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Abstract

Turbulent boundary layer cross-spectral data has recently been measured for different velocities at zero pressure gradient. The obtained
wavenumber-frequency spectra were not sufficiently accurate to detect and characterize the acoustic region. Therefore applicability of source
localization techniques is explored in an attempt to increase image quality and sharpness. The lack of comprehensive literature coping with
physical background and limitations of beamforming algorithms inspired a ground-up step-by-step explanation including infinite and
nearfield Delay-and-Sum procedures as well as the κ−ω transformation and the subsequent power algorithms. The idea of deconvolution is
additionally explained and derived for the different techniques. It is shown that infinite beamforming is an unbiased estimate for the κ−ω

transformation and as a result a non-equidistantly spaced Fourier deconvolution approach is implemented to account for spatial weighting
of arbitrary microphone arrays. A range of common deconvolution procedures (DAMAS,DAMAS2,Richardson-Lucy,Lawson-Hanson) is
explained and applied for infinite beamforming and the κ− ω transformation to analyze their potential using a mixed Corcos-Diffuse
model for the turbulent boundary layer wavenumber frequency spectrum. The Richardson-Lucy algorithm applied on a κ−ω transformed
map shows best results for the highly polluted acoustic region while DAMAS2 deconvolution is more efficient in removing lobes within
the aerodynamic region. The deconvolution procedure is applied on experimental data at two different low machnumber cases (M = 0.13,
M = 0.23). The edge of the acoustic field can for the first time be visualized for a low Machnumber case (M = 0.23). At M = 0.13
strong orthogonally impinging waves (κ = 0) are detected. Isolated acoustic cross-power spectral density matrices are obtained from the
deconvolved κ−ω-spectra by inverse Fourier transform.
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General Notation

u vector with coefficients ui
U matrix with coefficients uij
û F̂ (u)
ũ F̃ (û) = F̃ (F̂ (u))
ŭ beamformed variable u (DAS or sDAS)
< u > element-wise root mean-square of u
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Domains and indexing

Γ wavenumber-frequency domain
Γs wavenumber-frequency source domain
Γf wavenumber-frequency focus domain
Ω space-frequency domain
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Ωs space-frequency source domain
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p pressure
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Chapter 1

Introduction

I. Wall pressure fluctuations

A broad area of engineering problems is related to the study of wall-pressure fluctuations beneath a turbulent
boundary layer (TBL). An important phenomenon related to acoustics is the generation and transmission of
flow induced noise causing interior noise within cars and aircraft cabins. Characterization of wall-pressure
fluctuations is usually done by applying statistical methods (i.e. Cross-Covariance) on measured or simulated
surface pressures. The wide range of turbulent structures evolving within the boundary layer can be described in
terms of length scales or respectively wavenumbers. Wavenumber-frequency transformation allows to consider
a wavenumber-frequency spectrum and hereby a more direct understanding of the underlying mechanisms.
Under the assumption of homogenous turbulence one can assume that correlation lengths do not depend on
the absolute measuring coordinate but only on the relative distance between two measuring points. Therefore
the 4D frequency dependent cross-spectral density S(x, ζ, ω) for a 2D pressure field p̂(x, y) can be simplified
to 2D as S(ζ, ω). Accordingly the 4D wavenumber-frequency spectrum Φ(α,κ, ω) becomes 2D as Φ(κ, ω). A
schematic representation of Φ(κ, ω) was given by Howe [16] (Fig. 1.1a) by identifying different regions according
to their respective wavenumbers. From low to high κ one identifies the supersonic or acoustic region enclosed
by the sonic region, the subconvective region in which vortices have propagation velocities between U∞ and
c0, the convective region (or ridge) centered around kc =

ω
U∞

and the viscous region extending towards higher
κ. The sonic edge defining the acoustic contribution becomes elliptic at higher Mach-numbers (see Fig. 2.3
). As the characteristic size of a vortex in direction j can be estimated as lj = 1

κj
one can directly relate the

wavenumbers to their energy as originally introduced by Kolmogorov [21], thus inherently explaining the presence
of a viscous region at low characterisitc lengths l. It is well prooved that the dominant region is the so-called
convective ridge originating from the convective transport of turbulent structures at the mean flow velocity U∞.
Due to considerations about transmission efficiency recent research has increasingly focused on the supersonic (or
acoustic) part of the spectrum.

In general the interior region is separated from the TBL by an enclosing structure (i.g. a window) whose
shift invariant structural response can be described either in Ω (space-frequency domain) by R̂(ζ, ω) or in Γ
(wavenumber-frequency domain) as R̃(κ, ω). The interior cross-power frequency spectrum Sin(ζ, ω) can be
calculated as a spatial convolution of the frequency spectrum STBL(ζ, ω) with the structural response R̂(ζ, ω).
Regarding that convolution in space-frequency domain Ω can more conveniently be evaluated in Γ by simple
multiplication one calculates the interior boundary wavenumber-frequency spectrum Φin(κ, ω) as

Φin(κ, ω) = R(κ, ω)ΦTBL(κ, ω) in Γ equivalent to Sin(ζ, ω) = R(ζ, ω) ∗ STBL(ζ, ω) in Ω (1.1)

Maxima of structural response are found at resonant modes at which in-plane excitation velocities Ux,y = ω
κx,y

equal mean structural wave propagation velocities Us. Bailly et al. [1] illustrated the case by considering the
bending wavenumber kf ∼

√
ω along with estimated critical frequencies for aerodynamic O(10Hz) and acoustic

O(1kHz) loading (Fig. 1.1b). Considerations based on a simplified analytical approach [4] or Statistical Energy

4



I. WALL PRESSURE FLUCTUATIONS CHAPTER 1. INTRODUCTION

(a) Φ(κ, ω) at ω = const. (ωδ/U∞ << 1)[16] (b) Φ(κ, ω) including bending wavenumber kf [1]

Fig. 1.1: Modeled wavenumber-frequency spectrum

Analysis [7] allow to estimate the transmission efficiency of a panel under acoustic load about 15 to 30 dB higher
than under a turbulent pressure field. As a consequence the evaluation of properties of Φ(κ, ω) in the supersonic
region becomes of great importance. In case a reliable model for ΦTBL could be established engineers would be
able to combine acoustic (ΦTBL|a) and aerodynamic (ΦTBL|d) wavenumber-frequency spectra weighted with their
respective transmission efficiencies (R̃a and R̃d) to calculate the wavenumber-frequency spectrum Φin(κ, ω) at the
interior side of the window.

Φin(κ, ω) = R̃a(κ, ω)ΦTBL|a(κ, ω) + R̃dTBL|d(κ, ω)Φd(κ, ω) (1.2)

In general, after the evaluation of Φin(κ, ω) from the shift-invariant cross-power spectrum S(ζ, ω), spectral ap-
plication of Parsevals theorem yields the resulting transmitted acoustic mean square pressure 〈 p̂in|a〉 corresponding
to S(0, ω) = 〈 p̂in|a〉2 as

〈 p̂in|a〉2 =
∫
κ∈Γ

Φin(κ, ω)dκ (1.3)

Describing the characteristics of TBL noise in dependence of a specific window response is rather unpractical.
The TBL is therefore itself described by a superposition of acoustic and hydrodynamic contribution 〈 p̂TBL〉2 =
〈 p̂TBL|a〉2 + 〈 p̂TBL|d〉2 with the individual contributions being evaluable from ΦTBL(κ, ω) by integrating over
aerodynamic ( Γa) and acoustic (Γd) domain yielding respectively

〈 p̂TBL|a〉2 =
∫
κ∈Γa

Φ(κ, ω)dκ and 〈 p̂TBL|d〉2 =
∫
κ∈Γd

Φ(κ, ω)dκ (1.4)

The wide range of wavenumbers covered by hydrodynamic and acoustic region makes measurement of ΦTBL a
challenging task. Diverse approaches have been developed to accomplish this task in recent studies.

1. Direct spatial Fourier transform

An equidistant transducer array is used to be able to directly apply the FFT algorithm on the resulting
cross-power frequency spectrum. This implies a huge number of sensor in case direct acoustic sound shall be
measured. To avoid aliasing the spatial sampling rate has to be at least κsamp ≥ 2κc resulting in a transducer
distance of ldis =

2π
κc

while a sufficient resolution of the acoustic region requires a large measuring distance
according to ∆κ = 2π

larray
. These opposing requirements result in a huge amount of microphones and thus

only few studies use this approach.

2. Analysis of the vibratory response

Another approach is based on the analysis of the vibratory response of the excited structure. By using
small plates with known vibratory responses it is possible to measure the wavenumbers associated to each
vibration mode. A main disadvantage of this technique is that only few wavenumbers are available.

5



II. PREVIOUS EXPERIMENTAL RESEARCH CHAPTER 1. INTRODUCTION

3. Non-equidistant transducer arrays

A promising technique is to overcome the restrictions posed by the FFT by using non-equidistant transducer
arrays. The resulting spectrum can be obtained by using plane-wave beamforming or a non-equidistant
Fourier transform. Capabilities of the non-equidistant Fourier transform are difficult to access but this
backdraw can be compensated for by evaluating the post-processing with analytial models. The following
two example of measurements are based on this technique followed by deconvolution procedures to enhance
the quality of the resulting spectrum.

Ehrenfried et al. [11] performed wavenuber-frequency spectrum measurements by using the experimental setup
sketched in Fig. 1.2a with the transducer position shown in Fig. 1.2b for a high Mach number flow (M = 0.83).
The resulting spectrum Fig. 1.2c obtained by infinite beamforming and DAMAS2 deconvolution suggests the
presence of acoustic waves within the acoustic domain but the expected sonic ridge could not be visualized. The
reason for these results remains unclear.

(a) Setup (b) Transducer array
(c) Measured κ −ω spectrum

Fig. 1.2: Experimental case Ehrenfried [11]

(a) Φ(κ, ω) at f = 1000Hz [1] (b) Diffuse field model Φa(κ, ω)

Fig. 1.3: Measurement of Bailly et. al [1] and Diffuse field model

II. Previous experimental research

Basis of this work is measured data published by Bailly et al. [1] (see Fig. 1.3a) using a non-equidistant
microphone array. Results show convenient resolution of the convective region but the acoustic region expected to
be characterized by the sonic edge shown in Fig. 1.3b remains masked by the microphone response. The presence
of strong orthogonally impinging waves seems to hide the expected diffuse field, best localizable through the sonic
region appearing as a high amplitude circle at the acoustic wavenumber κ0 = ω

c0
(see Fig. 1.3b). Removing the

microphone response in a deconvolution approach seems promising to reveal further details about the nature of
the measured low wavenumber region. It is expected that the deconvolved image shows a single high amplitude

6
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(a) Dirty map Φ̆(κ, ω) at f = 1758Hz (M = 0.83) [10] (b) Deconvolved map Φ̃(κ, ω) at f = 1758Hz (M = 0.83)

Fig. 1.4: Maps obtained by Ehrenfried et al. [10]

point at κ = 0 as well as a strong concentration of energy around the acoustic circle. Such a devonvolution
approach was applied by Ehrenfried [11] to postprocess a high Mach number (M = 0.83) TBL experiment. A plane
wave beamforming algorithm was used to evaluate the dirty map Fig. 1.4a followed by a DAMAS2 deconvolution
procedure to estimate the underlying source map Fig. 1.4b. Sidelobes were efficiently supressed revealing
structures within the acoustic domain. Unexpectedly these structures are not aligned on the sonic circle but
distributed more densely around κ = 0. An explanation for these results is still lacking.

III. Convolution & Deconvolution on a simple example

Deconvolution (also known as Deblurring) is a signal processing method widely used in image processing. It is
applicable to images whose real structure is blurred due to recording errors of imperfect recording devices. Fig.
1.5a shows a close-up chessboard image being blurred due to the cameras limited focusing range. The camera
response is shown in Fig. 1.5b.

The point-spread function can be evaluated analytically if the reason for blurring is known and can be described
physically (optics: lense, acoustics: finite microphone array). In case of unknown blurring reason one can use
blind-deconvolution algorithms that guess the PSF based on maximum-likelyhood methods.

As the blurred image b is related through convolution to the deblurred image d as b = h ∗v,i d (where ∗v,i
denotes shift-variant or invariant convolution and h the PSF) one can use a range of algorithms to solve the discrete
problem (b = Hd). Application of the Richardson-Lucy algorithm on Fig. 1.5a with point-spread function Fig.
1.5b gives 1.5c.

(a) close-up Chessboard (b) optical PSF (c) deblurred Image

Fig. 1.5: Deblurring example
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Chapter 2

Signal processing

Deconvolution of wavenumber-frequency spectra is an advanced signal processing procedure based on a range
of mathematical concepts, including especially the principle of convolution and the Fourier transform. For a
comprehensible introduction into these subjects [22] is recommended. The application of deconvolution within
the acoustic community has strongly increased since the introduction of DAMAS in 2005 by Brooks & Humphreys
[5] and the ensuing development of DAMAS2 by Dougherty [8]. Nevertheless comprehensive literature covering
the application of deconvolution in acoustics is still lacking. Therefore an attempt is made to provide ground-up
derivations of infinite Delay-and-Sum (iDAS), near-field (or spherical) Delay-and-Sum (sDAS) and the generalized
discrete Fourier transform (κ−ω transformation) along with their respective power-algorithns in order to provide
access to relevant scientific articles covering deconvolution attempts to each of them. The theoretic part starts
with a short introduction into signal processing basics and statistics, followed by an overview over the wave
equation and its solutions, subsequent derivations of amplitude and power algorithms for κ−ω transformation,
DAS, sDAS along with their respective point-spread functions and ends by a presentation of a range of common
deconvolution procedures.

I. Basics

a. Convolution

Convolution is a powerful mathematical operation evolving from the definition of the scalar product. A convolution
of a function g(t) with a function h(t) can be interpreted as the projection from g(t) on the flipped h(t) over Θ
with upper bound t. Function h(t) can be referred to as the convolution kernel.

r(t) = (g ∗ h)(t) =
∫

∂Θ

g(t′)h(t− t′)dt′ (2.1)

b. Discrete Convolution

In signal and image processing convolution is most frequently applied on discrete functions. Thus a discrete
convolution can be defined by replacing the integral by a sum. If g, h : D → Θ are functions with discrete
definition area D ⊆ Θ the discrete convolution is defined as:

( f ∗g)(n) = ∑
k∈D

f (k)g(n− k) (2.2)

c. Convolution and discrete Convolution

Calculating the convolution f ∗ g in a discrete way is not the same as calculating the discrete convolution g∗h.

8



I. BASICS CHAPTER 2. SIGNAL PROCESSING

f ∗ g ≈ ∑
k∈D

f (tk)g(tn − tk)∆tk whereas f∗g ≈ ∑
k∈D

f(tk)g(tn − tk) (2.3)

Convolution represents a temporal average over Θ whereas discrete convolution is just a discrete (unbiased)
estimate over function values belonging to subspace D. This will be of particular importance when dealing with
nonequidistant sampling.

d. Cross-Correlation

The correlation is defined similar to convolution with the only difference that the convolution r(t) = (g ∗ h)(t)
reflects the integration over the product of g(t) with a shifted reversed (up-down flipped) function h(t) while
correlation reflects the integrated product with a shifted only function.

r(t) = g(t) ? h(t) =
∫ ∞

−∞
g(t′)h(t + t′)dt′ (2.4)

Note that the terminus cross-correlation applied in the sense r = g ? h denotes the vector r resulting from the
convolution of g with the reversed vector of h.

e. The Fourier transform

The Fourier transform is a powerful tool used in a wide range of engineering areas. One among many other
applications is the possibility to analyze and process time-dependent signals in frequency domain or, as explored
in this work, space-time dependent signals in wavenumber-frequency domain. Linear operations in one domain
have corresponding operations in the other domain. If Θ ∈ R denotes the time domain with frequency domain
Ψ ∈ C then Ψ represents a complete orthogonal system with complex exponential bases eiωt, where ω denotes
the angular frequency given in [ rad

s ] related to the temporal frequency f in Hertz [Hz] by ω = 2π f . The different
representations are frequently referred to as a Fourier transform pair. Time and frequency representation are
related the following:

ĝ(ω) =
1

2π

∫
∂Θ

g(t)e−iωtdt = F̂g(t) (2.5)

and

g(t) =
∫

∂Ψ

ĝ(ω)eiωtdt = F̂−1 ĝ(ω) (2.6)

The Fourier transform exchanges convolution operations with multiplications. Given two integrable functions
g(t) and h(t) with Fourier transforms ĝ(ω) and ĥ(ω) then the Fourier transformation of the temporal convolution
of g(t) and h(t) equals the product of ĝ(ω) and ĥ(ω).

r(t) = g(t) ∗ h(t) ⇐⇒ r̂(ω) = g(ω)h(ω) (2.7)

f. The wavenumber-frequency transformation

The wavenumber-frequency transformation can beneficially be used to analyze wave fields. It will be one of the
main topics in this work and explained in detail later on. The notation in use is:

p̃(κ, ω) = F̃ F̂ p(x, t) =
1

(2π)d

∫
∂Ω

1
2π

∫
∂Θ

p(x, t)e−iωtdte−iκxdx (2.8)
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g. The cross-power spectral density S

The cross-power spectral density or (cross-power spectrum) is a powerful tool to analyze the spatial coherence of
temporally Fourier transformed signals. It can be defined as the temporal Fourier transform of spatial covariance
data measured over time. For an acoustic array with measured pressures p(x, t) it reads:

S(x, ζ, ω) = lim
T→∞

2π

T
E [ p̂(x, ω) p̂∗(x+ ζ, ω)] (2.9)

where ζ is a vector with components (ζ, η) that correspond to the (cartesian) separation distance between the
nM microphones in x and y direction. E[] denotes the ensemble averaging over a sufficiently high number of
statistically independent measurements and p̂∗ is the conjugate of p̂. It is important to note that the cross-power
spectral density resulting from 1D data contains 2-D spatial covariance information and respectively for higher
dimensions. Physical interpretation of S(x, ζ, ω) can in detail be found in [23]. By looking at the covariance
spectrum for a given absolute coordinate x and a given frequency ω one can detect phase shifts characterized by
high correlation for correlation length displacements ζ towards a specified direction.

S(x, ζ, ω) can be simplified as S(ζ, ω) in the case of shift invariance. Shift-invariance can be assumed if the
correlation between a measurement at x and x+ ζ depends not on the absolute position x but is only a function
of the relative distance between two measurements ζ. This is exactly the case only for plane wave fields. Note also
that assuming shift-invariance does not allow analyzation of coherence characteristics.

In case of shift-invariance S(0, ω) equals the squared mean pressure 〈 p̂〉2.

〈 p̂〉2(x, ω) = S(x,0, ω)⇒ 〈 p̂〉2(ω) = S(0, ω) (2.10)

In case of shift-invarance 〈 p̂〉2(ω) does not depend on x as postulated by the plane wave assumption.

h. The wavenumber-frequency spectrum

The full wavenumber frequency spectrum (or wavenumber frequency covariance spectrum) Φ̃(κx1 ,κx2 , ω) can be
defined as the 4D spatial Fourier transform of S(x, ζ, ω):

Φ̃(κ1,κ2, ω) = F̃ 4DS(x, ζ, ω) (2.11)

Similar to S one can use Φ̃(κx1 ,κx2 , ω) to analyze coherence of wave fields. For a given wavenumber κ1 one can
interpret high values over displacement wavenumber κ2 as wavenumber domain correlation length displacements
(thus phase shifts).

Under the assumption of shift-invariance, the reduced wavenumber frequency spectrum can be defined as the
2D spatial Fourier transform of S(ζ, ω).

Φ̃(κ, ω) = F̃ 2DS(ζ, ω) (2.12)

In plane wave acoustic source localization (infinite beamforming)a discrete convolution is performed opposing
the spatial convolution resulting in the Fourier transform.The resulting dirty map can be considered a wavenumber-
frequency-like spectrum and is thus denoted φ̆(κ, ω). It will be explained in more detail in III.

i. Parsevals theorem

Parseval’s theorem reflects energy conservation during the Fourier transformation. For shift-invariant transforma-
tion from spatial domain ∂Ω to wavenumber domain ∂Γ one can write it as:∫

∂Ω
| p̂(ζ, ω)|2dζ =

1
(2π)d

∫
∂Γ
| p̃(κ, ω)|2dκ (2.13)

By mentioning that
∫

∂Ω | p̂(ζ, ω)|2dζ is the auto-power 〈 p̂〉2(x, ω) = S(0, ω) and | p̃(κ, ω)|2 is the shift-invariant
wavenumber-frequency spectrum Φ(κ, ω) one can rewrite (2.13):

10



II. THE WAVE EQUATION CHAPTER 2. SIGNAL PROCESSING

S(0, ω) =
1

(2π)d

∫
∂Γ

Φ(κ, ω)dκ (2.14)

II. The Wave equation

a. Definition

Following [18] one can derive Lighthill’s equation by combining the temporal derivation of mass conversation
with the spatial derivative on the Reynolds form of the momentum equation for an ideal, linear acoustic medium

forced by an external stress distribution − ∂Lij
∂xj

resulting from the real fluid. The speed of sound is denoted c0 and

p′ is the deviation from the spatial mean pressure. Influence of mean flow on the speed of sound can be neglected
for low Mach number flows. The resulting equation becomes :

1
c2

0

∂2 p′

∂t2 −
∂2 p′

∂x2
i
=

∂2Lij

∂xi∂xj
(2.15)

For low Mach numbers the Lightill tensor Lij can be estimated as :

Lij =
∂2ρ0(uiuj − uiuj)

∂xi∂xj
(2.16)

where uiuj is the ensemble averaged spatial mean.
The homogenous problem (Lij = 0) is the well-known wave equation. As every solution of the Lighthill

equation is also a solution of the wave equation it will be used to explain possible solutions and their physical
interpretation. For simplicity p′ will furthermore simply be denoted by p.

1
c2

0

∂2 p
∂t2 −∇

2 p = 0 (2.17)

Its temporal Fourier transform , also known as Helmholtz equation, becomes (using F̃ ( ∂p(t)
∂t ) = −iω p̂(ω))

∇2 p̂ + k2
0 p̂ = 0 (2.18)

with the acoustic wavenumber κ0 = ω
c0

. For convenience we define the velocity vector c = [cx, cy, cz] where
cx, cy, cz are the trace velocites in each axis. Correspondingly component κl of trace wavenumber vector κ is
defined as κl =

ω
cl

. Note that |c| = c0 and |κ| = κ0.

b. Plane, spherical and evanescent waves

Every solution of (2.18) has the following shape:

p̂(x, ω) = Â(ω)ei(κxx+κyy+κzz) x ∈ R3 (2.19)

where A(ω) is a frequency dependent constant. (2.19) satisfies (2.18) as long as the dispersion relation is
satisfied

κ2
0 = κ2

x + κ2
y + κ2

z (2.20)

Fig. 2.1 shows a plane wave with frequency ω impinging under angle θ where θ = 0 represents a wave
travelling in positive x-direction and θ = π

2 a wave travelling in positive z-direction orthogonal to the x-y-plane.
If the wave propagates within the x-y plane, κz = 0, the κ-space representation shows a point on the circle with
radius=κ. If θ is increasing, meaning the wave is travelling towards z-direction, the white stripes representing the
wave traces are turning from vertical (x-y plane wave) to horizontal lines. Therefore the wavelengths λx and λy

11
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are increasing and the corresponding wavenumbers κx = 2π
λx

,κy = 2π
λy

are reduced, causing the point in the κ-space
representation to move inwards. At θ = π

2 the wave impinges orthogonally to the x− y-plane, reflecting in an
infinite wavelength λx,λy. As κx = ω

cx
the trace velocity cx → ∞ and the x-y wavenumber representation becomes

a point at the origin of the coordinate system.

Fig. 2.1: Plane wave representation examples [9]

Equation (2.20) still satisfies the wave equation if κx or κy > κ0, which turns the plane waves into evanescent
waves. The wavenumber component in z-direction can then be written as

κz = ±i
√

κ2
x + κ2

y − k2 = ±iκ′z (2.21)

with the plane wave solution

p̂(x, ω) = Â(ω)e±κ′zzei(κxx+κyy) (2.22)

The e+κz′ z solution is unphysical since it blows up at positive infinity. Thus the only possible solution becomes:

p̂(x, ω) = Â(ω)e−κ′zzei(κxx+κyy) (2.23)

The evanescent wave is decaying exponentially in amplitude in the z-direction. Since κx > κ0, one has cx < c0
and thus the trace velocity is subsonic. Evanescent waves are therefore called subsonic waves, having their
wavenumber representation always outside the radiation circle as shown in Fig. 2.2

Fig. 2.2: Evanescent wave representation example [9]

c. Wavespace representation

It has already been shown that the dispersion relation is fulfilled for every solution of the wave equation. Through
(2.21) every solution in R3 can be obtained from R2.It is therefore sufficient to define the 2D solution as:

p̂(x, ω) = Â(ω)eiκsx for x,κs ∈ R2 (2.24)

12
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Displaying planar solutions of the Helmholtz equation as points in wavenumber-frequency space already
suggests the idea of spatially Fourier transforming p̂(x, ω) to obtain the plane wave fundamental solution as:

p̃(ω,κ) = F̃ eiκsx = δ(κ− κs) (2.25)

Note that this does not mean that all representations of data in wavenumber-frequency domain are to be
considered as solutions of the wave equation. But if they can be assumed as plane waves then the full field in
R3 can be completely restored from data in R2. This forms the basics of Fourier Acoustics [9]. In case of higher
Mach-numbers M >> 0 the mean flow velocity has to be taken into account through a convected plane-wave
propagator. The dispersion relation becomes elliptically stretched in mean flow direction.

d. Spherical waves

The elementary plane wave (2.19) is not the only solution of the wave equation. It can be shown that

G(x− xs) =
e−iω |x−xs |

c0

|x− xs|
=

e−iκ0|x−xs|

|x− xs|
(2.26)

is also a solution of the Helmholtz equation. It corresponds to a spherically symmetric unit strength point
source with wavenumber κ0 at spatial position xs and is generally referred to as free-space Green’s function.
According to distribution theory it is possible to calculate the solution for an arbitrary source field q̂s(xs, ω) with
xs ∈ Ωs by convolving the source distribution with the fundamental solution (or convolution kernel) G(xs, ω) as

p̂(x, ω) = q̂s(xs, ω)∗G(xs, ω) = ∑
xs∈Ωs

q̂(xs, ω)
e−iκ0|x−xs|

|x− xs|
(2.27)

e. Acoustic domain under the presence of a mean flow

Under the presence of a mean flow with Mach number M the sonic wavenumbers are those that fulfill the convective
dispersion relation(k0 − kxM)2 − (k2

x + k2
y) = 0. Introducing the Prandtl-Glauert parameter β =

√
1−M2 one can

represent the dispersion relation as the ellipse fulfilling the following equation:

(kx +
k0 M
β2 )2

( k0
β2 )2

+
k2

y

( k0
β2 )2

= 1 (2.28)

Fig. 2.3: Acoustic domain under the presence of a mean flow with Mach number M [14]

Supersonic (or acoustic) waves are located inside the ellipse while subsonic (or hydrodynamic) evanescent
waves are located outside.
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Fig. 2.4: A microphone array with plane wave impinging under wavevector κ and its directional sensitivity diagramm [17]

f. Propagation models

As already mentioned (2.19) and (2.23) are solutions of the Helmholtz equation. These equations reflect the
physical behavior of waves. The choice of a suitable model depends on assumptions about the nature of the
observed field.

Three different propagator models are in use for a single unity strength source at position xs ∈ Ωs (for
spherical waves) with wavenumber κs ∈ Γs.

1. The infinite propagator for plane waves: p̃(κs, ω) = F̃ p̂(x, ω) = δ(κ− κs)

2. The farfield propagator : p̂(x, ω) = e−iκ0 |x−xs |
z for spherical waves with planar wavefront originating from

farfield sources for which assumption |x− xs| ≈ z holds

3. The neafield propagator : p̂(x, ω) = G(x− xs, ω) = e−iκ0 |x−xs |

|x−xs| for spherical waves

III. Infinite DAS and the κ −ω transformation

Delay-and-Sum is a signal processing technique being widely used for acoustic source detection as well as
directional signal transmission. A sensor array records incoming signals. The measured signals are individually
backpropagated and summed to match an assumed source position using an appropriate propagator model. In
case the backpropagated signal matches the real one constructive interference leads to a peak in the so-called dirty
map. The following abbreviations will be used:

• iDAS the infinite Delay-and-Sum

• sDAS for nearfield (spherical) Delay-and-Sum

a. Infinite Delay-and-Sum (iDAS)

Figure 2.4 explains the basic idea of iDAS. Considering a planar array of N microphones at locations xm(m =
1, 2, ..., N) in the xy-plane. Applying the DAS algorithm means that the measured pressure signals p̂m are
individually delayed in time to match an assumed incidence direction characterized by wavenumber vector κ
and then summed. Additionally each p̂m is multiplied with an arbitrary weighting coefficient wm for which
∑N

j=1 wj = N holds. Beamformer with non-unity weights are called functional beamformers. Signals associated
with a plane wave coming from κ will therefore be aligned in time before they are summed. The result is weighted
with 1

N to obtain the correct amplitude of a single impinging wave. For convenience discrete subsets are defined
as x ∈ Ωd ⊆ Ω and t ∈ Θd ⊆ Θ. N is the number of values in subset Ωd. The iDAS algorithm reads:

14
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p̆(κ, t) =
1
N ∑
x∈Ωd

w(x)p(x, t− ∆t(κ,x)) with ∆t =
κx

ω
(2.29)

In practice (2.29) is computationally inefficient because it cannot be vectorized. Thus temporal Fourier
transformation is applied on p(x, t + ∆t(κ,x)) yielding:

F̂ p(x, t− ∆t(κ,x)) = p̂(x, ω)e−iω∆t(κ,x) = p̂(x, ω)e−iκx (2.30)

Therefore the infinite DAS algorithm in frequency notation becomes:

p̆(κ, ω) =
1
N ∑
x∈Ωd

w(x) p̂(x, ω)e−iκx (2.31)

b. Infinite DAS and the wavenumber-frequency transformation

Both iDAS and the κ−ω transformation (p̃ = F̃ F̂ p̂) yield maps in wavenumber-frequency space. The relation
between the two is often misunderstood and cannot be found in literature. The effect becomes clear when looking
at their discrete counterparts:

p̃(κ, ω) =
1

(2π)d ∑
x∈Ωd

p̂(x, ω)e−iκx∆x vs p̆(κ, ω) =
1
N ∑
x∈Ωd

w(x) p̂(x, ω)e−iκx (2.32)

In case of equidistant array structure ∆x (denoting the affiliated microphone areas corresponding to position x
is constant and in case of unity weights w(x) the DAS map p̆(κ, ω) becomes just a scaled version of p̃(κ, ω).

Literature about the discrete Fourier transform generally considers the temporal transformation in frequency
domain given frequency f or angular frequency ω where ω = 2π f holds. Note that the corresponding variables
for the spatial transformation become wavenumber k or angular wavenumber κ for which κ = 2πk holds equally.

An equidistant array with length L and N measuring microphones is assumed. The discrete Fourier transfor-
mation is an orthogonal projection, thus N κ-space bases can be projected on. According to the sampling theorem
the κ-space resolution becomes ∆κ = 2π∆k = 2π 1

L = 2π 1
N∆x .

The discrete spatial Fourier transform translates pressures p̂n(x, ω) with n ∈ [1; N] from discrete spatial
coordinates xj

xj = (j− 1)∆x (2.33)

to discrete wavenumber koordinates kl

kl = (l − 1)∆k (2.34)

Starting from equation (2.32) for the 1D case and substituting (2.33) and (2.34) in the trigonometric basis as:

e−i(κl xj) = e−i(2πkl xj) = e−i(2π(l−1)∆k(j−1)∆x) = e−i 2π
N (l−1)(j−1) (2.35)

leads to:

p̃m =
1

(2π)

N

∑
j=1

p̂je−i 2π
N (l−1)(j−1)∆xj vs p̆m =

1
N

N

∑
j=1

p̂je−i 2π
N (l−1)(j−1) (2.36)

On the equidistant array ∆xj = ∆x can be torn out of the sum and using ∆x = 1
N∆k one gets:

p̃m =
1

∆κ

1
N

N

∑
j=1

p̂je−i 2π
N (l−1)(j−1) vs p̆m =

1
N

N

∑
j=1

p̂je−i 2π
N (l−1)(j−1) (2.37)
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]

Fig. 2.5: κs, x and κf regions

The discrete values p̃m approximate the exact Fourier transform p̃ while p̆ yields the coefficients approximating
the discrete Fourier transformation of p̂. If the discrete values interpolating an exact Fourier transform are to be
evaluated then the Fourier coefficients have to be scaled by wavenumber resolution ∆κ as:

p̃ ≈ p̆
∆κ

(2.38)

Note that a matrix F with coefficients fl j = e−i 2π
N (l−1)(j−1) is usually referred to as the discrete Fourier

transform matrix.
Infinite DAS is usually performed by choosing a desired focus wavenumber κ instead of restricting the range

of possible focus wavenumbers to those required for the discrete duality relation I = 1
NF−1F .

In case orthogonality holds for every projection of a single complex exponential eiκsx on another complex
exponential e−iκfx the focus bases can be chosen arbitrarily.∫

x∈R
eiκsxe−iκfxdx = 0 as long as κf 6= κs (2.39)

Relation (2.39) is fulfilled only in the analytical case (integration over R). In the discrete case

∑
x∈Ω

eiκsxe−iκfx∆x ≈ 0 for κf ∼ κs as long as Ω→ 1
ks

= λs (2.40)

The bigger the array in comparison to λs the better orthogonality holds for focus wavenumbers close to κf.This
is the reason for sidelobes appearing in iDAS as well as the Fourier transform. Additionally violation of Nyquist’s
criteria will result in aliasing. Conjugate symmetry between positive and negative focus wavenumber results from
conjugate symmetric exponential bases.

The following conclusions can be drawn:

• The different algorithms result from different types of averaging:

1. DAS⇒ ARITHMETIC averaging

2. Fourier transform⇒ SPATIAL averaging

• The discrete Fourier transform can be interpreted as a functional DAS algorithm with weights reflecting the
appropriate array length corresponding to each microphone

• For an equidistant array the iDAS algorithm equals the discrete Fourier transform from p̂(x, ω) to κ−ω
domain
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c. The iDAS deconvolution problem

The relationship between iDAS and the measured pressures p̂(x, ω) has thoroughly been explained. The
appearance of sidelobes in iDAS maps shall be adressed in this chapter by assuming a known source distribution
p̃(κs, ω) depending on source wavenumbers κs in wavenumber source space Γs that propagates into spatial
domain Ω and is backpropagated towards a wavenumber focus space Γ f through DAS. A simple sketch with
arbitrary measuring coordinates x (red points) is provided in Figure 2.5.

The spatial pressure field measured at p̂(x, ω) (x ∈ Ωd ⊆ Ω) consists only of plane waves p̃s(κs) at discrete
wavenumber coordinates in subspace Γs|d (κs ∈ Γs|d ⊆ Γs) that can be localized as plane waves p̃f(κf) at focus
wavenumbers Γf|d (κf ∈ Γf|d ⊆ Γf).

p̂(x, ω) = ∑
κs∈Γs|d

p̃s(κs, ω)eiκsx (2.41)

Substituting p̂(x, ω) in the infinite DAS algorithm

p̆f(κf, ω) =
1
N ∑

x∈Ωd

w(x) p̂(x, ω)e−iκfx (2.42)

yields:

p̆f(κf, ω) =
1
N ∑

x∈Ωd

w(x) ∑
κs∈Γs|d

p̃s(κs, ω)eiκsxe−iκfx (2.43)

It is possible to rearrange the sum as:

p̆f(κf, ω) = ∑
κs∈Γs|d

p̃s(κs, ω)
1
N ∑

x∈Ωd

w(x)eix(κs−κf) (2.44)

By defining the iDAS point spread function h̆(κs) (the convolution kernel) as

h̆(κs) =
1
N ∑

x∈Ωd

w(x)e−ixκs (2.45)

one can rewrite p̆(κf, ω) as a discrete convolution product of the underlying source distribution p̃(κs, ω) with
the shift-invariant iDAS point spread function

p̆f(κf, ω) = p̃s(κs, ω)∗h̆(κs) =
1
N ∑
x∈Ωd p̃s(κs,ω)

h̆(κf − κs) (2.46)

The procedure is illustrated in Fig. 2.6. Assuming a single source impinging from orthogonal direction (κ = 0,
Fig. 2.6a) on an equidistant array with diameter D and iDAS point-spread function as displayed in Fig. 2.6b than
the measured signal becomes Fig. 2.6c.

In the equidistant case the unity weight iDAS PSF equals the discrete Fourier transform PSF and can (for a line
array) be approximated as:

h̆(κs) =
sin(κsD/2)

κsD/2
κ ∈ R (2.47)

and for the circular array as Bessel function of order 1:

h̆(κs) =
πD
|κs|

J1(|κs|D/2) κs ∈ R2 (2.48)

Note that h̆(κs) (2.45) for unity weights can also be referred to as the Dirichlet kernel which is defined as:
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Dn(κ) =
n

∑
x=−n

eiκx (2.49)

The point-spread function shape depends only on the array dimension but not on the sampling distance. This
reflects the approximate validity of the orthogonality relation explained previously. A non-zero sampling distance
results in aliasing above cutoff wavenumber κc = 2π 1

D according to the sampling theorem.

(a) Plane wave at κs = 0 (b) Point-spread function h̃ (c) Observed signal

Fig. 2.6: Convolution illustration [22]

A deconvolution attempt is a signal processing technique based on the following idea:

If p̆f(κf, ω) can be evaluated from given microphone pressures p̂(x, ω) according to (2.42) and the point-spread function
h̆(κs) can be evaluated according to (2.45) than it should be possible to extract the underlying source field p̃s(κs, ω) by
solving equation (2.46) for p̃s(κs, ω).

In practice (2.46) is ill-conditioned and can only be solved approximately in a least-squares sense. Additionally
all measurements are polluted by noise that cannot be described as a single complex exponential (uncorrelated
noise is no solution of Helmholtz’s equation). This noise can thus not be represented as a convolution product with
h̆(κs) and becomes artificially magnified during the least-squares approximation. It is therefore common practice
to solve the deconvolution problem not for measured pressures p̂(x, ω) but for the measured cross-power spectral
density S(x, ζ, ω) or (under the assumption of incoherent sources) the shift-invariant cross power spectral density
S(ζ, ω). This corresponds to a noise-minimization problem as will be explained later on. Infinite beamforming
(a modification of iDAS) deconvolution for turbulent boundary layer measurements was for example applied in
[11]. According to the considerations drawn in Subsection b it becomes clear that for the non-equidistant array
case the wavenumber-frequency spectrum Φ(κ, ω) can only be evaluated in an energy-preserving way by taking
into account the relative areas corresponding to each microphone. This becomes even more pronounced when
a microphone array designed for wide variety of spatial separations is used which is exactly the case for the
array used in this study. Arithmetic averaging overestimates spectral estimations for small correlation lengths
resulting in an overestimated aerodynamic contribution compared with the desired acoustic contribution. Thus a
formulation for the non-equidistant κ−ω deconvolution problem was developed to extract the true source field
Φ̃s(κs, ω) underlying the non-equidistant spatial Fourier transform Φ̃f(κf, ω) related to the cross-spectrum of
p̂(x, ω). For simplicity the Fourier deconvolution problem is first derived for pressure but will later on also be
applied on cross-power spectral density data.

d. The Fourier deconvolution problem

The Fourier deconvolution problem can easily be derived by remembering that the κ−ω transformation can be
interpreted as a functional beamformer with weights w(x) = ∆A(x) reflecting the appropriate array area ∆A.The
κ−ω transformation algorithm

p̃f(κf, ω) = ∑
x∈Ωd

p̂(x, ω)e−iκfx∆A(x) (2.50)
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can be expressed as a discrete convolution of the underlying source distribution p̃s(κs, ω) with the κ− ω
transformation PSF h̃(κs)

p̃f(κf, ω) = p̃s(κs, ω)∗h̃(κs) (2.51)

where h̃(κs) follows from (2.45) with w(x) = ∆A(x) to

h̃(κs) = ∑
x∈Ωd

eixκs ∆A(x) (2.52)

e. The near-field deconvolution problem

A range of deconvolution algorithm (DAMAS,DAMAS2,CLEAN etc.) were developed especially for the deconvo-
lution of near-field beamforming maps. It is thus deemed important to include a comprehensive derivation into
this subject to allow cross-reading with the corresponding scientific papers.

It was shown previously that different propagator models can be used according to assumptions about the
source field. If the source is not infinitely far away then the array pressure distribution in Ω can be calculated as
a discrete convolution of the underlying source distribution q̂s(xs, ω) with Green’s free-space function G(xs, ω)
(see (2.28)). For xs ∈ Ωs|d ⊆ Ωs (source domain), x ∈ Ωd ⊆ Ω (measurement domain) and xf ∈ Ωf|d ⊆ Ωf (focus
domain) it follows that

p̂(x, ω) = ∑
x∈Ωd

q̂s(xs)
eiω|x−xs|

|x− xs|
= q̂s(xs, ω)∗G(xs, ω) with G(xs) =

eiω|xs|

xs
(2.53)

Green’s free-space function is actually a zeroth order Bessel function of the first kind and thus (2.53) states that,
similar to the Fourier transformation (with trigonometric bases) , p̂(x, ω) can be described as a series of zeroth
order Bessel functions G(x− xs, ω) with coefficients q̂s(xs). Now , similar to analyze plane waves in κ−ω space
it is deemed beneficial to analyze spherical waves in a space made up by zeroth order Bessel function bases. Such
a transformation is called a Hankel transformation of order zero and can be calculated by convolution of p̂(x, ω)
with the inverse Green’s function G−1(x, ω) = |x|e−iω|x| (similar to the Fourier transform) :

q(xs) =
1
A

p̂(x, ω) ∗ G−1(x, ω) =
1
A ∑
x∈Ω

p̂(x, ω)|xf − x|e−iω|xf−x|∆x (2.54)

Conversely, the conventional sDAS algorithm for pressure steering reads:

q̆(xf, ω) =
1
N ∑
x∈Ω

w(x) p̂(x, ω)|xf − x|e−iω|xf−x| (2.55)

Now one can compare the discretized spatial Hankel transformation and the conventional sDAS algorithm
(unity weights w(x) = 1) for pressure steering as:

q̂s(xs, ω) =
1
A ∑
x∈Ω

p̂(x, ω)|xf − x|e−iω|xf−x|∆x vs q̆(xs, ω) =
1
N ∑
x∈Ω

p̂(x, ω)|xf − x|e−iω|xf−x| (2.56)

It becomes clear that similar to the relation between the κ−ω transformation and the infinite Beamformer
((2.32)) the sDAS algorithm becomes a Hankel transformation only for an equidistant grid ∆x

A = 1
N . As spatial

weighting yields considerable better performance in the plane wave case it is deemed a potentially fruitful attempt
to weight microphone pressures with their affiliated surface area ∆x. This would break the mould of the current
work and is therefore not considered here. The interested reader is invited to contact the author for further
information. Instead the conventional pressure beamforming deconvolution procedure will be derived within this
work. It is important to remember that conventional beamforming estimates the source strengh q̂s(xs, ω) based on
an arithmetic averaging approach instead of the spatial averaging required for a Hankel transformation.
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The conventional sDAS deconvolution problem can be derived by inserting the source field assumption
p̂(x, ω) = q̂s(xs, ω)∗G(xs, ω) (2.53) into the sDAS algorithm for unity weights (2.56). It follows that:

q̆(xf, ω) =
1
N ∑
x∈Ωd

∑
xs∈Ωs|d

q̂s(xs, ω)
eiω|x−xs|

|x− xs|
e−iω|x−xf||x− xf| =

1
N

{
{q̂s(xs, ω)∗G(x)} {xs} ∗G−1(x, ω)

}
{x}

(2.57)
Rearranging allows to reformulate the problem as

q̆(xf, ω) = ∑
xs∈Ωs|d

q̂s(xs, ω) ∑
x∈Ωd

1
N

eiω|x−xs|

|x− xs|
e−iω|x−xf||x− xf| =

{
q̂s(xs, ω) ∗

{
G(x− xs)∗G−1(x)

}
{x}

}
{xs}

(2.58)
or by introducing the near-field point-spread function h̆G(xs,xf)

h̆G(xs,xf) = ∑
x∈Ωd

1
N

eiω|x−xs|

|x− xs|
e−iω|x−xf||x− xf| = {G(x− xs)∗G(x)} {x} (2.59)

one can finally formulate the near-field deconvolution problem as

q̆(xf, ω) = ∑
xs∈Ωs|d

q̂s(xs, ω)h̆G(xs,xf) =
{

q̂s(xs, ω)∗|vh̆G(xs,xf)
}
{xs} (2.60)

Note that h̆G(xs,xf) cannot be written as h̆G(xs − xf). The near-field point-spread function is therefore not
shift-invariant. As a result (2.59) is a shift-variant convolution of q̂s(xs, ω) with h̆G(xs,xf).

f. Trigonometric Interpolation

It has been shown that arbitrary measurements p̂(x, ω) can be transformed into κ−ω space by discretizing the
Fourier convolution integral. If the pressure distribution p̂(x, ω) follows from a physical phenomenon describable
by plane waves then focus wavenumber κf can be chosen arbitrarily. Now one can ask the following :

If p̃(κf, ω) = F p̂(x, ω) can be evaluated for every possible focus wavenumber xf then another variable p̂f(xf, ω) can be
evaluated for every possible focus position xf ∈ Rn as p̂f(xf, ω) = F−1 p̃f(κf, ω). How is p̂f(xf, ω) related to p̂(x, ω)?

Discretizing the x−ω transformation of p̃f(κf, ω) with wavenumber domain weights ∆K(κf) reflecting the
wavenumber domain area belonging to each wavenumber coordinate κf yields

p̂f(xf, ω) = ∑
κ∈Γf|d

p̃(κf, ω)eiκfxf ∆K(κf) (2.61)

and by pointing out that p̃f(κf, ω) was originally evaluated as:

p̃f (κf, ω) = ∑
x∈Ωd

p̂(x, ω)e−iκfx∆A(x) (2.62)

one can rewrite p̂f(xf, ω) as

p̂f(xf, ω) = ∑
κ∈Γf|d

∑
x∈Ωd

p̂(x, ω)eiκfxf e−iκfx∆A(x)∆K(κf) (2.63)

By defining the Fourier interpolation kernel h(x) as
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h(x) = ∑
κ∈Γf|d

eiκfx∆K(κf) (2.64)

one can express the resampled pressures p̂f(xf, ω) as

p̂f(xf, ω) = ∑
x∈Ωd

p̂(x, ω)h(xf − x)∆A(x) = p̂(x, ω)∗h(x) (2.65)

The backtransformation seemingly allows to calculate the measured pressures on arbitrary coordinates xf. This
can directly be explained by the Fourier transformation whose most fundamental assumption is that the whole
field p̂(x, ω) can be expressed through a trigonometric series with coefficients p̃f(κf, ω). By remembering that the
κ−ω transformation result p̃f(κf, ω) of a single source p̃s(κs, ω) becomes the Fourier PSF h̃(κf) and the finite
backtransformation of h̃(κf) does not consist of a single plane wave but also from contributions from sidelobes
it can be concluded that p̂f(xf, ω) is only a polluted interpolation of the underlying spatial field. In case the
underlying source field p̃s(κs, ω) is known it becomes possible to calculate the measured pressures on arbitrary
coordinates xf without the sidelobes resulting from limited array size. Solving the deconvolution problem

p̃f(κf, ω) = p̃s(κs, ω)∗h̃(κs, ω) (2.66)

and transforming the resulting signal p̃f(κf, ω) back on arbitrary focus coordinates xf as

p̂
f
(xf, ω) = ∑

κ∈Γs|d

p̃s(κs, ω)eiκsxs ∆K(κs) (2.67)

can therefore be seen as a trigonometric best-fit interpolation of p̂(x, ω) in a least-squares sense. The
trigonometric fit is not limited to the original measuring space Ωd but can be evaluated on all coordinates within
Rn. Noting that the shape of the point-spread function stems from the spatial limitations of the measuring array
and becomes a δ-function in case of unlimited array size it can be concluded that solving the deconvolution
problem can also be interpreted as reconstructing the total source field on Rn which is in theory possible as long
as all wavenumbers are measured (Nyquist) and included in Γf|d space.

g. Spherical interpolation

The same conclusion drawn for plane waves can similarly be drawn for spherical waves. If q̂s(xs, ω) is known and
the desired interpolation coordinates are xf than the least-squares spherical wave interpolation p̂f(xf, ω) becomes

pf(xf, ω) = ∑
xs∈Ωs|d

q̂s(xs, ω)
eiω|xf−xs|

|xf − xs|
=
{

q̂s(xs, ω)∗G(xS, ω)
}
{xs} (2.68)

h. Vectorized Notation

The following section will define vectors and matrices that allow to efficiently calculate the necessary sums for
iDAS, the κ−ω transformation and the sDAS algorithm in vectorized notation.

For an assumed equidistant one-dimensional source and focus grid with M wavenumber coordinates κs, κf ∈
Γs|d and an arbitrary line array with N microphones with coordinates x ∈ Ωd we define (as common in literature)
the spectral steering matrix E with coefficients ejl = eiκl xj and the spatial steering matrix G (corresponding to

Green’s function) with coefficients gjl =
1

xj−xl
e−iω|xj−xl | as well as the inverse spatial steering matrix Gi with

coefficients gi
l j = |xj − xl |eiω|xj−xl |. Then one can apply the vectorized unity weight DAS algorithm on pressure

vector p̂ with coordinates x at frequency ω the following:
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Conventional infinite pressure beamforming

p̆f(κf, ω) =
1
N ∑
x∈Ωd

p̂(x, ω)e−iκfx ⇒ p̆f =
1
N
EHp̂ (2.69)

p̆f(κf, ω) = ∑
κs∈Γs|d

p̃s(κs, ω)h̃(κf − κs)⇒ p̆f = H̆p̃s (2.70)

with point-spread matrix H̆ defined as:

h̆(κf − κs) =
1
N ∑
x∈Ωd

e−i(κf−κs)x ⇒ H̆ =
1
N
EHE (2.71)

The point spread matrix H̆ contains in each row f the iDAS response for a unity strength source at position
κs|f. Shift invariance allows to calculate the full matrix by shifting the response for the first assumed source
position. Another possibility is to calculate the kernel and perform the MATLAB builtin convolution operations
(much faster). The kernel calculates as h̆ = 1

NE
HE(:, (N + 1)/2).

Wavenumber-frequency transformation

p̃f(κf, ω) =
1
N ∑
x∈Ωd

p̂(x, ω)e−iκfx∆x⇒ p̃f =
1
N
EH(p̂ ◦ ∆x) (2.72)

p̃f(κf, ω) = ∑
κs∈Γs|d

p̃s(κs, ω)h̃(κf − κs)⇒ p̃f = H̃p̃s (2.73)

with point-spread matrix H̃ defined as:

h̃(κf − κs) =
1
N ∑
x∈Ωd

e−i(κf−κs)x∆x⇒ H̃ =
1
N
EH(E ◦ ∆) (2.74)

Matrix ∆ contains M columns of vector ∆x.

Nearfield beamforming

The unity weight sDAS algorithm can be vectorized the following:

q̆f(xf, ω) =
1
N

p̂(x, ω)|xf − x|e−iκ0|xf − x| ⇒ q̆ =
1
N
Gip̂ (2.75)

Its relation to the underlying source field q̂s becomes:

q̆(xf, ω) = ∑
xs∈Ωs|d

q̂s(xs, ω)h̆G(xs,xf) =
{

q̂s(xs, ω)∗|vh̆G(xs,xf)
}
{xs} ⇒ q̆f = H̆Gq̂s (2.76)

with the near-field point-spread matrix

h̆G(xs,xf) = ∑
x∈Ωd

1
N

eiω|x−xs|

|x− xs|
e−iω|x−xf||x− xf| =

1
N
{G(x− xs)∗G(x)} {x} ⇒ H̆G =

1
N
GiG (2.77)

In case of two dimensional array structure index transformation has to be applied to transform matrices into
vectors. Afterwards the calculations can be performed equally.
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IV. Cross-power Beamforming

The previous algorithms (iDAS, sDAS, κ−ω were all attempting to estimate amplitude and phase of the incoming
wave. The usual center of interest of scientists and engineers is not amplitude and phase but only the POWER of
the incoming wave. Algorithms estimating this power stem directly from the previously explained ones:

• iDAS⇒ infinite beamforming

• sDAS⇒ conventional beamforming

• κ −ω transformation⇒ κ −ω power transformation

The power can be calculated directly by taking the trace of the cross-power spectral density resulting from
amplitude algorithms. A big benefit of this method is that uncorrelated noise becomes minimized allowing a
better identification of the waves. Coherency information can also be gained by using the out-of-diagonal terms.
The derivations are shown for a 1D array but can easily be adapted for a higher dimensional case using index
transformation.

a. Infinite power Beamformer

In order to obtain the beamformed power for the plane wave DAS algorithm one has to calculate the beamformed
Cross-Correlation map Φ̆.

Starting from (2.69) and multiplying it with its transpose-only gives:

p̆ =
1
N
EHp̂⇒ p̆p̆H =

1
N2E

Hp̂(EHp̂)H =
1

N2E
Hp̂p̂HE (2.78)

Φ̆ =
1

N2E
HSE (2.79)

Term Φ̆ is the full beamformed wavenumber-frequency spectrum. A 4D wavespace coherent deconvolution
approach for the equidistant κ−ω transformation was presented by Chris Bahr in [2]. As explained previously
the infinite Beamformer follows the same path by taking an arithmetic average instead of the spatial average. The
full spectrum can be used to analyze coherence of multiple sources. If the shift invariance assumption holds and
S(x, ζ, ω) = S(ζ, ω) then s is sufficient to describe the whole cross-power density spectrum. Rewriting (2.79) in
index notation shows how the resulting shift-invariant beamformed wavenumber-frequency spectrum Φ̆ can be
calculated from the shift-invariant cross-power spectral density vector s :

Φ̆l′ l =
1

N2

N

∑
j′=1

e−iκl′ x
′
j

N

∑
j=1

Sj′ je
−iκl xj =

1
N2

N

∑
j′=1

N

∑
j=1

Sj′ je
−i(κl xj+κl′ xj′ ) (2.80)

By taking a reference microphone with coordinate x = 0 at j′ = 1 and the corresponding row S1j one obtains

Φ̆ll =
1

N2

N

∑
j=1

S1je
−iκl xj or Φ̆ =

1
N2E

Hs (2.81)

The PSF remains the one given for the iDAS beamformer H̆ in equation (2.71).

b. The wavenumber-frequency transformation for cross-power spectral data

Similar derivations can be provided for the κ−ω transformation by starting from (2.72) :

p̃ = EH(p̂ ◦ ∆x)⇒ p̃p̃H = EH(p̂ ◦ ∆x)[EH(p̂ ◦ ∆x)]H = EH(p̂ ◦ ∆x)(p̃ ◦ ∆x)HE) (2.82)

p̃p̃H = EH [(p̂p̂H) ◦ (∆x∆xH )]E (2.83)
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Φ̃ = EH [S ◦ (∆x∆xH)]E (2.84)

where Φ̃ denotes the full fourier transformed wavenumber-frequency spectrum.
For the shift invariant case one arrives at:

Φ̃ =
1

N2E
H(s ◦ ∆x) (2.85)

As for DAS the point-spread function H̃ remains the same as given for the κ−ω transformation ((2.74)).

c. Near-field power Beamformer

For the near-field cross-power beamformer the source correlation map Θ̆ becomes (by starting from (2.75)):

q̆q̆H = Gip̂(Gip̂)H = Gip̂p̂HGiH
(2.86)

Θ̆ = GiSGiH
(2.87)

In general core interest lies only in the beamformed source auto-power 〈q〉2 stored in the diagonal of Θ̆

(q̆ = trace(Θ̆)). Therefore only Θ̆ll has to be calculated. Rewriting (2.87) shows

Θ̆l′ l =
N

∑
j=1

N

∑
j′=1

Sj′ j|xl − xj||xl′ − xj′ |e−iω|xl−xj |eiω|xl′−xj′ | (2.88)

for l = l′

Θ̆ll =
N

∑
j=1

N

∑
j′=1

Sj′ j|xl − xj||xl − xj′ |e−iω|xl−xj |eiω|xl−xj′ | (2.89)

Θ̆ll =
N

∑
j=1
|xl − xj′ |e

iω|xl−xj′ |
N

∑
j′=1

Sj′ j|xl − xj|e−iω|xl−xj | =
N

∑
j=1

gi∗
l j′

N

∑
j′=1

gi
l jSj′ j (2.90)

or in matrix notation

q̆
l
= giH

l Sg
i
l (2.91)

where gl denotes the column vector of all components of G in row l.
(2.91) is a common notation to calculate the output power spectrum for near-field beamforming. It can be

found for example in [5]. The cross-power point spread function for the underlying auto-power vector qs can
be derived by calculating an artificial cross-spectral density matrix for an assumed source region. The pressure
resulting from a discrete source power distribution q̂s can be derived by starting with:

Now by neglecting coherence information one can calculate a beamformed map by taking only the auto-power
contribution 〈q̆〉2 stored in the diagonal of Θ̆ (〈q̆〉2 = q̆ = trace(Θ̆)). Rewriting (26) in index notation shows

Θ̆l′ l =
N

∑
j=1

N

∑
j′=1

Sj′ j|xl − xj||xl′ − xj′ |e−iκ0|xl−xj |eiκ0|xl′−xj′ | (2.92)

for l = l′

Θ̆ll =
N

∑
j=1

N

∑
j′=1

Sj′ j|xl − xj||xl − xj′ |e−iκ0|xl−xj |eiκ0|xl−xj′ | (2.93)
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Θ̆ll =
N

∑
j=1
|xl − xj|eiκ0|xl−xj |

N

∑
j′=1

Sj′ j|xl − x′j|e
−iκ0|xl−x′j | (2.94)

Θ̆ll =
N

∑
j=1

gi∗
l j′

N

∑
j′=1

gi
l jSj′ j (2.95)

or in matrix notation

q̆
l
= giH

l Sg
i
l (2.96)

where gl denotes the column vector of all components of G in row l.
The corresponding deconvolution problem can be derived by applying the algorithm on an artificial cross-

power spectral density matrix resulting from an unknown discrete source power distribution q̂s. First we assume
a single source at xs|i. The obtained pressure vector p̂i becomes:

p̂i = gi q̂s|i (2.97)

Using the definition of the squared auto-power one can calculate the artificial cross-power spectral matrix Si.

Si = p̂ip̂
H
i = gi q̂s|i(gi q̂s|i)

H = gi q̂s|iq̂
H
s|ig

H
i (2.98)

Si = gig
H
i q̂

s|i (2.99)

Now by applying (2.91) on Si one can express the beamforming map entry q̆
i|l at position xf|l resulting from a

single source situated at xs|i as:

q̆
i|l = giH

l gig
H
i q̂

s|ig
i
l = giH

l gig
H
i g

i
l q̂s|i (2.100)

It turns out that instead of performing a loop for each index l the computation can be more efficiently evaluated
the following:

q̆i = GiH
gig

H
i G

iq̂
s|i (2.101)

Now we can calculate the beamforming map resulting from a superposition of M individual sources by
summing up over the individual contributions.

q̆ =
M

∑
i=1
GiH

gig
H
i G

iq̂
s|i (2.102)

The summation can also be evaluated as:

q̆ = GiH
GGHGiq̂s = H̆q̂s (2.103)

The discrete shift-invariant convolution in (2.60) is performed by multiplying the point-spread matrix H̆ with
the source vector q̂s. The translated kernel is stored in the rows of H̆ .

d. Summary: Deconvolution problems in array processing

For completeness the three most common cross-power algorithms are summarized here in matrix notation:
For a grid with M grid points in the underlying source region Γs (regardless if in κ- or x-space) and N

microphones at position xj one defines the following matrices:
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• E ⇒ ejl = eiκkxj with dim(E) = [N x M]

• G⇒ gjl =
1

|xj−xl |
e−iω|xj − xl | with dim(G) = [N x M]

• Gi ⇒ gi
l j = |xj − xl |eiω|xj−xl | with dim(Gi) = [M x N]

• gi
l with gi

l|j = gi
l j with dim(gi

l) = [N x 1]

• S with dim(S) = [N x N]

• s with dim(S) = [N x 1]

• Φ̆, Φ̃ with dim(Φ̆, Φ̃) = [M x 1]

• q̆, q with dim(q̆, q) = [M x 1]

• H̆ , H̃ , H̆G with dim(H̆ , H̃ , H̆G) = [M x M]

• Infinite beamforming

1. Φ̆ = 1
N2E

Hs

2. Φ̆ = H̆Φ̃s

3. H̆ = 1
N2E

HE

• κ−ω power transformation

1. Φ̃ = EH(s ◦ ∆x)

2. Φ̃ = H̃Φ̃s

3. H̃ = EH(∆x ◦E) with dim(H̃) = [Nk x Nk]

• Conventional beamforming

1. q̆ with q̆
l
= gH

l Sgl

2. q̆ = H̆Gqs

3. H̆G with rows H̆G|l = gH
l GG

Hgl

V. Deconvolution

a. The least-squares problem

A deconvolution algorithm is an attempt to calculate a deconvoluted map d from a given dirty map b with
known shift-invariant or variant point-spread matrix H by minimizing the least-squares error and introducing a
nonnegativity constraint:

minimize ||b−Hd||2 subject to dm ≥ 0 for all m (2.104)

The deconvolution problem is in general over- or underdetermined, thus an approximate solution can only be
found in a least-squares sense by minizing the least-squares error. The same problem arises in linear regression
analysis in statistics. A best fit parameter estimation for a defined set of parameters is searched for to model the
overdetermined system of linear equation.

A number of deconvolution algorithms was introduced to solve problem (2.104). The algorithms used within
this work will be described in the following, starting from shift-invariant algorithms and followed by shift-variant
algorithms.
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b. Shift-invariant algorithms

Shift-invariant algorithms deal with deconvolution problems that can be formulated as a shift-invariant convolution
as follows:

minimize ||b− h ∗ d||2 subject to dm ≥ 0 for all m (2.105)

If the convolution is not shift-invariant one can still apply these algorithms by assuming shift-invariance.
Assuming shift-invariance means practically that h is taken as a row vector of all columns in H at row roundup(N

2 ).
In that case strong shift-variance leads to especially strong derivations at the boundary region of the underlying
source map.

Wiener Deconvolution

The Wiener deconvolution is the least complex deconvolution procedure used within this paper. Developed by
Norbert Wiener it is most commonly used in optical image processing.

Idea:

b = h ∗ d⇒ d = hi ∗ b wherehi contains the pointwise inverted components ofh (2.106)

or in frequency domain

b̂ = ĥd̂⇒ b̂ ◦ /ĥ = b̂ ◦ ĥi = d̂ (2.107)

Deconvolution through simple inverse filtering is in practice inconvenient due to amplification of background
noise. Therefore Wiener additionally included a signal-to-noise ratio dependent filter. Instead of ĥi one takes the
Wiener filter ĝ defined most easily in frequency domain as:

ĝl =
1
ĥl

[
|ĥl |2

|ĥl |2 + 1
sl

]
(2.108)

with sl as the frequency dependent signal to noise ratio. A Wiener filter can be included within DAMAS2 [8]
to prevent the amplification of background noise.

DAMAS2 Deconvolution

The DAMAS2 algorithm was developed by Dougherty [8] in an attempt to dramatically increase the deconvolution
of sDAS maps by performing fast convolution in frequency space. Fast convolution can only be performed for
shift-invariant point-spread functions, thus the shift-variant PSF has to be approximated as shift-invariant by
taking only the center PSF. Starting from b̂ = ĥc ∗ d̂ one can define the residual ri of iteration i as:

ri = b− hc ∗ di (2.109)

Normalizing with a = ∑N
j=1 |hc|j| (for 3 dimensions) one can calculate a new approximation of d by adding the

normalized residual to di:

di+1 = di +
ri

a
(2.110)

This is already an iterative algorithm. Non-negativity is ensured by setting di ≥ 0 within each iteration. The
DAMAS2 idea is to calculate h ∗ di by performing fast-convolution in Fourier space. One gets:

F (h ∗ di) = F (h) ◦ F (di)→ (h ∗ di) = F−1[F (h) ◦ F (di)] (2.111)

Therefore one can implement the algorithm in the following steps:
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1. Initialize d = d0

2. Calculate ĥc = F (hc)

3. Set a = ∑N
j=1 |hc|j|

4. Iterate from i = 1 till i = N

(a) ri = b−F−1[ĥc ◦ F (di)]

(b) di+1 = di + ri

a

(c) Set di+1
l = 0 if di+1

l < 0

Richardson-Lucy Deconvolution

The Richardson-Lucy Restoration algorithm is an iterative technique for solving the least-squares problem. It is
heavily in use for the restoration of astronomical imagery but can also be used for any type of shift-invariant
deconvolution problem. It is the most complex algorithm used within this work. Based on an expectation-
maximization algorithm it attempts to maximize the likelihood of the deconvolved map. A good explanation can
be found in [3]. Original presentations were published as [24] and [20]. It can be performed the following:

1. Seta = ∑N
j=1 |hc|j|

2. Set d0 = b
a

3. Iterate

(a) bn = dn ∗ hc = F−1[F (dn)F (hc)]

(b) εn = b ◦ /bn

(c) ζn = εn ? hc = F−1[F (εn)F (hT
c )]

(d) dn+1 = 1
ad

n ◦ ζn

The steps can be explained the following.

1. Initialize normalization parameter

2. Set initial solution

3. Iterate

(a) Convolve initial solution with centered point spread function to become the estimated dirty map

(b) Calculate the relative error between estimated and true dirty map

(c) Correlate the relative error with the centered point spread function (Convolution with the up-down
transposed) to get the relative solution error in solution space.

(d) Update the old solution by weighting it with the relative solution error

The Richardson-Lucy algorithm automatically fulfills the nonnegativity constraint. Energy conservation is
additionally fulfilled each iteration as:

N

∑
j=1

dn =
1
a

N

∑
j=1

bj (2.112)

The Richardson-Lucy algorithm can be performed using the MATLAB builtin function deconvlucy.

28



V. DECONVOLUTION CHAPTER 2. SIGNAL PROCESSING

c. Shift-variant algorithms

DAMAS Deconvolution

The DAMAS deconvolution algorithm was introduced in 2005 by Brooks and Humphreys ([5]). It has become
widely used to deconvolve sDAS maps. It is an iterative algebraic algorithm based on a Gauss-Seidel-type
relaxation. The nonnegativity constraint is applied within each iteration.

Writing b =Hd in index notation yields

N

∑
k=1

hjkdk = bj (2.113)

Matrix H contains (eventually) shift-variant point-spread functions hj for each possible source j, thus, if H is
diagonal dominant with hjj = 1 one can rewrite (2.113) as

bj = dj +
j−1

∑
k=1

hjkdk +
N

∑
k=j+1

hjkdk (2.114)

Note that under- and overrelaxation can be implemented by variation of hjj with scaling factor c as H ′ = H
c .

The calculated solution has to be rescaled accordingly as d = d′c. It is possible to rearrange (2.114) as

dj = bj −
j−1

∑
k=1

hjkdk −
N

∑
k=j+1

hjkdk (2.115)

The problem can be solved by calculating dj iteratively from d = 1 until d = N. If the iteration is proceeding
from left to right then all dk at k from k = 1 until j− 1 were already calculated in the current iteration n + 1, while
all dk fromk = j + 1 until N are available only from the last iteration n.

dn+1
j = bj −

j−1

∑
k=1

hjkdkn + 1−
N

∑
k=j+1

hjkdn
k (2.116)

One can define a residual rj as:

r(n+1)
j = dn+1

j − dn
j =

j−1

∑
k=1

hjkd(n+1)
k +

N

∑
k=j

hjkd(n)k − bj (2.117)

The new approximation for dj can be calculated by enforcing the non-negativity constraint

d(n+1)
j = max(d(n)j + r(n+1)

j , 0) (2.118)

Known convergence criteria for Gauss-Seidel criteria cannot be applied here due to the additional non-negativity
constraint. Due to the successive relaxation scheme convergence may depend on grid point ordering.

Nonnegative Least-Squares

The NNLS algorithm published by Lawson and Hanson [19] in 1987 was one of the first widely used algorithm
capable of solving non-negativity constrained least-squares optimisation problems. It is based on a direct
minimization of the square sums of |Hd− b| using an active set strategy and simple linear regression on the
unconstrained set. The problem can be written as

min Φ =
1
2
||Hd− b||2 subject to dj ≥ 0 (2.119)

The gradient of Φ becomes:
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w = ∇Φ =HT(Hd− b) (2.120)

Algorithm:

1. Initialization

(a) Define subset P = 0 (passive set) and R = i (active set containing all indices [1,2...M])

(b) Initialize d = 0

(c) Initialize gradient w =HT(b−Hd)

2. Main loop

(a) Take index m of maximal derivative wm = max(w)

(b) Include index m in P and exclude it from R

(c) Calculate the regression vector by including only passive rows of H as sP = [(HP)THP]−1(HP)Tb

(d) Inner loop (in case the regression vector becomes negativ min(sP ≤ 0) )

i. Calculate the minimal derivative towards the previous solution d as α = −min[dP ◦ /(dP − sP)]

ii. Calculate a new estimate for d as: d = d+ α(s− d)
iii. Exclude indices j for dj = 0 (now constrained)from the passive set P and put them in the active set

R

iv. Calculate a new regression vector as sP = [(HP)THP]−1(HP)Tb

v. Ensure the regression vector to be zero at constrained indices : sR = 0

(e) Set d = s

(f) Calculate a new gradient w =HT(b−Hd)
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Chapter 3

Turbulent wall pressure fluctuations

I. The turbulent boundary layer

The following considerations account for fully developed isotropic weakly compressible turbulent boundary layers
with zero vertical pressure gradient. Isotropic turbulence can be assumed at sufficiently high Reynolds numbers
(generally fulfilled for wind channels) and means that the averaged squared turbulent velocity fluctuations can be
assumed constant in all space dimensions.

u′2 = v′2 = w′2 (3.1)

The principal physical parameters to characterize the macroscopic boundary layer characteristics are:

1. The boundary layer thickness which is (for a turbulent boundary layer) δ = ν
U∞

0.14 Rex
ln Rex

G(ln Rex)

2. The displacement thickness: δ1(x) = 1
U∞

∫ ∞
y=0(U∞ − u)dy where U∞ is the upper edge boundary layer

velocity and u(y) the horizontal velocity on vertical coordinate y

3. The friction velocity Uø =
√

U∞/ρ

4. The mean wall shear stress τ = ρν ∂u
∂y ∼ ρν U∞

δ with δ = δ(x, ν, U∞)

(a) TBL structure (b) aerodynamic pressure waves

Fig. 3.1: Boundary layer structure

A sketch illustrating the boundary layer development is displayed in Fig. 3.1a. For sufficiently high Reynolds
numbers (thus a sufficiently far distance from the frontal edge), the viscous sublayer dominating the laminar
boundary layer becomes small compared to the turbulent layer in which fluctuating Reynolds stresses replace
the real viscous shear stresses. The transition between the two regions takes place in the buffer region. The
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overlap layer is defined above the buffer layer as a region in which both viscous and Reynolds stresses affect the
developing velocity distribution.

II. Intuitive explanation

For better understanding of the underlying physics the following part shall serve as an intuitive guide to
understand turbulent noise production before the governing equations are derived.

a. Aerodynamic pressure fluctuations (Pseudo-sound)

Aerodynamic pressure fluctuations are caused by macroscopic eddies propagating over the boundary surface.
Mathematically negatively turning eddies decrease the near wall flow velocity to fulfill the no-slip condition. The
figure shown below 3.1b can be interpreted as a superposition of rotating eddies with a characteristic distance
lc = λ reflecting the eddy size. These eddies are propagating with a local convective velocity Uc resulting in an
evanescent plane wave. Pressure fluctuations propagating slower than the speed of sound decay rapidly towards
flow direction and are called evanescent waves. As their propagation velocity does not match the speed of sound
these waves are sometimes referred to as Pseudo-sound.

b. Acoustic pressure fluctuations (sound)

Acoustic pressure fluctuations emerge from free-field turbulent fluctuations as so-called quadrupole noise. This
quadrupole noise is related to the fluid elements Reynolds stresses. In case of free flow no forces can act on a
single fluid element. Nevertheless, in case of turbulence, velocity fluctuations introduce counteracting forces
leading to a local change of vorticity (Fig. 3.2a). Essentially one can describe each of these forces as a dipole source.
Superposing the two opposing forces gives the pressure field sketched in Fig. 3.2b. Note that only fluid particles
moving at sonic speed can introduce acoustic pressure fluctuations, therefore only a small portion of eddies create
sound but this contribution is efficiently transmitted through the medium and therefore dominates the far-field
pressure distribution emerging from free-field turbulent eddies. It is important to note that this interpretation
of quadrupole noise accounts only for free-field turbulence because the superposition of monopoles is possible
only for the homogenous wave-equation (2.17) for which every solution can be expressed as a convolution over
Green’s function. In case of an enclosing wall the partial differential equation (2.15) has to be solved. It appears
that, following the common approach to take into account walls by mirroring, the near-wall source function of
quadrupole noise can be expected to be of dipole nature (Fig. 3.1b).

(a) TBL structure (b) aerodynamic pressure waves (c) Dipole source

Fig. 3.2: Aerodynamic pressure fluctuations
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III. Characterization

a. Characterization of aerodynamic turbulent wall pressure fluctuations

Under the assumption of equilibrium flow without mean pressure gradient ∇p and homogeniously distributed
turbulence one can describe the pressure field as a distribution of eddies with a range of characteristic lengths l
which can directly be related to a range of wavenumbers κ as l ∼ 1

kc
. The dominant contribution of wall-pressures,

according to its incompressible nature referred to as aerodynamic contribution, can be interpreted as originating
from a ’frozen’ pattern of turbulent eddies convected streamwise with local mean flow velocity Uc. These pressure
fluctuations decorrelate rapidly due to high mean flow shear stresses as well as turbulent mixing processes. As
l ∼ Uc

ω higher frequencies lead to smaller characteristic eddy lengths and small vortices are located closer to the
wall they are submitted to slower mean convection velocity (no-slip condition).

Accordingly low frequency contributions can directly be associated with large scale turbulent structures
originating from throughout the boundary layer.

In a first attempt to establish a model fulfilling the physical requirements Corcos assumed plane waves
propagating with convection velocity Uc experiencing exponential correlation decay in streamwise and lateral
direction. Introducing two empirical paramters α and λ reflecting streamwise and lateral correlation lengths, he
proposed the famous Corcos model for the shift-invariant cross-power spectral density known as

S(ζ, ω) = Spp(ω)ekcζe−i kc
α |ζ|e−i kc

β |η|, (3.2)

where kc = ω
Uc

represents the angular wavenumber of convected vortical structures. The corresponding
wavenumber-frequency spectrum Φ can be calculated by 2D spatial Fourier transformation obtaining

Φ(κ, ω) =
Spp(ω)

π2
αkc

k2
c + α2(kı − kc)2

βkc

k2
c + β2k2


. (3.3)

Theoretical analyses concerning the low wavenumber region were conducted by Kraichnan and Phillips. Their
analyses were based on the incompressible Navier-Stokes equation for a plate of infinite extent under statistically
stationary turbulence homogenously distributed in plane waves parallel to the wall. Their result became known
as the Kraichnan-Phillips theorem stating that Φ(0, ω) = 0 [6]. Note that the Corcos-model does not fulfill the
Kraichnan-Phillips theorem. The Kraichnan-Phillips theorem became modified as Ffwocs Williams pointed out
the importance of supersonic waves by considering compressibility effects and concluding that Φ(κ, ω) equals
zero only if κ = 0 and ω = 0 but that Φ approaches a non-zero low κ limit as κ = 0. Additionally he estimated
the magnitude at κ = 0 to be proportional to the square of the mean-flow Mach number [6]. The magnitude at
κ = 0 is of great importance because it corresponds to noise radiated orthogonally towards the wall and thus
transmitted very efficiently.

b. Characterization of acoustic turbulent wall pressure fluctuations

Theoretical investigations taking into account effects of compressibility are usually based on Lighthills theory
of aerodynamic sound. Various approaches (e.g. [25]) predict a non-integratable singularity at the acoustic
wavenumber κc. The singularity is thought to be related to ’grazing’ sound waves with infinite energy density
that propagate parallel to the wall. Their origin lies in a theoretically infinitely extensive distribution of turbulent
Reynolds stresses. Howe [15] showed that the main mechanisms responsible for a finite sonic contribution are
finite boundary-layer size and wall curvature. The two mechanisms are of comparable magnitude and govern the
height of the sonic edge. In a simplified approach one can model the cross-power spectral density for an infinite
plate as a diffuse field cross-correlation [1]. The diffuse field can be calculated by averaging random incident
waves over a halve sphere.

The single plane wave cross-power spectral density can be calculated (see (2.9)) as:

Spwave(ζ, ω) = F̂ p1(F̂ p2)
∗ = eκr cos(θ) withR(eκr cos(θ)) = cos(κr cos(θ)) (3.4)
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Fig. 3.3: Diffuse sound field

Averaging all waves yields:

S(ζ, ω) = Spp(ω)
1
A

∫
∂A

cos(κ0r cos(θ))dA =
Spp

4πr2

∫
∂A

cos(κ0r cos(θ))r2 sin(θ)dθdφ = (3.5)

Spp(ω)
∫ π

0

∫ 2π

0
cos(κ0r cos(θ)) sin(θ)dθ

dθ

4π
= Spp(ω)

sin(κ0|ζ|)
κ0|ζ|

(3.6)

The corresponding wavenumber-frequency spectrum becomes

Φ(κ, ω) =
Spp(ω)

2πk2
0

1√
1− (|κ|/k0)2

for |κ| ≤ κ0 and Φ = 0 for |κ| > κ0. (3.7)

c. Simple combined model

Combining (3.2) and (3.7) with a scaling parameter A represents a simplified model reflecting both acoustic and
aerodynamic pressure contributions and can be used to evaluate post-processing capabilities for experimental
setups [12].

S(ζ, ω) = Spp(ω)
1

1 + A

[
ekcζ e−i kc

α |ζ|e−i kc
β |η| + A

sin κ0|ζ|
κ0|ζ|

]
(3.8)

and

Φ(κ, ω) = Spp(ω)
1

1 + A

[
1

π2
αkc

k2
c + α2(kı − kc)2

βkc

k2
c + β2k2


+ A

1
2πk2

0

1√
1− (|κ|/k0)2

]
(3.9)

with A 6= 0 f or |κ| ≤ k0 and A = 0 f or |κ| > k0

d. Model after HOWE

Various authors analytically addressed the problem by taking into account effects of compressibility (e.g. [6]) and
derived several different forms of the spectrum. Apparently the wavenumber-frequency spectrum of a uniform
homogenous boundary layer of infinite extent on a plane surface in low Mach number flow has a singularity at or
near the sonic wavenumber κ0. This singularity was removed by analytical modifications such as restriction to a
finite extent boundary layer, taking account of dissipation of acoustic waves by boundary layer turbulence and the
mean-velocity distribution in the TBL led to elimination of the singularity. Therefore the spectrum is expected to
have a local finite peak at κ0. A commonly used model is that given by Chase and modified by Howe

Φ(κx, ω)

ρ2U3
τδ3

= [(κ+δ)2 + 1/b2]−5/2
( CM(κ2

c δ)κ2
x

|κ2
x − κ2

0|+ ε2κ2
0
+CT(κxδ)2 (κ+δ)2 + 1/b2

(κxδ)2 + 1/b2

(
c1 +

c2|κ2
x − κ2

0|
κ2

x
+

c3κ2
x

|κ2 − κ2
0|+ ε2κ2

0

))
(3.10)

The variable κ+ is defined as κ+ = [(ω−Ucκx)/(hUτ)2 + κ2
c ], whereas b, c2, c3, CM, CT, h are empirical constants.

Attempts to gauge these constants rely either on numerical or experimental techniques.
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e. Scaling

Collapsing experimental results is a tedious task due to the different turbulent regions associated with different
frequency ranges [13]. Note that Φ(ω) = S(0, ω).The low frequency range for which ωδ∗

U∞
≤ 0.03, where δ∗

is the boundary layer displacement thickness and U∞ the free-stream velocity was found to collapse best in
the form of Φ(ω) U∞

q2
0δ∗

as a function of ωδ∗
U∞

where q0 = 1
2 ρU2

∞ corresponds to the free stream dynamic pressure.

Scaling the low frequency range with outer flow variables supports the physical relation to eddy sizes mentioned
previously. Various scaling approaches are common in literature for the mid-frequency range [5 ≤ ωδ, Uτ ≤ 100],
where δ is the boundary layer thickness and Uτ is the friction velocity defined as

√
U∞/ρ. Scaling on outer flow

variables proved beneficial with good collapse if Φ(ω) Uτ

τ2
wδ

is plotted over ωδ
Uτ

. A universal region for which Φ(ω)

is scale independent and proportional to ω−1 represents the passage from medium to high frequencies covering
frequencies from 100 ≤ ωδ

U∞
≤ 0.3 δUτ

ν . Within the universal region Φ(ω) yields ωΦ(ω)

τ2
w

= const.. The high frequency

range [ων
U2

τ
≥ 0.3] collapses best if Φ(ω) U2

τ

τ2
wν

is plotted as a function of ων
U2

τ
.
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Chapter 4

Evaluation

The performance of the κ − ω power transformation and infinite beamforming deconvolution is analyzed
considering a microphone array installed within the main subsonic wind tunnel of Centre Acoustique at École
Centrale de Lyon in France. For detailed information concerning the experimental setup see [1]. The array consists
of N = 63 different microphones aligned along the diameter of a rotating disc. By taking measurements for
63 different angles one arrives at 63 x 63 = 3969 measuring points for the surface. The pressure signals were
recorded for 90s at each angle. Afterwards the cross-power spectral density S(ζ, η, ω) was computed using the
Welch periodogram method with a sampling frequency of 25.6kHz and averaging over 400 data blocks of 0.08s
with 50% overlap. Note that the resulting spectrum covers only distances in the upper halfspace ζ+, η±. The
property of conjugate-symmetry allows to calculate the lower halfspace ζ−, η± cross-power spectral density S− as
the conjugate of S+.

For validation a mixed diffuse-corcos model with a convective-acoustic power ratio of r = 0.01 (or 20dB) is
simulated as analysis input. Two different grids are applied to evaluate the presented algorithms on different
regions. The first region covers the whole range of possible wavenumbers while the second region is centered
around the acoustic region. The large grid covers the domain from κxmin = −100[ 1

m ] until κxmax = 800[ 1
m ] and from

κymin = −800[ 1
m ] until κymax = 800[ 1

m ] with a resolution of ∆κ = 5[ 1
m ]. The small grid covers a rectangular area

ranging from κxmin = −120[ 1
m ] until κxmax = 120[ 1

m ] and respective in κy with a resolution of ∆κ = 2[ 1
m ]. The full

procedure is explained using the algorithms derived in previous sections. Afterwards deconvolution results are
compared for both algorithms.

I. Calculation

For application of DAS or the κ−ω transform the following input data is provided:

• Matrices ζ and η with components ζmn and ηmn defining a grid of N possible separation vectors

• Matrices Kx and Ky with components κx|op and κy|op defining a grid of L focus wavenumbers

• Matrice S with components smn corresponding to each possible separation vector ζmn and ηmn

Now by assigning a unique index j to each possible separation distance and cross-power spectral density
matrix index pair mn and similarly a unique index l to each focus wavenumber index pair op one can define the
steering matrix E with components ejl = ei(κx|lζ j+κy|lηj) and the cross-power spectral density vector s. Let Z and M
denote the number of possible separation distances and focus wavenumbers respectively.

a. Beamforming

A beamforming map can easily be calculated from shift-invariant cross-power spectral density matrices as
explained in (2.81).
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Φ̆ =
1
Z
EHs (4.1)

Note that N2 was replaced by Z. Z = N2 holds only if multiple identical correlations for the same separation
vector are stored, which is computationally ineffective. Thus the resulting amount of possible separation distances
is Z ≤ N2.

The full point spread matrix H̆ is necessary only for shift-variant deconvolution algorithms (here: DAMAS,
NNLS). For shift-invariant deconvolution algorithms it is sufficient to provide only the point-spread function
resulting from a single source of strength 1 at the center of the region of interest. H̆ can be calculated as

H̆ =
1
Z
EHE (4.2)

whereas the centered point-spread vector for a single source situated at index lc, the so-called convolution
kernel, calculates as:

h̆c =
1
Z
EHE(lc, :) (4.3)

Mention that it is possible to calculate H̆ from h̆c using the shift-invariance property.

b. The wavenumber-frequency transformation

The κ−ω transformation is calculated as shown in (2.85). Additionally, instead of the conventional rectangular
window, a hamming window is included to reduce spectral leakage. The resulting map Φ̃ becomes:

Φ̃ =
1

(2π)2E
H(s ◦ ∆x ◦whanning) (4.4)

The full-point spread matrix H̃ becomes (following (??))

H̃ =
1

(2π)2E
H(∆x ◦whanning ◦E) (4.5)

with centered point-spread vector

h̃c =
1

(2π)2E
H(∆x ◦whanning ◦E(lc, :).′) (4.6)

Note that ∆x and whanning denote row-vectors in case (4.4) and (4.6) but an M-column matrix with vectors
∆x,whanning respectively in case (4.5).

c. Energetical normalization

In order to fulfill Parseval’s theorem it is important to normalize point-spread vector h̃c and matrix H̃ with
e0 = ∑M

l=1 hc|l as

h̃0c =
h̃c

e0
and H̃0 =

H̃

e0
(4.7)

Energetical normalization is meaningful only for the κ−ω transformation.
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II. Analytical result

Analytical results are shown for large and small grid as analytically described in Chapter 3 are shown in Fig. 4.1a
and Fig. 4.1b. All following plots shown for evaluation reasons are scaled relative to the map absolute value in
linear scale from 0 [blue] to 1[red].

(a) Total spectrum (b) Acoustic contribution

Fig. 4.1: Analytical result

III. Comparison iBEAM deconvolution

The problem is calculated on the large grid using DAMAS2 and RL. These are the only algorithms capable of
solving for the fine grid containing 181 x 321 nodes. Afterwards all four presented algorithms are evaluated on the
small grid containing 121 x 121 nodes.

a. Large grid

The conventional infinite beamforming map (iBEAM) shown in Fig. 4.2a roughly allows to identify convective
ridge and acoustic region. The convective region is blown up in width and generally overestimates the presence of
incoming waves. The sonic region is strongly underestimated and no circular edge can be detected. The iBEAM
point-spread function shown in Fig. 4.2b (on the small grid) is not accurately resolved at the current resolution of
∆κ = 5 1

m . Regarding the different deconvolution algorithms it is shown in Fig. 4.2c (DAMAS2) that the convective
region intensity is strongly reduced at the cost of a vanishing acoustic region whereas the Richardson-Lucy
algorithm (Fig. 4.2d) performs much better in conserving the general shape but still underestimates the size of the
acoustic region. No sonic region can be detected.

(a) (b) (c) (d)

Fig. 4.2: iBEAM deconvolution large grid

A coarse point-spread function resolution is assumed as the main reason for the bad results obtained on the
large grid. Finer resolution is not an appropriate solution due to high computational effort , especially as the
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convective ridge is moving rightwards at higher frequencies. Additionally convergence is more difficult to obtain
for grids containing a large number of nodes. Instead the small grid is tested.

b. Small grid

A major drawback of this grid can be seen in Fig. 4.4b. The presence of strong contributions of energy at the
domain border is disadvantageous considering that the real sources lie to a big part outside the considered domain.
Thus the resulting problem is especially ill-posed meaning that no source distribution within the considered
region can actually satisfy the dirty map (Fig. 4.3).

Fig. 4.3: Dirty map iBEAM

The different deconvolution results are shown in Fig.
4.4.The DAMAS algorithm is capable of removing most
lobes showing a recognizable sonic region. Vertical
lobes at the right corner result from the strong contri-
bution of energy coming from the convective region.
DAMAS2 shows only a single peak around the acoustic-
wavenumber in the right halve-space. The Richardson-
Lucy algorithm also succeeds in detecting the sonic re-
gion but the result is horizontally clinched and not ho-
mogenous. NNLS shows a distribution of single peaks
with a slightly increased energy distribution around the
sonic region. Neither algorithm is satisfying, thus leading
to the implementation of κ−ω deconvolution as shown
in the following.

(a) (b) (c) (d)

Fig. 4.4: iBEAM deconvolution for small grid

IV. Comparison κ −ω power deconvolution

a. Large grid

The nonequidistantly-spaced κ− ω power transform shown in Fig. 4.5a is quite close to the analytical result.
Beams resulting from the convolution of the underlying source distribution with point-spread function (Fig. 4.5b )
results in only small lobes towards higher values of κx. The sonic-region is well-defined but underestimated in
comparison with the hydrodynamic ridge. The presence of a single lobe around κ = 0 is probably caused by the
convolution of the circular sonic region with a circular point-spread function, resulting in a strong superposition
of lobes in the center. Application of DAMAS2 (see Fig. 4.5c) succeeds in eliminating the high-wavenumber
lobes as well as the central lobe. As a backdraw the low-energy subconvective waves disappear. Application of
Richardson-Lucy does not yield any convergent results.
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(a) (b) (c) (d)

Fig. 4.5: κ−ω power deconvolution large grid

b. Small grid

One of the biggest advantages of κ−ω power transformation in comparison with iBEAM is the more distinct
separation between convective and acoustic region. Fig. 4.6 shows a very well resolved diffuse field with almost
all energy concentrated correctly within the acoustic region. The map is thus much better defined than the small
DAS map and allows for better deconvolution performance.

Fig. 4.6: κ−ω power transformation

Each deconvolution algorithm succeeds in detecting the
sonic region. DAMAS shows equidistantly distributed
spots at the sonic region and is the only algorithm capable
of reducing the relative center lobe energy. DAMAS2 is
able to correctly extract the acoustic region boundary
although the resulting energy distribution is not totally
homogenous. The Richardson-Lucy algorithm shows a
very well resolved homogenous sonic region. Although
the center-lobe could not be reduced it is deemed the
best result for the acoustic region so far. NFFT shows
an inconvenient distribution of spots around the sonic
region.

(a) (b) (c) (d)

Fig. 4.7: κ−ω power deconvolution small grid

No deconvolution algorithm is capable of preserving energy. Although the Richardson-Lucy algorithm is
energy preserving it does so only if a normalization common in image processing is used which is not yet applied
[10].Thus, the deconvolution output is rescaled as :

Φ̃
D
=

Φ̃
D

∑M
l=1 Φ̃D

l

M

∑
l=1

Φ̃l (4.8)
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Comparing the analytical result, the κ−ω power transformation and the rescaled RL deconvolved map (Fig.
4.8) one can draw the following conclusion:

• The sonic region is much better defined in the RL deconvolved map although slightly shifted inwards from
the real sonic wavenumber κ0 = 46[ 1

m ]

• The energy at κ = 0 is strongly overestimated in comparison with the original κ−ω power transformation

Fig. 4.8: quantiative performance RL κ−ω deconvolution

The deconvolution does not seem to be an appropriate
attempt to detect numerically correct values within the
acoustic region but it greatly enhances the visibility of
the high energy sonic edge. It is thus deemed a valu-
able tool to scan wavenumber-frequency spectra for the
numerically predicted sonic region.

V. Conclusion

The following conclusions are drawn from evaluating the different algorithms:

1. The quality of measured spectra can be increased by applying the DAMAS2 algorithm on the κ−ω power
transformation

2. The visibility of a potential sonic region can be strongly increased by applying the Richardson-Lucy algorithm
on a κ−ω power power transformation on the acoustic region
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Experimental results

The experimental data was post-processed as previously evaluated for the analytical testcase and is shown as a
function of outer flow variables Φ̃(ωδ∗

U∞
). Applying the DAMAS2 algorithm on the κ−ω transformation of the

50 m
s (M = 0.13) zero pressure gradient case shown in Fig. 5.1a yields that the estimated underlying source field

displayed in Fig. 5.1b has considerably stronger concentration of energy around the center of the aerodynamic
ridge than previously predicted. The lobes polluting the whole region are efficiently removed outside the primary
regions while some remaining lobe structures are still visible in the aerodynamic region. A strong contribution
at κ = 0 is detected. The nature of this contribution is not yet clear but it is assumed to stem from strong
orthogonally impinging waves due to boundary layer reflection or possibly also duct modes.

(a) κ−ω transformed spectrum
(big grid)

(b) κ−ω deconvolved spectrum
(big grid)

(c) κ − ω transformed acoustic
spectrum (small grid)

(d) κ−ω deconvolved spectrum
(small grid)

Fig. 5.1: Comparison spectrum at f = 2500Hz ,M = 0.13

Analyzing the acoustic Richardson-Lucy deconvolved spectrum for different frequencies (Fig. 5.2) reveals
that the strong contribution at κ = 0 preveals at all frequencies. Some maps at higher frequencies suggest the
dominance of contributions around the ellipse reflecting the dispersion relation as for f = 3750Hz (Fig. 5.1d) but
in general accordance is not sufficient to claim the existence of the sonic ridge. It has to be pointed out that the
maps are shown in a strongly dynamic scale covering 4 orders of magnitude relativ to the maximal map value.
Effectiveness of the κ−ω deconvolution procedure is demonstrated by comparing the spectrum obtained through
κ− ω power transform of S(ζ, ω) (Fig. 5.1c) and the spectrum obtained through subsequent application of a
deconvolution procedure (Fig. 5.1d).
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Fig. 5.2: κ−ω deconvolved acoustic spectrum M = 0.13

More interesting deductions can be drawn for a velocity of 75 m
s (M = 0.23). As for the previous case energy

becomes concentrated in the core of the aerodynamic ridge. But by looking at the deconvolved acoustic spectrum
for different frequencies (Fig. 5.4) one can clearly identify strong contributions around the sonic edge. The
orthogonal component at κ = 0 is still present but reduced in power. It seems as if the sonic contributions are
stronger in the negative wavenumber region which is especially interesting by pointing out that the microphone
array is rotating and the shift-invariant cross-power spectrum does not depend on the absolute microphone
position. As a result the concentration does not seem to be related to disturbing directional noise in the measuring
process but to be either a feature of boundary layer noise or a result from errors in signal processing which is
not probable. It is emphasized that the obtained results are the first measurements of the acoustic contribution
of turbulent boundary layer wall pressure fluctuations for low Machnumbers ever observed. By applying an
inverse Fourier transformation of the deconvolved wavenumber-frequency spectrum one obtains a least-squares
trigonometric interpolation of the pure acoustic cross-power spectral density (Fig. 5.5). The spatial maps cover
maximal correlation lengths of lc = ± 2π

∆κ = ± 2π
2 = ±3.14m. An estimation of correlation lengths higher than the

array diameter D = 0.25m is possible because the cross-power spectral density is assumed to be a solution of
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(a) κ−ω transformed spectrum
(big grid)

(b) κ−ω deconvolved spectrum
(big grid)

(c) κ − ω transformed acoustic
spectrum (small grid)

(d) κ−ω deconvolved spectrum
(small grid)

Fig. 5.3: Comparison spectrum at f = 2500Hz, M = 0.23

the Helmholtz equation and thus orthogonality is approximately true for every focus wavenumber (restricted
by array size) and by applying a deconvolution procedure one can theoretically predict every wave as long as
Nyquist’s criteria is fulfilled. Thus even very low wavenumbers corresponding to high correlation lengths can be
obtained. The low-frequency maps show strong correlation for long separation distances in mean flow direction.
Mid-frequency cross-spectra show direction independent correlation lengths as expected for the acoustic diffuse
field while those for higher frequencies seem to show strongest correlations for separation vectors not aligned
with the mean flow. The appearance of a favorable direction of propagation that is not aligned with the mean flow
comes unexpected and can not yet be explained.
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Fig. 5.4: κ−ω deconvolved acoustic spectrum M = 0.23
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Fig. 5.5: Spatial least-squares trigonometric interpolation of acoustic cross-spectrum M = 0.23
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I. Summary

The previous work has been focused on the signal processing necessary to estimate the interior noise contribution
underneath a homogenous TBL over a flat plate. For that purpose previous experimental work on 2D arrays
was analyzed and a new approach was developed to improve the resulting wavenumber-frequency spectrum.
By analyzing the infinite beamforming approach chosen by Ehrenfried et al. [11] and by deriving its relation
to the Fourier transform it became clear that, especially for the low-wavenumber region, a non-equidistant
Fourier transform is better suited to reproduce and measure the spectrum. Infinite beamforming might still be a
well-suited algorithm to access convected wall-pressure fluctuations underneath strong background noise because
the correlations between microphones of small distance are weighted the same as those for long correlations
(contrary to the spatial weighting using the κ−ω transformation). Application of functional beamforming might
help in identifying small wavenumber contributions but the resulting spectrum is no longer directly related to the
Fourier transform and can therefore not be convolved with the structural response to estimate the resulting interior
noise. The tremendously high amount of microphones necessary for experimental validation is not realizable in
practice which results in a coarse microphone response that distorts the underlying spectrum. The true spectrum
can be estimated by applying deconvolution algorithms that solve the corresponding non-negative least-squares
problem. For this purpose a range of modern deconvolution algorithms was applied on an analytical model
and the Richardson-Lucy algorithm emerged as the most well-suited one. Nevertheless the obtained spectra are
only a single solution of the potentially non-unique least-squares problem and therefore have to be treated with
care. Following the successful validation on a simple convective-acoustic model the process has been applied
on experimental data obtained from low Mach number measurements on a rotating array at École Centrale de
Lyon. At M = 0.23 the resulting spectrum weakly indicates the expected sonic ridge while strong orthogonally
impinging waves of unknown origin dominate the wavenumber-frequency spectrum at M = 0.13.

II. Outlook

The study of TBL wall pressure fluctuations that has been the driver of this work remains an extraordinary
challenge for the future years to come. Despite the decades of years of research that have already been spent core
goals like a reasonable estimate for the direct acoustic pressure contribution underneath a homogenous TBL on a
flat plate remain unclear. The ever-mounting power and accessability of high performance computing might allow
numerical computations to gain access to this important quantity within the near future but its experimental proof
might still take its time. The measuring setup necessary to be able to separate the small acoustic contribution from
the strong hydrodynamic one demands extraordinary sophistication. Even more challenging is the calculation of
interior noise emanating from the non-homogenous TBL developing over complex geometries, which is a major
area of interest for especially automotive and aeronautic industries. The calculation and storage of the (measured
or simulated) cross-power spectral density for 2D geometries over the whole frequency range is itself an obstacle
that grows tremendously (from 2D to 4D) if neither shift-invariance nor symmetry can be assumed. In case a
clear and sound wavenumber-frequency representation is found for a range of dimensionless inner and outer
flow variables engineers will be able to adopt, correct and develop the analytical models to extract the essential
variables that govern the driving turbulent mechanisms. When that time has come new geometries and structures
can be developed to design a new generation of low noise cars and aircrafts that as a result allow to push the
various performance limits currently restrained by excessive noise development.
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