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Es ist nicht das Wissen, sondern das Lernen, nicht das Besitzen, sondern das Erwerben,
nicht das Dasein, sondern das Hinkommen, was den größten Genuß gewährt.

It is not the knowledge, but the act of learning, not the possession of but the act of getting
there, which grants the greatest enjoyment.

Carl Friedrich Gauss (1777–1855)
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Kurzfassung

Ziel der vorliegenden Arbeit ist das mathematische Studium der Analysis diverser kine-
tischer und diffusiver Mehrkomponentensysteme, die in der Physik, der Biologie und der
Chemie ihre Anwendung finden, und gewisse Kreuzeffekte zwischen den Spezies aufweisen.
Die Arbeit ist in zwei Hauptteile gegliedert, und zwar in einen kinetischen Teil, der in
Kapitel 4 und Kapitel 5 behandelt wird, und in einen diffusiven Teil, der in Kapitel 6 und
Kapitel 7 ausgearbeitet wird.

Der erste Teil ist physikalischen Mehrkomponentensystemen kinetischer Gleichungen
gewidmet, und untersucht das Langzeitverhalten von Gasgemischen, welche aus mono-
atomischen, nichtreaktiven Gaspartikeln mehrerer Spezies bestehen. Unser Ziel ist es,
unter physikalisch möglichst plausiblen Voraussetzungen mit expliziten Methoden zu zeigen,
dass diese Gemische für hinreichend reguläre Anfangsdaten mit exponentieller Abklingrate
zum globalen Gleichgewichtszustand konvergieren. Mathematisch verwenden wir hierfür
die mehrkomponentige Boltzmann-Gleichung auf dem dreidimensionalen Torus, welche
aus einem degeneriert-dissipativen Kollisionsoperator und einem konservativen Transport-
operator besteht. Im Gegensatz zur Theorie der klassischen einkomponentigen Boltzmann-
Gleichung treten hier während des Kollisionsvorgangs zusätzliche Kreuzeffekten auf, die
dadurch entstehen, dass im Gasgemisch auch Teilchen unterschiedlicher Spezies miteinan-
der kollidieren können. Dieses Phänomen stellt somit die Hauptschwierigkeit unseres Pro-
blems dar. Unsere Studie führen wir in zwei Teilen durch.

In Kapitel 4 arbeiten wir mit der linearisierten Gleichung und unter der vereinfachenden
Voraussetzung, dass alle Teilchen die gleiche Masse besitzen. Es gelingt uns, eine bisher
nur für den einkomponentige Boltzmannschen Kollisionsoperator gezeigte degenerierte Ko-
erzivitätsungleichung auf den Mehrkomponentenfall zu verallgemeinern. Diese Ungleichung
wird in der englischsprachigen Fachliteratur neben dem Namen ”coercivity estimate” auch
unter dem Namen “spectral-gap estimate” angeführt, da sie nicht nur das degeneriert
dissipative Verhalten des Kollisionsoperators beweist, sondern weiters auch eine für das
Abklingverhalten wichtige Eigenschaft des Spektrums des Operators zeigt, nämlich dass er
einen “spectral gap” besitzt. Mit Hilfe der Hypokoerzivitätsmethode von C. Mouhot und
L. Neumann [113] zusammen mit der von uns verallgemeinerten Koerzivitätsungleichung
zeigen wir schlussendlich exponentielle Konvergenz zum globalen Gleichgewicht für Lösun-
gen der mehrkomponentigen linearisierten Boltzmann-Gleichung.

In Kapitel 5 verfeinern wir unsere Studie in mehrfacher Hinsicht. Einerseits schwächen
wir die physikalischen Voraussetzungen an unser Modell insofern ab, dass wir nun auch
Gasgemische zulassen, die aus Spezies mit unterschiedlichen Massen bestehen. Andererseits
betrachten wir nicht mehr nur die um das globale Gleichgewicht herum linearisierte Glei-
chung, sondern erlauben kleine Störungen. Dies ist mathematisch äquivalent dazu, die volle
nichtlineare mehrkomponentige Boltzmann-Gleichung nahe des globalen Gleichgewichts zu



betrachten. Der Schwerpunkt unserer Untersuchungen liegt nun darin, in aus physika-
lischer Sicht bestmöglich passenden Funktionenräumen eine rigorose Cauchytheorie (Exis-
tenz, Eindeutigkeit, exponenzielle Konvergenz zum Gleichgewicht) für diese Gleichung zu
beweisen, indem wir neueste Techniken für das mehrkomponentige Problem verallgemei-
nern. Dabei zeigen wir auch eine neue Carleman-Darstellung und eine Art Povzner Unglei-
chung für Gasgemische mit unterschiedlichen Massen. Ausgangspunkt ist wieder die li-
nearisierte Theorie, für die sich heraustellt, dass sich auch im Falle ungleicher Massen eine
Koerzivitätsungleichung herleiten lässt. Nach Kombination mehrerer (zum Teil hypoko-
erziver) Methoden, wobei die Stärke und Neuartigkeit dieser Kombination darin liegt, dass
sie ohne die sonst übliche Verwendung von Sobolevräumen höherer Ordnung auskommt, er-
halten wir schließlich Existenz, Eindeutigkeit, und exponentielle Konvergenz zum globalen
Gleichgewicht der Lösung im Raum L1

vL
∞
x (m), wobei m ∼ (1 + |v|k) ein polynomielles

Gewicht der Ordnung k > k0, und k0 ein physikalischer Schwellenwert ist. Im Spezialfall
von Spezies mit gleichen Massen und unter der ”hard-spheres” Voraussetzung liefert dies
den Schwellenwert k0 = 2, und somit (zumindest fast) den physikalisch “optimalen” Raum
aller Dichtefunktionen mit endlicher Masse und Energie.

Der zweite Teil dieser Arbeit ist diffusiven Mehrkomponentensystemen gewidmet, die in
der Populationsdynamik der Biologie (Kapitel 6) und in der Reaktionskinetik der Chemie
(Kapitel 7) eine wichtige Rolle spielen.

In Kapitel 6 untersuchen wir das nach Shigesada, Kawasaki und Teramoto [129] be-
nannte SKT-Modell der Populationsdynamik, welches ein Kreuzdiffusionsmodell ist, und
das Phänomen der räumlichen Abkapselung von miteinander sich im Konkurrenzkampf
(z.B. um eine Futterquelle) befindenden Spezies beschreibt. Unser Ziel ist es, globale Exis-
tenz schwacher Lösungen des SKT Models zu beweisen. Neu an unseren Ergebnissen ist,
dass wir (unter algebraischen Bedingungen an die Diffusionskoeffizienten) Existenz von
Lösungen für eine beliebige Anzahl an Spezies zeigen können. Bisherige Ergebnisse bein-
halteten (bis auf Spezialfälle in [51]) nur den Fall zweier Populationen. Dabei verwenden
und erweitern wir eine von A. Jüngel [94] entwickelte Entropiemethode, die uns die für
den Existenzbeweis wichtigen Gradientenabschätzungen liefert. Die Bedingungen an die
Diffusionskoeffizienten, die wir erhalten, stellen sicher, dass die Entropie monoton fallend
ist, und lassen sich salopp folgendermaßen charakterisieren: entweder wir benötigen eine
aus der Theorie von Markovketten her bekannte Bedingung namens “detailed balance”,
oder die Kreuzdiffusionseffekte müssen schwach im Vergleich zu den Selbstdiffusionseffek-
ten sein. Mehrere Gegenbeispiele illustrieren, dass die Entropie (anfangs) monoton steigt
statt zu fallen, falls keine dieser beiden Bedingungen erfüllt ist. Schlussendlich leiten wir
eine graphentheoretische Bedingung her, unter der “detailed balance” erfüllt ist.

In Kapitel 7 beweisen wir den rigorosen Limes von verallgemeinerten Reaktions- Diffu-
sionssystemen aus der Reaktionskinetik zu neuartigen Kreuzdiffusionssystemen mit Reak-
tionstermen, indem wir annehmen, dass einige der chemischen Reaktionen im Vergleich zu
allen anderen extrem schnell ablaufen. Dieser Limes besitzt nun die interessante Eigen-
schaft, dass er Entropie erhaltend ist, und somit Entropien zu neuartigen Klassen von
Kreuzdiffusionssystemen mit Reaktionstermen generieren kann. Für den rigorosen Kon-
vergenzbeweis verwenden wir neben Entropieabschätzungen auch die von M. Pierre und
D. Schmitt entwickelte Dualitätsmethode [121].
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Abstract

The objective of this thesis is the analysis of kinetic and diffusive multi-species systems with
certain cross effects between the species, which are very important in many applications in
physics, biology and chemistry.

In the first part of this thesis, we study the multi-species Boltzmann equation for hard
potentials or Maxwellian molecules under Grad’s angular cut-off condition on the torus,
which describes the evolution of a dilute gaseous mixture. First, we work on the linearized
level with same molar masses, where we prove a multi-species spectral-gap estimate of
the collision operator, which leads to exponential trend to global equilibrium using the
hypocoercive properties of the linearized Boltzmann equation. Next, we study the full
Cauchy theory of the nonlinear multi-species Boltzmann equation close to global equilib-
rium for different molar masses in L1

vL
∞
x (m), where m ∼ (1 + |v|k) is a polynomial weight

of order k > k0, recovering the optimal physical threshold of finite energy k0 = 2 in the
particular case of a multi-species hard spheres mixture with same molar masses.

The second part of this thesis is devotet to cross-diffusion systems. First, we prove global
existence of weak solutions for a generalized SKT cross-diffusion population dynamics model
with an arbitrary number of species under detailed balance or weak cross-diffusion condition
using entropy methods. Finally, we study a rigorous fast-reaction limit from reaction-
diffusion systems to cross-diffusion systems using entropy estimates and additional duality
estimates. Since the reaction-diffusion system exhibits an entropy structure, performing
the fast-reaction limit leads to a limiting entropy of the limiting cross-diffusion system. In
this way, we obtain new entropies for new classes of cross-diffusion systems.
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1. General introduction

This thesis is devoted to the analysis of kinetic and diffusive multi-species systems in
physics, biology and chemistry, where the interactions between the different species play
an important role. On both the kinetic and the macroscopic level of description, we will
study how these interactions create certain cross effects between the species, which are able
to describe cross-diffusion phenomena.

1.1. Overview

Kinetic theory [32, 33, 34, 138] is a part of non-equilibrium statistical physics, and
started in the 19th century with the founding works of J. Clerk Maxwell [107, 108] and
L. Boltzmann [59] on the evolution of a dilute gas, described by the Boltzmann equation.
The basic idea is to use a statistical description to model the evolution of a system consisting
of many particles, like a gas, plasma or galaxy, by assuming that it can be regarded as a
continuum, instead of describing the trajectory of each particle individually by Newton’s
laws of classical mechanics. However, the Boltzmann equation is not a “first principle”
of physics, but represents a mesoscopic level, since it can be formally derived from the
microscopic level of molecular dynamics of a gas (see [33][34]), and it was rigorously derived
from molecular gas dynamics in the Boltzmann-Grad limit (see for short times Landford’s
theorem [102], or more recently [70, 125]).

Cross diffusion in multi-species systems represents the effect when the gradient of
the concentration of one of the species induces a flux on the other species. Cross-diffusion
equations are macroscopic models, and they can be derived from kinetic equations in the
diffusive limit [21, 91, 18]. Cross diffusion was first conjectured by Onsager and Fuoss
[117] in 1932, and experimentally justified by Gosting and Dunlop [65] in 1955. One of
the most prominent experiments was performed by Duncan and Toor [64], showing that
cross effects between the species can completely change the diffusive fluxes. Nowadays,
the field of cross-diffusion in multi-species systems is a very active research area, see [95]
for a mathematical viewpoint, and [136] and the references therein for many experimental
results on cross-diffusion phenomena.

1.2. The main results

The results presented in this thesis can be summarized as follows. On the kinetic level,
assuming hard potentials or Maxwellian molecules under Grad’s cutoff assumption, we
prove an explicit spectral-gap estimate for the multi-species linearized Boltzmann collision
operator for same molar masses, and show exponential convergence to global equilibrium

3



1. General introduction

for the inhomogeneous linearized equation using hypocoercive techniques. Afterwards,
we study the Cauchy theory for the perturbed multi-species Boltzmann equation with
different molar masses in physically relevant function spaces, without using higher order
Sobolev regularity. The asymmetry due to the different molar masses leads to new multi-
species results, including a spectral-gap estimate for different molar masses, a multi-species
Carleman representation, and a new multi-species Povzner-type inequality.

On the macroscopic level, we investigate two different issues. First, we study the existence
of global weak solutions of a generalized Shigesada-Kawasaki-Teramoto type cross-diffusion
system for an arbitrary number of species under a detailed balance of weak cross-diffusion
condition, by using entropy methods. This has been proven (up to some very specific cases)
only for two species so far. Finally, by starting already from a macroscopic equation of
reaction-diffusion type, we perform a rigorous fast-reaction limit in order to obtain more
complicated cross-diffusion systems with known entropy structure in the limit. This is done
with the help of entropy estimates and additional duality estimates.

1.3. Presentation of the mathematical problems

We start our observations by considering a distribution function Fi(t, x, v) for 1 ≤ i ≤ n,
which describes the probability density of the i-th species of a gaseous mixture of n ≥ 2
different species with same molar masses on the phase space (x, v) ∈ T3×R3. The quantity
Fi(t, x, v) dxdv measures the number of particles of the species i in the mixture at time t
in an elementary volume of the phase space of the size dxdv centered at the point (x, v).
The particles are assumed to be mono-atomic and non-reactive, moreover, we restrict our
observations to classical mechanics, ignoring any kind of relativistic or quantum effects.
Then, the evolution of Fi can be described by the multi-species Boltzmann equation

∂tFi + v · ∇xFi = Qi(F ), 1 ≤ i ≤ n, t > 0, (1.3.1)

with initial conditions and periodic boundary conditions. The term v · ∇xFi models the
transport of the particles, whereas Q(F ) = (Q1(F ), . . . , Qn(F )) is the quadratic multi-
species Boltzmann collision operator, local in time t and in position x, with

Qi(F )(v) =

n∑
j=1

Qij(Fi, Fj)(v), 1 ≤ i ≤ n.

It models the collisions between particles of the same (i = j) or of different (i 6= j) species,
where

Qij(Fi, Fj)(v) =

n∑
j=1

∫
R3×S2

Bij(|v − v∗|, cos(θ))(Fi(v
′)Fj(v

′∗)− Fi(v)Fj(v
∗))dv∗dσ.

The most important property of the Boltzmann equation is the H-theorem, first proved by
L. Boltzmann for a single-species gas, and later for reactive multi-species kinetic models in
[122, 23, 52]. It states that the entropy is nonincreasing in time along the flow of (1.3.1)

4



1.3. Presentation of the mathematical problems

towards its global equilibrium called global Maxwellian M(v) = (M1(v), . . . ,Mn(v)), which
is a Gaussian function. This coincides with the Second Law of Thermodynamics, which
says that the physical entropy (which is the negative mathematical entropy) of an isolated
system is nondecreasing in time. Besides the existence of a unique global equilibrium,
there exist also local equilibria, which are in equilibrium with respect to the velocity v,
but not with respect to the position x. It turns out that the entropy stops decaying
whenever it reaches a local equilibrium, and only the interplay between the conservative
transport part and the dissipative collision part of the kinetic equation leads to convergence
to global equilibrium. This property of the Boltzmann equation and also of several other
kinetic models is called hypocoercivity [139]. It was first investigated for the single-species
kinetic Fokker-Planck equation in [54, 86], and then for the confined nonlinear single-species
Boltzmann equation assuming regularity in [55]. Hypocoercivity of a general class of linear
single-species kinetic models was investigated in [113] and in [58]. In both papers, a linear
energy method is established, which combines the coercivity of the collision operator in the
velocity space (spectral-gap estimate) together with transport effects in order to overcome
the lack of coercivity on the set of local equilibria. The abstract strategy presented in
[113] includes the linearized Boltzmann equation for hard spheres on the torus, yielding
exponential convergence in H1. The work [58] studies hypocoercivity for a large class
of single-species linear kinetic models on the whole space with confinement potential in
L2, but for only one-dimensional collision kernels. Recently, an abstract space-extension
technique was established in [78], which is capable of enlarging the functional space of the
explicit convergence result of a semigroup, by using a high-order quantitative factorization
argument on the resolvent of the semigroup. In this way, a first constructive proof of
exponential convergence for the full nonlinear Boltzmann equation for hard spheres was
proved in L1

vL
∞
x (1 + |v|k) for k > 2.

In Chapter 4, we show that also the multi-species linearized Boltzmann equation

∂tfi + v · ∇xfi = Li(f), 1 ≤ i ≤ n, t > 0,

Li(f)(v) =
n∑
j=1

Lij(fi, fj)(v),

with

Lij(fi, fj) = M
−1/2
i

(
Qij(Mi,M

1/2
j fj) +Qij(M

1/2
i fi,Mj)

)
exhibits a hypocoercive property by generalizing the abstract hypocoercivity procedure of
C. Mouhot and L. Neumann [113] to the multi-species case. The core idea in [113] is to
construct a modified entropy by adding an additional mixed term of the form (2.1.15) to the
H1-norm with an appropriate weight, whose dissipation functional is coercive. This yields
exponential convergence to global equilibrium with an explicitly computable exponential
convergence rate in H1(T3×R3). The crucial part for our multi-species problem will be to
show that an explicit spectral-gap estimate like in [111] holds true also in the multi-species
case, by carefully exploiting the multi-species conservation laws. These conservation laws
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1. General introduction

turn out to be significantly different from the single-species ones due to certain cross effects
between the species, namely, that the mass of each species is conserved individually, but
only the sum of the momenta and the sum of the energies is conserved, which can be derived
from the multi-species H-theorem [52]. Thus, the idea is to study the differences of the
momenta and the differences of the energies, in order to handle the cross effects arising due
to the collisions between different species, see section 2.1.5, and in particular the estimate
on the differences of the energies and differences of the momenta presented in (2.1.11) for
an explicitly computable constant C > 0:

−(Πm(f), Lb(Πm(f)))L2
v
≥ C

n∑
i,j=1

(
|ui − uj |2 + |ei − ej |2

)
,

where we decomposed the linearized operator L = Lm + Lb into a mono-species part Lm

and a bi-species part Lb, and thus Πm(f) denotes the orthogonal projection of f onto the
kernel of Lm in L2, and ui are the momenta and ei are the energies of f , defined in (4.4.4).
In this way, we obtain the explicit multi-species spectral-gap estimate

−(f, L(f))L2
v
≥ λ‖f −ΠL(f)‖2L2

v(ν),

where λ > 0 is an explicitly computable constant, L2(ν) is a weighted (vector-valued) L2-
space weighted by the collision frequency ν, and ΠL(f) denotes the orthogonal projection
of f = (f1, . . . , fn) onto the null space of the linearized multi-species collision operator
L = (L1, . . . , Ln) with respect to the L2 scalar product. This part of the thesis is based on
a research collaboration with A. Jüngel (TU Wien), C. Mouhot (University of Cambridge)
and Nicola Zamponi (TU Wien), and was published under the title Hypocoercivity for a
linearized multispecies Boltzmann system in the journal SIAM Journal on Mathematical
Analysis [46].

In Chapter 5, we extend the previous results, by establishing a full Cauchy theory in
L1
vL
∞
x (m) for the nonlinear multi-species Boltzmann equation with different molar masses

on the torus, where m ∼ (1 + |v|k) is a polynomial weight of order k ≥ k0 with an explicit
threshold k0, under the assumption that fi is close to global equilibrium, which is equi-
valent of solving the perturbed multi-species Boltzmann equation. In the particular case
of a multi-species hard spheres mixture with same molar masses, this result recovers the
optimal physical threshold of finite energy k0 = 2, which was obtained for the single-species
equation in [78]. The strategy of our proof is to combine and adapt several very recent
methods, combined with new hypocoercivity estimates, in order to develop a new construc-
tive approach that allows to deal with polynomial weights without requiring any spatial
Sobolev regularity. Moreover, dealing with different masses induces a loss of symmetry in
the Boltzmann operator, which prevents the direct adaptation of standard mono-species
methods. Thus, our results include a refinement of the multi-species spectral-gap estimate
[46] (see Theorem 5.6), a multi-species Carleman representation (section 5.4.1), which takes
into account the concentric spheres arising due to the different masses already pointed out
by Pettersson in [119, p. 364], and a new multi-species Povzner-type inequality (see Propo-
sition 5.22). The different molar masses do not disturb too much the procedure for proving

6



1.3. Presentation of the mathematical problems

the multi-species spectral-gap estimate which we developed in [46] and presented in Chap-
ter 4. The Carleman representation for different molar masses has the interesting feature
of producing admissible Carleman sets of the form of a hyperplane that passes through
VE(v, v′) defined in (5.4.7) and is orthogonal to v − v′ (similar to the single-species case),
or of a sphere defined in (5.4.9), depending on which change of variables we perform. For
the Povzner-type inequality, we used a method similar to [9, Lemma 1 and Corollary 3],
and our main idea is to consider kinetic energies mi |v′|2 and mj |v′∗|

2 in order to exhibit
the problematic term arising from mi −mj , which can be non-zero in the case of different
masses.

Before, global existence of L1-renormalized solutions was proved in [123] for reactive
multi-species Boltzmann systems with initial data only satisfying the natural condition
that total mass, energy and entropy are finite. In the recent work [27], additional L∞

stability estimates for the multi-species Boltzmann equation are derived. Other methods
for proving the compactness of the compact part of the multi-species linearized collision
operator can be found in [19, 22], and for previous results on a multi-species Povzner-type
inequality for a coupling of two Boltzmann-like equations modeling the evolution of dust
particles in a rarefied atmosphere, we refer to [36]. The work presented in this thesis is
based on a research collaboration with M. Briant (Paris 6), which will appear under the
title The Boltzmann equation for a multi-species mixture close to global equilibrium in the
journal Archive for Rational Mechanics and Analysis [28].

Starting from a diffusive scaling of the multi-species Boltzmann equation (1.3.1) under
the assumption of volume-filling and with ε > 0 representing the mean-free path

ε ∂tf
ε
i + v · ∇xf εi =

1

ε
Qεi (f

ε), 1 ≤ i ≤ n,

a class of cross-diffusion systems called Maxwell-Stefan equations can be derived in the
diffusive limit ε→ 0, see [21, 91, 18]. Existence of solutions for this system was investigated
e.g. in [72, 12, 20, 96], including a global existence result of weak solutions under quite
general assumptions in [96] by using entropy methods. A general strategy, which generalizes
the approach in [96] of proving global existence of weak solutions for strongly coupled cross-
diffusion systems of the form

∂tu− div(A(u)∇xu) = f(u), u = (u1, . . . , un), (1.3.2)

where the diffusion matrix A(u) is neither symmetric nor positive definite and f(u) repre-
sents the reaction part, was established in [94] (see also [95]) by the Boundedness-by-entropy
method. The core assumption for this method is the existence of an entropy, which is a
Lyapunov functional along the flow of the cross-diffusion system, such that this system can
be rewritten in (formal) gradient-flow form. In particular, we assume that equation (1.3.2)
can be written as

∂tu− div

(
B∇δH

δu

)
= f(u), (1.3.3)

where B is a positive semi-definite matrix and δH
δu is the variational derivative of the entropy

functional H[u] =
∫

Ω h(u)dx with an entropy density h : (0,∞)n → [0,∞). If we identify

7



1. General introduction

δH
δu by its Riesz representative h′(u) (the derivative of h) and introduce the entropy variable
w = h′(u), we obtain the equation

∂tu− div (B(w)∇w) = f(u). (1.3.4)

The simple calculation ∇w = ∇h′(u) = h′′(u)∇u yields B(w)h′′(u) = A(u), which leads to

B(w) = A(u)
(
h′′(u)

)−1
. (1.3.5)

Thus we can also study equation (1.3.4) and by supposing that h′ : (0,∞)n → Rn is
invertible, transform back from the w- variable to the u- variable.

The important consequence of the gradient-flow formulation is that by just assuming
the matrix B to be positive-semidefinite, we can show (omitting the reaction term) that
H [u(t)] is a Lyapunov functional along the solutions u(t) of the reaction diffusion system
(1.3.2), i.e.

d

dt
H [u(t)] =

d

dt

∫
Ω
h(u)dx = −

∫
Ω
∇w : B(w)∇wdx = −

∫
Ω
∇u : h′′(u)A(u)∇udx ≤ 0.

The resulting entropy-dissipation inequality provides the necessary a priori estimates for
the gradients in order to apply a nonlinear Aubin-Lions lemma.

In Chapter 6, we extend the Boundedness-by-entropy method [94, 95] to a population
dynamics cross-diffusion system, which was first investigated by Shigesada, Kawasaki and
Teramoto in 1979 in order to study the segregation between two competing species due
to repulsive effects [129]. First global existence results for this so called SKT model in
the case of two species by using entropy methods were shown in [37, 38]. Later, these
techniques were refined for generalized SKT models by combining entropy estimates with
duality estimates [50, 51]. In [94], global existence of weak solutions for a generalized SKT
model was shown in the case of only two species. We extend this result to an arbitrary
number of species. The model has the form (1.3.2), with diffusion matrix

Aij(u) = δijpi(u) + ui
∂pi
∂uj

(u), pi(u) = ai0 +
n∑
k=1

aiku
s
k, aij ≥ 0, s > 0,

and Lotka-Volterra competition term

fi(u) = ui

(
bi0 −

n∑
j=1

biju
σ
j

)
, 0 ≤ σ < 2s− 1 + 2/d,

on a d-dimensional open bounded domain Ω ⊆ Rd. For s = 1, n = 2 and σ = 1, this yields
the classical SKT model of Shigesada, Kawasaki and Teramoto [129]. The existence proof is
carried out under a detailed balance or weak cross-diffusion condition. The detailed balance
condition is related to the symmetry of the mobility matrix, mirroring Onsager’s principle
in thermodynamics. Under detailed balance (and without reaction term), the entropy is
non-increasing in time, but counter-examples show that the entropy may increase initially
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1.3. Presentation of the mathematical problems

if the detailed balance condition does not hold. The crucial gradient estimate in the linear
case s = 1 is derived from the following entropy-dissipation inequality:

d

dt
H[u] + 4

∫
Ω

n∑
i=1

πiai0|∇
√
ui|2dx+ 2

∫
Ω

n∑
i=1

πiaii|∇ui|2dx ≤ 0,

where πi > 0 are positive constants inside the entropy functional

H[u] =
n∑
i=1

∫
Ω
πi(ui log ui − ui + 1) dx,

which satisfy the detailed balance condition

πiaij = πjaji, 1 ≤ i, j ≤ n.

These results are based on a research collaboration with X. Chen (Beijing University of
Posts and Telecommunications) and A. Jüngel (TU Wien), which is submitted under the
title Global existence analysis of cross-diffusion population systems for multiple species [39].

In Chapter 7, we study the rigorous derivation of a class of (reaction-) cross diffusion
systems in the fast-reaction limit, by already starting from a macroscopic equation of
reaction-diffusion type. We consider two concrete examples and use a strategy similar
to [16]. In the first model, we study the fast-reaction limit ε → 0 of a system of three
reaction-diffusion equations of the form

∂tu
ε
1 −∆xf1(uε1) = −1

ε

(
q1(uε1)− q2(uε2) q3(uε3)

)
,

∂tu
ε
2 −∆xf2(uε2) = +

1

ε

(
q1(uε1)− q2(uε2) q3(uε3)

)
,

∂tu
ε
3 −∆xf3(uε3) = +

1

ε

(
q1(uε1)− q2(uε2) q3(uε3)

)
,

(1.3.6)

for ε > 0 on a bounded domain Ω ⊆ Rd together with no-flux boundary conditions and
nonnegative initial conditions. The functions uεi := uεi (t, x) ≥ 0 for i = 1, 2, 3 represent
the concentrations of the i-th reacting species, and fi(u

ε
i ) and qi(u

ε
i ) are general smooth

functions with some restrictions on their growth. The advantage of this rather general
system is, that its structure is still simple enough that an entropy naturally appears as a
generalization of the physical entropy of systems arising from reversible reaction chemistry.
Then, by using entropy estimates and duality estimates, we show that this system converges
rigorously in the fast-reaction limit ε→ 0 towards

q1(u1)− q2(u2)q3(u3) = 0, (1.3.7)

∂t (u1 + u2)−∆x (f1(u1) + f2(u2)) = 0, (1.3.8)

∂t (u1 + u3)−∆x (f1(u1) + f3(u3)) = 0. (1.3.9)

By using the algebraic condition (1.3.7) and performing the change of variables w2 := u1+u2

and w3 := u1 + u3 in (1.3.8) and (1.3.9), this limiting system turns out to be a system of
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1. General introduction

two cross-diffusion equations for which an entropy exists: it is the limiting entropy of
the well-known physical entropy of the system (1.3.6) for ε → 0. In this way, we obtain
a new large class of cross-diffusion systems with known entropy structure. Our second
model is one example of a more complex situation, in which a system of four equations of
reaction-diffusion type converges in the fast-reaction limit towards a ”hybrid” system of
reaction-cross diffusion consisting of three equations, still presenting an entropy structure.
In both rigorous convergence proofs, entropy estimates as well as duality estimates play an
important role. Entropy estimates are obtained from the entropy-dissipation inequality of
the Lyapunov functional of these systems:

sup
t∈[0,T ]

H[uε(t)] +

∫ T

0
Dε[u

ε(s)]ds ≤ H[uin],

where H[uε(t)] is the entropy (Lyapunov function) along the flow of the system, and
Dε[u

ε(t)] = − d
dtH[uε(t)] is the entropy dissipation. The use of duality estimates for

reaction-diffusion systems goes back to M. Pierre and D. Schmitt [121] and has been refined
in many variants since then, see e.g [49, 29]. Recently, they have been introduced also for
cross-diffusion systems, see for instance [50, 51]. We present two of the variants explicitly
in Lemma 7.5 and Lemma 7.21, which can be found in [49] and [29] respectively. The core
idea of these duality estimates is to gain regularity for a system of the type

∂tu−∆x(Mu) = 0, M = M(t, x) ≥ 0, u = u(t, x) ≥ 0, u = (u1, . . . , un),

with no-flux boundary conditions and regular initial conditions, roughly speaking, by mul-
tiplying the system by a positive solution of its adjoint problem backward in time, i.e. its
dual problem. This part of the thesis is based on a research collaboration with L. Desvil-
lettes (Paris Diderot) and A. Jüngel (TU Wien) under the title Cross-diffusion systems
and fast-reaction limit, and will be submitted soon.

1.4. Outline of the thesis

In Chapter 1, we introduce the mathematical problems investigated in this thesis, discuss
how they fit into the context of the existing literature, and briefly sketch some ideas of
the proofs. A more detailed introduction into the models presented in this thesis can be
found in Chapter 2 and Chapter 3, which are based on my own works [46, 28] and [39]
respectively. We refer to these two chapters for more details on the state of the art and
the methods used for the proofs. In Chapter 4, 5, 6, 7 we present the detailed proofs.
The proofs of the first three chapters (Chapter 4, 5, 6) can be found in [46, 28, 39].
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2. Introduction to the kinetic multi-species
models

2.1. The linearized Boltzmann system with same molar masses

In Chaper 4, our goal is to prove an explicit spectral-gap estimate of the linearized Boltz-
mann operator for gas mixtures in the case of hard and Maxwellian potentials as well
as the exponential decay of solutions to a multi-species Boltzmann system. Spectral-gap
estimates and the large-time behavior of the mono-species Boltzmann equations were in-
tensively studied in the literature, but are unknown for multi-species systems. Our aim is
to extend the spectral-gap analysis to the case of the linearized multi-species Boltzmann
system modeling an ideal gas mixture. This is achieved by generalizing the coercivity
method of [113], including quantitative estimates on the spectral gap for the multi-species
collision operator. A crucial step of our analysis is the observation that the multi-species
version of the H-theorem implies conservation of mass for each species but conservation of
momentum and energy only for the sum of all species. As a consequence, we need to study
carefully the “cross-effects” of the collisions, i.e., how collisions between different species act
on distribution functions which are elements of the nullspace of the mono-species collision
operator. The crucial step is to relate these “cross-effects” to the differences of momentum
and energy.

2.1.1. The model for same molar masses

The evolution of a dilute ideal gas composed of n ≥ 2 different species of chemically non-
interacting mono-atomic particles (see [52] for chemically reacting gases) with the same
particle mass (see Chapter 5 for different molar masses) can be modeled by the following
system of Boltzmann equations, stated on the three-dimensional torus T3,

∂tFi + v · ∇xFi = Qi(F ), t > 0, Fi(x, v, 0) = FI,i(x, v), (x, v) ∈ T3 × R3, (2.1.1)

where 1 ≤ i ≤ n. The vector F = (F1, . . . , Fn) is the distribution function of the system,
with Fi describing the ith species. The variables are the position x ∈ T3, the velocity
v ∈ R3, and the time t ≥ 0. The right-hand side of the kinetic equation in (2.1.1) is the
ith component of the nonlinear collision operator, defined by

Qi(F ) =
n∑
j=1

Qij(Fi, Fj), 1 ≤ i ≤ n,

where Qij models interactions between particles of the same (i = j) or of different species
(i 6= j),

Qij(Fi, Fj)(v) =

∫
R3×S2

Bij(|v − v∗|, cosϑ)(F ′iF
′∗
j − FiF ∗j )dv∗dσ,

11



2. Introduction to the kinetic multi-species models

with the abbreviations F ′i = Fi(v
′), F ∗i = Fi(v

∗), F ′∗i = Fi(v
′∗), the three-dimensional unit

sphere S2, and

v′ =
v + v∗

2
+
|v − v∗|

2
σ, v′∗ =

v + v∗

2
− |v − v

∗|
2

σ (2.1.2)

are the pre-collisional velocities depending on the post-collisional velocities (v, v∗). These
expressions follow from the fact that we assume the collisions to be elastic, i.e., the mo-
mentum and kinetic energy are conserved on the microscopic level:

v′ + v′∗ = v + v∗,
1

2
|v′|2 +

1

2
|v′∗|2 =

1

2
|v|2 +

1

2
|v∗|2. (2.1.3)

The collision kernels Bij are nonnegative functions of the modulus |v − v∗| and the cosine
of the deviation angle ϑ ∈ [0, π], defined by cosϑ = σ · (v − v∗)/|v − v∗|.

Let us first recall the main properties of the nonlinear operator Qi. Using the techniques
from [34, pp. 36-42], it is not difficult to see that Q := (Q1, . . . , Qn) conserves the mass of
each species but only total momentum and energy, i.e.∫

R3

n∑
i,j=1

Qij(Fi, Fj)ψi(v)dv = 0

if and only if ψ(v) ∈ span{e(1), . . . , e(n), v11, v21, v31, |v|21}, where e(i) is the ith unit
vector in Rn and 1 = (1, . . . , 1) ∈ Rn. It is shown in [52] that Q satisfies a multi-species
version of the H-theorem which implies that any local equilibrium, i.e. any function F
being the maximum of the Boltzmann entropy, has the form of a local Maxwellian Mloc =
(Mloc,1, . . . ,Mloc,n) with

Fi(x, v, t) = Mloc,i(x, v, t) =
ρloc,i(x, t)

(2πθloc(x, t))3/2
exp

(
−
|v − uloc(x, t)|2

2θloc(x, t)

)
,

where, introducing the total local density ρloc =
∑n

i=1 ρloc,i,

ρloc,i =

∫
R3

Fidv, uloc =
1

ρloc

n∑
i=1

∫
R3

Fivdv, θloc =
1

3ρloc

n∑
i=1

∫
R3

Fi|v − u|2dv

are the (local) masses of the species, the total momentum and total energy, respectively.
On the other hand, the global equilibrium, which is the unique stationary solution F to

(2.1.1), is given by M = (M1, . . . ,Mn) with

Fi(x, v) = Mi(v) =
ρ∞,i

(2πθ∞)3/2
exp

(
−|v − u∞|

2

2θ∞

)
,

where now, setting ρ∞ =
∑n

i=1 ρ∞,i,

ρ∞,i =

∫
T3×R3

Fidxdv, u∞ =
1

ρ∞

∫
T3×R3

Fivdxdv, θ∞ =
1

3ρ∞

∫
T3×R3

Fi|v − u|2dxdv

do not depend on (x, t). By translating and scaling the coordinate system, we may assume
that u∞ = 0 and θ∞ = 1 such that the global equilibrium becomes

Mi(v) =
ρ∞,i

(2π)3/2
e−|v|

2/2, 1 ≤ i ≤ n. (2.1.4)
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2.1. The linearized Boltzmann system with same molar masses

2.1.2. Linearized Boltzmann collision operator

We assume that the distribution function Fi is close to the global equilibrium such that we

can write Fi = Mi +M
1/2
i fi for some small perturbation fi, where Mi is given by (2.1.4).

Then, dropping the small nonlinear remaining term, fi satisfies the linearized equation

∂tfi + v · ∇xfi = Li(f), t > 0, fi(x, v, 0) = fI,i(x, v), (x, v) ∈ T3 × R3, (2.1.5)

for 1 ≤ i ≤ n, where f = (f1, . . . , fn) and the ith component of the linearized collision
operator L = (L1, . . . , Ln) is given by

Li(f) =

n∑
j=1

Lij(fi, fj), 1 ≤ i ≤ n,

with

Lij(fi, fj) = M
−1/2
i

(
Qij(Mi,M

1/2
j fj) +Qij(M

1/2
i fi, fj)

)
=

∫
R3×S2

BijM
1/2
i M∗j (h′i + h′∗j − hi − h∗j )dv∗dσ, hi := M

−1/2
i fi. (2.1.6)

Here, we have used M
′∗
i M

′
j = M∗iMj for any i, j, which follows from (2.1.3). Notice that we

have chosen the linearization considered in, e.g., [113, 135], which allows to work in a pure
L2
x,v framework without weight function. Another linearization is given by Fi = Mi + gi,

which we use in Chapter 5, making it necessary to work in a weighted L2 space, where
the weight function is a Maxwellian of the form 1/Mi. Note that this choice gives the
same results as with the linearization (2.1.6) since both linearizations correspond to the
same space of solutions. It turned out that in Chapter 4 the computations are easier using
(2.1.6), whereas in Chapter 5 they are easier using the other linearization.

The linearized Boltzmann system satisfies an H-theorem with the linearized entropy
H(f) = 1

2

∑n
i=1

∫
R3 f

2
i dv,

−dH
dt

= −
n∑
i=1

∫
R3

fiLi(f)dv =: −(f, L(f))L2
v
≥ 0,

where (·, ·)L2
v

is the scalar product on L2
v := L2(R3;Rn). We will prove in Lemma 4.4 that

(f, L(f))L2
v

= 0 if and only if M
−1/2
i fi lies in span{e(1), . . . , e(n), v11, v21, v31, |v|21}, which

is the null space Ker(L) of the linear operator L.

Our main goal is to show that, under suitable assumptions on the collision kernels,
there exists a constant λ > 0, which can be computed explicitly, such that for all suitable
functions f , −(f, L(f))L2

v
≥ λ‖f −ΠL(f)‖2H, where ΠL is the projection onto Ker(L) and

H is a subset of L2
v (see Theorem 2.3 for the precise statement). This spectral-gap estimate,

together with hypocoercivity techniques, allows us to conclude that exponential decay of
the solutions f(t) towards the global equilibrium holds (see Theorem 2.4).
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2. Introduction to the kinetic multi-species models

2.1.3. State of the art

The study of the linearized mono-species collision operator, in the spatially homogeneous
and hard-potential case, goes back to Hilbert [87]. For this operator, Carleman [30] proved
the existence of a spectral gap. The results were extended by Grad [74] for hard potentials
with cut-off. Baranger and Mouhot [4] derived constructive estimates in the hard-sphere
case. For Maxwell molecules, Fourier transform methods were employed in [35] to achieve
explicit spectral properties. A spectral-gap estimate for the linearized Boltzmann operator,
consisting of the sum of the linearized collision operator and the transport operator, was
first shown by Ukai [134]. Improved estimates (in smaller spaces of Sobolev type), still for
hard potentials, were established in [113]. In [114], spectral-gap estimates for moderately
soft potentials (without angular cut-off) were proved, improving and extending previous
results by Pao [118]. Hypoelliptic estimates for the linearized operator without cut-off can
be found in [1] and references therein. A spectral analysis with relaxed tail decay and
regularity conditions on the solutions was performed recently in an abstract framework
[78], which we will use in Chapter 5. Dolbeault et al. [58] derived exponential decay rates
in weighted L2 spaces, which improves previous Sobolev estimates. For further references,
we refer to [114, Section 1.5].

Spectral properties of the linearized Boltzmann operator were already investigated by
Grad [75]. Based on these results, Schechter [128] located the essential spectrum of the
classical collision operator in L2. The spectrum of the Boltzmann operator for hard spheres
was also analyzed in Lp for p 6= 2; see [100]. We refer to the recent work [63] for further
results in Lp for 1 ≤ p ≤ ∞ and more references. A detailed analysis of the resolvent
and spectrum of the linearized Boltzmann operator can be found in [135, Section 2.2]. A
complete analysis for the essential and discrete spectra for the linearized collision operator
with hard potentials was performed in [112].

Before we state our main results, let us introduce the general assumptions.

2.1.4. Assumptions on the collision kernels

We impose the following assumptions on the collision kernels Bij arising in (2.1.6). For a
discussion of these assumptions, see section 4.1.2.

(A1) The collision kernels satisfy

Bij(|v − v∗|, cosϑ) = Bji(|v − v∗|, cosϑ) for 1 ≤ i, j ≤ n.

(A2) The collision kernels decompose in the kinetic part Φij ≥ 0 and the angular part
bij ≥ 0 according to

Bij(|v − v∗|, cosϑ) = Φij(|v − v∗|)bij(cosϑ), 1 ≤ i, j ≤ n.

(A3) For the kinetic part, there exist constants C1, C2 > 0, γ ∈ [0, 1], and δ ∈ (0, 1) such
that for all 1 ≤ i, j ≤ n and r > 0,

C1r
γ ≤ Φij(r) ≤ C2(r + r−δ).
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2.1. The linearized Boltzmann system with same molar masses

(A4) For the angular part, there exist constants C3, C4 > 0 such that for all 1 ≤ i, j ≤ n
and ϑ ∈ [0, π],

0 < bij(cosϑ) ≤ C3| sinϑ| | cosϑ|, b′ij(cosϑ) ≤ C4.

Furthermore,

Cb := min
1≤i≤n

inf
σ1,σ2∈S2

∫
S2

min
{
bii(σ1 · σ3), bii(σ2 · σ3)

}
dσ3 > 0.

(A5) For all 1 ≤ i, j ≤ n, bij is even in [−1, 1] and the mapping v 7→ Φ′ij(|v|) on R3 is

locally integrable on R3 and bounded as |v| → ∞.

(A6) There exists β > 0 such that for all 1 ≤ i, j ≤ n, s > 0, and σ ∈ [−1, 1], we have
Bij(s, σ) ≤ βBii(s, σ).

Following [113], since the functions bij are integrable, we define

`b := min
1,≤i,j≤n

∫ π

0
bij(cos θ) sin θdθ > 0. (2.1.7)

2.1.5. Main results for same molar masses

We present the main results and discuss them briefly. The first result is a geometric
property of the essential spectrum of the linearized collision operator L and the linearized
Boltzmann operator G = L− T , where T denotes the transport part T = v · ∇x.

Theorem 2.1 (Essential spectrum of L and L − T ). Let the collision kernels Bij satisfy
assumptions (A1)-(A4) and set

J = ∪ni=1Im(νi) ⊂ [ν0,∞),

where ν0 = mini=1,...,n supv∈R3 νi(v) > 0, where νi is the i-th component of the collision
frequency νi, given by

νi(v) =
n∑
j=1

∫
R3×S2

Bij(|v∗ − v|, cosϑ)M∗j dv
∗dσ, i = 1, . . . , n. (2.1.8)

Then
σess(L) = −J, σess(L− T ) = {λ ∈ C : <(λ) ∈ −J},

where σess(L) denotes the essential spectrum of the multi-species operator L.

Remark 2.2. We observe that if lim|v|→∞ νi(v) =∞ for i = 1, . . . , n then

σess(L) = (−∞,−ν0], σess(L− T ) = {λ ∈ C : <(λ) ≤ −ν0}.

Indeed, under the assumption νi(v) → ∞ as |v| → ∞, the continuity of νi, and the
Weierstraß theorem show that J = [ν0,∞). Thus, the essential spectrum of the linearized
multi-species collision operator is very similar to the mono-species operator, where ν0 cor-
responds to the infimum in R3 of the single collision frequency; see [111, Section 3] and
[112, Prop. 3.1].
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2. Introduction to the kinetic multi-species models

The proof of Theorem 2.1 is based on perturbation theory [97, Chap. IV] and is similar to
the proof for the mono-species collision operator [135], but we show new explicit spectral-
gap estimates related to the particular structure of the kernel in the multi-species case.
More precisely, we write L = K−Λ, where it turns out that K = L+Λ is compact on L2

v (see
section 4.3 for details). Weyl’s theorem [84, Theorem S] states that the essential spectrum
of L = K − Λ coincides with that of −Λ. Thus it remains to show that σess(Λ) = J .
This is done by using Weyl’s singular sequences, which allow for a sufficient and necessary
condition for λ ∈ C being an element of the essential spectrum of the selfadjoint operator
Λ.

The proof of the second statement in Theorem 2.1 is more involved sinceK is not compact
on L2

x,v and hence, Weyl’s theorem cannot be applied directly. The idea is to employ an
extended Weyl theorem, which states that the essential spectrum is conserved under a
relatively compact perturbation [97, Section IV.5.6, Theorem 5.35]. Indeed, if K is relatively
compact with respect to Λ + T then σess(L − T ) = σess(K − (Λ + T )) = −σess(Λ + T ),
and it remains to compute the essential spectrum of Λ + T .

The next theorem concerns an explicit spectral-gap estimate, which is our main result
here.

Theorem 2.3 (Explicit spectral-gap estimate). Let the collision kernels Bij satisfy as-
sumptions (A1)-(A4). Then there exists a constant λ > 0 such that

− (f, L(f))L2
v
≥ λ‖f −ΠL(f)‖2H for all f ∈ D, (2.1.9)

where ΠL is the projection onto the null space Ker(L), D denotes the domain of L, and H
is a weighted L2(ν) space weighted by the collision frequency ν, see (4.1.6) for the precise
definitions. If additionally hypothesis (A6) holds, the constant λ can be computed explicitly:

λ =
ηDb

8Ck
, η = min

{
1,

4CmCk
16Ck +Db

}
,

where Cm, Db, and Ck are defined in (4.4.8), (4.4.13), and (4.4.15), respectively.

We present two proofs of this theorem. The first proof is non-constructive and relies on
an abstract functional theoretical argument, based on the decomposition L = K − Λ and
Weyl’s perturbation theorem. This abstract spectral-gap estimate is proved in Lemma 4.9.
The second proof provides a constructive spectral-gap estimate, generalizing the result in
[111] (also see [110, Theorem 6.1]) from the mono-species to the multi-species case. For
this, we split the operator L = Lm + Lb in the mono-species part Lm = (Lm1 , . . . , L

m
n ) and

the bi-species part Lb = (Lb1, . . . , L
b
n),

Lmi (fi) = Lii(fi, fi), Lbi(f) =
∑
j 6=i

Lij(fi, fj).

The proof consists of four main steps.
Step 1: Coercivity of the mono-species operator Lm. The bi-species part of L satisfies
−(f, Lb(f))L2

v
≥ 0 for all f ∈ D. Furthermore, the results of [110, Theorem 6.1] show that

for the mono-species part,

− (f, Lm(f))L2
v
≥ Cm‖f −Πm(f)‖2H for f ∈ Dom(Lm), (2.1.10)
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2.1. The linearized Boltzmann system with same molar masses

where the constant Cm > 0 can be computed explicitly and Πm is the projection onto
Ker(Lm) (see Lemma 4.10). Inequality (2.1.10) may be interpreted as a coercivity estimate
for Lm on Ker(Lm)⊥. It is related to the “microscopic coercivity” in [58, Section 1.3] for
the mono-species setting. Hence, we obtain the “naive” spectral-gap estimate

−(f, L(f))L2
v
≥ Cm‖f −Πm(f)‖2H for f ∈ D.

This estimate is not sharp enough for the multi-species case since we need an inequality
for all f − ΠL(f) ∈ Ker(L)⊥ and not only for f − Πm(f) ∈ Ker(Lm)⊥ ⊂ Ker(L)⊥. By
projecting onto Ker(Lm)⊥ only, we neglect the “cross-effects” coming from the bi-species
part of the collision operator. Thus, we need a better estimate for −(f, L(f))L2

v
, which is

achieved as follows.
Step 2: Absorption of the orthogonal parts. The contribution f⊥ := f − Πm(f) in
−(f, Lb(f))L2

v
can be absorbed by the H norm of f⊥ (see Lemma 4.11), giving for a certain

η > 0,

−(f, L(f))L2
v
≥ (Cm − 4η)‖f⊥‖2H −

η

2
(Πm(f), Lb(Πm(f)))L2

v
.

Step 3: Coercivity of the bi-species operator Lb. The projection Πm(f) depends on the
velocities ui and energies ei of the ith species, and thus, the cross terms can be bounded
by the differences of momentum and differences of energies,

− (Πm(f), Lb(Πm(f)))L2
v
≥ C

n∑
i,j=1

(
|ui − uj |2 + |ei − ej |2

)
, (2.1.11)

for some constant C > 0. This is the key step of the proof. The inequality may be con-
sidered as a coercivity estimate for the bi-species operator. A key observation is that the
differences of momenta and energies converge to zero as f approaches the global equilib-
rium. Whereas (2.1.10) acts on Ker(Lm)⊥, (2.1.11) gives an estimate on the orthogonal
complement Ker(Lm).

Step 4: Lower bound for the differences of momenta and energy. The last step consists in
estimating the differences |ui−uj | and |ei−ej | from below by the error made by projecting
onto Ker(Lm)⊥ instead of Ker(L)⊥:

n∑
i,j=1

(
|ui − uj |2 + |ei − ej |2

)
≥ C‖f −ΠL(f)‖2H − 2C‖f −Πm(f)‖2H.

Putting together the above inequalities, Theorem 2.3 follows; we refer to section 4.4 for
details.

As a consequence of the spectral-gap estimate, we are able to prove the exponential decay
of the solution f(t) to (2.1.5) to the global equilibrium with an explicit decay rate.

Theorem 2.4 (Convergence to equilibrium). Let the collision kernels Bij satisfy assump-
tions (A1)-(A5) and let fI ∈ H1

x,v. Then the linearized Boltzmann operator G = L − T
with T = v · ∇x generates a strongly continuous semigroup SG(t) on H1

x,v, which satisfies

‖SG(t)(I −ΠG)‖H1
x,v
≤ Ce−τt, t ≥ 0, (2.1.12)
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2. Introduction to the kinetic multi-species models

for some constants C, τ > 0. In particular, the solution f(t) = SG(t)fI to (2.1.5) satisfies

‖f(t)− f∞‖H1
x,v
≤ Ce−τt‖fI − f∞‖H1

x,v
, t ≥ 0, (2.1.13)

where f∞ := ΠG(fI) is the global equilibrium of (2.1.5). Moreover, under the additional
assumption (A6) and lower bound in (A4), the constants C and τ depend only on the
constants appearing in hypotheses (M1)-(M3) in section 4.5 and in particular on λ defined
in Theorem 2.3.

The idea of the proof is to employ the hypocoercivity of the linearized Boltzmann oper-
ator L− T , using the interplay between the degenerate-dissipative properties of L and the
conservative properties of T . The aim is to find a functional H̃[f ] which is equivalent to
the square of the norm of a Banach space (here, H1

x,v),

κ1‖f‖2H1
x,v
≤ H̃[f ] ≤ κ2‖f‖2H1

x,v
for f ∈ H1

x,v,

leading to
d

dt
H̃[f(t)] ≤ −κ‖f(t)‖2H1

x,v
, t > 0, (2.1.14)

where κ1, κ2, κ > 0 and f(t) = SG(t)fI . These two estimates yield exponential convergence
of f(t) in H1

x,v. It turns out that the obvious choice H̃[f ] = c1‖f‖L2
x,v

+ c2‖∇xf‖L2
x,v

+

c3‖∇vf‖L2
x,v

does not lead to a closed estimate. The key idea, inspired from [139] and

worked out in [113], is to add the “mixed term” of the form

c4(∇xf,∇vf)L2
x,v

(2.1.15)

to the definition of H̃[f ]. Then

d

dt
(∇xf,∇vf)L2

x,v
= −‖∇xf‖2L2

x,v
+ 2(∇xL(f),∇vf)L2

x,v
,

and the last term can be estimated in terms of expressions arising from the time derivative
of the other norms in H̃[f(t)]. Thus, choosing ci > 0 in a suitable way, one may conclude
that (2.1.14) holds.

In [113], the calculation of (2.1.14) is reduced to the validity of certain abstract conditions
on the operators K and Λ (see section 4.5). These conditions state that Λ is coercive in
a certain sense, K has a regularizing effect, and L = K − Λ has a local spectral gap.
The last condition is proved in Theorem 2.3, while the other conditions follow from direct
calculations, since the operators K and Λ are given explicitly. As a consequence, the proof
of Theorem 2.4 essentially consists in verifying the abstract conditions stated in [113]. In
contrast to the estimate of Theorem 2.3, where the multi-species character plays a role in
the spectral-gap estimate, there are no “cross-effects” here and the same modified functional
H̃[f ] as above, including the mixed term, can be used. However, the decay rate τ changes,
since the constant in hypothesis (M3) (see section 4.5) differs in the mono- and multi-species
case and τ depends also on that constant.
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2.2. The Boltzmann system with different molar masses close to equilibrium

2.1.6. Comments and outlook

First, it seems to be not trivial to extend the results to the whole-space case. The problem
is that one loses the compactness in the x-space. One possibility is to assume some con-
finement potential which, under some appropriate weighted Poincaré inequality, can yield
compactness of the resolvent and hence a spectral gap. For instance, Duan [62] used non-
constructive techniques to prove decay rates for the mono-species linearized Boltzmann
equation. Still in the mono-species case, with one-dimensional collisional invariants and
using constructive methods, the decay is investigated by, e.g., Hérau and Nier [86] and Vil-
lani [139], working in the space H1

x,v, and by Hérau [85] and Dolbeault, Mouhot, Schmeiser
[58], working in the space L2

x,v. The tasks in the multi-species case are first to extend the
non-constructive methods, which probably does not contain new difficulties, and second to
devise a constructive method, which is more involved and work in progress; see [57].

Second, the convergence result based on hypocoercivity requires some regularity on the
initial data, namely fI ∈ H1

x,v. The extension of the exponential decay to initial data
from L2

x,v is done in Chapter 5, where a Cauchy theory for the full nonlinear multi-species
Boltzmann equation in a perturbative framework is presented. In [58], exponential conver-
gence was proved for solutions to scalar linear kinetic equations in the whole space with a
confining potential, where just L2 regularity for the initial data was needed, but only for
one-dimensional collision kernels which is not the case for the Boltzmann equation.

Third, the technique of proving a multi-species explicit spectral-gap estimate seems to
be quite robust also to other multi-species models, since it has been recently succesfully
adapted to the case of a multi-species Landau equation with soft potentials [77].

2.2. The Boltzmann system with different molar masses close to
equilibrium

In Chapter 5 our goal will be to extend the previous results obtained in Chapter 4 to the
more general case of a gaseous mixture with different molar masses. Furthermore, our goal
will be not only to study the trend to global equilibrium, but to perform a full Cauchy
theory for this equation, including also existence, uniqueness, positivity besides exponential
trend to equilibrium in appropriate functional spaces.

The physically most relevant space for such a Cauchy theory for this nonlinear equation
close to equilibrium is the space of density functions that only have finite mass and energy,
which are the first and second moments in the velocity variable. We will obtain this result
in the space L1

vL
∞
x (1 + |v|k) for any k > k0, where k0 is an explicit threshold depending

heavily on the differences of the masses, recovering the physically optimal threshold k0 = 2
when all the masses of the mixture are the same and the particles are approximated to be
hard spheres.

Moreover, by combining very recent strategies in combination with new hypocoercivity
estimates, we develop a new constructive approach that deals with polynomial weights
without the need of any spatial Sobolev regularity. This is new even in the mono-species case
even though the final result we obtain has recently been proved for the mono-species hard
sphere model [78]) (which we therefore also extend to more general hard and Maxwellian
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2. Introduction to the kinetic multi-species models

potential kernels.).
Also, as a by-product, we prove explicitly that the linear operator L − v · ∇x gener-

ates a strongly continuous semigroup with exponential decay both in L2
x,v

(
µ−1/2

)
and in

L∞x,v
(
〈v〉βµ−1/2

)
; such constructive and direct results on the torus are new to our knowl-

edge, even for the single-species Boltzmann equation.
At last, we derive new estimates in order to deal with different masses and the multi-

species cross-interaction operators, and we also extend recent mono-species estimates to
more general collision kernels. Note that the asymmetry of the elastic collisions requires to
derive a new description of Carleman’s representation of the Boltzmann operator as well
as new Povzner-type inequalities suitable for this lack of symmetry.

2.2.1. The model for different molar masses

Since we will use a slightly different notation in Chapter 5 compared to Chapter 4, let us
briefly introduce the model. For a detailed presentation of the properties of this model, we
refer to subsection 5.1.1 and 5.1.2.

We are now interested in the evolution of a dilute gas on the torus T3 composed of
N different species of chemically non-reacting mono-atomic particles with different molar
masses, which can be modeled by the following system of Boltzmann equations, stated on
R+ × T3 × R3,

∀ 1 ≤ i ≤ N, ∂tFi(t, x, v) + v · ∇xFi(t, x, v) = Qi(F)(t, x, v) (2.2.1)

with initial data

∀ 1 ≤ i ≤ N, ∀(x, v) ∈ T3 × R3, Fi(0, x, v) = F0,i(x, v).

The distribution function of the system is given by the vector F = (F1, . . . , FN ), where Fi
describes the ith species at time t, position x and velocity v.

The Boltzmann operator Q(F) = (Q1(F), . . . , QN (F)) is given for all i by

Qi(F) =
N∑
j=1

Qij(Fi, Fj),

where Qij describes interactions between particles of either the same (i = j) or of different
(i 6= j) species and are local in time and space.

Qij(Fi, Fj)(v) =

∫
R3×S2

Bij (|v − v∗|, cos θ)
[
F ′iF

′∗
j − FiF ∗j

]
dv∗dσ,

where we used the shorthands F ′i = Fi(v
′), Fi = Fi(v), F

′∗
j = Fj(v

′
∗) and F ∗j = Fj(v∗). Due

to the fact that now we allow also different molar masses for each species, the microscopic
collision rules have the following form:

v′ =
1

mi +mj
(miv +mjv∗ +mj |v − v∗|σ)

v′∗ =
1

mi +mj
(miv +mjv∗ −mi|v − v∗|σ)

, and cos θ =

〈
v − v∗
|v − v∗|

, σ

〉
.
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2.2. The Boltzmann system with different molar masses close to equilibrium

which comes from the conservation of momentum and kinetic energy on the microscopic
level due to elastic collisions:

miv +mjv∗ = miv
′ +mjv

′
∗,

1

2
mi |v|2 +

1

2
mj |v∗|2 =

1

2
mi

∣∣v′∣∣2 +
1

2
mj

∣∣v′∗∣∣2 . (2.2.2)

We want to mention the lack of symmetry between v′ and v′∗ compared to v for the trans-
formation (v, v∗) 7→ (v∗, v) due to different masses, which creates additional technical dif-
ficulties. By translating and rescaling the coordinate system, we can always assume that
the only global equilibrium is the normalized Maxwellian

µ = (µi)1≤i≤N with µi(v) = c∞,i

(mi

2π

)3/2
e−mi

|v|2
2 . (2.2.3)

We mention that we have the following macroscopic conservation laws: conservation of the
total number density c∞,i of each species, of the total momentum of the gas ρ∞u∞ and its
total energy 3ρ∞θ∞/2:

∀t ≥ 0, c∞,i =

∫
T3×R3

Fi(t, x, v) dxdv (1 ≤ i ≤ N)

u∞ =
1

ρ∞

N∑
i=1

∫
T3×R3

mivFi(t, x, v) dxdv

θ∞ =
1

3ρ∞

N∑
i=1

∫
T3×R3

mi |v − u∞|2 Fi(t, x, v) dxdv,

(2.2.4)

where ρ∞ =
∑N

i=1mic∞,i is the global density of the gas. For more details on the modified
conservation rules and other differences due to these different molar masses, we refer to
subsection 5.1.2.

The aim is to construct a Cauchy theory for the multi-species Boltzmann equation (2.2.1)
around the global equilibrium µ. In other terms we study the existence, uniqueness and
exponential decay of solutions of the form Fi(t, x, v) = µi(v) + fi(t, x, v) for all i.

Under this perturbative regime, the Cauchy problem amounts to solving the perturbed
multi-species Boltzmann system of equations

∂tf + v · ∇xf = L(f) + Q(f), (2.2.5)

or equivalently in the non-vectorial form

∀ 1 ≤ i ≤ N, ∂tfi + v · ∇xfi = Li(f) +Qi(f),

where f = (f1, . . . , fN ) and the operator L = (L1, . . . , LN ) is the linear Boltzmann operator
given for all 1 ≤ i ≤ N by

Li(f) =

N∑
j=1

Lij(fi, fj),
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2. Introduction to the kinetic multi-species models

with

Lij(fi, fj) = Qij(µi, fj) +Qij(fi, µj).

As mentioned previously, we prove the existence, uniqueness, positivity and exponential

trend to equilibrium for the full nonlinear multi-species Boltzmann equation (2.2.1) in
L1
vL
∞
x

(
(1 + |v|)k

)
with the explicit threshold k > k0 defined in Lemma 5.20, when the

initial data F0 is close enough to the global equilibrium µ. This is equivalent to solving
the perturbed equation (2.2.5) for small f0.

2.2.2. State of the art for the Cauchy problem

The perturbed single-species Boltzmann equation around a global Maxwellian has been
extensively studied over the past fifty years (see [135] for an exhaustive review). Start-
ing with Grad [76], the Cauchy problem has been tackled in L2

vH
s
x

(
µ−1/2

)
spaces [134],

in Hs
x,v

(
µ−1/2(1 + |v|)k

)
[81][143] was then extended to Hs

x,v

(
µ−1/2

)
where an exponen-

tial trend to equilibrium has also been obtained [113][82]. Recently, [78] proved exis-
tence and uniqueness for single-species Boltzmann equation in more the general spaces(
Wα,1
v ∩Wα,q

v

)
W β,p
x

(
(1 + |v|)k

)
for α ≤ β and β and k large enough with explicit thresh-

olds. The latter paper thus includes L1
vL
∞
x

(
(1 + |v|)k

)
. All the results presented above

hold in the case of the torus for hard and Maxwellian potentials. We refer the reader
interested in the Cauchy problem to the review [135].

All the works mentioned above involve to working in spaces with derivatives in the space
variable x (we shall discuss some of the reasons later) with exponential weight. The recent
breakthrough [78] gets rid of both the Sobolev regularity and the exponential weight but
uses a new extension method which still requires to have a well-established linear theory
in Hs

x,v

(
µ−1/2

)
.

2.2.3. Assumptions on the collision kernels

We will use the following assumptions on the collision kernels Bij .

(H1) The following symmetry holds

Bij(|v − v∗|, cos θ) = Bji(|v − v∗|, cos θ) for 1 ≤ i, j ≤ N.

(H2) The collision kernels decompose into the product

Bij(|v − v∗|, cos θ) = Φij(|v − v∗|)bij(cos θ), 1 ≤ i, j ≤ N,

where the functions Φij ≥ 0 are called kinetic part and bij ≥ 0 angular part.

(H3) The kinetic part has the form of hard or Maxwellian (γ = 0) potentials, i.e.

Φij(|v − v∗|) = CΦ
ij |v − v∗|γ , CΦ

ij > 0, γ ∈ [0, 1], ∀ 1 ≤ i, j ≤ N.
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2.2. The Boltzmann system with different molar masses close to equilibrium

(H4) For the angular part, we assume a strong form of Grad’s angular cutoff (first intro-
duced in [74]), that is: there exist constants Cb1, Cb2 > 0 such that for all 1 ≤ i, j ≤ N
and θ ∈ [0, π],

0 < bij(cos θ) ≤ Cb1| sin θ| | cos θ|, b′ij(cos θ) ≤ Cb2.

Furthermore,

Cb := min
1≤i≤N

inf
σ1,σ2∈S2

∫
S2

min
{
bii(σ1 · σ3), bii(σ2 · σ3)

}
dσ3 > 0.

Moreover, we shall use the (standard) shorthand notations

b∞ij = ‖bij‖L∞
[−1,1]

and lbij = ‖b ◦ cos‖L1
S2
. (2.2.6)

and

〈v〉 =

√
1 + |v|2. (2.2.7)

2.2.4. Main results for different molar masses close to equilibrium

As already explained, the ultimate goal in this chapter will be to perform a full perturbative
Cauchy theory for the multi-species Boltzmann equation (2.2.1). Along the way, we shall
also prove the following important results about the linear perturbed operator L− v · ∇x.

Theorem 2.5. Let the collision kernels Bij satisfy assumptions (H1) − (H4). Then the
following holds.

(i) The operator L is a closed self-adjoint operator in L2
v

(
µ−1/2

)
and there exists λL > 0

such that

∀f ∈ L2
v

(
µ−1/2

)
, 〈f ,L (f)〉L2

v(µ−1/2) ≤ −λL ‖f − πL (f)‖2
L2
v(〈v〉γ/2µ−1/2) ;

(ii) Let E = L2
x,v

(
µ−1/2

)
or E = L∞x,v

(
〈v〉βµ−1/2

)
with β > 3/2. The linear perturbed

operator G = L− v · ∇x generates a strongly continuous semigroup SG(t) on E and
there exist CE, λE > 0 such that

∀t ≥ 0, ‖SG(t) (Id−ΠG)‖E ≤ CEe
−λEt,

where πL is the orthogonal projection onto Ker(L) in L2
v

(
µ−1/2

)
and ΠG is the orthogonal

projection onto Ker(G) in L2
x,v

(
µ−1/2

)
.

The constants λL, CE and λE are explicit and depend on N , E, the different masses mi

and the collision kernels.
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2. Introduction to the kinetic multi-species models

Spectral gap for the linear operator in L2
v

(
µ−1/2

)
. It has been known for long

that the single-species linear Boltzmann operator L is a self-adjoint non positive linear
operator in the space L2

v

(
µ−1/2

)
. Moreover it has a spectral gap λ0. This has been proved

in [30][74][75] with non constructive methods for hard potential with cutoff and in [6][7]
in the Maxwellian case. These results were made constructive in [4][111] for more general
collision operators. One can easily extend this spectral gap to Sobolev spaces Hs

v

(
µ−1/2

)
(see for instance [78] Section 4.1).

In Chapter 4 based on [46], we proved the existence of an explicit spectral gap for the
operator L for multi-species mixtures where all the masses are the same (mi = mj). Our
constructive spectral gap estimate in L2

v

(
µ−1/2

)
proved in this chapter for different molar

masses closely follows the methods presented in Chapter 4 that consist in proving that the
cross-interactions between different species do not perturb too much the spectral gap that
is known to exist for the diagonal operator Lii (single-species operators). We emphasize
here that not only we adapt the methods of [46] to fit the different masses framework but
we also derive estimates on the collision frequencies that allow us to get rid of their strong
requirement on the collision kernels: Bij ≤ βBii for all i, j. The latter assumption is indeed
physically irrelevant in our framework.

L2
x,v

(
µ−1/2

)
theory for the full perturbed linear operator. The next step is

to prove that the existence of a spectral gap for L in the sole velocity variable can be
transposed to L2

x,v

(
µ−1/2

)
when one adds the skew-symmetric transport operator −v ·∇x.

In other words, we prove that G = L − v · ∇x generates a strongly continuous semigroup
in L2

x,v

(
µ−1/2

)
with exponential decay.

One thus wants to derive an exponential decay for solutions to the linear perturbed
Boltzmann equation

∂tf + v · ∇xf = L (f) .

A straightforward use of the spectral gap λL of L shows for such a solution

d

dt
‖f‖2

L2
x,v(µ−1/2) ≤ −2λL ‖f − πL (f)‖2

L2
x,v(µ−1/2) ,

where πL stands for the orthogonal projection in L2
v

(
µ−1/2

)
onto the kernel of the operator

L. This inequality exhibits the hypocoercivity of L. Roughly speaking, the exponential
decay in L2

x,v

(
µ−1/2

)
would follow for solutions f if the microscopic part π⊥L (f) = f −πL(f)

controls the fluid part which has the following form

∀1 ≤ i ≤ N, πL(f)i(t, x, v) =

[
ai(t, x) + b(t, x) · v + c(t, x)

|v|2 − 3m−1
i

2

]
miµi(v),

where ai(t, x), c(t, x) ∈ R and b(t, x) ∈ R3 are the coordinates of an orthogonal basis.

The standard strategies in the case of the single-species Boltzmann equation are based
on higher Sobolev regularity either from hypocoercivity methods [113] or elliptic regularity
of the coefficients a, b and c [80][82]. Roughly speaking one has [80][82]

∆πL(f) ∼ ∂2π⊥L f + higher order terms, (2.2.8)
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2.2. The Boltzmann system with different molar masses close to equilibrium

which can be combined with elliptic estimates to control the fluid part by the microscopic
part in Sobolev spaces Hs. Our main contribution to avoid involving high regularity is
based on an adaptation of the recent work [66] (dealing with the single-species Boltzmann
equation with diffusive boundary conditions). The key idea consists in integrating against
test functions that contains a weak version of the elliptic regularity of a(t, x), b(t, x) and
c(t, x). Basically, the elliptic regularity of πL (f) will be recovered thanks to the transport
part applied to these test functions while on the other side L encodes the control by π⊥L (f).

It has to be emphasized that thanks to boundary conditions, [66] only needed the conser-
vation of mass whereas in our case this “weak version” of estimates (2.2.8) strongly relies
on all the conservation laws. The choice of test functions thus has to take into account
the delicate interaction between each species and the total mixture we already pointed out.
This leads to intricate technicalities since for each species we need to deal with different
reference rates of decay mi. Finally, our proof also involves elliptic regularity in negative
Sobolev spaces to deal with ∂ta, ∂tb and ∂tc.

L∞x,v
(
〈v〉βµ−1/2

)
theory for the full nonlinear equation. Thanks to the first two

steps we have a satisfactory L2 semigroup theory for the full linear operator. Unfortunately,
as it is already the case for the single-species Boltzmann equation (see [33][34] or [138] for
instance), the underlying L2

x,v-norm is not an algebraic norm for the nonlinear operator Q
whereas the L∞x,v-norm is.

The key idea of proving a semigroup property in L∞ is thanks to an L2−L∞ theory “à la
Guo” [83], where the L∞-norm will be controlled by the L2-norm along the characteristics.
As we shall see, each component Li can be decomposed into Li = Ki − νi where νi(f) =
νi(v)fi is a multiplicative operator. If we denote by SG(t) the semigroup generated by
G = L−v ·∇x, we have the following implicit Duhamel representation of its ith component
along the characteristics

SG(t)i = e−νi(v)t +

∫ t

0
e−νi(v)(t−s)Ki [SG(s)] ds.

Following the idea of Vidav [137] and later used in [83], an iteration of the above should
yield a certain compactness property. Hiding here all the cross-interactions, we end up
with

SG(t) =e−ν(v)t +

∫ t

0
e−ν(v)(t−s)Ke−ν(v)s ds

+

∫ t

0

∫ s

0
e−ν(v)(t−s)Ke−ν(v)(s−s1)K [SG(s1)] ds1ds.

We shall prove that K is compact and is a kernel operator. The first two terms will be
easily estimated and the last term will be roughly of the form∫ t

0

∫ s

0

∫
v1,v2 bounded

|SG(s1, x− (t− s)v − (s− s1)v1, v2| dv2dv1ds1ds.

The double integration implies that v1 and v2 are independent and we can thus perform
a change of variables which changes the integral in v1 into an integral over T3 that we
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2. Introduction to the kinetic multi-species models

can bound thanks to the previous L2 theory. For integrability reasons, this third step
actually proves that G generates a strongly continuous semigroup with exponential decay
in L∞

(
〈v〉βµ−1/2

)
for β > 3/2.

Our work provides two key contributions to prove the latter result. First, to prove the
desired pointwise estimate for the kernel of K, we need to give a new representation of
the operator in terms of the parameters (v′, v′∗) instead of (v∗, σ). In the single-species
case, such a representation is the well-known Carleman representation [30] and requires
integration onto the so-called Carleman hyperplanes 〈v′ − v, v′∗ − v〉 = 0. However, when
particles have different masses, the lack of symmetry between v′ and v′∗ compared to v
obliges us to derive new Carleman admissible sets (some become spheres). Second, the
decay of the exponential weight differs from one species to the other. To obtain estimates
that are similar to the case of single-species we exhibit the property that K mixes the
exponential rate of decay among the cross-interaction between species. This enables us to
close the L∞ estimate for the first two terms of the iterated Duhamel representation.

We now state the results we obtain for the full nonlinear equation.

Theorem 2.6. Let the collision kernels Bij satisfy assumptions (H1)− (H4) and let E =
L1
vL
∞
x

(
〈v〉k

)
with k > k0, where k0 is the minimal integer such that

Ck =
2

k + 2

1−
[
max
i,j

|mi−mj |
mi+mj

] k+2
2

+

[
1−

(
max
i,j

|mi−mj |
mi+mj

)] k+2
2

1−max
i,j

|mi−mj |
mi+mj

max
i,j

4πb∞ij
lbij

< 1. (2.2.9)

where lbij and b∞ij are angular kernel constants (2.2.6).
Then there exist ηE, CE and λE > 0 such that for any F0 = µ + f0 ≥ 0 satisfying the
conservation of mass, momentum and energy (2.2.4) with u∞ = 0 and θ∞ = 1, if

‖F0 − µ‖ ≤ ηE

then there exists a unique solution F = µ+ f in E to the multi-species Boltzmann equation
(2.2.1) with initial data f0. Moreover, F is non-negative, satisfies the conservation laws
and

∀t ≥ 0, ‖F− µ‖E ≤ CEe
−λEt ‖F0 − µ‖E .

The constants are explicit and only depend on N , k, the different masses mi and the
collision kernels.

The extension to polynomial weights and L1
vL
∞
x space is done by developing an analytic

and nonlinear version of the recent work [78], also recently adapted in a nonlinear setting
[26]. The main strategy is to find a decomposition of the full linear operator G into G1+A.
We shall prove that G1 acts like a small perturbation of the operator Gν = −v ·∇x−ν(v)
and is thus hypodissipative, and that A has a regularizing effect. The regularizing property
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2.2. The Boltzmann system with different molar masses close to equilibrium

of the operator A allows us to decompose the perturbative equation (2.2.5) into a system
of differential equations

∂tf1 = G1 (f1) + Q(f1 + f2, f1 + f2)

∂tf2 + v · ∇xf2 = L (f2) + A (f1)

The first equation is solved in L∞x,v (m) or L1
vL
∞
x (m) with the initial data f0 thanks to the

hypodissipativity of G1. The regularity of A (f1) allows us to use Step 3 and thus solve the
second equation with null initial data in L∞x,v

(
〈v〉βµ−1/2)

)
. First, the existence of a solution

to the system having exponential decay is obtained thanks to an iterative scheme combined
with new estimates on the multi-species operators G1 and A. Then uniqueness follows a
new stability estimate in an equivalent norm (proposed in [78]), that fits the dissipativity
of the semigroup generated by G. Finally, positivity of the unique solution comes from a
different iterative scheme.

In the case of the single-species Boltzmann equation, the less regular weight m(v) one can
achieve with this method is determined by the hypodissipative property of G1 and gives
m = 〈v〉k with k > 2, which is indeed obtained also in the multi-species framework of same
masses in the case of hard spheres. In the general case of different masses, the threshold
k0 is more intricate (see Theorem 2.6), since it also depends on the different masses mi.

2.2.5. Comments and outlook

We make a few comments about the theorem above.

(1) As already mentioned, µ can be replaced by any global equilibrium M(ci,∞, u∞, θ∞).

(2) The natural weight for this theory is the one associated to the conservation of indi-

vidual masses and total energy: (1 +m
k/2
i |v|k)1≤i≤N , which is equivalent to 〈v〉k and

we keep the latter weight to work without vector-valued masses outside Subsection
5.5.1.

(3) The uniqueness has to be understood in a perturbative regime, that is among the
solutions that can be written under the form F = µ + f . We do not give a global
uniqueness in L1

vL
∞
x

(
〈v〉k

)
(as proved in [78] for the single-species Boltzmann equa-

tion).

(4) As a by-product of the proof of uniqueness, we prove that the spectral-gap estimate
of Theorem 2.5 also holds for E = L1

vL
∞
x

(
〈v〉k

)
with k > k0.

(5) In the case of identical masses and hard sphere collision kernels (b = 1) we recover
Ck = 4/(k+2) and thus k0 = 2 which has recently been obtained in the mono-species
case [78].

(6) We want to mention, that a stability analysis of the global equilibrium in L∞ settings
has been recently obtained in [27].
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3. Introduction to the diffusive multi-species
models

3.1. Cross-diffusion population systems for multiple species

Shigesada, Kawasaki, and Teramoto suggested in their seminal paper [129] a diffusive Lotka-
Volterra system for two competing species, which is able to describe the segregation of the
population and to show pattern formation when time increases. Starting from an on-lattice
random-walk model, this system was extended to an arbitrary number of species in [144,
Appendix]. While the existence analysis of global weak solutions to the two-species model
is well understood by now [37, 38], only very few results for the n-species model under
very restrictive conditions exist (see the discussion below). Here, we provide for the first
time a global existence analysis for an arbitrary number of population species using the
entropy method of [94], and we reveal an astonishing relation between the monotonicity of
the entropy and the detailed balance condition of an associated Markov chain.

3.1.1. The model

We consider the reaction-cross-diffusion equations

∂tui − div

( n∑
j=1

Aij(u)∇uj
)

= fi(u) in Ω, t > 0, i = 1, . . . , n, (3.1.1)

with no-flux boundary and initial conditions

n∑
j=1

Aij(u)∇uj · ν = 0 on ∂Ω, t > 0, ui(·, 0) = u0
i in Ω. (3.1.2)

Here, ui models the density of the ith species, u = (u1, . . . , un), Ω ⊂ Rd (d ≥ 1) is a
bounded domain with Lipschitz boundary, and ν is the exterior unit normal vector to ∂Ω.
The diffusion coefficients are given by

Aij(u) = δijpi(u) + ui
∂pi
∂uj

(u), pi(u) = ai0 +

n∑
k=1

aiku
s
k, i, j = 1, . . . , n, (3.1.3)

where ai0, aij ≥ 0 and s > 0. The functions pi are the transition rates of the underlying
random-walk model [95, 144]. The source terms fi are of Lotka-Volterra type,

fi(u) = ui

(
bi0 −

n∑
j=1

bijuj

)
, i = 1, . . . , n, (3.1.4)
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3. Introduction to the diffusive multi-species models

and we suppose that bi0, bij ≥ 0 (competition case). Note that (3.1.1) can be written more
compactly as

∂tu− div(A(u)∇u) = f(u), f(u) = (f1(u), . . . , fn(u)).

3.1.2. State of the art

From a mathematical viewpoint, the analysis of (3.1.1)-(3.1.2) is highly nontrivial since
the diffusion matrix A(u) is neither symmetric nor generally positive definite. Although
the maximum principle may be applied to prove the nonnegativity of the densities, it is
generally not possible to show upper bounds. Moreover, there is no general regularity
theory for diffusion systems, which makes the analysis very delicate. Equations (3.1.1) can
be written in the form

∂tui −∆(uipi(u)) = fi(u), (3.1.5)

which allows for the proof of an L2+s estimate by the duality method [48, 120], but we will
not exploit this method here, only in Chapter 7.

The case of n = 2 species and linear transition rates s = 1 corresponds to the original
population model of Shigesada, Kawasaki, and Teramota [129],

∂tu1 −∆
(
u1(a10 + a11u1 + a12u2)

)
= f1(u),

∂tu2 −∆
(
u2(a20 + a21u1 + a22u2)

)
= f2(u).

(3.1.6)

The numbers ai0 are the diffusion coefficients, aii are the self-diffusion coefficients, and aij
for i 6= j are called the cross-diffusion coefficients. This model attracted a lot of attention
in the mathematical literature. The first global existence result is due to Kim [99] who
studied the equations in one space dimension, neglected self-diffusion, and assumed equal
coefficients (aij = 1). His result was extended to higher space dimensions in [56]. Most
of the papers made restrictive structural assumptions, for instance supposing that the
diffusion matrix is triangular (a21 = 0), since this allows for the maximum principle in the
second equation [2, 103, 106]. Another restriction is to suppose that the cross-diffusion
coefficients are small, since in this situation the diffusion matrix becomes positive definite
[56, 141].

Significant progress was made by Amann [2] who showed that a priori estimates in the
W 1,p norm with p > d are sufficient for the solutions to general quasilinear parabolic systems
to exist globally in time, and he applied his result to the triangular case. The first global
existence result without any restriction on the diffusion coefficients (except positivity) was
achieved in [69] in one space dimension and in [37, 38] in several space dimensions. The
results were extended to the whole space in [60]. The existence of global classical solutions
was proved in, e.g., [104], under suitable conditions on the coefficients.

Nonlinear transition rates, but still for two species, were analyzed by Desvillettes and
co-workers, assuming sublinear (0 < s < 1) [50] or superlinear rates (s > 1) and the weak
cross-diffusion condition ((s− 1)/(s + 1))2a12a21 ≤ a11a22 [51]. Similar results, but under
a slightly stronger weak cross-diffusion hypothesis, were proved in [94].

As already mentioned, there are very few results for more than two species. The existence
of positive stationary solutions and the stability of the constant equilibrium was investigated
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3.1. Cross-diffusion population systems for multiple species

in [3, 127]. The existence of global weak solutions in one space dimension assuming a
positive definite diffusion matrix was proved in [140], based on Amann’s results. Using an
entropy approach, the global existence of solutions was shown in [51] for three species under
the condition 0 < s < 1/

√
3 (which guarantees that det(A(u)) > 0). To our knowledge,

a global existence theorem under more general conditions seems to be not available in the
literature. Here, we prove such a result and relate a structural condition on the coefficients
aij with Onsager’s principle of thermodynamics.

3.1.3. Key ideas

Before we state the main results, let us explain our strategy. The idea is to find a priori
estimates by employing a Lyapunov functional approach with

H[u] =

∫
Ω
h(u)dx =

∫
Ω

n∑
i=1

πihs(ui)dx, (3.1.7)

where πi > 0 are some numbers and

hs(z) =

 z(log z − 1) + 1 for s = 1,
zs − sz
s− 1

+ 1 for s 6= 1.
(3.1.8)

Because of the connection of our method to nonequilibrium thermodynamics [95, Section
4.3], we refer to H[u] as an entropy and to h(u) as an entropy density. Introducing the
so-called entropy variable w = (w1, . . . , wn) (called chemical potential in thermodynamics)
by

wi =
∂h

∂ui
(u) =

{
πi log ui for s = 1,
sπi
s− 1

(us−1
i − 1) for s 6= 1,

equations (3.1.1) can be written as

∂tu(w)− div(B(w)∇w) = f(u(w)), B(w) = A(u)H(u)−1, (3.1.9)

where u(w) := (h′)−1(w) is the inverse transformation and H(u) = h′′(u) is the Hessian
of the entropy density. We claim that if f = 0 and B(w) or, equivalently, H(u)A(u) is
positive semi-definite (we say that an arbitrary matrix M ∈ Rn×n is positive (semi-) definite
if z>Mz > (≥) 0 for all z ∈ Rn, z 6= 0.), H[u] is a Lyapunov functional along solutions to
(3.1.1). Indeed, a (formal) computation shows that

d

dt
H[u] = −

∫
Ω
∇w : B(w)∇wdx ≤ 0,

which implies that t 7→ H[u(t)] is nonincreasing. The entropy method provides more than
just the monotonicity of H[u]. If, for instance, z>H(u)A(u)z ≥

∑n
i=1 ciu

α−2
i z2

i for some
constants α > 0, ci > 0, it follows that

d

dt
H[u] +

4

α2

∫
Ω

n∑
i=1

ci|∇uα/2i |
2dx ≤ 0,
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3. Introduction to the diffusive multi-species models

which yields gradient estimates for u
α/2
i . This strategy was employed in many papers on

cross-diffusion systems; see, e.g., [37, 38, 50, 60, 69, 94, 144]. In this work, we introduce
two new ideas which we explain for the case s = 1 (s 6= 1 is studied below).

It is known that the entropy (3.1.7) with πi = 1 is a Lyapunov functional for the two-
species model (3.1.6) with f1 = f2 = 0. This property is generally not satisfied for the
corresponding n-species system. Our first idea is to introduce the numbers π = (π1, . . . , πn)
in the entropy (3.1.7). It turns out that (3.1.7) is a Lyapunov functional and H(u)A(u) is
symmetric and positive definite if

πiaij = πjaji for all i, j = 1, . . . , n. (3.1.10)

More precisely, this property is equivalent to the symmetry of H(u)A(u) (see Proposition
6.19). We recognize (3.1.10) as the detailed balance condition for the Markov chain associ-
ated to (aij). The equivalence of the symmetry and the detailed balance condition is new
but not surprising. In fact, the latter condition means that π is a reversible measure, and
time-reversibility of a thermodynamic system is equivalent to the symmetry of the so-called
Onsager matrix B(w), so symmetry and reversibility are related both from a mathematical
and physical viewpoint. We detail these relations in Section 6.5.1. In Section 6.2.1, we
derive a refined estimate for H(u)A(u) leading to

d

dt
H[u] + 4

∫
Ω

n∑
i=1

πiai0|∇
√
ui|2dx+ 2

∫
Ω

n∑
i=1

πiaii|∇ui|2dx ≤ 0, (3.1.11)

and thus giving an H1 estimate for
√
ui (if ai0 > 0) and ui (if aii > 0). This is the key

estimate for the global existence result. (Below we also take into account the reaction terms
(3.1.4).)

One may ask whether the detailed balance condition is necessary for the monotonicity of
the entropy. It is not. We show that if self-diffusion dominates cross-diffusion in the sense

η0 := min
i=1,...,n

(
aii −

s

2(s+ 1)

n∑
j=1

(√
aij −

√
aji
)2)

> 0, (3.1.12)

and detailed balance may be not satisfied, then the estimate leading to (3.1.11) still holds
(with different constants), and global existence follows. (Throughout this work, we set
πi = 1 when detailed balance does not hold.) However, if conditions (3.1.10) or (3.1.12) are
both not satisfied, there exist coefficients aij and initial data u0 such that t 7→ H[u(t)] is
increasing on [0, t0] for some t0 > 0; see Section 6.5.3. Numerical experiments (not shown)
indicate that after the initial increase, the entropy decays and, in fact, it stays bounded
for all time. We conjecture that the entropy is bounded for all time for all nonnegative
coefficients and nonnegative initial data and that global existence of weak solutions holds
for any (positive) coefficients aij .

Our results can be extended to nonlinear transition rates of type (3.1.3). One may
choose more general terms aiju

sj
j with different exponents sj but the results are easier to

formulate if all exponents are equal. Coefficients with exponents s 6= 1 were also considered
in [50, 51, 94] but in the two-species case only. We generalize these results to the multi-
species case for any n ≥ 2. The entropy method has to be adapted since the inverse of
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3.1. Cross-diffusion population systems for multiple species

h′s(z) = (s/(s − 1))(zs−1 − 1) cannot be defined on R and thus, u(w) = (h′)−1(w) is not
defined for all w ∈ Rn. This issue can be overcome by regularization as in [50, 94]. In fact,
we introduce

hε(u) = h(u) + ε
n∑
i=1

(
ui(log ui − 1) + 1

)
.

Then h′ε : (0,∞)n → Rn can be inverted and (h′ε)
−1 : Rn → (0,∞)n is defined on Rn. As

a consequence, ui = (h′ε)
−1(w)i is positive for any w ∈ Rn and even strongly positive if w

varies in a compact subset of Rn.

Unfortunately, the product Hε(u)A(u), where Hε(u) = h′′ε(u), is generally not positive
definite and we need to approximate A(u). In contrast to the approximations suggested
in [50, 94], we employ a non-diagonal matrix; see (6.2.5) below. More specifically, we
introduce Aε(u) = A(u) + εA0(u) + εηA1(u) with non-diagonal A0(u), diagonal A1(u), and
η ≤ 1/2 such that

z>Hε(u)Aε(u)z ≥ z>H(u)A(u)z for all z ∈ Rn.

The choice of the non-diagonal approximation satisfying this inequality is nontrivial, and
this construction is our second idea.

3.1.4. Main results

First, we show that global existence of weak solutions holds for linear transition rates
(s = 1). In the following, we set QT = Ω× (0, T ).

Theorem 3.1 (Global existence for linear transition rates). Let T > 0, s = 1 and u0 =
(u0

1, . . . , u
0
n) be such that u0

i ≥ 0 for i = 1, . . . , n and
∫

Ω h(u0)dx < ∞. Let either detailed
balance and aii > 0 for i = 1, . . . , n; or (3.1.12) hold. Then there exists a weak solution
u = (u1, . . . , un) to (3.1.1)-(3.1.2) satisfying ui ≥ 0 in Ω, t > 0, and

ui ∈ L2(0, T ;H1(Ω)), ui ∈ L∞(0, T ;L1(Ω)),

ui ∈ L2+2/d(QT ), ∂tui ∈ Lq
′
(0, T ;W 1,q(Ω)′), i = 1, . . . , n,

where q = 2(d + 1) and q′ = (2d + 2)/(2d + 1). The solution u solves (3.1.1) in the weak
sense ∫ T

0
〈∂tu, φ〉dt+

∫ T

0

∫
Ω
∇φ : A(u)∇udxdt =

∫ T

0

∫
Ω
f(u) · φdxdt (3.1.13)

for all test functions φ ∈ Lq(0, T ;W 1,q(Ω)), and the initial condition in (3.1.2) is satisfied
in the sense of W 1,q(Ω)′.

The theorem can be generalized to the case of vanishing self-diffusion, i.e. aii = 0 if
detailed balance, ai0 > 0, and bii > 0 hold; see Remark 6.12.

Our second result is concerned with nonlinear transition rates (s 6= 1). The entropy
inequality yields the regularity ui ∈ L2s+2/d(QT ) which may not include L2 for “small”
exponents s < 1 and large dimensions d. For this reason, we need to suppose, in the
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sublinear case, the lower bound s > 1 − 2/d and a weaker growth of the Lotka-Volterra
terms:

fi(u) = ui

(
bi0 −

n∑
j=1

biju
σ
j

)
, i = 1, . . . , n, 0 ≤ σ < 2s− 1 + 2/d. (3.1.14)

The superlinear case (s > 1) is somehow easier than the sublinear one since the entropy
inequality gives the higher regularity ui ∈ Lp(QT ) with p > 2. On the other hand, we need
a weak cross-diffusion constraint. More precisely, if detailed balance holds, we require that

η1 := min
i=1,...,n

(
aii −

s− 1

s+ 1

n∑
j=1, j 6=i

aij

)
> 0, (3.1.15)

and if detailed balance does not hold, we suppose that

η2 := min
i=1,...,n

(
aii −

1

2(s+ 1)

∑
j=1, j 6=i

(
s(aij + aji)− 2

√
aijaji

))
> 0. (3.1.16)

For m ≥ 2 and 1 ≤ q ≤ ∞ we introduce the space

Wm,q
ν (Ω) = {φ ∈Wm,q(Ω) : ∇φ · ν = 0 on ∂Ω}. (3.1.17)

Theorem 3.2 (Global existence for nonlinear transition rates). Assume that T > 0, s >
max{0, 1 − 2/d}, and let the initial data u0 be such that u0

i ≥ 0 for i = 1, . . . , n and∫
Ω h(u0)dx <∞. If s < 1, we suppose that (3.1.14) and either detailed balance and aii > 0

for i = 1, . . . , n; or (3.1.12) hold. If s > 1, we suppose that (3.1.4) and either detailed
balance and (3.1.15) or (3.1.16) hold. Then there exist a number 2 ≤ q < ∞ and a weak
solution u = (u1, . . . , un) to (3.1.1)-(3.1.2) satisfying ui ≥ 0 in Ω, t > 0, and

usi ∈ L2(0, T ;H1(Ω)), ui ∈ L∞(0, T ;Lmax {1,s}(Ω)),

ui ∈ Lp(s)(QT ), ∂tui ∈ Lq
′
(0, T ;Wm,q

ν (Ω)′), i = 1, . . . , n,

where p(s) = 2s+ (2/d) max{1, s}, 1/q + 1/q′ = 1, and m > max{1, d/2}. The solution u
solves (6.1.1) in the “very weak” sense∫ T

0
〈∂tu, φ〉dt−

∫ T

0

∫
Ω

n∑
i=1

uipi(u)∆φidxdt =

∫ T

0

∫
Ω
f(u) · φdxdt (3.1.18)

for all φ = (φ1, . . . , φn) ∈ Lq(0, T ;Wm,q
ν (Ω)), and the initial condition holds in the sense of

Wm,q
ν (Ω)′.

In the superlinear case, it can be shown that the solution satisfies (3.1.1) in the weak
sense (3.1.13); see Remark 6.16. Moreover, for any s > max{0, 1 − 2/d}, it is sufficient

to consider test functions from Lβ(0, T ;W 2,β
ν (Ω)) with 1/β + 1/p(s) = 1, and the initial

condition holds in the sense of W 2,β
ν (Ω)′. We can generalize the theorem to the case of

vanishing self-diffusion if either s > max{1, d/2}; or 0 < s < 1, d = 1, and σ < s+ 1 hold;
see Remark 6.17.
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3.2. From reaction diffusion to cross diffusion in the fast-reaction limit

The lower bound s > 1−2/d can be avoided if the regularity ui ∈ L2+s(QT ) holds, which
is expected to follow from the duality method [48, 120]. Unfortunately, this method is not
compatible with our approximation scheme (see (6.3.1) below). This issue can possibly
be overcome by employing the scheme proposed in [51] which is specialized to diffusion
systems like (3.1.5). In this work, however, we prefer to employ scheme (6.3.1).

3.2. From reaction diffusion to cross diffusion in the fast-reaction
limit

The motivation of this work can be summarized in the following question: For which
nonnegative functions p2(w), p3(w) ≥ 0 can we find an entropy for the cross-diffusion system

∂tw2 −∆x (p2(w)w2) = 0,

∂tw3 −∆x (p3(w)w3) = 0,

n(x) · ∇xwi = 0 on ∂Ω, i = 2, 3

wi(0, ·) = wi0(·) in Ω, i = 2, 3,

(3.2.1)

where w(t, x) = (w2(t, x), w3(t, x)) with x on a bounded domain Ω ⊆ RN? This means that
we are looking for a Lyapunov functional H[w2(t), w3(t)] which is decreasing along the flow
of the system (3.2.1)

d

dt
H[w2(t), w3(t)] ≤ 0 ∀t ≥ 0.

The idea will be to start from a reaction-diffusion model with known entropy and by
performing a fast-reaction limit to obtain the entropy for the cross-diffusion system (3.2.1).

3.2.1. The strategy of our work

We present the motivation of our work on a toy problem, which was also studied in [16].
Given the (non-standard) cross-diffusion system

∂tw2 −∆x (p2(w)w2) = 0, p2(w) =
d1ψ3(w) + d2

ψ3(w) + 1
, di > 0,

∂tw3 −∆x (p3(w)w3) = 0, p3(w) =
d1ψ2(w) + d3

ψ2(w) + 1
, di > 0,

(3.2.2)

with

ψ2(w) =

√
(w3 − w2 + 1)2 + 4w2

2
− w3 − w2 + 1

2
, ψ3(w) =

w3

1 + ψ2(w)
, (3.2.3)

the question is whether we can find an entropy for this system. Indeed we can, namely we
will show that

H[w(t)] =

∫
Ω

(
ψ2(w)ψ3(w)(logψ2(w)ψ3(w)− 1) + 1

)
dx+
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+

∫
Ω

(
ψ2(w)(logψ2(w)− 1) + 1

)
dx+

∫
Ω

(
ψ3(w)(logψ3(w)− 1) + 1

)
dx (3.2.4)

is an entropy for (3.2.2), (3.2.3). Our strategy will be to start from a simpler reaction-
diffusion system with known entropy and to perform the fast reaction limit.

Let us start from a reaction-diffusion system for species Ai, i = 1, . . . , 3, of the form
∂tu

ε
1 − d1 ∆xu

ε
1 =

1

ε
(uε2 u

ε
3 − uε1)

∂tu
ε
2 − d2 ∆xu

ε
2 = −1

ε
(uε2 u

ε
3 − uε1)

∂tu
ε
3 − d3 ∆xu

ε
3 = −1

ε
(uε2 u

ε
3 − uε1),

(3.2.5)

with nonnegative initial conditions and no-flux boundary conditions, which describes the
reversible chemical reaction

A1 
 A2 +A3

with fast reaction rate 1/ε > 0, where the functions uεi := uεi (t, x) ≥ 0 represent the
concentrations of species Ai with diffusivities di > 0 on a bounded smooth open domain
Ω ⊆ RN . Since this system is coming from reversible reaction chemistry, it is not surprising
that it has an entropy of the form

H[uε(t)] =
3∑
i=1

∫
Ω

(
uεi (log uεi − 1) + 1

)
dx. (3.2.6)

Performing the fast reaction limit ε→ 0 leads to the system
u2 u3 − u1 = 0,

∂t(u1 + u2)−∆x(d1 u1 + d2 u2) = 0,

∂t(u1 + u3)−∆x(d1 u1 + d3 u3) = 0,

(3.2.7)

which can be rewritten by using the algebraic condition u1 = u2u3 in the following way:
∂t(u2(1 + u3)) + ∆x

[
d1u3 + d2

u3 + 1
(u2(1 + u3))

]
= 0,

∂t(u3(1 + u2)) + ∆x

[
d1u2 + d3

u2 + 1
(u3(1 + u2))

]
= 0.

Inverting the following change of variables

w2 := u1 + u2 and w3 := u1 + u3 with w = (w2, w3), (3.2.8)

yields the relation

u2 = ψ2(w2, w3), u3 = ψ3(w2, w3), (3.2.9)
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3.2. From reaction diffusion to cross diffusion in the fast-reaction limit

from which we obtain the desired cross-diffusion system (3.2.2)
∂tw2 −∆x

[
d1ψ3(w) + d2

ψ3(w) + 1
w2

]
= 0,

∂tw3 −∆x

[
d1ψ2(w) + d3

ψ2(w) + 1
w3

]
= 0.

The key step is the inversion in (3.2.9), where ψ = (ψ2, ψ3) := ϕ−1 is the inverse of the
homeomorphism

ϕ :


R2

+ → R2
+

(u2, u3) 7→ (u2(1 + u3)︸ ︷︷ ︸
=:w2

, u3(1 + u2)︸ ︷︷ ︸
:=w3

).

In this toy problem, this leads to the quadratic equation u2
2 + (w3 − w2 + 1)u2 − w2 = 0,

which has the unique nonnegative solution

u2 = ψ2(w) =

√
(w3 − w2 + 1)2 + 4w2

2
− w3 − w2 + 1

2
, u3 = ψ3(w) =

w3

1 + u2
.

By performing the same limit ε → 0 and the same variable transformation (3.2.8),(3.2.9)
again, but now for the entropy (3.2.6), we obtain the limiting entropy (3.2.4).

3.2.2. Main results

Our goal will be to use the above sketched strategy on two generalized starting systems,
namely (3.2.10) and (3.2.15), in order to obtain new entropies for new large classes of
cross-diffusion systems. We briefly introduce both models considered and present the main
results.

Model 1

The first model is obtained by starting from the following reaction-diffusion system:
∂tu

ε
1 −∆xf1(uε1) = −1

ε

(
q1(uε1)− q2(uε2) q3(uε3)

)
,

∂tu
ε
2 −∆xf2(uε2) = +

1

ε

(
q1(uε1)− q2(uε2) q3(uε3)

)
,

∂tu
ε
3 −∆xf3(uε3) = +

1

ε

(
q1(uε1)− q2(uε2) q3(uε3)

)
,

(3.2.10)

where the entropy of this system reads

H[uε(t)] =

3∑
i=1

∫
Ω
hi(u

ε
i ) dx, with hi(u

ε
i ) =

∫ uεi

c
log(qi(z)) dz. (3.2.11)
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The limiting cross-diffusion system for ε→ 0 has the form
q1(u1)− q2(u2)q3(u3) = 0,

∂t (u1 + u2)−∆x (f1(u1) + f2(u2)) = 0,

∂t (u1 + u3)−∆x (f1(u1) + f3(u3)) = 0,

(3.2.12)

which can be transformed by inverting the following homeomorphism

ϕ :

{
R2

+ → R2
+,

(u2, u3) 7→ (w2, w3),
(3.2.13)

where w2 := u2 + q−1
1 (q2(u2)q3(u3)) and w3 := u3 + q−1

1 (q2(u2)q3(u3)), and its inverse

ψ := ϕ−1, ψ(w) =
(
ψ2(w), ψ3(w)

)
. (3.2.14)

This leads to the following cross-diffusion system
∂tw2 −∆x

[(
f1(q−1

1 (q2(ψ2(w))q3(ψ3(w)))) + f2(ψ2(w))

w2

)
w2

]
= 0,

∂tw3 −∆x

[(
f1(q−1

1 (q2(ψ2(w))q3(ψ3(w)))) + f3(ψ3(w))

w3

)
w3

]
= 0.

The entropy can be expressed in the new variables w = (w2, w3) in the following way

H[w(t)] =

∫
Ω

∫ q−1
1 (q2(ψ2(w))q3(ψ3(w)))

c
log(q1(z)) dzdx

+

∫
Ω

∫ ψ2(w)

c
log(q2(z)) dzdx+

∫
Ω

∫ ψ3(w)

c
log(q3(z)) dzdx.

The assumptions for the rigorous fast-reaction limit are the following:

(B1) There exists a constant C1 > 0, such that (for large x) it holds that

0 ≤ fi(x) ≤ C1 x
2 log(x) for all x ≥ 0, i = 1, 2, 3.

(B2) There exist α > 0 and C2 > 0, such that

qi(x) ≥ C2 x
α for all x ≥ 0, i = 1, 2, 3.

(B3) For some s > 1 and 1 ≤ p, p′ ≤ ∞ with 1/p+ 1/p′ = 1, there exist positive constants
C3, C4, C5 > 0 such that (for large x)

qs1(x) ≤ C3 xf1(x) for all x ≥ 0,

qsp2 (x) ≤ C4 xf2(x) for all x ≥ 0,

qsp
′

2 (x) ≤ C5 xf3(x) for all x ≥ 0.
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3.2. From reaction diffusion to cross diffusion in the fast-reaction limit

(B4) The functions fi : R+ → R+ and qi : R∗+ → R+ are in C1 with

f ′i(x) > 0 and q′i(x) > 0 for all x ≥ 0, i = 1, 2, 3.

(B5) There exists a constant C6 > 0, such that

qi(x) ≤ C6 x
(
fif
′
iq
′
i

)
(x) for all x ≥ 0, i = 1, 2, 3.

(B6) For a : R2
+ → R2

+ with a(u2, u3) = (a2(u2, u3), a3(u2, u3)) it holds that

ai :

{
R2

+ → R+

(u2, u3) 7→ ui + q−1
1

(
q2(u2)q3(q3)

)
/ui

are continuous for i = 2, 3.

The main theorem for this model reads as follows:

Theorem 3.3. Let assumptions (B1)-(B6) for fi : R+ → R+ and qi : R+ → R+ hold. Let
Ω ⊆ RN be a bounded regular open set of RN , and let for any ε > 0, uε1, u

ε
2, u

ε
3 denote a weak

solution of the reaction-diffusion system (3.2.10) with initial data uεi (0, x) = uini (x) ∈ L∞
for all x ∈ Ω, i = 1, 2, 3.

Then the following holds: If ε → 0, there exists a subsequence of uε1, u
ε
2, u

ε
3 (which we

still denote by uε1, u
ε
2, u

ε
3), which converges to u1, u2, u3 in L1

loc([0,∞);L1(Ω)).
Moreover, this limit is a weak solution of the cross-diffusion system (3.2.12) belonging to

L1
loc([0,∞);L1(Ω)).

Model 2

The second model is a ‘hybrid” reaction-cross diffusion system in four species, which is
derived from the follwing reaction-diffusion system

∂tu
ε
1 − d1 ∆xu

ε
1 =

1

ε
(uε2 u

ε
3 − uε1) + (uε4 − uε1 uε3)

∂tu
ε
2 − d2 ∆xu

ε
2 = −1

ε
(uε2 u

ε
3 − uε1)

∂tu
ε
3 − d3 ∆xu

ε
3 = −1

ε
(uε2 u

ε
3 − uε1) + (uε4 − uε1 uε3)

∂tu
ε
4 − d4 ∆xu

ε
4 = −(uε4 − uε1 uε3)

(3.2.15)

with the entropy

H[uε(t)] =

4∑
i=1

∫
Ω

(uεi (log uεi − 1) + 1) dx. (3.2.16)
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The limiting system for (w2, w3, u4) with w2 = u2(1 + u3), w3 = u3(1 + u2) reads
∂tw2 −∆x

(
d1ψ3(w) + d2

ψ3(w) + 1
w2

)
=
(
u4 − ψ2

2ψ3(w)
)
,

∂tw3 −∆x

(
d1ψ2(w) + d3

ψ2(w) + 1
w3

)
= 2
(
u4 − ψ2

2ψ3(w)
)
,

∂tu4 − d4∆xu4 = −
(
u4 − ψ2

2ψ3(w)
)
.

(3.2.17)

and has the limiting entropy

H[w2(t),3 (t), u4(t)] =

∫
Ω

(
ψ2(w)ψ3(w)

(
log(ψ2(w)ψ3(w))− 1

)
+ 1
)
dx

+
∑
i=2,3

∫
Ω

(
ψi(w)

(
log(ψi(w))− 1

)
+ 1
)
dx+

∫
Ω

(
u4

(
log(u4)− 1

)
+ 1
)
dx.

The main theorem concerning this model states the following.

Theorem 3.4. Let Ω ⊆ RN be a bounded regular open set of RN , and let for any ε > 0,
uε1, u

ε
2, u

ε
3, u

ε
4 denote a weak solution of the reaction-diffusion system (3.2.15) with initial

data uin log(uin) ∈ L2(Ω).
Then the following holds: If ε→ 0, there exists a subsequence of uε1, u

ε
2, u

ε
3, u

ε
4 (which we

still denote by uε1, u
ε
2, u

ε
3, u

ε
4), which converges to u1, u2, u3, u4 in L1

loc([0,∞);L1(Ω)).
Moreover, this limit is a weak solution of the reaction-cross-diffusion system (3.2.17)

belonging to L2
loc([0,∞);L2(Ω)).

The proof of this theorem is based on entropy and duality estimates.

3.2.3. State of the art

Our work generalizes the strategy initiated in [16, 79, 17] to perform a fast-reaction limit
from reaction-diffusion systems coming from reversible reaction chemistry to cross-diffusion
systems. The strategy presented on a toy problem in subsection 3.2.1 was already inves-
tigated in [79], and also generalized for more general starting systems including a model
with fast and slow reactions similar to our second model (3.2.15). However, the results con-
cerning the rigorous fast-rection limit of our first model (3.2.10) are (up to our knowledge)
completely new, only existence of solutions for fixed ε > 0 has been already studied in [17,
Theorem 3, p.21] for models including our first model. Moreover, also our results about
how the limiting entropy looks like for the limiting cross-diffusion system are completely
new and cannot be found in any of these works, neither the robustness analysis for the
entropy performed in subsection 7.2.5.

Fast-reaction limits from reaction-diffusion systems have been well-known in the engi-
neering literature for a long time, but the rigorous mathematical treatment started only
very recently. For the presentation of the underlying mass action law of the reaction-
diffusion model, see [72]. In [89], a fast reaction limit from a reaction-diffusion system
modeling the chemical reaction A + B ⇀ C to a free boundary value problem was in-
vestigated. In [11], limits of ODE systems were studied with several fast-reaction and
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3.2. From reaction diffusion to cross diffusion in the fast-reaction limit

additional slow-reaction processes. This was extended in [13] to the case of a simple fast
reaction of the type A 
 B from a reaction diffusion to a nonlinear diffusion equation
using invariant sets. In [10], limits of reaction-diffusion systems with equal diffusion rates
were investigated using also invariant sets. In [5] and [14], Quasi-Steady-State Approxi-
mations (QSSA) of the form A + B 
 C 
 D + E with highly reactive intermediate C
were investigated. For fast-reaction limits in irreversible chemistry, see [15] for a limit to
a free boundary value problem, and for QSSA in irreversible chemistry, see [90] and [43].
We also want to mention the recent work [45], which focusses mainly on the modeling
aspects of singular limits from reaction-diffusion equations. Moreover, we want to men-
tion the works [92, 93, 88, 44, 53, 115] for a passage from reaction-diffusion equations to
SKT-type cross-diffusion models of population dynamics. We also want to mention, that
a rigorous fast-reaction limit starting from a kinetic system to a reaction-diffusion system
was investigated in [31, 116].
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Part II.

The kinetic models
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4. The linearized multi-species Boltzmann
system

4.1. The model

In this chapter, we prove a new coercivity estimate on the spectral gap of the linearized
Boltzmann collision operator for multiple species under assumptions on the collision kernels
including hard and Maxwellian potentials under Grad’s angular cut-off condition. We
present two proofs: a non-constructive one, based on the decomposition of the collision
operator into a compact and a coercive part, and a constructive one, which exploits the
“cross-effects” coming from collisions between different species and which yields explicit
constants. Furthermore, the essential spectra of the linearized collision operator and the
linearized Boltzmann operator are calculated. Based on the spectral-gap estimate, the
exponential convergence towards global equilibrium with explicit rate is shown for solutions
to the linearized multi-species Boltzmann system on the torus. The convergence is achieved
by hypocoercive effects between degenerately dissipative collision term and conservative
transport term, proved by using the hypocoercivity method of Mouhot and Neumann.

For a presentation of the model, see subsection 2.1.1 and subsection 2.1.2. Here, we just
repeat the main definitions. We are interested in the linearized multi-species Boltzmann
system

∂tfi + v · ∇xfi = Li(f), t > 0, fi(x, v, 0) = fI,i(x, v), (x, v) ∈ T3 × R3, (4.1.1)

for 1 ≤ i ≤ n, where f = (f1, . . . , fn) and the ith component of the linearized collision
operator L = (L1, . . . , Ln) is given by

Li(f) =

n∑
j=1

Lij(fi, fj), 1 ≤ i ≤ n,

with

Lij(fi, fj) = M
−1/2
i

(
Qij(Mi,M

1/2
j fj) +Qij(M

1/2
i fi, fj)

)
=

∫
R3×S2

BijM
1/2
i M∗j (h′i + h′∗j − hi − h∗j )dv∗dσ, hi := M

−1/2
i fi. (4.1.2)

The global equilibrium has the form

Mi(v) =
ρ∞,i

(2π)3/2
e−|v|

2/2, 1 ≤ i ≤ n, (4.1.3)
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and the collision frequency reads

νi(v) =
n∑
j=1

∫
R3×S2

Bij(|v∗ − v|, cosϑ)M∗j dv
∗dσ, i = 1, . . . , n. (4.1.4)

4.1.1. Assumptions on the collision kernels

We repeat the assumptions on the collision kernels Bij arising in (4.1.2), already introduced
in subsection 2.1.4, and discuss them briefly.

(A1) The collision kernels satisfy

Bij(|v − v∗|, cosϑ) = Bji(|v − v∗|, cosϑ) for 1 ≤ i, j ≤ n.

(A2) The collision kernels decompose in the kinetic part Φij ≥ 0 and the angular part
bij ≥ 0 according to

Bij(|v − v∗|, cosϑ) = Φij(|v − v∗|)bij(cosϑ), 1 ≤ i, j ≤ n.

(A3) For the kinetic part, there exist constants C1, C2 > 0, γ ∈ [0, 1], and δ ∈ (0, 1) such
that for all 1 ≤ i, j ≤ n and r > 0,

C1r
γ ≤ Φij(r) ≤ C2(r + r−δ).

(A4) For the angular part, there exist constants C3, C4 > 0 such that for all 1 ≤ i, j ≤ n
and ϑ ∈ [0, π],

0 < bij(cosϑ) ≤ C3| sinϑ| | cosϑ|, b′ij(cosϑ) ≤ C4.

Furthermore,

Cb := min
1≤i≤n

inf
σ1,σ2∈S2

∫
S2

min
{
bii(σ1 · σ3), bii(σ2 · σ3)

}
dσ3 > 0.

(A5) For all 1 ≤ i, j ≤ n, bij is even in [−1, 1] and the mapping v 7→ Φ′ij(|v|) on R3 is

locally integrable on R3 and bounded as |v| → ∞.

(A6) There exists β > 0 such that for all 1 ≤ i, j ≤ n, s > 0, and σ ∈ [−1, 1], we have
Bij(s, σ) ≤ βBii(s, σ).

Following [113], since the functions bij are integrable, we define

`b := min
1,≤i,j≤n

∫ π

0
bij(cos θ) sin θdθ > 0. (4.1.5)
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4.1.2. Discussion of the assumptions

The first hypothesis (A1) means that the collisions are micro-reversible. Assumption (A2)
is satisfied, for instance, for collision kernels derived from interaction potentials behaving
like inverse-power laws. The lower bound in hypothesis (A3) includes power-law functions
Φij(r) = rγ with γ > 0 (hard potential) and γ = 0 (Maxwellian molecules). The assumption
γ ≥ 0 is crucial since the linearized collision operator in the mono-species case for soft
potentials (γ < 0) with angular cut-off has no spectral gap [4]; however, degenerate spectral-
gap estimates are possible [73, 110]. The upper bound in (A3) means that the kinetic part
is of restricted growth for both small and large values of |v − v∗|. In hypothesis (A4), the
upper bound for bij implies Grad’s cut-off assumption. The positivity of Cb in Assumption
(A4) is used in the constructive proof of the multi-species spectral-gap estimate (Theorem
4.2) via the mono-species spectral-gap estimate which depends on Cb; see also the proofs
of Theorem 1.1 in [4] and Theorem 6.1 in [110]. The positivity of Cb is satisfied for the
main physical case of a collision kernel satisfying Grad’s cut-off, i.e. for hard spheres with
Bij(|v − v∗|, cosϑ) = |v − v∗|. Conditions (A1)-(A4) are also imposed in [4, 110, 111] for
the linearized mono-species Boltzmann operator.

Assumption (A5) imposes technical conditions needed to verify the abstract hypotheses
in [113]. More precisely, the evenness of bij is employed to show hypothesis (M2) (see
section 4.5) and the properties on Φ′ij are used to verify (4.5.2) in hypothesis (M1). The
conditions on Φ′ij are satisfied for hard and Maxwellian power-law potentials Φij(r) = rγ

with exponent γ ∈ [0, 1], for instance. Finally, condition (A6) states that the ratio of the off-
diagonal and diagonal collision kernels can be bounded uniformly from above by a constant
β > 0. This hypothesis will be needed for the explicit computation of the constants in
Theorems 4.2 and 4.3. More precisely, (A6) allows us to estimate the mono-species part of
the collision operator using the computation of [110]; see Lemma 4.10.

4.1.3. Notation and definitions

We call Dom(F ) the domain of an operator F and Im(f) the image of a mapping f . We
introduce the spaces L2

v = L2(R3;Rn), L2
x,v = L2(T3 × R3;Rn), H1

x,v = H1(T3 × R3;Rn),
and

H =

{
f ∈ L2

v : ‖f‖2H =
n∑
i=1

∫
R3

f2
i νidv <∞

}
,

D =

{
f ∈ L2

v : ‖f‖2H =
n∑
i=1

∫
R3

f2
i ν

2
i dv <∞

}
.

(4.1.6)

Here, νi is the collision frequency, defined in (4.1.4). For Maxwellian modelcules Φij(r) =
const., the collision frequency is constant but for strictly hard potentials Φij(r) = rγ with
0 < γ ≤ 1, νi is unbounded. In fact, it satisfies ν0(1 + |v|)γ ≤ νi(v) ≤ ν1(1 + |v|)γ for some
constants ν1 ≥ ν0 > 0 [113, p. 991]. In the physically most relevant case of hard spheres
(γ = 1, bij = 1), the collision frequency can be computed explicitly, see formula (2.13) in
[34, Section 7.2]. For more properties of the collision frequencies, we refer to [32, Section
III.3]. If the collision frequencies are bounded, H = L2

v. Generally, νi is unbounded and so,
H is a proper subset of L2

v. The norm on L2
v (and similarly for the other spaces) is defined
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4. The linearized multi-species Boltzmann system

by

‖f‖2L2
v

=
n∑
i=1

∫
R3

f2
i dv for f = (f1, . . . , fn) ∈ L2

v.

We distinguish the following linear operators. We define the operator Λ = (Λ1, . . . ,Λn) :
Dom(Λ)→ L2

v by
Λi(f) = νifi, i = 1, . . . , n,

where Dom(Λ) = {f ∈ L2
v : Λf ∈ L2

v} = D. It is closed, densely defined, selfadjoint and,
by Lemma 4.6 below, coercive. The linearized collision operator L : Dom(L)→ L2

v, defined
in (4.1.2), can be written as L = K − Λ, where K := L+ Λ, or, more explicitly,

Ki(f) =
n∑
j=1

∫
R3×S2

BijM
1/2
i M∗j (h′i + h′∗j − h∗j )dv∗dσ, i = 1, . . . , n.

It was shown in [19] that K is a compact operator in L2
v. Thus, Dom(L) = Dom(Λ) = D

and L is closed and densely defined. Furthermore, L is nonpositive and selfadjoint on L2
v.

We define the transport operator

T = v · ∇x : Dom(T )→ L2
v,

where Dom(T ) = {f ∈ L2
x,v : v ·∇xf ∈ L2

x,v}. Finally, we consider the linearized Boltzmann
operator

G = L− T : Dom(G)→ L2
v,

which is unbounded, closed, and densely defined with Dom(G) = Dom(L) ∩Dom(T ).
We denote by Ker(A) and Ran(A) the kernel and range of a linear operator A, respec-

tively. Its resolvent set is denoted by ρ(A) and its spectrum by σ(A) = C\ρ(A). For a
linear unbounded operator A with σ(A) ⊂ (−∞, 0], we say that A has a spectral gap when
the distance between 0 and σ(A)\{0} is positive. Finally, the essential spectrum of A is
defined as the set of all complex numbers λ ∈ C such that A− λI is not Fredholm, where
I is the identity operator. We refer to section 4.3 for details regarding this definition.

4.1.4. Main results

In this subsection, we list the main results of this part of the thesis. For a discussion of
these results, see section 2.1.5.

Theorem 4.1 (Essential spectrum of L and L − T ). Let the collision kernels Bij satisfy
assumptions (A1)-(A4) and set

J = ∪ni=1Im(νi) ⊂ [ν0,∞),

where ν0 = mini=1,...,n supv∈R3 νi(v) > 0 (see Lemma 4.6). Then

σess(L) = −J, σess(L− T ) = {λ ∈ C : <(λ) ∈ −J}.

The next theorem is the main result.
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4.2. Properties of the kinetic model

Theorem 4.2 (Explicit spectral-gap estimate). Let the collision kernels Bij satisfy as-
sumptions (A1)-(A4). Then there exists a constant λ > 0 such that

− (f, L(f))L2
v
≥ λ‖f −ΠL(f)‖2H for all f ∈ D, (4.1.7)

where ΠL is the projection onto the null space Ker(L). If additionally hypothesis (A6)
holds, the constant λ can be computed explicitly:

λ =
ηDb

8Ck
, η = min

{
1,

4CmCk
16Ck +Db

}
,

where Cm, Db, and Ck are defined in (4.4.8), (4.4.13), and (4.4.15), respectively.

Note that the constant Cm depends on the mono-species spectral-gap constant Cb via
(4.4.8) below.

As a consequence of the spectral-gap estimate, we are able to prove the exponential decay
of the solution f(t) to (4.1.1) to the global equilibrium with an explicit decay rate.

Theorem 4.3 (Convergence to equilibrium). Let the collision kernels Bij satisfy assump-
tions (A1)-(A5) and let fI ∈ H1

x,v. Then the linearized Boltzmann operator G = L − T
generates a strongly continuous semigroup SG(t) on H1

x,v, which satisfies

‖SG(t)(I −ΠG)‖H1
x,v
≤ Ce−τt, t ≥ 0, (4.1.8)

for some constants C, τ > 0. In particular, the solution f(t) = SG(t)fI to (4.1.1) satisfies

‖f(t)− f∞‖H1
x,v
≤ Ce−τt‖fI − f∞‖H1

x,v
, t ≥ 0, (4.1.9)

where f∞ := ΠG(fI) is the global equilibrium of (4.1.1). Moreover, under the additional
assumption (A6) and lower bound in (A4), the constants C and τ depend only on the
constants appearing in hypotheses (M1)-(M3) in section 4.5 and in particular on λ defined
in Theorem 4.2.

4.2. Properties of the kinetic model

We show some properties of the linearized collision operator (4.1.2) and the collision fre-
quencies (4.1.4). Let assumptions (A1)-(A4) hold. First we prove an H-theorem for (4.1.2).

Lemma 4.4 (H-theorem for the linearized collision operator). It holds that (f, L(f))L2
v
≤ 0

for all f ∈ D and (f, L(f))L2
v

= 0 if and only if f ∈ Ker(L), where

Ker(L) =
{
f ∈ L2

v : ∃α1, . . . , αn, e ∈ R, u ∈ R3, ∀1 ≤ i ≤ n,

fi = M
1/2
i (αi + u · v + e|v|2)

}
,

and Mi is given by (4.1.3).
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4. The linearized multi-species Boltzmann system

The proof is similar to the mono-species case except that the elements of the null space
of L depend on the total mean velocity u and total energy e instead of the individual
velocities and energies. Therefore, we give a complete proof. We note that an H-theorem
for the nonlinear Boltzmann operator for a mixture of reactive gases was proved in [52].

Proof. By the change of variables (v, v∗) 7→ (v∗, v) and (v, v∗) 7→ (v′, v′∗) and the symmetry
of Bij (assumption (A1)), we can write for f ∈ L2

v,

(f, L(f))L2
v

= −1

4

n∑
i,j=1

∫
R6×S2

BijMiM
∗
j (h′i + h′∗j − hi − h∗j )2dv∗dvdσ,

where we recall that hi = M
−1/2
i fi. This shows that (f, L(f))L2

v
≤ 0 for all f ∈ D.

Moreover, (f, L(f))L2
v

= 0 if and only if

h′i + h′∗j − hi − h∗j = 0 for all (v, v∗) ∈ R3 × R3, 1 ≤ i, j ≤ n. (4.2.1)

It is shown in [34, pp. 36-42] that (4.2.1) for i = j implies that hi has the form hi(v) =
αi + ui · v + ei|v|2 for suitable constants αi, ei ∈ R and ui ∈ R3. Inserting this expression
into (4.2.1) leads to

ui · (v′ − v) + uj · (v′∗ − v∗) + ei(|v′|2 − |v|2) + ej(|v′∗|2 − |v∗|2) = 0 (4.2.2)

for 1 ≤ i, j ≤ n. We consider the particular type of collisions with v′ = v∗, v′∗ = v, and
|v| = |v′|. For such collisions, σ = (v∗ − v)/|v∗ − v|. Then the above equation becomes

(ui − uj) · (v′ − v) = 0, 1 ≤ i, j ≤ n.

By rotating the velocities v, v′ in all possible ways, we deduce that (ui − uj) ·w = 0 for all
w ∈ R3 and thus, ui = uj for all 1 ≤ i, j ≤ n. We set u := u1. This fact, together with the
conservation of momentum v′ − v + v′∗ − v∗ = 0, implies that (4.2.2) becomes

ei(|v′|2 − |v|2) + ej(|v′∗|2 − |v∗|2) = 0, 1 ≤ i, j ≤ n.

Taking into account the conservation of energy |v′|2− |v|2 + |v′∗|2− |v∗|2 = 0, we infer that
(ei − ej)(|v′|2 − |v|2) = 0 and consequently, ei = ej for all 1 ≤ i, j ≤ n. Set e := e1. We
have shown that (f, L(f))L2

v
= 0 if and only if there exist α1, . . . , αn, e ∈ R and u ∈ R3

such that for 1 ≤ i ≤ n, fi(v) = M
1/2
i (αi + u · v + e|v|2). These functions clearly belong to

Ker(L), which finishes the proof.

The next result is concerned with the stationary solutions of (4.1.1).

Lemma 4.5. The global equilibrium f∞ = (f∞,1, . . . , f∞,n) of (4.1.1), i.e. the unique
stationary solution, is given by

f∞,i(v) = M
1/2
i (αi + u · v + e|v|2), 1 ≤ i ≤ n,

where αi, e ∈ R and u ∈ R3 are uniquely determined by the global conservation laws of
mass, momentum, and energy, i.e. by the equations∫

R3

M
1/2
i (f∞,i − fI,i)ψ(v)dv = 0, 1 ≤ i ≤ n,

for ψ(v) = 1, v1, v2, v3, |v|2, where fI,i are the initial data.

50



4.2. Properties of the kinetic model

Proof. First, we claim that Ker(G) = Ker(L) ∩Ker(T ), where G = L− T and T = v · ∇x
are considered on T3 × R3. The inclusion Ker(L) ∩ Ker(T ) ⊂ Ker(G) being trivial, let
f ∈ Ker(G). Then, using the skew-symmetry of T ,

0 = (f,G(f))L2
x,v

= (f, L(f))L2
x,v
− (f, T (f))L2

x,v
= (f, L(f))L2

x,v
.

Lemma 4.4 shows that f ∈ Ker(L). But this implies that T (f) = L(f)−G(f) = 0 and hence
f ∈ Ker(T ). This shows the claim. Let f∞ be a stationary solution. Then f∞ ∈ Ker(G)
and by our claim, f ∈ Ker(L)∩Ker(T ). Since Ker(T ) = {f ∈ L2

x,v : ∇xf = 0} [25, Lemma
B.2], f∞ does not depend on x. Because of f∞ ∈ Ker(L), Lemma 4.4 shows the result.

Finally, we prove that the collision frequencies (4.1.4) are strictly positive with bounded
derivative.

Lemma 4.6. Let Assumptions (A2)-(A4) hold. The collision frequencies (4.1.4) satisfy

min
1≤i≤n

inf
v∈R3

νi(v) ≥ ν0 := 23γ/2C1`
bρ∞√
π

Γ

(
γ + 3

2

)
> 0, (4.2.3)

where C1 > 0 is given by assumption (A3), `b > 0 is defined in (4.1.5), ρ∞ :=
∑n

j=1 ρj,∞
(see (2.1.4)), and Γ is the Gamma function. Furthermore, if additionally (A5) holds, then
∇vνi ∈ L∞v (R3), implying that |νi(v)| ≤ Cν(1 + |v|) for some Cν > 0 and for all v ∈ R3,
i = 1, . . . , n.

Proof. The decomposition of Bij , according to assumption (A2), implies that

νi(v) =

n∑
j=1

∫
R3

Φij(|v − v∗|)M∗j dv∗
∫
S2
bij(cosϑ)dσ.

The integral

cij :=

∫
S2
bij(cosϑ)dσ = 2π

∫ π

0
bij(cosϑ) sinϑdϑ

does not depend on v or v∗. We conclude from (A2)-(A4) that

νi(v) = (2π)−3/2
n∑
j=1

cijρ∞,j

∫
R3

Φij(|v − v∗|)e−|v
∗|2/2dv∗ (4.2.4)

≥ C1`
bρ∞

(2π)3/2

∫
R3

|v − v∗|γe−|v
∗|2/2dv∗.

Observe that the function

G(v) :=

∫
R3

|v − v∗|γe−|v
∗|2/2dv∗

is uniformly positive since the transformation v∗ 7→ −v∗ and the elementary inequality

|v − v∗|γ + |v + v∗|γ ≥ |(v − v∗) + (v + v∗)|γ = 2γ |v∗|γ
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4. The linearized multi-species Boltzmann system

for γ ∈ [0, 1] lead to

G(v) =
1

2

∫
R3

(|v − v∗|γ + |v + v∗|γ)e−|v
∗|2/2dv∗ ≥ 2γ−1

∫
R3

|v∗|γe−|v
∗|2/2dv∗ = 2γ−1G(0).

Actually, using spherical coordinates and the change of unknowns s = r2/2,

G(0) = 4π

∫ ∞
0

rγ+2e−r
2/2dr = 2(γ+5)/2π

∫ ∞
0

s(γ+1)/2e−sds = 2(γ+5)/2πΓ

(
γ + 3

2

)
.

Inserting the above estimate on G(v) into (4.2.4) shows (4.2.3).
It remains to prove that ∇vνi ∈ L∞v (R3). To this end, we compute

|∇νi(v)| = (2π)−3/2

∣∣∣∣∣∣
n∑
j=1

cijρ∞,j

∫
R3

Φ′ij(|v − v∗|) ·
v − v∗

|v − v∗|
e−|v

∗|2/2dv∗

∣∣∣∣∣∣
≤ (2π)−3/2

n∑
j=1

cijρ∞,j

∫
R3

|Φ′ij(|v − v∗|)|e−|v
∗|2/2dv∗. (4.2.5)

For given R > 0, we decompose

|Φ′ij(|v|)| = |Φ′ij(|v|)|χ{|v|<R}(v) + |Φ′ij(|v|)|χ{|v|≥R}(v).

Assumption (A5) means that there exists R > 0 such that

|Φ′ij(| · |)|χ{|·|<R} ∈ L1
v(R3) and |Φ′ij(| · |)|χ{|·|≥R} ∈ L∞v (R3).

Thus, the right-hand side of (4.2.5) is bounded since it can be written as the sum of two
terms, each of which is the convolution of an L1 and an L∞ function. This shows that
∇vνi ∈ L∞v (R3).

Remark 4.7. We observe that νi is generally not bounded since the kinetic part Φij(r)
may grow like r as r →∞. It is possible to show that νi is bounded if Φij is bounded. The
unboundedness of νi implies that the spaces L2

v and H are not isomorphic.

4.3. Geometric properties of the spectrum

In this section, we prove Theorem 4.1 and give a non-constructive proof of the spectral-gap
estimate (4.1.7) in Theorem 4.2 by using arguments from functional analysis.

First, we study the essential spectrum of L and L − T . There exist several definitions
of the essential spectrum of a linear operator. Given a linear, closed and densely defined
operator A : Dom(A) ⊂ X → X on a Banach space X, we define

σess(A) = {λ ∈ C : A− λI is not Fredholm}.

We recall that a linear, closed, and densely defined operator A is Fredholm if its range
Ran(A) is closed and both its kernel and cokernel are finite-dimensional. For other def-
initions of the essential spectrum, we refer to [84]. The essential spectrum is closed and
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conserved under compact perturbations, i.e., the bounded operators A and B have the
same essential spectrum if A−B is compact (Weyl’s theorem; see [84, Theorem S].

If X is a Hilbert space and A is selfadjoint, it holds σess(A) ⊂ R and for given λ ∈ R,
we have λ ∈ σess(A) if and only if A − λI is not closed or the kernel of A − λI is infinite
dimensional. (This follows from the fact that Ran(A − λI)⊥ = Ker(A − λI) for closed,
selfadjoint operators A [97, Chap. V.3.1].) Moreover, Weyl’s criterion holds [133, Lemma
5.17]: λ ∈ σess(A) if and only if A− λI admits a singular sequence, i.e. a sequence (fk) ⊂
Dom(A) such that (i) ‖fk‖X = 1 for all k ∈ N; (ii) ‖(A−λI)fk‖X → 0 as k →∞; and (iii)
(fk) has no convergent subsequences in X.

We decompose L as L = K − Λ, where K = (K1, . . . ,Kn), Λ = (Λ1, . . . ,Λn), and

Ki(f) =
n∑
j=1

∫
R3×S2

BijM
1/2
i M∗j (h′i + h′∗j − h∗j )dv∗dσ,

Λi(f) = νifi, 1 ≤ i ≤ n, (4.3.1)

and the collision frequencies νi are defined in (4.1.4). We recall from Lemma 4.6 that they
satisfy νi(v) ≥ ν0 > 0 and |νi(v)| ≤ Cν(1 + |v|) for all i = 1, . . . , n and v ∈ R3.

Proof of Theorem 4.1. Since K is compact on X = L2
v [19, Prop. 2], it follows that

σess(L) = σess(−Λ) = −σess(Λ). Thus, we will first study the essential spectrum of
Λ. The proof is divided into several steps. Recall that J = ∪ni=1Im(νi) ⊂ [ν0,∞).

Step 1: J ⊂ σess(Λ). Let λ ∈ J . There exists j ∈ {1, . . . , n} and v̂ ∈ R3 such that
λ = νj(v̂). We define the sequence (fk) ⊂ D by

fk,i(v) = (2πσk)
−3/4 exp

(
−|v − v̂|

2

4σk

)
if i = j, fk,i(v) = 0 if i 6= j,

where σk = 1/k, k ∈ N. Clearly, condition (i) for the singular sequence is satisfied.
Furthermore,

‖(Λ− λI)fk‖2L2
v

=

n∑
i=1

∫
R3

(νi(v)− λ)2fk,i(v)2dv

= (2πσk)
−3/2

∫
R3

(νi(v)− νj(v̂))2 exp

(
−|v − v̂|

2

2σk

)
dv.

The limit of a sequence of Gaussians with variance tending to zero converges to the delta
distribution δv̂ (in the sense of distributions), which means that

(2πσk)
−3/2

∫
R3

u(v) exp

(
−|v − v̂|

2

2σk

)
dv → u(v̂) as k →∞

for all functions u ∈ C0(R3) with polynomial growth at infinity. Since |νi(v)| ≤ Cν(1+ |v|),
this condition is satisfied and we conclude that ‖(Λ − λI)fk‖L2

v
→ 0 as k → ∞, showing

that condition (ii) holds.
Let us assume by contradiction that condition (iii) does not hold. Then there exists a

subsequence (fk`) of (fk) that converges in L2
v to some function f ∈ L2

v. As a consequence,
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4. The linearized multi-species Boltzmann system

|fk` |2 → |f |2 in L1
v as ` → ∞. In particular, f ∈ L2

v. However, the distributional limit
|fk` |2 → δv̂ and the uniqueness of the limit imply that δv̂ = |f |2 ∈ L1

v, which is absurd.
Thus, condition (iii) holds, and we infer that λ ∈ σess(Λ). Then, since σess(Λ) is closed,
J ⊂ σess(Λ).

Step 2: σess(Λ) ⊂ J . Let λ ∈ R\J . Then there exists a constant c > 0 such that for all
v ∈ R3 and i = 1, . . . , n, |νi(v)−λ| ≥ c. If (fk) ⊂ D with ‖fk‖L2

v
= 1 for all k ∈ N, we have

‖(Λ− λI)fk‖2L2
v

=
n∑
i=1

∫
R3

(νi(v)− λ)2fk,i(v)2dv ≥ c2
n∑
i=1

∫
R3

fk,i(v)2dv = c2 > 0

for all k ∈ N. Thus, condition (ii) cannot hold which implies that λ 6∈ σess(Λ).
Steps 1 and 2 imply that σess(Λ) = J .
Step 3: {λ ∈ C : <(λ) ∈ J} ⊂ σess(Λ + T ). Let λ ∈ C be such that <(λ) ∈ J . It

follows from Step 1 that <(λ) ∈ σess(Λ). Since Λ is selfadjoint on the Hilbert space L2
v,

Λ−<(λ)I is not closed or the kernel of Λ−<(λ)I is infinite dimensional. As the operator
Λ − <(λ)I is closed, its kernel must be infinite dimensional. Therefore, there exists a
sequence (fk) ⊂ L2

v such that Λ(fk)−<(λ)fk = 0 and (fk, f`)L2
v

= δk` for k, ` ∈ N. Let us
define φ(x, v) = exp(i=(λ)x · v/|v|2) and gk = φfk ∈ L2

x,v. Since |φ| = 1, we have

(gk, g`)L2
x,v

= (fk, f`)L2
v

= δk` for k, ` ∈ N. (4.3.2)

Furthermore, φ ∈ Dom(T ) and T (φ) = i=(λ)φ for v 6= 0, and thus,

(Λ + T − λI)gk = φ(Λ−<(λ)I)fk + fk(T − i=(λ)I)φ = 0,

which shows that gk ∈ Ker(Λ +T −λI) for k ∈ N. This fact, together with relation (4.3.2),
implies that Ker(Λ + T − λI) is infinite dimensional. As a consequence, Λ + T − λI is not
Fredholm and λ ∈ σess(Λ + T ), which proves the claim.

Step 4: {λ ∈ C : <(λ) 6∈ J} ⊂ ρ(Λ + T ). Clearly, this gives

σess(Λ + T ) ⊂ σ(Λ + T ) ⊂ {λ ∈ C : <(λ) ∈ J}.

Let λ ∈ C be such that <(λ) ∈ R\J . We show first that Ker(Λ + T − λI) = {0}. We
assume by contradiction that there exists f ∈ Dom(Λ + T ) satisfying ‖f‖L2

x,v
> 0 and

(Λ+T−λI)f = 0. In particular, there is an index ` ∈ {1, . . . , n} such that
∫
R3

∫
T3 f

2
` dxdv >

0. Then, multiplying ν`f`+T (f`) = λf` by f ` (the complex conjugate of f`) and integrating
in T3 × R3, we obtain∫

R3

∫
T3

ν`|f`|2dxdv +

∫
R3

∫
T3

f `v · ∇xf`dxdv = λ

∫
R3

∫
T3

|f`|2dxdv. (4.3.3)

By the divergence theorem, the real part of the second integral vanishes,

2<
∫
R3

∫
T3

f `v · ∇xf`dxdv =

∫
R3

∫
T3

(
f `v · ∇xf` + f`v · ∇xf `

)
dxdv (4.3.4)

=

∫
R3

∫
T3

v · ∇x|f`|2dxdv = 0.
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Then, taking the real part of (4.3.3), we infer that

<(λ) =

∫
R3

∫
T3 ν`|f`|2dxdv∫

R3

∫
T3 |f`|2dxdv

.

Consequently, infR3 ν` ≤ <(λ) ≤ supR3 ν` and, thanks to the continuity of ν`, <(λ) ∈
Im(ν`) ⊂ J , which is a contradiction. Thus, Ker(Λ + T − λI) = {0}. Similarly, we can
show that Ker((Λ + T − λI)∗) = Ker(Λ + T ∗ − λI) = {0} as well.

The operator L − T is closed [135, Theorems 2.2.1 and 2.2.2]. Thus, the boundedness
of the compact operator K and the stability of closedness under bounded perturbations
[97, Chap. III, Problem 5.6] imply that Λ + T = K − (L − T ) is closed (and also densely
defined). Hence, Ran(Λ +T −λI)⊥ = Ker((Λ +T −λI)∗) = {0}, meaning that Λ +T −λI
is invertible. If f ∈ L2

x,v is given, there exists u ∈ Dom(Λ+T ) such that (Λ+T −λI)u = f ,
which translates into

(νj −<(λ))uj + (T − i=(λ))uj = f, j = 1, . . . , n. (4.3.5)

We point out that, since νj is continuous, Im(νj) is an interval (or a point, in case that νj
is constant). This fact and the assumption <(λ) 6∈ J imply that either νj − <(λ) > 0 in
R3 or νj −<(λ) < 0 in R3. This means that the sign sj of νj −<(λ) is constant in R3, for
j = 1, . . . , n. By multiplying (4.3.5) by sjuj , integrating over T3×R3, taking the real part,
and summing over j = 1, . . . , n, we find that

n∑
j=1

∫
R3

∫
T3

|νj −<(λ)||uj |2dxdv =
1

2

n∑
j=1

sj

∫
R3

∫
T3

(
ujfj + ujf j

)
dxdv.

The (real part of the) second term in (4.3.5) vanishes after integration; see (4.3.4). Since
λ ∈ R\J , by definition of J , there exists cλ > 0 such that |νj − <(λ)| ≥ cλ in R3 for all
j = 1, . . . , n. Then the Cauchy-Schwarz inequality shows that ‖u‖L2

x,v
≤ c−1

λ ‖f‖L2
x,v

. This

means that (Λ + T − λI)−1 is bounded, so λ ∈ ρ(Λ + T ).
Steps 3 and 4 show that σess(Λ + T ) = {λ ∈ C : <(λ) ∈ J}.
Step 5: σess(−Λ − T ) = σess(K − Λ − T ). The operator K is compact on L2

v but not
on L2

x,v, so the claim does not follow from the original form of Weyl’s theorem. Instead we
will employ the fact that the essential spectrum is conserved under a relatively compact
perturbation [97, Section IV.5.6, Theorem 5.35]. More precisely, we prove that K is rela-
tively compact with respect to Λ + T , i.e., Gz := K(Λ + T − zI)−1 is compact on L2

x,v for

some z ∈ C with <(z) ∈ R\J . (Notice that by Step 4, z ∈ ρ(Λ + T ).) Then

σess(K − Λ− T ) = σess(−Λ− T ) = {λ ∈ C : <(λ) ∈ −J}. (4.3.6)

The second identity is a consequence of Steps 3 and 4.
To prove the compactness of Gz, we introduce the space W := `2(Z3;L2

v) of sequences
f = (fm) ⊂ L2

v with the canonical norm ‖f‖W = (
∑

m∈Z3 ‖fm‖2L2
v
)1/2. Clearly, W is

a Hilbert space with the scalar product (f, g)W =
∑

m∈Z3(fm, gm)L2
v
. Furthermore, we

introduce the Fourier mapping F : L2
x,v(T3 × R3)→W by

F (f) = (f̂m), f̂m(v) =

∫
T3

e−2πim·xf(x, v)dx for m ∈ Z3, v ∈ R3.
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This mapping is bounded, invertible, and has a bounded inverse. We wish to show that
Ĝz = FGzF

−1 : W →W is compact. Then alsoGz = F−1ĜzF is compact as a composition
of a compact and two bounded operators. This idea is due to Ukai; see e.g. [135, Section
2.2.1].

Since K and Λ do not depend on x, it holds that Ĝz = K(Λ+T̂−z)−1, where T̂ = 2πiv·m.

Let (f (k)) = (f
(k)
m ) ⊂ W be a bounded sequence in W , i.e., there exists c0 > 0 such that

for all k ∈ N,

‖f (k)‖2W =
∑
m∈Z3

‖f (k)
m ‖2L2

v
≤ c0. (4.3.7)

As <(z) ∈ R\J , there is a constant cz > 0 such that for all i = 1, . . . , n and v ∈ R3,
|νi(v) + 2πiv ·m− z| ≥ cz. Thus,

‖(Λ + T̂ − z)−1f (k)
m ‖2L2

v
=

n∑
i=1

∫
R3

∣∣(νi(v) + 2πiv ·m− z)−1f
(k)
m,i

∣∣2dv
≤ c−2

z

n∑
i=1

∫
R3

|f (k)
m,i|

2dv = c−2
z ‖f (k)

m ‖2L2
v
.

Summing these inequalities over m ∈ Z3, we infer that

‖(Λ + T̂ − z)−1f (k)‖2W ≤ c−2
z ‖f (k)‖2W ≤ c0c

−2
z .

Consequently, the sequence g(k) := (Λ + T̂ − z)−1f (k) is bounded in W . In particular, for

any s ∈ Z3, ‖g(k)
s ‖2L2

v
≤
∑

m∈Z3 ‖g(k)
m ‖2L2

v
= ‖g(k)‖2W ≤ c0c

−2
z . Hence, for any s ∈ Z3, the

sequence (g
(k)
s ) ⊂ L2

v is bounded in L2
v. Since K : L2

v → L2
v is compact and Z3 is countable,

we may apply Cantor’s diagonal argument to find a subsequence (g(k`)) of (g(k)) such that

(K(g
(k`)
m )) is convergent in L2

v as `→∞, for all m ∈ Z3.

We will show that (Ĝz(f
(k`))) is a Cauchy sequence in W . To this end, let `, s, N ∈ N.

We write

‖Ĝz(f (k`))− Ĝz(f (ks))‖2W =
∑
m∈Z3

‖K(g(k`)
m )−K(g(ks)

m )‖2L2
v

(4.3.8)

=
∑
|m|≤N

‖K(g(k`)
m )−K(g(ks)

m )‖2L2
v

+
∑
|m|>N

‖K(g(k`)
m )−K(g(ks)

m )‖2L2
v
,

where |m| =
∑3

i=1 |mi| for all m ∈ Z3. First, we consider the second sum on the right-hand
side. Denote by ‖ · ‖L (L2

v) the norm in the space of linear bounded operators on L2
v. By

the definition of g
(k)
m , we obtain∑

|m|>N

‖K(g(k`)
m )−K(g(ks)

m )‖2L2
v

=
∑
|m|>N

‖K(Λ + 2πiv ·m− z)−1(f (k`)
m − f (ks)

m )‖2L2
v

(4.3.9)

≤ 2
∑
|m|>N

‖K(Λ + 2πiv ·m− z)−1‖2L (L2
v)

(
‖f (k`)
m ‖2L2

v
+ ‖f (ks)

m ‖2L2
v

)
.
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For the operator norm, we employ Prop. 2.2.6 in [135], which can be applied since <(z) ∈
R\J :

‖K(Λ + 2πiv ·m− z)−1‖2L (L2
v) ≤ c1(1 + |m|)−α for all m ∈ Z3

for some suitable constant c1 > 0 (depending on z) and a suitable exponent α ∈ (0, 1)
(actually, α = 4/13). Let 0 < β < 2α/3. By Hölder’s inequality and (4.3.7), we estimate∑

|m|>N

‖K(Λ + 2πiv ·m− z)−1‖2L (L2
v)‖f

(k)
m ‖2L2

v
≤ cβ/20 c1

∑
|m|>N

(1 + |m|)−α‖f (k)
m ‖

2−β
L2
v

≤ cβ/20 c1

( ∑
|m|>N

(1 + |m|)−2α/β

)β/2( ∑
|m|>N

‖f (k)
m ‖2L2

v

)1−β/2

≤ c0c1

( ∑
|m|>N

(1 + |m|)−2α/β

)β/2
.

Using this estimate in (4.3.9), it follows that

sup
`,s∈N

∑
|m|>N

‖K(g(k`)
m )−K(g(ks)

m )‖2L2
v
≤ 2c0c1

( ∑
|m|>N

(1 + |m|)−2α/β

)β/2
.

The choice of β implies that 2α/β > 3 and hence, the sum over |m| > N is finite. In
particular,

∑
|m|>N (1+ |m|)−2α/β → 0 as N →∞. As a consequence, for given ε > 0, there

exists Nε ∈ N such that

sup
`,s∈N

∑
|m|>Nε

‖K(g(k`)
m )−K(g(ks)

m )‖2L2
v
<
ε

2
.

Finally, since (K(g
(k`)
m )) is convergent in L2

v for all m ∈ Z3, there is a number η = η(ε) > 0
such that for all `, s > η, ∑

|m|≤Nε

‖K(g(k`)
m )−K(g(ks)

m )‖2L2
v
<
ε

2
.

Thus, choosing N = Nε in (4.3.8), we deduce that (Ĝz(f
(ks))) is a Cauchy sequence in the

Hilbert space W and consequently, it is convergent. This shows that Ĝz : W → W is a
compact operator and (4.3.6) holds. This finishes the proof of Theorem 4.1.

Next, we show the spectral-gap estimate for the linearized collision operator L = K −Λ,
i.e. the first statement of Theorem 4.2. Since K is compact on L2

v, it remains to prove that
Λ : D ⊂ L2

v → L2
v is coercive.

Lemma 4.8. Let (A1)-(A4) hold. Then the embedding H ↪→ L2
v is continuous and Λ :

D → L2
v, defined in (4.3.1), is a linear unbounded operator with the property

(f,Λ(f))L2
v

= ‖f‖2H ≥ C‖f‖2L2
v

for f ∈ H (4.3.10)

for some C > 0. Moreover, Λ can be extended by density to a linear bounded operator
Λ : H → H′, where H′ is the dual of H with respect to the L2

v scalar product. In particular,
the mapping H → R, f 7→ 〈Λ(f), f〉 is continuous, where 〈·, ·〉 denotes the duality pairing
between H′ and H.
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4. The linearized multi-species Boltzmann system

Proof. The strict positivity of νi in R3 (see Lemma 4.6) implies that the embeddingH ↪→ L2
v

is continuous. Then the definitions of Λi and H show that for all f ∈ H, (4.3.10) holds. For
given f ∈ H, the element Λ(f) = (f1ν1, . . . , fnνn) can be identified with the linear bounded
operator H → R, g 7→

∑n
i=1

∫
R3 gifiνidv and consequently, Λ(f) ∈ H′. It is immediate to

see that ‖Λ(f)‖H′ = ‖f‖H, so that Λ : H → H′ is isometric and thus bounded. Moreover,
it follows that H → R, f 7→ 〈Λ(f), f〉, is continuous.

The following result provides a spectral gap for general operators which decompose into
a compact and a coercive part.

Lemma 4.9. Let H0 and H be Hilbert spaces such that H ↪→ H0 continuously and let
L : H → H′ be a linear bounded operator such that L = K − Λ with linear bounded
operators Λ : H → H′ and K : H0 → H0. Furthermore, assume that

(i) for all f ∈ H, 〈L(f), f〉 ≤ 0 with equality holding if and only if f ∈ Ker(L);

(ii) the operator K : H0 → H0 is compact;

(iii) there exists C0 > 0 such that for all f ∈ H, 〈Λ(f), f〉 ≥ C0‖f‖2H.

Then there exists a constant C1 > 0 such that

−〈L(f), f〉 ≥ C1‖f‖2H for all f ∈ H ∩Ker(L)⊥.

Proof. We argue by contradiction. Let (fn) ⊂ H ∩ Ker(L)⊥ be a sequence such that
‖fn‖H = 1 for n ≥ 1 but 〈L(fn), fn〉 → 0 as n→∞. Since (fn) is bounded in the Hilbert
space H, there exists a subsequence, which is not relabeled, such that fn ⇀ f weakly in
H. Because of the continuous embedding H ↪→ H0, also fn ⇀ f weakly in H0. Since
fn ∈ Ker(L)⊥ and Ker(L)⊥ is weakly closed by Mazur’s lemma, f ∈ Ker(L)⊥. As the
operator K : H0 → H0 is compact, by hypothesis (ii), the weak convergence of (fn) in H0

implies that K(fn) → K(f) strongly in H0. Hence, (fn,K(fn))H0 → (f,K(f))H0 . Since
Λ : H → H′ is bounded, the mapping P : H → R, f 7→ 〈Λ(f), f〉, is continuous. The
linearity of Λ and property (iii) imply that P is also convex. Thus, P is weakly lower
semicontinuous [24, Corollary 3.9]. Therefore,

−〈L(f), f〉 = 〈Λ(f), f〉 − (K(f), f)H0 ≤ lim inf
n→∞

(
〈Λ(fn), fn〉 − (K(fn), fn)H0

)
= 0,

because 〈L(fn), fn〉 → 0 as n → ∞ by assumption. We infer from hypothesis (i) that
f ∈ Ker(L). But also f ∈ Ker(L)⊥, so f = 0. Then, by hypothesis (iii),

0 < C0 = C0‖fn‖2H ≤ 〈Λ(fn), fn〉 = (K(fn), fn)H0 − 〈L(fn), fn〉 → 0,

which is a contradiction.

Let H0 = L2
v. By [19, Prop. 2], assumption (ii) of Lemma 4.9 holds. Furthermore,

Lemma 4.8 shows that (iii) holds true. Assumption (i) is a consequence of Lemma 4.4. Let
f ∈ D ⊂ H und set f̃ = f −ΠL(f) ∈ Ker(L)⊥. Then

−〈L(f), f〉 = 〈L(f̃), f̃〉 ≥ C‖f̃‖2H = C‖f −ΠL(f)‖2H,

since L(f) ∈ L2
v and 〈L(f), f〉 = (f, L(f))L2

v
for f ∈ D. This proves the first statement in

Theorem 4.2.
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4.4. Explicit spectral-gap estimate

We present a second proof of the spectral-gap estimate (4.1.7) with explicit constants. The
idea is to decompose the collision operator L into a mono-species and a multi-species part
and to exploit the fact that the conservation properties of L are different from those of the
mono-species part Lm. Let assumptions (A1)-(A4) hold.

4.4.1. Decomposition

We decompose L = Lm + Lb, where Lm = (Lm1 , . . . , L
m
n ), Lb = (Lb1, . . . , L

b
n), and

Lmi (fi) = Lii(fi, fi), Lbi(f) =
∑
j 6=i

Lij(fi, fj). (4.4.1)

Denoting by Πm the orthogonal projection onto Ker(Lm) (with respect to the scalar prod-
uct in L2

v), we can decompose f according to

f = f‖ + f⊥, where f‖ := Πm(f), f⊥ := f − f‖. (4.4.2)

Lemma 4.4 shows that

f ∈ Ker(L) if and only if fi = M
1/2
i (αi + u · v + e|v|2) for αi, e ∈ R, u ∈ R3, (4.4.3)

f ∈ Ker(Lm) if and only if fi = M
1/2
i (αi + ui · v + ei|v|2) for αi, ei ∈ R, ui ∈ R3, (4.4.4)

and f‖ has clearly the form (4.4.4).

For later use, we define the following bilinear forms

−(f, Lm(f))L2
v

=
1

4

n∑
i=1

∫
R6×S2

Bii∆i[hi]
2MiM

∗
i dvdv

∗dσ, (4.4.5)

−(f, Lb(f))L2
v

=
1

4

n∑
i=1

∑
j 6=i

∫
R6×S2

BijAij [hi, hj ]
2MiM

∗
j dvdv

∗dσ, (4.4.6)

where hi = M
−1/2
i fi and

∆i[hi] := h′i + h′∗i − hi − h∗i , Aij [hi, hj ] := h′i + h′∗j − hi − h∗j .

4.4.2. Spectral-gap estimate for the mono-species part

Our starting point is the fact that the mono-species collision operator Lm has an explicitly
computable spectral gap. A spectral-gap estimate for the linearized collision operator with
n = 1 was proved in [110, Theorem 6.1, Remark 1]:

1

4

∫
R6×S2

Bii∆i[hi]
2MiM

∗
i dvdv

∗dσ ≥ λm
ρ∞,i

∫
R3

(fi −Πm(fi))
2νiidv, (4.4.7)
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4. The linearized multi-species Boltzmann system

where λm = λm(γ,C1, C
b) > 0, only depending on γ, C1, and Cb (see (A3)-(A4)), can be

computed explicitly,

νii(v) :=

∫
R3×S2

Bii(|v − v∗|, cosϑ)M∗i dv
∗dσ,

and i ∈ {1, . . . , n} is fixed. This yields the following estimate for Lm, where we recall that
the space H is defined in (4.1.6).

Lemma 4.10. With Lm defined in (4.4.1), we have

−(f, Lm(f))L2
v
≥ Cm‖f −Πm(f)‖2H for all f ∈ Dom(Lm),

where

Cm =
λm(γ,C1, C

b)

βρ∞
, (4.4.8)

and λm = λm(γ,C1, C
b) is given in (4.4.7).

Proof. We sum (4.4.7) over i = 1, . . . , n and employ (4.4.5) to obtain

− (f, Lm(f))L2
v
≥ λm

n∑
i=1

∫
R3

(fi −Πm(f))2 νii
ρ∞,i

dv. (4.4.9)

It remains to estimate νii in terms of νi, defined in (4.1.4). The definition of Mi implies
that Mj = (ρ∞,j/ρ∞,i)Mi. This fact, as well as definition (4.1.4) of νi, the lower bound
(4.2.3), and assumption (A6) give

νi =
n∑
j=1

ρ∞,j
ρ∞,i

∫
R3

BijM
∗
i dv

∗dσ ≤ β
n∑
j=1

ρ∞,j
ρ∞,i

∫
R3

BiiM
∗
i dv

∗dσ =
βρ∞
ρ∞,i

νii.

We conclude that νii/ρ∞,i ≥ νi/(βρ∞), and inserting this bound into (4.4.9) yields the
result.

Lemma (4.10) and the inequality −(f, Lb(f))Lv2 ≥ 0 immediately show that

−(f, L(f))L2
v
≥ Cm‖f −Πm(f)‖2H for all f ∈ D.

However, we need the projection onto Ker(L)⊥ instead of Ker(Lm)⊥, which is contained in
Ker(L)⊥. Therefore, we will exploit the part −(f, Lb(f))L2

v
to derive a sharper estimate.

4.4.3. Absorption of the orthogonal parts

We prove that the contribution f⊥ (introduced in (4.4.2)) in the term −(f, Lb(f))L2
v

=

−(f‖ + f⊥, Lb(f‖ + f⊥))L2
v

can be absorbed by the H norm of f⊥.

Lemma 4.11. Let η = min{1, Cm/8}, where Cm > 0 is given in Lemma 4.10. Then, for
all f ∈ D,

−(f, L(f))L2
v
≥ (Cm − 4η)‖f − f‖‖2H −

η

2
(f‖, Lb(f‖))L2

v
,

where f‖ = Πm(f) is the projection onto Ker(Lm)⊥.
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Proof. By Lemma 4.10, we find that

− (f, L(f))L2
v
≥ Cm‖f − f‖‖2H − (f, Lb(f))L2

v
≥ Cm‖f − f‖‖2H − η(f, Lb(f))L2

v
, (4.4.10)

since −(1− η)(f, Lb(f))L2
v
≥ 0 for η ∈ (0, 1]. We estimate first the expression Aij [hi, hj ] in

definition (4.4.6), writing h
‖
i = M

−1/2
i f

‖
i and h⊥i = M

−1/2
i f⊥i ,

Aij [hi, hj ]
2 =

(
Aij [h

‖
i , h
‖
j ] +Aij [h

⊥
i , h

⊥
j ]
)2

= Aij [h
‖
i , h
‖
j ]

2 +Aij [h
⊥
i , h

⊥
j ]2 + 2Aij [h

‖
i , h
‖
j ]Aij [h

⊥
i , h

⊥
j ]

≥ 1

2
Aij [h

‖
i , h
‖
j ]

2 −Aij [h⊥i , h⊥j ]2.

Inserting this estimate into (4.4.6) and (4.4.10) gives

−(f, L(f))L2
v
≥ Cm‖f⊥‖2H +

η

8

n∑
i=1

∑
j 6=i

∫
R6×S2

BijAij [h
‖
i , h
‖
j ]

2MiM
∗
j dvdv

∗dσ

− η

4

n∑
i=1

∑
j 6=i

∫
R6×S2

BijAij [h
⊥
i , h

⊥
j ]2MiM

∗
j dvdv

∗dσ. (4.4.11)

We claim that the last term on the right-hand side can be estimated from below by
‖f⊥‖2H, up to a small factor. For this, we employ the invariance properties of Bij and the
identity MiM

∗
j = M ′iM

′∗
j :∫

R6×S2
BijAij [h

⊥
i , h

⊥
j ]2MiM

∗
j dvdv

∗dσ

≤ 4

∫
R6×S2

Bij
(
((h⊥i )′)2 + ((h⊥j )′∗)2 + (h⊥i )2 + ((h⊥j )∗)2

)
MiM

∗
j dvdv

∗dσ

≤ 16

∫
R6×S2

Bij(h
⊥
i )2MiM

∗
j dvdv

∗dσ = 16

∫
R6×S2

Bij(f
⊥
i )2M∗j dvdv

∗dσ.

Thus, the last term on the right-hand side of (4.4.11) can be estimated as

−η
4

n∑
i=1

∑
j 6=i

∫
R6×S2

BijAij [h
⊥
i , h

⊥
j ]2MiM

∗
j dvdv

∗dσ

≥ −4η

n∑
i=1

∑
j 6=i

∫
R6×S2

Bij(f
⊥
i )2M∗j dvdv

∗dσ ≥ −4η
n∑
i=1

∫
R3

(f⊥i )2νidv = −4η‖f⊥‖2H,

taking into account definition (4.1.4) of νi. We infer from (4.4.11) that

−(f, L(f))L2
v
≥ (Cm − 4η)‖f − f‖‖2H +

η

8

n∑
i=1

∑
j 6=i

∫
R6×S2

BijAij [h
‖
i , h
‖
j ]

2MiM
∗
j dvdv

∗dσ,

and definition (4.4.6) yields the conclusion.

61



4. The linearized multi-species Boltzmann system

4.4.4. Estimate for the remaining part

It remains to estimate the term −(f‖, Lb(f‖))L2
v
.

Lemma 4.12. For f‖ ∈ Ker(Lm), i.e. f
‖
i = M

1/2
i (αi + ui · v + ei|v|2) for some αi, ei ∈ R

and ui ∈ R3, we have

−(f‖, Lb(f‖))L2
v
≥ Db

4

n∑
i,j=1

(
|ui − uj |2 + (ei − ej)2

)
,

where Db > 0 is defined in (4.4.13).

Proof. Thanks to the momentum and energy conservation, we obtain differences of the
momenta and energies, which will be crucial in the following:

ui · v′ + uj · v′∗ − ui · v − uj · v∗ = (ui − uj) · (v′ − v),

ei|v′|2 + ej |v′∗|2 − ei|v|2 − ej |v∗|2 = (ei − ej)(|v′|2 − |v|2).

Using these identities in Aij [h
‖
i , h
‖
j ], where h

‖
i = αi + ui · v + ei|v|2, we find that

−(f‖, Lb(f‖))L2
v

=
1

4

n∑
i=1

∑
j 6=i

∫
R6×S2

BijAij [h
‖
i , h
‖
j ]

2MiM
∗
j dvdv

∗dσ

=
1

4

n∑
i=1

∑
j 6=i

∫
R6×S2

Bij
(
(ui − uj) · (v′ − v) + (ei − ej)(|v′|2 − |v|2)

)2
MiM

∗
j dvdv

∗dσ.

Using the symmetry of Bij (thanks to assumption (A1)) and of MiM
∗
j with respect to v,

the function G(v, v∗, σ) = Bij(ui−uj) · (v′− v)(|v′|2− |v|2) is odd with respect to (v, v∗, σ)
and thus, the mixed term of the square in the above integral vanishes. Therefore, we obtain

−(f‖, Lb(f‖))L2
v

=
1

4

n∑
i=1

∑
j 6=i

∫
R6×S2

Bij
(
|(ui − uj) · (v′ − v)|2 + (ei − ej)2(|v′|2 − |v|2)2

)
×MiM

∗
j dvdv

∗dσ. (4.4.12)

Now, we claim that∫
R6×S2

Bij((ui−uj) ·(v′−v))2MiM
∗
j dvdv

∗dσ =
|ui − uj |2

3

∫
R6×S2

Bij |v−v′|2MiM
∗
j dvdv

∗dσ.

To prove this identity, we write ui,k and vk for the kth component of the vectors ui and
v, respectively. The transformation (vk, v

∗
k, σk) 7→ −(vk, v

∗
k, σk) for fixed k leaves Bij , Mi,

and M∗j unchanged but v′k 7→ −v′k such that∫
R6×S2

Bijv
′
kv`MiM

∗
j dvdv

∗dσ = 0 for ` 6= k.
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Furthermore, ∫
R6×S2

Bijvkv`MiM
∗
j dvdv

∗dσ = 0 for ` 6= k,

since the integrand is odd. Therefore,∫
R6×S2

Bij((ui − uj) · (v′ − v))2MiM
∗
j dvdv

∗dσ

=

3∑
k,`=1

(ui,k − uj,k)(ui,` − uj,`)
∫
R6×S2

Bij(v
′
k − vk)(v′` − v`)MiM

∗
j dvdv

∗dσ

=
3∑

k=1

(ui,k − uj,k)2

∫
R6×S2

Bij(vk − v′k)2MiM
∗
j dvdv

∗dσ.

In fact, we can see that the integral is independent of k, and we infer that∫
R6×S2

Bij((ui − uj) · (v′ − v))2MiM
∗
j dvdv

∗dσ

=
1

3

3∑
k=1

(ui,k − uj,k)2

∫
R6×S2

Bij |v − v′|2MiM
∗
j dvdv

∗dσ,

from which the claim follows.
Hence, (4.4.12) can be estimated as

−(f‖, Lb(f‖))L2
v
≥ Db

3∑
i,j=1

(
|ui − uj |2 + (ei − ej)2

)
,

where

Db = min
1≤i,j≤n

∫
R6×S2

Bij min

{
1

3
|v − v′|2, (|v′|2 − |v|2)2

}
MiM

∗
j dvdv

∗dσ. (4.4.13)

It remains to show that Db > 0. The integrand of (4.4.13) vanishes if and only if |v′| = |v|.
However, the set

X = {(v, v∗, σ) ∈ R3 × R3 × S2 : |v′| = |v|}
is closed since it is the pre-image of {0} of the continuous function F (v, v∗, σ) = |v′|2−|v|2,
i.e. X = F−1({0}), recalling that v′ depends on (v, v∗, σ) through (2.1.2). Since X 6=
R3 × R3 × S2, its complement Xc is open and nonempty and thus has positive Lebesgue
measure. Since the integrand in (4.4.13) is positive on Xc, we infer that Db > 0. This
finishes the proof.

4.4.5. Estimate for the momentum and energy differences

The last step is to derive lower bounds for the differences
∑

i,j(|ui−uj |2 +(ei−ej)2). First,
we recall some moment identities:∫

R3

Midv = ρi,

∫
R3

Mivjvkdv = ρiδjk,

∫
R3

Mi|v|4dv = 15ρi (4.4.14)

for all 1 ≤ i ≤ n and 1 ≤ j, k ≤ 3.
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Lemma 4.13. Let f ∈ L2
v with f

‖
i = M

1/2
i (αi + ui · v + ei|v|2) for 1 ≤ i ≤ n. Then∫

R3

M
1/2
i fidv = ρi(αi + 3ei),

∫
R3

M
1/2
i fivdv = ρiui,

∫
R3

M
1/2
i fi|v|2dv = ρi(3αi + 15ei).

Proof. Decomposing f = f‖+ f⊥, where f‖ = Πm(f) and f⊥ = f −Πm(f), we infer from

M
1/2
i ∈ Ker(Lm) (see (4.4.4)) that (M

1/2
i , f⊥i )L2

v
= 0 and hence, by (4.4.4) again,

(M
1/2
i , f

‖
i )L2

v
=

∫
R3

Mi(αi + ui · v + ei|v|2)dv = ρi(αi + 3ei).

The other identities can be shown in a similar way.

Lemma 4.14. For all f ∈ D, we have

n∑
i,j=1

(
|ui − uj |2 + (ei − ej)2

)
≥ 1

Ck

(
‖f −ΠL(f)‖2H − 2‖f −Πm(f)‖2H

)
,

where ui, ei are the coefficients of the ith component of Πm(f) in (4.4.4), ΠL is the
projection on Ker(L), Ck > 0 is given by

Ck = 60nρ∞ max
1≤k,`≤5n

∣∣∣∣∣
n∑
i=1

∫
R3

ψkψ`νidv

∣∣∣∣∣ , (4.4.15)

and (ψk) is an arbitrary orthonormal basis of Ker(Lm) in L2
v.

Proof. We again decompose f = f‖ + f⊥ with f‖ = Πm(f) and f⊥ = f − f‖. Then

‖f −ΠL(f)‖2H ≤ 2
(
‖f⊥‖2H + ‖f‖ −ΠL(f)‖2H

)
. (4.4.16)

We estimate first the difference g := f‖ − ΠL(f) = Πm(f) − ΠL(f) ∈ Ker(Lm) (note
that Ker(L) ⊂ Ker(Lm)). Let (ψk) be an arbitrary orthonormal basis of Ker(Lm) in L2

v.
Because of (4.4.4) and ∇vνi ∈ L∞(R3), we have ψk ∈ H. Then, by Young’s inequality, we
find that

‖g‖2H =
n∑
i=1

∫
R3

∣∣∣∣∣
5n∑
k=1

(g, ψk)L2
v
ψk

∣∣∣∣∣
2

νi(v)dv =
5n∑

k,`=1

(g, ψk)L2
v
(g, ψ`)L2

v

n∑
i=1

∫
R3

ψkψ`νi(v)dv

=

5n∑
k,`=1

(g, ψk)L2
v
(g, ψ`)L2

v
(ψk, ψ`)H

≤ 1

2
max

1≤k,`≤5n
|(ψk, ψ`)H|

5n∑
k,`=1

(
(g, ψk)

2
L2
v

+ (g, ψ`)
2
L2
v

)
= 5n max

1≤k,`≤5n
|(ψk, ψ`)H|

5n∑
k=1

(g, ψk)
2
L2
v

= 5n max
1≤k,`≤5n

|(ψk, ψ`)H| ‖g‖2L2
v
.
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Thus, we infer from (4.4.16) that

‖f −ΠL(f)‖2H ≤ 2‖f⊥‖2H + 10n max
1≤k,`≤5n

|(ψk, ψ`)H| ‖f‖ −ΠL(f)‖2L2
v
.

Because of Ker(L) ⊂ Ker(Lm), we have ΠmΠL = ΠL and

‖f‖ −ΠL(f)‖2L2
v

= ‖f‖‖2L2
v
− 2(Πm(f), ΠL(f))L2

v
+ ‖ΠL(f)‖2L2

v

= ‖f‖‖2L2
v
− 2(f,ΠL(f))L2

v
+ ‖ΠL(f)‖2L2

v
= ‖f‖‖2L2

v
− ‖ΠL(f)‖2L2

v
.

Consequently, setting k0 = 10nmax1≤k,`≤n |(ψk, ψ`)H|,

‖f −ΠL(f)‖2H ≤ 2‖f⊥‖2H + k0

(
‖f‖‖2L2

v
− ‖ΠL(f)‖2L2

v

)
. (4.4.17)

Next, we compute the L2
v norms of f‖ and ΠL(f). Moment identities (4.4.14) show that

‖f‖‖2L2
v

=

n∑
i=1

∫
R3

Mi(αi + ui · v + ei|v|2)2dv

=
n∑
i=1

∫
R3

Mi(α
2
i + (ui · v)2 + e2

i |v|4 + 2αiei|v|2)dv

=
n∑
i=1

ρ∞,i(α
2
i + |ui|2 + 15e2

i + 6αiei).

For the computation of the L2
v norm of ΠL(f), we choose the following orthonormal basis

(φj) = (φj,i)i=1,...,n of Ker(L) in L2
v:

φj,i = ρ−1/2
∞ M

1/2
j δij , φn+k,i = ρ−1/2

∞ M
1/2
i vk, φn+4,i = (6ρ∞)−1/2M

1/2
i (|v|2 − 3),

where 1 ≤ j ≤ n and 1 ≤ k ≤ 3. Then, using the moment identities of Lemma 4.13,

‖ΠL(f)‖2L2
v

=
n+4∑
j=1

(f, φj)
2
L2
v

=
n∑
i=1

ρ∞,i(αi + 3ei)
2 + ρ∞

∣∣∣∣∣
n∑
i=1

ρ∞,i
ρ∞

ui

∣∣∣∣∣
2

+ 6ρ∞

(
n∑
i=1

ρ∞,i
ρ∞

ei

)2

.

Inserting the above identities for ‖f‖‖2L2
v

and ‖ΠL(f)‖2L2
v

into (4.4.17), we conclude that

‖f −ΠL(f)‖2H ≤ 2‖f −Πm(f)‖2H + k0ρ∞

 n∑
i=1

ρ∞,i
ρ∞
|ui|2 −

∣∣∣∣∣
n∑
i=1

ρ∞,i
ρ∞

ui

∣∣∣∣∣
2


+ 6k0ρ∞

 n∑
i=1

ρ∞,i
ρ∞

e2
i −

(
n∑
i=1

ρ∞,i
ρ∞

ei

)2
 .

Then, if the inequalities

n∑
i=1

ρ∞,i
ρ∞
|ui|2 −

∣∣∣∣∣
n∑
i=1

ρ∞,i
ρ∞

ui

∣∣∣∣∣
2

≤
n∑

i,j=1

|ui − uj |2, (4.4.18)
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n∑
i=1

ρ∞,i
ρ∞

e2
i −

(
n∑
i=1

ρ∞,i
ρ∞

ei

)2

≤
n∑

i,j=1

(ei − ej)2 (4.4.19)

hold, the lemma follows with Ck = 6k0ρ∞.
It remains to prove (4.4.18) and (4.4.19). To this end, we define the following scalar

product on R3n:

(u, v)ρ =
n∑
i=1

ρ∞,i
ρ∞

ui · vi, u = (u1, . . . , un), v = (v1, . . . , vn) ∈ R3n,

where ui · vi denotes the usual scalar product in R3. The corresponding norm is ‖u‖ρ =

(u, u)
1/2
ρ . Then 1 = (1, . . . , 1) ∈ R3n satisfies ‖1‖ρ = 1. The elementary identity

‖u‖2ρ − (u,1)2
ρ = ‖u− (u,1)ρ1‖2ρ

can be equivalently written as

I :=

n∑
i=1

ρ∞,i
ρ∞
|ui|2 −

∣∣∣∣∣
n∑
i=1

ρ∞,i
ρ∞

ui

∣∣∣∣∣
2

=

n∑
i=1

ρ∞,i
ρ∞

∣∣∣∣∣∣ui −
n∑
j=1

ρ∞,j
ρ∞

uj

∣∣∣∣∣∣
2

.

Then, using
∑n

j=1 ρ∞,j = ρ∞,

I =

n∑
i=1

ρ∞,i
ρ∞

∣∣∣∣∣∣
(

1− ρ∞,i
ρ∞

)
ui −

∑
j 6=i

ρ∞,j
ρ∞

uj

∣∣∣∣∣∣
2

=

n∑
i=1

ρ∞,i
ρ∞

∣∣∣∣∣∣
∑
j 6=i

ρ∞,j
ρ∞

(ui − uj)

∣∣∣∣∣∣
2

=
n∑
i=1

ρ∞,i
ρ∞

∑
k 6=i

ρ∞,k
ρ∞

2 ∣∣∣∣∣
∑

j 6=i(ρ∞,j/ρ∞)(ui − uj)∑
k 6=i ρ∞,k/ρ∞

∣∣∣∣∣
2

=

n∑
i=1

ρ∞,i
ρ∞

∑
k 6=i

ρ∞,k
ρ∞

2 ∣∣∣∣∣∣
∑
j 6=i

λj(ui − uj)

∣∣∣∣∣∣
2

,

where λj = (ρ∞,j/ρ∞)(
∑

k 6=i(ρ∞,k/ρ∞))−1. Since
∑

j 6=i λj = 1, we may apply Jensen’s
inequality to this convex combination, leading to

I ≤
n∑
i=1

ρ∞,i
ρ∞

∑
k 6=i

ρ∞,k
ρ∞

2∑
j 6=i

λj |ui − uj |2

=

n∑
i=1

ρ∞,i
ρ∞

(
1− ρ∞,i

ρ∞

)∑
j 6=i

ρ∞,j
ρ∞
|ui − uj |2 ≤

n∑
i,j=1

|ui − uj |2,

since ρ∞,j ≤ ρ∞. This ends the proof.

Now, we are able to prove Theorem 4.2.
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Proof of Theorem 4.2. By Lemmas 4.11, 4.12, and 4.14, we obtain

−(f, L(f))L2
v
≥ (Cm − 4η)‖f − f‖‖2H +

ηDb

8

n∑
i,j=1

(
|ui − uj |2 + (ei − ej)2

)
≥
(
Cm − 4η − ηDb

4Ck

)
‖f − f‖‖2H +

ηDb

8Ck
‖f −ΠL(f)‖2H.

The first term on the right-hand side is nonnegative if we choose η = min{1, 4CmCk/(16Ck+
Db)}, and estimate (4.1.7) follows with λ = ηDb/(8Ck).

4.5. Convergence to equilibrium

In this section, we prove Theorem 4.3. The idea of the proof is to adapt the hypocoercivity
method of [113] to the multi-species setting. To this end, we need to verify the structural
assumptions (H1)-(H3) in the paper of C. Mouhot and L. Neumann [113, Theorem 1.1],
which we call (M1)-(M3) here to avoid confusing with other assumptions in this thesis.
The setting is as follows.

Let L be a closed, densely defined, and self-adjoint operator on Dom(L) ⊂ L2
v such that

L = K − Λ and the operators K and Λ satisfy the following assumptions:

(M1) The operator Λ is coercive in the following sense: There exist a norm ‖·‖H on H ⊂ L2
v

and positive constants νi (0 ≤ i ≤ 4) such that for all f ∈ Dom(L) ⊂ H,

ν0‖f‖2L2
v
≤ ν1‖f‖2H ≤ (f,Λ(f))L2

v
≤ ν2‖f‖2H, (4.5.1)

(∇vf,∇vΛ(f))L2
v
≥ ν3‖∇vf‖2H − ν4‖f‖2L2

v
. (4.5.2)

Moreover, there exists a constant CL > 0 such that for all f , g ∈ Dom(L),

(L(f), g)L2
v
≤ CL‖f‖H‖g‖H. (4.5.3)

(M2) The operator K has a regularizing effect in the following sense: For all ε > 0, there
exists C(ε) > 0 such that for all f ∈ H1

v ,

(∇vf,∇vK(f))L2
v
≤ ε‖∇vf‖2L2

v
+ C(ε)‖f‖2L2

v
.

(M3) The operator L has a finite-dimensional kernel and the following local spectral-gap
assumption holds: There exists λ > 0 such that for all f ∈ Dom(L),

−(f, L(f))L2
v
≥ λ‖f −ΠL(f)‖2H,

where ΠL is the projection on Ker(L).

Assumption (M3) is a consequence of Theorem 4.2. Next, we verify assumption (M1).
Using Lemma 4.8 and the continuous embedding H ↪→ L2

v, we see that (4.5.1) holds. For
the proof of (4.5.2), we employ Young’s inequality:

(∇vf,∇vΛ(f))L2
v

=
n∑
i=1

∫
R3

∇vfi · ∇v(νifi)dv
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=

n∑
i=1

(∫
R3

fi∇vfi · ∇vνidv +

∫
R3

|∇vfi|2νidv
)

≥ 1

2

n∑
i=1

(
−
∫
R3

|∇vνi|2

νi
f2
i dv +

∫
R3

|∇vfi|2νidv
)

≥ ν3‖∇vf‖2H − ν4‖f‖2L2
v
,

where ν3 = 1/2 and ν4 = max1≤i≤n supv∈R3 |∇vνi|2/(2νi). Note that ν4 is finite since ∇vνi
is bounded and νi is strictly positive (see Lemma 4.6). Finally, inequality (4.5.3) follows
from the decomposition L = K−Λ, the compactness and hence continuity of K, the explicit
expression for Λ, and the Cauchy-Schwarz inequality applied to (L(f), g)L2

v
.

It remains to verify assumption (M2). Let N := ρ
−1/2
∞,i M

1/2
i = (2π)−3/4 exp(−|v|2/4).

We decompose K = K(1) −K(2), where K(j) = (K
(j)
1 , . . . ,K

(j)
n ) and

K
(1)
i =

n∑
j=1

∫
R3×S2

BijM
1/2
i M∗j

(
f ′i

(M ′i)
1/2

+
f ′∗j

(M ′∗j )1/2

)
dv∗dσ,

K
(2)
i =

n∑
j=1

∫
R3×S2

Bij(MiM
∗
j )1/2f∗j dv

∗dσ

for 1 ≤ i ≤ n. Because of M ′kM
′∗
k = MkM

∗
k for all k, we find that

K
(1)
i (f) =

n∑
j=1

∫
R3×S2

BijM
1/2
i M∗j

(
(M ′∗i )1/2f ′i
(M ′iM

′∗
i )1/2

+
(M ′j)

1/2f ′∗j

(M ′∗j M
′
j)

1/2

)
dv∗dσ

=

n∑
j=1

∫
R3×S2

BijM
1/2
i M ′j

(
(M ′∗i )1/2f ′i
(MiM∗i )1/2

+
(M ′j)

1/2f ′∗j

(M∗jMj)1/2

)
dv∗dσ

=

n∑
j=1

∫
R3×S2

Bij
(
ρ

1/2
∞,jN

′∗f ′i + ρ
1/2
∞,iN

′f ′∗j
)
ρ

1/2
∞,jN

∗dv∗dσ.

The transformation σ 7→ −σ leaves v and v∗ unchanged and exchanges v′ and v′∗. Assump-
tion (A5) (bij is an even function) ensures that Bij is unchanged under this transformation.
Therefore, ∫

R3×S2
Bijf

′
iN
′∗N∗dv∗dσ =

∫
R3×S2

Bijf
′∗
i N

′N∗dv∗dσ,

and we can write K(1) as

K
(1)
i (f) =

1

2

n∑
j=1

ρ
1/2
∞,j
(
ρ

1/2
∞,jK

(1)
ij (fi) + ρ

1/2
∞,iK

(1)
ij (fj)

)
, (4.5.4)

where

K
(1)
ij (fk) =

∫
R3×S2

Bij(N
′∗f ′k +N ′f ′∗k )N∗dv∗dσ, 1 ≤ i, j, k ≤ n.
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Note that K
(1)
ij = K

(1)
ji . In a similar way, we can decompose the operator K(2):

K
(2)
i (f) =

n∑
j=1

(ρ∞,iρ∞,j)
1/2N

∫
R3×S2

Bijf
∗
jN
∗dv∗dσ =

n∑
j=1

(ρ∞,iρ∞,j)
1/2K

(2)
ij (fj),

where

K
(2)
ij (fj) = N

∫
R3×S2

BijN
∗f∗j dv

∗dσ.

Next, we estimate the derivatives of K
(`)
ij . It is shown in [113, Eqs. (5.15)-(5.18)] that

for all ε > 0, there exists C(ε) > 0 such that for any f ∈ H1
v , 1 ≤ i, j, k ≤ n, and ` = 1, 2,

‖∇vK(`)
ij (fk)‖2L2

v
≤ ε‖∇vfk‖2L2

v
+ C(ε)‖fk‖2L2

v
. (4.5.5)

Then we infer from (4.5.4) that

‖∇vK(1)(f)‖2L2
v

=

n∑
i=1

∥∥∥∥1

2

n∑
j=1

ρ
1/2
∞,j
(
ρ

1/2
∞,j∇vK

(1)
ij (fi) + ρ

1/2
∞,i∇vK

(1)
ij (fj)

)∥∥∥∥2

L2
v

≤ n

4

n∑
i,j=1

∥∥∥ρ1/2
∞,j
(
ρ

1/2
∞,j∇vK

(1)
ij (fi) + ρ

1/2
∞,i∇vK

(1)
ij (fj)

)∥∥∥2

L2
v

≤ n( max
1≤i≤n

ρ∞,i)
2

n∑
i,j=1

‖∇vK(1)
ij (fi)‖2L2

v
.

Thus, by (4.5.5), it follows that for ` = 1,

‖∇vK(`)(f)‖2L2
v
≤ n2( max

1≤i≤n
ρ∞,i)

2
n∑
i=1

(
ε‖∇vfi‖2L2

v
+ C(ε)‖fi‖2L2

v

)
.

A similar computation shows that this estimate also holds for ` = 2. We infer that

‖∇K(f)‖2L2
v
≤ 4n2( max

1≤i≤n
ρ∞,i)

2
n∑
i=1

(
ε‖∇vfi‖2L2

v
+ C(ε)‖fi‖2L2

v

)
.

This proves assumption (M2) since ε > 0 is arbitrary.

Proof of Theorem 4.3. We have verified that (M1)-(M3) are satisfied. Then, using exactly
the same arguments as in the proof of Theorem 1.1 in [113], but now for the multi-species
case, we conclude the exponential decay (4.1.8) of the semigroup SG(t), which is the first
property of the theorem.

It remains to show that the decay estimate (4.1.9) follows from (4.1.8). For this, we
write the initial value fI as fI = ΠG(fI) + (I −ΠG)(fI), where ΠG is the projection onto
Ker(G) in L2

x,v. Then the solution to (2.1.5) is given by

f(t) = SG(t)fI = SG(t)ΠG(fI) + SG(t)(I −ΠG)(fI), t ≥ 0.
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4. The linearized multi-species Boltzmann system

We have already shown that

‖SG(t)(I −ΠG)g‖H1
x,v
≤ Ce−τt‖g‖H1

x,v
for all g ∈ H1

x,v, t > 0.

In particular, the choice g = (I −ΠG)(fI) and the property (I −ΠG)2 = I −ΠG lead to

‖SG(t)(I −ΠG)(fI)‖H1
x,v
≤ Ce−τt‖(I −ΠG)(fI)‖H1

x,v
.

It remains to prove that f∞ = ΠG(fI) = SG(t)ΠG(fI) is the global equilibrium. Since
GΠG(fI) = 0 and ΠG(fI) does not depend on time, the constant-in-time function g =
ΠG(fI) is the unique solution to the Cauchy problem

∂tg = Gg, t > 0, g(0) = ΠG(fI).

This shows that ΠG(fI) = SG(t)g(0) = SG(t)ΠG(fI) and finishes the proof.
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5. The nonlinear multi-species Boltzmann
system close to global equilibrium

In this chapter we use a setting with different molar masses, and a different linearization
compared to Chapter 4. Since we also slightly change the notation, let us briefly recap the
model used in this chapter. A more detailed introduction for this model can be found in
Section 2.2.1.

5.1. The model

5.1.1. Different molar masses

We want to study the evolution of a dilute gas on the torus T3 composed of N differ-
ent species of chemically non-reacting mono-atomic particles with different molar masses,
modeled by the system of Boltzmann equations on R+ × T3 × R3,

∀ 1 ≤ i ≤ N, ∂tFi(t, x, v) + v · ∇xFi(t, x, v) = Qi(F)(t, x, v) (5.1.1)

with initial data

∀ 1 ≤ i ≤ N, ∀(x, v) ∈ T3 × R3, Fi(0, x, v) = F0,i(x, v).

The distribution function of the system is given by the vector F = (F1, . . . , FN ), with Fi
describing the ith species at time t, position x and velocity v.

The Boltzmann operator Q(F) = (Q1(F), . . . , QN (F)) has the form

Qi(F) =

N∑
j=1

Qij(Fi, Fj),

where Qij models interactions between particles of either the same (i = j) or of different
(i 6= j) species and are local in time and space.

Qij(Fi, Fj)(v) =

∫
R3×S2

Bij (|v − v∗|, cos θ)
[
F ′iF

′∗
j − FiF ∗j

]
dv∗dσ,

with the shorthands F ′i = Fi(v
′), Fi = Fi(v), F

′∗
j = Fj(v

′
∗) and F ∗j = Fj(v∗). Since now

we allow also different molar masses for each species, the microscopic collision rules read
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5. The nonlinear multi-species Boltzmann system close to global equilibrium

as follows:
v′ =

1

mi +mj
(miv +mjv∗ +mj |v − v∗|σ)

v′∗ =
1

mi +mj
(miv +mjv∗ −mi|v − v∗|σ)

, and cos θ =

〈
v − v∗
|v − v∗|

, σ

〉
.

Note that these expressions imply that we deal with gases where only binary elastic col-
lisions occur (the mass mi of all molecules of species i remains the same, since there is
no reaction). Indeed, v′ and v′∗ are the velocities of two molecules of species i and j be-
fore collision giving post-collisional velocities v and v∗ respectively, with conservation of
momentum and kinetic energy:

miv +mjv∗ = miv
′ +mjv

′
∗,

1

2
mi |v|2 +

1

2
mj |v∗|2 =

1

2
mi

∣∣v′∣∣2 +
1

2
mj

∣∣v′∗∣∣2 . (5.1.2)

5.1.2. The perturbative regime and its motivation

Using the standard changes of variables (v, v∗) 7→ (v′, v′∗) and (v, v∗) 7→ (v∗, v) (note the
lack of symmetry between v′ and v′∗ compared to v for the second transformation due to
different masses) together with the symmetries of the collision operators (see [33][34][138]
among others and [52][46] and in particular [21] for multi-species specifically), we recover
the following weak forms:∫

R3

Qij(Fi, Fj)(v)ψi(v) dv =

∫
R6

∫
S2
Bij(|v − v∗|, cos(θ))FiF

∗
j

(
ψ′i − ψi

)
dσdvdv∗

and∫
R3

Qij(Fi, Fj)(v)ψi(v) dv +

∫
R3

Qji(Fj , Fi)(v)ψj(v) dv =

− 1

2

∫
R6

∫
S2
Bij(|v − v∗|, cos(θ))

(
F ′iF

∗
j − FiF ∗j

) (
ψ′i + ψ′∗j − ψi − ψ∗j

)
dσdvdv∗.

(5.1.3)

Thus
N∑

i,j=1

∫
R3

Qij(Fi, Fj)(v)ψi(v) dv = 0 (5.1.4)

if and only if ψ(v) belongs to Span
{

e1, . . . , eN, v1m, v2m, v3m, |v|2 m
}

, where ek stands

for the kth unit vector in RN and m = (m1, . . . ,mN ). The fact that we need to sum
over i has interesting consequences and implies a fundamental difference compared with
the single-species Boltzmann equation. In particular it implies conservation of the total
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5.1. The model

number density c∞,i of each species, of the total momentum of the gas ρ∞u∞ and its total
energy 3ρ∞θ∞/2:

∀t ≥ 0, c∞,i =

∫
T3×R3

Fi(t, x, v) dxdv (1 ≤ i ≤ N)

u∞ =
1

ρ∞

N∑
i=1

∫
T3×R3

mivFi(t, x, v) dxdv

θ∞ =
1

3ρ∞

N∑
i=1

∫
T3×R3

mi |v − u∞|2 Fi(t, x, v) dxdv,

(5.1.5)

where ρ∞ =
∑N

i=1mic∞,i is the global density of the gas. Note that this already shows
intricate interactions between each species and the total mixture itself.

The operator Q = (Q1, . . . , QN ) also satisfies a multi-species version of the classical H-
theorem [52] which implies that any local equilibrium, i.e. any function F = (F1, . . . , FN )
being the maximum of the Boltzmann entropy, has the form of a local Maxwellian, that is

∀ 1 ≤ i ≤ N, Fi(t, x, v) = cloc,i(t, x)

(
mi

2πkBθloc(t, x)

)3/2

exp

[
−mi

|v − uloc(t, x)|2

2kBθloc(t, x)

]
.

Here kB is the Boltzmann constant and, denoting the total local mass density by ρloc =∑N
i=1micloc,i, we used the following local definitions

∀ 1 ≤ i ≤ N, cloc,i(t, x) =

∫
R3

Fi(t, x, v) dv,

uloc(t, x) =
1

ρloc

N∑
i=1

∫
R3

mivFi dv, θloc(t, x) =
1

3ρloc

N∑
i=1

∫
R3

mi |v − uloc|2 Fi dv.

On the torus, this multi-species H-theorem also implies that the global equilibrium, i.e. a
stationary solution F to (5.1.1), associated to the initial data F0(x, v) = (F0,1, . . . , F0,N ) is
uniquely given by the global Maxwellian

∀ 1 ≤ i ≤ N, Fi(t, x, v) = Fi(v) = c∞,i

(
mi

2πkBθ∞

)3/2

exp

[
−mi

|v − u∞|2

2kBθ∞

]
.

By translating and rescaling the coordinate system we can always assume that u∞ = 0 and
kBθ∞ = 1 so that the only global equilibrium is the normalized Maxwellian

µ = (µi)1≤i≤N with µi(v) = c∞,i

(mi

2π

)3/2
e−mi

|v|2
2 . (5.1.6)

The aim is to construct a Cauchy theory for the multi-species Boltzmann equation (5.1.1)
around the global equilibrium µ. In other terms we study the existence, uniqueness and
exponential decay of solutions of the form Fi(t, x, v) = µi(v) + fi(t, x, v) for all i.
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5. The nonlinear multi-species Boltzmann system close to global equilibrium

Under this perturbative regime, the Cauchy problem amounts to solving the perturbed
multi-species Boltzmann system of equations

∂tf + v · ∇xf = L(f) + Q(f), (5.1.7)

or equivalently in the non-vectorial form

∀ 1 ≤ i ≤ N, ∂tfi + v · ∇xfi = Li(f) +Qi(f),

where f = (f1, . . . , fN ) and the operator L = (L1, . . . , LN ) is the linear Boltzmann operator
given for all 1 ≤ i ≤ N by

Li(f) =
N∑
j=1

Lij(fi, fj),

with

Lij(fi, fj) = Qij(µi, fj) +Qij(fi, µj).

Since we are looking for solutions F preserving individual mass, total momentum and
total energy (5.1.5) we have the equivalent perturbed conservation laws for f = F−µ which
are given by

∀t ≥ 0, 0 =

∫
T3×R3

fi(t, x, v) dxdv (1 ≤ i ≤ N)

0 =
N∑
i=1

∫
T3×R3

mivfi(t, x, v) dxdv

0 =
N∑
i=1

∫
T3×R3

mi |v|2 fi(t, x, v) dxdv.

(5.1.8)

5.1.3. Notations and assumptions on the collision kernel

First, to avoid any confusion, vectors and vector-valued operators in RN will be denoted
by a bold symbol, whereas their components by the same indexed symbol. For instance,
W represents the vector or vector-valued operator (W1, . . . ,WN ).

We define the Euclidian scalar product in RN weighted by a vector W by

〈f ,g〉W =

N∑
i=1

figiWi.

In the case W = 1 = (1, . . . , 1) we may omit the index 1.

Function spaces. We define the following shorthand notation

〈v〉 =

√
1 + |v|2.
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5.1. The model

The convention we choose is to index the space by the name of the concerned variable,
so we have for p in [1,+∞]

Lp[0,T ] = Lp ([0, T ]) , Lpt = Lp
(
R+
)
, Lpx = Lp

(
T3
)
, Lpv = Lp

(
R3
)
.

For W = (W1, . . . ,WN ) : R3 −→ R+ a strictly positive measurable function in v, we will
use the following vector-valued weighted Lebesgue spaces defined by their norms

‖f‖L2
v(W) =

(
N∑
i=1
‖fi‖2L2

v(Wi)

)1/2

, ‖fi‖L2
v(Wi)

= ‖fiWi(v)‖L2
v
,

‖f‖L2
x,v(W) =

(
N∑
i=1
‖fi‖2L2

x,v(Wi)

)1/2

, ‖fi‖L2
x,v(Wi)

=
∥∥‖fi‖L2

x
Wi(v)

∥∥
L2
v
,

‖f‖L∞x,v(W) =
N∑
i=1
‖fi‖L∞x,v(Wi)

, ‖fi‖L∞x,v(Wi)
= sup

(x,v)∈T3×R3

(
|fi(x, v)|Wi(v)

)
,

‖f‖L1
vL
∞
x (W) =

N∑
i=1
‖fi‖L1

vL
∞
x (Wi)

, ‖fi‖L1
vL
∞
x (Wi)

=

∥∥∥∥ sup
x∈T3

|fi(x, v)|Wi(v)

∥∥∥∥
L1
v

.

Note that L2
v(W) and L2

x,v(W) are Hilbert spaces with respect to the scalar products

〈f ,g〉L2
v(W) =

N∑
i=1

〈fi, gi〉L2
v(Wi) =

N∑
i=1

∫
R3

figiW
2
i dv,

〈f ,g〉L2
x,v(W) =

N∑
i=1

〈fi, gi〉L2
x,v(Wi) =

N∑
i=1

∫
T3×R3

figiW
2
i dxdv.

Assumptions on the collision kernel.

We will use the following assumptions on the collision kernels Bij .

(H1) The following symmetry holds

Bij(|v − v∗|, cos θ) = Bji(|v − v∗|, cos θ) for 1 ≤ i, j ≤ N.

(H2) The collision kernels decompose into the product

Bij(|v − v∗|, cos θ) = Φij(|v − v∗|)bij(cos θ), 1 ≤ i, j ≤ N,

where the functions Φij ≥ 0 are called kinetic part and bij ≥ 0 angular part. This
is a common assumption as it is technically more convenient and also covers a wide
range of physical applications.

(H3) The kinetic part has the form of hard or Maxwellian (γ = 0) potentials, i.e.

Φij(|v − v∗|) = CΦ
ij |v − v∗|γ , CΦ

ij > 0, γ ∈ [0, 1], ∀ 1 ≤ i, j ≤ N.
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5. The nonlinear multi-species Boltzmann system close to global equilibrium

(H4) For the angular part, we assume a strong form of Grad’s angular cutoff (first intro-
duced in [74]), that is: there exist constants Cb1, Cb2 > 0 such that for all 1 ≤ i, j ≤ N
and θ ∈ [0, π],

0 < bij(cos θ) ≤ Cb1| sin θ| | cos θ|, b′ij(cos θ) ≤ Cb2.

Furthermore,

Cb := min
1≤i≤N

inf
σ1,σ2∈S2

∫
S2

min
{
bii(σ1 · σ3), bii(σ2 · σ3)

}
dσ3 > 0.

We emphasize here that the important cases of Maxwellian molecules (γ = 0 and b = 1)
and of hard spheres (γ = b = 1) are included in our study. We shall use the standard
shorthand notations

b∞ij = ‖bij‖L∞
[−1,1]

and lbij = ‖b ◦ cos‖L1
S2
. (5.1.9)

5.1.4. Main results

For the convenience of the reader, we summarize here the main results of this chapter. For
a discussion of these results, we refer to Subsection 2.2.4.

Theorem 5.1. Let the collision kernels Bij satisfy assumptions (H1) − (H4). Then the
following holds.

(i) The operator L is a closed self-adjoint operator in L2
v

(
µ−1/2

)
and there exists λL > 0

such that

∀f ∈ L2
v

(
µ−1/2

)
, 〈f ,L (f)〉L2

v(µ−1/2) ≤ −λL ‖f − πL (f)‖2
L2
v(〈v〉γ/2µ−1/2) ;

(ii) Let E = L2
x,v

(
µ−1/2

)
or E = L∞x,v

(
〈v〉βµ−1/2

)
with β > 3/2. The linear perturbed

operator G = L− v · ∇x generates a strongly continuous semigroup SG(t) on E and
there exist CE, λE > 0 such that

∀t ≥ 0, ‖SG(t) (Id−ΠG)‖E ≤ CEe
−λEt,

where πL is the orthogonal projection onto Ker(L) in L2
v

(
µ−1/2

)
and ΠG is the orthogonal

projection onto Ker(G) in L2
x,v

(
µ−1/2

)
.

The constants λL, CE and λE are explicit and depend on N , E, the different masses mi

and the collision kernels.

Remark 5.2. This Theorem is split into three parts, and handled separately in Theorem
5.6, Theorem 5.11 and Theorem 5.17.
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5.2. Spectral gap with different masses

The next result concerns the nonlinear equation close to global equilibrium.

Theorem 5.3. Let the collision kernels Bij satisfy assumptions (H1)− (H4) and let E =
L1
vL
∞
x

(
〈v〉k

)
with k > k0, where k0 is the minimal integer such that

Ck =
2

k + 2

1−
[
max
i,j

|mi−mj |
mi+mj

] k+2
2

+

[
1−

(
max
i,j

|mi−mj |
mi+mj

)] k+2
2

1−max
i,j

|mi−mj |
mi+mj

max
i,j

4πb∞ij
lbij

< 1. (5.1.10)

where lbij and b∞ij are angular kernel constants (5.1.9).
Then there exist ηE, CE and λE > 0 such that for any F0 = µ + f0 ≥ 0 satisfying the
conservation of mass, momentum and energy (5.1.5) with u∞ = 0 and θ∞ = 1, if

‖F0 − µ‖ ≤ ηE

then there exists a unique solution F = µ+ f in E to the multi-species Boltzmann equation
(5.1.1) with initial data f0. Moreover, F is non-negative, satisfies the conservation laws
and

∀t ≥ 0, ‖F− µ‖E ≤ CEe
−λEt ‖F0 − µ‖E .

The constants are explicit and only depend on N , k, the different masses mi and the
collision kernels.

The proof of this theorem is pressented in Section 5.5.

5.1.5. Organisation of this chapter

Section 5.2 deals with the multi-species spectral gap of L in the case of different molar
masses. The semigroup property in L2

x,v

(
µ−1/2

)
is treated in Section 5.3. This property

is then passed on to L∞x,v
(
〈v〉βµ−1/2

)
in Section 5.4. At last, we work out the Cauchy

problem for the full nonlinear equation in Section 5.5.

5.2. Spectral gap with different masses

5.2.1. First properties of the linear multi-species Boltzmann operator

We start by describing some properties of the linear multi-species Boltzmann operator
L = (Li)1≤i≤N . First recall

Li(f) =

N∑
j=1

Lij(fi, fj), 1 ≤ i ≤ N,

with

Lij(fi, fj) = Qij (µi, fj) +Qij (fi, µj)

=

∫
R3×S2

Bij(|v − v∗|, cos(θ))
(
µ′∗j f

′
i + µ′if

′∗
j − µ∗jfi − µif∗j

)
dv∗dσ,
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5. The nonlinear multi-species Boltzmann system close to global equilibrium

where we have used µ
′∗
i µ
′
j = µ∗iµj for any i, j, which follows from the laws of elastic

collisions (5.1.2).

In Chapter 4 (see also [46]), we proved an explicite multi-species spectral gap in the case
of species having same mass (mi = mj). Most of the proofs are directly applicable in the
case of different masses, and we therefore refer to this chapter for detailed proofs.

L is a self-adjoint operator in L2
v

(
µ−1/2

)
with 〈f ,L(f)〉L2

v(µ−1/2) = 0 if and only if f

belongs to Ker(L).
Ker (L) = Span

{
φ1(v), . . . ,φN+4(v)

}
,

where (φi)1≤i≤N+4 is an orthonormal basis of Ker (L) in L2
v

(
µ−1/2

)
. More precisely, if we

denote πL the orthogonal projection onto Ker (L) in L2
v

(
µ−1/2

)
:

πL(f) =
N+4∑
k=1

(∫
R3

〈f(v),φk(v)〉µ−1/2 dv

)
φk(v),

and
ek = (δik)1≤i≤N ,

we can write

φk(v) =
1

√
c∞,k

µkek, 1 ≤ k ≤ N

φk(v) =
vk−N(

N∑
i=1

mic∞,i

)1/2
(miµi)1≤i≤N , N + 1 ≤ k ≤ N + 3.

φN+4(v) =
1(

N∑
i=1

c∞,i

)1/2

(
|v|2 − 3m−1

i√
6

miµi

)
1≤i≤N

.

(5.2.1)

Finally, we denote π⊥L = Id − πL. The projection πL(f(t, x, ·))(v) of f(t, x, v) onto the
kernel of L is called its fluid part whereas π⊥L (f) is its microscopic part.

L can be written under the following form

L = −ν(v) + K, (5.2.2)

where ν = (νi)1≤i≤N is a multiplicative operator called the collision frequency

νi(v) =

N∑
j=1

νij(v), (5.2.3)

with

νij(v) = CΦ
ij

∫
R3×S2

bij (cos θ) |v − v∗|γ µj(v∗) dσdv∗.
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5.2. Spectral gap with different masses

Each of the νij could be seen as the collision frequency ν(v) of a single-species Boltzmann
kernel with kernel Bij . It is well-known (for instance [33][34][138][78]) that under our

assumptions: ν(v) ∼ (1 + |v|γ) ∼ 〈v〉γ . This means that for all i, j there exist ν
(0)
ij , ν

(1)
ij > 0

(they are explicit, see the references above) such that

∀v ∈ R3, ν
(0)
ij (1 + |v|γ) ≤ νij(v) ≤ ν(1)

ij (1 + |v|γ) ,

Every constant being strictly positive, the following lemma follows straightforwardly.

Lemma 5.4. There exists a constant β > 0, and for all i in {1, . . . , N} there exist

ν
(0)
i , ν

(1)
i > 0 such that

∀v ∈ R3, ν
(0)
i (1 + |v|γ) ≤ νi(v) ≤ ν(1)

i (1 + |v|γ) . (5.2.4)

Thus, we get the following relation between the collision frequencies

∀v ∈ R3, νi(v) ≤ βνii(v). (5.2.5)

Remark 5.5. Estimate (5.2.5) is a crucial step in the proof of Lemma 5.7. In Chapter 4
(see also [46]), the additional assumption Bij ≤ CBii for a constant C > 0 has been used
in order to get (5.2.5). We want to point out that despite of even having different masses
to handle, we manage to get rid of this assumption. The prize we have to pay is a slightly
more restrictive assumption on the collision kernel B in assumption (H3).

Next we decompose the operator L into its mono-species part Lm = (Lmi )1≤i≤N and its
bi-species part Lb = (Lbi)1≤i≤N according to

L = Lm + Lb, Lmi (fi) = Lii(fi, fi), Lbi(f) =
∑
j 6=i

Lij(fi, fj). (5.2.6)

Thus f can be written as
f = πLm(f) + π⊥Lm(f), (5.2.7)

where πLm is the orthogonal projection on Ker(Lm) with respect to L2
v

(
µ−1/2

)
, and

π⊥Lm := (1− πLm) .

By employing the standard change of variables, the Dirichlet forms of Lm and Lb have
the form

〈f ,Lm(f)〉L2
v(µ−1/2) = −1

4

N∑
i=1

∫
R6×S2

Biiµiµ
∗
i

(
Aii
[
fiµ
−1
i , fiµ

−1
i

])2
, (5.2.8)

〈
f ,Lb(f)

〉
L2
v(µ−1/2)

= −1

4

N∑
i=1

∑
j 6=i

∫
R6×S2

Bijµiµ
∗
j

(
Aij

[
fiµ
−1
i , fjµ

−1
j

])2
, (5.2.9)
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5. The nonlinear multi-species Boltzmann system close to global equilibrium

with the shorthands

Aij

[
fiµ
−1
i , fjµ

−1
j

]
:=
(
fiµ
−1
i

)′
+
(
fjµ
−1
j

)′∗
−
(
fiµ
−1
i

)
−
(
fjµ
−1
j

)∗
. (5.2.10)

Since Lm describes a multi-species operator when all the cross-interactions are null,

πLm(f)i = miµi(v)(ai(t, x) + ui(t, x) · v + ei(t, x)|v|2), 1 ≤ i ≤ N, (5.2.11)

where ai ∈ R, ui ∈ R3 and ei ∈ R are the coordinates of πLm(f) with respect to a 5N -
dimensional basis, while

πL(f)i = miµi(v)(ai(t, x) + u(t, x) · v + e(t, x)|v|2) 1 ≤ i ≤ N, (5.2.12)

where ai ∈ R, u ∈ R3 and e ∈ R are the coordinates of πL(f) with respect to an (N + 4)-
dimensional basis.

Finally, since∫
R3

µi dv = ci,

∫
R3

µi|v|2 dv = 3cim
−1
i ,

∫
R3

µi|v|4 dv = 15cim
−2
i , (5.2.13)

the following moment identities hold for ai, ui, ei defined in (5.2.11)∫
R3

fi dv = ci(miai + 3ei),∫
R3

fiv dv = ciui, (5.2.14)∫
R3

fi|v|2 dv = ci(3ai + 15eim
−1
i ).

5.2.2. Explicit spectral gap

This subsection is devoted to the proof of the following constructive spectral gap estimate
for the multi-species linear operator L with different masses.

Theorem 5.6. Let the collision kernels Bij satisfy assumptions (H1)-(H4). Then there
exists an explicit constant λL > 0 such that

〈f ,L(f)〉L2
v(µ−1/2) ≤ −λL‖f − πL(f)‖2

L2
v(〈v〉γ/2µ−1/2) ∀f ∈ Dom(L),

where λL depends on the properties of the collision kernel, the number of species N and the
different masses.
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5.2. Spectral gap with different masses

The next two lemmas are crucial for the proof of Theorem 5.6, generalizing the strategy
of [46] presented in Chapter 4 to the case of different masses. The key idea is to decompose
L into L = Lm + Lb (see (5.2.6)), and to derive separately a spectral-gap estimate for the
mono-species part Lm on its domain Dom(Lm) (see Lemma 5.7), and a spectral-gap type
estimate for the bi-species part Lb on Ker(Lm) (see Lemma 5.8) measured in terms of the
following functional

E : Ker(Lm)→ R+, E(f) :=

N∑
i,j=1

(∣∣∣u(f)
i − u

(f)
j

∣∣∣2 +
(
e

(f)
i − e

(f)
j

)2
)
,

where for a fixed f ∈ Ker(Lm), u
(f)
i and e

(f)
i describe the coordinates of the ith component

of f with respect to the basis defined in (5.2.11). To lighten computations, we introduce
the following Hilbert space H := L2

v

(
ν1/2µ−1/2

)
, which is equivalent to L2

v

(
〈v〉γ/2µ−1/2

)
:

H =

{
f ∈ L2

v(µ
−1/2) : ‖f‖2H =

N∑
i=1

∫
R3

f2
i νiµ

−1
i dv <∞

}
. (5.2.15)

Lemma 5.7. For all f in Dom(Lm) there exists an explicit constant C1 > 0, such that

〈f ,Lm(f)〉L2
v(µ−1/2) ≤ −C1‖f − πLm(f)‖2

L2
v(〈v〉γ/2µ−1/2),

where C1 depends on the properties of the collision kernel, the number of species N and the
different masses.

Proof. By [111, Theorem 1.1, Remark 1] together with the shorthand introduced in (5.2.10),

1

4

∫
R6×S2

Bii
(
Aii
[
fiµ
−1
i , fiµ

−1
i

])2
µiµ
∗
i dvdv∗dσ ≥ λmc∞,i

∫
R3

(fi − πLm(f)i)
2νiiµ

−1
i dv,

where λm > 0 depends on the properties of the collision kernel, the number of species N
and the different masses. Summing this estimate over i = 1, . . . , N and employing (5.2.9)
yields

− 〈f ,Lm(f)〉L2
v(µ−1/2) ≥ λ

m
N∑
i=1

c∞,i

∫
R3

(fi − πLm(fi))
2 νii
µi

dv. (5.2.16)

Now we can estimate νii in terms of νi by using (5.2.5), and plugging this bound into (5.2.16)
together with the fact that H is equivalent to L2

v

(
〈v〉γ/2µ−1/2

)
finishes the proof.

Lemma 5.8. For all f in Ker(Lm) ∩Dom(Lb) there exists an explicit C2 > 0 such that〈
f ,Lb(f)

〉
L2
v(µ−1/2)

≤ −C2 E(f),
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5. The nonlinear multi-species Boltzmann system close to global equilibrium

with the functional E defined by

E : Ker(Lm)→ R+, E(f) :=

N∑
i,j=1

(∣∣∣u(f)
i − u

(f)
j

∣∣∣2 +
(
e

(f)
i − e

(f)
j

)2
)
, (5.2.17)

where for fixed f ∈ Ker(Lm) it holds that u
(f)
i , e

(f)
i describe the coordinates of the ith

component of f with respect to the basis defined in (5.2.11), and C2 > 0 is defined in
(5.2.19).

Remark 5.9. Note that for f in Ker(Lm) it holds that

E(f) = 0 ⇔ f ∈ Ker(Lb),

since Ker(L) = Ker(Lm) ∩Ker(Lb). This fact together with a multi-species version of the
H-theorem show that the left-hand side of the estimate in Lemma 5.8 is null if and only if
the right-hand side is null.

Proof. Let f ∈ Ker(Lm) ∩ Dom(Lb). Writing f in the form (5.2.11) and applying the
microscopic conservation laws (5.1.2) yields

Aij [fiµ
−1
i , fjµ

−1
j ] = mi(ui − uj) · (v′ − v) +mi(ei − ej)(|v′|2 − |v|2),

and thus

−〈f ,Lb(f)〉L2
v(µ−1/2)

=
1

4

N∑
i,j=1

j 6=i

m2
i

∫
R6×S2

Bij
[
(ui − uj) · (v′ − v) + (ei − ej)(|v′|2 − |v|2)

]2
µiµ
∗
j .

Using the symmetry of Bij and of µiµ
∗
j together with the oddity of the functionG(v, v∗, σ) =

Bij(ui − uj) · (v′ − v)(|v′|2 − |v|2) with respect to (v, v∗, σ) yields that the mixed term in
the square of the integral above vanishes. Thus we obtain

−〈f ,Lb(f)〉L2
v(µ−1/2) =

1

4

N∑
i,j=1

j 6=i

m2
i

∫
R6×S2

Bij (5.2.18)

×
(
|(ui − uj) · (v′ − v)|2 + (ei − ej)2(|v′|2 − |v|2)2

)
µiµ
∗
j dvdv∗dσ.

We claim that the following holds∫
R6×S2

Bij((ui − uj) · (v′ − v))2µiµ
∗
j dvdv∗dσ =

|ui − uj |2

3

∫
R6×S2

Bij |v − v′|2µiµ∗j dvdv∗dσ.

To prove this identity, we write ui,k and vk for the kth component of the vectors ui and v,
respectively. The change of variables (vk, v

∗
k, σk) 7→ −(vk, v

∗
k, σk) for fixed k leaves Bij , µi,

and µ∗j unchanged but v′k 7→ −v′k, such that∫
R6×S2

Bijv
′
kv`µiµ

∗
j dvdv∗dσ = 0 for ` 6= k.
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5.2. Spectral gap with different masses

Moreover, ∫
R6×S2

Bijvkv`µiµ
∗
j dvdv∗dσ = 0 for ` 6= k,

since the integrand is odd. Thus,∫
R6×S2

Bij((ui − uj) · (v′ − v))2µiµ
∗
j dvdv∗dσ

=

3∑
k,`=1

(ui,k − uj,k)(ui,` − uj,`)
∫
R6×S2

Bij(v
′
k − vk)(v′` − v`)µiµ∗j dvdv∗dσ

=
3∑

k=1

(ui,k − uj,k)2

∫
R6×S2

Bij(vk − v′k)2µiµ
∗
j dvdv∗dσ.

Since the integral is independent of k, we get∫
R6×S2

Bij((ui − uj) · (v′ − v))2µiµ
∗
j dvdv∗dσ

=
1

3

3∑
k=1

(ui,k − uj,k)2

∫
R6×S2

Bij |v − v′|2µiµ∗j dvdv∗dσ,

which proves the claim.
This implies that for all f in Ker(Lm) ∩Dom(Lb) it holds that

〈f ,Lb(f)〉L2
v(µ−1/2) ≤ −C2 E(f),

where E(·) is defined in (5.2.17) and

C2 =
1

4
min

1≤i,j≤n

∫
R6×S2

m2
iBij min

{
1

3
|v − v′|2, (|v′|2 − |v|2)2

}
µiµ
∗
j dvdv∗dσ. (5.2.19)

The last part is to prove that C2 > 0. For this we note that the integrand of (5.2.19)
vanishes if and only if |v′| = |v|. However, the set

X = {(v, v∗, σ) ∈ R3 × R3 × S2 : |v′| = |v|}

is closed since it is the pre-image of {0} of the function H(v, v∗, σ) = |v′|2 − |v|2 which is
continuous. Now Xc is open and nonempty and thus has positive Lebesgue measure, and
since the integrand in (5.2.19) is positive on Xc, we get that C2 > 0, which finishes the
proof.

Proof of Theorem 5.6. The proof will be performed in 4 steps, using the strategy worked
out in Chapter 4 in order to get an explicit spectral-gap estimate, but now for different
molar masses. To lighten notation, we will use the following shorthands for f ∈ Dom(L):

f‖ = πLm(f), f⊥ = f − f‖, h
‖
i = µ−1

i f
‖
i , h⊥i = µ−1

i h⊥i . (5.2.20)
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5. The nonlinear multi-species Boltzmann system close to global equilibrium

Step 1 : Absorption of the orthogonal part.
The nonnegativity of −〈f ,Lb(f)〉L2

v(µ−1/2) ≥ 0 and Lemma 5.7 imply that

−〈(f ,L(f)〉L2
v(µ−1/2) ≥ C1‖f − f‖‖2H − η〈f ,Lb(f)〉L2

v(µ−1/2), (5.2.21)

where η ∈ (0, 1] and C1 > 0 was defined in Lemma 5.7. Now it holds that

Aij [hi, hj ]
2 ≥ 1

2
Aij [h

‖
i , h
‖
j ]

2 −Aij [h⊥i , h⊥j ]2,

and plugging this into (5.2.9) and (5.2.21) implies

−〈f ,L(f))〉L2
v(µ−1/2) ≥ C1‖f⊥‖2H +

η

8

N∑
i=1

∑
j 6=i

∫
R6×S2

BijAij [h
‖
i , h
‖
j ]

2µiµ
∗
j dvdv∗dσ

− η

4

N∑
i=1

N∑
j 6=i

∫
R6×S2

BijAij [h
⊥
i , h

⊥
j ]2µiµ

∗
j dvdv∗dσ. (5.2.22)

Now we prove that (up to a small factor) the last term on the right-hand side can be
estimated from below by ‖f⊥‖2H. For this we perform the standard change of variables
(v, v∗) → (v∗, v) together with i ↔ j and (v, v∗) → (v′, v′∗), and by using the identity
µiµ
∗
j = µ′iµ

′∗
j we obtain

N∑
i=1

∑
j 6=i

∫
R6×S2

BijAij [h
⊥
i , h

⊥
j ]2µiµ

∗
j dvdv∗dσ

≤ 4

N∑
i=1

∑
j 6=i

∫
R6×S2

Bij
(
((h⊥i )′)2 + ((h⊥j )′∗)2 + (h⊥i )2 + ((h⊥j )∗)2

)
µiµ
∗
j dvdv∗dσ

≤ 16
N∑
i=1

∑
j 6=i

∫
R6×S2

Bij(h
⊥
i )2µiµ

∗
j dvdv∗dσ.

Taking into account the definition (5.2.3) of νi, we get for the last term on the right-hand
side of (5.2.22)

−η
4

N∑
i=1

∑
j 6=i

∫
R6×S2

BijAij [h
⊥
i , h

⊥
j ]2µiµ

∗
j dvdv∗dσ

≥ −4η
N∑

i,j=1

∫
R6×S2

Bij(f
⊥
i )2µ∗jµ

−1
i dvdv∗dσ

≥ −4η

N∑
i=1

∫
R3

(f⊥i )2νiµ
−1
i dv = −4η‖f⊥‖2H.
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Finally (5.2.22) yields

−〈f ,L(f)〉L2
v(µ−1/2) ≥ (C1 − 4η)

∥∥∥f − f‖
∥∥∥2

H

+
η

8

N∑
i=1

∑
j 6=i

∫
R6×S2

BijAij

[
h
‖
i , h
‖
j

]2
µiµ
∗
j dvdv∗dσ.

Thus

〈f ,L(f)〉L2
v(µ−1/2) ≤ −(C1 − 4η)

∥∥∥f − f‖
∥∥∥2

H
+
η

2
〈f‖,Lb(f‖)〉L2

v(µ−1/2), (5.2.23)

where 0 < η ≤ min{1, C1/8}.

Step 2 : Estimate for for the remaining part. Due to Lemma 5.8 there exists an
explicit C2 > 0 such that 〈

f‖,Lb(f‖)
〉
L2
v(µ−1/2)

≤ −C2 E
(
f‖
)
.

Step 3 : Estimate for the momentum and energy differences.
We need to find a relation between E(f‖),

∥∥f − f‖
∥∥ and ‖f − πL(f)‖ respectively. To this

end, we decompose f = f‖ + f⊥ recalling that f‖ = πLm(f) and f⊥ = f − f‖. Using an
arbitrary orthonormal basis (ψk)1≤k≤5N of Ker(Lm) in L2

v

(
µ−1/2

)
, we first show that

‖f − πL(f)‖2H ≤ 2‖f⊥‖2H + k0

(
‖f‖‖2

L2
v(µ−1/2) − ‖πL(f)‖2

L2
v(µ−1/2)

)
, (5.2.24)

where k0 = 10N max1≤k,`≤5N |〈ψk,ψ`〉H|.
To this end, we start with

‖f − πL(f)‖2H ≤ 2
(
‖f⊥‖2H + ‖f‖ − πL(f)‖2H

)
. (5.2.25)

Denoting the last term by g := f‖ − πL(f) ∈ Ker(Lm) (note that Ker(L) ⊂ Ker(Lm)) and
using Young’s inequality implies

‖g‖2H =
N∑
i=1

∫
R3

∣∣∣∣∣
5N∑
k=1

〈g,ψk〉L2
v(µ−1/2)ψk,i

∣∣∣∣∣
2

νi(v) dv

=

5N∑
k,`=1

〈g,ψk〉L2
v(µ−1/2)〈g,ψ`〉L2

v(µ−1/2)〈ψk,ψ`〉H

≤ 1

2
max

1≤k,`≤5N
|〈ψk,ψ`〉H|

5N∑
k,`=1

(
〈g,ψk〉L2

v(µ−1/2) + 〈g,ψ`〉L2
v(µ−1/2)

)
= 5N max

1≤k,`≤5N
|〈ψk,ψ`〉H| ‖g‖2L2

v(µ−1/2).

Thus, (5.2.25) implies

‖f − πL(f)‖2H ≤ 2‖f⊥‖2H + 10N max
1≤k,`≤5N

|〈ψk,ψ`〉H| ‖f‖ − πL(f)‖2
L2
v(µ−1/2).
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Now Ker(L) ⊂ Ker(Lm) implies πLmπL = πL, thus

‖f‖ − πL(f)‖2
L2
v(µ−1/2) = ‖f‖‖2

L2
v(µ−1/2) − ‖πL(f)‖2

L2
v(µ−1/2),

which indeed yields (5.2.24).

Now the moment identities (5.2.13) and (5.2.14) yield

‖f‖‖2
L2
v(µ−1/2) =

N∑
i=1

c∞,i(m
2
i a

2
i +mi|ui|2 + 15e2

i + 6miaiei),

and

‖πL(f)‖2
L2
v(µ−1/2) =

N+4∑
j=1

〈f ,φj〉2L2
v(µ−1/2)

=
N∑
i=1

c∞,i(miai + 3ei)
2 + ρ∞

∣∣∣∣∣
N∑
i=1

ρ∞,i
ρ∞

ui

∣∣∣∣∣
2

+ 6c∞

(
N∑
i=1

c∞,i
c∞

ei

)2

,

where
(
φj
)

1≤j≤N+4
is the orthonormal basis of Ker(L) in L2

v(µ
−1/2) introduced in (5.2.1).

Inserting these expressions into (5.2.24), we conclude that

‖f − πL(f)‖2H ≤ 2‖f − f‖‖2H + k0ρ∞

 N∑
i=1

ρ∞,i
ρ∞
|ui|2 −

∣∣∣∣∣
N∑
i=1

ρ∞,i
ρ∞

ui

∣∣∣∣∣
2


+ 6k0c∞

 N∑
i=1

c∞,i
c∞

e2
i −

(
N∑
i=1

c∞,i
c∞

ei

)2
 .

The next step is to prove that the following estimates hold:

I1 :=
N∑
i=1

ρ∞,i
ρ∞
|ui|2 −

∣∣∣∣∣
N∑
i=1

ρ∞,i
ρ∞

ui

∣∣∣∣∣
2

≤
N∑

i,j=1

|ui − uj |2, (5.2.26)

I2 :=
N∑
i=1

c∞,i
c∞

e2
i −

(
N∑
i=1

c∞,i
c∞

ei

)2

≤
N∑

i,j=1

(ei − ej)2. (5.2.27)

Note that we only need to prove the estimate for I1, since the arguments for I2 are exactly
the same. In order to handle the expression I1, we define for u = (ui)1≤i≤N and v =
(vi)1≤i≤N ∈ R3N the following scalar product on R3N with corresponding norm

〈u,v〉ρ =

N∑
i=1

ρ∞,i
ρ∞

ui · vi, ‖u‖ρ = 〈u,u〉1/2ρ ,
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where ui · vi denotes the standard Euclidean scalar product in R3. Note that the vector
1 = (1, . . . , 1) ∈ R3N satisfies ‖1‖ρ = 1. Now we use the following elementary identity

‖u‖2ρ − 〈u,1〉2ρ = ‖u− 〈u,1〉ρ1‖2ρ,

which can be written as

I1 =

N∑
i=1

ρ∞,i
ρ∞
|ui|2 −

∣∣∣∣∣
N∑
i=1

ρ∞,i
ρ∞

ui

∣∣∣∣∣
2

=
N∑
i=1

ρ∞,i
ρ∞

∣∣∣∣∣∣ui −
N∑
j=1

ρ∞,j
ρ∞

uj

∣∣∣∣∣∣
2

.

By using the fact that
∑N

j=1 ρ∞,j = ρ∞, we get

I1 =
N∑
i=1

ρ∞,i
ρ∞

∣∣∣∣∣∣
(

1− ρ∞,i
ρ∞

)
ui −

∑
j 6=i

ρ∞,j
ρ∞

uj

∣∣∣∣∣∣
2

=
N∑
i=1

ρ∞,i
ρ∞

∣∣∣∣∣∣
∑
j 6=i

ρ∞,j
ρ∞

(ui − uj)

∣∣∣∣∣∣
2

.

Inserting the additional factor (
∑
j 6=i

ρ∞,k/ρ∞)2 leads to a convex combination of λj such

that
∑

j 6=i λj = 1:

I1 =
N∑
i=1

ρ∞,i
ρ∞

∑
k 6=i

ρ∞,k
ρ∞

2 ∣∣∣∣∣
∑

j 6=i(ρ∞,j/ρ∞)(ui − uj)∑
k 6=i ρ∞,k/ρ∞

∣∣∣∣∣
2

=
N∑
i=1

ρ∞,i
ρ∞

∑
k 6=i

ρ∞,k
ρ∞

2 ∣∣∣∣∣∣
∑
j 6=i

λj(ui − uj)

∣∣∣∣∣∣
2

,

where λj = (ρ∞,j/ρ∞)(
∑

k 6=i(ρ∞,k/ρ∞))−1. Thus we can apply Jensen’s inequality to this
convex combination and obtain

I1 =
N∑
i=1

ρ∞,i
ρ∞

∑
k 6=i

ρ∞,k
ρ∞

2 ∣∣∣∣∣∣
∑
j 6=i

λj(ui − uj)

∣∣∣∣∣∣
2

≤
N∑
i=1

ρ∞,i
ρ∞

∑
k 6=i

ρ∞,k
ρ∞

2∑
j 6=i

λj |ui − uj |2.

Finally, we can estimate the right-hand side easily by using the definition of the λj and
that ρ∞,j ≤ ρ∞ to obtain

I1 ≤
N∑
i=1

ρ∞,i
ρ∞

(
1− ρ∞,i

ρ∞

)∑
j 6=i

ρ∞,j
ρ∞
|ui − uj |2 ≤

N∑
i,j=1

|ui − uj |2.

For I2 in (5.2.27) exactly the same calculations hold. This implies that

−E(f‖) ≤ −C3

(
‖f − πL(f)‖2H − 2‖f − f‖‖2H

)
, (5.2.28)

where C3 = 1/Ck > 0, with

Ck = 10N max
1≤k,`≤5N

∣∣∣∣∣
N∑
i=1

∫
R3

ψk,iψ`,iνi dv

∣∣∣∣∣max {ρ∞, 6c∞} ,
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5. The nonlinear multi-species Boltzmann system close to global equilibrium

recalling that (ψk)1≤k≤5N is an arbitrary orthonormal basis of Ker(Lm) in L2
v

(
µ−1/2

)
.

Step 4: End of the proof.
Putting together (5.2.23), Lemma 5.8, and (5.2.28) yields

〈f ,L(f)〉L2
v(µ−1/2) ≤ −(C1 − 4η)‖f − f‖‖2H − C2/2 E(f‖)

≤ − (C1 − 4η − C2C3η) ‖f − f‖‖2H − (C2C3η)/2‖f − πL(f) ‖2H.

The first term on the right-hand side is nonnegative if we choose

0 < η ≤ min {1, C1/(4 + C2C3)} ,

and the desired spectral-gap estimate follows with λL = (C2C3C4η)/2, where the additional
constant C4 > 0 takes care of the fact that H is equivalent to L2

v

(
〈v〉γ/2µ−1/2

)
.

Remark 5.10. (1) We obtain the following relation between the spectral-gap constant λ
derived for same masses mi = mj for 1 ≤ i, j ≤ N in Theorem 4.2 and our new
constant λL for different masses in Theorem 5.6 :

λL = λ min
1≤i≤N

m2
i

6ρ∞
max{ρ∞, 6c∞}

,

where ρ∞ =
∑N

i=1mic∞,i and c∞ =
∑N

i=1 c∞,i. Thus, increasing the difference be-
tween the masses mi makes the the spectral-gap constant λL smaller, while in the
special case of identical masses the two spectral-gap constants λ and λL are equal.

(2) Furthermore, the spectral-gap result of Theorem 5.6 only holds for a finite number of
species 1 ≤ N < ∞, since for N → ∞ we get that λL → ∞. It remains an open
problem whether or not it is possible to extend the result of Theorem 5.6 to the limit
N →∞.

5.3. L2-theory for the linear part with Maxwellian weight

This section is devoted to the study of the linear perturbed operator G = L − v · ∇x in
L2
x,v

(
µ−1/2

)
, which is the natural space for L. We shall show that G generates a strongly

continuous semigroup on this space.

Theorem 5.11. We assume that assumptions (H1) − (H4) hold for the collision kernel.
Then the linear perturbed operator G = L−v ·∇x generates a strongly continuous semigroup
SG(t) on L2

x,v

(
µ−1/2

)
which satisfies

∀t ≥ 0, ‖SG(t) (Id−ΠG)‖L2
x,v(µ−1/2) ≤ CGe

−λGt,

where ΠG is the orthogonal projection onto Ker(G) in L2
x,v

(
µ−1/2

)
.

The constants CG, λG > 0 are explicit and depend on N , the different masses mi and the
collision kernels.
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5.3. L2-theory for the linear part with Maxwellian weight

Let us first make an important remark about ΠG. Note that G(f) = 0 means

∀i ∈ {1, . . . , N} , ∀(x, v) ∈ T3 × R3, v · ∇xfi(x, v) = Li(f(x, ·))(v)

Multiplying by µ−1
i (v)fi(x, v) and integrating over T3 × R3 implies

0 =

∫
T3

〈Li(f(x, ·)), fi(x, ·)〉L2
v

(
µ
−1/2
i

) dx
and therefore by summing over i in {1, . . . , N}

0 =

∫
T3

〈L(f(x, ·)), f(x, ·)〉L2
v(µ−1/2) dx.

The integrand is nonpositive thanks to the spectral gap of L and hence

∀x ∈ T3, ∀v ∈ R3, f(x, v) = πL(f(x, ·))(v)

and therefore L(f(x, ·)) = 0. The latter further implies that v ·∇xf(x, v) = 0 which in turn
implies that f does not depend on x [25, Lemma B.2].

We can thus define the projection in L2
x,v

(
µ−1/2

)
onto the kernel of G

ΠG(f) =
N+4∑
k=1

(∫
T3×R3

〈f(x, v),φk(v)〉µ−1/2 dxdv

)
φk(v), (5.3.1)

where the φk were defined in (5.2.1). Again we define Π⊥G = Id−ΠG. Note that Π⊥G(f) = 0
amounts to saying that f satifies the multi-species perturbed conservation laws (5.1.8), i.e.
null individual mass, sum of momentum and sum of energy.

In Subsection 5.3.1, we show the key lemma of the proof that is the a priori control of
the fluid part of SG(t) by its orthogonal part, thus recovering some coercivity for G in the
set of solutions to the linear perturbed equation. Subsection 5.3.2 is dedicated to the proof
of Theorem 5.11.

5.3.1. A priori control of the fluid part by the microscopic part

As seen in the previous section, the operator L is only coercive on the orthogonal part. The
key argument is to show that we recover some coercivity for solutions to the differential
equation. Namely, that for these specific functions, the microscopic part controls the fluid
part. This is the purpose of the next lemma

Lemma 5.12. Let f0(x, v) and g(t, x, v) be in L2
x,v

(
µ−1/2

)
such that ΠG(f0) = ΠG(g) = 0.

Suppose that f(t, x, v) in L2
x,v

(
µ−1/2

)
is solution to the equation

∂tf = L (f)− v · ∇xf + g (5.3.2)

with initial value f0 and satisfying the multi-species conservation laws. Then there exist an
explicit C⊥ > 0 and a function Nf (t) such that for all t ≥ 0
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5. The nonlinear multi-species Boltzmann system close to global equilibrium

(i) |Nf (t)| ≤ C⊥ ‖f(t)‖2
L2
x,v(µ−1/2);

(ii) ∫ t

0
‖πL(f)‖2

L2
x,v(µ−1/2) ds ≤Nf (t)−Nf (0) + C⊥

∫ t

0

∥∥∥π⊥L (f)
∥∥∥2

L2
x,v(µ−1/2)

ds

+ C⊥

∫ t

0
‖g‖L2

x,v(µ−1/2) ds.

The constant C⊥ is independent of f and g.

The methods of the proof are a technical adaptation of the method proposed in [66]
in the case of bounded domain with diffusive boundary conditions. The description of
Ker(L) associated with the global equilibrium µ is given by orthogonal functions in L2

v but
that are not of norm one. Unlike [66] where only mass conservation holds but boundary
conditions overcome the lack of conservation laws, we strongly need the conservation of
mass, momentum and energy.

Proof of Lemma 5.12. We recall (5.2.1) the definition of πL(f) = (πi(f))1≤i≤N and we
define (ai(t, x))1≤i≤N , b(t, x) and c(t, x) to be the coordinates of πL(f):

∀ 1 ≤ i ≤ N, πi(f)(t, x, v) =

[
ai(t, x) + b(t, x) · v + c(t, x)

∣∣v2
∣∣− 3m−1

i

2

]
miµi(v). (5.3.3)

Note that we are working with an orthogonal but not orthonormal basis of Ker(L) in
L2
x,v(µ

−1/2) in order to lighten computations. We will denote by ρi the mass of miµi.
The key idea of the proof is to choose suitable test functions ψ = (ψi)1≤i≤N in H1

x,v that
will catch the elliptic regularity of ai, b and c and estimate them.

For a test function ψ = ψ(t, x, v) integrated against the differential equation (5.3.2) we
have by Green’s formula on each coordinate∫ t

0

d

dt

∫
T3×R3

〈ψ, f〉1 dxdvds =

∫
T3×R3

〈ψ(t), f(t)〉1 dxdv −
∫
T3×R3

〈ψ0, f0〉1 dxdv

=

∫ t

0

∫
T3×R3

〈f , ∂tψ〉1 dxdvds+

∫ t

0

∫
T3×R3

〈L (f) ,ψ〉1 dxdvds

+
N∑
i=1

∫ t

0

∫
T3×R3

fiv · ∇xψi dxdvds+

∫ t

0

∫
T3×R3

〈ψ,g〉1 dxdvds.

We decompose f = πL(f) + π⊥L (f) in the term involving v · ∇x and use the fact that
L (f) = L[π⊥L (f)] to obtain the weak formulation

−
N∑
i=1

∫ t

0

∫
T3×R3

πi(f)v · ∇xψi dxdvds = Ψ1(t) + Ψ2(t) + Ψ3(t) + Ψ4(t) + Ψ5(t) (5.3.4)
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5.3. L2-theory for the linear part with Maxwellian weight

with the following definitions

Ψ1(t) =

∫
T3×R3

〈ψ0, f0〉1 dxdv −
∫
T3×R3

〈ψ(t), f(t)〉1 dxdv, (5.3.5)

Ψ2(t) =
N∑
i=1

∫ t

0

∫
T3×R3

π⊥L (f)iv · ∇xψi dxdvds, (5.3.6)

Ψ3(t) =

N∑
i=1

∫ t

0

∫
T3×R3

L
(
π⊥L (f)

)
i
ψi dxdvds, (5.3.7)

Ψ4(t) =
N∑
i=1

∫ t

0

∫
T3×R3

fi∂sψi dxdvds, (5.3.8)

Ψ5(t) =

∫ t

0

∫
T3×R3

〈ψ,g〉1 dxdvds. (5.3.9)

For each of the functions a = (ai)1≤i≤N , b and c, we construct a ψ such that the left-hand

side of (5.3.4) is exactly the L2
x-norm of the function and the rest of the proof is estimating

the four different terms Ψi(t). Note that Ψ1(t) is already under the desired form

Ψ1(t) = Nf (t)−Nf (0) (5.3.10)

with |Nf (s)| ≤ C ‖f‖2
L2
x,v(µ−1/2) if ψi(x, v)µ

1/2
i (v) is in L2

x,v for all i and their norm is

controlled by the one of f (which will be the case in our next choices).

Remark 5.13. The linear perturbed equation (5.3.2) and the conservation laws are in-
variant under standard time mollification. We therefore consider for simplicity in the rest
of the proof that all functions are smooth in the variable t. Exactly the same estimates
can be derived for more general functions and the method would obviously be to study time
mollified equation and then take the limit in the smoothing parameter.

For clarity, every positive constant will be denoted by Ck.

Estimate for a = (ai)1≤i≤N . By assumption f preserves the mass which is equivalent
to

0 =

∫
T3×R3

f(t, x, v) dxdv =

∫
T3

(∫
R3

〈f(t, x, v),µ〉µ−1/2 dv

)
dx =

∫
T3

a(t, x) dx,

where we used the fact that µ ∈ Ker(G), f0 ∈ Ker(G)⊥ and the orthogonality of the basis
defined in (5.3.3). Define a test function ψa = (ψi)1≤i≤N by

ψi(t, x, v) =
(
|v|2 − αi

)
v · ∇xφi(t, x)

where
−∆xφi(t, x) = ai(t, x)
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5. The nonlinear multi-species Boltzmann system close to global equilibrium

and αi > 0 is chosen such that for all 1 ≤ k ≤ 3∫
R3

(
|v|2 − αi

) |v|2 − 3m−1
i

2
v2
kµi(v) dv = 0.

The integral over T3 of ai(t, ·) is null and therefore standard elliptic estimate [67] yields:

∀t ≥ 0, ‖φi(t)‖H2
x
≤ C0 ‖ai(t)‖L2

x
. (5.3.11)

The latter estimate provides both the control of Ψ1 = N
(a)
f (t)−N (a)

f (0), as discussed before,
and the control of (5.3.9), using Cauchy-Schwarz and Young’s inequality,

|Ψ5(t)| ≤ C
N∑
i=1

∫ t

0
‖√ρiφi‖L2

x
‖gi‖L2

x,v

(
µ
−1/2
i

) ds
≤ C1

4

∫ t

0
‖a‖2

L2
x(ρ1/2)

ds+ C5

∫ t

0
‖g‖2

L2
x,v(µ−1/2) ds, (5.3.12)

where C1 > 0 is given in (5.3.13) below and where we defined ρ = (ρi)1≤i≤N the vector of
the masses associated to (miµi)1≤i≤N .

Firstly, we compute the term on the left-hand side of (5.3.4).

−
N∑
i=1

∫ t

0

∫
T3×R3

πi(f)v · ∇xψi dxdvds

= −
N∑
i=1

∑
1≤j,k≤3

∫ t

0

∫
T3

ai(s, x)

(∫
R3

(
|v|2 − αi

)
vjvkmiµi(v) dv

)
∂xj∂xkφi dxds

−
N∑
i=1

∑
1≤j,k≤3

∫ t

0

∫
T3

b(s, x) ·
(∫

R3

v
(
|v|2 − αi

)
vjvkmiµi(v) dv

)
∂xj∂xkφi dxds

−
N∑
i=1

∑
1≤j,k≤3

∫ t

0

∫
T3

c(s, x)

(∫
R3

(
|v|2 − αi

) |v|2 − 3m−1
i

2
vjvkmiµidv

)
∂xj∂xkφi.

The second term is null as well as the first and last ones when j 6= k thanks to the oddity
in v. In the last term when j = k we recover our choice of αi which makes the last term
being null too. It remains the first term when k = j. In this case, the integral in v gives a
constant C1 independent of i times ρi. Direct computations give αi = 10/mi and C1 > 0.
It follows

−
N∑
i=1

∫ t

0

∫
T3×R3

πi(f)v · ∇xψi dxdvds = −C1

N∑
i=1

∫ t

0

∫
T3

ai(s, x)ρi∆xφi(s, x) dxds

= C1

N∑
i=1

∫ t

0

∫
T3

a2
i ρi ds
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5.3. L2-theory for the linear part with Maxwellian weight

= C1

∫ t

0
‖a(s)‖2

L2
x(ρ1/2)

ds. (5.3.13)

We recall L = −ν(v) + K where K is a bounded operator in L2
v

(
µ−1/2

)
. Moreover, the

H2
x-norm of φi(t, x) is bounded by the L2

x-norm of ai(t, x). Multiplying by µ
1/2
i (v)µi(v)−1/2

inside the ith integral of Ψ2 (5.3.6) and of Ψ3 (5.3.7) a mere Cauchy-Schwarz inequality
yields

∀k ∈ {2, 3} , |Ψk(t)| ≤ C
N∑
i=1

∫ t

0
‖√ρiai‖L2

x

∥∥∥π⊥i (f)
∥∥∥
L2
x,v

(
µ
−1/2
i

) ds
≤ C1

4

∫ t

0
‖a‖2

L2
x(ρ1/2)

ds+ C2

∫ t

0

∥∥∥π⊥L (f)
∥∥∥2

L2
x,v(µ−1/2)

ds.

(5.3.14)

We used Young’s inequality for the last inequality, with C1 defined in (5.3.13).

It remains to estimate the term with time derivatives (5.3.8). It reads

Ψ4(t) =
N∑
i=1

∫ t

0

∫
T3×R3

fi

(
|v|2 − αi

)
v · [∂t∇xφi] dxdvds

=
N∑
i=1

3∑
k=1

∫ t

0

∫
T3×R3

πi(f)
(
|v|2 − αi

)
vk∂t∂xkφi dxdvds

+

N∑
i=1

∫ t

0

∫
T3×R3

π⊥i (f)
(
|v|2 − αi

)
v · [∂t∇xφi] dxdvds

Using oddity properties for the first integral on the right-hand side and then Cauchy-
Schwarz with the following bound∫

R3

(
|v|2 − αi

)2
|v|2 µi(v) dv = Cρi < +∞

we get

|Ψ4(t)| ≤ C
N∑
i=1

∫ t

0

[
3∑

k=1

‖ρibk‖L2
x

+
∥∥∥π⊥i (f)

∥∥∥
L2
x,v

(
µ
−1/2
i

)
]
‖∂t∇xφi‖L2

x
ds. (5.3.15)

Estimating ‖∂t∇xφa‖L2
x

will come from elliptic estimates in negative Sobolev spaces. We
use the decomposition of the weak formulation (5.3.4) between t and t + ε (instead of
between 0 and t) with ψ(t, x, v) = φ(x)ei ∈ H1

x, where ei = (δji)1≤j≤N . We furthermore

require that φ(x) has a null integral over T3. ψ only depends on x and therefore Ψ4(t) = 0.
Moreover, multiplying by µi(v)µ−1

i (v) in the ith integral of Ψ3 yields

Ψ3(t) =

∫ t+ε

t

∫
T3

〈L(f), µiei〉L2
v(µ−1/2)φ(x) dxdvds = 0,
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5. The nonlinear multi-species Boltzmann system close to global equilibrium

by definition of Ker(L).
From the weak formulation (5.3.4) it therefore remains∫

T3×R3

φ(x)〈ei, f(t+ ε)〉1 dxdv −
∫
T3×R3

φ(x)〈ei, f(t)〉1 dxdv

=

∫ t+ε

t

∫
T3×R3

πi(f)v · ∇xφ(x) dxdvds+

∫ t+ε

t

∫
T3×R3

π⊥i (f)v · ∇xφ(x) dxdvds

+

∫ t+ε

t

∫
Ω×R3

gi(s, x, v)φ(x) dxdvds

which is equal to∫
T3

ρi [ai(t+ ε)− ai(t)]φ(x) dx = C

∫ t+ε

t

∫
T3

ρib(s, x) · ∇xφ(x) dxds

+

∫ t+ε

t

∫
T3×R3

π⊥i (f)µi(v)−1/2µi(v)1/2v · ∇xφ(x)

+

∫ t+ε

t

∫
Ω×R3

gi(s, x, v)φ(x) dxdvds,

where C does not depend on i.
Dividing by ρiε and taking the limit as ε goes to 0 yields, after a mere Cauchy-Schwarz

inequality on the right-hand side∣∣∣∣∫
T3

∂tai(s, x)φ(x) dx

∣∣∣∣ ≤ C

[
‖b(t, x)‖L2

x
+
∥∥∥π⊥i (f)

∥∥∥
L2
x,v

(
µ
−1/2
i

)
]
‖∇xφ(x)‖L2

x

+C ‖gi‖L2
x,v

(
µ
−1/2
i

) ‖φ‖L2
x

≤ C

[
‖b(t, x)‖L2

x
+
∥∥∥π⊥i (f)

∥∥∥
L2
x,v

(
µ
−1/2
i

) + ‖gi‖L2
x,v

(
µ
−1/2
i

)
]

×‖∇xφ(x)‖L2
x
.

We used Poincaré inequality since φ(x) has a null integral over Td. The latter inequality
is true for all φ in H1

x with a null integral and therefore implies for all t ≥ 0

‖∂tai(t, x)‖(H1
x)∗ ≤ C

[
‖b(t, x)‖L2

x
+
∥∥∥π⊥i (f)

∥∥∥
L2
x,v

(
µ
−1/2
i

) + ‖gi‖L2
x,v

(
µ
−1/2
i

)
]

(5.3.16)

where
(
H1
x

)∗
is the dual of the set of functions in H1

x with null integral.
Thanks to the conservation of mass we have that ∂tai(t, x) have a zero integral on the

torus and we can construct Φi(t, x) such that

−∆xΦi(t, x) = ∂tai(t, x)

and by standard elliptic estimate [67]:

‖Φi‖H1
x
≤ ‖∂tai‖(H1

x)∗ ≤ C

[
‖b(t, x)‖L2

x
+
∥∥∥π⊥i (f)

∥∥∥
L2
x,v

(
µ
−1/2
i

) + ‖gi‖L2
x,v

(
µ
−1/2
i

)
]
,
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where we used (5.3.16). Combining this estimate with

‖∂t∇xφi‖L2
x

=
∥∥∇x∆−1∂tai

∥∥
L2
x
≤
∥∥∆−1∂tai

∥∥
H1
x

= ‖Φi‖H1
x

we can further control Ψ4 in (5.3.15) using ρi =
√
ρi
√
ρi

|Ψ4(t)| ≤ C5

∫ t

0

(
N∑
i=1

‖√ρib‖2L2
x

+
∥∥∥π⊥i (f)

∥∥∥2

L2
x,v

(
µ
−1/2
i

) + ‖gi‖2
L2
x,v

(
µ
−1/2
i

)
)
ds. (5.3.17)

We now plug (5.3.13), (5.3.10), (5.3.14), (5.3.17) and (5.3.12) into (5.3.4)∫ t

0
‖a‖2

L2
x(ρ1/2)

ds ≤N (a)
f (t)−N (a)

f (0) + Ca,b

∫ t

0
‖b‖2

L2
x(ρ1/2)

ds

+ Ca

∫ t

0

[∥∥∥π⊥L (f)
∥∥∥2

L2
x,v(µ−1/2)

+ ‖g‖2
L2
x,v(µ−1/2)

]
ds.

(5.3.18)

Estimate for b. The choice of function to integrate against to deal with the b term is
more involved technically. We emphasize that b(t, x) is a vector (b1(t, x), b2(t, x), b3(t, x)),
thus we used the obvious short-hand notation

‖b‖2
L2
x(ρ1/2)

=
N∑
i=1

3∑
k=1

‖√ρibk‖2L2
x
.

Fix J in {1, 2, 3} and the conservation of momentum implies that for all t ≥ 0∫
T3

bJ(t, x) dx = 0.

Define ψbJ (t, x, v) = (ψiJ(t, x, v))1≤i≤N with

ψiJ(t, x, v) =

3∑
j=1

ϕ
(J)
ij (t, x, v),

with

ϕ
(J)
ij (t, x, v) =


|v|2 vjvJ∂xjφJ(t, x)− 7

2mi

(
v2
j −m−1

i

)
∂xJφJ(t, x), if j 6= J

7

2mi

(
v2
J −m−1

i

)
∂xJφJ(t, x), if j = J.

where
−∆xφJ(t, x) = bJ(t, x).

Since it will be important, we emphasize here that for all j 6= k∫
R3

(
v2
j −m−1

i

)
µi(v) dv = 0 and

∫
R3

(
v2
j −m−1

i

)
v2
kµi(v) dv = 0. (5.3.19)
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5. The nonlinear multi-species Boltzmann system close to global equilibrium

The null integral of bJ implies by standard elliptic estimate [67]

∀t ≥ 0, ‖φJ(t)‖H2
x
≤ C0 ‖bJ(t)‖L2

x
. (5.3.20)

Again, this estimate provides the control of Ψ1(t) = N
(J)
f (t) −N (J)

f (0) and of Ψ5(t) as in
(5.3.12):

|Ψ5(t)| ≤ C1

4

∫ t

0
‖bJ‖2L2

x(ρ1/2)
ds+ C5

∫ t

0
‖g‖2

L2
x,v(µ−1/2) ds, (5.3.21)

where C1 > 0 is given in (5.3.22) below.

We start by the left-hand side of (5.3.4). By oddity, there is neither contribution from
any of the ai(s, x) nor from c(s, x). Hence, for all i in {1, . . . , N}

−
∫ t

0

∫
Ω×R3

πi(f)v · ∇xψiJ dxdvds

= −
∑

1≤k,l≤3

3∑
j=1

j 6=J

∫ t

0

∫
Ω
bl(s, x)

(∫
R3

∣∣v2
∣∣ vlvkvjvJmiµi(v) dv

)
∂xk∂xjφJ(s, x) dxds

+
7

2mi

∑
1≤k,l≤3

3∑
j=1

j 6=J

∫ t

0

∫
Ω
bl(s, x)

(∫
R3

(
v2
j −m−1

i

)
vlvkmiµidv

)
∂xk∂xJφJ dxds

− 7

2mi

∑
1≤k,l≤3

∫ t

0

∫
Ω
bl(s, x)

(∫
R3

(
v2
J −m−1

i

)
vlvkmiµi(v) dv

)
∂xk∂xJφJ dxds.

The last two integrals on R3 are zero if l 6= k. Moreover, when l = k and l 6= J it is also
zero by (5.3.19). We compute directly for l = J∫

R3

(
v2
J −m−1

i

)
v2
Jmiµi(v) dv =

2

m2
i

ρi.

The first term is composed by integrals in v of the form∫
R3

|v|2 vkvjvlvJµi(v) dv

which is always null unless two indices are equals to the other two. Therefore if j = l then
k = J and if j 6= l we only have two options: k = j and l = J or k = l and j = J . Hence,
for all i in {1, . . . , N}

−
∫ t

0

∫
Ω×R3

πi(f)v · ∇xψJ dxdvds

= −
3∑
j=1

j 6=J

∫ t

0

∫
Ω
bJ(s, x)∂xjxjφJ

(∫
R3

|v|2 v2
j v

2
Jmiµi(v) dv

)
dxds
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−
3∑
j=1

j 6=J

∫ t

0

∫
Ω
bj(s, x)∂xjxJφJ

(∫
R3

|v|2 v2
j v

2
Jmiµi(v) dv

)
dxds

+
7

m3
i

3∑
j=1

j 6=J

∫ t

0

∫
Ω
ρibj(s, x)∂xjxJφJ dxds−

7

m3
i

∫ t

0

∫
Ω
ρibJ(s, x)∂xJ∂xJφJ(s, x) dxds.

To conlude we compute for j 6= J∫
R3

∣∣v2
∣∣ v2
j v

2
Jmiµi(v) dv =

7

m3
i

ρi

and it thus only remains the following equality for all i in {1, . . . , N}.

−
∫ t

0

∫
Ω×R3

πi(f)v · ∇xψJ dxdvds = − 7

m3
i

∫ t

0

∫
Ω
ρibJ(s, x)∆xφJ(s, x) dxds

=
7

m3
i

∫ t

0
‖√ρibJ‖2L2

x
ds.

Summing over i yields

−
N∑
i=1

∫ t

0

∫
Ω×R3

πj(f)v · ∇xψJ =
7

m3
i

∫ t

0
‖bJ‖L2

x(ρ1/2)
dxdvds. (5.3.22)

We recall ρ = (ρi)1≤i≤N .

Then the terms Ψ2 and Ψ3 are dealt with as in (5.3.14)

∀k ∈ {2, 3} , |Ψk(t)| ≤
7

4

∫ t

0
‖bJ‖2L2

x(ρ1/2)
ds+ C2

∫ t

0

∥∥∥π⊥L (f)
∥∥∥2

L2
x,v(µ−1/2)

ds. (5.3.23)

It remains to estimate Ψ4 which involves time derivative (5.3.8):

Ψ4(t) =
N∑
i=1

3∑
j=1

∫ t

0

∫
Ω×R3

fi∂tϕ
(J)
ij (s, x, v) dxdvds

=

N∑
i=1

3∑
j=1

∫ t

0

∫
Ω×R3

π⊥i (f)∂tϕ
(J)
ij (s, x, v) dxdvds

+

N∑
i=1

3∑
j=1

j 6=J

∫ t

0

∫
Ω×R3

πi(f) |v|2 vjvJ∂xjφJ dxdvds

+
N∑
i=1

3∑
j=1

± 7

2mi

∫ t

0

∫
Ω×R3

πi(f)
(
v2
j −m−1

j

)
∂xJφJ dxdvds.
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By oddity arguments, only terms in ai(s, x) and c(s, x) can contribute to the last two terms
on the right-hand side. However, j 6= J implies that the second term is zero as well as
the contribution of ai(s, x) in the third term thanks to (5.3.19). Finally, a Cauchy-Schwarz
inequality on both integrals yields as in (5.3.15)

|Ψ4(t)| ≤ C
N∑
i=1

∫ t

0

[
‖ρic‖L2

x
+
∥∥∥π⊥i (f)

∥∥∥
L2
x,v

(
µ
−1/2
i

)
]
‖∂t∇xφJ‖L2

x
ds. (5.3.24)

To estimate ‖∂t∇xφJ‖L2
x

we follow the idea developed for a(s, x) about negative Sobolev
regularity. We apply the weak formulation (5.3.4) to a specific function between t and t+ε.
The test function is ψ(x, v) = φ(x)vJm with φ in H1

x with a zero integral over T3. Note
that ψ does not depend on t so Ψ4 = 0 and multiplying by µi(v)µ−1

i (v) in the ith integral
of Ψ3 yields

Ψ3(t) =

∫ t

0

∫
T3

〈L(f), vJ(miµi)1≤i≤N 〉L2
v(µ−1/2)∂xkφ(x) dxdvds = 0,

by definition of Ker(L).

It remains

C
N∑
i=1

∫
Ω
ρi [bJ(t+ ε)− bJ(t)]φ(x) dx

=
N∑
i=1

∫ t+ε

t

∫
Ω×R3

πi(f)vJv · ∇xφ(x) dxdvds

+

N∑
i=1

∫ t+ε

t

∫
Ω×R3

π⊥i (f)vJv · ∇xφ(x) dxdvds

+
N∑
i=1

∫ t+ε

t

∫
Ω×R3

givJφ(x) dxdvds.

As for ai(t, x) we divide by ε and take the limit as ε goes to 0. By oddity, the first integral
on the right-hand side only gives terms with ai(s, x) and c(s, x). The other two integrals
are dealt with by a Cauchy-Schwarz inequality and Poincaré. This yields∣∣∣∣∫

Ω
∂tbJ(t, x)φ(x) dx

∣∣∣∣
≤ C

[
‖a‖L2

x(ρ1/2)
+ ‖c‖L2

x(ρ1/2)
+
∥∥∥π⊥L (f)

∥∥∥
L2
x,v(µ−1/2)

+ ‖g‖L2
x,v(µ−1/2)

]
‖∇xφ‖L2

x
.

(5.3.25)

The latter is true for all φ(x) in H1
x with a null integral over T3. We thus fix t and apply

the inequality above to

−∆xφ(t, x) = ∂tbJ(t, x)
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5.3. L2-theory for the linear part with Maxwellian weight

which has a zero integral thanks to the conservation of momentum and obtain

‖∂t∇xφJ‖2L2
x

=
∥∥∇x∆−1∂tbJ

∥∥2

L2
x

=

∫
Ω

(
∇x∆−1∂tbJ

)
∇xφ(x) dx.

We integrate by parts

‖∂t∇xφJ‖2L2
x

=

∫
Ω
∂tbJ(t, x)φ(x) dx.

At last, we use (5.3.25)

‖∂t∇xφJ‖2L2
x

≤ C
[
‖a‖L2

x(ρ1/2)
+ ‖c‖L2

x(ρ1/2)
+
∥∥∥π⊥L (f)

∥∥∥
L2
x,v(µ−1/2)

+ ‖g‖L2
x,v(µ−1/2)

]
‖∇xφ‖L2

x

= C

[
‖a‖L2

x(ρ1/2)
+ ‖c‖L2

x(ρ1/2)
+
∥∥∥π⊥L (f)

∥∥∥
L2
x,v(µ−1/2)

+ ‖g‖L2
x,v(µ−1/2)

] ∥∥∇x∆−1
x ∂tbJ

∥∥
L2
x

= C

[
‖a‖L2

x(ρ1/2)
+ ‖c‖L2

x(ρ1/2)
+
∥∥∥π⊥L (f)

∥∥∥
L2
x,v(µ−1/2)

+ ‖g‖L2
x,v(µ−1/2)

]
‖∂t∇xφJ‖L2

x
.

Combining this estimate with (5.3.24) and using Young’s inequality with any εb > 0

|Ψ4(t)| ≤εb
∫ t

0
‖a‖2

L2
x(ρ1/2)

ds

+ C5(εb)

∫ t

0

[
‖c‖2

L2
x(ρ1/2)

+
∥∥∥π⊥L (f)

∥∥∥2

L2
x,v(µ−1/2)

+ ‖g‖2
L2
x,v(µ−1/2)

]
ds.

(5.3.26)

We now gather (5.3.22), (5.3.10), (5.3.23), (5.3.26) and (5.3.21)∫ t

0
‖bJ‖2L2

x(ρ1/2)
ds ≤N (J)

f (t)−N (J)
f (0) + εb

∫ t

0
‖a‖2

L2
x(ρ1/2)

ds+ CJ,c(εb)

∫ t

0
‖c‖2

L2
x(ρ1/2)

+ CJ(εb)

∫ t

0

[
‖g‖2

L2
x,v(µ−1/2) +

∥∥∥π⊥L (f)
∥∥∥2

L2
x,v(µ−1/2)

]
ds.

Finally, summing over all J in {1, 2, 3}∫ t

0
‖b‖2

L2
x(ρ1/2)

ds ≤N (b)
f (t)−N (b)

f (0) + εb

∫ t

0
‖a‖2

L2
x(ρ1/2)

+ Cb,c

∫ t

0
‖c‖2

L2
x(ρ1/2)

+ Cb

∫ t

0

[∥∥∥π⊥L (f)
∥∥∥2

L2
x,v

+ ‖g‖2
L2
x,v(µ−1/2)

]
ds,

(5.3.27)

with Cb,c and Cb depending on εb.

Estimate for c. The contribution of c(t, x) is really similar to the one of a(t, x). Since
f preserves mass and energy the following holds∫

T3

c(t, x) dx = 0.
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5. The nonlinear multi-species Boltzmann system close to global equilibrium

Define the test function ψ = (ψic(t, x, v))1≤i≤N with

ψic(t, x, v) =
(
|v|2 − αic

)
v · ∇xφc(t, x)

where
−∆xφc(t, x) = c(t, x)

and αic > 0 is chosen such that for all 1 ≤ k ≤ 3∫
R3

(
|v|2 − αic

)
v2
k µi(v) dv = 0.

Again, the null integral of c and standard elliptic estimate [67] show

∀t ≥ 0, ‖φc(t)‖H2
x
≤ C0 ‖c(t)‖L2

x
. (5.3.28)

Again, this estimate provides the control of Ψ1 = N
(c)
f (t) − N

(c)
f (0) and of Ψ5(t) as in

(5.3.12):

|Ψ5(t)| ≤ C1

4

∫ t

0
‖c‖2

L2
x(ρ1/2)

ds+ C5

∫ t

0
‖g‖2

L2
x,v(µ−1/2) ds, (5.3.29)

where C1 > 0 is given in (5.3.30) below.

We start by the left-hand side of (5.3.4).

−
N∑
i=1

∫ t

0

∫
T3×R3

πi(f)v · ∇xψc dxdvds

= −
N∑
i=1

∑
1≤j,k≤3

∫ t

0

∫
T3

ai(s, x)

(∫
R3

(
|v|2 − αic

)
vjvkmiµi(v) dv

)
∂xj∂xkφc dxds

−
N∑
i=1

∑
1≤j,k≤3

∫ t

0

∫
T3

b(s, x) ·
(∫

R3

v
(
|v|2 − αic

)
vjvkmiµi(v) dv

)
∂xj∂xkφc dxds

−
N∑
i=1

∑
1≤j,k≤3

∫ t

0

∫
T3

c(s, x)

(∫
R3

(
|v|2 − αic

) |v|2 − 3m−1
i

2
vjvkmiµidv

)
∂xj∂xkφc.

By oddity, the second integral vanishes, as well as all the others if j 6= k. Our choice of αic
makes the first integral vanish even for j = k. It only remains the last integral with terms
j = k and therefore the definition of ∆xφc(t, x) gives

−
N∑
i=1

∫ t

0

∫
T3×R3

πi(f)v · ∇xψc dxdvds = C1

∫ t

0

N∑
i=1

∫
T3

ρic(s, x)2 dxds

= C1

∫ t

0
‖c(s)‖L2

x(ρ1/2)
ds. (5.3.30)

Again, direct computations give αic = 5/mi and C1 > 0.
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Then the terms Ψ2 and Ψ3 are dealt with as in (5.3.14)

∀k ∈ {2, 3} , |Ψk(t)| ≤
C1

4

∫ t

0
‖c‖2

L2
x(ρ1/2)

ds+ C2

∫ t

0

∥∥∥π⊥L (f)
∥∥∥2

L2
x,v(µ−1/2)

ds. (5.3.31)

As for a(t, x) the estimate on Ψ4 (5.3.8) will follow from elliptic regularity in negative
Sobolev spaces. With exactly the same computations as for (5.3.15) we have

|Ψ4(t)| ≤ C
∫ t

0

∥∥∥π⊥L (f)
∥∥∥
L2
x,v(µ−1/2)

‖∂t∇xφc‖L2
x
ds. (5.3.32)

Note that the contribution of πL was null by oddity for the a(t, x) and c(t, x) terms and
also for the b(t, x) terms thanks to our choice of αic.

To estimate ‖∂t∇xφc‖L2
x

we use the decomposition of the weak formulation (5.3.4) be-
tween t and t+ ε (instead of between 0 and t) with

ψ(t, x, v) =
(
mi(|v|2 − 3m−1

i )φ(x)
)

1≤i≤N

where φ belongs to H1
x and has a zero integral on the torus. ψ does not depend on t and

therefore Ψ4(t) = 0. Moreover, multiplying by µi(v)µ−1
i (v) in the ith integral of Ψ3 yields

Ψ3(t) =

∫ t

0

∫
T3

〈L(f),

(
|v|2 − 3m−1

i

2
miµi

)
1≤i≤N

〉L2
v(µ−1/2)∂xkφ(x) dxdvds = 0,

by definition of Ker(L).
From the weak formulation (5.3.4) it therefore remains

C

∫
T3

[c(t+ ε)− c(t)]φ(x) dx =
N∑
i=1

∫ t+ε

t

∫
T3×R3

πi(f)
mi |v|2 − 3

2
v · ∇xφ(x)

+
N∑
i=1

∫ t+ε

t

∫
T3×R3

π⊥i (f)
mi |v|2 − 3

2
v · ∇xφ(x)

+

N∑
i=1

∫ t+ε

t

∫
T3×R3

gi(s, x, v)
mi |v|2 − 3

2
φ(x).

As for a(t, x) we divide by ε and take the limit as ε goes to 0. By oddity, the first integral
on the right-hand side only gives terms with ρib(s, x). The last two terms are dealt with
by multiplying by µi(v)−1/2µi(v)1/2 inside each integral and applying a Cauchy-Schwarz
inequality. Note that again we also apply Poincaré inequality. This yields∣∣∣∣∫

T3

∂tc(t, x)φ(x) dx

∣∣∣∣
≤ C

[
‖b‖L2

x(ρ1/2)
+
∥∥∥π⊥L (f)

∥∥∥
L2
x,v(µ−1/2)

+ ‖g‖L2
x,v(µ−1/2)

]
‖∇xφ‖L2

x
.
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That estimate holds for all φ(x) in H1
x with null integral over T3. We copy the arguments

made for a(t, x) or bJ(t, x) and construct

−∆xΦc(t, x) = ∂tc(t, x)

and obtain by elliptic estimates

‖∂t∇xφc‖L2
x

=
∥∥∇x∆−1∂tc

∥∥
L2
x
≤
∥∥∆−1∂tc

∥∥
H1
x

= ‖Φc‖H1
x

≤ C ‖∂tc(t, x)‖(H1
x)∗

≤ C

[
‖b‖L2

x(ρ1/2)
+
∥∥∥π⊥L (f)

∥∥∥
L2
x,v(µ−1/2)

+ ‖g‖L2
x,v(µ−1/2)

]
.

Combining this estimate with (5.3.32) and using Young’s inequality with any εc > 0

|Ψ4(t)| ≤ εc
∫ t

0
‖b‖2

L2
x(ρ1/2)

ds+ C5(εc)

∫ t

0

[∥∥∥π⊥L (f)
∥∥∥2

L2
x,v(µ−1/2)

+ ‖g‖2
L2
x,v(µ−1/2)

]
ds.

(5.3.33)

We now gather (5.3.30), (5.3.10), (5.3.31), (5.3.33) and (5.3.29) into (5.3.4):∫ t

0
‖c‖2

L2
x(ρ1/2)

ds ≤N (c)
f (t)−N (c)

f (0) + εc

∫ t

0
‖b‖2

L2
x(ρ1/2)

ds

+ Cc(εc)

∫ t

0

[∥∥∥π⊥L (f)
∥∥∥2

L2
x,v(µ−1/2)

+ ‖g‖2
L2
x,v(µ−1/2)

]
ds.

(5.3.34)

Conclusion of the proof. We gather together the estimates we derived for a, b and c.
We compute the linear combination (5.3.18) + α × (5.3.27) + β × (5.3.34). For all εb > 0
and εc > 0 this implies∫ t

0

[
‖a‖2

L2
x(ρ1/2)

+ α ‖b‖2
L2
x(ρ1/2)

+ β ‖c‖2
L2
x(ρ1/2)

]
ds

≤ Nf (t)−Nf (0) + C⊥

∫ t

0

[∥∥∥π⊥L (f)
∥∥∥2

L2
x,v(µ−1/2)

+ ‖g‖2
L2
x,v(µ−1/2)

]
ds

+

∫ t

0

[
αεb ‖a‖2L2

x(ρ1/2)
+ (Ca,b + βεc) ‖b‖2L2

x(ρ1/2)
+ αCb,c(εb) ‖c‖2L2

x(ρ1/2)

]
ds.

We first choose α > Ca,b, then εb such that αεb < 1 and then β > αCb,c(εb). Finally, we
fix εc small enough such that Ca,b + βεc < α . With such choices we can absorb the last
term on the right-hand side by the left-hand side. This concludes the proof of Lemma 5.12
since

‖πL(f)‖2
L2
x,v(µ−1/2) = ‖a‖2

L2
x(ρ1/2)

+ ‖b‖2
L2
x(ρ1/2)

+ ‖c‖2
L2
x(ρ1/2)

.
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5.3.2. Generation of a semigroup

We now have the tools to develop the hypocoercivity of G into a semigroup property.

Proof of Theorem 5.11. Let f0 be in L2
x,v

(
µ−1/2

)
and consider the following equation

∂tf = L (f)− v · ∇xf (5.3.35)

with initial data f0.

Since the transport part −v ·∇x is skew-symmetric in L2
x,v

(
µ
−1/2
i

)
(mere integration by

part) and L is self-adjoint, Ker(G) and (Ker(G))⊥ are stable under (5.3.35). We therefore
consider only the case f0 in (Ker(G))⊥ and the associated solution stays in (Ker(G))⊥ for
all t.

Moreover, L has a spectral gap λL and so by Theorem 5.6, if f = (fi)1≤i≤N is a solution
to (5.3.35) we have the following

1

2

d

dt
‖f‖2

L2
x,v(µ−1/2) =

∫
T3×R3

〈∂tf , f〉µ−1/2 dxdv

= −
N∑
i=1

∫
T3×R3

v · ∇x
(
fi(t, x, v)2

)
µ−1
i (v) dxdv

+

∫
T3

〈L(f)(t, x, ·), f(t, x, ·)〉L2
v(µ−1/2) dx

≤ −λL
∥∥∥π⊥L (f)

∥∥∥2

L2
x,v(µ−1/2)

. (5.3.36)

We remind that π⊥L = Id − πL where πL is the orthogonal projection (5.2.1) onto Ker(L)
in L2

v

(
µ−1/2

)
. The norm is thus decreasing under the flow and it therefore follows that

G generates a strongly continuous semigroup on L2
v

(
µ−1/2

)
, we refer the reader to [98]

(general theory) or [134][135] (for the special case of single species Boltzmann equation).

Let f = SG(t)f0 and define f̃(t, x, v) = eλtf(t, x, v) for λ > 0 to be defined later. f̃
satisfies the conservation laws and is solution in L2

x,v

(
µ−1/2

)
to the following equation

∂tf̃ = G(f̃) + λf̃ .

As for (5.3.36) we obtain the following estimate∥∥∥f̃∥∥∥2

L2
x,v(µ−1/2)

≤ ‖f0‖2L2
x,v(µ−1/2) − 2λL

∫ t

0

∥∥∥π⊥L (f̃)
∥∥∥2

L2
x,v(µ−1/2)

+ 2λ

∫ t

0

∥∥∥f̃∥∥∥2

L2
x,v(µ−1/2)

.

(5.3.37)
Along with the latter estimate, we have the following control given by Lemma 5.12 with

g = λf̃∫ t

0

∥∥∥πL(f̃)
∥∥∥2

L2
x,v(µ−1/2)

ds ≤N
f̃
(t)−N

f̃
(0) + C⊥

∫ t

0

∥∥∥π⊥L (f̃)
∥∥∥2

L2
x,v(µ−1/2)

ds

+ C⊥λ
2

∫ t

0

∥∥∥f̃∥∥∥2

L2
x,v(µ−1/2)

ds

(5.3.38)
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where C⊥ > 0 is independent of f and
∣∣N

f̃
(s)
∣∣ ≤ C

∥∥∥f̃(s)
∥∥∥2

L2
x,v(µ−1/2)

, then ε × (5.3.38) +

(5.3.37) yields[∥∥∥f̃∥∥∥2

L2
x,v(µ−1/2)

− εN
f̃
(t)

]
+ Cε

∫ t

0

(∥∥∥πL(f̃)
∥∥∥2

L2
x,v(µ−1/2)

+
∥∥∥π⊥L (f̃)

∥∥∥2

L2
x,v(µ−1/2)

)
≤ ‖f0‖2L2

x,v(µ−1/2) − εNf̃
(0) +

(
2λ+ εC⊥λ

2
) ∫ t

0

∥∥∥f̃∥∥∥2

L2
x,v(µ−1/2)

ds.

where Cε = min {2λL − εC⊥, ε}. By the control on
∣∣N

f̃
(s)
∣∣ and the fact that∥∥∥πL(f̃)

∥∥∥2

L2
x,v(µ−1/2)

+
∥∥∥π⊥L (f̃)

∥∥∥2

L2
x,v(µ−1/2)

=
∥∥∥f̃∥∥∥2

L2
x,v(µ−1/2)

we can choose ε small enough such that Cε > 0 and then λ small enough such that(
2λ+ εC⊥λ

2
)
< Cε. Such choices imply that

∥∥∥f̃∥∥∥2

L2
x,v(µ−1/2)

is uniformly bounded in time

by C ‖f0‖2L2
x,v(µ−1/2).

By definition of f̃ , this shows an exponential decay for f and concludes the proof of
Theorem 5.11.

5.4. L∞-theory for the linear part with Maxwellian weight

As explained in the introduction, the L2 setting is not algebraic for the nonlinear operator
Q. We therefore need to work in an L∞ framework. We first give a pointwise control on
the linear operator K in Subsection 5.4.1 and then we prove that the linear part of the
perturbed equation (5.1.7) generates a strongly continuous semigroup in L∞x,v

(
〈v〉βµ−1/2

)
in Subsection 5.4.2.

5.4.1. Pointwise estimate on the compact part

We recall that L can be written under the following form

L = −ν(v) + K,

where ν = (νi)1≤i≤N is a multiplicative operator satisfying (5.2.4):

∀v ∈ R3, ν
(0)
i (1 + |v|γ) ≤ νi(v) ≤ ν(1)

i (1 + |v|γ),

with ν
(0)
i , ν

(1)
i > 0.

In the case of single-species Boltzmann equation, the operator K can be written as a
kernel operator ([75] or [34] Section 7.2) and we give here a similar property where the
different exponential decay rates, due to the different masses, are explicitely taken into
account. These explicit bounds will be strongly needed for the L∞ theory.
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5.4. L∞-theory for the linear part with Maxwellian weight

Lemma 5.14. Let f be in L2
v

(
µ−1/2

)
. Then for all i in {1, . . . , N} there exists k(i) such

that

Ki(f)(v) =

∫
R3

〈k(i)(v, v∗), f(v∗)〉 dv∗.

Moreover there exist m, CK > 0 such that for all i in {1, . . . , N} and for all 1 ≤ j ≤ N

∣∣∣k(i)
j (v, v∗)

∣∣∣ ≤ CK
√

µi(v)

µj(v∗)

[
|v − v∗|γ + |v − v∗|γ−2

]
e
−m|v−v∗|2−m

||v|2−|v∗|2|2
|v−v∗|2 . (5.4.1)

The constants m and CK are explicit and depend only on (mi)1≤i≤N and the collision kernel
B.

Proof of Lemma 5.14. By definition, K = (Ki)1≤i≤N with

Ki(f)(v) =

N∑
j=1

∫
S2×R3

Bij (|v − v∗| , cos θ)
[
µ
′∗
j f
′
i + µ′if

′∗
j − µif∗j

]
dσdv∗. (5.4.2)

We used the identity µi(v)µj(v∗) = µi(v
′)µj(v

′
∗) that is a consequence of the conservation

of energy during an elastic collision.

Step 1: A kernel form. The third term in the integral is already in the desired
form. The first two terms require a new representation of the collision kernel where the
integrand parameters will be v′ and v′∗ instead of v∗ and σ. Such a representation has been
obtained in the case of a single-species Boltzmann equation and is called the Carleman
representation [30]. We derive below the Carleman representation associated with the
multi-species Boltzmann operator. We follow the methods used in [30][34] Section 7.2 and
[71]. However, the existence of different masses generates an asymmetry between v′ and v′∗
as we shall see.

The laws of elastic collisions gives

v′ = V +
mj

mi +mj
|v − v∗|σ and v′∗ = V − mi

mi +mj
|v − v∗|σ

where V is the center of mass of the particles i and j:

V =
mi

mi +mj
v +

mj

mi +mj
v∗.

We can also express

v = V +
mj

mi +mj
(v − v∗) and v∗ = V − mi

mi +mj
(v − v∗) .

Note that

|v − v∗| =
∣∣v′ − v′∗∣∣ , (5.4.3)
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5. The nonlinear multi-species Boltzmann system close to global equilibrium

∣∣v − v′∣∣ ≤ 2mj

mi +mj

∣∣v′ − v′∗∣∣ , (5.4.4)∣∣v − v′∗∣∣ ≤ ∣∣v′ − v′∗∣∣ . (5.4.5)

The points v, v∗, v
′ and v′∗ therefore belong to the plane defined by V and Span(σ, v−v∗).

We have the following geometric configuration, which gives a perfect circle in the case of
equal masses.

Geometrically, m−1
j (v−V ), m−1

j (v′−V ), m−1
i (v∗−V ) and m−1

i (v′∗−V ) are on the same

circle of diameter
∣∣m−1

i (v′∗ − V )−mj(v
′ − V )

∣∣ = 2
mi+mj

|v − v∗|. Therefore,〈
1

mi
(v′∗ − V )− 1

mj
(v − V ),

1

mj
(v − V )− 1

mj
(v′ − V )

〉
= 0.

Using the laws of elasticity to see that

V =
mi

mi +mj
v′ +

mj

mi +mj
v′∗

we end up with the following orthogonal property (that is also easily checked by direct
computations) 〈

v′∗ −
(
mi +mj

2mj
v − mi −mj

2mj
v′
)
, v − v′

〉
= 0. (5.4.6)

We can now apply the change of variables (v∗, σ) 7→ (v′, v′∗), where v′ evolves in R3 and
v′∗ in Eijvv′ . E

ij
vv′ is the hyperplane that passes through

VE(v, v′) =
mi +mj

2mj
v − mi −mj

2mj
v′ (5.4.7)

and is orthogonal to v − v′; we denote dE(v′∗) the Lebesgue measure on it. Note that
v∗ = V (v′, v′∗) is now a function of v′ and v′∗:

V (v′, v′∗) = v′∗ +mim
−1
j v′ −mim

−1
j v.

Up to the translation and dilatation (generating a constant Cij > 0 only depending on mi

and mj) from v to the origin of Eijvv′ , this change of variables works as derived in [71]. Our
operator thus reads∫

R3×S2
B(v − v∗, σ)f ′g

′∗ dv∗dσ

= Cij

∫
R3

1

|v − v′|

∫
Eij
vv′

B
(
v − V (v′, v′∗),

v′∗−v′
|v′∗−v′|

)
|v′∗ − v′|

g
′∗ dE(v′∗)

 f ′ dv′.

(5.4.8)

We can also give a Carleman representation where we first integrate against v′∗. In the
case mi = mj the orthogonal property (5.4.6) is entirely symmetric in v′ and v′∗ and we
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5.4. L∞-theory for the linear part with Maxwellian weight

reach the same representation (5.4.8) with the role of v′ and v′∗ swapped. This is the
classical case of a single-species Boltzmann operator.

In the case mi 6= mj , (5.4.6) is equivalent to∣∣v′∣∣2 − 2

〈
v′,

mi

mi −mj
v − mj

mi −mj
v′∗

〉
=

〈
v,

2mj

mi −mj
v′∗ −

mi +mj

mi −mj
v

〉
which is itself equivalent to∣∣∣∣v′ + ( mj

mi −mj
v′∗ −

mi

mi −mj
v

)∣∣∣∣2 =

∣∣∣∣ mj

mi −mj
v′∗ −

mj

mi −mj
v

∣∣∣∣2 . (5.4.9)

The same change of variables as before but (v∗, σ) 7→ (v′∗, v
′) instead of (v∗, σ) 7→ (v′, v′∗)

thus yields∫
R3×S2

B(v − v∗, σ)f ′g
′∗ dv∗dσ

= Cij

∫
R3

1

|v − v′∗|

∫
Ẽij
vv′∗

B
(
v − V (v′, v′∗),

v′∗−v′
|v′∗−v′|

)
|v′∗ − v′|

f ′ dE(v′)

 g
′∗ dv′∗,

(5.4.10)

where Ẽijvv′∗
stands for Eijvv′∗

if mi = mj or for the sphere defined by (5.4.9); and dE is the
Lebesgue measure on it.

We therefore conclude gathering (5.4.2), (5.4.8) and (5.4.10) with a relabelling of the
integrated variables,

Ki(f)(v) =
N∑
j=1

Cij

∫
R3

 1

|v − v∗|

∫
Ẽijvv∗

Bij

(
v − V (u, v∗),

v∗−u
|u−v∗|

)
|u− v∗|

µi(u) dE(u)

 f∗j dv∗

+

N∑
j=1

Cji

∫
R3

 1

|v − v∗|

∫
Eijvv∗

Bij

(
v − V (v∗, u), u−v∗|u−v∗|

)
|u− v∗|

µj(u) dE(u)

 f∗i dv∗

−
N∑
j=1

∫
R3

Bij (|v − v∗| , cos θ)µi(v)f∗j dv∗.

(5.4.11)

This concludes the fact that Ki is a kernel operator.

Step 2: Pointwise estimate. It remains to show the pointwise estimate (5.4.1). The
assumptions on Bij imply that∣∣∣∣Bij (v − V (v∗, u),

u− v∗
|u− v∗|

)∣∣∣∣ ≤ C |v − V (v∗, u)|γ ,

where C denotes any positive constant independent of v and v∗. We shall bound each of
the three terms in (5.4.11) separately.
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From elastic collision laws (5.4.3), for u in Eijvv∗ one has |v − V (v∗, u)| = |u− v∗|, and
hence∣∣∣∣∣∣

∫
Eijvv∗

Bij

(
v − V (v∗, u), u−v∗|u−v∗|

)
|u− v∗|

µj(u) dE(u)

∣∣∣∣∣∣ ≤ C
∫
Eijvv∗

1

|u− v∗|1−γ
e−mj

|u|2
2 dE(u).

We can further bound, since (5.4.4) is valid on Eijvv∗ ,

|u− v∗| ≥
mi +mj

2mj
|v − v∗| ,

and get∣∣∣∣∣∣
∫
Eijvv∗

Bij

(
v − V (v∗, u), u−v∗|u−v∗|

)
|u− v∗|

µj(u) dE(u)

∣∣∣∣∣∣ ≤ C

|v − v∗|1−γ

∫
Evv∗

e−mj
|u|2
2 dE(u).

To estimate the integral over Eijvv∗ we make the change of variables

u = VE(v, v∗) + w

with VE(v, v∗) the origin (5.4.7) of Eijvv∗ and w in (Span(v − v∗))⊥. Using 〈v, w〉 = 〈v∗, w〉
we compute

|u|2 = |VE(v, v∗) + w|2 =

∣∣∣∣w +
1

2
(v + v∗) +

mi

2mj
(v − v∗)

∣∣∣∣2
=

∣∣∣∣w +
1

2
(v + v∗)

∣∣∣∣2 +
m2
i

4m2
j

|v − v∗|2 +
mi

2mj

(
|v|2 − |v∗|2

)
.

Now we decompose v + v∗ = V ⊥ + V ‖ where V ‖ is the projection onto Span(v − v∗) and
V ⊥ is the orthogonal part. This implies

|u|2 =

∣∣∣∣w +
1

2
V ⊥
∣∣∣∣2 +

1

4

∣∣∣V ‖∣∣∣2 +
m2
i

4m2
j

|v − v∗|2 +
mi

2mj

(
|v|2 − |v∗|2

)
.

By definition, ∣∣∣V ‖∣∣∣2 =
〈v + v∗, v − v∗〉2

|v − v∗|2
=

∣∣∣|v|2 − |v∗|2∣∣∣2
|v − v∗|2

and therefore the following holds∣∣∣∣∣∣ 1

|v − v∗|

∫
Eijvv∗

Bij

(
v − V (v∗, u), u−v∗|u−v∗|

)
|u− v∗|

µj(u) dE(u)

∣∣∣∣∣∣
≤ C

|v − v∗|2−γ
e
− m2

i
8mj
|v−v∗|2−

mj
8

||v|2−|v∗|2|2
|v−v∗|2

√
µi(v)

µi(v∗)

[∫
(v−v∗)⊥

e−
mj
2 |w+ 1

2
V ⊥|2 dE(w)

]
.

(5.4.12)
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The space (v−v∗)⊥ is invariant by translation of vector −2−1V ⊥ and the exponential term
inside the integral only depends on the norm and therefore the integral term is a constant
not depending on v or v∗.

We now turn to the term involving Ẽijvv′ which is a bit more technical. In the casemi = mj

then Ẽijvv′ = Eijvv′ . We therefore have the bound (5.4.12) to which we use µi(v)µ−1
i (v) =

Cijµj(v)µ−1
i (v) since mi = mj .

Assume now that mi 6= mj . As for Eijvv∗ , the elastic collision properties (5.4.3) and (5.4.5)

give for all v∗ in R3 and u in Ẽijvv∗∣∣∣∣∣∣
∫
Ẽijvv∗

Bij

(
v − V (u, v∗),

v∗−u
|u−v∗|

)
|u− v∗|

µi(u) dE(u)

∣∣∣∣∣∣ ≤ C

|v − v∗|1−γ

∫
Ẽijvv∗

e−mi
|u|2
2 dE(u).

Since Ẽijvv∗ is the sphere of radius

Rvv∗ =
mj

|mi −mj |
|v − v∗|

and centered at
Ovv∗ =

mi

mi −mj
v − mj

mi −mj
v∗.

We make a change of variables to end up on S2:∣∣∣∣∣∣ 1

|v − v∗|

∫
Ẽijvv∗

Bij

(
v − V (u, v∗),

v∗−u
|u−v∗|

)
|u− v∗|

µi(u) dE(u)

∣∣∣∣∣∣
≤ C |v − v∗|γ

∫
S2
e−

mi
2
|Rvv∗u+Ovv∗ |

2

dσ(u).

(5.4.13)

Decomposing the norm inside the integral and using Cauchy-Schwarz inequality yields

−mi

2
|Rvv∗u+Ovv∗ |

2 ≤−
mim

2
j

2(mi −mj)2
|v − v∗|2 −

mi

2(mi −mj)2
|miv −mjv∗|2

+
mimj

(mi −mj)
2 |v − v∗| |miv −mjv∗|

(5.4.14)

The idea is to express everything in terms of |v − v∗| and |v|2−|v∗|2
|v−v∗| . We recall that we

defined v+v∗ = V ⊥+V ‖ with V ⊥ orthogonal to Span(v−v∗) and V ‖ = 〈v+v∗,v−v∗〉
|v−v∗| (v−v∗).

We first use the identity

|v − v∗| |miv −mjv∗| =
1

4

[
|(1 +mi)v − (1 +mj)v∗|2 − |(1−mi)v − (1−mj)v∗|2

]
and then the following equality that holds for all a and b,

|av − bv∗|2 =

∣∣∣∣a− b2
(v + v∗) +

a+ b

2
(v − v∗)

∣∣∣∣2
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=
(a− b)2

4

∣∣∣V ⊥∣∣∣2 +
(a− b)2

4

∣∣∣|v|2 − |v∗|2∣∣∣2
|v − v∗|2

(5.4.15)

+
(a− b)(a+ b)

2

(
|v|2 − |v∗|2

)
+

(a+ b)2

4
|v − v∗|2 .

Direct computations from (5.4.14) then yield

−mi

2
|Rvv∗u+Ovv∗ |

2 ≤− mi

8

∣∣∣V ⊥∣∣∣2 − mi

8

∣∣∣|v|2 − |v∗|2∣∣∣2
|v − v∗|2

− mi

4

(
|v|2 − |v∗|2

)
− mi

8
|v − v∗|2 .

Taking (a, b) = (1, 0) and (a, b) = (0, 1) in (5.4.15) we have

mi

4
|v|2 − mj

4
|v∗|2 =

mi −mj

16

∣∣∣V ⊥∣∣∣2 +
mi −mj

16

∣∣∣|v|2 − |v∗|2∣∣∣2
|v − v∗|2

+
mi +mj

8

(
|v|2 − |v∗|2

)
+
mi −mj

16
|v − v∗|2 .

At last we obtain

−mi

2
|Rvv∗u+Ovv∗ |

2 ≤− mi

4
|v|2 +

mj

4
|v∗|2 −

mi +mj

16

∣∣∣V ⊥∣∣∣2
+ U

(
|v|2 − |v∗|
|v − v∗|

, |v − v∗|

)
(5.4.16)

where U(x, y) is a quadratic form defined by

U(x, v) = −mi +mj

16
x2 − mi −mj

8
xy − mi +mj

16
y2.

The latter quadratic form is associated with the symmetric matrix −mi +mj

16
−mi −mj

16

−mi −mj

16
−mi +mj

16


which has a negative trace and determinant mimj/64 > 0. It therefore is a negative definite
symmetric matrix and thus, denoting by −λ(mi,mj) < 0 its largest eigenvalue we have

∀(x, x) ∈ R2, U(x, v) ≤ −λ(mi,mj)
[
x2 + y2

]
.

Plugging the latter into (5.4.16) and going back to the integral of interest (5.4.13) we get∣∣∣∣∣∣ 1

|v − v∗|

∫
Ẽijvv∗

Bij

(
v − V (u, v∗),

v∗−u
|u−v∗|

)
|u− v∗|

µi(u) dE(u)

∣∣∣∣∣∣
≤ C |v − v∗|γ e

−λ(mi,mj)|v−v∗|2−λ(mi,mj)
||v|2−|v∗|2|2
|v−v∗|2

√
µi(v)

µj(v∗)
.

(5.4.17)
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To conclude we turn to the last integral term in (5.4.11) which is easily bounded by

|Bij (|v − v∗| , cos θ)µi(v)| ≤ C |v − v∗|γ µi(v)

≤ C |v − v∗|γ e−
1
4(mi|v|2+mj |v∗|2)

√
µi(v)

µj(v∗)
.

Using Cauchy-Schwartz

|v − v∗|2 +

∣∣∣|v|2 − |v∗|2∣∣∣2
|v − v∗|2

= |v − v∗|2 +
|〈v − v∗, v + v∗〉|2

|v − v∗|2

≤ |v − v∗|2 + |v + v∗|2 = 2
(
|v|2 + |v∗|2

)
,

this implies

|Bij (|v − v∗| , cos θ)µi(v)| ≤ C |v − v∗|γ e
−
mij
8
|v−v∗|2−

mij
8

||v|2−|v∗|2|2
|v−v∗|2

√
µi(v)

µj(v∗)
, (5.4.18)

where mij = min {mi,mj}.

Gathering (5.4.11)-(5.4.12)-(5.4.17)-(5.4.18) gives the desired estimate on k
(i)
j .

The pointwise estimate on k
(i)
j can be transferred into a decay of the L1

v-norm with a
relatively important weight. This has been proved in [83, Lemma 7] for the right-hand side
of (5.4.1) with m = 1/8. The case of general m is identical and leads to

Lemma 5.15. Let β > 0 and θ in [0, 1/(32m)). There exists Cθ,β > 0 and εθ,β > 0 such
that for all i, j in {1, . . . , N} and all ε in [0, εθ,β),

∫
R3

∣∣∣k(i)
j (v, v∗)

∣∣∣ eεm|v−v∗|2+εm
||v|2−|v∗|2|2
|v−v∗|2

〈v〉βeθ|v|
2

µi(v)−1/2

〈v∗〉βeθ|v∗|
2
µj(v∗)−1/2

dv∗ ≤
Cβ,θ

1 + |v|
.

From Lemma 5.14 and 5.15 we conclude that K is a bounded operator on L∞v
(
〈v〉βµ−1/2

)
.

5.4.2. Semigroup generated by the linear part

Following ideas developed in [83] in the case of bounded domains, the L2 theory could
be used to construct a L∞ one by using the flow of characteristics to transfer pointwise
estimates at x− vt into integral in the space variable. Such a method is the core of the L∞

theory thanks to the following lemma.
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Lemma 5.16. Let β > 3/2 and let (H1)− (H4) hold for the collision kernel. Assume that
there exist T0 > 0 and λ, CT0 > 0 such that for all f(t, x, v) in L∞x,v

(
〈v〉βµ−1/2

)
solution to

∂tf + v · ∇xf = L(f) (5.4.19)

with initial data f0, the following holds for all t in [0, T0]

‖f(t)‖L∞x,v(〈v〉βµ−1/2) ≤ e
λ(T0−2t) ‖f0‖L∞x,v(〈v〉βµ−1/2) + CT0

∫ t

0
‖f(s)‖L2

x,v(µ−1/2) ds.

Then for all 0 < λ̃ < min {λ, λG}, defined in Theorem 5.11, there exists C = C
(
β, λ̃

)
> 0

such that for all f solution to (5.4.19) in L∞x,v
(
〈v〉βµ−1/2

)
satisfying ΠG(f) = 0,

∀t ≥ 0, ‖f(t)‖L∞x,v(〈v〉βµ−1/2) ≤ Ce
−λ̃t ‖f0‖L∞x,v(〈v〉βµ−1/2) .

Proof of Lemma 5.16. To shorten the computations we use the following notation wβ(v) =
〈v〉βµ−1/2.

Let f be a solution to (5.4.19) in L∞x,v (wβ) associated with the initial data f0. Taking n

in N we can apply the assumption of the lemma to f̃(t, x, v) = f(t+ nT0, x, v). This yields,
with a change of variables t 7→ t− nT0,

‖f((n+ 1)T0)‖L∞x,v(wβ) ≤e
−λT0 ‖f(nT0)‖L∞x,v(wβ) + CT0

∫ (n+1)T0

nT0

‖f(s)‖L2
x,v(µ−1/2) ds.

We can iterate the process for f(nT0) as long as n 6= 0. We thus obtain

‖f((n+ 1)T0)‖L∞x,v(wβ) ≤e
−(n+1)λT0 ‖f0‖L∞x,v(wβ)

+ CT0

n∑
k=0

e−kλT0
∫ (n+1−k)T0

(n−k)T0

‖f(s)‖L2
x,v(µ−1/2) ds.

(5.4.20)

We see that multiplying and dividing by 〈v〉β gives

‖f‖2
L2
x,v(µ−1/2) =

N∑
i=1

∫
T3×R3

f2
i µ
−1
i dxdv ≤

∣∣T3
∣∣
∫

R3

dv(
1 + |v|2

)β
 ‖f‖2L∞x,v(wβ) .

Since β > 3/2, the integral is finite and f also belongs to L2
x,v

(
µ−1/2

)
. By Theorem 5.11

it follows that f(t) = SG(t) (f0) and thus if ΠG(f) = 0 we have the following exponential
decay

∀t ≥ 0, ‖f(t)‖L2
x,v(µ−1/2) ≤ CGe

−λGt ‖f0‖L2
x,v(µ−1/2) ≤ CG,βe

−λGt ‖f0‖L∞x,v(wβ) .
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Plugging the latter into (5.4.20) and taking 0 < λ̃ < λ1 ≤ min {λ, λG}

‖f((n+ 1)T0)‖L∞x,v(wβ)

≤

[
e−(n+1)λT0 + Cβ,G

(
n∑
k=0

e−kλ1T0
∫ (n+1−k)T0

(n−k)T0

e−λ1s ds

)]
‖f0‖L∞x,v(wβ)

≤
[
e−(n+1)λT0 +

Cβ,Ge
λ1T0

λ1
(n+ 1)e−(n+1)λ1T0

]
‖f0‖L∞x,v(wβ)

≤ C
T0,λ̃

e−(n+1)λ̃T0 ‖f0‖L∞x,v(wβ) ,

where we used (n+ 1)e−(n+1)λ1T0 ≤ Ce−(n+1)λ̃T0 .

At last, for t ≥ 0 there exists n in N such that nT0 ≤ t ≤ (n+ 1)T0. Using the inequality
satisfied by sup

0≤t≤T0
‖f(t− nT0, x, v)‖L∞x,v(wβ), same computations as above gives

‖f(t)‖L∞x,v(wβ) ≤ C ‖f((n+ 1)T0)‖L∞x,v(wβ) ≤ Ce
−(n+1)λ̃T0 ‖f0‖L∞x,v(wβ)

≤ Ce−λ̃t ‖f0‖L∞x,v(wβ) ,

where C is any positive constants depending on T0. This concludes the proof.

We now state the theorem about the linear perturbed equation.

Theorem 5.17. Let β > 3/2 and let assumptions (H1) − (H4) hold for the collision
kernel. The linear perturbed operator G = L − v · ∇x generates a semigroup SG(t) on
L∞x,v

(
〈v〉βµ−1/2

)
. Moreover, there exists λ∞ and C∞ > 0 such that

∀t ≥ 0, ‖SG(t) (Id−ΠG)‖L∞x,v(〈v〉βµ−1/2) ≤ C∞e
−λ∞t,

where ΠG is the orthogonal projection onto Ker(G) in L2
x,v

(
µ−1/2

)
.

The constants C∞ and λ∞ are explicit and depend on β, N and the collision kernel.

Proof of Theorem 5.17. As before, we use the shorthand notations wβ = 〈v〉βµ−1/2 and

wβi = 〈v〉βµ−1/2
i .

Let f0 be in L∞x,v (wβ) with β > 3/2. If f is solution of (5.4.19):

∂tf = G(f)

in L∞x,v (wβ) with initial data f0 then because β > 3/2 we have that f belongs to L2
x,v

(
µ−1/2

)
and f(t) = SG(t)f0 in this space. This implies first that f has to be unique and second that
Ker(G) and (Ker(G))⊥ are stable under the flow of the equation (5.4.19). It suffices to
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5. The nonlinear multi-species Boltzmann system close to global equilibrium

consider f0 such that ΠG(f0) = 0 and to prove existence and exponential decay of solutions
to (5.4.19) in L∞x,v (wβ) with initial data f0.

We recall that ν(v) = (νi(v))1≤i≤N is a multiplicative operator and so the existence of
solutions to equation (5.4.19) is equivalent to the existence of a fixed point to its Duhamel’s
form along the characteristics of the free transport equation. These characteristic trajec-
tories are straight lines of constant speed. We thus need to have existence and exponential
decay of a fixed point f = (fi)1≤i≤N to the following problem for all i in {1, . . . , N}:

fi(t, x, v) = e−νi(v)tf0i(x− vt, v) +

∫ t

0
e−νi(v)(t−s)Ki (f(s, x− (t− s)v, ·)) (v) ds.

Thanks to Lemma 5.14, each operator Ki is a kernel operator and we thus have for all i in
{1, . . . , N},

fi(t, x, v) =e−νi(v)tf0i(x− vt, v)

+

N∑
j=1

∫ t

0

∫
R3

e−νi(v)(t−s)k
(i)
j (v, v∗)fj(s, x− (t− s)v, v∗) dv∗ds.

Iterating this Duhamel’s form we end up with the following formulation

fi(t, x, v) = D
(i)
1 (f0)(t, x, v) +D

(i)
2 (f0)(t, x, v) +D

(i)
3 (f)(t, x, v) (5.4.21)

where we define

D
(i)
1 (f0) = e−νi(v)tf0i(x− vt, v), (5.4.22)

D
(i)
2 (f0) =

N∑
j=1

∫ t

0

∫
R3

e−νi(v)(t−s)e−νj(v∗)sk
(i)
j (v, v∗) (5.4.23)

×f0j(x− (t− s)v − sv∗, v∗) dv∗ds,

D
(i)
3 (f) =

N∑
j=1

N∑
l=1

∫ t

0

∫ s

0

∫
R3

∫
R3

e−νi(v)(t−s)e−νj(v∗)(s−s1)k
(i)
j (v, v∗)k

(j)
l (v∗, v∗∗)

×fl(s1, x− (t− s)v − (s− s1)v∗, v∗∗) dv∗∗dv∗ds1ds. (5.4.24)

Thanks to this Duhamel’s formulation, the existence of a fixed point to (5.4.21) in
L∞t L

∞
x,v (wβ) follows from a contraction argument. The computations required to prove

such a contraction property follow exactly the ones leading to the exponential decay of the
latter fixed point. We therefore solely prove that if f satisfies (5.4.21) then f decreases
exponentially in L∞x,v (wβ).

We shall bound each of the terms (5.4.22), (5.4.23) and (5.4.24) separately. From (5.2.4),

for all i there exists ν
(i)
0 = minv∈R3 {νi(v)} > 0. We define by ν0 > 0 the minimum of the

ν
(i)
0 and every positive constant independent of i and f will be denoted by Ck.
The first term (5.4.22) is straightforwardly bounded.∥∥∥D(i)

1 (f0)(t)
∥∥∥
L∞x,v(wβi)

≤ e−ν0t ‖f0i‖L∞x,v(wβi) . (5.4.25)
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In the second term (5.4.23) we multiply and divide inside the v∗ integral by wβj(v∗) and
take the supremum T3 × R3.∣∣∣wβi(v)D

(i)
2 (f0)(t)

∣∣∣ ≤Cte−ν0t
×

N∑
j=1

(∫
R3

∣∣∣k(i)
j (v, v∗)

∣∣∣ 〈v〉βµ−1/2
i

〈v∗〉βµ−1/2
j∗

dv∗

)
‖f0j‖L∞x,v(wβj) .

Applying Lemma 5.15 with θ = ε = 0, the integral term is bounded uniformly in i, j and
v. Hence ∥∥∥D(i)

2 (f0)(t)
∥∥∥
L∞x,v(wβi)

≤ C2te
−ν0t ‖f0‖L∞x,v(wβ) . (5.4.26)

The third and last term (5.4.24) is more involved analytically and requires to consider
the cases |v| ≥ R and |v| ≤ R, for R to be chosen later, separately.

Step 1: |v| ≥ R. We multiply and divide by wβl(v∗∗) inside the v∗ integral of (5.4.24)
and take the supremum in space and velocity for fl. The exponential factor can be bounded
by

e−νi(v)(t−s)−νj(v∗)(s−s1) ≤ e−
ν0
2
te−

ν0
2

(t−s)e−
ν0
2

(t−s1)e
ν0
2
s.

Hence, for all t, x and v,∣∣∣wβi(v)D
(i)
3 (f) (t, x, v)

∣∣∣
≤ e−

ν0
2
t
∑

1≤j,l≤N

∫ t

0

∫ s

0
e−

ν0
2

(t−s1)
(
e
ν0
2
s ‖fl‖L∞x,v(wβl)

)
×
[∫

R3

∣∣∣k(i)
j (v, v∗)

∣∣∣ wβi(v)

wβi(v∗)

(∫
R3

∣∣∣k(j)
l (v∗, v∗∗)

∣∣∣ wβi(v∗)
wβl(v∗∗)

dv∗∗

)
dv∗

]
ds1ds.

(5.4.27)

We use Lemma 5.15 twice to bound the term inside bracket independently of j, l and v by

C2
β

1 + |v|
≤

C2
β

1 +R
.

We conclude

sup
|v|≥R

∣∣∣wβi(v)D
(i)
3 (f) (t, x, v)

∣∣∣ ≤ C3

1 +R
e−

ν0
2
t sup

0≤s≤t

[
e
ν0
2 ‖f‖L∞x,v(wβ)

]
. (5.4.28)

Step 2: |v| ≤ R. In order for the change of variables y = x− (t− s)v− (s− s1)v∗ in the
v∗ integral to be well-defined we need s − s1 bounded from below. Moreover, in order to

make the L2-norm appearing we would need to have k
(i)
j (v, v∗) uniformly bounded which

is not the case. We therefore need to approximate it uniformly by compactly supported
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functions, which is possible on compact domains. We take η > 0 and divide (5.4.24) into
four parts

D
(i)
3 (f) =

∫ t

0

∫ s

s−η

∫
R3×R3

d
(i)
3 +

∫ t

0

∫ s−η

0

∫
|v∗|≥2R

∫
R3

d
(i)
3

+

∫ t

0

∫ s−η

0

∫
|v∗|≤2R

∫
|v∗∗|≥3R

d
(i)
3 +

∫ t

0

∫ s−η

0

∫
|v∗|≤2R

∫
|v∗∗|≤3R

d
(i)
3 ,

(5.4.29)

where, using
e−νi(v)(t−s)−νj(v∗)(s−s1) ≤ e−ν0(t−s1),

we have the following bound

d
(i)
3 ≤ e

−ν0(t−s1)
∑

1≤j,l≤N
k

(i)
j (v, v∗)k

(j)
l (v∗, v∗∗)

× |fl(s1, x− (t− s)v − (s− s1)v∗, v∗∗)| dv∗∗dv∗ds1ds.

The first integral in (5.4.29) is dealt with by using Lemma 5.15 twice, as for (5.4.27).
We get∣∣∣∣wβi ∫ t

0

∫ s

s−η

∫
R3×R3

d
(i)
3

∣∣∣∣ ≤ Ce− ν02 t(∫ t

0

∫ s

s−η
e−

ν0
2

(t−s1) ds1ds

)
sup

0≤s≤t

[
e
ν0
2 ‖f‖L∞x,v(wβ)

]
≤ ηCe−

ν0
2
t sup

0≤s≤t

[
e
ν0
2 ‖f‖L∞x,v(wβ)

]
.

(5.4.30)

For the second and third terms in (5.4.29) we remark that for |v| ≤ R we always have
either |v − v∗| ≥ R or |v∗ − v∗∗| ≥ R in the domain of integration and therefore we have
for any ε > 0 either one of the following inequalities∣∣∣k(i)

j (v, v∗)
∣∣∣ ≤ e−mεR

2
∣∣∣k(i)
j (v, v∗)e

mε|v−v∗|2
∣∣∣∣∣∣k(j)

l (v∗, v∗∗)
∣∣∣ ≤ e−mεR

2
∣∣∣k(j)
l (v∗, v∗∗)e

mε|v∗−v∗∗|2
∣∣∣ .

Now we take ε small enough to apply Lemma 5.15 as before but with the first inequality
above for |v∗| ≥ 2R or the second inequality above for |v∗| ≤ 2R and |v∗∗| ≥ 3R. Exactly
the same computations as (5.4.27) before yields∣∣∣∣∣wβi

∫ t

0

∫ s−η

0

∫
|v∗|≥2R

∫
R3

d
(i)
3

∣∣∣∣∣ ≤ Ce−mεR
2
e−

ν0
2
t sup

0≤s≤t

[
e
ν0
2 ‖f‖L∞x,v(wβ)

]
(5.4.31)∣∣∣∣∣wβi

∫ t

0

∫ s−η

0

∫
|v∗|≥2R

∫
|v∗∗|≥3

d
(i)
3

∣∣∣∣∣ ≤ Ce−mεR
2
e−

ν0
2
t sup

0≤s≤t

[
e
ν0
2 ‖f‖L∞x,v(wβ)

]
(5.4.32)

At last, the last term in (5.4.29) deals with a set included in the compact support

Ω =
{

(v, v∗, v∗∗) ∈ R3, |v| ≤ 3R, |v∗| ≤ 2R, |v∗∗| ≤ 3R
}
.
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As discussed earlier, Lemma 5.14 shows that k
(i)
j (v, v∗) has a possible blow-up in |v − v∗|γ .

However, since Ω is compact we can approximate k
(i)
j (v, v∗), for all i and j, by a smooth

and compactly supported function k
(i)
R,j(v, v∗) in the following uniform sense

sup
|v|≤3R

∫
|v∗|≤3R

∣∣∣k(i)
j (v, v∗)− k(i)

R,j(v, v∗)
∣∣∣ wβi(v)

wβi(v∗)
dv∗ ≤

1

R
. (5.4.33)

Thanks to the following equality

k
(i)
j (v, v∗)k

(j)
l (v∗, v∗∗) =

(
k

(i)
j (v, v∗)− k(i)

R,j(v, v∗)
)
k

(j)
l (v∗, v∗∗)

+
(
k

(j)
l (v∗, v∗∗)− k(j)

R,l(v∗, v∗∗)
)
k

(i)
R,j(v, v∗)

+ k
(i)
R,j(v, v∗)k

(j)
R,l(v∗, v∗∗)

the last term in (5.4.29) is bounded by∣∣∣∣∣wβi
∫ t

0

∫ s−η

0

∫
|v∗|≤2R

∫
|v∗∗|≤3R

d
(i)
3

∣∣∣∣∣
≤ C

R
e−

ν0
2
t sup

0≤s≤t

[
e
ν0
2 ‖f‖L∞x,v(wβ)

]
sup

1≤i,j,l≤N

(
sup
|v∗|≤2R

∫
|v∗∗|≤3R

∣∣∣k(j)
l (v∗, v∗∗)

∣∣∣ wβi(v∗)
wβl(v∗∗)

dv∗∗

)

+
C

R
e−

ν0
2
t sup

0≤s≤t

[
e
ν0
2 ‖f‖L∞x,v(wβ)

]
sup

1≤i,j≤N

(
sup
|v|≤R

∫
|v∗|≤2R

∣∣∣k(i)
R,j(v, v∗)

∣∣∣ wβi(v)

wβi(v∗)
dv∗

)

+
∑

1≤j,l≤N

∫ t

0

∫ s−η

0
e−ν0(t−s1)

∫
|v∗|≤2R

|v∗∗|≤3R

∣∣∣k(i)
R,j(v, v∗)k

(j)
R,l(v∗, v∗∗)

∣∣∣ |fl(s1, y(v∗), v∗∗)|

where we made the usual controls (5.4.27) and used (5.4.33). We also defined y(v∗) =
x − (t − s)v − (s − s1)v∗. The first two terms are dealt with using Lemma 5.15 while we

can bound k
(i)
R,jk

(j)
R,l by a constant CR depending only on R (note that all constants only

depending on R will be denoted by CR). This yields∣∣∣∣∣wβi
∫ t

0

∫ s−η

0

∫
|v∗|≤2R

∫
|v∗∗|≤3R

d
(i)
3

∣∣∣∣∣
≤ C

R
e−

ν0
2
t sup

0≤s≤t

[
e
ν0
2 ‖f‖L∞x,v(wβ)

]
+ CR

N∑
l=1

∫ t

0

∫ s−η

0

∫
|v∗|≤2R

|v∗∗|≤3R

|fl(s1, y(v∗), v∗∗)| .

We first integrate over v∗. We make the change of variables y = y(v∗) which has a jacobian
|s− s1|−3 ≤ η−3. Since we are on the periodic box, y has to be understood as the class of
equivalence of y(v∗) and is therefore not one-to-one. However, v∗ being bounded by 2R we
cover T3 only finitely many times (depending on R). Hence,∣∣∣∣∣wβi

∫ t

0

∫ s−η

0

∫
|v∗|≤2R

∫
|v∗∗|≤3R

d
(i)
3

∣∣∣∣∣
≤ C

R
e−

ν0
2
t sup

0≤s≤t

[
e
ν0
2 ‖f‖L∞x,v(wβ)

]
+
CR
η3

N∑
l=1

∫ t

0

∫ s−η

0

∫
T3×R3

|fl(s1, y, v∗∗)| .
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Finally, a Cauchy-Schwarz inequality against µ
−1/2
l (v∗∗)/µ

−1/2
l (v∗∗) yields the following

estimate∣∣∣∣∣wβi
∫ t

0

∫ s−η

0

∫
|v∗|≤2R

∫
|v∗∗|≤3R

d
(i)
3

∣∣∣∣∣
≤ C

R
e−

ν0
2
t sup

0≤s≤t

[
e
ν0
2 ‖f‖L∞x,v(wβ)

]
+
CR
η3
t

∫ t

0
‖f(s1)‖L2

x,v(µ−1/2) ds1.

(5.4.34)

Plugging (5.4.30), (5.4.31), (5.4.32) and (5.4.34) into (5.4.29) gives the final estimate

sup
|v|≤R

∣∣∣wβi(v)D
(i)
3 (f)

∣∣∣ ≤C4e
− ν0

2
t

(
η + e−mεR

2
+

1

R

)
sup

0≤s≤t

[
e
ν0
2 ‖f‖L∞x,v(wβ)

]
+ CR,ηt

∫ t

0
‖f(s)‖L2

x,v(µ−1/2) ds.

(5.4.35)

We can now conclude the proof by gathering (5.4.21), (5.4.25), (5.4.26), (5.4.28) and
(5.4.35). We get that for all i in {1, . . . , N}

e
ν0
2
t ‖fi(t)‖L∞x,v(wβi) ≤ (1 + C2t) e

− ν0
2
t ‖f0‖L∞x,v(wβ) + CR,ηt

∫ t

0
‖f(s)‖L2

x,v(µ−1/2) ds

+ C5

(
η + e−mεR

2
+

1

R

)
sup

0≤s≤t

[
e
ν0
2 ‖f‖L∞x,v(wβ)

]
.

(5.4.36)

We remind the reader that C2 and C5 are independent of η, R and t; moreover ε > 0 is
fixed. We choose R large enough and η small enough such that

C5

(
η + e−mεR

2
+

1

R

)
≤ 1

2

and T0 > 0 such that

2(1 + C2T0)e−ν0T0 = e−
ν0
2
T0 .

Such choices with (5.4.36) yields that for all t in [0, T0],

‖f(t)‖L∞x,v(〈v〉βµ−1/2) ≤ e
ν0
2

(T0−2t) ‖f0‖L∞x,v(〈v〉βµ−1/2) + CT0

∫ t

0
‖f(s)‖L2

x,v(µ−1/2) ds.

Lemma 5.16 then concludes the proof of Theorem 5.17.
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5.5. The full nonlinear equation in a perturbative regime

This section is devoted to the proof of Theorem 5.3. We divide our study in three steps.
Subsection 5.5.1 deals with the existence of a solution with exponential decay to the per-
turbed multi-species Boltzmann equation that reads

∂tf + v · ∇xf = L (f) + Q (f) . (5.5.1)

Then Subsection 5.5.2 proves the uniqueness of such solutions and, at last, Subsection 5.5.3
shows the positivity of the latter.

5.5.1. Existence of a solution that decays exponentially

We refer to the definition of ΠG (5.3.1) and recall that ΠG(f) = 0 is a convenient way to
say that f satisfies the conservation laws (5.1.5) with θ∞ = 1 and u∞ = 0.

This subsection is dedicated to the proof of the following proposition.

Proposition 5.18. Let assumptions (H1) − (H4) hold for the collision kernel, and let
k > k0, where k0 is the smallest integer such that Ck0 < 1 where Ck was given by (5.1.10).
There exists ηk, Ck and λk > 0 such that for any f0 in L1

vL
∞
x

(
〈v〉k

)
satisfying ΠG(f0) = 0,

if

‖f0‖ ≤ ηk

then there exists f in L1
vL
∞
x

(
〈v〉k

)
with ΠG(f) = 0 solution to (5.5.1) with initial data f0

such that

∀t ≥ 0, ‖f‖L1
vL
∞
x (〈v〉k) ≤ Cke

−λkt ‖f0‖L1
vL
∞
x (〈v〉k) .

The constants are explicit and only depend on N , k and the collision kernels.

Decomposition of the perturbed equation and toolbox

As explained in the introduction, the main strategy is to find a decomposition of the
perturbed Boltzmann equation (5.5.1) into a system of differential equations where we
could make use of the L∞ semigroup theory developed in Section 5.4. More precisely,
one would like to solve a somewhat simpler equation in L1

vL
∞
x

(
〈v〉k

)
and that the remain-

der part has regularising properties and could thus be handled in the more regular space
L∞x,v

(
〈v〉βµ−1/2

)
. Then the exponential decay of SG(t) in the more regular space could be

carried up to the bigger space.

Remark that

L∞x,v

(
〈v〉βµ−1/2

)
⊂ L1

vL
∞
x

(
〈v〉k

)
.

We propose here a decomposition of the mutli-species linear operator G = L − v · ∇x
that follows the idea used in [78] for the single-species Boltzmann operator. We define for
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5. The nonlinear multi-species Boltzmann system close to global equilibrium

δ ∈ (0, 1) to be chosen later the truncation function Θ(v, v∗, σ) ∈ C∞(R3 × R3) bounded
by one on the set{

|v| ≤ δ−1 and 2δ ≤ |v − v∗| ≤ δ−1 and | cos θ| ≤ 1− 2δ
}
,

and its support included in the set{
|v| ≤ 2δ−1 and δ ≤ |v − v∗| ≤ 2δ−1 and | cos θ| ≤ 1− δ

}
.

Thus we can define the splitting

G = L− v · ∇x = A(δ) + B(δ) − ν − v · ∇x,

with the operators A(δ) =
(
A

(δ)
i

)
1≤i≤N

and B(δ) =
(
B

(δ)
i

)
1≤i≤N

defined as

A
(δ)
i (f(v)) =

N∑
j=1

CΦ
ij

∫
R3×S2

Θδ

(
µ′∗j f

′
i + µ′if

′∗
j − µif∗j

)
bij(cos θ)|v − v∗|γdσdv∗,

B
(δ)
i (f(v)) =

N∑
j=1

CΦ
ij

∫
R3×S2

(1−Θδ)
(
µ′∗j f

′
i + µ′if

′∗
j − µif∗j

)
bij(cos θ)|v − v∗|γdσdv∗.

Our goal is to show that A(δ) has some regularizing effects and that G1 := B(δ)−ν−v ·∇x
acts like a small perturbation of Gν := −ν − v · ∇x and is thus hypodissipative.

Lemma 5.19. For any k in N, β > 0 and δ in (0, 1), there exists CA > 0 such that for all
f in L1

vL
∞
x

(
〈v〉k

) ∥∥∥A(δ) (f)
∥∥∥
L∞x,v(〈v〉βµ−1/2)

≤ CA ‖f‖L1
vL
∞
x (〈v〉k) .

The constant CA is constructive and only depends on k, β, δ, N and the collision kernels.

Proof of Lemma 5.19. As we proved it in Lemma 5.14, the operator A(δ) can be written
as a kernel operator thanks to Carleman representation:

∀ i ∈ {1, . . . , N} , A
(δ)
i (f)(x, v) =

∫
R3

〈k(i),(δ)
A (v, v∗), f(x, v∗)〉 dv∗.

Moreover, by definition of A(δ), its kernels k
(i),(δ)
A are of compact support which implies

the desired estimate.

Thanks to the regularizing property above of the operator A(δ) we are looking for solu-
tions to the perturbed Boltzmann equation

∂tf = G (f) + Q(f)
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5.5. The full nonlinear equation in a perturbative regime

in the form of f = f1 + f2 with f1 in L1
vL
∞
x

(
〈v〉k

)
and f2 in L∞x,v

(
〈v〉βµ−1/2

)
and (f1, f2)

satisfying the following system of equation

∂tf1 = G
(δ)
1 (f1) + Q(f1 + f2) and f1(0, x, v) = f0(x, v), (5.5.2)

∂tf2 = G(f2) + A(δ)(f1) and f2(0, x, v) = 0. (5.5.3)

The equation in the smaller space (5.5.3) will be treated thanks to the semigroup gen-
erated by G in L∞

(
〈v〉βµ−1/2

)
whilst we expect an exponential decay for solutions in the

larger space (5.5.2). Indeed, B(δ) can be controlled by the multiplicative operator ν(v)
thanks to the following lemma.

Lemma 5.20. Define

wk =
(

1 +m
k/2
i |v|k

)
1≤i≤N

and wkν =
(

(1 +m
k/2
i |v|k)νi(v)

)
1≤i≤N

.

There exists k0 in N such that for any k ≥ k0 and δ in (0, 1) there exists CB(k, δ) > 0 such
that for all f in L1

vL
∞
x (wkν),∥∥∥B(δ)(f)

∥∥∥
L1
vL
∞
x (wk)

≤ CB(k, δ) ‖f‖L1
vL
∞
x (wkν) .

Moreover we have the following formula

CB(k, δ) = Ck + εk(δ)

where εk(δ) is an explicit function that tends to 0 as δ tends to 0 and Ck is defined by
(5.1.10) and k0 is the minimal integer such that Ck0 < 1.

We make an important remark.

Remark 5.21. We emphasize here that for k > k0 we have that limδ→0CB(k, δ) = Ck < 1.
Until the end we fix δk > 0 such that CB(k, δk) < 1. For convenience we will drop the

exponent and use the following notations: B = B(δk), A = A(δk), G1 = G
(δk)
1 and finally

CB = CB(k, δk). The equivalent of this result for the mono-species Boltzmann equation can
be found in [78, Lemma 4.4] for k > 2 which is recovered here when mi = mj (note that
our Lemma deals with more general collision kernels).

We also notice here that the weighted norm wk required for this sharp lemma is equivalent
to 〈v〉k.

The proof of Lemma 5.20 relies on a Povzner-type inequality. Such inequalities are now
common in the mono-species Boltzmann literature (for both elastic and inelastic collisions)

[124][109][8][9][78] and state that the integral on S2 of
[
|v′|k + |v′∗|

k
]

can be controlled

strictly by the integral on S2 of Ck

[
|v|k + |v∗|k

]
with Ck = 4/(k + 2) < 1 (for hard sphere
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5. The nonlinear multi-species Boltzmann system close to global equilibrium

collision kernels) and a remainder term of lower order when k > 2. As we shall see, the
asymmetry brought by the difference of masses generates a larger constant Ck that can still
be less than 1 if k is large enough.

The method proposed here to prove such a Povzner inequality is inspired by [9, Lemma
1 and Corollary 3]. The main idea is to consider kinetic energies mi |v′|2 and mj |v′∗|

2 to
exhibit the problematic term arising from mi −mj which can be non-zero. We state our
result, which covers the mono-species case when mi = mj .

Proposition 5.22 (Povzner-type inequality). Let i and j in {1, . . . , N}. Then for all
k > 2, ∫

S2

[
m
k/2
i

∣∣v′∣∣k +m
k/2
j

∣∣v′∗∣∣k] dσ ≤ lbij
b∞ij

Ck

[
mi |v|2 +mj |v∗|2

]k/2
where Ck was defined by (5.1.10) and lbij , b

∞
ij by (5.1.9).

Proof of Proposition 5.22. By definition of v′ and v′∗ we can expand |v′|2 and |v′∗|
2 as follows

mi

∣∣v′∣∣2 = E
1 + aij + bij〈e, σ〉

2

mi

∣∣v′∗∣∣2 = E
1− aij − bij〈e, σ〉

2

where we denoted by e the direction of the vector miv +mjv∗ and we defined

E = mi |v|2 +mj |v∗|2 ,

aij =
1

E

mi −mj

mi +mj

[
mi
mi −mj

mi +mj
|v|2 +mj

mj −mi

mi +mj
|v∗|2 + 4

mimj

mi +mj
〈v, v∗〉

]
,

bij =
1

E

4mimj

(mi +mj)2
|v − v∗| |miv +mjv∗| .

(5.5.4)

We will drop the dependencies on v and v∗ The first important property to notice is that
for all σ on S2, mi |v′|2 and mj |v′∗|

2 are positive and this implies

|aij | ≤ 1, |aij + bij | ≤ 1 and |aij − bij | ≤ 1. (5.5.5)

Plugging these equalities inside the integral yields∫
S2

[
m
k/2
i

∣∣v′∣∣k +m
k/2
j

∣∣v′∗∣∣k] dσ
= Ek/2

∫
S2

[(
1 + aij + bij〈e, σ〉

2

)k/2
+

(
1− aij − bij〈e, σ〉

2

)k/2]
dσ

= 2πEk/2
∫ 1

−1

[(
1 + aij + bijz

2

)k/2
+

(
1− aij − bijz

2

)k/2]
dz
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=
8π

k + 2
Ek/2

[
Fk/2(|aij | , bij) + Fk/2(− |aij | , bij)

]
(5.5.6)

where

Fp(a, b) =

(
1+a+b

2

)p+1 −
(

1+a−b
2

)p+1

b
.

When |a| ≤ 1, a mere study of the function Fp(a, ·) shows that the latter function is
increasing on [0, 1 + a] if p ≥ 0. Therefore, since |aij | ≤ 1, for k ≥ 2 we can bound
Fk/2(|aij | , bij) and Fk/2(− |aij | , bij) with their value at an upper bound on bij . Using
(5.5.5) we see that 0 ≤ bij ≤ 1− |aij |. Bounding into (5.5.6), this gives

∫
S2

[
m
k/2
i

∣∣v′∣∣k +m
k/2
j

∣∣v′∗∣∣k] dσ ≤ 8π

k + 2
Ek/2

1− |aij |k/2+1 + (1− |aij |)k/2+1

1− |aij |
. (5.5.7)

To conclude the proof it suffices to see that the function

a 7→ 1− |a|k/2+1 + (1− |a|)k/2+1

1− |a|

is increasing on [0, 1]. Proposition 5.22 will follow if |aij | ≤ |mi −mj | /(mi +mj).

Going back to the definition of aij and decomposing v∗ as v∗ = λv+v⊥ with v⊥ orthogonal
to v we see that

|aij | =
1

E

|mi −mj |
mi +mj

∣∣∣∣∣
(
m2
i +mimj(4λ− λ2 − 1) + λ2m2

j

mi +mj

)
|v|2 +mj

mi −mj

mi +mj

∣∣∣v⊥∣∣∣2∣∣∣∣∣ .
But then, direct computations show first∣∣∣∣mj

mi −mj

mi +mj

∣∣∣∣ ≤ mj

and second ∣∣m2
i +mimj(4λ− λ2 − 1) + λ2m2

j

∣∣2 − (mi +mj)
2(mi + λ2mj)

2

= −4mimj(1− λ)2(mi + λmj)
2 ≤ 0.

Hence

|aij | ≤
|mi −mj |
mi +mj

(mi + λ2mj) |v|2 +mj

∣∣v⊥∣∣2
E

which terminates the proof of the proposition.

Now we can prove the estimate on B(δ).
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5. The nonlinear multi-species Boltzmann system close to global equilibrium

Proof of Lemma 5.20. We use the definition wk = (1 + m
k/2
i |v|k)1≤i≤N . Moreover, as we

will drastically bound B(δ)(f) by the absolute value inside the integral in v, it is enough to
show Lemma 5.20 only for f = f(v).

With the multi-species Povzner inequality (Proposition 5.22), the proof follows closely
the proof of [78, Lemma 4.4] with appropriate characteristic functions that fit the invariance
of the elastic collisions (5.1.2).

First we bound the truncation function from above by cutting the integral in the following
way∥∥∥B(δ)(f)

∥∥∥
L1
v(wk)

≤
N∑

i,j=1

CΦ
ij

∫
R6×S2

(1−Θδ)
[
µ
′∗
j |f ′i |+ µ′i|fj ′∗|+ µi|f∗j |

]
bij(cos θ)|v − v∗|γwkidv∗dσ

≤
N∑

i,j=1

CΦ
ij

∫
{| cos θ|∈[1−δ,1]}

bij(cos θ)|v − v∗|γµ∗j |fi|(wk ′i + wk
′∗
j + wk

∗
j )dvdv∗dσ

+
N∑

i,j=1

CΦ
ij

∫
|v−v∗|≤δ

bij(cos θ)|v − v∗|γµ∗j |fi|(wk ′i + wk
′∗
j + wk

∗
j )dvdv∗dσ

+

N∑
i,j=1

CΦ
ij

∫
{|v|≥δ−1 or |v−v∗|≥δ−1}

[
µ
′∗
j |f ′i |+ µ′i|f

′∗
j |+ µi|f∗j |

]
bij(cos θ)|v − v∗|γwki.

Note that we used the change of variables (v, v∗, σ) → (v′, v′∗, v − v∗/ |v − v∗|) for µ
′∗
j f
′
i .

Then for µ′if
′∗
j we used first (v, v∗, σ) → (v∗, v,−σ) which sends (v′ij , v

′∗
ij ) to (v

′∗
ji , v

′
ji) and

then relabelling i and j we come back to the first term µ
′∗
j f
′
i .

Defining the characteristic function χA on the set

A =

{√
mi|v|2 +mj |v∗|2 ≥ min

{√
mi,
√
mj

}
δ−1 or |v − v∗| ≥ δ−1

}
we can bound b(cos θ) by its supremum b∞ and use the equivalence between νi and 1 + |v|γ
to get∥∥∥B(δ)(f)

∥∥∥
L1
v(wk)

≤ δC(k) ‖f‖L1
v(wkν)

+
N∑

i,j=1

CΦ
ij

∫
R3×R3×S2

χA

[
µ′∗j |f ′i |+ µ′i|f

′∗
j |+ µi|f∗j |

]
bij(cos θ)|v − v∗|γwki dvdv∗dσ

(5.5.8)

where C(k) will denote any positive constant independent on δ and f .

We shall deal with the second term on the right-hand side of (5.5.8) thanks to the Povzner
inequality. Indeed, the set A is invariant by the changes of variables already mentioned
(remember that when changing v to v∗ we also change i and j) and therefore
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N∑
i,j=1

CΦ
ij

∫
R3×R3×S2

χA

[
µ′∗j |f ′i |+ µ′i|f

′∗
j |+ µi|f∗j |

]
bij(cos θ)|v − v∗|γwki dvdv∗dσ

=
N∑

i,j=1

CΦ
ij

∫
R3×R3×S2

χAbij(cos θ)|v − v∗|γµ∗j |fi|(wk∗
′
i + wk

′
i + wk

∗
i ) dvdv∗dσ

≤
N∑

i,j=1

CΦ
ijb
∞
ij

∫
R3×R3

χA|v − v∗|γµ∗j |fi|
(∫

S2

[
wk
′
i + wk

′∗
j − wk∗j − wki

]
dσ

)
dvdv∗

+ 8π
N∑

i,j=1

CΦ
ijb
∞
ij

∫
R3×R3

χA|v − v∗|γµ∗j |fi|wk∗i dvdv∗

+ 4π

N∑
i,j=1

CΦ
ijb
∞
ij

∫
R3×R3

χA|v − v∗|γµ∗j |fi|wki dvdv∗

(5.5.9)

We can use Proposition 5.22 for the first term on the right-hand side of the inequality.
Indeed,

∫
S2

[
wk
′
j + wk

′∗
j − wk∗j − wki

]
dσ

≤
lbij
b∞ij

Ck

(
mi |v|2 +mj |v∗|2

)k/2
− 4πm

k/2
i |v|k − 4πm

k/2
j |v∗|k

≤ 2k/2
lbij
b∞ij

Ck

[
(mi |v|2)k/2−1/2(mj |v∗|2)1/2 + (mi |v|2)1/2(mj |v∗|2)k/2−1/2

]
− 4π

(
1−

lbij
4πb∞ij

Ck

)[
m
k/2
i |v|k +m

k/2
j |v∗|k

]

For k ≥ k0 we have that Ck < 1, hence
lbij

4πb∞ij
Ck < 1. We can thus plug this back into
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(5.5.9) we find, recalling that wki = 1 +m
k/2
i |v|k

N∑
i,j=1

CΦ
ij

∫
R3×R3×S2

χA

[
µ′∗j |f ′i |+ µ′i|f

′∗
j |+ µi|f∗j |

]
bij(cos θ)|v − v∗|γwki dvdv∗dσ

≤ C(k)
N∑

i,j=1

∫
R3×R3

χA|v − v∗|γµ∗j |fi|
[
|v|k−1 |v∗|+ |v| |v∗|k−1

]
dvdv∗

+ 12π

N∑
i,j=1

CΦ
ijb
∞
ij

∫
R3×R3

χA|v − v∗|γµ∗j |fi| dvdv∗+

+ 8π
N∑

i,j=1

CΦ
ijb
∞
ij

∫
R3×R3

χA|v − v∗|γµ∗j |fi|m
k/2
j |v∗|k dvdv∗

+ Ck

N∑
i,j=1

CΦ
ij lbij

∫
R3×R3

χA|v − v∗|γµ∗j |fi|m
k/2
i |v|k dvdv∗

From here we can use that

χA(v, v∗) ≤ 2 max
i,j
{mi,mj} δ(mi |v|2 +mj |v∗|2)

and the fact that γ+1 < k0 ≤ k to bound the first, second and third term on the right-hand
side by δC(k) ‖f‖L1

v(wk). And finally, we exactly have the definition of νi(v) in the last term
on the right-hand side. This gives

N∑
i,j=1

CΦ
ij

∫
R3×R3×S2

χA

[
µ′∗j |f ′i |+ µ′i|f

′∗
j |+ µi|f∗j |

]
bij(cos θ)|v − v∗|γwki dvdv∗dσ

≤ Ck
N∑
i=1

‖fi‖L1
v(wkiνi)

+ δC(k) ‖f‖L1
v(wk) .

(5.5.10)

Combining (5.5.8) and (5.5.10) yields the desired estimate.

We conclude this subsection with a control on the nonlinear term.

Lemma 5.23. Define Q̃(f ,g) by

∀ 1 ≤ i ≤ N, Q̃i(f ,g) =
1

2

N∑
j=1

(Qij(fi, gj) +Qij(gi, fj)) . (5.5.11)

Then for all f , g such that Q̃(f ,g) is well-defined, the latter belongs to [Ker(L)]⊥:

πL

(
Q̃(f ,g)

)
= 0.
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Moreover, there exists CQ > 0 such that for all i in {1, . . . , N} and every f and g,∥∥∥Q̃i(f ,g)
∥∥∥
L1
vL
∞
x (〈v〉k)

≤ CQ
[
‖fi‖L1

vL
∞
x (〈v〉k) ‖g‖L1

vL
∞
x (〈v〉kν)

+ ‖fi‖L1
vL
∞
x (νi〈v〉k) ‖g‖L1

vL
∞
x (〈v〉k)

]
,

The constant CQ is explicit and depends only on k, N and the kernel of the collision
operator.

Proof of Lemma 5.23. The orthogonality property is well-known for the single-species case
[25, Appendix A.2],[21] and follows in the same way as (5.1.3), (5.1.4). The estimate also
follows standard computations from the mono-species case, we adapt them to the case of
multi-species for the sake of completeness. Since we are dealing with hard potential kernels,
we can decompose the bilinear operator Qij(fi, gj), for any i, j in {1, . . . , N}, as

Qij(fi, gj) =

∫
R3×S2

Bij (|v − v∗|, cos θ) f ′ig
′∗
j dv∗dσ

−
∫
R3×S2

Bij (|v − v∗|, cos θ) fig
∗
j dv∗dσ.

By Minkowski integral inequality we have for all q in [1,∞),∫
R3

〈v〉k
[∫

T3

|Qij(fi, gj)|q dx
]1/q

dv ≤
∫
S2×R3×R3

〈v〉k
[∫

T3

∣∣∣Bijf ′ig′∗j ∣∣∣q dx]1/q

dσdv∗dv

+

∫
S2×R3×R3

〈v〉k
[∫

T3

∣∣Bijfig∗j ∣∣q dx]1/q

dσdv∗dv.

Since the function (v, v∗) 7→ (v′, v′∗) is its own inverse and does not change the value
of Bij (|v − v∗| , cos θ), we make the latter change of variables in the first integral and we
obtain ∫

R3

〈v〉k
[∫

T3

|Qij(fi, gj)|q dx
]1/q

dv

≤
∫
S2×R3×R3

(
〈v〉k + 〈v′〉k

)[∫
T3

∣∣Bijfig∗j ∣∣q dx]1/q

dσdv∗dv

≤ Cij
∫
S2×R3×R3

〈v〉k〈v∗〉k |v − v∗|γ
[∫

T3

∣∣fig∗j ∣∣q dx]1/q

dσdv∗dv.

The constant Cij > 0 will stand for any constant depending only on mi, mj , the integral
over the sphere of bij and CΦ

ij (see assumptions on the kernel Bij). Finally we use the fact
that |v − v∗|γ ≤ 〈v〉γ + 〈v∗〉γ .∫

R3

〈v〉k
[∫

T3

|Qij(fi, gj)|q dx
]1/q

dv

≤ Cij
∫
S2×R3×R3

(
〈v〉k+γ〈v∗〉k + 〈v〉k〈v∗〉k+γ

)[∫
T3

∣∣fig∗j ∣∣q dx]1/q

dσdv∗dv.

127
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We take the limit as q tends to infinity and conclude

‖Qij(fi, gj)‖L1
vL
∞
x (〈v〉k) ≤ Cij

[
‖fi‖L1

vL
∞
x (〈v〉k) ‖gj‖L1

vL
∞
x (〈v〉k+γ)

+ ‖fi‖L1
vL
∞
x (〈v〉k+γ) ‖gj‖L1

vL
∞
x (〈v〉k)

]
.

We remind (5.2.4) which states that νi(v) ∼ 〈v〉γ and the lemma follows after summing
over j, CQ being the maximum of all the Cij .

Study of the equations in L1
vL
∞
x

(
〈v〉k

)
We start with the well-posedness of the system (5.5.2) in L1

vL
∞
x

(
〈v〉k

)
.

Proposition 5.24. Let k > k0. Let f0 be in L1
vL
∞
x

(
〈v〉k

)
and g in L∞t L

1
vL
∞
x

(
ν〈v〉k

)
.

There exist η1, λ1 > 0 such that if

‖f0‖L1
vL
∞
x (〈v〉k) ≤ η1 and ∃C, λ > 0 ‖g(t)‖L1

vL
∞
x (ν〈v〉k) ≤ C ‖f0‖L1

vL
∞
x (〈v〉k) e

−λt

then there exists a function f1 in L∞t L
1
vL
∞
x

(
〈v〉k

)
such that

∂tf1 = G1 (f1) + Q (f1 + g) and f1(0, x, v) = f0(x, v).

Moreover, any solution f1 satisfies

∀t ≥ 0, ‖f1(t)‖L1
vL
∞
x (〈v〉k) ≤ C1e

−λ1t ‖f0‖L1
vL
∞
x (〈v〉k) .

The constants C1, δ1, η1 and λ1 are independent of f0 and g and depends on N , k and the
collision kernel.

Proof of Proposition 5.24. We start by showing the exponential decay and then prove exis-
tence. As a matter of fact, we saw in Lemma 5.20 that the natural weight to estimate B is
wk = 1+mk/2 |v|k which is equivalent to 〈v〉k. We will therefore rather work in L1

vL
∞
x (wk)

which just modifies the definition for C1, δ1 and η1.

Step 1: a priori exponential decay. Suppose that f1 is a solution to the differential
equation in L1

vL
∞
x (wk) with initial data f0.

We recall that for q in [1,∞),

‖f1‖L1
vL

q
x(wk) =

N∑
i=1

∫
R3

(
1 +m

k/2
i |v|k

)(∫
T3

|f1i|q dx
)1/q

dv.

Therefore we can compute for all i in {1, . . . , N}
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5.5. The full nonlinear equation in a perturbative regime

d

dt
‖f1i‖L1

vL
q
x

(
1+m

k/2
i |v|k

)
=

∫
R3

(
1 +m

k/2
i |v|k

)
‖f1i‖1−qLqx

(∫
T3

sgn(fi1) |f1i|q−1 ∂tf1i dx

)
dv.

Observing that

∂tf1i = −v · ∇xf1i − νi(v)f1i +Bi (f1) +Qi (f1 + g) ,

that the transport gives null contribution∫
T3

sgn(f1i) |f1i|q−1 v · ∇xf1i dx =
1

q
v ·
∫
T3

∇x (|f1i|q) dx = 0,

that the multiplicative part gives a negative contribution,

−
∫
T3

νi(v)f1i sgn(f1i) |f1i|q−1 dx ≤ −νi(v) ‖f1i‖qLqx

and that by Hölder inequality with q and q/(q − 1),∣∣∣∣∫
T3

sgn(f1i) |f1i|q−1 gi dx

∣∣∣∣ ≤ ‖f1i‖q−1
Lqx
‖gi‖Lqx , (5.5.12)

we deduce

d

dt
‖fi1‖L1

vL
q
x

(
1+m

k/2
i |v|k

) ≤− ‖f1i‖L1
vL

q
x

(
νi(1+m

k/2
i |v|k)

) + ‖Bi (f1)‖
L1
vL

q
x

(
1+m

k/2
i |v|k

)
+ ‖Qi (f1 + g)‖

L1
vL

q
x

(
1+m

k/2
i |v|k)

) .
First sum over i in {1, . . . , N} and then let q tend to infinity (on the torus the limit is

thus the L∞-norm). This yields for all t ≥ 0.

d

dt
‖f1‖L1

vL
∞
x (wk) ≤− ‖f1‖L1

vL
∞
x (νwk) + ‖B (f1)‖L1

vL
∞
x (wk)

+ ‖Q (f1 + g)‖L1
vL
∞
x (wk) .

(5.5.13)

We use Lemma 5.20 to control B, recalling that 0 < CB < 1, and the control of Q given
in Lemma 5.23 for Q (of course, since wk ∼ 〈v〉k the Lemma still holds with a different
CQ). We get that for all t ≥ 0,

d

dt
‖f1‖L1

vL
∞
x (wk) ≤−

[
1− CB − 2CQ

(
‖f1‖L1

vL
∞
x (wk) + 2‖g‖L1

vL
∞
x (wk)

)]
‖f1‖L1

vL
∞
x (νwk)

+ CQ ‖g(t)‖2L1
vL
∞
x (νwk) .

Since CB < 1, if ‖f1(0)‖L1
vL
∞
x (wk) is sufficiently small and thanks to the exponential decay of

‖g(t)‖L∞t L1
vL
∞
x (νwk), a direct application of Grönwall lemma yields the desired exponential

decay.
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5. The nonlinear multi-species Boltzmann system close to global equilibrium

Step 2: existence. Let f (0) = 0 and consider the following iterative scheme

∂tf
(n+1) + v · ∇xf (n+1) = −ν(v)

(
f (n+1)

)
+ B

(
f (n)

)
+ Q̃

(
f (n) + g

)
with the initial data f (n+1)(0, x, v) = f0.

For each n in N, f (n+1) is well-defined by induction since we have the explicit Duhamel
formula along the characteristics for all i in {1, . . . , N}

f
(n+1)
i (t, x, v) = e−νi(v)tf0i +

∫ t

0
e−νi(v)(t−s)

[
Bi

(
f (n)

)
+Qi

(
f (n) + g

)]
(x− sv, v) ds.

We are about to show that
(
f (n)

)
n∈N is a Cauchy sequence in L∞t L

1
vL
∞
x (wk).

Direct computations on the nonlinear operator gives

∂t

(
f (n+1) − f (n)

)
=− ν(v)

(
f (n+1) − f (n)

)
+ B

(
f (n) − f (n−1)

)
+ Q̃

(
f (n) − f (n−1), f (n−1) + g

)
+ Q̃

(
f (n) + g, f (n) − f (n−1)

)
,

where we remind that Q̃ was defined by (5.5.11) and that Q̃(a,a)−Q̃(b,b) = Q̃(a− b,b)+
Q̃(a,a− b) .

Taking the L1
vL
∞
x (wk)-norm of

(
f (n+1) − f (n)

)
and summing over i from 1 to N gives

for all t ≥ 0∥∥∥f (n+1)(t)− f (n)(t)
∥∥∥
L1
vL
∞
x (wk)

≤
N∑
i=1

∫ t

0
ds

∫
R3

dv e−νi(v)(t−s)
(

1 +m
k/2
i |v|k

)∥∥∥∆ni

(
f (n) − f (n−1)

)∥∥∥
L∞x

.

where we defined

∆n

(
f (n) − f (n−1)

)
= B

(
f (n) − f (n−1)

)
+ Q̃

(
f (n) − f (n−1), f (n−1) + g

)
+ Q̃

(
f (n) + g, f (n) − f (n−1)

)
.

As νi(v) ≥ ν0 for all i and v we further get∥∥∥f (n+1)(t)− f (n)(t)
∥∥∥
L1
vL
∞
x (wk)

≤
∫ t

0
e−ν0(t−s)

∥∥∥∆n

(
f (n) − f (n−1)

)∥∥∥
L1
vL
∞
x (wk)

ds

≤
[
CB + CQ

(∥∥∥f (n)
∥∥∥
L∞t L

1
vL
∞
x (wk)

+
∥∥∥f (n−1)

∥∥∥
L∞t L

1
vL
∞
x (wk)

+ 2 ‖g‖L∞t L1
vL
∞
x (wk)

)]
×
∫ t

0
e−ν0(t−s)

∥∥∥f (n)(s)− f (n−1)(s)
∥∥∥
L1
vL
∞
x (νwk)

ds

+ CQ

[∫ t

0
e−ν0(t−s)

(∥∥∥f (n)
∥∥∥
L1
vL
∞
x (νwk)

+
∥∥∥f (n−1)

∥∥∥
L1
vL
∞
x (νwk)

)
ds

]
× sup
s∈[0,t]

∥∥∥f (n)(s)− f (n−1)(s)
∥∥∥
L1
vL
∞
x (wk)

.

(5.5.14)
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where, as above, we used Lemma 5.20 and the estimate of Lemma 5.23.

Let us look at the terms inside the time integrals. Thus, we take the L1
tL

1
vL
∞
x (νwk)-

norm of
(
f (n+1) − f (n)

)
and sum over i.∫ t

0

∥∥∥f (n+1)(s)− f (n)(s)
∥∥∥
L1
vL
∞
x (〈v〉kν)

ds

≤
N∑
i=1

∫ t

0

∫ s

0

∫
R3

e−νi(v)(s−s1)νi(v)wki(v)
∥∥∥∆n

(
f (n) − f (n−1)

)∥∥∥
L∞x

(s1) ds1ds.

We exchange the integration domains in s and s1, which implies∫ t

0

∥∥∥f (n+1)(s)− f (n)(s)
∥∥∥
L1
vL
∞
x (wkν)

ds

≤
N∑
i=1

∫ t

0

∫
R3

(∫ t

s1

e−νi(v)(s−s1)νi(v) ds

)
wki(v)

∥∥∥∆n

(
f (n) − f (n−1)

)∥∥∥
L∞x

(s1) ds1.

Since the integral in s is bounded by 1, we use Lemma 5.20 and Lemma 5.23 again and
obtain∫ t

0

∥∥∥f (n+1)(s)− f (n)(s)
∥∥∥
L1
vL
∞
x (wkν)

ds

≤
[
CB + CQ

(∥∥∥f (n)
∥∥∥
L∞t L

1
vL
∞
x (wk)

+
∥∥∥f (n−1)

∥∥∥
L∞t L

1
vL
∞
x (wk)

+ 2 ‖g‖L∞t L1
vL
∞
x (wk)

)]
×
∫ t

0

∥∥∥f (n)(s1)− f (n−1)(s1)
∥∥∥
L1
vL
∞
x (wkν)

ds1

+ CQ

[∫ t

0

(∥∥∥f (n)
∥∥∥
L1
vL
∞
x (wkν)

+
∥∥∥f (n−1)

∥∥∥
L1
vL
∞
x (wkν)

)
ds1

]
× sup
s∈[0,t]

∥∥∥f (n)(s)− f (n−1)(s)
∥∥∥
L1
vL
∞
x (wk)

(5.5.15)

We now conclude the proof of existence. Indeed, exact same computations but sub-
tracting e−ν(v)tf0 instead of f (n) lead to (5.5.14) and (5.5.15) with f (n−1) replaced by 0.
Therefore, since CB < 1 it follows that for ‖f0‖L1

vL
∞
x (wk) and ‖g‖L∞t L1

vL
∞
x (wkν) sufficiently

small we have that there exists C > 0 such that for all n in N and all t ≥ 0,∥∥∥f (n)(t)
∥∥∥
L1
vL
∞
x (wk)

≤ C ‖f0‖L1
vL
∞
x (wk)

and ∫ t

0

∥∥∥f (n)(s)
∥∥∥
L1
vL
∞
x (wkν)

ds ≤ C
∫ t

0

∥∥∥f (1)
∥∥∥
L1
vL
∞
x (wkν)

ds ≤ C ‖f0‖L1
vL
∞
x (wk) .

131
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Therefore, denoting by C any positive constant independent of f (n) and g, adding (5.5.14)
and (5.5.15) yields∥∥∥f (n+1)(t)− f (n)(t)

∥∥∥
L1
vL
∞
x (wk)

+

∫ t

0

∥∥∥f (n+1)(s)− f (n)(s)
∥∥∥
L1
vL
∞
x (wkν)

ds

≤ Cη1 sup
s∈[0,t]

∥∥∥f (n)(s)− f (n−1)(s)
∥∥∥
L1
vL
∞
x (wk)

+ [CB + Cη1]

∫ t

0

∥∥∥f (n)(s)− f (n−1)(s)
∥∥∥
L1
vL
∞
x (wkν)

ds.

Since CB < 1, choosing η1 such that CB + Cη1 < 1 implies that
(
f (n)
)
n∈N is a Cauchy

sequence in L∞t L
1
vL
∞
x (wk). Hence,

(
f (n)
)
n∈N converges to a function f1 in L∞t L

1
vL
∞
x (wk)

and since k > k0 > γ we can take the limit inside the iterative scheme and f1 is thus a
solution of our differential equation.

Study of the equations in L∞x,v
(
〈v〉βµ−1/2

)
We turn to the system (5.5.3) in L∞x,v

(
〈v〉βµ−1/2

)
with β > 3/2 so that Theorem 5.17

holds.

Proposition 5.25. Let k > k0, β > 3/2 and let assumptions (H1) − (H4) hold for the
collision kernel. Let g = g(t, x, v) be in L∞t L

1
vL
∞
x

(
〈v〉k

)
. Then there exists a unique

function f2 in L∞t L
∞
x,v

(
〈v〉βµ−1/2

)
such that

∂tf2 = G (f2) + A (g) and f2(0, x, v) = 0.

Moreover, if ΠG (f2 + g) = 0 and if

∃ λg, ηg > 0, ∀t ≥ 0, ‖g(t)‖L1
vL
∞
x (〈v〉k) ≤ ηge

−λgt,

then for any 0 < λ2 < min {λg, λ∞}, with λ∞ defined in Theorem 5.17, there exist C2 > 0
such that

∀t ≥ 0, ‖f2(t)‖L∞x,v(〈v〉βµ−1/2) ≤ C2ηge
−λ2t.

The constant C2 only depends on λ2.

Proof of Proposition 5.25. Thanks to the regularising property of A, Lemma 5.19, A (g)
belongs to L∞t L

∞
x,v

(
〈v〉βµ−1/2

)
. Theorem 5.17 implies that there is indeed a unique f2

solution to the differential system, given by

f2 =

∫ t

0
SG(t− s) [A (g) (s)] ds,

where SG(t) is the semigroup generated by G in L∞x,v
(
〈v〉βµ−1/2

)
.
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Suppose that ΠG (f2 + g) = 0 and that ∃η2 > 0 such that ‖g(t)‖L1
vL
∞
x (〈v〉k) ≤ η2e

−λt.

Using the definition of ΠG (5.3.1), the projection part of f2 is straightforwardly bounded
for all t ≥ 0:

‖ΠG (f2) (t)‖L∞x,v(〈v〉βµ−1/2) = ‖ΠG (g) (t)‖L∞x,v(〈v〉βµ−1/2) ≤ CΠG ‖g‖L1
vL
∞
x (〈v〉k)

≤ CΠGηg e
−λgt.

(5.5.16)

Applying Π⊥G = Id − ΠG to the equation satisfied by f2 we get, thanks to the fact the
definition of ΠG (5.3.1) which is independent of t,

∂t

[
Π⊥G (f2)

]
= G

[
Π⊥G (f2)

]
+ Π⊥G (A (g)) .

This yields

Π⊥G (f2) =

∫ t

0
SG(t− s)

[
Π⊥G (A (g)) (s)

]
ds.

We now use the exponential decay of SG(t) on (Ker(G))⊥, see Theorem 5.17.∥∥∥Π⊥G (f2)
∥∥∥
L∞x,v(〈v〉βµ−1/2)

≤ C∞
∫ t

0
e−λ∞(t−s)

∥∥∥Π⊥G (A (g)) (s)
∥∥∥
L∞x,v(〈v〉βµ−1/2)

ds.

Using the definition of ΠG (5.3.1) and then the regularising property of A Lemma 5.19 we
further bound, for a fixed λ2 < min {λ∞, λg},∥∥∥Π⊥G (f2)

∥∥∥
L∞x,v(〈v〉βµ−1/2)

≤ C∞CΠGCACgηg

∫ t

0
e−λ∞(t−s)e−λgs ds

≤ CGC∞CΠGCACgηg te
−min{λg ,λ∞}t

≤ C2(λ2)ηge
−λ2t. (5.5.17)

Gathering (5.5.16) and (5.5.17) yields the desired exponential decay.

Proof of Proposition 5.18

Take f0 in L1
vL
∞
x

(
〈v〉k

)
such that ΠG(f0) = 0.

The existence will be proved by an iterative scheme. We start with f
(0)
1 = f

(0)
2 = 0 and

we approximate the system of equation (5.5.2)− (5.5.3) as follows.

∂tf
(n+1)
1 = G1

(
f

(n+1)
1

)
+ Q

(
f

(n+1)
1 + f

(n)
2

)
∂tf

(n+1)
2 = G

(
f

(n+1)
2

)
+ A(δ)

(
f

(n+1)
1

)
,

with the following initial data

f
(n+1)
1 (0, x, v) = f0(x, v) and f

(n+1)
2 (0, x, v) = 0.
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Assume that (1 + C1C2) ‖f0‖ ≤ η1, where C1, η1 were defined in Proposition 5.24 and
C2 was defined in Proposition 5.25. Thanks to Proposition 5.24 and Proposition 5.25, an

induction proves first that
(
f

(n)
1

)
n∈N

and
(
f

(n)
2

)
n∈N

are well-defined sequences and second

that for all n in N and all t ≥ 0∥∥∥f (n)
1 (t)

∥∥∥
L1
vL
∞
x (〈v〉k)

≤ e−λ1t ‖f0‖L1
vL
∞
x (〈v〉k) (5.5.18)∥∥∥f (n)

2 (t)
∥∥∥
L∞x,v(〈v〉βµ−1/2)

≤ C1C2e
−λ2t ‖f0‖L1

vL
∞
x (〈v〉k) , (5.5.19)

with λ2 < min {λ1, λ∞}. Indeed, if we constructed f
(n)
1 and f

(n)
2 satisfying the exponential

decay above then we can construct f
(n+1)
1 with Proposition 5.24 and g = f

(n)
2 , which has

the required exponential decay (5.5.18), and then construct f
(n+1)
2 with Proposition 5.25

and g = f
(n+1)
1 . Finally, we have the following equality

∂t

(
f

(n+1)
1 + f

(n+1)
2

)
= G

(
f

(n+1)
1 + f

(n+1)
2

)
+ Q

(
f

(n+1)
1 + f

(n)
2

)
.

Thanks to orthogonality property of Q in Lemma 5.23 and the definition of ΠG (5.3.1) we
obtain that the projection is constant with time and thus

ΠG

(
f

(n+1)
1 + f

(n+1)
2

)
= ΠG(f0) = 0.

Applying Proposition 5.25 we obtain the exponential decay (5.5.19) for f
(n+1)
2 .

We recognize exactly the same iterative scheme for fn+1
1 as in the proof of Proposition

5.24 with g replaced by f
(n)
2 . Moreover, the uniform bound (5.5.19) allows us to derive the

same estimates as in the latter proof independently of f
(n)
2 . As a conclusion,

(
f

(n)
1

)
n∈N

is

a Cauchy sequence in L∞t L
1
vL
∞
x

(
〈v〉k

)
and therefore converges strongly towards a function

f1.

By (5.5.19), the sequence
(
f

(n)
2

)
n∈N

is bounded in L∞t L
∞
x,v

(
〈v〉βµ−1/2

)
and is therefore

weakly-* compact and therefore converges, up to a subsequence, weakly-* towards f2 in
L∞t L

∞
x,v

(
〈v〉βµ−1/2

)
.

Since the function inside the collision operator behaves like |v − v∗|γ and that in our
weighted spaces k > k0 > γ, we can take the weak limit inside the iterative scheme. This
implies that (f1, f2) is solution to the system (5.5.2) − (5.5.3) and thus f = f1 + f2 is
solution to the perturbed multi-species equation (5.5.1). Moreover, taking the limit inside
the exponential decays (5.5.18) and (5.5.19) yields the expected exponential decay for f .

5.5.2. Uniqueness of solutions in the perturbative regime

As said in Remark 2.2.5, we are solely interested in the uniqueness of solutions to the multi-
species Boltzmann equation (5.1.1) in the perturbative setting. In other terms, uniqueness
of solutions of the form F = µ+ f as long as F0 is close enough to the global equilibrium
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µ. This is equivalent to proving the uniqueness of solutions to the perturbed multi-species
equation

∂tf = G(f) + Q(f) (5.5.20)

for f0 small.

Proposition 5.26. Let k > k0 and let assumptions (H1) − (H4) hold for the collision
kernel. There exists ηk > 0 such that for any f0 in L1

vL
∞
x

(
〈v〉k

)
; if ‖f0‖L1

vL
∞
x (〈v〉k) ≤ ηk

then there exists at most one solution to the perturbed multi-species equation (5.5.20).
The constant ηk only depends on k, N and the collision kernels.

The uniqueness will follow from the study of the semigroup generated by G in a dissipa-
tive norm as well as a new a priori stability estimate for solutions to (5.5.20) in the latter
norm. They are the purpose of the next two lemmas.

Lemma 5.27. Let k > k0 and let assumptions (H1) − (H4) hold for the collision kernel.
The operator G generates a semigroup in L1

vL
∞
x

(
〈v〉k

)
. Moreover, there exist Ck, λk > 0

such that for all f0 in L1
vL
∞
x

(
〈v〉k

)
with ΠG(f0) = 0

∀t ≥ 0, ‖SG(f)‖L1
vL
∞
x (〈v〉k) ≤ Cke

−λkt ‖f0‖L1
vL
∞
x (〈v〉k) .

Proof of Lemma 5.27. From Proposition 5.18 with a collision operator Q = 0 we have the
existence of a solution to the equation

∂tf = G (f)

with initial data f0 in L1
vL
∞
x

(
〈v〉k

)
. Moreover, that solution satisfies ΠG(f) = 0 and it

decays exponentially fast with rate λk.
Let g be another solution to the linear equation then

∂t (f − g) = [−v · ∇x − ν + B + A] (f − g) .

Similar computations as to obtain (5.5.13) yield

d

dt
‖f − g‖L1

vL
∞
x (〈v〉k) ≤− ‖f − g‖L1

vL
∞
x (〈v〉kν) + ‖A(f − g)‖L1

vL
∞
x (〈v〉k)

+ ‖B(f − g)‖L1
vL
∞
x (〈v〉k) .

Using Lemma 5.19 and Lemma 5.20, there exists 0 < CB < 1 such that

d

dt
‖f − g‖L1

vL
∞
x (〈v〉k) ≤ −(1− CB) ‖f − g‖L1

vL
∞
x (〈v〉kν) + CA ‖f − g‖L1

vL
∞
x (〈v〉k) . (5.5.21)

Since (1− CB) > 0 we can further bound

d

dt
‖f − g‖L1

vL
∞
x (〈v〉k) ≤ [CA − (1− CB)] ‖f − g‖L1

vL
∞
x (〈v〉k)
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5. The nonlinear multi-species Boltzmann system close to global equilibrium

and a Grönwall lemma therefore yields f = g if g0 = f0.
We thus obtain existence and uniqueness of solution to the linear equation which means

that G generates a semigroup in L1
vL
∞
x

(
〈v〉k

)
. Moreover it has an exponential decay of

rate λk > 0 for functions in (Ker(G))⊥.

We now derive a stability estimate in an equivalent norm that catches the dissipativity
of the linear operator.

Lemma 5.28. Let k > k0 and let assumptions (H1) − (H4) hold for the collision kernel.
For α > 0, we define

‖f‖α,k = α ‖f‖L1
vL
∞
x (〈v〉k) +

∫ +∞

0
‖SG(s) (f)‖L1

vL
∞
x (〈v〉k) ds.

There exist η, α, C1, C2 and λ > 0 such that ‖·‖α,k ∼ ‖·‖L1
vL
∞
x (〈v〉k) and for all f0 in

L1
vL
∞
x

(
〈v〉k

)
with ΠG(f0) = 0 and such that

‖f0‖L1
vL
∞
x (〈v〉k) ≤ η;

if f in L1
vL
∞
x

(
〈v〉k

)
with ΠG(f) = 0 is solution to the perturbed equation (5.5.20) with initial

data f0 then
d

dt
‖f‖α,k ≤ −

(
C1 − C2 ‖f‖α,k

)
‖f‖α,k,ν ,

where the subscript ν refers to the fact that the weight is multiplied by νi(v) on each coor-
dinate.

Proof of Lemma 5.28. Start with the new norm. Lemma 5.27 proved that for all f0 such
that ΠG(f0) = 0 and all s ≥ 0,

‖SG(s) (f0)‖L1
vL
∞
x (〈v〉k) ≤ Cke

−λks ‖f0‖L1
vL
∞
x (〈v〉k)

and hence

α ‖f0‖L1
vL
∞
x (〈v〉k) ≤ ‖f0‖α,k ≤

(
α+

Ck
λk

)
‖f0‖L1

vL
∞
x (〈v〉k) .

Suppose that f is the solution described in Lemma 5.28. Same computations as to obtain
(5.5.13) and (5.5.21) yields

d

dt
‖f‖L1

vL
∞
x (〈v〉k) ≤ −(1− CB) ‖f‖L1

vL
∞
x (〈v〉kν) + CA ‖f‖L1

vL
∞
x (〈v〉k) + ‖Q(f)‖L1

vL
∞
x (〈v〉k) .

To which we can apply Lemma 5.23:

d

dt
‖f‖L1

vL
∞
x (〈v〉k) ≤ −

(
1− CB − CQ ‖f‖L1

vL
∞
x (〈v〉k)

)
‖f‖L1

vL
∞
x (〈v〉kν) + CA ‖f‖L1

vL
∞
x (〈v〉k) .

(5.5.22)

136



5.5. The full nonlinear equation in a perturbative regime

We now turn to the second term in the ‖·‖α,k norm. For q in [1,∞) we denote Φq(F) =

sgn(F) |F|q−1, where it has to be understood component by component. We thus have

d

dt

∫ +∞

0
‖SG(s) (f(t))‖L1

vL
q
x(〈v〉k) ds

=

∫ +∞

0

∫
R3

〈v〉k ‖SG(s)(f)‖1−q
Lqx

(∫
T3

Φq (SG(s)(f))SG(s) [G(f)] dx

)
dvds

+

∫ +∞

0

∫
R3

〈v〉k ‖SG(s)(f)‖1−q
Lqx

(∫
T3

Φq (SG(s)(f))SG(s) [Q(f)] dx

)
dvds

First, by definition of SG(s) we have that

Φq (SG(s)(f(t)))SG(s) [G(f(t))] =
d

ds
|SG(s)(f(t))|q .

Second, by Hölder inequality with q and q/(q − 1) (see (5.5.12)):∫
T3

Φq (SG(s)(f(t)))SG(s) [Q(f(t))] dx ≤ ‖SG(s)(f(t))‖q−1
Lqx
‖SG(s)(Q(f(t)))‖Lqx .

We therefore get

d

dt

∫ +∞

0
‖SG(s) (f(t))‖L1

vL
q
x(〈v〉k) ds ≤

∫ +∞

0

d

ds
‖SG(f(t))‖L1

vL
q
x(〈v〉k) ds

+

∫ +∞

0
‖SG(s)(Q(f(t)))‖L1

vL
q
x(〈v〉k) ds.

We make q tend to infinity. Then we have ΠG(Q(f(t))) = 0 by Lemma 5.23 so we are able
to use the exponential decay of SG(s) Lemma 5.27. This yields

d

dt

∫ +∞

0
‖SG(s) (f(t))‖L1

vL
∞
x (〈v〉k) ds ≤− ‖f(t)‖L1

vL
∞
x (〈v〉k)

+ Ck

(∫ +∞

0
e−λks ds

)
‖Q(f(t))‖L1

vL
∞
x (〈v〉k) .

With Lemma 5.23 we control Q(f):

d

dt

∫ +∞

0
‖SG(s) (f(t))‖L1

vL
∞
x (〈v〉k) ds ≤− ‖f(t)‖L1

vL
∞
x (〈v〉k)

+
CkCQ
λk

‖f‖L1
vL
∞
x (〈v〉k) ‖f‖L1

vL
∞
x (〈v〉kν) .

(5.5.23)

To conclude we add α× (5.5.22) + (5.5.23),

d

dt
‖f‖k,α ≤−

[
α(1− CB)−

(
αCQ +

CkCQ
λk

)
‖f‖L1

vL
∞
x (〈v〉k)

]
‖f‖L1

vL
∞
x (〈v〉kν)

+ [αCA − 1] ‖f‖L1
vL
∞
x (〈v〉k) .

(5.5.24)

Choosing α such that (αCA − 1) < 0 yields the desired estimate.
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We now prove the uniqueness proposition.

Proof of Proposition 5.26. Let f and g in L1
vL
∞
x

(
〈v〉k

)
, k > k0, be two solutions of the

perturbed equation with initial datum f0.
Thanks to Lemma 5.28, if ‖f0‖L1

vL
∞
x (〈v〉k) is small enough we can deduce from the differ-

ential inequality that for all t ≥ 0,

d

dt
‖f‖α,k ≤ −Ck ‖f‖α,k,ν ,

and the same holds for g with the same constant Ck > 0. We therefore have two estimates
on f and g. Either by integrating from 0 to t:

∀t ≥ 0,

∫ t

0
‖f(s)‖α,k,ν ds ≤ C

−1
k ‖f0‖α,k ; (5.5.25)

or by Grönwall lemma:

∀t ≥ 0, ‖f(t)‖α,k ≤ e
−Ckt ‖f0‖α,k . (5.5.26)

The same estimate holds for g.

Recalling the definition (5.5.11) of the operator Q̃, we find the differential equation
satisfied by f − g:

∂t (f − g) = G (f − g) + Q̃ (f − g, f) + Q̃ (g, f − g) .

Using controls on B (Lemma 5.20), A (Lemma 5.19), Q̃ (Lemma 5.23) and the semigoup
property (Lemma 5.27), exact same computations as for (5.5.24), gives

d

dt
‖f − g‖k,α ≤−

[
α(1− CB)−

(
αCQ +

CkCQ
λk

)(
‖f‖α,k + ‖g‖α,k

)]
‖f − g‖α,k,ν

+
[
αCA − 1 + CQ

(
‖f‖α,k,ν + ‖g‖α,k,ν

)]
‖f − g‖α,k .

Note that we used the equivalence of the ‖·‖α,k norm and our usual norm (see Lemma
5.28).

First, by (5.5.26) and CB < 1, if f0 is small enough then for all t ≥ 0,

α(1− CB)−
(
αCQ +

CkCQ
λk

)(
‖f‖α,k + ‖g‖α,k

)
≤ 0.

Second we take α small enough so that (αCA − 1) < 0. Hence, integrating the differential
inequality from 0 to t:

‖f(t)− g(t)‖k,α ≤ CQ
[∫ t

0

(
‖f(s)‖α,k,ν + ‖g(s)‖α,k,ν

)
ds

]
sup
s∈[0,t]

‖f(s)− g(s)‖k,α .

To conclude we use (5.5.25) to obtain

∀t ≥ 0, ‖f(t)− g(t)‖k,α ≤
2CQ
Ck
‖f0‖α,k

(
sup
s∈[0,t]

‖f(s)− g(s)‖k,α

)
,

which implies f = g if ‖f0‖α,k is small enough.
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5.5.3. Positivity of solutions

This last subsection is dedicated to the positivity of the solution to the multi-species Boltz-
mann equation

∂tF + v · ∇xF = Q (F) (5.5.27)

in the perturbative setting studied above.

Proposition 5.29. Let k > k0, let assumptions (H1)− (H4) hold for the collision kernel,
and let f0 be in L1

vL
∞
x

(
〈v〉k

)
with ΠG(f0) = 0 and

‖f0‖L1
vL
∞
x (〈v〉k) ≤ ηk,

where ηk > 0 is chosen such that Proposition 5.18 and Proposition 5.26 hold and denote f
the unique solution of the perturbed multi-species equation associated to f0.
Suppose that F0 = µ+ f0 ≥ 0 then F = µ+ f ≥ 0.

Proof of Proposition 5.29. Since we are working with the Grad’s cutoff assumption we can
decompose the nonlinear operator into

Q(F) = −Q1(F) + Q2(F)

where

Q1i(F) =

N∑
j=1

∫
R3×S2

Bij (|v − v∗|, cos θ)FiF
∗
j dv∗dσ

Q2i(F) =
N∑
j=1

∫
R3×S2

Bij (|v − v∗|, cos θ)F ′iF
′∗
j dv∗dσ.

Following the idea of [83], we construct an interative scheme for the multi-species Boltz-
mann equation

∂tF
(n+1) + v · ∇xF(n+1) + Q1(F(n+1),F(n)) = Q2(F(n)),

with the non-symmetriized bilinear form Q1 defined as

Q1i(F,G) =
N∑
j=1

∫
R3×S2

Bij (|v − v∗|, cos θ)FiG
∗
j dv∗dσ

Q2i(F,G) =
N∑
j=1

∫
R3×S2

Bij (|v − v∗|, cos θ)F ′iG
′∗
j dv∗dσ.

Defining f (n) = Fn − µ we have the following differential iterative scheme

∂tf
(n+1) + v · ∇xf (n+1) = −ν(v)

(
f (n+1)

)
+ K

(
f (n)

)
+ Q2

(
f (n)

)
− Q̃1

(
f (n+1), f (n)

)
.
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5. The nonlinear multi-species Boltzmann system close to global equilibrium

As before, we can prove that
(
f (n)

)
n∈N is well-defined and converges in L1

vL
∞
x

(
〈v〉k

)
towards

f , the unique solution of the perturbed multi-species equation and thus the same holds
for Fn converging towards F the unique perturbed solution of the original multi-species
Boltzmann equation.

We prove that Fn ≥ 0 by an induction on N .
By definition we see that

Q̃1(F(n+1),F(n)) = q1(F(n))F(n+1),

and thus applying the Duhamel formula along the characteristics gives

F(n+1)(t, x, v)

= exp

[
−
∫ t

0
q1(F(n))(s, x− (t− s)v, v) ds

]
F0(x− tv, v)

+

∫ t

0
exp

[
−
∫ t

s
q1(F(n))(s1, x− (t− s1)v, v) ds1

]
Q2(F(n))(s, x− (t− s)v, v) ds.

By positivity of F(n), all the terms on the right-hand side are positive and therefore Fn+1 ≥
0. Passing to the limit implies that F ≥ 0.
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The diffusive models
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6. Cross-diffusion population systems for
multiple species

Our goal in this chapter is the proof of global existence of weak solutions to reaction-cross-
diffusion systems for an arbitrary number of competing population species in a bounded
domain with homogeneous Neumann boundary conditions. In the case of linear transi-
tion rates, the model considered extends the two-species population model of Shigesada,
Kawasaki, and Teramoto. The existence proof uses a refined entropy method with the help
of a new approximation scheme. Global existence can be proved under a detailed balance
or weak cross-diffusion condition. The detailed balance condition is related to the symme-
try of the mobility matrix, which mirrors Onsager’s principle in thermodynamics. Under
detailed balance (and without reaction), we can show that the entropy is nonincreasing
in time, but counter-examples illustrate that the entropy can increase initially if detailed
balance is not satisfied.

6.1. The model

We briefly recall the model. As already introduced in Section 3.1, we consider the reaction-
cross-diffusion equations

∂tui − div

( n∑
j=1

Aij(u)∇uj
)

= fi(u) in Ω, t > 0, i = 1, . . . , n, (6.1.1)

with homogeneous Neumann boundary conditions and initial conditions

n∑
j=1

Aij(u)∇uj · ν = 0 on ∂Ω, t > 0, ui(·, 0) = u0
i in Ω, (6.1.2)

where the variable ui describes the density of the ith species of u = (u1, . . . , un), Ω ⊂ Rd
(d ≥ 1) is a bounded domain with Lipschitz boundary, and ν is the exterior unit normal
vector to ∂Ω. The diffusion coefficients have the form

Aij(u) = δijpi(u) + ui
∂pi
∂uj

(u), pi(u) = ai0 +

n∑
k=1

aiku
s
k, i, j = 1, . . . , n, (6.1.3)

with ai0, aij ≥ 0 and s > 0. The reaction terms fi are of Lotka-Volterra type,

fi(u) = ui

(
bi0 −

n∑
j=1

bijuj

)
, i = 1, . . . , n, (6.1.4)
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and we assume that we are in the competition case, thus bi0, bij ≥ 0. We notice that
equations (6.1.1) can be also written in the following form

∂tui −∆(uipi(u)) = fi(u), 1 ≤ i ≤ n. (6.1.5)

The entropy reads

H[u] =

∫
Ω
h(u)dx =

∫
Ω

n∑
i=1

πihs(ui)dx, (6.1.6)

where πi > 0 are some positive numbers and

hs(z) =

 z(log z − 1) + 1 for s = 1,
zs − sz
s− 1

+ 1 for s 6= 1.
(6.1.7)

If we use the so-called entropy variable w = (w1, . . . , wn) by

wi =
∂h

∂ui
(u) =

{
πi log ui for s = 1,
sπi
s− 1

(us−1
i − 1) for s 6= 1,

we can rewrite equations (6.1.1) as

∂tu(w)− div(B(w)∇w) = f(u(w)), B(w) = A(u)H(u)−1, (6.1.8)

with u(w) := (h′)−1(w) describing the inverse transformation and H(u) = h′′(u) the Hes-
sian of the entropy density.

Now we introduce two important conditions, a detailed-balance condition and a weak
cross-diffusion condition, which are important in the context of deriving the crucial gradient
estimate in Section 6.2.1, which has the form

d

dt
H[u] + 4

∫
Ω

n∑
i=1

πiai0|∇
√
ui|2dx+ 2

∫
Ω

n∑
i=1

πiaii|∇ui|2dx ≤ 0. (6.1.9)

This inequality implies an H1 estimate for
√
ui if ai0 > 0, and an H1 estimate for ui

if aii > 0. First, it turns out that (6.1.6) is a Lyapunov functional and the condition
H(u)A(u) is symmetric and positive definite if

πiaij = πjaji for all i, j = 1, . . . , n, (6.1.10)

which we will call detailed balance condition.
Moreover, we show that if self-diffusion dominates cross-diffusion in the sense

η0 := min
i=1,...,n

(
aii −

s

2(s+ 1)

n∑
j=1

(√
aij −

√
aji
)2)

> 0, (6.1.11)

and detailed balance may be not satisfied, then the estimate leading to (6.1.9) still holds
true, but with different constants, leading to global existence. We remark that we set
πi = 1 whenever detailed balance does not hold.
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6.1.1. Main results

Theorem 6.1 (Global existence for linear transition rates). Let T > 0, s = 1 and u0 =
(u0

1, . . . , u
0
n) be such that u0

i ≥ 0 for i = 1, . . . , n and
∫

Ω h(u0)dx < ∞. Let either detailed
balance and aii > 0 for i = 1, . . . , n; or (6.1.11) hold. Then there exists a weak solution
u = (u1, . . . , un) to (6.1.1)-(6.1.2) satisfying ui ≥ 0 in Ω, t > 0, and

ui ∈ L2(0, T ;H1(Ω)), ui ∈ L∞(0, T ;L1(Ω)),

ui ∈ L2+2/d(QT ), ∂tui ∈ Lq
′
(0, T ;W 1,q(Ω)′), i = 1, . . . , n,

where q = 2(d + 1) and q′ = (2d + 2)/(2d + 1). The solution u solves (6.1.1) in the weak
sense ∫ T

0
〈∂tu, φ〉dt+

∫ T

0

∫
Ω
∇φ : A(u)∇udxdt =

∫ T

0

∫
Ω
f(u) · φdxdt (6.1.12)

for all test functions φ ∈ Lq(0, T ;W 1,q(Ω)), and the initial condition in (6.1.2) is satisfied
in the sense of W 1,q(Ω)′.

For a generalization of this theorem to the case of vanishing self-diffusion, see Remark
6.12.

The second result works for nonlinear transition rates (s 6= 1). In the sublinear case
(i.e. s < 1), we face the probem that the entropy inequality only yields the regularity
ui ∈ L2s+2/d(QT ). This doe not yield an L2 estimate for “small” exponents s < 1 and large
dimensions d. Thus, we need to assume the lower bound s > 1− 2/d and a weaker growth
of the Lotka-Volterra terms:

fi(u) = ui

(
bi0 −

n∑
j=1

biju
σ
j

)
, i = 1, . . . , n, 0 ≤ σ < 2s− 1 + 2/d. (6.1.13)

The superlinear case (i.e. s > 1) is in some sense easier than the sublinear one, because
the entropy inequality gives the higher regularity ui ∈ Lp(QT ) with p > 2. On the other
hand, we need a weak cross-diffusion constraint. Thus, under detailed balance, we require
that

η1 := min
i=1,...,n

(
aii −

s− 1

s+ 1

n∑
j=1, j 6=i

aij

)
> 0, (6.1.14)

and if detailed balance is not satisfied, we assume that

η2 := min
i=1,...,n

(
aii −

1

2(s+ 1)

∑
j=1, j 6=i

(
s(aij + aji)− 2

√
aijaji

))
> 0. (6.1.15)

For m ≥ 2 and 1 ≤ q ≤ ∞ we introduce the space

Wm,q
ν (Ω) = {φ ∈Wm,q(Ω) : ∇φ · ν = 0 on ∂Ω}. (6.1.16)
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6. Cross-diffusion population systems for multiple species

Theorem 6.2 (Global existence for nonlinear transition rates). Assume that T > 0, s >
max{0, 1 − 2/d}, and let the initial data u0 be such that u0

i ≥ 0 for i = 1, . . . , n and∫
Ω h(u0)dx <∞. If s < 1, we suppose that (6.1.13) and either detailed balance and aii > 0

for i = 1, . . . , n; or (6.1.11) hold. If s > 1, we suppose that (6.1.4) and either detailed
balance and (6.1.14) or (6.1.15) hold. Then there exist a number 2 ≤ q < ∞ and a weak
solution u = (u1, . . . , un) to (6.1.1)-(6.1.2) satisfying ui ≥ 0 in Ω, t > 0, and

usi ∈ L2(0, T ;H1(Ω)), ui ∈ L∞(0, T ;Lmax {1,s}(Ω)),

ui ∈ Lp(s)(QT ), ∂tui ∈ Lq
′
(0, T ;Wm,q

ν (Ω)′), i = 1, . . . , n,

where p(s) = 2s+ (2/d) max{1, s}, 1/q + 1/q′ = 1, and m > max{1, d/2}. The solution u
solves (6.1.1) in the “very weak” sense∫ T

0
〈∂tu, φ〉dt−

∫ T

0

∫
Ω

n∑
i=1

uipi(u)∆φidxdt =

∫ T

0

∫
Ω
f(u) · φdxdt (6.1.17)

for all φ = (φ1, . . . , φn) ∈ Lq(0, T ;Wm,q
ν (Ω)), and the initial condition holds in the sense of

Wm,q
ν (Ω)′.

Again, we can generalize the theorem to the case of vanishing self-diffusion if either
s > max{1, d/2}; or 0 < s < 1, d = 1, and σ < s + 1 hold; which is sketched in Remark
6.17.

The chapter is organized as follows. Section 6.2 is concerned with the positive definiteness
of the matrices H(u)A(u) and Hε(u)Aε(u). The existence theorems are proved in Sections
6.3 and 6.4, respectively. In the final Section 6.5, we detail the connection between the
detailed balance condition and the symmetry of H(u)A(u), prove a nonlinear Aubin-Lions
compactness lemma needed in the proof of Theorem 6.2, and show that the entropy may
be increasing initially for special initial data.

6.2. Positive definiteness of the mobility matrix

We derive sufficient conditions for the positive definiteness of the matrix H(u)A(u). Let
R+ = (0,∞). Recall that

Aij(u) = δij

(
ai0 +

n∑
k=1

aiku
s
k

)
+ saijuiu

s−1
j , Hij(u) = δijsπiu

s−2
i .

The following result is valid for any s > 0.

Lemma 6.3. Let s > 0. Then, for any z ∈ Rn and u ∈ Rn+,

z>H(u)A(u)z ≥ s
n∑
i=1

πiai0u
s−2
i z2

i + s(1− s)
n∑

i,j=1, i 6=j
πiaiju

s
ju
s−2
i z2

i

+ s

n∑
i=1

(
(s+ 1)πiaii −

s

2

n∑
j=1

(√
πiaij −

√
πjaji

)2)
u

2(s−1)
i z2

i . (6.2.1)
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6.2. Positive definiteness of the mobility matrix

Proof. The elements of the matrix H(u)A(u) equal

(H(u)A(u))ij = δijsπi

(
ai0u

s−2
i +

n∑
k=1

aiku
s
ku

s−2
i

)
+ s2aij(uiuj)

s−1

= δij
(
sπiai0u

s−2
i + s(s+ 1)πiaiiu

2(s−1)
i

)
+ δijsπi

n∑
k=1, k 6=i

aiku
s
ku

s−2
i + (1− δij)s2πiaij(uiuj)

s−1.

Therefore, for z ∈ Rn,

z>H(u)A(u)z = s

n∑
i=1

πiai0u
s−2
i z2

i + s(s+ 1)

n∑
i=1

πiaiiu
2(s−1)
i z2

i

+ s
n∑

i,j=1, i 6=j
πiaiju

s
ju
s−2
i z2

i + s2
n∑

i,j=1, i 6=j
πiaij(uiuj)

s−1zizj (6.2.2)

=: I1 + · · ·+ I4.

The sum I1 is the same as the first term on the right-hand side of (6.2.1), and I2 equals
the first part of the last term on this right-hand side. The remaining terms are written as

I3 + I4 = s2
n∑

i,j=1, i 6=j
πiaiju

s
ju
s−2
i z2

i + s(1− s)
n∑

i,j=1, i 6=j
πiaiju

s
ju
s−2
i z2

i

+ s2
n∑

i,j=1, i 6=j
πiaij(uiuj)

s−1zizj .

The second term corresponds to the second term on the right-hand side of (6.2.1). Thus,
it remains to prove that

J := s2
n∑

i,j=1, i 6=j
πiaiju

s
ju
s−2
i z2

i + s2
n∑

i,j=1, i 6=j
πiaij(uiuj)

s−1zizj

≥ −s
2

2

n∑
j=1

(√
πiaij −

√
πjaji

)2
u

2(s−1)
i z2

i .

For this, we employ twice the inequality b2 + c2 ≥ 2bc:

J = s2
n∑

i,j=1, i<j

πiaiju
s
ju
s−2
i z2

i + s2
n∑

i,j=1, i>j

πiaiju
s
ju
s−2
i z2

i

+ s2
n∑

i,j=1, i<j

πiaij(uiuj)
s−1zizj + s2

n∑
i,j=1, i>j

πiaij(uiuj)
s−1zizj

= s2
n∑

i,j=1, i<j

(
πiaiju

s
ju
s−2
i z2

i + πjajiu
s
iu
s−2
j z2

j + (πiaij + πjaji)(uiuj)
s−1zizj

)
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6. Cross-diffusion population systems for multiple species

≥ s2
n∑

i,j=1, i<j

(
2
√
πiaijπjaji(uiuj)

s−1|zizj | − (πiaij + πjaji)(uiuj)
s−1|zizj |

)
= −s2

n∑
i,j=1, i<j

(√
πiaij −

√
πjaji

)2∣∣(us−1
i zi)(u

s−1
j zj)

∣∣
≥ −s

2

2

n∑
i,j=1, i<j

(√
πiaij −

√
πjaji

)2(
(us−1
i zi)

2 + (us−1
j zj)

2
)

= −s
2

2

n∑
i,j=1, i 6=j

(√
πiaij −

√
πjaji

)2
(us−1
i zi)

2.

This finishes the proof.

6.2.1. Sublinear and linear transition rates

For s ≤ 1, Lemma 6.3 provides immediately the positive definiteness of H(u)A(u) if detailed
balance (6.1.10) holds. However, we can derive a sharper result.

Lemma 6.4 (Detailed balance). Let 0 < s ≤ 1 and πiaij = πjaji for all i 6= j. Then, for
all z ∈ Rn and u ∈ Rn+,

z>H(u)A(u)z ≥ s
n∑
i=1

πiu
s−2
i

(
ai0 + (s+ 1)aiiu

s
i

)
z2
i

+
s2

2

n∑
i,j=1, i 6=j

πiaij(uiuj)
s−1

(√
uj
ui
zi +

√
ui
uj
zj

)2

. (6.2.3)

Proof. The sum of the terms I1 and I2 in (6.2.2) is exactly the first term on the right-hand
side of (6.2.3). Using detailed balance, we find that

I3 + I4 =
s

2

n∑
i,j=1, i 6=j

πiaij(uiuj)
s−1uj

ui
z2
i +

s

2

n∑
i,j=1, i 6=j

πiaij(ujui)
s−1 ui

uj
z2
j

+ s2
n∑

i,j=1, i 6=j
πiaij(uiuj)

s−1zizj

=
s2

2

n∑
i,j=1, i 6=j

πiaij(uiuj)
s−1uj

ui
z2
i +

s2

2

n∑
i,j=1, i 6=j

πiaij(ujui)
s−1 ui

uj
z2
j

+ s2
n∑

i,j=1, i 6=j
πiaij(uiuj)

s−1zizj +
s

2
(1− s)

n∑
i,j=1, i 6=j

πiaij(uiuj)
s−1uj

ui
z2
i

+
s

2
(1− s)

n∑
i,j=1, i 6=j

πiaij(ujui)
s−1 ui

uj
z2
j .

The sum of the first three terms equal the second term on the right-hand side of (6.2.3),
and the remaining two terms are nonnegative since s ≤ 1.
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6.2. Positive definiteness of the mobility matrix

Remark 6.5. In the existence proof, we will choose zi = ∇ui (with a slight abuse of

notation). Then the first term in (6.2.3) gives an estimate for ∇us/2i in L2 (if ai0 > 0) and
the better bound ∇usi ∈ L2 (if aii > 0). If aii = 0, we lose the latter regularity. This loss
can be compensated by the last term in (6.2.3) giving

(uiuj)
s−1

∣∣∣∣√uj
ui
∇ui +

√
ui
uj
∇uj

∣∣∣∣2 =
4

s2
|∇(uiuj)

s/2|2, i 6= j,

and consequently a bound for ∇(uiuj)
s/2 in L2. This observation is used in Remark 6.12.

Lemma 6.6 (Non detailed balance). Let 0 < s ≤ 1. If

η0 := min
i=1,...,n

(
aii −

s

2(s+ 1)

n∑
j=1

(√
aij −

√
aji
)2) ≥ 0,

then H(u)A(u) is positive definite. Under the slightly stronger condition η0 > 0, it holds
for all z ∈ Rn and u ∈ Rn+ that

z>H(u)A(u)z ≥ s
n∑
i=1

ai0u
s−2
i z2

i + η0s(s+ 1)
n∑
i=1

u
2(s−1)
i z2

i .

The lemma follows from Lemma 6.3 after choosing πi = 1 for i = 1, . . . , n. Observe that
η0 > 0 holds if aii > 0 for all i and (aij) is symmetric.

It is possible to show the positive definiteness of H(u)A(u) without any restriction on
(aij) (except positivity) if we restrict the choice of the parameter s; see the following lemma.

Lemma 6.7. Let aij + aji > 0 for i, j = 1, . . . , n and 0 < s ≤ s0, where

s0 := min
i,j=1,...,n

2
√
aijaji

aij + aji
≤ 1.

Then, for all z ∈ Rn and u ∈ Rn+,

z>H(u)A(u)z ≥ s
n∑
i=1

ai0u
s−2
i z2

i + s(s+ 1)
n∑
i=1

aiiu
2(s−1)
i z2

i .

Proof. We choose πi = 1 for i = 1, . . . , n. With the notation of the proof of Lemma 6.3, we
only need to show that I3 + I4 ≥ 0. Employing the inequality b2 + c2 ≥ 2bc, we find that

I3 + I4 = s
n∑

i,j=1, i<j

(
aiju

s
ju
s−2
i z2

i + ajiu
s
iu
s−2
j z2

j + s(aij + aji)(uiuj)
s−1zizj

)
≥ s

n∑
i,j=1, i<j

(
2
√
aijaji(uiuj)

s−1|zizj | − s(aij + aji)(uiuj)
s−1|zizj |

)
= s

n∑
i,j=1, i<j

(aij + aji)

(
2
√
aijaji

aij + aji
− s
)

(uiuj)
s−1|zizj |,

and this expression is nonnegative if s ≤ s0.
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6. Cross-diffusion population systems for multiple species

6.2.2. Superlinear transition rates

Again, we assume first that detailed balance holds.

Lemma 6.8 (Detailed balance). Let s > 1 and πiaij = πjaji for all i 6= j. If

η1 := min
i=1,...,n

(
aii −

s− 1

s+ 1

n∑
j=1, j 6=i

aij

)
≥ 0,

then H(u)A(u) is positive definite. Furthermore, if η1 > 0, then, for all z ∈ Rn and u ∈ Rn+,

z>H(u)A(u)z ≥ s
n∑
i=1

πiai0u
s−2
i z2

i + η1s(s+ 1)

n∑
i=1

πiu
2(s−1)
i z2

i .

Proof. It is sufficient to estimate the sum I3 + I4, defined in the proof of Lemma 6.3:

I3 + I4 = s

n∑
i,j=1, i<j

(
πiaiju

s
ju
s−2
i z2

i + πjajiu
s
iu
s−2
j z2

j + s(πiaij + πjaji)(uiuj)
s−1zizj

)
≥ s

n∑
i,j=1, i<j

(
2
√
πiaijπjaji(uiuj)

s−1|zizj | − s(πiaij + πjaji)(uiuj)
s−1|zizj |

)
= −s

n∑
i,j=1, i<j

(
s(πiaij + πjaji)− 2

√
πiaijπjaji

)
(uiuj)

s−1|zizj |

≥ −s
2

n∑
i,j=1, i<j

(
s(πiaij + πjaji)− 2

√
πiaijπjaji

)(
(us−1
i zi)

2 + (us−1
j zj)

2
)

= −s
2

n∑
i,j=1, i 6=j

(
s(πiaij + πjaji)− 2

√
πiaijπjaji

)
(us−1
i zi)

2.

This expression simplifies because of the detailed balance condition:

I3 + I4 ≥ −s(s− 1)
n∑

i,j=1, i 6=j
πiaij(u

s−1
i zi)

2,

and we end up with

z>H(u)A(u)z ≥ s
n∑
i=1

πiai0u
s−2
i z2

i + s(s+ 1)

n∑
i=1

πi

(
aii −

s− 1

s+ 1

n∑
j=1, j 6=i

aij

)
u

2(s−1)
i z2

i ,

from which we conclude the result.

Remark 6.9. Let n = 2. Then the condition η1 ≥ 0 on the coefficients (aij) becomes
a11 ≥ a12(s− 1)/(s+ 1) and a22 ≥ a21(s− 1)/(s+ 1). The product

a11a22 ≥
(
s− 1

s+ 1

)2

a12a21
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6.2. Positive definiteness of the mobility matrix

is the same as the condition imposed in [51, Section 5.1] but weaker than

a11a22 ≥
(
s− 1

s

)2

a12a21,

which was needed in [94, Lemma 11]. Furthermore, under the slightly stronger condition
η1 > 0, that is

a11a22 >

(
s− 1

s+ 1

)2

a12a21,

our weak solution satisfies the stronger estimate usi ∈ L2(0, T ;H1(Ω)) than that in [51,
Section 5.1].

Lemma 6.10 (Non detailed balance). Let s > 1 and let

η2 := min
i=1,...,n

(
aii −

1

2(s+ 1)

∑
j=1, j 6=i

(
s(aij + aji)− 2

√
aijaji

))
≥ 0.

Then H(u)A(u) is positive definite. Moreover, if η2 > 0, then, for all z ∈ Rn and u ∈ Rn+,

z>H(u)A(u)z ≥ s
n∑
i=1

ai0u
s−2
i z2

i + η2s(s+ 1)

n∑
i=1

u
2(s−1)
i z2

i .

Proof. We choose πi = 1 for i = 1, . . . , n. Then, as in the previous proof,

I3 + I4 ≥ −
s

2

n∑
i,j=1, i 6=j

(
s(aij + aji)− 2

√
aijaji

)
u

2(s−1)
i z2

i

and

z>H(u)A(u)z ≥ s
n∑
i=1

ai0u
s−2
i z2

i + s(s+ 1)
n∑
i=1

aiiu
2(s−1)
i z2

i

− s

2

n∑
i,j=1, i 6=j

(
s(aij + aji)− 2

√
aijaji

)
u

2(s−1)
i z2

i

= s

n∑
i=1

ai0u
s−2
i z2

i

+ s(s+ 1)
n∑
i=1

(
aii −

1

2(s+ 1)

n∑
i,j=1, i 6=j

(
s(aij + aji)− 2

√
aijaji

))
u

2(s−1)
i z2

i .

By definition of η2, the result follows.
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6. Cross-diffusion population systems for multiple species

6.2.3. Approximate matrices

Our theory requires that the range of the derivative h′ equals Rn. Since this is not the case
if s 6= 1, we need to approximate the entropy density and consequently also the diffusion
matrix. The approximate entropy density

hε(u) = h(u) + ε
n∑
i=1

(
ui(log ui − 1) + 1

)
(6.2.4)

possesses the property that the range of its derivative is Rn. We set H(u) = h′′(u) =
(δijsπiu

s−2
i )i,j=1,...,n for its Hessian and

Hε(u) = H(u) + εH0(u), H0
ij(u) = δiju

−1
i ,

Aε(u) = A(u) + εA0(u) + εηA1(u), (6.2.5)

where η < 1/2 and

A0
ij(u) = δij

ui
πi
µi − (1− δij)

ui
πi
aji, A1

ij(u) = δijui,

µi :=
πi
2

n∑
j=1, j 6=i

(
aji
πi

+
aij
πj

)
, i = 1, . . . , n.

The approximation εηA1(u) is needed to achieve bounds for ε(η+1)/2∇ui in L2, which are
necessary for the limit ε→ 0. The off-diagonal terms in A0(u) are needed to preserve the
entropy structure in the sense that Hε(u)Aε(u) is still positive definite. This is shown in
the following lemma.

Lemma 6.11. Let s > 0. Then, for all z ∈ Rn and u ∈ Rn+,

z>Hε(u)Aε(u)z ≥ z>H(u)A(u)z + εηs
n∑
i=1

πiu
s−1
i z2

i + εη+1
n∑
i=1

z2
i .

Proof. We decompose the product Hε(u)Aε(u) as

Hε(u)Aε(u) = H(u)A(u) + εηHε(u)A1(u) + ε
(
H0(u)A(u) +H(u)A0(u)

)
+ ε2H0(u)A0(u).

The ε2-term becomes

(H0(u)A0(u))ij =

n∑
k=1

δiku
−1
k

(
δkj

uk
πk
µk − (1− δkj)

uk
πk
ajk

)
= δij

µi
πi
− (1− δij)

aji
πi
.

We obtain for z ∈ Rn:

z>H0(u)A0(u)z =
n∑
i=1

µi
πi
z2
i −

n∑
i,j=1, i 6=j

aji
πi
zizj
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≥
n∑
i=1

µi
πi
z2
i −

1

2

n∑
i,j=1, i 6=j

aji
πi

(z2
i + z2

j )

=

n∑
i=1

µi
πi
z2
i −

1

2

n∑
i=1

( n∑
j=1, j 6=i

aji
πi

)
z2
i −

1

2

n∑
i=1

( n∑
j=1, j 6=i

aij
πj

)
z2
i

= 0.

Next, we consider the ε-terms:

(H0(u)A(u))ij =

n∑
k=1

δiku
−1
i

(
δkj

(
ak0 +

n∑
`=1

ak`u
s
` + sakku

s
k

)
+ (1− δkj)sakjus−1

j uk

)

= δij

(
ai0u

−1
i +

n∑
`=1

ai`u
s
`u
−1
i + saiiu

s−1
i

)
+ (1− δij)saijus−1

j ,

(H(u)A0(u))ij =

n∑
k=1

δiksπiu
s−2
i

(
δkj

uk
πk
µk − (1− δkj)

uk
πk
ajk

)
= δijsu

s−1
i µi − (1− δij)sajius−1

i .

Summing these expressions and neglecting some positive contributions, we find that

z>
(
H0(u)A(u) +H(u)A0(u)

)
z ≥

n∑
i=1

(ai0u
−1
i + saiiu

s−1
i )z2

i

+ s

n∑
i,j=1

(1− δij)aijus−1
j zizj − s

n∑
i,j=1

(1− δij)ajius−1
i zizj

=
n∑
i=1

(
ai0u

−1
i + saiiu

s−1
i )z2

i ≥ s
n∑
i=1

aiiu
s−1
i z2

i .

Here we see how we constructed A0
ij(u): The off-diagonal coefficients are chosen in such a

way that the mixed terms in zizj cancel, and the diagonal elements (namely µi) are suffi-
ciently large to obtain positive definiteness of H0(u)A0(u). Finally, we have (Hε(u)A1(u))ij
= δij(sπiu

s−1
i + ε) and

z>Hε(u)A1(u)z =

n∑
i=1

(sπiu
s−1
i + ε)z2

i ,

which proves the lemma.

6.3. Linear transition rates: proof of Theorem 6.1

In this section, we prove Theorem 6.1. Let T > 0, N ∈ N, τ = T/N , ε > 0, and m ∈ N
with m > d/2. This ensures that the embedding Hm(Ω) ↪→ L∞(Ω) is compact. We assume
that u0

i (x) ∈ [a, b] for x ∈ Ω, i = 1, . . . , n, where 0 < a < b < ∞. Then, clearly, w0 =
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h′(u0) ∈ L∞(Ω;Rn). For general u0
i ≥ 0, we may first consider u0

ε = (Qε(u
0
1), . . . , Qε(u

0
n)),

where 0 < ε < 1 and Qε is the cut-off function

Qε(z) =


ε for 0 ≤ z < ε,

z for ε ≤ z < ε−1/2,

ε−1/2 for z ≥ ε−1/2,

and then pass to the limit ε→ 0. We leave the details to the reader.
Step 1: solution of an approximated problem. Given wk−1 ∈ L∞(Ω;Rn) for k ∈ N, we

wish to find wk ∈ Hm(Ω;Rn) such that

1

τ

∫
Ω

(
u(wk)− u(wk−1)

)
· φdx+

∫
Ω
∇φ : B(wk)∇wkdx

+ ε

∫
Ω

( ∑
|α|=m

Dαwk ·Dαφ+ wk · φ
)
dx =

∫
Ω
f(u(wk)) · φdx (6.3.1)

for all φ ∈ Hm(Ω;Rn). Here, u(wk) = (h′)−1(wk), B(wk) = A(u(wk))H(u(wk))−1,
α = (α1, . . . , αd) ∈ Nn0 with |α| = α1 + . . . + αd = m is a multiindex, and Dα =
∂|α|/(∂xα1

1 · · · ∂x
αd
d ) is a partial derivative of order m. If k = 1, we define w0 = h′(u0).

Equation (6.3.1) is an implicit Euler discretization of (6.1.1) including an Hm regularization
term.

We recall that the entropy is given by

H[u] =

∫
Ω
h(u)dx =

∫
Ω

n∑
i=1

πih1(ui)dx, h1(ui) = ui(log ui − 1) + 1.

Then the entropy variables equal wi = ∂h/∂ui = πi log ui. In particular, h′ : Rn+ → Rn
is invertible on Rn, i.e., Hypothesis (H1) in [94] is satisfied. By Lemmas 6.4 and 6.6,
H(u)A(u) is positive definite, i.e., Hypothesis (H2) in [94] holds as well. (At this step, we
only need that H(u)A(u) is positive semi-definite.) Furthermore, fi grows at most linearly
which implies that

n∑
i=1

fi(u)πi log ui ≤ Cf (1 + h(u)),

where Cf > 0 depends only on (bij) and π. This means that Hypothesis (H3) in [94] is also
satisfied. Thus, we can apply Lemma 5 in [94] giving a weak solution wk ∈ Hm(Ω;Rn) to
(6.3.1) satisfying the discrete entropy inequality

(1− Cfτ)

∫
Ω
h(u(wk))dx+ τ

∫
Ω
∇wk : B(wk)∇wkdx

+ ετ

∫
Ω

( ∑
|α|=m

|Dαwk|2 + |wk|2
)
dx ≤

∫
Ω
h(u(wk−1))dx+ Cfτmeas(Ω).

(6.3.2)

Step 2: uniform estimates. We set uk = u(wk) and introduce the piecewise in time
constant functions w(τ)(x, t) = wk(x) and u(τ)(x, t) = uk(x) for x ∈ Ω, t ∈ ((k − 1)τ, kτ ].
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At time t = 0, we set w(τ)(·, 0) = h′(u0) = w0 and u(τ)(·, 0) = u0. Let u(τ) = (u
(τ)
1 , . . . , u

(τ)
n ).

We define the backward shift operator (στu
(τ))(x, t) = u(wk−1(x)) for x ∈ Ω, t ∈ ((k −

1)τ, kτ ]. Then u(τ) solves

1

τ

∫ T

0

∫
Ω

(u(τ) − στu(τ)) · φdxdt+

∫ T

0

∫
Ω
∇φ : B(w(τ))∇w(τ)dxdt

+ ε

∫ T

0

∫
Ω

( ∑
|α|=m

Dαw(τ) ·Dαφ+ w(τ) · φ
)
dxdt =

∫ T

0

∫
Ω
f(u(τ)) · φdxdt (6.3.3)

for piecewise constant functions φ : (0, T ) → Hm(Ω;Rn). By a density argument, this
equation also holds for all φ ∈ L2(0, T ;Hm(Ω;Rn)) [126, Prop. 1.36].

By Lemmas 6.4 and 6.6, we have

∇wk : B(wk)∇wk = ∇uk : H(uk)A(uk)∇uk ≥ 2η0

n∑
i=1

|∇uki |2,

where η0 = mini=1,...,n πiaii > 0 if detailed balance holds, and η0 > 0 is given by (6.1.11)
otherwise. By the generalized Poincaré inequality [132, Chapter 2, Section 1.4], it holds
that ∫

Ω

( ∑
|α|=m

|Dαwk|2 + |wk|2
)
dx ≥ CP ‖wk‖2Hm(Ω),

where CP > 0 is the Poincaré constant. Then the discrete entropy inequality (6.3.2) gives

(1− Cfτ)

∫
Ω
h(uk)dx+ 2η0τ

∫
Ω
|∇uk|2dx+ εCP τ‖wk‖2Hm(Ω)

≤
∫

Ω
h(uk−1)dx+ Cfτmeas(Ω).

Summing these inequalities over k = 1, . . . , j, it follows that

(1− Cfτ)

∫
Ω
h(uj)dx+ 2η0τ

k∑
j=1

∫
Ω
|∇uk|2dx+ εCP τ

k∑
j=1

‖wk‖2Hm(Ω)

≤
∫

Ω
h(u0)dx+ Cfτ

j−1∑
k=1

∫
Ω
h(uk)dx+ CfTmeas(Ω).

By the discrete Gronwall inequality [42], if τ < 1/Cf ,∫
Ω
h(uj)dx+ τ

k∑
j=1

∫
Ω
|∇uk|2dx+ ετ

k∑
j=1

‖wk‖2Hm(Ω) ≤ C,

where here and in the following, C > 0 denotes a generic constant independent of τ and ε.
Then, observing that the entropy density dominates the L1 norm and consequently, u(τ) is
uniformly bounded in L∞(0, T ;L1(Ω;Rn)), we obtain

‖u(τ)‖L∞(0,T ;L1(Ω)) + ‖u(τ)‖L2(0,T ;H1(Ω)) + ε1/2‖w(τ)‖L2(0,T ;Hm(Ω)) ≤ C. (6.3.4)
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We wish to derive more a priori estimates. Set QT = Ω×(0, T ). The Gagliardo-Nirenberg
inequality with p = 2 + 2/d and θ = 2d(p− 1)/(dp+ 2p) ∈ [0, 1] (such that θp = 2) yields
for i = 1, . . . , n,

‖u(τ)
i ‖

p
Lp(QT ) =

∫ T

0
‖u(τ)

i ‖
p
Lp(Ω)dt ≤ C

∫ T

0
‖u(τ)

i ‖
θp
H1(Ω)

‖u(τ)
i ‖

(1−θ)p
L1(Ω)

dt

≤ C‖u(τ)
i ‖

(1−θ)p
L∞(0,T ;L1(Ω))

‖u(τ)
i ‖

θp
L2(0,T ;H1(Ω))

≤ C. (6.3.5)

In order to apply a compactness result, we need a uniform estimate for the discrete time
derivative of u(τ). Let q = 2(d+1) and φ ∈ Lq(0, T ;Wm,q(Ω;Rn)). Then 1/p+1/q+1/2 = 1
and, by Hölder’s inequality,

1

τ

∣∣∣∣ ∫ T

0

∫
Ω

(u(τ) − στu(τ)) · φdxdt
∣∣∣∣ ≤ n∑

i,j=1

‖Aij(u(τ))‖Lp(QT )‖∇u
(τ)
j ‖L2(QT )‖∇φi‖Lq(QT )

+ ε‖w(τ)‖L2(0,T ;Hm(Ω))‖φ‖L2(0,T ;Hm(Ω))

+ ‖f(u(τ))‖Lq′ (QT )‖φ‖Lq(QT ),

where q′ = (2d + 2)/(2d + 1). Estimate (6.3.5) and the linear growth of Aij(u
(τ)) with

respect to u(τ) show that the first term on the right-hand side is bounded. The second

term is bounded because of (6.3.4). Finally, |fi(u(τ))| is growing at most like (u
(τ)
i )2 such

that

‖f(u(τ))‖Lq′ (QT ) ≤ C
(
1 + ‖u(τ)‖2

L2q′ (QT )

)
≤ C,

since 2q′ ≤ p. We conclude that

τ−1‖u(τ) − στu(τ)‖Lq′ (0,T ;Wm,q(Ω)′) ≤ C. (6.3.6)

Step 3: the limit (ε, τ)→ 0. In view of (6.3.4) and (6.3.6), we can apply the Aubin-Lions
lemma in the version of [61], which yields the existence of a subsequence, which is not
relabeled, such that, as (τ, ε)→ 0,

u(τ) → u strongly in L2(QT ) and a.e., (6.3.7)

u(τ) ⇀ u weakly in L2(0, T ;H1(Ω)), (6.3.8)

εw(τ) → 0 strongly in L2(0, T ;Hm(Ω)), (6.3.9)

τ−1(u(τ) − στu(τ)) ⇀ ∂tu weakly in Lq
′
(0, T ;Wm,q(Ω)′), (6.3.10)

where u = (u1, . . . , un). In view of the a.e. convergence (6.3.7) and the uniform bound
(6.3.5), we have

u(τ) → u strongly in Lγ(QT ) for all γ < 2 + 2/d. (6.3.11)

Then, together with (6.3.8),

u
(τ)
i ∇u

(τ)
j ⇀ ui∇uj weakly in L1(QT ).
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6.3. Linear transition rates: proof of Theorem 6.1

We deduce from the Lq
′
(QT ) bound for A(u(τ))∇u(τ) that

B(w(τ))∇w(τ) = A(u(τ))∇u(τ) ⇀ A(u)∇u weakly in Lq
′
(QT ).

Furthermore, taking into account (6.3.11) and the uniform bound for fi(u
(τ)) in Lq

′
(QT ),

fi(u
(τ)) ⇀ fi(u) weakly in Lq

′
(QT ).

Then (6.3.9) and (6.3.10) allow us to perform the limit (ε, τ) → 0 in (6.3.3) with φ ∈
Lq(0, T ; Wm,q(Ω)), which directly yields (6.1.12). Since ∂tu = div(A(u)∇u) + f(u) ∈
Lq
′
(0, T ;W 1,q(Ω)′), a density argument shows that the weak formulation holds for all φ ∈

Lq(0, T ;W 1,q(Ω)). Moreover, ui ∈ W 1,q′(0, T ;W 1,q(Ω)′) ↪→ C0([0, T ];W 1,q(Ω)′), which
shows that the initial condition is satisfied in W 1,q(Ω)′. This ends the proof.

Remark 6.12 (Detailed balance and vanishing self-diffusion). In the case of detailed bal-
ance, we may allow for vanishing self-diffusion. If aii = 0 but ai0 > 0, Lemma 6.4 implies

that only ∇(u
(τ)
i )1/2 is bounded in L2(QT ). This situation was considered in [38] for the

two-species case, and we sketch the generalization to the n-species case.
Applying the Gagliardo-Nirenberg inequality similarly as in Step 2 of the previous proof,

we conclude that (u
(τ)
i )1/2 ∈ Lp̃(QT ) with p̃ = 2 + 4/d. Then

‖∇u(τ)
i ‖Lq̃(QT ) = 2‖(u(τ)

i )1/2‖Lp̃(QT ) ‖∇(u
(τ)
i )1/2‖L2(QT ) ≤ C, q̃ =

d+ 2

d+ 1
,

and thus, (u
(τ)
i ) is bounded in Lq̃(0, T ;W 1,q̃(Ω)) instead of L2(0, T ;H1(Ω)). This loss of

regularity is problematic for the estimate of the discrete time derivative of u
(τ)
i . In order

to compensate this, we need the last sum in (6.2.3). Indeed, Remark 6.5 shows that for

any i 6= j, (u
(τ)
i u

(τ)
j )1/2 is bounded in L2(0, T ;H1(Ω)). Moreover, (u

(τ)
i u

(τ)
j )1/2 is bounded

in L∞(0, T ;L1(Ω)). We infer from the Gagliardo-Nirenberg inequality that (u
(τ)
i u

(τ)
j )1/2 is

bounded in Lp(QT ) with p = 2 + 2/d.
Next we exploit the structure of the equations,

n∑
j=1

Aij(u
(τ))∇u(τ)

j = ∇(u
(τ)
i pi(u

(τ))), pi(u
(τ)) = ai0 +

n∑
j=1

aiju
(τ)
j .

Thus, to show that Aij(u
(τ))∇u(τ)

j is bounded, we only need to verify that ∇(u
(τ)
i u

(τ)
j ) is

bounded:

‖∇(u
(τ)
i u

(τ)
j )‖Lq′ (QT ) ≤ 2‖(u(τ)

i u
(τ)
j )1/2‖Lp(QT )‖∇(u

(τ)
i u

(τ)
j )1/2‖L2(QT ) ≤ C,

where q′ = (2d+2)/(2d+1). The estimate for the Lotka-Volterra term is more delicate since

we have only the regularity u
(τ)
i ∈ L1+1/d(QT ). Here, we need to suppose that bii > 0, since

this assumption provides an estimate for (u
(τ)
i )2 log u

(τ)
i in L1(QT ). Then the discrete time

derivative of u
(τ)
i is bounded in L1(0, T ;Wm,q(Ω)′) – but not in Lq

′
(0, T ;Wm,q(Ω)′). By the

Aubin-Lions lemma, there exists a subsequence (not relabeled) such that, as (ε, τ)→ 0,

u
(τ)
i → ui strongly in Lq

′
(QT ).
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The problem now is to show that (a subsequence of) the discrete time derivative of u
(τ)
i

converges to ∂tui since L1(0, T ;Wm,q(Ω)′) is not reflexive. The idea is to apply a result
from [142] which provides a criterium for weak compactness in L1(0, T ;X), where X is a
reflexive Banach space. For details, we refer to [38].

6.4. Nonlinear transition rates: proof of Theorem 6.2

The strategy of the proof is similar to the proof of Theorem 6.1 but the nonlinear transition
rates complicate the proof significantly. As outlined in Section 6.2.3, we approximate the
entropy density by (6.2.4) and the diffusion matrix by (6.2.5). Again, we assume without
loss of generality that u0

i (x) ∈ [a, b] for x ∈ Ω, i = 1, . . . , n, where 0 < a < b <∞.
Step 1: solution of an approximated problem. We employ the transformation wi =

∂hε/∂ui and define Bε(w) = Aε(u(w))Hε(u(w))−1. Given wk−1 ∈ L∞(Ω;Rn), we wish to
find wk ∈ Hm(Ω;Rn) solving

1

τ

∫
Ω

(
u(wk)− u(wk−1)

)
· φdx+

∫
Ω
∇φ : Bε(w

k)∇wkdx

+ ε

∫
Ω

( ∑
|α|=m

Dαwk ·Dαφ+ wk · φ
)
dx =

∫
Ω
f(u(wk)) · φdx (6.4.1)

for all φ ∈ Hm(Ω;Rn). If k = 1, we define w0 = h′ε(u
0) such that u(w0) = u0.

The construction of hε ensures that Hypothesis (H1) of [94] is satisfied. By Lemma 6.11,
Hypothesis (H2) holds as well. Also Hypothesis (H3) holds true since, for some Cf > 0,

f(u) · w =
n∑
I=1

(
bi0 −

n∑
j=1

biju
σ
j

)
(susi + εui log ui) ≤ Cf (1 + hε(u)),

where σ = 1 if s > 1 and 0 ≤ σ ≤ max{0, 2s− 1 + 2/d} if s < 1. We apply Lemma 5 in [94]
to deduce the existence of a weak solution wk ∈ Hm(Ω;Rn) to the above problem, which
satisfies the discrete entropy inequality

(1− Cfτ)

∫
Ω
hε(u(wk))dx+ τ

∫
Ω
∇wk : Bε(w

k)∇wkdx

+ ετ

∫
Ω

( ∑
|α|=m

|Dαwk|2 + |wk|2
)
dx ≤

∫
Ω
hε(u(wk−1))dx+ Cfτmeas(Ω).

(6.4.2)

Setting uk := u(wk) and employing Lemma 6.11, the second integral can be estimated as
follows:∫

Ω
∇wk : Bε(w

k)∇wkdx =

∫
Ω
uk : Hε(u

k)Aε(u
k)∇ukdx

≥ s(s+ 1)

∫
Ω

n∑
i=1

min{aiiπi, η0, η1πi, η2}(uki )2(s−1)|∇uki |2dx
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+ εηs

∫
Ω

n∑
i=1

πi(u
k
i )
s−1|∇uki |2dx+ εη+1

∫
Ω

n∑
i=1

|∇uki |2dx

(6.4.3)

≥ Cs
∫

Ω

n∑
i=1

|∇(uki )
s|2dx

+
4εηs

(s+ 1)2

∫
Ω

n∑
i=1

πi|∇(uki )
(s+1)/2|2dx+ εη+1

∫
Ω

n∑
i=1

|∇uki |2dx,

where Cs = s−1(s+ 1) min{a11π1, . . . , annπn, η0, η1π1, . . . , η1πn, η2}.
To finish this step, we wish to write the “very weak” formulation for the solution u(τ),

which is defined from uk as in the previous section. First, we observe that

(Bε(w
k)∇wk)i = (Aε(u

k)∇uk)i = ε(A0(uk)∇uk)i + εη(A1(uk)∇uk)i +∇(uki pi(u
k))

= ε(A0(uk)∇uk)i +
εη

2
∇(uki )

2 +∇(uki pi(u
k)).

Next, we choose a test function φ = (φ1, . . . , φn) ∈ Lq(0, T ; Wm,q
ν (Ω)), where m >

max{1, d/2} and q ≥ 2 will be determined below. Recall that Wm,q
ν (Ω) is defined in

(6.1.16). Integrating by parts in (6.4.1), u(τ) solves

1

τ

∫ T

0

∫
Ω

(
u(τ) − στu(τ)

)
· φdxdt−

∫ T

0

∫
Ω

n∑
i=1

u
(τ)
i pi(u

(τ))∆φidxdt

+ ε

∫ T

0

∫
Ω
∇φ : A0(u(τ))∇u(τ)dxdt− εη

2

∫ T

0

∫
Ω

n∑
i=1

(u
(τ)
i )2∆φidxdt (6.4.4)

+ ε

∫ T

0

∫
Ω

( ∑
|α|=m

Dαw(τ) ·Dαφ+ w(τ) · φ
)
dxdt =

∫ T

0

∫
Ω
f(u(τ)) · φdxdt.

Step 2: uniform estimates. Arguing as in Step 2 of the proof of Theorem 6.1, we obtain
from (6.4.2) and (6.4.3) for suffiently small τ > 0 the following uniform estimates.

Lemma 6.13. It holds for i = 1, . . . , n that

‖u(τ)
i ‖L∞(0,T ;Lmax{1,s}(Ω)) + ‖(u(τ)

i )s‖L2(0,T ;H1(Ω)) ≤ C, (6.4.5)

εη/2‖(u(τ)
i )(s+1)/2‖L2(0,T ;H1(Ω)) + ε(η+1)/2‖u(τ)

i ‖L2(0,T ;H1(Ω)) ≤ C, (6.4.6)

ε1/2‖w(τ)
i ‖L2(0,T ;Hm(Ω)) ≤ C. (6.4.7)

Here, we used the fact that
∫

Ω hε(u
0)dx is uniformly bounded and that s < 1 implies

that u(τ) ≤ C(1 + h(u(τ))) for some C > 0, from which we deduce that (u
(τ)
i ) is bounded

in L∞(0, T ;L1(Ω)). We need more a priori estimates.

Lemma 6.14. Let s > max{0, 1− 2/d}. It holds that

‖u(τ)‖Lp(s)(QT ) + εη/r(s)‖u(τ)‖Lr(s)(QT ) ≤ C, (6.4.8)

where p(s) = 2s+ (2/d) max{1, s} and r(s) = s+ 1 + (2/d) max{1, s} > 2.
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Proof. The estimates are consequences of Lemma 6.13 and the Gagliardo-Nirenberg in-
equality. First, let s < 1. We employ the Gagliardo-Nirenberg inequality, with θ =
ds/(ds+ 1) ∈ (0, 1):

‖u(τ)
i ‖

p(s)

Lp(s)(QT )
=

∫ T

0
‖(u(τ)

i )s‖p(s)/s
Lp(s)/s(Ω)

dt ≤ C
∫ T

0
‖(u(τ)

i )s‖θp(s)/s
H1(Ω)

‖(u(τ)
i )s‖(1−θ)p(s)/s

L1/s(Ω)
dt

≤ C‖u(τ)
i ‖

(1−θ)p(s)
L∞(0,T ;L1(Ω))

∫ T

0
‖(u(τ)

i )s‖θp(s)/s
H1(Ω)

dt, i = 1, . . . , n.

It holds that θp(s)/s = 2. By (6.4.5), ‖u(τ)‖Lp(s)(QT ) ≤ C.
Next, let s > 1. Then, with θ = d/(d+ 1) ∈ (0, 1),

‖(u(τ)
i )s‖2+2/d

L2+2/d(QT )
≤ C

∫ T

0
‖(u(τ)

i )s‖θ(2+2/d)
H1(Ω)

‖(u(τ)
i )s‖(1−θ)(2+2/d)

L1(Ω)
dt

≤ C‖(u(τ)
i )s‖2L2(0,T ;H1(Ω)‖u

(τ)
i ‖

s(1−θ)(2+2/d)
L∞(0,T ;Ls(Ω)) ≤ C,

again taking into account estimate (6.4.5). This shows that (u(τ)) is bounded in Lp(s)(QT ).
Finally, let max{0, 1− 2/d} < s < 1. Then r(s) = s+ 1 + 2/d. We apply the Gagliardo-

Nirenberg inequality with θ = d(s+1)/(2+d(s+1)) ∈ (0, 1) such that θ ·2r(s)/(s+1) = 2,

εη‖u(τ)
i ‖

r(s)

Lr(s)(QT )
= εη‖(u(τ)

i )(s+1)/2‖2r(s)/(s+1)

L2r(s)/(s+1)(QT )

≤ εηC
∫ T

0
‖(u(τ)

i )(s+1)/2‖2r(s)θ/(s+1)
H1(Ω)

‖(u(τ)
i )(s+1)/2‖2r(s)(1−θ)/(s+1)

L2/(s+1)(Ω)
dt

≤ Cεη‖(u(τ)
i )(s+1)/2‖2L2(0,T ;H1(Ω))‖u

(τ)
i ‖

(1−θ)r(s)
L∞(0,T ;L1(Ω))

≤ C,

using (6.4.5) and (6.4.6). If s > 1, we have r(s) = s+1+2s/d, and applying the Gagliardo-
Nirenberg inequality with θ = d(s+ 1)/(2s+ d(s+ 1)) ∈ (0, 1), we obtain in a similar way
as above

εη‖u(τ)
i ‖

r(s)

Lr(s)(QT )
= εη‖(u(τ)

i )(s+1)/2‖2r(s)/(s+1)

L2r(s)/(s+1)(QT )

≤ εηC
∫ T

0
‖(u(τ)

i )(s+1)/2‖2r(s)θ/(s+1)
H1(Ω)

‖(u(τ)
i )(s+1)/2‖2r(s)(1−θ)/(s+1)

L2s/(s+1)(Ω)
dt

≤ Cεη‖(u(τ)
i )(s+1)/2‖2L2(0,T ;H1(Ω))‖u

(τ)
i ‖

(1−θ)r(s)
L∞(0,T ;Ls(Ω)) ≤ C.

This shows the lemma.

Lemma 6.15. Let s > max{0, 1−2/d} and m > max{1, d/2}. Then there exist 2 ≤ q <∞
and C > 0 such that

τ−1‖u(τ) − στu(τ)‖Lq′ (0,T ;Wm,q(Ω)′) ≤ C, (6.4.9)

and 1/q + 1/q′ = 1.

Proof. Let φ ∈ Lq(0, T ;Wm,q
ν (Ω)), where q ≥ 2 has to be determined. Recall that Wm,q

ν (Ω)
is defined in (6.1.16) and that m > max{1, d/2}. Then, by (6.4.4),

τ−1

∣∣∣∣ ∫
Ω

(u(τ) − στu(τ)) · φdx
∣∣∣∣ ≤ ε‖w(τ)‖L2(0,T ;Hm(Ω))‖φ‖L2(0,T ;Hm(Ω))
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+

n∑
i=1

‖u(τ)
i pi(u

(τ))‖Lq′ (QT )‖∆φi‖Lq(QT ) + ε

n∑
i,j=1

‖A0
ij(u

(τ))∇u(τ)
j ‖Lq′ (QT )‖∇φj‖Lq(QT )

+
εη

2

n∑
i=1

‖(u(τ)
i )2‖Lq′ (QT )‖∆φi‖Lq(QT ) + ‖f(u(τ))‖Lq′ (QT )‖φ‖Lq(QT ) (6.4.10)

=: I1 + · · ·+ I5,

where 1/q + 1/q′ = 1.

By (6.4.7), I1 is bounded. We deduce from (6.4.8) that u
(τ)
i (u

(τ)
j )s is uniformly bounded

in Lp(s)/(s+1)(QT ), and so does u
(τ)
i pi(u

(τ)). As s > 1−2/d, we have q1 := p(s)/(s+1) > 1.
We conclude that I2 is bounded with q′ ≤ min{2, q1}.

Since A0
ij(u

(τ)) depends linearly on u(τ), it is sufficient to prove that εu
(τ)
i ∇u

(τ)
j is uni-

formly bounded in some Lq2(QT ) for all i, j. Let q2 = 2r(s)/(r(s) + 2), where r(s) =
s+ 1 + 2/d is defined in Lemma 6.14. As r(s) > 2, it holds that q2 > 1. Then, by Hölder’s
inequality, (6.4.6), and (6.4.8),

εη/r(s)+(η+1)/2‖u(τ)
i ∇u

(τ)
j ‖Lq2 (QT ) ≤ εη/r(s)‖u

(τ)
i ‖Lr(s)(QT ) · ε

(η+1)/2‖∇u(τ)
j ‖L2(QT ) ≤ C.

The property r(s) > 2 also implies that η/r(s) + (η + 1)/2 < 1. This shows the bound on
I3 with q′ ≤ min{2, q2}.

Set q3 = r(s)/2 > 1. Using the second estimate in (6.4.8) and 1 − 2/r(s) > 0, we find
that

εη‖(u(τ)
i )2‖Lq3 (QT ) = ε(1−2/r(s))η

(
εη/r(s)‖u(τ)

i ‖Lr(s)(QT )

)2 ≤ C,
proving that I4 is bounded with q′ ≤ min{2, q3}.

Finally, in view of (6.1.13), |fi(u(τ))| grows at most like (u
(τ)
i )1+σ, where σ = 1 if s > 1

and σ < 2s− 1 + 2/d if s < 1. Therefore, we have q4 := p(s)/(1 + σ) > 1 and

‖f(u(τ))‖Lq4 (QT ) ≤ C
(
1 + ‖u(τ)‖1+σ

L(1+σ)q4 (QT )

)
= C

(
1 + ‖u(τ)‖1+σ

Lp(s)(QT )

)
≤ C.

Hence, I5 is bounded with q′ ≤ min{2, q4}. We conclude that the lemma follows with
q′ := min{2, q1, q2, q3, q4} > 1 and q = q′/(q′ − 1).

Step 3: the limit (ε, τ)→ 0. Estimates (6.4.5) and (6.4.9) allow us to apply the nonlinear
Aubin-Lions lemma (Theorem 6.21 if s ≥ 1/2 or Theorem 6.22 if s < 1/2) to obtain the
existence of a subsequence which is not relabeled such that, as (ε, τ)→ 0,

u(τ) → u strongly in Lγ(QT ) for all 1 ≤ γ < p(s).

In particular, u(τ) → u a.e. in QT . By estimates (6.4.5), (6.4.7), and (6.4.9), we have, up
to subsequences,

(u
(τ)
i )s ⇀ usi weakly in L2(0, T ;H1(Ω)),

εw(τ) → 0 strongly in L2(0, T ;Hm(Ω)),

τ−1(u(τ) − στu(τ)) ⇀ ∂tu weakly in Lq
′
(0, T ;Wm,q(Ω)′).
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We have shown in the proof of Lemma 6.15 that (u
(τ)
i pi(u

(τ))) is bounded uniformly in

Lp(s)/(s+1)(QT ). Taking into account the a.e. convergence u
(τ)
i pi(u

(τ))→ uipi(u) in QT , we
infer that

u
(τ)
i pi(u

(τ))→ uipi(u) strongly in L1(QT ).

Furthermore, we proved that (εη/r(s)+(η+1)/2A0
ij(u

(τ))∇u(τ)
j ) is bounded in Lq2(QT ) with

q2 = 2r(s)/(r(s) + 2) such that

εA0
ij(u

(τ))∇u(τ)
j = ε1−η/r(s)−(η+1)/2 · εη/r(s)+(η+1)/2A0

ij(u
(τ))∇u(τ)

j

→ 0 strongly in L1(QT ).

Here, we used the fact that η/r(s)+(η+1)/2 < 1 such that ε1−η/r(s)−(η+1)/2 → 0 as ε→ 0.

We know from (6.4.8) that (εη/r(s)u
(τ)
i ) is bounded in L2(QT ). Consequently,

εη(u
(τ)
i )2 = εη(1−2/r(s))

(
εη/r(s)u

(τ)
i

)2 → 0 strongly in L1(QT ),

since εη(1−2/r(s)) → 0 as ε → 0 because of r(s) > 2. Finally, fi(u
(τ)) → fi(u) a.e. and the

uniform bound ‖fi(u(τ)‖Lq4 (QT ) ≤ C with q4 = p(s)/(1 + σ) > 1 imply that

fi(u
(τ))→ fi(u) strongly in L1(QT ).

Then, performing the limit (ε, τ) → 0 in (6.4.4) with φ ∈ L∞(0, T ;Wm,∞
ν (Ω)) , it follows

that u solves (6.1.17) for such test functions. A density argument shows that, in fact, u
solves (6.1.17) for φ ∈ Lq(0, T ;Wm,q

ν (Ω)), finishing the proof.

Remark 6.16 (Weak formulation). In the superlinear case s > 1, the solution constructed
in the previous proof satisfies (6.1.1) even in the weak sense (6.1.12) with test functions
φ ∈ Lq(0, T ;W 1,q(Ω)). In order to see this, it is sufficient to show that

Aij(u
(τ))∇u(τ)

j ⇀ Aij(u)∇uj weakly in Lq
′
(QT )

for some 1 < q′ ≤ 2. Because of the structure of Aij, we only need to verify that

u
(τ)
i (u

(τ)
j )s−1∇u(τ)

j ⇀ uiu
s−1
j ∇uj weakly in Lq

′
(QT ),

(u
(τ)
i )s∇u(τ)

j ⇀ usi∇uj weakly in Lq
′
(QT ).

Indeed, we have the convergences u
(τ)
i → ui strongly in Lγ(QT ) for any 2 < γ < p(s) and

(u
(τ)
i )s ⇀ usi weakly in L2(0, T ;H1(Ω)) and hence,

u
(τ)
i (u

(τ)
j )s−1∇u(τ)

j = s−1u
(τ)
i ∇(u

(τ)
j )s ⇀ s−1ui∇usj = uiu

s−1
j ∇uj weakly in Lq

′
(QT ),

choosing q′ = 2γ/(γ+2) > 1. For the remaining convergence, we need to integrate by parts.
It holds for φi ∈ Lq(0, T ;W 2,q

ν (Ω)) that∫ T

0

∫
Ω

(u
(τ)
i )s∇u(τ)

j · ∇φidxdt
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= −
∫ T

0

∫
Ω
u

(τ)
j ∇(u

(τ)
i )s · ∇φidxdt−

∫ T

0

∫
Ω

(u
(τ)
i )su

(τ)
j ∆φidxdt

→ −
∫ T

0
uj∇usi · ∇φidxdt−

∫ T

0

∫
Ω
usiuj∆φidxdt =

∫ t

0

∫
Ω
usi∇uj · ∇φidxdt.

A density argument shows that the weak formulation also holds for φi ∈ Lq(0, T ;W 1,q(Ω)).

Remark 6.17 (Vanishing self-diffusion). Assume that ai0 > 0 and aii = 0. The difficulty

is that we obtain a uniform bound only for ∇(u
(τ)
i )s/2 instead for ∇(u

(τ)
i )s in L2(QT ). In

order to compensate this loss of regularity, we need additional assumptions, namely either
s > max{1, d/2} (superlinear rates); or 0 < s < 1, d = 1, and σ < s+ 1 (sublinear rates).
Under these conditions, the statement of Theorem 6.2 holds true.

For the proof, we remark that the regularity for (u
(τ)
i )s in L2(0, T ;H1(Ω)) is employed

in the estimate of u
(τ)
i in Lp(s)(QT ). If only (u

(τ)
i )s/2 is bounded in L2(0, T ;H1(Ω)), the

Gagliardo-Nirenberg inequality gives a weaker result: for 0 < s < 1 with θ = ds/(ds + 2)
and ρ = s+ 2/d,

‖u(τ)
i ‖

ρ
Lρ(QT ) = ‖(u(τ)

i )s/2‖2ρ/s
L2ρ/s(QT )

≤ C
∫ T

0
‖(u(τ)

i )s/2‖2θρ/s
H1(Ω)

‖(u(τ)
i )s/2‖2(1−θ)ρ/s

L2/s(Ω)
dt

≤ C‖(u(τ)
i )s/2‖2L2(0,T ;H1(Ω))‖u

(τ)
i ‖

(1−θ)ρ
L∞(0,T ;L1(Ω))

≤ C,

since 2θρ/s = 2; and for s > 1 with θ = d/(d+ 2) and ρ = s+ 2s/d,

‖u(τ)
i ‖

ρ
Lρ(QT ) ≤ C‖(u

(τ)
i )s/2‖2L2(0,T ;H1(Ω))‖u

(τ)
i ‖

(1−θ)ρ
L∞(0,T ;Ls(Ω)) ≤ C,

since 2θρ/s = 2. Consequently, (u
(τ)
i ) is bounded in Lρ(QT ) with ρ = s+ (2/d) max{1, s}.

We claim that this estimate is sufficient to derive a bound for the discrete time derivative.

Since the ε-terms in (6.4.10) do not need the estimate for u
(τ)
i in Lρ(QT ), it is sufficient to

bound u
(τ)
i pi(u

(τ)) and (u
(τ)
i )σ+1 in some Lq

′
(QT ) with q′ > 1. This is possible as long as

ρ > s+ 1 and ρ > σ + 1, respectively. If 0 < s < 1, these two inequalities are equivalent to
d = 1 and σ < s− 1 + d/2 = s+ 1. If s > 1 (in this case σ = 1), they give the restriction
s > d/2, thus s > max{1, d/2}. This shows the claim.

6.5. Additional and auxiliary results

6.5.1. Detailed balance condition

We wish to interpret the detailed balance condition (6.1.10) and to explain how the num-
bers πi can be computed from the coefficients (aij). We assume that the coefficients are
normalized in the sense that aij ≥ 0 and

∑
k=1, k 6=j akj ≤ 1 for all i, j. The idea is to use a

probabilistic approach, interpreting the coefficients aij as the transition rates between two
discrete states i and j of the state space S := {1, . . . , n}. Then

aij = P(Xk = j|Xk−1 = i)
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is the conditional probability for a random variable X : N→ S. This variable represents the
Markov chain associated to the stochastic matrix Q = (Qij)i,j ∈ Rn×n, defined by Qij = aij
for i 6= j and Qii = 1−

∑
i=1, i 6=j aij for i = 1, . . . , n. A Markov chain is called reversible if

there exists a probability distribution π = (π1, . . . , πn) on S (called an invariant measure)
such that

πiaij = πjaji, i, j = 1, . . . , n. (6.5.1)

The Markov chain can be interpreted as a directed graph, where the states i ∈ S are the
nodes and the edges are labeled by the probabilities aij going from state i to state j.

The state space S can be partitioned into so-called communicating classes. We write
i → j if there exist i0, i1, . . . , in+1 ∈ S such that ai0,i1ai1,i2 · · · ain,in+1 > 0 for i0 = i and
in+1 = j. We say that i communicates with j if both i → j and j → i. A set of states
σ ⊂ S is a communicating class if every pair in σ communicates with each other. This
defines an equivalence relation, and communicating classes are the equivalence classes.

Consider the following properties:

(A1) For all i, j ∈ S, it holds that either aij = aji = 0 or aijaji > 0.

(A2) For any periodic cycle i0, i1, . . . , im+1 = i0,

m∏
k=0

aik,ik+1
=

m∏
k=0

aik+1,ik .

The detailed balance condition (6.5.1) implies (A1) and (A2). It is shown in [131] that the
converse is true and that the invariant measure π can be constructed explicitly.

Proposition 6.18. Let (A1)-(A2) hold. Then there exists an invariant measure π =
(π1, . . . , πn) such that the detailed balance condition (6.5.1) is satisfied. Moreover, π can
be computed explicitly by choosing an i0 in each communicating class and defining πj for
i0 and j belonging in the same class by

πj :=
n−1∏
k=1

aik,ik+1

aik+1,ik

depending only on i0 and j, where i1, i2, . . . , in = j are such that aik,ik+1
> 0 for k =

0, . . . , n− 1.

For instance, if n = 3, we need to suppose (according to (A2)) that

a12a23a31 = a13a32a21, (6.5.2)

and the invariant measure is given by π = c(1, a12/a21, a13/a31), where c = (1 + a12/a21 +
a13/a31)−1.

The following result relates the detailed balance condition and the symmetry of the
matrix H(u)A(u).

Proposition 6.19. The following three properties are equivalent:

164



6.5. Additional and auxiliary results

(i) Graph-theoretical condition: (A1) and (A2) hold.

(ii) Detailed balance condition: πiaij = πjaji for i 6= j.

(iii) Symmetry: The matrix H(u)A(u) is symmetric.

Proof. The implication (i)⇐ (ii) is shown in Proposition 6.18. The converse can be proved
directly using the detailed balance condition. Finally, the equivalence (ii) ⇔ (iii) follows
from an explicit calculation of H(u)A(u).

Remark 6.20. The equivalence of the symmetry of H(u)A(u) and the detailed balance
condition is related to the Onsager principle of thermodynamics. Indeed, the diffusion
matrix B = A(u)H(u)−1 in

∂tu− div(B∇w) = f(u),

where w = h′(u) is the vector of entropy variables, is the Onsager matrix which is sym-
metric, according to Onsager, if and only if the thermodynamic system is time-reversible.
Time-reversibility means that the Markov chain associated to the matrix (aij) is reversible,
and the symmetry of B is equivalent to the symmetry of H(u)A(u). Thus, the equivalence
(ii) ⇔ (iii) corresponds to the equivalence of the symmetry of B and the time-reversibility.
For details on the detailed balance principle in thermodynamics, we refer to [47].

6.5.2. Nonlinear Aubin-Lions lemmas

Let Ω ⊂ Rd (d ≥ 1) be a bounded domain with Lipschitz boundary. Let (u(τ)) be a family
of nonnegative functions which are piecewise constant in time with uniform time step size
τ > 0. We introduce the time shift operator (στu

(τ))(t) = u(τ)(t− τ) for t ≥ τ .

If there exist uniform estimates for the gradient (∇u(τ)) and the discrete time derivative
τ−1(u(τ)−στu(τ)), then, by the Aubin-Lions theorem and under suitable conditions on the
spaces, (u(τ)) is relatively compact in some Lq space. In the case of nonlinear transition
rates, we obtain uniform estimates only for (∇(u(τ))s), where s > 0. Then relative com-
pactness follows from a nonlinear version of the Aubin-Lions theorem [40]. We recall a
special case of this result.

Theorem 6.21 (Nonlinear Aubin-Lions lemma for s ≥ 1/2). Let s ≥ 1/2, m ≥ 0, 1 ≤ q <
∞, and there exists C > 0 such that for all τ > 0,

‖(u(τ))s‖L2(0,T ;W 1,q(Ω)) + τ−1‖u(τ) − στu(τ)‖L1(τ,T ;Hm(Ω)′) ≤ C.

Then there exists a subsequence of (u(τ)), which is not relabeled, such that, as τ → 0,

u(τ) → u strongly in L2s(0, T ;Lps(Ω)),

where p ≥ max{1, 1/s} is such that the embedding W 1,q(Ω) ↪→ Lp(Ω) is compact.

Theorem 6.21 can be extended to the case s < 1/2 if (u(τ)) is additionally bounded in
L∞(0, T ;L1(Ω)) which generally follows from the entropy inequality. This result is new.
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Theorem 6.22 (Nonlinear Aubin-Lions lemma for s < 1/2). Let max{0, 1/2−1/d} < s <
1/2, m ≥ 0, and there exists C > 0 such that for all τ > 0,

‖u(τ)‖L∞(0,T ;L1(Ω)) + ‖(u(τ))s‖L2(0,T ;H1(Ω)) + τ−1‖u(τ) − στu(τ)‖L1(τ,T ;Hm(Ω)′) ≤ C.

Then there exists a subsequence of (u(τ)), which is not relabeled, such that, as τ → 0,

u(τ) → u strongly in L1(0, T ;L1(Ω)).

Proof. The result follows from Theorem 6.21 and the Hölder inequality. Indeed, we have

‖∇(u(τ))1/2‖L2(0,T ;L1/(1−s)(Ω)) = (2s)−1‖(u(τ))1/2−s∇(u(τ))s‖L2(0,T ;L1/(1−s)(Ω))

≤ (2s)−1‖(u(τ))(1−2s)/2‖L∞(0,T ;L2/(1−2s)(Ω))‖∇(u(τ))s‖L2(0,T ;L2(Ω))

= ‖u(τ)‖(1−2s)/2
L∞(0,T ;L1(Ω))

‖∇(u(τ))s‖L2(0,T ;L2(Ω)) ≤ C.

Therefore, (u(τ))1/2 is uniformly bounded in L2(0, T ;W 1,1/(1−s)(Ω)). By Rellich-Kondra-
chov’s theorem, the embedding W 1,1/(1−s)(Ω) ↪→ L2(Ω) is compact for s > 0 if d ≤ 2 and
s > 1/2− 1/d if d ≥ 3. Applying Theorem 6.21 with s = 1/2, q = 1/(1− s), and p = 2, we
infer that (u(τ)) is relatively compact in L1(0, T ;L1(Ω)).

6.5.3. Increasing entropies

If detailed balance or a weak cross-diffusion condition hold, we have shown that the entropy
is nonincreasing in time along solutions to (6.1.1)-(6.1.2). In this section, we show that the
entropy may be increasing for small times if these conditions do not hold. To simplify the
presentation, we restrict ourselves to the case n = 3 (three species), s = 1 (linear transition
rates), and Ω = (0, 1).

Lemma 6.23 (Vanishing diffusion coefficients ai0). Let a13 = a32 = a21 = 1 and aij = 0
else. For any ε > 0, there exist initial data u0 such that

dH
dt

[u0] ≥ 1

ε
.

In particular, if t 7→ H[u(t)] is continuous, there exists t0 > 0 such that t 7→ H[u(t)] is
increasing on [0, t0].

Proof. Observe that (6.5.2) is not satisfied, and hence detailed balance does not hold.
Furthermore, we have

H(u)A(u) =

1/u1 0 0
0 1/u2 0
0 0 1/u3

u3 0 u1

u2 u1 0
0 u3 u2

 =

u3/u1 0 1
1 u1/u2 0
0 1 u2/u3

 .

Let 0 < ε < 0.5 and define u0 = (u0
1, u

0
2, u

0
3) by u0

1(x) = 1 for x ∈ (0, 1) and

u0
2(x) =


3 for 0 < x < 0.5,
3− ε−1(x− 0.5) for 0.5 < x < 0.5 + ε,
2 for 0.5 + ε < x < 1,
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u0
3(x) =


9 for 0 < x < 0.5,
9 + ε−1(x− 0.5) for 0.5 < x < 0.5 + ε,
10 for 0.5 + ε < x < 1,

Then ∫ 1

0
(∂xu

0)>H(u0)A(u0)∂xu
0dx =

1

ε2

∫ 0.5+ε

0.5

(
1

u0
2(x)

− 1 +
u0

2(x)

u0
3(x)

)
dx

≤ 1

ε

(
1

2
− 1 +

3

9

)
= − 1

6ε
,

which implies that (dH/dt)[u0] ≥ 1/(6ε).

One may ask if a similar result as above holds if the diffusion coefficients ai0 do not
vanish, since they give positive contributions to the entropy production. The next lemma
shows that the entropy may be increasing even if ai0 > 0 is chosen arbitrarily.

Lemma 6.24 (Positive diffusion coefficients ai0). Let a13 = a32 = a21 = 1, ai0 > 0 for
i = 1, 2, 3, and aij = 0 else. For any ε > 0, there exist initial data u0 such that

dH
dt

[u0] ≥ 1

ε
.

In particular, if t 7→ H[u(t)] is continuous, there exists t0 > 0 such that t 7→ H[u(t)] is
increasing on [0, t0].

Proof. We choose the initial datum

u0
1(x) =

a20(2a20 + a30)

8a20 + 4a30
,

u0
2(x) =


4a20 for 0 < x < 0.5,
a20(4− ε−1(x− 0.5)) for 0.5 < x < 0.5 + ε,
3a20 for 0.5 + ε < x < 1,

u0
3(x) =


8a20 + 4a30 for 0 < x < 0.5,
a20(8− ε−1(x− 0.5)) + 4a30 for 0.5 < x < 0.5 + ε,
9a20 + 4a30 for 0.5 + ε < x < 1,

Then ∫ 1

0
(∂xu

0)>H(u0)A(u0)∂xu
0dx

=

∫ 0.5+ε

0.5

(
u0

1

u0
2

(∂xu
0
2)2 +

a20

u0
2

(∂xu
0
2)2 + ∂xu

0
2∂xu

0
3 +

u0
2 + a30

u0
3

(∂xu
0
3)2

)
dx

≤ a2
20

ε2

∫ 0.5+ε

0.5

(
2a20 + a30

3(8a20 + 4a30)

a20

3a20
− 1 +

4a20 + a30

8a20 + 4a30

)
dx

≤ a2
20

ε2

(
1

12
− 1

3
− 1 +

1

2

)
= − a

2
20

12ε
,

which proves the result.
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7. From reaction diffusion to cross diffusion
in the fast-reaction limit

7.1. Motivation

Our goal is to derive new entropies to new classes of cross-diffusion systems by using a
fast-reaction limit. For a detailed presentation of our strategy, see Section 3.2.

7.1.1. Outline

The first model consists of three species with one fast reaction and general reaction and
diffusion functions qi and fi, which we will study in Section 7.2. The second model is a “hy-
brid” reaction-cross diffusion system in four species with linear diffusivities and quadratic
reaction terms, studied in Section 7.3.

7.1.2. Notation

We will use the following notation in this chapter:

R+ : = [0,∞), R∗+ := (0,∞), ΩT := Ω× (0, T ),

‖ui‖(L logL)(ΩT ) :=

∫ T

0

∫
Ω
ui log(ui) dxdt,

‖ui‖(L2(logL)2)(ΩT ) :=

∫ T

0

∫
Ω

(ui)
2(log(ui))

2 dxdt.

7.2. Rigorous limit from three species with one fast reaction

In this section we prove the rigorous limit of a quite general quasilinear reaction-diffusion
system consisting of three species with one fast reaction to a limiting cross-diffusion system
when the fast-reaction rate 1/ε tends to infinity.

7.2.1. Model for three species with one fast reaction

The model

For the concentrations uεi := uεi (t, x) ≥ 0 of species Ai, i = 1, 2, 3, we consider the following
system of reaction-diffusion equations with fast-reaction term
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7. From reaction diffusion to cross diffusion in the fast-reaction limit


∂tu

ε
1 −∆xf1(uε1) = −1

ε

(
q1(uε1)− q2(uε2) q3(uε3)

)
,

∂tu
ε
2 −∆xf2(uε2) = +

1

ε

(
q1(uε1)− q2(uε2) q3(uε3)

)
,

∂tu
ε
3 −∆xf3(uε3) = +

1

ε

(
q1(uε1)− q2(uε2) q3(uε3)

)
,

(7.2.1)

together with initial data

uεi (0, x) = uini (x) ≥ 0, x ∈ Ω, i = 1, . . . , 3,

and homogeneous Neumann boundary conditions on the boundary ∂Ω ∈ C2 of a bounded
smooth open subset Ω of RN

n(x) · ∇xuεi (t, x) = 0, x ∈ ∂Ω, i = 1, . . . , 3.

Limiting cross-diffusion system

Our goal is to study the fast-reaction limit ε→ 0 such that uεi → ui, with ui satisfying the
limiting cross-diffusion system:

q1(u1)− q2(u2)q3(u3) = 0,

∂t (u1 + u2)−∆x (f1(u1) + f2(u2)) = 0,

∂t (u1 + u3)−∆x (f1(u1) + f3(u3)) = 0.

(7.2.2)

7.2.2. Existence of solutions

Assumptions for subsection 7.2.2

Our first goal is to prove global existence of weak solutions to system (7.2.1) for fixed ε > 0.
To this end, we impose the following set of assumptions for this subsection.

(C1) The functions fi : R+ → R+ are in C2(R+) with fi(0) = 0, and there exists a constant
C1 > 0 such that

f ′i(ui) ≥ C1 > 0 for all ui ≥ 0, i = 1, 2, 3.

Consequently,
fi(ui) ≥ C̃1ui > 0 for all ui ≥ 0, i = 1, 2, 3.

(C2) The functions qi : R+ → R+ are continuous. Moreover, there exists a constant C2 > 0,
such that

qi(ui) ≤ C2
ui

1 + ui
for all ui ≥ 0, i = 1, 2, 3.

(C3) There exists a constant µ > 0, such that uini (x) ≥ µ > 0, for all x ∈ Ω, i = 1, 2, 3.
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7.2. Rigorous limit from three species with one fast reaction

Existence theorem

Theorem 7.1. Assume that (C1)-(C3) are satisfied with uini (x) ∈ L∞(Ω), i = 1, 2, 3.

Then for any fixed ε > 0, there exists a global weak solution uε = (uε1, u
ε
2, u

ε
3) to system

(7.2.1), satisfying

uεi ≥ 0, uεi ∈ L2(0, T ;H1(Ω)), uεi ∈ L∞(ΩT ), ∂tu
ε
i ∈ L2(0, T ;H−1(Ω)),

and uε satisfies for all φ ∈ C∞0 ([0, T )× Ω;R3) and for β = (1,−1,−1) that∫ T

0

∫
Ω
uε∂tφdxdt+

∫ T

0

∫
Ω
∇xφ : f ′(uε)∇xuε dxdt = (7.2.3)

(−1)β

ε

∫ T

0

∫
Ω

(
q1(uε1)− q2(uε2)q3(uε3)

)
φdxdt+

∫
Ω
uin(x)φ(0, x) dx.

(7.2.4)

Proof. Since ε > 0 is fixed, we will omit for simplicity the ε-dependency of u for this proof,
and assume without loss of generality that ε = 1 for the right-hand side.

Step 1: solution for an approximated problem. Let 1 ≤ k ≤ N and T > 0. We consider
the time step τ = T/N . Then, for uk−1

i ∈ L∞(Ω) we can introduce the following time-
discretized scheme in τ > 0:

Given uk−1 = (uk−1
1 , uk−1

2 , uk−1
3 ) ∈ L∞(Ω;R3) nonnegative and bounded, find the k-th

approximated solution uk = (uk1, u
k
2, u

k
3) ∈ L∞(Ω;R3), such that (in the strong sense) it

holds {
τ−1(uki − uk−1

i )−∆xfi(u
k
i ) = Qi(u

k) in Ω, 1 ≤ i ≤ 3,

∇xuki (x) · n(x) = 0 on ∂Ω,
(7.2.5)

where Qi(u
k) = (−1)β

(
q1(uε1) − q2(uε2)q3(uε3)

)
with β = (1,−1,−1) is the i-th component

of the reaction term on the right-hand side. If k = 1, we set uk−1
i (x) := uini (x) for the

initial condition.

In order to prove existence of smooth solutions for the scheme, we first show that due to
assumptions (C1) − (C3) there exists a constant C > 0 uniform in time step τ > 0, such
that

uki (x) ≥ C > 0, for all x ∈ Ω, i = 1, 2, 3.

To this end, we assume without loss of generality that i = 2, and define x̃ ∈ Ω such that
uk2(x̃) = infx∈Ω u

k
2(x). We need to distinguish the cases x̃ ∈ Ω or x̃ ∈ ∂Ω. If x̃ ∈ ∂Ω,

we can use a strong Hopf lemma to obtain that ∇xuk2 · n(x) > 0, in contradiction to our
assumption of homogeneous Neumann boundary conditions. If x̃ ∈ Ω, then ∇xuk2(x̃) = 0
and ∆xu

k
2(x̃) ≥ 0. Thus, by (C1),

∆x(f2(uk2(x̃))) = f ′′2 (uk2(x̃))|∇uk2(x̃)|2 + f ′2(uk2(x̃))∆xu
k
2(x̃) ≥ 0.
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7. From reaction diffusion to cross diffusion in the fast-reaction limit

Consequently, by assumption (C2), it holds for all 1 ≤ k ≤ N ,

1

τ
(uk2(x̃)− uk−1

2 (x̃)) ≥ q1(uk1(x̃))− q2(uk2(x̃))q3(uk3(x̃)) ≥ −C2C3u
k
2(x̃).

This yields

uk2(x̃) ≥ (1 + C2C3τ)−1uk−1
2 (x̃) ≥ . . . ≥ (1 + C2C3τ)−kuin2 (x̃) ≥ (1 + C2C3T/N)−Nµ > 0,

(7.2.6)

where we used assumption (C3) in the last step. Thus,

inf
x∈Ω

uk2(x) ≥ (1 + C2C3T/N)−Nµ > 0. (7.2.7)

Since for N →∞ the term (1 +C2C3T/N)−Nµ converges to exp(−C2C3T ) > 0, the lower
bound in (7.2.7) is positive uniformly in τ = T/N > 0. Exactly the same arguments are
also valid for uk1 and uk3, leading to similar positive lower bounds uniform in τ > 0.

Now, due to this strict positivity of uki uniform in τ > 0 for 1 ≤ k ≤ N , assump-
tions (H1)-(H3) in [51, Theorem 2.2] are satisfied. In fact, assumption (H1) is clear, the
lower boundedness of fi(ui)/ui follows from assumption (C1), and for the boundedness of
q1(uk1)/uk1 and q2(uk2)q3(uk3)/uki , i = 2, 3 in (H2) we can use the boundedness of qi(u

k
i ) due

to (C2) together with the strict positivity of the uki . For assumption (H3), that is proving
that f : R3

+ → R3
+ is a homeomorphism, we can use [51, Proposition 5.2]. Thus by applying

[51, Theorem 2.2], we get the existence of a strong solution (uk)1≤k≤N−1 ∈ L∞(Ω;R3). How-
ever, we notice that the L∞-bound provided by this theorem is not uniform with respect
to the time step τ > 0.

Step 2: uniform (in τ) a priori estimates. Our strategy of proving that uki ∈ L∞(Ω)
uniformly in τ is similar to the proof of the strict positivity of the uki . Define x̃ ∈ Ω such
that uki (x̃) = supx∈Ω u

k
i (x). If x̃ ∈ ∂Ω, we can use again a strong Hopf lemma to obtain that

∇xuk2 · n(x) > 0, in contradiction to our assumption of homogeneous Neumann boundary
conditions. If x̃ ∈ Ω, it holds that ∇xuki (x̃) = 0 and ∆xu

k
i (x̃) ≤ 0. Moreover, it holds that

∆x(f1(uk1(x̃))) = f ′′(uk1(x̃))|∇uk1(x̃)|2 + f ′(uk1(x̃))∆xu
k
1(x̃) ≤ 0.

Thus, due to assumption (C2), it holds for all 1 ≤ k ≤ N that

1

τ
(uk1(x̃)− uk−1

1 (x̃)) ≤ C2,

yielding recursively

uk1(x̃) ≤ C2τ + uk−1
1 (x̃) ≤ . . . ≤ C2Nτ + uin1 (x̃).

Since τ = T/N , this yields the uniform in τ > 0 upper bound

‖uk1‖L∞(Ω) ≤ C2T + ‖uin1 ‖L∞(Ω), (7.2.8)

Same arguments are also valid for uk2 and uk3.
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7.2. Rigorous limit from three species with one fast reaction

Next, we derive a uniform estimate for the gradient ∇xuki (x). Multiplying (7.2.5) by
φ := uki and integrating in Ω yields

τ−1

∫
Ω

(uki − uk−1
i )uki dx+

∫
Ω
f ′i(u

k
i )|∇uki |2 dx =

∫
Ω
Qi(u

k)uki dx.

By using assumption (C1) and (C2), we get∫
Ω

(uki )
2 dx+ C1τ

∫
Ω
|∇uki |2 dx ≤ C2τ

∫
Ω
uki dx+

∫
Ω
uk−1
i uki dx.

Using Young’s inequality and summing over k = 1, . . . ,m yields∫
Ω

(umi )2 dx+ 2C1τ

m∑
k=1

∫
Ω
|∇uki |2 dx ≤ 2C2τ

m∑
k=1

∫
Ω
uki dx+

∫
Ω

(uini )2 dx. (7.2.9)

This yields the bound
‖∇xuki ‖L2(Ω) ≤ CT .

Now we define the piecewise constant functions in time u(τ)(x, t) := uk(x) for x in Ω and
t ∈ ((k − 1)τ, kτ ], k = 1, . . . , N , and at t = 0 set u(τ)(·, t) = uin(x). Moreover, we define
the shift operator στu

(τ)(x, t) := uk−1(x) for x in Ω and t ∈ ((k − 1)τ, kτ ], k = 1, . . . , N .

Identifying the sum over k = 1, . . . ,m multiplied by the time step τ as the time integral
over (0, T ) in (7.2.9), we get that

‖∇xu(τ)
i ‖L2(0,T ;L2(Ω)) ≤ CT (uniformly in τ).

Summarizing, we have shown that

‖u(τ)
i ‖L∞(0,T ;L∞(Ω)) + ‖u(τ)

i ‖L2(0,T ;H1(Ω)) ≤ CT (uniformly in τ). (7.2.10)

Finally, we need to derive a uniform estimate for the discrete time derivative. To this end,
let φ ∈ L2(0, T ;H1(Ω;R3)). Then

τ−1

∣∣∣∣∫ T

τ
(u(τ) − στu(τ))φdxdt

∣∣∣∣ ≤ ‖f ′(u(τ))∇u(τ)‖L2(ΩT )‖∇φ‖L2(ΩT ) + C̃‖φ‖L1(ΩT )

≤ C‖φ‖L2(0,T ;H1(Ω)).

Thus,

τ−1‖u(τ) − στu(τ)‖L2(0,T ;H−1(Ω)) ≤ CT . (7.2.11)

Step 3: passing to the limit τ → 0. Due to the uniform estimates (7.2.10) and (7.2.11),

we can use the Aubin-Lions lemma [40, Theorem 3] to derive that u
(τ)
i → ui strongly in

L2(ΩT ). Since u
(τ)
i is uniformly bounded in L∞(ΩT ) and f ′ and Q are continuous, also
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7. From reaction diffusion to cross diffusion in the fast-reaction limit

f ′(u(τ)) and Q(u(τ)) are uniformly bounded in L∞(ΩT ), moreover, we get the convergence
ui(τ)→ ui strongly in Ls(Ω) for all s <∞ and a.e. in ΩT (up to subsequences). Thus we
have

u(τ) → u strongly in Ls(0, T ;Ls(Ω)), (7.2.12)

u(τ) ⇀ u weakly in L2(0, T ;H1(Ω)), (7.2.13)

f ′(u(τ))∇u(τ) ⇀ X weakly in L2(0, T, L2(Ω)), (7.2.14)

τ−1(u(τ) − στu(τ)) ⇀ ∂tu weakly in L2(0, T ;H−1(Ω)). (7.2.15)

Due to (7.2.12) and (7.2.13), it holds that

f ′(u(τ))∇u(τ) ⇀ f ′(u)∇u weakly in Lp(ΩT ) for all p < 2,

and consequently X = f ′(u)∇u. Similarly as in the proof of [41, pp. 1208-1209], we derive
from (7.2.12) and (7.2.11) that∫ T

0

∫
Ω
τ−1(στu

(τ) − u(τ) · φ) dxdt→
∫ T

0

∫
Ω
u · ∂tφdxdt−

∫
Ω
u0 · φ(0, x) dx.

This and the convergence results in (7.2.12)-(7.2.15) are sufficient to pass to the limit τ → 0,
yielding (7.2.3).

Remark 7.2. In fact, assuming enough regularity for the data, the solutions are even
classical solutions. This can be shown by a bootstrap argument.

7.2.3. Fast-reaction limit to a cross-diffusion system

Our next goal is to study the rigorous limit of system (7.2.1) to the cross-diffusion system
(7.2.2). To this end, we impose the following set of assumptions for this subsection.

Assumptions for subsection 7.2.3

(B1) There exists a constant C1 > 0, such that (for large x) it holds that

0 ≤ fi(x) ≤ C1 x
2 log(x) for all x ≥ 0, i = 1, 2, 3.

(B2) There exist α > 0 and C2 > 0, such that

qi(x) ≥ C2 x
α for all x ≥ 0, i = 1, 2, 3.
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7.2. Rigorous limit from three species with one fast reaction

(B3) For some s > 1 and 1 ≤ p, p′ ≤ ∞ with 1/p+ 1/p′ = 1, there exist positive constants
C3, C4, C5 > 0 such that (for large x)

qs1(x) ≤ C3 xf1(x) for all x ≥ 0,

qsp2 (x) ≤ C4 xf2(x) for all x ≥ 0,

qsp
′

2 (x) ≤ C5 xf3(x) for all x ≥ 0.

(B4) The functions fi : R+ → R+ and qi : R∗+ → R+ are in C1 with

f ′i(x) > 0 and q′i(x) > 0 for all x ≥ 0, i = 1, 2, 3.

(B5) There exists a constant C6 > 0, such that

qi(x) ≤ C6 x
(
fif
′
iq
′
i

)
(x) for all x ≥ 0, i = 1, 2, 3.

(B6) For a : R2
+ → R2

+ with a(u2, u3) = (a2(u2, u3), a3(u2, u3)) it holds that

ai :

{
R2

+ → R+

(u2, u3) 7→ ui + q−1
1

(
q2(u2)q3(q3)

)
/ui

are continuous for i = 2, 3.

Fast-reaction limit

Theorem 7.3. Let assumptions (B1)− (B6) hold. Let Ω ⊆ RN be a bounded regular open
set of RN , and let for any ε > 0, uε1, u

ε
2, u

ε
3 denote a weak solution of the reaction-diffusion

system (7.2.1) with initial data uεi (0, x) = uini (x) ∈ L∞ for all x ∈ Ω, i = 1, 2, 3.

Then the following holds: If ε → 0, there exists a subsequence of uε1, u
ε
2, u

ε
3 (which we

still denote by uε1, u
ε
2, u

ε
3), which converges to u1, u2, u3 in L1

loc([0,∞);L1(Ω)).

Moreover, this limit is a weak solution of the cross-diffusion system (7.2.2) belonging to
L1
loc([0,∞);L1(Ω)).

A priori estimates

Defining the entropy

H[uε(t)] =

3∑
i=1

∫
Ω
hi(u

ε
i ) dx, with hi(u

ε
i ) =

∫ uεi

c
log(qi(z)) dz, (7.2.16)
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7. From reaction diffusion to cross diffusion in the fast-reaction limit

the entropy dissipation along the flow of system (7.2.1) has the following form

Dε[u
ε(t)] = − d

dt
H[uε(t)]

= −
3∑
i=1

∫
Ω

log qi(u
ε
i ) ∂tu

ε
i dx

=

3∑
i=1

∫
Ω

(
f ′iq
′
i

qi

)
(uεi ) |∇xuεi |2 dx

+
1

ε

∫
Ω

(
log(q1(uε1))− log(q2(uε2)q3(uε3))

)(
q1(uε1)− q2(uε2)q3(uε3)

)
dx

≥ 0.

Integrating this in time leads to the standard entropy-entropy-dissipation inequality, where
the right-hand side is uniform in ε:

sup
t∈[0,T ]

H[uε(t)] +

∫ T

0
Dε[u

ε(s)]ds ≤ H[uin]. (7.2.17)

Lemma 7.4 (Entropy estimates). The following estimates hold for uεi with i = 1, 2, 3:

3∑
i=1

∫ T

0

∫
Ω

(
f ′iq
′
i

qi

)
(uεi ) |∇xuεi |2 dxdt ≤ CT , (7.2.18)∫

Ω

(
log(q1(uε1))− log(q2(uε2)q3(uε3))

)(
q1(uε1)− q2(uε2)q3(uε3)

)
dxdt ≤ εCT , (7.2.19)

sup
t∈[0,T ]

∫
Ω
uεi log(uεi ) dx ≤ CT . (7.2.20)

Proof. Estimates (7.2.18) and (7.2.19) follow from the entropy-entropy-dissipation inequal-
ity (7.2.17).
Estimate (7.2.20) can be proved in the following way: Thanks to (B2) we know that

hi(x) =

∫ x

c
log(qi(z)) dz ≥ αC

∫ x

c
log(z) dz.

This together with (7.2.17) (and the conservations of
∫

Ω(uε1 + uεi )) yields

sup
t∈[0,T ]

3∑
i=1

∫
Ω
uεi | log(uεi )| dx ≤ C sup

t∈[0,T ]
H[uε(t)] ≤ CT .

Now we present the following duality lemma from [29], which is a variant of [121] intro-
duced by M. Pierre and D. Schmitt.
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7.2. Rigorous limit from three species with one fast reaction

Lemma 7.5 (Duality lemma). If for u ≥ 0 and A := A(t, x) ≥ 0 it holds that
∂tu−∆x(Au) ≤ 0 in Ω,

n(x) · ∇x(Au) = 0 on ∂Ω,

u(0, x) = uin(x) ∈ L∞(Ω),

then ∫ T

0

∫
Ω
Au2 dxdt ≤ C

(
1 +

∫ T

0

∫
Ω
Adxdt

)
,

where C depends only on ||uin||L∞(Ω).

Proof. We integrate ∂tu−∆x(Au) ≤ 0 against a test function w ≥ 0, which is defined as a
positive solution of the dual problem

∂tw +A∆xw = −Au,
∇xw · n(x) = 0 on ∂Ω,

w(T, ·) = 0.

(7.2.21)

Note that w is indeed nonnegative because u is also assumed to be nonnegative. This leads
to ∫ T

0

∫
Ω

(
w∂tu− w∆x (Au)

)
dxdt ≤ 0.

Integration by parts yields

−
∫ T

0

∫
Ω
u∂tw dxdt−

∫
Ω

(wu)(0) dx−
∫ T

0

∫
Ω
Au∆xw dxdt ≤ 0

and using the dual problem (7.2.21) leads to∫ T

0

∫
Ω
Au2 dxdt ≤

∫
Ω

(wu)(0) dx.

Using Hölder’s inequality yields∫ T

0

∫
Ω
Au2 dxdt ≤ ‖u(0)‖L∞(Ω)

∫
Ω
|w(0)| dx. (7.2.22)

Next we multiply the dual problem (7.2.21) by ∆xw and integrate, which yields

−
∫ T

0
∂t

∫
Ω

|∇xw|2

2
dxdt+

∫ T

0

∫
Ω
A (∆xw)2 dxdt = −

∫ T

0

∫
Ω
Au∆xw dxdt.

Using Young’s inequality leads to

1

2

∫
Ω
|∇xw(0)|2 dx+

∫ T

0

∫
Ω
A (∆xw)2 dxdt ≤ 1

2

∫ T

0

∫
Ω
A (∆xw)2 dxdt+

1

2

∫ T

0

∫
Ω
Au2 dxdt.
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7. From reaction diffusion to cross diffusion in the fast-reaction limit

Thus ∫
Ω
|∇xw(0)|2 dx+

∫ T

0

∫
Ω
A (∆xw)2 dxdt ≤

∫ T

0

∫
Ω
Au2 dxdt. (7.2.23)

Now we can write

w(0) = −
∫ T

0
∂tw dt =

∫ T

0

(
A∆xw +Au

)
dt.

Thus ∫
Ω
|w(0)| dx ≤

∫ T

0

∫
Ω

(
|A∆xw|+ |Au|

)
dxdt.

Using Young’s inequality for both terms on the right-hand side leads to∫
Ω
|w(0)| dx ≤ ε

2

∫ T

0

∫
Ω
Au2 dxdt+

ε

2

∫ T

0

∫
Ω
A(∆xw)2 dxdt+

1

ε

∫ T

0

∫
Ω
Adxdt,

and thanks to (7.2.23) we get that∫
Ω
|w(0)| dx ≤ 1

ε

∫ T

0

∫
Ω
Adxdt+ ε

∫ T

0

∫
Ω
Au2 dxdt. (7.2.24)

Now we use (7.2.22) and (7.2.24) to obtain∫ T

0

∫
Ω
Au2 dxdt ≤ ‖u(0)‖L∞(Ω)

∫
Ω
|w(0)| dx

≤ ‖u(0)‖L∞(Ω)

(
1

ε

∫ T

0

∫
Ω
Adxdt+ ε

∫ T

0

∫
Ω
Au2 dxdt

)
,

which proves the duality lemma by choosing ε > 0 small enough.

Lemma 7.6 (Duality estimate). It holds that∫ T

0

∫
Ω

(
f1(uε1) + fi(u

ε
i )
)(
uε1 + uεi

)
dxdt ≤ CT , i = 2, 3.

Proof. It holds that

∂t (uε1 + uεi )−∆x

((
f1(uε1) + fi(u

ε
i )

uε1 + uεi

(
uε1 + uεi

)))
= 0, i = 2, 3. (7.2.25)

Due to (B1) and (7.2.20) we know that∫ T

0

∫
Ω

f1(uε1) + fi(u
ε
i )

uε1 + uεi
dxdt ≤ C

∫ T

0

∫
Ω
uε1 log(uε1) dxdt+

∫
Ω
uεi log(uεi ) dxdt ≤ CT .

Thus we can use Lemma 7.5 for equation (7.2.25) and get the desired estimate.
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Lemma 7.7. Recalling that uini (x) ∈ L∞(Ω) for i = 1, 2, 3, we get the following estimates:∥∥∥(q1(uε1))1/2 −
(
q2(uε2)q3(uε3)

)1/2∥∥∥
L2(ΩT )

≤
√
εCT ,

‖q1(uε1)− q2(uε2)q3(uε3)‖L1(ΩT ) ≤
√
εCT .

Proof. The elementary inequality

4
∣∣∣√a−√b∣∣∣2 ≤ (a− b)(log a− log b), a, b ≥ 0,

together with Lemma 7.4 yields

4
∥∥∥(q1(uε1))1/2 −

(
q2(uε2)q3(uε3)

)1/2∥∥∥2

L2(ΩT )
=

= 4

∫ T

0

∫
Ω

∣∣∣(q1(uε1))1/2 −
(
q2(uε2)q3(uε3)

)1/2∣∣∣2 dxdt
≤
∫ T

0

∫
Ω

(
q1(uε1)− q2(uε2)q3(uε3)

)(
log (q1(uε1))− log (q2(uε2)q3(uε3))

)
dxdt

≤ εCT ,

which shows the first estimate. By using the Cauchy-Schwarz inequality, we get that

‖q1(uε1)− q2(uε2)q3(uε3)‖L1(ΩT ) =

=

∫ T

0

∫
Ω

(
(q1(uε1))1/2 −

(
q2(uε2)q3(uε3)

)1/2)(
(q1(uε1))1/2 +

(
q2(uε2)q3(uε3)

)1/2)
dxdt

≤
(∫

QT

∣∣∣q1(uε1)1/2 −
(
q2(uε2)q3(uε3)

)1/2∣∣∣2)1/2(∫
QT

∣∣q1(uε1)1/2 +
(
q2(uε2)q3(uε3)

)1/2∣∣2)1/2

For the first factor we can use the first part of this lemma:∫ T

0

∫
Ω

∣∣∣(q1(uε1))1/2 −
(
q2(uε2)q3(uε3)

)1/2∣∣∣2 dxdt ≤ √εCT ,
and the second factor is bounded due to Young’s inequality, (B3) and Lemma 7.6:∫ T

0

∫
Ω

∣∣ (q1(uε1))1/2 +
(
q2(uε2)q3(uε3)

)1/2∣∣2 dxdt ≤
2

∫ T

0

∫
Ω
q1(uε1) dxdt+ 2

∫ T

0

∫
Ω
q2(uε2)q3(uε3) dxdt

≤ C + C

∫ T

0

∫
Ω

(
uε1f1(uε1) + uε2f2(uε2) + uε3f3(uε3)

)
dxdt ≤ CT .

This finishes the proof of the second estimate.

Lemma 7.8. It holds for i = 1, 2, 3 that

‖∇xuεi‖L1(ΩT ) ≤ CT ,

which shows that uεi is bounded in L1(0, T ;W 1,1(Ω)).
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7. From reaction diffusion to cross diffusion in the fast-reaction limit

Proof. It holds by Cauchy-Schwarz that

∫ T

0

∫
Ω
|∇xuεi | dxdt ≤

(∫ T

0

∫
Ω

(
f ′iq
′
i

qi

)
(uεi ) |∇xuεi |2 dxdt

)1/2(∫ T

0

∫
Ω

(
qi
f ′iq
′
i

)
(uεi ) dxdt

)1/2

Now it holds that ∫ T

0

∫
Ω

(
f ′iq
′
i

qi

)
(uεi ) |∇xuεi |2 dxdt ≤ CT

due to Lemma 7.4, and thanks to (B5) and Lemma 7.6 we get that∫ T

0

∫
Ω

(
qi
f ′iq
′
i

)
(uεi ) dxdt ≤ C

∫
uεifi(u

ε
i ) dxdt ≤ CT ,

which finishes the proof.

Strong compactness for uεi

The difficulty in proving strong compactness for uεi in system (7.2.1) relies in the fact that
we cannot use the Aubin-Lions lemma [130] for uεi directly, due to blow-up in the time
dervatives ∂tu

ε
i for ε → 0. However, we are still able to prove strong compactness for the

uεi with the help of the following lemmata.

Lemma 7.9. The sequences (uε1 + uεi ) , i = 2, 3 are relatively compact in L1(ΩT ).

Proof. For the terms uε1 + uεi , i = 2, 3, in system (7.2.1), we see that the right-hand side
does not blow-up for ε→ 0, thus we apply the Aubin-Lions lemma to these terms and get
strong compactness for them.

The terms uε1 + uεi , i = 2, 3, are bounded in L1(0, T ;W 1,1(Ω)) due to Lemma 7.8. For
the time derivatives ∂t(u

ε
1 + uεi ), i = 2, 3, we have that

∂t(u
ε
1 + uεi ) = ∆x

(
f1(uε1) + fi(u

ε
i )
)
.

Now it holds by Lemma 7.6, (B1) and Lemma 7.4 that

∫ T

0

∫
Ω
fi(u

ε
i ) dxdt ≤

(∫ T

0

∫
Ω
fi(u

ε
i )u

ε
i dxdt

)1/2(∫ T

0

∫
Ω

fi(u
ε
i )

uεi
dxdt

)1/2

≤ C
(∫ T

0

∫
Ω
fi(u

ε
i )u

ε
i dxdt

)1/2(∫ T

0

∫
Ω
uεi log(uεi ) dxdt

)1/2

≤ CT ,

which implies that ∂t(u
ε
1 + uεi ) is bounded in L1(0, T ;W−2,1(Ω)). Thus by the standard

Aubin-Lions lemma [130] we get that (uε1 + uεi ) is relatively compact in L1(ΩT ).
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7.2. Rigorous limit from three species with one fast reaction

Lemma 7.10. The function

ϕ :

{
R2

+ → R2
+

(u2, u3) 7→
(
u2 + q−1

1

(
q2(u2)q3(u3)

)
, u3 + q−1

1

(
q2(u2)q3(u3)

))
is a homeomorphism on R2

+.

Proof. The function ϕ can be written as

ϕ :

{
R2

+ → R2
+

(u2, u3) 7→
(
a2(u2, u3)u2, a3(u2, u3)u3

)
,

where for i = 2, 3 we have ai : R2
+ → R+ with

ai(u2, u3) = 1 +
q−1

1

(
q2(u2)q3(u3)

)
ui

.

By (B6) it holds that the functions ai are continuous on R2
+. Clearly they are lower bounded

by 1. Moreover, on R+ × R+ it holds thanks to (B4) that ϕ is strictly increasing (in the
sense that each component is strictly increasing w.r.t. each component), and on R∗+ × R∗+
it holds that ϕ is C1. The determinant of the Jacobian of ϕ is strictly positive on R∗+×R∗+:

detD(ϕ) = 1 +
(
q−1

1

)′
(q2(u2)q3(u3)) ·

(
q′2(u2)q3(u3) + q2(u2)q′3(u3)

)
> 0 ∀ui > 0.

Thus we can apply [51, Proposition 5.1] and get that ϕ is a homeomorphism on R2
+.

Lemma 7.11. If (uεi ), i = 1, 2, 3 are sequences in R+ satisfying for ε→ 0 that

(uε1 + uε2)→ B a.e. in ΩT ,
(uε1 + uε3)→ C a.e. in ΩT ,

(7.2.26)

and if additionally (
uε1 − q−1

1 (q2(uε2)q3(uε3))
)
→ 0 a.e. in ΩT ,

then it holds that

uε1 → u1 a.e. in ΩT ,
uε2 → u2 a.e. in ΩT ,
uε3 → u3 a.e. in ΩT ,

with

u2 := ψ2(B,C), u3 := ψ3(B,C), u1 := q−1
1

(
q2(ψ2(B,C))q3(ψ3(B,C))

)
, (7.2.27)

where ψ = (ψ2, ψ2) := ϕ−1, and ϕ denotes the homeomorphism introduced in Lemma 7.10.
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7. From reaction diffusion to cross diffusion in the fast-reaction limit

Proof. Due to the assumptions, it holds that

uε2 + q−1
1 (q2(uε2)q3(uε3))→ B a.e. in ΩT ,

uε3 + q−1
1 (q2(uε2)q3(uε3))→ C a.e. in ΩT .

Moreover, since ϕ is bijective with the inverse ψ := ϕ−1, it holds that

(uε2, u
ε
3) = ψ

(
uε2 + q−1

1 (q2(uε2)q3(uε3)), uε3 + q−1
1 (q2(uε2)q3(uε3))

)
for all ε > 0,

and since ψ is continuous, it holds a.e. in ΩT that

(u2, u3) = lim
ε→0

(uε2, u
ε
3)

= lim
ε→0

(
ψ2

(
uε2 + q−1

1 (q2q3), uε3 + q−1
1 (q2q3)

)
, ψ3

(
uε2 + q−1

1 (q2q3), uε3 + q−1
1 (q2q3)

))
=
(
ψ2(B,C), ψ3(B,C)

)
,

with B,C defined in (7.2.26). This shows that uε2 → u2 a.e. in ΩT , and uε3 → u3 a.e.
in ΩT with u2 = ψ2(B,C) and u3 = ψ3(B,C). Finally, since uε1 − q

−1
1 (q2(uε2)q3(uε3)) →

0 a.e. in ΩT , we get that uε1 → q−1
1

(
q2(ψ2(B,C))q3(ψ3(B,C))

)
a.e. in ΩT , which finishes

the proof.

Theorem 7.12. For i = 1, 2, 3 it holds that

uεi → ui strongly in L1(ΩT ) and a.e..

Proof. Due to Lemma 7.9 we have (for a subsequence) that uε1 + uε2 → B a.e. in ΩT

and uε1 + uε3 → C a.e. in ΩT , and due to Lemma 7.7 it holds (for a subsequence) that(
uε1 − q

−1
1 (q2(uε2)q3(uε3))

)
→ 0 a.e. in ΩT . Thus we can apply Lemma 7.11, and get that

uεi → ui a.e. in ΩT .

Thanks to Lemma 7.4 we have for i = 1, 2, 3 that

‖uεi‖L(logL)(ΩT ) ≤ CT ,

thus by [105, Lemma 1.3] we get that

uεi → ui strongly in L1(ΩT ).

Uniform integrability

Lemma 7.13. For ε→ 0 it holds that

q1(uε1)→ q1(u1) strongly in L1(ΩT ),

q2(uε2)q3(uε3)→ q2(u2)q3(u3) strongly in L1(ΩT ).
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7.2. Rigorous limit from three species with one fast reaction

Proof. Due to Theorem 7.12 we know that uεi → ui a.e. in ΩT . Since qi is continuous, it
holds that

q1(uε1)→ q1(u1) a.e. in ΩT ,

q2(uε2)q3(uε3)→ q2(u2)q3(u3) a.e. in ΩT .

Thanks to (B3) and Lemma 7.6 we have for some s > 1:

‖q1(uε1)‖Ls(ΩT ) ≤ CT ,
‖q2(uε2)q3(uε3)‖Ls(ΩT ) ≤ CT .

Thus q1(uε1) and q2(uε2)q3(uε3) are uniformly integrable, and applying [105, Lemma 1.3]
finishes the proof.

Lemma 7.14. It holds that fi(u
ε
i )→ fi(ui) strongly in L1(ΩT ) for i = 1, 2, 3.

Proof. First we prove that fi(u
ε
i ) is uniformly integrable, where we recall that fi : R+ → R+

with f ′i > 0. In the case that that fi is bounded, this is clearly true. In the case that fi
is unbounded, f−1

i is also unbounded, and we proceed in the following way. Defining the
function

Φi :

{
R+ → R+

x 7→ f−1
i (x)x.

for i = 1, 2, 3, it holds that Φi is strictly increasing and that Φi(x)/x → ∞ for x → ∞.
Finally, thanks to Lemma 7.6 we have for all ε > 0 and for i = 1, 2, 3 that∫ T

0

∫
Ω

Φi (|fi(uεi )|) dxdt =

∫ T

0

∫
Ω
uεifi(u

ε
i ) dxdt ≤ CT .

Thus
(
fi(u

ε
i )
)

is uniformly integrable for i = 1, 2, 3 also in this case. Since fi(u
ε
i )→ fi(ui)

a.e. in ΩT , we can apply [105, Lemma 1.3] to get the desired result.

Passing to the limit

The estimates derived in the last subsections are sufficient to pass to the limit ε→ 0 in the
weak formulation of the reaction-diffusion system (7.2.1). Thus we are now able to prove
Theorem 7.3.

Proof of Theorem 7.3. The only step which remains to prove is to pass to the limit ε→ 0
for the terms uε1 + uεi , i = 2, 3 in the weak formulations of the reaction-diffusion system
(7.2.1). First we write down the equation satisfied for uε1 + uεi , i = 2, 3:

∂t(u
ε
1 + uεi )−∆x

(
f1(uε1) + fi(u

ε
i )
)

= 0,

(uε1 + uεi )(0, x) =
(
uin1 + uini

)
(x),

n(x) · ∇x(uε1 + uεi )(t, x) = 0.
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7. From reaction diffusion to cross diffusion in the fast-reaction limit

The weak form can be written in the following way: For any test function ψ = ψ(t, x) in
the set {

ψ ∈ C2([0,∞)× Ω) : ψ(t) = 0 for t ≥ T and n(x) · ∇xψ(t, x) = 0
}
,

we have that

0 =

∫
ΩT

(uε1 + uεi )(t, x)∂tψ(t, x) dxdt+

∫
Ω

(uin1 + uini )(x)ψ(0, x) dx

+

∫
ΩT

(
f1(uε1) + fi(u

ε
i )
)
∆xψ(t, x) dxdt.

Now, by using that

uεi → ui strongly in L1(ΩT ), i = 1, 2, 3,

fi(u
ε
i )→ fi(ui) strongly in L1(ΩT ), i = 1, 2, 3,

(7.2.28)

we can pass to the limit ε→ 0 and get that

0 =

∫
ΩT

(u1 + ui)(t, x)∂tψ(t, x) dxdt+

∫
Ω

(uin1 + uini )(x)ψ(0, x) dx

+

∫
ΩT

(
f1(u1) + fi(ui)

)
∆xψ(t, x) dxdt.

(7.2.29)

Next we observe that thanks to Lemma 7.13 (second inequality) and Lemma 7.7, we get
q1(u1)− q2(u2)q3(u3).

This finishes the proof.

Remark 7.15 (Initial layers). The last proof shows that the initial data needs to be well-
prepared, i.e.

q2(uin2 )q3(uin3 ) = q1(uin1 ) a.e. in Ω.

If this condition is not satisfied, there is an initial layer appearing. But due to the fact that

‖q1(uε1)− q2(uε2)q3(uε3)‖L1(ΩT ) ≤
√
εC,

this initial layer vanishes after oε→0(1)− time.

7.2.4. Transformed system

First we recall the definition of the homeomorphism ϕ(u) = (ϕ2(u), ϕ3(u)) for u = (u2, u3)
defined in Lemma 7.10:

ϕ :

{
R2

+ → R2
+,

(u2, u3) 7→ (w2, w3),
(7.2.30)
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7.2. Rigorous limit from three species with one fast reaction

where w2 := u2 + q−1
1 (q2(u2)q3(u3)) and w3 := u3 + q−1

1 (q2(u2)q3(u3)), and its inverse

ψ := ϕ−1, ψ(w) =
(
ψ2(w), ψ3(w)

)
. (7.2.31)

Thus we can formally rewrite the limiting system in terms of the new variables (w2, w3) in
the following way:

∂tw2 −∆x

[(
f1(q−1

1 (q2(ψ2(w))q3(ψ3(w)))) + f2(ψ2(w))

w2

)
w2

]
= 0,

∂tw3 −∆x

[(
f1(q−1

1 (q2(ψ2(w))q3(ψ3(w)))) + f3(ψ3(w))

w3

)
w3

]
= 0.

The entropy can be expressed in the new variables w = (w2, w3) in the following way

H[w(t)] =

∫
Ω

∫ q−1
1 (q2(ψ2(w))q3(ψ3(w)))

c
log(q1(z)) dzdx

+

∫
Ω

∫ ψ2(w)

c
log(q2(z)) dzdx+

∫
Ω

∫ ψ3(w)

c
log(q3(z)) dzdx.

7.2.5. Robustness of the method

Robustness of the method for quadratic diffusivities

Now we study the microscopic model with quadratic diffusivities fi(u
ε
i ) = (uεi )

2 , i = 1, 2, 3,
where we allow a small pertubation of cross-diffusion terms in uε1, u

ε
2 for δ > 0, γ > 0:

∂tu
ε
1 −∆x

(
uε1
(
uε1 + δuε2

))
= −1

ε

(
q1(uε1)− q2(uε2)q3(uε3)

)
,

∂tu
ε
2 −∆x

(
uε2
(
uε2 + γuε1

))
= +

1

ε

(
q1(uε1)− q2(uε2)q3(uε3)

)
,

∂tu
ε
3 −∆x

(
(uε3)2 ) = +

1

ε

(
q1(uε1)− q2(uε2)q3(uε3)

)
.

(7.2.32)

The following lemma shows that our method of obtaining entropies for the limiting cross-
diffusion systems is robust under small perurbation of cross-diffusion terms.

Lemma 7.16. Let 0 < δ ≤ 4 and 0 < γ ≤ 4. Assume that there exist positive constants
C1, C2 > 0, such that

C1
q′2(u2)

q2(u2)
≤ q′1(u1)

q1(u1)
≤ C2

q′2(u2)

q2(u2)
. (7.2.33)

Moreover, assume that

δ − γ

2C1
≥ 0, γ − δC2

2
≥ 0. (7.2.34)

Then the entropy is decreasing along the flow of the pertubed system (7.2.32), i.e.

∀ε > 0 :
d

dt
H[uε(t)] ≤ 0.
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7. From reaction diffusion to cross diffusion in the fast-reaction limit

Proof. It holds that

d

dt
H[uε(t)] =

∫
Ω

log
(
q1(uε1)

)
∂tu

ε
1 dx+

∫
Ω

log
(
q2(uε2)

)
∂tu

ε
2 dx+

∫
Ω

log
(
q3(uε3)

)
∂tu

ε
3 dx

= −1

ε

∫
Ω

(
log (q1(uε1))− log (q2(uε2)q3(uε3))

)(
q1(uε1)− q2(uε2)q3(uε3)

)
dx

− 2

∫
Ω

q′1(uε1)

q1(uε1)
uε1|∇x(uε1)|2 dx− 2

∫
Ω

q′2(uε2)

q2(uε2)
uε2|∇x(uε2)|2 dx

− 2

∫
Ω

q′3(uε3)

q3(uε3)
uε3|∇x(uε3)|2 dx− δ

∫
Ω

q′1(uε1)

q1(uε1)
uε2|∇x(uε1)|2 dx

− γ
∫

Ω

q′2(uε2)

q2(uε2)
uε1|∇x(uε2)|2 dx− δ

∫
Ω

q′1(uε1)

q1(uε1)
uε1∇x(uε1) · ∇x(uε2) dx

− γ
∫

Ω

q′2(uε2)

q2(uε2)
uε2∇x(uε1) · ∇x(uε2) dx.

Using Young’s inequality∫
Ω

q′i(u
ε
i )

qi(uεi )
uεi∇x(uεi ) · ∇x(uεj) dx ≤

1

2

∫
Ω

q′i(u
ε
i )

qi(uεi )
uεi |∇x(uεi )|2 dx+

1

2

∫
Ω

q′i(u
ε
i )

qi(uεi )
uεi |∇x(uεj)|2 dx

we get that

d

dt
H[uε(t)] ≤ −1

ε

∫
Ω

(
log (q1(uε1))− log (q2(uε2)q3(uε3))

)(
q1(uε1)− q2(uε2)q3(uε3)

)
dx

−
(

2− δ

2

)∫
Ω

q′1(uε1)

q1(uε1)
uε1|∇x(uε1)|2 dx−

(
2− γ

2

)∫
Ω

q′2(uε2)

q2(uε2)
uε2|∇x(uε2)|2 dx

− 2

∫
Ω

q′3(uε3)

q3(uε3)
uε3|∇x(uε3)|2 dx−

(
δ − γ

2C1

)∫
Ω

q′1(uε1)

q1(uε1)
uε2|∇x(uε1)|2 dx

−
(
γ − δC2

2

)∫
Ω

q′2(uε2)

q2(uε2)
uε1|∇x(uε2)|2 dx

≤ 0.

Robustness of the method for cubic diffusivities

Now we study the microscopic model with cubic diffusivities fi(u
ε
i ) = (uεi )

3 , i = 1, 2, 3,
where we allow a small pertubation of cross-diffusion terms in uε1, u

ε
2 for δ > 0, γ > 0:

∂tu
ε
1 −∆x

(
uε1
(

(uε1)2 + δ (uε2)2 )) = −1

ε

(
q1(uε1)− q2(uε2)q3(uε3)

)
,

∂tu
ε
2 −∆x

(
uε2
(

(uε2)2 + γ (uε1)2 )) = +
1

ε

(
q1(uε1)− q2(uε2)q3(uε3)

)
,

∂tu
ε
3 −∆x

(
(uε3)3 ) = +

1

ε

(
q1(uε1)− q2(uε2)q3(uε3)

)
.

(7.2.35)

The following lemma shows that our method of obtaining entropies for the limiting cross-
diffusion system is robust under small perurbation of cross-diffusion terms also for this
model.
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7.2. Rigorous limit from three species with one fast reaction

Lemma 7.17. Let δ > 0, γ > 0 and assume that there exist two positive constants C1, C2 >
0 such that assumption (7.2.33) holds. Moreover, assume that

3− δ − γ

C1
≥ 0, 3− γ − δC2 ≥ 0. (7.2.36)

Then the entropy is decreasing along the flow of the pertubed system (7.2.35), i.e.

∀ε > 0 :
d

dt
H[uε(t)] ≤ 0.

Proof. It holds that

d

dt
H[uε(t)] =

∫
Ω

log
(
q1(uε1)

)
∂tu

ε
1 dx+

∫
Ω

log
(
q2(uε2)

)
∂tu

ε
2 dx+

∫
Ω

log
(
q3(uε3)

)
∂tu

ε
3 dx

= −1

ε

∫
Ω

(
log (q1(uε1))− log (q2(uε2)q3(uε3))

)(
q1(uε1)− q2(uε2)q3(uε3)

)
dx

− 3

∫
Ω

q′3(uε3)

q3(uε3)
(uε3)2 |∇uε3|2 dx

− 3

∫
Ω

q′1(uε1)

q1(uε1)
(uε1)2 |∇x(uε1)|2 dx− 3

∫
Ω

q′2(uε2)

q2(uε2)
(uε2)2 |∇x(uε2)|2 dx

− δ
∫

Ω

q′1(uε1)

q1(uε1)
(uε2)2 |∇x(uε1)|2 dx

− γ
∫

Ω

q′2(uε2)

q2(uε2)
(uε1)2 |∇x(uε2)|2 dx− 2δ

∫
Ω

q′1(uε1)

q1(uε1)
uε1u

ε
2∇x(uε1) · ∇x(uε2) dx

− 2γ

∫
Ω

q′2(uε2)

q2(uε2)
uε1u

ε
2∇x(uε1) · ∇x(uε2) dx.

Using Young’s inequality in the following way∫
Ω

q′i(u
ε
i )

qi(uεi )
uεiu

ε
j∇x(uεi ) · ∇x(uεj) dx

≤ 1

2

∫
Ω

q′i(u
ε
i )

qi(uεi )
(uεi )

2 |∇x(uεi )|2 dx+
1

2

∫
Ω

q′i(u
ε
i )

qi(uεi )

(
uεj
)2 |∇x(uεj)|2 dx

leads to

d

dt
H[uε(t)] ≤ −1

ε

∫
Ω

(
log (q1(uε1))− log (q2(uε2)q3(uε3))

)(
q1(uε1)− q2(uε2)q3(uε3)

)
dx

− 3

∫
Ω

q′3(uε3)

q3(uε3)
uε3|∇x(uε3)|2 dx

−
(

3− δ − γ

C1

)∫
Ω

q′1(uε1)

q1(uε1)
(uε1)2 |∇x(uε1)|2 dx

−
(

3− γ − δC2

)∫
Ω

q′2(uε2)

q2(uε2)
(uε2)2 |∇x(uε2)|2 dx

− δ
∫

Ω

q′1(uε1)

q1(uε1)
(uε2)2 |∇x(uε1)|2 dx− γ

∫
Ω

q′2(uε2)

q2(uε2)
(uε1)2 |∇x(uε2)|2 dx

≤ 0.

187
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7.3. Rigorous limit from four species with one fast and one slow
reaction

In this section we prove the rigorous limit of a reaction-diffusion system with one fast
reaction and one slow reaction to a limiting cross-diffusion system when the fast-reaction
rate 1/ε tends to infinity.

7.3.1. Model for four species with one fast and one slow reaction

Chemical system considered:

Fast reaction (rate 1/ε):

A1 
 A2 +A3,

Slow reaction (rate 1):

A1 +A3 
 A4.

Corresponding system of PDEs for the concentrations uεi := uεi (t, x) ≥ 0 of species Ai

for i = 1, 2, 3, 4 with diffusivities di > 0:

∂tu
ε
1 − d1 ∆xu

ε
1 =

1

ε
(uε2 u

ε
3 − uε1) + (uε4 − uε1 uε3)

∂tu
ε
2 − d2 ∆xu

ε
2 = −1

ε
(uε2 u

ε
3 − uε1)

∂tu
ε
3 − d3 ∆xu

ε
3 = −1

ε
(uε2 u

ε
3 − uε1) + (uε4 − uε1 uε3)

∂tu
ε
4 − d4 ∆xu

ε
4 = −(uε4 − uε1 uε3)

(7.3.1)

together with initial data

uεi (0, x) = uini (x) ≥ 0, i = 1, 2, 3, 4, x ∈ Ω,

and homogeneous Neumann boundary conditions on the boundary ∂Ω of a bounded smooth
open set Ω of RN

n(x) · ∇xuεi (t, x) = 0, i = 1, 2, 3, 4, x ∈ ∂Ω.

Formal limit: We are interested in the rigorous limit ε → 0, with ui satisfying the
following reaction-cross-diffusion system:

u2 u3 − u1 = 0,

∂t(u1 + u2)−∆x(d1 u1 + d2 u2) = u4 − u1 u3,

∂t(u1 + u3)−∆x(d1 u1 + d3 u3) = 2 (u4 − u1 u3).

∂tu4 − d4 ∆xu4 = −(u4 − u1 u3).

(7.3.2)
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7.3. Rigorous limit from four species with one fast and one slow reaction

7.3.2. Existence of solutions

Theorem 7.18. For any ε > 0, there exists a weak solution uε ∈ L2
loc

(
[0,∞);L2(Ω;R4)

)
to system (7.3.1).

Proof. This follows from [49, Theorem 4.1].

7.3.3. Fast-reaction limit to a cross-diffusion system

In this section we will prove the rigorous limit of the reaction-diffusion system (7.3.1)
to the limiting reaction-cross-diffusion system (7.3.2). The idea of the proof is, that by
duality, we get an L2(logL)2 estimate, which directly implies the uniform integrability
of the nonlinearities. By compactness properties (Aubin-Lions lemma), we get L4/3(ΩT )-
compactness of (uεi ). Thus we get, up to a subsequence, convergence of the right-hand-side
in L1(ΩT ).

Theorem 7.19. Let Ω ⊆ RN be a bounded regular open set of RN , and let for any ε > 0,
uε1, u

ε
2, u

ε
3, u

ε
4 denote a weak solution of the reaction-diffusion system (7.3.1) with initial data

uin log(uin) ∈ L2(Ω).

Then the following holds: If ε→ 0, there exists a subsequence of uε1, u
ε
2, u

ε
3, u

ε
4 (which we

still denote by uε1, u
ε
2, u

ε
3, u

ε
4), which converges to u1, u2, u3, u4 in L1

loc([0,∞);L1(Ω)).

Moreover, this limit is a weak solution of the reaction-cross-diffusion system (7.3.2) be-
longing to L2

loc([0,∞);L2(Ω)).

7.3.4. A priori estimates

Using the entropy

H[uε(t)] =
4∑
i=1

∫
Ω

(uεi (log uεi − 1) + 1) dx, (7.3.3)

the entropy dissipation

Dε[u
ε(t)] = − d

dt
H[uε(t)]

along the flow of system (7.3.1) has the following form

Dε[u
ε(t)] =

4∑
i=1

di

∫
Ω

|∇xuεi |2

uεi
dx+

1

ε

∫
Ω

(uε2u
ε
3 − uε1)(log(uε2u

ε
3)− log uε1) dx

+

∫
Ω

(uε4 − uε1uε3)(log uε4 − log(uε1u
ε
3)) dx.

Integrating this in time leads to the standard entropy-entropy-dissipation inequality, where
the right-hand side is uniform in ε:

sup
t∈[0,T ]

H[uε(t)] +

∫ T

0
Dε[u

ε(s)]ds ≤ H[uin]. (7.3.4)
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7. From reaction diffusion to cross diffusion in the fast-reaction limit

Lemma 7.20 (Entropy estimates). Recalling that uin log(uin) ∈ L2(Ω), the following esti-
mates hold for uεi with i = 1, 2, 3, 4:

‖uεi‖L∞(0,T ;L logL) + ‖(uεi )1/2‖L2(0,T ;H1(Ω)) ≤ CT ,∫ T

0

∫
Ω

(uε4 − uε1uε3)(log uε4 − log(uε1u
ε
3)) ≤ CT ,∫ T

0

∫
Ω

(uε1 − uε2uε3)(log uε1 − log(uε2u
ε
3)) ≤ εCT .

Proof. This follows directly from the entropy-entropy-dissipation inequality (7.3.4) by using
the fact that 4|∇x(uεi )

1/2|2 = |∇xuεi |2/uεi .

The next lemma can be found in [49, Theorem 8.1].

Lemma 7.21 (Duality lemma). If h is a strong (i.e. C2([0, T ]×Ω)) nonnegative solution
to the parabolic problem 

∂th−∆x (Ah) ≤ 0,

∇x(Ah) · n(x) = 0 on ∂Ω,

h(0, ·) = hin(·) ∈ L2(Ω),

(7.3.5)

where A is bounded from below and from above by some positive constants C1, C2 > 0 in
the following way

0 < C1 ≤ A(x, t) ≤ C2,

then

‖h‖L2(ΩT ) ≤ CT ‖h(0)‖L2(Ω).

Proof. We integrate ∂th−∆x (Ah) ≤ 0 against a test function w ≥ 0 which is a defined as
a positive solution of the dual problem

− (∂tw +A∆xw) = Θ ∈ C∞0 (ΩT ), Θ ≥ 0,

n(x) · ∇xw(t, x) = 0 on ∂Ω,

w(T, ·) = 0.

(7.3.6)

This leads to ∫ T

0

∫
Ω

(
w∂th− w∆x(Ah)

)
dxdt ≤ 0.

Integrating by parts yields

−
∫ T

0

∫
Ω
h∂tw dxdt−

∫
Ω

(wh)(0) dx−
∫ T

0

∫
Ω
Ah∆xw dxdt ≤ 0,

and using the dual problem (7.3.6) leads to∫ T

0

∫
Ω
hΘ dxdt ≤

∫
Ω

(hw)(0) dx.
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7.3. Rigorous limit from four species with one fast and one slow reaction

Next we multiply the dual problem (7.3.6) by ∆xw and integrate, which yields

−1

2

∫ T

0
∂t

∫
Ω
|∇xw(t)|2 dxdt+

∫ T

0

∫
Ω
A(∆xw)2 dxdt = −

∫ T

0

∫
Ω

Θ∆xw dx.

Using Young’s inequality leads to

1

2

∫
Ω
|∇xw(0)|2 dx+

∫ T

0

∫
Ω
A(∆xw)2 dxdt

≤ C1

2

∫ T

0

∫
Ω

(∆xw)2 dxdt+ C(C1)

∫ T

0

∫
Ω

Θ2 dxdt,

where we recall that A ≥ C1 > 0. Thus∫ T

0

∫
Ω

(∆xw)2 dxdt ≤ C̃
∫ T

0

∫
Ω

Θ2 dxdt. (7.3.7)

Let us now estimate w(0) in L2(Ω). For this we write

w(0) = −
∫ T

0
∂tw dt.

Thus by using the dual problem we get that∫
Ω

(w(0))2 dx = −
∫ T

0

∫
Ω

(∂tw)w(0) dxdt =

∫ T

0

∫
Ω
w(0)Θ dxdt+

∫ T

0

∫
Ω
w(0)A∆xw dxdt.

Using Young’s inequality, we get that∫
Ω
w(0)2 dx ≤ C

∫ T

0

∫
Ω

Θ2 dxdt.

Putting all this estimates together leads to∫ T

0

∫
Ω
hΘ dxdt ≤

∫
Ω
h(0)w(0) dx

≤ ‖w(0)‖L2(Ω)‖h(0)‖L2(Ω)

≤ C‖h(0)‖L2(Ω)

∫ T

0

∫
Ω

Θ2 dxdt.

Thus by duality we get that

‖h‖L2(ΩT ) ≤ C‖h(0)‖L2(Ω),

which finishes the proof.

Lemma 7.22 (Duality estimate). For i = 1, 2, 3, 4 it holds that

‖uεi‖L2(logL)2(ΩT ) ≤ CT .
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7. From reaction diffusion to cross diffusion in the fast-reaction limit

Proof. Set

hε :=
4∑
i=1

(uεi lnuεi − uεi + 1),

wε :=
4∑
i=1

di (uεi lnuεi − uεi + 1),

jε :=

4∑
i=1

di
|∇xuεi |2

uεi
+

1

ε
(uε2 u

ε
3 − uε1)

(
ln(uε2 u

ε
3)− lnuε1

)
+ (uε4 − uε1 uε3) (lnuε4 − ln(uε1 u

ε
3)),

then system (7.3.1) exhibits the following entropy structure

∂thε −∆xwε = −jε.

This implies that the entropy density hε is a strong (i.e. C2([0, T ]×Ω)) nonnegative solution
to the parabolic problem

∂thε −∆x (Aεhε) ≤ 0, with Aε = wε/hε,

∇x(Aεhε) · n = 0 on ∂Ω,

hε(0, ·) = hin(·) ∈ L2(Ω),

(7.3.8)

where hin > 0 is independent of ε, and Aε is bounded from below and from above in the
following way

0 < min
1≤i≤4

di ≤ Aε ≤ max
1≤i≤4

di.

Thus we can apply Lemma 7.21 to hε and get the desired result.

Lemma 7.23. Recalling that uin log
(
uin
)
∈ L2(Ω), we get the following estimates:

‖(uε1)1/2 − (uε2u
ε
3)1/2‖L2(ΩT ) ≤

√
εCT ,

‖uε1 − uε2uε3‖L1(ΩT ) ≤
√
εCT ,

‖(uε4)1/2 − (uε1u
ε
3)1/2‖L2(ΩT ) ≤ CT ,

‖uε4 − uε1uε3‖L1(ΩT ) ≤ CT .

Proof. The elementary inequality

4
∣∣∣√a−√b∣∣∣2 ≤ (a− b)(log a− log b), a, b ≥ 0,

together with Lemma 7.22 yields

4‖(uε1)1/2 − (uε2u
ε
3)1/2‖2L2(ΩT ) ≤ 4

∫ T

0

∫
Ω

∣∣∣(uε1)1/2 − (uε2u
ε
3)1/2

∣∣∣2 dxdt
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≤
∫ T

0

∫
Ω

(uε1 − uε2uε3)(log(uε1)− log(uε2u
ε
3)) dxdt

≤ εCT ,

which shows the first estimate. By using the Cauchy-Schwarz inequality, we get that

‖uε1 − uε2uε3‖L1(ΩT ) =

∫ T

0

∫
Ω

(
(uε1)1/2 − (uε2u

ε
3)1/2

)(
(uε1)1/2 + (uε2u

ε
3)1/2

)
dxdt

≤
(∫ T

0

∫
Ω

(
(uε1)1/2 − (uε2u

ε
3)1/2

)2
dxdt

)1/2(∫ T

0

∫
Ω

(
(uε1)1/2 + (uε2u

ε
3)1/2

)2
dxdt

)1/2

.

The boundedness of the last factor by Lemma 7.22 and the previous estimate lead to

‖uε1 − uε2uε3‖L1(ΩT ) ≤
√
εCT .

Similarly,

4‖(uε4)1/2 − (uε1u
ε
3)1/2‖2L2(ΩT ) ≤ 4

∫ T

0

∫
Ω

∣∣∣(uε4)1/2 − (uε1u
ε
3)1/2

∣∣∣2 dxdt
≤
∫ T

0

∫
Ω

(uε4 − uε1uε3)(log(uε4)− log(uε1u
ε
3)) dxdt

≤ CT ,

and again by using the Cauchy-Schwarz inequality, Lemma 7.22 and the previous estimate,
we get that

‖uε4 − uε1uε3‖L1(ΩT ) ≤ CT .

Lemma 7.24. It holds that

‖∇xuεi‖L4/3(ΩT ) ≤ CT .

Proof. Using the fact that ∇xuεi = 2
√
uεi (∇x

√
uεi ) with

√
uεi bounded in L4(Ω× [0, T ]) due

to the duality estimate in Lemma 7.22 and ∇x
√
uεi bounded in L2(Ω × [0, T ]) due to the

entropy estimate in Lemma 7.20, we get by using Hölder’s inequality with p = 3, q = 3/2
and 1/p+ 1/q = 1, that the product ∇xuεi is bounded in L4/3(Ω× [0, T ]):∫ T

0

∫
Ω
|∇xuεi |4/3 dxdt = 24/3

∫ T

0

∫
Ω
|
√
uεi |

4/3|∇x
√
uεi |

4/3 dxdt

≤ 24/3

(∫ T

0

∫
Ω
|
√
uεi |

4 dxdt

)1/3(∫ T

0

∫
Ω
|∇x

√
uεi |

2 dxdt

)2/3

≤ CT .
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7.3.5. Strong compactness

The difficulty in proving strong compactness for the species uεi in system (7.3.1) relies in
the fact that we cannot use the Aubin-Lions lemma [130] for uεi directly, due to blow-up in
the time dervatives ∂tu

ε
i for ε→ 0. However, we are still able to prove strong compactness

for the uεi with the help of the following lemmata.

Lemma 7.25. The sequences (uε1 + uε2) and (uε1 + uε3) are relatively compact in L4/3(ΩT ).

Proof. For the sums uε1 + uε2 and uε1 + uε3 in system (7.3.1), we see that the right-hand
side does not blow-up for ε → 0, thus we apply the Aubin-Lions lemma to these terms
and get strong compactness for them. The terms uε1 + uε2 and uε1 + uε3 are bounded in
L4/3(0, T ;W 1,4/3(Ω)) due to Lemma 7.24. For the time derivative ∂t(u

ε
1 +uε2), we have that

∂t(u
ε
1 + uε2) = d1∆xu

ε
1 + d2∆xu

ε
2 + (uε4 − uε1uε3),

thus ∂t(u
ε
1 + uε2) is bounded in

L2(0, T ;W−2,2(Ω)) ∩ L1(0, T ;L1(Ω)) ⊆ L1(0, T ;W−2,1(Ω))

due to the duality estimate in Lemma 7.22, and the same holds for ∂t(u
ε
1 + uε3).

Summarizing, for f ε = uε1+uε2 and f ε = uε1+uε3 respectively, the following estimates hold:
(f ε) is bounded in L4/3(0, T ;W 1,4/3(Ω)), and (∂tf

ε) is bounded in L1(0, T ;W−2,1(Ω)), and
thus by the standard Aubin-Lions lemma [130] we get that (f ε) is relatively compact in
L4/3(ΩT ).

Lemma 7.26. The function

ϕ :

{
R2

+ → R2
+

(x, y) 7→
(
(1 + y)x, (1 + x)y

)
is a homeomorphism on (R+)2.

Proof. The function ϕ can be written as

ϕ :

{
R2

+ → R2
+

(x, y) 7→
(
a(x, y)x, b(x, y)y

)
,

where a : R2
+ → R+, a(x, y) = 1 + y and b : R2

+ → R+, b(x, y) = 1 + x. Thus we see that
a and b are continuous and lower bounded by 1. Moreover, on R+ × R+ it holds that ϕ
is strictly increasing (in the sense that each component is strictly increasing w.r.t. each
component), and on R∗+ ×R∗+ it holds that ϕ is C1. The determinant of the Jacobian of ϕ
is strictly positive on R∗+ × R∗+:

detD(ϕ) = 1 + x+ y > 0 ∀x > 0,∀y > 0.

Thus we can apply [51, Proposition 5.1] and get that ϕ is a homeomorphism on R2
+.
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Lemma 7.27. If (an), (bn) and (cn) with n ∈ N are sequences in R+ satisfying for n→∞
that

(an + bn)→ B a.e. in ΩT ,
(an + cn)→ C a.e. in ΩT ,

(7.3.9)

and additionally

(an − bncn)→ 0 a.e. in ΩT ,

then it holds that

(an)→ a a.e. in ΩT ,
(bn)→ b a.e. in ΩT ,
(cn)→ c a.e. in ΩT ,

with

b := ψ2(B,C), c := ψ3(B,C), a := bc, (7.3.10)

where ψ = (ψ2, ψ3) := ϕ−1, and ϕ denotes the homeomorphism introduced in Lemma 7.26

ϕ :

{
R2

+ → R2
+

(x, y) 7→ (x(1 + y), y(1 + x)).
(7.3.11)

Proof. Due to the assumptions, we can write an = bncn + εn with εn → 0 for n→∞, and
get that bncn + bn + εn → B and bncn + cn + εn → C. Thus it holds that

bn(1 + cn)→ B a.e. in ΩT ,

cn(1 + bn)→ C a.e. in ΩT .
(7.3.12)

Since ϕ is bijective with the inverse ψ := ϕ−1, it holds that

(bn, cn) = ψ (bn(1 + cn), cn(1 + bn)) for all n ∈ N,

and since ψ is continuous, it holds a.e. in ΩT that

(b, c) = lim
n→∞

(bn, cn) = lim
n→∞

ψ (bn(1 + cn), cn(1 + bn)) =
(
ψ2 (B,C) , ψ3 (B,C)

)
,

with B,C defined in (7.3.9). This shows that bn → b a.e. in ΩT , and cn → c a.e. in ΩT

with b and c defined in (7.3.10). Finally, since an− bncn → 0 a.e. in ΩT and bncn → bc a.e.
in ΩT , we get that an → bc a.e. in ΩT , which finishes the proof.

Theorem 7.28. For i = 1, 2, 3, 4 it holds that

uεi → ui strongly in L2(ΩT ).
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Proof. Due to Lemma 7.25 we have that uε1 + uε2 → B a.e. in ΩT and uε1 + uε3 → C a.e. in
ΩT , and due to Lemma 7.23 it holds that (uε1 − uε2uε3)→ 0 a.e. in ΩT . Thus we can apply
Theorem 7.27, and get that uεi → ui a.e. in ΩT .

Thus we have for i = 1, 2, 3, 4 that

uεi → ui a.e. in ΩT ,

‖uεi‖L2(logL)2(ΩT ) ≤ CT ,

thus by [105, Lemma 1.3] we get that

uεi → ui strongly in L2(ΩT ),

which finishes the proof.

Corollary 7.29. For ε → 0 it holds that
(
uεiu

ε
j

)
→ uiuj strongly in L1(ΩT ) for all

i, j ∈ {1, 2, 3, 4}.

Proof. Define gε := uεiu
ε
j and g := uiuj for i, j in {1, 2, 3, 4}. Then it holds that gε → g

a.e. in ΩT , and that ‖gε‖L1(logL) ≤ CT due to the fact that

uεiu
ε
j log(uεiu

ε
j) = uεi

(
uεj log(uεj)

)
+ uεj

(
uεi log(uεi )

)
is bounded in L1(ΩT ).

Thus [105, Lemma 1.3] implies that gε → g strongly in L1(ΩT ), and thus
(
uεiu

ε
j

)
→ uiuj

strongly in L1(ΩT ) for all i, j ∈ {1, 2, 3, 4}.

7.3.6. Passing to the limit

The estimates derived in the last subsections are sufficient to pass to the limit ε→ 0 in the
weak formulation of the reaction-diffusion system (7.3.1). Thus we are now able to prove
Theorem 7.19.

Proof of Theorem 7.19. The only step which remains to prove is to pass to the limit ε→ 0
for the terms uε1 +uε2, uε1 +uε2, uε2 and uε4 in the weak formulations of the reaction-diffusion
system (7.3.1). First we write down the equation satisfied for uε1 + uε2:

∂t(u
ε
1 + uε2)− d1 ∆xu

ε
1 − d2 ∆xu

ε
1 = (uε4 − uε1 uε3),

(uε1 + uε2)(0, x) = uin1 + uin2 ,

n(x) · ∇x(uε1 + uε2)(t, x) = 0.

The weak form can be written in the following way: For any testfunction ψ = ψ(t, x) in
the set {

ψ ∈ C2([0,∞)× Ω) : ψ(t) = 0 for t ≥ T and n(x) · ∇xψ(t, x) = 0
}
,

we have that

−
∫

ΩT

(uε4 − uε1uε3)ψ(t, x) dxdt =

∫
ΩT

(uε1 + uε2)∂tψ(t, x) dxdt+

∫
Ω

(uin1 + uin2 )(x)∂tψ(0, x) dx

+

∫
ΩT

(d1u
ε
1 + d2u

ε
2)∆xψ(t, x) dxdt.
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Now, by using the following results obtained above, namely that

uεi → ui strongly in L2(ΩT ), i = 1, 2, 3, 4,

uεiu
ε
j → uiuj strongly in L1(ΩT ), i, j ∈ {1, 2, 3, 4},

(7.3.13)

we can pass to the limit ε→ 0 and get that

−
∫

ΩT

(u4 − u1u3)ψ(t, x) dxdt =

∫
ΩT

(u1 + u2)∂tψ(t, x) dxdt+

∫
Ω

(uin1 + uin2 )(x)∂tψ(0, x) dx

+

∫
ΩT

(d1u1 + d2u2)∆xψ(t, x) dxdt.

The procedure for uε1 + uε3 is exactly the same, thus

−2

∫
ΩT

(uε4 − uε1uε3)ψ(t, x)dxdt =

∫
ΩT

(uε1 + uε3)∂tψ(t, x)dxdt+

∫
Ω

(uin1 + uin3 )(x)∂tψ(0, x)dx

+

∫
ΩT

(d1u
ε
1 + d3u

ε
3)∆xψ(t, x)dxdt.

converges for ε→ 0 to the limiting system

−2

∫
ΩT

(u4 − u1u3)ψ(t, x)dxdt =

∫
ΩT

(u1 + u3)∂tψ(t, x)dxdt+

∫
Ω

(uin1 + uin3 )(x)∂tψ(0, x)dx

+

∫
ΩT

(d1u1 + d3u3)∆xψ(t, x)dxdt.

For uε4, we obtain by the same arguments that∫
ΩT

(uε4 − uε1uε3)ψ(t, x) dxdt =

∫
ΩT

uε4∂tψ(t, x) dxdt+

∫
Ω
uin4 (x)∂tψ(0, x) dx

+

∫
ΩT

d4u
ε
4∆xψ(t, x) dxdt.

converges for ε→ 0 to∫
ΩT

(u4 − u1u3)ψ(t, x) dxdt =

∫
ΩT

u4∂tψ(t, x) dxdt+

∫
Ω
uin4 (x)∂tψ(0, x) dx

+

∫
ΩT

d4u4∆xψ(t, x) dxdt.

Using Lemma 7.23 and Theorem 7.28, we get u2u3 − u1 = 0.

This shows that the reaction-diffusion system (7.3.1) converges weakly to the reaction-
cross-diffusion system (7.3.2), and since the duality estimate in Lemma 7.22 is uniform
in ε, we get that the solution of the limiting cross-diffusion system (7.3.2) is bounded in
L2
loc([0,∞);L2(Ω)).
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Remark 7.30 (Initial layers). The last proof shows that the initial data needs to be well-
prepared, i.e.

uin2 u
in
3 = uin1 a.e. in Ω.

If this condition is not satisfied, there is an initial layer appearing. But due to the fact that

‖uε2uε3 − uε1‖L2(0,T ;L2(Ω)) ≤
√
εC,

this initial layer is vanishing after oε→0(1)−time.

7.3.7. Global strong solutions to the reaction-diffusion system

Theorem 7.31. Let Ω be a bounded and regular (C2+α or C∞) domain of RN for N ≤ 5
and di > 0, i = 1, . . . , 4. If the nonnegative initial data uini , i = 1, . . . , 4 are smooth
(C2(Ω)) and compatible with the Neumann boundary conditions, then for each fixed ε > 0
the solution of (7.3.1) is strong and unique.

Proof. We fix ε > 0 for the entire proof. The idea now is to use the bootstrap argument of
[48, Proof of Theorem 3.1]. Due to the duality estimate of Lemma 7.22, we know that uεi

is bounded in L2([0, T ]× Ω) for i = 1, . . . , 4. Since

∂tu
ε
2 − d2∆xu

ε
2 =

1

ε
uε1 −

1

ε
uε2u

ε
3 ≤

1

ε
uε1 is bounded in L2([0, T ]× Ω),

we can use the property of the heat kernel in Lemma 7.33 and get that

uε2 ∈ L
q0
loc([0,∞)× Ω) for

1

q0
>

N − 2

2(N + 2)
.

The same argument holds for uε3, namely since

∂tu
ε
3 − d3∆xu

ε
3 ≤

1

ε
uε1 + uε4 is bounded in L2([0, T ]× Ω),

we get by the property of the heat kernel in Lemma 7.33 that

uε3 ∈ L
q0
loc([0,∞)× Ω) for

1

q0
>

N − 2

2(N + 2)
.

Thus by Young’s inequality with p = q = 2 and 1/p+ 1/q = 1, we conclude that

uε2u
ε
3 ∈ L

p0
loc([0,∞)× Ω) for

1

p0
>
N − 2

N + 2
.

Again by Young’s inequality with p = (q0 + 2)/q0, q = (q0 + 2)/2, where 1
q0
> N−2

2(N+2) and

1/p+ 1/q = 1, we conclude that

uε1u
ε
3 ∈ L

p1
loc([0,∞)× Ω) for

1

p1
>

N

N + 2
.
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Now we consider the reaction-diffusion equation satisfied for uε4:

∂tu
ε
4 − d4∆xu

ε
4 ≤

1

ε
uε1u

ε
3 bounded in Lp1([0, T ]× Ω) for

1

p1
>

N

N + 2
,

and again by the property of the heat kernel, we get that

uε4 ∈ L
q1
loc([0,∞)× Ω) for

1

q1
>
N − 2

N + 2
,

and using the same arguments for uε1 leads to

uε1 ∈ L
q1
loc([0,∞)× Ω) for

1

q1
>
N − 2

N + 2
.

For the remaining part of the proof we suppose that N = 5, since the case N < 5 can be
handled with the same arguments and possibly less steps of bootstrapping. For N = 5, we
have showed so far that

uε2, u
ε
3 ∈ L

q0
loc([0,∞)× Ω) for

1

q0
>

3

14
, uε1, u

ε
4 ∈ L

q1
loc([0,∞)× Ω) for

1

q1
>

3

7
.

Since
∂tu

ε
i − di∆xu

ε
i is bounded in L7/3([0, T ]× Ω) for i = 2, 3,

we get by the property of the heat kernel that ui ∈ L7−δ
loc ([0,∞),Ω), for i = 2, 3, and a

small δ > 0. Thus by using Young’s inequality with p = 4, q = 4/3 and 1/p+ 1/q = 1, we
get that

uε1u
ε
3 ∈ L7/4−δ([0, T ]× Ω), uε2u

ε
3 ∈ L7/4−δ([0, T ]× Ω).

Thus
∂tu

ε
i − di∆xu

ε
i is bounded in L7/4−δ([0, T ]× Ω), for i = 1, 4,

and by the property of the heat kernel we get that

uεi ∈ L
7/2−δ
loc ([0,∞)× Ω), for i = 1, 4,

showing that

∂tu
ε
i − di∆xu

ε
i is bounded in L7/2−δ([0, T ]× Ω), for i = 2, 3,

and by the heat kernel we get that

uεi ∈ L
q2
loc([0,∞)× Ω), q2 ∈ [1,+∞), for i = 2, 3.

Using Young’s inequality leads to

uε1u
ε
3 ∈ Lr2([0, T ]× Ω) for

1

r2
>

2

7
,

and together with the fact that

∂tu
ε
i − di∆xu

ε
i is bounded in L7/2−δ([0, T ]× Ω), for i = 1, 4
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and the property of the kernel leads to

uεi ∈ L
q2
loc([0,∞)× Ω), q2 ∈ [1,+∞) for i = 1, 4.

Finally, using the property of the heat kernel leads to

uεi ∈ L∞loc([0,∞)× Ω), i = 1, 2, 3, 4.

Smoothness (C2([0,∞]×Ω)) and uniqueness can be proved by using methods in [101].

Remark 7.32. The previous theorem only provides uniqueness for a given ε, and this does
not imply any information about uniqueness of solutions to the limiting cross-diffusion
system (7.3.2). However, uniqueness of weak solutions to (7.3.2) may be obtained under
additional assumptions by using the technique of Gajewski [68].

7.3.8. Transformed system

Introducing the transformation ϕ, with ϕ(u) = (ϕ2(u), ϕ3(u)), u = (u2, u3)

ϕ :

{
(R+)2 → (R+)2

(u2, u3) 7→ (w2, w3), w = (w2, w3), w2 := u2(1 + u3), w3 := u3(1 + u2),

(7.3.14)

and its inverse

ψ := ϕ−1, ψ(w) = (ψ2(w), ψ3(w)), (7.3.15)

we can rewrite the limiting system formally in terms of the new variables (w2, w3, u4) as
∂tw2 −∆x

(
d1ψ3(w) + d2

ψ3(w) + 1
w2

)
=
(
u4 − ψ2

2ψ3(w)
)
,

∂tw3 −∆x

(
d1ψ2(w) + d3

ψ2(w) + 1
w3

)
= 2
(
u4 − ψ2

2ψ3(w)
)
,

∂tu4 − d4∆xu4 = −
(
u4 − ψ2

2ψ3(w)
)
.

The entropy can be expressed in the new variables w = (w2, w3, u4) in the following way

H[w2(t), w3(t), u4(t)] =

∫
Ω

(
ψ2(w)ψ3(w)

(
log(ψ2(w)ψ3(w))− 1

)
+ 1
)
dx

+

∫
Ω

(
ψ2(w)

(
log(ψ2(w))− 1

)
+ 1
)
dx

+

∫
Ω

(
ψ3(w)

(
log(ψ3(w))− 1

)
+ 1
)
dx

+

∫
Ω

(
u4

(
log(u4)− 1

)
+ 1
)
dx.
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7.4. Auxiliary result: regularizing effect of the heat kernel

7.4. Auxiliary result: regularizing effect of the heat kernel

The following result [48, p.5] concerning the regularizing effect of the heat kernel has been
used in this chapter.

Lemma 7.33. If f ∈ Lp([0, T ]× Ω), then the solution u := u(t, x) of
∂tu−∆xu = f, for t ∈ [0, T ] and x ∈ Ω,

n · ∇xu = 0, for t ∈ [0, T ] and x ∈ ∂Ω,

u(0, ·) ∈ L∞(Ω),

lies in Lq([0, T ]× Ω) for all q ∈ [1,+∞] satisfying

1

p
+

N

N + 2
− 1 <

1

q
⇒ 1

q
>

1

p
− 2

N + 2
.
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[61] M. Dreher and A. Jüngel. Compact families of piecewise constant functions in
Lp(0, T ;B). Nonlinear Anal., 75(6):3072–3077, 2012.

[62] R. Duan. Hypocoercivity of linear degenerately dissipative kinetic equations. Non-
linearity, 24(8):2165–2189, 2011.
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[94] A. Jüngel. The boundedness-by-entropy method for cross-diffusion systems. Nonlin-
earity, 28(6):1963–2001, 2015.
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