. In this section we will determine which part of the ph vertex corrections of the
DΓA calculations can be understood in terms of a simple RPA-ladder. To this end we use a constant
self-energy (which is extracted from the DΓA data via fitting a Drude peak to σbub) on the one hand
and the self-energy directly from the DΓA calculations on the other hand. Via choosing a self energy
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5. Characteristics of ph vertex corrections for strongly correlated materials

for a given temperature leaves the interaction strength U as only free parameter left in our calculations.
The presented DΓA results all were obtained for U = 4, which is however not applicable for our RPA-
ladder. This stems from neglecting screening in case of the RPA-ladder, which would already be past
the antiferromagnetic phase-transition for for such interaction strengths. We thus always show the RPA
vertex corrections for three different values of U .

Constant self-energy

Fig. 5.10 (a) displays the bubble contribution to the optical conductivity σbub, and Fig. 5.10 (b) to
the current-current correlator ℑ

(
χbub

)
for T = 0.1, both for DΓA and RPA approaches. While the

low-frequency regime is rather similar, the additional structure from the Hubbard-bands (Fig. 4.4) is
absent for the RPA with Σ = i∆one-particle. The one-particle broadening ∆ for the RPA has been
obtained via fitting a Drude peak to the DΓA data. Vertex corrections are displayed in Fig. 5.11.

(a) (b)

Figure 5.10.: Bubble contribution to the optical conductivity σbub (a) and to the current-current correla-
tor ℑ

(
χbub

)
(b) at T = 0.1 and U = 4. For the RPA Σ = i∆ and we set ∆one-particle = 0.17.

(a) (b)

Figure 5.11.: Vertex corrections (a) to the optical conductivity σph and (b) the current-current correlator

ℑ
(
χph

)
at T = 0.1. For the RPA Σ = i∆ and we set ∆one-particle = 0.17. The DΓA

calculations were at U = 4.

Even tough for RPA and DΓA the characteristics of the vertex corrects are similar and comparable
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in the low-frequency regime, this is not true for the high-frequency regime. A result, which is not
surprising, since the high-frequency structure is missing in the constant self-energy and consequently in
the spectral function. One peculiar feature is the vanishing of the ph vertex corrections for ω ≃ 0.28,
which is commonly referred to as isobestic points37. Not only is this feature for RPA independent of
U , as already shown in Fig. 5.2, or ξ in the case of using an OZ correlation function (Fig. 5.8), it is
also present for the full DΓA ph vertex correction. Only when adding contributions from the pp and
ph channel, a finite value for σvert(ω ≃ 0.28) is observed. This independence of the vertex function
suggests, that the external legs for the vertex corrections in Fig. 4.1 are responsible for this behaviour.
One should expect, however, that a spectral-function which is vastly different from the tight-binding
one in as in Fig. 4.4 (the DΓA self-energy only adds the comparatively high-frequency Hubbard-bands)
will change this behaviour.

Self-energy from DΓA

In this section we will use the self-energy from the DΓA calculations, thus constructing the RPA-ladder
with the same Green’s functions as in DΓA. This enables us to separate the RPA-ladder diagrams from
all other ones in the ph channel, which are computed in DΓA. Fig. 5.12 displays σbub from the real-
frequency code with the same self-energy as Ref. 12. One can clearly see the similarity of the results
from both codes, however σbub should be identical as the bubble diagram is the same. The discrepancy
is mainly due to the error and smearing out from MaxEnt analytic continuation. This also concerns
the real-frequency code, as the self-energy in DΓA calculations is in Matsubara frequencies and has
thus first to be analytically continued to real frequencies. In contrast, in this work we have analytically
continued the self-energy and consequent calculations were performed directly in real frequencies. The
stability of the results with respect to the allowed error for the MaxEnt routine is discussed in detail
in Appendix A.6.

(a) (b)

Figure 5.12.: Bubble contribution to the optical conductivity σbub (a) and to the current-current corre-
lator ℑ

(
χbub

)
(b) at T = 0.1 and U = 4. For the RPA-ladder the same self-energy as for

DΓA has been used (Fig. A.2). Since RPA and DΓA only use different approximations
for the vertex function, but not for the bubble, any difference has to be due to numerical
insufficiencies. Most of the discrepancy stems from the MaxEnt routine, which tends to
smear out features as discussed in detail in Appendix A.6.

Fig. 5.13 shows the RPA-ladder contribution to the vertex corrections, which did not change much
compared to using only a constant imaginary part for the self-energy as in Fig. 5.11 at a temperature
T = 0.1. Two small differences can be noticed: first, a small frequency component compared to Σ = i∆
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5. Characteristics of ph vertex corrections for strongly correlated materials

appears, which is still much smaller than for the ph contributions of parquet DΓA. Second, to generate
the same magnitude for the vertex corrections a higher interaction strength U has to be used. This is
also expected since screening is now included in the self-energy. The same quantities are displayed in
Fig. 5.14 for T = 0.2 and show similar characteristics.

(a) (b)

Figure 5.13.: Vertex corrections to the optical conductivity σph (a) and to the current-current correlator

ℑ
(
χph

)
(b) at T = 0.1. For the RPA-ladder the same self-energy as for DΓA (at U = 4)

was used (Fig. A.2). Note how the the RPA-ladder reproduces the low-frequency regime,
but fails to explain the high-frequency behaviour.

(a) (b)

Figure 5.14.: Vertex corrections to the optical conductivity σph and to the current-current correlator

ℑ
(
χph

)
(b) at T = 0.2. For the RPA-ladder the same self-energy as for DΓA (at U = 4)

was used (Fig. A.2). Note how the the RPA-ladder reproduces the low-frequency regime,
but fails to explain the high-frequency behaviour.

While, with the DΓA self-energy as an input, we now observe additional features in the bubble con-
tribution to the optical conductivity in Fig. 5.12, we still cannot describe vertex corrections at large
frequencies.
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6. Conclusion and outlook

In this thesis, vertex corrections to the optical conductivity in the 2D square lattice Hubbard model
have been analysed. Therefore, a real-frequency expression for the current-current correlator has been
derived as in Eq. (3.18). Therefore two simplifications have been made: first, we only consider the
vertex corrections in the ph channel. Second, we assume that the vertex function Fkk′q can be approxi-
mated by an effective vertex Fq, which only depends on one frequency ω and one momentum vector q.
As this simplified vertex we used a ph RPA-ladder and the Ornstein-Zernike30,31,32 correlation function
(cf. Eqs. (4.3) and (4.4)).
Using a constant as the imaginary part of the self energy, we analysed the characteristics of these "π-
ton" vertex corrections and showed that the main features are a suppression of the optical conductivity
at ω = 0 on the one hand and an increase at high frequencies on the other hand, which combined
acts effectively as an additional broadening of the Drude peak. A direct comparison between the ph
RPA-ladder and the ph contribution from DΓA calculations showed this feature is present in both
approaches. Indeed we confirmed, that the ph RPA-ladder is dominating in the low frequency regime
and reproduces the ph contribution of the full parquet DΓA. However, in the high frequency regime
further contributions that are beyond RPA but still in the ph channel of DΓA become important. That
is, the high frequency physics cannot be correctly described by the RPA-ladder alone. Since the bulk
of the vertex corrections is, however, in the low-frequency regime, we thus provided further evidence
that supports the picture of π-tons as dominant polaritons in strongly correlated metals, as suggested
in Ref. 12.
Another major focus of this thesis was the temperature dependence of the vertex corrections. The
detailed analysis of the additional broadening of the Drude peak demonstrated that for temperatures
down to T ≃ 0.1 this additional broadening increases for all interaction strengths U investigated. How-
ever, at T < 0.1 a qualitative difference can be observed depending on how close the system is to the
anti-ferromagnetic phase transition. Close to the phase transition the vertex corrections diverge, as
does the correlation length ξ. Otherwise the vertex corrections decrease again.
The temperature dependence of the additional broadening of the Drude peak now presents a quantity
that is accessible to experiments. To verify π-tons experimentally we thus suggest the combined mea-
surement of the Drude peak ∆Drude via optical spectroscopy, as well as the inverse life time ∆one-particle

with angular resolved photo-emission spectroscopy (ARPES). The difference ∆Drude −∆one-particle can
then be compared directly to our predicitons.
One natural next step for us will be to use the approach developed in this thesis also for the other
metals studied in Ref. 12. Doing so we can confirm or contradict the universal importance of the ph
RPA-ladder diagrams to the vertex corrections in the case of strongly correlated systems. Another step
will be to use ladder-DΓA38 to separate all ladder diagrams from the parquet contributions. Thus in
combination with the work of this thesis, the contributions can then be broken down in (i) bare-ladder
(RPA), (ii) ladder-DΓA and (iii) parquet-DΓA. This way a more in-depth analysis of features and
characteristics of the novel quasi-particles π-tons will be possible, with the goal of proposing additional
experiments to identify π-tons and their characteristics in real materials.
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A. Additionals on code benchmarks and

implementations

A.1. Analytic continuation of the DΓA self-energy

Analytic continuation of the self-energy (from DΓA calculations at U = 4 for all temperatures T ) in
Section 4.4 has been performed using the ana_cont library from Ref. 35. The library uses the maximum
entropy method (MaxEnt)13 to perform the analytic continuation. Fig. A.1 shows the self-energy in
Matsubara frequencies (black) and the back transformation after MaxEnt (colour). Figs. A.2 and A.3
display the self-energy after analytic continuation as a function of real frequencies for selected k-points
and for two different errors (ǫ) in the MaxEnt routine. A detailed analysis of the impact of ǫ on the
results is presented in Appendix A.6.
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A. Additionals on code benchmarks and implementations

(a)

(b)

Figure A.1.: Inspection of analytic continuation for the self-energy Σ(iωn,q) at T = 0.1 and U = 4.
Black with markers represents the benchmark (BM) data from DΓA and colour the fit from
MaxEnt. Only the first 30 Matsubara frequencies have been used for analytic continuation.
(a) Real part of the self energy. (b) Imaginary part of the self energy. Note that in (b)
the curves for q = (0, 0) and q = (π, π) lie on top of each other.

To obtain the self-energy on a finer grid we use coarse-graining, i.e. we interpolate the self-energy. This
procedure is often used, if the dispersion relation is known analytically36. We check our implementation
of the coarse graining against the known k-points. This is shown in Fig. A.2.
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(a)

(b)

Figure A.2.: Inspection of coarse graining of the self-energy Σ(ω,q) for T = 0.1, U = 4 and ǫ = 0.05.
Solid lines mark the known function and dashed lines the coarse grained, which trivially
have to lie on top of each other if the code works correctly. Only the first 30 Matsubara
frequencies have been used for analytic continuation. (a) Real part of the self energy. (b)
Imaginary part of the self energy.
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A. Additionals on code benchmarks and implementations

(a)

(b)

Figure A.3.: Inspection of coarse graining of the self-energy Σ(ω,q) for T = 0.1, U = 4 and ǫ = 0.02.
Solid lines mark the known function and dashed lines the coarse grained, which trivially
have to lie on top of each other if the code works correctly. Only the first 30 Matsubara
frequencies have been used for analytic continuation. (a) Real part of the self energy.
(b) Imaginary part of the self energy. Note the structure around ω = 0, which far less
pronounces in Fig. A.2.
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A.2. Coarse graining for the self-energy

As already mentioned in Appendix A.1, we use coarse graining, i.e. we interpolate the self-energy to
use a denser k-grid, as we know an analytic expression of the dispersion relation Eq. (3.7). However,
the choice of interpolation is crucial and can have a large impact on the results obtained. We used here
only constant interpolation to compare data to Ref. 12.
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Figure A.4.: Self-energy vs. kx and ky at ω = 0. (top) real part of the self-energy. (bottom) imaginary
part of the self-energy. (left) input self-energy from DΓA. (middle) constant coarse grained
self-energy. (right) 2D linear interpolation for coarse graining. Black lines mark the Fermi-
surface.

Fig. A.4 is another confirmation that our coarse graining routine works. Fig. A.4(left) shows the self-
energy on all known k-points, which is builds a 6x6 grid. We then use constant coarse graining to
obtain a 42x42 grid Fig. A.4(middle). Fig. A.4(right) shows the result if we were to use 2D linear
interpolation. A clear difference can be observed. To be able to compare results with Ref. 12 we chose
a constant interpolation scheme. Fig. A.5 shows the same plots as Fig. A.4 except for ω = 4, instead
of ω = 0.
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A. Additionals on code benchmarks and implementations
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Figure A.5.: Self-energy vs. kx and ky at ω = 4. (top) real part of the self-energy. (bottom) imaginary
part of the self-energy. (left) input self-energy from DΓA. (middle) constant coarse grained
self-energy. (right) 2D linear interpolation for coarse graining. ω = 4 for all plots. Black
lines mark the Fermi-surface.
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A.3. Green’s function with course grained self-energy

We show in Fig. A.6 and Fig. A.7 how different interpolation schemes effect the Green’s function. Near
ω = 0, where the Green’s function is peaked, a significant difference between the interpolation schemes
can be observed. For larger ω it seems to be similar.
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Figure A.6.: Green’s function vs. kx and ky at ω = 0.3. (top) real part of the Green’s function. (bottom)
imaginary part of the Green’s function. The Green’s function uses as a self-energy. (left)
input self-energy from DΓA. (middle) constant coarse grained self-energy. (right) 2D linear
interpolation for coarse graining. ω = 0.3 for all plots. Black lines mark the Fermi-surface.
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A. Additionals on code benchmarks and implementations
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Figure A.7.: Green’s function vs. kx and ky at ω = 4. (top) real part of the Green’s function. (bottom)
imaginary part of the Green’s function. The Green’s function uses as a self-energy. (left)
input self-energy from DΓA. (middle) constant coarse grained self-energy. (right) 2D linear
interpolation for coarse graining. ω = 4 for all plots. Black lines mark the Fermi-surface.

A.4. Benchmark of the bubble diagram for free electrons

In Section 3.3.1 the bubble contribution to the optical conductivity has been introduced (Eq. (3.9)).

Without the operator from the electric field (
[
γk
α

]2
) we are left with a simple particle-hole diagram,

χR
0 (ω,q) = −2

∑

k

∫ +∞

−∞
dνηF (ν)

[

GR,k+q
ν+ω Ak

ν +GA,k
ν−ωA

k+q
ν

]

. (A.1)

Since the RPA-ladder Eq. (4.3) is constructed by a geometric sum of diagrams as in Eq. (A.1), it is
vital that they are computed with adequate accuracy. Eq. (A.1) has the form of a convolution in ν.
We can thus use a Fourier transform to write

χR
0 (t,q) =

∫ +∞

−∞
dωe−iωtχR

0 (ω,q) =

− 2
∑

k

[
γkα

]2
[

GR,k+q
t

︷ ︸︸ ︷∫ ∞

−∞
dωe−iωtGR,k+q

ω

fk
−t

︷ ︸︸ ︷
∫ +∞

−∞
e+iωtηF (ν)A

k
ν

︸ ︷︷ ︸
ω→ω−ν

+

GA,k
−t

︷ ︸︸ ︷∫ ∞

−∞
dωeiωtGA,k

ω

fk+q
t

︷ ︸︸ ︷
∫ +∞

−∞
e−iωtηF (ν)A

k+q
ν

︸ ︷︷ ︸
−ω→ω+ν

]

,

(A.2)
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where in the second equality we used the substitution ω → ω − ν for the first and ω → −ω + ν for
the second term. With the use of FFT (we used the library fftw) Eq. (A.2) can be evaluated orders of
magnitude faster than in frequency space. We tested our routine against benchmark data from a codes
that evaluates the diagram in Matsubara frequencies (data courtesy: Anna Kauch). Fig. A.8 shows
the comparison of the results from our real-frequency code with benchmark data from Anna Kauch for
various q points. Only for q = (π, π) slight deviations are visible. Since the spectral function Eq. (2.24)
is just a delta peak for free electrons, we have to use an artificial broadening. This broadening was
chosen as ∆ = 0.001 and the results seemed robust against small changes in ∆.

(a)

Figure A.8.: Comparison of the bubble diagram Eq. (A.1) from our real-frequency code with data from
Anna Kauch for various q points and free electrons (Σ = 0). Black with markers represents
the benchmark (BM) data from Anna Kauch and colour the result from my code. The
slight deviations at ωn for q = (π, pi) are due to the artificial finite broadening (∆) in the
real-frequency code.

A.5. Stability of results with system size and ω resolution

We tested different resolutions for the k and ω sums to check, if the chosen resolution is indeed sufficient.
The bubble contribution to the optical conductivity σbub, as well as the current-current correlator is
given for different k-grids in Fig. A.9 and for different ω-grids in Fig. A.9. Temperature is at T = 0.1
and the self-energy only has a constant imaginary part Σ = i∆ with ∆ = 0.17. For the k-grid a
significant deviation for Nk = 18 is visible, however already Nk = 30 seems to be almost converged, as
no further change is visible for even denser k-grids. Differences in the results with respect to the chosen
ω-grid are quite minor. Only for Nω = 251 a difference can be observed with the naked eye. Fig. A.11
and Fig. A.11 show the same grid dependencies when using the DΓA self-energy at U = 4. Hence, we
think that our usual resolution of Nk = 42 and Nω = 501 is justified.
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A. Additionals on code benchmarks and implementations

(a) (b)

(c) (d)

Figure A.9.: Robustness of bubble contribution to optical conductivity σbub with regard to the number
of k-points. (a) low frequency regime of ωbub. (b) high frequency regime of ωbub. (c)
Imaginary part of the current-current correlator χbub. (d) current-current correlator in
Matsubara frequencies. Used parameters were: T = 0.1, Nω = 501, and Σ = i∆ with
∆ = 0.17

(a) (b)

(c) (d)

Figure A.10.: Robustness of results with regard to the number of ω-points. (a) low frequency regime
of σbub. (b) high frequency regime of σbub. (c) Imaginary part of the current-current
correlator χbub. (d) current-current correlator in Matsubara frequencies. Used parameters
were: T = 0.1, Nk = 66, and Σ = i∆ with ∆ = 0.17
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(a) (b)

(c) (d)

Figure A.11.: Robustness results with regard to the number of k-points. (a) low frequency regime
of σbub. (b) high frequency regime of σbub. (c) Imaginary part of the current-current
correlator χbub. (d) current-current correlator in Matsubara frequencies. Used parameters
were: T = 0.1, Nω = 501, and Σ is from DΓA (Fig. A.3).

(a) (b)

(c) (d)

Figure A.12.: Robustness of results with regard to the number of ω-points. (a) low frequency regime
of σbub. (b) high frequency regime of σbub. (c) Imaginary part of the current-current
correlator χbub. (d) current-current correlator in Matsubara frequencies. Note that the
differences in (a) are only for ω smaller than the resolution δω which is 0.6 for Nω = 501.
Used parameters were: T = 0.1, Nk = 42, and Σ is from DΓA (Fig. A.3).
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A. Additionals on code benchmarks and implementations

A.6. Stability of results with allowed error for MaxEnt analytic continuation

As already stated, analytic continuation, at least the maximum entropy method, tends to smear out
features in the best case and create peaks in the worst case. We thus tested the stability of our results
via changing the error ǫ in the MaxEnt routine. One symptom of over-fitting is transfer of weight to the
border of the real-frequency interval. Fig. A.13 shows the imaginary part of the bubble contribution
to the current-current correlator ℑ

(
χbub

)
(Eq. (3.12)) from Ref. 12. For ǫ < 1 · 10−3 a visible shift

towards the frequency border can be observed, which is a sign for over-fitting. The results presented
in Section 5.3 are for ǫ = 6 · 10−3.

Figure A.13.: ℑ
(
χbub(ω)

)
from Ref. 12 with various allowed errors ǫ in the MaxEnt analytical contin-

uation at T = 0.1.
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Fig. A.14 displays the ℑ
(
χbub(ω)

)
obtained with the real-frequency code when using the self-energy

from the DΓA calculations, for which MaxEnt has been used for analytic continuation. Fig. A.15 shows
two selected results, where the high-frequency peak position agrees. However, the result from DΓA is
more smeared out, which is to be expected from the MaxEnt routine. For all analytic continuation a
flat line has been used as a model bias.

Figure A.14.: ℑ
(
χbub(ω)

)
from real-frequency code using self-energy from Ref. 12. The self-energy

has been analytically continued with various allowed errors ǫ for the MaxEnt routine at
T = 0.1.

Figure A.15.: ℑ
(
χbub(ω)

)
as a function of ω. blue: MaxEnt result of DΓA with ǫ = 4 · 10−3. red: RPA

results with ǫ = 3 · 10−2 for analytic continuation of the self-energy at T = 0.1. The data
was selected so that peak position match. Difference in height of the peaks, shows the
difference of analytic continuation of σ vs. analytic continuation of Σ.
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