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Kurzfassung

Das Bestimmen der Position und der Orientierung, d.h. die Pose eines Fahrzeuges in
einer unbekannten Umgebung ist auch mit vorhandenen Methoden eine Herausforderung.
Für diese Aufgabe muss zuerst eine Karte der Umgebung aufgenommen werden. Das
Simultaneous Localization and Mapping (SLAM) Problem behandelt beide Aufgaben:
das Bestimmen der Pose des Fahrzeugs sowie das gleichzeitige Erstellen einer Karte. Die
Theorie von SLAM ist gut erforscht und es existieren bereits verschiedene Ansätze um
das Problem zu lösen. Ein bekannter Ansatz ist EKF-SLAM, welcher die Erweiterung
von Kalman-Filtern (EKF) nutzt. Ein weiteres Problem im Zusammenhang mit SLAM
ist die Daten-Assoziierung von Sensor-Messungen mit der Karte. Zu diesem Zweck wird
oft der Nearest Neighbor Standard Filter (NNSF) Ansatz benutzt, welcher nur wahr-
scheinliche Assoziierungen betrachtet und von diesen die Beste auswählt. Die in dieser
Arbeit behandelten Karten konzentrieren sich auf charakteristische Merkmale in der
Umgebung. Im konkreten Fall werden visuelle Markierungen sowohl zur Lokalisierung als
auch zur Kartographierung verwendet. Diese ähneln QR-Codes von Konsumgütern. Das
Ziel der Arbeit ist bekannte Algorithmen für EKF-SLAM zu implementieren. Dabei sollen
einerseits die IDs in den Markierungen zur Daten-Assoziierung dienen. Andererseits sollen
Markierungen mittels NNSF in der Karte zugeordnet werden, deren IDs nicht erkannt
wurden. Dadurch erhält man einen hybriden Ansatz für die Daten-Assoziierung, welcher
das SLAM-Ergebnis verbessern soll. Der wissenschaftliche Beitrag dieser Arbeit ist ein
Rauschmodell, welches den Messfehler der genutzten Markierungs-Erkennung abbildet.
Aus diesem Grund wurden Messungen von visuellen Markierungen aufgenommen und
statistisch ausgewertet, um die Varianz der Messungen mittels Funktionen zu approxi-
mieren. Schlussendlich wurde dieses Rauschmodell samt der behandelten Algorithmen in
einem Modul für das Robot Operating System (ROS) umgesetzt. Dabei wurde gezeigt,
dass die Implementation in der Simulation einsetzbar ist.
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Abstract

Estimating the position and orientation, i.e. the pose of a vehicle in an unknown
environment is even with known methods a challenge. For this reason, a map of the
environment first needs to be created. The Simultaneous Localization and Mapping
(SLAM) problem covers both challenges: determining the vehicle’s pose as well as creating
a map. The theory of SLAM is well studied and several approaches solving the problem
already exist. A common approach is EKF-SLAM, which makes use of the Extended
Kalman Filter (EKF). Another problem arising in the context of SLAM is the data
association of sensor measurements with the map. For this purpose, the Nearest Neighbor
Standard Filter (NNSF) approach is used. This is a well-known approach, which only
considers likely associations and accepts the most probable among them. This work
focuses on feature-based maps, which means that outstanding features in the environment
- in our case visual markers similar to QR codes on consumer products - are used for
localization and mapping. The aim of this thesis is to implement known algorithms for
feature-based EKF-SLAM. On the one hand, this covers exploiting the benefits of the
visual markers’ IDs for known correspondences between detected visual markers and
map features. On the other hand, the EKF-SLAM result is improved by observations
without IDs using NNSF resolving the unknown correspondences. This yields a hybrid
approach for the data association problem. The scientific contribution is a measurement
noise model for the visual marker detection used. For this purpose, measurements of
visual markers are recorded and statistically evaluated in order to derive approximation
functions for the measurement variance. Finally, the obtained measurement noise model
and the discussed algorithms are put into practice by providing a package for the Robot
Operating System (ROS). The resulting implementation has been shown to be applicable
to a simulated environment.
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CHAPTER 1
Introduction

One of the main issues in mobile robotics is determining the actual pose of a robot,
where the pose comprises the robot’s position and orientation. For this purpose, a map
is needed. Unfortunately, such a map does not always exist and needs to be created first.
Methods covering this kind of issue are known under the name Simultaneous Localization
and Mapping (SLAM) or Concurrent Mapping and Localization (CML). Figure 1.1 depicts
such a setting used within the thesis. The visual markers are mapped by the system and
used to estimate the vehicle’s pose. The laser sensor readings shown in figure 1.1a can be
used for navigating the robot without crashing into obstacles.

(a) Environment containing visual markers with
vehicle and laser sensor readings

(b) Vehicle’s camera perspective with detected
and undetected visual markers used for SLAM

Figure 1.1: Used simulated environment with vehicle
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1. Introduction

1.1 Problem Statement

The challenging aspect of the SLAM task is that the robot needs both a map in order
to localize itself and its pose to be able to create a map of its environment. Hence, for
a long time SLAM was supposed to be a chicken-or-egg problem. Nevertheless, in the
past decade a variety of techniques solving the SLAM problem has evolved. A newer
approach is to handle the inherent uncertainty with probabilistic concepts. Important
techniques in this field are EKF-SLAM, FastSLAM and Graph-based SLAM, which are
all well documented in [1]. This thesis will cover SLAM based on Extended Kalman
Filters (EKF-SLAM).

Creating a map is based on the question as to what is its actual purpose, whether it is just
for pose estimation or also a reference for further tasks such as path planning? In the latter
case, an extensive map describing all obstacles is required in order to incorporate these
obstacles into the task of path planning. Possible representations of the environment in
this field are occupancy grid maps or simple grid maps. Figure 1.2a depicts a recorded grid
map of the environment shown in figure 1.1. The main drawbacks of grid maps are their
high memory and processing consumptions. Fortunately, only establishing the robot’s
pose is required. This allows reducing the environment to features serving as reference
points for localization. Figure 1.2b illustrates such a feature-based map of the detected
markers shown in figure 1.1 using the contained visual markers for features. Beside the
markers’ poses (depicted as arrows in the figure) also their uncertainty (indicated by
ellipses around) are stored in feature-based maps. The consequence is a considerably
smaller map enabling a better pose estimation. The mentioned uncertainty comes within
the estimation process and is a main concept of EKF-SLAM.

(a) 2D occupancy grid (b) 2D feature-based

Figure 1.2: Map representations
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1.2. Aim of the Work

The thesis will make usage of visual markers for features as depicted in figure 1.1b. A
main advantage of visual markers is that they not only represent a pose but can also
encode additional information such as an ID with them ensuring known correspondences
between observations and the created map.

1.2 Aim of the Work
The aim of this thesis is to implement known algorithms for feature based EKF-SLAM
using visual markers with IDs and to enhance the setup to deal with unrecognized IDs
as well. This means exploiting the benefits of IDs but also using observations without
IDs for the further improvement of the SLAM results. Beside that, a measurement noise
model for visual marker detection is created. For this purpose, several runs of marker
detection are recorded. The results of these runs are then compared with the real poses
of the detected visual markers in order to derive a proper noise model. In doing so, the
impact of an accurate measurement noise model on the actual SLAM task is evaluated.

In order to make the implementation available and reusable to a broad community, we
decided to implement a SLAM framework, which already supports EKF-SLAM, using
the Robot Operating System (ROS) [2]. ROS follows a modular design. A module in
ROS is named package and can consist of several subunits such as libraries or nodes.
A ROS node in turn describes an executable. Via XML messages, several ROS nodes
communicate with each other by publishing and subscribing to topics.

Thus, a ROS package is provided containing a ROS node representing the framework for
SLAM. Built upon the framework, the node includes an already working implementation
of feature based EKF-SLAM in 2D. For simulation and testing, there will be another ROS
node in this package modeling measurement noise. Finally, the package also contains a
node implementing a server for saving and providing recorded marker maps.

1.3 Related Work
At the beginning of this work, existing ROS packages were inspected in [3] to ensure a
contribution to the ROS community. The most important of them for this thesis are
listed below:

• robot_localization
Author: Tom Moore
License: BSD
This ROS package provides a framework for ROS nodes performing state estimation
for non-linear transitions in 3D space. In particular, two nodes are implemented
yet: ekf_localization_node and ukf_localization_node. The first one
makes usage of Extended Kalman Filters (EKFs) for non-linear state transitions. The
latter exploits Unscented Kalman Filters (UKFs) for this purpose. The estimated
state covers not only the position and the orientation but also the corresponding

3



1. Introduction

velocities and accelerations yielding a 15-dimensional state vector. Both of these
nodes are able to combine an arbitrary number of different sensor inputs for the
correction of the state estimation. In [4], they compared the results of their EKF
approach with varying sensor types, e.g. odometry, Inertial Measurement Unit
(IMU), Global Positioning System (GPS). In contrast to this thesis, they focus
only on the vehicle’s state but are not interested in creating a map of the explored
environment while estimating the vehicle’s state.

• robot_pose_ekf
Author: Wim Meeussen
License: BSD
Similar to the previous package, this ROS package takes advantage of EKFs for
the state estimation of a vehicle in 3D space. But in contrast, only a 6-dimensional
state consisting of the position and the orientation of the vehicle is supported. For
the estimation itself, measurements from multiple sources covering the wanted state
in parts can be utilized. Once again, this package targets only the localization
problem in mobile robotics but does not treat the mapping problem.

• hector_localization
Author: Johannes Meyer
License: BSD
This ROS package represents another solution for the localization-only problem
in 3D space. The package contains multiple sub-packages, which are organized
in a stack. In turn, the estimated state consists of 6 Degrees of Freedom (DOFs).
Measurements of different sensor sources are compound by using an EKF. Despite
the fact that IMUs are primary used for this purpose, there are also other kinds of
sensors e.g. GPS, magnetometer, barometric pressure supported depending on the
application.

• hector_slam
Author: Stefan Kohlbrecher, Johannes Meyer
License: BSD
In this ROS Package both problems - localization as well as mapping - are treated
the first time. In contrast to this thesis, not feature-based maps but occupancy grid
maps of the environment are created using Light Detection and Ranging (LiDAR)
sensors. In this context, the combination of a 9-dimensional state vector consisting
of position, orientation and velocities in 3D space and a 2D grid map is interesting.
For this purpose, the estimated state in 3D is projected into the xy-plane. For
the state estimation a 3D motion model of the used platform is fed with sensor
readings of an IMU and then filtered by an EKF. For more details [5] can be used.

• stereo_slam
Author: Pep Lluis Negre
License: BSD
Another solution for the SLAM problem is presented in this ROS package. The
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1.3. Related Work

developed package targets underwater robotics and has been successfully tested
in submarine environments. Again, occupancy grid maps are created instead of
feature-based maps. But compared to the previous package the so derived maps
are in 3D. For this purpose, a single stereo-camera is used, which enables a 3D
reception of the environment.

• vslam
Author: Kurt Konolige, Patrick Mihelich, Helen Oleynikova
License: Public Domain,LGPL,LGPL/GPL
This ROS package targets again the SLAM problem using visual camera images. In
particular, images from a stereo-camera are utilized for creating 3D point clouds of
indoor environments, in which the vehicle is localized. Unfortunately, the package
is only little documented and is still in experimental usage for research.

• rtabmap
Author: Mathieu Labbé
License: BSD
The Real-Time Appearance-Based Mapping (RTAB-Map) ROS Package solves the
SLAM problem while satisfying real-time constraints. In doing so, an online global
loop closure detection is used to identify already known places. In order to meet the
real-time requirements the created map is divided into a Working Memory (WM)
and Long Time Memory (LTM) [6], [7]. The former is used for the detection of loop
closures because of its limited size. The map itself is organized by a graph, where
each node expresses a location in the map enriched with visualization information.
Thus, the provided solution is an instance of Graph-based SLAM. Depending on
the used sensors the created map covers either 6 DOFs (e.g. stereo-camera) or 3
DOFs (e.g. LiDAR).

• gmapping
Author: Brian Gerkey
License: CreativeCommons-by-nc-sa-2.0
This ROS package is actually a wrapper for OpenSLAM’s implementation of a
Rao-Blackwellized particle filter for the SLAM problem. In particular, such a
Rao-Blackwellized particle filter implementation is an instance of FastSLAM. It
uses particles for the vehicle’s believed pose. Moreover, each particle comes up with
its own map by incorporating laser sensor readings. Once again, the so created
maps are 2D occupancy grid maps. Further information can be found in [8] and [9].

• map_server
Author: Brian Gerkey, Tony Pratkanis
License: BSD
Contrary to the other packages, this ROS package neither provides state estimation
nor creates maps. Instead it is a composition of the two ROS nodes: map_saver
and map_server. The former can be used to save already generated occupancy
grid maps. The maps are stored in an image file depicting the environment, which
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1. Introduction

is enhanced by an additional meta-data file. The second ROS node is able to read
these files from the disk and to make the recorded grid maps available again. The
so allocated maps can be used later on for e.g. localization-only or path-planning
tasks. Thus, it served as a model for the feature-based map server coming along
with this thesis.

Although EKFs have already been applied to localization-only tasks, they are rarely used
in the context of SLAM in ROS. Furthermore, the majority of the discussed packages
covering SLAM creates occupancy grid maps and none of them feature-based maps
as supposed for this thesis. Finally, visual markers have neither been exploited for
localization-only nor for SLAM tasks in any of the listed ROS packages.

Thus, Markus Bader provided for the aim of this thesis a visual marker detection for AR-
ToolKit visual markers [10] based on the ARToolKitPlus library [11]. This visual marker
detection was later on improved by Lukas Pfeifhofer using the ArUco library [12], [13].
Although both approaches can be found in the ROS package tuw_marker_detection,
the results derived in this thesis are only based on the latter.

1.4 Methodological Approach

The overall methodological approach for this thesis can be broken down into the following
phases:

1. Literature study on the SLAM topic and ROS environment
At the beginning, EKF had to be revisited and extended to EKF-SLAM. For
general purposes, especially [1] was used. Beside that, additional paper study
of robotic conferences and journals was conducted. Also, existing ROS packages
had to be studied and investigated so as to find out how ROS nodes need to be
arranged. Then, our own ROS package was designed with the main goal to include
an EKF-SLAM algorithm.

2. Simulation environment and visualization
In order to rerun experiments and to reduce the resource overhead by using real
robots, two different types of simulation environments were used during the work.
In a first step, Stage [2] served as a 2D simulation environment for evaluating EKF-
SLAM itself. Since Stage is not capable of simulating camera images as needed
for visual marker detection, later on Gazebo [2] a more realistic 3D simulation
environment was used. Furthermore, the ROS node for Stage did not support
simple marker detection, but the Stage environment itself does. Thus, a marker
detection with artificial measurement noise was added to the current ROS node
of Stage. In the next step, one had to think about how the SLAM results are
visualized. For this reason, RViz [2] was used enhanced by visualization plugins for
measurements and detected visual markers.
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1.5. Structure of the Work

3. EKF-SLAM with known feature correspondences
In the first version, the EKF-SLAM supported only observations with IDs. Based
on one ID, the observation could be assigned to the corresponding visual marker. In
a first try, the estimated vehicle and visual markers’ poses were iteratively corrected
by the observations. As soon as this was working, the approach was extended to
support correction using all observations in a single step.

4. Extension to support unknown feature correspondences
In the first version, observations without IDs were remaining. Supposing they
improve the estimated pose too, we wanted to use them. Thus, in the case of
no observed ID the correspondence was achieved by assigning the observation
to the most probable visual marker using a Nearest Neighbor Standard Filter
(NNSF). Again two approaches were implemented. The first one simply assigns
each observation without ID to the visual marker with the shortest Mahalanobis
distance. This may result in local optima, e.g. two observations are assigned to
the same visual marker. The second one finds a global optimum match between
observations without IDs and visual markers based on their Mahalanobis distances.
In both cases, only visual markers are considered, which do not correspond to an
observation with ID yet.

5. Measurement noise model
As soon as this was working, Gazebo was used further on as a simulation environment
supporting camera images for visual marker detection. Until then, an artificial
measurement noise based on adjustable sigma values had been applied for simulation
and testing. To achieve a more realistic measurement noise for practical relevant
testing, measurements of visual markers were recorded. Afterwards the recorded
measurements were compared with the predicted measurements based on the real
vehicle’s pose and real visual markers’ poses. From this comparison, we then
deduced a more realistic measurement noise model.

6. Results and application
Finally, a proper modular implementation was set up to provide a broader com-
munity with the framework. This is supposed to ensure a wide usage with long
maintenance support and possible extensions. To this end, a simple marker map
server was added so as to save and provide recorded marker maps for further use
(e.g. visual marker based EKF localization).

1.5 Structure of the Work

The thesis itself is divided into 6 chapters, starting with this brief introduction into
the topic of EKF-SLAM. In chapter 2, basic concepts of probability theory will be
recapitulated. The provided theory is mainly based on [1], [14] and [15], which can be
used for further details. This introduction into probability theory is needed to establish
a common understanding for the remaining thesis. In chapter 3, the actual topic of the
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1. Introduction

thesis - EKF-SLAM using visual markers - will be introduced. In the chapter, algorithms
solving the EKF-SLAM problem together will be elaborated. The presented information
widely rests upon [1] and [16]. In chapter 4, the previously introduced algorithms will
be enhanced with implementation-specific details regarding the provided ROS package
related to the thesis. The latter will shortly be summed up at the end of the chapter.
Beside further concepts from [1], especially optimizations developed in [17], [18] will
be exploited for this purpose. Before the results of the provided implementation are
discussed, a measurement noise model for visual markers used for map features will be
elaborated in chapter 5. This noise model comprises the measurement error of the used
visual marker detection. Finally, chapter 6 will conclude the thesis with a discussion of
the drawbacks and challenges of the provided solution. In doing so, they will be compared
with state of the art developments and an outlook on possible improvements will be
given.
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CHAPTER 2
Probabilistic Concepts in

Robotics

“Robotics is the science of perceiving and manipulating the physical world through computer-
controlled devices.” [1, p. 3] Consequently, a main issue in robotics is dealing with the
interface between the real and virtual world. But this comes with an inherent uncertainty.

Let us think about the environment of a robot. In early days of robotics, the robot’s
space of action was enclosed, e.g. assembly lines. This reduced unpredictable process
impact. Nowadays, the robotics’ area of applications extends from closed manufactures
towards to more open environments like private households, e.g. autonomous lawn mower
or vacuum cleaner. This evolution makes it more and more harder to find appropriate
models describing such an environment. But models are important for determining the
actual state of a robot in its environment. [1]

Besides, the impact of the used sensors and actuators must be pointed out. No sensor or
actuator is perfect. Instead one has to deal with so called measurement noise using sensors
and control noise using actuators. These noises make robots in practice nondeterministic.

Thus, in the near past all these sources of uncertainty raised the question, why trying
to hide the uncertainty and not dealing with it? That is the point where probabilistic
robotics comes into play. Probabilistic robotics makes use of probabilistic concepts
dealing with this uncertainty. As a side effect, probabilistic robotics turned out to be
more robust toward weak models of environments as well as weak sensors and actuators
than classical approaches based on logical consequences. [1], [15]

In the remaining chapter, the basics in probabilistic robotics are recapped in order to
establish a common understanding for the theoretical concepts of EKF-SLAM. Thus,
section 2.1 retains further used probabilistic principles. In section 2.2, Bayesian filters
are derived from Bayes Networks and Hidden Markov Models, respectively. Built upon

9



2. Probabilistic Concepts in Robotics

Bayesian filters, Gaussian filters are introduced in section 2.3 with special care to Kalman
Filters and their extension.

2.1 Probabilistic Theory

In this section, the basic probabilistic theory needed for EKF-SLAM is introduced. The
covered theory and notation are mainly based on [14], which can be used for going further
into detail.

A random variable x assigns each possible outcome of a random experiment within a
given domain Ω a value. Furthermore, any subset A of the domain Ω and thus a possible
outcome of the random experiment is called an event. The random variables considered
in this thesis will be usually real-valued, thus Ω = {x ∈ R} = {−∞ < x <∞}. A typical
example of an event in this domain will be {x ≤ 0}.

Moreover let P {A} denote the probability of event A whereas

• 0 ≤ P {A} ≤ 1 with

• P {∅} = 0 (impossible event) and

• P {Ω} = 1 (certain event)

describe the major probability properties.

Although this section mainly focuses on continuous random scalars x in respect to
continuous deterministic scalars x, all the introduced concepts can be extended to
random vectors x and deterministic vectors x respectively, as well as to discrete and
mixed random variables. Table 2.1 sums up the notation used throughout this thesis.

deterministic random
scalar x x
vector x x
matrix X X

Table 2.1: Notation [14]

Furthermore, the used vectors are supposed to be column vectors and the superscript >
denotes the transposition of a vector or matrix.

2.1.1 Cumulative Distribution Function (cdf)

The cdf Fx (x) of a real-valued random variable x denotes the probability of the event
{x ≤ x}:

Fx (x) = P {x ≤ x} (2.1)

10



2.1. Probabilistic Theory

Formally, it is defined as
Fx (x) : R→ [0, 1] (2.2)

with the following properties:

• monotonically increasing

x1 < x2 =⇒ Fx (x1) ≤ Fx (x2) (2.3)

• lower limit equals zero

Fx (−∞) = P {x ≤ −∞} = lim
x→−∞

Fx (x) = 0 (2.4)

• upper limit equals one

Fx (∞) = P {x ≤ ∞} = lim
x→∞

Fx (x) = 1 (2.5)

Thus, it can be shown that the probability of x lying inside an interval (a, b] opened to
the left is gained by

P {x ∈ (a, b]} = P {a < x ≤ b} = Fx (b)− Fx (a) (2.6)

and consequently
P {x > x} = 1− Fx (x) (2.7)

holds since Fx (∞) = 1 by equation 2.35.

2.1.2 Probability Density Function (pdf)

The pdf fx (x) of a real-valued random variable x describes now the relative limit of the
event {x = x}:

fx (x) = lim
∆x→0

P {x < x ≤ x + ∆x}
∆x = d

dx
Fx (x) (2.8)

Notice: This inference implicitly uses equation 2.6.

The reason why the pdf describes just the relative limit is because in continuous space it
is almost impossible that two events are really equal. Consider for example the shape of
snowflakes, one can always find tiny differences between any two snowflakes [19], [20].
Thus, the probability of the event {x = x} is assumed to be 0:

P {x = x} = 0 (2.9)

Formally, the pdf is defined as

fx (x) : R→ [0,∞) (2.10)

with the following properties:

11



2. Probabilistic Concepts in Robotics

• nonnegative
fx (x) ≥ 0 (2.11)

• converges to zero
lim

x→±∞
fx (x) = 0 (2.12)

• covered area equals one ∫ ∞
−∞

fx (x) dx = 1 (2.13)

Immediately from equation 2.8 one can derive

P {x ≤ x} = Fx (x) =
∫ x

−∞
fx (ξ) dξ (2.14)

for the relation of the cdf and pdf in respect to the wanted probability.

Consequently, the probability of x lying inside an interval (a, b] is determined by

P {x ∈ (a, b]} = P {a < x ≤ b} =
∫ b

a
fx (x) dx (2.15)

using equation 2.6 for cdfs related to intervals.

For a better understanding of cdf, pdf and their relation to each other figure 2.1 illustrates
the cdf and pdf of a random variable x that is uniformly distributed in the interval [−2, 1].

−3 −2 −1 1 2 3

0.2

0.4

0.6

0.8

1

0
x

Fx (x)

(a) Cumulative distribution function

−3 −2 −1 1 2 3

0.2

0.4

0.6

0.8

1

0
x

fx (x)

(b) Probabilistic density function

Figure 2.1: Uniform random variable x ∼ U(−2, 1)
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2.1. Probabilistic Theory

In general uniform distributions, denoted as x ∼ U(a, b), are specified by the cdf

Fx (x) =


0, x < a
x−a
b−a , a ≤ x ≤ b
1, x > a

(2.16)

and the pdf

fx (x) =
{ 1
b−a , a ≤ x ≤ b
0, else

(2.17)

for the interval [a, b].

2.1.3 Moments

Moments are characteristics of a random variable x. We distinguish between the kth

moment
m(k)

x =̂ E{xk} =
∫ ∞
−∞

xkfx (x) dx (2.18)

and the kth central moment

m
(k)
x−µx =̂ E{(x − µx)k} =

∫ ∞
−∞

(x − µx)kfx (x) dx (2.19)

with µx denoting the first moment, which is of special interest and therefore often simple
called mean µx , expected value E{x} or just expectation:

µx = E{x} =̂
∫ ∞
−∞

xfx (x) dx (2.20)

An important property of the expectation is its linearity:

E{ax + b} = aE{x}+ b = aµx + b (2.21)

Proof.

E{ax + b} =
∫ ∞
−∞

(ax + b)fx (x) dx 2.20

=
∫ ∞
−∞

axfx (x) dx +
∫ ∞
−∞

bfx (x) dx

= a

∫ ∞
−∞

xfx (x) dx + b

∫ ∞
−∞

fx (x) dx

= aE{x}+ b = aµx + b 2.20, 2.13

13



2. Probabilistic Concepts in Robotics

Another important moment is the second central moment

σ2
x = V{x} = E{(x − µx)2} =̂

∫ ∞
−∞

(x − µx)2fx (x) dx (2.22)

called variance. In contrast to the expectation, the variance is not linear:

V{ax + b} = a2V{x} = a2σ2
x (2.23)

Proof.

V{ax + b} = E{[(ax + b)− (aµx + b)]2} 2.22, 2.21
= E{[a(x − µx)]2}
= a2E{(x − µx)2} 2.21
= a2V{x} = a2σ2

x 2.22

2.1.4 Conditional cdf and pdf with one random variable

The conditional cdf Fx (x|A) of a real-valued random variable x given an event A denotes
the probability of the event {(x ≤ x) ∩ A} normalized by the probability of event A:

Fx (x|A) = P {x ≤ x)|A} = P {(x ≤ x) ∩ A}
P {A} (2.24)

Similar to the ordinary cdf it is defined as

Fx (x|A) : R→ [0, 1] (2.25)

with the same properties, i.e. monotonically increasing, lower limit equals zero and upper
limit equals one.

Consequently, the conditional pdf fx (x|A) of a real-valued random variable x given an
event A is defined as the first derivative of the cdf Fx (x|A):

fx (x|A) = d

dx
Fx (x|A) (2.26)

Formally, the function
fx (x|A) : R→ [0,∞) (2.27)

satisfies all the properties of an ordinary pdf, i.e it is nonnegative, it converges to zero
and its integral equals one.

In the context of conditional probability Bayes theorem

fx (x|A) = P {A|x = x} fx (x)
P {A} (2.28)

is important. It relates the conditional pdf fx (x|A) to the reverted conditional probability
P {A|x = x}.
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2.1. Probabilistic Theory

2.1.5 Joint cdf and pdf

The joint cdf Fx,y (x, y) of two real-valued random variables x and y denotes the probability
of the event {(x ≤ x) ∩ (y ≤ y)}:

Fx,y (x, y) = P {(x ≤ x) ∩ (y ≤ y)} (2.29)

Similar to the cdf of one real-valued random variable, it is defined as

Fx,y (x, y) : R2 → [0, 1] (2.30)

with following properties:

• monotonically increasing in both arguments

x1 < x2, y1 < y2 =⇒ Fx,y (x1, y1) ≤ Fx,y (x2, y2) (2.31)

• limits
Fx,y (x,−∞) = Fx,y (−∞, y) = 0 (2.32)

Fx,y (x,∞) = Fx (x) (2.33)

Fx,y (∞, y) = Fy (y) (2.34)

Fx,y (∞,∞) = 1 (2.35)

Analogous to the pdf of one real-valued random variable, the joint pdf fx,y (x, y) of two
real-valued random variables x and y is defined as the first derivative of the cdf Fx,y (x, y):

fx,y (x, y) = ∂

∂x

∂

∂y
Fx,y (x, y) (2.36)

Formally, the joint pdf is now defined as

fx,y (x, y) : R2 → [0,∞) (2.37)

with the following properties:

• nonnegative
fx,y (x, y) ≥ 0 (2.38)

• converges to zero
lim

x→±∞
fx,y (x, y) = 0 (2.39)

lim
y→±∞

fx,y (x, y) = 0 (2.40)

15



2. Probabilistic Concepts in Robotics

• covered area equals one

∫ ∞
−∞

∫ ∞
−∞

fx,y (x, y) dx dy = 1 (2.41)

Again, one can immediately derive from equation 2.36

P {(x ≤ x) ∩ (y ≤ y)} = Fx,y (x, y) =
∫ x

−∞

∫ y

−∞
fx,y (ξ, ζ) dξ dζ (2.42)

the relation of the joint cdf and pdf in respect to the wanted probability.

Based on this and additionally motivated by the limit properties 2.33 and 2.34 of the
joint cdf, one of the two variables can be integrated out yielding

fx (x) =
∫ ∞
−∞

fx,y (x, y) dy (2.43)

and

fy (y) =
∫ ∞
−∞

fx,y (x, y) dx (2.44)

respectively. This process is called marginalization and fx (x) and fy (y) are called
marginal pdfs of the joint pdf fx,y (x, y).

2.1.6 Conditional cdf and pdf with two random variables

Let us now reconsider the equations 2.24 and 2.26 for conditional cdf and pdf in the
context of two random variables x and y. In particular, let event A denote {y = y}. Since
y is continuous the probability of the event {y = y} can be indicated by P {y = y} = 0
according to equation 2.9. Consequently, this also applies to P {(x ≤ x) ∩ (y = y)} = 0
resulting in the indeterminate term 0

0 for the definition of the conditional cdf.

Nevertheless, one can restate equation 2.24 for the conditional cdf of two random variables
x and y by

Fx|y (x|y) = P {x ≤ x|y = y} =
∫ x
−∞ fx,y (ξ, y) dξ

fy (y) (2.45)

with the joint pdf fx,y (x, y) of x and y and the marginal pdf fy (y) of y. The deterministic
value y in the event {y = y} serves in this context as evidence or witness of the random
variable y.
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Proof. Referred to [14], we have:

Fx|y (x|y) = P {x ≤ x|y = y} = lim
∆y→0

P {x ≤ x|y < y ≤ y + ∆y}

= lim
∆y→0

P {(x ≤ x) ∩ (y < y ≤ y + ∆y)}
P {y < y ≤ y + ∆y} 2.24

= lim
∆y→0

∫ x
−∞

∫ y+∆y
y fx,y (ξ, ζ) dξ dζ∫ y+∆y
y fy (ζ) dζ

2.15, 2.29, 2.42

= lim
∆y→0

∫ x
−∞ fx,y (ξ, y) dξ ·∆y

fy (y) ·∆y

=
∫ x
−∞ fx,y (ξ, y) dξ

fy (y)

Notice: In the penultimate line the approximations
∫ y+∆y
y fx,y (ξ, ζ) dζ ≈ fx,y (ξ, y) ·∆y

and
∫ y+∆y
y fy (ζ) dζ ≈ fy (y) ·∆y are used, which become exact in the limit ∆y → 0.

Consequently, the conditional pdf

fx|y (x|y) =
fx,y (x, y)
fy (y) (2.46)

follows from equation 2.26 immediately.

Furthermore, by simple exchange of x and y and re-inserting this for fx,y (x, y) one can
directly derive

fx|y (x|y) =
fy|x (y|x) fx (x)

fy (y) (2.47)

Bayes theorem as specified in equation 2.28. In literature, this deviation is also often
called Bayesian inference.

Finally, one can place the derived conditional pdf into the marginalization relation 2.43

fx (x) =
∫ ∞
−∞

fx|y (x|y) fy (y) dy (2.48)

describing the total probability theorem.

2.1.7 Statistical and conditional independence

Two random variables x and y are called statistically independent or just independent if
their conditional pdfs satisfy following conditions:

fx|y (x|y) = fx (x) and fy|x (y|x) = fy (y) (2.49)
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Notice: One relation implies the other but for the sake of completeness both are specified
at this point.

Thus, by equation 2.46 the joint pdf of two statistically independent random variables x
and y can be indicated by

fx,y (x, y) = fx (x) fy (y) (2.50)

with their two marginal pdfs fx (x) and fy (y).

Another important property in this context is conditional independence. For this purpose,
let us consider for a moment three random variables x, y and z. The random variables x
and z are said to be conditional independent if they are independent given an evidence y
of random variable y:

fx|y,z (x|y, z) = fx|y (x|y) (2.51)

Notice: In general conditional independence fx|y,z (x|y, z) = fx|y (x|y) does not automati-
cally imply statistically independence fx|z (x|z) = fx (x)

2.1.8 Perspectives and covariance matrix

In the remaining thesis, Fx (x) and fx (x) are abbreviated with F (x) and f (x), respec-
tively. Instead of writing P {x ≤ x}, simple P {x} is used. Furthermore, all the so far
introduced formulas and deviations can be easily extended supporting random vectors x
instead of random variables x.

Because of its relevance in the remaining thesis the covariance matrix Σx of a random
vector x is emphasized at this point extra. The covariance matrix of a random vector
x = (x1 . . . xn)> of dimension n is defined analogously to the variance of a random variable
x in equation 2.22:

Σx = V{x} = E{(x − µx)(x − µx)>} =̂
∫
RN

(x − µx)(x − µx)>fx (x) dx (2.52)

Hence, Σx is a quadratic matrix of size n× n

Σx =


σ2

x1 Σx1x2 · · · Σx1xn
Σx2x1 σ2

x2 · · · Σx2xn
...

... . . . ...
Σxnx1 Σxnx2 · · · σ2

xn

 (2.53)

composed of the covariances

Σxixj = E{(xi − µxi)(xj − µxj )}, i 6= j ∈ [1, n] (2.54)

and the variances
σ2

xk = E{(xk − µxk)2}, k ∈ [1, n] (2.55)
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in the diagonal. Obviously, Σx is symmetric

Σx = Σ>x (2.56)

and semi-positive definite
a>Σxa ≥ 0 (2.57)

for any vector a of dimension n [14].

Proof. Σx is symmetric:

Σ>x = E{(x − µx)(x − µx)>}> = E{(x − µx)(x − µx)>} = Σx

Proof. Σx semi-positive definite:

a>Σxa = a>E{(x − µx)(x − µx)>}a 2.52
= E{a>(x − µx)(x − µx)>a} 2.21
= E{a>(x − µx) · a>(x − µx)}
= E{[a>(x − µx)]2} ≥ 0

Hint: a>(x − µx) describes a scalar.

Finally, the non-linearity of the variance in equation 2.23 is re-stated at this point for a
random vector x of dimension n:

V{Ax + b} = AV{x}A> = AΣxA
> (2.58)

In this equation, A denotes a matrix of size n× k and b denotes a vector of arbitrary
dimension k.

Proof.

V{Ax + b} = E{[(Ax + b)− (Aµx + b)][(Ax + b)− (Aµx + b)]>} 2.52, 2.21
= E{[A(x − µx)][A(x − µx)]>}
= E{A(x − µx)(x − µx)>A>}
= AE{(x − µx)(x − µx)>}A> 2.21
= AV{x}A> = AΣxA

> 2.52
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2.2 Bayesian Filter
This section describes the basic idea of Bayesian filters and their categories. The related
theory is based on [1] and [15], which can be used as reference for further details. Bayesian
filters describe the fundamental theory of EKF-SLAM and are essentially an extension
of the Bayesian inference introduced previously in equation 2.47. In order to derive a
Bayesian filter, for our purpose a Hidden Markov Model (HMM) is used. A HMM is a
special case of a Bayesian Network (BN) describing a Markov Chain of unobservable
random variables. In turn, a BN is a Directed Acyclic Graph (DAG) where the nodes
represent random variables and the edges encode conditional independence. Detailed
information about HMMs and BNs and how to deal with them can be found in [15].

For the aim of this thesis, it suffices to recap the concepts of statistical independence and
conditional independence introduced in subsection 2.1.7 by means of figures 2.2 to 2.4.
They show simple BNs depicting the essential relations between three random variables
x, y and z. Shaded nodes denote given evidence of the correspondent random variable in
the sense of conditional probability introduced in subsection 2.1.6. Let us now inspect
these essential relations closer:

• Causal chain: fx,y,z (x, y, z) = fz|y (z|y) fy|x (y|x) fx (x)
In a causal chain as illustrated in figure 2.2a, x and z are independent given an
evidence y:

fz|x,y (z|x, y) = fz|y (z|y) (2.59)

Proof.

fz|x,y (z|x, y) =
fx,y,z (x, y, z)
fx,y (x, y) =

fz|y (z|y) fy|x (y|x) fx (x)
fy|x (y|x) fx (x) = fz|y (z|y)

Thus, by equation 2.51 we say x and z are conditionally independent.
But without evidence of y as depicted in figure 2.2b, x and z are in general not
statistically independent:

fz|x (z|x) 6= fz (z) (2.60)

One can easily show this by providing a counter example.

x y z

(a) with evidence

x y z

(b) without evidence

Figure 2.2: Causal chain
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• Common cause: fx,y,z (x, y, z) = fz|y (z|y) fx|y (x|y) fy (y)
If x and z have a common cause y as illustrated in figure 2.3a then x and z are
independent given an evidence y:

fz|x,y (z|x, y) = fz|y (z|y) (2.61)

Proof.

fz|x,y (z|x, y) =
fx,y,z (x, y, z)
fx,y (x, y) =

fz|y (z|y) fx|y (x|y) fy (y)
fx|y (x|y) fy (y) = fz|y (z|y)

Thus, by equation 2.51 we say x and z are conditionally independent.
Again, the witness y is crucial. In the case of no evidence of y as depicted in
figure 2.3b, x and z are in general not statistically independent:

fz|x (z|x) 6= fz (z) (2.62)

One can easily show this by providing a counter example.

y

x z

(a) with evidence

y

x z

(b) without evidence

Figure 2.3: Common cause

• Common effect: fx,y,z (x, y, z) = fy|x,z (y|x, z) fx (x) fz (z)
The last case distinguishes from the others insofar as in the event of a common
effect y of x and z as illustrated in figure 2.4a the random variables x and z are
statistically independent as long as no evidence of y is given:

fz|x (z|x) = fz (z) (2.63)

Proof.

fz|x (z|x) = fx,z (x, z)
fx (x) =

∫∞
−∞ fx,y,z (x, y, z) dy

fx (x) =
∫∞
−∞ fy|x,z (y|x, z) fx (x) fz (z) dy

fx (x)

= fz (z)
∫ ∞
−∞

fy|x,z (y|x, z) dy = fz (z) 2.13
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As soon as there is an evidence y one can provide a counter example showing that
the random variables x and z are no longer independent.

fz|x,y (z|x, y) 6= fz|y (z|y) (2.64)

Thus, we say x and z are not conditionally independent.

y

x z

(a) without evidence

y

x z

(b) with evidence

Figure 2.4: Common effect

By means of this recapitulation we can now have a closer look at figure 2.5. The figure
depicts a HMM for a moving vehicle with cyclic measurements. The vehicle’s pose at
time t is expressed by the real-valued random vector xt of dimension n. The pose itself is
unobserved and can only be influenced by the control commands for movement at time t
denoted by the real-valued random vector ut of dimension m and estimated using the
measurements at time t described by the real-valued random vector zt of dimension k.

x0 x1 xt−1 xt xt+1

u1 ut−1 ut ut+1

z1 zt−1 zt zt+1

Figure 2.5: Hidden Markov Model underlying Bayesian filters [1]

Consequently, the actual target is estimating the current vehicle’s pose xt at its best by
incorporating all control commands and measurements up to time t. Referred to [1], the
estimated pose is then expressed by the believed state

bel (xt) = xt|u1:t, z1:t (2.65)
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with

u1:t = u1, . . . ,ut (2.66)

denoting the control commands up to time t and

z1:t = z1, . . . ,zt (2.67)

denoting the measurements up to time t.

Furthermore, it has been proven to be useful emphasizing additionally the state after
applying the actual control commands but before incorporating the current measurements.
Thus, considering only the control commands up to time t and the measurements up to
time t− 1 yields the predicted state

bel (xt) = xt|u1:t, z1:t−1 (2.68)

which has not been corrected by the present measurement zt yet [1].

In order to derive an expression for the believed state bel (xt), we distinguish following
fundamental conditional probabilities by exploiting conditional independence on the
HMM depicted in figure 2.5:

• The transition probability P {xt|xt−1,ut} describes the probability of being in pose
xt given the old pose xt−1 and applying the current control command ut to the
vehicle.

• The measurement probability P {zt|xt} denotes the probability of measurement zt
supposing the pose xt for the vehicle at this time.

Beside the conditional independence encoded in the HMM, we further assume statistical
independence between the current control commands ut and the last pose xt−1 as they
did in [1]:

f (ut|xt−1) = f (ut) and f (xt−1|ut) = f (xt−1) (2.69)

This assumption is quiet reasonable in static environments such as considered for EKF-
SLAM and allows us to derive the following recursive equation for the pdf of the believed
state bel (xt) at time t:

f (xt|u1:t, z1:t) = η f (zt|xt)
∫
Rn
f (xt|xt−1,ut) f (xt−1|u1:t−1, z1:t−1) dxt−1 (2.70)
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Proof. By exploiting Bayesian inference in the context of conditional independence they
derived in [1]

f (xt|u1:t, z1:t) = η f (xt, zt|u1:t, z1:t−1) 2.46
= η f (zt|xt,u1:t, z1:t−1) f (xt|u1:t, z1:t−1) 2.46
= η f (zt|xt) f (xt|u1:t, z1:t−1) 2.51

= η f (zt|xt)
∫
Rn
f (xt,xt−1|u1:t, z1:t−1) dxt−1 2.48

= η f (zt|xt)
∫
Rn
f (xt|xt−1,u1:t, z1:t−1) f (xt−1|u1:t, z1:t−1) dxt−1 2.46

= η f (zt|xt)
∫
Rn
f (xt|xt−1,ut) f (xt−1|u1:t, z1:t−1) dxt−1 2.51

= η f (zt|xt)
∫
Rn
f (xt|xt−1,ut) f (xt−1|u1:t−1, z1:t−1) dxt−1 2.69

with

η = 1
f (zt|u1:t, z1:t−1)

denoting a normalization factor.

Notice: In the context of Bayesian inference often a normalization factor η is used
avoiding too complex equations and allowing to focus on the essentials. This factor does
not represent a specific term or value and is thus often mixed up together with other
normalization factors without explicit indication. In the future, an explicit specification
of such a normalization factor η is therefore omitted.

In equation 2.70, f (zt|xt) denotes the pdf of the mentioned measurement proba-
bility P {zt|xt} and f (xt|xt−1,ut) the pdf of the mentioned transition probability
P {xt|xt−1,ut}. Furthermore, equation 2.70 of the Bayesian filter can be split into
a prediction step

fpred (xt) =
∫
Rn
f (xt|xt−1,ut) fcorr (xt−1) dxt−1 (2.71)

and a correction step
fcorr (xt) = η f (zt|xt) fpred (xt) (2.72)

distinguishing the two pdfs for the predicted state bel (xt) (cp. line 3 of equation 2.70’s
proof) and the actual believed state bel (xt), respectively.

2.3 Gaussian Filter
The problem of Bayesian filters is that they are in general not implementable. The
reason therefore arises from the infinity character of continuous values as indicated by
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equation 2.70 for Bayesian filters. As in the previous section, the introduced concepts in
this section and its subsections strongly refer to [1].

An exception in this context are Gaussian distributions or also named normal distributions,
since two single moments suffice to describe the whole distribution. Furthermore, the
properties of Gaussian distributions ensure that normally distributed random variables
stay Gaussian when applying Bayesian filters to them. In general, we refer to this
approach as Gaussian filters.

In particular, for a normally distributed random variable x the two mentioned moments
are the mean µx and the variance σ2

x as introduced in equations 2.20 and 2.22, respectively.
Consequently, a random variable x with Gaussian distribution is stated by x ∼ N (µx , σ

2
x)

with the pdf:

fx (x) = 1√
2πσ2

x
e
− (x−µx )2

2σ2
x (2.73)

In the case of Gaussian distributions over vectors one says a random vector x is n-
variate normally distributed with n denoting the dimension of x. But for simplicity most
times just multivariate normally distributed is used. The pdf of a multivariate Gaussian
x ∼ N (µx ,Σx) is given by

fx (x) = 1√
|2πΣx |

exp
(
−1

2(x − µx)>Σ−1
x (x − µx)

)
(2.74)

where |Σx | denotes the determinant and Σ−1
x the inverse of the matrix Σx .

Figure 2.6 depicts the pdfs of Gaussian distributions over a scalar and a 2 dimensional
vector. Both times they are zero-centered. In the scalar case the variance is 1 and in the
vector case the covariance matrix is indicated by the identity matrix I of size 2× 2. In
general, the identity matrix

I =


1 0 · · · 0
0 1 · · · 0
...

... . . . ...
0 0 · · · 1

 (2.75)

denotes a sparse matrix of size n × n. The reason why I is named identity matrix, is
because of its main property

D · I = D (2.76)

where D is an arbitrary matrix of size k × n.

From figure 2.6, we can also deduce a common interpretation of the believed state bel (xt)
in Gaussian filters. The most probable state - the mean µxt - is supposed as the actual
believed state and the covariance Σxt determines the uncertainty of this assumption. The
latter can be indicated in general by hyper-ellipsoids (projection into the plane).
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Figure 2.6: Gaussian distributions

An important property of multivariate normal distributions used within the remaining
thesis is linearity regarding transformations. Consider a multivariate Gaussian x and the
linear transformation:

y = Ax + b (2.77)

Then the random vector y is also multivariate normally distributed according to

y ∼ N (Aµx + b,AΣxA
>) (2.78)

with µx and Σx denoting the mean and covariance of x.

Proof. By [14] the pdf of a random vector y as depicted in equation 2.77 can be stated
by

fy (y) = 1
|A|

fx
(
A−1(y − b)

)

where fx (x) denotes the pdf of the random vector x.
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2.3. Gaussian Filter

From this, we can directly derive the pdf of y:

fy (y) = 1
|A|

1√
|2πΣx |

exp
(
−1

2
[
A−1(y − b)− µx

]>
Σ−1

x

[
A−1(y − b)− µx

])
= 1√

|A|2 |2πΣx |
exp

(
−1

2
[
A−1(y − b −Aµx)

]>
Σ−1

x

[
A−1(y − b −Aµx)

])

= 1√
|A| |2πΣx | |A>|

exp
(
−1

2 [y − (Aµx + b)]>
(
A>

)−1
Σ−1

x A−1 [y − (Aµx + b)]
)

= 1√
|2πAΣxA>|

exp
(
−1

2 [y − (Aµx + b)]>
(
AΣxA

>
)−1

[y − (Aµx + b)]
)

Comparing this pdf with equation 2.74, one can immediately read out the mean

µy = Aµx + b

and the covariance
Σy = AΣxA

>

of the random vector y confirming the linearity of multivariate Gaussian transformations:

y ∼ N (Aµx + b,AΣxA
>)

2.3.1 Kalman Filter

The Kalman Filter (KF) is probably the most popular implementation of Gaussian
filters. It was invented and therefore named by R. E. Kálmán in 1960 [21] by means of P.
Swerling and his work in 1959 [22]. The Kalman Filter is a technique for prediction and
filtering in order to obtain a believed state in continuous linear Gaussian systems.

The following three assumptions are made in continuous linear Gaussian systems used
for Kalman Filters [1]:

• initial probability: P {x0}
The believed state is assumed to be initially normally distributed:

bel (x0) = x0 ∼ N (µx0 ,Σx0) (2.79)

• transition probability: P {xt|xt−1,ut}
The state transition probability is assumed to be linear with added Gaussian control
noise:

xt = Atxt−1 +Bt(ut + ct) (2.80)
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2. Probabilistic Concepts in Robotics

At and Bt are matrices of size n × n and n ×m, respectively, and ct denotes a
zero-mean multivariate normally distributed control noise of dimension m and
covariance matrix Σct of size m×m.
Notice: ct reflects the mentioned uncertainty introduced by state transitions.
Thus, we derive by equation 2.21 for the expectation

µxt = Atxt−1 +Btut (2.81)

and by equation 2.58 for the covariance

Σxt = BtΣctB
>
t (2.82)

giving us by means of equations 2.77 and 2.78 the multivariate Gaussian:

xt|xt−1,ut ∼ N (Atxt−1 +Btut,BtΣctB
>
t ) (2.83)

• measurement probability: P {zt|xt}
The state measurement probability is assumed to be linear with added Gaussian
measurement noise:

zt = Ctxt + dt (2.84)

Ct is a matrix of size k × n and dt denotes a zero-mean multivariate normally
distributed measurement noise of dimension k and covariance matrix Σdt of size
k × k.
Notice: dt reflects the mentioned uncertainty coming along with measurements.
Thus, we derive by equation 2.21 for the expectation

µzt = Ctxt (2.85)

and for the covariance
Σzt = Σdt (2.86)

giving us by means of equations 2.77 and 2.78 the multivariate Gaussian:

zt|xt ∼ N (Ctxt,Σdt) (2.87)

In [1], it was shown that these three assumptions suffice to guarantee Gaussian distribu-
tions for the predicted state

bel (xt) ∼ N (µ̄xt , Σ̄xt) = N (Atµxt−1 +Btut,AtΣxt−1A
>
t +BtΣctB

>
t ) (2.88)

and the actual believed state

bel (xt) ∼ N (µxt ,Σxt) = N (µ̄xt +Kt(zt −Ctµ̄xt), (I −KtCt)Σ̄xt) (2.89)

where
Kt = Σ̄xtC

>
t (CtΣ̄xtC

>
t + Σdt)−1 (2.90)
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2.3. Gaussian Filter

denotes the Kalman gain, a matrix of size n×k. The Kalman gain determines the impact
of the current measurement zt when correcting the predicted state bel (xt).

From equations 2.88 to 2.90, one can directly derive algorithm 2.1 for the Kalman Filter.
Line 1 and 2 implement the prediction step 2.71 based on 2.88, in line 3 the Kalman gain
Kt is calculated and line 4 and 5 implement the correction step 2.72 based on 2.89.

The computational complexity of algorithm 2.1 is determined by the cubic complexity
of matrix multiplication and inversion. Because of the symmetric nature of covariance
matrices, they can be stored in triangular matrices. Multiplications with triangular
matrices can be performed in quadratic time [23]. The same holds for sparse matrices
as assumed for KtCt in line 5. Furthermore, today’s most efficient matrix inversion
algorithms solve the inversion in line 3 in O(k2.4) time [24]. Thus, the complexity of the
Kalman Filter algorithm can be stated by O(n2 + k2.4), where n denotes the dimension
of the random state vector xt and k the dimension of the measurement noise dt.

Algorithm 2.1: Kalman Filter
input :µxt−1 , Σxt−1 , ut, zt
output :µxt , Σxt

1 µ̄xt = Atµxt−1 +Btut;
2 Σ̄xt = AtΣxt−1A

>
t +BtΣctB

>
t ;

3 Kt = Σ̄xtC
>
t (CtΣ̄xtC

>
t + Σdt)−1;

4 µxt = µ̄xt +Kt(zt −Ctµ̄xt);
5 Σxt = (I −KtCt)Σ̄xt ;

Informally one can imagine the prediction step as applying the linear transition 2.81
to the most probable previous state - the expectation µxt−1 . The previous uncertainty
presented by Σxt−1 is transformed in a way considering the covariance’s quadratic nature
and adding additional uncertainty depicted by Σct , which has to be transformed in the
same way. In the correction step, the currently predicted state denoted by µ̄xt is adjusted
by the deviation of the predicted measurement Ct µ̄xt and the actual measurement zt
according to the Kalman gain Kt. The final uncertainty is obtained by incorporating
the measurements uncertainty depicted by Σdt into the previous uncertainty denoted by
Σ̄xt via the Kalman gain Kt again.

2.3.2 Extended Kalman Filter

In the previous subsection we have seen that linear functions for the transition and
measurement probability are essential for Kalman Filters. These assumptions allow the
computed believed state to stay Gaussian during the progress of time and, thus, making
Kalman Filters so efficient. Unfortunately, linear transition and measurement functions
cannot be guaranteed in practice. Hence, in order to extend the Kalman Filter approach
to a wider area of application these assumptions are omitted, which is therefore referred
to as Extended Kalman Filter (EKF).
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2. Probabilistic Concepts in Robotics

Consequently, in EKF in general non-linear functions for the transition and measurement
probability are allowed. The central idea in EKF is now to re-establish the conditions for
the achievements of Kalman Filters introduced in the previous subsection by linearization.
For linearization, several methods in literature exist. EKF makes usage of the Taylor
series

g(x) ≈
∞∑
n=0

g(n)(a)
n! (x− a)n (2.91)

of a function g around a point a where g(n)(a) denotes the nth derivative of the function
evaluated at a and n! the nth factorial with 0! = 1.

In particular, the first order Taylor expansion

g(x) ≈ g(a) + g′(a)(x− a) (2.92)

is used within EKF in order to re-establish linear functions. Obviously, this is just a
rough approximation, which may be appropriate but sometimes also a source of error.

Notice: In the case of a multidimensional vector-valued function

g (x) =


g1(x1, . . . , xn)
g2(x1, . . . , xn)

...
gm(x1, . . . , xn)

 (2.93)

the first derivative

g′(x) = dg

dx
=


∂g1
∂x1

∂g1
∂x2

· · · ∂g1
∂xn

∂g2
∂x1

∂g2
∂x2

· · · ∂g2
∂xn...

... . . . ...
∂gm
∂x1

∂gm
∂x2

· · · ∂gm
∂xn

 (2.94)

evaluates to the Jacobian matrix consisting of all first-order partial derivatives.

Let us now consider the transition and measurement probability in the scope of EKF as
we did for Kalman Filters in detail:

• transition probability: P {xt|xt−1,ut}
The state transition probability assumption is weakened in a way accepting in
general non-linear transitions with added Gaussian control noise:

xt = g (xt−1, ūt) = g (xt−1,ut + ct) (2.95)

Again, ct denotes a zero-mean multivariate normally distributed control noise of
dimension m and covariance matrix Σct of size m ×m reflecting the mentioned
uncertainty introduced by state transitions.
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2.3. Gaussian Filter

This transition is approximated by linearizing it around the most probable values of
its arguments at time t. Obviously, this is the expected value µxt−1 of the previous
believed state bel (xt−1) and the current control command ut. From this follows

xt ≈ g
(
µxt−1 ,ut

)
+Gt

(
xt−1 − µxt−1

ct

)
(2.96)

≈ g
(
µxt−1 ,ut

)
+Gxt−1(xt−1 − µxt−1) +Gutct (2.97)

with

Gt =
dg
(
µxt−1 ,ut

)
d
(
x>t−1 ū>t

)> =
(
dg
(
µxt−1 ,ut

)
dxt−1

dg
(
µxt−1 ,ut

)
dūt

)
=
(
Gxt−1 Gut

)
(2.98)

denoting the Jacobian matrix of function g.
Thus, we derive by equation 2.21 for the expectation

µxt = g
(
µxt−1 ,ut

)
+Gxt−1(xt−1 − µxt−1) (2.99)

and by equation 2.58 for the covariance

Σxt = GutΣctG
>
ut (2.100)

giving us by means of equations 2.77 and 2.78 the multivariate Gaussian:

xt|xt−1,ut ∼ N (g
(
µxt−1 ,ut

)
+Gxt−1(xt−1 − µxt−1),GutΣctG

>
ut) (2.101)

• measurement probability: P {zt|xt}
The state measurement probability assumption is weakened in a way accepting in
general non-linear functions with added Gaussian measurement noise:

zt = h (xt) + dt (2.102)

Again, dt denotes a zero-mean multivariate normally distributed measurement noise
of dimension k and covariance matrix Σdt of size k × k reflecting the mentioned
uncertainty introduced by measurements.
Just like before, this function is approximated by linearizing it around the most
probable value of its argument at time t, which is in this case the mean µ̄xt of the
currently predicted state bel (xt). Hence, we can re-state

zt ≈ h (µ̄xt) +Ht(xt − µ̄xt) + dt (2.103)

with
Ht = dh (µ̄xt)

dxt
(2.104)

denoting the Jacobian matrix of function h.
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Thus, we derive by equation 2.21 for the expectation

µzt = h (xt) ≈ h (µ̄xt) +Ht(xt − µ̄xt) (2.105)

and for the covariance
Σzt = Σdt (2.106)

giving us by means of equations 2.77 and 2.78 the multivariate Gaussian:

zt|xt ∼ N (h (µ̄xt) +Ht(xt − µ̄xt),Σdt) (2.107)

By simple comparison of equations 2.88, 2.89 and 2.90 of the Kalman Filter with
equations 2.101 and 2.107, respectively, we derive

bel (xt) ∼ N (µ̄xt , Σ̄xt) = N (g
(
µxt−1 ,ut

)
,Gxt−1Σxt−1G

>
xt−1 +GutΣctG

>
ut) (2.108)

for the believed predicted state,

bel (xt) ∼ N (µxt ,Σxt) = N (µ̄xt +Kt(zt − h (µ̄xt)), (I −KtHt)Σ̄xt) (2.109)

for the actual believed state and

Kt = Σ̄xtH
>
t (HtΣ̄xtH

>
t + Σdt)−1 (2.110)

for the Kalman gain of the Extended Kalman Filter.

Similar to the previous subsection, we can now easily specify algorithm 2.2 for the
Extended Kalman Filter from equations 2.108, 2.109 and 2.110. As we will see in
succeeding chapters, g and Gt, respectively, apply the given motion model, and h
and Ht, respectively, apply the measurement model, which implements a coordinate
transformation from the world’s coordinate system into the vehicle’s coordinate system.

Algorithm 2.2: Extended Kalman Filter
input :µxt−1 , Σxt−1 , ut, zt
output :µxt , Σxt

1 µ̄xt = g
(
µxt−1 ,ut

)
;

2 Σ̄xt = Gxt−1Σxt−1G
>
xt−1 +GutΣctG

>
ut ;

3 Kt = Σ̄xtH
>
t (HtΣ̄xtH

>
t + Σdt)−1;

4 µxt = µ̄xt +Kt(zt − h (µ̄xt));
5 Σxt = (I −KtHt)Σ̄xt ;

Based on the Kalman Filter and especially its extension, we are now able to present a
solution for the SLAM problem based on EKF in the next chapter
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CHAPTER 3
EKF-SLAM using Visual Markers

EKF-SLAM is a technique solving the Simultaneous Localization and Mapping problem
by exploiting Extended Kalman Filters as introduced in the previous chapter. For the
purpose of this thesis, it is assumed that the explored environments contain visual markers
as features for localizing and for creating 2D feature-based maps. Therefore, the robot is
equipped with a visual marker detection. Such a setting is depicted in figure 3.1.

Figure 3.1: Setting of EKF-SLAM using visual markers
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This chapter introduces the theoretical foundations of EKF-SLAM based on [1] used
later on for the implementation. In doing so, the concepts of Bayesian filters and their
realization in EKFs presented in the previous chapter are extended to the SLAM topic.

Before getting into the actual topic, section 3.1 briefly sums up the theoretical setting
of SLAM. In section 3.2, the SLAM setting is adapted to fit for EKF-SLAM and a
generic solution for the problem is presented. This generic solution is then elaborated in
section 3.3 for known correspondences between map features and measurements using the
IDs of visual markers. Finally, section 3.4 extends the presented solution by incorporating
also measurements containing no IDs of visual markers and thus supporting also unknown
correspondences.

3.1 SLAM

In SLAM, the HMM underlying Bayesian filters introduced in chapter 2 and shown in
figure 2.5 is extended by a map m. Figure 3.2 depicts this new setting where extracts of
the map are received via the cyclic measurements. Again, shaded nodes denote given
evidence of the correspondent random variable in the sense of conditional probability
introduced in chapter 2. The remaining nodes represent the actual target of SLAM:

• robot’s pose xt

• map m

x0 x1 xt−1 xt xt+1

u1 ut−1 ut ut+1

z1 zt−1 zt zt+1

m

Figure 3.2: Hidden Markov Model underlying SLAM [1]
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This setup allows us now to distinguish between full SLAM

x0:t,m|u1:t, z1:t (3.1)

and online SLAM:
xt,m|u1:t, z1:t (3.2)

In the full SLAM problem, the whole trajectory of the vehicle during exploration of its
environment is desired. For the online SLAM problem, only the current vehicle’s pose is
of interest. Thus, online SLAM is just a special case of full SLAM. In particular, the pdf
of online SLAM is just the marginalization of the pdf of full SLAM:

f (xt,m|u1:t, z1:t) =
∫
Rn
. . .

∫
Rn
f (x0:t,m|u1:t, z1:t) dxt−1 . . . dx0 (3.3)

In practice the full SLAM is hardly relevant because of its computational complexity.
But for the online SLAM problem several techniques exist, which reduce the computa-
tional complexity by exploiting the recursive formula of Bayesian filters introduced in
equation 2.70 of the previous chapter. One of these techniques is EKF-SLAM covered in
this thesis. In order to apply equation 2.71 for the prediction step and equation 2.72 for
the correction step of Bayesian filters to online SLAM, we have to adapt the predicted
and believed state.

In particular, the predicted state introduced in equation 2.68 is enhanced with the map
m:

bel (xt) = xt,m|u1:t, z1:t−1 (3.4)

The same applies to the believed state introduced in equation 2.65:

bel (xt) = xt,m|u1:t, z1:t (3.5)

This adaptation is also often emphasized by replacing the state vector xt with an extended
state vector

yt =
(

xt
m

)
(3.6)

in the recursive formula of Bayesian filters.

3.2 EKF-SLAM

In EKF-SLAM, the estimated map m is a composition of N map features:

m = (m>1 . . .m>N )> (3.7)
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Since this thesis deals in detail with EKF-SLAM in 2D, a feature’s absolute pose in the
map can be given in Cartesian coordinates by

mj =

 x
y
θ

 , Σmj =

 σ2
x Σxy Σxθ

Σyx σ2
y Σyθ

Σθx Σθy σ2
θ

 , j ∈ [1, N ], (3.8)

with x, y ∈ R and θ ∈ (−π, π) (cp. figure 3.3a). For the sake of completeness, the
covariance matrix of the map feature is additionally depicted in equation 3.8.

Similarly, the estimated vehicle’s pose can be indicated by

x =

 x
y
θ

 , Σx =

 σ2
x Σxy Σxθ

Σyx σ2
y Σyθ

Σθx Σθy σ2
θ

 (3.9)

with x, y ∈ R and θ ∈ (−π, π). Again, for the sake of completeness the vehicle’s covariance
matrix is additionally depicted in equation 3.9.

This allows us now to refine equation 3.6 for the extended state vector by

y =


x

m1
...

mN

 , Σy =


Σx Σxm1 · · · ΣxmN

Σm1x Σm1 · · · Σm1mN

...
... . . . ...

ΣmNx ΣmNm1 · · · ΣmN

 (3.10)

giving a random vector of dimension 3(N + 1) and a covariance matrix of size 3(N + 1)×
3(N + 1).

Furthermore, the control command is indicated by

ut = (v ω)> (3.11)

with v, ω ∈ R denoting the given velocity and angular rate at time t, respectively.

Finally, the measurement at time t

zt = (z>t,1 . . . z>t,M )> (3.12)

is a composition of
zt,i = (id r φ θ)>, i ∈ [1,M ] (3.13)

representing an observed feature’s 2D pose in spherical coordinates (cp. figure 3.3b)
with r ∈ R and φ, θ ∈ (−π, π) relative to the vehicle’s current pose and an optional ID
id ∈ {Z ∪ ∅}. The reason, why observed features are assumed to be given in spherical
coordinates, is due to the way how measurements are taken. It is worth noting, that
the number of observed features M is typically smaller than the actual number of map
features N , except right at the beginning.
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y

x

x′

y′

θ

(a) Cartesian coordinates (x′ y′ θ)>

y

x

r′

φ

θ

(b) Spherical coordinates (r φ θ)>

Figure 3.3: Different representations of a 2D pose and their relationship

During the remaining thesis, mj is called map feature or simply feature and zt,i is called
observed feature or observation. In principle, both are describing the mentioned visual
markers. But in the first time they are considered from the map’s point of view and the
other time they are observed by the vehicle. Thus they are considered from the vehicle’s
point of view. equations 3.7 and 3.9 represent the actual target of the SLAM problem:
localization and mapping. Further, equations 3.11 and 3.12 represent given evidence
during the progress of time helping to achieve this goal. That is why the former are
depicted as random vectors and the latter as deterministic vectors given at time t.

By means of this, we are now ready to introduce algorithm 3.1 for EKF-SLAM. The stated
algorithm is also referred to as EKF-SLAM cycle, since it embraces all required steps
repeated for each point in time. The algorithm itself is at this point rather generic and
will be complemented in the next section with appropriate algorithms for the particular
function calls. But at this moment it is sufficient for a general understanding.

Algorithm 3.1: EKF-SLAM
input :µyt−1 , Σyt−1 , ut, zt
output :µyt , Σyt

1 (µ̄yt , Σ̄yt) = Prediction(µyt−1, Σyt−1, ut);
2 ct = Data Association(µ̄yt, zt);
3 ( ¯̄µyt ,

¯̄Σyt) = Update(µ̄yt, Σ̄yt, zt, ct);
4 (µyt , Σyt) = Integration( ¯̄µyt,

¯̄Σyt, zt, ct);

Line 1 realizes the prediction step of Bayesian filters. In this step, the old believed state

bel
(
yt−1

)
∼ N (µyt−1 ,Σyt−1) (3.14)
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3. EKF-SLAM using Visual Markers

is moved according to the current control command ut, giving the predicted state:

bel (yt) ∼ N (µ̄yt , Σ̄yt) (3.15)

In line 2, the correspondences between observed features zt,i and map features mj are
found and stored in the correspondence vector

ct = (c1 . . . cM )> (3.16)

with

ci =


∅ observed feature zt,i corresponds to no map feature
j observed feature zt,i corresponds to map feature mj , j ∈ [1, N ]
new observed feature zt,i represents a new map feature

(3.17)

for i ∈ [1,M ]. The correction step of Bayesian filters happens in line 3. In this step,
the previous predicted state is updated by the measurements zt according to the found
correspondences ct. Unlike in ordinary EKF this step returns just an intermediate
believed state

bel (yt) ∼ N ( ¯̄µyt ,
¯̄Σyt) (3.18)

which still needs to be complemented by newly found features in zt according to ct. This
integration of new features into the current map is indicated in line 4 of the algorithm
yielding the final believed state:

bel (yt) ∼ N (µyt ,Σyt) (3.19)

In the next section, we will have a more detailed look on the so far roughly explained steps
of algorithm 3.1. In doing so, we will recognize particular parts of the already introduced
algorithm 2.2 for EKF. Assuming known correspondences between observations and map
features allows us to focus on the essentials of EKF-SLAM.

3.3 Known Feature Correspondences
In this section, we will explicitly state algorithms for the functions called in the generic
algorithm 3.1 of EKF-SLAM. At this moment the found correspondences between observed
features and map features only base upon the recognized IDs of visual markers. Figure 3.4
depicts such a visual marker provided by ARToolKit [10] and used within this thesis. In
each visual marker a unique ID is encoded. In the case the ID could not be detected,
i.e. zt,i.id = ∅, i ∈ [1,M ] the particular measurement is neglected at this point. For this
reason, we say the correspondences are known, because there is no uncertainty left.
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(a) ARToolKit visual marker with ID 1 [10] (b) Observed visual marker in Gazebo

Figure 3.4: Visual marker used for features within the thesis

3.3.1 Prediction

The first function call in algorithm 3.1 indicates the prediction step of Bayesian filters.
Thus, one can directly derive algorithm 3.2 for the prediction part of the EKF-SLAM
cycle from lines 1 and 2 of algorithm 2.2 for EKF. But instead of xt the extended random
vector yt introduced in equation 3.10 is now used.

Algorithm 3.2: Prediction
input :µyt−1 , Σyt−1 , ut
output : µ̄yt , Σ̄yt

1 µ̄yt = ḡ
(
µyt−1 ,ut

)
;

2 Σ̄yt = Ḡyt−1Σyt−1Ḡ
>
yt−1 + ḠutΣctḠ

>
ut ;

The computational complexity of algorithm 3.2 highly depends on the dimension of the
extended state vector yt and thus on the feature number N of the map m. Assuming
linear complexity for ḡ

(
µyt−1 ,ut

)
- which is realistic as we will see in chapter 4 - the

crucial factor proves to be the matrix multiplication. Again, this can be accomplished in
O(N2) for triangular covariance matrices.

3.3.2 Data Association

In the next step of the EKF-SLAM cycle, the correspondences between measurements
and map need to be found in order to correct the previous predicted state. This data
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3. EKF-SLAM using Visual Markers

association is depicted in algorithm 3.3. As already mentioned, we are only interested in
correspondences determined by perceived IDs of visual markers at this moment. This is
ensured in line 3 of the algorithm, where all measurements without IDs are neglected, i.e.
their correspondences stay initialized to ∅. In line 4, the actual correspondence between
detected ID and map feature is tried to be established. This can be accomplished with a
simple lookup table maintained during the progress of the EKF-SLAM cycle. Finally,
depending on whether a correspondence is found or not, the correspondence ci is either
set accordingly or a new visual marker has been detected.

Algorithm 3.3: Data Association
input : µ̄yt = (µ̄xt µ̄m1 . . . µ̄mN )>, zt = (zt,1 . . . zt,M )>
output : ct = (c1 . . . cM )>

1 ct = (∅ . . . ∅)>;
2 for i = 1 to M do
3 if zt,i.id 6= ∅ then
4 j = index of feature µ̄mj corresponding to visual marker with ID zt,i.id;
5 if j 6= ∅ then // known visual marker
6 ci = j;
7 else // new visual marker
8 ci = new;
9 end

10 end
11 end

Obviously, the computational complexity of algorithm 3.3 is determined by the surround-
ing for-loop. Since the remaining assignments can be accomplished in constant time, we
obtain an over all complexity of O(M). Keep in mind, the number of observations M is
usually limited by the current number of map features N .

3.3.3 Update

As soon as we have associated the observed features with the map features, we can
incorporate the measurements into the predicted state in order to correct it. This update
is indicated in line 3 of algorithm 3.1 for EKF-SLAM and corresponds to the correction
step in Bayesian filters. Hence, we can directly derive algorithm 3.4 for the update in
EKF-SLAM cycle from lines 3 to 5 of algorithm 2.2 for EKF.

Similar to the prediction part of the EKF-SLAM cycle the random vector xt is re-
placed by the extended random vector yt introduced in equation 3.10. Furthermore the
correspondence vector ct is added in line 2 of algorithm 3.4. This indicates that the
measurement function h, which maps the map features to observed features, depends on
their association.

40



3.3. Known Feature Correspondences

Algorithm 3.4: Update
input : µ̄yt , Σ̄yt , zt, ct
output : ¯̄µyt ,

¯̄Σyt
1 Kt = Σ̄ytH

>
t (HtΣ̄ytH

>
t + Σdt)−1;

2 ¯̄µyt = µ̄yt +Kt(zt − h
(
µ̄yt , ct

)
);

3 ¯̄Σyt = (I −KtHt)Σ̄yt ;

The computational complexity of algorithm 3.4 conforms with the complexity of algo-
rithm 2.1 for the Kalman Filter: O(N2 +M2.4). Since the number M of observations is
typically at least one magnitude smaller than the overall number N of map features, it is
most of the time simple denoted by O(N2).

3.3.4 Integration

In the last step of the EKF-SLAM cycle depicted in algorithm 3.1 newly found map
features are integrated into the intermediate believed state bel (yt). Adding all new map
features gives then the final believed state bel (yt). For this purpose, we introduce the
integration function p̄ as following:

yt = p̄
(¯̄yt, zt,i + dt,i

)
= p̄

(¯̄yt, z̄t,i) (3.20)

The function integrates the measurement zt,i with a zero-mean multivariate Gaussian
measurement noise dt,i into the extended state vector ¯̄yt = (x>t m>1 . . .m>N )> such that
yt = (x>t m>1 . . .m>N m>N+1)> describes the augmented state vector. Similarly as we did
for the EKF, this function is approximated by linearizing it around the most probable
values of its arguments at time t. Obviously, this is the expected value ¯̄µyt of the current
believed state bel (yt) and the actual measurement zt,i. From this follows

yt ≈ p̄
( ¯̄µyt , zt,i

)
+ P̄ t(¯̄yt − ¯̄µyt dt,i)> (3.21)

≈ p̄
( ¯̄µyt , zt,i

)
+ P̄ yt(¯̄yt − ¯̄µyt) + P̄ zt,idt,i (3.22)

with

P̄ t =
dp̄
( ¯̄µyt , zt,i

)
d
(
¯̄y>t z̄>t,i

)> =
(
dp̄
( ¯̄µyt , zt,i

)
d¯̄yt

dp̄
( ¯̄µyt , zt,i

)
dz̄t,i

)
=
(
P̄ yt P̄ zt,i

)
(3.23)

denoting the Jacobian matrix of function p̄.

Thus, by equation 2.21 we derive for the expectation

µyt = p̄
( ¯̄µyt , zt,i

)
(3.24)

and by equation 2.23 for the covariance:

Σyt = P̄ yt
¯̄ΣytP̄

>
yt + P̄ zt,iΣdt,iP̄

>
zt,i (3.25)
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From equations 3.24 and 3.25, one can now directly derive algorithm 3.5 for the integration
part of the EKF-SLAM cycle. The for-loop in combination with line 4 ensures that all
newly found map features are added to the current believed state. In lines 5 and 6 the
actual integration happens.

Algorithm 3.5: Integration
input : ¯̄µyt ,

¯̄Σyt , zt = (zt,1 . . . zt,M )>, ct = (c1 . . . cM )>
output :µyt , Σyt

1 µyt = ¯̄µyt ;
2 Σyt = ¯̄Σyt ;
3 for i = 1 to M do
4 if ci 6= new then continue;
5 µyt = p̄

(
µyt , zt,i

)
;

6 Σyt = P̄ ytΣytP̄
>
yt + P̄ zt,iΣdt,iP̄

>
zt,i ;

7 end

The computational complexity of algorithm 3.5 is on the one hand determined by the
surrounding for-loop and on the other hand by the matrix multiplications inside. This
implicitly assumes linear complexity for p̄

(
µyt , zt,i

)
, similarly as we did in algorithm 3.2

for the prediction. This is realistic as we will see later on in chapter 4. Consequently,
we can denote the complexity by O(M ·N2). Nevertheless, lines 5 and 6 are executed
exactly N times for establishing a map composed of N features. Thus, the complexity for
creating the map itself is separated from the remaining EKF-SLAM cycle and denoted
by O(N3).

Under these considerations, summing up the complexities of the remaining algorithms
gives an overall complexity of O(N2) for the EKF-SLAM cycle depicted in algorithm 3.1.
This is quiet efficient and enables us to reasonable implement the EKF-SLAM cycle later
on.

In the next section, the introduced solution for EKF-SLAM with known correspondences
will be enhanced by supporting also unknown correspondences. In doing so, unknown
correspondences are tried to be resolved based on the poses of the measurements and
map features. This enables us to benefit from all received measurements, rather than
only observations containing a visual marker ID.
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3.4 Unknown Feature Correspondences

Beside measurements coming along with visual marker IDs, one might also want to use
the remaining observations without IDs in order to improve the update step. Otherwise
these measurements are discarded, resulting in an information loss. For this purpose,
this thesis will make use of the Nearest Neighbor Standard Filter (NNSF) [16] approach,
which is basically a maximum likelihood estimator associating an observed feature with
a map feature of minimal Mahalanobis Distance. The latter will be discussed in detail
in subsection 3.4.1. Until then, we simply denote it as the most probable association.
Consequently, algorithm 3.1 presented in section 3.2 has to be adapted to support an
additional step enhancing the certain correspondence data ct with further most probable
correspondences resulting in c̄t. For the sake of completeness, algorithm 3.6 recaps this
adaptation.

Algorithm 3.6: EKF-SLAM (supporting unknown correspondences)
input :µyt−1 , Σyt−1 , ut, zt
output :µyt , Σyt

1 (µ̄yt , Σ̄yt) = Prediction(µyt−1, Σyt−1, ut);
2 ct = Data Association(µ̄yt, zt);
3 c̄t = NNSF(µ̄yt, Σ̄yt, zt, ct);
4 ( ¯̄µyt ,

¯̄Σyt) = Update(µ̄yt, Σ̄yt, zt, c̄t);
5 (µyt , Σyt) = Integration( ¯̄µyt,

¯̄Σyt, zt, c̄t);

In line 3 of algorithm 3.6 the mentioned NNSF approach is invoked, yielding enhanced
correspondence data c̄t, which is then continued to be used instead of ct. Moreover, there
are two slightly different versions of NNSF considered in this thesis, namely local and
global NNSF [25].

The first one - depicted in algorithm 3.7 - examines every observed feature zt,i, which
has not been associated yet with a map feature based on an ID and tries to find
the most probable corresponding map feature mj . Again, only map features mj are
considered, which are not already associated with an observation including an ID. These
two limitations are ensured in lines 3 and 7. The reason why algorithm 3.7 is labeled
local, is because, it does not avoid local optima such as two observations zt,i and zt,i′
without IDs associated with the same map feature mj . Typical proceedings covering this
drawback take the nearer one of zt,i and zt,i′ or reject both of them since both have
been proven to be supposable. The latter one describes a more conservative approach,
since the association decision is hard and cannot be withdrawn. Unfortunately, the
data association has a tremendous impact on the the further evolution of the estimation
process. We will see this in chapter 5, when discussing the results of the provided solution.
Thus, the conservative proceeding was chosen for the implementation trying to avoid
wrong associations.
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Algorithm 3.7: Nearest Neighbor Standard Filter (local)
input : µ̄yt , Σ̄yt , zt = (zt,1 . . . zt,M )>, ct = (c1 . . . cM )>
output : c̄t = (c̄1 . . . c̄M )>

1 c̄t = ct;
2 for i = 1 to M do
3 if zt,i.id 6= ∅ then continue;// no association needed
4 minj = ∅;
5 mind =∞;
6 for j = 1 to N do
7 if j ∈ ct then continue;// already associated

8 d2
t,ij = Mahalanobis Distance(µ̄yt, Σ̄yt, zt, i, j);

9 if d2
t,ij < mind then

10 minj = j;
11 mind = d2

t,ij ;
12 end
13 end
14 if mind < γ then c̄i = minj ;
15 end

The second version considered for the NNSF approach is depicted in algorithm 3.8. This
version avoids local optima as described before by investigating each possible combination
of observed features zt,i and map features mj in lines 10 to 14. Like before, only observed
features zt,i and map features mj are considered, which have not been associated based
on given IDs, yet. This is ensured in lines 2 to 9 with the help of the two arrays A and B.
Then, in line 15 a minimum assignment presenting the most probable association of the
considered features is obtained. Thus, line 15 describes an optimization problem, which
is a typical task in the field of linear programming. In the case of the implementation
corresponding to this thesis, an implementation of Munkre’s algorithm [26], [27] is used
for solving this optimization problem. Finally, in the lines 16 to 20 the correspondence
data is updated.

It is worth noting, although the global NNSF approach avoids local optima, it still might
yield wrong correspondences. Imagine, for instance, a huge uncertainty in the estimated
pose of the robot as well as of the map features. Received measurements can be associated
with any map feature. In this case, a correct association is rather unlikely. Thus, keeping
the uncertainty small is a key issue when using NNSF.
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Algorithm 3.8: Nearest Neighbor Standard Filter (global)
input : µ̄yt , Σ̄yt , zt = (zt,1 . . . zt,M )>, ct = (c1 . . . cM )>
output : c̄t = (c̄1 . . . c̄M )>

1 c̄t = ct;
2 k = 0;
3 for i = 1 to M do
4 if zt,i.id = ∅ then A[k + +] = i;// else no association needed
5 end
6 k = 0;
7 for j = 1 to N do
8 if j 6∈ ct then B[k + +] = j;// else already associated
9 end

10 for x = 1 to sizeof(A) do
11 for y = 1 to sizeof(B) do
12 D[x][y] = Mahalanobis Distance(µ̄yt, Σ̄yt, zt, A[x], B[y]);
13 end
14 end
15 C = minimum assignment {(x1, y1), (x2, y2), . . . } of D;
16 for (x, y) ∈ C do
17 i = A[x];
18 j = B[y];
19 if D[x][y] < γ then c̄i = j;
20 end

3.4.1 Mahalanobis Distance

Until now, we have not got into detail what is meant with themost probable correspondence
and how it is determined. Algorithm 3.7 as well as algorithm 3.8 use for this purpose
both the Mahalanobis distance

d =
√

(r − µr)>Σ−1
r (r − µr) (3.26)

in line 8 and 12, respectively, denoting the distance between a random vector r and its
expectation µr . Similar to the Euclidean distance

d =
√

(a − b)>(a − b) (3.27)

between two vectors a and b a smaller Mahalanobis distance indicates more probable
correspondences. But in contrast to the Euclidean distance, the Mahalanobis distance
also incorporates the inherent uncertainty depicted in Σr coming along in the task of
SLAM. That is, why the Mahalanobis distance is expressed by a random variable. Using
the Mahalanobis distance instead of the Euclidean distance may yield contradictory
results as figure 3.5 illustrates. Although figure 3.5a suggests associating the map feature
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mj with the observation zi′ , figure 3.5b suggests the opposite under consideration of the
given uncertainty.

Notice: The ellipse in figure 3.5b indicates the assumed distribution for measurements of
the map feature mj based on the measurement noise. We will come back to this soon.

mj

zi

zi′

x

y

(a) Euclidean distance

mj

zi

zi′

x

y

(b) Mahalanobis distance

Figure 3.5: Euclidean distance vs. Mahalanobis distance

In order to derive an expression for the Mahalanobis distance between a map feature mj

and an observation zi let us assume for the remaining thesis independence between the
individual observed features of a measurement at time t as suggested in [1]:

f (zt) =
M∏
i

f (zt,i) (3.28)

Typically, this is a good approximation, especially for static environments as covered in
this thesis. Apart from that, it enables us to specify the overall measurement probability
during one cycle of EKF-SLAM by its individuals:

f (zt|u1:t, z1:t−1) =
M∏
i

f (zt,i|u1:t, z1:t−1) (3.29)

The individual measurement probabilities for the Mahalanobis distance are now deduced
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as follows:

f (zt,i|u1:t, z1:t−1) =
∫
R3(N+1)

f (zt,i,yt|u1:t, z1:t−1) dyt 2.48

=
∫
R3(N+1)

f (zt,i|yt,u1:t, z1:t−1) f (yt|u1:t, z1:t−1) dyt 2.46

=
∫
R3(N+1)

f (zt,i|yt) f (yt|u1:t, z1:t−1) dyt 2.51

This integral describes a convolution of two multivariate Gaussians similar to equation 2.71
of the prediction step. The first multivariate Gaussian

zt,i|yt ∼ N (hj
(
µ̄yt
)

+Ht,j(yt − µ̄yt),Σdt,i) (3.30)

can be derived by the equations 2.105 and 2.106 with

h
(
µ̄yt
)

=

 hj1
(
µ̄yt
)

hj2
(
µ̄yt
)

...

 , Ht,j =
dh
(
µ̄yt
)

dyt
=

 Ht,j1

Ht,j2
...

 (3.31)

and

Σdt =


Σdt,i1 0 · · ·

0 Σdt,i2 · · ·
...

... . . .

 (3.32)

for j1, j2, . . . ∈ [1, N ] and i1, i2, . . . ∈ [1,M ], because of the independent measurement
assumption. The second multivariate Gaussian

yt|u1:t, z1:t−1 ∼ N (µ̄yt , Σ̄yt) (3.33)

describes the predicted state bel (yt) at the time of data association.

Consequently, the measurement probability of a single observation can be derived by
comparison with equation 2.108 analogous to [1] giving again a multivariate Gaussian:

zt,i|u1:t, z1:t−1 ∼ N (hj
(
µ̄yt
)
,Ht,jΣ̄ytH

>
t,j + Σdt,i) (3.34)

This result should not come as a surprise, since the mean hj
(
µ̄yt
)
and the covariance

Ht,jΣ̄ytH
>
t,j + Σdt,i are already used in the update step in the entire form of h

(
µ̄yt
)

and Ht describing the predicted measurements and its uncertainty. Remember, in
algorithm 3.4 ct is additionally handed over to h

(
µ̄yt
)
emphasizing the correspondences

(supposed at this time) between measurements and map features.

Hence, from the definition of the Mahalanobis distance in equation 3.26 and the deviation
of the individual measurement’s expectation and covariance in equation 3.34 one can now
directly derive algorithm 3.9. This algorithm is used for the calculation of the squared
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Algorithm 3.9: Mahalanobis Distance
input : µ̄yt , Σ̄yt , zt = (zt,1 . . . zt,M )>, i, j
output : dt,ij

1 µ̄zt,i = hj
(
µ̄yt
)
;

2 vt,ij = zt,i − µ̄zt,i ;
3 Σ̄zt,i = Ht,jΣ̄ytH

>
t,j + Σdt,i ;

4 d2
t,ij = v>t,ijΣ̄−1

zt,ivt,ij ;

Mahalanobis distance in the algorithms 3.7 and 3.8 implementing the two mentioned
NNSF approaches.

Finally, we have a closer look on the still left open γ, introduced in the algorithms 3.7
and 3.8 in line 14 and 19, respectively. As the usage already suggests, it is a threshold
distinguishing acceptable correspondences from unacceptable ones. Meaning, even if an
observed feature zt,i and a map feature mj are the nearest neighbors in the sense of
the Mahalanobis distance it might happen that they are still too far-off for reasonable
association with each other.

Let’s have a closer look on the Mahalanobis distance defined in equation 3.26 in order to
interpret γ appropriately. For this purpose, we assume a random vector r ∼ N (µr ,Σr)
of dimension n. Then we obtain for the squared Mahalanobis distance

d2 = (r − µr)>Σ−1
r (r − µr) ∼ χ2

n (3.35)

where χ2
n denotes a chi-square distribution with n degrees of freedom.

A chi-square distribution with n degrees of freedom is defined as the sum of n squared
statistically independent standard normally distributed random variables sk [14]:

χ2
n ∼

n∑
k=1

s2
k with sk ∼ N (0, 1), k ∈ [1, n] (3.36)

Proof. In order to show that the squared Mahalanobis distance is chi-squared distributed
with n degrees of freedom, we will use similar as in [16] following substitution:

s = R−1(r − µr)

The matrix R is received via a Cholesky decomposition from Σr :

Σr = RR>

Thus, we obtain for the random vector s a standard multivariate Gaussian:

s ∼ N (0, I )
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This can be easily verified by equation 2.21 for the mean

µs = R−1(µr − µr) = 0

and by equation 2.58 for the covariance:

Σs = R−1Σr(R−1)> = R−1RR>(R−1)> = I

Finally, we can derive the desired statement by

d2 = (r − µr)>Σ−1
r (r − µr)

= (r − µr)>(RR>)−1(r − µr)
= (r − µr)>(R−1)>R−1(r − µr)

= s>s =
n∑
k=1

s2
k

with
sk ∼ N (0, 1), k ∈ [1, n]

since s = (s1 . . . sn)> ∼ N (0, I ) and in [14] it was shown that the individuals are then
also standard Gaussian.

Hence, the Mahalanobis distance calculated in line 4 of algorithm 3.9 is based on a
chi-square distribution with 3 degrees of freedom. There are 3 degrees of freedom because
zt,i describes a measured 2D pose in our case, which is a vector of dimension 3. For
better imagination figure 3.6 depicts the cdf and pdf of a chi-square distribution with 3
degrees of freedom.

Based on this insight, we can now interpret γ as the threshold at which

α = Fd2 (γ) (3.37)

of measurements zt,i are accepted. Vice versa, γ is calculated by the inverse cdf of a
chi-square distribution with 3 degrees of freedom at the level α:

γ = F−1
d2 (α) (3.38)

In practice, typical values for α are between 0.9 and 0.95. Because of the underlying
Gaussian distribution 3.34 the threshold γ describes again a hyper-ellipsoid of the same
dimension as the measurements zt,i. This is called the validation region or validation
gate in [16] and is actually indicated by the ellipses in the figure 3.5b.
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Figure 3.6: Chi-square random variable x ∼ χ2
3

Summed up, NNSF tries to resolve unknown correspondences as follows:

1. Predict the remaining unassociated map features mj by means of hj
(
µ̄yt
)
obtaining

expected measurements µ̄zt,i ,

2. find the observed feature zt,i with the shortest Mahalanobis distance and

3. check if this feature lies inside the validation region defined by the threshold γ,

4. in which case the observed feature zt,i is associated with the map feature mj in
the updated correspondence data c̄t.

The next chapter revisits the introduced Algorithms for EKF-SLAM by focusing more
on implementation details and further improvements. Beside that, the used geometry
and the associated transformation of different coordinate systems are touched.
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CHAPTER 4
Implementation

In the previous chapter, a general solution for EKF-SLAM with visual markers was
presented. In this chapter, we will revisit the introduced algorithms for EKF-SLAM
and enhance them with implementation details related to our setting. This includes
specific models for transition and measurement probabilities as well as integration and
implementation relevant optimizations. The finally implemented algorithms are freely
available as ROS package in [3].

The chapter starts with a short introduction into geometry related to mobile robotics in
section 4.1. This includes transformations from one coordinate system into another, which
are frequently needed in mobile robotics. After that the previous presented algorithms
for prediction, data association, update and integration are revisited in sections 4.2 to 4.5.
In section 4.2 the prediction algorithm is optimized and a motion model is introduced.
In the context of data association a model for the measurement probability is presented
in section 4.3. Section 4.4 proposes two different algorithms for the update step. In
section 4.5, the integration function is specified and the related integration algorithm is
optimized accordingly. Finally, section 4.6 concludes the chapter with an overview of the
provided ROS package.

4.1 Geometry
This thesis covers EKF-SLAM in 2D. In 2D space, a pose is a composition of a 2D
position and a single orientation angle. We have already seen in chapter 3 in figure 3.3
that a pose can be either given in Cartesian coordinates

(x y θ)> (4.1)

or in spherical coordinates:
(r φ θ)> (4.2)
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For the sake of convenience, both representations are recapitulated at this place.

Every pose corresponds to a specific coordinate system, in which it is defined. Throughout
the remaining thesis, we will distinguish between following coordinate systems, which are
also referred to as frames:

map This coordinate system describes the actual target coordinate system in which the
robot’s pose x and the poses of the map features m1, . . . ,mN are estimated. If
needed for better understanding poses in this frame are depicted with an upper M .

robot In this coordinate system the control commands ut are applied. Typically, in
SLAM applications the origin of this frame equals initially the map’s origin, but
not necessarily. If needed for better understanding poses in this frame are depicted
with an upper R.

sensor Within this coordinate system, the measurements zt are taken. If needed for
better understanding poses in this frame are depicted with an upper S.

In our context, the sensor pose is usually given in the robot coordinate system since
the sensor, i.e. the visual marker detection is attached to the robot. Figure 4.1 depicts
this setting. Although it may seem unusual to have the x-axis upright, it has been
proven useful to define the x-axis in the viewing direction of a vehicle in the context of
orientation.

xS

yS

xR

yR

xRS

yRS

θRS

+θR −θR

Figure 4.1: Sensor’s pose (xRS yRS θRS )> in robot coordinate system
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In figure 4.2, it is illustrated how a feature, i.e. a visual marker is observed. Obviously,
features are detected by the sensor. Consequently, their poses are given in the sensor
coordinate system. But in contrast to the sensor pose, which was specified in Cartesian
coordinates, the poses of observed features are assumed to be in spherical coordinates.
As already stated in the previous chapter, the reason therefore is due to the way how
measurements are taken and the noise is described.

x

y

xS

yS

rSO

φSO

θSO

Figure 4.2: Visual marker’s pose (rSO φSO θSO)> in sensor coordinate system
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Finally, figure 4.3 incorporates the sensor and robot poses into the map coordinate
system. Additionally the dashed arrows illustrate how the different coordinate systems
are interconnected. It is kind of natural to embed the robot coordinate system into
the map and, thus, to specify the robot’s pose in Cartesian coordinates relative to
the map’s origin. Although the map’s origin can be defined initially arbitrarily in the
context of SLAM, it is usual to define it overlapping with the robot’s initially pose, i.e.
x0 = (0M 0M 0M )>.

(xMR yMR θMR )>

(xRS yRS θRS )>

(rSO φSO θSO)>x

y

xS

yS

xR

yR

xM

yM

Figure 4.3: Map coordinate system

The remaining question is how to transform poses from one coordinate system into
another. A typical setting considered in the topic of SLAM is illustrated in figure 4.4. A
visual marker is detected by the sensor and, thus, its pose is given in sensor coordinates
and needs to be transformed into the robot frame for further processing. By considering
trigonometric relations, one derives for the 2D position of the observed visual marker in
the robot frame(

xRO
yRO

)
=

(
xRS
yRS

)
︸ ︷︷ ︸
Translation

+

 cos
(
θRS

)
− sin

(
θRS

)
sin
(
θRS

)
cos

(
θRS

) 
︸ ︷︷ ︸

Rotation

(
xSO
ySO

)
(4.3)

with the implicit conversion of the visual marker’s position in the sensor frame from
spherical coordinates into Cartesian coordinates:(

xSO
ySO

)
=

 rSO cos
(
φSO

)
rSO sin

(
φSO

)  (4.4)
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Figure 4.4: Transformation from sensor coordinate system into robot coordinate system

Thus, a transformation is in general a composition of a translation and a rotation.

In order to get a single transformation matrix including translation and rotation, often
homogeneous vectors are used: xRO

yRO
1

 =


cos

(
θRS

)
− sin

(
θRS

)
xRS

sin
(
θRS

)
cos

(
θRS

)
yRS

0 0 1


 xSO
ySO
1

 (4.5)

Finally, we can extend this approach to cover not only positions but also poses in 2D:
xRO
yRO
θRO
1


︸ ︷︷ ︸

xR
O

=


cos

(
θRS

)
− sin

(
θRS

)
0 xRS

sin
(
θRS

)
cos

(
θRS

)
0 yRS

0 0 1 θRS
0 0 0 1


︸ ︷︷ ︸

TR S


xSO
ySO
θSO
1


︸ ︷︷ ︸

xS
O

(4.6)

Notice: Special attention needs to be given to ensure θRS + θSO ∈ (−π, π).
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The underline in xR
O
emphasizes the fact that we are dealing with homogeneous poses.

Furthermore, the matrix TR S can be read as a transformation from the sensor frame S into
the robot frame R. Sometimes it is intentionally parametrized, i.e. TR S

xRS
, distinguishing

the underlying source of transformation.

An important property of the transformation matrix can be immediately derived by
equation 4.6:

TS R =
(
TR S
)−1

(4.7)

This allows the change of the coordinate system in both directions with just one transfor-
mation matrix given.

By means of this introduction into geometry used in mobile robotics, we can now proceed
with the particular steps in the cycle of EKF-SLAM for implementation.

4.2 Prediction
In algorithm 3.2 for the prediction step in the EKF-SLAM cycle the function ḡ

(
µyt−1 ,ut

)
in line 1 describes the transition probability. By definition, in static environments as
considered for this thesis, the map does not change during the vehicle’s movement.
Furthermore, it is legitimate to assume in feature-based SLAM that observed features
have no impact on the current control commands. This is because the features serve only
for localization but do not indicate obstacles in general. Thus, ḡ

(
µyt−1 ,ut

)
can be in

our case rewritten as

µ̄yt =


µ̄xt
µ̄m1
...

µ̄mN

 = ḡ
(
µyt−1 ,ut

)
=


g
(
µxt−1 ,ut

)
µm1
...

µmN

 (4.8)

with function g
(
µxt−1 ,ut

)
as introduced in equation 2.95 analogously to [17] and [18].

Furthermore, Ḡyt−1 and Ḡut in line 2 of algorithm 3.2 can be derived analogously to
equation 2.98, yielding under the given assumptions

Ḡyt−1 =
dḡ
(
µyt−1 ,ut

)
dyt−1

=


Gxt−1 0 · · · 0

0 I · · · 0
...

... . . . ...
0 0 · · · I

 (4.9)

and

Ḡut =
dg
(
µyt−1 ,ut

)
dūt

=


Gut

0
...
0

 (4.10)
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respectively, with Gxt−1 and Gut as introduced in the equation 2.98.

Thus, by means of equations 3.10, 4.9 and 4.10 the composition of Σ̄yt can be examined
by

Σ̄yt =


Σ̄xt Σ̄xtm1 · · · Σ̄xtmN

Σ̄m1xt Σm1 · · · Σm1mN

...
... . . . ...

Σ̄mNxt ΣmNm1 · · · ΣmN

 (4.11)

with
Σ̄xt = Gxt−1Σxt−1G

>
xt−1 +GutΣctG

>
ut (4.12)

and
Σ̄xtmj = Gxt−1Σxt−1mj , j ∈ [1, N ] (4.13)

whereas
Σ̄mjxt = Σ̄>xtmj

(4.14)

because of the covariance symmetry:

Σmjxt−1 = Σ>xt−1mj
(4.15)

Proof. In order to show equations 4.11, 4.12 and 4.13, line 2 of algorithm 3.2 is first split
into its two additive terms Ḡyt−1Σyt−1Ḡ

>
yt−1 and ḠutΣctḠ

>
ut . After inspecting these two

terms separately their results are combined to obtain the desired statements. The proof
itself was inspired by [17] and [18].

The first term denotes a big matrix multiplication. The affected columns and rows are
highlighted for better readability during evaluation:

Ḡyt−1Σyt−1Ḡ
>
yt−1 =

=


Gxt−1 0 · · · 0

0 I · · · 0
...

... . . . ...
0 0 · · · I




Σxt−1 Σxt−1m1 · · · Σxt−1mN

Σm1xt−1 Σm1 · · · Σm1mN

...
... . . . ...

ΣmNxt−1 ΣmNm1 · · · ΣmN



G>xt−1 0 · · · 0

0 I · · · 0
...

... . . . ...
0 0 · · · I



=


Gxt−1 0 · · · 0

0 I · · · 0
...

... . . . ...
0 0 · · · I




Σxt−1G
>
xt−1 Σxt−1m1 · · · Σxt−1mN

Σm1xt−1G
>
xt−1 Σm1 · · · Σm1mN

...
... . . . ...

ΣmNxt−1G
>
xt−1 ΣmNm1 · · · ΣmN



=


Gxt−1Σxt−1G

>
xt−1 Gxt−1Σxt−1m1 · · · Gxt−1Σxt−1mN

Σm1xt−1G
>
xt−1 Σm1 · · · Σm1mN

...
... . . . ...

ΣmNxt−1G
>
xt−1 ΣmNm1 · · · ΣmN
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The second additive is also simply expanded, yielding a sparse matrix of size 3(N + 1)
with a single entry:

ḠutΣctḠ
>
ut =


Gut

0
...
0

Σct

(
G>ut 0 · · · 0

)

=


Gut

0
...
0


(

ΣctG
>
ut 0 · · · 0

)

=


GutΣctG

>
ut 0 · · · 0

0 0 · · · 0
...

... . . . ...
0 0 · · · 0



Now both terms are added together in order to achieve the desired results. Again, for
better readability the affected columns and rows are highlighted:

Σ̄yt = Ḡyt−1Σyt−1Ḡ
>
yt−1 + ḠutΣctḠ

>
ut

=


Gxt−1Σxt−1G

>
xt−1 Gxt−1Σxt−1m1 · · · Gxt−1Σxt−1mN

Σm1xt−1G
>
xt−1 Σm1 · · · Σm1mN

...
... . . . ...

ΣmNxt−1G
>
xt−1 ΣmNm1 · · · ΣmN



+


GutΣctG

>
ut 0 · · · 0

0 0 · · · 0
...

... . . . ...
0 0 · · · 0



=


Gxt−1Σxt−1G

>
xt−1 +GutΣctG

>
ut Gxt−1Σxt−1m1 · · · Gxt−1Σxt−1mN

Σm1xt−1G
>
xt−1 Σm1 · · · Σm1mN

...
... . . . ...

ΣmNxt−1G
>
xt−1 ΣmNm1 · · · ΣmN



=


Σ̄xt Σ̄xtm1 · · · Σ̄xtmN

Σ̄m1xt Σm1 · · · Σm1mN

...
... . . . ...

Σ̄mNxt ΣmNm1 · · · ΣmN
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Equation 4.11 emphasizes the fact that during prediction only the uncertainty of the
vehicle’s pose and the uncertainty of the map associated with it is affected, but not the
map by itself. This knowledge can be exploited in order to achieve a more efficient imple-
mentation of the prediction. Algorithm 4.1 illustrates this by reducing the computational
complexity from O(N2) to O(N). This is due to the remaining matrices in algorithm 4.1,
which are independent of the feature number N of the map and thus of constant size,
i.e. in our case Gxt−1 , Σxt−1 and Σxt−1mj are of size 3× 3 and the matrices Gut and Σct
are of size 3× 2 and 2× 2, respectively. Consequently, matrix multiplication yields only
constant computation costs. The determining factor here is the for-loop covering lines 3
to 5.

Algorithm 4.1: Prediction (implemented)
input :µyt−1 , Σyt−1 , ut
output : µ̄yt , Σ̄yt

1 µ̄xt = g
(
µxt−1 ,ut

)
;

2 Σ̄xt = Gxt−1Σxt−1G
>
xt−1 +GutΣctG

>
ut ;

3 for j = 1 to N do
4 Σ̄xtmj = Gxt−1Σxt−1mj ;
5 end

Notice: Algorithm 4.1 implicitly assumes sub-matrix access in order to establish µ̄yt , Σ̄yt
from µ̄xt , Σ̄xt and Σ̄xtmj as depicted in equations 4.8 and 4.11. This assumption is also
exploited in further algorithms.

For function g
(
µxt−1 ,ut

)
in line 1 of algorithm 4.1 the motion model

g
(
µxt−1 ,ut

)
= µxt−1 +

 −
ut.v
ut.ω

sin
(
µxt−1 .θ

)
+ ut.v

ut.ω
sin
(
µxt−1 .θ + ut.ω∆t

)
ut.v
ut.ω

cos
(
µxt−1 .θ

)
− ut.v

ut.ω
cos

(
µxt−1 .θ + ut.ω∆t

)
ut.ω∆t

 (4.16)

introduced in [1] is used, where ∆t indicates the time between two consecutive cycles of
EKF-SLAM. Consequently, by equation 2.98 we derive

Gxt−1 =
dg
(
µxt−1 ,ut

)
dxt−1

=

 1 0 − ut.vut.ω
cos

(
µxt−1 .θ

)
+ ut.v

ut.ω
cos

(
µxt−1 .θ + ut.ω∆t

)
0 1 − ut.vut.ω

sin
(
µxt−1 .θ

)
+ ut.v

ut.ω
sin
(
µxt−1 .θ + ut.ω∆t

)
0 0 1


(4.17)
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and

Gut =
dg
(
µxt−1 ,ut

)
dūt

=


− sin(µxt−1 .θ)+ sin(µxt−1 .θ+ut.ω∆t)

ut.ω
cos(µxt−1 .θ)− cos(µxt−1 .θ+ut.ω∆t)

ut.ω

0
ut.v( sin(µxt−1 .θ)− sin(µxt−1 .θ+ut.ω∆t))

ut.ω2 + ut.v∆t cos(µxt−1 .θ+ut.ω∆t)
ut.ω

−ut.v( cos(µxt−1 .θ)− cos(µxt−1 .θ+ut.ω∆t))
ut.ω2 + ut.v∆t sin(µxt−1 .θ+ut.ω∆t)

ut.ω

∆t


(4.18)

for Gt =
(
Gxt−1 Gut

)
denoting the Jacobian matrix of g

(
µxt−1 ,ut

)
.

In the case of ut.ω = 0, the motion model is simplified to

g
(
µxt−1 ,ut

)
= µxt−1 +

 ut.v∆t cos
(
µxt−1 .θ

)
ut.v∆t sin

(
µxt−1 .θ

)
0

 (4.19)

describing a straight line movement.

Proof. In order to show equation 4.19, one can either consider trigonometric relations or
simply take the limit of equation 4.16:

µ̄xt−1 .x = lim
ut.ω→0

µxt−1 .x −
ut.v

ut.ω
sin
(
µxt−1 .θ

)
+ ut.v

ut.ω
sin
(
µxt−1 .θ + ut.ω∆t

)
= lim
ut.ω→0

µxt−1 .x + 2ut.v
ut.ω

cos
(
µxt−1 .θ + ut.ω∆t

2

)
sin
(
ut.ω∆t

2

)

= µxt−1 .x + 2ut.v cos
(
µxt−1 .θ

)
lim

ut.ω→0

sin
(
ut.ω∆t

2

)
ut.ω

= µxt−1 .x + 2ut.v cos
(
µxt−1 .θ

)
lim

ut.ω→0

∆t
2 cos

(
ut.ω∆t

2

)
1

= µxt−1 .x + ut.v∆t cos
(
µxt−1 .θ

)
µ̄xt−1 .y = lim

ut.ω→0
µxt−1 .y + ut.v

ut.ω
cos

(
µxt−1 .θ

)
− ut.v
ut.ω

cos
(
µxt−1 .θ + ut.ω∆t

)
= lim
ut.ω→0

µxt−1 .y + 2ut.v
ut.ω

sin
(
µxt−1 .θ + ut.ω∆t

2

)
sin
(
ut.ω∆t

2

)

= µxt−1 .y + 2ut.v sin
(
µxt−1 .θ

)
lim

ut.ω→0

sin
(
ut.ω∆t

2

)
ut.ω

= µxt−1 .y + 2ut.v sin
(
µxt−1 .θ

)
lim

ut.ω→0

∆t
2 cos

(
ut.ω∆t

2

)
1

= µxt−1 .y + ut.v∆t sin
(
µxt−1 .θ

)
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Notice: Both derivations use in their first line the trigonometric relations

sin (α)− sin (β) = 2 cos
(
α+ β

2

)
sin
(
α− β

2

)
and

cos (α)− cos (β) = −2 sin
(
α+ β

2

)
sin
(
α− β

2

)
respectively. Furthermore, L’Hospital’s rule is both times applied in line 3.

Similar as we did for g
(
µxt−1 ,ut

)
, one can derive

Gxt−1 =

 1 0 −ut.v∆t sin
(
µxt−1 .θ

)
0 1 ut.v∆t cos

(
µxt−1 .θ

)
0 0 1

 (4.20)

and

Gut =

 ∆t cos
(
µxt−1 .θ

)
−1

2∆t2ut.v sin
(
µxt−1 .θ

)
∆t sin

(
µxt−1 .θ

) 1
2∆t2ut.v cos

(
µxt−1 .θ

)
0 ∆t

 (4.21)

for the Jacobian matrix Gt =
(
Gxt−1 Gut

)
with ω → 0.

Finally, let us have a look at the control noise expressed by Σct and applied in line 2 of
algorithm 4.1. For our purpose, we are modeling the control noise by

Σct =
(
α1ut.v

2 + α2ut.ω
2 0

0 α3ut.v
2 + α4ut.ω

2

)
(4.22)

with the reconfigurable parameters αi, i ∈ [1, 4] as introduced in [1].

Integrating these results into algorithm 4.1 appropriately yields the prediction part of
the EKF-SLAM cycle implemented in the ROS package related to this thesis.

4.3 Data Association

The actual algorithm for the data association as well as the algorithms for the different
NNSF approaches introduced in chapter 3 stay the same for the implementation. But
algorithm 3.9 calculating the Mahalanobis distance is slightly adapted in order to support
a central approach for the measurement model.

Algorithm 4.2 depicts this adaption. In particular, line 1 introduces a method implement-
ing the measurement model. This method returns the Jacobian Ht,j of the measurement
probability hj

(
µ̄yt
)
and vt,ij denoting the difference zt,i − µ̄zt,i as already introduced in

the original algorithm 3.9 for the Mahalanobis distance. The remaining algorithm stays
the same.
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Algorithm 4.2: Mahalanobis Distance (implemented)
input : µ̄yt , Σ̄yt , zt, i, j
output : dt,ij

1 (vt,ij ,Ht,j) = Measurement(µ̄yt, zt, i, j);
2 Σzt,i = Ht,jΣ̄ytH

>
t,j + Σdt,i ;

3 dt,ij = v>t,ijΣ−1
zt,ivt,ij ;

Let us now have a closer look at the measurement probability described by hj
(
µ̄yt
)

introduced in equation 3.31 in chapter 3. As already mentioned, this function predicts
the map feature mj retained in the map frame M into the sensor frame S in order to
compare it with an observed feature zt,i, which in turn is expressed by vt,ij .

Since measurements are obtained in spherical coordinates, an easy way in doing this is
to express in a first step the current sensor pose xS in Cartesian coordinates of the map
frameM . Because the sensor pose is usually stated in the robot frame, this corresponds to
a transformation from the robot frame R into map frame M determined by the currently
expected vehicle’s pose µ̄xt :

hj,1 (µ̄xt) = TM R
µ̄xt
· xR

S
= xM

S
(4.23)

This transformation yields the homogeneous sensor pose xM
S

in the map frame. By means
of figure 4.5 and simple trigonometry, we can now deduce a prediction of the map feature
mj in spherical coordinates in respect to the sensor frame in a next step:

hj,2
(
xM
S
, µ̄mj

)
=

 rSj
φSj
θSj

 =


√
q

atan2 (δy, δx)− xM
S
.θ

µ̄mj .θ − xMS .θ

 (4.24)

Referring to [1], we have
q = δ>δ (4.25)

with
δ =

(
δx
δy

)
=
(
µ̄mj .x − xMS .x
µ̄mj .y − xMS .y

)
(4.26)

but instead of the robot pose the sensor pose in the map coordinate system is used.
Besides, the common extended version

atan2 (y, x) =



atan
( y
x

)
x > 0

atan
( y
x

)
+ π x < 0, y ≥ 0

atan
( y
x

)
− π x < 0, y < 0

π
2 x = 0, y > 0
−π

2 x = 0, y < 0
0 x = 0, y = 0

(4.27)
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Figure 4.5: Measurement model

of the inverse tangent is used for the conversion from Cartesian coordinates into spherical
coordinates. This function is supported by most modern programming languages and in
contrast to the original inverse tangent the resulting angles are directly assigned to the
right quadrants.

Thus, the composition of these two steps gives us the function describing the measurement
probability:

hj
(
µ̄yt
)

= hj,2
(
hj,1 (µ̄xt) , µ̄mj

)
(4.28)

Furthermore, the Jacobian matrix of this function can be indicated by

Ht,j =


− δx√

q − δy√
q

δxδ′x+δyδ′y√
q 0 · · · 0 δx√

q
δy√
q 0 0 · · · 0

δy
q − δx

q

δ′yδx−δyδ′x
q − 1 0 · · · 0 − δy

q
δx
q 0 0 · · · 0

0 0 −1 ︸ ︷︷ ︸
3(j − 1)

0 · · · 0 0 0 1 ︸ ︷︷ ︸
3(N − j)

0 · · · 0

 (4.29)
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denoting a sparse matrix of size 3× (N + 1) with

δ′x = ∂δx
∂xt.θ

(4.30)

and
δ′y = ∂δy

∂xt.θ
(4.31)

describing first partial derivatives.

Notice: The Jacobian matrix in equation 4.29 slightly differs from the one introduced
in [1], because the sensor pose is used instead of the robot pose in equation 4.26.

From this we can directly derive algorithm 4.3 outlining the central approach of the
measurement model used in the implementation corresponding to this thesis. Obviously,
the algorithm can be accomplished requiring only constant complexity.

Algorithm 4.3: Measurement

input : µ̄yt = (µ̄xt µ̄m1 . . . µ̄mN )>, zt = (zt,1 . . . zt,M )>, i, j

output : vt,ij , Ht,j

1 xM
S

= TM R
µ̄xt
· xR

S
;

2 δ =
(
δx
δy

)
=
(
µ̄mj .x − xMS .x
µ̄mj .y − xMS .y

)
;

3 q = δ>δ ;

4 ẑt,i = hj
(
µ̄yt
)

=


√
q

atan2 (δy, δx)− xM
S
.θ

µ̄mj .θ − xMS .θ

;
5 vt,ij = zt,i − ẑt,i;

6 Ht,j =


− δx√

q − δy√
q

δxδ′x+δyδ′y√
q 0 · · · 0 δx√

q
δy√
q 0 0 · · · 0

δy
q − δx

q

δ′yδx−δyδ′x
q − 1 0 · · · 0 − δy

q
δx
q 0 0 · · · 0

0 0 −1 0 · · · 0 0 0 1 0 · · · 0

;
Notice: In order to ensure proper angle differences, in line 5 of algorithm 4.3, the following
relation is exploited in the implementation:

α− β =̂ atan2 ( sin (α− β) , cos (α− β)) , α, β ∈ (−π, π) (4.32)
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4.4 Update
For the update step in the EKF-SLAM cycle the implementation provides two different
approaches. Both of them are based on algorithm 3.4 and exploit the independent mea-
surements assumption introduced in equation 3.28, when investigating the Mahalanobis
distance. Furthermore, they make use of the central measurement model approach
presented in the previous section.

The first implementation of the update step is depicted in algorithm 4.4 and is based
on the solution derived in [1]. The for-loop covering lines 3 to 10 incorporates each
observation zt,i into the current believed state on its own. That is, why the algorithm
is labeled single. In doing so, the independent measurements assumption is implicitly
utilized. Line 4 ensures that only observed features belonging to an already known map
feature mj are further processed. In line 4 the measurement model is applied, calculating
the deviation vt,ij of the observation zt,i and the measurement prediction ẑt,i of the
associated map feature mj . Furthermore, the corresponding Jacobian matrix Ht,j is
returned. Lines 7 to 9 depict the already familiar correction step of Gaussians filters. The
covariance matrix Σdt,i in line 7 represents the measurement noise of a single observation,
which will be examined more precisely in chapter 5. To anticipate at this point, it is a
matrix of size 3× 3, since the measurements zt,i are of dimension 3.

Algorithm 4.4: Update (single)
input : µ̄yt , Σ̄yt , zt, ct = (c1 . . . cM )>

output : ¯̄µyt ,
¯̄Σyt

1 ¯̄µyt = µ̄yt ;
2 ¯̄Σyt = Σ̄yt ;
3 for i = 1 to M do
4 if ci 6∈ Z then continue;// no associated map feature
5 j = ci;
6 (vt,ij ,Ht,j) = Measurement(µ̄yt, zt, i, j);
7 Kt,j = ¯̄ΣytH

>
t,j(Ht,j

¯̄ΣytH
>
t,j + Σdt,i)−1;

8 ¯̄µyt = ¯̄µyt +Kt,jvt,ij ;
9 ¯̄Σyt = (I −Kt,jHt,j) ¯̄Σyt ;

10 end

The computational complexity of algorithm 4.4 is determined on the one hand by the
surrounding for-loop and on the other hand once again by the matrix operations inside.
In particular, the matrix multiplications are crucial, because the matrix inversion in line
7 treats only a matrix of constant size 3× 3. Consequently, we can denote the complexity
by O(M ·N2).

The second implementation of the update step - depicted in algorithm 4.5 - avoids the
for-loop to cover matrix multiplications. Instead the vector vt and the matrices Ht
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and Σdt are composed in advance in the for-loop covering lines 4 to 11 according to
equations 3.31 and 3.32. This enables us to do the update at once as suggested in the
original algorithm 3.4 for the update step. Thus, algorithm 4.5 is labeled combined. Again,
the independent measurements assumption introduced in equation 3.28 is implicitly
exploited. Similar to line 4 in algorithm 4.4, line 5 ensures that only observations
associated with map features are further processed at this point. As soon as all relevant
measurements are covered, they are incorporated into the current believed state at once
in lines 12 to 19.

Algorithm 4.5: Update (combined)
input : µ̄yt , Σ̄yt , zt, ct = (c1 . . . cM )>

output : ¯̄µyt ,
¯̄Σyt

1 vt = ∅;
2 Ht = ∅;
3 Σdt = ∅;
4 for i = 1 to M do
5 if ci 6∈ Z then continue;// no associated map feature
6 j = ci;
7 (vt,ij ,Ht,j) = Measurement(µ̄yt, zt, i, j);

8 vt =
(

vt
vt,ij

)
;

9 Ht =
(
Ht

Ht,j

)
;

10 Σdt =
(

Σdt 0
0 Σdt,i

)
;

11 end
12 if Ht = ∅ and vt = ∅ and Σdt = ∅ then
13 ¯̄µyt = µ̄yt ;
14 ¯̄Σyt = Σ̄yt ;
15 else
16 Kt = Σ̄ytH

>
t (HtΣ̄ytH

>
t + Σdt)−1;

17 ¯̄µyt = µ̄yt +Ktvt;
18 ¯̄Σyt = (I −KtHt)Σ̄yt ;
19 end

In doing so, the computational complexity of algorithm 4.5 is a composition of the
complexities of the for-loop and the correction itself. This yields O(M +N2). Assuming
again the number M of measurements to be at least one magnitude smaller than the
overall number N of map features, this complexity can be simplified to O(N2). Thus,
the second update version performs better in general.
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4.5 Integration
In algorithm 3.5 for the integration step in the EKF-SLAM cycle the function p̄

( ¯̄µyt , zt,i
)

in line 5 integrates newly found map features one by one into the believed state bel (yt)
assumed after the update step. Since integrating a new map feature into the current map
does not affect the actual pose xt and the already established map features mj , j ∈ [1, N ],
one can rewrite p̄

(¯̄yt, z̄t,i) introduced in equation 3.20 as

yt =


xt
m1
...

mN

mN+1

 = p̄
(¯̄yt, z̄t,i) =



¯̄xt
¯̄m1
...

¯̄mN

p
(¯̄xt, z̄t,i)

 (4.33)

with the in general non-linear function

mN+1 = p
(¯̄xt, z̄t,i) = p

(¯̄xt, zt,i + dt,i
)

(4.34)

estimating the probability of the new map feature mN+1. This is called linear-state
augmentation in [28] and is expressed more in detail in [17] and [18]. Thus, by equation 3.24
one can immediately derive

µyt = p̄
( ¯̄µyt , zt,i

)
=



¯̄µxt
¯̄µm1
...

¯̄µmN

p
( ¯̄µxt , zt,i

)

 (4.35)

for the expectation of the extended state after the integration of one new map feature.

The corresponding covariance matrix was derived in equation 3.25 and is restated at this
place for the sake of convenience:

Σyt = P̄ yt
¯̄ΣytP̄

>
yt + P̄ zt,iΣdt,iP̄

>
zt,i (4.36)

By means of equations 4.33 and 4.34, one can now specify more precisely

P̄ yt =
dp̄
( ¯̄µyt , zt,i

)
d¯̄yt

=


I 0 · · · 0
0 I · · · 0
...

... . . . ...
0 0 · · · I
P xt 0 · · · 0

 (4.37)

and

P̄ zt,i =
dp̄
( ¯̄µyt , zt,i

)
dz̄t,i

=


0
0
...
0
P zt,i

 (4.38)
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with

P xt = dp
( ¯̄µxt , zt,i

)
d¯̄xt

(4.39)

and

P zt,i = dp̄
( ¯̄µxt , zt,i

)
dz̄t,i

(4.40)

denoting the Jacobian matrices of the function p
(¯̄xt, z̄t,i) of sizes 3× 3 parameterized at

the most probable values of the arguments. This allows us now to expand the covariance
matrix ¯̄Σyt of the current believed state depicted in equation 3.10 in a way such that

Σyt =



¯̄Σxt
¯̄Σxtm1 · · · ¯̄ΣxtmN ΣxtmN+1

¯̄Σm1xt
¯̄Σm1 · · · ¯̄Σm1mN Σm1mN+1

...
... . . . ...

...
¯̄ΣmNxt

¯̄ΣmNm1 · · · ¯̄ΣmN ΣmNmN+1

ΣmN+1xt ΣmN+1m1 · · · ΣmN+1mN ΣmN+1


(4.41)

describes the covariance matrix after the integration of one new map feature with

ΣmN+1 = P xt
¯̄ΣxtP

>
xt + P zt,iΣdt,iP

>
zt,i , (4.42)

ΣmN+1xt = P xt
¯̄Σxt (4.43)

and

ΣmN+1mj = P xt
¯̄Σxtmj , j ∈ [1, N ] (4.44)

whereas

ΣxtmN+1 = Σ>mN+1xt and ΣmjmN+1 = Σ>mN+1mj
(4.45)

because of the covariance symmetries:

¯̄ΣxtmN+1 = ¯̄Σ>mN+1xt and ¯̄ΣmjmN+1 = ¯̄Σ>mN+1mj
(4.46)

Proof. In order to show equations 4.41 to 4.44, equation 4.36 is first split into its
two additive terms P̄ yt

¯̄ΣytP̄
>
yt and P̄ zt,iΣdt,iP̄

>
zt,i . After inspecting these two terms

separately their results are combined obtaining the desired statements. The proof itself
was inspired by [17] and [18].
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The first term denotes a big matrix multiplication yielding a matrix of size 3(N + 2)×
3(N + 2). The affected columns and rows are highlighted during evaluation:

P̄ yt
¯̄ΣytP̄

>
yt =

=


I 0 · · · 0
0 I · · · 0
...

... . . . ...
0 0 · · · I
P xt 0 · · · 0




¯̄Σxt

¯̄Σxtm1 · · · ¯̄ΣxtmN

¯̄Σm1xt
¯̄Σm1 · · · ¯̄Σm1mN

...
... . . . ...

¯̄ΣmNxt
¯̄ΣmNm1 · · · ¯̄ΣmN



I 0 · · · 0 P>xt
0 I · · · 0 0
...

... . . . ...
...

0 0 · · · I 0



=


I 0 · · · 0
0 I · · · 0
...

... . . . ...
0 0 · · · I
P xt 0 · · · 0




¯̄Σxt

¯̄Σxtm1 · · · ¯̄ΣxtmN

¯̄ΣxtP
>
xt¯̄Σm1xt

¯̄Σm1 · · · ¯̄Σm1mN

¯̄Σm1xtP
>
xt...

... . . . ...
...

¯̄ΣmNxt
¯̄ΣmNm1 · · · ¯̄ΣmN

¯̄ΣmNxtP
>
xt



=



¯̄Σxt
¯̄Σxtm1 · · · ¯̄ΣxtmN

¯̄ΣxtP
>
xt¯̄Σm1xt

¯̄Σm1 · · · ¯̄Σm1mN

¯̄Σm1xtP
>
xt...

... . . . ...
...

¯̄ΣmNxt
¯̄ΣmNm1 · · · ¯̄ΣmN

¯̄ΣmNxtP
>
xt

P xt
¯̄Σxt P xt

¯̄Σxtm1 · · · P xt
¯̄ΣxtmN P xt

¯̄ΣxtP
>
xt


The second additive is also simply expanded, yielding a sparse matrix of size 3(N + 2)×
3(N + 2) with a single entry:

P̄ zt,iΣdt,iP̄
>
zt,i =


0
0
...
0
P zt,i

Σdt,i

(
0 0 · · · 0 P>zt,i

)

=


0
0
...
0
P zt,i


(

0 0 · · · 0 Σdt,iP
>
zt,i

)

=


0 0 · · · 0 0
0 0 · · · 0 0
...

... . . . ...
...

0 0 · · · 0 0
0 0 · · · 0 P zt,iΣdt,iP

>
zt,i
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Now both terms are added together in order to achieve the desired results. Again, for
better readability the affected columns and rows are highlighted:

Σyt = P̄ yt
¯̄ΣytP̄

>
yt + P̄ zt,iΣdt,iP̄

>
zt,i

=



¯̄Σxt
¯̄Σxtm1 · · · ¯̄ΣxtmN

¯̄ΣxtP
>
xt¯̄Σm1xt

¯̄Σm1 · · · ¯̄Σm1mN

¯̄Σm1xtP
>
xt...

... . . . ...
...

¯̄ΣmNxt
¯̄ΣmNm1 · · · ¯̄ΣmN

¯̄ΣmNxtP
>
xt

P xt
¯̄Σxt P xt

¯̄Σxtm1 · · · P xt
¯̄ΣxtmN P xt

¯̄ΣxtP
>
xt



+


0 0 · · · 0 0
0 0 · · · 0 0
...

... . . . ...
...

0 0 · · · 0 0
0 0 · · · 0 P zt,iΣdt,iP

>
zt,i



=



¯̄Σxt
¯̄Σxtm1 · · · ¯̄ΣxtmN

¯̄ΣxtP
>
xt¯̄Σm1xt

¯̄Σm1 · · · ¯̄Σm1mN

¯̄Σm1xtP
>
xt...

... . . . ...
...

¯̄ΣmNxt
¯̄ΣmNm1 · · · ¯̄ΣmN

¯̄ΣmNxtP
>
xt

P xt
¯̄Σxt P xt

¯̄Σxtm1 · · · P xt
¯̄ΣxtmN P xt

¯̄ΣxtP
>
xt + P zt,iΣdt,iP

>
zt,i



=



¯̄Σxt
¯̄Σxtm1 · · · ¯̄ΣxtmN ΣxtmN+1

¯̄Σm1xt
¯̄Σm1 · · · ¯̄Σm1mN Σm1mN+1

...
... . . . ...

...
¯̄ΣmNxt

¯̄ΣmNm1 · · · ¯̄ΣmN ΣmNmN+1

ΣmN+1xt ΣmN+1m1 · · · ΣmN+1mN ΣmN+1



Notice: Equation 4.42 for the covariance of the new map feature can also be derived
analogously to equation 3.25 by means of equation 4.34.

By applying equations 4.41 to 4.44 to the integration step of the EKF-SLAM cycle depicted
in algorithm 3.5 one can directly derive algorithm 4.6 used within the implementation.
Since the remaining matrices are of constant size the stated complexity in subsection 3.3.4
of chapter 3 can be reduced to O(M), determined by the surrounding for-loop.

Let us now have a closer look at p
( ¯̄µxt , zt,i

)
used in line 5 of algorithm 4.6 for obtaining

the expectation µmN+1 of a newly found map feature mN+1 based on the observation
zt,i and the expected pose ¯̄µxt at this time. Basically, this function does the opposite of
hj
(
µ̄yt
)
described in section 4.3. It transforms the measurement zt,i received in spherical

coordinates in the sensor frame S into Cartesian coordinates in the map frame M by
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Algorithm 4.6: Integration (implemented)

input : ¯̄µyt = (¯̄µxt ¯̄µm1 . . . ¯̄µmN )>, ¯̄Σyt , zt = (zt,1 . . . zt,M )>, ct = (c1 . . . cM )>
output :µyt , Σyt

1 µyt = ¯̄µyt ;
2 Σyt = ¯̄Σyt ;
3 for i = 1 to M do
4 if ci 6= new then continue;
5 µmN+1 = p (µxt , zt,i);
6 ΣmN+1 = P xtΣxtP

>
xt + P ztΣdtP

>
zt ;

7 ΣxtmN+1 = P xtΣxt ;
8 for j = 1 to N do
9 ΣmN+1mj = P xtΣxtmj ;

10 end
11 N = N + 1;
12 end

means of the currently expected vehicle’s pose ¯̄µxt :

p
( ¯̄µxt , zt,i

)
= I · TM R

¯̄µxt
· TR S · q (zt,i) (4.47)

The function

q (zt,i) =

 zt,i.r cos (zt,i.ψ)
zt,i.r sin (zt,i.ψ)

zt,i.θ

 (4.48)

denotes the conversion of a pose in spherical coordinates into a pose in Cartesian
coordinates. The underline emphasizes again the extension to a homogeneous vector
needed for the subsequent transformations at this point. That is why the altered identity
matrix

I =

 1 0 0 0
0 1 0 0
0 0 1 0

 (4.49)

is put on the left re-establishing a non-homogeneous pose for µmN+1 .

Based on this definition, we can now specify the Jacobian matrices P xt and P zt,i in
detail. In particular, we have

P xt = I

∂ TM R
¯̄µxt

∂¯̄xt.x
∂ TM R

¯̄µxt

∂¯̄xt.y
∂ TM R

¯̄µxt

∂¯̄xt.θ


 TR S · q (zt,i)

TR S · q (zt,i)
TR S · q (zt,i)

 (4.50)

and
P zt,i = I · TM R

¯̄µxt
· TR S ·Qzt,i (4.51)
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with

Qzt,i =
dq (zt,i)
dz̄t,i

(4.52)

denoting the Jacobian of the transformation function q (zt,i) extended to homogeneous
coordinates, which yields a matrix of size 4× 3.

Notice: Equation 4.50 describes a sparse matrix of the form: 1 0
0 1
0 0 1

 (4.53)

Integrating these results into algorithm 4.6 appropriately yields the integration part of
the EKF-SLAM cycle implemented in the ROS package related to this thesis.

4.6 ROS Package

As already mentioned, the algorithms accomplished in this chapter have been put into
practice by providing a ROS package named tuw_marker_filter. The package itself
is divided into the three sub-packages

• tuw_marker_noise

• tuw_marker_server

• tuw_marker_slam

discussed in this section. Furthermore, the package is made available to the public online
in [3] under the open source BSD license. This shall ensure broad access and the provided
documentation there can be used for more detailed information.

4.6.1 tuw_marker_noise

This sub-package serves on the one hand for recording marker measurements and deducing
parameters for the measurement noise model discussed in the next chapter. On the other
hand it reproduces this measurement noise model for simulation purposes. It is organized
as follows:

• tuw_record.py
In order to obtain the parameters for the measurement noise model one needs
first to record samples. Thus, the ROS node tuw_record.py stores the poses of
observed markers in combination with their expected pose in a separate output file
record.csv for later comparison.
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• variance.py
Based on the observed and expected measurements given in the record file a
statistical variance can be calculated. For a finer grained resolution variance.py
separates the measurements into boxes of given precision determined by the expected
pose. The calculated variances are written out again with their corresponding
expected measurements into a file variance.csv. Then parameter.m (cp. next
point) is called with this CSV-file as input. Finally, the result of this call is stored
in another CSV-file named parameter.csv.

• parameter.m
Here are the actual parameters of the underlying measurement noise model calcu-
lated, using a least square estimation based on the expected poses of the markers
and their measured variance.

• tuw_marker_noise.py
This ROS node implements the parameterized measurement noise model for simu-
lation purposes. It receives (perfect) measurements of markers and puts noise on
them based on the underlying measurement noise model. The noised poses are
then re-sent, illustrating more realistic measurement results.

4.6.2 tuw_marker_server

The purpose of this sub-package is saving maps of explored markers and afterwards
providing these marker maps for further localization tasks. It is a composition of following
two Python nodes:

• tuw_marker_saver.py
This node saves marker maps to disk using YAML files. A marker map consists
of several marker poses augmented with their uncertainty indicated by covari-
ance matrices. Additionally, each marker offers multiple possible IDs and their
probabilities.

• tuw_marker_server.py
This node reads such a YAML file including a marker map from disk and periodically
publishes it. The so provided map is composed of the found marker poses with
their covariance matrices and the markers’ possible IDs supplemented by their
probabilities.

4.6.3 tuw_marker_slam

This sub-package provides a C++ framework for the SLAM problem with visual markers.
In particular, the EKF-SLAM approach discussed in this thesis is implemented there.
The package itself consists of following components:

73



4. Implementation

• tuw_marker_slam_node.cpp
This is the actual ROS node executed when performing SLAM. After initialization,
the node listens to incoming settings, control commands ut and measurements zt
as well as it publishes the results, i.e. the believed state bel (yt) expressed by µyt
and Σyt .

• tuw_marker_slam.cpp
This component represents the interface between the SLAM problem in general
and the particular techniques solving it, e.g. EKF-SLAM. Thus, it stores SLAM
specific settings and invokes the SLAM cycle.

• slam_technique.cpp
From this component the particular SLAM techniques are inferred. This enables
the support of different implementations solving the SLAM problem.

• ekf_slam.cpp
This component implements the actual EKF-SLAM approach discussed in this
thesis. This means, the essentials of the algorithms elaborated in this chapter can
be found here. Furthermore, it offers EKF-SLAM specific settings, e.g. which
version of the update step should be used.

• measurement_marker.cpp
This component illustrates a measurement zt at time t. Beside the representation
introduced in chapter 3 some more properties relevant for practical application are
included.

• munkre.cpp
At this place a version of Munkres’ algorithm [26] is implemented, solving the
minimum assignment problem for rectangular matrices [27]. This is needed to find
a global optimum for the data association problem when applying the appropriate
NNSF approach to unknown correspondences.

In the next chapter, we will derive a model for the measurement noise expressed by Σdt,i
when working with visual markers. By means of this, we are then ready to discuss the
application of the implementation and its results.
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CHAPTER 5
Measurement Noise Model and

Application

The measurement noise model derived in this chapter outlines the scientific contribution
of this thesis. The measurement noise model is important for the application of EKF-
SLAM, because it indicates how meaningful the received measurements are and, thus, it
determines their impact in the update step of the EKF-SLAM cycle. Wrong assumptions
on this noise may have catastrophic consequences. Consider a real bad observation of
a visual marker, which is assumed to be correct. Recognizing the same visual marker
again, but with a complete different pose, will probably lead to incorrect results. For
this reason, we statistically evaluated the measurement quality of the used visual marker
detection in oder to derive an appropriate noise model.

Thus, section 5.1 introduces first a general model for the noise. Then, in order to
obtain a more precise model, measurements of detected visual markers are recorded and
investigated. Based on this insight, a specific noise model for visual marker detection
is derived in section 5.2. Finally, section 5.3 discusses the application of the elaborated
ROS package with the evolved noise model.

5.1 Proceeding and Measurement Results

As already mentioned in chapter 1, the implementation was first tested in the plain
2D simulation environment Stage. Since this simulation environment provided only
perfect measurements, a simplified noise was added for more realistic first tests (cp.
tuw_marker_noise). The model behind this noise was then reused in the implemen-
tation and followed the control noise introduced in chapter 4. In particular, we had for
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the measurement noise

Σdt,i =

 σ2
r 0 0

0 σ2
φ

0
0 0 σ2

θ

 (5.1)

with adjustable σ2
r ∈ [0,∞) and σ2

φ
, σ2
θ
∈ [0, π2).

Notice: Because of the zero-covariances in Σdt,i , independence for the noise between the
distance r, the angle φ and the orientation θ is implicitly assumed.

After successful functionality tests in the 2D simulation environment Stage regarding EKF-
SLAM, the implementation was ready to be tested in the more realistic 3D simulation
environment Gazebo regarding visual markers. The reason for this was, that Gazebo
supports in contrast to Stage the simulation of camera images, which is essential for
visual marker detection. Thus, the setting was enhanced by a visual marker detection
provided by Markus Bader and adapted by Lukas Pfeifhofer. Unfortunately, tests in
Gazebo with this visual marker detection revealed that the simple measurement noise
model depicted in equation 5.1 was not sufficient in practice.

Hence, in order to get a feeling for the measurement error of visual markers, a simulation
run of a vehicle equipped with a visual marker detection was recorded in Gazebo by
calling

roslaunch tuw_marker_noise record.launch

with the vehicles control commands ut.v ∈ [−0.2 m/s, 0.2 m/s] and
ut.ω ∈ [−0.2 rad/s, 0.2 rad/s].

The result of this run was stored in record.csv in the output directory of the ROS package
tuw_marker_noise and is illustrated in figure 5.1. In particular, figures 5.1a to 5.1c
show the absolute difference ∆ri between the measured distance zt,i.r and the expected
distance µzt,i .r, in relation to the expected pose µzt,i of the visual marker relative to
the vehicle. The expected pose µzt,i itself is once again obtained by transforming the
corresponding true visual marker pose in the map into the sensor frame. Thus, the
procedure is similar as we discussed in chapter 4 in the context of the measurement
function h. But instead of the estimated pose of the vehicle, its real pose provided by
the simulation environment is used this time. The same applies to the figures 5.1d to 5.1f
and 5.1g to 5.1i but for the absolute differences ∆φi and ∆θi, respectively.

Summed up, the following relationship is depicted in figure 5.1: ∆ri
∆φi
∆θi

 = |zt,i − µzt,i | (5.2)

Notice: In order to ensure proper angle differences, the relation described in equation 4.32
in chapter 4 is again exploited.
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Figure 5.1: Measurement error

Based on this insight, we wanted to estimate the variances σ2
r , σ2

φ
and σ2

θ
referred to

σ̂2
x = 1

n

n∑
i=1

(xi − µx)2 (5.3)

for n evidences xi of a random variable x with the expectation µx [14].

This was achieved by calling

./variance.py -r ../output/record.csv -p 1.0

inside the source directory of the tuw_marker_noise ROS package.
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In doing so, the recorded measurements zt,i are filtered and divided into boxes according
to their expected pose µzt,i and a precision of 1 m for the distance and 0.1 rad for the
angle and orientation. The precision ensures on the one hand enough measurements per
box for a meaningful variance estimation, but on the other hand, also a high number
of boxes for a sophisticated view. For each box j the different variances σ2

r,j , σ2
φ,j and

σ2
θ,j can now be estimated yielding σ̂2

r,j , σ̂2
φ,j and σ̂2

θ,j , where n denotes the number of
measurements zt,i inside the actual box. The so obtained variances are stored in the file
variance.csv in the same directory as record.csv before.

Analogous to the measurement error, figure 5.2 depicts the estimated variances σ̂2
r,j , σ̂2

φ,j

and σ̂2
θ,j in relation to the corresponding expected poses µzt,i . Based on this, we can now

derive a measurement noise model in the next section.
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Figure 5.2: Variance estimation
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5.2 Visual Marker Noise Model
The measurement noise model for visual markers is now obtained by considering each
variance σ2

r , σ2
φ and σ2

θ
in relation to the individual expectations µzt .r, µzt .φ and µzt .θ

separately, as suggested in figure 5.2.

By investigating figures 5.2a to 5.2c, one can see that all three relations for σ2
r can be

approximated by using a centered parable with vertical offset. Thus, we can write

σ2
r,r (r) = max

(
β1r

2 + β2, 0
)
, (5.4)

σ2
r,φ (φ) = max

(
min

(
β3φ

2 + β4, π
2
)
, 0
)

and (5.5)

σ2
r,θ (θ) = max

(
min

(
β5θ

2 + β6, π
2
)
, 0
)

(5.6)

regarding each individual expectation and with βi, i ∈ [1, 6] denoting adjustable parame-
ters.

Considering figures 5.2d to 5.2f, one can see that the later two relations for σ2
φ can

be described as we did for σ2
r . But in contrast, the variance σ2

φ in relation to µzt .r is
approximated better by an inverted parable with vertical offset. This yields

σ2
φ,r (r) = max

(
β7
r2 + β8, 0

)
, (5.7)

σ2
φ,φ (φ) = max

(
min

(
β9φ

2 + β10, π
2
)
, 0
)

and (5.8)

σ2
φ,θ (θ) = max

(
min

(
β11θ

2 + β12, π
2
)
, 0
)

(5.9)

regarding each individual expectation and with βi, i ∈ [7, 12] denoting adjustable
parameters, again.

Finally, by inspecting figures 5.2g to 5.2i, we derive for the variance σ2
θ
again parabolic

approximations

σ2
θ,r (r) = max

(
β13r

2 + β14, 0
)
, (5.10)

σ2
θ,φ (φ) = max

(
min

(
β15φ

2 + β16, π
2
)
, 0
)

and (5.11)

σ2
θ,θ (θ) = max

(
min

(
β17θ

2 + β18, π
2
)
, 0
)

(5.12)

regarding each individual expectation. In turn, βi, i ∈ [13, 18] denote adjustable parame-
ters.

Notice: The surrounding minimum and maximum functions ensure valid domains for the
particular variances as specified in the context of equation 5.1.

In a next step, the parameters βi, i ∈ [1, 18] of the introduced approximation functions
were determined by a least square estimation of the corresponding variances and individual
expectations, respectively. In particular, by calling
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parameter("../output/variance.csv")

in a MATLAB/Octave shell started inside the source directory of the tuw_marker_noise
ROS package, the file parameter.csv is created in the output directory of the package.
The so obtained values for the parameters are retained in the tables 5.1 to 5.3.

Notice: The file parameter.csv is already created during the execution of variance.py
by means of a sub-call to parameter.m. Nevertheless, for the sake of completeness it is
restated at this place.

i βi βi+1
1 0.00151087929622 0.00307593942987
3 0.0209484955631 0.0190882544679
5 -0.0087332784877 0.0281445351132

Table 5.1: Estimated parameters for σ2
r

i βi βi+1
7 0.0200817239281 -0.000409312497586
9 0.00850526786062 0.00102221836963
11 -0.00073979880801 0.00286934645709

Table 5.2: Estimated parameters for σ2
φ

i βi βi+1
13 0.00257637663063 0.0721725283535
15 -0.00283353322719 0.105663927557
17 -0.00812729757853 0.110508496545

Table 5.3: Estimated parameters for σ2
θ

Furthermore, in figure 5.3 the specific approximation functions yielded by these parameters
are compared with the corresponding estimated variances. The latter should be already
familiar from figure 5.2. One can see, that the resulting approximation functions for the
individual variances are fitting nicely to the previously estimated variances.

These individually approximated variances are now composed in order to derive single
expressions for σ2

r , σ2
φ and σ2

θ
dependent on the actual measurement zt,i:

σ2
r (zt,i) = σ2

r,r (zt,i.r) + σ2
r,φ (zt,i.φ) + σ2

r,θ (zt,i.θ) (5.13)

σ2
φ (zt,i) = min

(
σ2
φ,r (zt,i.r) + σ2

φ,φ (zt,i.φ) + σ2
φ,θ (zt,i.θ), π2

)
(5.14)

σ2
θ

(zt,i) = min
(
σ2
θ,r (zt,i.r) + σ2

θ,φ (zt,i.φ) + σ2
θ,θ (zt,i.θ), π2

)
(5.15)
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Figure 5.3: Estimated variance vs. approximation function

A side effect of this composition is, that it makes the system more robust against mea-
surement spikes by implicitly increasing the total variance. Furthermore, the surrounding
minimum function in the case of the angle and the orientation ensures again valid domains
for the corresponding variances.

By means of this, we can restate the simple noise model introduced in equation 5.1 by
the final measurement noise model for visual markers used within the implementation:

Σdt,i =

 σ2
r (zt,i) 0 0

0 σ2
φ (zt,i) 0

0 0 σ2
θ

(zt,i)

 (5.16)

In contrast to the original one, it is more situation accurate by making it dependent on
the actual measurement zt,i.
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Finally, figure 5.4 compares the measurement error with the particular standard deviations
obtained by the corresponding approximation functions. Again, one can see that the
approximation is quite usable. Unfortunately, there are spikes in the measurements,
which might be problematic in larger numbers.
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Figure 5.4: Measurement error vs. approximation function

Nevertheless, we will see in the next section that the introduced visual marker noise
model has indeed proven to be applicable.
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5.3 Application and Results
In this section, the results of the implementation corresponding to this thesis in con-
junction with the measurement noise model for visual markers are discussed. Although
both simulation environments - Stage and Gazebo - are used for this purpose, they both
have the visual marker noise model elaborated in the previous section in common. Fur-
thermore, the visualization environment RViz enhanced by a plugin by Lukas Pfeifhofer
for visual markers is used for illustrating the EKF-SLAM result as already mentioned
at the beginning of this thesis. In particular, integrated visual markers are depicted by
small coordinate systems indicating their estimated position as well as orientation. The
corresponding uncertainty of the estimated pose is again expressed by a surrounding
ellipse.

All the discussed results can easily be reproduced by either calling

roslaunch tuw_marker_slam slam_demo_gazebo.launch

using Gazebo for simulation or

roslaunch tuw_marker_slam slam_demo_stage.launch

using Stage as simulation environment. For the navigation of the robot in Stage, the
ROS package tuw_teleop provided by Markus Bader can be used by subsequently
calling the command:

rosrun tuw_keyboard2twist tuw_keyboard2twist_node

When using Gazebo, __ns:=r1 needs to be appended to the command.

First of all, in order to verify the correct reception of the detected visual markers and
their integration into the map, the robot is placed close to a visual marker. Figure 5.5
depicts this setting in Gazebo and the corresponding EKF-SLAM result in RViz. In the
bottom left corner the robot is positioned and in the upper right corner the detected
visual marker.

In figure 5.6, we have a closer look on the same visual marker. Since Gazebo is a 3D
simulation environment, the received pose of the detected visual marker - illustrated by
a plain visual marker - is in space. But the introduced EKF-SLAM implementation is
designed for 2D. Thus, the received pose is projected into the underlying plane before
integrating it into the map. Furthermore, figure 5.6 demonstrates the effect of the update
step. The first time when the visual marker is observed, it is integrated into the map
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(a) Gazebo (b) RViz

Figure 5.5: Testing visual marker detection and integration into the map

with a rather big uncertainty represented by the surrounding ellipse. But the more often
the visual marker is re-observed the smaller gets this uncertainty.

(a) Variance at t = 0 (b) Variance after ∆t

Figure 5.6: Detected visual marker and maintained marker in the map with decreasing
variance

A well-known effect in EKF-SLAM is the loop closure. It means the moment, when an
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already established visual marker is re-visited after a while. Between these two points
in time the uncertainty in the vehicle’s pose grows. But as soon as the relevant marker
is observed again, the vehicle’s uncertainty as well as the uncertainties of all the visual
markers detected in the meantime immediately shrink. This effect is depicted in the
figures 5.7 and 5.8, but this time using Stage as simulation environment.

The reason why Stage is used here, is because of the geometric symmetry of the provided
world emphasizing the effect. Furthermore, observations are distinguished by dashed
lines in Stage and by small plain visual markers in RViz, again. The shaded segment of
the circle around the vehicle in Stage denotes the area, in which visual markers and their
IDs are detected. The remaining measurements, e.g. the upper dashed line in figure 5.7a,
are neglected because we are only working with known correspondences at this point.

Coming back to the loop closure, both figures 5.7 and 5.8 show on the left the simulated
world in Stage and on the right the current state of the EKF-SLAM visualized in
RViz. The vehicle starts at the pose (0 5 0)> and drives a circle with constant velocity
ut.v = 1.0 m/s and angular rate ut.ω = 0.2 rad/s. At the beginning the vehicle is sure
about its pose and, thus, the uncertainty of the detected marker at the position (3 − 3)>
is minimal. While moving the vehicle’s uncertainty increases, which also affects the
uncertainty of the observations during the vehicle’s trip. In figure 5.7 the vehicle is right
before its starting point with a grown uncertainty in its pose and the map. It already
observes the first marker, but without ID and, thus, the measurement is refused yet.
But a few moments later, when the first received marker appears inside the ID range,
it immediately becomes sure about its pose again. Furthermore, at the same time the
uncertainty of the map features shrinks too, because their observations become more
reliable. Figure 5.8 reflects this occurrence.

For figure 5.9, the described scenario is replayed. But this time the NNSF approach
described in chapter 3 is applied. Hence, not only measurements containing an ID but
also measurements without ID are processed. Although the vehicle has not finished the
first round yet, its pose and map estimation is much better than without NNSF at this
point in time. The reason for this is a much earlier loop closure based on former unknown
correspondences revealed by NNSF.

Although the NNSF approach enables us to take advantage of all observations, it is also
a source of error. Consider figure 5.10, which depicts once again the vehicle on its round
in conjunction with the estimated map. Compared to before the internal threshold, at
which an observation without ID is still associated with a map feature, is higher. In
figure 5.11, the vehicle detects an actually unknown visual marker. Since the received
measurement contains no ID and NNSF is enabled, it tries to match the observation with
an already known map feature. Although the measurement and the first of all found
visual markers are far off, they get associated, because of the vehicles own uncertainty
and the high threshold. Thus, the map is irreversibly distorted making further processing
even more error-prone.

Another interesting case is depicted in figure 5.12. Until now there was always a visual

85



5. Measurement Noise Model and Application

(a) Stage (b) RViz

Figure 5.7: Before loop closure

(a) Stage (b) RViz

Figure 5.8: After loop closure

marker in the field of view at the beginning. This marker was used later on as a reference
point re-establishing certainty about the robot’s pose and the created map. This time
there is no such initial reference point (cp. figure 5.12a). Instead the robot starts a
journey into the unknown. Remember, although there is already an observation at the
beginning, this observation is outside the ID range and, thus, it is not integrated into
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(a) Stage (b) RViz

Figure 5.9: Loop closure with NNSF (α = 0.95)

(a) Stage (b) RViz

Figure 5.10: Before erroneous loop closure with NNSF (α = 0.995)

the map yet. This is also true with enabled NNSF, since an ID needs to be stored when
integrating a visual marker into the map for possible later associations based on IDs.
But as soon as the robot comes close enough to recognize the ID, the visual marker
gets incorporated into the map. Unfortunately, the robot is not sure anymore about its
pose at this time. Consequently, the uncertainty of the obtained map feature is even
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(a) Stage (b) RViz

Figure 5.11: After erroneous loop closure with NNSF (α = 0.995)

higher because of the additional measurement noise. Figure 5.12b illustrates this moment.
Further, the robot continues its round discovering the other visual markers and coming
back to the first visual marker. Until now, the robot became quite sure about its pose
again at this point by the loop closure. This time the uncertainty is indeed reduced, but
there still remains a significant portion of it. The reason is, the vehicle can never gain
more certainty than it had initially, when detecting the first visual marker for reference.
Although it is kind of natural, figure 5.12c confirms this fact.

(a) Stage (b) RViz (first round) (c) RViz (second round)

Figure 5.12: No initial reference point

For a better understanding, figure 5.13 recaps once again a full loop of the vehicle without
using NNSF. The sub-figures are arranged pairwise from top left to bottom right.
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(a) Stage (b) RViz (c) Stage (d) RViz

(e) Stage (f) RViz (g) Stage (h) RViz

(i) Stage (j) RViz (k) Stage (l) RViz

(m) Stage (n) RViz (o) Stage (p) RViz

(q) Stage (r) RViz (s) Stage (t) RViz

Figure 5.13: A full loop in the simulation environment Stage without NNSF 89
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Finally, we come back to the simulation environment Gazebo. So far an artificial noise
based on the measurement error, recorded in the previous section, was added to the
observations in Stage. In contrast, Gazebo allows the application of a separate visual
marker detection based on simulated camera images. Thus, the measurements are
inherently biased and we can examine the noise model for visual markers introduced in
the previous section. In doing so, the vehicle equipped with a camera and the visual
marker detection is navigated through the simulated world depicted in figure 5.14 with
ut.v ∈ [−0.2 m/s, 0.2 m/s] and ut.ω ∈ [−0.2 rad/s, 0.2 rad/s]. Furthermore, all visual
markers placed in this world are distinguished by circles.

Figure 5.14: Simulated world in Gazebo with highlighted visual markers
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This enables better comparability with the result of the EKF-SLAM depicted in figure 5.15.
As we can see the recorded marker map is in fact close to the actual world and the visual
markers in it. The uncertainty of the estimated visual marker poses increases the later
they were observed. This is due to the increased uncertainty in the vehicle’s estimated
pose at the time of their integration into the map. Comparing figure 5.14 and figure 5.15
demonstrates the operational capability of the implementation as well as the elaborated
measurement noise model under more realistic circumstances.

Figure 5.15: Result of EKF-SLAM using visual marker

In the last chapter, some challenges and drawbacks of the introduced implementation are
revealed. These are then compared with the latest developments in the area of SLAM,
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giving an insight into the state of the art. Finally, it concludes the thesis with a brief
summary of the work and with future prospects of the implementation.

92



CHAPTER 6
Conclusion

The SLAM topic is well-studied. Yet, because of its computational complexity it could
only be solved theoretically in the past. But hardware developments in the recent decades
have made it possible to apply “the solution in a number of different domains from
indoor robots to outdoor, underwater, and airborne systems.” [29] Due to its tremendous
impact on mobile robotics, the topic became popular in the last decade. Furthermore,
ROS evolved in the field of robotics in the last few years. Since there has not been
any comparable EKF-SLAM implementation for ROS so far, we decided to enrich its
functionality by an appropriate package. The scientific contribution to this package is
the statistically evaluated measurement noise model for the visual marker detection used.

Although we provided a working solution, section 6.1 depicts some challenges and
drawbacks of the implementation introduced and of EKF-SLAM in general. These
challenges are then compared with state of the art developments in section 6.2. Section 6.3
concludes the thesis with a short summary and gives an outlook on further improvements
as well as extensions of the presented implementation.

6.1 Challenges and Drawbacks
In the field of EKF-SLAM, considerations have to be taken into account regarding
robustness. The EKF-SLAM approach introduced in chapter 3 using visual markers
circumvents a few of the traditional problems in plain EKF-SLAM described in [1].
Nevertheless, some of these challenges and common drawbacks of EKF-SLAM are
recapped in this section and complemented with problems specific to the presented
implementation.

In general, EKF-SLAM is only applicable to the online SLAM problem. For global SLAM
the state vector would have to be extended by the current pose estimation of each time
step. This results in an infinite growth of the state vector and, thus, of the computational
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effort too, regardless of how efficient the implementation is or how fast the processors
used are. [1]

A common problem is the ideal number of features. An insufficient number of features is
obviously bad for localization, but too many features are bad for the data association
problem of unknown correspondences as well. As we have seen in the previous chapter,
if visual markers are placed tightly together, the assignment of measurements with the
correct map features is difficult. Thus, the probability of wrong correspondences rises.
Unfortunately, decisions using NNSF for data association are hard and cannot be revoked
later on. This makes further processing error-prone. Moreover, the number of map
features obviously has a critical impact on the computational effort, because of the
quadratic complexity of the EKF-SLAM cycle.

A main drawback of EKF-SLAM is the selection of appropriate features. Often lines,
corners or other geometrical structures are filtered out of a video stream provided by a
camera. The same holds for the visual marker approach used within this thesis. Beside
the additional computational effort, one must also keep in mind the loss of information
associated with it. This loss of information is increased once more in the presented
solution for 2D. Although the measurements obtained from the visual marker detection
are three-dimensional, they are projected into the plane for compatibility. This yields a
reduction from 6 to 3 DOFs.

Furthermore, the orientation information received from the original visual marker detec-
tion was quiet poor. Thus, the corresponding variance in the measurement noise model
was increased to a level at which the observed orientation was pretty much neglected.
This loss of information had a noticeable negative impact on the EKF-SLAM result. The
so created maps often began to turn while processing. This effect can be comprehended
by imagining a pillar. No matter from which direction the pillar is seen, it always looks
the same. Thus, we can never distinguish from which side we actually observe it. As
a consequence, the orientation information has proven to be essential for meaningful
EKF-SLAM results.

The original visual marker detection revealed another problem of the provided implemen-
tation. Sometimes it happened that the observed ID of a visual marker was not recognized
correctly. As a consequence, the corresponding visual marker was added more than once
to the established map. Since the wrong ID was detected rather infrequently, there
remained a spurious map feature with high uncertainty. In the adapted visual marker
detection used later on, this misbehavior was not noticed anymore during simulation
runs.

Another drawback regarding angles, is the used Euler angle approach, which assumes
angles between −π and π. Unfortunately, the domain of the inverse tangent function
is usually −π

2 and π
2 . This problem was circumvented by the common extension of

the inverse tangent function illustrated in chapter 4. But further problems arise when
performing operations with them, e.g. for the angle difference we exploited once again
the extended inverse tangent function in combination with the sinus and cosinus function.
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Moreover, we need to ensure proper angle values when transforming homogeneous pose
vectors. A well-known approach avoiding these problems is the usage of quaternions
instead of Euler angles.

Beside that, the presented transformations should be actually theoretical, because ROS
internally provides a transformation system of its own. Using these transformations
instead, would obviously avoid a possible source of error and make the provided solution
more compatible to other settings. In particular, there has been built in a case distinction
for Stage and Gazebo adjusting the received measurements appropriately. Nevertheless,
the usage of the presented transformations has been preferred because it is facilitating the
deviation of the corresponding Jacobian matrices. Furthermore, in the case of Gazebo
the observations had to be projected into the plane anyway and in both cases they needed
to be transformed from Cartesian coordinates back to spherical coordinates. The reason
is that the visual marker detection stores the poses for further processing in Cartesian
coordinates although the visual markers are measured in spherical coordinates.

Apart from that, the symmetry of covariance matrices is not utilized in the implementation
by storing them as triangular matrices. This was suggested when elaborating the Kalman
Filter in chapter 2 in order to reduce its complexity by exploiting the speed up of
triangular matrix multiplications. Instead, floating point errors during multiplication
corrupt the covariance symmetry, which needs then to be recovered by hand from time
to time. Obviously, this increases the computational effort rather than decreasing it. But
it is required, since non-conforming covariance matrices revealed a tremendous negative
impact on the EKF-SLAM result. Besides that, neither discussed update step exploits
entirely the sparse Jacobian matrix for the Kalman gain as it was done in the prediction
and integration step. Thus, the computational complexity of the implementation is higher
than specified.

Finally, the motion model used in the prediction step of the EKF-SLAM cycle is rather
simple. Again, it uses Euler angles, for which reason the described case distinction in
chapter 4 is required. This is called gimbal lock in [30]. For this purpose, a motion
model exploiting the usage of quaternions has been developed. But exchanging the two
motion models goes hand in hand with replacing the corresponding control noise with a
more complex one. In [31], they successfully implemented such a motion model using
quaternions for the independent steering of an autonomous system.

6.2 State of the Art and Comparison with related Work

Although the SLAM problem is well studied in theory, which is shortly recapped
in [29], [28], in practice several problems still exist. These include firm real time demands
on processing time and limited memory, e.g. on embedded systems.

For this reason, consider the data association problem between detected visual markers
without IDs and features of the created map. A naive implementation as suggested in
this thesis iterates over all possible visual markers resulting in linear complexity. In [32],
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they introduced octrees as data structure fighting this problem. The limited memory
problem is addressed in [33]. Their approach is to keep just the currently required extract
of the map in memory and store the remaining part on hard-disc. Thus, the focus of this
paper is mainly the update of the global map with the local one.

Beside the reduction of memory consumption, the usage of local maps has further
advantages. In [34], the computational complexity of the EKF-SLAM cycle could be
reduced from O(N2) to O(N) by means of a Divide and Conquer approach using sub-
maps. In addition, they claimed that working with smaller local maps lowers the angular
error of measurements. This, in turn, keeps the linearization error small, which is
introduced by the first order Taylor approximation used in EKFs.

Further problems regarding especially visual SLAM, i.e. SLAM using visual sensors like
cameras, are the limitation of the sensors used as well as the use of low level features
such as salient points. A possible solution to overcome these problems is presented in [35].
They extract e.g. points, line segments, lines, and planes from the underlying sensor data
and use them as so called high level features.

Additional research is done in complementing different approaches. This includes the
exchange of multiple vehicles performing SLAM [36] as well as combining observations from
different sensor types [37]. The former describes a setting of multiple robots performing
SLAM, which forward their local maps to a server. The server, in turn, merges the
different local maps to a global one and returns it to the robots for further improvement.
The second paper combines range-only measurements as discussed in [38] with visual
markers. The reason is to augment very infrequent though precise and comprehensive
visual marker observations with frequent but vague range-only measurements.

When discussing the application, we have seen in the previous chapter that the uncertainty
in the estimated map decreases during the progress of time. In [39], they proved this
empirical result by showing that the uncertainty indeed monotonically decreases for
Kalman Filters. Furthermore, they confirmed theoretically the observations we made
without a reference point. In particular, the accuracy of the estimated map is limited
by the initial uncertainty in the vehicle’s pose at the time the first feature is added to
the map. Besides, the absolute alignment of the estimated map may differ from the true
environment. But the relative alignment of the map features to each other converges
correctly through the correlation of the particular map features depicted in the covariance
matrix. Remember, we mentioned such a drift in relation with no reference point, too.

Consider now the spurious measurements observed with the original visual marker
detection. One of the challenges is to avoid getting those measurements integrated into
the vehicle’s state vector, i.e. the estimated map, thus making further estimations of the
map and the vehicle’s pose in it less error-prone. One solution may be to manage an
additional list with already observed features, but which are not considered in the update
step yet. This additional list is known under the names provisional [1], tentative [17]
or potential landmark list [39]. Consequently, features on this list do not affect the
state correction. A simple way in doing this is to zero their deviation from further
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measurements in line 5 of algorithm 4.3. As soon as the features have been observed
frequently enough, they are fully integrated into the map.

Another challenge in this context is how to treat erroneously incorporated measurements.
In [17], a timeout is suggested for this purpose. After incorporating a feature into the
map, it needs to be re-observed often enough in a certain amount of time. If this is not
the case, it is removed again. Another approach is to consider the ratio of the number
of times a feature is observed and the number of times it is not although it should be.
Based on this ratio, a feature is removed from the current state vector or not. But how
to determine the fact a feature should be recognized? A way in doing this is the usage of
probabilistic weights. This approach is named in [1] the landmark existence probability.
In [39], [40], they call it the landmark quality.

Furthermore, in [40], they propose a Multiple Hypotheses Tracking (MHT) approach
for the data association problem related to Kalman Filters. A well-known problem
of the NNSF approach, used for unknown correspondences within this thesis and the
corresponding implementation, is namely that wrong associations have a tremendous
impact on further EKF-SLAM cycles. This is because they are irreversible. MHT as
originally introduced in [41] fights this problem by maintaining multiple tracks of possible
data associations during the progress in time. These different tracks are stored in a
hypotheses matrix, which can be imagined as a tree. Obviously, a drawback of this
approach is its increased demand in computational effort and memory size. Nevertheless,
in [42], they introduce an implementation of the MHT algorithm, which is domain
independent and, thus, reusable for different areas of applications as well as EKF-SLAM.

6.3 Summary and Outlook

After a recapitulation of basic probabilistic concepts, we derived a theoretical foundation
for EKF-SLAM. Based on the underlying theory, algorithms were elaborated solving the
problem of creating feature-based maps and simultaneously determining the vehicle’s
pose in them. These algorithms were then enriched with implementation specific details
for EKF-SLAM using visual markers. Furthermore, a measurement noise model for
visual markers was statistically evaluated by using an already existing visual marker
detection. Finally, the implementation in conjunction with the noise model was shown to
be applicable in simulation.

Consequently, in a next step, the provided solution needs to be examined in a real
environment. In doing so, the measurement noise model introduced in the previous
chapter may be adapted accordingly. Recent tests conducted by Lukas Pfeifhofer revealed
that the visual marker detection works better for real markers than in simulation. A
possible explanation is that the edges of simulated visual markers are blurred by anti-
aliasing mechanism in Gazebo. Unfortunately, explicit edges are crucial for the visual
marker detection and, thus, the detection is negatively affected.

Apart from that, the fact that the obtained measurements usually contain 6 DOFs should
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be exploited. Thus, the provided solution should be extended from 2D to support 3D. In
doing so, the implementation can be adapted at the same time in order to make use of the
ROS internal transformation system for the measurement prediction and the integration
function. This makes the solution more flexible and less error-prone concerning changes
in the setting, e.g. replacing the used visual marker detection.

Finally, dynamic environments can be considered instead of the current static environment
assumption. This means in effect, moving visual markers representing e.g. other vehicles
performing their own task. This can be achieved by augmenting the present state vector
with the first and second deviation of the pose denoting the velocity and acceleration.
Thus, not only the pose but also the velocity and acceleration of visual markers are
estimated.
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