

Diploma Thesis

An alternative design based on span by span erection on falsework to the with incremental launching method erected bridge B2314 in Vienna and comparison of the final state masses

Submitted in satisfaction of the requirements for the degree of Diplom-Ingenieurin of the TU Wien, Faculty of Civil Engineering

DIPLOMARBEIT

Alternativentwurf basierend auf Herstellung mittels Traggerüst für die mit Taktschiebeverfahren errichtete Brücke B2314 in Wien und Massenvergleich im Endzustand

ausgeführt zum Zwecke der Erlangung des akademischen Grades einer Diplom-Ingenieurin eingereicht an der Technischen Universität Wien, Fakultät für Bauingenieurwesen

von

Viktoriya Mihaylova BSc.

Matr.Nr.: 1026952

unter der Anleitung von

O.Univ.-Prof. Dipl.-Ing. Dr.-Ing. Johann Kollegger M.Eng. Univ.Ass. Dipl.-Ing. Stephan Fasching, BSc.

> E212-2 Institut für Tragkonstruktionen Betonbau Forschungsbereich für Stahlbeton- und Massivbau Technische Universität Wien, Karlsplatz 13, A-1040 Wien

Danksagung

Mit dem Verfassen dieser Diplomarbeit und besonders dieses Abschnitts geht für mich das Studium des Bauingenieurwesens und somit eine Zeit intensiver persönlicher und intellektueller Weiterbildung zu Ende. Als ich im Jahr 2010 nach Wien kam, um meine Ausbildung fortzusetzen, ist mir definitiv nicht bewusst gewesen, auf was für eine Herausforderung ich mich eingelassen hatte. Die ersten Semester beschäftigten wir uns mit dem Erlernen von Lösungsfunktionen für Differentialgleichungen, Berechnungen von Querschnittswerten sowie Prinzipien virtueller Leistungen. Diese stellten nur einen kleinen Bruchteil eines Puzzles dar, dessen Zusammensetzen für mich damals ein Rätsel gewesen ist. Bald kamen die ersten praktischen Übungen zur Berechnung eines Betonschwimmbeckens, einer Stahlhalle oder zur Tragwerksplanung eines Hochhauses. Diese Übungen fügten peu à peu die einzelnen Puzzlestücke zu einem lückenlosen Bild zusammen. Nach einem praxisorientierten Auslandssemester und so manch entworfenem Brückentragwerk war es plötzlich an der Zeit über die Organisation meiner Sponsionsfeier nachzudenken.

Ich möchte mich an erster Stelle ganz besonders bei Herrn Prof. Johann Kollegger bedanken. Dafür, dass durch ihn die Arbeit erst entstehen konnte und seine Tür für mich immer offen stand. Ein zusätzliches Dankeschön aussprechen möchte ich für die Ermöglichung meines Auslandssemesters in Singapur, welches mich beruflich sowie persönlich stark geprägt und weitergebracht hat.

Riesiger Dank gilt Stephan Fasching, für die unkomplizierte Betreuung. Viele Stunden nahm er sich Zeit, mich bei Problemen und Fragen zu unterstützen und weitere Vorgangsweisen zu besprechen. Die Fachgespräche einschließlich der kurzen Kaffeepausen schafften eine entspannte Arbeitsatmosphäre sowie eine zusätzliche Motivation für mich.

Ich möchte mich auch bei der Firma STRABAG für die Kooperation bei der Entstehung dieser Diplomarbeit bedanken. Mein besonderer Dank geht an meine Vorgesetzte Rossitza Popov, sowie meine Arbeitskollegen und Betreuer Thomas Weindl und Hilger Kappelmann für die fachliche und persönliche Unterstützung. Bedanken möchte ich mich auch bei der Firma ASFINAG, die mir die Ausführungsunterlagen zu der Brücke B2314 zur Verfügung gestellt hat.

Die Balance zwischen einem Studium an der TU und einer Selbsterhaltung war keine leichte Aufgabe. Diese wäre ohne die Unterstützung durch all meine Studienkolleginnen, Verwandte und Freunde niemals möglich gewesen. Sie waren stets eine Motivationshilfe und sorgten dafür, dass ich in schwierigen Zeiten wieder Abstand gewinnen und zusätzlich Inspiration erhalten konnte. Nie zweifelten sie daran, dass ich diese Ausbildung erfolgreich abschließen werde. Ein großer Dank gebührt meinen Freunden Gabi, Alex, Sha, Zara und Ivan, meiner Oma Yordanka, sowie meiner Schwester Yoana und meinen künstlerisch tätigen Eltern, die mir ein starker Rückhalt waren, auch wenn sie bis heute nicht genau wissen, warum ich diesen Beruf ausgesucht habe. Vielen Dank auch David, Sebastian und Philipp für das Korrekturlesen.

Kurzfassung

Die Erfindung des Spannbetonbaus in der ersten Hälfte des letzten Jahrhunderts hat zu einer Revolution im Ingenieurbau geführt. Speziell im Brückenbau implizierte dies eine Blütezeit der Stahlbetontragwerke sowie eine rasche Entwicklung neuer Baumethoden. Angetrieben durch eine wirtschaftlichere Errichtung erfolgte der Übergang von der klassischen Herstellung auf Traggerüst zu modernen, fabrikmäßigen Bauverfahren wie dem Taktschiebeverfahren oder dem Freivorbau. Diese brachten neben der kostengünstigen und schnellen Errichtung eines Brückenbauwerks auch einen erhöhten Ressourcenverbrauch, welcher auf die verfahrensspezifischen Bauzustände zurückzuführen ist. So verbleibt beispielsweise die beim Taktschiebeverfahren für den Vorschub erforderliche Vorspannung im Querschnitt. Diese muss mit weiteren Spanngliedern für den Endzustand ergänzt werden. In Zeiten des Klimawandels wird immer mehr Wert darauf gelegt, Ressourcen möglichst nachhaltig und sparsam einzusetzen. Dies stellt einen zusätzlichen Ansporn dar, bestehende Baumetoden hinsichtlich ihres Optimierungspotenzials zu untersuchen.

Der Kern dieser Arbeit ist die Frage, in wie weit eine schlankere Ausbildung des im Zuge des Taktschiebens verwendeten Querschnitts zu einer Einsparung des Spannstahls im Endzustand beiträgt. Zu diesem Zweck wird eine mittels Taktschiebeverfahren errichtete Brücke, das Objekt B2314 beim Knoten Inzersdorf in Wien, herangezogen. Diesem vorliegenden Tragwerk wird anschließend ein Alternativentwurf, der von einer Herstellung auf Traggerüst ausgeht, gegenübergestellt.

Das vor relativ kurzer Zeit fertiggestellte Bauwerk (2017) bildet eine gute Vergleichsbasis nach dem aktuellen Normenstand, weswegen eine Überarbeitung dieses Entwurfes nicht notwendig war. Darauf aufbauend wird in der vorliegenden Diplomarbeit ein Alternativentwurf mit zwei Varianten der Spanngliedführung untersucht. Dieser beruht auf einem Bau auf Lehrgerüst. Dazu wird ein möglichst schlanker Querschnitt aus Ortbeton erarbeitet und eine Bemessung in Quer- und Längsrichtung durchgeführt. Das Ziel der statischen Berechnungen ist es, die ausschließlich für den Endzustand benötigten Baustoffmassen zu ermitteln. Abschließend werden anhand des bemessenen Alternativentwurfs sowie des vorliegenden Bestandtragwerks die erforderlichen Massen beider Entwürfe verglichen.

Es stellt sich heraus, dass ein schlanker Querschnitt mit sorgsam durchdachter Spanngliedführung zu signifikanten Einsparungen primär des Spannstahls aber zugleich auch des Betons führt. Gleichzeitig bringt diese Erkenntnis zum Vorschein, welche Spannstahlmassen die Bauzustände im Zuge des Taktschiebens verlangen. Würde von Anfang an ein leichterer Querschnitt eingesetzt, so könnte in Zukunft eine erhebliche Schonung von Ressourcen bewirkt werden. Dies führt schlussendlich zu dem Gedanken, dass bereits bekannte und durchgesetzte Baumethoden im Brückenbau ein weiteres Optimierungspotenzial in sich bergen.

Abstract

The invention of prestressed concrete in the first half of the last century has led to a revolution in the field of civil engineering. Especially in bridge constructions, this implied a heyday of reinforced concrete structures as well as the rapid development of new construction methods. Driven by the desire for a more economically efficient construction, the classical production of span by span erection on falsework transited to modern, factory-like construction approaches such as the incremental launching method or cantilever erection. In addition to the cost-effective and rapid erection of bridge structures, these also resulted in an increased consumption of resources, which can be attributed to the process-specific conditions during construction. For example, the tendons required for the launch during the Incremental launching method remain in the superstructure of the bridge. Those must be supplemented with additional tendons for the final state. In times of climate change, more and more emphasis is placed on a sustainable and reasonable usage of resources. This provides an additional incentive to review existing construction methods for optimization potential.

The core of this work is the question of how far a slender design of the cross-section used in the course of incremental launching contributes to a reduction of the tendons in the final state. For this purpose, this master's thesis adopts a design of a bridge built by means of the incremental launching method, the B2314 at the traffic junction Inzersdorf in Vienna. This existing structure is later compared to the alternative design, which assumes a construction on falsework.

The recently erected structure (2017) offers a basis of comparison according to the current standards, which is why a revision of this design was not necessary. Building on this fact, this thesis examines only the alternative design with two layouts of the tendons, which is based on an erection on falsework. For this purpose, a slender cross-section made of in-situ concrete is worked out and the bridge is dimensioned in the transverse and longitudinal direction. The aim of the static calculations is to determine the required building material masses for the final state.

Finally, the masses of both designs are examined on the basis of the dimensioned alternative design as well as the existing structure. It turns out that a slender cross-section with carefully designed posttensioning leads to significant savings primarily of the tendons but also of the concrete. At the same time, this insight reveals how many tendons are required for the construction conditions in the course of the incremental launching. If a lighter cross-section were used right from the start, it could mean a considerable conservation of resources in the future. This ultimately leads to the idea that well-known and established construction methods in the bridge-construction industry carry further potential for possible optimizations.

Inhaltsverzeichnis

Da	anl	ksagu	ng		i
Κι	ırz	fassu	ng		ii
Ał	ost	ract .			.iii
In	nhaltsverzeichnisiv				
1		Einle	itung	J	. 1
2		Besc	hreib	ung des Taktschiebeverfahrens	. 2
	2.	1	Gesc	hichtliche Entwicklung	. 2
	2.	2	Grun	ldgedanke	. 2
	2.	3	Wirt	schaftliche Überlegungen	. 3
	2.	4	Einsa	atzkriterien	. 4
		2.4.1	-	Randbedingungen	. 4
		2.4.2	2	Brückenlänge	. 4
		2.4.3	5	Spannweiten	. 5
		2.4.4	ļ	Statische Systeme	. 5
		2.4.5	5	Querschnitte	. 5
		2.4.6	5	Geometrie des Überbaus	. 6
	2.	5	Beso	nderheiten bei der Brückenausbildung	. 7
		2.5.1		Takteinteilung und Arbeitsfugen	. 7
		2.5.2	2	Vorspannung	. 8
		2.5.3	6	Querträger	. 9
		2.5.4	Ļ	Festpunkt des Überbaus	10
	2.	6	Einri	chtungen	10
		2.6.1		Taktkeller	10
		2.6.2	2	Vorbauschnabel	12
		2.6.3	5	Verschubanlagen	14
		2.6.4	Ļ	Verschiebelager und Verschiebeplatten	15
		2.6.5	,	Seitenführung	16
		2.6.6	ò	Hilfsstützen	16
		2.6.7	,	Vorschubklaue	16
3		Besc	hreib	ung der Herstellung mittels Traggerüst	18
	3.	1	Beso	nderheiten beim Entwurf	18
	3.	2	Ortfe	estes Traggerüst	19

	3.2.	1	Kontinuierliche Rasterstützung	19
	3.2.	3.2.2 Freie Spannweite		20
	3.3	Vers	schiebbares Traggerüst	20
4	Proj	ektb	eschreibung der mit Taktschiebeverfahren errichteten Brücke B2314 in Wien	22
5 Grundlagen des Alternativentwurfs Herstellung mittels Traggerüst			gen des Alternativentwurfs Herstellung mittels Traggerüst	25
	5.1	Nor	men und Software	25
	5.2	Mat	erialparameter	25
	5.3	Que	rschnittsgeometrie	26
	5.4	Last	aufstellung	27
	5.4.	1	Ständige Lasten	27
	5.4.	2	Veränderliche Lasten	28
	5.4.	3	Teilsicherheitsfaktoren und Lastfallkombinationen	33
	5.5	Vor	dimensionierung der Fahrbahnplatte in Querrichtung	36
	5.5.	1	Modellierung und Lasten	36
	5.5.	2	Berechnung und Ergebnisse	41
6	Alte	rnati	ventwurf Herstellung mittels Traggerüst: Bemessung des Tragwerks in Längsrichtun	g 47
	6.1	Syst	em und Modellierung	47
	6.2	Last	en	48
	6.3	Vari	ante 1 (V1): Gerade Spanngliedführung mit nachträglichem Verbund	51
	6.3.	1	Nachweise im Grenzzustand der Gebrauchstauglichkeit (GZG)	54
	6.3.	2	Nachweise im Grenzzustand der Tragfähigkeit (GZT)	62
	6.3.	3	Massenermittlung	66
	6.4	Vari	ante 2 (V2): Externe Spanngliedführung	67
	6.4.	1	Nachweise im Grenzzustand der Gebrauchstauglichkeit (GZG)	69
	6.4.	2	Nachweise im Grenzzustand der Tragfähigkeit (GZT)	73
	6.4.	3	Massenermittlung	75
7	Masse Taktsc	nver hiebe	gleich vom Alternativentwurf Herstellung mittels Traggerüst und der everfahren errichteten Brücke B2314 im Endzustand	mit 76
	7.1	Ver	gleich der Modellierung	76
	7.1.	1	Statisches System und Baumethode	76
	7.1.	2	Querschnitte	76
	7.2	Mas	senvergleich	77
	7.2.	1	Betonmasse	77
	7.2.	2	Spannstahlmasse	77
	7.2.	3	Schlaffe Bewehrung	78

8	Zusammenfassung	. 79
Lite	raturverzeichnis	. 80
Abb	ildungsverzeichnis	. 82
Tabe	ellenverzeichnis	. 85

A	. Anhang A: Vordimensionierung der Fahrbahnplatte	86
	A.1 Geometrie und Schnittgrößen	
	A.2 GZT Bemessung	
	A.2 GZG Begrenzung der Rissbreite zufolge Zwang	
B	. Anhang B: Alternativentwurf Geometrie und Schnittgrößen	100
	B.1 Querschnittsgeometrie und Widerstände	100
	B.2 Lasten und Schnittgrößen Einzellastfälle	102
	B.2 Schnittgrößen Lastkombinationen	
	B.3 Schnittgrößen GZT und GZG	125
C	. Anhang C: Alternativentwurf Variante 1	
	C.1 GZG Begrenzung der Rissbreite zufolge Zwang	
	C.2 GZT Bemessung	
D	Anhang D: Alternativentwurf Variante 2	
	D.1 GZG: Dekompression und Begrenzung der Spannungen	
	D.2 GZG Begrenzung der Rissbreite zufolge Zwang	
	D.3 GZT Bemessung	

1 Einleitung

Der Brückenbau wird oft als die Königsdisziplin des Ingenieurbaus bezeichnet, weil in keinem anderen Bereich Gestaltung, Statik und Betrieb so eng miteinander verknüpft sind. Brücken prägen die Landschaft und gestalten gleichzeitig das Infrastruktursystem. Zur Zeit der Römer galten die Steinbogenbrücken als Maß der Bauingenieurskunst. Heutzutage fordern neben riesigen Spannweiten sowie mehrfach gekrümmten Tragwerken auch hohe Anforderungen an Gestaltung und gleichzeitig Wirtschaftlichkeit das Ingenieurwissen heraus.

Stein, Holz und Eisen gehörten bereits im 19. Jahhundert zu den Standardmaterialien im Brückenbau als der Beton wiederentdeckt wurde. Zu Beginn konnten Massivbrücken im Vergleich zu Stahlbrücken mit verhältnismäßig kleinen Spannweiten wirtschaftlich errichtet werden. Ausschlaggebend für die Weiterentwicklung des Betonbaus war die Erfindung des Stahlbetons. Eine Schlüsselrolle dabei spielte der Franzose Joseph Monier. Im Jahr 1849 hatte er die revolutionäre Idee, Blumentöpfe und Wannen aus Beton vor dem Zerbröseln mit Stahleinlagen zu schützen und gilt somit als der Erfinder der Stahlbetonbauweise. Die erste noch heute bestehende Eisenbetonbrücke der Welt wurde 1875 von ihm auf einem Landsitz bei Chazelet, Frankreich errichtet (Abbildung 1.1) [1] [2].

Abbildung 1.1: Erste Eisenbetonbrücke der Welt bei Chazelet, Frankreich; Spannweite 16,5 m [3]

Eine regelrechte Revolution im Brückenbau im früheren 20.Jahrhundert bewirkte der französische Ingenieur Eugène Freyssinet, dem es gelang Spannbeton im Brückenbau einzusetzen. Die nachfolgenden Jahre waren von der Entwicklung neuer Baumethoden gekennzeichnet. Der Lehrgerüstbau stellt das älteste Bauverfahren für Schalung des Überbaus dar. Bedingt durch das Anstreben einer kostengünstigeren Herstellung hat sich die Bauindustrie rasch in Richtung einer fabrikmäßigen Fertigung entwickelt. Vorbau mit Vorschubrüstung, Freivorbau und Taktschiebeverfahren stammen aus dieser Zeit und gehören heutzutage zu den meist verbreiteten Baumethoden für Ortbetonbrücken.

Die richtige Wahl des Bauverfahrens ist der Schlüssel zur wirtschaftlichen Verwirklichung eines Brückenbauwerks, weil dieses sowohl die Kosten als auch die Bauzeit beeinflusst. Gleichzeitig üben die verfahrensspezifischen Bauzustände der gewählten Herstellungsmethode einen erheblichen Einfluss auf die im Endzustand eingesetzten Spannstahl-, Bewehrungs- und Betonmassen aus. Um diesen Unterschied - mit besonderem Augenmerk auf den Spannstahl - zum Vorschein zu bringen, wird im Zuge dieser Arbeit die Herstellung auf Traggerüst mit einem mittels Taktschieben ausgeführten, vorgespannten Brückentragwerk im Endzustand verglichen.

2 Beschreibung des Taktschiebeverfahrens

2.1 Geschichtliche Entwicklung

Mit dem Bau der Autobahnen in den späten dreißiger Jahren des 20. Jahrhunderts entstand ein hoher Bedarf an Überführungsbauwerken, welche bei schlaff bewehrten Tragwerken in ihren Stützweiten stark limitiert waren. Zu dieser Zeit wurde auch das Prinzip der Vorspannung erfunden und dank der fortgeschrittenen Entwicklung der Stahlerzeugnisse ließ der Franzose Eugène Freyssinet im April 1929 die Spannbetonbauweise in Deutschland patentieren. Die Weiterentwicklung des Betonbrückenbaus war nach dem zweiten Weltkrieg hauptsächlich durch neue Bauverfahren gekennzeichnet [2].

Eines dieser neuen Bauverfahren war das Taktschiebeverfahren. Eine wichtige Voraussetzung für die Umsetzung dieses Verfahrens war Wolfhart Andrä's Entwicklung der Neoprentopflager und nachfolgend der entsprechenden Gleitlager. Vorläufer der Taktschiebebauweise war die Errichtung der Agerbrücke in Österreich im Jahr 1959, die auf einer Verschiebebahn Holz auf Holz mittels Schmierseife als Gleitmittel verschoben wurde. Der Brückenüberbau wurde mit auf der Steginnenseite angeordneten Spanngliedern vorgespannt, weshalb sie als eine der ersten Anwendungen der Segmentbauwese mit externen Spanngliedern angesehen werden kann. Der deutsche Bauingenieur Fritz Leonhardt und sein Partner Willi Baur haben das Spannverfahren optimiert, während des Baus der Caronibrücke in Venezuela die Taktschiebemethode zur Reife weiterentwickelt und diese anschließend im Jahr 1964 patentiert. Die erste praktische Erprobung dieser Bauweise gelang mit der Innbrücke Kufstein in Österreich. Die Spannweiten von 102 m im Endzustand wurden im Bauzustand durch zwei Hilfspfeiler auf 34 m reduziert. Somit wurde der Überbau für den Verschiebezustand nur schlaff bewehrt.

Die Anwendung des Taktschiebeverfahrens in Deutschland gelang zum ersten Mal im Herbst 1967 im Zuge der Autobahn Heilbrunn nach Würzburg wurde die Taubertalbrücke errichtet. Bis zum Jahr 1975 fand diese Bauweise eine Anwendung auch im Ausland – in Schweden, Spanien und Italien. Dadurch wurden damals schon über 30 Bauwerke fertiggestellt. Das Patent wurde dort angemeldet, wo das größte Anwendungspotential vermutet wurde - in Österreich, Deutschland und in der Schweiz. In den folgenden Jahren hat das Verfahren weltweite Verbreitung gefunden: in Japan, Frankreich, USA, Australien, Neuseeland sowie in Mexiko. Mittlerweile kann das Taktschiebeverfahren als allgemein bekanntes und angewandtes Brückenbauverfahren angesehen werden [1] [2].

2.2 Grundgedanke

Die Besonderheit des Taktschiebeverfahrens besteht darin, dass an Stelle der konventionellen Herstellmethoden von Ortbetonbrücken mit Lehr- oder Vorschubgerüsten der Überbau in einer ortsfesten Schalung vor Ort hergestellt wird. Diese Schalung wird Feldfabrik oder Taktkeller genannt und wird in der Regel hinter einem Widerlager angeordnet (siehe Abbildung 2.1). Nach dem Erhärten eines Abschnittes wird dieser für den Bauzustand längs zentrisch vorgespannt, ausgeschalt und um die Taktlänge in Brückenlängsrichtung vorgeschoben. Der Vorschub erfolgt auf Teflon-Gleitlagern mit Hilfe von hydraulischen Pressen.

Abbildung 2.1: Übersicht Taktschiebeverfahren [4]

Die temporären Gleitlager werden nach dem Einschub durch endgültige Lager ersetzt. Die sich wiederholenden Takte werden aneinander betoniert und die Längsbewehrung an der Arbeitsfuge nicht unterbrochen, sodass ein monolithischer Brückenüberbau entsteht. An der Spitze des vordersten Segmentes wird ein Vorbauschnabel (meistens aus Stahl) befestigt, um einerseits die Kragmomente und die Vertikalverformungen des Überbaus während des Verschiebens zu reduzieren und um andererseits überhaupt auf den nächsten Pfeiler auffahren zu können. Sobald die Brücke sich in ihrer Endlage befindet, werden die für den Endzustand notwendigen Spannglieder ergänzt und vorgespannt [5]. Wenn die Spannweiten im Bauzustand zu groß sind, können Hilfspfeiler angeordnet werden. Das Taktschieben kann außer in Stahlbetonbauweise auch in einer Stahl-Beton-Mischbauweise angewendet werden. Die Taktlängen werden so ausgelegt, dass ein Takt innerhalb einer Woche abgeschlossen werden kann. Die Schalung wird weitgehend hydraulisch bewegt, die Bewehrung in Bewehrungskörben vorgefertigt. Somit bietet sich eine Optimierung der Fertigungsabläufe an - bedingt durch die Häufigkeit der Wiederholungen bei der Erstellung der Einzelabschnitte im Taktkeller. Diese Methode verbindet auf diese Weise die Vorteile einer Fertigteilbauweise mit der konventionellen Ortbetonbauweise.

2.3 Wirtschaftliche Überlegungen

Ein ausschlaggebendes Einsatzkriterium dieses Verfahrens ist die Überbrückung anderer Verkehrsflächen – ein Vorschub über Straßen-, Schiffs- oder Eisenbahnverkehr erfolgt unproblematisch. Dabei kann auf aufwendige Lehrgerüste verzichtet werden, was den zweiten großen Vorteil darstellt. Eine Einschränkung des Lichtraumprofiles ist nicht erforderlich und es finden keine Bauarbeiten über den Verkehrsflächen statt. Somit entfallen die Zusatzkosten und der Planungsaufwand für bei anderen Methoden benötigte Sperrzeiten und Lehrgerüste. Die Methode eignet sich besonders für Projekte, bei denen kein umfassender Eingriff in die Natur stattfinden darf. Diesen Vorteilen ist der Aufwand für das Taktschieben sowie für die Fertigungseinrichtung, die Verschubanlage, den Vorbauschnabel, die zusätzliche zentrische Vorspannung für den Bauzustand, für Gründungen für Hilfsstützen, sowie weitere Zusatzmaßnahmen gegenüberzustellen [1]. Deswegen ist dieses Verfahren erst ab einer bestimmten Brückenlänge lohnenswert, worauf im folgenden Kapitel 2.4.2 eingegangen wird.

Die Wirtschaftlichkeit des Taktschiebens wird durch zwei weitere Faktoren wesentlich beeinflusst: durch den Arbeitsaufwand und durch die Investitionskosten. Bezüglich des Einbaus von Spanngliedern und des Bewehrungsstahles ist der Aufwand vergleichbar mit anderen Bauweisen. Den auschlaggebenden Unterschied macht der Taktkeller, wo sich die Ein- und Ausschalvorgänge durch die Repetition der Takte optimieren lassen und daher vorteilhafte Verhältnisse für das Einbringen des Betons und der Schalung gewonnen werden können. Infolgedessen ist der Arbeitsaufwand bezogen auf die Einbaumassen bei entsprechend langen Bauwerken günstiger als bei vergleichbaren Bauarten [1].

Durch die Wiedereinsetzbarkeit und die vielfältigen Anpassungsmöglichkeiten der Ausrüstung sind die Investitionskosten des Taktschiebeverfahrens auf Dauer betrachtet wesentlich kleiner. Das Schalungsgerüst in der Feldfabrik ist wiederholt einsetzbar, die Vorschubtechnik von der Querschnittsform des Überbaus unabhängig und daher fast alle Anwendungsgebiete abdeckend (schwere, weitgespannte Brücken). Die Verschublager können bei ausreichender Dimensionierung mehrmals eingesetzt werden. Der Vorbauschnabel ist geeignet für die Wiederverwendung von Bauwerken mit vergleichbaren Spannweiten und gleichem Abstand der Stege zueinander. Er lässt sich auch an neue Stegbreiten anpassen [1]. Diese Wiedereinsatzmöglichkeiten der Ausrüstung ermöglichen das Erreichen günstiger Abschreibungen der Investitionen. Allerdings liegt der tatsächliche Investitionsaufwand des Taktschiebens im Spannstahl für die Bauzustände, welcher im Endzustand zum Teil nicht erforderlich wäre. Dieser beeinflusst einerseits direkt die Baukosten schafft aber andererseits zusätzliche statische Sicherheit für den Bauherrn.

2.4 Einsatzkriterien

2.4.1 Randbedingungen

Die Grundvoraussetzungen für eine mögliche Anwendung des Verfahrens lassen sich wie folgt definieren:

- Im Längsprofil und im Grundriss gerade oder gleichmäßig gekrümmte Brücken (In Ausnahmefällen: mit dem Match-Cast-Verfahren sind ebenfalls Klothoiden möglich)
- Konstante Querschnittsgeometrie
- Gleichmäßige Spannlängen optimal zwischen 30 m und 55 m, möglich sind bis zu 140 m im Endzustand
- Brückenlängen ab 250 m bis 1000 m
- Passende Platzverhältnisse für den Taktkeller

Wenn diese minimalen Voraussetzungen vorhanden sind, können die einzelnen Kriterien im Detail betrachtet werden.

2.4.2 Brückenlänge

Die Brückenlänge hat durch die Anzahl der Geräteeinsätze einen direkten Einfluss auf die wirtschaftliche Anwendung dieser, aber auch jeder anderen Baumethode. Brücken unter 200 m Länge sind dann konkurrenzfähig, wenn etwa eine stark befahrene Schienenlinie die Randbedingungen vorgibt oder die erforderliche Ausrüstung von ähnlichen Brücken bereits vorhanden ist [1]. Grundsätzlich stellt das Taktschiebeverfahren bei Bauwerkslängen ab 250 m Länge¹ eine wirtschaftliche Methode dar.

¹ König, Maurer, Zichner: Spannbeton: Bewährung im Brückenbau, Springer Verlag 1986, S.104

Abbildung 2.2: Spannweiten im Bau- und Endzustand [1]

2.4.3 Spannweiten

Im Bauzustand

Die Spannweiten im Bauzustand sind ausschlaggebend für die Menge der zentrischen Vorspannung und für die Bauhöhe des Überbaus. Diese sind bei Anordnung von Hilfspfeilern kleiner als im Endzustand. Für eine günstige Ausnutzung der Vorspannung sollten die Regelspannweiten gleich und die Endfelder etwa 20% kürzer als die Regelspannweiten sein (siehe Abbildung 2.2) [1]. Der typische Spannweitenbereich liegt zwischen 30 m und 55 m, es können aber Spannweiten bis 70 m wirtschaftlich überbrückt werden. Das optimale Verhältnis von Bauhöhe zu Spannweite liegt zwischen 1:12 und 1:16².

Im Endzustand

Die Spannweiten im Endzustand sind quasi nicht eingeschränkt. Die wirtschaftliche Grenze eines Durchlaufträgers mit konstanter Bauhöhe bei einem Kastenträger ist die Relation von Bauhöhe zu Spannweite, die mit etwa 1:25 bis 1:28² erreicht wird.

2.4.4 Statische Systeme

Normalerweise wird bei Taktschiebebrücken ein Durchlaufsystem angestrebt. Sonderausführungen stellen eine Gelenkkette aus Zweifeldträgern oder ein Einfeldträger dar. Dafür sind besondere Hilfskonstruktionen zur Übertragung der Längskräfte notwendig.

2.4.5 Querschnitte

Plattenbalkenquerschnitt

Bei Plattenbalken ergeben sich in der Regel aufgrund der zentrischen Vorspannung zusätzliche Druckspannungen, die zu einem breiteren Steg im Vergleich zur Lehrgerüstbauweise führen [1]. Ein Vorteil dieses Querschnittes besteht darin, dass er durch seine geringere Verdrehungssteifigkeit auf ungewollte Verformungen wie z.B. Setzungen mit geringeren Zwängungskräften reagiert [6]. Trotzdem kommt diese Querschnittsform selten zum Einsatz.

² Kotulla, Gropp: Industrielles Bauen: Bauwerke, Expert Verlag, 1994, S.187

Abbildung 2.3: Typischer Plattenbalkenquerschnitt [1]

Abbildung 2.5: Typischer Trogquerschnitt [1]

Hohlkastenquerschnitt

Der Hohlkastenquerschnitt mit einer Bauhöhe 1:15 der größten Spannweite im Bauzustand ist der typische Querschnitt einer Taktschiebeberücke, deren Spannweiten etwa 50 m betragen. Der Überbau wird im Bauzustand fast nur mit geraden Spanngliedern vorgespannt, da die Momente ständig variieren. Damit diese Vorspannung optimal genutzt werden kann, sollte der Ausnutzungsgrad an der Ober- und Unterseite des Hohlkastens etwa gleich groß sein. Das ist dann erfüllt, wenn die Widerstandmomente oben und unten dasselbe Verhältnis wie Stützmoment zu Feldmoment besitzen (2:1). Aus dem Formelwerk nach [1] lässt sich ablesen, dass die erforderliche Spannstahlmenge quadratisch mit der Querschnittsfläche zunimmt. Dies sollte bereits in der Querschnittsdimensionierung berücksichtigt werden, um einen wirtschaftlichen Entwurf zu erzielen.

Trogquerschnitt

Bei dieser Querschnittsart steht für das Stützenmoment nur eine sehr schmale Zugzone zur Verfügung, die für die Bemessung auf Zugspannungen extrem ungünstig ist [1].

2.4.6 Geometrie des Überbaus

Außer geraden Konstruktionen können auch gekrümmt geführte Brücken gebaut werden. Dafür müssen die Krümmungsradien über die Brückenlänge sowohl im Grundriss als auch im Aufriss konstant sein. Kleine Abweichungen vom Regelquerschnitt können durch eine veränderbare Schalung bewerkstelligt werden. Die Verschiebelager und Führungseinrichtungen in den verbreiterten Bereichen müssen in Querrichtung verstellbar sein [6]. Grundsätzlich gilt, dass der Überbau zwängungsfrei über die Pfeiler eingeschoben können werden muss. Die allgemeine

geometrische Form ist die Schraubenfläche, wobei gedanklich der Schraubenbolzen den einzuschiebenden Überbau darstellt.

Im Grundriss

Hier dienen meistens Klothoiden als geometrische Straßenachsen. Da sie der erforderlichen Schraubenlinie bzw. Kreisbogenform nicht entsprechen, entsteht eine Differenz zwischen Verschiebekreis und Klothoide, die in der Regel sehr klein ist. Tatsächlich muss nur die Seitenfläche des Steges eine Kreisbogenform aufweisen. Diese dient beim Einschieben als Führungsfläche. Der unterste Teil des Hohlkastens wird auch als Kreisbogen ausgeführt, die entstehende Differenz zur Straßenachse wird durch unterschiedlich lange Kragarme der Fahrbahnplatte realisiert (Abbildung 2.6) [1].

Im Aufriss

Üblicherweise kommen im Aufriss der Straßenachse (Gradiente) ineinander tangential übergehende Geraden und Kreisbögen zum Einsatz. Bei wechselnden Gradientenelementen steigen die Abweichungen im Vergleich zu einem durchgehenden Kreisbogen auf mehrere Zentimeter. Diese Differenz lässt sich theoretisch durch eine veränderliche Höhe des Überbaus ausgleichen, bringt als solche Lösung jedoch einen zusätzlichen Aufwand bei der Schalung als auch der Bauausführung mit sich und wird deswegen nur in Ausnahmefällen angewandt [1].

Abbildung 2.6: Abweichender Verschiebekreis von der Straßenachse im (a) Querschnitt und (b) Grundriss [1]

2.5 Besonderheiten bei der Brückenausbildung

2.5.1 Takteinteilung und Arbeitsfugen

Die Takte sollten möglichst groß und gleichmäßig aufgeteilt werden, sodass sie innerhalb einer Woche herstellt werden können. Bei einer Brückenbreite bis 20m kann eine Taktlänge von bis zu 30m pro Woche erreicht werden. Die Taktfugen sollten im Endzustand nicht im Bereich der maximalen Beanspruchung liegen, das heißt nicht über den Stützen und in Feldmitte. Die Taktlänge entspricht in der Regel der Hälfte der Regelstützweite, die Anfangs- und Endfelder sind kürzer, sodass im Endzustand sich ein Takt mittig über den Stützen befindet und die Arbeitsfugen in den Viertelpunkten der Spannweite liegen (siehe Abbildung 2.7).

Fugen sollten im Bereich von Querträgern oder Stützquerträgern zur Spanngliedumlenkung vermieden werden [7]. Im Querschnitt ist die Arbeitsfuge am besten in der Unterkante der Fahrbahnplatte anzuordnen, weil in diesem Fall die Temperaturunterschiede aus dem Abfließen der Hydratationswärme reduziert werden und keine Risse auftreten.

Abbildung 2.7: Takteinteilung [1]

2.5.2 Vorspannung

Beim Taktschieben werden zwei Vorspannungsarten unterschieden: Die gerade geführten Spannglieder werden als zentrische Vorspannung oder Primärvorspannung bezeichnet und die exzentrisch verlaufenden Spannglieder werden auch Sekundärspannglieder genannt. Beide zusammen sichern die Tragfähigkeit im Endzustand.

Zentrische Vorspannung

Die Primärvorspannung wird für die Beanspruchung im Bauzustand bemessen (Eigengewicht, Zwängungen infolge Temperatur, Setzungsdifferenzen). Bei der Verteilung der Spannglieder im Querschnitt (in der Boden- und in der Fahrbahnplatte) wird angestrebt, dass der Vorspannkraftschwerpunkt mit dem Querschnittsschwerpunkt zusammenfällt. Verankerungen und Kopplungen sollten in Stegnähe ausgebildet werden - es wird in der Taktfuge jedes zweite oder dritte Spannglied gestoßen. Üblich ist es Spannglieder mit nachträglichem Verbund zu verwenden. Verpresst wird direkt vor oder nach dem Verschub des Taktes [7]. Eine typische zentrische Vorspannung in Quer- und Längsschnitt ist in Abbildung 2.8 ersichtlich.

Exzentrische Vorspannung

Die Sekundärvorspannung ist auf die Verkehrslasten und die nachträglich aufgebrachten ständigen Lasten auszulegen. Diese wird hauptsächlich über den Stützen und in Feldmitte benötigt, da die Zwischenbereiche von der zentrischen Vorspannung ausreichend abgedeckt sind. Die Anordnung der parabelförmigen Spannglieder erfolgt meistens in den Stegen, wobei zuerst die Hüllröhre ohne Spannkabel im jeweiligen Takt einbetoniert werden. Nach dem Verschub in die endgültige Lage werden die Litzen von den Lisenen (Eine Art von Konsole, wo Umlenk- und Reibungskräfte in das Tragwerk eingeleitet werden) aus eingeschoben, vorgespannt und verpresst. Man führt die Spannglieder von Viertelpunkt zu Viertelpunkt. Dies erfolgt über zwei bis drei Felder, sodass die maximale Einschublänge des Spannglieds 150 m beträgt. Eine andere Möglichkeit ist die Anordnung von externer Vorspannung auf der Steginnenseite, wie in Abbildung 2.9 ersichtlich.

Abbildung 2.8: Zentrische Vorspannung eines Kastenquerschnittes für den Bauzustand: (a) Querschnitt (b) Längsschnitt [8]

Abbildung 2.9: Exzentrische Vorspannung eines Kastenquerschnittes mit (a) parabelförmigen Spanngliedern in den Stegen oder mit (b) externer Vorspannung [8]

Abbildung 2.10: Abtragung der (a) symmetrischen und (b) asymmetrischen Auflagerkräfte; Querträger als (c) nachträglich einbetonierte Scheibe oder als (d) Stahlfachwerk [1]

2.5.3 Querträger

Nach [1] dienen die Querträger einerseits dazu, die Überbaulasten aus dem Steg in die Lager abzutragen (Abbildung 2.10 (a)) und andererseits dienen sie als Aussteifung des Hohlkastens gegen einseitige Beanspruchungen wie Torsion aus einseitiger Verkehrs- oder Windlast. Der überwiegend symmetrische Anteil der Lagerlasten kann durch eine örtliche Verstärkung des Steges aufgenommen werden. Der asymmetrische Anteil dagegen verursacht ein Torsionsmoment im Überbau. Die Errichtung eines Querrahmens ist hier erforderlich um die Schubkräfte aus der Fahrbahnplatte T_o (b) abzuleiten. Die Herstellung von Querträgern muss auf die Deckenschalung abgestimmt werden. Die Querträger können beispielsweise in Form einer nachträglich betonierten Scheibe (c) oder als Stahlfachwerk (d) ausgebildet werden.

2.5.4 Festpunkt des Überbaus

Bei allen Brücken, die auf längsbeweglichen Lagern ruhen, ist jederzeit, das heißt sowohl in und außer Betrieb als auch während der Herstellung sicherzustellen, dass ein Festhalten des Überbaus möglich ist. Daraus folgt, dass auch beim Taktschiebeverfahren in allen Herstellphasen darauf zu achten ist, dass der erforderliche Festpunkt vorhanden ist. Dieser kann sich bei den verschiedenen Phasen an verschiedenen Orten befinden. Während der Herstellung der einzelnen Abschnitte ist aufgrund von Längenänderungen infolge Temperaturdifferenzen sicherzustellen, dass der Festpunkt in der Nähe des Taktkellers liegt. Der Festpunkt wird nur auf die Reibung (Reibungs- und Neigungsfaktor) des zu verschiebenden Überbaus ausgelegt.

2.6 Einrichtungen

2.6.1 Taktkeller

Der Taktkeller wird auch ortsfeste Schalung oder Fertigung genannt. Dieser liegt hinter einem der beiden Widerlager in einer Entfernung der etwa 1,2-fachen Taktlänge beträgt (siehe Abbildung 2.11). Hier werden Abschnittslängen von I/4 bis I/2 gefertigt. Es ist möglich die Fertigung auch zwischen zwei Brückenabschnitten anzuordnen. Dabei erfolgt ein Verschub nach zwei Seiten. Ein weiteres Kriterium für die Lage der Fertigung ist der Aufwand zum Herrichten des Geländes. Der Taktkeller kann auf einem Damm oder in einem Einschnitt liegen, was einen wesentlichen Unterschied in der Wirtschaftlichkeit ausmacht. Weiters ist die Koordination und Organisation aller Prozesse die im Taktkeller durchgeführt werden, ausschlaggebend für die Einhaltung des Wochentaktes und somit auch für den wirtschaftlichen Erfolg des Verfahrens [7].

Abbildung 2.11: Anordnung des Taktkellers [1]

Abbildung 2.12: Fertigungsanlage mit durchgehender Unterstützung [1]

Abbildung 2.13: Fertigungsanlage mit Einzellagern unter dem Takt [1]

Unterstützungsarten von Taktkellern

Nach [1] wird zwischen zwei Arten von Fertigungsanlagen unterschieden: mit durchgehender Unterstützung oder mit Einzellagern unter dem Takt. Die erste Variante besteht aus Stahlträgern, die auf einem Fundamentbalken fest verankert sind (siehe Abbildung 2.12). Darauf wird eine geschlossene Silikonschicht angeordnet, in die Schalplatten (meistens Sperrholzplatten) für den neuen Takt eingelegt werden. Diese bewegen sich mit dem Überbau nach vorne und fallen am Ende der Fertigung heraus. Vorteilhaft bei dieser Unterstützungsmethode, die für setzungsfreie Gründungen geeignet ist, ist die genaue Verlegung der Stahlträger am Anfang ohne diese später anpassen zu müssen.

Die zweite Art kommt bei einem setzungsempfindlichen Baugrund zur Anwendung. Die besonderen Merkmale hier sind die Platzierung der gesamten Schalung auf einen hydraulisch absenkbaren Rost und die Unterstützung des Taktes nach Ausschalen mit einem Hilfslager in der Mitte der Anlage. Wie in Abbildung 2.13 ersichtlich, stützt sich die Schalung auf Stahlquerträgern ab, die auf massiven Stahlbetonlängsträgern aufliegen. Diese Träger bilden einen Rost. Für das Ablassen und Hochfahren des Rostes und somit der Schalung werden hydraulische Pressen unter den Längsträgern verwendet. Das Hilfslager in der Mitte der Fertigung (Abbildung 2.13, Lager in der Fertigung) befindet sich unter dem Steg. Der Unterschied zum üblichen Verschiebelager mit einer Verschiebeplatte besteht darin, dass darüber zusätzlich eine in die Schalung eingepasste Stahlplatte angeordnet wird. Nach dem Vorschub des Überbaus wird die Stahlplatte für den nächsten Takt über das Hilfslager zurückgezogen.

Beide Unterstützungsarten benötigen eine vertikale und horizontale Fixierung des herausgeschobenen Brückenendes in Form eines Hilfslagers, das sich zwischen dem Taktkeller und der Verschubanlage am Widerlager befindet. Dieses sieht aus wie ein übliches Verschiebelager auf einem Betonsockel und spielt eine entscheidende Rolle für das passgenaue Anbetonieren des Taktes. Deswegen soll das Hilfslager einer ständigen Setzungs- und Verformungskontrolle unterliegen.

Außenschalung

Diese umfasst die Kragarmunterseite, Stegaußenseite und die Unterseite des Überbaus und kann mit hydraulischen Pressen abgesenkt oder weggeklappt werden. Hier wird nach [1] eine Mindestneigung von 10:1 zur Bewegungsrichtung des Schalungsrostes vorausgesetzt. Bei senkrechten Stegaußenseiten muss die Schalung auch horizontal bewegt werden. Im Bereich ihrer Seitenführung und der Gleitlager sollte die Schalhaut glatt sein und wird deswegen in Form starker Stahlplatten ausgeführt. In den übrigen Teilen empfiehlt sich eine Brettstruktur parallel zu den Kopplungen, um die Fugen optisch zu verdecken.

Innenschalung

Wie unter 2.5.1 erwähnt, befindet sich die Arbeitsfuge in der Unterkante der Fahrbahnplatte. Aus diesem Grund wird die Innenschalung in einzelne Elemente für die Deckplatte und für die darunterliegenden Bauteile zerlegt. Für die Steginnenschalung sind austauschbare Schalelemente vorgesehen, damit verschiedene Stegverstärkungen, Rippen, Spannlisenen und andere Sonderteile ausgebildet werden können. Die Innenschalung lässt sich bei ausreichender Stegneigung schon nach einem Tag nach dem Betonieren entfernen, da die Außenschalung als Unterstützung der Stege dient. Für die Deckenschalung kann entweder ein Deckenschalwagen oder eine sogenannte "verlorene Schalung" eingesetzt werden [1].

Abbildung 2.14: Außen- und Innenschalung [9]

Fertigung der Bewehrung

Die Herstellung des Bewehrungskorbes ist ein wesentlicher Faktor für die Einhaltung des Wochentaktes. Ohne Vorfertigung einiger Querschnittsteile könnte diese Zeitspanne nicht eingehalten werden. Der untere Bewehrungskorb (untere Platte und Stege) lässt sich entweder direkt hinter dem Taktkeller vorfertigen und mit dem Verschieben vorfahren oder in einem Abstand zur Fertigung herstellen und nach dem Verschieben einfahren. Die Bewehrung der Deckplatte ist relativ einfach und wird daher meistens vor Ort verlegt.

2.6.2 Vorbauschnabel

Der Vorbauschnabel ist nach dem Taktkeller das zweite wesentliche Merkmal und die zweitgrößte Investition des Taktschiebeverfahrens. Seine Länge beträgt ungefähr 60% der maßgebenden Spannweite im Bauzustand, was auf die Größe der Kragmomente in den ersten Takten zurückzuführen ist. Um die Wiedereinsetzbarkeit der Konstruktion zu erhöhen empfiehlt es sich diese etwas länger auszubilden.

Der Vorbauschnabel ist nach [1] möglichst leicht auszuführen. Aus diesem Grund wird er in der Regel aus Stahl gefertigt. Eine vorgespannte Betonkonstruktion kann als Alternativlösung auch angewendet werden. Zur Aufnahme der hohen wandernden Auflagerkräfte am Untergurt des Schnabels werden die beiden Träger meistens als Vollwandträger ausgeführt. Das ist auch in dem in Abbildung 2.15 angeführten Bespiel zu erkennen.

Die Achsen der Vollwandträger fallen mit den Achsen der Verschiebelager zusammen und liegen rechtwinklig zu ihrer Gleitlagerfläche. Die Unterseite des Vorbauschnabels hat dieselbe Neigung wie die Unterseite des Überbaus. Seitenführungskräfte werden zum Überbau über einen horizontalen Windverband zwischen den beiden Untergurten übertragen. Die Abmessungen des Untergurtes werden einerseits durch die aufzunehmende Zugkraft, andererseits durch die maximalen Pressungen in den Verschiebeplatten und die Biegespannung in Querrichtung bestimmt. Es wird eine torsionsweiche Ausbildung des Vorbauschnabels bevorzugt (keine Fachwerkverbindung zwischen den Obergurten und den gegenüberliegenden Untergurten). Auf diese Weise wird nicht nur ein einseitiger Anstieg der Beanspruchungen bei Höhendifferenzen der Verschiebelager vermieden, sondern auch ein Umbau auf andere Überbaubreiten erleichtert. Querrahmen mit Riegeln im Untergurt stellen eine ausreichende Querstabilität der Druckgurte der Vollwandträger sicher.

Der Vorbauschnabel wird vor dem Taktkeller montiert und am ersten Takt auf einer Kopfplatte mittels Spannstäben angeschlossen. Da die höheren Zugkräfte unten auftreten, wird unten eine größere Anzahl an Zugstäben eingesetzt. Ihre Vorspannung erfolgt auf der Seite des Schnabels,

sodass der Abstand der Spannstäbe vom Steg auf die Spannpressen ausgelegt werden muss. Die Größe der Druckkräfte ist dementsprechend oben höher, was eine Verbreiterung der Kopfplatte nach sich zieht. Die Spitze des Vorbauschnabels ist mit einer Hubvorrichtung wie in Abbildung 2.16 ausgestattet, die zum Ausgleich der Höhendifferenz infolge der Kragarmdurchbiegung am nächsten Verschiebelager dient. Diese sogenannte Schnabelhubvorrichtung besteht aus hydraulischen Pressen, die bei Vorschub ausgefahren werden bis die Unterkante der Presse mit der Unterkante des Vorbauschnabels bündig abschließt.

Abbildung 2.15: Vorbauschnabel [10]

Abbildung 2.16: Schnabelhubvorrichtung [1]

Abbildung 2.17: Schema einer Verschubanlage [7]

2.6.3 Verschubanlagen

Die Verschubanlage wird auf dem Widerlager in einem Abstand von 1,1 bis 1,2-mal der Regeltaktlänge zum Taktkeller angeordnet. Der Abstand ist unabhängig von der Art der Verschubanlage. Der Grund dafür ist, dass der vor der Fertigung liegende Takt infolge der Kopplung der zentrischen Spannglieder nur mit der halben Vorspannkraft angepresst wird. Die Lage der Fertigung und der Vorschubanlage ist so zu wählen, dass der davor gefertigte Takt den Bereich des Stützmomentes über der Verschubanlage abdecken kann [1].

Ein prinzipieller Aufbau einer Verschubanlage ist in Abbildung 2.17 dargestellt. Die Anlage besteht aus Schubzylindern (horizontal wirkende Pressen), welche die Vorschubkraft aufbringen und aus Hubzylindern (vertikal wirkende Pressen), welche die Presskraft über Reibung auf den Überbau übertragen.

Laut [7] sind die Schubzylinder über Absetzblöcke (auch Bremssattel genannt, siehe Nr.2 Abbildung 2.17) mit dem Widerlager verbunden. Wie aus Abbildung 2.18 zu sehen ist, wird beim Verschub zunächst der Überbau durch die Hubzylinder angehoben. Diese vertikal wirkenden Pressen liegen auf einer Gleitfläche. Damit ein Reibungsbeiwert zwischen Betonoberfläche und Zylinder von ca. 0,75 erreicht wird, ist ihr Presskopf entweder aufgeraut oder mit gehärteten und geriffelten Stahlplatten versehen. Danach fahren die Schubzylinder aus und der ganze Überbau wird um einen Pressenhub von 20 cm bis 30 cm vorbewegt. Wenn die maximale Hublänge der horizontalen Pressen erreicht ist, werden die Hubpressen entlastet und der Überbau auf den Absetzblock sowie die Brückenlager abgesenkt. Die Schubzylinder kehren zu ihrer Ausgangslage zurück und der Vorgang kann wiederholt werden. Zur Festhaltung des Überbaus werden geriffelte Stahlplatten auch auf dem Bremssattel montiert. Wenn die Abtriebskräfte zu groß sind kann der Überbau über Gewindestangen mit dem Widerlager verbunden werden. Ein Verschub kann auch mit Zuggliedern erfolgen, was aber aus Kostengründen nur bei kurzen Brücken oder bei langen Brücken mit Steigungen über 3% angewendet wird, weil die erforderlichen Reibungskräfte nicht mehr erreicht werden können.

Abbildung 2.18: Funktionsprinzip einer Verschubanlage [9]

2.6.4 Verschiebelager und Verschiebeplatten

Die Verschiebelager stellen Verbundlager dar, die sich aus einem geschweißten, mit Beton gefüllten Stahlkasten zusammensetzen. Die Lager erlauben horizontale, vertikale und kombinierte Bewegungen und sind auf Stützen, Widerlagern und Hilfsstützen anzuordnen. Sie kommen mit, aber auch ohne Seitenführung zum Einsatz. Auf dem Lagerblock wird eine zwischen 20 mm und 50 mm dicke Elastomerlagerschicht aufgebracht. Darauf wird eine mit einem Edelstahlblech bespannte Gleitplatte mit maximaler Rautiefe von 1 μ angeordnet (Abbildung 2.19) [1].

Die Verschiebeplatten (Aufbau in Abbildung 2.20 dargestellt) der Verschiebelager und der Seitenführungen sind bewehrte Elastomerplatten, welche einseitig mit einer neuen PFTE-Schicht versehen sind. Sie werden manuell mit der PFTE-Schicht nach unten auf die Edelstahlbleche des Verschiebelagers angeordnet, durch das Vorschieben des Überbaus in den Spalt eingezogen und am Ende des Auflagers fallen sie wieder heraus. Das bedeutet, dass während des Vorschubs sämtliche Pfeiler durch Arbeiter besetzt werden müssen, was bei langen Brücken zu einem Bedienungsproblem bzw. höherem Personalbedarf führt.

Göhler empfiehlt eine maximale Pressung der Verschiebeplatte aus dem Brückeneigengewicht von 13 N/mm² und eine maximale Reibung von 4% [1]. Die Länge der Platten liegt bei etwa 30 cm, sodass sie noch bedienbar sind.

Abbildung 2.20: Aufbau einer Vierschiebeplatte [1]

Abbildung 2.21: Seitenführung in (a) Längsrichtung und (b) Draufsicht [1]

2.6.5 Seitenführung

Die Seitenführung (siehe Abbildung 2.21) besteht nach [1] aus einem ausgesteiften Stahlwinkel und einem unbewehrten Elastomerkissen (ersichtlich in Abbildung 2.19) von etwa 20 mm Stärke. Über das Elastomer wird ein 6 mm dickes Stahlblech gelegt, das mit Edelstahlblech bezogen ist. Der auf der oberen Seite herausstehende Schenkel hat dieselbe Neigung wie die Stegfläche des Überbaus und die ganze Seitenführung ist am Lagerblock/Pfeiler festgeschraubt. Dadurch wird erzielt, dass die Seitenführungskräfte direkt in das Verschiebelager und sodann über Reibung in den Pfeiler abgeleitet werden. Die Horizontalkräfte liegen in der Größenordnung von etwa 10% der Auflast des Verschiebelagers, respektive des Brückeneigengewichtes. Zur Dimensionierung sind noch die Windkräfte, sowie ungleiche Schub- und Lastumlagerungskräfte zu berücksichtigen.

2.6.6 Hilfsstützen

Die Hilfsstützen dienen zur Reduktion der Spannweiten im Bauzustand. Diese sind dann erforderlich, wenn große Stützweiten zu überwinden sind oder große Variabilität der Stützweiten auftritt. Die Material- und Transportkosten spielen eine wesentliche Rolle bei der Baustoffwahl für die Hilfspfeiler. Da Stahl in Relation zu Stahlbeton in Hinsicht auf Recycling und Herstellung günstiger ist, wird meistens zunächst eine Stahllösung untersucht und ein Vergleich mit einer Verbundvariante (Eckstiele aus ausbetonierten Stahlprofilen) überprüft. Bei Stahlstützen ist allerdings zu bedenken, dass sie infolge der hohen horizontalen Längskräfte öfters eine Abspannung benötigen. Die Höhe der Hilfspfeiler liegt bei niedrigen Brücken zwischen 5 m und 10 m und bei hohen Brücken häufig bei 30 m bis 50 m [1].

2.6.7 Vorschubklaue

Die Kräfte zum Verschub einer Brücke mittels Taktschiebeverfahren können nur über Reibung zwischen Hub-Schub-Anlage und Überbau aktiviert werden. Dieser Reibungswiderstand ist in den letzten Takten aufgrund des geringeren Eigengewichtes des Überbaus zufolge reduzierter Einflusslänge im Bereich der Hub-Schub-Anlage und gleichzeitiger maximal erforderlicher Verschubkraft oft nicht ausreichend. Als Hilfsmittel wird deswegen eine Zugstangenverbindung zwischen Verschubanlage und Überbau eingesetzt. Diese sogenannte Vorschubklaue (siehe Abbildung 2.23) wird am letzten Brückenabschnitt - meistens im Stegbereich - befestigt und hat die

Aufgabe die gesamte Brücke zu ziehen bis sie sich in ihrer endgültigen Lage befindet. Sie benötigt eine zusätzliche Rückhaltekonstruktion am Widerlager.

Abbildung 2.22: System einer Vorschubklaue nach [10]

3 Beschreibung der Herstellung mittels Traggerüst

Das konventionelle Lehrgerüst stellt das häufigste und älteste Bauverfahren für die Schalung des Überbaus dar. Die Holzschalung wird meist auf, in Brückenlängsrichtung angeordneten, justierbaren Rüstträgern aufgebaut. Als Rüstträger kommen Fachwerksbinder, Fachwerksträger oder Profilträger zum Einsatz, die bei größeren Spannweiten mit Zwischenjochen ergänzt werden können. Der große Vorteil diese Baumethode ist die enorme Flexibilität, welche die Herstellung von Brücken mit beliebigen Querschnitten, Längs- und Querneigungen ermöglicht. Brücken mit einer Höhe bis zu etwa 15 m können wirtschaftlich auf einem Lehrgerüst hergestellt werden³.

Der Lehrgerüstbau hat sich aus der Notwendigkeit zur Formgebung der Betonbrücken abgeleitet, also ist seine Entwicklung auf das Engste mit dem Betonbrückenbau verbunden. Eine erste Form des Traggerüstbaus stellte das hölzerne Bogengerüst dar, welches oftmals den gleichen Kosten- und Konstruktionsaufwand wie das eigentliche Bauwerk verlangte. Die Weiterentwicklung dieser Methode wurde von einer Ersparnis der Lohn- und Materialkosten getrieben. Mit dem Bau von Balkenbrücken entstanden die konstruktiv einfacheren Gerüstkonstruktionen, wie wir sie heutzutage kennen – mit stählernen Rüstträgern und Rüststützen. Zum Zweck einer noch kostengünstigeren Herstellung mit dem Einrüstverfahren hat sich die Bauindustrie in Richtung einer Vorschub- und Freivorbaurüstung entwickelt. Diese werden heute im Bereich des Großbrückenbaus eingesetzt. Das stationäre Lehrgerüst stellt aber weiterhin eine wirtschaftliche Lösung bei kleineren Brücken mit unregelmäßigen Formen dar [11].

3.1 Besonderheiten beim Entwurf

Die gegenseitige Beeinflussung von Bauwerk, Traggerüst und Gründung sowie die zu verschiedenen Zeitpunkten auftretenden Einwirkungen aus Frischbetonlast, Vorspannung und Setzungen kennzeichnen den Lehrgerüstbau. Diese Faktoren erhöhen den Schwierigkeitsgrad der Berechnung gegenüber dem Gerüstbau im Hoch- und Industriebau. Der temporäre Charakter solcher Konstruktionen erfordert auch bei sorgfältiger Planung Anpassungen an die örtlichen Verhältnisse auf der Baustelle. Folgende Punkten erfordern nach [6] eine besondere Sorgfalt:

- Hohe Gebrauchslasten im Vergleich zum Eigengewichtsanteil, welche in voller Größe auftreten oder sogar überschritten werden
- Große Exzentrizitäten und Verformungen der Verbindungen, welche die Schubsteifigkeit des Gerüstes abmindern können
- Einfluss von Beschädigungen bei langer Lebensdauer und häufigem Einsatz des Gerüstes, zufolge dessen die idealisierten Annahmen zur statischen Berechnung abweichen können

Lehrgerüste sollen während der Ausführung nur geringe Formänderungen erfahren, um Rissbildung im Tragwerk zu vermeiden. Beim Entwurf eines Lehrgerüstes ist nach [3] besonderes Augenmerk darauf zu legen, dass neben den zu erwartenden Verformungen des Überbaus auch die Verformungen und Setzungen des Traggerüstes selbst zu berücksichtign sind. Die gesamte Durchbiegung soll in Form einer Überhöhung im Traggerüst ausgeglichen werden. Weiters muss die Ausbildung des Lehrgerüstes ein Entfernen der Schalung vom Tragwerk nach der Erhärtung des

³ Mehlhorn: Handbuch Brückenbau, Springer, Kapitel 9.1.1.2, S.724

Betons ermöglichen. Eine weitere Besonderheit stellen die zusätzlichen Längskräfte in den Rüstträgern dar, welche aus der Ableitung von Horizontalkräften entstehen. Diese sind mit den Normalkräften aus lotrechter Lastabtragung zu überlagern. Daher ist eine Anordnung der Aussteifungsverbände im Bereich der weniger beanspruchten Lehrgerüststützen günstiger.

Beim Entwurf von Spannbetonbrücken ist zu beachten, dass das Gerüst die Längsverformung (Stauchung) zufolge Vorspannung des Überbaus nicht behindert. Dies setzt wiederum voraus, dass das Traggerüst längsbeweglich ausgebildet sein muss. Die zusätzliche vertikale Verformung durch das Vorspannen ist auch in Kauf zu nehmen, indem die Rüststützen stets mit Absenkvorrichtungen zu versehen sind.

Aus ausführungstechnischen Gründen wird der Oberbau bei kleineren Bauwerken meist in einem Betoniergang über die gesamte Länge hergestellt. Längere Brücken verlangen eine abschnittsweise Errichtung. Bei Durchlaufträgern mit mehreren Feldern ist es vorteilhaft, das Traggerüst zu verschieben und dieses erneut einzusetzen. Die Wirtschaftlichkeit des Lehrgerüstbaus ist stark vom Aufwand für Auf- und Umbau des Gerüstes abhängig [3].

3.2 Ortfestes Traggerüst

Das ortsfeste Traggerüst kann bis zu einer maximalen Länge des Überbaus von etwa 80 bis 100 m wirtschaftlich eingesetzt werden. Abhängig von der Querschnittsbreite ist hier eine Herstellung in einem Betonierabschnitt möglich. Das Traggerüst wird entweder für die ganze Brückenlänge vorgehalten oder höchstens einmal in die einzelnen Brückenfelder umgebaut [3].

3.2.1 Kontinuierliche Rasterstützung

Hier erfolgt die Rüstung analog einer Deckenschalung im Hochbau. Diese Methode ist für Brücken mit variabler Längs- und Querneigung, wechselnder Krümmung oder einer Aufweitung der Brückenfläche geeignet. Weiters sind die bautechnischen Randbedingungen, wie eine frei zugängliche Unterseite des Bauwerks, gute Untergrundverhältnisse und geringe Bauhöhe (bis 10 m) zu beachten. Je nach Eigengewicht kommen hier Standard-Rüsttürme bzw. Schwerlastrüststützen zum Einsatz, welche sich in der Höhe justieren lassen. Darauf werden in Brückenquerrichtung Kanthölzer verlegt (Abbildung 3.1). Quer zu den Kanthölzern werden in Brückenlängsrichtung Schalungslängsträger in engem Abstand (ca. 50 cm) zur Unterstützung der Schalhaut angeordnet. Bereiche mit größeren Betonmengen (mittlerer Bereich gegenüber dem Randbereich), welche höheren Frischbetonlasten ausgesetzt sind, verlangen eine engere Anordnung der Rüstträger unterhalb des Querschnitts. Die Gerüsttürme müssen räumlich gegen Wind und Abtriebskräfte aus Schrägstellung der Rüstträger ausgesteift werden, da sonst eine Gefahr vor kinematischem Versagen besteht.

Abbildung 3.1: Traggerüst mit kontinuierlicher Unterstützung [3]

Abbildung 3.2: Traggerüst mit freier Spannweite [12]

3.2.2 Freie Spannweite

Die Lehrgerüste mit einzelnen Stützjochen können unter denselben Bedingungen wie die kontinuierliche Rasterstützung eingesetzt werden, allerdings sind hier die Zugänglichkeit der Unterseite sowie die Qualität des Untergrundes nur von untergeordneter Bedeutung. Eine derartige Konstruktion besteht aus parallel nebeneinander liegenden Stahlträgern, bei größeren Spannweiten Fachwerksträgern, welche meistens eine Stützweite überbrücken (Abbildung 3.2). Die Schalhaut wird direkt auf die Fachwerkobergurte verlegt.

3.3 Verschiebbares Traggerüst

Bei mehrfeldrigen Brücken aus Ortbeton mit einer Höhe über Gelände bis zu etwa 15 m erfolgt die Herstellung abschnittsweise auf einem verschieblichen Traggerüst (siehe Abbildung 3.3). Durch eine höhere Einsatzhäufigkeit eines Traggerüstes am selben Bauwerk sinkt der Aufwand für Schalung und Rüstung. Demzufolge steigt die Effizienz des Errichtungsprozesses und somit auch die Wirtschaftlichkeit dieser Baumethode. Der Verschub eines Lehrgerüstes ist sowohl in Längs-, als auch in Querrichtung möglich.

Ein wesentlicher Punkt bei der feldweisen Fertigung ist die Anordnung von Bauabschnittsfugen im Bereich der geringen Momentenbeanspruchung (0,2 bis 0,25xL der Stützweite L des nächsten Feldes). Die Traggerüste werden verschieblich ausgebildet und über eine Verschubbahn am Boden umgesetzt oder von Feld zu Feld umgebaut (Abbildung 3.3). Je nach Geländeart sowie Gestaltung des Über- und Unterbaus kann entweder nur die Rüstträgerlage oder die Rüstträger einschließlich Rüstjoche verschoben werden. Voraussetzung für ein Vorwärtsschieben einer Rüstung ist eine günstige Anordnung der Pfeiler.

Bei nebeneinanderliegenden Überbauten, welche durch Fugen getrennt sind, können die Traggerüste auch querverschieblich eingesetzt werden (Abbildung 3.4 unten). Dabei ist bei Festlegung der Verschubreihenfolge die Längs- und Querneigung des Tragwerks zu berücksichtigen. Der tiefer liegende Querschnittsteil wird zuerst gefertigt, wenn eine Querneigung im Querschnitt vorhanden ist. Auf diese Weise reichen nur geringe Absenkwege zum Verschub aus. Weiters ist in Abhängigkeit von der Bauzeit und der Anzahl der Brückenfelder die notwendige Zahl von Rüstsektionen festzulegen. Wird zunächst nur ein Überbau mit einem längsverschieblichen Gerüst hergestellt, steht diese Tragwerksseite bereits zur Nutzung zur Verfügung, während die zweite Hälfte gefertigt wird. Alternativ dazu können auch zwei oder mehr querverschiebliche Rüstabschnitte verwendet werden (siehe Abbildung 3.4). So lässt sich die Zeit zum Erhärten des Betons und Eintragung der Vorspannkräfte sowie zur Vorbereitung der Schal- und Bewehrungsarbeiten im nächsten Feld nutzen. Je nachdem, ob die gesamte Lehrgerüstsektion oder nur die Rüstträger ohne Rüstjoche verschoben werden, sind verschiedene Ausführungsvarianten der Koppelfuge erforderlich. Im ersten Fall sind unter der Fuge zwei unabhängige Rüsttürme notwendig. Im zweiten Fall stellt der Rüstturm ein Auflager des Kragarms, sowie gleichzeitig die des folgenden Feldes dar und muss somit doppelt so breit ausgebildet werden [3].

Abbildung 3.3: Abschnittsweise Herstellung auf verschiebbarem Traggerüst [3]

Abbildung 3.4: Schematische Darstellung des Einsatzes zweier querverschieblicher Rüstträger [3]

4 Projektbeschreibung der mit Taktschiebeverfahren errichteten Brücke B2314 in Wien

Die Brücke B2314⁴ der A2 Süd Autobahn befindet sich wie in Abbildung 4.1 ersichtlich im Süden von Wien und ist Bestandteil des Großprojektes der ASFINAG⁵ zum Neubau der Hochstraße Inzersdorf. Das bestehende Bauwerk aus Stahlbetonfertigteilen (siehe Abbildung 4.2), das in den Jahren 1970-1973 errichtet wurde, hat seine Lebensdauer erreicht und wurde im Zuge dieses Projektes abgetragen und ersetzt. Die Tragwerksachse "FB 700" (in Abbildung 4.2 rot hervorgehoben) wurde für den Entwurf des neuen Tragwerks beibehalten (Abbildung 4.3). Das Projekt "A2 Süd Autobahn GESB Knoten Inzersdorf" umfasst zusätzlich zum Abbruch und Neubau dieser Brücke noch die Errichtung von Lärmschutzwänden, einer Versickerungsmulde sowie diverse Landschaftsbaumaßnahmen.

Abbildung 4.1: Übersicht A2 Süd Autobahn [13]

⁴ Nach Alt-Wiener-Bezeichnung: die vierzehnte Brücke im 23.Bezirk in Wien

⁵ Autobahnen- und Schnellstraßen-Finanzierungs-Aktiengesellschaft

Abbildung 4.2: B2314 altes Tragwerk [13]

Die neue Brücke B2314 besteht aus zwei eigenständigen Tragwerken, welche jeweils als Hohlkastenquerschnitt ausgeführt wurden. Diese sind folgendermaßen bezeichnet: RFB⁶ Nord Richtung Altmannsdorf (bogenaußenseitig) und RFB Süd Richtung A2 (bogeninnenseitig), (siehe Abbildung 4.4). Die Brücke überspannt mit einer Gesamtlänge von etwa 500 m diverse Infrastruktureinrichtungen, wie zum Beispiel die Auffahrtsspur auf die Autobahnen A2 und A23, Betriebs- und Wartungsgleise der Badner Bahn (Wiener Lokalbahnen), die Triester Straße und die Sterngasse in Wien. Das Ausschreibungsverfahren für das Bauvorhaben fand im Jahr 2013/2014 statt, die anschließende Ausführung wurde von Mitte 2015 bis Anfang 2017 abgewickelt.

Durch die vorgegebenen Randbedingungen (Länge, Bogen im Grundriss, gleichmäßige Spannweiten, etc.) war dieses Projekt für den Einsatz des Taktschiebeverfahrens prädestiniert. Die ursprünglichen Ausschreibungsunterlagen haben eine Stahl-Betonverbund-Variante in Form eines Stahlhohlkastens mit geneigten Stegen und aufbetonierter Fahrbahnplatte aus Stahlbeton vorgesehen. Diese Variante wurde im Zuge der Angebotsbearbeitung aus Kostengründen gegen eine reine Betonvariante ersetzt.

Das statische System der beiden neuen Tragwerke ist ein im Grundriss gekrümmter Durchlaufträger, der sich über 13 Felder spannt (siehe Abbildung 6.2). Die Brückenachsen beschreiben im Grundriss einen Kreis mit einem Radius von 600 m. Die größten Spannweiten in RFB Nord und Süd belaufen sich entsprechend auf 45 m und 42 m.

Die Herstellung des Tragwerkes erfolgte im Taktschiebeverfahren. Der Taktkeller befand sich dabei bei Achse 0 (links in Abbildung 4.4). Das Tragwerk konnte bis etwa in die Mitte des letzten Feldes verschoben werden. Das verbleibende Reststück musste aufgrund von seiner unregelmäßigen Geometrie (veränderliche Querschnittsbreite) als Lehrgerüstabschnitt hergestellt werden. Die Taktlänge wurde mit der halben Feldlänge bzw. maximal 25 m festgelegt. Die Bauabschnittsfugen liegen somit jeweils in den Viertelpunkten der Felder. Somit ergeben sich 25 Segmente inklusiv einem 42 m Schnabelsegment. Die Verkehrsführung erfolgte so, dass über die gesamte Bauzeit entweder auf der RFB Nord oder auf der RFB Süd jeweils ein Fahrstreifen in jede Richtung aufrechterhalten wurde.

Der ausgeführte Betonquerschnitt weist eine, für das Taktschiebeverfahren typische Hohlkastenform auf, welche mit Vouten für die Unterbringung der Spannglieder im Bereich der oberen und unteren Gurtplatte versehen ist (siehe Abbildung 4.3). Ein besonderes Merkmal dieses Querschnittes stellt einerseits seine niedrige Bauhöhe von 2,10 m und andererseits die Asymmetrie der Kragarme der Deckplatte dar. Die beiden Tragwerke, welche zusammen die Brücke B2314 bilden sind ident, daher

⁶ Richtungsfahrbahn

ist in Abbildung 4.3 beispielhaft nur die RFB Süd abgebildet. Die RFB Nord schließt an die Zentralachse 700 an, welche sich auf der linken Seite von RFB Süd befindet. Für die Berechnung der folgenden Alternativentwürfe wurde das Tragwerk der einen Brückenhälfte – der RFB Süd – herangezogen, welches im Kapitel 5 ausführlich erläutert wird.

Abbildung 4.3: Regelquerschnitt RFB Süd der Brücke B2314 [13]

Abbildung 4.4: Lageplan der Brücke B2314 RFB Süd [13]

Abbildung 4.5: Brücke B2314: links Nord, rechts Süd

5 Grundlagen des Alternativentwurfs Herstellung mittels Traggerüst

Bei dem Alternativentwurf wird von einer Herstellung auf einem Traggerüst ausgegangen. Somit sind sämtliche Berechnungen der Bauzustände und ihre Auswirkungen kein Bestandteil der folgenden Untersuchungen. Ziel dieser Vorgehensweise ist es zu erfahren um wie viel sich die Brückenmassen – Beton, Bewehrungs- und Spannstahl – im Endzustand im Vergleich zu dem Taktschiebeverfahren reduzieren würden. Die Massen des ausgeführten Taktschiebebauwerks wurden den vorliegenden Ausführungsunterlagen entnommen [13]. Diese Diplomarbeit behandelt ausschließlich den Überbau der Brücke, Unterbauten wie Pfeiler und Gründungen bleiben außer Betracht. Das Objekt B2413 besteht aus zwei identischen Tragwerken (eins pro Fahrtrichtung), welche auch in der Ausführungsphase getrennt betrachtet wurden. Deswegen wird hier nur eine Brückenhälfte, die RFB Süd, analysiert. Das bedeutet, dass in den folgenden Kapiteln unter Brücke nur die RFB Süd zu verstehen ist. Für die Ausarbeitung des Alternativentwurfs wurde ein repräsentativer Abschnitt der Brücke, zwischen Achse 70 und 100, modelliert und berechnet. Die Ergebnisse wurden dann für die Regelbereiche der Gesamtbrücke aufsummiert. Damit eine plausible Vergleichsbasis gegeben ist, wurden die Materialparameter gleich wie die Brücke B2314 bei Knoten Inzersdorf in Wien gewählt.

Im vorliegenden Entwurf mit zwei Varianten handelt es sich nicht um ein Ausführungsprojekt, sondern um eine Machbarkeitsuntersuchung. Deswegen wird in den nachfolgenden Berechnungen das Haupttragwerk untersucht. Auf dieser Grundlage wird beispielsweise der Nachweis der Dekompression in den betrachteten Schnitten auf eine Überdrückung des gesamten Querschnitts geführt. Des Weiteren sind mögliche Streuungen der Vorspannkräfte, sowie Spannkraftverluste in Lasteinleitungsbereiche nicht berücksichtigt ($r_{sup} = r_{inf} = 1$). Konstruktive Details wie die Ausbildung von Lisenen und Verankerungen der Spannglieder sind jeweils keine Aufgabe dieser Diplomarbeit.

5.1 Normen und Software

Als Normenwerke wurden die in Österreich aktuell geltenden Eurocodes mit den entsprechenden nationalen Anwendungsdokumenten herangezogen. Diese sind im Literaturverzeichnis aufgelistet. In dieser Diplomarbeit wurden für die statischen Berechnungen das Programm Dlubal RFEM (Version 5.11.02) mit dem externen Aufsatz für Vorspannung RF-Tendon (Version 8.0.24.48786) herangezogen. Für die Querschnittsnachweise für Biegung und Normalkraft wurde das Programm INCA2 (Version 2.90) und für diverse Skizzen und Abbildungen das Zeichenprogramm AutoCAD 2015 verwendet. Zur Überprüfung der Verformungen im gerissenen Zustand wurde das Programm ConDim (Version 7.1) benutzt.

5.2 Materialparameter

Beton C40/50

Die Betongüte wurde von der Brücke B2314 übernommen. Es handelt sich um einen Beton mit charakteristischer Zylinderdruckfestigkeit von $f_{ck} = 40 \text{ N/mm}^2$ und einer Bemessungsdruckfestigkeit $f_{cd} = 26,67 \text{ N/mm}^2$. Der Elastizitätsmodul E_{cm} beträgt 35.000 N/mm².

Betondeckung

Für die Betondeckung sind die Werte laut ÖN EN 1992-1-1:2004, Tab. 4.1 [14] in Abhängigkeit der Expositionsklasse maßgebend. Es wird vom selben Material im gesamten Querschnitt ausgegangen. Die erforderliche Betondeckung wurde wie folgt ermittelt: $c_{nom} = c_{min} + \Delta c_{dev}$.

Bautoil	Expositions-	Cmin	Δc dev	Cnom
Bauten	klasse	[mm]	[mm]	[mm]
Querschnitt	XC4	30	10	40

Tabelle 5.1: Übersicht Betondeckung

Bewehrungsstahl B550B

Als Bewehrungsstahl wurde die üblicherweise in Österreich verwendete Güte B550B mit einer charakteristischen Streckgrenze von $f_{yk} = 550 \text{ N/mm}^2$ und einer Bemessungsfließgrenze von $f_{yd} = 478 \text{ N/mm}^2$ gewählt. Der Elastizitätsmodul beläuft sich auf 200.000 N/mm².

Vorspannung mit nachträglichem Verbund Dywidag SUSPA-Litze DW

Für Variante 1 (Vorspannung mit nachträglichem Verbund) wurde der Spanngliedtyp Y1860S7 6-12 (12 Litzen) mit Zulassungsnummer Z-13.71.130839 [15] vom Objekt B2314 übernommen. Die Litzen bestehen aus zwölf Drähten, haben eine Querschnittsfläche von $A_P = 150 \text{ mm}^2$, eine Zugfestigkeit von $f_{pk} = 1.860 \text{ N/mm}^2$ und einer Fließgrenze von $f_{p0,1k} = 1.640 \text{ N/mm}^2$.

Externe Vorspannung Gleitbau Ges. VTB-Systems

Für Variante 2 (externe Vorspannung) wurden die Litzenspannglieder der Spezifikation VBT-BE 3x4-150-1860 mit Zulassungsnummer EZA-10/006 [16] verwendet. Bei der Wahl wurde darauf geachtet, dass die externe Vorspannung dieselbe Litzenanzahl (12 Litzen) und die gleiche Zugfestigkeit f_{pk} = 1.860 N/mm² wie die Spannglieder in der Variante 1 aufweisen, um einen späteren Vergleich zu erleichtern.

5.3 Querschnittsgeometrie

Abbildung 5.1: Querschnitt Alternativentwurf

Der für den Alternativentwurf erarbeitete Kastenquerschnitt in Abbildung 5.1 wurde anhand der erforderlichen Konstruktions- und Bemessungskriterien entworfen. Die äußeren Hauptabmessungen (Höhe und Breite) wurden vom Bauwerk B2314 übernommen und galten als fixe Ausgangpunkte, folglich wurden nur die Stärken der einzelnen Elemente variiert, sowie die Neigung der Stege

vernachlässigt. Die unterschiedliche Länge der Kragarme wurde auch aufgrund des ausgeführten Bauwerks beibehalten. Der Querschnitt ist vereinfachend ohne Aufbau und Randbalken dargestellt.

5.4 Lastaufstellung

5.4.1 Ständige Lasten

Eigengewicht

Das Eigengewicht der Brücke wird automatisch vom Berechnungsprogramm berücksichtigt. Die Querschnittsabmessungen sind in Abbildung 5.1 ersichtlich. Für die Verankerung der Spannglieder benötigt man Lisenen, deren Eigengewicht wurde hier als eine Last pro Linienmeter (Abbildung 5.2: Lastfall Eigengewicht) berücksichtigt. Die angesetzten Ausbaulasten wurden wie folgt ermittelt:

Abbildung 5.3: Aufbaulasten

5.4.2 Veränderliche Lasten

Verkehrslasten

Lasten aus Kraftfahrzeug- und Fußgängerverkehr auf der Fahrbahn und den Gehwegen sind als veränderliche Einwirkungen zu behandeln. Diese sind in der Form von verschiedenen Verkehrslastmodellen (LM 1-4) für Vertikal- und Horizontallasten normativ geregelt. In dieser Arbeit wurden die Lastmodelle 1 und 3 wie folgt herangezogen:

• Lastmodel 1: ÖN EN 1991-2, 4.3.2 [17]

Das Lastmodell 1 deckt die meisten Einwirkungen aus LKW- und PKW-Verkehr ab. Die Aufstellung der Verkehrslasten erfolgte nur auf der Fahrbahnplatte, die durch die Brückenkappen begrenzt ist und eine Breite von 8,80m aufweist. Die gesamte Fahrbahnfläche wurde in einzelne parallel zur Fahrbahnseite verlaufende Fahrstreifen mit einer Breite *w* von 3 m eingeteilt. Somit ergaben sich zwei Fahrstreifen und eine Restflächenbreite von 2,80 m.

Fahrbahnbreite b = 8,80 m Anzahlt rechnerischer Streifen nach EN 1191-2 Tab.4.1 [17] w = 8,8 / 3 = 2,90 \rightarrow zwei Streifen Restbreite 8,8 – 2*3 = 2,8 m

Tabelle 5.2: ÖN EN 1991-2, Tabelle 4.2 – Lastmodell 1, Verteilung von Verkehrslasten [17]

Stellung	Doppelachsen <i>TS</i>	Gleichmäßig verteilte Last
	Achslast Q_{ik} (kN)	$q_{i\mathbf{k}}$ (oder $q_{i\mathbf{k}}$) (kN/m ²)
Fahrstreifen 1	300	9
Fahrstreifen 2	200	2,5
Fahrstreifen 3	100	2,5
Andere Fahrstreifen	0	2,5
Verbleibende Restfläche q _{rk}	0	2,5

Legende

- 1 Fahrstreifen Nr. 1 : Q_{1k} = 300 kN ; q_{1k} = 9 kN/m²
- 2 Fahrstreifen Nr. 2 : Q_{2k} = 200 kN ; q_{2k} = 2,5 kN/m²
- 3 Fahrstreifen Nr. 3 : $Q_{3k} = 100 \text{ kN}$; $q_{3k} = 2,5 \text{ kN/m}^2$ Abstand der Doppelachsen = 1,2 m (AC)

4 (*) Für $w_1 = 3 \text{ m}$

Tandem System (TS)

Fahrstreifen 1:
$$Q_{1k} = \alpha * Q_i * Q_{1k} = \frac{1 * 300 \, kN}{(1m \, x \, 1m) * 2} = 150 \, kN/m^2$$

Fahrstreifen 2: $Q_{2k} = \alpha * Q_i * Q_{2k} = \frac{1 * 200 \, kN}{(1m \, x \, 1m) * 2} = 100 \, kN/m^2$

Gleichmäßig verteilte Belastung (UDL):

Fahrstreifen 1: $q_{1k} = \alpha qi * q_{1k} = 9,0 \text{ kN/m}^2$ Fahrstreifen 2: $q_{2k} = \alpha qi * q_{2k} = 2,5 \text{ kN/m}^2$

Anpassungsfaktoren α_{Qi} , α_{qi} , α_{qr} = 1,0

Die Radlasten werden auf einer Aufstandsfläche von 0,4 x 0,4 m unter einem Winkel von 45° bis zur Plattenmitte ausgebreitet (siehe Abbildung 5.5). Unter der Annahme einer 30 cm dicken Betonfahrbahn und 15 cm Belag ergibt sich somit eine rechnerische Aufstandsfläche a_0 der Einzellasten mit 1,0 x 1,0 m.

Weiters gilt nach ÖN EN 1991-2 4.3.2(5) [17], dass bei aneinander angrenzender Fahrstreifen zwei Doppelachsen zu berücksichtigen und diese enger angeordnet werden können. Dabei sollte der Abstand zweier benachbarter Radachsen nicht kleiner als 50 cm sein. Die Aufteilung des Lastmodels 1 auf die Fahrbahnplatte für das jeweils maßgebende Feld- und Stützmoment ist in wird in Kapitel 5.5 erläutert.

Abbildung 5.5: Verteilung von Einzellasten nach ÖN EN 1991-2, 4.3.6

• Lastmodel 3: ÖN EN 1991-2, 4.3.4 und Anhang A [17], [18]

Das Lastmodel 3 stellt eine Gruppe von Achslastkonfigurationen idealisierter Sonderfahrzeuge (z. B. für Industrietransporte) dar. Wie der vorliegenden Ausführungsstatik wurde hier das folgende Sonderfahrzeug (SOFZ) gem. Tab A.1: 3000/200 ausgewählt:

 \rightarrow Länge 21,0 m / Breite 3,0 m /15 Achsen_mit 200 kN e = 1,50 m

Für das Sonderfahrzeug wird keine dynamische Vergrößerung berücksichtigt. Es wird angenommen, dass die Sonderfahrzeuge sich mit einer geringen Geschwindigkeit (\leq 5 km/h) bewegen. Daher sind nach ÖN EN 1991-2, A.3(6) [17] die restlichen Brückenflächen mit den häufigen Werten des Lastmodell 1 ungünstig zu belasten (ψ 1=0,75 für Doppelachse und ψ 1=0,40 für Gleichlast).

Abbildung 5.6: Anordnung der Achsen gem. ÖN EN 1991-2, Bild A.1 [17]

Abbildung 5.7: EC 1991-2, Bild A.3 Gleichzeitigkeit des LM 1 und Spezialfahrzeuge [17]

 $q_{SOFZ} = \alpha * Q_i * Q_{1k} = \frac{1 * 200 \text{ kN}}{(1,2\text{m x } 0,15\text{m}) * 2} = 555,56 \text{ kN/m}^2$

 $Q_{1h} = \psi_1 * Q_{1k} = 0,75 * 600 = 450 \text{ kN}$ $Q_{2h} = \psi_1 * Q_{2k} = 0,75 * 400 = 300 \text{ kN}$ $q_{1h} = \psi_1 * q_{1k} = 0,4 * 9 = 3,6 \text{ kN/m}^2$ $q_{2h} = \psi_1 * q_{2k} = 0,4 * 2,5 = 1 \text{ kN/m}^2$

Bremslasten: ÖN EN 1991-2, 4.4.1 [17]

Die Bremslast Q_{lk} ist in Längsrichtung in Höhe der Oberkante des fertigen Belags anzusetzen. Der charakteristische Wert Q_{lk} soll in Abhängigkeit von den maximalen vertikalen Lasten des gewählten Lastmodels in Fahrstreifen 1 wie folgt bestimmt werden:

```
\begin{aligned} Q_{lk} &= 0,6 * \alpha_{Q1} * (2 * Q_{1k}) + 0,10 * \alpha_{q1} * q_{1k} * w_1 * L \\ &180 \ \alpha_{Q1} \ kN \leq Q_{lk} \leq 900 \ kN \\ &\alpha_{Q1} &= \alpha_{q1} = 1 \ ,0 \\ &Q_{1k} &= 300 \ kN; \ q_{1k} &= 9 \ kN/m^2, \ w_1 &= 3 \ m \\ &Q_{lk} &= 0,6^*1^*(2^*300) + 0,10^*1^*9^*3^*500 = 360 + 1350 = 1710 \ kN > 900 \ kN \end{aligned}
```

 \rightarrow QIk = 900 kN

Die Bremslast wird als Block auf eine Länge von 300 m verteilt:

 $q_{lk} = 900 / 300 = 3 \text{ kN/m}$

Wind

Für das Ansetzen der Windkräfte auf das Tragwerk wird das vereinfachte Verfahren nach ÖN EN 1991-1-4, 8.3.2 [19] wie folgt herangezogen:

 $F_w = \frac{1}{2} * \rho * v_{b^2} * C * A_{ref,x} = q_b * C * A_{ref,x}$

Standort:	Wien
0.0110.01.01	

$q_{b} = q_{b,0} =$	0,46	kN/m²	Grundwert der Basisgeschwindigkeit gem.Tab.A1
b =	10,8	m	Tragwerksbreite zw. Randbalkenaußenkanten
d _{tot} =	6,3	m	Tragwerkshöhe (Tragwerk+ Lärmschutzwand)
h_{LSW}	4,0	m	Lärmschutzwand
$b/d_{tot} =$	1,7	-	
z _e =	10	m	Referenzhöhe
C =	4,8		Windlastfaktor nach Tab.8.2

 $F_w = 0.46 * 4.8 * A_{ref,x} = 2.21 \text{ kN/m}^2 * A_{ref,x} = 2.21 * 6.35 = 14.0 \text{ kN/m}$

Die resultierende Windkraft F_w wurde wie in Abbildung 5.8 dargestellt auf das Tragwerk angesetzt, wobei die Wirkung in einen horizontalen Anteil und ein pro Längeneinheit wirkendes Moment aufgeteilt wurde (siehe Abbildung 6.7).

Abbildung 5.8: Windbelastung, Ermittlung der Referenzfläche Aref

Temperatur

Die Einflüsse aus Temperaturänderungen zählen zu den klimatischen Einwirkungen auf Tragwerke und werden für Brücken in ÖN EN 1991-1-5, 6.1.3 [20] geregelt. Abhängig von der Art des Brückenüberbaus (Typ 1-3) werden diverse Temperaturanteile angesetzt. Der vorliegende Entwurf fällt in Typ 3 Betonkonstruktion, woraus sich die folgenden Temperatureinwirkungen ergaben:

<u>Konstanter Temperaturanteil für den Standort Wien</u>

Max/min Außenlufttemperaturen: ÖNORM B 1991-1-5, 5.1 [20]

```
Tmax = 39° - 0,006*h = 39° - 0,006*260 = 38°C
Tmin = -26°C (Wien)
```


Abbildung 5.9: ÖN EN 1991-1-5, Bild 6.1 Korrelation zwischen Tmin/Tmax und Te,min/Te,max [20]

Max/min Temperaturanteil der Brücke: (Abbildung 5.9)

Te,max = Tmax + 2 = 38 + 2 = 40°C Te,min = Tmin + 8 = -26 + 8 = -18°C

Aufstelltemperatur der Brücke: ÖN EN 1991-1-5, A.1 (3) [20]

$$T_0 = +10^{\circ}C$$

 $\alpha_T = 10^{*}10^{-}6$

Änderungen des konstanten Temperaturanteils: ÖN EN 1991-1-5, 6.1.3.3 [20]

Verkürzung: $\Delta T_{N,con} = T_0 - T_{e,min} = -[10-(-18)] = -28^{\circ}C$ Ausdehnung: $\Delta T_{N,exp} = T_{e,max} - T_0 = 40-10 = 30^{\circ}C$

Gesamter konstanter Temperaturanteil

 $\Delta T_N = T_{e,max} - T_{e,min} = 58^{\circ}C$

• <u>Veränderlicher Temperaturanteil (Temperaturgradiente)</u>: ÖN EN 1991-1-5, Tab.6.1 Typ Hohlkasten [20]

 $\Delta T_{M,heat} = 10^{\circ}C$ Oberseite wärmer $\Delta T_{M,cool} = 5^{\circ}C$ Unterseite wärmer

 Gleichzeitige Wirkung des konstanten und veränderlichen Temperaturanteils: ÖN EN 1991-1-5, 6.1.5 [20]

 $\Delta T_{M} + 0.35^{*}\Delta T_{N} \text{ oder } 0.75^{*}\Delta T_{M} + \Delta T_{N}$ $\Delta T_{M} = \Delta T_{M,heat} \text{ oder } \Delta T_{M,cool}$ $\Delta T_{N} = \Delta T_{N,con} \text{ oder } \Delta T_{N,exp}$

Stützensenkung

Setzungsunterschiede des Tragwerks infolge von Bodensetzungen sind nach ÖN EN 1992-1-1, 2.3.1.3 [21] als dauerhafte Einwirkungen zu behandeln. Es wird eine Setzungsdifferenz Δ h von 10 mm je Stützenachse in ungünstigster Kombination angesetzt. Diese Verformung ist auf Traglastniveau mit dem entsprechenden Teilsicherheitsbeiwerten ($\gamma_{set} = 1.2$) zu multiplizieren.

5.4.3 Teilsicherheitsfaktoren und Lastfallkombinationen

Kombinationsregeln

EN 1990 A1, A.2.2.2 [22] gibt folgende Kombinationsregeln für Straßenbrücken vor:

- 1) Mit dem Lastmodell 1 oder mit der zugehörigen Lastgruppe gr1 sollten keine Windeinwirkungen größer als der kleinere Wert von F_w^* oder $\Psi_0 F_{Wk}$ kombiniert werden.
- 2) Einwirkungen aus Wind und Temperatur brauchen nicht gleichzeitig berücksichtigt zu werden, es sei denn, es gibt andere Festlegungen für lokale Klimaverhältnisse.

Weiters gelten für die Gleichzeitigkeit des Ansatzes der Verkehrslastmodelle nach ÖNORM B 1991-2 Tab.4.4.a [18] folgende Lastgruppen:

				Fahr	bahn			Fußweg oder Radweg
Belastu	ngsart		Vertika	Illasten		Horizon	tallasten	Nur vertikale Lasten
Verw	eise	4.3.2	4.3.3	4.3.4	4.3.5	4.4.1	4.4.2	5.3.2 (1)
Lastm	odell	LM1 (TS und UDL System)	LM2 (Einzelachsen)	LM3 (Sonderfahr- zeuge)	LM4 (Menschenan- sammlungen)	Kräfte aus Anfahren und Bremsen ^a	Fliehkräfte und Seitenkräfte ^a	gleichmäßig verteilte Last
	gr1a	charakteris- tischer Wert						Kombinationswert ^b
Last-	gr1a		charakteris- tischer Wert					
	gr2	häufiger Wert				charakteris- tischer Wert	charakteris- tischer Wert	
gruppen	gr3 d							charakteristischer Wert ^c
	gr4				charakteris- tischer Wert			charakteristischer Wert
	gr5	siehe Anhang A		charakteris- tischer Wert				
	vorherr	schender Einwirkur	ngsanteil (gekennze	ichnet als zur Grup	pe gehöriger Besta	ndteil)		
a Darf im	Nationale	en Anhang festgelegt we	rden (für die erwähnten	Fälle).				
b Darf in	Nationale	en Anhang festgelegt we	rden. Der empfohlene W	/ert beträgt 3 kN/m².				
c Siehe	5.3.2.1(2).	Es sollte nur ein Fußwe	g belastet werden, falls o	dies ungünstiger ist als o	ler Ansatz von zwei bela	asteten Fußwegen.		
d Diese	Gruppe ble	eibt unberücksichtigt, we	nn gr4 angesetzt wird.					

Tabelle 5.3: ÖN B 1991-2, Tabelle 4.4a – Festlegung von Verkehrslastgruppen [18]

Teilsicherheitsfaktoren

Nach ÖN EN 1990 A1, A.2.3.1 [22] sind die Bemessungswerte der Einwirkungen für den Grenzzustand der Tragfähigkeit (STR) für Bauteile ohne geotechnische Einwirkungen mit den in Tabelle A2.4(B) (siehe Tabelle 5.4) angegebenen Teilsicherheitsfaktoren zu beaufschlagen. Die Ψ -Werte sind der Tabelle A.2.1 (siehe Tabelle 5.5) zu entnehmen. Die Teilsicherheitsfaktoren wurden wie folgt abgelesen: $\gamma_G = 1,35$; $\gamma_{G,Setz} = 1,20$: $\gamma_Q = 1,35$; $\gamma_P = 1,0$

Tabelle 5.4: ÖN EN 1990 A1	, Tabelle A.2.4(B) – Bemessungswerte	der Einwirkungen (STR/GEO) [22]
----------------------------	--------------------------------------	---------------------------------

Ständige und vor-	Ständige Ei	nwirkungen	Vor- spannung	Leitein- wirkung ^a	Begleitein	wirkungen ^a		Ständige und vor-	Ständige Ei	Ständige Einwirkungen		Leitein- wirkung ^a	Begleitein	virkungen ^a
uberge- hende Be- messungs- situationen	Ungünstig	Günstig			Vorherr- schende (gegebe- nenfalls)	Weitere		uberge- hende Be- messungs- situationen	Ungünstig	Günstig	nung	Ein- wirkung	Vorherr- schende	Weitere
(Gleichung 6.10)	$\gamma_{{\sf G},{\sf j},{\sf sup}}G_{{\sf k},{\sf j},{\sf sup}}$	$\gamma_{\rm G,j,inf}G_{\rm k,j,inf}$	γ _P P	γ _{Q,1} Q _{k,1}		$\gamma_{Q,i} \not v_{D,i} \mathcal{Q}_{k,i}$		(Gleichung 6.10 a))	$\gamma_{\rm G,j,sup}~G_{\rm k,j,sup}$	$\gamma_{\rm G,j,inf}G_{\rm k,j,inf}$	γ _P P		$y_{Q,1}\psi_{0,1}Q_{k,1}$	$\gamma_{\mathbf{Q},i} \psi_{0,i} \mathcal{Q}_{\mathbf{k},i}$
								(Gleichung 6.10 b))	$\xi_{\rm G,j,sup}G_{\rm k,j,sup}$	$\gamma_{\rm G,j,inf}G_{\rm k,j,inf}$	γ _Ρ Ρ	γ _{Q,1} Q _{k,1}		$\gamma_{\mathrm{Q},\mathrm{i}} \psi_{\mathrm{0},\mathrm{i}} \mathcal{Q}_{\mathrm{k},\mathrm{i}}$
ANMERKUNG ständige Einw ANMERKUNG	ANMERKUNG 1 Die Auswahl zwischen 6.10, oder 6.10 a) und 6.10 b) kann im Nationalen Anhang erfolgen. Im Fall der Wahl von 6.10 a) und 6.10 b) kann der Nationale Anhang in 6.10 a) nur ständige Einwirkungen vorsehen.													
$\gamma_{G,sup} = 1,35^{17}$ $\gamma_{G,inf} = 1,00$ $\gamma_{Q} = 1,35$ wen $\gamma_{Q} = 1,45$ wen	n Q die ungünstig n Q die ungünsti	ge Einwirkung in ge Einwirkung ir	folge Straßen- nfolge Schiene	- oder Fußgå	ingerverkeh Form der La	r darstellt (0 b astgruppen 11	ei gi bis	ünstiger Einwirk 31 (außer 16,	kung) 17, 26 ³⁾ und 27 ³⁾)	, Lastmodellen I	LM71, S	W/0 und HS	LM und wirkl	ichen Zügen
darstellt, wenr $\gamma_{Q} = 1,20$ wen $\gamma_{Q} = 1,50$ für a $\xi = 0.85$ (so di	n diese als einzeli n <i>Q</i> die ungünstig indere Einwirkung	ne Leiteinwirkun ge Einwirkung in gen aus Verkehi 5 × 1.35 ~ 1.15)	g aus Verkehr folge Schiene r und andere v	r berücksicht nverkehr in I veränderliche	igt werden (Form der La Einwirkung	0 bei günstige stgruppen 16 en ²⁾	r Eil und	nwirkung) 17 und SW/2 d	arstellt (0 bei gür	stiger Einwirkur	ng)			
φ = 0,00 tso tass $\varphi_{(0,8)0}^{-0} = 0,00 \times 1,30 \equiv 1,10$, γ_{Gset} = 1,20 im Falle von linearen elastischen Berechnungen, und γ_{Gset} = 1,35 im Falle von nicht linearen elastischen Berechnungen, in Bemessungssituationen mit ungünstiger Wirkung der Einwirkungen aus ungleichmäßigen Setzungen. In Bemessungssituationen, in denen Einwirkungen aus ungleichmäßigen Setzungen günstige Wirkung erzeugen, sind diese Einwirkungen nicht zu berücksichtigen. Siehe auch EN 1991 bis EN 1999 zu γ -Werten, die für eingeprägte Verformungen zu berücksichtigen sind.														
 γ_P = Empfehlu Dieser We Dieser We Wirkunger 	ngswert, der im e ert gilt für das Eig ert gilt für veränd n des Verkehrs, E	einschlägigen Eu engewicht von t lerliche horizont Einwirkungen au	urocode für die ragenden und ale Erddrücke s Wind und Te	e Bemessun nicht tragen , Grundwass emperatur, u	g angegeber den Bauteile ser, frei fließ sw.	n ist. en, Schotterbe endes Wasse	tt, B r ur	Boden, Grundwa nd Schotterbett,	asser und frei flief Verkehrslasten	3endes Wasser, auf Hinterfüllung	, bewegl gen, die	iche Lasten Erddruck ei	usw. zeugen, aero	odynamische

³⁰ Bei Schlenneverkehrseinwirkungen aus ohne une Lastgruppen 26 und 27 darf _{XQ} = 1,20 auf einzelne Komponenten der Einwirkungen aus SW/2 und _{XQ} = 1,45 auf einzelne Komponenten der Einwirkungen aus den Lastmodellen LM71, SW/0 und HSLM usw. angewendet werden.

Tabelle 5.5: ÖN EN 1990 A1, Tabelle A.2.1 – Empfehlung für die Zahlenwerte der Ψ-Faktoren für Straßenbrücken [22]
--	-----

Einwirkung	Beze	ichnung	Ψo	₩1	ψ_2
	gr1a	Doppelachse	0,75	0,75	0
	(LM1+Lasten auf Geh-	Gleichmäßig verteilte Last	0,40	0,40	0
Verkehreleeter	wegen oder Radwegen) ^a	Gehweg- und Radweg- belastung ^b	0,40	0,40	0
(siehe EN 1991-2,	gr1b (Einzelachse)		0	0,75	0
Tabelle 4.4)	gr2 (Horizontalkräfte)		0	0	0
	gr3 (Gehwegbelastung)		0	AC) 0,40 (AC	0
	gr4 (LM4 – Menschenge	0	AC AC	0	
	gr5 (LM3 – Spezialfahrze	euge)	0	AC AC	0
	F _{Wk}				
	 Ständige Bemessun 	0,6	0,2	0	
Windkräfte	— Bauausführung	0,8	_	0	
	F_W^*	1,0	—	—	
Temperaturein- wirkungen	T _k		0,6 ^c	0,6	0,5
Schneelasten	$Q_{Sn,k}$ (während der Baua	usführung)	0,8		_
Lasten aus Bau- ausführung	\mathcal{Q}_{c}		1,0		1,0

Folgende Änderungen sind nach ÖN B 1991-2, Tabelle 2, Anmerkung c [18] (Tabelle 5.6) bei den Ψ -Faktoren zu berücksichtigen:

- Für Straßenbrücken Ψ_2 =0,3 für alle vertikalen Einwirkungen aus Lastmodell 1
- Vernachlässigung der Temperaturgradienten unter quasi-ständiger Einwirkungskombination
- Stützensenkung gilt als veränderliche Einwirkung und übernimmt die Kombinationsbeiwerte von der Temperatur

Es wird vereinfachend und auf der sicheren Seite liegend sowohl für die Doppelachse als auch für die gleichmäßig verteilte Last ein ψ -Wert von 0,75 berücksichtigt.

Lastfallkombinationen

Die einwirkenden Lasten wurden in Abhängigkeit des zutreffenden Grenzzustandes wie folgt kombiniert:

• Grenzzustand der Tragfähigkeit GZT (ULS)

$$E_{d} = E\left\{\sum_{j\geq 1}\gamma_{G,j} * G_{k,j} + \gamma_{p} * P_{k} + \gamma_{Q,1} * Q_{k,1} + \sum_{i>1}\gamma_{Q,i} * \psi_{0,i} * Q_{k,i}\right\}$$
(5.1)

- Grenzzustand der Gebrauchstauglichkeit GZG (SLS)
 - o Charakteristische Kombination

$$E_{d,k} = E\left\{\sum_{j\geq 1} G_{k,j} + P_k + Q_{k,1} + \sum_{i>1} \psi_{0,i} * Q_{k,i}\right\}$$
(5.2)

Begrenzung der Betondruckspannungen: $\left|\sigma_{c,k}\right| \leq 0{,}60*f_{ck} = 0{,}60*4 = 2{,}4\;kN/cm^2$

Begrenzung der Betonstahlzugspannungen: $\left|\sigma_{\rm c,k}\right| \le 0.80 * f_{\rm yk} = 0.80 * 55 = 44 \; {\rm kN/cm^2}$

o Quasi-ständige Kombination

$$E_{d,qs} = E\left\{\sum_{j\geq 1} G_{k,j} + P_k + \sum_{i>1} \psi_{2,i} * Q_{k,i}\right\}$$
(5.3)

Begrenzung der Betondruckspannungen: $|\sigma_{c,qs}| \le 0.45 * f_{ck} = 0.45 * 4 = 1.8 \text{ kN/cm}^2$

Dekompressionsnachweis: $|\sigma_{c,qs}| \le 0 \text{ kN/cm}^2$

Begrenzung der Verformungen

• Häufige Kombination

$$E_{d,h} = E\left\{\sum_{j\geq 1} G_{k,j} + P_k + \psi_{Q,1} * Q_{k,1} + \sum_{i>1} \psi_{2,i} * Q_{k,i}\right\}$$
(5.4)

Begrenzung der Rissbreite nach Tabelle 5.6: w_{max} = 0,2 mm

Zusätzlich zu den Lastfallkombinationen wurden in Tabelle 5.6 auch die Grenzwerte der jeweilig maßgebenden Nachweise angeführt.

Zeile	Expositions- klasse	Bauteile aus Stahl Bauteile aus Span Spanngliedern ohr	beton und nbeton mit ne Verbund	Bauteile aus S mit Spannglie nachträgliche	Spannbeton dern mit m Verbund	Bauteile aus Spannbeton mit Spanngliedern im sofor- tigen Verbund ^a		
		w _{max} mm	Dekom- pressions- nachweis	w _{max} mm	Dekom- pressions- nachweis	w _{max} mm	Dekom- pressions- nachweis	
1	XC1	0,3 ^b unter quasi- ständiger Ek ^c	nicht erfor- derlich	0,2 unter häufiger EK ^c	unter quasi- ständiger EK ^c	0,2 unter häu- figer EK ^c	unter quasi- ständiger EK ^c	
2	XC2, XC3 ^d , XC4 ^d , XD1, XF1, XF2, XF3	0,3 unter quasi- ständiger EK ^c		0,2 unter häufiger EK ^c	unter quasi- ständiger EK ^c	0,2 unter cha- rakteristischer EK ^c	unter häufi- ger EK ^c	
3	XA1, XA2, XD2	0,3 unter quasi- ständiger EK ^c		0,2 unter charakteris- tischer EK ^c	unter häufi- ger EK ^c	0,2 unter cha- rakteristischer EK ^c	unter häufi- ger EK ^c	
4	XA3, XD3, XF4	0,3 unter häufiger EK ^c		0,2 unter charakteris- tischer EK ^c	unter häufi- ger EK ^c	_	unter cha- rakteris- tischer EK ^c	
ANM a F b B	ANMERKUNG Zeile 1 gilt für nicht der Witterung ausgesetzte Brücken und ähnliche Tragwerke. Zeile 2 gilt für allgemeine Brücken mit Abdichtung und Belag oder Teile von Brücken im Sprühnebelbereich. Zeile 3 gilt für Sonderfälle. Zeile 4 gilt z. B. für direkt befahrene Brücken ohne Abdichtung und Belag. ^a Für Eisenbahnbrücken nicht zulässig. ^b Bei der Expositionsklasse XC1 hat die Rissbreite keinen Einfluss auf die Dauerhaftigkeit. Der angegebene Grenzwert zur Beschrän-							
C C Z	 kung der Rissbreite wird zur Wahrung eines akzeptablen Erscheinungsbildes gesetzt. Charakteristische, häufige, quasi-ständige EK sind Einwirkungskombinationen nach ÖNORM EN 1990, wobei folgende Änderungen zu berücksichtigen sind: Stützenverschiebungen sind als veränderliche Einwirkung anzusetzen, die Kombinationsbeiwerte sind gleich jenen der Temperaturänderungen anzunehmen. Für Straßenbrücken ist ψ₂ = 0,3 für alle vertikalen Einwirkungen aus Lastmodell 1 gemäß ÖNORM EN 1991-2. Für Eisenbahnbrücken ist ψ₂ gemäß ÖNORM B 1990-2 zu bestimmen. 							
d P	ei Anforderungen :	an die Dichtheit des Bau	workes sind der	ingere Rischreiten	oinzubalton			

Tabelle 5.6: ÖN EN 1992-2:2014, Tabelle 2 – Empfohlene Werte für w_{max} und relative Kombinationsregeln [23]

5.5 Vordimensionierung der Fahrbahnplatte in Querrichtung

5.5.1 Modellierung und Lasten

Die Vordimensionierung der Platte erfolgte auf Basis eines 3D-Modells im Programm RFEM mit dem Aufsatz RF-Beton. Um die Steifigkeiten der Stege und somit auch die Momentenverteilung richtig abzubilden, wurden zwei Extremfälle der Linienlagerung betrachtet: einerseits eine volle Einspannung für das maximale Stützmoment und andererseits eine gelenkige Lagerung für das maximale Feldmoment. Diese Vorgehensweise liegt auf der sicheren Seite und kann laut ÖN B 1992-2 7.1.1 [23] angewendet werden, wenn keine genauere Berechnung durchgeführt wird.

Als statisches System wurde ein 15 m langer Ausschnitt der Platte in Längsrichtung herangezogen (Abbildung 5.10). Die Kragarme wurden mit veränderlicher Höhe von 20 cm am äußeren Rand auf 30 cm beim Steg modelliert (Abbildung 5.1).

Die Bemessung erfolgte mit den in Kapitel 5.4 angeführten Lasten in ungünstigster Lage für die jeweilige maximale Schnittgröße. Die genaue Position der Lasten auf der Fahrbahnplatte ist in Abbildung 5.11, Abbildung 5.12 und Abbildung 5.13 ersichtlich. Um eine bessere Übersicht zu schaffen, wurden die Lasten jeweils getrennt für das Tandem System (TS, Einzellasten (a)) und für die gleichmäßig verteilte Belastung (UDL, Gleichlasten (b)) dargestellt. Die folgenden Abbildungen stellen übersichtshalber nur eine Plattenvariante (eingespannte Lagerung) und musterhaft ausgewählte Belastungen dar. Die ausführlichen Angaben und Ergebnisse befinden sich in Anhang A, Seite 86.

Abbildung 5.11: Aufteilung des Lastmodells 1 auf das Tragwerk jeweils in (a) Einzellasten und (b) Gleichlasten für maximales Kragmoment

2.80

1.95

2.45

0.75

<u>¢2</u>5

0.55

2.95

(a)

4.90 h0.30

Abbildung 5.12: Aufteilung des Lastmodells 1 auf das Tragwerk jeweils in (a) Einzellasten und (b) Gleichlasten für maximales Feldmoment

(a)

(b)

Abbildung 5.13: Aufteilung des Lastmodells 1 auf das Tragwerk jeweils in (a) Einzellasten und (b) Gleichlasten für maximales Feldmoment

Abbildung 5.14: LF2: Ständige lasten infolge Aufbau und Randbalken

Abbildung 5.15: LF10: LM1 für maximales Stützmoment

LF11 : LM1 FS1+FS2_mittig Belastung [kN/m^2]

Abbildung 5.16: LF11: LM1 für maximales Feldmoment

Abbildung 5.17: LF21: LM3 für maximales Feldmoment

Abbildung 5.18: LF22: LM3 für maximales Stützmoment

5.5.2 Berechnung und Ergebnisse

Die Schnittgrößen und die erforderliche Bewehrungsmenge wurden mit dem Programm Dlubal RFEM ermittelt. Die Ergebnisse können Abbildung 5.21 und Abbildung 5.22 entnommen werden. Die erforderliche Flächenbewehrung zufolge Biegebeanspruchung ergab sich wie folgt:

 $a_{s,erf,Stütz,RFEM} = 30,03 \text{ cm}^2/\text{m}$

 $a_{s,erf,Feld,RFEM} = 10,89 \text{ cm}^2/\text{m}$

Es ist hier zu beachten, dass diese Ergebnisse die Spitzenwerte des Programms abdecken. Insbesondere in den Auflagerbereichen über den Stegen führt dies zu einem deutlich höheren Bewehrungsgrad. Nach ÖN EN 1992 [21] darf eine Momentenausrundung nach dem Prinzip $|M_{I/II}| = |M_{Ed}| - |V_{Ed,li/re}| * b_{sub} * 0,5$ vorgenommen werden (Abbildung 5.19). Das minimale Stützmoment beträgt -310 kNm/m, die minimale Querkraft -309 kN/m (siehe Abbildung 5.20). b_{sup} entspricht der Stegbreite von 0,4 m. Mit dem neu ermittelten Moment $|M_I| = 248$ kNm/m wurde unter der Verwendung des Parabel-Rechteck-Diagramms die erforderliche Stützbewehrung $a_{s,erf,Stütz}$ zu 22,53 cm²/m berechnet.

 $a_{s,erf,Stütz} = 22,53 \text{ cm}^2/\text{m}$

Abbildung 5.19: Momentenausrundung bei monolithischem Anschluss einer Platte

Abbildung 5.20: RFEM: Momenten- und Querkraftverlauf

Abbildung 5.21: RF-Beton: Erforderliche Bewehrung über dem Auflager

RF-BETON Flächen FA1 Stahlbeton-Bemessung Erforderliche Bewehrung a-s,2,+z (unten) Werte a-s,2,9z (unten) [cm^2/m]

Abbildung 5.22: RF-Beton: Erforderliche Bewehrung im Feld

Für die Dimensionierung von Platten ist erfahrungsgemäß oft nicht der Tragfähigkeitsnachweis sondern der Gebrauchstauglichkeitsnachweis der Verformungen am Kragarm bzw. der Rissbreitenbegrenzung infolge Zwang oder Last maßgebend. Aus diesem Grund wurden diese Nachweise zusätzlich zu der RFEM-Bemessung untersucht.

Die vertikale Verformung bei quasi-ständiger Einwirkungskombination kann nicht direkt vom Programm RFEM abgelesen werden, da dieses die Langzeitverformungen am gerissenen Querschnitt nicht berücksichtigt. Zu diesem Zweck wird das Programm ConDim herangezogen. Die Eingangswerte dafür waren die vorhandene Biegebewehrung und die maßgebenden Schnittgrößen aus RFEM. Als Richtwert für die Grenzverformung (nach Grenzwerte für den Hochbau) wurde $u_{zul} = L/150 = 2900 \text{ mm}/150 = 19,3 \text{ mm}$ angenommen. Die Durchbiegung zufolge ständigen und veränderlichen Lasten belief sich auf 27 mm (siehe Abbildung 5.23). Dabei kann die vertikale Verformung zufolge Dauerlasten (14,8 mm) in Form einer Überhöhung vorweggenommen werden. Somit verbleibt für den Endzustand eine Durchbiegung von 12,2 mm. Diese würde das Erscheinungsbild des Tragwerks nicht beeinträchtigen und stellt somit kein maßgebendes Bemessungskriterium dar.

Die Mindestzwangsbewehrung wurde mit Hilfe eines Excel-Bemessungstools der Firma Strabag [24] bemessen, welches auf DIN EN 1992-1-1 ausgelegt wurde. Nach einem Vergleich der deutschen und österreichischen Fassung dieses Normabschnitts konnten keine Differenzen festgestellt werden, die die Berechnung negativ beeinflussen würden. Unter dieser Erkenntnis wird die Heranziehung dieses Bemessungstools in der gegenständlichen Machbarkeitsstudie als akzeptabel betrachtet. Eine Überprüfung der Rissbreitenbegrenzung zufolge direkter Einwirkung nach ÖN EN 1992-2, 7.3.3 [23] erfolgte in Tabelle 5.8. Unter der Annahme einer Netzbewehrung A_{s,vorh} = \emptyset 12/10 = 11,31 cm²/m je

Bauteilseite wurde die erforderliche Rissbewehrung zu $A_{s,min,Zwang} = 11,22 \text{ cm}^2/\text{m}$ berechnet (Tabelle 5.7, vollständige Berechnung in Anhang A, Seite 99).

Aufgrund der Zwangsbewehrung wurde somit ein Grundnetz von Ø12/10 in beiden Richtungen gewählt. Dieses deckt die erforderliche Feldbewehrung infolge Biegung ab ($a_{s,erf,Feld} = 11,19 \text{ cm}^2/\text{m}$), die zusätzliche Stützbewehrung wird in Form von Zulagen eingelegt.

 $a_{s,gew,netz} = \emptyset 12/10 = 11,31 \text{ cm}^2/\text{m}$ (oben und unten in beiden Richtungen)

a_{s,Stütz} = Ø12/10 Grundnetz + Ø12/10 Zulagen = 22,62 cm²/m

Die erforderliche Schubbewehrung für die maximale Querkraft von -309 kN/m ergab sich zu 16,71 cm²/m² (Abbildung 5.25). Die maßgebende Stelle für den Nachweis befindet sich allerdings in einem Abstand d vom Auflager mit einer Querkraft von 277 kN/m. Die dazu entsprechende Querkraftbewehrung a_{sw} beläuft sich auf 14,96 cm²/m². Der Bemessungswert für den Querkraftwiderstand ohne rechnerisch erforderliche Querkraftbewehrung $V_{Rd,c}$ beträgt 205 kN/m (siehe Anhang A, Seite 99). Eine Bügelbewehrung ist nur dort erforderlich, wo dieser Wert überschritten wird (in diesem Fall in der Nähe vom Auflager). Deswegen wird die Bewehrung nicht über die gesamte Fahrbahnbreite, sondern in einem Abstand von 1 m links und rechts von den Stegen verlegt. Die Bügelbewehrung pro Meterstreifen wurde in Form von zwei Stück nebeneinander liegenden 2-schnittigen Bügeln gewählt und ergab sich zu $a_{sw,vorh} = 2*Ø10/20 = 2*7,85 = 15,70 \text{ cm}^2/m^2$ (siehe Abbildung 5.24).

Die maximale Spannung in der Platte ergibt sich über der Stütze. Diese beträgt unter häufiger Einwirkungskombination 1,03 kN/cm² (Abbildung 5.26) und ist somit kleiner als die zulässige Betondruckspannung von 1,80 kN/cm². Der Beton- und Spannungsnachweis als Platte wurde somit erbracht.

ANGABEN						
Gebrauchslas	ten: M =	110.	00 [kNm]	N =	Γ	0.00 [kN]
Bewehrung:	As,u	= 11.3	31 [cm²]	As,o =		22.62 [cm ²]
			System			Belastungsart
Kriechzahl:	phi =	2.50 +	۰ <u>م</u>	2		
Stützweite:	L =	2.90 [m]	•	-		•
Dauerlast:	n d/n =	0.600	0 🗠 🗠	2	ſ	Bemessungsort
	P_9/P	0.000		2		
						• <u> </u>
ERGEBNIS	SE F	Rißmoment:	M_r = 55.59 kl	Nm		
Kurzzeit:	Dauerlasten:	w_p_d =	0.67 cm = L ÷	434	=	2.841 × w_p_d (1)
	Gesamtlast:	w_p =	2.28 cm = L ÷	127	=	5.819 × w_p (1)
	Verkehrslast:	dw_q =	0.65 cm = L ÷	443	=	4.179 × dw_q (1)
Langzeit:	Dauerlasten:	w_p_d =	1.48 cm = L ÷	196	=	6.308 × w_p_d (1)
	Gesamtlast:	w_p =	2.70 cm = L ÷	107	=	6.907×w_p (1)

Abbildung 5.23: ConDim: Durchbiegung am Kragarm

vorh A _s :	-	11,31	1	cm²	<u>></u> erf A _s :	= 11,22	cm ² o.k.
<u>Stahlspannun</u> <u>nach 7.2(5):</u> vorh σ ₈ =	<u>gen</u> 185,7	<	[N/mm²] 550	Bean- spruchung nur Zwang	erf A ₈ / vorh A ₈ 0,34	Nachweis erfüllt	_
Rissbreitenna	chweis n	ach 7.3.2/	7.3.3:		erf A ₈ / vorh A ₈	Nachweis	
GI. 7.1:			erf A₅ =	11,2 cm ²	0,99	nicht relevant	
GI. NA.7.5.1:			erf A _s =	12,3 cm ²	1,09	nicht relevant	- die rechnerisch kleinste
Direkte Rissbr	eitenber	echnung r	ach 7.3	4:			Nachweise nach den Gleichungen 7.1, NA7.5.1 und 7.8 ist für den Bischreiten
GI. 7.8: gew A _s = erf A _s =	11,3 cr 11,2 cr	m² ergibt w n² für erf w	/ _k = _k =	0,20 mm 0,20 mm	0,99	maßgebend	nachweis ausreichend

Tabelle 5.7: Erforderliche Bewehrung zur Rissbreitenbegrenzung infolge Zwang nach Eurocode 2

Begrenzung der Ris				
a,vorh	22,60	cm²/m		
M_ch	120,00	kNm/m		
σ_s1	20,42	kN/cm²		
wk	0,20	mm		
fct,eff	3,50	N/mm²		
фs*	20,1	mm		
φs_1=φs*fct,eff/2,9	24,3	mm		
φs_2	0,85	mm		
φs_max_vorh	12	mm		
φs_lim	24,3	mm	1	> φs,vorh

Abbildung 5.24: Skizze Schubbewehrung auf einem Meterstreifen der Fahrbahnplatte

Abbildung 5.25: RF-Beton: Erforderliche Schubbewehrung

Sichtbarkeitsmodus Spannungen Sigma-y,+ [kN/cm^2] Schnitte EK11 : SLS häufig

Abbildung 5.26: EK11 SLS häufig: Maximale Spannung

6 Alternativentwurf Herstellung mittels Traggerüst: Bemessung des Tragwerks in Längsrichtung

6.1 System und Modellierung

Wie schon in Kapitel 3 beschrieben, spannt sich die Brücke B 2314 beim Knoten Inzersdorf in Wien über 13 Felder und hat eine Gesamtlänge von über 500 m. Das statische System (Abbildung 6.1) entspricht einem Durchlaufträger mit drei Festpunkten in den Achsen 50, 60 und 70.

Für die Bemessung des Alternativentwurfs wurde ein repräsentativer Abschnitt der Brücke betrachtet, nämlich jener zwischen den Achsen 70 und 100, da dieser die größten Spannweiten aufweist. Die Längen wurden dabei, wie in Abbildung 6.2 dargestellt, aufgerundet. Damit die Auflagerbedingungen, Momenten- und Querkraftlinien jene des realen Systems entsprechen, wurden zusätzlich jeweils zwei Nachbarfelder links und rechts vom betrachteten Abschnitt mitmodelliert. Die Modellierung des Tragwerks erfolgte in Form eines Stabmodels mit einem konstanten Radius im Grundriss von 600 m. Damit wird gewährleistet, dass die sich daraus ergebenden negativen Effekte der Geometrie (insbesondere Torsion) berücksichtigt werden.

Da ein Kastenquerschnitt keinem Standardquerschnitt gemäß den Vorlagen in RFEM entspricht, wurde dieser mit dem Einzelprogramm für Bemessung von dickwandigen Querschnitten "DICKQ" modelliert und in RFEM importiert. Ein Programmauszug mit den Querschnittsabmessungen und Widerständen ist in Anhang B auf Seite 100 ersichtlich. Die Lagerbedingungen der Brücke wurden mithilfe der in [7] vorgegebenen Skizzen für Prinziplagerungen einer einfeldrigen Brücke (Abbildung 6.3) definiert. Im Gegensatz zu dem Originalentwurf wurde im gegenständlichen Alternativentwurf nur ein Fixlager definiert, die Lagerung des Gesamtmodells ist in Abbildung 6.5 abgebildet. Da sich die Brückenlager in der Realität unterhalb der Stege befinden, wurde diese Exzentrizität bei der Modellierung mithilfe starrer Kopplungsstäbe (Abbildung 6.4) realisiert.

Abbildung 6.1: Statisches System Brücke B2314 [13]

Abbildung 6.2: Statisches System des Alternativentwurfs

Abbildung 6.5: RFEM: Lagerung des Gesamtmodells

6.2 Lasten

Die Aufbringung der Belastung erfolgte mit den in Kapitel 5.4 angeführten Lastfällen in ungünstiger Lage für die jeweilige maximale Schnittgröße. Die ermittelten Schnittkräfte wurden anhand der Bestandstatik auf ihre Plausibilität überprüft. In den folgenden Abbildungen werden auszugsweise von Anhang B einzelne Lastfälle dargestellt, die gesamte Lastaufstellung und die weiteren Kombinationen befinden sich in Anhang B ab Seite 102.

Abbildung 6.6: LF2: Aufbau und Randbalken

Abbildung 6.10: LF90: LM1 feldweise Belastung mit Gleichlast

Abbildung 6.11: LF102: LM1 Einzellast als Wanderlast

Abbildung 6.12: LF190: LM1 Feldweise Belastung für maximale Torsion

Abbildung 6.13: LF202: LM1 Einzellast als Wanderlast für maximale Torsion

Abbildung 6.14: LF412: LM3 Einzellasten als Wandergruppe

6.3 Variante 1 (V1): Gerade Spanngliedführung mit nachträglichem Verbund

Bei dieser Spanngliedführung wird die Vorspannung dort eingesetzt wo sie tatsächlich benötigt wird – im Bereich der maßgebenden Biegemomente im Feld und im Bereich der Stütze. Es handelt sich um Spannglieder der Spezifikation Y1860S7-15.7 T6-12, die jeweils aus zwölf Litzen bestehen. Die Wahl der Spannglieder erfolge aufgrund des im vorhandenen Projekt verwendeten Vorspannsystems, um den späteren Vergleich zu erleichtern. Sämtliche technische Spezifikationen der Spannglieder wurden der Europäischen Technischen Zulassung der Firma Dywidag entnommen [15]. Die Spannung im Spannglied unmittelbar nach dem Vorspannen und Verankern wurde gemäß Eurocode 2 [14] folgendermaßen ermittelt:

$$\sigma_{mp,0} = \min\{k_7 * f_{pk}; k_8 * f_{p0,1k}\}$$
(6.1)

 $\sigma_{mp,0} = \min\{0,7 * 1860 = 1302 \text{ N/mm}^2; 0,8 * 1674 = 1339 \text{ N/mm}^2\} = 1302 \text{ N/mm}^2$

Die Vordimensionierung der erforderlichen Anzahl der Spannglieder erfolgte anhand des Dekompressionsnachweises unter quasi-ständiger Einwirkungskombination. Die Spanngliedlängen wurden grafisch ermittelt, sinngemäß gruppiert und abgestuft. Anschließend wurden diese in RF-Tendon grafisch modelliert und erneut berechnet. Nach mehreren Iterationsschritten ergab sich die optimale Spanngliedanzahl. Die genaue Vorgehensweise wird ausführlich im Kapitel 6.3.1 beschrieben. Die Spannglieder wurden jeweils in der Mittellinie der oberen bzw. unteren Gurtplatte positioniert. Die Spannkraftverluste infolge Reibung an den Verankerungsstellen (Lisenen) wurden vernachlässigt.

RF-Tendon berücksichtigt bei der Berechnung der Schrittgrößen infolge Vorspannung nur die sofortigen Spannkraftverluste aufgrund von Reibung, Verankerungsschlupf, aufgrund der elastischen Verformung des Betons und von Kurzzeitrelaxation des Spannstahls. Das bedeutet, dass in RFEM aufgebrachten Ersatzlasten für die Vorspannung nur den Zustand nach dem Vorspannen und Verankern zum Zeitpunkt t = 0 wiedergeben. Die Verluste aus Kriechen und Schwinden wurden erst bei der Führung der Gebrauchstauglichkeitsnachweise berücksichtigt und von der detaillierten Bemessung aus RF-Tendon übernommen.

Der Durchlaufträger stellt ein mehrfach statisch unbestimmtes System dar. Deshalb ist bei Betrachtung der Schnittgrößenverläufe zufolge Vorspannung zu beachten, dass es einen statisch unbestimmten Anteil gibt. Dieser wird zwar vom Programm berücksichtigt, wobei aber keine Aufteilung in statisch bestimmtem und statisch unbestimmtem Anteil erfolgt.

Die Vorspannung wurde in RF-Tendon an einem Bemessungsträger bestehend aus Stabnummern 1-3, 16 und 18 (siehe Abbildung 6.15, Abbildung 6.16, Abbildung 6.17) modelliert. Für die spätere Bemessung und Nachweisführung wurden jedoch nur die Stäbe 1 bis 3 herangezogen. Das Modellieren der Nachbarfelder war notwendig, um die Durchlaufwirkung des Systems zu berücksichtigen. Die Position der Spannglieder im Querschnitt ist symmetrisch bezüglich der Achse des Hohlkastens ohne Berücksichtigung der Kragarme und nicht symmetrisch bezüglich der Symmetrieachse vom Gesamtquerschnitt.

Abbildung 6.15: RF-Tendon: V1 (a) Übersicht Bemessungsträger, (b) Ausschnitt Stab 2

(a) Position 42m, über dem Auflager

Abbildung 6.16: RF-Tendon: V1 Spanngliedführung (a) über dem Auflager und (b) in Feldmitte

Abbildung 6.17: RF-Tendon: V1 Primäre Schnittgrößen infolge Vorspannung: Np [kN], Mp,dir [kNm]

Abbildung 6.19: RFEM LF 40/RF-Tendon: V1 Gesamtschnittgrößen infolge Vorspannung: Np,ges [kN], Mp,ges [kNm]

6.3.1 Nachweise im Grenzzustand der Gebrauchstauglichkeit (GZG)

Um ein über die gesamte Nutzungsdauer gebrauchstaugliches Tragwerk zu erhalten, sind gemäß Eurocode 2 [14] die Nachweise im Grenzzustand der Gebrauchstauglichkeit zu erfüllen. Darunter fallen die Begrenzungen der Spannungen, der Rissbreiten sowie der Verformungen. Da die Brücke in einem Lehrgerüstzustand hergestellt wird, sind im Rahmen dieser Untersuchung keine Bauzustände nachzuweisen. Wie schon im Kapitel 5 erwähnt, wurde hier auf mögliche Streuungen der Vorspannkräfte verzichtet ($r_{sup} = r_{inf} = 1$ für alle Spanngliedarten). Die maßgebenden Spannungspunkte befinden sich jeweils an der obersten beziehungsweise untersten Querschnittfaser des Tragwerks. Die ausführliche Lastaufstellung samt Schnittgrößen ist in Anhang B enthalten, Berechnung und Nachweisführung in Anhang C, hier werden nur die wichtigsten Ergebnisse angeführt.

Dekompressionsnachweis

Der Nachweis der Dekompression nach ÖNORM B 1992-2 9.2.1 [18] verlangt, dass der gesamte Betonquerschnitt innerhalb einer Distanz von 200 mm vom Rand des Spanngliedes unter quasiständiger Einwirkungskombination unter Druckspannungen verbleibt. Näherungsweise wird der Nachweis so geführt, dass der gesamte Querschnitt überdrückt wird. Der Nachweis der Begrenzung der Betondruckspannungen mit $\sigma_{c,qs} = 0,45*4 = 1,8 \text{ kN/cm}^2$ ist ebenfalls zu erbringen. Wie bereits in der Lastaufstellung gezeigt, gilt für quasi-ständige Kombination von Straßenbrücken ein Beiwert von $\Psi_{2,i} = 0,3$ für alle vertikalen Einwirkungen aus Verkehr (Lastmodell 1) sowie von $\Psi_{2,i} = 0,5$ für Einwirkungen aus Temperatur und Setzungen.

Der Dekompressionsnachweis wurde bereits für die Abschätzung der Spanngliedanzahl herangezogen und wird an den maßgebenden Stellen im Feld und über der Stütze nach dem Schema $\sigma = \frac{N}{A} + \frac{M}{W}$ geführt. Die Schnittgrößen infolge äußeren Belastungen für diesen Nachweis wurden der Kombination EK 611 (Abbildung 6.20) entnommen, die Schnittgrößen infolge Vorspannung von RF-Tendon (Abbildung 6.17, Abbildung 6.18, Abbildung 6.19). Die Ergebnisse für die späteren Nachweise wurden auf der sicheren Seite liegend aufgerundet.

Die Ermittlung der Spanngliedanzahl erfolgte in einem iterativen Prozess. In einem ersten Schritt wurde die Anzahl der Spannglieder nur infolge der primären Schnittgrößen zufolge Vorspannung bestimmt. Zu diesem Zeitpunkt waren die sekundären Zwangskräfte des statisch unbestimmten Systems noch unbekannt. Die Verluste zufolge Kriechen, Schwinden und Relaxation wurden für die Abschätzung der Spanngliedanzahl mit 20% angenommen. Diese erste Vorbemessung ergab acht Spannglieder im Feld und vierzehn über dem Auflager (Tabelle 6.1). Diese wurden in weiterer Folge in RF-Tendon modelliert. Somit erfolgte die Ermittlung der sekundären Kräfte und der tatsächlichen Verluste infolge Vorspannung. Die Spannkraftverluste ergaben einen Wert von etwa 15 %, weswegen die weiteren Spannungsnachweise mit diesem Wert geführt wurden. Der Dekompressionsnachweis wurde für den Zeitpunkt t = ∞ mit den Gesamtschnittgrößen (M_{ges} = M_{p,dir} + M_{p,ind}) nach dem Prinzip $\sigma = \frac{N+N_p}{A} + \frac{M+M_{p,ges}}{W}$ durchgeführt. Die Tabelle 6.1 fasst die Spannungsnachweise zusammen und zeigt, dass einerseits an der unteren Querschnittsfaser Zugspannungen in Größe von 0,24 kN/cm² auftreten, wodurch der Nachweis nicht erfüllt ist. An der oberen Querschnittsfaser im Stützbereich tritt eine Druckspannung von - 0,31 kN/cm² auf.

Abbildung 6.20: RFEM EK 611: SLS quasi-ständig ohne Vorspannung

Tabelle 6.1: V1 Abschätzung der Spanngliedanzahl und Dekompressionsnachweis für t = ∞

Abschätzung der S	Spangliedanzahl (unten) in	n Feld	Abschätzung der S	pangliedanzał	nl (oben) an	n Auflager
Mqs_F	22.500	kNm	It RFEM	Mqs_St	-36.500	kNm	
Mqs_F	2.250.000	kNcm		Mqs_St	-3.650.000	kNcm]
e_SpGl_UK	12,5	cm		e_SpGl_OK	15,0	cm	
ep_u	116,6	cm	σ μ	ep_o	-65,9	cm	1
Pk,sup_F	13.549	kN	o obere Randfaser	Pk,sup_St	25.200	kN]
σ_o_F	-0,52	kN/cm ²	uuntere Randfaser	σ_o_St	0,85	kN/cm ²	
σ_u_F	0,84	kN/cm ²	FFeld StStütze	σ_u_St	-1,36	kN/cm ²	
Pm0_F	16.936	kN	Annahme: 20% Verluste	Pm0_St	31.500	kN	
Ap_erf_F	132,34	cm ²	erf. Spanngliedfläche	Ap_erf_St	246,15	cm ²	
np_erf_F	89	Stk	erf. Litzenanzahl	np_erf_St	165	Stk	
n_Spanngl_F	7,4	Stk	erf. Spanngliederanzahl	n_Spanngl_St	13,8	Stk	
n_gew	8,0	Stk		n_gew	14,0	Stk	
P_gew_t0	18.427	kN	nach Umsetzen der Spannkraft	P_gew_F	32.248	kN	
P_gew_t∞	14.742	kN	nach Verlusten	P_gew_t∞	25.798	kN	
Spannungskontrol	le primär			Spannungskontroll	e primär		
σ_u_ges_t0	-0,30	kN/cm ²	nach Umsetzen der Spannkraft t0	σ_o_ges_t0	-0,24	kN/cm ²	
σ_u_ges_t∞	-0,07	kN/cm ²	nach Verlusten	σ_o_ges_t∞	-0,02	kN/cm ²	
Dekompressionsn	achweis im Feld f	für t=••		Dekompressionsna	achweis am Au	ıflager für t	
Nqs_F	-18.427	kN		N_St_Vsp	-32.248	kN	
N F Vsp t∞	-15.663	kN	15% Verluste	N F Vsp t∞	-27.411	kN	
M_Vsp_dir_t∞	-1.826.339	kNcm	15% Verluste	M Vsp t∞	1.806.368	kNcm	
M_Vsp_ind_t∞	10.000	kNm	stat.unbest. Moment RF-Tendon	M_Vsp_ind_t∞	10.000	kNm	
M_Vsp_ind_t∞	1.000.000	kNcm	stat.unbest. Moment RF-Tendon	M_Vsp_ind_t∞	1.000.000	kNcm	
M_Vsp_ges_t∞	-826.339	kNcm		M_Vsp_ges_t∞	2.806.368	kNcm	
Mqs_F_oVsp	22.500	kNm	It RFEM	Mqs_St_oVsp	-36.500	kNm	
Mqs_F	2.250.000	kNcm		Mqs_St	-3.650.000	kNcm	
Nqs_F	0	kN		Nqs_St	0	KN	
σ_ο_F	-0,62	kN/cm ²	✓ < 0 & σ_qs_zul	σ_o_St	-0,31	kN/cm ²	 ✓ < 0 & σ_qs_zul
σ_u_F	0,24	kN/cm ²	X < 0 & σ_qs_zul	σ_u_St	-0,82	kN/cm ²	✓ < 0 & σ_qs_zul

Zur möglichst wirtschaftlichen Ausnutzung des Querschnitts zufolge Vorspannung ist ein Verständnis der Wirkungsweise und der Größe der indirekten Schnittgrößen (auch Zwangsschnittgrößen genannt) elementar. Aus diesem Grund wurde die Auswirkung der Vorspannung für einen eingespannten Einfeldträger untersucht, welcher ein Innenfeld der durchlaufenden Brücke darstellt (siehe Abbildung 6.21). Da dieses System einem besseren Verständnis dienen soll, wurde hier eine schematische Darstellung gewählt, ohne auf die Querschnittsgestaltung einzugehen. Wie in Abbildung 6.21 dargestellt verursacht die untere Vorspannung beim eingespannten Träger ein positives Zwangsmoment M_{p,ind}, das die Momentenlinie nach unten verschiebt. Die oberen Spannglieder bewirken genau das Gegenteil: ein negatives Zwangsmoment und eine Verschiebung der Momentenlinie nach oben. In weiterer Folge wurde das in Abbildung 6.15 dargestellte System separat für die obere und untere Spanngliedführung betrachtet, um die Wirkungsweise der Vorspannung auf das untersuchte System zu beobachten und diese mit dem Einfeldträger zu vergleichen. Es wurde festgestellt, dass die unteren Spannglieder ein viel höheres Zwangsmoment als die oberen verursachen. Dies ist auf den größeren inneren Hebelarm zurückzuführen. Zusätzlich ist erkenntlich, dass die Zwangsmomente über der Stütze günstig und im Feldbereich ungünstig wirken. Somit ließ sich die Schlussfolgerung ziehen, dass die optimale Ausnutzung des Systems von der Balance zwischen der aufgebrachten Vorspannkraft und daraus resultierenden Zwangsschnittgrößen abhängt und eine folglich iterative Berechnung verlangt.

In einem zweiten Schritt wurde mehrfach die Anzahl der Spannglieder variiert. So konnte ein optimales Verhältnis zwischen primären und sekundären Schnittgrößen und einer zeitgleichen Erfüllung des Dekompressionsnachweises in Feldmitte erzielt werden. Somit ergaben sich zehn Spannglieder sowohl über dem Auflager als auch in Feldmitte (siehe Tabelle 6.2). Für den Zeitpunkt Feldmitte t = ∞ tritt an der unteren Querschnittsfaser in unter quasi-ständiger Einwirkungskombination eine Zugspannung von 0,01 kN/cm², welche aufgrund der vorher aufgerundeten Schnittgrößen als zulässig betrachtet wird. Gleichzeitig bleibt der Querschnitt am Auflager mit einer Druckspannung von - 0,09 kN/cm² überdrückt. Die maßgebende Stelle zwischen Feldmitte und Auflager befindet sich im Bereich von 5 bis 11 m Entfernung von der Stütze beim Übergang von oberer zur unteren Spanngliedführung. Unter quasi-ständiger Kombination dürfen im Querschnitt auf der Seite des Spannglieds nur Druckspannungen auftreten. Auf der anderen Querschnittseite wurden die Zugspannungen maximal bis zur Betonzugfestigkeit begrenzt, damit sich der Querschnitt noch im ungerissenen Zustand I befindet. 5 m vom Auflager entfernt liegt die Vorspannung auf der oberen Querschnittsseite, somit darf mit der auftretenden Zugspannung von 0,34 kN/cm² am unteren Querschnittsrand noch im Zustand I gerechnet werden. Die geringe Spannungsüberschreitung in einem Abstand von 11 m vom Auflager ist auch legitim, da in diesem Punkt die Spannglieder in den Lisenen verankert sind und somit 30 cm über der unteren Querschnittsfaser (Nachweis an der Unterkante des Tragwerks) liegen.

Abbildung 6.21: V1 Auswirkung der Vorspannung auf (a) einen Einfeldträger: Mp,dir (b) einen eingespannten Träger: Gesamtschnittgrößen Mp,ges (c) Verlauf der Zwangsmomente Mp,ind (c)

Tabelle 6.2: V1 Endgültige Spanngliedanzahl und Dekompressionsnachweis für t = 0, t = ∞

Abschätzung der S	pangliedanzah	l (oben) am	Auflager				
Mqs_F	22.200	kNm	It RFEM	Mqs_St	-36.500	kNm	
Mqs_F	2.220.000	kNcm		Mqs_St	-3.650.000	kNcm	
e_SpGI_UK	12,5	cm		e_SpGI_OK	15,0	cm	
ep_u	116,6	cm		ep_o	-65,9	cm	
Pk,sup F	13.368	kN	o obere Randfaser	Pk,sup St	25.200	kN	
σοϜ	-0,52	kN/cm²	uuntere Randfaser	σoSt	0,85	kN/cm²	
<u> </u>	0,83	kN/cm ²	FFeld StStütze	<u>σ</u> u St	-1,36	kN/cm ²	
 Pm0 F	16.710	kN	Annahme: 20% Verluste	Pm0 St	31.500	kN	
Ap erf F	130,58	cm²	erf. Spanngliedfläche	Ap erf St	246,15	cm²	
np erf F	88	Stk	erf. Litzenanzahl	np erf St	165	Stk	
n Spanngl F	7,3	Stk	erf. Spanngliedanzahl	n Spanngl St	13,8	Stk	
n gew	10,0	Stk	gewählte Spanngliedanzahl	n gew	10,0	Stk	
P gew t0	23.034	kN	nach Umsetzen der Spannkraft	P gew F	23.034	kN	
o P gew t∞	18.427	kN	nach Verlusten	P gew t∞	18.427	kN	
Spannungskontrol	le primär			Spannungskontrolle	e primär		
σu ges t0	-0,60	kN/cm ²	nach Umsetzen der Spannkraft t0	σ o ges t0	0,07	kN/cm ²	
<u> </u>	-0,31	kN/cm ²	nach Verlusten	σ o ges t∞	0,23	kN/cm ²	
1 10 1	,				,		
Dekompressionsn	achweis für t=0			Dekompressionsna	chweis für t=0)	
In Feldmitte				Am Auflager			
Nvsp F t0	-23.034	kN		Nysp dir St t0	-23.034	kN	
Mysp dir F t0	-2.685.792	kNcm		Mysp dir St t0	1.517.956	kNcm	
M Vsp ind t0	10.500	kNm	stat.unbest. Moment RF-Tendon	M Vsp ind t0	12.000	kNm	
M Vsp ind t0	1.050.000	kNcm	stat unbest. Moment RF-Tendon	M Vsp ind t0	1.200.000	kNcm	
M Vsp ges t0	-1.635.792	kNcm		M Vsp ges t0	2.717.956	kNcm	
Mas F	3.800	kNm	It BEEM	Mas St	-36,500	kNm	
Mas F	380.000	kNcm		Mas St	-3.650.000	kNcm	
Nas F	0	kN		Nas St	0	kN	
σο Ε	-0.13	kN/cm ²	√ < 0.& σ. σs. zul	σ o St	-0.21	kN/cm ²	√ < 0.& σ. os. zul
σ_υ_· σ_υ F	-0.89	kN/cm ²	√ <0&σ as zul	σ u St	-0.77	kN/cm ²	$\sqrt{<0\&\sigma}$ as zul
Maßgebende Stel	le: 5-11m vom Au	flager			0,11	,	
Bei max M bei 5m		nager		Bei max M bei 11m			
Mas F	20.000	kNm	It REEM	Mas St	12 000	kNm	
Mas F	2 000 000	kNcm		Mas_St	1 200 000	kNcm	
Nas F	-22,000	kN		Nas St	-22 000	kN	
σο Ε	-0.87	kN/cm^2	v < 0.8 σ. σs. zul	σ ο St	-0.68	kN/cm ²	√ < 0.& σ. os. zul
σ_υ_Γ σ_υ_F	0.34	kN/cm^2	√ <f ctm<="" td=""><td>σ_u St</td><td>0.04</td><td>kN/cm^2</td><td>x < 0 & σ_qs_zul</td></f>	σ_u St	0.04	kN/cm^2	x < 0 & σ_qs_zul
•_ • _•	6,0 .		·	0_0_00	0,01		10 0 0 <u>_</u>
Dekompressionsn	achweis im Feld f	ürt=∞		Dekompressionsna	chweis am Au	flager für t=	000
Nas F	-23 034	kN		N St Vsn	-23 034	kN	
N E Van tee	-19 579	kn	15% Mortusto	$N = V c t \infty$	-19 579	kN	
M_Yep_dir_teo	-19.379	kNcm	15% Verluste	M Van too	1 290 263	kNom	
$M_V = ind to$	-2.202.924	kNm	15% Verluste	N V(sp_ind_tex	1.290.203	kNm	
N_Vsp_ind_t∞	1 050 000	kNim	stat.unbest. Moment RF-Tendon	N_Vsp_ind_tee	1 200 000	KNIII	
M Vsp_mos_t~	_1 222 024	kNom	Stat.undest. Woment KF-Tendon	M Vsp goc too	2 490 262	kNom	
Mac F char	-1.232.924	KINCIII IcNine	1.05514	Nac St alles	2.490.203	kNm	
Nac F	22.200	KINITI IANora	IT KFEM	IVIQS_St_OVSP	-36.500	KNITT	
IVIQS_F	2.220.000	KINCM		IVIQS_St	-3.650.000	KINCITI	
NQS_F	0	KIN		INQS_ST	0	KIN	
σ_0_⊦ 	-0,59	KIN/CM ²	✓ < 0 & σ_qs_zul	σ_0_St	-0,09	KN/CM ²	< 0 & σ_qs_zul
σ_u_⊦	0,01	кN/cm²	<mark>Χ <</mark> 0 & σ_qs_zul	σ_u_St	-0,79	ĸN/cm⁴	 < 0 & σ_qs_zul

Im Zuge dieses Prozesses wurde eine grafische Ermittlung der Spanngliedlänge vorgenommen. Dabei wurde mit dem Hintergedanken einer leichteren Ausführung vor Ort beachtet, dass nebeneinander liegende Spannglieder unterschiedliche Längen aufweisen, damit die notwendigen Platzverhältnisse zum Endverankern und für die Ausbildung von Lisenen gegeben sind.

Der Grundgedanke für die grafische Ermittlung der Vorspannung wurde von einer Zugkraftdeckungslinie übernommen. Auf der X-Ache ist die Länge eines Brückenfeldes in [m] dargestellt, die Y-Achse gibt die aufnehmbare Zugkraft F_{Rs} wieder (siehe Abbildung 6.23). Die Linie A stellt die Umhüllende aus $M_{qs}/z + N_{qs}$ und somit die einwirkende Zugkraft auf Höhe der Spannglieder

dar. Die Erhöhung der Zugkraft durch die horizontale Komponente der Druckstreben wird durch das Versatzmaß al berücksichtigt, welches horizontal auf der Umhüllende aufgetragen wird. Somit wurde die einwirkende Zugkraft (Linie B) erhalten, welche von den Spanngliedern abgedeckt werden muss [25]. In weiterer Folge wurde die vorhandene Zugkraft auf die Spannglieder aufgeteilt. Infolge des reinen Moments Mas aus äußeren Lasten im Feldbereich ergibt sich eine aufzunehmende Zugkraft F_{s,max} von 11.500 kN. An der Stelle der maximal einwirkenden Momente wurden in Tabelle 6.2 jeweils zehn Spannglieder ermittelt. Es wurden vier Spannglieder in Längsrichtung gemeinsam abgestuft. Die Zugkraft wurde im Verhältnis des Spannstahlquerschnitts durch die Formel aufnehmbare $F_{Rs,4 SpGl} = F_{s,max} * \frac{A_{s,4 SpGl}}{A_{s,vorh}}; A_{s,vorh,10 SpGl} = 180 cm^2$ umgelegt. Diese Ergebnisse wurden grafisch interpretiert und wie es in Abbildung 6.22 ersichtlich ist verfügen die zehn Spannglieder im Feldbereich über eine deutlich höhere Zugkraft als die maximal aufzunehmende Zugkraft F_{s.max} Über der Stütze dagegen erreicht die Vorspannung nicht F_{s.max} Dies liegt daran, dass die Spannglieder bereits die Zwangsmomente zufolge Vorspannung (und nicht nur Mqs) aufnehmen. Wie bereits bei den Spannungsnachweisen festgestellt, verringern die sekundären Kräfte zufolge Vorspannung das Moment über dem Auflager, vergrößern aber dafür jenes im Feldbereich, was wiederum einen Einfluss auf die Spanngliedlänge ausübt. In weiterer Folge wurden die Zwangsschnittgrößen zu den quasi-ständigen Kräften addiert. Das ergab die neue Umhüllende und somit auch die endgültigen Längen der Spannglieder (Abbildung 6.23). Um eine geringere und damit wirtschaftlichere Spannstahlmenge zu erzielen, wurde jeweils eine Abstufung im Feld und über der Stütze vorgenommen.

Abbildung 6.22: Grafische Ermittlung der Spanngliedlänge für Mas/z + Nas

Abbildung 6.23: Endgültige Spanngliedlänge für (Mqs + Mind)/z + Nqs

Weitere Spannungsnachweise

Zusätzlich zu dem Dekompressionsnachweis müssen die Betonspannungen unter charakteristischer Einwirkungskombination überprüft werden. Der Grenzwert der Betondruckspannungen beläuft sich auf $\sigma_{c,k} = 0,8*4 = 2,4 \text{ kN/cm}^2$. Es erfolgte eine Überprüfung anhand der zulässigen Betonzugfestigkeit $f_{ctm} = 0,35 \text{ kN/cm}^2$ in welchem Zustand (gerissen oder ungerissen) sich der Querschnitt befindet. In Abbildung 6.24 sind die Schnittgrößen infolge äußeren Einwirkungen zum Zeitpunkt t = 0 für die charakteristische Einwirkungskombination dargestellt. Die Kräfte zufolge Vorspannung, Verluste (15%) und Zwangsbeanspruchungen wurden extra ausgewiesen und anschließend mit den restlichen Kräften aufsummiert. Die Nachweisführung erfolgte nach demselben Prinzip wie beim Dekompressionsnachweis: $\sigma = \frac{N+N_p}{A} + \frac{M+M_{p,ges}}{W}$. Die Ergebnisse sind in der Tabelle 6.3 ersichtlich.

Abbildung 6.24: RFEM EK 605: SLS charakteristisch ohne Vorspannung

Zulässigo Spappu	ngon											
Zulassige Spannu	2.40	1.81/2			420.20 LN/2							
o_ck_zui	2,40	KIN/CM-	Betondruckspannung	o_p_max	150,20 KN/cm-	Spannstani						
f_ctm	0,35	kN/cm ²	Betonzugspannung	σ_s_max	44 kN/cm ²	Betonstahlzugsp.						
Begrenzung der S	pannungen im l	Feld für t=	0	Begrenzung de	Begrenzung der Spannungen am Auflager für t=0							
Nvsp_F_t0	-23.034	kN		Nvsp_F_t0	-23.034 kN							
Mvsp_F_t0	-1.635.792	kNcm		Mvsp_F_t0	2.717.956 kNcm							
In Feldmitte				Am Auflager								
Mck_F	35.500	kNm		Mck_St	-45.000 kNm							
Mck_F	3.550.000	kNcm		Mck_St	-4.500.000 kNcm							
Nck_F	1.500	kN		Nck_St	1.200 kN							
σ_c,o_F	-0,84	kN/cm ²	√ <σ_ck_zul	σ_c,o_St	0,01 kN/cm ²	√ <f_ctm< td=""></f_ctm<>						
σ_c,u_F	0,32	kN/cm ²	√ <f_ctm< td=""><td>σ_c,u_St</td><td>-1,06 kN/cm²</td><td>√ < σ_ck_zul</td></f_ctm<>	σ_c,u_St	-1,06 kN/cm ²	√ < σ_ck_zul						
Maßgebende Ste	Maßzebende Stelle: 5-11m vom Auflager											
Bei max M bei 5m	1	-		Bei max M bei	11m							
Mqs_F	21.500	kNm	It RFEM	Mqs_St	20.000 kNm							
Mqs_F	2.150.000	kNcm		Mqs_St	2.000.000 kNcm							
Nqs_F	-21.500	kN		Nqs_St	-21.000 kN							
σ_ο_F	-0,80	kN/cm ²	<0 & σ_qs_zul	σ_o_St	-0,77 kN/cm ²	√ < σ_ck_zul						
σ_u_F	0,31	kN/cm ²	<pre>< <f_ctm< pre=""></f_ctm<></pre>	σ_u_St	0,27 kN/cm ²	√ <σ_ck_zul						
Begrenzung der S	pannungen im l	Feld für t=	••	Begrenzung de	r Spannungen am Aufla	ger für t=••						
Nvsp_F_t∞	-19.579	kN		Nvsp_St_t∞	-19.579 kN							
Mvsp_F_t∞	-1.232.924	kNcm		Mvsp_St_t∞	2.490.263 kNcm							
Mck_F	35.500	kNm		Mck_St	-45.000 kNm							
Mck F	3.550.000	kNcm		Mck St	-4.500.000 kNcm							
Nck_F	1.500	kN		Nck_St	1.200 kN							
σ_c,o_F	-0,87	kN/cm ²	√ <σ_ck_zul	σ_c,o_St	0,13 kN/cm ²	✓ <f_ctm< td=""></f_ctm<>						
σ_c,u_F	0,53	kN/cm ²	<pre>< f_ctm ZUSTAND II !</pre>	σ_c,u_St	-1,09 kN/cm ²	√ <σ_ck_zul						
σ_s	3,02	kN/cm ²	√ <σ_s_max	σ_s	0,74 kN/cm ²	√ <σ_s_max						

Tabelle 6.3: V1 SLS-Nachweis der charakteristischen Betonspannungen für Zeitpunkt t = 0 und t = ∞

Tabelle 6.4: V1 SLS-Nachweise im gerissenen Querschnitt (Zustand II)

Zustand II					a Roin	e Riege	100										7						
As1	110	cm ²		schlaffe Bewehrung	a Rein	e Biegl	ing			E > (0 = = 0	2	a > 0 a	<0 	2								
Ар	180	cm²	1	Spannstahlmenge			Į			×	1			1	F _c (< 0) M.							
Ages	290	cm²	1		-S		T		X	F	ε0 -	\rightarrow	e e e e e e e e e e e e e e e e e e e	z)	C	Bieg	ung m	it Läng	sdruc	kkraft	
b	1030	cm		Brete der Druckzone	+2		Zat	1			Ent				F - F		0	200	^{\$0} /		0 0 0 0	_	
dp	197,5	cm		Hebelarm Vorspannung	000			-			Ect		σ _{s1}		r _s = -r	c	×.		f.	X)	Me
d	206	cm	1	Hebelarm Bewehrung	b Land	sdruck	kraft										<u> </u>	/	1	-*-		_ ≙) .
d_m1	9	cm]				1	_	1.5	+		2	П	σ _{c2}			-#	Д					ME
εmpt0	0,00694133]	Vordehnung Spannstahl			d							L		N	1	6 _{s1} =	- /	σ	1		
Δερ	0,00037887]	Zusatzdehnung Spannstahl	78		Ť		x _c	×	- 80	\Rightarrow	•	Fa +	s (< 0)			fals	ch!	rie	htig!		
εs1	0,00041782]	Dehnung Bewehrung	000		11				E.		σ.1	-11-									
х	0,907]	Δερ/εs1					- 10 - 10			t					٦						
dr	200,9	cm]	(χ.Ap.dp+As1.d)/(χ.Ap+As1)	Quersch	nnitt, Be	ezeichi	nunger	1	Deh	nunger	n	Spann res.	ungen, Kräfte	E	nwirk	ungen		Übe	rlagen	ung		
ρ	0,0014013]	Zugbewehrungsgrad																			
αs_Z_I	5,714]	Es/Ec			b _i =	ε γ .	beff					1	+		- bi	F	+				
Ec,eff	1489	kN/cm ²]	Ec/(1+φ(∞,to))									1	V	Ż	XX	X	ŝ	×	77	n. 1	2	
φ(∞,to)	1,35]	RF-Tendon									,		K	÷	8	×	8	4	+		
αs_Z_II	13,43]	Es/Ec,eff									h		6	700	XXX	X	113	Ŧ			
αs*ρ	0,019]														Fei						
Ν	-18079,10	kN]	Ned+Np												- 1							
Mges	4.486.970	kNcm]	Med+Mp+Mp,zw-Ned(dr-zo)-Np(dr-dp)											A	-	:	:					
N*dr/M	0,810]										+	-		ī							
ξ	0,15	Diagram	m				h	/d =	30/	200	9 = 0	15.	hoff	'hw =	7 25	، ا د	i Δn	nah	me	$\lambda = 1$			
ζ	0,950]					i / u –	507	200,	5-0	,13,	Deny	- wo	7,23		, All	mai	inte	// - J			
x_II	30,14	cm				<u> </u>			1	n./d	-		120	-	Т			b	-/b				
σ_s1_II	19,87	kN/cm ²	\checkmark	< g_s_max		0.00	0.00	0.00			0.05												
εs1_II	0,993	‰		< 2,39‰		4,50	<i>U</i> ,45	440	4,55	<i>U,30</i>	0,25	420	0,15	<i>0,10 l</i>	105	1,5	2,0	2,5	30	3,5	40	5,0	
σ_c2_II	-0,22	kN/cm ²	\checkmark	< o_ck_zul					ξ×	x/d	_	_	_					70	10·2·				
εc2_II	-0,149	‰]	< 3,5‰		<i>q50</i>	0,45	0,40	Q35	Q30	0,25	0,20	Q,15	0,10	105 1	00	100	700	100	100	100	100	
						-	0,50	0,44	0,39	0,33	0,28	0,22	Q17	QTT I	106	99	99	99	99	99	99	98	
Begrenzung der Ris	sbreite inf. Bel	astung in	n Z	ustand II			-	0,50	Q44	0,38	Q.31	025	0,19	Q13	105	97	95	95	35	95	94	94	
σ_s1_II	19,87	kN/cm ²					- 1	-	0.50	043	036	020	071	1714	207	05	97	00	89	80	88	87	
wk	0,20	mm							450	0,10	4.50	465	4,61	4,14	,0/ .		34	30	00	03	00	0/	
fct,eff	3,50	N/mm ²								0,50	Q42	0,33	925	Q17	108	97	87	84	82	87	80	79	
фs*	21,3	mm									0,50	0,40	0,30	0,20	110 4	97	81	77	75	73	71	70	
φs_1=φs*fct,eff/2,9	25,7	mm										0,50	0,38	0,25	13	93	75	70	66	64	62	50	
φs_2	4,29	mm											0,50	Q33	17 1	79	69	52	58	55	53	50	
φs_max_vorh	16	mm		_								L		050	225	75	52	55	50	45	44	40	
φs_lim	25,7	mm	\checkmark	> фs,vorh									L		250	71		17	112	17	2//	20	
															100	<u>a</u> -	30	4/	46	31	34	30	

Die auftretenden Zugspannungen in Tabelle 6.3 stellen im Endzustand kein Problem dar, da eine durchgehende Bewehrung in der oberen bzw. unteren Gurtplatte vorhanden ist. Unter Einhaltung des Grenzwertes f_{ctm} ist eine Berechnung im Zustand I (ungerissener Querschnitt) zulässig. Aufgrund der ungünstigen Wirkung der Zwangsmomente im Feldbereich kommt es hier zu einer Überschreitung der zulässigen Zugfestigkeit des Betons (0,53 kN/cm²). Das bedingt eine zusätzliche Untersuchung auf der Grundlage eines gerissenen Querschnitts (Zustand II, Tabelle 6.3). Die Ermittlung der Spannungen muss in diesem Fall unter Vernachlässigung der Betonzugfestigkeit, jedoch bei Erfüllung der Verträglichkeit der Dehnungen erfolgen. Ein wesentlicher Unterschied zu der Vorgehensweise im Zustand I ist, dass das Superpositionsprinzip bei gleichzeitig einwirkenden Moment und Normalkraft nicht mehr gilt. Das bedeutet, dass die Spannungen nicht überlagert werden dürfen und somit eine Bemessung nach Tabellenwerken nach [26] erfolgen muss. Die Berechnung erfolgte in Tabelle 6.3 unter der Berücksichtigung der ermittelten Bewehrung (Kapitel 6.3.2) inklusive Spannstahl und der neuen Druckzonenhöhe nach der Rissbildung. Es ist ersichtlich, dass die vorhandene Zugspannung von etwa 20 kN/cm² die zulässige Betonstahlspannung nicht überschreitet und somit alle Spannungsnachweise für das Tragwerk erbracht sind.

Begrenzung der Rissbreite

Die Begrenzung der Rissbreiten ist in ÖN EN 1992-2, 7.3 [23] geregelt und muss einerseits für Risse infolge Zwang und andererseits für Risse infolge direkter Einwirkung (äußere Beanspruchungen) nachgewiesen werden. Wie schon in Tabelle 5.6, Kapitel 5.4.3 dargestellt liegt der Grenzwert der Rissbreite w_{max} bei 0,2 mm.

<u>Risse infolge Zwang</u>

Für die Dimensionierung von plattenförmigen Tragwerksteilen (obere/untere Gurtplatte, Stege) ist oft nicht der Tragfähigkeitsnachweis sondern der Gebrauchstauglichkeitsnachweis der Rissbreitenbegrenzung infolge Zwang maßgebend. Deswegen wurde hier überprüft, ob die im folgenden Kapitel 6.3.2 ermittelte Bewehrung dafür ausreichend ist. Anbei werden nur die Endergebnisse angeführt, die ausführliche Bemessung befindet sich in Anhang C auf Seite 130. Tabelle 6.5 und Tabelle 6.6 zeigen, dass die vorhandene Bewehrung sowohl in der unteren Gurtplatte als auch in den Stegen den Nachweis der Rissbreitenbeschränkung erfüllt. Die Rissbreitenbeschränkung der Deckplatte wurde bereits im Kapitel 5.5.2 dargestellt.

vorh A _s :	-	20,1	1	cm²	<u>></u> erf A _s	= 10,80	cm ² o.k.
<u>Stahlspannun</u> nach 7.2(5):	gen_		[N/mm²]	Bean- spruchung	erf A _s / vorh A _s	Nachweis	_
vorh σ₅ =	87,0	<u><</u>	550	nur Zwang	0,16	erfüllt	
Rissbreitenna	chweis	nach 7.3.2	/7.3.3:		erf A₅ / vorh A₅	Nachweis	
GI. 7.1:			erf A₅ =	10,8 cm ²	0,54	maßgebend	<u> </u>
GI. NA.7.5.1:			$erf A_s =$	13,1 cm ²	0,65	nicht relevant	 die rechnerisch kleinste A Menge der
Direkte Rissbr	eitenbe	erechnung	nach 7.3	.4:			Nachweise nach den Gleichungen 7.1, NA7.5.1 und 7.8 ist für
GI. 7.8: gew A _s = erf A _s =	20,1 10,8	cm² ergibt <mark>cm²</mark> für erf v	w _k = w _k =	0,06 mm 0,20 mm	0,54	nicht relevant	den Rissbreiten- nachweis ausreichend !

Tabelle 6.5: V1 SLS-Nachweis der Rissbreite infolge Zwang für untere Gurtplatte

vorh A _s =	20,11	cm²	<u>></u> erf A _s	= 14,15	cm ² o.k.
<u>Stahlspannungen</u> nach 7.2(5) <u>:</u>	[N/mm²]	Bean- spruchung	erf A _s / vorh A _s	Nachweis	_
vorh σ _s = 117,3	<u><</u> 550	nur Zwang	0,21	erfüllt	
Rissbreitennachweis	s nach 7.3.2/7.3.3:		erf A _s / vorh A _s	Nachweis	
GI. 7.1:	erf A _s =	14,6 cm ²	0,72	nicht relevant	-
GI. NA.7.5.1:	erf A _s =	14,1 cm ²	0,70	maßgebend	die rechnerisch kleinste
Direkte Rissbreitenb	erechnung nach 7.3	.4:			Nachweise nach den Gleichungen 7.1, NA7.5.1 und 7.8 ist für
GI. 7.8: gew A _s = 20,1 erf A _s = 14,3	cm^2 ergibt $w_k =$ cm^2 für erf $w_k =$	0,10 mm 0,20 mm	0,71	nicht relevant	den Rissbreiten- nachweis ausreichend !

Tabelle 6.6: V1 SLS-Nachweis der Rissbreite infolge Zwang für Stege

<u>Risse infolge direkter Einwirkung</u>

Die Begrenzung der Rissbreite infolge direkter Einwirkung erfolgte nach ÖN EN 1992-2, 7.3.3 [23] ohne direkte Berechnung unter Einhaltung des Grenzdurchmessers ϕ_s der Bewehrungsstäbe. Zur Bestimmung von ϕ_s wurden die Betonstahlspannungen für den gerissenen Querschnitt in Feldmitte nach Tabelle 6.4 herangezogen. Der Grenzdurchmesser ist bei Lastbeanspruchung folgendermaßen zu modifizieren:

$$\phi_s = \phi_s^* * \frac{\sigma_s * A_s}{4 * (h-d) * b * 2,9} \ge \phi_s^* * \frac{f_{ct,eff}}{2,9}$$
(6.2)

$$\phi_{s}^{*} = \frac{6 * w_{k} * f_{ct,eff} * E_{s}}{\sigma_{s}^{2}}$$
(6.3)

Dabei wurde ϕ_s^* nach (6.3) mit der Stahlspannung $\sigma_s = 19,87 \text{ kN/cm}^2$ zu 21,3 mm ermittelt. Mit der wirksamen Betonzugfestigkeit $f_{ct,eff} = 0,35 \text{ kN/cm}^2$ ergab sich der Grenzdurchmesser zu 25,7 mm. Somit ist dieser größer als der maximal vorhandene Stabdurchmesser von 16 mm und der Nachweis der Begrenzung der Rissbreite ist eingehalten (siehe auch Tabelle 6.4).

6.3.2 Nachweise im Grenzzustand der Tragfähigkeit (GZT)

Die Nachweise im Grenzzustand der Tragfähigkeit erfolgten für den Endzustand zum Zeitpunkt t = ∞ unter der maßgebenden Einwirkungskombination an den ungünstigsten Stellen: über dem Auflager und in Feldmitte.

Biegung und Normalkraft

Die Querschnittsnachweise im GZT der Biege- und Normalkraftträgfähigkeit wurden mithilfe des Programms INCA2 geführt. Die einwirkenden Schnittgrößen wurden dafür dem Programm Dlubal RFEM entnommen (siehe Abbildung 6.25). Diese wurden dann im betrachteten Querschnitt samt Vorspannung in INCA2 modelliert und somit wurde die zusätzliche schlaffe Bewehrung bestimmt. Die internen Spannglieder mit nachträglichem Verbund wurden in INCA2 durch Definition einer Vordehnung ε_p berücksichtigt. Für die Ermittlung der eventuell erforderlichen Bewehrung wurde Betonstahl B550 B verwendet, der in INCA2 der Bewehrungsgruppe 1 zugeordnet wurde. Damit sichergestellt wird, dass das Programm INCA2 die richtigen Ergebnisse für die Bemessung liefert, wurde eine händische Bemessung für ein allein wirkendes Stützmoment von - 60.500 kNm vorgenommen. Es erfolgte zunächst eine Ermittlung des Widerstandsmoments M_{Rd} und der zusätzlichen schlaffen Bewehrung mithilfe vom Block-Diagramm nach [27]:

$$\varepsilon_{py} = \frac{F_p - P_{m\infty}}{Ap * Ep} = \frac{26.202 - 22.271}{180 * 19500} = 0,00112$$
$$F_p = A_p * f_{pd} = 26202 \text{ kN}$$
(6.4)

 $P_{m\infty} = P + A_p * \sigma_{p,c+s+r,t} = F_p * (1 - Verluste) = 26202 * 0.85 = 22.271 \text{ kN}$

$$x_{B,lim,p} = \frac{2,8 * d_p}{3,5 + \varepsilon_{py}} = \frac{2,8 * 195}{3,5 + 1,12} = 118,2 \text{ cm}$$
$$x_{B,p} = \frac{A_p * f_{pd}}{b * f_{cd}} = \frac{26202}{540 * 2,67} = 18,2 \text{ cm}$$
(6.5)

 $M_{Rd} = x_B * b * f_{cd} * (d_p - 0.5 * x_B) = 48710 \text{ kNm} < M_{Ed} \rightarrow schlaffe Bewehrung$

$$x_{B,lim} = \frac{560 * d}{700 + f_{yd}} = \frac{560 * 205}{700 + 478} = 94 \text{ cm}$$

$$M_{Ed,S1} = M_{Ed} + F_p * (d - d_p) = 63.120 \text{ kNm}$$

$$x_B = d - \sqrt{d^2 - \frac{2 * M_{Ed,S1}}{b * f_{cd}}} = 22,6 \text{ cm}$$

$$A_{S1} = \frac{x_B * b * f_{cd} - A_p * f_{pd}}{f_{yd}} = 134 \text{ cm}^2$$
(6.6)

Demzufolge ergab sich eine erforderliche schlaffe Bewehrung $A_{s1,erf}$ von 134 cm². Diese stimmt in der Größenordnung mit dem Ergebnis von INCA2 $A_{s1,erf}$ = 142 cm² (Anhang C Seite 132) überein. Aufgrund dieser Übereinstimmung werden die Ergebnisse des Programms INCA2 als plausibel erachtet und es wird für die weiteren Querschnittsbemessungen herangezogen.

Die Berechnung der Brücke im Endzustand erfolgte über eine manuelle Eingabe der einwirkenden Kräfte in INCA2 unter Berücksichtigung der vorhandenen Vorspannsituation. Zusätzlich zu den in Abbildung 6.25 dargestellten ULS-Schnittgrößen wurden noch die Zwangskräfte infolge Vorspannung (siehe Tabelle 6.2) berücksichtigt. Auf diese Weise ergab sich im Stützbereich durch die günstige Wirkung der Zwangsmomente eine schlaffe Bewehrung $A_{s,erf}$ von 15 cm², wohingegen im Feldbereich, wo sich diese negativ auswirken, eine schlaffe Bewehrung von $A_{s,erf} = 103$ cm² erforderlich war. Die Spannungsverteilung über den Querschnitt sowie die einwirkenden Kräfte im Feldbereich sind in Abbildung 6.26 ersichtlich, die restlichen Ergebnisse sind in Anhang C auf Seite 132 zu finden.

Abbildung 6.25: RFEM EK 510: Schnittgrößen ohne Vorspannung im GZT

Abbildung 6.26: V1 INCA2: Spannungsverteilung in Feldmitte

Querkraft und Torsion

Die Breite der Stege und somit die Geometrie des Querschnitts werden von der Querkrafttragfähigkeit bestimmt. Daher erfolgte eine Abschätzung bereits in einem früheren Entwurfsstadium. Da sich die Spannglieder im vorliegenden Tragwerk nicht in den Stegen befinden, leisten sie keinen Beitrag zur Abtragung der Querkräfte. Die Geometrie der Brücke selbst hat eine negative Auswirkung: durch den vorgegebenen Krümmungsradius im Grundriss wird der Querschnitt bereits durch sein Eigengewicht auf Torsion beansprucht.

Bei gleichzeitiger Wirkung von Querkraft und Torsion ist der Nachweis für die kombinierte Beanspruchung zu führen. Die Torsionssteifigkeit des Querschnitts ist sehr hoch, da es sich hier um einen geschlossenen Hohlkasten handelt. Für die Aufnahme der Torsionsbeanspruchung schreibt der Eurocode 2 eine umlaufende Bewehrung (meistens in Form einer Bügelbewehrung) vor. Zusätzlich ist eine Torsionslängsbewehrung zu bemessen und der Nachweis der Betondruckstreben zu führen. In den folgenden Berechnungen werden die erforderliche Bügelbewehrung und die Tragfähigkeit der Betondruckstreben der Stege ermittelt, da diese die maßgebenden Querschnittselemente infolge kombinierter Beanspruchung darstellen. Diese Einschränkung wird im Rahmen der gegenständlichen Machbarkeitsstudie als ausreichend erachtet.

Die Norm ÖN EN 1992-2 [23] empfiehlt bei kastenförmigen Querschnitten eine separate Bemessung jeder Wand infolge einer kombinierten Beanspruchung. Die Abbildung 6.27 zeigt die Sinnhaftigkeit dieser Vorgabe. Die Neigung θ der Betondruckstreben darf hierbei identisch angenommen werden.

Die resultierenden Schnittgrößen aus Querkraft V_{ed} und Torsionsmoment M_T wurden direkt den RFEM-Ergebnissen entnommen. Das Torsionsmoment wurde dabei durch die Anwendung der 1.Bredtschen Formel V_{ed,t} = $\frac{M_T}{2*A_k}$ * z in eine Kraft umgerechnet. Der innere Hebelarm wird mit z

bezeichnet, A_k gibt die von den Mittellinien der Hohlkastenwände eingeschlossene Fläche an. In der Querkraft infolge Vorspannung wurden bereits die 15% Verluste aus Kriechen und Schwinden berücksichtigt. Der Nachweis der Betondruckstreben $V_{Rd,max}$ und die Ermittlung der erforderlichen Bügelbewehrungsfläche A_{sw} erfolgte gemäß Eurocode 2 [14] mit den folgenden Formeln:

$$V_{Rd,max} = \frac{\alpha_{cw} * b_w * z * v_1 * f_{cd}}{\cot\theta + \tan\theta}$$
(6.7)

$$V_{Rd,s} = \frac{A_{sw}}{s} * z * f_{ywd} * \cot\theta$$
(6.8)

$$a_{sw,erf} = \frac{A_{sw}}{s}$$

Die Berechnung ergab unterschiedliche Werte für die erforderliche Schubbewehrung $a_{sw,erf}$ in beiden Stegen. Die ausgewählte Flächenbewehrung in der Form von zweischnittigen Bügeln ist in Tabelle 6.7 ersichtlich.

Die ermittelte Bewehrung im Grenzzustand der Tragfähigkeit wurde jener im Grenzzustand der Gebrauchstauglichkeit gegenübergestellt. Die Endergebnisse samt ausgewählter Flächenbewehrung wurden in Tabelle 6.8 zusammengefasst. Die gesamte Bewehrungs- und Spanngliedsituation der Variante 1 ist in Abbildung 6.28 in Form einer Bewehrungsskizze dargestellt. Diese zeigt der halbe Querschnitt mi der entsprechenden Bewehrung jeweils im Feld- und Stützbereich.

Abbildung 6.27: ÖN EN 1992-2, Bild 6.104 Innere Spannungsüberlagerung in den verschiedenen Wänden eines Kastenquerschnittes für (a) Torsion, (b) Querkraft und (c) Kombination [23]

Tabelle 6.7: V1 ULS-Nachweis Querkraft und Torsion

Querkraft und Torsion											
	links	rechts									
t_steg		40	cm								
Ved		9.500	kN								
Neigung der Betondruckstrebe		31,0	•								
Ved,je Steg	4.750	4.750	kN								
Vrd,max je Steg		5.618	kN								
Med,T	5.500	kNm									
Mrd,T	56.962	kNm									
Ved,T je Steg	-542	542	kN								
Ved,vsp,t∞		100	kN								
Ved,vsp,t∞ je Steg	50	50	kN								
Ved,gesamt	4258	5.342	kN								
Ausnutzung Betondruckstrebe	76	89	%								
asw,min, je Steg		3,56	cm²/m								
asw,erf, je Steg	29,4	36,9	cm²/m								
asw_gewählt	Ø14/10	Ø16/10									
	30,8	40,2	cm²/m								
Bauteil	a _{erf,SLS} [cm²/m]	a _{erf,ULS} [cm²/m]	Gewählte Bewehrung [cm²/m]								
---	---------------------------------	---------------------------------	----------------------------------								
Obere Gurtplatte Zulagen über Auflager in Querrichtung	11,22	11,19	Ø12/10 = 11,31 Ø12/10 = 11,31								
Untere Gurtplatte	10,80	19,74	Ø16/10 = 20,11								
Steg rechts	14,15	40,2	Ø16/10 = 40,21								
Steg links	13,03	30,8	Ø14/10 = 30,79								

Tabelle 6.8: V1 Übersicht Bewehrung

Abbildung 6.28: V1 Bewehrungsskizze Variante 1

6.3.3 Massenermittlung

Nach der Fertigstellung des Entwurfes wurde für den Endzustand eine Massenermittlung durchgeführt. Diese bezieht sich auf den Regelbereich der Brücke (Achsen 10-100, Endfelder ausgenommen) auf einer Länge von 365 m und zeigt, dass insgesamt 2085 m³ Beton für den Bau von Variante 1 des Alternativentwurfes erforderlich sind. Eine wichtige Anmerkung dabei ist, dass die Querschnittsfläche die Betonmenge für Lisenen und Verankerungen nicht einschließt. Diese Masse wurde aber in der Gesamtbetonmenge mit einem Aufschlag von 5% miteinberechnet. Die Stahlmenge beläuft sich auf 387 t, wovon 329 t auf schlaffe Bewehrung und 58 t auf Spannstahl entfallen. Der mittlere Bewehrungsgehalt für den Regelbereich beträgt 158 kg/m³ und ist nur auf die schlaffe Stahlmenge bezogen. Die Übersicht ist in Tabelle 6.9 zu sehen.

MASSENERMITTLUNG	QS-Fläche	Betonmenge	Bewehrung	Bew.gehalt	Spannstahl	Spannstahl
Regelbereich Variante 1	[m²]	[m³]	[t]	[kg/m³]	[t]	[kg/m³]
1m-Brückenlänge	5,44	5,71	0,901	158	0,157	28
Regelbereich	5,44	2085	329	158	58	28

Tabelle 6.9: Üb	ersicht Massen	V1
-----------------	----------------	----

6.4 Variante 2 (V2): Externe Spanngliedführung

Bei dieser Spanngliedführung liegen die Spannglieder über die gesamte Länge innerhalb des Hohlraumes des Kastenquerschnitts. Somit interagieren diese nur punktuell an den Endverankerungen, den Umlenksätteln und den Querträgern mit dem restlichen Tragwerk. Der große Vorteil im Vergleich zu Variante 1 ist die jederzeit mögliche Wartung der Spannglieder. Dem gegenüber stellt sich der Nachteil eines geringeren Hebelarmes im Querschnitt.

Es wurden Litzenspannglieder der Spezifikation VBT-BE 3x4-150-1860 herangezogen, welche aus zwölf Litzen bestehen. Die Wahl der Spannglieder erfolgte aufgrund der bereits in Variante 1 verwendeten Vorspannung. Sämtliche technische Spezifikationen der Spannglieder wurden der Europäischen Technischen Zulassung entnommen [16]. Die Spannung im Spannglied unmittelbar nach dem Vorspannen und Verankern wurde so wie in (6.1) ermittelt und beträgt $\sigma_{mp,0} = 130 \text{ kN/cm}^2$. Ein 3x4 Litzenband (3 Lagen je 4 Litzen, Abbildung 6.29) hat eine Breite und Höhe von etwa 90 mm und verlangt einen minimalen Umlenkradius von 5,5 m. Die minimalen äußeren Querschnittsabmessungen für einen Umlenkkasten belaufen sich auf 103 x 104 mm. Die Abschätzung der erforderlichen Spanngliedanzahl erfolgte anhand des Dekompressionsnachweises unter quasi-ständiger Einwirkungskombination. Zusätzlich zu den Zwangsmomenten hat die Lage der Umlenkpunkte zwischen zwei Auflagern eine entscheidende Rolle zur Bestimmung der endgültigen Vorspannmenge gespielt (siehe Kapitel 6.4.1). Mit Berücksichtigung der notwendigen Randabstände wurden die unteren Spannglieder 30 cm von der Tragwerksunterkante und die oberen 40 cm von der Oberkante nebeneinander platziert (Abbildung 6.30). Die Verluste aus Kriechen und Schwinden wurden nach [27] mit 10% angenommen und bei der Berechnung berücksichtigt. Der Kriechanteil bei Vorspannung ohne Verbund kann sich annähernd gleichmäßig über die Spanngliedlänge ausgleichen, weshalb dieser im Vergleich zur Vorspannung mit Verbund geringer ausfällt.

	52
91	

Abbildung 6.30: RF-Tendon: V2 Externe Spanngliedführung im Querschnitt (a) über dem Auflager (Position 42m) und (b) in Feldmitte (Position 63m)

Abbildung 6.32: RF-Tendon: V2 Primäre Schnittgrößen infolge Vorspannung: Np [kN], Mp,dir [kNm]

Abbildung 6.33: RF-Tendon: V2 Zwangsschnittgrößen infolge Vorspannung: Np [kN], Mp,ind [kNm]

Abbildung 6.34: RFEM LF 40/RF-Tendon: V2 Gesamtschnittgrößen infolge Vorspannung: Np [kN], Mp,ges [kNm]

6.4.1 Nachweise im Grenzzustand der Gebrauchstauglichkeit (GZG)

Die Schnittgrößen zufolge äußeren Lasten für die folgenden Nachweisführungen sind dieselben wie in der Variante 1 (Abbildung 6.20, Abbildung 6.24) und werden hier nicht erneut angeführt.

Dekompressionsnachweis

Ein Dekompressionsnachweis wird für Vorspannung ohne Verbund nicht gefordert. Da der Korrosionsschutz durch die Ummantelung und das Einfetten der Spannlitzen erfolgt, muss dieser nicht durch den Beton sichergestellt werden [27]. Der Nachweis stellt aber trotzdem eine sinnvolle Methode zur Abschätzung der erforderlichen Spannstahlmenge dar und wurde deswegen in diesem Zusammenhang angewendet. Die Schnittgrößen zufolge Vorspannung sind in Abbildung 6.32, Abbildung 6.33 und Abbildung 6.34 ersichtlich.

Genauso wie beim ersten Entwurf wurde hier die Auswirkung der Vorspannung auf einen Einfeldträger untersucht. Zuerst wurde überlegt, welche Momentenverteilung (M_{p,dir}) die Spannglieder bei einem gelenkig gelagerten Träger hervorrufen. Anschließend wurde beobachtet wie sich diese infolge der statischen Unbestimmtheit des eingespannten Trägers verändert. Daraus wurde auf das Zwangsmoment (M_{p,ind}) rückgeschlossen. In diesem System wurde zusätzlich die Auswirkung der Lage der Knickpunkte (k1, k2 bzw. k3, k4 in Abbildung 6.35) auf die Endschnittgrößen untersucht. Es wurde festgestellt, dass wenn die Umlenkpunkte enger aneinander liegen die Zwangsschnittgrößen kleiner sind. Aufgrund von dieser Erkenntnis wurden die Umlenkpunkte so gewählt, dass unter Berücksichtigung der Zwangsmomente eine ausgewogene Balance zwischen Stütz- und Feldmoment erreicht werden konnte. Die genaue Lage der Spannglieder ist in Abbildung 6.31 ersichtlich. Die erste Vordimensionierung der Vorspannung erfolgte mit den Schnittgrößen zufolge äußerer Belastung und ergab acht Spannglieder im Feldbereich und fünfzehn über dem Auflager. Die Vorgehensweise hier war dieselbe wie im Kapitel 6.3.1. In einem zweiten Schritt wurde die Spanngliedführung optimiert. Da in dieser Variante die Spannglieder über die gesamte Tragwerkslänge verlaufen, wurde bei der Berechnung dieselbe Anzahl von Spanngliedern im Feld und über der Stütze angestrebt, um einen späteren Aufwand für Ausbildung zusätzlicher Verankerungen zu reduzieren. Unter diesen Voraussetzungen und mit Berücksichtigung der Spannungsnachweise wurde die iterative Berechnung schlussendlich mit zwölf Spanngliedern abgeschlossen. Die

Endergebnisse sind in Tabelle 6.10 ersichtlich, die Zwischenergebnisse befinden sich in Anhang D auf Seite 138.

Abbildung 6.35: V2 Auswirkung der Vorspannung auf (a) einen Einfeldträger: Mp,dir (b) einen eingespannten Träger mit eng liegenden Umlenkpunkten k1, k2: Mp,ges und Mp,ind (c) einen eingespannten Träger mit weit voneinander liegenden Umlenkpunkten k3, k4: Mp,ges und Mp,ind

Tabelle 6.10: V2 Endgültige Spanngliedanzahl und Dekompressionsnachweis für t = 0,t = ∞

Abschätzung der	Spangliedanzahl (ı	unten) im	Feld	Abschätzung der Sp	pangliedanzah	l (oben) am	Auflager
Mqs_F	22.500	kNm	It RFEM	Mqs_St	-36.500	kNm	
Mqs_F	2.250.000	kNcm		Mqs_St	-3.650.000	kNcm	
e_SpGl_UK	35,0	cm	σ_ο	e_SpGl_OK	40,0	cm	
ep_u	94,1	cm		ep_o	-40,9	cm	
Pk,sup_F	15.672	kN		Pk,sup_St	30.457	kN	
σ_0_F	-0,52	kN/cm ²	σ_u	σ_o_St	0,85	kN/cm²	
σ_u_F	0,84	kN/cm ²	o obere Randfaser	σ_u_St	-1,36	kN/cm²	
Verluste	0,10	-	uuntere Randfaser	Verluste	0,10	-	
Pm0_F	17.413	kN	FFeld StStütze	Pm0_St	33.841	kN	
Ap_erf_F	133,74	cm ²	erf. Spanngliedfläche	Ap_erf_St	259,92	cm ²	
np_erf_F	90	Stk	erf. Litzenanzahl	np_erf_St	174	Stk	
n_Spanngl_F	7,5	Stk	erf. Spanngliederanzahl	n_Spanngl_St	14,5	Stk	
n_gew	12,0	Stk	gewählte Spanngliedanzahl	n_gew	12,0	Stk	
P_gew_t0	28.123	kN	nach Umsetzen der Spannkraft	P_gew_F	28.123	kN	
P_gew_t∞	22.499	kN	nach Verlusten	P_gew_t∞	22.499	kN	
Spannungskontrol	le primär	_		Spannungskontrolle	primär		
σ_u_ges_t0	-0,66	kN/cm ²	nach Umsetzen der Spannkraft t0	σ_o_ges_t0	0,07	kN/cm ²	
σ_u_ges_t∞	-0,36	kN/cm ²	nach Verlusten	σ_o_ges_t∞	0,22	kN/cm ²	
Dekompressionsn	achweis im Feld f	ür t=0		Dekompressionsna	chweis am Au	flager für t=	0
Nvsp_F_t0	-28.123	kN		Nvsp_dir_St_t0	-28.123	kN	
Mvsp_dir_F_t0	-2.646.393	kNcm		Mvsp_dir_St_t0	1.150.239	kNcm	
M_Vsp_ind_t0	12.500	kNm	stat.unbest. Moment RF-Tendon	M_Vsp_ind_t0	12.500	kNm	
M_Vsp_ind_t0	1.250.000	kNcm	stat.unbest. Moment RF-Tendon	M_Vsp_ind_t0	1.250.000	kNcm	
M_Vsp_ges_t0	-1.396.393	kNcm		M_Vsp_ges_t0	2.400.239	kNcm	
Mqs_F	22.500	kNm	It RFEM	Mqs_St	-36.500	kNm	
Mqs_F	2.250.000	kNcm		Mqs_St	-3.650.000	kNcm	

Dekompressionsn	achweis im Feld f	ür t=∞		Dekompressionsnachweis am Auflager für t=∞					
Nqs_F	-28.123	kN		N_St_Vsp	-28.123	kN			
Verluste	0,10	-	10% Verluste	Verluste	0,10	-			
N_F_Vsp_t∞	-25.311	kN		N_F_Vsp_t∞	-25.311	kN			
M_Vsp_dir_t∞	-2.381.754	kNcm	10% Verluste	M_Vsp_t∞	1.035.215	kNcm			
M_Vsp_ind_t∞	12.500	kNm	stat.unbest. Moment RF-Tendon	M_Vsp_ind_t∞	12.500	kNm			
M_Vsp_ind_t∞	1.250.000	kNcm	stat.unbest. Moment RF-Tendon	M_Vsp_ind_t∞	1.250.000	kNcm			
M_Vsp_ges_t∞	-1.131.754	kNcm		M_Vsp_ges_t∞	2.285.215	kNcm			
Mqs_F_oVsp	22.500	kNm	It RFEM	Mqs_St_oVsp	-36.500	kNm			
Mqs_F	2.250.000	kNcm		Mqs_St	-3.650.000	kNcm			
Nqs_F	0	kN		Nqs_St	0	KN			
σ_0_F	-0,73	kN/cm ²	√ < 0 & σ_qs_zui	σ_o_St	-0,15	kN/cm ²	√ < 0 & σ_qs_zul		
σ_u_F	-0,05	kN/cm ²	√ < 0 & σ_qs_zul	σ_u_St	-0,97	kN/cm ²	√ < 0 & σ_qs_zul		

Mqs_St

Nqs_St

σ_o_St

σuSt

0 kN -0,23 kN/cm²

-0,98 kN/cm²

< 0 & or as zul

< 0 & o_qs_zul

0 kN

-0,72 kN/cm²

-0,20 kN/cm²

< 0 & or as zul

< 0 & o_qs_zul

Mqs_F

Nqs_F

σ_0_F

σ_u_F

Weitere Spannungsnachweise

Hier wurden genauso wie in Variante 1 auf Seite 60 die auftretenden Spannungen für $t = \infty$ überprüft und nachgewiesen. Der einzige Unterschied in Variante 2 ist, dass ausschließlich die schlaffe Bewehrung (ohne Vorspannung) in die Berechnung im Zustand II eingeht, da kein Verbund zwischen Spannstahl und Beton gegeben ist.

Tabelle 6.11: V2 SLS-Nachweis der charakteristischen Betonspannungen für Zeitpunkt t = 0 und t = ∞

Zulässige Spannun	gen								
σ_ck_zul	2,40 kN/cm ²	Betondruckspannung	σ_p_max	130,20 kN/cm ²	Spannstahl				
f_ctm	0,35 kN/cm ²	Betonzugspannung	σ_s_max	44 kN/cm ²	Betonstahlzugsp.				
Begrenzung der Sp	annungen im Feld für t=)	Begrenzung der	Spannungen am Auflager i	für t=0				
Nvsp_F_t0	-28.123 kN		Nvsp_F_t0	-28.123 kN					
Mvsp_F_t0	-1.537.009 kNcm		Mvsp_F_t0	2.400.239 kNcm					
In Feldmitte			Am Auflager						
Mck_F	35.500 kNm		Mck_St	-45.000 kNm					
Mck_F	3.550.000 kNcm		Mck_St	-4.500.000 kNcm					
Nck_F	1.500 kN		Nck_St	1.200 kN					
σ_c,o_F	-0,96 kN/cm ²	√ <σ_ck_zul	σ_c,o_St	-0,01 kN/cm ²	√ <σ_ck_zul				
σ_c,u_F	0,26 kN/cm ²	√ <f_ctm< td=""><td>σ_c,u_St</td><td>-1,28 kN/cm²</td><td>√ <σ_ck_zul</td></f_ctm<>	σ_c,u_St	-1,28 kN/cm ²	√ <σ_ck_zul				
Begrenzung der Sp	annungen im Feld für t=	×	Begrenzung der	Begrenzung der Spannungen am Auflager für t=∞					
Nvsp_F_t∞	-25.311 kN		Nvsp_St_t∞	-25.311 kN					
Mvsp_F_t∞	-1.258.308 kNcm		Mvsp_St_t∞	2.285.215 kNcm					
Mck_F	35.500 kNm		Mck_St	-45.000 kNm					
Mck_F	3.550.000 kNcm		Mck_St	-4.500.000 kNcm					
Nck_F	1.500 kN		Nck_St	1.200 kN					
σ_c,o_F	-0,97 kN/cm ²	√ <σ_ck_zul	σ_c,o_St	0,07 kN/cm ²	√ <f_ctm< td=""></f_ctm<>				
σ_c,u_F	0,41 kN/cm ²	<pre>< f_ctm ZUSTAND II !</pre>	σ_c,u_St	-1,27 kN/cm ²	√ < σ_ck_zul				
σ_s	2,37 kN/cm ²	√ <σ_s_max	σ_s	0,41 kN/cm ²	√ < σ_s_max				

Zustand II				a Baine I											~						
As1	135	cm ²	schlaffe Bewehrung		ma -				- 22	0 = = 0		0 0 0	a.2								
Ар	0	cm ²	Spannstahlmenge						÷	Į			Fel	< ()	~						
Ages	135	cm ²		- ⁸ 0		Ĩ		x	F	- co	\Rightarrow		ż			C Bier	gung m	nitLän ∕	gsdruc	kkraft	
b	1030	cm	Brete der Druckzone	tz (Z ₁₃			/							사	- /		0050	,	
dp	197,5	cm	Hebelarm Vorspannung	0000	•	=	_	1		1.041 E.C.1	-0 -0			-F.		<u>* \</u>	f.	2			
d	206	cm	Hebelarm Bewehrung	h Lines	deneta	tro fl									ſ	}	Ą		F	÷ -	\rightarrow
d_m1	4	cm	-	D canga									2								ne
empt0	0,00705211		Vordehnung Spannstahl			Į –				11		Ш.				7.1	<u> </u>	1 0	1		
Δερ	0,00037519		Zusatzdehnung Spannstahl	-5		ĬŦ		R		- 50	\Rightarrow	-	15.15	. <u>.</u>	÷	fak	sch!	ri	chtig!		
es1	0,00051013		Dehnung Bewehrung	12		Z.					σ			-,							
X	0,735		Δεp/esi	90.00-01-01-		=			•						Ļ						
dr	206,0	cm	(χ.Ap.dp+As1.d)/(χ.Ap+As1)	Querschri	itt. Be	zeichnu	ngen		Deh	nungen	St	annung res. Krä	en. Be	Einwi	rkunge	9D	Obe	erlager	ung		
ρ	0,0006363		Zugbewehrungsgrad																		
αs_Z_I	5,714		Es/Ec			b _i = ,	γ.	b _{eff}				1	1		- 6	of	+				
Ec,eff	1489	kN/cm ²	Ec/(1+q(++,to))									tte		88	\sim	Ŕ	×	77	11	•	
φ(⊷ ,to)	1,35		RF-Tendon										44	ččć	8	X	<u> </u>	4	-71		
as_Z_II	13,43		Es/Ec,eff									1+	1	0110	123	28		1	ì	3	
αs*ρ	0,009														150	1					
N	-23810,88	kN	Ned+Np																		
Mges	5.270.433	kNcm	Med+Mp+Mp,zw-Ned(dr-zo)-Np(dr-dp)												Ł.,	.:			_		
N*dr/M	0,931											-			L.,						
ξ	0,15	Diagram	m	Г		hele	d -	30/	200	9 - 0	15·h		- 7	25-2	5-4	, 	hme	λ-	1		
ζ	0,950						-	2011	,		10,0				2,1	anna		-	-		
x_II	30,90	cm		Г				h	./d					<u> </u>		+	1. (h		-		
σ_s1_II	23,11	kN/cm ²	√ <σsmax	ł	4.00	and								<u>.</u>							
ES1_	1,156	‰	< 2,39%	-	ąsp	1943 1	ten	<i>q</i> 35	0,30	0,25	120 (2)	\$ 00	Q05	25	20	2,5	30	35	40	50	
σ_c2_ll	-0,26	kN/cm ²	√ < o_ck_zul	L				ξ=	x/d							7	wλ	-			
εc2_II	-0,173	‰	< 3,5%		<i>ąso</i>	Q15 Q	840	Q35	Q 30	QES	20 9.1	5-4.920	aas	500	500	100	200	100	700	100	
						Q50 Q	244	0,39	233	d28	122 Q1	an an	Q06	59	99	39	.99	39	59	98	
Begrenzung der Ris	sbreite inf. Bel	astung in	n Zustand II			0	150	Q94	2,38	231	125 01	2 123	000	57	36	95	35	85	9¥	34	
σ_s1_II	23,11	kN/cm ²					-	0.00	0.42				dur.	40		-	An.				
wk	0,30	mm					l	4,30	643	4,20	129 44	1 10/14	LJU7	30	34	90	93	03	00	8/	
fct,eff	3,50	N/mm ²						1	<i>q,50</i>	Q48	133 Q2	\$ Q17	G08	91	87	84	82	87	80	79	
фs*	23,6	mm								0,50	140 0.1	0 0,20	Q10	87	87	77	75	73	77	70	
φs_1=φs*fct,eff/2,9	28,5	mm									250 23	8 225	QU	83	75	70	65	\$4	62	50	
фs_2	15,40	mm									ą.	0 033	0,17	79	63	62	58	55	.53	.50	
φs_max_vorh	20	mm										050	025	25	67	55	50	45	45	40	
φs_lim	28,5	mm	√ > φs,vorh									[0.00	- ~			10		31/	37	
													1 450	177	36	47	46	31	34	30	l.

Begrenzung der Rissbreite

Für Tragwerke mit externer Vorspannung liegt der Grenzwert der Rissbreite w_{max} bei 0,3 mm (siehe Kapitel 5.4.3, Tabelle 5.6).

<u>Risse infolge Zwang</u>

Bedingt durch den größeren Grenzwert der Rissbreite ergab sich bei der Variante 2 eine geringere Bewehrung zufolge Zwang als in der Variante 1. Die Ergebnisse sind in Tabelle 6.13 und Tabelle 6.14 ersichtlich. Die ausführliche Vorgehensweise ist in Anhang D, Seite 140 ersichtlich.

vorh A _s =	31,4	12 (cm²	≥ erf A _s	9,86	cm ² o.k.
Stahlspannunge nach 7.2(5):	<u>n</u>	[N/mm²]	Bean- spruchung	erf A _s / vorh A _s	Nachweis	_
vorh ơs = 5	5 ,7 <u>≤</u>	550	nur Zwang	0,10	erfüllt	
Rissbreitennach	weis nach 7.3.	2/7.3.3:		erf A _s / vorh A _s	Nachweis	
Gl. 7.1:		erf A _s =	9,9 cm ²	0,31	maßgebend	, <u> </u>
GI. NA.7.5.1:		erf A _s =	12,3 cm ²	0,39	nicht relevant	- die rechnerisch Kleinste
Direkte Rissbrei	tenberechnung	nach 7.3.	4:		I	- Scherge der Nachweise nach den Gleichungen 7.1, NA7.5.1 und 7.8 ist für den Rissbreiten-
GI. 7.8: gew A _s = ; erf A _s =	31,4 cm² ergibt 9,9 cm² für erf	w _k = w _k =	0,03 mm 0,30 mm	0,31	nicht relevant	nachweis ausreichend

Tabelle 6.13: V2 SLS-Nachweis der Rissbreite infolge Zwang für untere Gurtplatte

Tabelle 6.14: V2 SLS-Nachweis der Rissbreite infolge Zwang für Stege

vorh A _s =	25,13	cm²	\geq erf A _s :	11,55	cm² <u>o.k</u> .
Stahlspannungen nach 7.2(5):	[N/mm²]	Bean- spruchung	erf A ₈ / vorh A ₈	Nachweis	_
vorh σ ₈ = 93,8	<u><</u> 550	nur Zwang	0,17	erfüllt	
Rissbreitennachwei	s nach 7.3.2/7.3.3:		erf A ₈ / vorh A ₈	Nachweis	
GI. 7.1:	erf A _s =	11,9 cm²	0,47	nicht relevant	- die rechnorisch kleinste
GI. NA.7.5.1:	erf A _s =	11,6 cm²	0,46	maßgebend	Δ -Menge der
Direkte Rissbreitenl	perechnung nach 7.3	.4:			Nachweise nach den Gleichungen 7.1, NA7.5.1 und 7.8 ist für den Rissbreiten.
GI. 7.8: gew A _s = 25,1 erf A _s = 11,7	cm² ergibt w _k = cm² für erf w _k =	0,07 mm 0,30 mm	0,47	nicht relevant	nachweis ausreichend

• Risse infolge direkter Einwirkung

Die Berechnung entspricht jener der Variante 1 (Seite 62). Der maximal vorhandene Stabdurchmesser von 20 mm ist wesentlich kleiner der Grenzdurchmesser von 28 mm. Die Ergebnisse sind in Tabelle 6.12 ersichtlich.

6.4.2 Nachweise im Grenzzustand der Tragfähigkeit (GZT)

Biegung und Normalkraft

Die Ermittlung der Momententragfähigkeit M_{Rd} und einer erforderlichen schlaffen Bewehrung funktioniert ähnlich wie bei Bauteilen mit Vorspannung mit nachträglichem Verbund. Aufgrund des fehlenden Verbundes ist ein wesentlicher Unterschied zu berücksichtigen: der mögliche Dehnungszuwachs ε_{py} und die Druckzonenhöhe *x* müssen statt mit der maximal zulässigen Spannkraft mit Hilfe der zum Zeitpunkt der Nachweisführung herrschenden Spannkraft N_{p,ULS(t)} ermittelt werden. Diese kann nach Norm ÖN EN 1992-1-1 5.10.8 (2) mit einem Spannungszuwachs zwischen wirksamer Vorspannung und Spannung im Grenzzustand der Tragfähigkeit $\Delta\sigma_{ULS}$ abgeschätzt werden. Dadurch wird berücksichtigt, dass das Spannglied durch die zusätzlichen Verformungen im Grenzzustand der Tragfähigkeit gedehnt wird und somit die Vorspannkraft erhöht wird [27]. Für einfeldrige Konstruktionen gilt $\Delta\sigma_{ULS} = 100 \text{ N/mm}^2$, bei durchlaufenden Konstruktionen wird dieser Wert im Verhältnis Feldlänge zu Spanngliedlänge reduziert [26]. Unter der Annahme, dass die Spanngliedlänge dreimal die Feldlänge beträgt, wurde hier mit einem Spannungszuwachs von 35 N/mm² gerechnet. Die händische Ermittlung der erforderlichen schlaffen Bewehrung funktioniert im Feldbereich mit den Gleichungen aus [27] wie folgt:

$$\varepsilon_{py} = \frac{N_{p,ULS(t)} - P_{m(t)}}{A_p * E_p} = \frac{26.293 - 25.311}{216 * 19500} = 0,000179$$
$$P_{m(t)} = P + A_p * \Delta \sigma_{p,c+s+r,t} = P * (1 - Verluste) = 28.123 * 0,9 = 25.311 \text{ kN}$$
(6.9)

$$N_{p,ULS(t)} = P_{m(t)} + A_p * \Delta \sigma_{ULS} = 25.311 + 216 * 3.5 = 26.067 \text{ kN}$$

$$x_{B,lim,p} = \frac{2,8 * d_p}{3,5 + \varepsilon_{py}} = \frac{2,8 * 175}{3,5 + 0,179} = 133 \text{ cm}$$
$$x_B = \frac{N_{p,ULS(t)}}{b * f_{cd}} = \frac{26.067}{1030 * 2,67} = 9,5 \text{ cm}$$
(6.10)

 $M_{Rd} = x_B * b * f_{cd} * (d_p - 0.5 * x_B) = 44.380 \text{ kNm} < M_{Ed} \rightarrow schlaffe Bewehrung$ $x_{B,lim} = \frac{560 * d}{700 + f_{yd}} = \frac{560 * 206}{700 + 478} = 98 \text{ cm}$

$$M_{Ed,s1} = M_{Ed} + N_{p,ULS(t)} * (d - d_p) = 68.581 \text{ kNm}$$

$$x_B = d - \sqrt{d^2 - \frac{2 * M_{Ed,s1}}{b * f_{cd}}} = 12,5 \text{ cm}$$

$$A_{S1} = \frac{x_B * b * f_{cd} - N_{p,ULS(t)}}{f_{yd}} = 173 \text{ cm}^2$$
(6.11)

Das Programm INCA2 berücksichtigt nicht den Spannungszuwachs $\Delta \sigma_{ULS}$, weswegen es in diesem Fall nicht zur Berechnung herangezogen werden kann. Die Bewehrung über dem Auflager wird nach demselben Prinzip wie diese in Feldmitte händisch berechnet. Die endgültige schlaffe Bewehrung unter Berücksichtigung der zugehörigen Normalkräfte N_{Ed} und Biegemomente $M_{Ed,z}$ beträgt $A_{s1,F}$ = 154 cm² in der Feldmitte und $A_{s1,St}$ = 62 cm² über dem Auflager (Anhang D ,Seite 142).

Querkraft und Torsion

Die Nachweisführung erfolgte nach demselben Prinzip wie in Variante 1 auf Seite 64. In der Variante 2 hat die geneigte Spanngliedführung zwischen Auflager und Feldmitte zur Folge, dass größere Querkräfte infolge Vorspannung auftreten und somit mehr Querkraftbewehrung erforderlich ist. Die Ergebnisse sind in Tabelle 6.15 zu sehen. Die Tabelle 6.16 fasst die in diesem Kapitel ermittelte Bewehrung zusammen und in Abbildung 6.36 ist eine Bewehrungsskizze der Variante 2 (Sichtweite 1 m) dargestellt.

	Querkraft und Torsion								
	links	rechts							
t_steg	t_steg								
Ved	Ved								
Neigung der Betondruckstrebe		31,0	0						
Ved,je Steg	4.750	4.750	kN						
Vrd,max je Steg		5.618	kN						
Med,T		5.500	kNm						
Mrd,T	Mrd,T								
Ved,T je Steg	Ved,T je Steg -542								
Ved,vsp,t∞		2.500	kN						
Ved,vsp,t∞ je Steg	1.250	1.250	kN						
Ved,gesamt	5458	6.542	kN						
Ausnutzung Betondruckstrebe	97	89	%						
asw,min, je Steg		3,56	cm²/m						
asw,erf, je Steg	asw,erf, je Steg 37,7								
asw_gewählt	Ø16/10	Ø16/8							
	40,2	50,3	cm²/m						

Tabelle 6.15: V2 ULS-Nachweis Querkraft und Torsion

Tabelle 6.16: V2 Übersicht Bewehrung

Bauteil	a _{erf,SLS} [cm²/m]	a _{erf,ULS} [cm²/m]	Gewählte Bewehrung [cm²/m]
Obere Gurtplatte Zulagen über Auflager In Querrichtung	11,22	11,19	Ø12/10 = 11,31 Ø12/10 = 11,31
Untere Gurtplatte	9,86	31,3	Ø20/10 = 31,42
Steg rechts	11,55	45,2	Ø16/8 = 50,27
Steg links	11,55	37,7	Ø16/10 = 40,21

Abbildung 6.36: V1 Bewehrungsskizze Variante 2

6.4.3 Massenermittlung

Die folgende Tabelle 6.17 fasst die Massen der Variante 2 zusammen. Dieser Alternativentwurf erfordert 2184 m³ Beton, 371 t Bewehrungsstahl und etwa 65 t Spannstahl für den 365 m langen Regelbereich. Die Betonkubatur für die Ausbildung von Querträgern und Umlenksätteln wurde in der m³-Betonmasse berücksichtigt.

MASSENERMITTLUNG	QS-Fläche	Betonmenge	Bewehrung	Bew.gehalt	Spannstahl	Spannstahl
Regelbereich Variante 2	[m²]	[m³]	[t]	[kg/m³]	[t]	[kg/m³]
1m-Brückenlänge	5,44	5,98	1,02	170	0,177	30
Regelbereich	5,44	2184	371	170	65	30

Tabelle 6.17: Übersicht Massen V2

7 Massenvergleich vom Alternativentwurf Herstellung mittels Traggerüst und der mit Taktschiebeverfahren errichteten Brücke B2314 im Endzustand

Wie bereits von der durchgeführten Bemessung ersichtlich, wurde in dieser Diplomarbeit ausschließlich der Alternativentwurf bemessen. Für die nachfolgenden Massenvergleiche wurden die Baustoffmengen der Brücke B2314 den Ausführungsplänen [13] entnommen.

7.1 Vergleich der Modellierung

7.1.1 Statisches System und Baumethode

Wie schon in Kapitel 6.1 beschrieben stellt das statische System der Brücke B2314 einen Durchlaufträger mit 13 Feldern dar. Dieses System wurde auch für den Alternativentwurf verwendet, allerdings mit nur einem Fixpunkt statt drei Fixpunkten. In der Ausführungsstatik wurden die Pfeiler und die Gründung mit den entsprechenden Federkonstanten modelliert. Da der Unterbau kein Gegenstand dieser Machbarkeitsstudie ist, wurde im Zuge der durchgeführten Berechnung mit festen Lagern gerechnet (siehe Abbildung 6.5).

Das Objekt B2314 wurde mit dem Taktschiebeverfahren errichtet und der Alternativentwurf geht von einer Herstellung auf Traggerüst aus. Daher ist ein Vergleich nur im Endzustand möglich. Dieser soll zum Vorschein bringen welche Massenunterschiede aufgrund der Wahl der jeweiligen Baumethode entstehen.

7.1.2 Querschnitte

Der Querschnitt des Alternativentwurfs sowie jener der Brücke B2314 mit ihren genauen Abmessungen wurden bereits in Abbildung 4.3 und Abbildung 5.1 angeführt, die Abbildung 7.1 stellt zusätzlich eine Übersicht dar.

Es wurde von Anfang an angestrebt den neuen Querschnitt so schlank wie möglich zu gestalten. Dabei dienten die Außenmaße (Höhe, Breite) des Originalentwurfs als Fixpunkte. Der Querschnitt des Alternativentwurfs wurde etwas vereinfacht, indem die Stege senkrecht und das Tragwerk ohne Querneigung ausgebildet wurden. In den beiden Varianten ist es nicht notwendig durchgehende Vouten im Bereich der oberen bzw. unteren Gurtplatte für die Spannglieder vorzusehen. Allerdings verlangt der Alternativentwurf eine Ausbildung von Lisenen zum Verankern der Spannglieder. Bei der Variante 2 sind zusätzlich noch Querträger und Umlenksättel erforderlich. Die Fläche des Regelquerschnittes des Originalentwurfes beläuft sich auf 7,12 m² und jene der neuen Brücke beträgt 5,44 m² (exklusive Lisenen, Querträger etc.).

Abbildung 7.1: Querschnitt (a) Alternativ- und (b) Originalentwurf

7.2 Massenvergleich

Der Massenvergleich erfolgte für den Regelbereich der Brücke B2314 zwischen den Achsen 10 und 100 auf einer Länge von 365 m. Die restlichen Felder sind aufgrund der besonderen Ausbildung im Zuge des Taktschiebeverfahrens nicht repräsentativ. Somit beziehen sich die in Tabelle 7.1 dargestellten Massen auf neun Felder mit einer mittleren Feldlänge von 40,6 m. Die Differenz wurde immer zwischen den Massen der jeweiligen Variante und jenen der Brücke B2314 gebildet. Die Werte des Originalentwurfs wurden den Ausführungsplänen entnommen und jene der erarbeiteten Alternativentwürfe von den durchgeführten Berechnungen.

			Taktschieben	Herstellung mittels Traggerüst								
MASSENVERGLEICH REGELBEREICH ACHSEN 10-100		REICH	Brücke B2314	Variante 1 (gerade, mit Verbund) nicht abgestuft			Variante 1 (gerade, mit Verbund) abgestuft			Variante 2 (extern)		
					Differenz ∆	Δ[%]		Differenz ∆	Δ[%]		Differenz Δ	Δ[%]
QS-Fläche		[m²]	7,12	5,44	-1,68	-31%	5,44	-	-31%	5,44	-	-31%
Beton		[m³]	2599	2085	-514	-25%		-		2184	-415	-19%
	obon durchgob	[Stk]	10	0	-10		0	-		12	-	
	oben durchgen.	[m]	3650	0	-3650		0	-		4599	-	
	über Auflager	[Stk]	5	10	5		10	-		0	-	
Channeliad	uber Auflager	[m]	1350	2400	1050		1680	330		0	-	
Spanngheut	unten durchgeb	[Stk]	8	0	-8		0	-		0	-	
	unten uurengen.	[m]	2920	0	-2920		0	-		0	-	
	unten im Feld	[Stk]	2,7	10	7		10	10		0	-	
	unten ini reiu	[m]	733	2700	1967		2448	1715		0	-	
	oben	[m]	5000	2400	-2600	-52%	1680	-3320	-66%	4599	-	-
Summe	unten	[m]	3653	2700	-953	-26%	2448	-1205	-33%	0	-	-
	gesamt	[m]	8653	5100	-3553		4128	-4525		4599	-4054	
Gewicht		[t]	122	72	-50	-41%	58	-64	-52%	65	-57	-47%
Bewehrung		[t]	357	329	-28	-8%		-		371	14	4%

Tabelle	7.1:	Massenv	erg	leich
rawene			~ 5	

7.2.1 Betonmasse

Der neue Querschnitt ist um etwa 30% leichter als jener der Brücke B2314, wodurch sich eine Betonersparnis von ca. 1,7 m³ pro Laufmeter Brückenlänge ergibt. Dabei handelt es sich um die Querschnittsfläche ohne die Massen von Lisenen, sowie Querträgern und Umlenksätteln. Diese wurden im gesamten Betonvolumen in Betracht gezogen, indem die Betonmasse mit einem Aufschlag von 5% für Variante 1 bzw. 10% für Variante 2 erhöht wurde. Deswegen sinkt die Differenz zum Originalentwurf in der Variante 1 auf 25% und in Variante 2 auf 14%. Aus der Gegenüberstellung geht hervor, dass mit dem Alternativentwurf eine beträchtliche Reduzierung der Baustoffmassen erzielt werden kann.

7.2.2 Spannstahlmasse

Die größte Differenz im Vergleich zu der Brücke B2413 ergibt sich bei den Spannstahlmassen. Dies beruht einerseits darauf, dass der Originalentwurf die Spannglieder für die Bauzustände auch im Endzustand enthält, andererseits aber auch auf der optimal erzielten Balance zwischen primären und sekundären Kräften zufolge Vorspannung im Alternativentwurf. In Tabelle 7.1 ist ersichtlich, dass mit der ersten Variante eine Differenz von 41% erzielt werden kann. Wenn zusätzlich eine Abstufung der Spanngliedlängen (wie auf Seite 58 erläutert) vorgenommen wird, kann um weitere 11% reduziert werden. Obwohl die Spannglieder der Variante 2 über die gesamte Tragwerkslänge verlaufen,

beträgt der Unterschied hier auch 47%. Das bildet nur eine 5%-Differenz zu der abgestuften Variante 1. Müsste eine Entscheidung getroffen werden, welche der beiden Varianten ausgeführt werden soll, sollte hier zusätzlich der Aufwand für die Ausbildung von Lisenen oder von Querträgern und Umlenksatteln abgewogen werden. Der Massenvergleich macht ersichtlich, dass die Kombination einer anderen Baumethode mit einer leichteren Gestaltung des Querschnitts zu einer erheblichen Ersparnis der Spannstahlmasse führen kann.

7.2.3 Schlaffe Bewehrung

Die schlaffe Bewehrung der Brücke B2314 wurde den Bewehrungsplänen entnommen. Da es sich dabei um Ausführungspläne mit höchstem Detailierungsgrad handelt, kann kein direkter Vergleich erfolgen. Um eine realistische Vergleichsbasis zu schaffen, wurden nur diejenigen Positionen der Bewehrung zur Rechnung herangezogen, welche auch im Alternativentwurf ermittelt wurden. Auf diese Weise ergab sich die schlaffe Bewehrung im Originalentwurf für den Regelbereich von 365 m zu 357 t. Die Abweichung der Massen hier ist eher gering und beträgt -7% bei Variante 1 und +4% bei Variante 2.

8 Zusammenfassung

Die vorliegende Diplomarbeit zeigt einen Vergleich der Baustoffmassen im Endzustand von zwei sehr verbreiteten Bauverfahren im Brückenbau: Der Herstellung auf Traggerüst und dem Taktschiebeverfahren. Um dies zu ermöglichen, wurde eine mittels Taktschieben errichtete Brücke in Wien, B2314 beim Knoten Inzersdorf, herangezogen. Das Tragwerk wurde im Jahr 2017 nach dem aktuell geltenden Normenstand erbaut und bildet somit eine gute Vergleichsbasis. Der Schwerpunkt dieser Arbeit liegt in der Untersuchung der Differenzen der Spannstahlmenge zweier Bauverfahren. Der Alternativentwurf geht von einer Herstellung auf Traggerüst aus. In weiterer Folge wird anhand von zwei Varianten verglichen, in wie weit sich die Art der Spanngliedführung auf das Einsparungspotenzial auswirkt.

Zu Beginn erfolgten eine Grundlagenrecherche der oben genannten Bauverfahren sowie eine Projektbeschreibung des bestehenden Tragwerks. Kapitel 4 fasst die angenommenen Lasten, Teilsicherheitsfaktoren und Materialparameter zusammen. Die Lastannahmen wurden im Einklang mit den vorliegenden Ausführungsunterlagen der Brücke B2314 getroffen, um eine plausible Vergleichsbasis für die spätere Gegenüberstellung zu schaffen. In Kapitel 6 wurde ein Alternativentwurf mit zwei Varianten unter der Anwendung des Lehrgerüstbaus erarbeitet. Die Untersuchung der Massen im Endzustand beider Verfahren erfolgte schließlich in Kapitel 7.

Die Arbeit zeigt auf, wie signifikant der Einfluss der Zwangsmomente zufolge Vorspannung auf die wirtschaftliche Dimensionierung der Spanngliedanzahl ist. Dies stellte rückblickend zugleich die größte Herausforderung der Bemessung dar. Darüber hinaus geht aus Kapitel 7 hervor, dass eine Gewichtseinsparung eine positive Auswirkung auf die Spannstahlmasse ausübt. Es bringt gleichzeitig zum Vorschein wie viel der im Taktschiebeverfahren eingesetzten Spannstahlmasse für die verfahrensspezifischen Bauzustände benötigt wird. Diese verbleibt im Querschnitt der Brücke und muss im Endzustand mit weiteren Spanngliedern ergänzt werden. Bei einer Herstellung auf Traggerüst mit einem 30% leichteren Querschnitt und einer günstigen Spanngliedführung, stellt sich ein Einsparungspotenzial von bis zu 50% der Spannstahlmasse heraus.

Die zwei untersuchten Varianten der Spanngliedführung wären im Fall eines Ausführungsprojektes nicht nur anhand der Baustoffmenge, sondern auch in Bezug auf eine einfachere Ausführung zu vergleichen. Variante 1 bietet ein größeres Einsparungspotenzial an, verlangt aber gleichzeitig die Ausbildung von einer großen Anzahl an Lisenen und ein Vielfaches der Verankerung der Spannglieder. Im Gegensatz dazu bringt Variante 2 etwas mehr Spannstahlgewicht mit sich, fordert jedoch erheblich weniger Kopplungen und Verankerungen der Spannglieder. Hier ist zusätzlich der Aufwand für die Herstellung von Querträgern und Umlenksätteln in Betracht zu ziehen. Des Weiteren müsste generell entschieden werden, welche der beiden Spanngliedführungen, intern oder extern, für das konkrete Projekt erwünscht wäre.

Abschließend lässt sich das Fazit ziehen, dass im Taktschiebeverfahren, aber möglicherweise auch in anderen etablierten Baumethoden, sich ein weiteres Optimierungspotenzial birgt. Wäre der einzuschiebende Querschnitt leichter ausgebildet, könnte zusätzlich eine erhebliche Einsparung der Spannstahlmassen im Bau- und Endzustand erzielt werden.

Literaturverzeichnis

- [1] B. Göhler, *Brückenbau mit dem Taktschiebeverfahren, Entwurf und Ausführung,* Ernst & Sohn, 1999.
- [2] F. Tönsmann, Brücken-Historische Wege über den Fluss, Kassel University Press, 2006.
- [3] K. Geißler, Handbuch Brückenbau-Entwurf, Konstruktion, Berechnung, Bewertung und Ertüchtigung, Ernst & Sohn, 2014.
- [4] VSL International, Incremental launching method, http://en.vsl.cz/incremental-launchingmethod/, 27.12.2017.
- [5] F. Leonhard, Vorlesung über Massivbau: Sechster Teil-Grundlagen des Massivbrückenbaues, Berlin: Springer Verlag, 1979.
- [6] H. Becker, HUTTE Taschenbücher der Technik, 29. Auflage, Berlin: Springer Verlag, 1977.
- [7] G. Mehlhorn, Handbuch Brückenbau: Entwerfen, Konstruieren, Berechnen, Bauen und Erhalten, Springer, 2007.
- [8] B. Kirsch, Master's thesis Incremental launching vs scaffolding for construction of prestressed concrete bridges, Göteburg, Sweeden, 2005.
- [9] A. Pauser, Massivbrücken ganzheitlich betrachtet: Geschichte, Konstruktion, Herstellung, Gestaltung, Österreichische Zementindustrie, 2002.
- [10] STRABAG AG, Fotodokumentation zum Projekt Zilina Brücke in der Slowakei, 2016.
- [11] R. Holst, Brücken aus Stahlbeton und Spannbeton: Entwurf, Konstruktion und Berechnung, Ernst & Sohn, 2014.
- [12] Beton-Kalender, Bauen im Bestand: Brücken, Ernst & Sohn, 2015.
- [13] ASFINAG, Ausführungsunterlagen (Statik und Pläne) zur Brücke B2314 am Knoten Inzersdorf in Wien, 2015.
- [14] ÖN EN 1992-1-1: Eurocode 2 Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken – Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau, Wien: Österreichisches Normungsinstitut (ON), 2015-02-15.
- [15] Dywidag Systems International, *Anwendungsregeln für das SUSPA-litze DW Spannverfahren im Verbund mit 1 bis 22 Litzen,* Deutsches Institut für Bautechnik, 2013.
- [16] Europäische Technische Bewertung, *Externes verbundloses Litzenspannverfahren VBT BE 1 bis* 16, Deutsches Institut für Bautechnik, 2015.
- [17] ÖN EN 1991-2: Eurocode 1 Einwirkungen auf Tragwerke Teil 2: Verkehrslasten auf Brücken, Wien: Österreichisches Normungsinstitut (ON), 2012-03-01.
- [18] ÖN B 1991-2: Eurocode 1 Einwirkungen auf Tragwerke Teil 2: Verkehrslasten auf Brücken Nationale Festlegungen zu ÖNORM EN 1992-2 und nationale Ergänzungen, Wien: Österreichisches Normungsinstitut (ON), 2011-11-15.
- [19] ÖN EN 1991-1-4: Eurocode 1 Einwirkungen auf Tragwerke Teil 1-4: Allgemeine Einwirkungen Windlasten, Wien: Österreichisches Normungsinstitut (ON), 2011-05-15.

- [20] ÖN EN 1991-1-5: Eurocode 1 Einwirkungen auf Tragwerke Teil 1-5: Allgemeine Einwirkungen – Temperatureinwirkungen, Wien: Österreichisches Normungsinstitut (ON), 2012-01-01.
- [21] ÖN B 1992-1-1: Eurocode 2 Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken – Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau – Nationale Festlegungen zu ÖNORM EN 1992-1-1, nationale Erläuterungen, Wien: Österreichisches Normungsinstitut (ON), 2011-12-01.
- [22] ÖN EN 1990/A1: Eurocode Grundlagen der Tragwerksplanung Änderung 1: Anwendung bei Brücken, Wien: Österreichisches Normungsinstitut (ON), 2013-03-15.
- [23] ÖN EN B 1992-2: Eurocode 2 Bemessung und Konstruktion von Stahlbeton und Spannbetontragwerken – Teil 2: Betonbrücken – Bemessungs- und Konstruktionsregeln, Wien: Österreichisches Normungsinstitut (ON), 2012-03-01.
- [24] Züblin AG, Zentrale Technik, Abteilung TBK, *Excel-Tool: Nachweis zur Begrenzung der Rissbreite für zentrischen Zwang nach DIN EN 1992-1-1*, Stuttgart, 2017.
- [25] J. Kollegger, Skriptum zur Vorlesung Betonbau 1, nach EC 1992-1-1, Technische Universität Wien, 2016 (8.Auflage).
- [26] K. Zilch, Bemessung im konstruktiven Betonbau nach DIN 1045-1 und EN 1992-1-1, Berlin: Springer, 2010.
- [27] J. Kollegger, Skriptum zur Vorlesung Betonbau 2, nach EC 1992-1-1, Technische Universität Wien, 2016 (8.Auflage).
- [28] ÖN EN 1990: Eurocode Grundlagen der Tragwerksplanung, Wien: Österreichisches Normungsinstitut (ON), 2013-03-15.
- [29] ÖN B 1990-1: Eurocode Grundlagen der Tragswerksplanung Teil 1: Hochbau Nationale Festlegungen zu ÖNORM EN 1990 und nationale Ergänzungen, Wien: Österreichisches Normungsinstitut (ON), 2013-01-01.
- [30] ÖN B 1990-2: Eurocode Grundlagen der Tragswerksplanung Teil 2: Brückenbau Nationale Festlegungen zu ÖNORM EN 1990/A1 und nationale Ergänzungen, Wien: Österreichisches Normungsinstitut (ON), 2010-12-01:.
- [31] ÖN EN 1991-1-1: Eurocode 1 Einwirkungen auf Tragwerke Teil 1-1: Allgemeine Einwirkungen – Wichten, Eigengewicht und Nutzlasten im Hochbau, Wien: Österreichisches Normungsinstitut (ON), 2011-09-01.

Abbildungsverzeichnis

Abbildung 1.1: Erste Eisenbetonbrücke der Welt bei Chazelet, Frankreich; Spannweite 16,5 m [3]	. 1
Abbildung 2.1: Übersicht Taktschiebeverfahren [4]	. 3
Abbildung 2.2: Spannweiten im Bau- und Endzustand [1]	. 5
Abbildung 2.3: Typischer Plattenbalkenquerschnitt [1]	. 6
Abbildung 2.4: Typischer Kastenquerschnitt [1]	. 6
Abbildung 2.5: Typischer Trogquerschnitt [1]	. 6
Abbildung 2.6: Abweichender Verschiebekreis von der Straßenachse im (a) Querschnitt und	(b)
Grundriss [1]	. 7
Abbildung 2.7: Takteinteilung [1]	. 8
Abbildung 2.8: Zentrische Vorspannung eines Kastenquerschnittes für den Bauzustand:	(a)
Querschnitt (b) Längsschnitt [8]	. 8
Abbildung 2.9: Exzentrische Vorspannung eines Kastenquerschnittes mit (a) parabelförmig	en
Spanngliedern in den Stegen oder mit (b) externer Vorspannung [8]	. 9
Abbildung 2.10: Abtragung der (a) symmetrischen und (b) asymmetrischen Auflagerkräf	te;
Querträger als (c) nachträglich einbetonierte Scheibe oder als (d) Stahlfachwerk [1]	. 9
Abbildung 2.11: Anordnung des Taktkellers [1]	10
Abbildung 2.12: Fertigungsanlage mit durchgehender Unterstützung [1]	10
Abbildung 2.13: Fertigungsanlage mit Einzellagern unter dem Takt [1]	10
Abbildung 2.14: Außen- und Innenschalung [9]	12
Abbildung 2.15: Vorbauschnabel [10]	13
Abbildung 2.16: Schnabelhubvorrichtung [1]	13
Abbildung 2.17: Schema einer Verschubanlage [7]	14
Abbildung 2.18: Funktionsprinzip einer Verschubanlage [9]	14
Abbildung 2.19: Vierschiebelager im (a) Längs- und (b) Querschnitt [1]	15
Abbildung 2.20: Aufbau einer Vierschiebeplatte [1]	15
Abbildung 2.21: Seitenführung in (a) Längsrichtung und (b) Draufsicht [1]	16
Abbildung 2.22: System einer Vorschubklaue nach [10]	17
Abbildung 3.1: Traggerüst mit kontinuierlicher Unterstützung [3]	19
Abbildung 3.2: Traggerüst mit freier Spannweite [12]	20
Abbildung 3.3: Abschnittsweise Herstellung auf verschiebbarem Traggerüst [3]	21
Abbildung 3.4: Schematische Darstellung des Einsatzes zweier querverschieblicher Rüstträger [3]	21
Abbildung 4.1: Übersicht A2 Süd Autobahn [13]	22
Abbildung 4.2: B2314 altes Tragwerk [13]	23
Abbildung 4.3: Regelquerschnitt RFB Süd der Brücke B2314 [13]	24
Abbildung 4.4: Lageplan der Brücke B2314 RFB Süd [13]	24
Abbildung 4.5: Brücke B2314: links Nord, rechts Süd	24
Abbildung 5.1: Querschnitt Alternativentwurf	26
Abbildung 5.2: Lastfall Eigengewicht	27
Abbildung 5.3: Aufbaulasten	27
Abbildung 5.4: ÖN EN 1991-2, Bild 4.2a – Anwendung des Lastmodells 1 [17]	28
Abbildung 5.5: Verteilung von Einzellasten nach ÖN EN 1991-2, 4.3.6	29
Abbildung 5.6: Anordnung der Achsen gem. ÖN EN 1991-2, Bild A.1 [17]	30

Abbildung 5.7: EC 1991-2, Bild A.3 Gleichzeitigkeit des LM 1 und Spezialfahrzeuge [17]	30
Abbildung 5.8: Windbelastung, Ermittlung der Referenzfläche A _{ref}	31
Abbildung 5.9: ÖN EN 1991-1-5, Bild 6.1 Korrelation zwischen Tmin/Tmax und Te,min/Te,max [20]] 32
Abbildung 5.10: Geometrie der Fahrbahnplatte	37
Abbildung 5.11: Aufteilung des Lastmodells 1 auf das Tragwerk jeweils in (a) Einzellasten und	l (b)
Gleichlasten für maximales Kragmoment	37
Abbildung 5.12: Aufteilung des Lastmodells 1 auf das Tragwerk jeweils in (a) Einzellasten und	l (b)
Gleichlasten für maximales Feldmoment	38
Abbildung 5.13: Aufteilung des Lastmodells 1 auf das Tragwerk jeweils in (a) Einzellasten und	l (b)
Gleichlasten für maximales Feldmoment	39
Abbildung 5.14: LF2: Ständige lasten infolge Aufbau und Randbalken	39
Abbildung 5.15: LF10: LM1 für maximales Stützmoment	40
Abbildung 5.16: LF11: LM1 für maximales Feldmoment	40
Abbildung 5.17: LF21: LM3 für maximales Feldmoment	40
Abbildung 5.18: LF22: LM3 für maximales Stützmoment	41
Abbildung 5.19: Momentenausrundung bei monolithischem Anschluss einer Platte	41
Abbildung 5.20: RFEM: Momenten- und Querkraftverlauf	42
Abbildung 5.21: RF-Beton: Erforderliche Bewehrung über dem Auflager	42
Abbildung 5.22: RF-Beton: Erforderliche Bewehrung im Feld	43
Abbildung 5.23: ConDim: Durchbiegung am Kragarm	44
Abbildung 5.24: Skizze Schubbewehrung auf einem Meterstreifen der Fahrbahnplatte	45
Abbildung 5.25: RF-Beton: Erforderliche Schubbewehrung	46
Abbildung 5.26: EK11 SLS häufig: Maximale Spannung	46
Abbildung 6.1: Statisches System Brücke B2314 [13]	47
Abbildung 6.2: Statisches System des Alternativentwurfs	47
Abbildung 6.3: Prinziplagerung einer gekrümmten, einfeldrigen Brücke [7]	48
Abbildung 6.4: RFEM: Lagerung eines Brückenfelds	48
Abbildung 6.5: RFEM: Lagerung des Gesamtmodells	48
Abbildung 6.6: LF2: Aufbau und Randbalken	48
Abbildung 6.7: LF11: Wind +X [kNm/m]	49
Abbildung 6.8: LF20: positive Temperatur	49
Abbildung 6.9: LF31: Stützensenkung Achse 80	49
Abbildung 6.10: LF90: LM1 feldweise Belastung mit Gleichlast	49
Abbildung 6.11: LF102: LM1 Einzellast als Wanderlast	50
Abbildung 6.12: LF190: LM1 Feldweise Belastung für maximale Torsion	50
Abbildung 6.13: LF202: LM1 Einzellast als Wanderlast für maximale Torsion	50
Abbildung 6.14: LF412: LM3 Einzellasten als Wandergruppe	50
Abbildung 6.15: RF-Tendon: V1 (a) Übersicht Bemessungsträger, (b) Ausschnitt Stab 2	52
Abbildung 6.16: RF-Tendon: V1 Spanngliedführung (a) über dem Auflager und (b) in Feldmitte	52
Abbildung 6.17: RF-Tendon: V1 Primäre Schnittgrößen infolge Vorspannung: Np [kN], Mp,dir [kNm	n]53
Abbildung 6.18: RF-Tendon: V1 Zwangsschnittgrößen infolge Vorspannung: Np [kN], Mp,ind [kNm] 53
Abbildung 6.19: RFEM LF 40/RF-Tendon: V1 Gesamtschnittgrößen infolge Vorspannung: Np,ges [kN],
Mp,ges [kNm]	53
Abbildung 6.20: RFEM EK 611: SLS quasi-ständig ohne Vorspannung	55
Abbildung 6.21: V1 Auswirkung der Vorspannung auf (a) einen Einfeldträger: Mp,dir (b) ei	inen
eingespannten Träger: Gesamtschnittgrößen Mp,ges (c) Verlauf der Zwangsmomente Mp,ind (c)	56

Abbildung 6.22: Grafische Ermittlung der Spanngliedlänge für M _{qs} /z + N _{qs}
Abbildung 6.23: Endgültige Spanngliedlänge für (M _{qs} + M _{ind})/z + N _{qs}
Abbildung 6.24: RFEM EK 605: SLS charakteristisch ohne Vorspannung
Abbildung 6.25: RFEM EK 510: Schnittgrößen ohne Vorspannung im GZT 64
Abbildung 6.26: V1 INCA2: Spannungsverteilung in Feldmitte
Abbildung 6.27: ÖN EN 1992-2, Bild 6.104 Innere Spannungsüberlagerung in den verschiedenen
Wänden eines Kastenquerschnittes für (a) Torsion, (b) Querkraft und (c) Kombination [23]65
Abbildung 6.28: V1 Bewehrungsskizze Variante 1 66
Abbildung 6.29: Externe Vorspannung: Litzenband 3x467
Abbildung 6.30: RF-Tendon: V2 Externe Spanngliedführung im Querschnitt (a) über dem Auflager
(Position 42m) und (b) in Feldmitte (Position 63m)67
Abbildung 6.31: RF-Tendon: V2 Externe Spanngliedführung in Längsrichtung
Abbildung 6.32: RF-Tendon: V2 Primäre Schnittgrößen infolge Vorspannung: Np [kN], Mp, dir [kNm]68
Abbildung 6.33: RF-Tendon: V2 Zwangsschnittgrößen infolge Vorspannung: Np [kN], Mp,ind [kNm] 68
Abbildung 6.34: RFEM LF 40/RF-Tendon: V2 Gesamtschnittgrößen infolge Vorspannung: Np [kN],
Mp,ges [kNm] 69
Abbildung 6.35: V2 Auswirkung der Vorspannung auf (a) einen Einfeldträger: Mp, dir (b) einen
eingespannten Träger mit eng liegenden Umlenkpunkten k1, k2: Mp,ges und Mp,ind (c) einen
eingespannten Träger mit weit voneinander liegenden Umlenkpunkten k3, k4: Mp,ges und Mp,ind 70
Abbildung 6.36: V1 Bewehrungsskizze Variante 275
Abbildung 7.1: Querschnitt (a) Alternativ- und (b) Originalentwurf76

Tabellenverzeichnis

Tabelle 5.1: Übersicht Betondeckung 26
Tabelle 5.2: ÖN EN 1991-2, Tabelle 4.2 – Lastmodell 1, Verteilung von Verkehrslasten [17]
Tabelle 5.3: ÖN B 1991-2, Tabelle 4.4a – Festlegung von Verkehrslastgruppen [18]
Tabelle 5.4: ÖN EN 1990 A1, Tabelle A.2.4(B) – Bemessungswerte der Einwirkungen (STR/GEO) [22]34
Tabelle 5.5: ÖN EN 1990 A1, Tabelle A.2.1 – Empfehlung für die Zahlenwerte der Ψ -Faktoren für
Straßenbrücken [22]
Tabelle 5.6: ÖN EN 1992-2:2014, Tabelle 2 – Empfohlene Werte für w_{max} und relative
Kombinationsregeln [23]
Tabelle 5.7: Erforderliche Bewehrung zur Rissbreitenbegrenzung infolge Zwang nach Eurocode 2 45
Tabelle 5.8: Rissbreitenbegrenzung infolge direkter Einwirkung nach Eurocode 2
Tabelle 6.1: V1 Abschätzung der Spanngliedanzahl und Dekompressionsnachweis für t = ∞
Tabelle 6.2: V1 Endgültige Spanngliedanzahl und Dekompressionsnachweis für t = 0, t = ∞ 57
Tabelle 6.3: V1 SLS-Nachweis der charakteristischen Betonspannungen für Zeitpunkt t = 0 und t = ∞
Tabelle 6.4: V1 SLS-Nachweise im gerissenen Querschnitt (Zustand II) 60
Tabelle 6.5: V1 SLS-Nachweis der Rissbreite infolge Zwang für untere Gurtplatte
Tabelle 6.6: V1 SLS-Nachweis der Rissbreite infolge Zwang für Stege
Tabelle 6.7: V1 ULS-Nachweis Querkraft und Torsion65
Tabelle 6.8: V1 Übersicht Bewehrung 66
Tabelle 6.9: Übersicht Massen V1
Tabelle 6.10: V2 Endgültige Spanngliedanzahl und Dekompressionsnachweis für t = 0, t = ∞ 70
Tabelle 6.11: V2 SLS-Nachweis der charakteristischen Betonspannungen für Zeitpunkt t = 0 und t = ∞
Tabelle 6.12: V2 SLS-Nachweise im gerissenen Querschnitt (Zustand II)
Tabelle 6.13: V2 SLS-Nachweis der Rissbreite infolge Zwang für untere Gurtplatte
Tabelle 6.14: V2 SLS-Nachweis der Rissbreite infolge Zwang für Stege
Tabelle 6.15: V2 ULS-Nachweis Querkraft und Torsion74
Tabelle 6.16: V2 Übersicht Bewehrung
Tabelle 6.17: Übersicht Massen V2
Tabelle 7.1: Massenvergleich 77

A. Anhang A: Vordimensionierung der Fahrbahnplatte

A.1 Geometrie und Schnittgrößen

■ 2.1 LASTFÄLLE

Last-	LF-Bezeichnung	EN 1990 + EN 1991-2; Straßenbrücke		Eigengewicht -	Faktor in Richtu	ing
fall		Einwirkungskategorie	Aktiv	Х	Y	Z
LF1	EG	Ständige Lasten	\boxtimes	0.000	0.000	1.000
LF2	Aufbau Randbalken	Ständige Lasten	\boxtimes	0.000	0.000	1.000
LF3	Gehweg links	gr1a – LM1 + Fuß- und Fahrradweg				
LF4	Gehweg rechts	gr1a – LM1 + Fuß- und Fahrradweg				
LF10	LM1 FS1_re	gr1a – LM1 + Fuß- und Fahrradweg				
LF11	LM1 FS1+FS2_mittig	gr1a – LM1 + Fuß- und Fahrradweg				
LF12	LM1 FS1+FS2_re	gr1a – LM1 + Fuß- und Fahrradweg				
LF20	LM3_mittig SFZ	gr1a – LM1 + Fuß- und Fahrradweg				
LF21	LM3_mittig_SFZ und Verkehr	gr1a – LM1 + Fuß- und Fahrradweg				
LF22	LM3_rechts SFZ u. Verkehr	gr1a – LM1 + Fuß- und Fahrradweg				
LF23	LM3_rechts SFZ	gr1a – LM1 + Fuß- und Fahrradweg				

2.5 LASTKOMBINATIONEN

	Last-		Lastkombination				
	kombin.	BS	Bezeichnung	Nr.	Faktor		Lastfall
l	LK1		LF1 + LF2 + LF23	1	1.00	LF1	EG
				2	1.00	LF2	Aufbau Randbalken
ļ				3	1.00	LF23	LM3_rechts SFZ

2.7 ERGEBNISKOMBINATIONEN

Ergebn	
--------	--

kombin.	Bezeichnung	Belastung
EK1	Ständig	LF1/s + LF2/s
EK2	LM 1	LF10 oder bis LF12
EK3	LM 3	LF20 oder LF22 oder LF23 oder LF21
EK10	ULS	1.35*EK1/s + 1.35*EK2 oder 1.35*EK3
EK11	SLS charakt.	EK1/s + EK2 oder EK3
EK12	SLS quasi ständig	EK1/s + 0.3*EK2
EK13	SLS häufig	EK1/s + 0.5*EK2 oder 0.5*EK3
EK20	GZT Kragmoment	1.35*LF1/s + 1.35*LF2/s + 1.35*LF10 oder 1.35*LF22 oder 1.35*LF23
EK21	GZT Feldmitte	1.35*LF1/s + 1.35*LF2/s + 1.35*LF11 oder 1.35*LF20 oder 1.35*LF21
EK22	GZT Auflager	1.35*LF1/s + 1.35*LF2/s + 1.35*LF12 oder 1.35*LF22 oder 1.35*LF23

GRUNDSCHNITTGRÖSSEN m_y

GRUNDSCHNITTGRÖSSEN vy

NORMALSPANNUNGEN σ_{y,+}

A.2 GZT Bemessung

1.1 BASISANGABEN

Bemessung nach Norm:	ÖNORM B 1992-1-1/NA:2011-12
TRAGFÄHIGKEIT	
Zu bemessende Ergebniskombination:	EK10 ULS
	Ständig und vorübergehend
Definition der vorhandenen Zusatzbewehrung	Automatische Anordnung nach Vorgaben in Maske 1.4
DETAILEINSTELLUNGEN	
Nachweisverfahren für Bewehrungsumhüllende	Gemischte
Ansatz von Schnittgrößen ohne Rippenanteil	
Einstellungen der Bemessungssituation für GZG-Nachweise	
Lastkombination:	
Charakteristisch mit Direktlast	Nachweise: k1*fck, k3*fvk
Charakteristisch mit Zwangsverformung	Nachweise: k1*fck, k4*fvk
Häufig	Nachweise: wk
Quasi-ständig	Nachweise: k2*fck, wk, u

• 1.2 MATERIALIEN

Material	Materialbe		
Nr.	Beton-Festigkeitsklasse	Stahl-Bezeichnung	Kommentar
1	Beton C40/50	B 550 S (B)	

■ 1.4 BEWEHRUNGSSATZ NR. 1

Angewendet auf Flächen:	Alle	
BEWEHRUNGSGRAD	20.0.9/	
Mindest-Querbewenrung	20.0 %	
Mindest Deweinung generen	0.0 %	
Mindest-Druckbewehrung	0.0 %	
Maximaler Bewehrungsgrad	4.0 %	
Minimaler Schubbenebrungsgrad	4.0 %	
Minimaler Ochubbewenrungsgrad	0.0 /8	
Betondeckung nach Norm		
ANORDNUNG DER GRUNDBEWEHRUNG - OBEN (-z)		
Anzahl der Bahnen	2	
Achsmaßdeckungen	d-1: 4.00, d-2: 5.00 cm	
Parameter zur Bestimmung der Betondeckung		
Einstellungen identisch zur Betondeckung	C+z (unten)	
Bewehrungsrichtungen	Phi-1: 0.000°, Phi-2: 90.000°	
Bewehrungsfläche	As-1,-z (oben): 0.00, As-2,-z (o	ben): 0.00 cm²/m
ANORDNUNG DER GRUNDBEWEHRUNG - UNTEN (+z)		
Anzahl der Bahnen	2	
Achsmaßdeckungen	d-1: 4.00, d-2: 5.00 cm	
Parameter zur Bestimmung der Betondeckung		
Expositionsklasse nach 4.4.1.2(5)	XC2 / XC3 / XC4	
Verschleißklasse nach 4.4.1.2(13)	Keine	
Nutzungsdauer nach 4.4.1.2(5) Tabelle 1	100 Jahren	
Herstellungsart nach 4.4.1.3(4)	Ortbeton	
Nenndurchmesser des Großtkorns großer als 32mm nach 4.4.1.2(3) Tabelle		
4.2 Development interest		
Bewenrungsrichtung	φ1	φ2
Maximaler Bewehrungsdurchmesser	0.010 m	0.010 m
Mindestbetondeckung aus Verbundanforderungen nach 4.4.1.2(3)	0.010 m	0.010 m
Aditives Sisherheitaslement nach 4.4.1.2(5)	0.030 m	0.030 m
Mindosthotondockung nach 4 4 1 2(2)	0.000 m	0.000 m
Benutzerdefiniertes Vorhaltemaß nach 4.4.1.3	0.005 m	0.005 m
Nennmaß der Betonderkung für Bewehrung nach 4.4.1.1	0.000 m	0.000 m
Mindesthetondeckung der Bewehrung	0.040 m	0.050 m
Bewehrungsrichtungen	Phi-1: 0.000° Phi-2: 90.000°	0.000 m
Bewehrungsfläche	As-1 +z (unten): 0.00 As-2 +z	(unten): 0.00 cm ² /m
Serierrangendene	715-1, · 2 (union). 0.00, 715 2, · 2	(unterl): 0.00 off /m
LÄNGSBEWEHRUNG FÜR QUERKRAFTNACHWEIS		
Ansatz des jeweils größeren Wertes aus erforderlicher oder vorhandener Längsbewehrung (G	rund- und Zusatzbewehrung) pr	D
Bewehrungsrichtung.	3, 1	-
EINSTELLUNGEN ZU ÖNORM B 1992-1-1/NA:2011-12		
Mindestlängsbewehrung für Platten nach 9.3.1		
Richtung der Mindestbewehrung		
Bewehrungsrichtung mit der Hauptzugkraft im betrachteten Element(As,min		
auf Ober- (z) oder Unterseite (+z)):		
Mindestlängsbewehrung für Wände nach 9.6		
Mindestschubbewehrung		
Begrenzung der Druckzone		
Veränderliche Druckstrebenneigung - Min	21.801 °	
Veränderliche Druckstrebenneigung - Max	45.000 °	
Teilsicherheitsbeiwert γ _s	ST+V 1.15, AU 1.00, GZG 1.0	0
Teilsicherheitsbeiwert γ _c	ST+V 1.50, AU 1.20, GZG 1.0	0
Berücksichtigung von Langzeitwirkungen Alpha-cc	ST+V 1.00, AU 1.00, GZG 1.0	0
Perücksishtigung von Longzeitwirkungen Alnha et	GZG 1 00	

ERFORDERLICHE BEWEHRUNG a_{s,2,-z (oben)}

ERFORDERLICHE BEWEHRUNG a_{s,2,+z (unten)}

SCHUBBEWEHRUNG a_{sw}

A.2 GZG Begrenzung der Rissbreite zufolge Zwang

	Z	entrale Technik bteilung TBK							
-	Projekt	Alternativentwurf Brücke B23	14	Bearbeiter	Viktoriya Mih	aylova			
	Bauteil	Deckplatte		Datum	07.06.18				
Nachy	weis zu	r Begrenzung der Rissbi	reite für zentrischen	Zwang nach	1 DIN EN 19	992-1-1:2011-01 u	ind N	A:2013-04	
Einga	be		D: 1 - 1	00.0	1	Baustoffken	nwerte	B:	(7.1.0.4)
-	Geometr	e:	Dicke h	= 30,0	cm	E _{cm}	_= 3 _	2.50 N/mm ²	(Tab. 3.1)
	Rotongüt	o.	breite b	- 100,0 C40/50	CIII	lctm	- 20	3,50 N/mm ²	(1ab, 3, 1)
-	Wirksom	e. 2. Zuafastiakoit f (7.3.2.(2)): /	(früher / später Zwang)	C40/50	0/.	Ls	- 20	0.000 10/1111-	(3.2.7 (4))
-	Innerer 7	wang (z.B. Hydratationswärmes	abfluß) oder		⁷⁰	1	_	0.80	(NA7 3 2(2))
-	äußer	er Zwang (z.B. Flydratationswarmer		(innerer 7w:		sen $\rightarrow k$	-	0,00	(147(1.5.2(2))
	Verwend	ung langsam erhärtender Beton	(7.3.2 (NA.6))	nein	[ja / nein]	Hinweis: Keine Red	uzieru	ng der Bewehi	rung
	(Bedingu	ng: r = $f_{cm2} / f_{cm28} \le 0,3$)	(
-	Dauer de	r Einwirkung		- I	[angzeitig of	der K urzzeitig] \rightarrow k _t =	=	0,4	
	(i.d.R.	ist nach NA 7.3.4 (2) das langz	eitige Verbundkriechen zu	berücksichtige	n, d.h. k _t =0,4.				
	Kurzzo	eitige' Einwirkung mit k=0,6 darf	nach Heft 600 DAfStb nur	r bei Nachweise	en mit 'seltene	r Einwirkung' verwend	let wer	den.)	
-	Streckgre	enze Betonstahl:	f _{yk}	= 550	N/mm²				
	Zusätzlic	h wirkende gleichartige (zentris	cher Zug) <u>äußere</u>	nein	[ja / nein]	\rightarrow max σ_s =	f _{yk} =	550,	0 N/mm ²
	Lastbe	eanspruchung (7.2(5))?		4.0	1				
-	Betondeo	kung der betrachteten Bewehru	ingslage: C _{nom}	= 4,0	cm				
-	Gewanite	Rissbreite (Tab. 7.TDE):	w _k	- 0,20	mm				
	Gewählt	e Bewehrung für eine Richtur	ng und für eine Bauteilse	ite:					
		Durchme	esser Φ _{s1} / Stababstand s₁	= 12	10,0 mr	m cm			
		Durchme	esser Φ_{s2} / Stababstand s_2	= 0	0,0 mr	n cm (2. Zeile bei 2 ve	erschiede	enen	
			(2. Stabdurchmess	ser Φ _{s2} mit 0,01mm		Durchmessern /	Abständ	den)	
			eingeben, rai	is nicht verwendet)					
usar	nmenfa	ssung der gewählten Be	ewehrung:						
г	Mittlerer	gewichteter Stabdurchmesser n	nit 7.3.3 (NA.7):	$\Phi_{sm} = (\Phi_{s1}$	$^{2}/s_{1}+\Phi_{s2}^{2}/s$	$_{2})/(\Phi_{s1}/s_{1}+\Phi_{s2}/s_{2})$	=	12,0 mm	-
L	Gewählte	Bewehrung je Bauteilseite:				vorh A _s	=	11,31 cm ²	
	Bandaba	iysyrau. tand Rewebrungsachse:				$\rho = vom A_s / A_c$ $d_s = c + \Phi / 2$	- 0	4.6 cm	/0
	Wirkungs	bereich A der Bewehrung (7	3 2(3)) mit h. "nach Bild	7 1DE a)-d)		$A_{1} = b_{1} + \phi_{sm}/2$	_	4,0 cm ²	
		bereienn icien der Berreinung (r	.o.z(o)) mit n _{c,ell} naon bira			c,en rc,en c		1500	
						≤ h/2 x b	=	1500 cm ²	
		Ermittlung heff nach Bild 7.1DI	E d):			≤ h/2 x b h / d₁	=	1500 cm² 6,5	
Irmitt	tlung d	Ermittlung h _{eff} nach Bild 7.1Di	E d): r ung zur Begrenzung	g der Rissbr	eite (Kap. 7	≤ h/2 x b h / d₁ h _{c,eff} / d₁ 7.3.2)	= = =	6,5 2,7	
<u>Ermitt</u>	tlung d	Ermittlung h _{eff} nach Bild 7.1Di er erforderlichen Bewehn liche Bewehrung bei Erstrissl	E d): rung zur Begrenzung bildung (Kap. 7.3.2 (2) ur	g der Rissbr nd Gl. 7.1):	<mark>eite (Kap.</mark> 7 erfA₅ = k₀	≤ h/2 x b h / d ₁ h _{c,eff} / d ₁ 7 .3.2) x k x f _{ct,eff} x A _{ct} / zul σ _s	= = =	1500 cm ² 6,5 2,7 11,2 cm²	nicht releva
<u>Ermitt</u>	t <u>lung d</u> Erforder	Ermittlung h _{eff} nach Bild 7.1Di er erforderlichen Bewehn liche Bewehrung bei Erstrissi	E d): rung zur Begrenzung bildung (Kap. 7.3.2 (2) ur	g der Rissbr nd Gl. 7.1):	eite (Kap. 7 erf A _s = k _o	≤ h/2 x b h / d _t h _{c,eff} / d _t 7.3.2) x k x f _{ct,eff} x A _{ct} / zul σ _s	= = ;=	6,5 2,7 11,2 cm²	nicht releva
<u>Ermitt</u>	t <mark>lung d</mark> Erforder mit: ·	Ermittlung h _{eff} nach Bild 7.1Dl er erforderlichen Bewehn liche Bewehrung bei Erstrissi Beiwert für Spannungsverteill (im Standardfall o. = f., sist k	E d): rung zur Begrenzung bildung (Kap. 7.3.2 (2) ur ung im Rechteckquerschni c = 1 0):	g der Rissbr nd Gl. 7.1): tt bei zentrische	eite (Kap. 7 erf A _s = k _o erm Zwang (Gl.	≤ h/2 x b h / d _t h _{c,eff} / d _t 7.3.2) x k x f _{ct,eff} x A _{ct} / zul σ _s 7.2)	, = , = , =	6,5 2,7 11,2 cm²	nicht releva
<u>Ermitt</u>	<mark>tlung d</mark> Erforder mit∷	Ermittlung h _{eff} nach Bild 7.1Dl er erforderlichen Bewehn liche Bewehrung bei Erstriss Beiwert für Spannungsverteill (im Standardfall $\sigma_c = f_{cteff}$ ist k Effektive Zuofestiokeir 7.3.2 (E d): rung zur Begrenzung bildung (Kap. 7.3.2 (2) ur ung im Rechteckquerschnit t _c = 1,0): 2):	<mark>g der Rissbr</mark> nd Gl. 7.1): tt bei zentrische	eite (Kap. 7 erf A _s = k _o ern Zwang (Gl.	≤ h/2 x b h / d ₁ h _{c,eff} / d ₁ x k x f _{ct,eff} x A _{ct} / zul σ _s 7.2) k _t	,= ,= ,= ,= ,=	1500 cm ² 6,5 2,7 11,2 cm ² 1,0 (k _c = 1,0 is 1,75 N/mm ²	nicht releva
<u>Ermitt</u>	tlung d Erforder mit: -	Ermittlung h _{eff} nach Bild 7.1Dl er erforderlichen Bewehn liche Bewehrung bei Erstriss Beiwert für Spannungsverteill (im Standardfall $\sigma_c = f_{ct,eff}$ ist k Effektive Zugfestigkeit 7.3.2 (A_c , Fläche der Zugzone im Zu	E d): rung zur Begrenzung bildung (Kap. 7.3.2 (2) ur ung im Rechteckquerschnit s _c = 1,0): 2): stand I	g der Rissbr nd GI. 7.1): tt bei zentrische	eite (Kap. 7 erf A _s = k _c ern Zwang (GI.	≤ h/2 x b h / d ₁ h _{c,eff} / d ₁ x k x f _{ct,eff} x A _{ct} / zul σ _s 7.2) k _t	; = ; = ; = ; = ; = ; =	1500 cm ² 6,5 2,7 1,0 (k _c = 1.0 is 1,75 N/mm ²	nicht releva
<u>Ermitt</u>	tlung d Erforder mit: -	Ermittlung h _{eff} nach Bild 7.1Dl er erforderlichen Bewehn liche Bewehrung bei Erstrisst Beiwert für Spannungsverteill (im Standardfall $\sigma_c = f_{cteff}$ ist h Effektive Zugfestigkeit 7.3.2 (A _{ct} Fläche der Zugzone im Zu (anteilig für jede Bauteilseite i	E d): rung zur Begrenzung bildung (Kap. 7.3.2 (2) ur ung im Rechteckquerschni t _e = 1,0): 2): stand l und Bewehrungslage):	g der Rissbr nd GI. 7.1): tt bei zentrische	eite (Kap. 7 erf A _s = k _s em Zwang (Gl.	≤ h/2 x b h / d ₁ h _{c,eff} / d ₁ x k x f _{ct.eff} x A _{ct} / zul σ _s 7.2) A _{ct} = b x h/2	, = , = , = , = , = , =	1500 cm ² 6,5 2,7 1,2 cm ² 1,0 (k _e = 1.0 is 1,75 N/mm ² 1.500 cm ²	nicht releva
<u>Ermitt</u>	tlung d Erforder mit: ·	Ermittlung h _{eff} nach Bild 7.100 er erforderlichen Bewehn liche Bewehrung bei Erstrisst Beiwert für Spannungsverteilt (im Standardfall $\sigma_c = f_{ct,eff}$ ist k Effektive Zugfestigkeit 7.3.2 A _{ct} Fläche der Zugzone im Zu (anteilig für jede Bauteilseite i Aufnehmbare Stahlspannung	E d): rung zur Begrenzung bildung (Kap. 7.3.2 (2) ur ung im Rechteckquerschni t _e = 1,0): 2): stand I und Bewehrungslage): nach 7.3.3(2), Tab. 7.2 DE	g der Rissbr nd GI. 7.1): tt bei zentrische	eite (Kap. 7 erf A _s = k _c em Zwang (Gl. E (abgeschl. F	$\leq h/2 \times b$ h / d_{1} $h_{c,eff} / d_{1}$ $x k \times f_{ct,eff} \times A_{ct} / zul \sigma_{s}$ $x k \times f_{ct,eff} \times A_{ct} / zul \sigma_{s}$ $f_{ct,eff}$ $A_{ct} = b \times h/2$ Rissbild):	; = ; = ; = ; = ; =	1500 cm ² 6,5 2,7 1,2 cm ² 1,0 (k _e = 1.0 is 1,75 N/mm ² 1.500 cm ²	nicht releva
<u>Ermitt</u>	t <mark>lung d</mark> Erforder mit: -	Ermittlung h _{eff} nach Bild 7.100 er erforderlichen Bewehn liche Bewehrung bei Erstrisst Beiwert für Spannungsverteilt (im Standardfall $\sigma_c = f_{ct,eff}$ ist k Effektive Zugfestigkeit 7.3.2 (A_{cq} Fläche der Zugzone im Zu (anteilig für jede Bauteilseite Aufnehmbare Stahlspannung	E d): rung zur Begrenzung bildung (Kap. 7.3.2 (2) ur ung im Rechteckquerschni t _c = 1,0): 2): stand I und Bewehrungslage): nach 7.3.3(2), Tab. 7.2 DE	g der Rissbr nd GI. 7.1): tt bei zentrische E und GI. 7.7 DI	eite (Kap. 7 erf A _s = k _c em Zwang (Gl. E (abgeschl. F zul σ _s = (w	$\leq h/2 \times b$ h/d_{1} $h_{c,eff}/d_{1}$ $(x \times x f_{ct,eff} \times A_{ct} / zul \sigma_{s}$ (7.2) k_{c} $f_{ct,eff}$ $A_{ct} = b \times h/2$ $Rissbild):$ $(x 3,48 \times 10^{6} / \Phi_{s}^{*})^{1/2}$; =; ; =; ; =; ; =; =;	1500 cm ² 6,5 2,7 1,0 (k _e = 1.0 is 1,75 N/mm ² 1.500 cm ² 187,1 N/mm ²	nicht releva
<u>Ermitt</u>	tlung d Erforder mit: -	Ermittlung h _{eff} nach Bild 7.100 er erforderlichen Bewehn liche Bewehrung bei Erstrisst Beiwert für Spannungsverteilt (im Standardfall σ_c = f _{ct.eff} ist k Effektive Zugfestigkeit 7.3.2 (A _{ct} , Fläche der Zugzone im Zu (anteilig für jede Bauteilseite Aufnehmbare Stahlspannung	E d): rung zur Begrenzung bildung (Kap. 7.3.2 (2) ur ung im Rechteckquerschni t _e = 1,0): 2): stand I und Bewehrungslage): nach 7.3.3(2), Tab. 7.2 DE	g der Rissbr nd GI. 7.1): tt bei zentrische E und GI. 7.7 DI	<mark>eite (Kap. 7</mark> erf A _s = k _c em Zwang (Gl. Ξ (abgeschl. F zul σ _s = (w	$\leq h/2 \times b$ h / d_{1} $h_{c,eff} / d_{1}$ $h_{c} = b \times h/2$		1500 cm ² 6,5 2,7 1,0 (k _c = 1.0 is 1,75 N/mm ² 1.500 cm ² 187,1 N/mm ² 550,0 N/mm ²	nicht releva
<u>Ermitt</u>	tlung d Erforder mit: -	Ermittlung h _{eff} nach Bild 7.100 er erforderlichen Bewehn liche Bewehrung bei Erstrisst Beiwert für Spannungsverteilt (im Standardfall $\sigma_c = f_{et,eff}$ ist b Effektive Zugfestigkeit 7.3.2 (A _{ct} Fläche der Zugzone im Zu (anteilig für jede Bauteilseite I Aufnehmbare Stahlspannung mit: $\Phi_{c}^{*} = d_{c}^{*} = d_{c} \times \frac{8 \times 10^{-10}}{10^{-10}}$	E d): rung zur Begrenzung bildung (Kap. 7.3.2 (2) ur ung im Rechteckquerschni $r_c = 1.0$): 2): stand I und Bewehrungslage): nach 7.3.3(2), Tab. 7.2 DE $(h-d) \times \frac{2.9}{2}$	a der Rissbr ad GI. 7.1): It bei zentrische E und GI. 7.7 DI $\leq d_{-X} \approx \frac{2_{i}}{2}$	eite (Kap. 7 erf A _s = k _c em Zwang (Gl. Ξ (abgeschl. F zul σ _s = (w _p 9 =	$\leq h/2 \times b$ $h/4,$ $h_{c,eff} / 4,$ 7.3.2) $K_{c,eff} \times A_{ct} / zul \sigma_{s}$ 7.2) K_{c} $f_{ct,eff} \times A_{ct} = b \times h/2$ Rissbild): $K \times 3,48 \times 10^{6} / \Phi_{s}^{*})^{1/2}$ $\leq max \sigma_{s}$ 19.9 mm (7.7DE, 1)	= = ;= ;= = ;= ;= ;=	1500 cm ² 6,5 2,7 1,0 (k _c = 1.0 is 1,75 N/mm ² 1.500 cm ² 187,1 N/mm ² 550,0 N/mm ² h _− =h)	nicht releva
- T	tlung d Erforder mit: -	Ermittlung h _{eff} nach Bild 7.100 er erforderlichen Bewehn liche Bewehrung bei Erstriss Beiwert für Spannungsverteilt (im Standardfall $\sigma_c = f_{et,eff}$ ist b Effektive Zugfestigkeit 7.3.2 (A _{ct} Fläche der Zugzone im Zu (anteilig für jede Bauteilseite I Aufnehmbare Stahlspannung mit: $\Phi_s^* = d_s^* = d_s \times \frac{8 \times k_c \times 10^{-1}}{k_c \times 10^{-1}}$	E d): rung zur Begrenzung bildung (Kap. 7.3.2 (2) ur ung im Rechteckquerschni $r_c = 1.0$): 2): istand I und Bewehrungslage): nach 7.3.3(2), Tab. 7.2 DE $\frac{(h-d)}{k \times h_{cr}} \times \frac{2.9}{f_{ct,eff}}$	g der Rissbr ad GI. 7.1): It bei zentrische E und GI. 7.7 DI $< d_s \times \frac{2,}{f_{ct,\epsilon}}$	eite (Kap. 7 erf A _s = k _c em Zwang (Gl. E (abgeschl. F zul σ_s = (w _t 9 erf = =	$\leq h/2 \times b$ h / d_{t} $h_{c,eff} / d_{t}$ 7.3.2) K_{c} $(7.3.2)$ K_{c} (7.2) K_{c} $f_{ct,eff}$ $A_{ct} = b \times h/2$ $Rissbild):$ $(\times 3,48 \times 10^{6} / \Phi_{s}^{*})^{1/2}$ $\leq max \sigma_{s}$ $19,9 mm (7.7DE, to b)$	= = = = = = = = = = = = = = = = = = =	1500 cm ² 6,5 2,7 1,0 (k _c = 1,0 is 1,75 N/mm ² 1.500 cm ² 187,1 N/mm ² 550,0 N/mm ²	nicht releva
	tlung d Erforder mit: - Erforder	Ermittlung h _{eff} nach Bild 7.100 er erforderlichen Bewehn liche Bewehrung bei Erstrissi Beiwert für Spannungsverteilt (im Standardfall $\sigma_c = f_{ct,off}$ ist k Effektive Zugfestigkeit 7.3.2 (A _{ct} Fläche der Zugzone im Zu (anteilig für jede Bauteilseite i Aufnehmbare Stahlspannung mit: $\Phi_s^* = d_s^* = d_s \times \frac{8 \times k_c \times 10^{-3}}{k_c \times 10^{-3}}$	E d): rung zur Begrenzung bildung (Kap. 7.3.2 (2) ur ung im Rechteckquerschni $t_c = 1.0$): 2): stand I und Bewehrungslage): nach 7.3.3(2), Tab. 7.2 DE $\frac{(h-d)}{k \times h_{cr}} \times \frac{2.9}{f_{ct,eff}}$	$\frac{der Rissbr}{d GI. 7.1):}$ It bei zentrische $\frac{d}{d GI. 7.7 DI}$ $< d_s \times \frac{2,}{f_{ct,e}}$	eite (Kap. 7 erf $A_s = k_c$ erm Zwang (GI. E (abgeschl. F zul $\sigma_s = (w_c)$ $\frac{9}{rff} = erf A$	$\leq h/2 \times b$ $h/4,$ $h_{c,eff}/4,$ 7.3.2) $K_{c,eff} \times A_{ct} / zul \sigma_{s}$ 7.2) K_{c} $f_{ct,eff} \times A_{ct} = b \times h/2$ Rissbild): $K \times 3,48 \times 10^{6} / \Phi_{s}^{1/2}$ $\leq max \sigma_{s}$ 19,9 mm (7.7DE, where the second	= = = = = = = = = =	1500 cm² 6,5 2,7 1,0 (k₀ = 1.0 is 1,75 N/mm² 1.500 cm² 187,1 N/mm² 550,0 N/mm² h₀=h) 11,4 cm²	nicht releva
Ermiti	tlung d Erforder mit: - - - - - - - - - - - - - - - - - - -	Ermittlung h _{eff} nach Bild 7.100 er erforderlichen Bewehn liche Bewehrung bei Erstrissi Beiwert für Spannungsverteilt (im Standardfall $\sigma_c = f_{ct,aff}$ ist k Effektive Zugfestigkeit 7.3.2 (A _{ct} Fläche der Zugzone im Zu (anteilig für jede Bauteilseite - Aufnehmbare Stahlspannung mit: $\Phi_s^* = d_s^* = d_s \times \frac{8 \times k_c \times 1}{k_c \times 1}$ liche Bewehrung bei abgesch 7.3.2 (NA.5) und Gl. NA.7.5.1)	E d): rung zur Begrenzung bildung (Kap. 7.3.2 (2) un ung im Rechteckquerschni $t_c = 1.0$): 2): Istand I und Bewehrungslage): nach 7.3.3(2), Tab. 7.2 DE $\frac{(h-d)}{k \times h_{cr}} \times \frac{2.9}{f_{ct,eff}}$	$\frac{der Rissbr}{d GI. 7.1):}$ It bei zentrische $\frac{d}{d GI. 7.7 DI}$ $< d_{s} \times \frac{2,}{f_{ct,e}}$	eite (Kap. 7 erf $A_s = k_c$ erm Zwang (Gl. E (abgeschl. F zul $\sigma_s = (w_c$ $\frac{9}{ff} = \frac{1}{2}$	$\leq h/2 \times b$ h / d_{1} $h_{c,eff} / d_{1}$ $h_{c,eff} / d_{1}$ $h_{c,eff} / d_{1}$ $(7.3.2)$ (7.2) k_{c} $f_{ct,eff}$ $A_{ct} = b \times h/2$ $K_{ct} = b \times h/2$ $K_$	= = = = = = = = = = =	1500 cm ² 6,5 2,7 1,0 (k _e = 1.0 is 1,75 N/mm ² 1.500 cm ² 187,1 N/mm ² 550,0 N/mm ² h _o =h) 11,4 cm ²	nicht releva
	tlung d Erforder mit: Erforder (Kap. jedoct	Ermittlung h _{eff} nach Bild 7.100 er erforderlichen Bewehn liche Bewehrung bei Erstriss! Beiwert für Spannungsverteilt (im Standardfall $\sigma_c = f_{cl,eff}$ ist k Effektive Zugfestigkeit 7.3.2 (A _{ct} Fläche der Zugzone im Zu (anteilig für jede Bauteilseite i Aufnehmbare Stahlspannung mit: $\Phi_s^* = d_s^* = d_s \times \frac{8 \times k_c}{k_c}$ liche Bewehrung bei abgesch 7.3.2 (NA.5) und Gl. NA.7.5.1):	E d): rung zur Begrenzung bildung (Kap. 7.3.2 (2) ur ung im Rechteckquerschni $t_{c} = 1,0$): 2): stand I und Bewehrungslage): nach 7.3.3(2), Tab. 7.2 DE $\frac{(h-d)}{k \times h_{cr}} \times \frac{2,9}{f_{ct,eff}}$ Hossenem Rissbild $t_{s} \leq t_{yk}$ bzw. $\leq 0.8 \times t_{yk}$ bei z	g der Rissbr nd GI. 7.1): Itt bei zentrische E und GI. 7.7 DI $< d_s \times \frac{2_r}{f_{ct,e}}$ usätzlicher	eite (Kap. 7 erf A _s = k _c em Zwang (GI. E (abgeschl. F zul σ_s = (w 9 erf A erf A _s ≥	$\leq h/2 \times b$ $h/4,$ $h_{c,eff} / d_1$ $h_{c,eff} / d_1$ $(7.3.2)$ (7.2) K_c (7.2) K_c (7.2) K_c $K_c = b \times h/2$	= = = = = = = = = = = =	1500 cm ² 6,5 2,7 1,0 (k _c = 1.0 is 1,75 N/mm ² 1.500 cm ² 187,1 N/mm ² 550,0 N/mm ² h _{or} =h) 11,4 cm ² 3,8 cm ²	nicht releva
- 1	tlung d Erforder mit: Erforder (Kap. jedoct äußer	Ermittlung h _{eff} nach Bild 7.100 er erforderlichen Bewehn liche Bewehrung bei Erstrissl Beiwert für Spannungsverteilt (im Standardfall $\sigma_c = f_{cl,eff}$ ist b Effektive Zugfestigkeit 7.3.2 (A _{ct} Fläche der Zugzone im Zu (anteilig für jede Bauteilseite er Aufnehmbare Stahlspannung mit: $\Phi_s^* = d_s^* = d_s \times \frac{8 \times k_c}{k_c}$ liche Bewehrung bei abgesch 7.3.2 (NA.5) und Gl. NA.7.5.1) einzuhaltene Stahlspannung σ er Lastbeanspruchung (7.2(5)):	E d): rung zur Begrenzung bildung (Kap. 7.3.2 (2) ur ung im Rechteckquerschnit $t_c = 1.0$): 2): stand I und Bewehrungslage): nach 7.3.3(2), Tab. 7.2 DE $\frac{(h-d)}{ck \times h_{cr}} \times \frac{2.9}{f_{ct,eff}}$ clossenem Rissbild $t_a \leq t_{yk}$ bzw. $\leq 0.8 \times t_{yk}$ bei z	g der Rissbr nd GI. 7.1): Itt bei zentrische E und GI. 7.7 DI $< d_s \times \frac{2,}{f_{ct,e}}$ susätzlicher	eite (Kap. 7 erf $A_s = k_c$ erm Zwang (Gl. E (abgeschl. F zul $\sigma_s = (w_c)$ $\frac{9}{eff} = erf A$ erf $A_s \ge$	$\leq h/2 \times b$ h / d_{1} $h_{c,eff} / d_{1}$ $(7.3.2)$ $(x \times x f_{ct,eff} \times A_{ct} / zul \sigma_{s})$ (7.2) k_{c} $A_{ct} = b \times h/2$ $(x \times 3.48 \times 10^{6} / \Phi_{s}^{*})^{1/2}$ $\leq max \sigma_{s}$ $19.9 mm (7.7DE, to the second se$	= = = = = = = = = = = =	1500 cm ² 6,5 2,7 1,0 (k _e = 1.0 is 1,75 N/mm ² 1.500 cm ² 187,1 N/mm ² 550,0 N/mm ² h _{cr} =h) 11,4 cm ² 3,8 cm ²	nicht releva
Ermitt	tlung d Erforder mit: Erforder (Kap. jedoct äußer te Bere	Ermittlung h _{eff} nach Bild 7.100 er erforderlichen Bewehn liche Bewehrung bei Erstriss! Beiwert für Spannungsverteilt (im Standardfall $\sigma_c = f_{cl,eff}$ ist b Effektive Zugfestigkeit 7.3.2 (A _{ct} Fläche der Zugzone im Zu (anteilig für jede Bauteilseite i Aufnehmbare Stahlspannung mit: $\Phi_s^* = d_s^* = d_s \times \frac{8 \times k_c}{k_c}$ liche Bewehrung bei abgesch 7.3.2 (NA.5) und Gl. NA.7.5.1) einzuhaltene Stahlspannung σ ar Lastbeanspruchung (7.2(5)): chnung der Rissbreite (H	E d): rung zur Begrenzung bildung (Kap. 7.3.2 (2) ur ung im Rechteckquerschnit $t_c = 1.0$): 2): stand I und Bewehrungslage): nach 7.3.3(2), Tab. 7.2 DE $\frac{(h-d)}{ck \times h_{cr}} \times \frac{2.9}{f_{ct,eff}}$ lossenem Rissbild $t_a \le f_{yk}$ bzw. $\le 0.8 \times f_{yk}$ bei z Xap. 7.3.4)	g der Rissbr nd GI. 7.1): Itt bei zentrische E und GI. 7.7 DI $< d_s \times \frac{2,}{f_{ct,e}}$ susätzlicher	eite (Kap. 7 erf $A_s = k_c$ erm Zwang (Gl. E (abgeschl. F zul $\sigma_s = (w_c)$ $\frac{9}{eff} = erf A$ erf $A_s \ge$	$\leq h/2 \times b$ h / d_{1} $h_{c,eff} / d_{1}$ $r.3.2)$ $(x \times x f_{ct,eff} \times A_{ct} / zul \sigma_{s}$ $r.7.2)$ k_{c} $f_{ct,eff}$ $A_{ct} = b \times h/2$ Rissbild): $(x \times 3.48 \times 10^{6} / \Phi_{s}^{*})^{1/2}$ $\leq max \sigma_{s}$ $19.9 mm (7.7DE, to the set of th$	= = = = = = = = = = = = = =	1500 cm ² 6,5 2,7 1,0 (k _e = 1.0 is 1,75 N/mm ² 1.500 cm ² 187,1 N/mm ² 550,0 N/mm ² h _{cr} =h) 11,4 cm ² 3,8 cm ²	nicht releva
Ermitt	tlung d Erforder mit: Erforder (Kap. jedoct äußer te Bere	Ermittlung h _{eff} nach Bild 7.100 er erforderlichen Bewehn liche Bewehrung bei Erstriss! Beiwert für Spannungsverteilt (im Standardfall $\sigma_c = f_{cl,eff}$ ist l Effektive Zugfestigkeit 7.3.2 (A _{ct} Fläche der Zugzone im Zu (anteilig für jede Bauteilseite Aufnehmbare Stahlspannung mit: $\Phi_s^* = d_s^* = d_s \times \frac{8 \times k_c}{k_c}$ liche Bewehrung bei abgesch 7.3.2 (NA.5) und Gl. NA.7.5.1) n einzuhaltene Stahlspannung σ ar Lastbeanspruchung (7.2(5)): chnung der Rissbreite (K	E d): rung zur Begrenzung bildung (Kap. 7.3.2 (2) ur ung im Rechteckquerschnit $t_c = 1,0$): 2): stand I und Bewehrungslage): nach 7.3.3(2), Tab. 7.2 DE $\frac{(h-d)}{k \times h_{cr}} \times \frac{2,9}{f_{ct,eff}}$ Hossenem Rissbild $t_s \le t_{yk}$ bzw. $\le 0.8 \times t_{yk}$ bei z (ap. 7.3.4)	g der Rissbr nd GI. 7.1): Itt bei zentrische E und GI. 7.7 DI $< d_S \times \frac{2,}{f_{ct,e}}$ rusätzlicher	eite (Kap. 7 erf $A_s = k_c$ erm Zwang (Gl. E (abgeschl. F zul $\sigma_s = (w_l)$ $\frac{9}{eff} = erf A_s \ge$	$\leq h/2 \times b$ h / d_{1} $h_{c,eff} / d_{1}$ $(7.3.2)$ (7.2) k_{c} (7.2) k_{c} (7.2) k_{c} $k_{c} = b \times h/2$	= = = = = = = = = = =	1500 cm ² 6,5 2,7 1,2 cm ² 1,0 (k _c = 1.0 is 1,75 N/mm ² 1.500 cm ² 187,1 N/mm ² 550,0 N/mm ² h _{cr} =h) 11,4 cm ² 3,8 cm ²	nicht releva
<u>Ermit(</u> <u>-</u>	tlung d Erforder mit: - - - - - - - - - - - - - - - - - - -	Ermittlung h _{eff} nach Bild 7.100 er erforderlichen Bewehn liche Bewehrung bei Erstrisst Beiwert für Spannungsverteilt (im Standardfall $\sigma_c = f_{ct,eff}$ ist H Effektive Zugfestigkeit 7.3.2 (A_{cq} Fläche der Zugzone im Zu (anteilig für jede Bauteilseite I Aufnehmbare Stahlspannung mit: $\Phi_s^* = d_s^* = d_s \times \frac{8 \times}{k_c}$ liche Bewehrung bei abgesch einzuhaltene Stahlspannung or er Lastbeanspruchung (7.2(5)): chnung der Rissbreite (H	E d): rung zur Begrenzung bildung (Kap. 7.3.2 (2) ur ung im Rechteckquerschnit $r_c = 1,0$): 2): stand I und Bewehrungslage): nach 7.3.3(2), Tab. 7.2 DE $(\underline{h-d}) \times \frac{2,9}{f_{ct,eff}}$ lossenem Rissbild $s \le f_{yk}$ bzw. $\le 0.8 \times f_{yk}$ bei z Kap. 7.3.4) $\sigma_s - k_t \cdot \frac{f_c}{P_s}$	$\frac{1}{2} \frac{\text{der Rissbr}}{\text{def GI. 7.1}}$ It bei zentrische $\frac{1}{2} \text{ und GI. 7.7 DI}$ $< d_{S} \times \frac{2}{f_{ct,e}}$ It usätzlicher $\frac{1}{2} \frac{1}{2} $	eite (Kap. 7 erf $A_s = k_c$ em Zwang (Gl. E (abgeschl. F zul $\sigma_s = (w_l)$ $2 = \frac{1}{2} erf A_s \ge \frac{1}{2}$ erf $A_s \ge \frac{1}{2}$	$\leq h/2 \times b$ $h/4,$ $h_{c,eff}/4,$ 7.3.2) $(x \times x f_{ct,eff} \times A_{ct} / zul \sigma_s)$ (7.2) $k_c = b \times h/2$ $A_{ct} = b \times h/2$ A	= = = = = = = = = = =	1500 cm ² 6,5 2,7 1,2 cm ² 1,0 (k _c = 1.0 is 1,75 N/mm ² 1.500 cm ² 187,1 N/mm ² 550,0 N/mm ² h _{cr} =h) 11,4 cm ² 3,8 cm ²	nicht releva t voreingestellt) nicht releva nicht releva
Ermitt Direkt	tlung d Erforder mit: - - - - - - - - - - - - - - - - - - -	Ermittlung h _{eff} nach Bild 7.100 er erforderlichen Bewehn liche Bewehrung bei Erstrisst Beiwert für Spannungsverteilt (im Standardfall $\sigma_c = f_{cteff}$ ist b Effektive Zugfestigkeit 7.3.2 (A_{cq} Fläche der Zugzone im Zu (anteilig für jede Bauteilseite Aufnehmbare Stahlspannung mit: $\Phi_s^* = d_s^* = d_s \times \frac{8 \times 8}{k_c \times 2}$ liche Bewehrung bei abgesch r.3.2 (NA.5) und Gl. NA.7.5.1) einzuhaltene Stahlspannung (7.2(5)): chnung der Rissbreite (K	E d): rung zur Begrenzung bildung (Kap. 7.3.2 (2) ur ung im Rechteckquerschni $i_c = 1,0$): 2): stand I und Bewehrungslage): nach 7.3.3(2), Tab. 7.2 DE $\frac{(h-d)}{k \times h_{cr}} \times \frac{2,9}{f_{ct,eff}}$ constant isossenem Rissbild $i_s \le f_{jk}$ bzw. $\le 0.8 \times f_{jk}$ bei z Cap. 7.3.4) $\epsilon_{sm} - \epsilon_{cm} = \frac{\sigma_s - k_t \cdot \frac{f_c}{\rho_1}}{r_{sm}}$	$\frac{der Rissbr}{d GI. 7.1):}$ It bei zentrische $\frac{d}{ds} \times \frac{2}{f_{ct,c}}$ ussätzlicher $\frac{d_s \times \frac{2}{f_{ct,c}}}{E_s}$	eite (Kap. 7 erf $A_s = k_c$ ern Zwang (Gl. E (abgeschl. F zul $\sigma_s = (w_c)$ $\frac{9}{ff} = erf A_s \ge$ erf $A_s \ge$	$\leq h/2 \times b$ $h/4,$ $h_{c,eff} / 4,$ 7.3.2) $(x \times x f_{ct,eff} \times A_{ct} / zul \sigma_s)$ $(x \times x f_{ct,eff} \times A_{ct} / zul \sigma_s)$ $A_{ct} = b \times h/2$ Rissbild): $(x \times 3,48 \times 10^6 / \Phi_s^*)^{1/2} \leq max \sigma_s$ $19.9 mm (7.7DE, v)$ $h_s = f_{ct,eff} \times A_{c,eff} / zul \sigma_s$ $k \times f_{ct,eff} \times A_{ct} / max \sigma_s$ $h_s = f_{ct,eff} \times A_{ct} / max \sigma_s$	= = = = = = = = = = = = = = = = = (,0,0)	1500 cm ² 6,5 2,7 11,2 cm ² 1,0 (k _c = 1.0 is 1,75 N/mm ² 1.500 cm ² 187,1 N/mm ² 550,0 N/mm ² 11,4 cm ² 3,8 cm ² 000056	nicht releva t voreingestellt) nicht releva nicht releva
<u>-</u> <u>Direkt</u>	tlung d Erforder mit: - - - - - - - - - - - - - - - - - - -	Ermittlung h _{eff} nach Bild 7.100 er erforderlichen Bewehn liche Bewehrung bei Erstrisst Beiwert für Spannungsverteilt (im Standardfall $\sigma_c = f_{ct,eff}$ ist b Effektive Zugfestigkeit 7.3.2 (A _{ct} , Fläche der Zugzone im Zu (anteilig für jede Bauteilseite Aufnehmbare Stahlspannung mit: $\Phi_s^* = d_s^* = d_s \times \frac{8 \times 10^3}{k_c}$ liche Bewehrung bei abgesch 7.3.2 (NA.5) und Gl. NA.7.5.1) e einzuhaltene Stahlspannung or er Lastbeanspruchung (7.2(5)): Chnung der Rissbreite (K	E d): rung zur Begrenzung bildung (Kap. 7.3.2 (2) ur ung im Rechteckquerschni $r_c = 1,0$): 2): stand I und Bewehrungslage): nach 7.3.3(2), Tab. 7.2 DE $\frac{(h-d)}{k \times h_{cr}} \times \frac{2,9}{f_{ct,eff}}$ Hossenem Rissbild $r_s \le f_{yk}$ bzw. $\le 0.8 \times f_{yk}$ bei z Kap. 7.3.4) $\varepsilon_{sm} - \varepsilon_{cm} = \frac{\sigma_s - k_t \cdot \frac{f_c}{\rho_t}}{\rho_t}$	$\frac{der Rissbr}{d GI. 7.1):}$ It bei zentrische \overline{c} und GI. 7.7 DI $< d_{s} \times \frac{2}{f_{ct,e}}$ ussätzlicher $\frac{d_{s}eff}{E_{s}} (1 + \alpha_{e} + \beta_{s})$	eite (Kap. 7 erf A _s = k em Zwang (GI. E (abgeschi. F zul σ_s = (w $\frac{9}{ff}$ = erf A erf A _s ≥	$\leq h/2 \times b$ $h/4,$ $h_{c,eff}/4,$ 7.3.2) $(x \times x f_{ct,eff} \times A_{ct} / zul \sigma_s)$ $(x \times x f_{ct,eff} \times A_{ct} / zul \sigma_s)$ $(x \times 3,48 \times 10^6 / \Phi_s^*)^{1/2}$ $\leq max \sigma_s$ $19.9 mm (7.7DE, \tau)$ $h_x = f_{ct,eff} \times A_{c,eff} / zul \sigma_s$ $k \times f_{ct,eff} \times A_{ct} / max \sigma_s$ $h_x = f_{ct,eff} \times A_{ct} / max \sigma_s$	= = = = = = = = = = = = = = (ma	1500 cm² 6,5 2,7 1,2 cm² 1,0 (k _c = 1,0 is 1,75 N/mm² 1,75 N/m² 1,75 N/m² 1,75 N/m² 1,75 N/m² 1,75 N/m² 1,75 N/m² 1,75 N/mm² 1,75 N/m² 1,75	nicht releva t voreingestellt) nicht releva nicht releva
<u>-</u> Direkt	tlung d Erforder mit: Erforder (Kap. jedoct äußer te Bere Differen: (Gi. 7.9): Maximal	Ermittlung h _{eff} nach Bild 7.100 er erforderlichen Bewehn liche Bewehrung bei Erstrissi Beiwert für Spannungsverteilt (im Standardfall $\sigma_c = f_{ctaff}$ ist k Effektive Zugfestigkeit 7.3.2 (A _{ct} Fläche der Zugzone im Zu (anteilig für jede Bauteilseite - Aufnehmbare Stahlspannung mit: $\Phi_s^* = d_s^* = d_s \times 8 \times k_c \times k_c$	E d): rung zur Begrenzung bildung (Kap. 7.3.2 (2) un ung im Rechteckquerschnit $i_c = 1,0$): 2): stand I und Bewehrungslage): nach 7.3.3(2), Tab. 7.2 DE $\frac{(h-d)}{k \times h_{cr}} \times \frac{2,9}{f_{ct,eff}}$ clossenem Rissbild $i_s \le f_{yk}$ bzw. $\le 0.8 \times f_{yk}$ bei z Kap. 7.3.4 $c_{sm} - \varepsilon_{cm} = \frac{\sigma_s - k_t \cdot \frac{f_c}{\rho_1}}{\rho_1}$ NA 7.3.4(3)): $s_{r,max} =$	$\frac{der Rissbr}{d GI. 7.1):}$ It bei zentrische E und GI. 7.7 DI $< d_{s} \times \frac{2;}{f_{ct,e}}$ usätzlicher $\frac{d_{s}eff}{E_{s}} = \frac{\Phi_{s}}{3.6 + 2}$	eite (Kap. 7 erf $A_s = k_c$ erm Zwang (GI. E (abgeschl. F zul $\sigma_s = (w_c)$ $\frac{9}{2}$ = erf A erf $A_s \ge$ $\frac{2}{2}p_{,eff}$ = ((w_c)	$\leq h/2 \times b$ $h/4,$ $h_{c,eff}/4,$ 7.3.2) $(x \times x f_{ct,eff} \times A_{ct} / zul \sigma_s)$ (7.2) k_{c} $A_{ct} = b \times h/2$ $(x \times 3,48 \times 10^6 / \Phi_s^*)^{1/2} \leq max \sigma_s$ $19,9 mm (7.7DE, to the second second$	= = = = = = = = = = (ma	1500 cm ² 6,5 2,7 1,0 (k _c = 1.0 is 1,75 N/mm ² 1.500 cm ² 187,1 N/mm ² 550,0 N/mm ² 550,0 N/mm ² 11,4 cm ² 3,8 cm ² 000056 ißgebend) 354 mm	nicht releva
<u>-</u> Direkt	tlung d Erforder mit: Erforder (Kap. jedoct äußer te Bere Differen: (Gi. 7.9): Maximal	Ermittlung h _{eff} nach Bild 7.100 er erforderlichen Bewehn liche Bewehrung bei Erstrisst Beiwert für Spannungsverteilt (im Standardfall $\sigma_c = f_{cteff}$ ist H Effektive Zugfestigkeit 7.3.2 (A_{ct} Fläche der Zugzone im Zu (anteilig für jede Bauteilseite I Aufnehmbare Stahlspannung mit: $\Phi_s^* = d_s^* = d_s \times \frac{8 \times k_c \times k_c}{k_c \times k_c}$ liche Bewehrung bei abgesch r.3.2 (NA.5) und Gl. NA.7.5.1) einzuhaltene Stahlspannung or er Lastbeanspruchung (7.2(5)): Chnung der Rissbreite (M et dehnung Stahl/ Beton	E d): rung zur Begrenzung bildung (Kap. 7.3.2 (2) ur ung im Rechteckquerschnit $s_c = 1,0$): 2): stand I und Bewehrungslage): nach 7.3.3(2), Tab. 7.2 DE $\frac{(h-d)}{k \times h_{cr}} \times \frac{2,9}{f_{ct,eff}}$ clossenem Rissbild $s_s \leq f_{yk}$ bzw. $\leq 0.8 \times f_{yk}$ bei z Cap. 7.3.4 constant state in the st	$\frac{der Rissbr}{d GI. 7.1):}$ It bei zentrische E und GI. 7.7 DI $< d_{s} \times \frac{2,}{f_{ct,e}}$ cusätzlicher $\frac{d_{s} + \frac{2}{f_{ct,e}}}{E_{s}}$ $\frac{\Phi_{s}}{3,6 \cdot \rho_{p,eff}}$	eite (Kap. 7 erf $A_s = k_c$ erm Zwang (GI. E (abgeschl. F zul $\sigma_s = (w_f)$ $\frac{9}{erf} =$ erf $A_s \ge$ $\frac{2p_{p,eff}}{2} = (m_f)$	$\leq h/2 \times b$ $h/4,$ $h_{c,eff}/4,$ 7.3.2) $(x \times x f_{ct,eff} \times A_{ct} / zul \sigma_s)$ (7.2) k_s (7.2) $k_{ct} = b \times h/2$ $(x \times 3,48 \times 10^6 / \Phi_s^*)^{1/2} \leq max \sigma_s$ $19,9 mm (7.7DE, to associate for a structure of $	= = = = = = = =	1500 cm ² 6,5 2,7 1,0 (k _c = 1.0 is 1,75 N/mm ² 1.500 cm ² 187,1 N/mm ² 550,0 N/mm ² 11,4 cm ² 3,8 cm ² 000056 ißgebend) 354 mm gebend)	nicht releva
 Direkt	tlung d Erforder mit: - - - - - - - - - - - - - - - - - - -	Ermittlung h _{eff} nach Bild 7.100 er erforderlichen Bewehn liche Bewehrung bei Erstrisst Beiwert für Spannungsverteilt (im Standardfall $\sigma_c = f_{cteff}$ ist b Effektive Zugfestigkeit 7.3.2 (A_{cq} Fläche der Zugzone im Zu (anteilig für jede Bauteilseite d Aufnehmbare Stahlspannung mit: $\Phi_s^* = d_s^* = d_s \times \frac{8 \times}{k_c}$ liche Bewehrung bei abgesch er Lastbeanspruchung (7.2(5)): Chnung der Rissbreite (H er Rissabstand (GI. 7.11 und I Vorhandene Stahlspannung in	E d): rung zur Begrenzung bildung (Kap. 7.3.2 (2) ur ung im Rechteckquerschnit $s_c = 1,0$): 2): stand I und Bewehrungslage): nach 7.3.3(2), Tab. 7.2 DE $\frac{(h-d)}{k \times h_{cr}} \times \frac{2,9}{f_{ct,eff}}$ consenem Rissbild $s_s \leq f_{sk}$ bzw. $\leq 0.8 \times f_{sk}$ bei z Cap. 7.3.4 $s_{sm} - \varepsilon_{cm} = \frac{\sigma_s - k_t \cdot \frac{f_c}{P_1}}{\frac{P_1}{P_2}}$ NA 7.3.4(3)): $s_{r,max} =$ m Erstriss nach 7.3.2 (2):	$\frac{der Rissbr}{d GI, 7.1):}$ It bei zentrische E und GI. 7.7 DI $< d_{S} \times \frac{2,}{f_{ct,e}}$ ussätzlicher $\frac{d_{s,eff}}{E_{s}} = \frac{\Phi_{s,eff}}{3,6 \cdot \rho_{p,eff}}$	eite (Kap. 7 erf $A_s = k_c$ erm Zwang (GI. E (abgeschl. F zul $\sigma_s = (w_l)$ $\frac{9}{2}$ = erf A erf $A_s \ge$ $\frac{2p_s eff}{2}$ = ((w_l) $\frac{2p_s eff}{2}$ = ((w_l))	$\leq h/2 \times b$ $h/4,$ $h_{c,eff}/4,$ $7.3.2)$ $(x \times x f_{ct,eff} \times A_{ct} / zul \sigma_s)$ (7.2) $k_{c} = b \times h/2$ $(x \times 3,48 \times 10^6 / \Phi_s^*)^{1/2} \leq max \sigma_s$ $19.9 mm (7.7DE, v)$ $A_s = f_{ct,eff} \times A_{c,eff} / zul \sigma_s$ $k \times f_{ct,eff} \times A_{ct} / max \sigma_s$ $0,00053 \geq 0, 6 \cdot \frac{\sigma_s}{E_s}$ $m \leq \frac{\sigma_s \cdot \Phi_s}{3, 6 \cdot f_{ct}, c_{cff}} = k \times f_{ct,eff} \times A_{ct} / vorh A_s$	= = = = = = = = = =	1500 cm² 6,5 2,7 1,0 (k₀ = 1.0 is 1,75 N/mm² 1.500 cm² 187,1 N/mm² 1.500 N/mm² 11,4 cm² 3,8 cm² 000056 ißgebend) 354 mm gebend) 185,7 N/mm²	nicht releva
<u>-</u> Direkt	tlung d Erforder mit: - - - - - - - - - - - - - - - - - - -	Ermittlung h _{eff} nach Bild 7.100 er erforderlichen Bewehn liche Bewehrung bei Erstrisst Beiwert für Spannungsverteilt (im Standardfall $\sigma_c = f_{cteff}$ ist b Effektive Zugfestigkeit 7.3.2 (A_{cq} Fläche der Zugzone im Zu (anteilig für jede Bauteilseitet Aufnehmbare Stahlspannung mit: $\Phi_s^* = d_s^* = d_s \times \frac{8 \times 8}{k_c \times 2}$ liche Bewehrung bei abgesch r.3.2 (NA.5) und Gl. NA.7.5.1) einzuhaltene Stahlspannung (7.2(5)): chnung der Rissbreite (K stdehnung Stahl/ Beton er Rissabstand (Gl. 7.11 und R Vorhandene Stahlspannung in (σ_s wird um 15% verringert bei	E d): rung zur Begrenzung bildung (Kap. 7.3.2 (2) ur ung im Rechteckquerschni $t_c = 1,0$): 2): stand I und Bewehrungslage): nach 7.3.3(2), Tab. 7.2 DE $\frac{(h-d)}{k \times h_{cr}} \times \frac{2,9}{f_{ct,eff}}$ source state sta	$\frac{d}{d} \frac{der Rissbr}{Rissbr}$ $\frac{d}{d} \frac{d}{d} \frac{1}{s} \frac{1}{s} \frac{1}{s}$ $\frac{d}{d} \frac{d}{s} \times \frac{2}{f_{ct,e}}$ $\frac{d}{d} \frac{d}{s} \times \frac{2}{f_{ct,e}}$ $\frac{d}{d} \frac{d}{s} \times \frac{2}{s}$ $\frac{d}{d} \frac{d}{s} \frac{d}{s}$ $\frac{d}{d} \frac{d}{s} \frac{d}{s} \frac{d}{s} \frac{d}{s}$ $\frac{d}{d} \frac{d}{s} \frac{d}$	eite (Kap. 7 erf $A_s = k_c$ erm Zwang (GI. E (abgeschl. F zul $\sigma_s = (w_l)$ $\frac{9}{ff} = $ erf $A_s \ge$ $\frac{2p_r, eff}{2} = (m_r)$ = 360 mr vorh $\sigma_s = k_c x$ Beton im Hydr	$\leq h/2 \times b$ $h/4,$ $h_{c,eff}/d,$ 7.3.2) $(x \times x f_{ct,eff} \times A_{ct} / zul \sigma_s)$ (7.2) $A_{ct} = b \times h/2$ $A_{ct} = h/2$	= = = = = = = = = = (maß _i = (maß _i =	1500 cm² 6,5 2,7 1,0 (k₀ = 1.0 is 1,75 N/mm² 1.500 cm² 187,1 N/mm² 1550,0 N/mm² 11,4 cm² 3,8 cm² 00056 ißgebend) 354 mm gebend) 185,7 N/mm²	nicht releva
<u>-</u> Direkt	tlung d Erforder mit: - - - - - - - - - - - - - - - - - - -	Ermittlung h _{eff} nach Bild 7.100 er erforderlichen Bewehn liche Bewehrung bei Erstrisst Beiwert für Spannungsverteilt (im Standardfall $\sigma_c = f_{ct,eff}$ ist b Effektive Zugfestigkeit 7.3.2 (A _{ct} , Fläche der Zugzone im Zu (anteilig für jede Bauteilseite Aufnehmbare Stahlspannung mit: $\Phi_s^* = d_s^* = d_s \times \frac{8 \times 1}{k_c}$ liche Bewehrung bei abgesch 7.3.2 (NA.5) und Gl. NA.7.5.1) e einzuhaltene Stahlspannung or er Lastbeanspruchung (7.2(5)): Chnung der Rissbreite (K dehnung Stahl/ Beton er Rissabstand (Gl. 7.11 und I Vorhandene Stahlspannung in (σ_s wird um 15% verringert be Effektive Zugfestigkeit (keine	E d): rung zur Begrenzung bildung (Kap. 7.3.2 (2) ur ung im Rechteckquerschni $r_c = 1,0$): 2): stand I und Bewehrungslage): nach 7.3.3(2), Tab. 7.2 DE $\frac{(h-d)}{k \times h_{cr}} \times \frac{2,9}{f_{ct,eff}}$ Hossenem Rissbild $s_{s} \leq f_{yk}$ bzw. $\leq 0.8 \times f_{yk}$ bei z Kap. 7.3.4) $\varepsilon_{sm} - \varepsilon_{cm} = \frac{\sigma_s - k_t \cdot \frac{f_c}{r_1}}{r_1}$ NA 7.3.4(3)): $s_{r,max} =$ m Erstriss nach 7.3.2 (2): bi Verwendung von langsar Berücksichtigung der Mino	$\frac{d}{d} \frac{der Rissbr}{ds}$ $\frac{d}{ds} \frac{d}{ds} \frac{1}{s}$ $\frac{d}{ds} \times \frac{2}{f_{ct,c}}$	eite (Kap. 7 erf $A_s = k_c$ erm Zwang (GI. E (abgeschl. F zul $\sigma_s = (W_1)$ $\frac{9}{ff} = erf A_s \ge$ $\frac{9}{erf} = erf A_s =$ $\frac{9}{erf} = e$	$\leq h/2 \times b$ $h/4,$ $h_{c,eff}/d,$ 7.3.2) $(x \times x f_{ct,eff} \times A_{ct} / zul \sigma_s)$ $(x \times x f_{ct,eff} \times A_{ct} / zul \sigma_s)$ $A_{ct} = b \times h/2$ $A_{ct} = h/2$	= = = = = = = = = = (maß; = = = = = = = = = = =	1500 cm² 6,5 2,7 1,0 (k _c = 1.0 is 1,75 N/mm² 1,75 N/mm² 1,75 N/mm² 11,4 cm² 3,8 cm² 00056 ißgebend) 354 mm gebend) 185,7 N/mm²	nicht releva t voreingestellt) nicht releva
<u>-</u> - <u>Direkt</u>	tlung d Erforder mit: - - - - - - - - - - - - - - - - - - -	Ermittlung h _{eff} nach Bild 7.100 er erforderlichen Bewehn liche Bewehrung bei Erstrisst Beiwert für Spannungsverteilt (im Standardfall $\sigma_c = f_{ct,eff}$ ist H Effektive Zugfestigkeit 7.3.2 (A _{ct} Fläche der Zugzone im Zu (anteilig für jede Bauteilseite i Aufnehmbare Stahlspannung mit: $\Phi_s^* = d_s^* = d_s \times \frac{8 \times}{k_c}$ liche Bewehrung bei abgesch 7.3.2 (NA.5) und Gl. NA.7.5.1) einzuhaltene Stahlspannung σ er Lastbeanspruchung (7.2(5)): chnung der Rissbreite (H er Rissabstand (Gl. 7.11 und I Vorhandene Stahlspannung in (σ_s wird um 15% verringert be Effektive Zugfestigkeit (keine nach NA 7.3.2 (2)):	E d): rung zur Begrenzung bildung (Kap. 7.3.2 (2) ur ung im Rechteckquerschni $c_{c} = 1,0$): 2): istand I und Bewehrungslage): nach 7.3.3(2), Tab. 7.2 DE $\frac{(h-d)}{k \times h_{cr}} \times \frac{2,9}{f_{ct,eff}}$ Hossenem Rissbild $c_{s} \leq f_{yk}$ bzw. $\leq 0,8 \times f_{yk}$ bei z Kap. 7.3.4 $c_{sm} - c_{cm} = \frac{\sigma_s - k_t \cdot \frac{f_c}{\rho_1}}{\rho_1}$ NA 7.3.4(3)): $s_{r,max} =$ m Erstriss nach 7.3.2 (2): i Verwendung von langsar Berücksichtigung der Mind	g der Rissbr ad GI. 7.1): It bei zentrische E und GI. 7.7 DI $< d_s \times \frac{2,}{f_{ct,e}}$ usätzlicher $\frac{d_s \times \frac{2}{f_{ct,e}}}{E_s}$ $\frac{\Phi_s}{3,6 \cdot \rho_{p,eff}}$ m erhärtenden li destbetonzugfer	eite (Kap. 7 erf A _s = k _c erm Zwang (GI. E (abgeschl. F zul $\sigma_s = (w_t)^2$ erf A erf A _s \geq $\frac{\rho_{p,eff}}{2} = (w_t)^2$ $= 360 \text{ mm}^2$ vorh $\sigma_s = k_c \times$ Beton im Hydristigkeit	$\leq h/2 \times b$ h/d_{t} $h_{c,eff}/d_{t}$ $r.3.2)$ $(x \times x f_{ct,eff} \times A_{ct} / zul \sigma_{s}$ $r.7.2)$ k_{c} $f_{ct,eff}$ $A_{ct} = b \times h/2$ $Rissbild):$ $(x \times 3,48 \times 10^{6} / \Phi_{s}^{*})^{1/2}$ $\leq max \sigma_{s}$ $19.9 mm (7.7DE, \tau)$ $h_{s} = f_{ct,eff} \times A_{c,eff} / zul \sigma_{s}$ $h \times f_{ct,eff} \times A_{ct} / max \sigma_{s}$ $0,00053 \geq 0, 6 \cdot \frac{\sigma_{x}}{E_{x}}$ $m \leq \frac{\sigma_{x} \cdot \Phi_{s}}{3, 6 \cdot f_{ct,eff}}$ $h \times f_{ct,eff} \times A_{ct} / vorh A_{s}$ $ratationsfall)$ $f_{ct,eff}$	= = = = = = = = = = = (maß; = = = = =	1500 cm² 6,5 2,7 1,0 (k _c = 1.0 is 1,75 N/mm² 1.500 cm² 187,1 N/mm² 1550,0 N/mm² 11,4 cm² 3,8 cm² 00056 ißgebend) 354 mm gebend) 185,7 N/mm² 1,75 N/mm²	nicht releva t voreingestellt) nicht releva nicht releva
<u>-</u> - -	tlung d Erforder mit: - mit: - (Kap. jedoct äußer te Bere (Gi. 7.9): Maximal mit: -	Ermittlung h _{eff} nach Bild 7.100 er erforderlichen Bewehn liche Bewehrung bei Erstrissl Beiwert für Spannungsverteilt (im Standardfall $\sigma_c = f_{et,eff}$ ist b Effektive Zugfestigkeit 7.3.2 (A _{ct} Fläche der Zugzone im Zu (anteilig für jede Bauteilseite i Aufnehmbare Stahlspannung mit: $\Phi_s^* = d_s^* = d_s \times \frac{8 \times 1}{k_c}$ liche Bewehrung bei abgesch 7.3.2 (NA.5) und Gl. NA.7.5.1) einzuhaltene Stahlspannung σ ar Lastbeanspruchung (7.2(5)): Chnung der Rissbreite (M er Rissabstand (Gl. 7.11 und I Vorhandene Stahlspannung in (σ_s wird um 15% verringert be Effektive Zugfestigkeit (keine nach NA 7.3.2 (2)): Effektiver Bewehrungsgrad (C	E d): rung zur Begrenzung bildung (Kap. 7.3.2 (2) ur ung im Rechteckquerschni $k_c = 1,0$): 2): stand I und Bewehrungslage): nach 7.3.3(2), Tab. 7.2 DE $\frac{(h-d)}{k \times h_{cr}} \times \frac{2,9}{f_{ct,eff}}$ s s $\frac{(h-d)}{k \times h_{cr}} \times \frac{2,9}{f_{ct,eff}}$ s s s $\frac{(h-d)}{k \times h_{cr}} \times \frac{2,9}{f_{ct,eff}}$ s s s $\frac{(h-d)}{k \times h_{cr}} \times \frac{2,9}{f_{ct,eff}}$ s s s s s s s s	$\frac{q}{der Rissbr}$ $\frac{q}{der Rissbr}$ $\frac{d}{dr} (1, 7, 1):$ $\frac{d}{dr} (1, 7, 7) D$ $\frac{d}{d$	eite (Kap. 7 erf $A_s = k_c$ erm Zwang (GI. E (abgeschl. F zul $\sigma_s = (w_t)^2$ erf $A_s \ge \frac{2}{2}$ erf $A_s \ge \frac{2}{2}$ $= 360 \text{ mm}^2$ vorh $\sigma_s = k_c x$ Beton im Hydr stigkeit	$\leq h/2 \times b$ h/d_{1} $h_{c,eff}/d_{1}$ $r.3.2)$ $(7.3.2)$ (7.2) $($	= = = = = = = = = = = = = = = = = = =	11,2 cm ² 6,5 2,7 1,0 (k _c = 1.0 is 1,75 N/mm ² 1.500 cm ² 187,1 N/mm ² 550,0 N/mm ² 550,0 N/mm ² 11,4 cm ² 3,8 cm ² 00056 ißgebend) 354 mm gebend) 185,7 N/mm ² 1,75 N/mm ²	nicht releva
<u>-</u> <u>-</u> <u>Direkt</u>	tlung d Erforder mit: Erforder (Kap. jedoct äußer te Bere (GI. 7.9): Maximal mit:	Ermittlung h _{eff} nach Bild 7.100 er erforderlichen Bewehn liche Bewehrung bei Erstrissi Beiwert für Spannungsverteilt (im Standardfall $\sigma_c = f_{ctoff}$ ist b Effektive Zugfestigkeit 7.3.2 (A _{ct} Fläche der Zugzone im Zu (anteilig für jede Bauteilseite i Aufnehmbare Stahlspannung mit: $\Phi_s^* = d_s^* = d_s \times \frac{8 \times 8}{k_c \times 3}$ liche Bewehrung bei abgesch 7.3.2 (NA.5) und Gl. NA.7.5.1) einzuhaltene Stahlspannung σ er Lastbeanspruchung (7.2(5)): Chnung der Rissbreite (H er Rissabstand (Gl. 7.11 und I Vorhandene Stahlspannung in (σ_s wird um 15% verringert be Effektive Zugfestigkeit (keine nach NA 7.3.2 (2)): Effektive Bewehrungsgrad (G	E d): rung zur Begrenzung bildung (Kap. 7.3.2 (2) ur ung im Rechteckquerschni $t_c = 1,0$): 2): Istand I und Bewehrungslage): nach 7.3.3(2), Tab. 7.2 DE $\frac{(h-d)}{k \times h_{cr}} \times \frac{2,9}{f_{ct,eff}}$ Hossenem Rissbild $t_s \leq f_{yk}$ bzw. $\leq 0.8 \times f_{yk}$ bei z Kap. 7.3.4) $\varepsilon_{sm} - \varepsilon_{cm} = \frac{\sigma_s - k_t \cdot \frac{f_c}{P_1}}{r_1}$ NA 7.3.4(3)): $s_{r,max} =$ In Erstriss nach 7.3.2 (2): In Verwendung von langsan Berücksichtigung der Mind Si. 7.10):	$\frac{der Rissbr}{d GI, 7.1):}$ It bei zentrische E und GI, 7.7 DI $< d_{s} \times \frac{2}{f_{ct,e}}$ usätzlicher $\frac{d_{s} + \frac{2}{f_{ct,e}}}{E_{s}}$ $\frac{\Phi_{s}}{3,6 \cdot \rho_{p,eff}}$ m erhärtenden I destbetonzugfer	eite (Kap. 7 erf A _s = k _c erm Zwang (GI. E (abgeschl. F zul $\sigma_s = (w_t)^2$ erf A erf A _s \geq $\frac{2p_reff}{2} = (w_t)^2$ $= 360 \text{ mm}^2$ vorh $\sigma_s = k_c \times Beton \text{ im Hydr}$ stigkeit	$\leq h/2 \times b$ h/d_{1} $h_{c,eff}/d_{1}$ $7.3.2) (x \times x f_{ct,eff} \times A_{ct} / zul \sigma_{s} / f_{ct,eff} A_{ct} = b \times h/2 (x \times 3,48 \times 10^{6} / \Phi_{s} *)^{1/2} \leq max \sigma_{s} / f_{s} + h_{s} / h_{s} + h_{s} / h_{s} + h_{s} / h_{s} + h_{s} / h_{s} / h_{s} / h_{s} / h_{s} + h_{s} / h$	= = = = = = = = = = (maß; = = (maß; = = = (maß; = = = 0,(1500 cm ² 6,5 2,7 1,0 (k _c = 1.0 is 1,75 N/mm ² 1.500 cm ² 187,1 N/mm ² 550,0 N/mm ² 550,0 N/mm ² 11,4 cm ² 3,8 cm ² 00056 ißgebend) 354 mm gebend) 185,7 N/mm ² 1,75 N/mm ²	nicht releva
<u>Direkt</u>	tlung d Erforder mit: Erforder (Kap. jedoct äußer te Bere (Gi. 7.9): Maximal mit:	Ermittlung h _{eff} nach Bild 7.100 er erforderlichen Bewehn liche Bewehrung bei Erstrissi Beiwert für Spannungsverteilt (im Standardfall $\sigma_c = f_{ctoff}$ ist b Effektive Zugfestigkeit 7.3.2 (A _{ct} Fläche der Zugzone im Zu (anteilig für jede Bauteilseite i Aufnehmbare Stahlspannung mit: $\Phi_s^* = d_s^* = d_s \times \frac{8 \times 8}{k_c \times 3}$ liche Bewehrung bei abgesch 7.3.2 (NA.5) und Gl. NA.7.5.1) einzuhaltene Stahlspannung σ er Lastbeanspruchung (7.2(5)): Chnung der Rissbreite (H er Rissabstand (Gl. 7.11 und I Vorhandene Stahlspannung in (σ_s wird um 15% verringert be Effektive Zugfestigkeit (keine nach NA 7.3.2 (2)): Effektiver Bewehrungsgrad (C Verhältnis E-Moduln:	E d): rung zur Begrenzung bildung (Kap. 7.3.2 (2) ur ung im Rechteckquerschni $t_c = 1,0$): 2): Istand I und Bewehrungslage): nach 7.3.3(2), Tab. 7.2 DE $\frac{(h-d)}{k \times h_{cr}} \times \frac{2,9}{f_{ct,eff}}$ Hossenem Rissbild $t_{s} \leq t_{jk}$ bzw. $\leq 0.8 \times t_{jk}$ bei z Kap. 7.3.4) $c_{sm} - c_{cm} = \frac{\sigma_s - k_t \cdot \frac{f_c}{\rho_1}}{\rho_1}$ NA 7.3.4(3)): $s_{r,max} =$ m Erstriss nach 7.3.2 (2): i Verwendung von langsai Berücksichtigung der Mino SI. 7.10):	g der Rissbr ad GI. 7.1): It bei zentrische E und GI. 7.7 DI $< d_s \times \frac{2}{f_{ct,e}}$ usätzlicher $\frac{d_s + eff}{E_s}$ $\frac{\Phi_s}{3, 6 \cdot \rho_{p,eff}}$ m erhärtenden I destbetonzugfer	eite (Kap. 7 erf A _s = k _c erm Zwang (GI. E (abgeschl. F zul $\sigma_s = (w_t)^2$ erf A erf A _s \geq $\frac{Op_{reff}}{2} = 0$ erf A erf A _s \geq $\frac{Op_{reff}}{2} = 0$ $= 360 \text{ mm}^2$ vorh $\sigma_s = k_c x$ Beton im Hydr stigkeit	$\leq h/2 \times b$ $h/4,$ $h_{c,eff}/4,$ 7.3.2) $(x \times x f_{ct,eff} \times A_{ct} / zul \sigma_s)$ (7.2) k_{c} $A_{ct} = b \times h/2$ $(x \times 3,48 \times 10^6 / \Phi_s^*)^{1/2}$ $(x \times 3,48 \times 10^6 / \Phi_s^*$	= = = = = = = = = = = = = = = = = = =	1500 cm ² 6,5 2,7 1,0 (k _c = 1.0 is 1,75 N/mm ² 1.500 cm ² 187,1 N/mm ² 550,0 N/mm ² 550,0 N/mm ² 11,4 cm ² 3,8 cm ² 00056 ißgebend) 354 mm gebend) 185,7 N/mm ² 1,75 N/mm ²	nicht releva t voreingestellt) nicht releva nicht releva
<u>)irekt</u>	tlung d Erforder mit: Erforder (Kap. jedoct äußer te Bere (GI. 7.9): Maximal mit:	Ermittlung h _{eff} nach Bild 7.100 er erforderlichen Bewehn liche Bewehrung bei Erstrisst Beiwert für Spannungsverteilt (im Standardfall $\sigma_c = f_{cteff}$ ist b Effektive Zugfestigkeit 7.3.2 (A_{ct} Fläche der Zugzone im ZU (anteilig für jede Bauteilseite I Aufnehmbare Stahlspannung mit: $\Phi_s^* = d_s^* = d_s \times \frac{8 \times}{k_c}$ liche Bewehrung bei abgesch r.3.2 (NA.5) und Gl. NA.7.5.1) einzuhaltene Stahlspannung or er Lastbeanspruchung (7.2(5)): Chnung der Rissbreite (H er Rissabstand (Gl. 7.11 und I Vorhandene Stahlspannung in (σ_s wird um 15% verringert be Effektive Zugfestigkeit (keine nach NA 7.3.2 (2)): Effektiver Bewehrungsgrad (C Verhältnis E-Moduln:	E d): rung zur Begrenzung bildung (Kap. 7.3.2 (2) ur ung im Rechteckquerschnit $i_c = 1,0$): 2): stand I und Bewehrungslage): nach 7.3.3(2), Tab. 7.2 DE $\frac{(h-d)}{k \times h_{cr}} \times \frac{2,9}{f_{ct,eff}}$ clossenem Rissbild $i_s \le f_{yk}$ bzw. $\le 0.8 \times f_{yk}$ bei z Cap. 7.3.4) resonance $\frac{\sigma_s - k_t \cdot \frac{f_c}{\rho_1}}{\rho_1}$ NA 7.3.4(3)): $s_{r,max} =$ m Erstriss nach 7.3.2 (2): i Verwendung von langsar Berücksichtigung der Mino SI. 7.10):	g der Rissbr ad GI. 7.1): Itt bei zentrische E und GI. 7.7 DI $< d_s \times \frac{2,}{f_{ct,e}}$ cusätzlicher $\frac{d_s \times \frac{2}{f_{ct,e}}}{E_s}$ $\frac{\Phi_s}{3,6 \cdot \rho_{p,eff}}$ m erhärtenden I destbetonzugfer	eite (Kap. 7 erf $A_s = k_c$ erm Zwang (GI. E (abgeschl. F zul $\sigma_s = (w_t)$ $\frac{9}{2} = erf A$ erf $A_s \ge$ $\frac{2p, eff}{2} = (0)$ E 360 mr vorh $\sigma_s = k_c x$ Beton im Hydr stigkeit	$\leq h/2 \times b$ h/d_{t} $h_{c,eff}/d_{t}$ 7.3.2) $(x \times x f_{ct,eff} \times A_{ct} / zul \sigma_{s}$ 7.2) k_{t} $A_{ct} = b \times h/2$ Rissbild): $x \times 3,48 \times 10^{6} / \Phi_{s}^{*})^{1/2}$ $\leq max \sigma_{s}$ 19,9 mm (7.7DE, to the second seco	= = = = = = = = = = = = = = = = = = =	1500 cm ² 6,5 2,7 1,0 (k _c = 1.0 is 1,75 N/mm ² 1.500 cm ² 187,1 N/mm ² 550,0 N/mm ² 11,4 cm ² 3,8 cm ² 000056 ißgebend) 354 mm gebend) 185,7 N/mm ² 1,75 N/mm ²	nicht releva

B. Anhang B: Alternativentwurf Geometrie und Schnittgrößen

B.1 Querschnittsgeometrie und Widerstände

Bezeichnung	Symbol	Größe	Einheit	Kommentar
Querschnittsfläche	А	54350.00	cm ²	
	A _{tot}	54350.00	cm ²	
Schubflächen ohne Querschub	Av	39458.90	cm ²	
	Az	16898.10	cm ²	
	Au	39650.60	cm ²	
	Av	17410.00	cm ²	
Schubflächen mit Querschub	A _{v.tra}	39408.20	cm ²	
	A _{z.tra}	7946.17	cm ²	
	A _{u.tra}	36579.10	cm ²	
	A _{v,tra}	2998.23	cm ²	
Lage des Schwerpunktes	УS,0	0.02	cm	bezogen auf den Nullpunkt
	z _{S,0}	0.01	cm	
Trägheitsmomente	ly .	3.47134E+08	cm ⁴	bezogen auf die Schwerachsen y, z
-	Iz	3.37599E+09	cm ⁴	
Zentrifugalmoment	l _{yz}	-42983100.00	cm ⁴	
Hauptachsendrehwinkel	α	-0.8	0	positiv im Uhrzeigersinn
Hauptträgheitsmomente	lu	3.46524E+08	cm ⁴	bezogen auf die Hauptachsen u, v im S
	Iv	3.37660E+09	cm ⁴	
Polares Trägheitsmoment	1 _p	3.72312E+09	cm ⁴	
Trägheitsradien	iy	79.92	cm	bezogen auf den Schwerpunkt
	iz	249.23	cm	
	i _{yz}	28.12	cm	
Hauptträgheitsradien	iu	79.85	cm	bezogen auf die Hauptachsen u, v im S
	iv	249.25	cm	
Polarer Trägheitsradius	ip	261.73	cm	
Querschnittsgewicht	G	13587500.00	g/m	
Querschnittsumfang	U	246041.00	cm ² /m	
Torsionsträgheitsmoment	l _t	7.47210E+08	cm ⁴	
Lage des Schubmittelpunktes	Ум,0	-13.21	cm	bezogen auf den Nullpunkt
	z _{M,0}	18.59	cm	
	Ум	-13.23	cm	bezogen auf den Nullpunkt
	ZM	18.58	cm	
	u _M	-13.49	cm	bezogen auf den Nullpunkt
	VM	18.39	cm	
Wölbwiderstände	l _{ω,S}	4.86528E+12	cm ⁶	
	Ι _{ω,M}	3.65978E+12	cm ⁶	
Widerstandsmomente	W _{y,max}	2689060.00	cm ³	im Abstand 129.1 cm
	W _{y,min}	-4290410.00	cm ³	im Abstand -80.9 cm
	W z,max	6386750.00	cm ³	im Abstand 528.6 cm
	W _{z,min}	-6733010.00	cm ³	im Abstand -501.4 cm
	W _{u,max}	2610450.00	cm ³	im Abstand 132.7 cm
	VV _{u,min}	-3937120.00	cm ³	im Abstand -88.0 cm
	VV _{v,max}	6374700.00	cm ³	im Abstand 529.7 cm
	VV v,min	-6746540.00	cm ³	Im Abstand -500.5 cm
Iorsionswiderstandsmoment	vv _t	4106420.00	cm ³	~ 1.07
Plastische Widerstandsmomente	VV y,pl	3674760.00	cm ³	a _{pl,y} :1.37
	VV z,pl	11825100.00	cm ³	^{ov} pl,z. 1.00
	vv _{u,pl}	3670330.00	cm ³	a 1 96
1 lifes and film M/Bills and a large to	vv _{v,pl}	11825600.00	cm3	~pl,v. 1.00
Hillswert für Woldverdrenung	Γω,Μ	-0.40		
Kindem sche Querschnittsstrecken	u,Kindem	-231.25	cm	
Quarachaitteatreakan	v,Kindem	12.57	cm	
Querschniusstrecken	r M,u	39.55	cm	
	I M,v	-200.04	CIII	
B.2 Lasten und Schnittgrößen Einzellastfälle

2.1 LASTFÄLLE

Last-	LF-Bezeichnung	EN 1990 + EN 1991-2; Straßenbrücke	Eigengewicht - Faktor in Richtung		3	
fall		Einwirkungskategorie	Aktiv	Х	Y	Z
LF1	EG	Ständige Lasten	\boxtimes	0.000	0.000	1.000
LF2	Aufbau u. Randbalken	Ständige Lasten				
LF3	Differenz EG	Ständige Lasten				
LF10	Wind -X	Windlasten – Fwk – Ständige				
		Bemessungssituationen				
LF11	Wind +X	Windlasten – Fwk – Ständige				
		Bemessungssituationen				
LF20	Temperatur +30	Temperatur (ohne Brand)				
LF21	Temperatur -28	Temperatur (ohne Brand)				
LF22	Temperatur +10	Temperatur (ohne Brand)				
LF23	Temperatur -5	Temperatur (ohne Brand)				
LF30	Stützensenkung Achse 70	Ungleichmäßige Setzungen				
LF31	Stützensenkung Achse 80	Ungleichmäßige Setzungen				
LF32	Stützensenkung Achse 90	Ungleichmäßige Setzungen				
LF33	Stützensenkung Achse 100	Ungleichmäßige Setzungen				
LF40	Vorspannung gerade	Vorspannung				
LF50	Bremsen +X	gr2 – Horizontalkräfte + LM1				
LF51	Bremsen -X	gr2 – Horizontalkräfte + LM1				
LF89	LM 1 Gleichlast voll	gr1a – LM1 + Fuß- und Fahrradweg				
LF90	LM 1 Gleichlast voll 1	gr1a – LM1 + Fuß- und Fahrradweg				
LF91	LM 1 Gleichlast voll 2	gr1a – LM1 + Fuß- und Fahrradweg				
LF92	LM 1 Gleichlast voll 3	gr1a – LM1 + Fuß- und Fahrradweg				
LF93	LM 1 Gleichlast voll 4	gr1a – LM1 + Fuß- und Fahrradweg				
LF102	Wanderlast x = 10.600 m, FA1 - Generierung von Wanderlasten auf Stäben	gr1a – LM1 + Fuß- und Fahrradweg				
LF190	LM 1 Torsion 1	gr1a – LM1 + Fuß- und Fahrradweg				
LF202	Wanderlast x = 10.600 m, FA1 - Generierung von Wanderlasten auf Stäben	gr1a – LM1 + Fuß- und Fahrradweg				
LF412	Wanderlast x = 60.000 m, FA1 - Generierung von Wanderlasten auf Stäben	gr1a – LM1 + Fuß- und Fahrradweg				

B.2 Schnittgrößen Lastkombinationen

Ergebn		
kombin.	Bezeichnung	Belastung
EK10	Wind	LF10 oder LF11
EK20	Temperatur	LK20 oder LK21 oder LK24 oder LK25
EK30	Stützensenkung	LF30 + LF31 + LF32 + LF33
EK50	Bremsen	LF50 oder LF51
EK100	LM1 TS Wanderlast mittig	LF100 oder bis LF124
EK101	LM 1 UDL Gleichlast	LF89 + LF90 + LF91 + LF92 + LF93
EK110	LM 1 Mmax gr1	EK100 + EK101
EK120	LM 1 Mmax gr2	EK50 + 0.75*EK100 + 0.35*EK101
EK200	LM1 UDS Torsion Wanderlast	LF200 oder bis LF224
EK210	LM 1 Torsion	LF190 + LF191 + LF192 + EK200
EK400	LM 3 Wander Einzellasten	LF400 oder bis LF427
EK410	LM 3	0.34*LF89 + 0.34*LF90 + 0.34*LF91 + 0.34*LF92 + 0.34*LF93 + 0.3*EK100 + EK400
EK450	LM1 od LM3	EK110 oder EK410 oder EK120 oder EK210
EK500	ULS Verkehr m VSp	LF40/s + 0.9*EK20 oder 0.9*EK10 + 1.35*LK1/s + 0.6*EK30 + 1.35*EK450
EK501	ULS Verkehr	0.9*EK20 oder 0.9*EK10 + 1.35*LK1/s + 0.6*EK30 + 1.35*EK450
EK502	ULS Wind	1.35*LK1/s + 1.5*EK10 + 0.6*EK30 + EK50 + EK450
EK503	ULS Temperatur	1.35*LK1/s + 1.5*EK20 + 0.6*EK30 + EK50 + EK450
EK504	ULS Setzung	0.9*EK20 oder 0.9*EK10 + 1.35*LK1/s + 1.2*EK30 + EK50 + EK450
EK510	ULS	EK501 oder bis EK504
EK511	ULS RF-Tendon	1.35*LF1/s + 1.35*LF2/s + 0.6*LF30 + 0.6*LF31 + 0.6*LF32 + 0.6*LF33 + LF40/s + 0.9*LK20 oder 0.9*LK21 oder 0.9*LK24 oder 0.9*LK25 oder 0.9*LF10 oder 0.9*LF11 + 0.41*LF100 oder bis LF124 + 0.46*LF89 + 0.46*LF90 + 0.46*LF91 + 0.46*LF92 + 0.46*LF93 + 1.35*LF400 oder bis LF427
EK600	SLS char Verkehr m VSP	LF40/s + 0.6*EK20 oder 0.6*EK10 + LK1/s + 0.5*EK30 + EK50 + EK450
EK601	SLS char Verkehr	0.6*EK20 oder 0.6*EK10 + LK1/s + 0.5*EK30 + EK50 + EK450
EK602	SLS char Wind	LK1/s + EK10 + 0.5*EK30 + 0.75*EK50 + 0.75*EK450
EK603	SLS char Temperatur	LK1/s + EK20 + 0.5*EK30 + 0.75*EK50 + 0.75*EK450
EK604	SLS char Setzung	0.6*EK20 oder 0.6*EK10 + LK1/s + EK30 + 0.75*EK50 + 0.75*EK450
EK605	SLS char	EK601 oder bis EK604
EK610	SLS quasi ständig	0.5*LF20 oder 0.5*LF21 oder 0.5*LK20 oder bis LK27 + LF40/s + LK1/s + 0.5*EK30 + 0.3*EK110
EK611	SLS quasi ständig o VSp	LK1/s + 0.5*EK30 + 0.3*EK110 + 0.5*LF20 oder 0.5*LF21 oder 0.5*LK20 oder bis LK27
EK612		1.35*LF1/s + LF40/s
EK613	SLS char RF-Tendon	LF40/s + 0.6*LF10 oder 0.6*LF11 oder 0.6*LK20 oder 0.6*LK21 oder 0.6*LK24 oder 0.6*LK25 + 0.34*LF89 + 0.34*LF90 + 0.34*LF91 + 0.34*LF92 + 0.34*LF93 + 0.3*LF100 oder bis LF124 + LK1/s + 0.5*LF30 + 0.5*LF31 + 0.5*LF32 + 0.5*LF33 + LF50 oder LF51 + LF400 oder bis LF427
EK614	SLS quasi ständig RF-Tendon	0.5 [*] LF30 + 0.5 [*] LF31 + 0.5 [*] LF32 + 0.5 [*] LF33 + LF40/s + 0.3 [*] LF89 + 0.3 [*] LF90 + 0.3 [*] LF91 + 0.3 [*] LF93 + LK1/s + 0.5 [*] LK20 der 0.5 [*] LK21 oder 0.5 [*] LK22 oder 0.3 [*] LF105 oder 0.3 [*] LF105 oder 0.3 [*] LF101 oder 0.5 [*] LK22 oder 0.5 [*] LK23 der 0.5 [*] LK24 der 0.5 [*] LK26 + 0.3 [*] LF100 oder 0.3 [*] LF101 oder 0.3 [*] LF102 oder 0.3 [*] LF103 oder 0.3 [*] LF104 oder 0.3 [*] LF105 oder 0.3 [*] LF106 oder 0.3 [*] LF107 oder 0.3 [*] LF108 oder 0.3 [*] LF109 oder 0.3 [*] LF110 oder 0.3 [*] LF117 oder 0.3 [*] LF112 oder 0.3 [*] LF113 oder 0.3 [*] LF114 oder 0.3 [*] LF115 oder 0.3 [*] LF117 oder 0.3 [*] LF118 oder 0.3 [*] LF119 oder 0.3 [*] LF116 oder 0.3 [*] LF118 oder 0.3 [*] LF119 oder 0.3 [*] LF120 oder 0.3 [*] LF123 oder 0.3 [*] LF124

B.3 Schnittgrößen GZT und GZG

C. Anhang C: Alternativentwurf Variante 1

C.1 GZG Begrenzung der Rissbreite zufolge Zwang

		stending rent							
	Projekt	Alternativentwurf Brücke B2314		Bearbeiter	Viktoriya Mi	ihaylova			
	Bauteil	Untere Gurtplatte		Datum	07.06.18				
Nach	weis zu	r Begrenzung der Rissbreite für zen	trischen Z	wang nac	h DIN EN 1	1992-1-1	:2011-01 und	NA:2013-04	
Einga	abe					I I	Baustoffkennw	erte:	
-	Geometri	e:	Dicke h =	25,0	cm		E _{cm} =	35.000 N/mm ²	(Tab. 3.1)
			Breite b =	100,0	cm		t _{ctm} =	3,50 N/mm ²	(Tab. 3.1)
-	Betongut	e:		C40/50			E _s =	200.000 N/mm ²	(3.2.7 (4))
-	wirksam	e Zugrestigkeit (7.3.2 (2)): (fruner / spater	Zwang)	50	%			0.00	(1147.0.0/0)
-	innerer Z	wang (z.B. Hydratationswarmeabilus) oder	I	(Inc	Innen / au	ußen	→ K =	0,80	(NA7.3.2(2)
	Verwend	ing langsam erhärtender Beton (7.3.2 (NA 6))	I	(Innerer Zw	ang) Ifia / nein1	Hinweis	· Keine Reduzi	erung der Beweh	runa
	(Bedingu	ng: $r = f_{cm2} / f_{cm28} \le 0.3$)		nom				crung der Denen	ung
-	Dauer de	r Einwirkung	1	1	[angzeitig of	oder K urz	zeitig] $\rightarrow k_t =$	0,4	
	(i.d.R.	ist nach NA 7.3.4 (2) das langzeitige Verbund	kriechen zu b	erücksichtige	a en, d.h. k _t =0,4	4.			
	Kurzze	eitige' Einwirkung mit k=0,6 darf nach Heft 600	DAfStb nur b	ei Nachweis	en mit 'selten	er Einwirk	ung' verwendet	werden.)	
-	Streckgre	nze Betonstahl:	f _{yk} =	550	N/mm²				
-	Zusätzlic	n wirkende gleichartige (zentrischer Zug) <u>äuße</u>	ere	nein	[ja / nein]		$\rightarrow \max \sigma_s = f_{yk}$	= 550,	,0 N/mm²
	Lastbe	eanspruchung (7.2(5)) ?			•				
-	Betondeo	kung der betrachteten Bewehrungslage:	c _{nom} =	4,0	cm				
-	Gewahlte	Rissbreite (Tab. 7.1DE):	w _k =	0,20	mm				
	Gewählt	e Bewehrung für eine Richtung und für eine	e Bauteilseite	e:					
	Jonanto	Durchmesser Φ_{et} / Stat	pabstand s1 =	16	10,0 n	nm cm			
		Durchmesser Φ _{s2} / Stat	pabstand s ₂ =	0	0,0 n	nm cm (2. Zeile bei 2 versch	hiedenen	
		(2. 5	Stabdurchmesser	Φ _{s2} mit 0,01mm	1		Durchmessern / Abs	ständen)	
			eingeben, tans i	licht verwendet)				
usa	mmenfa	ssung der gewählten Bewehrung:		± /+	21 + 21			10.0	
	Gewählte	Bewehrung in Bauteilseite:):	$\Phi_{sm} = (\Phi_s$	₁ "/s ₁ +Φ _{s2} "/	s ₂) / (Φ _{s1} /	$\frac{s_1 + \Phi_{s2}/s_2}{\text{vorb } \Delta} =$	16,0 mm	7
	Bewehru	aggrad:				0 =	vorh A, / A, =	$0.0161 = 1.61^{\circ}$	%
	Randabs	and Bewehrungsachse:				d₁ = c	$\phi_{nom} + \Phi_{em}/2 =$	4.8 cm	
	Wirkungs	bereich Aceff der Bewehrung (7.3.2(3)) mit hor	mach Bild 7.	1DE a)-d)		A	$h_{eff} = h_{c,eff} \times b =$	1210 cm ²	
	Ū			, ,			≤ h/2 x b =	1250 cm ²	
		Emailthurse has see bild 7 4DE d):							
		Ermittiung n _{eff} hach Blid 7. IDE d):					h / d ₁ =	5,2	
- mai	·	ermittung n _{eff} nach Bild 7.1DE d):	gropzupg	dor Dioch	roito (Kon	7 2 2)	$h / d_1 =$ $h_{c,eff} / d_1 =$	5,2 2,5	
Irmit	ttlung de	er erforderlichen Bewehrung zur Be	grenzung	der Rissbi	reite (Kap.	7.3.2)	$h / d_1 =$ $h_{c,eff} / d_1 =$	5,2 2,5	_
<u>Ermit</u>	ttlung de	er erforderlichen Bewehrung zur Be iche Bewehrung bei Erstrissbildung (Kap.	grenzung (7.3.2 (2) und	der Rissbi Gl. 7.1):	reite (Kap. erf A _s = I	<u>7.3.2)</u> k _c x k x f _{ct,e}	$h / d_1 =$ $h_{c,eff} / d_1 =$ $ff x A_{ct} / zul \sigma_s =$	5,2 2,5 10,8 cm ²	maßgebeno
<u>Ermit</u> -	- ttlung de Erforder mit: -	er erforderlichen Bewehrung zur Be iche Bewehrung bei Erstrissbildung (Kap. Beiwert für Spannungsverteilung im Rechted	grenzung (7.3.2 (2) und ckquerschnitt b	der Rissbi Gl. 7.1): pei zentrische	r eite (Kap. erf A _s = I em Zwang (G	7.3.2) k _c x k x f _{ct,e} Gl. 7.2)	$h / d_1 =$ $h_{c,eff} / d_1 =$ $f(x A_{ct} / zul \sigma_s =$	5,2 2,5 10,8 cm ²	maßgebeno
<u>Ermit</u> -	ttlung de Erforder mit: -	ermituung n _{eff} nach Bild 7.10E 0): er erforderlichen Bewehrung zur Be liche Bewehrung bei Erstrissbildung (Kap. Beiwert für Spannungsverteilung im Rechted (im Standardfall $\sigma_c = f_{ct,eff}$ ist $k_c = 1,0$):	grenzung (7.3.2 (2) und ckquerschnitt b	der Rissbr GI. 7.1): Dei zentrische	r <mark>eite (Kap.</mark> erf A _s = I em Zwang (G	7.3.2) k _c x k x f _{ct,e} Gl. 7.2)	$h / d_{1} =$ $h_{c,eff} / d_{1} =$ $ff \times A_{ct} / zul \sigma_{s} =$ $k_{c} =$	5,2 2,5 10,8 cm² 1,0 (k _c = 1.0 is	maßgebene st voreingestellt)
<u>ermit</u>	- Erforder mit: -	er erforderlichen Bewehrung zur Be iche Bewehrung bei Erstrissbildung (Kap. Beiwert für Spannungsverteilung im Rechted (im Standardfall $\sigma_c = f_{cteff}$ ist $k_c = 1,0$): Effektive Zugfestigkeit 7.3.2 (2):	grenzung (7.3.2 (2) und	der Rissbr Gl. 7.1): pei zentrisch	reite (Kap. erf A _s = I em Zwang (G	7.3.2) k _c x k x f _{ct,e} 31. 7.2)	$\begin{array}{l} h \ / \ d_1 = \\ h_{c,eff} \ / \ d_1 = \end{array}$ $\begin{array}{l} f_{r,eff} \ / \ d_1 = \\ f_{c,eff} \ / \ d_1 = \end{array}$ $\begin{array}{l} f_{r,eff} \ x \ A_{ct} \ / \ zul \ \sigma_s = \begin{bmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	5,2 2,5 10,8 cm² 1,0 (k _c = 1,0 is 1,75 N/mm²	maßgebend st voreingestellt)
<u>ermit</u>	- Erforder mit: - -	ermituung n _{eff} nach Bild 7.10E 0): er erforderlichen Bewehrung zur Be liche Bewehrung bei Erstrissbildung (Kap. Beiwert für Spannungsverteilung im Rechter (im Standardfall $\sigma_c = f_{\alpha,eff}$ ist $k_c = 1.0$): Effektive Zugfestigkeit 7.3.2 (2): A _{ct} Fläche der Zugzone im Zustand I	grenzung (7.3.2 (2) und skquerschnitt l	der Rissbr GI. 7.1): bei zentrisch	r <mark>eite (Kap.</mark> erf A _s = I em Zwang (G	7.3.2) k _c x k x f _{ct,e} SI. 7.2)	$h / d_1 =$ $h_{c,off} / d_1 =$ $f_{t} x A_{ct} / zul \sigma_s = \begin{bmatrix} k_c = \\ f_{ct,eff} = \end{bmatrix}$	5,2 2,5 10,8 cm² 1,0 (k _c = 1.0 is 1,75 N/mm²	maßgebend st voreingestellt)
<u>Ermit</u> -	ttlung de Erforderi mit: - -	ermituung n _{eff} nach Bild 7.10E d): er erforderlichen Bewehrung zur Be liche Bewehrung bei Erstrissbildung (Kap. Beiwert für Spannungsverteilung im Rechted (im Standardfall $\sigma_c = f_{ct,eff}$ ist $k_c = 1,0$): Effektive Zugfestigkeit 7.3.2 (2): A _{ct} Fläche der Zugzone im Zustand I (anteilig für jede Bauteilseite und Bewehrung	grenzung (7.3.2 (2) und skquerschnitt l gslage):	der Rissbu Gl. 7.1): bei zentrisch	r eite (Kap. erf A _s = I em Zwang (G	7.3.2) K _c x k x f _{ct,e} Sl. 7.2)	$\begin{array}{l} h / d_{1} = \\ h_{c,eff} / d_{1} = \end{array}$ $_{ff} \times A_{ct} / zul \; \sigma_{s} = \begin{bmatrix} \\ k_{c} = \\ f_{ct,eff} = \end{bmatrix}$ $A_{ct} = b \times h/2 = $	5,2 2,5 10,8 cm ² 1,0 (k _c = 1,0 is 1,75 N/mm ² 1.250 cm ²	maßgebend st voreingestellt)
<u>Ermit</u> -	- Erforderi mit: - - -	ermituung n _{eff} nach Bild 7.10E 0): er erforderlichen Bewehrung zur Be liche Bewehrung bei Erstrissbildung (Kap. Beiwert für Spannungsverteilung im Rechter (im Standardfall $\sigma_c = f_{cteff}$ ist $k_c = 1,0$): Effektive Zugfestigkeit 7.3.2 (2): A _{ct} Fläche der Zugzone im Zustand I (anteilig für jede Bauteilseite und Bewehrung Aufnehmbare Stahlspannung nach 7.3.3(2),	g renzung (7.3.2 (2) und Skquerschnitt I gslage): Tab. 7.2 DE u	der Rissbu GI. 7.1): Dei zentrischu und GI. 7.7 D	reite (Kap. erf A _s = I em Zwang (G E (abgeschl.	7.3.2) k _c x k x f _{ct.e} 31. 7.2) Rissbild):	$h / d_{1} =$ $h_{c,eff} / d_{1} =$ $f_{x} A_{ct} / zul \sigma_{s} = \begin{bmatrix} k_{c} = \\ f_{cL,eff} = \end{bmatrix}$ $A_{ct} = b x h/2 =$ $L^{20} (c + t)^{1/2}$	5,2 2,5 10,8 cm ² 1,0 (k _c = 1,0 is 1,75 N/mm ² 1.250 cm ²	maßgebend
<u>ermit</u>	t <mark>tlung d</mark> Erforder mit: - - -	ermituung n _{eff} nach Bid 7.10E 0): er erforderlichen Bewehrung zur Be liche Bewehrung bei Erstrissbildung (Kap. Beiwert für Spannungsverteilung im Rechted (im Standardfall $\sigma_c = f_{cteff}$ ist $k_c = 1,0$): Effektive Zugfestigkeit 7.3.2 (2): A _{ct} Fläche der Zugzone im Zustand I (anteilig für jede Bauteilseite und Bewehrung Aufnehmbare Stahlspannung nach 7.3.3(2),	g renzung (7.3.2 (2) und Skquerschnitt I gslage): Tab. 7.2 DE u	der Rissbr GI. 7.1): bei zentrischu ind GI. 7.7 D	reite (Kap. erf A ₆ = I em Zwang (G E (abgeschl. zul σ ₆ = (\	7.3.2) k _c x k x f _{ct.e} 31. 7.2) Rissbild): w _k x 3,48 x	$h / d_1 =$ $h_{c,eff} / d_1 =$ $f_{c,eff} / d_1 =$ $k_c =$ $f_{ct,eff} =$ $A_{ct} = b \times h/2 =$ $(10^6 / \Phi_s)^{1/2} =$	5,2 2,5 10,8 cm ² 1,0 (kc = 1,0 is 1,75 N/mm ² 1.250 cm ² 162,0 N/mm ²	maßgebend it voreingestellt)
<u>rmit</u>	t <mark>tlung d</mark> Erforderi mit: - - -	ermituung n _{eff} nach Bild 7.102 d): er erforderlichen Bewehrung zur Be liche Bewehrung bei Erstrissbildung (Kap. Beiwert für Spannungsverteilung im Rechted (im Standardfall $\sigma_c = f_{cl,eff}$ ist $k_c = 1,0$): Effektive Zugfestigkeit 7.3.2 (2): A _{ct} Fläche der Zugzone im Zustand I (anteilig für jede Bauteilseite und Bewehrung Aufnehmbare Stahlspannung nach 7.3.3(2), $8 \times (h - d)$	grenzung (7.3.2 (2) und skquerschnitt I gslage): Tab. 7.2 DE u 2,9	der Rissbi Gl. 7.1): und Gl. 7.7 D	reite (Kap. erf A _s = I em Zwang (G E (abgeschl. zul σ _s = (\ 9	7.3.2) k _c x k x f _{ct.e} 31. 7.2) Rissbild): w _k x 3,48 x	$\begin{array}{l} h / d_1 = \\ h_{c,eff} / d_1 = \end{array} \\ \\ f_{c,eff} / zul \sigma_s = \begin{bmatrix} \\ k_c = \\ f_{ct,eff} = \end{array} \\ \\ A_{ct} = b x h/2 = \\ 10^6 / \Phi_s^*)^{1/2} = \\ \leq max \sigma_s = \end{array}$	5,2 2,5 10,8 cm ² 1,0 (k _c = 1,0 is 1,75 N/mm ² 1.250 cm ² 162,0 N/mm ²	maßgebend at voreingestellt)
-	t <mark>tlung dı</mark> Erforderi mit: - - -	Ermituung n _{eff} nach Bild 7.10E 0): er erforderlichen Bewehrung zur Be iche Bewehrung bei Erstrissbildung (Kap. Beiwert für Spannungsverteilung im Rechted (im Standardfall $\sigma_c = f_{cl,eff}$ ist $k_c = 1,0$): Effektive Zugfestigkeit 7.3.2 (2): A _{cl} Fläche der Zugzone im Zustand I (anteilig für jede Bauteilseite und Bewehrung Aufnehmbare Stahlspannung nach 7.3.3(2), mit: $\Phi_s^* = d_s^* = d_s \times \frac{8 \times (h - d)}{k_c \times k \times h_{cr}} \times \frac{f_c}{f_c}$	grenzung (7.3.2 (2) und kquerschnitt I gslage): Tab. 7.2 DE u 2.9 ct.eff <	der Rissbr Gl. 7.1): bei zentrische and Gl. 7.7 D $d_s \times \frac{2}{f_{rr}}$	reite (Kap. erf A ₅ = I err Zwang (G E (abgeschl. zul $\sigma_5 = (x)$ $\frac{9}{erff} = 0$	7.3.2) k _o x k x f _{ct.e} 31. 7.2) Rissbild): w _k x 3,48 x 26,5 1	$\begin{array}{c} h \ / \ d_1 = \\ h_{c,eff} \ / \ d_1 = \end{array}$ $\begin{array}{c} k_c = \\ f_{cLeff} = \end{array}$ $A_{ct} \ zul \ \sigma_s = \begin{bmatrix} \\ k_c = \\ f_{cLeff} = \end{array}$ $A_{ct} = b \ x \ h/2 = $ $\begin{array}{c} 10^6 \ / \ \Phi_s^{*})^{1/2} = \\ \leq max \ \sigma_s = \end{array}$ mm (7.7DE, wob	5.2 2,5 10,8 cm ² 1,0 (k _c = 1.0 is 1,75 N/mm ² 1.250 cm ³ 162,0 N/mm ² 550,0 N/mm ²	maßgebend at voreingestellt)
<u>rmit</u>	ttlung de Erforder mit: - - - - -	Ermituung n _{eff} nach Bild 7.10E 0): er erforderlichen Bewehrung zur Be iche Bewehrung bei Erstrissbildung (Kap. Beiwert für Spannungsverteilung im Rechted (im Standardfall $\sigma_c = f_{at,eff}$ ist $k_c = 1,0$): Effektive Zugfestigkeit 7.3.2 (2): A _{ct} Fläche der Zugzone im Zustand I (anteilig für jede Bauteilseite und Bewehrung Aufnehmbare Stahlspannung nach 7.3.3(2), mit: $\Phi_s^* = d_s^* = d_s \times \frac{8 \times (h-d)}{k_c \times k \times h_{cr}} \times \frac{1}{f_d}$ iche Bewehrung bei abdeschlossenem Rie	tgrenzung (7.3.2 (2) und ckquerschnitt I gslage): Tab. 7.2 DE u 2,9 ct.eff <	der Rissbr Gl. 7.1): bei zentrische and Gl. 7.7 D $d_s \times \frac{2_r}{f_{ct,r}}$	reite (Kap. erf A ₅ = I ern Zwang (G E (abgeschl. zul σ ₅ = (\ 9 eff = erf	7.3.2) $k_{o} \times k \times f_{ot,o}$ $k_{i} \times k \times f_{ot,o}$ $k_{i} \times 3,48 \times 26,5 \text{ f}$ $A_{n} = f_{n-n} \times 2$	$h / d_{1} =$ $h_{c,eff} / d_{1} =$ $f_{c,eff} / zul \sigma_{s} = \begin{bmatrix} k_{c} = \\ f_{cLeff} = \end{bmatrix}$ $A_{ct} = b \times h/2 =$ $\leq max \sigma_{s} =$ $mm (7.7DE, wob$ $A_{c,eff} / zul \sigma_{s} = \begin{bmatrix} a_{c} \\ b_{s} \\ c_{c} \\ c_{c$	5.2 2,5 10,8 cm ² 1,0 (k _c = 1.0 is 1,75 N/mm ² 1.250 cm ² 162,0 N/mm ² 550,0 N/mm ² 550,0 N/mm ²	maßgebend at voreingestellt)
<u>rmit</u> -	Erforder 	Ermituung n _{eff} nach Bild 7.10E 0): er erforderlichen Bewehrung zur Be iche Bewehrung bei Erstrissbildung (Kap. Beiwert für Spannungsverteilung im Rechted (im Standardfall $\sigma_c = t_{cacf}$ ist $k_c = 1.0$): Effektive Zugfestigkeit 7.3.2 (2): A _{ct} Fläche der Zugzone im Zustand 1 (anteilig für jede Bauteilseite und Bewehrung Aufnehmbare Stahlspannung nach 7.3.3(2), mit: $\Phi_n^* = d_s^* = d_s \times \frac{8 \times (h - d)}{k_c \times k \times h_{cr}} \times \frac{1}{f_c}$ iche Bewehrung bei abgeschlossenem Ris 7.3.2 (NA.5) und Gl. NA.7.5.1):	Igrenzung (7.3.2 (2) und xkquerschnitt I gslage): Tab. 7.2 DE u 2,9 st.eff ssbild	der Rissbi Gl. 7.1): Dei zentrisch and Gl. 7.7 D $d_s \times \frac{2}{f_{ct,s}}$	reite (Kap. erf A _s = I erm Zwang (G E (abgeschl. zul $\sigma_s = (x)$ $\frac{9}{eff}$ = erf	7.3.2) $k_c \times k \times f_{ct.e}$ GI. 7.2) Rissbild): $w_k \times 3.48 \times 26.5 \text{ n}$ $A_s = f_{ct.eff} \times 3.50 \times 10^{-10}$	$\begin{array}{c} h / d_1 = \\ h_{c.off} / d_1 = \end{array} \\ \\ m x A_{ct} / zul \sigma_s = \begin{bmatrix} \\ k_{c} = \\ f_{ct.off} = \\ \\ A_{ct} = b x h / 2 = \\ \\ \\ \leq max \sigma_s = \\ \\ nm (7.7DE, wot \\ \\ x A_{c.off} / zul \sigma_s = \begin{bmatrix} \\ \end{bmatrix} \end{array}$	5,2 2,5 10,8 cm ² 1,0 (k _c = 1,0 is 1,75 N/mm ² 1,250 cm ² 162,0 N/mm ² 550,0 N/mm ² 550,0 N/mm ²	maßgebend at voreingestellt) nicht releva
<u>ermit</u>	Erforderi - - - - - - - - - - - - - - - - - - -	Ermituung n _{eff} nach Bild 7.10E 0): er erforderlichen Bewehrung zur Be liche Bewehrung bei Erstrissbildung (Kap. Beiwert für Spannungsverteilung im Rechted (im Standardfall $\sigma_c = f_{a,eff}$ ist $k_c = 1,0$): Effektive Zugfestigkeit 7.3.2 (2): A _{ct} Fläche der Zugzone im Zustand I (anteilig für jede Bauteilseite und Bewehrung Aufnehmbare Stahlspannung nach 7.3.3(2), mit: $\Phi_s^* = d_s^* = d_s \times \frac{8 \times (h - d)}{k_c \times k \times h_{cr}} \times \frac{f_{a}}{f_{c}}$ liche Bewehrung bei abgeschlossenem Ris 7.3.2 (NA.5) und Gl. NA.7.5.1): einzuhaltene Stahlspannung $\sigma_a \leq f_{tb}$ bzw. ≤ 0	grenzung (7.3.2 (2) und kquerschnitt I gslage): Tab. 7.2 DE u $\frac{2.9}{t.eff}$ < sibild 8.x f _{1x} bei zus	der Rissbr Gl. 7.1): Dei zentrisch and Gl. 7.7 D $d_s \times \frac{2}{f_{ct,s}}$ ätzlicher	reite (Kap. erf $A_s = I$ erm Zwang (G E (abgeschi. zul $\sigma_s = (x)$ $\frac{9}{eff} = eff$ erf A_s	7.3.2) $k_c \times k \times f_{ct,e}$ SI. 7.2) Rissbild): $w_k \times 3,48 \times 26,5 \text{ m}$ $A_s = f_{ct,eff} \times 26,5 \text{ m}$ $k \times f_{ct,eff} \times 26,5 \text{ m}$	$h / d_{1} = h_{c,off} / d_{1} =$ $h_{c,off} / d_{1} =$ $f_{c,off} / d_{1} =$ $k_{c} = f_{ct,off} = f_{ct,off} = h_{ct} + h_{ct}$	5,2 2,5 10,8 cm ² 1,0 (k _c = 1,0 is 1,75 N/mm ² 1.250 cm ² 162,0 N/mm ² 550,0 N/mm ² 550,0 N/mm ² 13,1 cm ² 3,2 cm ²	nicht releva
-	Erforderi mit: - - - Erforderi (Kap. jedoch äußero	Ermituung n _{eff} nach Bild 7.10E 0): er erforderlichen Bewehrung zur Be liche Bewehrung bei Erstrissbildung (Kap. Beiwert für Spannungsverteilung im Rechted (im Standardfall $\sigma_c = f_{a,eff}$ ist $k_c = 1,0$): Effektive Zugfestigkeit 7.3.2 (2): A _{ct} Fläche der Zugzone im Zustand I (anteilig für jede Bauteilseite und Bewehrung Aufnehmbare Stahlspannung nach 7.3.3(2), mit: $\Phi_s^* = d_s^* = d_s \times \frac{8 \times (h - d)}{k_c \times k \times h_{cr}} \times \frac{f_{cf}}{f_{cf}}$ liche Bewehrung bei abgeschlossenem Ris 7.3.2 (NA-5) und Gi. NA.7.5.1): einzuhaltene Stahlspannung $\sigma_s \leq f_{p_s}$ bzw. ≤ 0 ar Lastbeanspruchung (7.2(5)):	grenzung (7.3.2 (2) und ckquerschnitt I gslage): Tab. 7.2 DE u $\frac{2.9}{ct,eff}$ < ssbild 8 x f _{jk} bei zus	der Rissbr Gl. 7.1): Dei zentrisch and Gl. 7.7 D $d_s \times \frac{2_r}{f_{ct,s}}$	reite (Kap. erf A _s = I erm Zwang (G E (abgeschl. zul σ _s = (v 9 <i>eff</i> = eff erf A _s ;	$\begin{array}{c} \textbf{7.3.2)}\\ k_{c} \times k \times f_{ct,e}\\ \text{sl. 7.2)}\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$\begin{array}{c} h \ / \ d_{1} = \\ h_{c,off} \ / \ d_{1} = \end{array}$ $\begin{array}{c} f_{c,off} \ / \ d_{1} = \end{array}$ $\begin{array}{c} f_{c,off} \ / \ d_{1} = \end{array}$ $\begin{array}{c} f_{c,off} \ / \ d_{2} = \end{array}$	5,2 2,5 10,8 cm ² 1,0 (k _c = 1,0 is 1,75 N/mm ² 1.250 cm ² 162,0 N/mm ² 550,0 N/mm ² 550,0 N/mm ² 13,1 cm ² 3,2 cm ²	nicht releva
- -	ttlung d Erforder mit: - - - - - - - - - - - - - - - - - - -	Ermituung n _{eff} nach Bild 7.10E 0): er erforderlichen Bewehrung zur Be liche Bewehrung bei Erstrissbildung (Kap. Beiwert für Spannungsverteilung im Rechted (im Standardfall $\sigma_c = f_{\alpha,eff}$ ist $k_c = 1,0$): Effektive Zugfestigkeit 7.3.2 (2): A _{ct} Fläche der Zugzone im Zustand I (anteilig für jede Bauteilseite und Bewehrung Aufnehmbare Stahlspannung nach 7.3.3(2), mit: $\Phi_s^* = d_s^* = d_s \times \frac{8 \times (h - d)}{k_c \times k \times h_{cr}} \times \frac{f_{cr}}{f_{cr}}$ liche Bewehrung bei abgeschlossenem Ris 7.3.2 (NA-5) und Gl. NA.7.5.1): einzuhaltene Stahlspannung $\sigma_s \leq f_{pk}$ bzw. ≤ 0 er Lastbeanspruchung (7.2(5)):	grenzung (7.3.2 (2) und kquerschnitt I gslage): Tab. 7.2 DE u $\frac{2.9}{ct,eff}$ < ssbild 8 x f _{jk} bei zus	der Rissbr Gl. 7.1): Dei zentrisch and Gl. 7.7 D $d_s \times \frac{2_s}{f_{ct,s}}$	reite (Kap. ef A _s = em Zwang (G E (abgeschl, zul σ _s = (v 9 <i>eff</i> = eff eff af eff A _s ;	$\begin{array}{l} \hline \textbf{7.3.2)} \\ k_{o} \ge k \ge f_{ct,eff} \\ \hline \textbf{k}_{o} \ge k \ge f_{ct,eff} \\ \end{array}$	$\begin{array}{l} h \ / \ d_1 = \\ h_{c,off} \ / \ d_1 = \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	5,2 2,5 10,8 cm ² 1,0 (k _c = 1,0 is 1,75 N/mm ² 1.250 cm ² 162,0 N/mm ² 550,0 N/mm ² 550,0 N/mm ² 13,1 cm ² 3,2 cm ²	nicht releva
Ermit - - Direk	ttlung de Erforder mit: - - - - - - - - - - - - - - - - - - -	Ermituung n _{eff} nach Bild 7.10E 0): er erforderlichen Bewehrung zur Be liche Bewehrung bei Erstrissbildung (Kap. Beiwert für Spannungsverteilung im Rechted (im Standardfall $\sigma_c = f_{ct,eff}$ ist $k_c = 1,0$): Effektive Zugfestigkeit 7.3.2 (2): A _{ct} Fläche der Zugzone im Zustand I (anteilig für Jede Bauteilseite und Bewehrung Aufnehmbare Stahlspannung nach 7.3.3(2), mit: $\Phi_s^* = d_s^* = d_s \times \frac{8 \times (h - d)}{k_c \times k \times h_{cr}} \times \frac{f_c}{f_c}$ liche Bewehrung bei abgeschlossenem Ris 7.3.2 (NA.5) und Gl. NA.7.5.1): te inzuhaltene Stahlspannung $\sigma_s \leq f_{sk}$ bzw. ≤ 0 er Lastbeanspruchung (7.2(5)): chnung der Rissbreite (Kap. 7.3.4)	grenzung (7.3.2 (2) und kquerschnitt I gslage): Tab. 7.2 DE u $\frac{2.9}{ct.eff}$ < ssbild (8 x f _{yk} bei zus	der Rissbr Gl. 7.1): Dei zentrisch und Gl. 7.7 D $d_s \times \frac{2}{f_{ct,s}}$ ätzlicher	reite (Kap. erf A _s = i erm Zwang (G E (abgeschi. zul σ _s = (v 9 = erf = erf = erf A _s ;	$\begin{array}{c} \textbf{7.3.2)}\\ k_{c} \times k \times f_{ct,e}\\ \text{sl. 7.2)}\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$\begin{array}{l} h \ / \ d_{1} = \\ h_{c,off} \ / \ d_{1} = \end{array}$ $\begin{array}{l} m x \ A_{ct} \ / \ zul \ \sigma_{s} = \begin{bmatrix} \\ k_{c} = \\ f_{ct,eff} \ / \ a \\ \end{bmatrix}$ $\begin{array}{l} k_{c} = \\ f_{ct,eff} \ / \ a \\ \end{bmatrix}$ $\begin{array}{l} A_{ct} = b \ x \ h/2 = \\ 10^{6} \ / \ \Phi_{s}^{*} \)^{1/2} = \\ \leq max \ \sigma_{s} = \\ mm \ (7.7DE, \ wot)$ $\begin{array}{l} A_{ct} \ / \ max \ \sigma_{s} = \begin{bmatrix} \\ x \ A_{ct} \ / \ max \ \sigma_{s} \end{bmatrix}$	5,2 2,5 10,8 cm ² 1,0 (k _c = 1,0 is 1,75 N/mm ² 1.250 cm ² 162,0 N/mm ² 550,0 N/mm ² 550,0 N/mm ² 13,1 cm ² 3,2 cm ²	nicht releva
Ermit - - <u>)irek</u>	ttlung dr Erforderi mit: - - - - - - - - - - - - - - - - - - -	Ermituung n _{eff} nach Bild 7.10E 0): er erforderlichen Bewehrung zur Be liche Bewehrung bei Erstrissbildung (Kap. Beiwert für Spannungsverteilung im Rechted (im Standardfall $\sigma_c = f_{cleff}$ ist $k_c = 1,0$): Effektive Zugfestigkeit 7.3.2 (2): A _{ct} Fläche der Zugzone im Zustand I (anteilig für jede Bauteilseite und Bewehrung Aufnehmbare Stahlspannung nach 7.3.3(2), mit: $\Phi_s^* = d_s^* = d_s \times \frac{8 \times (h - d)}{k_c \times k \times h_{cr}} \times \frac{f_i}{f_i}$ liche Bewehrung bei abgeschlossenem Ris 7.3.2 (NA.5) und Gl. NA.7.5.1): einzuhaltene Stahlspannung $\sigma_s \leq f_{y_b}$ bzw. ≤ 0 er Lastbeanspruchung (7.2(5)): chnung der Rissbreite (Kap. 7.3.4)	$\frac{1}{(2 + 2)^{1/2}} \frac{1}{(2 + 2)^{1/2}} \frac{1}$	der Rissbr Gl. 7.1): Dei zentrisch und Gl. 7.7 D $d_s \times \frac{2_r}{f_{ct,s}}$ ätzlicher	reite (Kap. erf A _s = i erm Zwang (G E (abgeschl. zul $\sigma_s = (v$ $\frac{9}{eff} = erf$ erf A _s ; $\rho_{p,eff}$)	7.3.2) $k_c \times k \times f_{ct,e}$ SI. 7.2) Rissbild): $w_k \times 3.48 \times 26.5 \text{ m}$ $A_s = f_{ct,eff} \times k \times f_{ct,eff}$	h / d ₁ = h _{c.off} / d ₁ = f _x A _{ct} / zul σ_s = $\begin{bmatrix} k_c = \\ f_{ct.off} = \\ \leq max \sigma_s = \end{bmatrix}$ $M_c = b x h/2 = max \sigma_s$ $M_c = b x h/2 = max \sigma_s$ $M_c = b x h/2 = max \sigma_s$	5,2 2,5 10,8 cm ² 1,0 (k _c = 1,0 is 1,75 N/mm ² 1.250 cm ² 162,0 N/mm ² 550,0 N/mm ² 550,0 N/mm ² 0ei h _a =h) 13,1 cm ²	maßgebend st voreingestellt) nicht releva
Ermit - - Direk	ttlung de Erforderi mit: - - - - - - - - - - - - - - - - - - -	Ermituung n _{eff} nach Bild 7.10E 0): er erforderlichen Bewehrung zur Be- iche Bewehrung bei Erstrissbildung (Kap. Beiwert für Spannungsverteilung im Rechted (im Standardfall $\sigma_c = f_{cteff}$ ist $k_c = 1,0$): Effektive Zugfestigkeit 7.3.2 (2): A _{ct} Fläche der Zugzone im Zustand I (anteilig für jede Bauteilseite und Bewehrung Aufnehmbare Stahlspannung nach 7.3.3(2), mit: $\Phi_s^* = d_s^* = d_s \times \frac{8 \times (h - d)}{k_c \times k \times h_{cr}} \times \frac{1}{f_c}$ iche Bewehrung bei abgeschlossenem Ris 7.3.2 (NA-5) und Gl. NA.7.5.1): einzuhaltene Stahlspannung $\sigma_s \leq f_{t_s}$ bzw. ≤ 0 er Lastbeanspruchung (7.2(5)): chnung der Rissbreite (Kap. 7.3.4) eidehnung Stahl/ Beton	$\frac{1}{3} \frac{1}{3} \frac{1}$	der Rissbi Gl. 7.1): Dei zentrische and Gl. 7.7 D $d_s \times \frac{2_r}{f_{ct,s}}$ ätzlicher $\frac{dt}{dt} (1 + \alpha_e + \frac{1}{r_e})$	reite (Kap. erf $A_s = i$ erm Zwang (G E (abgeschl. zul $\sigma_s = (x$ $\frac{9}{eff} = eff$ erf A_s ; $\rho_{p,eff}$) =	$\begin{array}{c} \hline \textbf{7.3.2} \\ k_c \times k \times f_{ct,e} \\ \hline \textbf{31. 7.2} \\ \hline \textbf{32. 7.2} \\ \hline \textbf{33. 7.2} \\ \hline \textbf{34. 8} \\ \hline \textbf{35. 8} \\ \hline \textbf{36. 8}$	h / d ₁ = h _{c.eff} / d ₁ = f _{c.eff} / d ₁ = f _{c.eff} / zul $\sigma_s = \begin{bmatrix} k_c = f_{ct.eff} = 0 \\ \leq max \sigma_s = 0 \\ mm (7.7DE, wot)$: A _{c.eff} / zul $\sigma_s = \begin{bmatrix} c_c \sigma_s = f_{ct.eff} \\ < r_{c.eff} < r_{ct.eff} \\ < r_{ct.eff} < r_{ct.ef$	5.2 2,5 10,8 cm ² 1,0 (k _c = 1.0 is 1,75 N/mm ² 1.250 cm ² 162,0 N/mm ² 550,0 N/mm ² 550,0 N/mm ² 13,1 cm ² 3,2 cm ²	nicht releva
Ermit - - Direk	Erforderi Mit: - - - Erforderi (Kap. jedoch äußeri te Beren Differenz (GI. 7.9):	Ermituung n _{eff} nach Bild 7.10E 0): er erforderlichen Bewehrung zur Be iche Bewehrung bei Erstrissbildung (Kap. Beiwert für Spannungsverteilung im Rechted (im Standardfall $\sigma_c = t_{ateff}$ ist $k_c = 1,0$): Effektive Zugfestigkeit 7.3.2 (2): A_{ct} Fläche der Zugzone im Zustand 1 (anteilig für jede Bauteilseite und Bewehrung Aufnehmbare Stahlspannung nach 7.3.3(2), mit: $\Phi_s^* = d_s^* = d_s \times \frac{8 \times (h - d)}{k_c \times k \times h_{crr}} \times \frac{1}{f_c}$ liche Bewehrung bei abgeschlossenem Ris 7.3.2 (NA.5) und GI. NA.7.5.1): einzuhaltene Stahlspannung $\sigma_s \le f_{y_s}$ bzw. ≤ 0 ar Lastbeanspruchung (7.2(5)): chnung der Rissbreite (Kap. 7.3.4) stehnung Stahl/ Beton $\varepsilon_{sm} - \varepsilon_{cm} = -$	$\frac{\text{grenzung }t}{\text{7.3.2 (2) und}}$ $\frac{\text{gslage}):}{\text{Tab. 7.2 DE t}}$ $\frac{2,9}{\text{ct.eff}} < \frac{2,9}{\text{ssbild}}$ $8 \times f_{\text{yk}} \text{ bei zus}$ $\frac{\sigma_{\text{s}} - k_{\text{t}} \cdot \frac{f_{\text{ct.eff}}}{\rho_{\text{p.eff}}}$	der Rissbi GI. 7.1): Dei zentrisch and GI. 7.7 D $d_s \times \frac{2}{f_{ct,s}}$ ätzlicher $\frac{dt}{dt} (1 + \alpha_e \cdot \frac{1}{E_s})$	reite (Kap. erf A _s = I err Zwang (G E (abgeschl. zul $\sigma_s = (x)$ $\frac{9}{eff} =$ erf A _s ; $\frac{\rho_{p,eff}}{2} =$	$\begin{array}{c} \textbf{7.3.2)}\\ k_c \times k \times f_{ct,e}\\ sl. 7.2)\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	h / d ₁ = h _{c.off} / d ₁ = f _{c.off} / d ₁ = $k_{c} = f_{ct,eff} = f_{ct,eff$	5,2 2,5 10,8 cm ² 1,0 (k _c = 1,0 is 1,75 N/mm ² 1,250 cm ² 162,0 N/mm ² 550,0 N/mm ² 550,0 N/mm ² 3,1 cm ² 3,2 cm ²	maßgebend at voreingestellt) nicht releva
Ermit - - Direk	ttlung de Erforder mit: - - - - - - - - - - - - - - - - - - -	Ermituung n _{eff} nach Bild 7.10E 0): er erforderlichen Bewehrung zur Be iche Bewehrung bei Erstrissbildung (Kap. Beiwert für Spannungsverteilung im Rechted (im Standardfall $\sigma_c = t_{cacf}$ ist $k_c = 1.0$): Effektive Zugfestigkeit 7.3.2 (2): A _{ct} Fläche der Zugzone im Zustand 1 (anteilig für jede Bauteilseite und Bewehrung Aufnehmbare Stahlspannung nach 7.3.3(2), mit: $\Phi_n^* = d_s^* = d_s \times \frac{8 \times (h - d)}{k_c \times k \times h_{cr}} \times \frac{1}{f_c}$ liche Bewehrung bei abgeschlossenem Ris 7.3.2 (NA.5) und Gi. NA.7.5.1): einzuhaltene Stahlspannung $\sigma_n \le f_{y_h}$ bzw. ≤ 0 ar Lastbeanspruchung (7.2(5)): chnung der Rissbreite (Kap. 7.3.4) kdehnung Stahl/ Beton $\varepsilon_{sm} - \varepsilon_{cm} = -1$	$\frac{grenzung}{gslage):}$ Tab. 7.2 DE u $\frac{2.9}{ct.eff} < \frac{2.9}{ssbild}$ $\sigma_{s} - k_{t} \cdot \frac{f_{ot.e}}{\rho_{p.e}}$	der Rissbr GI. 7.1): GI. 7.1): and GI. 7.7 D $d_s \times \frac{2_s}{f_{ct,s}}$ ätzlicher $\frac{dt}{dt} (1 + \alpha_e \cdot \frac{1}{s})$ $E_s \Phi_s$	reite (Kap. erf A _s = 1 erm Zwang (G E (abgeschi. zul $\sigma_s = (x)$ $\frac{9}{eff} = erf$ erf A _s : $\frac{\rho_{p,eff}}{2} = erf$	$\frac{7.3.2)}{k_c \times k \times f_{ct,e}}$ $k_c \times k \times f_{ct,e}$ $k_s \times 3.48 \times 26.5 + 4.5 \times 26.5 + 4.5 \times 10^{-10}$ $k \times f_{ct,eff} \times 2.5 \times 10^{-10}$ $k \times f_{ct,eff} \times 10^{-10}$ $0,00020$	h / d ₁ = h _{c.off} / d ₁ = f _{t.off} / d ₁ = f _{t.off} / zul $\sigma_s = \begin{bmatrix} k_c = f_{t.off} = 0 \\ f_{t.off} = b x h/2 = 0 \\ \le max \sigma_s = 0 \\ \le max \sigma_s = 0 \\ \le max \sigma_s = \begin{bmatrix} k_c = 0 \\ max \sigma_s = 0 \\ \le max \sigma_s = 0 \end{bmatrix}$ is A _{c.off} / zul $\sigma_s = \begin{bmatrix} k_c = 0 \\ max \sigma_s = 0 \\ \le 0.6 \cdot \frac{\sigma_s}{E_s} = 0 \\ = 0.5 \cdot \frac{\sigma_s}{E_s} = 0 \\ = 0 \\ = 0.5 \cdot \frac{\sigma_s}{E_s} = 0 \\$	5,2 2,5 10,8 cm ² 1,0 (k _c = 1,0 is 1,75 N/mm ² 1,250 cm ² 162,0 N/mm ² 550,0 N/mm ² 550,0 N/mm ² 0,0 N/mm ² 13,1 cm ² 3,2 cm ²	maßgebend at voreingestellt) nicht releva
Ermit - Direk	ttlung di Erforder mit: - - - - - - - - - - - - - - - - - - -	Ermituung n _{eff} nach Bild 7.10E 0): er erforderlichen Bewehrung zur Be iche Bewehrung bei Erstrissbildung (Kap. Beiwert für Spannungsverteilung im Rechted (im Standardfall $\sigma_c = t_{cac}$ ist $k_c = 1.0$): Effektive Zugfestigkeit 7.3.2 (2): A _{ct} Fläche der Zugzone im Zustand 1 (anteilig für jede Bauteilseite und Bewehrung Aufnehmbare Stahlspannung nach 7.3.3(2), mit: $\Phi_n^* = d_s^* = d_s \times \frac{8 \times (h - d)}{k_c \times k \times h_{cr}} \times \frac{1}{f_c}$ iche Bewehrung bei abgeschlossenem Ris 7.3.2 (NA.5) und Gl. NA.7.5.1): einzuhaltene Stahlspannung $\sigma_a \leq t_{jk}$ bzw. ≤ 0 er Lastbeanspruchung (7.2(5)): chnung der Rissbreite (Kap. 7.3.4) er Rissabstand (Gl. 7.11 und NA 7.3.4(3)):	$\frac{grenzung i}{r, 3.2 (2) und}$ ckquerschnitt I gslage): Tab. 7.2 DE u $\frac{2.9}{ct, eff} < \frac{2.9}{ssbild}$ $8 x f_{yk} bei zus$ $\sigma_{s} - k_{1} \cdot \frac{f_{ct,e}}{r_{p,e}}$	der Rissbr GI. 7.1): GI. 7.1): and GI. 7.7 D $d_s \times \frac{2}{f_{ct,s}}$ ätzlicher $\frac{df}{df} (1 + \alpha_e \cdot \frac{1}{f_{ct,s}})$	reite (Kap. erf A ₅ = err Zwang (G E (abgeschl. zul $\sigma_s = (x)$ $\frac{9}{eff} = erf$ erf A ₅ : $\rho_{p,eff}$) = = 267 n	$\frac{7.3.2)}{k_{o} \times k \times f_{ot,o}}$ $k_{o} \times k \times f_{ot,o}$ $k_{o} \times k \times f_{ot,o}$ $k_{o} \times k \times f_{ot,o}$ $k_{o} \times f_{ot,o}$ $k \times f_{ot,o}$ $0,00020$ $hm \leq \frac{c}{3.4}$	h / d ₁ = h _{c.off} / d ₁ = h _{c.off} / d ₁ = ft x A _{ct} / zul $\sigma_s = \begin{bmatrix} k_c \\ f_{ct.off} = k_c \\ s \\ 10^6 / \Phi_s^*)^{1/2} \\ \leq max \sigma_s = \end{bmatrix}$ mm (7.7DE, work i A _{c.off} / zul $\sigma_s = \begin{bmatrix} k_c \\ c_c \\ c_c$	5,2 2,5 10,8 cm ² 1,0 (k _c = 1,0 is 1,75 N/mm ² 1,250 cm ² 162,0 N/mm ² 550,0 N/mm ² 550,0 N/mm ² 0,0 N/mm ² 13,1 cm ² 3,2 cm ² 0,00026 (maßgebend) 221 mm	nicht releva
- Direk	ttlung de Erforderi mit: - - - - - - - - - - - - - - - - - - -	Ermituung n _{eff} nach Bild 7.10E 0): er erforderlichen Bewehrung zur Be liche Bewehrung bei Erstrissbildung (Kap. Beiwert für Spannungsverteilung im Rechter (im Standardfall $\sigma_c = f_{ct,eff}$ ist $k_c = 1,0$): Effektive Zugfestigkeit 7.3.2 (2): Art Fläche der Zugzone im Zustand I (anteilig für jede Bauteilseite und Bewehrung Aufnehmbare Stahlspannung nach 7.3.3(2), mit: $\Phi_s^* = d_s^* = d_s \times \frac{8 \times (h-d)}{k_c \times k \times h_{cr}} \times \frac{f_{cf}}{f_c}$ liche Bewehrung bei abgeschlossenem Ris 7.3.2 (NA-5) und Gl. NA.7.5.1): einzuhaltene Stahlspannung $\sigma_s \leq f_{y_s}$ bzw. ≤ 0 er Lastbeanspruchung (7.2(5)): chnung der Rissbreite (Kap. 7.3.4) er Rissabstand (Gl. 7.11 und NA 7.3.4(3)): Vorbandene Stahlspannung im Erstrice noch	$\frac{\text{grenzung } t}{\text{7.3.2 (2) und}}$ $\frac{\text{gslage}}{\text{gslage}}:$ Tab. 7.2 DE u $\frac{2.9}{\text{steff}} \leq \frac{2.9}{\text{sbild}}$ $8 \times f_{jk} \text{ bei zus}$ $\frac{\sigma_{s} - k_{t} \cdot \frac{f_{\text{ct,ef}}}{\rho_{p,e}}}{s_{r,max}} = \frac{1}{3}$ $5 \times \frac{1}{3} \times \frac{1}{3}$	der Rissbr GI. 7.1): GI. 7.1): and GI. 7.7 D $d_s \times \frac{2_s}{f_{ct,s}}$ Lätzlicher $\frac{df}{dt} (1 + \alpha_{e} \cdot , \frac{2_s}{E_s})$ $\frac{\Phi}{5} \cdot \rho_{p,eff}$	reite (Kap. erf A ₅ = 1 erf A ₅ = 1 erf A ₅ = 1 $zul \sigma_s = (x - y)^2$ erf $r = 0$ erf A ₅ = 1 $r^2 p_{eff} = 1$ $r^2 p_{eff} = 1$ r	7.3.2) $k_{o} \ge k \ge f_{ot,eff}$ $k_{o} \ge k \ge f_{ot,eff}$ $k_{o} \ge k \ge f_{ot,eff}$ $k \ge k \ge f_{ot,eff}$ $k \ge k \ge f_{ot,eff}$ $k \ge k \ge f_{ot,eff}$	h / d ₁ = h _{coff} / d ₁ = m × A _{ct} / zul σ _s = [k _c = f _{cteff} = A _{ct} = b × h/2 = 10 ⁶ / Φ _s [*]) ^{1/2} = ≤ max σ _s = mm (7.7DE, wot A _{ceff} / zul σ _s = [k _c A _{ct} / max σ _s = [k _c A _{ct} / max σ _s = [k _c A _{ct} / max σ _s = [k _c A _{ct} / max σ _s = [k _c A _{ct} / max σ _s = [k _c A _{ct} / max σ _s = [k _c A _{ct} / max σ _s = [k _c A _{ct} / max σ _s = [k _c A _{ct} / max σ _s = [k _c A _{ct} / max σ _s = [k _c A _{ct} / max σ _s = [k _c A _{ct} / max σ _s = [k _c A _{ct} / max σ _s = [5,2 2,5 10,8 cm ² 1,0 (k _c = 1,0 is 1,75 N/mm ² 1,250 cm ² 162,0 N/mm ² 550,0 N/mm ² 550,0 N/mm ² 0,00026 (maßgebend) 221 mm naßgebend) 87 0 M/mm ²	nicht releva
<u>-</u> Direk	Erforderi mit: - - - - - - - - - - - - - - - - - - -	Ermituung n _{eff} nach Bild 7.10E 0): er erforderlichen Bewehrung zur Be- liche Bewehrung bei Erstrissbildung (Kap. Beiwert für Spannungsverteilung im Rechted (im Standardfall $\sigma_c = f_{cl,eff}$ ist $k_c = 1,0$): Effektive Zugfestigkeit 7.3.2 (2): A _{ct} Fläche der Zugzone im Zustand I (anteilig für jede Bauteilseite und Bewehrung Aufnehmbare Stahlspannung nach 7.3.3(2), mit: $\Phi_s^* = d_s^* = d_s \times \frac{8 \times (h-d)}{k_c \times k \times h_{cr}} \times \frac{f_s}{f_s}$ liche Bewehrung bei abgeschlossenem Ris 7.3.2 (NA.5) und Gl. NA.7.5.1): einzuhaltene Stahlspannung $\sigma_s \leq t_{ps}$ bzw. ≤ 0 er Lastbeanspruchung (7.2(5)): chnung der Rissbreite (Kap. 7.3.4) et dehnung Stahl/ Beton $\varepsilon_{sm} - \varepsilon_{cm} = -\frac{1}{2}$ er Rissabstand (Gl. 7.11 und NA 7.3.4(3)): Vorhandene Stahlspannung im Erstriss nach	Egrenzung (7.3.2 (2) und kquerschnitt I gslage): Tab. 7.2 DE u $\frac{2.9}{ct,eff}$ < $\sigma_{s} - k_{t} \cdot \frac{f_{ot,e}}{\rho_{p,e}}$ $s_{r,max} = \frac{1}{3}$ 17.3.2 (2):	der Rissbi Gl. 7.1): Dei zentrische and Gl. 7.7 D $d_s \times \frac{2_r}{f_{ct,s}}$ ätzlicher $\frac{eff}{ff} (1 + \alpha_e \cdot \frac{1}{r_e})$ $\frac{\Phi_s}{r_e} - \frac{\Phi_s}{r_e}$	reite (Kap. erf A ₅ = 1 err A ₅ = 1 err Zwang (G E (abgeschl. zul $\sigma_5 = (x)$ $\frac{9}{eff} = err$ erf A ₅ : $\frac{\rho_{p,eff}}{r} = 267$ n vorh $\sigma_5 = k_5$:	$\begin{array}{l} \hline \textbf{7.3.2)}\\ k_{c} \times k \times f_{ct,e}\\ \text{sl. 7.2)}\\ \hline \text{Rissbild):}\\ w_{k} \times 3,48 \times \\ 26,5 \text{ f}\\ \text{As} = f_{ct,eff} \times \\ \geq k \times f_{ct,eff} \times \\ 0,00020\\ \\ \text{nm} \leq \frac{c}{3,1}\\ \times k \times f_{ct,eff} \times \\ \text{determined} \end{array}$	h / d ₁ = h _{coff} / d ₁ = $\frac{k_{c}}{k_{c}} = \int_{c_{c}} \frac{k_{c}}{k_{c}} + \int_{c_{c}} \frac{k_{c}}{k_{c}} = \int_{c_{c}} \frac{k_{c}}{k_{c}} = \int_{c_{c}} \frac{k_{c}}{k_{c}} + \int_{c_{c$	5.2 2,5 10,8 cm ² 1,0 (k _c = 1.0 is 1,75 N/mm ² 1.250 cm ² 162,0 N/mm ² 550,0 N/mm ² 3,2 cm ² 0,00026 (maßgebend) 221 mm naßgebend) 87,0 N/mm ²	nicht releva
- Direk	ttlung de Erforder mit: - - - - - - - - - - - - - - - - - - -	Ermituung n _{eff} nach Bild 7.10E 0): er erforderlichen Bewehrung zur Be- iche Bewehrung bei Erstrissbildung (Kap. Beiwert für Spannungsverteilung im Rechted (im Standardfall $\sigma_c = f_{cteff}$ ist $k_c = 1.0$): Effektive Zugfestigkeit 7.3.2 (2): A_{ct} Fläche der Zugzone im Zustand I (anteilig für jede Bauteilseite und Bewehrung Aufnehmbare Stahlspannung nach 7.3.3(2), mit: $\Phi_s^* = d_s^* = d_s \times \frac{8 \times (h - d)}{k_c \times k \times h_{cr}} \times \frac{1}{f_c}$ iche Bewehrung bei abgeschlossenem Ris 7.3.2 (NA.5) und Gl. NA.7.5.1): einzuhaltene Stahlspannung $\sigma_a \leq f_{th}$ bzw. ≤ 0 er Lastbeanspruchung (7.2(5)): chnung der Rissbreite (Kap. 7.3.4) et dehnung Stahl/ Beton $\varepsilon_{sm} - \varepsilon_{cm} = -$ er Rissabstand (Gl. 7.11 und NA 7.3.4(3)): Vorhandene Stahlspannung im Erstriss nach (σ_s wird um 15% verringert bei Verwendung	$\frac{\text{grenzung }t}{\text{7.3.2 (2) und}}$ $\frac{\text{skquerschnitt I}}{\text{Tab. 7.2 DE u}}$ $\frac{2,9}{\text{ssbild}} < \frac{2,9}{\text{ssbild}}$ $\frac{\sigma_{\text{s}} - k_{\text{t}} \cdot \frac{f_{\text{ct,ef}}}{P_{\text{p,e}}} < \frac{1}{3}}{\text{s}_{\text{r,max}}} = \frac{1}{3}$ $\frac{1}{3} \cdot 7.3.2 (2):$ von langsam	der Rissbi GI. 7.1): Dei zentrisch and GI. 7.7 D $d_s \times \frac{2}{f_{ct,s}}$ ätzlicher $\frac{df}{m} (1 + \alpha_e \cdot , \frac{df}{f_{ct,s}})$ $\frac{\Phi}{f_{ct,s}} + \frac{\Phi}{f_{ct,s}}$ $\frac{\Phi}{f_{ct,s}} + \frac{\Phi}{f_{ct,s}}$	reite (Kap. erf A _s = I err Zwang (G E (abgeschl. zul $\sigma_s = (v)$ $\frac{9}{eff} =$ erf A _s ; $\frac{\rho_{p,eff}}{r} =$ = 267 n vorh $\sigma_s = k_c$; Beton im Hyd	$\begin{array}{l} \textbf{7.3.2)}\\ k_{c} \times k \times f_{ct,e}\\ \text{sl. 7.2)}\\ \\ \text{Rissbild):}\\ w_{k} \times 3,48 \times \\ 26,5 \text{ if}\\ \text{A}_{s} = f_{ct,eff} \times \\ 26,5 \text{ if}\\ \text{b} \times k \times f_{ct,eff} \times \\ 0,00020 \text{ if}\\ \text{anm} &\leq \frac{c}{3}, \\ \text{x k x f}_{ct,eff} \times \\ \text{dratationsf} \end{array}$	$h / d_{1} = h_{c.off} / d_{1} =$ $h_{c.off} / d_{1} =$ $m_{c.off} / d_{1} =$ $k_{c} = f_{ct.off} =$ $A_{ct} = b \times h/2 =$ $10^{0} / \Phi_{s}^{*} ^{1/2} = \leq max \sigma_{s} =$ $mm (7.7DE, wot)$ $A_{c.off} / zul \sigma_{s} = \begin{bmatrix} e^{-2\pi r_{s}} \\ e^{-2\pi r_{$	5.2 2.5 10.8 cm ² 1.0 (k _c = 1.0 is 1.75 N/mm ² 1.250 cm ² 162.0 N/mm ² 550.0 N/mm ² 3.1 cm ² 3.2 cm ² 0,00026 (maßgebend) 221 mm naßgebend) 87,0 N/mm ²	nicht releva
- Direk	ttlung de Erforderi mit: - - - - - - - - - - - - - - - - - - -	Ermituung n _{eff} nach Bild 7.10E 0): er erforderlichen Bewehrung zur Be iche Bewehrung bei Erstrissbildung (Kap. Beiwert für Spannungsverteilung im Rechted (im Standardfall $\sigma_c = t_{ateff}$ ist $k_c = 1,0$): Effektive Zugfestigkeit 7.3.2 (2): A_{ct} Fläche der Zugzone im Zustand 1 (anteilig für jede Bauteilseite und Bewehrung Aufnehmbare Stahlspannung nach 7.3.3(2), mit: $\Phi_s^* = d_s^* = d_s \times \frac{8 \times (h - d)}{k_c \times k \times h_{cr}} \times \frac{1}{f_c}$ liche Bewehrung bei abgeschlossenem Ris 7.3.2 (NA.5) und Gl. NA.7.5.1): einzuhaltene Stahlspannung $\sigma_s \leq f_{y_s}$ bzw. ≤ 0 er Lastbeanspruchung (7.2(5)): chnung der Rissbreite (Kap. 7.3.4) er Rissabstand (Gl. 7.11 und NA 7.3.4(3)): Vorhandene Stahlspannung im Erstriss nach (σ_s wird um 15% verringert bei Verwendung Effektive Zugfestigkeit (keine Berücksichtigu	$\frac{\text{grenzung }t}{\text{7.3.2 (2) und}}$ $\frac{\text{gslage}}{\text{gslage}}:$ Tab. 7.2 DE t $\frac{2,9}{\text{ct.eff}} < \frac{5}{\text{ssbild}}$ $8 \times f_{yk} \text{ bei zus}$ $\frac{\sigma_s - k_t \cdot \frac{f_{\text{ct.eff}}}{\rho_{\text{p.e}}}}{s_{r,\text{max}} = \frac{1}{3}}$ $17.3.2 (2):$ von langsam	der Rissbi GI. 7.1): GI. 7.1): and GI. 7.7 D $d_s \times \frac{2}{f_{ct,s}}$ ätzlicher $\frac{df}{E_s}$ $\frac{\Phi}{, 6 + \rho_{p,eff}}$ erhärtenden stbetonzugfe	reite (Kap. erf A _s = I err Zwang (G E (abgeschl. zul $\sigma_s = (x)$ $\frac{9}{eff} =$ erf A _s : $\frac{\rho_{p,eff}}{r} =$ = 267 n vorh $\sigma_s = k_c$. Beton im Hyo stigkeit	$\begin{array}{l} \textbf{7.3.2)}\\ k_{c} \times k \times f_{ct,e}\\ sl. 7.2) \end{array}$ $\begin{array}{l} \text{Rissbild} (l):\\ w_{k} \times 3.48 \times 26.5 \text{ i}\\ A_{s} = f_{ct,eff} \times 26.5 \text{ i}\\ sl. 8 \times f_{ct,eff} \times 26.5 \text{ i}\\ sl. 8 \times f_{ct,eff} \times 16.5 \text{ i}\\ sl. 8 \times 16.5 \text{ i}\\ sl. $	$h / d_{1} = h_{c,off} / d_{1} =$ $h_{c,off} / d_{1} =$ $k_{c} = f_{ct,off} = f_{ct,off} = h_{ct} + h_{ct} + h_{ct} = h_{ct} = h_{ct} + h_{ct} = h_{ct} = h_{ct} + h_{ct} = h$	5,2 2,5 10,8 cm ² 1,0 (k _c = 1,0 is 1,75 N/mm ² 1,250 cm ² 162,0 N/mm ² 550,0 N/mm ² 550,0 N/mm ² 3,2 cm ² 0,00026 (maßgebend) 221 mm naßgebend) 87,0 N/mm ²	maßgebend at voreingestellt) nicht releva
- - <u>)irek</u>	ttlung de Erforderi mit: - - - - - - - - - - - - - - - - - - -	Ermituung n _{eff} nach Bild 7.10E 0): er erforderlichen Bewehrung zur Be- liche Bewehrung bei Erstrissbildung (Kap. Beiwert für Spannungsverteilung im Rechted (im Standardfall $\sigma_c = t_{cacf}$ ist $k_c = 1.0$): Effektive Zugfestigkeit 7.3.2 (2): A_{cd} Fläche der Zugzone im Zustand 1 (anteilig für jede Bauteilseite und Bewehrung Aufnehmbare Stahlspannung nach 7.3.3(2), mit: $\Phi_n^* = d_s^* = d_s \times \frac{8 \times (h - d)}{k_c \times k \times h_{cr}} \times \frac{1}{f_c}$ liche Bewehrung bei abgeschlossenem Ris 7.3.2 (NA.5) und Gl. NA.7.5.1): teinzuhaltene Stahlspannung $\sigma_a \le t_{jk}$ bzw. ≤ 0 er Lastbeanspruchung (7.2(5)): chnung der Rissbreite (Kap. 7.3.4) er Rissabstand (Gl. 7.11 und NA 7.3.4(3)): Vorhandene Stahlspannung im Erstriss nach (σ_a wird um 15% verringert bei Verwendung Effektive Zugfestigkeit (keine Berücksichtigu nach NA 7.3.2 (2):	$\frac{grenzung i}{creating}$ $\frac{grenzung i}{creating}$ $\frac{gslage):}{Tab. 7.2 DE u}$ $\frac{2.9}{creating} < \frac{2.9}{ssbild}$ $\frac{\sigma_s - k_t \cdot \frac{f_{ot,e}}{\rho_{p,e}}}{s_{r,max}} = \frac{1}{3}$ $17.3.2 (2):$ von langsam	der Rissbr GI. 7.1): GI. 7.1): and GI. 7.7 D $d_s \times \frac{2}{f_{ct,s}}$ ätzlicher $\frac{df}{dt} (1 + \alpha_e \cdot \frac{1}{r_e})$ $\frac{d}{r_e} \cdot \frac{1}{r_e}$ $\frac{\Phi}{r_e} \cdot \frac{1}{r_e}$ erhärtenden stbetonzugfe	reite (Kap. erf A ₅ = 1 err Zwang (G E (abgeschi. zul $\sigma_n = (x)$ $\frac{9}{eff} = erf$ erf A ₅ : $\frac{\rho_{p,eff}}{2} = 267$ n vorh $\sigma_n = k_c$. Beton im Hyc stigkeit	$\begin{array}{l} \textbf{7.3.2)}\\ k_{c} \times k \times f_{ct,e}\\ \text{sl. 7.2)}\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	h / d ₁ = h _{c.off} / d ₁ = $\frac{k_{c}}{f_{ct,off}} = \begin{bmatrix} k_{c} = f_{ct,off} \\ f_{ct,off} = b \times h/2 = f_{ct,off} \\ \leq max \sigma_{s} = f_{ct,off} \\ \leq max \sigma_{s} = f_{ct,off} \\ \leq nax \sigma_{s} = $	5,2 2,5 10,8 cm ² 1,0 (k _c = 1,0 is 1,75 N/mm ² 1,250 cm ² 162,0 N/mm ² 550,0 N/mm ² 3,2 cm ² 0,00026 (maßgebend) 87,0 N/mm ² 1,75 N/mm ²	nicht releva
- - <u>)irek</u>	ttlung de Erforderi mit: - - - - - - - - - - - - - - - - - - -	Ermituung n _{eff} nach Bild 7.10E 0): er erforderlichen Bewehrung zur Be liche Bewehrung bei Erstrissbildung (Kap. Beiwert für Spannungsverteilung im Rechter (im Standardfall $\sigma_c = f_{ct,eff}$ ist $k_c = 1,0$): Effektive Zugfestigkeit 7.3.2 (2): Art Fläche der Zugzone im Zustand I (anteilig für jede Bauteilseite und Bewehrung Aufnehmbare Stahlspannung nach 7.3.3(2), mit: $\Phi_s^* = d_s^* = d_s \times \frac{8 \times (h-d)}{k_c \times k \times h_{cr}} \times \frac{f_c}{f_c}$ liche Bewehrung bei abgeschlossenem Ris 7.3.2 (NA-5) und GI. NA.7.5.1): einzuhaltene Stahlspannung $\sigma_s \leq f_{y_s}$ bzw. ≤ 0 er Lastbeanspruchung (7.2(5)): chnung der Rissbreite (Kap. 7.3.4) er Rissabstand (GI. 7.11 und NA 7.3.4(3)): Vorhandene Stahlspannung im Erstriss nach (σ_s wird um 15% verringert bei Verwendung Effektive Zugfestigkeit (keine Berücksichtigu nach NA 7.3.2 (2)): Effektiver Bewehrungsgrad (GI. 7.10):	$\frac{grenzung}{skquerschnitt}$ $\frac{2,9}{t,eff} < \frac{2,9}{ssbild}$ $\frac{\sigma_{s} - k_{t} \cdot \frac{f_{ct,e}}{f_{p,e}}}{s_{r,max} = \frac{1}{3}}$ $\frac{\sigma_{s} - k_{t} \cdot \frac{f_{ct,e}}{f_{p,e}}}{s_{r,max} = \frac{1}{3}}$	der Rissbr GI. 7.1): Dei zentrisch and GI. 7.7 D $d_s \times \frac{2}{f_{ct,s}}$ ätzlicher $\frac{df}{dt} (1 + \alpha_e \cdot \frac{1}{r_e} \cdot \frac{1}{r_e})$ $\frac{\Phi_s}{r_e} \cdot \frac{\Phi_s}{r_e}$ erhärtenden stbetonzugfe	reite (Kap. ef A _s = 1 em Zwang (G E (abgeschl. zul $\sigma_s = (x)$ $\frac{9}{eff} = eff$ eff A _s : $\frac{\rho_{p,eff}}{2} = 267$ n vorh $\sigma_s = k_c$: Beton im Hyo stigkeit	$\begin{array}{l} \hline \textbf{7.3.2)}\\ k_{o} \times k \times f_{ct,o}\\ \hline \textbf{k}_{o} \times k \times f_{ct,o}\\ \hline \textbf{k}_{o} \times k \times f_{ct,o}\\ \hline \textbf{k}_{o} \times \textbf$	$h / d_{1} = h_{c.off} / d_{1} =$ $h_{c.off} / d_{1} =$ $k_{c} = f_{ct.off} = f_{c$	5,2 2,5 10,8 cm ² 1,0 (k _c = 1,0 is 1,75 N/mm ² 1,250 cm ² 162,0 N/mm ² 550,0 N/mm ² 550,0 N/mm ² 13,1 cm ² 3,2 cm ² 0,00026 (maßgebend) 221 mm naßgebend) 87,0 N/mm ² 1,75 N/mm ² 0,0166	nicht releva
<u>-</u> -	ttlung dr Erforderi mit: - - - - - - - - - - - - - - - - - - -	Ermituung n _{eff} nach Bild 7.10E 0): er erforderlichen Bewehrung zur Be liche Bewehrung bei Erstrissbildung (Kap. Beiwert für Spannungsverteilung im Rechted (im Standardfall $\sigma_c = f_{ct,eff}$ ist $k_c = 1,0$): Effektive Zugfestigkeit 7.3.2 (2): A _{ct} Fläche der Zugzone im Zustand I (anteilig für jede Bauteilseite und Bewehrung Aufnehmbare Stahlspannung nach 7.3.3(2), mit: $\Phi_s^* = d_s^* = d_s \times \frac{8 \times (h - d)}{k_c \times k \times h_{cr}} \times \frac{f_c}{f_c}$ liche Bewehrung bei abgeschlossenem Ris 7.3.2 (NA-5) und Gl. NA-7.5.1): einzuhaltene Stahlspannung $\sigma_s \leq f_{pk}$ bzw. ≤ 0 er Lastbeanspruchung (7.2(5)): chnung der Rissbreite (Kap. 7.3.4) er Rissabstand (Gl. 7.11 und NA 7.3.4(3)): Vorhandene Stahlspannung im Erstriss nach (σ_s wird um 15% verringert bei Verwendung Effektive Zugfestigkeit (keine Berücksichtigu nach NA 7.3.2 (2)): Effektiver Bewehrungsgrad (Gl. 7.10): Verhältnis E-Moduln:	$\frac{\text{grenzung } t}{\text{7.3.2 (2) und}}$ $\frac{\text{gslage}):}{\text{Tab. 7.2 DE u}}$ $\frac{2.9}{\text{steff}} \leq \frac{2.9}{\text{sbild}}$ $8 \times f_{\text{yk}} \text{ bei zus}$ $\sigma_{\text{s}} - k_{\text{t}} \cdot \frac{f_{\text{ct,ef}}}{P_{\text{p,e}}}$ $s_{t,\text{max}} = \frac{1}{3}$ $n 7.3.2 (2):$ von langsam- ing der Minde	der Rissbr GI. 7.1): Dei zentrisch and GI. 7.7 D $d_s \times \frac{2}{f_{ct,s}}$ ätzlicher $\frac{df}{dt} (1 + \alpha_e \cdot \frac{1}{r_e} \cdot \frac{1}{r_e})$ $\frac{\Phi_s}{r_e} \cdot \frac{\Phi_s}{r_e}$ erhärtenden stbetonzugfe	reite (Kap. ef A _s = 1 em Zwang (G E (abgeschl. zul $\sigma_s = (x)$ $\frac{9}{eff} = eff$ eff A _s : $\frac{\rho_{p,eff}}{2} = 267$ n vorh $\sigma_s = k_c$: Beton im Hyo stigkeit	$\begin{array}{c} \textbf{7.3.2)}\\ k_{o} \times k \times f_{ct,e}\\ \text{sl. 7.2)}\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	h / d ₁ = h _{c.off} / d ₁ = $\frac{k_{c}}{h_{c.off}} = \begin{bmatrix} k_{c} \\ f_{ct.off} = \\ k_{c} \\ f_{ct.off} = \\ A_{ct} = b x h/2 =$ $2 \ln \sigma (\sigma + \sigma + 1)^{1/2} = \sum_{d = max} \sigma_{d = max} = mm (7.7DE, work)$ $A_{c.off} / \Delta u \sigma \sigma_{s} = \begin{bmatrix} c_{c} \\ c_{c} $	5,2 2,5 10,8 cm ² 1,0 (k _c = 1,0 is 1,75 N/mm ² 1.250 cm ² 162,0 N/mm ² 550,0 N/mm ² 550,0 N/mm ² 13,1 cm ² 3,2 cm ² 0,00026 (maßgebend) 221 mm naßgebend) 87,0 N/mm ² 1,75 N/mm ² 0,0166 5,71	nicht releva
<u>Pirek</u>	ttlung dr Erforderi mit: - - - - - - - - - - - - - - - - - - -	Ermituung n _{eff} nach Bild 7.10E 0): er erforderlichen Bewehrung zur Be liche Bewehrung bei Erstrissbildung (Kap. Beiwert für Spannungsverteilung im Rechted (im Standardfall $\sigma_c = f_{ct,eff}$ ist $k_c = 1,0$): Effektive Zugfestigkeit 7.3.2 (2): A _{ct} Fläche der Zugzone im Zustand I (anteilig für jede Bauteilseite und Bewehrung Aufnehmbare Stahlspannung nach 7.3.3(2), mit: $\Phi_s^* = d_s^* = d_s \times \frac{8 \times (h - d)}{k_c \times k \times h_{cr}} \times \frac{f_c}{f_c}$ liche Bewehrung bei abgeschlossenem Ris 7.3.2 (NA-5) und Gl. NA-7.5.1): einzuhaltene Stahlspannung $\sigma_s \leq f_{pk}$ bzw. ≤ 0 er Lastbeanspruchung (7.2(5)): chnung der Rissbreite (Kap. 7.3.4) erdehnung Stahl/ Beton $c_{sm} - c_{cm} = -\frac{1}{2}$ er Rissabstand (Gl. 7.11 und NA 7.3.4(3)): Vorhandene Stahlspannung im Erstriss nach (σ_s wird um 15% verringert bei Verwendung Effektive Zugfestigkeit (keine Berücksichtigu nach NA 7.3.2 (2)): Effektiver Bewehrungsgrad (Gl. 7.10): Verhältnis E-Moduln:	$\frac{grenzung}{skquerschnitt}$ $\frac{2,9}{t,eff} < \frac{2,9}{ssbild}$ $\sigma_{s} - k_{t} \cdot \frac{f_{ct,e}}{\rho_{p,e}}$ $s_{r,max} = \frac{1}{3}$ $n7.3.2 (2):$ von langsam	der Rissbr GI. 7.1): Dei zentrisch and GI. 7.7 D $d_s \times \frac{2}{f_{ct,s}}$ ätzlicher $\frac{df}{df} (1 + \alpha_e \cdot \frac{1}{r_e} \cdot \frac{1}{r_e})$ $\frac{\Phi_s}{r_e \cdot \rho_{p,cff}}$ erhärtenden stbetonzugfe	reite (Kap. ef A _s = 1 em Zwang (G E (abgeschl. zul $\sigma_s = (x)$ $\frac{9}{eff} = eff$ eff A _s : $\frac{\rho_{p,eff}}{2} = 267$ n vorh $\sigma_s = k_c$: Beton im Hyo stigkeit	$\begin{array}{l} \textbf{7.3.2)}\\ k_{o} \times k \times f_{ct,e}\\ \text{sl. 7.2)}\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$h / d_{1} = h_{c,off} / d_{1} =$ $h_{c,off} / d_{1} =$ $k_{c} = f_{ct,off} = A_{ct} + 2uI \sigma_{s} = \begin{bmatrix} k_{c} = f_{ct,off} = 1 \\ 10^{6} / \Phi_{s}^{*} \right)^{1/2} = \leq max \sigma_{s} =$ $mm (7.7DE, work)$ $cA_{c,off} / zuI \sigma_{s} = \begin{bmatrix} cA_{ct} / max \sigma_{s} = 1 \\ cA_{ct} / max \sigma_{s} = \end{bmatrix}$ $cA_{c,off} / zuI \sigma_{s} = \begin{bmatrix} cA_{ct} / max \sigma_{s} = 1 \\ cA_{ct} / max \sigma_{s} = \end{bmatrix}$ $cA_{c,off} / zuI \sigma_{s} = \begin{bmatrix} cA_{ct} / max \sigma_{s} = 1 \\ cA_{ct} / max \sigma_{s} = \end{bmatrix}$ $cA_{c,off} / a_{c,off} = a_{ct}$ $f_{ct,off} = a_{ct} / vorh A_{s} = a_{ct} / c_{ct}$ $a_{a} = E_{a} / E_{cm} = a_{ct}$	5,2 2,5 10,8 cm ² 1,0 (k _c = 1,0 is 1,75 N/mm ² 1,250 cm ² 162,0 N/mm ² 550,0 N/mm ² 550,0 N/mm ² 13,1 cm ² 3,2 cm ² 0,00026 (maßgebend) 221 mm naßgebend) 87,0 N/mm ² 1,75 N/mm ² 0,0166 5,71	nicht releva

	Zentrale Technik Abteilung TBK						
Projek	t Alternativentwurf Brücke B23	314	Bearbeiter	Viktoriya Mihaylo	ova		
Baute	I Steg		Datum	07.06.18			
lachweis :	zur Begrenzung der Rissb	oreite fur zentris	schen Zwang nad	:h DIN EN 1992	-1-1:2011-01 und	I NA:2013-04	
<u>-ingabe</u>	atria	, ,	Diaka h = 25.0	J om	Baustoffkennw	erte: 25.000 N/mm ²	(Tab. 2.1)
- Geom	ette.		Broite h = 100.0	Cm	⊏ _{cm} =	3 50 N/mm ²	(Tab. 3.1) (Tab. 3.1)
Poton	nüto:		C40/50		Ictm —	3,50 N/mm ²	(1ab, 3, 1)
- Detony	juie. me Zugfestigkeit f (7.3.2.(2)):	(früher / später 7w/	C40/30		∟ _s =	200.000 14/11/11	(3.2.7 (4))
	zwana (z B. Hydratationswärmo	abfluß) odor	i j			0.77	(NA7 3 2(2))
- ininere Auë	erer Zwang (z.B. Frydratationswarme		(innerer 7)		→ K -	0,77	(NA7.3.2(2))
- Verwe	ndung langsam erhärtender Betor	n (7 3 2 (NA 6))	nein	lia/nein] Hin	weis: Keine Reduzi	erung der Beweh	rung
(Bedin	gung: r = f_{cm2} / f_{cm28} < 0,3)	(1.0.2 (1.1.0))	Hein			cruing der Demen	ung
- Dauer	der Einwirkung		1	[angzeitig oder	K urzzeitig] $\rightarrow k_t =$	0,4	
(i.d	R. ist nach NA 7.3.4 (2) das lang	zeitige Verbundkrie	chen zu berücksichtig	 en, d.h. k₁=0,4.			
Kur	zzeitige' Einwirkung mit k=0,6 dar	rf nach Heft 600 DA	fStb nur bei Nachwei	sen mit 'seltener Ei	nwirkung' verwendet	werden.)	
- Streck	grenze Betonstahl:		f _{yk} = 550	N/mm ²			
- Zusätz	lich wirkende gleichartige (zentris	scher Zug) <u>äußere</u>	nein	[ja / nein]	\rightarrow max σ_s = f _{yk}	= 550,	0 N/mm ²
Las	tbeanspruchung (7.2(5))?						
- Betono	leckung der betrachteten Bewehr	rungslage:	c _{nom} = 4,0	cm			
- Gewäl	nlte Rissbreite (Tab. 7.1DE):		w _k = 0,20	mm			
.	K. D						
Gewa	hite Bewehrung für eine Richtu	ing und fur <u>eine</u> Ba	auteilseite:	10.0			
	Durchm	$\phi_{s1}/Stababs$	stand $s_1 = 10$	10,0 mm 0	CITI	aiodonon	
	Ducin	(2. Stabd	lurchmesser Φ_{s2} mit 0,01m	m 15,0 mining c	Durchmessern / Ab	ständen)	
		eing	geben, falls nicht verwende	t)		,	
usammer	fassung der gewählten B	ewehrung:					
Mittler	er gewichteter Stabdurchmesser	mit 7.3.3 (NA.7):	Φ _{em} = (Φ	$(s_1^2/s_1 + \Phi_{c2}^2/s_2)/$	$(\Phi_{c1} / s_1 + \Phi_{c2} / s_2) =$	16,0 mm	
Gewä	hlte Bewehrung je Bauteilseite:		· siii (·	51 . 61 . 52 . 62/ .	vorh $A_s =$	20,11 cm ²	٦
Beweh	irungsgrad:				ρ = vorh A _s / A _c =	0,0115 = 1,159	%
Randa	bstand Bewehrungsachse:				$d_1 = c_{nom} + \Phi_{sm} / 2 =$	4,8 cm	
Wirkur	ngsbereich A _{c,eff} der Bewehrung (7	7.3.2(3)) mit h _{c,eff} na	ich Bild 7.1DE a)-d)		$A_{c,eff} = h_{c,eff} \times b =$	1310 cm ²	
					≤ h/2 x b =	1750 cm ²	
	 Ermittlung h_{eff} nach Bild 7.1D 	DE d):			h / d ₁ =	7,3	
			inzung der Hood		-		
- Erford	erliche Bewehrung bei Erstriss	sbildung (Kap. 7.3.	2 (2) und Gl. 7.1):	erf A _s = k _c x k	$x f_{ct,eff} x A_{ct} / zul \sigma_s =$	14,6 cm ²	nicht releva
- Erford	erliche Bewehrung bei Erstriss t: - Beiwert für Spannungsverteil	sbildung (Kap. 7.3. lung im Rechteckqu	2 (2) und GI. 7.1): erschnitt bei zentriscl	erf A _s = k _c x k nem Zwang (Gl. 7.2	$x f_{ct,eff} x A_{ct} / zul \sigma_s = [$	14,6 cm²	nicht releva
- Erford mi	t: - Beiwert für Spannungsverteil (im Standardfall σ _c = f _{ct,eff} ist	sbildung (Kap. 7.3.) lung im Rechteckqu k _c = 1,0):	2 (2) und Gl. 7.1): erschnitt bei zentrisch	erf $A_s = k_c x k$ nem Zwang (Gl. 7.2	$x f_{ct,eff} x A_{ct} / zul \sigma_s = \begin{bmatrix} 2 \\ k_c \end{bmatrix}$	14,6 cm² 1,0 (k _c = 1,0 is	nicht releva
- Erforc	terliche Bewehrung bei Erstriss t: - Beiwert für Spannungsverteil (im Standardfall $\sigma_c = f_{ct,eff}$ ist - Effektive Zugfestigkeit 7.3.2	sbildung (Kap. 7.3.) lung im Rechteckqu $k_c = 1,0$): (2):	2 (2) und Gl. 7.1): erschnitt bei zentrisch	erf $A_s = k_c x k$ nem Zwang (Gl. 7.2	$x f_{ct,eff} x A_{ct} / zul \sigma_s = \begin{bmatrix} \\ 2 \end{bmatrix}$ $k_c = f_{ct,eff} = \begin{bmatrix} \\ \end{bmatrix}$	14,6 cm ² 1,0 (k _c = 1,0 is 1,75 N/mm ²	nicht releva
- Erforc mi	 terliche Bewehrung bei Erstriss t: - Beiwert für Spannungsverteil (im Standardfall σ_e = f_{et,eff} ist - Effektive Zugfestigkeit 7.3.2 - A_{ct} Fläche der Zugzone im Z	sbildung (Kap. 7.3. lung im Rechteckqu k _c = 1,0): (2): ustand l	2 (2) und Gl. 7.1): erschnitt bei zentrisch	erf A _s = k _c x k nem Zwang (Gl. 7.2	$x f_{ct,eff} x A_{ct} / zul \sigma_s = \begin{bmatrix} \\ 2 \end{bmatrix}$ $k_c = f_{ct,eff} = f_{ct}$	14,6 cm² 1,0 (k _o = 1,0 is 1,75 N/mm²	nicht releva
- Erforc mi	 t: - Beiwert für Spannungsverteil (im Standardfall σ_e = f_{et,eff} ist Effektive Zugfestigkeit 7.3.2 - A_{ct} Fläche der Zugzone im Zu (anteilig für jede Bauteilseite 	sbildung (Kap. 7.3. lung im Rechteckqu $k_c = 1,0$): (2): ustand I e und Bewehrungslag	ge):	erf A _s = k _c x k nem Zwang (Gl. 7.2	$x f_{ct.eff} x A_{ct} / zul \sigma_s = \begin{bmatrix} 2 \\ k_c = \\ f_{ct.eff} = \\ A_{ct} = b x h/2 = \end{bmatrix}$	14,6 cm ² 1,0 (k _e = 1.0 is 1,75 N/mm ² 1.750 cm ²	nicht releva
- Erforc mi	 t: - Beiwert für Spannungsverteil (im Standardfall σ_c = f_{et,eff} ist Effektive Zugfestigkeit 7.3.2 A_{ct} Fläche der Zugzone im Zu (anteilig für jede Bauteilseite Aufnehmbare Stahlspannung 	sbildung (Kap. 7.3. lung im Rechteckqu $k_c = 1,0)$: (2): ustand I und Bewehrungslag g nach 7.3.3(2), Tab	2 (2) und GI. 7.1): erschnitt bei zentriscl ge): . 7.2 DE und GI. 7.7 [erf A _s = k _c x k nem Zwang (Gl. 7.2 DE (abgeschl. Rissl	$x f_{ct,eff} x A_{cs} / zul \sigma_s = \begin{bmatrix} 2 \\ k_c = \\ f_{ct,eff} = \\ A_{ct} = b x h/2 = \\ bild):$	14,6 cm ² 1,0 (k _e = 1.0 is 1,75 N/mm ² 1.750 cm ²	nicht releva
- Erforc mi	 t: - Beiwert für Spannungsverteil (im Standardfall σ_α = f_{et,eff} ist Effektive Zugfestigkeit 7.3.2 A_{ct} Fläche der Zugzone im Zu (anteilig für jede Bauteilseite Aufnehmbare Stahlspannung 	sbildung (Kap. 7.3. lung im Rechteckqu $k_c = 1,0)$: (2): ustand I und Bewehrungslag g nach 7.3.3(2), Tab	2 (2) und Gl. 7.1): erschnitt bei zentriscl ge): . 7.2 DE und Gl. 7.7 [erf A _s = k _c x k nem Zwang (Gl. 7.2 DE (abgeschl. Rissl zul σ_s = (w _k x 3	$x f_{ct,eff} x A_{cs} / zul \sigma_s = \begin{bmatrix} 2 \\ k_c = \\ f_{ct,eff} = \\ A_{ct} = b \times h/2 = \\ bid): \\ 3,48 \times 10^6 / \Phi_s^{-1} \right)^{1/2} = 2$	14,6 cm ² 1,0 (k _e = 1.0 is 1,75 N/mm ² 1.750 cm ² 162,1 N/mm ²	nicht releva
- Erforc m	terliche Bewehrung bei Erstriss t: - Beiwert für Spannungsverteil (im Standardfall σ _c = f _{ct.eff} ist - Effektive Zugfestigkeit 7.3.2 - A _{ct} Fläche der Zugzone im Zu (anteilig für jede Bauteilseite - Aufnehmbare Stahlspannung 8 >	sbildung (Kap. 7.3. lung im Rechteckqu $k_c = 1,0$): (2): ustand I und Bewehrungslag g nach 7.3.3(2), Tab $\times (h - d)$ 2,9	ge): . 7.2 DE und GI. 7.7 [erf A _s = k _c x k nem Zwang (Gl. 7.2 DE (abgeschl. Rissl zul σ_s = (w _k x 3	$\begin{array}{c} \underbrace{\textbf{x}}_{fct,eff} \textbf{x} A_{cs} / \textbf{zul} \sigma_{s} = \begin{bmatrix} \\ \textbf{z} \end{bmatrix} \\ k_{c} = \\ f_{ct,eff} = \\ A_{ct} = b \textbf{x} h/2 = \\ bild): \\ 8,48 \textbf{x} 10^{6} / \Phi_{s}^{\bullet})^{1/2} = \\ & \leq max \sigma_{s} = \end{array}$	14,6 cm ² 1,0 (k _c = 1.0 is 1,75 N/mm ² 1.750 cm ² 162,1 N/mm ² 550,0 N/mm ²	nicht releva
- Erforc m	erliche Bewehrung bei Erstriss t: - Beiwert für Spannungsverteil (im Standardfall $\sigma_c = f_{ct,eff}$ ist - Effektive Zugfestigkeit 7.3.2 - A_{ct} Fläche der Zugzone im Zu (anteilig für jede Bauteilseite - Aufnehmbare Stahlspannung mit: $\Phi_s^* = d_s^* = d_s \times \frac{8 \times 1}{k_c}$	sbildung (Kap. 7.3. lung im Rechteckqu $k_c = 1,0$): (2): ustand I und Bewehrungslag g nach 7.3.3(2), Tab $\frac{x(h-d)}{x k \times h_{rr}} \times \frac{2,9}{f_{rr}}$	2 (2) und Gl. 7.1): terschnitt bei zentrisch ge): . 7.2 DE und Gl. 7.7 I $\frac{1}{r_s} < d_s \times \frac{2}{r_s}$	erf A _s = k _c x k nem Zwang (Gl. 7.2 DE (abgeschl. Rissl zul σ_s = (w _k x 3 ,9	$x f_{ct,eff} x A_{cs} / zul \sigma_s = \begin{bmatrix} \\ k_c = \\ f_{ct,eff} = \\ \\ A_{ct} = b x h/2 = \\ \\ bild): \\ 3,48 x 10^6 / \Phi_s^*)^{1/2} = \\ \leq max \sigma_s = \\ \\ 26,5 mm (7.7DE, wot$	14,6 cm ² 1,0 (k _c = 1.0 is 1,75 N/mm ² 1.750 cm ² 162,1 N/mm ² 550,0 N/mm ² bei h _{cr} =h)	nicht releva
- Erforc m	erliche Bewehrung bei Erstriss t: - Beiwert für Spannungsverteil (im Standardfall $\sigma_c = f_{ct,eff}$ ist - Effektive Zugfsetigkeit 7.3.2 - A_{ct} Fläche der Zugzone im Zu (anteilig für jede Bauteilseite - Aufnehmbare Stahlspannung mit: $\Phi_s^* = d_s^* = d_s \times \frac{8}{k_c}$	sbildung (Kap. 7.3. lung im Rechteckqu $k_c = 1,0$): (2): ustand I und Bewehrungslag g nach 7.3.3(2), Tab $\frac{k(h-d)}{k \times h_{cr}} \times \frac{2,9}{f_{ct,ef}}$	2 (2) und Gi. 7.1): erschnitt bei zentrisch ge): . 7.2 DE und Gi. 7.7 f $\frac{1}{f_{cf}}$ < $d_s \times \frac{2}{f_{cf}}$	erf A _s = k _c x k nem Zwang (Gl. 7.2 DE (abgeschl. Rissl zul σ_s = (w _k x 3 ,9 ,eff = 2	$x f_{ct,eff} x A_{cs} / zul \sigma_s = \begin{bmatrix} 2 \\ k_c = \\ f_{ct,eff} = \\ A_{ct} = b x h/2 = \\ bild): \\ 3,48 x 10^6 / \Phi_s^* \right)^{1/2} = \\ \leq max \sigma_s = \\ 26,5 mm (7.7DE, woth f_s)^{1/2} = 1 \end{bmatrix}$	14,6 cm ² 1,0 (k _c = 1.0 is 1,75 N/mm ² 1.750 cm ² 162,1 N/mm ² 550,0 N/mm ² bei h _{cr} =h)	nicht releva
- Erforc m	erliche Bewehrung bei Erstriss t: - Beiwert für Spannungsverteil (im Standardfall $\sigma_c = f_{ct,eff}$ ist - Effektive Zugfestigkeit 7.3.2 - A _{ct} Fläche der Zugzone im Zi (anteilig für jede Bauteilseite - Aufnehmbare Stahlspannung mit: $\Phi_s^* = d_s^* = d_s \times \frac{8}{k_c}$ ierliche Bewehrung bei abgesci	sbildung (Kap. 7.3. lung im Rechteckqu $k_c = 1,0$): (2): ustand I und Bewehrungslag g nach 7.3.3(2), Tab $\frac{x(h-d)}{x k \times h_{cr}} \times \frac{2,9}{f_{ct,ef}}$ hlossenem Rissbil	2 (2) und Gi. 7.1): erschnitt bei zentrisch ge): . 7.2 DE und Gi. 7.7 (1) $\frac{1}{f} < d_s \times \frac{2}{f_{cl}}$ Id	erf A _s = k _c x k nem Zwang (GI. 7.2 DE (abgeschl. Rissl zul σ_s = (w _k x 3 zul σ_s = (w _k x 3 <i>z</i> , <i>y</i>) = 2 <i>e</i> f <i>f</i> = 2	$\begin{array}{c} \underbrace{\textbf{x}}_{f_{cl,eff}} \textbf{x} A_{ct} / \textbf{zul} \ \sigma_s = \begin{bmatrix} \\ 2 \end{bmatrix} \\ k_c = \\ f_{cl,eff} = \\ A_{cl} = b \ \textbf{x} \ h/2 = \\ bild): \\ 3.48 \ x \ 10^6 / \Phi_s^*)^{1/2} = \\ \leq max \ \sigma_s = \\ 26.5 \ mm \ (7.7DE, \ wot \ f_{cl,eff} \ \textbf{x} \ A_{ce,eff} \ / \ \textbf{zul} \ \sigma_s = \begin{bmatrix} \\ 1 \end{bmatrix} \end{array}$	14,6 cm ² 1,0 (k _c = 1.0 is 1,75 N/mm ² 1.750 cm ² 162,1 N/mm ² 550,0 N/mm ² bei h _{cr} =h) 14,1 cm ²	nicht releva t voreingestellt) maßgebend
- Erforc m - Erforc (Ka	erliche Bewehrung bei Erstriss t: - Beiwert für Spannungsverteil (im Standardfall $\sigma_c = f_{ct,eff}$ ist - Effektive Zugfestigkeit 7.3.2 - A_{ct} Fläche der Zugzone im Zi (anteilig für jede Bauteilseite - Aufnehmbare Stahlspannung mit: $\Phi_s^* = d_s^* = d_s \times \frac{8 \times 2}{k_c}$. erliche Bewehrung bei abgesc p. 7.3.2 (NA.5) und Gl. NA.7.5.1	sbildung (Kap. 7.3. lung im Rechteckqu $k_c = 1,0$): (2): ustand I p und Bewehrungslag g nach 7.3.3(2), Tab $\frac{\langle (h-d)}{\langle k \times h_{cr}} \times \frac{2,9}{f_{ct,ef}}$ hlossenem Rissbil): $q \leq f_c$ have ≤ 0.8 x	2 (2) und Gi. 7.1): erschnitt bei zentrisch ge): . 7.2 DE und Gi. 7.7 f $\frac{1}{f}$ < $d_s \times \frac{2}{f_{cl}}$ Id	erf A _s = k _c x k nem Zwang (GI. 7.2 DE (abgeschl. Rissl zul σ_s = (w _k x 2 .9) = 2 .eff erf A _s = 2	$x f_{cl,eff} x A_{ct} / zul \sigma_s = \begin{bmatrix} \\ 2 \end{bmatrix}$ $k_c = \\ f_{cl,eff} = \\ A_{ct} = b x h/2 = \\ bild): \\ 3.48 x 10^6 / \Phi_s^*)^{1/2} = \\ \le max \sigma_s = \\ 26,5 mm (7.7DE, work) \\ f_{cl,eff} x A_{c,eff} / zul \sigma_s = \begin{bmatrix} \\ -x A_c + max \sigma_s = \\ -x A_c + max \sigma_s = \end{bmatrix}$	14,6 cm ² 1,0 (k _c = 1.0 is 1,75 N/mm ² 1.750 cm ² 162,1 N/mm ² 550,0 N/mm ² bei h _{cr} =h) 14,1 cm ² 4.3 cm ²	nicht releva t voreingestellt) maßgebend
- Erforc m - Erford (Ka jeda	erliche Bewehrung bei Erstriss t: - Beiwert für Spannungsverteil (im Standardfall $\sigma_c = f_{ct,eff}$ ist - Effektive Zugfestigkeit 7.3.2 - A_{ct} Fläche der Zugzone im Zi (anteilig für jede Bauteilseite - Aufnehmbare Stahlspannung mit: $\Phi_s^* = d_s^* = d_s \times \frac{8 \times 1}{k_c}$ - erliche Bewehrung bei abgesc p. 7.3.2 (NA.5) und Gl. NA.7.5.1 sch einzuhaltene Stahlspannung (7.2(5)):	sbildung (Kap. 7.3. lung im Rechteckqu $k_c = 1,0$): (2): ustand I und Bewehrungslag g nach 7.3.3(2), Tab $\frac{\langle (h-d)}{\langle k \times h_{cr} \rangle} \times \frac{2,9}{f_{ct,ef}}$ hlossenem Rissbil): $\sigma_a \leq f_{yk}$ bzw. $\leq 0,8 \times 10^{-10}$	2 (2) und Gi. 7.1): terschnitt bei zentrisch ge): . 7.2 DE und Gi. 7.7 f $\frac{1}{f_{f}}$ < $d_{s} \times \frac{2}{f_{ct}}$ Id f _{yk} bei zusätzlicher	erf A _s = k _c x k nem Zwang (GI. 7.2 DE (abgeschl. Rissl zul σ_s = (w _k x 3 ,9 = 2 erf A _s = 4 erf A _s ≥ k x	$\begin{array}{c} \textbf{x} \ f_{cLeff} \textbf{x} \ A_{ct} / zul \ \sigma_{s} = \begin{bmatrix} \\ 2 \\ \\ 2 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	14,6 cm ² 1,0 (k _c = 1.0 is 1,75 N/mm ² 1.750 cm ² 162,1 N/mm ² 550,0 N/mm ² bei h _{cr} =h) 14,1 cm ² 4,3 cm ²	nicht releva t voreingestellt) maßgebend nicht releva
- Erforc m - Erford (Ka jeda äuß	erliche Bewehrung bei Erstriss t: - Beiwert für Spannungsverteil (im Standardfall $\sigma_c = f_{ct,eff}$ ist - Effektive Zugfestigkeit 7.3.2 - A_{ct} Fläche der Zugzone im Zi (anteilig für jede Bauteilseite - Aufnehmbare Stahlspannung mit: $\Phi_s^* = d_s^* = d_s \times \frac{8 \times 1}{k_c}$ - erliche Bewehrung bei abgesc p. 7.3.2 (NA.5) und Gl. NA.7.5.1 boch einzuhaltene Stahlspannung d erer Lastbeanspruchung (7.2(5)):	sbildung (Kap. 7.3. lung im Rechteckqu $k_c = 1,0$): (2): ustand I p und Bewehrungslag g nach 7.3.3(2), Tab $\frac{\langle (h-d)}{\langle k \times h_{cr} \rangle} \times \frac{2,9}{f_{ct,ef}}$ hlossenem Rissbil): $\sigma_a \leq f_{yk}$ bzw. $\leq 0,8 \times 10^{-10}$	2 (2) und Gi. 7.1): terschnitt bei zentrisch ge): . 7.2 DE und Gi. 7.7 f $\frac{1}{f_{f}}$ < $d_s \times \frac{2}{f_{ct}}$ Id f _{yk} bei zusätzlicher	erf A _s = k _c x k nem Zwang (GI. 7.2 DE (abgeschl. Rissl zul σ_s = (w _k x 3 ,9 = 2 erf A _s = k x	$\begin{array}{c} \underline{\textbf{x}} & f_{ct,eff} \times A_{ct} / zul \ \sigma_{s} = \begin{bmatrix} \\ 2 \end{bmatrix} \\ & k_{c} = \\ f_{ct,eff} = \\ & A_{ct} = b \times h/2 = \\ & bidl): \\ & 3,48 \times 10^{6} / \Phi_{s}^{*})^{1/2} = \\ & \leq max \ \sigma_{s} = \\ & 26,5 \ mm \ (7.7DE, wot \ f_{ct,eff} \times A_{ct} / zul \ \sigma_{s} = \begin{bmatrix} \\ f_{ct,eff} \times A_{ct} / max \ \sigma_{s} \end{bmatrix} \end{array}$	14,6 cm ² 1,0 (k _c = 1.0 is 1,75 N/mm ² 1.750 cm ² 162,1 N/mm ² 550,0 N/mm ² bei h _{cr} =h) 14,1 cm ² 4,3 cm ²	nicht releva t voreingestellt) maßgebend nicht releva
- Erforc m - Erforc (Ka jeda āuß <u>)irekte Be</u>	erliche Bewehrung bei Erstriss t: - Beiwert für Spannungsverteil (im Standardfall $\sigma_c = f_{ct,eff}$ ist - Effektive Zugfestigkeit 7.3.2 - A_{ct} Fläche der Zugzone im Zi (anteilig für jede Bauteilseite - Aufnehmbare Stahlspannung mit: $\Phi_s^* = d_s^* = d_s \times \frac{8 \times 1}{k_c}$ erliche Bewehrung bei abgesci p. 7.3.2 (NA.5) und Gl. NA.7.5.1 boch einzuhaltene Stahlspannung d erer Lastbeanspruchung (7.2(5)): rechnung der Rissbreite (f	sbildung (Kap. 7.3. lung im Rechteckqu $k_c = 1,0$): (2): ustand I p und Bewehrungslag g nach 7.3.3(2), Tab $\frac{\langle (h-d)}{\langle k \times h_{cr}} \times \frac{2,9}{f_{ct,ef}}$ hlossenem Rissbil): $\sigma_a \leq f_{yk}$ bzw. $\leq 0,8 \times 10^{-2}$	2 (2) und Gi. 7.1): terschnitt bei zentrisch ge): . 7.2 DE und Gi. 7.7 f $\frac{1}{f_{f}}$ < $d_{s} \times \frac{2}{f_{ct}}$ Id f _{yk} bei zusätzlicher	erf A _s = k _c x k nem Zwang (GI. 7.2 DE (abgeschl. Rissl zul σ_s = (w _k x 3 ,9 = 2 ,eff erf A _s = k x	$\begin{array}{c} \underline{\textbf{x}} & f_{ct,eff} \times A_{ct} / zul \ \sigma_{s} = \begin{bmatrix} \\ 2 \\ 2 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	14,6 cm ² 1,0 (k _c = 1.0 is 1,75 N/mm ² 1.750 cm ² 162,1 N/mm ² 550,0 N/mm ² bei h _{cr} =h) 14,1 cm ² 4,3 cm ²	nicht releva t voreingestellt) maßgebend nicht releva
- Erforc m - Erforc (Ka jed äuß <u>)irekte Be</u>	erliche Bewehrung bei Erstriss t: - Beiwert für Spannungsverteil (im Standardfall $\sigma_c = f_{ct,eff}$ ist - Effektive Zugfestigkeit 7.3.2 - A_{ct} Fläche der Zugzone im Zi (anteilig für jede Bauteilseite - Aufnehmbare Stahlspannung mit: $\Phi_s^* = d_s^* = d_s \times \frac{8 \times 2}{k_c}$ erliche Bewehrung bei abgesci p. 7.3.2 (NA.5) und Gl. NA.7.5.1 psch einzuhaltene Stahlspannung d erer Lastbeanspruchung (7.2(5)): rechnung der Rissbreite (f	sbildung (Kap. 7.3. lung im Rechteckqu $k_c = 1,0$): (2): ustand I p und Bewehrungslag g nach 7.3.3(2), Tab $\frac{\langle (h-d)}{\langle k \times h_{cr}} \times \frac{2,9}{f_{ct,ef}}$ hlossenem Rissbil): $\sigma_s \leq f_{yk}$ bzw. $\leq 0,8$ x : Kap. 7.3.4) $\sigma_s = -$	2 (2) und GI. 7.1): terschnitt bei zentrisch ge): . 7.2 DE und GI. 7.7 f $\frac{1}{f_{f}} < d_{s} \times \frac{2}{f_{cd}}$ Id f _{yk} bei zusätzlicher $-k_{t} \cdot \frac{f_{ct}eff}{2} (1 + \alpha_{e})$	erf A _s = k _c x k nem Zwang (GI. 7.2 DE (abgeschl. Rissl zul σ_s = (w _k x 3 ,9 = 2 erf A _s = erf A _s ≥ k x $\rho_{p,eff}$)	$\sum_{x \in L_{eff} \times A_{ct} / zul \sigma_{s} = \begin{bmatrix} 2 \\ c_{t,eff} \end{bmatrix}$ $k_{c} = f_{ct,eff} = A_{ct} = b \times h/2 = bid):$ $A_{ct} = b \times h/2 = bid):$ $A_{ct} = b \times h/2 = bid):$ $A_{ct} = b \times h/2 = bid(t) = bi$	14,6 cm ² 1,0 (k _c = 1.0 is 1,75 N/mm ² 1.750 cm ² 162,1 N/mm ² 550,0 N/mm ² bei h _{cr} =h) 14,1 cm ² 4,3 cm ²	nicht releva t voreingestellt) maßgebend nicht releva
- Erford m - Erford (Ka jeda äuß <u>)irekte Be</u> Differd	erliche Bewehrung bei Erstriss t: - Beiwert für Spannungsverteil (im Standardfall $\sigma_c = f_{ct,eff}$ ist - Effektive Zugfestigkeit 7.3.2 - A_{ct} Fläche der Zugzone im Zi (anteilig für jede Bauteilseite - Aufnehmbare Stahlspannung mit: $\Phi_s^* = d_s^* = d_s \times \frac{8 \times 1}{k_c}$ erliche Bewehrung bei abgesc p. 7.3.2 (NA.5) und Gl. NA.7.5.1) boch einzuhaltene Stahlspannung derer Lastbeanspruchung (7.2(5)): rechnung der Rissbreite (ferender Stahlspannung Stahl/ Beton	sbildung (Kap. 7.3. lung im Rechteckqu $k_c = 1,0$): (2): ustand I und Bewehrungslag g nach 7.3.3(2), Tab $\frac{\langle (h-d)}{\langle k \times h_{cr} \rangle} \times \frac{2,9}{f_{ct,ef}}$ hlossenem Rissbil): $\sigma_a \leq f_{yk}$ bzw. $\leq 0.8 \times 10^{-3}$ Kap. 7.3.4) $\sigma_b = \sigma_b - \sigma_b - \sigma_b$	2 (2) und GI. 7.1): erschnitt bei zentrisch ge): . 7.2 DE und GI. 7.7 I $\frac{1}{f_{f}} < d_{s} \times \frac{2}{f_{ct}}$ Id f _{yk} bei zusätzlicher $-k_{t} \cdot \frac{f_{ct,eff}}{\rho_{p,eff}} (1 + \alpha_{e} + \frac{1}{r_{ct}})$	erf A _s = k _c x k nem Zwang (GI. 7.2 DE (abgeschl. Rissl zul σ_s = (w _k x 3 zul σ_s = (w _k x 3 erf A _s = erf A _s = erf A _s ≥ k x	$\sum \mathbf{x} f_{cLeff} \times A_{cz} / zul \sigma_s = \begin{bmatrix} 2 \\ c_{cLeff} \end{bmatrix}$ $k_c = f_{cLeff} = A_{cz} = b \times h/2 = bidl):$ $A_{cz} = b \times h/2 = bidl): a_{z} + a_{z} + b_{z} + b_$	14,6 cm ² 1,0 (k _e = 1.0 is 1,75 N/mm ² 1.750 cm ² 162,1 N/mm ² 550,0 N/mm ² bei h _{cr} =h) 14,1 cm ² 4,3 cm ²	nicht releva t voreingestellt) maßgebend nicht releva
- Erforc m - Erforc (Ka jed <u>jorekte Be</u> Differt (GI. 7.	erliche Bewehrung bei Erstriss t: - Beiwert für Spannungsverteil (im Standardfall $\sigma_c = f_{ct,off}$ ist - Effektive Zugfestigkeit 7.3.2 - A_{ct} Fläche der Zugzone im Zi (anteilig für jede Bauteilseite - Aufnehmbare Stahlspannung mit: $\Phi_s^* = d_s^* = d_s \times \frac{8 \times 2}{k_c}$ erliche Bewehrung bei abgesc p. 7.3.2 (NA.5) und Gl. NA.7.5.1 sch einzuhaltene Stahlspannung d erer Lastbeanspruchung (7.2(5)): rechnung der Rissbreite (fi enzdehnung Stahl/ Beton 9):	sbildung (Kap. 7.3. lung im Rechteckqu $k_c = 1,0$): (2): ustand I und Bewehrungslag g nach 7.3.3(2), Tab $\frac{\langle (h-d)}{\langle k \times h_{cr} \rangle} \times \frac{2,9}{f_{ct,ef}}$ hlossenem Rissbil): $\sigma_s \leq f_{yk}$ bzw. $\leq 0,8 \times$: Kap. 7.3.4) $\sigma_s = -\varepsilon_{cm} =$	2 (2) und GI. 7.1): erschnitt bei zentrisch ge): . 7.2 DE und GI. 7.7 I $\frac{1}{f_{f}}$ < $d_{s} \times \frac{2}{f_{ct}}$ Id f_{yk} bei zusätzlicher $-k_{t} \cdot \frac{f_{ct,eff}}{\rho_{p,eff}} (1 + \alpha_{e} + \frac{E_{s}}{2})$	erf A _s = k _c x k nem Zwang (Gl. 7.2 DE (abgeschl. Rissl zul σ_s = (w _k x 3 zul σ_s = (w _k x 3 <i>cff</i> = 2 erf A _s = 2 erf A _s = k x	$\sum_{x \text{ f}_{cLeff} x A_{ct} / zul \sigma_s = \begin{bmatrix} 2 \\ c_{cLeff} \\ f_{cLeff} \end{bmatrix}$ $k_c = f_{cLeff} = A_{ct} = b x h/2 = bidh$ $A_{ct} = b x h/2 = bidh$ $B_{ct} = b x h/2 = 26.5 \text{ mm} (7.7 \text{ DE, wot} f_{cLeff} x A_{c.eff} / zul \sigma_s = \begin{bmatrix} c_{cLeff} x A_{c.eff} / zul \sigma_s \end{bmatrix}$ $f_{cLeff} x A_{c.eff} / zul \sigma_s = \begin{bmatrix} c_{cLeff} x A_{c.eff} / zul \sigma_s \end{bmatrix}$ $034 \ge 0, 6 \cdot \frac{\sigma_s}{E_s} = 034 \ge 0.6 \cdot \frac{\sigma_s}{E_s} = 0.034 \ge 0.034 \ge 0.06 \cdot \frac{\sigma_s}{E_s} = 0.034 \ge 0.06 \cdot \frac{\sigma_s}{$	14,6 cm ² 1,0 (k _e = 1.0 is 1,75 N/mm ² 1.750 cm ² 162,1 N/mm ² 550,0 N/mm ² bei h _{cr} =h) 14,1 cm ² 4,3 cm ² 0,00035 (maßgebend)	nicht releva t voreingestellt) maßgebend nicht releva
- Erforc m (Ka jedu <u>jirekte Be</u> Differc (GI. 7.	erliche Bewehrung bei Erstriss t: - Beiwert für Spannungsverfeil (im Standardfall $\sigma_c = f_{ct,eff}$ ist - Effektive Zugfestigkeit 7.3.2 - A_{ct} Fläche der Zugzone im Zi (anteilig für jede Bauteilseite - Aufnehmbare Stahlspannung mit: $\Phi_s^* = d_s^* = d_s \times \frac{8 \times 2}{k_c}$ erliche Bewehrung bei abgesc p. 7.3.2 (NA.5) und Gl. NA.7.5.1 sch einzuhaltene Stahlspannung derer Lastbeanspruchung (7.2(5)): rechnung der Rissbreite (I enzdehnung Stahl/ Beton 9):	sbildung (Kap. 7.3.: lung im Rechteckqu $k_c = 1,0$): (2): ustand I und Bewehrungslag g nach 7.3.3(2), Tab $\times (h-d) \times \frac{2,9}{f_{ct,ef}}$ hlossenem Rissbil): $\sigma_s \leq f_{yk}$ bzw. $\leq 0.8 \times 10^{-5}$ Kap. 7.3.4) $\mathcal{E}_{sm} - \mathcal{E}_{cm} = \frac{\sigma_s - 10^{-5}}{10^{-5}}$	2 (2) und GI. 7.1): erschnitt bei zentrisch ge): . 7.2 DE und GI. 7.7 f $\frac{1}{f_{f}}$ < $d_{s} \times \frac{2}{f_{ct}}$ Id f_{yk} bei zusätzlicher $-k_{t} \cdot \frac{f_{ct.eff}}{\rho_{p.eff}} (1 + \alpha_{e} \cdot \frac{E_{s}}{E_{s}})$	erf A _s = k _c x k nem Zwang (Gl. 7.2 DE (abgeschl. Rissl zul σ_s = (w _k x 3 zul σ_s = (w _k x 3 <i>z</i> , <i>p</i>) = 2 <i>erf</i> A _s = 2 <i>erf</i> A _s = <i>k</i> x $\rho_{p,eff}$ = 0,00	$\sum_{x \text{ fct,eff}} x A_{ct} / zul \sigma_s = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$ $k_c = \\ f_{ct,eff} = \\ A_{ct} = b x h/2 = \\ bild): \\ B_{4}8 x 10^6 / \Phi_s^*)^{1/2} = \\ \leq max \sigma_s = \\ 26.5 \text{ mm } (7.7\text{ DE, wot} \\ f_{ct,eff} x A_{c,eff} / zul \sigma_s = \begin{bmatrix} \\ f_{ct,eff} x A_{ct} / max \sigma_s = \end{bmatrix}$ $034 \ge 0, 6 \cdot \frac{\sigma_s}{E_s} = \\ \sigma_s : \Phi$	14,6 cm ² 1,0 (k _e = 1.0 is 1,75 N/mm ² 1.750 cm ² 162,1 N/mm ² 550,0 N/mm ² bei h _{cr} =h) 14,1 cm ² 4,3 cm ² 0,00035 (maßgebend)	nicht releva t voreingestellt) maßgebend nicht releva
- Erforc m (Ka jedu <u>jirekte Be</u> Differc (GI. 7. Maxim	erliche Bewehrung bei Erstriss t: - Beiwert für Spannungsverfeil (im Standardfall $\sigma_c = f_{ct,eff}$ ist - Effektive Zugfestigkeit 7.3.2 - A_{ct} Fläche der Zugzone im Zi (anteilig für jede Bauteilseite - Aufnehmbare Stahlspannung mit: $\Phi_s^* = d_s^* = d_s \times \frac{8 \times 2}{k_c}$ erliche Bewehrung bei abgesc p. 7.3.2 (NA.5) und Gl. NA.7.5.1 sch einzuhaltene Stahlspannung derer Lastbeanspruchung (7.2(5)): rechnung der Rissbreite (I enzdehnung Stahl/ Beton 9): taler Rissabstand (Gl. 7.11 und	sbildung (Kap. 7.3.: lung im Rechteckqu $k_c = 1,0$): (2): ustand I und Bewehrungslag g nach 7.3.3(2), Tab $\frac{\langle (h-d)}{\langle k \times h_{cr} \rangle} \times \frac{2,9}{f_{ct,ef}}$ hlossenem Rissbil): $\sigma_s \leq f_{yk}$ bzw. $\leq 0,8 \times 10^{-5}$ Kap. 7.3.4) $\mathcal{E}_{sm} - \mathcal{E}_{cm} = \frac{\sigma_s - 10^{-5}}{10^{-5}}$ NA 7.3.4(3)):	2 (2) und GI. 7.1): erschnitt bei zentrisch ge): . 7.2 DE und GI. 7.7 I $\frac{1}{f_{f}} < d_{s} \times \frac{2}{f_{ct}}$ Id f_{yk} bei zusätzlicher $-k_{t} \cdot \frac{f_{ct,eff}}{P_{p,eff}} (1 + \alpha_{e} + \frac{E_{s}}{E_{s}})$ $s_{r,max} = \frac{\Phi_{s}}{3.6 \cdot \alpha}$	erf A _s = k _c x k nem Zwang (Gl. 7.2 DE (abgeschl. Rissl zul σ_s = (w _k x 3 zul σ_s = (w _k x 3 <i>i</i> ,9 = 2 <i>erf</i> A _s = 2 <i>erf</i> A _s = k x $\rho_{p,eff}$ = 0,00	$\sum_{x \text{ fct,eff } x \text{ A}_{ct} / \text{ zul } \sigma_s = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$ $k_c = \\ f_{ct,eff} = \\ A_{ct} = b x h/2 = \\ bild): \\ B_{4}8 x 10^6 / \Phi_s^*)^{1/2} = \\ \leq max \sigma_s = \\ 26.5 \text{ mm } (7.7\text{ DE, wot} \\ f_{ct,eff} x \text{ A}_{c,eff} / \text{ zul } \sigma_s = \begin{bmatrix} \\ 1034 \ge 0, 6 \cdot \frac{\sigma_s}{E_s} \end{bmatrix} = \\ 034 \ge 0, 6 \cdot \frac{\sigma_s}{E_s} = \\ \leq \frac{\sigma_s \cdot \Phi_s}{3.6 \cdot f} = \\ \end{bmatrix}$	14,6 cm ² 1,0 (k _e = 1.0 is 1,75 N/mm ² 1.750 cm ² 162,1 N/mm ² 550,0 N/mm ² bei h _{cr} =h) 14,1 cm ² 4,3 cm ² 0,00035 (maßgebend) 298 mm	nicht releva t voreingestellt) maßgebend nicht releva
- Erforc m - Erford (Ka jed äuß <u>Direkte Be</u> Differd (Gl. 7. Maxim	erliche Bewehrung bei Erstriss t: - Beiwert für Spannungsverteil (im Standardfall $\sigma_c = f_{ct.eff}$ ist - Effektive Zugfestigkeit 7.3.2 - A_{ct} Fläche der Zugzone im Zi (anteilig für jede Bauteilseite - Aufnehmbare Stahlspannung mit: $\Phi_s^* = d_s^* = d_s \times \frac{8 \times k_c}{k_c}$ erliche Bewehrung bei abgesc p. 7.3.2 (NA.5) und Gl. NA.7.5.1 che einzuhaltene Stahlspannung derer Lastbeanspruchung (7.2(5)): rechnung der Rissbreite (fer enzdehnung Stahl/ Beton 9): haler Rissabstand (Gl. 7.11 und	sbildung (Kap. 7.3. lung im Rechteckqu $k_c = 1,0$): (2): ustand I und Bewehrungslag g nach 7.3.3(2), Tab $\frac{\langle (h-d)}{\langle k \times h_{cr} \rangle} \times \frac{2,9}{f_{ct,ef}}$ hlossenem Rissbil): $\sigma_a \leq f_{yk}$ bzw. $\leq 0.8 \times 10^{-5}$ Kap. 7.3.4) $\mathcal{E}_{sm} - \mathcal{E}_{cm} = \frac{\sigma_s - 10^{-5}}{10^{-5}}$ NA 7.3.4(3)):	2 (2) und GI. 7.1): erschnitt bei zentrisch ge): . 7.2 DE und GI. 7.7 f $\frac{1}{f_{f}}$ < $d_{s} \times \frac{2}{f_{ct}}$ Id f_{gk} bei zusätzlicher $-k_{t} \cdot \frac{f_{ct,eff}}{\rho_{p,eff}} (1 + \alpha_{e} + \frac{E_{s}}{3} + $	erf A _s = k _c x k nem Zwang (Gl. 7.2 DE (abgeschl. Rissl zul $\sigma_s = (w_k \times 3)$ <i>zul</i> $\sigma_s = (w_k \times 3)$ <i>erf</i> A _s = 2 <i>erf</i> A _s = 2 <i>erf</i> A _s = 4 <i>erf</i>	$\sum_{x \in t_{ct,eff}} x A_{ct} / zul \sigma_s = \begin{bmatrix} 2 \\ c_{ct,eff} \end{bmatrix}$ $k_c = f_{ct,eff} = A_{ct} = b x h/2 = bild):$ $A_{ct} = b x h/2 = bild):$ $B_{48} x 10^6 / \Phi_s^*)^{1/2} = \leq max \sigma_s = 26.5 mm (7.7DE, woth f_{ct,eff} x A_{c,eff} / zul \sigma_s = \begin{bmatrix} 1034 \ge 0, 6 \cdot \frac{\sigma_s}{E_s} \end{bmatrix}$ $f_{ct,eff} x A_{ct} / max \sigma_s = \begin{bmatrix} 1034 \ge 0, 6 \cdot \frac{\sigma_s}{E_s} \end{bmatrix}$ $i \leq \frac{\sigma_s \cdot \Phi_s}{3, 6 \cdot f_{ct,eff}} = i \leq \frac{\sigma_s \cdot \Phi_s}{3, 6 \cdot f_{ct,eff}} = i \leq 26.5 mm (1.7DE)$	14,6 cm ² 1,0 (k _e = 1.0 is 1,75 N/mm ² 1.750 cm ² 162,1 N/mm ² 550,0 N/mm ² bei h _{er} =h) 14,1 cm ² 4,3 cm ² 0,00035 (maßgebend) 298 mm	nicht releva t voreingestellt) maßgebend nicht releva
- Erford m - Erford (Ka jed äuß <u>Differd</u> (GI. 7. Maxim	erliche Bewehrung bei Erstriss t: - Beiwert für Spannungsverteil (im Standardfall $\sigma_c = f_{ct,eff}$ ist - Effektive Zugfestigkeit 7.3.2 - A_{ct} Fläche der Zugzone im Zu (anteilig für jede Bauteilseite - Aufnehmbare Stahlspannung mit: $\Phi_s^* = d_s^* = d_s \times \frac{8 \times k_c}{k_c}$ ierliche Bewehrung bei abgez p. 7.3.2 (NA.5) und Gl. NA.7.5.1 psch einzuhaltene Stahlspannung (7.2(5)): rechnung der Rissbreite (I enzdehnung Stahl/ Beton 9): haler Rissabstand (Gl. 7.11 und t: - Vorhandene Stahlspannung i	sbildung (Kap. 7.3. lung im Rechteckqu $k_c = 1,0$): (2): ustand I und Bewehrungslag g nach 7.3.3(2), Tab $\frac{\langle (h-d)}{\langle k \times h_{cr} \rangle} \times \frac{2,9}{f_{ct,ef}}$ hlossenem Rissbil): $\sigma_a \leq f_{jk}$ bzw. $\leq 0,8$ x : Kap. 7.3.4) $\varepsilon_{sm} - \varepsilon_{cm} = \frac{\sigma_s}{2}$ NA 7.3.4(3)): im Erstriss nach 7.3	2 (2) und Gi. 7.1): erschnitt bei zentrisch ge): . 7.2 DE und Gi. 7.7 (. 7.2 DE und Gi. 7.7 (erf A _s = k _c x k hem Zwang (GI. 7.2 DE (abgeschl. Rissl zul σ_s = (w _k x 3 zul σ_s = (w _k x 3 $\frac{2}{eff}$ = 2 erf A _s = 2 erf A _s = k x $\frac{\rho_{p,eff}}{r}$ = 0,00 r = 289 mm \leq (maßgebend) vorh σ_s = k _c x k x	$\sum_{x \text{ fct,eff}} x A_{ct} / zul \sigma_{s} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$ $k_{c} = \int_{ct,eff} z A_{ct} / zul \sigma_{s} = \begin{bmatrix} 2 \\ c_{ct,eff} \end{bmatrix}$ $A_{ct} = b \times h/2 = bild):$ $B_{4}8 \times 10^{6} / \Phi_{s}^{*})^{1/2} = \sum max \sigma_{s} = 26.5 \text{ mm } (7.7\text{DE, woth} f_{ct,eff} \times A_{c,eff} / zul \sigma_{s} = \begin{bmatrix} 0.034 \ge 0.6 \cdot \frac{\sigma_{s}}{E_{s}} \end{bmatrix}$ $0.034 \ge 0.6 \cdot \frac{\sigma_{s}}{E_{s}} = \frac{\sigma_{s} \cdot \Phi_{s}}{3.6 \cdot f_{ct,eff}} = \frac{f_{ct,eff} \times A_{ct} / \text{ worh } A_{s} = 100000000000000000000000000000000000$	14,6 cm ² 1,0 (k _c = 1.0 is 1,75 N/mm ² 1.750 cm ² 162,1 N/mm ² 550,0 N/mm ² 0,0 N/mm ² 4,3 cm ² 0,00035 (maßgebend) 298 mm 117,3 N/mm ²	nicht releva t voreingestellt) maßgebend nicht releva
- Erforc m - Erford (Ka jed äuß <u>Direkte Be</u> Oifferd (GI. 7. Maxin mi	erliche Bewehrung bei Erstriss t: - Beiwert für Spannungsverteil (im Standardfall $\sigma_c = f_{ct,eff}$ ist - Effektive Zugfsetigkeit 7.3.2 - A_{ct} Fläche der Zugzone im Zi (anteilig für jede Bauteilseite - Aufnehmbare Stahlspannung mit: $\Phi_s^* = d_s^* = d_s \times \frac{8}{k_c}$: erliche Bewehrung bei abgesci p. 7.3.2 (NA.5) und Gl. NA.7.5.1 psch einzuhaltene Stahlspannung (7.2(5)): rechnung der Rissbreite (I enzdehnung Stahl/ Beton 9): haler Rissabstand (Gl. 7.11 und t: - Vorhandene Stahlspannung i (σ_s wird um 15% veringert b	sbildung (Kap. 7.3. lung im Rechteckqu $k_c = 1,0$): (2): ustand I und Bewehrungslag (mathbf{mathb}}mathbf{mathbf{mathbf{mathbf{mathb}}mathbf{mathbf{mathbf{mathbf{mathb}}mathbf{mathbf{mathbf{mathbf{mathbf{mathb}mathbf{mathbf{mathb}mathbf{mathbf{mathb}mathbf{mathb}mathbf{mathbf{mathb}mathbf{mathb}mathbf{mathbf{mathb}mathbf{mathb}mathbf{mathbf{mathb}mathbf{mathb}mathbf{mathbf{mathb}mathbf{mathbf{mathb}mathbf{mathb}mathbf{mathbf{mathb}mathbf{mathb}mathbf{mathb}mathbf{mathbf{mathb}mathbf{mathbf{	2 (2) und GI. 7.1): erschnitt bei zentrisch ge): . 7.2 DE und GI. 7.7 (1) $\frac{1}{f} < d_s \times \frac{2}{f_{cl}}$ Id f_{yk} bei zusätzlicher $-k_t \cdot \frac{f_{cl.eff}}{\rho_{p.eff}} (1 + \alpha_{e} + \frac{E_s}{3, 6 + \rho_{p.eff}})$ sr,max = $\frac{\Phi_s}{3, 6 + \rho_{p.eff}}$ 1.2 (2): langsam erhärtender	erf A _s = k _c x k hem Zwang (GI. 7.2 DE (abgeschl. Rissl zul σ_s = (w _k x 3 zul σ_s = (w _k x 3 $\frac{2}{\sqrt{p}}$ = 2 erf A _s = 2 erf A _s = k x $\frac{\rho_{p,eff}}{\rho}$ = 0,00 $\frac{1}{\sqrt{p}}$ = 0,00 $\frac{1}{\sqrt{p}}$ = 2,00 $\frac{1}{\sqrt{p}}$ = 0,00 $\frac{1}{\sqrt{p}}$ = 2,00 $\frac{1}{\sqrt{p}}$ = 0,00 $\frac{1}{\sqrt{p}}$ = 0,00 $\frac{1}{\sqrt{p}}$ = 2,00 $\frac{1}{\sqrt{p}}$ = 0,00 $\frac{1}{\sqrt{p}}$ = 2,00 $\frac{1}{\sqrt{p}}$ = 0,00 $\frac{1}{\sqrt{p}}$ = 2,00 $\frac{1}{\sqrt{p}}$ = 0,00 $\frac{1}{\sqrt{p}}$ = 2,00 $\frac{1}{\sqrt{p}}$ = 2,00 $\frac{1}{\sqrt{p}}$ = 0,00 $\frac{1}{\sqrt{p}}$ = 2,00 $\frac{1}{\sqrt{p}}$ = 2,00 $\frac{1}{\sqrt{p}}$ = 0,00 $\frac{1}{\sqrt{p}}$	$\sum_{x \in L_{eff} \times A_{ct} / zul \sigma_{s} = \begin{bmatrix} 2 \\ R_{ct} = R_{ct} \\ R_{ct} = L_{ct} \\ R_{ct} \\ R_$	14,6 cm ² 1,0 (k _c = 1.0 is 1,75 N/mm ² 1.750 cm ² 162,1 N/mm ² 550,0 N/mm ² 2550,0 N/mm ² 0,00035 (maßgebend) 298 mm 117,3 N/mm ²	nicht releva t voreingestellt) maßgebend nicht releva
- Erforc m - Erford (Ka jed äuß <u>Direkte Be</u> Differe (GI. 7. Maxim mi	erliche Bewehrung bei Erstriss t: - Beiwert für Spannungsverteil (im Standardfall $\sigma_c = f_{ct,eff}$ ist - Effektive Zugfestigkeit 7.3.2 - A_{ct} Fläche der Zugzone im Zi (anteilig für jede Bauteilseite - Aufnehmbare Stahlspannung mit: $\Phi_s^* = d_s^* = d_s \times \frac{8}{k_c}$: derliche Bewehrung bei abgesci p. 7.3.2 (NA.5) und Gl. NA.7.5.1 joch einzuhaltene Stahlspannung (7.2(5)): rechnung der Rissbreite (I enzdehnung Stahl/ Beton 9): haler Rissabstand (Gl. 7.11 und t: - Vorhandene Stahlspannung i (σ_s wird um 15% verringert b - Effektive Zugfestigkeit (keine	sbildung (Kap. 7.3. lung im Rechteckqu $k_c = 1,0$): (2): ustand I und Bewehrungslag g nach 7.3.3(2), Tab $\frac{\langle (h-d)}{\langle k \times h_{cr} \rangle} \times \frac{2,9}{f_{ct,ef}}$ hlossenem Rissbil): $\sigma_{s} \leq f_{yk}$ bzw. $\leq 0,8$ x : Kap. 7.3.4) $\kappa_{sm} - \kappa_{cm} = \frac{\sigma_{s} - \sigma_{s}}{2}$ im Erstriss nach 7.3 iei Verwendung von a Berücksichtigung co	2 (2) und GI. 7.1): erschnitt bei zentrisch ge): . 7.2 DE und GI. 7.7 (1) $\frac{1}{f} < d_s \times \frac{2}{f_{cl}}$ Id f_{yk} bei zusätzlicher $-k_t \cdot \frac{f_{ct,eff}}{\rho_{p,eff}} (1 + \alpha_e)$ E_s $s_{r,max} = \frac{\Phi}{3,6 \cdot \rho_{p,eff}}$ L2 (2): langsam erhärtender	erf A _s = k _c x k hem Zwang (GI. 7.2 DE (abgeschl. Rissl zul σ_s = (w _k x 3 $\frac{2}{\sqrt{p}}$ = 2 erf A _s = 4 erf A _s = k x $\frac{\rho_{p,eff}}{r}$ = 0,00 $\frac{1}{\sqrt{p}}$ = 0,00 $\frac{1}{\sqrt{p}}$ = 2 erf A _s > k x	$\sum_{x \text{ fct.eff}} x A_{ct} / zul \sigma_s = \begin{bmatrix} 2 \\ c_{t.eff} \\ f_{ct.eff} \\ A_{ct} = b x h/2 = \\ bild): \\ A_{ct} = b x h/2 = \\ bild): \\ A_{ct} = b x h/2 = \\ bild): \\ A_{ct} = b x h/2 = \\ ax \sigma_s = \\ c_{t.eff} x A_{ct} / max \sigma_s = \begin{bmatrix} 0 \\ \sigma_s \\ \sigma_s \\ \sigma_s \\ \sigma_s \end{bmatrix}$	14,6 cm ² 1,0 (k _c = 1.0 is 1,75 N/mm ² 1.750 cm ² 162,1 N/mm ² 550,0 N/mm ² bei h _{cr} =h) 14,1 cm ² 4,3 cm ² 0,00035 (maßgebend) 298 mm 117,3 N/mm ² 1,75 N/mm ²	nicht releva t voreingestellt) maßgebend nicht releva
- Erford m - Erford (Ka jed äuß <u>Direkte Be</u> Differd (GI. 7. Maxim	erliche Bewehrung bei Erstriss t: - Beiwert für Spannungsverteil (im Standardfall $\sigma_c = f_{ct,eff}$ ist - Effektive Zugfestigkeit 7.3.2 - A _{ct} Fläche der Zugzone im Zi (anteilig für jede Bauteilseite - Aufnehmbare Stahlspannung mit: $\Phi_s^* = d_s^* = d_s \times \frac{8}{k_c}$: erliche Bewehrung bei abgesci p. 7.3.2 (NA.5) und Gl. NA.7.5.1 p. ch.einzuhaltene Stahlspannung d erer Lastbeanspruchung (7.2(5)): rechnung der Rissbreite (I enzdehnung Stahl/ Beton 9): haler Rissabstand (Gl. 7.11 und t: - Vorhandene Stahlspannung i (σ_s wird um 15% verringert b - Effektive Zugfestigkeit (keine nach NA 7.3.2 (2)):	sbildung (Kap. 7.3. lung im Rechteckqu $k_c = 1,0$): (2): ustand I v und Bewehrungslag g nach 7.3.3(2), Tab $\frac{x(h-d)}{x k \times h_{cr}} \times \frac{2,9}{f_{ct,ef}}$ hlossenem Rissbil): $\sigma_s \leq f_{yk}$ bzw. $\leq 0,8 x$: Kap. 7.3.4) $\varepsilon_{sm} - \varepsilon_{cm} = \frac{\sigma_s - \frac{1}{2}}{2}$ NA 7.3.4(3)): im Erstriss nach 7.3 rei Verwendung von a Berücksichtigung of	2 (2) und GI. 7.1): erschnitt bei zentrisch ge): . 7.2 DE und GI. 7.7 f $\frac{1}{f} < d_s \times \frac{2}{f_{cl}}$ Id f_{yk} bei zusätzlicher $-k_t \cdot \frac{f_{cl,eff}}{\rho_{p,eff}} (1 + \alpha_e)$ E_s $s_{r,max} = \frac{\Phi_s}{3, 6 \cdot \rho_{p,eff}}$ 3.2 (2): langsam erhärtender	erf A _s = k _c x k hem Zwang (GI. 7.2 DE (abgeschl. Rissl zul $\sigma_s = (w_k \times 3)^2$ $eff = 2^2$ $eff A_s \ge k x$ $p_{p,eff} = 2$ $eff A_s \ge k x$ $p_{p,eff} = 0,00$ $r = 289 \text{ mm } \le 2$ (maßgebend) vorh $\sigma_s = k_c x k x$	$\sum_{x \text{ f}_{ct,eff} \times A_{ct} / zul \sigma_s = \begin{bmatrix} 2 \\ c_{t,eff} \end{bmatrix}$ $k_c = f_{ct,eff} = A_{ct} = b \times h/2 = bidl):$ $A_{ct} = b \times h/2 = bidl):$ $B_{ct} = A_{ct} = b \times h/2 = bidl):$ $B_{ct} = A_{ct} = b \times h/2 = bidl):$ $B_{ct} = A_{ct} = b \times h/2 = bidl):$ $B_{ct} = A_{ct} = b \times h/2 = bidl):$ $B_{ct} = A_{ct} = b \times h/2 = bidl):$ $B_{ct} = A_{ct} = b \times h/2 = bidl):$ $B_{ct} = A_{ct} = b \times h/2 = bidl):$ $B_{ct} = b \times h/2 = b \times h/2 = bidl):$ $B_{ct} = b \times h/2 = b \times h/2 = b \times h/2 = bidl):$ $B_{ct} = b \times h/2 = b \times $	14,6 cm ² 1,0 (k _c = 1.0 is 1,75 N/mm ² 1.750 cm ² 162,1 N/mm ² 550,0 N/mm ² 261 h _{cr} =h) 14,1 cm ² 4,3 cm ² 0,00035 (maßgebend) 298 mm 117,3 N/mm ² 1,75 N/mm ²	nicht releva t voreingestellt) maßgebend nicht releva
- Erford m - Erford (Ka jed äuß <u>Direkte Be</u> Differd (GI. 7. Maxim	erliche Bewehrung bei Erstriss t: - Beiwert für Spannungsverteil (im Standardfall $\sigma_c = f_{ct,eff}$ ist - Effektive Zugfestigkeit 7.3.2 - A_{ct} Fläche der Zugzone im Zi (anteilig für jede Bauteilseite - Aufnehmbare Stahlspannung mit: $\Phi_s^* = d_s^* = d_s \times \frac{8 \times 2}{k_c}$. erliche Bewehrung bei abgesc p. 7.3.2 (NA.5) und Gl. NA.7.5.1 p. ch. einzuhaltene Stahlspannung (7.2(5)): rechnung der Rissbreite (f enzdehnung Stahl/ Beton 9): haler Rissabstand (Gl. 7.11 und t: - Vorhandene Stahlspannung i (σ_s wird um 15% verringert b - Effektive Zugfestigkeit (keine nach NA 7.3.2 (2)): - Effektiver Bewehrungsgrad (sbildung (Kap. 7.3. lung im Rechteckqu $k_c = 1,0$): (2): ustand I p und Bewehrungslag g nach 7.3.3(2), Tab $\frac{\langle (h-d)}{\langle k \times h_{cr} \rangle} \times \frac{2,9}{f_{ct,ef}}$ hlossenem Rissbil): $\sigma_s \leq f_{yk}$ bzw. $\leq 0,8 \times 1$ kap. 7.3.4 m F.striss nach 7.3 im Erstriss nach 7.3 lei Verwendung von a Berücksichtigung co Gl. 7.10):	2 (2) und GI. 7.1): erschnitt bei zentrisch ge): . 7.2 DE und GI. 7.7 I $\frac{1}{f_{f}} < d_{s} \times \frac{2}{f_{ct}}$ Id f _{yk} bei zusätzlicher $\frac{-k_{t} \cdot \frac{f_{ct,eff}}{\rho_{p,eff}} (1 + \alpha_{e} \cdot \frac{1}{E_{s}})}{E_{s}}$ Sr _{rmax} = $\frac{\Phi}{3, 6 \cdot \rho_{p,eff}}$.2 (2): langsam erhärtender der Mindestbetonzugf	erf A _s = k _c x k hem Zwang (GI. 7.2 DE (abgeschl. Rissl zul $\sigma_s = (w_k \times 3)^2$ $\frac{1}{\sqrt{p}} = 2$ erf A _s = $\frac{1}{\sqrt{p}}$ erf A _s = k x $\frac{\rho_{p,eff}}{\rho_{p,eff}} = 0,00$ $\frac{1}{\sqrt{p}} = 0,00$ $\frac{1}{\sqrt{p}} = 0,00$ $\frac{1}{\sqrt{p}} = 0,00$	$\sum_{x \in t_{ct,eff} \times A_{ct} / zul \sigma_s = \begin{bmatrix} 2 \\ x \int_{ct,eff} \times A_{ct} / zul \sigma_s \\ f_{ct,eff} = \\ A_{ct} = b \times h/2 = \\ bidl): \\ 3,48 \times 10^6 / \Phi_s^*)^{1/2} = \\ \leq max \sigma_s = \\ 26,5 mm (7.7DE, wot f_{ct,eff} \times A_{c,eff} / zul \sigma_s = \begin{bmatrix} 0 \\ 034 \ge 0,6 \cdot \frac{\sigma_s}{E_s} \\ f_{ct,eff} \times A_{c,eff} / zul \sigma_s = \end{bmatrix}$ $034 \ge 0,6 \cdot \frac{\sigma_s}{E_s} = \\ \leq \frac{\sigma_s \cdot \Phi_s}{3,6 \cdot f_{ct,eff}} = \\ f_{ct,eff} \times A_{ct} / vorh A_s = \\ tionsfall) \\ f_{ct,eff} = vorh A_s / A_{c,eff} = \\ eff = vorh A_s / A_{c,eff} = \\ f_{ct,eff} = vorh A_s / A_{c,eff} = \\ eff = vorh A_s / A_{c,eff} = \\ f_{ct,eff} = vorh A_s / A_{c,eff} = \\ eff = vorh A_s / A_{c,eff} = \\ f_{ct,eff} = vorh A_s /$	14,6 cm ² 1,0 (k _c = 1.0 is 1,75 N/mm ² 1.750 cm ² 162,1 N/mm ² 550,0 N/mm ² bei h _{cr} =h) 14,1 cm ² 4,3 cm ² 0,00035 (maßgebend) 298 mm 117,3 N/mm ² 1,75 N/mm ² 0,0153	nicht releva t voreingestellt) maßgebend nicht releva
- Erforc m (Ka jeda <u>jirekte Be</u> Differ (GI. 7. Maxim mi	erliche Bewehrung bei Erstriss t: - Beiwert für Spannungsverteil (im Standardfall $\sigma_c = f_{ct,eff}$ ist - Effektive Zugfestigkeit 7.3.2 - A_{ct} Fläche der Zugzone im Zi (anteilig für jede Bauteilseite - Aufnehmbare Stahlspannung mit: $\Phi_s^* = d_s^* = d_s \times \frac{8 \times k_c}{k_c}$. erliche Bewehrung bei abgesc p. 7.3.2 (NA.5) und Gl. NA.7.5.1 boch einzuhaltene Stahlspannung d erer Lastbeanspruchung (7.2(5)): rechnung der Rissbreite (f enzdehnung Stahl/ Beton 9): haler Rissabstand (Gl. 7.11 und t: - Vorhandene Stahlspannung t $(\sigma_s wird um 15\% verringert b - Effektive Zugfestigkeit (keine nach NA 7.3.2 (2)): - Effektiver Bewehrungsgrad (f$	sbildung (Kap. 7.3. lung im Rechteckqu $k_c = 1,0$): (2): ustand I und Bewehrungslag g nach 7.3.3(2), Tab $\frac{\langle (h-d)}{\langle k \times h_{cr} \rangle} \times \frac{2,9}{f_{ct,ef}}$ hlossenem Rissbil): $\sigma_s \leq f_{ys}$ bzw. $\leq 0,8 \times 1$ Kap. 7.3.4) Kap. 7.3.4(3)): im Erstriss nach 7.3 iei Verwendung von a Berücksichtigung of GI. 7.10):	2 (2) und GI. 7.1): erschnitt bei zentrisch ge): . 7.2 DE und GI. 7.7 I $\frac{1}{f_{f}} < d_{s} \times \frac{2}{f_{ct}}$ Id f_{yk} bei zusätzlicher $\frac{-k_{t} \cdot \frac{f_{ct,eff}}{\rho_{p,eff}} (1 + \alpha_{e} + \frac{E_{s}}{2s})}{\frac{E_{s}}{3,6 \cdot \rho_{p,eff}}}$ sr,max = $\frac{\Phi_{s}}{3,6 \cdot \rho_{p,eff}}$ 1.2 (2): langsam erhärtender der Mindestbetonzugf	erf A _s = k _c x k nem Zwang (GI. 7.2 DE (abgeschl. Rissl zul $\sigma_s = (w_k \times 3)$ $\frac{1}{eff} = 2$ erf A _s = 2 erf A _s = k x $\frac{\rho_{p,eff}}{r} = 0,00$ $r = 289 \text{ mm} \leq (maßgebend)$ vorh $\sigma_s = k_c \times k \times 3$ Beton im Hydratal estigkeit ρ_{p}	$\sum_{x \in L \in H} x A_{ct} / zul \sigma_{s} = \begin{bmatrix} 2 \\ x \int_{ct,eff} x A_{ct} / zul \sigma_{s} \\ f_{ct,eff} = \\ A_{ct} = b x h/2 = \\ bidl): \\ B_{4} a x 10^{6} / \Phi_{s}^{*})^{1/2} = \\ \leq max \sigma_{s} = \\ 26,5 mm (7.7DE, woth the second secon$	14,6 cm ² 1,0 (k _e = 1.0 is 1,75 N/mm ² 1.750 cm ² 162,1 N/mm ² 550,0 N/mm ² bei h _{cr} =h) 14,1 cm ² 4,3 cm ² 0,00035 (maßgebend) 298 mm 117,3 N/mm ² 1,75 N/mm ² 0,0153	nicht releva t voreingestellt) maßgebend nicht releva
- Erforc m (Ka jeda <u>jeda</u> <u>jeda</u> <u>jeda</u> <u>jeda</u> <u>auß</u> <u>Differc</u> (GI. 7. Maxim mi	erliche Bewehrung bei Erstriss t: - Beiwert für Spannungsverteil (im Standardfall $\sigma_c = f_{ct,eff}$ ist - Effektive Zugfestigkeit 7.3.2 - A_{ct} Fläche der Zugzone im Zi (anteilig für jede Bauteilseite - Aufnehmbare Stahlspannung mit: $\Phi_s^* = d_s^* = d_s \times \frac{8 \times k_c}{k_c}$ erliche Bewehrung bei abgesc p. 7.3.2 (NA.5) und Gl. NA.7.5.1 che einzuhaltene Stahlspannung d erer Lastbeanspruchung (7.2(5)): rechnung der Rissbreite (f enzdehnung Stahl/ Beton 9): haler Rissabstand (Gl. 7.11 und t: - Vorhandene Stahlspannung i (σ_s wird um 15% verringert - Effektive Zugfestigkeit (keine nach NA 7.3.2 (2)): - Effektiver Bewehrungsgrad (- Verhältnis E-Moduln:	sbildung (Kap. 7.3. lung im Rechteckqu $k_c = 1,0$): (2): ustand I und Bewehrungslag g nach 7.3.3(2), Tab $\frac{\langle (h-d)}{\langle k \times h_{cr} \rangle} \times \frac{2,9}{f_{ct,ef}}$ hlossenem Rissbil): $\sigma_a \le f_{yk}$ bzw. $\le 0.8 \times 10^{-5}$ Kap. 7.3.4) $\varepsilon_{sm} - \varepsilon_{cm} = \frac{\sigma_s - 10^{-5}}{10^{-5}}$ NA 7.3.4(3)): im Erstriss nach 7.3 nei Verwendung von a Berücksichtigung of GI. 7.10):	2 (2) und GI. 7.1): erschnitt bei zentrisch ge): . 7.2 DE und GI. 7.7 I $\frac{1}{f_{f}} < d_{s} \times \frac{2}{f_{ct}}$ Id f _{yk} bei zusätzlicher $\frac{-k_{1}}{\rho_{p,eff}} \frac{f_{ct,eff}}{(1 + \alpha_{e} + \frac{E_{s}}{2\rho_{p,eff}})}$ s _{r.max} = $\frac{\Phi_{s}}{3,6 \cdot \rho_{p,eff}}$ 1.2 (2): langsam erhärtender der Mindestbetonzugf	erf A _s = k _c x k nem Zwang (GI. 7.2 DE (abgeschl. Rissl zul $\sigma_s = (w_k \times 3)$ $\frac{1}{eff} = 2$ erf A _s = 2 erf A _s = k x $\frac{\rho_{p,eff}}{2} = 0,00$ $r = 289 \text{ mm} \leq (maßgebend)$ vorh $\sigma_s = k_c \times k \times 3$ Beton im Hydratal estigkeit ρ_p .	$\sum_{k=1}^{d} x f_{ct,eff} x A_{ct} / zul \sigma_s = \begin{bmatrix} 2 \\ c_{t,eff} \end{bmatrix}$ $k_c = f_{ct,eff} = A_{ct} = b x h/2 = bidl):$ $A_{ct} = b x h/2 = bidl):$ $B_{ct} = f_{ct,eff} x A_{ct} / \sigma_s = \begin{bmatrix} 26,5 \text{ mm} (7.7\text{DE, woth } \sigma_s) \end{bmatrix}$ $E_{ct,eff} x A_{c,eff} / zul \sigma_s = \begin{bmatrix} 034 \ge 0,6 \cdot \frac{\sigma_s}{E_s} \\ f_{ct,eff} x A_{ct} / \max \sigma_s \end{bmatrix}$ $\leq \frac{\sigma_s \cdot \Phi_s}{3,6 \cdot f_{ct}, c_{eff}} = f_{ct,eff} x A_{ct} / \text{vort } A_s = tionsfall)$ $f_{ct,eff} = \alpha_e = E_s / E_{cm} = \alpha_e = E_s / E_{cm} = a_{ct} + a_{ct} a_$	14,6 cm ² 1,0 (k _e = 1.0 is 1,75 N/mm ² 1.750 cm ² 162,1 N/mm ² 550,0 N/mm ² bei h _{cr} =h) 14,1 cm ² 4,3 cm ² 0,00035 (maßgebend) 298 mm 117,3 N/mm ² 1,75 N/mm ² 0,0153 5,71	nicht releva t voreingestellt) maßgebend nicht releva
- Erforc m - Erford (Ka jed äuß <u>Direkte Be</u> (Gl. 7. Maxim mi	erliche Bewehrung bei Erstriss t: - Beiwert für Spannungsverteil (im Standardfall $\sigma_c = f_{ct,eff}$ ist - Effektive Zugfestigkeit 7.3.2 - A_{ct} Fläche der Zugzone im Zi (anteilig für jede Bauteilseite - Aufnehmbare Stahlspannung mit: $\Phi_s^* = d_s^* = d_s \times \frac{8 \times k_c}{k_c}$ erliche Bewehrung bei abgez p. 7.3.2 (NA.5) und Gl. NA.7.5.1 pch einzuhaltene Stahlspannung d erer Lastbeanspruchung (7.2(5)): rechnung der Rissbreite (I enzdehnung Stahl/ Beton 9): haler Rissabstand (Gl. 7.11 und t: - Vorhandene Stahlspannung i (σ_s wird um 15% verringert b - Effektive Zugfestigkeit (keine nach NA 7.3.2 (2)): - Effektiver Bewehrungsgrad (- Verhältnis E-Moduln:	sbildung (Kap. 7.3. lung im Rechteckqu $k_c = 1,0$): (2): ustand I und Bewehrungslag g nach 7.3.3(2), Tab $\frac{\langle (h-d)}{\langle k \times h_{cr} \rangle} \times \frac{2,9}{f_{ct,ef}}$ hlossenem Rissbil): $\sigma_a \leq f_{yk}$ bzw. $\leq 0.8 \times 10^{-5}$ $\kappa_{sm} - \varepsilon_{cm} = \frac{\sigma_s - 10^{-5}}{10^{-5}}$ INA 7.3.4(3)): im Erstriss nach 7.3 rei Verwendung von a Berücksichtigung of GI. 7.10):	2 (2) und GI. 7.1): erschnitt bei zentrisch ge): . 7.2 DE und GI. 7.7 I $\frac{1}{f_{f}}$ < $d_{s} \times \frac{2}{f_{ct}}$ Id f_{yk} bei zusätzlicher $\frac{-k_{t}}{\rho_{p,eff}} \frac{f_{ct,eff}}{(1 + \alpha_{e} + \frac{E_{s}}{2\rho_{p,eff}})}$ $s_{r,max} = \frac{\Phi_{s}}{3,6 \cdot \rho_{p,eff}}$ 1.2 (2): langsam erhärtender der Mindestbetonzugf	erf A _s = k _c x k nem Zwang (GI. 7.2 DE (abgeschl. Rissl zul $\sigma_s = (w_k \times 3)$ $\frac{1}{eff} = 2$ erf A _s = 2 erf A _s = k x $\frac{\rho_{p,eff}}{2} = 0,00$ $r = 289 \text{ mm} \leq (maßgebend)$ vorh $\sigma_s = k_c \times k \times 1$ Beton im Hydratal estigkeit ρ_p	$\sum_{k=1}^{d} x f_{ct,eff} x A_{ct} / zul \sigma_s = \begin{bmatrix} 2 \\ c_{t,eff} \end{bmatrix}$ $k_c = f_{ct,eff} = A_{ct} = b x h/2 = bidl):$ $A_{ct} = b x h/2 = bidl):$ $B_{ct} = f_{ct,eff} = A_{ct} = b x h/2 = bidl):$ $B_{ct} = f_{ct,eff} x A_{ct} / a \sigma_s = \begin{bmatrix} 0 \\ c_{ct,eff} x A_{ct} / a \sigma_s = \end{bmatrix}$ $034 \ge 0, 6 \cdot \frac{\sigma_s}{E_s} = f_{ct,eff} x A_{ct} / a \sigma_s = \begin{bmatrix} 0 \\ c_{ct,eff} x A_{ct} / a \sigma_s = \end{bmatrix}$ $\leq \frac{\sigma_s \cdot \Phi_s}{3, 6 \cdot f_{ct}, cff} = f_{ct,eff} x A_{ct} / a \sigma_s = f_{ct,eff} x A_{ct} / a \sigma_s = f_{ct,eff} = a_c = E_s / E_{cr} = a_c = E_s / E_{cr} = a_c = E_s / E_{cr} = a_c = a \sigma_s = a $	14,6 cm ² 1,0 (k _e = 1.0 is 1,75 N/mm ² 1.750 cm ² 162,1 N/mm ² 550,0 N/mm ² bei h _{cr} =h) 14,1 cm ² 4,3 cm ² 0,00035 (maßgebend) 298 mm 117,3 N/mm ² 1,75 N/mm ² 0,0153 5,71	nicht releva t voreingestellt) maßgebend nicht releva
- Erford m - Erford (Ka jedd äuß <u>Dirfekte Be</u> (Gi. 7. Maxim mi	erliche Bewehrung bei Erstriss t: - Beiwert für Spannungsverteil (im Standardfall $\sigma_c = f_{ct,eff}$ ist - Effektive Zugfeetigkeit 7.3.2 - A_{ct} Fläche der Zugzone im Zu (anteilig für jede Bauteilseite - Aufnehmbare Stahlspannung mit: $\Phi_s^* = d_s^* = d_s \times \frac{8 \times k_c}{k_c}$: erliche Bewehrung bei abgez p. 7.3.2 (NA.5) und Gl. NA.7.5.1 p.ch einzuhaltene Stahlspannung derer Lastbeanspruchung (7.2(5)): rechnung der Rissbreite (I enzdehnung Stahl/ Beton 9): haler Rissabstand (Gl. 7.11 und t: - Vorhandene Stahlspannung i (σ_s wird um 15% verringert b - Effektive Zugfestigkeit (keine nach NA 7.3.2 (2)): - Effektiver Bewehrungsgrad (- Verhältnis E-Moduln: nis: Rechnerische Rissbreite (C	sbildung (Kap. 7.3. lung im Rechteckqu $k_c = 1,0$): (2): ustand I und Bewehrungslag g nach 7.3.3(2), Tab $\frac{\langle (h-d)}{\langle k \times h_{cr} \rangle} \times \frac{2,9}{f_{ct,ef}}$ hlossenem Rissbil): $\sigma_a \leq f_{yk}$ bzw. $\leq 0,8$ x : Kap. 7.3.4) $\varepsilon_{sm} - \varepsilon_{cm} = \frac{\sigma_s}{2}$ NA 7.3.4(3)): im Erstriss nach 7.3 sei Verwendung von a Berücksichtigung of Gl. 7.10): Gl. 7.8):	2 (2) und Gi. 7.1): erschnitt bei zentrisch ge): . 7.2 DE und Gi. 7.7 ($\frac{1}{f} < d_s \times \frac{2}{f_{cl}}$ Id f_{gk} bei zusätzlicher $\frac{-k_t \cdot \frac{f_{cl}eff}{\rho_{p,eff}} (1 + \alpha_e \cdot \frac{E_s}{3,6 \cdot \rho_{p,eff}})}{E_s}$ $s_{r,max} = \frac{\Phi_s}{3,6 \cdot \rho_{p,eff}}$ 1.2 (2): langsam erhärtender der Mindestbetonzugf $w_k = s_{r,max} x$	erf A _s = k _c x k hem Zwang (GI. 7.2 DE (abgeschl. Rissl zul σ_s = (w _k x 3 zul σ_s = (w _k x 3 $\frac{2}{eff}$ = 2 erf A _s = 4 erf A _s = k x $\frac{\rho_{p,eff}}{r}$ = 0,00 r = 289 mm \leq (maßgebend) vorh σ_s = k _c x k x $P_{p,eff}$ = 0,00 r = 289 mm \leq (maßgebend) vorh σ_s = k _c x k x r = 2 Beton im Hydratat estigkeit $\rho_{p,eff}$ = 2 r = 2	$\sum_{x \text{ fct.eff}} x A_{ct} / zul \sigma_s = \begin{bmatrix} 2 \\ x f_{ct.eff} x A_{ct} / zul \sigma_s \\ f_{ct.eff} = & f_{ct.eff} = \\ A_{ct} = b x h/2 = & bild): \\ B_{48} x 10^6 / \Phi_s^* y^{1/2} = & \leq & ax \sigma_s = \\ 26,5 \text{ mm} (7.7\text{ DE, word} f_{ct.eff} x A_{c.eff} / zul \sigma_s = \begin{bmatrix} 1034 \ge 0,6 \cdot \frac{\sigma_s}{E_s} \\ f_{ct.eff} x A_{c.eff} / ax \sigma_s = \end{bmatrix}$ $034 \ge 0,6 \cdot \frac{\sigma_s}{E_s} = & f_{ct.eff} x A_{ct} / max \sigma_s = \begin{bmatrix} 1034 \ge 0,6 \cdot \frac{\sigma_s}{E_s} \\ 3,6 \cdot f_{ct.eff} = & f_{ct.eff} x A_{c.eff} \end{bmatrix}$ $\leq & \frac{\sigma_s \cdot \Phi_s}{3,6 \cdot f_{ct.eff}} = & f_{ct.eff} x A_{c.f} / vorh A_s = & f_{ct.eff} x A_{c.f} / vorh A_s = & f_{ct.eff} = & a_e = E_s / E_{cn} = & a_e = E_s / E_{cn} = \\ g = & x \ 0,00035 = \end{bmatrix}$	14,6 cm ² 1,0 (k _c = 1.0 is 1,75 N/mm ² 1.750 cm ² 162,1 N/mm ² 550,0 N/mm ² 250,0 N/mm ² 4,3 cm ² 0,00035 (maßgebend) 298 mm 117,3 N/mm ² 1,75 N/mm ² 0,0153 5,71 0,10 mm	nicht releva t voreingestellt) maßgebend nicht releva

C.2 GZT Bemessung

LNIC Λ Ο Version 2.80 vom 01.06.2011 00:33:50, (c) DrIng. Uwe Pfeiffer 2009	Pos
Download im Internet unter http://www.u-pfeiffer.de	1.00.
Diese Version von INCA2 wurde lizenziert für:	Seite: 1
Hochschulversion, nur für den Einsatz in Lehre und Forschung	D. (
Kosteniose Lizenzierung unter www.tu-harburg.de/mb möglich !	Datum : 07.06.2018
Bemessung des Querschnitts für die Bewehrungsgruppen: 1 Lastfall 1: A _{s.ges} = 322.40 cm ²	
* Lastfall 1 *	
N_x = 0.000 kN / M_y = -60500.000 kNm / M_z = 0.000 kNm Bezugspunkt: Ideeller Schwerpunkt (Beton + Bewehrung)	
Die Demography angiht falgende Developmengene	
Gruppe 1: $A_s = 142.40 \text{ cm}^2$ (Betonstahl B 550, Bemessungswerte) Gruppe 2: $A_s = 180.00 \text{ cm}^2$ (Spannstahl 1860 hochdukt, Bemessung)	
Gesamt $A_s = 322.40 \text{ cm}^2$	
Numerische Ergebnisse (Dehnungszustand):	
N = 0.0000 M_y = -60499.972 M_z = -0.	0000
$\alpha_{\circ} = -90,0000$ $z_{\circ} = -0.$	4766
$\epsilon_0 = -3.5000 \Lambda\epsilon / \Lambda v = 0.0000 \Lambda\epsilon / \Lambda z = -7.$	3435
$\epsilon_{2b} = -3.5000$ $\epsilon_{1b} = 11.9214$ $\epsilon_{1c} = 11.$	6276
4.0 1.0 1.0	
Legende der numerischen Ergebnisse:	
$lpha$ $_{0}$ = Winkel der Verkrümmungsrichtung	
y_0 / z_0 = Schnittpunkte der Dehnungsnulllinie mit den Koordinatenach	sen
ε_0 = Dehnung im Koordinatenursprung	
$\Delta \epsilon$ / Δy , $\Delta \epsilon$ / Δz = Verkrümmung in y- und in z-Richtung	
ε_{2b} = Betondehnung auf der Druckseite	
ϵ_{1b} = Stabldehnung auf der Zugseite	
Bemessung	
Datei: ULS_Stütze_Ap_As60MN.inc	Kastenquerschnitt im Feldbereich

INCA2 Version 2.80 vom 01.06.2011 00:33:50, (c) DrIng. Uwe Pfeiffer 2009 Download im Internet unter http://www.u-pfeiffer.de Diese Version von INCA2 wurde lizenziert für: 1000000000000000000000000000000000000	Pos: Seite: 1
Hochschulversion, nur für den Einsatz in Lehre und Forschung Kostenlose Lizenzierung unter www.tu-harburg.de/mb möglich !	Datum : 07.06.2018
Bemessung des Querschnitts für die Bewehrungsgruppen: 1 Lastfall 1: A _{s.ges} = 195.30 cm ² * Lastfall 1 *	
<pre>Nx = 1400.000 km / Ay = 40000.000 kmm / Az = 5000.000 kmm Bezugspunkt: Ideeller Schwerpunkt (Beton + Bewehrung) </pre>	
Gruppe 2: $A_s = 180.00 \text{ cm}^2$ (Spannstahl 1860 hochdukt, Bemessung) 	
Numerische Ergebnisse (Dehnungszustand): N = 1400.0002 M_y = -48000.008 M_z = 3500.0006 Schnittgrößen sind auf den Punkt (-0.1112/-1.3110) bezogen. α_0 = 269.1837 y_0 = -19.0346 z_0 = -0.2712 ϵ_0 = -3.0652 $\Delta\epsilon$ / Δy = -0.1610 $\Delta\epsilon$ / Δz = -11.3024 ϵ_{2b} = -3.5000 ϵ_{1b} = 21.5395 ϵ_{1s} = 20.5721	
Legende der numerischen Ergebnisse: $ \begin{array}{llllllllllllllllllllllllllllllllllll$	

Bemessung

Datei: ULS_Stütze_Ap_As_Endzustand.inc

Kastenquerschnitt im Feldbereich

Version 2.80 vom 01.06.2011 00:33:50, (c) DrIng. Uwe Pfeiffer 2009 Download im Internet unter http://www.u-pfeiffer.de	Pos:
Diese Version von INCA2 wurde lizenziert für:	Seite: 1
Hochschulversion, nur für den Einsatz in Lehre und Forschung Kostenlose Lizenzierung unter www.tu-harburg.de/mb möglich !	Datum : 07.06.2018
Hochschulversion, nur für den Einsatz in Lehre und Forschung Kostenlose Lizenzierung unter www.tu-harburg.de/mb möglich ! Bemessung des Querschnitts für die Bewehrungsgruppen: 1 Lastfall 1: $A_{s.ges} = 281.52 \text{ cm}^2$ * Lastfall 1 * N _x = 1400.000 kN / M _y = 58500.000 kNm / M _z = 2600.000 kNm Bezugspunkt: Ideeller Schwerpunkt (Beton + Bewehrung) 	Datum : 07.06.2018
$\epsilon_{2b} = -2.6/92 \epsilon_{1b} = 25.5411 \epsilon_{1s} = 25.0000$ Legende der numerischen Ergebnisse: $\alpha_{0} = \text{Winkel der Verkrümmungsrichtung}$ $y_{0} / z_{0} = \text{Schnittpunkte der Dehnungsnulllinie mit den Koordinatenachsen}$ $\epsilon_{0} = \text{Dehnung im Koordinatenursprung}$ $\Delta \epsilon / \Delta y, \Delta \epsilon / \Delta z = \text{Verkrümmung in } y_{-} \text{ und in } z_{-} \text{Richtung}$ $\epsilon_{2b} = \text{Betondehnung auf der Druckseite}$ $\epsilon_{1b} = \text{Betondehnung auf der Zugseite}$ $\epsilon_{1s} = \text{Stahldehnung auf der Zugseite}$	
Bemessung	
Datei: ULS_Feld_Ap_As.inc Kastenquerschn	tt im Feldbereich
D. Anhang D: Alternativentwurf Variante 2

D.1 GZG: Dekompression und Begrenzung der Spannungen

DEKOMPRESSION

QS-Werte				Vorspannung					
Beton C 40/50				VBT-BE 3x4-150-18	60		_		
Α	54.350	cm ²		f_pk	186,0	kN/cm ²]		
z_0	80,9	cm		f_p0,1k	160,0	kN/cm ²	Fließgrenze		
z u	129,1	cm		f_pd	139,1	kN/cm ²	1		
e o vsp	40,0	cm		Ep	19.500	kN/cm ²	1		
e u vsp	35.0	cm		Ap Litze	1.5	cm ² /Litze	1		
lv	347.100.000	cm4		n Litzen	12	Stk	1		
WC 0	-4.290.482	cm ³		Ap Spannglied	18	cm ²	1		
Wc u	2 688 613	cm ³		σ n max	144.0	kN/cm ²	1		
	1.80	kN/cm ²	may Rotondruckenannung	Pmax	2 591	kN	Kraft währand Vorchannen		
f_ctm	0.35	kN/cm ²	max. Betonuurfostiekoit	a pm0	128.0	kN/cm ²	Krait wantend vorspannen		
I_cun	0,35	KN/CIII	max. beconzugrestigken	0_pino Bnm0	128,0		-		
				r sup=r inf	2303		-		
				I_sup=I_III	1,00				
Abashätzung das 6	Sucuralizada una bl. (r		rald.	Abashäterung das C		(= h = m) = m	Aufleger		
Abschatzung der s	spangliedanzani (i	unten) im	Feld	Abschatzung der S	pangliedanzan	I (oben) an	Auflager		
Mqs_F	22.500	kNm	It RFEM	Mqs_St	-36.500	kNm	- 1		
Mqs_F	2.250.000	kNcm		Mqs_St	-3.650.000	kNcm			
e_SpGI_UK	35,0	cm		e_SpGI_OK	40,0	cm			
ep_u	94,1	cm		ep_o	-40,9	cm	4 1		
Pk,sup_F	15.672	kN	o obere Randfa 🏼 🖉 U	Pk,sup_St	30.457	kN			
σ_0_F	-0,52	kN/cm²	uuntere Randfaser	σ_o_St	0,85	kN/cm ²			
σ_u_F	0,84	kN/cm²	FFeld StStütze	σ_u_St	-1,36	kN/cm²			
Verluste	0,10	-	Annahme: 10% Verluste	Verluste	0,10	-			
Pm0_F	17.413	kN		Pm0_St	33.841	kN			
Ap_erf_F	136,08	cm²	erf. Spanngliedfläche	Ap_erf_St	264,45	cm ²			
np_erf_F	91	Stk	erf. Litzenanzahl	np_erf_St	177	Stk	1		
n_Spanngl_F	7,6	Stk	erf. Spanngliederanzahl	n_Spanngl_St	14,8	Stk	1		
n gew	10,0	Stk		n gew	10,0	Stk	1 1		
P gew t0	23.034	kN	nach Umsetzen der Spannkraft	P gew F	23.034	kN	1 1		
P gew t∞	18.427	kN	nach Verlusten	P gew t∞	18.427	kN	1 1		
P_gew_t∞ 18.42/ kN nach Verlusten P_gew_t∞ 18.42/ kN									
							-		
Spannungskontrol	le primär			Spannungskontroll	e primär				
Spannungskontrol	le primär -0 39	kN/cm ²	nach Umsetzen der Snannkraft t0	Spannungskontroll	e primär 0.21	kN/cm ²	1		
<u>Spannungskontrol</u> σ_u_ges_t0 σ_u_ges_t∞	le primär -0,39 -0,15	kN/cm ²	nach Umsetzen der Spannkraft t0	Spannungskontroll	e primär 0,21	kN/cm ²]		
<u>Spannungskontrol</u> σ_u_ges_t0 σ_u_ges_t∞	l <u>e primär</u> -0,39 -0,15	kN/cm² kN/cm²	nach Umsetzen der Spannkraft t0 nach Verlusten	<u>Spannungskontroll</u> σ_o_ges_t0 σ_o_ges_t∞	e primär 0,21 0,34	kN/cm² kN/cm²	-		
<u>Spannungskontrol</u> σ_u_ges_t0 σ_u_ges_t∞	le primär -0,39 -0,15 achweis im Feld fi	kN/cm² kN/cm²	nach Umsetzen der Spannkraft t0 nach Verlusten	Spannungskontroll $\sigma_o_ges_t0$ $\sigma_o_ges_t\infty$ Dekompressionsna	e primär 0,21 0,34	kN/cm ² kN/cm ²	=		
Spannungskontrol σ_u_ges_t0 σ_u_ges_t∞ Dekompressionsn	le primär -0,39 -0,15 achweis im Feld fi -23 034	kN/cm ² kN/cm ² ür t=0	nach Umsetzen der Spannkraft t0 nach Verlusten	Spannungskontroll σ_o_ges_t0 σ_o_ges_t∞ Dekompressionsna Nusp_dir_St_t0	e primär 0,21 0,34 achweis am Au	kN/cm² kN/cm² flager für t	=0		
Spannungskontrol σ_u_ges_t0 σ_u_ges_t∞ Dekompressionsn Nvsp_F_t0 Musp_dir_F_t0	le primär -0,39 -0,15 achweis im Feld fi -23.034	kN/cm ² kN/cm ² ür t=0 kN	nach Umsetzen der Spannkraft t0 nach Verlusten	Spannungskontrolle σ_o_ges_t0 σ_o_ges_t∞ Dekompressionsna Nvsp_dir_St_t0 Mvcp_dir_St_t0	e primär 0,21 0,34 achweis am Au -23.034	kN/cm ² kN/cm ² flager für t kN	=0		
Spannungskontrol σ_u_ges_t0 σ_u_ges_t∞ Dekompressionsm Nvsp_F_t0 Mvsp_dir_F_t0 M vcs_icd_t0	le primär -0,39 -0,15 achweis im Feld fi -23.034 -2.167.522 -2.107.52	kN/cm ² kN/cm ² ür t=0 kN kNcm	nach Umsetzen der Spannkraft t0 nach Verlusten	Spannungskontroll σ_o_ges_t0 σ_o_ges_t∞ Dekompressionsna Nvsp_dir_St_t0 Mvsp_dir_St_t0 Mvsp_dir_St_t0	e primär 0,21 0,34 achweis am Au -23.034 942.100	kN/cm ² kN/cm ² flager für t kN kNcm	=0		
Spannungskontrol σ_u_ges_t0 σ_u_ges_t∞ Dekompressionsn Nvsp_F_t0 Mvsp_dir_F_t0 M_vsp_ind_t0 M_vos_ind_t0	le primär -0,39 -0,15 achweis im Feld fi -23.034 -2.167.522 10.000	kN/cm ² kN/cm ² ür t=0 kN kNcm kNm	 nach Umsetzen der Spannkraft t0 nach Verlusten stat.unbest. Moment RF-Tendon stat.unbest. Moment RF-Tendon 	Spannungskontroll σ_o_ges_t0 σ_o_ges_t∞ Dekompressionsna Nvsp_dir_St_t0 Mvsp_dir_St_t0 M_Vsp_ind_t0 M_Vsp_id_t0	e primär 0,21 0,34 achweis am Au -23.034 942.100 10.000	kN/cm ² kN/cm ² flager für t kN kNcm kNm kNcm	=0		
Spannungskontrol σ_u_ges_t0 σ_u_ges_t∞ Dekompressionsn Nvsp_F_t0 Mvsp_dir_F_t0 M_Vsp_ind_t0 M_Vsp_ind_t0 M_Vsp_ind_t0	le primär -0,39 -0,15 achweis im Feld fr -23.034 -2.167.522 10.000 1.000.000	kN/cm ² kN/cm ² ür t=0 kN kNcm kNcm kNcm	 nach Umsetzen der Spannkraft t0 nach Verlusten stat.unbest. Moment RF-Tendon stat.unbest. Moment RF-Tendon 	Spannungskontroll σ_o_ges_t0 σ_o_ges_t∞ Dekompressionsna Nvsp_dir_St_t0 Mvsp_dir_St_t0 M_Vsp_ind_t0 M_Vsp_ind_t0 M_Vsp_ind_t0 M_Vsp_ind_t0	e primär 0,21 0,34 achweis am Au -23.034 942.100 10.000 1.000.000	kN/cm ² kN/cm ² flager für t kN kNcm kNcm kNcm	=0 =		
Spannungskontrol σ_u_ges_t0 σ_u_ges_t∞ Dekompressionsm Nvsp_F_t0 Mvsp_ind_F_t0 M_Vsp_ind_t0 M_Vsp_ges_t0 M_vsp_ges_t0	le primär -0,39 -0,15 achweis im Feld fi -23.034 -2.167.522 10.000 1.000.000 -1.167.522	kN/cm ² kN/cm ² wr t=0 kN kNcm kNcm kNcm kNcm	 nach Umsetzen der Spannkraft t0 nach Verlusten stat.unbest. Moment RF-Tendon stat.unbest. Moment RF-Tendon 	Spannungskontrolli σ_o_ges_t0 σ_o_ges_t∞ Dekompressionsna Nvsp_dir_St_t0 Mvsp_dir_St_t0 Mvsp_ind_t0 M_Vsp_ind_t0 M_vsp_ges_t0	e primär 0,21 0,34 achweis am Au -23.034 942.100 1.000.000 1.000.000 1.942.100	kN/cm ² kN/cm ² flager für t kN kNcm kNcm kNcm	=0		
Spannungskontrol σ_u_ges_t0 σ_u_ges_t∞ Dekompressionsm Nvsp_F_t0 Mvsp_dir_F_t0 M_vsp_ind_t0 M_Vsp_ind_t0 M_Vsp_ges_t0 Mqs_F 	le primär -0,39 -0,15 achweis im Feld fr -23.034 -2.167.522 10.000 1.000.000 -1.167.522 22.500	kN/cm ² kN/cm ² wr t=0 kN kNcm kNcm kNcm kNcm	nach Umsetzen der Spannkraft t0 nach Verlusten stat.unbest. Moment RF-Tendon stat.unbest. Moment RF-Tendon un stat.unbest. Moment RF-Tendon un stat.unbest. Moment RF-Tendon	Spannungskontrolli σ_o_ges_t0 σ_o_ges_t∞ Dekompressionsna Nvsp_dir_St_t0 Mvsp_dir_St_t0 M_vsp_ind_t0 M_Vsp_ind_t0 M_Vsp_ges_t0 Mqs_St M_sc_st	e primär 0,21 0,34 achweis am Au -23.034 942.100 1.000.000 1.942.100 -36.500	kN/cm ² kN/cm ² flager für t kN kNcm kNcm kNcm kNcm kNcm	=0 		
Spannungskontrol σ_u_ges_t0 σ_u_ges_t∞ Dekompressionsn Nvsp_F_t0 Mvsp_dir_F_t0 Mvsp_ind_t0 M_Vsp_ind_t0 M_Vsp_ges_t0 Mqs_F	le primär -0,39 -0,15 achweis im Feld fi -23.034 -2.167.522 10.000 1.000.000 -1.167.522 22.500 2.250.000	kN/cm ² kN/cm ² kN kNcm kNcm kNcm kNcm kNcm	nach Umsetzen der Spannkraft t0 nach Verlusten stat.unbest. Moment RF-Tendon stat.unbest. Moment RF-Tendon It RFEM	Spannungskontrolli σ_o_ges_t0 σ_o_ges_t∞ Dekompressionsna Nvsp_dir_St_t0 Mvsp_dir_St_t0 Mvsp_ind_t0 M_Vsp_ind_t0 M_Vsp_ges_t0 Mqs_St	e primär 0,21 0,34 achweis am Au -23.034 942.100 1.000.000 1.000.000 1.942.100 -36.500 -3.650.000	kN/cm ² kN/cm ² flager für t kN kNcm kNcm kNcm kNcm kNcm	=0		
Spannungskontrol σ_u_ges_t0 σ_u_ges_t∞ Dekompressionsn Nvsp_F_t0 Mvsp_dir_F_t0 Mvsp_ind_t0 M_Vsp_ind_t0 M_vsp_ges_t0 Mqs_F Nqs_F	le primär -0,39 -0,15 achweis im Feld fi -23.034 -2.167.522 10.000 1.000.000 -1.167.522 22.500 2.250.000 0	kN/cm ² kN/cm ² kN kNcm kNcm kNcm kNcm kNcm kNcm kNcm k	 nach Umsetzen der Spannkraft t0 nach Verlusten stat.unbest. Moment RF-Tendon stat.unbest. Moment RF-Tendon It RFEM 	Spannungskontrolli σ_o_ges_t0 σ_o_ges_t∞ Dekompressionsna Nvsp_dir_St_t0 Mvsp_dir_St_t0 Mvsp_ind_t0 M_Vsp_ind_t0 M_vsp_ges_t0 Mqs_St Mqs_St	e primär 0,21 0,34 achweis am Au -23.034 942.100 1.0000 1.000.000 1.942.100 -36.500 -3.650.000 0	kN/cm ² kN/cm ² flager für t kN kNcm kNcm kNcm kNcm kNcm kNcm			
Spannungskontrol σ_u_ges_t0 σ_u_ges_t∞ Dekompressionsn Nvsp_F_t0 Mvsp_dir_F_t0 Mvsp_dir_F_t0 M_vsp_ind_t0 M_Vsp_ges_t0 Mqs_F Mqs_F Nqs_F o_o_F	le primär -0,39 -0,15 achweis im Feld fi -23.034 -2.167.522 10.000 1.000.000 -1.167.522 22.500 2.250.000 0 -0,68	kN/cm ² kN/cm ² kN kNcm kNcm kNcm kNcm kNcm kNcm kNcm k	 nach Umsetzen der Spannkraft t0 nach Verlusten stat.unbest. Moment RF-Tendon stat.unbest. Moment RF-Tendon It RFEM < < 0 & g_qs_zul 	Spannungskontrolli σ_o_ges_t0 σ_o_ges_t∞ Dekompressionsna Nvsp_dir_St_t0 Mvsp_dir_St_t0 Mvsp_ind_t0 M_vsp_ind_t0 Mqs_st Mqs_St Mqs_St Mqs_St Mqs_St Mqs_St	e primär 0,21 0,34 achweis am Au -23.034 942.100 1.000.000 1.942.100 -36.500 -3.650.000 0 -0,03	kN/cm ² kN/cm ² flager für t kN kNcm kNcm kNcm kNcm kNcm kNcm kNcm	=0 		
Spannungskontrol σ_u_ges_t0 σ_u_ges_t∞ Dekompressionsn Nvsp_F_t0 Mvsp_dir_F_t0 M_vsp_ind_t0 M_vsp_ind_t0 Mqs_F Mqs_F Nqs_F σ_o_F σ_o_F	le primär -0,39 -0,15 achweis im Feld fi -23.034 -2.167.522 10.000 1.000.000 -1.167.522 22.500 2.250.000 0 -0,68 -0,02	kN/cm ² kN/cm ² kN kNcm kNcm kNcm kNcm kNcm kNcm kNcm ² kN/cm ²	 nach Umsetzen der Spannkraft t0 nach Verlusten stat.unbest. Moment RF-Tendon stat.unbest. Moment RF-Tendon It RFEM <0 & σ_qs_zul <0 & σ_qs_zul 	Spannungskontroll σ_o_ges_t0 σ_o_ges_t∞ Dekompressionsna Nvsp_dir_St_t0 Mvsp_dir_St_t0 Mvsp_ind_r5_t0 M_Vsp_ind_t0 M_Vsp_ges_t0 Mqs_St Mqs_St Nq_St m_st m_st m_st m_st m_st m_st m_st	e primär 0,21 0,34 achweis am Au -23.034 942.100 1.000.000 1.042.100 -36.50.000 -36.50.000 0 -3.650.000 0 -3.650.000 0 -3.650.000	kN/cm ² kN/cm ² flager für t kN kNcm kNcm kNcm kNcm kNcm kNcm kN/cm ² kN/cm ²	=0 		
Spannungskontrol σ_u_ges_t0 σ_u_ges_t∞ Dekompressionsm Nvsp_F_t0 Mvsp_dir_F_t0 Mvsp_ind_t0 M_Vsp_ind_t0 M_Vsp_ges_t0 Mqs_F Mqs_F σ_o_F σ_u_F	le primär -0,39 -0,15 achweis im Feld fi -23.034 -2.167.522 10.000 1.000.000 -1.167.522 22.500 2.250.000 0.2.250.000 0.2.68 -0,68 -0,02	kN/cm ² kN/cm ² kN kNcm kNcm kNcm kNcm kNcm kNcm kNcm k	 nach Umsetzen der Spannkraft t0 nach Verlusten stat.unbest. Moment RF-Tendon stat.unbest. Moment RF-Tendon It RFEM ✓ < 0 & σ_qs_zul ✓ < 0 & σ_qs_zul 	Spannungskontroll σ_o_ges_t0 σ_o_ges_t∞ Dekompressionsna Nvsp_dir_St_t0 Mvsp_dir_St_t0 Mvsp_ind_r5_t0 M_Vsp_ind_t0 M_Vsp_ges_t0 Mqs_St Mqs_St Nq_St σ_o_St σ_u_St	e primär 0,21 0,34 achweis am Au -23.034 942.100 1.000.000 1.042.100 -36.500 0 -3.650.000 0 -0,03 -1,06	kN/cm ² kN/cm ² flager für t kN kNcm kNcm kNcm kNcm kNcm kNcm kNcm k	=0 		
Spannungskontrol σ_u_ges_t0 σ_u_ges_t∞ Dekompressionsm Nvsp_F_t0 Mvsp_dir_F_t0 Mvsp_ind_t0 M_Vsp_ind_t0 M_Vsp_ges_t0 Mqs_F Mqs_F o_o_F σ_u_F	le primär -0,39 -0,15 achweis im Feld fi -23.034 -2.167.522 10.000 1.000.000 -1.167.522 22.50.000 2.250.000 0 -0,68 -0,02 achweis im Feld fi	kN/cm ² kN/cm ² kN kNcm kNcm kNcm kNcm kNcm kNcm kN/cm ² kN/cm ²	nach Umsetzen der Spannkraft t0 nach Verlusten stat.unbest. Moment RF-Tendon stat.unbest. Moment RF-Tendon It RFEM ✓ < 0 & σ_qs_zul ✓ < 0 & σ_qs_zul	Spannungskontrolli σ_o_ges_t0 σ_o_ges_t∞ Dekompressionsna Nvsp_dir_St_t0 Mvsp_dir_St_t0 Mvsp_ind_t0 M_Vsp_ind_t0 M_Vsp_ges_t0 Mqs_St Mqs_St o_o_St o_u_St	e primär 0,21 0,34 achweis am Au -23.034 942.100 1.000.000 1.942.100 -36.500 0 -3.650.000 0 0 -0,03 -1,06 achweis am Au	kN/cm ² kN/cm ² flager für t kN kN kN kN kN kN kN kN kN/cm ² kN/cm ² flager für t	=0 		
Spannungskontrol σ_u_ges_t0 σ_u_ges_t∞ Dekompressionsn Nvsp_F_t0 Mvsp_dir_F_t0 Mvsp_ind_t0 M_Vsp_ind_t0 M_Vsp_ges_t0 Mqs_F Mqs_F σ_u_F Dekompressionsn	le primär -0,39 -0,15 achweis im Feld fi -23.034 -2.167.522 10.000 1.000.000 -1.167.522 22.500 2.250.000 0 -0,68 -0,02 achweis im Feld fi -23.034	kN/cm ² kN/cm ² kN kNcm kNcm kNcm kNcm kNcm kN/cm ² kN/cm ² kN	 nach Umsetzen der Spannkraft t0 nach Verlusten stat.unbest. Moment RF-Tendon stat.unbest. Moment RF-Tendon It RFEM < 0 & σ_qs_zul < 0 & σ_qs_zul 	Spannungskontrolli σ_o_ges_t0 σ_o_ges_t∞ Dekompressionsna Nvsp_dir_St_t0 Mvsp_dir_St_t0 Mvsp_dir_St_t0 Mvsp_dir_St_t0 M_vsp_ind_t0 M_vsp_ind_t0 M_vsp_ind_t0 M_vsp_ges_t0 Mqs_St Mqs_St σ_o_St σ_u_St Dekompressionsna	e primär 0,21 0,34 achweis am Au -23.034 942.100 1.000.000 1.942.100 -36.500 0 -3.650.000 0 -0,03 -1,06 achweis am Au -23.034	kN/cm ² kN/cm ² flager für t kN kNcm kNcm kNcm kNcm kNcm kNcm kN/cm ² kN/cm ² flager für t kN	=0 		
Spannungskontrol σ_u_ges_t0 σ_u_ges_t∞ Dekompressionsn Nvsp_F_t0 Mvsp_dir_F_t0 Mvsp_ind_t0 M_Vsp_ind_t0 M_Vsp_ges_t0 Mqs_F Mqs_F σ_0_F σ_u_F Dekompressionsn Nqs_F Verkuste	le primär -0,39 -0,15 achweis im Feld fi -23.034 -2.167.522 10.000 1.000.000 -1.167.522 22.500 2.250.000 0 -0,68 -0,02 achweis im Feld fi -23.034 0,10	kN/cm ² kN/cm ² kN kN kNcm kNcm kNcm kNcm kNcm kNcm kN/cm ² kN/cm ² kN/cm ²	 nach Umsetzen der Spannkraft t0 nach Verlusten stat.unbest. Moment RF-Tendon stat.unbest. Moment RF-Tendon It RFEM < 0 & σ_qs_zul < 0 & σ_qs_zul 	Spannungskontrolli σ_o_ges_t0 σ_o_ges_t∞ Dekompressionsna Nvsp_dir_St_t0 Mvsp_dir_St_t0 Mvsp_dir_St_t0 Mvsp_dir_St_t0 Mvsp_dir_St_t0 Mvsp_dir_St_t0 M_vsp_ind_t0 M_vsp_ges_t0 Mqs_St Mqs_St σ_o_St σ_u_St Dekompressionsna N_St_Vsp Verkuste	e primär 0,21 0,34 achweis am Au -23.034 942.100 1.000.000 1.042.100 -36.500 -3.650.000 0 -0,03 -1,06 achweis am Au -23.034 0,10	kN/cm ² kN/cm ² flager für t kN kNcm kNcm kNcm kNcm kNcm kN/cm ² kN/cm ² flager für t kN	=0 - - - <0&σ_qs_zul ✓ <0&σ_qs_zul		
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	le primär -0,39 -0,15 achweis im Feld fi -23.034 -2.167.522 10.000 1.000.000 -1.167.522 22.500 2.250.000 0 -0,68 -0,02 achweis im Feld fi -23.034 0,10 -20.731	kN/cm ² kN/cm ² kN kN kNcm kNcm kNcm kNcm kNcm kN/cm ² kN/cm ² kN/cm ² kN kN/cm ²	nach Umsetzen der Spannkraft t0 nach Verlusten stat.unbest. Moment RF-Tendon stat.unbest. Moment RF-Tendon It RFEM ✓ <0 & σ_qs_zul 15% Verluste RF-Tendon	Spannungskontrolli σ_o_ges_t0 σ_o_ges_t∞ Dekompressionsna Nvsp_dir_St_t0 Mvsp_dir_St_t0 M_vsp_ind_t0 M_vsp_ind_t0 M_vsp_ges_t0 Mqs_St Mqs_St Mqs_St 0_u_St N_St_Vsp Verkuste N_F_Vsp t∞	e primär 0,21 0,34 achweis am Au -23.034 942.100 1.0000 1.000.000 1.942.100 -36.5000 0 -3.650.000 0 -0,03 -1,06 achweis am Au -23.034 0,10 -20.731	kN/cm ² kN/cm ² flager für t kN kNcm kNcm kNcm kNcm kNcm ² kN/cm ² kN/cm ² flager für t kN	=0 		
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	le primär -0,39 -0,15 achweis im Feld ff -23.034 -2.167.522 10.000 0.000 -1.167.522 22.500 2.250.000 0 -0,68 -0,02 achweis im Feld ff -23.034 0,10 -20.731 -1.950.770	kN/cm ² kN/cm ² kN kN kNcm kNcm kNcm kNcm kNcm kN/cm ² kN/cm ² kN kN/cm ² kN/cm ²	 nach Umsetzen der Spannkraft t0 nach Verlusten stat.unbest. Moment RF-Tendon stat.unbest. Moment RF-Tendon it RFEM < 0 & σ_qs_zul < 0 & σ_qs_zul < 15% Verluste RF-Tendon 15% Verluste 	Spannungskontrolli σ_o_ges_t0 σ_o_ges_t∞ Dekompressionsna Nvsp_dir_St_t0 Mvsp_dir_St_t0 M_vsp_ind_t0 M_Vsp_ind_t0 M_vsp_ges_t0 Mqs_st Mqs_St o_o_St σ_u_St Dekompressionsna N_St_vsp Verkuste N_F_Vsp_t∞ M_vsp t∞	e primär 0,21 0,34 achweis am Au -23.034 942.100 1.0000 1.000.000 1.942.100 -36.500 0 -3.650.000 0 -0,03 -1,06 achweis am Au -23.034 0,10 -20.731 847.890	kN/cm ² kN/cm ² flager für t kN kNcm kNcm kNcm kNcm kNcm kN/cm ² kN/cm ² flager für t kN kN/cm	=0 		
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	le primär -0,39 -0,15 achweis im Feld fi -23.034 -2.167.522 10.000 1.000.000 -1.167.522 22.500 2.250.000 0 -0,68 -0,02 achweis im Feld fi -23.034 0,10 -20.731 -1.950.770 10.000	kN/cm ² kN/cm ² kN kNcm kNcm kNcm kNcm kNcm kNcm ² kN/cm ² kN/cm ² kN/cm ² kN kNcm kNcm	 nach Umsetzen der Spannkraft t0 nach Verlusten stat.unbest. Moment RF-Tendon stat.unbest. Moment RF-Tendon It RFEM < 0 & σ_qs_zul < 0 & σ_qs_zul < 15% Verluste RF-Tendon 15% Verluste stat.unbest. Moment RF-Tendon 	Spannungskontrolli σ_o_ges_t0 σ_o_ges_t∞ Dekompressionsna Nvsp_dir_St_t0 Mvsp_dir_St_t0 Mvsp_dir_St_t0 Mvsp_ind_t0 M_ysp_ind_t0 Mys_st Mag_St Mag_St Mag_St M_st Mexperimentary Mexperimentary Mag_s_st Mag_st M_st Mexperimentary Mexperimentary Mag_st Mexperimentary Mexperimentary Mexperimentary Mexperimentary Mexperimentary Mexperimentary Mexperimentary Mexperimentary Mexperimentary Mexperimentary	e primär 0,21 0,34 achweis am Au -23.034 942.100 10.000 1.000.000 1.942.100 -36.500 0 -3.650.000 -3.650.0000 -3.650.000 -3.650.0000 -3.650.0000 -3.650.0000 -3.650.0000 -3.650.0000 -3.650.0000 -3.650.0000 -3.650.0000 -3.650.0000 -3.650.00000 -3.650.00000 -3.650.00000 -3.650.00000 -3.650.000000 -3.650.0000000000000000000000000000000000	kN/cm ² kN/cm ² flager für t kN kNcm kNcm kNcm kNcm kNcm kN/cm ² kN/cm ² flager für t kN kN/cm ² kN/cm ² kN/cm ²	=0 		
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	le primär -0,39 -0,15 achweis im Feld fi -23.034 -2.167.522 10.000 1.000.000 -1.167.522 22.50.000 0 2.250.000 0 0 -0,68 -0,02 achweis im Feld fi -23.034 0,10 -20.731 -1.950.770 10.000 1.000.000 1.000.000	kN/cm ² kN/cm ² kN kNcm kNcm kNcm kNcm kNcm kNcm ² kN/cm ² kN/cm ² kN/cm ² kN kN cm kN kNcm kNcm	 nach Umsetzen der Spannkraft t0 nach Verlusten stat.unbest. Moment RF-Tendon stat.unbest. Moment RF-Tendon It RFEM < 0 & σ_qs_zul < 0 & σ_qs_zul < 0 & σ_qs_zul < 15% Verluste RF-Tendon 15% Verluste KF-Tendon stat.unbest. Moment RF-Tendon stat.unbest. Moment RF-Tendon 	Spannungskontrolli σ_o_ges_t0 σ_o_ges_t∞ Dekompressionsna Nvsp_dir_St_t0 Mvsp_dir_St_t0 Mvsp_dir_St_t0 Mvsp_dir_St_t0 Mvsp_dir_St_t0 Mysp_ind_t0 M_vsp_ind_t0 M_vsp_ind_t0 M_vsp_st G_o_St σ_u_St Dekompressionsna N_St_Vsp Verkuste N_Vsp_t∞ M_Vsp_t∞ M_Vsp_t∞ M_Vsp_t∞	e primär 0,21 0,34 achweis am Au -23.034 942.100 1.000.000 1.942.100 -36.500 0 -3.650.000 0 -0,03 -1,06 achweis am Au -23.034 0,10 -20.731 847.890 10.000 1.0000 1.0000	kN/cm ² kN/cm ² flager für t kN kNcm kNcm kNcm kNcm kNcm kN/cm ² flager für t kN/cm ² flager für t kN - kN kNcm kNcm kNcm	=0 		
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	le primär -0,39 -0,15 achweis im Feld fi -23.034 -2.167.522 10.000 1.000.000 -1.167.522 22.500 2.250.000 0 0 -0,68 -0,02 achweis im Feld fi -23.034 0,10 -20.731 -1.950.770 10.000 1.000.000 -950.770	kN/cm ² kN/cm ² kN kNcm kNrm kNrm kNrm kNrm kNrm ² kN/cm ² kN/cm ² kN kN kNrm kNrm kNrm kNrm kNrm kNrm	 nach Umsetzen der Spannkraft t0 nach Verlusten stat.unbest. Moment RF-Tendon stat.unbest. Moment RF-Tendon It RFEM < 0 & σ_qs_zul < 0 & σ_qs_zul < 15% Verluste RF-Tendon 15% Verluste RF-Tendon stat.unbest. Moment RF-Tendon 	Spannungskontrolli	e primär 0,21 0,34 achweis am Au -23.034 942.100 1.000.000 1.942.100 -36.500 0 -0,03 -1,06 achweis am Au -23.034 0,10 -20.731 847.890 1.000.000 1.847.890	kN/cm ² kN/cm ² flager für t kN kNcm kNcm kNcm kNcm kNcm kN/cm ² flager für t kN c- kN kNcm kNcm kNcm kNcm kNcm kNcm	=0 		
$\frac{\text{Spannungskontrol}}{\sigma_u_ges_t0}$ $\sigma_u_ges_t\infty$ $\frac{\text{Dekompressionsn}}{\sigma_u_ges_t\infty}$ $\frac{\text{Nvsp}_F_t0}{Mvsp_dir_F_t0}$ $\frac{\text{Mvsp}_ind_t0}{M_Vsp_ind_t0}$ $\frac{\text{Mysp}_ind_t0}{M_Vsp_ges_t0}$ $\frac{\text{Mqs}_F}{Mqs_F}$ $\frac{\text{Mqs}_F}{\sigma_uF}$ $\frac{\text{Dekompressionsn}}{\sigma_uF}$ $\frac{\text{Dekompressionsn}}{M_Vsp_dir_t\infty}$ $\frac{\text{N}_Vsp_ind_t\infty}{M_Vsp_ind_t\infty}$ $\frac{\text{M}_Vsp_ind_t\infty}{M_Vsp_ind_t\infty}$ $\frac{\text{M}_vsp_ind_t\infty}{M_Vsp_ges_t\infty}$	le primär -0,39 -0,15 achweis im Feld fi -23.034 -2.167.522 10.000 1.000.000 -1.167.522 22.500 2.250.000 0 -0,68 -0,02 achweis im Feld fi -23.034 0,10 -20.731 -1.950.770 10.000 1.000.000	kN/cm ² kN/cm ² kN kN kNcm kNcm kNcm kNcm kN/cm ² kN/cm ² kN/cm ² kN/cm ² kN/cm ² kN/cm ² kN/cm ² kN	nach Umsetzen der Spannkraft t0 nach Verlusten stat.unbest. Moment RF-Tendon stat.unbest. Moment RF-Tendon It RFEM ✓ <0 & σ_qs_zul	Spannungskontrolli σ_o_ges_t0 σ_o_ges_t∞ Dekompressionsna Nvsp_dir_St_t0 Mvsp_dir_St_t0 Mvsp_dir_St_t0 Mvsp_dir_St_t0 Mvsp_dir_St_t0 Mvsp_dir_St_t0 M_vsp_ind_t0 M_vsp_ind_t0 M_vsp_ges_t0 Mqs_St Mqs_St Mqs_St M_vsp_des Mys_St o_o_St o_u_St Nst_vsp Verkuste N_F_Vsp_t∞ M_vsp_ind_t∞ M_vsp_ind_t∞ M_vsp_ind_t∞ M_vsp_ind_t∞ M_vsp_ind_t∞ M_vsp_st_ovsp	e primär 0,21 0,34 achweis am Au -23.034 942.100 1.000.000 1.942.100 -36.500 -3.650.000 0 -0,03 -1,06 achweis am Au -23.034 0,10 -20.731 847.890 1.000.000 1.847.890 1.847.890 -3.6500	kN/cm ² kN/cm ² flager für t kN kNcm kNcm kNcm kNcm kNcm ² kN/cm ² flager für t kN kN cm kN kNcm kNcm kNcm kNcm kNcm kN	=0 		
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	le primär -0,39 -0,15 achweis im Feld fi -23.034 -2.167.522 10.000 1.000.000 -1.167.522 22.500 2.250.000 0 -0,68 -0,02 achweis im Feld fi -23.034 0,10 -20.731 -1.950.770 10.000 1.000.000 -950.770 2.250.0000 2.250.0000 2.250.0000 2.250.0000 2.250.0000 2.250.0000 2.250.0000 2.250.0000 2.250.0000 2.250.0000 2.250.0000 2.250.0000 2.250.0000 2.250.0000 2.250.0000 2.250.00000 2.250.00000 2.250.0000 2.250.0000 2.250.0000 2.	kN/cm² kN/cm² kN kN kNcm kNcm kNcm kNcm kNcm² kN/cm² kN/cm² kN/cm² kN kN kN/cm² kN kN kN kN kN kN kN kNcm kNcm kNcm kNm kNcm	 nach Umsetzen der Spannkraft t0 nach Verlusten stat.unbest. Moment RF-Tendon stat.unbest. Moment RF-Tendon It RFEM < 0 & σ_qs_zul < 0 & σ_qs_zul 15% Verluste RF-Tendon 15% Verluste stat.unbest. Moment RF-Tendon it Stat.unbest. Moment RF-Tendon it Stat.unbest. Moment RF-Tendon it Stat.unbest. Moment RF-Tendon it Stat.unbest. Moment RF-Tendon it RFEM 	Spannungskontrolli σ_o_ges_t0 σ_o_ges_t∞ Dekompressionsna Nvsp_dir_St_t0 Mvsp_dir_St_t0 Mvsp_dir_St_t0 Mvsp_dir_St_t0 Mvsp_dir_St_t0 Mvsp_dir_St_t0 M_vsp_ind_t0 M_Vsp_ind_t0 M_vsp_ind_t0 M_vsp_ind_t0 M_vsp_dir_St o_o_St o_u_St Verkuste N_F_Vsp_t∞ M_Vsp_ind_t∞ M_vsp_ind_t∞ M_vsp_ind_t∞ M_vsp_ind_t∞ M_vsp_ind_t∞ M_vsp_ind_t∞ M_s_st_ovsp	e primär 0,21 0,34 achweis am Au -23.034 942.100 1.0000 1.000.000 1.942.100 -36.500 0 -0,03 -1,06 achweis am Au -23.034 0,10 -20.731 847.890 1.0000 1.000.000 1.847.890 1.000 1.000.000 1.847.890 1.847.890 1	kN/cm ² kN/cm ² flager für t kN kNcm kNcm kNcm kNcm kN/cm ² kN/cm ² flager für t kN c kN kNcm kNcm kNcm kNcm kNcm kNcm k	=0 		
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	le primär -0,39 -0,15 achweis im Feld ff -23.034 -2.167.522 10.000 1.000.000 -1.167.522 22.500 2.250.000 0 -0,68 -0,02 achweis im Feld ff -23.034 0,10 -20.731 -1.950.770 10.000 1.000.000 -950.770 22.50.000	kN/cm ² kN/cm ² kN kN kNcm kNcm kNcm kNcm kNcm ² kN/cm ² kN kN/cm ² kN kN/cm ² kN kNcm kNcm kNcm kNcm kNcm kNcm kNcm	nach Umsetzen der Spannkraft t0 nach Verlusten stat.unbest. Moment RF-Tendon stat.unbest. Moment RF-Tendon It RFEM ✓ <0 & σ_qs_zul	Spannungskontrolli σ_o_ges_t0 σ_o_ges_t∞ Dekompressionsna Nvsp_dir_St_t0 Mvsp_dir_St_t0 Mvsp_dir_St_t0 Mvsp_dir_St_t0 Mvsp_dir_St_t0 Mvsp_dir_St_t0 Mvsp_ind_t0 Mvsp_ges_t0 Mqs_St σ_o_St σ_u_St Dekompressionsna N_St_Vsp Verkuste N_F_Vsp_t∞ M_Vsp_ind_t∞ M_Vsp_ind_t∞ M_Vsp_ind_t∞ M_vsp_ind_t∞ M_vsp_ind_t∞ Mgs_st_ovsp Mqs_st_ovsp Mqs_st Mqs_st Mqs_st	e primär 0,21 0,34 achweis am Au -23.034 942.100 1.0000 1.000.000 1.942.100 -36.500 0 -0,03 -1,06 achweis am Au -23.034 0,10 -20.731 847.890 1.000.000 1.847.890 -3.650.000 -3.650.000	kN/cm ² kN/cm ² flager für t kN kNcm kNcm kNcm kNcm kN/cm ² kN/cm ² flager für t kN kN/cm kN kNcm kNcm kNcm kNcm kNcm kNcm kNcm	=0 =0		
$\frac{\text{Spannungskontrol}}{\sigma_u_ges_t0}$ $\sigma_u_ges_t\infty$ $\frac{\text{Dekompressionsm}}{\sigma_u_ges_t\infty}$ $\frac{\text{Nvsp}_F_t0}{Mvsp_dir_F_t0}$ $\frac{\text{Mvsp}_dir_F_t0}{M_Vsp_ind_t0}$ $\frac{\text{Mqs}_F}{Mqs_F}$ $\frac{\sigma_uF}{\sigma_uF}$ $\frac{\text{Dekompressionsm}}{M_Vsp_ind_t\infty}$ $\frac{\text{Ngs}_F}{M_vsp_ind_t\infty}$ $\frac{\text{Ngs}_F}{M_vsp_ind_t\infty}$ $\frac{\text{M}_Vsp_ind_t\infty}{M_Vsp_ind_t\infty}$ $\frac{\text{M}_Vsp_ind_t\infty}{M_Vsp_ind_t\infty}$ $\frac{\text{Mqs}_F}{Mqs_F}$ $\frac{\text{Mqs}_F}{Nqs_F}$ $\frac{\text{Mqs}_F}{Nqs_F}$	le primär -0,39 -0,15 achweis im Feld fi -23.034 -2.167.522 10.000 1.000.000 -1.167.522 22.50.000 0 -0,68 -0,02 achweis im Feld fi -23.034 0,10 -20.731 -1.950.770 10.000 1.000.000 -950.770 22.5000 0 0 0 0 0 0 0 0 0 0 0 0	kN/cm ² kN/cm ² kN kNcm kNcm kNcm kNcm kNcm kN/cm ² kN/cm ² kN kN/cm ² kN kNcm kNcm kNcm kNcm kNcm kNcm kNcm k	nach Umsetzen der Spannkraft t0 nach Verlusten stat.unbest. Moment RF-Tendon stat.unbest. Moment RF-Tendon It RFEM ✓ <0 & σ_qs_zul	Spannungskontrolli σ_o_ges_t0 σ_o_ges_t∞ Dekompressionsna Nvsp_dir_St_t0 Mvsp_dir_St_t0 Mvsp_dir_St_t0 M_vsp_ind_t0 M_vsp_ges_t0 Mqs_st Mqs_St o_o_St σ_u_St Dekompressionsna N_St_vsp Verkuste N_F_Vsp_t∞ M_vsp_ind_t∞ M_vsp_ind_t∞ M_vsp_ind_t∞ M_vsp_ind_t∞ Mqs_St Ngs_St Ngs_St Ngs_St	e primär 0,21 0,34 achweis am Au -23.034 942.100 1.0000 1.0000 1.942.100 -3.650.000 0 -0,03 -1,06 achweis am Au -23.034 0,10 -20.731 847.890 1.000.000 1.847.890 -3.650.000 0 0 0 0 0 0 0 0 0 0 0 0	kN/cm ² kN/cm ² flager für t kN kNcm kNcm kNcm kNcm kN/cm ² kN/cm ² kN/cm ² kN/cm ² kN/cm kNcm kNcm kNcm kNcm kNcm kNcm kNcm	=0 = 0 ✓ <0 & σ_qs_zul ✓ <0 & σ_qs_zul = ∞		

Spannungsbegrenzung								
QS-Werte Beton		QS-Werte Spannstahl						
А	54.350 cm ³	Ap_Feld	137 cm ²	Ap_Stütz	266 cm ²			
z_0	80,90 cm							
z_u	129,10 cm	Nvsp_F_t0	-23.034 kN	Nvsp_St_t0	-23.034 kN			
e_o_vsp	40,0 cm	Mvsp_F_ges_t0	-1.167.522 kNcm	Mvsp_St_ges_t0	1.942.100 kNcm			
e_u_vsp	35,0 cm							
ly	347.100.000 cm4	Nvsp_F_t∞	-20.731 kN	Nvsp_St_t∞	-20.731 kN			
Wy,c_o	-4.290.482 cm ³	Mvsp_F_ges_t∞	-950.770 kNcm	Mvsp_St_ges_t∞	1.847.890 kNcm			
Wy,c_u	2.688.613 cm ³							
Wcp_o	-8.486.553 cm ³							
Wcp_u	3.895.623 cm ³							
7								
Zulassige Spannur	2 40 kN /am2			120.20	1.N1/2-2-2			
o_ck_zui	2,40 KN/cm ⁻	Betondruckspannung	σ_p	130,20	KIN/CM ⁺ Spannstahl			
T_CTM	0,35 KN/CM-	Betonzugspannung						
Begrenzung der St	oannungen im Feld für	t=0	Begrenzung	Begrenzung der Spannungen am Auflager für t=0				
Nysp F t0	-23.034 kN		Nvsp F t0	-23.034	kN			
Mvsp F t0	-1.167.522 kNcm		Mvsp F t0	1.942.100	kNcm			
Mck_F	35.500 kNm		Mck_St	-45.000	kNm			
Mck_F	3.550.000 kNcm	7	Mck_St	-4.500.000	kNcm			
Nck_F	1.500 kN	7	Nck_St	1.200	kN			
σ_c,o_F	-0,95 kN/cm ²	✓ <σ_ck_zul	σ_c,o_St	0,19	kN/cm ² ✓ < f_ctm			
σ_c,u_F	0,49 kN/cm ²	× < f_ctm	σ_c,u_St	-1,35	kN/cm ² < σ_ck_zul			
Begrenzung der Sp	bannungen im Feld für	t=∞	Begrenzung	der Spannungen am	Auflager für t=∞			
Nvsp_F_t∞	-20.731 kN		Nvsp_St_t∞	-20.731	. kN			
Mvsp_F_t∞	-950.770 kNcm	1	Mvsp_St_t∞	1.847.890	kNcm			
Mck_F	35.500 kNm	4	Mck_St	-45.000	kNm			
Mck_F	3.550.000 kNcm	4	Mck_St	-4.500.000	kNcm			
Nck_F	1.500 kN	4	Nck_St	1.200	KN			
σ_c,o_F	-0,96 kN/cm ²	<pre>< σ_ck_zul</pre>	σ_c,o_St	0,26	KN/CM ² < f_ctm			
σc,uF	0,61 kN/cm ²	X < f_ctm	σ_c,u_St	-1,35	KN/CM ⁺ <σ_ck_zul			

D.2 GZG Begrenzung der Rissbreite zufolge Zwang

zυ	BLIN	Ed Ha	. Züblin AG uptverwaltung Stuttgart							
		Ze Ab	teilung TBK							V1.10
	Projel	kt 	Alternativentwurf Brücke B2314		Bearbeiter	Viktoriya Mi	ihaylova			
Neel	Baute		Ontere Gunplatte	ontrio oh on '		07.00.18	1002.4	1.2011 01 .und	NA-2012 04	
Naci	<u>nweis :</u>	zur	Begrenzung der Rissbreite für z	entrischen	Zwang nac	n DIN EN 1	1992-1-	1:2011-01 und	NA:2013-04	
Eing	- Geom	etrie		Dicke h	= 25.0	Cm		Ecm =	arte: 35.000 N/mm ²	(Tab. 3.1)
				Breite b	= 100,0	cm		f _{ctm} =	3,50 N/mm ²	(Tab. 3.1)
	- Betong	güte:			C40/50			E _s =	200.000 N/mm ²	(3.2.7 (4))
	- Wirks	ame	Zugfestigkeit f _{ct,eff} (7.3.2 (2)): (früher / spä	ter Zwang)	50	%				
	- Innere	er Zw	ang (z.B. Hydratationswärmeabfluß) oder		i	[innen / a	ußen	→ k =	0,80	(NA7.3.2(2))
	- Verwe	erer 4 endur	ug langsam erhärtender Beton (7.3.2 (NA)	6))	(Innerer Zw	/ang) [ia / nein]	Hinweis	: Keine Reduzie	rung der Bewehru	ina
	(Bedin	ngung	$f_{cm28} \leq 0,3$	-//						
	- Dauer	der	Einwirkung		1	[angzeitig	oder K ur	zzeitig] $\rightarrow k_t =$	0,4	
	(i.d.F	R. ist	nach NA 7.3.4 (2) das langzeitige Verbur	ndkriechen zu b	perücksichtiger	n, d.h. k _t =0,4.	El contrato			
	Kurz Streck -	zzeitig	ge Einwirkung mit κ=υ,6 darr nach Heit 6ι ze Betonstahl:	JU DATSto nur t f.e :	= 550	N/mm ²	er Einwirk	ung verwendet w	eraen.)	
	- Zusätz	<u>zlich</u>	wirkende gleichartige (zentrischer Zug) <u>äu</u>	<u>Ißere</u>	nein	[ja / nein]		\rightarrow max $\sigma_s = f_{yk}$ =	= 550,	0 N/mm²
	Last	tbear	spruchung (7.2(5)) ?			_				
	- Beton	deck	ung der betrachteten Bewehrungslage:	C _{nom} :	= 4,0	cm				
	- Gewa	hite F	Rissbreite (Tab. 7.1DE):	Wk	= 0,30	mm				
	Gewä	hlte	Bewehrung für <u>eine</u> Richtung und für <u>e</u>	eine Bauteilsei	ite:					
			Durchmesser Φ_{s1}/S	Stababstand s ₁ :	= 20	10,0 n	nm cm			
			Durchmesser Φ_{s2}/S	Stababstand s ₂ :	= 0 ser Φ. o mit 0.01mm	0,0 n	nm cm	(2. Zeile bei 2 versch Durchmessern / Abs	iedenen tänden)	
				eingeben, fall	Is nicht verwendet	t)		Barannossann Aba		
Zusa	ammer	nfas	sung der gewählten Bewehrung	<u>:</u>						
	Mittler	rer ge	wichteter Stabdurchmesser mit 7.3.3 (NA		$\Phi_{sm} = (\Phi_s)$	$s_{1}^{2}/s_{1}+\Phi_{s2}^{2}/s_{1}$	s ₂) / (Φ _{s1}	$(s_1 + \Phi_{s2} / s_2) =$	20,0 mm	-
	Gewä	hlte E	Bewehrung je Bauteilseite:					vorh $A_s =$	$31,42 \text{ cm}^2$	
	Randa	absta	nd Bewehrungsachse:				р d ₁ =	$= v_{orn} + \Phi_{sm} / 2 =$	5,0 cm	°0
	Wirku	ngsb	ereich A _{c,eff} der Bewehrung (7.3.2(3)) mit	h _{c,eff} nach Bild	7.1DE a)-d)			$A_{c,eff} = h_{c,eff} \times b =$	1250 cm ²	
								≤ h/2 x b =	1250 cm ²	
		-	Ermittlung h _{eff} nach Bild 7.1DE d):					$h/d_1 =$	5,0	
								n _{c,eff} / u ₁ –	2,5	
Erm	ittlung	dei	erforderlichen Bewehrung zur I	Begrenzung	der Rissb	reite (Kap.	7.3.2)			
	- Erford	derlig	he Bewehrung bei Erstrissbildung (Ka	n. 7.3.2 (2) un	d GL 7.1):	erf A。=	k _e x k x f _e	teffxAct/zulσ。=	9.9 cm ²	maßgebend
	2		Deinent ("a Organisation and allow de la Dest	()			7.0		0,0 0	inaligosona
	m	nt: -	(im Standardfall $\sigma_{r} = f_{rb} = i \text{ ist } k_{r} = 1.0$):	leckquerschnit	l bei zentrisch	em zwang (G	⊐l. <i>(</i> .∠)	k.,=	1.0 (k ₂ = 1.0 is	voreingestellt)
		-	Effektive Zugfestigkeit 7.3.2 (2):					f _{ct,eff} =	1,75 N/mm ²	<u>,</u>
		-	A _{ct} Fläche der Zugzone im Zustand I							
			(anteilig für jede Bauteilseite und Bewehr	ungslage):		F (1	Dischiller	$A_{ct} = b \times h/2 =$	1.250 cm ²	
		-	Aumenmbare Stanispannung nach 7.3.3(2), Tab. 7.2 DE	: una GI. 7.7 D	zul σ = (w. x 3 48	$(\times 10^6 / \oplus *)^{1/2} =$	177.5 N/mm ²	
						201 0 ₅ - (W _K X 0,40	$\leq \max \sigma_s =$	550,0 N/mm²	
			mit: $\Phi_s^* = d_s^* = d_s \times \frac{8 \times (h-d)}{k \times k \times h} \times \frac{8}{k}$	$\frac{2,9}{f}$	$< d_s \times \frac{2}{\epsilon}$,9 =	33,1	mm (7.7DE, wob	ei h _{cr} =h)	
	E			Jct,eff	J _{ct} ,	,eff			10.2 am ²	wight relevant
	- Eriore (Kar	p. 7.3	(NA.5) und GI. NA.7.5.1):	Rissbild		en	As - Ict,eft	A Ac,eff / Zul Os -	12,5 Cm-	nicht relevant
	jedo	ch ei	nzuhaltene Stahlspannung $\sigma_s \leq f_{yk}$ bzw. \leq	0,8 x f _{yk} bei zu:	sätzlicher	erf A _s	≥ k x f _{ct,ef}	r x A _{ct} / max σ _s =	3,2 cm ²	nicht relevant
	äuße	erer l	astbeanspruchung (7.2(5)):							
Dire	kte Be	recl	nnung der Rissbreite (Kap. 7.3.4)	1						*
				$\sigma_{e} - k_{e} \cdot \frac{f_{c}}{f_{c}}$	$\frac{t,eff}{1+\alpha_0}$	Pro off)				
	Differ	enzd	ehnung Stahl/ Beton $\mathcal{E}_{sm} - \mathcal{E}_{cm}$	=	p,eff	=	0,00012	$\geq 0, 6 \cdot \frac{\sigma_s}{r} =$	0,00017	
	(GI. 7.	.9):			Es			E _s (maßgebend)	
					Φ,		,	$\sigma_s \cdot \Phi_s$		
	Maxin	naler	Rissabstand (GI. 7.11 und NA 7.3.4(3))	: s _{r,max} =	$\overline{3,6\cdot\rho_{n,eff}}$	·= 221 n	mm ≤ — 3	$\frac{1}{6 \cdot f_{cl_{eff}}} =$	177 mm	
	m	nit: -	Vorhandene Stahlspannung im Erstriss na	ach 7.3.2 (2):	- p,sg	vorh $\sigma_s = k_s$	x k x f _{ct of}	$x A_{ct} / \text{vorh } A_s =$	55,7 N/mm ²	
			(σ _s wird um 15% verringert bei Verwendu	ng von langsan	n erhärtenden	Beton im Hvo	dratations	sfall)		
		-	Effektive Zugfestigkeit (keine Berücksicht	igung der Mind	lestbetonzuafe	estigkeit		, f _{ct eff} =	1,75 N/mm ²	
			nach NA 7.3.2 (2)):							
		-	Effektiver Bewehrungsgrad (GI. 7.10):				$\rho_{p,eff} =$	vorh A _s / A _{c,eff} =	0,0251	
			Verbältnig E Medule:					a = E / E -	5 71	
		-	vendunis E-wouum:					$u_e - E_s / E_{cm} =$	5,71	
atum: 0	Ergeb	nis:	Rechnerische Rissbreite (GI. 7.8):		w _k = s _{r,max} x	$(\epsilon_{sm}-\epsilon_{cm}) =$	177	× 0,00017 =	0.03 mm	nicht relevant
								Date. Denie		

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ZÜBLIN	Ed. Züblin AG Hauptverwaltur Zentrale Techn	ng Stuttgart ik							
Basel Boy Date 0.01 Control Contro Contro Control Control Control Control Control Cont	Proie	kt Alternativentwu	urf Brücke B2314	E	Bearbeiter	Viktoriva M	ihavlova			V1.10
<form> Submits or Bearsmann der Restorate für zentrischen Zenna nech DIN EH 1922-1-12011 of und NAD3124</form>	Baute	il Steg		-	Datum	07.06.18	indylord			
Einesite in the set of the set o	Nachweis	zur Begrenzung	a der Rissbreite für zen	trischen Zw	ang nach	DIN EN 1	1992-1-1:2011-	01 und	NA:2013-04	
$ \begin{array}{c} - \operatorname{Genoretic:} \\ \\ - \operatorname{Genoretic:} \\ - Genoretic:$	Eingabe						Bausto	ffkennw	arte:	
$\begin{aligned} & \text{Belle b} & \int_{-\infty}^{\infty} \frac{1}{2} (2, 2, 2, 2) (\text{this } r, 1, 3, 2, 2) (\text{this } r, 1, 3, 2) (\text{this } r,$	- Geom	etrie:		Dicke h =	35,0	cm	Bausto	E _{cm} =	35.000 N/mm ²	(Tab. 3.1)
$ decayline Subjects (L_{ne} (T, 32, 21); (ther / splar Zway) www.away Subjects (L_{ne} (T, 32, 21); (ther / splar Zway) wwww.away Subjects (L_{ne} (T, 32, 21); (ther / splar Zw$				Breite b =	100,0	cm		f _{ctm} =	3,50 N/mm²	(Tab. 3.1)
 Wissene Zupersjoet (z.g. (7.3.2 (2))) (tider (7.3.9 (2))) Wissene Zupersjoet (z.g. Hydrationsonameliuk) ofer allower Zwerg (2.B. Stokenesskurg) Wissene Zupersjoet (Z.g. Hydrationsonameliuk) ofer allower Zwerg (2.B. Stokenesskurg) Wissene Zupersjoet (Z.g. Wissenesskurg) Wissene Zupersjoet (Z.g. Wissenesskurg) Wissenesskurg (Z.B. Stokenesskurg) Unter Zwerg (Z.B. Stokenesskurg) <li< td=""><td>- Beton</td><td>güte:</td><td></td><td></td><td>C40/50</td><td>1</td><td></td><td>E_s =</td><td>200.000 N/mm²</td><td>(3.2.7 (4))</td></li<>	- Beton	güte:			C40/50	1		E _s =	200.000 N/mm ²	(3.2.7 (4))
 Interez Zwarg (12.8. Hydrationsekimateline) oder alle generations (12.8. Hydrationsekimateline) oder alle generationsekimateline) oder alle generationsekimateline (12.8. Hydrationsekimateline) (12.8. Hydrationsekimis(12.8. Hydrationsekimateline) (12.8. Hydrationsekimis(12.8. Hy	- Wirks	ame Zugfestigkeit f _{ct}	,eff (7.3.2 (2)): (früher / später	Zwang)	50	%				
$\begin{aligned} & \text{Working Lines and Particular Beachering (Fig. 2016)} \\ & \text{Working Lines and Particular Beachering (AC, B, B)} \\ & \text{Working Lines and Particular Beachering (AC, B)} \\ & \text{Working Lines (Particular Beachering)} \\ & \text{Use of the Horizonds global mapping (particular Beachering (particular Beachering)} \\ & \text{Use and the Horizonds global mapping (particular Beachering)} \\ & \text{Use and the Horizonds global mapping (particular Beachering)} \\ & \text{Use and the Horizonds global mapping (particular Beachering)} \\ & \text{Beachering (particular Beachering)} \\ & Beachering (par$	- Innere	r Zwang (z.B. Hydra	itationswärmeabfluß) oder		i	[innen / a	ußen]	\rightarrow k =	0,77	(NA7.3.2(2))
 verwarding langsam enhanced below (7.3.2 (W.5)) (Bedringer, <i>et a.</i>, <i>i. (a.</i>, <i>i. (a.</i>, <i>i. (b.</i>)) (a. R. it net NA 7.3.4 (2) de langzelinge Verhundencehen zu betrückselingen och Kurzzeling) <i>et a.</i> (<i>a.</i>, <i>i. (a.</i>, <i>i. (a.</i>	äuß	erer Zwang (z.B. Stü	itzensenkung)	(innerer Zwa	ang)				
$ \begin{array}{c} \text{Dear of the Environing } \\ (1.61, \text{Rithol NK 7.34 (2) dis single slips Velocitability (2.61, \text{KeVA}, \text{Karzashig)} \rightarrow \text{K} = 0.4 \\ (1.62, \text{Rithol NK 7.34 (2) dis single slips Velocitability (2.61, \text{KeVA}, \text{Karzashig)} \rightarrow \text{Karzashig)} \rightarrow \text{KeVA} = 0.4 \\ (1.62, \text{Rithol NK 7.34 (2) dis single slips Velocitability (2.61, \text{KeVA}, \text{Karzashig)} \rightarrow \text{Karzashig)} \rightarrow \text{KeVA} = 0.4 \\ (1.62, \text{Rithol NK 7.34 (2) dis single slips Velocitability (2.61, \text{KeVA}, \text{Karzashig)} \rightarrow \text{Karzashig)} \rightarrow \text{KeVA} = 0.6 \\ (1.62, \text{Karzashig)} = \text{KeVA} = 0.6 \\ (1.62, Ka$	- Verwe	ndung langsam erha	årtender Beton (7.3.2 (NA.6))		nein	[ja / nein]	Hinweis: Keine	Reduzie	rung der Bewehru	ing
• Later and the charactery of the constraint of	(Bedir	igung: $r = t_{cm2} / t_{cm28}$	<u>≤</u> 0,3)	-		Langzeitig	oder Kurzzeitial	. k =	0.4	
10.1 Is that if while is a big and mach it followed in the big balance in the setting the maximum of the setting the settin	- Dauer	der Einwirkung	(2) dee lengreitige Verbundle	iachan ru hari	l		oder K urzzenigj -	- n _t -	0,4	
$ \begin{aligned} \begin{array}{lllllllllllllllllllllllllllllllllll$	(I.a.) Kura	zeitige' Einwirkung	(2) das langzeitige verbundki mit k=0.6 darf nach Heft 600.[AfSth nur bei	Nachweiser	, a.n. ĸ _t =0,4. mit 'seltene	er Einwirkung' verv	endet w	erden)	
$ \left \begin{array}{c} \mathbf{c} \mathbf{c} \mathbf{c} \mathbf{c} \mathbf{c} \mathbf{c} \mathbf{c} \mathbf$	- Streck	grenze Betonstahl:		f _{uk} =	550	N/mm ²	in Einwinkung vorv	ionaot w	erden.)	
Latitudenspruchung (7260)? Bekondekung der betrachtelten Bewehnung largen: Gewählte Rissbreite (Tab. 7.10E): $ \begin{aligned} \begin{aligned} \begin{aligned} \begin{aligned} \begin{aligned} \begin{aligned} \begin{aligned} \begin{aligned} u_{int} &= \frac{1}{0.00} \\ \hline 0 &= 0.00 \\ \hline$	- Zusät	zlich wirkende gleich	artige (zentrischer Zug) äuße	re , , ,	nein	[ja / nein]	\rightarrow max	σ _s = f _{vk} :	= 550,	0 N/mm²
• is entroducting dur betrachtenen Bewehrungsigner: www_w www_w www_w • is entroducting dur betrachtenen Bewehrungsigner: www_w www_w www_w • Bewehrungsigner: www_w www_w www_w www_w • Bewehrungsigner: www_w www_w www_w www_w www_w • Bewehrungsigner: www_w	Last	beanspruchung (7.2	(5)) ?	-				,		
$ \text{ cervalities Residencing (Tab. 7.10E); } \qquad $	- Beton	deckung der betrach	iteten Bewehrungslage:	c _{nom} =	4,0	cm				
Gewählte Bewehrung für gine Richtung und für gine Bauteileste:Durchmesser Ψ_{n} (Stababatand s_{n} and s_{n}	- Gewä	hlte Rissbreite (Tab.	. 7.1DE):	w _k =	0,30	mm				
$\begin{aligned} Gewanne sewency up the field southeast equivalence in the southeast $		bite Damata	n alma Blakton and an	Development in						
$\begin{aligned} \int_{\Omega} \frac{\partial \Omega}{\partial \Omega} \int_{\Omega} $	Gewä	hlte Bewehrung fü	r eine Richtung und für eine	Bauteilseite:	16		num Long			
$\begin{array}{c} \begin{array}{c} \begin{array}{c} 2 & Bitter of equility equility of equility of equility of $			Durchmesser Φ_{s1} / Stat	abstand $s_1 =$	0	0,0 n	mm cm (2. Zeile b	ei 2 versch	iedenen	
$\begin{aligned} Productive figures provided for the service of the service o$			(2. 9	tabdurchmesser 4	Þ _{s2} mit 0,01mm	10,0	Durchme	ssern / Abs	tänden)	
$\begin{aligned} \underbrace{\text{Dustamentassund erg excludes lessential test previous (7.3.3) (NA.7): } \Phi_{m} = (\Phi_{N}^{-2} (z_{n} + \Phi_{M}^{-2} (z_{n}) / (\Phi_{n} / (z_{n} / z_{n}) + \Phi_{M} / (z_{n})) = 16.0 \text{ mm}} \\ \underbrace{\text{Gewähnunggend:}}_{\text{Randbastend Bewehnung (P 3.2.3)) mit h_{u,eff} nach Bild 7.10E a)-d)} & p = voh A_{1} / A_{2} = 0.0144 = 1.44\% \\ \text{Randbastend Bewehnung schne:} & d_{1} = C_{out} + \Phi_{M} / 2 = 4.8 \text{ cm}} \\ \underbrace{\text{Covalut a Bewehnungschne:}}_{intervalue (P - 2.3.3)) mit h_{u,eff} nach Bild 7.10E a)-d)} & f_{intervalue (P - 2.3.2)} \\ \text{Ermittlung h}_{eff} nach Bild 7.10E d): & h / d_{1} = 7.3 \\ h_{u,ef} / d_{i} = 2.7 \end{aligned}$				eingeben, falls ni	cht verwendet)					
$\begin{aligned} & \text{Mitterer gewichteter Stabduchmesser mit 7.3.3 (NA.7):} \qquad \begin{array}{l} & \psi_{m} = (\psi_{n,2}^{-1}(z_{m}$	Zusammer	nfassung der ge	wählten Bewehrung:							
$\begin{aligned} \begin{bmatrix} eventhus genetic in the seventhum genetic in the seventhal s$	Mittler	er gewichteter Stab	durchmesser mit 7.3.3 (NA.7)	:	$\Phi_{sm} = (\Phi_s)$	$\frac{1}{1}^{2}/s_{1}+\Phi_{s2}^{2}/s_{1}$	$(s_2) / (\Phi_{s1} / s_1 + \Phi_s)$	2 / s2) =	16,0 mm	_
Bewehrungsgrat: Randabtand Bewehrungsachte: Wirkungsbereich A _{set} der Bewehrung (7.3.2(3)) mit h _{catt} nach Bild 7.1DE a)-d) - Ermittlung h _{eft} nach Bild 7.1DE d): - Ermittlung der erforderlichen Bewehrung zur Begrenzung der Rissbreite (Kap. 7.3.2) - Erforderliche Bewehrung bei Erstrissbildung (Kap. 7.3.2 (2) und GL 7.1): - Erforderliche Bewehrung bei Erstrissbildung (Kap. 7.3.2 (2) und GL 7.1): - Erforderliche Bewehrung bei Erstrissbildung (Kap. 7.3.2 (2) und GL 7.1): - Erforderliche Bewehrung bei Erstrissbildung (Kap. 7.3.2 (2) und GL 7.1): - Erforderliche Bewehrung bei Erstrissbildung (Kap. 7.3.2 (2) und GL 7.1): - Erforderliche Bewehrung bei Erstrissbildung (Kap. 7.3.2 (2) und GL 7.1): - Erforderliche Bewehrung bei Erstrissbildung (Kap. 7.3.2 (2) und GL 7.7): - Erforderliche Bewehrung bei Erstrissbildung (Kap. 7.3.2 (2) und GL 7.7): - Erforderliche Bewehrung bei Erstrissbildung (Kap. 7.3.2 (2) und GL 7.7): - Erforderliche Bewehrung bei Erstrissbildung (Kap. 7.3.2 (2) und GL 7.7): - Erforderliche Bewehrung bei Erstrissbildung (Kap. 7.3.2 (2) und GL 7.7): - A ₁ Fläche der 2.2 - Erforderliche Bewehrung bei Erstrissbildung (Kap. 7.3.2): - A ₁ Fläche der 2.2 - Erforderliche Bewehrung bei abgeschlossenem Rissbild - Erforderliche Bewehrung (7.2 (5)): - Erforderliche Bewehrung GL abgeschlossenem Rissbild - Erforderliche Bewehrung GL AJA.5.1): - efforderliche Bewehrung act 5, bow. $\leq 0.8 x_{f_x} bei zusätzlicher - atte $	Gewä	hlte Bewehrung je B	auteilseite:				V	orh A _s =	25,13 cm ²	
$\begin{aligned} b_{n} = b_{n,n} - b_{n,n} + b_{n$	Bewel	nrungsgrad:					ρ = vorh A	$_{\rm s}/A_{\rm c} =$	0,0144 = 1,449	%
$\begin{aligned} & \text{theoremulation}_{\text{c}_{2}}(\text{der Demendual}(1, 15, 12)) \text{ in the regiment of 1, 12, 2, p}) & \text{for } k_{2} \neq k \neq 1 \\ & \text{for } k_{2} \neq k \neq 1 \\ & \text{for } k_{2} \neq k \neq 1 \\ & \text{h}^{2}, d_{1} = 7, 3 \\ & \text{h}^{2}, d_{1} = 7, 3 \\ & \text{h}^{2}, d_{1} = 2, 7 \end{aligned}$ $\begin{aligned} & \text{Ermittlung der erforderlichen Bewehrung zur Begrenzung der Rissbreite (Kap. 7.3.2) \\ & \text{efforderliche Bewehrung bei Erstrissbildung (Kap. 7.3.2, (2) und Gi, 7.1): eff A_{1} = k_{2}, k \times k_{1,est} \times A_{d}/2 \text{ to } a_{1} = 1, 9 \text{ cm}^{2} \text{ nicht relevant} \\ & \text{mit} & \text{Beiver für Spannungsverteilung im Rechteckquerschritt bei zentrischem Zwang (Gi, 7.2) \\ & \text{(im Standardfall \alpha_{1} = t_{d,est} is k_{1} = 1, 0; \\ & \text{effortione Standardfall \alpha_{n} = t_{d,est} is k_{1} = 1, 0; \\ & for farming space s$	Kanda Wirku	abstand Bewenrungs	acnse: Bewebrung (7.3.2(3)) mit b	nach Bild 7 1	DE a)-d)		$a_1 = c_{nom} + q$	$v_{sm}/2 =$	4,8 cm	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	WIIKU	ngabereich Ac,eff dei	Dewenlight (1.5.2(5)) mit h _{c,el}				∽c,eff = ⊓c ≤ h	$\frac{1}{2 \times b} =$	1750 cm ²	
$h_{x,m}/d_{1} = 2,7$ Ermittlung der eforderlichen Bewehrung zur Begrenzung der Rissbreite (Kap. 7.3.2) $efforderliche Bewehrung bei Erstrissbildung (Kap. 7.3.2 (2) und Gi. 7.1): eff A_{a} = k_{a} \times k \times t_{adar} \times A_{a} / 2 d \sigma_{a} = 11,9 \text{ cm}^{a} \text{ picht relevant}$ mit: - Beiwert für Spannungsverleilung im Rechteckquerschnitt bei zentrischem Zwang (Gi. 7.2) (m Standardfall $\sigma_{a} = t_{a,ad}$ ift $k = 1.0$): $k_{a} = 1,0$ $(k = 1.0 \text{ in voreingestell})$ (A, Fläche der Zugzone im Zustand 1 (anteilig für jede Bauteilseite und Bewehrungslage): Aufliche der Zugzone im Zustand 1 (anteilig für jede Bauteilseite und Bewehrungslage): Aufliche der Zugzone im Zustand 1 (anteilig für jede Bauteilseite und Bewehrungslage): Aufliche der G. A. (A, S. (A, C, A)): $zu \sigma_{a} = (w_{a} \times 3,48 \times 10^{b} / 0, y^{1/2} = 198,5 \text{ Nmm}^{2} \\ \leq max \sigma_{a} = 550,0 \text{ Nmm}^{2}$ mit: $\Phi_{a}^{*} = d_{a}^{*} \frac{8 \times (h - d)}{k_{c} \times k \times h_{cr}} \times \frac{2,9}{f_{ct,eff}} = 26,5 \text{ mm} (7.7\text{ DE, wobei } h_{o}=h)$ efforderliche Bewehrung bei abgeschlossenem Rissbild (Yap. 7.32 (NAS) und Gi. NA 7.5.1): jedoch einzuhaltene Stahlspannung $\sigma_{a} \leq t_{a}$ kus $\leq 0,8 \times t_{b}$ bei zusätzlicher außerer Lastbeanspruchung (72.6): Differenzdehnung Stahl/ Beton (Gi. 7.9): $mit: - Vorhandene Stahlspannung \sigma_{a} \leq t_{a} kus \leq 0,8 \times t_{b} bei zusätzlicher a_{a} = \frac{\Phi_{a}}{3,6 \cdot \rho_{p,eff}} = 232 \text{ mm} \leq \frac{\sigma_{a} \cdot \Phi_{a}}{3,6 \cdot f_{a,eff}} = 238 \text{ mm} mit: - Vorhandene Stahlspannung im Erstriss nach 7.3.2 (2): voch \sigma_{a} = k_{a} \times k_{a} t_{a} x_{a} t_{a} / voch A_{a} = 93.8 \text{ Nmm}^{2} (\alpha_{a} \text{ wirting HS} = 0,0192 (\alpha_{a} wirti$		- Ermittlung herr	ach Bild 7.1DE d):					$h/d_1 =$	7,3	
Ermittlung der erforderlichen Bewehrung zur Begrenzung der Rissbreite (Kap. 7.3.2) • Erforderliche Bewehrung bei Erstrissbildung (Kap. 7.3.2 (2) und Gl. 7.1): erf A _a = k _a × k × t _{das} × A _a / Zul c _a = <u>11,9 cm²</u> nicht relevant mit · Beiwert für Spannungsverteilung im Rechteckquerschnitt bei zentrischem Zwang (Gl. 7.2) (m Standardall c _a = t _{da} = 1,0; · Effektive Zugosteingkeit 7.3.2 (2): t _{das} = 1,0; · Effektive Zugosteingkeit 7.3.2 (2): t _{das} = 1,75 Nmm ² · A _a Fläche der Zugozon im Zustand 1 (anteilig für jede Bauteilseite und Bewehrungslage): A _a = b × h ² = 1,750 cm ² · Aufhehmbare Stahlspannung nach 7.3.3(2); Tab. 7.2 DE und Gl. 7.7 DE (abgeschl. Rissbil): zu d _a = (w _k x 3.48 × 10 ⁶ / 0 ⁴ , ¹) ² = 198,5 Nmm ² \leq max c _a = 550,0 Nmm ² mit: $\Phi_{*}^{*} = d_{s}^{*} = d_{s} \times \frac{8 \times (h - d)}{k_{c} \times k \times h_{cr}} \times \frac{2.9}{f_{ct,eff}}$ $< d_{s} \times \frac{2.9}{f_{ct,eff}}$ = 26,5 mm (7.7DE, wobei h ₀ =h) · Erforderliche Bewehrung bei abgeschlossenem Rissbild erf A _a = t _{a,eff} × A _{a,eff} / 2u d _a = <u>11,6 cm²</u> maßgebend (Kap. 7.3.2 (NA.5) und Gl. NA.7.5.1): jedoch einzuhaltene Stahlspannung c _a \leq f _b bzw. \leq 0,8 x t _b bei zusätzlicher aüßerer Lastbeanspruchung (7.2(5)): Direkte Berechnung der Rissbreite (Kap. 7.3.4) Maximaler Rissabstand (Gl. 7.11 und NA 7.3.4(3)): s _{t,max} = $\frac{\Phi_{a}}{J_{0} + \frac{f_{a,eff}}{f_{2p,eff}}}$ = 0,00027 \geq 0,6 $\frac{\sigma_{a}}{E_{a}}$ = 0,00028 (rangogebend) mit: - Vorhadnes Stahlspannung vertersteins and 7.3.2 (2): vorh c _a = k x k t _{d,aeff} x A _{a,eff} / vord k _a = <u>3.8 mm</u> mit: - Vorhadnene Stahlspannung vertersteins and 7.3.2 (2): vorh c _a = k k k k k k x A _{a,eff} = <u>3.9</u> and <u>3.6 · P_{a,eff}</u> = 232 mm $\leq \frac{\sigma_{a}}{3.6 \cdot \frac{P_{a,eff}}{f_{a,eff}}}$ = 238 mm mit: - Vorhadnene Stahlspannung vertersteins and 7.3.2 (2): vorh c _a = k x k t _{d,aeff} x A _{a,eff} = 0,0192 · Gravit un 15% verringert bei Verwend ug von langsam erhärtendene Beto im Hydratationsfall) - Effektive zuglestigkeit (keine Berücksichtigung der Mindestbetonzugfestigkeit race							h _c ,	$_{\rm eff}/d_1 =$	2,7	
$ \frac{1}{2} = \frac{1}{2} + 1$	Ermittlum o	dor orfordaria		aronauna d	or Diochr	oito (Kon	7 2 2)			
- Erforderliche Bewehrung bei Erstrissbildung (Kap. 7.3.2 (2) und GI. 7.1): erf A _a = k _x x k x f _{totat} x A _n /2 zul $q_a = 1.9 \text{ cm}^3$ nicht relevant mit: - Beiwert für Spannungsverteilung im Rechteckquerschnitt bei zentrischem Zwang (GI. 7.2) (m Standardfall $q_a = t_{oot}$ fisk k = 1.0): k _a = 1.0 (k _a = 1.0 is voreingesteilt) Erfektive Zugene tim Zustand I (anteilig für jede Bauteilseite und Bewehrungslage): A _a = b x h/2 = 1.750 cm ² - Aufnehmbare Stahlspannung nach 7.3.3 (2). Tab. 7.2 DE und GI. 7.7 DE (abgeschl. Rissbild): zul $q_a = (w_k x 3.48 \times 10^6 / \Phi_a^*)^{1/2} = 198,5 \text{ N/mm}^3$ $\leq \max a_a = 550.0 \text{ N/mm}^2$ mit: $\Phi_a^* = d_s^* = d_s \times \frac{8 \times (h - d)}{k_c \times k \times h_{crr}} \times \frac{2.9}{f_{ct.eff}} < d_s \times \frac{2.9}{f_{ct.eff}} = 26,5 \text{ mm} (7.7DE, wobei h_a=h)$ - Erforderliche Bewehrung bei abgeschlossenem Rissbild (Kap. 7.3.2 (NA.5) und GI. NA.7.5.1): jedoch einzuhaltene Stahlspannung $q_a \le f_{i_b}$ bei zusätzlicher äußerer Lastbeanspruchung (7.2(5)): Direkte Berechnung der Rissbreite (Kap. 7.3.4) Differenzdehnung Stahl/ Beton $c_{sm} - c_{cm} = \frac{\sigma_a = k_1 \cdot \frac{f_{ct.eff}}{P_{p.eff}} (1 + ca_{a} \cdot P_{b.eff})}{E_b} = 0.00027 \ge 0, 6 \cdot \frac{\sigma_{c}}{E_c} = 0.00028$ (maßgebend) Maximaler Rissabstand (GI. 7.11 und NA 7.3.4(3)): $s_{max} = \frac{\Phi_{c}}{3, 6 \cdot P_{p.eff}} = 232 \text{ mm} \le \frac{\sigma_{c} \cdot \Phi}{3, 6 \cdot f_{c.eff}} = 238 \text{ mm}$ mit: - Vorhandene Stahlspannung im Erstriss nach 7.3.2 (2): vorh $q_c = k_x \times k t_{com} \times A_{com} + A_{com$	Emittung	del enorderno	ien bewenrung zur bei	grenzung u		ene (nap.	1.3.2			
mit: - Beiwerf für Spannungsverteilung im Rechteckquerschnitt bei zentrischem Zwang (Gl. 7.2) (m Standardfall $\alpha_x = (a_{xet}$ ist $k_x = 1.0$): - Effektive Zugfestigkeit 7.3.2 (2): - A _x Flächte der Zugzone im Zustand I (anteilig für jede Bauteilseite und Bewehrungslage): - Aufnehmbare Stahlspannung nach 7.3.3 (2), Tab. 7.2 DE und Gl. 7.7 DE (abgeschl. Rissbild): zul $\alpha_x = (w_x x.348 \times 10^6 / \Phi_x^{-1})^{1/2} = 198,5$ N/mm ² $\leq \max \alpha_x = 550,0$ N/mm ² $\leq \max \alpha_x = 550,0$ N/mm ² $\leq \max \alpha_x = 550,0$ N/mm ² mit: $\Phi_x^* = d_x^* = \frac{8 \times (h - d)}{k_c \times k \times h_{cr}} \times \frac{2.9}{f_{ct,eff}} < d_x x \frac{2.9}{f_{ct,eff}} = 26,5$ mm (7.7DE, wobel $h_c=h$) - Erforderliche Bewehrung bei abgeschlossenem Rissbild (Kap. 7.3.2 (NA.5) und Gl. NA.7.5.1): jedoch einzuhaltene Stahlspannung $\alpha_x \leq (q_x bx w) \leq 0.8 \times f_{q_x}$ bei zusätzlicher außerer Lastbeanspruchung (7.2(5)): Dirfekte Berechnung der Rissbreite (Kap. 7.3.4) Differenzdehnung Stahl/ Beton $e_{am} - e_{cm} = \frac{\sigma_a - k_1 \cdot \frac{f_{ct.eff}}{r_{fp.eff}} (1 + c\alpha_a \cdot r_{fp.eff})}{E_8} = 0,00027 \ge 0, 6 \cdot \frac{\sigma_z}{E_z} = 0,00028$ (maßgebend) Maximaler Rissabstand (Gl. 7.11 und NA.7.3.4(3)): $e_{am} - e_{cm} = \frac{\Phi_a}{3, 6 \cdot \rho_{r,ef}} (maßgebend)$ $f_{a,b} - \rho_{r,ef}$ (maßgebend) $f_{a,c} wird um 15%$ verringert bei Verwendung von langsam erhärtenden Beton im Hydratationsfall) - Effektive Zugfestigkeit (keine Berücksichtigung der Mindestbetorzugfestigkeit nach NA.7.3.2 (2): - Verhältnis E-Moduli: $\alpha_a = E_a / E_{cm} = 5,71$ $a_{tm} = 0,00023$ $w_b = s_{rmax} X (a_{cm}, c_m) = 232 \times 0,00023 = \frac{0,00027}{1,00028} + \frac{0,00027}{1,00028} + \frac{0,00028}{1,00028} + \frac{0,00028}{1,00$	- Erford	lerliche Bewehrung	g bei Erstrissbildung (Kap. i	7.3.2 (2) und G	GI. 7.1):	erf A _s =	$k_c x k x f_{ct,eff} x A_{ct}/$	zul σ _s =	11,9 cm²	nicht relevant
$\lim_{n \to \infty} \lim_{x \to \infty} \lim_{x$	m	it: - Beiwert für Spa	annungsverteilung im Rechter	kauerschnitt be	ei zentrische	m Zwana (G	3 7 2)	-		
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		(im Standardfal	II $\sigma_c = f_{ct eff}$ ist $k_c = 1,0$:	inquoroonnini pr	2011100110	in Enang (e	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	k _c =	$1,0 \ (k_c = 1,0 \ is$	t voreingestellt)
$A_{cr} \text{ Fläche der Zugzone im Zustand I} (anteilig für jede Bauteilseite und Bewehrungslage): A_{cr} = b \times h/2 = 1.750 \text{ cm}^3$ $A_{cr} = b \times h/2 = 1.750 \text{ cm}^3$ $A_{cr} = b \times h/2 = 1.750 \text{ cm}^3$ $A_{cr} = b \times h/2 = 1.750 \text{ cm}^3$ $A_{cr} = b \times h/2 = 1.750 \text{ cm}^3$ $a_{cr} = b \times h/2 = h/2 \text{ cm}^2$ $a_{cr} = b \times h/2 = h/2 \text{ cm}^2$ $a_{cr} = b \times h/2 \text{ cm}^$		- Effektive Zugfe	stigkeit 7.3.2 (2):					f _{ct,eff} =	1,75 N/mm ²	
(anteilig für jede Bauteilseite und Bewehrungslage): Aufmehmbare Stahlspannung nach 7.3.3(2), Tab. 7.2 DE und Gl. 7.7 DE (abgeschl. Rissbild): zul $\sigma_s = (w_s \times 3.48 \times 10^6 / \Phi_s^*)^{1/2} = 198.5 \text{ N/mm}^2$ $\leq \max \sigma_s = 550.0 \text{ N/mm}^2$ mit: $\Phi_s^* = d_s^* = d_s \times \frac{8 \times (h - d)}{k_c \times k \times h_{cr}} \times \frac{2.9}{f_{ct,eff}} < d_s \times \frac{2.9}{f_{ct,eff}} = 26.5 \text{ mm} (7.7 \text{DE}, wobei h_{cr}=h)$ - Erforderliche Bewehrung bei abgeschlossenem Rissbild (Kap. 7.3.2 (NA5) und Gl. NA.7.5.1): jedoch einzuhaltene Stahlspannung $\sigma_s \leq f_{jk}$ bzw. $\leq 0.8 \times f_{jk}$ bei zusätzlicher äußerer Lastbeanspruchung (7.2(5)): Direkte Berechnung Stahl/ Beton (Gl. 7.5): Direkte Berechnung Stahl/ Beton (Gl. 7.5): $\sigma_s = -k_1 \cdot \frac{f_{ct,eff}}{P_{p,eff}} (1 + c_{\Phi} \cdot P_{p,eff})}{E_s} = 0,00027 \ge 0.6 \cdot \frac{\sigma_s}{E_s} = 0,00028$ (maßgebend) Maximaler Rissabstand (Gl. 7.11 und NA 7.3.4(3)): $s_{rmax} = \frac{\Phi_s}{3.6 \cdot P_{p,eff}} = 232 \text{ mm} \leq \frac{\sigma_s \cdot \Phi_s}{3.6 \cdot f_{cd,eff}} = 238 \text{ mm}$ mit: - Vorhandene Stahlspannung im Erstiss nach 7.3.2 (2): vorh $\sigma_s = k_x k \times k_{s,eff} \times A_{c,eff} = 0,00028$ (σ_s wird un 15% verningert bei Verwendung von langsam erhärtenden Beton im Hydratationsfall) - Effektive Zugfestigkeit (keine Berücksichtigung der Mindestbetonzugfestigkeit nach NA 7.3.2 (2): Verhältnis E-Moduln: $\sigma_s = k_s/E_{cm} = 5.71$ $w_s = s_{rmax} \times (c_{sm} \cdot c_{cm}) = 232 \times 0.00028 \frac{10.0027}{10.0028} - 0.00028 \frac{10.0027}{10.0028} - 0.00028$ $w_s = s_{rmax} \times (c_{sm} \cdot c_{cm}) = 232 \times 0.00028 \frac{10.0027}{10.0028} - 0.00028$ $w_s = s_{rmax} \times (c_{sm} \cdot c_{cm}) = 232 \times 0.00028 \frac{10.0027}{10.0028} - 0.00028 \frac{10.0028}{10.0028} - 0.00028 10.002$		- A _{ct} Fläche der Z	Zugzone im Zustand I							
- Aufnehmbare Stahlspannung nach 7.3.3(2), Tab. 7.2 DE und GI. 7.7 DE (abgeschl. Rissbild): $zu \sigma_{a} = (w_{k} \times 3.48 \times 10^{6} / \Phi_{s}^{*})^{1/2} = 198,5 \text{ N/mm}^{2}$ $\leq \max \sigma_{a} = (w_{k} \times 3.48 \times 10^{6} / \Phi_{s}^{*})^{1/2} = 198,5 \text{ N/mm}^{2}$ $\leq \max \sigma_{a} = (w_{k} \times 3.48 \times 10^{6} / \Phi_{s}^{*})^{1/2} = 198,5 \text{ N/mm}^{2}$ $\leq \max \sigma_{a} = (w_{k} \times 3.48 \times 10^{6} / \Phi_{s}^{*})^{1/2} = 198,5 \text{ N/mm}^{2}$ $\leq \max \sigma_{a} = (w_{k} \times 3.48 \times 10^{6} / \Phi_{s}^{*})^{1/2} = 198,5 \text{ N/mm}^{2}$ $\leq \max \sigma_{a} = (w_{k} \times 3.48 \times 10^{6} / \Phi_{s}^{*})^{1/2} = 198,5 \text{ N/mm}^{2}$ $\leq \max \sigma_{a} = (w_{k} \times 3.48 \times 10^{6} / \Phi_{s}^{*})^{1/2} = 198,5 \text{ N/mm}^{2}$ $\leq \max \sigma_{a} = (w_{k} \times 3.48 \times 10^{6} / \Phi_{s}^{*})^{1/2} = 198,5 \text{ N/mm}^{2}$ $\leq \max \sigma_{a} = (w_{k} \times 3.48 \times 10^{6} / \Phi_{s}^{*})^{1/2} = 198,5 \text{ N/mm}^{2}$ $\leq \max \sigma_{a} = (w_{k} \times 3.48 \times 10^{6} / \Phi_{s}^{*})^{1/2} = 198,5 \text{ N/mm}^{2}$ $\leq \max \sigma_{a} = (w_{k} \times 3.48 \times 10^{6} / \Phi_{s}^{*})^{1/2} = 198,5 \text{ N/mm}^{2}$ $\leq \max \sigma_{a} = (w_{k} \times 3.48 \times 10^{6} / \Phi_{s}^{*})^{1/2} = 198,5 \text{ N/mm}^{2}$ $= 266,5 \text{ mm} (7.7DE, wobei h_{a}=h)$ $= 11,6 \text{ cm}^{2} \text{ maßgebend}$ $(Kap. 7.3.2 (NA5) \text{ und } Gi. NA7.5.1);$ $\text{ jedoch einzuhaltene Stahlspannung } \sigma_{a} \leq f_{b_{k}} \text{ bzi} \text{ szätzlicher}$ $= ef A_{a} \geq k \times f_{caeff} \times A_{caeff} / \tan \sigma_{a} = \frac{4.3 \text{ cm}^{2} \text{ nicht relevant}}{4.3 \text{ cm}^{2} \text{ nicht relevant}}$ $\frac{11,6 \text{ cm}^{2} \text{ nicht relevant}}{24,3 \text{ cm}^{2} \text{ nicht relevant}}$ $\frac{11,6 \text{ cm}^{2} \text{ nicht relevant}}{24,3 \text{ cm}^{2} \text{ nicht relevant}}$ $\frac{11,6 \text{ cm}^{2} \text{ nicht relevant}}{24,3 \text{ cm}^{2} \text{ nicht relevant}}$ $\frac{11,6 \text{ cm}^{2} \text{ nicht relevant}}{24,3 \text{ cm}^{2} \text{ nicht relevant}}$ $\frac{11,6 \text{ cm}^{2} \text{ nicht relevant}}{24,3 \text{ cm}^{2} \text{ nicht relevant}}$ $\frac{11,6 \text{ cm}^{2} \text{ nicht relevant}}{24,3 \text{ cm}^{2} \text{ nicht relevant}}$ $\frac{11,6 \text{ cm}^{2} \text{ nicht relevant}}{24,3 \text{ cm}^{2} \text{ nicht relevant}}$ $\frac{11,6 \text{ cm}^{2} \text{ nicht relevant}}{24,3 \text{ cm}^{2} \text{ nicht relevant}}$ $\frac{11,6 \text{ cm}^{2} \text{ nicht relevant}}{24,3 \text{ cm}^{2} \text{ nicht relevant}}$ $\frac{11,6 \text{ cm}^{2} \text$		(anteilig für jede	e Bauteilseite und Bewehrung	slage):			$A_{ct} = b$	x h/2 =	1.750 cm ²	
$zul \sigma_{s} = (w_{k} \times 3.48 \times 10^{6} / \Phi_{c})^{1/2} = 198,5 \text{ N/mm}^{3}$ $= 11,6 \text{ cm}^{3}$ $= 198,5 \text{ N/mm}^{3}$ $= 198,5 \text{ N/mm}^{3$		 Aufnehmbare S 	stahlspannung nach 7.3.3(2),	Tab. 7.2 DE un	id GI. 7.7 DE	E (abgeschl.	Rissbild):			
$ \begin{split} &\leq \max \sigma_{s} = -\frac{59,0 \text{ N/mm}^{2}}{f_{ct,eff}} \\ &= 26,5 \text{ mm} (7.7\text{DE}, \text{ wobel } h_{c} = \text{h}) \\ &= 26,5 \text{ mm} (7.7\text{DE}, \text{ wobel } h_{c} = \text{h}) \\ &= 26,5 \text{ mm} (7.7\text{DE}, \text{ wobel } h_{c} = \text{h}) \\ &= 11,6 \text{ cm}^{2} - \frac{11,6 \text{ cm}^{2} - \frac{11,6 \text{ cm}^{2}}{mallsgebend} \\ &= 4,3 \text{ cm}^{2} - \frac{11,6 \text{ cm}^{2} - \frac{11,6 \text{ cm}^{2}}{mallsgebend} \\ &= 6,5 \text{ mm} (7.7\text{DE}, \text{ wobel } h_{c} = \text{h}) \\ &= 11,6 \text{ cm}^{2} - \frac{11,6 \text{ cm}^{2} - \frac{11,6 \text{ cm}^{2}}{mallsgebend} \\ &= 6,5 \text{ mm} (7.7\text{DE}, \text{ wobel } h_{c} = \text{h}) \\ &= 11,6 \text{ cm}^{2} - \frac{11,6 \text{ cm}^{2} - \frac{11,6 \text{ cm}^{2}}{mallsgebend} \\ &= 6,5 \text{ m}^{2} + \frac{11,6 \text{ cm}^{2} - \frac{11,6 \text{ cm}^{2}}{mallsgebend} \\ &= 6,5 \text{ m}^{2} + \frac{11,6 \text{ cm}^{2} - \frac{11,6 \text{ cm}^{2}}{mallsgebend} \\ &= 11,6 \text{ cm}^{2} - \frac{11,6 \text{ cm}^{2} - \frac{11,6 \text{ cm}^{2}}{mallsgebend} \\ &= 11,6 \text{ cm}^{2} - \frac{11,6 \text{ cm}^{2} - \frac{11,6 \text{ cm}^{2}}{mallsgebend} \\ &= 6,5 \text{ cm}^{2} + \frac{11,6 \text{ cm}^{2} - \frac{11,6 \text{ cm}^{2}}{mallsgebend} \\ &= 11,6 \text{ cm}^{2} - \frac{11,6 \text{ cm}^{2} - \frac{11,6 \text{ cm}^{2}}{mallsgebend} \\ &= 11,6 \text{ cm}^{2} - \frac{11,6 \text{ cm}^{2} - \frac{11,6 \text{ cm}^{2}}{mallsgebend} \\ &= 11,6 \text{ cm}^{2} - \frac{11,6 \text{ cm}^{2} - \frac{11,6 \text{ cm}^{2}}{mallsgebend} \\ &= 11,6 \text{ cm}^{2} - \frac{11,6 \text{ cm}^{2} - \frac{11,6 \text{ cm}^{2}}{mallsgebend} \\ &= 11,6 \text{ cm}^{2} - \frac{11,6 \text{ cm}^{2} - \frac{11,6 \text{ cm}^{2}}{mallsgebend} \\ &= 11,6 \text{ cm}^{2} - \frac{11,6 \text{ cm}^{2} - \frac{11,6 \text{ cm}^{2}}{mallsgebend} \\ &= 1,6 \text{ cm}^{2} - \frac{11,6 \text{ cm}^{2} - \frac{11,6 \text{ cm}^{2} - \frac{11,6 \text{ cm}^{2}}{mallsgebend} \\ &= 1,6 \text{ cm}^{2} - \frac{11,6 \text{ cm}^{2} - \frac{11,6 \text{ cm}^{2}}{mallsgebend} \\ &= 1,6 \text{ cm}^{2} - \frac{11,6 \text{ cm}^{2} - \frac{11,6 \text{ cm}^{2}}{mallsgebend} \\ &= 1,6 \text{ cm}^{2} - \frac{11,6 \text{ cm}^{2} - \frac{11,6 \text{ cm}^{2}}{mallsgebend} \\ &= 1,6 \text{ cm}^{2} - \frac{11,6 \text{ cm}^{2} - \frac{11,6 \text{ cm}^{2}}{mallsgebend} \\ &= 1,6 \text{ cm}^{2} - \frac{11,6 \text{ cm}^{2} - \frac{11,6 \text{ cm}^{2}}{mallsgebend} \\ &= 1,6 \text{ cm}^{2} - \frac{11,6 \text{ cm}^{2} - \frac{11,6 \text{ cm}^{2}}{mallsgebend} \\ &= 1,6 \text{ cm}^{2} - \frac{11,6 \text{ cm}^{2}}{mallsgebend} \\ &= 1,6 \text{ cm}^{2} $						zul σ_s = (w _k x 3,48 x 10 ⁶ / ⊄	$(p_s^*)^{1/2} =$	198,5 N/mm ²	
mit: $\Phi_s^* = d_s^* = d_s \times \frac{\delta \cdot (1 - \alpha_0)}{k_c \times k \times h_{cr}} \times \frac{2\beta}{f_{ct,eff}} < d_s \times \frac{2\beta}{f_{ct,eff}} = 26,5 \text{ mm } (7.7\text{DE, wobei } h_{cr}=h)$ • Erforderliche Bewehrung bei abgeschlossenem Rissbild eff $A_s = f_{at,eff} \times A_{c,eff} / zul \sigma_s = 11,6 \text{ cm}^2 \text{ maßgebend}$ (Kap. 7.3.2 (NA5) und Gi. NA.7.5.1): jedoch einzuhaltene Stahlspannung $\sigma_s \le f_{yk}$ bzw. $\le 0.8 \times f_{yk}$ bei zusätzlicher eff $A_s \ge k \times f_{at,eff} \times A_{ct} / \max \sigma_s = 4,3 \text{ cm}^2 \text{ nicht relevant}$ außerer Lastbeanspruchung (7.2(5)): Direkte Berechnung der Rissbreite (Kap. 7.3.4) Differenzdehnung Stahl/ Beton $c_{gm} - c_{cm} = \frac{\sigma_s - k_t \cdot \frac{f_{ct,eff}}{\rho_{p,eff}} (1 + \alpha_e \cdot \rho_{p,eff})}{E_s} = 0,00027 \ge 0,6 \cdot \frac{\sigma_s}{E_s} = 0,00028$ (maßgebend) Maximaler Rissabstand (Gi. 7.11 und NA 7.3.4(3)): $s_{r,max} = \frac{\Phi_s}{3,6 \cdot \rho_{p,eff}} = 232 \text{ mm} \le \frac{\sigma_s \cdot \Phi_s}{3,6 \cdot f_{cr,eff}} = 238 \text{ mm}$ mit: - Vorhandene Stahlspannung im Erstriss nach 7.3.2 (2): $voh \sigma_s = k_s \times k x f_{st,eff} \times A_{cs,eff} + 3 \text{ worh} A_s = 93,8 \text{ N/mm}^2$ ($\alpha_s \text{ wird um } 15\% verningert bei Verwendung von langsam erhärtenden Beton im Hydratationsfall)$ - Effektive Zugfestigkeit (keine Berücksichtigung der Mindestbetonzugfestigkeit $f_{at,eff} = 1,75 \text{ N/mm}^2$ nach NA 7.3.2 (2)): - Effektiver Bewehrungsgrad (Gi. 7.10): $\rho_{p,eff} = vorh A_s / A_{c,eff} = 0,0192$ - Verhältnis E-Moduln: $\alpha_e = E_s / E_{cm} = 5,71$ $a_{turn: 07,052018}$: $w_k = s_{r,max} \times (e_{sm} \cdot e_{cm}) = 232 \times 0,00028 = \frac{0,007, mm_{Disch}}{0,007, mm_{Disch}} \frac{0,077, mm_{Disch}}{0,077, mm_{Disch}} \frac{0,077, mm_{Disch}}{0,077, mm_{Disch}} \frac{0,077, mm_{Disch}}{0,077, mm_{Disch}} \frac{0,077, mm_{Disch}}{0,077, mm_{Disch}} \frac{1}{0,077, mm_{Di$			$8 \times (h - d)$	2.0	2	0	<u>≤</u> m	ax σ _s =	550,0 N/mm ²	
$\int c_{c} \kappa \kappa \kappa_{c} r = \int c_{c} eff = \int $		mit: $\Phi_s^* = d_s^*$	$d_s \times \frac{\delta \times (n-u)}{k \times k \times h} \times \frac{\delta}{f}$	< <	$d_s \times \frac{Z_s}{L}$	9 =	26,5 mm (7.7	DE, wob	ei h _{cr} =h)	
- Erforderliche Bewehrung bei abgeschlossenem Rissbild $eff A_{s} = f_{d,sff} \times A_{c,sff} / zul \sigma_{s} = 11,6 \text{ cm}^{2}$ maßgebend (Kap. 7.3.2 (NA.5) und Gl. NA.7.5.1): jedoch einzuhlathene Stahlspannung $\sigma_{s} \le f_{jk}$ bzw. $\le 0.8 \times f_{jk}$ bei zusätzlicher äußerer Lastbeanspruchung (7.2(5)): Direkte Berechnung der Rissbreite (Kap. 7.3.4) Differenzdehnung Stahl/ Beton $c_{sfm} - c_{cm} = \frac{\sigma_{s} - k_{t} \cdot \frac{f_{ct,eff}}{\rho_{p,eff}} (1 + \alpha_{e} \cdot \rho_{p,eff})}{E_{s}} = 0,00027 \ge 0,6 \cdot \frac{\sigma_{s}}{E_{s}} = 0,00028$ (Gl. 7.9): Maximaler Rissabstand (Gl. 7.11 und NA 7.3.4(3)): $s_{r,max} = \frac{\Phi_{s}}{3,6 \cdot \rho_{s,cf}} = 232$ mm $\le \frac{\sigma_{s} \cdot \Phi_{s}}{3,6 \cdot f_{\sigma,eff}} = 238$ mm mit: - Vorhandene Stahlspannung im Erstriss nach 7.3.2 (2): vorh $\sigma_{s} = k_{c} \times k \times f_{st,eff} \times A_{ct} / vorh A_{s} = 93,8$ N/mm ² (σ_{s} wird um 15% verringert bei Verwendung von langsam erhärtenden Beton im Hydratationsfall) - Effektive Zugfestigkeit (keine Berücksichtigung der Mindestbetonzugfestigkeit f_{ct,eff} = 1,75 N/mm ² nach NA 7.3.2 (2): - Verhältnis E-Moduln: $\alpha_{e} = E_{s} / E_{cm} = 5,71$			$\kappa_c \wedge \kappa \wedge \kappa_{cr} = J_c$	t,eff	J _{ct,e}	ff				-
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	- Erford	lerliche Bewehrung	g bei abgeschlossenem Ris	sbild		erf	$f A_s = f_{ct,eff} \times A_{c,eff} /$	zul σ _s =	11,6 cm ²	maßgebend
$\frac{1}{2} \frac{1}{2} \frac{1}$	(Kaj	o. 7.3.2 (NA.5) und	GI. NA.7.5.1):		P. I.	- 6 4			4.0	Later to a second
Differenzdehnung Stahl/ Beton $\varepsilon_{sm} - \varepsilon_{cm} = \frac{\sigma_s - k_t \cdot \frac{f_{ct,eff}}{\rho_{p,eff}} (1 + \alpha_e \cdot \rho_{p,eff})}{E_s} = 0,00027 \ge 0, 6 \cdot \frac{\sigma_s}{E_s} = 0,00028 (maßgebend)$ (GI. 7.9): Maximaler Rissabstand (GI. 7.11 und NA 7.3.4(3)): $s_{r,max} = \frac{\Phi_s}{3, 6 \cdot \rho_{p,eff}} = 232 \text{ mm} \le \frac{\sigma_s \cdot \Phi_s}{3, 6 \cdot f_{\sigma,eff}} = 238 \text{ mm}$ mit: - Vorhandene Stahlspannung im Erstriss nach 7.3.2 (2): vorh $\sigma_s = k_e \times k \times f_{ct,eff} \times A_d / vorh A_s = 93,8 \text{ N/mm}^2$ ($\sigma_s \text{ wird um} 15\%$ verringert bei Verwendung von langsam erhärtenden Beton im Hydratationsfall) - Effektive Zugfestigkeit (keine Berücksichtigung der Mindestbetonzugfestigkeit $f_{ct,eff} = 1,75 \text{ N/mm}^2$ nach NA 7.3.2 (2): $v_{erhältnis} E-Moduln:$ - Verhältnis E-Moduln: $\alpha_e = E_s / E_{cm} = 5,71$ $w_k = s_{r,max} \times (\varepsilon_{km} \cdot \varepsilon_{cm}) = 232 \times 0,00028 = \sum_{k=0.07, mm_e, Riseber Inicipit_relevants} nicipit_relevants}$	jedo äuß	erer Lastbeanspruch	nispannung $\sigma_s \le t_{yk}$ bzw. ≤ 0.8 nung (7.2(5)):	x t _{yk} bei zusat	ziicher	err A _s	\geq K X T _{ct,eff} X A _{ct} / m	$ax \sigma_s =$	4,3 cm²	nicht relevant
Direkte Berechnung der Rissbreite (Kap. 7.3.4)Differenzdehnung Stahl/ Beton (GI. 7.9): $\mathcal{E}_{sm} - \mathcal{E}_{cm} = \frac{\sigma_s - k_t \cdot \frac{f_{ct,eff}}{\rho_{p,eff}} (1 + \alpha_e \cdot \rho_{p,eff})}{E_s} = 0.00027 \ge 0.6 \cdot \frac{\sigma_s}{E_s} = 0.00028$ (maßgebend)Maximaler Rissabstand (GI. 7.11 und NA 7.3.4(3)): $s_{r,max} = \frac{\Phi_s}{3, 6 \cdot \rho_{p,eff}} = 232$ (maßgebend) $ms \leq \frac{\sigma_s \cdot \Phi_s}{3, 6 \cdot f_{\sigma,eff}} = 238$ mmmit: - Vorhandene Stahlspannung im Erstriss nach 7.3.2 (2):vorh $\sigma_s = k_c \times k \times f_{ct,eff} \times A_{ct} / vorh A_s = 93,8$ N/mm² (σ_s wird um 15% verringert bei Verwendung von langsam erhärtenden Beton im Hydratationsfall)- Effektive Zugfestigkeit (keine Berücksichtigung der Mindestbetonzugfestigkeit nach NA 7.3.2 (2)): $f_{ct,eff} = 1.75$ N/mm² $\rho_{p,eff} = vorh A_s / A_{c,eff} = 0.0192$. Verhältnis E-Moduln:- Verhältnis E-Moduln: $\alpha_e = E_e / E_{cm} = 5.71$ - verhältnis E-Moduln: $w_k = s_{r,max} \times (\varepsilon_{km} \cdot \varepsilon_{cm}) = 232$ - verhältnis E-Moduln: $w_k = s_{r,max} \times (\varepsilon_{km} \cdot \varepsilon_{cm}) = 232$ - verhältnis E-Moduln: $w_k = s_{r,max} \times (\varepsilon_{km} \cdot \varepsilon_{cm}) = 232$ - verhältnis E-Moduln: $w_k = s_{r,max} \times (\varepsilon_{km} \cdot \varepsilon_{cm}) = 232$ - verhältnis E-Moduln: $w_k = s_{r,max} \times (\varepsilon_{km} \cdot \varepsilon_{cm}) = 232$ - verhältnis E-Moduln: $w_k = s_{r,max} \times (\varepsilon_{km} \cdot \varepsilon_{cm}) = 232$ - verhältnis E-Moduln: $w_k = s_{r,max} \times (\varepsilon_{km} \cdot \varepsilon_{cm}) = 232$ - verhältnis E-Moduln: $w_k = s_{r,max} \times (\varepsilon_{km} \cdot \varepsilon_{cm}) = 232$ - verhältnis E-Moduln: $w_k = s_{r,max} \times (\varepsilon_{km} \cdot \varepsilon_{cm}) = 232$ - verhältnis E-Moduln: $w_k = s_{r,max} \times (\varepsilon_{km} \cdot \varepsilon_{m}) = 232$ - verhältnis E-Moduln: $w_k = s_{r,max} \times (\varepsilon_{km} \cdot \varepsilon_{m})$	GGIS		ung (1.2(0)).							
Differenzdehnung Stahl/ Beton (GI. 7.9): $ \begin{aligned} & \sigma_{sm} - \sigma_{cm} = \frac{\sigma_{s} - k_{t} \cdot \frac{f_{ct,eff}}{\rho_{p,eff}} (1 + \alpha_{e} \cdot \rho_{p,eff})}{E_{s}} = 0,00027 \ge 0, 6 \cdot \frac{\sigma_{s}}{E_{s}} = 0,00028 \\ (maßgebend) \end{aligned} $ (GI. 7.9): $ \begin{aligned} & Maximaler Rissabstand (GI. 7.11 und NA 7.3.4(3)): & s_{r,max} = \frac{\Phi_{s}}{3, 6 \cdot \rho_{p,eff}} = 232 \\ & mit: - Vorhandene Stahlspannung im Erstriss nach 7.3.2 (2): & vorh \sigma_{s} = k_{c} \times k \times f_{ct,eff} \times A_{ct} / vorh A_{s} = 93,8 \ N/mm^{2} \\ & (\sigma_{s} wird um 15\% verringert bei Verwendung von langsam erhärtenden Beton im Hydratationsfall) \\ & - Effektive Zugfestigkeit (keine Berücksichtigung der Mindestbetonzugfestigkeit f_{ct,eff} = 1,75 \ N/mm^{2} \\ & nach NA 7.3.2 (2): & \rho_{p,eff} = vorh A_{s} / A_{c,eff} = 0,0192 \\ & - Verhältnis E-Moduln: & \alpha_{e} = E_{s} / E_{cm} = 5,71 \\ & w_{k} = s_{r,max} \times (\varepsilon_{km} - \varepsilon_{cm}) = 232 \times 0,0028 = \boxed{b_{atob.} 0.007 \ mm_{abised} \ nicbt_{clegyent}} \\ & mit: 07.66.2018 \end{aligned} $	Direkte Be	rechnung der R	issbreite (Kap. 7.3.4)							•
Differenzdehnung Stahl/ Beton $c_{sm} - c_{cm} = \frac{\sigma_s - \epsilon_t (-\rho_{p,eff})}{E_s} = 0,00027 \ge 0, 6 \cdot \frac{\sigma_s}{E_s} = 0,00028$ (GI. 7.9): Maximaler Rissabstand (GI. 7.11 und NA 7.3.4(3)): $s_{r,max} = \frac{\Phi}{3, 6 \cdot \rho_{p,eff}} = 232$ mm $\le \frac{\sigma_s \cdot \Phi_s}{3, 6 \cdot f_{\sigma,eff}} = 238$ mm mit: - Vorhandene Stahlspannung im Erstriss nach 7.3.2 (2): vorh $\sigma_s = k_c \times k \times f_{ct,eff} \times A_{ct} / vorh A_s = 93,8$ N/mm ² (σ_s wird um 15% verringert bei Verwendung von langsam erhärtenden Beton im Hydratationsfall) - Effektive Zugfestigkeit (keine Berücksichtigung der Mindestbetonzugfestigkeit f _{ct,eff} = 1,75 N/mm ² nach NA 7.3.2 (2): $\rho_{p,eff} = vorh A_s / A_{c,eff} = 0,0192$ - Verhältnis E-Moduln: $\sigma_e = E_s / E_{cm} = 5,71$ $w_k = s_{r,max} \times (\varepsilon_{km} - \varepsilon_{cm}) = 232 \times 0,00028 = \frac{1}{b_{actob.} 0.007 \text{ cm}_{m} - Biceb. nicht.televant.te$,	fct,ef	$f(1+\alpha)$	2)				
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Differ	enzdehnung Stahl/	Beton	Pp,eff	f	p,eff	$0.00027 \ge 0.6$	$\frac{\sigma_s}{\sigma} =$	0 00028	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	(GL 7	a).	esm - ecm		Es		0,00027 = 0,0	E_s	(mag(maghamad))	
Maximaler Rissabstand (GI. 7.11 und NA 7.3.4(3)): $s_{r,max} = \frac{\Phi_x}{3,6 + \rho_{p,eff}} = 232$ mm $\leq \frac{\sigma_x \cdot \Phi_x}{3,6 + f_{cl,eff}} = 238$ mm mit: - Vorhandene Stahlspannung im Erstriss nach 7.3.2 (2): vorh $\sigma_s = k_c x k x f_{cl,eff} x A_{cl} / vorh A_s = 93,8$ N/mm² (σ_s wird um 15% verringert bei Verwendung von langsam erhärtenden Beton im Hydratationsfall) - - Effektive Zugfestigkeit (keine Berücksichtigung der Mindestbetonzugfestigkeit nach NA 7.3.2 (2)): - - Effektiver Bewehrungsgrad (GI. 7.10): $\rho_{p,eff} = \text{vorh } A_s / A_{c,eff} = 0,0192$ - Verhältnis E-Moduln: $\alpha_e = E_e / E_{cm} = 5,71$ valum: 07.60-2018: Rechnerische Rissbreite (GI. 7.8):	(01.7)								(maisgebend)	
$3, 6 + \rho_{p,eff} \text{ (maBgebend)} \qquad 3, 6 + f_{cr.eff}$ mit: - Vorhandene Stahlspannung im Erstriss nach 7.3.2 (2): vorh $\sigma_{s} = k_{c} \times k \times f_{ct.eff} \times A_{ct} / vorh A_{s} = 93,8 \text{ N/mm}^{2}$ (σ_{s} wird um 15% verringert bei Verwendung von langsam erhärtenden Beton im Hydratationsfall) - Effektive Zugfestigkeit (keine Berücksichtigung der Mindestbetonzugfestigkeit f _{ct.eff} = 1,75 N/mm ² nach NA 7.3.2 (2)): - Effektiver Bewehrungsgrad (GI. 7.10): $\rho_{p,eff} = \text{vorh } A_{s} / A_{c,eff} = 0,0192$ - Verhältnis E-Moduln: $\alpha_{e} = E_{s} / E_{cm} = 5,71$ istum: 07.60-2018: Rechnerische Rissbreite (GI. 7.8): $w_{k} = s_{r,max} \times (e_{sm} \cdot e_{cm}) = 232 \times 0,00028 = $	Maxin	naler Rissabstand	(Gl. 7.11 und NA 7.3.4(3)):	s _{r.max} =	Φ ,	= 232 n	$mm \leq \frac{\sigma_s \cdot \Phi}{\sigma_s \cdot \Phi}$	<u>s</u> =	238 mm	
mit: - Vorhandene Stahlspannung im Erstriss nach 7.3.2 (2): vorh $\sigma_s = k_c x k x f_{ct.eff} x A_{ct} / vorh A_s =$ 93,8 N/mm² (σ_s wird um 15% verringert bei Verwendung von langsam erhärtenden Beton im Hydratationsfall) - Effektive Zugfestigkeit (keine Berücksichtigung der Mindestbetonzugfestigkeit f.e.fff = 1,75 N/mm² - Effektive Zugfestigkeit (keine Berücksichtigung der Mindestbetonzugfestigkeit nach NA 7.3.2 (2)): - Fffektiver Bewehrungsgrad (GI. 7.10): $\rho_{p.eff} = vorh A_s / A_{c.eff} =$ 0,0192 - Verhältnis E-Moduln: $\alpha_e = E_s / E_{cm} =$ 5,71 valum: 07.60.2018 wk = s _{r.max} x (e _{sm} -e _{cm}) = 232 x 0,00028 =			(3,	$6 \cdot \rho_{p,eff}$ (maßgebend)	$3,6 \cdot f_{ct}$	eff		
(σ_s wird um 15% verringert bei Verwendung von langsam erhärtenden Beton im Hydratationsfall) - Effektive Zugfestigkeit (keine Berücksichtigung der Mindestbetonzugfestigkeit nach NA 7.3.2 (2)): - Effektiver Bewehrungsgrad (GI. 7.10): - Effektiver Bewehrungsgrad (GI. 7.10): - Verhältnis E-Moduln: $\alpha_e = E_e / E_{cm} = 5,71$ iatum: 07.66.2018 Rechnerische Rissbreite (GI. 7.8): wk = s _{r,max} x (e _{sm} -e _{cm}) = 232 x 0,00028 =	m	it: - Vorhandene St	ahlspannung im Erstriss nach	7.3.2 (2):		vorh $\sigma_s = k_c$	x k x f _{ct,eff} x A _{ct} / vo	orh A _s =	93,8 N/mm ²	
- Effektive Zugfestigkeit (keine Berücksichtigung der Mindestbetonzugfestigkeit nach NA 7.3.2 (2)): $f_{ct,eff} = 1,75$ N/mm² - Effektiver Bewehrungsgrad (GI. 7.10): $\rho_{p,eff} = vorh A_o / A_{c,eff} = 0,0192$ - Verhältnis E-Moduln: $\alpha_e = E_o / E_{cm} = 5,71$ iatum: 07.66.2018 Rechnerische Rissbreite (GI. 7.8):		(os wird um 15	% verringert bei Verwendung	von langsam e	rhärtenden I	Beton im Hyd	dratationsfall)			
nach NA 7.3.2 (2)): - Effektiver Bewehrungsgrad (GI. 7.10): $\rho_{p,eff} = \text{vorh } A_s / A_{c,eff} = 0,0192$ - Verhältnis E-Moduln: $\alpha_e = E_s / E_{em} = 5,71$:atum: 07.66.0018 Rechnerische Rissbreite (GI. 7.8):		- Effektive Zugfe	stigkeit (keine Berücksichtigu	na der Mindest	betonzuafe	stiakeit	,	f _{et eff} =	1.75 N/mm ²	
- Effektiver Bewehrungsgrad (Gl. 7.10): - Verhältnis E-Moduln: $\alpha_e = E_e / E_{cm} = 5,71$ $a_{tatum: 07,66,2018}$ $w_k = s_{r,max} \times (\varepsilon_{am} - \varepsilon_{cm}) = 232 \times 0,00028 = b_{tatal: 0,007} - b_{tatal:$		nach NA 7 3	.2 (2)):	.g der mittuest	Sotonzugiet	Agnon		·ct,eff -	1,75 N/IIIII"	
- Verhältnis E-Moduln: $\alpha_e = E_e / E_{cm} = 5,71$ $\alpha_{em} = e_{em} / E_{cm} = 5,71$ $\alpha_{em} = e_{em} / E_{em} = 232 \times 0,00028 = 100000000000000000000000000000000000$		- Effektiver Bewe	ehrungsgrad (Gl. 7.10):				$\rho_{p,eff} = \text{vorh } A_{-}$	Ac.eff =	0,0192	
- Verhältnis E-Moduln: $\alpha_e = E_e / E_{cm} = 5,71$ atum: 07.05.2018 Rechnerische Rissbreite (GI. 7.8): $w_k = s_{r,max} \times (\varepsilon_{em} - \varepsilon_{cm}) = 232 \times 0,00028 = b_{atok: Behaviorenge Bicebergeling Bicebergeling$			0.0				i bion	0,011		
atum: 07.06.2018 Ergebnis: Rechnerische Rissbreite (GI. 7.8): $w_k = s_{r,max} \times (\varepsilon_{sm} - \varepsilon_{cm}) = 232 \times 0,00028 = b_{atok: Dethoceung-Pleeburgher - clevengt}$		- Verhältnis E-Me	oduln:				α _e = E	,/ E _{cm} =	5,71	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$								-		
	Erget atum: 07.06.2018	nis: Rechnerische	Rissbreite (GI. 7.8):	w	$k = s_{r,max} x$	(ε _{sm} -ε _{cm}) =	232 x 0,0	0028 =	0,07 mm atoi: Bomossung_Risst	nicht relevant

D.3 GZT Bemessung

Biegebemessung								
Feldmitte Stüze								
Med	60.500	47.500	kNm					
Hebelarm	94	41	cm					
Fed	64.293	116.137	kN					
σc	1285,866	2322,738	kN/cm ²					
			_					
Asp, vorh	216,0	216,0	Cm ²					
Fpd	28.123	28.123	kN					
Pm∞	25.311	25.311						
Np,uls	26.067	26.067	1					
еру	0,179	0,179	%					
dp	175,00	170,00	cm					
xb,lim,p	133,17	129,37	cm					
xbp	9,49	18,10	cm					
MRd	44.380	41.954	kNm					
d	206	206	cm					
xb,lim	98	98	cm					
Fcd,lim	26.114	26.114						
Med,s1/2	68.581	56.884	kNm					
xb	12,5	20,2	cm					
As1/2	173	62	Cm ²					