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“And if you only do solid research instead of making a groundbreaking discovery, what
does it matter?”
“Only do solid research?! Uh... I come to you for help, and you insult me?!”

The Big Bang Theory, season 8, episode 13

For all the people who believe in fundamental research.
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Deutsche Kurzfassung

Diese Arbeit behandelt Ansätze zur Untersuchung nichtlinearer Systeme unter Parame-
tererregung (PE). PE bedeutet, dass mindestens ein Parameter des Systems zeitvariant
ist. Das beeinträchtigt die Stabilität der Ruhelage des Systems. Innerhalb bestimmter Fre-
quenzbänder der PE kann die Ruhelage instabil sein. Bei solchen PE Frequenzen treten
Schwingungen auf, die nur durch Nichtlinearitäten des Systems in ihrer Amplitude be-
grenzt sind. Im Gegensatz dazu gibt es andere PE Frequenzbänder, innerhalb derer die
Ruhelage des Systems weiter stabilisiert wird. Dies geschieht durch einen Effekt, der die
Schwingungsenergie periodisch in stärker gedämpfte Schwingungsmoden transferiert.

Ist die Ruhelage instabil, wird sich das System von ihr entfernen und verzweigten
Grenzzyklen zustreben, falls solche existieren. Im Rahmen dieser Arbeit werden Ansätze
aufgezeigt, wie diese Grenzzyklen analytisch, semianalytisch und numerisch untersucht
werden können. Es wird auch gezeigt, wie die Stabilität dieser Zustände analysiert wer-
den kann. Anhand dieser Ergebnissen wird demonstriert, wie nichtlineare PE Systeme
modifiziert werden können, um ihre Eigenschaften zu ändern und ihre Leistung zu ver-
bessern.

Ein wesentliches in dieser Arbeit dargestelltes Ergebnis ist ein neuartiger Ansatz
nichtlineare PE Zweifreiheitsgradsysteme in Instabilitätsbereichen der Ruhelage mit Ein-
freiheitsgradmodellen zu nähern. Diese Näherung ermöglicht auch die analytische Be-
schreibung des Verhaltens solcher Systeme in diesen Bereichen. Dadurch können kriti-
sche Systemparameter und ihr Wirken auf das Verhalten des Systems erkannt werden.

Diese Ergebnisse werden unterstützt durch numerische Simulationen an entscheiden-
den PE Frequenzen. Außerdem werden beispielhaft verschiedene mikroelektromechani-
sche Systeme betrachtet, bei denen die erzielten Ergebnisse angewendet werden können.

Der hauptsächliche Nutzen der Arbeit liegt darin nichtlineare PE Mehrfreiheitsgrad-
systeme einfacher beschreiben und daher effizienter gestalten zu können. Sie bietet damit
einen einfachen Zugang PE Systeme mit mindestens zwei Freiheitsgraden zu realisieren
und eröffnet somit die Möglichkeit Parameterkombinationsresonanzen und Parameter
Anti-Resonanzen zu nutzen.

Schlagwörter: Parametererregte Schwingungen, Parameterantiresonanz, Stabilität,
Nichtlineare Dynamik, Mikroelektromechanische Systeme, Quasi-modale Transformati-
on
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Abstract

This thesis is about investigating parametric excitation (PE) in non-linear systems. PE
systems are characterised by at least one system parameter which varies over time. This
has an impact on the stability of the system’s rest position. Within certain PE frequency
intervals the system’s rest position is unstable leading to vibrations only limited by non-
linearities. Whereas other intervals may exist at which the rest position is further sta-
bilised by an effect periodically shifting the vibrations’ energy to more strongly damped
modes.

If the rest position is unstable, the system is repelled by this state. If a bifurcated limit
cycle exists, the system is attracted towards this state. This thesis presents approaches to
investigate these limit cycles analytically, semi-analytically and numerically. It is shown
how to analyse the stability of these states. Based on these findings it is demonstrated how
to tune non-linear PE systems in order to change their characteristics and to improve their
performance.

A major outcome presented in this thesis is a novel approach to a model reduction to
one degree of freedom for two degree of freedom non-linear PE systems within instability
intervals of the rest position. This approach also allows to state analytic results for the
behaviour of such systems at these instability intervals. Thus critical system parameters
can be identified and insights into the dependence of the system’s behaviour on these
parameters is provided.

The results are supported by numerical simulations at specific PE frequencies. Exam-
ples are given showing the application of the research results to microeletromechanical
systems.

These findings allow to approximate and hence to design nonlinear PE MDOF systems
more easily. Thus they encourage to take advantage of PE effects only available in systems
with at least two degrees of freedom: parametric combination resonances and parametric
anti-resonances.

Keywords: parametrically excited vibrations, parametric anti-resonance, stability, non-
linear dynamics, microelectromechanical systems, quasi-modal transformation
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List of Symbols

Rarely used symbols and meanings different from the ones listed here are explained where they oc-
cur. Vectorial quantities are generally named with bold small letters. Matrix quantities are named
with bold capital letters. Elements of vectors or matrices are named with corresponding non-bold
letters and are not listed redundantly here.

General Conventions

o scalar

o vector

O matrix

Notations

N set of real numbers

≈ approximately

i
√
−1, imaginary unit

<{ } real part of a complex number

={ } imaginary part of a complex number

1 identity matrix of appropriate size

OT transpose of O

O−1 inverse of O

˙( ) derivative with respect to time t

( )′ derivative with respect to eigentime τ

¯( ) 1
T

∫
( )dt, average over one period
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1 Introduction

1.1 Objectives and Motivation

The destabilising effect on a system’s rest position caused by time-variant parameters is
known since the late 19th century. It was first studied in detail by the French mathemati-
cian A. M. G. Floquet. The majority of research on parametric excitation (PE) still addresses
systems which suffer from PE. In those systems PE is an undesired effect and may en-
danger safe operation. Typical examples for technical systems which suffer from PE are
pantographs (e.g. [1]), wind-turbines (e.g. [2]) and asymmetric rotors (e.g. [3]).

PE vibrations often require attention, since they differ significantly from externally ex-
cited (forced) vibrations: First, while vibrations increase linearly over time at an ordinary
resonance, they increase exponentially over time at a so-called parametric resonance (PR)—
an instability of a system’s rest position caused by PE. Second, the vibrations’ amplitudes
at PRs are only limited by non-linearities which in most technical systems are small. Thus
vibration amplitudes generally are much larger at PRs than in ordinary resonance cases.
Third, PRs are very narrow compared to ordinary resonances, but even low degree of
freedom systems may experience multiple PRs.

Yet, from the perspective of PE the methods for investigating such systems are rather
simple. Since the system is designed to be operated at a rest position of the PE induced
vibrations, linearising the governing equations of motion is in general possible. A stability
analysis of this rest position gives answer to the questions at which parameter regimes
the system can be operated safely.

It took almost a hundred years to realise the possibilities available by utilising PE.
The effects described above definitely complicate the design and operation of certain sys-
tems. But for other systems the same effects offer great potential to outperform conven-
tional systems. In addition, A. TONDL discovered an effect of enhanced damping by PE
in multi degree of freedom (MDOF) systems by the end of the 20th century [4]. This effect
enables to stabilise systems (e.g. [5]). In particular, this is beneficial for systems which
otherwise would have an unstable state of operation. Such instabilities may arise from
self-excitation which can be caused by fluid-excitation or stick-slip effects [6].

The increasing computational power available and steadily improved user friendly
software have led to a better understanding and hence to a growing number of systems
actively using PRs in the beginning of the 21st century. However, for MDOF systems little
progress has been made regarding both analytical and numerical methods for investi-
gation. Partly this is caused by the problem of choosing a meaningful reduction of the
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system’s phase space to investigate and display the results. The quasi-modal reduction of
the phase space presented in this thesis solves this problem by reducing MDOF models
to one degree of freedom (1DOF) models at PR. This enables to investigate non-linear
MDOF PE systems analytically and to display the results of analytical and numerical in-
vestigations.

1.2 Overview

The tasks outlined above are performed in seven chapters about which an overview is
given here. A number of methods for investigating a certain class of systems—non-linear
one and two degree of freedom PE systems—are presented.

Some of the research outcomes have very general character and can be applied to
all PE systems. Thus they are presented in the introductory Chapter 2 among methods
taken from references. To the contrary, some findings from references are so specific that
they have to be illustrated in subsequent chapters among own findings. The outcomes of
this thesis mean empowering researchers to extend systems from one to more degrees of
freedom exploiting beneficial effects. To exemplify these effects, existing systems have to
be taken from references as examples to demonstrate the advantages of more degrees of
freedom.

This mix of knowledge from references and own contributions demands for clarifica-
tion. A list of original contributions is given in the following section together with clari-
fying which methods and results are taken from references. In this section, regardless of
where the information comes from, an overview is given about the topics presented in
this thesis.

First, in Chapter 2 the principle effects of PE and the methods to investigate the be-
haviour caused by these effects are explained. These include methods for finding solu-
tions of non-linear differential equations in Section 2.2 and methods for determining the
stability of those solutions in Section 2.3.

In Chapter 3 1DOF and 2DOF non-linear PE systems are investigated analytically and
semi-analytically. First, the 1DOF system is modelled in Section 3.1.1, then normalised
in Section 3.1.2 and investigated analytically employing an averaging method in Sec-
tion 3.1.3. Also, the stability of the found limit cycles is discussed in Section 3.1.4. After
modelling the 2DOF system in Section 3.2.1 the system can be quasi-modally transformed
to 1DOF systems—one for each PR. This allows to apply the findings from Section 3.1.

The obtained results are validated numerically in Chapter 4. This also demonstrates
how to exploit the quasi-modal transformation of the phase space for creating meaning-
fully reduced spaces in which the results can be presented comprehensively. In addition,
basins of attraction of the investigated systems’ states are evaluated numerically in Sec-
tion 4.1.2 and Section 4.2.2. Aspects of these outcomes regarding the safety of operation
at certain states are discussed.

Chapter 5 illustrates approaches to tuning systems to a better performance and de-
sired characteristics employing the results from Chapter 3 and Chapter 4. Similar to the
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previous chapters this one is also divided discussing 1DOF and 2DOF systems separately.
Each section starts discussing systems undergoing PE with a constant amplitude in Sec-
tion 5.1.1 and Section 5.2.1, respectively. Subsequently the cases of transient PE ampli-
tudes are analysed in Section 5.1.2 and Section 5.2.2. The results of this chapter are sum-
marised in Section 5.3.

Chapter 6 introduces three microelectromechanical systems (MEMSs) which take ad-
vantage of certain effects of PE to outperform standard systems. In three sections first each
system is explained. It is shown which features of the PE are significant for the system’s
performance. Referring to Chapter 5, possibilities of tuning the system are illustrated. Fi-
nally, the consequences of the extensions from 1DOF to 2DOF systems is discussed. The
benefits by applying the results from Chapter 3 and Chapter 4 to the design process are
depicted.

Finally Chapter 7 outlines and discusses the achievements presented in this thesis.
The practical value is pointed out. Furthermore, directions and ideas for future work are
given.

1.3 Original Contributions

This section lists the original contributions which can be found in this thesis. Contribu-
tions from references are indicated as such where they are explained.

Stability analysis of time-periodic systems based on Floquet’s theorem is anything but
new. However, few works have addressed the relation between the results of different
methods to construct the monodromy matrix. Two different methods, one deriving the
mononodromy matrix by integration over the vibration’s period and one by integration
over the PE period, are compared in Section 2.3.2. The relation between the eigenvalues
of the monodromy matrix of each approach is revealed. A way to transform both sets of
eigenvalues into each other is illustrated.

Analytical and numerical investigations of 1DOF non-linear PE systems as modelled
in Section 3.1.1 at PRs already were presented in RHOADS ET AL. [7]. However, the phase
shift of the limit cycles had not been investigated numerically which is done in Section 4.1.
Also, RHOADS ET AL. did not interrogate from which step of the approximation for the
analytical investigation the degeneration of the branches comes from, so that in difference
to the numerical results the branches are not closed loops. Employing a semi-analytical
approach this phenomenon is explained in Section 3.1.3 by neglecting the damping being
present in the system.
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Nonetheless, so far these are all supplements of already published research. Entirely
new perspectives presented in this thesis are the analytical, semi-analytical and numer-
ical studies of 2DOF non-linear PE systems in Section 3.2.4, Section 4.2 and Section 5.2.
A major aspect is the quasi-modal transformation of MDOF PE systems, which was first
published in KNIFFKA [8] and first applied to non-linear systems in this thesis. This trans-
formation is employed for a novel approach to a model reduction in Section 3.2.4. This
quasi-modal reduction does not only allow one to apply the analytical results of 1DOF
non-linear PE systems on 2DOF systems, but also enables to depict numerical results
graphically (see Section 4.2 and Section 5.2).
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2 Parametric Excitation of Non-linear Systems:
Effects and Methods of Investigation

In this chapter the basics of both the effects of PE and the methods to investigate these
effects are explained. A simple academic system is introduced in Section 2.1 for which cer-
tain effects are demonstrated specifically. The first section exemplifies the results of PE on
the stability of linear and non-linear systems’ rest positions. Section 2.2 addresses the task
of finding coexisting solutions of non-linear PE differential equations, while Section 2.3 is
about determining the stability of those solutions.

2.1 Effects of Parametric Excitation

A system is subject to PE, if it can be modelled as

ẋ = f (x, t) = A(x, t)x, (2.1)

where x is a state vector and A(x, t) is a possibly non-linear, time-variant system ma-
trix. The abbreviation ˙( ) denotes a time derivative. Note the absence of any non state
dependent terms such as g(t). The system is not excited by external loads. Here only
time-periodic systems are discussed, so that

A(x, t) = A(x, T + t) (2.2)

with T the period of the variation of the system’s parameters. Depending on the value of
this period, the system’s rest position may be destabilised or stabilised in which case the
system is attracted towards the rest position faster from a disturbed state. Both cases are
discussed in this section, consequences for technical systems are explained and examples
are given.

2.1.1 Parametric Resonances

According to the vast literature on Mathieu’s equation and related problems (e.g. [9]) the
trivial solution of Eq. (2.1) (the system’s rest position) may be unstable for a PE frequency

ΩPR,i,n =
2ωi

n
, ∀ n ∈N. (2.3)

Here ωi is a natural angular frequency of the system. Such an instability of the trivial
solution is called parametric resonance (PR). The system is repelled from the trivial state
starting to oscillate with amplitudes increasing exponentially over time. In addition, for
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(a) PR: ΩPE = 2ω1. (b) PR: ΩPE = 2ω2. (c) PCR: ΩPE = ω1 + ω2.

Figure 2.1: Increasing vibrations at PRs and PCR. Grey: linearised equations of motion; black:
non-linear equations of motion.

MDOF systems parametric combination resonances (PCRs) may occur for PE frequencies
of

ΩPCR,ij,n =
ωi + ωj

n
, ∀ n ∈N, (2.4)

where ωi and ωj both are natural angular frequencies of the system. Whether a PR or a
PCR occurs at a frequency ΩPCR,ij,n depends on the damping being present.

Different to ordinary resonance cases, at PRs the amplitudes of the vibrations do not
increase linearly over time but exponentially. Also, PRs are narrow compared to ordi-
nary resonance cases. In addition, destabilising the rest position and forcing the system
into bifurcated limit cycles means an instant change of the amplitudes in the frequency
domain.

For illustration purposes the following academic dimensionless system is introduced

ẍ +

(
0.002 −0.001
−0.001 0.002

)
ẋ +

(
2 + 0.1 cos(ΩPEt) + 0.001x2

1 −1
−1 2

)
x = 0

⇒
(

ẋ
ẍ

)
=


0 0 1 0
0 0 0 1

−2− 0.1 cos(ΩPEt) + 0.001x2
1 +1 −0.002 +0.001

1 −2 +0.001 −0.002


(

x
ẋ

)
.

(2.5)

This system is parametrically excited by the term 0.1 cos(ΩPEt)x1 with the angular PE
frequency ΩPE. Also, it is non-linear due to the term 0.001x3

1. The natural frequencies of
the linearised system are ω1 = 1 and ω2 = 1.7321. The corresponding natural modes are
ϕ1 = [1, 1]T and ϕ2 = [−1, 1]T. The damping is not sufficiently large to stabilise the rest
position [x, ẋ]T = 0 at the PRs ΩPE = 2ω1, ΩPE = 2ω2 and the PCR ΩPE = ω1 + ω2

within significant intervals. Due to the non-linear stiffness, the vibrations’ amplitudes
are limited at PR (black graphs in Fig. 2.1). Without such non-linearities the amplitudes
would increase infinitely at PR (grey graphs in Fig. 2.1).
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(a) FFT of the limit cycle vibrations at ΩPE = 2ω1.

(b) FFT of the limit cycle vibrations at ΩPE = 2ω2.

Figure 2.2: FFT of the limit cycles vibrations of the system Eq. (2.5) at both PRs.

The vibrations look the same for both degrees of freedom x1 and x2 at each PR and at
the PCR. In fact, at PR ΩPE = 2ω1 the vibrations are approximately identical, whereas at
PR ΩPE = 2ω2 they have the same amplitude but are phase-shifted by π. This is caused
by the system’s natural modes which both have entries of the same magnitude. This effect
is explained in detail in Section 3.2.4.

At PR mainly the mode i is excited which corresponds to the PR frequency
ΩPR,n = 2ωi

n . Likewise, for PCRs with the centre frequency ΩPCR,n =
ωi+ωj

n both modes
i and j are excited (see [10, 11] for example). Inspecting the vibrations at the PRs in the
frequency domain, this effect is very clear for the system Eq. (2.5) (see Fig. 2.2).

At PR ΩPE = 2ω1, the amplitudes of the second mode z2 are at maximum 0.3% of the
amplitude of the first mode z1 (see Fig. 2.2(a)). The same holds for the PR ΩPE = 2ω2:
the amplitudes of the first mode z1 are at maximum 0.27% of the amplitude of the second
mode z2 (see Fig. 2.2(b)).

2.1.2 Parametric Anti-Resonances

In addition, for MDOF systems it is possible not only to destabilise the rest position but
also to enhance the energy dissipation when oscillating around the rest position. Thus the
system can be brought to rest faster from a perturbed state at certain PE frequencies

ΩPAR,ijn =
|ωi −ωj|

n
, ∀ n ∈N. (2.6)
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(a) Vibrations for ΩPE = 0. (b) Vibrations for ΩPE = ω2 −ω1.

(c) Modal vibrations for ΩPE = 0. (d) Modal vibrations for ΩPE = ω2 −
ω1.

Figure 2.3: Vibrations and modal vibrations at ΩPE = 0 and ΩPE = ω2 − ω1. The faster dissipa-
tion of energy in (b) and (d) can be explained by the more efficient use of the higher
modal damping of the second mode z2.

This effect was first discovered by TONDL [4] and is called parametric anti-resonance
(PAR). The phenomenon is caused by periodically shifting energy between the modes i
and j. Hence the higher modal damping of the higher mode is exploited more effectively
[12].

The system Eq. (2.5) experiences a PAR at ΩPE = ω2 − ω1 = 0.7321. At this PAR
35% more energy is dissipated within the simulated time interval than at ΩPE = 0. The
continuous energy transfer between both modes z1 and z2 becomes obvious in Fig. 2.3d.
On average the amplitude of the second mode is much larger than for the non-PE system
(ΩPE = 0) (compare Fig. 2.3(c) and (d)).

This effect of enhanced damping can be used to stabilise systems which are at risk of
becoming unstable at their operational state [6, 13]. Using PE an open loop control can be
designed stabilising systems which, for example, undergo self-excitation.
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2.2 Methods for Solving Non-linear ODEs

Different to linear equations, non-linear equations do not have unique solutions. This
also applies to non-linear differential equations. The solutions of such equations can be
attracted by two different kind of states: fixed points (equilibria) and limit cycles. Because of
their attracting behaviour they are called attractors. Attractors can be stable or unstable1.
Cycles are closed periodic orbits in the phase space. Limit cycle means that in a certain
neighbourhood no other cycles exist [14].

Due to possible coexisting solutions, for non-linear differential equations the solutions
cannot be found in their entirety by an ansatz in contrast to linear differential equations.
One approach to deal with this problem analytically is to average the differential equa-
tions over one period of the limit cycle. The results are average changes of the phase
parameters which can be set to zero in case of a limit cycle. This procedure is explained in
more detail in Section 3.1.3. The emerging algebraic set of equations can either be solved
analytically or can be evaluated employing numerical path-following methods. Alterna-
tively, the original non-linear differential equations can be investigated by path-following
methods directly.

Two numerical path-following methods for investigating non-linear equations are de-
scribed in the following sections.

Because the limit cycle’s period T∗ is not known, for finding limit cycles numerically,
Eq. (2.1) has to be scaled to a fixed interval, e.g. [0, 1] or [0, 2π]. This way x(t) = x(t + T∗)
can be stated easily exploiting the interval’s borders. This set of equations needs another
constraint to have a unique solution. A common choice for a third variable is the L2-
norm x2 + ẋ2 of the solution of Eq. (2.1). The path following packages AUTO [15] and
MATCONT [16] utilise ∫ 1

0
xT(t)vdt = 0, (2.7)

where v is the known tangent vector of a previously calculated limit cycle. This condition
aims at selecting the solution with the smallest phase difference to the previous solution.
In either case a boundary value problem is formulated.

To find the states x(0) Newton-like methods are in use, which sensitively depend on
the start value. In the following, two methods for finding these start values are presented:
the homotopy method and the continuation method. These methods can also be applied
for finding the solutions of an algebraic set of equations with a free parameter (see Chap-
ter 3).

2.2.1 Homotopy Method

Homotopy is a continuous transition from one problem to another. The homotopy
method embeds the original problem g1 and a modified version g0 of this problem in
the family

g(x, α) = 0 (2.8)

1In this thesis “stable”, “stability” etc. always refers to Lyapunov stability (see Section 2.3).
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(a)

x

(b)

α

Figure 2.4: Convergence problems of the homotopy method (a) and the continuation method (b)
at reversal points and bifurcations, respectively.

so that

g(x, 0) = g0, (2.9a)

g(x, 1) = g1. (2.9b)

Problems of this family for α ∈ [0, 1] are solved for α = αi on sufficiently small intervals
[αi, αi+1]. As a start value for xi+1 the value xi or a related value is used. With the method
employed in Chapter 3 the start value x0,i+1 is set to

x0,i+1 = xi + (αi+1 − αi)
∂x
∂α

, (2.10)

where ∂x
∂α is computed via

f ′(xi, αi)
∂x
∂α

+
∂ f (x, α)

∂α
= 0. (2.11)

The Jacobian f ′(xi, αi) is known from the Newton iteration.
However, if x(λ) has reversal points, singular matrices occur for the Newton method

when utilising the homotopy method. This means, instead of new states beyond a rever-
sal point, the branch may be followed backwards along the already detected states (see
Fig. 2.4(a)) [17].

2.2.2 Continuation Method

This problem can be overcome by a continuation method as implemented in AUTO [15]
and the MATLAB-based package MATCONT [16]. In contrast to the homotopy method,
a continuation method treats the free parameter α as an unknown parameter which is
solved simultaneously. This way the Jacobian of the linearised problem does not become
singular at reversal points as for the homotopy method. Instead, the Jacobian becomes
singular at bifurcation points where further solutions bifurcate from the followed path.
On the one hand this enables to identify bifurcation points. On the other hand the re-
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sulting convergence problems of the Newton method or Newton-like method in use may
lead to branch switching: instead of the original branch a bifurcated path is followed (see
Fig. 2.4(b)) [18].

2.3 Stability Analysis of Time-periodic Systems

Not all states found by the methods described above are stable. In the following stability
refers to Lyapunov stability [19]. A state xs is Lyapunov stable, if there is a δ > 0 so that,
if

|x(0)− xs| < δ (2.12)

then there is an ε > 0 so that for any t > 0

|x(t)− xs| < ε. (2.13)

In general, non-linear systems can be linearised at the state of interest which enables to
investigate the Jacobian of the linearised system. A state of a non-linear system is stable
if the real parts of the eigenvalues of the Jacobian are negative [19].

However, for PE systems the Jacobian of the linearised system at a certain state is time-
variant, since the system parameters are time-variant. Hence the Jacobian’s eigenvalues
are time-variant and do not give information about the stability. Two different methods
to investigate the stability of states of such systems are presented in the following.

2.3.1 Averaging Methods

If the PE system is analysed analytically with averaging methods (see Section 2.2 or Sec-
tion 3.1.3 for details), the time-periodic set of differential equations is averaged over one
period of the vibration leading to a time-constant set of differential equations. This set of
differential equations can be linearised and its Jacobian can be evaluated according to the
approach outlined above.

2.3.2 Floquet’s Method

A method to analyse a state’s stability directly without approximating the time-periodic
system is to evaluate its monodromy matrix R. The solution of Eq. (2.1)

ẋ = f (x, t) = A(x, t)x

can be assumed to take the form

x(t) = x0(t) + ∆x(t), (2.14)

where x0(t) = x0(t + T∗) is a cycle with a constant period T∗ and ∆x(t) is a small addi-
tional disturbance. Because of this periodicity the solution x(t) only is Lyapunov stable,
if

x(t + T∗) ≤ x(t). (2.15)
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With x0(t) being periodic, the differential equation can be written in terms of the distur-
bance ∆x as

∆̇x = ẋ− ẋ0 = A(x, t)∆x. (2.16)

The dependence of fundamental solutions ∆X of the disturbance ∆x on time can be for-
mulated employing the monodromy matrix R∗, i.e.

∆X(t + T∗) = ∆X(t)R∗. (2.17)

Different to the Jacobian, the monodromy matrix R∗, which T∗-periodically maps sets of
fundamental solutions, is time-constant. With Eq. (2.17) the stability condition Eq. (2.15)
becomes

|$∗n|
!
≤ 1, (2.18)

with $∗n the eigenvalues of the monodromy matrix R∗. These eigenvalues are called char-
acteristic multipliers or Floquet multipliers referring to the French mathematician A. M. G.
Floquet.

However, for this method the period T∗ of the cycle x0 has to be known. Approximat-
ing the period T∗ can be achieved efficiently via harmonic balancing, which for example
is implemented in the MATLAB-based path following package MANLAB [20].

A computationally less expensive way to investigate the stability of time-periodic sys-
tems is based on the PE period T instead of the vibration’s period [21]: If X(t) is a set of
fundamental solutions of Eq. (2.1), X(t+T) also is a set of fundamental solutions, because
choosing τ = t + T yields

dx
dτ

= A(τ − T)x = A(τ)x. (2.19)

This enables one to map sets of fundamental solutions in analogy to Eq. (2.17), i.e.

X(t + T) = X(t)R. (2.20)

Hence x is stable, only if
|$n| = |eig(R)| ≤ 1. (2.21)

Because the monodromy matrix R compares sets of solutions with respect to the period
T of the PE, the period T∗ does not need to be known. For deriving R numerically, x has
to be integrated over one period T with an independent set of initial conditions. Because
being computationally less expensive this approach commonly is favoured instead of de-
riving the monodromy matrix with respect to the vibrations period. It is implemented in
software packages like MATCONT [16].

The essential difference of the two different sets of Floquet multipliers is that the mul-
tipliers $n describe the behaviour of the system with regard to the PE period T, while the
Floquet multipliers $∗n describe the behaviour with regard to the period T∗ of the cycle.
However, both Floquet multipliers are related to each other [11]. The envelope function
of the n-th fundamental solution xn(t) can be defined utilising either set of Floquet mul-
tipliers, i.e.

|$n|t/T = |$∗n|t/T∗ . (2.22)
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Figure 2.5: Maximum Floquet multipliers max(|$|) (thin) and max(|$∗|) (bold) depending on the
PE angular frequency ΩPE. The value 1 indicates the stability limit.

Hence the Floquet multipliers can be converted to each other by

|$n| = |$∗n|T/T∗ ⇔ |$∗n| = |$n|T
∗/T. (2.23)

The maxima of both Floquet multipliers $n| and |$∗n| for the rest position of the system
Eq. (2.5) are depicted in Fig. 2.5. Five PE frequency intervals become distinct. Three of
them are indicated as unstable (max (|$n|) > 1). These are the PRs ΩPR,1,1 = 2ω1 = 2
and ΩPR,2,1 = 2ω2 = 3.46 for which the time series are displayed in Fig. 2.1. The PR
ΩPR,1,2 = ω1 = 1 candidate is noticeable but does not destabilise the rest position. The
tiny notch at ΩPAR,12,1 = ω2 − ω1 = 0.73 indicates the PAR for which the time series are
displayed in Fig. 2.3.

Note that lim
ΩPE→0

(max (|$n|)) = −∞ due to the normalisation to T = 2π/ΩPE which

becomes indefinitely large for ΩPE → 0. Hence the entries of X(t + T) and thus the en-
tries of R become indefinitely small. Not only at small ΩPE the diagram becomes hard
to interpret. The values of the Floquet multipliers $n do not necessarily coincide with a
faster or slower decrease of the vibrations of the system. They only give qualitative infor-
mation about the stability but must not be interpreted as a growth or decay rate for the
time signal. On the contrary, the Floquet multipliers $∗n can be interpreted quantitatively.
In fact

max (|$∗n|)
∣∣
ΩPE=0 = max

(
e−ωiζiT

)
, (2.24)

where ζi is the i-th modes modal damping. If the Floquet multipliers $n are computed,
the conversion Eq. (2.23) can be employed for quantitatively interpretable results.
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3 Analytical Investigations of One and Two
Degree of Freedom Parametrically Excited
Non-Linear Systems

One and two degree of freedom systems with PE are introduced in this chapter and inves-
tigated both analytically and semi-analytically. Approximations describing their charac-
teristics at parametric resonance are given, which are validated numerically in Chapter 4.

3.1 One Degree of Freedom System

In this section a 1DOF non-linear PE system is introduced, modelled and analysed (see
Fig. 3.1). The equation of motion is derived in Section 3.1.1. This equation is normalised
to become dimensionless in Section 3.1.2. Limit cycles of this equation are approximated
analytically and semi-analytically using an averaging method in Section 3.1.3. The section
concludes with a stability analysis and an identification of the type of the bifurcations
(Section 3.1.4).

3.1.1 Modelling

We consider a lumped mass model as follows (see Fig. 3.1): a rigid body with mass m is
linked to the inertial reference frame via two springs with the non-linear stiffness param-
eters kb(x) and k(x, t) and a viscoelastic damper with the damping constant c.

kb(x) k (x ,t)

c

x
m

Figure 3.1: Mechanical lumped mass model of the 1DOF system: mass m, stiffness parameters
kb(x) and k(x, t), damping constant c.
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Table 3.1: Parameters of Eq. (3.2) as used in numerical analyses

Parameter Symbol Value Unit
Mass m 1.22 · 10−10 kg
Damping Constant c 3.88 · 10−8 N m−1 s
Linear Stiffness Constant kb,lin 7 N m−1

Non-linear Stiffness Constant kb,nlin 3.6 · 1010 N m−3

Linear PE Stiffness Constant kPE,lin 0.146 N m−1

Non-linear PE Stiffness Constant kPE,nlin −6.4 · 109 N m−3

The stiffness parameters are

kb(x) = kb,lin + kb,nlinx2, (3.1a)

k(x, t) = kPE(1 + cos(ΩPEt)), (3.1b)

kPE(x) = kPE,lin + kPE,nlinx2. (3.1c)

The equation of motion becomes

mẍ + cẋ + kb(x)x + k(x, t)x =

mẍ + cẋ + kb,linx + kb,nlinx3 + (kPE,linx + kPE,nlinx3)(1 + cos(ΩPEt)) = 0.
(3.2)

The abbreviation ˙( ) = d
dt denotes a time derivative. Note that there is no external excita-

tion. Instead of being excited externally the system undergoes parametric excitation (PE)
by the time-periodic stiffness k(x, t) (see Section 2.1).

The system studied here was described in [22], pp. 31-41. The values of the para-
meters used in subsequent numerical investigations are listed in Tab. 3.1. The system
is a microelectromechanical system (MEMS) with a mass m of 122 µg. The stiffnesses are
accordingly small to realise a natural frequency of 38.5 kHz of the linearised system. Ap-
plications and functional principles are presented in Chapter 6. Although its parameters
specifically refer to a microsystem, the studies and analyses in this and the following two
chapters are fundamental and general. They can be applied to any system which can be
modelled as shown in Fig. 3.1.

3.1.2 Normalisation

For further analysis it is useful to normalise Eq. (3.2). Thereby the number of parameters
is reduced and the equation and its parameters become dimensionless. The analysis of
the behaviour of this equation therefore becomes easier and findings more general.

Introducing the eigentime τ = ΩPEt gives the relation

d
dt

= ΩPE
d

dτ
. (3.3)
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Table 3.2: Non-dimensional parameters of Eq. (3.7) and their relation to the physical parameters
of the 1DOF system. The values listed here are used for illustrating analytical results
and for semi-analytical and numerical investigations.

Non-dimensional Parameter Symbol Relation to Physical Par. Value

Linear PE Parameter εlin
kPE,lin
m Ω∗2

0.1197

Non-linear PE Parameter εnlin
kPE,nlin x∗2

m Ω∗2
−5.246 · 10−3

Damping Ratio ζ c
2
√

k m
6.635 · 10−4

Non-linearity Parameter κ2 (kb,nlin+kPE,nlin)x∗2

m Ω∗2
2.403 · 10−2

Natural Angular Frequency ω0

√
kb,lin+kPE,lin

m Ω∗2
2.420

Scaling Parameter Symbol Value
Frequency Scaling Parameter Ω∗ 105 s−1

Displacement Scaling Parameter x∗ 10−6 m

Hence Eq. (3.2) becomes

m Ω2
PE x′′ + c ΩPE x′ + kb,lin x + kb,nlin x3 + (kPE,lin x + kPE,nlin x3)(1 + cos(τ)) = 0, (3.4)

where d
dτ = ( )′ denotes a differentiation with respect to eigentime τ. Further scaling to

reference scaling parameters x∗ and Ω∗ leads to a dimensionless displacement z and a
dimensionless PE frequency Ω:

z =
x
x∗
⇒ x3 = x∗3z3, (3.5)

Ω =
ΩPE

Ω∗
. (3.6)

Substituting in Eq. (3.4) results in

z′′ + 2ζ
ω0

Ω
z′ +

(
ω2

0
Ω2 +

εlin

Ω2 cos(τ)

)
z +

(
κ2

Ω2 +
εnlin

Ω2 cos(τ)
)

z3 = 0. (3.7)

Here ω0 is the natural angular frequency of the linearised, non-parametrically excited
and undamped system. It is scaled so that ω0 = ωn

Ω∗ , where ωn is the unscaled natural
frequency. The damping ratio is denoted ζ. The parameters εlin and εnlin determine the
amplitude of the PE, κ2 describes the degree of non-linearity. All relations between di-
mensionless and physical parameters are listed in Tab. 3.2.

3.1.3 Analytical and Semi-Analytical Investigation of the Behaviour at
Parametric Resonances

In this section the behaviour of the 1DOF system described in Section 3.1.1 at parametric
resonances is analysed analytically and semi-analytically.
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Simply averaging Eq. (3.7) by integrating over one period of the PE will result in an
autonomous differential equation. Hence a free vibration is predicted. While this is true
for most cases of the PE frequency Ω this averaging is unable to predict the behaviour
of the system at so-called parametric resonances (PRs) (see Section 2.1). within these fre-
quency bands the trivial solution of PE systems may become unstable depending on the
level of damping present. Bifurcated limit cycles branch at the edges of such PR regions.
To predict these bifurcations a more sophisticated averaging method is employed. It gives
an approximation of the amplitude and phase shift of the vibrations of the oscillating part
of the system in the form of a set of algebraic equations. Under certain restrictions these
algebraic equations can be solved analytically. They can also be solved numerically with-
out any further restrictions. Results of both methods are presented and discussed.

To obtain analytical results for the behaviour of the 1DOF system at PR the Krylov-
Bogolyubov averaging method is employed. Eq. (3.7) is studied within small bands sur-
rounding a certain PE frequency Ω0, which will take on values of PR frequencies in the
following analysis. Hence the value Ω0 of the angular PE frequency Ω will be called the
PR frequency. The deviation from Ω0 is assumed to be very small so that the PE frequency
Ω can be written as

Ω = Ω0 + εσ +O(ε2), (3.8)

where ε � 1 is a small disturbance, which is tuned by the detuning factor σ. Since ε � 1
the following expressions can be derived:

1
Ω

=
1

Ω0 + εσ +O(ε2)
=

Ω0 − εσ

Ω2
0 +O(ε2)

(3.9a)

⇒ 1
Ω2 =

1
Ω2

0
− 2εσ

Ω3
0
+O(ε2). (3.9b)

Substituting Eqs. (3.9) in Eq. (3.7) leads to

z′′ + 2ζηz′ + η2z + χ2z3 +
1

Ω2
0
[εlin cos(τ)− ε2ηω0σ] z + ...

+
1

Ω2
0
[εnlin cos(τ)− ε2χκσ] z3 +O(ε2, εεlin, εεnlin, ζεnlin) = 0.

(3.10)

for small disturbances of Ω around Ω0 and under the constraints εlin � 1, εnlin � 1,
ζ � 1. Here η = ω0

Ω0
is the frequency ratio of the natural frequency ω0 to the PR frequency

Ω0 and χ = κ
Ω0

the ratio of κ to the PR frequency Ω0.
Introduction of polar coordinates for the non-dimensional displacement z and the

non-dimensional velocity v gives

z = r cos(α), v = −ηr sin(α). (3.11)



3.1. ONE DEGREE OF FREEDOM SYSTEM 18

The amplitude of the vibration z(τ) is denoted r and the argument of the harmonic func-
tion α = ητ + ψ. The kinematic constraint z′ = v leads to

r′ cos(α)− r sin(α)α′ = −ηr sin(α) (3.12a)

⇔ α′ = η +
r′ cos(α)
r sin(α)

. (3.12b)

Applying Eqs. (3.12) to the second order differential Eq. (3.10) gives the following set of
two first order differential equations:

r′ = −2ζηr sin2(α) +
1

Ω2
0η

[εlin cos(τ)− ε2ηω0σ] r cos(α) sin(α) + ...

+

(
χ2

η
+

1
Ω2

0η
[εnlin cos(τ)− ε2χκσ]

)
r3 cos3(α) sin(α),

(3.13a)

ψ′ =
r′ cos(α)
r sin(α)

. (3.13b)

This set of differential equations is now averaged over time, integrating over one period
of z = r cos(α), which is 2π/η, giving:

r′ = r̄′ =
η

2π

∫ 2π
η

0
r′dτ, (3.14a)

ψ′ = ψ̄′ =
η

2π

∫ 2π
η

0
ψ′dτ. (3.14b)

At the first PR Ω0 = 2ω0 (see Section 2.1) Eqs. (3.14) become

r̄′ =
−4ω2

0ζ + εlin sin(2ψ̄)

8ω2
0

r̄ +
εnlin sin(2ψ̄)

16ω2
0

r̄3, (3.15a)

ψ̄′ =
−3χεκσr̄2 − 2εω0σ + 6χ2ω2

0 r̄2 + εlin cos(2ψ̄) + cos(2ψ̄)r̄2εnlin

8ω2
0

. (3.15b)

Note that ¯( )
′

describes the averaged change of the variable over one period of the vibra-
tion. For a limit cycle this change has to be zero. To find such limit cycles the equations
above are set to zero.
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Neglecting the damping (ζ = 0), the solutions are (compare [7]1)

r̄a = 0 ∧ ψ̄a =
arccos(2ω0

εlin
εσ)

2
, (3.16a)

∧ ψ̄b =
π

2
(1 + 2k), k ∈N ∧ r̄b = ±

√
4ω0εσ + 2εlin

−2εnlin + 3κ2(1− εσ
ω0
)

, (3.16b)

∧ ψ̄c = πk, k ∈N ∧ r̄c = ±
√

4ω0εσ− 2εlin

2εnlin + 3κ2(1− εσ
ω0
)

, (3.16c)

∧ r̄d = ±

√
−2εlin

εnlin
∧ ψ̄d =

arccos( 3κ2

εnlin
( εσ

ω0
− 1)− 2ω0

εlin
εσ)

2
. (3.16d)

Each pair of amplitudes in Eqs. (3.16b-d) represents the same physical response.
Because the frequency ratio η = ω0

Ω0 = 1
2 the period of z(τ) is T = 4π and hence

r̄i+(τ) = r̄i−(τ + 2π). Eqs. (3.16) do, of course, neither depend on ε nor on σ solely, but
always on the product εσ because Ω was defined as Ω = Ω0 + εσ. To minimise the num-
ber of parameters one might introduce an abbreviation like εσ = ∆Ω. However, some
expressions become even more simple for the 1DOF system, if ε is set to ε = εlin. When
it comes to 2DOF systems in the following chapters, keeping both parameters ε and σ is
still meaningful, as εσ is very small and handling σ is more convenient.

The limit cycles with the amplitudes r̄b, r̄c branch from the trivial solution r̄ = 0 when
the detuning factor σ becomes

σ = ∓σb = ∓ εlin

2εω0

ε = εlin=== ∓ 1
2ω0

. (3.17)

Whether r̄b(σ) and r̄c(σ) have hardening or softening behaviour with respect to the de-
tuning factor, is determined by the value of the denominators, which can be greater or
less than zero at the bifurcation point σ = ±σb. Both branches become purely imaginary
when the denominator is zero, i.e. when

σ = σp1/p2 =

(
±3εnlin

3κ2 − 1
)

ω0

ε
(3.18)

depending on whether they have hardening or softening characteristics.
If the branches intersect, κ2 has to take on a value so that:

r1 − r2 = 0
∣∣∣∣
σ
∣∣<(r1)>0∧<(r2)>0

. (3.19)

1Eqs. (3.16b-d) are equivalent to Eqs. (16-19) and Eqs. (22&23) in [7]. However, a different normalisation
with different parameters is chosen in [7].
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From the above analysis five different cases of κ2 can be identified:

• κ2 < −
∣∣∣4εnlinω2

0
3εlin

∣∣∣ : Both branches have softening characteristics. They do not inter-

sect. Where the trivial solution is unstable, there is only one stable solution with

amplitude r̄c and phase shift ψ̄c = 0 (see Fig. 3.2, a)).

• −
∣∣∣4εnlinω2

0
3εlin

∣∣∣ ≤ κ2 < −
∣∣∣ 4εnlinω2

0
3(εlin+2ω2

0)

∣∣∣ : Both branches have softening characteristics.

They intersect. Where the trivial solution is unstable, there is only one stable so-

lution with amplitude r̄c and phase shift ψ̄c = 0 (see Fig. 3.2, b)).

• −
∣∣∣ 4εnlinω2

0
3(εlin+2ω2

0)

∣∣∣ ≤ κ2 <
∣∣∣ 4εnlinω2

0
3(εlin−2ω2

0)

∣∣∣ : The branch r̄b has a hardening characteristic,

but r̄c has a softening characteristic. Where the trivial solution is unstable, both

branches are stable (see Fig. 3.2, c)).

•
∣∣∣ 4εnlinω2

0
3(εlin−2ω2

0)

∣∣∣ ≤ κ2 <
∣∣∣4εnlinω2

0
3εlin

∣∣∣ : Both branches have hardening characteristics. They

intersect. Where the trivial solution is unstable, there is only one stable solution with

amplitude r̄b and phase shift ψ̄b = π/2 (see Fig. 3.2, d)).

• κ2 >
∣∣∣4εnlinω2

0
3εlin

∣∣∣ : Both branches have hardening characteristics. They do not inter-

sect. Where the trivial solution is unstable, there is only one stable solution with

amplitude r̄b and phase shift ψ̄b = π/2 (see Fig. 3.2, e)).

For the parameters shown in Tab. 3.2 the amplitudes of the bifurcated limit cycles are
approximately symmetric about the line σ = 0, if the sign of κ2 is changed. Because of the
change of sign of εlin and εnlin in r̄b and r̄c such symmetry is only approximate. For the
parameters shown in Tab. 3.2 the limiting cases of κ2 take on the values shown in Tab. 3.3.
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Table 3.3: Numerical values for limit cases of κ2 according to the parameter set in Tab. 3.2

Limit Case of κ2 Numerical Value∣∣∣4εnlinω2
0

3εlin

∣∣∣ 0.3422∣∣∣ 4εnlinω2
0

3(εlin+2ω2
0)

∣∣∣ 3.462 · 10−3∣∣∣ 4εnlinω2
0

3(εlin−2ω2
0)

∣∣∣ 3.533 · 10−3

In addition to the limit cycles with amplitudes r̄b and r̄c, Eq. (3.7) has another approx-
imate limit cycle r̄d. This branch is important if κ2 is close to zero. In this case states along
r̄d occur within the range of interest where σ is close to zero. The branches r̄b and r̄c are
then connected by r̄d at a state where both branches undergo a change of stability (see
Section 3.1.4).

Finding the limit cycles of Eqs. (3.15) becomes more difficult if damping is introduced
(ζ > 0). As the set of equations is still algebraic, numerical solutions can be found using
the homotopy continuation (see Section 2.2.1) for algebraic equations.

For the case ζ > 0, the accuracy of Eqs. (3.16) for approximating the limit cycles
Eqs. (3.15) depends on the degree of damping present (see Fig. 3.4). The branches r̄b and
r̄c are connected horizontally close to values r̄d and transformed into two loops la and lb
(see Fig. 3.3). Except for values close to the reversal point of these loops, the difference
between the amplitudes of la, lb and r̄b, r̄c is small. The phase shift now depends on σ. The
difference between the phase shift of la, lb and ψ̄b, ψ̄c is significant for values close to the
turning point of la and lb. Since the phase shift is no longer constant along the bifurcated
limit cycles, the complex interdependence between the amplitudes and the phase shifts
of the loops of la and lb can best be shown in a three dimensional phase-parameter-space
(see Fig. 3.4).
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Figure 3.2: Analytical approximations Eqs. (3.16) of the amplitude and phase characteristics of
the 1DOF system with parameters shown in Tab. 3.2 for different values of κ2: a)
κ2 = −0.4, b) κ2 = −0.01, c) κ2 = 0, d) κ2 = 0.01 e) κ2 = 0.4. Solid: stable states,
dashed: unstable states.



3.1. ONE DEGREE OF FREEDOM SYSTEM 23

Figure 3.3: Limit cycles of Eqs. (3.15). Thin: undamped system ζ = 0, bold: damped system ζ > 0.
Dashed: unstable states, solid: stable states

Figure 3.4: Limit cycles of Eqs. (3.15) in the state-parameter-space σ-ψ-r for different damping
constants ζ. Solid: stable states, dashed: unstable states. The damping constant ζ0 =
6.635 · 10−4 refers to the value of ζ in Tab. 3.2.
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3.1.4 Stability Analysis and Identification of the Type of the
Bifurcations

When discussing where branches bifurcate and on which parameters the characteristic of
these bifurcations depend, questions about the kind of bifurcation and the stability of the
branches remained open. These questions will be addressed in this section.

In order to derive the Jacobian of Eqs. (3.15) these equations have to be linearised:

∆r̄′ =
dr̄′

dr̄
∆r̄ +

dr̄′

dψ̄
∆ψ̄ = −ζ

2
∆r̄ +

∓r̄3
0εnlin ∓ 2r̄0εlin

8ω2
0

∆ψ̄, (3.20a)

∆ψ̄′ =
dψ̄′

dr̄
∆r̄ +

dψ̄′

dψ̄
∆ψ̄ =

−3ε/ω0κ2σr̄0 + 3κ2r̄0 ∓ 2εnlinr̄0

8ω2
0

∆r̄. (3.20b)

Note the change of signs in Eq. (3.20a) depending on whether the equation is linearised
at ψ̄0 = 0 or at ψ̄0 = π/2. Evaluating the Jacobian

Jbp =

( dr̄′
dr̄

dr̄′
dψ̄

dψ̄′

dr̄
dψ̄′

dψ̄

)
(3.21)

at the branch points r̄ = 0, ψ̄ = 0∨ π/2, σ = ∓σb leads to eigenvalues λ = 0 of multiplicity
2 because both off diagonal elements are zero.

The Jacobian along the bifurcated limit cycles with the amplitudes r̄b, r̄c is

Jb =

(
−4ω2

0ζ ∓r̄3
0εnlin ∓ 2r̄0εlin

(3κ2(1− εσ
ω0
)∓ 2εnlin)r̄0 0

)
1

8ω2
0

(3.22)

with negative signs regarding the first branch r̄b and positive signs regarding the second
branch r̄c. Substituting the averaged Eqs. (3.15) for r̄0 and evaluating the eigenvalues of
the Jacobian Jb, intervals of σ can be found in which a given branch is stable:
• If both branches show hardening characteristics (see Fig. 3.2,a&b), r̄b is stable at

σ = [−σlim, σb,2] and r̄c at σ = [σb,3, σb].

• If one branch has a hardening characteristic and the other one a softening one (see
Fig. 3.2,c), r̄b is stable at σ = [−σb, σb,2] and r̄c at σ = [σb,3, σb].

• If both branches show softening characteristics (see Fig. 3.2,d&e), r̄b is stable at
σ = [−σb, σb,2] and r̄c at σ = [σb,3, σlim].

Additional roots of the characteristic equation can be found. However, these roots are at
|σ| � 1 so that εσ is not longer a small perturbation of Ω0. For such values the equations
above do not approximate the behaviour of the equations of motion appropriately. The
boundary value σlim limits the range of a meaningful σ. Obviously σlim depends on the
choice of ε. The critical values for σ are

σb,2 =
ω0εlinεnlin − 3κ2ω0εlin

2εω2
0εnlin − 3κ2εεlin

, (3.23a)

σb,3 =
−ω0εlinεnlin − 3κ2ω0εlin

2εω2
0εnlin − 3κ2εεlin

. (3.23b)



3.1. ONE DEGREE OF FREEDOM SYSTEM 25

Figure 3.5: Real parts of the eigenvalues of the Jacobian Jb along the branches r̄b (solid) and r̄c

(dashed) vs. the detuning parameter σ. The branches are stable for <{eigi(Jb)} < 0.

Note that

r̄b(σb,2) = r̄c(σb,3) = r̄d =

√
−2εlin

εnlin
. (3.24)

This expresses that both branches r̄b, r̄c undergo a change of stability at the branch points
r̄b-r̄d and r̄c-r̄d respectively (see Fig. 3.2).

For the parameters displayed in Tab. 3.2 the first branch r̄b is stable at
σ = [−0.207, 2.670] while the second branch r̄c is stable at σ = [2.308, σlim]. The depen-
dence of <{eig(Jb)} on σ for this specific case is shown graphically in Fig. 3.5.

The eigenvalues of the Jacobian of the trivial solution r̄a, ψ̄a are zero between the two
branch points. This does not give any information about the stability [19]. Nevertheless
the stability of the rest position can be analysed evaluating Eqs. (3.15) at Eqs. (3.16a). The
phase shift ψ̄1 = 1/2 arccos(ε/εlin2ω0σ) with σ ∈ {−σb ≤ σ ≤ σb} takes on values of
π/2 ≥ ψ̄1 ≥ 0. Perturbing Eq. (3.16a) slightly 0 ≤ r̄p � 1 and substituting into Eq. (3.15a)
gives

r̄′ =
−4ω2

0ζ + εlin sin(2ψ̄1)

8ω2
0

r̄p. (3.25)

Hence
ζ

!
< ζcrit = 2εlin ∀ r̄′

!
> 0, σ

∣∣σ ∈ {−σb ≤ σ ≤ σb}. (3.26)
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Damping ratios ζ > ζcrit stabilise the trivial solution and annihilate the effect of
the PR. Outside of the interval [−σb, σb] the trivial solution does not exist in the ab-
sence of damping. In that case the solution of the equations of motion is a non-decaying
free vibration with the amplitude depending on the initial conditions. If any damping is
present the trivial solution does exist outside [−σb, σb] and is asymptotically stable for all
σ 6∈ {−σb ≤ σ ≤ σb}.

As illustrated the rest position is unstable/stable accordingly to whether the bifur-
cated limit cycle is stable/unstable. The bifurcations thus have the characteristic of sub-
critical and supercritical pitchfork bifurcations with the unstable solution as the repelling
saddle and the stable one as the attracting node [18]. As the angular frequency of the limit
cycles is η = 1/2, the bifurcations also have a period doubling characteristic.

In analogy to the stability analysis of the trivial solution the off-diagonal elements of
the Jacobian are 0 for all states along r̄d. However, a perturbation analysis similar to the
one for r̄a reveals all states along r̄d are unstable.

In this section, a 1DOF parametrically excited system was introduced. The equation of
motion was derived and normalised. Limit cycles at PR were approximated using an-
alytically and semi-analytically approaches and were discussed for different parameter
regimes. The stability of the found limit cycles and the rest position was analysed.
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3.2 Two Degree of Freedom System

The 1DOF system introduced in Section 3.1 is extended by a further degree of freedom
(see Fig. 3.6). The system’s equations of motion are derived in Section 3.2.1. The system’s
natural frequencies as well as the corresponding modes are computed in Section 3.2.2. The
equations of motion are quasi-modally transformed in Section 3.2.3. As a consequence the
equations of motion become dimensionless and generally applicable. They are also cast
into similar form as for the case of the 1DOF system. Applying results from Section 3.1.3
the behaviour at PRs is approximated analytically for an undamped system and semi-
analytically for a damped system in Section 3.2.4.

3.2.1 Modelling

The 1DOF system discussed previously is extended to a 2DOF system by coupling a sec-
ond body with mass m2 to the first body via a non-linear spring with the stiffness param-
eter k12(x1, x2) and a viscoelastic damper with the damping constant c12 (see Fig. 3.6).The
second body is linked to the environment by two springs with non-linear stiffness param-
eters k02(x2) and k2(x2, t) and a viscoelastic damper with the damping constant c02. For a
more general terminology m, kb, k and c are renamed to m1, k01, k1 and c01.

k01(x1) k1(x1 , t)

c12

x1

k12(x1 , x2)

m2

c01

k02(x2) k2(x2 , t)c02

x2

m1

Figure 3.6: Mechanical lumped mass model for the 2DOF system: masses m1, m2, stiffness pa-
rameters k01(x1), k12(x1, x2), k02(x2) and k1(x1, t), k2(x2, t) damping constants c01, c12,
c02.
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The stiffness parameters are

kij(xi, xj) = kij,lin + kij,nlin(xi − xj)
2, (3.27a)

ki(xi, t) = kPE,i(xi)(1 + cos(ΩPEt)), (3.27b)

kPE,i(xi) = kPE,i,lin + kPE,i,nlinx2
i . (3.27c)

The equations of motion are

Mẍ + Cẋ + K(x)x + KPE(x) cos(ΩPEt)x = 0. (3.28)

The abbreviation ˙( ) = d
dt denotes a time derivative. As with the 1DOF system, the system

is not externally but parametrically excited. The mass matrix M is

M =

(
m1

m2

)
, (3.29)

the damping matrix C is

C =

(
c01 + c12 −c12

−c12 c02 + c12

)
. (3.30)

The stiffness matrix K has a linear and a non-linear part

K(x) = Klin + Knlin(x), (3.31)

where

Klin =

(
k01,lin + k12,lin + kPE,1,lin −k12,lin

−k12,lin k02,lin + k12,lin + kPE,2,lin

)
(3.32)

and

Knlin(x1, x2) =

(
Knlin,11(x1, x2) Knlin,12(x1, x2)

Knlin,21(x1, x2) Knlin,22(x1, x2)

)
(3.33)

with the components

Knlin,11(x1, x2) = (k01,nlin + k12,nlin + kPE,1,nlin)x2
1 + 3k12,nlinx2

2, (3.34a)

Knlin,12(x1, x2) = −k12,nlin(3x2
1 + x2

2), (3.34b)

Knlin,21(x1, x2) = −k12,nlin(x2
1 + 3x2

2), (3.34c)

Knlin,22(x1, x2) = (k02,nlin + k12,nlin + kPE,2,nlin)x2
2 + 3k12,nlinx2

1. (3.34d)

The PE stiffness matrix KPE is

KPE(x1, x2) =

(
kPE,1,lin + kPE,1,nlinx2

1
kPE,2,lin + kPE,2,nlinx2

2

)
. (3.35)

The system studied here is very similar to a system described by WELTE [22]. However,
the modelling is more general and hence more widely applicable here. The values of the
parameters in use are listed in Tab. 3.4.
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Table 3.4: Parameters of Eq. (3.28), the 2DOF system depicted in Fig. 3.6

Parameter Symbol Value Unit
Mass m1 1.22 · 10−10 kg

m2 2.44 · 10−10 kg
Damping Constant c01 1.94 · 10−8 N m−1 s

c12 0.97 · 10−8 N m−1 s
c12 1.94 · 10−8 N m−1 s

Linear Stiffness Constant k01,lin 3.505 N m−1

k12,lin 1.753 N m−1

k02,lin 3.505 N m−1

Non-linear Stiffness Constant k01,nlin 18 · 109 N m−3

k12,nlin 9 · 109 N m−3

k02,nlin 18 · 109 N m−3

Linear PE Stiffness Constant kPE,1,lin 0.2281 N m−1

kPE,2,lin 0.2281 N m−1

Non-linear PE Stiffness Constant kPE,1,nlin −1.056 · 1010 N m−3

kPE,2,nlin −1.056 · 1010 N m−3

3.2.2 Modal Analysis

The system’s natural frequencies are crucial for further investigations. In order to deter-
mine them, in the following a modal analysis is carried out in this section.

With PE disabled Eq. (3.28) becomes

Mẍ + Cẋ + K(x)x = 0. (3.36)

Linearising at x = [0, 0]T further simplifies Eq. (3.36) to

Mẍ + Cẋ + Klinx = 0, (3.37)

which can be expressed as a set of first order differential equations:(
1

M

)(
ẋ
ẍ

)
=

(
1

−Klin −C

)(
x
ẋ

)
(3.38a)

⇔
(

ẋ
ẍ

)
=

(
1

−M−1Klin −M−1C

)(
x
ẋ

)
= J

(
x
ẋ

)
. (3.38b)

With the ansatz [x ẋ]T = x̂eλt the above equation gives the eigenvalue problem

(J − λ1)ν = 0. (3.39)

Its eigenvalues λi = µi ± iωi are complex conjugates. Their imaginary parts ωi are the
system’s natural frequencies. The four complex eigenvectors νi each have two complex
conjugate components ϕij± iχij. Their real parts ϕij are the modes of the damped system.
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If no damping is present (C = 0), the eigenvalues λi are pure imaginary and the
eigenvectors νi real. The eigenvalue problem Eq. (3.39) simplifies to

(Klin −ω2M0)ϕ = 0, (3.40)

with ϕi = [ϕi1 ϕi2]
T.

In this case the natural frequencies are

ω1,2 =

√
m1 Klin,11 + m2 Klin,22

2 m1 m2
+ ...

±

√(
m1 Klin,11 + m2 Klin,22

2 m1 m2

)2

−
Klin,11 Klin,22 − k2

12,lin

m1 m2

(3.41)

and the eigenvectors are

ϕ∗i =

(
1

k12,lin
Klin,ii−mi ωi

2

)
, (3.42)

if they are normalised to ϕ∗i1 = 1.

3.2.3 Quasi-Modal Transformation of the Equations of Motion

Modal decomposition is commonly applied to linear, non-PE systems. The transformation
to modal coordinates decouples the n degree of freedom system equations, yielding n
uncoupled 1DOF systems. For non-linear and PE systems no such transformation exists.
However, the equations can be written in quasi-modal form by transformation to the modal
coordinates of the linear, non-PE system [8], [11]. Such quasi-modal transformation has
several advantages: first of all, each line of the equations of motion becomes similar to the
equation of motion of the 1DOF system. Both systems can be compared more readily and
similarities become more obvious. Secondly, as explained in Section 2.1.1, at PR mainly
one mode is excited. This mode depends on the value of the PE frequency, which has to
have the factor 2/n, n ∈N regarding the natural frequency of this mode. Combining both
leads to the most powerful advantage: the quasi-modal transformation enables 2DOF
system to be approximated by a 1DOF system at PR. The quasi-modal transformation is
explained in this section. Its outcomes are discussed in the next section.

The eigenvectors are normalised so that

ϕT
i Mϕi = 1. (3.43)

These mass normalised eigenvectors ϕi form the modal matrix Φ = [ϕ1 ϕ2]. Hence
the displacements xi can be transformed quasi-modally to the quasi-modal displacements
zi by x = x∗Φz. The normalisation with x∗ is employed in analogy to the 1DOF system
to make the equations of motion dimensionless as well as to provide a sufficient scaling
for evaluating the differential equations numerically. As mentioned before, considering a
linear, time invariant system (e.g. Eq. (3.37)), the equations of motion are decoupled by
such a transformation. Regarding a PE system, this is not the case. The transformation
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diagonalises the time invariant matrices, which are the mass and the damping matrix as
well as the linear part of the stiffness matrix. But the transformed time variant matrix,
the PE stiffness matrix, becomes full. Moreover, zi are not modal displacements of the
system, because these modes are the solution of the eigenvalue problem of the linear,
time invariant system only. Hence zi are called quasi-modal displacements. Thus Eq. (3.28)
transforms to

ΦTMΦz̈ + ΦTCΦż + ΦTKlinΦz + ΦTKnlinΦz + ΦTKPEΦz cos(ΩPEt) = 0. (3.44)

Because of Eq. (3.43) this equation simplifies to

z̈ + Zż + Λz + Λnlinz + Ez cos(ΩPEt) = 0, (3.45)

where Λ is the spectral matrix

Λ =

(
ω2

n1
ω2

n2

)
. (3.46)

The natural angular frequencies ωni are named such that ωn1 < ωn2. In case of pro-
portional damping with the proportional damping constant δ the quasi-modal damping
matrix Z can be written as

Z = δΛ =

(
δω2

n1
δω2

n2

)
=

(
2ζ1ωn1

2ζ2ωn2

)
. (3.47)

Here ζi =
δωni

2 are the the quasi-modal damping ratios. Normalising regarding the eigen-
time τ = ΩPEt and the dimensionless PE frequency Ω = ΩPE

Ω∗ gives

z′′ +

(
2ζ1

ω1
Ω

2ζ2
ω2
Ω

)
z′ +

ω2
1

Ω2
ω2

1
Ω2

 z + ...

+

 κ2
1

Ω2 z2
1 +

κ2
12

Ω2 z1z2 +
κ2

13
Ω2 z2

2
κ2

14
Ω2 z2

1 +
κ2

15
Ω2 z1z2 +

κ2
16

Ω2 z2
2

κ2
26

Ω2 z2
1 +

κ2
25

Ω2 z1z2 +
κ2

24
Ω2 z2

2
κ2

23
Ω2 z2

1 +
κ2

22
Ω2 z1z2 +

κ2
2

Ω2 z2
2

 z +

((
ε1,lin ε12,lin
ε12,lin ε2,lin

)
+ ...

+

(
ε1,nlinz2

1 + ε12,nlinz1z2 + ε13,nlinz2
2 ε4,nlinz2

1 + ε5,nlinz1z2 + ε6,nlinz2
2

ε4,nlinz2
1 + ε5,nlinz1z2 + ε6,nlinz2

2 ε23,nlinz2
1 + ε22,nlinz1z2 + ε2,nlinz2

2

))
...

1
Ω2 cos(τ)z = 0,

(3.48)

where ωi = ωni
Ω∗ . Note that both PE matrices are symmetric. The values of the non-

dimensional parameters derived from the physical parameters listed in Tab. 3.4 are listed
in Tab. 3.5. The naming of the indices of the components becomes clear in Section 3.2.4,
where it is shown that the 2DOF model can be reduced to a 1DOF model for predicting
the behaviour at parametric resonances.
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Table 3.5: Non-dimensional parameters of Eq. (3.48) and their relation to the physical parame-
ters of the 2DOF system. The values listed here are used in Chapter 4 for numerical
investigations.

Non-dimensional Parameter Symbol Value
Detuning Parameter ε 0.1
Natural Angular Frequencies ω1 1.3628

ω2 2.2109

Eigenvectors
ϕ1

(
3.2524
5.9745

)
104

(see Eq. (3.43))

ϕ2

(
8.4492
−2.2998

)
104

Modal Damping Ratios ζ1 3.7715 · 10−4

ζ2 6.1187 · 10−4

Non-linearity Parameters κ2
1 1.0806 · 10−5

κ2
12 1.9328 · 10−5

κ2
13 3.2192 · 10−5

κ2
14 −2.9641 · 10−5

κ2
15 1.1993 · 10−5

κ2
16 −1.6371 · 10−5

κ2
26 −0.34375 · 10−5

κ2
25 −7.4015 · 10−5

κ2
24 −8.5332 · 10−5

κ2
23 11.820 · 10−5

κ2
22 3.6217 · 10−5

κ2
2 15.827 · 10−5
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Non-dimensional Parameter Symbol Value

Linear PE Parameters ε1,lin 0.10555

ε12,lin 0.031341

ε2,lin 0.17490

Non-linear PE Parameters ε1,nlin −1.4636 · 10−5

ε12,nlin 0.42190 · 10−5

ε13,nlin −0.99681 · 10−5

ε4,nlin 0.21095 · 10−5

ε5,nlin −1.9936 · 10−5

ε6,nlin −1.9949 · 10−5

ε23,nlin −0.99681 · 10−5

ε22,nlin −3.9898 · 10−5

ε2,nlin −5.4113 · 10−5

Scaling Parameter Symbol Value

Proportional Damping Constant δ 5.535 · 10−4 s

Frequency Scaling Parameter Ω∗ 105 s−1

Displacement Scaling Parameter x∗ 10−6 m
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3.2.4 Analytical and Semi-Analytical Investigation of the Behaviour at
Parametric Resonances

In this section the behaviour of the 2DOF system described in Section 3.2.1 at parametric
resonances is analysed analytically and semi-analytically. Approximations of the ampli-
tudes and phase shifts of the limit cycles of the vibrations in PR are derived.

Allowing only small perturbations Ω = Ω0 + εσ, Eq. (3.48), according to Eq. (3.8) and
Eqs. (3.9), can be written as

z′′ +

(
2ζ1

ω1
Ω0

2ζ2
ω2
Ω0

)
z′ +

ω2
1

Ω2
0

ω2
1

Ω2
0

 z

+

 κ2
1

Ω2
0
z2

1 +
κ2

12
Ω2

0
z1z2 +

κ2
13

Ω2
0
z2

2
κ2

14
Ω2

0
z2

1 +
κ2

15
Ω2

0
z1z2 +

κ2
16

Ω2
0
z2

2
κ2

26
Ω2

0
z2

1 +
κ2

25
Ω2

0
z1z2 +

κ2
24

Ω2
0
z2

2
κ2

23
Ω2

0
z2

1 +
κ2

22
Ω2

0
z1z2 +

κ2
2

Ω2
0
z2

2

 z +

((
ε1,lin ε12,lin
ε12,lin ε2,lin

)

+

(
ε1,nlinz2

1 + ε12,nlinz1z2 + ε13,nlinz2
2 ε4,nlinz2

1 + ε5,nlinz1z2 + ε6,nlinz2
2

ε4,nlinz2
1 + ε5,nlinz1z2 + ε6,nlinz2

2 ε23,nlinz2
1 + ε22,nlinz1z2 + ε2,nlinz2

2

))
1

Ω2
0

cos(τ)z

−
((

ω2
1

ω2
2

)
+

(
κ2

1z2
1 + κ2

12z1z2 + κ2
13z2

2 κ2
14z2

1 + κ2
15z1z2 + κ2

16z2
2

κ2
26z2

1 + κ2
25z1z2 + κ2

24z2
2 κ2

23z2
1 + κ2

22z1z2 + κ2
2z2

2

))
2εσ

Ω3
0

z = 0.

(3.49)

Regarding the 1DOF system averaging the set of differential equations for the amplitude
and phase of the vibration z(t) is very convenient, because at PR the period of all harmon-
ics are integer multiples of each other. Averaging over one period of z(t) calculates the
(multiple) mean of each term, many of which are equal to zero. Due to its non-linearity
Eq. (3.49) has some mixed terms of harmonics of different frequencies. If these frequen-
cies are not integer multiples of each other, the results of an average for the 2DOF system
are too long to be displayed here.

ω i
2+κ i

2 zi
2

4ω i
2

ε i ,lin+ε i ,nlin zi
2

4ω i
2 cos(τ )

ζ i

zi
"1"

Figure 3.7: Mechanical lumped mass model for the quasi-modally transformed system. The
2DOF system can be approximated by a 1DOF at the corresponding PR: quasi-modal
displacement zi, natural angular frequency ωi, non-linearity parameter κ2

i , linear PE
parameter ε i,lin, non-linear PE parameter ε i,nlin, quasi-modal damping ratio ζi.
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As described in Section 2.1.1, at PRs of multi degree of freedom systems mainly one
mode ωi =

nΩ
2 is excited. Using this knowledge and setting z = [z1, 0]T ∨ [0, z2]

T simpli-
fies Eq. (3.49) to a scalar problem:

z′′i + 2ζiηiz′i + η2
i zi + χ2

i z3
i +

1
Ω2

0
[εi,lin cos(τ)− ε2ηiωiσ] zi + ...

+
1

Ω2
0
[εi,nlin cos(τ)− ε2χiκiσ] z3

i +O(ε2, εεi,lin, εεi,nlin, ζiεi,nlin) = 0.

(3.50)

Here ηi = ωi/Ω0 is the frequency ratio between the natural angular frequency and the
PE centre frequency. For both PRs Ω0 = 2ω1 and Ω0 = 2ω2 the ratio takes on the value
η = 1/2. The ratio χ = κ

Ω0
relates the regarding non-linearity parameter to the PE centre

frequency.
Being able to approximate Eq. (3.49) with a scalar equation means the quasi-modal

2DOF system can be reduced to a 1DOF system for studying the behaviour at the relevant
PR (see Fig. 3.7). However, this does not mean a reduction of the original physical model.
The bodies of the 2DOF system undergo a vibration which can approximated by

x1 = ϕ11z1 + ϕ21z2 ≈ ϕi1zi = ϕi1ri cos(ηiτ + ψi),

x2 = ϕ12z1 + ϕ12z2 ≈ ϕi1zi = ϕi1ri cos(ηiτ + ψi).
(3.51)

Eq. (3.50) has already been averaged in Section 3.1.3 according to Krylov-Bogolyubov
for Ω0 = 2ωi. Limit cycles, a stability analysis of these limit cycles and an analysis of the
bifurcation points can also be found in that section.

Using the parameters in Tab. 3.5, the quasi-modal amplitudes can be calculated at both
PRs Ω = 2ω1 and Ω = 2ω2 (see Fig. 3.8, 3.9 and Fig. 3.10, 3.11). The branches bifurcate at
∓σ1b = ∓0.387 at the first PR Ω = 2ω1 and at ∓σ2b = ∓0.396 at the second PR Ω = 2ω2.

Because for the parameters used here κ2
2 > κ2

1, the branches have stronger softening
characteristic at the second PR than they have at the first PR. Consequently the vibrations
of both bodies undergo stronger excitation at the first PR than they do at the second PR.
Considering damping the first loop at the first PR closes near r̄1d = 120.1 and the first
loop at the second PR closes near r̄2d = 80.4.

Modal damping is generally larger in higher modes. Hence differences between
the analytical approximation neglecting damping and the semi-analytical one including
damping are larger in higher modes. For the parameters used here the second modal
damping ζ2 is almost twice as large as the first modal damping ζ1. The difference be-
tween the analytical approximation and the semi-analytical one is accordingly larger for
the second PR than it is for the first PR.

Within the instability band of the rest position the amplitudes of the branched limit
cycles predicted by the analytical and by the semi-analytical approximation agree closely.
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In this section, the behaviour of a 2DOF system described in Section 3.2.1 was esti-
mated analytically and semi-analytically presenting approximations of the amplitudes
and phase shifts of the limit cycles of the vibrations at PR. It was shown that the 2DOF
system can be modelled as a 1DOF system at PRs. The solution of the system equation of
this 1DOF was studied in Section 3.1, leading to analytical and semi-analytical approxi-
mations of the amplitudes and phase shifts of possible limit cycles. The dependencies of
the amplitudes and phase shifts on the system parameters were studied. Stability analy-
ses of the rest position and the detected limit cycles were carried out.
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Figure 3.8: Limit cycles of the first quasi-modal vibration z1 for parameters as stated in Tab. 3.5
at the first PR (Ω0 = 2ω1). The amplitude is denoted with r1, the phase shift with
ψ1. Bold: with damping, thin: without damping, Solid: stable states, dashed: unstable
states.

Figure 3.9: Limit cycles of the first quasi-modal vibration z1 in the state-parameter-space σ-ψ1-|r1|
for parameters as stated in Tab. 3.5 at the first PR (Ω0 = 2ω1). Bold: with damping,
thin: without damping. Solid: stable states, dashed: unstable states.
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Figure 3.10: Limit cycles of the second quasi-modal vibration z2 for parameters as stated in
Tab. 3.5 at the second PR (Ω0 = 2ω2). The amplitude is denoted with r2, the
phase shift with ψ2. Bold: with damping, thin: without damping. Solid: stable states,
dashed: unstable states.

Figure 3.11: Limit cycles of the second quasi-modal vibration z2 in the state-parameter-space σ-
ψ2-|r2| for parameters as stated in Tab. 3.5 at the second PR (Ω0 = 2ω2). Bold: with
damping, thin: without damping. Solid: stable states, dashed: unstable states.
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4 Numerical Investigations of One and Two
Degree of Freedom Parametrically Excited
Non-Linear Systems

In Chapter 3, two mechanical lumped mass systems, a non-linear 1DOF system and a non-
linear 2DOF system, were introduced. Both systems undergo PE. This PE destabilises the
rest position of those systems at certain PE frequencies (see Section 2.1.1). The amplitudes
of the vibrations may be limited due to non-linearities. In such cases stable limit cycles can
be found. In the previous chapter limit cycles of the vibrations of the systems in PRs were
approximated analytically and semi-analytically. These results are verified in this section
by numerical methods. Furthermore the basins of attraction of the stable limit cycles are
investigated.

Figure 4.1: Time series of z(τ) at Ω = 2ω0 starting with initial conditions r0 = 10−3, ψ0 = 0. Grey,
solid (background): linearised, undamped system (Mathieu’s equation), κ = εnlin =
ζ = 0 . Black: parameters as stated in Tab. 3.2. Grey, semi-transparent (foreground):
undamped system, ζ = 0.
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Figure 4.2: Time series of z(τ) at different Ω starting with different initial conditions. Light grey
(background): σ = 0.5, r0 = 1.3, ψ0 = 1.49. Dark grey (foreground): σ = 0.5, r = 1.2,
ψ = 1.49. Black: σ = 0.205, r0 = 10−3, ψ0 = 0.

4.1 Numerical Investigations of the One Degree of Free-
dom System

In this section the results of Section 3.1.3 predicting the behaviour of the 1DOF system in-
troduced in Section 3.1.1 are validated numerically. Simulating the behaviour of Eq. (3.7)
over a timespan of τ = 20 · 103 gives a basic understanding of the effect of the non-linear
terms in Eq. (3.7) (see Fig. 4.1). Linearising the system and neglecting the damping (set-
ting ζ = 0) lead to Mathieu’s equation. Simulating at the centre frequency of the PR means
the system will be repelled by the unstable rest position (grey, solid graph in Fig. 4.1).
Since the system has been linearised a branched solution does not exist leaving the am-
plitudes of the vibration z(τ) to increase infinitely. Setting the non-linear terms—κ2 and
εnlin—to the values in Tab. 3.2 changes the behaviour significantly (grey, semi-transparent
graph in Fig. 4.1): Since there is no damping present (ζ = 0) the amplitude of the vibra-
tion first increases as quickly as for Mathieu’s equation. But due to the non-linear terms
a branched stable limit cycle exists and the amplitude of the vibration z(τ) is bounded.
The amplitude of this stable steady state is r = |z| = 1.70, which coincides with the an-
alytical approximation of the amplitude of the branched limit cycle in Section 3.1.3. The
system converges to this state with modulated amplitudes first overshooting the ampli-
tude of the stable limit cycle. Adding damping makes the system proceed towards the
branched stable limit cycle faster (black graph in Fig. 4.1). The amplitude asymptotes to
r = |z| = 1.70 as predicted in Section 3.1.3 by both the analytical and the semi-analytical
approximation. The frequency of the modulation of the amplitude also increases.
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Figure 4.3: Time series of z(τ). Initial conditions: r0 = 0.1, ψ0 = 0. Black: σ = 0, light grey
(foreground): σ = 2, dark grey (background): σ = σ(τ) = 2 · 10−4τ.

This behaviour does not change much qualitatively by increasing the PE frequency Ω

towards the edge of the instability band of the trivial solution (black graph in Fig. 4.2).
The system tends to the stable state much slower than for a value of Ω closer to the centre
of the instability band. The amplitude of the stable limit cycle is predicted in Section 3.1.3
to be r = |z| = 2.41 by both the analytical and the semi-analytical approximation which
agrees closely with the simulations carried out here.

The sharp transition between the basins of attraction of the trivial and the non-trivial
stable states can also be validated by time simulation. For Ω = 2ω0 + 0.5ε, a frequency
outside the instability band of the branched solution, the motion can asymptote to either
of the stable states—the trivial and the non-trivial—depending only on the initial condi-
tions. For example, for the initial conditions r = 1.2, ψ = 1.49 the system converges to the
trivial solution, but for the initial conditions r = 1.3, ψ = 1.49 the system converges to the
non-trivial solution (grey graphs in Fig. 4.2).

A slow detuning of the PE frequency by σ(τ) shows how important the analyses of
bifurcated limit cycles are, even for values of σ far away from the instability band of the
trivial solution (see Fig. 4.3): Starting from initial conditions slightly disturbed from the
rest position for a constant σ = 0, the system is attracted to the limit cycle r = 1.70,
ψ = 1.50. For a constant σ = 2 the system is attracted to the rest position r = 0. But
detuning the PE frequency slowly with σ(τ) = 2 · 10−4τ makes the system follow the
first branch leading to r = 5.26 for σ(τ) = 2. This exemplifies that with a time dependent
PE frequency, the system can be attracted to bifurcated limit cycles even at PE frequencies
with a stable rest position.
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Figure 4.4: max(|$|) for the trivial solution r = 0. The trivial solution is unstable within a band
around Ω0 = 2ω0.

A Floquet analysis reveals that the PR Ω = 2ω0 is the only practically impor-
tant instability of the rest position (see Fig. 4.4). Note that, as explained in Section 2.3,
the Floquet multipliers have been normalised to the PE period T in order to compute
quantitatively comparable values. As plotted, some further PR candidates may cause a
max(<{|$|}) > 1. The peaks are so narrow that the exact height might not be depicted
correctly in all cases. However, in practice the bandwidth of these instability bands is too
narrow to induce PR.

4.1.1 Numerical Results by a Continuation Method

As explained in Section 2.2.2 the limit cycles of solutions of differential equations can
be found numerically employing numerical continuation. The MATLAB-based package
MATCONT is used here. MATCONT can only handle first order differential equations
and cannot handle harmonic terms. Thus Eq. (3.7) has to be rewritten as

z′ = v, (4.1a)

v′ = −2ζ
ω0

Ω
v−

(
ω2

0
Ω2 +

εlin

Ω2 c

)
z−

(
κ2

Ω2 +
εnlin

Ω2 c
)

z3 = 0, (4.1b)

s′ = s + c− s(s2 + c2), (4.1c)

c′ = c− s− c(s2 + c2). (4.1d)

By path following MATCONT will find limit cycles. The amplitude r = |z| of the
limit cycles is calculated directly by max(z). At each state MATCONT will compute
one periodic orbit in the z-v space. Neither s nor z necessarily have to be maximal for
τ∗ = τ − τstart = 0 (see Fig. 4.5). Since the PE has half the period of z(τ∗), defining
a user function psi1=acos(c) calculates twice the effective phase shift ψ∗1 = ψ1/2 of
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Figure 4.5: Periodic orbits for c(τ∗) = cos(τ∗) and z(τ∗). The phase shift between c and z is
ψ = ψ1/2− ψ2 = ψ1/2 + |ψ2| because ψ2 is negative.

cos(2(τ + ψ∗1)) regarding τ∗ = 0. The phase shift of z regarding τ∗ = 0 can be computed
from the results for z: its magnitude is psi2ABSn=acos(zn(1)/max(zn)) for the nth com-
puted state. The phase shift between both harmonics is psi=psi1/2+psi2ABS because ψ1

is positive and ψ2 is negative. The bifurcated limit cycles are shown graphically in Fig. 4.6
and Fig. 4.7. The stability of each state along the paths can be evaluated simultaneously
while finding the limit cycles by computing their Floquet multipliers. It reveals the same
stability behaviour as the analytic approach: the first loop is stable starting from the first
branching σ = −0.207 until its reversal point, the second loop is stable starting from its
reversal point for the states with larger amplitudes and phase shifts.

For large values of σ the approximations overestimate the amplitudes of the vibra-
tions. This is because the approximations are only valid for small σ. When the amplitudes
become large, the influence of the non-linear terms is underestimated by the approxima-
tion. The purely analytic approximation overestimates the amplitude of the stable limit
cycle by 3.4% and the amplitude of the unstable limit cycle by 2.4% at σ = 1.5. The phase
shift of the stable limit cycle is overestimated by 0.14 and the phase shift of the unstable
limit cycle is underestimated by 0.15 at σ = 1.5. For the same reason that the amplitudes
are overestimated, the transition between the loops is predicted by the approximations to
happen at smaller values for σ than it actually does. In fact, the maxima and minima of
the amplitude of the loops are the same in terms of numerical accuracy. The values of ψ at
the reversal points of the phase shift loops also coincide. This means the numerically cal-
culated loops are more stretched in the σ direction than the semi-analytically computed
ones.
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Figure 4.6: Limit cycles of Eqs. (3.15), Eqs. (4.1). Thin: analytical solution, bold and dashed: semi-
analytical solution, bold and solid: numerical solution.

Figure 4.7: Limit cycles of Eqs. (3.15), Eqs. (4.1) in the phase parameter space. Thin: analytical
solution, bold and grey: semi-analytical solution, bold and black: numerical solution.
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4.1.2 Poincaré Maps and Borders of Basins of Attraction

At parameter values for which more than one stable solution exists, the question arises
for a certain state whether the system is attracted to this or another stable state. A first
approach to answer this question is to consider Poincaré maps which are plots of the
projections of a system’s trajectories into Poincaré sections. Latter are (n− 1)-dimensional
transversal hyperspaces with respect to the trajectories in the n-dimensional phase space.
This means that for fixed σ the state space is observed periodically at τ = 4kπ. These
maps can be derived numerically by iteration of the initial conditions and integration over
one period of z(τ). The differences between the initial conditions and the final values are
depicted as arrows (see Fig. 4.9 - Fig. 4.16). Due to the frequency ratio η = 1/2 the phase
shift ψ is periodic in π (see Fig. 4.8). Because of a display problem of the arrow grid the
Poincaré maps only extend to 3 instead of π.

Regarding the r-ψ phase space in the parameter range σb ≤ σ ≤ 2, two fixed points
can be identified: one is a stable attractor (node), the other one is an unstable attractor
(saddle point). The system is attracted by the saddle point from two opposing directions
but repelled from the orthogonal directions. The line r = 0 also is a stable attractor (see
Fig. 4.9 - Fig. 4.12). Studying a damped system the trivial steady state is stable for all
σ 6∈ {−σb ≤ σ ≤ σb}. However, as this is an equilibrium and not a limit cycle, the phase
shift can take on any value. Hence the trivial steady state is a line in the r-ψ phase space
and a plane in the r-ψ-σ phase parameter space.

The attractors found coincide with the previously discussed results of the numerical
path following of the first loop. If σ > σb the trivial solution is stable as well as the
states along the first branch. For values of σ smaller than the intersection of the branches
the node has a larger amplitude than the saddle point. For values of σ greater than the
intersection of the branches the node has a smaller amplitude than the saddle point.

ψ
0, π

Figure 4.8: Coiled Poincaré map. The Poincaré maps are periodic in π.
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Figure 4.9: Poincaré map, ψ-r phase space, σ = 0.5. Two stable attractors: [1.49, 3.16] and [−, 0].
One unstable attractor (saddle point): [0.07, 2.42]. Hatched: basin of attraction of the
trivial solution. Limit of basins of attraction by numerical scanning (circles) and by
backward time integration (line).

Figure 4.10: Poincaré map, ψ-r phase space, σ = 1. Two stable attractors: [1.46, 4.15] and [−, 0].
One unstable attractor (saddle point): [0.10, 3.90]. Hatched: basin of attraction of the
trivial solution. Limit of basins of attraction by numerical scanning (circles) and by
backward time integration (line).
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Figure 4.11: Poincaré map, ψ-r phase space, σ = 1.5. Two stable attractors: [1.43, 4.94] and [−, 0].
One unstable attractor (saddle point): [0.15, 4.99]. Hatched: basin of attraction of the
trivial solution. Limit of basins of attraction by numerical scanning (circles) and by
backward time integration (line).

Figure 4.12: Poincaré map, ψ-r phase space, σ = 2. Two stable attractors: [1.34, 5.65] and [−, 0].
One unstable attractor (saddle point): [0.29, 5.87]. Hatched: basin of attraction of the
trivial solution. Limit of basins of attraction by numerical scanning (circles) and by
backward time integration (line).
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Although attractors can be identified from the Poincaré maps, without further investi-
gation it is hard to tell by which state the system is attracted. The borders of the basins of
attraction of each stable attractor have to be identified. This can be achieved by scanning
the parameter space: The equation of motion is integrated over a sufficient time span for
fixed σ iterating over initial values for r and ψ. Each initial value is then examined regard-
ing which attractor is approached. The results are depicted as circles in Fig. 4.9 - Fig. 4.16.
Despite the fact that this approach leads to satisfying results it has several disadvantages:
first of all, it is computationally expensive because, depending on the resolution, a large
number of states has to be examined. Secondly, the distance between two found points
along the border depends on the gradient of the border at these states and the chosen res-
olution of the scanning. Although a relatively high resolution might be chosen regarding
one axis, the resolution of the border may be insufficient, where the gradient of the border
is orthogonal to this axis. Where the gradient of the border of the basins of attraction is
in parallel to this axis, the resolution may be unnecessarily high. A more sophisticated
approach, which aims at dealing with both problems, is integrating backwards in time
starting at a point close to the border of the basins of attraction. Since on each side of the
border the system will approach a stable attractor over time, going backwards in time
the system’s state will converge to the border. Since the system is attracted by the sad-
dle point from two directions but repelled regarding the orthogonal directions, obviously
the saddle point lies on the border between two basins of attraction. In fact, the border
between the basins of attraction is the saddle point’s stable manifold [23]. Hence a state
nearby is a good initial value for a backward integration. In order to observe states in the
Poincaré sectional plane a fixed time step integration has to be employed. Problems re-
garding step size control arise. Here the maximum step size was controlled by a globally
allowed maximum difference between any state of the solution and a solution with half
the step size.

Within the investigated parameter and variable ranges, both methods give satisfying
and similar results. Adding the border of the basins of attraction to the Poincaré maps
the behaviour of the system becomes more clear: for any state in the parameter range
σb ≤ σ ≤ 2 with an amplitude larger than that of the node, the phase shift will increase
steadily while the amplitude will oscillate decreasingly around the node. This coincides
with the simulations studied previously. In the case where the system is attracted by the
node, the phase shift will stop increasing steadily at one point and both amplitude and
phase shift will converge to the attractor in an oscillatory manner. The system’s state is
trapped in an area close to the node by the repelling characteristic of the saddle point.
Starting with large amplitudes, if the system is not attracted by the node, it is attracted
first by the saddle point. The system is repelled then forcing the phase shift to decrease
steadily, while the amplitude keeps modulating decreasingly and eventually approaches
r = 0 asymptotically.

The difference in the results between the scanning and the backward integration in-
creases towards the final values of the backward integration, because integration errors
sum up. The node lies in an area with larger amplitude gradients and higher modulation
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frequencies the more σ is increased. Here, an arbitrary example for illustration is given:
The modulation frequency is 1.19 times larger for σ = 1 than it is for σ = 0.5. This means
that for constant accuracy of the integration, the step size has to be decreased while in-
creasing σ. Due to limited computational capacity the step size has not been decreased
appropriately. The step size control was set to lower accuracy for larger values of σ. This
causes the differences between the scanning and the backward integration to increase for
increasing σ.

Transforming the r-ψ phase space into

z0 = r cos(4kπ + ψ), (4.2a)

z′0 = −1
2

r sin(4kπ + ψ) (4.2b)

gives another perspective to the problem (see Fig. 4.13 - Fig. 4.16). The trivial solution
r = 0, ψ = − shrinks to the node z0 = 0, z′0 = 0. Due to the harmonics, both non-trivial
attractors duplicate to conjugate couples. Because of the extreme differences within the
observed region the length lreal of the vectors between initial and final values (arrows in
Poincaré maps) was scaled to the plotted length lplot = l4/5

real.
No matter which phase space variables are employed to observe the system, it be-

comes clear that the non-trivial node is very dominant at values of σ close to the second
branch point σ = σb. The distance between the border of the basins of attraction and the
trivial stable attractor is small. States with amplitudes larger than that of the non-trivial
node are mainly attracted by this state (see Fig. 4.9 and Fig. 4.13). For increasing values
of σ, the trivial attractor becomes more dominant. The distance between the border of the
basins of attraction and the trivial attractor increases. States with amplitudes larger than
that of the non-trivial node become more likely to be attracted by the trivial attractor (see
Fig. 4.12 and Fig. 4.16).
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Figure 4.13: Poincaré map, z-z′ phase space, σ = 0.5. Three nodes: [±0.26, ∓ 1.58] and [0, 0]. Two
saddle points: [±2.41, ∓ 0.09]. Hatched: basin of attraction of the trivial solution.
Limit of basins of attraction by numerical scanning (circles) and by backward time
integration (line).

Figure 4.14: Poincaré map, z-z′ phase space, σ = 1. Three nodes: [±0.46, ∓ 2.06] and [0, 0]. Two
saddle points: [±3.88, ∓ 0.20]. Hatched: basin of attraction of the trivial solution.
Limit of basins of attraction by numerical scanning (circles) and by backward time
integration (line).
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Figure 4.15: Poincaré map, z-z′ phase space, σ = 1.5. Three nodes: [±0.69, ∓ 2.45] and [0, 0]. Two
saddle points: [±4.93, ∓ 0.37]. Hatched: basin of attraction of the trivial solution.
Limit of basins of attraction by numerical scanning (circles) and by backward time
integration (line).

Figure 4.16: Poincaré map, z-z′ phase space, σ = 2. Three nodes: [±1.29, ∓ 2.75] and [0, 0]. Two
saddle points: [±5.63, ∓ 0.84]. Hatched: basin of attraction of the trivial solution.
Limit of basins of attraction by numerical scanning (circles) and by backward time
integration (line).
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Figure 4.17: Lowest border (surface grid) between the basins of attraction of the bifurcated limit
cycle (line) and stable trivial solution (rest position) ([>0.223,-,0] plane) in the σ-ψ-z
parameter-phase-space.
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Plotting the lowest border between the basins of attraction of the stable non-trivial,
branched solution and the trivial solutions in the z-ψ-σ phase parameter space gives a
better understanding of the dependence of this border on σ. The degree of the ability of
the non-trivial node to attract the system determines how likely it is that, for PE frequen-
cies with σ > σb, the system may not be attracted by the trivial solution after some initial
disturbance, but will approach the non-trivial solution. The characteristic regarding this
behaviour may be of vital interest in order to ensure that the system does not approach
branched attractors for PE frequencies outside the instability band of the trivial attractor.

To be able to compare the power of the trivial solution to attract the system for differ-
ent parameter sets the following measure P is introduced

P =
rborder

|z|

∣∣∣∣
σ=2σb

. (4.3)

Here rborder is the amplitude of z at the lowest border of the basin of attraction be-
tween the non-trivial and the trivial attractor at the same phase shift ψ as the non-trivial
attractor. P measures how close the lowest border of the basin of attraction between the
non-trivial and the trivial attractor is to the non-trivial attractor. It can take on values
within the interval [0; 1]. A value P = 0 means that the space of the basin of attraction
of the trivial attractor is zero. A value P = 1 means the space of the basin of attraction
of the non-trivial attractor is zero. Hence P is a measure of how likely it is for system to
be attracted by the trivial attractor starting from a small but non-zero amplitude. For the
parameter set studied here this measure takes on the value P = 0.28.

In this section, the behaviour of a 1DOF system described in Section 3.1.1 was analysed
numerically at PR using a continuation method. The results were compared to analytical
and semi-analytical approximations obtained in Section 3.1.3. The relevance of the found
attractors was discussed by investigating their basins of attraction.
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4.2 Numerical Investigations of the Two Degree of Free-
dom System

The 1DOF system investigated in Section 4.1 was extended to a 2DOF system in Sec-
tion 3.2.1. As before for the 1DOF system, the rest position’s stability is investigated
first showing the values for PE frequencies of parametric resonances and anti-resonances.
Time simulations clarify the behaviour at different PE frequencies and for various para-
meter regimes and initial conditions. The analytical and semi-analytical approximations
of limit cycles at PR in Section 3.2 are validated numerically. In particular, the accuracy of
the quasi-modally reduced model is discussed. The borders of the basins of attraction of
the detected limit cycles are computed numerically.

As explained in Section 2.1, a 2DOF system behaves quantitatively different to a 1DOF
system. In analogy to the Floquet analysis of the 1DOF system, the PRs at Ω = 2ω1 and
Ω = 2ω2 can be identified (see Fig. 4.18). The same as for the 1DOF system, a normal-
isation with respect to the PE period T of the Floquet multipliers was employed (see
Section 2.3). As the maximum Floquet multiplier has almost the same magnitude at the
first and second PR, the system will be repelled by the trivial steady state equally fast at
both PRs. However, this does not give information about the amplitudes of the branched
solutions. Another instability band becomes apparent at Ω = ω1 + ω2, which is the first
parametric combination resonance (PCR). This can be validated by time simulations (see
Fig. 4.19). In contrast to PRs, at PCRs both modes are excited. As the amplitudes of both
quasi-modes z1 and z2 are the same order of magnitude, both quasi-modes influence the
physical displacements x1 and x2 similarly. The resulting interferences lead to time series
which, in contrast to the behaviour at PRs, cannot be approximated with a modulated co-
sine. The PR candidate at Ω = ω1 has some effect (see Fig. 4.18), in the way that here the
system is attracted by the trivial solution slower than at slightly larger or smaller PE fre-
quencies. However, as indicated by the maximum Floquet multiplier max(<{|$|}) < 1,
the PE frequency Ω = ω1 does not destabilise the trivial solution.

As explained in Section 2.1.2, in contrast to the 1DOF system, the 2DOF system also
experiences a parametric anti resonance (PAR) at a PE frequency Ω = ω2 −ω1 = 0.8481.
The value of the maximum Floquet multiplier of the trivial solution is slightly smaller
than compared to a PE frequency outside the PAR (see Fig. 4.18). This indicates a faster
attraction of the system by the trivial solution from a disturbed state (see Fig. 4.20). How-
ever, the effect of the PAR is not very distinct regarding the displacement x1 of the first
body. It is more visible regarding the displacement x2 of the second body. With the initial
conditions z1 = z2 = [1, 0]T the amplitudes of the displacement x2 of the second body
decay 1.58 times faster at PAR than without PE. Considering the quasi-modes z1 and z2,
the periodic energy transfer between them becomes visible by the modulation of both
time series. The amplitude of the first quasi-mode z1 decays faster, the amplitude of the
second quasi-mode z2 decays slower compared to no PE or PE outside PAR. The higher
modal damping ζ2 is used more effectively and the energy is dissipated faster.
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The analytical and semi-analytical approximations in Section 3.2.4 suggest that the
borders of the basins of attraction of the first and second stable limit cycles come to lie
close to each other for the first PR Ω = 2ω1 (see Fig. 3.8 and Fig. 3.9). Indeed, not only
the borders of these two, but the borders of all three basins of attraction are very close to
each other at this PR. Starting with same amplitudes r0 = [140, 0]T and varying the initial
phase shift ψ0 = [{0.4, 0.5, 0.6}, 0]T slightly, the system ends up on the three different
states (see Fig. 4.21).

Figure 4.18: Maximum Floquet multiplier max(|$|) for the trivial solution r1 = r2 = 0. The trivial
solution is unstable within a band around Ω = 2ω1, Ω = 2ω2 and Ω = ω1 + ω2

(PRs). Note the parametric anti-resonance at Ω = ω2 −ω1.

Figure 4.19: Time series at PCR (Ω = ω1 + ω2 = 3.5737) and initial conditions z1 = z2 = [1, 0]T.
Quasi-modal displacements z1 and z2 and physical displacements x1 and x2.
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Figure 4.20: Time series at PAR Ω = ω2 − ω1 = 0.8481 (grey) and at Ω = 0.95 (black) for com-
parison. Initial conditions z1 = z2 = [1, 0]T. Quasi-modal displacements z1 and z2

and physical displacements x1 and x2.

Figure 4.21: Time series at first PR (Ω0 = 2ω1), σ = 0.6. Initial conditions: r0 = [140, 0]T, ψ0 =
[{0.4, 0.5, 0.6}, 0]T. Quasi-modal displacements z1 and z2. Starting with ψ1,0 = 0.4 the
system is attracted by the first non-trivial stable attractor (dark grey), starting with
ψ1,0 = 0.5 by the trivial steady state (light grey) and starting with ψ1,0 = 0.6 by the
second non-trivial stable attractor (black).
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4.2.1 Numerical Results by a Continuation Method

Employing the MATLAB-based package MATCONT, the results depicted in Fig. 4.24 -
Fig. 4.27 can be found numerically. If these results are compared to results of numeri-
cal continuations for the appropriately reduced 1DOF systems (see Section 3.2.4) an ex-
tremely good agreement can be observed regarding the first PR (Ω0 = 2ω1) and slightly
worse agreement regarding the second PR (Ω0 = 2ω2) (see Fig. 4.22 and Fig. 4.23). The
maximum difference for |z1| at the first PR between the 1DOF and the 2DOF model is
-0.93%. The maximum difference for |ψ1| at the first PR between the 1DOF and the 2DOF
model is -0.74%. The maximum difference for |z2| at the second PR between the 1DOF
and the 2DOF model is 3.3%. The maximum difference for |ψ2| at the second PR between
the 1DOF and the 2DOF model is 9.5%. The largest differences occur at the reversal points
of the loops. Apart from these reversal points the results match within the numerical lim-
its. This validates the accuracy of the 1DOF modelling approach. The transition from one
loop to the other is predicted to happen at smaller σ by the 1DOF model than by the 2DOF
model. This effect is stronger regarding the second PR. To explain this behaviour one has
to remember that for modelling the 2DOF system as a 1DOF system, not only terms of
the more weakly excited quasi-mode but also mixed terms, where both first and second
quasi-mode occur, are neglected. As can be seen by the strong softening behaviour (com-
pare σ ranges in Fig. 4.22 and Fig. 4.23) regarding the second PR, non-linear terms have
a more significant influence on the second PR than they have on the first one. This can be
expound by the growing error by neglecting mixed terms when having larger amplitudes
of the vibration. The effect explains both the growth of the deviation between amplitudes

Figure 4.22: Numerical continuation, first quasi-mode z1, first PR (Ω0 = 2ω1). 2DOF system
(line) and reduced 1DOF model (circles).
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for the 1DOF and the 2DOF model and the inaccuracies regarding the transition between
the loops.

In analogy to the 1DOF system, for both resonances each first loop is stable starting
from the first branching σ = −0.387/σ = −0.396 until its reversal point. The second
loops are stable starting from their reversal points for the states with larger amplitudes
and phase shifts. This is in agreement with the previously obtained analytic and semi-
analytic results.

Amplitude and phase shift of the first quasi-mode z1 at the first PR found by the an-
alytical, the semi-analytical and the numerical methods agree very well within the insta-
bility band of the trivial solution (see Fig. 4.24). For larger values of σ, the amplitudes of
the stable states differ more from each other. This inaccuracy does not result from approx-
imating the 2DOF system with an 1DOF model as shown earlier, but solely because the
influence of higher order terms was neglected in the analytical and the semi-analytical
approach. Hence the non-linear softening behaviour is underestimated for large values
of z1.

In the same manner as for the first quasi-mode z1, amplitude and phase shift of the
second quasi-mode z2 at the first PR detected by the different methods also match very
well (see Fig. 4.25). Again, the amplitudes of the stable states differ more from each other
for larger values of σ. Other than for the first quasi-mode, this inaccuracy of the analyt-
ical and the semi-analytical method partly results from approximating the 2DOF system
with an 1DOF model as shown earlier. In addition the influence of higher order terms
was neglected in the analytical and semi-analytical approach. Once more, the non-linear
softening behaviour is underestimated, this time for large values of z2.

Figure 4.23: Numerical continuation, second quasi-mode z2, second PR (Ω0 = 2ω2). 2DOF sys-
tem (line) and reduced 1DOF model (circles).
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Figure 4.24: Limit cycles of Eqs. (3.48) for the first quasi-mode z1(τ) at Ω0 = 2ω1. Thin: analyti-
cal approximation, bold and dashed: semi-analytical approximation, bold and solid:
numerical solution.

Figure 4.25: Limit cycles of Eqs. (3.48) for the second quasi-mode z2(τ) at Ω0 = 2ω2. Thin: an-
alytical approximation, bold and dashed: semi-analytical approximation, bold and
solid: numerical solution.
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Figure 4.26: Amplitudes of the limit cycles of Eqs. (3.48) for the second quasi-mode z2(τ) at the
first PR (Ω0 = 2ω1) by numerical continuation.

Figure 4.27: Amplitudes of the limit cycles of Eqs. (3.48) for the first quasi-mode z1(τ) at the
second PR (Ω0 = 2ω2) by numerical continuation.

Figure 4.28: Both quasi-modes z1 and z2 at stable limit cycles at the first PR (Ω0 = 2ω1), σ = 0.
Note the presence of at least two harmonics regarding the second quasi-mode.
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Regarding the weakly excited quasi-modes, complex branches are found using the
numerical continuation (see Fig. 4.26 and Fig. 4.27). The amplitudes are very small com-
pared to the amplitudes of the more strongly excited quasi-mode. As can be found by
investigating the time series of the quasi-modes at the first PR (see Fig. 4.28) the period
of the second quasi-mode is the same as the one of the first quasi-mode and not ω1

ω2
times

smaller, as one may expect. Also, at least two frequencies are present in the oscillation.
Hence the phase shift cannot be computed by the scheme as described in Section 4.1.1.
The presence of two frequencies and the unexpected periodicity regarding the second
quasi-mode both show the limits of the quasi-modal transformation. Nevertheless, the
numerical continuation is capable of finding the amplitudes of the stable orbits of both
z1 and z2. Note that studying the behaviour of the the system in the zi-σ projection of
the phase parameter space can be very misleading. Since no information of the phase
shift is given, both loops of the second quasi-mode at first PR seem to overlap partly (see
Fig. 4.26). This is not necessarily the case, because even if the amplitudes are similar, this
may not hold for the phase shift.

As for the 1DOF system, the bifurcated limit cycles at both PRs can be displayed best
in a three dimensional reduced phase parameter space (see Fig. 4.29 and Fig. 4.29). Nev-
ertheless, while such a plot is completely sufficient regarding the 1DOF system, it is not
for the 2DOF. Each state of the system could only be displayed sufficiently in a five di-
mensional phase parameter space. In addition to graphical problems such display is not
possible because the phase shift of the less excited quasi-mode cannot be determined
satisfactorily. However, the less excited quasi-modes play an insignificant role only, and
displaying the results in a reduced phase parameter space at least gives information for
the amplitude and the phase shift at the same time.
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Figure 4.29: Limit cycles of Eqs. (3.48) for the first quasi-mode z1(τ) at Ω0 = 2ω1. Thin: analyti-
cal approximation, bold and dashed: semi-analytical approximation, bold and solid:
numerical solution.

Figure 4.30: Limit cycles of Eqs. (3.48) for the second quasi-mode z2(τ) at Ω0 = 2ω2. Thin: an-
alytical approximation, bold and dashed: semi-analytical approximation, bold and
solid: numerical solution.
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4.2.2 Poincaré Maps and Borders of Basins of Attraction

In analogy to the 1DOF system, Poincaré maps for certain values of the PE frequency
provide information about the attraction of the stable states. Here however, the Poincaré
maps are not only a projection of the state space into the Poincaré space which only com-
prises states at times τ = 4kπ. In contrast to the 1DOF system, the five-dimensional state
space has to be reduced first to a three dimensional state space which ignores the less
excited quasi-mode. The Poincaré maps give information on the slow frequency modu-
lation, but not about changes of the phase shift nor of the amplitude within one period
4π.

Borders of the basins of attraction can be computed by iteration over the phase space
and by backwards integration (see Section 4.1.2). Together with the Poincaré maps they
give sufficient information by which state the system will be attracted depending on the
initial state.

Regarding the first PR (Ω0 = 2ω1) for σ = 0 only one stable attractor (node) can
be found (see Fig. 4.31). It is the state of the first branched solution. The trivial solution
is unstable at this frequency and thus provides two unstable attractors (saddle points)
[1

4 π, 0] and [3
4 π, 0]. As the non-trivial attractor is the only stable attractor the system is

attracted by this state starting from all possible initial conditions. Increasing σ beyond the
second branch point stabilises the trivial solution (see Fig. 4.32). Also, the unstable part
of the branched solution becomes visible as a saddle point. The system now is attracted
by the trivial attractor starting with certain initial conditions. This basin of attraction is
very small compared to the basin of attraction of the non-trivial attractor. Starting from
most states with amplitudes larger than the amplitude of the saddle point the amplitude
decreases and the phase shift increases steadily. The system is attracted by the saddle
point first and once repelled by it, approaches the node asymptotically in an oscillatory

Figure 4.31: Poincaré map, first PR (Ω0 = 2ω1), ψ1-r1 phase space, σ = 0. One stable attractor:
[1.54, 58.65]. Two unstable attractors: [0.79, 0] and [2.36, 0].
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Figure 4.32: Poincaré map, first PR (Ω0 = 2ω1), ψ1-r1 phase space, σ = 0.4. Two stable attrac-
tors: [1.53, 83.98] and [−, 0]. One unstable attractor: [0.01, 51.28]. Hatched: basin of
attraction of the trivial attractor. Limit of basins of attraction by numerical scanning
(circles) and by backward time integration (line).

manner. Both amplitude and phase shift oscillate around the amplitude and the phase
shift of the stable non-linear attractor until this state is reached.

Increasing σ leads to having two further attractors (see Fig. 4.33). Close to the ampli-
tude of the first saddle point another one can be found lying on the border of the basin of
attraction of the large amplitude node. This node is not displayed on the Poincaré map.
The basin of attraction of the trivial attractor is larger than for smaller σ. However, the sys-
tem is attracted by the large amplitude node starting from most states with amplitudes
larger then the one of the second saddle point.

Larger values of σ will result in the basin of attraction of the low amplitude node
becoming less important (see Fig. 4.34). The trivial attractor will attract the system from
most states with amplitudes smaller than the amplitude of the second saddle point, while
the second node will attract the system from most other states.

In analogy to the first PR, at the second PR within [−σb; σb] only one stable attrac-
tor exists (see Fig. 4.35). The trivial solution is unstable resulting in two unstable attrac-
tors [1

4 π, 0] and [3
4 π, 0]. The system is attracted by the non-trivial stable attractor from

all states. Increasing σ beyond the second branch point stabilises the trivial solution (see
Fig. 4.36). Having crossed the second branch point, the unstable part of the first loop is
visible as a saddle point. Further increasing σ lets the basin of attraction of the trivial so-
lution become more important (see Fig. 4.37 to Fig. 4.39). Due to the stronger softening
characteristic the maximum number of coexisting solutions is three for the second PR.
Hence there is only one non-trivial stable attractor for all σ.
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Figure 4.33: Poincaré map, first PR (Ω0 = 2ω1), ψ1-r1 phase space, σ = 0.6. Two stable attrac-
tors: [1.52, 94.28] and [−, 0]. Two unstable attractors (saddle points): [0.44, 118.54]
and [2.73, 122.84]. Hatched +45◦: basin of attraction of the trivial attractor. Hatched
−45◦: basin of attraction of the node [3.13, 195.42]. Limit of basins of attraction by
numerical scanning (circles) and by backward time integration (line).

Figure 4.34: Poincaré map, first PR (Ω0 = 2ω1), ψ1-r1 phase space, σ = 0.8. Two stable attrac-
tors: [1.51, 103.67] and [−, 0]. Two unstable attractors (saddle points): [0.73, 119.23]
and [2.44, 122.54]. Hatched +45◦: basin of attraction of the trivial attractor. Hatched
−45◦: basin of attraction of the node [3.14, 267.62]. Limit of basins of attraction by
numerical scanning (circles) and by backward time integration (line).
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Figure 4.35: Poincaré map, second PR (Ω0 = 2ω2), ψ2-r2 phase space, σ = 0. One stable attractor:
[1.53, 24.42]. Two unstable attractors: [.79, 0] and [2.36, 0].

Figure 4.36: Poincaré map, second PR (Ω0 = 2ω2), ψ2-r2 phase space, σ = 0.5. Two stable at-
tractors: [1.52, 36.88] and [−, 0]. One saddle point: [0.04, 16.11]. Hatched: basin of
attraction of the trivial attractor. Limit of basins of attraction by numerical scanning
(circles) and by backward time integration (line).
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Figure 4.37: Poincaré map, second PR (Ω0 = 2ω2), ψ2-r2 phase space, σ = 1.5. Two stable at-
tractors: [1.50, 54.02] and [−, 0]. One saddle point: [0.06, 52.06]. Hatched: basin of
attraction of the trivial attractor. Limit of basins of attraction by numerical scanning
(circles) and by backward time integration (line).

Figure 4.38: Poincaré map, second PR (Ω0 = 2ω2), ψ2-r2 phase space, σ = 2.5. Two stable at-
tractors: [1.45, 67.24] and [−, 0]. One saddle point: [0.16, 71.71]. Hatched: basin of
attraction of the trivial attractor. Limit of basins of attraction by numerical scanning
(circles) and by backward time integration (line).
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Figure 4.39: Poincaré map, second PR (Ω0 = 2ω2), ψ2-r2 phase space, σ = 3. Two stable at-
tractors: [1.37, 73.20] and [−, 0]. One saddle point: [0.48, 78.09]. Hatched: basin of
attraction of the trivial attractor. Limit of basins of attraction by numerical scanning
(circles) and by backward time integration (line).

By analogy to Section 4.1.2, the reduced ri-ψi phase spaces of the Poincaré maps are
transformed to zi-z′i phase spaces according to Eqs. (4.2). This transformation doubles the
node to a conjugate pair. The two saddle points of Fig. 4.31 shrink to one (see Fig. 4.40). Its
manifold separates the basins of attraction of each of the conjugate nodes. The stable node
doubles to a conjugate pair. The non-trivial attractors are closer to the trivial attractor in
this transformation. The basin of attraction of the large amplitude node is better visible
for larger values of σ. Hence the probability of each attractor to attract the system from
random initial conditions becomes more clear in the zi-z′i phase spaces.

Increasing σ beyond the second branch point stabilises the trivial solution, which is a
fixed point instead of a line in this phase space (see Fig. 4.41). The same as for the stable
non-trivial solution, the unstable one also appears as a conjugate pair. Further increasing
σ shows more fixed points, two conjugate pairs for the stable and the unstable states
along the second loop (see Fig. 4.42 and Fig. 4.43). The almost symmetrical appearance
about the horizontal axis is because all non-trivial attractors are visible as conjugate pairs
and because the nodes have phase shifts close to π/2 and π. The dominance of the large
amplitude nodes for large values of σ becomes apparent.

For the second PR, the Poincaré maps in the z′2-z2 phase space look very similar to
the ones of the first PR for small values of σ, except for smaller amplitudes of the node
(see Fig. 4.44 and Fig. 4.45). For larger values of σ, the amplitude of the node increases,
the phase shift decreases: the attractor moves away from the vertical axis. The basin of
attraction of the trivial attractor increases. In contrast to the first PR, due to the more
pronounced softening behaviour not more than five attractors appear (see Fig. 4.46 to
Fig. 4.48).
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No matter which phase space is investigated the difference between the scanning and
the backward integration increases towards the final values of the backward integration,
because errors in the integration build up. In the same manner as for the 1DOF system,
states around the saddle point have higher modulation frequencies, the more σ is in-
creased. To limit computation times the step size has not been decreased sufficiently to
guarantee constant accuracy while increasing σ. The step size control was set to lower
accuracy for larger values of σ. This causes the differences between the scanning and the
backward integration methods to increase slightly for increasing σ.

Figure 4.40: Poincaré map, first PR (Ω0 = 2ω1), z1-z′1 phase space, σ = 0. Two nodes: [±1.81, ∓
29.31]. One saddle point: [0, 0].

Figure 4.41: Poincaré map, first PR (Ω0 = 2ω1), z1-z′1 phase space, σ = 0.4. Three stable attrac-
tors: [0, 0] and [±3.43, ∓ 41.96]. Two unstable attractors: [±51.28, ∓ 0.26]. Hatched:
basin of attraction of the trivial attractor. Limit of zones of attraction by numerical
scanning (circles) and by backward time integration (line).
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Figure 4.42: Poincaré map, first PR (Ω0 = 2ω1), z1-z′1 phase space, σ = 0.6. Five nodes:
[0, 0], [±4.79, ∓ 47.08], [±1.13, ∓ 195.41]. Four saddle points: [±107.25, ∓ 25.25],
[∓112.58, ∓ 24.57]. Hatched +45◦: attracted by the trivial attractor. Hatched −45◦:
attracted by the node [∓195.41, ∓ 1.13].

Figure 4.43: Poincaré map, first PR (Ω0 = 2ω1), z1-z′1 phase space, σ = 0.8. Five nodes:
[0, 0], [±6.30, ∓ 51.74], [±0.21, ∓ 267.62]. Four saddle points: [±88.85, ∓ 39.76],
[∓93.60, ∓ 39.55]. Hatched +45◦: attracted by the trivial attractor. Hatched −45◦:
attracted by the node [∓267.62, ∓ 0.21].
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Figure 4.44: Poincaré map, second PR (Ω0 = 2ω2), z2-z′2 phase space, σ = 0. Two nodes:
[±1.00, ∓ 12.20]. One saddle point: [0, 0].

Figure 4.45: Poincaré map, second PR (Ω0 = 2ω2), z2-z′2 phase space, σ = 0.5. Three nodes:
[0, 0] and [±1.87, ∓ 18.42]. Two saddle points: [±16.01, ∓ 0.32]. Hatched: basin of
attraction of the trivial attractor. Limit of zones of attraction by numerical scanning
(circles) and by backward time integration (line).



4.2. NUMERICAL INVESTIGATIONS OF THE TWO DEGREE OF FREEDOM SYSTEM 72

Figure 4.46: Poincaré map, second PR (Ω0 = 2ω2), z2-z′2 phase space, σ = 1.5. Three stable at-
tractors (nodes): [0, 0] and [±3.82, ∓ 26.94]. Two unstable attractors (saddle points):
[±51.97, ∓ 1.56]. Hatched: basin of attraction of the trivial attractor.

Figure 4.47: Poincaré map, second PR (Ω0 = 2ω2), z2-z′2 phase space, σ = 2.5. Three stable at-
tractors (nodes): [0, 0] and [±8.10, ∓ 33.38]. Two unstable attractors (saddle points):
[±70.79, ∓ 5.71]. Hatched: basin of attraction of the trivial attractor.
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Figure 4.48: Poincaré map, second PR (Ω0 = 2ω2), z2-z′2 phase space, σ = 3. Three nodes: [0, 0]
and [±14.60, ∓ 35.86]. Two saddle points: [±69.27, ∓ 18.03]. Hatched: basin of at-
traction of the trivial attractor. Limit of zones of attraction by numerical scanning
(circles) and by backward time integration (line).

As explained in Section 4.1.2, by scanning not only the phase space but also the
parameter space within a certain range of σ, the lowest border of the basin of attraction
of the trivial solution can be displayed (see Fig. 4.49 and Fig. 4.50). These plots are a
good qualitative measure of how powerful the trivial solution is in attracting the system.
For a quantitative comparison the measure P = rborder

|z|

∣∣∣
σ=2σb

introduced in Section 4.1.2

is employed. For the first PR it takes on the value P = 0.77, while for the second PR it
takes on the value P = 0.32. Hence, in relative numbers, the basin of attraction of the
trivial attractor grows faster when increasing σ at the first than at the second PR. For PE
frequencies larger than the second branch point, the system is more likely to be attracted
by non-trivial states for the second PR than for the first PR when the initial conditions
are a slight perturbation from the trivial stable state.

In this chapter 1DOF and 2DOF PE non-linear systems introduced in Section 3.1.1 and
Section 3.2.1 were investigated numerically. The results of time simulations and numerical
path following of limit cycles at PR were compared to analytical and semi-analytical ap-
proximations in Section 3.1.3. The quasi-modally reduced model derived in Section 3.2.4
was proven to be highly accurate within the PR. Basins of attractions of the computed
stable states were analysed and their relevance was discussed.
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Figure 4.49: Lowest border (surface grid) between the basins of attraction of the non-trivial sta-
ble steady states (line) and the trivial stable steady states ([>0.387,-,0] plane) in the
σ-ψ1-z1 parameter-phase-space. First PR (Ω0 = 2ω1).

Figure 4.50: Lowest border (surface grid) between the basins of attraction of the non-trivial sta-
ble steady states (line) and the trivial stable steady states ([>0.396,-,0] plane) in the
σ-ψ2-z2 parameter-phase-space. Second PR (Ω0 = 2ω2).
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5 Manipulating the Characteristics of a One and
a Two Degree of Freedom Parametrically
Excited Non-Linear System

In the previous chapters 1DOF and 2DOF PE non-linear systems were introduced and
studied. Analytical results were validated with numerical methods employing a param-
eter set stated in Tab. 3.2. The parameters’ values led to certain characteristics of the bi-
furcated limit cycles at PR. This chapter deals with tuning these parameters in order to
fulfil possible requirements such as desired shape of the amplitude characteristics, max-
imum amplitude at PR and phase shifts of the stable limit cycles at PR. First the 1DOF
system is investigated in Section 5.1 and the results are then applyed to the 2DOF system
in Section 5.2. This procedure is not straightforward since the bifurcation’s characteristics
depend in a complicated and non-linear manner on the parameter values.

Within the scope of analytical analyses for the 1DOF system—especially in the case
of non-steady PE— the chapter follows study results by RHOADS ET AL. [7, 25]. Subse-
quently, applying these results to the 2DOF system is addressed.

Finally the basins of attraction of analytically, semi-analytically and numerically de-
tected attractors are discussed for a manipulated 1DOF and for a manipulated 2DOF sys-
tem.

5.1 Manipulating the Characteristics of the 1DOF System

In Section 5.1.1 the parameters of the 1DOF system introduced in Section 3.1 are tuned
to fulfil desired features of the characteristics of the bifurcated limit cycles. For this re-
sults from Section 3.1.3 can be employed. In Section 5.1.2 a non-steady PE is introduced.
Thereby, the PE magnitude may increase or decrease slowly compared to the PE fre-
quency. This behaviour is introduced to cover systems where the PE magnitude can not be
controlled by the system’s design but is an external input for the system. Problems arise
because the width of the PR, the centre of the PR, the hardening/softening-behaviour of
the amplitude characteristics and hence the phase shift of the stable limit cycles all may
depend on the PE magnitude. The interdependencies of the parameters is investigated
and possible strategies to handle the above difficulties are presented.
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Figure 5.1: By manipulating the non-linearity parameter κ2, the limit cycles’ characteristics can
be changed qualitatively. Solid: stable limit cycles; hatched: unstable limit cycles.

5.1.1 Steady Parametric Excitation

In Section 3.1 it was shown that the qualitative behaviour of the bifurcated limit cycles
at PR only depends on the non-linearity parameter κ2. Indeed, the maximum amplitude
of the bifurcated limit cycles is not determined only by κ2, but by different parameters
as well, as is the bandwidth of the PR. However, the value of κ2 determines whether the
branches have hardening or softening characteristics (see Fig. 5.1: decreasing κ2 changes
the hardening/softening characteristics and the stability of the limit cycles associated
with each branch of the curve). Hence κ2 also defines whether the stable non-trivial solu-
tion has a phase shift ψ close to 0 or close to π/2.

In Section 3.1 and Section 4.1 a parameter set is discussed for which the two bifurcated
limit cycles both have hardening characteristics. This means that the stable, non-trivial
solution at PR has a phase shift ψ ≈ π/2. For certain applications it might be desirable
to eliminate this phase shift. Furthermore, increasing the amplitude of the stable non-
trivial solution at PR might be necessary. Below is demonstrated how to define κ2 for a
maximum amplitude if the phase shift ψ has to be close to zero and all other parameters
remain as stated in Tab. 3.2.

As deduced in Section 3.1, κ2 has to take on the value
κ2 = −

∣∣∣ 4εnlinω2
0

3(εlin+2ω2
0)

∣∣∣ = −3.46 · 10−3 to fulfil the task outlined above. However, the

value κ2 = −4 · 10−3 is chosen to guarantee a softening characteristic of both branches
even with small numerical differences between actual and design values. Note that the
value of κ2 can be varied by modifying kb,nlin and kPE,nlin. However, varying kPE,nlin will
change the value of εnlin, the value of a parameter which was used to determine the value
of κ2. Hence, with the conditional equations used here, κ2 has to be tuned by setting
kb,nlin appropriately.

With the modified parameter set the system shows a behaviour as presented in
Fig. 5.2. Within the PR (σ = [−0.2066; 0.2066]) the analytical, the semi-analytical and
the numerical solutions agree well. For the range of σ studied here, the semi-analytical
and the numerical solutions are in good agreement even for values of σ outside of the PR.
The maximum amplitude at PR is r = |z| = 4.6, which is 1.92 times higher than for the
parameter set in Section 4.1.
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Figure 5.2: Limit cycles of Eqs. (3.15), Eqs. (4.1) for κ2 = −4 · 10−3. Thin, black: analytical solution;
bold, grey: semi-analytical solution; circles: numerical solution.

Comparing the Poincaré maps for σ = −0.3 and σ = −0.4 (see Fig. 5.3-Fig. 5.6) to the
ones in Section 4.1 it becomes clear that the stability of the branches and their phase shifts
have changed: the node has a very small phase shift only—the saddle has a phase shift
close to π/2. This also means that for large values of r the system is attracted by decreasing
values of ψ. Only for values of r close to the trivial attractor the system is attracted by
increasing values of ψ. The direction of rotation in the phase space has changed globally.
Where it is clockwise for the original system it is anti-clockwise for the system presented
here and vice versa.

Studying the behaviour at σ = −0.3 (see Fig. 5.3), except for the trivial attractor,
only two attractors can be identified: the node at r = 5.12, ψ = 0.15 and the saddle at
r = 6.13, ψ = 1.16. It becomes clear that by approaching the case κ2 = −3.46 · 10−3,
the bifurcation point σb,2 of r̄c and r̄d lies close to −σb. The basin of attraction of the sec-
ond node already looms in the centre of Fig. 5.3 due to the large slopes of the amplitude
characteristics: the border of the basin of attraction between the node and the trivial at-
tractor has a local maximum in terms of r for ψ = 1.61. Diverging from the PR as much
as σ = −0.4 the first non-trivial attractors both increase slightly in terms of r and move
towards each other in terms of ψ (see Fig. 5.4). The two additional attractors, which could
already be anticipated in Fig. 5.3, become visible: the node at r = 12.21, ψ = 1.61 and the
saddle at r = 7.25, ψ = 2.08. Compared to σ = −0.3 the basin of attraction of the trivial
attractor has increased, that of the first node has decreased.

By analogy to Section 4.1.2, the reduced ψ-r phase space of the Poincaré maps is trans-
formed to the z-z′ phase space according to Eqs. (4.2). This transformation means that
each node and saddle of Fig. 5.3 and Fig. 5.4 appears as a conjugate pair. The trivial at-
tractor also shrinks to a node. Hence, at σ = −0.3 in Fig. 5.5 three nodes are visible:
[±5.06, ∓ 0.38] and [0, 0].
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Decreasing σ to σ = −0.4 in Fig. 5.6 two more nodes can be identified, which lie on
the second loop. The basin of attraction of the trivial attractor has extended compared to
σ = −0.3. The basin of attraction of the first non-trivial attractor has diminished.

Figure 5.3: Poincaré map, ψ-r phase space, σ = −0.3. Two stable attractors: [0.15, 5.12] and [−, 0].
One unstable attractor (saddle point): [1.16, 6.13]. Hatched: basin of attraction of the
trivial attractor. Limit of basins of attraction by numerical scanning (circles) and by
backward time integration (line).

Figure 5.4: Poincaré map, ψ-r phase space, σ = −0.4. Three stable attractors: [0.21, 5.61],
[1.61, 12.21] and [−, 0]. Two unstable attractors (saddle points): [0.84, 6.30] and
[2.08, 7.25]. Hatched +45◦: attracted by the trivial attractor. Hatched −45◦: attracted
by the node [1.61, 12.21].
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Figure 5.5: Poincaré map, z-z′ phase space, σ = −0.3. Three nodes: [±5.06, ∓ 0.38] and [0, 0].
Two saddle points: [±2.39, ∓ 2.81]. Hatched: basin of attraction of the trivial attractor.
Limit of basins of attraction by numerical scanning (circles) and by backward time
integration (line).

Figure 5.6: Poincaré map, z-z′ phase space, σ = −0.4. Five nodes: [±5.49, ∓ 0.61], [±0.44, ∓ 5.66]
and [0, 0]. Four saddle points: [±4.17, ∓ 2, 36] and [±0.28, ∓ 3.63]. Hatched +45◦:
basin of attraction of the trivial attractor. Hatched +45◦: basin of attraction of the first
non-trivial attractor. Limits of basins of attraction by numerical scanning (circles) and
by backward time integration (line).
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Figure 5.7: Lowest border (surface grid) between the basins of attraction of the bifurcated limit
cycle (line) and stable trivial solutions (rest position) ([<-0.207,-,0] plane) in the σ-ψ-r
phase parameter space.

Plotting the bifurcated branches in a three-dimensional σ-ψ-z phase parameter space
(see Fig. 5.7) provides a better understanding of the interdependencies of z and ψ. Dis-
playing the lowest border (surface grid) between the basins of attraction of the bifurcated
limit cycle (line) and the stable trivial solutions (rest position) in the [<-0.207,-,0]-plane
demonstrates the power of each attractor to attract the system.

Stable states along the bifurcated branches are indicated as bold lines. The unstable
states (thin lines) along the branches are a subset of the border between the basins of at-
traction and are part of the surface displayed here. The second loop enters/leaves the dis-
played part of the phase parameter space at A = [−1, 2.97, 7.91] and B = [−1, π/2, 23.82].

The measure P = rborder
|z|

∣∣∣
σ=2σb

introduced in Section 4.1.2 quantifies this behaviour.

Here it takes on the value of P = 0.87 which means an increase by 211% compared to the
value achieved with κ2 = 2.403 · 10−2. Straightening the branches makes them diverge
faster from the trivial attractor and reduces the risk of the system being attracted by a
non-trivial attractor starting with a small but non-zero amplitude.
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5.1.2 Non-steady Parametric Excitation

In the previous chapters the PE parameters εlin and εnlin have been treated as fixed and
chosen by design considerations. However, for some applications εlin and εnlin might not
be fixed but depend on operational circumstances. As a result the qualitative character-
istics of the system at PRs are defined not only by the non-linearity of the stiffness but
also by the PE parameters. This influence of the PE parameters εlin and εnlin is discussed
in this section. Furthermore, it is demonstrated how the manipulation scheme has to be
modified to tune or optimize the system’s behaviour at PR.

Recalling the relation between the non-dimensional and physical parameters reveals
that κ2 depends on the non-linear stiffness and the non-linear PE stiffness constants, while
εlin and εnlin depend on the PE stiffness constants.

Assuming that the PE parameters εlin and εnlin both result from the same physical
effect which affects both in the same manner, both PE parameters can be renamed as

εlin = εPE, εnlin = CnlinεPE, Cnlin =
εnlin

εlin
. (5.1)

The non-linearity parameter κ2 was introduced as

κ2 =
(kb,nlin + kPE,nlin)x∗2

m Ω∗2
(5.2)

and can be written with Eq. (5.1) as

κ2 = κ2
b + CnlinεPE, κ2

b =
kb,nlinx∗2

m Ω∗2
. (5.3)

If the magnitude εPE of the PE changes, then the amplitude characteristics r̄b and r̄c change
too (see Fig. 5.8), becoming

r̄b(εPE) = ±
√

4ω0εσ + 2εPE

−2CnlinεPE + 3(κ2
b + CnlinεPE)(1− εσ

ω0
)

, (5.4a)

r̄c(εPE) = ±
√

4ω0εσ− 2εPE

2CnlinεPE + 3(κ2
b + CnlinεPE)(1− εσ

ω0
)

. (5.4b)

As can be seen in Fig. 5.8, the width of the PR also depends on εPE. Only the left branch
is depicted in Fig. 5.8, but the bifurcation points σ = ∓σb are symmetric regarding the
angular centre frequency Ω0 (σ = 0), so that

σ = ∓σb(εPE) = ∓
εPE

2εω0
(5.5)

with the natural angular frequency

ω0 =
√

ω2
b + εPE, ω2

b =
kb,lin

mΩ∗2
(5.6)

also depending on εPE. For a small PE εPE � 1, so that

ωb � εPE ⇒ σb ≈
εPE

const.
∝ εPE. (5.7)
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Figure 5.8: Amplitude characteristic r̄b(σ, εPE) of the bifurcated limit cycle with parameters from
Tab. 3.2 (except for εlin, εnlin). The width of the PR increases almost proportionally to
εPE for small εPE.

As a result of ω0(εPE), the angular centre frequency Ω0 of the PR also depends on εPE as

Ω0 = Ω0(εPE) = 2ω0 = 2
√

ω2
b + εPE, (5.8)

which can be linearised via a Taylor series for small εPE to

Ω0 ≈ 2ωb + ωbεPE. (5.9)

Together Ω0 and σb define the location and the width of the instability interval of the
trivial solution (Fig. 5.9). All newly introduced parameters and their relation to physical
parameters are stated in Tab. 5.1. As stated in Eq. (5.9) and Eq. (5.7), the angular centre
frequency as well as the borders of the PR (the stability limits) both depend almost lin-
early on εPE.

The problem of PR frequency bands not being symmetric around Ω0(εPE = 0) and
widening with increasing εPE is a known phenomenon of PE systems. It was addressed
for example by NAYFEH ET MOOK [24]. In an approach to realise a PE-independent sta-
bility limit RHOADS ET AL. [25] propose a tunable linear stiffness to shift the instability
wedge in order to tune the system’s natural frequency. Their design aims at verticalising
either the left or the right border of the instability wedge: the regarding stability border
is forced to be perpendicular to the σ- or Ω-axis. Hence the stability limit of interest does
not depend on the PE frequency. The stiffness of the additional spring is a function of εPE.
It softens or hardens appropriately with increasing εPE. However, for a PR wedge sym-
metric around Ω0(εPE = 0), it is sufficient to eliminate the time-constant part of k(x, t)
in Eq. (3.1). Many systems can be modelled in such a way that k(x, t) can be expressed
as k(x, t) = kPE cos(ΩPEt) instead of k(x, t) = kPE(1 + cos(ΩPEt)). Such systems have a
symmetric PR, since Ω0 = 2ω0 = 2ωb = const. Yet, since σb(εPE) = εPE/2εω0 ∝ εPE, the
width of the PR still depends on εPE.
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Table 5.1: Renamed parameters of Eq. (3.7), the 1DOF system depicted in Fig. 3.1.

Parameter Symbol Rel. to Physical Par. Value

Structural Non-linearity Parameter κ2
b

kb,nlinx∗2

m Ω∗2
2.928 · 10−2

PE Non-linearity Ratio Cnlin
εnlin
εlin

=
kPE,nlinx∗2

kPE,lin
−4.383 · 10−2

Structural Natural Angular Frequency ωb
kb,lin

mΩ∗2
2.395

Furthermore, by studying Eqs. (5.4) it becomes clear that the amplitude characteristics
qualitatively depend on εPE, too. The dependence of the five qualitatively different am-
plitude and phase characteristics, which were determined in Section 3.1.3, on κ2

b and εPE

is shown in Fig. 5.10:
(I) Both branches have softening amplitude characteristics without intersection. The

stable branch at PR has a phase shift of ψ = 0.

(II) Both branches have softening amplitude characteristics and intersect. The stable
branch at PR has a phase shift of ψ = 0.

(III) One branch has a hardening, one a softening amplitude characteristic and they in-
tersect. The stable branch at PR either has a phase shift of ψ = 0 or ψ = π.

(IV) Both branches have hardening amplitude characteristics and intersect. The stable
branch at PR has a phase shift of ψ = π.

(V) Both branches have hardening amplitude characteristics without intersection. The
stable branch at PR has a phase shift of ψ = π.

Increasing or decreasing εPE at a fixed valued of κ2
b can make the system change its

characteristics qualitatively, if κ2
b is chosen appropriately. For the parameter set in use

here, for example, the smallest possible value of κ2
b for having a softening amplitude char-

acteristic of both branches r̄b and r̄c regardless of the value of εPE is κ2
b = 0. This means

the spring has to have a linear or softening characteristic.
By setting κ2

b = 0, Eq. (3.16c) becomes the only stable solution at PR. Its phase shift ψ is
close to 0. The dependence of r̄c on εPE and σ is illustrated in Fig. 5.11. For combinations
of εPE and σ sufficiently close to σ = σb and εPE = 0, the bifurcation’s amplitude r̄c takes
on relative constant values. This means the maximum value r̄max of the amplitude within
the PR does not depend much on εPE (see Fig. 5.11). Within a range of εPE = [0; 1] r̄max

only changes by 2.1%.
Employing the case analysis for κ2 from Section 3.1.3 the parameters of the 1DOF sys-

tem are tuned to fulfil desired features of the characteristics of the bifurcated limit cycles
in Section 5.1.1. Introducing a non-steady PE in Section 5.1.2 the width of the PR, the
centre of the PR, the hardening/softening-behaviour of the amplitude characteristics and
the phase shift of the stable limit cycles become dependent on the PE magnitude. Strate-
gies are presented to fix the centre of the PR. Investigating a parameter map of the non-
linearity parameters gives information about how to set them to not change the system’s
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qualitative behaviour during operation. Also, it is demonstrated that for certain parame-
ter sets the maximum amplitude of the stable limit cycle at PR is almost independent of
the PE magnitude.

in
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Figure 5.9: Stability chart for the trivial attractor with parameters from Tab. 3.2 (except for εlin,
εnlin). Hatched: stability area of the trivial attractor—no PR possible. Dashed line: an-
gular centre frequency Ω0 = 2ω0 of the PR. Compare to RHOADS ET AL. [25], Fig. 4a.

Figure 5.10: Parameter map κ2
b-εPE indicating five qualitatively different amplitude and phase

characteristics (compare Fig. 3.2).
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Figure 5.11: Bifurcated limit cycle r̄c(σ, εPE) with parameters from Tab. 3.2 (except for εlin, εnlin).
The non-linearity parameter has been tuned to κ2

b = 0.

Figure 5.12: Maximum amplitude max

(
r̄c(σ, εPE)

∣∣∣∣
σ
∣∣σ∈[−σb,σb]

)
= r̄c(σ = −σb, εPE) of the bifur-

cated limit cycle.
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5.2 Manipulating the Characteristics of the 2DOF System

In Section 3.2.4 it was shown how to approximate a 2DOF non-linear PE system with
a 1DOF model. This approach was validated numerically in Section 4.2. The following
sections discuss how to manipulate the characteristics of the 2DOF System at PR using
the knowledge gained in Section 5.1 and the approach from Section 3.2.4.

5.2.1 Steady Parametric Excitation

The studies for the non-linearity parameter κ2 in Section 3.1.3 were applied to manipulate
the characteristics of the 1DOF system at PR. With the method described in Section 3.2.4
the 2DOF non-linear PE system introduced in Section 3.2.1 can be approximated by a
1DOF system. Hence, the system can be manipulated in analogy to the 1DOF system.
Thus, the coupling of the parameters has to be considered, since parameters cannot be
tuned independently.

The parameters of the 2DOF system introduced in Section 3.2.3 cause hardening am-
plitude characteristics at both PRs for both bifurcating limit cycles. Hence, the stable non-
trivial solutions at the PRs have a phase shift ψi ≈ π/2. In analogy to Section 5.1.1 the
characteristics are forced to have softening behaviours, demonstrating how to manipu-
late the amplitude characteristics of a 2DOF non-linear PE system in general. This is an
optimisation of κ2

i towards a maximum amplitude ri and a phase shift ψi ≈ 0 at the PRs
if all other parameters remain as stated in Tab. 3.5.

To get softening behaviour of both bifurcations at both PRs the non-linearity parame-
ters of interest1 can be chosen in analogy to Section 5.1.1:

κ2
1

!
≤ 2ε1,nlinω1

3(ω1 − εσ)

∣∣∣∣
σ=
−ε1,lin

2εω1

=
4ε1,nlinω2

1
3(2ω2

1 + ε1,lin)
= −9.494 · 10−6 set to

=⇒ −1 · 10−5, (5.10a)

κ2
2

!
≤ 2ε2,nlinω2

3(ω2 − εσ)

∣∣∣∣
σ=
−ε2,lin

2εω2

=
4ε2,nlinω2

2
3(2ω2

2 + ε2,lin)
= −3.54 · 10−5 set to

=⇒ −4 · 10−5. (5.10b)

To guarantee softening amplitude characteristics even in the case of small numerical
mistuning the values were rounded towards smaller values.

The values of κ2
i are defined by the transformation from the physical to the quasi-

modal coordinates (see Section 3.2.4). For simplification the stiffness of the coupling
spring is set equal to the stiffness of a series of the outer springs:

k12,nlin =
k01,nlink02,nlin

k01,nlin + k02,nlin
. (5.11)

The relations between kj,nlin and κ2
i reflect the complicated non-linear nature of the prob-

lem and cannot be expressed in a simple way. Values for kj,nlin leading to satisfying values
for κ2

i can be found by numerical trial and error. This means the values for kj,nlin are varied
within a certain interval until an acceptable value of κ2

i is achieved.

1See Section 3.2.4 for explanation of how to model a 2DOF non-linear PE system with a 1DOF model at
PRs. At PRs only a limited number of parameters of the 2DOF model decide on the behaviour significantly.
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Table 5.2: Tuned values of the parameters of Eq. (3.28) for the 2DOF system depicted in Fig. 3.6

Symbol Value Unit
k01,nlin 0.8878 · 109 Nm−3

k02,nlin 3.5644 · 109 Nm−3

k01,nlin 0.7108 · 109 Nm−3

The calculated values for kj,nlin are displayed in Tab. 5.2. The corresponding values for
κ2

i are displayed in Tab. 5.3. They are within a 0.4% tolerance of the desired values.
The tuning shows the desired effect (see Fig. 5.13 and Fig. 5.14). All amplitudes

have softening characteristics. The maximum amplitude within the first PR is max(r1) =

r1(−σb) = 83.51. The maximum amplitude within the second PR is max(r2) = r2(−σb) =

56.02. These values are 0.51% and 61.95% higher than for the original parameter set. The
small increase of max(r1) is because κ2

1,orig = 1.081 already is very close to the value of κ2

for which the amplitude characteristic rc becomes softening. Still, the value is maximised
by the tuning of the non-linearity parameters. Additionally, the phase shifts ψ1 ≈ ψ2 ≈ 0
of the stable limit cycles at PR are realised.

Tuning the characteristics this way in order to achieve max
(

∂r
∂σ

)
also becomes visible

in the Poincaré maps (see Fig. 5.15-Fig. 5.19): close to σ = −σb four limit cycles are visible
and the basin of attraction of the trivial attractor is relatively large. The small amplitude
node ends up at the very left of the Poincaré maps due to the small phase shift. In contrast
to the original parameter set the phase shift increases close to the trivial attractor. Com-
paring Fig. 5.15 to Fig. 5.16 and Fig. 5.17, the basin of attraction of the small amplitude
node shrinks dramatically within a relatively small range of σ. Meanwhile the basin of at-
traction of the high amplitude node does not change size significantly. Hence, the basin of
attraction of the trivial attractor, which is already large just below the bifurcation of rb, in-
creases significantly within this small range of σ. A qualitatively similar behaviour can be
observed regarding the second PR (see Fig. 5.18 and Fig. 5.19). However, since the slope
of the amplitude characteristic rb is not as large as compared to the first PR, the basin of
attraction of the small amplitude node is far more dominant close to the bifurcation of rb
(compare Fig. 5.18 to Fig. 5.15). Nonetheless, this basin of attraction also vanishes within
a small range of σ.
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Table 5.3: Tuned values of the non-linearity parameters of Eq. (3.48).

Symbol Value
κ2

1 −0.996 · 10−5

κ2
12 0.300 · 10−5

κ2
13 −0.664 · 10−5

κ2
14 −0.160 · 10−5

κ2
15 −1.741 · 10−5

κ2
16 −2.087 · 10−5

κ2
26 +0.047 · 10−5

κ2
25 −2.420 · 10−5

κ2
24 −2.632 · 10−5

κ2
23 0.016 · 10−5

κ2
22 −3.629 · 10−5

κ2
2 −4 · 10−5

Figure 5.13: Limit cycles of Eqs. (3.48) for the first quasi-mode z1(τ) at Ω0 = 2ω1 for parameters
as displayed in Tab. 5.3. Thin, black: analytical solution; bold, grey: semi-analytical
solution; circles: numerical solution.
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Figure 5.14: Limit cycles of Eqs. (3.48) for the second quasi-mode z2(τ) at Ω0 = 2ω2 for pa-
rameters as displayed in Tab. 5.3. Thin, black: analytical solution; bold, grey: semi-
analytical solution; circles: numerical solution.

Figure 5.15: Poincaré map, first PR (Ω0 = 2ω1), ψ1-r1 phase space, σ = −0.6. Two stable attrac-
tors: [0.034, 94.35] and [−, 0]. Two unstable attractors (saddle points): [1.05, 118.3]
and [2.069, 122.1]. The high amplitude node lies beyond the amplitude range of the
plot. Hatched +45◦: basin of attraction of the trivial attractor. Hatched −45◦: basin
of attraction of the high amplitude node. Limit of basins of attraction by numerical
scanning (circles) and by backward time integration (line).
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Figure 5.16: Poincaré map, first PR (Ω0 = 2ω1), ψ1-r1 phase space, σ = −0.8. Two stable attrac-
tors: [0.055, 103.1] and [−, 0]. Two unstable attractors (saddle points): [0.781, 118.2]
and [2.312, 121.4]. The high amplitude node lies beyond the amplitude range of the
plot. Hatched +45◦: basin of attraction of the trivial attractor. Hatched −45◦: basin
of attraction of the high amplitude node. Limit of basins of attraction by numerical
scanning (circles) and by backward time integration (line).

Figure 5.17: Poincaré map, first PR (Ω0 = 2ω1), ψ1-r1 phase space, σ = −1. Two stable attractors:
[0.118, 112.4] and [−, 0]. Two unstable attractors (saddle points): [0.457, 117.4] and
[2.550, 121.2]. The high amplitude node lies beyond the amplitude range of the plot.
Hatched +45◦: basin of attraction of the trivial attractor. Hatched −45◦: basin of
attraction of the high amplitude node. Limit of basins of attraction by numerical
scanning (circles) and by backward time integration (line).
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Figure 5.18: Poincaré map, second PR (Ω0 = 2ω2), ψ2-r2 phase space, σ = −0.6. Two sta-
ble attractors: [0.086, 63.38] and [−, 0]. Two unstable attractors (saddle points):
[1.131, 77.93] and [1.928, 85.69]. The high amplitude node lies beyond the amplitude
range of the plot. Hatched +45◦: basin of attraction of the trivial attractor. Hatched
−45◦: basin of attraction of the high amplitude node. Limit of basins of attraction by
numerical scanning (circles) and by backward time integration (line).

Figure 5.19: Poincaré map, second PR (Ω0 = 2ω2), ψ2-r2 phase space, σ = −0.8. Two sta-
ble attractors: [0.127, 69.24] and [−, 0]. Two unstable attractors (saddle points):
[0.827, 79.10] and [2.284, 84.79]. The high amplitude node lies beyond the amplitude
range of the plot. Hatched +45◦: basin of attraction of the trivial attractor. Hatched
−45◦: basin of attraction of the high amplitude node. Limit of basins of attraction by
numerical scanning (circles) and by backward time integration (line).
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Figure 5.20: Poincaré map, first PR (Ω0 = 2ω1), z1-z′1 phase space, σ = −0.6. Three stable
attractors: [±94.30, ∓ 1.603] and [0, 0]. Four unstable attractors (saddle points):
[±58.76, ∓ 51.34] and [∓58.34, ∓ 53.63]. The high amplitude node lies beyond the
amplitude range of the plot. Hatched +45◦: basin of attraction of the trivial attrac-
tor. Hatched −45◦: basin of attraction of the high amplitude node. Limit of basins of
attraction by numerical scanning (circles) and by backward time integration (line).

Figure 5.21: Poincaré map, first PR (Ω0 = 2ω1), z1-z′1 phase space, σ = −0.8. Three stable
attractors: [±102.94, ∓ 2.834] and [0, 0]. Four unstable attractors (saddle points):
[±83.95, ∓ 41.61] and [∓81.97, ∓ 44.78]. The high amplitude node lies beyond the
amplitude range of the plot. Hatched +45◦: basin of attraction of the trivial attrac-
tor. Hatched −45◦: basin of attraction of the high amplitude node. Limit of basins of
attraction by numerical scanning (circles) and by backward time integration (line).
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Figure 5.22: Poincaré map, first PR (Ω0 = 2ω1), z1-z′1 phase space, σ = −1. Three stable at-
tractors: [±111.62, ∓ 6.616] and [0, 0]. Four unstable attractors (saddle points):
[±105.35, ∓ 25.90] and [∓100.60, ∓ 33.80]. The high amplitude node lies beyond
the amplitude range of the plot. Hatched +45◦: basin of attraction of the trivial at-
tractor. Hatched−45◦: basin of attraction of the high amplitude node. Limit of basins
of attraction by numerical scanning (circles) and by backward time integration (line).

Figure 5.23: Poincaré map, second PR (Ω0 = 2ω2), z2-z′2 phase space, σ = −0.6. Three stable
attractors: [±63.15, ∓ 2.722] and [0, 0]. Four unstable attractors (saddle points):
[±33.18, ∓ 35.26] and [∓29.96, ∓ 40.14]. The high amplitude node lies beyond the
amplitude range of the plot. Hatched +45◦: basin of attraction of the trivial attrac-
tor. Hatched −45◦: basin of attraction of the high amplitude node. Limit of basins of
attraction by numerical scanning (circles) and by backward time integration (line).
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Figure 5.24: Poincaré map, second PR (Ω0 = 2ω2), z2-z′2 phase space, σ = −0.8. Three stable
attractors: [±68.68, ∓ 4.385] and [0, 0]. Four unstable attractors (saddle points):
[±53.56, ∓ 29.10] and [∓55.47, ∓ 32.06]. The high amplitude node lies beyond the
amplitude range of the plot. Hatched +45◦: basin of attraction of the trivial attrac-
tor. Hatched −45◦: basin of attraction of the high amplitude node. Limit of basins of
attraction by numerical scanning (circles) and by backward time integration (line).

The bifurcated branches are plotted in a reduced three-dimensional σ-ψi-zi parame-
ter phase space for providing a better understanding of the interdependencies of zi and
ψi. Displaying the lowest border (surface grid) between the basins of attraction of the
bifurcated limit cycle (line) and the stable equilibrium demonstrates the power of each
attractor in attracting the system. In this three-dimensional parameter phase space, the
stable equilibrium is a region defined by zi = 0, ψi arbitrary and σ < −0.3872 at the first
PR, σ < −0.3955 at the second PR respectively.

The measure P = rborder
|z|

∣∣∣
σ=2σb

introduced in Section 4.1.2 quantifies this nature. At the

first PR it takes on the value of P = 0.795. This means an increase of 3% compared to the
results by analysing the original parameter set stated in Section 4.2. At the second PR it
takes on the value of P = 0.81 which means an increase of 154% compared to the original
results. By reducing κ2 the amplitude characteristics have been amplified, diverging from
the trivial attractor much faster in terms of σ. The risk of the system being attracted by a
non-trivial attractor starting with a small but non-zero amplitude is reduced at both PRs.
At the second PR the increase in P is significant.

The 2DOF system can be manipulated in analogy to Section 5.1.2. The non-linearity
parameters κ2

i can be chosen according to the case analyses in Section 3.1.3. But due to
the complicated non-linear interdependencies between physical and non-dimensional pa-
rameters an analytical relation cannot be given. Hence, the physical parameters have to
be optimised with respect to the desired values of the non-linearity parameters κ2

i . For the
presented system at both PRs the phase shift of the bifurcated limit cycles is eliminated,
the amplitudes are amplified and the risk of the system being attracted by a non-trivial
attractor is reduced.
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Figure 5.25: First PR (Ω0 = 2ω1). Lowest border (surface grid) between the basins of attraction of
the bifurcated limit cycle (line) and stable trivial solutions ([<-0.3872,-,0] plane) in the
reduced σ-ψ1-z1 phase parameter space. Stable states along the bifurcated branches
are indicated as bold. Unstable states (plotted thinly) along the branches are a subset
of the border between the basins of attraction and are part of the surface displayed
here. The second loop enters/leaves the displayed part of the phase parameter space
at A = [−1.3, 2.932, 128.8] and B = [−1.3, π/2, 487.1].

Figure 5.26: Second PR (Ω0 = 2ω2). Lowest border (surface grid) between the basins of attraction
of the bifurcated limit cycle (line) and stable trivial solutions ([<-0.3955,-,0] plane)
in the reduced σ-ψ1-z1 phase parameter space. Stable states along the bifurcated
branches are indicated as bold. Unstable states (plotted thinly) along the branches
are a subset of the border between the basins of attraction and are part of the sur-
face displayed here. The second loop enters/leaves the displayed part of the phase
parameter space at A = [−1.3, 2.826, 91.65] and B = [−1.3, π/2, 282.3].
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5.2.2 Non-steady Parametric Excitation

In the previous section, tuning the non-linearity parameters of a 2DOF non-linear PE sys-
tem for fulfilling certain requirements such as eliminating the phase shift or maximising
the amplitudes of the bifurcated limit cycles was discussed. Analytic conditional equa-
tions were given. However, the approach presented is only applicable, if the PE has a
constant amplitude. If the PE amplitude fluctuates slowly, the system’s behaviour is not
only determined by the non-linearities of the time-invariant stiffnesses but also by the
actual magnitude of the PE.

Approximating the 2DOF system at PRs with a corresponding 1DOF system as es-
tablished in Section 3.2.4, the results from Section 5.1.2 could be employed. However,
analytic expressions for κ2

i and subsequently for r̄i as well as for ωi cannot be given.
The stability charts for both PRs can be evaluated numerically (see Fig. 5.27 and

Fig. 5.28). The original parameters of Tab. 3.5 are employed, only the magnitude of the PE
is varied so that ε1,lin and ε2,lin both take on values within [0, 1]. In analogy to Section 5.2.2
the angular centre frequencies of the PRs depend almost linearly on εi,lin. Since the value
of the bifurcation points σ = ∓σb is proportional to εi,lin, the stability border Ω0 ∓ σb
shows an almost linear dependency.

As derived in Section 5.1.1 the centre frequencies increase almost proportionally
with ∆Ω0 = ωi|εi,lin=0 ∆εi,lin. The bandwidth also increases almost proportionally with

∆σb =
∆εi,lin

ε ωi|εi,lin=0
. Note, that having a non-steady εi,lin is sufficient alone, εi,nlin does not

have to be non-steady necessarily to get these effects.
Further investigations are computationally too expensive for the 2DOF system to be

presented here. In difference to the 1DOF system, analytic expressions for κ2
i cannot be

provided. For the 2DOF system κ2
i result from the quasi-modal transformation of the

equations of motion and depend on the entries of the non-linear stiffness matrices Knlin
in a complicated manner. Hence, analytic expressions for the amplitude characteristics
like Eqs. (5.4) cannot be given. Thus, the qualitative behaviour cannot be determined and
a parameter map like Fig. 5.10 cannot be presented.
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Figure 5.27: Stability chart for the trivial attractor at the first PR with parameters from Tab. 3.5
(except for ε i,lin, ε i,nlin). Hatched: stability area of the trivial attractor—no PR possible.
Thin line: angular centre frequency Ω0 = 2ω1 of the PR.
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Figure 5.28: Stability chart for the trivial attractor at the second PR with parameters from Tab. 3.5
(except for ε i,lin, ε i,nlin). Hatched: stability area of the trivial attractor—no PR possible.
Thin line: angular centre frequency Ω0 = 2ω2 of the PR.
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5.3 Achievements of Manipulating the Characteristics

The findings in Chapter 3 and Chapter 4 were applied successfully in manipulating the
characteristics of both the 1DOF and the 2DOF non-linear PE system introduced earlier.
PEs with constant amplitudes and such with non-constant amplitudes, which change
slowly compared to the PE frequency, were discussed.

In case of steady PE amplitudes, it was demonstrated for the 1DOF and 2DOF system
how to tune parameters in order to modify the characteristics of the bifurcated stable limit
cycle at PR. The analytic results from Section 3.1.3 were employed leading to analytic
expressions and straight forward tuning algorithms. As a result the phase shifts can be
changed from π/2 to 0 and vice versa, the amplitudes can be maximised and the risk of
the system being attracted by a non-trivial attractor close to a PR can be reduced.

Discussing the basins of attraction of the stable limit cycles at or close to the PRs, a
different behaviour compared to the original systems can be observed: straightening of
the amplitude characteristics, two stable limit cycles exist very close to the borders of
the PR. The stable high amplitude limit cycle influences the basins of attraction of both
the trivial attractor and the non-trivial low amplitude attractor more strongly than in the
original systems.

In case of non-steady PE the qualitative behaviour of the system can change by
the variation of the PE amplitudes. For the 1DOF system, analytical findings from Sec-
tion 3.1.3 can be utilised to find limit cases for the steady part of the non-linearity param-
eter. This way the system can be designed to behave qualitatively the same regardless
of the PE amplitude. Also, the maximum amplitude at PR can be shown to be almost
independent of the PE amplitude for a certain parameter set.

For the 2DOF system, the analytic results from Chapter 3 cannot be employed due to
the fact that the transformation from physical displacements to the quasi-modal displace-
ments could not be described analytically in Chapter 4. The drift of the PR angular centre
frequency and the widening of the PR depending on the magnitude of the PE amplitude
is investigated. An analytical statement regarding the values of certain parameters for
which the qualitative behaviour of the system does not change cannot be given. To make
such a statement numerical methods have to be employed.
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6 Applications

In Chapter 3 1DOF and 2DOF non-linear PE systems have been studied analytically in
order to understand the influences of the parameters on the behaviour of these systems
at PRs. Parameter regimes could be identified for which the systems show certain quali-
tative behaviours. Analytical and semi-analytical expressions of the relation between pa-
rameter values and the amplitudes and phase shifts of the vibrations at PR were deduced.
These findings were validated numerically in Chapter 4. In addition, the basins of attrac-
tion of the coexisting stable states at PRs were identified. Based on these results the as-
pect of enlarging certain basins of attraction for ensuring the attraction of the system to
the desired state was addressed. Finally in Chapter 5 the results made previously were
employed to optimise the systems’ behaviour at PR regarding amplitude and phase shift
of the vibrations at PR. Design rules were given.

The results made in those chapters are of general nature and can be applied to any
system which can be modelled as in Section 3.1.1 or Section 3.2.1. However, in this chap-
ter three microelectromechanical Systems (MEMS) are presented for demonstrating the
benefits of the research findings. All of these systems have been manufactured yet. They
specifically use PE actively to outperform standard systems. Yet, so far all of them are
limited to 1DOF.

In each section first the system is explained. It is shown how each system takes advan-
tage of certain features of the PE. Referring to Chapter 5 possibilities of tuning the system
are illustrated. In the end it is sketched out what extending each system from 1DOF to
2DOF means and which further benefits can be exploit.

6.1 MEMS Energy Harvester for Health Monitoring

In medical engineering the number of applications for wirelessly continuously monitor-
ing the patient’s health increase steadily. Such systems are necessary for monitoring high
risk patients or patients with chronic diseases. With rapidly ageing societies in industrial
countries the demand for these systems grows fast. Health parameters of interest are, for
example, blood pressure, body core temperature or Electrocardiogram (ECG) signals [27].

A main problem of such devices is realising the necessary energy supply. An au-
tonomous energy supply by energy harvesters means a comfortable wireless and low
maintenance solution for the patient. These energy harvesters convert body movements
to electric energy for supplying the monitoring system.
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Figure 6.1: MEMS Energy Harvester from [26]. The PE spring causes a longitudinal vibration of
the cantilever’s clamp. This resembles a periodic change of the cantilever’s effective
stiffness.

Vibrating cantilevers which are externally excited by body movements are a common
choice for energy harvester designs. The cantilever’s vibrations result in large displace-
ments at the free end and large tensions at the clamped end. Large displacements at the
free end means high efficiency of electromagnetic and -static transducers, while large
tensions at the clamped end mean high efficiency of piezoelectric transducers [26]. For
further increasing the efficiency of electromagnetic and -static transducers [28] suggests
to excite the cantilever auto-parametrically (see Fig. 6.1). Instead of using the body move-
ments directly to excite the cantilever externally, these movements destabilize the rest po-
sition. The transducer is excited parametrically. The cantilever’s clamped end is mounted
flexibly, which allows a longitudinal vibration. With simplifications the movement of the
clamped end and can be modelled as a harmonically forced oscillation and the cantilever
as a 1DOF system (see Fig. 6.2a). Hence, the system can be approximated mathematically
by

z̈ + 2ζ

√
3EI

meffl3
eff

ż +

(
3EI

meffl3
eff

+
Ω2

PEx̂
leff

cos(ΩPEt)

)
z + µz3 = 0. (6.1)

Here E represents Young’s modulus, I the area moment of inertia, meff the effective mass,
leff the effective length, ΩPE the angular frequency and x̂ the amplitude of the clamped
end’s longitudinal vibration, ζ the damping ratio and µ a non-linear stiffness of the can-
tilever.

In fact, with the design configurations presented in [26] (see Fig. 6.1) modelling the
system as depicted in Fig. 6.2a is a rather inappropriate approach. The PE spring’s tor-
sional stiffness is not sufficient to model the beam’s end as clamped. Quite the contrary,
it barely supports the beam in terms of a rotation about the y-axis. If the spring’s tor-
sional stiffness is significantly smaller than the beam’s bending stiffness, the system can
be modelled as depicted in Fig. 6.2c. This leads to the equation of motion

z̈ +
cϕ

meffl2
eff

ż +

(
kϕ

meffl2
eff

+
Ω2

PEx̂
leff

cos(ΩPEt)

)
z + µz3 = 0. (6.2)
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(a) 1DOF model for a cantilever with a
clamped end.
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(b) Continuous model for a cantilever
with a clamped end.
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(c) 1DOF model for a beam which is
stiff compared to the joint.
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(d) 2DOF model for a beam with a sec-
ond joint.

Figure 6.2: Mechanical models for a system as depicted in Fig. 6.1. The cantilever’s
clamped end vibrates along the x-axis with x0(t) = x̂ cos(ΩPEt). Hence, the
cantilever’s vibration is excited parametrically. (a)-(c) represent different mod-
elling approaches for the system in [26], while (d) shows an alternative design.

Here, kϕ is the spring’s effective torsional stiffness and cϕ is the spring’s effective torsional
damping. The parameter µ represents the non-linearity of the torsional characteristic of
the PE spring.

However, renaming the parameters and introducing the eigentime τ = ΩPEt Eq. (6.1)
and Eq. (6.2) both can be written as Eq. (3.4):

m Ω2
PE x′′ + c ΩPE x′ + kb,lin x + kb,nlin x3 + (kPE,lin x + kPE,nlin x3)(1 + cos(τ)) = 0.

In this case there is no non-linear PE (εnlin = 0). Also, the free end’s transverse vibra-
tion’s angular natural frequency

ω0 =

√
3EI

meffl3
eff

, ω0 =

√
kϕ

meffl2
eff

, resp. (6.3)

does not depend on the amplitude x̂ of the longitudinal PE. Since µ > 0 ⇒ κ2 > 0, both
amplitudes r̄b and r̄b of the bifurcated branches show hardening characteristics. At PR
only Eq. (3.16b) is a stable limit cycle in this case.

This PE design outperforms ordinary cantilever energy harvesters due to two effects:
Operating the system at an instability of the rest position instead of at resonance means
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larger amplitudes of the free end’s traversal oscillation. This leads to higher energy con-
version efficiency when employing electromagnetic or -static transducers. More impor-
tantly, the longitudinal PE needs only very small amplitudes to destabilize the cantilever.
Whereas an ordinary design needs an appropriate external excitation at a resonance fre-
quency. In a health application the energy input into the system mostly is by shocks, noise
or broadband vibrations of the surrounding tissue. The PE design can make use of small
amplitudes of signal components with PE frequency. Hence, the cantilever is much more
likely to be excited in average over time. Note that the presented design adds PE to the
existing external excitation mechanism and does not substitute the existing external exci-
tation mechanism.

Extending the system to more degrees of freedom means more PRs and PCRs to be
exploit. With little damping being present in the system energy dissipation at PARs will
not be significant. For health applications extending the number of PRs and PCRs is a
promising way to increase the efficiency by overcoming the problem of only using a very
limited bandwidth of the tissue’s vibration.

The system can be extended to more degrees of freedom in two different ways at
least. If the device can be modelled with a clamped cantilever, examining the continuous
model and investigating modes up to the order desired is possible (see Fig. 6.2b). If the PE
spring’s torsional stiffness is small compared to the beam’s bending stiffness, reducing the
beams cross-section at certain points adds additional degrees of freedom (see Fig. 6.2b).
Considering 2DOF the system can be modelled mathematically with Eq. (3.28) in either
case:

Mẍ + Cẋ + K(x)x + KPE(x) cos(ΩPEt)x = 0.

Hence all findings in Section 3.2, Section 4.2 and Section 5.2 are applicable.
Applying the findings from Section 5.2.1 the effect of design parameters on the ampli-

tude can be predicted in an early conceptional stage. Different designs configurations can
be evaluated and tuned to maximise the amplitude of the free end’s vibration and hence
to maximise the device’s efficiency.

6.2 MEMS Load Cell

A totally different way for PE of a mechanical system is presented by
ZHANG, BASKARAN ET TURNER [29]. They demonstrate how to employ a capacita-
tive design for PE. A so called rigid backbone is linked to its surrounding by by beam
springs (see Fig. 6.3). PE is realised by so-called comb drives. Comb drives are comb
shaped capacitors which are moveable relatively to each other. In this design the combs
move in parallel to each other and do not interdigitate. The electrostatic forces acting
between the combs depend on the displacement of the backbone and on the voltage be-
tween the combs. Considering this voltage to be time-periodic the electrostatic forces can
be modelled by time periodic stiffness parameters, thereby constituting a parametrically
excited system.
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Figure 6.3: MEMS Load Cell from [29]. The mechanical mass spring system undergoes PE by the
electrostatic forces by the electric field within the comb drives.

The electrostatic force depends quadratically on the comb’s voltage. Having a maxi-
mum shift relatively to each other at rest the electrostatic force increases with the teeth ap-
proaching each other. Considering the voltage to be harmonic and eliminating harmonic
squares, u2 can be written as

u2(t) = û2 cos2
(

1
2

ΩPEt
)
= û2

eff (1 + cos(ΩPEt)) , ûeff =
1√
2

û. (6.4)

Hence the system’s equation of motion becomes Eq. (3.2):

mẍ + cẋ + kb,linx + kb,nlinx3 + (kPE,linx + kPE,nlinx3)(1 + cos(ΩPEt)) = 0.

Here, m is the mass of the backbone, c may represent some small damping due to struc-
tural damping, air damping or both, kb,lin and kb,nlin are the beams stiffnesses. The PE
stiffness constants become kPE,lin = slinû2

eff and kPE,nlin = snlinû2
eff where slin and snlin are

design parameters and depend on the comb drive’s dimension and shape.
The device can be used as a load cell: adding an additional mass to the backbone

tunes the PR frequency and the bifurcation points of the bifurcated branches. Forward
scanning the frequency of the capacitor’s voltage the system first follows the bifurcated
branch Eq. (3.16b). Increasing the voltage’s frequency furthermore, the followed branch
becomes unstable leading to a sudden decay of the amplitude of the backbone’s vibration.
This sharp transition detects the the right bifurcation point Eq. (3.17). From the change in
the PR frequency the additional mass can be calculated.

In difference to the MEMS energy harvester from Section 6.1 for this system the PE
amplitude is a controllable input for the system. But here κ2 6= κ2

b because non-linear PE
is present in the system. Also, ω0 depends approximately linearly on the PE amplitude
εPE (see Eq. (5.9)). Hence εPE has to be chosen carefully when operating the device. The
results made in Section 5.1 can be applied to to ensure the desired qualitative behaviour.

At a first glance, extending the device to more degrees of freedom does not seem to be
beneficial as additional PRs and PCRs do not improve the device’s performance. How-
ever, PARs might be advantageous for the system’s efficiency. At PR the vibrations am-
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Figure 6.4: MEMS Load Cell depicted in Fig. 6.3 extended by an additional degree of freedom.

plitude increase significantly and waiting for the vibrations to decay is time consuming
due to very little damping being present. This process can be accelerated substantially by
exploiting PARs when extending the system to 2DOF. After weighing the measurement
mass both natural frequencies can be computed. Feeding a voltage with the frequency
ΩPE = ω2 − ω1 excites the system at PAR and hence leads to a faster dissipation of the
oscillation energy.

Extending the system to 2DOF can be accomplished as shown in Fig. 6.4 by serially
coupling two systems. The electric field between all comb drives results of the voltage
u(t) but the effective electrostatic forces depend on the displacements x1 and x2, respec-
tively. Both backbones are parametrically excited. Hence the system can be modelled by
Eq. (3.28).

Owing to the approximation Eq. (3.16) of the limit cycles the weighing mass can be cal-
culated for the 2DOF system with no more effort than for the 1DOF system. The detected
bifurcation point Eq. (3.17)

−σb = − εlin

2εω0

reveals the natural angular frequency of the excited mode. Since this natural angular
frequency Eq. (3.41) was determined analytically in Section 3.2.2 only a scalar analytical
equations has to be evaluated numerically.

6.3 MEMS Bandpass Filter for Electric Signals

ROADS ET AL. [25] present a setting in which a pair of further developed systems from
[29] is employed to band filter electric signals. The system in Section 6.2 can be used as
a bandpass filter, if an input voltage u(t) is fed into the comb drives. The backbone only
vibrates at PR. The comb drives capacitance and hence the current’s phase shift oscillate
accordingly. This frequency band can be used as a bandpass.
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Figure 6.5: Centrepiece of the MEMS bandpass filter from [25]. The mechanical mass spring sys-
tem undergoes PE by the electrostatic forces by the electric field within the comb
drives. The DC comb drives control the magnitude of the effective non-linear stiff-
ness and hence determine the position of the bifurcation points at PR.

As derived earlier the system’s equation of motion is Eq. (3.2). However, the magni-
tude of the electrostatic forces on the comb drive and hence the parameters εlin and εnlin
are determined by the amplitude û of the voltage u(t). This means the stability of the
rest position is determined by û as shown in Section 5.1. The PR’s centre frequency and
the bandwidth depend on û. In addition such a system is at risk of showing different
qualitative behaviour at PR depending on the value of û. These problems are overcome
by adding further DC driven comb drives to the system (see Fig. 6.5). As mentioned in
Section 5.1, appropriately choosing the magnitude of the control voltage uc one stability
border can be forced to be frequency independent. A pair of these systems, one having
a frequency independent stability limit on the left-hand side and one having it one the
right-hand side, can be operated in parallel and be used as a bandpass filter [25, 7].

The sudden change from the trivial to the non-trivial bifurcated state causes a sharp
roll-off at the filter’s corner frequencies [30]. The bandwidth is narrow. A Q-factor of 500
can be realised [25].

Extending the system to 2DOF more PRs become available to be exploit as bandpasses.
In addition, due to PCRs, the number of possible instability intervals may increase further
than with using another 1DOF system. Also, with more than 1DOF, PARs may occur. This
effect can be adopted actively for adding bandstops to the bandpasses.

Similarly to the MEMS load cell in Section 6.3 extending the device to 2DOF can be
achieved by serially coupling two systems (see Fig. 6.6) [10, 31]. With the parameter set in
Section 3.2.1 two bandpasses at 43.38 kHz and 70.38 kHz can be exploit. The bandwidths
are 3.36 kHz, 5.57 kHz and 1.56 kHz. In addition the PAR at 27 kHz can be engaged
for fast dissipation of the masses’ vibration. For this parameter set, integrating such two
2DOF systems in an IC and using them as frequency controlled switches (see [25] for
more details) results in an amplitude characteristic of the filter as depicted in Fig. 6.7.
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Note that all bandpasses have ideal filter characteristics because, as explained earlier, a
pair of devices with stability limit characteristics complementing each other is in use.

Applying the findings in Section 5.2 designing such 2DOF devices can be accom-
plished time-efficiently. Time-consuming numerical simulations are not necessary in an
early design stage. Approximating the 2DOF system with an analytical 1DOF model the
dependence of the system’s behaviour on the design parameters can be assessed easily.
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Figure 6.6: System depicted in Fig. 6.5 extended by an additional degree of freedom.

Figure 6.7: Amplitude characteristic of a filter employing a pair of PE devices (as depicted in
Fig. 6.6) with parameters as stated in Tab. 3.4.
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7 Conclusion

Parametric Excitation (PE) is different to external excitation in many ways: Parametric
resonances (PRs), which are by nature intervals of instability, are much more narrow than
ordinary resonances. Furthermore, at PRs the vibrations show an exponential increase
over time instead of a linear increase over time in case of ordinary resonances. Moreover,
since the vibrations at PRs are only limited due to non-linearities, in general much larger
vibration amplitudes can be realised than in ordinary systems. In addition the effect of en-
hanced energy dissipation at parametric anti-resonances offers a possibility to stabilise a
system’s rest positions. These aspects promise great potential to increase the performance
of systems.

In the field of MEMS time-periodic stiffness parameters can be realised more easily
than in large scale applications by specially shaped capacitors. Also, in this field of tech-
nology simplicity and minimum weight of structures along with optimal performance is
crucial. PE MEMS are already implemented in systems successfully outperforming con-
ventional systems. They specifically take advantage of one or more of the features of PE
outlined above.

So far the focus of research has mostly been on one degree of freedom (1DOF) sys-
tems. This is partly caused by a lack of methods to investigate and design multi degree
of freedom (MDOF) systems time-efficiently. Restricting the systems to 1DOF ignores the
opportunity to make use of PE effects only available in MDOF systems: parametric com-
bination resonances and parametric anti-resonances. The approaches presented in this
thesis support researchers and designers to investigate and design MDOF non-linear PE
systems time-efficiently employing analytical, semi-analytical and numerical methods.
Furthermore the quasi-modal reduction of the phase space allows to concentrate on im-
portant state parameters and to depict states of MDOF non-linear PE systems graphically
in, to three dimensions reduced, phase spaces and two dimensional sections of those.
This enables scientists to investigate MDOF systems which often means a major progress
in terms of the system performance.

Still, the work presented here is only of theoretical nature. Physical experiments are
necessary to proof whether the expectations can be met in technical systems. Moreover,
cases of non-steady PE amplitudes, e.g. transient or fluctuating PE amplitudes, are com-
plicated to investigate. However, for systems for which the PE amplitude is caused by
an uncontrollable input variable, investigating the system for certain fixed PE amplitudes
might not be sufficient. More research has to be carried out to fully understand such sys-
tems.
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