
Kronecker Algebra Based
Analysis of Shared Memory

Concurrent Systems

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor der Technischen Wissenschaften

by

Dipl.-Ing. Robert Mittermayr
Registration Number 9825671

to the Faculty of Informatics

at the TU Wien

Advisor: Ao. Univ.-Prof. Dipl.-Ing. Dr. techn. Johann Blieberger

The dissertation has been reviewed by:

Ao. Univ.-Prof. Dipl.-Ing.
Dr. techn. Johann Blieberger

Associate Prof. Dipl.-Ing.
Dr. techn. Bernd Burgstaller

Vienna, 17th August, 2016
Dipl.-Ing. Robert Mittermayr

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser
Dissertation ist in der Hauptbibliothek der
Technischen Universität Wien aufgestellt und
zugänglich.
http://www.ub.tuwien.ac.at

The approved original version of this thesis is
available at the main library of the Vienna
University of Technology.

http://www.ub.tuwien.ac.at/eng

Kronecker Algebra Based
Analysis of Shared Memory

Concurrent Systems

DISSERTATION

zur Erlangung des akademischen Grades

Doktor der Technischen Wissenschaften

eingereicht von

Dipl.-Ing. Robert Mittermayr
Matrikelnummer 9825671

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ao. Univ.-Prof. Dipl.-Ing. Dr. techn. Johann Blieberger

Diese Dissertation haben begutachtet:

Ao. Univ.-Prof. Dipl.-Ing.
Dr. techn. Johann Blieberger

Associate Prof. Dipl.-Ing.
Dr. techn. Bernd Burgstaller

Wien, 17 August, 2016
Dipl.-Ing. Robert Mittermayr

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Dipl.-Ing. Robert Mittermayr
Johannesstr. 6
3304 St. Georgen am Ybbsfelde

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 17 August, 2016
Dipl.-Ing. Robert Mittermayr

v

Acknowledgements

I would like to express my gratitude to all those who gave me the possibility to complete
this thesis.

I sincerely thank Prof. Bernd Burgstaller for his valuable hints and tips for further
improvements. He often brought new aspects into my dissertation.

I am deeply indebted to my supervisor Prof. Johann Blieberger. His guidance, help, and
stimulating suggestions helped me in all the time of research for this thesis.

Especially, I would like to thank my lovely wife Kathrin for all the support that she gave
me during the years I have been working on this thesis. This work would not have been
possible without her patient love.

vii

Für meine Eltern Erna und Josef Mittermayr

Abstract

Program analysis of multi-threaded software is still a challenge. Beside other reasons,
this comes from the fact that synchronization has to be taken into account. In particular,
a suitable graph based model has been missing. In this dissertation, we introduce a novel
graph based approach. It is based on the idea that thread interleavings can be studied
with a matrix calculus. This is a novel approach in this research area. Our sparse matrix
representations of a program are manipulated using Kronecker algebra. In the course
of this dissertation we extend it and prove some important properties. The underlying
graph – which we call concurrent program graph (CPG) – represents a multi-threaded
program and plays a similar role for concurrent systems as control flow graphs do for
sequential programs. Thus a suitable graph model for program analysis of multi-threaded
software is set up. Due to synchronization, e.g., via synchronization primitives like
semaphores and barriers, it turns out that often only very small parts of the resulting
graph are actually needed, whereas the rest is unreachable. A lazy implementation of
matrix operations ensures that unreachable parts are never calculated. This speeds up
processing significantly and shows that our approach is very promising. We parallelized
this lazy algorithm and thus gain additional speedup by exploiting the power of modern
multi-core architectures.
In this dissertation, we will show how we use CPGs to detect deadlocks statically in
concurrent programs.
We present a new synchronization construct modeling barriers. By applying this, we
are able to statically analyze Ada multi-tasking programs that employ barriers for
synchronization issues. It turns out that our Kronecker algebra implementation can be
used out-of-the-box for CPGs using such barrier synchronization primitives.
In addition, we show that CPGs can be used as a basis for a worst-case execution
time (WCET) analysis of multi-threaded programs. We employ a generating functions
based approach for setting up data flow equations which are then solved by well-known
elimination based data flow analysis methods. With this approach, we are able to
calculate the WCET (including stalling times) of multi-threaded programs with a non-
linear function solver. Non-linearity turns out to be inherent to the multi-threaded
WCET problem.
Finally, we show how our Kronecker algebra based approach can be adopted in the
field of railway systems. For multiple trains in a railway disposition system and based
on given routes, it can be used to suggest deadlock-free movements only. Additional

xi

constraints, such as overtaking and train connections, may be taken into account. Our
railway approach was already extended by others, e.g., to save energy by minimizing stop
and go of trains.

Kurzfassung

Programmanalyse von nebenläufigen Programmen ist immer noch eine Herausforderung.
Das kommt unter anderem daher, dass Synchronisation berücksichtigt werden muss. Im
Speziellen fehlte bisher ein geeignetes Graphenmodell. Mit dieser Dissertation führen wir
einen graphenbasierten Ansatz ein. Dieser fußt auf der Idee, dass zeitlich verschränkte
Abarbeitung (thread interleavings) durch einen Matrizenkalkül betrachtet werden kann.
Dies ist neu in diesem Forschungsgebiet. Die dünnbesetzten Matrizen eines Programmes
werden mittels Kronecker Algebra-Operationen manipuliert. Im Zuge dieser Dissertation
wird diese erweitert und manch wichtige Eigenschaft bewiesen. Der zugrundeliegende
Graph, den wir concurrent program graph (CPG) nennen, repräsentiert ein nebenläufi-
ges Programm und spielt eine ähnliche Rolle wie Kontrollflussgraphen für sequentielle
Programme. Daher ist er ein geeignetes Modell für die Programmanalyse von neben-
läufigen Programmen. Es stellt sich heraus, dass durch Synchronisation (z.B. durch
Synchronisationsprimitive wie Semaphoren oder Barrieren) oft nur ein sehr kleiner Teil
des resultierenden Graphen nötig und der Rest unerreichbar ist. Eine verzögerte (im Eng-
lischen oft als “lazy” bezeichnete) Auswertung der Matrixoperationen stellt sicher, dass
unerreichbare Teile nie berechnet werden. Das beschleunigt die Berechnung signifikant
und zeigt, dass unser Ansatz vielversprechend ist. Die Parallelisierung dieses Algorithmus
für Mehrkern-Architekturen ermöglichte eine signifikante Laufzeit-Reduktion.
In dieser Dissertation zeigen wir, wie CPGs zum statischen Finden von Deadlocks in
nebenläufigen Programmen verwendet werden können.
Des Weiteren führen wir ein neues Synchronisationskonstrukt, das Barrieren model-
liert, ein. Dieses Konstrukt ermöglicht die statische Analyse von nebenläufigen Ada-
Programmen, die Barrieren zur Synchronisation verwenden. Programme, die auf diese
Synchronisationsprimitive bauen, können mit unserer völlig unveränderten Kronecker
Algebra-Implementierung analysiert werden.
Zusätzlich zeigen wir, dass CPGs als Basis für eine Analyse der maximalen Laufzeit – im
Englischen oft als worst-case execution time (WCET) bezeichnet – verwendet werden
können. Wir verwenden einen Ansatz, der auf erzeugende Funktionen basiert. Daten-
flussgleichungen werden durch etablierte (sogenannte elimination based) Datenflussanaly-
semethoden gelöst. Mit diesem Ansatz wird es möglich, die WCET von nebenläufigen
Programmen zu berechnen. Diese WCET inkludiert auch Zeiten, in denen Threads blo-
ckiert sind. Mittels eines nicht-linearen Funktionslöser werden die Gleichungen gelöst. Es
zeigt sich, dass nebenläufigen WCET-Problemen Nicht-Linearität inhärent ist.

xiii

Schließlich zeigen wir, wie unser Kronecker Algebra-Ansatz im Bereich der Eisenbahn
verwendet werden kann. Bei gegebenen Fahrstraßen wird es dadurch Dispositionssyste-
men möglich, für mehrere Züge automatisch deadlockfreie Zugbewegungen vorzuschlagen.
Zusätzliche Bedingungen, wie z.B. Überholungen und Zugverbindungen, können dabei
beachtet werden. Dieser Ansatz wurde bereits von anderen erweitert, um z.B. durch
Minimierung von Brems-/Beschleunigungszyklen energiesparend zu fahren.

Contents

Abstract xi

Kurzfassung xiii

List of Figures xvii

List of Tables xix

1 Introduction 1
1.1 Motivation . 1
1.2 Thesis Overview and Contributions . 2
1.3 Outline . 4

2 Preliminaries 7
2.1 Overview . 7
2.2 Semiring . 8
2.3 Control Flow Graphs . 8
2.4 Semaphores . 9
2.5 Edge Splitting . 11
2.6 Basic Matrix Notations and Operations 14
2.7 Correspondence between Matrices and Directed Graphs 15
2.8 Limitations . 16

3 Kronecker Algebra – A Matrix Calculus 17
3.1 Kronecker Product / Zehfuss Product . 17
3.2 Kronecker Sum . 20

4 Concurrent Program Graphs 27
4.1 Generating a Concurrent Program’s Matrix 29
4.2 Determining Entry and Final Nodes of CPGs 30
4.3 ◦-Operation and Synchronization . 31
4.4 Unreachable Parts Caused by Synchronization 32
4.5 Properties of CPGs . 33
4.6 Efficient Implementation of the ◦-Operation 36

xv

4.7 Lazy Implementation of Kronecker Algebra 39
4.8 CPGs are Irreducible . 40

5 Deadlocks 43
5.1 Deadlock Example . 44

6 Examples and Empirical Data 49
6.1 Deadlock Example . 49
6.2 Modeling Static Fork Join . 50
6.3 Client-Server Example . 52
6.4 A Data Race Example . 55
6.5 Empirical Data . 58

7 Static Analysis of Barriers 61
7.1 Barriers . 62

8 Worst-Case Execution Time Analysis 71
8.1 Worst-Case Execution Time Analysis on RCPGs 74
8.2 Example . 81

9 Deadlock Avoidance for Railway Systems 97
9.1 Deadlocks in Computers vs. Deadlocks in Railway Systems 99
9.2 Railway System Model . 100
9.3 A Simple Example . 102
9.4 Avoiding Deadlocks under Additional Constraints 106
9.5 Extensions of the Standard Railway Model 106
9.6 Concluding Remarks . 108

10 Related Work 111
10.1 Kronecker Algebra . 111
10.2 Data Structures Modeling Concurrent Systems 112
10.3 Static Analysis of Barriers . 112
10.4 Worst-Case Execution Time Analysis . 112
10.5 Railway Systems . 114

11 Conclusion 117
11.1 Summary . 117
11.2 Outlook . 119

A The State Explosion Problem 125

Bibliography 129

List of Figures

2.1 Pseudocode Factorial . 9
2.2 CFG of Factorial . 10
2.3 Semaphores . 10
2.4 Semaphores with Non-blocking v-operations 11
2.5 Edge Splitting for k Synchronization Primitive Calls 13
2.6 Edge Splitting for k Shared Variable Accesses 14

3.1 Simultaneous Executions via Kronecker Product C ⊗D 19
3.2 Simultaneous Executions via Kronecker product E ⊗ F 21
3.3 The Graphs of C, D, and C ⊕D . 23
3.4 A Simple Cartesian Product Graph (C ⊕D) 25

4.1 Overview . 28
4.2 Mutual Exclusion Example . 34
4.3 Unreachable Parts of the Mutual Exclusion Example 35
4.4 Example Program with Self-Deadlock . 37
4.5 CPGs are Irreducible . 40

5.1 Deadlock Example . 46
5.2 Some Unreachable Parts of the Deadlock Example 47

6.1 A Second Deadlock Example . 51
6.2 RCFGs for Example Consisting of T1 and T2 52
6.3 Adapted RCFGs for Example Consisting of T1 and T2 53
6.4 RCPG of the T1-T2-System . 53
6.5 Client-Server Example . 54
6.6 Data Race Example . 55
6.7 RCFGs for Data Race Example . 56
6.8 CPG of Data Race Example . 58
6.9 Improvements via a Parallel Version . 60

7.1 RCFGs of Tasks T1, T2, and T3 Using a Barrier 63
7.2 CPG for Program Consisting of T1 and T2 64
7.3 CPG for Program Consisting of T1, T2, and T3 66

xvii

7.4 CFGs for Example Consisting of TL1 and TL2 67
7.5 CPG for Program Consisting of TL1 and TL2 68
7.6 CPG of Reusable Barrier Solution using Semaphores 69
7.7 CPG of Non-Reusable Barrier Solution using Semaphores 70

8.1 RCFGs of Threads A and B . 75
8.2 Kronecker Sum A⊕B of Threads A and B 76
8.3 RCPG . 82
8.4 Adapted RCPG . 85

9.1 Graph (C ⊕D)⊗ S . 101
9.2 A Simple Example . 102
9.3 Possible Train Movements . 105
9.4 A More Elaborate Example . 107
9.5 Resulting NDLS Graph . 109

A.1 Interleavings for Fixed Number of Statements per Thread 128
A.2 Interleavings for a Variable Number of Threads and Statements per Thread 128

List of Tables

6.1 Empirical Data . 59

8.1 WCET for ` = 2 and Multiple Values of τc . 94

9.1 Differences between the Deadlock Problem in Computer and Railway Systems 99
9.2 Routes of Trains L1, L2, and L3 . 103
9.3 Four Possible Outcomes of an Analyzing Algorithm 104

A.1 Computation Results of Program P . 126

xix

CHAPTER 1
Introduction

“The hardest thing is to go to sleep at night, when there are so many urgent things
needing to be done. A huge gap exists between what we know is possible with today’s

machines and what we have so far been able to finish.”

– DONALD ERVIN KNUTH, U.S. American computer scientist
and ACM Turing Award winner 1974, 1938-

This dissertation is about analysis of concurrent programs including worst-case execution
time analysis and deadlock detection. In order to generate graphs representing concurrent
programs, we adopt the so-called Kronecker algebra which we explore and extend in the
course of this thesis. In addition, we apply Kronecker algebra to support deadlock free
train disposition in railway systems.

Organization of this chapter is as follows. We begin by motivating the topic in Section 1.1.
In Section 1.2 we give a brief overview and highlight the major contributions of this
doctoral thesis. Finally, we present the overall organization of this dissertation in
Section 1.3.

1.1 Motivation

For safety-critical systems, dependable systems and robust embedded systems, software
has to be provably correct. In particular, this is a very important issue, e.g., in the
fields of medical systems, aviation, rail, and automotive industries. In general, deadlock
freedom is a desired property. In addition, for real-time systems also the maximum
computation time is an important issue, i.e., to have a computation result within a
certain time. It is widely agreed that the problem of determining upper bounds on
execution times for sequential programs has been more or less solved [WEE+08]. With
the advent of multi-core processors scientific and industrial interest focuses on analyzing
and verifying multi-threaded applications. Analysis of multi-threaded software is still a
challenge. Beside other reasons, this comes from the fact that synchronization has to

1

1. Introduction

be taken into account. For sequential programs, control flow graphs are often used as
a basis for static program analysis. An equivalent model for multi-threaded programs
taking synchronization between threads into account has been missing.

1.2 Thesis Overview and Contributions

The idea that thread interleavings of concurrent programs can be studied with a matrix
calculus is novel in this research area. We are immediately able to support conditionals,
loops, and synchronization. Our sparse matrix representations of the program are
manipulated using a lazy implementation of Kronecker algebra. We use synchronization
primitives (e.g semaphores and barriers) for thread synchronization. One goal is generating
a data structure called concurrent program graph (CPG) which describes all possible
interleavings and incorporates synchronization while preserving completeness. CPGs play
a similar role for concurrent systems as control flow graphs (CFGs) do for sequential
programs.

We prove that CPGs in general can be represented by sparse adjacency matrices. Thus
the number of entries in the matrices is linear in their number of lines. Hence efficient
algorithms can be applied to CPGs.

In the worst-case, the number of lines increases exponentially in the number of threads.
In general, however, a CPG contains many nodes and edges unreachable from the entry
node. We propose two major optimizations. First, if the program contains a lot of
synchronization, only a very small part of the CPG is reachable. Thanks to a lazy
implementation of the matrix operations, only the reachable part is computed. As a
second optimization we have parallelized the CPG generation in order to exploit modern
many-core hardware architectures. Both optimizations speed up processing significantly
and show that our approach is very promising.

In the first place, we use CPGs as a vehicle for detecting deadlocks of multi-threaded
programs. Deadlocks show up as a natural property of a concurrent program’s adjacency
matrix, namely as zero lines.

CPGs can also be used to analyze multi-threaded programs using barriers as a synchro-
nization aid. We propose a novel barrier synchronization construct and compare it to a
semaphore-based barrier implementation. As a byproduct, we show how our CPG-based
approach can be used as a basis for proving semaphore-based barrier implementations
and their usage scenarios correct.

In this dissertation, CPGs are used to show how to calculate the WCET of the underlying
concurrent system. We adopt the generating functions-based approach presented in [Bli02,
Section 4]. Since concurrent programs may contain blocking because of synchronization
between threads, the terms execution time and worst-case execution time (WCET) do
not apply directly to concurrent systems. However, we stick to the term WCET for
concurrent systems. The reader, however, has to be aware of the fact that, in general,
the WCET includes stalling time.

CPGs together with several techniques form a framework for analyses of various properties
of multi-threaded shared memory programs. We will see that additional techniques

2

1.2. Thesis Overview and Contributions

including data flow analysis, symbolic evaluation, and (automata based) model checking
can be applied to CPGs.

We also adapt our Kronecker algebra based deadlock detecting approach to railway
systems. For multiple trains and a given track topology, all possible train movements can
be calculated. States which will probably, certainly and certainly not lead to a deadlock
of the involved trains are distinguished. The approach may take into account additional
constraints, e.g., overtaking and train connections.

The main contributions of this dissertation are:

1. A framework for analyzing concurrent systems. By using a matrix calculus which
is often referred to as Kronecker algebra, we are able to model concurrent systems
as matrices. We model thread interleavings and synchronization via semaphores
by using Kronecker sum, Kronecker product, and a slightly modified Kronecker
product operator which we call selective Kronecker product.

2. An approach for calculating the entries of the matrices lazily. In order to exploit
multi-core architectures, we implemented a parallel version and thereby gained a
very good speedup.

3. An approach for detecting deadlocks in concurrent systems.

4. We show how to model Ada’s barriers such that Kronecker algebra can be employed
for static analysis. This is done by introducing a novel synchronization primitive
modeling the semantics of barriers. We compare our barrier synchronization
primitive with a barrier implementation based on semaphores. As a byproduct, we
show how our CPG-based approach can be used as a basis for proving semaphore-
based implementations correct.

5. We propose a worst-case execution time analysis approach for concurrent programs
and focus on automatically calculating and incorporating stalling times (e.g. caused
by lock contention). We employ a generating functions-based approach for setting
up data flow equations which are solved by well-known elimination based data flow
analysis methods or an off-the-shelf equation solver. The WCET of multi-threaded
programs can finally be calculated with a non-linear function solver. This novel
approach is suitable for both, namely parallel and concurrent systems.

6. A deadlock avoidance approach for railway systems. For multiple trains and a
given track topology, we are able to calculate all possible train movements. Some
lead and some do not lead to deadlocks. From some points on no deadlocks are
reachable and the trains can proceed with their movements in any order. From
certain other points a deadlock is inevitable. Our approach, which may take into
account additional constraints such as overtaking and train connections, can be
used to avoid such situations and to suggest only deadlock-free train movements.

3

1. Introduction

7. Proofs concerning properties of matrices representing concurrent programs and
their operations. We proof a new property of the Kronecker sum of matrices which
we call Mixed Sum Rule. In addition, we proof the sparsity of matrices representing
concurrent systems, i.e., the number of entries in such a matrix is linear in its order.

Because we already have published parts of this thesis there already exist publications and
projects building upon the matrix calculus established during the work for this dissertation.
Our Kronecker algebra based approach is already used in the following papers. In [BB14]
Kronecker algebra is applied in order to statically analyze Ada multi-tasking programs
that employ protected objects for synchronization issues.

Our Kronecker algebra model is also used in the railway domain. The adaptations re-
quired for the railway domain were done during the work done for this doctoral thesis and
appeared in [MBS12]. It was extended in several publications. For example, a Kronecker
algebra based method for determining the travel time of trains in railway systems is
presented in [VBS12]. Travel time analysis in railway systems may be compared to
WCET analysis in computer systems. The approach of [MBS12] was also adopted in the
EcoRailNet project. It was a joint project of ÖBB-Infrastruktur AG, ÖBB-Produktion
GmbH, Thales Austria GmbH, and Vienna University of Technology (Institute of Com-
puter Aided Automation) funded by the Austrian Ministry for Transport, Innovation
and Technology (New Energy 2020, Project ID: 834586). The aim of the project was to
save energy by minimizing stop and go of trains. Instead of only taking into account one
single train, a railway system consisting of multiple trains turned out to be a solvable
global optimization problem which can be solved fast and automatically [Vol14].

1.3 Outline

The outline of this doctoral thesis is as follows. In Chapter 2 some preliminaries such as our
semiring, control flow graphs, edge splitting, and basic matrix notation and operations are
introduced. The used matrix calculus, often referred to as Kronecker algebra, and some of
its properties are introduced in Chapter 3. Our model of concurrency, its properties, and
optimizations like our lazy approach are presented in Chapter 4. Chapter 5 demonstrates
how we are able to detect deadlocks. In Chapter 6 we give examples and present
empirical data. We introduce a novel barrier synchronization primitive and compare
it to semaphore-based barrier implementations in Chapter 7. Chapter 8 is devoted to
worst-case execution time analysis of concurrent programs and we present a detailed
example. In Chapter 9 we show how our Kronecker algebra approach can be applied to
railway systems in order to avoid deadlocks in train disposition systems. In Chapter 10
we survey related work. We draw our conclusion and outline possible future work in
Chapter 11. Finally, we give an introduction to the state explosion problem and show
how the number of interleavings can be calculated for an arbitrary number of threads
and their corresponding statements in Appendix A.

4

1.3. Outline

“We can only see a short distance ahead,
but we can see plenty there that needs to be done.”

– ALAN TURING, English computer scientist, mathematician, logician, cryptanalyst
and theoretical biologist, 1912-1954

5

CHAPTER 2
Preliminaries

“Je mehr ich über die Sprache nachdenke,
desto sonderbarer kommt es mir vor,

dass sich die Leute jemals verstehen.”

– KURT FRIEDRICH GÖDEL, Austrian, and later American, logician,
mathematician, and philosopher, 1906-1978

In this chapter, we introduce preliminaries and basic notation required throughout this
dissertation. We start with introducing our semiring and continue with Control Flow
Graphs (CFGs). In addition, we show how we represent synchronization primitives, e.g.,
semaphores. Then we show how to split edges in order to get Refined Control Flow
Graphs (RCFGs) from each thread’s CFG. Edge splitting is done for synchronization
primitive calls. For value-sensitive analysis, we propose an edge splitting for shared
variables, too. This procedure ensures the granularity needed for manipulation with
the matrix calculus as introduced below in Chapter 3. Because our models representing
multi-threaded programs is generated out of matrices, we state basic matrix notations,
terminology, operations, and discuss how matrices correspond to directed graphs. Finally,
we mention some limitations which we admit throughout this dissertation.

2.1 Overview

We model shared memory concurrent systems by threads which use synchronization
primitives, e.g., semaphores and barriers, for synchronization. Threads and synchroniza-
tion primitives are represented by CFGs [Hec77, ASU86, AP02]. Edge splitting which is
described in Subsection 2.5 has to be applied to the edges containing synchronization
primitive calls. The resulting Refined CFGs (RCFGs) are represented by adjacency
matrices. These matrices are then manipulated by Kronecker algebra. We assume that
the edges of RCFGs are labeled by elements of a semiring defined in the following section.

7

2. Preliminaries

2.2 Semiring

In this section, we define our semiring. Similar definitions and further properties of
semirings can be found in [KS86].

Our semiring 〈L,+, ·, 0, 1〉 consists of a set of labels L, two binary operations + and ·,
and two constants 0 and 1 such that

1. 〈L,+, 0〉 is a commutative monoid,

2. 〈L, ·, 1〉 is a monoid,

3. left and right distributivity of · over +:

• ∀l1, l2, l3 ∈ L : l1 · (l2 + l3) = l1 · l2 + l1 · l3 and

• (l1 + l2) · l3 = l1 · l3 + l2 · l3 hold and

4. constant 0 is an absorbing element concerning the semiring operation ’·’:
∀l ∈ L : 0 · l = l · 0 = 0.

Intuitively, our semiring is a unital ring without subtraction. For each l ∈ L the usual
rules are valid, e.g., l+ 0 = 0 + l = l and 1 · l = l · 1 = l. In general ∀a, b ∈ L : a · b 6= b · a.
In case of juxtaposition and if it is clear in the context, we often write a b instead of a · b.
In addition, we equip our semiring with the unary star operation ∗. For each l ∈ L, l∗ is
defined by

l∗ =
∑

j≥0
lj , where l0 = 1 and lj+1 = lj · l = l · lj for j ≥ 0.

The set of labels L is defined by L = LV ∪LS, where LV is the set of non-synchronization
labels and LS is the set of labels representing synchronization primitive calls, e.g., pi and
vi referring to the operation p and v of semaphore i. The sets LV and LS are disjoint.

A prominent example for semirings are regular expressions (cf. [Tar81]) which can be
used for describing the behavior of finite state automata. A second example for semirings
is performing data flow analysis (e.g. [BB98, BB03, BBS99, BBM06, SBF00]).

If it is not clear in the context to which thread a label l belongs, we write lX to denote
that l belongs to thread X.

2.3 Control Flow Graphs

We represent threads and synchronization primitives in form of control flow graphs. A
Control Flow Graph (CFG) is a directed labeled graph defined by G = 〈V,E, ne, Vf 〉 with
a set of nodes V , a set of directed edges E ⊆ V × V , a so-called entry node ne ∈ V ,
and a set of final nodes Vf ⊆ V . An entry node has an incoming edge which has no
source node. A final node is depicted with a double circle. We require that each n ∈ V is
reachable through a sequence of edges from ne.

8

2.4. Semaphores

Factorial ()
1 fact← 1
2 n← input(“Enter a number:”)
3 while n ≥ 1 do
4 fact← fact ∗ n
5 n← n− 1
6 endwhile
7 print(fact)

Figure 2.1: Pseudocode Factorial

Nodes can have at most two outgoing edges. Thus the maximum number of edges in
CFGs is 2 |V |. We will use this property later.

Usually CFG nodes represent basic blocks (cf. [ASU86]). Because our matrix calculus
manipulates the edges, we need to have basic blocks on the edges.1 As usual the edges
represent the transfer of control between the basic blocks. Each edge e ∈ E is assigned a
basic block b. In this dissertation, we refer to basic blocks by edge labels as defined in
the previous section. Labels out of the set LS refer to synchronization primitive calls.
The remaining labels refer to the elements of LV which model basic blocks consisting of
ordinary program statements, i.e., non-synchronization statements. The operations on
the basic blocks are ·,+, and ∗ from the semiring defined above (cf. [Tar81]). Intuitively,
the semiring operations ·,+, and ∗ model consecutive program parts, conditionals, and
loops, respectively.

As an example for a control flow graph consider the pseudocode implementation of
factorial depicted in Figure 2.1. Line 1 and 2 form CFG node a. Node b refers to the
while condition of line 3. The lines 4 and 5 build CFG node c. Finally, CFG node d is
constructed out of line 7. The corresponding CFG having the basic blocks on the nodes
is presented in Figure 2.2a. Node a and d are the entry and final node, respectively, of
the original CFG. In contrast to that, Figure 2.2b depicts the same example with the
basic blocks at the edges. Node 1 is the entry node whereas node 4 is the final node of
the transformed CFG.

2.4 Semaphores

In order to model synchronization, we use synchronization primitives, e.g., semaphores
which are presented in this section. During the course of this dissertation, we introduce
additional synchronization primitives, namely barriers, in Chapter 7.

Semaphores [Dij65, Dijndb, Sta11] are a well-known vehicle for process synchronization,
are available in all operating systems, and can be implemented efficiently. Semaphores
typically implement two operations, namely p and v. Usually the operation p is used to
acquire a resource, whereas v releases the resource. If the semaphore is already acquired
by a thread, then the calling thread is being suspended and the thread is being added to
the semaphore’s first-in, first-out (FIFO) queue. After a thread releases the resource, the
first thread from the queue is removed and resumes its execution. It has to be ensured

1We chose the incoming edges.

9

2. Preliminaries

a

b

cd

(a) Basic Blocks at the Nodes

1

2

3

4

a

b

d

c

(b) Basic Blocks at the Edges

Figure 2.2: CFG of Factorial

1

2

p v

(a) Binary Semaphore

1

2

3

p v

p v

(b) Counting Semaphore

Figure 2.3: Semaphores

that both operations, namely p and v, are executed atomically. Note that semaphores
are similar to mutexes. In contrast to semaphores, mutexes have an owner. This means
that a locked mutex can only be unlocked by the process that locked the mutex. In this
dissertation, we sometimes use this kind of freedom which semaphores give.

Similar to threads, synchronization primitives like semaphores can be represented in form
of CFGs. For semaphore i the corresponding edges typically have labels such as pi ∈ LS
and vi ∈ LS. Usually two or more distinct thread CFGs refer to the same semaphore to
model synchronization.

In Figure 2.3a and 2.3b a binary and a counting semaphore are depicted. The latter

10

2.5. Edge Splitting

1

2

p v

v

(a) Initially Unlocked Binary

1

2

v p

v

(b) Initially Locked Binary

1

2

3

p v

p v

v

(c) Counting

Figure 2.4: Semaphores with Non-blocking v-operations

allows two threads to enter at the same time. In a similar way it is possible to construct
semaphores allowing n non-blocking p-calls (n ∈ N, n ≥ 1). Node 1 in Figure 2.3a
and 2.3b is both, entry and final node.

So, for example, a thread cannot do semaphore calls in the order v followed by p when
the semaphore DFA only allows a p-call before a v-call (this is the case when using the
semaphore without the self-loop at node 1 as depicted in Figure 2.3a). The graph of
such an erroneous program will contain a node from which the final node of that graph
cannot be reached. This node is the one preceding the v-call. Such nodes can easily be
found by traversing the program’s graph we introduce in the course of this dissertation.
Thus deadlocks of concurrent systems can be detected with little effort.

In Figure 2.4 an initially unlocked (a) and locked (b), respectively, binary and a counting
semaphore (c) are depicted. The latter (like the counting semaphore in Figure 2.3b)
allows two threads to enter at the same time. In contrast to the semaphores depicted
in Figure 2.3, the semaphores in Figure 2.4 support multiple subsequent non-blocking
v-calls. Similar to the initially locked semaphore shown in Figure 2.4b, we can construct
an initially locked semaphore with potentially blocking v-operations, i.e., Figure 2.3a
with entry node 2.

2.5 Edge Splitting

As already mentioned above, we have the basic blocks on the incoming edges. A basic
block consists of multiple consecutive statements without jumps. For our purpose we
need a finer granularity which we achieve by splitting edges. We apply it to basic blocks
containing synchronization calls and shared variables. For both, edge splitting results in
a Refined Control Flow Graph (RCFG).

Edge splitting for calls to synchronization primitives, e.g., semaphore calls p1 and v1, is
as follows. We require that a call – referred to as si – has to be the only statement on
the corresponding edge. In Figure 2.5, edge splitting is shown for the edge e depicted in
Figure 2.5a. The edge’s basic block is assumed to contain k synchronization primitive

11

2. Preliminaries

calls. The resulting edges are presented in Figure 2.5b. The edge e is replaced by the
edges e1 . . . ek+1 and the nodes n1 . . . n2k are introduced. Roughly speaking, edge splitting
maps a CFG edge e whose corresponding basic block contains k synchronization primitive

calls to a subgraph ◦ e1→ ◦ s1→ ◦ e2→ ◦ s2→ ◦ · · · ◦ ek→ ◦ sk→ ◦ ek+1→ ◦, such that each si represents
a single synchronization primitive call, and ei and ei+1 represent the consecutive parts
before and after si, respectively (1 ≤ i ≤ k). Note that each synchronization primitive’s
CFG contains only edges labeled by l ∈ LS. Thus each synchronization primitive’s CFG
is a RCFG without any further modification.

For shared variables, edge splitting can be done in a similar fashion. In contrast to calls
to synchronization primitives, we do not require that shared variable accesses are the
only statements on the corresponding edge. The remaining consecutive parts of the basic
block are situated on the previous and succeeding edges, respectively. Note that edges
representing a call to a synchronization primitive are not considered to access shared
variables.

Let V be the set of shared variables.2 In addition, let each shared variable v ∈ V be a
volatile variable located in the shared memory which is accessed by two or more threads.
Splitting an edge depends on the number of statements accessing shared variables in the
corresponding edge (i.e. basic block). For edge e labeled by basic block b this number
is being referred to as NSV(b). If NSV(b) > 1, then edge splitting has to be applied to
edge e; the edge is used unchanged otherwise.

If edge splitting has to be applied to edge e which has basic block b assigned and
NSV(b) = k then the basic blocks b1, . . . , bk represent the subsequent parts of b in such
a way that ∀bi : NSV(bi) = 1, where 1 ≤ i ≤ k. Edges ej get assigned basic block bj ,
where 1 ≤ j ≤ k. In Figure 2.6 splitting of an edge with basic block b and NSV(b) = k is
depicted.

Edge splitting for shared variables is relevant for a value-sensitive analysis (such as
symbolic analysis) when taking shared variables into account. This approach ensures a
representation in a manner exact enough in order to allow modeling all possible context
switches, i.e., interleavings. We say “exact enough” because by using basic blocks together
with edge splitting, we already have coarsened the granularity compared to the statement-
level. This helps to keep the generated graph model (which we define in Chapter 4) small.
With a granularity on statement-level the graph model would be unnecessarily big. In
addition, we do not lose any information nor accuracy for our analysis purposes.

From the used matrix calculus point of view, edge splitting ensures that it is possible to
generate all necessary interleavings. Nevertheless, generating unnecessary interleavings
should be prevented. When e.g. static scheduling is used, the dispatching points are
usually known. If between two different shared variable accesses no dispatching is
possible, then we relax the rule (i.e. ∀bi : NSV(bi) = 1) above. This may lead to an
coarser granularity on the RCFG-level.

2As an approach for finding the set of shared variables in Ada programs we suggest [BBM06].

12

2.5. Edge Splitting

na

nb

e

(a) Edge Before Edge Splitting

na

n1

n2

n3

n4

n2k−2

n2k−1

n2k

nb

e1

s1

e2

s2

ek

sk

ek+1

(b) Edge After Edge Splitting

Figure 2.5: Edge Splitting for k Synchronization Primitive Calls

13

2. Preliminaries

Figure 2.6: Edge Splitting for k Shared Variable Accesses

Without loss of generality, we assume that the statements in each basic block are atomic.
Thus, while executing a statement, context switching is impossible. In RCFGs the finest
possible granularity is at statement-level. If, according to the hardware architecture or
program’s semantic, atomic statements may access two or more shared variables, then we
make an exception to the above rule, too, and allow two or more shared variable accesses
on a single edge. Such edges have at most one of these atomic statements in their basic
block and no additional statements accessing shared variables.

The effects of edge splitting for both, namely synchronization primitive calls and shared
variable accesses, can be seen in the data race example given in Section 6.4. Each RCFG
depicted in Figure 6.7 is constructed out of one basic block (cf. Figure 6.6).

2.6 Basic Matrix Notations and Operations

In this section, we introduce basic matrix terminology, notations, and operations used in
the remainder of this thesis.

A p-by-q matrix

M = (mi,j)

=



1 2 . . . q

1 m1,1 m1,2 . . . m1,q

2 m2,1 m2,2
. . .

...

...
...

. . .
. . .

...

p mp,1 mp,2 . . . mp,q


has p rows and q columns. Thus it consists of p times q entries mi,j . Note that mi,j ’s i
and j denote its row and column, respectively, within matrix M .

We define the set of matrices M = {M = (mi,j) |mi,j ∈ L}. In the remaining parts of
this dissertation only matrices M ∈ M will be used. In addition let o(M) refer to the

14

2.7. Correspondence between Matrices and Directed Graphs

order3 of square matrix M ∈ M. Furthermore, we will use zero matrices Zn = (zi,j),
where ∀i, j : zi,j = 0 and o(Zn) = n.

The identity matrix In of order n has ones at the main diagonal and zeros elsewhere.
Thus

In = (mi,j), where mi,j =
{

1 i = j,

0 otherwise.

By the definition above we already have I1 = (1). We additionally define I0 = (1).

Let M , N , and R be p-by-q matrices. In addition, let a be a label out of L. In the
following, the used indices range between 1 ≤ i ≤ p and 1 ≤ j ≤ q. We get a ·M and
M +N as follows:

a ·M = a · (mi,j) = (ri,j) = R, where ri,j = a ·mi,j and

M +N = (mi,j) + (ni,j) = (ri,j) = R, where ri,j = mi,j + ni,j .

Sometimes, we also use the transpose MT of a p-by-q matrix M . The result is a q-by-p
matrix which is defined by

MT = (mi,j)T = (mj,i).

Intuitively, columns are turned into rows and vice versa.

Definition 1 (Number of Nonzero Entries in a Matrix) Let M = (mi,j) ∈ M.
We denote the number of entries unequal to zero by ||M || = |{mi,j |mi,j 6= 0}|.

Definition 2 (Sparse Matrix) We call an n-by-n matrix M sparse if and only if
||M || ≤ c ∗ n, where c is a constant independent from n.

2.7 Correspondence between Matrices and Directed Graphs

There is a correspondence between matrices and graphs. In general, a directed labeled
graph G〈V,E, ne〉 consists of a set of labeled nodes V , a set of labeled directed edges
E = V × V , and an entry node ne. Correspondence between directed graphs and
matrices – in this context the latter are referred to as adjacency matrices – is as follows.
In this dissertation, we label graph nodes simply by positive integers which reflect the row
and column in the adjacency matrix. If there exists an entry mi,j = a in an adjacency
matrix, then a directed edge from node i to node j labeled by a exists in the corresponding
directed graph. If mi,j = 0, then there is no edge from node i to node j.

Because we usually work with sparse matrices, we suggest adjacency lists as an imple-
mentation for the matrices. In adjacency lists zeros are not stored explicitly. Only entries
unequal to zero are stored in the lists. Compared to the approach, where all the o(M)2

matrix entries are stored explicitly, this helps to safe memory.

3A k-by-k matrix is known as square matrix of order k.

15

2. Preliminaries

To keep things simple, we refer to edges, their labels, the corresponding basic blocks
and the corresponding entries of the adjacency matrices synonymously. Analogously, we
refer to a node, its node number, and its row and column in the corresponding matrix
synonymously.

In the remainder of this dissertation, we often use the node numbers as generated by
Kronecker sum, Kronecker product, or, concerning CPGs, we use the node numbers
generated by our implementation.

2.8 Limitations

Theoretical results such as [Ram00] state that synchronization-sensitive and context-
sensitive analysis is impossible even for the simplest analysis problems. Our system model
differs in that it supports subprograms only via inlining and recursions are not allowed.

“Die Grenzen meiner Sprache bedeuten die Grenzen meiner Welt.”

– LUDWIG WITTGENSTEIN, Austrian-British philosopher, 1889-1951
Proposition 5.6, Tractatus Logico-Philosophicus, 1922

16

CHAPTER 3
Kronecker Algebra – A Matrix

Calculus

“I hear and I forget.
I see and I remember.

I do and I understand.”

– CONFUCIUS, Chinese teacher, politician, and philosopher, 551-479 BC

Kronecker product and Kronecker sum form the so-called Kronecker algebra. In this
chapter, we define both operations, state properties, and give examples on matrix and
graph/automata level. For the Kronecker sum we prove associativity and a new property
which we call Mixed Sum Rule.

3.1 Kronecker Product / Zehfuss Product

“No scientific discovery is named after its original discoverer.”

– Stigler’s law of eponymy, 1980

Kronecker product allows to model synchronization [BK02, Pla85]. In this section, we
state a definition, give examples, and present properties used in this thesis.

Definition 3 (Kronecker Product) Given an m-by-n matrix A and a p-by-q matrix
B, their Kronecker product A⊗B is an mp-by-nq block matrix defined by

A⊗B =

a1,1 ·B · · · a1,n ·B
...

. . .
...

am,1 ·B · · · am,n ·B

 .
17

3. Kronecker Algebra – A Matrix Calculus

As stated in [Mil11] the Kronecker product is also being referred to as Zehfuss product
or direct product of matrices. Knuth notes in [Knu11] that Kronecker never published
anything about it. Zehfuss was actually the first publishing it in the 19th century [Zeh58].1

Following Stigler’s law of eponymy, Kronecker product is usually not called Zehfuss
product.

In terms of formal automata, the Kronecker product calculates the simultaneous executions
of the input matrices. Thus, the operation ⊗ can be used to synchronize automata. In
the following, we give an example.

3.1.1 Examples

Example 1
For this example, we use the following matrices A and B of order 2 and 3, respectively:

A =
(
a1,1 a1,2
a2,1 a2,2

)
and B =

b1,1 b1,2 b1,3
b2,1 b2,2 b2,3
b3,1 b3,2 b3,3

 .
The Kronecker product A⊗B is a matrix of order 6 given by

A⊗B =



a1,1b1,1 a1,1b1,2 a1,1b1,3 a1,2b1,1 a1,2b1,2 a1,2b1,3
a1,1b2,1 a1,1b2,2 a1,1b2,3 a1,2b2,1 a1,2b2,2 a1,2b2,3
a1,1b3,1 a1,1b3,2 a1,1b3,3 a1,2b3,1 a1,2b3,2 a1,2b3,3
a2,1b1,1 a2,1b1,2 a2,1b1,3 a2,2b1,1 a2,2b1,2 a2,2b1,3
a2,1b2,1 a2,1b2,2 a2,1b2,3 a2,2b2,1 a2,2b2,2 a2,2b2,3
a2,1b3,1 a2,1b3,2 a2,1b3,3 a2,2b3,1 a2,2b3,2 a2,2b3,3


.

Example 2
In this example, we show how we calculate all possible simultaneous executions of the two
automata represented by the matrices

C =
(
a b
0 0

)
and D =

(
0 a
0 b

)
.

The corresponding automata are depicted in Figure 3.1a and 3.1b, respectively. The
Kronecker product C ⊗D is given by

C ⊗D =


0 aa 0 ba
0 ab 0 bb
0 0 0 0
0 0 0 0

 .
1Zehfuss proved that det(A ⊗ B) = detn(A) detm(B), if A and B are matrices of order m and n,

respectively, and entries from the domain of real numbers.

18

3.1. Kronecker Product / Zehfuss Product

In Figure 3.1c the result on automata level is depicted. For each edge in the resulting
automaton, actually two edges, i.e. one edge of each of the two input automata, are
executed. The first label represents an edge of the first input automata, whereas the second
label refers to an edge of the second input automaton. How we determine entry and final
nodes is described in Chapter 4. We use this notion here in order to have a complete
presentation from an automata point of view.

1

2

b

a

(a) Graph for C

1

2

a

b

(b) Graph for D

1

2

4

aa

ba ab

bb

(c) Graph for C ⊗D

Figure 3.1: Simultaneous Executions via Kronecker Product C ⊗D

Example 3
For this example, we use the matrices

E =


0 a 0 d
0 0 b 0
0 0 0 c
0 0 0 0

 and F =


0 e 0 0
0 0 f 0
0 0 0 g
0 0 0 0

 .

The corresponding graphs are depicted in Figure 3.2a and 3.2b, respectively. For a concise
presentation of the 16-by-16 matrix of the Kronecker product E ⊗ F we introduce the
helper matrices H1, H2, H3, and H4 as follows:

H1 =


0 a e 0 0
0 0 a f 0
0 0 0 a g
0 0 0 0

 , H2 =


0 d e 0 0
0 0 d f 0
0 0 0 d g
0 0 0 0

 ,

H3 =


0 b e 0 0
0 0 b f 0
0 0 0 b g
0 0 0 0

 , and H4 =


0 c e 0 0
0 0 c f 0
0 0 0 c g
0 0 0 0

 .

19

3. Kronecker Algebra – A Matrix Calculus

Then we get the resulting matrix

E ⊗ F =


Z4 H1 Z4 H2
Z4 Z4 H3 Z4
Z4 Z4 Z4 H4
Z4 Z4 Z4 Z4

 .
The corresponding graph is depicted in Figure 3.2c. Starting from the entry node 1 not
all nodes are reachable. In the reachable part only the path 1→ 6→ 11→ 16 leads to the
final node 16. Choosing the edge 1→ 14 a further simultaneous execution is impossible.

3.1.2 Properties

In the following, we list some basic properties of the Kronecker product. Let A, B, C,
and D be matrices. Kronecker product is non-commutative because in general

A⊗B 6= B ⊗A.

It is permutation equivalent because there exist permutation matrices P and Q such that
A⊗B = P (B ⊗A)Q (cf. [Gra81, Wei62]). If A and B are square matrices, then A⊗B
and B⊗A are even permutation similar, i.e., P = QT . It is associative [Gra81, Pla85] as

A⊗ (B ⊗ C) = (A⊗B)⊗ C. (3.1)

In addition, Kronecker product distributes over + [Gra81], i.e.,

A⊗ (B + C) = A⊗B +A⊗ C, (3.2)

(A+B)⊗ C = A⊗ C +B ⊗ C. (3.3)

Hence for example (A+B)⊗ (C +D) = A⊗ C +B ⊗ C +A⊗D +B ⊗D.

Properties concerning connectedness of the corresponding undirected and directed graphs
can be found in [Wei62] and [McA63, HT66], respectively. A recent publication about
connectedness of the resulting graphs is [HIK11]. Additional properties and proofs can
be found in [Bel97, Gra81, Dav81, Hur94].

3.2 Kronecker Sum

In this section we define the Kronecker sum of matrices, give examples, and state some
important properties. We also relate the operation to Cartesian product graphs.

Definition 4 (Kronecker Sum) Given a matrix A of order m and a matrix B of order
n, their Kronecker sum A⊕B is a matrix of order mn defined by

A⊕B = A⊗ In + Im ⊗B,

where Im and In denote identity matrices2 of order m and n, respectively.

This operation must not be confused with the direct sum of matrices, group direct product
or direct product of modules for which the symbol ⊕ is used too.

2Identity matrix In is an n-by-n matrix with ones on the main diagonal and zeros elsewhere.

20

3.2. Kronecker Sum

1

2

3

4

a

b

c

d

(a) Graph for E

1

2

3

4

e

f

g

(b) Graph for F

1

146

11

16

ae de

bf

cg

9

3

8 12

7

2

15

10

5

ce

af df

bg

be

cf

dg ag

(c) Graph represented by E ⊗ F

Figure 3.2: Simultaneous Executions via Kronecker product E ⊗ F

3.2.1 Examples

In this section we present two Kronecker sum examples.

21

3. Kronecker Algebra – A Matrix Calculus

Example 4
In this example, we again use the matrices A and B from Example 1. The Kronecker
sum A⊕B is given by

A⊗ I3 + I2 ⊗B =(
a1,1 a1,2
a2,1 a2,2

)
⊗

 1 0 0
0 1 0
0 0 1

+
(

1 0
0 1

)
⊗

 b1,1 b1,2 b1,3
b2,1 b2,2 b2,3
b3,1 b3,2 b3,3

 =



a1,1 0 0 a1,2 0 0
0 a1,1 0 0 a1,2 0
0 0 a1,1 0 0 a1,2
a2,1 0 0 a2,2 0 0
0 a2,1 0 0 a2,2 0
0 0 a2,1 0 0 a2,2


+



b1,1 b1,2 b1,3 0 0 0
b2,1 b2,2 b2,3 0 0 0
b3,1 b3,2 b3,3 0 0 0
0 0 0 b1,1 b1,2 b1,3
0 0 0 b2,1 b2,2 b2,3
0 0 0 b3,1 b3,2 b3,3


=



a1,1 + b1,1 b1,2 b1,3 a1,2 0 0
b2,1 a1,1 + b2,2 b2,3 0 a1,2 0
b3,1 b3,2 a1,1 + b3,3 0 0 a1,2
a2,1 0 0 a2,2 + b1,1 b1,2 b1,3
0 a2,1 0 b2,1 a2,2 + b2,2 b2,3
0 0 a2,1 b3,1 b3,2 a2,2 + b3,3


.

Example 5
In this example, we use the matrices

C =

0 a 0
b 0 c
0 0 0

 and D =
(

0 d
0 0

)
.

The corresponding graphs are depicted in Figure 3.3a and 3.3b. The matrix C ⊕D can be
calculated as follows.

C ⊕D = C ⊗ I2 + I3 ⊗D =0 a 0
b 0 c
0 0 0

⊗ (1 0
0 1

)
+

1 0 0
0 1 0
0 0 1

⊗ (0 d
0 0

)
=



0 0 a 0 0 0
0 0 0 a 0 0
b 0 0 0 c 0
0 b 0 0 0 c
0 0 0 0 0 0
0 0 0 0 0 0


+



0 d 0 0 0 0
0 0 0 0 0 0
0 0 0 d 0 0
0 0 0 0 0 0
0 0 0 0 0 d
0 0 0 0 0 0


=



1 2 3 4 5 6
1 0 d a 0 0 0
2 0 0 0 a 0 0
3 b 0 0 d c 0
4 0 b 0 0 0 c
5 0 0 0 0 0 d
6 0 0 0 0 0 0


.

22

3.2. Kronecker Sum

1

2

3

a b

c

(a) C

1

2

d

(b) D

1

23

45

6

d
a

a
d

c

d
c

b

b

(c) C ⊕D

Figure 3.3: The Graphs of C, D, and C ⊕D

The corresponding graph is depicted in Figure 3.3c.

3.2.2 Properties

In the following, we list and proof some properties of the Kronecker sum of matrices A,
B, and C. The Kronecker sum is non-commutative because for element-wise comparison
in general A⊕B 6= B ⊕A. However, it essentially commutes because from a graph point
of view, the graphs represented by matrices A⊕B and B⊕A are structurally isomorphic,
i.e., starting from the entry node to the final node the same paths in terms of edge labels
are possible. Only the node numbers may be different in A ⊕ B compared to B ⊕ A.
Both matrices, namely A⊕B and B ⊕A, consist of the same number of entries unequal
to 0 and have the same order.

Now we state a property of the Kronecker sum which we call Mixed Sum Rule.

Lemma 1 Let the matrices A and C have order m and B and D have order n. Then
we call

(A⊕B) + (C ⊕D) = (A+ C)⊕ (B +D)
the Mixed Sum Rule.

Proof 1 By using Equations (3.2) and (3.3) and Definition 4 we get

(A⊕B) + (C ⊕D) = A⊗ In + Im ⊗B + C ⊗ In + Im ⊗D
= (A+ C)⊗ In + Im ⊗ (B +D)
= (A+ C)⊕ (B +D).

For example let the matrices A and B be written as A =
∑
i∈IAi and B =

∑
j∈JBj ,

respectively. In addition, let the sets I and J have the same number of elements, i.e.,
|I| = |J |. By using the mixed sum rule we can write A⊕B =

∑
i∈I,j∈JAi ⊕Bj .

23

3. Kronecker Algebra – A Matrix Calculus

We will frequently use the Mixed Sum Rule from now on without further notice.

Kronecker sum is also associative, as (A⊕B)⊕ C and A⊕ (B ⊕ C) are equal.

Lemma 2 Kronecker sum is associative.

Proof 2 In the following, we will use Im⊗ In = Im.n. Note that Z denotes zero matrices.
We have

A⊕ (B ⊕ C) =A⊕ (B ⊗ Io(C) + Io(B) ⊗ C)
{adding Zo(A)}= (A+ Zo(A))⊕ (B ⊗ Io(C) + Io(B) ⊗ C)
{Lemma 1}= (A⊕ (B ⊗ Io(C))) + (Zo(A) ⊕ (Io(B) ⊗ C))

{Equation (3.1), Definition 4}= (A⊕ (B ⊗ Io(C))) + Io(A) ⊗ Io(B) ⊗ C
{associativity of +, Definition 4}=A⊗ Io(B).o(C) + Io(A) ⊗B ⊗ Io(C) +

Io(A).o(B) ⊗ C
{commutativity of +}=A⊗ Io(B) ⊗ Io(C) + Io(A).o(B) ⊗ C +

Io(A) ⊗B ⊗ Io(C)

{Definition 4}= ((A⊗ Io(B))⊕ C) + Io(A) ⊗B ⊗ Io(C)

{Definition 4}= ((A⊗ Io(B))⊕ C) + ((Io(A) ⊗B)⊕ Zo(C)

{Lemma 1}= (A⊗ Io(B) + Io(A) ⊗B)⊕ (C + Zo(C))
{remove Zo(C)}= (A⊗ Io(B) + Io(A) ⊗B)⊕ C
{Definition 4}= (A⊕B)⊕ C.

The associativity properties of the operations ⊗ and ⊕ imply that the n-fold operations

k⊗
i=1

Ai and
k⊕
i=1

Ai

are well defined. Let ni denote the order of matrix Ai and In the identity matrix of
order n. Then we can write the n-fold Kronecker sum for k matrices Ai, where 1 ≤ i ≤ k
similar to Buchholz and Kemper [BK02] and Ciardo et al. [CM99] as

k⊕
i=1

Ai =
k∑
i=1
In1 ⊗ · · · ⊗ Ini−1 ⊗Ai ⊗ Ini+1 ⊗ · · · ⊗ Ink =

k∑
i=1
Ii−1∏
j=1

nj

⊗Ai ⊗ I k∏
j=i+1

nj

.

Finally, note that the Kronecker sum of adjacency matrices generates only self-loops out
of self-loops in the input matrices. This can easily be seen because on the main diagonal,
the Kronecker sum contains only entries of the main diagonal of the two input matrices.
A self-loop at node i is defined as an entry mi,i 6= 0 in the corresponding adjacency
matrix M .

Additional properties of the Kronecker sum can be found in [PA91].

24

3.2. Kronecker Sum

1 2 3
a b

(a) Graph for C

1 2 3
c d

(b) Graph for D

Interleavings

a · b · c · d
a · c · b · d
a · c · d · b
c · a · b · d
c · a · d · b
c · d · a · b

(c) Interleavings

1

2

3

6

9

4

5 7

8

c

d

a

b

a

b

c

d

a c

d b

(d) Graph for C ⊕D

Figure 3.4: A Simple Cartesian Product Graph (C ⊕D)

3.2.3 Relation of Kronecker Sum to Cartesian Product Graph

By calculating the Kronecker sum of the adjacency matrices of two graphs G1 and G2,
the adjacency matrix of the Cartesian product graph [IKR08, HIK11] of G1 and G2 is
computed (cf. [Knu11]).

The Kronecker sum calculates all possible interleavings of two concurrently executing
automata (see e.g. [Küs91] for a proof; in that context the Kronecker sum is referred to
as Hurwitz product) even for general graphs, e.g., CFGs including conditionals and loops.
In Chapter 4 we calculate the maximum number of nodes and edges in such Cartesian
graphs, whereas in the Appendix A it is shown how the number of interleavings can
be calculated for an arbitrary number of threads and their statements. The following
example illustrates interleavings of two threads and how the Kronecker sum handles it.

Example 6 Let the matrices C and D be defined as follows:

C =

0 a 0
0 0 b
0 0 0

 D =

0 c 0
0 0 d
0 0 0

 .
The graph corresponding to matrix C is depicted in Figure 3.4a, whereas the graph of
matrix D is shown in Figure 3.4b. The regular expressions associated with the CFGs
are a · b and c · d, respectively. All possible interleavings by executing C and D applying

25

3. Kronecker Algebra – A Matrix Calculus

an interleavings semantics are shown in Figure 3.4c. The adjacency matrix C ⊕D is
calculated by

C ⊕D = C ⊗ I3 + I3 +D =

=

0 a 0
0 0 b
0 0 0

⊗
1 0 0

0 1 0
0 0 1

+

1 0 0
0 1 0
0 0 1

⊗
0 c 0

0 0 d
0 0 0



=



0 0 0 a 0 0 0 0 0
0 0 0 0 a 0 0 0 0
0 0 0 0 0 a 0 0 0
0 0 0 0 0 0 b 0 0
0 0 0 0 0 0 0 b 0
0 0 0 0 0 0 0 0 b
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


+



0 c 0 0 0 0 0 0 0
0 0 d 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 c 0 0 0 0
0 0 0 0 0 d 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 c 0
0 0 0 0 0 0 0 0 d
0 0 0 0 0 0 0 0 0



=



1 2 3 4 5 6 7 8 9
1 0 c 0 a 0 0 0 0 0
2 0 0 d 0 a 0 0 0 0
3 0 0 0 0 0 a 0 0 0
4 0 0 0 0 c 0 b 0 0
5 0 0 0 0 0 d 0 b 0
6 0 0 0 0 0 0 0 0 b

7 0 0 0 0 0 0 0 c 0
8 0 0 0 0 0 0 0 0 d

9 0 0 0 0 0 0 0 0 0



.

In Figure 3.4d the graph represented by the adjacency matrix C ⊕D is depicted. It is
easy to see that all possible interleavings are generated.

As a concluding remark of this chapter, we note that Kronecker algebra is a special case
of tensor algebra. The tensor product of matrices is the Kronecker product and the tensor
sum of matrices is the Kronecker sum of the matrices (cf. [Pla85]).

26

CHAPTER 4
Concurrent Program Graphs

“A computer program is organized complexity.”

– EDSGER WYBE DIJKSTRA, Dutch computer scientist
and ACM Turing Award winner 1972, 1930-2002

In this chapter, we introduce concurrent program graphs (CPGs) as a data structure
modeling concurrent systems. CPGs play a similar role for concurrent systems as
control flow graphs (CFGs) do for sequential programs. They describe, e.g., all possible
interleavings and incorporate synchronization. In the course of this dissertation, we will
see that CPGs can be used as a basis for analyses of issues, e.g., deadlocks, inherent in
concurrent programs.

Our system model consists of a finite number of threads and semaphores. Both, threads
and semaphores, are represented by Control Flow Graphs (CFGs). Edge splitting has to
be applied to the edges of threads which results in Refined CFGs (RCFGs), whereas the
CFGs of semaphores are RCFGs without modification. The RCFGs are stored in form
of adjacency matrices. The matrices have entries which are referred to as labels l ∈ L
as defined in Section 2.1. Let S and T be the sets of adjacency matrices representing
RCFGs of semaphores and threads, respectively. The matrices are manipulated by using
conventional Kronecker algebra operations together with some extensions which we define
in the course of this chapter. Similar to [BK02] we describe synchronization by Kronecker
products and thread interleavings by Kronecker sums.

Formally, the system model consists of the tuple 〈T ,S,L〉, where

• T is the set of RCFG adjacency matrices describing threads,

• S refers to the set of RCFG adjacency matrices describing semaphores, and

27

4. Concurrent Program Graphs

Figure 4.1: Overview

• L denotes the set of labels out of the semiring defined in Section 2.1. The labels
(or matrix entries) of the ith thread’s adjacency matrix T (i) ∈ T are elements of
L, whereas the labels (or matrix entries) of the jth synchronization primitive’s
adjacency matrix S(j) ∈ S are elements of LS.

A concurrent program graph (CPG) is a graph C = 〈V,E, ne, Vf 〉 with a set of nodes
V , a set of directed edges E ⊆ V × V , a so-called entry node ne ∈ V and a set of
final nodes Vf ⊆ V . The sets V and E are constructed out of the elements of 〈T ,S,L〉.
Details on how we generate the sets V and E follow in the next sections. Similar to
RCFGs, the edges of CPGs are labeled by l ∈ L.

In Figure 4.1 an overview of how we generate a concurrent program’s adjacency matrix
is given. As described in Section 2.5, the semaphore calls and the shared variable
information may be used as input for edge splitting . As an output, we get RCFGs
represented by the matrices T (i). The matrices T and S are the interleaved threads and
semaphores, respectively. The ring operator ◦ is used to generate the matrix P out of
T and S. The matrix P statically represents the concurrent programm consisting of k
threads and r semaphores. The underlying graph is the CPG. In the following, we define
the ◦-operation used in Figure 4.1.

We will see that for concurrent programs containing synchronization only a part of the
graph represented by the full matrix is reachable. To this part of the CPG we refer
to as reachable CPG (RCPG). Because our implementation only generates RCPGs, we
usually mean the reachable part (RCPG) when referring to a CPG. The full matrix is
only interesting when, e.g., arguing about worst-case scenarios regarding the number of
nodes.

28

4.1. Generating a Concurrent Program’s Matrix

The remainder of this chapter is organized as follows. In Section 4.1 we show how the
matrix of a concurrent program can be generated from a mathematical point of view.
How we determine entry and final nodes of CPGs is discussed in 4.2. We prove that
CPGs correctly model synchronization in Section 4.3. In Section 4.4 it is shown how
unreachable parts arise from synchronization between threads. We prove important
properties in Section 4.5. In Section 4.6 we extend the Kronecker algebra with our
selective Kronecker product and show how the definitions of Section 4.1 can be simplified.
Section 4.7 is devoted to a lazy implementation of our extended Kronecker algebra.
Finally, in Section 4.8 it is proven that in general CPGs are irreducible.

4.1 Generating a Concurrent Program’s Matrix

Let T (i) ∈ T and S(i) ∈ S refer to the matrices representing thread i and synchronization
primitive i, respectively. Let M = (mi,j) ∈ M. In addition, we define the matrix Ml

with entries equal to l and zeros elsewhere:

Ml = (ml;i,j), where ml;i,j =
{
l if mi,j = l,
0 otherwise.

We obtain the matrix T representing k interleaved threads by

T =
k⊕
i=1

T (i), where T (i) ∈ T .

According to Figure 2.3, we have for binary semaphore i and counting semaphore j the
following adjacency matrix of order two and three, respectively.

S(i) =
(

0 pi
vi 0

)
and S(j) =

 0 pj 0
vj 0 pj
0 vj 0


In a similar fashion we can model counting semaphores of higher order.

The matrix S representing r interleaved synchronization primitives is given by

S =
r⊕
i=1

S(i), where S(i) ∈ S.

The adjacency matrix representing program P referred to as P is defined as

P = T ◦ S =
∑
l∈LS

(Tl ⊗ Sl) +
∑
l∈LV

(Tl ⊕ Sl) . (4.1)

When calculating the left term of Equation 4.1, the Kronecker product exclusively operates
on labels sx ∈ LS, thus on labels referring to synchronization primitive calls. In the
resulting matrix, we let the Kronecker product generate only entries consisting of two
equal and concatenated labels sx · sx and replace it with the single label sx. This rule
means that, e.g., for all vx and px ∈ LS:

29

4. Concurrent Program Graphs

• vx · vx is replaced by vx and

• px · px is replaced by px.

Note that, during the evaluation of the Kronecker product, all other combinations, e.g.,
vx · px and vx · vy, where x 6= y will not happen by definition because both input matrices
are filtered such that both contain only entries of the same label. In Subsection 4.6, we
describe how the ◦-operation can be implemented efficiently and how we get rid of this
rather unaesthetic replacement.

4.2 Determining Entry and Final Nodes of CPGs

Assuming, without loss of generality, that each thread has an entry node with index 1,
the entry node of the generated CPG has index 1, too.

When a program uses only binary semaphores as shown in Figure 2.3a, then the program’s
final node can be calculated as follows. If the r semaphores have an entry and a final
node 1 and each thread i of k threads has one final node ni and ni is the order of the
corresponding adjacency matrix of thread i (thus thread i’s final node has the highest
row/column number1), then the final node of the resulting CPG has final node

k∏
i=1
ni · 2r − 2r + 1. (4.2)

In general, a thread’s CPG may have several final nodes and different types of syn-
chronization primitives, e.g., semaphores and/or the barrier synchronization construct
introduced below in Chapter 7. For these cases the following formula can be used to
determine the final nodes. We refer to a node without outgoing edges as a sink node.
Each sink node appears as a zero line in the corresponding adjacency matrix. A CPG’s
final node may also be a sink node (if the program terminates). However, CPG sink
nodes and final nodes can be distinguished as follows. We use a vector determining the
final nodes of thread i, namely F (i). In addition, vector G(j) determines the final node of
the synchronization primitive j. Both have ones at places q, when node q is a final node,
zeros elsewhere. Then the vector

k⊗
i=1

F (i) ⊗
r⊗
j=1

G(j) (4.3)

determines the final nodes of the CPG. Again, an one in the resulting vector states that
the corresponding node is a final node.

Note if thread i is a daemon2 thread, we use F (i) = (1, 1, . . . , 1)T which informally
speaking states that the daemon is always ready to terminate. On the other hand,

1As stated above, we refer to nodes and their column/row numbers synonymously.
2In contrast to non-daemon threads, all daemon threads terminate after the last non-daemon thread

terminates.

30

4.3. ◦-Operation and Synchronization

if thread i does not terminate, then we have F (i) = (0, 0, . . . , 0)T . In such cases the
concurrent program’s CPG will not have a final node. Thus the concurrent program
will not terminate. Only threads within the concurrent program having final nodes may
terminate.

Even when a final node in a CPG exists, it may be unreachable due to synchronization.
Unreachable parts are discussed below in this chapter (in Section 4.4) and in Chapter 5.

In the remainder of this dissertation, we assume that all threads do have only one single
final node. Our results, however, can be generalized easily to an arbitrary number of
final nodes.

4.3 ◦-Operation and Synchronization

Theorem 1 Let T =
⊕k

i=1 T
(i) be the matrix representing k interleaved threads and

let S be a binary semaphore. Then T ◦ S correctly models synchronization of T with
semaphore S.3

Proof 3 First we observe that

1. the first term in the definition of Equation (4.1) replaces

• each p in matrix T with

(
0 p
0 0

)
and

• each v in matrix T with

(
0 0
v 0

)
,

2. the second term replaces each m ∈ LV with

(
m 0
0 m

)
, and

3. both terms replace each 0 by

(
0 0
0 0

)
.

According to these replacements the order of matrix T ◦ S has doubled compared to T .

Now, consider the paths in the graph underlying T described by the regular expression

π =
(∑

m∈LV
m
)∗ (

p
(∑

m∈LV
m
)∗
v
(∑

m∈LV
m
)∗)∗

.

By the observations above it is easy to see that paths containing π are present in T ◦ S.
On the other hand, paths not containing π are no more present in T ◦ S. Thus the
semaphore operations always occur in (p, v) pairs in all paths in T ◦ S. This, however,
exactly mirrors the semantics of synchronization via a semaphore.

3Note that we do not restrict the structure of T .

31

4. Concurrent Program Graphs

Generalizing Theorem 1, it is easy to see that the synchronization property is also
correctly modeled if we replace the binary semaphore by a counting semaphore of higher
order. In addition, the synchronization property is correctly modeled even if more than
one semaphore is present on the right-hand side of T ◦ S.

4.4 Unreachable Parts Caused by Synchronization

In this section, we show that synchronization causes unreachable parts. As an example
consider Figure 4.2. The program consists of two threads, namely T1 and T2. The RCFGs
of the threads are shown in Figure 4.2a and Figure 4.2b. Synchronization is done via a
binary semaphore similar to Figure 2.3a. Its operations are referred to as p1 and v1. We
denote a p and v-call to semaphore x of thread t as t.px and t.vx, respectively. T1 and
T2 access the same shared variable in a and b, respectively. The semaphore is used to
ensure that a and b are accessed mutually exclusively. Note that a and b may actually
be subgraphs consisting of multiple nodes and edges.

Thus, we get the matrices

T1 =


0 p1 0 0
0 0 a 0
0 0 0 v1
0 0 0 0

 , T2 =


0 p1 0 0
0 0 b 0
0 0 0 v1
0 0 0 0

 , and S =
(

0 p1
v1 0

)
.

We obtain the matrix T = T1 ⊕ T2, a matrix of order 16, consisting of the submatrices
defined above and zero matrices of order four (instead of Z4 simply denoted by 0) as
follows:

T =


T2 p1 · I4 0 0
0 T2 a · I4 0
0 0 T2 v1 · I4
0 0 0 T2

 .

In order to enable a concise presentation of T ◦ S we define the matrices

U =



0 0 0 p1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 b 0 0 0
0 0 0 0 0 b 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 v1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


, V =



0 p1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 p1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 p1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 p1
0 0 0 0 0 0 0 0


,

32

4.5. Properties of CPGs

W = a · I8, and X =



0 0 0 0 0 0 0 0
v1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 v1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 v1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 v1 0


of order 8.

The matrix T ◦ S, a matrix of order 32, consisting of the submatrices defined above and
zero matrices of order eight (instead of Z8 simply denoted by 0) is given by

T ◦ S =


U V 0 0
0 U W 0
0 0 U X
0 0 0 U

 .

The reachable part of the CPG is depicted in Figure 4.2c. The resulting adjacency matrix
has order 32, whereas the reachable part of the CPG consists only of 12 nodes and 12
edges. Large parts (20 nodes and 20 edges) are unreachable from the entry node. They
are depicted in Figure 4.3.

In general, unreachable parts exist if a concurrent program contains synchronization.
If a program contains a lot of synchronization, then the reachable parts may be very
small. The reasons why parts of the CPG are unreachable can be summarized as follows:
Kronecker product limits the number of possible paths such that the p- and v-operations
are present in correct p-v-pairs. In contrast T =

⊕k
i=1 T

(i) contains all possible paths even
those containing semantically wrong uses of the semaphore operations. This observation
motivates the lazy implementation described in Section 4.7. In the following, we denote
the subgraph of a CPG, whose nodes are reachable from the entry node, Reachable CPG
(RCPG).

4.5 Properties of CPGs

In this section, we prove interesting properties of the adjacency matrices of CPGs.

A short calculation shows that the Kronecker sum in general generates at most mn2 +
nm2−nm entries unequal to zeros. Stated the other way, at least (mn)2−mn2−nm2+mn
entries are zero. We will see that for CFGs and RCFGs there are even more zero entries.
We will prove that for this case the number of edges is in O

(
mn

)
. Thus, the number of

edges is linear in the order of the resulting adjacency matrix.

Lemma 3 (Maximum Number of Nodes) Given a program P consisting of k > 0
threads (t1, t2, . . . , tk), where each ti has n nodes in its RCFG, the number of nodes in
P’s adjacency matrix P is bounded from above by nk.

�

33

4. Concurrent Program Graphs

1

2

3

4

T1.p1

T1.a

T1.v1

(a) T1

1

2

3

4

T2.p1

T2.b

T2.v1

(b) T2

1

10

18

25

28

30

4

6

7

16

24

31

T1.p1 T2.p1

T1.a

T1.v1

T2.p1

T2.b

T2.v1

T2.b

T2.v1

T1.p1

T1.a

T1.v1

(c) Reachable Part of the CPG

Figure 4.2: Mutual Exclusion Example

In general, if thread ti’s RCFG has ni nodes, then the maximum number of nodes in P ’s
adjacency matrix is

k∏
i=1
ni,

where k is the number of threads in program P.

As already mentioned in Section 2.3, a CFG node has maximal two outgoing edges. Thus,
for RCFGs with n nodes it is easy to see that at most 2n edges can be contained. We
use this property in the following lemma.

Lemma 4 (Maximum Number of Entries) Given a program represented by
Mk ∈ M consisting of k > 0 threads represented by the matrices T (i) ∈ T , where
each T (i) has order n, then the number of matrix entries ||Mk|| is bounded from above by
2k nk.

34

4.5. Properties of CPGs

11 1312

20

21

17

23

19

32

22

26

2915

27

3

2

5

9

8

14

T2.p1

T2.v1

T1.p1

T1.a

T2.b
T1.a

T1.a

T2.b

T1.a

T2.b

T2.p1

T1.v1

T1.v1T1.p1

T2.v1

T1.aT1.a

T2.b

T2.bT2.b

Figure 4.3: Unreachable Parts of the Mutual Exclusion Example

Proof 4 We prove this lemma by induction on the definition of the Kronecker sum. For
k = 1 the lemma is true. If we assume that for m threads ||Mm|| ≤ 2mnm, then for
m+ 1 threads ||Mm+1|| ≤ 2mnm · n+ nm · 2n = 2(m+ 1)nm+1. Thus, we have proved
Lemma 4.

Compared to the full matrix of order nk with n2k entries the resulting matrix has
significantly fewer non-zero entries, namely 2k nk. Thus a CPG with nk nodes can have
at most 2k nk edges. Roughly speaking, this can be explained as follows. At a certain
CPG node, each of the k threads can execute one out of its next (at maximum) two basic
blocks. From Lemma 3 we know that this is done for nk nodes.

The observations from above directly lead to a next property, namely the maximum
outdegree of CPG nodes. The outdegree of a certain node in a directed graph is the
number of outgoing edges. In general, the maximum outdegree of CPG nodes is 2k.

The following two lemmata, we have originally published in [MB11]. By using Definition 2,
we will prove that the matrices of CPGs are sparse.

Lemma 5 (Sparsity of Control Flow Graphs) CFGs and RCFGs have Sparse Ad-
jacency Matrices.

Proof 5 Let G = 〈V,E, ne〉 be a CFG consisting of |V | nodes. From Subsection 2.3,
we know that the number of edges |E| in G is bounded from above by 2 · |V |. By using
Definition 2, we get for the maximum number of entries in the adjacency matrix M :

||M || ≤ 2 · |V |.

35

4. Concurrent Program Graphs

Lemma 6 (Sparsity of CPGs) The Matrix P of a Concurrent Program P is Sparse.

Proof 6 Let T =
⊕k

i=1 T
(i) ∈ M be an N-by-N adjacency matrix of a program. We

require that each of the k threads has order n in its adjacency matrix T (i). From Lemma 4
we know ||T || ≤ 2k nk. In addition, N = nk is given by Lemma 3. Hence, for k threads,
we get ||T || ≤ 2k nk = 2kN and by using Definition 2 it is proved that matrix T is sparse
because ||T || ≤ 2kN , where 2k is constant. A similar result holds for S and P = T ◦ S.

Lemma 6 enables the application of memory saving data structures and efficient algorithms.
Algorithms may for example work on adjacency lists. Clearly, the space requirements for
the adjacency lists are linear in the size of the nodes. In the worst-case, however, the
number of CPG nodes increases exponentially in k.

4.6 Efficient Implementation of the ◦-Operation

This section is devoted to an efficient implementation of the ◦-operation. First we define
the selective Kronecker product which we denote by �L. This operator synchronizes only
labels l ∈ L ⊆ L identical in the two input matrices.

Definition 5 (Selective Kronecker Product) Given an m-by-n matrix A and a p-
by-q matrix B, we call A�L B their selective Kronecker product. For all l ∈ L ⊆ L let
A�L B = (ai,j)�L (br,s) = (ct,u), where

c(i−1)·p+r,(j−1)·q+s =
{
l if ai,j = br,s = l, l ∈ L,
0 otherwise.

In contrast to the plain Kronecker product, the selective Kronecker product is defined
such that

• a label l in the left operand is paired with the same label in the right operand and
not with any other label in the right operand and

• for ai,j = br,s = l, l ∈ L the resulting entry is l and not l · l.

Definition 5 is defined for a set of labels L. In practice, we usually constrain L = LS. Thus,
we use this operation only for labels referring to semaphore or other synchronization
primitive calls/operations. Used that way, the selective Kronecker product ensures
that, e.g., a p-call to semaphore i, i.e., a pi-call, in the left operand is paired with the
corresponding pi-operation in the right operand and not with any other label, e.g., pj of
a semaphore j 6= i, in the right operand. All other entries are 0.

Figure 4.4 shows a small example for the application of the selective Kronecker product �.
The program in Figure 4.4a has two branches. Both branches are calling operations of an
initially unlocked semaphore (cf. Figure 2.4a). The left branch executes the calls of p and
v in a correct order. The right branch contains two p-calls. When applying Kronecker

36

4.6. Efficient Implementation of the ◦-Operation

1

2 3

4

p p

v p

(a) CFG

1

4 6

7

p p

v

(b) CPG


0 p p 0
0 0 0 v
0 0 0 p
0 0 0 0

�{p,v}
(
v p
v 0

)
=



0 0 0 p 0 p 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 v 0
0 0 0 0 0 0 v 0
0 0 0 0 0 0 0 p
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


(c) Matrices

Figure 4.4: Example Program with Self-Deadlock

algebra (cf. Lemma 7) in Figure 4.4c, we obtain the CPG depicted in Figure 4.4b. Node 6
shows that there is a self-deadlock in the underlying program because it is a sink node
but not a final node. The final node can be calculated by applying Formula 4.2 defined
in Section 4.2. A short calculation (4 ∗ 2− 2 + 1 = 7) shows that node 7 is the final node.
In addition, note that compared to the adjacency matrix of Figure 4.4c some CPG nodes
are unreachable from the entry node 1. These unreachable nodes are excluded in the
CPG shown in Figure 4.4b.

Remember, we refer to the identity matrix of order n as In. In addition, we write o(M)
to denote the order of matrix M .

Definition 6 (Filtered Matrix) We call ML a filtered matrix and define it as a matrix
of order o(M) containing entries of L ⊆ L of M = (mi,j) and zeros elsewhere:

ML = (mL;i,j), where mL;i,j =
{
mi,j if mi,j ∈ L,
0 otherwise.

Note that ∑
l∈LS

(Tl ⊗ Sl) = T �LS S. (4.4)

Intuitively, Equation 4.4 can be explained as follows. The left side filters the matrices
for a certain element of synchronization labels, then builds the Kronecker product of

37

4. Concurrent Program Graphs

the two results of Tl and Sl, and then sums up the results for all synchronization labels.
The right side of the equation does not filter in the first place. It applies the selective
Kronecker product for the set of synchronization labels. Note that Equation 4.4 is only
correct, when the replacing rules, as done for Equation 4.1, are applied when applying
the plain Kronecker product. Thus, for the plain Kronecker product, we replace vx · vx
by vx and px · px by px. All other entries of the plain Kronecker product are 0.

In the following, we use o(SLV) =
∏r
i=1 o(S(i)) = o(S). Note that S contains only labels

l ∈ LS. Hence, when the ◦-operator is applied for a label l ∈ LV, we get Sl = Zo(S), i.e.,
a zero matrix of order o(S). Thus we obtain

∑
l∈LV (Tl ⊕ Sl) = TLV ⊗ Io(S). We will

prove this below.

Finally, we can refine Equation (4.1) by stating the following lemma.

Lemma 7 The ◦-operation can be computed efficiently by

P = T ◦ S = T �LS S + TLV ⊗ Io(S).

Proof 7 Using Equation (4.1) P = T ◦ S is given by
∑
l∈LS

(Tl ⊗ Sl) +
∑
l∈LV

(Tl ⊕ Sl) .

According to Equation (4.4) the first term is equal to T �LS S. By mentioning Sl = Zo(S)
for l ∈ LV, Lemma 1, and Definition 4, the second term fulfills

∑
l∈LV

(Tl ⊕ Sl) =
∑
l∈LV

(
Tl ⊕ Zo(S)

)
= TLV ⊕ Zo(S) = TLV ⊗ Io(S).

Note that S contains only l ∈ LS. It is obvious that the non-zero entries of the first and
the second term are l ∈ LS and l ∈ LV, respectively. Both terms can be computed by
iterating once through the corresponding sparse adjacency matrices, namely T and S.

�

Intuitively, the selective Kronecker product term on the left of Lemma 7 allows for
synchronization between the threads represented by T and the synchronization primitives
S. Both matrices, namely T and S, are Kronecker sums of the involved threads and
synchronization primitives, respectively, in order to represent all possible interleavings
of the concurrently executing threads. The right term allows the threads to perform
steps that are not involved in synchronization. Summarizing, the threads (represented
by matrix T) may perform their steps concurrently, where all interleavings are allowed,
except when they call synchronization primitives. In the latter case the synchronization
primitives (represented by matrix S) together with Kronecker product ensure that these
calls are executed in the order prescribed by the deterministic finite automata (DFA) of
the synchronization primitives [BB14].

38

4.7. Lazy Implementation of Kronecker Algebra

So, for example, a thread cannot do semaphore calls in the order v followed by p when
the semaphore DFA only allows a p-call before a v-call. The CPG of such an erroneous
program will contain a node from which the final node of the CPG cannot be reached. This
node is the one preceding the v-call. Such nodes can easily be found by traversing CPGs.
Thus deadlocks of concurrent systems can be detected with little effort (cf. Chapter 5
and [MB11]).

4.7 Lazy Implementation of Kronecker Algebra

Until now we have primarily focused on a pure mathematical model for shared memory
concurrent systems. An alert reader will have noticed that the order of the matrices in our
CPG increases exponentially in the number of threads. On the other hand, we have seen
that the ◦-operation results in parts of the matrix T ◦ S that cannot be reached from the
entry node of the underlying graph. This comes solely from the fact that synchronization
excludes many interleavings.

In general, unreachable parts exist if a concurrent program contains synchronization
(cf. Section 4.4 and [MB11]). If a program contains a lot of synchronization, the reachable
parts may be very small compared to the order of the matrix generated by a näıve approach.
This observation motivates the lazy implementation described in this subsection. As
introduced in Section 4.4, we denote the subgraph of a CPG whose nodes are reachable
from the entry node by Reachable CPG (RCPG). An empirical analysis of our approach
showed that the runtime complexity of generating an RCPG is linear in the number of
RCPG nodes [MB11].

The reasons why parts of the CPG are unreachable can be summarized as follows: The
way we adopt the Kronecker product limits the number of possible paths such that,
e.g., in case of semaphores, the p- and v-operations are present in correct p-v-pairs in
the RCPG. In contrast T =

⊕k
i=1 T

(i) contains all possible paths even those containing
semantically wrong uses of the semaphore operations.

This contrast can be seen in our example in Figures 8.2 and 8.3. The Kronecker sum
(shown in Figure 8.2) of the two threads A and B (as depicted in Figure 8.1) contains
five copies of thread A’s loop, whereas the RCPG in Figure 8.3 contains this loop only
three times. It can be easily seen that the latter reflects the correct use of the semaphore
operations p and v.

Choosing a lazy implementation (cf. [HM76]) for the matrix operations ensures that,
when extracting the reachable parts of the underlying graph, the overall effort is reduced
to exactly these parts. By starting from the RCPG’s entry node and calculating all
reachable successor nodes, our lazy implementation exactly does this. Thus, for example,
if the resulting RCPG’s size is linear in terms of the involved threads, only linear effort will
be necessary to generate the RCPG. However, if the original problem grows exponentially,
then the number of RCPG nodes grows exponentially, too.

Our implementation distinguishes between two types of matrices: Sparse matrices are used
for representing threads and semaphores. Lazy matrices are employed for representing all

39

4. Concurrent Program Graphs

1

2

a

(a) T1

1

2

b c

(b) T2

1

2 3

4

b
c

a

a

c
b

(c) T1 ◦ T2

Figure 4.5: CPGs are Irreducible

the other matrices, i.e., those resulting from the operations of the Kronecker algebra and
our ◦-operation. The operations to apply are stored in form of an expression tree. Besides
the employed operation, a lazy matrix simply keeps track of its operands. Whenever
an entry of a lazy matrix is retrieved, depending on the operation recorded in the lazy
matrix, entries of the operands are retrieved and the recorded operation is performed on
these entries to calculate the result. In the course of this computation, even the successors
of nodes are calculated lazily. Retrieving entries of operands is done recursively if the
operands are again lazy matrices, or is done by retrieving the entries from the sparse
matrices, where the actual data resides.

In addition, our lazy implementation allows for simple parallelizing. For example,
retrieving the entries of left and right operands can be done concurrently. Exploiting
this, we achieved further performance improvements for our implementation if run on
multi-core architectures.

Even if the RCPG is small (due to synchronization) the RCPG’s node numbers may be
astronomically big. In general, the biggest node number in the RCPG depends on the
order of the CPG’s matrix (i.e. T ◦S). Even for relatively small multi-threaded programs,
the implementation may need more than 64 bit for representing (the positive) matrix
row and column indices. Thus we use big integer row and column indices.

When no synchronization primitives, e.g., semaphores or barriers, are present, we expect
P = T . Because T contains only labels l ∈ LV, we get P = TLV ⊗ Io(S) = T ⊗ I0 = T .
Remember, in Section 2.6 I0 is defined as (1). This means that the RCPG and the CPG
are isomorph when no synchronization is present in the threads.

Note that we often mean RCPGs when we talk about CPGs. Because our implementation
never explicitly generates the full matrix of a CPG, we usually get an RCPG. Thus, when
we are not explicitly distinguishing between CPGs and RCPGs, we usually mean RCPG.

4.8 CPGs are Irreducible

In general CPGs are irreducible. A graph is called irreducible if it contains loops which
can be entered via at least two nodes (cf. [Sre95, SGL98, Mit05]).

As an example consider the two threads T1 and T2 depicted in Figure 4.5a and 4.5b,

40

4.8. CPGs are Irreducible

respectively. The system’s CPG consisting of these two threads is depicted in Figure 4.5c.
Because no semaphores are present in this system, we get the system’s matrix T1 ◦ T2 by
simply calculate T1 ⊕ T2. The loop 3→ 4→ 3 is irreducible because it can be entered
via the edges 1→ 3 and 2→ 4.

41

CHAPTER 5
Deadlocks

“Crises and deadlocks when they occur have at least this advantage,
that they force us to think.”

– JAWAHARLAL NEHRU, First Indian Prime Minister, 1889-1964

In this chapter, we show how RCPGs, as introduced in Chapter 4, can be used in order
to find deadlocks in concurrent programs.

In contrast to livelocks (cf. [BBM07]), where the involved threads cannot make useful
progress while still executing (at least some of) their statements, deadlocks force the
affected threads to stall.

In this dissertation, we use Stallings’ definition of deadlocks [Sta11] and quote it in the
following.

Definition 7 (Deadlock [Sta11]) ”An impasse that occurs when multiple processes are
waiting for the availability of a resource that will not become available because it is being
held by another process that is in a similar wait state.”

In Chapter 9, we also use this definition and relate deadlocks in computer science to
deadlocks in railway disposition systems.

In our system model at least two threads and two semaphores are needed for a deadlock
to occur. For example consider the threads T1 and T2. Thread T1 starts with calling p
of semaphore 1 followed by a call p of semaphore 2. Thread T2 starts with calling p of
semaphore 2 followed by a call p to semaphore 1. If one of the threads can execute its
two p calls no deadlocks will occur. But if we come to the point, where each thread has
executed its first p-call, then T1 and T2 are deadlocked. In this case T1 holds semaphore
1 and T2 holds semaphore 2. Each thread now tries to call p of a semaphore which is

43

5. Deadlocks

held by another thread. A similar situation can be seen in Figure 5.1. The two possible
paths from node 1 to node 32 in Figure 5.1c reflect the behavior described above. We
discuss this example in more detail in Subsection 5.1.

The following theorem shows that deadlocks show up in an RCPG as a pure structural
property in the corresponding adjacency matrix. We use Tarjan’s algorithm [Tar72] for
finding the strongly connected components (SCC) of a graph. If each SCC of a directed
graph G is collapsed to a single node, the resulting directed acyclic graph is called the
condensation of G. The condensation Rc of RCPG R = 〈V,E, ne〉 can be calculated in
O
(
|V |+ |E|

)
time, i.e., in time linear in the size of the RCPG.

As usual, we refer to a node without successor nodes as a sink node. A final node may
be a certain sink node in an RCPG or RCFG, where all threads have terminated. If a
thread is not supposed to terminate, then its RCFG does not contain a final node.

Theorem 2 If the program modeled by RCPG R contains a deadlock, then Rc, the
condensation of R, contains at least one sink node which is not generated by collapsing
final nodes of R. Let ` be the node ID of such a sink node. Then Rc’s adjacency matrix
contains a zero line `, i.e., row ` contains only zero entries.

Proof 8 Let D 6= ∅ be the set of nodes in RCPG R from which the final nodes of R
cannot be reached. Then R contains at least one deadlock. In this case Rc contains several
sinks. Some of these sinks have been generated by collapsing final nodes, some by nodes
of set D. The latter are responsible for deadlocks.

�

False positives may occur. From a static point of view, a deadlock is possible while
conditions exclude this case at runtime. Our approach delivers a path to a deadlock in
any case. On the other hand, our approach of finding deadlocks is complete. If it states
deadlock freedom, then the program under test certainly is deadlock free.

We allow our implementation to stop after the first deadlock is detected, which makes
sense since a program containing at least one deadlock is considered to contain an error.
The path from the deadlock back to the entry node shows how the deadlock can be
reached.

5.1 Deadlock Example

In this subsection, we show how we detect deadlocks. As an example consider Figure 5.1.
The program consists of two threads, namely T1 and T2. The RCFGs of the threads are
shown in Figure 5.1a and Figure 5.1b. Synchronization is done via two binary semaphores
similar to Figure 2.3a. Their operations are referred to as pi and vi. We denote a p and
v-call to semaphore x of thread Ti as Ti.px and Ti.vx, respectively.

The matrices for T1, T2, S1, and S2 are trivially defined as follows:

44

5.1. Deadlock Example

T1 =



0 T1.p1 0 0 0 0
0 0 T1.p2 0 0 0
0 0 0 T1.a 0 0
0 0 0 0 T1.v2 0
0 0 0 0 0 T1.v1
0 0 0 0 0 0


,

T2 =



0 T2.p2 0 0 0 0
0 0 T2.p1 0 0 0
0 0 0 T2.b 0 0
0 0 0 0 T2.v1 0
0 0 0 0 0 T2.v2
0 0 0 0 0 0


,

S1 =
(

0 p1
v1 0

)
and

S2 =
(

0 p2
v2 0

)
.

We do not present all intermediate steps. For sake of demonstration, we give the matrix
T ◦ S = (T1 ⊕ T2) ◦ (S1 ⊕ S2). Concerning a matrix M , let the tuple (i, j, l) refer to the
entry l ∈ L at mi,j . Similar to adjacency lists, we use a set of such tuples to define a
matrix. If an index pair is not mentioned in a set of tuples, then the corresponding entry
is assumed to be 0. In order to enable a concise presentation of T ◦ S we define the
following matrices of order 24:

U = { (1, 6, p2), (3, 8, p2), (5, 11, p1), (6, 12, p1), (9, 13, b), (10, 14, b),
(11, 15, b), (12, 16, b), (15, 17, v1), (16, 18, v1), (18, 21, v2), (20, 23, v2)},

V = { (1, 3, p1), (2, 4, p1), (5, 7, p1), (6, 8, p1), (9, 11, p1), (10, 12, p1),
(13, 15, p1), (14, 16, p1), (17, 19, p1), (18, 20, p1), (21, 23, p1), (22, 24, p1)},

W = { (1, 2, p2), (3, 4, p2), (5, 6, p2), (7, 8, p2), (9, 10, p2), (11, 12, p2),
(13, 14, p2), (15, 16, p2), (17, 18, p2), (19, 20, p2), (21, 22, p2), (23, 24, p2)},

X = { (2, 1, v2), (4, 3, v2), (6, 5, v2), (8, 7, v2), (10, 9, v2), (12, 11, v2),
(14, 13, v2), (16, 15, v2), (18, 17, v2), (20, 19, v2), (22, 21, v2), (24, 23, v2)}, and

Y = { (3, 1, v1), (4, 2, v1), (7, 5, v1), (8, 6, v1), (11, 9, v1), (12, 10, v1),
(15, 13, v1), (16, 14, v1), (19, 17, v1), (20, 18, v1), (23, 21, v1), (24, 22, v1)}.

Matrix T ◦ S, a block matrix of order 144, consisting of the submatrices defined above

45

5. Deadlocks

and zero matrices of order 24 (instead of Z24 simply denoted by 0) is given by

T ◦ S =



U V 0 0 0 0
0 U W 0 0 0
0 0 U a · I24 0 0
0 0 0 U X 0
0 0 0 0 U Y
0 0 0 0 0 U


.

The generated RCPG is depicted in Figure 5.1c. The resulting full adjacency matrix has
order 144, whereas the resulting RCPG consists only of 23 nodes and 26 edges. Large
parts (121 nodes) are unreachable from the entry node. Some of these parts are depicted
in Figure 5.2. We already have presented a detailed example with all intermediate
matrices and all parts of its unreachable graph in the previous section.

1

2

3

4

5

6

T1.p1

T1.p2

T1.a

T1.v2

T1.v1

(a) T1

1

2

3

4

5

6

T2.p2

T2.p1

T2.b

T2.v1

T2.v2

(b) T2

T1.p2

T1.p2 T2.p1

T2.p2

T1.v1

T1.p1

T1.v1

T1.v2T2.v1

T1.v2 T2.v1

T1.p1

T2.v2

T1.a

T2.v2

T2.v2T1.p1

T2.p2 T1.v1

T2.p1 T2.p2

T2.p2

T2.b

T1.p1

T2.b

T1.a

132

136

138119

27

21

47

44

1

6

141

99

76

72

126

104

96

12

121

32

16

52

18

(c) Resulting CPG

Figure 5.1: Deadlock Example

In the above example, two semaphores are requested in different orders, thus a deadlock
is possible. Node 32 constitutes a zero line because it has no successor. Our approach
detects this and colors such nodes red. In the RCPG it is easy to see how the deadlock
can be reached. This obviously can happen when T1 calls p1 and then T2 calls p2 and
vice versa. All the other paths through the RCPG are deadlock free.

46

5.1. Deadlock Example

T1.a

T2.b

T1.p2 T2.p2T1.p1 T1.a

T1.v2

T1.a

T1.p1

T2.p2T2.v1

T1.v1

T2.b

T2.p2

T2.p1

T1.a

T2.b

T1.a

T1.a

T2.b

T2.v1

T2.v1

T2.b

T2.p1

T2.b

T1.a

T1.p2

T2.v2

T1.p1

T2.p1 T1.a

T1.v1 T2.p1

T1.a

T1.p2

T2.p1

T2.v2

T1.v2

T2.p1

T2.v1

T2.v1

T2.b

T1.a

T2.v2

T1.p2

T2.v1

T1.v2

T1.p2

T2.p2 T2.b

T2.v2

T2.p2

T1.v2

T1.v1

T2.b

T2.v2

T1.a

T2.v2

T2.p1

T1.v1

T1.v2

T2.p2

T2.b

T1.p2

T1.v2

T1.p2

T1.a

T2.v1T1.v1

T2.p1

T1.p1 T2.b

T1.p2

T1.p1

T1.p1

T2.v1

T2.b

T1.v2

T1.v2

T1.v1

56

66

112

50

133

114

117

130

137

113

134

6869

8084

25

92

49

10845

42

29

4041

59

75

115

43

94

39 60

111

74

73

125129

70

102

90

93

101

95

107

97

78

111013

1514

17

54 3130 51

36

35

135

13171

88

64

103

Figure 5.2: Some Unreachable Parts of the Deadlock Example

In Chapter 6, an additional deadlock example is presented.

47

CHAPTER 6
Examples and Empirical Data

“Wie Sokrates weiß der Stückwerk-Ingenieur, wie wenig er weiß. Er weiß, daß wir
nur aus unseren Fehlern lernen können. Deshalb wird er nur Schritt für Schritt

vorgehen und die erwarteten Resultate stets sorgfältig mit den tatsächlich erreichten
vergleichen, immer auf der Hut vor den bei jeder Reform unweigerlich auftretenden

unerwünschten Nebenwirkungen. Er wird sich auch davor hüten, Reformen von
solcher Komplexität und Tragweite zu unternehmen, daß es ihm unmöglich wird,

Ursachen und Wirkungen zu entwirren und zu wissen, was er eigentlich tut.”

– SIR KARL RAIMUND POPPER, Austrian-British philosopher, 1902-1994
Das Elend des Historizismus, 1965

Now we pause for a moment and have a look to examples and empirical data. In this
chapter, we give an example for deadlock analysis in Section 6.1. Then we show how
we are able to model a static form of fork-join parallelism in Section 6.2. Section 6.3,
a client-server example is presented. In Section 6.4, a data race example is given. It
indicates that, based on CPGs, dataflow analysis can be performed. Finally, we present
empirical data in Section 6.5 and show that a speedup can be achieved by a parallel
version of our lazy CPG generating algorithm.

6.1 Deadlock Example

In this example, we use the RCFGs of the threads T1 and T2 which are depicted in
Figure 6.1a and Figure 6.1b, respectively. We assume that the four semaphores are from
the type depicted in Figure 2.3a.

The graph of T = T1⊕ T2 is diamond shaped similar to the graph in Figure 3.4d but
it contains 132 = 169 nodes. The CPG represented by the matrix (T1 ⊕ T2) ◦ (S1 ⊕
S2⊕ S3⊕ S4) consists of 132 · 24 = 2704 nodes. In contrast, the RCPG contains only 82
nodes being reachable from the entry node of the CPG. Thus only 3% of the potential

49

6. Examples and Empirical Data

graph nodes are reachable. Our lazy implementation generates exactly the 82 reachable
nodes in 0.02 s.1 The RCPG is shown in Figure 6.1c.

In order to distinguish deadlock from final nodes we calculate the final node of the
example first. The final node of the graph can be calculated by Formula 4.2 introduced
in Section 4.2. Because 132 24 − 24 + 1 = 2689, node 2689 is the final node of R.

In this example, semaphores are requested in different orders, thus deadlock is possible.
The nodes 316, 912, 984, 1272, and 1948 constitute zero lines because they have no
successors. Hence five different deadlocks can occur. Our approach detects them and
highlights the corresponding nodes. In the RCPG it is easy to see how the deadlock can
be reached. Four deadlocks are reachable via exactly one path, whereas the other one
(node 912) can be reached via multiple paths. In case of the deadlock caused by zero line
316, the tasks T1 and T2 acquire semaphore 1 and 3 in different orders. The zero line
912 is similarly caused by different orders in acquiring semaphores 3 and 4.

Note that the RCPG R in Figure 6.1c is a directed acyclic graph. Thus it is isomorphic
to its condensation. Hence we do not generate Rc, the condensation of R.

By redirecting the edges 12→ 13 to 12→ 1 and removing the nodes 13 in the RCFGs
in Figure 6.1a and Figure 6.1b, the tasks would execute their bodies in endless loops.
The modified program does not terminate and thus no final node is present. In this case
each zero line constitutes a deadlock. The resulting RCPG R′ contains five deadlocks
again. A näıve implementation of Kronecker algebra would generate a matrix of order
122 · 24 = 2304. Our implementation calculates the 57 reachable nodes of R′ in 0.01 s.
Although R′ contains fewer nodes than R, it is more complex. This is caused by the
loops in the tasks. Thus for sake of simplicity, we have chosen a “terminating” program
to be presented here.

6.2 Modeling Static Fork Join

In this section, we show how we can model a static fork-join mechanism. The forked
thread still has to be known statically. However, the proposed approach helps to keep the
number of generated interleavings small and exact in the sense that basic blocks before
fork and after join are not interleaved with the forked/joined thread.

One semaphore is added for each forked thread. If the thread is joined too, then an
additional semaphore is introduced. Each of the added semaphores is an initially locked
semaphore (cf. Figure 2.4b). In the following, we assume that thread T1 forks and joins
thread T2. In order to model the fork-join mechanism, we introduce the initially locked
semaphores s1 and s2. We replace both, namely fork and join, statements of T1 by calls
to semaphores as follows. Thread T2 gets additional statements at the beginning and at
the end. In the RCFG of thread T1, we replace the fork statement by a semaphore call
s1.v. Thread T2 gets the statement s1.p at the beginning immediately before its original

1The analysis for this example was done on an Intel Core i7-870 (3 GHz, 4 GB RAM) running
CentOS 6.0.

50

6.2. Modeling Static Fork Join

T1.p4

T1.p3

T1.p2

T1.v2

T1.p2

T1.v4

T1.v1

T1.v2

T1.p1

T1.v3

T1.v1

T1.p1

11

10

13

12

1

3

2

5

4

7

6

9

8

(a) T1

T2.p3

T2.p4

T2.p1

T2.v1

T2.p1

T2.v3

T2.v2

T2.v1

T2.p2

T2.v4

T2.v2

T2.p2

11

10

13

12

1

3

2

5

4

7

6

9

8

(b) T2

T1.v4

T2.v1

T2.v2

T1.v3

T2.v1

T1.v3

T1.p3

T2.v1

T1.p3

T2.p2

T2.p4

T1.v1

T1.v1T2.v4

T1.v1

T1.p1

T2.p1

T2.p2

T1.v1

T2.v3

T2.p2

T2.p1

T2.p2

T1.v1

T2.p1

T2.p2T2.v4

T1.p1

T1.p4

T2.p4

T1.p2

T1.v1

T2.p2

T1.v1

T1.p1

T1.p2

T2.p4 T1.v1

T1.p2

T1.p1

T1.v3

T1.v2

T2.p2

T1.v3

T2.p2

T1.p1

T2.p2

T1.v1

T2.v2

T2.p2

T2.v2

T1.p3

T1.p3 T1.v1

T2.p1

T2.p2

T2.p3

T2.p4

T1.p2

T2.p1

T2.v1

T1.p1

T1.v2

T1.p1

T2.p4

T2.v4

T1.v2

T1.p3

T2.v2

T1.p2

T1.p3

T2.v2

T2.v4

T2.p4

T1.v4

T1.p1

T2.p3

T2.p1

T1.p1 T2.p4

T2.v3

T1.v1

T1.p2

T1.v1

T2.v2

T1.p3

T1.p2

T2.v4

T2.p1

T2.v2

T1.p1

T2.p2

T1.v2

T2.p2

T1.p1

T1.p1

T1.p1

T1.p4

T2.v2

T2.p4T2.p2T1.p1

T2.v2

T2.v2

T1.p3 T2.v2

T1.v1

T2.v2

T1.v3

T2.v2

138

217

2596

592

627

572

888700316

193

2662

1875

2091

2570

2297

1895

237

166

254

1948

2346

21

819

839

1

792

181

1252

2689

2634

984

1464

92

1031

362

1272

427

912

146

607

664

2283

772

464

676

2140

447

2489

2588

2677

382

74

124

266

2111

100

1912

2620

2546

38

2334

1656

619

2317

1048

50

2497

1671

2642

1240

397

476

409

647

2128 1924

1863

2517

807

1444

2534

2067

(c) RCPG R

Figure 6.1: A Second Deadlock Example

51

6. Examples and Empirical Data

a

Fork(T2)

b

Join(T2)

c

(a) T1

x

(b) T2

Figure 6.2: RCFGs for Example Consisting of T1 and T2

first basic block. So far, this construct allows T2 to execute its statements only after T1
has executed its statement s1.v. In order to model the join functionality, T2 gets the
additional statement s2.v immediately after its original final node. The join statement in
T1 is replaced by the semaphore call s2.p. In a similar fashion as T1 enables the execution
of T2 by calling s1.v, T2 allows T1 to go on with its execution by calling s2.v.

6.2.1 Example

In this example, we use the two threads T1 and T2 as depicted in Figure 6.2. The threads
call the semaphore operations exactly as described above. In addition, the thread T1
(Figure 6.2a) executes a before forking thread T2, c after joining T2, and b between the
fork and join statements. The thread T2 (Figure 6.2b) initially executes the edge x.
The two RCFGs are adapted as described above. The resulting RCFGs are depicted
in Figure 6.3. The expectation is that the parts of T1 before the fork statement and
the basic blocks below the join statement are not interleaved with the only edge of T2,
namely x. It can easily be seen in the resulting RCPG, which is depicted in Figure 6.4,
that this expectation is met.

6.3 Client-Server Example

We have done analysis on client-server scenarios using our lazy implementation. For the
example presented here we have used multiple clients and a semaphore of the form shown
in Figure 6.5a and 6.5b, respectively.

In Table 6.5c statistics for 1, 2, 4, 8, 16, and 32 clients are given. Figure 6.5d shows
the resulting graph for 8 clients. The few nodes in the resulting matrix and the node
IDs indicate that most nodes in the resulting matrix are superfluous. The case of 32

52

6.3. Client-Server Example

a

s1.v

b

s2.p

c

(a) Adapted T1

s1.p

x

s2.v

(b) Adapted T2

Figure 6.3: Adapted RCFGs for Example Consisting of T1 and T2

a

s1.v

b b b b
s1.p

s1.p x

x

s2.v

s2.v

s2.p

c

Figure 6.4: RCPG of the T1-T2-System

53

6. Examples and Empirical Data

1

2

3

C.p

C.a

C.v

(a) Client

1

2

p v

(b) Semaphore

Clients Nodes Edges Exec. Time Potential Nodes

1 3 3 0.0013s 6
2 5 6 0.0013s 18
4 9 12 0.0045s 162
8 17 24 0.012s 13,122

16 33 48 0.068s 86,093,422
32 65 96 0.43s 3.706× 1015

(c) Statistics

1

56

C1.p

4

C2.p

164

C3.p

8

C4.p

488

C5.p

20

C6.p

1460

C7.p

4376

C8.p

110

C1.a

6

C2.a

326

C3.a

14

C4.a

974

C5.a

38

C6.a

2918

C7.a

8750

C8.a

C1.v C2.v C3.v C4.v C5.v C6.v C7.v C8.v

(d) Result for 8 Clients

Figure 6.5: Client-Server Example

clients and one semaphore forms a matrix with an order of approx. 3.706× 1015. Our
implementation generated only 65 nodes in 0.43s. In fact we observed a linear growth
in the number of clients for the number of nodes and edges and for the execution time.
We did our analysis on an Intel Xeon 2.8 GHz with 8GB DDR2 RAM. Note that an
implementation of the matrix calculus for shared memory concurrent systems has to
provide node IDs of a sufficient size. The order of T ◦ S can be quite big, although the
resulting RCPG is small.

54

6.4. A Data Race Example

T1 ()
1 s.p {edge T1.p}
2 r ← sv {edge a}
3 r ← r + 1 {edge b}
4 sv ← r {edge b}
5 s.v {edge T1.v}
T2 ()
1 t← sv {edge c}
2 s.p {edge T2.p}
3 t← t+ 1 {edge d}
4 sv ← t {edge d}
5 s.v {edge T2.v}

Figure 6.6: Data Race Example

6.4 A Data Race Example

With this example, we indicate that data flow analysis (cf. [RP86, RP88, SGL98, KU76])
can be done on CPGs.

We give an example, where a programmer is supposed to have used synchronization
primitives in a wrong way. The program consisting of two threads, namely T1 and T2, and
a semaphore s are given in Figure 6.6. Comments in the pseudocode denote each code
line’s RCFG edge (thus after edge splitting). Before edge splitting each thread consists
of exactly one basic block. We assume that sv = 0 at program start. It is supposed that
the program delivers sv = 2 when it terminates. Both threads in the program access the
shared variable sv. The variables r and t are local to the corresponding threads. The
programmer inadvertently has placed line 1 in front of line 2 in T2.

After edge splitting, we get the RCFGs depicted in Figure 6.7. We assume a semaphore
as shown in Figure 2.3a.

The adjacency matrices of the threads T1 and T2 are

T1 =


0 T1.p 0 0 0
0 0 a 0 0
0 0 0 b 0
0 0 0 0 T1.v
0 0 0 0 0

 and T2 =


0 c 0 0 0
0 0 T2.p 0 0
0 0 0 d 0
0 0 0 0 T2.v
0 0 0 0 0

 .

Although the following matrices are not computed by our lazy implementation, we give
them here to allow the reader to see a complete example. To enable a concise presentation,
we define the following submatrices of order five:

55

6. Examples and Empirical Data

1

2

3

4

5

T1.p

a

b

T1.v

(a) T1

1

2

3

4

5

c

T2.p

d

T2.v

(b) T2

Figure 6.7: RCFGs for Data Race Example

H =


0 c 0 0 0
0 0 T2.p 0 0
0 0 0 d 0
0 0 0 0 T2.v
0 0 0 0 0

 , I =


T1.p 0 0 0 0

0 T1.p 0 0 0
0 0 T1.p 0 0
0 0 0 T1.p 0
0 0 0 0 T1.p

 ,

J = a · I5,K = b · I5, and L =


T1.v 0 0 0 0

0 T1.v 0 0 0
0 0 T1.v 0 0
0 0 0 T1.v 0
0 0 0 0 T1.v

 .

Now, we get T = T1 ⊕ T2, a matrix of order 25, consisting of the submatrices defined
above and zero matrices of order five (instead of Z5 simply denoted by 0).

T =


H I 0 0 0
0 H J 0 0
0 0 H K 0
0 0 0 H L
0 0 0 0 H

 .

To shorten the presentation of P = T ◦ S we define the following submatrices of order
ten: W = a · I10, X = b · I10,

56

6.4. A Data Race Example

U =



0 0 c 0 0 0 0 0 0 0
0 0 0 c 0 0 0 0 0 0
0 0 0 0 0 T2.p 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 d 0 0 0
0 0 0 0 0 0 0 d 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 T2.v 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


,

V =



0 T1.p 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 T1.p 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 T1.p 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 T1.p 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 T1.p
0 0 0 0 0 0 0 0 0 0


, and

Y =



0 0 0 0 0 0 0 0 0 0
T1.v 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 T1.v 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 T1.v 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 T1.v 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 T1.v 0


.

With the help of zero matrices of order ten, we can state the program’s matrix

P = T ◦ S = T ◦
(

0 p
v 0

)
=


U V 0 0 0
0 U W 0 0
0 0 U X 0
0 0 0 U Y
0 0 0 0 U

 .

The final node can be calculated by using Formula 4.2 from Section 4.2. Thus the final
node is 52 ∗ 2− 2 + 1 = 49.

Matrix P has order 50. The corresponding RCPG is shown in Figure 6.8. Our lazy
implementation computes only the 19 reachable nodes. Due to synchronization the other

57

6. Examples and Empirical Data

1

(0, ⊥, ⊥)

12

22

32

41

43

46

48

3

14

24

34

6

8

9

20

30

40

49

T1.p

(0, ⊥, ⊥)

a
(0, 0, ⊥)

b
(1, 1, ⊥)

T1.v

(1, 1, ⊥)

c
(0, ⊥, 0)

c

(0, ⊥, 0)

c

(0, 0, 0)

c

(1, 1, 1)

c

(1, 1, 1)

T2.p

(0, ⊥, 0)

T2.p

{(1, 1, 1), (1, 1, 0)}

d
(1, ⊥, 1)

d

{(2, 1, 2), (1, 1, 1)}

T2.v

(1, ⊥, 1)

T2.v

{(2, 1, 2), (1, 1, 1)}

T1.p

(0, ⊥, 0)

T1.p

(1, ⊥, 1)

a

(0, 0, 0)

a

(1, 1, 1)

b

(1, 1, 0)

b

(2, 2, 1)

T1.v

{(1, 1, 1), (1, 1, 0)}

T1.v

(2, 2, 1)

Figure 6.8: CPG of Data Race Example

parts are not reachable. In addition to the usual labels we have add a set of tuples to
each edge in the CPG of Figure 6.8. Tuple (x, y, z) denotes values of variables, such
that sv = x, r = y and t = z. We use ⊥ to refer to an undefined value. A tuple shows
the values after the basic block on the corresponding edge has been evaluated. The
entry node of the CPG is Node 1. At program start we have the variable assignment
(0,⊥,⊥). At Node 49 we result in the set of tuples {(1, 1, 1), (2, 1, 2), (2, 2, 1)}. Due to
the interleavings different tuples may occur at join nodes. This is reflected by a set of
tuples. As stated above the program is supposed to deliver sv = 2. Thus the tuple
(1, 1, 1) shows that the program is erroneous. The error is caused by a data race between
the edges c of thread T2 and the edges a and b of thread T1.

6.5 Empirical Data

In Section 6.3, we already gave some empirical data concerning client-server examples.
In this section, we give empirical data for ten additional examples.

Let o(P) and o(R) refer to the order of the adjacency matrix P (which is not computed
by our lazy implementation) and the order of the adjacency matrix R of the RCPG,
respectively. In addition k and r refer to the number of threads and the number of
semaphores, respectively.

58

6.5. Empirical Data

k r o(P)
√

(o(P)) o(R) Runtime [s]

2 4 256 16.00 12 0.03
3 5 4800 69.28 30 0.097542
4 6 124416 352.73 98 0.48655
3 6 75264 274.34 221 1.057529
4 7 614400 783.84 338 2.537082
4 8 1536000 1239.35 277 2.566587
4 8 737280 858.65 380 3.724364
4 13 298721280 17283.56 2583 96.024073
4 11 55050240 7419.58 3908 146.81
5 6 14929920 3863.93 7666 309.371395

Table 6.1: Empirical Data

In the following, we use the data depicted in Table 6.1.2 The numbers in the fourth
column are rounded to two decimal places. As a first observation we note that except
for one example all values of o(R) are smaller than the corresponding values of

√
(o(P)).

In addition, the runtime of our implementation shows a strong correlation to the order
o(R) of the adjacency matrix C of the generated CPG with a Pearson product-moment
correlation coefficient of 0.9990277130. In contrast the values of the theoretical order
o(P) of the resulting adjacency matrix P correlate to the runtime only with a correlation
coefficient of 0.2370050995.3

These observations show that the runtime complexity does not depend on the order o(P)
which grows exponentially in the number of threads. We conclude this chapter by stating
that the collected data give strong indication that the runtime complexity of our approach
is linear in the number of nodes present in the RCPG, i.e., the size of the solution.

6.5.1 Improvements via a Parallel Version

By choosing a worklist algorithm our lazy implementation allows for simple parallelizing.
For example, retrieving the entries of left and right operands can be done concurrently.
Exploiting this, we achieved further performance improvements for our implementation if
run on multi-core architectures. We present some results for an example modeling five
dining philosophers in such a way that it does not deadlock. Thus the full reachable state
space has to be generated. On a machine able simultaneously executing 16 threads we
achieved the reductions depicted in Figure 6.9. The number of threads generating the
RCPG is situated on the x-axis. Note that the diagram is actually defined for natural
numbers only. The achieved reduction in time can be seen on the y-axis. For example
using 16 threads it took 1/14.6 of the time compared to using a single thread.

2We did our analysis on an Intel Pentium D 3.0 GHz machine with 1GB DDR RAM running
CentOS 5.6.

3Both correlation coefficients are rounded to ten decimal places.

59

6. Examples and Empirical Data

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
0

5

10

15

20

Figure 6.9: Improvements via a Parallel Version

Another deadlock free program consisting of five threads calling 15 binary semaphores. For
this example, each thread’s RCFG contains 16 nodes. The theoretical adjacency matrix
representing the program has an order of 165 · 215 = 8, 153, 726, 976. Our implementation
generates the reachable part (RCPG) containing 65,944 nodes in 2.49 seconds.4 Note
that only 0.00081% of the potential graph are reachable.

4The analysis was done on an Intel Core i7-6700k, 4.0 GHz, 16 GB RAM, Ubuntu 14.04.2, 64 bit

60

CHAPTER 7
Static Analysis of Barriers

“Auch aus Steinen,
die einem in den Weg gelegt werden,

kann man Schönes bauen.”

– JOHANN WOLFGANG VON GOETHE, German writer and statesman, 1749-1832

In this chapter, we present a new synchronization primitive modeling barriers. This
barrier synchronization construct was developed during the work for this doctoral thesis.
It appeared for the first time in [MB16b]. By adopting this synchronization primitive,
we are able to statically analyze Ada multi-tasking programs that employ barriers
for synchronization issues. It turns out that we can use our lazy Kronecker algebra
implementation out-of-the-box (as presented in Section 4.7) for concurrent program graphs
(CPGs) using such barrier synchronization primitives. In addition, we show how our
Kronecker algebra-based approach can be used to prove both, namely semaphore-based
barrier implementations and their usage scenarios, correct.

Kronecker algebra is an useful vehicle to model multi-threaded shared memory programs
and stochastic automata [BK02, MB11, MB12b, Pla85]. Kronecker sum, Kronecker
product, and a slightly adapted version of Kronecker product are applied to the ad-
jacency matrices of the underlying concurrent programs’ control flow graphs (CFGs)
and the synchronization primitives’ graph representations. Until now we have applied
Kronecker algebra analysis to multi-threaded concurrent programs being synchronized
via semaphores. In [BB14] also a Kronecker algebra-based approach is applied to higher
level synchronization primitives like Ada’s protected objects (POs). Applying Kronecker
algebra to Ada’s barriers is novel in this area.

The contributions of this chapter are as follows.

1. We show how to model Ada’s barriers such that Kronecker algebra can be employed

61

7. Static Analysis of Barriers

for static analysis. This is done by introducing a novel synchronization primitive
modeling the semantics of barriers.

2. We compare our barrier synchronization primitive with a barrier implementation
based on semaphores. As a byproduct, we show how our CPG-based approach
can be used as a basis for proving such implementations correct. It turns out that
our barrier construct is better suited for program analysis because it fully can be
analyzed by static analysis1, while the implementations using semaphores, in order
to omit dead paths, require advanced techniques (e.g. symbolic analysis [BSB12]).

The outline of this chapter is as follows: In Section 7.1, we introduce novel synchro-
nization primitives for modeling the semantics of barriers. We also compare our barrier
construct with barriers modeled by semaphores and show how semaphore-based barrier
implementations can be analyzed. Related work is discussed in Section 10.3. Finally, we
conclude this chapter in Section 11.1.

7.1 Barriers

Kronecker algebra until now has only been applied to concurrent programs that use
semaphores and Ada’s protected objects (POs) for synchronization. In this section, we
propose a new synchronization primitive modeling the behavior of barriers. We will
give examples and we will compare our solution with the barrier implementation found
in [Dow05]. Several other implementations of barriers can be found in [HS98].

A barrier is a synchronization construct available in most modern programming languages,
e.g., Ada and Java. It is used when threads have to wait for each other. Thus a barrier
is used to synchronize a set of n threads. The first thread(s) reaching the barrier will
be blocked. When the nth thread reaches the barrier all the threads are released and
continue their work. A barrier is called reusable, when it can be re-used after the threads
are released. In general, dynamic and static barriers are distinguished. Static barriers
have a statically fixed number of participating threads, while the number of threads can
vary at runtime for dynamic barriers.

In Ada, barriers are available in form of synchronous barriers [Bru16, D.10.1] available in
the package Ada.Synchronous_Barriers. Tasks calling its procedure Wait_For_Release
will be blocked until the Release_Threshold is reached. Java supports barriers in form
of the class CyclicBarrier [Gon12]. The method await is called when the barrier is
reached. Also a dynamic barrier, namely Phaser [Gon12], is supported in Java. Both,
Ada’s synchronous barrier and Java’s CyclicBarrier are reusable. With the class
CountDownLatch, Java has also some sort of a non-reusable barrier, where one or more
threads can wait until a set of operations being performed in other threads completes.
The approach presented in this doctoral thesis works for both, Ada’s and Java’s static
barriers. However, in the remainder of this chapter, we elaborate on Ada’s barrier in
more detail. Hence, the term task will be used instead of thread.

1Programs using our barrier synchronization primitive from within loops or conditional statements
will still require advanced techniques.

62

7.1. Barriers

0

1

2

i

3

 i

4

 d

 d

(a) Barrier (n=2)

0

1

2

 i

3

 i

6

 d

4

 i

5

 d

 d

(b) Barrier (n=3)

0

1

2

 a

3

 i

4

 d

5

 x

(c) T1

0

1

2

 b

3

 i

4

 d

5

 y

(d) T2

0

1

2

 c

3

 i

4

 d

5

 z

(e) T3

Figure 7.1: RCFGs of Tasks T1, T2, and T3 Using a Barrier

We model a call of the barrier operation Wait_For_Release with label i. This indicates
that the counter within the barrier implementation is incremented by one during such a
call. In order to set the current counter to zero all the tasks call d (decrements counter).
Both labels i and d ∈ LS. We require that the barrier labels have to be unique, i.e., the
labels of two different barriers have to be different (the same applies for all synchronization
primitives, e.g., semaphores) thus the jth barrier uses the labels ij and dj . Because the
examples in this chapter use at most one barrier, we do not have to pay much attention
to this fact.

Similar to the semaphore synchronization primitives, we now model our barrier syn-
chronization primitive. A barrier construct includes n subsequent edges labeled by i
followed by n subsequent edges labeled by d. Examples for such barrier constructs are
depicted in Figure 7.1a and Figure 7.1b. These barriers synchronize two and three
threads, respectively. In a similar way it is possible to model barriers synchronizing any
number of threads. After releasing the tasks, each of them, before allowed to continue,
calls the barrier’s d-operation. This sets the counter back to zero and ensures that the
barrier is reusable.

During CFG construction each call of the procedure Wait_For_Release is being replaced
such that i and d of the corresponding barrier synchronization primitive are called. This
replacement implies that the actually used barrier implementation has to be provably
correct. Otherwise, a proof could state correctness while abstracting away from a
faulty implementation. This proof can be done independently from proving a barrier
usage scenario correct. From a certain point of view, our barrier construct is based
on the semantics of barriers. A different approach is to use any implementation of
a barrier based on semaphores to verify a barrier usage scenario together with the

63

7. Static Analysis of Barriers

Figure 7.2: CPG for Program Consisting of T1 and T2

barrier’s implementation. As we will see in the following examples, the verification of
programs using our barrier synchronization primitive will be easier compared to barriers
implemented using semaphores.

7.1.1 Examples

As an example consider the CFGs of the tasks T1, T2, and T3 shown in Figure 7.1.
The CPG of a program consisting of the two tasks T1 and T2 is depicted in Figure 7.2,
whereas the CPG of the program consisting of the three tasks T1, T2, and T3 is shown
in Figure 7.3. The first program uses the barrier construct presented in Figure 7.1a,

64

7.1. Barriers

whereas the second program uses the barrier depicted in Figure 7.1b. Note that these
graphs are generated with our standard CPG generating software. The input programs
just use our new barrier synchronization primitive. It can easily be seen that the barrier
synchronizes the tasks correctly.

Figure 7.5 presents an example program consisting of two tasks TL1 (Figure 7.4a) and
TL2 (Figure 7.4b). Each task contains a loop and a Wait_For_Release inside the loop.
If the number of loop iterations is the same in both tasks, the final node 61 is reached;
otherwise, the program stalls at nodes 30 or 54. The number of loop iterations cannot be
calculated by the Kronecker approach. For this purpose some sort of symbolic analysis
is needed. In the simplest case, only lower and upper bounds of for-loops have to be
compared.

7.1.2 Comparison to a Barrier Implementation using Semaphores

In the following, we compare our barrier construct with the barrier implementation on
page 41 in [Dow05]. The following pseudocode is out of [Dow05].

Listing 7.1: Reusable Barrier Solution using Semaphores

rendezvous

mutex.wait() # ps

count += 1 # i

if count == n:

turnstile2.wait() # pb2 , lock the second

turnstile.signal () # vb1 , unlock the first

else # empty # T1.a; T2.e

mutex.signal () # vs

turnstile.wait() # pb1 , first turnstile

turnstile.signal () # vb1

critical point # T1.b; T2.f

mutex.wait() # ps

count -= 1 # d

if count == 0:

turnstile.wait() # pb1 , lock the first

turnstile2.signal () # vb2 , unlock the second

else # empty # T1.c; T2.g

mutex.signal () # vs

turnstile2.wait() # pb2 , second turnstile

turnstile2.signal () # vb2

Three semaphores, namely mutex, turnstile, and turnstile2, are used in order to
implement the barrier functionality. Two of them, namely mutex and turnstile2, are
initially unlocked semaphores as shown in Figure 2.4a. The semaphore turnstile is
initially locked as depicted in Figure 2.4b. We assume that the two threads T1 and T2
execute the code. Some lines are modeled by the same labels for both threads (e.g. both
threads use ps in order to get access to the variable count). Other lines are modeled
by different labels (e.g. T1 and T2 execute b and f, respectively, as their critical point).

65

7. Static Analysis of Barriers

Figure 7.3: CPG for Program Consisting of T1, T2, and T3

66

7.1. Barriers

1

2

3

4

i

d

w

x

(a) CFG for TL1

1

2

3

4

i

d

y

z

(b) CFG for TL2

Figure 7.4: CFGs for Example Consisting of TL1 and TL2

The CPG of the reusable barrier solution is depicted in Figure 7.6. The graph contains
the potential deadlock nodes 681, 761, 1774, 1790, 1961 and 2030. The red dotted edges
are dead paths which can be ruled out by a value-sensitive (e.g. symbolic) analysis
(cf. [BSB12]). Due to these red edges some nodes are unreachable which are indicated in
red, too. As an effect of this, it is easy to see, that all the potential deadlock nodes are
unreachable. We can conclude that the implementation using three semaphores is correct
but it is obviously more complex as our solution (cf. Figure 7.2) and thus it is harder
to prove its correctness. In addition, to exclude the dead paths in Figure 7.6, advanced
approaches like symbolic analysis are needed.

Similar to the reusable barrier solution above, we discuss a non-reusable barrier solution.
The following pseudocode can be found on page 29 in [Dow05].

Listing 7.2: Non-reusable Barrier Solution using Semaphores

rendezvous

mutex.wait() # ps

count = count + 1 # c

mutex.signal () # vs

if count == n: barrier.signal () # T1.v, T1.a; T2.v, T2.x

else # empty # T1.b; T2.y

barrier.wait() # p

barrier.signal () # v

critical point

Two semaphores, namely mutex and barrier, are used in order to implement the barrier’s
functionality. The first, namely mutex, is an initially unlocked semaphore as shown in
Figure 2.4a. The second semaphore, namely barrier, is an initially locked semaphore
as depicted in Figure 2.4b. The CPG of the non-reusable barrier solutionis depicted in
Figure 7.7. Again there are dead paths (the corresponding edges are presented dotted

67

7. Static Analysis of Barriers

23

40

8

56

28

20

32

41

9

57

33

45

1349

61

26 38

1

18 6

30 54

T
L
1.
i

T
L
2.i

T
L

1.i

T
L

2.
i

x
z

T
L1.
d

T
L1.
d

T
L1.
d

T
L1.
d

T
L2.d

T
L2.d

T
L2.d

T
L2.d

y

y

y

z

z

z

w

w

w

x

x

x

y

w

x z

T
L
1.
i T

L
2.i

y
wT

L
2.i

T
L
1.
i

Figure 7.5: CPG for Program Consisting of TL1 and TL2

in red) in the resulting CPG. This graph includes also a deadlock node (i.e. node 181).
Again, the paths to this node can be revealed as dead paths, e.g., by symbolic analysis.
Thus the node 181 is shown in red which states that this node is unreachable (as several
other nodes). In contrast to that, our approach does not generate any deadlock nodes
nor dead paths.

In [Dow05] it is stated that analyzing barrier implementations can be quite tricky. We
can conclude this section by stating that we introduced a technique for formally and
automatically analyze barrier implementations and programs using barriers. Thus, the
informal proof of barriers, which is mentioned in [Dow05], can be replaced by an automatic
and a more reliable one.

68

7.1. Barriers

0

1

131

T1.ps

11

T2.ps

259

T1.i

19

T2.i

28

T2.pb2

35

T2.e

388

T1.pb2

515

T1.a

520

T1.vb1

641

T1.vs

40

T2.vb1

41

T2.vs

646

T1.vs

651

T2.ps

46

T2.vs

171

T1.ps

770

T1.pb1

656

T2.ps

659

T2.i

299

T1.i

176

T1.ps

50

T2.pb1

428

T1.pb2

555

T1.a

780

T2.ps

902

T1.vb1

668

T2.pb2

675

T2.eT1.pb1

664

T2.i

180

T2.pb1

304

T1.i T1.ps

62

T2.vb1

680

T2.vb1

681

T2.vs

912

T1.vb1

788

T2.i T2.eT1.pb1

308

T1.i

192

T2.vb1T2.pb1

560

T1.a

804

T1.pb1

686

T2.vs

T2.ps

1030

T1.b

1040

T1.b

920

T2.i T2.eT1.vb1

936

T1.vb1

810

T2.vs T1.pb1

690

T2.pb1

320

T2.vb1

564

T1.aT1.vs T2.pb1

942

T2.vs

1064

T1.b T1.vb1

T1.vb1T1.vs

T1.i

200

T2.f

1048

T2.i

T2.ps

1160

T1.ps

T2.eT1.b

576

T1.a

328

T2.f

946

T2.pb1

1070

T1.b

T2.vb1T1.vs

T1.ps

70

T2.f

1074

T1.b

958

T2.vb1

1288

T1.d

T2.vs

1200

T1.ps T2.pb1

T2.e

584

T2.f

702

T1.vs T1.a

1204

T2.pb1

1328

T1.d T1.ps

1086

T2.vb1

1412

T1.pb1

1544

T1.c T2.vb1

710

T1.vs

T1.b

966

T2.f

T1.ps

80

T2.ps

T2.f

826

T1.pb1

T1.i

1539

T1.vb2

1670

T1.vs

1332

T1.d

1216

T2.vb1

1094

T2.fT1.ps

834

T1.pb1

720

T2.ps

1452

T1.pb1 T2.pb1

1584

T1.c

T1.vb1 T2.f

1665

T1.vs

1680

T2.ps

T1.vb1

844

T2.ps

88

T2.d

1794

T1.pb2

1675

T2.ps

1688

T2.i

976

T2.psT1.b

1579

T1.vb2

1344

T2.vb1

1588

T1.c

T1.pb1

728

T2.d

92

T2.pb1

104

T2.g

T2.pb1

1710

T1.vs

1704

T2.e

T1.vb1

852

T2.d

1104

T1.b

984

T2.d

1804

T2.ps

1921

T1.vb2 T1.pb2

1683

T2.i

1600

T1.c

1352

T2.f

1468

T1.pb1

1714

T1.vs T2.vb1

T2.ps

1224

T1.ps

1705

T1.vs

1112

T2.d

988

T2.pb1 T1.b

1000

T2.gT2.pb1

T1.pb1732

T2.pb1

744

T2.g

1812

T2.i

1931

T1.vb2

T1.d

1726

T2.vb1

T1.pb2

1692

T2.pb2

1699

T2.e

T1.vs

1608

T2.f

1834

T1.pb2

T1.d

T2.f

T2.vs

99

T2.vb2

110

T2.vs

1734

T2.f

1828

T2.e

1939

T1.vb2

T1.c

1476

T1.pb1

T2.vb1T2.vsT1.pb2

T1.vb1

868

T2.g

T2.f

1595

T1.vb2

T2.i

995

T2.vb2

1116

T1.b T2.pb1

1128

T2.g

1006

T2.vsT1.b

105

T2.vs

1744

T2.ps

T1.vs

T2.vs

1955

T1.vb2

1961

T1.vb2

1001

T2.vs

1123

T1.b T2.vb2

T1.vb1

874

T2.vs

240

T1.ps

T2.e

1948

T2.pb2

T2.vs

1752

T2.d

368

T1.i

1603

T1.vb2

1129

T1.b

1010

T2.pb2 T2.vs

T2.f

1721

T1.vs

T1.vb1

624

T1.a

1729

T1.vs

1259

T1.ps

1138

T2.pb2

235

T1.ps

114

T2.pb2

T1.b

1017

T2.vb2

T2.f

1850

T1.pb2

1756

T2.pb1

1768

T2.g

T2.ps

1960

T2.vb1

1134

T1.b

750

T1.vs

1966

T2.vs

1858

T1.pb2

1739

T2.ps

1763

T2.vb2

1774

T2.vs

1268

T2.pb2

1387

T1.dT1.ps

1145

T2.vb2

739

T2.vb2

T2.f

1977

T1.vb2

T1.pb1 T2.vs

1985

T1.vb2

1868

T2.ps T1.pb2

1747

T2.d

1264

T1.ps

244

T2.pb2

363

T1.i T1.ps

121

T2.vb2

1275

T2.vb2

1396

T1.dT1.ps

T1.pb1

745

T2.vs

T1.b

1892

T1.pb2

1769

T2.vs

T2.pb2

1643

T1.c

1392

T1.d

251

T2.vb2

372

T1.i T1.ps

1995

T2.ps T1.vb2

1876

T2.d

1516

T1.pb1

1648

T1.c

T2.pb2

492

T1.pb2

619

T1.a

379

T1.iT2.vb2

628

T1.a

754

T2.pb2

1403

T1.d

T2.vs

1652

T1.cT2.vb2

2003

T2.d T1.vs T2.pb2T2.gT1.vb2

2019

T1.vb2

1898

T2.vs

T1.vb2T1.vs

T1.pb2

1778

T2.pb2T2.g

508

T1.pb2

635

T1.a

T1.vs

1659

T2.vb2

2025

T2.vs T1.vb2

T1.vb1 T1.vs T2.pb2

T2.vb2T1.vs

640

T1.vb1

761

T1.vs

2034

T2.pb2

T1.c

T2.gT1.pb2

T2.vb2

2041

T2.vb2

1970

T2.pb1

1785

T2.vb2 T1.vs

1914

T1.pb2

766

T1.vs

T2.f

1982

T2.vb1

T1.vb2

890

T1.pb1

1990

T2.f

2000

T2.ps

1022

T1.vb1

2008

T2.d

1150

T1.b

2012

T2.pb1

2024

T2.g

1280

T1.ps

T2.vb2

2030

T2.vs

1408

T1.d

1532

T1.pb1

1664

T1.c

T1.vb2

1790

T1.vs

Figure 7.6: CPG of Reusable Barrier Solution using Semaphores

69

7. Static Analysis of Barriers

0

1

34

T1.ps

6

T2.ps

66

T1.c

10

T2.c

97

T1.vs

13

T2.vs

131

T1.v

102

T2.ps

161

T1.b

46

T1.ps

19

T2.v

21

T2.y

136

T2.ps

163

T1.aT1.v

166

T1.b

106

T2.cT2.ps

52

T2.v

78

T1.c

54

T2.yT1.ps

23

T2.x T1.ps

140

T2.c

168

T1.a

170

T2.c T1.b T1.v

109

T2.vs

56

T2.x

84

T1.c T2.ps

193

T1.pT1.ps

25

T2.p T1.vs

86

T2.yT2.v T1.c

173

T2.vs

172

T1.a

143

T2.vs T1.b

117

T2.y T1.v

115

T2.v

58

T2.p

88

T1.cT1.ps

31

T2.v

198

T1.pT2.cT1.vs

181

T2.y

179

T2.v90

T1.c

64

T2.v

119

T1.vsT2.p

232

T1.v

202

T2.cT1.p

175

T2.vs

T2.x T1.vs

151

T1.v

T1.b

147

T2.v T1.a

T2.y

T2.x T1.v

T1.b

236

T2.cT1.v

183

T1.b121

T2.p T1.v

205

T2.vsT1.vs

96

T2.v T2.x T1.a T1.pT2.v

T2.y

T1.a

153

T2.p

239

T2.vs

213

T2.y

T1.v

211

T2.v

T2.ps

227

T1.v

T2.x

209

T1.p

T1.p

185

T2.p

T2.ps

T1.c

247

T1.v

191

T2.v

T1.b127

T2.v

155

T1.vT1.vs

T2.x

243

T1.v

159

T1.v

T1.b

T2.v

187

T1.a

249

T2.p

T1.a

221

T1.p

T2.v

217

T1.p

251

T1.v

223

T2.v

T2.y

T2.v

255

T1.v T2.v T1.v

T1.ps

T1.aT2.v

T2.v

T2.x

T1.v

215

T2.x

T1.vT2.p

Figure 7.7: CPG of Non-Reusable Barrier Solution using Semaphores

70

CHAPTER 8
Worst-Case Execution Time

Analysis

“The only reason for time is so that everything doesn’t happen at once.”

– ALBERT EINSTEIN, German-born theoretical physicist,
Nobel Prize in Physics 1921, 1879-1955

The worst-case execution time (WCET) of a program is the maximum time it can take
to execute that program. It is somehow the opposite of the best-case execution time
(BCET). The average case execution time is in between of these two values. For reliable
and/or safety relevant real-time systems, WCET is very important property in order
to understand the timing behaviour of programs. In the ideal case, WCET analysis
determines the exact WCET. WCET analysis at least has to estimate safe upper bounds,
i.e., the resulting value does not underestimate the real WCET.

It is widely agreed that the problem of determining upper bounds on worst-case execution
times for sequential programs has been more or less solved [WEE+08]. With the advent of
multi-core processors scientific and industrial interest focuses on analysis and verification
of multi-threaded applications. WCET analysis of multi-threaded software is still a
challenge. Beside other reasons, this comes from the fact that synchronization has to be
taken into account.

In this chapter, which mainly summarizes the contributions of [MB16a, MB12b], we
focus on this issue and on automatically incorporating stalling times (e.g. caused by lock
contention) in a WCET analysis of shared memory concurrent programs running on a
multi-core architecture. The idea that thread interleavings of concurrent programs can
be studied with a matrix calculus (as established in the Chapters 3 and 4) is novel in this
research area. Our sparse matrix representations of the program are manipulated using a

71

8. Worst-Case Execution Time Analysis

lazy implementation of our extended Kronecker algebra. We describe synchronization by
extended Kronecker product and thread interleavings by Kronecker sums.

In [NYP15a] a good overview of state-of-the-art WCET techniques with their advantages
and disadvantages is given. Static, measurement-based, hybrid, and probabilistic WCET
analysis techniques are distinguished. The approach presented in this chapter can be
categorized as a static WCET analysis technique and together with measurements can be
extended to a hybrid technique. We focus on a formal definition and description of the
data flow equations for timing analysis. The low-level analysis mentioned in [NYP15a] is
omitted.

Previous work done in the field of timing analysis for multi-core (e.g. [ORS13]) assumes
that the threads are more or less executed in parallel and the threads do not heavily
synchronize with each other, except when forking and joining. Our approach supports
critical sections and the corresponding stalling times (e.g. caused by lock contention)
in the heart of its matrix operations. Forking and joining of threads can also easily be
modeled. Thus, our model is suitable for systems using both, namely concurrent and
parallel (e.g. fork and join) execution models. However, the focus in this chapter is on a
concurrent execution model.

We allow communication between threads in multiple ways, e.g., via shared memory
accesses protected by critical sections. However, we use a rather abstract view on
synchronization primitives. Modeling thread interactions on the hardware-level is out
of the scope of this dissertation. A lot of research projects have been launched to make
time predictable multi-core hardware architectures available. Our approach may benefit
from this research.

Reachable Concurrent Program Graphs (RCPGs) as introduced in Chapter 4 represent
concurrent and parallel programs similar as control flow graphs (CFGs) do for sequential
programs. In this chapter, we use RCPGs as a basis for the calculation of the WCET of the
underlying concurrent system. With this graph model, we are able to calculate the WCET
of multi-threaded programs including stalling times which are due to synchronization. In
contrast to [MB12b], we (1) adopt the generating functions-based approach presented
in [Bli02, Section 4] for timing analysis and (2) are able to handle loops. For timing
analysis, we set up a data flow equation for each RCPG node. It turns out that at certain
synchronizing nodes, stalling times (e.g. caused by lock contention) can be formulated
within data flow equations as simple maximum operations. Choosing this approach, the
calculated WCET includes stalling time. This is in contrast to most of the work done in
this field (e.g. [ORS13]), which usually adopts a partial approach, where stalling times are
calculated in a second step. However, the data flow equations are solved by well-known
elimination based data flow methods or an off-the-shelf equation solver. The WCET of
multi-threaded programs can finally be calculated with a non-linear function solver.

In this chapter, we show how to calculate the WCET of an underlying concurrent system.
Since multi-threaded programs may contain blocking because of synchronization between
threads, the terms execution time and WCET do not apply directly to concurrent systems.

72

In this doctoral thesis, we stick to the term WCET for concurrent systems, too. The
reader, however, has to be aware of the fact that, in general, the WCET includes stalling
time.

We successively apply the following steps:

1. Generate CFGs out of binary or source code (cf. Subsection 2.3).

2. Generate RCPG out of the CFGs (cf. Chapter 4).

3. Apply hardware-level analysis based on the RCPG. This is Phase 2 mentioned
in [NYP15a]. Such an analysis may take into account, e.g., shared resources like
memory, CPU caches, and buses, and other hardware components like instruction
caches and pipelining. Annotate this information at the corresponding RCPG edges.
As mentioned above this step is out of scope of this dissertation. However, in order
to get tight bounds this step is necessary (cf. [PBP13]). Some of these analyses
(e.g. cache analysis) may be performed together with the next step.

4. Establish and solve data flow equations based on the RCPG (cf. Section 8.1).
Stalling times are incorporated via these equations and not in a measured manner.
The latter would be likely to underestimate stalling times [NYP15a].

Similar to [Bli02] and [PS97], which provide exact WCET for sequential programs, our
approach calculates an exact WCET for concurrent programs running on a multi-core
CPU (not only an upper bound) provided that the number of how often each loop is
executed, the execution frequencies and execution times of the basic blocks (also of the
semaphore operations p and v)1 on RCFG level are known, and hardware impact is given.
We assume timing predictability on the hardware level, e.g., as discussed in [GKUR12].

In the remainder of this chapter, we refer to both, a processor and a core, as a processor.
Our computational model can be described as follows. We model concurrent programs by
threads which use semaphores for synchronization. We assume that on each processor
exactly one thread is running and each thread immediately executes its next statement if
the thread is not stalled.

Stalling may occur only in succession of synchronization primitive calls. Because the
data flow equations defined in this chapter do not expect v-edges blocking threads, we
restrict how semaphores can be used to the following two variants:

1. One possibility is to exclusively allow semaphores with non-blocking v-calls (as
depicted in Figure 2.4).

2. When also semaphores with potentially blocking v-calls (as shown in Figure 2.3)
shall be used, then we require a well structured program such that no thread is

1These execution times do not include stalling time which we calculate automatically.

73

8. Worst-Case Execution Time Analysis

allowed to call the v-operation of such a semaphore, when it is unlocked. This can
e.g. be ensured by a similar concept as an owner is for mutexes, where only the
owner of a mutex is allowed to unlock it.

The outline of this chapter is organized as follows. Section 8.1 is devoted to WCET
analysis of multi-threaded programs. We introduce so-called execution frequencies and
describe how we establish data flow equations and constraints for solving the equations.
An example is given in Section 8.2. Related work is discussed in Section 10.4. Finally,
the draw our conclusion in Section 11.2.1.

8.1 Worst-Case Execution Time Analysis on RCPGs

In order to calculate the WCET of a concurrent program, we adopt the generating
functions-based approach introduced in [Bli02, Section 4]. We generalize this approach
such that we are able to analyze multi-threaded programs. Each node of the RCPG is
assigned a data flow variable and a data flow equation is set up based on the predecessors
of the RCPG node. A data flow variable is represented by a vector. Each component of
the vector reflects a processor and is used to calculate the WCET of the corresponding
thread. Recall that only one single thread is allocated to a processor. Even though
RCPGs support multiple concurrent threads on one CPU, we restrict the WCET analysis
to one thread per processor. This assumption eases the definition of the data flow
equations and it is not an inherent restriction of CPGs.

8.1.1 Execution Frequencies

In the remaining part of this chapter, we will use execution frequencies [Bli02, BW09,
Ram96]. The execution frequency e(k → n) is a measure of how often the edge k → n is
taken compared to the other outgoing edges of node k.2 Thus each execution frequency
is a rational number. Its values range from 0 (which models a dead path) to 1, i.e.,
0 ≤ e(k → n) ≤ 1.

For each node k, it is required that the execution frequencies of all outgoing edges sum3

to 1, i.e., ∑
n∈Succs(k)

e(k → n) = 1.

If node k has at least two outgoing edges, then we have a so-called node constraint∑
n∈Succs(k)e(k → n) = 1. We assign a variable to each e(k → n). A concrete value is

assigned to each of these variables during the maximization process which is described
below in Section 8.1.6. If a node m has only one outgoing edge to node n, then the
execution frequency e(m→ n) = 1 is statically known and neither a node constraint nor
an additional variable for the execution frequency is needed.

2The execution frequency e(m→ n) is similar to ORACLE(P, P ′) in [Bli02].
3Similar to Kirchhoff’s point rule for electrical circuits [Kir45], but we consider only outgoing edges.

74

8.1. Worst-Case Execution Time Analysis on RCPGs

(a) RCFG of thread A (b) RCFG of thread B

Figure 8.1: RCFGs of Threads A and B

8.1.2 Loops

Let N0 refer to the set of natural numbers including zero, i.e., N0 = {0, 1, 2, . . . }. From
now on, we use the variable `i ∈ N0 to refer to the number of loop iterations of loop i at
CFG level. For each loop, we require that this number is statically known.

In this chapter, we use a running example consisting of the two threads A and B. The
corresponding CFGs are depicted in the Figures 8.1a and 8.1b.

The Kronecker sum of the two threads is depicted in Figure 8.2. It can be seen that
the Kronecker sum calculates all possible interleavings of the two threads. In addition,
we observe that the Kronecker sum generates several copies of basic blocks (in our case
edges) and loops in different places. In particular, note that thread A’s loop is copied
five times (B’s number of nodes).

Since RCPGs model all interleavings of the involved threads, a certain execution of the
underlying concurrent program (a certain path in the RCPG) may divide the code of
a loop in the CFG among all its copies in the RCPG. In particular, we do not know a
priori how a loop will be split among its copies in the RCPG for the path producing the
WCET. For this reason, we assign variables (with unknown values) to the number of loop
iterations of the loop copies in the RCPG. Later on (during the maximization process),
concrete values for this loop iteration variables are chosen such that the execution time
is maximized. Note that assigning variables to loop iteration numbers implies that some
execution frequencies have also to be considered variable. These execution frequencies
also get concrete values during the maximization process.

We refer to the number of loop iterations of the jth copy of loop i as `ji ∈ N0. This
variable denotes the number of how often the loop entry edge of the jth copy of loop i is
executed. The other edges belonging to the same loop copy may be executed differently
often. The loop entry of the jth copy (out of n) of loop i gets assigned the execution

75

8. Worst-Case Execution Time Analysis

Figure 8.2: Kronecker Sum A⊕B of Threads A and B

frequency variable

eji = `ji
`ji + 1

, where
∑n

j=1
`ji = `i.

Note that the variables `ji get numerical values during the maximization process. Thus,
the execution frequency of each loop entry edge is calculated automatically.

If node m has multiple outgoing loop entry edges for the loops 1, 2 . . . n and there exists
exactly one outgoing non loop entry edge, then the execution frequency for the loop entry
edge of loop i is `i

(
∑n

j=1`j)+1 .

Loop Iteration Constraints. Assume CFG loop i is executed `i times and n copies
(as mentioned above due to the Kronecker sum) of that loop are in the RCPG,
then we have the constraint

∑n
j=1`

j
i = `i. We assume that the value of variable `i,

i.e., the number of loop iterations on thread (CFG) level is known a priori. The
variables `ji are used as variables during the maximization process.

In general, RCPGs contain irreducible loops. Ramalingam writes in [Ram99] “A
vertex can be an entry vertex of at most one irreducible loop.”. This property does
not hold for RCPGs. Remember that RCPGs have the basic blocks on the edges.

76

8.1. Worst-Case Execution Time Analysis on RCPGs

A similar property, however, holds for each copy of a loop in RCPGs: An edge can
be an entry edge of at most one irreducible loop.

During the generation of the RCPG it is possible to remember each copy of a CFG
loop entry edge. In order to establish the loop iteration constraints, we go through
this information directly after generating the RCPG.

Loop Exit Constraints. For loop i’s jth copy, we have `ji iterations. Then we have
the loop exit constraint

xji = 1
`ji + 1

,

where xji is the sum of execution frequencies of all loop exiting edges of the jth
copy of loop i. In general, such loop exiting edges do also include edges from other
threads which do not execute any part of loop i. Note that we can calculate the loop
exit constraints automatically. Our approach does support nested loops [KKP+11]
which result in non-linear constraints. This is one reason which prohibits applying
an ILP-based approach e.g. [PS97] for solving the multi-core WCET problem.

8.1.3 Synchronizing Nodes

A thread calling a semaphore’s p-operation potentially blocks [Sta11]. On the other hand,
a thread calling a semaphore’s v-operation may unblock a waiting thread [Sta11]. In
RCPGs, blocking occurs at what we call synchronizing nodes. We distinguish between
two types of synchronizing nodes, namely vp- and pp-synchronizing nodes.

Each vp-synchronizing node has an incoming edge labeled by a semaphore v-operation,
an outgoing edge labeled by a p-operation of the same semaphore, and these two edges
are part of different threads. In this case, the thread calling the p-operation (potentially)
has to wait until the other thread’s v-operation is finished.

Definition 8 A vp-synchronizing node is an RCPG node s such that

• there exists an edge ein = (i, s) with label vk and

• there exists an edge eout = (s, j) with label pk,

where k denotes the same semaphore and the edges ein and eout are mapped to different
processors, i.e., P(ein) 6= P(eout).

For vp-synchronizing nodes, we establish specific data flow equations as described in the
following subsection.

Definition 9 A pp-synchronizing node is an RCPG node s such that

77

8. Worst-Case Execution Time Analysis

• there exists an edge eout1 = (s, i) with label pk and

• there exists an edge eout2 = (s, j) with label pk,

where k denotes the same semaphore and the edges eout1 and eout2 are mapped to different
processors, i.e., P(eout1) 6= P(eout2).

For pp-synchronizing nodes, we establish fairness constraints ensuring a deterministic
choice when e.g. the time of both involved CPUs at node s is exactly the same.

8.1.4 Setting Up And Solving Data Flow Equations

In this section, we extend the generating function [GKP94] based approach of Section 4
of [Bli02] such that we are able to calculate the WCET of concurrent programs modeled
by RCPGs. Each RCPG node’s data flow equation is set up according to its predecessors
and the incoming edges (including execution frequencies, execution time and, in case
of vp-synchronizing nodes, stalling time). These data flow equations can e.g. be solved
according to [Sre95, SGL98].

Let the vector P(z) = (P1(z), . . . , Pi(z), . . . , Pn(z))ᵀ. We write Pi(z) to denote the ith
component Pi(z) of vector P(z). In addition, Px(z) refers to the vector of node x.

Let a be a scalar and let P(z) and Q(z) be two n-dimensional vectors. The addition and
multiplication of vectors and the multiplication of a scalar with a vector are defined as
follows:

P(z) + Q(z) =(P1(z) +Q1(z), P2(z) +Q2(z), . . . , Pn(z) +Qn(z))ᵀ,
P(z) Q(z) =(P1(z)Q1(z), P2(z)Q2(z), . . . , Pn(z)Qn(z))ᵀ,

aP(z) =(aP1(z), a P2(z), . . . , a Pn(z))ᵀ.

Definition 10 (Setting up data flow equations) Let time(m → n) refer to the
time assigned to edge m → n. In addition, the set of predecessor nodes of node n
is referred to as Preds(n).

If n is a non-vp-synchronizing node and edge m→ n is mapped to processor k, then

Pn(z) =
∑

m∈Preds(n)
e(m→ n) t(m→ n) Pm(z),

where the kth component of vector t(m→ n) is ztime(m→n) and the other components of
that vector are equal to 1.

Let s be a vp-synchronizing node. In addition, let πv and πp be the processors which the
edges i→ s and s→ j are mapped to, i.e, πv = P(i→ s) and πp = P(s→ j).4 Then for
k 6= πp

Pj
k(z) = e(s→ j) t(s→ j)k Ps

k(z)
4According to the definition of vp-synchronizing nodes πv 6= πp.

78

8.1. Worst-Case Execution Time Analysis on RCPGs

and

Pj
πp(z) = e(s→ j) t(s→ j)πp max

(
Ps

πv(z),Ps
πp(z)

)
+

∑
m6=s,m∈Preds(j)

e(m→ j) t(m→ j)πp Pm
πp(z)

where the first term considers the incoming p-edge and the second term takes into account
all other incoming edges of the potentially blocking thread running on processor πp.

The max-operator in Definition 10 is not an ordinary maximum operation for numbers.
During the maximization process, we actually do the whole calculation twice. One time,
we replace max(Ps

πv(z),Ps
πp(z)) by Ps

πv(z) and then, we do this calculation using the
second solution Ps

πp(z). In the end, the solution with the highest WCET value will be
taken.

The entry node’s equation Pentry(z) follows the rules above and, in addition, for n
threads adds an n-dimensional vector (1, 1, 1, . . . , 1)T .

The data flow equations can intuitively be explained as follows. We cumulate the execution
times in an interleavings semantics fashion. One can think of taking one edge after the
other. Nevertheless, edges may be executed in parallel and the execution and stalling
times are added to the corresponding vector components. In the overall process, we get
the WCET of the concurrent program.

The system of data flow equations can be solved efficiently by applying an algorithm
presented in [SGL98]. It relies on two operations: inserting one equation into another and
solving recursions by so-called loop breaking. The order of these operations is completely
determined by the DJ graph introduced in [SGL98]. As a result, we get an explicit
formula for the final node.

In order to double-check that we calculate a correct solution, we used Mathematica c© to
solve the node equations, too. Both of the two approaches for solving the node equations
calculate the same and correct results.

8.1.5 Partial Loop Unrolling

For vp-synchronizing nodes having at least one outgoing loop entry edge5, we have
to partly unroll the corresponding loop such that one iteration is statically present in
the RCPG’s equations. Partial loop unrolling ensures that synchronization is modeled
correctly. Only the unrolled part contains a synchronizing node. Some execution
frequencies and equations have to be added or adapted. Edges have to be added to ensure
that the original and the unrolled loop behave semantically equivalent. For example, if
the original loop was able to iterate n ≥ 0 times, then the new construct must also allow

5Note that we can detect these nodes when generating the RCPG.

79

8. Worst-Case Execution Time Analysis

the same number of iterations. In order to define some execution frequencies correctly,
we are using the Kronecker delta function. We do such partial loop unrolling for our
example in Subsection 8.2.2. In our example, we e.g. have to add edge b

′
5 to allow a

zero number of iterations (compare Figure 8.3 and Figure 8.4). Note that partial loop
unrolling can be fully automated.

8.1.6 Maximization Process

In order to determine the WCET, we have to differentiate the solution for the final node
nf with respect to z and after that set z = 1.

Let functionk refer to the function representing the solution of the kth component of the
final node nf . According to well-known facts of generating functions [GKP94, Bli02] it is
defined as

functionk = d
dz Pf

k(z)
∣∣∣∣
z=1

.

In order to calculate the loop iteration count for all loop copies and to calculate the
undefined execution frequencies within the given constraints, we maximize this function.
This goes beyond the approaches given in [MB12b, Bli02]. During this maximization
step, for which we used NMaximize of Mathematica c©, e.g. all `ji are treated as variables.
For each of these variables, Mathematica finds values within the given constraints. Thus
Mathematica assigns valid values for all `ji and all the unknown execution frequencies.
Of course, instead of Mathematica, any non-linear function solver capable of handling
constraints can be used. The WCET of the kth CPU core is given by

WCETk = Maximize(functionk, {constraints}).

In the following, the variable configuration found during this maximization is used. The
WCET of a concurrent program consisting of n threads is defined as

max
(

WCET1, . . . ,WCETn
)
,

where max is the ordinary maximum operator for numbers.

If the RCPG contains s vp-synchronizing nodes, then the maximization process has to be
done 2s times. One time for each possible value of max(. . . , . . .) originating from the vp-
synchronizing nodes. At last the largest value of those 2s results represents the WCET of
the concurrent program. Hence, the computational complexity may increase exponentially
in s. However, s is usually small. For n threads and r semaphores, the number of vp-
synchronizing nodes in the CPG is bounded above by

∑r
j=1
∑n
i=1v

i
j

∑n
k=0,k 6=i p

k
j , where

vij is the number of v-operations of semaphore j in thread i and pkj is the number of
p-operations of semaphore j in thread k. Depending on how the semaphores are used not
all vp-synchronizing nodes may be part of the RCPG. In addition, information may be
available which allows to conclude that even some of the present cases cannot result in the

80

8.2. Example

final WCET value. Then, these cases need not be considered in the maximization process.
In [VBS12] an example with CPG matrix size of 298721280 has been analyzed within
400 ms. It contained 13 semaphores and only 15 synchronization nodes. Even though
the graphs for travel time analysis do not contain loops, the number of synchronizing
nodes is comparable.

8.2 Example

In this section, we go on with our running example. It consists of two threads, namely
A and B, sharing one single semaphore with operations p and v. Thus, the example
includes mutual exclusion via a semaphore. In addition, the example includes one single
loop in thread A. The CFGs of the two threads A and B are depicted in Figures 8.1a
and 8.1b, respectively. Each edge is labeled by a basic block.

Together with a RCFG of a binary semaphore, we calculate the adjacency matrix P
of the corresponding RCPG in the following steps: The interleaved threads are given
by T = A ⊕ B. Because we have only one semaphore, the interleaved semaphores are
trivially defined as

S =
(

0 p
v 0

)
.

The program’s matrix P is given by

P = T �LS S + TLV ⊗ I2,

where LS = {p, v} and LV = {a, b, c, d}. The RCPG of the A-B-system is depicted in
Figure 8.3. The edges of the RCPG are labeled by their execution frequencies on RCPG
level. However, we indicate for each execution frequency lx that it is the execution
frequency for the xth copy of basic block l.6 Due to synchronization through the used
semaphore, two out of five loop copies (compared to the Kronecker sum in Figure 8.2)
are not reachable in the RCPG. In order to establish each node’s data flow equation, we
(compared to Figure 8.2) introduce node numbers. Note that these numbers do not refer
to the corresponding matrix indices.

We assume that both threads access shared variables in the basic blocks a and d. Thus
the basic blocks a and d are only allowed to be executed in a mutually exclusive fashion.
This is ensured by using a semaphore. The basic blocks a and d are protected by p-calls.
After the corresponding thread finishes its execution of a or d, the semaphore is released
by a v-call. We assume that all the other basic blocks do not access shared variables.
Note that the threads are mapped to distinct processors and that these mappings are
immutable.

Each variable x in this example (except `, `1, `2 and `3) is a rational number such that
0 ≤ x ≤ 1. We assume that thread A’s loop is executed ` times and the three copies of

6A hardware analysis may detect that the copies of a basic block have different execution times due
to e.g. shared data caches or instruction pipelining.

81

8. Worst-Case Execution Time Analysis

Figure 8.3: RCPG

the loop are executed `1, `2 and `3 times, respectively. Thus, we have the loop iteration
constraint `1 + `2 + `3 = `, where `i ∈ N0.

For this example, we set up the data flow equations such that thread A’s and B’s
equations are defined in the vector’s first and second, respectively, vector component.

8.2.1 Equations Not Affected By Partial Loop Unrolling

Following the rules of Section 8.1, we obtain the following equations.

P1(z) = vA1

(
zτv

1

)
P3(z) +

(
1
1

)

P2(z) = pA1

(
zτp

1

)
P1(z)

P3(z) = a1

(
zτa

1

)
P2(z)

P4(z) = b1

(
zτb

1

)
P1(z)

82

8.2. Example

P5(z) = vA2

(
zτv

1

)
P7(z) + c3

(
1
zτc

)
P1(z)

P6(z) = pA2

(
zτp

1

)
P5(z) + c2

(
1
zτc

)
P2(z)

P7(z) = a2

(
zτa

1

)
P6(z) + c1

(
1
zτc

)
P3(z)

P8(z) = b2

(
zτb

1

)
P5(z) + c4

(
1
zτc

)
P4(z)

P9(z) = pB1

 P5
1(z)

zτp max
(

P5
1(z),P5

2(z)
)

P10(z) = b3

(
zτb

1

)
P9(z) + pB2

(
1
zτp

)
P8(z)

P11(z) = d1

(
1
zτd

)
P9(z)

P12(z) = b4

(
zτb

1

)
P11(z) + d2

(
1
zτd

)
P10(z)

P15(z) = a3

(
zτa

1

)
P14(z)

Note again that the max-operators in P9(z) and P′14(z) (the latter is stated in Subsec-
tion 8.2.2) originate because the original nodes 9 and 14, respectively, are vp-synchronizing
nodes and that max is not the ordinary maximum operation for numbers. During the
maximization process, for each max-operator, we do the whole calculation twice, once for
each potential solution.

8.2.2 Partial Loop Unrolling

Node 13 is a vp-synchronizing node and edge 13 → 14 constitutes a loop entry edge.
Hence, we have to apply partial loop unrolling. We get the following additional data flow
equations.

P′13(z) = vB1

(
1
zτv

)
P11(z)

P′14(z) = pA
′

3

zτp max
(

P′13
1(z),P′13

2(z)
)

P′13
2(z)


83

8. Worst-Case Execution Time Analysis

P′15(z) =
(
zτa

1

)
P′14(z)

P13(z) = vA3

(
zτv

1

)
P15(z) +

(
zτv

1

)
P′15(z)

P14(z) = pA3

(
zτp

1

)
P13(z)

P16(z) = b5

(
zτb

1

)
P13(z) + vB2

(
1
zτv

)
P12(z) + b

′
5

(
zτb

1

)
P′13(z)

The changes in the equations can be interpreted on RCPG-level as depicted in Figure 8.4
(compare to Figure 8.3). For edges whose execution frequency is 1, we write 1(a) in
order to state that the edge refers to the basic block a. For these edges, the execution
time would otherwise be unclear. In the following, we use the Kronecker delta function.
Kronecker delta δi,j is defined as

δi,j =
{

1 if i = j,

0 otherwise.

By partially unrolling the loop, we get the execution frequencies:

b
′
5 = δ`3,0,

pA
′

3 = 1− b′5,

pA3 =
{

`3−1
`3 if `3 > 1,
0 otherwise.

Note that the non-linear function solver employed for the maximization process must
be able to handle δi,j and case functions (like that used in the right hand side of pA3)
correctly.

8.2.3 Execution Frequencies and Constraints

The following execution frequencies and constraints are extracted out of the RCPG. The
execution frequencies of the loop entry edges pA1 and pA2 are established as follows:

pA1 = `1

`1+1 , pA2 = `2

`2+1 .

From the node constraints, we get a2, a3, c4, d2, vA2 , vA3 , pB2 and vB2 statically set to
1. The remaining node constraints contribute execution frequency variables and the
corresponding constraints for the final maximization process.

84

8.2. Example

Figure 8.4: Adapted RCPG

85

8. Worst-Case Execution Time Analysis

a1 = 1− c2,

b1 + c3 + pA1 = 1,

b2 + pB1 + pA2 = 1,

b3 = 1− d1,

b4 = 1− vB1 ,

b5 = 1− pA3 ,

c1 = 1− vA1 .

The loop exit constraints are as follows:

b2 + pB1 = 1
`2+1 ,

b1 + c1 + c2 + c3 = 1
`1+1 .

The time needed for executing basic block b is referred to as τb. We assume that all copies
of a certain basic block lead to the same execution time. Thus, e.g., each one out of b1,
b2 and b3 has an execution time of τb. Finally, for node 5, which is a pp-synchronizing
node, we have the following constraints. These conditions follow from our computational
model described in the introduction of this chapter and the fairness constraints from
Subsection 8.1.3:

(`1 + `2 − 1) (τp + τa + τv) < τc,

(`1 + `2) (τp + τa + τv) ≥ τc ∨ ` (τp + τa + τv) < τc,

` (τp + τa + τv) < c⇒ `3 ≡ 0.

8.2.4 Solving the Equations

We used two approaches to solve the equations. At first, we applied the eager elimination
method [Sre95, SGL98]. To double-check the solution, we used an off-the-shelf equation
solver, namely Mathematica c©, too. Both approaches calculate the same and correct
result. In the following, we solve the equations by applying the eager elimination method.
For a concise presentation, we use the notation τa + τb = τa,b. From now on, we assume

that max(P′13
1(z),P′13

2(z)) = P′13
2(z). This obviously leads to the WCET because

thread A has to wait for thread B at synchronizing node 13′. A calculation for the other
case reveals that, it does not find the WCET.

Note that the elements of our data flow framework are vectors of rational functions, i.e.,
one polynomial divided by another polynomial. Hence insertion and loop breaking are
straight-forward.

We start by substituting equation 13’ into 14’:

P′13
2(z) = vB1 zτv P11

2(z)

86

8.2. Example

P′14(z) = pA
′

3

(
zτp P′13

2(z)
P′13

2(z)

)

P′14(z) = pA
′

3

(
vB1 zτp,v P11

2(z)
vB1 zτv P11

2(z)

)

Substitute 14’ into 15’

P′15(z) = pA
′

3

(
vB1 zτa,p,v P11

2(z)
vB1 zτv P11

2(z)

)

Substitute 15’ into 13

P13(z) = vA3

(
zτv

1

)
P15(z) + pA

′
3

(
vB1 zτa,p,2v P11

2(z)
vB1 zτv P11

2(z)

)

Substitute 15 into 13

P13(z) = a3 v
A
3

(
zτa,v

1

)
P14(z) + pA

′
3

(
vB1 zτa,p,2v P11

2(z)
vB1 zτv P11

2(z)

)

Substitute 14 into 13

P13(z) = a3 p
A
3 v

A
3

(
zτa,p,v

1

)
P13(z) + pA

′
3

(
vB1 zτa,p,2v P11

2(z)
vB1 zτv P11

2(z)

)

Now, we loop break the equation of node 13:

P13
1(z) = pA

′
3 vB1 zτa,p,2v P11

2(z)
1− a3 pA3 v

A
3 z

τa,p,v

P13
2(z) = pA

′
3 vB1 zτv P11

2(z)
1− a3 pA3 v

A
3

Substitute 13 into 16

P16(z) = b5

(
zτb

1

)
P13(z) + vB2

(
1
zτv

)
P12(z) + b

′
5

(
zτb

1

)
P′13(z)

P16(z) =

 b5 pA
′

3 vB1 z
τa,b,p,2v P112(z)

1−a3 pA3 vA3 zτa,p,v

b5 pA
′

3 vB1 zτv P112(z)
1−a3 pA3 vA3

+ vB2

(
1
zτv

)
P12(z) + b

′
5

(
zτb

1

)
P′13(z)

Substitute 13’ into 16

P′13(z) = vB1

(
1
zτv

)
P11(z)

P16(z) =

 b5 pA
′

3 vB1 z
τa,b,p,2v P112(z)

1−a3 pA3 vA3 zτa,p,v

b5 pA
′

3 vB1 zτv P112(z)
1−a3 pA3 vA3

+ vB2

(
1
zτv

)
P12(z) + b

′
5 v

B
1

(
zτb

zτv

)
P11(z)

87

8. Worst-Case Execution Time Analysis

Substitute 11 into 12

P11(z) = d1

(
1
zτd

)
P9(z)

P12(z) = b4

(
zτb

1

)
P11(z) + d2

(
1
zτd

)
P10(z)

P12(z) = b4 d1

(
zτb

zτd

)
P9(z) + d2

(
1
zτd

)
P10(z)

Substitute 11 into 16

P11(z) = d1

(
1
zτd

)
P9(z)

P16(z) =

 b5 d1 pA
′

3 vB1 z
τa,b,d,p,2v P92(z)

1−a3 pA3 vA3 zτa,p,v

b5 d1 pA
′

3 vB1 z
τd,v P92(z)

1−a3 pA3 vA3

+ vB2

(
1
zτv

)
P12(z) + b

′
5 d1 v

B
1

(
zτb

zτd,v

)
P9(z)

Substitute 9 into 10

P9(z) = pB1

 P5
1(z)

zτp max
(

P5
1(z),P5

2(z)
)

P10(z) = b3

(
zτb

1

)
P9(z) + pB2

(
1
zτp

)
P8(z)

P10(z) = b3 p
B
1

 zτb P5
1(z)

zτp max
(

P5
1(z),P5

2(z)
)+ pB2

(
1
zτp

)
P8(z)

Substitute 9 into 12

P12(z) = b4 d1

(
zτb

zτd

)
P9(z) + d2

(
1
zτd

)
P10(z)

P12(z) = b4 d1 p
B
1

 zτb P5
1(z)

zτd,p max
(

P5
1(z),P5

2(z)
)+ d2

(
1
zτd

)
P10(z)

Substitute 9 into 16

P9(z) = pB1

(
P5

1(z)
zτp mP5(z)

)

P16(z) =

 b5 d1 pB1 pA
′

3 vB1 z
τa,b,d,2p,2v mP5(z)

1−a3 pA3 vA3 zτa,p,v

b5 d1 pB1 pA
′

3 vB1 z
τd,p,v mP5(z)

1−a3 pA3 vA3

+ vB2

(
1
zτv

)
P12(z)

88

8.2. Example

+ b
′
5 d1 p

B
1 v

B
1

(
zτb P5

1(z)
zτd,p,v mP5(z)

)

Substitute 3 into 1

P3(z) = a1

(
zτa

1

)
P2(z)

P1(z) = vA1

(
zτv

1

)
P3(z) +

(
1
1

)

P1(z) = a1 v
A
1

(
zτa,v

1

)
P2(z) +

(
1
1

)

Substitute 3 into 7

P7(z) = a2

(
zτa

1

)
P6(z) + c1

(
1
zτc

)
P3(z)

P7(z) = a2

(
zτa

1

)
P6(z) + a1 c1

(
zτa

zτc

)
P2(z)

Substitute 2 into 6

P2(z) = pA1

(
zτp

1

)
P1(z)

P6(z) = pA2

(
zτp

1

)
P5(z) + c2

(
1
zτc

)
P2(z)

P6(z) = pA2

(
zτp

1

)
P5(z) + c2 p

A
1

(
zτp

zτc

)
P1(z)

Substitute 2 into 7

P7(z) = a2

(
zτa

1

)
P6(z) + a1 c1

(
zτa

zτc

)
P2(z)

P7(z) = a2

(
zτa

1

)
P6(z) + a1 c1 p

A
1

(
zτa,p

zτc

)
P1(z)

Substitute 4 into 8

P4(z) = b1

(
zτb

1

)
P1(z)

P8(z) = b2

(
zτb

1

)
P5(z) + c4

(
1
zτc

)
P4(z)

P8(z) = b2

(
zτb

1

)
P5(z) + b1 c4

(
zτb

zτc

)
P1(z)

89

8. Worst-Case Execution Time Analysis

Now, we have a strongly connected component (SCC) [SGL98, Tar72] containing the
nodes 5, 6, and 7. We have to collapse the SCC now. We substitute 6 into 7:

P6(z) = pA2

(
zτp

1

)
P5(z) + c2 p

A
1

(
zτp

zτc

)
P1(z),

P7(z) = a2

(
zτa

1

)
P6(z) + a1 c1 p

A
1

(
zτa,p

zτc

)
P1(z),

P7(z) = a2 p
A
2

(
zτa,p

1

)
P5(z) + a2 c2 p

A
1

(
zτa,p

zτc

)
P1(z)

+ a1 c1 p
A
1

(
zτa,p

zτc

)
P1(z).

Next, we substitute 7 into 5:

P5(z) = vA2

(
zτv

1

)
P7(z) + c3

(
1
zτc

)
P1(z),

P5(z) = a2 p
A
2 v

A
2

(
zτa,p,v

1

)
P5(z) + (a2 c2 + a1 c1) pA1 vA2

(
zτa,p,v

zτc

)
P1(z)

+ c3

(
1
zτc

)
P1(z).

Finally, we loop break the equation of node 5. For the first component, we obtain:

P5
1(z) = a2 p

A
2 v

A
2 z

τa,p,v P5
1(z) + (a2 c2 + a1 c1) pA1 vA2 zτa,p,v P1

1(z)
+ c3 P1

1(z),

P5
1(z) = (a1 c1 + a2 c2) pA1 vA2 zτa,p,v P1

1(z) + c3 P1
1(z)

1− a2 pA2 v
A
2 z

τa,p,v
,

and for the second component, we get

P5
2(z) = a2 p

A
2 v

A
2 P5

2(z) + (a1 c1 + a2 c2) pA1 vA2 zτc P1
2(z) + c3 z

τc P1
2(z),

P5
2(z) = (a1 c1 + a2 c2) pA1 vA2 zτc P1

2(z) + c3 z
τc P1

2(z)
1− a2 pA2 v

A
2

.

Hence, we have

P5(z) =

 (a1 c1+a2 c2) pA1 vA2 zτa,p,v P11(z)+c3 P11(z)
1−a2 pA2 vA2 zτa,p,v

(a1 c1+a2 c2) pA1 vA2 zτc P12(z)+c3 zτc P12(z)
1−a2 pA2 vA2

 .
Substitute 5 into 8

P8(z) = b2

(
zτb

1

)
P5(z) + b1 c4

(
zτb

zτc

)
P1(z)

90

8.2. Example

P8(z) = b2

(
zτb

1

)  (a1 c1+a2 c2) pA1 vA2 zτa,p,v P11(z)+c3 P11(z)
1−a2 pA2 vA2 zτa,p,v

(a1 c1+a2 c2) pA1 vA2 zτc P12(z)+c3 zτc P12(z)
1−a2 pA2 vA2

+ b1 c4

(
zτb

zτc

)
P1(z)

Substitute 8 into 10

P10(z) = b3 p
B
1

 zτb P5
1(z)

zτp max
(

P5
1(z),P5

2(z)
)+ pB2

(
1
zτp

)
P8(z)

P10(z) = b3 p
B
1

 zτb P5
1(z)

zτp max
(

P5
1(z),P5

2(z)
)

+ b2 p
B
2

(
zτb

zτp

)  (a1 c1+a2 c2) pA1 vA2 zτa,p,v P11(z)+c3 P11(z)
1−a2 pA2 vA2 zτa,p,v

(a1 c1+a2 c2) pA1 vA2 zτc P12(z)+c3 zτc P12(z)
1−a2 pA2 vA2


+ b1 c4 p

B
2

(
zτb

zτc,p

)
P1(z)

Substitute 5 into 10

We postpone this insertion. We instead introduce variable mP5(z) in order to get a
concise presentation.

P5(z) =

 (a1 c1+a2 c2) pA1 vA2 zτa,p,v P11(z)+c3 P11(z)
1−a2 pA2 vA2 zτa,p,v

(a1 c1+a2 c2) pA1 vA2 zτc P12(z)+c3 zτc P12(z)
1−a2 pA2 vA2


P10(z) = b3 p

B
1

(
zτb P5

1(z)
zτp mP5(z)

)
+ b2 p

B
2

(
zτb

zτp

)  (a1 c1+a2 c2) pA1 vA2 zτa,p,v P11(z)+c3 P11(z)
1−a2 pA2 vA2 zτa,p,v

(a1 c1+a2 c2) pA1 vA2 zτc P12(z)+c3 zτc P12(z)
1−a2 pA2 vA2


+ b1 c4 p

B
2

(
zτb

zτc,p

)
P1(z)

where

mP5(z) = max
(

P5
1(z),P5

2(z)
)

Substitute 10 into 12

P12(z) = b4 d1 p
B
1

 zτb P5
1(z)

zτd,p max
(

P5
1(z),P5

2(z)
)+ d2

(
1
zτd

)
P10(z)

P12(z) = b4 d1 p
B
1

 zτb P5
1(z)

zτd,p max
(

P5
1(z),P5

2(z)
)+ b3 d2 p

B
1

(
zτb P5

1(z)
zτd,p mP5(z)

)

91

8. Worst-Case Execution Time Analysis

+ b2 d2 p
B
2

(
zτb

zτd,p

)  (a1 c1+a2 c2) pA1 vA2 zτa,p,v P11(z)+c3 P11(z)
1−a2 pA2 vA2 zτa,p,v

(a1 c1+a2 c2) pA1 vA2 zτc P12(z)+c3 zτc P12(z)
1−a2 pA2 vA2


+ b1 c4 d2 p

B
2

(
zτb

zτc,d,p

)
P1(z)

Substitute 5 into 12

Again, we are postponing this step. We use the variable mP5(z) in order to shorten the
presentation of the equation.

P12(z) = b4 d1 p
B
1

(
zτb P5

1(z)
zτd,p mP5(z)

)
+ b3 d2 p

B
1

(
zτb P5

1(z)
zτd,p mP5(z)

)

+ b2 d2 p
B
2

(
zτb

zτd,p

)  (a1 c1+a2 c2) pA1 vA2 zτa,p,v P11(z)+c3 P11(z)
1−a2 pA2 vA2 zτa,p,v

(a1 c1+a2 c2) pA1 vA2 zτc P12(z)+c3 zτc P12(z)
1−a2 pA2 vA2


+ b1 c4 d2 p

B
2

(
zτb

zτc,d,p

)
P1(z)

Substitute 12 into 16

P12(z) = b4 d1 p
B
1

(
zτb P5

1(z)
zτd,p mP5(z)

)
+ b3 d2 p

B
1

(
zτb P5

1(z)
zτd,p mP5(z)

)

+ b2 d2 p
B
2

(
zτb

zτd,p

)
P5(z) + b1 c4 d2 p

B
2

(
zτb

zτc,d,p

)
P1(z)

P16(z) =

 b5 d1 pB1 pA
′

3 vB1 z
τa,b,d,2p,2v mP5(z)

1−a3 pA3 vA3 zτa,p,v

b5 d1 pB1 pA
′

3 vB1 z
τd,p,v mP5(z)

1−a3 pA3 vA3


+ b4 d1 p

B
1 v

B
2

(
zτb P5

1(z)
zτd,p,v mP5(z)

)
+ b3 d2 p

B
1 v

B
2

(
zτb P5

1(z)
zτd,p,v mP5(z)

)

+ b2 d2 p
B
2 v

B
2

(
zτb

zτd,p,v

)
P5(z) + b1 c4 d2 p

B
2 v

B
2

(
zτb

zτc,d,p,v

)
P1(z)

+ b
′
5 d1 p

B
1 v

B
1

(
zτb P5

1(z)
zτd,p,v mP5(z)

)

Substitute 5 into 16 (postponed)

Substitute 2 into 1

P2(z) = pA1

(
zτp

1

)
P1(z)

92

8.2. Example

P1(z) = a1 v
A
1

(
zτa,v

1

)
P2(z) +

(
1
1

)

P1(z) = a1 p
A
1 v

A
1

(
zτa,p,v

1

)
P1(z) +

(
1
1

)

Now, we have to loop break the equation of node 1, i.e., 6� 1:

P1(z) =

 1
1−a1 pA1 vA1 zτa,p,v

1
1−a1 pA1 vA1


Finally, we substitute 1 into 16 and get the resulting equations for the final node 16:

P16(z) =

 b5 d1 pB1 pA
′

3 vB1 z
τa,b,d,2p,2v mP5(z)

1−a3 pA3 vA3 zτa,p,v

b5 d1 pB1 pA
′

3 vB1 z
τd,p,v mP5(z)

1−a3 pA3 vA3


+ b4 d1 p

B
1 v

B
2

(
zτb P5

1(z)
zτd,p,v mP5(z)

)
+ b3 d2 p

B
1 v

B
2

(
zτb P5

1(z)
zτd,p,v mP5(z)

)

+ b2 d2 p
B
2 v

B
2

(
zτb

zτd,p,v

)
P5(z)

+ b1 c4 d2 p
B
2 v

B
2

(
zτb

zτc,d,p,v

)  1
1−a1 pA1 vA1 zτa,p,v

1
1−a1 pA1 vA1


+ b

′
5 d1 p

B
1 v

B
1

(
zτb P5

1(z)
zτd,p,v mP5(z)

)
.

The equations per component are

P16
1(z) = b5 d1 p

B
1 p

A′
3 vB1 zτa,b,d,2p,2v mP5(z)

1− a3 pA3 v
A
3 z

τa,p,v

+ b4 d1 p
B
1 v

B
2 zτb P5

1(z) + b3 d2 p
B
1 v

B
2 zτb P5

1(z)

+ b2 d2 p
B
2 v

B
2 zτb P5

1(z) + b1 c4 d2 p
B
2 v

B
2 zτb

1
1− a1 pA1 v

A
1 z

τa,p,v

+ b
′
5 d1 p

B
1 v

B
1 zτb P5

1(z)

and

P16
2(z) = b5 d1 p

B
1 p

A′
3 vB1 zτd,p,v mP5(z)

1− a3 pA3 v
A
3

+ b4 d1 p
B
1 v

B
2 zτd,p,v mP5(z) + b3 d2 p

B
1 v

B
2 zτd,p,v mP5(z)

+ b2 d2 p
B
2 v

B
2 zτd,p,v P5

2(z) + b1 c4 d2 p
B
2 v

B
2 zτc,d,p,v

1
1− a1 pA1 v

A
1

+ b
′
5 d1 p

B
1 v

B
1 zτd,p,v mP5(z),

93

8. Worst-Case Execution Time Analysis

Thread 1 2 3 4 5 6 7 8 9 10 11 12 13 Parameter WCET PROG. Time [s]
τc `x

A p a a v p a a v b 1, 2, 3 12 48,45
B c · c p d v `1 = `3 = 1, `2 = 0
A p a a v p a a v b 4 12 53,21
B c c c c p d v `1 = `3 = 1, `2 = 0
A p a a v p a a v b 5, 6, 7, 8 11 9,11
B c c c c c · · c p d v `1 = `2 = 1, `3 = 0
A p a a v p a a v b 9 12 8,59
B c c c c c c c c c p d v `1 = `2 = 1, `3 = 0
A p a a v p a a v b 10 13 8,77
B c c c c c c c c c c p d v `1 = `2 = 1, `3 = 0

Table 8.1: WCET for ` = 2 and Multiple Values of τc

where

P5(z) =

 (a1 c1+a2 c2) pA1 vA2 zτa,p,v+c3
(1−a1 pA1 vA1 zτa,p,v)(1−a2 pA2 vA2 zτa,p,v)

(a1 c1+a2 c2) pA1 vA2 zτc +c3 zτc

(1−a1 pA1 vA1)(1−a2 pA2 vA2)


and

mP5(z) = max
(

P5
1(z),P5

2(z)
)
.

8.2.5 Maximization Process

Finally, we have to differentiate P16
n(z) with respect to z and then set z = 1.

functionk = d
dz P16

k(z)
∣∣∣∣
z=1

WCETk = Maximize(functionk, {constraints}),

where the set constraints consists of the constraints set up in Section 8.2.3. The WCET
of the concurrent program consisting of two threads is defined by

max
(

WCET1,WCET2
)
.

In Table 8.1 some WCET values of the program and its components, namely the threads
A and B, are depicted. The time needed for executing basic block b is referred to as τb.
We assume that all copies of a certain basic block lead to the same execution time. Further
we set τa = τb = τd = τp = τv = 1, ` = 2, and let τc range from 1 to 10. As described

94

8.2. Example

above, during the maximization process, we let Mathematica c© choose the values of the
variables `1, `2, `3 and all the unknown execution frequencies. We used the execution time
τc as an input parameter to see how it affects the WCET of the program. Note that the
calculated values are exact WCET values and that they do not grow linear with τc. In the
rightmost column of Table 8.1, we present the time needed by Mathematica to calculate
the time of the component leading to the WCET. Note that the maximization dominates
the overall CPU time. Generating the RCPG and solving the data flow equations takes
only a few milli seconds. Using a specialized non-linear solver would probably lead to
better maximization times. We consider finding the best non-linear function solver as
future work. Mathematica 10 was executed on a CentOS 6.0, Intel Core i7 870 CPU,
2.96GHz, 8MB cache and 4GB RAM.

95

CHAPTER 9
Deadlock Avoidance for Railway

Systems

“A man who has never gone to school may steal from a freight car;
but if he has a university education, he may steal the whole railroad.”

– THEODORE ROOSEVELT, 26th U.S. American president, 1858-1919

In this chapter, we mainly summarize the contributions of [MBS12]. At first, we relate
deadlocks in computer science to deadlocks in railway disposition systems. The major
part of this chapter is devoted to how our Kronecker algebra approach can be used in
order to avoid deadlocks in railway systems. The adaptations required for railway systems
were done during the work for this dissertation in [MBS12]. Our approach was already
extended in multiple publications [VBS12, VBS13, BSV14, SBS15, SBS16], e.g., to save
energy by minimizing stop and go of trains.

Deadlock analysis for railway systems differs in several aspects from deadlock analysis in
computer science. While the problem of deadlock analysis for standard computer systems
is well-understood, multi-threaded embedded computer systems pose new challenges. A
novel approach in this area can easily be applied to deadlock analysis in the domain of
railway systems. The approach is based on Kronecker algebra. A lazy implementation
of the matrix operations even allows analyzing exponentially sized systems in a very
efficient manner. The running time of the algorithm does not depend on the problem
size but on the size of the solution. While other approaches suffer from the fact that
additional constraints make the problem and its solution harder, our approach delivers its
results faster if constraints are added. In addition, our approach is complete and sound
for railway systems, i.e., it generates neither false positives nor false negatives.

The deadlock problem and its solutions were studied in the earliest days of computer
science. Although computer science borrowed several concepts and terminology from

97

9. Deadlock Avoidance for Railway Systems

the railway domain such as semaphores or tokens, this was not the case for the deadlock
problem. Deadlocks must have been impending in railway systems from the very beginning
and railwaymen certainly were aware of them. In contrast to these facts, no solutions
were commonly known in the midst of the 20th century. So computer scientists were the
first to study the problem intensively and to deliver adequate solutions.

In this chapter, we again use Stallings’ [Sta11] definition of deadlocks quoted in Chapter 5
as Definition 7.

For a deadlock to occur, four necessary conditions were found [JES71]:

1. Mutual exclusion: a resource that cannot be used by more than one process at a
time.

2. Hold and Wait: processes already holding resources may request new resources held
by other processes.

3. No preemption: No resource can be forcibly removed from a process holding it,
resources can be released only by the explicit action of the process.

4. Circular wait: two or more processes form a circular chain where each process waits
for a resource that the next process in the chain holds.

If one of these conditions cannot be met, a deadlock cannot occur. Clearly all four
conditions apply to railway systems.

To handle deadlock problems one distinguishes between deadlock prevention, deadlock
avoidance, and deadlock detection.

• Deadlock prevention tries to remove one of the four conditions above in order to
make it impossible for a deadlock to occur.

• Deadlock avoidance utilizes certain information about processes known in advance
to decide whether or not to allocate resources to processes. Examples for dead-
lock avoidance algorithms include the Banker’s algorithm [Dijnda], Wait/Die and
Wound/Wait algorithms to name a few.

• When a deadlock is detected at runtime, a process is terminated and restarted later
on.

Deadlocks in railway systems attracted attention when railway simulation systems became
available. Since simulations were supposed to run without human interaction, deadlocks
became an obstacle. Obviously autonomous dispatching systems also suffer from deadlock
problems if no adequate solutions can be found.

The outline of this chapter is as follows. In Section 9.1, we contrast deadlocks in computer
systems with deadlocks in railway systems. Section 9.2 gives our standard railway system

98

9.1. Deadlocks in Computers vs. Deadlocks in Railway Systems

Computer systems Railway systems

In standard computer applications all
resources are held until the process ter-
minates (not true for embedded systems
where processes may not terminate at
all).

A train seizes a track section shortly
before it enters it, and holds it until it
leaves it (which may be long before it
reaches its destination).

Program code consists of straight line
code, if, and loop statements.

Routes compare to straight line code;
there may be alternative routes which
compare to if statements; loops may be
useful for model railroad applications.

If a multi-threaded computer program
contains a deadlock, the program is er-
roneous.

If in a railway system it is possible to
bypass a deadlock situation, then the
system is correct. Deadlocks are always
possible, but can usually be bypassed.

A computer program is “correct”, if we
can prove it deadlock free.

A set of trains is schedulable if all possi-
ble deadlocks can be bypassed.

If a deadlock is detected, it is viable to
terminate a program and restart it later
on (not true for safety related embedded
systems).

Trains cannot simply be taken out of the
overall system.

Table 9.1: Differences between the Deadlock Problem in Computer and Railway Systems

model. In Section 9.3, we present a simple example. Section 9.4 shows how our resulting
graphs can be employed for finding optimal solutions. In Section 9.5, we extend our
standard model in order to solve several important practical problems. We relate our
approach to existing work in Section 10.5.

9.1 Deadlocks in Computers vs. Deadlocks in Railway Systems

In railway systems trains, routes, and track sections correspond to processes, program
code, and shared resources in computer systems, respectively.

Table 9.1 shows major differences between the deadlock problem in computer and railway
systems.

From the table above it becomes obvious that deadlock analysis methods and algorithms
well-suited for standard computer systems cannot simply be transferred to railway systems.
However, safety related embedded systems show more resemblance to railway system.
This is the reason why we try to apply the approach, we have developed for embedded
systems [MB11] to railway systems. We will show in this chapter that this approach
is in fact well-suited for railway systems. In the following, we will argue that only
deadlock avoidance makes sense in the domain of railway systems; deadlock prevention
and deadlock detection cannot be applied in this domain. Deadlock prevention is done
by ensuring that one of the four necessary conditions stated above is not fulfilled. It is
easy to see that this cannot be done for railway systems:

99

9. Deadlock Avoidance for Railway Systems

1. Mutual exclusion: Track sections have to be seized by trains exclusively.

2. Hold and Wait: It is typical that a train occupies two or more track sections at the
same time.

3. No preemption: A track section cannot be removed from a train “holding” it.

4. Circular wait: It is impossible to impose a strict order on the track sections without
posing the problem that some trains would seize all track sections of their route
from start to destination before they start running.

Deadlock detection is of no interest for railway systems because “terminating a train” is
no option.

The only remaining option is deadlock avoidance which will be discussed in the rest of
this paper.

Before we give an introduction to our railway system model, we state a few additional
differences between computer and railway systems:

• Computer systems usually consist of a number of processes (threads) and a number
of shared resources. In most cases the number of resources is much smaller than
the number of processes. In railway systems the number of track sections usually is
much greater than the number of trains.

• Besides the track sections being shared resources in railway systems there are
additional constraints that have to be met. For example train connections and
overtaking have to be taken care of, tardy trains may cause penalty, . . .

While previous approaches perform bad if additional constraints are added to the problem
domain, our approach delivers its results faster if constraints are added. This makes it a
very promising approach. Details will be given in the following sections.

9.2 Railway System Model

For an introductory example, we come back to the Example 6 of Chapter 3. We use
the graph corresponding to matrix C which is depicted in Figure 3.4a, whereas the
graph of matrix D is shown in Figure 3.4b. Now interpret C and D as being trains and
a, b, c, and d as being actions of the trains with the following meaning: a denotes train
C enters track section Ta, b means train C has left track section Ta, c denotes train
D enters track section Tb, and d means train D has left track section Tb. All possible
temporal interleavings of these actions are shown in Table 3.4c. In Figure 3.4d the graph
represented by the adjacency matrix C ⊕D is depicted. It is easy to see that all possible
temporal interleavings are generated correctly.

Now assume that Ta and Tb denote the same track section. It is clear that in this case the
temporal interleavings of Table 3.4c are no more valid. The trains have to synchronize in

100

9.2. Railway System Model

1 2 3

10

7 6 9

14 18

4

5

12

8

13

16

11 15

17

D.p C.p

D.v C.v

C.p D.p

C.v D.v

C.p D.p

D.v C.v

Figure 9.1: Graph (C ⊕D)⊗ S

order to perform their actions correctly. This can be modeled by Kronecker product and
an additional matrix of the form

S =
(

0 p
v 0

)
,

where p denotes the action “Enter the track section” and v means “Train has left the track
section”. The correct system behavior can be described by the matrix R = (C ⊕D)⊗ S.
The corresponding graph is shown in Figure 9.1. It is interesting that the graph became
decomposed into seven parts (sub-graphs). Clearly only the part reachable from the entry
node is responsible for the system behavior, the other six parts can safely be ignored.
Thus, we concentrate on the sub-graph with entry node 1. Studying this sub-graph, we see
that now the trains enter the track section one after the other. Note that the two paths
in the subgraph correctly mirror the two cases where C enters the track section before D
and vice versa. A proof that Kronecker product models synchronization correctly can be
found in [MB11]. It is also worth noting, that parts unreachable from the entry node
always occur if synchronization via Kronecker product takes place. This observation is
the major reason for the lazy implementation described in Section 4.7.

We model a general railway system S by a set of track sections T = Ti|1 ≤ i ≤ r. Each
track section Ti is modeled by matrix

Ti =
(

0 pi
vi 0

)
.

101

9. Deadlock Avoidance for Railway Systems

Figure 9.2: A Simple Example

In addition, a railway system consists of a set of trains L = Lj |1 ≤ j ≤ t. The route Rj
of train Lj is a sequence of track sections Tl1 , . . . , Tls for 1 ≤ ln ≤ r and 1 ≤ n ≤ s. Each
route is modeled by a 2s × 2s-matrix. In particular, Rj = (ri,k). The set of routes is
denoted by R = Rj |1 ≤ j ≤ t.

The behavior of railway system S〈T, L,R〉 is modeled by

S =

 t⊕
j=1

Rj

⊗(
r⊕
i=1

Ti

)
,

where during the evaluation of the Kronecker product, we replace each pi · pi by pi and
each vi · vi by vi. This is similar to the replacements done in Section 4.1. In addition to
that, we replace all other combinations, e.g., pi · vi and pi · pj , where i 6= j by 0.

Similar to Section 4.6, we get rid of these rather unaesthetic replacements by using the
selective Kronecker product. By using Definition 5 we write

S =

 t⊕
j=1

Rj

�LS
(

r⊕
i=1

Ti

)
.

The different paths in the graph corresponding to matrix S mirror all possible behaviors
of the railway system in terms of temporal interleavings of the actions of trains, namely
entering and leaving track sections. From the discussion above and from Chapter 5 it
is clear that deadlocks appear as purely structural properties of the underlying graph.
Deadlocks manifest themselves as non-final nodes1 with no successors.

9.3 A Simple Example

In this section, we give a small example on how deadlocks can be avoided by our Kronecker
algebra based approach. In Figure 9.2 a typical scenario is shown that may lead to a
deadlock. The routes of the three involved trains are given in Table 9.2. If train L3 enters
track section T3 before the other trains move, a deadlock is unavoidable.

The matrices for the three routes are setup as follows:

1A final node corresponds to the destination of a route. A final node of a railway system corresponds
to the state, where all trains have reached their destinations.

102

9.3. A Simple Example

Trains Routes

L1 p3, v1, p4, v3, v4
L2 p3, v2, p5, v3, v5
L3 p3, v5, p1, v3, v1

Table 9.2: Routes of Trains L1, L2, and L3

R1 =



0 p3 0 0 0 0
0 0 v1 0 0 0
0 0 0 p4 0 0
0 0 0 0 v3 0
0 0 0 0 0 v4
0 0 0 0 0 0


, R2 =



0 p3 0 0 0 0
0 0 v2 0 0 0
0 0 0 p5 0 0
0 0 0 0 v3 0
0 0 0 0 0 v5
0 0 0 0 0 0


, and

R3 =



0 p3 0 0 0 0
0 0 v5 0 0 0
0 0 0 p1 0 0
0 0 0 0 v3 0
0 0 0 0 0 v1
0 0 0 0 0 0


.

The matrices for the five track sections have the form

Ti =
(

0 pi
vi 0

)
for 1 ≤ i ≤ 5,

thus are semaphores like the one depicted in Figure 2.3a with the difference that for
i ∈ {1, 2, 5} the semaphore’s node 2 is its entry node. This reflects the fact that in
the beginning of this example the corresponding tracks are occupied. The order of the
resulting matrix can be computed by multiplying the order of the involved matrices,
i.e., the order of the matrices Rj and the order of the matrices Ti. In our example the
resulting matrix will have order 6912 = 6 · 6 · 6 · 25. Due to synchronization only a
small part of the resulting graph is reachable from the entry node. Only the reachable
part – consisting of 42 nodes – is depicted in Figure 9.3a. To increase readability our
implementation distinguishes between the following node types:

• Diamond nodes denote deadlocks or nodes from which only deadlocks can be
reached.

• Solid nodes denote safe states. A state is safe if all trains can perform their actions
without having to take into account the moves of the other trains in the system,
provided that the track section which they are to enter is not occupied by another
train.2

2If a track section is occupied by another train, the movement of the train wanting to enter may be
delayed, but no deadlock can occur.

103

9. Deadlock Avoidance for Railway Systems

Algorithm says system
deadlocks

Algorithm says system
does not deadlock

System deadlocks okay False negative

System does not deadlock False positive okay

Table 9.3: Four Possible Outcomes of an Analyzing Algorithm

• From dotted nodes both, diamond and solid nodes, can be reached.

If only deadlock avoidance is of interest, graphs like that in Figure 9.3a can be scaled
down. In fact, diamond nodes are of no interest because we want to avoid deadlocks.
From the set of solid nodes only those are of interest, which have dotted predecessors only.
In addition, we do not have to show the node labels, i.e., the matrix line numbers. If we
eliminate the non-interesting nodes from Figure 9.3a, we obtain the graph in Figure 9.3b.
We call such graphs NDLS-graphs because they contain no deadlock nodes and only a
limited number of safe nodes. From the two solid states the trains can proceed with their
movements in any order and no deadlock will happen. From the remaining possibilities
one path can be freely chosen. The trains will reach the final node in each of the possible
cases. An implementation may choose an energy saving and/or travelling time saving
path [VBS12].

In order to avoid deadlocks the minimal number of actions can be obtained by selecting
a path from the entry node to a solid node which is situated nearest to the entry node.
This, however, may not be the best alternative. In the next section, we elaborate on the
problem of finding the “cheapest” path.

In order to evaluate the quality of algorithms or tools it is convenient to introduce false
positives and false negatives. Assume we have an algorithm at hand that examines a
system to find out whether the system deadlocks or not. Then the four possible outcomes
depicted in Figure 9.3 exist.

It is worth noting that our approach does neither deliver false positives nor false negatives3.
Thus it is complete and sound. There is only one exception: In case of alternative routes
(cf. Section 9.5) deadlocks in all possible paths will be reported although only one path
can be chosen by the train. This situation may somehow be classified as reporting false
positives.

For computer systems our approach can be modified such that it stops as soon as the
first deadlock is found4. For railway systems the algorithm may be modified to stop as
soon as a safe state is found.

3This is true for railway systems. It is not true for computer systems because computer programs
may contain dead code, i.e., code that is never executed. Our approach will report a deadlock even if it is
contained in dead code. Thus it will deliver false positives for computer systems but no false negatives.

4This makes sense because a computer system is considered erroneous if at least one deadlock is
present.

104

9.3. A Simple Example

1

37

L3.p3

197

L2.p3

1157

L1.p3

70

L3.v5

397

L2.v2

2325

L1.v1

3479

L1.p4

4627

L1.v3

5777

L1.v4

4823

L2.p3

4663

L3.p3

5973

L2.p3

5813

L3.p3L1.v4

5023

L2.v2 L1.v4

4696

L3.v5

6173

L2.v2L1.v4

5846

L3.v5

5862

L3.p1

5890

L3.v3

5938

L3.v1

6086

L2.p3

6134

L2.p3L3.v1

6286

L2.v2

6334

L2.v2

6525

L2.p5

6713

L2.v3

6906

L2.v5

L3.v1

6477

L2.p5

L3.v1

6665

L2.v3

L3.v1

6858

L2.v5

L3.v1

L1.v4

4712

L3.p1

L1.v4

4740

L3.v3

L1.v4

4936

L2.p3

4788

L3.v1

L1.v4

4984

L3.v1

5136

L2.v2 L1.v4L2.p3

L1.v4

5184

L2.v2L1.v4L3.v1

5327

L2.p5

L1.v4

5375

L2.p5

L1.v4

5563

L2.v3

L1.v4

5756

L2.v5

L1.v4L3.v1

5515

L2.v3

L1.v4L3.v1

5708

L2.v5

L1.v4L3.v1

L1.v4

(a) Graph Containing Deadlock Nodes

L1.p3

L1.v1

L1.p4

L1.v3

L1.v4 L3.p3

L3.p3

(b) NDLS graph

Figure 9.3: Possible Train Movements

105

9. Deadlock Avoidance for Railway Systems

9.4 Avoiding Deadlocks under Additional Constraints

Our approach produces a graph which gives all temporal interleavings of train moves.
A short reflection shows that not all of these interleavings may result in an “optimal”
behavior. However, a more sophisticated analysis may choose to assign weights to the
edges of the graph. These weights can be chosen such that the term “optimal” from
above makes sense. Weights may include temporal constraints originating from physical
properties of the trains such as accelerating and braking characteristics depending, e.g.,
on the weight of the train, or penalties due to tardiness.

In any case, well-known algorithms such as those of [Dij59] or [FT84] can be applied to
graphs with nonnegative weights to find the optimal (shortest) path. Dijkstra’s algorithm
performs in time quadratic in the number of nodes of the graph. The Fredman and
Tarjan version uses time proportional to the sum of the number of edges and the number
of nodes times the logarithm of the number of nodes.

If only deadlock avoidance is of concern, the optimizations given in the previous section
apply.

9.5 Extensions of the Standard Railway Model

In this section, we discuss how our standard model defined in Section 4 can be extended
in order to solve certain important problems.

The first problem we consider occurs if the length of a train is greater than the length of
a track section. Assume a route of a train containing three consecutive track sections
t1, t2, and t3, where t2 is shorter than the length of the train. In addition assume that the
train occupies track section t1. If t2 would be long enough, the train’s moves would be
p2, v1, p3, v2, . . . In case of the short track section the train’s moves are p2, p3, v1, v2, . . .

It is clear that this approach can easily be extended if more than three track sections are
used by a train simultaneously.

Furthermore note that double slip switches can be seen as two normal switches with
a zero length track section in between. Thus routes containing double slip switches
represent typical examples of the method above.

Sometimes it is useful to model a railway system from a more abstract view. For example
one abstracts away from the track details of a station and instead would like to use only
the fact that the station has a capacity of holding c trains at the same time, where each
train is able to enter and leave the station independently from the other trains in the
station. Such a station can be modeled by a (c+ 1)× (c+ 1) matrix of the following form

0 p 0 · · · 0
v 0 p · · · 0
0 v 0 · · · 0
...

...
...

. . .
...

0 0 v 0 p
0 0 · · · v 0


.

106

9.5. Extensions of the Standard Railway Model

Figure 9.4: A More Elaborate Example

Thus our approach is able to handle abstract views as well. One can envisage even more
abstract levels such as abstracting whole railway lines to their capacity. This allows to
model nets of railway lines.

Sometimes it is useful when a train is allowed to take alternative routes. This gives more
freedom in bypassing a potential deadlock situation. Since our approach was developed for
handling embedded computer systems, it is able to handle alternatives which are present
as if-statements in computer programs. Generating matrices that model alternative
routes is very easy. A line in the matrix representing a fork state of a route has two
successors, i.e., two non-zero entries. Later on the different alternatives can be joined
and a single (straightforward) route continues. Clearly this works even for more than
two alternative routes.

As already noted our approach was developed for embedded computer systems. Thus it
also supports loop statements. Matrices modeling loops can be employed to model trains
running in loops. This might be of interest for model railroaders.

By adding further matrices, we can model synchronization of trains which can be used
to ensure connections and overtaking of trains. For example assume that we want to
ensure that train A shall not leave track section tA before train B leaves track section
tB. We introduce two “artificial track sections” d and e for synchronization with the
usual operations pd, vd, pe, and ve. In addition, we insert immediately in front of the
moves vA and vB the actions vd, pe, and pd, ve, respectively. Thus the two trains are
synchronized and we are able to model connections correctly. Instead of using additional
semaphores for synchronizing multiple trains, we may use our barrier synchronization
primitive introduced in Chapter 7.

We conclude this section with a more elaborate example containing some of the extensions
described above. In particular it contains a double slip switch (track section 7) and it
shows how overtaking can be modeled.

The system is depicted in Figure 9.4. The routes are defined as follows:

107

9. Deadlock Avoidance for Railway Systems

R1 = p3, v2, p7, p8, v3, v7, p10, v8, p11, v10, v11,

R2 = p2, v1, p9, v2, p7, p8, v9, v7, p10, v8, p11, v10, v11,

R3 = p5, v10, p4, v5, p2, v4, p1, v2, v1, and

R4 = p10, v11, p5, v10, p6, v5, p7, p9, v6, v7, p2, v9, p1, v2, v1.

Note that track section 7 has zero length; it originates from the double-slip switch located
between track sections 3, 9, 6, and 8. Kronecker algebra calculations produce a graph with
55,050,240 potential nodes. After the reductions presented in Section 5 only 992 nodes
are left. Now we introduce additional constraints. We assume that train L2 overtakes L1
and L4 overtakes L3 within the station. We need one additional “artificial track section”
for each train pair. The corresponding operations are denoted by p12, v12, p13, and v13.
Now the routes read as follows:

R1 = p3, v2, v12, p7, p8, v3, v7, p10, v8, p11, v10, v11,

R2 = p2, v1, p9, v2, p7, p8, v9, v7, p10, v8, p12, p11, v10, v11,

R3 = p5, v10, p4, v5, v13, p2, v4, p1, v2, v1, and

R4 = p10, v11, p5, v10, p6, v5, p7, p9, v6, v7, p2, v9, p13, p1, v2, v1.

Kronecker algebra produces 298,721,280 potential nodes. After the usual reductions,
however, only 144 nodes are left (cf. Figure 9.5). This means that the number of potential
nodes has grown by a factor of five, but the size of the solution has dropped by factor of
approximately 6.8. The resulting NDLS-graph is depicted in Figure 9.5. This example
shows that if constraints are added to a railway system, our approach delivers its solution
faster. This is rather atypical for recent approaches.

9.6 Concluding Remarks

In this chapter, we have presented a Kronecker algebra based approach for deadlock
analysis in railway systems. It can solve a lot of important practical problems concerning
train scheduling in railway disposition systems. By employing a lazy implementation for
the Kronecker matrix operations the solution is computed very efficiently.

By assigning weights to the edges of the resulting graph various optimizations can be
performed. This includes optimizations due to physical properties of the trains such as
accelerating and braking characteristics depending, e.g., on the weight of the train, or
penalties due to tardiness.

The running time of the algorithm does not depend on the problem size but on the size
of the solution. While other approaches suffer from the fact that additional constraints
make the problem and its solution harder, our approach delivers its results faster if
constraints are added.

108

9.6. Concluding Remarks

�
��
�
�
�
�
��
�

�
��
��

�
��
�
�
�
�
��
�

�
�
��
�
�

	

�
��
�

�
�
��
�

�
�
��
�

�
��
��
�

�
��
�
�

	

�
��
�

�
�
��
��

	

�
��
�

�
��
�
�

�
�
��
�

	

�
��
�
�

�
�
��
�

�
�
��
�

	

�
��
��

�
�
��
�

�
�
��
�

	

�
��
�
�

�
��
�
�

�
��
�
�

	

�
��
��

�
�
��
�

	

�
��
�
�

�
��
��

�
�
��
�

	

�
��
�

	

�
��
��

�
�
��
�

	

�
��
��

�
��
��

�
��
�
�

	

�
��
��

�
�
��
�

�
��
�
�

	

�
��
�
�

�
�
��
�

	

�
��
��

�
�
��
�

	

�
��
�
�

	

�
��
�
�

	

�
��
�

�
�
��
�

	

�
��
�
�

�
��
��

�
�
��
�

	

�
��
�
�

�
��
��

	

�
��
��

	

�
��
�

	

�
��
��

�
�
��
�

	

�
��
�

�
�
��
�

�
�
��
�

	

�
��
�

�
�
��
�

	

�
��
�
�

	

�
��
�

	

�
��
�
�

�
��
��

	

�
��
�

�
��
��

	

�
��
�

	

�
��
�
	

�
��
�

	

�
��
�
�

	

�
��
�

	

�
��
�
	

�
��
�

�
��
��

	

�
��
�

	

�
��
�

	

�
��
�

	

�
��
�
	

�
��
�
�

	

�
��
�

	

�
��
�

	

�
��
�

	

�
��
��

	

�
��
�
�

	

�
��
�

	

�
��
�

	

�
��

�
��
��

	

�
��
�

	

�
��
�
�

	

�
��
�

	

�
��
�

	

�
��
�

	

�
��
�

	

�
��
�

	

�
��
�

	

�
��
�

	

�
��
�

	

�
��
�

	

�
��
�

	

�
��
�

	

�
��
�

	

�
��
�

	

�
��
�

	

�
��
�

	

�
��
�

	

�
��
�

	

�
��

	

�
��

	

�
��
�

	

�
��

	

�
��
�
�

	

�
��
�

�
��
��

	

�
��

	

�
��
�
�

�
��
��

	

�
��
�

�
��
��

	

�
��
�

	

�
��
�
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��
�
�
��
��

�
��
�
�

	

�
��
�

�
��
�
�
	

�
��
�

�
�
��
�
	

�
��
��

	

�
��
�

�
��
��
�

�
�
��
�

	

�
��
�

�
�
��
��

	

�
��
�

	

�
��
�

	

�
��
��

�
��
�
�

	

�
��
�
�
��
�
�

	

�
��
��

�
��
��
�

	

�
��
�

�
��
��

	

�
��
��

	

�
��
�

	

�
��
�
�

	

�
��
�

�
�
��
�

�
�
��
�

	

�
��
�

	

�
��
�
�

�
��
��

	

�
��
��

	

�
��
�

	

�
��
�
�

�
��
�
�

	

�
��
�

�
��
��

	

�
��
��

	

�
��

	

�
��
�
�

	

�
��
�

	

�
��
�
�

	

�
��
�

	

�
��
��

	

�
��

�
��
��
�

	

�
��

�
��
�
�

	

�
��
�

�
��
�
�

	

�
��
�

�
��
�
�

	

�
��

	

�
��
��

�
��
��

	

�
��
�

�
�
��
�

	

�
��
�
�

	

�
��

	

�
��
�
�

	

�
��

�
�
��
�

	

�
��
�
�

�
�
��
�

	

�
��

	

�
��
��

	

�
��

	

�
��
��

�
��
��

	

�
��
�

�
�
��
�

	

�
��
��

	

�
��
�

�
�
��
�

	

�
��
�

	

�
��
�
�

�
�
��
�

	

�
��
�

	

�
��
��

	

�
��

	

�
��
��

	

�
��
�

�
��
��

�
��
��

	

�
��
��

	

�
��
�

	

�
��
�

�
��
��

	

�
��
��

	

�
��
��

	

�
��
�

�
��
��

	

�
��
��

	

�
��

	

�
��
��

	

�
��

�
��
��

	

�
��
�
	

�
��
��

	

�
��
��

�
��
��

	

�
��

	

�
��
��

	

�
��
��

�
��
��

	

�
��
��

	

�
��
�
�

	

�
��
�

	

�
��
�

�
��
�
�

	

�
��
�

�
��
�
�

	

�
��
�

�
��
��

�
��
�
�

	

�
��
�

�
��
��

�
�
��
�

	

�
��
�

	

�
��
�
	

�
��
�

	

�
��
�
	

�
��
�

�
��
��

	

�
��
�

	

�
��
�
	

�
��
�
�

�
��
��
�

	

�
��
�

	

�
��
�
�

	

�
��
�

�
��
��

�
��
��
�

	

�
��
�

�
��
��
�

	

�
��

�
��
��
�

�
��
��

	

�
��

�
��
��

	

�
��
�

�
��
��

	

�
��
�

�
��
��

	

�
��

�
��
��

Figure 9.5: Resulting NDLS Graph
109

CHAPTER 10
Related Work

“It might be well for all of us to remember that, while differing widely in the various
little bits we know, in our infinite ignorance we are all equal.”

– SIR KARL RAIMUND POPPER, Austrian-British philosopher, 1902-1994
Conjectures and Refutations - The Growth of Scientific Knowledge, 1963

In this chapter, we relate the work done for this dissertation to existing approaches.

10.1 Kronecker Algebra

Although not studying similar problems, we consider the following work in terms of how
we generate the graph model for concurrent programs as related work.

In this area, the closest work to ours was probably done by Buchholz and Kemper [BK02].
Buchholz and Kemper worked on generating reachability sets in composed automata. The
plain Kronecker product is used in order to describe networks of synchronized automata.
It differs from our work as follows. Boolean matrices (one matrix for each label) are
used, whereas the entries of our matrices are labels from a semiring. We use similar
definitions of Kronecker algebra and extend it such that we are able to use semaphores
and barriers for synchronization. Our approach can be used e.g. for analyzing the timing
behavior of concurrent programs, detecting deadlocks in multi-threaded software, and
avoiding deadlocks in railway systems. In addition, we propose lazy calculation of matrix
entries to optimize running time. Different techniques, including data flow analysis
(e.g. [RP86, RP88, SGL98, KU76]) and symbolic analysis (e.g. [BSB12]), can be applied
to the generated CPGs.

Although not closely related, we recognize the work done in the field of stochastic
automata networks (SAN) which is based on the work of Plateau [Pla85] and in the field
of generalized stochastic petri nets (GSPN) (e.g. [CM99]) as related work. Compared to
ours these fields are completely different. Nevertheless, basic operators are shared and
some properties influenced this doctoral thesis.

111

10. Related Work

10.2 Data Structures Modeling Concurrent Systems

Petri nets [Pet62, Rei85] are widely used to model concurrent systems. They model a
rather monolithic global system view. The focus is on the whole system instead of on
the individual threads. Petri nets have to be constructed from scratch and cannot be
generated from source code efficiently. They use markings to indicate a certain state.
The set of all markings defines all possible states. In contrast our Kronecker algebra
approach enables us to model the more or less independent components, namely threads
and synchronization primitives, of a concurrent system in form of CFGs. CFGs are
frequently used data structures anyways and Kronecker algebra (which purely relies on
simple algebraic definitions) is used to construct a global system view in a fully automated
way. The resulting concurrent program graphs (CPGs) represents the corresponding
multi-threaded program such that all interleavings and synchronization are taken into
account.

10.3 Static Analysis of Barriers

Barriers can be employed in various parallel programming models, such as single program
multiple data (SPMD, e.g., CUDA [NVI16], OpenCL [Ope16], and OpenMP [Ope13]),
fork/join, and shared memory interleaving semantics based models. In the following, we
compare some of the work done in these areas to our work.

In [AG98] the concept of structural correctness is defined to ensure that all threads
execute the same number of barriers. Static analysis is used to determine if or not a
program is structural correct. Combining this approach with ours, a large number of
programs can be automatically verified.

In [KY06, ZDG08] the focus is on determining which portions of the program may
execute in parallel. However, such analyses do not verify the correctness of barrier
synchronization. Our approach delivers whether or not a statement is concurrently
executed via the structure of the CPG.

Paper [ZD07] generalizes [AG98] by introducing barrier matching which allows to prove
a larger set of barrier scenarios correct. Our approach combined with symbolic analy-
sis [BSB12], however, is capable to verify an even larger set of such scenarios.

In [LCT13] a bounded permission system and a concurrent separation logic are presented
for verifying fork/join programs with static and dynamic barriers. Since Ada supports
static barriers only, our approach can only be compared to that part of [LCT13]. We are
sure, that our approach via symbolic analysis can verify the same set of scenarios.

In [MB12a] several barrier scenarios are verified. It will be interesting future work to see
whether these proofs have counterparts in our graph-based model.

10.4 Worst-Case Execution Time Analysis

A good overview for WCET techniques for parallel applications can be found in [NYP15a].
It presents the different approaches for determining estimations and upper bounds for
WCET with all their advantages and disadvantages. Because we proposed a static
technique, our approach has the advantages and disadvantages compared to measurement
based, hybrid, and probabilistic approaches as mentioned in that paper.

112

10.4. Worst-Case Execution Time Analysis

Our approach is the first one capable of handling parallel and concurrent software. There
exist several approaches for parallel systems which we will discuss in the following.

The P-SOCRATES project [PQB+14, FNNP16] establishes a response time analysis
technique for sporadic directed acyclic graph (DAG) tasks under partitioned scheduling.
It aims to include interference analysis in a holistic and integrated perspective, i.e.,
allowing multiple sources of interference (e.g cache, memory bus and network) in an
analysis and study how these analyses work together. The used hardware and software
stack are described in [NYP+15b]. Each task is implemented using OpenMP [Ope13]
which uses compiler directives in order to define task regions. These tasks are mapped to
clusters and then to OS threads by the OpenMP runtime environment. The OS threads
are scheduled dynamically. The adopted WCET methodology is a purely measurement-
based approach and thus has the drawback that for measurements hardware needs to be
available and it might underestimate the WCET [NYP15a]. On the other hand it has,
compared to our static approach, the advantage of higher portability and, until now, we
do not take scheduling into account. In contrast, we have parallelism and concurrency
in our graph model. Our approach can be used for a purely static WCET technique
(where the hardware needs to be modeled) and for a hybrid WCET method, where the
CPG represents the control flow and a measurement-based analysis delivers the execution
times.

In [PBP13] an IPET based approach is presented. Communication between code regions
in form of message passing is detected via source code annotations specifying the recipient
and the latency of the communication. For each communication between code regions, the
corresponding CFGs are connected via an additional edge. Hence, the data structure are
CFGs connected via communication edges. This is not enough for programs containing
recurring communication between threads. In contrast to that, our approach generates a
new data structure (RCPG) out of the input CFGs in a fully automated way. The RCPG
incorporates thread synchronization of the multi-threaded program and thus contains only
the reachable interleavings. Our approach is not limited to one single synchronization
mechanism, it can be used to model e.g. semaphores or locks. In addition, RCPGs play a
similar role for multi-threaded programs as CFGs do for sequential programs and can be
used for further analysis purposes. The hardware analysis on basic block level of [PBP13]
can be applied to our approach too.

As our approach for loops, the work presented in [ORS13] also relies on annotations.
The worst case stalling time is estimated for each synchronization operation. This time
is added to the time of the corresponding basic block. Our approach exactly detects
the points, where stalling will occur, i.e., at the vp-synchronizing nodes, and establishes
dataflow equations to handle that problem in an explicit and natural way. It calculates
the stalling times which need not be given by the user. At these points (e.g. critical
section protected via a semaphore), we can also incorporate hardware penalties for all
kinds of external communication and optimizations for e.g. shared data caches. Our
approach allows synchronization within loops in a concurrent program, whereas [ORS13]
does not support that. This is the main reason why [ORS13] can use an ILP approach.

113

10. Related Work

Similar to [ORS13], we use a rather abstract view of synchronization primitives and
assume timing predictability on the hardware level as discussed e.g. in [GKUR12].

Current steps towards multi-core analysis including hardware modelling try to restrict
interleavings and use a rigorous bus protocol (e.g. TDMA) that increases the predictabil-
ity [NPB+14]. A worst-case resource usage bound to compute the WCET overlap is used.
Hence, it finds a WCET upper bound only, while our approach determines the exact
WCET that includes stalling times.

In [GELP10], a method based on model checking of multi-core applications modeled
as timed automata is investigated. The tool box UPPAAL is used and synchroniza-
tion is modeled by using spinlock-like primitives. Since the model-checking attempt
in [GELP10] has scalability problems the authors switched to the abstract execution
approach of [GGL14]. It allows to calculate safe approximations of the WCET of pro-
grams using threads, shared memory and locks. Locks are modeled in a spinlock-like
fashion. The problem of nontermination is inherent in abstract execution. Thus, it is not
guaranteed in [GGL14] that the algorithm will terminate. This issue is partly solved by
setting timeouts.

10.5 Railway Systems

In [Cui10] Banker’s algorithm [Dijnda] is modified such that it can be employed for
deadlock analysis in railway systems. Since Banker’s algorithm has been designed for
standard computer systems it is not well-suited for railway systems. For example it
may prohibit allocating a resource (track section) although a potential deadlock can be
bypassed. In contrast to our approach, both, namely track sections and switches, have to
be modeled as resources in [Cui10].

An operations research approach is proposed in [Mar95] to do deadlock analysis in railroad
systems.

In [Pac93] Movement Consequence Analysis (MCA) and Dynamic Route Reservation
(DRR) are introduced for deadlock analysis. Both are rule-based methods for which
correctness cannot be proved. It delivers false positives.

An algorithm which can handle only simple railway networks is given in [PT83]. In
addition it produces false positives. The same restrictions apply to the approach presented
in [MPWH03].

Deadlock free algorithms are presented in [LDL04]. All of them may generate false
positives.

A colored Petri net model is used in [FGS03] to describe a railway network system and to
derive the traffic controller. Safeness and deadlock freedom are guaranteed. A deadlock
prevention strategy is defined and expressed by a set of linear inequality constraints. It
is shown how collision and deadlock prevention constraints can be expressed as colored
generalized mutual exclusion constraints and that the controller can be implemented by
a set of monitor places. It is however not clear how this approach can be extended to
find optimal solutions such as our approach suggests (cf. Section 9.4).

114

10.5. Railway Systems

In [Ž08] a colored Petri net model of a simple railway station operation is constructed
and Banker’s algorithm is employed for deadlock avoidance. It turned out that Banker’s
algorithm is not able to handle a large number of processes (trains) and resources (track
sections).

Our Kronecker algebra model for the railway domain was already extended. The adapta-
tions required for railway systems were establish during the work for this doctoral thesis.
This approach was published at first in [MBS12]. It was extended by several publications
(e.g. [VBS12, VBS13, VBS14, SVB14, BSV14, Vol14, SBS15, SBS16]). These publica-
tions are working on travel time analysis and global optimization concerning energy
saving by reducing stop and go of multiple trains.

115

CHAPTER 11
Conclusion

“Nach manchen mißglückten Versuchen, meine Ergebnisse zu einem solchen Ganzen
zusammenzuschweißen, sah ich ein, daß mir dies nie gelingen würde. Daß das Beste,

was ich schreiben konnte, immer nur philosophische Bemerkungen bleiben würden;
daß meine Gedanken bald erlahmten, wenn ich versuchte, sie, gegen ihre natürliche

Richtung, in einer Richtung weiterzuzwingen.”

– LUDWIG WITTGENSTEIN, Austrian-British philosopher, 1889-1951
Philosophische Untersuchungen, 1953 (published posthumously)

In this chapter, we draw our conclusion for this dissertation. In Section 11.1 we summarize
important aspects of this doctoral thesis. Finally, in Section 11.2 an outlook suggests
directions for future work.

11.1 Summary

We established a framework for analysis of shared memory concurrent programs. In
its heart, we introduced a generic graph model representing multi-threaded programs.
Thread synchronization is modeled by synchronization primitives like semaphores and
barriers. Threads and synchronization primitives are modeled as matrices. The matrices
are manipulated by Kronecker algebra, which we extended in the course of this dissertation.
By using this matrix calculus, we are immediately able to support conditionals, loops,
and synchronization between threads. The resulting matrix represents the analyzed
multi-threaded program. The underlying graph – which we call Concurrent Program
Graph (CPG) – plays a similar role for concurrent programs as control flow graphs do for
sequential programs. Thus a suitable graph model for analysis of multi-threaded software
has been set up which forms a basis for studying various properties (e.g. deadlock and
execution time) of programs.

In this dissertation, we extended the Kronecker algebra and proved some properties of
this matrix calculus. We used CPGs for detecting deadlocks, analysing programs using
barriers, and execution time analysis of concurrent programs. In addition, we adopted our

117

11. Conclusion

Kronecker algebra based approach in the railway domain. In the following, we summarize
these contributions.

Kronecker Algebra. For the Kronecker sum, we introduced and proved a new rule
which we call Mixed Sum Rule. Also [BK02] implicitly rely on this rule. We
proved the associativity of the Kronecker sum of matrices, too. In addition, we
introduced the selective Kronecker product . The usefulness of our approach has
been proved by a lazy implementation of our extended Kronecker algebra. The
implementation is very memory efficient and has been parallelized to exploit modern
many-core hardware architectures. Because it focuses on the matrix operations,
our implementation can be used for program analysis of concurrent systems and in
the railway domain.

Properties of CPGs. In the following, we list some properties of CPGs discussed in
this doctoral thesis.

• We proved that, in general, CPGs can be represented by sparse matrices.
Hence the number of entries in the matrices is linear in their number of lines.
Thus memory-conserving data structures such as adjacency lists are a natural
fit.

• Synchronization leads to unreachable parts.

• By choosing a lazy implementation, we are able to reduce, compared to the
full CPG, the computation time effort to the reachable CPG (RCPG).

Deadlocks. We proposed an approach for statically detecting deadlocks. The method
is complete because when a deadlock exists, then it will find it. On the other hand,
because it’s a static method, it is not sound, i.e., it may find false positives. This
drawback can be alleviated by applying symbolic evaluation [BSB12].

Barriers. We have shown how Kronecker algebra can be employed for static analysis of
concurrent programs (e.g. written in Ada or Java) that use reusable static barriers
for synchronization. The implementation of our novel barrier synchronization
primitive has to be provably correct. Otherwise, a proof could state correctness
while abstracting away from a faulty implementation. This proof can be done
independently from proving a barrier usage scenario correct.

In addition, we have compared our novel barrier synchronization primitive with
a barrier implementation based on semaphores. As a byproduct we have shown
how our CPG-based approach can be used as a basis for proving such imple-
mentations correct. In fact it is possible to use any implementation of a barrier
based on semaphores to verify a barrier usage scenario together with the barrier’s
implementation.

Our barrier construct is better suited for program analysis because it fully can
be analyzed by static analysis, while the implementations using semaphores, in

118

11.2. Outlook

order to omit dead paths, require advanced techniques (e.g. symbolic analysis).
However, programs using our barrier synchronization primitive from within loops
or conditional statements will still require advanced techniques.

Since Kronecker algebra is based on the theory of finite automata, dynamically
allocated tasks and dynamically allocated protected objects cannot be modeled by
our approach. As our analysis targets safety related systems, we do not consider
this a severe limitation.

Worst-Case Execution Time Analysis. In the chapter on WCET analysis, we fo-
cused on incorporating stalling times automatically in a WCET analysis of shared
memory concurrent programs running on a multi-core architecture. The emphasis
was on a formal definition of the dataflow equations for timing analysis. Our
approach is suited for parallel and concurrent systems. CPGs, as introduced in
this dissertation, serve as a basis for WCET analysis of multi-threaded concurrent
programs. We applied a generating functions approach. Dataflow equations are
set up. The WCET is calculated by a non-linear function solver. Non-linearity is
inherent to the multi-threaded WCET problem. The reasons are that (1) several
copies of loops show up in the RCPG and (2) partial loop unrolling has to be done
in certain cases. (1) implies that loop iteration numbers for loop copies have to be
considered variable until the maximization process takes place. Thus, nested loops
cause non-linear constraints to be handed to the function solver. (2) generates
additional non-linear constraints.

Deadlock Avoidance in Railways Systems. Finally, we proposed a deadlock avoid-
ance approach for railway systems. For multiple trains and a given track topology,
we are able to calculate all possible train movements. Some lead and some do
not lead to deadlocks. From some points on no deadlocks are reachable and the
trains can proceed with their movements in any order. From certain other points
a deadlock is inevitable. Our approach, which may take into account additional
constraints, such as weight of the train or penalties due to tardiness, can be used
to avoid such situations and to suggest deadlock-free train movements only.

11.2 Outlook

In this section, we suggest directions for future work.

11.2.1 WCET Analysis

In terms of WCET analysis a lot of work remains to be done. One future work may be
modelling low-level hardware features in order to form a fully static technique. In general,
without taking into account instruction pipelining, shared caches, arbitration of shared
memory bus, branch prediction, prefetching, etc., we might overestimate the WCET. Our
approach could benefit from e.g. [CCR+12, LDM+12, YZ08] which support shared L2
instruction caches. With the advent of these performance-enhancing hardware features,
the WCET estimation became [AEF+14] more difficult. Thus, a second direction for

119

11. Conclusion

future work could be to combine our CPGs and flow analysis with measurements in order
to form a hybrid WCET technique as described in [NYP15a].

Finding the best non-linear function solver is ongoing research. Mathematica c© was just
the first attempt. This will probably lead to better maximization times. A direction of
future work is to generalize for multiple threads running on one CPU core. What we
currently are working on is to extend our WCET analysis approach such that, beside
semaphore based barriers, it can also handle programs adopting barrier synchronization
constructs as introduced in Chapter 7.

We believe that WCET analysis and schedulability analysis should work closely together.
In multi-core systems both influence each other. In [ADI+15] “cross-core inference on
shared hardware resources” is mentioned as a main reason for that. From our point of
view, it is even worth to investigate how both, namely WCET analysis and schedulability
analysis, can be done in one step. For example, the number of paths, which have to be
taken into account in a WCET analysis, can be reduced, when dispatching points are
statically known.

Further, it would be interesting how an implicit path enumeration technique (IPET)
approach [PS97] together with non-linear solvers can produce similar results to our
approach. Another direction for future work is to generalize the monitors of [BB14]
in order to enable WCET analysis. Finally, a possible direction for future work could
be a WCET analysis of barrier implementations as presented in this dissertation and
semaphore-based implementations.

11.2.2 Value-Sensitive Analysis

Value-sensitive analysis such as symbolic analysis (e.g. [BSB08]) can also be performed
on CPGs. First steps were done in [BB14]. By using a value-sensitive analysis on CPGs
we could gain precision in order to exclude paths unreachable during runtime which we
observed e.g. in Chapter 7. A value-sensitive analysis may also help excluding false
positives in static deadlock detection.

11.2.3 Data Flow Analysis

Performing data flow analysis (e.g. [RP86, RP88, SGL98, KU76]) on CPGs is also a direc-
tion for future work. There exists already ample work in the field of concurrent software
(e.g. [CVJL08, FM07, DCCN04, NAC99]). Because CPGs for concurrent programs serve
as a similar data structure as CFGs do for sequential programs, we believe that data flow
analysis techniques can be applied on CPGs.

11.2.4 Graph Reductions

Thread synchronization usually helps to reduce the system size. Currently there is also
work in progress for a GPGPU implementation generating RCPGs. The first results are

120

11.2. Outlook

very promising. However, in order to enable analysis of industrial-sized systems, the
number of nodes has to be reduced further.

For certain analyses, the size of RCPGs may be further reduced. The Kronecker sum
generates all interleavings (in our case) of the basic blocks. One path out of the generated
interleavings may be enough to represent all the interleavings even for a value-sensitive
analysis. On the other hand, at certain points in the code, information may be available,
where the dispatcher is not allowed to do context switches. As mentioned above, this is
an area, where the applied scheduling method may influence an analysis.

Future work could include collapsing of the input RCFGs. This coarsens the granularity
of the RCFGs. Hence, the resulting RCPGs will be smaller.

We consider optimizations similar to partial order reduction (cf. [CGP99]) as future work.
Partial-Order Reduction (POR) is a way to reduce the number of interleavings. It is
vital that this reduction does not lead to results different from those one would obtain by
taking into account all possible interleavings. Early reduction algorithms were developed
by Overman [Ove81]. Beside others, the relatively new papers [DHRR04, KSG09] are
trying to reduce the amount of interleavings in shared-memory programs. A vast amount
of work has been published building on the papers mentioned next, even on combining
several approaches to achieve better results. In [Val96, Chapters 6 and 7] Valmari gives
a good survey of basic approaches. In the following, we present some fundamental
approaches.

Virtual Coarsening. The idea is that in a concurrent program only the ordering of
actions visible to other threads is important. This reduction can be made without
loss of information [AM71, Pnu86].

Sequentialization. In [GM11] Garg and Madhusudan present sequentialization of con-
current programs. It is shown that if for a concurrent program a compositional
proof exists, then it can be translated to a sequential program. Nevertheless, a
drawback of the approach is that it generates recursive programs, even when the
concurrent program contains no recursion.

Partial Order Reduction. In [Val96] Valmari proposes the theory of stubborn sets,
which is based on commutativity. This method tries to “save effort by postponing
the investigation of structural transitions to future states. . . ” [Val96]. Two versions,
weak and strong stubborn sets, are distinguished. The weak theory is more
complicated and more difficult to implement, but it leads to better reduction
results.

Godefroid presents in [God96] sleeping sets and persistent sets. Sleeping sets
capture information of the past of the search. Persistent sets can be seen as an
enhancement of stubborn sets. The semantic model was inspired by Mazurkiewicz’s
traces [Maz95].

121

11. Conclusion

Peled [Pel94] uses ample sets which are persistent sets satisfying additional condi-
tions sufficient for LTL model checking. Minea [Min99] uses also ample sets, but
with a less restrictive independence relation. A description how ample sets are
calculated can be found in [CGMP99]. A proof for the correctness of the reduction
and an algorithm calculating ample sets using heuristics is given in [CGP99].

Kahlon et al. propose in [KSG09] a framework for static analysis of concurrent
programs. Partial order reduction and synchronization constraints are used to reduce
thread interleavings. In order to gain further reductions abstract interpretation is
applied.

Symmetric Reduction. A system may contain several identical components that are
coupled to each other. Symmetric reduction tries to find such symmetries. Its com-
plexity is proved to be the same as that of the graph isomorphism problem [Jun03,
p. 22].

(Symbolic) Model Checking. An important approach in the field of model checking
is the work of McMillan [McM93] which is based on Ordered Binary Decision
Diagrams (OBDD). The performance of this approach is highly dependent on the
variable order. Finding an optimal order is known to be NP-complete [Bry92]. Thus
BDD representations do not improve worst-case complexity. In addition, problems
exist which have exponential size OBDDs for any variable order. Also notable is
the work of Clarke et al. [CGJ+01] with their counter-example guided abstraction
refinement (CEGAR) approach. In [RGG+95] a model checking tool is presented
that builds up a system gradually, at each stage compressing the subsystems to find
an equivalent CSP process with many less states. With this approach systems of
exponential size (≥ 1020) can be model checked successfully. In [GG08] Ganai and
Gupta studied modeling concurrent systems for bounded model checking (BMC).
Like all BMC approaches it has the drawback that it can only show correctness
within a bounded number of k steps.

There exists also a lot of work combining the approaches listed above. In [ABH+97]
symbolic model checking is combined with partial order reduction. Partial order reduction
and symmetry reduction are combined in [EJP97].

It would be interesting to see whether or not it is possible to incorporate something
similar to our lazy RCPG generation algorithm.

11.2.5 Automata Based Model Checking

Linear temporal logic (LTL) was at first used by Amir Pnueli for the verification of
computer programs in [Pnu77]. For each CPG, it is possible to generate an equivalent
Büchi automaton [Büc62]. A property of interest, which is stated as a LTL specification,
can be formulated. LTL specifications can be translated into Büchi automata, too [WVS83,
VW94]. Thus a second Büchi automaton can be generated out of the negated property.

122

11.2. Outlook

By using both automata it is possible to apply LTL model checking [GG08, Var07,
Pel00, CGP99, VW86]. When the intersection of both automata is empty, then the (non
negated) property is satisfied. There were also attempts to do a computational tree logic
(CTL) model checking based on Kronecker algebra [KL98].

“One never notices what has been done,
one can only see what remains to be done.”

– MARIE CURIE, Polish and naturalized-French physicist and chemist,
Nobel Prize in Physics 1903, Nobel Prize in Chemistry 1911, 1867-1934

123

APPENDIX A
The State Explosion Problem

“Controlling complexity is the essence of computer programming.”

– BRIAN WILSON KERNIGAN, Canadian computer scientist, 1942-

In this appendix, we summarize the main results of [MB08].

In general, for analysis of multi-threaded software it is important to analyze all possible
execution sequences. This ensures that each possible state is reached. We will start with
an example which shows the problem in practice. The simple example will be followed
by a theoretical analysis of the state explosion problem.

As a motivating example consider program P executing the threads C and D in an
interleaving semantics. Please note that we define all statements to be atomic and (in
this appendix), immediately after execution of a statement, a context switch to the
other thread may happen. Let thread C consist of a · b, whereas thread D contains the
statements c · d as follows:

P : (x:=4︸ ︷︷ ︸
a

;x:=x+ 3︸ ︷︷ ︸
b

) ‖ (x:=2︸ ︷︷ ︸
c

;x:=(x ∗ x) + 1︸ ︷︷ ︸
d

) .

We can reuse the figures of Example 6 in Subsection 3.2.3. The graphs depicted in
Figures 3.4a and 3.4b can be interpreted as the CFGs for the threads C and D, respectively.
Their Kronecker sum is shown in Figure 3.4d. By using Lemma 3 we calculate the number
of nodes in the corresponding CPG which obviously is 9. But what about the number of
interleavings?

Program P may result in one out of six states caused by the corresponding six interleavings.
All possible final states of program P are depicted in Table A.1. From now on we focus on
how the number of interleavings of an arbitrary number of threads and the corresponding
statements or basic blocks can be calculated.

125

A. The State Explosion Problem

Order x

a b c d 5
a c b d 26
a c d b 8
c a b d 50
c a d b 20
c d a b 7

Table A.1: Computation Results of Program P

For enumerating the number of interleavings for n threads (t1, t2, . . . , tn), where each ti
has ki statements (and 1 ≤ i ≤ n), the multinomial theorem can be applied. This results
in(
k1 + k2 + k3 + · · ·+ kn

kn

)
. . .

(
k1 + k2 + k3

k3

)
·
(
k1 + k2
k2

)
= (k1 + k2 + k3 + · · ·+ kn)!

k1!k2!k3! . . . kn!

interleavings (sometimes also referred to as orderings).

Lemma 8 (Number of Interleavings) Given n threads (t1, t2, . . . , tn), where each ti
has ki statements, the number of interleavings is given by(

n∑
i=1
ki

)
!

n∏
i=1
ki!

. (A.1)

�

Going back with our example from above, we can calculate the number of interleavings
of program P by applying Lemma 8 and get the expected result (2+2)!

2!∗2! = 4∗3∗2
2∗2 = 6.

Lemma 8 shows how simple it is to get astronomically high numbers of interleavings. If
we have 20 statements in each of three threads, then we get (60!

(20!)3 ≈ 5×1026 interleavings.

Please note that the formulæ in this chapter apply to both, statements or blocks,
depending on the used granularity.

In order to find the maximum of Equation (A.1), we have to maximize

k!
n∏
i=1
ki!

(A.2)

where k =
∑n
i=1 ki. In the following, we use the gamma function Γ(x) (cf. [AS64]) to

replace the integer factorial by a real-valued function. Note that Γ(m+ 1) = m!.

126

In order to find the extreme value of Equation (A.2), we employ the logarithmic derivative
of Equation (A.2) which simplifies the calculations significantly.

The derivative of

log(k!)−
n∑
i=1
log(Γ(ki + 1)) + λ(

n∑
i=1
ki − k)

with respect to ki is

−Γ′(ki + 1)
Γ(ki + 1) + λ = 0,

where 1 ≤ i ≤ n. This is valid for all ki, in particular for i = s and i = t, i.e.,

Γ′(ks + 1)
Γ(ks + 1) = Γ′(kt + 1)

Γ(kt + 1) .

Using the digamma function ψ(x) = Γ′(x)
Γ(x) (cf. [AS64]) we can write

ψ(ks + 1) = ψ(kt + 1).

Because ψ(x) is monotonically increasing for x ≥ 0 (cf. e.g. [AS64]) we get

ks = kt, for all 1 ≤ s, t ≤ n

which implies ki = k
n , provided that n divides k, i.e., n | k.

Thus, we have proved the following lemma.

Lemma 9 For a given number of statements k, the worst-case number of interleavings
appears if all n threads have the same number of statements. In this case the number of
interleavings is given by

k!((
k
n

)
!
)n (A.3)

where n is a divisor of k, i.e., n | k.

�

In the following, we write k = β ·n. If the number of statements per thread β ≥ 1 is fixed,
Formula (A.3) can be estimated by Stirling’s approximation m! = (me)m

√
2πm(1+O(1

m))
as m→∞ (cf. e.g. [AS64]) giving

(β n)!
(β!)n ∼ n

β n+ 1
2 (2πβ)−

n
2 + 1

2 , (n→∞). (A.4)

For β ∈ {5, 10, 15, 20, 25, 30} the characteristics of this formula are depicted in Figure A.1.
This case describes the practical case when there is e.g. an Ada task type defining tasks
with β statements.

127

A. The State Explosion Problem

4 6 8 10
Threads

1049

1098

10147

10196

10245

Interleavings

Figure A.1: Interleavings for Fixed Number of Statements per Thread

10

20

30

40

Threads

0

50

100

150

200

Β

0

5000

10 000

I HlogL

Figure A.2: Interleavings for a Variable Number of Threads and Statements per Thread

In Figure A.2 the behavior of a variable number of statements per thread 2 ≤ β ≤ 200
and a variable number of threads 1 ≤ n ≤ 40 is depicted in logarithmic scale. Please
note that the functions depicted in Figure A.1 and A.2 are actually defined for natural
numbers only.

The theoretical analysis in this chapter showed an exponential growth of interleavings
in terms of the number of statements. This number of interleavings is generated with
the Kronecker sum of the adjacency matrices of the CFGs of the threads present of the
multi-threaded program. In this dissertation, we work on the granularity of basic blocks.
Thus, we have an exponential growth in terms of the number of basic blocks. Thread
synchronization usually helps to reduce this number.

128

Bibliography

[ABH+97] Rajeev Alur, Robert K. Brayton, Thomas A. Henzinger, Shaz Qadeer,
and Sriram K. Rajamani. Partial-Order Reduction in Symbolic State Space
Exploration. In Proceedings of the 9th International Conference on Computer
Aided Verification – CAV 1997, Haifa, Israel, June 22-25, 1997, pages 340–
351, 1997.

[ADI+15] Sebastian Altmeyer, Robert I. Davis, Leandro Indrusiak, Claire Maiza,
Vincent Nelis, and Jan Reineke. A Generic and Compositional Framework for
Multicore Response Time Analysis. In Proceedings of the 23rd International
Conference on Real Time and Networks Systems – RTNS 2015, Lille, France,
Nov. 4-6, 2015, pages 129–138, New York, NY, USA, 2015. ACM.

[AEF+14] Philip Axer, Rolf Ernst, Heiko Falk, Alain Girault, Daniel Grund, Nan
Guan, Bengt Jonsson, Peter Marwedel, Jan Reineke, Christine Rochange,
Maurice Sebastian, Reinhard Von Hanxleden, Reinhard Wilhelm, and Wang
Yi. Building Timing Predictable Embedded Systems. ACM Transactions on
Embedded Computer Systems, 13(4):82:1–82:37, March 2014.

[AG98] Alexander Aiken and David Gay. Barrier Inference. In Proceedings of the
25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages – POPL 1998, San Diego, California, USA, January 19 - 21,
pages 342–354, New York, NY, USA, 1998. ACM.

[AM71] Edward A. Ashcroft and Zohar Manna. Formalization of Properties of Parallel
Programs. In Bernard Meltzer and Donald Michie, editors, Proceedings of
the 6th Annual Machine Intelligence Workshop, Edinburgh, UK, July 1970,
pages 17–41. Edinburgh University Press, 1971.

[AP02] Andrew W. Appel and Jens Palsberg. Modern Compiler Implementation in
Java, 2nd edition. Cambridge University Press, 2002.

[AS64] Milton Abramowitz and Irene A. Stegun. Handbook of Mathematical Func-
tions with Formulas, Graphs, and Mathematical Tables. Dover, New York,
1964.

129

[ASU86] Alfred Aho, Ravi Sethi, and Jeffrey Ullman. Compilers: Principles, Tech-
niques, and Tools. Addison Wesley, Reading, Massachusetts, 1986.

[BB98] Johann Blieberger and Bernd Burgstaller. Symbolic Reaching Definitions
Analysis of Ada Programs. In Proceedings of the 3rd International Conference
on Reliable Software Technologies – Ada-Europe 1998, Uppsala, Sweden,
volume 1411 of Lecture Notes in Computer Science (LNCS), pages 238–250.
Springer Press, June 1998.

[BB03] Johann Blieberger and Bernd Burgstaller. Eliminating Redundant Range
Checks in GNAT Using Symbolic Evaluation. In Proceedings of the 8th
International Conference on Reliable Software Technologies – Ada-Europe
2003, Toulouse, France, volume 2655 of Lecture Notes in Computer Science
(LNCS), pages 153–167. Springer Press, June 2003.

[BB14] Bernd Burgstaller and Johann Blieberger. Kronecker Algebra for Static
Analysis of Ada Programs with Protected Objects. In Proceedings of the 19th
International Conference on Reliable Software Technologies – Ada-Europe
2014, volume 8454 of Lecture Notes in Computer Science (LNCS), pages
27–42, Paris, France, June 2014. Springer Press.

[BBM06] Bernd Burgstaller, Johann Blieberger, and Robert Mittermayr. Static Detec-
tion of Access Anomalies in Ada95. In Proceedings of the 11th International
Conference on Reliable Software Technologies – Ada-Europe 2006, Porto,
Portugal, volume 4006 of Lecture Notes in Computer Science (LNCS), pages
40–55. Springer Press, June 2006.

[BBM07] Johann Blieberger, Bernd Burgstaller, and Robert Mittermayr. Static
Detection of Livelocks in Ada Multitasking Programs. In Proceedings of
the 12th International Conference on Reliable Software Technologies – Ada-
Europe 2007, Geneve, Switzerland, volume 4498 of Lecture Notes in Computer
Science (LNCS), pages 69–83. Springer Press, June 2007.

[BBS99] Johann Blieberger, Bernd Burgstaller, and Bernhard Scholz. Interprocedural
Symbolic Evaluation of Ada Programs with Aliases. In Proceedings of the 4th
International Conference on Reliable Software Technologies – Ada-Europe
1999, Santander, Spain, volume 1622 of Lecture Notes in Computer Science
(LNCS), pages 136–145. Springer Press, June 1999.

[Bel97] Richard Bellman. Introduction to Matrix Analysis. Classics in Applied
Mathematics. Society for Industrial and Applied Mathematics, 2nd edition,
1997.

[BK02] Peter Buchholz and Peter Kemper. Efficient Computation and Representation
of Large Reachability Sets for Composed Automata. Discrete Event Dynamic
Systems, 12(3):265–286, 2002.

130

[Bli02] Johann Blieberger. Data-Flow Frameworks for Worst-Case Execution Time
Analysis. Real-Time Systems, 22(3):183–227, 2002.

[Bru16] Randall L. Brukardt. Annotated Ada Reference Manual, ISO/IEC
8652:2012/Cor 1:2016. http://www.ada-auth.org/standards/aarm12_w_
tc1/AA-Final.pdf, 2016. [Online; accessed 2016-08-17].

[Bry92] Randal E. Bryant. Symbolic Boolean Manipulation with Ordered Binary
Decision Diagrams. ACM Computing Surveys, 24(3):293–318, 1992.

[BSB08] Bernd Burgstaller, Bernhard Scholz, and Johann Blieberger. Symbolic
Analysis: An Algebra-Based Approach. VDM Verlag, Saarbrücken, 2008.

[BSB12] Bernd Burgstaller, Bernhard Scholz, and Johann Blieberger. A symbolic
analysis framework for static analysis of imperative programming languages.
Journal of Systems and Software, 85(6):1418–1439, 2012.

[BSV14] Johann Blieberger, Andreas Schöbel, and Mark Volcic. Kronecker-Algebra
und ihre breit gefächerten Anwendungen im Eisenbahnbereich. Signal +
Draht, 7/8:15–18, 2014.

[Büc62] Julius Richard Büchi. On a Decision Method in Restricted Second Order
Arithmetic. In Proceeding of the 1st International Congress on Logic, Method-
ology, and Philosophy of Science – CLMPS 1960, Stanford, California, USA,
1960, pages 1–11. Stanford University Press, 1962.

[BW09] Raymond P. L. Buse and Westley R. Weimer. The Road Not Taken: Es-
timating Path Execution Frequency Statically. In Proceedings of the 31st
International Conference on Software Engineering – ICSE 2009, Vancouver,
Canada, May 16-24, 2009, pages 144–154, 2009.

[CCR+12] Sudipta Chattopadhyay, Lee Kee Chong, Abhik Roychoudhury, Timon Kelter,
Peter Marwedel, and Heiko Falk. A Unified WCET Analysis Framework for
Multi-core Platforms. In IEEE Real-Time and Embedded Technology and
Applications Symposium, pages 99–108, 2012.

[CGJ+01] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut
Veith. Progress on the State Explosion Problem in Model Checking. In
Reinhard Wilhelm, editor, Informatics - 10 Years Back. 10 Years Ahead,
volume 2000 of Lecture Notes in Computer Science (LNCS), pages 176–194.
Springer Press, 2001.

[CGMP99] Edmund M. Clarke, Orna Grumberg, Marius Minea, and Doron Peled. State
Space Reduction using Partial Order Techniques. International Journal on
Software Tools for Technology Transfer (STTT), 2(3):279–287, 1999.

[CGP99] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking.
MIT Press, 1999.

131

http://www.ada-auth.org/standards/aarm12_w_tc1/AA-Final.pdf
http://www.ada-auth.org/standards/aarm12_w_tc1/AA-Final.pdf

[CM99] Gianfranco Ciardo and Andrew S. Miner. A Data Structure for the Efficient
Kronecker Solution of GSPNs. In Proceedings of the 8th International
Workshop on Petri Nets and Performance Models – PNPM 1999, Zaragoza,
Spain, 8-10 Sept. 1999, pages 22–31. IEEE Computer Society Press, 1999.

[Cui10] Yong Cui. Simulation-Based Hybrid Model for a Partially-Automatic Dis-
patching of Railway Operation. PhD thesis, Universität Stuttgart, 2010.

[CVJL08] Ravi Chugh, Jan W. Voung, Ranjit Jhala, and Sorin Lerner. Dataflow
Analysis for Concurrent Programs Using Datarace Detection. In Proceedings
of the 29th ACM SIGPLAN Conference on Programming Language Design
and Implementation – PLDI 2008, Tucson, AZ, USA, June 07 - 13, 2008,
pages 316–326, New York, NY, USA, 2008. ACM.

[Dav81] Marc Davio. Kronecker Products and Shuffle Algebra. IEEE Transactions
on Computers, 30(2):116–125, 1981.

[DCCN04] Matthew B. Dwyer, Lori A. Clarke, Jamieson M. Cobleigh, and Gleb Nau-
movich. Flow Analysis for Verifying Properties of Concurrent Software
Systems. ACM Transactions on Software Engineering and Methodology
(TOSEM), 13(4):359–430, Oct. 2004.

[DHRR04] Matthew B. Dwyer, John Hatcliff, Robby, and Venkatesh Prasad Ranganath.
Exploiting Object Escape and Locking Information in Partial-Order Reduc-
tions for Concurrent Object-Oriented Programs. Formal Methods in System
Design, 25(2-3):199–240, 2004.

[Dij59] Edsger Wybe Dijkstra. A note on two problems in connexion with graphs.
Numerische Mathematik, 1:269–271, 1959.

[Dij65] Edsger Wybe Dijkstra. Cooperating sequential processes. University of
Texas at Austin, EWD-123, 1965.

[Dijnda] Edsger Wybe Dijkstra. Een algorithme ter voorkoming van de dodelijke
omarming. circulated privately, n.d.

[Dijndb] Edsger Wybe Dijkstra. Over de sequentialiteit van procesbeschrijvingen.
circulated privately, n.d.

[Dow05] Allen B. Downey. The Little Book of Semaphores. Green Tea Press, 2005.

[EJP97] Ernest Allen Emerson, Somesh Jha, and Doron Peled. Combining Partial
Order and Symmetry Reductions. In Third International Workshop on Tools
and Algorithms for the Construction and Analysis of Systems – TACAS
1997, Enschede, The Netherlands, April 2–4, 1997, volume 1217 of Lecture
Notes in Computer Science (LNCS), pages 19–34. Springer Press, 1997.

132

[FGS03] Maria Pia Fanti, Alessandro Giua, and Carla Seatzu. A deadlock prevention
method for railway networks using monitors for colored Petri nets. In
Proceedings of 2003 IEEE International Conference on Systems, Man and
Cybernetics, volume 2 of SMC ’03, pages 1866–1873, October 2003.

[FM07] Azadeh Farzan and P. Madhusudan. Causal Dataflow Analysis for Concurrent
Programs. In Proceedings of the 13th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems – TACAS 2007,
Held as Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2007, Braga, Portugal, March 24 - April 1, 2007, pages
102–116, 2007.

[FNNP16] José Carlos Fonseca, Geoffrey Nelissen, Vincent Nélis, and Lúıs Miguel
Pinho. Response Time Analysis of Sporadic DAG Tasks under Partitioned
Scheduling. In Proceedings of the 11th IEEE International Symposium on
Industrial Embedded Systems – SIES 2016, Krakow, Poland, May 23-25,
2016, pages 1–10, 2016.

[FT84] Michael L. Fredman and Robert Endre Tarjan. Fibonacci Heaps and Their
Uses in Improved Network Optimization Algorithms. In Proceedings of the
25th Annual Symposium on Foundations of Computer Science – FOCS 1984,
Singer Island, Florida, USA, 24-26 Oct., 1984, pages 338–346, 1984.

[GELP10] Andreas Gustavsson, Andreas Ermedahl, Björn Lisper, and Paul Pettersson.
Towards WCET Analysis of Multicore Architectures Using UPPAAL. In
Björn Lisper, editor, Proceedings of the 10th International Workshop on
Worst-Case Execution Time Analysis – WCET 2010, Brussels, Belgium,
July 6, 2010, volume 15 of OpenAccess Series in Informatics (OASIcs), pages
101–112, Dagstuhl, Germany, 2010. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik.

[GG08] Malay K. Ganai and Aarti Gupta. Efficient Modeling of Concurrent Systems
in BMC. In Proceedings of the 15th International Workshop on Model Check-
ing Software, SPIN ’08, pages 114–133, Berlin, Heidelberg, 2008. Springer
Press.

[GGL14] Andreas Gustavsson, Jan Gustafsson, and Björn Lisper. Timing Analysis
of Parallel Software Using Abstract Execution. In Kenneth McMillan and
Xavier Rival, editors, Proceedings of the 15th International Conference on
Verification, Model Checking, and Abstract Interpretation – VMCAI 2014,
San Diego, USA, January 19-21, 2014, volume 8318 of Theoretical Computer
Science and General Issues, pages 59–77, 2014.

[GKP94] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Math-
ematics: A Foundation for Computer Science. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2nd edition, 1994.

133

[GKUR12] Mike Gerdes, Florian Kluge, Theo Ungerer, and Christine Rochange. The
Split-Phase Synchronisation Technique: Reducing the Pessimism in the
WCET Analysis of Parallelised Hard Real-Time Programs. In Proceedings
of the 18th IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications – RTCSA 2012, Seoul, Korea, August
19-22, 2012, pages 88–97. IEEE Computer Society, 2012.

[GM11] Pranav Garg and P. Madhusudan. Compositionality Entails Sequentializabil-
ity. In Proceedings of the Seventeenth International Conference on Tools and
Algorithms for the Construction and Analysis of Systems – TACAS 2011,
Saarbruecken, Germany, March 26 - April 3, 2011, volume 6605 of Lecture
Notes in Computer Science (LNCS), pages 26–40. Springer Press, 2011.

[God96] Patrice Godefroid. Partial-Order Methods for the Verification of Concurrent
Systems – An Approach to the State-Explosion Problem, volume 1032 of
Lecture Notes in Computer Science (LNCS). Springer Press, 1996.

[Gon12] Javier Fernández González. Java 7 Concurrency Cookbook. Packt Publishing
Ltd., 2012.

[Gra81] Alexander Graham. Kronecker Products and Matrix Calculus with Applica-
tions. Ellis Horwood Ltd., New York, 1981.

[Hec77] Matthew S. Hecht. Flow Analysis of Computer Programs. Elsevier Science
Inc., New York, NY, USA, 1977.

[HIK11] Richard Hammack, Wilfried Imrich, and Sandi Klavžar. Handbook of Product
Graphs. Discrete Mathematics and its Applications. CRC Press, Boca Raton,
FL, second edition, 2011. With a foreword by Peter Winkler.

[HM76] Peter Henderson and James H. Morris, Jr. A Lazy Evaluator. In Proceedings
of the 3rd ACM Symposium on Principles of Programming Languages –
POPL 1976, Atlanta, Georgia, USA, pages 95–103. ACM, January 1976.

[HS98] Jonathan M. D. Hill and David B. Skillicorn. Practical Barrier Synchroni-
sation. In Proceedings of the Sixth Euromicro Workshop on Parallel and
Distributed Processing – PDP 1998, Madrid, Spain, 21-23 Jan, 1998, pages
438–444, 1998.

[HT66] Frank Harary and Charles A. Trauth, Jr. Connectedness of Products of Two
Directed Graphs. SIAM Journal on Applied Mathematics, 14(2):250–254,
1966.

[Hur94] Adolf Hurwitz. Zur Invariantentheorie. Mathemathische Annalen, 45:381–404,
1894.

[IKR08] Wilfried Imrich, Sandi Klavžar, and Douglas F. Rall. Topics in Graph
Theory: Graphs and Their Cartesian Product. A K Peters Ltd, 2008.

134

[JES71] Edward G. Coffman Jr., M. J. Elphick, and Arie Shoshani. System Deadlocks.
ACM Computing Surveys, 3(2):67–78, 1971.

[Jun03] Tommi Junttila. On The Symmetry Reduction Method For Petri Nets and
Similar Formalisms. PhD thesis, Helsinki University of Technology, 2003.

[Kir45] Gustav Robert Kirchhoff. Ueber den Durchgang eines elektrischen Stromes
durch eine Ebene, insbesondere durch eine kreisförmige. Annalen der Physik
und Chemie, LXIV(4):497–514, 1845.

[KKP+11] Raimund Kirner, Jens Knoop, Adrian Prantl, Markus Schordan, and Albrecht
Kadlec. Beyond loop bounds: comparing annotation languages for worst-
case execution time analysis. Software and Systems Modeling, 2011. (online
edition).

[KL98] Peter Kemper and Ralf Lübeck. Model Checking Based on Kronecker
Algebra. Technical report, Universität Dortmund, Fachbereich Informatik,
Forschungsbericht Nr. 669, 1998.

[Knu11] Donald E. Knuth. Combinatorial Algorithms, volume 4A of The Art of
Computer Programming. Addison-Wesley, 2011.

[KS86] Werner Kuich and Arto Salomaa. Semirings, Automata, Languages. Springer
Press, 1986.

[KSG09] Vineet Kahlon, Sriram Sankaranarayanan, and Aarti Gupta. Semantic Re-
duction of Thread Interleavings in Concurrent Programs. In Proceedings of
the 15th International Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems – TACAS 2009, volume 5505, pages 124–138,
Berlin, Heidelberg, 2009. Springer Press.

[KU76] John B. Kam and Jeffrey D. Ullman. Global Data Flow Analysis and Iterative
Algorithms. Journal of the ACM, 23:158–171, January 1976.

[Küs91] Gerhard Küster. On the Hurwitz Product of Formal Power Series and
Automata. Theoretical Computer Science, 83(2):261–273, 1991.

[KY06] Amir Kamil and Katherine Yelick. Concurrency Analysis for Parallel Pro-
grams with Textually Aligned Barriers. In E. Ayguadé, G. Baumgartner,
J. Ramanujam, and P. Sadayappan, editors, Proceedings of the 18th Inter-
national Workshop on Languages and Compilers for Parallel Computing –
LCPC 2005, Hawthorne, NY, USA, October 20-22, 2005, volume 4339 of
Theoretical Computer Science and General Issues, pages 185–199, 2006.

[LCT13] Duy-Khanh Le, Wei-Ngan Chin, and Yong-Meng Teo. Verification of Static
and Dynamic Barrier Synchronization Using Bounded Permissions. In Lind-
say Groves and Jing Sun, editors, Formal Methods and Software Engineering

135

- Proceedings of the 15th International Conference on Formal Engineering
Methods – ICFEM 2013, Queenstown, New Zealand, October 29 to November
1, 2013, volume 8144 of Lecture Notes in Computer Science (LNCS), pages
231–248, 2013.

[LDL04] Quan Lu, Maged Dessouky, and Robert C. Leachman. Modeling Train
Movements through Complex Rail Networks. ACM Transactions on Modeling
Computer Simulation, 14(1):48–75, Jan. 2004.

[LDM+12] Yun Liang, Huping Ding, Tulika Mitra, Abhik Roychoudhury, Yan Li, and
Vivy Suhendra. Timing analysis of concurrent programs running on shared
cache multi-cores. Real-Time Syst., 48(6):638–680, Nov. 2012.

[Mar95] Ullrich Martin. Verfahren zur Bewertung von Zug- und Rangierfahrten bei
der Disposition. PhD thesis, TU Braunschweig, Institut für Eisenbahnwesen
und Verkehrssicherung, 1995.

[Maz95] Antoni Mazurkiewicz. Introduction to Trace Theory. In Volker Diekert
and Grzegorz Rozenberg, editors, The Book of Traces, pages 3–41. World
Scientific Publishing Co., Inc., 1995.

[MB08] Robert Mittermayr and Johann Blieberger. Static Partial-Order Reduction
of Concurrent Systems in Polynomial Time. In Proceedings of the 3rd
International Symposium on Leveraging Applications of Formal Methods,
Verification and Validation – ISoLA’08, Chalkidiki, Greece, volume 17 of
Communications in Computer and Information Science (CCIS), pages 619–
633. Springer Press, 2008.

[MB11] Robert Mittermayr and Johann Blieberger. Shared Memory Concurrent
System Verification using Kronecker Algebra. Technical Report 183/1-155,
Automation Systems Group, TU Vienna, http://arxiv.org/abs/1109.

5522, Sept. 2011. [Online; accessed 2016-08-17].

[MB12a] Alexander Malkis and Aindya Banerjee. Verification of Software Barriers.
In Proceedings of the 17th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming – PPoPP 2012, New Orleans, Louisiana,
USA, February 25-29, 2012, pages 313–314, New York, NY, USA, 2012.
ACM.

[MB12b] Robert Mittermayr and Johann Blieberger. Timing Analysis of Concurrent
Programs. In Tullio Vardanega, editor, Proceedings of the 12th International
Workshop on Worst-Case Execution Time Analysis – WCET 2012, Pisa,
Italy, July 10, 2012, volume 23 of OpenAccess Series in Informatics (OASIcs),
pages 59–68, Dagstuhl, Germany, 2012. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik.

136

http://arxiv.org/abs/1109.5522
http://arxiv.org/abs/1109.5522

[MB16a] Robert Mittermayr and Johann Blieberger. A Generic Graph Model for
WCET Analysis of Multi-Core Concurrent Applications. Journal of Soft-
ware Engineering and Applications (JSEA), Special Issue On Parallel &
Concurrent Computing, 9(5):182–198, May 2016.

[MB16b] Robert Mittermayr and Johann Blieberger. Kronecker Algebra for Static
Analysis of Barriers in Ada. In M. Bertogna, L. M. Pinho, and E. Quinones,
editors, Proceeding of the 21th International Conference on Reliable Software
Technologies – Ada-Europe 2016, Pisa, Italy, June 13-17, 2016, volume 9695
of Lecture Notes in Computer Science (LNCS), pages 145–159. Springer
Press, June 2016.

[MBS12] Robert Mittermayr, Johann Blieberger, and Andreas Schöbel. Kronecker
Algebra based Deadlock Analysis for Railway Systems. Scientific Journal
on Traffic and Transportation Research (PROMET), pages 359–369, 2012.

[McA63] M. H. McAndrew. On the Product of Directed Graphs. Proceedings of the
American Mathematical Society, 14(4):600–606, 1963.

[McM93] Kenneth L. McMillan. Symbolic Model Checking. Kluwer Academic, 1993.

[Mil11] Jeff Miller. Earliest Known Uses of Some of the Words of Mathematics.
http://jeff560.tripod.com/k.html, Revision August 1st, 2011. [Online;
accessed 2016-08-17].

[Min99] Marius Minea. Partial Order Reduction for Verification of Timed Systems.
PhD thesis, Carnegie Mellon University, Pittsburgh, PA, USA, 1999. Chair-
Edmund M. Clarke.

[Mit05] Robert Mittermayr. Statische Analyse von Multi-Threading Java-Program-
men. Master’s thesis, Vienna University of Technology, 2005.

[MPWH03] Graham Mills, Peter J. Pudney, Kevin White, and John Hewitt. The Effects
of Deadlock Avoidance on Rail Network Capacity and Performance. In
Proceedings of the 2003 Mathematics-in-Industry Study Group, 2003.

[NAC99] G. Naumovich, G. S. Avrunin, and L. A. Clarke. Data Flow Analysis for
Checking Properties of Concurrent Java Programs. In Proceedings of the
21st International Conference on Software Engineering – ICSE 1999, Los
Angeles, CA, USA, May 16 - 22, 1999, pages 399–410, 1999.

[NPB+14] Jan Nowotsch, Michael Paulitsch, Daniel Buhler, Henrik Theiling, Simon
Wegener, and Michael Schmidt. Multi-core Interference-Sensitive WCET
Analysis Leveraging Runtime Resource Capacity Enforcement. In Proceedings
of the 26th Euromicro Conference on Real-Time Systems – ECRTS 2014,
Madrid, Spain, July 8-11, 2014, pages 109–118, Los Alamitos, CA, USA,
2014. IEEE Computer Society.

137

http://jeff560.tripod.com/k.html

[NVI16] NVIDIA Corporation. CUDA Parallel Computing Platform. http://www.

nvidia.com/CUDA, 2016. [Online; accessed 2016-08-17].

[NYP15a] Vincent Nélis, Patrick Meumeu Yomsi, and Lúıs Miguel Pinho. Methodologies
for the WCET Analysis of Parallel Applications on Many-Core Architectures.
In Proceedings of the 18th Euromicro Conference on Digital System Design –
DSD 2015, Funchal, Madeira, Portugal, Aug. 26-28, 2015, pages 748–755,
Aug. 2015.

[NYP+15b] Vincent Nélis, Patrick Meumeu Yomsi, Lúıs Miguel Pinho, Eduardo Quiñones,
Marko Bertogna, Andrea Marongiu, Paolo Gai, and Claudio Scordino. A
system model and stack for the parallelization of time-critical applications
on many-core architectures. Technical Report CISTER-TR-141206, CISTER
Research Center, Polytechnic Institute of Porto, Nov. 2015.

[Ope13] OpenMP Architecture Review Board. OpenMP Application Program Inter-
face – Version 4.0. http://www.openmp.org/mp-documents/OpenMP4.0.0.
pdf, July 2013. [Online; accessed 2016-08-17].

[Ope16] OpenCL. The open standard for parallel programming of heterogeneous
systems. https://www.khronos.org/opencl, 2016. [Online; accessed 2016-
08-17].

[ORS13] Haluk Ozaktas, Christine Rochange, and Pascal Sainrat. Automatic WCET
Analysis of Real-Time Parallel Applications. In Claire Maiza, editor, Pro-
ceedings of the 13th International Workshop on Worst-Case Execution Time
Analysis – WCET 2013, Paris, France, Jul 9, 2013, volume 30 of OpenAc-
cess Series in Informatics (OASIcs), pages 11–20, Dagstuhl, Germany, 2013.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

[Ove81] William T. Overman. Verification of Concurrent Systems: Function and
Timing. PhD thesis, University of California, Los Angeles, 1981.

[PA91] Brigitte Plateau and Karim Atif. Stochastic Automata Network For Modeling
Parallel Systems. IEEE Transactions on Software Engineering, 17(10):1093–
1108, 1991.

[Pac93] Jörn Pachl. Steuerlogik für Zuglenkanlagen zum Einsatz unter stochastischen
Betriebsbedingungen. PhD thesis, TU Braunschweig, Institut für Eisenbahn-
wesen und Verkehrssicherung, Heft 49, 1993.

[PBP13] Dumitru Potop-Butucaru and Isabelle Puaut. Integrated Worst-Case Exe-
cution Time Estimation of Multicore Applications. In Claire Maiza, editor,
Proceedings of the 13th International Workshop on Worst-Case Execution
Time Analysis – WCET 2013, Paris, France, Jul 9, 2013, volume 30 of Ope-
nAccess Series in Informatics (OASIcs), pages 21–31, Dagstuhl, Germany,
2013. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

138

http://www.nvidia.com/CUDA
http://www.nvidia.com/CUDA
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
https://www.khronos.org/opencl

[Pel94] Doron Peled. Combining Partial Order Reductions with On-the-fly Model-
Checking. In David L. Dill, editor, Proceedings of the 6th International
Conference on Computer Aided Verification – CAV 1994, Stanford, Cali-
fornia, USA, June 21-23, 1994, volume 818 of Lecture Notes in Computer
Science (LNCS), pages 377–390, London, UK, 1994. Springer Press.

[Pel00] Doron Peled. Model Checking Using Automata Theory. In M. Kemal Inan
and Robert P. Kurshan, editors, Verification of Digital and Hybrid Systems,
volume 170 of NATO ASI Series, pages 55–79. Springer Press, 2000.

[Pet62] Carl Adam Petri. Kommunikation mit Automaten. PhD thesis, Schriften
des Institutes für Instrumentelle Mathematik, Bonn, 1962.

[Pla85] Brigitte Plateau. On the Stochastic Structure of Parallelism and Synchroniza-
tion Models for Distributed Algorithms. ACM SIGMETRICS Performance
Evaluation Review, 13:147–154, aug 1985.

[Pnu77] Amir Pnueli. The temporal logic of programs. In Proceedings of the 18th
Annual Symposium on Foundations of Computer Science – FOCS 1977,
Providence, Rhode Island, USA, Oct. 31 - Nov. 2, 1977, pages 46–57, Oct.
1977.

[Pnu86] Amir Pnueli. Applications of Temporal Logic to the Specification and
Verification of Reactive Systems: A Survey of Current Trends. In J.W. de
Bakker, W.-P. de Roever, and G. Rozenberg, editor, Current Trends in
Concurrency, volume 224 of Lecture Notes in Computer Science (LNCS),
pages 510–584, New York, NY, USA, 1986. Springer Press.

[PQB+14] Lúıs Miguel Pinho, Eduardo Quiñones, Marko Bertogna, Andrea Marongiu,
Jorge Pereira Carlos, Claudio Scordino, and Michele Ramponi. P-
SOCRATES: a Parallel Software Framework for Time-Critical Many-Core
Systems. In 17th Euromicro Conference on Digital System Design – DSD
2014, Verona, Italy, August 27-29, 2014, pages 214–221, 2014.

[PS97] Peter Puschner and Anton Schedl. Computing Maximum Task Execution
Times - A Graph-Based Approach. Journal of Real-Time Systems, 13:67–91,
1997.

[PT83] E. R. Petersen and Allison James Taylor. Line Block Prevention in Rail
Line Dispatch and Simulation Models. Information Systems and Operations
Research (INFOR journal), 21(1):46–51, 1983.

[Ram96] Ganesan Ramalingam. Data Flow Frequency Analysis. In Charles N. Fischer,
editor, Proceedings of the ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation – PLDI 1996, Philadelphia, Pennsylvania,
USA, May 21-24, 1996, pages 267–277. ACM, 1996.

139

[Ram99] Ganesan Ramalingam. Identifying Loops in Almost Linear Time. ACM
Transactions on Programming Languages and Systems (TOPLAS), 21(2):175–
188, March 1999.

[Ram00] Ganesan Ramalingam. Context-Sensitive Synchronization-Sensitive Anal-
ysis Is Undecidable. ACM Transactions Programming Language Systems,
22(2):416–430, 2000.

[Rei85] Wolfgang Reisig. Petri Nets – An Introduction, volume 4 of EATCS Mono-
graphs on Theoretical Computer Science. Springer Press, 1985.

[RGG+95] Andrew William Roscoe, Paul H. B. Gardiner, Michael H. Goldsmith, J. R.
Hulance, D. M. Jackson, and J. B. Scattergood. Hierarchical Compression
for Model-Checking CSP or How to Check 1020 Dining Philosophers for
Deadlock. In Proceedings of the First International Workshop on Tools and
Algorithms for Construction and Analysis of Systems – TACAS 1995, pages
133–152, London, UK, 1995. Springer Press.

[RP86] Barbara Gershon Ryder and Marvin C. Paull. Elimination Algorithms for
Data Flow Analysis. ACM Computing Surveys (CSUR), 18(3):277–316, sep
1986.

[RP88] Barbara Gershon Ryder and Marvin C. Paull. Incremental Data-Flow
Analysis Algorithms. ACM Transactions on Programming Language and
Systems (TOPLAS), 10(1):1–50, jan 1988.

[SBF00] Bernhard Scholz, Johann Blieberger, and Thomas Fahringer. Symbolic
Pointer Analysis for Detecting Memory Leaks. In Proceedings of the 2000
ACM SIGPLAN Workshop on Partial Evaluation and Semantics-based Pro-
gram Manipulation – PEPM 2000, Boston, Massachusetts, USA, January
22 - 23, 2000, volume 1845, pages 104–113. ACM, 2000.

[SBS15] Mark Stefan, Johann Blieberger, and Andreas Schöbel. Kronecker Algebra
zur Optimierung des Eisenbahnbetriebes. Eisenbahntechnische Rundschau
(ETR), 9:78–84, 2015.

[SBS16] Mark Stefan, Johann Blieberger, and Andreas Schöbel. Application of
Kronecker Algebra in Railway Operation. Tehnički vjesnik – Technical
Gazette (TV-TG), 2016.

[SGL98] Vugranam C. Sreedhar, Guang R. Gao, and Yong-Fong Lee. A New Frame-
work for Elimination-Based Data Flow Analysis Using DJ Graphs. ACM
Transactions on Programming Languages and Systems (TOPLAS), 20(2):388–
435, 1998.

[Sre95] Vugranam C. Sreedhar. Efficient program analysis using DJ graphs. PhD
thesis, School of Computer Science, McGill University, Montreal, Quebec,
Canada, 1995.

140

[Sta11] William Stallings. Operating Systems – Internals and Design Principles.
Prentice Hall, 7th edition, 2011.

[SVB14] Andreas Schöbel, Mark Volcic, and Johann Blieberger. Analysis and opti-
misation of railway systems. In EURO-ŽEL 2014, Žilina, Slovak Republic,
May 2014.

[Tar72] Robert Endre Tarjan. Depth-First Search and Linear Graph Algorithms.
SIAM Journal on Computing (SICOMP), 1(2):146–160, 1972.

[Tar81] Robert Endre Tarjan. A Unified Approach to Path Problems. Journal of
the ACM (JACM), 28(3):577–593, 1981.

[Val96] Antti Valmari. The State Explosion Problem. In Lectures on Petri Nets I:
Basic Models, volume 1491 of Lecture Notes in Computer Science (LNCS),
pages 429–528. Springer Press, September 1996.

[Var07] Moshe Y. Vardi. Automata-Theoretic Model Checking Revisited. In Byron
Cook and Andreas Podelski, editors, Proceedings of the 8th International
Conference on Verification, Model Checking, and Abstract Interpretation –
VMCAI 2007, Nice, France, January 14-16, 2007, pages 137–150. Springer
Press, 2007.

[VBS12] Mark Volcic, Johann Blieberger, and Andreas Schöbel. Kronecker Algebra
based Travel Time Analysis for Railway Systems. In FORMS/FORMAT
2012 – 9th Symposium on Formal Methods for Automation and Safety in
Railway and Automotive Systems, pages 273–281, Braunschweig, Germany,
December 2012.

[VBS13] Mark Volcic, Johann Blieberger, and Andreas Schöbel. Kronecker algebra
based modelling of railway operation. In Proceeding of the 3rd International
Conference on Models and Technologies for Intelligent Transport Systems –
MT-ITS 2013, Dresden, Germany, December, 2013, pages 345–356, 2013.

[VBS14] Mark Volcic, Johann Blieberger, and Andreas Schöbel. Optimisation of
railway operation by application of kronecker algebra. In Proceeding of the
3rd International Conference on Road and Rail Infrastructure – CETRA
2014, Split, Croatia, April 28-30, 2014, pages 37–42, 2014.

[Vol14] Mark Volcic. Energy-efficient Optimization of Railway Operation – An
Algorithm Based on Kronecker Algebra. PhD thesis, TU Vienna, Treitlstr.
1-3, 1040 Vienna, Dec. 2014.

[VW86] Moshe Y. Vardi and Pierre Wolper. An Automata-Theoretic Approach to
Automatic Program Verification. In Proceedings of the 1st Annual Symposium
on Logic in Computer Science – LICS 1986, Cambridge, MA, USA, June
16-18, 1986, pages 332–344. IEEE Computer Society, Jun. 1986.

141

[VW94] Moshe Y. Vardi and Pierre Wolper. Reasoning About Infinite Computations.
Information and Computation, 115(1):1–37, 1994.

[Ž08] M. Žarnay. Solving deadlock states in model of railway station operation
using coloured Petri nets. In Proceedings of Symposium FORMS/FORMAT
- Formal Methods for Automation and Safety in Railway and Automotive
Systems, pages 205–213, October 2008.

[WEE+08] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti,
Stephan Thesing, David Whalley, Guillem Bernat, Christian Ferdinand,
Reinhold Heckmann, Tulika Mitra, Frank Mueller, Isabelle Puaut, Peter
Puschner, Jan Staschulat, and Per Stenström. The Worst-Case Execution-
Time Problem – Overview of Methods and Survey of Tools. ACM Trans-
actions on Embedded Computing Systems (TECS), 7(3):36:1–36:53, May
2008.

[Wei62] Paul M. Weichsel. The Kronecker Product of Graphs. Proceedings of the
American Mathematical Society, 13(1):47–52, 1962.

[WVS83] Pierre Wolper, Moshe Y. Vardi, and A. Prasad Sistla. Reasoning About
Infinite Computation Paths. In Proceedings of the 24th Annual Symposium
on Foundations of Computer Science – SFCS 1983, Tucson, Nov. 7-9, 1983,
pages 185–194, Washington, DC, USA, 1983. IEEE Computer Society.

[YZ08] Jun Yan and Wei Zhang. WCET Analysis for Multi-Core Processors with
Shared L2 Instruction Caches. In IEEE Real-Time and Embedded Technology
and Applications Symposium, pages 80–89, 2008.

[ZD07] Yuan Zhang and Evelyn Duesterwald. Barriers Matching for Programs with
Textually Unaligned Barriers. In Proceedings of the 12th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming – PPoPP
2007, San Jose, California, USA, pages 194–204. ACM, 2007.

[ZDG08] Yuan Zhang, Evelyn Duesterwald, and Guang R. Gao. Concurrency Analysis
for Shared Memory Programs with Textually Unaligned Barriers. Languages
and Compilers for Parallel Computing: 20th International Workshop, LCPC
2007, Urbana, IL, USA, October 11-13, 2007, Revised Selected Papers, pages
95–109, 2008.

[Zeh58] Johann Georg Zehfuss. Ueber eine gewisse Determinante. Zeitschrift für
Mathematik und Physik, 3:298–301, 1858.

142

Curriculum Vitæ
Robert Mittermayr

Contact Information

Institute of Computer-Aided Automation
Vienna University of Technology
Treitlstr. 1-3, 1040 Vienna, Austria
www.auto.tuwien.ac.at/~robert

robert@auto.tuwien.ac.at

Education

10/2006–08/2016 As a sideline Doctoral Dissertation “Kronecker Algebra Based
Analysis of Shared Memory Concurrent Systems” in Computer
Science, Supervisor: Prof. J. Blieberger.

06/2005 Dipl.-Ing.1 in Computer Science at Vienna University of Tech-
nology, Austria. Thesis: “Statische Analyse von Multi-Threading
Java-Programmen”, Supervisor: Prof. J. Blieberger.

01/2004–05/2004 Exchange Student (Erasmus/Sokrates) at Helsinki University of
Technology, Finland.

10/1998–05/2005 Studies in Computer Science at Vienna University of Technology,
Austria.

Professional Activities

since 08/2014 Software Engineer in the field of railway interlocking systems

10/2006–03/2014 Software Engineer in the field of professional audio and video
broadcasting

05/2005–09/2006 Software Engineer in the field of railway interlocking systems

Miscellaneous

12/1997–07/1998 Military Service

1Five year undergraduate degree directly to master’s level (M.Sc. equivalent).

www.auto.tuwien.ac.at/~robert
robert@auto.tuwien.ac.at

	Abstract
	Kurzfassung
	List of Figures
	List of Tables
	Introduction
	Motivation
	Thesis Overview and Contributions
	Outline

	Preliminaries
	Overview
	Semiring
	Control Flow Graphs
	Semaphores
	Edge Splitting
	Basic Matrix Notations and Operations
	Correspondence between Matrices and Directed Graphs
	Limitations

	Kronecker Algebra – A Matrix Calculus
	Kronecker Product / Zehfuss Product
	Kronecker Sum

	Concurrent Program Graphs
	Generating a Concurrent Program's Matrix
	Determining Entry and Final Nodes of CPGs
	-Operation and Synchronization
	Unreachable Parts Caused by Synchronization
	Properties of CPGs
	Efficient Implementation of the -Operation
	Lazy Implementation of Kronecker Algebra
	CPGs are Irreducible

	Deadlocks
	Deadlock Example

	Examples and Empirical Data
	Deadlock Example
	Modeling Static Fork Join
	Client-Server Example
	A Data Race Example
	Empirical Data

	Static Analysis of Barriers
	Barriers

	Worst-Case Execution Time Analysis
	Worst-Case Execution Time Analysis on RCPGs
	Example

	Deadlock Avoidance for Railway Systems
	Deadlocks in Computers vs. Deadlocks in Railway Systems
	Railway System Model
	A Simple Example
	Avoiding Deadlocks under Additional Constraints
	Extensions of the Standard Railway Model
	Concluding Remarks

	Related Work
	Kronecker Algebra
	Data Structures Modeling Concurrent Systems
	Static Analysis of Barriers
	Worst-Case Execution Time Analysis
	Railway Systems

	Conclusion
	Summary
	Outlook

	The State Explosion Problem
	Bibliography

