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Abstract

Growing competition and cost pressure in the timber market increase the need
for production automation. The goal of this thesis is the automation and op-
timization of the patching process of wood defects, such as loose dead knots or
resin galls, for shuttering panels1.

In this patching process, the raw panels go through an optical defect scan-
ner that determines position and shape of the wood defects. Then, the panels
are processed at a patching robot. It consists of two xy-machine-tables that posi-
tion the panel underneath a patching tool. This tool mends the detected defects
by drilling the respective area and inserting a unisize, circular wood patch with
high pressure to seal the hole. To maximize the throughput of the plant, sev-
eral research tasks in the field of process optimization and control have to be
performed. The results of these research tasks, which combine ideas and knowl-
edge from algorithmic geometry, combinatorial optimization, control theory and
computer science, are documented in this thesis.

The process optimization begins with the following research question: How
should the patch arrangement look like, such that each defect is covered by the
minimum number of unisize, circular patches. The proposed patch placement al-
gorithm is based on the concept of hexagonally closest packing. This optimization
step saves production time and enhances material utilization. Similar problems
arise in telecommunications and sensor coverage.

Applying the patch placement algorithm to every defect of one panel yields
a list of patch locations. These patch locations have to be approached in the time
optimal sequence, called robot path. This problem is similar to the well-known
traveling salesman problem. Two solution strategies are proposed, a classical Ant
Colony Algorithm and a Local Search Receding Horizon Algorithm. The latter
combines the Receding Horizon Concept known from the discipline of model
predictive control with a simple, heuristic, local search routine for combinatorial
optimization problems. Similar problems arise in a variety of industrial and

1The research leading to these results has received funding from the European Union Seventh
Framework Programme (FP7/2007-2013) under Grant Agreement No. 284573.
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logistical applications.
To conclude the optimization process, the robot motion between each con-

secutive pair of patch locations needs to be executed in a time optimal way.
To this end, a real-time capable Bang-Bang Trajectory Generator accounting
for arbitrary initial velocity and acceleration of the patching robot is proposed.
The algorithms for patch placement, path planning and trajectory generation are
tested using challenging artificial test cases and real production scenarios of the
prototype patching plant.

Next to process optimization, a major research task is real-time control
of the patching robot. A cascaded control structure is used to cope with the
challenging, unpredictable friction conditions in the drivetrain of the xy-machine-
tables. A master-slave control concept is used to synchronize the two xy-machine-
tables during certain process stages, where both xy-machine-tables move one
panel cooperatively. The main scientific challange for the real-time control is
the development of a control strategy that is able to position the panel in a fast
and precise manner despite undefined relative motion between the panel and the
patching robot. Therefore, absolute position measurement using visual tracking
of the panel is required. This is only accomplished at a very low sampling rate and
with a time delay. To overcome this issue a strategy for sensor data fusion called
Trajectory Updating is proposed. It works robustly and, therefore, is applicable
to a variety of similar industrial positioning tasks. Other strategies for trajectory
tracking in the presence of slip are devised mainly in the field of autonomous,
mobile robots.

Building on the real-time control, a process logic control for the proto-
type patching plant is developed. It basically consists of two interacting state-
machines, one for each xy-machine-table of the patching robot. It is tested by
means of a simulation model of the prototype patching plant.

Finally, in order to review the research results in an industrial environment,
the optimization algorithms as well as the control strategies are implemented and
extensively tested at the prototype patching plant, set up at a sawmill in Slovenia.
The acquired measurement data is analyzed with special attention to the above
mentioned challenges of friction, synchronization and sensor data fusion.



Kurzzusammenfassung

Wachsende Konkurrenz und steigender Kostendruck in der Holzindustrie verlan-
gen nach einem höheren Automatisierungsgrad. Ziel dieser Arbeit ist die Au-
tomatisierung und Optimierung des Flickprozesses von Holzdefekten, wie z.B.
Astlöchern und Harzblasen, für Schalungsplatten2.

Im Zuge dieses Flickprozesses fahren die unbearbeiteten Schalungsplatten
durch einen optischen Scanner zur Detektion von Position und Form der Holz-
defekte. Dann werden die Schalungsplatten mit einem sogenannten Patchroboter
bearbeitet. Dieser besteht aus zwei XY -Maschinentischen, welche die Platte unter
dem Flickwerkzeug positionieren. Das Werkzeug bohrt die Holzdefekte aus und
presst kreisförmige Vollholzstoppel einheitlicher Größe, genannt Patches, ein. Um
den Durchsatz der beschriebenen Anlage zu maximieren, stellen sich eine Rei-
he von Forschungsaufgaben auf den Gebieten der Prozessautomatisierung und
-optimierung. Die Resultate dieser Forschungsarbeit, die Ideen und Wissen aus
den Disziplinen der algorithmischen Geometrie, der kombinatorischen Optimie-
rung, der Regelungstechnik und der Informatik kombiniert, sind in dieser Arbeit
dokumentiert.

Die Prozessoptimierung beginnt mit folgender Fragestellung: Wie muss die
Anordnung der Patches aussehen, damit jeder Holzdefekt mit der minimalen An-
zahl an Patches abgedeckt wird. Der vorgestellte Algorithmus zur Patchplatzie-
rung basiert auf dem Konzept der hexagonal dichtesten Packung. Dieser Op-
timierungsschritt verringert die Produktionszeit bei gleichzeitiger Erhöhung der
Ressourceneffizienz. Ähnliche Problem stellen sich in der Telekommunikation und
bei der Sensorabdeckung.

Der Algorithmus zur Patchplatzierung wird auf jeden Holzdefekt einer Plat-
te angewandt. Dadurch erhält man eine Liste von Patchpositionen für diese Plat-
te, welche in der zeitoptimalen Reihenfolge, genannt Roboterpfad, angefahren
werden sollen. Dieses Pfadplanungsproblem ist ähnlich dem Problem des Han-
delsreisenden, englisch Traveling Salesman Problem. Zur Lösung des Problems

2Die Forschung zur Erzielung dieser Ergebnisse wurde im 7. Rahmenprogramm der EU unter
der Fördervertragsnummer 284573 finanziell unterstützt.
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werden zwei Algorithmen herangezogen, ein klassischer Ameisenalgorithmus, eng-
lisch Ant Colony Algorithm, sowie ein lokaler Suchalgorithmus mit bewegtem Ho-
rizont, englisch Local Search Receding Horizon Algorithm. Letzterer kombiniert
das Konzept der Optimierung mit bewegtem Horizont, bekannt aus der modell-
prädiktiven Regelung, mit einer einfachen, heuristischen, lokalen Suchroutine zur
Lösung kombinatorischer Optimierungsprobleme. Ähnliche Probleme sind in ei-
ner Vielzahl industrieller und logistischer Anwendungen zu finden.

Im letzten Schritt der Prozessoptimierung muss die zeitoptimale Roboterbe-
wegung zwischen den einzelnen Patchpositionen berechnet werden. Dies geschieht
mithilfe eines sogenannten Bang-Bang Trajektoriengenerators. Dieser ist echt-
zeitfähig und berücksichtigt beliebige Anfangsgeschwindigkeiten und -beschleu-
nigungen des Patchroboters. Die Algorithmen zur Patchplatzierung, Pfadplanung
und Trajektoriengenerierung werden ausführlich anhand anschaulicher Testszena-
rien als auch realer Produktionszyklen der Prototypanlage getestet.

Neben der Prozessoptimierung ist die Roboterregelung eine wichtige Auf-
gabe. Ein kaskadierter Regelkreis ermöglicht schnelles und präzises Positionieren
trotz erheblicher Haftreibungseffekte im Roboter. Eine sogenannte Master-Slave-
Anordnung wird zur Synchronisation der beiden XY -Maschinentische herangezo-
gen. Dies ist erforderlich, wenn beide XY -Maschinentische eine Platte gemeinsam
bewegen. Die wissenschaftliche Herausforderung besteht in Entwurf und Imple-
mentierung einer Regelungsstrategie, welche die Platte trotz undefinierter Rela-
tivbewegung zwischen Roboter und Platte, schnell und präzise positioniert. Da-
her ist eine Absolutpositionsmessung der Platte erforderlich. Diese erfolgt visuell
und folglich mit einer geringen Abtastrate sowie einem Zeitverzug. Zur Lösung
dieses Problems wird ein System zur Sensordatenfusion, genannt Trajektorienak-
tualisierung, englisch Trajectory Updating, vorgestellt. Diese Regelungsstrategie
funktioniert verlässlich in rauen Produktionsumgebungen. Somit ist sie für eine
Reihe von industriellen Positionierprozessen einsetzbar. Andere Strategien zur
Positionierung bei Schlupf wurden in der Literatur hauptsächlich zur Trajektori-
enfolge für mobile autonome Roboter entwickelt.

Aufbauend auf der Roboterregelung wird die Prozessablaufsteuerung der
Prototypenanlage entwickelt. Diese besteht im Wesentlichen aus zwei interagie-
renden Zustandsautomaten, jeweils einer pro XY -Maschinentisch. Diese Steue-
rung wird mithilfe eines Simulationsmodells der Anlage getestet.

Abschließend werden die Regelungs- und Optimierungsalgorithmen auf der
Prototypenanlage in einem Sägewerk in Slowenien implementiert und ausführli-
chen Tests in industriellem Umfeld unterzogen. Die aufgenommenen Messdaten
werden im Detail und mit Fokus auf die besonderen Herausforderungen für die
Regelung, nämlich Haftreibung, Synchronisation und Trajektorienaktualisierung,
analysiert.
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Symbols and Parameters

In the following, a list of symbols and plant parameters is provided. Values are
only given for fixed, physical plant parameters.

Variable SI-Unit Value Description
t s – time
x m – longitudinal coordi-

nate
y m – lateral coordinate
(·)0 – – initial
(·)d – – desired
(·)t – – trajectory
(·)r – – patching robot
(·)p – – panel
(·)∗ – – optimal

˙(·) = d/dt – – total time derivative
Raw material

L m [1.015, 3.015] panel length
W m [0.510, 0.520] panel width
R m 0.015 patch radius
mp kg [4, 20] panel mass, nominal

10kg
Patch placement

∆ = {Di} – – defect list for one
panel side

Di = {di,j} – – defect polygon
N – – number of elements

in ∆

di,j =
[
xi,j yi,j

]T [
m m

]T
– node j of defect

polygon Di

nDi
– – number of nodes of

Di

1



2 Contents

Pi = {pi,k} – – patch list for Di

pi,k =
[
xi,k yi,k

]T [
m m

]T
– patch position

nPi
– – number of elements

in Pi

δ =
[
δx δy δϕ

]T [
m m 1

]T
– displacement of de-

fect polygon
Path planning

Π = {Pi} – – set of patch lists for
all defects of one
panel side, length N

X = {xi} – – set of nodes
xi =

[
xi yi

]T [
m m

]T
– one node

n =
∑N

k=1 nPi
– – number of elements

in X

Ξ = {ξi,j} – – set of arcs connect-
ing X

C = [ci,j] – – cost matrix, size n×
n

ψ = [ψi] – – path vector, length n
J – – path cost

Ant Colony Algorithm (ACOA)
θ – – iteration of ACOA
Θ – – maximum number of

iterations
M – – number of ants

pmi,j(θ) 1 [0, 1] probability that ant
m transitions from
node i into j

T(θ) = [τi,j(θ)] – – pheromone matrix,
size n× n

H = [ηi,j] – – heuristic matrix, size
n× n

α – – weight of pheromone
values

β – – weight of heuristic
values

ρ 1 [0, 1] evaporation rate of
pheromone

Mm
h – – local memory of ant

m in iteration h of
path building pro-
cess
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Nm
h – – feasible neighbor-

hood of ant m in
iteration h of path
building process

ε – – weight of pheromone
deposition of elitist
ant

Local Search Receding Horizon Algorithm
Ξ− – – set of arcs taken out

of current path
Ξ+ – – set of arcs added to

current path
I – – number of iterations

Trajectory generation
vM m/s – maximum velocity
aM m/s2 – maximum accelera-

tion
jM m/s3 – maximum jerk

ji, i = {1, . . . , 7} m/s3 – jerk values in phases
P1 to P7

Ti, i = {1, . . . , 7} s – duration of phases
P1 to P7

T̄x s – trajectory time in x-
direction

T̄y s – trajectory time in y-
direction

πa =
[
j∗1 T ∗

1

]
– – parameter vector of

C0-trajectory for ac-
celeration

At(a0, ad) – – function computing
πa

πv =
[
j∗3 T∗

3

]
– – parameter vector of

C1-trajectory for ve-
locity

Vt(v0, a0, vd) – – function computing
πv

πx =
[
j∗7 T∗

7

]
– – parameter vector of

C2-trajectory for po-
sition

Xt(x0, v0, a0, xd) – – function computing
πx



4 Contents

at(t; j7,T7, a0) – – acceleration trajec-
tory at t

vt(t; j7,T7, v0, a0) – – velocity trajectory
at t

xt(t; j7,T7, x0, v0, a0) – – position trajectory
at t

Tj/2 s – point-to-point tra-
jectory, duration of
phase of maximum
jerk

Ta s – point-to-point tra-
jectory, duration of
phase of maximum
acceleration

Tv s – point-to-point tra-
jectory, duration of
phase of maximum
velocity

Control structure and trajectory updating
ex m – correction of the set

point xd of the tra-
jectory generator

ev m/s – correction of the set
point vt of the veloc-
ity controller

Im A – motor current
Process logic control

xfi =
[
0 ycnv1

]T [
m m

]T
– Feed-In Position

xmo =
[
L+ xlb21 ycnv2

]T [
m m

]T
– Move-Out Position

xho1 =
[
xho yi−1

]T [
m m

]T
– Handover Position 1

xho2 =
[
L− xho yi−1

]T [
m m

]T
– Handover Position 2

Sampling times
Ts s 0.001 velocity- and posi-

tion controller
Tsi s 1.25e− 4 current controller
Tsv s 0.200 visual position

tracking
Tdv s 0.100 time delay visual po-

sition tracking
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Geometry and mass of the patching robot
rr,i m 0.036 effective radius of

rubber belts of XY -
Table i = {1, 2}

Jr,i kgm2 0.015 total inertia of drive-
train in longitudinal
direction

mr,i kg 125.375 total moving mass in
lateral direction

ix 1 3 transmission ratio of
drivetrain in longitu-
dinal direction

ϕr,i = ixxr,i/rr,i 1 – angular position of
sprocket driving the
rubber belt

xlb11 m −1.575 longitudinal position
of Light Barrier 11

xlb12 m −0.875 x-position of LB 12
xlb13 m −0.175 x-position of LB 13
xlb21 m 0.175 x-position of LB 21
xlb22 m 0.875 x-position of LB 22
xlb23 m 1.575 x-position of LB 23

Sensor properties of the patching robot
ρxr m−1 5.4e4 resolution of rubber

belt position xr
ρyr m−1 1.0e5 resolution of slide

position yr
ρxp m−1 1.0e4 resolution of inter-

ferometer, i.e. of
panel position xp

Actuator properties of the patching robot
Mr,i Nm – torque applied by

servo motor
Mn Nm 8.7 nominal torque of

servo motor
Tϕ s 20e− 3 time constant of ser-

vo motor, estimate
Fr,i N – force applied by lin-

ear motor
Fn N 560 nominal force of lin-

ear motor
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Ty s 20e− 3 time constant of lin-
ear motor, estimate

Tp s 2 duration of patching
action

Tc s 1 duration to en-
gage/release clamp-
ing mechanism

Tz s 1 duration to ele-
vate/lower xy-tables

Parameters of the trajectory generator
ϕ̇M = ixẋM/rr s−1 27.778 x-direction, max-

imum angular
velocity

ϕ̈M = ixẍM/rr s−2 219.380 x-direction, max-
imum angular
acceleration...

ϕM = ix
...
xM/rr s−3 10969.000 x-direction, maxi-

mum angular jerk
ẏM m/s 0.500 y-direction, maxi-

mum velocity
ÿM m/s2 2.896 y-direction, maxi-

mum acceleration...
yM m/s3 144.800 y-direction, maxi-

mum jerk
Simulation model

zr,i – – state of XY -Table i
zp,j – – state of Panel j
vγ m/s 5 maximum velocity of

conveyors
Tγ s 2 rise time up to vγ
drϕ,i Nms 0.1 angular viscous fric-

tion parameter in x-
direction

dry,i N s/m 112 viscous friction
parameter in y-
direction

ǫx,i,j m 0.003 disturbance mod-
eling slip in x-
direction

ǫy,i,j m 0 disturbance mod-
eling slip in y-
direction



CHAPTER 1

Introduction

The majority of companies in timber industry are SMEs with limited funds for
production automation and research. It, therefore, lags behind other industrial
branches in these matters, although this situation has been slowly changing over
the past decades. In the following, a brief overview of the main processes in
timber industry and their degree of and potential for automation shall be given.

In wood construction and interior design, automated solutions for most
process stages are now available, see [11]. The reason for the high degree of au-
tomation of wood construction and interior design is that its processes are rather
similar to other industrial branches with highly automated production, such as
metal processing. The similarity is due to the fact that in these stages of wood
processing, the raw materials, i.e. for example solid wood panels, plywood, glue
laminated wood or beams, exhibit homogeneous properties. In particular, they
are of defined shape, surface quality and strength. Thus, existing handling and
manufacturing processes, starting at production planning using CAM software
and going down to the individual processing tasks using CNC workstations and
robots, only require minor modifications for wood processing.

By contrast, the major aggravating factor for the automated production of
these wood panels and beams etc. is the inhomogeneity of the unprocessed logs
and lumber. The ideally cylindrical shape of logs, in practice, is of varying diam-
eter, shows taper, bulges and dents. Furthermore, wood, as a natural product,
inherently exhibits defects, such as cracks, knots, resin galls and rot. As a conse-
quence, production of these panels and beams either require a lot of manual labor
or a lot of valuable material is lost or both. To remedy this situation requires
flexible automated material analysis and processing.

Every piece of unmachined wood is unique and, therefore, depending on
the application, it needs to be analyzed regarding its properties, e.g., density,
moisture content, strength, modulus of elasticity, shape, defect locations. This is
a large field of research. A variety of different measurement methods are inves-

1



2 1. Introduction

tigated and several are already successfully implemented in industry. Focusing
on shape and defects, the most important methods are based on image analy-
sis, laser scanning, micro- and ultrasonic waves as well as x-ray and computed
tomography, see [4, 32, 55, 58, 59, 66, 82]. For overall wood grading purposes,
multi-sensor approaches are necessary, in particular to accurately estimate the
mechanical properties, see [14, 40].

The measured information is used to maximize the yield of each log. First,
the log needs to be bucked to pieces of predefined length. Then, the cutting
pattern for each part needs to be optimized. Finally, depending on the intended
use, wood defects are patched. Patching instead of cutting out the defects during
the bucking process increases material utilization and thus profitability. These
tasks constitute complex optimization problems that not only need to consider
information about the piece of wood, but also about the subsequent processing
steps and the market demands. A lot of effort from both sides, the scientific
community and the industry, is put into these problems and yet almost fifty
percent of the sawn timber volume is lost during these processes, see [5]. Bucking
optimization already starts at harvesting wood, see [70, 71]. Cutting pattern
optimization based on computed tomography scans is state of the art, see [26, 71].
Patching of wood defects is done manually in the majority of cases, so that
optimization of this process has not been investigated scientifically yet. If, next
to volume optimization, also market demands are taken into account, the achieved
revenue can be increased further, see [70, 86].

The scientific effort as well as the investment in expensive technology for
material inspection indicate the potential of yield optimization techniques. How-
ever, the exploitation of the optimization results is oftentimes mediocre. This
is because bucking and cutting the logs according to the computed patterns is
not achieved with sufficient accuracy. According to [71], the harsh conditions of
bucking will make accurate process measurements impossible in the near future.
The problem of cutting the logs accurately, i.e. aligning them rotationally to the
saw is called log rotation problem, see [6, 88, 89]. Currently, rotation accuracy
is in the range of ten to twenty degrees. From a mechatronic point of view, log
rotation is a very challenging task. Relative motion between the mechanics and
the log cannot be avoided due to the irregular log shapes and the high processing
speed. Therefore, some sort of absolute position tracking of the log and feedback
control is imperative. This again is difficult because of the fast and shaky motion
of the logs. Thus, a rigorous scientific approach combining mechanical and con-
trol engineering as well as state of the art sensor technology would be required
to come to better solutions.

As already mentioned, patching of wood defects is largely a manual task.
This disruption of the otherwise automated production process is inefficient, not
only because of the labor costs. They make up the second largest part of ex-
penses in timber manufacturing, only surpassed by costs for raw material, see
[5]. The major problem is that human perception is subjective and precision
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of manual work is prone to large variations. Thus, the achieved material qual-
ity in terms of homogeneity varies greatly. The wood patching process has not
been scientifically investigated yet. Also, industry is only slowly taking up the
matter of its automation. Nevertheless, this process holds a lot of potential for
increased homogeneity and utilization of the wood material as well as increased
productivity.

Objective of this work

In this thesis, patching of shuttering panels is investigated as a case study for a
large variety of plain as well as laminated wooden products. The current indus-
trial standard for this process are semi-automatic patching tools. An operator
manually positions the raw panel underneath the patching tool and triggers the
actual patching process. A drill is used to eliminate the defect. Then, a unisize,
circular patch is inserted with high pressure to seal the hole. In this process, the
operator carries out two major tasks. First, the defects need to be detected and
classified, in principle a simple task for a human. However, to make this decision
with a hundred percent consistency over an entire working day, not to mention
in a team of several people, cannot be expected from humans. This negatively
affects material quality and homogeneity. Second, the operators need to position
the panels fast and with an accuracy of 1mm. This requires permanently ele-
vated concentration which inevitably fades towards the end of a stressful working
shift. Therefore, the goal of this thesis is the transformation of a traditional wood
patching line for shuttering panels into a fully automated patching plant. To this
end, several research tasks have to be performed.

First, a machine carrying out the positioning and patching operation of the
shuttering panels shall be designed. Major design criteria for such a patching
robot are robustness, reliability, fast material handling and cost efficiency. The
patching robot receives the panel dimensions and defect data from a wood defect
scanner that analyzes every unique wood panel before processing. These two
machines make up the core of the prototype patching plant. This task is carried
out in collaboration with Springer Maschinenfabrik AG and Microtec GmbH Srl.

Second, based on the patching robot design, the throughput-optimal pro-
cessing sequence for each unique wood panel shall be computed. The input for
these computations is the data collected by the defect scanner. It comprises panel
shape and location as well as the shape of its wood defects.

Third, real-time control of the patching robot is a central task of this thesis.
Thereby, positioning speed and accuracy are the key requirements. They need to
be accomplished despite the unavoidable variations in shape, material quality and
weight of the raw panels and the harsh production environment in sawmills. To
this end, algorithms for visual identification and position tracking of the panels
are contributed by Luleå University of Technology.
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Finally, the prototype patching plant shall be set up at the sawmill of Lip
Bohinj, d.o.o.. The task is to implement the process logic control of the plant in
a safe and robust fashion. Then, extensive tests in a near industrial environment
shall be carried out to demonstrate the plant’s capability.

Outline of this thesis

The thesis is structured based on these research tasks. In Chapter 2, the raw
material, i.e. the unprocessed shuttering panel, is analyzed. Based on that, a
suitable design of the patching robot is presented together with an overview of
the envisaged patching technique and process. The patching robot consists of
the given patching tool used in the semi-automatic patching process and two xy-
machine-tables to the left and the right of the tool, respectively. The xy-tables
position the panel underneath the tool which carries out the patching action as
described above. After the robot design, the patching plant is described as a
whole, including the information flow within the plant.

In Chapter 3, processing optimization for each unique wood panel is de-
scribed. These optimization algorithms need to consider the envisaged patching
technique and process. In Section 3.1, a patch placement algorithm is developed
based on the panel’s dimensions and a list of its defects described as polygons. It
computes the minimum number of patches and their arrangement to cover each
defect polygon of the given list. This yields a list of patch locations that the
patching robot must process. In Section 3.2, a path planning problem is formu-
lated to approach these patch locations in the time optimal processing sequence.
Two solution strategies, an Ant Colony Algorithm and a Local Search Receding
Horizon Algorithm, are presented. The patch list is sorted according to the com-
puted sequence. In Section 3.3, a time optimal trajectory generator is designed
to compute the robot motion in between two patch locations in real-time. This
trajectory generator is able to start at an arbitrary initial velocity and accel-
eration, which is required for the real-time control strategies presented in the
next chapter. The algorithms for patch placement, path planning and trajectory
generation are tested using challenging artificial test cases and real production
scenarios of the prototype patching plant.

In Chapter 4, a position control strategy for the patching robot is proposed.
A cascaded control structure suited to deal with the high friction forces within the
xy-machine-tables of the patching robot is presented. A master-slave concept is
used for the synchronization of the two xy-tables, which is necessary when both
xy-tables move one panel cooperatively. The main challenge for the real-time
control is the undefined relative motion between the xy-tables and the panel. In
order to position the panel correctly despite this slip, a strategy for sensor data
fusion is developed.

Chapter 5 is concerned with the process logic control for the patching robot.
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It consists of two interacting state-machines, one for each xy-table. The process
logic control is tested by means of a simulation model.

In Chapter 6, measurement results of the prototype patching plant prove the
feasibility of the proposed concepts for real-time and process logic control. Four
experiments are conducted. First, friction within the xy-tables is documented,
then performance during coupled positioning of the two xy-tables is analyzed.
The main result is a measurement of the entire patching process of a panel.
The results are analyzed in detail, in particular regarding positioning speed and
actuator utilization. Finally, the feasibility of the proposed sensor fusion concept
to achieve the required positioning accuracy is demonstrated.

In Chapter 7, the work is summarized and possible future research tasks
are identified.





CHAPTER 2

Patching plant

In Chapter 1, a brief overview of the semi-automatic patching process is given.
Based on this semi-automatic process, which is state of the art, the patching
plant is developed. To this end, all the necessary facts about the raw material
for the process are established in Section 2.1. The patching robot design and
the automated patching process are presented in Section 2.2. In Section 2.3, the
prototype patching plant and the data flow within the plant are described. The
definition of the coordinate systems of the patching robot and the shuttering
panel are given in Section 2.4.

2.1 Shuttering panel

The design of a manufacturing machine begins with an analysis of the raw mate-
rial, i.e. the unprocessed shuttering panels1. Figure 2.1a depicts an unprocessed
panel exhibiting several wood defects. The panels’ length ranges between 1.015m
to 3.015m in half meter steps, the 2m-panel being the most common. They are
between 0.510m to 0.520m wide and 0.021m to 0.026m thick. Depending on the
dimensions, the type of wood and the humidity of the panel, their weight ranges
between 4kg to 20kg. Ideally, the panels are rectangular and flat. However, in
reality, the front and rear end of a panel might exhibit steps, as these panels
consist of several slim laths that are agglutinated lengthwise. Moreover, the top
few panels in a stack are frequently bent because they are stored outdoors and
exposed to weather.

The considered defects are mainly loose dead knots, as shown in Figure 2.1b,
and lack of material, but also resin galls, blue stain, embedded bark and rot. The
number of defects per square meter, per panel side is approximately seven, but
frequently goes up to twenty.

1For brevity, they simply shall be referred to as panels throughout the rest of the document.

7
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(a) Shuttering panel. (b) Loose dead knot.

Figure 2.1: Typical unprocessed shuttering panel exhibiting several defects,
mainly loose dead knots.

2.2 Patching robot

Based on the brief overview of the manual patching process in Chapter 1 and the
description of the raw panels in Section 2.1, this section is concerned with the
design of the patching robot. Only in recent years, industry has taken up the
matter of automated patching of wood defects. Given the contour and location
of the defects, basically three approaches exist in industry:

First, the exact area of the defect is milled by numerically controlled ma-
chines and either an individually shaped dowel or putty is used to seal the hole.
This process is rather slow and, therefore, several patching tools operate on one
work piece in parallel, making the process expensive. In turn, this complex tech-
nique offers the possibility to correct the wood without impairing its appearance.
If the wood shall be used for furniture, doors or windows, this certainly is an
important feature, but for shuttering panels it is unnecessary.

Second, small defects and cracks can be covered using putty only. After the
putty is applied by an extremely fast tripod manipulator, the panels are exposed
to UV-light which makes the putty cure. Naturally, this process can only be
applied to high quality wood as it cannot repair bigger defects.

Third, there is the semi-automatic patching tool already mentioned in Chap-
ter 1. After manually positioning the panel underneath the tool, a drill of radius
R = 0.015m is used to eliminate the defect. Then, an equally sized patch is
inserted with high pressure to seal the hole, no glue or putty is used. In case of
big defects, several of these unisize patches have to placed next to each other to
cover the entire defect. Approximately 1500 of these patching tools are in use in
Europe. They are the current industrial standard for patching shuttering panels.
They are inexpensive and robust and shall, therefore, be integrated in the new
patching robot design.



2.2. Patching robot 9

XYT1

XYT2

CM

PT

RB

SM

PC

LM

LB

KL

AV

ρx

ρy

Figure 2.2: CAD drawing of the patching robot. The dash-dotted blue lines
indicate light barriers that cannot be seen in the sketch. In positive x-direction,
the light barriers are numbered 11, 12, 13 and 21, 22, 23 for XY -Table 1 and
XY -Table 2, respectively. The planar xy-coordinate system of the patching robot
(ρO ρx ρy) originates in the center of the drill of the patching tool.

2.2.1 Prototype

The patching tool (PT) already automates the patching process itself, the re-
maining task is positioning. To do that, two xy-machine-tables (XYT1, XYT2)2

are placed to the left and to the right of the tool, see Figure 2.2. This con-
struction serves two purposes: First, the anvil (AV) supporting the panel, where
the patches are driven in by a pneumatic hammer, remains in place and thus
absorbs the impact force. Second, the patching robot can handle two panels
simultaneously, thus minimizing the waiting periods for the tool.

In longitudinal direction, the panel is moved by a rubber belt conveyor
(RB). It consists of two rubber belts that are mechanically synchronized by a
distribution gear which is driven by one synchronous servo motor (SM). The

2For brevity, in the rest of the document they shall be denoted as xy-tables.
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steel guide

low-µ-surface

panel

Figure 2.3: Sectional drawing of the right rubber belt.

rubber belts clamp the panel on its sides by means of a pneumatic cylinder (PC).
High clamping pressure is necessary to transmit the acceleration forces to the
panel. However, at the same time, this leads to high friction forces within the
drive train of the rubber belts. To alleviate this unavoidable effect, two measures
are taken, see Figure 2.3. The rubber belt basically is a rubber-coated roller
chain. In order to absorb the high clamping forces, the inner guides of the chain
are made of steel. Plastic guides would deform under the pressure and thus impair
smooth motion of the chain. Furthermore, underneath the chain, there is a layer
of synthetic material with a very low friction coefficient. On the outer side, these
measures are not required.

The acceleration forces are transmitted from the rubber belts to the panel
via friction. Consequently, relative motion, i.e. slip, between the belts and the
panel may occur. In order to reduce this effect, the panel needs to be uniformly
clamped. Therefore, exact parallel alignment of the chain guides relative to each
other and relative to the effective rolling radius of the sprockets driving the belt
is of importance.

The belt position is measured using the motor encoders. To ensure the
required accuracy, the drive train has to be sufficiently stiff and without free
play in the gearboxes and the cardan shafts. Additionally, due to the panel
slip, cameras (CM) for visual tracking of the absolute position of the panel are
installed.

In lateral direction, the entire slide on which the belt conveyor is mounted
moves on two rails. It is actuated by a synchronous linear motor (LM). Since
the panels are frequently longer than the xy-tables, they need to be elevated.
This is accomplished by a knee lever mechanism (KL). Thus, the panel does not
contact the conveyor when moving laterally. Otherwise, unnecessary wear of the
conveyor belt would be the result. Lateral position measurement is accomplished
using the motor encoder.

Each xy-table has three light barriers (LB) detecting the panels, one at each
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end and one in the middle as indicated by the blue lines. Important parameters
of the patching robot are to be found in Chapter Symbols and Parameters.

2.2.2 Patching process

Given the design of the patching robot, a panel is positioned at a given, i.e.
previously computed, patch location as follows:

1. XY -Table 1 is in Feed-In Position, i.e. the clamping mechanism of the
rubber belts is released, XY -Table 1 is lowered and aligned with Conveyor 1.
Panel 1 at Conveyor 1 approaches XY -Table 1 from the right.

2. As soon as the light barriers of XY -Table 1 indicate a panel occupies the
table, the clamping mechanism engages.

3. Panel 1 is moved to the rear, i.e. left, end of XY -Table 1.

4. As soon as the patching tool is not occupied by the previous panel any
longer, XY -Table 1 is elevated and free to move laterally.

5. The positioning process starts. Three possible cases can occur:

(a) XY -Table 1 positions the panel.

(b) As soon as the panel occupies the work space of XY -Table 2, it alignes
with XY -Table 1, elevates itself and clamps the panel as well. Both
xy-tables move the panel together. They are said to be coupled then.

(c) As soon as the panel leaves the work space of XY -Table 1, it releases
the panel and lowers itself. XY -Table 2 positions the panel.

6. AfterXY -Table 1 is in Feed-In Position again, it picks up Panel 2. Continue
at Step 1.

7. After each positioning action, the patching tool is activated.

8. As soon as all patch positions of Panel 1 are processed, it is handed over to
XY -Table 2, if it is not already at XY -Table 2.

9. The rear end of Panel 1 is moved to the front, i.e. right, end of XY -Table 2.
XY -Table 2 alignes with Conveyor 2. This position is called Move-Out
Position.

10. XY -Table 2 is lowered.

11. Panel 1 is moved out to Conveyor 2.

12. The rubber belts of XY -Table 2 are released as soon as XY -Table 2 is not
occupied anymore.
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After a panel is positioned correctly, the patching process is executed, which
approximately takes Tp = 2s:

1. The panel is fixed by a blank holder pressing it against the anvil.

2. A circular hole, which is 2R = 0.030m in diameter and approximately
0.009m deep, is drilled.

3. A hollow core drill together with a wooden lath moves directly over the
hole. Since the offset between the drill and the hollow core drill is known
and constant, it is implemented with a simple limit stop.

4. This hollow core drill manufactures the patch from the wooden lath. The
circular patch sticks within the hollow core drill.

5. A pneumatically actuated hammer rams the cylindrical patch into the pre-
viously drilled hole.

2.3 Prototype patching plant

Figure 2.4 depicts a block diagram of the prototype patching plant. The top half
of the figure shows the way of the panels through the production line, the bottom
half the associated information flow.

The panels start at the inbound storage (IS), go through the defect scanner
(DS) and on to the buffer storage (BS). The defect scanner is a timely synchro-
nized camera network, which captures several images of top and bottom side of
the panel3. At a dedicated computer for panel analysis (PA), these images are
merged into one picture for the top and one for the bottom side. From these
pictures, contour, length and width of the panel are extracted. Moreover, each
of these pictures is analyzed by a defect detection algorithm, which describes the
borders of each defect by a polygon. The panel pictures, contour and dimensions
as well as the list of defect polygons, in short defect list, are sent to a database
PC, called wood knowledge repository (KR). A new entry in the wood knowledge
repository is created, which triggers the optimization algorithms for processing
each panel side. A patch placement algorithm computes the minimum number
of patches and their arrangement for each defect of one panel side. All the patch
locations for one panel side are then handed over to a path planning algorithm,
that computes the optimal processing sequence. The result is a list of patch lo-
cations for each panel side. Finally, a trajectory generator computes the optimal
motion profiles for the patching robot between each pair of subsequent patch
locations. The patch list and the corresponding robot trajectories are added to
the respective panel entry in the wood knowledge repository.

3For details refer to our partner company MiCROTEC, see http://www.microtec.eu.
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Figure 2.4: Block diagram of the essential plant components.

Since the scanner is much faster than the patching robot (PR), the buffer
storage interrupts the panel flow. Thus, before a panel from the buffer storage
moves on to the patching robot, the panel and its respective side to be processed
need to be identified. To do that, a camera called panel finger printer (FP) takes
an image of the panel. A computer for image processing (IP) compares this
image to the panel images stored in the wood knowledge repository, looking for
unique wood patterns, such as a unique wood grain or a unique arrangement of
wood defects, see [74, 75]. The patch list corresponding to the identified panel
side is sent from the wood knowledge repository to the real-time controller (RC)
for controlling the patching robot and the conveyors. This controller is run on
a separate PC and executes the entire plant control, in particular the patching
process as described in Section 2.2. As already mentioned, slip between the rubber
belts of the robot and the panel occurs. Therefore, two cameras for position
tracking (PT) are installed at the robot. In the IP, the pictures of these cameras
are compared to the respective picture from the wood knowledge repository, thus
determining the absolute longitudinal position of the panel. After processing is
finished, the panels are collected in the outbound storage (OS).

Finally, an outlook on the envisaged production plant shall be given. It
consists of one defect scanner and three parallel patching lines. Each of these
patching lines has two patching robots and a turner unit in between them. The
first robot patches the top side, then the panel is turned and the second one
patches the bottom side of the panel. At this final plant, the buffer storage
provides the possibility for panel scheduling to maximize capacity utilization of
the robots.
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2.4 Definition of coordinate systems

Two coordinate systems are required, see Figure 2.5 and compare to Figure 2.2.
The coordinate system of the panel (πO πx πy) originates in the bottom left corner
of the smallest circumscribing rectangle of the panel. In case the panel is ideally
rectangular, the origin is in the bottom left corner of the panel itself. In reality,
however, the panel exhibits steps at its ends. Thus, the origin might not be at the
panel itself. The coordinate system of the patching robot (ρO ρx ρy) originates in
the center of the drill of the patching tool.

ρxr

ρyr

ρO

ρx

ρy

πO πx

πy

xlb13 L

Wp1

production flow
ϕr

Figure 2.5: A panel consisting of four laths that are agglutinated lengthwise.

The longitudinal position ρxr of the rubber belt of the patching robot is
defined in the following. It is measured indirectly via the angle of its driving
sprocket (ϕr − ϕr0)/ix, i.e.

ρxr =
rr
ix

(ϕr − ϕr0). (2.1)

In (2.1), ϕr is the angle of the motor shaft (as measured by the motor encoder),
ϕr0 is an offset, rr is the effective radius of the sprockets driving the rubber belts
and ix is the transition ratio of the gearbox. However, the rotational motion of
the motor does not have a point of reference. It is only obtained when a panel is
clamped4: ρxr = 0, when the front end of the panel, i.e. the πy-axis, is underneath
the center ρO of the drill of the patching tool. To implement this definition, the
longitudinal robot coordinate is reset to

ρxr(trF ) = −xlb13 =
rr
ix

(ϕr(trF )− ϕr0), (2.2)

when Light Barrier 13 of XY -Table 1 detects a rising flank in its interrupted-

4This implies the assumption of no slip between panel and rubber belt.
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signal at time trF . Solving (2.2) for the offset value5 yields

ϕr0 = ϕr(trF ) +
ix
rr
xlb13. (2.3)

The lateral position ρyr of the xy-table of the patching robot is defined as
the position of the sidewall of the fixed rubber belt, i.e. the one that is not moved
by the pneumatic cylinder, relative to ρO. Consequently, when the sidewall is
aligned with the center of the drill of the patching tool, ρyr = 0.

Therefore, a generic point πp1 =
[

πx1 πy1
]T

given in (πO πx πy) is trans-
formed to (ρO ρx ρy) by

ρp1 =

[

ρx1
ρy1

]

=

[
−πx1 + ρxr

−(W −πy1) + ρyr

]

. (2.4)

5In the remainder of this document, the offset value ϕr0 is neglected for brevity, meaning
ϕr ← ϕr − ϕr0. It is solely required for the formal definition of the panel position.





CHAPTER 3

Optimization of panel processing

The algorithms for processing optimization are tailored to the specific design of
the patching plant, in particular to the patching robot, as presented in Chapter 2.
As soon as there is a new panel entry added to the wood knowledge repository,
the time optimal processing program for each panel side is determined, see [48].
The inputs for these algorithms are the panel dimensions and a list of defect
polygons. First, for each defect of one panel side, a patch placement algorithm

calculates the minimum number of patches and their arrangement to cover the
defect, see Section 3.1. The result is a list of patch locations. Second, a path

planning algorithm determines the time optimal robot path, i.e. the processing
sequence, connecting all the patch locations, see Section 3.2. The patch list is
sorted according to this sequence. Third, a trajectory generator computes the
time optimal trajectories between each pair of consecutive patch locations. This
yields the desired position, velocity and acceleration profiles for each positioning
action, see Section 3.3. Thus, time optimal processing of each panel side is
achieved.

The panels are scanned for defects at a rate of approximately 0.2Hz. So,
there is a time slot of 5s to execute all three algorithms twice, once for each panel
side.

3.1 Patch placement

As already mentioned in Section 2.2, the patching tool only uses cylindrical
patches with a radius of R = 15mm. They allow to patch approximately 85% of
all wood defects using merely one patch. The other 15% are too big to be covered
by one patch only, see Figure 3.1. Since no glue is used, it is obvious that the
more patches are placed next to each other, the more fragile this arrangement
becomes. Some defects are even too big for patching and thus the respective

17
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Figure 3.1: Defect covered by three patches.

panel must be discarded from the patching process.
To avoid this whenever possible, a patch placement algorithm has to com-

pute the minimum number of congruent patch circles and their arrangement to
cover these big defect polygons. Striving for a minimum number of patches serves
two important purposes. First, each patch requires approximately Tp = 2s pro-
cessing time, the positioning time not included. Second, since the maximum
number of patches per defect is limited due to quality reasons, minimizing the
number of patches indirectly, but, nonetheless, significantly contributes to waste
reduction.

3.1.1 Literature review

From a geometrical point of view, the problem of patch placement is covering an
arbitrary polygon, i.e. the defect, with the minimum number of equal circles, i.e.
the patches. Considerable research has already been conducted on the problem
of optimal covering of circles, e.g., [87], equilateral triangles, e.g., [67, 72], and
rectangles, e.g., [46, 73]. This problem is typically formulated in one of three ways.
Given two of the following three variables - dimensions of the shape to cover,
radius and number of circles, determine the third variable as well as the related
arrangement of the circles. This problem is either solved by a mathematical
proof, like in [46, 67, 87], or by optimization techniques, as in [72, 73]. The latter
two papers propose an algorithm consisting of two levels. In the inner level, a
fixed number of circles of a given radius is available to minimize the uncovered
area of the polygon. Starting at a random circle configuration, the minimization
is achieved using the BFGS Quasi-Newton Method, see [7]. In the outer level,
the radius is adjusted according to the result of the inner level.

Regarding the covering of an arbitrary planar shape with congruent circles,
an important theoretical result is presented in [61]. Given the arbitrary shape to
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be covered and the minimum number of circles required to cover this shape, the
following statement is proven: Let the radius of the circles approach zero, then the
total area of the circles is 121% of the area of the shape to be covered. Clearly,
if the radius approaches zero, the approximation of the given shape improves.
Conversely this means, that the unavoidable overlap between the circles is 21%
of the area to be covered.

Practical applications of polygon covering using congruent circles arise in
telecommunications and sensor coverage. Typically, in homogeneous environ-
ments using only one type of communication beacon or sensor, their ranges are
modeled as congruent circles. In [69], various definitions of covering and existing
solution strategies are given. The task at hand, i.e. covering an entire region us-
ing congruent circles, is called full coverage1. There exist two versions of the full
coverage problem. First, given a network that covers the area multiple times, de-
termine the redundant nodes. If possible, compute multiple disjoint sets of nodes,
so that each set covers the entire region, see [21, 91, 92, 97]. Then, switch on only
one set at a time to save energy and prolong the lifetime of the sensors. Second,
given the region to cover and either (a) the number of nodes or (b) their covering
radius, compute the optimal deployment to minimize the respectively other (a)
or (b), see [3, 22]. Commonly, these problems are tackled by dividing the region
in the Voronoi diagram of the sensor/transmitter network, see [3, 21, 22, 91].
Every node has a contribution to the coverage of the region as big as its Voronoi
polygon. If the Voronoi polygon of each node is within its covering circle, then
the region is fully covered.

A different approach to the full coverage problem might be hexagonally
closest packing, see [90]. Inscribing circles of radius

√
3/2R in a tessellation of

equilateral hexagons of side length R yields the arrangement of circles that leaves
the least space between the non-overlapping circles uncovered. The dual problem
to packing is covering. By circumscribing the hexagons of side length R by circles
of radius R, one receives the covering of a plane with minimum overlap between
the circles. For example, in [97], a hexagonal grid is used advantageously to
improve the algorithm presented in [92], where a square grid is used.

3.1.2 Algorithm

The input for the patch placement algorithm is the defect list ∆ = {Di}, i =
1, . . . , N, of the respective panel side. Each element of the defect list defines one
closed defect polygon by a list of vertices, Di = {di,j}, di,j =

[
xi,j yi,j

]T
, j =

1, . . . , nDi
, where xi,j and yi,j denote the coordinates of vertex j of defect i with

respect to the bottom left corner of the panel (πO πx πy), see Section 2.4. It

1Note that the full coverage problem in wireless sensor networks features one more constraint
called connectivity. However, under the reasonable assumption that the communication range
of the sensors is larger than twice the sensor range, full coverage implies connectivity. Thus,
this constraint is obsolete.
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describes the contour of the defect by connecting vertex di,j to vertex di,j+1 until
finally the last vertex di,nDi

is again connected to the first vertex di,1.
The polygon Di has to be entirely covered by a number nPi

of circles of
a given radius R. Each such circle is described by its center coordinates pi,k =
[
xi,k yi,k

]T
. All patches required to cover the defect Di are merged into the set

Pi = {pi,k}, k = 1, . . . , nPi
.

Problem formulation The task is to determine the minimum number nPi
of

patches and their arrangement to cover the entire defect. Furthermore, a set of
constraints ensuring that the patches adhere to the panel (and do not fall out in
later production stages) has to be met. In particular, each patch must have a
minimum overlap with solid wood and the patches themselves must not overlap
too much. This is formulated as an optimization problem

min
nPi

,Pi

nPi
(3.1a)

γ̃(Di, Pi, nPi
) ≤ 0, (3.1b)

where γ̃ is the vector of constraints. In order to check the defect covering and the
overlap of each patch with solid wood, the defect polygon is intersected with each
patch circle. Also the patch circles themselves are intersected with each other to
ensure sufficiently small overlap of the patches.

The problem with the formulation (3.1) is that the number of optimization
variables ño = 1 + 2nPi

increases with the number of patches nPi
. Each patch

has to be placed individually taking into account all the other nPi
− 1 patches.

Furthermore, (3.1) constitutes a mixed-integer optimization problem, which is
known to be quite challenging.

Solution based on hexagonally closest packing To overcome this issue, the
patch placement algorithm is founded on the idea of hexagonally closest packing,
see [90] and Figure 3.2. An equilateral hexagon is the one polygon that comes
closest to the circular shape, while at the same time it can still be arranged in a
pattern fully covering a plane, leaving no holes in between the hexagons. Thus,
minimal overlap between the circles is ensured. This naturally implies maximum
covered area (for a fixed number of patches) and consequently guarantees that
the minimum number of patches is utilized.

The algorithm starts by creating a hexagon tessellation in a sufficiently large
part of the xy-plane, where each hexagon of side length R represents a circle of
equal radius. The defect polygon is put in the middle of the tessellated area, i.e.
the centroid of the defect polygon coincides with the centroid of the tessellated
area. The optimization is now achieved by moving the defect along the x- and
y-axis, denoted by δx and δy, and by rotating it by an angle δϕ until a global
minimum in the sense of the previously described criterion is found. During this
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Figure 3.2: Hexagonally closest packing.

process hexagons that do not intersect with the defect polygon are taken out.
Others are added where the defect polygon is not covered.

Compared to the original problem formulation, the patches are perfectly
arranged to each other. Thus, the optimization problem can be implemented
more efficiently in the form

min
δ
nPi

(3.2a)

γ(Di, δ) ≤ 0, (3.2b)

where δ =
[
δx δy δϕ

]T
is the displacement of the defect polygon relative to the

tessellated area. This way, the number of optimization variables is reduced to
no = 3. Moreover, the vector of constraints γ is significantly simplified, since the
patch placement relative to each other is fixed and needs not be checked anymore.
The majority of intersections, i.e. each patch with every other patch, becomes
obsolete.

The hexagon tessellation has a periodic pattern. If the defect is moved
over an x-distance of the width of a hexagon, δ̄x = 2R, if it is moved over a
y-distance of the height of a hexagon, δ̄y =

√
3R, or if it is rotated around

δ̄ϕ = π/3, the pattern starts to repeat itself. So, the space of all possible solutions
D = [0, δ̄x]× [0, δ̄y]× [0, δ̄ϕ] is closed.

Nevertheless, the solution space still contains an infinite number of points.
Only by applying a fixed step size δd =

[
δdx δdy δdϕ

]T
for the displacement
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of the defect, one obtains a finite number of possible solutions ND =
(
δ̄x/δdx

)

(
δ̄y/δdy

) (
δ̄ϕ/δdϕ

)
. A natural choice for this step size is the positioning accuracy

of the patching robot. Assuming a positioning accuracy of δdx = δdy = 1mm and
choosing δdϕ = π/36, yields ND = 9360. By going through all these solutions, it
is guaranteed that the global minimum with respect to the positioning accuracy
is obtained in a finite number of ND steps.

Implementation Algorithm 1 gives an overview of the main functionality of
the patch placement algorithm in pseudo code. As an input it receives the defect
polygon D. Output is a patch list PL of length nPopt holding the xy-coordinates
of the minimum number of patches to cover the defect. A defect polygon consists
of one contour without holes. However, after, e.g., calculating the difference
between a defect polygon and a hexagonal patch polygon, the remainder of the
defect polygon might have a hole or fall apart into several individual contours.
The data structure of the polygon has to be designed accordingly.

By moving the centroid [xC0,yC0] of the defect polygon D to the origin, D
becomes D0. The hexagon tessellation around the origin of the xy-plane is stored
in hexList, that holds nHL=11*11 individual hexagon polygons. The list marking
the hexagons needed to cover the defect is initially set to true, coverList[1:nHL
] = true. The three dimensional solution space of (3.2) is divided in a mesh
as described above and the nodes of that mesh are stored in a list moveList

of length nML=9360. One of its entries consists of the longitudinal, lateral and
rotational displacement moveList[i] = [dX, dY, dPhi] that is applied to D0 in
iteration step i of the main loop. This way the moved polygon Dm is generated.
It is essential to make sure that between two consecutive elements of moveList
only one of the three entries changes by one step. Thus, a ’smooth motion’ of the
defect polygon relative to the hexagon tessellation is guaranteed and the previous
solution only has to be adopted slightly2.

After the defect polygon was moved, a new covering is computed. First,
all the hexagons that do not (at least partially) cover the defect polygon are
deactivated3, i.e. coverList[j] = false. Second, the defect polygon might not
be covered entirely, since a part of the polygon might have moved to a region,
where the hexagon tessellation has previously been deactivated. In this case, the
hexagon covering this part is activated again. This is achieved by computing the
centroid of each uncovered contour [xCC,yCC] of Dm and activating the hexagon
whose center coordinates are closest to it. It is important to note that, given
a smooth moveList, as described above, and under the assumption of a fine
resolution of the solution space, it cannot happen that the area of one contour

2By contrast, if the defect polygon randomly ’jumped’ from one location in the hexagon
tessellation to a totally different one in one iteration step, a completely new covering would
have to be computed.

3Thus, after the first iteration i=1, already big parts of the hexagon tessellation are deac-
tivated, which speeds up computation considerably.
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Algorithm 1 Patch placement algorithm

1function PL = PatchPlacement(D)

2//initialization

3[xC0, yC0] = centroidArea(D);

4move0 = [xC0, yC0, 0]; //D is rotated by 0◦

5D0 = move(D, move0); //move D to the origin

6moveOpt = moveList[1]; //movement D0 vs hexTesselation

7nPopt = inf; //number of required hexagons

8coverListOpt = coverList; //index of required hexagons

9

10for( i=1; i<=nML; i++ ) {

11covered = false;

12//move polygon by dX, dY, dPhi

13Dm = move(D0, moveList[i]);

14//deactivate hexagons that do not cover Dm

15for( j=1; j<=nHL; j++ ) {

16if( coverList[j] ) {

17//intersection polygon pIS between hexagon and Dm

18pIS = intersect(Dm, hexList[j]);

19if( area(pIS)==0 ) {

20coverList[j] = false;

21} else {

22//compute the polygon that is not covered yet

23Dm = difference(Dm, hexList[j]);

24if( area(Dm)<=0 ) {

25coverList[j+1:nHL] = false; //remaining hex. futile

26covered = true; break;

27}

28}

29}

30}

31//activate hexagons where Dm is not covered

32if( !covered ) {

33for( k=1; k<=numberContours(Dm); k++ ) {

34contour = getContour(Dm, k);

35[xCC, yCC] = centroidArea(contour);

36iCl = closestHexagon(hexList, xCC, yCC);

37coverList[iCl] = true;

38}

39}

40//update optimal solution, L,W...panel dimensions

41validSolution = checkConstraints(Dm, hexList, coverList, L, W);

42nP = countActiveHexagons(coverList);

43if( validSolution && nP<nPopt ) {

44nPopt = nP;

45moveOpt = moveList[i];

46coverListOpt = coverList;

47}

48}

49

50PL = generatePatchList(hexList, coverListOpt, -moveOpt, -move0);
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Figure 3.3: The patch placement algorithm reduces the number of required
patches for the defect to a global minimum of six.

is so big that it requires more than one patch to be covered. Third, in case the
solution obeys the constraints and requires less patches than the previous optimal
solution, the optimal solution is updated.

Finally, after going through the entire movement list i=nML, the globally
optimal solution is derived. In function generatePL, the actual covering for D

is computed. To this end, the inverse movement -moveOpt is applied to the
hexagons activated in coverListOpt. Then, the patch hexagons are moved to
the original location of D, i.e. the hexagons are moved by -move0. The output is
a patch list PL for the given defect.

3.1.3 Results and Analysis

Figure 3.3 exemplarily shows the potential of the patch placement algorithm.
The optimal solution requires six patches to cover the defect as compared to
eleven patches of the worst solution. Major advantages of this approach are:
First, the algorithm does not impose any restrictions on the shape of the defect
polygon, in particular convexity is not required. Second, a global minimum with
respect to the positioning accuracy is found. Third, any number of arbitrary
constraints can be added. If one of these constraints is not met, the solution is
not feasible and thus ignored. This is important with respect to the feasibility
of the patch arrangement. Fourth, the algorithm can be terminated any time,
which is essential for hard real-time constraints. Then, the best solution found
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so far is going to be worked with. The major drawback of this algorithm is its
rather high computational cost, which is characterized by its time complexity.

The time complexity of an algorithm depends on the problem size n, which,
according to [83], is equal to the length of the input string. In case of the patch
placement algorithm n is equal to the number of nodes nD of the defect polygon
D. In order to analyze the time complexity of the patch placement algorithm the
following experiment is carried out.

To begin with, polygons of the same shape and size, but with a different
number of nodes are created. This is achieved by adding nodes exactly at the
edges of the original polygon. Suppose an edge of the original polygon is given
by the two nodes dj and dj+1. Then, the number nD of nodes of the original
polygon is increased by a factor F by inserting (F − 1) nodes

dj, f = dj + f (dj+1 − dj)/F, f = {1, . . . , F − 1} (3.3)

into every edge of the polygon. This way, the polygons D2, D10, D100, D200, D600

and D1000 are created, for the factors F ∈ {2, 10, 100, 200, 600, 1000}.
Then, the patch placement algorithm is applied to these polygons. It goes

through exactly the same computation steps for each of the defect polygons since
they are of identical shape and size. Only the input size, i.e. the number of nodes
nD, varies. The result is depicted in Figure 3.4. It shows the computation time
of the patch placement algorithm tDF

normalized to the computation time tD of
the original defect polygon over the normalized problem size F = nDF

/nD. Two



26 3. Optimization of panel processing

examples are chosen, Experiment 1 refers to a rather small defect requiring only
three patches, whereas Experiment 2 is carried out with the big defect shown in
Figure 3.3. The absolute computation time tD of the original defects is 0.07s and
0.22s, respectively.

Clearly, the experiments reveal a quadratic dependence of the computation
time on the problem size, in particular a least-squares curve fit of the experiments
yields

tDF

tD
= c2

(
nDF

nD

)2

+ c1
nDF

nD

+ c0 (3.4)

with constants c2 = 0.0025, c1 = 0.1479 and c0 = 0.0028.
Among all steps in the optimization process, the minimization of the num-

ber of patches has the largest contribution to savings of both production time
and wood. Each patch requires approximately 3s of production time, including
positioning and the patching action itself. Also, the maximum number of patches
allowed per defect is limited due to quality reasons, which is why minimizing the
number of patches needed per defect enables to process even lower quality raw
material and as a consequence reduces the amount of rejects. If only one defect
of a panel is too big to patch, the entire panel, i.e. up to 20kg of wood, needs to
be rejected. In conclusion, it is worth computing the global minimum of patches
required for each defect, even at higher computational costs.

3.1.4 Sanity check of the defect data

For panel analysis, several algorithms for identification of different kinds of defects
are applied to one panel image. These algorithms are of non-deterministic nature
and, therefore, they might yield overlapping defect polygons. This faulty data
would corrupt the patch placement algorithm, which treats every defect polygon
individually. This results in several overlapping patch arrangements that are not
necessary. To overcome this problem, a sanity check algorithm is run on the
defect data before it is forwarded to the patch placement algorithm. The goal is
to ensure, there are no overlapping defect polygons and that each defect polygon
only consists of one contour without holes. In order to have a robust algorithm,
an indefinite number of non-convex defect polygons is assumed to be in one place.
Based on this, a three-step algorithm was developed, see Algorithm 2. Its input is
the defect list DL of length nDL. Output is a new defect list DL without overlapping
defect polygons.

First, a pair of overlapping defect polygons is looked for by computing the
intersection pIS of the polygons of the defect list DL with each other. Second,
when such a pair DL[i], DL[j] is found, their union pUN is computed. Possible
holes of pUN are neglected. Third, DL[i] and DL[j] are replaced by pUN in the
defect list and the procedure is called recursively until no more intersections are
found.
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Algorithm 2 Sanity check algorithm

1function DL = SanityCheck(DL)

2nDL = numberOfElements(DL);

3for( i=1; i<=nDL-1; i++ ) {

4for( j=i+1; j<=nDL; j++ ) {

5pIS = intersect(DL[i],DL[j]);

6if( area(pIS)>0 ) {

7pUN = unite(DL[i],DL[j]);

8pUN = neglectHoles(pUN);

9DL = deletePoly(DL,i,j);

10DL = addPoly(DL,pUN);

11//number of defects: nDL = nDL-1;

12call(DL = SanityCheck(DL));

13}

14}

15}

3.2 Path planning

Applying the patch placement algorithm to each defect of one panel side yields
a list of patch locations, in short patch list. The patching robot shall approach
these patch locations in the optimal order. More precisely, the path planning
algorithm aims at computing the minimum cost path between a given number of
patch locations such that each one is visited exactly once. The costs can be chosen
freely and are, for instance, path length, travel time or energy consumption. This
problem is very similar to the well-known traveling salesman problem, where a
salesman tries to find a minimum cost round trip through a given number of
cities. However, the panel is not supposed to go on a round trip and come back
to where it started, but to move forward in the production line. Nevertheless,
the known algorithms for the traveling salesman problem can still be applied.

3.2.1 Literature review

The traveling salesman problem is an NP-hard combinatorial optimization prob-
lem, see [36], for which a variety of different solution strategies are proposed in
the literature. Exact approaches formulate the traveling salesman problem as a
linear integer problem, which is then solved using Branch-and-Cut Algorithms,
see [2, 19]. The big advantage of these approaches is that they guarantee to find
the global minimum cost round trip. On the downside, no polynomial time al-
gorithms exist that find the exact solution of the traveling salesman problem. In
comparison, heuristic methods, such as Evolutionary or Ant Colony Algorithms,
find good, i.e. nearly optimal, solutions much faster. Therefore, they are more
relevant to the application at hand, where the maximum available computation
time per panel is limited.
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Evolutionary Algorithms, i.e. Genetic Algorithms and its derivatives, are
inspired by the process of evolution and natural selection, see [25, 29, 77]. In
this context, a set of feasible solutions to a combinatorial optimization problem
is given by a population of individuals. Each individual represents a feasible solu-
tion by its genome, which typically is a string over a finite alphabet. The genome
of an individual determines its fitness on the basis of a problem specific qual-
ity criterion. The optimization is achieved by increasing the mean fitness level
of the population in an iterative two-stage-process. First, a set of individuals,
called parents, is chosen to generate offspring by recombination of their genomes.
Parts of their genomes are merged by a recombination function to form one or
more different feasible solutions. Then, these children undergo mutation, i.e. a
random change in their genome, to create the population of the next generation.
Second, after a new generation of the population is created, a selection procedure
decides, which individuals die and which live, i.e. which solutions are deleted and
which are kept. Individuals whose fitness level is higher have a greater chance of
survival. Both, the choice which individual becomes a parent and the decision
which individual survives the phase of natural selection are stochastic processes
biased by the fitness level of each individual. Thus, also weak members of the
population have a certain probability to generate offspring and survive. This
encourages diversity of the population, which is essential for solution space ex-
ploration, and inhibits convergence towards a local optimum. Another important
factor in solution space exploration versus solution convergence is the frequency
and severity of mutations.

For theoretical analysis, Genetic Algorithms are described as a finite Markov
Chain, where the transition probabilities between the states are gathered in a
transition matrix. Analysis of this transition matrix allows to make statements
on the statistical behavior, in particular the convergence properties of the Ge-
netic Algorithm. In [76], it is proven that the Canonical Genetic Algorithm never
converges to the global optimum, unless the fittest individual in a population is
maintained. Schmitt provides a mathematically well-founded theory on the be-
havior of Genetic Algorithms , see [79, 80, 81]. By statistical analysis of the main
operations, i.e. recombination, mutation and selection of the fittest, the asymp-
totic behavior of different versions and implementations of Genetic Algorithms
is shown. Finally, a general-purpose Genetic Algorithm that asymptotically con-
verges to one of possibly several global optima is presented.

Ant Colony Algorithms are another search metaphor inspired by nature.
The foraging behavior of ants demonstrates their remarkable ability to solve
shortest path problems between food and nest by a rather simple cooperative ap-
proach. Each ant leaves behind pheromone trails on the paths it traverses. Other
ants can smell pheromone and tend to follow these trails, reinforcing them as
they also deposit pheromone. In turn, pheromone evaporates over time. Within
a fixed period of time, shorter paths can be traversed more often and thus they
accumulate higher pheromone values. This way, over time, the shortest path
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achieves a dominant status and the vast majority of ants follows it. Ant Colony
Algorithms, see [23, 24, 29], mimic this behavior to solve combinatorial optimiza-
tion problems, like the traveling salesman problem. These algorithms are based
on a population of ants, i.e. simple software agents. At each time step, i.e.
in each algorithm iteration, each ant independently builds a path by repeatedly
making random decisions on which arc to traverse next. These decisions are bi-
ased by the cost associated with the arc and the pheromone value of the arc. On
the one hand, the costlier an arc, the smaller the chance it is traversed; on the
other hand, the higher the pheromone value, the higher the chance the respective
arc is crossed. After each ant built its path, the pheromone value of all arcs are
lowered through evaporation. Then, the pheromone value of each traversed arc
is increased. Thus, after several time steps of the population building paths, one
path emerges the dominant one.

Theoretical analysis of Ant Colony Algorithms lags far behind its practical
success. In [37], feasible solutions are described by walks on the construction
graph of the combinatorial optimization problem at hand. Based on this frame-
work, two methods which guarantee the convergence to the global optimum are
proposed. The probability that after a fixed number of time steps a globally opti-
mal path is traversed by one ant can be made arbitrarily close to 100% either by
increasing the number of ants or by reducing the evaporation rate of pheromone.
In [24, 84], a two-step proof that the algorithm converges to one element of the
set of globally optimal solutions is given. In a first step, convergence in value is
proven, if there is a positive lower bound on the pheromone value. Thus, it is
guaranteed that the proposed Ant Colony Algorithm finds an optimal solution
with a probability that can be made arbitrarily close to 100% if given enough
time. However, the lower bound on the pheromone value prohibits convergence
to a particular solution. Therefore, in a second step, the lower bound on the
pheromone value decreases over the time steps of the algorithm. If this decrease
happens slowly enough, the property of convergence in value can be kept, while
at the same time convergence in solution is obtained. Based on these results,
two Ant Colony Algorithms with guaranteed convergence to the optimal solu-
tion are developed in [15, 38]. In [41], the finite-time behavior of an Ant Colony
Algorithm with only one ant for a linear quality criterion with boolean input is de-
scribed. Applying drift analysis, a mathematical tool for analysis of evolutionary
algorithms, reveals a polynomial time complexity of this algorithm. In [54], the
finite-time behavior of Ant Colony Algorithms for the traveling salesman problem
is analyzed. Based on the relationship between pheromone rate and convergence
time, the iteration time until the pheromone rate reaches its objective value is
studied. Then, the convergence time is calculated using this objective value.

Evolutionary and Ant Colony Algorithms are able to find reasonably good
paths very fast. A different heuristic approach to the traveling salesman problem
are Local Search Algorithms, see [56, 57]. In contrast, these algorithms require
a given feasible path, which they then improve incrementally. Therefore, Evo-
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lutionary and Ant Colony Algorithms are often referred to as path construction
algorithms and Local Search as path improvement algorithms. In the context
of Local Search Algorithms, a feasible solution of a traveling salesman problem
is a path on the fully connected construction graph of the respective problem
instance. Local Search Algorithms improve a given path by iteratively replacing
a set Ξ− of arcs of the given path by another set Ξ+ of arcs that also yields a
feasible solution, but with lower cost. The size of these sets is restricted to λ,
which is why this technique is called λ-exchange. This principle was introduced
in [65]. The core functionality of the presented algorithm randomly performs
3-exchanges, i.e. λ = 3, until no further improvement can be achieved. It is
of complexity O (n3). In [64], the Lin-Kernighan Heuristic is presented as an
extension of the above basic algorithm. It is considered one of the most efficient
methods to generate near-optimal solutions for the traveling salesman problem.
The major improvement over the basic algorithm is a body of rules for the choice
of the sets Ξ− and Ξ+. These rules are further refined in [43]. Since the arcs
going into the sets Ξ− and Ξ+ are chosen such that a great number of possible,
but futile exchanges are excluded, the presented Local Search Algorithm can af-
ford to perform computationally more expensive 5-exchanges without exceeding
the available computational resources. The algorithm is of complexity O (n2.2)
and finds globally optimal solutions for all to optimality solved instances of the
traveling salesman problem up to 13509 locations. Furthermore, the interested
reader finds an extensive report on Local Search in [44].

Finally, it shall be mentioned that high-performance algorithms for the
solution of combinatorial optimization problems, such as the traveling salesman
problem, are frequently developed as hybrid algorithms. First, one makes use of
the excellent global search ability of Evolutionary or Ant Colony Algorithms to
generate good start solutions, which are refined using Local Search, see [24, 25].

When tackling NP-hard combinatorial optimization problems, such as the
traveling salesman problem, it is of vital importance to keep the problem size n
at a minimum. This is achieved utilizing a Receding Horizon Concept, originally
proposed for optimal control problems, such as model predictive control, see [1].
For this concept to be applicable, the problem needs to exhibit a dedicated di-
rection of propagation. In air traffic management, for example, optimal aircraft
arrival sequencing and scheduling is key to maximum capacity utilization of the
runways. Genetic and Ant Colony Algorithms are frequently used to solve this
NP-hard combinatorial optimization problem. Instead of optimizing the landing
sequence for the entire planning period, e.g., an entire day, at once, it is ad-
vantageous to partition the planning period into several so-called optimization
horizons. Each of these smaller subproblems is then optimized. However, only
the first few planes of the current optimization horizon are assigned to land, be-
fore the optimization horizon is shifted forward in the direction of propagation,
i.e. time, and the next subproblem is solved. This problem is extensively studied
in [51, 52, 53, 96]. Additional applications of the Receding Horizon Concept to
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combinatorial optimization problems can be found in commercial planning, see
[16]. In the following, the path planning problem is formulated and two different
solution strategies are presented.

3.2.2 Problem formulation

The result of the patch placement algorithm is a patch list Π = {Pi}, i =
1, . . . , N , i.e. a list of patch locations pi,k the robot must approach. Details
regarding this notation are described in Section 3.1.2. To keep the notation
general, the patch locations are referred to as nodes xi =

[
xi yi

]T
and merged

into a node list X = {xi}, i = 1, . . . , n, n =
∑N

k=1 nPi
, where N is the number

of defects of the panel side under consideration and nPi
is the number of patches

required to cover defect Di.

Patch clustering Since the traveling salesman problem is NP-hard, the com-
putation time of the algorithm can be reduced greatly by keeping the problem
size, that is the number of nodes n, at a minimum. For this specific application,
the following measure can be taken. Suppose a panel exhibits eight small and
two big defects, which makes a total of N = 10 defects. Each of these big de-
fects requires three patches. So, there are in total n = 14 patches to be placed.
Naturally, the patches covering the big defects are very close to each other. So,
by clustering the patches according to their respective defect, the problem size
decreases from n = 14 to n̄ = N = 10. Thus, the path planning algorithm is
only applied to the reduced set X = Π̄ = {pi,1}, i = 1, . . . , N instead of the
set X = Π = {Pi} with Pi = {pi,k}, k = 1, . . . , nPi

. This simple adjustment
in the problem formulation considerably lowers the computation time, while at
the same time the path costs remain virtually the same. In the following, unless
explicitly mentioned otherwise, a general path planning problem X of size n is
considered.

Cost matrix The path planning algorithm aims at computing the minimum
cost path between a number n of nodes. In view of maximizing throughput,
the goal is to determine the time optimal path. Therefore, the costs represent
the time it takes the patching robot to move from node xi to node xj , given
by a function c(xi, xj). As is frequently the case in xy-positioning, x- and y-
movement of the patching robot are independent and simultaneous. Thus, the
costs are defined as

ci,j = c(xi, xj) = max(T̄xi,j , T̄yi,j ), (3.5)

with T̄xi,j and T̄yi,j being the travel times4 in longitudinal and lateral direction,
respectively. They are computed between each pair of nodes yielding the cost

4The travel times depend on the specific robot trajectory, see (3.38).
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matrix C = [ci,j ] ∈ R
n×n. It holds the information about the traveling costs from

any node to any other node. The diagonal elements of this matrix are zero, i.e.
ci,i = 0, i = 1, . . . , n. Furthermore, the cost matrix is symmetric, C = CT, if
the dynamics of the actuators of the patching robot in forward and backward
direction are equal. In this case, the path planning problem is called symmetric.

Solution representation and quality criterion Let us consider a set of
nodes X that is fully connected by a set of arcs Ξ. Thus, the pair G = (X, Ξ)
is a complete graph, i.e. every node xi ∈ X is directly connected to every other
node xj ∈ X. Each arc ξi,j ∈ Ξ is now associated with its respective cost ci,j.
The path planning problem is the problem of finding a minimum cost path on
G from a previously specified start node, the one with the lowest x-coordinate,
to an end node, the one with the highest x-coordinate, visiting all nodes exactly
once. Therefore, the path vector can be defined as

ψ =
[
ψ1 . . . ψi . . . ψn

]
, i = 2, . . . , n− 1 (3.6a)

ψi ∈ {1, . . . , n} \ {ψ1, . . . , ψi−1, ψn} (3.6b)

with

ψ1 = k, where min
k

(xk) , (3.6c)

ψn = k, where max
k

(xk) . (3.6d)

The path cost is the sum of the arc costs of the respective path ψ through the
graph,

J =

n−1∑

i=1

(ck,l)|k=ψi,l=ψi+1
=

n−1∑

i=1

c(xψi
, xψi+1

). (3.7)

A short remark shall clarify the notation introduced in (3.7): xi is a generic
node of the path planning problem. The notation xψi

indicates that node xψi
is

assigned position i in the path ψ. For example, xψ5 where ψ5 = 3 means that x3

is fifth in ψ.

Left-To-Right and Nearest-Neighbor Path Considering the panels elon-
gated shape and the dedicated production flow, as described in Figure 2.4, an
intuitive way to construct reasonable solutions is to sort the nodes xi in ascending
x-direction

ψl2r =
[
ψ1 . . . ψi . . . ψn

]
, xψi−1

≤ xψi
, i = 2, . . . , n. (3.8)

It is called the from-left-to-right path. Another way of solution construction is
the nearest-neighbor path, where the path proceeds from the current node to its
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nearest neighbor that has not been visited yet until all nodes are visited,

ψnn =
[
ψ1 . . . ψi . . . ψn

]
, (3.9a)

ψi+1 = j, where min
j
cψi,j, (3.9b)

j ∈{1, . . . , n} \ {ψ1, . . . , ψi, ψn}, i = 1, . . . , n− 2. (3.9c)

Note that the nearest-neighbor path starting from the left, in general, does not
match the nearest-neighbor path starting from the right. These very simple
solutions for the path planning problem at hand can be used to initialize more
sophisticated algorithms.

In the following, two solutions to the path planning problem are proposed:
First, an Ant Colony Algorithm which is recognized as an efficient approach
to tackle large problem instances of the general traveling salesman problem is
described. Second, a Local Search Algorithm combined with a Receding Horizon
Concept presents a problem-tailored and simple solution to the specific traveling
salesman problem at hand.

3.2.3 Ant Colony Algorithm

The objective function (3.7) can be minimized by means of an Ant Colony Al-
gorithm. The foraging behavior of ants is determined by pheromone trails they
deposit on their way between food and nest. Ants tend to follow these trails, while
at the same time reinforcing them. Thus, the pheromone concentration serves as
the ant colony’s collective memory, which develops over time. The desirability
of various paths is remembered and visible for other ants. For more detailed
information, the reader is referred to, e.g., [23, 24]. In the following, only the
core functionality of all Ant Colony Algorithms, i.e. the iterative, cooperative
solution construction, shall be outlined.

In every iteration θ = 1, . . . ,Θ, each ant m ∈ {1, . . . ,M} of a population of
size M individually constructs feasible paths by making h = 1, . . . , n− 2 random
decisions5 based on (3.10). The probability that an ant m decides to move from
its current node i to node j is

pmi,j(θ) =







ταi,j(θ)η
β
i,j

∑
l∈Nm

h
τα
i,l
(θ)ηβ

i,l

j ∈ Nm
h

0 otherwise,
(3.10)

where Nm
h is the so-called feasible neighborhood6 and τi,j(θ) and

ηi,j = 1/ci,j (3.11)

5Start and end node are already fixed.
6Since G is a complete graph, the feasible neighborhood does not depend on the current

node i, but only on the previously visited nodes, see (3.15).
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denote the pheromone trail value and the heuristic information value on the arc
ξi,j, respectively. The tuning parameters α ∈ N and β ∈ N are used to scale the
weight of the heuristic and the pheromone information relatively to each other.

The heuristic value ηi,j represents a priori information on the problem, which
is collected in a matrix H = [ηi,j] ∈ R

n×n similarly to C. The costlier an arc,
the less desirable it is for an ant to use. The pheromone value τi,j(θ), on the
contrary, represents learned desirability to use that arc. Thus, the pheromone
matrix T(θ) = [τi,j(θ)] ∈ R

n×n, being the collective memory of all ants, changes
over time as ants deposit pheromone on their paths. This is accomplished by
the following pheromone update laws. First, a portion ρ ∈ [0, 1] of pheromone
evaporates

τi,j(θ + 1) = (1− ρ) τi,j(θ) (3.12)

and second, each ant m deposits pheromone along its path

τψm
i ,ψ

m
i+1

(θ + 1) = τψm
i ,ψ

m
i+1

(θ) +
1

Jm(θ)
, i = 1, . . . , n− 1, (3.13)

with ψm and Jm according to (3.6) and (3.7), respectively. Pheromone evapo-
ration causes costly paths to be forgotten, while pheromone deposition enables
ants to share their experience via the collective memory.

Finally, the feasibility of the ants’ paths has to be discussed. To guarantee
that ants visit each node exactly once, each ant m is given a local memory

Mm
h = {ψm1 , . . . , ψmh , ψmn } (3.14)

with ψm1 = ψ1 and ψmn = ψn according to (3.6). It contains all the nodes already
visited up to iteration h of the construction process and thus updates the feasible
neighborhood,

Nm
h = {1, . . . , n} \Mm

h . (3.15)

The completeness of the graph G makes each node a neighbor of every other
node, i.e. each node can be reached from any other node by crossing only a single
arc. Thereby it is ensured that ants cannot get stuck at a node7.

Initialization and choice of the parameter set The initialization of the
pheromone matrix affects search space exploration and solution convergence, see
[24]. On the one hand, if the initial pheromone values are too low, then the
search is quickly biased by the first tours generated by the ants. Frequently,
the consequence is convergence to a local optimum. On the other side, if the

7If G was not complete, it might happen that the feasible neighborhood Nm
h = {} before

the construction process is finished.
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α β ρ M Θ ε

1 5 0.2 n 70 1

Table 3.1: Parameters of the implemented Ant Colony Algorithm.

initial pheromone values are too high, then many iterations are lost waiting until
pheromone evaporation reduces enough pheromone values, so that pheromone
added by ants actually starts to bias the search. A good way to initialize the
pheromone matrix T(0) = [τ0] is to set its entries to a value slightly higher than
the expected amount of pheromone deposited by the ants in one iteration, i.e.

τi,j (0) = τ0 =M/J0, J0 = min(J l2r, Jnn), (3.16)

where J l2r and Jnn are the path costs (3.7) of the from-left-to-right path (3.8)
and the nearest-neighbor path (3.9), respectively.

The parameter set for the implemented Ant Colony Algorithm is given in
Table 3.1. It was chosen experimentally, which resulted in similar values as pro-
posed in the literature, e.g., [24]. More importance is attached to rapid conver-
gence compared to solution space exploration. To achieve this, the evaporation
parameter ρ is set to a small value and the concept of an elitist ant is introduced,
see [24].

Elitist Ant The elitist ant, denoted as (·)ε, holds the best-so-far path ψε, i.e.
the best path found since the start of the algorithm. This provides the possibility
to stop the algorithm any time, still yielding a useful result. Additionally, the
elitist ant deposits pheromone in every iteration of the algorithm,

τψε
i ,ψ

ε
i+1

(θ + 1) = τψε
i ,ψ

ε
i+1

(θ) +
ε

Jε(θ)
, i = 1, . . . , n− 1, (3.17)

where ε ∈ R+. With growing ε, this provides increasingly strong reinforcement
of the best-so-far path.

By the time the algorithm terminates, a number of M Θ paths were con-
structed, the best of which is ψ∗ = ψε. Applying the Ant Colony Algorithm
to the clustered patch list Π̄ yields Π̄∗, which is now sorted according to the
time optimal path ψ∗. The clustered nodes that were not considered in the path
planning algorithm have to be inserted accordingly to receive the optimal patch
list Π∗.

Start solution Taking into account the flow of the rectangular, elongated shape
of the shuttering panels through the production line, it is beneficial to add a
from-left-to-right path (3.8) and a nearest-neighbor path (3.9) into the set of
start solutions. The risk with this approach is that in the early iterations of the
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algorithm these good start solutions might build up very high pheromone values
due the reinforcement by the elitist ant. This results in a monodirectional search,
ignoring other promising solutions. However, this can be avoided by decreasing
the parameter ε in (3.17).

Implementation In Algorithm 3, the main steps of the Ant Colony Algorithm
are given in pseudo code. Input xy of the algorithm are the xy-coordinates of the
clustered patch list Π̄. The output xyOpt contains the same nodes, but sorted
according to their optimal processing sequence Π̄∗. Additionally, the optimal
path costs jOpt are available. To initialize the algorithm, the cost matrix C and,
based on it, the start solutions pL2R and pNN need to be computed according
to (3.5), (3.8) and (3.9), respectively. The better one of the start solutions is
chosen as the initial best-so-far path pBSF. Then, the heuristic Matrix H (3.11) is
computed and the pheromone matrix T (3.16) is initialized.

Now, the iterative, cooperative solution construction begins. In every itera-
tion θ, denoted t in the code, M ants8 individually construct paths in the function
constructPath. To do that, every ant needs to make n − 2 random decisions
(3.10). This formula needs to be evaluated n − 2 times by M ants in every it-
eration t in the code. Two measures can be taken to speed that up. First, the
numerator of (3.10) remains constant throughout an iteration t and can, there-
fore, be computed in advance and stored in a matrix I. Second, the Roulette

Wheel Selection Procedure, see [24, 31], is a computationally efficient implemen-
tation of (3.10). After every ant finished its path construction, the best-so-far
path pBSF is updated. Then, the pheromone values are updated by evaporation
(3.12), deposition (3.13) and additional deposition of the elitist ant (3.17).

After the last iteration tMax, the best-so-far path is declared the optimal
path and the patch list is sorted accordingly.

3.2.4 Local Search Receding Horizon Algorithm

The core of this algorithm is Local Search, which is based on the concept of
λ-optimality. It was initially proposed in [65], see also [43, 45]. Then, the Lo-
cal Search Algorithm is combined with a Receding Horizon Concept, which, for
instance, is used in air traffic management, see [51, 52, 53, 96].

Local Search Algorithm based on 3-optimality The concept of λ-optimal-
ity is defined as follows: A path is said to be λ-optimal, if it is impossible to obtain
a tour with smaller cost by replacing any λ of its arcs ξi,j, a set denoted Ξ−, by

8Using an object-oriented programming language, such as C++, the software agent ant
would be implemented as a specific class containing all the required data structures and func-
tions. This design translates the idea of an independent ant into software and thus makes the
code more readable as well as robust, since access restrictions of classes prevent inadmissible
operations.
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Algorithm 3 Ant Colony Algorithm

1function [xyOpt, jOpt] = AntColony(xy)

2//initialization

3C = computeCostMatrix(xy); //(3.5)

4pL2R = constructLeft2RightPath(xy); //(3.8)

5pNN = constructNearestNeighborPath(C); //(3.9)

6jL2R = pathCost(pL2R); jNN = pathCost(pNN); //(3.7)

7

8if( jL2R<jNN ) { //best-so-far path, elitist ant

9pBSF = pL2R; jBSF = jL2R;

10} else {

11pBSF = pNN; jBSF = jNN;

12}

13

14H = computeHeuristicMatrix(C); //(3.11)

15T = initializePheromoneMatrix(jBSF,M); //(3.16)

16

17//solution construction

18for( t=1; t<=tMax; t++ ) {

19//numerator of (3.10), ’.’ inidicates elementwise operation

20I = T.^alpha .* H.^beta;

21

22//ants construct paths

23for( m=1; m<=M; m++ ) {

24ant_mem[m] = resetLocalMemory(); //(3.14)

25ant_path[m] = constructPath(I, ant_mem[m]);

26ant_cost[m] = pathCost(C, ant_path[m]);

27}

28

29//update best-so-far path, elitist ant

30[jMin, index_jMin] = min(ant_cost);

31if( jBSF>jMin ) {

32pBSF = ant_path[index_jMin];

33jBSF = ant_cost[index_jMin];

34}

35

36//pheromone update

37T = evaporation(T); //(3.12)

38T = deposition(T); //(3.13)

39T = depositionEA(T); //(3.17)

40}

41

42//optimal path, cost, sort nodes according to pOpt

43pOpt = pBSF; jOpt = jBSF;

44xyOpt = sort(xy, pOpt);
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Figure 3.5: Two start solutions refined by local 3-exchanges.

any other set of λ arcs denoted Ξ+
9. Consequently, an n-optimal tour, i.e. λ = n,

is globally optimal. So by increasing λ, the problem gets more general, in the
sense that the number of possible exchanges increases. This way, one receives
increasingly strong necessary conditions for optimality, but it comes at the cost
of increasing computational effort. Computer experiments showed that setting
λ = 3 is the most efficient trade-off between solution quality and computational
costs, see [65]. By means of 3-exchanges, it is possible to realize path inversions
and insertions, see Figure 3.5. In this example, two initial solutions are given.
Both, the from-left-to-right path (blue) and the nearest-neighbor path (green) are
improved using Local Search, yielding the same optimal path (red). Optimiza-
tion of the from-left-to-right path is achieved by replacing Ξ− = {ξ3,4, ξ4,5, ξ5,6}
by Ξ+ = {ξ3,5, ξ4,5, ξ4,6}. As can be seen, a 2-exchange realizes a path inver-
sion. Replacing the arcs Ξ− = {ξ2,4, ξ3,8, ξ5,7} of the nearest-neighbor path by
Ξ+ = {ξ2,3, ξ4,5, ξ7,8} realizes a path insertion by means of a 3-exchange. The
nodes x3 and x5 are taken out and inserted between the nodes x2 and x4. This
simple example already demonstrates the concept of the Local Search Algorithm.
The algorithm begins by generating start solutions, see Section 3.2.2. Each of
these solutions is then refined by randomly performing 3-exchanges until no fur-
ther improvement can be achieved or until the maximum number of algorithm
iterations I = 4n, where n is the problem size, is reached. The best one is as-
sumed to be the optimal path ψ∗. Details on how to efficiently implement the
Local Search can be found in [65].

9Note that a subset λ̃ ≤ λ of the arcs may be contained in both sets and thus remains the
same.
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Receding Horizon Concept Since the traveling salesman problem is NP-
hard, the minimization of the problem size n reduces the computation time
greatly. To achieve that, a specific solution strategy called Local Search Re-
ceding Horizon Algorithm is developed that exploits the features of the path
planning problem at hand, see [47, 48]. The Receding Horizon Concept is based
on the fact that a partial path is hardly ever influenced by nodes very far from it,
in particular if there are several other nodes in between. Therefore, a piecewise
local optimization process is applied in an iterative manner.

The entire problem is divided into several subproblems of size ho ≪ n.
Each of these is then solved using the Local Search Algorithm. However, only
the first hi < ho nodes are actually appended to the final optimal path. The
remaining nodes are close to the following nodes that were disregarded in the
current subproblem. This is why, their order is most likely not optimal yet and,
therefore, prone to change in the next subproblem. Still, the remaining ho − hi
nodes serve as a high quality start solution for the next subproblem and thus
reduce the computational costs. In this context, ho and hi are referred to as
optimization and implementation horizon, respectively.

To initialize the algorithm, the from-left-to-right path is computed ψl2r =
[
ψl2r1 . . . ψl2rn

]
, see (3.8). In the following paragraph, the next iteration step

k + 1 of the Local Search Receding Horizon Algorithm is described based on the
results of the current step k.

Given the optimal final path ψ(k),∗ =
[
ψ∗

1 . . . ψ∗

1+hik

]
of iteration step k,

in the next iteration step k + 1, a partial path

∆ψ(k+1) =
[

ψ
(k),∗
2+hik

. . . ψ
(k),∗
1+hi(k−1)+ho

ψl2r2+hi(k−1)+ho
. . . ψl2r1+hik+ho

]

(3.18)

of size ho is optimized using the Local Search Algorithm, considering a fixed start
node ψ∗

1+hik
and end node ψl2r2+hik+ho

. After the optimization is performed, the
optimal partial path is given by

∆ψ(k+1),∗ =
[

ψ
(k+1),∗
2+hik

. . . ψ
(k+1),∗
1+hik+ho

]

. (3.19)

Then, the first hi nodes of (3.19) are appended to the optimal final path,

ψ(k+1),∗ =
[

ψ∗

1 . . . ψ∗

1+hik
ψ

(k+1),∗
2+hik

. . . ψ
(k+1),∗
1+hi(k+1)

]

. (3.20)

Figure 3.6 illustrates this process. The hatched nodes represent the partial path
∆ψ(k+1),∗ under consideration in iteration step k + 1. It is of length ho and the
superscript (·)∗ indicates it has already been optimized. Now, the first hi nodes
of ∆ψ(k+1),∗ are appended to the final optimal path of the previous iteration step
k to form the current optimal final path ψ(k+1),∗, i.e. the white nodes. The black
nodes are the remaining nodes which have not been optimized yet.
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Figure 3.6: Illustration of the Receding Horizon Concept.

This procedure is carried out until the optimization horizon moved from
the left side of the panel all the way to the right side, i.e.

1 + hik + ho ≥ n− 1. (3.21)

The last optimization horizon might be smaller than ho and is entirely appended
to the final optimal path. Then, ψ∗ = ψ(k),∗ is final.

In the initial optimization step k = 0, the optimal final path is ψ(0),∗ =
[
ψl2r1

]
and the subproblem to be optimized is ∆ψ(0) =

[
ψl2r2 . . . ψl2r1+ho

]
.

Finally, the patch list Π̄ is sorted according to ψ∗, denoted as Π̄∗. The
clustered nodes that were not considered in the path planning algorithm have to
be inserted accordingly to receive the optimal patch list Π∗. The optimization
horizon is set to ho = 5hi with the implementation horizon being hi = 4.

Implementation Algorithm 4 outlines the main functionality of the Local
Search Receding Horizon Algorithm in pseudo code. Input xy of the algorithm
are the xy-coordinates of the clustered patch list Π̄. For the application of the
Receding Horizon Concept, the list needs to be sorted in ascending x-direction.
The output xyOpt contains the same nodes, but sorted according to their op-
timal processing sequence Π̄∗. Additionally, the optimal path costs jOpt are
available. To initialize the algorithm, the cost matrix C is computed. Since the
nodes are already sorted in ascending x-direction, the initial guess of the optimal
path pOpt is obvious, pOpt[i] = i. Each subproblem is defined by its start iS

and end iE index. In case the entire problem instance of size n is smaller than
the optimization horizon ho+2, iE has to be adjusted. The start and end node of
each optimization horizon are not changed. They are boundary conditions of the
optimization problem.

Solving the subproblems is a three-step procedure. First, the subproblem of
size iE-iS+1 is taken out of the entire problem and assigned to separate variables.
The subproblem is defined by a partial path pSub and the respective part of the
cost matrix CSub. Locally, i.e. in the context of the subproblem, the initial path
is numbered in ascending order, pSub_lcl. In order to maintain reference to the
overall, i.e. the global, problem, the respective nodes need to be remembered in
pSub_glb. By this, in the first iteration, the start solution is the from-left-to-right
path, while in the following it corresponds to (3.18). Second, the initial solution
pSub_lcl is locally refined using Local Search. The Local Search Algorithm is
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Algorithm 4 Local Search Receding Horizon Algorithm

1function [xyOpt, jOpt] = RecedingHorizon(xy) //xyL2R

2//initialization

3C = computeCostMatrix(xy); //(3.5)

4for( i=1; i<=n; i++ ) { pOpt[i] = i; } //initial guess = L2R-path

5

6iS = 1; //start/end index of optimization horizon

7if( ho+2>n ) { iE = n; } else { iE = ho+2; } //start, end node fixed

8

9//solution of subproblems

10while (true) {

11//generate subproblem

12for( i=iS; i<=iE; i++ ) { pSub_glb[i-iS+1] = pOpt[i]; }

13for( i=1; i<=iE-iS+1; i++ ) { pSub_lcl[i] = i; }

14

15//take out corresponding part of cost matrix

16for( i=iS; i<=iE; i++ ) {

17for( j=i; j<=iE; j++ ) {

18CSub[i-iS+1,j-iS+1] = C[pOpt[i],pOpt[j]];

19CSub[j-iS+1,i-iS+1] = CSub[i-iS+1,j-iS+1]; //C = C’

20}

21}

22

23//hand over subproblem to Local Search

24pSub_lclOpt = localSearch(CSub, pSub_lcl);

25

26//rearrange optimal path

27for( i=iS+1; i<=iE-1; i++ ) { //start, end node fixed

28pOpt[i] = pSub_glb[pSub_lclOpt[i-iS+1]];

29}

30

31//end of optimization

32if( iE>=n ) { break; }

33

34//shift optimization horizon forward

35iS = iS+iH; if( iS>n ) { iS = n; }

36iE = iE+iH; if( iE>n ) { iE = n; }

37}

38

39//generate output

40jOpt = pathCost(C, pOpt);

41xyOpt = sort(xy, pOpt);
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basically implemented as described in [65]. The main difference is that the start
ψ

(k),∗
1+hik

and end ψl2r2+hik+ho
node of the subproblem remain unchanged. Third, the

optimal solution pSub_lclOpt of the subproblem, see (3.19), updates the current
optimal path pOpt, see (3.20). Note that the entire solution of the subproblem is
taken. Thus, the next subproblem in line 12 and 13 is automatically initialized
with a good start solution, see (3.18). However, the optimization horizon is only
shifted forward by iH.

A soon as the optimization horizon reaches the end of the panel iE>=n,
compare (3.21), all the nodes of the problem instance have been considered and,
therefore, the algorithm terminates and generates the final output.

3.2.5 Results and analysis

Three examples demonstrate and compare the capabilities of the presented Ant
Colony and Local Search Receding Horizon Algorithm. In the first example, the
cost of each arc corresponds to the Euclidean distance between the respective two
nodes. Figure 3.7 depicts a 1.5m long panel exhibiting 24 small and three big
defects (at approximately x = 0.4m, 0.8m, 0.9m). The small defects are covered
by one patch, whereas the big ones require three patches each. For the path
planning algorithm, the respective patches are clustered and considered as one
node. The clustering is indicated by the black lines connecting the nodes.

The solution of the simplest possible path planning method from-left-to-
right is compared to the results of the Ant Colony Algorithm and the Local Search
Receding Horizon Algorithm as presented in Sections 3.2.3 and 3.2.4, respectively.
Although the from-left-to-right path already yields quite good results, one can
easily identify its weakness. If nodes are very close in x-direction, but far from
each other in y-direction, this method generates solutions that permanently jump
up and down along the y-axis. Thus, this method becomes less effective as the
ratio L/W between panel length L and width W decreases.

Within a computation time of 5ms, the Ant Colony Algorithm manages to
improve the start solution from J l2r = 4.6m to Jaco = 3.7m. In comparison, the
Local Search Receding Horizon Algorithm finds a path of length J lsrh = 3.5m
in only 1ms. The reason for the high performance of the Local Search Receding
Horizon Algorithm is that it makes perfect use of the peculiarities of the traveling
salesman problem at hand. First, there is a dedicated production flow, and
second, the panels are much longer than wide. So, it is easy to create good
start solutions which only require local refinement10. The Local Search Receding
Horizon Algorithm is perfectly suited to correct these errors.

The second example focuses on the Receding Horizon Concept. In order to

10It is worth mentioning that the most suitable start solution for the Local Search Algorithm
is the nearest-neighbor path. Usually, the nearest-neighbor path is extremely good except for
a few nodes that are left behind, see Figure 3.5.
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Figure 3.7: Results of three path planning strategies for an exemplary panel.

point out its advantages in this particular path planning problem, a large scale
problem, i.e. a panel of 50m × 0.5m exhibiting n = 1000 randomly distributed
nodes is considered. The from-left-to-right path takes 0.012s to compute and is
Jl2r = 185.1m long. After a computation time of only 0.050s the Local Search
Receding Horizon Algorithm yields a path of length J lsrh = 128.0m, i.e. an
improvement of 30% over the from-left-to-right path. In comparision, the basic
Local Search Algorithm takes 105.100s before it terminates because it hits the
maximum number of iterations I = 4n = 4000. The computed path is J ls =
149.9m long, i.e. an improvement of 20%.

Looking at a section of the panel, as depicted in Figure 3.8, reveals the
reason for the inferiority of the solution of the Local Search Algorithm. While
between x = 20.3m and x = 22m the Local Search Algorithm and the Local
Search Receding Horizon Algorithm compute paths of almost identical quality,
the partial path of the Local Search Algorithm between x = 20m and x = 20.3m
is identical to the from-left-to-right path. Some parts of the from-left-to-right
path were not even optimized before the Local Search Algorithm reached the
maximum number of iterations. As mentioned in [43], the choice of the sets Ξ−

and Ξ+ on which the local exchange is performed is vital for the performance
of the algorithm. The optimization horizon greatly restricts this choice by disre-
garding all the nodes beyond it. Thus, only exchanges with a reasonable chance
of improving the path are executed, while a great amount of futile exchanges
is prevented. In a way, the optimization horizon works like the candidate sets
presented in the algorithm of [43].

The third example is taken from real measurement data acquired at the
pilot patching plant. Figure 3.9 depicts a 2m-panel exhibiting nine defects that
require twelve patches to be covered. Also, the start and end positions as well as
two positions the robot must approach for process logic control are marked with
a cross. The positions at x = 0.375m and x = 1.642m need to be approached
for the transition from XY -Table 1 moving the panel alone into both xy-tables
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Figure 3.9: Results of the optimization algorithms for a typical shuttering panel
obtained at the pilot patching plant.

moving the panel together on to XY -Table 2 moving the panel alone. These
nodes are connected with the time optimal path computed by the Local Search
Receding Horizon Algorithm.

In the considered application, hard real-time constraints have to be met.
Therefore, the possibility to simply stop the algorithm after a given time is a vital
backup system. Both, the Ant Colony Algorithm and the Local Search Reced-
ing Horizon Algorithm can be terminated any time, since they find good paths
very quickly and the best-so-far path is remembered. The drawback of heuristic
methods is that optimality of the computed path cannot be proven. Nevertheless,
the above mentioned advantages make heuristic methods, in particular the Local
Search Receding Horizon Algorithm, the method of choice. The Local Search
Receding Horizon Algorithm outperforms the Ant Colony Algorithm because it
is tailored to the path planning problem at hand.

Regarding general applicability, it should be noted that these algorithms
can be applied to any robot design as nothing, but the cost matrix would change.
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Going beyond the traveling salesman problem, both of these algorithms are appli-
cable to any problem that can be stated in the form as described in [23]. Various
examples for the application of Ant Colony Algorithms and Local Search Algo-
rithms are given in [18, 27, 39]. The Receding Horizon Concept is restricted to
problems exhibiting a distinguished direction of propagation, e.g., in the form of
a dedicated process direction as in the application at hand or in a timely fashion
as in air traffic management.

3.3 Trajectory generation

The path planning algorithm determines the time optimal processing sequence
for the individual patch locations. In the next step, the robot motion between
two consecutive patch locations needs to be planned. This motion is described
by a trajectory, i.e. the path that the robot (or the panel) follows in the xy-plane
given as a function of time. Four requirements are laid down for the choice and
the design of the trajectory generator. First, given the patching robot design
of Section 2.2, the motion of the panel is decoupled in x- and y-direction, i.e.
the panel is moved in each direction independently. Consequently, only one di-
mensional motion planning is necessary. Second, throughput maximization being
the goal, only time optimal trajectory generators are investigated. Third, during
the patching action itself, the panel stands still, meaning each positioning ac-
tion starts at zero initial velocity and acceleration. However, in Section 4.2.2, a
control strategy called Trajectory Updating is presented. It requires a trajectory
generator that is able to start at an arbitrary initial velocity and acceleration.
Fourth, Trajectory Updating also needs the trajectory generator to be executable
in real-time. To sum it up, the trajectory generator needs to compute a time
optimal, one dimensional trajectory, starting at an arbitrary initial state, coming
to a full halt at a given end position, in real-time.

3.3.1 Literature review

Time optimal trajectories fully exploit the dynamical capabilities of the patching
robot, i.e. its maximum velocity, acceleration and jerk. However, application of
excessive jerk and acceleration is likely to induce vibrations in the machine struc-
ture. This puts an unnecessary burden on the machine and, moreover, hampers
precise positioning. The choice of sufficiently smooth trajectories is a measure
to avoid these problems [8]. In mathematical terms, the desired position profile
needs to be at least two times continuously differentiable, meaning the accelera-
tion profile still needs to be continuous, while the jerk profile may already exhibit
steps. Therefore, suitable trajectories are derived by three times integrating a
piecewise constant jerk profile. Pursuing such an approach to generate time op-
timal trajectories yields the so-called bang-bang solution, an elementary result
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of optimal control theory, see [63]. The jerk signal only assumes one of three
values, either maximum or minimum or zero, such that always one of the jerk,
acceleration or velocity constraints is active.

The main task is to compute a suitable jerk signal. This can either be ac-
complished in an offline or online fashion. Offline trajectory generators are based
on the fact that such bang-bang trajectories can be divided into several phases.
For instance, a continuously differentiable trajectory consists of an acceleration
phase, a phase of constant velocity and a deceleration phase. A two times contin-
uously differentiable trajectory consists of seven phases. Each of these phases is
described by its respective jerk value and duration. The computation of the jerk
value and the duration of the phases is achieved in a algorithmic way, taking into
account the initial and desired end values of the integrators. In [8], such a two
times continuously differentiable, time optimal trajectory generator is presented
that considers generic initial and final values of velocity, while the initial and final
acceleration values are set to zero. In [62], a three times continuously differen-
tiable, time optimal trajectory generator is proposed. The resulting trajectories
consist of fifteen phases. To manage this complexity, a systematic approach is
adopted. The entire trajectory is broken down into subproblems, starting at
the extremely simple computation of a continuous jerk profile. Based on this, a
continuously differentiable acceleration profile is derived and so forth. However,
some of the calculations require numerical solvers. Thus, the computational costs
are relatively high.

Online trajectory generators typically constitute closed-loop systems. They
consist of a chain of integrators, the first one of which receives the control input
computed by a variable structure controller, which has the integrator states as
inputs. In each time step, based on the current integrator states, this controller
yields an input signal that drives the integrators towards their desired reference
values in a time optimal way. Continuous time implementations with varying
degrees of continuity of the position profile are presented in [33, 93, 94]. A
time-discrete implementation, as is usually the case, may pose a problem if the
sampling time is too large. Since the controller can only switch its input at
discrete points in time, the bang-bang control input computed by the variable
structure controller might result in oscillating trajectories. To overcome this
drawback, the trajectory generator itself must be designed as a time-discrete
system. Fundamental work for discrete time optimal online trajectory generators
is presented in [60]. Considering a discrete linear time-invariant system, a control
law is developed which drives the system from an arbitrary state to the origin
of the state space in minimum time. It is based on the definition of an M-step
admissible set, i.e. a subspace of the state space from which the origin can be
reached in M time steps by applying an appropriate control input. In turn, this
set yields the time optimal control input for a given initial point in the state space.
This idea is adopted in [68, 95]. By means of this admissible set, it is possible to
define a so-called boundary layer. As soon as the trajectory is in the vicinity of
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the desired reference values, i.e. inside the boundary layer, the variable structure
controller does not apply a bang-bang signal anymore, but makes use of the whole
range available for the control input. Discrete time implementations with varying
degrees of continuity are presented in [30, 35, 93]. Further papers [9, 34, 95]
consider different kinds of constraints on the integrator states and the control
input. A major advantage of the discussed online trajectory generators is that
the constraints can be switched in real-time without impairing the stability of the
closed-loop system and still yielding time optimal trajectories. On the downside,
the transition time of the trajectory cannot be computed without simulating the
entire trajectory.

In the following, a two times continuously differentiable, offline Bang-Bang
Trajectory Generator is presented. It is able to start at an arbitrary initial system
state, i.e. initial velocity and acceleration. Furthermore, a simplified point-to-
point version is derived. Finally, this trajectory generator is compared to an
online Bang-Bang Trajectory Generator. In Section A.1, a so-called Sine-Square
Trajectory Generator is presented. It is based on the offline Bang-Bang Trajec-
tory Generator, but the piecewise constant jerk input is replaced by smoother
trigonometric functions. This yields a three times continuously differentiable
position profile. In turn, time optimality is lost.

3.3.2 Bang-Bang Trajectory Generator

As an input the trajectory generator receives two consecutive patch locations
pi and pi+1 of the patch list Π∗. To keep the notation general, the trajectory
generator computes the trajectory between an initial x0 =

[
x0 y0

]T
and a de-

sired position xd =
[
xd yd

]T
. Because the dynamics of the patching robot are

decoupled in x- and y-direction, only the longitudinal case is considered.
In view of throughput optimization, the robot trajectories need to be time

optimal, obeying the dynamical limitations of the patching robot, namely maxi-
mum velocity vM , acceleration aM and jerk jM . Moreover, the position trajectory
xt(t) needs to be sufficiently smooth, i.e. at least two times continuously differen-
tiable, xt(t) ∈ C2(t). The trajectory updating strategy, presented in Section 4.2.2,
requires the trajectory generator to be executable in real-time and it has to be
able to start at any initial system state

[
x0 v0 a0

]T
.

A trajectory generator that fulfills all these requirements is derived as a
simplified version of [62], see also [47]. The trajectory is generated by three
times integrating a jerk signal switching between minimum, zero and maximum,
jt(t) ∈ {−jM , 0, jM}. The bang-bang solution for the time optimal transition
of systems with input and state constraints is a very well established result, see
[63]. As can be inferred from Figure 3.10, the trajectory consists of three main
phases, an acceleration Phase P1 to P3, a phase of maximum velocity P4, and a
deceleration Phase P5 to P7. The acceleration phase itself can be divided into a
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Figure 3.10: Seven phases of a time optimal C2-trajectory, maximum jerk jM =
10m/s3, maximum acceleration aM = 2m/s2, maximum velocity vM = 1.5m/s.

Phase P1 where the acceleration increases, a Phase P2 of maximum acceleration
and a Phase P3 where it decreases. The same holds true for the deceleration
phase.

The jerk signal

jt(t) =







j1 0 ≤ t ≤ T1

j3 T̄2 ≤ t ≤ T̄3

j5 T̄4 ≤ t ≤ T̄5

j7 T̄6 ≤ t ≤ T̄7 = T̄x

0 otherwise,

(3.22)

where

T̄i =

i∑

j=1

Tj , i ∈ {2, 3, . . . , 7}

is determined by the durations T1, . . . , T7 and the jerk values j1, . . . , j7 of the
seven phases. Note that the jerk values in the phases P2, P4 and P6 are always
j2 = j4 = j6 = 0, as either the acceleration or the velocity are saturated. The
overall trajectory time is denoted by T̄x. The notation shall be simplified by
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introducing the following abbreviations

ji =
[
j1 j3 . . . ji

]
, i ∈ {3, 5, 7} (3.23a)

Tj =
[
T1 T2 . . . Tj

]
, j ∈ {2, . . . , 7}, (3.23b)

which are also applied to (·)∗, (̃·) and so forth.
Integration of the jerk signal (3.22) yields the time evolution of acceleration,

velocity and position

at(t; j7,T7, a0) =

∫ t

t0

jt(τ) dτ + a0, (3.24a)

vt(t; j7,T7, v0, a0) =

∫ t

t0

at(τ) dτ + v0, (3.24b)

xt(t; j7,T7, x0, v0, a0) =

∫ t

t0

vt(τ) dτ + x0. (3.24c)

In the following, it is shown how to compute a C0-trajectory for the acceleration,
a C1-trajectory for the velocity and, finally, a C2-trajectory for the position.

A C0-trajectory for the acceleration, described by the parameters11 πa =
[
j∗1 T ∗

1

]
= At(a0, ad), from an initial value a0 to a desired value ad can be

computed by

j∗1 =







−jM a0 > ad

jM a0 < ad

0 a0 = ad

(3.25)

and

T ∗

1 =

{

0 j∗1 = 0

(ad − a0)/j∗1 j∗1 6= 0.
(3.26)

A C1-trajectory for the velocity consists of three phases and, consequently, is
described by the parameter vector πv =

[
j∗3 T∗

3

]
= Vt(v0, a0, vd) with the initial

velocity v0 and the desired value vd. First, the jerk sequence
[
j∗1 0 j∗3

]
needs

to be determined. This is accomplished by computing a C0-trajectory for the
acceleration π̃a =

[
j̃1 T̃1

]
= At(a0, 0) and the constant velocity at the end of it

ṽ1 = v0 + a0 T̃1 + j̃1T̃
2
1 /2. (3.27)

11A remark regarding the nomenclature: The function At takes the input arguments a0, ad
and computes the parameter vector πa describing a C0-trajectory for the acceleration. The
symbol ∗ refers to the corresponding optimal value.
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Based on ṽ1, the jerk sequence is

[
j∗1 0 j∗3

]
=







[

−jM 0 jM

]

j
ṽ1 > vd

[

jM 0 −jM
]

j
ṽ1 < vd

[

j̃1 0 0
]

ṽ1 = vd.

(3.28)

If ṽ1 = vd, the desired velocity has been reached and, consequently, πv =
[
j̃1 0

T̃1 0 0
]

describes the desired trajectory.
Otherwise, the second step is to determine the maximum achieved accelera-

tion a∗ in Phase P2 of the velocity trajectory. To do that, ignore the acceleration
limit aM , which implicitly reduces P2 to zero, and let â denote the unlimited
maximum achieved acceleration. Consequently, the time intervals follow from

T1 = (â− a0)/j∗1 , (3.29a)

T2 = 0, (3.29b)

T3 = (0− â)/j∗3 . (3.29c)

Furthermore, the following equations, which are simply derived by integration of
the jerk signal (3.28), are needed: acceleration a1 and velocity v1 after P1, a2 and
v2 after P2 and v3 after P3

a1 = a0 + j∗1T1, (3.30a)

v1 = v0 + a0T1 + j∗1T
2
1 /2, (3.30b)

a2 = a1 = â, (3.30c)

v2 = v1 + a1T2, (3.30d)

v3 = v2 + a2T3 + j∗3T
2
3 /2 = vd. (3.30e)

Solving (3.30) and (3.29) for â yields, see also [62],

â = ± 1

j∗1 − j∗3

√

(j∗1 − j∗3) j∗3 (2v0j∗1 − 2vdj∗1 − a20). (3.31)

The sign of â is chosen so that T1 > 0 and T3 > 0. Now, a∗ can be determined
considering the bounds on the acceleration

a∗ =







−aM â < −aM
aM â > aM

â otherwise.

(3.32)

Third, it remains to compute the time parametrization
[
T ∗

1 T ∗

2 T ∗

3

]
. Sub-

stituting a∗ for â in (3.29) yields T ∗

1 and T ∗

3 ; T ∗

2 follows from

T ∗

2 = (vd − v∗3)/a∗, (3.33)
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where v∗3 is given by substituting T1 = T ∗

1 , T2 = 0 and T3 = T ∗

3 in (3.30). Note
that (3.33) implicitly covers both possible cases. Assume in (3.32) a∗ = â, then
vd = v∗3 and, consequently, the phase of constant maximum acceleration P2 is not
needed, T ∗

2 = 0. Otherwise, aM is reached and P2 does not vanish.
The computation of a C2-trajectory for the position is performed in a similar

way. It consists of seven phases, i.e. πx =
[
j∗7 T∗

7

]
= Xt(x0, v0, a0, xd) with the

initial position x0 and the desired value xd. However, based on the C1-trajectory
for the velocity, only its three main phases, acceleration P1 to P3, maximum
velocity P4 and deceleration P5 to P7 need to be considered.

The major task is the computation of the acceleration and deceleration
phase. To this end, the maximum achieved velocity v∗ = v3 = v4 during P4
needs to be determined using binary search. Initially v− = −vM and v+ = vM is
chosen. In every iteration, the following steps are executed, see [62],

1. Determine new v∗ = (v− + v+)/2.

2. Compute the acceleration phase, i.e. a C1-trajectory for the velocity π̃v,13 =[
j̃1 j̃3 T̃1 T̃2 T̃3

]
= Vt(v0, a0, v

∗).

3. Compute the deceleration phase, i.e. a C1-trajectory for the velocity π̃v,57 =[
j̃5 j̃7 T̃5 T̃6 T̃7

]
= Vt(v

∗, 0, 0).

4. Compute the total distance covered during the acceleration and deceleration
phase, x̃7 = xt(t; j̃7, T̃7, x0, v0, a0) with T̃4 = 0.

5. Shift the search interval according to

[
v− v+

]
=







[

v− v∗
]

l
x̃7 > xd

[

v∗ v+
]

l
x̃7 < xd

[

v∗ v∗
]

l
x̃7 = xd.

(3.34)

6. If x̃7 = xd or the maximum number of iterations 12 is reached, the search
stops, otherwise go to step 1).

At the end of the binary search, the maximum achieved velocity v∗ is found and
the respective acceleration and deceleration phase are already computed, i.e. the
parameters are considered final, (·)∗ = (̃·). It remains to compute the length of
the phase of maximum velocity P4

T ∗

4 = (xd − x̃7)/v∗. (3.35)

12Regarding the convergence of the binary search, note that a small number of eleven itera-
tions, already determines v∗ with an accuracy of 2vM/211 = vM/1024.
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This way, given an arbitrary initial state
[
x0 v0 a0

]
and the desired posi-

tion xd, the optimal C2-trajectory can be parametrized by
[
j∗7 T∗

7

]
= Xt(x0, v0,

a0, xd) and the trajectory signals follow from (3.24).
The requirement to start at an arbitrary initial state makes the task of tra-

jectory generation much more complex - a level of complexity that is not required,
for the computation of the cost matrix (3.5) of the path planning problem, since
only the point-to-point transition times are required. Therefore, a point-to-point
version of the Bang-Bang Trajectory Generator is presented in the following.

3.3.2.1 Point-to-point version

In the following, xd > x0 is assumed. If this is not the case, the start point
is exchanged for the end point, x0 ↔ xd. This is possible because the system
dynamics are equal in forward and backward direction and thus the problem is
symmetric. Furthermore, x0 = 0 and xd ← xd−x0 is set without loss of generality.

Because of the symmetry of the problem, the trajectory parametrization
πx =

[
j∗7 T∗

7

]
becomes much simpler. The phases of constant jerk, acceleration

and velocity are of equal respective length,

Tj/2 = T1 = T3 = T5 = T7, (3.36a)

Ta = T2 = T6, (3.36b)

Tv = T4. (3.36c)

Also, since xd > x0, the jerk sequence is always

jM = j1 = j7 (3.37a)

−jM = j3 = j5. (3.37b)

The overall trajectory time calculates as

T̄x = 2Tj + 2Ta + Tv. (3.38)

It remains to compute the reduced parameter vector πx,p2p =
[
Tj Ta Tv

]
. The

actuator needs the time Tj/2 to build up its maximum acceleration. This time
span is consequently determined by the maximum jerk

Tj = 2aM/jM . (3.39)

Moreover, Ta computes from the time it takes to accelerate up to maximum
velocity. Maximum velocity vM is reached at the end of Phase P3, i.e. at t =
2Tj/2 + Ta. Thus, solving vt(t)|t=Tj+Ta = vM yields

Ta = vM/aM − Tj/2. (3.40)
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Similarly, Tv is determined by the distance xd to be covered. Solving xt(t)|t=T̄x =
xd with T̄x according to (3.38) yields

Tv =
2xd/aM − T 2

j − 3TjTa − 2T 2
a

Tj + 2Ta
. (3.41)

Looking at (3.40) and (3.41), in general, it might happen that Ta < 0 or Tv < 0
or both. These three cases have to be distinguished as in Algorithm 5.

Algorithm 5 Point-to-point trajectory

1: Tj = 2aM/jM {always non-negative}
2: Ta = vM/aM − Tj/2
3:

4: if Ta < 0 then
5: Ta = 0 {Case 1}
6: aM =

√
jMvM

7: Tj = 2aM/jM
8: end if
9:

10: Tv =
2xd/aM−T 2

j −3TjTa−2T 2
a

Tj+2Ta
11:

12: if Tv < 0 then
13: Tv = 0 {Case 2}

14: vM =
−a2

M
+
√
a4
M

+4j2
M
aMxd

2jM

15: Ta = vM/aM − Tj/2
16:

17: if Ta < 0 then
18: Tv = 0 {Case 3}
19: Ta = 0
20: aM = (xd/2)

1/3 j
2/3
M

21: vM = (xd/2)
2/3 j

1/3
M

22: Tj = 2aM/jM
23: end if
24: end if
25:

26: πx,p2p =
[
Tj Ta Tv

]
{reduced parameter vector}

In Case 1, Ta < 0 indicates that maximum velocity vM is already reached
before maximum acceleration. Therefore, aM needs to be adjusted. Inserting
(3.39) into (3.40), setting Ta = 0 and solving for aM yields

aM0 =
√

jMvM . (3.42)
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Then, of course, (3.39) needs to be evaluated with the newly obtained maximum
acceleration aM0.

In Case 2, Tv < 0 indicates that the desired distance xd is reached before
maximum velocity. Therefore, vM needs to be adjusted. Setting Tv = 0 and
solving (3.39), (3.40) and (3.41) for vM yields

vM0 =
−a2M +

√

a4M + 4j2MaMxd
2jM

. (3.43)

Then, (3.40) needs to be evaluated with the newly obtained maximum velocity
vM0.

In Case 3, Ta < 0 and Tv < 0, both are set to zero, Ta = Tv = 0, and solving
(3.39), (3.40) and (3.41) yields

aM00 = (xd/2)
1/3 j

2/3
M , (3.44a)

vM00 = (xd/2)
2/3 j

1/3
M . (3.44b)

Then, (3.39) needs to be evaluated with the newly obtained maximum accelera-
tion aM00.

These extremely simple computations yield the time optimal point-to-point
trajectory.

3.3.3 Results and analysis

For the sake of comparison, a time optimal, time-discrete online trajectory gen-
erator is implemented, see Section A.2. Obviously, it also employs the bang-bang
principle and thus yields the identical two times continuously differentiable tra-
jectories as the offline approach of Section 3.3.2. The offline version computes
the seven individual time segments of maximum, zero and minimum jerk all at
once. In contrast, the online approach computes each time step separately.

Figure 3.11 shows trajectories of both generators that approach multiple
desired end positions. They start at the origin of the state space

[
xt(0) vt(0)

at(0)
]
= 0. At t0 = 0 the reference value jumps to 5m. Shortly before this value

is reached, i.e. at t1 = 2.3s, the reference value increases to 6.5m. Consequently,
the deceleration phase, at(t1) = −aM , is canceled and a short phase of maximum
acceleration is introduced. Again, during the final approach to the reference value,
the desired position is dropped to 1.5m. This time, no immediate reaction of the
trajectory generators can be seen. This is because the acceleration is already at
its minimum −aM and it takes some time until the velocity signal changes its
sign.
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Figure 3.11: Comparison of the offline versus the online Bang-Bang Trajectory
Generator with maximum jerk jM = 15m/s3, maximum acceleration aM = 4m/s2,
maximum velocity vM = 3m/s and a sampling time of 5ms.
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The effects of the above mentioned conceptual difference between the two
approaches are small, but noteworthy. In the (quasi-) time-continuous case, sam-
pling time Ts = 1ms and below, both generate strictly time optimal motion
profiles. However, in the depicted case of 5ms, the acceleration profile of the on-
line version exhibits chatter, which causes overshoots in the velocity signal. This
is because the online Bang-Bang Trajectory Generator is only able to switch the
jerk at the sampling instants. Naturally, for higher sampling times, this results
in oscillating behavior, which clearly counteracts precise and fast positioning.
The more recent papers [30, 34] present solutions to this problem. The offline
approach avoids this problem in the first place by planning a continuous trajec-
tory, i.e. computing the parameters for a continuous time trajectory. Given these
parameters, the time-continuous motion profiles can be evaluated (correctly) at
any point in time. Still, the offline Bang-Bang Trajectory Generator can be exe-
cuted within a fraction of a Millisecond, which clearly makes it real-time capable.
Therefore, the presented offline version of the Bang-Bang Trajectory Generator
is the tool of choice and shall be used for the real-time control of the patching
robot, which is the topic of the next chapter.

Finally, it shall be noted that both trajectory generators can be applied to
any 1D-motion-planning-task, translational or rotational. This naturally includes
multidimensional motion that can be decomposed accordingly.



CHAPTER 4

Real-time control

In Chapter 3, the optimal processing sequence for each panel is determined. To
execute this sequence, a real-time controller for the patching robot has to be
developed, see [47]. The patching action itself is accomplished by a patching
tool already in operation at the plant for many years. Positioning of the panel
underneath the patching tool is performed by two xy-tables, see Section 2.2. As
already discussed, friction forces within the drivetrain of the rubber belts of the
xy-tables are high. Furthermore, in certain process stages the panel is moved by
both xy-tables cooperatively. In this case, the xy-tables have to be synchronized
to ensure good positioning performance. Thus, a suitable control structure needs
to handle the challenging friction conditions and support both, independent and
coupled positioning, see Section 4.1.

The position control is accomplished under the assumption that the ab-
solute position of the panel is continuously available, i.e. at the sampling rate
of the position controller. However, in longitudinal direction, there occurs slip
between the panel and the rubber belts of the patching robot. Consequently, the
incremental encoders of the motors of the rubber belts of the patching robot do
not yield the exact longitudinal panel position, which is why the absolute panel
position needs to be tracked separately, e.g., by a camera system. The position
signal of the camera is not available at the high sampling rate of the encoder
signals and thus a strategy for sensor data fusion called Trajectory Updating is
introduced in Section 4.2.

4.1 Control structure

In this section, the control structure for independent and coupled positioning is
discussed. The longitudinal and lateral degree of freedom of the xy-tables are
decoupled. In the following, it is assumed that slip between the rubber belts of
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Figure 4.1: Structure of the longitudinal position controller. Since the control
structure is identical for both xy-tables, the index i ∈ {1, 2} is suppressed.

the xy-tables and the panel is negligible. Thus, the longitudinal panel position
xp and the robot position xr coincide, i.e. xp = xr = rr ϕr/ix with rr being the
effective radius of the sprockets driving the rubber belts, ϕr the angular position
of the sprockets and ix being the transmission ratio of the gearbox.

To begin with, independent positioning, i.e. when only one xy-table moves
the panel, is discussed. Exemplarily, the longitudinal direction is considered; in
lateral direction, it is exactly the same. The corresponding control structure is
depicted in Figure 4.1. The inner velocity controller (VC) consists of a PI- and
a feedforward controller with the translational velocity vr = rr ϕ̇r/ix of the rub-
ber belts as control variable, the desired velocity vt − ev as reference input and
the motor current Im of the synchronous servo motor driving the rubber belts
of the patching robot (PR) as control input. This controller is directly imple-
mented at the frequency converters. The feedforward control input is derived
by numerical differentiation of the smooth signal of the desired velocity vt − ev.
The outer position control loop, i.e. the position controller (XC) and the tra-
jectory generator (TG), is implemented at an industrial computer. The position
controller, a high-gain P-controller, ensures that the position xr of the rubber
belts follows the trajectory

[
xt vt

]
leading to a desired end position xd. The

reasoning behind the partitioning of the controllers between frequency converter
and industrial computer is the following: On the one hand, the inner velocity
control loop and its subordinate current control loop1 are implemented at a low
level in order to facilitate a high sampling rate. This is necessary to be able to
deal with the high friction forces in longitudinal direction. On the other hand,
the outer position control loop requires more computational power to meet the
demands of the Trajectory Updating Strategy proposed in Section 4.2.2.

This partitioning also allows to reset the longitudinal position of the rub-
ber belts without interfering with the velocity control. The reset of the rubber
belt position is accomplished by resetting an offset value at the industrial com-
puter. The motor encoder itself retains its value. This feature is required for
the Trajectory Updating Algorithm. Furthermore, the entire plant control is
implemented at this computer.

If both xy-tables move the panel cooperatively, x- and y-direction need to

1The current controller cannot be accessed and thus is not shown in the flow chart.
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be treated separately. In longitudinal direction, the coupling is firm, meaning
Fpx ≈ µFc, where Fpx is the longitudinal force exerted on the panel by the rubber
belts, Fc is the clamping force and µ is the friction coefficient of the rubber belts.
Therefore, a master-slave control is utilized. XY -Table 1, the master, controls the
panel position as presented above, while XY -Table 2, the slave, merely follows
the speed of the master. This means that, while the position controller of XY -
Table 1 controls the panel position, the velocity controller of XY -Table 2 is fed
the same desired velocity as XY -Table 1, vt,2 − ev,2 = vt,1 − ev,1. Thus, XY -
Table 2 interferes with the positioning action as little as possible, while helping
accelerate the panel.

In lateral direction, both xy-tables are positioned independently. On the
one hand, this is necessary because the coupling of the xy-tables via the panel
is rather loose, meaning Fpy ≫ Fc, where Fpy is the lateral force exerted on
the panel. On the other hand, this is possible because the friction forces in
lateral direction are very low and, therefore, trajectory tracking is very accurate.
Consequently, when fed the same desired trajectory, both xy-tables perform the
almost identical motion independently of each other.

Finally, it shall be pointed out that the real-time controllers were heuristi-
cally tuned directly at the plant. The stick-slip effects within the drive train of
the patching robot as well as between the rubber belts and the panels are unpre-
dictable. Thus, it is difficult to derive an accurate mathematical model, which is
why heuristic tuning is deemed the most viable approach. The presented control
structure is implemented at the pilot patching plant. All measurement results
obtained from the plant are documented in Chapter 6.

4.2 Sensor data fusion

In lateral direction, positioning of the panel below the patching tool is a straight
forward task using the synchronous linear motor to move the entire slide of the
xy-table. In longitudinal direction, the rubber belt conveyors exert acceleration
forces on the panel only via friction. The transmittable forces before slip occurs
depend on many factors, like clamping pressure, wear of the rubber belts, rough-
ness and curvature of the (ideally flat) wood panels. Also, the overlap between
the rubber belts and the panel depends on panel length and position. This slip be-
tween the panel and the rubber belt induces odometry errors. Consequently, the
position of the panel cannot be determined accurately using the motor encoders.
Separate absolute position tracking, e.g., by a camera is required.

4.2.1 Literature review

In literature, systematic and non-systematic odometry errors are distinguished,
see [13]. Examples for systematic errors are unknown or unequal effective radii of
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the wheels driving a robot or their misalignment. Non-systematic errors are, e.g.,
slip caused by too high acceleration and changing properties of stick-slip friction
or, in general, unpredictable features of the environment, such as sandy terrain.

In order to deal with these errors, sensor data fusion is required. According
to [78], the fusion strategies can be classified into three main approaches: proba-
bilistic models, least-squares techniques and intelligent fusion. The probabilistic
model methods are Bayesian reasoning, evidence theory, robust statistics and
recursive operators. The least-squares techniques are Kalman Filtering, optimal
theory, regularization and uncertainty ellipsoids. The intelligent fusion methods
are fuzzy logic, neural networks and genetic algorithms.

The most common strategy in engineering is Kalman Filtering, see [10, 13,
17, 42, 50, 85]. To this end, a dynamical odometry and measurement model of the
machine have to be derived. If systematic odometry errors are known, they can
be considered in the model of the machine. In [13, 85], unknown effective wheel
base, unequal wheel diameters and side slip due to wheel deflection are taken
into account. Eliminating these dominant sources of systematic errors greatly
increases the accuracy of the odometry system. In the Kalman Filter, odometry
is used for the prediction step. Whenever the absolute position of the robot can
be determined, e.g., by visual position tracking, magnetic markers on the floor,
etc., the correction step of the Kalman Filter is executed.

In return, odometry information can be used to shrink the search region
for visual position tracking algorithms, which shortens their computation time.
Using odometry to support visual position tracking is a concept already proposed
in [12]. It is called Verification Vision and characterized by two features. First,
the vision system has a great deal of prior knowledge about the scene and, second,
the vision system is only used to verify and refine the location of objects in the
scene. This synergy between odometry and absolute position measurement using
map-matching is also applied in [20]. In the following, a different approach to
sensor data fusion in odometry is presented.

4.2.2 Trajectory Updating

In longitudinal direction, high friction forces in the drivetrain of the rubber belts
and slip between the rubber belts and the shuttering panel turn out to be the
main challenges. The control structure presented in Section 4.1 is suited to deal
with the first one of these two challenges.

In Figure 4.2, this structure is extended to account for the second challenge,
slippage of the panel. The proposed strategy for position control in the presence
of slip utilizes two different sources of position information. First, the incremental
motor encoders are used in the velocity and position control loop, see Figure 4.1.
They support a high sampling rate 1/Ts to achieve high positioning dynamics
and accuracy, despite high friction forces. Second, the panel position provided
by the position tracking camera (CM) is used to detect the slip between robot xr
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Figure 4.2: Extension of the control structure in longitudinal direction, compare
Figure 4.1.

and panel position xp. However, due to the high computational costs of computer
vision, the panel position is only available at a low sampling rate 1/Tsv and with
a time delay Tdv.

In order to compensate for the slip that accumulates over time, in the
Trajectory Update Block (TU), the position deviation ex(t−Tdv) = xr(t−Tdv)−
xp(t − Tdv) is determined at a sampling rate of 1/Tsv. After the time delay Tdv,
during which the change in the position deviation is assumed to be negligible,
i.e. ex(t) ≈ ex(t − Tdv), a new trajectory leading to a corrected desired end
position xd(t)− ex(t) is computed in real-time. Starting at x0 = xt(t), v0 = vt(t),
a0 = at(t) ensures the smoothness of the piecewise generated overall trajectory.

This procedure is summarized in Algorithm 6. After processing of a patch

Algorithm 6 Trajectory Updating

1: t = k Ts {current time step}
2: if xd(t) 6= xd((k − 1) Ts) then
3: xr(t) = xp(t) {reset robot position}
4:

[
j∗7 T∗

7

]
= Xt(xr(t), 0, 0, xd(t)) {p2p-trajectory}

5: end if
6: if xp(t− Tdv) 6= xp(t− Tsv − Tdv) then
7: ex(t) = xr(t− Tdv)− xp(t− Tdv)
8: x0 = xt(t), v0 = vt(t), a0 = at(t)
9:

[
j∗7 T∗

7

]
= Xt(x0, v0, a0, xd(t)− ex(t)) {update}

10: end if
11: at(t; j

∗

7,T
∗

7, a0)
12: vt(t; j

∗

7,T
∗

7, v0, a0)
13: xt(t; j

∗

7,T
∗

7, x0, v0, a0)

position xi−1, the next one xi needs to be approached according to the optimal
processing sequence of the patch list Π∗ = {

[
x1 y1

]T
, . . . ,

[
xn yn

]T}. This
change of the set point xd(t) = xi 6= xd((k−1) Ts) = xi−1 triggers the computation
of a new parametrization of a point-to-point trajectory, see line 4. The trajectory
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generator is described in Section 3.3.2. Note that during the patching action, the
panel does not move for Tp = 2s. Also, the controllers of the patching robot are
switched off for safety reasons. Therefore, it is possible to reset the robot position
to the panel position. Whenever there is a new absolute position for the panel
available, a trajectory update is performed, see line 9. The current values of the
trajectory for each time step are computed in lines 11–13, see (3.24).

The Trajectory Updating Strategy is implemented at the pilot patching
plant. All measurement results obtained from the plant are documented in Chap-
ter 6.



CHAPTER 5

Process logic control

In Chapter 4, real-time controllers for the patching robot are developed. They
move the xy-tables according to the patch list to position the panel underneath
the patching tool. In this chapter, the task is to develop a suitable process
logic control for the patching robot. An overview of the patching robot and the
prototype plant is given in Sections 2.2 and 2.3. Based on this, a state-machine
for the patching robot is presented in Section 5.1. In Section 5.2, Simulation
studies demonstrate the feasibility of this approach.

5.1 State-machine for the patching robot

A finite-state-machine or finite-state-automaton, see [49], is an abstract comput-
ing device, modeling, e.g., computer programs, sequential logic circuits or the
behavior of real devices and machines. The behavior of these abstract machines
is determined by a finite set of states. The machine can only be in one state at
a time, called the current state. Transitions from the current state into another
are triggered by meeting some specific transition criteria.

Each state, as implemented in this process logic control, is defined by entry
actions, state actions and transition conditions. The entry actions are only exe-
cuted once, when entering the state. By contrast, the state actions are executed
as long as the machine remains in this state. One or more transition conditions
define criteria, events or inputs, that trigger a change to different subsequent
states. By this, the current state fully determines the behavior of the machine at
the current time. Executing the state-machine in a cyclic thread, a flow chart of
a single generic state1 looks like Figure 5.1. In each sampling interval, one of the

1Note that a state can be structured in various ways, e.g., the entry actions of one state
could also be modeled as exit actions of the previous state. Or, the entry and state actions of
this generic state could be implemented as individual states themselves.
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Actions
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Transition Conditions of preceding States

Transition Conditions
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Figure 5.1: Flow chart of a generic state.

transitions, indicated by the arrows, is executed. Each arrow is labeled with its
transition condition. The transition from the entry actions into the state actions
is unconditional and thus got no label.

The purpose of a state-machine is to provide a certain robustness of the con-
trol against unexpected deviations from the nominal process, e.g., faulty sensor
signals, time delays etc.. Unexpected occurrences, that might affect the machine’s
behavior in different states, are ignored, since they are irrelevant to the current
state.

In the following, the patching process roughly described in Section 2.2.2
is implemented using state-machines. To this end, four specific positions of the
xy-tables, respectively the panel, have to be introduced. If XY -Table 1 is in
Feed-In Position xfi =

[
0 ycnv1

]T
, it is laterally aligned with Conveyor 1 at

ycnv1 = 0.250m in front of the patching robot. Thus, panels can be fed from
the conveyor to the xy-table. The longitudinal position is irrelevant. Simi-
larly, a Move-Out Position for XY -Table 2 is defined. In Move-Out Position
xmo =

[
L+ xlb21 ycnv2

]T
, XY -Table 2 is laterally aligned with Conveyor 2 at

ycnv2 = 0.250m. The longitudinal position L + xlb21 of the panel is chosen such
that XY -Table 2 can be lowered. If Light Barrier 21 at xlb21 = 0.175m is not
interrupted, the panel does not occupy the workspace of the patching tool any-
more and XY -Table 2 can be lowered. Furthermore, two handover positions are
added to the patch list of each panel. Handover Position 1 xho1 =

[
xho yi−1

]T

is required to move the panel to the workspace of XY -Table 2 and thus pre-
pares the transition from XY -Table 1 moving the panel independently into cou-
pled positioning. The lateral coordinate of xho1 is irrelevant, so it is just copied
from the previous entry of the patch list yi−1, where i is the index of the han-
dover position in the patch list. The longitudinal coordinate xho is chosen, such
that there is sufficient overlap between XY -Table 2 and the panel. In case of
Figure 3.9, xho = 0.375m, i.e. xho1 =

[
0.375 0.141

]T
. In analogy, Handover

Position 2 xho2 =
[
L− xho yi−1

]T
is defined for the transition from coupled

positioning into XY -Table 2 positioning independently. In case of Figure 3.9,
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Figure 5.2: State-machine of the patching robot. To preserve clarity, the indi-
vidual transition conditions are not explicitly described in this chart, only in the
text.

xho2 =
[
2.017− 0.375 0.443

]T
.

Now, that these prerequisites are established, the process logic control is
described in detail. It is divided into two state-machines, one for each xy-table.
Figure 5.2 depicts the individual states and transitions of the state-machines of
the xy-tables2. In the following, each state is described by listing its entry and
state actions as well as transition conditions.

XY-Table 1, Initial State State at power-up or reset.

• Entry actions: None.

• State actions: Do not move.

• Transition conditions: If the process logic control is released, transition into
Idle State.

XY-Table 1, Idle State XY -Table 1 moves to the Feed-In Position and waits
for the next panel to approach.

2For brevity, the state-machine of XY -Table 1 is simply referred to as XY -Table 1 in the
remainder of the document.
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• Entry actions: Delete panel data.

• State actions:

1. Release the clamping mechanism.

2. If the clamping mechanism is released, lower XY -Table 1.

3. If XY -Table 1 is lowered, move to the (lateral) Feed-In position and
set longitudinal position to zero.

4. If XY -Table 1 is positioned correctly, activate Conveyor 1.

• Transition conditions:

1. If XY -Table 1 is positioned correctly and Light Barrier 113 is inter-
rupted, transition into Feed-In State.

2. If XY -Table 1 is positioned correctly and the process logic control is
locked, transition into Initial State.

XY-Table 1, Feed-In State The panel approaching from Conveyor 1 is fed
into XY -Table 1.

• Entry actions:

1. Request the dataset of the respective panel from the wood knowledge
repository and assign it to XY -Table 1.

2. Engage the clamping mechanism.

• State actions:

1. The rubber belts and Conveyor 1 move the panel forward. The rubber
belts are velocity controlled, since their position, respectively the panel
position, is not defined yet.

2. If Light Barrier 13 is interrupted, the rubber belts and Conveyor 1
stop.

3. If XY -Table 2 is in either Idle or Move-Out State, XY -Table 1 is
elevated.

• Transition conditions: If XY -Table 1 is elevated, transition into Position
State.

3A CAD drawing of the patching robot and, in particular, the numbering of the light barriers
are given in Figure 2.2.
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XY-Table 1, Position State XY -Table 1 positions the panel according to
the position yielded by Camera 1.

• Entry actions:

1. If the real-time controllers are switched off, reset them and switch
them on.

2. Reset the longitudinal position of XY -Table 1 to the position yielded
by Camera 1.

3. Determine the next position to approach from the panel data set.

• State actions:

1. If this position is Handover Position 1 and XY -Table 2 is in Idle State,
XY -Table 2 is sent Handover Position 1 and triggered to transition
into Coupled Enter State.

2. Position the panel.

• Transition conditions: If the panel is positioned correctly and it is not
Handover Position 1, transition into Patch State.

XY-Table 1, Patch State XY -Table 1 is switched off and the patching action
is executed.

• Entry actions:

1. Switch off the real-time controllers.

2. Activate the patching tool.

• State actions: If the patching action is finished, mark the respective patch
position in the patch list of the panel data set.

• Transition conditions: If the patching action is finished, transition into
Position State.

XY-Table 1, Coupled State This state represents the cooperative motion of
the two xy-tables. XY -Table 1 receives instructions from XY -Table 2, Coupled
Position State or XY -Table 2, Coupled Patch State, regarding both actions and
transitions.

• Entry actions: None.

• State actions: None.

• Transition conditions: None.
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XY-Table 2, Initial State Equivalent to XY -Table 1, Initial State.

XY-Table 2, Idle State XY -Table 2 waits until it is triggered to transition
into Coupled Enter State.

• Entry actions: Delete panel data.

• State actions:

1. Release the clamping mechanism.

2. If the clamping mechanism is released, lower XY -Table 2.

3. If XY -Table 2 is lowered, stay at the current position4.

• Transition conditions: If XY -Table 2 is positioned correctly and the process
logic control is locked, transition into Initial State.

XY-Table 2, Coupled Enter State XY -Table 2 moves to Handover Posi-
tion 1 and clamps the panel.

• Entry actions: None.

• State actions:

1. Move to Handover Position 1 as received from XY -Table 1, Position
State.

2. If both xy-tables are positioned correctly, XY -Table 2 is elevated.

3. If XY -Table 2 is elevated and Light Barrier 21 is interrupted, its
clamping mechanism is engaged.

4. If XY -Table 2 clamped the panel, the panel data set of XY -Table 1
is also assigned to XY -Table 2, Handover Position 1 is marked and
XY -Table 1 is triggered to change from Position State to Coupled
State.

• Transition conditions: If XY -Table 2 clamped the panel, transition into
Coupled Position State.

4The current position usually is the Move-Out Position. Handover Position 1 of the next
panel is not known yet.
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XY-Table 2, Coupled Position State Both xy-tables position the panel
cooperatively according to the position yielded by Camera 1 (of XY -Table 1).

• Entry actions:

1. If the real-time controllers of both xy-tables are switched off, reset
them and switch them on.

2. Reset the longitudinal position of both xy-tables to the position yielded
by Camera 1.

3. Determine the next position to approach from the panel data set.

• State actions:

1. Position the panel.

2. If the panel is positioned correctly and it is Handover Position 2, XY -
Table 1 is triggered to transition into Idle State.

• Transition conditions:

1. If the panel is positioned correctly and it is not Handover Position 2,
transition into Coupled Patch State.

2. If the panel is positioned correctly and it is Handover Position 2, tran-
sition into Coupled Exit State.

XY-Table 2, Coupled Patch State Both xy-tables are switched off and the
patching action is executed.

• Entry actions:

1. Switch off the real-time controllers of both xy-tables.

2. Activate the patching tool.

• State actions: If the patching action is finished, mark the respective patch
position in the patch list of the panel data set.

• Transition conditions: If the patching action is finished, transition into
Coupled Position State.

XY-Table 2, Coupled Exit State Wait until XY -Table 1 has left the work-
space of XY -Table 2.

• Entry actions: None.

• State actions:
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1. Hold Handover Position 2, do not move.

2. If XY -Table 1 is lowered, Handover Position 2 is marked.

• Transition conditions: If XY -Table 1 is lowered, XY -Table 2 transitions
into Position State.

XY-Table 2, Position State XY -Table 2 positions the panel according to
the position yielded by Camera 2.

• Entry actions:

1. If the real-time controllers are switched off, reset them and switch
them on.

2. Reset the longitudinal position of XY -Table 2 to the position yielded
by Camera 2.

3. Determine next position to approach from the panel data set.

• State actions: Position the panel.

• Transition conditions:

1. If the panel is positioned correctly and it is not the Move-Out Position,
transition into Patch State.

2. If the panel is positioned correctly and it is the Move-Out Position and
Light Barrier 21 is not interrupted, transition into Move-Out State.

XY-Table 2, Patch State Equivalent to XY -Table 1, Patch State.

XY-Table 2, Move-Out State The panel which has just been processed is
moved out to Conveyor 2.

• Entry actions: Send the data set of the processed panel back to the wood
knowledge repository.

• State actions:

1. Lower XY -Table 2.

2. If XY -Table 2 is lowered, the rubber belts and Conveyor 2 move the
panel forward. The rubber belts are velocity controlled.

3. If Light Barrier 21 and Light Barrier 22 and Light Barrier 23 are not
interrupted, the rubber belts stop.

• Transition conditions: If Light Barrier 21 and Light Barrier 22 and Light
Barrier 23 are not interrupted, transition into Idle State.
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This section shall be concluded with two important remarks regarding the
state-machines. First, the real-time controllers are switched off while in Patch
State. This is possible because the xy-tables do not (and are not supposed to)
move in this state. It is to make sure, they do not interfere with the patching
process. When switching them back on again, they require a reset.

Second, a critical phase of the process logic control clearly is entering the
Coupled State. It is executed as follows: XY -Table 1, Position State triggers
the transition of XY -Table 2 from Idle into Coupled Enter State. Then, after
XY -Table 2 engaged its clamping mechanism, XY -Table 2 transitions into Cou-
pled Position state and at the same time triggers the transition of XY -Table 1
into Coupled State. This procedure is called handshake, as both xy-tables have
to consent to this transition. Leaving Coupled State follows a similar pattern.
In XY -Table 2, Coupled Position State, if the position to approach is Handover
Position 2 and the panel is positioned accurately, XY -Table 1 is triggered to
transition into Idle State. At the same time, XY -Table 2 transitions into Cou-
pled Exit State and waits until XY -Table 1 is lowered. Only then, XY -Table 2
transitions into Position State.

The process logic control is implemented in C++ according to design pat-
terns for state-machines presented in [28].

5.2 Simulation

In this section, the process logic control is applied to a simulation model of the
prototype patching plant. This model consists of the patching robot itself as
well as of a preceding and a subsequent conveyor used to feed in and move out
the panels. This implies that the (unprocessed) panels already went through the
defect scanner and their data is already saved in the wood knowledge repository,
in particular the panel dimensions and their patch lists are already known. Before
simulation results are presented, a quick overview of the dynamical model of the
patching robot is given.

5.2.1 Mathematical model of the patching robot

The velocity-controlled conveyors in front and behind the patching robot are
described by their maximum velocity vγ and a rise time Tγ from zero to maximum
velocity. The patching robot consists of a patching tool and two xy-tables. Since
the patching tool is decoupled from the positioning process and it is already
operational and working reliably, it is merely described by the time delay Tp, i.e.
the time it takes to finish one patching action. The xy-tables are lowerable. Their
transition between the low and the high position is also modeled by a time delay
Tz. Engaging as well as releasing the clamping mechanism takes Tc seconds. It
remains to derive the equations of motion of the xy-tables and the panel in the
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xy-plane. To this end, Figure 2.2 should be recalled.
The state vector of an xy-table is given by zr,i =

[
ϕr,i yr,i ϕ̇r,i ẏr,i

]T
,

where ϕr,i is the roller angle of its rubber belt and yr,i is the lateral position of
the slide of the xy-table. The index i ∈ {1, 2} stands for XY -Table 1 and XY -
Table 2, respectively. Assuming viscous bearing friction, the equations of motion
read as,

[
ϕ̈r,i
ÿr,i

]

=

[
J−1
r,i (Mr,i − drϕ,iϕ̇r,i − rr,iFpx,i,j)
m−1
r,i (Fr,i − dry,iẏr,i − Fpy,i,j)

]

(5.1)

with rr,i, Jr,i, mr,i, drϕ,i and dry,i denoting the effective radius of the sprockets
driving the rubber belts, the total inertia in longitudinal direction, the total mov-
ing mass in lateral direction and the viscous friction parameters in longitudinal
and lateral direction, respectively. The actuator inputs are the torque Mr,i of
the synchronous servo motor and the force Fr,i of the synchronous linear motor.
The force applied by XY -Table i ∈ {1, 2} to Panel j ∈ {1, 2} is denoted by
[
Fpx,i,j Fpy,i,j

]T
. In the same manner, the equations of motion for the panel

take the form
[
ẍp,j
ÿp,j

]

=

[
m−1
p,j (Fpx,1,j + Fpx,2,j)

m−1
p,j (Fpy,1,j + Fpy,2,j)

]

, (5.2)

where mp,j is the mass of the panel j. The state vector of Panel j is given by
zp,j =

[
xp,j yp,j ẋp,j ẏp,j

]T
.

Formally, the xy-tables and their respective panels are separate dynamical
systems, each with its own inert mass and position. They are only connected
via friction forces. Thus, the physically correct way to describe the interaction
between these dynamical systems would be to establish an appropriate stick-slip
model, whose parameters are not known and generally are prone to large varia-
tions, see Sections 2.2 and 4.2. However, the clamping mechanism of the rubber
belts ensures high friction forces. Consequently, a stick-slip model between rub-
ber belt and panel would only add unnecessary complexity to the mathematical
model. Therefore, a simpler description is favorable. For this, the connection5

between panel and robot is assumed to be fixed, i.e.
[
xp,j
yp,j

]

=

[
rr,iϕr,i
yr,i

]

+

[
ǫx,i,j
ǫy,i,j

]

. (5.3)

All the slip effects are summarized in an additive, two times continuously differ-
entiable disturbance

[
ǫx,i,j ǫy,i,j

]T ∈ [C2(t)]2 between XY -Table i and Panel j.
In lateral direction, the panels are guided almost perfectly, i.e. ǫy,i,j = 0. Still it
is kept in order to maintain generality.

5Note that in this model, the dynamics of the motor is neglected and a direct torque or force
input is assumed. Therefore, also the transmission ratio of the gearbox ix is not considered,
i.e. ix = 1.
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Choosing (5.3), the model exhibits a switching behavior which depends on
the longitudinal panel position. Three modes have to be distinguished. First,
the xy-table is empty. Then, naturally the force acting on the panel disappears.
Inserting

[
Fpx,i,j Fpy,i,j

]T
= 0 into (5.1) yields the dynamics for the empty xy-

table.
Second, both xy-tables are coupled via one moving panel. Solving (5.3)

for
[
ϕr,i yr,i

]T
and inserting into (5.1) yields the forces acting on the panel as

functions of the panel coordinates, the actuator inputs and the disturbances,
[
Fpx,i,j(xp,j, Mr,i, ǫx,i,j) Fpy,i,j(yp,j, Fr,i, ǫy,i,j)

]T
. Inserting again into (5.2), the

panel dynamics read as

[
ẍp,j
ÿp,j

]

=

[

m̄−1
px,j

(
Mr,1

rr,1
+

Mr,2

rr,2
−
(
drϕ,1

r2r,1
+

drϕ,2

r2r,2

)

ẋp,j + ǭx,j

)

m̄−1
py,j (Fr,1 + Fr,2 − (dry,1 + dry,2) ẏp,j + ǭy,j)

]

(5.4a)

with

m̄px,j = mp,j +
Jr,1
r2r,1

+
Jr,2
r2r,2

, (5.4b)

m̄py,j = mp,j +mr,1 +mr,2, (5.4c)

ǭx,j =
drϕ,1
r2r,1

ǫ̇x,1,j +
drϕ,2
r2r,2

ǫ̇x,2,j +
Jr,1
r2r,1

ǫ̈x,1,j +
Jr,2
r2r,2

ǫ̈x,2,j, (5.4d)

ǭy,j = dry,1ǫ̇y,1,j + dry,2ǫ̇y,2,j +mr,1ǫ̈y,1,j +mr,2ǫ̈y,2,j . (5.4e)

The current states of the xy-tables are computed by solving (5.3) for the robot
coordinates.

Third, an xy-table moves a panel alone. The corresponding equations of mo-
tion are easily obtained by neglecting the terms of the respectively other patching
robot in (5.4).

This simple mathematical model is used for the simulation of the process
logic control. The parameters of this model are derived from a CAD design of the
manufacturer Springer AG. They are given in Chapter Symbols and Parameters.
The real-time controllers are implemented as described in Section 4.1. Details
are omitted for brevity. This simulation model is mainly used for verification of
the process logic control.

5.2.2 Results and analysis

Figure 5.3 shows the way of three panels through the production line. Only the
longitudinal motion x is shown, since the longitudinal position of the panels drives
the state-machine. The origin of the coordinate system is placed at the center of
the drill of the patching tool, as described in Section 2.4. The black dash-dotted
lines indicate the position of the different machines, i.e. the patching tool tool,
the xy-tables xyTi and the conveyors cnvi, i ∈ {1, 2}. In between the xy-tables
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XY -Table 1 XY -Table 2
0 Idle 0 Idle
1 Feed-In 1 Coupled Enter
2 Position 2 Coupled Position
3 Patch 3 Coupled Patch
4 Coupled 4 Coupled Exit

5 Position
6 Patch
7 Move-Out

Table 5.1: Numbering of the states as used in Figure 5.4. The Initial State is not
considered in the simulation model.

and the patching tool a small gap of 5cm is explicitly considered. At time t = 0
three panels are at Conveyor 1. The solid lines represent their front end xp,j, the
dashed-dotted lines xp,j − Lj , j ∈ {1, 2, 3} their rear end.

The position tracking cameras have a rather narrow field of view in terms
of x-range. The cameras cami, i ∈ {1, 2} track the panels as long as they are
partly in the x-range of [−0.350, −0.175] and [0.175, 0.350], respectively. The
gap [−0.175, 0.175] in between the camera coverage is caused by the patching
tool. However, it is only 0.35m wide, so that even the shortest panel (of 1m
length) is permanently tracked by at least one of the cameras during positioning.
The vertical lines of the camera signals, as marked by tc1s, tc1e, tc2s and tc2e,
indicate the time intervals in which the cameras track the panel position. They
are clearly overlapping. Take, for example, Panel 1. Its front end xp,1 enters
the field of view of Camera 1 at tc1s, i.e. xp,1 ≥ −0.350m. From then on, its
position is tracked until its rear end xp,1 − L1 leaves the field of view at tc1e, i.e.
xp,1 − L1 ≥ −0.175m. Camera 2 tracks xp,1 in the time interval [tc2s, tc2e]. The
intervals [tc1s, tc1e] and [tc2s, tc2e] overlap.

Whenever the panels come to a halt at the xy-tables, it happens for one
of the following five reasons: First, because of the Feed-In Procedure 1 , second,
because of the transition from XY -Table 1 positioning independently into cou-
pled positioning 2 , third, because of the transition from coupled positioning into
XY -Table 2 positioning independently 3 , fourth, because of the Move-Out Pro-
cedure 4 and, fifth, because of patching, which are all the remaining positions
not marked.

Figure 5.4 lists the essential signals of the process logic control. The signals
st1 and −st2 show the state transitions of XY -Table 1 and XY -Table 2 according
to Table 5.1. The minus indicates that the state of XY -Table 2 is plotted on the
negative y-axis; the same holds true for the signals −elv2 and −clp2.



5.2. Simulation 75

0 10 20 30 40 50 60
−3

−2

−1

0

1

2

3

 

 

t in s

x
in
m

tool

xyT1

xyT2

cnv1

cnv2

xp,1
xp,2
xp,3
cam1

cam2

1

2

3

4

1

2

3

4

1

2

3

4

tc1s tc1e

tc2s tc2e

Figure 5.3: Three panels on their way through the production line. Panel 1,2,3 are
of length 1m, 3m and 2.5m, respectively. Panel 1 requires zero patches, Panel 2
requires four at xp,2 = {0.10, 0.80, 0.50, 2.95} and Panel 3 also requires four at
xp,3 = {0.15, 1.50, 1.00, 1.80}. Abbreviations: tool ... patching tool, xyT1 ...
XY -Table 1, cnv1 ... Conveyor 1, xp,1 ... front end of Panel 1, cam1 ... Position
Tracking Camera 1.
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Figure 5.4: Signals of the process logic control. Abbreviations: st1 ... state of
xyT1, elv1 ... xyT1 is elevated, clp1 ... clamping mechanism of xyT1 is engaged,
trg ... patching tool triggered, prg ... progress of the patching action, lb12 ...
Light Barrier 2 of xyT1, id1 ... panel assigned to xyT1.



5.2. Simulation 77

The signals elvi, i ∈ {1, 2} and clpi show if the xy-tables are elevated and if
the clamping mechanism of the rubber belts is engaged6. The signal trg shows
when the patching tool is triggered and prg shows the progress of the patching
action. The signals lbk, k ∈ {11, 12, 13, 21, 22, 23} show if the light barriers are
interrupted. They are numbered according to Figure 2.2. The signals idi show
which panel is currently assigned to XY -Table i. Note that the high level of the
logical signals, i.e. elvi, clpi, lbk, are scaled to avoid overlapping.

With the help of Figure 5.3 and 5.4, the process logic control shall be
explained exemplarily. To begin with, it is described how Panel 1 is moved from
one side of the patching robot to the other. It exhibits zero defects, so the
focus is on Feed-In, the transitions from independent into coupled positioning
and Move-Out.

In Idle State both xy-tables have their clamping mechanism released, they
are lowered and in Feed-In or Move-Out Position, respectively. Panel 1 ap-
proaches XY -Table 1 from the Feed-In Conveyor. As soon as it interrupts Light
Barrier 11, the state-machine of XY -Table 1 transitions into Feed-In State. On
entering this state, the respective panel data is requested from the wood knowl-
edge repository and assigned to XY -Table 1, see id1. The clamping mechanism is
engaged, which takes Tc seconds, as can be inferred from the time delay between
st1 = 1 and clp1 = 1. During this time, XY -Table 1 adjusts to the Feed-In Veloc-
ity of Conveyor 1. In Feed-In State, the rubber belts are velocity-controlled, since
the cameras do not track the panel position yet and the exact position is irrele-
vant anyway. The panel is moved forward until it reaches the end of XY -Table 1,
i.e. Light Barrier 13 is interrupted. Then, XY -Table 1 is ready to be elevated.
However, first, XY -Table 2 has to transition into either Idle or Move-Out State.
This indicates that processing of the panel at XY -Table 2 is finished and, conse-
quently, it is not going to occupy the patching tool in the future. Elevation takes
Tz seconds, as can be inferred from the time delay between lb13 = 1 and elv1 = 1.

As soon asXY -Table 1 is elevated, it transitions into Position State. Panel 1
does not require any patches and thus the next position to approach is Handover
Position 1 at x = 0.2m. Therefore, after positioning the panel accurately, XY -
Table 1 just waits, since there is no transition condition for this case in XY -
Table 1, Position State. If XY -Table 2 is idle, which it is, Handover Position 1
is sent to its state-machine and it is triggered to switch to Coupled Enter State.

In Coupled Enter State, XY -Table 2 moves to Handover Position 1, ele-
vates itself and clamps the panel. As a safety precaution, the positioning of both
xy-tables is checked. If the clamping mechanism is engaged, the panel data set
of XY -Table 1 is assigned to XY -Table 2 as well. Also, XY -Table 1 is trig-
gered to transition into Coupled State and XY -Table 2 transitions into Coupled
Position State. In XY -Table 1, Coupled State nothing is done. All the compu-

6As already mentioned in Section 5.2.1, the actions of elevating/lowering and engaging/re-
leasing the clamping mechanism take Tz and Tc seconds, respectively.
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tations for coupled positioning and patching are carried out in the state-machine
of XY -Table 2. On entering Coupled Position State, first, the longitudinal belt
positions of both xy-tables are reset to the position yielded by Camera 1. For
coupled positioning, the master-slave concept is employed. Both, the reset of the
belt position and the master-slave concept are discussed in Section 4.1. The next
position is Handover Position 2 at xho2 = 0.8m. After positioning the panel accu-
rately, XY -Table 2 switches to Coupled Exit State and XY -Table 1 is triggered
to switch to Idle State.

As soon as XY -Table 1 enters Idle State, the panel data is deleted from the
state-machine. XY -Table 1 releases the clamping mechanism, lowers itself and
moves to the Feed-In Position, ready to accept Panel 2.

In Coupled Exit State, XY -Table 2 does nothing, but wait untilXY -Table 1
is lowered. Then, XY -Table 2 switches to Position State, where the Move-Out
Position of Panel 1 is approached. As soon as Panel 1 left the workspace of
the patching tool, i.e. Light Barrier 21 is not interrupted anymore, XY -Table 2
switches to Move-Out State.

In Move-Out State, XY -Table 2 lowers itself and the rubber belt adjusts
to the Move-Out Velocity of the conveyor. The panel is moved forward until
no light barrier of XY -Table 2 is interrupted anymore. Conveyor 2 is activated
permanently. However, it only moves the panel, if XY -Table 2 is lowered and
the panel actually contacts the conveyor. Then, XY -Table 2 transitions into Idle
State and awaits the next Handover Position 1 from the subsequent Panel 2.

After discussing the positioning process, the integration of the patching
process into the positioning process is explained with the help of Panel 2. It re-
quires four patches at xp,2 = {0.10, 0.80, 0.50, 2.95}. Considering the handover
positions at xho1 = 0.20m and xho2 = 2.80m, XY -Table 1 approaches Patch Po-
sition 1. Positions 2 and 3 are processed in the Coupled States, which leaves
Position 4 to XY -Table 2. Processing a patch location consists of two steps,
first, positioning the panel and, second, the patching action itself. Positioning is
already discussed above. In XY -Table 1, Position State, XY -Table 2, Coupled
Position State and XY -Table 2, Position State, the transition conditions distin-
guish between Patch Positions, Handover Position 1, 2 and Move-Out Position.
If it is a Patch Position, the state-machines transition into their respective Patch
States, i.e. XY -Table 1, Patch State, XY -Table 2, Coupled Patch State and
XY -Table 2, Patch State. The Patch State shall be explained exemplarily for
XY -Table 1, however, it works in the same way for the other two. As soon as
the first patch position x = 0.10m is approached correctly, XY -Table 1 transi-
tions from Position to Patch State. For safety reasons, the real-time controllers
of XY -Table 1 are switched off before the patching tool is activated, see trg. The
patching process takes Tp seconds, as can be inferred from prg. After successful
completion, XY -Table 1 switches back to Position State. When returning to
Position State, the real-time controllers are reset to the current panel position,
before they are turned back on again, see Section 5.1.



CHAPTER 6

Measurement results of the patching robot

In Chapters 4 and 5, the control strategies for the patching robot are described.
This chapter documents their feasibility in an industrial environment. During
an extensive test phase1, several hundred panels were patched successfully, while
making final adjustments to both, the design of the patching robot and its control
algorithms. Measurement data collected during these tests are presented.

To begin with, key data of the real-time system, the position sensors and
the actuators of the patching robot shall be listed. The velocity controllers of
the electrical drives and their underlying current controllers, which cannot be
accessed, are provided by the manufacturer SEW Eurodrive and directly imple-
mented at the frequency converters. This enables a sampling time of Ts = 1ms for
the velocity and Tsi = 0.125ms for the current controllers. The position control
algorithms and the process logic control are implemented in C++ at an industrial
computer. The computer communicates with the patching plant via Beckhoff
field bus hardware. TwinCAT V3 real-time software grants the Windows-based
computer real-time capability with a sampling time of Ts = 1ms.

Position measurement is accomplished using two sources. First, taking into
account the transmission ratio ix = 3 of the gearbox and the effective radius
rr = 0.036m of the sprockets driving the rubber belts, the incremental encoders
of the synchronous servo motors measure the longitudinal position of the rubber
belts xr with a resolution of ρxr = (4096ix)/(2rrπ) = 5.4e4m−1. In lateral di-
rection yr, the absolute position encoders of the linear motors have a resolution
of ρyr = 1.0e5m−1. Second, the absolute longitudinal position of the panel xp
shall be visually tracked by a smart camera at each xy-table. However, in or-
der to decouple the development of the real-time control from the development
of the algorithm for visual position tracking, two laser interferometers shall be
used instead. As soon as the panel to be tracked interrupts Light Barrier 13 (of

1A video of the entire patching process is available at
www.acin.tuwien.ac.at/fileadmin/cds/videos/hofmairBoeckKugi2015_woodPatchingRobot.wmv
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XY -Table 1) for the first time, the position of the interferometer is reset to the
respective position, similar to Section 2.4. It tracks the panel with an accuracy
of ρxp = 1.0e4m−1.

The synchronous servo motor of the rubber belts provides a nominal torque
of 2.9Nm. Considering the transmission ratio of the gearbox ix = 3, a torque of
Mn = 8.7Nm is available at the sprocket of the rubber belt. In lateral direction,
the slide of an xy-table can be moved with a nominal force of Fn = 560N.

In order to maximize the throughput, the trajectories shall optimally exploit
the potential of the actuators. The following parameters for the Bang-Bang
Trajectory Generator, presented in Section 3.3.2, are chosen. In longitudinal
direction, the maximum velocity2 is vMx = 1m/s. Given an effective radius
rr = 0.036m of the sprockets, this yields ϕ̇M = 27.778s−1. Utilizing 70% of the
nominal torque for acceleration yields a maximum angular acceleration of

ϕ̈M =
0.7Mn

Jr +mpr2r
= 219.380s−2, (6.1)

where Jr = 0.015kgm2 is the moment of inertia of the entire drive shaft and
mp = 10kg is the mass of an average panel. Assuming a rise time for the actuator
torque of Tϕ = 20ms provides an estimate of the maximum jerk

...
ϕM = 10969s−3.

Similar considerations yield the parameters of the trajectory generator in lateral
direction, ẏM = 0.500m/s, ÿM = 0.7Fn/(mr + mp) = 2.896m/s2 and

...
yM =

144.800m/s3, where the mass of the slide of an xy-table, i.e. the moving mass in
lateral direction, is mr = 125.375kg. All this key data of the plant is summarized
in Chapter Symbols and Parameters.

In the following, four experiments are conducted at the prototype plant.
First, friction in the drivetrain of the rubber belts is documented. Second, the
master-slave control is analyzed. Third, measurement results of the patching
process of an entire panel demonstrate the feasibility of the real-time as well as
the process logic control. Fourth, the functionality of the Trajectory Updating
Algorithm is assessed based on these measurements.

6.1 Friction in the drivetrain of the rubber belts

In order to establish the challenging friction conditions in the drivetrain of the
rubber belts, Figure 6.1 exemplarily shows a friction curve that was recorded
moving a 3m-panel in longitudinal direction. The torque Mr,1 converted to the
output shaft of the drivetrain is plotted versus the stationary translational veloc-
ity ẋr,1 = rr ϕ̇r,1 of the rubber belts. The red lines indicate the nominal torque
of the synchronous servo motor.

2In this chapter, in order to avoid unnecessary indices, the following notation is used, vx =
ẋ = rrϕ̇r, vy = ẏ, in particular, vMx = ẋM = rrϕ̇M and vty = ẏt, etc.
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Figure 6.1: Friction characteristic of longitudinal motion of XY -Table 1 moving
a 3m-panel.

Static friction values are in the range of 40% of the nominal torque, but
might go up to 60% in less common cases. At the envisaged positioning velocity
of 1m/s the actuator already utilizes 100% of its nominal torque.

6.2 Coupled positioning

Another challenge for the real-time control is coupled positioning by means of a
master-slave concept. The following measurement results demonstrate its feasi-
bility. Figure 6.2 shows the longitudinal motion of a positioning action in Coupled
State. It starts at xr,1 = 1.1m and leads to xr,1 = 1.6m. Since this experiment
is about synchronization behavior of the xy-tables (and not about panel posi-
tioning), xp,1 = xr,1 is assumed and merely the robot is positioned. The desired
and the actual trajectory of XY -Table 1 are denoted by xt, xr,1 and ẋt, ẋr,1 for
position and velocity, respectively. Also, the applied motor torques Mr,1, Mr,2

and the difference between the actual positions xr,1−xr,2 and velocities ẋr,1− ẋr,2
of the xy-tables are depicted.

As described in Section 4.1, during coupled positioning, XY -Table 1 is the
master andXY -Table 2 the slave. In longitudinal direction, the master is position
controlled. The slave merely follows the velocity of the master, ẋt,2−eẋ,2 = ẋt,1−
eẋ,1. Thus, ideally, they move at exactly the same velocity, i.e. ẋr,1(t)−ẋr,2(t) ≡ 0.
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Figure 6.2: Coupled positioning, longitudinal direction.

In reality, small high-frequency oscillations of the velocity signal ẋr,1 also cause
slight deviations in the velocity signals ẋr,1−ẋr,2 of the two xy-tables. On average,
they are insignificant. Consequently, also the difference in their positions xr,1−xr,2
is virtually zero over the entire period.

The same holds true for the torque signals; ideally they are identical. In
reality, since the friction properties are not identical, there are also deviations
between the torque signals. However, their sign is always the same, meaning the
rubber belts cooperate in accelerating the panel. They do not work against each
other. Furthermore, one can see that during the phase of constant velocity ẋt =
1m/s, i.e. between t = 0.5s to t = 0.8s, the actuator utilization is approximately
9Nm or 100% for both xy-tables, compare Figure 6.1.

Figure 6.3 shows the lateral motion of this positioning action in coupled
mode, starting at yr,1 = 0.05m leading to yr,1 = 0.25m. Again, the desired and
the actual trajectory ofXY -Table 1 are denoted by yt, yr,1 and ẏt, ẏr,1 for position
and velocity, respectively. Additionally, the applied motor forces Fr,1, Fr,2 and
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Figure 6.3: Coupled positioning, lateral direction. Note that in this experiment
the trajectories are planned with ẏM = 0.400m/s, ÿM = 0.4Fn/(mr + mp) =
1.655m/s2 and

...
yM = 82.750m/s3.

the difference between the actual positions yr,1 − yr,2 and velocities ẏr,1 − ẏr,2 of
the xy-tables are depicted.

Laterally, both xy-tables move independently during coupled positioning
because the coupling is less firm in this direction. Also, friction forces in the
rails of the slides are much smaller than in the drivetrain of the rubber belts, so
trajectory tracking is very accurate. Thus, the slides move in an almost identical
fashion independently of each other. A lag error of approximately 0.05s in track-
ing the velocity trajectory can be observed for both xy-tables. Apart from that,
the velocity difference ẏr,1 − ẏr,2 exhibits amplitudes of approximately 0.01ẏM .
On average, they are almost zero, therefore, negligible. There is a small initial
position difference of approximately yr,1 − yr,2 = 0.5mm. It vanishes at the end
of the positioning action.

However, this small difference already causes a counter action of the actu-
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ator force Fr,1 of XY -Table 1. In general, there is a noticeable difference in the
amplitudes of the force signals Fr,1 and Fr,2. Still, their sign is always identical
and so the slides always cooperate in accelerating the panel.

After approximately 1.4s the panel is positioned correctly. After further
0.5s settling time, controllers are switched off and the patching action is trig-
gered. Thus, it is guaranteed that the real-time controllers of the xy-tables do
not interfere with the patching action. Considering the positioning accuracy of
1mm and the high friction forces, the settling time of the controllers of approxi-
mately 0.5s is deemed necessary.

6.3 Positioning performance and actuator utiliza-

tion

To demonstrate the efficiency of the proposed control concept, this section ana-
lyzes the measurement results of the patching process of the 2m-panel depicted in
Figure 3.9. Apart from the twelve patch positions, two handover positions have
to be approached, one for entering Coupled State and one for leaving it again,
see Section 5.1.

Figure 6.4 presents the measurement data of longitudinal positioning. The
panel position xp,1 at XY -Table 1 as measured by its laser interferometer is
compared to the position trajectory xt. Also, the translational velocity of the
rubber belts ẋr,1 is compared to the velocity trajectory ẋt. Finally, the actuator
torque Mr,1 is given. The horizontal red lines indicate the nominal torque Mn.
Subplots zoom in on three positioning actions. The scalings of the axis of these
subplots are given in the respective units.

Apart from positioning accuracy, which will be discussed in Section 6.4, the
first thing to notice is the duration of the positioning actions. On average, they
take no longer than a few tenths of a second. The major part of the process-
ing time is consumed by the patching tool, but also by lowering/elevating the
xy-tables and releasing/engaging the clamping mechanism, see Section 5.1. This
can be inferred from the long rest periods. Particularly challenging are small
traveling distances in the range of centimeters or even less. Trajectory times of
less than 0.1s can be the result. This is a very short time for a mechanical system
of this size, especially in regard of the high friction forces. Trajectory tracking
is less accurate in these cases. However, the stationary positioning accuracy is
unaffected by trajectory length, limt→∞ |xr,i(t)− xt(t)| ≤ 1mm, i ∈ {1, 2}. Gen-
erally speaking, positioning speed is satisfactory for the whole range of traveling
distances from 0.001m to 3m for both, independent and coupled positioning.
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Figure 6.4: Time evolutions of processing the 2m-panel depicted in Figure 3.9,
x-direction. The measurement data of XY -Table 1 is presented. Similar results
are achieved for XY -Table 2.
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Overall, tracking of the velocity trajectory is quite good. However, small
ripples of the velocity signal cannot be avoided. This effect becomes more evolved
at low speeds.

Consequently, high amplitudes around an already high mean value of the
torque signal are observed, even at constant velocities. At constant maximum
velocity vxM , the actuator utilization oscillates between 50% to 150%. During
acceleration, the nominal torque is exceeded by a factor of 2. This is possible
because the relative duty cycle is no higher than 33%. Positioning actions rarely
take longer than one second, i.e. max(T̄x, T̄y) < 1s, whereas a patching action
takes Tp = 2s. During patching, the controllers are switched off and the actuators
have time to cool off. Using the motors to their full potential is necessary to
maximize the throughput of the plant.

Moreover, two important details require mention. First, during the transi-
tion into Coupled State, at approximately t = 10s, the real-time controllers are
not switched off. During this time, the motor torque is at almost Mr,1 = 5Nm =
0.57Mn while ẋr,1 = 0m/s, which again illustrates the friction in the drivetrain
of the rubber belts.

Second, the instantaneous change in the longitudinal position xp of the
panel at the end of the measurement is a result of the process logic control. As
soon as the panel reaches Handover Position 2 at xp = 1.642m, at approximately
t = 63s, it is handed over to XY -Table 2. Thus, the panel’s position at XY -
Table 1 is not defined any longer and the position of the rubber belt xr,1 and the
laser interferometer xp,1 of XY -Table 1 are reset to zero.

Figure 6.5 presents the measurement data of lateral positioning. Position
yr,1 and velocity ẏr,1 of the slide are compared to their respective trajectory yt and
ẏt. Also, the actuator force Fr,1 is given with the horizontal red lines indicating
the nominal force Fn.

Positioning performance in lateral direction is also very good. A stationary
positioning accuracy of limt→∞ |yr,i(t) − yt(t)| ≤ 1mm, i ∈ {1, 2} is achieved
within a positioning time of a few tenths of a second and with a maximum
overshoot of 2mm over the nominal target value, i.e. 1mm outside the required
positioning accuracy. Tracking of the velocity trajectory is characterized by a
lag error of approximately 50ms, which is already observed in Section 6.2. For
long traveling distances, this does not play a role. However, for short distances,
this error can make up 30% of the trajectory time and thus impairs the tracking
behavior. This becomes apparent when comparing the four zoomed trajectories.
The two long trajectories, that include a phase of constant maximum velocity,
show very good tracking of the velocity profile, while the tracking performance
visibly goes down as the traveling distance is reduced. In this case, the slide of
the xy-table is still accelerating, while the trajectory already reduces the velocity.
The maximum force of the linear motors is around 1.5Fn.
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6.4 Trajectory Updating

In the previous section, measurement data is analyzed without covering the most
critical issue, longitudinal positioning accuracy. It is directly related to the Tra-
jectory Updating Strategy presented in Section 4.2.2, see also [47].

The final patching robot design is equipped with two smart cameras, one
for each xy-table. They are used to track the longitudinal panel position because
slippage occurs between the rubber belts and the panel. For reasons mentioned
above, at the prototype patching robot, the cameras are replaced by laser in-
terferometers. They track the absolute panel position continuously, i.e. at a
sampling time of Ts = 1ms. In order to emulate the computationally expensive
visual position tracking algorithm, the signal of the interferometer is only ac-
cessed at a sampling time of Tsv = 200ms and with a time delay of Tdv = 100ms,
meaning the envisaged camera takes a picture every 200ms, which takes 100ms
to process. Considering that only one-dimensional motion needs to be tracked
and the algorithm tracks a known object in a known scene, this is a very conser-
vative estimate. This way, the laser interferometers can be replaced by the visual
position tracking algorithm without modifications or loss of performance. In the
following, two experiments are presented.
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Figure 6.6: Experiment 1: Position trajectories, overview.

In the first experiment, the clamping pressure is reduced to half of its nom-
inal value in order to induce high slip between the panel and the rubber belts.
Positioning a 3m-panel of 20kg over a distance of 0.9m is depicted in Figure 6.6.
As one can see, there are slight deviations between robot position xr,1 and panel
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Figure 6.7: Experiment 1: Position trajectories, detail of Figure 6.6. The solid
black lines mark the target region.

position xp,1. Typically, the panel lags behind during the acceleration phase and
there is a small overshoot of the panel position during the deceleration phase.
The overall trajectory xt is composed of seven trajectories, one point-to-point
trajectory xt,0 and six updates of the trajectory xt,i, i = {1, . . . , 6}. The red
squares indicate the times tu,i of the respective update.

Figure 6.7 depicts the trajectory updates xt,5 and xt,6 in detail. The start
of the fifth trajectory tu,5 is depicted in the zoom of Figure 6.6 and te,5 marks
the end of the trajectory. Due to the aggressive deceleration phase, the panel
slips forward even more and trajectory xt,5 needs to be corrected a final time.
Trajectory xt,6 stops 4mm short of the nominal desired end value because the
panel is ahead of the rubber belts. Note that in this simplified experiment,
the current panel position is used to compute the position deviation, meaning
Tdv = 0s. The trajectory updates xt,i are performed using the current offset
ex,1(tu,i − Tdv)|Tdv=0 = (xr,1(tu,i − Tdv)− xp,1(tu,i − Tdv))|Tdv=0 between robot and
panel position, see, e.g., i = 6.

The second experiment corresponds to the exact production scenario, i.e.
100% clamping pressure, the most common 2m-panel with the patch locations
and the robot path according to Figure 3.9 and Figure 6.4, and a time delay Tdv =
0.1s. Figure 6.8 shows the final approach of the positioning action starting at
x0 = 0.434m and leading to xd = 0.634m. The absolute panel position is acquired
at time instants tu,i − Tdv, i = {1, 2}. After Tdv, i.e. at tu,i, this information is
used to compute new trajectories leading to the respective modified end points
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te,i, see ex,1(tu,2 − Tdv). The first absolute position measurement is acquired
during the acceleration phase, the panel is behind the rubber belts and, therefore,
the trajectory is 1mm longer. The second measurement is acquired during the
deceleration phase, where the panel is ahead of the rubber belts. Consequently,
the patching robot moves 2mm backwards to drive the panel into the desired
region. Only after the third absolute position measurement is received at tu,3,
the controller actually realizes that the panel is positioned correctly and the
positioning action is finished.



CHAPTER 7

Conclusions and Outlook

Up to now, patching of wood defects involves a lot of manual labor. It is the most
expensive production step in inline timber manufacturing. Yet, it is unavoidable,
since wood, as a natural material, always exhibits imperfections and defects that
either undermine its structural integrity or appearance. The need for automation
is apparent. This work encompasses design, process optimization and control of
a patching plant for wooden shuttering panels.

To begin with, the patching robot and, subsequently, the patching plant
are designed based on an analysis of the raw material. The state of the art for
wood patching in Europe is a semi-automatic patching tool that automates the
patching process itself. It eliminates the defect by drilling the respective area and,
then, inserting a unisize wooden patch to seal the hole. This tool is integrated
in the patching robot. Positioning of the panel underneath the tool, up to now
performed by a human, is accomplished by two xy-machine-tables, one to the
left and one to the right of the tool, see Figure 2.2. The panels are clamped by
the rubber belts of the xy-tables that move them in longitudinal direction. In
lateral direction, the entire slide of the xy-tables is moved. For the most part, the
panels are clamped and moved by both xy-tables together. This patching robot
forms the core of the patching plant. Before the panels are fed to the robot, they
go through an optical defect scanner, that describes the border of the defects by
polygons. Based on the acquired list of defects, each unique panel is processed in
a time optimal way. The algorithms for optimizing the process are executed at
an industrial computer. It holds a database of the scanned panels and forwards
the data to the patching robot.

In case of big defects, several of the circular, unisize patches might be re-
quired. Therefore, in an initial step towards the time optimal processing program,
a patch placement algorithm determines the minimum number of patches and
their arrangement to fully cover a defect. The proposed algorithm is based on

91
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hexagonally closest packing. It moves the defect polygon relatively to a hexagon
tessellation until a minimum number of covering hexagons, i.e. patch circles, is
found. Since the tessellation has a periodic pattern, the solution space of this
optimization problem is closed. By going through the closed solution space, one
is guaranteed to find the global minimum of patches. This algorithm is compu-
tationally quite expensive, however, among all optimization steps, this one has
the largest contribution to savings of both production time and wood. The wood
savings mainly result from the fact that the maximum number of patches per de-
fect is limited due to quality reasons and, therefore, finding the minimum number
of patches significantly contributes to waste reduction.

Since the defect scanner sometimes yields faulty data, i.e. several overlap-
ping defects are in one place, a sanity check algorithm preprocesses the data prior
to patch placement. An arbitrary number of overlapping defects are merged by
recursively calling the algorithm until no overlaps exist anymore. In each call
of the algorithm, a pair of overlapping polygons is removed from the defect list.
Instead, the union of these two polygons is added.

The patch placement algorithm is applied to every defect of one panel side.
This yields a list of patch locations that need to be approached in a time optimal
sequence, called robot path. The path planning problem is very similar to the
traveling salesman problem. In the context of a path planning algorithm, every
patch location is called a node that needs to be visited exactly once, while the
panel moves from one side of the patching robot to the other. Because of this
dedicated production flow and the elongated, rectangular shape of the panels, it
is easy to construct good initial guesses for the time optimal robot path, such
as the from-left-to-right path or the nearest-neighbor path. The two presented
sophisticated path planning algorithms make use of these initial guesses to speed
up computation.

The first one is an Ant Colony Algorithm, which is inspired by the foraging
behavior of ants. It is determined by pheromone trails they deposit on their
way between food and nest. The Ant Colony Algorithm mimics this behavior
by computing paths from a given start to a given end node on a fully connected
graph. Each arc of this graph is associated with its traveling cost, i.e. time,
and its pheromone level. In every iteration, each ant of a colony individually
constructs feasible paths by making random decisions that are biased by the
traveling costs and the pheromone levels. Also, it deposits pheromone on the
arcs crossed. Conversely, pheromone evaporates. Thus, after some time, quick
paths achieve high pheromone levels and the ants converge to the minimum-time
path.

The second strategy is called Local Search Receding Horizon Algorithm.
The core of this algorithm is Local Search, which is based on 3-optimality. Local
Search improves a given initial path, i.e. the from-left-to-right path or the nearest-
neighbor path, by performing 3-exchanges until no increase in solution quality can
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be achieved anymore. Since the path planning problem considers the production
flow, the Receding Horizon Concept is utilized to split the entire problem into a
series of smaller subproblems. After solving a subproblem using Local Search, the
first part of the solution is appended to the final (minimum-time) path. The rest
of the solution serves as a high-quality start solution for the next optimization
horizon. Thus, the horizon is moved forward until the entire problem is optimized.
Comparing the Ant Colony Algorithm to the Local Search Receding Horizon
Algorithm, the latter one is clearly favorable. Its computation time is shorter
and the solution quality better because it perfectly exploits the properties of the
path planning problem at hand.

After the optimal processing sequence is found, the final step of process
optimization is the computation of a two times continuously differentiable, time
optimal robot trajectory between two patch locations. Moreover, the trajectory
generator shall be able to start from an arbitrary initial velocity and acceleration
and it needs to be executable in real-time. A time optimal C2(t)-trajectory is
derived from a step-shaped jerk signal that is integrated three times. The tra-
jectory consists of seven phases during each of which either jerk, acceleration or
velocity are saturated. The jerk amplitude, which either takes its maximum or
minimum value or zero, and the length of each phase parametrize the trajectory.
The computation is done algorithmically. This offline approach, in contrast to on-
line Bang-Bang Trajectory Generators, inherently ensures the trajectories do not
exhibit overshoots or oscillations, even in a time-discrete implementation. Still,
the offline approach is executable in a fraction of a millisecond. The generation of
a time optimal C2(t)-trajectory that starts at initial velocity and acceleration zero
can be accomplished even more efficiently by merely calculating three algebraic
equations and distinguishing between three simple special cases.

The next task is the design of the real-time control of the patching robot.
It needs to support independent as well as coupled positioning, meaning syn-
chronization of the two xy-tables is required. Further challenges are high friction
in the drivetrain of the rubber belts and slip between the belts and the panels.
A cascaded control structure turns out to be useful. The PI-velocity controllers
and their underlying current controllers are implemented directly at the frequency
converters to support high sampling rates. This is necessary to deal with the high
friction forces. The high-gain P-position controllers, the trajectory generators as
well as the process logic control for the entire plant are implemented at an indus-
trial computer.

During coupled positioning, a master-slave control is employed. In longitu-
dinal direction, XY -Table 1, the master, positions the panel while XY -Table 2,
the slave, merely follows the master’s velocity. In lateral direction, the xy-tables
are controlled independently because, first, the coupling via the panel is quite
weak in this direction and, second, because friction is low and thus trajectory
tracking for both xy-tables is almost identical.
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In longitudinal direction, slip occurs between the panel and the rubber
belts. Therefore, tracking of the absolute position of the panel is required. Using
computer vision, this is only possible at a very low sampling rate and with a
time delay. Every time the panel position is refreshed, an update of the reference
trajectory is performed. To this end, the offset between panel and robot position
is computed and a new robot trajectory accounting for the detected offset is
calculated in real-time.

Based on the real-time control, a robust process logic control for the patch-
ing tool, both xy-tables and their neighboring conveyors is developed. Key issues
are that both xy-tables are able to handle their own panel without mutual in-
terference, both xy-tables are able to handle one panel together and the safe
implementation of the patching action. The process logic control is implemented
in C++ as two interacting state-machines, one for each xy-table. To test the
proposed process logic control, a simple dynamical model of the patching robot
is derived. Using this model, the patching of several panels is simulated and
analyzed in detail.

At the end of this work, the effectiveness of the proposed control strategies,
in particular of the real-time control, is documented by measurement results of the
pilot patching plant. In the first experiment, the challenging friction conditions
in the drivetrain of the rubber belts are investigated. Approximately 40 − 60%
of the nominal torque of the servo motors driving the belts are required just to
set them in motion. At stationary positioning speed, the full nominal torque
has to be utilized. In the second experiment, coupled positioning is analyzed. In
longitudinal direction, trajectory tracking is very accurate. The velocity signals of
the rubber belts exhibit small, high-frequency osciallations around the reference
trajectory. This is due to friction. The master-slave concept effectively keeps the
difference in the velocities of the xy-tables at a negligible level. More importantly,
the applied motor torques of the xy-tables always show the same sign, i.e. they
work together in moving the panel. In lateral direction, similar observations
are made, although the xy-tables are controlled independently of each other.
In the third experiment, measurement results of a real production scenario are
discussed. To sum it up, (i) an actuator utilization of up to 200% and the
time optimal trajectory generator guarantee minimum positioning times, (ii) a
positioning accuracy of one millimeter is achieved and (iii) most production time
is consumed by the patching tool. Finally, the data of the third experiment is
used to investige the effectiveness of the trajectory updating strategy. Although
the absolute panel position is only measured at a very low sampling rate and
with a high time delay, this approach ensures accurate panel positioning in the
presence of slip.

Going beyond the considered patching plant, the developed algorithms are
applicable to a wide range of industrial optimization and control problems.
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• Similar problems to patch placement arise, e.g., in coverage of wireless
communication or sensor networks.

• Different path planning or process sequence optimization tasks arise in in-
dustrial plants and logistics.

• Sophisticated feedforward control strategies and by this trajectory genera-
tors are part of most advanced real-time motion control systems.

• Trajectory updating is an efficient way of sensor data fusion applicable to
a variety of position tracking problems in mobile robotics and industrial
plants.





APPENDIX A

Alternative trajectory generators

In this appendix, two further trajectory generators shall be outlined. First, a so-
called Sine-Square Trajectory Generator that is based on the offline Bang-Bang
Trajectory Generator presented in Section 3.3 and, second, the online Bang-Bang
Trajectory Generator mentioned in Section 3.3.3 are given.

A.1 Sine-Square-Trajectory-Generator

The Sine-Square Trajectory Generator is based on the Bang-Bang Trajectory
Generator presented in Section 3.3. In comparison to (3.22), the jerk signal is
given by

jt(t) =






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2j7 sin
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2
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)

cos
(
π
2
t−T̄6
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)

T̄6 ≤ t ≤ T̄7 = T̄x

0 otherwise,

(A.1)

where

T̄i =

i∑

j=1

Tj , i ∈ {2, 3, . . . , 7}.

Integration of (A.1) yields an acceleration profile, whose transient phases P1, P3,
P5 and P7 are of shape at(t) ∼ sin2(t), hence the name. The Sine-Square Tra-
jectory Generator computes C3(t)-trajectories, see Figure A.1, while the simplicity
of the Bang-Bang Trajectory Generator is preserved. This is the main advantage
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Figure A.1: Seven phases of a Sine-Square Trajectory, maximum jerk jM =
10m/s3, maximum acceleration aM = 2m/s2, maximum velocity vM = 1.5m/s.
Compare to Figure 3.10.

of this approach; in turn, time optimality is lost. In practice, however, the
difference is rather small, since the transient phases of the acceleration profile are
typically very short for electrical drives.

Taking into account the trigonometric jerk profile (A.1), all the remaining
computations are equivalent. Thus, in the following only a brief overview is
presented. A C1-trajectory for the acceleration πa =

[
j∗1 T ∗

1

]
= At(a0, ad) follows

from

j∗1 =







−jM a0 > ad

jM a0 < ad

0 a0 = ad

(A.2)

and

T ∗

1 =

{

0 j∗1 = 0

π/2 (ad − a0)/j∗1 j∗1 6= 0.
(A.3)

The computation of a C2-trajectory for the velocity begins with the deter-
mination of the jerk sequence

[
j∗1 0 j∗3

]
. This first step is accomplished by

computing a C1-trajectory for the acceleration π̃a =
[
j̃1 T̃1

]
= At(a0, 0) and the

constant velocity at the end of it

ṽ1 = v0 + a0 T̃1 + j̃1 T̃
2
1 /π. (A.4)
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Based on ṽ1, the jerk sequence is

[j∗1 , 0, j
∗

3 ] =







[

−jM 0 jM

]

l
ṽ1 > vd

[

jM 0 −jM
]

l
ṽ1 < vd

[

j̃1 0 0
]

ṽ1 = vd.

(A.5)

Second, the maximum achieved acceleration a∗ is determined. To this end, the
unlimited maximum achieved acceleration takes the form

â = ± 1

π (j∗1 − j∗3)
√

π (j∗1 − j∗3) j∗3 (4v0j∗1 − 4vdj
∗

1 − π a20). (A.6)

Now, a∗ considers the bounds on acceleration

a∗ =







−aM â < −aM
aM â > aM

â otherwise.

(A.7)

Third, it remains to compute the time parametrization

T ∗

1 = π/2 (a∗ − a0)/j∗1 , (A.8a)

T ∗

2 = (vd − v∗3)/a∗, (A.8b)

T ∗

3 = π/2 (0− a∗)/j∗3 , (A.8c)

where

v∗3 =
π (a∗)2 j∗3 + 4v0j

∗

1j
∗

3 − π a20j∗3 − π (a∗)2 j∗1
4j∗1j

∗

3

(A.9)

is the velocity at the end of Phase P3 with T1 and T3 according to (A.8) and
T2 = 0.

The computation of the C3-trajectory for the position is performed in an
analogous fashion as the computation of the C2-trajectory for the position of the
Bang-Bang Trajectory Generator.

A.1.1 Point-to-point version

Similarly to Section 3.3.2.1, a point-to-point version of the Sine-Square Trajectory
Generator can be derived. As before, x0 = 0 and xd > 0 is assumed without loss
of generality. Also, the parametriztion of the trajectory is identical, see (3.36),
(3.37) and (3.38).
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It remains to compute the reduced parameter vector πx,p2p =
[
Tj Ta Tv

]

from

Tj = πaM/jM , (A.10a)

Ta = vM/aM − Tj/2, (A.10b)

Tv =
2xd/aM − T 2

j − 3TjTa − 2T 2
a

Tj + 2Ta
. (A.10c)

Looking at (A.10), in general, it might happen that Ta < 0 or Tv < 0 or both.
These three cases have to be distinguished similar to Algorithm 5.

In Case 1, i.e. Ta < 0, it is set to Ta = 0 and aM needs to be adjusted

aM0 =
√

2jMvM/π. (A.11)

Then, (A.10a) needs to be evaluated with the newly obtained maximum acceler-
ation aM0.

In Case 2, i.e. Tv < 0, it is set to Tv = 0 and vM needs to be adjusted

vM0 =
−πa2M +

√

π2a4M + 16j2MaMxd
4jM

. (A.12)

Then, (A.10b) needs to be evaluated with the newly obtained maximum velocity
vM0.

In Case 3, i.e. Ta < 0 and Tv < 0, both are set to Ta = Tv = 0 and both,
aM and vM , need to be adjusted

aM00 = (2xd)
1/3 (jM/π)2/3 , (A.13a)

vM00 = (xd)
2/3 (jM/(2π))1/3 . (A.13b)

Then, (A.10a) needs to be evaluated with the newly obtained maximum acceler-
ation aM00.

These extremely simple computations yield the three times continuously
differentiable point-to-point trajectory.

A.2 Discretized online Bang-Bang Trajectory

Generator

The discretized online Bang-Bang Trajectory Generator that is used for com-
parison purposes in Section 3.3.3 is presented in detail in [8, 94]. Basically, it
consists of a chain of three integrators and a sliding mode controller (SMC) driv-
ing them towards their respective reference values, see Figure A.2. In this section,
merely the formula necessary for its implementation shall be given. All signals
are discretized with k denoting the time step, i.e. (·)k = (·)(k Ts).
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SMC
∫∫∫

xd,k jt,k vt,k at,k xt,k

Figure A.2: Schematics of the time-discrete, online Bang-Bang Trajectory Gen-
erator, where k denotes the time step, i.e. (·)k = (·)(k Ts).

The integrators are implemented by means of rectangular approximation
for the acceleration

at,k = at,k−1 + Tsjt,k−1 (A.14a)

and by means of trapezoidal approximation for the velocity and the position

vt,k = vt,k−1 + Ts
at,k + at,k−1

2
, (A.14b)

xt,k = xt,k−1 + Ts
vt,k + vt,k−1

2
. (A.14c)

For the sliding mode controller,

sign(x) =







−1 x < 0

0 x = 0

1 x > 0

(A.15)

and, in particular, sδ = sign(δ) is defined. Furthermore, the errors in position,
velocity and acceleration are introduced

ex,k =
xt,k − xd,k

jM
, ev,k =

vt,k − ẋd,k
jM

, ea,k =
at,k − ẍd,k

jM
(A.16)

as well as the constraints on the velocity error

evm,k =
vm − ẋd,k

jM
, evM,k =

vM − ẋd,k
jM

(A.17)

and the acceleration error

eam,k =
am − ẍd,k

jM
, eaM,k =

aM − ẍd,k
jM

, (A.18)

all normalized to the maximum jerk jM . Note that this Bang-Bang Trajectory
Generator is designed for asymmetric bounds on velocity and acceleration, but
symmetric bounds on the jerk; (·)m and (·)M refer to the minimum and maximum
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values, respectively. It is possible to change these values online. Based on this,
the sliding mode controller is given by [8, 94],

δ = ev,k +
ea,k |ea,k|

2
(A.19a)

σ = ex,k + ev,kea,ksδ −
e3a,k
6

(1− 3 |sδ|) +
sδ
4

√

2
[
e2a,k + 2ev,ksδ

]3
(A.19b)

ν+ = ex,k −
eaM,k (e

2
a,k − 2ev,k)

4
− (e2a,k − 2ev,k)

2

8eaM,k

− ea,k(3ev,k − e2a,k)
3

(A.19c)

ν− = ex,k −
eam,k (e

2
a,k + 2ev,k)

4
− (e2a,k + 2ev,k)

2

8eam,k
− ea,k(3ev,k + e2a,k)

3
(A.19d)

Σ =







ν+ if ea,k ≤ eaM,k and ev,k ≤
e2
a,k

2
− e2aM,k

ν− if ea,k ≥ eam,k and ev,k ≥ e2am,k −
e2
a,k

2

σ otherwise

(A.19e)

jc = − jM sign (Σ + (1− |sign(Σ)|) [δ + (1− |sδ|) ea,k]) (A.19f)

jt,k = max{jv(evm,k), min{jc, jv(evM,k)}}, (A.19g)

where jv(v) follows from

jv(v) = max{ja(eam,k), min{jcv(v), ja(eaM,k)}} (A.20a)

jcv(v) = − jM sign (δv(v) + (1− |sign(δv(v))|) ea,k) (A.20b)

δv(v) = ea,k|ea,k|+ 2 (ev,k − v) (A.20c)

ja(a) = − jM sign(ea,k − a). (A.20d)
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