
Virtual Reality Menü Interaktion
mit einer Smartwatch

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Medieninformatik

eingereicht von

Florian Schuster, BSc
Matrikelnummer 1025700

an der Fakultät für Informatik
der Technischen Universität Wien

Betreuung: Priv. Doz. Mag.rer.nat. Dr.techn. Hannes Kaufmann
Mitwirkung: Kolleg. Iana Podkosova, BSc MSc

Wien, 11. August 2016
Florian Schuster Hannes Kaufmann

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Virtual Reality Menu Interaction
with a Smartwatch

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Media Informatics

by

Florian Schuster, BSc
Registration Number 1025700

to the Faculty of Informatics
at the TU Wien

Advisor: Priv. Doz. Mag.rer.nat. Dr.techn. Hannes Kaufmann
Assistance: Kolleg. Iana Podkosova, BSc MSc

Vienna, 11th August, 2016
Florian Schuster Hannes Kaufmann

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Florian Schuster, BSc
Heigerleinstrasse 36/2, 1160 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 11. August 2016
Florian Schuster

v

Acknowledgements

I would like to express my gratitude towards everyone who supported me during my
studies and the creation of my master thesis. Special thanks to my advisors Prof.
Kaufmann and Ms. Podkosova, MSc. for their superb assistance and support. Thank
you for your guidance and for giving me the possibility to write a thesis on this topic.

And of course I would like to thank my parents who did not only raise me, but also gave
me the chance to study in a field of my choice. Likewise I want to thank my girlfriend
who always stood by my side.

Thank you.

vii

Kurzfassung

In immersiven virtuellen Umgebungen werden Benützer in Virtual Reality (VR) Simula-
tionen versetzt. In solchen Umgebungen werden Menüs gebraucht, um den Systemzustand
zu ändern, verschiedene Tools (Werkzeuge) auszuwählen oder bestimmte Kommandos
zu geben. Allerdings kann es bei der Interaktion mit solchen Menüs zu Schwierigkeiten
kommen, da die Benützer Head Mounted Displays (HMDs) tragen und somit nicht in
der Lage sind, physische Eingabegeräte zu sehen. Deswegen muss die Interaktion mit
denselben intuitiv und einfach zu erlernen sein.

In dieser Diplomarbeit wird eine Möglichkeit vorgestellt, ein VR Menü mit der Hilfe
einer Smartwatch über ein Wireless Local Area Network (WLAN) zu steuern. Dafür wird
ein Plugin für die Unreal Engine 4 (UE4) Spiele-Engine implementiert. Dieses Plugin
enthält Komponenten, die mit einer Smartwatch gesteuert werden können. Weiters wird
eine Android Wear Applikation erstellt, die es ermöglicht, mit Hilfe von Touch-Interaktion
die Komponenten zu steuern.

Die Applikation und das Plugin werden letztendlich mit der Hilfe von einem der
vier erstellten Test-Menüs einem Leistungstest unterzogen, um etwaige Auswirkungen
auf die Hardware zu entdecken. Die Ergebnisse zeigen, dass die Leistung durch die
Implementationen nicht eingeschränkt wird.

ix

Abstract

In immersive virtual environments users are placed inside virtual reality simulations.
In such systems, menus are needed to change the system state, change tools or issue
commands. However interacting with these menus in VR can be cumbersome, since input
devices are not seen by the user due to the HMD. Therefore interaction needs to be
simple and easy to adopt to.

This diploma thesis presents a possibility to navigate VR menus with the help of a
smartwatch over a WLAN. For this, a plugin for the UE4 game engine is implemented
which contains components to create a smartwatch controllable menu. Furthermore
an Android Wear application is designed and implemented to enable plug-and-play
navigation of the menu via touch interaction.

The resulting applications and the plugin are then tested to detect any issues regarding
performance impact, with the help of one of four created example menus. The results
reveal that performance is not affected considerably.

xi

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Problem Statement . 2
1.3 Expected Result . 2
1.4 Methodological Approach . 2
1.5 Thesis Outline . 3

2 State of the Art 5
2.1 Immersive Virtual Reality Systems . 5

2.1.1 Systems . 5
2.1.2 User Interaction in Virtual Reality Systems 7

2.2 Virtual Reality Menus . 8
2.2.1 Types of Menus . 9
2.2.2 Guidelines . 10

2.3 Interaction with a Smartwatch . 13
2.3.1 Touch-based . 14
2.3.2 IMU-based . 14
2.3.3 Other . 15

3 Design 19
3.1 Android Applications . 20

3.1.1 Language . 20
3.1.2 Platform . 20

3.1.2.1 Activities and Lifecycle 21
3.1.3 Tools . 22
3.1.4 Communication between Phone and Watch 23
3.1.5 Smartwatch Application . 23

3.1.5.1 Requirements . 23
3.1.5.2 Design Ideas . 24

3.1.6 Smartphone Application . 26
3.1.6.1 Requirements . 26
3.1.6.2 Design Ideas . 27

3.2 Unreal Engine 4 Plugin . 28

xiii

3.2.1 Language . 28
3.2.2 Platform . 28

3.2.2.1 Unreal Motion Graphics 29
3.2.2.2 Plugins in Unreal Engine 4 30

3.2.3 Tools . 30
3.2.4 Requirements . 31

3.2.4.1 Users . 31
3.2.4.2 Developers . 31

3.2.5 Design Ideas . 32
3.2.5.1 Users . 32
3.2.5.2 Developers . 33

3.3 Communication between Android and Unreal Engine 4 34

4 Implementation 37
4.1 Action Commands . 37
4.2 Android Application . 39

4.2.1 Smartwatch Application . 40
4.2.1.1 Permissions . 40
4.2.1.2 Layout . 41
4.2.1.3 Functionality . 42
4.2.1.4 Debugging Wear Applications 43

4.2.2 Smartphone Application . 44
4.2.2.1 Permissions . 44
4.2.2.2 Layout . 44
4.2.2.3 Functionality . 46

4.3 Unreal Engine 4 Plugin . 47
4.3.1 WatchMenu . 48
4.3.2 UDPSocketService . 50
4.3.3 Menu Components . 50

4.3.3.1 IWatchMenuComponents 51
4.3.3.2 Panel Components . 52
4.3.3.3 Popups on Widget Components 53

4.3.4 Plugin Generation . 53
4.4 Usage . 54

4.4.1 Plugin Developer . 54
4.4.2 Android User . 56

5 Results 59
5.1 Virtual Reality Menus Examples . 59

5.1.1 USM Menu . 59
5.1.2 Game Menu . 59
5.1.3 Home Menu . 60
5.1.4 Ring Menu . 63

5.2 Performance . 63

5.2.1 Smartwatch Resource Usage . 64
5.2.2 Smartphone Resource Usage . 64
5.2.3 Unreal Engine 4 Plugin Resource Usage 65

5.3 Network Usage . 65
5.4 Open Issues . 66

5.4.1 Android . 66
5.4.2 Unreal Engine 4 . 66

6 Conclusion 69

List of Figures 71

List of Tables 72

Acronyms 73

Bibliography 77

CHAPTER 1
Introduction

VR refers to an artificially created environment that simulates sensory experience, such
as sight, touch or hearing to its users. With HMDs such as the Oculus Rift (CV) and
the HTC Vive being released on the market, Virtual Environments (VEs) can now be
explored by a broad audience of consumers at home. These two HMDs work with optical
tracking which allows the user to walk and interact inside a small VE of approximately
4x4 meters.

Apart from VEs that work with rather small tracking areas [34, 69] there are also
those that extend large areas and offer tracking of several users [68, 25, 40, 56]. In such
systems the users need some sort of system control which makes it possible to issue
commands, change modes or choose tools. This can be achieved by providing users with
a virtual in-game menu with which they can interact.

However there are certain problems associated with menus in VR. The first one is
the required input method. Conventional input methods for computer systems such as
keyboards, mouses, joysticks or controllers are impractical since they cannot be seen by
the users due to the HMDs. Such interaction devices are also cumbersome because they
are heavy and have too many different buttons which might confuse users, since their
eyesight is temporarily lost due to the HMD. A potential input device would have to be
lightweight and simple to use, to enable efficient interaction with the menu.

Another problem with VR menus is that there is no general approach to their develop-
ment. There are no official guidelines which tell developers where a menu has to appear,
how the user has to interact with them or if they should be a menu in the traditional
sense at all. General Human Computer Interaction (HCI) guidelines [52] recommend
rules like consistency of the system, appropriate feedback or constructive error messages
that should be considered for VR menus. However, they focus on using mouse and
keyboard as interaction devices and do not consider the complexity that is added when
interacting in a three dimensional VE.

1

1. Introduction

1.1 Motivation
The motivation of this thesis is to enable user interaction with VR menus via the touch
input of a smartwatch. It should be simple for the user to interact with as well as simple
for the developer to create a VR menu that can be navigated and controlled with a
smartwatch. Ultimately, the construction of the VR menu should work directly inside
the graphical editor of a game engine.

There have been no publications regarding this topic yet which makes it very intriguing
and interesting.

1.2 Problem Statement
In VEs such as explained in [68, 25, 40, 56], the users move around with a HMD and have
a world to explore which must not necessarily resemble the real world. Thus they might
be disoriented or too distracted to control additional menus with complex interaction
techniques. A smartwatch could be an interaction tool which provides a solution for
these problems. It is simple to use with touch gestures, fixated on the wrist, always in
reach of the users hand, and has a nearly unnoticeable weight.

However there is no research as well as there are no implementations of the combination
of smartwatches and VR menus. Even in well established game engines, such as Unity
[18], UE4 [19] and CryEngine [9], support for smartphone-based or smartwatch-based
menu or game interaction is simply not offered. This means that the whole system of
communication between the smartwatch and the game application has to be designed.
Additionally the user’s input has to be correctly registered and then mapped to specific
events in the game and the virtual menu.

1.3 Expected Result
The goal of this thesis is the design and implementation of a correlating system of
two components. First, a plugin for the UE4 game engine is developed which contains
components that can be used by a developer to create a smartwatch controllable VR
menu in the graphical editor. Secondly, an Android Wear [4] application is created which
enables users to easily control the constructed VR menu. The communication between the
Wear-UE4 system should be over a WLAN and the setup should be as straightforward as
possible.

1.4 Methodological Approach
First, the correlation in the Wear-UE4 system is designed. It is determined whether there
should be a connectionless or a connection-oriented interplay between the UE4 plugin
and the smartwatch application.

Afterwards, the Android smartwatch application is created to allow user input. Also
a smartphone application with a background service is required to have access to a

2

1.5. Thesis Outline

WLAN to transmit data from the phone to the UE4 plugin. The smartphone service and
the smatwatch application need to communicate via a bluetooth-tethered connection to
transmit touch input data from the watch to the phone.

Then, the UE4 plugin is implemented with different Unreal Motion Graphics (UMG)
menu interface components which can be used in the graphical editor of the engine.
Afterwards the connection with the Android device is established with the method that
has to be determined in the first step.

Finally, the applications is put to the test with the construction and usage of multiple
menus.

1.5 Thesis Outline
Chapter 2 discusses the theoretical background and state-of-the-art methods of VEs, VR
menus and interaction with smartwatches. In chapter 3 the designing process of the UE4
plugin and Android application, as well as their connection via a WLAN are described.
It also elaborates platforms, languages, tools and designing methods used to design the
Wear-UE4 systems. Chapter 4 then goes into detail on the implementation process of
both applications. It also describes how both applications can be used by users and
developers. In chapter 5, results concerning resource usage are elaborated on and some
example VR menus are presented. The last chapter, 6, concludes the thesis.

3

CHAPTER 2
State of the Art

2.1 Immersive Virtual Reality Systems

In this chapter state-of-the-art immersive VR systems, meaning systems in which users
can walk and interact are presented. Afterwards, fundamentals of user interaction in
such systems are discussed and finally research on smartwatch interaction in general is
presented.

2.1.1 Systems

In [68], Wallner et al. present The HIVE, a huge immersive VE. In The HIVE an
eight-camera outside-in infrared Precision Position Tracker system is used to cover the
whole area with a precision of 0.63 cm and reduce possible occlusion problems. The
position data acquired by the tracking system is sent wirelessly to the rendering computer
worn on the back of the user. This backpack weighs about 9.8 kilograms and also contains
an Inertial Measurement Unit (IMU) to track the users orientation. The different forms
of data are fused and then used to continually update the user’s point of view. The HMD
used is the NVIS nVisor SX with a stereo display with the resolution of 1, 024× 1, 280
for each eye. Also a position tracking computer for the camera system, a WLAN hub
and a control room for the graphics workstation that monitors and maintains the VE
server state are needed in the setup at a fixed location. The system enables untethered
tracking in a physical space of 570 m2, but can only track the head positions of several
users or the body parts of one user at the same time.

Another immersive VR system is described in [25] by Bachmann et al. In Going
anywhere anywhere, the authors propose a system that is completely portable. The setup
consists of a couple of ultrasonic Transducers, a HMD, a head mounted inertial/magnetic
orientation sensor, a Global Positioning System (GPS) antenna, a wearable rendering
unit, a video control unit and a pair of foot mounted inertial/magnetic sensor modules.
Portability is achieved by combining Redirected Walking (RDW), Selfcontained Inertial

5

2. State of the Art

Figure 2.1: Two users interacting in the ImmersiveDeck.

Position Tracking (SCIPT) [72] and the use of an ultrasonic ranging system to Simul-
taneously Localize and Map (SLAM) within an unfamiliar tracking area. Due to its
portability, the system is usable in any flat area such as an athletic field, a parking lot
or a backyard, not requiring a permanent infrastructure as a result. Users can navigate
through a VE with an unlimited size by walking naturally without becoming aware of the
physical limits of the area they are in. This is achieved with RDW which imperceptibly
steers the user away from obstacles such as boundaries and walls, or other users by
judiciously rotating the virtual scene about the user [59].

In [56], the preliminary results of a low-cost multi-user immersive VR system called
ImmersiveDeck (Fig. 2.1) are presented by Podkosova et al. The system uses inside-out
optical head tracking, in contrast to The HIVE, coupled with a low-cost motion capture
suit to fully track the body of several users and allow complex multi-user and object
interactions in a 200 m2 area. Due to the nature of marker tracking, the size of the
tracking area is only limited by the amount of ID markers and can be scaled up easily and
inexpensively. To achieve the requirement of low-cost, the authors only used off-the-shelf
hardware: A processing laptop that is strapped to the back of the user, a motion capture
suit and an Oculus Rift Developer Kit 2 (DK2) with an attached fish-eye tracking camera
and headset. The computation of input data and rendering of output information for
the user’s HMD are performed locally which leads to minimal update latency between
movement and resulting action in the VE. The data, consisting of information from the
fish-eye camera, the sensors of the Oculus Rift and the motion capture suit, is fused
and then distributed over a WLAN to the server and to the other clients. The fish-eye
camera tracks the eighty square ID markers that are distributed evenly on the ceiling of
the whole area. Because it has a field of view of up to 190◦, it can track the markers even
when the lens is not pointing directly at the ceiling, thus providing the user’s position
and pose in the VE. The Oculus Rift tracking data is used to set the rotation of the

6

2.1. Immersive Virtual Reality Systems

user’s point of view. The motion capture suit on the other hand tracks the movement of
the users limbs with the help of eleven IMU sensors. In the beginning of each session
the suit has to be calibrated briefly by taking a pre-defined pose that corresponds to
the avatar’s pose. Haptic feedback is provided by real objects that are also tracked by
the system: Big objects such as tables or chairs are tracked globally with multi-marker
tracking by a camera connected to the server. Small objects such as boxes are tracked
locally with an Android smartphone which is also mounted to the HMD of the user.

An interesting commercial idea for VR entertainment is offered by a company called The
Void [17], or the Vision of Infinite Dimensions. The company will open an enternainment
center in late summer 2016 in the suburbs of Salt Lake City. It consists of seven 18 m2

rooms that allow multiple users to interact in different VR scenarios. The developers use
their own technology, among other things their own HMDs, controllers and walls that
change texture, temperature and move to simulate different environments and evolve
naturally as you interact with them. Users are guided through multiple VEs with the
help of RDW and the simulation of other transportation methods such as for instance
elevators [12].

When looking at the advancements of immersive VR systems over the last few years,
it is safe to say that the overall price of these systems gradually decreases and thus
availability for the public increases. The authors of [40] demonstrate an example of the
rapid decline of cost in VR: A system from 2010, based on the system from [25], weighed
approximately 11 kg and cost about 45000$ to assemble. In 2013 the authors build a
system with comparable quality which weighed only 2.3 kg and cost about 1300$.

VEs have been used as an effective instrument of communication [28], education [70],
entertainment [26], social interaction [29], training [62] and of course research [68]. Such
VE systems and the immersive systems described before, will find a more widespread use
in the future. Thus methods to control and interact with them are needed. Especially
new methods to change the game state are required, since they are arguably the most
abstract to implement.

2.1.2 User Interaction in Virtual Reality Systems

VEs come in many different forms, one common denominator however is the user. The
user needs to interact with the system to accomplish a given task via the interface and
for that there are numerous methods.

In [32], Bowman explains that there are two types of components used to interact with a
3D interface: hardware components and software components. Hardware components are
input and output devices such as for example controllers, HMDs and displays. Software
components are control-display mappings such as for instance ray casting or virtual hand
control. With both types of components the choice that the developer has to make is
whether the control should feel either natural or magical. Interaction can work exactly
like in the real world, such as natural walking through a VE. Interaction can also work
magical which means giving users new possibilities that they would not have in the real
world. An example is the Go-Go Technique [57, 30] which extends the length of the
virtual arm of the user by a coefficient after a certain distance.

7

2. State of the Art

However the cognitive overhead that is required for non-natural interaction techniques
can distract or even annoy the user, so they have to be used carefully. It is not easy to
find a 3D interaction technique that is efficient enough, provides a good usability and is
also useful for the user for a specific task. That is the reason why there are no constraints,
no guidelines and no standards. Furthermore interacting in three dimensional space is
more complex due to the spatial component.

The Universal Interaction Tasks presented by Bowman assort all 3D interaction
methods into the following categories: Selection, Manipulation, Navigation, System
control and Symbolic input. The interaction techniques that are most relevant for this
thesis and directly connected to VR menus, are Selection, System control and Symbolic
input.

Selection tasks are performed to pick n objects from a set with goals such as to indicate
action on them or make them active. This can be done by either pointing with techniques
such a the Go-Go Technique or World-In-Miniature (WIM) [65]. It can also be done by
naming the objects through speech recognition.

System control tasks are performed to change either the mode of interaction or the
state of the system. Techniques include different kinds of menus which will be discussed
in section 2.2.1, voice commands which include speech recognition or spoken dialogue
systems and gestural commands.

Symbolic input shows a large overlap with System control tasks, as it provides methods
to input numerical or symbolic data and enables precise labeling. Classic input methods
include keyboards or numpads but there are also pen-based [47, 58], smartphone-based
[36], speech-based [50] and gesture-based [45] techniques.

Manipulation tasks modify an object’s property such as the position, orientation or
shape. Manipulation metaphors include natural interaction techniques such as the simple
virtual hand or the HOMER (Hand-centered Object Manipulation Extending Ray-casting)
technique [30].

Navigation tasks consist of the motor travel component and the cognitive wayfinding
component. The travel component is in charge of setting the position and orientation
of the user’s viewpoint in the VE. The most basic technique here is natural walking
which is used in many large-scale immersive VR systems. The wayfinding component
of a Navigation task is defined as the cognitive process of finding a path through a VE
using spatial knowledge [35].

In general when creating or deploying different interaction approaches, the developer
has to think about the artistic approach, such as aesthetics, adaption and intuition of the
user, as well as the scientific approaches, such as performance requirements and formal
analysis of the system and try to find a balanced approach.

2.2 Virtual Reality Menus

As mentioned before, VR menus are a method to provide the user with System control.
In fully immersive VR systems, users should not have to take off their HMDs to change

8

2.2. Virtual Reality Menus

the settings or state of the system. System control has to happen inside the application
and this is where graphical menus come into play.

2.2.1 Types of Menus

In an article from WEareAR [21], three major design directions are proposed for menus
in VR applications: Skeuomorphic Menus, Flat Menus (Mapped on Geometry) and 3D
Menus.

Skeuomorphic Menus use references to real-world objects or experiences to help users
understand how the interaction works. This design approach serves as a bridge into new
technology since the user has a mental model of how interaction with real world objects
work. An example of skeuomorphic design would be a wardrobe in a Role Playing Game
(RPG). Users could look through the shelves of the wardrobe for clothes that they want
their virtual avatar to wear. In an VE there would be no need for the shelves, theoretically
it is possible to let the clothes appear out of thin air in front of the user. However to
achieve simplicity and new user adaption, the shelve metaphor is used. Another example
would be a computer or a smartphone that acts as a menu, which is for instance employed
in games such as Grand Theft Auto 5 or Fallout 4.

Flat Menus (Mapped on Geometry) are menus that are mapped onto environment
geometry. They act like interactable textures that are, for example, placed on the surface
of a wall, a window or the bodypart of the avatar. An example is the Oculus Home
application which acts as a VR store for the Oculus Rift and is mapped onto the inside
of an invisible spherical surface to look like a curved screen. Another example is the
fader widget used for the iOrb [60] interface. The iOrb is a ball-like device which enables
three-dimensional input for applications. The user rotates the iOrb to select the desired
element within the fader widget, which is basically a radial menu. Generally these flat
menus require previous knowledge of usage or adaption time since users might not know
the predefined position in the VEs. An approach is to have the menu appear directly on
the user’s avatar. An example is the TULIP menu [33] that is drawn at the end of the
user’s fingers and controlled with Pinch Gloves. Each finger manages one menu point
and when the finger is contracted, the appropriate point is selected. The problem that
a user only has five fingers and thus making only five options available is regarded in
a newer but similar approach to the TULIP menu: the Hovercast VR interface [10] by
Leap Motion. It is an arc-shaped menu that extends from the fingertips (Fig. 2.2a) of
one of the user’s hands. The other hand is used to navigate through the hierarchical
menu items which include buttons, check boxes, radio buttons and sliders. The tracking
is done with the Leap Motion controller.

3D Menus are interfaces that use the third dimension as additional input for the user.
They are especially hard to create because there are no specific design rules, as opposed
to two dimensional interfaces. An example for a 3D menu is the ring menu described in
[37]. 3D Items are arranged on a portion of a circle and selected by rotating the wrist
with the help of the Wand of the Intersense IS-900 System. Another quite interesting
approach is the Arm HUD [8] by Leap Motion. This interface is, same as the Hovercast
interface, controlled with the Leap Motion controller and attached to the hand of the

9

2. State of the Art

(a) Hovercast

(b) Arm HUD

Figure 2.2: VR Interfaces by Leap Motion.

user like a smartwatch (Fig. 2.2b). The Arm HUD changes its functionality based on the
orientation of the user’s arm. Looking on the menu as if checking a wristwatch, opens up
a different menu than looking on the inside of the wrist.

In conclusion, the developer’s choice of the menu’s design direction should depend on
the dimensionality of the available input device. 3D Menus for instance, cannot be used
efficiently with two dimensional controllers such as a touchpad or simple cursor mechanics
because they do not cover the third dimension. For that purpose other tracking devices
such as the Leap Motion, Wands or Pinch Gloves have to be used. Two dimensional
menus however can be controlled with three dimensional input devices, as we have seen
with the TULIP and the Hovercast menu. However this additional unused dimension
might confuse novice users as is explained in the next section.

2.2.2 Guidelines

User Interface (UI) guidelines are employed by every major company: Android uses
their Material Design Guidelines [6], Apple their iOS Human Interface Guidelines [7]
and Windows their Universal Windows Platform Guidelines [22]. Also major VR brands
have their own guidelines, for example Oculus [14] and Leap Motion [11]. Yet there
are general design heuristics for HCI that also apply to VR menus. In [52], Molich and
Nielsen provide principles of interaction design:

10

2.2. Virtual Reality Menus

1. Simple and Natural Dialogue
Interfaces should not contain any irrelevant information.

2. Speak the User’s Language
Interface concepts should be user-oriented and not system-oriented.

3. Minimize the User’s Memory Load
Users should recognize interface components and not recall them.

4. Be Consistent
Interface concepts should always mean the same thing to the user, even in subsys-
tems.

5. Provide Feedback
The user should be informed appropriately of the system’s current state.

6. Provide Clearly Marked Exits
Interfaces should always provide an escape possibility for the user.

7. Provide Shortcuts
Interfaces should use accelerators that help (experienced) users to navigate quicker.

8. Error Prevention
Try to eliminate error-prone conditions or inform the user about them.

9. Provide Good Error Messages
If an error does occur, interfaces should provide users with precise and constructive
error messages.

These however are mere heuristics and by no means strict guidelines. For an interface
designer, guidelines should be a starting point, proposed, to help ensure that users can
interact with the interface more intuitively.

When looking for appropriate UI heuristics for VR menus, the three types have to be
discussed separately.

Skeuomorphic Menus provide the user with a mental model of how the menu works
and thus possess inherent guidelines. An example is a skeuomorphic computer menu, as
mentioned in section 2.2.1. The developer can adapt his menu to an already existing
design, for example a Graphical User Interface (GUI) of a PC. Nevertheless, general rules
for interfaces such as those proposed by Molich and Nielsen still apply.

Since Flat Menus (Mapped on Geometry) are two dimensional interfaces, guidelines do
exist. There are numerous publications on flat UI design: [63, 49, 44, 39, 55]. In [13], the
Nielsen Norman Group released a list of guidelines for website and application menus:

1. Make It Visible
• Menus should have an appropriate size, depending on the output device.
• Menus should be in locations where the user can find them easily.
• Menus should not only be but also look interactive.
• Menus should be emphasized and elevated from background clutter.
• Menu link text should contrast with the background color of the menu.

2. Communicate the Current Location
• Menus should mark the current location of the user.

3. Coordinate Menus with User Tasks
• Menu labels should be easily understandable to the user.

11

2. State of the Art

• Menu labels should be easy to scan for the user.
• Large menus should preview lower-level content, to accelerate user navigation.
• Menus should provide local navigation to closely related content.
• Visual representations such as images or colors can aid user comprehension.

4. Make It Easy to Manipulate
• Menu items should have an appropriate size and be easily clickable.
• Previews of lower-level content, such as drop-downs should have an appropriate

size.
• Long application pages should contain menus that remain visible on top of

the viewport at all times.
• Most frequently used commands should have an easy access.

These guidelines are a good starting point to avoid common mistakes, nonetheless one has
to consider that VR menus are presented in three dimensional space. In [32], Bowman
writes that two dimensional interactions in a three dimensional world can be quite useful,
yet if presence is important and immersion is to be preserved, then the menu has to be
embedded into the virtual world and not just projected on screen space.

In [64], Bowman presents what he calls a distillate of principles of good 3D UI design:
1. Understand the Design Space

Universal Interaction Tasks (see section 2.1.2) already exist. They can be reused
directly or with slight adjustments in new applications.

2. There is still Room to Innovate
Even though many techniques that have proven their worth already exist, it is still
possible to establish new ideas and metaphors. The possible design space of 3D
interaction is very large based on the multitude of input devices.

3. Be careful with Mappings and Degree Of Freedoms (DOFs)
Incorrect mapping between input devices or DOFs (Fig. 2.3) of input devices and
actions in the interface can lead to the confusion of the user. A wrong input device,
such as for instance using isometric sensors like a SpaceBall (by 3Dconnexion) for
position-controlled movements instead of isotonic sensors such as a position tracker,
can decrease performance [73]. Interaction can also be made unnecessarily difficult
if a high-DOF input is used for a task that requires a lower number of DOFs.
For example selecting an item in a flat menu in a VE with a three dimensional
input technique like a Pinch Glove, which would only need a two DOF device.
Generally designers should try to reduce the number of DOFs with physical or
virtual constraints.

4. Keep it Simple
UIs in 3D can support complex tasks, yet not all tasks need to be made complex.
Designers should user simple techniques for simple user goals. For example by
reducing the number of DOFs as mentioned before.

5. Design for Hardware
In flat menu design, the goal nowadays is to make every interface work on every
device. Websites for instance should be displayed correctly on desktop computers,
tablets and smartphones alike. With 3D UIs however, what works on one input or

12

2.3. Interaction with a Smartwatch

Figure 2.3: Degrees Of Freedom.
Translation Rotation

Surge Moving forward/backward Pitch Tilting side to side
Sway Moving left/right Roll Tilting forward/backward
Heave Moving up/down Yawn Turning left/right

output device might not work on another. This migration issue can be demonstrated
with the Arm HUD presented in section 2.2.1. The interaction works perfectly fine
with a Leap Motion controller, however trying to get it to work with just a Wand
is impossible.

6. Instruct Users
One might think that interaction in three dimensional space is easy due to the fact
that we humans interact in it all the time in the real world. For most novice users
however, interaction with three dimensional interfaces can be quite unnatural [31].
Short instructions can be very helpful and improve user performance significantly.

7. Always Evaluate
Evaluations should be conducted in all HCIs. Since interactions in three dimensional
space can be quite complex though, evaluation should be done early and often.

In conclusion, there are no universally accepted guidelines for 3D Menus yet. The
developers have to choose the right approach for a specific task and evaluate their choice
thoroughly. The general guideline for all UI design is as always: it should be easy to use
and easy to learn.

2.3 Interaction with a Smartwatch

Interaction with wearables, in particular smartwatches are described in this section. First
interactions by touch, then with the help of a IMU sensor and finally other approaches
are presented.

13

2. State of the Art

2.3.1 Touch-based

There are different forms of touchscreens, as described in [27]: resistive Liquid-crystal
Display (LCD) touchscreens, capacitive touchscreens, infrared touchscreens and surface
acoustic wave touchscreens.

Almost all smartwatches available now, including the Huawei Watch, the LG Watch
Urbane, the Samsung Gear S and the Motorola Moto 360 use capacitive touchscreens.
Such touchscreens possess an insulator layer that is coated with a material that acts as
conductor and stores electrical charges. When the layer is pressed, circuits on the corner
of the device measure the charge and send that information to the controller. Capacitive
touchscreens are very precise and resistant to contaminants. Unfortunately they cannot
be used with gloves or other insulating materials since they need an electrical conductor
touching the surface.

Capacitive touchscreens are used for wearables and most smartphones nowadays,
because they are more responsive than resistive touchscreens and more resistant to
contaminants than infrared and surface acoustic wave touchscreens. Additionally, since
capacitive screens only consist of one layer which gets thinner and thinner as technology
advances, the display itself can be many times sharper than with other methods.

Although touchscreens are used in nearly every smart device, their biggest disadvantage
is that the user’s hand may obscure the screen. This is especially the case with devices
that possess a small screen, such as for example smartwatches. That is the reason
why different approaches to smartwatch interaction may provide certain benefits over
touchscreens.

2.3.2 IMU-based

The second most used interaction with a smartwatch or smart devices in general, is with
the help of the sensors of the IMU. An IMU is a single unit consisting of two or three
separate measurement sensors. The first sensor is the accelerometer which measures
acceleration along each of the three axes and generates an analogue signal for each one.
The second sensor is the gyroscope which measures rotational attributes like pitch, roll
and yaw of the unit. Sometimes IMUs also contain a third sensor, a magnetometer that
measures strength and direction of magnetic fields to help calibration against orientation
drift.

IMUs are now based on Micro-Electro-Mechanized-System (MEMS) technology to
enable use in smart devices to track the user’s movement. The sensory data they provide
can be utilized for activity tracking [67, 48, 61], fitness tracking [41] or as remote input for
other applications such as in [43] by Kim and Woo. They used IMU data of a Samsung
Gear Live smartwatch fused with depth tracking data from a sensor mounted on an
Oculus Rift DK2 as a six DOF hand movement tracker in an Augmented Reality (AR)
environment. The authors compared their implementation with another hand tracking
technique explained in [51] that uses only depth data. User tests showed that the new
technique improved completion time of a user task by 3 times. In [42], Watchpoint is
explained which is an interaction technique that uses only the IMU of a smartwatch

14

2.3. Interaction with a Smartwatch

Figure 2.4: Prototype enabling Infrared (IR)-based interaction.

as tracking input. The authors use the sensors of the smartwatch to enable freehand
mid-air pointing and clicking on a nearby large screen. The expected result was a
natural and intuitive way to point on objects and select via custom gestures without
the constraint of having to use a camera-based sensor. A study was conducted with a
prototype showing promising results in such a way that the authors deemed Watchpoint
a potential killer-app.

2.3.3 Other

There are many other techniques that have not yet been explored as much and are
not used as a common interaction technique in nowadays smartwatches. All presented
techniques in this section have the same fundamental idea: Avoid screen space touch
interaction and as a result occlusion of displayed information.

In [46], the smartwatch touch interface is expanded around the screen to the skin of
the user with the help of an IR line image sensor. While the hand is in an interaction
position, which is verified with a gyroscope, the user can touch the back of his hand to
control the graphical user interface of the smartwatch. The authors created a module
that contains the line image sensor and two IR emitters that are mounted on a Samsung
Galaxy Gear smartwatch; specifically on the side that is facing the hand. When a finger is
anywhere on the back of the hand, the reflected IR light is detected and thus the position
estimated (Fig. 2.4). To evaluate the performance the authors tested the technique with
a six DOF industrial robot and found that the measured error rate amounted only to
approximately seven millimeters in x and four millimeters in y direction. These results
mean that the interface might not yet be used for sub-millimeter precise interaction but
can definitely be used for scrolling and clicking interaction with the UI.

15

2. State of the Art

Figure 2.5: Project Soli by Google.

In [53], ProxiWatch is presented by Müller et al. They point out that touch-based
interaction with a smartwatch can lead to occlusions of the displayed information, since
the average screensize of the device is only about 4 centimetres in diameter and the trend
is going torwards even smaller devices [54]. This is why they propose to use the additional
DOF provided by the elbow joint which can flex to and extend away from the body of
the user. This way users can for instance perform scroll interactions with only one hand
by moving it from or away from their bodies. To achieve this, the authors constructed
a stand-alone wireless prototype and mounted it on a Motorola Moto 360 smartwatch.
The prototype consisted of a battery powered Arduino Nano and two IR distance sensors.
The IMU of the smartwatch detects if the hand is raised; after that event, the IR sensors
send the distance data via the Arduino wirelessly to a smartphone that processes the
data and sends it back to the smartwatch for appropriate action. For evaluation, the
estimated distance by the prototype and the real distance between smartwatch and body
were measured and deemed as robust with a deviation of about one to two centimetres.

Project Soli [16] was presented at this year’s Google I/O developer conference by
Google’s Advanced Technology and Projects (ATAP) group. It is a new way for touchless
interaction with smart devices. The sensor (Fig. 2.5) works with radar technology to
track the user’s hand and finger gestures up to a sub-millimeter level. The goal is to have
the human hand as universal input device for interaction with smart devices and make
interaction feel as physical and as responsive as possible by using the haptic sensation
of the fingers touching each other. The sensor can, for example, determine differences
between a sliding or pressing movement of two fingers up to 15 meters away from the
device (depending on the size of the chip). At the conference the group showed a working
prototype where the chip was implanted into the wristband of a smartwatch and promised
to make developer kits available in Fall 2016.

A method for mechanical bezel interaction with a smartwatch is presented in [71].

16

2.3. Interaction with a Smartwatch

Figure 2.6: Mechanical interaction with a smartwatch.

The actions supported by the bezel are two dimensional panning and twisting, binary
tilting left or right and clicking (Fig. 2.6). The prototype consisted of a small Thin-
Film-Transistor (TFT) LCD color display mounted on top of a pair of joystick sensors
to capture two dimensional movement. Overall the prototype worked well and provided
new ways to interact with smartwatch content without having to occlude the screen
by touching it. However the authors also point out that the problem with any form of
mechanical parts on wearable devices is that they are less resistant to contaminants and
prone to be affected by water entering the openings of the parts.

To conclude, smartwatches are not particularly new, nevertheless they are still a market
niche. The first Android Wear devices launched in June 2014, but only really decoupled
from Android Smartphones and exist as a solo device since Version 1.3 which was released
much later. Now, in 2016 approximately 50 million people own a Smartwatch [24] which is
nowhere near the 2400 million people that own Smartphones [23]. Interaction exploration
with such small wearable devices is still only on the brink.

17

CHAPTER 3
Design

This chapter presents the design ideas for the two proposed sub-systems — the Android
applications and the UE4 plugin — as well as the communication between them. First
background information on languages, platforms and tools of each system are given. After
that, the requirements and the designing ideas are presented. Lastly, the communication
between the Wear and the UE4 system is discussed.

Figure 3.1: Schematic of the Wear-UE4 system. The Android Wear application connects
to the Android smartphone application via Bluetooth. The smartphone application

connects to the UE4 plugin via a WLAN.

19

3. Design

Code Name KitKat Lollipop Marshmallow Nougat
Version Number 4.4 - 4.4.4 5.0 - 5.1.1 6.0 - 6.0.1 7.0
API Level 19 - 20 21 - 22 23 24
Wear API Level 1.0 1.3 1.5 2.0

Table 3.1: Android Versions.

3.1 Android Applications

3.1.1 Language

Java [38] is an object-oriented, class-based, platform-independent computer programming
language developed by the Oracle Corporation. Java is arguably the most popular
programming language.

One of the main design goals of Java is portability. Programs that are written in Java
have to be able to run on different hardware and software. This is achieved by compiling
the code into specific Java bytecode instead of architecture-specific machine code. This
bytecode can then be executed on every hardware by the corresponding java Virtual
Machine (VM) which translates the bytecode into machine-specific code.

Another main idea behind Java is simplification of memory management for developers.
As opposed to other languages such as for example C or C++, the length of the lifecycle
of an object is determined by the runtime environment and not by the programmer.

3.1.2 Platform

Android [1] is an open-source mobile Operating System (OS) based on the Linux kernel
developed by Google. The UI of Android is based on direct touch manipulation of
on-screen objects. The OS is available for smartphones, tablets, smartwatches, televisions
and car dashboard units, each using the Android Application Programming Interfaces
(APIs) and having a unified UI experience. In table 3.1, Android versions since the
release of Android Wear are displayed.

Applications for Android are written in Java which provides the platform with multiple
advantages including the following most important ones:

1. Java runs in a VM so there is no need to recompile an application on every different
smartphone. The VM also has the advantage of separating processes, thereby
making it more difficult for rogue applications to manipulate or interfere with other
applications.

2. Java is easier to program due to the easier memory management and the missing
pointer arithmetic. Instead of pointers, Java uses References which are type-safe,

20

3.1. Android Applications

thus making it impossible to reinterpret bytes in memory. This can be problematic
if a wrong or unused memory address is pointed to, after reinterpretation.

3. Java is the most popular programming language, making the developer base and
thus the number of available applications enormous.

3.1.2.1 Activities and Lifecycle

In Android, activities are the foundation upon which screens for an application are
built. An application usually has multiple activities, each creating and handling different
screens. In Fig. 3.2 the lifecycle of an activity is displayed.

Figure 3.2: Lifecycle of an Android Activity.

Handling lifecycle stages and knowing when an activity is in which stage, is crucial
when implementing a reliable application. When an application is launched by the
user, the main activity is created which automatically calls the onCreate() method.
In this method, UI elements and data objects are initialized. After the onStart() and
onResume() methods are called, the activity is brought to the foreground. In this
state the user perceives the application as opened. When the activity slides into the
background, for example when the user navigates to the home screen of the device, the
onPause() and the onStop() methods are called. In this state, the activity is still alive
in the background; however as soon as the activity is destroyed by either the system or
the user, the onDestroy() method is called.

The UI of an activity is defined in a layout which declares the different interface elements
as visual structure. Layouts can be created either during runtime by creating Views or in a
separate Extensible Markup Language (XML) file. Android has its own XML vocabulary
to create the layout file, however most modern Integrated Development Environments
(IDEs) have a graphical editor that, after designing, generates the corresponding XML
layout file automatically.

21

3. Design

(a) LG Nexus 5X (b) Huawei Watch

Figure 3.3: Hardware.

Android applications can also be created without the need of an UI thread, in other
words run in the background as a service. This allows to run more time consuming
operations without affecting the interface’s responsiveness. This way users can open and
interact with other applications while the service is still operating unseen.

3.1.3 Tools

This section describes the different hardware and software tools that are used to implement
the Android applications.
• Hardware

1. LG Nexus 5X (Fig. 3.3a)
An Android smartphone manufactured by LG Electronics. It has a ARMv8-A
processor, 2 Gigabyte (GB) Random-Access Memory (RAM) and is running
Android version 6.0.1 Marshmallow.

2. Huawei Watch (Fig. 3.3b)
An Android Wear-based smartwatch manufactured by Huawei. It has a
Qualcomm Snapdragon 400 processor, 512 Megabyte (MB) RAM and is
running Android Wear version 1.5.

• Software
1. Android Studio

Android Studio [2] is used for the implementation of the Android Wear
application as well as the Android background service on the smartphone. It
is the official IDE by Google for Android platform development. It is freely
available and based on IntelliJ IDEA which is a Java IDE. Features include
Gradle-based build support, Lint tools for compatibility evaluation, debugging
support for all Android devices as well as emulated devices and a rich UI
layout editor with support for every type of device.

22

3.1. Android Applications

3.1.4 Communication between Phone and Watch

Sending data between an Android smartphone and a paired Android Wear device is
possible with two different APIs provided by the Android framework: The DataAPI and
MessageAPI.

The DataAPI provides a communication channel for long-term synchronizing data
between the devices, or nodes, in a network even when some devices are not online. The
data is synchronized eventually when the node comes online.

TheMessageAPI on the other hand is used for short-term messaging between connected
nodes. A message is only considered as successfully delivered if it is queued to be sent to
the receiving node. The receiving node must be online for this operation.

Since the communication between the smartwatch and the smartphone is only an
exchange with very short messages (see section 4.1) and the nodes are always online and
connected, the MessageAPI is used for the implementation.

3.1.5 Smartwatch Application

3.1.5.1 Requirements

In this section, the requirements for the smartwatch application are explained.

Interaction
The most important requirement concerns user interaction with the application. Due to
the fact that users are wearing HMDs while they control the VR menus, the interaction
with the smartwatch has to be as simple as possible. Also menus in UE4 are designed
using UMGs (see section 3.2.2.1), with which two dimensional Flat Menus are created.
Considering these two factors, the user needs to be able to input commands to two
dimensionally navigate through the menu and also choose a desired menu item. Since the
application could be used in a VE where the user is fully body tracked, a switch between
interaction mode and idle mode of the VR menu has to be made distinctly via a gesture
or a different input pattern. The VR menu is not supposed to be activated without the
user specifically wanting it. Additionally the user has to be able to input text commands
to fill out text fields in the VR menu.

Haptic Feedback
Since users are wearing HMDs, they do not need any visual feedback on the screen of
the smartwatch. However the developer of the VR menu still has to have the ability to
provide the user with haptic feedback to indicate special events such as for example that
the device now listens for speech input.

Independence.
The application has to be independent. The navigation of the VR menu needs to work
without any additional data input from another system such as for example any body
tracking data that the VR system could provide.

23

3. Design

Compatibility
The application has to be compatible with multiple Android devices. As minimum
Software Development Kit (SDK), API level 21 is to be chosen. This version is avail-
able for nearly all Android smartwatches that are available right now. Additionally,
to be able to support as many devices as possible, and also for battery consumption
reasons which are discussed later in this section, the input data that is sent to the
UE4 plugin over a WLAN has to be sent to the smartphone application first. This
is mainly because not all smartwatches have the ability to connect to a WLAN by
themselves and it is assumed that everyone who owns a smartwatch also owns a com-
panion smartphone. Another reason why the smartphone is required, is that there is
no possibility to input text via a software keyboard on devices that run Android Wear
version 1.5. In 1.5 only speech input is available, as opposed to Android Wear version
2.0 where the Input Method Framework (IMF) is extended with a software keyboard and
handwriting input. This version is however not available at the point of writing this thesis.

Resource Usage
The Huawei Watch has 4 GB of internal storage and no possibility of extending it. This
is the standard size for storage on smartwatches right now, with watches such as for
example the LG Watch Urbane, the Samsung Gear S or the Motorola Moto 360 having
the same memory size. Since users can store media such as songs on their smartwatch
locally to be able to play it without their phone nearby, storage space is quite precious.
For that reason the size of the application needs to be held as small as possible.

Also Central Processing Unit (CPU) usage has to be as minimal as possible. Smart-
watches have relatively small Li-Ion batteries which range between approximately 300
and 400 Milliampere-Hour (mAh). Since sessions in VR can take up to multiple hours
and the watch is probably used or at least the application is opened all the time, battery
consumption via intense CPU usage has to be prevented. This is the second reason why
the smartphone companion application is implemented as well. The heavier lifting has to
be done by the smartphone which has a larger battery.

3.1.5.2 Design Ideas

In this section, the general design ideas on the basis of the previously defined requirements
for the smartwatch application are presented.

Interaction
To achieve the requirement of simple two dimensional navigation, two interaction options
have to be considered. Touch-based and IMU-based methods which were discussed in
section 2.3, are the only ones possible for consumer smartwatches at the moment of this
thesis. IMU-based interaction via gestures or pointing however have some disadvantages,
such as for example the drift of the sensor. To counteract the drift of the IMU, some form
of absolute position data would have to be used. This data might be available, depending
on the VR system, however to attain the requirement of independency from other systems,
the application should not use this data. Another disadvantage of IMU-based interaction

24

3.1. Android Applications

might occur due to the constant movement of the user in the VE. Users might be fully
body tracked in the VE, thus very unnatural or complex gestures might have to be
performed to toggle the state of the menu and to keep it from activating unintentionally.

Therefore touch-based interaction with the smartwatch application is selected for two
dimensional navigation. Input has to happen via swiping on the screen in the direction
that the user wants to navigate. Furthermore users have to be able to continuously swipe
in a direction to scroll over multiple menu items, depending on how long they swipe.
The length in pixel of one swipe has to be customizable however since the screen of the
smartwatch is rather small, this customization has to be performed on the smartphone.
Clicking has to be performed with simple tapping onto the screen of the device. To switch
between input mode and idle mode of the VR menu, users have to perform a distinct
touch gesture that they would normally not perform, to prevent unintended activation
of the VR menu. For this reason, a double tap is chosen as activation and deactivation
touch pattern. What also has to be considered, is that in Android Wear 1.5 swiping the
current application to the right of the screen, dismisses the application. This has to be
disabled during the start of the application to enable touch-input for the VR menu in
all directions. However if this gesture is disabled, there needs to be another possibility
to close the application. To exit Full-Screen Activities, Google suggests a long press to
dismiss pattern [5] that overlays the current Activity with a Quit button which can be
utilized by the user.

Since input via a software keyboard is not possible in Android Wear 1.5 and the user
is wearing a HMD and should not have to take it off for any menu interaction, speech
input has to be used for text entries. As soon as the user clicks on a text box in the VR
menu, the smartwatch has to switch into speech-input mode. As soon as the user is done
with the voice input, the smartwatch has to switch back to touch-input mode, translate
the recorded speech and send the translated text to the smartphone application which
then sends it to the UE4 plugin.

Haptic Feedback
Vibration is the only possible way of giving any feedback to the user via the smartwatch.
The decision when haptic feedback is given to the users, is not to be made by the
application itself. The decision has to be given to the developer of the VR menu, to for
example vibrate the watch when the user selects a button or a text field. The developer
also has to be able to decide how long the vibration lasts by sending a command with a
time variable from the UE4 plugin.

Compatibility
Android smartwatches exist with square, round and round with chin on the bottom
formats and different screen resolutions. To enable the compatibility with multiple
devices, the application layout needs to be designed relatively to the screen size of the
smartwatch. However this is mainly important for the Quit button, since there is no
other screen position specific interaction with the application. Swipe and tap actions to
navigate the VR menu can be performed anywhere on the screen of the watch.

25

3. Design

Resource Usage
To address the minimization of resource usage, battery consumption is to be kept to a
minimum. Screen are in general the biggest factor of battery drainage on any smart device.
Due to the fact that the Huawei Watch has an Active-Matrix Organic Light-Emitting
Diode (AMOLED) screen, it is possible to save a lot of battery by blackening the UI.
Normal LCD screens have a backlight which is simply blocked when a black pixel occurs.
However it is still on and consumes battery. AMOLED screens work without backlights;
instead every pixel has its own light. That way, the screen does not need to block any
light for a black pixel, it simply does not light up, thus needing no energy for this pixel.

To further reduce resource usage, the sending and receiving of data via the WLAN is
relocated to the smartphone application.

3.1.6 Smartphone Application

3.1.6.1 Requirements

Here, the requirements for the smartphone application are explained.

Simplicity
The topmost requirement, same as for the other part of the Android system, is simplicity.
Users have to not be obliged to interact with the smartphone application every time they
want to navigate in a VR menu. This means that the smartphone application has to
start and stop as soon as the smartwatch application is started or stopped. In addition
to that, the smartphone application is not to be closed by unintended touchscreen- or
other interaction. Consequently this means that the smartphone application has to start
as a background service without main activity.

Layout
Despite the smartphone application being without a main activity, it still has to notify
the user that the service that sends and receives data from the WLAN is running in the
background. Furthermore it needs to be possible for users to adjust certain settings such
as network options and the option to change the distance of a swipe, as explained in
section 3.1.5.2. The settings have to be displayed in an activity that is only shown when
the user specifically wants it, to prevent cluttering of the screen and UI responsiveness.

Compatibility
The smartphone application also needs to be compatible with multiple devices. Same as
with the smartwatch application, the minimum SDK has to be API level 21. With this
level, approximately 45% of all devices running Android [3] and 100% of devices that are
able to connect to a smartwatch are supported.

Resource Usage
Requirements concerning resource usage on the smartphone are not as pressing as with

26

3.1. Android Applications

Figure 3.4: A notification in Android 5.0 - 6.0.1.

the smartwatch since phones have significantly larger batteries and storage. However
CPU usage and thus battery drainage has to still be kept to a minimum due to the fact
that the communication with the UE4 plugin does not work without the phone being
turned on.

3.1.6.2 Design Ideas

Now, the general design ideas for the smartphone application are presented.

Simplicity
To achieve synchronous starting and stopping of the smartwatch and smartphone applica-
tion, messages have to be sent from the smartwatch to the smartphone in the onCreate()
and onStop() methods. For this, specific Action Commands (see section 4.1) are used
which are sent to the smartphone with the help of Google’s MessageAPI.

Layout
Since the smartphone application is to be run in the background but also provide a way
to notify the user that the service is running, a notification has to be displayed in the
notification bar (Fig. 3.4). This notification only has to be displayed when the service is
running and provide the users with crucial information if needed. It has to indicate the
state of the connection of the smartphone with the smartwatch and with the WLAN.
Furthermore it has to provide the current Internet Protocol (IP) address of the phone
combined with the used port which are needed to connect with the UE4 plugin and are
further explained in section 3.3.

The notification has to include a button which when pressed, directs the user to the
settings activity. The activity has to include three text fields that let the user set the
client device port, the server device port and the IP address of the server device which
are needed for the communication with the UE4 plugin. The settings UI has to include a

27

3. Design

SeekBar which lets the user decide how long a swipe on the smartwatch has to be, to be
detected as one scroll. The value of the SeekBar has to range between 20 and 200 pixels.
Values beneath 20 pixels make scrolling too inaccurate on the smartwatch screen; values
above 200 pixels make scrolling feel too slow. Furthermore the activity has to include a
Save button to update the changes and a Reset button to reset the changes. Before any
values are saved, they have to be validated. Port numbers are saved as unsigned 16-bit
integers, so their values are restricted to 0 < port < 216− 1. An example for a valid IPv4
address would be 192.168.0.3. If the new values are not valid, users have to be informed
about that with a small popup.

Compatibility
To support multiple devices, the layouts for the notification and the settings activity
have to be designed relatively. Furthermore German and English language support have
to be provided by extracting the UI strings and keep them in an external file. These
different languages files are kept in the resource directory of the Android project and are
automatically applied, when the language of the device is changed.

3.2 Unreal Engine 4 Plugin

3.2.1 Language

C++ [66] is an imperative, generic, object-oriented programming language. It was
released as an iteration to C (hence ++), with such advantages as for example virtual
functions, operator overloading, inheritance and abstract classes; many of which are
now standard in modern languages. C++ is useful in many different contexts such as
in desktop applications, servers and performance-critical applications. It is a compiled
language, same as Java, and not bound to a specific providing organization. A difference
compared to Java is that every coding class has a .h (header) file and a .cpp file. The
header file declares what is being implemented and the .cpp file declares how it is
implemented.

3.2.2 Platform

Unreal Engine is a game engine developed by Epic Games, originally with the focus
on First-Person Shooter (FPS) games; but is now used in many different genres such
as RPGs, Multiplayer Online Battle Arena (MOBA) games and Massively Multiplayer
Online (MMO) games.

The current version, UE4, is designed for DirectX 11/12 on Windows, OpenGL on Mac
and Vulkan on Android and free for all platforms. UE4 supports, in contrast to previous
versions, game scripting in C++ and visual scripting in the editor in so called Blueprints.
Blueprints are special assets that are used to create actors, playable game pawns, script
events, Head-up-Displays (HUDs), prefabs, etc. Depending on which parent class is
chosen, every blueprint has different options and panels. However each blueprint provides
an Event Graph which is a graphical interface that looks similar to a flowchart. There

28

3.2. Unreal Engine 4 Plugin

(a) A menu in screen space. (b) A menu in world space.

Figure 3.5: UMG in UE4.

the developer can place nodes, events, functions or variables and connect them with
wires to create complex procedures. Instead of textually specifying code, the developer is
able to create and manipulate programs graphically. This a huge advantage for game
designers that do not know how or do not want to program in the classical sense. The
newest version also drastically reduces build time by making it possible to compile C++
code while the engine is running, making it overall easier to debug.

3.2.2.1 Unreal Motion Graphics

With the UMG UI designer tool the developer can create UI elements in the UE4 editor
in a graphical interface. These elements can then be placed onto screen space or into
world space. Screen space is a two dimensional bounded space defined in pixels by the
screen (Fig. 3.5a). World space on the other hand is a three dimensional endless space in
which camera and game objects are placed (Fig. 3.5b).

UMG is essentially a blueprint extension based on Slate. Slate is a custom UI window
programming framework, designed originally to create the interface of the UE4 editor. It
can also be used for interfaces inside a game, however it is based on a textual declarative
syntax to compose UI elements. To make it accessible to more developers, the UMG
wrapper was implemented to make the creation of interfaces possible in blueprints,
therefore graphically.

To create a menu interface, a widget blueprint has to be created in which UMG widgets
can be constructed with different components and functionality can be added. Widget
components include interactive components such as buttons, check boxes, sliders but
also panel components which are used to create a visual layout and define position of
other widgets such as horizontal and vertical boxes, grid panels, scale boxes or widget
switchers. The widget components are placed and arranged inside the designer tab which
presents the developer with a graphical representation of the interface as well as a widget

29

3. Design

tree. This widget tree organizes the widgets in a tree structure where each widget has
exactly one parent widget and zero or more child widgets.

Besides the designing tab, developers can also add functions to the widget with the
help of visual scripting in a graph window. An example for a functionality of a widget
could be a health bar that updates itself as the player fights with enemies and gets
weaker.

3.2.2.2 Plugins in Unreal Engine 4

A plugin is a software module that adds features to an existing program. In UE4, many
subsystems were designed to be extensible with plugins, allowing to add or modify
functionality without altering engine code directly. It is possible to add new file types,
new menu items or new tools for the editor.

Generally, two types of plugins exist in UE4: Engine Plugins and Game Plugins.
Engine Plugins are plugins that are placed in the engine folder of the computer system
and thus can be used across all projects that are implemented on that system. Game
Plugins are plugins that are added to a single project thus can only be used in this specific
project.

Both types of plugins can be either Content Modules or Code Modules. Content
Modules contain content that is available in the game as well as for developers in the
editor. An example would be a plugin that adds in-game character assets, animations or
level components which developers can add to their own games. Code Modules contain
code with which other modules can interact. An example would be a plugin that adds
additional input possibilities to the editor, such as for example joystick input or input
via a smartwatch.

Every plugin has to have an icon that is displayed in the editor’s plugin UI. Furthermore
every plugin has to have a module asset which describes the contents of the plugin such
as name, category, description, version and engine version so that UE4 can display
this information in the editor as soon as the plugin is loaded. Additionally it contains
information on whether the plugin is an editor module, a developer module or can be
used during runtime. Runtime plugins can be used in the shipped game, editor modules
are only loaded when the editor is used and developer modules are loaded during builds
of the game.

3.2.3 Tools

This section describes the different hardware and software tools that are used to implement
the UE4 plugin.
• Hardware

1. XMG Laptop
For the development of the UE4 plugin, a laptop by XMG with an Intel Core
i7 quad-core processor, 16 GB of RAM and a Nvidia GTX860M is used.

• Software

30

3.2. Unreal Engine 4 Plugin

1. Microsoft Visual Studio 2015
Visual Studio 2015 is used to implement the Unreal Engine 4 Plugin. It is an
IDE that supports different programming languages and provides debugging
support on source-level and a machine-level. Built-in languages include C,
C++, C# and others.

2. Unreal Engine 4 Editor
The UE4 Editor with version 4.12 is used to evaluate and test the UE4 Plugin
and create multiple sample menus.

3.2.4 Requirements

In this section, the requirements for the UE4 plugin are explained. Since the design of
the plugin will have an effect on both the developer and the user of the VR menu, the
requirements are regarded respectively.

3.2.4.1 Users

Custom Components
Most importantly, the plugin needs to contain various possibilities which allow the user to
input different information. These possibilities need to be in the form of custom widget
components that can be traversed and selected via the smartwatch.

Visual Feedback
When navigating the menu, users needs to have feedback on where they currently are in
the menu. Thus menu components need to be able to be highlighted as soon as they are
scrolled over. Furthermore when operating special components such as sliders or combo
boxes, users need to be informed when the element is focused so that they know when
values can be edited via swipes.

Performance
In UE4 interfaces are usually controlled with a mouse or with a controller. However with
the smartwatch plugin, the menu is navigated with the help of commands that are sent
over a network and then processed. Despite that processing, the menu needs to operate
swiftly and reliably which means that the algorithm has to be efficient and stable.

3.2.4.2 Developers

Plugin
First of all, the additional custom widget components need to be easy and fast to import
into the UE4. Thus a runtime Code Module Game Plugin has to be created for the UE4
editor.

Custom Navigation
Furthermore users need to be able to navigate intuitively through the created menu, be

31

3. Design

it with or without boundaries on the edges of the interface. Thus the menu navigation
needs to be customizable by the developer to a point where a certain scroll command
leads the user from one specific menu component to another specific menu component.
However if the developer does not want to customize navigation, it also has to work
without modifying it.

Scalability
The possible number of VR menus has to be scalable in regard to the number of users. Mul-
tiple users need to be able to simultaneously use a menu with which only they can interact.

Debugging
Another requirement concerns debug information of the received input data and the state
of the menu. This is needed by the developer to know what exact data is received from
the smartwatch. Since this input data could be annoying and disruptive for the user in
the VE, the visibility of debug information has to be customizable.

Extensibility
Finally, the implementation of the plugin has to be extensible to a point where a another
developer can simply add custom widget components to the plugin code without needing
to change any previously implemented code. To achieve this, good documentation has to
be written and the code has to be lowly cohesive.

3.2.5 Design Ideas

In this section, the general design ideas for the UE4 plugin are presented.

3.2.5.1 Users

Custom Components
To create custom menu components that can be navigated with input over a network,
the components have to be derived from standard UMG widget component classes and
then extended with custom code. The newly created widget components are defined in
the following list:
• Watch Button
A component that can be clicked via a tap on the smartwatch when the component
is hovered. When the button is clicked, an event has to be fired which can be further
customized by the developer to execute an action such as for example quitting the
game.

• Watch Check Box
A component that allows the user to make a binary choice between Yes and No by
tapping the smartwatch when the component is hovered. When the state of the
check box changes, an event has to be fired.

• Watch Combo Box
A component that when hovered and clicked, opens up a drop-down list in which

32

3.2. Unreal Engine 4 Plugin

the user can navigate to select an item. When the user taps the smartwatch again,
the combo box closes. The box has to fire events on opening, closing and selection
state change.

• Watch Slider
A component that lets the user set a value by moving an indicator vertically or
horizontally. When the slider is clicked, the user can control the slider handle with
left and right swipes for horizontal sliders or up and down swipes for vertical sliders
on the smartwatch. The slider has to fire an event when the value is changed.

• Watch Spin Box
A component much like the slider, except that it also contains a number which
displays the currently selected value.

• Watch Text Box
A component that lets the user enter text. Since the user is not able to enter text
on the smartwatch via touch, the text has to be supplied by speech input. When
the box is clicked, the smartwatch switches to speech-input mode. When the input
text is received in UE4, it is written in the text box and the box looses focus. If an
error occurs, such as for example no internet connection which is needed for the
speech service, then a debug error message is displayed and the component also
loses focus.

Visual Feedback
Furthermore all components have to have the ability to indicate highlighting or focusing.
For that, every widget has to have custom color edit fields that can be updated by the
developer in the Class Default Object (CDO) panel. Some components already posses
standard color fields, some need to be updated. Each component has to also fire an event
when it is hovered or unhovered and focused or unfocused which can also be further
customized by the developer of the VR menu.

3.2.5.2 Developers

Custom Navigation
To achieve the requirement of custom navigation, the developer has to be able to specify
in each component, in which direction of the current component another component lies
in the menu. Say for example that when a button is highlighted and the user swipes left
on the smartwatch, the menu navigates to the component that the developer specified
as being left of this button even though the component might not be physically placed
left of the button. If custom navigation is not declared, then the next component in the
component tree is chosen if the user swipes right or down and the last component is
chosen when the user swipes left or up.

Scalability
To provide the possibility of multiple menus in one VE, every menu has to have the
option to specify a network port to listen for input commands sent from a smartwatch.

33

3. Design

3.3 Communication between Android and Unreal Engine
4

To communicate across a computer network, a socket is needed which is an abstract
endpoint instance defined by an IP address, a port and a transport protocol. Two of
the core transport layer protocols defined by the Internet Protocol Suite (IPS) are the
Transmission Control Protocol (TCP) and the User Datagram Protocol (UDP) (Fig. 3.6).

TCP is a connection oriented protocol that functions as a stream of data over an IP
network from one node to another. All data packets that are sent are guaranteed to
reach the destination in the correct order they were sent. TCP is generally slower but
very reliable, with typical applications such as web browsing or Email traffic.

UDP is a connectionless protocol. The communication works with the help of datagram
packets that only guarantee the integrity of themselves. The packets can reach the
destination correctly, out of order or not at all. It is however more time efficient since
there is no handshake needed between client and server. Typical applications include
streaming media and real time communication such as Voice over IP (VoIP).

In the implemented system, the UE4 plugin will act as a server since it provides the
service of menu navigation. The plugin gets input requests by the Android application
which it responds with visual output in form of menu navigation.

The request and response messages that are sent between the system are comparably
short commands but the server has to respond fast to the requests of the client to avoid
input lag during fast input events. In addition, the system has to have an easy one-time
setup process. It also has to be possible for users to simply connect to a certain menu
while the VE is already in use. Thus a connection oriented approach is disregarded and
the communication is implemented with the help of the UDP. As the distance between
the devices is comparably small in the WLAN, it is quite unlikely that any datagram
packages will be lost during the transmission, thus this problem of UDP communication
is not an issue.

The cardinality of the Wear-UE4 system is defined as a one-to-one relationship. To
communicate in both directions, each system has to have knowledge of the port that itself
makes available for transmission. Additionally, the port and address of the respective
counterpart has to be known. With this information, one Android application can only
communicate with one VR menu.

Lastly, the possibility that no WLAN is available to transmit input data has to be
considered as well. If the VR system does not provide a wireless network, the proposed
system also has to work with a hotspot created by the Android smartphone. The device
that is using the UE4 plugin connects to the hotspot. This circumstance however is
mainly thought out for debugging purposes since most immersive VR systems depend on
a WLAN to transmit sensory input data.

34

3.3. Communication between Android and Unreal Engine 4

Figure 3.6: TCP and UDP communication comparison in a server-client model.

35

CHAPTER 4
Implementation

In this chapter, the implementation of the Wear-UE4 system is described. First the
Action Commands that are used to communicate between all devices and then the
implementation of the Android application and the UE4 plugin are presented. Finally
the usage of the system is explained.

4.1 Action Commands

To enable proper communication between all three devices in the Wear-UE4 system, a
consistent transmission code has to be established. Therefore specific Action Commands
are created and presented in table 4.1. The table displays all available commands with
the direction that they are sent, the string of the command, the possible attachment to
the string for further information and an explanation of what the command does.

The commands have to be stored in a file that is available to every other class in the
system. For the UE4 plugin, a separate class is created that contains each command as
a static FString. FString is a specific string class used by UE4. Additionally a static
method is implemented in the class to check whether a given FString is a viable Action
Command: static bool isViableActionCommand(FString Command);

For the Android applications, a separate module is created that is imported into both
platform implementations. This module contains a class with the commands as static
strings and a similar static method as mentioned above.

In Fig. 4.1, an example for an exchange with the proposed commands is presented.
First, the smartwatch application is started which sends the ACTION_PHONE_START
command to start the smartphone application. As soon as the phone application is started,
ACTION_WATCH_SCROLL_DIST_50 and the ACTION_WATCH_DEBUG_TRUE
are sent to the watch (see section 4.2.2.3). Afterwards, the menu is activated with the AC-
TION_MENU_ACTIVATE command. When the menu is opened, the user swipes down
on the smartwatch and then ACTION_MENU_SCROLL_DOWN command is sent to

37

4. Implementation

D
irection

String
A
ttachm

ent
C
om

m
ent

W
atch

→
Phone

A
C
T
IO

N
_
PH

O
N
E_

STA
RT

N
one

Starts
the

sm
artphone

application.
A
C
T
IO

N
_
PH

O
N
E_

ST
O
P

N
one

Stops
the

sm
artphone

application.

Phone
→

W
atch

A
C
T
IO

N
_
W
AT

C
H
_
SC

R
O
LL_

D
IST

_
Integer

Sets
the

m
inim

aldistance
in

pixels
that

is
needed

to
perform

a
scroll

on
the

sm
art-

w
atch.

A
C
T
IO

N
_
W
AT

C
H
_
D
EB

U
G
_

T
R
U
E/FA

LSE
Sets

w
hether

visualdebug
inform

ation
on

the
sm

artw
atch

is
visible

or
not.

W
→

P
→

U
E4

A
C
T
IO

N
_
M
EN

U
_
A
C
T
IVAT

E
N
one

A
ctivates

the
V
R

m
enu.

A
C
T
IO

N
_
M
EN

U
_
D
EA

C
T
IVAT

E
N
one

D
eactivates

the
V
R

m
enu.

A
C
T
IO

N
_
M
EN

U
_
SC

R
O
LL_

U
P

N
one

Scrolls
one

item
up

in
the

V
R

m
enu.

A
C
T
IO

N
_
M
EN

U
_
SC

R
O
LL_

D
O
W

N
N
one

Scrolls
one

item
dow

n
in

the
V
R

m
enu.

A
C
T
IO

N
_
M
EN

U
_
SC

R
O
LL_

LEFT
N
one

Scrolls
one

item
left

in
the

V
R

m
enu.

A
C
T
IO

N
_
M
EN

U
_
SC

R
O
LL_

R
IG

H
T

N
one

Scrolls
one

item
right

in
the

V
R

m
enu.

A
C
T
IO

N
_
M
EN

U
_
C
LIC

K
N
one

C
licks

the
currently

selected
item

in
the

V
R

m
enu.

A
C
T
IO

N
_
V
O
IC

E_
R
ESU

LT
_

String
Sends

the
speech

result
to

the
V
R

m
enu.

U
E4
→

P
→

W

A
C
T
IO

N
_
M
EN

U
_
A
C
T
IV

E_
T
R
U
E/FA

LSE
Inform

s
the

sm
artw

atch
w
hether

the
V
R

m
enu

is
active

or
not.

A
C
T
IO

N
_
V
O
IC

E_
STA

RT
N
one

Starts
recording

speech
input

on
the

sm
art-

w
atch.

A
C
T
IO

N
_
W
AT

C
H
_
V
IB

R
AT

E_
Float

Starts
vibrating

the
sm

artwatch
for

a
given

am
ount

oftim
e.

A
C
T
IO

N
_
A
N
D
R
O
ID

_
ST

O
P

N
one

Stops
the

sm
artphone

and
the

sm
artw

atch
applications.

Table
4.1:

T
he

available
A
ction

C
om

m
ands

across
allthree

devices.

38

4.2. Android Application

Figure 4.1: Diagram of an exchange with the help of Action Commands.

the UE4 plugin. After a time, the plugin sends the ACTION_WATCH_VIBRATE_200
command which vibrates the watch for 200 milliseconds. Finally, the ACTION_ANDROID_STOP
command is called from the UE4 plugin that stops the phone and the watch application.

4.2 Android Application
In Android Studio it is possible to create one project that contains different form factors.
The project that is created for this thesis has the name WatchPlugin, the domain is
ims.tuwien.ac.at and the application that runs on the wearable and the phone is called
Unreal Smartwatch Menu (USM). The minimum API level of the application is 21,
whereas the target is 23. The application icon is shown in Fig. 4.2.

Figure 4.2: Android Application Icon

39

4. Implementation

Figure 4.3: UML Class Diagram of the Watch Application with the most important class
variables and methods.

4.2.1 Smartwatch Application

In this section the implementation of the smartwatch application is presented. The
application consists of one activity called the WearActvity and a service called
PhoneListenerService, as seen in the Unified Modeling Language (UML) class
diagram in Fig. 4.3. The WearActvity is started as soon as the user opens the
application.

First the required permissions, then the creation of the layout and after that the
functionality of the application is explained.

4.2.1.1 Permissions

In order to allow the watch application to vibrate the device and to keep it from going
into sleep mode, the following permissions have to be added to the AndroidManifest.
<uses−permis s ion android : name="android . permis s ion .VIBRATE"/>
<uses−permis s ion android : name="android . permis s ion .WAKE_LOCK"/>

40

4.2. Android Application

(a) (b)

(c) (d)

Figure 4.4: Android Wear Application UI.

The manifest is a file that presents essential information about the application that
is needed by the OS. It contains the name of the java package of the application,
shortly describes all activities, services, broadcast receivers and content providers of the
application and declares the permissions.

4.2.1.2 Layout

Since Android Wear smartwatches exist with round, round with chin and square shapes,
the layout of the WearActvity needs to be shape-aware. For that, a BoxInsetLayout
which is included in the Wearable UI library is used. It lets the developer define a single
layout that works with different screen types.

The main issue with supporting different screens, is that objects in the corners of
square devices, might get cut off on round devices. To prevent this, child views are
positioned relatively inside a BoxInsetLayout with the help of a parameter to align the
view either on the top, bottom, left or right edge, or in the center of the layout. For the
WearActvity layout, all views inside the BoxInsetLayout are centred. Furthermore
the background color of the layout is set to black to reduce battery drainage.

Inside the BoxInsetLayout, a faded ImageView is placed in the middle of the
screen to indicate that the application is indeed running (Fig. 4.4a). If visual debugging
is enabled, a colored custom created CircleView is drawn on top of the faded image.
This circle is only visible, when the VR menu is activated. The different colourings of
the circle (Fig. 4.4b and Fig. 4.4c) are explained in the next section.

41

4. Implementation

To be able to close the application, a DismissOverlayView has to be added to the
layout, so that it is drawn full-screen and over all other views (Fig. 4.4d). To detect if the
view is to be opened or closed, a GestureDetector is used which is further discussed
in the next section.

4.2.1.3 Functionality

After the user opens the application, the onCreate() method is called, as discussed in
section 3.1.2.1. Here, the layout specified in the resource XML is set as the content view
of the activity. After that, the setAmbientEnabled() method is called which is provided
by the WearableActivity parent class of the WearActivity. It makes sure that
the application remains displayed even during ambient mode. Ambient mode is a way of
the OS to automatically save battery life by closing open applications and dimming the
display of the watch after a certain time of inactivity by the user.

Even though the application is not closed in ambient mode, the touch event recognition
still goes into idle mode. To exit this idle mode, a touch event on the screen is normally
required. To prevent the application from going into idle mode altogether, a wake lock is
used in the onEnterAmbient() method. A wake lock is a mechanism to indicate that the
device needs to stay powered up.

After that, the different communication channels are set up. First the GoogleApiClient
is built for communication with the phone. Here, the phone’s node Identifier (ID) is
detected and saved for sending messages to the smartphone with the help of the sendMes-
sageToMobile(String message) method. After that, the PhoneListenerService and
the MessageReceiver are created. The PhoneListenerService is responsible for
listening to incoming MessageEvents from the paired smartphone. When such an event
is received and identified as viable Action Command, the service broadcasts that event
with the help of a LocalBroadcastManager with a specific intent. An intent is a
messaging object in Android used to request an action from a different application
component such as services, activities, etc. In this case, the the broadcast is received by
the MessageReceiver that is an inner class of the WearableActivity. This inner
class is in charge of translating incoming Action Commands into actions on the watch
such as for example vibration, setting the minScrollDistance or opening the speech input.

As soon as the communication channels are set up, the application sends the Action
Command to start the smartphone service.

Finally, the handling of touch events is implemented in the onCreate() method.
First, a GestureDetector is applied to the whole layout which detects various ges-
tures and events, using MotionEvents provided by the OS. The detector provides a
OnGestureListener callback which notifies users of the detector when a particular
motion occurs. The following events are requested to be detected by the detector:
• onLongPress(MotionEvent e)
On a long press, the DismissOverlayView is displayed. Since it is a view
provided by the OS, MotionEvent and visibility handling inside is performed
automatically.

42

4.2. Android Application

• onSingleTapConfirmed(MotionEvent e)
This callback is executed when a single-tap on the screen occurs. The application
then sends a click Action Command.

• onDoubleTap(MotionEvent e)
After a double tap on the screen, the watch either sends an activate or deactivate
Action Command depending on the VR menu state. Additionally the CircleView
is set to visible or invisible with the help of the setInteractionActive() if visual
debugging is enabled.

• onScroll(MotionEvent e1, MotionEvent e2, float distanceX, float distanceY)
This callback is executed when a scroll occurs. The method provides the ini-
tial MotionEvent that occurs when the finger is put on the screen and the
MotionEvent that occurs currently, as the finger is moving. A scroll Action
Command is sent as soon as the minScrollDistance is reached in a certain direction.

Additionally to the GestureDetector, an OnTouchListener is applied to the
layout that provides a callback as soon as the screen is touched to support visual debug
output. When the screen finger is put on the screen, the color of the CircleView is
changed to red. When the finger lifts up, the color is changed back to blue.

When speech input is required, a new activity is started with a RecognizerIntent. The
Google Voice Search application then responds to this intent by displaying a "Speak
now" dialogue and streams any speech to the Google servers for further interpretation.
This is the reason, why speech input requires an active internet connection. After the
speech is translated to text, the dialogue is closed and the text is sent to the phone as
attachment to an Action Command. During the input dialogue, it is possible to swipe
right to dismiss the dialogue and cancel voice input.

When the application is closed by the user, the Action Command to close the smart-
phone service is sent and finally, all communication channels are closed.

4.2.1.4 Debugging Wear Applications

To debug a phone application, the smartphone has to be connected to the working
station via Universal Serial Bus (USB) and the debugging option has to be enabled in the
developer options of the phone. After that, log outputs can be displayed in the Android
Debug Bridge (ADB) command line tool. The ADB lets developers communicate with
emulator instances or connected Android devices.

In Android Studio, the developer does not need to debug via the ADB directly, since
the IDE runs all commands automatically. The developer only needs to connect the
device, press the Run button and the application is installed and ready for debugging.

To install the debug Android Application Package (APK) of an Android Wear appli-
cation however, the watch needs to either have a form of USB port to connect to the
development computer or has to be connected to the companion phone via bluetooth
which is then connected to the computer via USB. With the latter, the debug output is
routed from the watch to the phone with the help of the ADB. Since the Huawei Watch
does not have a cable port, the debugging process is performed over bluetooth. To do
that, bluetooth debugging has to be enabled on the watch and smartwatch debugging

43

4. Implementation

has to be enabled in the official Android Wear Companion Application. Finally, the
commands shown in listing 4.1 have to be entered into the ADB to foward debug output
to the phone. After that, the application can be run and debugged like a phone application.

adb forward tcp :4444 l o c a l a b s t r a c t : / adb−hub
adb connect l o c a l h o s t :4444

Listing 4.1: ADB commands with a desired port.

4.2.2 Smartphone Application

In this section the implementation of the smartphone application is presented. The
application starts with the MainActivity which starts the ListenerService and
closes itself as soon as the service is opened. In Fig. 4.5 the UML class diagram of the
application is displayed.

First the required permissions, then the creation of the layout of the notification and
the SettingsActivity and after that the functionality of the application is explained.

4.2.2.1 Permissions

The following permissions have to be added to the AndroidManifest for the application
to be able to send data over a network and detect the state of the WLAN and the IP
address of the device.
<uses−permis s ion android : name="android . permis s ion .INTERNET"/>
<uses−permis s ion android : name="android . permis s ion .ACCESS_WIFI_STATE"/>
<uses−permis s ion android : name="android . permis s ion .ACCESS_NETWORK_STATE"/>

4.2.2.2 Layout

Since the phone application does not have a main activity, the layout of the notification
that is displayed as long as the ListenerService is running, is discussed first. The
notification consists of a RelativeLayout with the logo of the application on the left
edge, two TextViews in the middle and a settings button and a close button on the
right edge (Fig. 4.6a).

The top TextView informs the user if the phone is connected to the smartwatch. The
bottom TextView displays a string that gives information on the current network status
of the phone and thus the smartwatch. Since the the phone can connect to the UE4
plugin either via a WLAN or via hotspot, there are three possible outputs:

1. "Phone IP Address (WIFI): {The IP address of the device}"
2. "Phone IP Address (Hotspot): {The IP address of the device}"
3. "No valid connection. Please enable wifi or use a hotspot."

The close button can be used to manually stop the ListenerService and close the
notification.

44

4.2. Android Application

Fi
gu

re
4.
5:

U
M
L
C
la
ss

D
ia
gr
am

of
th
e
Ph

on
e
A
pp

lic
at
io
n
w
ith

th
e
m
os
t
im

po
rt
an

t
cl
as
s
va
ria

bl
es

an
d
m
et
ho

ds
.

45

4. Implementation

(a) Notification (b) Settings Activity

Figure 4.6: Smartphone Application.

When the settings button is pressed from the notification, the SettingsActivity
is opened up (Fig. 4.6b) and the ListenerService including the notification is closed.
The layout for the settings contains a ScrollView filed with different settings cards
and a reset and a save button on the bottom.

The settings cards let users choose the minScrollDistance via a SeekBar, whether or
not visual debugging is enabled on the watch with the help of a Switch and the different
ports and the address via TextViews. The functionality of the buttons is discussed in
the next section.

4.2.2.3 Functionality

ListenerService and WifiUtil
In the OnCreate() method, the GoogleApiClient is built first for communication with

46

4.3. Unreal Engine 4 Plugin

the watch. As soon as the smartwatch node ID is appointed, the phone sends the Action
Commands for minimum scroll distance and visual debugging to the watch.

Then the notification is prepared and shown with the help of the NotificationManager.
The notification gets updated every few seconds, to give information on the current
network connection. To get this information, the WifiUtil class is used. It provides
static methods to check if the phone is connected to the internet via a WLAN or a
hotspot, get the IP address in that network and finally check if an IP is valid.

After that, the UDP socket is created in the ListenerService and bound to the
port specified in the settings. As soon as the socket is created, the ueMessageThread
starts running that listens for DatagramPackets coming in on the socket. A Thread
is a sequential process of executions. When an application is launched, the system creates
a main thread for this application. The VM of Java however allows applications to have
multiple concurrent threads of execution that can be defined by the developer.

When a message is received from the connected wearable device and it is a valid Action
Command that should be sent to UE4 plugin, it gets forwarded via the socket. To send
messages via UDP, the string message gets converted into a byte array and is then sent
as a DatagramPacket to the IP address and port specified in the settings.

When the application is closed, either through an Action Command from the watch,
from the UE4 plugin or via the close button on the notification, the ueMessageThread is
stopped and the socket and the notification are closed.

SettingsActivity and SettingsUtil
As soon as the SettingsActivity is opened, the different settings fields get filled
with the saved data with the help of the SettingsUtil. In this utility class, Shared-
Preferences are used to store and retrieve preference data as key-value sets. This
means that a specific key, for example SCROLL_DEBUG_SETTINGS is saved with a
corresponding value, which in this case would be a boolean value — true or false.

The two buttons on the bottom of the SettingsActivity each have a custom
OnClickListener attached that is called as soon as the button is pressed. When the
save button is pressed, the values in the different setting fields are validated. The integer
of a port needs to be between 0 and 65535 and the string of the IP address is validated
with a method in the WifiUtil. After the validation and storing of the values, the
SettingsActivity is closed and the ListenerService is started again. When the
reset button is pressed, all settings are set to predefined values. The standard ports
are 38300 since those are most likely not occupied by other programs. The standard IP
address is 192.168.0.3, since 192.168.0.1 is the default IP address used by some routers.
The standard minimum scroll distance on the watch is 50 since it felt the most natural
during testing and the visual debugging option is enabled.

4.3 Unreal Engine 4 Plugin

In this section the implementation of the UE4 plugin is presented. During the creation
of the plugin, different versions of the UE4 source (4.10 to 4.12.5) were used since the

47

4. Implementation

update rate by Epic Games is relatively high. The naming of the application created
with the UE4 editor is of no importance, since only independent code is packaged as a
plugin.

The plugin consists of multiple classes (Fig. 4.7) which are discussed separately.
First the implementation of the UserWidget derived class WatchMenu is described.
Afterwards the UDPSocketService and the different menu components are discussed.

At the end of the section there is a short explanation on the packaging of the plugin.

4.3.1 WatchMenu

The UWatchMenu is the class that is used as a parent for the VR menu blueprint in the
UE4 editor and handles the navigation across the different components. The class posses
four different public UPROPERTY variables: ServerPort, ClientIpAddress, ClientPort
and DisplayDebugMessages. This property adds in-editor modification support with the
EditAnywhere specifier.

The UWatchMenu ticks every frame to update itself. On the first tick, the menu is ini-
tialized and the four variables specified in the editor are validated with the same constraints
as discussed in section 4.2.2.3. After that, the UWidgetTree of the UUserWidget is
iterated through with the help of the UWidgetTree::ForEachWidget() method. This tree
contains all widget components that are added in the editor. Each widget that has a
IWatchMenuComponent interface is initialized and then added to the AllMenuContent
array.

After that, the UDPSocketService is initialized and a receive timer is started with
the TimerManager. This timer is set to call the ReceiveMessage method of the socket
service every few milliseconds. When a non-empty message is received, it is checked if
there is more than one Action Command in the message. This can happen due to fast
scrolling on the watch. If there is more than one command, the message is split up in
separated commands that are handled consecutively.

On an activate command, the ESlateVisibility of the menu is set to visible and
the UFUNCTION OnOpened() is called. This method does not have an implementation
in code since it is declared as BlueprintImplementableEvent which means that it can be
implemented in the visual scripting graph in the editor to further customize the event of
opening the menu. When a deactivate command is received, the menu is hidden and the
OnClosed() method is called.

On a click command, the ClickAction()method defined in the IWatchMenuComponent
interface of the currently selected component is called. Additionally UWatchSliders,
UWatchComboBoxes and UWatchSpinBoxes are focused so that further scroll com-
mands change the values of the components instead; such as for example the slider of the
UWatchSliders. After another click command is received, the component looses focus
and normal navigation is possible again.

On a scroll command, the Navigate(EUINavigation Direction) method is called with
the corresponding direction. The method first checks if the widget that is navigated to
is a valid IWatchMenuComponent or if there even is any custom navigation provided
for the current component. If there is not, then the regular navigation technique is used

48

4.3. Unreal Engine 4 Plugin

Fi
gu

re
4.
7:

U
M
L
C
la
ss

D
ia
gr
am

of
th
e
U
E4

Pl
ug

in
w
ith

th
e
m
os
t
im

po
rt
an

t
cl
as
s
va
ria

bl
es

an
d
m
et
ho

ds
.

49

4. Implementation

where the next viable menu component is chosen when a right or down scroll, and the
last when a left or up scroll happens. Next components are defined as components that
are vertically down in the UWidgetTree and last components are defined as vertically
up in the UWidgetTree.

When a UWatchTextBox is clicked, the request voice Action Command is sent to the
smartwatch which replies with a voice result. As long as no result or error message is
received, the text box keeps its focus.

Other UFUNCTION methods declared as BlueprintCallable are the StopAndroid-
Service() method which sends an Action Command that closes the smartphone and
smartwatch application and the VibrateWatch(float Milliseconds) method that sends
the command to vibrate the watch for a given amount of time. There are also methods
to navigate the menu manually: GoToNextComponent(bool Wrap), GoToLastCompo-
nent(bool Wrap) and Navigate(EUINavigation Direction). With the SetCurrentWatch-
Component(FString Component) method, the developer can set the currently hovered
component by providing the name of the component. All these methods can be called
from the editor in the visual scripting graph.

When the UE4 application is closed, the BeginDestroy() method is called which
destroys the UWatchMenu and deletes the UDPSocketService.

4.3.2 UDPSocketService

The UDPSocketService provides methods for sending and receiving messages from
the Android phone.

As soon as the constructor is called, the ClientAddress is initialized as FInterne-
tAddr with the provided IP and port. Then the socket is created with the help of the
FUdpSocketBuilder and bound to the port specified in the WatchMenu.

The SendMessage(FString message) method converts an FString to a 8-bit unsigned
integer array and sends it to the ClientAddress. The ReceiveMessage method listens on
the ClientAddress socket for any pending chunk of data and returns it after converting it
to a FString.

When the UDPSocketService object is destroyed, the socket is closed and specifically
destroyed with ISocketSubsystem::DestroySocket() to make it available for further usage.

4.3.3 Menu Components

In this section the different menu components are discussed. First the the interactive
components are described, afterwards components that the user can not interact with
directly but have to be considered, to make menu navigation with a network commands
possible. Lastly the behaviour of popups on widget components in world space in the
current UE4 version is discussed.

50

4.3. Unreal Engine 4 Plugin

(a) (b)

(c)

(d)

(e) (f)

Figure 4.8: Custom Menu Components.

4.3.3.1 IWatchMenuComponents

Every interactive component in the smartwatch controllable menu has to implement the
IWatchMenuComponent interface and thus override the methods provided by it.

When a component is hovered in the UWatchMenu, the SetHovered() method is called
which, depending on the component, changes different colouring options to highlight it.
For example in the hover method in the UWatchButton in Fig. 4.8a, the WidgetStyle
of the underlying UButton is changed to an orange ButtonHoverColor. When the button
is un-hovered, the color changes back to ButtonNormalColor. Additionally the color of the
text on the button is changed to ButtonTextHoverColor or to ButtonTextNormalColor.
Some color or style variables are already implemented in the base classes of the different
menu components, there are however some missing that are missing. The text of the
normal button widget for example, does not support different colors depending on a
hovering event. This is why ButtonHoverColor is implemented as UPROPERTY. This
enables the developer to customize components further.

Furthermore when a component is hovered or unhovered, the corresponding OnHovered
or OnUnhovered events are broadcasted. Such events are declared as dynamic multicast
delegates. Delegates in general make it possible to call member functions on objects
in a generic but type-safe way. One benefit of delegates is that they can be triggered
remotely either in the editor with a visual scripting node or in code. As with the color
variables, some components already possess the necessary delegates in the base class
for the developer to be able to react to different events; and some need to be added in
the derived class. An example is the UWatchComboBox that broadcasts an OnOpening

51

4. Implementation

event but not an OnClosing event.
When the ClickAction() method is called, each component triggers different events

and the custom click implementation is executed. The UWatchButton for example
broadcasts the OnClicked event whereas the UWatchCheckBox (Fig. 4.8b) broadcasts
the OnCheckStateChanged after toggling its checked state. There are also components
that get focused as soon as they are clicked. The SetFocused() and SetNotFocused()
methods are only implemented for such focusable components. Focusable components
have additional color variables that can be changed by the developer to differentiate
focus and highlight. When such components are clicked, further input commands trigger
custom actions which are implemented in the CustomAction(FString Action) method:
• UWatchComboBox (Fig. 4.8c)
When focused, scroll commands select the next or the last option by incrementing
or decrementing the current option index. If the DropdownEnabled variable is set
to true, the drop-down popup opens and scroll up and scroll down commands are
used to navigate the options. If it is set to false, the drop-down does not pop up and
navigation between items is performed with scroll left and scroll right commands.
The reason for the possibility of disabling the drop-down popup is discussed in
section 4.3.3.3.

• UWatchSlider (Fig. 4.8d)
When focused, scroll commands either add the StepSize to or subtract the StepSize
from the value of the slider. Depending on the orientation of the slider (EOrienta-
tion::Orient_Horizontal or EOrientation::Orient_Vertical), either scroll left and
right or scroll up and down commands change the value.

• UWatchSpinBox (Fig. 4.8e)
When focused, scroll left and scroll right commands change the value of the spin
box. The Delta of the spin box is the pendant to the StepSize of the slider.

• UWatchTextBox (Fig. 4.8f)
When focused, the user can speak to enter a text via the smartwatch. When
the voice result command is received, the string attachment is set as text of the
UWatchTextBox and the OnTextCommitted event is broadcasted. This is the
only component that automatically looses focus upon receiving a command from
the watch.

When a focusable component is clicked again, it becomes unfocused and normal navigation
through menu components is possible again.

4.3.3.2 Panel Components

During the initialization of the UWatchMenu, it is determined whether or not the menu
contains any UScrollBoxes, and additionally any UWatchWidgetSwitchers that
the UWatchMenu contains are added to an array.
UScrollBoxes are panel components that are scrollable. When the menu contains

such a component, it has to be considered that after a navigational command, a compo-
nent could be outside of the visible scrolling area. Thus after the navigational methods
Navigate(EUINavigation Direction), GoToNextComponent(bool Wrap) or GoToLast-

52

4.3. Unreal Engine 4 Plugin

Component(bool Wrap) are called, the currently selected component gets scrolled into
view automatically.
UWatchWidgetSwitchers are panel components that make it possible to have

multiple overlapping panels in an UWatchMenu, like a tab control without providing
tabs. The switching of tabs is performed with the SetActiveWidgetIndex(int32 Index)
method or the SetActiveWidget(UWidget* Widget) method. After those methods
are called, the custom OnWatchWidgetSwitcherChange event is broadcasted from the
UWatchWidgetSwitchers and triggers the UpdateWidgetSwitcherIndex method in
the UWatchMenu. This is achieved by adding the UpdateWidgetSwitcherIndex method
to the event during initialization with AddDynamic(UserObject, FuncName). When
the displayed widget in the UWatchWidgetSwitchers is changed, the navigable menu
components have to be updated to only those that are visible.

Other panel components such as the UCanvasPanel, UHorizontalBox or UOverlay
do not have a special impact on the UWatchMenu and therefore do not have to be further
customized or considered.

4.3.3.3 Popups on Widget Components

During the process of implementation, UE4 version 4.10 to 4.12 were used and sup-
ported. In versions prior to 4.12, widget components that produce popups were not
compatible with UUserWidgets in world space. Popups include the drop-down menus
of UComboBoxes, widgets that are placed with the UMenuAnchor over other widges
and tool tips in general. With version 4.12, Epic Games started to address the issues
and started to work on a fix.

During multiple hot-fixes in versions 4.12.1 to 4.12.5, the proper functionality of popups
was not given. Due to this unstable behaviour, the DropdownEnabled option is provided
in the UWatchComboBox and UMenuAnchors do not support popups with smartwatch
interactable content.

4.3.4 Plugin Generation

To package the code into a plugin, a plugin folder has to be created with the following
structure:

PluginName
Resources

Icon128 . png
Source

PluginName
Pr i vate / Publ ic

. . .
PluginName . Build . cs
PluginName . cpp

PluginName . uplugin

The name of the plugin is UnrealSmartwatchMenu. As Icon128.png, the icon of the
Android application displayed in Figure 4.2 is used. The source code has to be placed
into the corresponding Private and Public folders. The .Build.cs and the .cpp files
are generated by the UE4 environment and have to be added to build the plugin.

53

4. Implementation

The most important content of the .uplugin descriptor file is presented in listing 4.2.
FileVersion describes the current version of the descriptor file which is used for backwards
compatibility. FriendlyName is the name of the plugin which is, same as the Description
and CreatedBy fields, displayed in the plugin UI in the editor. IsBetaVersion tags the
plugin as a beta plugin. Since world space menus are still marked as experimental, the
plugin is marked as beta plugin. Modules contains a list of modules that should be loaded
at startup. In this case, the UnrealSmartwatchMenu module is declared as runtime
module, meaning that it should be loaded during runtime and when the editor is running.
{

" F i l eVe r s i on " : 3 ,
" FriendlyName " : " Unreal Smartwatch Menu" ,
" Desc r ip t i on " : " Adds custom UMG Widget Components that can be

c o n t r o l l e d with a smartwatch . " ,
" CreatedBy " : " Schuster F lo r i an " ,
" I sBetaVers ion " : true ,
" Modules " : [

{
"Name " : " UnrealSmartwatchMenu " ,
" Type " : " Runtime " ,

}
]
. . .

}

Listing 4.2: Plugin Module Asset File.

Afterwards, the plugin is built with the UnrealBuildTool (UBT) via Visual Studio and
the plugin is ready to be imported into another project. For that, the compiled folder
has to be placed in the Plugins folder of a UE4 project.

4.4 Usage
In this section, the usage of the system is explained. First basic instructions for VR
menu developers and then for Android smartwatch users are given.

4.4.1 Plugin Developer

After the developer creates a new UE4 project and adds the UnrealSmartwatchPlugin to
the plugin folder, a new blueprint has to be created that possesses the UWatchMenu as
parent. In the blueprint, the developer has to first create the layout of the menu.

To search for a specific widget component, the developer has to use the Palette panel
(Fig. 4.9, 1). All components that can be either navigated by the smartwatch or are
related to the plugin have a preceding Watch- in their name. The desired component is
then dragged either to the Hierarchy (Fig. 4.9, 2) where the UWidgetTree is displayed
or directly to the Designer View (Fig. 4.9, 3).

Additional details for each component can be customized in the Details panel (Fig. 4.9,
4). Here the appearance as well as the relative size can be adjusted. At the bottom of the

54

4.4. Usage

Fi
gu

re
4.
9:

U
W
a
t
c
h
M
e
n
u
B
lu
ep

rin
t
W

in
do

w
.

55

4. Implementation

panel there is the event section where each event can be clicked to be further customized
in the Graph View (Fig. 4.9, 5). In Fig. 4.10 the OnClicked event of a UWatchButton is
customized in the Graph View to vibrate the watch for 200 milliseconds and then switch
the index of the WatchWidgetSwitcher0 to 1, meaning that the the active widget as seen
in Fig. 4.11a is changed to the widget seen in Fig. 4.11b.

In the Details panel, there is also the option to customize navigation of each component
(Fig. 4.12). The standard navigation rule is declared as EUINavigationRule::Escape where
on left and up scrolls the previous and on right and down scrolls the next menu component
is selected. On EUINavigationRule::Stop, the navigation in the given direction is stopped.
With the EUINavigationRule::Wrap rule, a scroll down command on a component that
is at the bottom of the menu, results in the topmost component getting hovered and vice
versa. This wrapping inside the container only works on vertical menus however, which
makes the EUINavigationRule::Explicit navigation rule a must for menus that enable the
user to continuously scroll over bounds. With this rule, the developer can set a fixed
component to move to for a certain direction of navigation. Since the watch sends left,
right, up and down commands, the next and previous directions are not supported.

Finally, the developer can edit the IP and port settings by clicking the topmost widget
in the Hierarchy which is the menu itself. The connection settings can then be customized
in the Details panel.

After the menu is created in the blueprint, it has to be added to the game. This can be
achieved by either placing it in the blueprint of the player controlled actor, in a separate
actor that is static, etc.

4.4.2 Android User

Firstly, users have to make sure that their phones are connected to the WLAN that the
device of the VR menu is connected to. If that is not possible, then a hotspot has to be
created and the UE4 device has to be connected with it.

After installing the APK of the application on the smartphone and thus automatically
on the paired smartwatch, the user has to start the USM application on the watch. After
that the connection settings have to be edited to align them with the settings of the VR
menu by pressing the settings button to open the settings window.

After this one time only connection setup, the user can close or open the application
at any time when connected with the same WLAN as the UE4 device to control the VR
menu.

56

4.4. Usage

Figure 4.10: Event Customization in the Graph View.

(a)

(b)

Figure 4.11: A sample UWatchMenu in a Game.

57

4. Implementation

Figure 4.12: Navigation Customization in the Details Panel.

58

CHAPTER 5
Results

In this chapter, the results of the implemented system are presented. First, four examples
of VR menus created with the plugin are presented. Afterwards, the fulfilment of the
performance requirements are reviewed for each device separately.

5.1 Virtual Reality Menus Examples

5.1.1 USM Menu

The first menu created with the help of the UE4 plugin is the USM Menu (Fig. 4.11
and Fig. 4.9). It is a simple vertical menu that is displayed in front of the user on
the ground and moves and turns with the player character. It contains all avail-
able IWatchMenuComponents: one UWatchSpinBox, one UWatchComboBox, one
UWatchTextBox, one UWatchSlider, one UWatchCheckBox and one UWatchButton.
It also contains one UWatchWidgetSwitcher that is used to switch between Widget0
(Fig. 4.11a) and Widget1 (Fig. 4.11b). The widgets are switched as soon as the button
is pressed (Fig. 4.10). In Widget1 there is another smaller menu that is used as a
confirmation dialogue to quit the game.

5.1.2 Game Menu

The second menu is theGame Menu (Fig. 5.1) that consists of two UWatchWidgetSwitchers.
The first one switches between the normal game menu (Fig. 5.1a) and the options menu
(Fig. 5.1c) while the other one switches between a blank widget and the additional
widget on the side when pressing the Play button (Fig. 5.1b). Generally, as soon as a
component is hovered, it is highlighted with a bright green color and a dark background.
The menu is displayed in front of the user with a slight tilt forwards and moves and
turns with the player character. The options menu contains three UWatchSlider,
one UWatchCheckBox and a UWatchButton on the bottom to get back to the main

59

5. Results

(a) (b)

(c)

Figure 5.1: Game Menu.

menu. The Graphics selection is composed of three UWatchButtons that when clicked,
respectively enable or disable the visibility of the line image underneath to indicate which
option is selected.

5.1.3 Home Menu

The third menu is the Home Menu. It should simulate a home screen menu for a VR
application that shows the time, the date and general media (Fig. 5.2). The three
UWatchButtons on the bottom of the first widget (Fig. 5.2a) do not contain text but
instead icons. The color of the text underneath each button is changed depending on the
hover state of the corresponding button. When a button is pressed, a list is opened with

60

5.1. Virtual Reality Menus Examples

(a)

(b)

Figure 5.2: Home Menu.

UWatchButtons inside a UUniformGridPanel that act as a mockup of real media
(Fig. 5.2b).

61

5. Results

(a)

(b)

(c)

Figure 5.3: Ring Menu.62

5.2. Performance

5.1.4 Ring Menu

The fourth menu is the Ring Menu. It consists of a ring of UWatchButtons that are
arranged on top of a background image (Fig. 5.3c). The menu moves with the player
character but does not turn. The user switches between options with left and right scrolls
(Fig. 5.3a) and when selecting a choice, another widget is brought up with the help of a
UWatchWidgetSwitcher that acts as a submenu (Fig. 5.3b).

5.2 Performance

To test the performance of the implementation and confirm compliance with the re-
quirements, a usage test is conducted. The best way to test the implementation would
be to have a test with multiple users, each having a smartwatch, that interact in an
immerive VR system with a specifically developed game. However since there are no
games implemented for this target setup yet, and making one is not in the scope of this
thesis, a custom performance test is conducted. In two sessions of one hour each, the
system is tested actively and passively.

In the passive test, the previously presented USM menu is run in a clean UE4
First Person Template project. It is used due to the fact that it contains all available
IWatchMenuComponents. The Android applications are both running during the test
but no input actions are performed.

In the active test, the USM menu is used as well. To simulate active use of the
menu, the average frequency of menu usage in games or VR applications is needed.
Unfortunately there are no statistics as of writing this thesis. As reference point, a small
survey on menu usage in computer games is conducted where gamers are asked how long
they approximately spend their time in game menus during a one hour gaming session.
Menus include settings or options but also inventory menus or game related interfaces.
The questionnaire was done online with the help of StrawPoll. The results are presented
in table 5.1.

Answer Number of Answers Percent
< 5 minutes 25 42%
< 10 minutes 26 43%
< 20 minutes 7 12%
> 20 minutes 2 3%

Total 59 100%

Table 5.1: Menu Usage in a one hour gaming session.

Even though 85% of the respondents stated that they use menus less than 10 minutes
in one hour, 20 minutes is chosen as reference value for the active test as limit case.

63

http://www.strawpoll.me/

5. Results

5.2.1 Smartwatch Resource Usage

The watch application takes up approximately 13 MB of storage space. This is determined
with the help of the Android Wear Companion Application that displays the installed
applications on the wearable device.

In table 5.2 the results for the smartwatch usage test are presented. The memory usage
is monitored with the Memory Monitor that Android Studio provides. The difference
between using the application actively or passively is 2% of the smartwatch’s 512 MB
RAM. Considering the fact that approximately 900 more Action Commands are sent in
the active test, the difference is moderately low. The number of commands is measured
with the help of the debugging functionality of Android Studio. The battery drainage
is higher by 4% is the active test which is reasonable for a one hour session. Battery
drainage could be further lessened by disabling screen debugging during the usage of the
smartwatch.

Passive Active
Test Time/Active Use (Minutes) 60/0.1 60/20

Action Commands (W → P → UE4) 4 903
RAM Usage (%) 62 64

Battery Drainage (%) 12 16

Table 5.2: Results of the smartwatch performance test. (W . . .Watch, P . . . Phone)

5.2.2 Smartphone Resource Usage

The phone application takes up approximately 23 MB of storage space, where one half is
the original APK and the other half is the actually installed Dalvik Executable (DEX)
file.

In table 5.3 the results for the smartphone usage test are presented. The data for
memory usage and battery drainage is gathered from the Settings → Apps → Unreal
Smartwatch Menu screen on the phone. The difference of RAM usage between tests is
0.2% which is very low. The amount of battery consumed by the application during both
tests is too low to be measured, so it is assumed that it is somewhere below 1%.

Passive Active
Test Time/Active Use (Minutes) 60/0.1 60/20

Action Commands (P → W) 2 102
RAM Usage (%) 6.5 6.7

Battery Drainage (%) < 1 < 1

Table 5.3: Results of the smartphone performance test. (W . . .Watch, P . . . Phone)

64

5.3. Network Usage

5.2.3 Unreal Engine 4 Plugin Resource Usage

The size of the plugin folder amounts to 86 MB since it contains pre-compiled files.
In table 5.4 the results for the UE4 plugin usage test are presented. The values are

gained with the help of perfmon which is a performance calculation tool by Windows.
The difference in RAM usage between tests is measured at 203 MB which amounts

to 1.3% of the 16 GB of memory of the testing device. Additionally the CPU time of
the UE4 process is measured. This value is calculated as the percentage of elapsed time
that the processor spends to execute a non-idle thread and then subtracted by 100%.
The percentage value in the resulting test is higher than 100% because it is the sum of
time on each processor. Since the working machine has four cores, the maximum value
is 400%. The difference between tests is 7.6% which amounts to 1.9% increased CPU
time on all processors. Battery drainage is the same for both the passive and the active
test meaning that the slightly increased CPU and RAM usage do not impact battery
discharge.

Passive Active
Test Time/Active Use (Minutes) 60/0.1 60/20

Action Commands (UE4 → P → W) 3 101
RAM Usage (MB) 10646 10849

CPU Time (%) 127 134.6
Battery Drainage (%) 82 82

Table 5.4: Results of the UE4 performance test. (W . . .Watch, P . . . Phone)

Both the UE4 plugin and the Android applications were not expected to be computa-
tionally expensive. In general, even though there were no fixed performance requirements,
all the factors stated in the corresponding requirement sections regarding battery drainage,
memory usage and storage space were considered during the implementation and kept to
a minimum to prevent performance restrictions.

5.3 Network Usage

Additional to device performance, also network usage is monitored during the passive
and active tests. The results are presented in table 5.5.

Passive Active
Smartphone (Byte) 128 58k

UE4 (Byte) 202 6670

Table 5.5: WLAN data sent during the performance tests.

WLAN data sent from the phone to the menu is measured with the help of the network
protocol analyzer Wireshark. As capture filter host 192.168.0.15 is used to only detect

65

5. Results

packages sent to and from the smartphone. Afterwards the following filter is used to only
see UDP packages that are sent to the VR menu: ip.dst == 192.168.0.3 and udp.length>0.
The amount of data that is sent in one hour amounts to 58 Kilobyte (KB) which is
approximatley 1 KB per second. This number is comparatively low, considering that
immersive VR systems such as the ImmersiveDeck [56] have networks that are capable
of a total throughput of 1.73 GB per second.

WLAN data sent from the menu to the phone is measured with the same application,
however with a different filter: ip.dst == 192.168.0.15 and udp.length>0. This filter only
shows UDP packages that are sent to the phone. The data sent amounted to 6.7 KB an
hour in the active test which is approximately 0.1 KB per second. This number, same as
the one of the smartphone, is very low.

To sum up, data sent over the WLAN is the only difference between the active and
the passive test. However as discussed before, this difference is still very much acceptable
considering the network capabilities of immersive VR systems.

5.4 Open Issues

5.4.1 Android

At the time of the implementation of the system, the Android Wear API level was version
1.5. In version 2.0 it could be possible to have the two part Android system combined on
the smartwatch, without needing a smartphone service. Due to improvements of the IMF,
it could be possible to change network settings on the watch directly with the on-screen
keyboard. However it would have to be considered that the smartwatch needs to be able
to connect to a WLAN.

5.4.2 Unreal Engine 4

There are three main issues with 3D widgets in world space in UE4. These issues can
only be corrected by Epic Games by updating the engine itself:

1. Popups are unstable in the current version (see section 4.3.3.3).
2. UMG menus in UE4 are not really 3D Widgets since they are only Flat Menus

(Mapped on Geometry). To have real three dimensional widgets, Epic Games would
have to disregard UMG and create another system that is not based on slate.

3. They are marked as experimental, with the annotation that they theoretically could
be substantially changed in future releases of the engine.

One open issue exists in the implementation of the plugin. The biggest disadvantage
by binding one smartwatch to one UWatchMenu is that only this menu can be controlled
with the watch. It is for example not possible to simultaneously navigate a world space
and a screen space menu with only one watch since each menu is encapsulated. A
possible fix for this problem could be to create a custom input controller mechanism
that works like the input of a joystick or other VR input devices like the Leap Motion
or the controllers of the HTC Vive. This input would work globally and one could be

66

5.4. Open Issues

able to focus different menus. However the native implementation of different widgets in
UE4, make it very difficult to select, hover, focus or interact with standard components
without the help of mouse input or without deriving from the base component classes.

67

CHAPTER 6
Conclusion

In this thesis, a correlating system of two components, consisting of an UE4 plugin and
an Android application was implemented and presented. The plugin enables developers
to create UMG menus in the graphical interface of the UE4 editor whereas the Android
application enables users of an immersive VR system to interact with the menus via
touch input on a smartwatch over a WLAN.

The Android application consists of a smartwatch part and a smartphone part. The
smartwatch part is used to input specific interaction commands that get sent to the
smartphone part over bluetooth. The smartphone part then sends the commands on a
WLAN to the VR menu in UE4. The UE4 plugin allows a developer to use custom UMG
widget components to create a smartwatch navigable menu. The menu receives the UDP
packages from the smartphone and then translates them into menu navigation.

Test results show that neither the Android applications, nor the UE4 plugin have a
considerable performance impact on the respective devices. To show the possibilities
of the plugin, four VR example menus were implemented that can be navigated with a
smartwatch.

In future work, the implemented system could be used to create a VR menu that is
fully integrated into an immersive VR system, whereby it could be tested with multiple
users.

69

List of Figures

2.1 ImmersiveDeck. Source: [56] . 6
2.2 Leap Motion 3D Interfaces. Source:[10][8] . 10
2.3 Degrees Of Freedom. Source: [15] . 13
2.4 IR interaction with a smartwatch. Source: [46] 15
2.5 Project Soli. Source: [16] . 16
2.6 Bezel Interaction. Source: [71] . 17

3.1 Schematic of the Wear-UE4 system. 19
3.2 Lifecycle of an Android Activity. 21
3.3 Hardware. Huawei Watch and LG Nexus 5X. 22
3.4 A notification in Android 5.0 - 6.0.1. 27
3.5 UMG in Unreal Engine 4. Source: [20] . 29
3.6 TCP and UDP communication comparison. 35

4.1 Action Commands exchange diagram. 39
4.2 Android Application Icon . 39
4.3 UML Class Diagram of the Watch Application 40
4.4 Android Wear Application UI. 41
4.5 UML Class Diagram of the Phone Application 45
4.6 Smartphone Application. 46
4.7 UML Class Diagram of the UE4 Plugin . 49
4.8 Custom Menu Components. 51
4.10 Event Customization in the Graph View. 57
4.11 A sample UWatchMenu in a Game. 57
4.12 Navigation Customization in the Details Panel. 58

5.1 Game Menu. 60
5.2 Home Menu. 61
5.3 Ring Menu. 62

71

List of Tables

3.1 Android Versions. Source: [1] . 20

4.1 Action Commands. 38

5.1 Menu Usage in a one hour gaming session. 63
5.2 Results of the smartwatch performance test. 64
5.3 Results of the smartphone performance test. 64
5.4 Results of the UE4 performance test. 65
5.5 WLAN data sent during the performance tests. 65

72

Acronyms

ADB Android Debug Bridge. 43, 44

AMOLED Active-Matrix Organic Light-Emitting Diode. 26

API Application Programming Interface. 20, 23, 24, 26, 39, 66

APK Android Application Package. 43, 56, 64

AR Augmented Reality. 14

ATAP Advanced Technology and Projects. 16

CDO Class Default Object. 33

CPU Central Processing Unit. 24, 27, 65

CV Consumer Version. 1

DEX Dalvik Executable. 64

DK2 Developer Kit 2. 6, 14

DOF Degree Of Freedom. 12, 14–16

FPS First-Person Shooter. 28

GB Gigabyte. 22, 24, 30, 65, 66

GPS Global Positioning System. 5

GUI Graphical User Interface. 11

HCI Human Computer Interaction. 1, 10, 13

HMD Head Mounted Display. ix, xi, 1, 2, 5–8, 23, 25

HUD Head-up-Display. 28

73

ID Identifier. 42, 47

IDE Integrated Development Environment. 21, 22, 31, 43

IMF Input Method Framework. 24, 66

IMU Inertial Measurement Unit. 5, 7, 13, 14, 16, 24

IP Internet Protocol. 27, 28, 34, 44, 47, 50, 56

IPS Internet Protocol Suite. 34

IR Infrared. 15, 16

KB Kilobyte. 66

LCD Liquid-crystal Display. 14, 17, 26

mAh Milliampere-Hour. 24

MB Megabyte. 22, 64, 65

MEMS Micro-Electro-Mechanized-System. 14

MMO Massively Multiplayer Online. 28

MOBA Multiplayer Online Battle Arena. 28

OS Operating System. 20, 41, 42

RAM Random-Access Memory. 22, 30, 64, 65

RDW Redirected Walking. 5–7

RPG Role Playing Game. 9, 28

SCIPT Selfcontained Inertial Position Tracking. 5

SDK Software Development Kit. 24, 26

SLAM Simultaneously Localize and Map. 6

TCP Transmission Control Protocol. 34, 35

TFT Thin-Film-Transistor. 17

UBT UnrealBuildTool. 54

UDP User Datagram Protocol. 34, 35, 47, 66, 69

74

UE4 Unreal Engine 4. ix, xi, 2, 3, 19, 23–25, 27–34, 37–39, 44, 47–50, 53, 54, 56, 59,
63–67, 69

UI User Interface. 10–13, 15, 20–22, 26–30, 41, 54

UMG Unreal Motion Graphics. 3, 23, 29, 32, 66, 69

UML Unified Modeling Language. 40, 44, 45, 49

USB Universal Serial Bus. 43

VE Virtual Environment. 1–3, 5–9, 12, 23, 25, 32–34

VM Virtual Machine. 20, 47

VoIP Voice over IP. 34

VR Virtual Reality. ix, xi, 1–3, 5–12, 23–26, 31–34, 38, 41, 43, 48, 54, 56, 59, 60, 63, 66,
69

WIM World-In-Miniature. 8

WLAN Wireless Local Area Network. ix, xi, 2, 3, 5, 6, 19, 24, 26, 27, 34, 44, 47, 56, 65,
66, 69, 72

XML Extensible Markup Language. 21, 42

75

Bibliography

[1] Android. https://developer.android.com/index.html. Accessed: 2016-
08-11.

[2] Android Studio IDE. https://developer.android.com/studio/index.
html. Accessed: 2016-08-11.

[3] Android Version Distribution. https://developer.android.com/about/
dashboards/index.html. Accessed: 2016-08-11.

[4] Android Wear. https://www.android.com/wear/. Accessed: 2016-08-11.

[5] Android Wear - Exiting Full-Screen Activities. https://developer.android.
com/training/wearables/ui/exit.html. Accessed: 2016-08-11.

[6] Android’s Material Design Guidelines. https://developer.android.com/
design/index.html. Accessed: 2016-08-11.

[7] Apple’s iOS Guidelines. https://developer.apple.com/ios/
human-interface-guidelines/. Accessed: 2016-08-11.

[8] Arm HUD VR Menu. http://blog.leapmotion.com/
arm-hud-widget-like-smartwatch-entire-arm/. Accessed: 2016-08-11.

[9] Cryengine - Game Engine. https://www.cryengine.com/. Accessed: 2016-08-
11.

[10] Hovercast VR Menu. http://blog.leapmotion.com/
hovercast-vr-menu-power-fingertips/. Accessed: 2016-08-11.

[11] Leap Motion VR Best Practices Guidelines. https://developer.leapmotion.
com/vr-best-practices. Accessed: 2016-08-11.

[12] MIT Technology Review Article on TheVoid. https://www.technologyreview.
com/s/544096/inside-the-first-vr-theme-park/. Accessed: 2016-08-
11.

[13] Nielsen Norman Group - Menu Design. https://www.nngroup.com/
articles/menu-design/. Accessed: 2016-08-11.

77

https://developer.android.com/index.html
https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html
https://developer.android.com/about/dashboards/index.html
https://developer.android.com/about/dashboards/index.html
https://www.android.com/wear/
https://developer.android.com/training/wearables/ui/exit.html
https://developer.android.com/training/wearables/ui/exit.html
https://developer.android.com/design/index.html
https://developer.android.com/design/index.html
https://developer.apple.com/ios/human-interface-guidelines/
https://developer.apple.com/ios/human-interface-guidelines/
http://blog.leapmotion.com/arm-hud-widget-like-smartwatch-entire-arm/
http://blog.leapmotion.com/arm-hud-widget-like-smartwatch-entire-arm/
https://www.cryengine.com/
http://blog.leapmotion.com/hovercast-vr-menu-power-fingertips/
http://blog.leapmotion.com/hovercast-vr-menu-power-fingertips/
https://developer.leapmotion.com/vr-best-practices
https://developer.leapmotion.com/vr-best-practices
https://www.technologyreview.com/s/544096/inside-the-first-vr-theme-park/
https://www.technologyreview.com/s/544096/inside-the-first-vr-theme-park/
https://www.nngroup.com/articles/menu-design/
https://www.nngroup.com/articles/menu-design/

[14] Oculus Rift User Interface Guidelines. https://developer.oculus.com/
documentation/intro-vr/latest/concepts/bp_app_ui/. Accessed:
2016-08-11.

[15] OEM Off-Highway - Degrees Of Freedom. http:
//www.oemoffhighway.com/article/10979955/
inertial-measurement-sensors-improve-safety-in-ag-equipment.
Accessed: 2016-08-11.

[16] Project Soli. https://atap.google.com/soli/. Accessed: 2016-08-11.

[17] The Void. https://thevoid.com/. Accessed: 2016-08-11.

[18] Unity - Game Engine. https://unity3d.com/. Accessed: 2016-08-11.

[19] Unreal Engine 4 - Game Engine. https://www.unrealengine.com/. Accessed:
2016-08-11.

[20] Unreal Engine 4 Documentation. https://docs.unrealengine.com. Accessed:
2016-08-11.

[21] VR Menu Design 1. https://www.wearear.de/
virtual-reality-menu-design-part1/. Accessed: 2016-08-11.

[22] Windows’s Universal Windows Platform Design Guidelines. https://developer.
microsoft.com/en-us/windows/design. Accessed: 2016-08-11.

[23] Worldwide Smartphone Sales. https://www.gartner.com/newsroom/id/
3270418. Accessed: 2016-08-11.

[24] Worldwide Wearable Devices Sales. https://www.gartner.com/newsroom/
id/3198018. Accessed: 2016-08-11.

[25] Eric R Bachmann, Michael Zmuda, James Calusdian, Xiaoping Yun, Eric Hodgson,
and David Waller. Going anywhere anywhere: Creating a low cost portable immersive
ve system. In Computer Games (CGAMES), 2012 17th International Conference
on, pages 108–115. IEEE, 2012.

[26] Eric Badique, Marc Cavazza, Gudrun Klinker, Gordon Mair, Tony Sweeney, Daniel
Thalmann, and Nadia M Thalmann. Entertainment applications of virtual environ-
ments. 2002.

[27] Mudit Ratana Bhalla and Anand Vardhan Bhalla. Comparative study of various
touchscreen technologies. International Journal of Computer Applications, 6(8):12–
18, 2010.

[28] Frank Biocca. Communication within virtual reality: Creating a space for research.
Journal of Communication, 42(4):5–22, 1992.

78

https://developer.oculus.com/documentation/intro-vr/latest/concepts/bp_app_ui/
https://developer.oculus.com/documentation/intro-vr/latest/concepts/bp_app_ui/
http://www.oemoffhighway.com/article/10979955/inertial-measurement-sensors-improve-safety-in-ag-equipment
http://www.oemoffhighway.com/article/10979955/inertial-measurement-sensors-improve-safety-in-ag-equipment
http://www.oemoffhighway.com/article/10979955/inertial-measurement-sensors-improve-safety-in-ag-equipment
https://atap.google.com/soli/
https://thevoid.com/
https://unity3d.com/
https://www.unrealengine.com/
https://docs.unrealengine.com
https://www.wearear.de/virtual-reality-menu-design-part1/
https://www.wearear.de/virtual-reality-menu-design-part1/
https://developer.microsoft.com/en-us/windows/design
https://developer.microsoft.com/en-us/windows/design
https://www.gartner.com/newsroom/id/3270418
https://www.gartner.com/newsroom/id/3270418
https://www.gartner.com/newsroom/id/3198018
https://www.gartner.com/newsroom/id/3198018

[29] Jim Blascovich, Jack Loomis, Andrew C Beall, Kimberly R Swinth, Crystal L
Hoyt, and Jeremy N Bailenson. Immersive virtual environment technology as a
methodological tool for social psychology. Psychological Inquiry, 13(2):103–124,
2002.

[30] Doug A Bowman and Larry F Hodges. An evaluation of techniques for grabbing
and manipulating remote objects in immersive virtual environments. In Proceedings
of the 1997 symposium on Interactive 3D graphics, pages 35–ff. ACM, 1997.

[31] Doug A Bowman and Larry F Hodges. Formalizing the design, evaluation, and
application of interaction techniques for immersive virtual environments. Journal of
Visual Languages & Computing, 10(1):37–53, 1999.

[32] Doug A Bowman, Ernst Kruijff, Joseph J LaViola Jr, and Ivan Poupyrev. 3D user
interfaces: theory and practice. Addison-Wesley, 2004.

[33] Doug A Bowman and Chadwick A Wingrave. Design and evaluation of menu systems
for immersive virtual environments. In Virtual Reality, 2001. Proceedings. IEEE,
pages 149–156. IEEE, 2001.

[34] Sarah S Chance, Florence Gaunet, Andrew C Beall, and Jack M Loomis. Locomotion
mode affects the updating of objects encountered during travel: The contribution of
vestibular and proprioceptive inputs to path integration. Presence, 7(2):168–178,
1998.

[35] Roger M Downs and David Stea. Cognitive maps and spatial behavior: Process and
products. na, 1973.

[36] Sascha Gebhardt, Sebastian Pick, Thomas Oster, Bernd Hentschel, and Torsten
Kuhlen. An evaluation of a smart-phone-based menu system for immersive virtual
environments. In 3D User Interfaces (3DUI), 2014 IEEE Symposium on, pages
31–34. IEEE, 2014.

[37] Dominique Gerber and Dominique Bechmann. Design and evaluation of the ring
menu in virtual environments. Immersive projection technologies, 2004.

[38] James Gosling. The Java language specification. Addison-Wesley Professional, 2000.

[39] JoAnn T Hackos and Janice Redish. User and task analysis for interface design.
1998.

[40] Eric Hodgson, Eric R Bachmann, David Vincent, Michael Zmuda, David Waller,
and James Calusdian. Weavr: a self-contained and wearable immersive virtual
environment simulation system. Behavior research methods, 47(1):296–307, 2015.

[41] Daniel A James, Neil Davey, and Tony Rice. An accelerometer based sensor platform
for insitu elite athlete performance analysis. In Sensors, 2004. Proceedings of IEEE,
pages 1373–1376. IEEE, 2004.

79

[42] Keiko Katsuragawa, Krzysztof Pietroszek, James R Wallace, and Edward Lank.
Watchpoint: Freehand pointing with a smartwatch in a ubiquitous display environ-
ment. In Proceedings of the International Working Conference on Advanced Visual
Interfaces, pages 128–135. ACM, 2016.

[43] Hyung-il Kim and Woontack Woo. Smartwatch-assisted robust 6-dof hand tracker
for object manipulation in hmd-based augmented reality. In 2016 IEEE Symposium
on 3D User Interfaces (3DUI), pages 251–252. IEEE, 2016.

[44] Brenda Laurel and S Joy Mountford. The art of human-computer interface design.
Addison-Wesley Longman Publishing Co., Inc., 1990.

[45] Rung-Huei Liang and Ming Ouhyoung. A real-time continuous gesture recogni-
tion system for sign language. In Automatic Face and Gesture Recognition, 1998.
Proceedings. Third IEEE International Conference on, pages 558–567. IEEE, 1998.

[46] Soo-Chul Lim, Jungsoon Shin, Seung-Chan Kim, and Joonah Park. Expansion
of smartwatch touch interface from touchscreen to around device interface using
infrared line image sensors. Sensors, 15(7):16642–16653, 2015.

[47] Jennifer Mankoff and Gregory D Abowd. Cirrin: a word-level unistroke keyboard
for pen input. In Proceedings of the 11th annual ACM symposium on User interface
software and technology, pages 213–214. ACM, 1998.

[48] Merryn J Mathie, Adelle CF Coster, Nigel H Lovell, and Branko G Celler. Ac-
celerometry: providing an integrated, practical method for long-term, ambulatory
monitoring of human movement. Physiological measurement, 25(2):R1, 2004.

[49] Deborah J Mayhew. Principles and guidelines in software user interface design.
Prentice-Hall, Inc., 1991.

[50] Scott McGlashan and Tomas Axling. A speech interface to virtual environments. In
Proc., International Workshop on Speech and Computers, 1996.

[51] Stan Melax, Leonid Keselman, and Sterling Orsten. Dynamics based 3d skeletal
hand tracking. In Proceedings of Graphics Interface 2013, pages 63–70. Canadian
Information Processing Society, 2013.

[52] Rolf Molich and Jakob Nielsen. Improving a human-computer dialogue. Communi-
cations of the ACM, 33(3):338–348, 1990.

[53] Florian Müller, Sebastian Günther, Niloofar Dezfuli, Mohammadreza Khalilbeigi,
and Max Mühlhäuser. Proxiwatch: Enhancing smartwatch interaction through
proximity-based hand input. In Proceedings of the 2016 CHI Conference Extended
Abstracts on Human Factors in Computing Systems, pages 2617–2624. ACM, 2016.

80

[54] Tao Ni and Patrick Baudisch. Disappearing mobile devices. In Proceedings of the
22nd annual ACM symposium on User interface software and technology, pages
101–110. ACM, 2009.

[55] Donald A Norman. The design of everyday things: Revised and expanded edition.
Basic books, 2013.

[56] Iana Podkosova, Khrystyna Vasylevska, Christian Schoenauer, Emanuel Vonach,
Peter Fikar, Elisabeth Broneder, and Hannes Kaufmann. Immersivedeck: A large-
scale wireless vr system for multiple users. In Software Engineering and Architectures
for Realtime Interactive Systems (SEARIS). IEEE, March 2016.

[57] Ivan Poupyrev, Mark Billinghurst, Suzanne Weghorst, and Tadao Ichikawa. The
go-go interaction technique: non-linear mapping for direct manipulation in vr. In
Proceedings of the 9th annual ACM symposium on User interface software and
technology, pages 79–80. ACM, 1996.

[58] Ivan Poupyrev, Numada Tomokazu, and Suzanne Weghorst. Virtual notepad:
handwriting in immersive vr. In Virtual Reality Annual International Symposium,
1998. Proceedings., IEEE 1998, pages 126–132. IEEE, 1998.

[59] Sharif Razzaque, Zachariah Kohn, and Mary C Whitton. Redirected walking. In
Proceedings of EUROGRAPHICS, volume 9, pages 105–106. Citeseer, 2001.

[60] Gerhard Reitmayr, Chris Chiu, Alexander Kusternig, Michael Kusternig, and Hannes
Witzmann. iorb-unifying command and 3d input for mobile augmented reality. In
Proc. IEEE VR Workshop on New Directions in 3D User Interfaces, pages 7–10,
2005.

[61] Daniel Rodríguez-Martín, Carlos Pérez-López, Albert Samà, Joan Cabestany, and
Andreu Català. A wearable inertial measurement unit for long-term monitoring in
the dependency care area. Sensors, 13(10):14079–14104, 2013.

[62] Robert J Seidel and Paul R Chatelier. Virtual reality, training’s future?: perspectives
on virtual reality and related emerging technologies, volume 6. Springer Science &
Business Media, 2013.

[63] Sidney L Smith and Jane N Mosier. Guidelines for designing user interface software.
Mitre Corporation Bedford, MA, 1986.

[64] Mads Soegaard and Rikke Friis Dam. Encyclopedia of Human-Computer Interaction.

[65] Richard Stoakley, Matthew J Conway, and Randy Pausch. Virtual reality on a
wim: interactive worlds in miniature. In Proceedings of the SIGCHI conference on
Human factors in computing systems, pages 265–272. ACM Press/Addison-Wesley
Publishing Co., 1995.

81

[66] Bjarne Stroustrup. The C++ programming language. Pearson Education India,
1995.

[67] Richard P Troiano, David Berrigan, Kevin W Dodd, Louise C Masse, Timothy
Tilert, Margaret McDowell, et al. Physical activity in the united states measured by
accelerometer. Medicine and science in sports and exercise, 40(1):181, 2008.

[68] David Waller, Eric Bachmann, Eric Hodgson, and Andrew C Beall. The hive: A
huge immersive virtual environment for research in spatial cognition. Behavior
Research Methods, 39(4):835–843, 2007.

[69] Mary C Whitton, Joseph V Cohn, Jeff Feasel, Paul Zimmons, Sharif Razzaque,
Sarah J Poulton, Brandi McLeod, and Frederick P Brooks. Comparing ve locomotion
interfaces. In IEEE Proceedings. VR 2005. Virtual Reality, 2005., pages 123–130.
IEEE, 2005.

[70] William Winn, Hunter Hoffman, Ari Hollander, Kimberley Osberg, Howard Rose,
and Patti Char. Student-built virtual environments. Presence: Teleoperators and
virtual environments, 8(3):283–292, 1999.

[71] Robert Xiao, Gierad Laput, and Chris Harrison. Expanding the input expressivity
of smartwatches with mechanical pan, twist, tilt and click. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, pages 193–196. ACM,
2014.

[72] Xiaoping Yun, Eric R Bachmann, Hyatt Moore, and James Calusdian. Self-contained
position tracking of human movement using small inertial/magnetic sensor modules.
In Proceedings 2007 IEEE International Conference on Robotics and Automation,
pages 2526–2533. IEEE, 2007.

[73] Shumin Zhai and Paul Milgram. Human performance evaluation of manipulation
schemes in virtual environments. In Virtual Reality Annual International Symposium,
1993., 1993 IEEE, pages 155–161. IEEE, 1993.

82

	Introduction
	Motivation
	Problem Statement
	Expected Result
	Methodological Approach
	Thesis Outline

	State of the Art
	Immersive Virtual Reality Systems
	Systems
	User Interaction in Virtual Reality Systems

	Virtual Reality Menus
	Types of Menus
	Guidelines

	Interaction with a Smartwatch
	Touch-based
	IMU-based
	Other

	Design
	Android Applications
	Language
	Platform
	Activities and Lifecycle

	Tools
	Communication between Phone and Watch
	Smartwatch Application
	Requirements
	Design Ideas

	Smartphone Application
	Requirements
	Design Ideas

	Unreal Engine 4 Plugin
	Language
	Platform
	Unreal Motion Graphics
	Plugins in Unreal Engine 4

	Tools
	Requirements
	Users
	Developers

	Design Ideas
	Users
	Developers

	Communication between Android and Unreal Engine 4

	Implementation
	Action Commands
	Android Application
	Smartwatch Application
	Permissions
	Layout
	Functionality
	Debugging Wear Applications

	Smartphone Application
	Permissions
	Layout
	Functionality

	Unreal Engine 4 Plugin
	WatchMenu
	UDPSocketService
	Menu Components
	IWatchMenuComponents
	Panel Components
	Popups on Widget Components

	Plugin Generation

	Usage
	Plugin Developer
	Android User

	Results
	Virtual Reality Menus Examples
	USM Menu
	Game Menu
	Home Menu
	Ring Menu

	Performance
	Smartwatch Resource Usage
	Smartphone Resource Usage
	Unreal Engine 4 Plugin Resource Usage

	Network Usage
	Open Issues
	Android
	Unreal Engine 4

	Conclusion
	List of Figures
	List of Tables
	Acronyms
	Bibliography

