
Form Methods Syst Des (2016) 49:1–32
DOI 10.1007/s10703-015-0240-5

Abstraction and mining of traces to explain concurrency
bugs

Mitra Tabaei Befrouei1 · Chao Wang2 ·
Georg Weissenbacher1

Published online: 4 January 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract We propose an automated mining-based method for explaining concurrency bugs.
We use a data mining technique called sequential pattern mining to identify problematic
sequences of concurrent read and write accesses to the shared memory of a multithreaded
program. Our technique does not rely on any characteristics specific to one type of con-
currency bug, thus providing a general framework for concurrency bug explanation. In our
method, given a set of concurrent execution traces, we first mine sequences that frequently
occur in failing traces and then rank them based on the number of their occurrences in pass-
ing traces. We consider the highly ranked sequences of events that occur frequently only in
failing traces an explanation of the system failure, as they can reveal its causes in the execu-
tion traces. Since the scalability of sequential pattern mining is limited by the length of the
traces, we present an abstraction techniquewhich shortens the traces at the cost of introducing
spurious explanations. Spurious as well as misleading explanations are then eliminated by
a subsequent filtering step, helping the programmer to focus on likely causes of the failure.
We validate our approach using a number of case studies, including synthetic as well as
real-world bugs.

Keywords Concurrency bugs · Bug explanation · Fault localization · Pattern mining ·
Learning

B Mitra Tabaei Befrouei
tabaei@forsyte.at

Chao Wang
chaowang@vt.edu

Georg Weissenbacher
georg.weissenbacher@tuwien.ac.at

1 TU Wien, Vienna, Austria

2 Virginia Polytechnic Institute and State University, Blacksburg, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10703-015-0240-5&domain=pdf

2 Form Methods Syst Des (2016) 49:1–32

1 Introduction

While Moore’s law is still upheld by increasing the number of cores of processors, the
construction of parallel programs that exploit the added computational capacity has become
significantly more complicated. This holds particularly true for debugging multithreaded
shared-memory software: unexpected interactions between threads may result in erroneous
and seemingly nondeterministic program behavior whose root cause is difficult to analyze.

To detect and explain concurrency bugs, researchers have focused on a number of prob-
lematic program behaviors such as data races (concurrent conflicting accesses to the same
memory location) and atomicity/serializability violations (an interference between suppos-
edly indivisible critical regions). The detection of data races requires no knowledge of the
program semantics and has therefore received ample attention (see Sect. 6). Freedom from
data races, however, is neither a necessary nor a sufficient property to establish the correctness
of a concurrent program: benign data-races include races that affect the program outcome in
a manner acceptable to the programmer [6]. In particular, it does not guarantee the absence
of atomicity violations, which constitute the predominant class of non-deadlock concurrency
bugs [17]. Atomicity violations are inherently tied to the intended granularity of code seg-
ments (or operations) of a program. Automated atomicity checking therefore depends on
heuristics [36] or atomicity annotations [8] to obtain the boundaries of operations and data
objects.

The past two decades have seen numerous tools for the exposure and detection of data
races [4,5,7,25,32], atomicity or serializability violations [8,18,27,36], or more general
order violations [19,28]. These techniques have in common that they rely on characteristics
specific to each type of concurrency bug [17].

We propose a technique to explain concurrency bugs that is oblivious to the nature of
the specific bug. We assume that we are given a set of concurrent execution traces, each
of which is classified as successful or failed. This is a reasonable assumption if the pro-
gram is systematically tested and the test suite satisfies concurrent coverage metrics [16].
Execution traces can be generated and recorded using systematic testing tools [22,24,38] or
stress testing [27]. Inspecting concurrent traces manually, however, is still tedious and time-
consuming. An empirical study of strategies commonly used for diagnosing and correcting
faults in concurrent software shows that the primary concern of the programmer is to produce
and analyze a failing trace by reasoning about potential thread interleavings based on some
degree of program understanding [9]. In light of the complexity of this task, tool support is
highly desirable.

Although the traces of concurrent programs are lengthy sequences of events, only a small
subset of these events is typically sufficient to explain an erroneous behavior. In general, these
events do not occur consecutively in the execution trace, but rather at an arbitrary distance
from each other. Therefore, we use data mining algorithms to isolate ordered sequences of
non-contiguous events which occur frequently in the traces. Subsequently, we examine the
differences between the common behavioral patterns of failing and passing traces (motivated
by Lewis’ theory of causality and counterfactual reasoning [15]).

Our approach combines ideas from the fields of runtime monitoring [3], abstraction and
refinement [2], and sequential pattern mining [20]. It comprises the following three phases:

– We systematically generate execution traces with different interleavings, and record all
global operations but not thread-local operations [38], thus requiring only limited observ-
ability. We justify our decision to consider only shared accesses in Sect. 2. The resulting
data is partitioned into successful and failed executions.

123

Form Methods Syst Des (2016) 49:1–32 3

– Since the resulting traces may contain thousands of operations and events, we present a
novel abstraction technique which reduces the length of the traces as well as the number
of events by mapping sequences of concrete events to single abstract events. We show
in Sect. 3 that this abstraction step preserves all original behaviors while reducing the
number of patterns to consider significantly.

– We use a sequential pattern mining algorithm [34,37] to identify sequences of events that
frequently occur in failing execution traces. In a subsequent filtering step, we eliminate
from the resulting sequences spurious patterns that are an artifact of the abstraction and
misleading patterns that do not reflect problematic behaviors. The remaining patterns are
then ranked according to their frequency in the passing traces, where patterns occurring
in failing traces exclusively are ranked highest.

In Sect. 5, we use a number of case studies to demonstrate that our approach yields
a small number of relevant patterns which can serve as an explanation of the erroneous
program behavior.

This paper improves and extends our previous work [33] in the following ways:

– We formalize the notion of a bug explanation pattern.
– In Sect. 4, we lift the notion of bug explanation patterns to the patterns mined from

abstract traces.
– The algorithm for producing bug explanation patterns is presented in Sect. 4.1, followed

by a discussion of the parameters of the method and their effects. This section also
describes an optimization of the computationally costly filtering step of [33], resulting
in orders of magnitude speed up in run time.

– In the section on experimental results, we demonstrate that ourmodification of themethod
in [33] preserves the effectiveness of the method while achieving more efficiency. More-
over, we show the effect of variations in the input datasets of traces on the effectiveness
of the method by bounding the number of context switches in input traces.

2 Executions, failures, and bug explanation patterns

In this section, we define basic notions such as executions, events, traces, and faults. We
introduce the notion of bug explanation patterns and provide a theoretical rationale as well
as an example of their usage. We recap the terminology of sequential pattern mining and
explain how we apply this technique to extract bug explanation patterns from sets of traces.

2.1 Programs and failing executions

We consider shared-memory concurrent programs composed of k threads with indices
{1, . . . , k} and a finite set G of shared variables. Each thread Ti where 1 ≤ i ≤ k has a
finite set of local variables Li . The set of all variables is then defined by V

def= G ∪ ⋃
i Li ,

where 1 ≤ i ≤ k. Interaction between the threads happens via read and write accesses to
shared variables. Each thread is represented by a control flow graph whose edges are anno-
tated with atomic instructions. We use guarded statements to represent atomic instructions.
Let Vi = G ∪ Li (for 1 ≤ i ≤ k) denote the set of variables accessible in thread Ti .
An instruction from thread Ti is either a guarded statement assume(ϕ) � τ or an assertion
assert(ϕ) where ϕ is a predicate overVi and τ is an assignment of the form v := φ (where
v ∈ Vi and φ is an expression over Vi). The condition ϕ must be true for the assignment τ
to be executed. It must be also true when assert(ϕ) is executed, otherwise a failure occurs.

123

4 Form Methods Syst Des (2016) 49:1–32

The guarded statement has the following three variants: (1) when the guard ϕ = true, it
can model ordinary assignments in a basic block, (2) when the assignment τ is empty, the
conditions assume(ϕ) and assume(¬ϕ) can model the execution of a branching statement
if(ϕ)−else, and (3)with both the guard and the assignment, it canmodel an atomic check-and-
set operation,which is the foundation of all types of concurrency primitives [11]. For example,
acquiring and releasing a lock l in a thread with index i is modeled as assume(l = 0)�l := i
and assume(l = i) � l := 0, respectively. Fork and join can be modeled in a similar manner
using auxiliary synchronization variables.

Each thread executes a sequence of atomic instructions in program order (determined by
the control flow graph). During the execution, the scheduler picks a thread and executes the
next atomic instruction in the program order of the thread. The execution halts if there are
no more executable atomic instructions.

Executions An execution ρ = S0, a1, S1, . . . , Sn−1, an, Sn is an alternating sequence of
states Si and atomic execution steps ai corresponding to some interleaving of instructions
from the threads of the program. Each state S is a valuation of the variablesV. Execution steps
correspond to the execution of atomic instructions of the threads. For each i , the execution
of ai in state Si−1 leads to state Si .

The sequence of states visited during an execution constitutes a program behavior. A fault
or bug is a defect in the program code, which if triggered leads to an error, which in turn is
a discrepancy between the actual and the intended behavior (specified by assertions or test
cases). If an error propagates, it may eventually lead to a failure, a behavior contradicting the
specification. We call executions leading to a failure failing and all other executions passing
executions.

2.2 Read–write events and traces

Each execution of an atomic instruction assume(ϕ)�v := φ in a thread such as Ti generates
read events for the variables referenced in ϕ and φ, followed by a write event for v.

Definition 1 (Read–Write Events) A read–write event is a tuple 〈id, tid, �, type,addr〉,
where id is an identifier, tid ∈ {1, . . . , k} and � are the thread identifier and the source
code line number of the corresponding instruction, type ∈ {R, W } is the type (or direction)
of the memory access, and addr ∈ Vtid is the variable accessed.

Two events have the same identifier id if they are issued by the same thread and agree on
the line number of source code, the type, and the address. In the following, for comparing
two events we use their ids. Two events ei and e j are equal denoted by ei = e j if both
have the same ids. However, each event in the execution is unique. Therefore, two events
with the same id are distinguished by their index in the sequence of an execution. We use
Rtid(addr)−� andWtid(addr)−� to refer to read and write events to the object with address
addr issued by thread tid at line number � of the source code, respectively.

Two events conflict if they are issued by different threads, access the same shared variable
v ∈ G, and at least one of them is awrite to v. Given two conflicting events e1 and e2 from two
different threads such that e1 is issued before e2, we distinguish three cases of inter-thread
data-dependency: (a) flow-dependence: e2 reads a value written by e1, (b) anti-dependence:
e1 reads a value before it is overwritten by e2, and (c) output-dependence: e1 and e2 both
write the same memory location. Figures 1 and 2 show all inter-thread data-dependencies for
the shared variable balance in the passing and failing traces of the running example given

123

Form Methods Syst Des (2016) 49:1–32 5

in Sect. 2.3. We use dep to denote the set of data-dependencies between the events of an
execution that arise from the order in which the instructions are executed.

A failing and a passing execution started in the same initial state either (a) differ in
their data-dependencies dep over the shared variables, and/or (b) contain different local
computations. Local computations of thread Ti involve thread local variables, v ∈ Li . In our
setting, we assume local computations of the threads of the program are not the cause of
the error. Therefore, in a failing and a passing execution started in the same initial state, a
discrepancy in either their data-dependencies dep over the shared variables or the executed
events explains the failure in the failing trace according to fundamental results of concurrency
control originally developed in database research [26] and Mazurkiewicz’s trace theory [21].
This discrepancy is, in fact, induced by the order of execution of the instructions of the
program, which is the result of a change in the schedule. (As an example, compare the
passing and failing traces given in Figs. 1 and 2.)

Ourmethod aims at identifying sequences of events that reveal this discrepancy. Therefore,
we focus on concurrency bugs that manifest themselves in a deviation of the accesses to and
the data-dependencies between shared variables, thus ignoring failures caused purely by a
difference of the local computations. As per the argument above, this criterion covers a large
class of concurrency bugs, including data races, atomicity violations, and order violations.

To this end, we log the order of read and write events (for shared variables) in a number of
passing and failing executions. Since we are interested in concurrency bugs which are due to
scheduling rather than input values, failing and passing traces all start from the same initial
state. Moreover, in the logged read/write events we ignore the value of the shared variables.
We assume that the addresses of variables are consistent across executions, which is enforced
by our logging tool. A trace is then defined as follows:

Definition 2 A trace σ = 〈e1, e2, . . . , en〉 is a finite sequence of read–write events of shared
variables (Definition 1).

In the following, ΣF and ΣP denote sets of failing and passing traces, respectively.

2.3 Bug explanation patterns

In a failing trace, we refer to a sequence of events relevant to the failure as bug explanation
sequence. We typically can distinguish two types of events in a bug explanation sequence:
the events triggering the error (which is a discrepancy between the intended and the actual
behavior) and the events propagating the error, eventually leading to a failure. We illus-
trate these notions (bug explanation sequences, triggering and propagating events) using a
well-understood example of an atomicity violation. Figure 1 shows two code fragments that
non-atomically update the balance of a bank account (stored in the shared variable bal-
ance) by depositing or withdrawing given values. The example does not contain a data race,
since balance is protected by the lock balance_lock. The global array t_array contains the
sequence of amounts to be transferred. Two threads execute these code fragments concur-
rently. In Figs. 1 and 2, two failing traces and one passing trace resulting from the concurrent
execution of the code fragments by two threads are given. The identifiers on (where n is
a number) represent the addresses of the accessed shared objects, and o27 corresponds to
the variable balance. The events R1(o27) − 67 andW1(o27) − 74 correspond to the read
and write instructions at lines 67 and 74, respectively. Similarly, the events R2(o27) − 100
and W2(o27) − 107 correspond to the read and write instructions at lines 100 and 107,
respectively.

123

6 Form Methods Syst Des (2016) 49:1–32

. . .
pthread mutex lock(balance lock);
. . .

67: bal = balance;
pthread mutex unlock(balance lock);

if (bal+t array[i].amount≤MAX)
bal = bal+t array[i].amount;

pthread mutex lock(balance lock);
74: balance = bal;

. . .
pthread mutex unlock(balance lock);
. . .

Code fragment-Deposit

. . .
pthread mutex lock(balance lock);
. . .

100: bal = balance;
pthread mutex unlock(balance lock);

if (bal-t array[i].amount≥MIN)
bal = bal-t array[i].amount;

pthread mutex lock(balance lock);
107: balance = bal;

. . .
pthread mutex unlock(balance lock);
. . .

Code fragment-Withdrawal

1. R2(o26) − 98
2. R2(o27) − 100
3. R2(o25) − 101

4. R1(o26) − 65
5. R1(o27) − 67
6. R1(o25) − 68
7. R1(o2) − 70
8. R1(o11) − 70
9. R1(o25) − 73

10. R2(o2) − 103
11. R2(o5) − 103
12. R2(o2) − 104
13. R2(o5) − 104
14. R2(o25) − 106
15. W2(o27) − 107
16. R2(o26) − 109
17. R2(o26) − 112
18. W2(o26) − 112
19. R2(o25) − 114

20. W1(o27) − 74
21. R1(o26) − 77

Failing trace (1)

anti-dependency

output-dep.

1. R2(o26) − 98
2. R2(o27) − 100
3. R2(o25) − 101

4. R1(o26) − 65
5. R1(o27) − 67
6. R1(o25) − 68
7. R1(o2) − 70
8. R1(o11) − 70
9. R1(o25) − 73
10. W1(o27) − 74
11. R1(o26) − 77
12. R1(o26) − 80
13. W1(o26) − 80
14. R1(o25) − 82
15. R1(o1) − 57

16. R2(o2) − 103
17. R2(o5) − 103
18. R2(o2) − 104
19. R2(o5) − 104
20. R2(o25) − 106
21. W2(o27) − 107
22. R2(o26) − 109

Failing trace (2)

anti-dependency

output-dep.

Fig. 1 Conflicting update of bank account balance

The traces in Fig. 1 fail because their final states are inconsistent with the expected value
of balance. For example, in failing trace (1), the reason is that o27 is overwritten with a stale
value at position 20 in the trace, “killing” the transaction of thread 2 that writeso27 at position
15. This is reflected by the sequence 〈R1(o27) − 67,W2(o27) − 107,W1(o27) − 74〉 in
combination with the data-dependencies between the events as depicted in the figure. This
sequence reveals the cause of failure and is an example of a bug explanation sequence in
which the first two events 〈R1(o27) − 67,W2(o27) − 107〉 trigger the error.

Since a single fault can have different manifestations at run time, bug explanation
sequencesmayvary in different failing traces. For example, in Fig. 1 the failing trace (2)which
fails due to the same fault as trace (1) has a different bug explanation sequence and conse-
quently different triggering events: 〈R2(o27) − 100,W1(o27) − 74,W2(o27) − 107〉 (the
first two events trigger the error). The two bug explanation sequences discussed above and
the corresponding dependencies do not arise in any passing trace, since no context switch
occurs between the events R1(o27) − 67 andW1(o27) − 74.

Although bug explanation sequences vary in different failing traces (failing traces 1 and
2 in Fig. 1), in the set ΣF of failing traces which all fail due to the same fault, bug explana-
tion sequences typically share triggering or propagating events. Assume the code fragments
of Fig. 1 are executed in a loop by the two threads. Some traces in ΣF will then share

123

Form Methods Syst Des (2016) 49:1–32 7

Fig. 2 Passing trace of the bank
account example 1. R1(o26) − 65

2. R1(o27) − 67
3. R1(o25) − 68
4. R1(o2) − 70
5. R1(o11) − 70
6. R1(o25) − 73
7. W1(o27) − 74
8. R1(o26) − 77
9. R1(o26) − 80
10. W1(o26) − 80
11. R1(o25) − 82
12. R1(o1) − 57

13. R2(o1) − 91
14. R2(o2) − 93
15. R2(o4) − 93
16. R2(o1) − 91
17. R2(o2) − 93
18. R2(o6) − 93
19. R2(o25) − 96
20. R2(o26) − 98
21. R2(o27) − 100
22. R2(o25) − 101
23. R2(o2) − 103
24. R2(o5) − 103
25. R2(o2) − 104
26. R2(o5) − 104
27. R2(o25) − 106
28. W2(o27) − 107
29. R2(o26) − 109

Passing trace

flow-dependency

〈R1(o27) − 67,W2(o27) − 107〉 as the triggering events, while in some other traces the
occurrence of sequence 〈R2(o27) − 100,W1(o27) − 74〉 triggers the error.

We refer to the portions of bug explanation sequences that occur commonly in ΣF as
bug explanation patterns such as 〈R1(o27) − 67,W2(o27) − 107〉 in the running example.
Intuitively, these patterns occur more frequently in the failing dataset ΣF than in the set ΣP

of passing traces.While the bug pattern in questionmay occur in passing executions (since an
error may not necessarily lead to a failure), our approach is based on the assumption that it is
less frequent in ΣP . Therefore, for explaining concurrency bugs we examine the differences
in terms of the sequence of events in the traces of the failing and passing datasets, which is
the foundation of a large number of approaches for locating faults in program code (see, for
instance, [39]). Lewis’ theory of causality and counterfactual reasoning provides justification
for this type of fault localization approaches [15].

Since our focus is on concurrency bugs which are due to problematic interactions between
threads, the triggering events are from at least two different threads and do not necessarily
occur consecutively inside the trace. In general, these events can occur at an arbitrary distance
from each other due to scheduling. Our bug explanation patterns are therefore, in general,
subsequences of execution traces. Formally, π = 〈

e′
0, e′

1, e′
2, . . . , e′

m

〉
is a subsequence of

σ = 〈e0, e1, e2, . . . , en〉, denoted as π 	 σ , if and only if there exist integers 0 ≤ i0 < i1 <

i2 < i3 . . . < im ≤ n such that e′
0 = ei0 , e′

1 = ei1 , . . . , e′
m = eim . We write π � σ if π 	 σ

and π
= σ . We also call σ a super-sequence of π if π 	 σ .

2.4 Mining bug explanation patterns

In order to isolate bug explanation patterns in the traces of ΣF , we use sequential pattern
mining algorithms which extract frequent subsequences from a dataset of sequences without
limitations on the relative distance of events belonging to the subsequences. This data mining

123

8 Form Methods Syst Des (2016) 49:1–32

Table 1 Sample dataset of traces Id Trace

1 R1(x),W1(x), R2(x), W2(x), R1(x), W1(x)

2 R1(x),W1(x), R1(x), W1(x), R2(x), W2(x)

3 R1(x), R2(x), W1(x), W2(x), R1(x), W1(x)

4 R2(x), R1(x), W2(x), W1(x), R1(x), W1(x)

technique has diverse applications in areas such as the analysis of customer purchase behavior,
the mining of web access patterns or motifs in DNA sequences.

In this section, we recap the terminology of sequential pattern mining and adapt it to our
setting. For a more detailed treatment, we refer the interested reader to [20]. In our setting,
we are interested in extracting subsequences occurring frequently in ΣF and contrasting
them with the frequent subsequences of ΣP . As we have already discussed, bug explanation
patterns are subsequences which occur more frequently in the failing dataset ΣF .

In a sequence dataset Σ = {σ1, σ2, . . . , σn}, a pattern is supported by a sequence if it is
a subsequence of it. The support of a sequence π is defined as

supportΣ(π)
def= |{σ | σ ∈ Σ ∧ π 	 σ }| .

Given a minimum support threshold min_supp, the pattern π is considered a sequential
pattern or a frequent subsequence if supportΣ(π) ≥ min_supp. FSΣ,min_supp denotes the
set of all sequential patterns mined from Σ with the given support thresholdmin_supp and
is defined as FSΣ,min_supp = {π | supportΣ(π) ≥ min_supp}. As an example, Σ contains
the four traces given in Table 1.

We obtain:

FSΣ,4 = {〈R1(x)〉 : 4,

〈R2(x)〉 : 4,

〈W1(x)〉 : 4,

〈W2(x)〉 : 4,

〈R1(x),W1(x)〉 : 4,

〈R1(x),W2(x)〉 : 4,

〈R2(x),W2(x)〉 : 4,

〈W1(x),R1(x)〉 : 4,

〈R1(x),W1(x),R1(x)〉 : 4,

〈R1(x),W1(x),W1(x)〉 : 4,

〈R1(x),R1(x),W1(x)〉 : 4,

〈W1(x),R1(x),W1(x)〉 : 4,

〈R1(x),W1(x),R1(x),W1(x)〉 : 4}
where the numbers following the patterns denote the respective supports of the patterns.

Notice the combinatorial number of the frequent subsequences even in this small dataset.
In order to avoid a combinatorial explosion, it is best to mine closed set of patterns [34,37].
In FSΣ,4, patterns 〈R1(x),W1(x),R1(x),W1(x)〉 : 4 and 〈R2(x),W2(x)〉 : 4, which do not
have any super-sequences with the same support value are called closed patterns. A closed
pattern encompasses all the frequent patterns with the same support value which are all
subsequences of it. For example, in FSΣ,4 〈R1(x),W1(x),R1(x),W1(x)〉 : 4 encompasses
〈R1(x)〉 : 4, 〈R1(x),W1(x)〉 : 4, 〈R1(x),W1(x),R1(x)〉 : 4 and similarly 〈R2(x),W2(x)〉 : 4
encompasses 〈R2(x)〉 : 4 and 〈W2(x)〉 : 4. Closed patterns are the lossless compression of all
sequential patterns. Therefore, in our method we mine only closed patterns in order to avoid

123

Form Methods Syst Des (2016) 49:1–32 9

a combinatorial explosion. CSΣ,min_supp denotes the set of all closed sequential patterns
mined from Σ with the support thresholdmin_supp and is defined as
{
π | π ∈ FSΣ,min_supp ∧ �π ′ ∈ FSΣ,min_supp . π � π ′ ∧ support(π) = support

(
π ′)} .

To extract bug explanation patterns from ΣP and ΣF , we first mine closed sequential
patterns with a given minimum support threshold min_supp from ΣF . At this point, we
ignore the index of events in execution traces and identify events using their id. This is
because in mining we do not distinguish between events with the same id that occur at
different positions inside a trace. The event W1(o27) − 74 in Fig. 1, for instance, has the
same id in the failing traces and the passing trace, even though its indices in these traces (20,
10 and 7) differ.

To determine whether a pattern π in CSΣF ,min_supp is more frequent in ΣF than in ΣP ,
we define the notion of relative support which is computed as the following:

rel_supp(π) = supportΣF
(π)

supportΣF
(π) + supportΣP

(π)
.

Note that the values of support inΣF andΣP are normalized. Patterns that occur inΣF exclu-
sively have the maximum relative support of 1. Patterns that occur with the same frequency
in both ΣF and ΣP have the relative support of 0.5. Therefore, from rel_supp(π) > 0.5
we infer that π occurs more frequently in ΣF than in ΣP . We argue that the patterns with
the highest relative support are indicative of one or several faults inside the program of inter-
est. These patterns can hence be used as clues for the exact location of the faults inside the
program code.

Sequential pattern mining ignores the underlying semantics of the events. This has the
undesirable consequences that we obtain numerous patterns that are not explanations in the
sense of Sect. 2.3, since they do not contain context switches or data-dependencies. In FSΣ,4,
〈R2(x),W2(x)〉 : 4 does not contain any context switches, hence cannot be a candidate bug
explanation pattern. Pattern 〈R1(x),W2(x)〉 : 4 occurs in all four traces of Σ , however only
in trace 4 the two events are anti-dependent. In all other traces, they are not related by any
data-dependencies. Accordingly, we define heuristics to consider a pattern as a candidate
bug explanation pattern.

Definition 3 (Bug Explanation Pattern) Given ΣF and ΣP and min_supp, pattern π ∈
CSΣF ,min_supp is a candidate bug explanation pattern if rel_supp(π) > 0.5 and ∀ei ∈
π, ∃e j ∈ π, i
= j such that ei and e j are related by dep. In addition, at least two related
events should belong to two different threads.

In our method, the heuristics defined in Definition 3 are applied to the patterns of
CSΣF ,min_supp in a post-processing step after mining. This process involves mapping of
π ∈ CSΣF ,min_supp to the traces in ΣF for locating the instances of π in these traces. At
this point, the index of events inside the traces is taken into account (indices �1, �2, . . . , �m

in Definition 4).

Definition 4 (Instance of a Pattern in a Trace) I (�1, �2, . . . , �m) is an instance of pattern
π = 〈

e′
1, e′

2, . . . , e′
m

〉
in the trace σ = 〈e1, e2, . . . , en〉 if e′

1 = e�1 , e′
2 = e�2 , . . . , e′

m = e�m

where 1 ≤ �i ≤ n for 1 ≤ i ≤ m.

Support thresholds and datasets Which threshold is adequate depends on the number and
the nature of the bugs. Given a single fault involving only one variable, most traces in ΣF

123

10 Form Methods Syst Des (2016) 49:1–32

presumably share the same sequence of events that trigger the error. Since the bugs are not
known up-front, and lower thresholds result in a larger number of patterns, we gradually
decrease the threshold until bug explanations emerge. Moreover, the quality of the expla-
nations is better if the traces in ΣP and ΣF are similar or homogeneous in terms of events
they contain and the order between them. Our experiments in Sect. 5 show that the sets of
execution traces need not necessarily be exhaustive to enable bug explanations.

3 Mining abstract execution traces

With increasing length of the execution traces and number of events, sequential patternmining
quickly becomes intractable [13]. To alleviate this problem, we introduce macro-events that
represent events of the same thread occurring consecutively inside an execution trace, and
obtain abstract events by grouping these macros into equivalence classes according to the
events they replace. Our abstraction reduces the length of the traces as well as the number of
the events at the cost of introducing spurious traces. Accordingly, patterns mined from the
abstract traces may not occur as a subsequence of any original traces. Therefore, we eliminate
spurious patterns using a subsequent feasibility check.

3.1 Abstracting execution traces

In order to obtain a more compact representation of a setΣ of execution traces, we introduce
macros representing substrings of the traces in Σ . A substring of a trace σ is a sequence of
events that occur consecutively in σ .

Definition 5 (Macros) Let Σ be a set of execution traces. A macro-event (or macro, for
short) is a sequence of events m

def= 〈e1, e2, . . . , ek〉 in which all the events ei (1 ≤ i ≤ k)

have the same thread identifier, and there exists σ ∈ Σ such that m is a substring of σ .

We use events(m) to denote the set of events in a macro m. The concatenation of two
macros m1 = 〈ei , ei+1, . . . ei+k〉 and m2 = 〈e j , e j+1, . . . e j+l〉 is defined as m1 · m2 =
〈ei , ei+1, . . . ei+k, e j , e j+1, . . . e j+l〉. We denote the concatenation of a sequence of macros
Π = 〈m1, m2, . . . ml〉 as concat(Π) = m1 · m2 · · · ml .

Definition 6 (Macro trace) Let Σ be a set of execution traces, E the set of events occurred
in traces of Σ , and M be a set of macros. Given σ ∈ Σ , a corresponding macro trace
〈m1, m2, . . . , mn〉 is a sequence ofmacrosmi ∈ M (1 ≤ i ≤ n) such thatm1 ·m2 · · · mn = σ .
We say thatM covers Σ if there exists a corresponding macro trace (denoted bymacro(σ))
for each σ ∈ Σ . Moreover, we usemacro(Σ) to denote a set of macro traces corresponding
to Σ .

Note that the mapping macro : E+ → M+ is not necessarily unique. Given a mapping
macro, every macro trace can be mapped to an execution trace and vice versa. For example,
forM = {m0

def= 〈e0, e2〉, m1
def= 〈e1, e2〉, m2

def= 〈e3〉, m3
def= 〈e4, e5, e6〉, m4

def= 〈e8, e9〉, m5
def=

〈e5, e6, e7〉} and the traces σ1 and σ2 as defined below, we obtain

σ1 = 〈
tid=1

︷ ︸︸ ︷
e0, e2, e3,

tid=2
︷ ︸︸ ︷
e4, e5, e6,

tid=1
︷ ︸︸ ︷
e8, e9〉

σ2 = 〈e1, e2︸ ︷︷ ︸
tid=1

, e5, e6, e7︸ ︷︷ ︸
tid=2

, e3, e8, e9︸ ︷︷ ︸
tid=1

〉
macro(σ1) = 〈

tid=1
︷ ︸︸ ︷
m0, m2,

tid=2
︷︸︸︷
m3 ,

tid=1
︷︸︸︷
m4 〉

macro(σ2) = 〈 m1︸︷︷︸
tid=1

, m5︸︷︷︸
tid=2

, m2, m4︸ ︷︷ ︸
tid=1

〉 (1)

123

Form Methods Syst Des (2016) 49:1–32 11

This transformation reduces the number of events as well as the length of the traces while
preserving the context switches which are necessary for understanding the cause of failures
in concurrent programs.

However, transforming traces to macro traces hides information about the frequency of
the original events. A mining algorithm applied to the macro traces will determine a support
of one for m3 and m5, even though the events {e5, e6} = events(m3) ∩ events(m5) have
a support of 2 in the original traces. While this problem can be amended by refining M by
adding m6 = 〈e5, e6〉, m7 = 〈e4〉, and m8 = 〈e6〉, for instance, this increases the length of
the trace and the number of events, countering our original intention.

Instead, we introduce an abstraction function α : M → A which maps macros to a set of
abstract events A according to the events they share. The abstraction guarantees that if m1

and m2 share events, then α(m1) = α(m2).

Definition 7 (Abstract events and traces) Let R be the relation defined as R(m1, m2)
def=

(events(m1) ∩ events(m2)
= ∅) and R+ its transitive closure. We define α(mi) to be
{m j | m j ∈ M ∧ R+(mi , m j)}, and the set of abstract events A to be {α(m) | m ∈ M}.
The abstraction of a macro trace macro(σ) = 〈m1, m2, . . . , mn〉 is α(macro(σ)) =
〈α(m1), α(m2), . . . , α(mn)〉.

The concretization of an abstract trace 〈a1, a2, . . . , an〉 is the set of macro traces
γ (〈a1, a2, . . . , an〉) def= {〈m1, . . . , mn〉 | mi ∈ ai , 1 ≤ i ≤ n}. Therefore, we have
macro(σ) ∈ γ (α(macro(σ))). Further, since for any m1, m2 ∈ M with e ∈ events(m1)

and e ∈ events(m2) it holds that α(m1) = α(m2) = a with a ∈ A, it is guaranteed that
supportΣ(e) ≤ supportα(Σ)(a), where α(Σ) = {α(macro(σ)) | σ ∈ Σ}. For the exam-
ple above (1), we obtain α(mi) = {mi } for i ∈ {2, 4}, α(m0) = α(m1) = {m0, m1}, and
α(m3) = α(m5) = {m3, m5} (with supportα(Σ)({m3, m5}) = supportΣ(e5) = 2).

3.2 Mining patterns from abstract traces

As we will demonstrate in Sect. 5, abstraction significantly reduces the length of traces,
thus facilitating sequential pattern mining. Since patterns mined from abstract traces contain
abstract events, in order to be used for explaining concurrency bugs they have to be translated
into the corresponding subsequences of the original traces. This translation is done by first
concretizing them into sequences of macros which we refer to as macro patterns. The macros
of each macro pattern are then concatenated to yield patterns which are subsequences of the
original traces. We argue that the resulting set of patterns over-approximate the patterns of
the corresponding original execution traces:

Lemma 1 Let Σ be a set of execution traces, and let π = 〈e0, e1 . . . ek〉 be a frequent pattern
with supportΣ(π) = n. Then there exists a frequent pattern 〈a0, . . . , al〉 (where l ≤ k) with
support at least n in α(Σ) such that for each j ∈ {0..k}, we have ∃m . e j ∈ m ∧ α(m) = ai j

for 0 = i0 ≤ i1 ≤ . . . ≤ ik = l.

Lemma 1 follows from the fact that each e j must be contained in some macro m and that
supportΣ(e j) ≤ supportα(Σ)(α(m)). The pattern 〈e2, e5, e6, e8, e9〉 in the example above
(1), for instance, corresponds to the abstract pattern 〈{m0, m1}, {m3, m5}, {m4}〉with support
2. Note that even though the abstract pattern is significantly shorter, the number of context
switches is the same.

While our abstraction preserves the original patterns in the sense of Lemma 1, it may
introduce spurious patterns. If we apply γ to concretize the abstract pattern from our example,

123

12 Form Methods Syst Des (2016) 49:1–32

we obtain four patterns 〈m0, m3, m4〉, 〈m0, m5, m4〉, 〈m1, m3, m4〉, and 〈m1, m5, m4〉. The
patterns 〈m0, m5, m4〉 and 〈m1, m3, m4〉 are spurious, as the concatenations of their macros
do not translate into valid subsequences of the traces σ1 and σ2.

Clearly, the supports of the original patterns are not preserved by abstraction. Following
from Lemma 1, we only have supportΣ(π) ≤ supportα(Σ)(〈a1, . . . , an〉) where π is a
concrete pattern that is a subsequence of m1 · . . . · mn with mi ∈ γ (ai). Since the supports
of the patterns obtained by the translation of abstract patterns are not precise, they are not
necessarily closed according to definition of closed patterns in Sect. 2.4. Therefore, we only
preserve the existence of patterns in CSΣ,min_supp by mining CSα(Σ),min_supp: for every
pattern π in CSΣ,min_supp there exists at least one macro pattern Π in γ (CSα(Σ),min_supp)

such that π 	 concat(Π).

3.3 Deriving macros from traces

The precision of the approximation as well as the length of the trace is inherently tied to the
choice of macrosM forΣ . There is a tradeoff between precision and length: choosing longer
subsequences as macros leads to shorter traces but also more intersections between macros.

In our algorithm, we start with macros of maximal length, splitting the traces in Σ into
subsequences at the context switches. Subsequently, we iteratively refine the resulting set of
macros by selecting the shortestmacrom and splitting allmacros that containm as a substring.
In the example in Sect. 3.1, we start withM0 = {m0

def= 〈e0, e2, e3〉, m1
def= 〈e4, e5, e6〉, m2

def=
〈e8, e9〉, m3

def= 〈e1, e2〉, m4
def= 〈e5, e6, e7〉, m5

def= 〈e3, e8, e9〉}. As m2 is contained in m5, we
split m5 into m2 and m6

def= 〈e3〉 and replace it with m6. The new macro is in turn contained
in m0, which gives rise to the macro m7 = 〈e0, e2〉. At this point, we have reached a fixed
point, and the resulting set of macros corresponds to the choice of macros in our example.

For a fixed initial state, the execution traces frequently share a prefix (representing the
initialization) and a suffix (the finalization). These are mapped to the same macro events by
our heuristic. Since these macros occur at the beginning and the end of all passing as well as
failing traces, we prune the traces accordingly and focus on the deviating substrings of the
traces.

4 Bug explanation patterns at the level of macros

By transforming traces into macro traces and then abstracting them, we lift the Definition 3
of bug explanation patterns to sequences of macros, accordingly. We argue that similar to
bug explanation patterns, macro patterns which are sequences of macros also reveal the
problem but at a higher level. Since context switches are preserved inside a macro trace, a
sequence of macros can expose unexpected or problematic context switches. Figure 3 shows
the transformation of failing trace 2 in Fig. 1 to a sequence of macros. The concurrency bug
reflected by 〈R2(o27) − 100,W1(o27) − 74,W2(o27) − 107〉 similarly can be inferred
from the sequence of macros 〈m0, m2, m3〉.

A macro pattern Π is a candidate bug explanation pattern if the following conditions are
satisfied:

1. Π contains macros of at least two different threads. The rationale for this constraint is
that we are exclusively interested in concurrency bugs.

2. For each macro in Π there is a data-dependency with at least one other macro in Π . We
lift the data-dependencies introduced in Sect. 2.2 to macros as follows: Two macros m1

123

Form Methods Syst Des (2016) 49:1–32 13

1. R2(o26) − 98
2. R2(o27) − 100
3. R2(o25) − 101

4. R1(o26) − 65
5. R1(o27) − 67
6. R1(o25) − 68
7. R1(o2) − 70
8. R1(o11) − 70
9. R1(o25) − 73
10. W1(o27) − 74
11. R1(o26) − 77
12. R1(o26) − 80
13. W1(o26) − 80
14. R1(o25) − 82
15. R1(o1) − 57

16. R2(o2) − 103
17. R2(o5) − 103
18. R2(o2) − 104
19. R2(o5) − 104
20. R2(o25) − 106
21. W2(o27) − 107
22. R2(o26) − 109
. . .

Failing trace with Macros

anti-dependency

output-dep.

m0

m1

m2

m3

1. m0

2. m1

3. m2

4. m3
. . .

Macro trace

anti-dep.

output-dep.

Fig. 3 Bug explanation with macro pattern

and m2 are data-dependent iff there exist e1 ∈ events(m1) and e2 ∈ events(m2) such
that e1 and e2 are related by dep.

3. Π is more frequent in the failing dataset than in the passing dataset (determined by the
value of rel_supp).

Since there is empirical evidence that real world concurrency bugs involve only a small
number of threads, context switches, and variables [17,23], we restrict our search to Πs
with a limited number of context switches (at most 3). Accordingly, we mine patterns of
length up to 4 from abstract traces (every abstract event corresponds to the events of one
single thread). This heuristic limits the length of patterns and increases the scalability of our
analysis significantly.

Although a sequence of macros such as Π explains the bug at a high-level, in the sense
of Definition 3 there exists a bug pattern, for instance, π = 〈e1, e2, . . . , em〉 such that π 	
concat(Π). For example, 〈R2(o27) − 100,W1(o27) − 74,W2(o27) − 107〉 in Fig. 3 is a
subsequence of concat(〈m0, m2, m3〉) = m0 · m2 · m3.

In other words, Π provides the context in which π occurs in a failing trace. Since π does
not occur necessarily in the same context in different traces, in general there are a number of
macro patterns Π1,Π2, . . . ,Πn which contain π as a subsequence. Consequently, all these
macro patterns reflect the same problem.

4.1 Algorithm

Before discussing the individual steps of our bug explanation technique (Algorithm 2), we
provide a brief outline of the sequence mining algorithm it relies on. For mining the closed
set of patterns from the abstract traces, we apply Algorithm 1, a mining algorithm similar
to PrefixSpan [30]. The algorithm is based on the Apriori property, which states that any
super-sequence of a non-frequent sequence cannot be frequent. Therefore, the algorithm
starts by finding frequent single events which are then incrementally extended to frequent
patterns. ProcedureMineClosedPatterns calls the procedureMineRecursive to recursively

123

14 Form Methods Syst Des (2016) 49:1–32

Algorithm 1 Mining closed patterns
1: procedure MineClosedPatterns(Σ,min_supp,max_pattern_len)
2: closed = {}
3: pat = {}
4: MineRecursive(pat,Σ,min_supp,max_pattern_len, closed)
5: return closed
6: end procedure

7: procedure MineRecursive(pat,Σ,min_supp,max_pattern_len, closed)
8: if |pat | ≥ max_pattern_len then
9: return
10: end if
11: Freq = {e|e ∈ events(Σ) ∧ supportΣ(e) ≥ min_supp}
12: for every e in Freq do
13: next Pat = pat + e
14: UpdateClosed(pat, closed)
15: newΣ = pr j (Σ)e
16: MineRecursive(next Pat, newΣ,min_supp,max_pattern_len, closed)
17: end for
18: end procedure

Algorithm 2 Steps of the bug explanation method
Input: ΣF , ΣP ,min_supp
Output: bug_candidate_patterns

1: 〈α(ΣF), α(ΣP)〉 ← AbstractTraces(ΣF ,ΣP)

2: CSα(ΣF),min_supp ← MineClosedPatterns(α(ΣF),min_supp, 4)

3: Abs Pat ← FilterPatterns_withNoContextSwitch(CSα(ΣF),min_supp)

4: MacroPat0 ← ConcretizeAbstractPatterns(Abs Pat)
5: MacroPat1 ← FilterSpuriousPatterns(MacroPat0,macro(ΣF))

6: MacroPat2 ← FilterPatterns_withNoDataDep(MacroPat1,macro(ΣF))

7: RelSup ← ComputeRelSupp(MacroPat2,macro(ΣP),macro(ΣF))

8: bug_candidate_patterns ← Rank_GroupPatterns(MacroPat2, RelSup)

extend frequent patterns. In each recursive call, procedure MineRecursive first computes
all frequent events in the input dataset Σ (line 11). In the first iteration, this dataset is equal
to the input dataset of MineClosedPatterns. It then uses these frequent events to extend
pat , the last mined frequent pattern (line 13). Since patterns are extended by adding only one
frequent event e to pat , the input dataset is shrunk by projection (line 15), which shortens
the sequences by removing their prefixes containing the first occurrence of e. This is due to
the fact that these prefixes do not contain any instances of patterns longer than the extended
pattern next Pat , and they can be safely removed from the sequences. The projected dataset
newΣ is then used in the subsequent call for growing next Pat .

The check whether a pattern is closed is done at line 14 by calling the procedure
UpdateClosed. We mine frequent patterns up to the length determined by parameter
max_pattern_len (line 8). As discussed at the beginning of this section, this parameter is
set to the heuristically chosen value of 4.

Algorithm 1 is applied as the second step of our method for generating bug explanation
patterns (shown inAlgorithm2). Themining algorithm computes the closed patterns of length
at most 4 that are frequent in the abstracted failing dataset α(ΣF), which is constructed in
the first step.

123

Form Methods Syst Des (2016) 49:1–32 15

Subsequently, we filter abstract patterns that do not contain context switches in step 3 of
Algorithm 2 (asmotivated in Sect. 4). The resulting patternsAbsPatmay still contain spurious
patterns which have no counterpart in the concrete dataset. In order to filter spurious patterns,
the abstract patterns need to be mapped to macro patterns MacroPat0, which is done in step
4.

Steps 5 through 7 perform the filtering steps described in Sect. 4: step 5 eliminates spurious
patterns that do not occur in the original set of failing traces, step 6 eliminates patterns whose
events are not related by the dependency relation dep, as required by Definition 3, and step
7 computes the relative support of the remaining patterns. From these patterns, we only keep
those whose rel_supp is greater than 0.5 (Definition 3). Since there may be several patterns
with the same rel_supp, at step 8, we group the patterns according to the value of relative
support and the set of data-dependencies they contain. Therefore, patterns inside one group
have the same rel_supp and set of data-dependencies. Intuitively, they refer to the same bug.
Finally, we rank these groups of patterns according to rel_supp. Groups with maximum
rel_supp are ranked highest in the final result set and consequently inspected first by the
user.

The filtering operations of steps 5 through 7 require inspection of original execution traces.
For this purpose, we can use either the concrete traces or the macro traces as a reference.
Accordingly, we have the following two options:

– Mapping macro patterns to original traces, providing the original datasets ΣF and ΣP

(instead ofmacro(ΣF) andmacro(ΣP)) as inputs to the procedures of steps 5–7.
– Mapping macro patterns to macro traces instead of original traces and providing

macro(ΣF) andmacro(ΣP) as inputs to the procedures of steps 5–7.

Since macro traces are significantly shorter than the original traces, the second option
results in orders of magnitude speedup in run time. The first option, however, yields a
precise value of the (relative) supports for the macro patterns, while the second option
results in an under-approximation of the supports. This is due to the fact that by com-
puting only the instances (Definition 4) of a macro pattern inside a macro trace (rather
than the corresponding original trace), we exclude instances of the pattern in which the
events of one macro do not occur next to each other inside an original trace. For exam-
ple, for m0

def= 〈e1, e2, e3〉, m1
def= 〈e1, e3〉, m2

def= 〈e4, e5〉, the trace σ = 〈e1, e2, e3, e4, e5〉,
and the macro pattern Π = 〈m1, m2〉, we have Π
	 macro(σ) although (concat(Π) =
〈e1, e3, e4, e5〉) 	 σ . The reason is that in the instance of concat(Π) in σ (cf. Definition 4),
e1 and e3 do not occur next to each other.

In themethod of [33], we used the first option in the implementation of themethodwhile in
the method of this paper we used the second option. Therefore, we improved performance of
the method at the cost of precision of the supports of macro patterns. Since the ratio between
the support of patterns in the failing and passing datasets is taken into account, the under-
approximation of the supports does not affect the effectiveness of the method as we will see
in Sect. 5. We argue that the instances of macro patterns we do not take into account using
the modified method are insignificant for the purpose of bug explanation. This is because
corresponding to every bug pattern π there exists at least one macro pattern Π such that
π 	 concat(Π). Since macro patterns are mined from macro traces, they necessarily occur
as a subsequence of at least one macro trace. In other words, macro patterns have an instance
inside at least one macro trace. Therefore, the modified method is capable of capturing them.

Parameters of the method For understanding the cause of a failure, the final result-set
bug_candidate_patterns needs to be inspected by the programmer. In this result set, pat-

123

16 Form Methods Syst Des (2016) 49:1–32

terns ranked highest are inspected first. Intuitively, they are most likely to be indicative of
a bug. It must be noted that our method is not supposed to be complete, and we use the
method as part of an iterative debugging process. Therefore, as soon as the user understands
the cause of failure, he will try to remove the bug. In case the program still contains bugs
after being modified, the user will apply the method again. In our experiments, in every
case study the first pattern in bug_candidate_patterns was indicative of the single bug in
the program, hence freeing the user from the obligation to inspect all patterns in the list or
multiple applications of the method.

The bug explanation patterns are evaluated by the user. If the method does not generate
useful patterns (according to user verdict) in the first iteration, there are different parameters
which can be tuned to generate a new set of patterns. These parameters include min_supp,
max_pattern_len, ΣF and ΣP . In the experimental result section, we analyze the effect of
min_supp and traces with bounded number of context switches on the output of method.

5 Experimental evaluation

To evaluate our approach, we present nine case studies which are listed in Table 2 (6 of
them are taken from [19]). The programs are C/C++ codes which belong to three different
categories: full applications, bug kernels and synthetic buggy code. The bug kernels were
extracted fromMozilla and Apache. They are 135-300 lines of code programs which capture
the essence of bugs reported inMozilla andApache. Synthetic exampleswere created to cover
a specific bug category. bzip2smp is a real multithreaded application which uses multiple
threads to speed up the compression of a file. Since the original version taken from [1] does
not contain a bug, we injected an atomicity violation bug in the code.

We generate execution traces using the concurrency testing tool Inspect [38], which
systematically explores interleavings for a fixed program input. The generated traces are
then classified as failing and passing traces with respect to the violation of a property of
interest. We implemented our mining algorithm in C#. All experiments were performed on
a 2.60 GHz PC with 8 GB RAM running 64-bit Windows 7.

Our experiments were designed to answer three research questions:

– Can our abstraction technique efficiently reduce the length of the traces, so that mining
sequential patterns becomes tractable? (Sect. 5.1)

– Do the generated bug explanation patterns accurately reveal the problematic context
switches which caused the failure in a concurrent program? (Sects. 5.2, 5.3)

– To what extent does the effectiveness of our method depend on the given datasets?
(Sects. 5.5, 5.6)

5.1 Length reduction by abstraction

First, we evaluate the efficacy of our abstraction technique. In Table 3, for every case study
the number of traces inside the failing and passing datasets and their average lengths are given
in columns 2, 3 and 4, respectively. We use the case studies indicated by “*” to generate long
traces by increasing the size of the data structures in the corresponding original case studies.
For the traces in this table, the last column shows the average length reduction (up to 99%)
achieved by means of abstraction. For the given case studies, the length is reduced by 91%
on average.

123

Form Methods Syst Des (2016) 49:1–32 17

Ta
bl

e
2

C
ha
ra
ct
er
is
tic
s
of

th
e
ca
se

st
ud
ie
s

Pr
og

.c
at
eg
or
y

N
am

e
A
pp

.v
er
si
on

B
ug

ty
pe

L
O
C

T
hr
ea
ds

Sy
nt
he
tic

B
an
kA

cc
ou

nt
n/
a

Si
ng

le
-V
ar
.A

to
m
.V

io
.

14
0

3

C
ir
cu
la
rL
is
tR
ac
e

n/
a

Si
ng

le
-V
ar
.A

to
m
.V

io
.

13
0

3

W
ro
ng

A
cc
es
sO

rd
er

n/
a

O
rd
er

V
io
.

11
2

3

B
ug

K
er
ne
l

A
pa
ch
e-
25

52
0(
L
og

)
A
pa
ch
e-
2.
0.
48

Si
ng

le
-V
ar
.A

to
m
.V

io
.

13
5

4

M
oz
-j
sC

lr
M
sg
Pa
ne

M
oz
ill
a

M
ul
ti-
V
ar
.A

to
m
.V

io
.

29
0

3

M
oz
-j
sS
tr

M
oz
ill
a-
0.
9

M
ul
ti-
V
ar
.A

to
m
.V

io
.

24
2

3

M
oz
-j
sI
nt
er
p

M
oz
ill
a-
0.
8

M
ul
ti-
V
ar
.A

to
m
.V

io
.

20
6

3

M
oz
-t
xt
Fr
am

e
M
oz
ill
a-
0.
9

M
ul
ti-
V
ar
.A

to
m
.V

io
.

23
0

3

Fu
ll
A
pp

.
bz
ip
2s
m
p

bz
ip
2s
m
p
1.
0

M
ul
ti-
V
ar
.A

to
m
.V

io
64

00
3

123

18 Form Methods Syst Des (2016) 49:1–32

Table 3 Length reduction results by abstracting the traces

Prog. Name |ΣF | |ΣP | Avg. Trace Len. Avg. Abst. Len. Avg. Len Red. (%)

BankAccount 40 5 178 13 93

CircularListRace 64 6 187 9 95

CircularListRace* 64 6 13,122 9 99

WrongAccessOrder 100 100 73 19 74

Apache-25520(Log) 100 100 115 15 87

Apache-25520(Log)* 675 27 4,219 14 99

Moz-jsClrMsgPane 775 45 7,144 15 99

Moz-jsStr 70 66 407 18 95

Moz-jsInterp 610 251 433 89 79

Moz-txtFrame 99 91 409 57 86

bzip2smp 20 20 12,997 13 99

State-of-the-art sequential pattern mining algorithms are typically applicable to sequences
of length less than 100 [20,37]. Therefore, reduction of the original traces is crucial. For five
case studies (corresponding to rows 1,2,3,8,9,10 in Table 3), we used an exhaustive set of
interleavings – i.e., all execution traces Inspectwas able to generate. ForWrongAccessOrder
and Apache-25520(Log), we took the first 100 failing and 100 passing traces from the sets
of 1427 and 32930 traces we were able to generate. For Moz-jsClrMsgPane and Apache-
25520(Log)*, failing and passing traces are chosen from the first 820 and 702 traces generated
by Inspect. For bzip2smp, we generated 220 traces using Inspect (the first 200 of which
were passing) and then chose the first 20 failing and 20 passing traces from them. In Sect. 5.6,
we study the effect of input datasets by randomly choosing 100 failing and 100 passing traces
from the set of available traces.

5.2 Effectiveness of the method

In this section, we report quantitatively on the number of the final patterns generated by
the method (in the worst case the user has to inspect all of them). We also discuss the
effectiveness of the mined patterns in understanding concurrency bugs. The results of mining
bug explanation patterns for the given programs and traces are provided in Fig. 4. The number
of the generated patterns depends on the given value of the minimum support threshold
(Sect. 2.4). Since lower thresholds yield more patterns, in the experiments we start from the
maximum value of 100% and decrease it only if it is not sufficient for generating at least one
useful pattern which accurately reveals the cause of the failure. The horizontal axis labeled
min_supp in Fig. 4 shows the support threshold values used in the experiments. For all case
studies except Moz-txtFrame, the maximum value of 100% is sufficient to obtain at least one
useful pattern. For Moz-txtFrame, we had to gradually decrease the threshold to 90% to find
at least one explanation.

The vertical axis shows the number of patterns (on a logarithmic scale) generated after
different steps of Algorithm 2. For every case study, for the given value of min_supp,
three columns from left to right, respectively, show the number of resulting abstract patterns
(step 2), the number of feasible or non-spurious patterns (step 5) and the number of patterns
remaining after removing patterns which do not satisfy the data-dependency constraints (step

123

Form Methods Syst Des (2016) 49:1–32 19

1

10

100

1000

100% 100% 100% 100% 100% 100%

#P
a�

er
ns

 (l
og

 sc
al

e)

min_supp

Abstract

Feasible

Data-Dep

Rank 1

Groups

CircularListRace*
WrongAccessOrder

Apache-25520(Log)

Apache-25520(Log)*

BankAccount

CircularListRace

1

10

100

1000

10000

100% 100% 100% 90% 100%

#P
a�

er
ns

 (l
og

 sc
al

e)

min_supp

Abstract

Feasible

Data-Dep

Rank 1

Groups

Moz-jsStr
Moz-jsInterp

Moz-txtFrame
bzip2smp

Moz-jsClrMsgPane

Fig. 4 Mining results

6). The fourth column from left shows the number of patterns with maximum relative support
of 1 (which only occur in the failing dataset). Although step 7 of the algorithm computes the
patterns whose rel_supp is greater than 0.5 (which only frequent in the failing dataset), since
for most case studies the algorithm produced several patterns with rel_supp = 1, only the
number of these patterns are reported in Fig. 4. The rightmost column for every case study
in Fig. 4 shows the number of groups that these patterns can be divided into according to the
set of data-dependencies they contain. Since there are several of these groups, we sort them
in descending order according to the number of data-dependencies. Therefore, in the final
result set a group of patterns with the highest value of relative support and maximum number
of data-dependencies appears at the top.

The patterns at the top of the list in the final result are inspected first by the user in order
to understand a bug. For the case study WrongAccessOrder since #Data-Dep #Rank 1 and
#Groups are all 1, the corresponding columns in Fig. 4 are not drawn due to the log scale of
vertical axis. As the last column in Fig. 4 shows, the resulting number of the groups for most
case studies is less than 10. (The relatively large number of final groups for bzip2smp case
study can be an effect of choosing a relatively small set of input traces.)

123

20 Form Methods Syst Des (2016) 49:1–32

53 54 55 53 54 56 57 58 59 60 42 43 44 45 46 30

R2-W1 balance

34 35 36 37 72 41 61 62 63 64 65 77 78 66 67 68

R1-W2 balance

44 45 46 47 77 49 50 51 52 53 54 55 24 25 26 27 28 29 30 31 32 33 34 32 35 36 32 37 38 32 41 42 43

W2-R1 list-len

6 7 21 9 10 22 12 13 24 25 26 27 28 29 30 32 33 34 35 36 37
R1-W2 log-end

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 ... 94 95

W1-R2 totalStrings R2-W1 lengthSum

29 30 31 128 129 130 131 132 133 32 134 135 33 34 35

R2-W2 occupancy-flag W2-W1 occupancy-flag

132 133 138 143 177 145 146 147 148 139 140

W2-R1mContentLengthR1-W2mContentOffset

BankAccount

CircularListRace

Apache-25520(Log)

Moz-txtFrame

Moz-jsInterp

Moz-jsStr

W1-R2 log

R1-W2 flush-num

16 9 17 18

W0-R1 fifo

WrongAccessOrder

W2-R1 list-tail R2-W1 list[list-tail]

583 584 585 586 587 588 589 590 591 592 578 593 594 579 580 581

R2-W1 accountLoadFlag

Moz-jsClrMsgPane

568 569 570 571 572 573 574 577 578 579 580 581 582 583... 3062 3063bzip2smp

R1-W1 inChuncksTail

R1-W0 auxVar

Fig. 5 Bug explanation patterns—case studies

Mining of abstract patterns (step 2) takes around 87 ms on average. With an average
runtime of 27s, the post-processing after mining (step 3–8) is the computationally most
expensive step, but is very effective in eliminating irrelevant patterns.

We verified manually that all groups with the relative support of 1 (Fig. 4) are an adequate
explanation of at least one concurrency bug in the corresponding program. In the following,
we explain for each case study how the inspection of only a single pattern from these groups
can expose the bug. These patterns are given in Fig. 5. For each case study, the given pattern
belongs to a group of patterns which appeared at the top of the list in the final result set,
hence inspected first by the user. In this figure, we only show the ids of the events and the
data-dependencies relevant for understanding the bugs. Macros are separated by extra spaces
between the corresponding events. It must be noted that the events inside a macro occur
consecutively inside the traces while between the macros there can be a context switch. As
we will explain in the following, from the data-dependencies between the macros we can
infer problematic context switches between the threads.

According to the commonly used classification, we have 3 different types of concurrency
bugs in our case studies, namely single- and multi-variable atomicity violations, and order
violations.

5.2.1 Single-variable atomicity violation

Bank account The update of the shared variable balance in Fig. 1 in Sect. 2.3 involves a
read as well as a write access that are not located in the same critical region. Accordingly,
a context switch may result in writing a stale value of balance. In Fig. 5, we provide two
patterns for BankAccount, each of which contains two macro events. Fig. 6 shows these
patterns bymapping the ids to the corresponding read/write events. From the anti-dependency
(R2 − W1 balance) in the left pattern, we infer an atomicity violation in the code executed

123

Form Methods Syst Des (2016) 49:1–32 21

1. R2(o1) − 91
2. R2(o2) − 93
3. R2(o4) − 93
4. R2(o1) − 91
5. R2(o2) − 93
6. R2(o6) − 93
7. R2(o25) − 96
8. R2(o26) − 98
9. R2(o27) − 100
10. R2(o25) − 101

11. W1(o27) − 74
12. R1(o26) − 77
13. R1(o26) − 80
14. W1(o26) − 80
15. R1(o25) − 82
16. R1(o1) − 57

R−Wbalance

1. R1(o26) − 65
2. R1(o27) − 67
3. R1(o25) − 68
4. R1(o2) − 70
5. R1(o11) − 70
6. R1(o25) − 73

7. R2(o2) − 103
8. R2(o5) − 103
9. R2(o25) − 106
10. W2(o27) − 107
11. R2(o26) − 109
12. R2(o28) − 110
13. W2(o28) − 110
14. R2(o26) − 112
15. W2(o26) − 112
16. R2(o25) − 114

R−Wbalance

Fig. 6 Expansion of bug explanation patterns—bank account

Thread 2 (withdraw) Thread 1 (deposit)

. . .

bal = balance;100:

pthread mutex unlock(balance lock);101:

balance = bal;74:
. . .

pthread mutex unlock(balance lock);82:
. . .

R2 −W1

Fig. 7 Mapping of bug pattern to source code

by thread 2, since a context switch occurs afterR2(balance), consequently it is not followed
by the correspondingW2(balance). Similarly, from the anti-dependencyR1 − W2 balance
in the right pattern we infer the same problem in the code executed by the thread 1. Since
the events of these patterns include the location in the source code, we can easily map them
back to the corresponding lines of source code. Figure 7 shows part of the mapping of the
left pattern to the source code. Patterns are visualized in this way and given to the user for
inspection.

Circular list race, Circular list race* This program removes elements from the end of a list
and adds them to the beginning using the methods getFromTail and addAtHead, respec-
tively. The update is expected to be atomic, but since the calls are not located in the same
critical region, two simultaneous updates can result in an incorrectly ordered list if a context
switch occurs. The first and the second macros of the pattern in Fig. 5 correspond to the
events issued by the execution of methods getFromTail by thread 2 and addAtHead by
thread 1, respectively. Figure 8 shows the pattern by mapping the ids to the corresponding
read/write events. From the given data-dependencies it can be inferred that these two calls
occur consecutively during the program execution, thus revealing the atomicity violation.
This is due to the fact that the call of getFromTail by thread 2 should be followed by the call
of addAtHead from the same thread.

Apache-25520(Log), Apache-25520(Log)* In this bug kernel, Apache modifies a data-
structure log by appending an element and subsequently updating a pointer to the log. Since

123

22 Form Methods Syst Des (2016) 49:1–32

1. R2(o10) − 65
2. R2(o11) − 67
3. R2(o8) − 31
4. R2(o7) − 34
5. R2(o4) − 34
6. R2(o8) − 36
7. R2(o8) − 36
8. W2(o8) − 36
9. W2(o8) − 36
10. R2(o7) − 38
11. W2(o7) − 38
12. R2(o10) − 71

13. R1(o11) − 81
14. R1(o11) − 84
15. W1(o11) − 84
16. R1(o7) − 45
17. W1(o7) − 45
18. R1(o8) − 47
19. W1(o8) − 47
. . .
28. R1(o3) − 50
29. W1(o4) − 50
30. R1(o7) − 49
31. R1(o6) − 52
32. W1(o1) − 52
33. R1(o10) − 88

CircularListRace

R−W list [list − tail]

W − R list − len

W − R list − tail

1. W0(o3) − 106
2. R1(o3) − 54
3. R1(o7) − 56
4. W1(o7) − 56

WrongAccessOrder

W − Rfifo

1. R1(o5) − 44
2. R1(o3) − 47
3. R1(o2) − 47
4. R1(o3) − 48
5. R1(o3) − 52
6. W1(o2) − 52
7. R1(o4) − 54
8. R1(o4) − 56

9. R2(o5) − 44
10. R2(o3) − 47
11. R2(o2) − 47
12. R2(o3) − 48
13. R2(o3) − 52
14. W2(o2) − 52
15. R2(o4) − 54

16. R2(o5) − 58
17. R2(o5) − 61
18. W2(o5) − 61
19. R2(o3) − 65
20. W2(o3) − 65
21. R2(o4) − 67

Apache-25520(Log)

R−W log − end

W − R log

Fig. 8 Expansion of bug explanation patterns—cont.

these two actions are not protected by a lock, the log can be corrupted if a context switch
occurs. The first macro of the pattern in Fig. 5 (Fig. 8) reflects thread 1 appending an ele-
ment to log. The second and third macros correspond to thread 2 appending an element and
updating the pointer, respectively. The dependencies imply that the modification by thread 1
is not followed by the corresponding update of the pointer.

5.2.2 Order violation

Wrong access order In this program, the main thread spawns two threads, consumer and
output, but it only joins output. After joining output, the main thread frees the shared
data-structure which may be accessed by consumer which has not exited yet. The flow-
dependency between the two macros of the pattern in Fig. 5 (Fig. 8) implies the wrong order
in accessing the shared data-structure.

5.2.3 Multi-variable atomicity violation

Moz-jsStr In this bug kernel, the cumulative length and the total number of strings stored in a
shared cache data-structure are stored in two variables named lengthSum and totalStrings.
These variables are updated non-atomically, resulting in an inconsistency. The pattern and the
data-dependencies in Fig. 5 (Fig. 9) reveal this atomicity violation: the values of totalStrings
and lengthSum read by thread 2 are inconsistent due to a context switch that occurs between
the updates of these two variables by thread 1.

Moz-jsInterp This bug kernel contains a non-atomic update to a shared data-structureCache
and a corresponding occupancy flag, resulting in an inconsistency between these objects. The

123

Form Methods Syst Des (2016) 49:1–32 23

1. R1(o93) − 24
2. R1(o94) − 25
3. W1(o94) − 25
4. R1(o2) − 26
5. R1(o2) − 23

6. R1(o93) − 24
7. R1(o95) − 25
8. W1(o95) − 25
9. R1(o2) − 26
10. R1(o2) − 28

11. R2(o1) − 178
12. R2(o2) − 153
13. R2(o93) − 156
14. W2(o93) − 156
15. R2(o95) − 159
16. R2(o96) − 160
17. R2(o96) − 161
18. R2(o97) − 162
19. R2(o96) − 162
20. R2(o96) − 162
21. R2(o2) − 171

22. R1(o93) − 29
23. R1(o98) − 29
24. W1(o98) − 29
25. R1(o96) − 30
26. W1(o96) − 30
27. R1(o97) − 31
28. W1(o97) − 31
29. R1(o2) − 32
30. R1(o99) − 186
31. W1(o99) − 189
32. W1(o100) − 204
. . .
68. W1(o136) − 204
69. W1(o137) − 122
70. W1(o138) − 123
71. R1(o1) − 124
72. R1(o2) − 23

Moz-jsStr

W − R totalStrings

R−W lengthSum

1. R1(o433) − 5905
2. R1(o433) − 5910
3. R1(o12) − 5910
4. W1(o20) − 5910
5. R1(o434) − 5911

6. R0(o434) − 6381
7. W0(o434) − 6381

8. R1(o434) − 5915
9. R1(o435) − 5916
10. W1(o435) − 5916
11. R1(o433) − 5918
12. W1(o433) − 5918
13. R1(o433) − 5920
14. R1(o10) − 5920
. . .

bzip2smp
R
−

W
inC

hunksT
ail

R−W auxVar

1. R2(o264) − 91
2. R2(o265) − 108
3. R2(o267) − 109
4. R2(o1) − 110
5. R2(o300) − 115
6. R2(o197) − 116
7. R2(o198) − 116
8. R2(o301) − 119
9. W2(o301) − 119
10. R2(o300) − 122

11. R1(o301) − 206
12. R1(o302) − 207
13. W1(o302) − 207
14. R1(o197) − 212
15. W1(o198) − 212
16. R1(o300) − 213

Moz-jsClrMsgPane

R−W accountLoadFlag

Fig. 9 Expansion of bug explanation patterns—cont.

first and last macro-events of the pattern in Fig. 5 (Fig. 10) correspond to populating Cache
and updating the occupancy flag by thread 1, respectively. The other two macros show the
flush of Cache content and the resetting of occupancy flag by thread 2. The given data-
dependencies suggest the two actions of thread 1 are interrupted by thread 2 which reads an
inconsistent flag.

Moz-txtFrame The pattern and data-dependencies of this case study in Fig. 5 (Fig. 10) reflect
a non-atomic update to the two fieldsmContentOffset andmContentLength, which causes
the values of these fields to be inconsistent: the values of these variables read by thread 1 in
the second and forth macros are inconsistent due to the updates done by thread 2 in the third
macro.

Moz-jsClrMsgPane In this bug kernel, there is a flag named accountLoadFlag which is
set to true when the content of the data-structure account is loaded in to the corresponding
window frame. Since the second macro of the given pattern for this case study in Fig. 5
(Fig. 9) contains only the update of accountLoadFlag, it can be inferred that the update of
the flag and loading of account are not done atomically which results in an inconsistency
between these two variables.

123

24 Form Methods Syst Des (2016) 49:1–32

1. W1(o15) − 108
2. W1(o16) − 109
3. R1(o8) − 112

4. R2(o1) − 74
5. R2(o2) − 74
6. R2(o3) − 75

7. W2(o3) − 80
8. R2(o8) − 81
9. W2(o8) − 81

10. R1(o8) − 123
11. R1(o200) − 124
12. W1(o200) − 124
13. W1(o3) − 128
14. R1(o4) − 131
15. W1(o4) − 131

Moz-jsInterp

R−W flush − num

W −W occup.− flag

R−W occup.− flag

1. W1(o132) − 68
2. W1(o133) − 69

3. R1(o132) − 118
4. W2(o131) − 177
5. R2(o137) − 178
6. W2(o132) − 183
7. W2(o133) − 184
8. R2(o136) − 187
9. W2(o136) − 187

10. R1(o133) − 123
11. R1(o136) − 126

Moz-txtFrame

R−WmContentOffset

W − RmContentLength

Fig. 10 Expansion of bug explanation patterns—cont

bzip2smp In this multithreaded application, updates of the buffer inChunks and its pointer
inChunksTail are not done in the same critical section. Therefore, occurrence of a context
switch between these two updates results in an inconsistency between the buffer and pointer.
The bug pattern of this application in Fig. 5 (Fig. 9) reflects the occurrence of a context switch
between the updates of the buffer (first macro) and the pointer (third macro).

5.3 User case study evaluation

To evaluate the effectiveness of bug explanation patterns in facilitating debugging concur-
rent programs, we ran a user case study with a group of undergraduate computer science
students at Vienna University of Technology (TU Wien). We had two groups containing 16
students each. We gave one group the bug explanation patterns of three case studies namely
WrongAccessOrder, Moz-jsInterp and Moz-jsStr. We used the other one as the control group
given only the source codes of the case studies. We refer to the former as “M” (for mining)
and latter as “S” (for source). We asked the students to find the corresponding concurrency
bugs either by reading the source code (group “S”) or by inspecting given patterns (group
“M”). For WrongAccessOrder, Moz-jsInterp, the violated assertions were specified in the
source code and for Moz-jsStr a failing test case was given in addition to source code. Table 4
summarizes the results. This table for every programming task shows the number of the
students in each group which were able to find the concurrency bugs correctly (columns 2,
3) and the amount of time on average that they spent on each task (columns 4,5). As we can
see, students in the group “M” by using the bug patterns were on average 5 minutes faster
in finding the bugs. However, for two tasks, a larger number of students in group “S” were
able to locate the bug correctly. We attribute this to the fact that the students of group “S”
had more programming experiences according to their self-reported programming experi-
ence level. In order to verify this conjecture, we divided the students of each group into three
subgroups of novice, average, and expert programmers according to their self-reported level
of programming experience. Since the majority of the students were average programmers
(11 in group “M” and 9 in group “S”), we only compared the performance of the average
subgroups. These programmers performed better in group “M’. On average 74% and 72%
of them correctly found the bugs in groups “M” and “S”, respectively. However, the average
subgroup of “M” by spending 41 minutes on average were around 11 minutes faster than
similar subgroup in “S”. According to the feedback of the average programmers in group

123

Form Methods Syst Des (2016) 49:1–32 25

Table 4 User case study results Prog. name #Correct Ans. Avg. time (min)

M C M C

WrongAccessOrder 9 8 13 19.5

Moz-jsInterp 10 13 15 18

Moz-jsStr 10 13 9 14

Avg:12 Avg:17

1

10

100

1000

10000

Fe

as
ib

le
 (l

og
 s

ca
le

) Current

Previous

1

10

100

1000

Da

ta
-D

ep
 (l

og
 s

ca
le

) Current

Previous

0

10

20

30

40

50

60

70

80

Ra

nk
 1

Current

Previous

0

2

4

6

8

10

12

14

Gr

ou
ps

Current

Previous

Fig. 11 Comparison between current and previous methods

“M”, the given patterns were helpful in finding the bugs. They found the given tasks at the
medium level of difficulty.

5.4 Comparison with our previous method in [33]

As discussed in Sect. 4.1, using macro(ΣF) and macro(ΣP) instead of original datasets
may result in pattern loss at step 5 and an under-approximation of supports at step 7 of
Algorithm 2. The diagrams in Fig. 11 show a comparison of the difference between the
number of patterns generated at steps 5–8 of Algorithm 2 by method of this paper (current)
and method of [33] (previous). We observed only a slight change between the outputs of the
two methods in every step. In particular, the number of groups of patterns (step 8) is quite
similar for all case studies.

Considering the effectiveness of the patterns computed by the current method (as we
discussed in the previous section), we came to the conclusion that the slight change in the
number of patterns has not affected the quality of the final result-set or effectiveness of the
current method.Moreover, ourmodification of the algorithm resulted in a speed up in running

123

26 Form Methods Syst Des (2016) 49:1–32

Table 5 Efficiency of the previous and current method

Program Mining abst. patt. time Post-processing time (ms)

Previous Current

BankAccount 30 141 ms 38 ms

CircularListRace 26 2269 ms 45 ms

CircularListRace* 28 – 333 ms

WrongAccessOrder 32 72 ms 40 ms

Apache-25520(Log) 55 1207 ms 240 ms

Apache-25520(Log)* 117 5745 ms 491 ms

Moz-jsClrMsgPane 70 – 941 ms

Moz-jsStr 29 86.573 s 163 ms

Moz-jsInterp 257 1612.785 s 3200 ms

Moz-txtFrame 266 29.929 s 6058 ms

bzip2smp 46 – 280.595 s

Avg: 87 – Avg: 27 s

time as Table 5 shows. We use “–” to denote that post-processing step did not finish within
24 hours.

5.5 Datasets with context-switch bounded traces

In this section, we study the effect of ΣF and ΣP on the output of the method. As we have
seen in Sect. 5.1, the datasets of some of our case studies do not contain all the executions
that can be generated by Inspect. In this and next section, we show that the method does not
rely on an exhaustive enumeration of failing and passing interleavings in order to compute
patterns which are indicative of bugs. By bounding the number of context switches inside
the traces, we generate different passing and failing datasets. The number of traces in these
datasets for each case study is given in Table 6. In this table, we can see how the size of
ΣF and ΣP is reduced by bounding the number of context switches using different bounds.
For comparison, in Table 6 the size of datasets generated without a bound on the number
of context switches (column 3) is also given. The maximum number of context switches
in these datasets is also given in column 1 with the header named max. They are the same
as the datasets in Table 3 and were used in the experiments of Sect. 5.2. The diagrams in
Fig. 12 show the effect of datasets containing context switch bounded traces on the number
of patterns generated at different steps of Algorithm 2. Although datasets with lower bounds
contain fewer traces, in most case studies there is only a small change in the number of
the generated patterns. Especially the last two bars from the right (#Rank1 and #Groups)
corresponding to the number of patterns with relative support of 1 and the number of groups
of these patterns in most diagrams are very similar.

In Fig. 13, for every input dataset of Table 6 the patterns appeared at the top of the
final result-sets are given. As we can see, corresponding to every case study the patterns of
different input datasets are similar in terms of the macros and the data-dependencies they
contain. Consequently, all refer to the same concurrency bug. Due to the similarity between
the patterns in Fig. 13 and Fig. 5, the explanations given in Sect. 5.2 for understanding bugs
from patterns of Fig. 5 are also applicable to the patterns of Fig. 13. Only the pattern given

123

Form Methods Syst Des (2016) 49:1–32 27

Table 6 Datasets with context switch bounded traces

Program #Context-switch Original Context-switch bound

max bound |ΣF | |ΣP | |ΣF | |ΣP |

BankAccount 4 3, 2 40 5 19, 5 5, 5

CircularListRace 7 6, 5, 4, 3 64 6 62, 56, 38, 20 6, 6, 6, 6

WrongAccessOrder 11 6, 5, 4 100 100 11, 5, 1 49, 18, 7

Apache-25520(Log) 10 5, 4, 3 100 100 33, 10, 2 63, 36, 13

Moz-jsClrMsgPane 8 6, 5, 4, 3 775 45 516, 278, 102, 27 45, 45, 45, 19

Moz-jsStr 5 4, 3 70 66 15, 5 30, 12

Moz-jsInterp 4 3, 2 610 251 59, 20 61, 22

Moz-txtFrame 5 4, 3 99 91 18, 6 36, 14

1

10

100

Abstract # Feasible # Data-Dep # Rank 1 # Groups

Pa

�
er

ns
-g

ro
up

s (
lo

g
sc

al
e)

4 (100%)
3 (100%)
2 (100%)

Max #context-switches
(min_supp %)

BankAccount

0

2

4

6

8

10

12

14

16

18

Abstract # Feasible # Data-Dep # Rank 1 # Groups

Pa

�
er

ns
-g

ro
up

s 7 (100%)
6 (100%)
5 (100%)
4 (100%)
3 (100%)

CircularListRace CircularListRace CircularListRace CircularListRace Max #context-switches
(min_supp %)

1

10

100

1000

Abstract # Feasible # Data-Dep # Rank 1 # Groups

Pa

�
er

ns
-g

ro
up

s (
lo

g
sc

al
e)

10 (100%)

5 (100%)

4 (100%)

3 (100%)

Max # context-switches
(min_supp%)

Apache-25520(Log)

0
2
4
6
8

10
12
14
16
18
20

Abstract # Feasible # Data-Dep # Rank 1 # Groups

Pa

�
er

ns
- g

ro
up

s 11 (100%)

6 (100%)

5 (100%)

4 (100%)

Max # context-switches
 (min_supp %)

WrongAccessOrder

1

10

100

1000

Abstract # Feasible # Data-Dep # Rank 1 # Groups

Pa

�
er

ns
-g

ro
up

s (
lo

g
sc

al
e)

5 (100%)
4 (100%)
3 (100%)

Max # context-switches
(min_supp%)

Moz-jsStr

1

10

100

1000

Abstract # Feasible # Data-Dep # Rank 1 # Groups

Pa

�
er

ns
-g

ro
up

s (
lo

g
sc

al
e)

4 (100%)
3 (100%)
2 (100%)

Max # context-switches
(min_supp %)

Moz-jsInterp

1

10

100

1000

10000

Abstract # Feasible # Data-Dep # Rank 1 # Groups

Pa

�
er

ns
-g

ro
up

s (
lo

g
sc

al
e)

5 (90%)
4 (70 %)
3 (100%)

Max # context-switches
 (min_supp %)

Moz-txtFrame

0

1

2

3

4

5

6

7

8

9

Abstract # Feasible # Data-Dep # Rank 1 # Groups

#P
a�

er
ns

-g
ro

up
s 8 (100%)

6 (100%)

5 (100%)

4 (100%)

3 (100%)

Moz-jsClrMsgPane Max # context-switches
 (min_supp %)

Fig. 12 Mining results—context-switch bounded traces

123

28 Form Methods Syst Des (2016) 49:1–32

53 54 55 53 54 56 57 58 59 60 42 43 44 45 46 30

R2-W1 balance

34 35 36 37 72 41 61 62 63 64 65 77 78 66 67 68

R1-W2 balance

44 45 46 47 77 49 50 51 52 53 54 55 24 25 26 27 28 29 30 31 32 33 34 32 35 36 32 37 38 32 41 42 43

W2-R1 list-len

6 7 21 9 10 22 12 13 24 25 26 27 28 29 30 32 33 34 35 36 37
R1-W2 log-end

BankAccount
(4,3)

CircularListRace
(7,6,5,4,3)

Apache-25520(Log)
(10,5)

W1-R2 log

16 9 17 18

W0-R1 fifo

WrongAccessOrder
(11,6,5,4)

W2-R1 list-tail
R2-W1 list[list-tail]

(3) 6 7 21 9 10 22 12 13 32 33 34 35 36 37 32 33 34 35 43 44 37 14 46 47 15 16 17 48 20
R1-W2 log-end

R1-W1 log

53 54 55 53 54 56 57 58 59 60 42 43 44 45 46 30 31 47 30 31 48 33 34 35 36 37 72 41 61 62 79 80 63 64 65 77 78 66 67 68 (2)

6 7 21 9 10 22 12 13 24 25 26 27 28 29 30 32 33 34 35 36 37 41 42(4)

583 584 585 586 587 588 589 590 591 592 578 593 594 579 580 581

R2-W1 accountLoadFlag

Moz-jsClrMsgPane
(8,6,5,4,3)

29 30 31 128 129 130 131 132 133 32 134 135 33 34 35

R2-W2 occupancy-flag W2-W1 occupancy-flag

132 133 138 143 177 145 146 147 148 139 140

W2-R1mContentLengthR1-W2mContentOffset

Moz-txtFrame
(5,4)

Moz-jsInterp
(4,3)

R1-W2 flush-num

29 30 31 131 132 133 128 129 130 32 134 135 33 34 35

W2-R2 occupancy-flag

W2-W1 occupancy-flag

R1-W2 flush-num

(2)

132 133 138 143 144 145 146 147 148 143 144 145 146 147 148 139 140(3)

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 ... 94 95

W1-R2 totalStrings R2-W1 lengthSum

Moz-jsStr
(5)

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 299 300 120 121 122 ... 276 277

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 106...116 117...120 121 ... 276 277

(4)

(3)

Fig. 13 Bug explanation patterns—context-switch bounded traces (numbers in parenthesis shows the corre-
sponding bounds used in generating the input datasets)

for Apache-25520(Log) with bound = 3 is slightly different from other patterns of this case
study, but reveals the same concurrency bug. In this pattern, the data-dependency between
the events of the first macro reflects thread 1 appending an element to log. However, the
data-dependency between first and second macros implies that the modification by thread 1
is not followed by a corresponding update of the log pointer, revealing an atomicity violation
in accessing the log data-structure.

The experiments of this section show that even for input datasets containing a small
number of traces (such as datasets with bound = 2 in BankAccount or bound = 3 in
Apache-25520(Log)) the method is capable of generating useful bug explanation patterns.

5.6 Datasets with randomly-chosen traces

In Sect. 5.2, the failing and passing datasets for the two case studies WrongAccessOrder and
Apache-25520(Log) contained the first 100 failing and 100 passing traces out of 1427 and

123

Form Methods Syst Des (2016) 49:1–32 29

1

10

100

1000

Abstract # Feasible # Data-Dep # Rank 1 # Groups#
Pa

�
er

ns
-g

ro
up

s (
lo

g
sc

al
e) Rand 1

Rand 2

Rand 3

Rand 4

Rand 5

WrongAccessOrder

0
10
20
30
40
50
60
70
80
90

Abstract # Feasible # Data-Dep # Rank 1 # Groups

Pa

�
er

ns
-g

ro
up

s

Rand 1

Rand 2

Rand 3

Rand 4

Rand 5

Apache-25520(Log)

Fig. 14 Mining results—randomly chosen traces

Apache-25520(Log)
(Rand: 1, 2, 4, 5) 6 7 8 9 10 11 12 13 24 25 26 27 28 29 30

R1-W2 log-end

R1-W1 log

6 7 8 9 10 11 12 13 35 38 39 40 43 44 42
R1-W2 log-end

R1-W1 log

(Rand: 3)

16 9 17 18 19

W0-R1 fifo
WrongAccessOrder

9 10 16 9 17 18 19

W0-R1 fifo

(Rand: 2, 3, 5)(Rand: 1, 4)

Fig. 15 Bug explanation patterns—randomly chosen traces

32930 traces available. In this section, we evaluate our method on the datasets generated by
randomly choosing 100 failing and 100 passing traces. For each of these two case studies, we
repeated the experiments 5 times, each time with different randomly generated failing and
passing datasets. The results of applying Algorithm 2 on these datasets are given in Fig. 14.
As the diagrams show, we have a slight variation in the results of the algorithm for different
random input datasets.

Figure 15 shows for both case studies the patterns ranked top in the final result-sets of the
5 different random datasets. The patterns are similar, hence revealing the same concurrency
bug. The patterns for Apache-25520(Log) are similar to the pattern of the case study with
bound = 3 in Fig. 13. For WrongAccessOrder, the given patterns are similar to patterns of
the case study in both Figs. 13 and 5.

5.7 Threats to validity

There is a limitation to the evaluation of our method. Although most of our case studies were
used in other work, we have not applied our method to full large applications such as Mozilla
and Apache. Since logging the traces and applying the abstraction offline may be impractical
for these large applications, we plan to apply our abstraction technique online as the traces
are being generated in future work.

6 Related work

Given the ubiquity of multithreaded software, there is a vast amount of work on finding
concurrency bugs. A comprehensive study of concurrency bugs [17] identifies data races,
atomicity violations, and ordering violations as the prevalent categories of non-deadlock
concurrency bugs. Accordingly, most bug detection tools are tailored to identify concurrency
bugs in one of these categories. Avio [18] detects single-variable atomicity violations by
learning acceptable memory access patterns from a sequence of passing training executions,
and then monitoring whether these patterns are violated. Svd [36] is a tool that relies on
heuristics to approximate atomic regions and uses deterministic replay to detect serializability
violations. Lockset analysis [32] and happens-before analysis [25] are popular approaches

123

30 Form Methods Syst Des (2016) 49:1–32

focusing only on data race detection. In contrast to these approaches, which rely on specific
characteristics of concurrency bugs and lack generality, our bug patterns can reveal any
type of concurrency bugs. The algorithms in [35] for atomicity violations detection rely
on input from the user in order to determine atomic fragments of executions. Detection
of atomic-set serializability violations by the dynamic analysis method in [10] depends on
a set of given problematic data access templates. Unlike these approaches, our algorithm
does not rely on any given templates or annotations. Bugaboo [19] constructs bounded-size
context-aware communication graphs during an execution, which encode access ordering
information including the context in which the accesses occurred. Bugaboo then ranks the
recorded access patterns according to their frequency. Unlike our approach, which analyzes
entire execution traces (at the cost of having to store and process them in full), context-
aware communication graphs may miss bug patterns if the relevant ordering information
is not encoded. Falcon [29] and the follow-up work Unicorn [28] can detect single- and
multi-variable atomicity violations as well as order violations bymonitoring pairs of memory
accesses, which are then combined into problematic patterns. The suspiciousness of a pattern
is computed by comparing the number of times the pattern appears in a set of failing traces
and in a set of passing traces. Unicorn produces patterns based on pattern templates, while
our approach does not rely on such templates. In addition, Unicorn restricts these patterns
to windows of some specific length, which results in a local view of the traces. In contrast to
Unicorn, we abstract the execution traces without losing information.

Leue et al. [13,14] have used pattern mining to explain concurrent counterexamples
obtained by explicit-state model checking. In contrast to our approach, [13] mines frequent
substrings instead of subsequences and [14] suggests a heuristic to partition the traces into
shorter sub-traces. Unlike our abstraction-based technique, both of these approaches may
result in the loss of bug explanation sequences. Moreover, both methods are based on con-
trasting the frequent patterns of the failing and the passing datasets rather than ranking them
according to their relative frequency. Therefore, their accuracy is contingent on the values
for the two support thresholds of the failing as well as the passing datasets.

Statistical debugging techniques which are based on comparison of the characteristics of
a number of failing and passing traces are broadly used for localizing faults in sequential
program code. For example, a recent work [31] statically ranks the differences between a
few number of similar failing and passing traces, producing a ranked list of facts which are
strongly correlated with the failure. It then systematically generates more runs that can either
further confirm or refute the relevance of a fact. In contrast to this approach, our goal is to
identify problematic sequences of interleaving actions in concurrent systems.

Due to nondeterminism, cyclic debugging which is the most common methodology used
for debugging sequential software can be ineffective for debugging concurrent programs [12].
In cyclic debugging, when the programmer observes a failure, he postulates a set of under-
lying causes for the failure and accordingly inserts trace statements and breakpoints in the
program code and reexecutes it. This methodology cannot be applied for debugging concur-
rent programs because successive executions of these programs do not necessarily produce
the same results. Therefore, a number of techniques such as [12] have been proposed for
reproducing the execution behavior of concurrent programs. However, using the techniques
such as [12] only the execution behavior of a concurrent program can be reproduced for
further analysis. The task of isolating and understanding the cause of failure still needs to
be done manually by the programmer. Our method differs from these methods as its goal is
isolating the causes of failures automatically, hence, facilitating the task of debugging.

123

Form Methods Syst Des (2016) 49:1–32 31

7 Conclusion

We introduced the notion of bug explanation patterns based onwell-known ideas fromconcur-
rency theory, and argued their adequacy for understanding concurrency bugs. We explained
how sequential patternmining algorithms can be adapted to extract such patterns from logged
execution traces. By applying a novel abstraction technique, we reduce the length of these
traces to an extent that pattern mining becomes feasible. Our case studies demonstrate the
effectiveness of our method for a number of synthetic as well as real world bugs. As future
work we plan to apply our method for explaining other types of concurrency bugs such
as deadlocks and livelocks. We also investigate the possibility of making our mining-based
method online for analyzing the traces as they are being generated.

Acknowledgments Supported by the Austrian National Research Network S11403-N23 (RiSE) and by the
Vienna Science and Technology Fund (WWTF) through grant VRG11-005.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

References

1. http://bzip2smp.sourceforge.net/, (bzip2smp 1.0). Accessed in Sept 2015
2. Clarke EM, Grumberg O, Jha S, Lu Y, Veith H (2000) Counterexample-guided abstraction refinement.

CAV, LNCS 1855:154–169
3. Delgado N, Gates AQ, Roach S (2004) A taxonomy and catalog of runtime software-fault monitoring

tools. IEEE Trans Softw Eng (TSE) 30(12):859–872
4. Elmas T, Qadeer S, Tasiran S (2010) Goldilocks: a race-aware Java runtime. CommunACM53(11):85–92
5. Engler DR, Ashcraft K (2003) RacerX: effective, static detection of race conditions and deadlocks. In:

Symposium on operating systems principles (SOSP), ACM 2003, pp 237–252
6. Erickson J, Musuvathi M, Burckhardt S, Olynyk K. (2010) Effective data-race detection for the kernel.

In: USENIX symposium on operating systems design and implementation (OSDI), USENIX Association
2010, pp 151–162

7. Flanagan C, Freund SN (2010) FastTrack: efficient and precise dynamic race detection. Commun ACM
53(11):93–101

8. Flanagan C, Qadeer S (2003) A type and effect system for atomicity. In: PLDI, ACM 2003, pp 338–349
9. Fleming SD, Kraemer E, Stirewalt REK, Xie S, Dillon LK (2008) A study of student strategies for

the corrective maintenance of concurrent software. In: International conference on software engineering
(ICSE), ACM 2008, pp 759–768

10. Hammer C, Dolby J, Vaziri M, Tip F (2008) Dynamic detection of atomic-set-serializability violations.
In: International conference on software engineering (ICSE), ACM 2008, pp 231–240

11. Herlihy M, Shavit N (2008) The art of multiprocessor programming. Morgan Kaufmann, Burlington
12. LeBlanc TJ, Mellor-Crummey JM (1987) Debugging parallel programs with instant replay. IEEE Trans

Comput 36(4):471–482
13. LeueS,Tabaei-BefroueiM (2012)Counterexample explanation by anomaly detection. In:Model checking

and software verification (SPIN), 2012
14. Leue S, Tabaei-Befrouei M (2013) Mining sequential patterns to explain concurrent counterexamples. In:

Model checking and software verification (SPIN), 2013
15. Lewis D (2001) Counterfactuals. Wiley-Blackwell, New York
16. Lu S, Jiang W, Zhou Y (2007) A study of interleaving coverage criteria. In: Foundations of software

engineering (FSE), ESEC-FSE Companion, ACM 2007, pp 533–536
17. Lu S, Park S, Seo E, Zhou Y (2008) Learning from mistakes: a comprehensive study on real world

concurrency bug characteristics. In: ACM Sigplan Notices, ACM 2008, vol 43, pp 329–339
18. Lu S, Tucek J, Qin F, Zhou Y (2006) AVIO: detecting atomicity violations via access interleaving invari-

ants. In: Architectural support for programming languages and operating systems (ASPLOS), 2006

123

http://creativecommons.org/licenses/by/4.0/
http://bzip2smp.sourceforge.net/

32 Form Methods Syst Des (2016) 49:1–32

19. Lucia B, Ceze L (2009) Finding concurrency bugs with context-aware communication graphs. In: Sym-
posium on microarchitecture (MICRO), ACM 2009, pp 553–563

20. Mabroukeh NR, Ezeife CI (2010) A taxonomy of sequential pattern mining algorithms. ACM Comput
Surv 43(1):3:1–3:41. doi:10.1145/1824795.1824798

21. Mazurkiewicz AW (1986) Trace theory. In: Petri nets: central models and their properties, advances in
petri nets, LNCS, Springer, vol 255, pp 279–324

22. Musuvathi M, Qadeer S (2006) CHESS: systematic stress testing of concurrent software. In: Logic-based
program synthesis and transformation (LOPSTR), LNCS, Springer, vol 4407, pp 15–16

23. Musuvathi M, Qadeer S (2007) Iterative context bounding for systematic testing of multithreaded pro-
grams. In: PLDI, ACM 2007, pp 446–455. doi:10.1145/1250734.1250785

24. Musuvathi M, Qadeer S, Ball T (2007) CHESS: a systematic testing tool for concurrent software. Tech
Rep MSR-TR-2007-149, Microsoft Research, 2007

25. Netzer RHB, Miller BP (1991) Improving the accuracy of data race detection. SIGPLAN Notices
26(7):133–144. doi:10.1145/109626.109640

26. Papadimitriou CH (1979) The serializability of concurrent database updates. J ACM 26(4):631–653
27. Park S, Lu S, Zhou Y (2009) CTrigger: exposing atomicity violation bugs from their hiding places. In:

Architectural support for programming languages and operating systems (ASPLOS), ACM, 2009, pp
25–36

28. Park S, Vuduc R, Harrold MJ (2012) A unified approach for localizing non-deadlock concurrency bugs.
In: Software testing, verification and validation (ICST), IEEE 2012, pp 51–60

29. Park S, Vuduc RW, Harrold MJ (2010) Falcon: fault localization in concurrent programs. In: International
conference on software engineering (ICSE), ACM 2010, pp 245–254

30. Pei J, Han J, Mortazavi-Asl B, Pinto H, Chen Q, Dayal U, Hsu M (2001) PrefixSpan: Mining sequential
patterns efficiently by prefix-projected pattern growth. In: 17th international conference on data engineer-
ing (ICDE’01), 2001

31. Rößler J, Fraser G, Zeller A, Orso A (2012) Isolating failure causes through test case generation. In:
International symposium on software testing and analysis, ACM 2012, pp 309–319

32. Savage S, Burrows M, Nelson G, Sobalvarro P, Anderson T (1997) Eraser: a dynamic data race detector
for multithreaded programs. Trans Comput Syst (TOCS) 15(4):391–411. doi:10.1145/265924.265927

33. Tabaei-Befrouei M, Wang C, Weissenbacher G (2014) Abstraction and mining of traces to explain con-
currency bugs. In: Proceedings of the 14th international conference on runtime verification (RV), 2014

34. Wang J, Han J (2004) Bide: efficient mining of frequent closed sequences. In: ICDE, 2004
35. Wang L, Stoller SD (2006) Runtime analysis of atomicity for multithreaded programs. TSE 32(2):93–110
36. Xu M, Bodík R, Hill MD (2005) A serializability violation detector for shared-memory server programs.

In: PLDI, ACM 2005, pp 1–14
37. Yan X, Han J, Afshar R (2003) CloSpan: mining closed sequential patterns in large datasets. In: Proceed-

ings of 2003 SIAM international conference on data mining (SDM’03), 2003
38. Yang Y, Chen X, Gopalakrishnan G, Kirby RM (2007) Distributed dynamic partial order reduction based

verification of threaded software. In: Model checking and software verification (SPIN), LNCS 2007, pp
58–75

39. Zeller A (2009) Why Programs Fail: A Guide to Systematic Debugging. Morgan Kaufmann, Burlington

123

http://dx.doi.org/10.1145/1824795.1824798
http://dx.doi.org/10.1145/1250734.1250785
http://dx.doi.org/10.1145/109626.109640
http://dx.doi.org/10.1145/265924.265927

	Abstraction and mining of traces to explain concurrency bugs
	Abstract
	1 Introduction
	2 Executions, failures, and bug explanation patterns
	2.1 Programs and failing executions
	2.2 Read--write events and traces
	2.3 Bug explanation patterns
	2.4 Mining bug explanation patterns

	3 Mining abstract execution traces
	3.1 Abstracting execution traces
	3.2 Mining patterns from abstract traces
	3.3 Deriving macros from traces

	4 Bug explanation patterns at the level of macros
	4.1 Algorithm

	5 Experimental evaluation
	5.1 Length reduction by abstraction
	5.2 Effectiveness of the method
	5.2.1 Single-variable atomicity violation
	5.2.2 Order violation
	5.2.3 Multi-variable atomicity violation

	5.3 User case study evaluation
	5.4 Comparison with our previous method in
	5.5 Datasets with context-switch bounded traces
	5.6 Datasets with randomly-chosen traces
	5.7 Threats to validity

	6 Related work
	7 Conclusion
	Acknowledgments
	References

