Unterschrift BetreuerIn Wien, 13.12.2019

Alonin

DIPLOMARBEIT

Charakterisierung eines Mikro-Röntgenfluoreszenzspektrometers mit monochromatischer Anregung

ausgeführt am

Atominstitut der Fakultät für Physik an der Technischen Universität Wien Stadionallee 2 1020 Wien

unter der Anleitung von

Ao.Univ.Prof. Dipl.-Ing. Dr.techn. **Christina STRELI** und Univ.Ass. Dipl.-Ing. Dr.techn. **Dieter INGERLE**

durch

Julia SWIES, BSc

Unterschrift StudentIn Wien, 13.12.2019

Danksagung

Hiermit möchte ich mich bei allen bedanken, die dazu beigetragen haben, mein Studium und diese Arbeit erfolgreich abzuschließen. Ein herzliches Dankeschön richtet sich dabei zunächst an Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Christina Streli, die sich der Betreuung dieser Diplomarbeit freundlich angenommen und mir durch eine flexible Zeiteinteilung den Studienabschluss auch neben einer beruflichen Tätigkeit ermöglicht hat. Vielen Dank an Univ.Ass. Dipl.-Ing. Dr.techn. Dieter Ingerle, meinen direkten Betreuer, der jederzeit gerne bereit war mir weiter zu helfen und Unterstützung zu leisten, wo diese notwendig war. Besonders bedanken möchte ich mich hiermit auch bei Dipl.-Ing. Dr.techn. Peter Kregsamer, der nicht mein Betreuer war, aber dennoch in den turbulentesten und für mich schwierigsten Zeiten während der Masterarbeit da war, obwohl er das gar nicht musste. Vielen Dank für jedes nette Wort, dafür, dass Du mich aufgebaut hast, als ich am Aufgeben war, Dir Zeit genommen hast mir auch die blödesten Fragen zu beantworten und ich stets auf Deine Hilfe zählen konnte. Das gleiche gilt für Ao.Univ.Prof.i.R. Projektass. Dipl.-Ing. Dr.techn. Peter Wobrauschek - Danke für die Geduld mit mir, für die fachliche Unterstützung, für die Freundlichkeit und gute Laune, die Du immer mitgebracht hast.

Bedanken möchte ich mich von ganzem Herzen bei meinen Freunden Daniel, Mateusz, Lukas, Manuel und Angelica. Wenn ich zurückdenke, habe ich Dank Euch keine einzige schlechte Erinnerung an die Studienzeit. Ich weiß nur noch wie viel Spaß wir zusammen hatten.

Zu guter Letzt - obwohl meine Liebe und Dankbarkeit Euch gegenüber in Wahrheit keiner Danksagung bedarf - bedanke ich mich bei meiner Familie, ohne die ich es überhaupt nirgendwo hin geschafft hätte. Euch verdanke ich sowieso alles.

Kurzfassung

 μ RFA ist eine analytische Methode, die dazu dient, die elementare Zusammensetzung einer weiten Bandbreite an unterschiedlichen Probenmaterialien zu bestimmen. Es handelt sich dabei um eine zerstörungsfreie Technik, die in vielen Labors verwendet wird. Eine der Besonderheiten des am Atominstitut der Technischen Universität Wien aufgebauten μ XRF Spektrometers liegt in der Feinfokus-Molybdän-Röntgenröhre. Diese trägt zur Erhöhung der gemessenen Intensität bei, ohne, dass die erreichbare Fokusgröße beeinträchtigt wird. Speziell ist ebenso der zwischen Röhre und erster Kapillare verbaute kollimierende Monochromator, der es ermöglicht Spektren aufzunehmen, die praktisch frei von Hintergrund sind.

Die Anlage kann aber nicht nur im gewöhnlichen, monochromatischen Aufbau betrieben werden, sondern auch konfokal, monochromatisch. Wird der Kollimator nämlich durch eine zweite Kapillare ersetzt, so ist es möglich ein Voxel zu definieren und drei-dimensionale, zerstörungsfreie Messungen durchzuführen. Trotz aller Vorteile, die diese Messmethode mit sich bringt, darf nicht außer Acht gelassen werden, dass die ausgesprochen kleine Fokusgröße von etwa $15\mu m$ sehr schnell zu langen Messzeiten führt. Unabhängig vom Aufbau sind die erzielten Zählraten relativ niedrig. Diese liegen für den nicht-konfokalen Aufbau bei circa 1000 cps und konfokal bei etwa 80 cps bei der Messung des selben Kupferdrahtes. Da die aus der Probe emittierten Röntgenfluoreszenzstrahlen auf dem Weg zum Detektor von Luftmolekülen absorbiert werden, können leichte Elemente nur schlecht bis gar nicht detektiert werden. Elemente mit einer niedrigeren Ordnungszahl als Silizium werden nicht gemessen, erst ab Kalium kann man von wirklich aussagekräftigen Messergebnissen sprechen.

Zur Charakterisierung dieser Anlage zählen sowohl das Justieren beider Aufbauarten, als auch die Bestimmung der Nachweisgrenzen für einige ausgewählte Elemente. Zusätzlich werden zwei Kalibrierkurven angeführt. All diese Messungen wurden an der polychromatischen μ XRF-Anlage des Atominstituts wiederholt und ebenfalls ausgewertet. Ihre Ergebnisse ermöglichen einen Vergleich der Anlagen. Es folgen weitere Messungen im nicht-konfokalen und konfokalen Aufbau, die im Rahmen der Diplomarbeit durchgeführt worden sind und dazu dienen das monochromatische μ XRF Spektrometer weiter zu testen und besser kennen zu lernen.

Die Ergebnisse dieser Arbeit wurden auf der International Conference on X-Ray Optics (IXCOM 2019) in Chicago, August 2019, in Posterform der internationalen Community erfolgreich vorgestellt.

Abstract

 μ RFA is an analytical method used to determine the element composition of a wide range of different sample materials. It is a nondestructive technique used in many laboratories. One of the special features of the spectrometer at the Atomic Institute of the Vienna University of Technology is the fine-focus molybdenum X-ray tube. This contributes to increasing the measured intensity, without affecting the achievable focus size. Another one is the collimating monochromator which is placed between the tube and the first capillary. Due to this element it is possible to record spectra that are nearly free of background.

The system can be operated not only in the usual, monochromatic setup, but also confocal monochromatic. If the collimator is replaced by a second capillary, it is possible to define a voxel and perform three-dimensional, nondestructive measurements. Despite all the advantages this measurement method entails, it must not be forgotten that the extremely small focus size of about $15\mu m$ leads very quickly to long measurement times. Regardless of the setup, the count rates achieved are relatively low. These are about 1000 cps for the non-confocal design and in a confocal setup about 80 cps for measuring the same copper wire. Since the X-ray fluorescence emitted from the sample is absorbed on the way to the detector by air molecules, light elements can be detected only badly or not at all. Elements with a lower atomic number than silicon are not measured, only from potassium one can speak of really significant measurement results.

The characterization of this system includes the adjustment of both types as well as the determination of the detection limits for some selected elements. In addition, two calibration curves are given. All these measurements were repeated at the polychromatic μ XRF spectrometer of the Atomic Institute and also evaluated. Their results allow a comparison of the diffrent spectrometers. Further measurements in the non-confocal as well as in the confocal setup, which were carried out as part of the master thesis, serve to further test the monochromatic spectrometer and to get to know it better.

The results of this work were successfully presented to the international community at the International Conference on X-Ray Optics (IXCOM 2019) in Chicago, August 2019, as a poster.

Inhaltsverzeichnis

1.	Einleitung	1
2.	Wechselwirkung von Röntgenstrahlung mit Materie2.1. Absorption2.2. Emission von Fluoreszenzstrahlung2.3. Brechung2.4. Streuung2.5. Beugung	3 3 4 6 7 10
3.	Genereller Aufbau von μXRF 3.1. Kurzer Überblick	12 12 15 18 18
4.	Bestandteile eines Spektrums 4.1. Kontinuierliches Spektrum 4.2. Charakteristisches Spektrum 4.3. Escape-Peaks 4.4. Summenpeaks 4.5. Compton-Kante	 20 20 21 22 22
5.	Aufbau der monochromatischen μ XRF-Anlage5.1Röntgenröhre5.2Monochromator5.3Primäre Kapillare5.4Probe5.5Sekundäre Kapillare oder Kollimator5.6Detektor5.7Mikroskop5.8Darstellungen des gesamten monochromatischen μ XRF-Aufbaus	 23 24 25 26 27 28 29 30
6.	Aufbau der polychromatischen μXRF-Anlage 6.1. Röntgenröhre	32 32 33 33 34 34

	6.7.	Darstellung des gesamten polychromatischen $\mu {\rm XRF}\text{-}{\rm Aufbaus}$	34
7.	Eval	luierung der Messdaten	36
8.	Bere	echnung der Nachweisgrenzen	38
9.	Cha	rakterisierung des monochromatischen μ XRF-Spektrometers	41
	9.1.	Justierung des gewöhnlichen monochromatischen Aufbaus	41
	9.2.	Justierung des monochromatischen, konfokalen Aufbaus	45
	9.3.	Nachweisgrenzen	48
		9.3.1. Monochromatische μ RFA	50
		9.3.1.1. Auffälligkeiten bei der Auswertung der Messungen	51
		9.3.1.2. Nachweisgrenzen zusammengefasst	53
		9.3.2. Monochromatische, konfokale μ RFA	68
		9.3.2.1. Auffälligkeiten bei der Auswertung der Messungen	69
		9.3.2.2. Nachweisgrenzen zusammengefasst	70
		9.3.3. Ergänzung - Polychromatische μ RFA	83
		9.3.3.1. Auffälligkeiten bei der Auswertung der Messungen	84
		9.3.3.2. Nachweisgrenzen zusammengefasst	85
		9.3.4. Gesammelte Ergebnisse der Nachweisgrenzen	88
	9.4.	Kalibrierkurven	90
		9.4.0.1. Monochromatische μ RFA	90
		9.4.0.2. Monochromatische, konfokale μ RFA	94
		9.4.0.3. Ergänzung - Panalytical Epsilon 5	96
10	.Wei	tere Messungen	99
	10.1	. Monochromatische μ -RFA	99
		10.1.1. Gallenstein	99
		10.1.2. Natriumiodid-Kristall	104
		10.1.2.1. Erste Messung \ldots \ldots \ldots \ldots \ldots \ldots	105
		10.1.2.2. Zweite Messung \ldots \ldots \ldots \ldots \ldots \ldots	109
		10.1.2.3. Dritte Messung \ldots	112
		10.1.3. Knochenprobe	117
		10.1.3.1. Monochromatisches μ XRF Spektrometer	117
		10.1.3.2. Ergänzung - Polychromatisches μ XRF Spektromete	r128
	10.2	. Monochromatische, konfokale $\mu\text{-}\mathrm{RFA}$	144
		10.2.1. Autolack	144
		10.2.1.1. Autolack_A \ldots	144
		10.2.1.2. Autolack_B \ldots \ldots \ldots \ldots \ldots \ldots	146
		10.2.1.3. Autolack_C \ldots \ldots \ldots \ldots \ldots \ldots \ldots	148
		10.2.1.4. Autolack_D \ldots	150

v

В.	3. Datenblätter				
	B.1. Datenblätter Kapillaren	. 248			
	B.2. Standards - Konzentrationen	. 251			

1. Einleitung

Diese Arbeit befasst sich mit dem monochromatischen Mikro-Röntgenfluoreszenz (μ XRF) Spektrometer am Atominstituts der Technischen Universität Wien. Die Mikro-Röntgenfluoreszenzanalyse (μ RFA) beschreibt eine analytische Methode zur zerstörungsfreien Untersuchung und Bestimmung der Element-Zusammensetzung einer Probe. Ist man nur an sehr kleinen, einige μm großen Flächen interessiert, so ist es nicht einmal notwendig, dass die Probenoberfläche gerade und glatt ist. Das Spektrometer besitzt eine wassergekühlte Fein-Fokus-Röntgenröhre, die es ermöglicht, höhere Intensitäten zu erzielen. Weiteres ist ein Monochromator zwischen der Röntgenröhre und der ersten Kapillare verbaut, sodass man Spektren misst, die so gut wie frei von jeglichem Hintergrund sind.

Das für diese Arbeit am Atominstitut der TU Wien verwendete Spektrometer kann in zwei unterschiedlichen Aufbauarten betrieben werden. Der gewöhnliche, monochromatische Aufbau eignet sich zur zerstörungsfreien Untersuchung von Probenoberflächen. Dabei wird direkt auf die Detektor-Snout der Kollimator aufgesetzt. Wird der Kollimator durch eine zweite Kapillare ersetzt, so spricht man vom konfokalen, monochromatischen Aufbau. Dieser wird durch ein Voxel charakterisiert, das sich im Strahlenkreuz der beiden Kapillaren ergibt und drei-dimensionale Messungen erlaubt. Da das Strahlenkreuz des konfokalen Aufbaus den Bereich, in dem Strahlung detektiert werden kann, räumlich stark eingrenzt, erzielt man geringere Zählraten.

Ein großer Abschnitt der Arbeit befasst sich mit der Charakterisierung dieser Anlage. In diesem Zusammenhang wird die Justierung beider Aufbauarten vorgestellt und die Nachweisgrenzen für ausgewählte Elemente einer ganzen Reihe an Standards bestimmt. Weiters werden Kalibrierkurven erstellt. All diese Messungen werden ebenfalls mit einem polychromatischen μ XRF Spektrometer des Atominstituts wiederholt, um einen Vergleich der beiden Anlagen zu ermöglichen.

Der zweite große Abschnitt beinhaltet alle weiteren im Rahmen dieser Arbeit durchgeführten Messungen mit dem monochromatischen Spektrometer. Dabei wurde versucht auf unterschiedliche Aspekte einzugehen. Der Gallenstein bildete die erste lange Messung nach der Fein-Justierung des nicht-konfokalen Aufbaus. Wichtig war dabei anschauliche Maps zu erhalten. Der Natriumiodid-Kristall stellte auf Grund seiner Form und Verpackung eine Herausforderung dar. Bei dieser Messung waren genaue, fein aufgelöste Maps nicht von Bedeutung. Wichtig war herauszufinden, ob es eine signifikante Veränderung in der Verteilung der Elemente entlang der Probenoberfläche gab. Die Knochenprobe wurde sowohl mit dem monochromatischen Spektrometer im nicht-konfokalen Aufbau, als auch mit der polychromatischen μ XRF Anlage untersucht. Ziel war es die Messungen vergleichen zu können und eventuell Gadolinium nachzuweisen, was mit beiden Anlagen bei der gewählten Messzeit nicht möglich war.

Im konfokalen Aufbau wurden verständlicherweise Tiefenmessungen durchgeführt. Die erste Messreihe bildeten vier Autolack-Proben. Hier wurde nur an einem Punkt in die Tiefe gemessen, um in weiterer Folge eine Grafik mit der Verteilung der in der Probe erhaltenen Elemente entlang der Schichten erstellen zu können. Den Abschluss bildete die Untersuchung einer SD-Karte. Diese stellt die längste Messung dar und erlaubt die Leiterplatten unter dem Plastikgehäuse zu messen und graphisch darzustellen.

2. Wechselwirkung von Röntgenstrahlung mit Materie

Um das Verfahren der Röntgenspektroskopie verständlicher zu machen, wird im ersten Schritt die zu Grunde liegende Physik von Röntgenfluoreszenz etwas näher erläutert. Daher werden in diesem Kapitel zunächst die Hauptarten der Wechselwirkung von Röntgenstrahlen mit Materie erklärt und in weiterer Folge, wie diese zur Charakterisierung von Materie beitragen. Die zu untersuchenden Proben reichen dabei von Festkörpern und Pulvern bis hin zu Partikeln und Flüssigkeiten. Mit μ RFA ist es möglich auch inhomogene Proben zu untersuchen. Die Probe wird bei dieser Untersuchungsart, unabhängig von ihrem Material, nicht beeinflusst.

In Abb.1 werden zur Veranschaulichung Absorption, Emission von Fluoreszenzoder Sekundärstrahlung, Brechung, Streuung und Beugung graphisch dargestellt. Diese bilden die möglichen Wechselwirkungsarten von Strahlung und Materie. [1]

Abb. 1: Wechselwirkungsarten von Strahlung mit Materie [1]

2.1. Absorption

Beim Auftreffen von Röntgenstrahlen auf Materie kommt es zu einer Reihe verschiedener Wechselwirkungen, was eine Abschwächung der Strahlung zu Folge hat. Diese wird durch den Absorptionskoeffizienten μ beschrieben, der sich aus dem photoelektrischen Absorptionskoeffizienten τ und der Streuung σ der Röntgenstrahlen zusammen setzt. Im betrachteten Energiebereich ist der Anteil der Streuung verglichen mit dem der Absorption deutlich geringer, sodass man schreiben kann: [1]

$$\mu = \tau + \sigma \tag{1}$$

$$\mu \approx \tau \tag{2}$$

Das Lambert-Beer'sche Gesetz beschreibt wiederum mathematisch die durch die Absorption verursachte Intensitätsabnahme der Strahlung. Bestimmende Größen in dieser Gleichung sind der Massenabsorptionskoeffizient μ , die Materialdichte ρ und die Dicke des Materials t. Es ergibt sich daraus folgende Formel: [1]

$$I = I_0 * exp(-\mu * \rho * t) \tag{3}$$

I...Intensität

 I_0 ...Intensität der einfallenden Strahlung

 μ ...Massenschwächungskoeffizient als Funktion der Energie

 ρ ...Dichte des absorbierenden Materials

t...Dicke der absorbierenden Schicht

Besteht das bestrahlte Material aus verschiedenen Elementen, so wird der Massenabsorptionskoeffizient aus dem Mittelwert gebildet: [1]

$$\mu_{compound} = \sum w_i * \mu_i \tag{4}$$

2.2. Emission von Fluoreszenzstrahlung

Bei der Absorption von Röntgenstrahlen in Materie können Photonen erzeugt werden. Dieses Phänomen beruht auf dem Photoelektrischen Effekt, den Albert Einstein mit Hilfe des Lichtquanten-Modells erklärte. Dieser besagt, dass jedes absorbierte Photon seine Energie h^*v , dabei ist h das Plancksche Wirkungsquantum und v die Frequenz des Photons, vollständig an ein Elektron des absorbierenden

Atoms abgibt. Wenn die Energie der Röntgenstrahlen ausreichend hoch ist, ist es sogar möglich, dass Elektronen der inneren Atomschalen herausgeschlagen werden. Die dabei hinterlassene Fehlstelle wird durch ein Elektron der äußeren Schale aufgefüllt und das angeregte Atom fällt wieder in den Grundzustand zurück. Dabei gibt es seine Anregungsenergie, die im Energiebereich von Röntgenstrahlung liegt, in Form einer elektromagnetischen Welle ab. Daher wird diese Art der Strahlung auch Röntgenfluoreszenz genannt. Die emittierten Energien sind charakteristisch für die in die Wechselwirkung involvierte Elektronenschale.

Aus der Bindungsenergie des herausgeschlagenen Elektrons und jener des Elektrons, das das hinterbliebene Loch auffüllt, ergibt sich die Energie der emittierten Röntgenstrahlung: [1]

$$E_{Diff} = E_{Loch} - E_{\ddot{a}u\beta ere \ Schale} \tag{5}$$

 E_{Diff} ...Energiedifferenz (Energie der emittierten Röntgenstrahlung) E_{Loch} ...Bindungsenergie des Elektrons in der inneren Schale, das von dem einfallenden Röntgenstrahl herausgeschlagen wird

 $E_{\ddot{a}u\beta ere\ Schale}...$ Bindungsenergie des Elektrons in einer äußeren Schale, das das hinterbliebene Loch auffüllt

Wird die Energie, welche bei diesem Prozess erzeugt wird, jedoch direkt auf ein weiteres Elektron des selben Atoms übertragen, verlässt dieses das Atom als sogenanntes Auger-Elektron. Seine Energie ergibt sich aus: [1]

$$E_{Auger} = E_{Diff} - E_{Bindung} \tag{6}$$

 E_{Auger} ...Energie des emittierten Augerelektrons E_{Diff} ...Energiedifferenz (siehe **Gleichung (4)**) $E_{Bindung}$...Bindungsenergie des Elektrons, das von dem emittierten Röntgenquant herausgeschlagen wird

Es besteht lediglich die Möglichkeit, dass entweder charakteristische Röntgenstrahlung oder ein Augerelektron emittiert wird. Daher gilt für die Emissionswahrscheinlichkeit folgende Gleichung: [1]

$$p_{\text{Auger}} + p_{\text{Röntgen}} = 1 \tag{7}$$

 p_{Auger} ...Emissionswahrscheinlichkeit eines Auger-Elektrons $p_{Röntgen}$...Emissionswahrscheinlichkeit eines Röntgenphotons

In **Abb.2** wird die Fluoreszenzausbeute in Abhängigkeit von der Ordnungszahl des bestrahlten Atoms dargestellt. Die Emissionswahrscheinlichkeit von charakteristischer Röntgenstrahlung wird als Fluoreszenzausbeute ω bezeichnet und ist abhängig von der Energie des entsprechenden Elektronenübergangs.

Abb. 2: Fluoreszenzausbeute in Abhängigkeit von der Ordnungszahl [1]

2.3. Brechung

An der Grenze von unterschiedlich dichten Medien ändern alle Lichtstrahlen ihre Ausbreitungsrichtung und damit auch ihre Geschwindigkeit. Dieser Effekt wird Brechung genannt. Der Brechungsindex beschreibt dabei das Verhältnis zwischen Lichtgeschwindigkeit im Medium und der Vakuumslichtgeschwindigkeit. [2]

$$\frac{c_1}{c_2} = \frac{\sin\alpha}{\sin\beta} = n = const \tag{8}$$

 c_1 ...Lichtgeschwindigkeit im Vakuum c_2 ...Lichtgeschwindigkeit im Medium n...Brechungsindex α,β ...Einfallswinkel Dieses Gesetz beschreibt lediglich in welche Richtung der Lichtstrahl abgelenkt wird und ist im Fall von Totalreflexion ungültig. Im Energiebereich von Röntgenstrahlung kann der Brechungsindex folgendermaßen geschrieben werden: [1]

$$n = 1 - \delta + i * \beta \tag{9}$$

n...Brechungsindex δ ...Abweichung von 1 (liegt zwischen 10⁻⁶ und 10⁻⁷) β ...Absorptionskoeffizient

Der Wert für den Brechungsindex von Röntgenstrahlen liegt knapp unter eins und ändert sich sehr wenig. Daraus leitet sich ab, dass die ausgesprochen kleine Brechung in Richtung der höheren Dichte zeigt. Laut Snellius'scher Regel ergibt sich damit die Totalreflexion im Röntgenbereich nur für sehr kleine Auftreffwinkel und Materialien mit höherer Dichte. Die Röntgenbrechung stellt ein wichtiges Element der Röntgenoptik dar. [1]

2.4. Streuung

Die Streuung von Elektronen wird sowohl durch die klassische elektromagnetische Theorie, als auch durch das Teilchenmodell beschrieben. Die elektromagnetische Theorie geht von elastischer Streuung aus, die auch kohärente oder Rayleigh-Streuung genannt wird. Bei dieser Wechselwirkung verliert das gestreute Photon keine Energie. [1] Die Streuintensität wird mit der Rayleigh-Formel beschreiben: [3]

$$I_{Streu} = I_0 * r_e^2 * \left[\frac{1 + \cos^2\theta}{2}\right] * f^2\left(\frac{\sin\theta}{\lambda}, Z\right)$$
(10)

 I_{Streu} ...Gestreute Intensität I_0 ...Primäre Intensität r_e ...klassischer Elektronenradius θ ...Streuwinkel $f(\frac{\sin\theta}{\lambda}, Z)$...tabellierter Formfaktor für einfallenden Strahlung der Wellenlänge λ und ein Atom der Ordnungszahl Z Liegt der Streuwinkel θ bei 0° oder 180° - das entspricht einer vorwärts oder rückwärts Richtung - so ist die Streuintensität hoch. Für Streuwinkel um die 90°, bei denen die Streurichtung senkrecht zum Primärstrahl steht, hat die Streuintensität wiederum ein Minimum.

In der Teilchenbeschreibung gilt beim Zusammenstoß von Röntgenphoton und Elektron Moment- und Energieerhaltung. Der Energieverlust des Photons ist vom Streuwinkel abhängig und man spricht von inelastischer Streuung. In diesem Prozess ändert sich entsprechend dem Energieverlust auch die Wellenlänge des Photons. Das wird durch folgende Gleichung beschrieben: [1]

$$\lambda_{Streu} = \lambda_0 + \lambda_c * (1 - \cos\theta) \tag{11}$$

 λ_{Streu} ...Wellenlänge des gestreuten Photons λ_0 ...Wellenlänge des einfallenden Photos λ_{c} ...Comptonwellenlänge θ ...Streuwinkel

$$\lambda_c = \frac{h}{mc} \tag{12}$$

m...Masse des gestreuten Teilchens (in diesem Fall Elektronenmasse)h...Planck'sches Wirkungsquantum

 $c... {\rm Lichtgeschwindigkeit}$

Für energiedispersive Spektrometer ist es hingegen einfacher die entsprechende Energieänderung zu betrachten. Diese wird mit folgender Gleichung beschrieben:

$$E_{Streu} = \frac{E_0}{1 + \frac{1}{mc^2} * (1 - \cos\theta)}$$
(13)

 E_{Streu} ...Energie der gestreuten Strahlung E_0 ...Energie der einfallenden Strahlung m...Masse des streuenden Teilchens (in diesem Fall Elektronenmasse) c...Lichtgeschwindigkeit

Aus dieser Formel lässt sich ablesen, dass der Energieverlust des Photons von seiner ursprünglichen Energie und dem Streuwinkel abhängt. Bei kleinen Streuwinkeln wird auch nur ein kleiner Teil der Photonenenergie auf das Elektron übertragen. Maximalen Energieverlust erreicht man durch einen direkten Stoß zwischen Photon und Elektron. Dabei beträgt der Streuwinkel circa 180° und ein großer Teil der Photonenenergie geht auf das Elektron über.

An Abb.3 lässt sich erkennen, dass die inelastische Streuung mit steigender Ordnungszahl fällt.

Abb. 3: Verhältnis zwischen Compton- und Rayleighstreuung zur Ordnungszahl [1]

Betrachtet man die für Röntgenstrahlen interessante Energiebandbreite, die zwischen 1 und 40 keV liegt, so dominiert die Absorption. Rayleigh-Streuung ist für niedrige Energien drei Größenordnungen kleiner als Absorption und Compton-Streuung sogar um fünf. Bei rund 30 keV werden die Wirkungsquerschnitte vergleichbar und bei rund 60 keV sogar wahrscheinlicher als Absorption. Dies ist in **Abb.4** zu erkennen.

Abb. 4: Unterschiedliche Beiträge zum Wirkungsquerschnitt bei Röntgenstrahlung (Silizium) [1]

2.5. Beugung

Durchquert elektromagnetische Strahlung (Röntgenstrahlung oder ein Lichtbündel) eine Öffnung oder geht sie an Kanten nicht transmittierender Medien vorbei, die einen Teil dieser Strahlung reflektieren oder absorbieren, so wird diese teilweise aus ihrer ursprünglichen Richtung abgelenkt. Sie breitet sich dann auch in Richtungen aus, die laut geometrischer Optik nicht möglich beziehungsweise nicht erlaubt sind. Diese Phänomen wird Beugung genannt. [4]

Das Bragg'sche Gesetz für Streuung lautet: [1]

$$n * \lambda = 2 * d * \sin\theta \tag{14}$$

 λ ...Wellenlänge der Streustrahlung d...Abstand zwischen den streuenden Netzebenen θ ...Streuwinkel

Abb. 5: Bildhafte Darstellung des Bragg'schen Gesetzes [1]

In dem oben dargestellten Bild wird das Bragg'sche Gesetzt bildlich erfasst. Einfallende Strahlung wird an den Elektronen des Gitters kohärent gestreut. Die dabei an den unterschiedlichen Gitterebenen entstehenden Streuwellen können sich abhängig von der Differenz, die sich aus den jeweiligen Weglängen ergibt, entweder verstärken oder gegenseitig auslöschen. Wenn die Weglänge ein n-faches der Wellenlänge λ beträgt führt dies zu einer Überlappung der erzeugten Streuwellen und man erhält hohe Reflexionsintensitäten für den Streuwinkel θ .

Die Braggbeugung hat drei Parameter. Wird einer fix gewählt und ein anderer gemessen, so kann der dritte daraus berechnet werden. Es ergeben sich daher viele Möglichkeiten der Materialuntersuchung. [1]

3. Genereller Aufbau von μ XRF

3.1. Kurzer Überblick

Anregungsquelle

Als typische Anregungsquelle dient in Labors vor allem die Röntgenröhre. Zu weiteren Möglichkeiten zählen radioaktive Quellen und Synchrotron-Strahlung.

Charakteristische Strahlung kann durch hochenergetische Strahlung, wie Elektronen, Protonen, elektromagnetische Strahlung - zu der beispielsweise die Röntgenstrahlung gehört - aber auch durch Laserpulse erzeugt werden. Die Anregungsenergie muss dabei aber auf jeden Fall höher sein als die Bindungsenergie im Atom.

Im Falle von µXRF liegt die Hauptanforderung an die Quelle in der hohen Brillanz. Kleine Spots an der Probe können nur mit Hilfe von Kollimatoren oder anderen Optiken realisiert werden und für diese sind kleine Quellen essentiell. [1]

Primäroptik

Die Primäroptik dient der Energieverteilung beziehungsweise dazu, den Strahlengang kontrolliert und gewollt zu verändern oder zu formen. Eine Änderung der Energieverteilung erzielt man beispielsweise mit Filtern, Sekundärtargets oder Monochromatoren. Kollimatoren ändern die Form des Anregungsstrahls und Röntgenoptiken beeinflussen sowohl die Energieverteilung als auch die Strahlenform. [1]

Zu den möglichen Elementen gehören:

- Filter, um bestimmte Anteile des Spektrums zu absorbieren
- Kollimatoren und Öffnungen für das Formen der Strahlen
- Reine Elemente zur Erzeugung von Sekundärfluoreszenz
- Monochromatoren, um monochromatische Strahlung zu erhalten
- Kollimierende beziehungsweise fokussierende Elemente

Probenpositionierungssystem

Die Probe muss in den Strahlengang platziert werden. Hierfür wird einerseits eine Vorrichtung benötigt, in die die Probenhalterung gestellt werden kann. Weiters ist es notwendig, dass sich diese Vorrichtung in alle drei Raumrichtungen bewegen kann. Das wird mit Motoren realisiert, die es ermöglichen schnell Korrekturen bezüglich der Probenposition vorzunehmen und ohne welcher ein Abrastern der Probe nicht durchführbar wäre. Die eingenommene Position wird zusätzlich mit einem Mikroskop kontrolliert. [1]

Sekundäroptik

Die einzige Anordnung, bei welcher eine Sekundäroptik verwendet wird, ist der konfokale Aufbau. Dieser ist durch eine zweite Kapillare charakterisiert, die an die Detektor-Snout angebracht wird und sich somit zwischen Detektor und Probe befindet.

Es befindet sich also eine Fokussieroptik sowohl vor der Röhre als auch vor dem Detektor. Dort, wo sich beide Strahlengänge kreuzen, wird ein Voxel definiert. Dieses wird durch die einfallende Röntgenstrahlung angeregt und trägt zur erfassten Strahlung bei. Weiters ist die Position des Voxels durch die Position der Elemente des Aufbaus fixiert. Es kann jedoch die Probe durch das Voxel bewegt werden. So wird also eine Tiefenauflösung realisiert. Auch diese spezielle Anordnung zählt zu den zerstörungsfreien Messmethoden.

Die in der konfokalen Anordnung gemessenen Intensitäten sind im Vergleich zur herkömmlichen zweidimensionalen μ XRF deutlich geringer, da nur der kleine Teil der Fluoreszenzstrahlung im Strahlenkreuz gesammelt und detektiert wird.

Die Sensitivity ändert sich für jede einzelne Schicht, da sowohl die einfallende Strahlung auf dem Weg zur zu untersuchenden Schicht in der Probe absorbiert wird als auch die von dieser Schicht emittierte Fluoreszenzstrahlung auf dem Weg zum Detektor von den dazwischen liegenden Schichten bis zur Probenoberfläche absorbiert wird. Dieser Effekt kann kompensiert werden, indem die Messzeit für jede zusätzliche Schicht erhöht wird. Dadurch kann sich die Gesamtmesszeit für diese dreidimensionale Messvariante deutlich erhöhen. [1]

In der nachfolgenden Abbildung wird das Strahlenkreuz dargestellt.

Abb. 6: Strahlenkreuz des konfokalen Messaufbaus [1]

Im Zuge der Masterarbeit wurde sowohl mit gewöhnlichem monochromatischen μ XRF- als auch im monochromatischen, konfokalen μ XRF-Aufbau gearbeitet.

Detektor

Der Detektor misst die Photonen, die von der Probe emittiert werden. Es gibt auch hier, abhängig von den Anforderungen, verschiedenste Detektoren, die unterschiedliche Zählverhalten besitzen. [1]

Weitere Elemente

Für ein komplettes Spektrometer werden zusätzliche Elemente benötigt. Es ist vor allem von Bedeutung, dass Röntgenstrahlen ionisierend sind und menschliches Gewebe beschädigen können. Daher ist es von besonderer Wichtigkeit, dass eine ausreichend sichere Abschirmvorrichtung vorhanden ist. In erster Linie sollen Mensch und Umwelt unter keinen Umständen zu Schaden kommen.

Auch die Datenverarbeitung muss überwacht werden. So ist es beispielsweise wichtig, dass unter anderem die einzelnen Komponenteneinstellungen bedient werden können. Die gesammelten Daten müssen in weiterer Folge evaluiert werden. Diese Aufgabenschritte werden mit Hilfe von Computern und geeigneter Software durchgeführt.

In Abb. 7 wird ein allgemeiner Aufbau dargestellt. Darunter befindet sich eine Beschreibung der in der Abbildung markierten Elemente. In Klammern stehen die

explizit in diesem Aufbau verwendeten Elemente. [1]

Abb. 7: Hauptkomponenten eines Röntgenspektrometers

a...Anregungsquelle (Röntgenröhre)
b...Primäropitk (Monochromator und erste Polykapillare)
c...Sekundäroptik (zweite Polykapillare) beziehungsweise ein anderes optisches Element (Kollimator)
d...Detektor (Silizium-Drift-Detektor)
e...Probe

f...Probenpositionierungssystem

3.2. Röntgenröhre

Auch wenn einzelne Modelle Unterschiede aufweisen, so soll nun der allgemeine Aufbau einer Röntgenröhre näher beschrieben werden. In einer solchen Röhre werden Elektronen aus der Kathode emittiert, die durch ein elektrisches Feld beschleunigt werden und dann auf die Anode treffen. Dort kommt es zu einer Reihe schon beschriebener Prozesse. Grundsätzlich erfolgen nun elastische oder - im Vergleich dazu viel seltener auftretende - inelastische Streuprozesse. Der kleine Teil an inelastisch gestreuten Elektronen verliert im Coulombfeld der Kerne seine Energie und erzeugt durch eben diesen Energieverlust das sogenannte kontinuierliche Bremsspektrum. Beim photoelektrischen Effekt treffen die einfallenden Elektronen auf Elektronen des reinen Anodenmaterials und sorgen für die charakteristischen Linien im Röntgenemissionsspektrum. Jedes Spektrum ist eine Überlagerung des kontinuierlichen Bremsanteils und den diskreten Linien, die für das verwendete Anodenmaterial charakteristisch sind. In modernen Röntgenröhren befinden sich sowohl Kathode als auch Anode in einer Hochvakuumkammer. Die Kathode ist ein Faden, der erhitzt wird und oftmals aus Wolfram besteht. Dieser ist in einer Wehnelt-Elektrode angeordnet, sodass eine Fokussierung der Elektronen auf die Anode ermöglicht wird. Die Anode besteht normalerweise aus einem elementaren Metall, in unserem Fall Molybdän. Die emittierten Elektronen werden bei wassergekühlten Röntgenröhren in einem elektrischen Feld zwischen Kathode und Anode beschleunigt, das erzeugt wird indem ein negatives Potential an die Kathode gelegt wird, während die Anode auf Masse liegt. Dadurch wird die Anodenkühlung erleichtert.

Das Glas- oder Keramikgehäuse der Röntgenröhre, in dem sich ein Vakuum befindet, dient als Hochspannungsisolation. Die Röntgenstrahlen werden vom Anodenmaterial in alle Richtungen abgestrahlt, können jedoch nur durch Fenster austreten, da sonst eine Abschirmung die Strahlen daran hindert.

Die in Abb.8 abgebildete Skizze zeigt die elementaren Elemente einer Röntgen-Röhre.

Abb. 8: Genereller Aufbau einer Röntgenröhre [6]

Da Elektronen von Gasmolekülen der Luft absorbiert werden, ist die Anregung mit Elektronen nur im Hochvakuum möglich. Die Strahlung, die die Röntgenröhre verlässt, wird im Fenster absorbiert. Daher gilt:

$$N_{Bremse(E)} = b * Z * \frac{E_0 - E}{E} * exp(-\mu * \rho * Z)$$
(15)

 N_E ...Anzahl der Röntgenstrahlen mit Energie E b...Kramers Konstante als Proportionalitätsfaktor

TU **Bibliothek** Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfügbar. WIEN vourknowledge hub The approved original version of this thesis is available in print at TU Wien Bibliothek.

16

Z...Anzahl der Atome des Targetmaterials E_0 ...Energie des einfallenden Elektronenstrahls μ ...Massenschwächungskoeffizient des Fenstermaterials ρ ...Dichte des Fenstermaterials t...Fensterdicke

Das emittierte Spektrum wird beeinflusst indem niedrige Energien vom Fenster absorbiert werden. Um Strahlung mit möglichst hoher Intensität zu erhalten, wird das Fenster aus einem sehr dünnen Material mit niedrigem Schwächungskoeffizienten hergestellt. Hierfür eignen sich Beryllium und Aluminium besonders gut, jedoch wird auch unter Verwendung dieser Materialien der niederenergetische Anteil der Bremsstrahlung im Fenster absorbiert.

Der lineare Massenabsorptionskoeffizient μ ist proportional zu E⁻³, das heißt μ fällt rapide mit der Energie ab und damit auch die Wahrscheinlichkeit der Absorption. Ist die Energie jedoch wieder groß genug, um eine neue Schale anzuregen, so steigt die Absorption wiederum an. Die Intensität des Anregungsspektrums muss an der Absorptionskante für eine effiziente Anregung ausreichend hoch sein. Das wird in **Abb.9** veranschaulicht. [1][5][7]

Abb. 9: Massenabsorptionskoeffizient von Titan [1]

3.3. Monochromator

Das Spektrum, das man direkt aus der Röntgenröhre erhält, setzt sich - wie schon erwähnt - aus dem Bremsspektrum und den charakteristischen Spektrallinien zusammen. Bevor dieser Strahl auf die Kapillare trifft, muss er monochromatisiert werden. Das heißt nur Wellen einer bestimmten Wellenlänge gelangen zur ersten Kapillare. Dafür befindet sich zwischen Röntgenröhrenausgang und erster Kapillare der Monochromator, der prinzipiell entweder aus einem natürlichen Kristall oder synthetischen Multilayern besteht. Bei beiden wird die Monochromatisierung durch die Bragg-Bedingung erreicht. In unserem Fall kommen Mulitlayer zum Einsatz. Sie bestehen aus 150 bis 500 Doppelschichten, die sich aus einem leichten und einem schweren Element zusammensetzen. Standardmäßig werden dabei Kombinationen aus Wolfram und Silizium oder Molybdän und Borcarbid verwendet. Es kommen aber auch andere Kombinationen in Frage. Diese Multilayer führen dazu, dass starke K- oder L-Linien "herausgefiltert" werden. Beispiele für diese Linien sind Molybdän- K_{α} oder Wolfram- L_{β} . Mulitlayer dienen aber auch als Tiefpass-Filter. Dabei wird die Totalreflexion ausgenutzt. Das führt dazu, dass ein sehr großer Teil des Hintergrundes nicht im gemessen Spektrum erscheint. Der verbleibende Anteil kann die erste Kapillare nicht durchqueren, sodass die erhaltenen Spektren so gut wie frei von Hintergrund sind. [7]

3.4. Poly-Kapillaren

Es handelt sich dabei um große Bündel aus gekrümmten, engen Glaskapillaren, in denen jede einzelne zur Propagation der Strahlung beiträgt, indem die Strahlen durch Totalreflexion geführt werden. Der Durchmesser einer Kapillare kann bis zu rund einem μm klein sein. Die einzelnen Kapillaren werden im Honigwabenmuster zu hexagonalen Bündeln angeordnet, die selbst auch im Honigwabenmuster vorliegen. Diese Bündel sind von einer zusätzlichen Glaskapillare ummantelt, die zum Schutz vor Zerstörung der äußeren Kapillare jenes Bündels dient. Weiters stellt es die Erhaltung der Form während des Herstellungsprozesses sicher. Poly-Kapillaren treten als Halb- und Volllinsen auf. Wie in folgender Abbildung zu erkennen ist, erhält man dadurch entweder einen fokussierten oder einen kollimierten Strahl. Die Strahlung wird in beiden Fällen durch viele Totalreflexionen durch die Kapillare bewegt. In der Realität ist eine 100%ige Fokussierung oder Kollimierung jedoch nicht möglich.

Abb. 10: Poly-Kapillaren als Voll- und Halblinse [1]

Die Spotgröße ist unter Verwendung von Poly-Kapillaren kleiner als bei Mono-Kapillaren, da der innere Durchmessser der einzelnen Kapillaren in diesem Fall kleiner ist. Weiters ist die Spotgröße abhängig von dem Arbeitsabstand. Bei kurzem Arbeitsabstand kann die Spotgröße bis auf einen Bereich von rund 10 µm verringert werden. Dafür muss der Arbeitsabstand kleiner als 4 mm sein, was eine sehr vorsichtige und genaue Probenpositionierung voraussetzt.

Weiters spielt die Energieabhängigkeit eine Rolle für die Spotgröße. Bei hohen Energien wird der kritische Winkel für Totalreflexion klein. Damit wird auch die Streuung vermindert, was wiederum die Spotgröße reduziert. Für niedrige Energien wird dementsprechend auch der Winkel und damit die Spotgröße größer.

Poly-Kapillaren besitzen eine starke Krümmung. Daher ist es vor allem für hohe Energien möglich, dass der kritische Wert für die Totalreflexion überschritten wird. Ist das der Fall, dringt die propagierende Strahlung in die Optik ein, sodass die Intensität der hoch energetischen Strahlung verringert wird. [1][8]

4. Bestandteile eines Spektrums

4.1. Kontinuierliches Spektrum

Das kontinuierliche Spektrum wird erzeugt, indem hochenergetische, geladene Teilchen - wie beispielsweise Elektronen, Protonen oder Alphateilchen - beim Durchqueren des Coulombfeldes eines Kernes Energie verlieren. Die dabei verlorene Energie wird im Form von Strahlung abgegeben und wird Bremsstrahlung genannt.

Erklärt wird dieses Phänomen in der klassischen elektromagnetischen Theorie, die besagt, dass die Beschleunigung von geladenen Teilchen durch Emission von Strahlung begleitet wird. Wenn ein Elektron also auf Materie trifft, so wird es abgebremst, was einer starken negativen Beschleunigung entspricht, bei welcher Röntgenstrahlung erzeugt wird.

Das kontinuierliche Röntgenspektrum, das von den Elektronen in einer Röntgenröhre erzeugt wird, wir durch eine minimale Wellenlänge λ_{\min} charakterisiert, die durch das Duane-Hunt-Gesetz folgendermaßen definiert ist: [9]

$$\lambda_{min} = \frac{h * c}{e * V_0} \tag{16}$$

 λ_{\min} ...minimale Wellenlänge h...Planck'sches Wirkungsquantum e...Elektronenladung V_0 ...Angelegte Spannung

4.2. Charakteristisches Spektrum

Charakteristische Röntgenlinien werden erzeugt, indem es zu erlaubten Übergängen zwischen einzelnen Elektronen-Orbitalen beziehungsweise Energiezuständen eines Atoms kommt. Diese Übergänge werden verursacht, wenn ein Elektron der K-Schale herausgeschlagen wird. Mögliche Gründe dafür sind einerseits der Photoelektrische Effekt oder aber der Beschuss mit hochenergetischen Elektronen, wie im Fall einer Röntgenröhre. Wird die Fehlstelle in der K-Schale durch ein Elektron der L-Schale aufgefüllt, so entspricht das einer K_{α} -Linie im Spektrum. Wird das Loch durch ein Elektron der M-Schale ausgefüllt, führt das zur Emission einer K_{β_1} -Linie. Die Fehlstellen, die sich nun in der L- beziehungsweise M-Schale ergeben, können weitere Elektronenübergänge aus anderen Orbitalen verursachen. [9]

Mögliche Elektronenübergänge werden in der nachfolgenden Grafik abgebildet.

Abb. 11: Mögliche Elektronenübergänge [7]

4.3. Escape-Peaks

Röntgenstrahlen treffen auf den Rand des Detektorkristalls und führen über den Photoeffekt abhängig von Detektormaterial zu charakteristischen Silizium-K- oder Germanium-K-Linien. Die erzeugten Photonen verlassen den Detektor und werden nicht mehr abosrbiert, sodass der einfallende Röntgenstrahl - "parent peak" - um die Energie der Silizium-K- beziehungsweise Germanium-K-Linie verringert wird und als sogenannter Escape-Peak im Spektrum erscheint. Für Silizium-Lithium-Detektoren wird der Escape-Peak circa 1,7keV unter dem Peak des einfallenden Röntgenphotons erwartet, für Germanium-Detektoren liegt dieser rund 11keV darunter. Die Breite eines Escape-Peaks ist schmaler als die des "parent peaks". [9]

4.4. Summenpeaks

Summenpeaks entstehen wenn zwei Röntgenphotonen von der pulsverarbeitenden Elektronik nicht mehr getrennt werden können und im Spektrum als ein Peak mit der summierten Energie erscheinen. Summenpeaks werden vor allem dann beobachtet, wenn einige sehr hohe Peaks im niederenergetischen Bereich das Spektrum dominieren. Die Intensität der Summenpeaks hängt von der Zählrate ab. Sie können reduziert werden, indem die Intensität des Primärstrahls verringert wird. [9]

4.5. Compton-Kante

Hochenergetische Photonen der Bremsstrahlung treffen auf die vordere Seite des Detektors, wo sie inelastisch gestreut werden. Dabei werden Rückstoßelektronen des streuenden Atoms frei, die der Detektor detektiert. Ihre Energie ist dabei eine Funktion des Streuwinkels und der Primärenergie. Daher wird im Spektrum die Compton-Kante sichtbar, die sich von 0 bis zu einigen keV erstreckt. [9]

5. Aufbau der monochromatischen μ XRF-Anlage

Dieser Abschnitt stellt die einzelnen Komponenten des monochromatischen μ XRF Spektrometers etwas genauer vor. Es wird dabei sowohl der gewöhnliche als auch der konfokale Aufbau beschrieben.

Dieses Spektrometer wurde im Rahmen des innovativen Projekts der TU Wien von Univ.Ass. Dipl.-Ing. Dr.techn. Dieter Ingerle gebaut.

5.1. Röntgenröhre

Im Rahmen der Masterarbeit wurde unabhängig vom gewählten Aufbau die selbe Röntgenröhre verwendet. Ihre Eckdaten werden in folgenden Punkten vorgestellt:

Molybdän-Röntgenröhre des monochromatischen μ XRF Spektrometers

- Röntgenröhre der Marke XRD Eigenmann GmbH
- Feinfokusröhre mit Strichfokus
- Elektronenspotgröße $400\mu m^* 8000\mu m$
- Unter einem Abstrahlwinkel von 6° liefert die Quelle eine Spot von $40 \mu m^{*} 8 mm$ auf der Anode
- Wasserdurchfluss beträgt rund 3,8 L/min mit eingebautem Filter
- Glaskolben
- 2 kW Leistung (tatsächlich in etwa 1,9 kW Leistung in Anwendung)
- $\bullet\,$ betrieben mit 50 kV und 38 mA
- Molybdän als Anodenmaterial

Die Elektronen werden aus einem Wolfram-Draht herausgeschlagen. Um die Austrittsarbeit der Elektronen zu verringern, wird der Draht aufgeheizt, bevor ein elektrisches Feld zwischen Kathode und Anode erzeugt wird. Die Hochspannung liegt dabei zwischen Anode und Glühwendel an. Die Anode muss gekühlt werden.

Die Röntgenstrahlen, die in der Röntgenröhre erzeugt werden, strahlen in alle Richtungen. Um die Strahlrichtung im ersten Schritt etwas einzuschränken, besitzt die Röntgenröhre vier Beryllium-Austrittsfenster, die eine Dicke von etwa $300\mu m$ aufweisen. Da die Strahlung diesen Aufbau nur über ein Fenster verlassen soll, ist diese von einer Metallverkleidung umgeben, die drei der vier Ausgänge abschirmt. An der Stelle des übrig gebliebenen Beryllium-Fensters besitzt die Ummantelung ebenfalls ein Loch. Da aus der Röhre sowohl das gesamte Bremsspektrum als auch die Molybdänlinien emittiert werden, wurde über die Austrittsöffnung der Metallverkleidung zusätzlich eine Zirkon-Folie mit circa $25\mu m$ Dicke gelegt. Dieser Filter dient als Vorbereiniger für den Monochromator. Die Absorptionskante von Zirkon liegt genau zwischen der K_{α} - und K_{β} -Linie von Molybdän. Über dieser Absorptionskante werden die K_{β} -Strahlung (Transmission liegt zwischen 20 und 25%) und auch alle niederenergetischen Anteile absorbiert.

Das spielt in weiterer Folge eine wichtige Rolle, da niederenergetische Strahlen im Monochromator total reflektiert werden. Ohne diesen zusätzlichen Zirkon-Filter würden diese Strahlenanteile bis zur Probe propagieren. Berechnungen zeigen, dass selbst trotz Luft (etwa 15cm zwischen Röhre und Probe), die als Absorber fungiert, ein großer Teil transmittiert wird. Daher ist es begründet und sinnvoll den Zirkon-Filter in den Aufbau einzubauen, da es das Ziel ist ein möglichst sauberes Spektrum zu erhalten.

5.2. Monochromator

Der etwa 10*cm* lange und 2*cm* breite Monochromator befindet sich in einer Messingbox. Obwohl oft Aluminium auf Grund seiner geringen Masse als Boxmaterial verwendet wird, ist Messing ein besserer Absorber, sodass man dadurch insgesamt ein saubereres Spektrum erhält.

Die Besonderheit des eingesetzten Monochromators liegt in der parabolischen Krümmung, die speziell auf Molybdän- K_{α} -Strahlen ausgelegt ist. Der Brennpunkt der parabolischen Krümmung fällt bei richtiger Positionierung mit dem der Röntgenröhre überein. Daher erhält man einen Auftreffwinkel für den der Krümmungsradius annähernd parallele Strahlen liefert. Reflektiert wird an einer speziellen Beschichtung.

Die Propagation der Wellen beruht auf der Bragg-Bedingung. Der Monochromator besteht aus vielen Schichten mit nm-Dicke, daher spricht man auch von einem Multilayer-Monochromator. Diese Schichten sind alternierend angeordnet und haben unterschiedliche Dichten, das heißt damit auch verschiedene Brechungsindizes. Die Schichten niedrigerer Dichte dienen dabei lediglich als Abstandhalter, sie sorgen für definierte Abstände zwischen den Schichten höherer Dichte.

Theoretisch erhält man aus dem Monochromator einen monochromatischen und parallelen Strahl. In der Praxis ist dieser natürlich nicht perfekt parallel, sondern besitzt eine Restdivergenz. Diese wird als Halbwertsbreite angegeben und liegt bei 0,027°.

Der in diesem Aufbau verwendete Monochromator wurde von AXO Dresden GmbH - Applied X-Ray Optics hergestellt (one-dimensional prallel beam multilayer x-ray optics for Mo- K_{α} radiation). Seine Besonderheit liegt in einer leichten Krümmung, die dazu führt, dass Strahlung über einen bestimmten Bereich angesammelt wird und man daraus schlussendlich einen intensiven, parallelen Strahl erhält. Der Monochromator ist 10cm lang, auf Mo- K_{α} -Strahlung und einen bestimmten Abstand von der Quelle ausgelegt.

Der Monochromator ist verstellbar. Die Bewegung des Monochromators wird mit Hilfe von mechanischen Schrittmotoren realisiert. Er kann auf und ab bewegt werden, um den entsprechenden Winkel, der die Bragg-Bedingung erfüllt, zu finden. Um sichtbar zu machen, an welcher Stelle der Röntgenstrahl auftrifft, wurde ein Leuchtschirm aus Gadolinium-Oxisulfid auf die Kapillare, die sich hinter dem Monochromator befindet, montiert. Wie der Name schon sagt, leuchtet die Stelle auf welche die Strahlung trifft. Dieses Leuchten kann mit bloßem Auge gesehen werden. Damit wird die Grobjustierung erleichtert. Früher wurde oft Zinksulfid als Leuchtmittel verwendet. Dieses bröselt jedoch leicht und ist giftig. Daher findet es nicht mehr große Verwendung.

5.3. Primäre Kapillare

Die Kapillare besteht aus dünnen Glasfasern und basiert auf der Totalreflexion. Die Toleranzen für den Auftreffwinkel sind sehr klein. Diese betragen beispielsweise lediglich rund 0,1° für Molybdän-Strahlen auf Silizium beziehungsweise Glas. Strahlen, welche die Bedingung für Totalreflexion nicht erfüllen, werden absorbiert. Diese Absorption führt wiederum zu einem deutlichen Intensitätsverlust der Strahlung, die die Kapillare verlässt. Man versucht diesen Effekt so gut es geht zu vermeiden. Um Oxidationen und Strahlenschäden an der Kapillare zu minimieren, ist diese mit Helium gefüllt. Weiters verhindert diese Maßnahme im Allgemeinen zusätzlich die Absorption der Strahlen an der Luft. Wie Oben bereits erwähnt, spielt das in unserem Fall keine Rolle.

In dem am Atominstitut im Rahmen der Masterarbeit verwendeten Spektrometer kommen Halblinsen der Marke Fischer Polycapillary zum Einsatz. Die Röntgenstrahlung durchquert zunächst den Monochromator und wird möglichst monochromatisiert. Diese monochromatische Röntgenstrahlung trifft danach auf die erste Kapillare, in der die Strahlung fokussiert wird. Die Probe wird so positioniert, dass der Brennpunkt mit der Probenoberfläche zusammenfällt. Da Poly-Kapillaren Beleuchtungsoptiken sind und dementsprechend für optische Abbildungen ungeeignet sind, wird der Brennfleck mit dem Quellendurchmesser nicht größer.

Die Kapillare hat relativ viele Bewegungsmöglichkeiten. Der Austrittswinkel der Strahlung aus dem Monochromator muss möglichst genau dem Winkel der Kapillare entsprechen, da der Strahl andernfalls in dieser nicht totalreflektiert wird. Die Kapillare kann sich hinauf und herunter, nach links und rechts und nach vorne und hinten bewegen. Sie deckt damit die x-, y- und z-Richtung ab. Weiters ist es möglich den Kipp- und Drehwinkel zu verstellen. Die Hinauf- und Hinab-Bewegung wird durch mechanische Motoren, die eine Genauigkeit von $1-2\mu m$ erreichen, umgesetzt. Piezomotoren, welche die restlichen Achsen abdecken und eine Genauigkeit von einigen Nanometern erreichen, können hier auf Grund der Gewichtsbelastung nicht eingesetzt werden. Dafür ist die Kapillare samt ihrem gesamten Aufbau zu schwer. Entlang der Achse ist der Piezomotor nämlich nur für maximal einen Newton Kraftbelastung ausgelegt. Der Vorteil von Piezomotoren liegt darin, dass schnelle Bewegungen mit hoher Genauigkeit durchgeführt werden können. Weiters sind diese relativ kompakt und preiswert. Der Piezokristall kann sich je nach angelegter Spannung ausdehnen und zusammen ziehen.

5.4. Probe

Die Probe wird prinzipiell auf einer speziellen Halterung montiert. Diese besitzt auf deren Unterseite vier Magneten und drei Kugeln, die perfekt in die entsprechenden Magneten im Versuchsaufbau passen. Dadurch ist eine gute Wiederholbarkeit gewährleistet. Die Magneten im Versuchsaufbau sind auf einem mechanischen Motor montiert, der die Probe in z-Richtung bewegt. In x- und y-Richtung wird die Probe samt Halterung, wie schon bei der primären Kapillare beschrieben, durch Piezomotoren bewegt. Manche Proben sind zusätzlich auf einem Gadolinium-Schirm angebracht, damit man mit dem freien Auge erkennen kann, an welcher Stelle der Röntgenstrahl auftrifft. Das erleichtert das Finden der angestrebten Position.

Abb.12 zeigt, wie diese Probenhalterung aussieht.

Abb. 12: Probenhalterung mit montierter Probe

5.5. Sekundäre Kapillare oder Kollimator

Im konfokalen Aufbau kommt eine weitere Kapillare der Marke Fischer Polycapillary als Sekundäroptik zum Einsatz. Auch diese ist eine Halblinse, deren Brennpunkt möglichst mit dem selben Punkt auf der Probenoberfläche zusammenfällt, auf den bereits die Röntgenstrahlung aus der ersten Kapillare trifft. Die von der Probe emittierten fluoreszierenden Röntgenstrahlen durchqueren die zweite Kapillare und verlassen diese durch das dem Detektor zugewandte Ende.

Die Fokusgröße beträgt bei Verwendung der Kapillare abhängig von der Energie der einfallenden Fluoreszenzstrahlung 15-20 μm (siehe Anhang **B.1.**). Von besonderer Wichtigkeit ist es, dass erste und zweite Kapillare exakt zu einander ausgerichtet sind, da sonst hohe Intensitätsverluste resultieren. Die Entscheidung, ob als sekundäres Optikelement eine Kapillare oder ein Kollimator verwendet wird,
definiert, ob man von einem konfokalen oder nicht-konfokalen Aufbau spricht.

Bei Anwendung des gewöhnlichen, monochromatischen μ XRF-Aufbaus befindet sich anstatt der zweiten Kapillare ein Kollimator an der Detektor-Snout. Dieser besteht aus Aluminium und zwei dünnen Silberplättchen. Die dazugehörige Skizze wird in der nachfolgenden Abbildung dargestellt. Bei Verwendung eines Kollimators ist eine Tiefenauflösung nicht möglich. Die gemessenen Intensitäten sind jedoch deutlich höher als im konfokalen Aufbau, wie die Auswertung der im Rahmen der Masterarbeit durchgeführten Messungen zeigen wird. Der Kollimator ist im Vergleich mit dem Einsatz einer zweiten Kapillare zusätzlich weitaus weniger empfindlich auf kleine Positionsänderungen.

Abb. 13: Maße des Kollimators

5.6. Detektor

Es handelt sich hierbei um einen Silizium-Drift-Detektor der Marke Amptek Inc. mit 500µm Dicke und einem 12,5µm dickem Beryllium-Fenster. Das Modell wird mit "X-123 FAST SDD" bezeichnet (Seriennummer X017322). Die Energie der Elektronenwolke entspricht der Energie des einfallenden Photons. Ein Problem des Detektors liegt in der Totzeit, aus der sich Life- und Realtime ergeben. Wenn zwei Photonen gleichzeitig oder schnell hintereinander am Detektor auftreffen, kann die Elektronik diese Signale nicht trennen. Es existieren zwar Detektoren, die eine Million Photonen pro Sekunde messen können, das geschieht jedoch auf Kosten der Energieauflösung, was zur Folge hat, dass alle Peaks breiter werden. Die Verarbeitungszeit beträgt bei diesen Geräten um die 100ns. Bei dem in diesem Aufbau verwendeten Detektor liegt die Auflösung bei etwa 122eV **FWHM** bei 5,9keV. Physikalisch wäre eine viel bessere Auflösung mit diesem Aufbau nicht möglich. Diese unterscheidet sich in Abhängigkeit davon, welche Energie betrachtet wird.

Für die aktive Fläche werden zwar 70mm² angegeben, intern gibt es jedoch noch eine Abschirmung, die Kollimator genannt wird, sodass sich die Fläche auf 50mm² verringert.

Das im Detektor verwendete Silizium ist für die Detektion von Röntgenstrahlen im mittleren Energiebereich sehr gut geeignet. Höher energetische Strahlung geht hingegen durch den Detektor durch. Germanium hätte beispielsweise zwar eine höhere Dichte und damit auch eine höhere Absorption, muss jedoch mit flüssigem Stickstoff gekühlt werden. Auch Si(Li)-Detektoren kamen früher oft zum Einsatz, verlangen jedoch ebenfalls eine Stickstoffkühlung. In dem verwendetem Aufbau wird der Detektor mittels Peltierelement auf -70°C hinunter gekühlt.

Heutzutage erfolgt die Pulsverarbeitung digital und die Digitalisierung erfolgt dabei möglichst früh. Die dazugehörige Elektronik ist rechts vom Detektor platziert. Jeder Motor besitzt seinen eigenen Kontroller.

5.7. Mikroskop

Das Mikroskop setzt sich aus einem Tubus, einem Objektiv, das sich vorne befindet, und einer hinten platzierten Kamera zusammen. Im Tubus kann seitlich Licht eingespeist werden, worauf in dem verwendeten Aufbau aber verzichtet wird. Das Objektiv besitzt eine 10-fach vergrößernde Linse. Die effektive Vergrößerung ergibt sich aus der Multiplikation der Kamerapixel und der 10-fachen Vergrößerung. In diesem Fall sind das also $3,45\mu m$ * $3,45\mu m$, was $0,34\mu m$ pro Pixel ergibt, die man auf der Probe auflösen kann. Dieses Ergebnis liegt unter dem optischen Limit. Eine 100%-ige Scharfstellung ist daher nicht möglich. Man bewegt sich hier nämlich an dem Limit des Brechungsindex' von Licht.

Eine Besonderheit im Aufbau liegt in dem relativ großen Abstand für das Mikroskopobjektiv. Der Arbeitsabstand beträgt circa 3cm, woraus eine sehr geringe Tiefenschärfe von 3-4µm resultiert.

Die manuelle Grobjustierung in x-,y- und z-Richtung erfolgt mittels einer Schrau-

be. Ein Motor bewegt das Mikroskop zur Probe hin und von dieser weg, damit man nach dem Verstellen wieder in die genaue, ursprüngliche Position zurückfahren kann.

5.8. Darstellungen des gesamten monochromatischen μXRF-Aufbaus

Zusammenfassend werden in zwei Abbildungen Skizzen des gesamten Aufbaus dargestellt. **Abb.14** zeigt den konfokalen Aufbau mit zwei Kapillaren, **Abb.15** hingegen stellt den Aufbau dar, bei dem die zweite Kapillare durch einen Kollimator ersetzt wurde.

Abb. 14: Konfokaler Aufbau der Anlage (Dank an D. Ingerle)

Abb. 15: Aufbau der Anlage mit Kollimator (Dank an D. Ingerle)

Abb.16 zeigt ein Foto des gewöhnlichen monochromatischen μ XRF-Aufbaus der Anlage.

Zum Schutz des Menschen und der Umwelt befindet sich die gesamte Anlage in einer Strahlenschutzvorrichtung. Diese wird in **Abb.17** dargestellt. Wie darauf zu erkennen, besteht diese aus massiven Stahlwänden. In Richtung des Strahlenganges wird die Wand zusätzlich durch eine Bleielement verstärkt. Die Vorderseite besteht aus verschiebbaren Glaselementen. Sollten diese nicht richtig übereinander liegen oder geöffnet werden, schließt der Shutter automatisch.

Abb. 16: Endgültiger Aufbau der Anlage

Abb. 17: Gehäuse für Strahlenschutz

6. Aufbau der polychromatischen μ XRF-Anlage

Ziel dieses Abschnittes ist es den Aufbau der polychromatischen μ XRF Anlage zu beschreiben und auf Unterschiede zum bereits beschriebenen monochromatischen Spektrometer hinzuweisen. Im Rahmen der Masterarbeit wurden an beiden Anlagen Messungen durchgeführt, um Vergleiche zwischen den unterschiedlichen Messmethoden aufstellen zu können und in weiterer Folge eine Charakterisierung des monochromatischen Spektrometers vorzunehmen und Vor- und Nachteile zu definieren. Die Informationen über dieses Spektrometer wurden aus der Masterarbeit von S. Smolek entnommen. [10]

6.1. Röntgenröhre

Es folgt eine kurze Auflistung der wichtigsten Eckdaten der Röntgenröhre:

Rhodium-Röntgenröhre des polychromatischen μ XRF Spektrometers

- Röntgenröhre der Marke Oxford Instruments
- Modell Apogee 5500 Series
- Elektronenspotgröße $35\mu m^* 35\mu m$
- Außenwand der Röntgenröhre wird mit einem 80mm Gleichstrom-Axiallüfter etm-papst 8212JN gekühlt
- Maximalleistung von 20W
- Rhodium als Anodenmaterial

6.2. Polykapillare

Zwischen Röntgenröhre und Kapillare befindet sich in diesem Aufbau kein Monochromator, sodass mit polychromatischer Strahlung angeregt wird. Dadurch wird die Probe in diesem Fall nicht nur von Strahlung einer bestimmten Energie angeregt, sondern zusätzlich auch noch mit der gesamten Bremsstrahlung. Das führt dazu, dass in den Spektren ein hoher Hintergrund aufgezeichnet wird.

Zur Fokussierung der Strahlung, die das Austrittsfenster der Röntgenröhre verlässt, wird eine Polykapillare der Marke X-Ray Optical Systems, XOS[®] (Seriennummer

1203-01) als Volllinse verwendet.

Um zu ermöglichen, dass der Eintrittsfokus der Röntgenoptik genau auf den Anodenbrennfleck der Röntgenröhre justiert wird, besitzt die Kapillare die Möglichkeit sich horizontal sowohl in die x- und y-Richtung als auch vertikal, also in z-Richtung, zu bewegen.

6.3. Probenpositionierungssystem

Das Probenpositionierungssystem funktioniert in recht ähnlicher Weise, wie schon jenes des monochromatischen Aufbaus. Auch hier wird die Probe in alle drei Raumrichtungen mit Hilfe von Motoren, die über den Rechner aus gesteuert werden, bewegt. Diese Probenpositionierung erfolgt dabei auf μm genau. Die Positionierer sind dabei so montiert, dass diese in einem Winkel von 45°, also normal auf die Mikroskopachse, bewegt werden.

Die Probenhalterung selbst besteht aus dem selben Magnetsystem, wie schon im bereits beschriebenen monochromatischen Aufbau. Auch die Aluminiumrahmen, die in **Abb.12** dargestellt werden, sind die selben.

6.4. Detektor

Es handelt sich hierbei um einen Si(Li)-Detektor von Gresham, der mittels flüssigem Stickstoff gekühlt wird. Sein Fingerdurchmesser beträgt 16mm und seine aktive Fläche $30mm^2$. Das spezielle an diesem Detektor ist sein ultradünnes Polymerfenster AP1.4 von Moxtek, das eine Fensterdicke von lediglich 340nm aufweist. Davon sind 300nm aus Polymer und 40nm Aluminiumbeschichtung. Damit ist das Fenster jedoch nicht mehr freitragend, sondern muss von einem $380\mu m$ dickem Silizium-Gitter verstärkt werden. Seine freie Fläche verringert sich dadurch auf 75%.

Die Auflösung des Detektors der Marke Oxford Instruments liegt bei etwa 136 eV**FWHM**. Das Spektrometer und damit auch der Detektor arbeiten unter Vakuum, um die Analyse leichter Elemente zu ermöglichen. Ein weiterer Grund für den Einsatz eines Vakuums besteht darin, dass sich andernfalls Verschmutzungen auf dem Kristall absetzen und sich auf Grund der Luftfeuchtigkeit eine Eisschicht bildet.

Da ultradünne Fenster nicht lichtundurchlässig sind, muss sich der Detektor in absoluter Dunkelheit befinden. Die Detektorpositionierung erfolgt manuell und wird mit Schrauben fixiert.

6.5. Mikroskop

Das Objektiv der Marke Mitutoyo trägt den Namen Plan Apo unendlich korrigiertes Objektiv mit großem Arbeitsabstand. Es arbeitet mit 10-facher Vergrößerung. Die Auflösung des Objektives beträgt $1\mu m$, die Schärfentiefe $3,5\mu m$ und der Arbeitsabstand 33,5mm. Das Mikroskop verfügt über eine Inlinebeleuchtung über einen flexiblen Lichtleiter.

6.6. Gehäuse

Das Gehäuse bildet ein Hohlzylinder aus Aluminium, der neben dem Strahlenschutz auch als Vakuumkammer fungiert. Ohne das Vakuum wären leichte Elemente nicht messbar. Der Außendurchmesser beträgt rund 209mm und eine Wanddicke von circa 20mm. Der Zylinder hat einen passenden Deckel mit einem Bleiglas, durch das man die Probenposition beobachten kann. Möchte man eine Messung starten, so muss jedoch auf dem Bleiglas ein passender Aluminiumaufsatz platziert werden, da der Detektor lichtempfindlich ist und nur in Dunkelheit zu betreiben ist.

6.7. Darstellung des gesamten polychromatischen μXRF-Aufbaus

Es folgt nun ein Foto des Messaufbaus der polychromatischen Anlage.

Abb. 18: Foto der polychromatischen μ XRF-Anlage [10]

7. Evaluierung der Messdaten

Dieses Kapitel soll dem Leser einen groben Überblick über die Auswertung der Messdaten ermöglichen. Die Evaluierung stellt mitunter den größten Arbeits- und Zeitaufwand dar, da die Messungen nach Eingabe der gewünschten Messbedingungen über das Terminal automatisiert ablaufen. Die Auswertung der erhaltenen Spektren verläuft, wenn bei den vorgestellten Messungen nicht anders angegeben, immer auf die selbe Art und Weise und soll daher hier einmal gesammelt vorgestellt werden.

Das Spektrometer zeichnet über das Programm μXRF (erstellt von D. Ingerle) für jeden Messpunkt ein eigenes Spektrum auf, das bereits während die Messung durchgeführt wird live angezeigt wird. Dort können frei gewählte ROIs (Region of Interest) definiert werden. Diese markieren einen Channelbereich, den man einem bestimmten Elemente und einer bestimmten Fluoreszenzlinie zuordnet. Um diese Bereiche zu definieren ist der KLM-Marker hilfreich, der die Position der Fluoreszenzlinien vieler Elemente im Spektrum anzeigt. Wird eine ROI vor Messbeginn gesetzt, werden für diesen Channelbereich Netto-Peakfläche, Hintergrund und deren Summe (Gross-Peakfläche) angegeben, die immer aktuell abgelesen werden können.

Eine Messung besteht im Normalfall jedoch nicht aus einem einzigen Spektrum, sondern aus vielen Einzelspektren. Aus diesen wird im nächsten Schritt über **XRFMaps** (erstellt von D. Ingerle) ein Summenspektrum erstellt. Dieses wird in weiterer Folge für die Erstellung eines Fits verwendet, da selbst Elemente mit geringer Zählrate durch das Aufsummieren der einzelnen Spektren sichtbarer werden und im Allgemeinen bestimmt werden kann, welche Elemente die Probe in dem definierten Messbereich enthält. Für die Erstellung des Fits wird das Summenspektrum in **PyMca** [15] hochgeladen. Unter der Option "Advanced" öffnet sich ein neues Fenster, das das Spektrum noch ein mal anzeigt. Hier kann das tatsächliche Fitten erfolgen. Im ersten Schritt muss für die Zuordnung der Elemente zunächst die Energieskala definiert werden. Dafür werden zwei markante Peaks ausgewählt, denen ein bestimmtes Elemente und eine bestimmte Fluoreszenzlinie zugeordnet werden. Durch diese Zuordnung wird jedem Channel eine eindeutige Energie zugeschrieben. Nun werden auch den restlichen Peaks Elemente zugewiesen. Detektorartefakte, auf welche man dabei achten muss, wurden bereits in Kapitel 4 angeführt.

PyMca ermöglicht es automatisch Escape-Peaks und Summenpeaks zu berücksich-

tigen und den Hintergrund abzuziehen. Weiters kann der Tail der Peaks für den Fit eingestellt werden. Zusätzliche wichtige Einstellungsmöglichkeiten ist Angabe der Energie des Anregungsstrahles und des Absorptionsmaterials zwischen Röntgenröhrenausgang und Probe, in unserem Fall also Luft. Das Programm berücksichtigt abgesehen davon ebenfalls automatisch, wenn sich mehrere Peaks überlagern. Der gesamte Fit kann als Configuration gespeichert und jeder Zeit nochmal aufgerufen werden. Das Programm berechnet für den erstellten Fit automatisch die Fit-Flächen aller zugeordneten Elemente samt dem dazugehörigen Sigma.

In **XRFMaps** (erstellt von D. Ingerle) können nun die Maps der zugewiesenen Elemente erstellt werden. Dabei gibt es zwei Optionen. Man kann Maps erstellen, die als Grundlage die Messergebnisse der ROIs verwenden, oder es können Maps mit Hilfe des erstellten Fits für das Summenspektrums erzeugt werden. Im Normalfall wird zweite Option durchgeführt. Das Programm ermöglicht es, die Fit-Flächen jedes einzelnen Messpunktes gesammelt in einer Excel-Datei anzugeben.

8. Berechnung der Nachweisgrenzen

Wie man im praktischen Teil der Masterarbeit später lesen kann, befasst sich ein großer Abschnitt mit der Charakterisierung des monochromatischen μ XRF Spektrometers. In diesem Sinne wurden sowohl für die monochromatische Anlage als auch als Vergleich dazu für das polychromatische Spektrometer eine Reihe an Glasstandards untersucht und in weiterer Folge daraus die Nachweisgrenzen für einige Elemente bestimmt. Für die Herleitung der später verwendeten Formel wurden die Quellen [5],[9] und [11] verwendet.

Die Nachweisgrenze ist im Zusammenhang mit Element-Analyse als die minimale Menge eines Elements definiert, die über eine bestimmte Zeitspanne mit einem bestimmten Messaufbau in einer spezifischen Matrix detektiert werden kann.

Um die Berechnung dieser Grenzen nachvollziehbarer zu machen, wird nun die Herleitung der später verwendeten Formel vorgestellt werden.

In erster Linie sind in diesem Zusammenhang allgemeine Zählstatistiken von Bedeutung, da die Emission eines Photons auf Grund eines quantenmechanischen Relaxationsprozesses eines angeregten Atoms statistischer Natur ist und zeitlich nicht vorherbestimmt werden kann. Die Wahrscheinlichkeit x Photonen in einer bestimmten Zeitspanne zu messen ist dabei:

$$P(x) = \frac{\overline{N}^{\mathbf{x}} e^{-\overline{N}}}{x!} \tag{17}$$

P(x)...Wahrscheinlichkeit der Photonenemission \overline{N} ...durchschnittliche Photonenzahl im selben Bereich

Die Standardabweichung ist definiert als:

$$\sigma = \sqrt{\overline{N}} \tag{18}$$

Die Gesamtzahl an gemessen Counts setzt sich zusammen aus:

$$N_{\rm G} = N_{\rm N} + N_{\rm H} \tag{19}$$

 N_G ...Gesamtzahl an Counts N_N ...Nettozahl an Counts

38

Daraus folgt:

$$N_{\rm N} = N_{\rm G} - N_{\rm H} \tag{20}$$

Die Varianz ergibt sich zu:

$$\sigma_i^2 = N_{\rm G} + N_{\rm H} \approx 2N_{\rm H} \tag{21}$$

Die Summe aus Hintergrund und Netto-Counts N_H+N_N unterscheidet sich erst dann signifikant vom Hintergrund alleine, wenn $N_N>X\sigma_i$. X ist dabei eine Frage der Konvention. Für X=1 würde in 67% der Fälle ein richtiges Ergebnis geliefert werden, X=2 in 95% und X=3 in 99,7%. Meistens wird für Berechnungen X=2 gewählt, sodass man zu folgendem Ergebnis für die minimalen Counts kommt:

$$N_{\rm min} = 2\sigma_{\rm H} = 2\sqrt{2N_{\rm H}} \approx 3\sqrt{N_{\rm H}} \tag{22}$$

Um die Formel für die Nachweisgrenze zu erhalten, in der sie für die im Rahmen der Masterarbeit durchgeführten Berechnungen verwendet wurde, sind die zwei folgenden Beziehungen wichtig. Aus dem Spektrum ist bekannt, dass sich die Intensität aus dem Verhältnis von Counts zur Messzeit ergibt:

$$I = \frac{N_{\rm N}}{t} = \frac{N_{\rm G} - N_{\rm H}}{t} \tag{23}$$

Weiters ist die Sensitivity definiert als:

$$S = \frac{I}{c} \tag{24}$$

I...Intensität

t...Messzeit

S...Sensitivity

c...Konzentration

Damit erhält man nach einigen kurzen Umformungsschritten die kleinste nachweisbare Konzentration:

$$c_{\min} = \frac{I_{\min}}{S} = \frac{N_{\min}}{St} = \frac{3\sqrt{N_{\rm H}}}{St} = \frac{3}{S}\frac{I_{\rm H}}{t} = c\frac{3\sqrt{N_{\rm H}}}{N_{\rm N}}$$
(25)

Für die im Rahmen der Masterarbeit berechneten Nachweisgrenzen wird unabhängig von den tatsächlichen Messzeiten auf 1000 Sekunden normiert, das heißt die Nachweisgrenze LD_{1000} wird berechnet. Daher wird das Endergebnis von Gleichung (25) um einen zusätzlichen Faktor ergänzt:

$$LD_{1000} = c_{\min 1000} = c \frac{3\sqrt{N_{\rm H}}}{N_{\rm N}} \sqrt{\frac{t}{1000}}$$
(26)

40

9. Charakterisierung des monochromatischen μXRF-Spektrometers

Unabhängig vom jeweiligen Aufbau, musste die Anlage vor den Messungen justiert werden. Ziel war es dabei immer, die bestmöglichen Messergebnisse zu erhalten, das heißt eine kleine Fokusgröße und hohe Intensitäten. Durchgeführt wurden diese Optimierungen mit Hilfe eines etwa $12\mu m$ Kupferdrahtes auf einem Gadoliniumschirm, der bereits in **Abb.12** dargestellt wurde. Kupfer wird mit Molybdän- K_{α} -Strahlung, aus dem das Anodenmaterial der verwendeten Röntgenröhre besteht, gut angeregt, sodass es sich als Probenmaterial gut eignet. Der Schirm aus Gadolinium ermöglicht es mit dem freien Auge zu sehen auf welche Stelle der Röntgenstrahl genau trifft, da bei der Wechselwirkung mit Röntgenstrahlen ein grünes Leuchten sichtbar wird. Das erleichtert es vor allem das Mikroskop so einzustellen, dass in weiteren Messungen jede untersuchte Probenoberfläche im Mikroskop genau dann scharf gestellt wird, wenn der Röntgenstrahl auf diese trifft.

An dieser Stelle sollen die Ergebnisse der Justierung für den gewöhnlichen, monochromatischen, als auch für den monochromatischen, konfokalen Aufbau angeführt werden.

9.1. Justierung des gewöhnlichen monochromatischen Aufbaus

Der gewöhnliche, nicht konfokale μ XRF-Aufbau wurde bereits im Zuge der zuvor durchgeführten Projektarbeit justiert. Die dabei erzielten Ergebnisse werden vollständigkeitshalber hier ein weiteres Mal zusammengefasst. Detaillierter Angaben sind Quelle [12] zu entnehmen.

Die Anlage war bereits zu Beginn der Projektarbeit betriebsbereit und musste nicht von Grund auf justiert werden. Es handelte sich lediglich um eine Feinadjustierung, die sich vor allem zunächst auf die Kapillare, die sich zwischen Monochromator und Probe befindet, und im nächsten Schritt auf den Detektor, auf dem der Kollimator aufgesetzt ist, bezieht. Röntgenröhre und Monochromator wurden lediglich dann verstellt, als die Röntgenröhre im Zuge der Projektarbeit ausgetauscht wurde. Auf diese Schritte wird nicht näher eingegangen, Genaueres kann jedoch in der Projektarbeit nachgelesen werden. Die Einstellungen des Winkels Yaw, Pitch und der z-Achse der Kapillare wurden mittels Gadolinium-Messungen überprüft, da dieses Element auf der Probe räumlich weitaus weniger begrenzt ist als der dünne Kupferdraht, der während Bewegungen der Kapillare entlang der y-Achse leicht verfehlt werden kann.

Die Achsen werden für ein besseres Verständnis in der nächsten Abbildung bildlich erfasst.

Abb. 19: Bewegungsmöglichkeiten der ersten Kapillare [13]

Bei der Auswertung der Messungen zeigte sich, dass der Winkel Yaw ein relativ breites Plateau aufweist, an dem die Intensitäten keiner großen Veränderung unterliegen. Die Ergebnisse sind unter **Abb.20** dargestellt.

Abb. 20: Messergebnisse für Justierung des Winkels Yaw der Kapillare

Die Messungen für die Einstellung des Winkels Pitch der ersten Kapillare zeigten

TU Bibliotheks Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfügbar. WIEN Your knowledge hub The approved original version of this thesis is available in print at TU Wien Bibliothek.

42

hingegen ein deutliches Maximum. Angefahren wurde die Position, für welche die höchste Intensität gemessen wurde. **Abb.21** zeigt die Messergebnisse.

Abb. 21: Messergebnisse für Justierung des Winkels Pitch der Kapillare

Auch bei der Bestimmung der y-Position der Kapillare wurde ein breites Plateau festgestellt. Das wird in der nachfolgenden Abbildung verdeutlicht.

Abb. 22: Messergebnisse für Justierung der y-Achse der Kapillare

Die z-Richtung der Kapillare wurde optisch über das Leuchten des Gadolinium-Schirm festgelegt. Je heller das Licht, desto mehr Strahlung durchquert die Kapillare. Die richtige Position der Kapillare in ihre x-Richtung zu finden, stellte sich als deutlich schwieriger heraus. Bei der Vermessung des Kupferdrahtes wurde eine möglichst schmale und hohe Gaußkurve erhofft. Je schmaler diese ist, desto kleiner ist die Fokusgröße der Kapillare, die über die Halbwertsbreite der Gaußkurve bestimmt wird. Die Höhe dieser Kurve stellt die höchste gemessene Intensität dar. Die Ergebnisse der durchgeführten Messungen zeigten jedoch entweder eine relativ symmetrische Gaußkurve mit niedrigerer Intensität, oder aber eine nicht symmetrische Gaußkurve mit hoher Intensität. Es musste also ein Kompromiss zwischen Intensität, Halbwertsbreite und Symmetrie gefunden werden. Weiters wurde sowohl das Mikroskop, als auch der Detektor immer wieder umgestellt, um schlussendlich optimale Messergebnisse zu erhalten.

Das Ergebnis einer Messung, bei der die x-Position der ersten Kapillare fix gewählt wurde, wird in **Abb.23** dargestellt. Entlang der x-Achse wird die Position der Probe entlang ihrer z-Achse (samplez) angegeben. Durch diese Bewegung wird das Abrastern des Kupferdrahtes erreicht. Die y-Achse der Grafik zeichnet die gemessenen Counts in einer Sekunde Messzeit pro Punkt auf. Es sind die tatsächlichen Messpunkte zu sehen und der Gaußfit, der über diese gelegt wurde.

Abb. 23: Messung entlang der Achse samplez zur Bestimmung der Fokusgröße

Aus der Halbwertsbreite der Gaußkurve, die rund $16\mu m$ beträgt, lässt sich über folgende Formel die Fokusgröße bestimmen:

$$d_{\rm Strahl} = \sqrt{h^2 - d_{\rm Draht}^2} \tag{27}$$

 $d_{Strahl}...$ Strahldurchmesser h...Halbwertsbreite der Gaußkurve $d_{Draht}...$ Drahtdurchmesser (hier Kupfer)

Bei einem Drahtdurchmesser von $10-12\mu m$ erhält man aus dieser Messung eine Fokusgröße von ungefähr $11-13\mu m$. Dieses Ergebnis stimmt mit den Werten im

Datenblatt, das dem Anhang entnommen werden kann, gut überein. Molybdän-K_{α}-Strahlung beträgt circa 17,5keV, sodass eine Fokusgröße von 15 μm erreicht werden kann. Die erreichte Symmetrie war nicht optimal, jedoch ausreichend. Bei der Messung des Kupferdrahtes erhielt man rund 1000*cps*.

Zusätzlich wird eine in diesem Zusammenhang erstellte Map vorgestellt. Hierfür wurde ein zwei-dimensionaler Flächen-Scan über den Kupferdraht entlang der Achsen "sampley" und "samplez" mit justierter Anlage im nicht-konfokalen Aufbau durchgeführt. Das Ergebnis ist in **Abb.24** zu sehen.

Abb. 24: Oberflächen-Scan eines Kupferkreuzes

9.2. Justierung des monochromatischen, konfokalen Aufbaus

Die Justierung des monochromatischen, konfokalen Aufbaus erfolgte erst nachdem alle Messungen mit dem gewöhnlichen monochromatischen Aufbau abgeschlossen waren. Hierfür wurde lediglich der Detektor samt daran montierten Kollimator aus seiner Halterung im Aufbau montiert, der Kollimator abgebaut und die zweite Kapillare statt diesem an die Detektor-Snout befestigt. Der Detektor wurde wieder mit Schrauben aus Kunststoff an seinen ursprünglichen Platz montiert. Scheiben aus Plastik dienen als Isolierungsmaterial. Diese Maßnahme wurde während der zuvor durchgeführten Projektarbeit eingeführt, nachdem zuvor Probleme bei Messungen aufgetreten sind. Wenn der Detektor nicht isoliert und zusätzlich über ein Kabel mit der Elektronikbox elektrisch verbunden und dadurch auf ein Potential gebracht wird, kommt es zu Intensitätsverlusten und einer Verschiebung des Energiespektrums in niedrigere Channelbereiche während Messungen durchgeführt werden. Da der restliche Aufbau während des Wechsels von Kollimator auf sekundäre Kapillare nicht beeinflusst wurde, musste lediglich die zweite Kapillare justiert werden.

Für die Justierung der zweiten Kapillare wurden Flächen-Scans entlang der Achsen "detectorx" und "detectorz" durchgeführt, um den Bereich zu finden in dem Fluoreszenzstrahlung detektiert wird. Dieser Bereich ist im Vergleich zum Kollimator deutlich eingeschränkter. Als diese Position gefunden wurde, folgte die Fein-Justierung der zweiten Kapillare entlang ihrer y-Achse, das heißt von der Probe hin und weg. Die optimale Position wird erst dann erreicht, wenn - wie man dem Datenblatt im Anhang **B.1.** entnehmen kann - die Fokusgröße circa 25μ beträgt. Nun propagiert nämlich Kupfer-Fluoreszenzstrahlung, die von der Probe emittiert wird, durch die zweite Kapillare. Deren K_{α} -Linie hat eine Energie von etwa 8keV. Es wurden also unterschiedliche Positionen für "detectory" in einem Abstand von etwa $25\mu m$ angefahren, für welche wiederum Flächen-Scans durchgeführt wurden. Aus den Ergebnissen dieser Messungen wurden Maps erstellt, die es ermöglichten die Fokusgröße zu bestimmen.

Die Ergebnisse der Messung, welche die endgültige y-Position der 2. Kapillare definiert, werden in **Abb.25** vorgestellt. Mit dieser Map wurde gemäß Formel (27) auch hier die Fokusgröße berechnet. Die Punkte, die für diese Berechnung herangezogen wurden, sind in der Grafik grün (in Richtung detectorx) und lila (in Richtung detectorz) markiert. In z-Richtung wurden die Positionen 13050 μm (287 Counts in 5 Sekunden) und 13075 μm (308 Counts in 5 Sekunden) gewählt, was auf ein Δz von 25 μ führt. Δx beträgt 30 μm und wurde aus den Punkten bei 12205 μm (257 Counts in 5 Sekunden) und 12235 μm (294 Counts in 5 Sekunden) bestimmt. Das führt auf eine Fokusgröße von rund 22 μm in detectorz-Richtung und 27,5 μm in detectorx-Richtung.

Abb. 25: Kupferdraht-Map - confocal μ XRF

Mit voll justierter Anlage wurde ein 3D-Scan über den Kupferdraht durchgeführt. Dabei wurde eine Fläche von $120\mu m$ * $120\mu m$, also insgesamt $0.0144 mm^2$, in einer Ebene abgerastert. In $14\mu m$ -Schritten wurden drei Schichten untersucht. Das ergab 25215 Messpunkte zu einer Messzeit von jeweils 10 Sekunden, was auf eine Gesamtmesszeit von 2 Tagen, 22 Stunden und zweieinhalb Minuten führt.

Eine drei-dimensionale Darstellung des Scans folgt in Abb.26.

Abb. 26: 3D-Scan eines Kupferkreuzes

9.3. Nachweisgrenzen

Mit dem Ziel die monochromatische μ XRF Anlage im gewöhnlichen als auch im konfokalen Aufbau zu charakterisieren, wurden eine Reihe an Glasstandards und zwei Bronzestandards - **Probe_A** und **Probe_B** - mit bekannter Zusammensetzung und Konzentration gemessen und aus den erhaltenen Messergebnissen die Nachweisgrenzen berechnet. Die Konzentrationen aller gemessenen Proben werden in der nachfolgenden Tabelle angeführt und in Gewichtsprozent angegeben. Sie wurden aus den entsprechenden Datenblättern entnommen, die im Anhang **B.2.** zu finden sind.

	As_2O_3	CaO	CoO	$\mathrm{Cr}_2\mathrm{O}_3$	CuO	K_2O
NIST_621	0,03	10,71	_	-	_	-
NIST_1412	-	$4,\!53$	-	-	-	-
SV_R1	-	-	-	-	-	-
SV_V1	-	$1,\!93$	-	-	-	7,79
SV_W1	-	5,09	-	$0,\!30$	$0,\!51$	2,46
SV_X1	-	$4,\!99$	$0,\!16$	-	$1,\!60$	2,26
SV_Y1	-	$4,\!99$	-	$0,\!13$	$2,\!62$	2,16
SV_Z1	-	$2,\!25$	-	-	-	$5,\!27$
	NiO	Se	SiO_2	SrO	TiO_2	ZnO
NIST_621	-	-	71,13	-	-	-
NIST_1412	-	-	$42,\!38$	$4,\!55$	-	-
SV_R1	2,00	-	-	-	$35,\!50$	-
SV_V1	-	$0,\!19$	66,75	-	-	$9,\!67$
SV_W1	-	-	$71,\!29$	-	-	-
SV_X1	-	-	70,89	-	-	-
SV_Y1	-	-	$70,\!50$	-	-	-
SV_Z1	-	-	67,0	-	-	2,75

Tab. 1: Konzentrationen der Oxide in Gewichtsprozent

Da die Nachweisgrenzen für die jeweiligen Elemente und nicht für die Oxidverbindungen berechnet werden sollen, muss für die tatsächlich enthaltenen Konzentrationen eine Umrechnung durchgeführt werden. Diese erfolgt mittels folgender Formel:

$$c_{\text{Element}} = c_{\text{Oxid}} * \frac{a_{\text{Element}}}{x * a_{\text{Element}} + y * a_{\text{Sauerstoff}}}$$
(28)

 $c_{Element}$...Konzentration des jeweiligen Elements c_{Oxid} ...Konzentration des Oxids (siehe **Tab.1**) $a_{Element}$...atomare Masse des jeweiligen Elements $a_{Sauerstoff}$...atomare Masse von Sauerstoff x...Anzahl der Atome des jeweiligen Elements in der Verbindung y...Anzahl der Sauerstoffatome in der Verbindung

Die mit Hilfe dieser Formel berechneten Konzentrationen werden in **Tab.2** zusammengefasst. Sie werden in Gewichtsprozent angegeben. Hinzu kommen die Kupfer-Konzentrationen der zwei Bronzeproben. Diese wurden in **Tab.1** nicht angegeben, da in diesem Fall die Konzentration der entsprechenden Oxid-Verbindung nicht bekannt ist.

	As	Ca	Со	Cr	Cu	Κ
NIST_621	0,012	$7,\!65$	-	-	-	-
$NIST_{-}1412$	-	$3,\!24$	-	-	-	-
Probe_A	-	-	-	-	$90,\!00$	-
Probe_B	-	-	-	-	84,00	-
SV_R1	-	-	-	-	-	-
SV_V1	-	$1,\!38$	-	-	-	$3,\!08$
SV_W1	-	$3,\!64$	-	$0,\!10$	$0,\!41$	$0,\!97$
SV_X1	-	$3,\!57$	$0,\!13$	-	$1,\!28$	$0,\!89$
SV_Y1	-	$3,\!57$	-	$0,\!04$	2,09	$0,\!85$
SV_Z1	-	$1,\!61$	-	-	-	$2,\!08$
	Ni	Se	Si	Sr	Ti	Zn
NIST_621	-	-	33,25	-	-	-
$NIST_1412$	-	-	$19,\!81$	$3,\!85$	-	-
Probe_A	-	-	-	-	-	-
Probe_B	-	-	-	-	-	-
SV_R1	1,57	-	-	-	$21,\!28$	-
SV_V1	-	$0,\!19$	$31,\!20$	-	-	7,77
SV_W1	-	-	$33,\!32$	-	-	-
SV_X1	-	-	$33,\!19$	-	-	-

SV_Y1	-	-	$32,\!95$	-	-	-
SV_Z1	-	-	$31,\!32$	-	-	2,21

Tab. 2: Konzentrationen der Elemente in Gewichtsprozent

9.3.1. Monochromatische μ RFA

Um die Nachweisgrenzen zu bestimmen wurden zunächst alle Proben mit dem monochromatischen μ XRF Spektrometer in gewöhnlichem Aufbau gemessen. Die Messbedingungen waren für alle Proben bis auf SV_V1 , SV_Z1 , $NIST_621$ und $NIST_1412$ gleich. Es wurden jeweils 441 Punkte auf einer Fläche von $300\mu m$ * $300\mu m$ untersucht, was insgesamt $0.09mm^2$ ergibt. Die Messzeit betrug 150 Sekunden pro Messpunkt, sodass sich eine Gesamtmesszeit von circa 18 Stunden und 22 Minuten (entspricht 66150 Sekunden) pro Probe ergab.

Die Messbedingungen der verbleibenden Proben wurden anders gewählt, da sie ursprünglich für die Erstellung der Kalibrierkurven gemessen wurden. Auf Grund der begrenzten zur Verfügung stehenden Zeit wurde eine Fläche von $75\mu m * 75\mu m$, das heißt insgesamt rund $0,006mm^2$, untersucht. Auf dieser Fläche wurden in regelmäßigen Abständen 36 Punkte jeweils 150 Sekunden gemessen. Insgesamt betrug die Messzeit für jede Probe damit eineinhalb Stunden (entspricht 5400 Sekunden).

Zunächst werden die Messergebnisse dieser Proben angeführt. Hierfür wurden aus den einzelnen Spektren Summenspektren erstellt, die mit Hilfe von PyMca gefittet wurden. Die Abbildungen der gefitteten Spektren sollen ein Gefühl vermitteln inwieweit der Fit mit der Messung übereinstimmt und für welche Elemente sich eventuelle Berechnungsungenauigkeiten ergeben. Das gefittete Spektrum wird für jede einzelne Probe in linearer und logarithmischer Darstellung präsentiert. Unter diesen Spektren findet sich immer eine Tabelle mit den berechneten Fit-Flächen und Sigmas für die zugewiesenen Elemente. Diese werden in Counts angegeben.

Weiters werden die mit **FormXRF** (erstellt von D. Ingerle) erstellten Elemente-Maps abgebildet, die einen beachtlichen Beitrag in der Bewertung der Messergebnisse ausmachen. Auf Grund der geringen Zählraten ist es von Grund auf schwierig zu beurteilen in wie weit die untersuchten Proben tatsächlich homogen sind. Niedrige Intensitäten führen immer zu größeren Messschwankungen. Das wird für jede Probe verdeutlicht indem eine Tabelle angeführt wird, in der die prozentuellen Abweichungen des Mittelwertes der Intensitäten von den gemessenen Minimalbeziehungsweise Maximalwerten angegeben werden. Die Abweichungen sind bei Elementen mit hohen gemessenen Intensitäten deutlich geringer als für jene mit niedrigen Counts. Ein weiterer entscheidender Faktor für größere Abweichungen der Intensitäten in den einzelnen Messpunkten liegt in der geringen Fokusgröße von lediglich $15\mu m$. Auf Grund des sehr kleinen Rasters, der bei der Messung abgefahren wird, fallen selbst minimale Inhomogenitäten viel stärker ins Gewicht als bei größeren Fokusgrößen. Gerade hier gelingt es mit Hilfe der erstellten Maps ein klareres Bild über die tatsächliche Verteilung der gemessenen Elemente innerhalb des Messbereiches zu gewinnen. Sofern keine deutlichen Strukturen erkennbar sind, kann davon ausgegangen werden, dass die untersuchte Probe mit großer Wahrscheinlichkeit homogen ist.

Für einen besseren Lesefluss sind die detaillierten Messergebnisse im Anhang A.1. zu finden.

9.3.1.1. Auffälligkeiten bei der Auswertung der Messungen

Die Auswertung der Messergebnisse der zehn untersuchten Proben zeigte eindeutig, dass es sich bei $NIST_1412$ und SV_R1 um inhomogenen Proben handelt. Aus Gründen der besseren Übersicht werden die Maps dieser Standards auch hier nochmal angeführt.

Für $NIST_1412$ werden in diesem Sinne die Maps für die Elemente Barium, Blei und Strontium angeführt. Man kann erkennen, dass im linken oberen Eck ein Intensitätsmaximum gemessen wurde, das sich deutlich von den restlichen Messpunkten abhebt. Für diese Probe wurden auf Grund von begrenzter zur Verfügung stehender Zeit kürzere Messungen durchgeführt. Daher wurde eine kleinere Fläche abgerastert. Die Maps bestehen dementsprechend aus nur wenigen Messpunkten.

Die Probe SV_R1 ist ebenfalls eindeutig inhomogen. Das zeigen die Map für Nickel und Titan besonders gut. Diese sind den zwei nachfolgenden Abbildungen zu entnehmen.

 $\mu XRF)$

(*SV_R1*- $\mu XRF)$

Auch die Kupfer-Maps der Bronzestandards **Probe_A** und **Probe_B** zeigen Strukturen auf. Diese resultieren jedoch nicht aus der Inhomogenität der Proben sondern aus ihrer nur grob polierten Oberfläche. Die Rillen an der Probenoberfläche sind selbst mit freiem Auge gut erkennbar. Die zwei Maps werden in Abb.32 und Abb.33 dargestellt.

Abb. 33: Cu-Map $(Probe_B \mu$ XRF)

9.3.1.2. Nachweisgrenzen zusammengefasst

Aus den in Anhang A.1. und den dazugehörigen Unterkapiteln vorgestellten Messdaten wurden die Nachweisgrenzen für den gewöhnlichen, monochromatischen μ XRF-Aufbau berechnet. Dafür wurde Formel (25) beziehungsweise Formel (26) verwendet. In diese Formeln wurden die entsprechenden Konzentrationen aus Tab.2 eingesetzt, da das die tatsächlichen Konzentration des jeweiligen Elements und nicht jene des Oxids sind. Weiters müssen die Netto-Zählrate und die Hintergrund-Counts eingesetzt werden. Für das Ablesen dieser Werte aus den Summenspektren wurden die in der nachfolgenden Tabelle aufgelisteten ROIs (Region of Interest) definiert. Dabei ist zu beachten, dass die damit berechneten Nachweisgrenzen für überlappende Peaks nicht stimmen.

Element	Channel
Si	157-177
Κ	289-322
Ca	323-359
Ti	394-436
Cr	492-518
Со	607-669
Ni	660-707
Cu	694-764
Zn	762-821
As	930-989
Se	994-1058
Sr	1252-1329

Tab. 3: Channelbereiche

Die Ergebnisse dieser Berechnungen werden in **Tab.4** zusammengefasst. Die Nachweisgrenzen wurden zunächst für die Gesamtmesszeit berechnet. Da diese sich, wie bereits erwähnt, für vier von zehn Proben unterscheidet, findet man in einer Spalte Nachweisgrenzen für eine Gesamtmesszeit von 5400 Sekunden und in der nächsten für jene Proben, die 66150 Sekunden gemessen wurden. Erstere werden unter LD_{5400} , zweitere unter LD_{66150} aufgelistet. Beide Nachweisgrenzen wurden im nächsten Schritt auf 1000 Sekunden Messzeit normiert. Diese sind in der Spalte für LD_{1000} zu finden.

TU **Bibliothek**, Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfügbar. Vour knowledge hub Your knowledge hub

Probe Konzentration Nettozähl	Konzentration Nettozähl	Nettozähl ^[a4a]	lrate	Hintergrund	LD_{5400}	LD_{66150}	LD_{1000}	S [/+ /02]
[%]	[%] [ct	<u>Ct</u>	S	[cts]	[mdd]	[mdd]	[mdd]	[cts/t/%]
NIST 621 33,25 10	33,25 10	10	20	546	$23146,\!20$		53787	0,00561
NIST 1412 19,81 606	19,81 606	606		1239	34519, 84		80217	0,00566
SV_V1 31,2 103	31,2 103	103	1	525	20801,60		48339	0,00612
SV_W1 33,32 179	33,32 179	179	21	6437		4475, 13	36397	0,00813
SV_X1 33,19 182	33,19 182	182	20	6048		4249,97	34566	0,00830
SV_Y1 32,95 170	32,95 170	170	65	6573		4696, 26	38196	0,00783
SV_Z1 31,32 917	31,32 917	917		452	21784,26		50622	0,00542
SV_V1 3,08 205	3,08 205!	205!	54	1564	177,78		413	1,23581
SV_W1 0.97 1048	0,97 1048	1048	871	8279		25, 25	205	1,63438
SV_X1 0,89 9925	0,89 9922	9925	22	8109		24,23	197	1,68534
SV_Y1 0,85 1008	0,85 1008	1008	878	9639		24,82	202	1,79410
SV_Z1 2,08 1306	2,08 1300	130(31	782	133,60		310	1,16284
NIST 621 7,65 4288	7,65 4288	4288	87	1277	191,23		444	1,03817
NIST 1412 3,24 1642	3,24 1642	1642	6	2905	318,88		741	0,93901
SV_V1 1,38 1037	1,38 1037	1037	7	1425	150,60		350	1,39251
SV_W1 3,64 3340	3,64 334(334(176	11600		35,21	286	1,38744
SV_X1 3,57 3296	3,57 3296	3296	44	11840		35, 35	288	1,39588
SV_Y1 3,57 3327	3,57 3327	3327	45	12636		36,18	294	1,40901
SV_Z1 1,61 1238	1,61 1238	1238	7	833	112,54		262	1,42478
SV_R1 21,28 1945	21,28 1945	1945(019	38464		64, 37	524	1,38173
SV_W1 0,1 5951	0,1 5951	5951	4	31482		8,94	73	8,99683
SV_Y1 0,04 3916	0,04 3916	3916	35	22856		4,63	38	14,80159
SV_X1 0,13 267;	0,13 2678	2673	303	16034		1,85	15	31,08355
SV_R1 1,57 208	1,57 208	208	83435	30360		3,94	32	20,06090
Probe A 90 142	90 142	145	2364720	833576		17,32	141	23,91278
Probe B 84 12	84 12	12	1033965	717526		17,64	143	21,78202

55

TU Bibliotheks Die appr VIEN Vour knowledge hub The appr
Vour knowledge hub
TU Bibliot

1000 S	m] [cts/t/%]	71,41309	55,72847	54,77322	53,11101	72,70006	59,70806	357,94753	118,95419	
$6150 LD_1$	n] [ppr	6	17	21	24	27	18		ъ	(
LD_{66}	[ppn	1,13	2,13	2,59						
$ LD_{5400}$	[ppm]				10,42	11,82	7,68	0,53	2,01	1
Hintergrund	[cts]	31834	68200	97746	9930	23910	6810	1170	1853	101
Nettozählrate	[cts]	1936830	4718641	7572589	1032478	3050349	712556	23195	122047	101101
Konzentration	[%]	0,41	1,28	2,09	3,6	7,77	2,21	0,012	0,19) (
Probe		SV_W1	SV_X1	SVY1	NIST 1412	SVV1	SV_Z1	NIST 621	SVV1	
Element					Zn			As	Se	2

Tab. 4: Nachweisgrenzen - $\mu {\rm XRF}$

56

Man erhält also für jede Probe leicht unterschiedliche Ergebnisse für die Nachweisgrenzen. Die unterschiedlichen Werte liegen jedoch in der selben Größenordnung. Was besonders heraussticht sind die Nachweisgrenzen für Kupfer der Proben **Probe_A** und **Probe_B**. Hier liegen die Messergebnisse zwar in der gleichen Größenordnung, der Unterschied ist jedoch ausgesprochen groß für ein Element, das so gut detektiert wird. Die Vermutung liegt nahe, dass sich diese Differenzen aus der groben Probenoberfläche der beiden Proben ergeben. Wahrscheinlich sind die Rillen auf der Probenoberfläche tief genug um zu Messungenauigkeiten zu führen.

Die nächste Tabelle führt die errechneten Mittelwerte der Nachweisgrenzen und der Sensitivity an. Übersichtshalber wurden die Nachweisgrenzen der Elemente, die nur in einer Probe gemessen wurden und keine Berechnung des Mittelwertes erfordern, ebenfalls angeführt. Diese bleiben dementsprechend unverändert.

Element	LD_{1000_Mittel}	$S_{\rm Mittel}$	Element	LD_{1000_Mittel}	$\mathrm{S}_{\mathrm{Mittel}}$
	[ppm]	[cts/t/%]		[ppm]	[cts/t/%]
Si	48875	0,00672	Ni	32	20,06090
K	266	1,50250	Cu	66	45,52191
Ca	381	1,28383	Zn	23	$61,\!83971$
Ti	524	1,38173	As	1	357,94753
Cr	12	11,89921	Se	5	118,95419
Со	15	31,08355	Sr	142	153,81073

Tab. 5: Mittelwerte der Nachweisgrenzen und Sensitivitys - $\mu {\rm XRF}$

Die Berechnung der Nachweisgrenzen aus den Daten des Summenspektrums ist sinnvoll, da kleinere Inhomogenitäten in der Probe, sowie statistische Messungenauigkeiten, nicht so stark ins Gewicht fallen und diese einen guten Richtwert liefern. Damit können Nachweisgrenzen auch für Elemente bestimmt werden, die in Einzelspektren eine sehr niedrige Intensität aufweisen. Die Nachweisgrenzen für jeden einzelnen Messpunkt aus dem dazugehörigen Spektrum einzeln zu berechnen würde den Rahmen dieser Arbeit sprengen, es wurde jedoch versucht diese zumindest für einen Messpunkt mit minimaler Intensität, einen mit maximaler Intensität und einen, dessen Intensität in etwa dem berechneten Mittelwert entspricht, zu berechnen. Dabei traten zwei Probleme auf, welche die Aussagekraft dieser Berechnungen vermindern. Auf der einen Seite wurden die Punkte mit Hilfe der Maps gesucht, die aus den gefitteten Summenspektren erstellt wurden. Die Werte für die Counts von Nettozählrate und Hintergrund wurden jedoch aus den Rohdaten und ROIs entnommen. Der Fit, der mit Hilfe des Summenspektrum erstellt wurde, passt nicht zu jedem Einzelspektrum ideal. Das kann man an den bereits angeführten Abbildungen der Spektren erkennen. Die Einzelspektren und der Fit passen besonders für Elemente mit niedriger Intensität schlecht überein. Daher entspricht beispielsweise ein Punkt mit minimaler Intensität auf der Map nicht unbedingt auch im zugehörigen Einzelspektrum innerhalb der definierten ROI dem Minimum. Ein weiteres Problem ist, dass Formel (25) beziehungsweise Formel (26) kein Ergebnis liefern, wenn im Spektrum gar kein Hintergrund vorhanden ist. Der Hintergrund ist jedoch in diesem Messaufbau allgemein sehr gering und in manchen Einzelspektren für die definierten ROIs sogar gleich 0. Diese Einzelspektren sind für die Berechnung der Nachweisgrenzen ungeeignet. Daher wurden Messpunkte ohne gemessenen Hintergrund für die Berechnung nicht gewählt, selbst wenn diesem Punkt laut Map ein Minimum, Maximum oder ein passender Mittelwert zugeordnet war.

Die Ergebnisse werden in **Tab.6** aufgelistet. Man erkennt, dass die Werte auseinander gehen können, aber auch hier sind sie größtenteils in der selben Größenordnung.

TU **Bibliothek**, Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfügbar. Vour knowledge hub Your knowledge hub

Element	Probe	Wert	Konzentration	Nettozählrate	Hintergrund	LD_{150}	LD_{1000}	S
			[%]	[cts]	[cts]	[ppm]	[ppm]	[cts/t/%]
Si	NIST 621	Max	33,25	45	11	73519	28474	0,0090
		Mittel	33,25	28	11	118155	45761	0,0056
		Min	33,25	31	11	106720	41333	0,0062
	NIST 1412	Max	19,81	43	21	63335	24530	0,0145
		Mittel	19,81	34	21	80101	31023	0,0114
		Min	19,81	9	42	641917	248614	0,0020
	SVV1	Max	31,2	41	11	75716	29325	0,0088
		Mittel	31,2	18	21	238294	92291	0,0038
		Min	31,2	9	23	748150	289757	0,0013
	SVW1	Max	33,32	46	32	122926	47609	0,0092
		Mittel	33, 32	30	21	152691	59137	0,0060
		Min	33, 32	40	11	82882	32100	0,0080
	SV_X1	Max	33,19	44	21	103702	40163	0,0088
		Mittel	33,19	48	11	68799	26646	0,0096
		Min	33,19	27	21	168995	65452	0,0054
	SVY1	Max	32,95	36	42	177950	68920	0,0073
		Mittel	32,95	55	1	17973	6961	0,0111
		Min	32,95	32	11	102453	39680	0,0065
	SV_Z1	Max	31, 32	17	21	253282	98096	0,0036
		Mittel	31, 32	6	32	590576	228729	0,0019
		Min	31, 32	21	11	148395	57473	0,0045
K	SVV1	Max	3,08	609	34	885	343	1,3182
		Mittel	3,08	567	34	950	368	1,2273
		Min	3,08	518	51	1274	493	1,1212
	SVW1	Max	0,97	264	51	787	305	1,8144
		Mittel	0,97	221	51	940	364	1,5189

$ $ LD $_{1000}$ S	[ppm] $ $ [cts/t/%	359 1,2577	236 1,9101	274 1,6479	233 1,3708	146 2,1882	269 1,6784	318 1,4196	271 1,1795	266 1,2019	709 0,9006	647 1,1547	464 1,0161	773 0,8619	421 1,1193	797 0,9527	649 0,8930	210 1,6087	435 1,3333	515 1,1256	378 1,5348	338 $1,3919$		373 1,2619	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c }\hline 373 & 1,2619 \\\hline 310 & 1,5182 \\\hline 242 & 1,3950 \\\hline \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	373 1,2619 310 1,5182 242 1,3950 255 1,3240 250 1,3865
LD_{150}	[ppm]	927	611	708	602	377	695	821	669	686	1831	1670	1197	1996	1087	2057	1676	542	1122	1330	975	874		964	964 801	$\begin{array}{c} 964 \\ 801 \\ 625 \end{array}$	964 801 625 658	964 801 625 658	964 801 625 658 1007
Hintergrund	[cts]	34	34	34	17	17	34	34	17	17	68	93	37	74	37	96	56	19	56	56	56	37		37	37 37	37 37 19	$\frac{37}{37}$	37 37 19 19	$\frac{37}{37}$ 19 $\frac{19}{56}$
Nettozählrate	[cts]	183	255	220	183	279	214	181	368	375	281	1325	1166	989	544	463	434	333	276	233	838	760	Con S	003	009 813	009 813 747	009 813 747 709	009 813 747 709	009 813 747 709
Konzentration	[%]	76,0	0,89	0,89	0,89	0,85	0,85	0,85	2,08	2,08	2,08	7,65	7,65	7,65	3,24	3,24	3,24	1,38	1,38	1,38	3,64	3,64	3.64	FO.0	3,57	3,57 3,57 3,57	357 357 357	3,57 3,57 3,57 3,57	3.57 3.57 3.57 5.77 5.77
Wert		Min	Max	Mittel	Min		Max	Max Mittel	Max Mittel Min	Max Mittel Min	Mittel Min																		
Probe			SV_X1			SVY1			SV_Z1			NIST 621			NIST 1412			SVV1			SVW1				SV_X1	SV_X1	SV_X1	SV_X1	SV_X1
Element												Ca																	

TU **Bibliothek**, Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfügbar. Werknowledge hub The approved original version of this thesis is available in print at TU Wien Bibliothek.

60

TU **Bibliothek**, Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfügbar. Vour knowledge hub Your knowledge hub

Element	Probe	Wert	Konzentration	Nettozählrate	Hintergrund	LD_{150}	LD_{1000}	S
			[%]	[cts]	[cts]	[ppm]	[ppm]	$[\mathrm{cts/t}/\%]$
		Mittel	3,57	765	19	610	236	1,4286
		Min	3,57	696	37	936	363	1,2997
	SV_Z1	Max	1,61	397	19	530	205	1,6439
		Mittel	1,61	343	19	614	238	1,4203
		Min	1,61	308	19	684	265	1,2754
Ti	SV_R1	Max	21,28	5460	215	1714	664	1,7105
		Mittel	21,28	4390	86	1349	522	1,3753
		Min	21,28	3506	194	2536	982	1,0984
Cr	SVW1	Max	0,1	206	54	107	41	13,7333
		Mittel	0,1	124	81	218	84	8,2667
		Min	0,1	105	68	236	91	7,0000
	SVY1	Max	0,04	85	68	116	45	14,1667
		Mittel	0,04	70	68	141	55	11,6667
		Min	0,04	96	27	65	25	16,0000
Co	SV_X1	Max	0,13	354	32	62	24	18,1538
		Mittel	0,13	555	95	68	27	28,4615
		Min	0,13	541	63	57	22	27,7436
Ni	SV_R1	Max	1,57	12113	192	54	21	51,4352
		Mittel	1,57	4661	96	66	38	19,7919
		Min	1,57	1517	48	215	83	6,4416
Cu	Probe A	Max	90	329292	1740	342	132	24,3920
		Mittel	00	322381	2059	380	147	23,8801
		Min	00	314691	2201	403	156	23,3104
	Probe B	Max	84	283605	1917	389	151	22,5083
		Mittel	84	276185	1598	365	141	21,9194

S	$[\mathrm{cts/t}/\%]$	20,9732	72,7480	71,4634	70,3089	57,9010	55,6406	54,5104	55,8724	54,7687	53,9553	59,0907	52,8852	50,6889	73,2021	72,4873	72,2686	60,5158	59,6833	58,7783	381,6667	340,5556	346,6667	120,6667	120,3860	114,9123
LD_{1000}	[ppm]	169	7	10	5	13	18	13	23	18	21	25	28	28	29	32	23	20	20	19	1	2	1	9	4	r0
LD_{150}	[ppm]	436	18	26	13	32	48	34	58	45	55	64	72	72	75	81	61	51	52	49	3	5	3	16	10	14
Hintergrund	[cts]	2095	44	88	22	88	176	88	264	154	220	360	360	330	750	870	480	240	240	210	30	09	30	95	33	65
Nettozählrate	[cts]	264262	4474	4395	4324	11117	10683	10466	17516	17170	16915	31909	28558	27372	85317	84484	84229	20061	19785	19485	687	613	624	3439	3431	3275
Konzentration	[%]	84	0,41	0,41	0,41	1,28	1,28	1,28	2,09	2,09	2,09	3,6	3,6	3,6	7,77	7,77	7,77	2,21	2,21	2,21	0,012	0,012	0,012	0,19	0,19	0,19
Wert		Min	Max	Mittel	Min	Max	Mittel	Min	Max	Mittel	Min	Max	Mittel	Min	Max	Mittel	Min	Max	Mittel	Min	Max	Mittel	Min	Max	Mittel	Min
Probe			SV_W1			SV_X1			SVY1			NIST 1412			SVV1			SV_Z1			NIST 621			SVV1		
Element												Zn									As			Se		

TU **Bibliothek**, Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfügbar. Werknowledge hub The approved original version of this thesis is available in print at TU Wien Bibliothek.

62

TU **Bibliothek**, Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfügbar. Vour knowledge hub Your knowledge hub

Element	Probe	Wert	Konzentration	Nettozählrate	Hintergrund	LD_{150}	LD_{1000}	S L
			[%0]	[cts]	[cts]	[ppm]	[ppm]	$[\operatorname{cts}/t/\%]$
Sr	NIST 1412	Max	3,85	91987	1131	42	16	159,2848
		Mittel	3,85	88989	1404	49	19	154,0935
		Min	3,85	86704	1599	53	21	150, 1368

Tab. 6: Nachweisgrenzen für Messpunkte mit maximaler, mittlerer und minimaler Intensität - μXRF
Auch für diese Ergebnisse wurden zum Zwecke der besseren Übersicht die daraus resultierenden Mittelwerte erstellt. Sie sind in der nachfolgenden Tabelle zu finden. Die erste Spalte listet das jeweilige Elemente auf, die zweite die dazugehörige Probe, die dritte Spalte zeigt den Mittelwert aus den Nachweisgrenzen LD_{1000} der Messpunkte mit maximaler, mittlerer und minimaler Intensität an, die vierte die dazugehörige Sensitivity. Fünfte und sechste Spalte zeigen zusätzlich den Mittelwert für das Element insgesamt an, der sich aus den Mittelwerten der Nachweisgrenzen beziehungsweise Sensitivitys in Spalte drei beziehungsweise vier ergibt.

Element	Probe	LD _{1000_Mittel}	S _{Mittel}	$LD_{1000_total_Mittel}$	S _{total_Mittel}
		[ppm]	[cts/t/%]	[ppm]	[cts/t/%]
Si	NIST 621	38522	0,0070	76289	0,00689
	SV_V1	137124	0,0046		
	SV_W1	46282	0,0077		
	SV_X1	44087	0,0080		
	SV_Y1	38520	0,0083		
	SV_Z1	128099	0,0033		
К	SV_V1	401	1,2222	330	1,45033
	SV_W1	343	1,5304		
	SV_X1	248	1,6429		
	SV_Y1	244	1,7621		
	SV_Z1	415	1,0940		
Ca	NIST 621	628	1,0109	405	1,28788
	NIST 1412	622	0,9883		
	SV_V1	387	1,3559		
	SV_W1	363	1,3962		
	SV_X1	269	1,4124		
	SV_Y1	330	1,4049		
	SV_Z1	236	1,4465		
Ti	SV_R1	723	1,3947	723	1,3947
Cr	SV_W1	72	9,6667	72	9,66670
	SV_Y1	42	13,9444		
Со	SV_X1	24	24,7863	24	24,7863
Ni	SV_R1	48	25,8896	48	25,8896
Cu	Probe A	145	23,8608	68	45,61016
	Probe B	154	21,8003		
	SV_W1	7	71,5068		
	SV_X1	15	56,0174		
	SV_Y1	20	54,8655		
Zn	NIST 1412	27	54,2216	25	62,17779

TU **Bibliothek**, Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfügbar. WIEN Vour knowledge hub The approved original version of this thesis is available in print at TU Wien Bibliothek.

	SV_V1	28	72,6527		
	SV_Z1	20	$59,\!6591$		
As	NIST 621	1	356,2963	1	356,2963
Se	SV_V1	5	118,6550	5	118,655
Sr	NIST 1412	19	154,5051	19	154,5051

Tab. 7: Mittelwerte der Nachweisgrenzen und Sensitivity, die sich für die Messpunkte maximaler, mittlerer und minimaler Intensität ergeben - μXRF

Zum Schluss dieses Kapitels wird eine letzte Tabelle angegeben, welche die bisher vorgestellten Ergebnisse der Nachweisgrenzen gesammelt wiedergibt. Die dritte bis fünfte Spalte geben die Nachweisgrenzen für die Messpunkte mit maximaler, mittlerer und minimaler Intensität wieder. Die sechste Spalte zeigt den aus diesen Werten errechneten Mittelwert an und die letzte Spalte führt nochmal die auf 1000 Sekunden Messzeit normierten Nachweisgrenzen an, die sich aus dem Summenspektrum ergeben.

ļ		f F	ţ	ţ	f	4
Element	Probe	$LD_{1000-Max}$	LD_{1000} Mittel	$LD_{1000-Min}$	$LD_{1000_Mittelwert}$	${ m LD}_{1000}$ -Summenspektrum
		[ppm]	[ppm]	[ppm]	[ppm]	[ppm]
Si	NIST 621	28474	45761	41333	38522	53787
	NIST 1412	24530	31023	248614	101389	80217
	SVV1	29325	92291	289757	137124	48339
	SV_W1	47609	59137	32100	46282	36397
	SV_X1	40163	26646	65452	44087	34566
	$SV_{-}Y1$	68920	6961	39680	38520	38196
	SV_Z1	98096	228729	57473	128099	50622
К	SV_V1	343	368	493	401	413
	SV_W1	305	364	359	343	205
	SV_X1	236	274	233	248	197
	SVY1	146	269	318	244	202
	SV_Z1	271	266	602	415	310
Ca	NIST 621	647	464	773	628	444
	NIST 1412	421	262	649	622	741
	SV_V1	210	435	515	387	350
	SV_W1	378	338	373	363	286
	SV_X1	310	242	255	269	288
	SVY1	390	236	363	330	294
	SV_Z1	205	238	265	236	262
Ti	SV_R1	664	522	982	723	524
Cr	SV_W1	41	84	91	72	73
	SVY1	45	55	25	42	38
Co	SV_X1	24	27	22	24	15
Ni	SV_R1	21	38	83	48	32
Cu	Probe A	132	147	156	145	141
	Probe B	151	141	169	154	143

Element	Probe	$\mathrm{LD}_{1000\text{-Max}}$	$\mathrm{LD}_{1000\mathrm{-Mittel}}$	$\mathrm{LD}_{1000\mathrm{-Min}}$	LD_{1000} -Mittelwert	LD ₁₀₀₀ -Summenspektrum
		[ppm]	[ppm]	[ppm]	[ppm]	[ppm]
	SVW1	2	10	5	2	6
	SV_X1	13	18	13	15	17
	SVY1	23	18	21	20	21
Zn	NIST 1412	25	28	28	27	24
	$\mathrm{SV}\mathrm{V1}$	29	32	23	28	27
	SV_Z1	20	20	19	20	18
As	NIST 621	1	2	1	1	1
Se	SVV1	6	4	5	5	വ
Sr	NIST 1412	16	19	21	19	18

Tab. 8: Zusammenfassung der berechneten Nachweisgrenzen - $\mu {\rm XRF}$

9.3.2. Monochromatische, konfokale μ RFA

Um einen Vergleich zwischen gewöhnlichem und konfokalem Aufbau des monochromatischen μ XRF Spektrometers aufstellen zu können, wurden alle Messungen im konfokalen Aufbau wiederholt und im nächsten Schritt - in analoger Weise wie bisher - auch hier die Nachweisgrenzen und Sensitivitys berechnet.

Im Unterschied zu den bisherigen Messungen, wurden die Messbedingungen für diesen Aufbau für alle Proben gleich gewählt. Wie bereits für sechs der zehn Proben im gewöhnlichen, monochromatischen Aufbau, wurden auch diesmal 441 Punkte auf einer Fläche von $300\mu m$ * $300\mu m$, also insgesamt $0.09mm^2$, mit einer Messzeit von 150 Sekunden pro Messpunkt gemessen. Daraus ergibt sich eine Gesamtmesszeit von 18 Stunden und 22 Minuten oder 66150 Sekunden pro Probe.

Um auch hier entsprechende Messergebnisse vorweisen zu können, wurden zunächst aus den Einzelspektren mittels XRF-Maps Summenspektren erstellt, die mit PyMca gefittet wurden. Aus diesem Fits konnten in weiterer Folge sowohl die Fit-Flächen und Sigmas der gefitteten Elemente angegeben als auch die Maps dieser Elemente erstellt werden. Die Messpunkte auf der Map werden jeder für sich farblich skaliert. Dabei wird der Punkt mit der minimalen Intensität am dunkelsten eingefärbt und jener mit der höchsten Zählrate erscheint am hellsten. Die Farbskalierung ist also immer nur für ein Element gültig und somit für jede Abbildung eigens erstellt.

Der konfokale, monochromatische Aufbau zeichnet sich durch einen kaum vorhandenen Hintergrund aus. Damit gehen jedoch auch sehr niedrige Zählraten einher, sodass sich anhand der Messergebnisse größtenteils nicht feststellen lässt, ob die Proben homogen sind oder nicht. Geringere Intensitäten führen dazu, dass statistische Messschwankungen stärker ins Gewicht fallen und der Fit, der über das Summenspektrum erstellt wurde, die Einzelspektren nicht sonderlich gut überlagert. Es wurde jedoch darauf verzichtet die Messzeiten zu erhöhen, um einen direkten Vergleich zwischen gewöhnlichen und konfokalem Aufbau zu erhalten.

Die Messergebnisse der untersuchten Proben werden in Anhang A.2. detailliert vorgestellt.

TU **Bibliothek** Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfügbar. WLEN vour knowledge hub The approved original version of this thesis is available in print at TU Wien Bibliothek.

9.3.2.1. Auffälligkeiten bei der Auswertung der Messungen

Auf den ersten Blick fällt auf, dass sich die erhaltenen Spektren im konfokalen Aufbau deutlich von jenen aus dem gewöhnlichen Aufbau unterscheiden. Die hier erhaltenen Spektren haben einen erheblich geringeren Hintergrund, sodass Elemente mit niedrigen Zählraten im Spektrum sichtbar werden. Beachtlich sind jedoch auch die allgemeinen Verluste in den gemessenen Intensitäten. So wurden beispielsweise für Calcium bei der Probe $NIST_621$ nur 53% der im gewöhnlichen Aufbau detektierten Counts gemessen.

Die Messungen bestätigen jedoch, dass die Standards $NIST_1412$ und SV_R1 nicht homogen sind.

Für $NIST_1412$ werden nun die Zink- und Blei-L₃-Maps vorgestellt:

Abb. 34: Zn-Map $(NIST_1412$ confocal μ XRF)

Abb. 35: Pb-L₃-Map ($NIST_1412$ confocal μ XRF)

Auch die Nickel- und Titan-Maps der Probe $\boldsymbol{SV_R1}$ zeichnen deutlich erkennbare Strukturen auf:

Abb. 37: Ti-Map (SV_R1 confocal μ XRF)

9.3.2.2. Nachweisgrenzen zusammengefasst

 $\mu XRF)$

Wie bereits für die Messungen im gewöhnlichen, monochromatischen Aufbau wurden auch für das konfokale, monochromatische Spektrometer aus den eben vorgestellten Messdaten die Nachweisgrenzen bestimmt. Dafür wurden wie gehabt Gleichung (25) beziehungsweise (26) und die Konzentrationen für das jeweilige Element aus **Tab.2** verwendet. Die ROIs für die Bestimmung der Netto-Zählrate und den Hintergrund wurden nicht verändert. Sie sind in **Tab.3** ersichtlich.

Die nachfolgende Tabelle fasst diese Berechnungen zusammen. Die Nachweisgrenzen wurden in erster Linie für die Gesamtmesszeit von 66150 Sekunden (LD_{66150}) mit Hilfe der Daten aus dem Summenspektrum berechnet und im nächsten Schritt auf 1000 Sekunden Messzeit (LD_{1000}) normiert. Beide Werte können **Tab.9** entnommen werden. Es folgt zusätzlich eine Spalte mit der Sensitivity.

Im Unterschied zum nicht-konfokalen Aufbau wurden hier keine Nachweisgrenzen für Silizium bestimmt, da dieses Element nicht detektiert wurde. Im konfokalen Aufbau wird erst Kalium mit sehr geringer Intensität gemessen.

F:lamant	Droha	Konzantration	Nattorählrata	Hintarornhd	L.D.66150	L'D1000	U
		[%]	[cts]	[cts]	[mqq]	[mdd]	[cts/t/%]
K	SV_V1	3.08	9693	1666	389	3165	0.04757
	SVW1	0,97	3249	662	253	2059	0,05063
	SV_X1	0,89	3555	1445	285	2322	0,06038
	$\mathrm{SV}\mathrm{Y1}$	0,85	3596	1020	226	1842	0,06395
	SV_Z1	2,08	6203	1088	332	2699	0,04508
Ca	NIST 621	7,65	22331	1610	412	3354	0,04413
	NIST 1412	3,24	8038	2146	560	4556	0,03750
	SVV1	1,38	4840	1388	319	2592	0,05302
	SVW1	3,64	8605	1258	450	3661	0,03574
	SV_X1	3,57	11886	1406	338	2748	0,05033
	SVY1	3,57	10695	1517	390	3172	0,04529
	SV_Z1	1,61	5246	1277	329	2676	0,04926
Ti	SV_R1	21,28	106564	3161	337	2739	0,07570
Cr	SVW1	0,1	1095	2700	142	1158	0,16553
	SVY1	0,04	555	2268	103	837	0,20975
Co	SV_X1	0,13	8708	662	12	94	1,01262
Ni	SV_R1	1,57	124723	2640	19	158	1,20093
Cu	Probe A	06	10491203	60315	63	514	1,76219
	Probe B	84	9152839	51369	62	508	1,64720
	SVW1	0,41	39446	923	6	77	1,45442
	SV_X1	1,28	99021	3373	23	183	1,16947
	SVY1	2,09	161851	2059	18	143	1,17068
Zn	NIST 1412	3,6	258262	3870	26	212	1,08450
	SVV1	7,77	862883	6840	22	182	1,67881
	SV_Z1	2,21	168595	1710	16	132	1,15325
As	NIST 621	0,012	2374	150	2	15	2.99068

Element	Probe	Konzentration	Nettozählrate	Hintergrund	LD66150	LD1000	\mathbf{S}
		[%]	[cts]	[cts]	[ppm]	[mdd]	$[\mathrm{cts/t}/\%]$
Se	SVV1	0,19	38223	1326	5	44	3,04117
Sr	NIST 1412	3,85	112931	2145	47	385	0,44343

Tab. 9: Nachweisgrenzen - confocal $\mu {\rm XRF}$

Auch diese Nachweisgrenzen unterscheiden sich innerhalb eines Elements leicht von einander. Selbst wenn die Differenzen in einigen Fällen größer wirken, so sind diese weiterhin größtenteils in der selben Größenordnung. Auffällig ist wieder, dass die zwei Bronzeproben deutlich höhere Nachweisgrenzen für Kupfer aufweisen, als die Glasstandards. Zurückzuführen ist dieser erhöhte Unterschied wahrscheinlich auf die grobe Probenoberfläche von **Probe_A** und **Probe_B**.

Es folgt eine Tabelle in der die Mittelwerte der Nachweisgrenzen und der Sensitivity aus allen Proben für ein Element aufgelistet werden. Sofern ein Element nur in einer Probe enthalten war und somit keine Mittelwertbildung erforderlich ist, werden die Werte für dieses Element übersichtshalber unverändert angeführt.

Element	LD_{1000_Mittel}	S _{Mittel}	Element	LD _{1000_Mittel}	$S_{\rm Mittel}$
	[ppm]	[cts/t/%]		[ppm]	[cts/t/%]
K	2417	0,05353	Cu	320	1,50832
Ca	3251	0,04504	Zn	175	1,30552
Ti	2739	0,07570	As	15	2,99068
Cr	998	0,18764	Se	44	$3,\!04117$
Co	94	1,01262	Sr	385	0,44343
Ni	158	1,01262			

Tab. 10: Mittelwerte der Nachweisgrenzen und Sensitivitys - confocal μ XRF

Auch für den konfokalen Aufbau wurde versucht die Nachweisgrenzen und die Sensitivity für Messpunkte maximaler, mittlerer und minimaler Intensität zu berechnen. Die Probleme, die sich dabei ergeben, bleiben unverändert. Hinzu kommt, dass der Hintergrund im konfokalen Aufbau praktisch nicht vorhanden ist. Das erlauben jedoch Formel (25) beziehungsweise Formel (26) nicht, da bei fehlendem Hintergrund die Nachweisgrenze automatisch gegen Null geht. Somit wurden Messpunkte, die gar keinen Hintergrund in der definierten ROI aufweisen, vermieden. Wie man in der nachfolgenden Tabelle, in der diese Berechnungen zusammengefasst vorzufinden sind, sehen kann, wurde für Kalium und Chrom in der Probe SV_W1 keine Stelle mit maximaler (oder annähernd maximaler) beziehungsweise mittlerer Intensität gefunden, die einen Hintergrund aufweist. Daher wurde diese Zeile frei gelassen um Falschaussagen zu vermeiden.

Tab.11 listet die Nachweisgrenzen und Sensitivitys für Messpunkte maximaler, mittlerer und minimaler Intensität auf, um darauf hinzuweisen, wie sehr diese sich

von Messpunkt zu Messpunkt unterscheiden können. Es ist zu erkennen, dass die errechneten Werte für die Nachweisgrenzen auch innerhalb eines Elementes und einer Probe deutlich variieren können. Das liegt daran, dass der konfokale Aufbau mit der zweiten Kapillare empfindlicher auf Tiefenveränderungen reagiert als der nicht-konfokale Aufbau. Es reicht, dass die Probe nur um einige wenige μm nicht perfekt in einer Ebene liegt, schon werden deutliche Intensitätsverluste in diesem verschobenen Bereich während der Messung erkennbar. Es wurde zwar versucht diese Verluste zu minimieren, indem die Probe während der Messung nicht nur in ihrer v- und z-Achse verschoben wurde (dient dazu die definierte Fläche auf der Probenoberfläche abzurastern), sondern auch entlang der x-Achse (entspricht einer Verschiebung in die Tiefe). Dafür wurden vor Beginn der Messung der Start-, End- und ein dritter Punkt, der die Größe der zu untersuchenden Probenoberfläche definiert, einzeln angefahren und dort mit Hilfe einer Tiefenmessung entlang der x-Achse der Probe das Intensitätsmaximum gesucht. So versuchte man eine auch nur leicht schiefe Probenhalterung oder eine ungerade Probenoberfläche, die sich beispielsweise durch einen Schnitt unter einem Winkel ergibt, zu korrigieren.

Nichts desto trotz war dieses Vorgehen teilweise sehr schwierig in der Umsetzung, da diese Tiefenmessungen nicht immer ein klar eindeutiges Intensitätsmaximum lieferten. Auch die größten Bemühungen konnten nicht verhindern, dass es zu diesen Intensitätsverlusten kommt, da die Messbedingungen nicht ideal sind. Die Probenhalterungen und Proben selbst können nicht beeinflusst werden.

Tab.11 fasst die errechneten Werte für Messpunkte maximaler, mittlerer und minimaler Intensität zusammen.

Element	Probe	Wert	Konzentration	Nettozählrate	Hintergrund	LD_{150}	LD_{1000}	S
			[%]	[cts]	[cts]	[ppm]	[ppm]	[cts/t/%]
К	SVV1	Max	7,79	36	1	6492	2514	0,0308
		Mittel	7,79	13	17	74121	28707	0,0111
		Min	7,79	റ	17	321190	124396	0,0026
	SVW1	Max	2,46	0	2	I	I	I
		Mittel	2,46	2	1	10543	4083	0,0190
		Min	2,46	2	1	36900	14291	0,0054
	SV_X1	Max	2,26	23	1	2948	1142	0,0678
		Mittel	2,26	10	1	6780	2626	0,0295
		Min	2,26	3	1	22600	8753	0,0088
	SVY1	Max	2,16	17	1	3812	1476	0,0525
		Mittel	2,16	12	1	5400	2091	0,0370
		Min	2,16	2	1	32400	12548	0,0062
	SV_Z1	Max	5,27	29	1	5452	2111	0,0367
		Mittel	5,27	13	1	12162	4710	0,0164
		Min	5,27	5	1	31620	12246	0,0063
Ca	NIST 621	Max	10,71	78	1	4119	1595	0,0486
		Mittel	10,71	51	1	6300	2440	0,0317
		Min	10,71	51	1	6300	2440	0,0317
	NIST 1412	Max	4,53	14	19	42312	16388	0,0206
		Mittel	4,53	3	19	197458	76475	0,0044
		Min	4,53	12	1	11325	4386	0,0177
	SVV1	Max	1,93	22	1	2632	1019	0,0760
		Mittel	1,93	10	1	5790	2242	0,0345
		Min	1,93	2	1	28950	11212	0,0069
	SVW1	Max	5,09	33	1	4627	1792	0,0432
		Mittel	5,09	21	1	7271	2816	0,0275

Element	Probe	Wert	Konzentration	Nettozählrate	Hintergrund	LD_{150}	LD_{1000}	S
			[%]	[cts]	[cts]	[mdd]	[mdd]	[cts/t/%]
		Min	5,09	6	1	16967	6571	0,0118
	SV_X1	Max	4,99	43	1	3481	1348	0,0574
		Mittel	4,99	138	27	5637	2183	0,1844
		Min	4,99	18	1	8317	3221	0,0240
	SVY1	Max	4,99	46	1	3254	1260	0,0615
		Mittel	4,99	26	1	5758	2230	0,0347
		Min	4,99	16	1	9356	3624	0,0214
	SV_Z1	Max	2,25	24	1	2813	1089	0,0711
		Mittel	2,25	14	1	4821	1867	0,0415
		Min	2,25	6	1	11250	4357	0,0178
Ti	SV_R1	Max	35,5	338	22	14779	5724	0,0635
		Mittel	35,5	240	1	4438	1719	0,0451
		Min	35,5	205	1	5195	2012	0,0385
Cr	SVW1	Max	0,3	19	1	474	183	0,4222
		Mittel	0,3	0	×	I	I	I
		Min	0,3	2	1	4500	1743	0,0444
	SVY1	Max	0,13	7	1	557	216	0,3590
		Mittel	0,13	×	1	488	189	0,4103
		Min	0,13	1	1	3900	1510	0,0513
Co	SV_X1	Max	0,16	26	1	185	72	1,0833
		Mittel	0,16	21	1	229	89	0,8750
		Min	0,16	10	1	480	186	0,4167
Ni	SV_R1	Max	2	874	1	69	27	2,9133
		Mittel	2	288	1	208	81	0,9600
		Min	2	73	1	822	318	0,2433

76

Element	Probe	Wert	Konzentration	Nettozählrate	Hintergrund	LD_{150}	LD_{1000}	S
			[%]	[cts]	[cts]	[mdd]	[mdd]	$[\mathrm{cts/t}/\%]$
Cu	Probe A	Max	06	24791	71	918	355	1,8364
		Mittel	90	24231	36	669	259	1,7949
		Min	90	22958	107	1217	471	1,7006
	Probe B	Max	84	22081	36	685	265	1,7525
		Mittel	84	20856	249	1907	738	1,6552
		Min	84	19042	142	1577	611	1,5113
	SVW1	Max	0,51	117	1	131	51	1,5294
		Mittel	0,51	96	1	159	62	1,2549
		Min	0,51	26	1	588	228	0,3399
	SV_X1	Max	1,6	263	1	183	71	1,0958
		Mittel	1,6	220	1	218	85	0,9167
		Min	1,6	187	1	257	66	0,7792
	SVY1	Max	2,62	399	1	197	76	1,0153
		Mittel	2,62	367	1	214	83	0,9338
		Min	2,62	360	1	218	85	0,9160
Zn	NIST 1412	Max	4,48	898	1	150	58	1,3363
		Mittel	4,48	583	30	1263	489	0,8676
		Min	$4,\!48$	286	30	2574	266	0,4256
	SVV1	Max	9,67	2016	30	788	305	1,3899
		Mittel	9,67	1919	30	828	321	1,3230
		Min	9,67	1921	1	151	58	1,3244
	SV_Z1	Max	2,75	445	1	185	72	1,0788
		Mittel	2,75	374	1	221	85	0,9067
		Min	2,75	337	1	245	95	0,8170
As	NIST 621	Max	0,03	16	1	56	22	3,5556
		Mittel	0,03	ъ С	1	180	20	1,1111

TU **Bibliothek**, Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfügbar. Vour knowledge hub Your knowledge hub

S	$[\mathrm{cts/t}/\%]$	0,2222	3, 3333	3,4386	2,7018	0,6799	0,3810	0,1392
LD_{1000}	[mdd]	349	23	23	29	114	203	556
LD_{150}	[ppm]	006	60	58	74	294	525	1437
Hintergrund	[cts]	1	1	1	1	1	1	1
Nettozählrate	[cts]	1	95	98	77	464	260	95
Konzentration	[%]	0,03	0,19	0,19	0,19	4,55	4,55	4,55
Wert		Min	Max	Mittel	Min	Max	Mittel	Min
Probe			SVV1			NIST 1412		
Element			\mathbf{Se}			Sr		

Tab. 11: Nachweisgrenzen für Messpunkte mit maximaler, mittlerer und minimaler Intensität - confocal μXRF

Die hier aufgelisteten Ergebnisse werden mit dem Ziel eine bessere Übersicht zu erhalten nochmal gemittelt und in der nachfolgenden Tabelle aufgelistet.

Die Spalten "Element" und "Probe" sind selbsterklärend. Unter LD_{1000_Mittel} findet man die Mittelwerte aus den Nachweisgrenzen LD_{1000} der Messpunkte maximaler, mittlerer und minimaler Intensität, die in **Tab.11** zu finden sind. Die vierte Spalte gibt analog dazu den Mittelwert der Sensitivity an. In der fünften und sechsten Spalte sind die Mittelwerte für das jeweilige Element insgesamt aufgelistet.

Element	Probe	LD_{1000_Mittel}	$\mathbf{S}_{\mathrm{Mittel}}$	$LD_{1000_total_Mittel}$	S_{total_Mittel}
		[ppm]	[cts/t/%]	[ppm]	[cts/t/%]
K	SV_V1	51872	0,0148	15392	0,02283
	SV_W1	9187	0,0122		
	SV_X1	4174	0,0354		
	SV_Y1	5372	0,0319		
	SV_Z1	6356	0,0198		
Ca	NIST 621	2158	0,0373	7169	0,04136
	NIST 1412	32416	0,0142		
	SV_V1	4825	0,0391		
	SV_W1	3727	0,0275		
	SV_X1	2251	0,0886		
	SV_Y1	2371	0,0392		
	SV_Z1	2438	0,0435		
Ti	SV_R1	3152	0,0490	1206	0,8361
Cr	SV_W1	963	0,2333	801	0,25342
	SV_Y1	638	0,2735		
Co	SV_X1	115	0,7917	115	0,7917
Ni	SV_R1	142	1,3722	142	1,3722
Cu	Probe A	362	1,7773	236	1,26879
	Probe B	538	$1,\!6397$		
	SV_W1	113	1,0414		
	SV_X1	85	0,9306		
	SV_Y1	81	0,9550		
Zn	NIST 1412	515	0,8765	276	1,05212
	SV_V1	228	$1,\!3457$		
	SV_Z1	84	0,9341		
As	NIST 621	147	1,6296	147	1,6296

Se	SV_V1	25	$3,\!1579$	25	3,1579
Sr	NIST 1412	291	0,4000	291	0,4000

Tab. 12: Mittelwerte der Nachweisgrenzen und Sensitivity, die sich für die Messpunkte maximaler, mittlerer und minimaler Intensität ergeben - confocal μXRF

Tab.13 stellt die letzte Tabelle in diesem Unterkapitel dar und listet die bisher vorgestellten Ergebnisse für die Nachweisgrenzen im konfokalen Aufbau gesammelt auf. Dabei werden in der dritten bis fünften Spalte ein weiteres Mal die Nachweisgrenzen für die Messpunkte maximaler, mittlerer und minimaler Intensität angeführt und in der sechsten findet man den Mittelwert aus diesen. Die letzte Spalte zeigt die auf 1000 Sekunden Messzeit normierten Nachweisgrenzen, die aus dem Summenspektrum bestimmt werden - das heißt LD₁₀₀₀.

TU **Bibliothek**, Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfügbar. Wiew Knowledgehub Your knowledgehub

																I		1								
LD_{1000} -Summenspektrum $[ppm]$	3165	2059	2322	1842	2699	3354	4556	2592	3661	2748	3172	2676	2739	1158	837	94	158	514	508	22	183	143	212	182	132	15
$[DD_{1000-Mittelwert}]$	51872	9187	4174	5372	6356	2158	32416	4825	3727	2251	2371	2438	3152	963	638	115	142	362	538	113	85	81	515	228	84	147
${ m LD}_{1000-Min}$ [ppm]	124396	14291	8753	12548	12246	2440	4386	11212	6571	3221	3624	4357	2012	1743	1510	186	318	471	611	228	66	85	266	58	95	349
$LD_{1000-Mittel}$ [ppm]	28707	4083	2626	2091	4710	2440	76475	2242	2816	2183	2230	1867	1719	/	189	89	81	259	738	62	85	83	489	321	85	20
${ m LD}_{1000-{ m Max}}$ [ppm]	2514	/	1142	1476	2111	1595	16388	1019	1792	1348	1260	1089	5724	183	216	72	27	355	265	51	71	76	58	305	72	22
Probe	SVV1	SVW1	SV_X1	SVY1	SV_Z1	NIST 621	NIST 1412	SV_V1	SVW1	SV_X1	SVY1	SV_Z1	SV_R1	SV_W1	SVY1	SV_X1	SV_R1	Probe A	Probe B	SVW1	SV_X1	SVY1	NIST 1412	$\mathrm{SV}\mathrm{V1}$	SV_Z1	NIST 621
Element	Κ					Ca							Ti	Cr		Co	Ni	Cu					Zn			\mathbf{As}

ktrum			
$LD_{1000-Summenspec}$	[ppm]	44	385
${ m LD}_{1000_Mittelwert}$	[mdd]	25	901
${ m LD}_{1000-{ m Min}}$	[mdd]	29	556
LD ₁₀₀₀ _Mittel	[ppm]	23	203
$LD_{1000-Max}$	[mdd]	23	114
Probe		SVV1	NIST 1419
Element		Se	S.

Tab. 13: Zusammenfassung der berechneten Nachweisgrenzen - confocal $\mu \rm XRF$

9.3.3. Ergänzung - Polychromatische μ RFA

Um Vergleichswerte für die Nachweisgrenzen des monochromatischen Spektrometers zu erhalten, wurden die Messungen der zehn Proben ebenfalls in der polychromatischen μ XRF Anlage des Atominstitus durchgeführt. Da sich das Mess-Equipment dieser Anlage unterscheidet, mussten die Messbedingungen verändert werden. Die Nachweisgrenzen wurden zwar weiterhin über das Summenspektrum mit einer Gesamtmesszeit von 66150 Sekunden bestimmt, da die Fokusgröße mit rund $50\mu m$ jedoch mehr als das dreifache der Fokusgröße der monochromatischen Anlage beträgt, musste die Anzahl der Messpunkte reduziert werden und die Messzeit pro Messpunkt erhöht. Es wurden auf der selben Fläche von $0,09mm^2$ lediglich 49 Messpunkte zu je 1350 Sekunden untersucht.

Um später, wie bereits für die beiden Aufbauarten des monochromatischen Spektrometers, auch die Nachweisgrenzen der Messpunkte mit maximaler, mittlerer und minimaler Intensität ohne jeglicher Zeitskalierung direkt vergleichbar zu machen, wurde genau die selbe Fläche mit 49 Messpunkten in regelmäßigen Abständen zu je 150 Sekunden gemessen.

Die Anlage wurde ebenfalls mit 50 keV, aber lediglich 0,03mA betrieben, da bei höherem angelegten Strom die Totzeit über 25% betrug. Nachdem alle Messungen abgeschlossen und die Nachweisgrenzen berechnet waren, wurde festgestellt, dass diese nicht mit Werten übereinstimmten, die bereits von S. Smolek veröffentlicht worden sind. Es deutet alles darauf hin, dass die Elektronik der Anlage Probleme hatte, was zu Fehlern in den Messergebnissen führte. Wesentlich ist weiters, dass S. Smolek in den Messungen für seine Diplomarbeit [10] beziehungsweise sein Paper [14] eine andere Röntgenröhre und einen anderen Detektor verwendete. Die Ergebnisse sind folglich leider nicht direkt vergleichbar.

Die Messergebnisse werden hier trotzdem angeführt. In Kapitel **9.3.4**, in dem alle Nachweisgrenzen aller Anlagen gesammelt vorgestellt werden, werden die Ergebnisse von S. Smolek [10][14] angeführt, da anhand dieser ein realistischer Vergleich zwischen den einzelnen Anlagen gezogen werden kann.

Die Ergebnisse der Messungen der zehn Standards an der polychromatischen μ XRF-Anlage folgen in Anhang **A.3.** Dabei werden die gefitteten Spektren in linearer und logarithmischer Darstellung lediglich für die Summenspektren mit 66150 Sekunden Gesamtmesszeit angeführt. Für die kürzeren Messungen mit 7350 Sekunden Messzeit, die ausschließlich dem Zweck dienen vergleichbare Nachweisgrenzen für die Punkte maximaler, mittlerer und minimaler Intensität zu bestimmen, wird darauf verzichtet. Hier werden nur die Fit-Flächen und Sigmas für das entsprechende Summenspektrum angegeben. Für die Messungen mit kürzerer Gesamtmesszeit wird der Fit verwendet, der für Messungen mit längerer Messzeit erstellt worden ist.

9.3.3.1. Auffälligkeiten bei der Auswertung der Messungen

Die Spektren, die mit diesem Spektrometer aufgenommen werden, unterscheiden sich vor allem durch den höheren Hintergrund, da hier zusätzlich zur charakteristischen Röntgenstrahlung mit dem gesamten Bremsspektrum angeregt wird. Auf Grund des Vakuums, in dem sich der Messaufbau während der Messung befindet, und des Detektors mit einem ultradünnen Polymerfenster ist es möglich leichte Elemente bis hin zu Neon zu detektieren. Diese Elemente lassen sich mit dem monochromatischen Spektrometer nicht nachweisen. Das liegt vor allem daran, dass die entstehende entsprechende Fluoreszenzstrahlung am Weg zum Detektor an Luftmolekülen absorbiert wird.

Auf Grund der größeren Fokusgröße von circa $50\mu m$ ist es diesmal nicht beziehungsweise nicht mehr so eindeutig möglich anhand der Maps festzustellen, ob die gescannten Oberflächen der untersuchten Proben Inhomogenitäten aufweisen. Am ehesten lässt sich die inhomogenen Probenoberfläche mit Hilfe der Titanund Zirkon-Maps von Probe SV_R1 zeigen. Diese sind in den nachfolgenden Abbildungen dargestellt. Die Bilder stellen jeweils die Messungen mit 1350 Sekundenmesszeit pro Messpunkt und jene mit 150 Sekunden Messzeit pro Messpunkt gegenüber.

Abb. 38: Ti-Maps (SV_R1 -poly μ XRF)

Abb. 39: Zr-Maps (SV_R1 -poly μ XRF)

9.3.3.2. Nachweisgrenzen zusammengefasst

Da sich beim Vergleich der berechneten Nachweisgrenzen mit den Resultaten, die S. Smolek an dieser Anlage bereits erzielt hat [10] [14], grobe Abweichungen gezeigt haben und daher die Vermutung nahe liegt, dass der Detektor nicht ordnungsgemäß funktioniert hat zum Zeitpunkt der Messdurchführungen, wird darauf verzichtet die Berechnungen der Nachweisgrenzen so detailliert vorzustellen, wie bei der monochromatischen Anlage. Die Ergebnisse sind nämlich nicht aussagekräftig, da der Strom auf 0,003mA reduziert werden musste, um die Totzeit unter 25% zu halten. Es wird daher nur eine Tabelle angeführt, welche die Nachweisgrenzen der Messpunkte maximaler, mittlerer und minimaler Intensität, den Mittelwert, der sich aus diesen Nachweisgrenzen ergibt, und die auf 1000 Sekunden Messzeit normierten Nachweisgrenzen, die aus dem Summenspektrum der langen Messung berechnet wurden (LD₁₀₀₀), beinhaltet. Die Werte können **Tab.14** entnommen werden.

Um trotzdem wenigstens einen kleineren Vergleich zwischen den Anlagen zu schaffen, werden die Nachweisgrenzen für die Proben **NIST_621** und zum Teil **NIST-_1412**, welche von S. Smolek in seiner Diplomarbeit [10] und in einem von ihm mitverfassten Paper [14] veröffentlicht worden sind, als Vergleichswerte angeführt. Die Ergebnisse werden zusammen mit den bereits vorgestellten Nachweisgrenzen für die monochromatische Anlage in Kapitel **9.3.4** aufgelistet.

D ₁₀₀₀ _Summenspektrum pm]	159	579	910	528	344	533	061	26	02	06	12	00	20	148	80	36	60	929	56	402	~	.0	35	36	362	337
ъ Г	3(30	50	5	2(2(30	66	47	46	4	90	<u></u>	Ξ	<u></u>	58	90	10	ц Ц	17	6	90		ŝ		<u> </u>
[ppm]	3197	3478	2957	2623	2823	2491	3435	644	504	551	443	669	941	1057	944	752	582	1659	618	1418	84	93	182	362	1384	1285
${ m LD}_{1000{ m -Min}}$ ${ m [ppm]}$	2886	4309	2539	2575	3083	2430	4342	744	625	575	338	469	802	921	1098	615	588	1758	626	1530	106	117	212	536	1323	1417
$[ppm] LD_{1000-Mittel}$	3344	2806	3529	2874	2646	2263	3286	646	429	349	572	966	934	1473	960	893	536	1747	850	1453	62	<u> 66</u>	284	317	1332	1284
$LD_{1000-Max}$ [ppm]	3361	3320	2804	2418	2741	2779	2678	542	458	728	419	571	1086	622	773	748	621	1472	379	1270	68	62	49	232	1498	1155
Probe	NIST 621	NIST 1412	SVV1	SV_W1	SV_X1	$SV_{-}Y1$	SV_Z1	SVV1	SVW1	SV_X1	SVY1	SV_Z1	NIST 621	NIST 1412	SV_V1	SVW1	SV_X1	$\mathrm{SV}\mathrm{Y1}$	SV_Z1	SV_R1	SVW1	SVY1	SV_X1	SV_R1	Probe A	Probe B
Element	Si							K					Ca							Ti	Cr		Co	Ni	Cu	

86

Element	Probe	$LD_{1000-Max}$	LD ₁₀₀₀ -Mittel	$\mathrm{LD}_{1000\mathrm{-Min}}$	$LD_{1000-Mittelwert}$	LD _{1000-Summenspektrum}
		[ppm]	[ppm]	[ppm]	[ppm]	[ppm]
	SV_W1	76	142	81	100	117
	SV_X1	136	171	192	166	244
	SVY1	473	169	240	294	176
Zn	NIST 1412	202	221	189	204	256
	SVV1	284	207	190	227	229
	SV_Z1	174	209	136	173	175
As	NIST 621	66	14	1034	371	48
Se	SV_V1	100	117	57	91	145
Sr	NIST 1412	452	399	548	466	425

Tab. 14: Zusammenfassung der berechneten Nachweisgrenzen - poly $\mu \rm XRF$

9.3.4. Gesammelte Ergebnisse der Nachweisgrenzen

Dieses Kapitel soll als Zusammenfassung und Überblick über die bereits vorgestellten Nachweisgrenzen dienen. Daher wird darauf verzichtet erneut alle Ergebnisse detailliert anzuführen. Zum Zwecke der besseren Übersicht werden in **Tab.15** die Nachweisgrenzen der einzelnen Elemente für das monochromatische Spektrometer im nicht-konfokalen und konfokalen Aufbau gemittelt über alle Proben angeführt.

	mono μRFA	mono, confocal
		μRFA
Element	LD_{1000_Mittel}	LD _{1000_Mittel}
	[ppm]	[ppm]
Si	48875	
K	266	2417
Ca	381	3251
Ti	524	2739
Cr	12	998
Co	15	94
Ni	32	158
Cu	66	320
Zn	23	175
As	1	15
Se	5	44
Sr	142	385

Tab. 15: Vergleich der gemittelten Nachweisgrenzen (monochromatische μ RFA)

Die Ergebnisse der Messungen, die im Rahmen dieser Masterarbeit an der polychromatischen Anlage des Atominstituts durchgeführt wurden, werden beim Gesamtvergleich zwischen den beiden Anlagen nicht angeführt, da sie auf Grund des geringen Stromversorgung von 0.003mA nicht aussagekräftig sind. Stattdessen werden die Werte für **NIST_621** aus der Diplomarbeit [10] und einem mitverfassten Paper [14] von S. Smolek ergänzt. Falls weitere Informationen benötigt werden, wird auf diese Arbeiten verwiesen. Sie werden im Quellenverzeichnis aufgelistet.

S. Smolek führt die Messungen an der polychromatischen Anlage im gewöhnlichen, nicht-konfokalen und im konfokalen Aufbau mit 50kV und 1mA durch. Die Anregungsstrahlung wird dabei von einer Röntgenröhre mit Molybdän-Anode (XTG5011A "Apogee") der Marke Oxford Instruments X-Ray Technology, Inc. erzeugt. [10][14]

Als Beispiel für einen direkten Vergleich des monochromatischen und des polychromatischen μ XRF Spektromteres werden die Nachweisgrenzen für Arsen angeführt, die aus den Messergebnissen der Probe **NIST_621** folgen. Um Fehler aufgrund von überlappenden Peaks zu vermeiden, wurde das Summenspektrum der Messung mit **AXIL** [16] gefittet. Aus diesem Fit folgen sowohl die Netto-Fit-Flächen als auch der dazugehörige Hintergrund. Mit diesen Werten erfolgte die Berechnung der Nachweisgrenzen analog wie bisher.

Tab.16 listet die einzelnen Nachweisgrenzen auf. Für Arsen sind die Nachweisgrenzen für das monochromatische Spektrometer ungefähr vier mal kleiner als jene für das polychromatische Spektrometer.

Probe	Ele-	mono μXRF	mono confocal	poly μXRF	poly confocal
	ment	[ppm]	$\mu XRF [ppm]$	[ppm]	$\mu XRF [ppm]$
NIST_621	As	1	20	4	77

Tab. 16: Gegenüberstellung der Nachweisgrenzen ($NIST_-621$, As)

9.4. Kalibrierkurven

9.4.0.1. Monochromatische μ RFA

Für die Erstellung der Kalibrierkurven wurden ursprünglich lediglich vier Glasstandards - SV_VI , SV_ZI , $NIST_621$ und $NIST_1412$ - im gewöhnlichen, nicht-konfokalen Aufbau gemessen. Die Matrizen der Proben waren sehr ähnlich, sodass man sich erhoffte eine Kalibrierkurve erstellen zu können. Diese sollte auch für die Kalibrierung einer ähnlichen Anlage dienen, die von Mitarbeitern und Mitarbeitern und Mitarbeiternnen des Atominstituts in Indien aufgebaut werden sollte.

Auf Grund der begrenzten Zeit, die für die Erstellung dieser Kurven zur Verfügung stand, unterscheidet sich - wie bereits erwähnt - die Messzeit dieser vier Glasstandards von jener der restlichen Proben. Dabei wurden lediglich 36 Punkte in regelmäßigen Abständen auf einer Fläche von $75\mu m$ * $75\mu m$, also insgesamt $0,00675mm^2$, jeweils 150 Sekunden lang untersucht. Für die Gesamtmesszeit ergeben sich damit eineinhalb Stunden pro Probe.

Zunächst wurden die Proben SV_V1 und SV_Z1 gemessen. Die Auswertung der Messergebnisse werden im Anhang A.1.6. und A.1.10. vorgestellt.

Die Kalibrierkurve sollte für Silizium und Calcium erstellt werden. Diese Elemente sind nämlich sowohl in den Proben SV_V1 und SV_Z1 enthalten, mittels welcher die Kalibrierkurve in erster Linie erstellt wird, sondern auch in den zwei weiteren Proben - $NIST_621$ und $NIST_1412$ - mit dessen Messergebnissen diese Kurve überprüft werden sollte. Das dritte Element, das in allen Proben enthalten ist, ist Aluminium. Seine Anregungsenergie beträgt jedoch 1,254keV, sodass es im Spektrum nicht mehr als definierter Peak auftaucht.

Die schon berechnete Nachweisgrenze für Calcium liegt bei rund 300*ppm*, für Silizium ist diese deutlich höher. Sie liegt bei circa 50000*ppm*, also zwei Größenordnungen darüber. Daher sind die Fit-Flächen, die man aus den oben angeführten Unterkapiteln entnehmen kann, für Silizium deutlich niedriger als die für Calcium, obwohl in den Proben mehr Silizium enthalten ist.

Zur Überprüfung der Kalibrierkurve wurden die Proben $NIST_621$ und $NIST_1412$ ebenfalls untersucht. Die Messergebnisse dieser Proben können Anhang A.1.1. und A.1.2. entnommen werden. Nun sollten ursprünglich mit Hilfe der ersten zwei Proben die Kalibrierkurven erstellt werden. Hierfür wurden auf der x-Achse die Konzentrationen in Gewichtsprozent für das jeweilige Element aufgetragen - in diesem Fall ein Mal für Calcium und ein Mal für Silizium - und entlang der y-Achse die gemessenen Intensitäten in Counts, die man aus den Tabellen, in denen die Fit-Flächen angegeben werden, entnehmen kann.

Da die in SV_V1 und SV_Z1 enthaltenen Gewichtsprozent an Calcium (1,38 und 1,61) und Silizium (31,2 und 31,32) so knapp aneinander liegen und bei den Messungen immer mit statistischen Fehlern zu rechnen ist, war es nicht möglich mit nur zwei Proben die Kalibrierkurven zu erstellen. Um brauchbare Ergebnisse zu erhalten, wurden für die Erstellung dieser Kurven zusätzlich die Messergebnisse der Proben SV_W1 , SV_X1 und SV_Y1 herangezogen, da die Matrix dieser Elemente jener von SV_V1 und SV_Z1 ähnelt. Die Messergebnisse dieser Proben sind ebenfalls im Anhang A.1. zu finden. Auch hier sind die enthaltenen Gewichtsprozent für Calcium und Silizium relativ ähnlich, dennoch führt eine größere Anzahl an gemessenen Proben insgesamt zu einem besseren Ergebnis.

Da die Messungen von SV_W1 , SV_X1 und SV_Y1 ursprünglich für die Berechnung der Nachweisgrenzen durchgeführt worden sind, unterscheidet sich ihre Messzeit und die Anzahl der Messpunkte von den Messbedingungen für SV_V1 , SV_Z1 , $NIST_621$ und $NIST_1412$. Um aus all diesen Messungen jeweils eine Kalibrierkurve für Calcium und Silizium erstellen zu können, musste die Messergebnisse von einer Messzeit von 66150 Sekunden auf 5400 Sekunden normiert werden. Die daraus berechneten Fit-Flächen und die Gewichtsprozent für das jeweilige Element werden noch ein Mal zur besseren Übersicht in der nachfolgenden Tabelle zusammengefasst. Dabei werden die Konzentrationen in Gewichtsprozent angegeben und die auf 5400 Sekunden Messzeit normierten Fit-Flächen in Counts.

Probe	Element	Konzen-	Fit-Fläche	Element	Konzen-	Fit-Fläche
		tration [%]	[cts]		tration [%]	[cts]
SV_V1	Ca	1,38	9281,7	Si	31,20	1205,3
SV_W1	Ca	3,64	30884,9	Si	33,32	1589,5
SV_X1	Ca	$3,\!57$	30593,5	Si	33,19	1594,5
SV_Y1	Ca	$3,\!57$	30793,5	Si	32,95	1525,5
SV_Z1	Ca	1,61	12645,0	Si	31,32	1001,6

Tab. 17: Konzentration und Fit-Fläche (Glasstandards) - μ XRF

Die Konzentrationen werden entlang der x-Achse aufgetragen, die Counts entlang der y-Achse. Als zusätzlicher Punkt wird der Nullpunkt eingetragen, da man sich bei einer Konzentration von 0% keine gemessene Intensität erwartet. Durch diese Punkte wird eine Regressionsgerade gelegt.

Die Ergebnisse werden in Abb.40 und Abb.41 gezeigt.

Abb. 40: Kalibrierkurve für Calcium - μ XRF

Abb. 41: Kalibrierkurve für Silizium - $\mu {\rm XRF}$

Man erkennt auf den ersten Blick, aber auch anhand des Bestimmtheitsmaßes, dass die Kalibrierkurve für Calcium besser zu den Messpunkten passt, als für Silizium. Würde man diese Kalibrierkurve nun mit den NIST-Standards überprüfen wollen, so würden sich die aus den gemessenen Intensitäten berechneten Konzentrationen in beiden Fällen deutlich von den Angaben auf dem Datenblatt unterscheiden. Die Berechnungen sind in der nächsten Tabelle zusammengefasst. Die Intensitäten werden dabei in Counts angegeben, die Konzentrationen in Gewichtsprozent.

Probe	Ele-	gemess. In-	berech. Kon-	tatsäch. Kon-	Abwei-
	ment	sität [cts]	zentration [cts]	zentration [%]	chung
NIST_621	Ca	49981,00	5,92	7,65	22,6%
	Si	1226,20	28,61	33,25	$13,\!9\%$
NIST_1412	Ca	17771,00	2,11	3,24	34,9%
	Si	$617,\!25$	14,40	19,81	$27,\!3\%$

Tab. 18: Vergleich zwischen berechneter Konzentration (laut erstellter Kalibrierkurve) und tatsächlicher Konzentration (laut **Tab.2**) für $NIST_621$ und $NIST_1412 - \mu$ XRF

Diese großen Diskrepanzen ergeben sich, da hier nicht mit fundamentalen Parametern gearbeitet wird. Diese berücksichtigen die Absorption der Röntgenfluoreszenz innerhalb der Probe. Die hier gezeigten Kalibrierkurven eignen sich nicht, um eine Kalibrierung durchzuführen. Um ohne die Berücksichtigung von fundamentalen Parametern eine sinnvolle Kalibrierkurve zu erstellen, ist es notwendig, dass alle für die Erstellung dieser Kurve vermessenen Proben eine fast identische Matrix besitzen. Die Proben, die hier gemessen wurden, erfüllen diese Bedingung nicht. Besonders **Nist_1412** unterscheidet sich in der Zusammensetzung stark von den anderen Proben.

Ergänzt man die Messpunkte um die Proben $NIST_621$ und $NIST_1412$, kommen folgende Eingabewerte hinzu:

Probe	Element	Konzen-	Fit-Fläche	Element	Konzen-	Fit-Fläche
		tration	[cts]		tration	[cts]
NIST_621	Ca	$7,\!65\%$	49981,00	Si	$33,\!25\%$	1226,20
$NIST_{-}1412$	Ca	$3,\!24\%$	17771,00	Si	$19,\!81\%$	617,25

Tab. 19: Zusätzliche Werte für die Erstellung der Kalibrierkurve - $\mu {\rm XRF}$

Die daraus erstellten Kalibrierkurven sind in Abb.42 und Abb.43 zu sehen.

Abb. 42: Kalibrierkurve für Calcium mit NIST-Proben - μ XRF

Abb. 43: Kalibrierkurve für Silizium mit NIST-Proben - μ XRF

Man erkennt anhand dieser Abbildungen, dass die durch die Punkte gelegte Trendlinie nicht unbedingt besser wird. Das ist nur für Silizium der Fall. Diese Kalibrierkurven eignen sich weiterhin nicht für die Durchführung einer Kalibrierung.

9.4.0.2. Monochromatische, konfokale μ RFA

Auch für den konfokalen Aufbau des monochromatischen μ XRF Spektrometers wurden die Kalibrierkurven erstellt. Da in diesem Aufbau Silizium sehr schlecht bis gar nicht detektiert werden kann, werden diese nur für Calcium erstellt. Für alle Proben wurde diesmal die gleiche Messzeit gewählt, sodass lediglich der Umrechnungsschritt für die Fit-Flächen weg fällt. Alle Messbedingungen sind in Kapitel **9.3.2** und die Auswertungen der Messdaten im Anhang **A.2.** zu finden. Zur besseren Übersicht sind in **Tab.20** alle Konzentrationen und Fit-Flächen noch einmal aufgelistet.

Probe	Element	Konzen-	Fit-Fläche
		tration [%]	[cts]
SV_V1	Ca	1,38	4253,3
SV_W1	Ca	3,64	10293,0
SV_X1	Ca	3,57	14089,0
SV_Y1	Ca	$3,\!57$	12865,0
SV_Z1	Ca	1,61	5560,1
NIST_621	Ca	7,65	26653,0
NIST_1412	Ca	3,24	9002,7

Tab. 20: Konzentration und Fit-Fläche - confocal μXRF

Zunächst wird die Kalibrierkurve ohne die NIST-Standards angeführt. Diese ist der nachfolgenden Abbildung zu entnehmen.

Abb. 44: Kalibrierkurve für Calcium - confocal $\mu \rm XRF$

Probe	Ele-	gemess. In-	berech. Kon-	tatsäch. Kon-	Abwei-
	ment	sität [cts]	zentration [cts]	zentration [%]	chung
NIST_621	Ca	26653,00	7,76	7,65	1,4%
NIST_1412	Ca	9002,70	2,62	3,24	30,2%

Tab. 21: Vergleich zwischen berechneter Konzentration (laut erstellter Kalibrierkurve) und tatsächlicher Konzentration (laut **Tab.2**) für $NIST_621$ und $NIST_1412$ - confocal μ XRF

Man erkennt anhand des Bestimmtheitsmaßes, dass die Trendlinie selbst ohne den NIST-Standards die Punkte ziemlich gut trifft. Trotzdem ergibt sich für die Konzentration von **NIST_1412** mit dieser Kalibrierkurve eine Konzentration von 2,62 Gewichtsprozent, die sich um 30,2% von der tatsächlichen Calcium-Konzentration in der Probe unterscheidet. Der errechnete Konzentrationsgehalt für **NIST_621** passt hingegen ziemlich gut, er unterscheidet sich um lediglich 1,4% vom tatsächlichen Wert. Das liegt daran, dass der Standard **NIST_621** eine viel ähnlichere Matrix zu den Proben, aus deren Messergebnissen die Kalibrierkurve erstellt worden ist, aufweist, als der andere NIST-Standard.

Ergänzt man die Werte für die Erstellung der Kalibrierkurve um die zwei NIST-Standards, erhält man folgendes Ergebnis:

Abb. 45: Kalibrierkurve für Calcium mit NIST-Proben - confocal μ XRF

Hier erhält man für die Trendlinie ein Bestimmtheitsmaß von 95,9%. Das ist ein ziemlich hoher Wert, wenn man bedenkt, dass hier ohne fundamentale Parameter gearbeitet wurde.

9.4.0.3. Ergänzung - Panalytical Epsilon 5

An einer anderen Röntgenfluoreszenz-Anlage des Atominstituts - der Panalytical Epsilon 5 - ist es möglich, die Kalibrierkurven mit und ohne der Berücksichtigung der fundamentalen Parameter zu erstellen. Für die Erstellung dieser Kalibrierkurven wurden mehr Standards untersucht, sodass auch mehr Punkte in den Graphen eingetragen wurden. Um die entsprechende Probe zu finden, reicht es auf der x-Achse die zugehörigen Konzentration zu suchen. Zunächst werden die Kalibrierkurven ohne Berücksichtigung der fundamentalen Parameter dargestellt:

Abb. 46: Kalibrierkurve für Calcium ohne fundamentale Parameter - Panalytical Epsilon 5

Abb. 47: Kalibrierkurve für Silizium ohne fundamentale Parameter - Panalytical Epsilon 5

Wie man erkennen kann, liegen die einzelnen Punkte auch hier in einem deutlichen Abstand von der Regressionsgeraden entfernt. Die Ergebnisse beider Anlagen sind durchaus miteinander vergleichbar. Für Calcium erhält man für das monochromatische μ XRF Spektrometer für die Kalibrierkurven mit den NIST-Proben ein Bestimmtheitsmaß von 88,8%, für den nicht-konfokalen Aufbau 95,9% und an der Panalytical Epsilon 5 96,6% ohne die Berücksichtigung der fundamentalen Parameter. Für Silizium lässt sich der hier erhaltene Wert von 91% für das Bestimmtheitsmaß der Regressionsgeraden ohne fundamentale Parameter lediglich mit Bestimmtheitsmaß der Kalibrierkurven für den nicht-konfokalen Aufbau vergleichen. Dieses ist mit 64,2% deutlich schlechter.

Werden die fundamentalen Parameter berücksichtigt, so erhält man schönere Ergebnisse. Die Punkte liegen näher an der Regressionsgeraden und man erhält ein besseres Bestimmtheitsmaß (rund 99,5% für Calcium und 92,6% für Silizium). Die entsprechenden Kalibrierkurven werden in **Abb.48** und **Abb.49** dargestellt.

Abb. 48: Kalibrierkurve für Calcium mit fundamentalen Parametern - Panalytical Epsilon 5

Abb. 49: Kalibrierkurve für Silizium mit fundamentalen Parametern - Panalytical Epsilon 5

98

10. Weitere Messungen

Dieses Kapitel beinhaltet die Dokumentation weiterer Messungen, die mit der monochromatischen μ -XRF Anlage des Atominstitut durchgeführt worden sind. Dieses Kapitel wird in zwei zweitere untergliedert. Darin werden zunächst jene Messungen vorgestellt, die im gewöhnlichen, monochromatischen Aufbau mit Kollimator vor dem Detektor durchgeführt worden sind, und später jene mit zweiter Kapillare an Stelle des Kollimators, was einen konfokalen Aufbau auszeichnet.

10.1. Monochromatische μ -RFA

Dieses Unterkapitel befasst sich, wie der Name andeutet, mit den zweidimensionalen Oberflächenmessungen im nicht-konfokalen Aufbau. Auf diese Art wurden ein Gallenstein, ein Natriumiodid-Kristall und ein dünner Knochenschnitt untersucht. Letzterer wurde ebenfalls mit dem polychromatischen μ XRF Spektrometer des Wiener Atominstituts untersucht, um einen Vergleich der monochromatischen Anlage mit diesem zu ermöglichen.

10.1.1. Gallenstein

Die Untersuchung eines Gallenstein stellte die erste große Messung mit komplett justierten Aufbau dar. Die selbe Probe wurde bereits in anderen Anlagen des Atominstituts untersucht, daher wurden in der Zusammensetzung die Elemente Gadolinium, Kupfer, Calcium, Barium und Ytterbium erwartet. Eine erste kurze Stichprobenmessungen an einem beliebigen Bereich der Probe zeigte, dass auch die Elemente Bismut und Brom in dem Gallenstein enthalten sind. Um diese Peaks im Spektrum sowohl während dem Messvorgang als auch bei der späteren Auswertung des Summenspektrums leichter sichtbar zu machen, wurden folgende ROIS (Regions of Interest) definiert:
Energie-Channel	Linie	Element
1057 - 1114	K-Alpha	Brom
966 - 1010	L-Alpha	Bismut
705 - 751	K-Alpha	Kupfer
661 - 697	L-Alpha	Ytterbium
520 - 583	L-Alpha	Gadolinium
389 - 427	L-Alpha	Barium
325 - 354	L-Alpha	Calcium

Tab. 22: ROIs für Gallensteinmessung

Mit dem Ziel diese Messung mit den bereits an anderen Anlagen des Atominstituts durchgeführten Messungen zu vergleichen, wurde nach einem bereits untersuchten Bereich der Probe gesucht. Dabei ergaben sich zwei Schwierigkeiten. Auf der einen Seite war es nicht leicht genau diese Probenstelle zu finden, da das Mikroskop einen sehr kleinen Bereich zeigt und es keine einfache Aufgabe ist, dabei den Überblick und die Orientierung zu behalten. Auf der anderen Seite war der auf den ersten Blick kleine Bereich für eine Anlage, die auf $15\mu m$ genau misst, doch relativ groß. Der gesamte Scanbereich umfasste $1140\mu m * 1135\mu m$, das heißt eine $1,2882mm^2$ große Fläche. Obwohl an jedem Punkt nur 50 Sekunden lang gemessen wurde, ergab das bei 5929 Messpunkten dennoch eine beachtliche Messzeit von drei Tagen, 10 Stunden und knapp über 20 Minuten. Diese Untersuchung stellte damit die bislang längste Messung mit dem monochromatischen, nicht-konfokalen Aufbau dar.

Abb.50 zeigt ein Foto der Gallensteinprobe in der Probenhalterung.

Abb. 50: Gallenstein in der Probenhalterung

Um Elemente, die bei einem Einzelspektrum möglicherweise nicht ausreichend intensive Peaks aufzeigen, bei der Auswertung nicht zu übersehen, wurde ein Summenspektrum aus den Einzelspektren aller Messpunkte erstellt. Im nächsten Schritt wurde dieses Summenspektrum mit PyMca gefittet.

Die Auswertung ergab, dass sich die Elemente Barium, Bismut, Brom, Calcium, Chlor, Kupfer, Eisen, Gadolinium, Kalium, Schwefel und Ytterbium in diesem Bereich befanden. Das gefittete Spektrum wird in **Abb.51** in linearer und in **Abb.52** in logarithmischer Darstellung gezeigt.

Abb. 51: Gefittetes Summenspektrum Gallenstein (lineare Darstellung)

Abb. 52: Gefittetes Summenspektrum Gallenstein (logarithmische Darstellung)

Die aus diesem Fit errechneten Fit-Flächen der einzelnen Elemente werden in der nachfolgenden Tabelle zusammengefasst.

Element	Linie	Fit-Fläche	Sigma	Element	Linie	Fit-Fläche	Sigma
		[cts]	[cts]			[cts]	[cts]
Si	Κ	6057,2	144	Cl	Κ	50894	271
Κ	Κ	33252	239	Ca	Κ	566400	783
Fe	Κ	93121	495	Cu	Κ	8498000	3010
Br	Κ	985740	1100	Ba	L	1524100	1320
Gd	L	3264400	1980	Yb	L	8826600	3120
Bi	L	694430	1050				

Tab. 23: Fit-Flächen und Sigma (Gallensteinmessung)

Da neben der Zusammensetzung der Probe außerdem herauszufinden war, ob sich diese Elemente homogen verteilen oder nur an bestimmten Orten vermehrt auftreten, wurde mittels XRF-Maps eine Map für jedes einzelne dieser Elemente erstellt. Diese sind unter den folgenden Abbildungen dargestellt. Wie man erkennen kann, tritt vor allem Eisen sehr punktuell auf. Weiters ist ersichtlich, dass sich alle Elemente vor allem verstärkt in der untersuchten Furche befinden. Das erkennt man an den hellen Stellen. Je intensiver ein Peak, desto heller wird dieser Punkt in der Map dargestellt. Es ist darauf hinzuweisen, dass gleich helle Punkte in unterschiedlichen Abbildungen nicht zwingendermaßen die gleiche Intensität haben, das ist tatsächlich sogar sehr unwahrscheinlich. Die Farbskalierung bezieht sich immer auf das jeweilige Element und ist damit für jede Abbildung eigens erstellt.

Abb. 53: Gallenstein Barium

Abb. 54: Gallenstein Bismut

Abb. 55: Gallenstein Brom

102

Abb. 56: Gallenstein Calcium

Abb. 57: Gallenstein Chlor

Abb. 58: Gallenstein Kupfer

Abb. 59: Gallenstein Eisen

Abb. 60: Gallenstein Gadolinium

Abb. 61: Gallenstein Kalium

Abb. 62: Gallenstein Schwefel

Abb. 63: Gallenstein Ytterbium

10.1.2. Natriumiodid-Kristall

Eine weitere zu untersuchende Probe stellte der NaI-Kristall dar. Es handelte sich dabei um einen kleinen Quader mit den ungefähren Maßen von etwa 0.9cm * 0.9cm * 0.5cm. Die Oberfläche mit $0.81cm^2$ war bei den in den nächsten Schritten folgenden Messungen die dem Röntgenstrahl zugewandte Seite. Da der NaI-Kristall bei Reaktion mit Luft in sekundenschnelle zerfällt, wurde er in eine luftdichte Folie eingeschweißt. Diese Folie stellte mit einer Größe, die mit einem Blatt im A5-Format vergleichbar ist, ein Problem bei den Messungen dar, da der Platz für die Probe im Aufbau der verwendeten Messanlage sehr beschränkt ist. Die gesamte Probenhalterung, auf der die Probe befestigt wird, beträgt im Normalfall lediglich 4.4cm * 4.9cm. Sie ist damit deutlich kleiner als die Folie, in die der Kristall eingeschweißt wurde.

Damit ergab sich schon das erste Problem beziehungsweise die erste Fragestellung: Wie soll diese Probe befestigt werden, sodass sie letztendlich in den beschränkten Platz im Messaufbau passt? Die erste Idee bestand darin, die Folie einige Male zu falten, sodass diese der Größe der Probenhalterung entspricht, und dieses Paket dann mit stark klebenden Doppelklebeband an der Probenhalterung zu befestigen. Das funktionierte zwar prinzipiell, man stellte im Mikroskop jedoch schnell fest, dass diese Lösung nicht ideal ist, da die gefaltete Folie auf diese Art und Weise nicht ausreichend stabil fixiert war und sich leicht bewegte. Das führte zu der sichtbaren Wirkung, dass die Abbildung im Mikroskop verschwamm und nicht mehr scharf gestellt war. Insgesamt würde diese Fixierung der Probe zu großen Messungenauigkeiten führen, weil sich die Probe selbst bei einer kurzen Messung verstellen würde und es nicht mehr möglich wäre, festzustellen, welche Stelle der einfallende Röntgenstrahl genau trifft.

Da es sich bei der Probe um keinen perfekten Quader handelte, musste der Kristall zusätzlich so positioniert werden, dass die bestrahlte Oberfläche möglichst in einer Ebene liegt, da die Röntgenstrahlen sonst unter unterschiedlichen Auftreffwinkeln auf die Probe fallen.

Daher wurde der Entschluss gefasst eine neue Probenhalterung zu bauen. Hierfür wurden auf den Sockel, statt wie gewohnt eine Platte, diesmal zwei befestigt. In die vordere, dem Röntgenstrahl zugewandte Platte, wurde ein Loch mit einem Durchmesser von circa 0.9 cm gebohrt. Hinter dieser befand sich schlussendlich die Probe in der gefalteten Folie. Dieses Loch erfüllte zwei Funktionen: Auf der einen Seite diente es als Öffnung, sodass der Strahl bei der Messung die Probe trifft. Auf der anderen Seite gewährleistete diese Öffnung, dass die zu untersuchende Fläche der Probe möglichst in einer Ebene liegt und die Röntgenstrahlen nicht unter unterschiedlichen Winkeln auf der Probe auftreffen. Die zweite Platte wurde hinter die Probe montiert und über vier Schrauben und Muttern an den Ecken mit der ersten Platte verbunden. Die Muttern ermöglichten es, die gefaltete Folie stabiler zu halten und die zu untersuchende Oberfläche der Probe gegen die runde Öffnung der ersten Platte zu drücken, sodass diese in einer Ebene liegt. Die zweite Platte war somit das fixierende Element.

In Abb.64 sieht man die fertige Konstruktion mit mittig befestigter Probe.

Abb. 64: NaI-Kristall-Probenhalterung

10.1.2.1. Erste Messung

Jetzt konnte die erste längere Messung gestartet werden. Ziele dieser und der nachfolgenden Messungen waren nämlich einerseits festzustellen, ob die Elemente Thallium und Iod überhaupt nachgewiesen werden können und im nächsten Schritt, ob diese homogen über die Probe verteilt sind oder ein deutlicher Anstieg der Thalliumkonzentration in eine bestimmte Richtung beobachtet werden kann.

Als Messbereich wurde eine rechteckige Fläche gewählt, die möglichst die ganze dem Röntgenstrahl zugewandte Oberfläche abdeckt. Diese betrug $4000 \mu m$ * $6000 \mu m$, das heißt insgesamt $24 m m^2$. Auf dieser Fläche wurden in regelmäßigen Abständen 25 Messpunkte definiert, die jeweils 1000 Sekunden gemessen wurden. Das entspricht einer Gesamtmesszeit von circa 6 Stunden und 56 Minuten. Aus den Messergebnissen für jeden Punkt wurde eine Summenspektrum erstellt. Dieses wurde im PyMca gefittet. Das daraus resultierende Spektrum und die Fit-Flächen für jedes der in diesem Prozess gefunden Elemente werden in den nachfolgenden Abbildungen und Tabellen zusammengefasst.

Abb. 65: Gefittetes Summenspektrum NaI-Kristall - 1. Messung (lineare Darstellung)

Abb. 66: Gefittetes Summenspektrum NaI-Kristall - 1. Messung (logarithmische Darstellung)

Die aus diesem Fit resultierenden Fit-Flächen werden in den nachfolgenden Tabelle zusammen gefasst. Die Gesamt-Fit-Flächen für Iod und Thallium werden zusätzlich hervorgehoben.

106

Element	Linie	Fit-Fläche	Sigma	Element	Linie	Fit-Fläche	Sigma
		[cts]	[cts]			[cts]	[cts]
Al	Κ	269,14	29,1	Ti	Κ	24529	227
Cr	Κ	$184,\!32$	$31,\!6$	Mn	Κ	$274,\!15$	35,1
Fe	Κ	25880	167	Ni	Κ	1014,8	48,7
Cu	Κ	1331	55,4	Zn	Κ	8884,9	107
Ga	Κ	2723,1	72,9	Br	Κ	$295,\!69$	119
Ι	L1	86161	424	Ι	L2	117210	461
Ι	L3	130040	389	Tl	L1	$7893,\!8$	239
Tl	L2	40148	250	Tl	L3	43684	241
Pb	L	3070,0	96,9				
Ι	\mathbf{L}	333411	1274	Tl	\mathbf{L}	$91725,\!8$	730

Tab.	24:	Fit-F	lächen	und	Sigma	(NaI-	-Kristall.	1.	Messung)
					- 0	(0/

Es folgen nun die aus diesem Fit erstellten Maps für I- L_1 , I- L_2 , I- L_3 , Tl- L_1 , Tl- L_2 und Tl- L_3 . Dunkle Flächen markieren Messpunkte mit niedriger gemessener Intensität, helle hingegen jene mit hoher Intensität. Der Unterschied zwischen hell und dunkel bezieht sich jedoch auf jede Abbildung einzeln. So haben Flächen der gleichen Farbe in unterschiedlichen Abbildungen nicht zwingend die gleiche Intensität.

Das Verhältnis von Thallium zu Iod ist wichtig, da man anhand dessen am leichtesten beurteilen kann, ob es sich an dem jeweiligen Punkt um eine Messschwankung handelt, die sowohl Thallium, als auch Iod betrifft, oder ob tatsächlich höhere beziehungsweise niedrigere Intensität für das jeweilige Element an diesem Punkt gemessen werden.

In diesem Zusammenhang wurden drei Abbildungen erstellt. In Abb.73 sind die Gesamt-Intensitäten aller L-Linien von Iod für jeden einzelnen Messpunkt eingetragen. Dies wurden aus den Fit-Flächen herausgelesen und zusammen addiert. Abb.74 zeigt das Gleiche für Thallium. In Abb.75 wird das Verhältnis der Gesamt-Intensitäten von Thallium zu Iod dargestellt. In den ersten zwei Abbildungen werden die Punkte mit hoher Intensität heller dargestellt, niedrigere Intensität dunkler. Im letzten der drei Bilder werden besonders hohe Verhältnisse in einem dunklerem Farbton dargestellt.

4211,07	13766,75	13878,33	13993,49	13547,14
13652,48	13604,55	13949,02	14392,39	14265,68
13948,90	13630,51	14032,05	14311,02	13986,58
13682,53	14166,45	13950,15	13189,97	13834,68
8845,08	13514,63	13876,84	13609,55	13437,28

Abb. 73: NaI-Kristall Iod-L

1573,16	3811,06	3904,03	3911,07	3982,28
3871,38	3861,85	4006,42	4095,23	3829,92
4016,40	4194,37	3923,30	3978,31	3891,38
3922,55	3908,05	3921,46	3910,04	3868,66
2612,67	3779,30	3897,70	3881,96	3838,94

Abb. 74: NaI-Kristall Thallium-L

0,374	0,277	0,281	0,279	0,294
0,284	0,284	0,287	0,285	0,268
0,288	0,308	0,280	0,278	0,278
0,287	0,276	0,281	0,296	0,280
0,295	0,280	0,281	0,285	0,286

Abb. 75: NaI-Kristall Verhältnis von Thallium-L zu Iod-L

Anhand von Abb.75 erkennt man, dass ein Messpunkt ein anderes Verhältnis aufweist als die anderen. Nur bei diesem Punkt könnte man vermuten, dass hier eine höhere Thallium-Konzentration vorhanden wäre. Wie man aber auf den zwei Abbildungen zuvor sehen kann, hat dieser Punkt im Vergleich zu allen anderen Messpunkten allgemein eine sehr niedrige Intensität. Man kann davon ausgehen, dass die schwache Intensität darauf zurückzuführen ist, dass sich dieser Messpunkt am Rand der zu untersuchenden Probe befindet. Hier ist unklar, ob nur die Probe oder vielleicht aber bereits die fixierende vordere Platte gemessen wurde. Somit kann dieser Ausreißer nicht auf eine höhere Thallium-Konzentration an dieser Stelle zurückgeführt werden.

Diese Messung liefert keinen Grund zur Annahme, dass es in der Thallium-Konzentration signifikante Änderung entlang der Messoberfläche gibt. Thallium und Iod scheinen beide homogen verteilt zu sein.

10.1.2.2. Zweite Messung

Die zweite Messung wurde unter den selben Messbedingungen durchgeführt wie bereits die erste Messung. Mit dieser Messung sollte die Probenhalterung überprüft werden. Sollten sich grobe Messunstimmigkeiten zwischen erster und zweiter Messung ergeben, so wäre das darauf zurückzuführen, dass die Probe durch die Halterung nicht ausreichend fix und stabil gehalten wird.

Da sich das gefittete Spektrum optisch nicht von dem der ersten Messung unterscheidet, wird darauf verzichtet diese anzuführen. Die errechneten Fit-Flächen für diese Messung werden in der nachstehenden Tabelle angeführt. Auch hier werden die Gesamt-Fit-Flächen für Thallium und Iod seperat zusammengefasst.

Element	Linie	Fit-Fläche	Sigma	Element	Linie	Fit-Fläche	Sigma
		[cts]	[cts]			[cts]	[cts]
Al	Κ	285,88	29,5	Ti	Κ	23934	225
Cr	Κ	88,746	$_{30,1}$	Mn	Κ	260, 84	34,9
Fe	Κ	25464	166	Ni	Κ	936, 19	48,1
Cu	Κ	1248,5	54,7	Zn	Κ	8699,1	106
Ga	Κ	2665,9	72,2	Br	Κ	$104,\!06$	119
Ι	L1	84063	458	Ι	L2	117080	458
Ι	L3	128270	385	Tl	L1	$8595,\! 6$	240
Tl	L2	38545	247	Tl	L3	43371	240
Pb	L	2884,9	96,3				
Ι	\mathbf{L}	329413	1262	Tl	\mathbf{L}	$90511,\! 6$	727

Tab. 25: Fit-Flächen und Sigma (NaI-Kristall, 2. Messung)

Es folgen nun die aus diesen Fits erstellten Maps für $I-L_1$, $I-L_2$, $I-L_3$, $Tl-L_1$, $Tl-L_2$ und $Tl-L_3$. Diese unterscheiden sich optisch kaum von den Maps aus der ersten Messung.

Es folgen Abb.82, Abb.83 und Abb.84. Diese zeigen die Gesamt-Fit-Flächen für Iod, Thallium und das Verhältnis von Thallium zu Iod. Wie gehabt werden

in den ersten zwei Abbildungen Messpunkte hoher Intensität heller dargestellt, niedrigere Intensität dunkel. In der letzten Abbildung werden hingegen besonders hohe Verhältnisse in einem dunklerem Farbton dargestellt.

4380,08	13781,53	13339,22	13972,96	13411,27
13686,76	13960,78	13562,52	13916,89	14048,55
13801,65	13488,53	13679,71	14178,01	13937,04
13686,90	13684,26	13845,50	13511,31	13391,19
8890,00	12591,46	13162,96	13737,95	13380,38

Abb. 82: NaI-Kristall Iod-L

1686,60	3880,96	3814,42	3738,82	3883,42
4032,72	3932,60	3979,76	3865,12	4007,88
3915,40	3790,51	3921,92	3820,71	4049,75
3908,51	3940,34	3856,22	3845,34	3708,71
2487,77	3851,43	3765,39	3936,75	3865,97

Abb. 83: NaI-Kristall Thallium-L

0,385	0,282	0,286	0,268	0,290
0,295	0,282	0,293	0,278	0,285
0,284	0,281	0,287	0,269	0,291
0,286	0,288	0,279	0,285	0,277
0,280	0,306	0,286	0,287	0,289

Abb. 84: NaI-Kristall Verhältnis von Thallium-L zu Iod-L

Die unter der ersten Messung und zweiten Messung errechneten Verhältnisse von Thallium zu Iod wurden im nächsten Schritt miteinander verglichen. Es wurde dafür die prozentuelle Differenz zwischen den beiden Verhältnissen berechnet. An Hand der aus dieser Berechnung resultierenden Ergebnisse kann festgestellt werden, ob die Probe sich stark bewegt hat oder nicht beziehungsweise ob die minimale Bewegung der Probe in der Halterung die Messergebnisse beeinflusst. Die Ergebnisse werden in **Abb.85** dargestellt. Je höher der angegebene Wert für ein Feld ist, desto höher ist die Differenz der Messergebnisse an jenem Messpunkt und desto dunkler ist der Farbton des Feldes.

3,07	1,72	1,65	4,26	1,49
3,91	0,77	2,17	2,39	6,26
1,47	8,68	2,54	3,06	4,44
0,39	4,38	0,92	3,99	0,96
5,26	9,38	1,84	0,46	1,13

Abb. 85: Differenz zwischen erster und zweiter Messung in Prozent (bezogen auf die errechneten Verhältnisse zwischen Thallium und Iod)

Wie man erkennen kann, liegen alle Differenzen unter 10%. Daher kann davon ausgegangen werden, dass die Probenhalterung die Probe ausreichend gut fixiert.

10.1.2.3. Dritte Messung

Die Messbedingungen der dritten Messung unterscheiden sich etwas von den der vorhergehenden zwei. Es wurden diesmal lediglich 16 Punkte vermessen, die untersuchte Fläche verkleinerte sich somit auf $15,36mm^2$. Weiters betrug die Messzeit diesmal 10000 Sekunden pro Messpunkt, was zu einer Messzeit von circa 44 Stunden und 27 Minuten führt.

Ziel dieser Messung war es auszuschließen, dass lediglich auf Grund der geringen gemessenen Peak-Fläche auf eine homogene Verteilung von Thallium und Iod geschlossen wird. Besonders für Thallium sind die aus den ersten zwei Messungen erhaltenen Werte für kürzere Messzeiten sehr niedrig. Längere Messzeiten bedeuten eine höhere Peak-Fläche für jedes der in der Probe enthaltenen Elemente. Daher wurde eine längere Messung gestartet.

Aus den einzelnen Spektren wurde ein Summenspektrum erstellt, das mit PyMca gefittet wurde. Obwohl die gemessenen Intensitäten deutlich höher sind als in den ersten zwei Messungen unterscheidet sich das gefittete Spektrum optisch kaum von den vorherigen. Daher wird auch hier darauf verzichtet sie ein weiteres Mal anzuführen. Unter **Abb.86** und **Abb.87** sieht man jedoch das gefittete Spektrum in linearer und logarithmischer Darstellung mit farblich markierten Peaks, die dem entsprechenden Element zugeordnet sind.

Abb. 86: Gefittetes Summenspektrum NaI-Kristall - 3. Messung (lineare Darstellung mit farblich markierten Peaks)

Abb. 87: Gefittetes Summenspektrum NaI-Kristall - 3. Messung (logarithmische Darstellung mit farblich markierten Peaks)

Die daraus resultierenden Fit-Flächen werden in der nächsten Tabelle aufgelistet.

Element	Linie	Fit-Fläche	Sigma	Element	Linie	Fit-Fläche	Sigma
		[cts]	[cts]			[cts]	[cts]
Al	Κ	3573,7	104	Ti	Κ	334990	837
Cr	Κ	613,81	106	Mn	Κ	2889,1	121
Fe	Κ	362480	625	Ni	Κ	10577	169
Cu	Κ	13413	189	Zn	Κ	100000	365
Ga	Κ	35979	265	Br	Κ	$764,\!66$	433
Ι	L1	1185100	1560	Ι	L2	1611800	1700
Ι	L3	1767900	1430	Tl	L1	112940	866
Tl	L2	549530	923	Tl	L3	609250	899
Pb	L	31541	338				
Ι	\mathbf{L}	4564800	4690	Tl	\mathbf{L}	1271720	2688

Tab. 26: Fit-Flächen und Sigma (NaI-Kristall, 3. Messung)

Abb.88 bis **Abb.93** zeigt die aus diesen Fits erstellten Maps für I-L₁, I-L₂, I-L₃, Tl-L₁, Tl-L₂ und Tl-L₃. Dunkle Flächen zeigen Messpunkte niedriger Intensität an, helle hingegen weisen auf Messpunkte hoher Intensität hin.

Auch hier folgen an dieser Stelle die Gesamt-Fit-Flächen für Iod, Thallium und das Verhältnis von Thallium zu Iod. Messpunkte hoher Intensität werden wie gehabt heller dargestellt, niedrigere Intensität wird dunkler markiert. Im Gegensatz

dazu werden in ${\bf Abb.96}$ besonders hohe Verhältnisse in einem dunklerem Farbton dargestellt.

130275,9	239391,6	239591,6	240156,8
236721,1	232622,4	235161,6	236163,3
232795,8	230947,5	232655,2	228486,2
235794,2	240625,5	236895,5	227526,6

Abb. 94: NaI-Kristall Iod-L

40497,21	66981,07	66728,64	66088,29
64836,07	65816,69	66539,6	66180,42
65881,86	64910,11	66084,39	65706,59
65448,73	66122,99	65925,84	65316,2

Abb. 95: NaI-Kristall Thallium-L

0,311	0,280	0,279	0,275
0,274	0,283	0,283	0,280
0,283	0,281	0,284	0,288
0,278	0,275	0,278	0,287

Abb. 96: NaI-Kristall Verhältnis von Thallium-L zu Iod-L

Wieder fällt der obere, linke Randpunkt durch seine im Vergleich zu den restlichen Messpunkten niedrige Intensität auf. Wie bereits erwähnt, ist es sehr wahrscheinlich, dass hier bereits die Probenhalterung gemessen wird. Daher ist dieser Messpunkt bei der Evaluierung der Messergebnisse zu vernachlässigen.

Die folgenden zwei Abbildungen dienen dem Vergleich zwischen den Ergebnissen der ersten zwei und der letzten Messung. Hier werden zunächst die Verhältnisse von Thallium zu Iod, die man aus der ersten Messung erhalten hat, mit den entsprechenden Verhältnissen aus der letzten Messung verglichen. Die gleiche Berechnung wird mit den Ergebnissen der zweiten und der letzten Messung durchgeführt. Die daraus resultierenden Ergebnisse werden in Prozent angegeben und sind ein Maß dafür, wie stark sich die einzelnen Messungen von einander unterscheiden. Bei höheren prozentuelle Differenzen liegt vermutlich ein gröberer Messfehler vor. Die Gründe dafür können sehr unterschiedlich sein und müssen für jeden einzelnen Fall speziell geklärt werden.

20,18	1,06	1,00	1,56
3,53	0,33	1,51	1,54
1,74	9,49	1,57	3,33
3,28	0,39	1,01	3,26

Abb. 97: Differenz zwischen erster und dritter Messung in Prozent (bezogen auf die errechneten Verhältnisse zwischen Thallium und Iod)

23,87	0,65	2,67	2,77
7,58	0,44	3,71	0,89
0,24	0,02	0,93	6,29
2,88	4,79	0,08	0,86

Abb. 98: Differenz zwischen zweiter und dritter Messung in Prozent (bezogen auf die errechneten Verhältnisse zwischen Thallium und Iod)

Wie man erkennen kann ergeben sich für alle Messpunkte bis auf einen prozentuelle Unterschiede von weniger als 10%. Der obere, linke Punkt stellt als einziger eine Ausnahme dar. Es handelt sich wieder um den selben Randpunkt, an welchem wahrscheinlich nicht nur die Probe, sondern auch ihre Halterung gemessen wird. Dieser Punkt kann vernachlässigt werden.

Aus Abb.97 und Abb.98 folgt, dass eine längere Messzeit nicht dazu führt, dass verhältnismäßig mehr Thallium gemessen wird. Es lässt sich daher aus keiner der drei Messungen darauf schließen, dass eine signifikante Änderung der Thallium-Konzentration entlang der Messoberfläche existiert. Es kann weiterhin angenommen werden, dass Thallium und Iod homogen in der Probe verteilt sind.

10.1.3. Knochenprobe

Um die Messergebnisse des bislang verwendeten monochromatischen μ XRF Spektrometers mit jenen zu vergleichen, die man mit dem polychromatischen Spektrometer erhält, wurde eine osteoporotische Knochenprobe, in der Gadolinium erwartet wurde, an beiden Anlagen gemessen. Für beide Messungen befand sich die Probe in der gleichen Probenhalterung, da beide dafür das gleiche System verwenden. Die Probenhalterung wird samt daran fixierter Probe in **Abb.99** dargestellt.

Abb. 99: Knochenprobe an der Probenhalterung befestigt

Die ersten Messungen wurden an dem monochromatischen μ XRF Spektrometer durchgeführt. Diese werden mit den daraus erlangten Ergebnissen in den nächsten Unterkapiteln zusammengefasst.

10.1.3.1. Monochromatisches μ XRF Spektrometer

10.1.3.1.1. Erste Messung

Für die erste Messung wurde ein kleinerer, rechteckiger Bereich der Probe ausgewählt, der in **Abb.100** gezeigt wird. Dieser umfasste $210\mu m$ * $285\mu m$, also eine Fläche von circa $0,06mm^2$. Darauf wurden in regelmäßigen Abständen 266 Messpunkte zu einer Messzeit von jeweils 280 Sekunden untersucht. Das führt auf eine Gesamtmesszeit von rund 20 Stunden und 41 Minuten.

Abb. 100: Ungefährer Messbereich (1. Messung)

Die sich aus dieser Messung ergebenden Einzelspektrum wurden zu einem Summenspektrum aufaddiert und dann mittels PyMca gefittet. Das gefittete Spektrum wird in Abb.101 und Abb.102 dargestellt, die daraus resultierenden Fit-Flächen sind unter Tab.27 aufgelistet.

Abb. 101: Gefittetes Summenspektrum Knochenprobe, 1. Messung (lineare Darstellung)

118

Abb. 102: Gefittetes Summenspektrum Knochenprobe, 1. Messung (logarithmische Darstellung)

Element	Linie	Fit-Fläche	Sigma	Element	Linie	Fit-Fläche	Sigma
		[cts]	[cts]			[cts]	[cts]
Р	Κ	10254	125	К	Κ	716,8	57,5
Cl	Κ	1090,8	54,2	Fe	Κ	$2225,\!3$	61,4
Ca	Κ	813480	903	Ni	Κ	$3196,\! 6$	87,9
Со	Κ	11469	119	Zn	Κ	33271	189
Cu	Κ	$5390,\! 6$	86,2	Sr	Κ	4337,5	91,4
Br	Κ	84315	297	Gd	L	$494,\!55$	59,9
S	Κ	448,5	50,9	Pb	L	13527	139

Tab. 27: Fit-Flächen und Sigma (Knochenprobe, 1. Messung)

Die Werte für Gadolinium ergeben sich mit großer Wahrscheinlichkeit nur aus dem gewählten Fit. Es wurde entweder gar keine Counts oder definitiv nicht so viele gemessen, wie in **Tab.27** angegeben. Man erkennt auch in der logarithmischen Darstellung des Summenspektrums keinen Peak, der Gadolinium zuzuordnen wäre. Ähnliches gilt für Kalium. Auch hier ist kein entsprechender Peak im Summenspektrum zu erkennen.

Die aus den Messdaten mittels XRF-Maps erstellten Maps für alle gemessenen Elemente werden in den nächsten Abbildungen dargestellt. Dabei wird auf Grund der eben genannten Probleme auf die Darstellung der Verteilung von Argon, Silber, Kalium und Gadolinium verzichtet. Es ist wieder darauf hinzuweisen, dass Flächen gleicher Farbe in unterschiedlichen Bildern nicht der selben Anzahl an Counts entsprechen. Je mehr Counts gemessen wurden, desto heller ist das Feld gefärbt. Dunkle Flächen hingegen zeigen Messpunkte mit niedriger Zählrate an.

Abb. 103: Knochen Brom (1. Messung)

Abb. 104: Knochen Calcium (1. Messung)

Abb. 105: Knochen Chlor (1. Messung)

Abb. 106: Knochen Kobalt (1. Messung)

Abb. 107: Knochen Kupfer Messung)

(1.

Abb. 108: Knochen Eisen (1. Messung)

120

Abb. 109: Knochen Kalium (1. Messung)

Abb. 110: Knochen Nickel (1. Messung)

Abb. 111: Knochen Phosphor (1. Messung)

Abb. 112: Knochen Blei (1. Messung)

Abb. 113: Knochen Schwefel (1. Messung)

Abb. 114: Knochen Strontium (1. Messung)

Abb. 115: Knochen Zink (1. Messung)

Ein Element, dessen Verteilung besonders hervorsticht, ist Kobalt. Es tritt im Bereich der Messung konzentriert an einem Punkt auf. Auch bei Calcium sieht man eine sehr schöne Verteilung. Die restlichen Elemente treten eher homogen verteilt auf.

10.1.3.1.2. Zweite Messung

Die zweite Messung, die an der Knochenprobe durchgeführt wurde, hatte nicht das Ziel als Vergleichsmessung mit der polychromatischen Anlage des Atominstituts zu dienen. Diese Probe wurde bereits mit Synchrotron-Strahlung untersucht. Besonders viel Gadolinium wurde dabei an dem unter Abb.117 dargestellten Punkt gefunden. Da in der ersten, längeren Messung, die am monochromatischen μXRF Spektrometer durchgeführt worden ist, kein Gadolinium nachgewiesen wurde, folgte der Entschluss, eine Messung zu starten, bei der lediglich 9 Messpunkte um den unter Abb.117 markierten Punkt, mit einer Messzeit von jeweils 6000 Sekunden, bestrahlt werden. Das führte auf eine Gesamtmesszeit von circa 15 Stunden. Die Gesamtfläche betrug $15\mu m * 31\mu m$. Das ist ein sehr kleiner Bereich. Die Länge, die $15\mu m$ beträgt, ist so groß wie die Fokusgröße des einfallenden Röntgenstrahls. Die Messpunkte, die in diese Richtung gemessen wurden, liegen praktisch übereinander. Auch bei einer Länge von $31 \mu m$ überlappen die Messpunkte zum Teil. Mit dieser Überlappung wollte man erreichen, dass genau der Punkt, an dem mit Synchrotronstrahlung - deren Fokusgröße deutlich geringer ist als $15 \mu m$ - Gadolinium nachgewiesen wurde, durch eine unvorteilhaft gewählte Schrittweite, bei der Messung ausgelassen wird. Die Hoffnung war, dass die längeren Messzeiten auf eine größere Peak-Fläche der dort enthaltenen Elemente führen und sich somit auch Gadolinium nachweisen lässt, dessen Konzentration um diesen Probenpunkt als verhältnismäßig gering erwartet wurde.

Abb. 116: Ungefährer Messbereich (2. Messung)

Das aus dieser Messung resultierende gefittete Summenspektrum ist unter Abb.118 in linearer und unter Abb.119 in logarithmischer Darstellung zu sehen. Die sich daraus ergebenden Fit-Flächen werden in der darunter stehenden Tabelle angeführt.

Abb. 117: Gefittetes Summenspektrum Knochenprobe, 2. Messung (lineare Darstellung)

Abb. 118: Gefittetes Summenspektrum Knochenprobe, 2. Messung (logarithmische Darstellung)

Element	Linie	Fit-Fläche	Sigma	Element	Linie	Fit-Fläche	Sigma
		[cts]	[cts]			[cts]	[cts]
Р	Κ	6004,7	96,1	К	Κ	417,3	45,7
Cl	Κ	803,75	45,4	Fe	Κ	1729,5	$53,\!5$
Ca	Κ	471720	688	Ni	Κ	2178,7	72,5
Со	Κ	7127,7	94,7	Zn	Κ	26278	167
Cu	Κ	4077,6	73,9	Sr	Κ	3163,9	77,9
Br	Κ	59327	249	Gd	L	782,34	52,4
S	Κ	369,55	42,5	Pb	L	10638	121

Tab. 28: Fit-Flächen und Sigma (Knochenprobe, 2. Messung)

Wie auch schon bei der vorhergehenden Messung ergeben sich die unter **Tab.28** angegebenen Counts für Gadolinium leider nur aus dem gewählten Fit. Betrachtet man die logarithmische Darstellung des Summenspektrums, so stellt man fest, dass bei 6,1keV, was der L_{α}-Linie von Gadolinium entspricht, kein deutlich erkennbarer Peak zu sehen ist. Es konnte somit auch in der zweiten Messung, die konzentriert in einem sehr kleinen Bereich durchgeführt wurde, kein Gadolinium nachgewiesen werden.

Da die Erstellung der Maps für diese Messung nicht erforderlich ist, wird an dieser Stelle darauf verzichtet diese anzuführen.

10.1.3.1.3. Dritte Messung

Die Messergebnisse der dritten Messung sollten wieder als Vergleichswerte für die polychromatische Anlage dienen. In dieser Messung wurde der größte Bereich der Probe untersucht. Die ungefähre Messfläche, die $585\mu m$ * $285\mu m$ umfasst, wird in **Abb.120** dargestellt. Auf dieser Fläche von insgesamt rund $0,17mm^2$ wurden in regelmäßigen Abständen von $15\mu m$ 741 Messpunkte je 320 Sekunden bestrahlt, was auf eine Gesamtmesszeit von circa 2 Tagen, 17 Stunden und 46 Minuten führt.

Abb. 119: Ungefährer Messbereich (3. Messung)

Aus den Einzelspektren wurde ein Summenspektrum erstellt, das mit PyMca gefittet wurde. Die Ergebnisse dieses Fits werden in den nachfolgenden zwei Abbildungen und einer Tabelle zusammengefasst.

Abb. 120: Gefittetes Summenspektrum Knochenprobe, 3. Messung (lineare Darstellung)

Abb. 121: Gefittetes Summenspektrum Knochenprobe, 3. Messung (logarithmische Darstellung)

Element	Linie	Fit-Fläche	Sigma	Element	Linie	Fit-Fläche	Sigma
		[cts]	[cts]			[cts]	[cts]
Р	Κ	33273	225	К	Κ	2351,2	104
Cl	Κ	3639,7	$98,\!8$	Fe	Κ	6824,9	110
Ca	Κ	2707900	1650	Ni	Κ	10149	156
Co	Κ	33682	205	Zn	Κ	106780	339
Cu	Κ	18094	157	Sr	Κ	15132	170
Br	Κ	279150	541	Gd	L	1034,1	106
S	Κ	1735	95	Pb	L	41317	246

Tab. 29: Fit-Flächen und Sigma (Knochenprobe, 3. Messung)

Wie schon bei der ersten Messung, gilt hier auch, dass sich die K_{α} -Linie von Argon mit der Silber- L_{α} -Linie überlagert und die Fit-Flächen für beide Elemente daher nicht aussagekräftig sind. Die Werte für Gadolinium und Kalium, die in **Tab.29** genannt sind, ergeben sich lediglich aus dem gewählten Fit und entsprechen nicht den tatsächlich gemessenen Peak-Flächen. Unter **Abb.122** erkennt man, dass weder für Gadolinium (6,1keV für L_{α}) noch für Kalium (3,3keV für K_{α}) ein deutlich erkennbarer Peak im Summenspektrum auftaucht.

Auch für diese Messung wurden mit **XRF-Maps** Maps für alle Elemente erstellt. Es wird darauf verzichtet die Maps für Silber, Argon, Gadolinium und Calcium anzuführen. Wieder gilt, dass Flächen gleicher Farbe in unterschiedlichen Bildern nicht der gleichen Count-Anzahl entsprechen. Die Farbskalierung betrifft immer nur ein einzelnes Bild. Hohe Counts werden hell markiert, dunkle Flächen stehen für niedrige Count-Anzahl.

Abb. 122: Knochen Brom (3. Messung)

Abb. 124: Knochen Chlor (3. Messung)

Abb. 126: Knochen Kupfer (3. Messung)

Abb. 128: Knochen Nickel (3. Messung)

Abb. 123: Knochen Calcium (3. Messung)

Abb. 125: Knochen Kobalt (3. Messung)

Abb. 127: Knochen Eisen (3. Messung)

Abb. 129: Knochen Phosphor (3. Messung)

Abb. 130: Knochen Blei (3. Messung)

Abb. 132: Knochen Strontium (3. Messung)

Abb. 131: Knochen Schwefel (3. Messung)

Abb. 133: Knochen Zink (3. Messung)

Wie zuvor bei der ersten Messung, sind auch hier die Maps von Calcium und Kobalt besonders interessant. Calcium weist eine sehr schöne Verteilung auf, Kobalt taucht konzentriert in einem Bereich auf. Die restlichen Elemente sind homogen verteilt.

10.1.3.2. Ergänzung - Polychromatisches μ XRF Spektrometer

Alle Messungen wurden ebenfalls an der polychromatischen Anlage des Atominstituts wiederholt. Damit soll in weiterer Folge ein Vergleich der beiden Anlagen ermöglicht werden. Dafür wurden analog zu jeder Messung an der monochromatischen Anlage jeweils zwei Messungen durchgeführt, da die Fokusgrößen der beiden Spektrometer unterschiedlich sind. Die polychromatische Anlage wurde bei den Messungen mit einer Spannung von 50kV und 0.4mA betrieben.

10.1.3.2.1. Erste Messung

Es wurde versucht wieder möglichst die gleiche Fläche zur Untersuchung zu definieren, die bereits in der monochromatischen Anlage gemessen wurde. Diese betrug im Gesamten $200\mu m$ * $300\mu m$, das heißt $0.06mm^2$. Auf dieser wurden in regelmäßigen Abständen 35 Punkte zunächst jeweils 35 Sekunden bestrahlt, um eine Gesamtmesszeit von 20 Stunden und 25 Minuten zu erhalten - das entspricht in etwa den 20 Stunden und 41 Minuten an der monochromatischen Anlage - und später jeweils 280 Sekunden. Hier sind wiederum die Messzeiten pro Punkt identisch.

Zunächst werden die Messergebnisse für die Messung präsentiert, bei welcher die Gesamtmesszeit circa der Gesamtmesszeit an der monochromatischen Anlage entspricht. Das Spektrum, das sich daraus ergibt, wird mit Fit in linearer und logarithmischer Darstellung in den folgenden zwei Abbildungen angezeigt.

Abb. 134: Gefittetes Summenspektrum Knochenprobe, 1. Messung (lineare Darstellung) - poly $\mu \rm XRF$

Abb. 135: Gefittetes Summenspektrum Knochenprobe, 1. Messung (logarithmische Darstellung) - poly $\mu \rm XRF$

Daraus ergeben sich folgende Fit-Flächen samt Sigmas:

Element	Linie	Fit-Fläche	Sigma	Element	Linie	Fit-Fläche	Sigma
		[cts]	[cts]			[cts]	[cts]
Р	К	16419000	3980	Zn	Κ	63757	585
Cl	Κ	401410	2800	Sr	Κ	3867,5	275
Ca	Κ	57444000	9300	Rh	\mathbf{L}	9971200	4090
Fe	Κ	195830	679	Pb	L1	27015	551
Со	Κ	205110	743	Pb	L2	97314	479
Ni	Κ	4277,8	827	Pb	L3	68847	545

Tab. 30: Fit-Flächen und Sigma (Knochenprobe, 1. Messung, 1365s) - poly μ XRF

Für einen direkten Vergleich der beiden Messungen werden die Fit-Flächen und Sigmas beider direkt gegeneinander gestellt. Das wird in **Tab.31** dargestellt. Auf der linken Seite werden die Messergebnisse des monochromatischen Spektrometers aufgelistet und auf der rechten die der polychromatischen Anlage.

	mono	μXRF			poly	μXRF	
Element	Linie	Fit-Fläche	Sigma	Element	Linie	Fit-Fläche	Sigma
		[cts]	[cts]			[cts]	[cts]
Р	Κ	10254	125	Р	Κ	16419000	3980
S	Κ	448,5	50,9	S	Κ	-	-
Cl	Κ	1090,8	54,2	Cl	Κ	401410	2800
К	Κ	716,8	$57,\!5$	K	Κ	-	-
Ca	Κ	813480	903	Ca	Κ	57444000	9300
Fe	Κ	$2225,\!3$	$61,\!4$	Fe	Κ	195830	679
Со	Κ	11469	119	Со	Κ	205110	743
Ni	Κ	$3196,\! 6$	87,9	Ni	Κ	4277,8	827
Cu	Κ	$5390,\!6$	86,2	Cu	Κ	-	-
Zn	Κ	33271	189	Zn	Κ	63757	585
Br	Κ	84315	297	Br	Κ	-	-
Sr	Κ	4337,5	91,4	Sr	Κ	3867,5	275
Gd	\mathbf{L}	$494,\!55$	$59,\!9$	Gd	L	-	-
Rh	L	-	-	Rh	L	9971200	4090
Pb	L	13527	139	Pb	L1	27015	551
-	-	-	-	Pb	L2	97314	479

	Pb	L3	68847	545
--	----	----	-------	-----

Tab. 31: Fit-Flächen und Sigma (Knochenprobe, 1. Messung) - Vergleich mono und poly $\mu \rm XRF$

Man erkennt, dass auf der einen Seite leichte Elemente in der polychromatischen Anlage viel besser detektiert werden, auf der anderen Seite gibt es eine Reihe an Elementen, wie beispielsweise Kalium oder Kupfer, die auf Grund des hohen Hintergrundes nicht gemessen werden. Gadolinium ist schon im monochromatischen Aufbau fast nicht vorhanden und eher dem Fit zuzuschreiben als den tatsächlichen Messdaten. Im polychromatischen Aufbau wird dieses Element dem Fit nicht einmal zugewiesen.

Die zweite Messung wurde mit einer Messzeit von 280 Sekunden pro Punkt durchgeführt, sodass man die Maps miteinander vergleichen kann. Die Gesamtmesszeit ist im Vergleich zur 1. Messung im monochromatischen Aufbau deutlich höher, sodass die Fit-Flächen nicht vergleichbar sind.

Da sich die Spektren der beiden Messungen im polychromatischen Aufbau bis auf die gemessenen Intensitäten nicht großartig von einander unterscheiden, wird an dieser Stelle darauf verzichtet diese anzuführen.

Aus dieser Messung ergeben sich folgende Fit-Flächen und Sigmas:

Element	Linie	Fit-Fläche	Sigma	Element	Linie	Fit-Fläche	Sigma
		[cts]	[cts]			[cts]	[cts]
Р	Κ	2268900	1450	Zn	Κ	9070,6	212
Cl	Κ	47700	1010	Sr	Κ	645,77	98,5
Ca	Κ	7889500	3380	Rh	L	1317300	1490
Fe	Κ	2722,2	246	Pb	L1	4646,5	200
Со	Κ	28573	271	Pb	L2	13480	174
Ni	Κ	$67,\!525$	302	Pb	L3	9836	197

Tab. 32: Fit-Flächen und Sigma (Knochenprobe, 1. Messung, 10920s) - poly μ XRF

Aus diesem Fit wurden Elemente-Maps erstellt. Diese werden mit den Maps aus der Messung, die an der monochromatischen Anlage erstellt wurden, verglichen. Dazu werden in den nächsten Abbildungen die Maps des jeweiligen Elements gegenübergestellt.

Abb. 136: Knochen Calcium (1. Messung)-Vgl. mono/poly

Abb. 137: Knochen Chlor (1. Messung)-Vgl. mono/poly

Abb. 138: Knochen Kobalt (1. Messung)-Vgl. mono/poly

Abb. 139: Knochen Eisen (1. Messung)-Vgl. mono/poly

Abb. 140: Knochen Nickel (1. Messung)-Vgl. mono/poly

Abb. 141: Knochen Phosphor (1. Messung)-Vgl. mono/poly

Abb. 142: Knochen Strontium (1. Messung)-Vgl. mono/poly

Abb. 143: Knochen Zink (1. Messung)-Vgl. mono/poly

Wie diese Abbildungen zeigen, ist die monochromatische Anlage mit einem Fokus von $15\mu m$ deutlich besser geeignet, um die Oberflächenzusammensetzung der Probe abzubilden. Wenn bei der Untersuchung einer Probe von Bedeutung ist, wo und wie ein bestimmtes Element verteilt ist, sind die Bilder, die man mit dem polychromatischen Aufbau erhält einfach zu grob und ungenau. Sie liefern zwar einen ersten Überblick, genauere Darstellungen mit einer größeren Auflösung erhält man jedoch mit dem monochromatischen Spektrometer. Als anschauliches Beispiel eigenen sich besonders **Abb.138**, welche die zwei Calcium-Maps anzeigt, und **Abb.140**, also die Maps für Kobalt.
10.1.3.2.2. Zweite Messung

Die zunächst an der monochromatischen Anlage durchgeführte Messung eines einzelnen Punktes wurde, wie schon erwähnt, ursprünglich nicht mit der Absicht untersucht, diese einer Messung an der polychromatischen Anlage zu vergleichen. Der Grund der Untersuchung war die Fragestellung, ob sich an diesem Punkt, der in Abb.117 gezeigt wird, Gadolinium nachweisen lässt. Dieses wurde bei einer Messung mit Synchrotron-Strahlung an diesem Messpunkt bereits nachgewiesen und nun sollte Überprüft werden, ob sich dieses Element dort auch unter Laborbedingungen detektieren lässt. Mit Messungen an der monochromatischen Anlage ließ sich das Element jedoch nicht nachweisen. Daher wurde auch mit dem polychromatischen Spektrometer der Versuch unternommen Gadolinium an diesem Punkt nachzuweisen.

Auf Grund der Fokusgröße von circa $50\mu m$ musste keine Fläche abgefahren werden, da diese allein größer ist als der zu untersuchende Punkt auf der Probenoberfläche. Wie schon bei der zuvor durchgeführten Messung wurde auch hier eine Gesamtmesszeit von 15 Stunden gewählt. Die Messung selbst wurde auf vier "Quasipunkte" mit einer Messzeit von jeweils 3,75 Stunden unterteilt, die jedoch direkt aufeinander liegen, sodass das in der Auswertung als ein Punkt zu werten ist.

Aus den vier einzelnen Messungen an ein und dem selben Punkt erhält man folgendes gefittetes Summenspektrum:

Abb. 144: Gefittetes Summenspektrum Knochenprobe, 2. Messung (lineare Darstellung) - poly $\mu \rm XRF$

136

Abb. 145: Gefittetes Summenspektrum Knochenprobe, 2. Messung (logarithmische Darstellung) - poly $\mu \rm XRF$

Auch in den an der polychromatischen Anlage des Atominstituts durchgeführten Messungen kann trotz der langen Messzeit von 15 Stunden kein Gadolinium nachgewiesen werden. Es ist kein Gadolinium-Peak im Summenspektrum erkennbar. Die Fit-Flächen und Sigmas der gefitteten Elemente werden in **Tab.33** angegeben.

Element	Linie	Fit-Fläche	Sigma	Element	Linie	Fit-Fläche	Sigma
		[cts]	[cts]			[cts]	[cts]
Р	Κ	566670	807	Zn	Κ	7442,3	221
Cl	Κ	11173	1420	Sr	Κ	$573,\!66$	104
Ca	Κ	1269500	1420	Rh	L	2011800	1930
Fe	Κ	3233,5	306	Pb	L1	$6923,\!9$	212
Co	Κ	7760,1	248	Pb	L2	16881	194
Ni	Κ	6051	247	Pb	L3	12983	217

Tab. 33: Fit-Flächen und Sigma (Knochenprobe, 2. Messung) - poly μ XRF

10.1.3.2.3. Dritte Messung

Wie bereits die ersten zwei Messungen wurde auch die dritte Messung an der polychromatischen Anlage wiederholt. Diese Messung stellt für beide Spektrometer die längste Messung dieser Messreihe dar. Im polychromatischen Aufbau versuchte man für den bestmöglichen Vergleich die Messbedingungen so gut wie möglich an jene der Messungen im monochromatischen Aufbau anzupassen. Dafür wurden nicht nur eine, sondern zwei Messungen durchgeführt. Jedes mal wurden auf einer Fläche von $600\mu m$ * $300\mu m$, also insgesamt $0.18 mm^2$, 91 Messpunkte in regelmäßigen Abständen vermessen, da die Fokusgröße diesmal rund $50\mu m$ beträgt. Auf der einen Seite sollen die Summenspektren und Fit-Flächen der beiden Anlagen miteinander verglichen werden. Daher wurde bei der ersten Messung eine Messzeit von 2500 Sekunden pro Messpunkt gewählt, was auf eine Gesamtmesszeit von 2 Tagen, 15 Stunden und 11 Minuten entspricht. Auf der anderen Seite war es von Bedeutung die erstellten Maps miteinander vergleichen zu können, sodass auch eine Messung mit jeweils 320 Sekunden Messzeit pro Punkt durchgeführt wurde. Das sind insgesamt rund 8 Stunden 5 Minuten. Die Messzeit pro Punkt dieser Messung und der Messung an der monochromatischen Anlage wurden daher identisch gewählt.

Zunächst werden die Messergebnisse der längeren Messung mit 2500 Sekunden Messzeit pro Punkt präsentiert. In den kommenden zwei Abbildungen wird das gefittete Summenspektrum in linearer und logarithmischer Form dargestellt.

Abb. 146: Gefittetes Summenspektrum Knochenprobe, 3. Messung (lineare Darstellung) - poly $\mu \rm XRF$

138

Abb. 147: Gefittetes Summenspektrum Knochenprobe, 3. Messung (logarithmische Darstellung) - poly $\mu \rm XRF$

Die Fit-Flächen und Sigma aus diesem Fit sind **Tab.34** zu entnehmen. Die Zusammensetzung unterscheidet sich - wie auch die Summenspektren selbst - kaum von den bisherigen Messungen.

Element	Linie	Fit-Fläche	Sigma	Element	Linie	Fit-Fläche	Sigma
		[cts]	[cts]			[cts]	[cts]
Р	Κ	59107000	7730	Zn	Κ	197070	1050
Cl	Κ	1526700	5320	Sr	Κ	7110,9	485
Ca	Κ	204470000	17200	Rh	L	30549000	7590
Fe	Κ	55081	1220	Pb	L1	83525	965
Со	Κ	598980	1330	Pb	L2	287120	834
Ni	Κ	10509	1500	Pb	L3	208980	964

Tab. 34: Fit-Flächen und Sigma (Knochenprobe, 3. Messung, 227500s) - poly $\mu {\rm XRF}$

Um einen leichteren Vergleich der beiden Messungen an den unterschiedlichen Messanlagen zu vergleichen werden in der nachfolgenden Tabelle die Fit-Flächen und Sigmas gesammelt gegenüber gestellt. Auf der linken Seite der Tabelle finden sich die Messergebnisse der Messung, die an der monochromatischen Anlage durchgeführt wurden, auf der rechten Seite hingegen werden die Ergebnisse, die mit dem polychromatischen Spektrometer erzieht wurden, aufgelistet.

	mono	μXRF			poly	μXRF	
Element	Linie	Fit-Fläche	Sigma	Element	Linie	Fit-Fläche	Sigma
		[cts]	[cts]			[cts]	[cts]
Р	Κ	33273	225	Р	К	59107000	7730
S	Κ	1735	95	S	Κ	-	-
Cl	Κ	3639,7	$98,\!8$	Cl	Κ	1526700	5320
Κ	Κ	2351,2	104	K	Κ	-	-
Ca	Κ	2707900	1650	Ca	Κ	204470000	17200
Fe	Κ	6824,9	110	Fe	Κ	55081	1220
Co	Κ	33682	205	Со	Κ	598980	1330
Ni	Κ	10149	156	Ni	Κ	10509	1500
Cu	Κ	18094	157	Cu	Κ	-	-
Zn	Κ	106780	339	Zn	Κ	197070	1050
Br	Κ	279150	541	Br	Κ	-	-
Sr	Κ	15132	170	Sr	Κ	7110,9	485
Gd	L	1034,1	106	Gd	L	-	-
Rh	L	-	-	Rh	L	30549000	7590
Pb	L	41317	246	Pb	L1	83525	965
-	-	-	-	Pb	L2	287120	834
-	-	-	-	Pb	L3	208980	964

Tab. 35: Fit-Flächen und Sigma (Knochenprobe, 3. Messung) - Vergleich mono und poly $\mu \rm XRF$

Die Ergebnisse aus dem Vergleich der ersten Messung können an dieser Stelle nur bestätigt und wiederholt werden. Einerseits gibt es Elemente, die im polychromatischen Aufbau auf Grund des hohen Hintergrundes, der sich aus der ungefilterten Bremsstrahlung ergibt, nicht detektiert werden können. Auf der anderen Seite werden vor allem leichte Elemente viel besser nachgewiesen, das heißt die gemessenen Intensitäten sind im polychromatischen Aufbau mit Vakuum deutlich höher.

Es folgen nun die Messergebnisse der kürzeren Messung mit jeweils 320 Sekunden Messzeit pro Messpunkt. Da sich das Spektrum optisch bis auf die gemessenen Intensitäten kaum vom Summenspektrum der langen Messung unterschiedet wird darauf verzichtet diese erneut anzuführen. In der nachfolgenden Tabelle werden jedoch die Fit-Flächen und Sigmas aufgelistet, die sich aus dem Fit ergeben, der für die lange Messung erstellt worden ist.

Element	Linie	Fit-Fläche	Sigma	Element	Linie	Fit-Fläche	Sigma
		[cts]	[cts]			[cts]	[cts]
Р	Κ	7971200	2780	Zn	Κ	28401	388
Cl	Κ	189140	1800	Sr	Κ	$2046,\! 6$	183
Ca	Κ	28133000	6440	Rh	L	3943000	2630
Fe	Κ	8793	442	Pb	L1	12088	367
Co	Κ	83974	488	Pb	L2	40091	316
Ni	Κ	1997,5	556	Pb	L3	29605	359

Tab. 36: Fit-Flächen und Sigma (Knochenprobe, 3. Messung, 29120s) - poly $\mu \rm XRF$

Es wurden wie gehabt Elemente-Maps erstellt. Diese werden in den nächsten Abbildungen den Maps, die man aus der dritten Messung an der monochromatischen Anlage erhalten hat, gegenübergestellt. Das soll einen einfacheren Vergleich der aus den Messungen resultierenden Maps ermöglichen.

Abb. 148: Knochen Calcium (3. Messung)-Vgl. mono/poly

Abb. 149: Knochen Chlor (3. Messung)-Vgl. mono/poly

Abb. 150: Knochen Kobalt (3. Messung)-Vgl. mono/poly

Abb. 151: Knochen Eisen (3. Messung)-Vgl. mono/poly

Abb. 152: Knochen Nickel (3. Messung)-Vgl. mono/poly

Nickel-Map (poly µXRF)

Abb. 153: Knochen Phosphor (3. Messung)-Vgl. mono/poly

142

Abb. 154: Knochen Strontium (3. Messung)-Vgl. mono/poly

Abb. 155: Knochen Zink (3. Messung)-Vgl. mono/poly

Man erkennt leicht, dass die Maps, die aus den Messungen an der monochromatischen Anlage erstellt wurden, deutlich feiner sind und sich daher die Position eines Elements auf der Probenoberfläche genauer bestimmen lässt. Leichte Elemente, wie beispielsweise Phosphor, werden jedoch mit dem polychromatischen Spektrometer auf Grund des speziellen Detektors, der ein ultradünnes Fenster besitzt, und der Vakuumkammer, die eine Absorption der Fluoreszenzstrahlung an der Luft verhindert, viel besser detektiert. Dementsprechend sind die Maps, die für diese Elemente erstellt werden, deutlich aussagekräftiger, als jene der monochromatischen Anlage. Diese weist für leichte Elemente eine erkennbar niedrigere Zählrate auf, was schon in **Tab. 35** angeführt wurde.

10.2. Monochromatische, konfokale μ -RFA

Es wurden auch im konfokalen Aufbau weitere Messungen durchgeführt. Dabei handelte es sich immer um Tiefenmessungen, die durch eben diesen Aufbau ermöglicht werden. Zunächst wurden vier unterschiedliche Probenstücke von Autolack untersucht. Später folgte die längste Messung, die im Rahmen dieser Arbeit durchgeführt wurde. Dabei wurde eine SD-Karte untersucht. Die Messungen werden im Detail in den folgenden Unterkapiteln beschrieben und vorgestellt.

10.2.1. Autolack

Für die Untersuchung vier kleiner Autolack-Proben wurde keine Fläche in mehreren Schichten in die Tiefe vermessen, was einem drei-dimensionalen Würfel oder Quader entsprechen würde. Diesmal wurde nur an einem Punkt in die Tiefe gemessen, um zu erkennen, aus welchen Elementen sich die unterschiedlichen Lackschichten zusammensetzen. Die vier Proben sind mit den Namen **Autolack_A**, **Autolack_B**, **Autolack_C** und **Autolack_D** gekennzeichnet. Die Messbedingungen wurden für jede Probe einzeln bestimmt, da sich die Proben in ihrer Dicke und den einzelnen Schichten, aus denen sich diese zusammensetzen, unterscheiden. Die Vorgehensweise war jedoch immer die selbe. Genauere Informationen finden sich in den nachfolgenden Unterkapiteln.

10.2.1.1. Autolack_A

Für diese Probe wurden folgende Messbedingungen gewählt: Die Probe wurde entlang ihrer x-Achse (entspricht "samplex") beginnend bei ihrer Probenoberfläche, was einer Tiefe von $7300\mu m$ entspricht, zu der gewählten Endposition bei einer Tiefe von $7500\mu m$ gefahren. Insgesamt wurden also $200\mu m$ Tiefe in regelmäßigen Abständen von $4\mu m$ in 51 Messpunkte unterteilt, die jeweils 1000 Sekunden untersucht worden sind. Das führte auf eine Gesamtmesszeit von 14 Stunden und 10 Minuten. Die Messergebnisse werden zunächst in Form eines gefitteten Summenspektrum in den nächsten zwei Abbildungen graphisch dargestellt. In **Abb.158** ist das Summenspektrum in linearer Darstellung zu sehen, **Abb.159** zeigt hingegen die logarithmische Form.

Abb. 156: Gefittetes Summenspektrum Autolack_A (lineare Darstellung) - confocal $\mu {\rm XRF}$

Abb. 157: Gefittetes Summenspektrum Autolack_A (logarithmische Darstellung) - confocal $\mu {\rm XRF}$

Aus diesem Fit wurden die dazugehörigen Fit-Flächen und Sigmas berechnet. Diese werden in der nachfolgenden Tabelle zusammengefasst. Gefittet wurden die Elemente Titan, Eisen, Nickel, Kupfer, Zink und Barium.

Element	Linie	Fit-Fläche	Sigma	Element	Linie	Fit-Fläche	Sigma
		[cts]	[cts]			[cts]	[cts]
Ti	Κ	7891,7	147	Cu	Κ	2920,5	54,9
Fe	Κ	1395,1	38,7	Zn	Κ	8477,1	92,4
Ni	Κ	588,73	25,7	Ba	\mathbf{L}	17415	182

Tab. 37: Fit-Flächen und Sigma (Autolack_A) - confocal $\mu \rm XRF$

Aus diesem Fit wurden die Intensitäten der Elemente für jeden einzelnen Messpunkt entnommen. Daraus wurde eine Grafik erstellt, welche die Intensität des jeweiligen Elements an jedem Messpunkt darstellt. Auf der x-Achse wird die Position von samplex, das heißt die Position der Probe entlang ihrer x-Achse, aufgezeichnet. Der Punkt ganz links in dieser Grafik entspricht der Probenoberfläche, je weiter man sich nach rechts bewegt, desto tiefer liegt der Messpunkt in der Probe. Die y-Achse der Grafik gibt die gemessenen Counts bei einer Messzeit von 1000 Sekunden pro Messpunkt für jede abgerasterte Position an.

Abb. 158: Zusammensetzung der Lackschichten für die Probe **Autolack_A**

10.2.1.2. Autolack_B

Die Probe **Autolack_B** wurde in ähnlicher Art und Weise untersucht. Die Messung erfolgte wieder entlang der x-Achse der Probe (entspricht "samplex"). Diesmal wurde die Messung bei einer Tiefe von $6912\mu m$ gestartet und bei $7112\mu m$ beendet. Das entspricht erneut einer Messtiefe von $200\mu m$. Auch der Abstand von $4\mu m$ wurde beibehalten, was auf 51 Messpunkte führt, die jeweils 1000 Sekunden lang gemessen wurden.

Die gefitteten Summenspektren folgen in den nachfolgenden zwei Abbildungen.

Abb. 159: Gefittetes Summenspektrum Autolack_B (lineare Darstellung) - confocal $\mu {\rm XRF}$

Abb. 160: Gefittetes Summenspektrum Autolack_B (logarithmische Darstellung) - confocal $\mu {\rm XRF}$

Die Fit-Flächen samt Sigmas, die aus diesen Fit berechnet worden sind, werden in **Tab.38** aufgelistet. Calcium, Titan, Chrom, Eisen, Nickel, Kupfer, Zink und Barium sind Bestandteile der Probe $Autolack_B$.

Element	Linie	Fit-Fläche	Sigma	Element	Linie	Fit-Fläche	Sigma
		[cts]	[cts]			[cts]	[cts]
Ca	Κ	1590,9	43,5	Ni	Κ	755,5	28,3
Ti	Κ	10882	115	Cu	Κ	$278,\!45$	17,4
Cr	Κ	219,36	$18,\! 6$	Zn	Κ	$253,\!17$	17,5
Fe	Κ	9994,3	101	Ba	L	541,88	62,1

Tab. 38: Fit-Flächen und Sigma (Autolack_B) - confocal $\mu \rm XRF$

Auch hier wurde ein Diagramm erstellt, dass das Auftreten der einzelnen Elemente in Abhängigkeit von der Messtiefe darstellt. Das zeigt erneut die Zusammensetzung der Schichten in der Lackprobe.

Abb. 161: Zusammensetzung der Lackschichten für die Probe **Autolack_B**

10.2.1.3. Autolack_C

Die Messparamter für die Probe **Autolack_C** unterscheiden sich etwas von den bisherigen. Den Startpunkt der Messung bildet wie gehabt die Probenoberfläche. Diese befindet sich bei 7205 μm für die Richtung "samplex". Beendet wurde die Messung bei der Position 7505 μm . Das heißt, dass diesmal insgesamt in eine Tiefe von 300 μm gemessen wurde. Dabei wurden in einem Abstand von jeweils $4\mu m$ 76 Messpunkte mit einer Messzeit von 1000 Sekunden pro Punkt definiert. Das führt auf eine Gesamtmesszeit von 21 Stunden und circa 6 Minuten.

Abb.164 und Abb.165 zeigen das gefittete Summenspektrum dieser Messung in

linearer beziehungsweise logarithmischer Darstellung.

Abb. 162: Gefittetes Summenspektrum Autolack_C (lineare Darstellung) - confocal $\mu {\rm XRF}$

Abb. 163: Gefittetes Summenspektrum Autolack_C (logarithmische Darstellung) - confocal $\mu {\rm XRF}$

Die nachfolgende Tabelle listet alle daraus entstehenden Fit-Flächen und Sigmas auf. Die Elemente, die für diese Probe gefittet wurden, sind Titan, Eisen, Nickel, Kupfer, Zink und Barium.

Element	Linie	Fit-Fläche	Sigma	Element	Linie	Fit-Fläche	Sigma
		[cts]	[cts]			[cts]	[cts]
Ti	Κ	90468	315	Cu	Κ	494,58	23,7
Fe	Κ	$987,\!16$	$33,\!4$	Zn	Κ	67579	260
Ni	Κ	698,33	$27,\!8$	Ba	L	2671,1	121

Tab. 39: Fit-Flächen und Sigma (Autolack_C) - confocal μ XRF

Daraus ergibt sich erneut ein Diagramm, das die Verteilung der Elemente in Abhängigkeit der Probentiefe anzeigt. Diese ist in **Abb.166** zu sehen.

Abb. 164: Zusammensetzung der Lackschichten für die Probe $Autolack_C$

10.2.1.4. Autolack_D

Die Probe **Autolack_D** stellt die letzte Probe dieser Messreihe dar. Die Messbedingungen wurden für diese Probe neu gewählt. Probenoberfläche und damit auch der Startpunkt der Messung wurde für die Probenachse "samplex" bei $4635\mu m$ definiert. Gemessen wurde $160\mu m$ in die Tiefe, sodass der Endpunkt bei $4795\mu m$ gesetzt wurde. Auf dieser Strecke wurden 41 Messpunkte in einem Abstand von $4\mu m$ mit einer Messzeit von jeweils 1000 Sekunden pro Messpunkt untersucht. Daraus folgt eine Gesamtmesszeit von 11 Stunden und etwa 23 Minuten.

Die Messergebnisse werden zunächst in Form des gefitteten Summenspektrums dargestellt. Dieses wird in linearer und logarithmischer Darstellung in den nächsten zwei Abbildungen angeführt.

Abb. 165: Gefittetes Summenspektrum Autolack_D (lineare Darstellung) - confocal $\mu {\rm XRF}$

Abb. 166: Gefittetes Summenspektrum Autolack_D (logarithmische Darstellung) - confocal $\mu {\rm XRF}$

Die nachfolgende Tabelle listet die aus diesem Fit resultierenden Fit-Flächen samt Sigmas auf. Die diesem Fit zugeordneten Elemente sind Kalium, Calcium, Titan, Chrom, Eisen, Nickel, Kupfer, Zink und Barium.

Element	Linie	Fit-Fläche	Sigma	Element	Linie	Fit-Fläche	Sigma
		[cts]	[cts]			[cts]	[cts]
Κ	Κ	177,07	20,3	Ni	Κ	323,72	18,6
Ca	Κ	$86,\!607$	17,1	Cu	Κ	307,2	$17,\!9$
Ti	Κ	71290	275	Zn	Κ	$176,\!46$	$13,\!8$
Cr	Κ	$23,\!093$	10,7	Ba	L	1145,4	$85,\!8$
Fe	Κ	1001,4	32,4				

Tab. 40: Fit-Flächen und Sigma (Autolack_D) - confocal μ XRF

Das Diagramm, das die Zusammensetzung der Lackschichten anzeigt, ist in ${\bf Abb.169}$ zu sehen.

Abb. 167: Zusammensetzung der Lackschichten für die Probe Autolack_D

10.2.2. SD-Karte

Die insgesamt längste Messung im Rahmen dieser Diplomarbeit stellte die Untersuchung einer SD-Karte dar. Ziel dieser Messung war es nicht nur die Oberfläche abzufahren, sondern auch mehrere Ebenen unter dieser zu scanen, um Bilder in Form von Maps der sich unter dem Plastikgehäuse der Karte befindenden Leiterplatten zu erhalten.

Da die gesamte Karte eine für den verwendeten Messaufbau sehr große Fläche darstellt, wurde entschieden, diese auf ungefähr die Hälfte zu reduzieren. So entspricht eine Ebene einer Fläche von 8,5mm * 8,2mm, also insgesamt $69,7mm^2$. Um diese Fläche in regelmäßigen Abständen abzufahren, wurde ein Messraster von $100\mu m$ * $100\mu m$ gewählt, was insgesamt auf 7138 Messpunkte in einer Ebene führt. Bei neun untersuchten Schichten ergibt das 64242 Messpunkte für die gesamte Messung. Der Abstand zwischen den Ebenen beträgt jeweils $15\mu m$, sodass man eine Gesamttiefe von $120\mu m$ untersucht. Die gewählte Messzeit von 15 Sekunden pro Punkt führt auf eine beachtliche Messdauer von 11 Tagen, 3 Stunden und knapp über 40 Minuten.

Alle auf dieser Messung erhaltenen Einzelspektren wurden zu einem Summenspektrum aufsummiert und gefittet. Die Ergebnisse werden in linearer und logarithmischer Form in den nachstehenden Darstellungen abgebildet.

Abb. 168: Gefittetes Summenspektrum SD-Karte (lineare Darstellung) - confocal $\mu {\rm XRF}$

Abb. 169: Gefittetes Summenspektrum SD-Karte (logarithmische Darstellung) - confocal $\mu {\rm XRF}$

Die dazugehörigen Fit-Flächen und Sigmas werden für die gefitteten Elemente in **Tab.41** aufgelistet.

Element	Linie	Fit-Fläche	Sigma	Element	Linie	Fit-Fläche	Sigma
		[cts]	[cts]			[cts]	[cts]
Ca	Κ	6036,5	108	Sr	Κ	20223	154
Fe	Κ	10168	413	Ba	L	310260	583
Co	Κ	3345,4	98,1	W	L	7705,8	365
Ni	Κ	2285600	1550	Au	L	$175320,\!3$	870
Cu	Κ	5923100	2450	Au	Μ	$5333,\!5$	111
Zn	Κ	17053	178	Pb	L	665,22	$53,\!5$
Se	Κ	2677,5	109				

Tab. 41: Fit-Flächen und Sigma (SD-Karte) - confocal $\mu \rm XRF$

Anhand der obigen Tabelle lässt sich erkennen, dass die Elemente Nickel, Kupfer, Barium und Gold die höchsten Intensitäten aufweisen. Daher werden die in Mat-Lab erstellten Maps dieser Elemente in den folgenden Abbildungen von links nach rechts schichtweise dargestellt.

Zunächst werden die für Nickel erzeugten Bilder vorgestellt. Dabei werden lediglich die ersten fünf Schichten angeführt, da auf den weiteren vier keine signifikanten Nickel-Counts detektiert wurden.

Nun folgen in analoger Weise die Kupfer-Maps für alle neun Schichten.

Cu

Abb. 177: surface- $30\mu m$, Cu

Für Barium lieferten lediglich die Messergebnisse der letzten vier Schichten schöne Maps. Diese werden in den Nachfolgenden Darstellungen abgebildet.

Ba

Abb. 186: surface- $105\mu m$, Ba

156

Ba

Abb. 187: surface- $120 \mu m, \text{ Ba}$

Gold hingegen wird in den ersten vier Schichten mit ausreichend hoher Intensität gemessen, um daraus sinnvolle Maps zu erstellen. Diese folgen in den nächsten vier Abbildungen.

Abb. 188: surface, Au

Abb. 189: surface- $15\mu m$, Au

Abb. 190: surface- $30\mu m$, Au

Abb. 191: surface- $45\mu m$, Au

11. Conclusio

In den ersten Schritten der Diplomarbeit erfolge die Charakterisierung der Anlage im nicht-konfokalen, monochromatischen Aufbau. Nach der Justierung folgte in diesem Zusammenhang die Untersuchung zehn teilweise recht unterschiedlicher Standards aus deren Messergebnissen die Nachweisgrenzen für einige ausgewählte Elemente berechnet und zwei Kalibrierkurven erstellt worden sind. Diese Schritte wurden sowohl im konfokalen Aufbau als auch mit einem weiteren, polychromatischen μ XRF Spektrometer mit größerem Strahldurchmesser des Atominstituts durchgeführt. Das ermöglichte einen direkten Vergleich der unterschiedlichen Anlagen untereinander.

Bei der Auswertung dieser Messungen ist aufgefallen, dass zwei der zehn Proben - $NIST_1412$ und SV_R1 - Inhomogenitäten nachweisen. Die Maps, die man aus den Messungen mit dem monochromatischen Spektrometer erhält, zeigen diese Inhomogenitäten für beide Standards deutlich. Die aus den Messungen mit dem polychromatischen Spektrometer gewonnen Maps zeigen diese jedoch nur für die Probe SV_R1 . Begründen lässt sich das durch die unterschiedlich großen Fokusgrößen der Röntgenstrahlen. Die monochromatische Anlage, die eine Fokusgröße von $15\mu m$ aufweist, scant die Messoberfläche in weitaus kleineren Abständen ab, sodass sich genauere Maps erstellen lassen.

Ob wohl durch die Monochromatisierung der anregenden Strahlung eine kleine und definierte Fokusgröße erzielt wird, sollte jedoch nicht außer Acht gelassen werden, dass die Anlage eine geringere Intensität aufweist, da im Gegensatz zum polychromatischen Spektrometer nicht zusätzlich mit dem gesamten Bremsspektrum angeregt wird.

Die Nachweisgrenzen sind für polychromatische Anregung im Allgemeinen niedriger. Das resultiert aus der geringen Intensität, die man in der konfokalen Anordnung erzielen kann. Durch die zweite Kapillare und das damit definierte Strahlenkreuz wird der Bereich, aus dem Fluoreszenzstrahlung detektiert wird, im Vergleich zur Verwendung eines Kollimators beachtlich verkleinert. Für beispielsweise Arsen sind die Nachweisgrenzen jedoch sowohl im nicht-konfokalen Aufbau als auch für die konfokale Anordnung vier mal kleiner als mit polychromatischer Anregung.

Bei der Erstellung der Kalibrierkurven wurde ersichtlich, dass dafür Proben mit fast identischer Matrix erforderlich sind. Nur dann fällt die unterschiedlich starke Absorption der erzeugten Fluoreszenzstrahlung durch die anderen Elemente innerhalb der Probe nicht so stark ins Gewicht. Andernfalls ergeben sich keine brauchbaren Kalibrierkurven, da die fundamentalen Parameter nicht berücksichtigt werden.

Weiters können leichte Elemente mit dem monochromatischen Spektrometer nur schlecht bis gar nicht detektiert werden, da ihre Fluoreszenzstrahlung von Luftmolekülen absorbiert wird, die sich zwischen der Proben und dem Detektor befindet. Eine Heliumspülung könnte helfen, auch leichte Elemente nachzuweisen.

Anhand von einigen Proben, wie dem Gallenstein, der Knochenprobe, den Lackschichten und der SD-Karte, wurde die Leistungsfähigkeit der neuen Anlage gezeigt. Das monochromatische μ XRF Spektrometer weist eine Fokusgröße von $15\mu m$ in 2D-Modus auf. Im 3D-Modus wird eine Voxelgröße von $15^*15^*15\mu m$ erzielt. Durch die verbesserte Auflösung konnte eine Reihe interessanter Anwendungen erfolgreich demonstriert werden.

Literatur

Für die Formulierung der Kapitel 2,3,4,6 und 8 wurden folgende Quellen verwendet:

- M. Haschke. Laboratory Micro-X-Ray Fluorescence Spectroscopy. Springer. 2014
- I. K. Lichtscheidl. Universität Wien. https://www.univie.ac.at/mikroskopie/1_grundlagen/optik/strahlenoptik/ 2a_brechungsgesetz.htm. Zugriff am 20.01.2019
- [3] C.T. Chantler. Detailed Tabulation of Atomic Form Factors, Photoelectric Absorption and Scattering Cross Section, and Mass Attentuation Coefficients in the Vicinity of Absorption Edges in the Soft X-Ray (Z=30-36, Z=60-89, E=0.1 keV-10 keV), Addressing Convergence Issues of Earlier Work. American Institute of Physics. 2001
- [4] W. Demtröder. Experimentalphysik 2. Springer. 2013
- [5] B. Beckhoff, B. Kanngießer, N. Langhoff, R. Wedell, H. Wolff. Practical X-Ray Fluorescence Analysis. Springer. 2006
- [6] Universität Göttingen. Röntgenröhre. https://lp.uni-goettingen.de/get/text/6639. Zugriff am 19.05.2019
- [7] R. Klockenkämper, A. von Bohlen. Total-Reflection X-Ray Fluorescence Analysis and Related Methods. Wiley. 2015
- [8] Arndt Last. x-ray-optics. http://www.x-ray-optics.de/index.php/optiktypen/reflexionsoptiken/kapillaroptiken. Zugriff am 20.01.2019
- [9] R. E. Van Grieken, A. A. Markowicz. Handbook of X-Ray Spectrometry. Dekker. 2001

160

- [10] S. Smolek. Entwicklung eines energiedispersiven Mikro-Röntgenfluoreszenzspektrometers zur Analyse leichter Elemente. Diplomarbeit. 2014
- [11] P. Wobrauschek. Practical Course in X-Ray Analytical Methods. Praktikumsunterlagen und Mitschriften. 2019
- [12] J. Swies. Justierung des monochromatischen, konfokalen $\mu\text{-XRF}$ Spektrometers am ATI. Projektarbeit. 2019
- [13] Wikipedia. Pitch, yaw, and roll. https://simple.wikipedia.org/wiki/Pitch,_yaw,_and_roll#/media/File:6DOF_en. jpg. Zugriff am 19.05.2019
- [14] S. Smolek, B. Pemmer, M. Fölser, C. Streli, P. Wobrauschek. Confocal micro-x-ray fluorescence spectrometer for light element analysis. Review of Scientific Instruments. 2012 https://aip.scitation.org/doi/pdf/10.1063/1.4744934?class=pdf. Zugriff am 14.09.2019
- [15] V.A. Solé, E. Papillon, M. Cotte, Ph. Walter, J. Susini. A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra, Spectrochim. Acta Part B 62 (2007) 63-68
- [16] QXAS 3.6. Quantitative X-ray Analysis System. Developed by International Atomic Energy Agency. Vienna. Austria. 1996

A. Detaillierte Auswertung der Messergebisse der Standards

A.1. Monochromatisches μ XRF Spektrometer

A.1.1. NIST_621

Abb.194 und Abb.195 zeigen das gefittete Summenspektrum der Probe NIST_621.

Abb. 192: Gefittetes Summenspektrum $NIST_621$ (µXRF - lineare Darstellung)

Abb. 193: Gefittetes Summenspektrum $\boldsymbol{NIST_{-}621}~(\mu\text{XRF}$ - logarithmische Darstellung)

Die sich daraus ergebenden Fit-Flächen samt Sigma werden in der nachfolgenden

162

Tabelle zusammengefasst:

Element	Linie	Fit-Fläche	Sigma	Element	Linie	Fit-Fläche	Sigma
		[cts]	[cts]			[cts]	[cts]
Al	K	36,944	16,3	Cu	K	482,22	27,9
Si	Κ	1226,2	38,5	Zn	K	1533,3	43,8
S	Κ	27,877	13,1	As	K	26203	176
Cl	Κ	89,743	14,6	Se	K	333,39	30,8
K	Κ	5441,9	78,8	Rb	K	8849,8	108
Ca	Κ	49981	225	Sr	K	28958	189
Mn	Κ	241,55	21,3	Zr	L	32,115	17,5
Fe	K	3323,2	60,8	Ba	L	1388,7	43,2
Ni	Κ	151,88	23,8	Pb	L	2508,6	106

Tab. 42: Fit-Flächen und Sigma ($NIST_621 - \mu XRF$)

Aus diesem Fit wurden im nächsten Schritt die Elemente-Maps erstellt. Zunächst werden in diesem Zusammenhang die prozentuellen Abweichungen der mittleren Intensität von minimalen und maximalen Wert berechnet. Für Silizium werden nur sehr niedrige Intensitäten gemessen, sodass die Abweichungen über 40% betragen. Strontium hingegen weist Abweichungen von weniger als 9% auf. Die detektierten Counts sind für dieses Elemente entsprechend höher.

	Mittel-	Max-	Min-	Abweichung	Abweichung
	wert $[cts]$	Wert [cts]	Wert [cts]	Max [%]	$Min \ [\%]$
Si	30,61	44,21	$16,\!55$	44,4	45,9
Ca	1358,70	$1585,\!99$	$1173,\!97$	16,7	$13,\!6$
As	$687,\!99$	732,32	$615,\!56$	6,4	10,5
Sr	$794,\!35$	857,57	726, 47	8,0	8,5

Tab. 43: Prozentuelle Abweichugen von den mittleren Counts ($NIST_621$ - $\mu {\rm XRF})$

Interessant ist, dass man für diese Probe sehr schöne Messergebnisse für Strontium erhält, obwohl dieses Element laut zugehörigem Datenblatt in der Probe nicht enthalten ist. Die Maps für Arsen und Strontium folgen in den nächsten zwei Abbildungen. Je höher die gemessene Intensität an einen Messpunkt ist, desto heller wird dieser Punkt in der Map dargestellt; je niedriger die Intensität desto dunkler ist das entsprechende Feld. Es ist darauf hinzuweisen, dass gleich helle Punkte in unterschiedlichen Abbildungen nicht zwingendermaßen die gleiche Intensität haben. Das ist sogar sehr unwahrscheinlich. Die Farbskalierung bezieht sich immer auf das jeweilige Element und ist damit für jede Abbildung eigens erstellt.

Die Maps deuten darauf hin, dass die Probe homogen ist.

Abb. 194: As-Map $(NIST_621 - \mu XRF)$

Abb. 195: Sr-Map ($NIST_621 \mu$ XRF)

A.1.2. NIST_1412

In den folgenden zwei Abbildungen werden die gefitteten Summenspektren aus der Messung der Probe $NIST_1412$ dargestellt. In der PyMca-Datenbank liegt leider ein Fehler vor. Dieser äußert sich dadurch, dass eine Blei-L-Linie an der falschen Stelle im Spektrum auftaucht. Dieser Energie ist in Wahrheit eine Palladium-L-Linie zugeordnet. Es handelt sich dabei wahrscheinlich um eine simple Verwechslung - Pb für Blei, Pd für Palladium.

Abb. 196: Gefittetes Summenspektrum $\boldsymbol{NIST_1412}~(\mu\text{XRF}$ - lineare Darstellung)

Abb. 197: Gefittetes Summenspektrum $\boldsymbol{NIST_1412}~(\mu\text{XRF}$ - logarithmische Darstellung)

Aus diesem Fit ergeben sich folgende Fit-Flächen und Sigmas:

Element	Linie	Fit-Fläche	Sigma	Element	Linie	Fit-Fläche	Sigma
		[cts]	[cts]			[cts]	[cts]
Al	Κ	106,06	24,6	Sr	K	3726400	1950
Si	Κ	$617,\!25$	40,7	Sr	L	469,77	47,7
K	Κ	12991	141	Cd	L	6249	128
Ca	Κ	17771	143	Ba	L	53470	240
Fe	Κ	1954,3	53,5	Pb	L1	134150	545
Ni	Κ	$374,\!33$	37	Pb	L2	1004500	1170
Cu	Κ	876,76	49,4	Pb	L3	1355000	1300

Zn	K	1205300	1100	Pb	M	6808,4	$95,\!9$
Rb	K	2127,2	138				

Tab. 44: Fit-Flächen und Sigma ($NIST_1412 - \mu XRF$)

Mit Hilfe des erstellen Fits wurden die Elemente-Maps erstellt, anhand derer man die Verteilung der Elemente in der Probe beobachten kann. In diesem Sinne wurden die prozentuellen Abweichungen des gemessenen Maximal- und Minimalwertes der Intensität vom Mittelwert berechnet. Die Ergebnisse werden in **Tab.45** zusammengefasst. Aus dieser lässt sich ablesen, dass die Probe an der gemessenen Stelle nicht homogen ist. Die Intensitäten sind für Silizium und Calcium niedrig, sodass große Abweichungen vom Mittelwert nicht ungewöhnlich sind. Für Zink sind diese jedoch ausreichend hoch, sodass Fehler auf Grund der niedrigen Zählrate und damit verbunden eines ungenauen Fits für die einzelnen Messpunkte ausgeschlossen werden können. Die Annahme, dass die Elemente in der Probe inhomogen verteilt sind, wird durch später durchgeführte Messungen im konfokalen Aufbau bestätigt.

	Mittel-	Max-	Min-	Abweichung	Abweichung
	wert [cts]	Wert $[cts]$	Wert [cts]	Max [%]	Min ~[%]
Si	19,58	32,09	19,25	63,9	1,7
Ca	483,53	$556,\!08$	$425,\!47$	15,0	12,0
Zn-K	$33500,\!65$	37227,90	$32174,\!50$	11,1	4,0
Ba-L	1455, 17	1349,23	1584, 49	7,3	8,9
Pb-L	69700,85	74801,92	$67243,\!56$	7,3	$3,\!5$
Sr-K	103638,60	106869,00	$101698,\!00$	3,1	1,9

Tab. 45: Prozentuelle Abweichugen von den mittleren Counts ($NIST_-1412$ - $\mu {\rm XRF})$

Es folgen die erstellten Maps für Barium, Blei und Strontium. Für Blei wurde die Map für die L₃-Linie gewählt, da sie von den Blei-L-Linien die höchsten Intensitäten aufweist.

A.1.3. Probe_A

Probe_A stellt eine der zwei Bronzeproben dar. Die Einzelspektren aus der durchgeführten Messung wurden zu einem Summenspektrum hochaddiert, das in den nächsten zwei Abbildungen in linearer und logarithmischer Darstellung gezeigt wird. Da nur Kupfer, Silber, Zinn und Blei in der Probe enthalten sein sollten, wurden nur diese Elemente gefittet.

Abb. 201: Gefittetes Summenspektrum $Probe_A$ (μ XRF - lineare Darstellung)

Abb. 202: Gefittetes Summenspektrum **Probe_A** (μ XRF - logarithmische Darstellung)

Die sich aus diesem Fit ergebenden Fit-Flächen und Sigmas sind in **Tab.46** aufgelistet.

Element	Linie	Fit-Fläche	Sigma	Element	Linie	Fit-Fläche	Sigma
		[cts]	[cts]			[cts]	[cts]
Cu	Ka	142240000	11900	Sn	L3	109880	388
Cu	Kb	22789000	4780	Sn	М	1473,2	101
Ag	L1	10587	246	Pb	L1	475750	971
Ag	L2	14901	246	Pb	L2	2652600	1890
Ag	L3	40100	259	Pb	L3	3086000	1940
Sn	L1	45596	382	Pb	М	59175	293
Sn	L2	71232	402				

Tab. 46: Fit-Flächen und Sigma ($Probe_A - \mu XRF$)

Aus diesem Fit wurden die dazugehörigen Maps für die Messung erstellt. Da der Hauptbestandteil der Probe Kupfer ist, werden an dieser Stelle nur die prozentuellen Abweichungen der Minimal- und Maximalintensitäten in Bezug auf den Mittelwert angegeben. Diese liegen unter 3%. Damit wird die Annahme bestätigt, dass es sich hierbei um eine homogenen Probe handelt. Auf der Map selbst, die in **Abb.205** dargestellt wird, ist die Struktur der Probe zu erkennen, da deren Oberfläche nicht fein poliert ist.

	Mittel-	Max-	Min-	Abweichung	Abweichung
	wert [cts]	Wert $[cts]$	Wert [cts]	Max ~[%]	Min [%]
Cu	374639,90	381644,60	365563,30	1,9	2,4

Tab. 47: Prozentuelle Abweichugen von den mittleren Counts ($Probe_A - \mu XRF$)

Es wird an dieser Stelle die Kupfer-K_{\alpha}-Map angeführt, da sie die höheren Intensitäten aufweist.

Abb. 203: Cu-Map $(Probe_A \mu XRF)$

A.1.4. Probe_B

An dieser Stelle werden die Ergebnisse der Messung von $Probe_B$, des zweiten Bronzestandards, vorgestellt. Es folgen die gefitteten Summenspektren in linearer und logarithmischer Darstellung in Abb.206 und Abb.207.

Abb. 204: Gefittetes Summenspektrum $Probe_B$ (μ XRF - lineare Darstellung)

Abb. 205: Gefittetes Summenspektrum $\pmb{Probe_B}~(\mu \text{XRF}$ - logarithmische Darstellung)

Daraus ergeben sich folgende Fit-Flächen und Sigmas:

Element	Linie	Fit-Fläche	Sigma	Element	Linie	Fit-Fläche	Sigma
		[cts]	[cts]			[cts]	[cts]
Cu	Ka	121180000	11000	Sn	L3	268960	558
Cu	Kb	19522000	4430	Sn	М	1254,5	99,5
Ag	L1	6556,5	220	Pb	L1	582090	1030
Ag	L2	7952,2	209	Pb	L2	3297600	2080
Ag	L3	24334	224	Pb	L3	3793200	2140
Sn	L1	110860	511	Pb	М	54121	282
Sn	L2	167860	558				

Tab. 48: Fit-Flächen und Sigma (**Probe_B** - μ XRF)

Mit Hilfe des erstellen Fits werden Maps für die in der Probe vorkommenden Elemente erstellt. Für die weitere Bestimmung der Nachweisgrenzen ist in dieser Probe nur Kupfer von Bedeutung, sodass in der nachfolgenden Tabelle die prozentuellen Abweichungen des Maximal- und Minimalwertes von dem Mittelwert der Intensität angeführt werden und die dazugehörige Kupfer-Map. Auf Grund der geringen Intensitätsschwankungen kann davon ausgegangen werden, dass **Probe_B** homogen ist.

	Mittel-	Max-	Min-	Abweichung	Abweichung
	wert [cts]	Wert [cts]	Wert [cts]	Max [%]	Min [%]
Cu	318990,00	329836,90	307177,70	3,4	3,7

Tab. 49: Prozentuelle Abweichugen von den mittleren Counts ($Probe_B - \mu XRF$)

Es wird die Kupfer- K_{α} -Map angeführt, da sie die höchsten Intensitäten aufweist und daher die anschaulichste Darstellung ist. Auch bei dieser Probe ist die Struktur der Probenoberfläche in der Map zu erkennen, da die Probe nicht fein poliert ist.

Abb. 206: Cu-Map $(Probe_B \mu XRF)$

A.1.5. SV_R1

Die aus der Messung erhaltenen gefitteten Summenspektren von Probe SV_R1 werden in den zwei nachfolgenden Abbildungen dargestellt. Diese Probe hat, wie man bereits in **Tab.50** ablesen kann, eine unter den anderen Standards einzigartige Matrix. Sie setzt sich aus Nickel, Zinn, Titan und Zirkon zusammen (siehe Anhang **B.2.**). Keine andere der Probe hat eine vergleichbare Matrix.

Abb. 207: Gefittetes Summenspektrum SV_R1 (μ XRF - lineare Darstellung)

Abb. 208: Gefittetes Summenspektrum $\boldsymbol{SV_R1}$ (
 μXRF - logarithmische Darstellung)

Im Spektrum wurde für Yttrium nur die K_{α} -Linie zugewiesen, da die K_{β} -Linie mit rund 16,74keV so weit rechts im Energiespektrum liegt, dass diese für den Fit nicht relevant ist. Daraus ergeben sich folgende Fit-Flächen und Sigmas:

Element	Linie	Fit-Fläche	Sigma	Element	Linie	Fit-Fläche	Sigma
		[cts]	[cts]			[cts]	[cts]
Ti	K	2207400	1500	Zr	L	21080	186
Fe	K	9664,9	127	Sn	L	1868200	1400
Co	K	377,25	117	Hf	L	340290	670
Ni	K	2427600	1570	Ta	L	45615	455
Zn	K	36280	232	Pb	L	28636	286
Y	K_{α}	33996	271	Bi	L	25794	356

Tab. 50: Fit-Flächen und Sigma ($SV_{-}R1 - \mu XRF$)

Wie anhand von Abb.211 bis Abb.214, die die Verteilung der Elemente in Form von Maps darstellen, zu erkennen ist, liegt die Vermutung nahe, dass diese Probe nicht homogen ist. Spätere Messungen im konfokalen Aufbau und mit dem polychromatischen Spektrometer bestätigen diese Annahme. Die mittleren Abweichungen der minimalen und maximalen Counts vom Mittelwert der für die Berechnung der Nachweisgrenze relevanten Elemente werden in der nächsten Tabelle aufgelistet:

	Mittel-	Max-	Min-	Abweichung	Abweichung
	wert [cts]	Wert [cts]	Wert [cts]	Max ~[%]	$Min \ [\%]$
Sn	4183,17	4721,64	3645,99	12,9	12,8
Ti	4985,03	6332,62	4119,92	27,0	17,4
Ni	5486,93	14157,70	1781,46	158,0	67,5
Zr	43,74	81,98	18,05	87,4	58,7

Tab. 51: Prozentuelle Abweichugen von den mittleren Counts ($\pmb{SV_R1}$ - $\mu \rm XRF)$

Die prozentuellen Abweichungen vom Mittelwert liegen für die meisten der in der obigen Tabelle angeführten Elemente weit über 10%. Anhand der Maps - besonders **Abb.211** und **Abb.213** - lassen sich Flecken mit deutlich höherer Intensität erkennen. Die Probe ist eindeutig inhomogen.

Abb. 209: Ni-Map (**SV_R1**µXRF)

Abb. 210: Sn-Map (**SV_R1**μXRF)

Abb. 211: Ti-Map $(SV_{-}R1 - \mu XRF)$

Abb. 212: Zr-Map (**SV_R1**μXRF)

A.1.6. SV_V1

In diesem Unterkapitel werden die Messergebnisse von Probe SV_V1 vorgestellt. Aus den Einzelspektren aller Messpunkte wurde ein gefittetes Summenspektrum erstellt, das in den nächsten zwei Abbildungen in linearer und logarithmischer Darstellung angeführt wird.

Abb. 213: Gefittetes Summenspektrum SV_V1 (μ XRF - lineare Darstellung)

Abb. 214: Gefittetes Summenspektrum $\boldsymbol{SV_{-}V1}$ (
 μXRF - logarithmische Darstellung)

Aus diesem Fit wurden folgende Fit-Flächen samt ihren Sigmas berechnet. An dieser Stelle ist zu erwähnen, dass für die Elemente Rubidium und Strontium lediglich die K_{α} -Linien gefittet wurden, da die K_{β} -Linien so weit rechts im Spektrum liegen, dass sie nicht mehr sinnvoll gefittet werden können.

Element	Linie	Fit-Fläche	Sigma	Element	Linie	Fit-Fläche	Sigma
		[cts]	[cts]			[cts]	[cts]
Si	Κ	1205,3	38,2	Ni	L	581,3	26,4
Κ	Κ	23762	161	Zn	Κ	3576700	1890
Ca	Κ	9281,7	104	As	Κ	1393,9	44,3
Ti	Κ	298,72	23,7	Se	Κ	145830	384
Fe	Κ	2154,1	54	Rb	K_{α}	1070	40,9
Со	Κ	$297,\!46$	76	Sr	K_{α}	1302,6	46,2
Ni	Κ	$686,\!82$	41	Cd	L	874,21	$52,\!6$

Tab. 52: Fit-Flächen und Sigma ($SV_-V1 - \mu XRF$)

Mit der Erstellung der zugehörigen Maps wurden auch die prozentuellen Abweichungen der gemessenen maximalen und minimalen Intensität vom Mittelwert berechnet. Für Kalium, Silizium und Calcium sind die gemessenen Zählraten so gering, dass größere Abweichungen erwartet werden. Mit niedrigen Intensitäten geht auch ein schlechterer Fit einher, der den Effekt der Intensitätsschwankungen verstärkt. Die Ergebnisse sind in der nächsten Tabelle zusammengefasst:

	Mittel-	Max-	Min-	Abweichung	Abweichung
	wert [cts]	Wert [cts]	Wert [cts]	Max ~[%]	$Min \ [\%]$
Zn	$99339,\!95$	100102,00	98532,00	0,8	0,8
K	$645,\!39$	690,78	574,64	7,0	11,0
Si	29,01	43,18	19,88	48,8	31,5
Ca	$241,\!62$	278,03	199,68	15,1	17,4
Se	4011,00	4110,73	$3890,\!47$	2,5	3,0

Tab. 53: Prozentuelle Abweichugen von den mittleren Counts ($SV_V1 - \mu XRF$)

Die Elemente, für welche die prozentuellen Abweichungen weniger als 10% betragen, werden nun angeführt. Das trifft auf Zink und Selen zu.

 $(SV_-V1 - \mu XRF)$

Abb. 216: Zn-Map $(\boldsymbol{SV}_{-}\boldsymbol{V1}_{-} \mu \text{XRF})$

A.1.7. SV_W1

Die Messergebnisse der Probe SV_W1 werden in Form der gefitteten Summenspektren in linearer und logarithmischer Darstellung in Abb.219 und Abb.220 abgebildet.

Abb. 217: Gefittetes Summenspektrum $\boldsymbol{SV_{-}W1}$ (
 μXRF - lineare Darstellung)

Abb. 218: Gefittetes Summenspektrum $\pmb{SV}_-\pmb{W1}~(\mu\text{XRF}$ - logarithmische Darstellung)

Daraus ergeben sich folgende Fit-Flächen und Sigmas:

Element	Linie	Fit-Fläche	Sigma	Element	Linie	Fit-Fläche	Sigma
		[cts]	[cts]			[cts]	[cts]
Si	K	19471	151	Cu	K	2294800	1540
S	Κ	553, 15	55,5	Zn	K	44100	237
Cl	Κ	893,83	57	Ge	K	1065	86
K	Κ	120230	365	As	K	21181	178
Ca	Κ	378340	622	Br	K	3495,5	130
Ti	Κ	4215,1	83,4	Kr	K	22271	210
Cr	Κ	106730	333	Rb	K	12856	200

Fe	K	31719	203	Sr	K	71938	353
Ni	K	$5804,\!4$	136	Y	Κ	34298	349

Tab. 54: Fit-Flächen und Sigma ($SV_-W1 - \mu XRF$)

Mit Hilfe dieses Fits wurden die dazugehörigen Maps der enthaltenen Elemente erstellt. Zunächst wurde in diesem Zusammenhang, wie schon bei den Proben davor, die Abweichung der maximalen und minimalen gemessenen Intensität vom Mittelwert in Prozent berechnet. Dabei waren lediglich die Zählraten von Kupfer hoch genug, damit diese Abweichungen nicht allzu hoch ausfallen. Die restlichen Intensitäten waren zu niedrig, um in den Einzelspektren ausreichend genau gefittet zu werden. Die Ergebnisse dieser Berechnung werden in der nachstehenden Tabelle zusammengefasst.

	Mittel-	Max-	Min-	Abweichung	Abweichung
	wert $[cts]$	Wert [cts]	Wert [cts]	Max [%]	Min [%]
Ca	848,03	967,28	746,28	14,1	12,0
Cr	217,10	$287,\!36$	161,89	32,4	25,4
Cu	5268,02	$5491,\!94$	$5044,\!60$	4,3	4,2
K	262,00	$336,\!03$	204,71	28,3	21,9
Si	40,16	$67,\!08$	$19,\!34$	67,0	51,8

Tab. 55: Prozentuelle Abweichungen von den mittleren Counts ($SV_W1 - \mu XRF$)

Die Kupfer-Map wird in Abb.221 abgebildet.

Abb. 219: Cu-Map $(\mathbf{SV}_{-}\mathbf{W1} - \mu XRF)$

A.1.8. SV_X1

Es folgen nun die Ergebnisse der Messung von SV_X1 . In diesem Zusammenhang werden die gefitteten Summenspektren dieser Messungen in linearer und logarithmischer Darstellung angegeben. Sie sind in den nachfolgenden zwei Abbildungen zu sehen.

Abb. 220: Gefittetes Summenspektrum SV_X1 (μ XRF - lineare Darstellung)

Abb. 221: Gefittetes Summenspektrum $\boldsymbol{SV}_{-}\boldsymbol{X1}$ (
 μXRF - logarithmische Darstellung)

Aus diesem Fit werden die Fit-Flächen und Sigmas der enthaltenen Elemente berechnet. Sie können **Tab.56** entnommen werden.

Element	Linie	Fit-Fläche	Sigma	Element	Linie	Fit-Fläche	Sigma
		[cts]	[cts]			[cts]	[cts]
Si	K	19536	151	Cu	K	5590700	2540
S	K	358,52	56,3	Zn	K	78185	313
Cl	K	1219,2	62,9	As	K	28375	199
Κ	K	112990	354	Se	K	11750	150
Ca	K	374770	619	Br	K	314,35	116
Ti	K	3406	79,8	Kr	K	28499	229
Fe	K	28575	208	Rb	K	8582,4	181
Со	K	301240	577	Sr	K	52193	317
Ni	K	14069	212	Y	K	32662	343

Tab. 56: Fit-Flächen und Sigma ($SV_X1 - \mu XRF$)

Die Maps erweisen nur für Kupfer eine homogenen Oberfläche, bei der die Abweichungen der minimalen und maximalen gemessenen Intensitäten lediglich um rund 3% von dem Mittelwert abweichen. Die Zählraten für Calcium, Cobalt, Kalium und Silizium sind nicht hoch genug, um jeden Messpunkt korrekt zu fitten. Daher ergeben sich gröbere Schwankungen in den Abweichungen. Die Ergebnisse werden in den nachfolgenden Tabelle aufgelistet.

	Mittel-	Max-	Min-	Abweichung	Abweichung
	wert $[cts]$	Wert [cts]	Wert [cts]	Max [%]	Min [%]
Ca	829,28	919,65	746,51	10,9	10,0
Co	$652,\!54$	743,76	585,76	14,0	10,2
Cu	$12726,\!66$	13123,80	12390,20	3,1	2,6
K	$245,\!85$	297,00	183,75	20,8	25,3
Si	$39,\!88$	61,26	$16,\!66$	$53,\!6$	58,2

Tab. 57: Prozentuelle Abweichungen von den mittleren Counts ($SV_X1 - \mu XRF$)

Für Kupfer wird die dazugehörige Map in Abb.224 gezeigt.

Abb. 222: Cu-Map $(SV_X1 - \mu XRF)$

A.1.9. SV_Y1

Auch für diese Messung wurden die Summenspektren gefittet. In den nächsten zwei Abbildungen werden die Spektren in linearer und logarithmischer Darstellung abgebildet.

Abb. 223: Gefittetes Summenspektrum $SV_{-}Y1$ (μ XRF - lineare Darstellung)

Abb. 224: Gefittetes Summenspektrum $\boldsymbol{SV_{-}Y1}~(\mu\text{XRF}$ - logarithmische Darstellung)

Daraus ergeben sich folgenden Fit-Flächen und Sigmas:

Element	Linie	Fit-Fläche	Sigma	Element	Linie	Fit-Fläche	Sigma
		[cts]	[cts]			[cts]	[cts]
Si	K	18687	149	Cu	Κ	8948300	3350
S	K	473,91	57,7	Zn	Κ	65367	294
Cl	K	1053	61	Ge	Κ	496,26	81,4
K	K	116530	358	As	Κ	29648	201
Ca	K	377220	621	Br	Κ	2985,3	126
Ti	K	4179,8	85,3	Kr	Κ	26623	219
Cr	K	70188	274	Rb	Κ	8542,1	180
Fe	K	30707	212	Sr	Κ	59466	333
Ni	K	26215	205	Y	K	33855	334

Tab. 58: Fit-Flächen und Sigma ($SV_Y1 - \mu XRF$)

Mit diesem Fit werden die dazugehörigen Maps der Elemente erstellt. Aus den Berechnungen der Abweichungen der minimalen und maximalen gemessenen Intensitäten von deren Mittelwert kann die Annahme getroffen werden, dass die Probe homogen ist. Die Abweichungen sind zwar lediglich für Kupfer klein, die Zählraten der anderen Elemente sind jedoch zu niedrig um für jeden einzelnen Messpunkt richtig gefittet zu werden. Die Ergebnisse folgen in der nächsten Tabelle:

	Mittel-	Max-	Min-	Abweichung	Abweichung
	wert $[cts]$	Wert [cts]	Wert [cts]	Max [%]	$Min \ [\%]$
Ca	834,72	924,51	748,57	10,8	10,3
Cr	$140,\!38$	186,88	$86,\!63$	33,1	38,3
Cu	$20352,\!35$	$20771,\!30$	19980,70	2,1	1,8
Κ	252,70	304,40	179,28	20,5	29,1
Si	38,72	$65,\!44$	$16,\!21$	69,0	58,1

Tab. 59: Prozentuelle Abweichungen von den mittleren Counts ($SV_{-}Y1 - \mu XRF$)

Die zugehörige Kupfer-Map ist in Abb.227 zu sehen.

Abb. 225: Cu-Map $(\mathbf{SV}_{-}\mathbf{Y1} - \mu \text{XRF})$

A.1.10. SV_Z1

Die letzte Probe der Messreihe stellt SV_Z1 dar. Wie schon in den Proben davor, wurde auch hier ein Summenspektrum erstellt und in weiterer Folge gefittet. Das gefittete Spektrum ist in linearer und logarithmischer Darstellung in Abb.228 und Abb.229 ersichtlich.

Abb. 226: Gefittetes Summenspektrum SV_Z1 (μ XRF - lineare Darstellung)

Abb. 227: Gefittetes Summenspektrum $\boldsymbol{SV}_\boldsymbol{Z1}$ (
 μXRF - logarithmische Darstellung)

Für jedes gefittete Element werden Fit-Flächen samt zugehörigem Sigma berechnet. Die Ergebnisse sind gelistet in **Tab.60** vorzufinden:

Element	Linie	Fit-Fläche	Sigma	Element	Linie	Fit-Fläche	Sigma
		[cts]	[cts]			[cts]	[cts]
Si	К	1001,6	36,5	Cu	K	1019,9	41,1
S	K	60,456	16,3	Zn	K	837730	917
Cl	K	103,67	17,4	Ga	K	2707,5	61,5
Κ	K	15082	128	Ga	L	231,05	$25,\!6$
Ca	K	12645	118	As	K	22,823	62,7
Ti	K	392,77	25,9	Se	K	5181,1	79
V	K	55,115	17,3	Rb	K	21995	168

Cr	Κ	181,61	19,4	Sr	Κ	3837,5	80
Mn	Κ	$337,\!49$	24,7	Υ	Κ	2960,7	112
Fe	Κ	8724,9	97	Pb	L	1712	102
Ni	Κ	315,23	27				

Tab. 60: Fit-Flächen und Sigma ($SV_Z1 - \mu XRF$)

Für die mit diesem Fit erstellten Maps der Elemente erhält man für Zink als einziges Element Abweichungen der minimalen und maximalen Intensität vom Mittelwert von weniger als 2%. Wie schon in einigen Proben zuvor sind die Zählraten für die restlichen Elemente zu niedrig, sodass sich gröbere Abweichungen ergeben. **Tab.61** beinhaltet alle berechneten Abweichungen in Prozent.

	Mittel-	Max-	Min-	Abweichung	Abweichung
	wert [cts]	Wert [cts]	Wert [cts]	Max [%]	Min [%]
Zn	23238,43	23540,60	22930,60	1,3	1,3
K	401,90	433,80	351,79	7,9	12,5
Si	$25,\!37$	42,20	16,13	66,3	36,4
Ca	326,22	$376,\!15$	$275,\!97$	15,3	15,4

Tab. 61: Prozentuelle Abweichungen von den mittleren Counts ($SV_Z1 - \mu XRF$)

In der nachfolgenden Abbildung wird die Zink-Map dieser Messung angezeigt. Für dieses Element waren die Schwankungen am geringsten und es ist ein guter Repräsentant der homogenen Probe.

Abb. 228: Zn-Map (**SV**_**Z**1μXRF)

A.2. Monochromatisches μ XRF Spektromter - konfokaler Aufbau

A.2.1. NIST_621

In den nächsten zwei Abbildungen sind die gefitteten Summenspektren der Probe **NIST_621** zu sehen. Vergleicht man diese Spektren mit **Abb.231** und **Abb.232** so kann man bereits auf den ersten Blick erkennen, dass sich die Spektren deutlich von einander unterscheiden. Um nochmal auf die geringen Zählraten im konfokalen Aufbau hinzuweisen, sind beispielsweise die Calcium-Peaks in der linearen Darstellung zu vergleichen. Wie man in **Tab.43** ablesen kann, beträgt die Fit-Fläche für Calcium bei 66150 Sekunden Messzeit fast 50000 Counts. **Tab.62** zeigt, dass im konfokalen Aufbau für Calcium bei der selben Messzeit lediglich circa 27000 Counts detektiert werden, was in etwa 53% der gemessenen Counts im nicht konfokalen Aufbau sind.

Abb. 229: Gefittetes Summenspektrum $NIST_621$ (confocal μ XRF - lineare Darstellung)

186

Abb. 230: Gefittetes Summenspektrum $\boldsymbol{NIST_621}$ (confocal μXRF - logarithmische Darstellung)

Es folgt nun die Tabelle mit den daraus resultierenden Fit-Flächen und Sigmas.

Element	Linie	Fit-Fläche	Sigma	Element	Linie	Fit-Fläche	Sigma
		[cts]	[cts]			[cts]	[cts]
K	Κ	3198,7	62,9	As	K	2519,9	54,2
Ca	К	26653	166	Se	K	32,553	8,91
Mn	Κ	122,91	18,4	Rb	K	306,8	19
Fe	К	2010,5	47,5	Sr	K	734,08	29,7
Ni	Κ	620,5	27,2	Zr	L	144,38	$25,\!6$
Cu	К	487,11	24,5	Ba	L	1142,3	45
Zn	K	433,33	22,8	Pb	L	$311,\!95$	29

Tab. 62: Fit-Flächen und Sigma (**NIST_621 - confocal** μXRF)

Bevor die Maps dargestellt werden, werden die prozentuellen Abweichungen der Minimal- und Maximalintensitäten in Bezug auf den errechneten Mittelwert der Intensitäten angegeben. Im Vergleich zum gewöhnlichen, monochromatischen Aufbau sind diese sehr groß, sodass man - wie bereits erwähnt - nicht feststellen kann, ob die untersuchte Probe an der Messstelle homogen ist oder nicht.

	Mittel-	Max-	Min-	Abweichung	Abweichung
	wert [cts]	Wert [cts]	Wert [cts]	Max ~[%]	Min [%]
Ca	46,89	76,91	20,05	64,0	57,3
As	4,54	12,63	0,01	178,3	99,7
Sr	2,26	8,57	0,00	278,4	99,9

Tab. 63: Prozentuelle Abweichungen von den mittleren Counts (NIST_621 - confocal μXRF)

Da Calcium die geringsten Abweichungen aufweist, wird nun die dazugehörige Map vorgestellt.

Abb. 231: Ca-Map $(NIST_621$ confocal μ XRF)

A.2.2. NIST_1412

Wie bereits bei den Proben zuvor, werden zunächst die Summenspektren in linearer und logarithmischer Darstellung angeführt.

Abb. 232: Gefittetes Summenspektrum $\boldsymbol{NIST_1412}$ (confocal μXRF - lineare Darstellung)

Abb. 233: Gefittetes Summenspektrum $\pmb{NIST_1412}$ (confocal μXRF - logarithmische Darstellung)

Aus dem eben dargestellten Fit ergeben sich folgende Fit-Flächen und Sigmas:

Element	Linie	Fit-Fläche	Sigma	Element	Linie	Fit-Fläche	Sigma
		[cts]	[cts]			[cts]	[cts]
Κ	Κ	6868,1	102	Sr	L	33,805	24,3
Ca	Κ	9002,7	103	Cd	L	3872,3	92,4
Fe	Κ	1309,6	40,9	Ba	L	34584	193
Ni	Κ	664,73	31,4	Pb	L1	9419,3	150
Cu	Κ	627	32,2	Pb	L2	37184	263
Zn	Κ	289770	540	Pb	L3	176110	453

Rb	K	132,62	27,9	Pb	M	1866,2	54,4
Sr	K	121980	355				

Tab. 64: Fit-Flächen und Sigma ($NIST_1412 - confocal \ \mu XRF$)

Die prozentuellen Abweichungen der minimalen und maximalen Intensitäten vom errechneten Mittelwert sind wie erwartet ziemlich groß. Sie wurden aus dem Fit des Summenspektrums berechnet und werden in **Tab.65** zusammengefasst.

	Mittel-	Max-	Min-	Abweichung	Abweichung
	wert $[cts]$	Wert [cts]	Wert [cts]	$Max \ [\%]$	$\operatorname{Min}\ [\%]$
Ca	15,92	$28,\!67$	4,22	80,1	73,5
Zn	$598,\!20$	$919,\!33$	313,00	53,7	47,7
Ba	$56,\!13$	86,32	31,64	53,8	$43,\!6$
Pb	442,84	808,99	147,84	82,7	$66,\!6$
Sr	$241,\!49$	$435,\!60$	68,97	80,4	71,4

Tab. 65: Prozentuelle Abweichungen von den mittleren Counts ($NIST_1412 - confocal \ \mu XRF$)

Abb.236 und Abb.237 zeigen die aus dem Fit des Summenspektrums erstellten Zink- und Blei-Maps. Anhand dieser ist deutlich erkennbar, dass die Probe inhomogen ist. Das wurde bereits in der zuvor im nicht-konfokalen, monochromatischen Aufbau durchgeführten Messung vermutet und hat sich hiermit bestätigt. Abb.237 zeigt die Blei-L₃-Linie, da diese die höchsten Intensitäten aufweist und daher als Repräsentant gewählt wurde.

Abb. 234: Zn-Map ($NIST_1412$ confocal μ XRF)

Abb. 235: Pb-L₃-Map ($NIST_1412$ confocal μ XRF)

TU Bibliotheks Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfügbar. WLEN vourknowledge hub The approved original version of this thesis is available in print at TU Wien Bibliothek.

A.2.3. Probe_A

Es folgen nun die Messergebnisse des ersten der zwei Bronzestandards. Das gefittete Summenspektrum wird in **Abb.238** in linearer und in **Abb.239** in logarithmischer Darstellung angezeigt. Es wurden lediglich die Elemente Kuper, Silber, Zinn und Blei gefittet, da das die Hauptbestandteile der Probe sind und der Fokus der Nachweisgrenzen auf Kupfer liegt.

Abb. 236: Gefittetes Summenspektrum $Probe_A$ (confocal μ XRF - lineare Darstellung)

Abb. 237: Gefittetes Summenspektrum $\pmb{Probe}_-\pmb{A}$ (confocal $\mu {\rm XRF}$ - logarithmische Darstellung)

Daraus ergeben sich folgende Fit-Flächen und Sigmas:

Element	Linie	Fit-Fläche	Sigma	Element	Linie	Fit-Fläche	Sigma
		[cts]	[cts]			[cts]	[cts]
Cu	Ka	10460000	3240	Sn	L3	6416,9	97,8
Cu	Kb	1413300	1190	Sn	M	94,784	$31,\!3$
Ag	L1	441,01	65,8	Pb	L1	18337	194
Ag	L2	790,64	64,8	Pb	L2	65246	327
Ag	L3	1571,3	60,4	Pb	L3	148250	427
Sn	L1	2601,6	96,5	Pb	M	1870	62,9
Sn	L2	3289,3	99,8				

Tab. 66: Fit-Flächen und Sigma (**Probe_A** - confocal μXRF)

Da die Probe hauptsächlich aus Kupfer besteht sind die prozentuellen Abweichungen der Maximal- und Minimalintensitäten vom berechneten Mittelwert entsprechend niedrig. Die nachfolgende Tabelle beinhaltet alle diesbezüglich berechneten Werte.

	Mittel-	Max-	Min-	Abweichung	Abweichung
	wert [cts]	Wert [cts]	Wert [cts]	$Max \ [\%]$	Min [%]
Cu	26956,40	28073,73	25888,63	4,1	4,0

Tab. 67: Prozentuelle Abweichungen von den mittleren Counts (**Probe_A - con**focal μXRF)

Die dazugehörige Kupfer- K_{α} -Map wird in **Abb.240** dargestellt.

Abb. 238: Cu-K $_{\alpha}$ -Map ($Probe_{-}A$ confocal μ XRF)

192

A.2.4. Probe_B

Dieses Kapitel beinhaltet die Messergebnisse des zweiten Bronzestandards **Pro-** be_B . Zunächst werden die gefitteten Summenspektren in linearer und logarithmischer Darstellung angeführt. Diese sind unter **Abb.241** und **Abb.242** zu finden. Wie bereits bei **Probe_A** wurden lediglich die Elemente Kupfer, Silber, Zinn und Blei gefittet.

Abb. 239: Gefittetes Summenspektrum $\pmb{Probe_B}$ (confocal μXRF - lineare Darstellung)

Abb. 240: Gefittetes Summenspektrum $\pmb{Probe_B}$ (confocal $\mu {\rm XRF}$ - logarithmische Darstellung)

In der nachfolgenden Tabelle sind die aus diesem Fit resultierenden Fit-Flächen und Sigmas der vier zugeordneten Elemente aufgelistet:

Element	Linie	Fit-Fläche	Sigma	Element	Linie	Fit-Fläche	Sigma
		[cts]	[cts]			[cts]	[cts]
Cu	Ka	9146900	3060	Sn	L3	15040	137
Cu	Kb	1259100	1120	Sn	M	117,17	$28,\!6$
Ag	L1	328,46	60,5	Pb	L1	18135	189
Ag	L2	$517,\!15$	56,8	Pb	L2	74681	341
Ag	L3	764,91	51,2	Pb	L3	187890	472
Sn	L1	6170	127	Pb	M	1569,8	59
Sn	L2	8426,9	136				

Tab. 68: Fit-Flächen und Sigma (**Probe_B** - confocal μXRF)

Auch bei diesem Bronzestandard liegen die prozentuellen Abweichungen der minimalen und maximalen Intensitäten vom errechneten Mittelwert unter 10%, da diese Probe ebenfalls fast ausschließlich aus Kupfer besteht und somit auch bei der niedrig gewählten Messdauer pro Messpunkt ausreichend viele Counts detektiert werden. Die Abweichungen werden in der nachstehenden Tabelle aufgelistet.

	Mittel-	Max-	Min-	Abweichung	Abweichung
	wert [cts]	Wert $[cts]$	Wert [cts]	$Max \ [\%]$	Min [%]
Cu	23567,27	25118,40	21614,84	6,6	8,3

Tab. 69: Prozentuelle Abweichungen von den mittleren Counts (**Probe_B** - confocal μXRF)

Die dazugehörige Kupfer- K_{α} -Map wird in **Abb.243** dargestellt. In dieser Abbildung erkennt man erneut die Rillen in der Probenoberfläche.

Abb. 241: Cu-K_{α}-Map ($Probe_B$ confocal μ XRF)

A.2.5. SV_R1

Nun werden die Messergebnisse eines der Glasstandards vorgestellt. Wie bereits erwähnt, ist die Matrix dieser Probe mit keiner anderen untersuchten Probe vergleichbar. SV_R1 setzt sich aus Nickel, Zinn, Titan und Zirkon zusammen (siehe Anhang **B.3.**). In den nachfolgenden zwei Abbildungen werden die gefitteten Summenspektren linear und logarithmisch dargestellt.

Abb. 242: Gefittetes Summenspektrum $\boldsymbol{SV}_{-}\boldsymbol{R1}$ (confocal μXRF - lineare Darstellung)

Abb. 243: Gefittetes Summenspektrum $\boldsymbol{SV_R1}$ (confocal μXRF - logarithmische Darstellung)

Daraus ergeben sich folgende Fit-Flächen und Sigmas für die Messung dieser Probe:

Element	Linie	Fit-Fläche	Sigma	Element	Linie	Fit-Fläche	Sigma
		[cts]	[cts]			[cts]	[cts]
Ti	K	123360	355	Zr	L	263,25	34,2
Fe	K	475,01	29,4	Sn	L	80143	291
Co	K	466,25	37	Hf	L	17451	152
Ni	K	144140	383	Ta	L	1510,1	$99,\!6$
Zn	K	3999,3	71,3	Pb	L	316,07	$35,\!6$
Y	K_{α}	1204,3	40,4	Bi	L	265,3	48,5
Y	L	101,82	34,5	Th	L	72,009	$28,\!6$

Tab. 70: Fit-Flächen und Sigma ($SV_{-}R1 - confocal \ \mu XRF$)

Die Yttrium- K_{β} -Linie liegt so weit rechts im Spektrum (circa 16,74keV), dass es für die Auswertung des Spektrums keine Rolle spielt. Daher wurde diese im Fit nicht ergänzt. Aus diesem Fit wurden im nächsten Schritt die zugehörigen Elemente-Maps erstellt. Dabei ergaben sich folgende prozentuellen Abweichungen der minimalen und maximalen gemessenen Intensitäten vom errechneten Mittelwert:

	Mittel-	Max-	Min-	Abweichung	Abweichung
	wert [cts]	Wert [cts]	Wert [cts]	Max ~[%]	Min [%]
Sn	142,17	205,03	91,50	44,2	35,6
Ti	250,10	364,55	197,12	45,8	21,2
Ni	290,68	950,00	60,99	226,8	79,0
Zr	1,69	6,78	0,01	300,2	99,6

Tab. 71: Prozentuelle Abweichungen von den mittleren Counts ($SV_R1 - con-focal \ \mu XRF$)

Die prozentuellen Abweichungen sind also relativ hoch, sodass man allein anhand der Abweichungen die Homogenität nicht bestimmen könnte. Die aus dem Fit erzeugten Maps bestätigen jedoch die Annahme, dass die Probe SV_R1 Inhomogenitäten aufweist. Man kann die Nickel-, Zinn-, Titan- und Zirkon-Maps den nachfolgenden Abbildungen entnehmen. Nickel und Titan scheinen besonders inhomogen verteilt zu sein.

Abb. 244: Ni-Map ($SV_{-}R1$ confocal μ XRF)

Abb. 245: Sn-Map (SV_R1 confocal μ XRF)

Addau 384 551 200 834 937 117

Abb. 246: Ti-Map (SV_R1 confocal μ XRF)

Abb. 247: Zr-Map (SV_R1 confocal μ XRF)

A.2.6. SV_V1

Es werden an dieser Stelle die Messergebnisse der Probe SV_-V1 zusammengefasst. Dafür werden zunächst die gefitteten Summenspektren in linearer und logarithmischer Darstellung angeführt:

Abb. 248: Gefittetes Summenspektrum $\pmb{SV}_{-}\pmb{V1}$ (confocal $\mu {\rm XRF}$ - lineare Darstellung)

198

Abb. 249: Gefittetes Summenspektrum SV_-V1 (confocal $\mu {\rm XRF}$ - logarithmische Darstellung)

Tab.72 listet die sich daraus ergebenden Fit-Flächen und Sigmas der gefitteten Elemente auf.

Element	Linie	Fit-Fläche	Sigma	Element	Linie	Fit-Fläche	Sigma
		[cts]	[cts]			[cts]	[cts]
Κ	Κ	11722	115	As	K	220,9	17,7
Ca	Κ	4253,3	73,4	Se	K	15228	124
Ti	Κ	$220,\!98$	24,4	Rb	K_{α}	68,039	$10,\!4$
Fe	Κ	1178,5	40,5	Со	K	$187,\!04$	44,3
Sr	K_{α}	52,416	12	Ni	K	$851,\!51$	36,4
Ni	L	62,172	20	Cd	L	$501,\!88$	44,2
Zn	Κ	965000	983				

Tab. 72: Fit-Flächen und Sigma ($SV_-V1 - confocal \ \mu XRF$)

Aus diesem Fit wurden die Element-Maps erstellt, für welche zunächst die prozentuellen Abweichungen der minimalen und maximalen Intensitäten vom berechneten Mittelwert dieser Intensitäten ermittelt wurden. Diese Abweichungen werden in der nachfolgenden Tabelle aufgelistet. Die kleinsten Abweichungen ergeben sich für Zink. Die restlichen für die Berechnung der Nachweisgrenzen relevanten Elemente weisen zu niedrige Intensitäten auf, sodass die Abweichungen viel höher sind.

	Mittel-	Max-	Min-	Abweichung	Abweichung
	wert [cts]	Wert [cts]	Wert [cts]	Max ~[%]	$Min \ [\%]$
Zn	2114,73	2279,05	1854,22	7,8	12,3
K	19,70	$35,\!55$	5,53	80,5	71,9
Ca	8,54	17,67	0,64	106,8	92,5
Se	$25,\!63$	39,76	13,83	55,1	46,1

Tab. 73: Prozentuelle Abweichungen von den mittleren Counts ($SV_-V1 - con-focal \ \mu XRF$)

Da für Zink die Abweichungen am geringsten sind, wird die diesem Element entsprechende Map in der nächsten Abbildung angezeigt.

Abb. 250: Zn-Map $(\textbf{SV}_{-}\textbf{V1}_{-}$ confocal $\mu \text{XRF})$

A.2.7. SV_W1

An dieser Stelle werden die Ergebnisse der Messung von Probe SV_W1 angeführt. Zunächst wird in diesem Zusammenhang die lineare und logarithmische Darstellung der gefitteten Summenspektren abgebildet:

Abb. 251: Gefittetes Summenspektrum $\pmb{SV}_-\pmb{W1}$ (confocal $\mu {\rm XRF}$ - lineare Darstellung)

Abb. 252: Gefittetes Summenspektrum $\pmb{SV}_-\pmb{W1}$ (confocal $\mu {\rm XRF}$ - logarithmische Darstellung)

Die aus diese Fit resultierenden Fit-Flächen und Sigmas werden in der nachfolgenden Tabelle gelistet. Die erhaltenen Intensitäten sind allgemein sehr niedrig.

Element	Linie	Fit-Fläche	Sigma	Element	Linie	Fit-Fläche	Sigma
		[cts]	[cts]			[cts]	[cts]
K	Κ	3664,5	66,4	Cu	K	45195	213
Ca	Κ	10293	105	Zn	K	640,93	28,9
Ti	Κ	217,07	23,5	As	K	211,3	15,9
Cr	Κ	$4551,\!6$	70,2	Kr	K	111,02	13

Fe	K	1091,1	39	Rb	K	$67,\!085$	$10,\!6$
Ni	K	640,44	33,4	Sr	Κ	$168,\!67$	17,5

Tab. 74: Fit-Flächen und Sigma ($SV_-W1 - confocal \ \mu XRF$)

Die prozentuellen Abweichungen der Minimal- und Maximalintensität von dem berechneten Mittelwert sind **Tab.75** zu entnehmen. Diese sind auf Grund der geringen Zählraten relativ groß.

	Mittel-	Max-	Min-	Abweichung	Abweichung
	wert [cts]	Wert [cts]	Wert [cts]	Max ~[%]	Min [%]
Ca	16,67	36,07	4,84	116,3	70,9
Cr	8,26	19,12	$1,\!65$	131,4	80,0
Cu	79,50	121,37	43,60	52,7	45,2
K	7,08	19,43	0,72	174,5	89,8

Tab. 75: Prozentuelle Abweichungen von den mittleren Counts ($SV_W1 - con-focal \ \mu XRF$)

Die niedrigsten Abweichungen werden für Kupfer aufgezeichnet. Daher ist die dazugehörige Kupfer- K_{α} -Map in der nachfolgenden Abbildung zu finden.

Abb. 253: Cu-Map (SV_-W1 confocal μ XRF)

A.2.8. SV_X1

Es folgen, analog zu den bisherigen Proben, zunächst die gefitteten Summenspektren in linearer und logarithmischer Darstellung in Abb.256 und Abb.257.

Abb. 254: Gefittetes Summenspektrum $\boldsymbol{SV}_{-}\boldsymbol{X1}$ (confocal μXRF - lineare Darstellung)

Abb. 255: Gefittetes Summenspektrum $\boldsymbol{SV}_{-}\boldsymbol{X1}$ (confocal μXRF - logarithmische Darstellung)

Daraus ergeben sich die in der nachstehenden Tabelle zusammengefassten Fit-Flächen und Sigmas. Diese werden in Counts angegeben.

Element	Linie	Fit-Fläche	Sigma	Element	Linie	Fit-Fläche	Sigma
		[cts]	[cts]			[cts]	[cts]
Κ	K	4697,7	74	Zn	K	1205,2	38,6
Ca	K	14089	122	As	K	232,75	16,7
Ti	K	287,56	24,8	Se	K	$95,\!281$	$11,\!9$
Fe	K	1096,5	42,2	Kr	K	137,01	$14,\! 6$
Co	K	9666,8	10,5	Rb	K	$32,\!958$	8,46
Ni	K	864,51	41,9	Sr	K	139,91	16,3
Cu	Κ	113440	338				

Tab. 76: Fit-Flächen und Sigma ($SV_X1 - confocal \ \mu XRF$)

Die sich aus diesem Fit ergebenden Maps ermöglichen es die prozentuellen Abweichungen der gemessenen Minimal- und Maximalwerte der Intensität in Bezug auf den berechneten Mittelwert zu bestimmen. Diese werden in **Tab.77** angegeben. Silizium wurde im Gegensatz zur gewöhnlichen, monochromatischen Messung nicht gefittet und ist somit nicht in der Liste vorhanden, da die Intensitäten selbst im Summenspektrum zu niedrig waren, um dieses Element zu fitten. Für Silizium wurden keine Counts detektiert.

	Mittel-	Max-	Min-	Abweichung	Abweichung
	wert $[cts]$	Wert [cts]	Wert [cts]	Max ~[%]	Min [%]
Ca	22,71	43,58	4,24	91,9	81,3
Co	$15,\!85$	27,10	$6,\!57$	70,9	58,5
Cu	$224,\!13$	273,51	145, 19	22,0	35,2
Κ	8,75	20,43	2,60	133,4	70,4

Tab. 77: Prozentuelle Abweichungen von den mittleren Counts ($SV_X1 - con-focal \ \mu XRF$)

Die niedrigsten Abweichungen ergaben sich für Kupfer, sodass nun die Abbildung der Kupfer-K_{α}-Map folgt.

Abb. 256: Cu-K_{α}-Map (SV_X1 confocal μ XRF)

A.2.9. SV_Y1

Die Messreihe wird mit der Probe SV_-Y1 fortgeführt. Hierfür wird zunächst das gefittete Summenspektrum linear und logarithmisch dargestellt.

Abb. 257: Gefittetes Summenspektrum $\pmb{SV}_{-}\pmb{Y1}$ (confocal $\mu {\rm XRF}$ - lineare Darstellung)

Abb. 258: Gefittetes Summenspektrum $\boldsymbol{SV}_{-}\boldsymbol{Y1}$ (confocal μXRF - logarithmische Darstellung)

Aus dem Fit für das Summenspektrum werden die dazugehörigen Fit-Flächen und Sigmas berechnet. Diese finden sich in **Tab.78** aufgelistet.

Element	Linie	Fit-Fläche	Sigma	Element	Linie	Fit-Fläche	Sigma
		[cts]	[cts]			[cts]	[cts]
Κ	Κ	4318,8	70,9	Zn	K	856,9	34,9
Ca	K	12865	117	Ge	K	$48,\!667$	10,5
Ti	K	305,74	24,3	As	Κ	$248,\!11$	$17,\!3$
Cr	K	3397,5	60,3	Kr	Κ	116,16	13,1
Fe	K	1312,7	42,4	Rb	Κ	$64,\!549$	10
Ni	Κ	1142,9	45,1	Sr	Κ	180,06	16,9
Cu	K	182800	432				

Tab. 78: Fit-Flächen und Sigma (SV_-Y1 - confocal μXRF)

Auch für diese Probe wurden die prozentuellen Abweichungen der Maximal- und Minimalintensitäten in Bezug zu den berechneten Mittelwerten der Intensität berechnet und in einer Tabelle zusammengefasst. Diese wird nun angeführt:

	Mittel-	Max-	Min-	Abweichung	Abweichung
	wert [cts]	Wert [cts]	Wert [cts]	Max [%]	Min [%]
Ca	20,81	40,72	7,14	95,6	65,7
Cr	6,38	$15,\!43$	0,16	141,9	97,5
Cu	372,91	431,04	262,59	$15,\!6$	29,6
K	8,03	16,88	0,22	110,2	97,3

Tab. 79: Prozentuelle Abweichungen von den mittleren Counts ($SV_-Y1 - con-focal \ \mu XRF$)

Kupfer weist die geringsten Abweichungen der Minima und Maxima vom Mittelwert auf, sodass nun die Kupfer-Map in **Abb.261** dargestellt wird.

Abb. 259: Cu-K $_{\alpha}$ -Map ($SV_{-}Y1$ confocal μ XRF)

A.2.10. SV_Z1

Die letzte Probe der Messreihe stellt SV_Z1 dar. Auch hier werden zunächst die linearen und logarithmischen Darstellungen des gefitteten Summenspektrums angeführt.

Abb. 260: Gefittetes Summenspektrum $\boldsymbol{SV}_\boldsymbol{Z1}$ (confocal μXRF - lineare Darstellung)

Abb. 261: Gefittetes Summenspektrum $\boldsymbol{SV}_\boldsymbol{Z1}$ (confocal μXRF - logarithmische Darstellung)

Daraus ergeben sich folgende Fit-Flächen und Sigmas:

Element	Linie	Fit-Fläche	Sigma	Element	Linie	Fit-Fläche	Sigma
		[cts]	[cts]			[cts]	[cts]
Κ	К	7430,5	91,6	Ga	К	479,29	26,1
Ca	K	5560,1	81,4	Ga	L	96,038	19,4
Ti	K	255,73	24,1	As	Κ	54,061	18
Mn	K	267,61	23	Se	K	$384,\!37$	21,7
Fe	K	4513,4	70,3	Rb	Κ	731,98	30,4
Ni	K	646,22	29,6	Sr	K	243,26	17,8

Cu	Κ	615,76	29,4	Pb	L	112,1	25,7
Zn	Κ	188520	435				

Tab. 80: Fit-Flächen und Sigma ($SV_Z1 - confocal \ \mu XRF$)

Für die prozentuellen Abweichungen der Maximal- und Minimalintensitäten vom berechneten Mittelwert ergeben sich für die für die Nachweisgrenzen relevanten Elemente folgende Werte:

	Mittel- wert [cts]	Max- Wert [cts]	Min- Wert [cts]	Abweichung Max [%]	Abweichung Min [%]
Zn	380,70	436,22	325,81	$14,\!6$	14,4
Κ	$13,\!41$	25,09	3,58	87,1	73,3
Ca	$10,\!33$	20,22	4,42	$95,\!6$	57,2

Tab. 81: Prozentuelle Abweichungen von den mittleren Counts (SV_Z1 - $confo-cal\ \mu XRF)$

Da sich die niedrigsten Abweichungen für Zink ergeben, folgt unter **Abb.264** die dazugehörige Map.

Abb. 262: Cu-K_{α}-Map (SV_Z1 confocal μ XRF)

A.3. Polychromatisches μ XRF Spektrometer

A.3.1. NIST_621

Zunächst wird das gefittete Summenspektrum mit 66150 Sekunden Gesamtmesszeit in linearer und logarithmischer Darstellung angeführt. Dieses ist in Abb.265 und Abb.266 ersichtlich.

Abb. 263: Gefittetes Summenspektrum $\boldsymbol{NIST_621}$ (poly μXRF - lineare Darstellung)

Abb. 264: Gefittetes Summenspektrum $\boldsymbol{NIST_{-}621}$ (poly μXRF - logarithmische Darstellung)

Das hier gezeigte Spektrum unterscheidet sich vor allem durch den deutlich erkennbaren, höheren Hintergrund. Da sich der Aufbau in einem Gehäuse befindet, in welchem ein Vakuum herrscht, sodass die erzeugte Röntgenfluoreszenz an der Luft nicht absorbiert wird, und da der Detektor ein ultradünnes Polymerfenster aufweist, ist es, wie die gefitteten Summenspektren und auch **Tab.82** zeigen, möglich die K-Linien von leichten Elementen bis hin zu Neon zu detektieren. Das ist mit dem monochromatischen μ XRF Spektrometer nicht möglich gewesen.

Für die 66150	Sekunden lang	ge Messung	; ergeben	sich f	folgende	Fit-Flächen	und Si	g-
mas:								

Element	Linie	Fit-Fläche	Sigma	Element	Linie	Fit-Fläche	Sigma
		[cts]	[cts]			[cts]	[cts]
Ne	K	82687	398	Cu	К	5191,8	242
Na	Κ	55215	398	As	K	23737	407
Al	К	47709	651	Rb	K	5897,4	220
Si	Κ	2048400	1800	Sr	K	12815	231
S	Κ	7349,6	448	Zr	L	10437	219
Cl	Κ	20751	491	Rh	L	111820	655
K	Κ	188570	657	Ba	L	19073	284
Ca	Κ	1511600	1550	Pb	L	5229	523
Mn	K	3130,9	217	Pb	M	7192,7	559
Fe	K	32655	283				

Tab. 82: Fit-Flächen und Sigma ($NIST_621 - poly \ \mu XRF \ (66150s)$)

Nun werden die prozentuellen Abweichungen der gemessenen maximalen und minimalen Intensitäten von dem errechneten Mittelwert vorgestellt. Wie anhand von **Tab.83** ersichtlich ist, sind die Zählraten für Silizium und Calcium ausreichend hoch, um davon auszugehen, dass weder statistische Messungenauigkeiten, noch ein nicht ausreichend passender Fit auf Grund niedriger Zählrate, große Abweichungen verursachen können. Sofern die Probe homogen ist - und davon wird auf Grund der vorhergehenden zwei Messungen an der monochromatischen Anlage ausgegangen - sollten die Abweichungen nicht hoch sein. Wie der Tabelle jedoch entnommen werden kann, liegen diese in Bezug auf das Intensitätsminimum bei fast 20%.

	Mittel-	Max-	Min-	Abweichung	Abweichung
	wert [cts]	Wert [cts]	Wert [cts]	Max [%]	Min [%]
Si	42962,02	44173,90	34521,10	2,8	19,6
Ca	31434,26	32447,30	25921,60	3,2	17,5
As	450,98	650,90	180,53	44,3	60,0
Sr	424,66	$568,\!01$	321,62	33,8	24,3

Tab. 83: Prozentuelle Abweichungen von den mittleren Counts ($NIST_621 - po-ly \ \mu XRF \ (66150s)$)

Wie **Tab.84** jedoch zeigt, ist der Punkt mit der minimalen Intensität ein Ausreißer. Ersetzt man den in der obigen Tabelle angeführten Punkt mit dem Intensitätsminimum durch den Messpunkt mit der zweit niedrigsten Intensität, so reduzieren sich die prozentuellen Abweichung auf knapp 3% und weniger. Man kann also davon ausgehen, dass die Probe homogen ist.

	Mittel-	Max-	Min-	Abweichung	Abweichung
	wert $[cts]$	Wert [cts]	Wert [cts]	Max ~[%]	$\operatorname{Min}[\%]$
Si	42962,02	44173,90	41999,70	2,8	2,2
Ca	31434,26	32447,30	30541,10	$3,\!2$	2,8

Tab. 84: Prozentuelle Abweichungen von den mittleren Counts mit neuem Minimum ($NIST_621 - poly \ \mu XRF \ (66150s)$)

Für die kürzere Messung mit einer Messzeit von je 150 Sekunden pro Messpunkt wurden die Summenspektren mit dem zuvor erstellten Fit für das Summenspektrum der insgesamt 66150 Sekunden langen Messung gefittet. Dabei ergeben sich folgende Fit-Flächen und Sigmas:

Element	Linie	Fit-Fläche	Sigma	Element	Linie	Fit-Fläche	Sigma
		[cts]	[cts]			[cts]	[cts]
Ne	K	189,15	94,8	Cu	K	1043,5	81,5
Na	K	7310,4	136	As	K	2774,4	136
Al	K	6517,6	227	Rb	K	1024,7	74,3
Si	K	233460	604	Sr	K	1958,7	79
S	K	567,92	154	Zr	L	1339,9	72,7
Cl	K	2630	168	Rh	L	11649	222
K	K	20484	223	Ba	\mid L	2733,5	93

Ca	Κ	170030	516	Pb	L	1109	175
Mn	Κ	583,5	73,5	Pb	М	418,57	194
Fe	Κ	4248,3	95,8				

Tab. 85: Fit-Flächen und Sigma (NIST_621 - poly µ-XRF (7350s))

Die prozentuellen Abweichungen der Maximal- und Minimalintensitäten vom errechneten Mittelwert ergeben sich zu:

	Mittel-	Max-	Min-	Abweichung	Abweichung
	wert [cts]	Wert [cts]	Wert [cts]	Max [%]	Min [%]
Si	4857,016	5129,33	4510,73	5,6	7,1
Ca	3529,974	$3705,\!97$	$3277,\!27$	5,0	7,2
As	45,67261	$105,\!438$	0,163229	130,9	99,6
Sr	67,54606	105,771	$37,\!6381$	$56,\!6$	44,3

Tab. 86: Prozentuelle Abweichungen von den mittleren Counts mit neuem Minimum ($NIST_621 - poly \ \mu XRF$ (7350s))

Diese Tabelle macht noch einmal deutlich, dass sich kürzere Messzeiten und damit einhergehend niedrigere Zählraten negativ auf die prozentuellen Abweichungen auswirken. Diese sind im Allgemeinen weiterhin niedrig, sind jedoch fast doppelt so groß wie für eine Gesamtmesszeit von 66150 Sekunden.

Nun werden die Maps für Silizium und Calcium beider Messungen gegenübergestellt. Auf der linken Seite ist immer die Map der langen Messung und auf der rechten Seite jene der kurzen Messung zu sehen. Die Darstellungen sind unter **Abb.267** und **Abb.268** zu sehen.

Abb. 265: Si-Maps ($NIST_621$ -poly μ XRF)

Abb. 266: Ca-Maps $(\boldsymbol{NIST_621}\text{-}\mathrm{poly}\ \mu\mathrm{XRF})$

A.3.2. NIST_1412

Auch für die Probe $NIST_1412$ werden zunächst die gefitteten Summenspektren der 66150 Sekunden langen Messung in linearer und logarithmischer Darstellung angeführt. Sie sind in Abb.269 und Abb.270 zu sehen.

Abb. 267: Gefittetes Summenspektrum $\boldsymbol{NIST_1412}$ (poly μXRF - lineare Darstellung)

214

Abb. 268: Gefittetes Summenspektrum $\boldsymbol{NIST_1412}$ (poly μXRF - logarithmische Darstellung)

Die aus dem Fit resultierenden Fit-Flächen und Sigmas für das Summenspektrum werden in **Tab.87** aufgelistet.

Element	Linie	Fit-Fläche	Sigma	Element	Linie	Fit-Fläche	Sigma
		[cts]	[cts]			[cts]	[cts]
Ne	Κ	5136,9	244	Ni	K	13264	399
Na	Κ	34190	315	Cu	K	28063	427
Mg	Κ	52256	354	Zn	K	2235400	1580
Al	Κ	147110	490	As	K	126650	1220
Si	Κ	979210	1060	Rb	K	1334,1	300
S	Κ	2946,1	785	Sr	K	1594200	1310
Cl	Κ	2406,4	598	Rh	L	113790	776
Κ	Κ	336360	867	Cd	L	143870	844
Ca	Κ	390750	793	Ba	L	591770	980
Mn	Κ	5729,7	371	Pb	L	1379600	1810
Fe	Κ	29846	411				

Tab. 87: Fit-Flächen und Sigma (NIST_621 - poly µXRF (66150s))

Aus diesem Fit werden die dazugehörigen Elemente-Maps erstellt. Bevor diese angezeigt werden, sollen in der nachfolgenden Tabelle die prozentuellen Abweichungen der maximalen und minimalen Intensität vom errechneten Mittelwert einiger Elemente zusammengefasst werden.

	Mittel-	Max-	Min-	Abweichung	Abweichung
	wert [cts]	Wert [cts]	Wert [cts]	Max ~[%]	$Min \ [\%]$
Si	20049,69	21455,60	18731,70	7,0	6,6
Ca	8077,01	8919,81	7464,62	10,4	7,6
Zn	45913,89	48623,90	42289,40	5,9	7,9
Ba	12289,13	13396,40	11367,70	9,0	7,5
Pb	27787,42	$29554,\!80$	25401,50	6,4	8,6
Sr	32706, 93	33650, 10	31139,90	2,9	4,8

Tab. 88: Prozentuelle Abweichungen von den mittleren Counts ($NIST_1412 - poly \ \mu XRF \ (66150s)$)

Wie man der Tabelle entnehmen kann, liegen die Abweichungen praktisch aller Elemente der auf Grund der hohen Zählraten innerhalb von 10%. Durch die Evaluierung der Messdaten, die für das monochromatische Spektrometer erstellt worden sind, ist bekannt, dass die Probe Inhomogenitäten in der Verteilung der Elemente entlang der Probenoberfläche aufweist. Da die Fokusgröße der polychromatischen Anlage jedoch deutlich größer ist, ist es mit Hilfe der Maps diesmal nicht möglich, diese Annahme zu bestätigen. Der Abstand zwischen den einzelnen Messpunkten, der durch die Fokusgröße definiert wird, ist in diesem Fall zu groß. Die entsprechenden Maps sind nach der Zusammenfassung der Messergebnisse der kurzen Messung zu finden.

Der Fit, der für das Summenspektrum der langen Messung erstellt worden ist, wurde auch als Fit für die kurze Messung von 7350 Sekunden Gesamtmesszeit verwendet. Hier ergeben sich folgenden Fit-Flächen und Sigmas:

Element	Linie	Fit-Fläche	Sigma	Element	Linie	Fit-Fläche	Sigma
		[cts]	[cts]			[cts]	[cts]
Ne	K	616,89	81,9	Ni	K	2261,9	136
Na	K	3823,1	106	Cu	K	3426,8	144
Mg	K	5712,7	118	Zn	K	251200	530
Al	K	16642	166	As	K	12718	413
Si	K	109580	356	Rb	K	463,48	101
S	K	777,7	269	Sr	K	178060	439
Cl	K	341,74	204	Rh	L	13045	264
Κ	K	37922	295	Cd	L	15680	286
Ca	K	42976	264	Ba	L	66302	328
Mn	K	940,12	126	Pb	$\mid L$	152410	608

Fe F	K	4038,6	140				
------	---	--------	-----	--	--	--	--

Tab. 89: Fit-Flächen und Sigma ($NIST_1412 - poly \ \mu XRF \ (7350s)$)

Für die prozentuellen Abweichungen der Maximal- und Minimalintensitäten von dem errechneten Mittelwert ergeben sich folgende Werte:

	Mittel-	Max-	Min-	Abweichung	Abweichung
	wert [cts]	Wert [cts]	Wert [cts]	$Max \ [\%]$	Min [%]
Si	2260,631	$2523,\!67$	1990,2	11,6	12,0
Ca	$902,\!2853$	$1017,\!91$	717,777	12,8	20,4
Zn	5205,358	$5685,\!35$	4823,63	9,2	7,3
Ba	1428,542	1712,2	1228,1	19,9	14,0
Pb	3068,331	3403, 16	2879,29	10,9	6,2
Sr	3653,597	$3789,\!59$	3423,26	3,7	6,3

Tab. 90: Prozentuelle Abweichungen von den mittleren Counts ($NIST_1412 - poly \ \mu XRF \ (7350s)$)

Auch hier gehen mit kürzerer Messzeit niedrigere Zählraten und damit größere prozentuelle Abweichungen einher.

Die Maps von Zink und Strontium werden in den nachfolgenden drei Abbildungen gepaart für die lange und kurze Messung angegeben.

Abb. 269: Zn-Maps $(\boldsymbol{NIST_1412}\text{-}\mathrm{poly}\ \mu\mathrm{XRF})$

Abb. 270: Sr-Maps $(\boldsymbol{NIST_1412}\text{-}\mathrm{poly}\ \mu\mathrm{XRF})$

A.3.3. Probe_A

Es folgen die Messergebnisse von **Probe_A**. Dazu werden zunächst die gefitteten Summenspektren in linearer und logarithmischer Form in **Abb.273** und **Abb.274** dargestellt. Das Summenspektrum ergibt sich aus den aufsummierten Einzelspektren der langen Messung, die insgesamt 66150 Sekunden beträgt.

Abb. 271: Gefittetes Summenspektrum $\pmb{Probe}_-\pmb{A}$ (poly $\mu {\rm XRF}$ - lineare Darstellung)

218

Abb. 272: Gefittetes Summenspektrum $\pmb{Probe_A}$ (poly μXRF - logarithmische Darstellung)

Die nachfolgenden Tabelle listet die daraus resultierenden Fit-Flächen und Sigmas auf:

Element	Linie	Fit-Fläche	Sigma	Element	Linie	Fit-Fläche	Sigma
		[cts]	[cts]			[cts]	[cts]
Cu	Ka	16757000	4140	Sn	L3	95687	562
Cu	Kb	2416800	1590	Sn	М	78676	1160
Ag	L1	7058,5	691	Pb	L1	19365	297
Ag	L2	$6866,\! 6$	658	Pb	L2	70074	367
Ag	L3	23272	426	Pb	L3	101880	399
Sn	L1	19216	821	Pb	Μ	77838	445
Sn	L2	44345	784				

Tab. 91: Fit-Flächen und Sigma (**Probe_A - poly** μXRF (66150s))

Aus diesem Fit wurde die Kupfer-Map für den untersuchten Bronzestandard erstellt. Mit dessen Hilfe wurden die prozentuellen Abweichungen der maximalen und minimalen Intensitäten vom errechneten Mittelwert bestimmt. Diese werden in **Tab.92** zusammengefasst.

	Mittel-	Max-	Min-	Abweichung	Abweichung
	wert [cts]	Wert [cts]	Wert $[cts]$	Max ~[%]	Min [%]
Cu	391461,84	401809,90	382767,20	2,6	2,2

Tab. 92: Prozentuelle Abweichungen von den mittleren Counts (**Probe_A - poly** $\mu XRF (66150s)$)

Auch für die kurze Messung von lediglich 7350 Sekunden Gesamtmesszeit wurden die Fit-Flächen und Sigmas berechnet. Die Werte sind der nachfolgenden Tabelle zu entnehmen.

Element	Linie	Fit-Fläche	Sigma	Element	Linie	Fit-Fläche	Sigma
		[cts]	[cts]			[cts]	[cts]
Cu	Ka	1887500	1390	Sn	L3	19171	278
Cu	Kb	269260	531	Sn	M	9094,6	433
Ag	L1	4975,1	396	Pb	L1	2492	95
Ag	L2	3429,9	376	Pb	L2	7952,5	119
Ag	L3	11337	248	Pb	L3	11307	131
Sn	L1	4369,9	423	Pb	M	11546	223
Sn	L2	10439	397				

Tab. 93: Fit-Flächen und Sigma (**Probe_A - poly** μXRF (7350s))

Für die kurze Messung wurden folgende prozentuellen Abweichungen der Maximalund Minimalwerte der Intensität im Vergleich mit den dafür errechneten Mittelwerten berechnet:

	Mittel-	Max-	Min-	Abweichung	Abweichung
	wert [cts]	Wert [cts]	Wert [cts]	Max ~[%]	$\operatorname{Min}\ [\%]$
Cu	44212,44	45280,46	43340,90	2,4	2,0

Tab. 94: Prozentuelle Abweichungen von den mittleren Counts (**Probe_A - poly** $\mu XRF (66150s)$)

Erstaunlicherweise sind diese Abweichungen im Vergleich zur langen Messung sogar etwas geringer. Das liegt vermutlich daran, dass die Probe so gut wie ausschließlich aus Kupfer besteht und somit selbst bei der kürzeren Messdauer die gemessen Zählraten vergleichsweise hoch sind.

Es folgt nun eine Darstellung, welche die Kupfer- K_{α} -Maps der langen und kurzen Messung gegenüber stellt. Die Abstände zwischen den Messpunkten sind wie gehabt 50 μm groß, reichen diesmal jedoch aus, um die gerillte Probenoberfläche des Bronzestandards zu erkennen.

Abb. 273: Cu-K_{α}-Maps (*Probe_A*-poly μ XRF)

A.3.4. Probe_B

Die Messreihe wird mit dem zweiten Bronzestandard $Probe_B$ fortgeführt. An dieser Stelle wird wie gehabt zunächst der Fit des Summenspektrums für die lange Messung in linearer und logarithmischer Darstellung angeführt. Diese sind in Abb.276 und Abb.277 ersichtlich.

Abb. 274: Gefittetes Summenspektrum $\pmb{Probe_B}$ (poly $\mu {\rm XRF}$ - lineare Darstellung)

Abb. 275: Gefittetes Summenspektrum $\pmb{Probe_B}$ (poly $\mu {\rm XRF}$ - logarithmische Darstellung)

Aus den eben vorgestellten Fits wurden folgenden Fit-Flächen und Sigmas für die zugewiesenen Elemente berechnet:

Element	Linie	Fit-Fläche	Sigma	Element	Linie	Fit-Fläche	Sigma
		[cts]	[cts]			[cts]	[cts]
Cu	Ka	17060000	4520	Sn	L3	355880	860
Cu	Kb	2472900	1530	Sn	Μ	64644	1200
Ag	L1	13321	902	Pb	L1	16972	307
Ag	L2	92,846	816	Pb	L2	99145	400
Ag	L3	7275,3	525	Pb	L3	141060	437
Sn	L1	73540	1150	Pb	М	82000	540
Sn	L2	188680	1100				

Tab. 95: Fit-Flächen und Sigma ($Probe_B - poly \ \mu XRF \ (66150s)$)

Daraus wurde die Kupfer-Map erstellt, für welche im ersten Schritt, die prozentuellen Abweichungen der maximalen und minimalen Intensitäten in Bezug auf die berechneten Mittelwerte kalkuliert wurden. Diese sind der nachfolgenden Tabelle zu entnehmen.

	Mittel-	Max-	Min-	Abweichung	Abweichung
	wert [cts]	Wert $[cts]$	Wert [cts]	Max ~[%]	Min [%]
Cu	401861,64	420762,80	389248,70	4,7	3,1

Tab. 96: Prozentuelle Abweichungen von den mittleren Counts (**Probe_B - poly** $\mu XRF (66150s)$)

Die berechneten Fit-Flächen und Sigmas der kurzen Messung werden in **Tab.97** gelistet angeführt.

Element	Linie	Fit-Fläche	Sigma	Element	Linie	Fit-Fläche	Sigma
		[cts]	[cts]			[cts]	[cts]
Cu	Ka	1967100	1530	Sn	L3	38469	274
Cu	Kb	284440	519	Sn	M	7162,2	396
Ag	L1	$399,\!45$	276	Pb	L1	2238,4	103
Ag	L2	$508,\!43$	249	Pb	L2	11317	134
Ag	L3	$632,\!48$	161	Pb	L3	15626	145
Sn	L1	7347,6	358	Pb	M	9807,6	172
Sn	L2	20682	346				

Tab. 97: Fit-Flächen und Sigma (**Probe_B - poly** μXRF (7350s))

Die Werte, die sich für die prozentuellen Abweichungen der maximalen und minimalen Intensitäten von dem errechneten Mittelwert der Intensität ergeben, sind **Tab.98** zu entnehmen.

	Mittel-	Max-	Min-	Abweichung	Abweichung
	wert $[cts]$	Wert $[cts]$	Wert [cts]	Max ~[%]	$\operatorname{Min}[\%]$
Cu	46764,78	49155,84	45025,93	5,1	3,7

Tab. 98: Prozentuelle Abweichungen von den mittleren Counts (**Probe_B - poly** $\mu XRF (7350s)$)

Die resultierenden Kupfer- K_{α} -Maps der langen und kurzen Messung finden sich in Abb.278.

Abb. 276: Cu-K_{α}-Maps (*Probe_B*-poly μ XRF)

A.3.5. SV_R1

Es werden nun die Messergebnisse der Probe SV_R1 zusammengefasst. Zunächst zeigen Abb.279 und Abb.280 das gefittete Summenspektrum der 66150 Sekunden langen Messung in linearer beziehungsweise logarithmischer Form.

Abb. 277: Gefittetes Summenspektrum SV_R1 (poly μ XRF - lineare Darstellung)

TU **Bibliothek**. Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfügbar. WIEN vour knowledge hub. The approved original version of this thesis is available in print at TU Wien Bibliothek.

Abb. 278: Gefittetes Summenspektrum $\pmb{SV_R1}$ (poly $\mu {\rm XRF}$ - logarithmische Darstellung)

Daraus wurden die Fit-Flächen und Sigmas für die zugewiesenen Elemente berechnet. Diese sind in **Tab.99** ersichtlich.

Element	Linie	Fit-Fläche	Sigma	Element	Linie	Fit-Fläche	Sigma
		[cts]	[cts]			[cts]	[cts]
Al	Κ	8919,7	318	Zn	Κ	9705,7	318
Si	Κ	30998	410	Y	Κ	21350	372
Р	Κ	57200	1520	Zr	Κ	3631200	1950
Cl	Κ	31443	684	Zr	L	559060	1770
Κ	Κ	50240	866	Rh	L	142140	916
Ca	Κ	50240	866	Sn	L	2088000	2180
Ti	Κ	2425800	1660	Hf	L	46839	545
Fe	Κ	21717	333	Та	L	36382	584
Co	Κ	7486,1	323	Pb	L	10324	463
Ni	Κ	573980	862	Bi	L	16073	470

Tab. 99: Fit-Flächen und Sigma ($SV_R1 - poly \ \mu XRF \ (66150s)$)

Aus den daraus erstellten Maps für die zugewiesenen Elemente wurden zunächst die prozentuellen Abweichungen der Maximal- und Minimalintensität vom errechneten Mittelwert für einige in der Probe enthaltenen Elemente berechnet. Diese folgen in der nächsten Tabelle.

	Mittel-	Max-	Min-	Abweichung	Abweichung
	wert $[cts]$	Wert [cts]	Wert [cts]	Max [%]	$Min \ [\%]$
Sn	42733,13	45318,70	40906,60	6,1	4,3
Ti	49600,38	53690, 10	46692,00	8,2	5,9
Ni	11849,94	18653, 10	$9079,\!24$	57,4	23,4
Zr	74275,99	$83523,\!60$	70131,80	12,5	$5,\!6$

Tab. 100: Prozentuelle Abweichungen von den mittleren Counts ($SV_R1 - poly \mu XRF (66150s)$)

Für die kürzere der beiden Messungen wurden ebenfalls die Fit-Flächen und Simgas berechnet. Sie sind unter **Tab.101** zu finden.

Element	Linie	Fit-Fläche	Sigma	Element	Linie	Fit-Fläche	Sigma
		[cts]	[cts]			[cts]	[cts]
Al	K	1010,7	97,5	Zn	K	1298	105
Si	K	3580,9	130	Y	K	2819,1	125
Р	K	6221,1	518	Zr	K	421690	664
Cl	K	2292,3	215	Zr	L	65966	601
Κ	K	4570,3	291	Rh	L	15050	291
Ca	K	32176	460	Sn	L	243010	743
Ti	K	281260	562	Hf	L	5415,2	178
Fe	K	2707,9	108	Ta	L	4540,3	193
Co	K	1137,2	105	Pb	L	1360,1	150
Ni	K	65583	289	Bi	L	2110,1	153

Tab. 101: Fit-Flächen und Sigma ($SV_R1 - poly \ \mu XRF \ (7350s)$)

Die sich hier ergebenden prozentuellen Abweichungen der Maximal- und Minimalintensitäten vom Mittelwert werden in der nächsten Tabelle zusammengefasst.

	Mittel-	Max-	Min-	Abweichung	Abweichung
	wert [cts]	Wert [cts]	Wert [cts]	Max [%]	$Min \ [\%]$
Sn	4996,57	5405,72	4681,96	8,2	6,3
Ti	5764,01	6180,42	5359, 15	7,2	7,0
Ni	1379,06	1876,60	992,72	36,1	28,0
Zr	8615,68	9715,76	8478,88	12,8	$1,\!6$

Tab. 102: Prozentuelle Abweichungen von den mittleren Counts ($SV_R1 - poly \mu XRF (7350s)$)

 SV_R1 ist mit Sicherheit eine inhomogene Probe. Auch diese Messung hat das bestätigt. Auf der einen Seite zeigt besonders Nickel trotz der hohen Zählrate sowohl für die lange als auch für die kurze Messung große prozentuelle Abweichungen der maximalen und minimalen Intensitäten vom Mittelwert. Auf der anderen Seite ist die inhomogene Verteilung vor allem für Nickel, Titan und Zirkon in den erstellten Maps ersichtlich. Die Maps werden in den nachfolgenden vier Abbildungen sowohl für die lange als auch für die kurze Messung gezeigt.

Abb. 279: Ni-Maps (SV_R1 -poly μ XRF)

Abb. 280: Ti-Maps $(\boldsymbol{SV}_{\!\!-}\boldsymbol{R1}_{\!\!-}\mathrm{poly}~\mu\mathrm{XRF})$

Abb. 281: Zr-Maps ($\pmb{SV_R1}\text{-poly }\mu\text{XRF})$

Abb. 282: Sn-Maps ($\boldsymbol{SV}_{-}\boldsymbol{R1}$ -poly μ XRF)

A.3.6. SV_V1

Analog zu den vorhergehenden Proben wird auch für SV_V1 zunächst das gefittete Summenspektrum der langen Messung mit 66150 Sekunden Gesamtmesszeit einmal in linearer und einmal in logarithmischer Darstellung gezeigt. Diese Grafiken sind unter Abb.285 und Abb.286 zu sehen.

Abb. 283: Gefittetes Summenspektrum SV_V1 (poly μ XRF - lineare Darstellung)

Abb. 284: Gefittetes Summenspektrum $\pmb{SV}_-\pmb{V1}$ (poly $\mu {\rm XRF}$ - logarithmische Darstellung)

Daraus wurden die Fit-Flächen samt zugehörigen Sigma berechnet. Sie können der nachfolgenden Tabelle entnommen werden.

Element	Linie	Fit-Fläche	Sigma	Element	Linie	Fit-Fläche	Sigma
		[cts]	[cts]			[cts]	[cts]
Ne	Κ	11394	267	Ni	Κ	10255	498
Na	Κ	84803	389	Zn	Κ	7194500	315
Mg	Κ	29830	337	Se	Κ	108000	382
Al	Κ	43522	425	Zr	Κ	11404	193
Si	Κ	1814600	1350	Mo	Κ	9544,3	177
S	Κ	4646,3	505	Rh	L	132320	715
Cl	Κ	2993,3	525	Cd	L	2631,1	675
Κ	Κ	777560	1030	Ba	L	$5247,\!9$	475
Ca	Κ	235460	635	Pb	L	$6755,\!4$	299
Mn	Κ	10146	415	Pb	М	377,74	638
Fe	Κ	43794	476				

Tab. 103: Fit-Flächen und Sigma ($SV_V1 - poly \ \mu XRF \ (66150s)$)

Für die mit diesem Fit erstellten Maps wurden die prozentuellen Abweichungen der maximalen und minimalen Intensitäten vom Mittelwert berechnet und in einer Tabelle zusammengefasst:

	Mittel-	Max-	Min-	Abweichung	Abweichung
	wert [cts]	Wert [cts]	Wert [cts]	Max [%]	Min [%]
Zn	147981,43	151127,00	143482,00	2,1	3,0
K	15982,26	16465, 20	15376, 10	3,0	3,8
Si	$37309,\!82$	38463,70	$36365,\!00$	3,1	2,5
Ca	4929,50	5128, 16	4691, 16	4,0	4,8
Se	2370, 23	2577,72	2202,56	8,8	7,1

Tab. 104: Prozentuelle Abweichungen von den mittleren Counts ($SV_V1 - poly \mu XRF (66150s)$)

Dank der hohen Zählraten liegen die Abweichungen für alle hier angeführten Elemente innerhalb von 10%, sodass davon ausgegangen werden kann, dass es sich hierbei um eine homogenen Probe handelt.

Die selben Schritte wurden auch für die kurze Messung mit jeweils 150 Sekunden pro Messpunkt wiederholt. Daher können auch hier die kalkulierten Fit-Flächen mit den entsprechenden Sigmas in einer Tabelle aufgelistet werden:

Element	Linie	Fit-Fläche	Sigma	Element	Linie	Fit-Fläche	Sigma
		[cts]	[cts]			[cts]	[cts]
Ne	Κ	1136,7	90,7	Ni	Κ	1264	185
Na	Κ	10234	134	Zn	Κ	795380	984
Mg	Κ	4033,6	115	Se	Κ	12262	128
Al	Κ	6591,4	143	Zr	Κ	1564, 1	65
Si	Κ	199310	440	Mo	Κ	1418,9	60,1
S	Κ	718,76	168	Rh	L	14546	239
Cl	Κ	316,24	176	Cd	L	976,79	227
Κ	Κ	85086	343	Ba	L	1894,8	169
Ca	Κ	26088	213	Pb	L	1159	100
Mn	Κ	1706,2	146	Pb	М	$474,\!32$	211
Fe	Κ	4552,5	164				

Tab. 105: Fit-Flächen und Sigma $(SV_V1 - poly \mu XRF (7350s))$

Die prozentuellen Abweichungen der maximalen und minimalen Intensitäten vom errechneten Mittelwert sind diesmal höher als die Werte für die lange Messung. Das liegt erneut daran, dass in diesem Fall deutlich niedrigere Zählraten verzeichnet wurden. Die Abweichungen können **Tab.106** entnommen werden.

	Mittel-	Max-	Min-	Abweichung	Abweichung
	wert $[cts]$	Wert [cts]	Wert [cts]	Max [%]	$Min \ [\%]$
Zn	16660,75	18247,30	$15997,\!20$	9,5	4,0
Κ	$1781,\!88$	$2042,\!44$	$1655,\!53$	14,6	7,1
Si	4143,02	$4864,\!27$	3906, 51	17,4	5,7
Ca	$573,\!87$	$650,\!23$	490,79	13,3	14,5
Se	$272,\!47$	$342,\!17$	$201,\!94$	25,6	25,9

Tab. 106: Prozentuelle Abweichungen von den mittleren Counts ($SV_V1 - poly \mu XRF (7350s)$)

Die Maps für Silizium, Zink und Selen werden in den nächsten drei Abbildungen dargestellt. Dabei finden sich die Ergebnisse für die lange Messung immer direkt neben jenen der kurzen Messung.

Abb. 285: Si-Maps (SV_VI -poly μ XRF)

Abb. 286: Zn-Maps (SV_-V1 -poly μ XRF)

Abb. 287: Se-Maps ($\pmb{SV}_\pmb{V1}\text{-poly }\mu\text{XRF})$

A.3.7. SV_W1

Das gefittete Summenspektrum der langen Messung von Probe SV_-W1 wird in den nächsten zwei Abbildungen in linearer und logarithmischer Form dargestellt.

Abb. 288: Gefittetes Summenspektrum $\pmb{SV}_-\pmb{W1}$ (poly $\mu {\rm XRF}$ - lineare Darstellung)

232

Abb. 289: Gefittetes Summenspektrum SV_-W1 (poly $\mu {\rm XRF}$ - logarithmische Darstellung)

In diesem Zusammenhang werden nun die Fit-Flächen und Sigmas, die sich aus diesem Fit ergeben, in **Tab.107** aufgelistet.

Element	Linie	Fit-Fläche	Sigma	Element	Linie	Fit-Fläche	Sigma
		[cts]	[cts]			[cts]	[cts]
Ne	Κ	12881	255	Mn	Κ	4844,1	288
Na	Κ	85327	383	Fe	Κ	26347	321
Mg	Κ	76029	368	Ni	Κ	10267	302
Al	Κ	100180	407	Cu	Κ	451840	768
Si	Κ	2064200	1470	Zr	Κ	50010	332
S	Κ	4506,1	247	Mo	Κ	11552	241
Cl	Κ	2616,8	445	Rh	L	126490	634
Κ	Κ	303390	697	Cd	L	8352,7	483
Ca	Κ	741570	937	Ba	L	7843,9	307
Cr	Κ	88261	403				

Tab. 107: Fit-Flächen und Sigma $(SV_W1 - poly \mu XRF (66150s))$

Die Maps wurden ebenfalls auf Grundlage dieses Fits erstellt. Anhand dieser wurden die prozentuellen Abweichungen der Maximal- und Minimalintensitäten von deren Mittelwert berechnet. Die daraus entstandenen Werte können der nachfolgenden Liste entnommen werden.

	Mittel-	Max-	Min-	Abweichung	Abweichung
	wert $[cts]$	Wert [cts]	Wert [cts]	$Max \ [\%]$	Min ~[%]
Ca	$15194,\!50$	16006,00	14555,70	5,3	4,2
Cr	$1935,\!99$	$2152,\!89$	1751,09	11,2	$9,\!6$
Cu	$9503,\!29$	$9879,\!96$	9185, 11	4,0	3,3
Κ	6224, 45	6697, 19	5946, 18	7,6	4,5
Si	42169,40	$44398,\!30$	40939,50	5,3	2,9

Tab. 108: Prozentuelle Abweichungen von den mittleren Counts ($SV_-W1 - poly$ $\mu XRF (66150s)$)

Lediglich für Chrom liegen die berechneten Werte knapp über 10%. Die Zählraten sind für dieses Element jedoch vergleichsweise niedrig, sodass diese Abweichung verständlich sind.

Auch für die Messung mit der kürzeren Gesamtmesszeit von 7350 Sekunden wurden die Fit-Flächen und Sigmas berechnet. Diese werden in **Tab.109** aufgelistet.

Element	Linie	Fit-Fläche	Sigma	Element	Linie	Fit-Fläche	Sigma
		[cts]	[cts]			[cts]	[cts]
Ne	Κ	1054,8	80,4	Mn	К	845,83	98,3
Na	Κ	9542,3	127	Fe	Κ	3154,7	109
Mg	Κ	7966,4	119	Ni	K	1325,9	103
Al	Κ	12266	140	Cu	K	52090	260
Si	Κ	237210	498	Zr	K	6068,7	112
S	Κ	649,5	81,6	Mo	K	1702,9	$82,\!9$
Cl	Κ	309,84	149	Rh	L	14575	213
Κ	Κ	35195	237	Cd	L	$961,\!45$	163
Ca	Κ	85171	317	Ba	L	1145,3	102
Cr	Κ	10295	136				

Tab. 109: Fit-Flächen und Sigma $(SV_-W1 - poly \ \mu XRF \ (7350s))$

Die prozentuellen Abweichungen, die sich analog zur langen Messung ergeben, können **Tab.110** entnommen werden.

	Mittel-	Max-	Min-	Abweichung	Abweichung
	wert [cts]	Wert [cts]	Wert $[cts]$	Max [%]	$Min \ [\%]$
Ca	1736,93	1825,60	1615,91	5,1	7,0
Cr	$238,\!20$	283,10	$191,\!59$	18,9	$19,\! 6$
Cu	1132,79	1206, 18	$1002,\!89$	6,5	11,5
Κ	722,01	817,43	$645,\!85$	13,2	10,5
Si	4847,78	$5008,\!08$	4662, 10	3,3	3,8

Tab. 110: Prozentuelle Abweichungen von den mittleren Counts ($SV_-W1 - poly$ $\mu XRF (7350s)$)

Selbst wenn die Abweichungen für die kürzeren Messzeiten größer werden, so liegen sie dennoch in einem Bereich, in dem die Annahme legitim bleibt, dass es sich hierbei um eine homogene Probe handelt.

Die Maps für Silizium, Calcium und Kupfer werden in den nächsten drei Abbildungen angeführt.

Abb. 290: Si-Maps $(\mathbf{SV}_{-}\mathbf{W1}$ -poly μ XRF)

Abb. 291: Ca-Maps $(\boldsymbol{SV}_{-}\boldsymbol{W1}\text{-poly }\mu\text{XRF})$

Abb. 292: Cu-Maps $(\boldsymbol{SV}_{-}\boldsymbol{W1}\operatorname{-poly}\,\mu\mathrm{XRF})$

A.3.8. SV_X1

Die gefitteten Summenspektren der Probe SV_X1 werden in Abb.295 in linearer und in Abb.296 in logarithmischer Darstellung abgebildet.

Abb. 293: Gefittetes Summenspektrum SV_X1 (poly μ XRF - lineare Darstellung)

Abb. 294: Gefittetes Summenspektrum $\pmb{SV}_\pmb{X1}$ (poly $\mu {\rm XRF}$ - logarithmische Darstellung)

Daraus ergeben sich folgenden Fit-Flächen und Sigmas:

Element	Linie	Fit-Fläche	Sigma	Element	Linie	Fit-Fläche	Sigma
		[cts]	[cts]			[cts]	[cts]
Ne	К	9862,4	281	Fe	K	27447	328
Na	Κ	72935	419	Co	K	112370	456
Mg	Κ	47590	451	Ni	K	84,446	374
Al	Κ	24995	570	Cu	K	1116200	1230
Si	Κ	2072200	1710	Zr	K	53012	305
S	Κ	4249,3	250	Mo	K	32825	261
Cl	Κ	762,06	434	Rh	L	121670	617
K	Κ	270640	670	Cd	L	19065	486
Ca	Κ	74570	954	Ba	L	696,64	301
Mn	K	4206,5	266				

Tab. 111: Fit-Flächen und Sigma ($SV_X1 - poly \ \mu XRF \ (66150s)$)

Mit diesem Fit wurden aus den Maps die prozentuellen Abweichungen der maximalen und minimalen Intensitäten vom errechneten Mittelwert bestimmt. Sie sind in **Tab.112** zu finden.

	Mittel-	Max-	Min-	Abweichung	Abweichung
	wert $[cts]$	Wert $[cts]$	Wert [cts]	$Max \ [\%]$	Min ~[%]
Ca	$15560,\!90$	16122,00	15139,80	3,6	2,7
Co	2356, 14	$2597,\!54$	2156, 36	10,2	8,5
Cu	$23471,\!44$	$24109,\!60$	22828,10	2,7	2,7
Κ	$5577,\!53$	$5907,\!52$	5290, 18	5,9	5,2
Si	$43154,\!67$	44114,00	41823,40	2,2	3,1

Tab. 112: Prozentuelle Abweichungen von den mittleren Counts ($SV_X1 - poly \mu XRF (66150s)$)

Bis auf Cobalt, das vergleichsweise niedrige Zählraten aufweist, liegen die Abweichungen aller Elemente unter 10%.

Auch für die kürzere Messung von insgesamt 7350 Sekunden wurden die Einzelspektren zu Summenspektren aufaddiert und gefittet. Die dabei berechneten Fit-Flächen samt dazugehörigem Sigma werden in der nächsten Tabelle aufgelistet.

Element	Linie	Fit-Fläche	Sigma	Element	Linie	Fit-Fläche	Sigma
		[cts]	[cts]			[cts]	[cts]
Ne	Κ	20,272	88,9	Fe	Κ	3474,6	111
Na	Κ	8215,2	139	Co	Κ	12989	155
Mg	Κ	3658,5	146	Ni	Κ	$541,\!49$	130
Al	Κ	4733,3	204	Cu	Κ	130070	431
Si	Κ	240100	599	Zr	Κ	6601,9	105
\mathbf{S}	Κ	$538,\!64$	79,9	Mo	Κ	4025,3	88,6
Cl	Κ	46,012	145	Rh	L	13644	206
Κ	Κ	31300	229	Cd	L	$1871,\!8$	165
Ca	Κ	86418	328	Ba	L	1223,1	94,2
Mn	Κ	625,75	87,6				

Tab. 113: Fit-Flächen und Sigma $(SV_X1 - poly \ \mu XRF \ (7350s))$

Dabei ergaben sich für die prozentuellen Abweichungen für die kürzere der beiden Messungen diese Werte:

	Mittel-	Max-	Min-	Abweichung	Abweichung
	wert $[cts]$	Wert $[cts]$	Wert $[cts]$	Max [%]	$Min \ [\%]$
Ca	1840,50	1966,40	1712,26	6,8	7,0
Co	$286,\!87$	353,73	206, 46	23,3	28,0
Cu	2852,06	3042,13	2702,77	6,7	5,2
Κ	$661,\!39$	$770,\!17$	$520,\!45$	16,4	21,3
Si	$5096,\!88$	5418,92	$4836,\!67$	6,3	$5,\!1$

Tab. 114: Prozentuelle Abweichungen von den mittleren Counts ($SV_X1 - poly \mu XRF (7350s)$)

Für Cobalt und Kalium sind die Zählraten zu gering, um für die Berechnung der Abweichungen aussagekräftig zu sein. Es kann davon ausgegangen werden, dass die Probe SV_X1 homogen ist.

Die folgenden Abbildungen zeigen die Maps für Silizium, Calcium und Kupfer.

Abb. 295: Si-Maps ($\pmb{SV}_\pmb{X1}\text{-poly }\mu\text{XRF})$

Abb. 296: Ca-Maps $(\boldsymbol{SV}_\boldsymbol{X1}\text{-poly}\ \mu\text{XRF})$

Abb. 297: Cu-Maps (SV_X1 -poly μXRF)

A.3.9. SV_Y1

An dieser Stelle wird, wie schon in den Proben davor, das gefittete Summenspektrum der langen Messung von Probe $SV_{-}Y1$ einmal in linearer und einmal in logarithmischer Form angegeben. Die Bilder sind unter Abb.300 und Abb.301 zu sehen.

Abb. 298: Gefittetes Summenspektrum SV_Y1 (poly μ XRF - lineare Darstellung)

Abb. 299: Gefittetes Summenspektrum SV_-Y1 (poly $\mu {\rm XRF}$ - logarithmische Darstellung)

Die daraus resultierenden Fit-Flächen und Sigmas sind der nächsten Tabelle zu entnehmen.

Element	Linie	Fit-Fläche	Sigma	Element	Linie	Fit-Fläche	Sigma
		[cts]	[cts]			[cts]	[cts]
Ne	Κ	5635,9	261	Mn	Κ	3643,9	299
Na	Κ	75448	396	Fe	Κ	32905	350
Mg	Κ	39533	394	Ni	Κ	$5015,\! 6$	429
Al	Κ	35412	513	Cu	Κ	1861800	1630
Si	Κ	2028900	1610	Zr	Κ	115680	398
S	Κ	680,02	246	Mo	Κ	34868	273
Cl	Κ	3967,4	430	Rh	L	120500	616
Κ	Κ	285430	684	Cd	L	14123	484
Ca	Κ	763960	952	Ba	L	7233,4	326
Cr	Κ	60871	361				

Tab. 115: Fit-Flächen und Sigma ($SV_{-}Y1 - poly \ \mu XRF \ (66150s)$)

Auch für diese Probe wurden die prozentuellen Abweichungen der maximalen und minimalen Intensitäten vom Intensitäts-Mittelwert berechnet. Das sind die Werte, die sich aus diesen Berechnungen ergeben:

	Mittel-	Max-	Min-	Abweichung	Abweichung
	wert $[cts]$	Wert [cts]	Wert [cts]	Max [%]	$Min \ [\%]$
Ca	15974,31	16899,70	15037,30	5,8	5,9
Cr	$1433,\!18$	1649,09	1273,24	15,1	11,2
Cu	39040, 22	41160,00	$36393,\!90$	5,4	6,8
Κ	$5943,\!92$	6272, 91	$5484,\!37$	$5,\!5$	7,7
Si	42283,38	$45035,\!30$	39706, 20	6,5	6,1

Tab. 116: Prozentuelle Abweichungen von den mittleren Counts ($SV_Y1 - poly \mu XRF (66150s)$)

Diese Schritte wurden ebenfalls für die kürzere der beiden Messungen durchgeführt. Die Fit-Flächen und Sigmas dieser werden in **Tab.117** zusammengefasst.

Element	Linie	Fit-Fläche	Sigma	Element	Linie	Fit-Fläche	Sigma
		[cts]	[cts]			[cts]	[cts]
Ne	K	295,09	91,9	Mn	K	585,91	100
Na	K	8183	135	Fe	K	3977,6	120
Mg	K	3778,1	131	Ni	K	94,181	146
Al	K	4497,3	176	Cu	K	210440	532
Si	K	228990	518	Zr	K	13502	135
S	K	76,256	83,1	Mo	K	4272,6	93,1
Cl	K	647,68	146	Rh	L	13313	208
Κ	K	32017	230	Cd	L	2016,3	166
Ca	K	85651	315	Ba	L	1297,6	111
Cr	K	7201,3	122				

Tab. 117: Fit-Flächen und Sigma ($SV_{-}Y1 - poly \ \mu XRF \ (7350s)$)

Die Resultate der Berechnung der prozentuellen Abweichungen der Maximal- und Minimalintensitäten vom Mittelwert werden in der nächsten Tabelle vorgestellt:

	Mittel-	Max-	Min-	Abweichung	Abweichung
	wert $[cts]$	Wert $[cts]$	Wert $[cts]$	Max [%]	Min ~[%]
Ca	1848,04	1996,27	1713,84	8,0	7,3
Cr	$181,\!38$	$229,\!66$	133,64	$26,\!6$	26,3
Cu	4627,77	4873,23	4395,66	5,3	5,0
Κ	$687,\!39$	772, 12	611,96	12,3	11,0
Si	4924, 13	$5188,\!53$	$4775,\!25$	5,4	$_{3,0}$

Tab. 118: Prozentuelle Abweichungen von den mittleren Counts ($SV_Y1 - poly \mu XRF (7350s)$)

Zum Schluss folgen die Maps für Silizium, Calcium und Kupfer:

Abb. 300: Si-Maps $(\boldsymbol{SV}_{-}\boldsymbol{Y1}\text{-poly }\mu\text{XRF})$

Abb. 301: Ca-Maps $(\boldsymbol{SV}_{-}\boldsymbol{Y1}\text{-poly }\mu\text{XRF})$

Abb. 302: Cu-Maps $(\mathbf{SV}_{-}\mathbf{Y1}$ -poly μ XRF)

A.3.10. SV_Z1

Den Schluss der Messreihe bildet der Glasstandard mit dem Namen SV_Z1 . Analog zu den anderen Proben und Messungen wird zunächst das gefittete Summenspektrum der längeren Messung mit einer Messdauer von insgesamt 66150 Sekunden vorgestellt. In Abb.305 ist dieses in linearer und in Abb.306 in logarithmischer Darstellung zu sehen.

Abb. 303: Gefittetes Summenspektrum SV_Z1 (poly μ XRF - lineare Darstellung)

Abb. 304: Gefittetes Summenspektrum $\boldsymbol{SV}_\boldsymbol{Z1}$ (poly μXRF - logarithmische Darstellung)

Mit Hilfe des Fits werden im nächsten Schritt die entsprechenden Fit-Flächen und Sigmas berechnet. Die Ergebnisse werden in der nachfolgenden Tabelle angeführt.

Element	Linie	Fit-Fläche	Sigma	Element	Linie	Fit-Fläche	Sigma
		[cts]	[cts]			[cts]	[cts]
Ne	Κ	8082,5	293	Ni	Κ	4405,4	339
Na	Κ	78812	412	Zn	Κ	1772800	1660
Mg	Κ	44466	402	Se	Κ	6781,6	249
Al	Κ	105690	622	Rb	Κ	12375	243
Si	Κ	1830200	1570	Zr	Κ	91630	365
S	Κ	$658,\!01$	428	Mo	Κ	7941,1	211
Cl	Κ	3027,1	463	Rh	L	113080	640
Κ	Κ	525660	847	Ba	L	9053	341
Ca	Κ	362210	701	Pb	L	4605,8	335
Mn	Κ	6767, 1	294	Pb	М	5561,9	540
Fe	Κ	77031	409				

Tab. 119: Fit-Flächen und Sigma $(SV_Z1 - poly \ \mu XRF \ (66150s))$

Für die prozentuellen Abweichungen der gemessen maximalen und minimalen Intensität vom berechneten Mittelwert ergab sich Folgendes:

	Mittel-	Max-	Min-	Abweichung	Abweichung
	wert [cts]	Wert [cts]	Wert [cts]	Max ~[%]	Min [%]
Zn	37468,91	39291,20	34276,80	4,9	8,5
K	11062,66	11916, 30	10100,80	7,7	8,7
Si	38321,86	39730,40	$35384,\!80$	3,7	7,7
Ca	7650,93	8079,92	7012,18	$5,\!6$	8,3

Tab. 120: Prozentuelle Abweichungen von den mittleren Counts ($SV_Z1 - poly$ $\mu XRF (66150s)$)

Die selbe Vorgehensweise wurde bei der Auswertung der Messdaten der kürzeren Messung mit einer Gesamtmesszeit von 7350 Sekunden vorgenommen. Die Fit-Flächen und Sigmas sind unter **Tab.121** zu finden.

Element	Linie	Fit-Fläche	Sigma	Element	Linie	Fit-Fläche	Sigma
		[cts]	[cts]			[cts]	[cts]
Ne	Κ	761,14	108	Ni	K	585,75	125
Na	K	9678,8	146	Zn	K	193550	506
Mg	K	5484,9	140	Se	Κ	1262,5	$85,\!6$
Al	K	13618	205	Rb	K	1727,2	81,3
Si	K	199300	472	Zr	K	10225	122
S	K	47,24	152	Mo	Κ	1212,8	71,4
Cl	K	44,902	156	Rh	L	11048	214
Κ	K	57228	275	Ba	L	1733	123
Ca	K	40124	232	Pb	L	1373,9	114
Mn	K	1083,3	104	Pb	M	60,609	190
Fe	K	8371,9	139				

Tab. 121: Fit-Flächen und Sigma (SV_Z1 - poly µXRF (7350s))

Die prozentuellen Abweichungen der maximalen und minimalen Intensitäten vom Mittelwert ergaben wiederum Folgendes:

	Mittel-	Max-	Min-	Abweichung	Abweichung
	wert [cts]	Wert [cts]	Wert $[cts]$	Max [%]	Min [%]
Zn	4305,04	4503,46	4135,92	4,6	3,9
K	$1260,\!61$	$1364,\!62$	1149,20	8,3	8,8
Si	4343,75	4680,75	$3958,\!88$	7,8	8,9
Ca	885,11	$1013,\!37$	750,44	14,5	15,2

Tab. 122: Prozentuelle Abweichungen von den mittleren Counts ($SV_Z1 - poly \mu XRF (7350s)$)

Diesmal sind in den nächsten zwei Grafiken die Maps für Silizium und Zink abgebildet.

Abb. 305: Si-Maps $(\boldsymbol{SV}_\boldsymbol{Z1}\text{-poly}\ \mu\text{XRF})$

Abb. 306: Zn-Maps (SV_Z1 -poly μ XRF)

B. Datenblätter

B.1. Datenblätter Kapillaren

248

Data Sheet Parallel beam multilayer X-ray mirror for MoKɑ radiation TU Wien

AXO project: 117196 PO: 355IA:GIP141CMXR **C20 – 0101 / 12.17 ΜοΚα**

Optics parameters

f	=	120 mm
E	=	17.444 keV (MoKα)
20 ₈	=	1.26° (mirror center)

Testing conditions

HUBER XRD with Mo microfocus X-ray source, Ø 50 μm FWHM, 50 kV/0.8 mA no Filters used

FWHM calc. (c) AXC Pixel size = 6,45 µn

Detector: X-ray camera Photonic Science MiniFDI, 6.45 µm pixel size

1000 Position (µm)

Beam profile: X-ray camera image at specified distance z from mirror center, vertical line profile

fisual

500 1

SN, 05.12.2017

250 AXO DRESDEN GmbH Applied X-ray Optics · Gasanstaltstraße 8b · D-01237 Dresden · phone: +49(0)351-250897-20 · fax: +49(0)351-250897-66 · www.axo-dresden.de · contact@axo-dresden.de

1500

Bibliothek Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfügbar. Vour knowledge hub The approved original version of this thesis is available in print at TU Wien Bibliothek.

		ସ ସ ପ ପ	999999999999999	4 4 4	ୟ ୟ <u>କ</u> ସ
Markertz	ENZ TESUE	0 		N N N N N N	ichtanal IS IS
	· · · · · · · · · · · · · · · · · · ·	۲ ۱ ا ۱ ۵ ۱ ۱ ۱ ۵ ۱ ۱ ۱ ۲		99.6 0.0	isser und ysse; hr Al_c 2.31
י זי י י ג'י הי			46.6	0 -	proxima proxima b Bac
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11014111	₽ 1 <u>8</u> 1111		1 1 1	ligerober Ite cher Bi
	0 6	0	in .		idcal (
	1 1 1 60 1 1 G 4 5	5.09 4.99 4.99 2.25 2.03		3.8 0.005 0.005	Ergânzu composi Ca0
י בין וין וי' אלי		PreO11		1 1 1	- Calo
	1 1 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 57 03		L I I	Sat. :
· · · · · · · · · · · · · · · · · · ·			* * * * * * *	1 1 1	- Co0
- - 71.29 70.89 70.50 67.0	51.1 0.14 99.99 0.1 0.2 0.2	SiQ	1 1 1 1 1 1	1 1	- Coze
46.5	1 1 1 1 1 1 1 1	0.13 0.13 - SnOz	1 1 1 1 1 2 1	4 1 1	al glass
		- 0.5 2.62 - SrO	1 1 1 1 1 1 1 1	-1 -1 <u>.</u> 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1 1 1 1 1 1 1 1 1 1 1		1.2 1) 2 2		1 1 1	oeramic F 2 -
35.5 10.0		ט ק דיייי לק	0 1 1 1 1 0 0	001	sampi
	4	2 A	1 ,02	0 ·	20 23 8 80 24
ι		7.79 2.46 2.26 2.16 5.27 5.27	1 1 1 1 1 1 1	8.7	dditior Ka0 7.41
8.4 - 4 - 9.67 		Бо 1 - 1 - 1 - 1 - 1 - 1 - 5 - 5 - 5 - 5 -	1 7 7 1 36 1 1 1		Liar Co
16.0	1.00 9.5	- 3.22 3.12 1.65 ZrO ₂	A A	0_00 0_00	set sy had
		* 1111		1 1 1	- H10
		С. Б	1 1 1.0	8 I 8	Ē
		- 12.15 17.16 16.96 16.61 12.48			a Nazo

B.2. Standards - Konzentrationen

251

.

U. S. Department of Commerce Malcolm Baldrige Secretary National Bureau of Standards Ernest Ambler. Director

National Bureau of Standards

Certificate

Standard Reference Material 621

Soda-Lime Container Glass

(In cooperation with the American Society for Testing and Materials)

This Standard Reference Material is for use in checking chemical methods of analysis and for calibrating optical emission and x-ray spectrometric methods of analysis.

Constituent	Percent by weight	Uncertainty
SiO ₂	71.13	0.03
Na ₂ O	12.74	0.05
CaO	10.71	0.05
Al_2O_3	2.76	0.04
K ₂ O	2.01	0.03
MgO	0.27	0.03
SO ₃	0.13	0.02
BaO	0.12	0.05
Fc_2O_3	0.040	0.003
As_2O_3	0.030	0.001
TiO ₂	0.014	0.003
ZrO_2	0.007	0.001

The certified values are the present best estimates of the "true" values based on the results of a cooperative analytical program. At NBS twelve statistically selected samples of the glass were tested for homogeneity by S.D. Rasberry and L. Zinger using x-ray fluorescence spectrometry. Based on their results the variations among samples are estimated to be less than the uncertainties given above.

The overall direction and coordination of the round-robin analysis leading to certification were performed by Paul Close, Chairman of ASTM Subcommittee C-14.02 on Chemical Analysis of Glass and Glass Products.

The technical and support aspects involved in the preparation, certification, and issuance of this Standard Reference Material were coordinated through the Office of Standard Reference Materials by G.W. Cleek, C.L. Stanley, and R.E. Michaelis.

Washington, D.C. 20234 January 21, 1982 (Revision of certificate dated 3/13/75.) George A. Uriano, Chief Office of Standard Reference Materials

(over)

252

II S. Department of Commerce MalcolairBaldrage Scorenary Variout Junear Standards Ernen Ambler, Director

National Bureau of Standards

Certificate

Standard Reference Material 1412

Multicomponent Glass

(In Cooperation with the American Society for Testing and Materials)

This Standard Reference Material (SRM) is intended for use in performance evaluation of chemical methods of analysis and in calibrating instrumental methods of analysis. The SRM consists of platelets having the composition shown below:

Constituent	Percent by Weight*	Uncertainty ^b
SiO ₂	42.38	0.18
Al ₂ O ₃	7.52	0.24
CaO	4.53	0.10
MgO	(4.69)	
SrO	4.55	0.09
Na ₂ O	4.69	0.07
K ₂ O	4.14	0.10
Li ₂ O	(4.50)	
B2O3	4.53	0.17
BaO	4.67	0.16
ZnO	4.48	0.12
PbO	4.40	0.17
CdO	4.38	0.08
Fe2O)	(0.031)	

"The certified value listed for a constituent is the present best estimate of the "true" value based on the results of the cooperative program for certification. The values given in parenthesis are not certified and are given for information only.

The estimated uncertainty listed for a constituent is based on judgment and represents an evaluation

of the combined effects of method bias, between laboratory variability, and material variability.

The overall direction and coordination of the cooperative analysis leading to certification were performed by G.D. Bowling, Chairman of ASTM Subcommittee C-14.02 on Chemical Analysis of Glass and Glass Products.

The procurement and development of this material as an SRM was under the direction of the joint NBS-ASTM Glass Research Associate Program. This program was coordinated through ASTM by: M.J. Cellarosi, Chairman of ASTM Committee on Glass and Glass Products; H.E. Hagy, Chairman of Subcommittee 14.91 on Standard Reference Materials; and A.C. Scifert, NBS-ASTM Research Associate.

The technical and support aspects involved in the preparation, certification, and issuance of this SRM were coordinated through the Office of Standard Reference Materials by L.J. Kieffer.

Gaithersburg, MD 20899 August 2, 1985

Stanley D. Rasberry, Chief Office of Standard Reference Materials