

Die approbierte Originalversion dieser Diplom-/ Masterarbeit ist in der Hauptbibliothek der Technischen Universität Wien aufgestellt und zugänglich. http://www.ub.tuwien.ac.at

The approved original version of this diploma or master thesis is available at the main library of the Vienna University of Technology.

Diploma Thesis

## The determination of brick compressive strength for vertically perforated bricks in historic stonework based on small-sized test specimens

submitted in satisfaction of the requirements for the degree of Diplom-Ingenieur of the TU Wien, Faculty of Civil Engineering

Diplomarbeit

## Bestimmung der Steindruckfestigkeit von Hochlochziegeln im Bestandsmauerwerk anhand von Kleinprüfkörpern

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines Diplom-Ingenieurs

eingereicht an der Technischen Universität Wien, Fakultät für Bauingenieurwesen

von

### Andreas Köpf, BSc

Matr.Nr.: 01026649

unter der Anleitung von

Privatdoz. Dipl.-Ing. Dr.techn. Christian Schranz, M.Sc.

Dipl.-Ing. Dr.techn. Anton Pech

Institut für Hochbau und Technologie Forschungsbereich Hochbaukonstruktionen und Bauwerkserhaltung Technische Universität Wien Karlsplatz 13/206-4, 1040 Wien

Wien, im Juni 2018

# Kurzfassung

Aufgrund von baulichen Maßnahmen an Bestandsobjekten im Zuge der städtischen Wohnraumverdichtung und der Erhaltung von denkmalgeschützten Gebäuden ist es von Bedeutung, die Güte des Bestandsmauerwerks nachweisen zu können. Als maßgebender Parameter für den statischen Nachweis ist in erster Linie die Druckfestigkeit des Mauerwerks von Interesse, die sich aus der Steindruckfestigkeit und der Mörteldruckfestigkeit zusammensetzt. In Österreich sind Prüfverfahren von Bestandsmauerwerk in ÖNORM B 1996-3 normativ geregelt, wobei diese vorrangig für die Prüfung von Mauerwerk aus kleinformatigen Vollmauerziegeln ausgelegt sind. Für Mauerwerk aus Hochlochziegeln gibt es bisher keine adäquaten Prüfmethoden, die ohne starke Eingriffe in die statische Tragwirkung möglich sind.

Daher wird im Zuge dieser Arbeit eine Methodik entwickelt, die es erlaubt, die Steindruckfestigkeit anhand von Teilen des Hochlochziegels zu bestimmen. Das Versuchsprogramm gliedert sich in zwei große Abschnitte: Zu Beginn erfolgt eine Untersuchung des materialspezifischen Verhaltens von Kleinprüfkörpern aus Ziegel in der Stempeldruckprüfung. Dazu werden insgesamt 430 kleine, plattenförmige Probenstücke aus 21 Vollmauerziegeln herausgeschnitten und aus jedem Stein vier Bohrkerne gewonnen. Letztere dienen zur Bestimmung der jeweiligen Scherbendruckfestigkeiten, die den Materialfestigkeiten entsprechen. Anschließend wird eine Gegenüberstellung der Stempeldruckfestigkeiten der Kleinprüfkörper zu den Scherbendruckfestigkeiten der Ziegel vorgenommen und eine Ausgleichskurve berechnet. Im zweiten Teil erfolgt die Entnahme von jeweils zwei Bohrkernen aus 15 unterschiedlichen Hochlochziegeln der Firma *Wienerberger Ziegelindustrie GmbH*. Diese werden anhand dreier Verfahren auf ihren Lochanteil untersucht und anschließend in 284 kleine Probekörper zerlegt. Analog zum ersten Teil folgt eine Stempeldruckprüfung und die Bestimmung der einzelnen Scherbendruckfestigkeiten. Mithilfe der ermittelten Lochanteile können schließlich die Scherbendruckfestigkeiten auf die Steindruckfestigkeiten der Hochlochziegel umgerechnet werden.

Die Ergebnisse der durchgeführten Versuche zeigen, dass sich ein plausibler Zusammenhang zwischen der Steindruckfestigkeit eines Mauersteins und der Stempeldruckfestigkeit eines daraus gewonnenen Kleinprüfkörpers herstellen lässt. Auf dieser Grundlage wird ein Konzept für eine zerstörungsarme Prüfmethode vorgestellt, welche die Bestimmung der Steindruckfestigkeit in Bestandsobjekten aus Hochlochziegeln ermöglicht.

## Abstract

Due to the structural measures on existing buildings engendered by the increasing density of urban building as well as the preservation of listed buildings, it is now crucial to be able to assess the quality of the existing historic brickwork. The primary substantial issue for structural inspection is the compressive strength of the existing brickwork, which is composed of brick compressive strength and mortar compressive strength. In Austria, the testing of historic masonry is regulated by norms present in ÖNORM B 1996-3 and which are primarily designed for the testing of masonry made of small-format solid bricks. As for masonry made of hollow clay masonry units, there are - so far - no adequate test methods that operate without strongly interfering with the structural loadbearing integrity.

Therefore, this paper develops a methodology which allows to determine the brick compressive strength thanks to samples of the hollow clay masonry unit. The experimental programme is divided into two main sections: to start with, an examination of material-specific behaviour of small-sized brick samples in the punch compression test is conducted. For this purpose, a total of 430 small plate-shaped samples are extracted from 21 solid bricks, and four drilled cores are obtained from each stone in order to determine the individual material compressive strengths. Subsequently, a comparison of the punch compression strength of the small test specimens with the material compressive strengths of the bricks is established, and a regression curve is calculated. In the second part, two drilled cores are taken from 15 different hollow clay masonry units from the company *Wienerberger Ziegelindustrie GmbH*. Their percentage of voids is examined by means of three different methods, and they are then broken down into 284 small specimens. Following the method employed in the first part, a punch compression procedure is conducted and the compressive strengths of the individual masonry units are evaluated. The determined percentages of voids can thus ultimately help convert the material compressive strengths into the brick compressive strength of hollow clay masonry units.

The results of the conducted tests show that it is possible to establish a plausible correlation between the brick compressive strength of a masonry unit and the punch compression strength of a small test specimen obtained from it. Based on those results, this paper presents a concept for a non-destructive test method which allows the determination of the brick compressive strength in existing buildings built with hollow clay masonry units.

# Inhaltsverzeichnis

| 1 | Einl | eitung 13                                               |
|---|------|---------------------------------------------------------|
|   | 1.1  | Derzeitige normative Vorgehensweise                     |
|   | 1.2  | Motivation und Ziel der Arbeit 16                       |
| ~ | ~    |                                                         |
| 2 | Gru  | ndlagen 17                                              |
|   | 2.1  | Ziegel – vom Material zum Mauerstein                    |
|   | 2.2  | Druckfestigkeit – Definition und Einflussgrößen         |
|   |      | $2.2.1 Feuchtigkeitsgehalt \dots 21$                    |
|   |      | 2.2.2 Prüfkörperdimensionen und Querdehnungsbehinderung |
|   |      | 2.2.3 Ebenheit und Planparallelität                     |
|   |      | 2.2.4 Belastungsrichtung                                |
|   |      | 2.2.5 Belastungsgeschwindigkeit                         |
| 2 |      |                                                         |
| 3 |      |                                                         |
|   | 3.1  | Versuchsprogramm                                        |
|   | 3.2  | Methoden zur Bestimmung der Materialparameter           |
|   |      | 3.2.1 Abmessungen und Rohdichte                         |
|   |      | 3.2.2 Steindruckfestigkeit                              |
|   |      | 3.2.3 Stempeldruckfestigkeit                            |
|   | 3.3  | Druckprüfmaschinen                                      |
|   |      | 3.3.1 ENERPAC Hydraulikzylinder                         |
|   |      | 3.3.2 INSTRON Spindeldruckpresse 33                     |
|   | 3.4  | Probenahme                                              |
|   |      | 3.4.1 Prüfserie A                                       |
|   |      | 3.4.2 Prüfserie B                                       |
|   |      | 3.4.3 Prüfserie C                                       |
|   | 3.5  | Prüfkörpervorbereitung                                  |
|   |      | 3.5.1 Bezeichnung der Proben                            |
|   |      | 3.5.2 Oberflächenbehandlung 38                          |
|   |      | 3.5.3 Konditionierung und Vermessung                    |
|   | 3.6  | Versuchsdurchführung                                    |
|   |      | 3.6.1 Druckversuche                                     |
|   |      | 3.6.2 Stempeldruckversuche                              |
| , | •    |                                                         |
| 4 | Aus  | wertung der materialspezifischen Versuche     43        |
|   | 4.1  | Normierte vertikale Steindruckfestigkeit                |
|   | 4.2  | Horizontale Stempeldruckfestigkeiten der Prüfserie A    |
|   |      | 4.2.1 Ausgleichsrechnung                                |
|   |      | 4.2.2 Analytische Bestimmung der Parameter              |
|   |      | 4.2.3 Bestimmtheitsmaß $\ldots$ 53                      |

|    | 4.3                                                                          | Horizontale Stempeldruckfestigkeiten der Prüfserie B                                                                                                                                                                                                                                                                      | 54                                                                   |  |  |  |  |  |
|----|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--|--|--|--|--|
|    | 4.4                                                                          | Stempeldruckfestigkeit vs. Scherbendruckfestigkeit                                                                                                                                                                                                                                                                        | 56                                                                   |  |  |  |  |  |
| 5  | <ul> <li>4.4</li> <li>Best</li> <li>5.1</li> <li>5.2</li> <li>5.3</li> </ul> | Stempeldrucklestigkeit vs. Scherbendrucklestigkeit                                                                                                                                                                                                                                                                        | 56<br>59<br>60<br>61<br>62<br>62<br>63<br>66<br>67<br>68<br>69<br>71 |  |  |  |  |  |
|    |                                                                              | 5.3.4 Gegenüberstellung der selbst entwickelten Bestimmungsmethoden                                                                                                                                                                                                                                                       | 72                                                                   |  |  |  |  |  |
| 6  | Ausv<br>6.1<br>6.2<br>6.3<br>6.4                                             | Auswertung der baustoffspezifischen Versuche       75         5.1 Horizontale Stempeldruckfestigkeiten der Prüfserie C       76         5.2 Stempeldruckfestigkeit vs. Scherbendruckfestigkeit       77         6.3 Berechnung der normierten vertikalen Steindruckfestigkeit       79         6.4 Endauswertung       81 |                                                                      |  |  |  |  |  |
| 7  | <b>Neu</b><br>7.1<br>7.2                                                     | entwickeltes Prüfverfahren<br>Entwickelte Prüfmethode                                                                                                                                                                                                                                                                     | <b>83</b><br>84<br>88                                                |  |  |  |  |  |
| 8  | Zusa                                                                         | ammenfassung und Ausblick                                                                                                                                                                                                                                                                                                 | 91                                                                   |  |  |  |  |  |
| Ar | hang                                                                         |                                                                                                                                                                                                                                                                                                                           |                                                                      |  |  |  |  |  |
| Α  | Mes                                                                          | sergebnisse der Prüfserie A                                                                                                                                                                                                                                                                                               | 93                                                                   |  |  |  |  |  |
| в  | Mes                                                                          | sergebnisse der Prüfserie B                                                                                                                                                                                                                                                                                               | 117                                                                  |  |  |  |  |  |
| с  | Messergebnisse der Prüfserie C 12                                            |                                                                                                                                                                                                                                                                                                                           |                                                                      |  |  |  |  |  |
| D  | Foto                                                                         | odokumentation                                                                                                                                                                                                                                                                                                            | 139                                                                  |  |  |  |  |  |

### Abkürzungsverzeichnis

| Bohrkern                                                            |
|---------------------------------------------------------------------|
| Amplitude einer Messgröße (Full Scale)                              |
| Hochlochziegel                                                      |
| Vollklinker                                                         |
| Bohrkern aus der Mitte                                              |
| Vollmauerziegel                                                     |
| Mauerziegel zur Verwendung in geschütztem Mauerwerk (protected)     |
| Bestimmtheitsmaß (R-square)                                         |
| Randbohrkern an Feder-seitiger Stirnfläche                          |
| Randbohrkern an Nut-seitiger Stirnfläche                            |
| Residuenquadratsumme (Sum of Squares due to Error)                  |
| Regressionsvariation (Sum of Squares of the Regression)             |
| Gesamtvariation (Sum of Squares in Total)                           |
| Mauerziegel zur Verwendung in ungeschütztem Mauerwerk (unprotected) |
|                                                                     |

### Variablenverzeichnis

| $\alpha$                             | [-]               | Lochanteil                                                |
|--------------------------------------|-------------------|-----------------------------------------------------------|
| $\overline{\alpha}_{\mathrm{rel}}$   | [-]               | gemittelter relativer Lochanteil                          |
| $\overline{\alpha}_{\mathrm{w,rel}}$ | [-]               | gewichteter Mittelwert der relativen Lochanteile          |
| $lpha_{ m R}$                        | [-]               | relativer Lochanteil einer Randkernbohrung                |
| $\alpha_{ m M}$                      | [-]               | relativer Lochanteil einer Kernbohrung in Steinmitte      |
| $lpha_{ m RF}$                       | [-]               | relativer Lochanteil einer Feder-seitigen Randkernbohrung |
| $\alpha_{ m RN}$                     | [-]               | relativer Lochanteil einer Nut-seitigen Randkernbohrung   |
| $A_{0,i}$                            | $[\mathrm{mm}^2]$ | Querschnittsfläche des unverformten Probekörpers $i$      |
| $A_{\rm BK,bto}$                     | $[\mathrm{mm}^2]$ | Bruttogrundfläche einer Bohrkernentnahme                  |
| $A_{\rm BK,nto}$                     | $[\mathrm{mm}^2]$ | Nettogrundfläche einer Bohrkernentnahme                   |
| $A_{\rm bto}$                        | $[\mathrm{mm}^2]$ | Bruttogrundfläche eines Mauersteins                       |
| $A_{\rm e}$                          | $[\mathrm{mm}^2]$ | Belastungsfläche bei der Stempeldruckprüfung              |
| $A_{\rm nto}$                        | $[\mathrm{mm}^2]$ | Nettogrundfläche eines Mauersteins                        |
| b                                    | [mm]              | Breite                                                    |
| $b_{\rm BK}$                         | [mm]              | Überstandlänge der Randkernbohrung über die Stoßfuge      |
| $\delta_i$                           | [-]               | Formfaktor des Probekörpers $i$                           |
| Ø                                    | [mm]              | Durchmesser eines zylindrischen Probekörpers              |
|                                      |                   |                                                           |

| $d_{\rm BK}$                  | [mm]                         | Bohrkerndurchmesser                                                      |
|-------------------------------|------------------------------|--------------------------------------------------------------------------|
| $d_{ m e}$                    | [mm]                         | Druckstempeldurchmesser                                                  |
| $d_{\rm p}$                   | [mm]                         | Durchmesser der Druckbelastungsfläche                                    |
| E                             | $[\mathrm{N/mm^2}]$          | Elastizitätsmodul                                                        |
| ε                             | [-]                          | Stauchung bzw. Dehnung                                                   |
| $\eta$                        | [-]                          | Ausnutzungs- bzw. Übereinstimmungsgrad                                   |
| $f_{\mathrm{b},i}$            | $[N/mm^2]$                   | normierte Steindruckfestigkeit des Probekörpers $\boldsymbol{i}$         |
| $f_{ m b,e}$                  | $[N/mm^2]$                   | berechnete normierte Steindruckfestigkeit                                |
| $f_{ m b}$                    | $[N/mm^2]$                   | mittlere normierte Steindruckfestigkeit                                  |
| $f_{\mathrm{c},i}$            | $[N/mm^2]$                   | normierte 28 Tage-Zementdruckfestigkeit des Probekörpers $i$             |
| $f_{ m cm}$                   | $[N/mm^2]$                   | mittlere normierte 28 Tage-Zementdruckfestigkeit                         |
| $f_{ m m}$                    | $[N/mm^2]$                   | Druckfestigkeit des Mauermörtels                                         |
| $f_{\rm St}(t_{\rm s})$       | $[N/mm^2]$                   | Ausgleichskurve der Stempeldruckfestigkeit                               |
| $f_{ m p,St}$                 | $[N/mm^2]$                   | horizontale Stempeldruckfestigkeit am Scherben                           |
| $f_{\rm p,St,15}$             | $[\mathrm{N/mm^2}]$          | char. Stempeldruckfestigkeit bei einer Scherbendicke von $15\mathrm{mm}$ |
| $\overline{f}_{\mathrm{b},i}$ | $[\mathrm{N/mm^2}]$          | Steindruckfestigkeit am Probekörper $i$                                  |
| $f_{{ m s},i}$                | $[\mathrm{N/mm^2}]$          | normierte Scherbendruckfestigkeit des Probekörpers $i$                   |
| $f_{ m s,e}$                  | $[\mathrm{N/mm^2}]$          | berechnete normierte Scherbendruckfestigkeit                             |
| $f_{\rm s}(f_{\rm p,St,15})$  | $[\mathrm{N/mm^2}]$          | Ausgleichskurve der Scherbendruckfestigkeit                              |
| $f_{ m s}$                    | $[\mathrm{N/mm^2}]$          | mittlere normierte Scherbendruckfestigkeit                               |
| $\phi$                        | [°]                          | Lastausbreitungswinkel                                                   |
| F                             | [N]                          | Kraft                                                                    |
| $\Delta F$                    | [N]                          | Messabweichung der Kraft                                                 |
| $F_{\rm p}$                   | [N]                          | Druckkraft                                                               |
| $F_{\mathbf{p},\max,i}$       | [N]                          | maximal aufnehmbare Druckkraft eines Probekörpers $\boldsymbol{i}$       |
| $\gamma_{\mathrm{M}}$         |                              | Teilsicherheitsbeiwert für das Material                                  |
| h                             | [mm]                         | Höhe                                                                     |
| $h_{\mathrm{u}}$              | [mm]                         | Höhe des Mauersteins                                                     |
| l                             | [mm]                         | Länge                                                                    |
| $l_{\mathrm{u}}$              | [mm]                         | Länge des Mauersteins                                                    |
| m                             | [g]                          | Masse                                                                    |
| $m_{\rm d}$                   | [g]                          | Trockenmasse                                                             |
| $m_{\rm voll}$                | [g]                          | Masse eines fiktiv ausgefüllten Lochsteins                               |
| $n(\underline{x})$            |                              | Anzahl der Werte innerhalb einer Wertereih<br>e $\underline{x}$          |
| $r_{\rm e}$                   | $[N/mm^2]$                   | experimenteller Wert des Widerstandes                                    |
| $r_{ m t}$                    | $[N/mm^2]$                   | theoretischer Wert des Widerstandes                                      |
| ho                            | $[\mathrm{kg}/\mathrm{m}^3]$ | Rohdichte                                                                |

| $ ho_{ m d}$       | $[\mathrm{kg/m^3}]$ | Trockenrohdichte                                        |
|--------------------|---------------------|---------------------------------------------------------|
| $ ho_{ m d,bto}$   | $[\mathrm{kg/m^3}]$ | Brutto-Trockenrohdichte oder Ziegelrohdichte            |
| $ ho_{ m dm}$      | $[\mathrm{kg/m^3}]$ | mittlere Trockenrohdichte                               |
| $ ho_{ m d,nto}$   | $[\mathrm{kg/m^3}]$ | Netto-Trockenrohdichte oder Scherbenrohdichte           |
| $ ho_{ m w}$       | $[\mathrm{kg/m^3}]$ | Dichte des Wassers                                      |
| $s(\underline{x})$ |                     | Standardabweichung einer Wertereih<br>e $\underline{x}$ |
| $\sigma$           | $[\mathrm{N/mm^2}]$ | Spannung                                                |
| $t_{ m c}$         | [mm]                | Dicke der Zementausgleichschicht                        |
| $t_{\rm s}$        | [mm]                | Scherbendicke                                           |
| $t_{\rm s,char}$   | [mm]                | charakteristische Scherbendicke                         |
| $t_{\rm s,tot}$    | [mm]                | Gesamtprobendicke von Scherben und Ausgleichsschichten  |
| $t_{ m w}$         | [mm]                | Stegdicke                                               |
| v                  |                     | vertikaler Abstand eines Messwertes zur Anpassungskurve |
| V                  | $[\mathrm{cm}^3]$   | Volumen                                                 |
| $V_{lpha}$         | $[\mathrm{cm}^3]$   | Hohlraumvolumen                                         |
| $V_{\rm BK,bto}$   | $[\mathrm{cm}^3]$   | Bruttovolumen des Bohrkerns                             |
| $V_{\rm BK,nto}$   | $[\mathrm{cm}^3]$   | Nettovolumen des Bohrkerns                              |
| $V_{\rm bto}$      | $[\mathrm{cm}^3]$   | Bruttovolumen                                           |
| $V_{ m nto}$       | $[\mathrm{cm}^3]$   | Nettovolumen                                            |
| $w_{\mathrm{u}}$   | [mm]                | Breite des Mauersteins                                  |

## Kapitel 1

## Einleitung

Der Ziegel ist einer der ältesten Baustoffe der Menschheitsgeschichte und bildet in den historisch entstandenen Städten Europas einen großen Anteil an Bestandsobjekten. Henkel [5] beschreibt, wie der Ziegel vor allem in Mitteleuropa mit der beginnenden Industrialisierung im 19. Jahrhundert eine Vormachtstellung in der Wahl der Baumaterialien einnahm. Von der Gründerzeit bis zum Wiederaufbau nach dem Ersten und Zweiten Weltkrieg galt der Ziegel als nahezu unersetzlich. Erst vor einigen Jahrzehnten behauptete sich der Stahlbeton als Verbundwerkstoff und dominiert seither das Bauwesen. Der Ziegel ist heute aber weiterhin ein zeitgemäßer und hochentwickelter Baustoff mit vielen Vorteilen.

Der technische Wandel des 20. Jahrhunderts spiegelt sich auch in der Entwicklung der Ziegelindustrie wider: Die maschinelle Produktion im Strangpressverfahren wurde erfunden und das Ziegelformat dahingehend vergrößert, dass die Mauersteine schneller verlegt werden konnten und weniger Arbeitskräfte erforderlich waren. So erfolgte die Errichtung der Gründerzeitbauten noch mit Vollmauerziegeln im Normalformat, welches dafür ausgelegt war, die Ziegel mit einer Hand zu fassen und mit der anderen die Mörtelkelle zu verwenden. Zur Erhöhung der Effektivität beim Mauern und zur Verbesserung der Dämmeigenschaften der Steine wurden 1929 erstmals poröse Ziegel und Porenbetonsteine in größeren Formaten produziert (siehe Huster und Seim [6]). Etwa seit 1940 begann die Entwicklung von Hochlochziegeln sowie von Leicht- und Dünnbettmörtel. Die Lochkanäle haben eine dämmende Funktion und führen zu deutlichen Gewichtseinsparungen, sodass auch größformatige Ziegelsteine hergestellt werden konnten. Damit waren weniger Arbeitskräfte erforderlich und der Baufortschritt wurde gleichzeitig beschleunigt. Die Größenverhältnisse der unterschiedlichen Formate sind in Abb. 1.1 illustriert. Darin ist auf der linken Seite ein Vollmauerziegel im neuen österreichischen Normalformat zu sehen und auf der rechten Seite ein exemplarischer Hochlochziegel der Firma *Wienerberger Ziegelindustrie GmbH*.

Die historischen Bauten werden heute infolge der Verdichtung des städtischen Raums oder zur Erhaltung denkmalgeschützter Gebäude häufig umgebaut, ausgebaut oder saniert. Zu diesen zählen mittlerweile auch jene Bestandsobjekte aus der Nachkriegszeit, die eine Lebensdauer von 50 bis 100 Jahren erreicht haben. Laut Huster und Seim [6, S. C.3] betrug im Jahr 2009 der *"Anteil der Baumaßnahmen im Bestand etwa* 50% *bis* 60%" des gesamten Bauvolumens in Deutschland. Den Prognosen zufolge wird sich dieser Anteil in den kommenden Jahre weiter erhöhen. Dabei ist es von besonderer Relevanz, die Güte des Mauerwerks zu kennen, um Nachweise der Tragsicherheit für geplante Maßnahmen erbringen zu können. In der Regel spielt bei der statischen Berechnung die Begrenzung der Druckspannungen auf die zulässigen Mauerwerksspannungen die entscheidende Rolle. Demzufolge bedarf es objektiver Prüfverfahren, um die Druckfestigkeit des Bestandsmauerwerks bestimmen zu können. In der Fachliteratur finden sich einige Werke zu dieser Thematik, wobei die folgenden Absätze vorwiegend auf den Erkenntnissen von Pech et al. [13], Henkel [5] sowie Huster und Seim [6] aufbauen.



Abb. 1.1: Vollmauerziegel im neuen österreichischen Normalformat (links) neben Hochlochziegel PTH 25-38 OBJ LDF Plan HA (rechts)

### 1.1 Derzeitige normative Vorgehensweise

Das *Mauerwerk* ist ein Verbundwerkstoff aus Steinen und Mörtel. Seine Druckfestigkeit setzt sich daher aus den Druckfestigkeiten der beiden Komponenten zusammen. Für die Prüfung von Mauerwerk aus Vollmauerziegeln gibt es eine ganze Reihe unterschiedlicher Verfahren, die besonders übersichtlich mit allen Vor- und Nachteilen im Bericht von Henkel [5] nachzulesen sind. Hierin existieren zwei unterschiedliche Strategien, die Mauerwerksdruckfestigkeit an Bestandsobjekten zu bestimmen:

Direkte Prüfungen: Prüfung des Ziegel-Mörtel-Verbunds als Gesamtkomplex

- Flat-Jack-Verfahren
- Fugenbohrkernverfahren
- Freischneidetechnikverfahren mit Prüfzange
- Entnahme und Prüfung von Großprüfkörpern
- Entnahme und Prüfung von Kleinprüfkörpern

Indirekte Prüfungen: Getrennte Prüfung der einzelnen Komponenten Ziegel und Mörtel

- Komponentenentnahme und zerstörende Prüfung
- zerstörungsarme Prüfung der Steinfestigkeit (z. B. mit Rückprallhammer)
- zerstörungsarme Prüfung der Mörtelfestigkeit (z. B. mit Eindringverfahren)

Bei der Wahl des Prüfverfahrens ist stets zu bedenken, welchen Einflüssen die Prüfung unterliegt, ob das Tragwerk durch die Prüfung beeinträchtigt wird und ob sich die Aufwendungen mit der Genauigkeit des Ergebnisses rechtfertigen lassen. In Österreich sind Prüfungen der Druckfestigkeit an Bestandsmauerwerk in der ÖNORM B 1996-3, Anhang D [18] geregelt. Sie umfasst alle zulässigen Prüfverfahren und den jeweiligen dazu abgestimmten Prüfumfang. Darin ist zur Bestimmung der Steindruckfestigkeit einerseits das Verfahren mit Rückprallhammer als zerstörungsfreie Prüfmethode angeführt und andererseits die Komponentenentnahme als zerstörende Prüfmethode genannt, die in Anlehnung an ÖNORM EN 772-1 [24] anstelle von sechs entnommenen Steinen nur fünf vorsieht. Die Druckfestigkeit des Fugenmörtels kann mit dem Stempeldruckverfahren – vergleichbar mit der Fugendruckfestigkeit nach DIN 18555-9 [17] – oder mittels Eindringverfahren bestimmt werden.

Diese Verfahren sind jedoch nur bedingt auf Mauerwerk aus Hochlochziegeln übertragbar. Die Prüfung des Mauermörtels spielt dabei eine untergeordnete Rolle, da der Dünnbettmörtel mit M10 angenommen werden kann und andere Mörtelarten sich mit den genannten Verfahren prüfen lassen. Die Bestimmung der Steindruckfestigkeit des Hochlochziegels ist hingegen weitaus schwieriger. Das Lochbild mit allen vertikalen Lochungen hat einen maßgeblichen Einfluss auf die Steindruckfestigkeit und muss daher freigelegt und analysiert werden. Eine gänzlich zerstörungsfreie Prüfmethode ist demnach ausgeschlossen. Bei der an sich zerstörungsfreien Prüfung mittels Rückprallhammer hält der Außenmantel der lokalen Druckbelastung nicht stand und bricht ein.

Bei der Entnahme ganzer Mauersteine sind mindestens fünf Versuchssteine aus der Wand zu entnehmen und in einem zerstörenden Druckversuch zu prüfen. Unter Berücksichtigung der generell großen Formate von Hochlochziegeln, wie beispielsweise in Abb. 1.1 dargestellt, wird damit ein beträchtlicher Eingriff in die Tragstruktur vorgenommen. Hinzu kommt, dass für die schadlose Entnahme von fünf Einzelsteinen die teilweise Zerstörung umliegender Steine erforderlich ist. Für durchschnittliche Hochlochziegel würde dadurch ein Wanddurchbruch mit einer Größe von etwa 1,2 m × 1,0 m entstehen, wie in Abb. 1.2 dargestellt. Eine solche Vorgehensweise ist also nur sinnvoll, wenn eine Aussparung von dieser Größe für z. B. Fenster- oder Türdurchbrüche erwünscht ist.



Abb. 1.2: Größe des Wanddurchbruchs bei Entnahme von fünf Hochlochziegeln

Auch die Prüfung an halben Steinen, wie sie die ÖNORM EN 772-1 [24] erlauben würde, kann bei Hochlochziegeln nicht angewendet werden, wie Pech et al. [13, S. 177] ausführen: "Bei Vollsteinen kann mit Halbsteinen das Auslangen gefunden werden, ohne die Aussagekraft der Prüfwerte wesentlich zu verändern, das ist bei Hochlochziegeln nicht möglich, da hier das Tragvermögen des Ziegelmantels für die Tragfähigkeit des Steines essenziell ist."

Zudem beschreiben Pech et al. [13, S. 177] eine Möglichkeit, womit sich die Druckfestigkeit eruieren lässt: "An sich sollten Ziegel durch Prägung eindeutig gekennzeichnet sein. Wenn diese Kennzeichnung gefunden wird und die Ziegel auch noch datenmäßig verfügbar sind, ist der Nachweis der Festigkeit über die deklarierte Ziegelfestigkeit eine sinnvolle Alternative." Bei verputzten Wänden ist diese Prägung jedoch schwer zu finden und speziell nach der Abnahme des Putzes kann sie teilweise zerstört sein. Zudem sind die Datenbanken nicht immer einsehbar oder teilweise unvollständig, sodass Unsicherheiten mit dieser Vorgehensweise einhergehen.

### 1.2 Motivation und Ziel der Arbeit

Aufgrund der genannten Kriterien hat die vorliegende Arbeit zum Ziel, eine möglichst zerstörungsarme, indirekte Prüfmethode zu finden, die es erlaubt, mithilfe von Bruchstücken bzw. Kleinprüfkörpern auf die Steindruckfestigkeit von Hochlochziegeln zu schließen. Es sollen jeweils zwei Bohrkerne aus fünf Mauersteinen orthogonal zur Wandoberfläche entnommen werden, ohne die Wand zu durchdringen. Dafür ist ein Trockenbohrkerngerät mit einem Bohrkronendurchmesser von etwa 100 mm vorgesehen. Die statische Tragwirkung wird dadurch nur unwesentlich geschwächt. Bei Anordnung der Bohrkerne nach dem Schema in Abb. 1.3 können gleichzeitig Mörtelblättchen zur Prüfung nach DIN 18555-9 [17] gewonnen werden. Im Gegensatz zur Mauersteinentnahme sollen keine Durchbrüche in der Wand bleiben und die Freilegung des Mauerwerks ist lediglich über eine Fläche von etwa 50 cm  $\times$  80 cm erforderlich.



Abb. 1.3: Mögliche Anordnung zur Entnahme von Bohrkernen

Zum einen soll das Verfahren anhand der Bohrkerne Aufschluss über das Lochbild geben, sodass der Lochanteil ermittelt werden kann. Zum anderen soll ein Zusammenhang zwischen der horizontalen Druckfestigkeit am Kleinprüfkörper und der vertikalen Druckfestigkeit des Ziegelscherbens hergestellt werden. Da bisher keine Forschungsergebnisse zu einem solchen Verfahren bekannt sind, ist ein umfassendes Versuchsprogramm geplant, das in den folgenden Kapiteln genauer erläutert wird.

# Kapitel 2

## Grundlagen

In diesem Kapitel werden die wichtigsten theoretischen Grundlagen für die Versuchsdurchführung und Analyse mit normativen Verweisen behandelt. Vorab ist hier noch auf einige Begrifflichkeiten hinzuweisen, die im Weiteren häufig vorkommen. Der *Mauerstein* ist nach ÖNORM EN 771-1 [23, S. 6] ein *"vorgeformtes Element zur Herstellung von Mauerwerk"*. Er kann aus unterschiedlichen Materialien bestehen und Lochungen, sowie Aussparungen aufweisen. Der Begriff *Mauerziegel* beschreibt einen Mauerstein, der aus Ton oder anderen tonhaltigen Stoffen besteht. Ein *Scherben* ist ein Teil des Mauersteins, dessen Gestalt nicht genauer definiert ist und außer materialspezifischen Poren keine Hohlräume aufweist. In dieser Arbeit werden mit dem Begriff Scherben regelmäßige, gerade, prismatische Kleinprüfkörper bezeichnet.

Außerdem ist zwischen *Gestalt* und *Form* zu unterscheiden. Mit der Gestalt ist das äußere Erscheinungsbild eines Körpers gemeint. Demnach kann beispielsweise zwischen Prisma, Zylinder, Kugel, Pyramide unterschieden werden. Die Form hingegen bezieht sich auf die geometrischen Eigenschaften, wie Größe und Schlankheit des Körpers. Ein Zylinder und ein Prisma sind also von unterschiedlicher Gestalt und dürfen streng genommen nicht miteinander verglichen werden, selbst wenn sie in Hinblick auf ihre Formen gleich sind. Nur mit Hilfe von Gestaltsbeiwerten kann auch ein Vergleich von Messwerten an Prüfkörpern mit unterschiedlichen Gestalten erfolgen. Ein Quader und ein Würfel sind von gleicher Gestalt, unterschieden sich jedoch in ihrer Form. Dementsprechend ist die Form ein Attribut der Gestalt und Umrechnungen mit Formfaktoren setzen eine gleiche Gestalt voraus.

### 2.1 Ziegel – vom Material zum Mauerstein

Zum Baustoff Ziegel finden sich zahlreiche literarische Werke, die sich umfassend mit dem Baumaterial beschäftigen. Die folgenden Absätze stützen sich vorwiegend auf die Werke von Pech et al. [13] sowie Wendehorst und Neroth [15].

Ein Ziegel besteht grundsätzlich aus homogenisiertem, gebranntem Ton und Lehm, der Zusätze enthalten kann, wie z. B. Porosierungsmittel oder Natursteinmehl. Seine Festigkeit ist wesentlich von der Aufbereitung der Rohstoffe und den verschieden hohen Brenntemperatur abhängig. Je nach Aufbereitungsart kann zwischen Grob- und Feinkeramik unterschieden werden. Die Herstellung der Grobkeramik erfolgt mit Rohstoffen, die eine Korngröße von 0,1 mm bis 0,2 mm aufweisen und an einer Bruchfläche noch mit bloßem Auge als Inhomogenitäten erkennbar sind. Baukeramiken, wie Ziegel und Klinker, werden dieser Gruppe zugeordnet. Bei Feinkeramiken liegt die Korngröße der verwendeten Rohstoffe unterhalb der oben genannten Werte. Sie werden vorwiegend zur Produktion von dünnwandigen Erzeugnissen verwendet, wie z. B. Wand- und Bodenfliesen. Die heute geläufigste Produktionsweise von Mauerziegeln ist das Strangpressverfahren, bei dem der aufbereitete Ton durch ein formgebendes Mundstück zu einem Endlosstrang gepresst und daraufhin mit einem Draht auf die gewünschte Länge der Einzelelemente zugeschnitten wird. Über die Struktur des Mundstückes ist es möglich, Lochkanäle und Aussparungen anzuordnen, die den Mauerziegel gänzlich durchdringen. Der resultierende Querschnitt wird als *Lochbild* bezeichnet. Zur Beschreibung einzelner Teile eines Mauersteins, die in Abb. 2.1 an einem schematischen Mauerziegel veranschaulicht sind, werden in der ÖNORM EN 771-1 [23, S. 7–8] folgende Begriffe definiert:

Außensteg: Material zwischen der Lochung und der Außenfläche des Mauersteins

Innensteg: Material zwischen den Lochungen in einem Mauerstein

Vertikale Lochung: Löcher, die den Mauerstein rechtwinklig zur Lagerfläche ganz durchdringen

- Aussparung: Vertiefung oder Einschnitt in einer oder mehreren Oberflächen des Mauersteins (Beispiel: Mörteltaschen, Putzrillen, Grifflöcher)
- **Verbindungssystem:** geformte, zusammenpassende Vor- und Rücksprünge an Mauersteinen (Beispiel: Nut- und Feder-Systeme)



Abb. 2.1: Begriffe zur Beschreibung einzelner Teile eines Mauerziegels

Der sogenannte Lochanteil  $\alpha$  gibt das Verhältnis der Lochungen und Aussparungen in Bezug auf das äußere Gesamtvolumen des Steins an. In Österreich zählen nach ÖNORM EN 1996-1-1 [22] Mauersteine bis zu einem maximalen Lochanteil  $\alpha \leq 25\%$  zu Vollmauerziegeln. Bei größeren Lochanteilen wird unterschieden zwischen Hochlochziegeln, bei denen die Löcher rechtwinkelig zur Lagerfuge verlaufen, und Langlochziegeln, bei denen sie parallel zur Lagerfuge verlaufen.

Darüber hinaus gelten geometrische Anforderungen an die Lochbilder und an die Einzellochgeometrie, welche in der ÖNORM EN 1996-1-1 [22] geregelt sind. Tab. 2.1 zeigt eine Zusammenfassung dieser Anforderungen für Ziegel. Darin werden die Mauersteine in vier Gruppen eingeteilt, wobei Gruppe 1 die Vollziegel umfasst und Gruppe 4 die Langlochziegel. Gruppe 2 beinhaltet Hochlochziegel mit geringerem Lochanteil und stärkeren Stegdicken als sie für Hochlochziegel der Gruppe 3 möglich sind. Die Zuordnung zu den Gruppen bestimmt den K-Wert bei der Berechnung der charakteristischen Druckfestigkeit von Mauerwerk nach ÖNORM EN 1996-1-1 [22].

Gewöhnliche Ziegelwaren werden im Tunnelofen bei 900 °C bis 1100 °C knapp unterhalb der sogenannten *Sintergrenze* gebrannt. Durch das zuvor vorhandene Wasser, das während des Prozesses ausgetrieben wird, bilden sich Poren im Scherben, wobei die Kristallstruktur erhalten

|                                                       | Gruppe 1               | Gruj                           | ppe 2                                                                       | Gruț                                                                                                                                       | ope 3                                                     | Gruj                     | ppe 4                                                     |
|-------------------------------------------------------|------------------------|--------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------|-----------------------------------------------------------|
| $Gesamtlochanteil^{(1)}$                              | $\leq 25$              | $> 25; \le 55$                 |                                                                             | $> 25; \le 70$                                                                                                                             |                                                           | $> 25; \le 70$           |                                                           |
| Einzellochanteil <sup>(1)</sup>                       | $\leq 12, 5$           | Mehrfach<br>$\Sigma Grifflöch$ | $\begin{array}{l} \text{löcher} \leq 2\\ \text{ner} \leq 12, 5 \end{array}$ | $\begin{array}{l} {\rm Mehrfachl\" \" och red} \Sigma {\rm Griffl\" och red} \leq 2\\ \Sigma {\rm Griffl\" och red} \leq 12,5 \end{array}$ |                                                           | Mehrfachlöcher $\leq 30$ |                                                           |
| Außen- und<br>Innenstegdicken <sup>(2)</sup>          | keine<br>Anforderungen | Innensteg $\geq 5$             | Außensteg $\geq 8$                                                          | Innensteg $\geq 3$                                                                                                                         | $\begin{array}{l} \text{Außensteg} \\ \geq 6 \end{array}$ | Innensteg $\geq 5$       | $\begin{array}{l} \text{Außensteg} \\ \geq 6 \end{array}$ |
| $\Sigma$ Außen- und<br>Innenstegdicken <sup>(3)</sup> | keine<br>Anforderungen | $\geq$                         | 16                                                                          | $\geq$                                                                                                                                     | 12                                                        | $\geq$                   | 12                                                        |

**Tab. 2.1:** Geometrische Anforderungen an die Gruppierung von Mauerziegeln aus ÖNORM EN 1996-1-1, Abschnitt 3.1.1 [22])

<sup>(1)</sup> in Prozent des Bruttovolumens

<sup>(2)</sup> deklarierter Wert in mm

<sup>(3)</sup> deklarierter Wert der Summe der Dicken in Prozent der Gesamtbreite

bleibt. Beim Brennen von Klinker werden hingegen Temperaturen von 1200 °C bis 1300 °C erreicht, die oberhalb der Sintergrenze liegen. Dies hat eine Änderung der Kristallstruktur zur Folge, da die einzelnen Phasen aufschmelzen. Es entsteht eine glasige Struktur, die nach Pech et al. [13] höheren Druckbeanspruchungen standhält und eine erhöhte Widerstandsfähigkeit gegen chemische Einflüsse und Frost aufweist. Außerdem sinkt die Wasseraufnahmefähigkeit des Mauerziegels mit höheren Brenntemperaturen. Gewöhnliche Ziegelwaren weisen im Allgemeinen eine sehr hohe Saugfähigkeit auf, wohingegen hoch gebrannte Klinker nur noch wenig Wasser aufnehmen können.

Im Zuge dieser Arbeit durchgeführte Untersuchungen konzentrieren sich speziell auf die Druckfestigkeit des Mauersteins, deren Definition und Einflussgrößen in Abschnitt 2.2 genauer beschrieben werden. In Bezug auf den Mauerziegel ist an dieser Stelle wichtig anzumerken, dass die Streuung seiner Druckfestigkeit nach Graf et al. [3] große Schwankungsbreiten aufweist, was einen erheblichen Einfluss auf die Mauerwerksfestigkeit hat. Die ÖNORM EN 771-1 [23] legt daher eine Grenze für die Schwankungsbreite der Druckfestigkeit von Mauerziegeln folgendermaßen fest:

- Kategorie I: Mauersteine mit einer deklarierten Druckfestigkeit, wobei die Wahrscheinlichkeit des Nichterreichens dieser Festigkeit 5 % nicht überschreiten darf
- Kategorie II: Mauersteine, die das Vertrauensniveau für Mauersteine der Kategorie I nicht erreichen

Je nach Kategorie und Mörtelart ist der entsprechende Teilsicherheitsbeiwert für das Material  $\gamma_{\rm M}$  zur Berechnung im Grenzzustand der Tragfähigkeit zu wählen. In Tab. 2.2 sind die nationalen Festlegungen von  $\gamma_{\rm M}$  für Mauerwerk nach ÖNORM B 1996-3 [18] aufgelistet. Für Untersuchungen an Bestandsobjekten ist generell (auf der sicheren Seite liegend) von Mauersteinen der Kategorie II auszugehen.

Neben der Druckfestigkeit ist in dieser Arbeit auch die Trockenrohdichte  $\rho_d$  der Mauerziegel von Interesse. Es wird bei Mauersteinen zwischen der Brutto- und Nettorohdichte unterschieden, die in ÖNORM EN 772-13 [27] definiert sind. Die Bruttorohdichte  $\rho_{d,bto}$  oder auch *Steinrohdichte* ist der Quotient aus der Masse des Mauersteins und dem Gesamtvolumen (einschließlich aller Poren, Aussparungen und Lochungen). Letzteres wird auch als Bruttovolumen  $V_{bto}$  bezeichnet. Die Nettorohdichte  $\rho_{d,nto}$  bezieht die Masse des Mauersteins auf das reine Ziegelvolumen bzw. Nettovolumen  $V_{nto}$ , also das Gesamtvolumen abzüglich der Lochungen und Aussparungen, aber

| Material                                                | $\gamma_{ m M}$ |
|---------------------------------------------------------|-----------------|
| Mauerwerk aus:                                          |                 |
| Steinen der Kategorie I und Mörtel nach Eignungsprüfung | $2,\!00$        |
| Steinen der Kategorie I und Rezeptmörtel                | $2,\!20$        |
| Steinen der Kategorie II                                | $2,\!50$        |

Tab. 2.2: Teilsicherheitswerte für das Material aus ÖNORM B 1996-3, Abschnitt 4.1 [18]

inklusive aller Poren. Sie ist auch unter dem Begriff der Scherbenrohdichte bekannt. Bei gewöhnlichem Ziegelmaterial liegt die Nettorohdichte zwischen  $1400 \text{ kg/m}^3$  und  $1600 \text{ kg/m}^3$ . Dies hängt stark von den verwendeten Zusatzstoffen und dem Anteil an Porosierungsmitteln ab. Klinkermaterialien weisen ein weit dichteres Gefüge auf, womit die Scherbenrohdichte generell über  $1900 \text{ kg/m}^3$  liegt.

Hinsichtlich des Einsatzbereichs des Ziegels ist nach ÖNORM EN 771-1 [23] zwischen P- und U-Ziegeln zu unterscheiden. Das "P" steht für engl. *"protected"* und umfasst alle Mauerziegel, die für den Einsatz in geschütztem Mauerwerk bestimmt sind. U-Ziegel eignen sich hingegen zur Verwendung in ungeschütztem Mauerwerk ("U" für engl. *"unprotected"*). Bei der Bestimmung der Druckfestigkeit nach ÖNORM EN 772-1 [24] werden P- und U-Ziegel gleich behandelt.

### 2.2 Druckfestigkeit – Definition und Einflussgrößen

Nach Ilschner und Singer [7, S. 209] wird unter dem Begriff *Festigkeit* der Widerstand eines Werkstoffes verstanden, den er *"aufgrund seiner atomaren Struktur und seines Gefüges der Formänderung [unter mechanischer Beanspruchung] entgegensetzt"*. Bezogen auf die Spannungs-Dehnungs-Linie beschreibt die Festigkeit die maximal aufnehmbare Spannung, ab der keine weitere Laststeigerung möglich ist. Manche Materialien, so Wendehorst und Neroth [15], zeigen nach dem Erreichen der Festigkeit noch ein weiteres Tragvermögen unter starker Formänderung und bei abnehmender Belastung. Die Bruchspannung, bei welcher der Werkstoff endgültig versagt, kann daher unterhalb der Festigkeit liegen und ist nicht mit dieser ident.

Bei der Druckfestigkeit  $\overline{f}_{b,i}$  handelt es sich konkret um jenen Festigkeitswert, der unter einaxialer Druckbeanspruchung erreicht wird. Sie ist speziell bei Materialien, wie Ziegel, der im verbauten Zustand vorwiegend auf Druck belastet ist, eine wichtige Kenngröße und lässt sich anhand von prismatischen oder zylindrischen Prüfkörpern in einer Druckprüfmaschine bestimmen. Hierbei erfolgt eine kontinuierliche Belastungssteigerung bis zum Bruch des Werkstoffes. Da diese Versuche in relativ kurzen Zeiträumen von wenigen Minuten ablaufen, wird der Prüfwert auch als Kurzzeitfestigkeit bezeichnet. Die erreichte Maximalkraft  $F_{p,max,i}$  bezogen auf den Ausgangsquerschnitt  $A_{0,i}$  ergibt die Druckfestigkeit am Prüfkörper  $\overline{f}_{b,i}$ :

$$\overline{f}_{\mathrm{b},i} = \frac{F_{\mathrm{p,max},i}}{A_{0,i}} \tag{2.1}$$

Der Prüfwert hängt darüber hinaus von material- und methodenspezifischen Einflussgrößen ab. Härig [4] unterscheidet bei den Einflüssen generell zwischen den drei folgenden Kategorien:

- 1. Einflüsse des Prüfkörpers
  - Beschaffenheit des Ziegelscherbens (Inhomogenitäten, Risse, Anisotropien)
  - Prüfkörpergröße, Volumseinflüsse
  - Prüfkörperform
  - Feuchtigkeitsgehalt
  - Temperatur
- 2. Einflüsse der Prüfmethode
  - Exzentrizitäten bei der Lasteinleitung
  - Ebenheit der Druckflächen
  - Planparallelität der Druckflächen
  - Sauberkeit der Druckflächen und Druckplatten
  - Verwendete Zwischenlagen
- 3. Einflüsse der Prüfmaschine
  - Steifigkeit der Prüfpresse und der Druckplatten
  - Kugelkalottenförmige Druckplattenlagerung
  - Ebenheit, Dicke und Beschaffenheit der Druckplatten
  - Genauigkeit der Manometer

Die meisten der Einflussgrößen sind normativ erfasst und geregelt, sodass die Auswirkung auf den Prüfwert bei Einhaltung der Normen entsprechend begrenzt ist. Durch exakt festgelegte Prüfbedingungen und Umrechnungen können Prüfergebnisse miteinander verglichen werden. Nachstehend wird explizit auf wichtige Einflussgrößen genauer eingegangen.

#### 2.2.1 Feuchtigkeitsgehalt

Ein hoher Feuchtigkeitsgehalt bedingt bei Mauerziegeln eine reduzierte Druckfestigkeit, bzw. lassen sich umgekehrt bei ofentrockenen Ziegelprüfkörpern auch höhere Druckfestigkeiten messen. In der ÖNORM EN 772-1 [24] sind vier Verfahren zur sogenannten *Konditionierung* der Prüfkörper angegeben. Je nach angewendeter Methode kann der Prüfwert anschließend mit Hilfe von Faktoren in eine äquivalente Druckfestigkeit für den lufttrockenen Zustand umgerechnet werden. Erfolgt die Versuchsdurchführung nach einer Trocknung der Proben bis zum Erreichen der Massekonstanz, ist die gemessene Druckfestigkeit mit dem Faktor 0,8 zu multiplizieren. Prüfkörper, die durch Lagerung im Wasser konditioniert werden, weisen hingegen eine um 20 % geringere Druckfestigkeit auf als im lufttrockenen Zustand. Der Prüfwert muss dann mit dem Faktor 1,2 multipliziert werden.

#### 2.2.2 Prüfkörperdimensionen und Querdehnungsbehinderung

In der Druckprüfmaschine liegt der Prüfkörper zwischen zwei planparallelen Stahlplatten, über welche die Krafteinleitung in den Querschnitt erfolgt. Die starren Stahlplatten behindern die

Querdehnung durch Reibungskräfte, womit im Bereich der Auflageflächen ein triaxialer Spannungszustand induziert wird. Dies führt zu einer Erhöhung der Belastbarkeit innerhalb dieses Bereichs. In Abb. 2.2 sind Querschnitte unterschiedlicher Schlankheit h/b unter Druckbeanspruchung skizziert. Die schraffierten Flächen kennzeichnen hierin jene Bereiche, in denen die Querdehnungsbehinderung wirkt. Es lässt sich eindeutig erkennen, dass der Einfluss der Querdehnungsbehinderung mit größer werdender Schlankheit abnimmt. Demzufolge werden an Prüfkörpern mit geringen h/b-Verhältnissen auch höhere Festigkeiten gemessen. Der reine einaxiale Spannungszustand tritt erst mit dem Verhältnis h: b = 2: 1 auf. Die Schlankheit ist auch maßgeblich für die Versagenscharakteristik eines Probekörpers. So ist nach Müller [11] bei Schlankheiten  $h/b \ge 2$  ein Versagen durch Reißen (ungeachtet der Stabilität) zu erwarten. Ein Verhältnis h/b < 1 führt hingegen zu einem Versagen durch Zerdrücken. Im Übergangsbereich lässt sich keine eindeutige Vorhersage treffen.



Abb. 2.2: Einfluss der Querdehnungsbehinderung bei verschiedenen Prüfkörperformen (modifiziert aus [15])

Wendehorst und Neroth [15] schreiben weiters, dass die Druckfestigkeit auch größenabhängig ist. So verringert sich der Messwert bei gleichbleibender Schlankheit mit zunehmender Prüfkörpergröße. Dieses Phänomen wird auch als *"Size Effect" der Bruchmechanik* bezeichnet, welches beispielsweise von Burtscher [2] an Beton und Sandstein intensiv untersucht wurde.

Aufgrund dieser Einflüsse sind die gemessenen Festigkeitswerte an den Prüfkörpern  $f_{b,i}$  nicht direkt miteinander vergleichbar und müssen erst normiert werden. Es ist daher zwischen den folgenden drei Druckfestigkeiten von Mauersteinen zu unterscheiden:

- $\overline{f}_{{\rm b},i}~\ldots$  Steindruckfestigkeit am Probekörper Messwert, der bei der Prüfung der Druckfestigkeit von Mauersteinen abzulesen ist
- f<sub>b,i</sub> ... normierte Steindruckfestigkeit nach ÖNORM EN 771-1 [23, S. 8] "Wert für die Druckfestigkeit von Mauersteinen, der in die lufttrockene Druckfestigkeit eines äquivalenten Mauersteines mit einer Breite von 100 mm und einer Höhe von 100 mm umgerechnet wird"
- $f_{\mathrm{s},i}$  ... normierte Scherbendruckfestigkeit Wert für die Druckfestigkeit des Scherbens von Mauersteinen, der die spezifische Materialfestigkeit wiedergibt und wie  $f_{\mathrm{b},i}$  normiert ist

Die Umrechnung der Steindruckfestigkeit am Probekörper,  $\overline{f}_{b,i}$ , auf die normierte Steindruckfestigkeit  $f_{b,i}$  erfolgt mit Hilfe des Formfaktors  $\delta_i$  aus Anhang A der ÖNORM EN 772-1 [24] nach Formel (2.2).

$$f_{\mathbf{b},i} = \overline{f}_{\mathbf{b},i} \cdot \delta_i \tag{2.2}$$

Er ist tabellarisch für unterschiedliche Höhen und Breiten prismatischer Prüfkörper angegeben. Für Proben mit zylindrischer Gestalt darf dieselbe Tabelle herangezogen werden und die Breite ist lediglich durch den Durchmesser zu ersetzen. Bei Abmessungen, die zwischen den angegebenen Werten liegen, ist eine lineare Interpolation zweier nebeneinander liegender Werte des Formfaktors zulässig.

Die normierte Steindruckfestigkeit  $f_{b,i}$  ist ein Baustoffkennwert, der die Festigkeit unabhängig von den Außenabmessungen des Prüfkörpers wiedergibt. Daher lassen sich normierte Steindruckfestigkeiten unterschiedlicher Mauersteine vergleichen. Die mittlere normierte Steindruckfestigkeit  $f_b$ ergibt sich aus dem Mittelwert von mindestens sechs Probekörpern. Lochungen und etwaige Aussparungen reduzieren das Material im Querschnitt und damit auch die normierte Steindruckfestigkeit. Beim Vergleich zweier Mauerziegel, die aus demselben Material bestehen, aber unterschiedliche Lochanteile  $\alpha$  aufweisen, unterscheiden sich deren normierte Steindruckfestigkeiten voneinander. Der Vergleich auf Materialebene erfolgt anhand der normierten Festigkeit des reinen Ziegelscherbens  $f_{s,i}$ , die in Formel (2.3) definiert ist. Die Herleitung setzt voraus, dass die kritische Knickspannung der Stege über deren Druckfestigkeit liegt und damit keine Stabilitätsgefährdung der Stege vorliegt.

$$f_{\rm s,i} = \frac{F_{\rm p,max,i}}{A_{\rm nto,i}} \cdot \delta_i = \frac{F_{\rm p,max,i}}{(1-\alpha_i) \cdot A_{\rm bto,i}} \cdot \delta_i = \frac{f_{\rm b,i}}{(1-\alpha_i)}$$
(2.3)

Die normierte Scherbendruckfestigkeit  $f_{s,i}$  bezieht die Beanspruchung ausschließlich auf den Nettoquerschnitt, der bei einem Lochanteil  $\alpha_i > 0$  kleiner als der Bruttoquerschnitt ist. Demnach liegt die normierte Scherbendruckfestigkeit bei Lochsteinen über der normierten Steindruckfestigkeit der normierten Scherbendruckfestigkeit und es gilt  $f_{b,i} = f_{s,i}$ . Die mittlere normierte Scherbendruckfestigkeit und es gilt  $f_{b,i} = f_{s,i}$ . Die mittlere normierten Scherbendruckfestigkeit  $f_s$  kann bei einheitlichem Lochanteil  $\alpha$  direkt aus der mittleren normierten Steindruckfestigkeit  $f_b$  berechnet werden:

$$f_{\rm s} = \frac{f_{\rm b}}{(1-\alpha)} \tag{2.4}$$

#### 2.2.3 Ebenheit und Planparallelität

Die Ebenheit der Prüfkörper ist erforderlich, um eine gleichmäßige Krafteinleitung in den Querschnitt zu gewährleisten. Unregelmäßigkeiten oder Verunreinigungen der Oberfläche können zu Kantenpressungen führen, die den Messwert der Druckfestigkeit beträchtlich reduzieren. Ebenso ist auf die Planparallelität des Prüfkörpers zu achten. Schiefstellungen bei der Krafteinleitung induzieren ein zusätzliches Moment und verfälschen den Prüfwert, da kein einaxialer Spannungszustand mehr vorliegt. Aufgrund dieser Zusammenhänge sind in ÖNORM EN 772-1, Abschnitt 7.2 [24] genaue Anforderungen an die Ebenheit und Planparallelität gestellt. Zudem muss sich der Prüfkörper zentrisch unter der Last befinden, da anderenfalls Versatzmomente entstehen.

#### 2.2.4 Belastungsrichtung

Bei Mauerziegeln ist die Größe der Druckfestigkeit von der Belastungsrichtung abhängig, weshalb diese gemäß ÖNORM EN 771-1 [23] im Prüfbericht anzugeben und bei der Auswertung zu berücksichtigen ist. Die Bezeichnungen der Belastungsrichtungen können aus Tab. 2.3 entnommen werden und sind in Abb. 2.3 schematisch dargestellt.

| Bezeichnung | Orientierung                | Belastungsrichtung |
|-------------|-----------------------------|--------------------|
| 1-1         | orthogonal zur Lagerfläche  | vertikal           |
| 2-2         | orthogonal zur Läuferfläche | horizontal         |
| 3-3         | orthogonal zur Stirnfläche  | horizontal         |
|             |                             |                    |

Tab. 2.3: Bezeichnungen der Belastungsrichtungen



**Abb. 2.3:** Darstellung Oberflächenbezeichnungen und Belastungsrichtungen (modifiziert aus ÖNORM EN 771-1 [23])

Das sogenannte anisotrope Materialverhalten des Ziegels, bei dem die mechanischen Eigenschaften richtungsabhängig sind, resultiert aus dem Herstellungsprozess. Dies gilt sowohl für handgeschlagene Ziegel als auch für Mauerziegel, die im Strangpressverfahren hergestellt werden. Es ist zu berücksichtigen, dass sich die Verhältniszahlen der richtungsabhängigen Festigkeiten bei den beiden Herstellungsverfahren voneinander unterscheiden. Nach Literaturangaben, wie beispielsweise von Huster und Seim [6], und nach Untersuchungen von Breit [1] stehen die richtungsabhängigen Druckfestigkeiten von Ziegeln, die im Strangpressverfahren hergestellt werden, in folgendem Verhältnis zueinander:

$$\sigma_{1-1}:\sigma_{2-2}:\sigma_{3-3}=1:0,70:0,70$$

Bei handgeschlagenen Ziegeln tritt der umgekehrte Effekt auf, sodass die vertikale Druckfestigkeit  $\sigma_{1-1}$  bis zu 30 % unter den beiden horizontalen Druckfestigkeiten liegt. In dieser Arbeit werden ausschließlich im Strangpressverfahren hergestellte Ziegel untersucht.

#### 2.2.5 Belastungsgeschwindigkeit

Bei einer zu hoch gewählten Belastungsgeschwindigkeit wird auch eine zu hohe Druckfestigkeit gemessen und der Prüfwert dahingehend verfälscht. Die Belastungsgeschwindigkeiten sind daher normativ geregelt. Für die Prüfung der Steindruckfestigkeit gilt ÖNORM EN 772-1 [24], für die Fugendruckfestigkeit DIN 18555-9 [17].

## Kapitel 3

## Methodik

Das Ziel der Untersuchungen ist es, die normierte vertikale Steindruckfestigkeit von Hochlochziegeln aus Bestandsobjekten zu bestimmen. Dazu sollen lediglich Teile des Mauersteins entnommen werden. Anhand dieser muss es möglich sein, auf den Lochanteil sowie auf die normierte vertikale Scherbendruckfestigkeit zu schließen. Das hier entwickelte Konzept sieht dazu eine Entnahme von Bohrkernen im Trockenbohrverfahren bis zur Hälfte der Wandstärke vor. Anhand der Kerne wird das Lochbild weitestmöglich rekonstruiert und der Lochanteil berechnet. Durch eine weitere Zerlegung der Bohrkerne mit einer Steinkreissäge sollen die Stege freigelegt und somit kleine plattenförmige Scherben als Prüfkörper gewonnen werden. Anschließend erfolgt die Bestimmung der horizontalen *Stempeldruckfestigkeit* und die Umrechnung auf die vertikale normierte Scherbendruckfestigkeit. Mit Hilfe des Lochanteils soll von der vertikalen normierten Scherbendruckfestigkeit auf die vertikale normierte Steindruckfestigkeit geschlossen werden können. Da in dieser Arbeit ausschließlich Druckspannungen von Interesse sind, werden sie zur einfacheren Handhabung immer betragsmäßig und ohne Vorzeichen angegeben.

### 3.1 Versuchsprogramm

Zur Prüfung der Umsetzbarkeit des Konzeptes ist ein umfassendes Versuchsprogramm an Mauersteinen mit bekannten Eigenschaften vorgesehen. Die Werkstoffprüfung nach DIN 18555-9, Verfahren III [17] dient der Bestimmung der Druckfestigkeit von Mauermörtel. Für die Prüfung von Ziegelscherben wird das Verfahren entsprechend adaptiert. Der Prüfwert der Festigkeit eines Kleinprüfkörpers zwischen zwei kreisrunden Stahlstempeln mit einem Durchmesser von je 20 mm an der Belastungsfläche wird in dieser Arbeit entsprechend als *Stempeldruckfestigkeit* bezeichnet und in Abschnitt 3.2.3 genauer erläutert. Der Zusammenhang zwischen der Stempeldruckfestigkeit und der normierten vertikalen Steindruckfestigkeit wurde bisher noch nicht untersucht. Die sogenannte Fugendruckfestigkeit von Mauermörteln nach DIN 18555-9 [17] hängt neben der Materialfestigkeit maßgeblich von der Probendicke ab, wie es Untersuchungen von Kompiller [9] zeigen. Eine solche Beziehung wird auch bei Ziegel vermutet. Vor den Versuchen an Hochlochziegeln wird daher das materialspezifische Verhalten keramischer Baustoffe dahingehend untersucht. Hierfür kommen Vollmauerziegel zum Einsatz, von welchen sich Scherben beliebiger Dicke abschneiden lassen.

#### Prüfserie A

Zu Beginn werden Vorversuche an sechs Normalformat Vollmauerziegeln mit den Abmessungen  $l_u/w_u/h_u = 250/120/65 \text{ mm}$  durchgeführt, die jeweils paarweise in unterschiedlichen Baumärkten gekauft werden, um auch verschiedene Chargen zu testen. Daraufhin wird der Probenumfang um zehn Vollmauerziegel (Mz) und fünf Vollklinker (KMz) erweitert. Die Vollmauerziegel sind der

Charge entnommen, welche die Firma Wienerberger Ziegelindustrie GmbH für Untersuchungen zur Verfügung gestellt hat. Vier der Vollklinker sind zugekauft, einer stammt aus historischem Mauerwerk. Die Versuche an den Vollklinkern sollen das Spektrum der Untersuchungen auch für höhere Festigkeiten erweitern. Die Versuche an den Vollmauersteinen werden als materialspezifische Versuche unter dem Kurznamen Prüfserie A zusammengefasst. In dieser Serie kommen zwei unterschiedliche Druckprüfmaschinen zum Einsatz, um deren Einfluss auf den Prüfwert zu ermitteln. Bei der Ergebnisauswertung wird gesondert darauf hingewiesen.

#### Prüfserie B

Die Oberflächen der Proben müssen vor der Versuchsdurchführung behandelt werden. Dies erfolgt generell durch Abschleifen oder aber mit einer Ausgleichsschicht, sodass eine gleichmäßige Krafteinleitung in den Querschnitt gewährleistet ist. Diese zweite Möglichkeit wird in der *Prüfserie B* an den Scherben zweier Vollmauerziegel erprobt, um die Auswirkungen der Vorbehandlung auf den Prüfwert der Druckfestigkeit zu untersuchen. Außerdem ist die Druckfestigkeit des Zements, der für die Ausgleichsschicht verwendet wird, an sieben Würfeln mit einer Seitenlänge von 50 mm zu bestimmen.

#### Prüfserie C

Nach der Untersuchung der materialspezifischen Eigenschaften gilt es diese am Baustoff Hochlochziegel wiederzufinden und die Gültigkeit der gefundenen Zusammenhänge zu prüfen. Dazu werden in *Prüfserie C* jeweils zwei Bohrkerne aus insgesamt 15 Hochlochziegeln entnommen. Die Firma *Wienerberger Ziegelindustrie GmbH* stellte dankenswerterweise die Hochlochziegel mit den zugehörigen Steindruckfestigkeiten sowie den digitalen Plänen der Lochbilder bereit. Jeder der Steine stammt aus einem Produktionszyklus, bei welchem die Steindruckfestigkeit normgerecht nach ÖNORM EN 772-1 [24] an sechs Mauersteinen bestimmt wurde. Diese kann somit als Referenzwert herangezogen werden. Die Kenntnis des Lochanteils spielt bei der Berechnung eine wesentliche Rolle. Daher werden in Kapitel 5 drei unterschiedliche Verfahren untersucht, welche die Bestimmung des Lochanteils an den Bohrkernen ermöglicht. Es folgt eine Zerlegung der Bohrkerne in Kleinprüfkörper. Alle Druckversuche an den so gewonnen Scherben werden einheitlich mit der Druckprüfmaschine von INSTRON durchgeführt. Das Versuchsprogramm gliedert sich somit in folgende Prüfserien:

- A Materialspezifische Versuche mit gewöhnlicher Oberflächenbehandlung
  - A.1 Vorversuche an 6 Normalformat Mz
  - A.2 Erweiterung auf insgesamt 19 Mauerziegel (14 Mz und 5 KMz)
- B Materialspezifische Versuche mit Zementausgleichsschicht
  - B.1 Versuche an 2 Mz mit Zementausgleichsschichten
  - B.2 Bestimmung der Druckfestigkeit der Zementausgleichsschicht an 7 Würfeln
- C Baustoffspezifische Versuche an 30 Bohrkernen aus 15 Hochlochziegeln
  - C.1 Fotoanalytische Bestimmung des Lochanteils
  - C.2 Massenanalytische Bestimmung des Lochanteils
  - C.3 Volumetrische Bestimmung des Lochanteils
  - C.4 Stempeldruckprüfung an herausgeschnittenen Kleinprüfkörpern

In Tab. 3.1 sind alle Mauersteine aufgelistet, die zur Gewinnung der Probekörper dienen. Ebenso angegeben sind die Bezugsquellen sowie die jeweilige Druckprüfmaschine, die zur Bestimmung der Stein- bzw. Scherbendruckfestigkeit herangezogen wird. Unter den 20 bereitgestellten Hochlochziegeln befinden 5 Stück Füllsteine, die nicht Teil der Untersuchungen sind. Da jedoch die von Wienerberger Ziegelindustrie GmbH vorgegebene Nummerierung beibehalten wird, sind die Steinnummern der HLz durch Ausschluss der Füllsteine nicht kontinuierlich aufsteigend.

### 3.2 Methoden zur Bestimmung der Materialparameter

#### 3.2.1 Abmessungen und Rohdichte

Die Maße der Mauersteine werden nach ÖNORM EN 772-16 [28] bestimmt und auf 0,1 mm genau angegeben. Die Vermessung der aus den Mauersteinen entnommenen Kleinprüfkörper erfolgt nach der Konditionierung. Als Messgerät kommt hier eine digitale Schublehre zum Einsatz, welche mit einem maximalen Messfehler von 0,1 mm den Anforderungen nach ÖNORM EN 772-16 [28] genügt.

Für die Bestimmung der Masse m wird die Waage Sartorius GP 3202-OCE mit einer deklarierten Messgenauigkeit von 0,01 g verwendet. Die Trockenrohdichte  $\rho_d$  errechnet sich dann über das bekannte Volumen mit  $\rho_d = m_d/v$ . Da für diese Arbeit ausschließlich die Trockenrohdichten von Interesse sind, erfolgen alle Messungen nach einer Trocknung der Prüfkörper für 30 h bei 105 °C.

#### 3.2.2 Steindruckfestigkeit

Die ÖNORM EN 772-1 [24] regelt die Bestimmung der Druckfestigkeit von Mauersteinen. Die darin vorgesehene Versuchsdurchführung läuft zerstörend ab, sodass der geprüfte Mauerstein anschließend keinen weiteren Druckversuchen unterzogen werden kann. Für diese Arbeit ist es jedoch von besonderer Relevanz, dass Teile des Mauersteins erhalten bleiben, um sie in Kleinprüfkörper zerlegen zu können. Dazu wird jener Absatz der Norm geltend gemacht, der es erlaubt, die Steindruckfestigkeit auch an repräsentativen Teilen, wie z. B. Würfel oder Zylinder, zu untersuchen. Der Versuchsablauf und die Umrechnung des Messwertes auf die normierte Steindruckfestigkeit erfolgen wie in Abschnitt 2.2 beschrieben. Die Belastungsgeschwindigkeit ist gemäß ÖNORM EN 772-1, Abschnitt 8.2 [24] so zu wählen, dass zwischen dem Erreichen der Hälfte der (zu erwartenden) Höchstlast und der Höchstlast an sich mindestens ein Zeitraum von einer Minute verstreicht. Die Belastungsgeschwindigkeit wird für den jeweiligen Probekörper nach den Empfehlungen aus Tabelle 2 der besagten Norm gewählt.

#### 3.2.3 Stempeldruckfestigkeit

Mit Hilfe des hier als Stempeldruckfestigkeit bezeichneten Prüfwertes am Ziegelscherben soll die normierte vertikale Scherbendruckfestigkeit am Mauerziegel ermittelt werden. Ob diese Vorgehensweise möglich ist, wird erst im Zuge dieser Arbeit untersucht. In der DIN 18555-9 [17] ist die Prüfung von Mörteln mit mineralischen Bindemitteln genormt, wobei sich dieser Teil 9 mit Festmörtel und der Bestimmung der Fugendruckfestigkeit beschäftigt. Das darin beschriebene Verfahren III dient zur Prüfung kleiner, plattenförmiger Prüfkörper bei teilflächiger Belastung

| Steinnr.           | Bezeichnung            | Bezugsquelle   | Druckprüf-<br>maschine | Prüf-<br>serie |
|--------------------|------------------------|----------------|------------------------|----------------|
| Mz 01              | Mauerziegel voll       | OBI            | Enerpac                | A              |
| Mz 02              | Mauerziegel voll       | OBI            | Enerpac                | А              |
| Mz 03              | Mauerziegel voll       | BAUHAUS        | Enerpac                | А              |
| Mz 04              | Mauerziegel voll       | BAUHAUS        | Enerpac                | А              |
| $\rm Mz~05$        | Mauerziegel voll       | baustoffwagner | Enerpac                | А              |
| Mz 06              | Mauerziegel voll       | baustoffwagner | Enerpac                | А              |
| Mz 07              | Mauerziegel voll       | Wienerberger   | Enerpac                | В              |
| Mz 08              | Mauerziegel voll       | Wienerberger   | Enerpac                | В              |
| Mz 09              | Mauerziegel voll       | Wienerberger   | Enerpac                | А              |
| Mz 10              | Mauerziegel voll       | Wienerberger   | Enerpac                | А              |
| Mz 11              | Mauerziegel voll       | Wienerberger   | INSTRON                | А              |
| Mz 12              | Mauerziegel voll       | Wienerberger   | INSTRON                | А              |
| $\rm Mz~13$        | Mauerziegel voll       | Wienerberger   | INSTRON                | А              |
| Mz 14              | Mauerziegel voll       | Wienerberger   | INSTRON                | А              |
| $\rm Mz~15$        | Mauerziegel voll       | Wienerberger   | INSTRON                | А              |
| $\rm Mz~16$        | Mauerziegel voll       | Wienerberger   | INSTRON                | А              |
| $\mathrm{KMz}\ 17$ | Penter Piazza          | Semmelrock     | INSTRON                | А              |
| $\mathrm{KMz}\ 18$ | Penter Piazza          | Semmelrock     | INSTRON                | А              |
| $\mathrm{KMz}$ 19  | Historischer Klinker   | Baustelle      | INSTRON                | А              |
| $\mathrm{KMz}\ 20$ | Penter Piazza          | Semmelrock     | INSTRON                | А              |
| KMz 21             | Penter Piazza          | Semmelrock     | INSTRON                | А              |
| HLz 01             | PTH 25-38 Plan         | Wienerberger   | INSTRON                | $\mathbf{C}$   |
| HLz $03$           | PTH 12-50 N+F          | Wienerberger   | INSTRON                | $\mathbf{C}$   |
| HLz $05$           | PTH 25-38 N+F          | Wienerberger   | INSTRON                | $\mathbf{C}$   |
| HLz 06             | PTH 20-50 N+F          | Wienerberger   | INSTRON                | $\mathbf{C}$   |
| HLz 07             | PTH 50 Plan            | Wienerberger   | INSTRON                | $\mathbf{C}$   |
| HLz 09             | PTH 25-38 N+F          | Wienerberger   | INSTRON                | $\mathbf{C}$   |
| HLz $10$           | PTH 25-38 N+F          | Wienerberger   | INSTRON                | $\mathbf{C}$   |
| HLz $12$           | PTH 20-50 Plan         | Wienerberger   | INSTRON                | $\mathbf{C}$   |
| HLz $13$           | PTH 8-50 N+F           | Wienerberger   | INSTRON                | $\mathbf{C}$   |
| HLz $14$           | PTH 25-38 Plan         | Wienerberger   | INSTRON                | $\mathbf{C}$   |
| HLz $15$           | PTH 25-38 N+F          | Wienerberger   | INSTRON                | $\mathbf{C}$   |
| HLz $16$           | PTH 25-38 OBJ LDF Plan | Wienerberger   | INSTRON                | $\mathbf{C}$   |
| HLz $17$           | PTH 25-38 Plan         | Wienerberger   | INSTRON                | $\mathbf{C}$   |
| HLz $19$           | PTH 25-38 N+F          | Wienerberger   | INSTRON                | $\mathbf{C}$   |
| HLz $20$           | PTH 26-50 W.I OBJ Plan | Wienerberger   | INSTRON                | $\mathbf{C}$   |

Tab. 3.1: Mauersteine, die zur Gewinnung der Probekörper herangezogen werden

\_\_\_\_\_

mit kreisrunden Druckstempeln und soll in dieser Arbeit in analoger Weise auf Ziegelscherben angewendet werden. In Abb. 3.1a ist der Aufbau der Prüfvorrichtung schematisch dargestellt. Abb. 3.1b zeigt ein Foto des realen Aufbaus mit eingelegtem Kleinprüfkörper.



(a) Aufriss und Grundriss der Prüfvorrichtung

- 1 Prüfkörper
- 2 Ausgleichsschicht (Karton)



(b) Foto der Prüfvorrichtung

3 Druckstempel $d_{\rm e}=20\,{\rm mm}$ 4 Belastungsfläch<br/>e $A_{\rm e}=314\,{\rm mm}^2$ 

Abb. 3.1: Skizzen der Pr
üfvorrichtung gem
ä
ß Verfahren III der DIN 18555-9, Abschnitt 4.3.2 [17] und Fotografie der verwendeten Pr
üfvorrichtung

Beide Druckstempel sind mit der Prüfvorrichtung verbunden und müssen einmalig vor Prüfungsbeginn axial zentriert werden. An den Kontaktflächen zum Prüfkörper weisen sie einen Durchmesser  $d_e$  von 20 mm auf, womit die Belastungsflächen  $A_e$  jeweils 314 mm<sup>2</sup> betragen. Die Prüfkörperabmessungen müssen im Grundriss größer als der Durchmesser des Druckstempels sein. Für gewöhnlich liegen die Breite und Länge der plattenförmigen Ziegelscherben zwischen 40 mm und 50 mm. An die Dicke der Prüfkörper sind keine Bedingungen gestellt. Die Druckspannungen wirken ausschließlich im Bereich zwischen den beiden Druckstempeln. Somit hat der belastete Teil des Prüfkörpers die Gestalt eines Zylinders mit dem Durchmesser des Druckstempels von 20 mm und einer Höhe, die der Scherbendicke entspricht. Damit errechnet sich die Stempeldruckfestigkeit  $f_{\rm p,St}$  ausschließlich über die kreisrunde Belastungsfläche nach Formel (3.1). Sie entspricht der Fugendruckfestigkeit  $\beta_{\rm F,III}$  nach Verfahren III der DIN 18555-9 [17] adaptiert für Ziegelprüfkörper.

$$f_{\rm p,St} = \frac{F_{\rm p,max}}{A_{\rm e}} = \frac{F_{\rm p,max}}{314\,{\rm mm}^2}$$
 (3.1)

Bei Anordnung einer Ausgleichsschicht aus beispielsweise Zement, wie sie genauer in Abschnitt 3.5 beschrieben wird, verändert sich die Druckfläche aufgrund des Lastausbreitung in der Ausgleichsschicht. In Abb. 3.2 ist der Kleinprüfkörper bzw. Scherben mit Zementschicht zwischen den beiden Druckstempeln im Schnitt dargestellt. Die mittlere Dicke der Ausgleichsschicht errechnet sich nach Formel (3.2) mit der Hälfte der Differenz von Gesamtdicke  $t_{\rm s,tot}$  abzüglich Scherbendicke  $t_{\rm s}$ . Der Durchmesser der effektiven Druckfläche im Ziegelscherben  $d_{\rm p}$  setzt sich daher aus dem Durchmesser des Druckstempels  $d_{\rm e}$  und dem Anteil der Lastausbreitung nach Formel (3.3)

zusammen. Der Lastausbreitungswinkel wird mit  $\phi = 30^{\circ}$  angenommen. Demnach ergibt sich die Stempeldruckfestigkeit nach Formel (3.4).

$$t_{\rm c} = \frac{t_{\rm s,tot} - t_{\rm s}}{2} \tag{3.2}$$

$$d_{\rm p} = d_{\rm e} + 2 \cdot t_{\rm c} \cdot \tan(\phi) \tag{3.3}$$

$$f_{\rm p,St} = \frac{F_{\rm p,max}}{d_{\rm p}^2/4 \cdot \pi} \tag{3.4}$$



Abb. 3.2: Vergrößerte Belastungsfläche zufolge Ausgleichsschichten

DIN 18555-9 [17] besagt, dass die Höchstlast, bei stetigem Lastanstieg, nach 30 s bis 90 s erreicht werden soll. Dies gilt in Bezug auf die Prüfung von Festmörtel mit mineralischen Bindemitteln. ÖNORM EN 772-1 [24] zur Bestimmung der Druckfestigkeit von Mauerziegeln sieht hingegen vor, dass bei konstanter Belastungsgeschwindigkeit mindestens 120 s bis zum Bruch verstreichen. Um die Norm für die Versuche an Kleinprüfkörpern aus Mauerziegeln zu adaptieren, wird die Belastungsgeschwindigkeit so gewählt, dass der Bruch innerhalb von 90 s bis 120 s nach Belastungsbeginn zu erwarten ist.

### 3.3 Druckprüfmaschinen

Bei der Durchführung der materialspezifischen Versuche kommen zwei unterschiedliche Druckprüfmaschinen zur Anwendung, womit deren Einfluss auf das Versuchsergebnis erfasst werden soll. Beide Vorrichtungen sind gewartet und erfüllen die Anforderungen gemäß ÖNORM EN 772-1 [24]. In einer gesonderten Prüfserie wird untersucht, ob die Messergebnisse der beiden Druckprüfmaschinen generell korrelieren. Dazu werden acht Zylinder aus einem Vollmauerziegel gebohrt, deren Höhe und Durchmesser jeweils etwa 50 mm betragen. Um den Einfluss lokaler Inhomogenitäten im Vollmauerziegel möglichst gering zu halten, erfolgt die Aufteilung nach einem gewissen Schema, sodass benachbarte Zylinder immer unterschiedlichen Prüfvorrichtungen zugeordnet sind. Dies ist in Abb. 3.3 dargestellt. Alle darin mit "E" gekennzeichneten Zylinder werden mit dem ENERPAC-Hydraulikzylinder geprüft, jene mit "I" bezeichneten sind hingegen der INSTRON-Spindeldruckpresse zugeordnet. Auf die Prüfkörpervorbereitung wird hier nicht eingegangen, sie erfolgt wie in Abschnitt 3.5 detailliert beschrieben.



Abb. 3.3: Entnahmeschema der Prüfzylinder zum Vergleich der Druckprüfmaschinen

Die Ergebnisse der Prüfserie sind in Tab. 3.2 aufgelistet. In Spalte  $f_b$  sind die Mittelwerte je Prüfvorrichtung angegeben. Spalte  $s(f_{b,i})$  zeigt die Standardabweichung der jeweiligen vier Prüfwerte. Die normierten Steindruckfestigkeiten der Zylinder weisen eine relativ hohe Streuung auf, die für das Material nicht ungewöhnlich ist. Die gemittelten Werte und die Standardabweichungen korrelieren zwischen den beiden Prüfvorrichtungen sehr gut miteinander und zeigen eine hohe Ähnlichkeit. Natürlich ist die Anzahl an Stichproben zu klein, um hier von gesicherten Ergebnissen zu sprechen. Dennoch zeigt sich ein brauchbarer Zusammenhang, der anhand weiterer Versuche zu verifizieren ist.

**Tab. 3.2:** Übersicht der gesonderten Prüfserie zum Vergleich der Druckprüfmaschinen

| $[N/mm^2]$  | $f_{\mathrm{b},1}$ | $f_{ m b,2}$ | $f_{ m b,3}$ | $f_{\mathrm{b},4}$ | $f_{\mathbf{b}}$ | $s(f_{\mathrm{b},i})$ |
|-------------|--------------------|--------------|--------------|--------------------|------------------|-----------------------|
| Enerpac (E) | $28,\!4$           | $19,\!3$     | $22,\!9$     | 25,7               | $24,\!1$         | $_{\pm 3,3}$          |
| INSTRON (I) | $22,\!2$           | $25,\!2$     | 19,5         | 27,2               | $23,\!5$         | $\pm 2,9$             |

#### 3.3.1 Enerpac Hydraulikzylinder

Die Druckprüfmaschine der Dr. Pech Ziviltechniker GmbH besteht aus einer Stahlkonstruktion, die für den Einbau von Hydraulikzylindern der Firma ENERPAC ausgerichtet ist. Eine schematische Skizze der gesamten Vorrichtung und ein Detailausschnitt der Prüfkörpereinheit zeigt Abb. 3.4. Die Rahmenkonstruktion setzt sich aus zwei Stehern und zwei Traversen zusammen, die mit den Stehern fest verschraubt sind. Auf der unteren Traverse ist eine Stahlplatte befestigt, welche die Auflagefläche für den Prüfaufsatz (Druckplatte bzw. Druckstempel) bildet. Auf der Platte befinden sich zwei Führungsstangen, an denen die Nivellierplatte horizontal gehalten wird. Diese bildet das Gegenstück zur Auflagefläche und leitet den Druck des Hydraulikzylinders in den Prüfkörper ein. Eine Verdrehung in alle Richtungen bis zu Winkeln von etwa  $15^{\circ}$  sowie eine vertikale Verschiebung der Nivellierplatte sind uneingeschränkt möglich. Der ENERPAC-Hydraulikzylinder ist mit seinem Gehäuse kopfüber auf der oberen Traverse befestigt, sodass der Kolben bei Aufbringung des Drucks nach unten ausfährt. Am Kopf des Kolbens befindet sich eine Kalotte, die an die Gegenkalotte auf der Nivellierplatte anschließt. Damit lassen sich leichte Schrägstellungen ausgleichen, die eventuell aus der Konstruktion oder durch Imperfektionen des Prüfkörpers herrühren. Beim Einrichten der Prüfvorrichtung wird der Kolben soweit ausgefahren, dass sich die Kalotten beinahe berühren. Anhand von Stellschrauben erfolgt eine Adjustierung des Hydraulikzylinders bzw. der Prüfkörpereinheit, sodass diese axial zueinander ausgerichtet sind.



Abb. 3.4: Schematische Ansicht der ENERPAC-Prüfvorrichtung

Für die Versuche stehen drei unterschiedliche Hydraulikzylinder zur Verfügung, welche in Tab. 3.3 aufgelistet sind. Nach ÖNORM EN 772-1 [24] muss die Bruchlast des Probekörpers ein Fünftel des Endausschlags der Anzeigeskala überschreiten. Dementsprechend ist die Wahl des passenden Hydraulikzylinders nach der zu erwartenden Maximallast auf den Prüfkörper zu treffen.

Die Belastung erfolgt hydraulisch über eine Handpumpe und die Kraftmessung mit dem Drucksensor WIKA CPT6200. Der aufgebrachte Druck lässt sich von der Messanzeige WIKA CPH6200 mit einer Genauigkeit von 0,2 % FS (bei Raumtemperatur) und einer Auflösung von 0,1 bar ablesen. FS bedeutet *"Full Scale"* und bezieht sich auf die maximal mögliche Amplitude der Messgröße, die in diesem Fall 700 bar beträgt. Gemessen wird der hydraulische Druck im System. Die Kraft auf den Prüfkörper ergibt sich erst durch Umrechnung des Messwertes über die Kolbenfläche des verwendeten Hydraulikzylinders. Dementsprechend ist der Messfehler der Belastung vom Hydraulikzylinder abhängig. Die Kolbenflächen und die resultierenden maximalen Messabweichungen sind in Tab. 3.3 unter der Bezeichnung max  $\Delta F$  angegeben. Die Belastungsgeschwindigkeit ist über die Anzeige ablesbar und wird manuell geregelt. Die Messanzeige speichert den erreichten Maximalwert des hydraulischen Drucks, der im Nachhinein abrufbar ist.

| Skizzen | Zylinder | Kolbenfläche<br>[cm <sup>2</sup> ] | $F_{\rm max}$<br>[kN] | $\max \Delta F$ [kN] |
|---------|----------|------------------------------------|-----------------------|----------------------|
|         | RCH-306  | 46,6                               | 326,2                 | $\pm 0,\!652$        |
|         | RC-1010  | 14,5                               | 101,5                 | $\pm 0,203$          |
|         | RC-59    | 6,5                                | $45,\!5$              | $\pm 0,091$          |
| 0 cm 50 |          |                                    |                       |                      |

Tab. 3.3: Verwendete Hydraulikzylinder der Firma ENERPAC

Vor Versuchsbeginn lastet die beschriebene Nivellierplatte auf dem Prüfkörper, auf welcher an einer Seite der Kolben ansetzt und auf der anderen Seite die Druckplatte bzw. der Druckstempel angebracht ist. Bei der Versuchsdurchführung entspricht sie streng genommen einer statischen Vorbelastung. Die daraus resultierenden Kräfte sowie eine Referenzberechnung der Spannung auf den Prüfkörper sind in Tab. 3.4 angegeben. Zur Berechnung der Spannungen von Versuchen mit der Druckplatte wird der in dieser Arbeit standardmäßig geprüfte Zylinder mit einem Durchmesser von 50 mm angenommen, für den Aufsatz des Druckstempels ein Durchmesser mit 20 mm. Die Ergebnisse zeigen, dass diese Vorbelastung vernachlässigbar klein ist. Dennoch werden sie bei der Versuchsauswertung berücksichtigt und zur Maximallast addiert.

| Aufsatz      | m<br>[kg] | F<br>[N] | $\sigma$ [N/mm <sup>2</sup> ]                 |
|--------------|-----------|----------|-----------------------------------------------|
| Druckplatte  | 9,62      | 94,37    | $\begin{array}{c} 0,\!05\\ 0,\!28\end{array}$ |
| Druckstempel | 8,87      | 87,01    |                                               |

Tab. 3.4: Zusätzliche Auflast der Nivellierplatte

Eine Besonderheit der Hydraulikzylinder im Vergleich zur Spindeldruckpresse zeigt sich speziell beim Versagen des Prüfkörpers. Dabei wird beim Bruch die im Zylinder gespeicherte Energie umgesetzt und der Kolben fährt weiter aus. So kommt es bei nahezu jedem Versuch zu einer Zerstörung des Restquerschnittes.

#### 3.3.2 Instron Spindeldruckpresse

Bei der zweiten verwendeten Prüfvorrichtung am *Institut für Hochbau und Technologie* der *Technischen Universität Wien* handelt es sich um eine Spindeldruckpresse der Firma INSTRON. Sie ist in Abb. 3.4 schematisch dargestellt. Die Hauptkonstruktion besteht aus zwei aufrecht stehenden, parallel geführten Gewindespindeln und zwei Tragsäulen, die in einer Unterkonstruktion befestigt sind. An diesen ist die Fahrtraverse angeschlossen, die durch elektromechanischen Antrieb der Gewindespindeln auf und ab fährt. Da sich beide Spindeln mit derselben Geschwindigkeit drehen, bleibt das Querhaupt immer horizontal ausgerichtet und ist ausschließlich vertikal beweglich. Der Ausgleich eventueller Schrägstellungen und Imperfektionen des Probekörpers erfolgt mit Hilfe einer unterlegten Kalotte.

Alle Parameter des Versuchsablaufs, wie die Belastungsgeschwindigkeit, werden über die Steuerelektronik DOLI EDC 580V eingestellt. Zudem erfolgt eine automatisierte Wegaufnahme der Fahrtraverse, welche die Erstellung eines Last-Verformungsdiagrammes ermöglicht. Dabei ist allerdings zu beachten, dass auch die Verformungen der Prüfvorrichtung, wie z. B. jene der Fahrtraverse, in diesen Messwert einfließen und die Stauchung dahingehend verfälschen. Dennoch wird zumindest eine qualitative Veranschaulichung des Zusammenhanges ermöglicht. Auf eine zusätzliche Installation von Wegaufnehmern wird in dieser Arbeit verzichtet.

Die Kraft wird in Newton gemessen und ist direkt von der Steuerkonsole ablesbar. Die Kraftmessdose INSTRON Load Cell 2518-112 ermöglicht Messungen bis zu einer maximalen statische Kraft von FS = 150 kN mit einem maximalen Messfehler von  $\pm 0.25 \%$  FS (bei Raumtemperatur). Bei der Steuerkonsole Doll EDC 580V liegt der typische Linearitätsfehler der Anzeige bei



Abb. 3.5: Schematische Ansicht der INSTRON-Prüfvorrichtung

 $\pm 0.01 \%$  FS und maximal  $\pm 0.025 \%$  FS. Der maximale Messfehler max  $\Delta F_{\text{tot}}$  aus Kraftmessdose und Steuergerät berechnet sich nach Formel (3.5):

$$\max \Delta F_{\text{tot}} = \pm \text{FS} \cdot \left[ \frac{0.25}{100} + \left( 1 + \frac{0,25}{100} \right) \cdot \frac{0,025}{100} \right] = \\ = \pm \text{FS} \cdot 0.275 \,\% = \pm 0.413 \,\text{kN}$$
(3.5)

Anders als bei den Hydraulikzylindern kommt es beim Versagen des Prüfkörpers zu keinem weiteren Energieeintrag (die Kräfte aus der Rückstellung der elastischen Verformungen von der Fahrtraverse sind marginal). Der Restquerschnitt bleibt daher weitgehend erhalten.

#### 3.4 Probenahme

Bei der Entnahme der Probstücke aus den zu untersuchenden Mauerziegeln unterscheidet sich die Vorgehensweise je nach Prüfserie und wird im Folgenden genauer erläutert. Graf et al. [3] schreiben, dass auf die Probenahme und den Probentransport besondere Aufmerksamkeit zu richten ist, um auch eine verbindliche Aussage über die Eigenschaft und Güte dieser Stoffe treffen zu können. Demnach wird auf einen sorgsamen und einheitlichen Umgang mit den Proben geachtet. Der Probentransport von der Entnahmestelle zum eigentlichen Prüfstand erfolgt im Probekoffer mit ausgekleideten Kammern, um etwaige Erschütterungen zu dämpfen.

#### 3.4.1 Prüfserie A

Von jedem Vollmauerziegel sollen mehrere Zylinder zur Bestimmung der normierten vertikalen Steindruckfestigkeit und möglichst viele plattenförmige Scherben unterschiedlicher Dicke zur Bestimmung der Stempeldruckfestigkeit gewonnen werden. Aufgrund der begrenzten geometrischen Abmessungen  $(l_u/b_u/h_u = 250/120/65 \text{ mm})$  des Normalformat Mauerziegels, wie er in Abb. 3.6a schematisch dargestellt ist, muss die Anordnung der zu entnehmenden Komponenten gründlich überlegt werden. Die ÖNORM EN 772-1 [24], welche die Bestimmung der Druckfestigkeit für Mauersteine regelt, sieht eine Mindestbreite bzw. einen Mindestdurchmesser von 50 mm des Probekörpers vor. Für das verwendete Nass-Bohrkerngerät zur Entnahme der Zylinder wird daher eine Bohrkrone gewählt, die einen Innendurchmesser von 50 mm aufweist. Der maßgebliche Außendurchmesser zur Planung der Entnahmestellen beträgt allerdings 58 mm. Bei tangentialer Anordnung können, wie in Abb. 3.6b dargestellt, aus einer Hälfte des Mauerziegels vier volle Bohrkerne normal zur Lagerfläche gewonnen werden.



Abb. 3.6: Schematischer Ablauf der Prüfkörpervorbereitung aus Normalformat Mz

Der verbliebene Teil des Vollmauerziegels dient nun zur Entnahme von Scheiben unterschiedlicher Dicke  $t_{\rm s}$ . Dies erfolgt mit einer Steinkreissäge im Nassschneideverfahren. Hier ist zu beachten, dass die zur Bestimmung der Stempeldruckfestigkeit angewendeten kreisrunden Druckstempel an den Belastungsflächen Durchmesser von 20 mm aufweisen. Daher dürfen weder Länge noch Breite der Scheiben diesen Wert unterschreiten. Zuerst werden die angrenzenden Bereiche zu den Kernbohrungen und zur Stirnfläche entfernt, um ebene Randflächen herzustellen. Das abgeglichene Stück wird daraufhin parallel zur Läuferfläche in drei Streifen von je 40 mm abzüglich der Dicke des Sägeblattes von 2 mm geteilt, wie in Abb. 3.6c ersichtlich.

Abschließend werden unterschiedlich dicke Scherben aus den Streifen geschnitten (siehe Abb. 3.6d). Beim entwickelten Verfahren soll anhand der horizontal geprüften Stempeldruckfestigkeit auf die vertikale Scherbendruckfestigkeit geschlossen werden. Daher ist hier die Berücksichtigung der Belastungsrichtung von besonderer Bedeutung. Die Prüfung der präparierten Scherben erfolgt parallel zur Lagerfläche, weshalb diese orthogonal zur Längsachse des Mauersteins geschnitten werden. Da sich die meisten Stegdicken von Hochlochziegeln in einem Bereich von 5 mm bis 25 mm befinden, dient dieses Intervall auch als Vorgabe für die präparierten Ziegelscherben. Bei den Vorversuchen wird speziell auf eine kontinuierliche Bandbreite geachtet und die unterschiedlichen Dicken werden in Millimeter-Schritten entnommen. Aufgrund der nicht exakt einstellbaren Schnittlinie der Steinkreissäge ist dies jedoch nur bedingt bzw. näherungsweise möglich. Zudem ist die Streuung der Stempeldruckfestigkeiten bei Scherben unterschiedlicher Dicken nicht erfassbar. Demzufolge ist es sinnvoller, mindestens drei Scherben ähnlicher Dicke zu entnehmen, um deren Prüfwerte vergleichen zu können. Die Schrittgröße wird theoretisch mit 2,5 mm festgelegt, sodass sich die entnommenen Scherbendicken  $t_s$  an folgenden Werten orientieren:

 $t_{\rm s} \in [5,0 \mid 7,5 \mid 10,0 \mid 12,5 \mid 15,0 \mid 17,5 \mid 20,0 \mid 22,5 \mid 25,0] \ \rm mm$ 

#### 3.4.2 Prüfserie B

Die Probekörper der Prüfserie B werden auf die gleiche Weise wie in der Prüfserie A gewonnen und unterscheiden sich ausschließlich in der darauf anschließenden Oberflächenbehandlung. Diese erfolgt hier durch ein Abgleichen mit einer Zementausgleichsschicht, deren Herstellung in Abschnitt 3.5 beschrieben wird. Der hierfür verwendete Blitzzement stammt von der Firma knauf.

Da für den Blitzzement keine Festigkeit angegeben ist, soll diese an selbst hergestellten Würfeln ermittelt werden. Hierfür kommt eine Holzschalung für Würfel mit einer Seitenlänge von 50 mm zum Einsatz, die mit einem geringen Ölfilm bestrichen wird. Die Mischung erfolgt nach Herstellerangaben mit ungefähr 20 ml Wasser pro 100 g Zement. Da die Verarbeitungszeit nur vier Minuten beträgt, muss der Zement für jeden Würfel separat angerührt werden. Mit einer Spachtel wird die angerührte Masse in die Schalung kontinuierlich eingebracht und durch Stampfen und Rütteln verdichtet. Die Proben härten bei Raumtemperatur 28 Tage aus und werden nicht im Trockenschrank konditioniert.

#### 3.4.3 Prüfserie C

Für die baustoffspezifischen Versuche der Prüfserie C werden jeweils zwei Bohrkerne aus insgesamt 15 unterschiedlichen Hochlochziegeln (HLz) orthogonal zur Läuferfläche entnommen. Der eine Bohrkern wird jeweils im Randbereich entlang einer Stirnfläche angesetzt, wohingegen der andere der Mitte entstammt. Dies ist in Abb. 3.7 schematisch dargestellt. Beim angewendeten Trockenbohrverfahren lassen sich die Bohrkerne relativ zügig aus den Mauerziegeln entnehmen. Am Bohrkerngerät ist eine Absaugvorrichtung angeschlossen, welche anfallenden Staub durch die Bohrkrone direkt absaugt. Aufgrund der Lochkanäle und der damit gewährleisteten Frischluftzufuhr sowie der langsam gewählten Vortriebsgeschwindigkeit erreicht die Bohrkrone keine hohen Temperaturen.

Für die Entnahme wird eine Bohrkrone mit einem Innendurchmesser von 98 mm gewählt, wobei der Bohrkerndurchmesser  $d_{\rm BK}$  aufgrund von Vibrationen bei der Bohrung etwas geringer ausfällt und zwischen 94 mm und 96 mm schwankt. In der praktischen Anwendung des Verfahrens ist keine Durchdringung des Hochlochziegels vorgesehen, um keine durchgehenden Löcher in der
Wand zu hinterlassen. Die Kerntiefe soll jedoch mindestens bis zur Hälfte der Mauersteinbreite  $w_u$  reichen. Aufgrund der einfacheren Handhabung und des fehlenden Mauerwerkverbands werden die Bohrkerne aus den einzelnen Hochlochziegeln durch den gesamten Stein geführt, sofern sie zwischenzeitlich nicht abreißen. Dies hat keine Auswirkungen auf den Prüfwert der Stempeldruckfestigkeit, aber auf die Bestimmung des Lochanteils nach Kapitel 5. Daher wird für die Analyse des Lochbildes nur die Hälfte des jeweiligen Bohrkerns betrachtet, um die Auswertung an die Bedingungen in Bestandsmauerwerk anzupassen.



Abb. 3.7: Schematischer Ablauf der Bohrkernentnahme aus den Hochlochziegeln

Bei der Probenahme hat sich eine Vortriebsgeschwindigkeit von 5 cm/min als günstig erwiesen. Bohrkerne aus Mauersteinen mit Stegdicken  $t_w > 5 \text{ mm}$  lassen sich damit problemlos entnehmen ohne zu zerfallen. Natürlich ist dies maßgeblich vom Abstand der Stege und dem Aufbau des Lochbildes abhängig. Bei Stegdicken  $t_w \leq 5 \text{ mm}$  reißt der Bohrkern oftmals ab und lässt sich nicht mehr zur Gänze entnehmen. Es empfiehlt sich hier, die Drehzahl und speziell die Vortriebsgeschwindigkeit beim Bohren zu reduzieren, um möglichst große Kernstücke zu gewinnen. Ungleichförmig abgerissene Bohrkerne werden nachträglich gesägt und begradigt, um die Geometrie leichter zu erfassen.

Aus den Steinen HLz 7 und HLz 20 lassen sich aufgrund der Lochbildgeometrie keine durchgehenden Bohrkernstücke aus der Mitte entnehmen. Dies ist bei HLz 7 auf die diagonalen, sehr dünnen Stege von 3 mm bis 4 mm zurückzuführen. Bei HLz 20 finden sich hingegen überproportionale Lochgrößen, welche für eine Befüllung mit Dämmstoffen vorgesehen sind. Hier wäre eine größere Bohrkrone erforderlich, um einen zusammenhängenden Kern gewinnen zu können. Beide Lochbilder entsprechen jüngeren Entwicklungen.

Darauf folgt die Bestimmung des Lochanteils an den Bohrkernen, die in Kapitel 5 detailliert beschrieben ist. Im Nassschneideverfahren werden die Bohrkerne anschließend in prismatische Kleinprüfkörper zerschnitten. Es wird darauf geachtet, dass die Seitenlängen eine Mindestabmessung von 40 mm aufweisen. Zudem wird eine möglichst große Spannweite unterschiedlicher Scherbendicken  $t_s$  angestrebt. Bei den untersuchten Steinen sind die Längsstege meistens 5 mm bis 10 mm und die Außenstege bis zu 15 mm dick. Verglichen zu Prüfserie A ist die untere Hälfte des Intervalls  $t_s \in [5; 25]$  damit abgedeckt. Problematisch erweist sich hingegen die Gewinnung von Scherben mit größeren Dicken. Zudem muss das Abschleifen der Oberflächen eingerechnet werden, weshalb sich die Probendicke noch reduziert.

# 3.5 Prüfkörpervorbereitung

Vor der Druckfestigkeitsprüfung sind die Proben gemäß ÖNORM EN 772-1 [24] vorzubereiten. Dies umfasst die Oberflächenbehandlung sowie die Konditionierung und erfolgt für alle Prüfkörper einheitlich. Zudem werden alle Proben nach einem eigenen alphanumerischen Bezeichnungssystem beschriftet, um eine nachvollziehbare einheitliche Zuordnung zu garantieren.

## 3.5.1 Bezeichnung der Proben

Die Nummerierung der entnommenen Proben erfolgt mit einer Zylindernummer bzw. Scherbennummer, welche jeweils die Steinnummer beinhalten. Zudem wird ein Kürzel vorangestellt, das die Steinart des Entnahmesteins kennzeichnet. Die Begrifflichkeiten werden nachstehend genauer erläutert und in Tab. 3.5 exemplarisch vorgezeigt. Die Beschriftung der einzelnen Komponenten erfolgt unmittelbar nach der Probenahme, um eine eindeutige Zuordnung zu gewährleisten und beinhaltet kein weiteres Kriterium, wie z. B. der Größe nach aufsteigend, da die geometrischen Abmessungen erst nach der Oberflächenbehandlung und Konditionierung der Proben bestimmt werden können.

- Steinart: Bei der Versuchsdurchführung wird zwischen den zur Verwendung kommenden Mauerziegelarten Mz, KMz und HLz unterschieden. Die Abkürzungen beziehen sich auf die in der DIN 105-100, Abschnitt 5.1.3 [16] festgelegten Kurzzeichen für HD-Ziegel. Hier wird bewusst die deutsche Norm gewählt, da sie eine differenziertere Unterscheidung als die österreichische Kennzeichnung nach ÖNORM B 3200 [20] erlaubt. Die Würfel aus Blitzzement bekommen als Kürzel ein CEM vorangestellt.
- Steinnummer: Die Mauersteine, aus welchen die Proben entnommen werden, sind fortlaufend in chronologischer Reihenfolge der Probenahme nummeriert. Es wird darauf geachtet, dass die Steinnummer von Mauerziegeln mit modifizierten Eigenschaften aufeinander folgen. Jene beiden Mauersteine, deren Scherben mit einer Zementausgleichsschicht geprüft werden, sind mit den Steinnummern 07 und 08 besetzt. Die Steinnummer wird immer zweistellig geführt.
- **Zylindernummer:** Da maximal vier Zylinder aus einem Vollmauerziegel entnommen werden, genügt eine einstellige Zahl zu deren Unterscheidung. Die Nummerierung setzt sich somit aus der Steinnummer und der zusätzlichen Ziffer zu einer dreistelligen Zahl zusammen.
- **Scherbennummer:** Die Scherbennummer wird inklusive vorangestellter Steinnummer vierstellig geführt. Somit lässt sich die Gestalt des Probekörpers anhand der Anzahl an Ziffern eindeutig herauslesen.

## 3.5.2 Oberflächenbehandlung

Da die Beschaffenheit der Druckfläche den Prüfwert der Druckfestigkeit maßgeblich beeinflusst, wird bei der Prüfkörpervorbereitung speziell darauf geachtet, dass die zu belastenden Flächen der Prüfkörper den Anforderungen an Ebenheit und Planparallelität genügen. Diese sind in der ÖNORM EN 772-1 [24] zur Prüfung der Mauersteindruckfestigkeit, als auch in der DIN 18555-9 [17] zur Prüfung der Stempeldruckfestigkeit formuliert.

| Steinart | Steinnummer | $Zylindernummern^{(1)}$ | Scherbennummern |
|----------|-------------|-------------------------|-----------------|
| Mz       | 12          | 121                     | 1201            |
|          |             | 122                     | 1202            |
|          |             | 123                     | 1203            |
|          |             | 124                     | 1204            |
|          |             |                         | :               |
|          |             |                         |                 |

Tab. 3.5: Beispiel des Nummerierungssystems am Mauerstein VZ 12

<sup>(1)</sup> Nur bei Vollmauerziegeln

Eine Führungsleiste, die orthogonal zum Sägeblatt steht, erlaubt ein planparalleles Schneiden mit der Steinkreissäge, sofern mindestens eine geradlinige Kante am Probekörper vorhanden ist. Durch langsames Schneiden und mehrmaliges Vorbeiführen des Sägeblattes entlang der Schnittfläche lässt sich die Ebenheit bereits relativ genau herstellen. Dennoch werden weitere Maßnahmen gesetzt, die im Folgenden genauer beschrieben stehen.

- **Abschleifen:** Die Proben werden hierfür an einer Führungsleiste eingespannt, die rechtwinkelig zu einem Tellerschleifer orientiert ist. Das verwendete Korund-Schleifpapier weist eine Körnung von K180 (ungefähr 90 µm Korngröße) auf, die ein dosiertes Abschleifen ermöglicht. Hier ist speziell darauf zu achten, dass der Probekörper nicht zu stark angedrückt wird und die Führung exakt eingestellt ist, da sonst ein ungleichmäßiger Abrieb die Folge ist. Die Höhe des Probekörpers wird durch die Behandlung reduziert, weshalb die Maße erst danach zu nehmen sind.
- **Abgleichen:** Zum Ausgleich von Unebenheiten erlaubt die Norm anstelle des Abschleifens auch ein Abgleichen der Oberfläche mit Hilfe eines Mörtels. Es ist unbedingt erforderlich, dass die Ausgleichsschicht eine höhere Druckfestigkeit als die der Prüfkörper aufweist, damit das Versagen auch eindeutig dem Material des Prüfkörpers zugeordnet werden kann. Die zu erwartende horizontale Druckfestigkeit von gewöhnlichen Ziegeln liegt ungefähr bei 15 N/mm<sup>2</sup>. Eine Ausgleichsschicht aus Gips (Druckfestigkeit von etwa 4 N/mm<sup>2</sup>), wie es die DIN 18555-9, Abschnitt 5.1.3 [17] für die Stempeldruckprüfung von Mauermörtel erlaubt, ist demnach nicht möglich. Aus praktischen Gründen kommt Blitzzement zur Anwendung, der möglichst rasch abbindet. Zur Herstellung der ebenen Druckflächen wird eine geölte Plexiglasscheibe als Schalung verwendet. Die Forderung einer maximalen Dicke der Ausgleichsschicht von 1 mm lässt sich an den Ziegelscherben jedoch nicht einhalten. In dieser Arbeit soll das Abgleichen mit Blitzzement lediglich an einer kleinen Menge von Prüfkörpern erprobt werden, weshalb die Behandlung ausschließlich an den Scherben des Mz 07 und des Mz 08 (Prüfserie B) durchgeführt wird.
- Kartonzwischenlage: Die Maßnahme einer Zwischenlage bei der Versuchsdurchführung entspricht keiner normativen Vorgabe. Sie wird jedoch in mehreren Literaturquellen empfohlen, wie z. B. von Graf et al. [3]. Daher werden bei allen Druckversuchen, sowohl an den Zylindern, als auch an den Scherben, Kartonzwischenlagen verwendet. Diese sind ober- und unterseitig an den Kontaktflächen des Probekörpers zur Druckprüfmaschine angeordnet. Hierfür kommt ein Karton mit einer Stärke von 0,9 mm und einer Trockenrohdichte von 0,68 g/cm<sup>3</sup> zur Anwendung. Die Maßnahme hat zum Ziel, feine Unebenheiten auszugleichen und die Querdehnungsbehinderung zu reduzieren. Aufgrund der starken Kompression und

der Zerstörung des Kartons mit dem Versuchskörper sind die Zwischenlagen nach jeder Versuchsdurchführung zu entfernen und durch neue zu ersetzen.

An den Bohrkernen aus den Vollmauerziegeln wird die Mauersteindruckfestigkeit bestimmt. Die ÖNORM EN 772-1 [24] verlangt, dass die Proben nach der Oberflächenbehandlung eine Höhe von 40 mm und ein Höhen-zu-Breiten-Verhältnis von 0,4 nicht unterschreiten. Anderenfalls ist ein zusammengesetzter Prüfkörper herzustellen. Die anfängliche Höhe der Zylinder von 65 mm wird bei der Oberflächenbehandlung um 5 mm bis 15 mm reduziert, der Durchmesser beträgt einheitlich circa 50 mm. Damit sind die Forderungen für die Zylinder aus den Vollmauerziegeln in jedem Fall erfüllt.

#### 3.5.3 Konditionierung und Vermessung

Die Konditionierung der Prüfkörper vor der Prüfung erfolgt gemäß ÖNORM EN 772-1, Abschnitt 7.3.2 [24] bis zum Erreichen des lufttrockenen Zustands. Die Prüfkörper werden dazu 30 h bei  $(105 \pm 5)^{\circ}$ C im Klimaschrank getrocknet und anschließend mindestens 4 h bei Raumtemperatur abgekühlt. Der Messwert der Druckfestigkeit wird daher nicht mehr umgerechnet, sondern ausschließlich beschrieben, mit Hilfe des Formfaktors  $\delta_i$  normiert. Nach der Konditionierung werden die Probekörper gewogen und alle erforderlichen Naturmaße gemessen.

# 3.6 Versuchsdurchführung

Keramische Werkstoffe, wie der Ziegel, weisen ein sprödes Materialverhalten auf. Das Versagen ist dabei eindeutig durch einen plötzlichen Bruch erkennbar. Der Probekörper entzieht sich der Auflast durch starke irreversible Verformungen, was in der Spannungs-Dehnungslinie durch einen abrupten Spannungsabfall erkennbar ist. Meist zeichnen sich vor dem Versagen Risse an der Oberfläche ab, die sich bei weiterer Laststeigerung aufweiten und ausbreiten. Mit dem ersten Riss geht ein Stagnieren der Druckkraftaufnahme einher. Dies zeigt sich durch einen Knick in der Spannungs-Dehnungslinie, womit der Elastizitätsmodul deutlich abnimmt. Die weitere Laststeigerung führt zu stärkeren Verformungen als zuvor. Druckversuche an Mauerziegeln und ihren Teilen sind lastgesteuert durchzuführen. Der Druck wird demnach ohne Berücksichtigung von Verformungen bis zum Erreichen eines Maximalwertes kontinuierlich gesteigert. Die Norm ÖNORM EN 772-1 [24] besagt in einer Anmerkung, dass die aufgebrachte Last bei einigen Prüfkörpern mehrmals schwanken kann, ehe die Höchstlast beim Bruch erreicht wird. Hier muss der Druck bis zum Erreichen eines neuen Maximalwertes gesteigert werden.

## 3.6.1 Druckversuche

Insgesamt werden 84 Zylinder aus 21 Vollmauerziegeln und 7 Würfel aus Blitzzement der Druckprüfung unterzogen. Die Belastung der Zylinder erfolgt in Hauptbelastungsrichtung 1-1. In Abb. 3.8 sind Fotos einer solchen Zylinderprobe unmittelbar nach dem Einbau in die Prüfvorrichtung sowie im Bruchzustand zu sehen. Bei den Würfeln aus Blitzzement liegt ein isotropes und damit richtungsunabhängiges Materialverhalten vor. Die Orientierung der Probekörper in der Schalung wird beim Einbau in die Druckprüfmaschine beibehalten. Abb. 3.9 zeigt die Prüfung eines Würfels aus Blitzzement und das zugehörige Bruchbild.



Probe vor Versuchsbeginn



Probe nach dem Bruch



Probe vor Versuchsbeginn



Probe nach dem Bruch

Abb. 3.9: Fotografien der Versuchsdurchführung an der Probe CEM 01

Abb. 3.8: Fotografien der Versuchsdurchführung an der Probe Mz 094

## 3.6.2 Stempeldruckversuche

Das Probenrepertoire der Stempeldruckversuche umfasst 430 Scherben aus Vollmauerziegeln, 284 Scherben aus Hochlochziegeln und somit insgesamt 714 Kleinprüfkörper. Bei der Stempeldruckprüfung werden die Scherben orthogonal zur Hauptbelastungsrichtung geprüft. Der Einbau der Probe zwischen den Stempeln und der Bruchzustand sind in Abb. 3.10 exemplarisch an einem Scherben aus dem Stein Mz 05 zu sehen. Am Restquerschnitt des Scherbens Mz 1619 in Abb. 3.11 ist an der Oberfläche der Probe ein deutlicher Abdruck des Stempels erkennbar und davon ausgehende radiale Risse in den unbelasteten Rändern des Scherbens. Bei der weiteren Zerteilung des Restquerschnittes ist der zylindrische Druckkörper sichtbar, der zwischen den Druckstempeln stärker komprimiert wird als das umliegende Material.

Von den 430 Scherben aus Vollmauerziegeln werden 43 Stück (aus den Steinen Mz 07 und Mz 08) mit einer Zementausgleichsschicht versehen und in der Druckprüfmaschine mit den ENERPAC-Hydraulikzylindern geprüft. Ein Beispiel des Prüfvorganges der so vorbereiteten Scherben ist in Abb. 3.12 ersichtlich.









Abb. 3.10: Fotografien der Versuchsdurchführung an der Probe Mz 0508



Restquerschnitt mit Radialrissen



Aufgelöster Restquerschnitt

Abb. 3.11: Fotografien der nach dem Versuch entnommenen, gebrochenen Probe Mz 1619



Probe vor Versuchsbeginn



Probe nach dem Bruch

Abb. 3.12: Fotografien der Versuchsdurchführung an der Probe $\operatorname{Mz}$ 0811

# Kapitel 4

# Auswertung der materialspezifischen Versuche

Die materialspezifischen Versuche umfassen die Prüfserien A und B, bei welchen die Probekörper aus Vollmauerziegeln gewonnen werden. Anhand der Druckversuche an den Zylindern lässt sich die mittlere normierte vertikale Steindruckfestigkeit für jeden Vollmauerziegel separat bestimmen. Die Ziegelscherben werden hingegen einer Stempeldruckprüfung unterzogen. Die Festigkeitswerte aus den unterschiedlichen Versuchsdurchführungen sollen in Bezug zueinander gestellt werden, um letztendlich aus der horizontalen Stempeldruckfestigkeit auf die normierte vertikale Scherbendruckfestigkeit, die am Vollmauerziegel mit der normierten vertikalen Steindruckfestigkeit ident ist, schließen zu können. Aufgrund des umfassenden Probenrepertoirs und der damit einhergehenden großen Anzahl an Daten werden die Versuchsergebnisse nur auszugsweise gezeigt. Eine detaillierte Auflistung und Darstellungen der Messdaten sind dem Anhang A und dem Anhang B zu entnehmen.

# 4.1 Normierte vertikale Steindruckfestigkeit

Die gemessene Maximalkraft  $F_{p,\max,i}$  wird durch die jeweilige Grundfläche des Prüfkörpers  $A_{0,i}$  dividiert und ergibt die Steindruckfestigkeit am Probekörper,  $\overline{f}_{b,i}$ . An jedem der vier entnommenen Bohrkerne eines Vollmauerziegels erfolgt eine individuelle Bestimmung des Formfaktors  $\delta_i$ anhand der jeweiligen Abmessungen. Die nach Formel (2.2) erhaltenen normierten Steindruckfestigkeiten  $f_{b,i}$  werden anschließend innerhalb eines Steins gemittelt. Bei allen Vollmauerziegeln ergibt sich die mittlere normierte Steindruckfestigkeit  $f_b$  somit aus jeweils vier Werten.

Die zylindrischen Bohrkerne der Vollmauerziegel Mz 01 bis Mz 10 werden mit den ENERPAC-Hydraulikzylindern geprüft. Die normierten Steindruckfestigkeiten der Prüfserie A und deren Mittelwerte sind in Abb. 4.1 dargestellt. Es zeigt sich, dass die Festigkeiten der ersten sechs Probesteine, die aus unterschiedlichen Baumärkten stammen, höhere Festigkeiten und Streuungen aufweisen als jene aus der Charge von *Wienerberger Ziegelindustrie GmbH*. In Abb. 4.2 sind die Ergebnisse aus der Prüfung mit der INSTRON-Druckprüfmaschine zu sehen. Sie umfasst neben den Vollmauerziegeln Mz 11 bis Mz 16 auch die Vollmauerklinker KMz 17 bis KMz 21. Hier lässt sich deutlich erkennen, dass die normierten Steindruckfestigkeiten der Klinkersteine wesentlich größere Schwankungsbereiche als die gewöhnlichen Mauerziegel aufweisen.

### Vergleich der Prüfvorrichtungen

Die Steine Mz 07 bis Mz 16 sind aus einer Charge entnommen, womit die normierten Steindruckfestigkeiten untereinander gemittelt werden dürfen. Die Mittelwertbildung erfolgt nach Unterscheidung der eingesetzten Druckprüfmaschine. Somit werden alle Zylinder aus den Vollmauerziegeln Mz 07 bis einschließlich Mz 10 in einem Kollektiv der Prüfvorrichtung ENERPAC



Abb. 4.1: Steindruckfestigkeiten geprüft mit ENERPAC



Abb. 4.2: Steindruckfestigkeiten geprüft mit INSTRON

zusammengefasst. Die restlichen sind der Prüfvorrichtung INSTRON zuzuordnen. Eine Gegenüberstellung der Mittelwerte  $f_{\rm b}$  und Standardabweichungen  $s(f_{{\rm b},i})$  ist in Tab. 4.1 dargestellt. Wie bei der separaten Prüfserie in Kapitel 2 zeigt sich auch hier nur ein sehr geringer Unterschied, womit der Einfluss der verwendeten Prüfvorrichtung auf die Steindruckfestigkeit vernachlässigbar gering ist.

 Tab. 4.1: Gegenüberstellung der Mittelwerte aller Zylinder aus der Charge von Wienerberger

 Ziegelindustrie GmbH und kategorisiert nach verwendeter Druckprüfmaschine

|         | n<br>[-] | $f_{\rm b}$ $[{ m N/mm^2}]$ | $s(f_{\mathrm{b},i})$<br>[N/mm <sup>2</sup> ] |
|---------|----------|-----------------------------|-----------------------------------------------|
| Enerpac | 16       | $21,\!38$                   | $\pm 2,79$                                    |
| INSTRON | 24       | $22,\!06$                   | $\pm 2,36$                                    |

#### Zementdruckfestigkeit

Die 28 Tage-Druckfestigkeiten der hergestellten Würfel aus Blitzzement werden ebenfalls mit Formfaktoren  $\delta_i$  der ÖNORM EN 772-1 [24] auf äquivalente Druckfestigkeiten an Würfeln mit Seitenlängen von 100 mm normiert. Die Ergebnisse sind in Tab. 4.2 aufgelistet. Die gemittelte normierte 28 Tage-Druckfestigkeit  $f_{\rm cm}$  ergibt sich zu 17,43 N/mm<sup>2</sup> mit einer Standardabweichung von  $\pm 1,77$  N/mm<sup>2</sup>.

Tab. 4.2: Normierte Druckfestigkeiten der Probekörper aus Blitzzement

| $[N/mm^2]$ | $f_{\rm c,1}$ | $f_{\mathrm{c},2}$ | $f_{\mathrm{c},3}$ | $f_{\mathrm{c},4}$ | $f_{\rm c,5}$ | $f_{ m c,6}$ | $f_{ m c,7}$ | $f_{\mathbf{cm}}$ | $s(f_{\mathrm{c},i})$ |
|------------|---------------|--------------------|--------------------|--------------------|---------------|--------------|--------------|-------------------|-----------------------|
| CEM        | $16,\!91$     | $15,\!80$          | $19,\!95$          | $17,\!08$          | $18,\!53$     | 21,72        | 20,28        | $17,\!43$         | 1,77                  |

# 4.2 Horizontale Stempeldruckfestigkeiten der Prüfserie A

Die beiden Diagramme in Abb. 4.3 zeigen die Ergebnisse der Stempeldruckprüfung an den Scherben der Vollmauerziegel Mz 14 und Mz 15. Darin sind die Messwerte der horizontalen Stempeldruckfestigkeit  $f_{\rm p,St}$  der Scherbendicke  $t_{\rm s}$  gegenübergestellt. Die strichlierte Linie zeigt die zugehörige mittlere normierte vertikale Steindruckfestigkeit  $f_{\rm b}$  aus Abschnitt 4.1. Es zeigt sich, dass die Stempeldruckfestigkeit sehr stark von der Scherbendicke abhängt. Mit größer werdender Dicke konvergieren die Messergebnisse zu einem Wert, der etwa 70 % der vertikalen Steindruckfestigkeit entspricht. Dieser ist mit einer punktierten Linie gekennzeichnet. Nachdem die horizontale Steindruckfestigkeit, wie in Abschnitt 2.2 beschrieben, circa 70 % der vertikalen beträgt, stimmen die Stempeldruckfestigkeit überein. Dabei entspricht das Verhältnis der Scherbendicke zum Druckstempeldurchmesser  $t_{\rm s}/d_{\rm e} = 1$ .

Die weitaus höheren Festigkeiten von Scherben mit kleinen Dicken  $5 \text{ mm} \leq t_s \leq 10 \text{ mm}$  sind zum einen auf die steigende Querdehnungsbehinderung mit kleiner werdender Dicke und zum anderen auf *Size Effects* zurückzuführen. Zu welchem Anteil *Size Effects* den Messwert der Stempeldruckprüfung bestimmen, wird im Zuge dieser Arbeit nicht untersucht. Dazu wäre eine Reihe



Abb. 4.3: Messergebnisse der Stempeldruckprüfung am Ziegelscherben

an Prüfserien mit unterschiedlichen Druckstempeldurchmessern  $d_e$  und Probekörpergeometrien erforderlich, sodass eine Aussage über die anteilige Wirkungsweise möglich ist.

Der Vollmauerziegel Mz 04 weist einen schwarz durchgebrannten Kern auf, wie er in Abb. 4.4a an dem Reststück eines Scherben zu sehen ist. Dies führt bei den Stempeldruckversuchen zu auffällig hohen Schwankungen in der Festigkeit. In Abb. 4.4b sind die Stempeldruckfestigkeiten der Scherben zu sehen. Die schwarz durchgebrannten Scherben werden ausgeschlossen und sind im Diagramm mit roten "x" gekennzeichnet. Die verbliebenen nicht durchgebrannten Scherben aus den Randbereichen sind in ihrer Anzahl zu gering, um eine verbindliche Aussage treffen zu können. Der Stein Mz 04 wird daher von allen weiteren Auswertungen ausgeschlossen.



Abb. 4.4: Schwarz durchgebranntes Probestück aus Mz 04 und Versuchsauswertung

Die Messwerte der Scherben aus den Vollmauerklinkern verhalten sich anders, als jene der Vollmauerziegel. Diese sind in Abb. 4.5 exemplarisch an den Steinen KMz 20 und KMz 21 zu sehen. Die Stempeldruckfestigkeiten der Vollmauerklinker konvergieren mit größer werdender Scherbendicke zur vertikalen Steindruckfestigkeit. Zudem streuen die Stempeldruckfestigkeiten stärker als beim gewöhnlichen Ziegel.



Abb. 4.5: Messergebnisse der Stempeldruckprüfung am Klinkerziegelscherben

Beim Vergleich der beiden Druckprüfmaschinen ist kein Einfluss auf die Messergebnisse erkennbar. Der Datensatz wird daher gesamtheitlich betrachtet und einheitlich ausgewertet. Unter der Annahme eines linearen Zusammenhanges der mittleren vertikalen Steindruckfestigkeiten  $f_{\rm b}$  und der horizontalen Stempeldruckfestigkeiten  $f_{\rm p,St}$  lassen sich die Messergebnisse des gesamten Probenkollektivs über die dimensionslosen Relationen  $f_{\rm p,St}/f_{\rm b}$  in Abb. 4.6 darstellen. Die Punktwolke zeigt einen Trend, jedoch mit deutlichen Schwankungsbreiten, sodass ein Zusammenhang nur mit Unsicherheiten angegeben werden kann. Die Ausgleichsrechnung wird demzufolge für jeden Stein einzeln durchgeführt.



Abb. 4.6: Relationen der Stempeldruckfestigkeit zur Steindruckfestigkeit des gesamten Probenkollektivs aus Prüfserie A

#### 4.2.1 Ausgleichsrechnung

Um die Beziehung bzw. Abhängigkeit zweier Variablen mathematisch zu beschreiben, bedarf es einer Ausgleichsrechnung. Diese hat zum Ziel, von den ermittelten stichprobenartigen Messergebnissen auf die Grundgesamtheit schließen zu können. Da die Grundgesamtheit nicht bekannt ist, muss ein Lösungsansatz gesucht werden, der die Beziehung der Variablen bestmöglich widerspiegelt. Der letztendlich gewählte Lösungsansatz wird Ausgleichskurve genannt und kann nach Papula [12] in den folgenden drei Schritten ermittelt werden:

- 1. Entscheidung, welcher Funktionstyp der Ausgleichsrechnung zugrunde gelegt wird
- 2. Berechnung der Residuenquadratsumme (Summe der Abstandsquadrate)
- 3. Bestimmung der Parameter durch Gaußsches Minimierungsprinzip

Als Entscheidungsgrundlage für die Wahl des Funktionstyps ist es hilfreich, die Messergebnisse in einer Punktwolke zu visualisieren, wie es Papula [12] für einen willkürlichen Datensatz mit dem Diagramm in Abb. 4.7 veranschaulicht. Die eingezeichnete Ausgleichskurve ist eine kontinuierliche Funktion, die jedem Wert x auf der Abszisse einen Funktionswert y = f(x) auf der Ordinate zuordnet. Es bedarf nun eines objektiven Gütekriteriums zur Bestimmung der Parameter, welche die Ausgleichskurve optimal in den Datensatz einpassen. Prinzipiell gilt, je kleiner die vertikalen Abstände  $v_i$  zwischen den Messpunkten  $P_i = (x_i, y_i)$  und den entsprechenden Funktionswerten  $f(x_i)$  sind, umso besser beschreibt die Funktion den Zusammenhang. Daher ist es sinnvoll, diese Abstände zur Beurteilung der Güte der Ausgleichsrechnung heranzuziehen. Eine lineare Interpolation zum jeweils nächsten Punkt wäre unter reiner Betrachtung der Abstände  $v_i$  die günstigste Ausgleichskurve, entspricht jedoch kaum dem tatsächlichen physikalischen Zusammenhang. Aus diesem Grund ist der Kurvenverlauf fortwährend auf Plausibilität zu prüfen und sind Bedingungen an die Stetigkeit und Monotonie der Lösungsansätze zu stellen.

Bei der *Gaußschen Methode der kleinsten Quadrate* wird die Residuenquadratsumme (Sum of Squares due to Error, SSE) oder Summe der Abstandsquadrate nach Formel (4.1) berechnet. Die Parameter der Ausgleichskurve sind so zu bestimmen, dass SSE minimal wird.



**Abb. 4.7:** Exemplarische Darstellung von Messpunkten  $P_i = (x_i, y_i)$  mit Ausgleichskurve [12]

SSE = 
$$\sum_{i=1}^{n} v_i^2 = \sum_{i=1}^{n} (y_i - f(x_i))^2$$
 (4.1)

Nun wird eine mathematische Beziehung zwischen den Stempeldruckfestigkeiten  $f_{p,St}$  und den zugehörigen Scherbendicken  $t_s$  gesucht. Die Scherbendicke lässt sich eindeutig und sehr genau bestimmen. Damit eignet sie sich als unabhängige Variable, die auf der Abszisse aufgetragen wird. Unter der Annahme, dass die Stempeldruckfestigkeit maßgeblich von der Scherbendicke abhängt, geht  $t_s$  als einzige unabhängige Variable in die Ausgleichsrechnung ein. Es handelt sich daher um eine sogenannte einfache Regressionsrechnung.

Für die abhängige Variable  $f_{p,St}$  ist nun ein Funktionstyp zu finden. Die Wahl des Funktionstyps ist der entscheidende Schritt in der Ausgleichsrechnung. Mit zunehmender Anzahl an Parametern lässt sich die Ausgleichskurve zwar meist besser einpassen, doch steigt die Komplexität und es sinkt die Robustheit der Funktion gegenüber Ausreißern. Daher sollte nach Papula [12] generell eine geringe Anzahl an Parametern für die Ausgleichskurve angestrebt werden. Innerhalb des Bereichs der untersuchten Probendicken 5 mm  $\leq t_s \leq 25$  mm sind folgende drei Bedingungen an den Funktionstyp gestellt:

- 1. Die Funktion muss monoton fallend sein.
- 2. Die Funktion muss konvex sein.
- 3. Die Funktion darf keine Unstetigkeitsstellen aufweisen.

Die folgenden Lösungsansätze in Formel (4.2) mit den variablen Parametern  $p_i$  werden in der Ausgleichsrechnung erprobt und gegenübergestellt.

$$f_{1}(t_{s}) = p_{1} \cdot \exp(p_{2} \cdot t_{s}) + p_{3} \cdot \exp(p_{4} \cdot t_{s})$$

$$f_{2}(t_{s}) = \frac{p_{1} \cdot t_{s} + p_{2}}{t_{s} + p_{3}}$$

$$f_{3}(t_{s}) = p_{1} \cdot t_{s}^{p_{2}} + p_{3}$$

$$f_{4}(t_{s}) = \frac{p_{1} \cdot t_{s}^{p_{2}}}{p_{3} \cdot t_{s}^{p_{4}} + p_{5}}$$
(4.2)

Die Auswertung erfolgt individuell für jeden Stein und ist exemplarisch für den Vollmauerziegel Mz 14 in Abb. 4.8 dargestellt. Die zugehörigen Parameter und Residuenquadratsummen SSE sind in Tab. 4.3 aufgelistet. Die kleinste Residuenquadratsumme weist der Lösungsansatz  $f_3(t_s)$  auf.

|                    | $f_1(t_s)$ | $f_2(t_s)$ | $f_3(t_{\rm s})$ | $f_4(t_s)$   |
|--------------------|------------|------------|------------------|--------------|
| $n(\underline{p})$ | 4          | 3          | 3                | 5            |
| $p_1$              | 426,00     | 2,93       | $1763,\!00$      | $-2143,\!00$ |
| $p_2$              | -0,43      | $145,\!50$ | $-2,\!10$        | $0,\!15$     |
| $p_3$              | $22,\!00$  | -2,70      | $9,\!24$         | -103,70      |
| $p_4$              | -0,03      |            |                  | $0,\!47$     |
| $p_5$              |            |            |                  | $183,\!60$   |
| SSE                | $455,\!51$ | 451,48     | 446,88           | 495,74       |

Tab. 4.3: Gegenüberstellung unterschiedlicher Funktionstypen exemplarisch für Mz 14



Abb. 4.8: Veranschaulichung der unterschiedlichen Lösungsansätze exemplarisch für Mz 14

Es zeigt sich bei allen Steinen, dass die Exponentialfunktion  $f_3(t_s)$  den Zusammenhang zwischen der Scherbendicke  $t_s$  und der Stempeldruckfestigkeit  $f_{p,St}$  am besten beschreibt. Sie wird daher für die Ausgleichsrechnung als Funktionstyp gewählt und in weiterer Folge wie in Formel (4.3) angeschrieben.

$$f_{\rm St}(t_{\rm s}) = a \cdot t_{\rm s}^{\ b} + c \tag{4.3}$$

$$f_{\rm St}(t_{\rm s}) = a \cdot t_{\rm s}^{-2} + c = \frac{a}{t_{\rm s}^2} + c \tag{4.4}$$

Nun folgt eine Untersuchung der Parameter a, b und c, um Abhängigkeiten oder Konstanten zu finden, die eine Reduktion der variablen Parameter erlauben. Mit der Festlegung des Parameters b = -2, der die Krümmung der Funktion bestimmt, ergibt sich eine relativ robuste Ausgleichskurve nach Formel (4.4). Sie ist geringfügig ungenauer als die Ursprungsfunktion  $f_3(t_s)$ , aber dennoch genauer als die anderen Lösungsansätze  $f_1, f_2$  und  $f_4$ . Sie besitzt nur die zwei variablen Parameter a und c und lässt sich in dieser Form an allen untersuchten Steinen anwenden.

Zudem wird eine Nebenbedingung in Formel (4.5) für den Parameter c formuliert. Die Begrenzung durch einen Minimalwert soll ein Abdriften der Funktion bei einseitigen Datensätzen verhindern, bei denen ausschließlich Scherbendicken von 5 mm  $\leq t_{\rm s} \leq 15$  mm vorliegen. Dies ist speziell bei Probekörpern aus Hochlochziegeln relevant, deren maximale Scherbendicke durch die vorhandene Stegdicke begrenzt ist. In der Analyse hat sich gezeigt, dass der Minimalwert des Parameters cvom Parameter a abhängig gemacht werden kann. Somit reduziert sich bei Tragendwerden der Nebenbedingung die Anzahl der Parameter auf den einen Parameter a. Der in Formel (4.5) angegebene Wert  $\beta = 100$  ist probabilistisch bestimmt. Er entspricht einer Empfehlung und keinem rechnerisch festgelegten Wert.

$$c_{\min} = \frac{a}{\beta}, \qquad \beta = 100 \tag{4.5}$$

#### 4.2.2 Analytische Bestimmung der Parameter

Neben numerischen Näherungsverfahren lassen sich die Parameter der Ausgleichskurve auch analytisch berechnen. Die Herleitung der Bestimmungsgleichungen wird nachstehend angeführt und orientiert sich an der Anleitung von Papula [12]. Zur besseren Übersichtlichkeit erfolgt eine Substitution von  $f_{p,St}$  und  $t_s$  nach Formel (4.6). Daraus ergibt sich die Ausgleichskurve wie in Formel (4.7) angeführt. Bei einem Datensatz mit n Messpunkten  $P_i = (x_i, y_i)$  mit  $i \in (1, 2, ..., n)$ errechnet sich die Residuenquadratsumme SSE gemäß Formel (4.9).

$$x = t_{\rm s}, \qquad y = f_{\rm p,St}$$

$$\tag{4.6}$$

$$f_{\rm St}(x) = a \cdot x^b + c, \quad b = \text{const.}$$

$$\tag{4.7}$$

$$v_i = y_i - f(x_i) = y_i - (a \cdot x_i^{\ b} + c) \tag{4.8}$$

SSE 
$$(a, c) = \sum_{i=1}^{n} v_i^2 = \sum_{i=1}^{n} \left( y_i - a \cdot x_i^b - c \right)^2$$
 (4.9)

Der kleinste Wert der Residuenquadratsumme SSE wird erreicht, wenn deren partielle Ableitungen erster Ordnung nach den variablen Kurvenparametern a und c, wie sie in den Formeln (4.10) angeführt sind, den Wert Null annehmen.

$$\frac{\partial \text{SSE}}{\partial a} = 2 \cdot \sum_{i=1}^{n} \left( -x_i^{\ b} \cdot y_i + a \cdot x_i^{\ 2b} + c \cdot x_i^{\ b} \right) \stackrel{!}{=} 0$$

$$\frac{\partial \text{SSE}}{\partial c} = 2 \cdot \sum_{i=1}^{n} \left( -y_i + a \cdot x_i^{\ b} + c \right) \stackrel{!}{=} 0$$

$$(4.10)$$

Daraus ergeben sich die sogenannten Normalgleichungen wie folgt:

$$a \cdot \left(\sum_{i=1}^{n} x_i^{2b}\right) + c \cdot \left(\sum_{i=1}^{n} x_i^{b}\right) = \sum_{i=1}^{n} x_i^{b} \cdot y_i \tag{4.11}$$

$$a \cdot \left(\sum_{i=1}^{n} x_i^{\ b}\right) + c \cdot n \qquad = \sum_{i=1}^{n} y_i \qquad (4.12)$$

Das Gleichungssystem für die zwei Kurvenparameter a und c lässt sich eindeutig lösen, wenn die Determinante D der Koeffizientenmatrix ungleich Null ist. In Formel (4.13) ist diese Bedingung für alle  $b \neq 0$  erfüllt, da die Summe der Quadrate von  $x_i^b$  immer kleiner als das Quadrat der Summe dieser Werte ist, wobei für  $x = t_s$  gilt min $(t_s) = 5$  mm. Für die Auswertung ist zudem die Berechnung der zwei Hilfsdeterminanten  $D_1$  und  $D_2$  nach Formel (4.14) und Formel (4.15) erforderlich. Zur besseren Übersichtlichkeit werden die Summationsgrenzen 1 und nnicht mehr angeschrieben.

$$D = \begin{vmatrix} \sum x_i^{2b} & \sum x_i^{b} \\ \sum x_i^{b} & n \end{vmatrix} = n \cdot \sum x_i^{2b} - \left( \sum x_i^{b} \right)^2 > 0, \qquad \forall b \in \mathbb{R} \setminus \{0\}$$
(4.13)

$$D_{1} = \begin{vmatrix} \sum x_{i}^{b} \cdot y_{i} & \sum x_{i}^{b} \\ \sum y_{i} & n \end{vmatrix} = n \cdot \sum x_{i}^{b} \cdot y_{i} - \sum x_{i}^{b} \cdot \sum y_{i}$$
(4.14)

$$D_{2} = \begin{vmatrix} \sum x_{i}^{2b} & \sum x_{i}^{b} \cdot y_{i} \\ \sum x_{i}^{b} & \sum y_{i} \end{vmatrix} = \sum x_{i}^{2b} \cdot \sum y_{i} - \sum x_{i}^{b} \cdot \sum x_{i}^{b} \cdot y_{i}$$
(4.15)

Die Kurvenparameter a und c errechnen sich nun nach der Cramerschen Regel wie folgt:

$$a = \frac{D_1}{D} = \frac{n \cdot \sum x_i^{\ b} \cdot y_i - \sum x_i^{\ b} \cdot \sum y_i}{n \cdot \sum x_i^{\ 2b} - (\sum x_i^{\ b})^2}$$
(4.16)

$$c = \frac{D_2}{D} = \frac{\sum x_i^{2b} \cdot \sum y_i - \sum x_i^{b} \cdot \sum x_i^{b} \cdot y_i}{n \cdot \sum x_i^{2b} - (\sum x_i^{b})^2}$$
(4.17)

Ein Minimum von SSE ist dann vorhanden, wenn die Determinante der *Hesse-Matrix*  $H_{SSE}$ , also jene Matrix, welche die partiellen Ableitungen zweiter Ordnung von SSE(a, c) beinhaltet, verschieden von Null ist. Mit den partiellen Ableitungen zweiter Ordnung aus Formel (4.18) wird dieses hinreichende Kriterium in Formel (4.19) nachgewiesen.

$$\frac{\partial^2 \text{SSE}}{\partial a^2} = 2 \cdot \sum_{i=1}^n x_i^{2b}, \qquad \frac{\partial^2 \text{SSE}}{\partial c^2} = 2 \cdot n, \qquad \frac{\partial^2 \text{SSE}}{\partial a \partial c} = \frac{\partial^2 \text{SSE}}{\partial c \partial a} = 2 \cdot \sum_{i=1}^n x_i^{b} \qquad (4.18)$$
$$|H_{\text{SSE}}(a,c)| = \begin{vmatrix} \text{SSE}_{aa} & \text{SSE}_{ac} \\ \text{SSE}_{ca} & \text{SSE}_{cc} \end{vmatrix} = \left(\frac{\partial^2 \text{SSE}}{\partial a^2}\right) \cdot \left(\frac{\partial^2 \text{SSE}}{\partial c^2}\right) - \left(\frac{\partial^2 \text{SSE}}{\partial a \partial c}\right)^2 =$$
$$= 4 \cdot \underbrace{\left[n \cdot \sum_{i=1}^n x_i^{2b} - \left(\sum_{i=1}^n x_i^{b}\right)^2\right]}_{D} = 4 \cdot D > 0, \qquad \forall b \in \mathbb{R} \setminus \{0\}$$

Unter der Nebenbedingung, dass  $c = \max\{a/\beta, D_2/D\}$  muss im Falle  $c = a/\beta$  die Ermittlung der Parameter erneut durchgeführt werden. Die Ausgangsfunktion in Formel (4.20) beinhaltet nun

$$f(x) = a \cdot x^b + c(a), \quad b = \text{const.}, \quad c(a) = \frac{a}{\beta} \qquad \forall \beta \in \mathbb{R}^+ \setminus \{0\}$$
 (4.20)

$$SSE(a) = \sum_{i=1}^{n} \left[ y_i - a \cdot \left( x^b + \frac{1}{\beta} \right) \right]^2$$
(4.21)

$$\frac{\partial \text{SSE}}{\partial a} = 2 \cdot \sum_{i=1}^{n} \left( -y_i \cdot \frac{1}{\beta} - x_i^{\ b} \cdot y_i + a \cdot x_i^{\ 2b} + a \cdot x_i^{\ b} \cdot \frac{2}{\beta} + a \cdot \frac{1}{\beta^2} \right) \stackrel{!}{=} 0 \tag{4.22}$$

Die Bestimmung der Parameter erfolgt somit nach den Formeln in (4.23).

$$a = \frac{\beta^2 \cdot \sum x_i^{\ b} \cdot y_i + \beta \cdot \sum y_i}{\beta^2 \cdot \sum x_i^{\ 2b} + 2 \cdot \beta \cdot \sum x_i^{\ b} + n}, \quad c = \frac{a}{\beta}, \qquad \forall \beta \in \mathbb{R}^+ \setminus \{0\}$$
(4.23)

#### 4.2.3 Bestimmtheitsmaß

Da die Residuenquadratsumme SSE ein absoluter und einheitenbehafteter Wert ist, ermöglicht sie keinen Vergleich der Anpassungsgüte außerhalb des betrachteten Datensatzes. Um eine solche Aussage treffen zu können, wird das Bestimmtheitsmaß (R-square, R<sup>2</sup>) eingeführt, welches, dem Bericht der MathWorks Inc. [10] zufolge, eine Korrelation zwischen den Messwerten und den vorhergesagten Werten aus der Anpassungskurve herstellt. Es ist das Verhältnis der SSR und der SST, wobei SST die Summe aus SSR und SSE ist. Die Abkürzungen der Funktionen entstammen dem zur Auswertung verwendeten Programm MATLAB R2017b und werden nach den Formeln in (4.24) bestimmt.

$$SSR = \sum_{i=1}^{n} (f(x_i) - \overline{y})^2 \qquad SSE = \sum_{i=1}^{n} (y_i - f(x_i)) \qquad SST = \sum_{i=1}^{n} (y_i - \overline{y})^2 \qquad (4.24)$$

Das  $\mathbb{R}^2$  errechnet sich somit nach Formel (4.25) und kann jeden Wert zwischen 0 und 1 annehmen. Je näher der Wert bei 1 liegt, umso besser lässt sich die Korrelation der abhängigen Variable ymit der unabhängigen Variable x über die gefundene Anpassungsfunktion beschreiben. Ein  $\mathbb{R}^2$ von beispielsweise 0,82 bedeutet also, dass 82 % der Varianz der abhängigen Variable y auf die unabhängige Variable x zurückzuführen sind. Ein höheres  $\mathbb{R}^2$  bekräftigt also den gefundenen Zusammenhang, wobei die Größe, laut Bericht der INWT Statistics GmbH [8], je nach Fachrichtung stark variiert. Bei physikalischen Untersuchungen, wie in dieser Arbeit, wird ein  $\mathbb{R}^2$  von mindestens 0,5 gefordert, um von plausiblen Zusammenhängen ausgehen zu können. Ein Wert von 0,8 kann bereits als "gut passend" eingestuft werden.

$$R^{2} = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}, \qquad 0 \le R^{2} \le 1$$

$$(4.25)$$

Das R<sup>2</sup> hat bei Funktionen mit variablen Parametern ausschließlich Gültigkeit für die lineare Regressionsberechnung, weshalb es bei der hier angewendeten nichtlinearen Anpassungsfunktion theoretisch nicht angewendet werden darf. Nach Papula [12] lassen sich jedoch einige nichtlineare Lösungsansätze zu einem linearen Ausgleichsproblem der Form  $y = k \cdot x + d$  transformieren. Bei vorliegender Anpassungsfunktion nach Formel (4.7) lässt sich dies unter Berücksichtigung des konstant gewählten Parameters b = -2 relativ einfach durchführen. Nach einer Substitution von  $t_s^b$  durch die Variable z ergibt sich bereits ein linearer Ansatz nach Formel (4.27).

$$f_{\rm St}(t_{\rm s}) = a \cdot t_{\rm s}^b + c \tag{4.26}$$

$$f_{\rm St}(z) = a \cdot z + c \tag{4.27}$$



Abb. 4.9: Transformation der nichtlinearen Ansatzfunktion exemplarisch an Mz 14

In Abb. 4.9a sind die Messwerte und die nichtlineare Anpassungsfunktion der Stempeldruckprüfung für Mz 14 aus der materialspezifischen Versuchsreihe exemplarisch dargestellt. Daneben ist in Abb. 4.9b die linearisierte Darstellung mit der zugehörigen Regressionsgerade, die sich nach Formel (4.27) errechnet, zu sehen. Bei der Transformation bleibt die abhängige Variable  $f_{p,St}(t_s) = y(z)$  unverändert erhalten, womit die Berechnung des R<sup>2</sup> auch an den unveränderten Messwerten erfolgen kann und dasselbe Ergebnis liefert. Dies ist ein Sonderfall der Transformation, der bei der gewählten Anpassungskurve zutrifft und den großen Vorteil mit sich bringt, dass das R<sup>2</sup> auch an den Rohdaten mit nichtlinearem Zusammenhang Gültigkeit besitzt.

Die aus der Transformation resultierende Einheit von  $[mm^{-2}]$  auf der Abszisse erlaubt keine physikalisch sinnvolle Interpretation, weshalb auf eine generelle Linearisierung der Diagramme verzichtet und die Darstellung mit der tatsächlichen Scherbendicke bevorzugt wird.

## 4.3 Horizontale Stempeldruckfestigkeiten der Prüfserie B

Die Ergebnisse aus der Prüfserie B, bei der die Probekörper mit einer Zementausgleichsschicht behandelt werden, sind in Abb. 4.10 zu sehen. Die Messwerte streuen um die normierte horizontale Scherbendruckfestigkeit von  $0.7 \cdot f_s$ , ohne wesentlichen Einfluss der Scherbendicke. Allerdings weist der angewendete Blitzzement eine zu geringe Druckfestigkeit  $f_{\rm cm}$  auf, um das Versagen in jedem Fall dem Ziegel zuordnen zu können. Die normierte richtungsbezogene Scherbendruckfestigkeit der Vollmauerziegel liegt bei etwa  $15 \,\mathrm{N/mm^2}$ , wohingegen die mittlere normierte  $28 \,\mathrm{Tage-Druckfestigkeit}$  des Blitzzementes  $17.4 \,\mathrm{N/mm^2}$  beträgt.



Abb. 4.10: Messergebnisse der Stempeldruckprüfung an Ziegelscherben mit Zementausgleichsschicht

Unter Betrachtung der Restquerschnitte, wie sie in Abb. 4.11 an zwei Prüfkörpern zu sehen sind, zeigt sich, dass nach dem Bruch kegelförmige Rückstände der Zementausgleichsschicht verbleiben, die in der Grundrissfläche der Belastungsfläche des Druckstempels entsprechen. Dies deutet darauf hin, dass der Zement zwar eine höhere Festigkeit als der Ziegelscherben aufweist, aber gleichzeitig mit diesem versagt. Demnach ist der angenommene Lastausbreitungswinkel von  $\phi = 30^{\circ}$  in der Ausgleichsschicht zum Versagenszeitpunkt nicht gültig. Der Bezugsquerschnitt, in dem die Druckspannungen wirken, reduziert sich beim Bruch auf die Belastungsfläche des Druckstempels  $A_e$ . Das Bruchverhalten des Prüfkörpers ist explosionsartig und ohne Voranzeichen, wie größer werdende Risse oder stagnierende Druckkraftaufnahme.



Probekörper Mz 0804



Probekörper Mz 0809

Abb. 4.11: Restquerschnitte von geprüften Ziegelscherben mit Zementausgleichsschicht

Die Ergebnisse sind aufgrund der nur geringfügig höheren Materialfestigkeit des Blitzzementes und der atypischen Versagenscharakteristik mit Unsicherheiten behaftet. Einer Oberflächenbehandlung durch Abgleichen wird in dieser Arbeit nicht weiter nachgegangen. Die Verwendung eines Zementes mit höherer Festigkeit für die Ausgleichsschicht wäre zu testen und könnte womöglich einen linearen Zusammenhang zwischen der normierten Steindruckfestigkeit und der Stempeldruckfestigkeit hervorbringen. Es ist jedoch anzumerken, dass das Anrühren, Abgleichen und Trocknen des Zementes eine zusätzliche Fehlerquelle in der Probenvorbereitung darstellt und einen hohen Zeitaufwand mit sich bringt.

# 4.4 Stempeldruckfestigkeit vs. Scherbendruckfestigkeit

Der gefundene Zusammenhang zwischen der Scherbendicke  $t_s$  und der horizontalen Stempeldruckfestigkeit  $f_{p,St}$  aus der Prüfserie A soll nun in Bezug mit den jeweiligen mittleren normierten vertikalen Scherbendruckfestigkeiten  $f_s$  gebracht werden. Bei Vollmauerziegeln stimmt die normierte vertikale Steindruckfestigkeit  $f_b$  mit der normierten vertikalen Scherbendruckfestigkeit  $f_s$  überein, sodass gilt  $f_s = f_b$ .

Die Scherben werden bei der Stempeldruckprüfung parallel zur Lagerfuge geprüft und entsprechen, wie in Abschnitt 4.2 beschrieben, bei einem Verhältnis  $t_s/d_e = 1$  der richtungsbezogenen normierten horizontalen Scherbendruckfestigkeit von etwa  $0.7 \cdot f_s$ . Ziel ist es, eine charakteristische Scherbendicke  $t_{s,char}$  zu finden, bei welcher die Werte der Ausgleichskurven  $f_{St}(t_{s,char})$  aller Steine mit ihrer jeweiligen mittleren normierten vertikalen Scherbendruckfestigkeit  $f_{\rm s}$  übereinstimmen. In einem Diagramm, in welchem die Funktionswerte  $f_{St}(t_{s,char})$  auf der Abszisse zu den jeweiligen mittleren normierten vertikalen Scherbendruckfestigkeiten auf der Ordinate aufgetragen sind, sollten die Werte idealerweise für alle unterschiedlichen Festigkeiten auf der ersten Mediane zu liegen kommen. In Abb. 4.12 ist die Auswertung für  $t_{\rm s,char} = 15\,{\rm mm}$  beispielhaft dargestellt. Die Fehlerbalken zeigen die Standardabweichungen der normierten vertikalen Scherbendruckfestigkeiten, die sich aus den Versuchen an den Zylindern berechnen. Die schwarze Linie kennzeichnet die erste Mediane (y = x). Mit höheren Festigkeiten der Ziegel und insbesondere der Klinker treten auch größere Schwankungsbreiten auf. Damit sind die Messwerte in diesem Bereich mit Unsicherheiten behaftet und der Zusammenhang ungewiss. Das Hauptaugenmerk wird daher auf die Festigkeiten der Ziegel im Bereich von 20–40 N/mm<sup>2</sup> gerichtet. Diese entsprechen im Allgemeinen auch den Scherbendruckfestigkeiten jener Ziegelmaterialien, die zur Produktion von Hochlochziegeln dienen. Die optimale charakteristische Scherbendicke  $t_{\rm s, char}$  errechnet sich durch Reduktion der Residuenquadratsumme SSE zur ersten Mediane.

Für die praktische Anwendbarkeit des Verfahrens sind bei der Festlegung der charakteristischen Scherbendicke folgende zwei Kriterien zu berücksichtigen:

- $t_{s,char}$  sollte einer repräsentativen, häufig vorkommenden Scherbendicke entsprechen, die aus Hochlochziegeln gewonnen werden kann, um eine Extrapolation außerhalb der prüfbaren Scherbendicken zu vermeiden.
- $t_{\rm s,char}$  sollte außerhalb des besonders steilen Funktionsverlaufs von  $f_{\rm St}(t_{\rm s})$  liegen, der sich bei den Versuchsteinen auf das Intervall 5 mm  $< t_{\rm s} < 10$  mm begrenzt, da in diesem Bereich eine kleine Änderung von  $t_{\rm s}$  zu einer beträchtlichen Änderung des Funktionswertes  $f_{\rm St}(t_{\rm s})$  und somit zu Unsicherheiten führt.

Unter Betrachtung des gesamten Datensatzes von Prüfserie A wird die Residuenquadratsumme SSE bei einer Scherbendicke von 18,03 mm minimal. Die Messergebnisse der Klinkersteine unterliegen der beschriebenen Problematik der größeren Schwankungsbreiten und weisen ein an anderes Verhältnis von  $f_s$  und  $f_{p,St}$  auf. Unter Ausschluss aller Klinkersteine KMz 17 bis KMz 21 errechnet sich die optimale charakteristische Scherbendicke zu 15,26 mm. Demnach wird  $t_{s,char} = 15$  mm gewählt. Zur besseren Leserlichkeit wird der Funktionswert der Ausgleichskurve bei einer charakteristischen Scherbendicke von 15 mm durch die als *charakteristische Stempeldruckfestigkeit* bezeichnete Variable  $f_{p,St,15}$  substituiert. Sie berechnet sich nach Formel (4.28) mit den Parametern *a* und *c* aus Abschnitt 4.2.

$$f_{\rm p,St,15} = f_{\rm St}(t_{\rm s} = 15\,{\rm mm}) = a \cdot 15^{-2} + c = \frac{a}{225} + c \qquad [{\rm N/mm}^2]$$
(4.28)



**Abb. 4.12:** Gegenüberstellung der normierten Scherbendruckfestigkeiten und der Funktionswerte der Anpassungskurven bei einer charakteristischen Scherbendicke  $t_{s,char} = 15 \text{ mm}$ 

#### Ausgleichsrechnung

Aufgrund der festgelegten charakteristischen Scherbendicke  $t_{s,char} = 15 \text{ mm}$  ist der lineare Zusammenhang des Verhältnisses  $f_{p,St,15}$  zu  $f_s$ , wie in Abb. 4.12 dargestellt, speziell bei höheren Festigkeiten fehlerbehaftet. Daher wird anstelle der ersten Mediane eine Ausgleichskurve  $f_s(f_{p,St,15})$ zur Beschreibung der Beziehung der beiden Variablen ermittelt. Sie soll folgende Bedingungen erfüllen:

- 1. Die Funktion muss durch den Nullpunkt verlaufen.
- 2. Die Funktion muss monoton steigend sein.
- 3. Die Funktion muss konkav sein.
- 4. Die Funktion darf keine Unstetigkeitsstellen aufweisen.

Die beste Übereinstimmung liefert die Exponentialfunktion nach Formel (4.29) mit den beiden Parametern p und q, wie sie in Abb. 4.13 dargestellt ist. Für den vorliegenden Datensatz wird die höchste Anpassungsgüte mit p = 1,659 und q=0,862 erreicht.

$$f_s(f_{p,St,15}) = p \cdot f_{p,St,15}^{\ q} = 1,66 \cdot f_{p,St,15}^{\ 0,86}$$
(4.29)

Analog zu Abschnitt 4.2 kann die Ausgleichskurve durch Substitution von  $f_{p,St,15}^{0,86} = z$  linearisiert werden. Daher lässt sich auch das Bestimmtheitsmaß R<sup>2</sup> angeben, das für die gefundene

Ausgleichskurve  $R^2 = 0.99$  beträgt. Diesem Kriterium zufolge lässt sich die Beziehung zwischen  $f_{p,St,15}$  und  $f_s$  mit der Ausgleichskurve  $f_s(f_{p,St,15})$  sehr gut beschreiben.



**Abb. 4.13:** Ausgleichskurve  $f_s(f_{p,St,15})$  innerhalb der Messergebnisse aus Prüfserie A

Die Ergebnisse der materialspezifischen Versuche zeigen also, dass die Stempeldruckprüfung zur Ermittlung der normierten vertikalen Scherbendruckfestigkeit von Ziegeln geeignet ist.

# Kapitel 5

# Bestimmung des Lochanteils

Der Bestimmung des Lochanteils kommt eine besondere Bedeutung zu, da mit diesem die Umrechnung der ermittelten Scherbendruckfestigkeit auf die Steindruckfestigkeit des Mauersteins erfolgt. Nun unterliegen die Lochbilder keinen gesonderten Regeln, welche eine einfache geometrische Erfassung des Lochanteils vorsehen. Vielmehr versuchen die Hersteller, das Lochbild nach statischen und bauphysikalischen Kriterien weitestmöglich zu optimieren, weshalb jedes Jahr neue Muster entwickelt werden. Es existiert somit eine enorme Anzahl an unterschiedlichen Lochbildern, deren Lochanteile sich nicht mit einer einheitlichen Bestimmungsgleichung berechnen lassen. Erschwerend kommt hinzu, dass die Lochbilder nur in wenigen Fällen vollkommen regelmäßig sind. Diskontinuitäten wirken einer einfachen Erfassung mit einer praktikablen Anzahl an geometrischen Messgrößen entgegen. Zwei Eigenschaften finden sich jedoch in allen untersuchten Lochbildern wieder:

- 1. Jedes Lochbild weist einen Regelbereich auf, der durch ein sich wiederholendes, regelmäßiges Lochmuster gekennzeichnet ist. Das Einzelloch besitzt dabei eine polygonale, meist abgerundete Geometrie, die in ihrer Form und Größe innerhalb dieses Bereiches konstant bleibt. Der Außenmantel wirkt wie ein Bilderrahmen, der dieses Muster begrenzt, sodass an den Randbereichen fast immer Diskontinuitäten auftreten. Weitere Unregelmäßigkeiten des Regelbereichs finden sich bei eventuell angeordneten Grifflöchern und Nut-Feder-Ausbildungen.
- 2. Jedes Lochbild ist zumindest einfach symmetrisch, teilweise sogar doppel-symmetrisch. Die Grifflöcher sind zumeist auf einer Diagonalen und damit antimetrisch angeordnet.

Die normative Bestimmung des Lochanteils von Mauersteinen erfolgt über einen Umweg ohne Erfassung der einzelnen Lochgeometrie. Sie bedient sich eines Hilfsmediums, welches alle Hohlräume und Aussparungen ausfüllt und im Nachhinein gemessen werden kann. Demzufolge lässt sich der Lochanteil eines Mauersteins nach ÖNORM EN 772-3 [25] mit einer Unterwasserwägung oder nach ÖNORM EN 772-9 [26] mittels Sandfüllung bestimmen.

Beim entwickelten Verfahren sollen zwei Bohrkerne aus einem Mauerstein entnommen werden, die mindestens bis zur Hälfte der Mauersteinbreite  $w_u$  reichen, aber diese nicht durchdringen. Eine ganzheitliche Betrachtung des Lochbildes ist daher nicht möglich. Nun stellt sich die Frage, ob sich der Lochanteil anhand dieser Stichproben ausreichend genau berechnen lässt. Dazu wird zuerst eine theoretische Analyse an derzeitigen Lochbildern von Hochlochziegeln vorgenommen und darauf aufbauend erfolgt die Umlegung in die Praxis mit der Bestimmung des Lochanteils an entnommenen Bohrkernen.

## 5.1 Lochanteil – Berechnung und Bezugsgrößen

Bei der Betrachtung eines Lochsteins lässt sich dieser grob in die zwei Teile "Ziegel" und "Hohlraum" zerlegen. Für die Berechnung des Lochanteils spielt die Unterscheidung der einzelnen Volumina eine wichtige Rolle. Das Gesamtvolumen eines Mauersteins als Bezugsvolumen zur Bestimmung der Bruttorohdichte  $\rho_{d,bto}$  dient (siehe auch Kapitel 2) und sich rein auf seine äußeren Abmessungen bezieht, wird als Bruttovolumen  $V_{bto}$  bezeichnet. Es beinhaltet alle Lochkanäle, Poren, Grifflöcher und Mörteltaschen. Das Nettovolumen  $V_{nto}$  beschreibt hingegen das reine Scherbenvolumen einschließlich aller Poren und wird auch zur Berechnung der Nettorohdichte  $\rho_{d,nto}$ herangezogen. Es berechnet sich über das Bruttovolumen abzüglich des Hohlraumvolumens  $V_{\alpha}$ . Die Brutto- und Nettoanteile der Volumina und Grundrissflächen sind in Abb. 5.1 schematisch an einem Hochlochziegel der Firma Wienerberger Ziegelindustrie GmbH dargestellt. Die darin mit "approximiert" bezeichneten Spalten werden in Abschnitt 5.2 genauer beschrieben und dienen einer einfacheren Bestimmung der Volumina und Flächen bei der praktischen Anwendung.



Abb. 5.1: Brutto- und Nettoanteile eines Lochsteins

Der Lochanteil ( $\alpha$ ) beschreibt das Verhältnis des Hohlraumvolumens  $V_{\alpha}$  proportional zum Gesamtvolumen  $V_{bto}$  eines Mauersteins. In Formel (5.1) wird dieses Verhältnis auf die bekannten Netto- und Bruttovolumina zurückgeführt. Bei einer konstanten Höhe  $h_u$  des Mauersteins lässt sich das Verhältnis nach Formel (5.2) auch ausschließlich über die Relationen der Grundrissflächen darstellen.

$$\alpha = \frac{V_{\alpha}}{V_{\text{bto}}} = \frac{V_{\text{bto}} - V_{\text{nto}}}{V_{\text{bto}}} = 1 - \frac{V_{\text{nto}}}{V_{\text{bto}}}$$
(5.1)

$$\alpha = 1 - \frac{A_{\text{nto}} \cdot h_{\text{u}}}{A_{\text{bto}} \cdot h_{\text{u}}} = 1 - \frac{A_{\text{nto}}}{A_{\text{bto}}}, \qquad h_{\text{u}} = \text{const.}$$
(5.2)

Mit der allgemeinen Beziehung  $m = V \cdot \rho$  kann der Lochanteil nach Formel (5.3) auch massebezogen angegeben werden, wobei  $m_{d,voll}$  die Trockenmasse eines fiktiven Vollsteins mit äquivalenter Außengeometrie des betrachteten Lochsteins beschreibt. Gebräuchlicher ist jedoch die Berechnung über die Rohdichten wie in Formel (5.4).

$$\alpha = 1 - \frac{V_{\rm nto}}{V_{\rm bto}} = 1 - \frac{m_{\rm d}/\rho_{\rm d,nto}}{V_{\rm bto}} = 1 - \frac{m_{\rm d}}{V_{\rm bto} \cdot \rho_{\rm d,nto}} = 1 - \frac{m_{\rm d}}{m_{\rm d,voll}}$$
(5.3)

$$\alpha = 1 - \frac{V_{\rm nto}}{V_{\rm bto}} = 1 - \frac{md/\rho_{\rm d,nto}}{m/\rho_{\rm d,bto}} = 1 - \frac{\rho_{\rm d,bto}}{\rho_{\rm d,nto}}$$
(5.4)

Der Lochanteil ist eine dimensionslose Kennzahl des Mauersteins und wird häufig in Prozent angegeben. Ein Lochanteil von beispielsweise  $\alpha = 0,4$  würde also bedeuten, dass 40 % des Gesamtvolumens eines Mauersteins aus Hohlräumen bestehen.

## 5.2 Analyse unterschiedlicher Mauersteinzeichnungen

Um die Erfolgswahrscheinlichkeit abwägen zu können, ob sich aus einer stichprobenartigen und somit relativen Bestimmung des Lochanteils anhand von Bohrkernen auf den gesamten Lochanteil rückschließen lässt, wird zunächst eine theoretische Analyse an Lochbildern durchgeführt. Die Firma *Wienerberger Ziegelindustrie GmbH* stellt dazu dankenswerterweise digitale Pläne unterschiedlicher Mauersteine zur Verfügung, an welchen Ausschnitte von Flächen maßstabsgetreu gemessen werden können. Darin sind alle Lochkanäle, Aussparungen, wie Putzrillen, Mörteltaschen und Grifflöcher, als auch Nut- und Feder-Konstruktionen angegeben. Geringfügige Abweichungen des Fabrikats sind material- und herstellungsbedingt nicht ganz auszuschließen. Die Maße der Pläne beziehen sich auf den gebrannten Zustand der Hochlochziegel. Sie berücksichtigen also das Schwinden während des Brennens und stellen den endgültigen SOLL-Querschnitt dar. Die Ergebnisse sollten sich daher direkt auf die Mauersteine umlegen lassen. Die Produktnamen, Außenabmessungen, Brutto- und Nettoflächen sowie die exakten und genäherten Lochanteile der sechs untersuchten Mauersteinzeichnungen sind der Tab. 5.1 zu entnehmen und werden nachstehend genauer erläutert.

| Nr. <sup>(1)</sup> Produktname |                              | Jahr | $l_{\mathrm{u}}$ | $w_{\mathrm{u}}$ | $A_{\rm bto}$     | $A_{\rm nto}$     | $\alpha$  | $\alpha_{\rm ca}^{(2)}$ |
|--------------------------------|------------------------------|------|------------------|------------------|-------------------|-------------------|-----------|-------------------------|
|                                |                              |      | [cm]             | [cm]             | $[\mathrm{cm}^2]$ | $[\mathrm{cm}^2]$ | [-]       | [-]                     |
| А                              | PTH 30 (N+F)                 | 2012 | $25,\!0$         | $_{30,0}$        | 737               | 425               | $0,\!423$ | 0,432                   |
| В                              | PTH 25-38 Plan $(N+F)$       | 2017 | $37,\!5$         | $25,\!0$         | 928               | 460               | $0,\!504$ | $0,\!506$               |
| $\mathbf{C}$                   | PTH 25-38 Objekt LDF $(N+F)$ | 2010 | $37,\!5$         | $25,\!0$         | 931               | 556               | $0,\!403$ | $0,\!404$               |
| D                              | PTH 20-50 Plan HA $(N+F)$    | 2010 | $50,\!0$         | 20,0             | 985               | 542               | $0,\!450$ | $0,\!456$               |
| Е                              | PTH 38 H.i 31 LR (N+F)       | 2011 | $25,\!0$         | 38,0             | 936               | 403               | $0,\!570$ | $0,\!575$               |
| $\mathbf{F}$                   | PTH 38 Plan $(N+F)$          | 2011 | $25,\!0$         | 38,0             | 940               | 468               | $0,\!502$ | $0,\!506$               |

Tab. 5.1: Produktnamen und Auswertung der untersuchten Mauersteinzeichnungen

<sup>(1)</sup> Kürzel des Lochbildes

<sup>(2)</sup> Approximierter Lochanteil

## 5.2.1 Untersuchungen am Gesamtquerschnitt

Zuerst werden Analysen des Lochanteils am gesamten Querschnitt vorgenommen, um die Auswirkung von Vereinfachungen bei der Flächenermittlung auf den exakten Lochanteil zu untersuchen. Mit manuellen Messungen ist die exakte Bruttogrundfläche  $A_{bto}$  aufgrund von Putzrillen, Abrundungen und der Nut-Feder-Geometrien nur mit hohem Aufwand exakt erfassbar. Es ist daher weitaus einfacher, den Mauerstein auf ein Prisma zu approximieren, wie es in der zweiten Spalte von Abb. 5.1 zu sehen ist. Die Bruttogrundfläche errechnet sich infolgedessen lediglich anhand der Außenabmessungen  $A_{bto,ca} = l_u \cdot w_u$ .

Es zeigt sich, dass der Bezug der exakten Nettogrundfläche  $A_{\rm nto}$  auf die genäherte Bruttogrundfläche  $A_{\rm bto,ca}$  zu einer Überschätzung des Lochanteils von maximal +1,0% führt. Eine Überschätzung des Lochanteils bewirkt eine Unterschätzung des Scherbenvolumens und liegt somit auf der sicheren Seite. Werden die Aussparungen und Abrundungen der Mantelhaut bei der Bestimmung der Nettogrundfläche ebenfalls vernachlässigt, erhöht sich der Steganteil geringfügig. Die so approximierte Nettogrundfläche  $A_{\rm nto,ca}$  ist in Abb. 5.1 in der letzten Spalte dargestellt. Die maximale Überschätzung des Lochanteils wird damit geringfügig reduziert und beträgt nur noch +0,9%. Die Ergebnisse dieser Vereinfachung sind in Tab. 5.1 unter der Bezeichnung  $\alpha_{\rm ca}$ angeführt.

Nun stellt sich die Frage, welche Auswirkungen sich durch eine weitere Vernachlässigung der Nut-Feder-Ausbildungen ergeben. Die grundlegende Annahme, die eine solche Vereinfachung rechtfertigen würde, besteht darin, dass jede Feder lückenlos in die Nut passt. Tatsächlich ist die Feder jedoch kürzer als die zugehörige Nut tief ist. Die Auswertung zeigt, dass der Lochanteil um maximal -0.9% unterschätzt wird. Die Näherung ist ähnlich genau wie die oben beschriebene, jedoch auf der unsicheren Seite. Dies hat zum Grund, dass der Spielraum zwischen Nut und Feder dem Steganteil zukommt, womit dieser überschätzt wird.

### 5.2.2 Untersuchungen an Teilquerschnitten

Für die Untersuchungen sollen zwei Bohrkerne pro Mauerstein orthogonal zur Läuferfläche entnommen werden. Aufgrund der weiteren Verarbeitung zu Kleinprüfkörpern ist es sinnvoll, einen Bohrkern entlang der Stoßfuge zu führen, um Teile der seitlichen Mantelfläche zu erhalten. Aufgrund der Nut-Feder-Anschlüsse ist zu differenzieren, welche der beiden Stoßfugen angebohrt wird. Der zweite Bohrkern soll aus dem Regelbereich des Mauersteins stammen. Demzufolge ergeben sich drei mögliche Positionen des Bohrkerns innerhalb der Läuferfläche, welche mit den Abkürzungen RN, M oder RF gekennzeichnet werden:

RN: Randkernbohrung an der Stoßfuge der Nut

M: Kernbohrung im Bereich der Mitte der Läuferfläche (möglichst zentrisch)

RF: Randkernbohrung an der Stoßfuge der Feder, wobei die Feder selbst abgeschnitten wird

Bei der Entnahme wird eine Bohrkrone mit 100 mm Durchmesser verwendet, sodass der größte Ausschnitt des Lochbildes im Grundriss ebenfalls eine Breite von 100 mm aufweist. Eine solche Bohrkernentnahme wird nun theoretisch an den Mauersteinzeichnungen durchgeführt und ist in Abb. 5.2 schematisch dargestellt. Randkernbohrungen können unterschiedlich weit über die Stoßfuge in den Mauerstein hineinreichen. Dies führt zu einer Veränderung der Breite des Grundrissausschnittes, welche als *Überstandlänge*  $b_{\rm BK}$  bezeichnet wird. Mit der Reduktion der Überstandlänge geht natürlich auch ein Verlust des Aufschlussgrades einher, dessen Einfluss auf das Endergebnis mit Hilfe der Betrachtung von vier unterschiedlichen Längen untersucht werden soll.

$$b_{\rm BK} \in [25, 50, 75, 100] {\rm mm}$$

In Abb. 5.2 sind in der ersten Reihe die Positionen der Bohrkerne in der Läuferfläche bei variierender Überstandlänge der Randkernbohrungen dargestellt. Darunter sind die Ausschnitte aus dem Lochbild als grau schattierte Flächen zu sehen. Dabei zeigt sich, dass die Einblicknahme in das Lochbild bei einer Überstandlänge von  $b_{\rm BK} = 25 \,\mathrm{mm}$  massiv eingeschränkt ist.



Abb. 5.2: Theoretische Entnahme von Bohrkernen aus der Mauersteinzeichnung mit unterschiedlichen Überstandlängen der Randkerne

Im nächsten Schritt werden die Nettogrundflächen der einzelnen Ausschnitte vermessen und ihrer Bruttogrundfläche gegenübergestellt, um den relativen Lochanteil zu erhalten. Am Rand der Feder RF wird die Feder abgeschnitten und nicht berücksichtigt. Die Messung der Überstandlänge bezieht sich am Rand RF immer auf die Außenkante des Mauersteins und nicht auf die Spitze der Feder. Für Bohrkerne RF und M lassen sich die Bruttogrundflächen anhand der Außenabmessungen nach Formel (5.5) berechnen.

Randbohrkern RF: 
$$A_{\rm BK,bto} = b_{\rm BK} \cdot \frac{w_{\rm u}}{2}$$
  
Bohrkern M:  $A_{\rm BK,bto} = d_{\rm BK} \cdot \frac{w_{\rm u}}{2}$  (5.5)

Bei der Bemessung der Brutto- als auch der Nettogrundflächen von Randbohrkernen RN empfiehlt es sich, die Nut-Einbuchtungen als Außengrenze zu betrachten. Dadurch lässt sich die Genauigkeit bei der Berechnung des Lochanteils um bis zu 3 % verbessern, wie im Folgenden noch genauer beschrieben wird.

### 5.2.3 Auswertung

Für einen Stein ergeben sich drei relative Lochanteile  $\alpha_{\rm RN}(b_{\rm BK})$ ,  $\alpha_{\rm M}$  und  $\alpha_{\rm RF}(b_{\rm BK})$ . Die Anteile der Randkernbohrungen sind von der gewählten Überstandlänge  $b_{\rm BK}$  abhängig und dementsprechend variabel. In Tab. 5.2 sind die Ergebnisse aus der Untersuchung der Mauersteinzeichnungen

angeführt. Beim Vergleich der Werte  $\alpha_{\rm R}$  zeigt sich, dass der relative Lochanteil der Randkernbohrungen immer unter dem tatsächlichen Lochanteil liegt. Speziell bei kurzen Überstandlängen kommt es zu massiven Abweichungen. Die Werte  $\alpha_{\rm M}$  hingegen überschätzen den Lochanteil tendenziell. Nun werden die relativen Lochanteile von jeweils zwei Bohrkernen innerhalb eines Mauersteins gemittelt. Da beide Ränder eine Unterschätzung des tatsächlichen Lochanteils bewirken, geht  $\alpha_{\rm M}$  zwingend in die Mittelwertbildung ein.

**Tab. 5.2:** Ermittelte relative Lochanteile aus den Bohrkernausschnitten mit unterschiedlichen Überstandlängen  $b_{\rm BK}$  der Randkernbohrungen

|              | $b_{\rm BK} =$ | $25\mathrm{mm}$ | $b_{\rm BK} =$ | $50\mathrm{mm}$ | $b_{\rm BK} =$ | $75\mathrm{mm}$ | $b_{\rm BK} =$   | $100\mathrm{mm}$ |                       |                  |
|--------------|----------------|-----------------|----------------|-----------------|----------------|-----------------|------------------|------------------|-----------------------|------------------|
| Nr.          | $lpha_{ m RN}$ | $lpha_{ m RF}$  | $lpha_{ m RN}$ | $lpha_{ m RF}$  | $lpha_{ m RN}$ | $lpha_{ m RF}$  | $\alpha_{ m RN}$ | $lpha_{ m RF}$   | $\alpha_{\mathrm{M}}$ | $  \alpha^{(1)}$ |
|              | [-]            | [-]             | [-]            | [-]             | [-]            | [-]             | [-]              | [-]              | [-]                   | [-]              |
| А            | 0,20           | $0,\!31$        | $0,\!32$       | $0,\!39$        | $0,\!37$       | 0,39            | 0,38             | $0,\!40$         | 0,48                  | 0,42             |
| В            | 0,28           | $0,\!44$        | $0,\!38$       | $0,\!45$        | $0,\!43$       | $0,\!45$        | 0,48             | $0,\!48$         | $0,\!55$              | 0,50             |
| $\mathbf{C}$ | 0,23           | $0,\!38$        | $0,\!33$       | $0,\!36$        | $0,\!38$       | 0,33            | 0,43             | 0,37             | 0,43                  | 0,40             |
| D            | 0,26           | $0,\!40$        | $0,\!34$       | $0,\!44$        | $0,\!37$       | 0,41            | 0,42             | $0,\!44$         | 0,46                  | 0,45             |
| Ε            | 0,36           | $0,\!52$        | $0,\!50$       | $0,\!56$        | $0,\!54$       | 0,56            | 0,56             | $0,\!59$         | 0,60                  | 0,57             |
| $\mathbf{F}$ | $0,\!25$       | $0,\!41$        | $0,\!44$       | $0,\!47$        | $0,\!47$       | $0,\!48$        | 0,49             | 0,51             | $0,\!54$              | 0,50             |

<sup>(1)</sup> Tatsächlicher Lochanteil

Der gemittelte relative Lochanteil  $\overline{\alpha}_{rel}$  wird nun mit dem tatsächlichen Lochanteil ( $\alpha$ ) verglichen. Der Grad der Übereinstimmung wird über den Parameter  $\eta$  nach Formel (5.6) ausgedrückt.

$$\eta = \frac{\overline{\alpha}_{\rm rel}}{\alpha} \tag{5.6}$$

 $\eta > 1.0$  ... Überschätzung des Lochanteils (sichere Seite)

 $\eta = 1.0 \ldots$  exakte Übereinstimmung

 $\eta < 1.0$  ... Unterschätzung des Lochanteils (unsichere Seite)

In den Diagrammen in Abb. 5.3 ist der Grad der Übereinstimmung  $\eta$  bei jeweiliger Überstandlänge  $b_{\rm BK}$  zu sehen. Der zu erzielende Wert 1 ist als schwarze, strichlierte Linie dargestellt. Es lässt sich eindeutig erkennen, dass eine Mittelung von  $\alpha_{\rm RN}$  und  $\alpha_{\rm M}$  (Abb. 5.3a) tendenziell zu einer Unterschätzung des Lochanteils führt. Eine größer werdende Überstandlänge führt zu einer deutlichen Verbesserung des Ergebnisses. Hierbei sei angemerkt, dass bei Überstandlängen  $b_{\rm BK} < 100 \,\mathrm{mm}$  aufgrund der starken Unterschätzung von der reinen Mittelwertbildung zwischen  $\alpha_{\rm RN}$  und  $\alpha_{\rm M}$  dringend abgeraten wird. Die Mittelung von  $\alpha_{\rm RF}$  und  $\alpha_{\rm M}$  (Abb. 5.3b) zeigt mit zunehmender Überstandlänge keinen eindeutigen Trend zur Verbesserung der Genauigkeit und liegt bei maximaler Überstandlänge von  $b_{\rm BK} = 100 \,\mathrm{mm}$  bei  $\pm 5 \,\%$ .

Die relativen Lochanteile der Bohrkerne repräsentieren jeweils einen Ausschnitt aus dem Lochbild. Nun entspricht die Randkernbohrung nicht dem Regelbereich und ist innerhalb des Lochbildes seltener vorzufinden als jener Ausschnitt der mittleren Kernbohrung. Daher ist es sinnvoll, die relativen Lochanteile in Hinsicht auf ihr Vorkommen nach Formel (5.7) innerhalb des Querschnittes zu gewichten. Dies erfolgt längenproportional anhand der Ausschnitte entlang der Läuferfläche. Bei den Randkernbohrungen wird die Überstandlänge  $b_{\rm BK}$  im Verhältnis zur Steinlänge  $l_{\rm u}$  betrachtet.



Abb. 5.3: Übereinstimmungsgrad  $\eta$  bei einfacher Mittelwertbildung zweier relativer Lochanteile

Unter der Annahme, dass die Randbereiche spiegelgleich sind, ist der relative Lochanteil der Randkernbohrung doppelt zu berücksichtigen, um beide Stirnflächen abzudecken. Der Bohrkern aus dem Mittelbereich erstreckt sich über die verbleibende Länge  $(l_u - 2 \cdot b_{BK})$ . Die Gewichtung in dieser Form setzt jedoch voraus, dass die Mauersteinlänge abzüglich der Randkernbohrungen mindestens dem Durchmesser des Bohrkerns  $d_{BK}$  entspricht. Sonst würde der relative Lochanteil des mittleren Bohrkerns  $\alpha_M$  weniger als ein Drittel des hochgerechneten gesamten Lochanteils betragen. Bei einer Bohrkrone mit einem Durchmesser von 100 mm tritt dieses Szenario bereits ein, wenn die Mauersteinlänge  $l_u$  weniger als 300 mm beträgt und die Randkernbohrung ebenfalls eine Überstandlänge von 100 mm aufweist. Hier empfiehlt es sich, den Regelbereich überproportional zu berücksichtigen, wie in Formel (5.8).

$$l_{\rm u} - 2 \cdot b_{\rm BK} \ge d_{\rm BK} \qquad \Rightarrow \qquad \overline{\alpha}_{\rm w,rel}(\alpha_{\rm R}, \alpha_{\rm M}) = \alpha_{\rm R} \cdot \frac{2 \cdot b_{\rm BK}}{l_{\rm u}} + \alpha_{\rm M} \cdot \frac{l_{\rm u} - 2 \cdot b_{\rm BK}}{l_{\rm u}} \tag{5.7}$$

$$l_{\rm u} - 2 \cdot b_{\rm BK} < d_{\rm BK} \qquad \Rightarrow \qquad \overline{\alpha}_{\rm w, rel}(\alpha_{\rm R}, \alpha_{\rm M}) = \alpha_R \cdot \frac{l_{\rm u} - d_{\rm BK}}{l_{\rm u}} + \alpha_{\rm M} \cdot \frac{d_{\rm BK}}{l_{\rm u}} \tag{5.8}$$

Im Vergleich zur reinen Mittelwertbildung lässt sich nun in Abb. 5.4 deutlich erkennen, dass der gewichtete Mittelwert bei Überstandlängen  $b_{\rm BK} > 50 \,\mathrm{mm}$  die Übereinstimmung mit dem exakten Lochanteil generell verbessert und die Streuung reduziert. Es ist jedoch zu unterscheiden, welche der beiden Randkernbohrungen in die gewichtete Mittelwertbildung einfließt. So führt die Gewichtung von  $\alpha_{\rm RN}$  und  $\alpha_{\rm M}$  (Abb. 5.4a) mit Ausnahme von Lochbild C zu einem relativ exakten Ergebnis des Lochanteils von  $\pm 2\%$ . Die plötzliche hohe Abweichung von Lochbild C bei einer Überstandlänge von  $b_{\rm BK} = 100 \,\mathrm{mm}$  lässt sich in diesem Fall auf ein Griffloch zurückführen, das mit zunehmender Überstandlänge weiter in den Bohrkern hineinreicht und den Lochanteil reduziert. Die Gewichtung von  $\alpha_{\rm RF}$  und  $\alpha_{\rm M}$  (Abb. 5.4b) liegt bei Überstandlängen von  $b_{\rm BK} > 50 \,\mathrm{mm}$  immer in einem Bereich von maximal  $\pm 4\%$  relativer Abweichung zur exakten Lösung.

Um die Genauigkeit zu erhöhen, könnten natürlich auch drei Bohrkerne aus einem Mauerstein entnommen werden. Unter der Annahme, dass ein Bohrkern aus der Mitte und zwei gegenüberliegende Randkernbohrungen mit derselben Überstandlänge vorliegen, ergibt sich bei längenproportionaler Gewichtung das Diagramm in Abb. 5.5. Die Abweichungen liegen bei Überstandlängen  $b_{\rm BK} > 50 \,\mathrm{mm}$  hier im Durchschnitt bei  $\pm 1\%$  und bei maximal  $\pm 3\%$ .



(a) Gewichtung von  $\alpha_{\rm RN}$  und  $\alpha_{\rm M}$ 

(b) Gewichtung von  $\alpha_{\rm RF}$  und  $\alpha_{\rm M}$ 





**Abb. 5.5:** Übereinstimmungsgrad  $\eta$  bei der Gewichtung von  $\alpha_{\rm RF}$ ,  $\alpha_{\rm RN}$  und  $\alpha_{\rm M}$ 

## 5.2.4 Schlussfolgerungen

Die Analyse zeigt, dass sich der Lochanteil eines Mauersteins mit durchaus brauchbarer Genauigkeit anhand der relativen Lochanteile von Ausschnitten aus demselben berechnen lässt. Eine längenproportionale Gewichtung der Ausschnitte entlang der Läuferfläche führt zu einem weit besseren Ergebnis als eine einfache Mittelwertbildung. Die Plausibilität der Proportionen ist stets zu prüfen, sodass keiner der Anteile unter- bzw. überschätzt wird. Bei Unsicherheiten kann eine zusätzliche Bohrung den Aufschlussgrad wesentlich erhöhen.

Generell ist ein Augenmerk auf angeschnittene Grifflöcher oder Unregelmäßigkeiten im Querschnitt zu richten, da sie lokale Diskontinuitäten darstellen und in der Berechnung zu einer Verzerrung des Ergebnisses führen. In der Praxis sollten sie noch vor Ort möglichst genau ausgemessen werden, um deren Anteil in der Berechnung entsprechend berücksichtigen zu können. Der Bohrkern M aus dem Regelbereich ist möglichst exakt in der Mitte anzusetzen, um ein doppeltes Anschneiden von Grifflöchern zu vermeiden. Bei einem Bohrkerndurchmesser von  $d_{\rm BK} = 100 \,\mathrm{mm}$  und einer Mauersteinlänge von  $l_{\rm u} \leq 300 \,\mathrm{mm}$  ist dies durch eine vertikal versetzte Anordnung der Entnahmestellen möglich, welche die Höhe  $h_{\rm u}$  meist problemlos zulässt. Ebenso ließe sich die Überstandlänge der Randkernbohrung auf  $b_{\rm BK,max} = l_{\rm u}/2 - d_{\rm BK}/2$  reduzieren. Generell sollte jedoch eine Überstandlänge  $b_{\rm BK}$  von mindestens 50 mm angestrebt werden. Auch in praktischer Hinsicht

sind Randkernbohrungen mit großen Überstandlängen wesentlich einfacher zu entnehmen und zu Prüfkörpern weiterzuverarbeiten. Eine Bohrkernentnahme am Rand RN sollte in jedem Fall eine Überstandlänge von  $b_{\rm BK} > 75$  mm aufweisen, um groben Abweichungen vorzubeugen. Speziell hier ist der längenproportional gewichtete Mittelwert einer reinen Mittelwertbildung unbedingt vorzuziehen.

## 5.3 Analyse entnommener Bohrkerne

Die Versuchssteine und deren exakter Lochanteil sind in Tab. 5.3 aufgelistet. Die 15 Exemplare weisen nur neun unterschiedliche Lochbilder auf, da diese teilweise ident sind. Es handelt sich dabei konkret um folgende drei Gruppen:

**Gruppe 1:** HLz 1, HLz 17

**Gruppe 2:** HLz 6, HLz 12

Gruppe 3: HLz 5, HLz 9, HLz 15, HLz 19

Die Bohrkernentnahme (siehe auch Kapitel 3) erfolgt mit einer Bohrkrone, die einen Innendurchmesser von 98 mm aufweist. Die Überstandlänge der Randbohrungen wird mit mindestens  $b_{BK,min} = 75 \text{ mm}$  festgelegt. In Abb. 5.6 ist der Versuchsstein HLz 17 mit den beiden entnommenen Bohrkernen dargestellt. Da sich aus den Steinen HLz 7 und HLz 20 aufgrund der Lochbildgeometrie keine durchgehenden Bohrkernstücke aus der Mitte entnehmen lassen, wird der Lochanteil über einen Randbohrkern alleine errechnet, um die Analyse einheitlich fortzuführen. In der Praxis empfiehlt es sich, bei einem solchen Fall auch den gegenüberliegenden Rand in die Untersuchung einzubeziehen. Randbohrkerne werden stets von den stärkeren Außenstegen an den Stirnflächen zusammengehalten und sind damit robuster als jene Bohrkerne aus der Mitte.

| Steinnr. | Bezeichnung               | Gruppe | α        |
|----------|---------------------------|--------|----------|
| HLZ 01   | PTH 25-38 Plan            | 1      | 0,46     |
| HLZ 03   | PTH 12-50 N+F             |        | $0,\!51$ |
| HLZ $05$ | PTH 25-38 N+F             | 3      | $0,\!51$ |
| HLZ $06$ | PTH 20-50 N+F             | 2      | $0,\!45$ |
| HLZ $07$ | PTH 50 Plan               |        | $0,\!59$ |
| HLZ $09$ | PTH 25-38 N+F             | 3      | $0,\!51$ |
| HLZ $10$ | PTH 25-38 N+F             |        | $0,\!49$ |
| HLZ $12$ | PTH 20-50 Plan            | 2      | $0,\!45$ |
| HLZ $13$ | PTH 8-50 N+F              |        | $0,\!45$ |
| HLZ $14$ | PTH 25-38 Plan            |        | $0,\!50$ |
| HLZ $15$ | PTH 25-38 N+F             | 3      | $0,\!51$ |
| HLZ $16$ | PTH 25-38 OBJ LDF Plan HA |        | $0,\!40$ |
| HLZ $17$ | PTH 25-38 Plan            | 1      | $0,\!46$ |
| HLZ $19$ | PTH 25-38 N+F             | 3      | $0,\!51$ |
| HLZ $20$ | PTH 26-50 W.I OBJ Plan    |        | $0,\!53$ |

Tab. 5.3: Versuchssteine mit Bezeichnung, Gruppenzuordnung und exaktem Lochanteil



Abb. 5.6: Hochlochziegel HLz 17 und entnommene Bohrkerne

Eine normative Bestimmung des relativen Lochanteils an den Bohrkernen ist nur bedingt möglich. Speziell das Verfahren mithilfe einer Sandfüllung nach ÖNORM EN 772-9 [26] scheidet aufgrund der zylindrischen Gestalt aus, wie sie in Abb. 5.6 zu sehen ist, da die Hohlräume nicht plan befüllt werden können. Die Bestimmung mit Hilfe der Unterwasserwägung nach ÖNORM EN 772-3 [25] ist anwendbar, bedarf jedoch einer besonderen Wägevorrichtung zur Messung der scheinbaren Masse des Probekörpers unter Wasser, die nicht zur Verfügung steht. In Anlehnung an diese Norm wird eine volumetrische Bestimmungsmethode über die Wasserverdrängung hergeleitet. Die Probekörper müssen dazu, wie in ÖNORM EN 772-3 [25] beschrieben, wassergesättigt sein, was sich beim Ziegel negativ auf seine Festigkeit auswirkt. Es stellt sich die Frage, ob eine solche Beeinflussung durch eine Trocknung vollständig reversibel ist. Daher werden für diese Bestimmungsmethode ausschließlich jene Bohrkernteile herangezogen, die nicht für eine weitere Zerlegung in Kleinprüfkörper und somit für keine Druckprüfung bestimmt sind.

Alternativ dazu erfolgt die Entwicklung zweier neue Verfahren, die keiner speziellen Ausrüstung bedürfen und den Prüfkörper geringstmöglich beeinflussen. Dies ist zum einen mit der massenanalytische Bestimmung und zum anderen mit einer digitalen Bildausarbeitung möglich, wie es in folgenden Abschnitten genauer beschrieben steht. Die relativen Lochanteile werden an jedem Bohrkern mit beiden Methoden ermittelt und anschließend verglichen.

### 5.3.1 Massenanalytische Auswertung

Nach der Entnahme werden die 28 Bohrkerne 30 h bei 105 °C im Klimaschrank getrocknet und anschließend vermessen und gewogen. Anhand der Trockenmasse  $m_{\rm d}$  und des Bruttovolumens  $V_{\rm BK,bto}$  ergibt sich die Bruttorohdichte durch  $\rho_{\rm d,bto} = m_{\rm d}/v_{\rm BK,bto}$ . Die anschließende Zerlegung der Bohrkerne in Kleinprüfkörper erfolgt im Nassschneideverfahren, weshalb eine erneute Trocknung der Scherben erforderlich ist. Für die Bestimmung der Nettorohdichte  $\rho_{\rm d,nto}$ werden jeweils vier Scherben pro Mauerstein mit einer möglichst einfachen prismenförmigen Geometrie ausgewählt. Aufgrund der geringen Abmessungen der Prüfkörper von durchschnittlich l/b/h = 40/40/8 mm gelten bei der Wägung und Messung besonders hohe Anforderungen an die Genauigkeit. Ebenso wird darauf geachtet, dass die Scherben, die zur Bestimmung der Nettorohdichte dienen, aus unterschiedlichen Bereichen des Mauersteins stammen, um den Einfluss lokaler Inhomogenitäten zu reduzieren. Die Auswertung zeigt, dass die Messungen der Nettorohdichten an den Kleinprüfkörpern mit einer Standardabweichung von durchschnittlich  $\pm 0,039 \,\mathrm{g/cm^3} = \pm 39 \,\mathrm{kg/m^3}$  streuen.

Die relativen Lochanteile ergeben sich nun nach Formel (5.4) aus den gemessenen Brutto- und Nettorohdichten. Die gewichteten Mittelwerte, die sich nach Formel (5.7) bzw. (5.8) aus den Anteilen der Randkernbohrung und der mittleren Kernbohrung berechnen, sind in Tab. 5.5 unter dem Namen "massenanalytische Bestimmung" angeführt und dem exakten Lochanteil ( $\alpha$ ) gegenübergestellt. Die Übereinstimmungsgrade  $\eta$  zeigen, dass die relative Abweichung bei diesem Verfahren durchschnittlich 3,7% (die Abweichungen gehen hier zum Betrag ein) und maximal 6,6% beträgt. Dieses Ergebnis ist durchaus brauchbar, aus praktischer Sicht ist das Bestimmungsverfahren jedoch zu langwierig. Eine solche Schwankungsbreite lässt sich mit der erforderlichen Anzahl an Messungen und dem damit verbundenen Zeitaufwand kaum rechtfertigen.

#### 5.3.2 Fotoanalytische Auswertung

Für die fotoanalytische Bestimmung des Lochanteils werden die Bohrkerne vor dem Zerschneiden abgelichtet, wie exemplarisch in Abb. 5.7 zu sehen. Auf Höhe der Mittelebene des Bohrkerns befindet sich eine Schablone mit einem Raster von 5x5 cm und Längenangaben, welche ein nachträgliches maßstäbliches Skalieren in der digitalen Bildauswertung ermöglichen. Zudem werden die Bohrkerne nur bis zur Hälfte betrachtet und das Bild dementsprechend zugeschnitten. Beim Fotografieren ist speziell auf die perspektivische Verzerrung zu achten. Es empfiehlt sich daher, eine möglichst große Brennweite zu wählen und die Bilddateien digital zu entzerren. Eine vollständige Sammlung der Fotos ist in Anhang D zusammengestellt.



Abb. 5.7: Fotografie eines Bohrkerns mit Schablone in der mittleren Schnittebene

Nach dem Einlesen in einer CAD-Software werden die Fotos skaliert und die Konturen der Außenränder und Hohlräume nachgezeichnet, wie in Abb. 5.8 exemplarisch an den Bohrkernen aus dem HLz 14 dargestellt. Am Randbohrkern RN lässt sich gut erkennen, dass die Geometrie der Lochkanäle innerhalb eines Steines diverse Formen annehmen kann. Ebenso findet sich hier ein angeschnittenes Griffloch wieder, welches in diesem Fall den Lochanteil nur marginal beeinflusst, da es sich regelmäßig in das Muster einordnet.

Die Lochbilder der Steine weisen einige Unregelmäßigkeiten auf, wie beispielsweise Schrägstellungen von Lochkanälen und damit schwankende Scherbendicken. Beim Abzeichnen werden daher folgende Konventionen getroffen, um eine einheitliche Vorgehensweise festzulegen:

- Abgerissene Stege werden weitergeführt.
- Imperfektionen, wie z. B. Schrägstellungen werden berücksichtigt.
- Putzrillen werden vernachlässigt.
- Radien von Abrundungen werden einheitlich gewählt.
- Grifflöcher bleiben unverändert.

Ob die Berücksichtigung von Ausrundungen und Schrägstellungen tatsächlich erforderlich ist und inwieweit sie sich auswirken, wird nicht genauer untersucht. Beim Abzeichnen ergibt sich kein nennenswerter Mehraufwand.



Abb. 5.8: Fotografie und digitale Nachbildung der Bohrkerne des Probekörpers HLz 14

Nun lassen sich die Nettogrundflächen der Bohrkerne  $A_{\rm BK,nto}$  in den Zeichnungen ausmessen. Die Bruttogrundflächen ergeben sich durch die Ermittlung der Fläche innerhalb der nachgezeichneten Außenkonturen (strichlierte Linie in Abb. 5.8). Die gewichteten Mittelwerte der relativen Lochanteile sind in Tab. 5.5 unter dem Namen *fotoanalytische Bestimmung* aufgelistet. Ein Vergleich mit dem jeweiligen realen Lochanteil  $\alpha$  ergibt, dass die relative Abweichung im Mittel bei 2,1 % liegt und maximal 3,9 % beträgt. Eine solche Übereinstimmung ist durchaus bemerkenswert und mit den Ergebnissen der theoretischen Analyse aus Abschnitt 5.2 vergleichbar.

#### 5.3.3 Volumetrische Auswertung

Der Prüfkörper muss so wassergesättigt sein, bis die Werte zweier Wägungen in einem Abstand von 30 min um weniger als 0,2 % voneinander abweichen. Dies entspricht der Definition der Massekonstanz aus ÖNORM EN 772-1 [24]. Der Prüfkörper wird daraufhin vollständig in Wasser getaucht und das verdrängte Wasser muss mit Hilfe einer Skala oder eines Überlaufs als Volumen bestimmbar sein. Im vorliegenden Fall wird ein Messbehälter, der ausreichend groß ist, um den Bohrkern zur Gänze darin unterzubringen, vollständig mit Wasser gefüllt. Die Masse des Wassers bei Vollfüllung des Gefäßes wird bestimmt und dient als Referenzwert  $m_{w,1}$ . Nun wird der gesättigte Bohrkern an einem Draht gebunden, langsam in den Messbehälter eingetaucht und das verdrängte Wasser fließt ab. Nachdem der Bohrkern wieder herausgezogen und das Haftwasser in das Gefäß abgetropft ist, erfolgt die Wägung der Masse des Restwassers  $m_{w,2}$ . Der gesamte Vorgang ist schematisch in Abb. 5.9 dargestellt.



Abb. 5.9: Ablauf der volumetrischen Bestimmungsmethode

Das Nettovolumen des Bohrkerns  $V_{\rm BK,nto}$  ergibt sich nach Formel (5.9) aus der Differenz der beiden Wägungen dividiert durch die Dichte des Wassers  $\rho_{\rm w}$ , die nach ÖNORM EN 772-3 [25] mit 0,001 g/mm<sup>3</sup> anzunehmen ist.

$$V_{\rm BK,nto} = \frac{m_{\rm w,1} - m_{\rm w,2}}{\rho_{\rm w}}$$
(5.9)

Das Bruttovolumen  $V_{\text{BK,bto}}$  wird analog zum massenanalytischen Verfahren anhand der äußeren Abmessungen des Bohrkerns bestimmt. Der relative Lochanteil  $\alpha$  errechnet sich daraufhin nach Formel (5.1). Da ausschließlich verbliebene Bohrkerne aus der Mitte dem Verfahren unterzogen werden, lässt sich kein gewichteter Mittelwert bilden. Demzufolge können die Ergebnisse nur mit den relativen Hohlraumanteilen der anderen beiden Methoden verglichen werden. Eine Gegenüberstellung der Lochanteile  $\alpha_{\rm M}$  in Tab. 5.4 zeigt, dass die Ergebnisse der volumetrischen Bestimmungsmethode mit jenen der fotoanalytischen korrelieren. Die Bestimmungsmethode ist durchaus geeignet, den Lochanteil zu bestimmen und hat den großen Vorteil, dass sie sich relativ schnell und einfach durchführen lässt. Der Einfluss der Wassersättigung auf den Prüfwert der Festigkeit ist jedoch zu klären.

|          | ${\it massen analytisch}$ | fotoanalytisch | volumetrisch |
|----------|---------------------------|----------------|--------------|
| HLZ 05   | 0,582                     | 0,545          | 0,533        |
| HLZ 06   | 0,512                     | $0,\!456$      | $0,\!491$    |
| HLZ 09   | 0,567                     | $0,\!542$      | $0,\!549$    |
| HLZ $10$ | $0,\!490$                 | 0,503          | $0,\!517$    |
| HLZ $15$ | 0,506                     | $0,\!553$      | 0,502        |
| HLZ $14$ | 0,529                     | 0,512          | $0,\!547$    |
| HLZ 16   | $0,\!456$                 | $0,\!426$      | $0,\!392$    |
| HLZ 17   | 0,468                     | $0,\!470$      | $0,\!465$    |
| HLZ 19   | 0,569                     | $0,\!544$      | $0,\!539$    |
|          |                           |                |              |

**Tab. 5.4:** Vergleich der Lochanteile  $\alpha_{\rm M}$  aller drei Methoden

### 5.3.4 Gegenüberstellung der selbst entwickelten Bestimmungsmethoden

Nun werden die Ergebnisse der beiden selbst entwickelten Bestimmungsmethoden gegenübergestellt. In Abb. 5.10a sind die Übereinstimmungsgrade wie in Abschnitt 5.2 zur jeweiligen Überstandlänge  $b_{\rm BK}$  der Randkernbohrung aufgetragen. Die blauen Kreise kennzeichnen die Ergebnisse aus der fotoanalytischen Bestimmungsmethode, die roten Kreuze stellen jene Ergebnisse der massenanalytischen Untersuchung dar. Es lässt sich mit zunehmender Überstandlänge kein eindeutiger Trend zu einer Verbesserung herauslesen, da die Streuung der Übereinstimmungsgrade über die Variation der Überstandlänge annähernd gleich bleibt. Deutlicher ist hingegen die größere Schwankungsbreite der massenanalytischen Methode erkennbar. Eine statistische Auswertung in Abb. 5.10b, welche alle Übereinstimmungsgrade der jeweiligen Methode zusammenfasst, veranschaulicht dies noch besser. Dabei markiert der mittlere rote Strich den Median. Die untere und obere Kante der Box bedeuten das 25%- bzw. das 75%-Perzentil und die äußersten schwarzen Linien geben die Extremwerte, also Minimal- bzw. Maximalwert an. Damit lässt sich sehr schnell die Spannweite ( $\eta_{max} - \eta_{min}$ ) erfassen, welche bei der fotoanalytischen Methode deutlich geringer ausfällt als bei der massenanalytischen. Die Perzentile zeigen jedoch, dass es sich bei den Minimalwerten der massenanalytischen Methode eher um Ausnahmen handelt.



Abb. 5.10: Übereinstimmungsgrad  $\eta$  aus der Analyse der Bohrkerne
|            |                     |          | m                | assena          | nalytisc                             | he       | fotoanalytische |                 |                      |          |
|------------|---------------------|----------|------------------|-----------------|--------------------------------------|----------|-----------------|-----------------|----------------------|----------|
|            |                     |          |                  | Bestin          | nmung                                |          | Bestimmung      |                 |                      |          |
| Nr         | Rand                | $\alpha$ | $\alpha_{\rm R}$ | $\alpha_{ m M}$ | $\overline{\alpha}_{\mathrm{w,rel}}$ | $\eta$   | $\alpha_{ m R}$ | $\alpha_{ m M}$ | $\alpha_{\rm w,rel}$ | $\eta$   |
|            |                     | [-]      | [-]              | [-]             | [-]                                  | [-]      | [-]             | [-]             | [-]                  | [-]      |
| HLz 01     | $\operatorname{RF}$ | $0,\!46$ | 0,45             | 0,46            | $0,\!45$                             | $0,\!99$ | 0,44            | $0,\!45$        | 0,44                 | 0,97     |
| HLz $03$   | RN                  | $0,\!51$ | 0,49             | $0,\!47$        | $0,\!48$                             | $0,\!95$ | 0,48            | $0,\!51$        | $0,\!50$             | $0,\!98$ |
| HLz $05$   | $\operatorname{RF}$ | $0,\!51$ | 0,48             | $0,\!58$        | $0,\!54$                             | $1,\!06$ | $0,\!52$        | $0,\!55$        | $0,\!53$             | $1,\!04$ |
| $HLz \ 06$ | RN                  | $0,\!45$ | 0,40             | $0,\!51$        | $0,\!47$                             | $1,\!04$ | $0,\!43$        | $0,\!46$        | $0,\!45$             | $0,\!98$ |
| HLz $07$   | $\operatorname{RF}$ | $0,\!59$ | $0,\!57$         |                 | $0,\!57$                             | 0,97     | $0,\!57$        |                 | $0,\!57$             | $0,\!97$ |
| HLz $09$   | RN                  | $0,\!51$ | 0,51             | $0,\!57$        | $0,\!54$                             | $1,\!05$ | $0,\!50$        | $0,\!54$        | $0,\!52$             | $1,\!02$ |
| HLz $10$   | $\operatorname{RF}$ | $0,\!49$ | 0,42             | $0,\!49$        | $0,\!46$                             | $0,\!93$ | 0,48            | $0,\!50$        | $0,\!50$             | $1,\!00$ |
| HLz $12$   | $\operatorname{RF}$ | $0,\!45$ | 0,43             | $0,\!47$        | $0,\!46$                             | $1,\!01$ | $0,\!47$        | $0,\!47$        | $0,\!47$             | $1,\!03$ |
| $HLz \ 13$ | RN                  | $0,\!45$ | 0,41             | $0,\!51$        | $0,\!47$                             | $1,\!05$ | $0,\!45$        | $0,\!44$        | $0,\!45$             | $0,\!99$ |
| HLz 14 $$  | RN                  | $0,\!50$ | 0,47             | $0,\!53$        | $0,\!50$                             | $0,\!99$ | $0,\!47$        | $0,\!51$        | $0,\!49$             | $0,\!98$ |
| HLz $15$   | $\operatorname{RF}$ | $0,\!51$ | $0,\!45$         | $0,\!51$        | $0,\!49$                             | $0,\!95$ | $0,\!49$        | $0,\!55$        | $0,\!53$             | $1,\!03$ |
| $HLz \ 16$ | RN                  | $0,\!40$ | 0,36             | $0,\!46$        | $0,\!41$                             | $1,\!03$ | $0,\!37$        | $0,\!43$        | $0,\!40$             | $1,\!00$ |
| $HLz \ 17$ | RN                  | $0,\!46$ | 0,43             | $0,\!47$        | $0,\!45$                             | $0,\!98$ | $0,\!42$        | $0,\!47$        | $0,\!45$             | $0,\!97$ |
| $HLz \ 19$ | RN                  | $0,\!51$ | 0,52             | $0,\!57$        | $0,\!54$                             | $1,\!06$ | $0,\!51$        | $0,\!54$        | $0,\!53$             | $1,\!03$ |
| HLz $20$   | $\operatorname{RF}$ | $0,\!53$ | 0,54             |                 | $0,\!54$                             | $1,\!02$ | $0,\!53$        |                 | $0,\!53$             | $1,\!00$ |

 Tab. 5.5: Gegenüberstellung der Ergebnisse aus der massenanalytischen und fotoanalytischen

 Bestimmung der relativen Lochanteile aus Bohrkernen

Anschließend sollen noch die Vor- und Nachteile beider Verfahren in der praktischen Durchführung erläutert werden, da dies maßgeblich für die Wahl des günstigeren Verfahrens sein kann. Die Bestimmungsmethode des Lochanteils über die Rohdichten erfordert zwei Trocknungen und eine Vielzahl sorgfältig durchgeführter Messungen. Damit ist natürlich ein hoher Zeitaufwand verbunden. Eine Automatisierung zur Erfassung des Bruttovolumens und der Scherbenrohdichte könnte über eine Tauchung in einem Wasserbecken erfolgen wie bei der volumetrischen Bestimmung. Dies würde den Ablauf wesentlich verkürzen. Dennoch ist die Idee der massenanalytischen Bestimmungsmethode äußerst praktisch, da sie keine besonderen Kenntnisse oder Instrumentarien erfordert.

Bei der fotoanalytischen Bestimmungsmethode zeigt sich eine höhere Übereinstimmung mit dem exakten Lochanteil bei gleichzeitig geringerem Aufwand. Es entfällt ein Trockenvorgang sowie die Bestimmung der Massen und die Vermessung der Kleinprüfkörper. Das Abzeichnen der entzerrten Fotografien in einer CAD-Software ist jedoch zeitaufwändig, erfordert eine besondere Gründlichkeit und kann subjektiven Einflüssen unterlegen sein. Für eine automatisierte Erfassung in einem Bildbearbeitungsprogramm sind die Kontraste in den erstellten Fotografien zu schwach, sodass die Konturen nicht mit ausreichender Genauigkeit erkannt werden. Hier ließe sich jedoch mit einmaligem Aufwand eine optimierte Beleuchtung finden, die eine solche Automatisierung ermöglicht. Bildauswertungen, wie sie hier erforderlich wären, sind durchaus geläufig und könnten zudem höhere Genauigkeiten erzielen als die abgezeichneten Konturen der Schnittebene. Der Einsatz eines 3D-Scanners wäre sicherlich die effektivste Möglichkeit den Vorgang zu automatisieren. Es zeichnet sich relativ eindeutig ab, dass die fotoanalytische Bestimmungsmethode in ihren Vorteilen überwiegt. Sie ermöglicht die Bestimmung des Lochanteil ( $\alpha$ ) anhand von zwei Bohrkernproben mit einer Genauigkeit von  $\pm 2,1$ %. Wie in Abschnitt 5.2 beschrieben, ließe sich der Aufschlussgrad mit einer zusätzlichen Bohrung weiter verbessern. In einem Objekt sind selten unterschiedliche Mauersteine verbaut. Demnach ist meist ein einheitliches Lochbild in den Mauersteinen vorzufinden. Die Untersuchung sieht immer mehrere Entnahmestellen von Bohrkernen vor, weshalb auch mehrere Stichproben desselben Lochbildes vorliegen. Damit wäre eine Mittelwertbildung zwischen den einzelnen Entnahmestellen zulässig und eine zusätzliche Sicherheit bei der Bestimmung des Lochanteils aus Bohrkernproben gegeben.

# Kapitel 6

# Auswertung der baustoffspezifischen Versuche

Nachdem die Lochanteile aller Probesteine der Prüfserie C bestimmt sind, folgt die Zerlegung der Bohrkerne in regelmäßige, gerade, prismatische Scherbenstücke, die der Stempeldruckprüfung unterzogen werden. Die Vorgehensweise ist ident zu den Versuchen aus Prüfserie A. Es wird erwartet, dass die materialspezifischen Zusammenhänge aus Kapitel 4 auch an den Probekörpern aus dem *Baustoff* Hochlochziegel wiederzufinden sind. Anhand der Stempeldruckprüfung und der Ausgleichskurve  $f_{St}(t_s)$  soll die vertikale normierte Scherbendruckfestigkeit  $f_s$  der Hochlochziegel bestimmt werden, die sich mit Hilfe des Lochanteils  $\alpha$  auf die normierte vertikale Steindruckfestigkeit  $f_b$  umrechnen lässt. Diese kann abschließend mit den von *Wienerberger* Ziegelindustrie GmbH angegebenen Referenzwerten verglichen werden, sodass eine Aussage über die Genauigkeit des Verfahrens möglich ist. In Tab. 6.1 sind die geprüften Versuchssteine mit den zugehörigen Festigkeiten angegeben.

| Stein-   | $h_{\mathrm{u}}$ | $w_{\mathrm{u}}$ | $l_{\mathrm{u}}$ | δ        | α        | $\overline{f}_{\mathrm{b}}$ | $f_{ m b}$ | $f_{ m s}$          |
|----------|------------------|------------------|------------------|----------|----------|-----------------------------|------------|---------------------|
| nummer   | [cm]             | [cm]             | [cm]             | [-]      | [-]      | $[N/mm^2]$                  | $[N/mm^2]$ | $[\mathrm{N/mm^2}]$ |
| HLZ 01   | $24,\!9$         | $25,\!0$         | 38,0             | $1,\!15$ | $0,\!46$ | $12,\!4$                    | 14,2       | 26,3                |
| HLZ $03$ | $23,\!8$         | $12,\! 0$        | $50,\!0$         | $1,\!39$ | $0,\!51$ | $12,\!9$                    | $17,\!9$   | 36,4                |
| HLZ $05$ | $23,\!8$         | $25,\!0$         | 38,0             | $1,\!14$ | $0,\!51$ | 20,0                        | $22,\!8$   | 46,9                |
| HLZ $06$ | $23,\!8$         | $20,\!0$         | $50,\!0$         | $1,\!23$ | $0,\!45$ | $13,\!9$                    | 17,0       | $_{31,2}$           |
| HLZ $07$ | $24,\!9$         | $50,\!0$         | $25,\!0$         | $1,\!15$ | $0,\!59$ | $^{7,4}$                    | $^{8,5}$   | $20,\!6$            |
| HLZ $09$ | $23,\!8$         | $25,\!0$         | $38,\!0$         | $1,\!14$ | $0,\!51$ | $18,\!9$                    | $21,\!5$   | 44,3                |
| HLZ $10$ | $23,\!8$         | $25,\!0$         | $38,\!0$         | $1,\!14$ | $0,\!49$ | $14,\!4$                    | 16,4       | 32,3                |
| HLZ $12$ | $24,\!9$         | $20,\!0$         | $50,\!0$         | $1,\!25$ | $0,\!45$ | 11,7                        | $14,\! 6$  | $26,\!8$            |
| HLZ $13$ | $23,\!8$         | $^{8,0}$         | $50,\!0$         | $1,\!47$ | $0,\!45$ | $^{8,9}$                    | $13,\!0$   | 23,7                |
| HLZ $14$ | $24,\!9$         | $25,\!0$         | $38,\!0$         | $1,\!15$ | $0,\!50$ | 12,0                        | $13,\!8$   | $27,\!8$            |
| HLZ $15$ | $23,\!8$         | $25,\!0$         | $38,\!0$         | $1,\!14$ | $0,\!51$ | 14,2                        | 16,2       | $33,\!3$            |
| HLZ $16$ | $21,\!8$         | $25,\!0$         | $38,\!0$         | $1,\!12$ | $0,\!40$ | 24,0                        | 26,8       | 45,0                |
| HLZ $17$ | $24,\!9$         | $25,\!0$         | $38,\!0$         | $1,\!15$ | $0,\!46$ | $17,\! 6$                   | 20,2       | 37,4                |
| HLZ $19$ | $23,\!8$         | $25,\!0$         | 38,0             | $1,\!14$ | $0,\!51$ | $13,\!0$                    | $14,\!8$   | $_{30,5}$           |
| HLZ $20$ | $24,\!9$         | 26,0             | $50,\!0$         | $1,\!15$ | $0,\!53$ | 10,9                        | 10,9       | $23,\!2$            |

Tab. 6.1: Versuchssteine mit Abmessungen, Lochanteilen, Formfaktoren und Festigkeiten

Wienerberger Ziegelindustrie GmbH stellt für jede Art der Hochlochziegel den Mittelwert der vertikalen Steindruckfestigkeit am Probekörper,  $\overline{f}_{\rm b}$ , zur Verfügung, der die Messwerte von sechs Mauersteinen beinhaltet. Diese wurden gemäß ÖNORM EN 772-1 [24] geprüft. Da die sechs

Prüfkörper jeweils aus einer Charge stammen und dieselben Außenabmessungen aufweisen, sind auch die Formfaktoren  $\delta_i = \delta, \forall i \in [1, 2, ..., 6]$  einheitlich und eine Mittelwertbildung vor der Normierung zulässig. Aus der mittleren vertikalen Steindruckfestigkeit am Probekörper,  $\overline{f}_{\rm b}$ , errechnet sich die mittlere normierte vertikale Steindruckfestigkeit  $f_{\rm b}$  nach Formel (2.2) und die mittlere normierte vertikale Scherbendruckfestigkeit  $f_{\rm s}$  nach Formel (2.3). In diesem Kapitel werden nur vereinzelte Versuchsergebnisse gezeigt. Die Gesamtauswertung aller Messungen der Prüfserie C ist in Anhang C übersichtlich zusammengestellt.

### 6.1 Horizontale Stempeldruckfestigkeiten der Prüfserie C

Die maximale Scherbendicke der Kleinprüfkörper aus den Hochlochziegeln ist durch die maximale Stegdicke des jeweiligen Mauerziegels begrenzt. Da in der Entwicklung der Lochbilder speziell in jüngerer Zeit dünnere Stege angestrebt werden, ist die Spannbreite unterschiedlicher Stegdicken in den relativ modernen Versuchssteinen begrenzt. Die von Wienerberger Ziegelindustrie GmbH bereitgestellten Hochlochziegel stammen aus dem Entwicklungszeitraum von 2004 bis 2017. Bei Hochlochziegeln aus der Nachkriegszeit finden sich wesentlich dickere Stege und geringere Lochanteile. Zudem gab Wienerberger Ziegelindustrie GmbH in einem Gespräch bekannt, dass für historische Hochlochziegel eine einheitliche Rezeptur verwendet wurde, die der des Vollmauerziegels entspricht. Um speziell die bauphysikalischen Produkteigenschaften zu verbessern, werden etwa seit der Jahrtausendwende mehrere unterschiedliche Rezepturen angewandt. Da keine historischen Versuchssteine mit bekannten Steindruckfestigkeiten zur Verfügung stehen, wird die Methodik an den modernen Steinen erprobt.

Die Ausgleichskurve  $f_{\rm St}(t_{\rm s})$  nach Formel (4.4) wurde für ein Intervall an Scherbendicken von  $5 \,\mathrm{mm} \leq t_{\rm s} \leq 25 \,\mathrm{mm}$  hergeleitet. Die gewonnenen Probenkollektive aus den Hochlochziegeln decken meist nur die untere Hälfte dieses Intervalls mit  $t_{\rm s} < 15 \,\mathrm{mm}$  ab. Daher muss die Ausgleichskurve bis zur charakteristischen Scherbendicke  $t_{\rm s,char} = 15 \,\mathrm{mm}$  teilweise extrapoliert werden. Aufgrund der festgelegten Krümmung durch den einheitlich gewählten Parameter b = -2 und der Nebenbedingung  $c_{\rm min} = a/100$  weist die Funktion  $f_{\rm St}(t_{\rm s})$  einen äußerst robusten Verlauf auf, der auch bei Extrapolationen zu plausiblen Ergebnissen führt. Dies ist exemplarisch in Abb. 6.1 an der Auswertung der Messergebnisse für den Hochlochziegel HLz 01 und in Abb. 6.2 für HLz 06



Abb. 6.1: Auswertung der Messergebnisse von HLz 01



Abb. 6.2: Auswertung der Messergebnisse von HLz 06

veranschaulicht. Es zeigt sich, dass die horizontale Stempeldruckfestigkeit bei einem Verhältnis der Scherbendicke zum Druckstempeldurchmesser  $t_s/d_e = 1$  der horizontalen Scherbendruckfestigkeit von  $0.7 \cdot f_s$  entspricht. Diese grundlegende Charakteristik, die sich schon in Kapitel 4 bei den materialspezifischen Stempeldruckversuchen herausstellte, wird von der Ausgleichsfunktion hier trotz der Extrapolation wiedergegeben.

### 6.2 Stempeldruckfestigkeit vs. Scherbendruckfestigkeit

Die Ausgleichskurven werden für jeden Stein einzeln ausgewertet und der jeweilige Funktionswert bei einer charakteristischen Scherbendicke von  $t_{\rm s,char} = 15$  mm bestimmt. Anhand dieses als charakteristische Stempeldruckfestigkeit  $f_{\rm p,St,15}$  bezeichneten Wertes und der Ausgleichskurve  $f_{\rm s}(f_{\rm p,St,15})$  können nach Formel (4.29) die jeweiligen vertikalen Scherbendruckfestigkeiten  $f_{\rm s,e}$ der Steine ermittelt werden. Um die Referenzwerte  $f_{\rm s}$  von den berechneten Werten  $f_{\rm s,e}$  leichter unterscheiden zu können, sind letztere im Index mit einem "e" (für experimentell) gekennzeichnet.

In Abb. 6.3 sind die charakteristischen Stempeldruckfestigkeiten  $f_{p,St,15}$  den von Wienerberger Ziegelindustrie GmbH angegebenen jeweiligen vertikalen Scherbendruckfestigkeiten  $f_s$  gegenübergestellt. Das Diagramm entspricht im Aufbau jenem in Abb. 4.13 der materialspezifischen Versuche und soll zeigen, ob die beiden Prüfserien A und C einen ähnlichen Zusammenhang aufweisen. Es ist deutlich erkennbar, dass alle Werte oberhalb der Ausgleichskurve zu liegen kommen. Die vier Steine HLz 03, HLz 05, HLz 16 und HLz 17 zeigen einen beträchtlichen Abstand von der Ausgleichskurve  $f_s(f_{p,St,15})$ . Auch die anderen Werte streuen stärker als bei den materialspezifischen Versuchsergebnissen. Ein Grund dafür könnte in den unterschiedlichen Rezepturen der Mauerziegel liegen. Speziell bei den Steinen HLz 16 und HLz 17 ist ein hoher Gehalt an Quarzsand als weiße Inhomogenität in den Bruchfragmenten in Abb. 6.4 erkennbar. Während Tonminerale einen Korndurchmesser unter 0,002 mm aufweisen, beträgt der durchschnittliche Korndurchmesser des Quarzsandes etwa 1 mm. Quarz weist generell eine höhere Festigkeit als Ziegel auf und bildet im Kleinprüfkörper bei der Stempeldruckprüfung womöglich ein Korngerüst, womit sich Spaltzugkräfte im Ziegelscherben einstellen. Dies würde sich nachteilig auf den Prüfwert der Stempeldruckfestigkeit auswirken und erklären, warum die charakteristische



Abb. 6.3: Ausgleichskurve  $f_{\rm s}(f_{\rm p,St,15})$  innerhalb der Messergebnisse der Prüfserie C

Stempeldruckfestigkeit dieser Steine deutlich unter der angegebener Scherbendruckfestigkeit liegt. Bei jenen Punkten, die sich im Diagramm in Abb. 6.3 oberhalb der Ausgleichskurve befinden, wird die Scherbendruckfestigkeit rechnerisch unterschätzt, womit die Anpassungskurve für alle Steine auf der sicheren Seite liegt.



(a) Restquerschnitt HLz 1620



(b) Restquerschnitt HLz 1716



### 6.3 Berechnung der normierten vertikalen Steindruckfestigkeit

Die normierte vertikale Steindruckfestigkeit  $f_{b,e}$  der Hochlochziegel berechnet sich nach Formel (6.1) aus der Multiplikation der ermittelten normierten vertikalen Scherbendruckfestigkeit  $f_{s,e}$ und dem Festanteil  $(1 - \alpha)$ :

$$f_{\rm b,e} = f_{\rm s,e} \cdot (1 - \alpha) \tag{6.1}$$

Mit diesem letzten Schritt ist die Umrechnung der horizontalen Stempeldruckfestigkeit auf die normierte vertikale Steindruckfestigkeit zu Ende geführt. In Formel (6.1) ist schnell ersichtlich, dass sich Ungenauigkeiten der normierten vertikalen Scherbendruckfestigkeit  $f_{\rm s,e}$  direkt auf die normierte vertikale Steindruckfestigkeit  $f_{\rm b,e}$  auswirken. Dementsprechend bedingt eine relative Abweichung der normierten vertikalen Scherbendruckfestigkeit von beispielsweise  $\Delta f_{\rm s,e} = 5 \%$  auch eine Abweichung des Endergebnisses von  $\Delta f_{\rm b,e} = 5 \%$ . Der Einfluss von Ungenauigkeiten des Lochanteils  $\alpha$  ist jedoch differenzierter zu betrachten und wird in der folgenden Sensitivitätsanalyse genauer behandelt.

#### Sensitivitätsanalyse für den Paramter $\alpha$

Wenn der ermittelte Lochanteil  $\alpha_1$  nicht mit dem tatsächlichen Lochanteil  $\alpha_0$  übereinstimmt, ergibt sich eine relative Abweichung  $\Delta \alpha$  nach Formel (6.2). Da die normierte vertikale Steindruckfestigkeit  $f_{\rm b,e}$  auch eine Funktion des Lochanteils ist, wird somit eine relative Abweichung  $\Delta f_{\rm b,e}(\Delta \alpha)$ induziert, wie sie in Formel (6.3) angeführt ist.

$$\Delta \alpha = \frac{\alpha_1 - \alpha_0}{\alpha_0} \qquad \Rightarrow \qquad \alpha_1 = \Delta \alpha \cdot \alpha_0 + \alpha_0 \tag{6.2}$$

$$\Delta f_{\rm b,e}(\Delta \alpha) = \frac{f_{\rm b,St,1} - f_{\rm b,St,0}}{f_{\rm b,St,0}} = \frac{f_{\rm s,e} \cdot (1 - \alpha_1) - f_{\rm s,e} \cdot (1 - \alpha_0)}{f_{\rm s,e} \cdot (1 - \alpha_0)} =$$
$$= \frac{(\alpha_0 - \alpha_1)}{1 - \alpha_0} = \frac{\alpha_0 - \Delta \alpha \cdot \alpha_0 - \alpha_0}{1 - \alpha_0} =$$
$$= -\Delta \alpha \cdot \frac{\alpha_0}{1 - \alpha_0}$$
(6.3)

Die Abweichung  $\Delta \alpha$  führt nach dem Ergebnis der Rechnung (6.3) zu einer linearen Abweichung  $\Delta f_{b,e}$ , wobei die Steigung dieser Funktion vom tatsächlichen Lochanteil  $\alpha_0$  abhängt. Zudem verdeutlicht das negative Vorzeichen, dass eine Überschätzung des Lochanteils zu einer Unterschätzung der normierten vertikalen Steindruckfestigkeit führt.

In Abb. 6.5a sind die linearen Funktionsverläufe  $\Delta f_{\rm b,e}(\Delta \alpha)$  für unterschiedliche Lochanteile  $\alpha_0$ dargestellt. Bei einem Lochanteil von  $\alpha_0 = 0,5$  beträgt die Steigung der Gerade  $a_0/(1-a_0) = -1$ , sodass  $\Delta f_{\rm b,e} = -\Delta \alpha$  gilt und Abweichungen gegengleich übertragen werden. Bei kleineren Lochanteilen  $\alpha < 0,5$  wirken sich Abweichungen  $\Delta \alpha$  sogar reduziert auf  $\Delta f_{\rm b,e}$  aus. Im Gegensatz dazu ist bei größeren Lochanteilen  $\alpha > 0,5$  die Auswirkung der Abweichung des Lochanteils  $\Delta \alpha$ mit einer überproportionalen Abweichung  $\Delta f_{\rm b,e}$  verbunden. Die Abhängigkeit der Steigung der Geraden vom tatsächlichen Lochanteil  $\alpha_0$  besitzt einen hyperbolischen Verlauf und ist in Abb. 6.5b zu sehen. Die Aussage des Diagramms soll anhand eines quantitativen Beispiels



(a) Funktionsverlauf  $\Delta f_{\rm b,e}(\Delta \alpha)$  bei festgelegten Lochanteilen  $\alpha_0$ 

(b) Funktionsverlauf  $\Delta f_{b,e}(\alpha_0)$  bei festgelegten relativen Abweichungen  $\Delta \alpha$ 

Abb. 6.5: Auswertung der Sensitivitätsanalyse für den Parameter  $\alpha$ 

erklärt werden: Eine relative Abweichung des Lochanteils von  $\Delta \alpha = +5\%$  führt bei einem Hochlochziegel mit einem tatsächlichen Lochanteil von  $\alpha_0 = 0.25$  zu einer Unterschätzung der vertikalen normierten Steindruckfestigkeit von lediglich  $\Delta f_{\rm b,e} = -1.7\%$ . Bei einem Hochlochziegel mit einem tatsächlichen Lochanteil von  $\alpha_0 = 0.70$  wird im selben Beispiel die vertikale normierte Steindruckfestigkeit dagegen um ganze  $\Delta f_{\rm b,e} = -11.7\%$  unterschätzt.

Da die untersuchten Hochlochziegel durchschnittlich Lochanteile von  $0.45 \le \alpha \le 0.55$  aufweisen, halten sich die Auswirkungen des hyperbolischen Verlaufs der Abweichungskurve in Grenzen. Der Zusammenhang ist jedoch für die praktische Anwendung des Verfahrens zu berücksichtigen. Historische Hochlochziegel weisen meistens geringere Lochanteile mit  $\alpha < 0.5$  auf und sind somit begünstigt.

### 6.4 Endauswertung

Für die Endauswertung der baustoffspezifischen Verfahren wird analog zu Kapitel 5 ein Übereinstimmungsgrad  $\eta$  nach Formel (6.4) definiert:

$$\eta = \frac{f_{\rm b,e}}{f_{\rm b}} \tag{6.4}$$

 $\eta > 1.0$  ... Überschätzung der Steindruckfestigkeit (unsichere Seite)

 $\eta = 1.0 \ldots$  exakte Übereinstimmung

 $\eta < 1.0$  ... Unterschätzung der Steindruckfestigkeit (sichere Seite)

In Abb. 6.6 sind die Übereinstimmungsgrade den jeweiligen mittleren normierten vertikalen Steindruckfestigkeiten gegenübergestellt. Die Fehlerbalken zeigen den Einfluss der Abweichung des Lochanteils bei fotoanalytischer Bestimmung. Es zeigt sich, dass bei größeren Steindruckfestigkeiten  $f_{\rm b}$  auch größere Unterschätzungen zu erwarten sind.



Abb. 6.6: Übereinstimmungsgrade  $\eta$  zu den gegebenen Steindruckfestigkeiten  $f_{\rm b}$ 

Nach ÖNORM EN 1990, Anhang D [21] ist ein Vergleich der experimentellen Werte  $r_{e,j} = f_{b,St,j}$ mit den theoretischen Werten  $r_{t,j} = f_{b,j}$  durchzuführen. In Abb. 6.7 sind die Wertepaare  $(r_{t,j}, r_{e,j})$ aufgezeigt. Wenn die Widerstandsfunktion genau und vollständig wäre, müssten nach besagter Norm alle Werte auf der Winkelhalbierenden zu liegen kommen.



Abb. 6.7: r<sub>e</sub>-r<sub>t</sub>-Diagramm gemäß ÖNORM EN 1990, Anhang D [21]

Alle Werte unterhalb der Winkelhalbierenden unterschätzen die normierte vertikale Steindruckfestigkeit und liegen somit auf der sicheren Seite. Mit dem entwickelten Verfahren lässt sich die normierte vertikale Steindruckfestigkeit mit einer Unterschätzung von durchschnittlich 21 % und

maximal 40% angeben. Eine quantitative Übersicht der Ergebnisse ist in Tab. 6.2 zusammengestellt. Hierin wird zur Berechnung der normierten vertikalen Steindruckfestigkeit der tatsächliche Lochanteil herangezogen.

| Stein-   | $f_{ m b}$ | $f_{ m b,e}$ | $\eta$   |
|----------|------------|--------------|----------|
| nummer   | $[N/mm^2]$ | $[N/mm^2]$   | [-]      |
| HLZ 01   | 14,2       | $13,\!4$     | 0,94     |
| HLZ 03   | $17,\!9$   | 10,9         | $0,\!61$ |
| HLZ $05$ | $22,\!8$   | 16,2         | 0,71     |
| HLZ $06$ | 17,0       | 12,4         | 0,73     |
| HLZ $07$ | $^{8,5}$   | $^{8,2}$     | $0,\!97$ |
| HLZ 09   | $21,\!5$   | 18,2         | $0,\!84$ |
| HLZ $10$ | $16,\!4$   | 12,2         | 0,74     |
| HLZ $12$ | $14,\! 6$  | $13,\!3$     | $0,\!91$ |
| HLZ 13   | $13,\!0$   | 7,9          | $0,\!60$ |
| HLZ $14$ | $13,\!8$   | 10,1         | 0,73     |
| HLZ $15$ | 16,2       | 12,4         | 0,77     |
| HLZ 16   | $26,\!8$   | 18,1         | $0,\!68$ |
| HLZ 17   | 20,2       | $13,\!8$     | $0,\!68$ |
| HLZ 19   | $14,\!8$   | $13,\!4$     | $0,\!90$ |
| HLZ $20$ | 10,9       | 10,8         | $0,\!99$ |

**Tab. 6.2:** Referenzwerte  $f_{\rm b}$  und experimentell bestimmte Ergebnisse  $f_{\rm b,e}$  mit Übereinstimmungsgrad  $\eta$  und relativer Abweichung  $\Delta \eta$  der Prüfserie C

# Kapitel 7

# Neu entwickeltes Prüfverfahren

Auf Grundlage der gewonnenen Erkenntnisse wird ein praktisch anwendbares, zerstörungsarmes Prüfverfahren für Hochlochziegel in Bestandsobjekten konzipiert. Mit dem Verfahren soll eine quantitative Beurteilung der Mauerwerksgüte durch indirekte Prüfung möglich sein. Dies bedeutet, dass eine von der Mörteldruckfestigkeit getrennte Untersuchung der Steindruckfestigkeit vorgesehen ist. Prüfungen der Mauerwerksdruckfestigkeit werden relevant, wenn Bestandsobjekte ausgebaut oder umgebaut werden bzw. im Allgemeinen, wenn Änderungen der ursprünglichen Lastannahmen zu erwarten sind. Laut Huster und Seim [6] zählen hierzu auch Umnutzungen der Räumlichkeiten, wie z. B. die eines Industriebaus für Wohnzwecke.

In Österreich sind die erforderlichen Nachweise von Bestandsobjekten und Bestandsbauteilen aus Mauerwerk in ÖNORM B 1996-3, Anhang D [18] geregelt. Für die Mörtelprüfung wird auf die darin beschriebenen Verfahren verwiesen. Bei Dünnbettmörtel kann ohne Versuche eine Mörteldruckfestigkeit von M10 angenommen werden. Die Mauersteinprüfung unterliegt der bereits beschriebenen Problematik, dass etablierte Verfahren zur Prüfung von Vollmauerziegeln beim Hochlochziegel nicht anwendbar sind, wie z. B. jenes mit dem Rückprallhammer. Eine Entnahme von fünf ganzen Mauersteinen, wie es die Komponentenentnahme erfordert, führt zu einem starken Eingriff in die Tragstruktur und somit zu einer unverhältnismäßig großen Zerstörung des Bestandsmauerwerks. Dem Bedarf an einer zerstörungsarmen Prüfung von Hochlochziegeln soll daher Folge geleistet werden.

Die Festlegung der Prüfstellenanzahl unterscheidet sich je nach angewendeter Methodik. Beim entwickelten Verfahren werden mit den Bohrkernen Teile des Hochlochziegels gewonnen und nachfolgend in einer Druckprüfmaschine bis zum Versagen belastet, womit eine prinzipielle Ähnlichkeit zur normativ geregelten Komponentenentnahme gegeben ist. Daher werden Festlegungen aus ÖNORM B 1996-3, Anhang D [18] hinsichtlich des Prüfumfanges analog übernommen. Für eine Materialprüfung mit Komponentenfestigkeitsbestimmung müssen für jede Prüfserie mindestens drei Prüfstellen vorliegen und für jede Prüfstelle sind fünf Einzelwerte heranzuziehen. Der Umfang der Untersuchungen und damit die Anzahl der Prüfserien richtet sich nach den Kriterien gemäß ÖNORM B 1998-3, Anhang B [19]. Als Mindestanforderung für eine ausreichende Befundung zur Erfüllung des Kennntnisstandes 3 gilt:

- $\triangleright\,$ eine Prüfserie pro angefangen<br/>e $1000\,\mathrm{m}^2$ Bruttogeschoßfläche mit gleichartigen Materialien
- ▷ mindestens zwei Prüfserien pro Bestandsobjekt
- ▷ mindestens eine Pr
  üfserie f
  ür die Pr
  üfung eines Teilbereiches mit gleichartigen Materialien innerhalb eines Objektes (z. B. eine einzelne Wand oder ein Pfeiler)

Aufbauend auf dieser Regelung ergibt sich die erforderliche Anzahl an Bohrkernentnahmestellen des vorgeschlagenen Verfahrens. Dementsprechend sind mindestens fünf Bohrkerne aus fünf unterschiedlichen Steinen pro Prüfstelle zu entnehmen. Das Konzept des Prüfverfahrens zur

Bestimmung der Steindruckfestigkeit anhand von Kleinprüfkörpern gliedert sich in folgende Schritte:

- 1. Bohrkernentnahme
  - a) Entfernung von Putz oder Wandverkleidungen
  - b) Ermittlung der Mauersteinabmessungen
  - c) Entnahme der Bohrkerne aus fünf unterschiedlichen Steinen
- 2. Bestimmung des Lochanteils
- 3. Vorbereitung der Kleinprüfkörper
  - a) Gewinnung regelmäßiger, prismatischer Kleinprüfkörper aus den Bohrkernen
  - b) Oberflächenbehandlung und Nummerierung
  - c) Konditionierung auf lufttrockenen Zustand
  - d) Messung der Scherbendicke
- 4. Stempeldruckprüfung
- 5. Auswertung
  - a) Diagramm der Scherbendicken  $t_{\rm s}$  gegenüber den Stempeldruckfestigkeiten  $f_{\rm p,St}$
  - b) Berechnung der Parameter a und c der Ausgleichskurve  $f_{St}(t_s)$
  - c) Berechnung der charakteristischen Stempeldruckfestigkeit  $f_{p,St,15}$
  - d) Umrechnung auf die normierte vertikale Scherbendruckfestigkeit  $f_s$
  - e) Umrechnung auf die normierte vertikale Steindruckfestigkei<br/>t $f_{\rm b}$
  - f) Mittelwertbildung innerhalb der Prüfstelle

Für die Anwendbarkeit des Verfahrens sind folgende Eigenschaften der Hochlochziegel vorauszusetzen: Die Stege müssen geradläufig sein, sodass regelmäßige prismatische Scherben aus den Bohrkernen gewonnen werden können. Ebenso müssen Stege vorliegen, aus denen Probekörper mit unterschiedlichen Dicken zwischen 5–10 mm herausgeschnitten werden können. Diese Bedingung ist aufgrund des stärkeren Außenmantels so gut wie immer erfüllt. Zusätzliche Scherbendicken bis zu einer maximalen Dicke von 25 mm verbessern die Genauigkeit des Ergebnisses. Das Ziegelmaterial muss möglichst homogen sein und sollte keine grobkörnigen Zusatzstoffe beinhalten.

### 7.1 Entwickelte Prüfmethode

In den folgenden Punkten ist der geplante Ablauf des Verfahrens beschrieben, ergänzt mit Hinweisen und Erfahrungen, die im Zuge der Ausarbeitung des Versuchsprogrammes gewonnen werden konnten.

### Bohrkernentnahme

Vor der Bohrkernentnahme ist der Putz oder etwaige Wandverkleidungen so weit zu entfernen, dass der Ziegel über zwei Lagerfugen und zwei Stoßfugen frei liegt. Dementsprechend ist die Größe der Prüfstelle vom Ziegelformat der verbauten Mauersteine abhängig und sollte, wie in Abb. 7.1 dargestellt, ungefähr die Maße von  $2 \cdot l_u \times 2 \cdot h_u$  aufweisen.



Abb. 7.1: Empfohlene Anordnung zur Entnahme von Bohrkernen

Von den Außenabmessungen des Hochlochziegels ist die Länge der Läuferfläche  $l_{\rm u}$  zu erfassen, da sie für die Auswertung des Lochanteils von Bedeutung ist. Die Entnahmestellen der Bohrkerne sind so anzuordnen, dass fünf unterschiedliche Hochlochziegel im Mauerverband angebohrt werden. Es sind daher mindestens fünf Bohrkerne zu entnehmen. Für die Bestimmung des Lochanteils sollten drei Bohrkerne aus dem mittleren Bereich der Läuferfläche stammen und zwei aus dem Randbereich. Um ausreichend Material zur Gewinnung der Kleinprüfkörper zu haben, sind zwei Bohrkerne pro Stein, also zehn Bohrkerne je Prüfstelle empfehlenswert, wie in Abb. 7.1 zu sehen ist. Die Mindestentnahmetiefe  $w_{\rm u}/2$  sollte bis zur Hälfte der Mauerziegeldicke  $w_{\rm u}$  reichen. Eine Durchdringung des Mauersteins ist jedoch nicht vorgesehen. Die Überstandlänge  $b_{\rm BK}$  der Randbohrkerne und das Naturmaß des Bohrkerndurchmessers  $d_{\rm BK}$  jener Bohrungen aus den Regelbereichen sind direkt vor Ort zu messen. Um bei der Bohrung gleichzeitig Mörtelblättchen für eine Prüfung nach DIN 18555-9 [17] zu gewinnen, kann die Bohrkrone leicht über die Lagerfuge angesetzt werden. Es ist jedoch ratsam, dass eine Überstandlänge von  $b_{\rm BK} = 75$  mm weder bei den Lagerfugen noch bei den Stoßfugen unterschritten wird. Je Probestelle sind gemäß ÖNORM B 1996-3, Anhang D [18] mindestens zehn Einzelprüfwerte des Mörtels erforderlich.

Die Verwendung eines Bohrständers zur Entnahme der Bohrkerne ist von Vorteil, wobei eine Befestigung an der Wand eigene Dübel für Hochlochziegel erfordert. Ein mobiler Bohrständer, der sich orthogonal zur Wandoberfläche positionieren lässt und einen festen Bodenstand aufweist, stellt dahingegen eine zeitsparende Alternative dar. Beim Trockenbohrverfahren ist unbedingt eine langsame Vortriebsgeschwindigkeit (etwa 5 cm/min) zu wählen, sodass die Bohrkerne nicht vorzeitig abreißen. Jeder Bohrkern ist nach der Entnahme so zu beschriften, dass auch in weiterer Folge eine eindeutige Zuweisung zum jeweiligen Entnahmestein und der jeweiligen Prüfstelle möglich ist.

#### Bestimmung des Lochanteils

Vor der Bestimmung des Lochanteils sollten schräg abgerissene Bohrkerne eben zugeschnitten werden, um deren Bruttovolumen möglichst exakt erfassen zu können. Bei der vorgestellten fotoanalytischen Methode ist dies durch ein Zuschneiden des digitalen Bildes auch im Nachhinein möglich. Die relativen Lochanteile der Bohrkerne können nach einem der in Kapitel 5 vorgestellten Verfahren bestimmt werden. Für die Hochrechnung auf den gesamten Lochanteil wird die längengewichtete Mittelwertbildung nach Formel (7.1) empfohlen.

$$l_{\rm u} - 2 \cdot b_{\rm BK} \ge d_{\rm BK} \quad \Rightarrow \quad \overline{\alpha}_{\rm w,rel}(\alpha_{\rm R}, \alpha_{\rm M}) = \alpha_{\rm R} \cdot \frac{2 \cdot b_{\rm BK}}{l_{\rm u}} + \alpha_{\rm M} \cdot \frac{l_{\rm u} - 2 \cdot b_{\rm BK}}{l_{\rm u}}$$

$$l_{\rm u} - 2 \cdot b_{\rm BK} < d_{\rm BK} \quad \Rightarrow \quad \overline{\alpha}_{\rm w,rel}(\alpha_{\rm R}, \alpha_{\rm M}) = \alpha_{\rm R} \cdot \frac{l_{\rm u} - d_{\rm BK}}{l_{\rm u}} + \alpha_{\rm M} \cdot \frac{d_{\rm BK}}{l_{\rm u}}$$

$$(7.1)$$

### Vorbereitung der Kleinprüfkörper

Beim Herausschneiden der Scherben aus den Bohrkernen ist darauf zu achten, dass eine möglichst repräsentative Bandbreite an unterschiedlichen Scherbendicken innerhalb des Intervalls 5 mm  $\leq t_{\rm s} \leq 25$  mm gewonnen wird. Wenn möglich sollten mehrere Kleinprüfkörper hergestellt werden, die mit der charakteristischen Scherbendicke von  $t_{\rm s,char} = 15$  mm übereinstimmen, da so die charakteristische Stempeldruckfestigkeit  $f_{\rm p,St,15}$  als Prüfwert vorliegt und nicht mit Hilfe der Ausgleichskurve berechnet werden muss. Für die Seitenlängen der Scherben im Grundriss sind mindestens 40 mm vorzusehen. Um eine verbindliche Aussage treffen zu können, sollten mindestens zehn Prüfwerte vorliegen. Für einen Ausgleich eventuell auszuschließender Proben sind 12 Scherben pro Stein empfehlenswert.

Es hat sich als praktikabel erwiesen, die Scherben eines Mauerziegels in einer Box aufzubewahren, die mit der Steinnummer beschriftet wird, und die Scherbennummerierung erst nach der Oberflächenbehandlung der einzelnen Prüfkörper vorzunehmen. Durch das Abschleifen ist mit einer Reduktion der Scherbendicke von 1–5 mm zu rechnen, um planparallele Oberflächen herstellen zu können. Nach einer Trocknung bis zum Erreichen des lufttrockenen Zustands sind die Scherben noch in ihrer Dicke zu messen.

### Stempeldruckprüfung

Die Druckstempel müssen den Anforderungen der DIN 18555-9, Abschnitt 4.3 [17] entsprechen und an den Kontaktflächen zum Probekörper einen Durchmesser von  $d_e = 20 \text{ mm}$  aufweisen. Vor der Versuchsdurchführung sind die Druckstempel axial zueinander auszurichten und zwischen den Belastungsflächen und dem Prüfkörper sind ober- und unterseitig Kartonzwischenlagen einzulegen. Scherben, die bereits sichtbare Risse, einen schwarz gebrannten Kern oder geometrische Imperfektionen aufweisen, sind von der Prüfung auszuschließen. Für die Versuchsdurchführung sollten die beschriebenen Kriterien aus Kapitel 3 eingehalten werden.

### Auswertung

Die Vorgehensweise der Auswertung ist in Abschnitt 7.2 an einem der geprüften Hochlochziegel aus Prüfserie C exemplarisch vorgezeigt. Nachstehend sind die analytischen Berechnungsformeln der Reihe nach angeführt. Im ersten Schritt erfolgt für jeden Mauerstein eine Gegenüberstellung der Scherbendicken  $t_s$  zu den gemessenen Stempeldruckfestigkeiten  $f_{p,St}$  und das Einlegen der Ausgleichskurve  $f_{St}(t_s)$  gemäß Formel (7.2). Bei einer Anzahl von *n* Scherben pro Mauerstein mit den gemessenen Wertepaaren  $(t_{s,i}, f_{p,St,i})$  können die Parameter *a* und *c* nach Formel (7.3) ermittelt werden. Der Parameter *b* beträgt einheitlich für alle Hochlochziegel b = -2.

$$f_{\rm St}(t_{\rm s}) = a \cdot t_{\rm s}^{\ b} + c \tag{7.2}$$

$$a = \frac{n \cdot \sum t_{\mathrm{s},i}{}^{b} \cdot f_{\mathrm{p,St},i} - \sum t_{\mathrm{s},i}{}^{b} \cdot \sum f_{\mathrm{p,St},i}}{n \cdot \sum t_{\mathrm{s},i}{}^{2b} - \left(\sum t_{\mathrm{s},i}{}^{b}\right)^{2}}$$

$$c = \frac{\sum t_{\mathrm{s},i}{}^{2b} \cdot \sum f_{\mathrm{p,St},i} - \sum t_{\mathrm{s},i}{}^{b} \cdot \sum t_{\mathrm{s},i}{}^{b} \cdot f_{\mathrm{p,St},i}}{n \cdot \sum t_{\mathrm{s},i}{}^{2b} - \left(\sum t_{\mathrm{s},i}{}^{b}\right)^{2}}$$
(7.3)

Für den Fall, dass c < a/100, sind die Parameter nach Formel (7.4) neu zu bestimmen.

$$a = \frac{100^2 \cdot \sum t_{s,i}{}^b \cdot f_{p,St,i} + 100 \cdot \sum f_{p,St,i}}{100^2 \cdot \sum t_{s,i}{}^{2b} + 2 \cdot 100 \cdot \sum t_{s,i}{}^b + n},$$

$$c = \frac{a}{100}$$
(7.4)

Die Ausgleichskurve ist an der Stelle  $t_{s,char} = 15 \text{ mm}$  auszuwerten, womit sich die charakteristische Stempeldruckfestikeit  $f_{p,St,15} = f_{St}(t_s = 15)$  ergibt. Wenn sich ausreichend viele Probekörper mit Scherbendicken von exakt 15 mm gewinnen lassen, ist es zulässig, den Mittelwert der Stempeldruckfestigkeiten dieser Scherben als charakteristische Stempeldruckfestigkeit  $f_{p,St,15}$  für die Auswertung heranzuziehen. Die Ausgleichskurve  $f_{St}(t_s)$  muss in diesem Fall nicht ausgewertet werden. Die normierte vertikale Scherbendruckfestigkeit  $f_s$  ergibt sich wie folgt:

$$f_{\rm s} = 1,66 \cdot f_{\rm p,St,15}^{0,86} \tag{7.5}$$

Um von den Stempeldruckfestigkeiten der einzelnen Scherben direkt auf die normierte vertikale Scherbendruckfestigkeit des Hochlochziegels schließen zu können, ist auch eine Zusammenfassung nach Formel (7.6) möglich.

$$f_{\rm s} = 1,66 \cdot \left(a \cdot 15^b + c\right)^{0,86} = 1,66 \cdot \left(\frac{a}{225} + c\right)^{0,86} = 0,016 \cdot \left(a + 225 \cdot c\right)^{0,86} \tag{7.6}$$

Die Umrechnung auf die normierte vertikale Steindruckfestigkeit  $f_{\rm b}$  erfolgt mithilfe des Lochanteils  $\alpha$ :

$$f_{\rm b} = f_{\rm s} \cdot (1 - \alpha) \tag{7.7}$$

Der Mittelwert der normierten vertikalen Steindruckfestigkeiten der fünf Steine entspricht der mittleren normierten vertikalen Steindruckfestigkeit der verbauten Hochlochziegel in der untersuchten Wand. Mit der angeführten Vorgehensweise wird ein Wert für die Steindruckfestigkeit ermittelt, der im Durchschnitt 21 % unter dem tatsächlichen liegt. Das Verfahren erlaubt daher eine Bestimmung auf der sicheren Seite und die Bewertung der Kategorie kann anhand der Schwankungsbreite der Messergebnisse erfolgen. Nach ÖNORM EN 771-1 [23, S. 10] gilt: *"Für die Druckfestigkeit von Mauerziegeln der Kategorie I ist ein* 50 %-Quantil (p = 0.50) für

Mittelwerte und ein Vertrauensniveau von 95 % anzuwenden." Sofern dieser Nachweis gelingt, kann der geprüfte Mauerziegel der Kategorie I zugeordnet werden. Ohne dem Nachweis ist bei Bestandsobjekten generell von Mauerziegeln der Kategorie II auszugehen.

### 7.2 Exemplarische Auswertung

Um das Rechenschema der Auswertung an einem praktischen Beispiel vorzuzeigen, wird nachstehend die Auswertung für den Versuchsstein HLz 01 dargelegt. Aus diesem liegen ein Bohrkern RF und ein Bohrkern M vor. Die fotoanalytische Bestimmung des Lochanteils ergibt  $\alpha = 0,444$ . Aus den Bohrkernen werden 23 Scherben gewonnen und 22 geprüft. Die Probe HLz 0120 weist augenscheinliche Risse vor der Prüfung auf und muss ausgeschlossen werden. Die Anzahl der Prüfwerte beträgt daher n = 22. Die Scherbendicken  $t_s$  und Stempeldruckfestigkeiten  $f_{p,St}$  sowie die Nebenrechnungen zur Ermittlung der Paramter a und c der Ausgleichskurve sind in Tab. 7.1 aufgelistet. Der Parameter b ist für alle Hochlochziegel konstant b = -2.

| Scherben- | $t_{{ m s},i}$ | $f_{\mathrm{p,St},i}$ | $t_{\mathrm{s},i}{}^b \cdot f_{\mathrm{p,St},i}$ | $t_{{ m s},i}{}^{2b}$   | ${t_{{ m s},i}}^b$     |
|-----------|----------------|-----------------------|--------------------------------------------------|-------------------------|------------------------|
| nummer    | [mm]           | $[N/mm^2]$            |                                                  |                         |                        |
| 0101      | $^{4,3}$       | $113,\!8$             | $6,\!15$                                         | $2{,}93\times10^{-3}$   | $5{,}41\times10^{-2}$  |
| 0102      | $^{4,5}$       | 101,7                 | $5,\!14$                                         | $2{,}55\times10^{-3}$   | $5{,}05\times10^{-2}$  |
| 0103      | $^{7,5}$       | 42,7                  | 0,76                                             | $3{,}19\times10^{-4}$   | $1{,}79\times10^{-2}$  |
| 0104      | $^{7,3}$       | 38,2                  | 0,73                                             | $3,\!62 	imes 10^{-4}$  | $1{,}90\times10^{-2}$  |
| 0105      | $^{5,6}$       | 62,5                  | $1,\!99$                                         | $1{,}02\times10^{-3}$   | $3{,}19\times10^{-2}$  |
| 0106      | $^{5,4}$       | 64,8                  | $2,\!19$                                         | $1{,}14\times10^{-3}$   | $3{,}38\times10^{-2}$  |
| 0107      | 10,3           | $37,\!8$              | 0,36                                             | $8{,}88\times10^{-5}$   | $9{,}43\times10^{-3}$  |
| 0108      | 10,9           | 37,5                  | 0,31                                             | $7{,}03\times10^{-5}$   | $8,\!39 	imes 10^{-3}$ |
| 0109      | $^{9,0}$       | $35,\!5$              | 0,44                                             | $1{,}56\times10^{-4}$   | $1{,}25\times10^{-2}$  |
| 0110      | $^{8,2}$       | 40,0                  | $0,\!60$                                         | $2{,}23\times10^{-4}$   | $1{,}49\times10^{-2}$  |
| 0111      | $^{5,9}$       | 62,4                  | $1,\!80$                                         | $8{,}31\times10^{-4}$   | $2{,}88\times10^{-2}$  |
| 0112      | $^{5,4}$       | 67,1                  | $2,\!34$                                         | $1{,}21\times10^{-3}$   | $3{,}48\times10^{-2}$  |
| 0113      | $^{5,3}$       | 70,1                  | 2,50                                             | $1,\!27 \times 10^{-3}$ | $3,56 	imes 10^{-2}$   |
| 0114      | $^{8,2}$       | 40,4                  | $0,\!61$                                         | $2{,}27\times10^{-4}$   | $1{,}51\times10^{-2}$  |
| 0115      | $^{5,0}$       | 60,9                  | 2,41                                             | $1{,}56\times10^{-3}$   | $3{,}95\times10^{-2}$  |
| 0116      | $^{6,1}$       | 61,2                  | $1,\!66$                                         | $7{,}32\times10^{-4}$   | $2{,}71\times10^{-2}$  |
| 0117      | $^{7,0}$       | 47,2                  | 0,96                                             | $4{,}16\times10^{-4}$   | $2{,}04\times10^{-2}$  |
| 0118      | $^{6,2}$       | 49,9                  | $1,\!30$                                         | $6{,}81\times10^{-4}$   | $2{,}61\times10^{-2}$  |
| 0119      | $^{5,8}$       | 62,4                  | 1,85                                             | $8{,}78\times10^{-4}$   | $2{,}96\times10^{-2}$  |
| 0120      |                |                       |                                                  |                         |                        |
| 0121      | $^{7,0}$       | 48,5                  | $1,\!00$                                         | $4{,}24\times10^{-4}$   | $2{,}06\times10^{-2}$  |
| 0122      | $^{4,3}$       | $122,\!8$             | $6,\!67$                                         | $2{,}95\times10^{-3}$   | $5{,}43\times10^{-2}$  |
| 0123      | $^{5,7}$       | 57,7                  | 1,80                                             | $9,74 	imes 10^{-4}$    | $3,12 \times 10^{-2}$  |
| Σ         |                | 1325,1                | 43,56                                            | $2,10 \times 10^{-2}$   | $6,16 \times 10^{-1}$  |

Tab. 7.1: Ergebnistabelle der Stempeldruckprüfung an HLz 01

Die Berechnung der Parameter a und c erfolgt nach Formel (7.8) bzw. Formel (7.9). Die Summenoperatoren gelten einheitlich für alle  $i \in [1, 2, ..., n]$ .

$$a = \frac{n \cdot \sum t_{s,i}{}^{b} \cdot f_{p,St,i} - \sum t_{s,i}{}^{b} \cdot \sum f_{p,St,i}}{n \cdot \sum t_{s,i}{}^{2b} - (\sum t_{s,i}{}^{b})^{2}} =$$

$$= \frac{22 \cdot 43,6 - 0,62 \cdot 1325,1}{22 \cdot 0,021 - (0,62)^{2}} = 1712,0$$

$$c = \frac{\sum t_{s,i}{}^{2b} \cdot \sum f_{p,St,i} - \sum t_{s,i}{}^{b} \cdot \sum t_{s,i}{}^{b} \cdot f_{p,St,i}}{n \cdot \sum t_{s,i}{}^{2b} - (\sum t_{s,i}{}^{b})^{2}} =$$

$$= \frac{0,021 \cdot 1325,1 - 0,62 \cdot 43,6}{22 \cdot 0,021 - (0,62)^{2}} = 12,3 \quad \stackrel{!}{\geq} \quad \frac{a}{100} = 17,1 \quad (7.9)$$

Da die Nebenbedingung  $c \ge a/100$  nicht eingehalten ist, müssen die Parameter neu bestimmt werden:

$$a = \frac{100^2 \cdot \sum t_{s,i}{}^b \cdot f_{p,St,i} + 100 \cdot \sum f_{p,St,i}}{100^2 \cdot \sum t_{s,i}{}^{2b} + 2 \cdot 100 \cdot \sum t_{s,i}{}^b + n} = \frac{100^2 \cdot 0.62 \cdot 1325.1 + 100 \cdot 1325.1}{100^2 \cdot 0.021 + 2 \cdot 100 \cdot 0.62 + 22} = 1599.4$$
(7.10)

$$c = \frac{a}{100} = \frac{1599,37}{100} = 16,0\tag{7.11}$$

Die Ausgleichskurve ist in Formel (7.12) angeschrieben und mit den Versuchsergebnissen im Diagramm in Abb. 7.2 dargestellt. Die charakteristische Stempeldruckfestigkeit bei einer Scherbendicke von  $t_{\rm s} = 15 \,\mathrm{mm}$  ergibt sich nach Formel (7.13) zu 23,1 N/mm<sup>2</sup>

$$f_{\rm St}(t_{\rm s}) = a \cdot t_{\rm s}^b + c = 1599.4 \cdot t_{\rm s}^{-2} + 16.0 \tag{7.12}$$

$$f_{\rm p,St,15} = a \cdot 15^b + c = 1599, 4 \cdot 15^{-2} + 16, 0 = 23, 1 \,\mathrm{N/mm^2}$$
(7.13)

Die normierte vertikale Scherbendruckfestigkeit  $f_s$  wird nun nach Formel (7.14) bestimmt. Alternativ kann die Berechnung der normierten vertikalen Scherbendruckfestigkeit auch direkt nach der Auswertung der Parameter *a* und *c* nach Formel (7.15) erfolgen. Die abschließende Umrechnung auf die normierte vertikale Steindruckfestigkeit  $f_b$  ist in Formel (7.16) angeführt.

$$f_{\rm s} = 1.66 \cdot (f_{\rm p,St,15})^{0.86} = 1.66 \cdot (23.1)^{0.86} = 24.8 \,\mathrm{N/mm^2}$$
 (7.14)

$$f_{\rm s} = 1,66 \cdot \left(\frac{a}{225} + c\right)^{0.86} = 1,66 \cdot \left(\frac{1599,4}{225} + 16,0\right)^{0.86} = 24,8 \,\mathrm{N/mm^2} \tag{7.15}$$

$$f_{\rm b} = f_{\rm s} \cdot (1 - \alpha) = 24.8 \cdot (1 - 0.444) = 13.8 \,\mathrm{N/mm^2}$$
(7.16)

Der von Wienerberger Ziegelindustrie GmbH angegebene Referenzwert beträgt für diesen Stein  $14,2 \text{ N/mm}^2$ , womit das Ergebnis etwa 3% unter der tatsächlichen Steindruckfestigkeit liegt.

In Abb. 7.2 ist ersichtlich, dass die Stempeldruckfestigkeiten keine großen Streuungen aufweisen und die Ausgleichskurve einen plausiblen Verlauf einnimmt. Das Bestimmtheitsmaß beträgt  $R^2 = 0,90$  und bestätigt den hohen Übereinstimmungsgrad des Funktionsverlaufs mit den Messwerten der einzelnen Scherben. Mit einer maximalen Scherbendicke der Prüfkörper von  $t_{s,max} = 10,9 \text{ mm}$  liegt der Wert der charakteristischen Stempeldruckfestigkeit  $f_{p,St,15}$  außerhalb des prüfbaren Bereichs. Die Berechnung desselben mit Hilfe der Ausgleichskurve  $f_{St}(t_s)$  stellt somit eine Extrapolation dar, die jedoch zu einem präzisen Endergebnis führt.



Abb. 7.2: Auswertung der Messergebnisse von HLz 01

# Kapitel 8

# Zusammenfassung und Ausblick

Das Ziel dieser Arbeit war es, alternativ zur derzeitigen normativen Regelung eine zerstörungsarme Prüfmethode zur Bestimmung der Steindruckfestigkeit von Hochlochziegeln zu finden. Im Zuge der hierfür durchgeführten Versuche konnten neue Erkenntnisse in der Druckfestigkeitsprüfung von Ziegelmaterialien gewonnen werden. Die Probenvorbereitung, Versuchsdurchführung und Auswertung stützen sich auf die Anforderungen der normativen Vorgehensweise zur Bestimmung der Ziegeldruckfestigkeit. Ausgehend davon wurde zum ersten Mal die Stempeldruckprüfung am Ziegel erprobt. Die Messdaten der insgesamt 714 geprüften plattenförmigen Kleinprüfkörper bilden einen aussagekräftigen Stichprobenumfang, um auch von verbindlichen Zusammenhängen ausgehen zu dürfen.

Die wesentliche Erkenntnis der materialspezifischen Versuche ist die grundsätzliche Eignung der Stempeldruckprüfung als Materialprüfung für den Ziegel. Es ist gelungen, einen Zusammenhang zwischen der horizontalen Stempeldruckfestigkeit und der vertikalen Scherbendruckfestigkeit zu finden. Dabei hat sich gezeigt, dass der Prüfwert der Stempeldruckfestigkeit am Ziegel maßgeblich von der Dicke der Kleinprüfkörper abhängt. Dünne Scherben weisen einen weitaus höheren Widerstand auf als dickere Scherben, da die Querdehnungsbehinderung mit abnehmender Dicke steigt. Der Verlauf dieser Abhängigkeit lässt sich mit Hilfe der gefundenen Regressionskurve  $f_{\rm St}(t_{\rm s})$ plausibel beschreiben. Hierfür ist die individuelle Bestimmung zweier Parameter für jeden untersuchten Mauerstein anhand der Messwerte vorzunehmen. Bei einem Verhältnis der Scherbendicke zum Druckstempeldurchmesser von  $t_{\rm s}: d_{\rm e} = 1:1$  stimmt die gemessene Stempeldruckfestigkeit in etwa mit der richtungsbezogenen Scherbendruckfestigkeit überein. Die Schwankungsbreiten bei der Bestimmung der Scherbendruckfestigkeiten spiegeln sich auch in den Messwerten der Stempeldruckfestigkeiten wider. Insbesondere bei Klinkermaterialien mit höheren Festigkeiten zeigen sich tendenziell höhere Abweichungen als beim gewöhnlichen Ziegel. Dementsprechend wurde eine zweite Ausgleichsrechnung  $f_{\rm s}(f_{\rm p,St,15})$  vorgenommen, um diesen Einfluss bei der Umrechnung der Stempeldruckfestigkeit auf die Scherbendruckfestigkeit zu berücksichtigen.

Bei der baustoffspezifischen Versuchsreihe konnte der Lochanteil von Hochlochziegeln anhand zweier Bohrkernen pro Stein mit einer Genauigkeit von durchschnittlich  $\pm 2\%$  bestimmt werden. Die materialspezifischen Zusammenhänge am Ziegel aus der ersten Versuchsreihe waren auch am Baustoff Hochlochziegel wiederzufinden. Infolgedessen ist es gelungen, eine Prüfmethode zu entwickeln, die eine Bestimmung der Steindruckfestigkeit von Hochlochziegeln in Bestandsobjekten erlaubt. Dabei ist vorausgesetzt, dass es sich um Hochlochziegel handelt, die im Strangpressverfahren erzeugt wurden. Eine detaillierte Beschreibung der Anforderungen und der Vorgehensweise ist Kapitel 7 zu entnehmen.

Ausgehend von den gewonnenen Erkenntnissen stellen sich neue Forschungsfragen, die für eine Weiterentwicklung des Verfahrens zu klären sind. Dies ist zum Ersten der Einfluss der unterschiedlichen Ziegelrezepturen auf den Prüfwert der Stempeldruckfestigkeit. Bei der Auswertung der Prüfserie C hat sich gezeigt, dass höhere Anteile an Porosierungsmittel und Zusatzstoffen die Stempeldruckfestigkeit tendenziell abmindern. Zum Zweiten stellt sich die Frage, wie sich kleinere Druckstempeldurchmesser auf den Prüfwert auswirken. Hierbei können womöglich bessere Ergebnisse für Hochlochziegel mit dünneren Stegdicken von 3 mm  $\leq t_{\rm s} \leq 10$  mm erzielt werden. Zudem wäre eine Optimierung der Methodik zur Bestimmung des Lochanteils von Interesse, sodass eine einfache, objektive und rasche Ermittlung möglich ist, ohne den Festigkeitswert zu beeinflussen.

Im nächsten Schritt müssen die gefundenen Zusammenhänge verifiziert werden. Dazu ist die Analyse an verschiedenen Bestandsobjekten mit bekannten Referenzwerten zu erproben. Anhand weiterer Versuchsergebnisse könnte eine Grundlage für eine normative Regelung der Prüfmethode geschaffen werden.

In seltenen Fällen finden sich in historischen Bestandsobjekten Langlochziegel, die früher auch in tragenden Wänden verbaut wurden, vorwiegend bei Innenwänden. Dazu zählen nach Ritter [14] beispielsweise der *Frewenziegel*, der *Aristoziegel* und der *Deltaziegel*. Deren Produktion erfolgte ebenfalls im Strangpressverfahren. Im Gegensatz zu den Hochlochziegeln ist die Lochung jedoch parallel zur Lagerfläche angeordnet, womit im Vergleich zum Hochlochziegel ein umgekehrtes Verhältnis der richtungsbezogenen Festigkeiten vorliegt. Die vertikale Steindruckfestigkeit beträgt etwa 70 % der horizontalen Festigkeit in Lochrichtung. Daher sind die Zusammenhänge aus der vorliegenden Arbeit am Langlochziegel nicht gültig. Aufgrund der hohen materialspezifischen Ähnlichkeiten zum Hochlochziegel könnte in weiteren Forschungsarbeiten eine Übertragbarkeit des Verfahrens auch auf diese Mauersteine gefunden werden. Ebenso wäre zu erforschen, ob sich das Verfahren in einer vergleichbaren Weise auf andere Materialien anwenden lässt, wie z. B. Hohlblocksteine aus Beton oder Porenbetonsteine.

Abschließend lässt sich zusammenfassen, dass die entwickelte Methode geeignet ist, einen Wert für die normierte vertikale Steindruckfestigkeit von Hochlochziegeln zu ermitteln, der durchschnittlich 21% unter der tatsächlichen Steindruckfestigkeit und bei allen untersuchten Steinen auf der sicheren Seite liegt. Derzeit können in der Tragwerksplanung bei Umbauten von Bestandsobjekten auch Annahmen für die Steindruckfestigkeit der Hochlochziegel auf der sicheren Seite getroffen werden, sofern keine detaillierten Daten vorliegen. Im Gegensatz zu angenommenen Werten lässt sich die nach dem hier entwickelten Konzept ermittelte Festigkeit mit physikalischen Messergebnissen rechtfertigen. Zudem stellt die Methode eine zerstörungsarme und praktikable Alternative zur Entnahme ganzer Mauersteine dar.

# Anhang A

# Messergebnisse der Prüfserie A

### A.1 Ergebnisübersicht

| Stein-<br>nummer   | $ ho_{ m dm} \ [ m kg/m^3]$ | $f_{ m s}$ $[ m N/mm^2]$ | $s(f_{ m s})$<br>[N/mm <sup>2</sup> ] | $f_{ m p,St,15}$ $[ m N/mm^2]$ | R <sup>2</sup><br>[-] | $f_{ m s,e} \ [ m N/mm^2]$ | $\eta$ [-] |
|--------------------|-----------------------------|--------------------------|---------------------------------------|--------------------------------|-----------------------|----------------------------|------------|
| Mz 01              | 1531                        | 34,1                     | $\pm 6,2$                             | 31,2                           | 0,84                  | 32,24                      | $0,\!95$   |
| Mz 02              | 1517                        | 26,4                     | $\pm 3,9$                             | 30,0                           | $0,\!83$              | $31,\!16$                  | $1,\!18$   |
| Mz 03              | 1589                        | 39,5                     | $\pm 9,2$                             | $42,\!5$                       | $0,\!95$              | 42,02                      | $1,\!06$   |
| $\mathrm{Mz}~04$   | 1588                        | $37,\!9$                 | $\pm 6,2$                             |                                |                       |                            |            |
| $\rm Mz~05$        | 1611                        | 29,0                     | $\pm 5,0$                             | $31,\!8$                       | $0,\!87$              | 32,72                      | $1,\!13$   |
| $Mz \ 06$          | 1570                        | $25,\!8$                 | $\pm 0,6$                             | 26,0                           | $0,\!90$              | $27,\!50$                  | $1,\!07$   |
| Mz 09              | 1552                        | 20,2                     | $\pm 1,\! 6$                          | 22,2                           | 0,72                  | $23,\!98$                  | $1,\!19$   |
| $\rm Mz~10$        | 1575                        | $21,\!8$                 | $\pm 0,7$                             | 22,0                           | $0,\!90$              | $23,\!84$                  | $1,\!10$   |
| $Mz \ 11$          | 1556                        | 22,0                     | $\pm 3,4$                             | 20,3                           | $0,\!96$              | $22,\!21$                  | $1,\!01$   |
| $\rm Mz~12$        | 1545                        | $23,\!4$                 | $\pm 3,0$                             | $21,\!6$                       | $0,\!94$              | $23,\!45$                  | $1,\!00$   |
| $\rm Mz~13$        | 1629                        | 23,0                     | $\pm 1,4$                             | $17,\!3$                       | $0,\!91$              | $19,\!38$                  | $0,\!84$   |
| $\rm Mz~14$        | 1624                        | 20,5                     | $\pm 2,1$                             | $18,\!9$                       | $0,\!93$              | $20,\!89$                  | $1,\!02$   |
| $\rm Mz~15$        | 1642                        | $22,\!6$                 | $_{\pm 1,7}$                          | $21,\!5$                       | $0,\!92$              | $23,\!33$                  | $1,\!03$   |
| $\rm Mz~16$        | 1630                        | 21,0                     | $\pm 2,4$                             | 20,1                           | $0,\!93$              | $22,\!02$                  | $1,\!05$   |
| $\mathrm{KMz}\ 17$ | 2123                        | $65,\!4$                 | $\pm 8,0$                             | 72,7                           | $0,\!99$              | $66,\!79$                  | $1,\!02$   |
| $\mathrm{KMz}\ 18$ | 2092                        | 60,2                     | $\pm 10,5$                            | $61,\!8$                       | $0,\!87$              | $58,\!03$                  | $0,\!96$   |
| $\mathrm{KMz}\ 19$ | 2131                        | 87,2                     | $\pm 10,6$                            | $97,\!9$                       | $0,\!82$              | $86,\!27$                  | $0,\!99$   |
| $\rm KMz~20$       | 2093                        | 70,0                     | $_{\pm 8,6}$                          | 79,4                           | $0,\!68$              | $71,\!98$                  | $1,\!03$   |
| $\mathrm{KMz}\ 21$ | 2106                        | $74,\! 6$                | $\pm 22,5$                            | 83,8                           | 0,77                  | $75,\!43$                  | $1,\!01$   |

Tab. A.1: Zusammenstellung der Ergebnisse



Abb. A.1: Ausgleichskurve  $f_{\rm s}(f_{\rm p,St,15})$  innerhalb der Messergebnisse der Prüfserie A

### A.2 Steindruckfestigkeiten

| Zylinder-          | Ø         | h         | $\delta_i$ | $\rho_{\rm d}$ | $\rho_{\rm dm}$ | $\overline{f}_{\mathrm{b},i}$ | $f_{\mathrm{s},i}$ | $f_{\rm s}$ |
|--------------------|-----------|-----------|------------|----------------|-----------------|-------------------------------|--------------------|-------------|
| nummer             | [mm]      | [11111]   | [-]        | [Kg/III*]      | [Kg/III*]       |                               |                    |             |
| Mz 011             | 49,7      | 53,7      | $0,\!87$   | 1544           |                 | $41,\!3$                      | 36,2               |             |
| Mz 012             | 49,7      | 49,3      | 0,85       | 1515           | 1591            | 37,2                          | 31,5               | 941         |
| Mz 013             | 49,3      | 58,4      | 0,91       | 1550           | 1991            | $45,\!9$                      | $41,\!6$           | $_{34,1}$   |
| Mz 014             | $49,\!6$  | 54,2      | 0,88       | 1514           |                 | 30,8                          | 27,1               |             |
| $\mathrm{Mz}~021$  | 49,7      | $58,\!5$  | $0,\!91$   | 1493           |                 | 32,0                          | 29,0               |             |
| Mz 022             | 49,5      | 58,1      | $0,\!90$   | 1523           | 1 - 1 -         | 25,7                          | $23,\!3$           | 0.0 4       |
| $\rm Mz~023$       | $49,\! 6$ | 57,7      | $0,\!90$   | 1531           | 1517            | $33,\!8$                      | $_{30,5}$          | 26,4        |
| $\mathrm{Mz}\ 024$ | $49,\!6$  | $54,\!5$  | $0,\!88$   | 1521           |                 | 26,0                          | 22,9               |             |
| Mz 031             | $49,\!4$  | $54,\!8$  | 0,88       | 1588           |                 | $44,\!5$                      | 39,3               |             |
| $\rm Mz~032$       | 49,7      | $56,\! 6$ | $0,\!89$   | 1569           |                 | 43,1                          | $_{38,5}$          |             |
| $\rm Mz~033$       | 49,2      | $52,\!4$  | $0,\!87$   | 1634           | 1589            | 59,2                          | $51,\!3$           | 39,5        |
| $\mathrm{Mz}~034$  | $49,\!9$  | 57,7      | $0,\!90$   | 1564           |                 | 32,0                          | $28,\!8$           |             |
| Mz 041             | 49,9      | 56,2      | $0,\!89$   | 1561           |                 | 40,0                          | $35,\!6$           |             |
| $\mathrm{Mz}~042$  | $49,\! 6$ | 52,0      | $0,\!86$   | 1569           |                 | $52,\!3$                      | 45,1               |             |
| $\mathrm{Mz}\ 043$ | 49,0      | 55,1      | $0,\!88$   | 1631           | 1588            | $34,\!6$                      | $30,\!6$           | $37,\!9$    |
| $\mathrm{Mz}~044$  | 49,7      | $53,\!8$  | $0,\!88$   | 1593           |                 | 46,1                          | 40,3               |             |
| Mz 051             | 49,5      | 51,1      | 0,86       | 1619           |                 | $35,\!8$                      | 30,7               |             |
| $\rm Mz~052$       | 49,2      | 48,0      | 0,84       | 1622           |                 | 27,0                          | 22,7               |             |
| $\rm Mz~053$       | 49,7      | 48,0      | 0,84       | 1615           | 1611            | $33,\!6$                      | 28,2               | 29,0        |
| $\mathrm{Mz}~054$  | $49,\!8$  | 50,2      | $0,\!85$   | 1587           |                 | $40,\!6$                      | $34,\! 6$          |             |
| Mz 061             | 49,8      | 53,2      | 0,87       | 1554           |                 | 29,3                          | 25,5               |             |
| $\mathrm{Mz}~062$  | 49,8      | 55,9      | $0,\!89$   | 1565           |                 | 29,9                          | $26,\! 6$          |             |
| $Mz \ 063$         | 49,8      | 57,4      | $0,\!90$   | 1555           | 1570            | 28,5                          | $25,\!6$           | $25,\!8$    |
| $\rm Mz~064$       | $49,\!2$  | $52,\!6$  | $0,\!87$   | 1605           |                 | 29,3                          | 25,4               |             |
| Mz 091             | 49,6      | 55,8      | 0,89       | 1530           |                 | $23,\!5$                      | 20,9               |             |
| Mz 092             | 49,4      | 55,4      | $0,\!89$   | 1552           |                 | 20,8                          | 18,5               |             |
| Mz 093             | $48,\! 6$ | $54,\!8$  | $0,\!88$   | 1597           | 1552            | 25,0                          | 22,1               | 20,2        |
| $\mathrm{Mz}~094$  | $49,\! 6$ | $56,\!9$  | $0,\!90$   | 1530           |                 | 21,7                          | $19,\!5$           |             |
| Mz 101             | 49,6      | 52,1      | 0,86       | 1548           |                 | 25,5                          | 22,1               |             |
| Mz $102$           | 48,9      | 56,3      | $0,\!89$   | 1587           |                 | $23,\!3$                      | 20,8               |             |
| Mz 103             | $48,\!8$  | $54,\!8$  | $0,\!88$   | 1587           | 1575            | $25,\!3$                      | 22,3               | 21,8        |
| $\rm Mz~104$       | 49,0      | $54,\! 6$ | 0,88       | 1578           |                 | $24,\!8$                      | $21,\!8$           |             |
|                    |           |           |            |                |                 | Fortsetzu                     | ng folgt nä        | chste Seite |

Tab. A.2: Messergebnisse der Druckprüfung an Bohrkernen aus den Vollmauerziegeln

| Zylinder-           | Ø         | h<br>[mm] | $\delta_i$ | $\rho_{\rm d}$ [kg/m <sup>3</sup> ] | $\rho_{\rm dm}$ | $\overline{f}_{\mathrm{b},i}$ | $f_{\mathrm{s},i}$ [N/mm <sup>2</sup> ] | $f_{\rm s}$ [N/mm <sup>2</sup> ] |
|---------------------|-----------|-----------|------------|-------------------------------------|-----------------|-------------------------------|-----------------------------------------|----------------------------------|
|                     |           | [11111]   | [-]        |                                     |                 |                               |                                         |                                  |
| Mz 111              | 49,2      | 54,3      | 0,88       | 1563                                |                 | 26,4                          | 23,2                                    |                                  |
| Mz 112              | 49,6      | 54,0      | 0,88       | 1541                                | 1556            | 20,3                          | 17,8                                    | 22.0                             |
| Mz 113              | 49,4      | 57,4      | 0,90       | 1557                                | 1000            | 28,8                          | 25,9                                    | 22,0                             |
| Mz 114              | 49,1      | 56,5      | 0,89       | 1562                                |                 | 23,8                          | 21,2                                    |                                  |
| $\rm Mz~121$        | 49,4      | $53,\!6$  | $0,\!87$   | 1551                                |                 | 28,0                          | 24,5                                    |                                  |
| $\rm Mz~122$        | $49,\!5$  | 58,7      | 0,91       | 1541                                |                 | 21,0                          | 19,0                                    | 22.4                             |
| $\rm Mz~123$        | 49,7      | 56,3      | $0,\!89$   | 1530                                | 1545            | 27,0                          | 24,1                                    | 23,4                             |
| $\mathrm{Mz}\ 124$  | 49,2      | 56,4      | $0,\!89$   | 1560                                |                 | 29,0                          | $25,\!9$                                |                                  |
| Mz 131              | 48,8      | $56,\!5$  | $0,\!89$   | 1672                                |                 | 26,2                          | 23,4                                    |                                  |
| $\rm Mz~132$        | $49,\!4$  | $55,\!6$  | $0,\!89$   | 1612                                | 1000            | $24,\!6$                      | 21,8                                    | 22.0                             |
| $\rm Mz~133$        | 49,7      | $56,\!5$  | $0,\!89$   | 1588                                | 1629            | 24,4                          | 21,8                                    | 23,0                             |
| $\rm Mz~134$        | $48,\!9$  | $54,\! 6$ | $0,\!88$   | 1645                                |                 | 28,2                          | 24,8                                    |                                  |
| Mz 141              | 49,2      | 55,8      | 0,89       | 1680                                |                 | 25,8                          | 22,9                                    |                                  |
| Mz $142$            | 49,5      | $54,\!4$  | $0,\!88$   | 1626                                |                 | 20,3                          | 17,8                                    |                                  |
| Mz 143              | 49,7      | 58,3      | 0,91       | 1602                                | 1624            | 22,4                          | 20,3                                    | 20,5                             |
| $\mathrm{Mz}\ 144$  | $49,\! 6$ | $53,\!4$  | $0,\!87$   | 1588                                |                 | 24,0                          | 21,0                                    |                                  |
| Mz 151              | 49,5      | 55,3      | 0,89       | 1630                                |                 | 27,6                          | 24,4                                    |                                  |
| Mz $152$            | 49,3      | 54,3      | 0,88       | 1632                                |                 | $23,\!8$                      | 20,9                                    |                                  |
| Mz 153              | 49,5      | 54,1      | 0,88       | 1659                                | 1642            | 24,4                          | 21,4                                    | $22,\!6$                         |
| $\mathrm{Mz}\ 154$  | $49,\!6$  | $54,\!4$  | 0,88       | 1647                                |                 | 26,7                          | $23,\!5$                                |                                  |
| Mz 161              | 49,6      | 54,8      | 0,88       | 1631                                |                 | 22,0                          | 19,4                                    |                                  |
| Mz 162              | 49,1      | 55,3      | 0,89       | 1637                                |                 | 21,8                          | 19,3                                    |                                  |
| Mz 163              | 49,5      | 52,8      | 0,87       | 1619                                | 1630            | $23,\!8$                      | 20,7                                    | 21,0                             |
| $\mathrm{Mz}\ 164$  | 49,1      | 55,2      | $0,\!88$   | 1635                                |                 | $27,\! 6$                     | 24,5                                    |                                  |
| KMz 171             | 49,6      | 53,2      | 0,87       | 2120                                |                 | 84,5                          | 73,7                                    |                                  |
| $\mathrm{KMz}\ 172$ | 49,7      | 54,7      | 0,88       | 2105                                |                 | 65,4                          | $57,\! 6$                               |                                  |
| $\mathrm{KMz}\ 173$ | 49,8      | 56,4      | $0,\!89$   | 2174                                | 2123            | 79,4                          | 70,9                                    | 65,4                             |
| $\mathrm{KMz}\ 174$ | 49,7      | $55,\!8$  | $0,\!89$   | 2094                                |                 | 67,1                          | $59,\! 6$                               |                                  |
| KMz 181             | 49,8      | 53,7      | 0,87       | 2091                                |                 | $55,\!6$                      | 48,7                                    |                                  |
| KMz 182             | 49,8      | 56,0      | 0,89       | 2069                                |                 | 81,9                          | 72,9                                    |                                  |
| KMz 183             | 49,7      | 55,4      | 0,89       | 2109                                | 2092            | $62,\!6$                      | $55,\!5$                                | 60,2                             |
| KMz 184             | 49,9      | $53,\!9$  | 0,88       | 2098                                |                 | $72,\!9$                      | $63,\!8$                                |                                  |
|                     |           |           |            |                                     |                 | Fortsetzu                     | ng folgt nä                             | chste Seite                      |

| Zylinder-           | Ø        | h         | $\delta_i$ | $\rho_{\rm d}$       | $\rho_{\rm dm}$      | $\overline{f}_{\mathrm{b},i}$ | $f_{\mathrm{s},i}$   | $f_{ m s}$           |
|---------------------|----------|-----------|------------|----------------------|----------------------|-------------------------------|----------------------|----------------------|
| nummer              | [mm]     | [mm]      | [-]        | [kg/m <sup>3</sup> ] | [kg/m <sup>3</sup> ] | [N/mm <sup>2</sup> ]          | [N/mm <sup>2</sup> ] | [N/mm <sup>2</sup> ] |
| KMz 191             | $49,\!8$ | 57,2      | 0,90       | 2177                 |                      | 106,8                         | $95,\!9$             |                      |
| $\rm KMz~192$       | $49,\!8$ | $57,\! 6$ | $0,\!90$   | 2132                 | 0101                 | 106,3                         | $95,\!8$             | - <b>-</b> -         |
| $\mathrm{KMz}\ 193$ | 49,8     | 58,9      | 0,91       | 2100                 | 2131                 | 81,4                          | 74,0                 | 87,2                 |
| KMz 194             | $49,\!8$ | $57,\!3$  | $0,\!90$   | 2114                 |                      | 92,5                          | 83,1                 |                      |
| KMz 201             | $49,\!9$ | $54,\!8$  | 0,88       | 2077                 |                      | 80,9                          | 71,4                 |                      |
| $\mathrm{KMz}\ 202$ | 49,7     | 54,1      | $0,\!88$   | 2111                 |                      | $74,\!8$                      | $65,\! 6$            |                      |
| $\rm KMz~203$       | $49,\!8$ | $55,\!8$  | $0,\!89$   | 2097                 | 2093                 | $91,\!5$                      | 81,4                 | 70,0                 |
| $\rm KMz~204$       | 49,7     | 56,0      | 0,89       | 2087                 |                      | 69,1                          | 61,5                 |                      |
| KMz 211             | 49,7     | $55,\!6$  | 0,89       | 2115                 |                      | 64,1                          | 56,8                 |                      |
| $\rm KMz~212$       | $49,\!8$ | 56,0      | $0,\!89$   | 2112                 | 2100                 | 60,5                          | $53,\!9$             | - 1 0                |
| $\mathrm{KMz}\ 213$ | 49,8     | $54,\!9$  | $0,\!88$   | 2109                 | 2106                 | $101,\! 6$                    | 89,7                 | $74,\! 6$            |
| $\rm KMz~214$       | 49,7     | $55,\!8$  | $0,\!89$   | 2086                 |                      | 110,1                         | $97,\!9$             |                      |



Steindruckfestigkeiten der Prüfserie A

## A.3 Stempeldruckfestigkeiten



| Scherben- | $t_{\rm s}$ | $f_{ m p,St}$ | $f_{\rm St}(t_{\rm s})$ | v          | out | Anmerkung |
|-----------|-------------|---------------|-------------------------|------------|-----|-----------|
| nummer    | [mm]        | $[N/mm^2]$    | $[N/mm^2]$              | $[N/mm^2]$ |     |           |
| 0101      | $5,\!9$     | $65,\!8$      | $61,\!3$                | $^{4,5}$   |     |           |
| 0102      | $^{5,7}$    | 50,7          | $63,\! 6$               | -12,8      |     |           |
| 0103      | $^{5,1}$    | $91,\!9$      | $73,\!9$                | 18,0       |     |           |
| 0104      | $^{6,1}$    | $56,\!8$      | 58,7                    | -1,8       |     |           |
| 0105      | $^{5,4}$    | 61,7          | 69,0                    | $-7,\!3$   |     |           |
| 0106      | $^{5,5}$    | 68,5          | 66,9                    | $^{1,6}$   |     |           |
| 0107      | $10,\!6$    | $33,\!4$      | $36,\!8$                | -3,4       |     |           |
| 0108      | $^{9,1}$    | 32,7          | 40,9                    | -8,1       |     |           |
| 0109      | $9,\!3$     | $34,\! 6$     | 40,2                    | $-5,\!6$   |     |           |
| 0110      | $10,\!0$    | 35,3          | 38,0                    | -2,7       |     |           |
| 0111      | $14,\! 6$   | $_{30,2}$     | $31,\!6$                | -1,4       |     |           |
| 0112      | $15,\!4$    | $32,\!6$      | $31,\!0$                | $^{1,6}$   |     |           |
| 0113      | $12,\!3$    | 31,1          | $34,\!0$                | -2,9       |     |           |
| 0114      | 14,7        | 33,7          | $31,\!5$                | $^{2,2}$   |     |           |
| 0115      | $22,\!0$    | 27,8          | 28,3                    | -0,5       |     |           |
| 0116      | 20,5        | 31,1          | 28,7                    | $^{2,4}$   |     |           |
| 0117      | 21,7        | 38,0          | 28,4                    | $9,\!6$    |     |           |
| 0118      | 20,1        | 35,3          | 28,8                    | $6,\!5$    |     |           |



| Scherben- | $t_{\rm s}$ | $f_{\mathrm{p,St}}$  | $f_{\rm St}(t_{\rm s})$ |                      | out | Anmerkung |
|-----------|-------------|----------------------|-------------------------|----------------------|-----|-----------|
| nummer    | [mm]        | [N/mm <sup>2</sup> ] | [N/mm <sup>2</sup> ]    | [N/mm <sup>2</sup> ] |     |           |
| 0201      | $^{5,8}$    | 66,0                 | 68,3                    | -2,3                 |     |           |
| 0202      | $^{5,2}$    | $65,\! 6$            | 79,3                    | -13,7                |     |           |
| 0203      | $^{5,9}$    | 64,8                 | $67,\!8$                | $-3,\!0$             |     |           |
| 0204      | $^{6,0}$    | 90,7                 | 66,1                    | $24,\! 6$            |     |           |
| 0205      | $^{8,9}$    | 41,0                 | $42,\!5$                | $^{-1,5}$            |     |           |
| 0206      | $^{8,9}$    | 46,4                 | 42,7                    | $^{3,7}$             |     |           |
| 0207      | $^{8,2}$    | 47,0                 | 46,2                    | $^{0,8}$             |     |           |
| 0208      | $9,\!6$     | 32,3                 | 39,7                    | -7,4                 |     |           |
| 0209      | $13,\!5$    | 27,7                 | $31,\!6$                | -3,9                 |     |           |
| 0210      | $14,\! 6$   | 34,7                 | 30,4                    | $^{4,3}$             |     |           |
| 0211      | $14,\!4$    | 31,5                 | $30,\!6$                | $0,\!9$              |     |           |
| 0212      | $15,\! 6$   | 32,3                 | $29,\!5$                | $^{2,8}$             |     |           |
| 0213      | 19,1        | 22,1                 | $27,\!4$                | -5,3                 |     |           |
| 0214      | $17,\!8$    | $30,\!6$             | 28,1                    | $^{2,5}$             |     |           |
| 0215      | $29,\!6$    | 19,8                 | $25,\!0$                | -5,2                 |     |           |
| 0216      | 31,1        | $27,\!6$             | $24,\!8$                | $^{2,8}$             |     |           |



| Scherben- | $t_{\rm s}$ | $f_{ m p,St}$ | $f_{\rm St}(t_{\rm s})$ | v                   | out | Anmerkung         |
|-----------|-------------|---------------|-------------------------|---------------------|-----|-------------------|
| nummer    | [mm]        | $[N/mm^2]$    | $[\mathrm{N/mm^2}]$     | $[\mathrm{N/mm^2}]$ |     |                   |
| 0301      | $5,\!9$     | 96,1          | 85,0                    | 11,1                |     |                   |
| 0302      | $^{3,9}$    | 135,9         | $149,\! 6$              | -13,7               |     |                   |
| 0303      | $^{3,6}$    | 170,8         | 166,7                   | $^{4,1}$            |     |                   |
| 0304      | $^{3,5}$    | 154,4         | 180,1                   | -25,7               | Х   | Versagen ungewiss |
| 0305      | $^{7,5}$    | 91,2          | $65,\!3$                | $25,\!9$            | Х   | Schwarzbrand      |
| 0306      | $^{6,0}$    | 112,0         | 83,2                    | $28,\!8$            | Х   | Schwarzbrand      |
| 0307      | $^{8,6}$    | 69,7          | $58,\!5$                | 11,2                |     |                   |
| 0308      | $^{9,1}$    | $62,\!8$      | $55,\!9$                | $6,\!9$             |     |                   |
| 0309      | $^{7,0}$    | $90,\!6$      | 69,7                    | 20,9                | Х   | Schwarzbrand      |
| 0310      | $^{8,7}$    | 65,0          | $57,\!5$                | $^{7,5}$            |     |                   |
| 0311      | $4,\!9$     | 139,2         | 108,0                   | 31,2                | Х   | Schwarzbrand      |
| 0312      | $11,\!8$    | 46,0          | 47,2                    | -1,2                |     |                   |
| 0313      | $12,\!9$    | $55,\!9$      | 45,2                    | 10,7                |     |                   |
| 0314      | $13,\!9$    | $61,\!5$      | 43,7                    | $17,\!8$            | Х   | Schwarzbrand      |
| 0315      | 10,9        | 45,4          | 49,3                    | $-3,\!9$            | Х   | Schwarzbrand      |
| 0316      | $19,\!8$    | $13,\!8$      | 39,2                    | -25,4               | Х   | Schwarzbrand      |
| 0317      | $18,\!8$    | 25,4          | 39,7                    | -14,3               |     |                   |
| 0318      | $18,\! 6$   | 43,7          | $39,\!8$                | $^{3,9}$            |     |                   |
| 0319      | $15,\!6$    | $35,\!6$      | $41,\!9$                | -6,4                |     |                   |
| 0320      | $16,\!3$    | 29,1          | $41,\!3$                | -12,2               |     |                   |
| 0321      | 20,8        | 30,9          | $38,\!8$                | $-7,\!9$            |     |                   |
| 0322      | $23,\!9$    | 41,2          | $37,\!8$                | $^{3,4}$            |     |                   |
| 0323      | 26,0        | 34,3          | 37,4                    | -3,1                |     |                   |



| Scherben- | $t_{\rm s}$ | $f_{ m p,St}$ | $f_{\rm St}(t_{\rm s})$ | v          | out | Anmerkung    |
|-----------|-------------|---------------|-------------------------|------------|-----|--------------|
| nummer    | [mm]        | $[N/mm^2]$    | $[N/mm^2]$              | $[N/mm^2]$ |     |              |
| 0401      | $^{5,3}$    | 117,4         | $163,\!4$               | -46,0      | Х   | Schwarzbrand |
| 0402      | $^{5,9}$    | 98,1          | 140,7                   | -42,5      | Х   | Schwarzbrand |
| 0403      | $6,\!9$     | 76,3          | $113,\!0$               | -36,7      | Х   | Schwarzbrand |
| 0404      | $^{9,1}$    | $81,\!9$      | 82,3                    | -0,4       | Х   | Schwarzbrand |
| 0405      | $^{7,3}$    | 75,0          | 105,3                   | -30,3      | Х   | Schwarzbrand |
| 0406      | $9,\!8$     | 74,7          | $76,\!9$                | -2,2       |     |              |
| 0407      | $9,\!8$     | 73,4          | $76,\! 6$               | -3,2       | Х   | Schwarzbrand |
| 0408      | $^{8,1}$    | $59,\!9$      | 94,1                    | -34,2      | Х   | Schwarzbrand |
| 0409      | $^{9,2}$    | $51,\!9$      | 81,5                    | $-29,\!6$  | Х   | Schwarzbrand |
| 0410      | 10,9        | $43,\!8$      | $69,\!4$                | -25,7      | Х   | Schwarzbrand |
| 0411      | $12,\!0$    | 77,2          | $64,\!5$                | 12,7       | Х   | Schwarzbrand |
| 0412      | 14,2        | 58,4          | $57,\! 6$               | $^{0,8}$   |     |              |
| 0413      | $13,\!6$    | 62,9          | 59,1                    | $^{3,8}$   |     |              |
| 0414      | 12,2        | $73,\!4$      | $63,\!5$                | $_{9,8}$   | Х   | Schwarzbrand |
| 0415      | $16,\!8$    | 29,5          | $52,\!5$                | -22,9      | Х   | Schwarzbrand |
| 0416      | $16,\!9$    | 53,2          | $52,\!4$                | $^{0,8}$   |     |              |
| 0417      | 18,4        | 36,7          | $50,\!4$                | $-13,\!8$  | Х   | Schwarzbrand |
| 0418      | $19,\!0$    | 68,4          | $49,\!8$                | $18,\! 6$  | Х   | Schwarzbrand |
| 0419      | $21,\!4$    | 48,0          | $47,\!8$                | $^{0,2}$   |     |              |
| 0420      | $25,\!6$    | 42,0          | $45,\!4$                | $-3,\!5$   |     |              |
| 0421      | 25,2        | 31,5          | $45,\! 6$               | -14,1      | Х   | Schwarzbrand |

### 101



| Scherben- | $t_{ m s}$ | $f_{\rm p.St}$ | $f_{\rm St}(t_{\rm s})$ | v                   | out | Anmerkung |
|-----------|------------|----------------|-------------------------|---------------------|-----|-----------|
| nummer    | [mm]       | $[N/mm^2]$     | $[N/mm^2]$              | $[\mathrm{N/mm^2}]$ |     |           |
| 0501      | $^{5,0}$   | 104,5          | 100,6                   | $_{3,9}$            |     |           |
| 0502      | $^{4,2}$   | 152,1          | 134,2                   | $17,\!9$            |     |           |
| 0503      | $^{7,3}$   | 49,0           | 58,9                    | -10,0               |     |           |
| 0504      | $^{5,8}$   | $71,\! 6$      | 81,1                    | -9,4                |     |           |
| 0505      | $^{6,4}$   | 58,1           | 69,9                    | -11,9               |     |           |
| 0506      | $^{6,1}$   | 59,2           | $74,\!5$                | -15,2               |     |           |
| 0507      | $^{7,4}$   | $52,\!4$       | $58,\! 6$               | -6,1                |     |           |
| 0508      | $^{9,3}$   | 29,8           | $45,\!5$                | -15,7               |     |           |
| 0509      | 10,2       | 51,2           | 41,8                    | $_{9,3}$            |     |           |
| 0510      | $12,\!8$   | 40,9           | $34,\!9$                | $5,\!9$             |     |           |
| 0511      | $12,\!8$   | 26,9           | $34,\!9$                | -8,1                |     |           |
| 0512      | $11,\!3$   | 50,2           | 38,2                    | 12,0                |     |           |
| 0513      | $14,\!4$   | 29,7           | $32,\!5$                | -2,8                |     |           |
| 0514      | 14,7       | $25,\!6$       | 32,2                    | $-6,\!6$            |     |           |
| 0515      | 13,2       | $47,\!8$       | $34,\!3$                | $13,\!6$            |     |           |
| 0516      | $16,\! 0$  | $36,\!8$       | 30,8                    | $_{6,0}$            |     |           |
| 0517      | $14,\!4$   | $22,\!3$       | $32,\!6$                | -10,3               |     |           |
| 0518      | $15,\!9$   | 46,7           | 30,9                    | $15,\!8$            |     |           |
| 0519      | 20,7       | 16,9           | $27,\!8$                | -10,9               |     |           |
| 0520      | 17,7       | 39,2           | 29,4                    | $_{9,8}$            |     |           |
| 0521      | 20,5       | 28,1           | $27,\!9$                | $_{0,2}$            |     |           |
| 0522      | $25,\!0$   | $33,\!9$       | 26,4                    | $^{7,5}$            |     |           |
| 0523      | 27,2       | 35,1           | $25,\!9$                | $_{9,2}$            |     |           |
| 0524      | 26.7       | 21.7           | 26.0                    | -4.3                |     |           |

0624

31,9

28,3

 $19,\!8$ 

8,5



| Scherben- | $t_{\rm s}$ | $f_{ m p,St}$ | $f_{\rm St}(t_{\rm s})$ | v          | out | Anmerkung |
|-----------|-------------|---------------|-------------------------|------------|-----|-----------|
| nummer    | [mm]        | $[N/mm^2]$    | $[N/mm^2]$              | $[N/mm^2]$ |     |           |
| 0601      | $^{4,7}$    | $93,\!5$      | 98,4                    | -5,0       |     |           |
| 0602      | $^{3,9}$    | 161,1         | $133,\!9$               | 27,2       |     |           |
| 0603      | $^{5,0}$    | 75,1          | 90,3                    | -15,1      |     |           |
| 0604      | $^{7,3}$    | 38,4          | $51,\!8$                | -13,4      |     |           |
| 0605      | $^{8,3}$    | 42,1          | 44,0                    | -2,0       |     |           |
| 0606      | 6,9         | $43,\!5$      | $56,\!3$                | -12,9      |     |           |
| 0607      | $7,\!8$     | 42,0          | $47,\!9$                | -6,0       |     |           |
| 0608      | 8,8         | $31,\!8$      | $41,\!4$                | $-9,\!6$   |     |           |
| 0609      | $10,\!0$    | $33,\!6$      | 36,0                    | -2,4       |     |           |
| 0610      | $11,\!0$    | 22,1          | $32,\!8$                | $-10,\!6$  |     |           |
| 0611      | $13,\!3$    | 40,5          | 28,2                    | 12,3       |     |           |
| 0612      | $11,\!5$    | 34,1          | $31,\!6$                | $^{2,6}$   |     |           |
| 0613      | $11,\!5$    | 28,0          | $31,\!5$                | $-3,\!5$   |     |           |
| 0614      | $14,\! 0$   | 28,3          | 27,1                    | 1,2        |     |           |
| 0615      | $12,\!3$    | 36,9          | $29,\!9$                | $^{7,1}$   |     |           |
| 0616      | $14,\!9$    | 35,1          | 26,1                    | $_{9,0}$   |     |           |
| 0617      | $15,\!0$    | 24,1          | 26,0                    | -1,8       |     |           |
| 0618      | 14,7        | 29,3          | 26,3                    | $^{3,0}$   |     |           |
| 0619      | 17,1        | 21,2          | 24,1                    | -2,9       |     |           |
| 0620      | $12,\!5$    | 23,0          | $29,\!5$                | -6,5       |     |           |
| 0621      | $20,\!8$    | 17,9          | 22,1                    | -4,2       |     |           |
| 0622      | 17,4        | 32,5          | $23,\!9$                | $^{8,5}$   |     |           |
| 0623      | 25,1        | 20,2          | 20,8                    | -0,7       |     |           |

103



| Scherben- | $t_{\rm s}$ | $f_{ m p,St}$ | $f_{\rm St}(t_{\rm s})$ | v          | out | Anmerkung     |
|-----------|-------------|---------------|-------------------------|------------|-----|---------------|
| nummer    | [mm]        | $[N/mm^2]$    | $[\mathrm{N/mm^2}]$     | $[N/mm^2]$ |     |               |
| 0901      | $^{3,4}$    | 106,9         | 96,4                    | 10,5       | Х   | Kein Versagen |
| 0902      | $^{5,6}$    | $54,\!9$      | $47,\!2$                | $^{7,6}$   |     |               |
| 0903      | $^{7,1}$    | $_{30,0}$     | $36,\! 6$               | $-6,\!6$   |     |               |
| 0904      | $^{6,6}$    | 44,0          | 39,1                    | 4,8        |     |               |
| 0905      | $^{8,7}$    | 26,3          | $_{30,2}$               | $-3,\!9$   |     |               |
| 0906      | $^{8,0}$    | 28,9          | 32,4                    | $-3,\!6$   |     |               |
| 0907      | $^{9,4}$    | 26,9          | $28,\!5$                | $-1,\!6$   |     |               |
| 0908      | $11,\!9$    | 26,1          | $24,\! 6$               | $^{1,5}$   |     |               |
| 0909      | $^{9,4}$    | 24,1          | 28,5                    | -4,4       |     |               |
| 0910      | 12,1        | 18,7          | $24,\!4$                | $-5,\!8$   |     |               |
| 0911      | $12,\!5$    | 18,9          | 24,0                    | -5,1       |     |               |
| 0912      | 16,3        | 14,3          | 21,5                    | -7,2       |     |               |
| 0913      | $18,\!3$    | 20,5          | 20,8                    | -0,3       |     |               |
| 0914      | $18,\!8$    | 21,2          | 20,7                    | $^{0,5}$   |     |               |
| 0915      | 20,8        | 20,3          | 20,2                    | $^{0,1}$   |     |               |
| 0916      | 20,9        | 29,0          | 20,2                    | 8,8        |     |               |
| 0917      | $23,\!3$    | 20,7          | $19,\!8$                | $1,\!0$    |     |               |
| 0918      | $23,\!0$    | $25,\!5$      | $19,\!8$                | $^{5,7}$   |     |               |
| 0919      | $25,\!3$    | 23,4          | 19,5                    | $_{3,9}$   |     |               |
| 0920      | 28,4        | 23,7          | 19,2                    | $^{4,5}$   |     |               |



| Scherben- | $t_{\rm s}$ | $f_{ m p,St}$ | $f_{ m St}(t_{ m s})$ | v          | out | Anmerkung     |
|-----------|-------------|---------------|-----------------------|------------|-----|---------------|
| nummer    | [mm]        | $[N/mm^2]$    | $[N/mm^2]$            | $[N/mm^2]$ |     |               |
| 1001      | $3,\!9$     |               | 84,0                  |            | Х   | Kein Versagen |
| 1002      | $^{4,2}$    | 77,5          | $74,\!5$              | $2,\!9$    |     |               |
| 1003      | $6,\!8$     | $33,\!9$      | 39,4                  | $-5,\!5$   |     |               |
| 1004      | $6,\!8$     | 48,5          | 39,0                  | $^{9,5}$   |     |               |
| 1005      | $^{5,4}$    | 48,2          | $51,\! 6$             | $-3,\!5$   |     |               |
| 1006      | $^{7,2}$    | 31,2          | 37,0                  | -5,9       |     |               |
| 1007      | $^{7,4}$    | $37,\! 6$     | $35,\!6$              | $1,\!9$    |     |               |
| 1008      | $^{9,3}$    | 25,1          | 29,0                  | -4,0       |     |               |
| 1009      | 11,2        | 28,5          | $25,\!6$              | $2,\!9$    |     |               |
| 1010      | $11,\!3$    | 22,1          | $25,\!5$              | -3,4       |     |               |
| 1011      | $12,\!4$    | 26,0          | 24,1                  | $1,\!9$    |     |               |
| 1012      | $13,\!5$    | $23,\!5$      | 23,1                  | $0,\!5$    |     |               |
| 1013      | $15,\!5$    | 22,9          | $21,\!8$              | $^{1,2}$   |     |               |
| 1014      | $16,\!5$    | $23,\!9$      | 21,2                  | $^{2,7}$   |     |               |
| 1015      | $18,\!3$    | $16,\!8$      | $20,\!6$              | -3,7       |     |               |
| 1016      | $20,\!3$    | 11,2          | 20,0                  | -8,8       |     |               |
| 1017      | $21,\!0$    | 21,1          | $19,\!8$              | $1,\!3$    |     |               |
| 1018      | $22,\!8$    | $18,\! 6$     | $19,\!5$              | -0,9       |     |               |
| 1019      | $24,\!4$    | $22,\!8$      | 19,3                  | $^{3,6}$   |     |               |
| 1020      | 27,7        | 22,7          | $18,\!9$              | $^{3,8}$   |     |               |
| 1021      | 29,2        | 18,0          | 18,7                  | -0,7       |     |               |
| 1022      | $24,\!0$    | 27,1          | $19,\!3$              | $^{7,8}$   |     |               |
| 1023      | $11,\!6$    | 21,3          | $25,\!0$              | -3,7       |     |               |



| Scherben- | $t_{\rm s}$ | $f_{\mathrm{p,St}}$ | $f_{\rm St}(t_{\rm s})$ | v [N/mm <sup>2</sup> ] | out | Anmerkung |  |
|-----------|-------------|---------------------|-------------------------|------------------------|-----|-----------|--|
|           | [111111]    |                     |                         |                        |     |           |  |
| 1101      | $^{4,8}$    | $75,\!9$            | 75,2                    | $^{0,7}$               |     |           |  |
| 1102      | $^{6,4}$    | 48,2                | 48,9                    | -0,7                   |     |           |  |
| 1103      | $^{4,8}$    | 75,0                | 74,7                    | $0,\!3$                |     |           |  |
| 1104      | $^{6,4}$    | $53,\!5$            | 48,3                    | $^{5,2}$               |     |           |  |
| 1105      | 6,9         | 47,4                | $43,\!3$                | $^{4,1}$               |     |           |  |
| 1106      | $^{8,8}$    | $28,\! 6$           | $32,\!3$                | $-3,\!8$               |     |           |  |
| 1107      | $^{8,7}$    | $27,\!6$            | $32,\!8$                | -5,2                   |     |           |  |
| 1108      | $11,\!8$    | 18,9                | 24,2                    | -5,3                   |     |           |  |
| 1109      | $10,\!6$    | 24,5                | $26,\!6$                | -2,0                   |     |           |  |
| 1110      | 11,9        | 24,3                | 24,0                    | $0,\!3$                |     |           |  |
| 1111      | 15,2        | 15,7                | 20,1                    | -4,4                   |     |           |  |
| 1112      | 14,1        | 17,7                | 21,1                    | -3,4                   |     |           |  |
| 1113      | 14,3        | $15,\!8$            | 20,9                    | -5,1                   |     |           |  |
| 1114      | 16,3        | 19,1                | 19,3                    | -0,2                   |     |           |  |
| 1115      | 17,2        | 16,5                | 18,8                    | -2,3                   |     |           |  |
| 1116      | 20,3        | 19,3                | 17,5                    | 1,8                    |     |           |  |
| 1117      | $23,\!6$    | 19,7                | 16,5                    | $^{3,1}$               |     |           |  |
| 1118      | $23,\!0$    | $21,\!6$            | 16,7                    | 4,9                    |     |           |  |
| 1119      | 27,0        | 15,7                | 16,0                    | -0,2                   |     |           |  |
| 1120      | $27,\!3$    | 21,8                | 15,9                    | $5,\!8$                |     |           |  |
| 1121      | 30,4        | 18,9                | $15,\!6$                | $3,\!3$                |     |           |  |



| Scherben- | $t_{\rm s}$ | $f_{ m p,St}$ | $f_{\rm St}(t_{\rm s})$ | v          | out | Anmerkung         |
|-----------|-------------|---------------|-------------------------|------------|-----|-------------------|
| nummer    | [mm]        | $[N/mm^2]$    | $[N/mm^2]$              | $[N/mm^2]$ |     |                   |
| 1201      | 4,2         |               | 98,1                    |            | Х   | Kein Versagen     |
| 1202      | $^{6,0}$    | 56,4          | $56,\!8$                | -0,3       |     |                   |
| 1203      | $^{6,0}$    | $62,\!5$      | $56,\!8$                | $^{5,7}$   |     |                   |
| 1204      | $^{6,8}$    | 44,3          | 47,0                    | -2,7       |     |                   |
| 1205      | $^{4,5}$    |               | $89,\!8$                |            | Х   | Versagen ungewiss |
| 1206      | $^{5,5}$    | 71,1          | $64,\! 0$               | $^{7,1}$   |     |                   |
| 1207      | $^{6,2}$    | 47,4          | $54,\! 0$               | $-6,\!6$   |     |                   |
| 1208      | $^{7,7}$    | 38,7          | $40,\!4$                | -1,8       |     |                   |
| 1209      | 10,2        | 22,9          | 29,4                    | -6,5       |     |                   |
| 1210      | $11,\!4$    | $20,\!6$      | $26,\!5$                | $-5,\!9$   |     |                   |
| 1211      | $12,\!5$    | $25,\!3$      | $24,\! 6$               | 0,7        |     |                   |
| 1212      | $12,\!3$    | 26,0          | $24,\!9$                | $^{1,1}$   |     |                   |
| 1213      | 10,2        | $_{30,3}$     | $29,\!4$                | $0,\!9$    |     |                   |
| 1214      | $14,\!1$    | $23,\!9$      | $22,\!5$                | $1,\!4$    |     |                   |
| 1215      | $16,\!3$    | 19,2          | $20,\!6$                | $-1,\!3$   |     |                   |
| 1216      | $16,\!9$    | 17,1          | 20,2                    | -3,1       |     |                   |
| 1217      | $16,\!3$    | 23,2          | $20,\!6$                | $^{2,6}$   |     |                   |
| 1218      | 17,2        | $21,\! 6$     | 20,0                    | $^{1,5}$   |     |                   |
| 1219      | $19,\!9$    | $23,\!4$      | 18,7                    | $^{4,7}$   |     |                   |
| 1220      | $19,\!5$    | $23,\!4$      | $18,\!9$                | $^{4,6}$   |     |                   |
| 1221      | $22,\!9$    | 13,7          | $17,\!8$                | -4,1       |     |                   |
| 1222      | $24,\!2$    | 15,0          | $17,\!5$                | $-2,\!5$   |     |                   |
| 1223      | $25,\!8$    | $20,\!6$      | 17,2                    | $^{3,4}$   |     |                   |
| 1224      | $25,\!4$    | $13,\!3$      | $17,\!3$                | -4,0       |     |                   |



| Scherben- | $t_{\rm s}$ | $f_{ m p,St}$ | $f_{\rm St}(t_{\rm s})$ | v          | out | Anmerkung     |
|-----------|-------------|---------------|-------------------------|------------|-----|---------------|
| nummer    | [mm]        | $[N/mm^2]$    | $[N/mm^2]$              | $[N/mm^2]$ |     |               |
| 1301      | $^{5,8}$    | $52,\!3$      | 48,1                    | 4,2        |     |               |
| 1302      | $^{5,2}$    | 60,4          | $56,\!8$                | $^{3,5}$   |     |               |
| 1303      | $^{5,2}$    |               | 55,7                    |            | Х   | Kein Versagen |
| 1304      | $^{8,2}$    | 24,7          | $29,\!9$                | -5,3       |     |               |
| 1305      | $^{8,5}$    | 24,9          | 28,7                    | $-3,\!8$   |     |               |
| 1306      | $^{9,0}$    | 23,1          | 26,7                    | $-3,\!6$   |     |               |
| 1307      | $^{9,4}$    | $24,\!9$      | 25,7                    | -0,8       |     |               |
| 1308      | 10,5        | 18,7          | 22,9                    | -4,2       |     |               |
| 1309      | 10,9        | $21,\!9$      | 22,2                    | -0,2       |     |               |
| 1310      | $13,\!0$    | 18,3          | 19,1                    | -0,8       |     |               |
| 1311      | $11,\!8$    | 19,3          | $20,\!6$                | -1,4       |     |               |
| 1312      | $12,\!8$    | 18,2          | $19,\!4$                | -1,2       |     |               |
| 1313      | $13,\!9$    | 17,2          | 18,2                    | -1,0       |     |               |
| 1314      | $15,\!5$    | 17,2          | $17,\!0$                | $0,\!2$    |     |               |
| 1315      | $16,\!5$    | 14,0          | $16,\!4$                | -2,4       |     |               |
| 1316      | 18,4        | $12,\!9$      | $15,\!5$                | $-2,\!6$   |     |               |
| 1317      | 17,2        | $13,\!9$      | 16,1                    | -2,2       |     |               |
| 1318      | $20,\!0$    | $21,\!8$      | $15,\!0$                | $^{6,8}$   |     |               |
| 1319      | $21,\!4$    | 15,7          | $14,\! 6$               | $1,\!1$    |     |               |
| 1320      | $21,\!9$    | $19,\!9$      | $14,\!5$                | $^{5,4}$   |     |               |
| 1321      | 25,2        | $19,\! 6$     | $13,\!9$                | $^{5,7}$   |     |               |


| Scherben- | $t_{\rm s}$ | $f_{\mathrm{p,St}}$ | $f_{\rm St}(t_{\rm s})$ | v          | out | Anmerkung |
|-----------|-------------|---------------------|-------------------------|------------|-----|-----------|
| nummer    | [mm]        | $[N/mm^2]$          | $[\mathrm{N/mm^2}]$     | $[N/mm^2]$ |     |           |
| 1401      | $^{5,1}$    | 65,1                | 62,8                    | $^{2,3}$   |     |           |
| 1402      | $4,\!9$     | 81,3                | 66,9                    | 14,5       |     |           |
| 1403      | $4,\!9$     | 70,2                | 67,1                    | $^{3,1}$   |     |           |
| 1404      | $^{5,0}$    | 62,4                | $65,\!4$                | -3,0       |     |           |
| 1405      | $^{6,3}$    | 38,1                | 46,2                    | -8,1       |     |           |
| 1406      | $^{7,0}$    | $38,\!8$            | $39,\!8$                | -1,0       |     |           |
| 1407      | $^{6,2}$    | 52,0                | 47,2                    | $^{4,8}$   |     |           |
| 1408      | $^{6,1}$    | 45,4                | 48,2                    | -2,8       |     |           |
| 1409      | $^{7,4}$    | 37,3                | 37,1                    | $^{0,1}$   |     |           |
| 1410      | $^{8,0}$    | $_{30,1}$           | 33,7                    | $-3,\!6$   |     |           |
| 1411      | $^{7,3}$    | $43,\!9$            | 38,0                    | $_{6,0}$   |     |           |
| 1412      | $^{7,7}$    | 31,7                | 35,2                    | $-3,\!6$   |     |           |
| 1413      | $7,\!6$     | 43,7                | 36,0                    | $^{7,7}$   |     |           |
| 1414      | 9,7         | 20,8                | 27,1                    | -6,2       |     |           |
| 1415      | 9,7         | 22,2                | 27,0                    | -4,8       |     |           |
| 1416      | $9,\!8$     | 24,8                | $26,\! 6$               | -1,9       |     |           |
| 1417      | $9,\!8$     | 23,0                | 26,7                    | -3,7       |     |           |
| 1418      | $12,\! 6$   | 18,2                | $21,\!3$                | -3,1       |     |           |
| 1419      | 12,7        | 17,1                | 21,2                    | -4,1       |     |           |
| 1420      | $13,\!0$    | 15,3                | 20,8                    | $-5,\!5$   |     |           |
| 1421      | $16,\!3$    | 12,7                | 18,0                    | $-5,\!3$   |     |           |
| 1422      | 16,4        | 14,3                | $17,\!9$                | $-3,\!6$   |     |           |
| 1423      | $14,\! 0$   | 17,3                | $19,\!8$                | -2,5       |     |           |
| 1424      | 15,1        | 15,7                | $18,\!8$                | -3,1       |     |           |
| 1425      | 20,8        | 16,5                | 16,1                    | $^{0,4}$   |     |           |
| 1426      | $22,\!5$    | 10,0                | $15,\!6$                | -5,7       |     |           |



| Scherben- | $t_{\rm s}$ | $f_{ m p,St}$ | $f_{\rm St}(t_{\rm s})$ | v          | out | Anmerkung         |
|-----------|-------------|---------------|-------------------------|------------|-----|-------------------|
| nummer    | [mm]        | $[N/mm^2]$    | $[N/mm^2]$              | $[N/mm^2]$ |     |                   |
| 1501      | $^{5,3}$    | $67,\! 6$     | 67,0                    | $0,\!6$    |     |                   |
| 1502      | $^{5,4}$    | 70,1          | $66,\! 6$               | $^{3,5}$   |     |                   |
| 1503      | $^{5,3}$    | 67,4          | 67,0                    | $^{0,4}$   |     |                   |
| 1504      | $^{5,2}$    |               | 69,2                    |            | Х   | Versagen ungewiss |
| 1505      | $^{5,2}$    | 82,4          | 69,4                    | $13,\!0$   |     |                   |
| 1506      | $^{5,3}$    | 83,0          | 68,0                    | $15,\!0$   |     |                   |
| 1507      | $^{7,3}$    | 38,7          | 43,1                    | -4,4       |     |                   |
| 1508      | $^{7,2}$    | 35,2          | $43,\!8$                | $-8,\!6$   |     |                   |
| 1509      | $^{7,3}$    | 38,3          | 42,8                    | -4,5       |     |                   |
| 1510      | $7,\!8$     | $33,\!3$      | $39,\!3$                | -6,0       |     |                   |
| 1511      | $^{7,3}$    | 36,7          | $42,\!8$                | -6,1       |     |                   |
| 1512      | $^{7,6}$    | 32,0          | 40,9                    | -8,9       |     |                   |
| 1513      | $11,\!4$    | 23,0          | 26,4                    | -3,4       |     |                   |
| 1514      | $11,\!1$    | 23,0          | 27,0                    | -4,0       |     |                   |
| 1515      | 11,2        | 27,2          | 26,8                    | $0,\!4$    |     |                   |
| 1516      | $11,\!4$    | 21,0          | 26,3                    | $-5,\!3$   |     |                   |
| 1517      | $11,\!0$    | 24,9          | 27,1                    | -2,2       |     |                   |
| 1518      | $11,\!5$    | $20,\!6$      | 26,2                    | $-5,\!6$   |     |                   |
| 1519      | $13,\!6$    | $21,\!6$      | 22,9                    | $-1,\!3$   |     |                   |
| 1520      | $15,\!4$    | 22,5          | 21,2                    | $1,\!3$    |     |                   |
| 1521      | $16,\!8$    | 14,5          | 20,2                    | -5,7       |     |                   |
| 1522      | $19,\!3$    | 21,4          | $18,\!8$                | $^{2,6}$   |     |                   |
| 1523      | 22,2        | $13,\!9$      | $17,\!9$                | -4,0       |     |                   |
| 1524      | 21,7        | 21,8          | 18,0                    | 3,7        |     |                   |



| Scherben- | $t_{\rm s}$ | $f_{ m p,St}$ | $f_{\rm St}(t_{\rm s})$ | v          | out | Anmerkung              |
|-----------|-------------|---------------|-------------------------|------------|-----|------------------------|
| nummer    | [mm]        | $[N/mm^2]$    | $[\mathrm{N/mm^2}]$     | $[N/mm^2]$ |     |                        |
| 1601      | $^{5,6}$    | 58,1          | 52,8                    | $5,\!3$    |     |                        |
| 1602      | $^{5,1}$    | $63,\!3$      | 60,8                    | $^{2,5}$   |     |                        |
| 1603      | $^{5,1}$    | 64,5          | $61,\!4$                | $^{3,2}$   |     |                        |
| 1604      | $6,\!9$     | $36,\! 6$     | $39,\!9$                | $-3,\!3$   |     |                        |
| 1605      | $^{6,6}$    | $38,\!8$      | 42,2                    | -3,4       |     |                        |
| 1606      | $^{7,3}$    | 32,5          | $37,\!4$                | -4,9       |     |                        |
| 1607      | $^{8,7}$    | 28,2          | $_{30,5}$               | -2,2       |     |                        |
| 1608      | $^{8,5}$    | 28,0          | 31,4                    | -3,4       |     |                        |
| 1609      | $^{8,9}$    | 24,0          | $29,\!9$                | $-5,\!9$   |     |                        |
| 1610      | $^{9,0}$    | 27,4          | 29,5                    | -2,1       |     |                        |
| 1611      | $^{9,2}$    |               | $28,\!8$                |            | Х   | Zerstörung vor Prüfung |
| 1612      | 12,1        | 17,8          | 22,9                    | -5,1       |     |                        |
| 1613      | $12,\!5$    | 24,9          | 22,4                    | $^{2,5}$   |     |                        |
| 1614      | 13,7        | $21,\!8$      | 21,2                    | $0,\!6$    |     |                        |
| 1615      | $14,\!3$    | 16,1          | $20,\!6$                | -4,5       |     |                        |
| 1616      | $13,\!9$    | 25,2          | 20,9                    | $^{4,3}$   |     |                        |
| 1617      | $15,\!8$    | 20,2          | 19,5                    | $0,\!6$    |     |                        |
| 1618      | $16,\!3$    | 22,0          | $19,\!3$                | 2,7        |     |                        |
| 1619      | $18,\!9$    | 25,4          | 18,1                    | $^{7,3}$   |     |                        |
| 1620      | 20,1        | 17,9          | 17,7                    | $^{0,1}$   |     |                        |
| 1621      | 23,2        | 20,2          | 17,0                    | $^{3,2}$   |     |                        |
| 1622      | 26,2        | 19,0          | 16,5                    | $^{2,4}$   |     |                        |



| Scherben-<br>nummer | $t_{\rm s}$ [mm] | $f_{ m p,St}$ $[ m N/mm^2]$ | $f_{\rm St}(t_{\rm s})$<br>[N/mm <sup>2</sup> ] | $v$ $[N/mm^2]$ | out | Anmerkung     |
|---------------------|------------------|-----------------------------|-------------------------------------------------|----------------|-----|---------------|
| 1701                | $^{3,6}$         |                             | 209,5                                           |                | Х   | Kein Versagen |
| 1702                | $^{3,2}$         | 238,9                       | 240,7                                           | -1,8           |     |               |
| 1703                | $^{5,5}$         | 129,9                       | $125,\!4$                                       | $^{4,5}$       |     |               |
| 1704                | $^{8,6}$         | $93,\!4$                    | 89,1                                            | $^{4,3}$       |     |               |
| 1705                | $10,\!0$         | 85,1                        | 82,8                                            | $^{2,3}$       |     |               |
| 1706                | $10,\!8$         | 74,9                        | 80,4                                            | $-5,\!5$       |     |               |
| 1707                | 15,1             | 75,9                        | 72,7                                            | $^{3,3}$       |     |               |
| 1708                | $17,\!9$         | 68,4                        | 70,3                                            | -1,9           |     |               |
| 1709                | 17,1             | 64,7                        | 70,9                                            | -6,1           |     |               |
| 1710                | $23,\!8$         | 68,7                        | $67,\!9$                                        | $^{0,8}$       |     |               |



| Scherben- | $t_{\rm s}$ | $f_{ m p,St}$ | $f_{\rm St}(t_{\rm s})$ | v          | out | Anmerkung            |
|-----------|-------------|---------------|-------------------------|------------|-----|----------------------|
| nummer    | [mm]        | $[N/mm^2]$    | $[\mathrm{N/mm^2}]$     | $[N/mm^2]$ |     |                      |
| 1801      | $^{5,3}$    | $156,\! 6$    | 148,5                   | 8,1        |     |                      |
| 1802      | $7,\!9$     | $83,\!6$      | 94,2                    | $-10,\!6$  |     |                      |
| 1803      | $4,\!8$     | 160,5         | 168,7                   | -8,2       |     |                      |
| 1804      | $^{7,2}$    | 83,1          | $103,\! 6$              | -20,4      |     |                      |
| 1805      | $^{5,7}$    | 150,0         | 135,7                   | $14,\!3$   |     |                      |
| 1806      | $7,\!8$     | 94,1          | $95,\! 6$               | $-1,\!6$   |     |                      |
| 1807      | $6,\!9$     | 109,4         | $107,\!9$               | $^{1,5}$   |     |                      |
| 1808      | $^{7,5}$    | 81,2          | $98,\! 6$               | -17,4      |     |                      |
| 1809      | $^{7,7}$    | $95,\!5$      | 96,2                    | -0,7       |     |                      |
| 1810      | $^{7,3}$    | 108,1         | 101,2                   | $6,\!9$    |     |                      |
| 1811      | $^{8,5}$    | 107,2         | 87,7                    | 19,5       |     |                      |
| 1812      | $^{8,1}$    | 107,3         | 92,1                    | 15,2       |     |                      |
| 1813      | $9,\!9$     | 108,1         | $77,\!6$                | $_{30,5}$  | Х   | Geom. Imperfektionen |
| 1814      | $11,\!3$    | 60,9          | $71,\!3$                | -10,4      |     |                      |
| 1815      | $11,\!4$    | $64,\! 6$     | 71,0                    | -6,4       |     |                      |
| 1816      | 11,2        | 64,9          | 71,7                    | -6,8       |     |                      |
| 1817      | $16,\! 6$   | $65,\!5$      | $59,\!5$                | $^{6,0}$   |     |                      |
| 1818      | 17,2        | 69,8          | $58,\!8$                | 11,0       |     |                      |



| Scherben-<br>nummer | $t_{\rm s}$ [mm] | $f_{ m p,St}$ $[ m N/mm^2]$ | $\frac{f_{\rm St}(t_{\rm s})}{[{\rm N/mm^2}]}$ | $v$ $[N/mm^2]$ | out | Anmerkung |  |
|---------------------|------------------|-----------------------------|------------------------------------------------|----------------|-----|-----------|--|
| 1901                | 6,2              | 229,2                       | 241,8                                          | $-12,\!6$      |     |           |  |
| 1902                | $^{7,5}$         | 176,5                       | $189,\! 6$                                     | -13,0          |     |           |  |
| 1903                | $^{7,3}$         | 211,7                       | $193,\!9$                                      | $17,\!8$       |     |           |  |
| 1904                | $^{8,3}$         | 219,1                       | 167,1                                          | 52,0           |     |           |  |
| 1905                | $^{9,5}$         | 159,5                       | $142,\! 6$                                     | 16,9           |     |           |  |
| 1906                | $11,\!6$         | 141,5                       | 118,3                                          | 23,2           |     |           |  |
| 1907                | 14,1             | 74,1                        | 101,7                                          | $-27,\!6$      |     |           |  |
| 1908                | 10,9             | 80,5                        | 124,5                                          | -44,0          |     |           |  |
| 1909                | $15,\!9$         | 87,3                        | $94,\! 6$                                      | -7,3           |     |           |  |
| 1910                | $19,\!9$         | $57,\!3$                    | 84,9                                           | $-27,\!6$      |     |           |  |
| 1911                | 18.2             | 83.0                        | 88.3                                           | -5.3           |     |           |  |



| Scherben- | $t_{\rm s}$ | $f_{ m p,St}$ | $f_{\rm St}(t_{\rm s})$ | v          | out | Anmerkung               |
|-----------|-------------|---------------|-------------------------|------------|-----|-------------------------|
| nummer    | [mm]        | $[N/mm^2]$    | $[N/mm^2]$              | $[N/mm^2]$ |     |                         |
| 2001      | $^{5,0}$    | 120,8         | 148,3                   | -27,5      |     |                         |
| 2002      | $4,\!9$     | $143,\!9$     | 150,5                   | $-6,\!6$   |     |                         |
| 2003      | $^{7,1}$    | 131,7         | 109,1                   | $22,\!6$   |     |                         |
| 2004      | $^{5,7}$    | 135,2         | 130,4                   | $^{4,8}$   |     |                         |
| 2005      | $^{7,7}$    | 136,4         | 103,7                   | 32,7       |     |                         |
| 2006      | $^{8,6}$    | 105,0         | 97,2                    | $7,\!9$    |     |                         |
| 2007      | $9,\!9$     | 101,7         | $90,\!6$                | $11,\!1$   |     |                         |
| 2008      | $^{9,2}$    | 118,1         | 93,7                    | 24,4       |     |                         |
| 2009      | 10,9        | 102,3         | 87,1                    | 15,2       |     |                         |
| 2010      | $11,\!1$    | 74,3          | 86,7                    | -12,3      |     |                         |
| 2011      | 10,9        | 86,5          | 87,1                    | $-0,\!6$   |     |                         |
| 2012      | 14,1        | $56,\!8$      | $^{80,5}$               | $-23,\!6$  |     |                         |
| 2013      | $14,\! 0$   | 68,9          | 80,7                    | -11,8      |     |                         |
| 2014      | $14,\! 0$   | $73,\! 6$     | 80,7                    | -7,0       |     |                         |
| 2015      | 16,7        | 41,9          | 77,7                    | $-35,\!8$  | Х   | Riss vor Prüfungsbeginn |
| 2016      | $16,\!3$    | 68,3          | 78,0                    | -9,8       |     |                         |
| 2017      | $16,\!5$    | 79,0          | $77,\!8$                | $1,\!2$    |     |                         |
| 2018      | $18,\! 5$   | 55,0          | 76,4                    | -21,4      |     |                         |
| 2019      | $18,\!9$    | $73,\! 6$     | 76,1                    | $-2,\!6$   |     |                         |
| 2020      | $21,\!2$    | 104,9         | 75,0                    | 29,8       | Х   | Geom. Imperfektionen    |
| 2021      | 21,1        | 80,1          | 75,1                    | $^{5,0}$   |     |                         |
| 2022      | 25.0        | 72.3          | 73.8                    | -1.6       |     |                         |



| Scherben- | $t_{\rm s}$ | $f_{ m p,St}$ | $f_{\rm St}(t_{\rm s})$ | v          | out | Anmerkung               |
|-----------|-------------|---------------|-------------------------|------------|-----|-------------------------|
| nummer    | [mm]        | $[N/mm^2]$    | $[N/mm^2]$              | $[N/mm^2]$ |     |                         |
| 2101      | 4,1         | 138,3         | 128,8                   | $9,\!5$    |     |                         |
| 2102      | $^{4,6}$    | $114,\!3$     | 118,5                   | -4,2       |     |                         |
| 2103      | $^{5,3}$    | 109,3         | $108,\!8$               | $^{0,5}$   |     |                         |
| 2104      | $^{5,6}$    | 99,7          | 106,4                   | -6,7       |     |                         |
| 2105      | $^{8,0}$    | 98,7          | $93,\!0$                | $^{5,7}$   |     |                         |
| 2106      | $^{8,2}$    | 92,4          | 92,2                    | $_{0,2}$   |     |                         |
| 2107      | $^{8,7}$    | 74,2          | $91,\!0$                | -16,8      |     |                         |
| 2108      | $11,\!1$    | 78,7          | $86,\!8$                | -8,1       |     |                         |
| 2109      | $11,\!0$    | 88,8          | $86,\!9$                | $1,\!9$    |     |                         |
| 2110      | $13,\!0$    | 79,2          | 85,0                    | $-5,\!8$   |     |                         |
| 2111      | $13,\!9$    | 48,0          | 84,4                    | -36,3      | Х   | Riss vor Prüfungsbeginn |
| 2112      | 16,2        | 78,0          | $83,\!3$                | -5,2       |     |                         |
| 2113      | $16,\! 0$   | 81,4          | $83,\!4$                | -1,9       |     |                         |
| 2114      | 18,3        | 85,7          | $82,\!6$                | $^{3,1}$   |     |                         |
| 2115      | $19,\!8$    | $98,\! 6$     | 82,2                    | 16,4       |     |                         |
| 2116      | $18,\!9$    | 85,4          | 82,4                    | $^{3,0}$   |     |                         |
| 2117      | $23,\!5$    | 76,9          | $81,\! 6$               | -4,7       |     |                         |
| 2118      | $23,\!4$    | 82,7          | $81,\!6$                | $1,\!1$    |     |                         |
| 2119      | $25,\!9$    | $91,\! 6$     | 81,4                    | 10,3       |     |                         |
| 2120      | 25,2        | $83,\!3$      | 81,4                    | $1,\!9$    |     |                         |

## Anhang B

# Messergebnisse der Prüfserie B

## B.1 Steindruckfestigkeiten

Tab. B.1: Messergebnisse der Druckprüfung an Bohrkernen aus den Vollmauerziegeln

| Zylinder-<br>nummer | Ø<br>[mm] | h [mm]   | $\delta_i$ [-] | $ ho_{ m d} \ [ m kg/m^3]$ | $ ho_{ m dm} \ [ m kg/m^3]$ | $\overline{f}_{\mathrm{b},i}$ [N/mm <sup>2</sup> ] | $f_{\mathrm{s},i}$ $[\mathrm{N/mm^2}]$ | $f_{ m s}$ $[ m N/mm^2]$ |
|---------------------|-----------|----------|----------------|----------------------------|-----------------------------|----------------------------------------------------|----------------------------------------|--------------------------|
| Mz 071              | $49,\!4$  | 55,7     | $0,\!89$       | 1549                       |                             | $27,\!9$                                           | 24,7                                   |                          |
| Mz 072              | $49,\! 6$ | $56,\!9$ | $0,\!90$       | 1544                       |                             | 20,7                                               | 18,5                                   |                          |
| $\rm Mz~073$        | 49,0      | 50,0     | $0,\!85$       | 1577                       | 1566                        | 29,7                                               | $25,\!3$                               | 21,5                     |
| $\rm Mz~074$        | $48,\! 6$ | $57,\!3$ | $0,\!90$       | 1594                       |                             | $19,\!4$                                           | $17,\!4$                               |                          |
| Mz 081              | 49,2      | $55,\!3$ | $0,\!89$       | 1566                       |                             | 31,1                                               | $27,\! 6$                              |                          |
| Mz 082              | $48,\!8$  | $44,\!8$ | $0,\!82$       | 1580                       |                             | 26,1                                               | 21,5                                   |                          |
| Mz 083              | 49,5      | $53,\!3$ | $0,\!87$       | 1539                       | 1566                        | $25,\!6$                                           | $22,\!3$                               | 22,1                     |
| $\mathrm{Mz}\ 084$  | 48,7      | $57,\!3$ | $0,\!90$       | 1580                       |                             | $18,\!8$                                           | $16,\!9$                               |                          |



Steindruckfestigkeiten der Prüfserie B

## B.2 Stempeldruckfestigkeiten



| Scherben-<br>nummer | $t_{ m s,tot}$ [mm] | $t_{\rm s}$ [mm] | $t_{ m c}$ [mm] | $d_{\rm p}$ [mm] | $f_{\rm p,St}$<br>[N/mm <sup>2</sup> ] | out | Anmerkung |
|---------------------|---------------------|------------------|-----------------|------------------|----------------------------------------|-----|-----------|
| 0701                | $19,\!15$           | 5,1              | 7,0             | 25,1             | 13,0                                   |     |           |
| 0702                | 19,75               | $^{4,2}$         | $^{7,8}$        | 25,7             | $11,\!8$                               |     |           |
| 0703                | $18,\!37$           | $^{4,2}$         | $^{7,1}$        | 25,1             | $11,\!6$                               |     |           |
| 0704                | 19,7                | 6,7              | $^{6,5}$        | 24,7             | $14,\!3$                               |     |           |
| 0705                | 18,79               | $^{6,1}$         | $^{6,3}$        | $24,\! 6$        | $15,\!3$                               |     |           |
| 0706                | $21,\!42$           | $^{6,8}$         | $^{7,3}$        | $25,\!3$         | $12,\!4$                               |     |           |
| 0707                | $23,\!08$           | $^{8,5}$         | $^{7,3}$        | $25,\!3$         | 15,1                                   |     |           |
| 0708                | $24,\!64$           | 10,4             | $^{7,1}$        | $25,\!2$         | $15,\!0$                               |     |           |
| 0709                | $24,\!92$           | 10,3             | $^{7,3}$        | $25,\!3$         | 13,7                                   |     |           |
| 0710                | $27,\!56$           | $13,\!4$         | $^{7,1}$        | $25,\!2$         | $17,\!5$                               |     |           |
| 0711                | 28,77               | $15,\!1$         | $^{6,9}$        | $25,\!0$         | $14,\! 0$                              |     |           |
| 0712                | 28,3                | $13,\!8$         | $^{7,2}$        | $25,\!3$         | 18,7                                   |     |           |
| 0713                | $30,\!27$           | $13,\!3$         | $^{8,5}$        | 26,2             | 12,0                                   |     |           |
| 0714                | $34,\!02$           | $16,\! 6$        | $^{8,7}$        | 26,4             | $13,\!3$                               |     |           |
| 0715                | $35,\!14$           | 18,1             | $^{8,5}$        | 26,2             | $13,\!6$                               |     |           |
| 0716                | $_{30,4}$           | $16,\!8$         | $^{6,8}$        | $24,\!9$         | 10,3                                   |     |           |
| 0717                | $28,\!89$           | $15,\!4$         | $^{6,8}$        | $24,\!9$         | $15,\!5$                               |     |           |
| 0718                | $30,\!47$           | 17,7             | $^{6,4}$        | $24,\!6$         | $17,\!9$                               |     |           |
| 0719                | $33,\!26$           | $21,\!3$         | $_{6,0}$        | $24,\!4$         | $17,\!3$                               |     |           |
| 0720                | $36,\!63$           | 22,0             | $^{7,3}$        | $25,\!3$         | $16,\! 6$                              |     |           |
| 0721                | $41,\!25$           | 26,1             | $7,\!6$         | $25,\!5$         | $14,\! 6$                              |     |           |



| Scherben- | $t_{\rm s,tot}$ | $t_{\rm s}$ | $t_{\rm c}$ | $d_{\mathrm{p}}$ | $f_{\mathrm{p,St}}$ | out | Anmerkung |
|-----------|-----------------|-------------|-------------|------------------|---------------------|-----|-----------|
| nummer    | [mm]            | [mm]        | [mm]        | [mm]             | $[N/mm^2]$          |     |           |
| 0801      | $17,\!17$       | $^{3,5}$    | $^{6,8}$    | $25,\!0$         | 12,0                |     |           |
| 0802      | $17,\!01$       | $^{5,1}$    | $_{6,0}$    | $24,\!3$         | 13,7                |     |           |
| 0803      | 18,7            | $^{7,1}$    | $^{5,8}$    | 24,2             | $13,\!3$            |     |           |
| 0804      | $20,\!56$       | $^{8,1}$    | $^{6,2}$    | $24,\!5$         | $14,\!9$            |     |           |
| 0805      | $22,\!8$        | $^{7,7}$    | $^{7,6}$    | $25,\!5$         | $15,\!0$            |     |           |
| 0806      | $23,\!23$       | $^{9,3}$    | $^{7,0}$    | 25,1             | 10,9                |     |           |
| 0807      | 21,77           | $^{8,4}$    | $^{6,7}$    | $24,\!9$         | $13,\!0$            |     |           |
| 0808      | $25,\!22$       | 10,3        | $^{7,5}$    | $25,\!4$         | $12,\!4$            |     |           |
| 0809      | $24,\!44$       | 10,2        | $^{7,1}$    | $25,\!2$         | 11,2                |     |           |
| 0810      | $23,\!94$       | 10,4        | $^{6,8}$    | $24,\!9$         | $14,\!5$            |     |           |
| 0811      | $25,\!82$       | $12,\! 6$   | $^{6,6}$    | $24,\!8$         | 12,2                |     |           |
| 0812      | $24,\!97$       | $12,\!9$    | $_{6,0}$    | 24,4             | $15,\!5$            |     |           |
| 0813      | $29,\!44$       | 16,5        | $^{6,5}$    | 24,7             | $15,\!8$            |     |           |
| 0814      | $26,\!79$       | 14,5        | $^{6,1}$    | 24,5             | $17,\!5$            |     |           |
| 0815      | $30,\!92$       | 16,1        | $^{7,4}$    | 25,4             | $14,\! 6$           |     |           |
| 0816      | $31,\!55$       | 16,2        | $^{7,7}$    | $25,\!6$         | $13,\!4$            |     |           |
| 0817      | $33,\!542$      | 218,7       | $^{7,4}$    | 25,4             | $14,\! 6$           |     |           |
| 0818      | 33,1            | $18,\! 6$   | $^{7,3}$    | 25,3             | $14,\! 0$           |     |           |
| 0819      | $37,\!24$       | 20,7        | $^{8,3}$    | 26,0             | $16,\!9$            |     |           |
| 0820      | 36, 11          | 23,7        | $^{6,2}$    | 24,5             | 16,4                |     |           |
| 0821      | $35,\!358$      | $22,\!5$    | $^{6,4}$    | 24,7             | 18,2                |     |           |
| 0822      | 39.4            | 27.6        | 5.9         | 24.3             | 14.3                |     |           |

# Anhang C

# Messergebnisse der Prüfserie C

## C.1 Ergebnisübersicht

| Stein-   | δ        | α        | $ ho_{ m d,nto}$ | $f_{ m b}$ | $f_{ m p,St,15}$ | $\mathbf{R}^2$ | $f_{ m b,e}$ | η        |
|----------|----------|----------|------------------|------------|------------------|----------------|--------------|----------|
| nummer   | [—]      | [—]      | $[kg/m^3]$       | $[N/mm^2]$ | $[N/mm^2]$       | [—]            | $[N/mm^2]$   | [-]      |
| HLZ 01   | $1,\!15$ | $0,\!46$ | 1449             | $14,\!25$  | $23,\!10$        | $0,\!90$       | $13,\!44$    | 0,94     |
| HLZ $03$ | $1,\!39$ | 0,51     | 1583             | $17,\!89$  | $20,\!29$        | 0,76           | $10,\!91$    | $0,\!61$ |
| HLZ $05$ | $1,\!14$ | 0,51     | 1707             | 22,76      | $32,\!51$        | $0,\!49$       | $16,\!20$    | 0,71     |
| HLZ $06$ | $1,\!23$ | $0,\!45$ | 1409             | $17,\!04$  | $20,\!86$        | $0,\!84$       | $12,\!41$    | 0,73     |
| HLZ $07$ | $1,\!15$ | $0,\!59$ | 1489             | $^{8,50}$  | $17,\!91$        | $0,\!80$       | 8,22         | $0,\!97$ |
| HLZ $09$ | $1,\!14$ | 0,51     | 1797             | $21,\!51$  | $37,\!12$        | $0,\!88$       | $18,\!16$    | $0,\!84$ |
| HLZ $10$ | $1,\!14$ | $0,\!49$ | 1477             | $16,\!39$  | $22,\!16$        | $0,\!80$       | $12,\!16$    | 0,74     |
| HLZ $12$ | $1,\!25$ | $0,\!45$ | 1681             | $14,\!60$  | $22,\!63$        | $0,\!87$       | $13,\!31$    | $0,\!91$ |
| HLZ $13$ | $1,\!47$ | $0,\!45$ | 1602             | $13,\!05$  | $12,\!15$        | $0,\!90$       | 7,87         | $0,\!60$ |
| HLZ $14$ | $1,\!15$ | $0,\!50$ | 1701             | 13,79      | $18,\!34$        | $0,\!93$       | 10,09        | 0,73     |
| HLZ $15$ | $1,\!14$ | $0,\!51$ | 1697             | $16,\!16$  | 23,77            | 0,76           | $12,\!37$    | 0,77     |
| HLZ $16$ | $1,\!12$ | $0,\!40$ | 1503             | $26,\!83$  | $29,\!17$        | $0,\!61$       | $18,\!13$    | $0,\!68$ |
| HLZ $17$ | $1,\!15$ | $0,\!46$ | 1456             | 20,22      | $23,\!92$        | $0,\!85$       | $13,\!84$    | $0,\!68$ |
| HLZ $19$ | $1,\!14$ | $0,\!51$ | 1696             | 14,79      | $26,\!04$        | $0,\!84$       | $13,\!38$    | $0,\!90$ |
| HLZ $20$ | $1,\!15$ | $0,\!53$ | 1631             | 10,90      | $21,\!14$        | $0,\!99$       | $10,\!82$    | 0,99     |

Tab. C.1: Zusammenstellung der Ergebnisse



Abb. C.1:  $r_{\rm e}$ - $r_{\rm t}$ -Diagramm gemäß ÖNORM EN 1990, Anhang D [21]

## C.2 Stempeldruckfestigkeiten



| Scherben- | $t_{\rm s}$ | $f_{\mathrm{p,St}}$ [N/mm <sup>2</sup> ] | $f_{\rm St}(t_{\rm s})$<br>[N/mm <sup>2</sup> ] | v [N/mm <sup>2</sup> ] | out | Anmerkung               |
|-----------|-------------|------------------------------------------|-------------------------------------------------|------------------------|-----|-------------------------|
|           | [11111]     |                                          |                                                 |                        |     |                         |
| 0101      | $^{4,3}$    | $113,\!8$                                | 102,5                                           | $11,\!3$               |     |                         |
| 0102      | $^{4,5}$    | 101,7                                    | $96,\!8$                                        | $^{5,0}$               |     |                         |
| 0103      | $^{7,5}$    | 42,7                                     | $44,\!6$                                        | -1,9                   |     |                         |
| 0104      | $^{7,3}$    | 38,2                                     | 46,4                                            | -8,2                   |     |                         |
| 0105      | $^{5,6}$    | 62,5                                     | 67,0                                            | -4,5                   |     |                         |
| 0106      | $^{5,4}$    | $64,\!8$                                 | 70,0                                            | -5,2                   |     |                         |
| 0107      | 10,3        | $37,\!8$                                 | 31,1                                            | $^{6,8}$               |     |                         |
| 0108      | 10,9        | 37,5                                     | 29,4                                            | $^{8,1}$               |     |                         |
| 0109      | $^{9,0}$    | 35,5                                     | 36,0                                            | -0,4                   |     |                         |
| 0110      | $^{8,2}$    | 40,0                                     | 39,9                                            | $^{0,1}$               |     |                         |
| 0111      | $5,\!9$     | 62,4                                     | 62,1                                            | $0,\!3$                |     |                         |
| 0112      | $5,\!4$     | 67,1                                     | 71,7                                            | $-4,\!6$               |     |                         |
| 0113      | $^{5,3}$    | 70,1                                     | 72,9                                            | -2,8                   |     |                         |
| 0114      | $^{8,2}$    | 40,4                                     | 40,1                                            | $0,\!3$                |     |                         |
| 0115      | $^{5,0}$    | 60,9                                     | 79,2                                            | -18,3                  |     |                         |
| 0116      | $^{6,1}$    | 61,2                                     | 59,3                                            | $^{2,0}$               |     |                         |
| 0117      | 7,0         | 47,2                                     | $48,\! 6$                                       | -1,5                   |     |                         |
| 0118      | $^{6,2}$    | 49,9                                     | 57,7                                            | -7,8                   |     |                         |
| 0119      | $5,\!8$     | 62,4                                     | $63,\!4$                                        | -1,0                   |     |                         |
| 0120      | $5,\!5$     |                                          | 69,4                                            |                        | Х   | Riss vor Prüfungsbeginn |
| 0121      | 7,0         | 48,5                                     | 48,9                                            | -0,4                   |     |                         |
| 0122      | $4,\!3$     | 122,8                                    | 102,9                                           | $19,\!9$               |     |                         |
| 0123      | 5,7         | 57,7                                     | 65,9                                            | -8,3                   |     |                         |



| Scherben-<br>nummer | $t_{\rm s}$ [mm] | $f_{ m p,St}$ $[ m N/mm^2]$ | $f_{\rm St}(t_{\rm s})$<br>[N/mm <sup>2</sup> ] | $v$ $[N/mm^2]$ | out | Anmerkung |
|---------------------|------------------|-----------------------------|-------------------------------------------------|----------------|-----|-----------|
| 0301                | 6,2              | 53,7                        | 50,2                                            | $^{3,5}$       |     |           |
| 0302                | $^{5,4}$         | $68,\! 6$                   | $63,\!1$                                        | $^{5,4}$       |     |           |
| 0303                | 6,9              | 43,7                        | $43,\!8$                                        | -0,1           |     |           |
| 0304                | $^{6,4}$         | 46,3                        | $48,\! 6$                                       | -2,2           |     |           |
| 0305                | $^{5,0}$         | $66,\! 6$                   | 70,0                                            | -3,4           |     |           |
| 0306                | $^{6,1}$         | $55,\!5$                    | 52,2                                            | $^{3,3}$       |     |           |
| 0307                | $^{5,9}$         | 49,5                        | $54,\!5$                                        | -5,0           |     |           |
| 0308                | 4,9              | $74,\! 6$                   | $72,\!3$                                        | $^{2,3}$       |     |           |
| 0309                | $5,\!8$          | $58,\!8$                    | 55,2                                            | $^{3,6}$       |     |           |
| 0310                | $^{5,3}$         | 60,5                        | $64,\!4$                                        | -3,9           |     |           |
| 0311                | 6,7              | 50,0                        | $45,\! 6$                                       | $^{4,4}$       |     |           |
| 0312                | $^{5,5}$         | $48,\! 6$                   | $61,\!3$                                        | -12,7          |     |           |
| 0313                | $^{5,6}$         | 54,7                        | $59,\!3$                                        | $-4,\!6$       |     |           |
| 0314                | $5,\!8$          | 56,1                        | $56,\!5$                                        | -0,4           |     |           |
| 0315                | $^{7,1}$         | $37,\!8$                    | 42,3                                            | -4,5           |     |           |
| 0316                | $^{5,4}$         | 70,4                        | 62,0                                            | 8,4            |     |           |
| 0317                | $6,\!6$          | 45,4                        | 46,1                                            | -0,7           |     |           |
| 0318                | $^{5,2}$         | 72,1                        | 66,0                                            | $^{6,1}$       |     |           |

#### 150 $\frac{1706,6\,{\rm kg/m^3}}{22,8\,{\rm N/mm^2}}$ $\rho_{\rm d,nto}$ $\begin{array}{c} ---f_{\rm s} \\ ---0.7 \cdot f_{\rm s} \end{array}$ 0 $f_{\rm b}$ $- \int_{\mathrm{F},\mathrm{St}}^{\mathrm{F}}(t_{\mathrm{s}}) f_{\mathrm{p},\mathrm{St}}$ $46,\!2\,\mathrm{N/mm^2}$ $f_{\rm s}$ $f_{\rm p,St}~[\rm N/mm^2]$ 100 $18,9 \,\mathrm{N/mm^2}$ $f_{\rm p,St,15}$ $f_{\rm St}(t_{\rm s}) = a \cdot t_{\rm s}^b + c$ 501749,7 a-2,0b24,7c0 L 0 15 5 10 20 $\overline{25}$ $\mathbf{R}^2$ $0,\!49$ $t_{\rm s} \,\,[{\rm mm}]$

| Scherben-<br>nummer | $t_{\rm s}$ [mm] | $f_{\rm p,St}$ $[{ m N/mm^2}]$ | $f_{\rm St}(t_{\rm s})$<br>[N/mm <sup>2</sup> ] | $v$ $[N/mm^2]$ | out | Anmerkung     |
|---------------------|------------------|--------------------------------|-------------------------------------------------|----------------|-----|---------------|
| 0501                | 6,4              | 55,8                           | 68,1                                            | -12,3          |     |               |
| 0502                | $^{4,7}$         | 130,5                          | $103,\! 6$                                      | 26,9           |     |               |
| 0503                | $^{5,2}$         | 78,4                           | $^{88,5}$                                       | -10,1          |     |               |
| 0504                | 5,7              | $73,\!9$                       | 79,2                                            | $-5,\!3$       |     |               |
| 0505                | $^{6,2}$         | $54,\! 6$                      | $69,\!8$                                        | -15,2          |     |               |
| 0506                | $^{6,0}$         | 60,1                           | 74,0                                            | -13,9          |     |               |
| 0507                | $^{5,1}$         | 73,4                           | 92,8                                            | -19,4          |     |               |
| 0508                | $^{5,4}$         | $67,\!8$                       | $85,\!6$                                        | -17,8          |     |               |
| 0509                | $^{6,3}$         | $62,\!6$                       | 68,7                                            | -6,1           |     |               |
| 0510                | $^{3,7}$         |                                | 156, 1                                          |                | Х   | Kein Versagen |
| 0511                | $^{5,0}$         | 79,7                           | $95,\! 6$                                       | -15,9          |     |               |
| 0512                | $^{7,0}$         | 57,4                           | $61,\!0$                                        | $-3,\!6$       |     |               |
| 0513                | 6,9              | 62,2                           | $61,\!4$                                        | $^{0,8}$       |     |               |
| 0514                | $^{6,5}$         | $57,\!3$                       | $65,\!8$                                        | -8,5           |     |               |
| 0515                | $^{6,5}$         | 59,7                           | 66,0                                            | -6,3           |     |               |
| 0516                | $^{4,1}$         |                                | 130,4                                           |                | Х   | Kein Versagen |
| 0517                | $3,\!6$          |                                | $163,\!6$                                       |                | Х   | Kein Versagen |



| Scherben- | $t_{\rm s}$ | $f_{\mathrm{p,St}}$  | $f_{\rm St}(t_{\rm s})$ |                      | out | Anmerkung |  |
|-----------|-------------|----------------------|-------------------------|----------------------|-----|-----------|--|
| nummer    | [mm]        | [N/mm <sup>2</sup> ] | [N/mm <sup>2</sup> ]    | [N/mm <sup>2</sup> ] |     |           |  |
| 0601      | $10,\!4$    | $26,\! 6$            | 27,7                    | $^{-1,1}$            |     |           |  |
| 0602      | $^{4,7}$    | 82,1                 | 80,9                    | $1,\!2$              |     |           |  |
| 0603      | $^{6,6}$    | 50,2                 | $47,\! 6$               | $^{2,6}$             |     |           |  |
| 0604      | $^{5,1}$    | 63,0                 | $70,\!6$                | $-7,\!6$             |     |           |  |
| 0605      | $^{7,8}$    | 34,5                 | 38,1                    | $-3,\!6$             |     |           |  |
| 0606      | 10,9        | 23,7                 | 26,7                    | $-3,\!0$             |     |           |  |
| 0607      | $^{5,6}$    | 82,5                 | $61,\!0$                | 21,5                 |     |           |  |
| 0608      | $^{6,6}$    | 52,0                 | $47,\!9$                | $^{4,1}$             |     |           |  |
| 0609      | $^{6,8}$    | 46,7                 | 45,7                    | $1,\!0$              |     |           |  |
| 0610      | $^{6,4}$    | $43,\!9$             | $50,\!3$                | -6,4                 |     |           |  |
| 0611      | $^{6,6}$    | $43,\!6$             | $47,\!5$                | $-3,\!9$             |     |           |  |
| 0612      | $^{7,8}$    | 37,1                 | $_{38,5}$               | -1,4                 |     |           |  |
| 0613      | $^{8,4}$    | 29,1                 | 34,7                    | $-5,\!6$             |     |           |  |
| 0614      | $^{8,9}$    | 26,5                 | $32,\!8$                | -6,3                 |     |           |  |
| 0615      | $^{8,6}$    | 39,5                 | $33,\!9$                | $^{5,6}$             |     |           |  |
| 0616      | $^{7,4}$    | 35,4                 | 40,7                    | -5,3                 |     |           |  |

#### 100 $\frac{1488,8\,{\rm kg/m^3}}{8,5\,{\rm N/mm^2}}$ $\rho_{\rm d,nto}$ $\begin{array}{c} ---f_{\rm s} \\ ---0.7 \cdot f_{\rm s} \end{array}$ $f_{\rm b}$ 80 $- \int_{\mathrm{F},\mathrm{St}}^{\mathrm{F}}(t_{\mathrm{s}}) f_{\mathrm{p},\mathrm{St}}$ $20,\!6\,\mathrm{N/mm^2}$ 0 $f_{\rm s}$ $f_{\rm p,St}~[\rm N/mm^2]$ $18,9\,\mathrm{N/mm^2}$ $f_{\rm p,St,15}$ 60 $f_{\rm St}(t_{\rm s}) = a \cdot t_{\rm s}^b + c$ 401240,1 °° a20-2,0b $12,\!4$ c $0^{\ }_{0}$ 5 10 15 20 $\overline{25}$ $\mathbf{R}^2$ 0,80 $t_{\rm s} \,\,[{\rm mm}]$

| Scherben-<br>nummer | $t_{\rm s}$ [mm] | $f_{ m p,St}$ $[ m N/mm^2]$ | $f_{\rm St}(t_{\rm s})$<br>[N/mm <sup>2</sup> ] | $v$ $[N/mm^2]$ | out | Anmerkung               |
|---------------------|------------------|-----------------------------|-------------------------------------------------|----------------|-----|-------------------------|
| 0701                | 8,8              | 21,7                        | 28,4                                            | -6,7           |     |                         |
| 0702                | $^{7,7}$         | 26,4                        | $33,\!6$                                        | -7,2           |     |                         |
| 0703                | $^{6,2}$         | 41,1                        | 44,5                                            | -3,4           |     |                         |
| 0704                | $^{6,6}$         | 40,2                        | 41,0                                            | -0,8           |     |                         |
| 0705                | 9,3              | 20,9                        | 26,7                                            | -5,8           |     |                         |
| 0706                | $^{8,3}$         | 24,2                        | 30,3                                            | -6,2           |     |                         |
| 0707                |                  |                             |                                                 |                | Х   | Riss vor Prüfungsbeginn |
| 0708                | 10,1             | 19,0                        | 24,5                                            | -5,5           |     |                         |
| 0709                | $^{9,5}$         | 20,4                        | 26,3                                            | -5,9           |     |                         |
| 0710                | $^{5,6}$         | 67,5                        | 52,1                                            | 15,4           |     |                         |
| 0711                | $9,\!9$          | $17,\!3$                    | 25,0                                            | $-7,\!6$       |     |                         |
| 0712                | $^{5,2}$         | 72,3                        | 58,1                                            | 14,2           |     |                         |
| 0713                | 8,8              | 21,8                        | $28,\! 6$                                       | -6,8           |     |                         |



| $\mathbb{R}^2$      | 0,8              | 38                          |                                               | 0              | 5   | 10<br>$t_{\rm s}$ [m | 15<br>m] | 20 |
|---------------------|------------------|-----------------------------|-----------------------------------------------|----------------|-----|----------------------|----------|----|
| Scherben-<br>nummer | $t_{\rm s}$ [mm] | $f_{ m p,St}$ $[ m N/mm^2]$ | $f_{ m St}(t_{ m s})$<br>[N/mm <sup>2</sup> ] | $v$ $[N/mm^2]$ | out | Anmer                | rung     |    |
| 0901                | $^{7,2}$         | 52,7                        | $53,\!0$                                      | -0,3           |     |                      |          |    |
| 0902                | $^{6,1}$         | 59,7                        | $61,\!1$                                      | -1,3           |     |                      |          |    |
| 0903                | $^{7,3}$         | $52,\!6$                    | $52,\!5$                                      | $^{0,1}$       |     |                      |          |    |
| 0904                | $^{5,2}$         | $64,\!4$                    | 71,8                                          | -7,4           |     |                      |          |    |
| 0905                | $^{8,7}$         | 46,2                        | $46,\! 6$                                     | -0,3           |     |                      |          |    |
| 0906                | $9,\!6$          | 37,5                        | 44,0                                          | -6,5           |     |                      |          |    |
| 0907                | $^{8,5}$         | 45,1                        | 47,2                                          | -2,1           |     |                      |          |    |
| 0908                | $^{8,6}$         | 50,0                        | $46,\!9$                                      | $^{3,2}$       |     |                      |          |    |
| 0909                | $^{7,6}$         | $52,\!5$                    | 51,2                                          | $^{1,3}$       |     |                      |          |    |
| 0910                | $^{5,3}$         | 70,5                        | 70,3                                          | $^{0,2}$       |     |                      |          |    |
| 0911                | $^{5,3}$         | 71,7                        | 70,5                                          | $1,\!3$        |     |                      |          |    |
| 0912                | $^{6,6}$         | $57,\!3$                    | 57,0                                          | $0,\!3$        |     |                      |          |    |
| 0913                | $^{7,5}$         | 51,7                        | 51,7                                          | -0,1           |     |                      |          |    |
| 0914                | $^{7,7}$         | $51,\!3$                    | $50,\!5$                                      | $0,\!8$        |     |                      |          |    |
| 0915                | $^{8,1}$         | 50,4                        | $48,\!9$                                      | $^{1,5}$       |     |                      |          |    |
| 0916                | 6,7              | 53,7                        | 56,7                                          | -3,0           |     |                      |          |    |
| 0917                | 7,9              | 52,3                        | 49,7                                          | $^{2,6}$       |     |                      |          |    |

5,7

 $^{6,4}$ 

 $^{5,7}$ 

8,0

 $^{8,5}$ 

65,0

66,2

70,3

47,7

47,3

65,8

 $58,\!9$ 

 $65,\!6$ 

49,1

 $47,\!4$ 

 $-0,8 \\ 7,3$ 

 $^{4,7}$ 

-1,4

-0,2

0918

0919

0920

0921

0922



| Scherben- | $t_{\rm s}$ | $f_{ m p,St}$ | $f_{\rm St}(t_{\rm s})$ | v          | out | Anmerkung               |
|-----------|-------------|---------------|-------------------------|------------|-----|-------------------------|
| nummer    | [mm]        | $[N/mm^2]$    | $[N/mm^2]$              | $[N/mm^2]$ |     |                         |
| 1001      | $^{6,6}$    | 51,2          | 50,9                    | $0,\!3$    |     |                         |
| 1002      | $^{7,0}$    | 58,9          | 46,9                    | 12,0       |     |                         |
| 1003      | $^{8,6}$    | 31,0          | $35,\!9$                | -4,9       |     |                         |
| 1004      | $^{9,2}$    | 50,7          | $33,\!5$                | 17,2       | Х   | als Ausreißer beurteilt |
| 1005      | 6,7         | 52,2          | $49,\!8$                | $^{2,3}$   |     |                         |
| 1006      | 6,7         | 52,7          | 49,2                    | $^{3,5}$   |     |                         |
| 1007      | 9,4         | 30,7          | $32,\!6$                | -2,0       |     |                         |
| 1008      | $^{9,5}$    | 28,2          | 32,4                    | -4,2       |     |                         |
| 1009      | $^{8,3}$    | $31,\!6$      | $37,\!4$                | $-5,\!8$   |     |                         |
| 1010      | $^{7,2}$    | 44,5          | 44,9                    | -0,4       |     |                         |
| 1011      | $9,\!6$     | $38,\! 6$     | 32,1                    | $^{6,6}$   |     |                         |
| 1012      | 6,7         | $63,\!3$      | 49,2                    | 14,1       |     |                         |
| 1013      | $^{5,2}$    | 76,7          | $71,\!9$                | $^{4,8}$   |     |                         |
| 1014      | $^{5,9}$    | 55,7          | 59,7                    | -4,0       |     |                         |
| 1015      | $^{8,2}$    | $37,\!3$      | 38,2                    | -0,9       |     |                         |
| 1016      | $^{7,5}$    | 40,0          | $42,\!5$                | -2,5       |     |                         |
| 1017      | $^{8,5}$    | 30,8          | $36,\!8$                | $-5,\!9$   |     |                         |
| 1018      | $^{7,0}$    | $43,\!5$      | 47,1                    | $-3,\!6$   |     |                         |
| 1019      | $^{7,5}$    | 38,2          | 42,3                    | -4,1       |     |                         |
| 1020      | 8,4         | 30,9          | $37,\!3$                | -6,4       |     |                         |
| 1021      | $^{7,3}$    | 41,1          | 44,2                    | -3,1       |     |                         |
| 1022      | 8,8         | 34,2          | 35,1                    | -0,8       |     |                         |
| 1023      | $^{7,2}$    | 41,5          | 45,0                    | $-3,\!5$   |     |                         |
| 1024      | $^{5,9}$    | 42,0          | 59,0                    | -17,0      | Х   | Geom. Imperfektionen    |

#### 50 $\frac{1680,8\,{\rm kg/m^3}}{14,6\,{\rm N/mm^2}}$ $---f_{\rm s}$ $0.7 \cdot f_{\rm s}$ $\rho_{\rm d,nto}$ $f_{\rm b}$ 40 $26{,}8\,\mathrm{N/mm^2}$ $f_{\rm s}$ $f_{\rm p,St}~[\rm N/mm^2]$ $18,9\,\mathrm{N/mm^2}$ × $f_{\rm p,St,15}$ 30 00 80 $f_{\rm St}(t_{\rm s}) = a \cdot t_{\rm s}^b + c$ 20675,9 a10-2,0b $19,\! 6$ c0 L 0 5 10 15 20 $\overline{25}$ $\mathbf{R}^2$ 0,87 $t_{\rm s} \,\,[{\rm mm}]$

| Scherben-<br>nummer | $t_{\rm s}$ [mm] | $f_{ m p,St}$ $[ m N/mm^2]$ | $f_{\rm St}(t_{\rm s})$<br>[N/mm <sup>2</sup> ] | v [N/mm <sup>2</sup> ] | out | Anmerkung               |
|---------------------|------------------|-----------------------------|-------------------------------------------------|------------------------|-----|-------------------------|
| 1201                | $13,\!3$         | 22,5                        | $23,\!5$                                        | -0,9                   |     |                         |
| 1202                | $^{7,3}$         | 32,5                        | $32,\!3$                                        | $^{0,2}$               |     |                         |
| 1203                | $7,\!9$          | $31,\!8$                    | $_{30,5}$                                       | $1,\!3$                |     |                         |
| 1204                | $^{8,0}$         | 31,7                        | 30,3                                            | $1,\!4$                |     |                         |
| 1205                | $7,\!8$          | 29,1                        | 30,7                                            | $-1,\!6$               |     |                         |
| 1206                | 12,7             | 22,8                        | $23,\!8$                                        | -1,0                   |     |                         |
| 1207                | $^{6,4}$         | 37,2                        | 36,0                                            | $1,\!2$                |     |                         |
| 1208                | $12,\!9$         | 24,0                        | 23,7                                            | $0,\!3$                |     |                         |
| 1209                | 6,3              | 39,9                        | 36,4                                            | $^{3,4}$               |     |                         |
| 1210                | $^{6,6}$         | 36,7                        | $35,\!3$                                        | $1,\!4$                |     |                         |
| 1211                | $^{5,6}$         | 39,1                        | $41,\!3$                                        | -2,1                   |     |                         |
| 1212                | 6,3              | 38,4                        | 36,4                                            | $^{2,0}$               |     |                         |
| 1213                | $^{6,4}$         | 39,9                        | 36,2                                            | $^{3,7}$               |     |                         |
| 1214                | $5,\!9$          | $38,\!8$                    | $38,\!8$                                        | -0,1                   |     |                         |
| 1215                | 6,9              | $33,\!9$                    | $33,\!9$                                        | $0,\!0$                |     |                         |
| 1216                | $^{7,2}$         | 29,5                        | $32,\!8$                                        | $-3,\!3$               |     |                         |
| 1217                | $5,\!8$          | 36,5                        | 39,4                                            | -2,9                   |     |                         |
| 1218                | $^{6,2}$         | 34,3                        | $37,\!3$                                        | -3,0                   |     |                         |
| 1219                | $13,\!3$         | 33,2                        | $23,\!4$                                        | 9,7                    | Х   | als Ausreißer beurteilt |



| Scherben-<br>nummer | $t_{\rm s}$ [mm] | $f_{ m p,St}$ $[ m N/mm^2]$ | $f_{ m St}(t_{ m s})$<br>[N/mm <sup>2</sup> ] | $v$ $[N/mm^2]$ | out | Anmerkung |
|---------------------|------------------|-----------------------------|-----------------------------------------------|----------------|-----|-----------|
| 1301                | 8,0              | $19,\! 6$                   | 21,4                                          | -1,8           |     |           |
| 1302                | $^{4,4}$         | $59,\! 6$                   | $52,\!3$                                      | $^{7,4}$       |     |           |
| 1303                | $^{9,0}$         | $18,\! 6$                   | 18,9                                          | -0,3           |     |           |
| 1304                | 6,7              | 31,3                        | 27,1                                          | $^{4,2}$       |     |           |
| 1305                | $^{9,2}$         | 16,8                        | 18,4                                          | $-1,\!6$       |     |           |
| 1306                | 6,9              | 24,8                        | 26,3                                          | -1,5           |     |           |
| 1307                | $^{6,4}$         | 26,1                        | 29,0                                          | -2,8           |     |           |
| 1308                | 7,0              | 23,0                        | $25,\!5$                                      | -2,5           |     |           |
| 1309                | $^{7,1}$         | 20,3                        | 25,1                                          | -4,7           |     |           |
| 1310                | 7,3              | 19,0                        | 24,1                                          | -5,1           |     |           |



| Scherben- | $t_{\rm s}$ | $f_{ m p,St}$ | $f_{\rm St}(t_{\rm s})$ | v                   | out | Anmerkung |  |
|-----------|-------------|---------------|-------------------------|---------------------|-----|-----------|--|
| nummer    | [mm]        | $[N/mm^2]$    | $[N/mm^2]$              | $[\mathrm{N/mm^2}]$ |     |           |  |
| 1401      | $11,\!0$    | 20,2          | 21,7                    | -1,5                |     |           |  |
| 1402      | 10,1        | 22,2          | 23,1                    | $-1,\!0$            |     |           |  |
| 1403      | $^{7,7}$    | $_{30,1}$     | 29,5                    | $0,\!6$             |     |           |  |
| 1404      | $^{7,0}$    | 35,1          | 32,7                    | $^{2,4}$            |     |           |  |
| 1405      | $11,\!6$    | 20,2          | 21,0                    | -0,9                |     |           |  |
| 1406      | $5,\!9$     | 38,4          | 39,7                    | -1,4                |     |           |  |
| 1407      | 9,7         | 27,1          | $23,\!9$                | $^{3,2}$            |     |           |  |
| 1408      | $^{7,5}$    | $30,\!6$      | $_{30,2}$               | $0,\!4$             |     |           |  |
| 1409      | $^{7,3}$    | $31,\!6$      | $31,\!3$                | $0,\!3$             |     |           |  |
| 1410      | 9,0         | $23,\!8$      | $25,\!3$                | -1,5                |     |           |  |
| 1411      | $^{9,5}$    | 25,4          | $24,\!3$                | $1,\!0$             |     |           |  |
| 1412      | $7,\!9$     | 26,0          | 28,7                    | -2,7                |     |           |  |
| 1413      | $^{6,3}$    | 36,9          | $36,\!8$                | $^{0,1}$            |     |           |  |
| 1414      | 10,5        | $23,\!4$      | $22,\!6$                | $0,\!9$             |     |           |  |

#### 50 $\frac{1696,6\,{\rm kg/m^3}}{16,2\,{\rm N/mm^2}}$ $\begin{array}{c} ---f_{\rm s} \\ \hline 0.7 \cdot f_{\rm s} \\ \hline f_{\rm St}(t_{\rm s}) \\ \circ f_{\rm p,St} \end{array}$ $\rho_{\rm d,nto}$ $f_{\rm b}$ 40 $32{,}8\,\mathrm{N/mm^2}$ $f_{\rm s}$ $f_{\rm p,St} \begin{bmatrix} \rm N/mm^2 \end{bmatrix}$ $18,9\,\mathrm{N/mm^2}$ $f_{\rm p,St,15}$ 0 0 0 2 ф $f_{\rm St}(t_{\rm s}) = a \cdot t_{\rm s}^b + c$ 478,8 a10-2,0b $21,\!6$ c0 L 0 15 5 10 20 $\overline{25}$ $\mathbf{R}^2$ 0,76 $t_{\rm s} \,\,[{\rm mm}]$

| Scherben- | $t_{\rm s}$ | $f_{ m p,St}$ | $f_{\rm St}(t_{\rm s})$ | v          | out | Anmerkung |
|-----------|-------------|---------------|-------------------------|------------|-----|-----------|
| nummer    | [mm]        | $[N/mm^2]$    | $[N/mm^2]$              | $[N/mm^2]$ |     |           |
| 1501      | $11,\! 6$   | $27,\! 6$     | 25,2                    | $^{2,4}$   |     |           |
| 1502      | 10,1        | 24,3          | 26,4                    | -2,1       |     |           |
| 1503      | $^{8,4}$    | 27,4          | 28,4                    | -0,9       |     |           |
| 1504      | 10,7        | 29,5          | $25,\!9$                | $^{3,6}$   |     |           |
| 1505      | $^{6,4}$    | 27,9          | 33,2                    | -5,3       |     |           |
| 1506      | $^{5,3}$    | 39,3          | 38,7                    | $0,\!6$    |     |           |
| 1507      | 9,7         | 25,0          | 26,8                    | $^{-1,7}$  |     |           |
| 1508      | $^{7,0}$    | $_{30,5}$     | 31,4                    | -0,9       |     |           |
| 1509      | $^{7,2}$    | $28,\! 6$     | 30,9                    | -2,3       |     |           |
| 1510      | $^{6,5}$    | 31,9          | $32,\!8$                | -0,9       |     |           |
| 1511      | $^{6,2}$    | 33,0          | 34,1                    | $-1,\!0$   |     |           |
| 1512      | $^{7,3}$    | 28,9          | 30,7                    | $-1,\!8$   |     |           |
| 1513      | $^{5,5}$    | $39,\! 6$     | $37,\!5$                | $^{2,1}$   |     |           |
| 1514      | $^{7,2}$    | 34,3          | 30,9                    | $^{3,4}$   |     |           |
| 1515      | $^{6,2}$    | $34,\!8$      | 34,1                    | 0,7        |     |           |
| 1516      | $^{6,1}$    | 35,4          | $34,\!3$                | $1,\!1$    |     |           |
| 1517      | $^{5,4}$    | 38,8          | $37,\!9$                | $0,\!9$    |     |           |
| 1518      | $^{7,4}$    | 32,4          | 30,3                    | $^{2,1}$   |     |           |

#### 133



| Scherben- | $t_{\rm s}$ | $f_{ m p,St}$ [N/mm <sup>2</sup> ] | $f_{\rm St}(t_{\rm s})$<br>[N/mm <sup>2</sup> ] | v [N/mm <sup>2</sup> ] | out | Anmerkung |
|-----------|-------------|------------------------------------|-------------------------------------------------|------------------------|-----|-----------|
|           | []          |                                    |                                                 |                        |     |           |
| 1601      | $13,\!1$    | 32,5                               | $_{30,3}$                                       | $^{2,2}$               |     |           |
| 1602      | $^{9,4}$    | $32,\!6$                           | $34,\!8$                                        | -2,1                   |     |           |
| 1603      | $^{8,1}$    | 38,7                               | $38,\!0$                                        | $0,\!8$                |     |           |
| 1604      | $^{7,7}$    | 38,3                               | $39,\!3$                                        | $-1,\!0$               |     |           |
| 1605      | $^{7,3}$    | 39,1                               | $41,\!0$                                        | -1,9                   |     |           |
| 1606      | $^{8,1}$    | $35,\!4$                           | $38,\!0$                                        | $-2,\!6$               |     |           |
| 1607      | $^{6,8}$    | $43,\!8$                           | $43,\!4$                                        | $^{0,5}$               |     |           |
| 1608      | $^{7,1}$    | 44,0                               | 42,0                                            | $^{2,0}$               |     |           |
| 1609      | $^{8,5}$    | $34,\!4$                           | 37,0                                            | -2,5                   |     |           |
| 1610      | $^{6,0}$    | 55,0                               | 47,9                                            | $^{7,0}$               |     |           |
| 1611      | $^{8,5}$    | 34,9                               | $36,\!8$                                        | -1,9                   |     |           |
| 1612      | $^{8,1}$    | 36,4                               | 38,0                                            | -1,5                   |     |           |
| 1613      | $^{8,5}$    | 34,8                               | 36,9                                            | -2,1                   |     |           |
| 1614      | $^{8,6}$    | 42,9                               | $36,\!6$                                        | 6,3                    |     |           |
| 1615      | 7,0         | $47,\!6$                           | 42,1                                            | $^{5,5}$               |     |           |
| 1616      | 8,6         | 32,4                               | 36,7                                            | -4,3                   |     |           |
| 1617      | 10,8        | 32,0                               | $32,\!5$                                        | -0,5                   |     |           |
| 1618      | 11,5        | 37,5                               | 31,8                                            | 5,7                    |     |           |
| 1619      | 7,2         | $37,\!6$                           | 41,3                                            | $-3,\!6$               |     |           |
| 1620      | 10,4        | 32,2                               | 33,1                                            | -0.9                   |     |           |
| 1621      | 10,5        | 28,9                               | 33,0                                            | -4,0                   |     |           |
| 1622      | 11.5        | 32.2                               | 31.7                                            | 0.5                    |     |           |
| 1623      | 11.5        | 37.8                               | 31.7                                            | 6.1                    |     |           |
| 1624      | 7.2         | 36.8                               | 41.4                                            | -4.6                   |     |           |
| 1625      | 6.9         | 39.7                               | 42.6                                            | -2.9                   |     |           |

#### 150 $\frac{1456,4\,{\rm kg/m^3}}{20,2\,{\rm N/mm^2}}$ $---f_{\rm s}$ $0.7 \cdot f_{\rm s}$ $\rho_{\rm d,nto}$ $f_{\rm b}$ $- \int_{\mathrm{F},\mathrm{St}}^{\mathrm{F},\mathrm{St}} f_{\mathrm{p},\mathrm{St}}$ $37,4 \,\mathrm{N/mm^2}$ $18,9 \,\mathrm{N/mm^2}$ $f_{\rm s}$ $f_{\rm p,St}~[\rm N/mm^2]$ 100 $f_{\rm p,St,15}$ $f_{\rm St}(t_{\rm s}) = a \cdot t_{\rm s}^b + c$ 501655,9 a000 6 -2,0bÓ $16,\!6$ c $0 \stackrel{{}_{\scriptstyle \leftarrow}}{0}$ 5 10 15 20 $\overline{25}$ $\mathbf{R}^2$ $0,\!85$ $t_{\rm s} \ [{\rm mm}]$

| Scherben-<br>nummer | $t_{\rm s}$ [mm] | $f_{ m p,St}$ $[ m N/mm^2]$ | $f_{ m St}(t_{ m s})$<br>[N/mm <sup>2</sup> ] | v [N/mm <sup>2</sup> ] | out | Anmerkung     |
|---------------------|------------------|-----------------------------|-----------------------------------------------|------------------------|-----|---------------|
| 1701                | 13,7             | 20,0                        | 25,4                                          | -5,4                   |     |               |
| 1702                | 12,4             | $22,\!6$                    | $27,\!4$                                      | -4,8                   |     |               |
| 1703                | $13,\!8$         | 22,0                        | $25,\!2$                                      | -3,2                   |     |               |
| 1704                | $^{5,1}$         |                             | 79,5                                          |                        | Х   | Kein Versagen |
| 1705                | $^{5,5}$         |                             | 70,9                                          |                        | Х   | Kein Versagen |
| 1706                | $13,\!5$         | 18,3                        | 25,7                                          | -7,4                   |     |               |
| 1707                | $^{5,7}$         | 68,0                        | 68,4                                          | -0,4                   |     |               |
| 1708                | $^{6,8}$         | 43,1                        | $52,\!4$                                      | -9,3                   |     |               |
| 1709                | $^{5,9}$         | 74,3                        | $64,\! 6$                                     | 9,7                    |     |               |
| 1710                | $^{5,3}$         | 99,1                        | $74,\!8$                                      | 24,2                   |     |               |
| 1711                | $^{5,8}$         |                             | $65,\!4$                                      |                        | Х   | Kein Versagen |
| 1712                | $^{8,0}$         | 37,3                        | $42,\!6$                                      | -5,4                   |     |               |
| 1713                | $^{8,1}$         | 32,2                        | $41,\!9$                                      | -9,7                   |     |               |
| 1714                | $^{6,6}$         | 50,5                        | 54,2                                          | -3,7                   |     |               |
| 1715                | $^{7,5}$         | 41,2                        | 46,4                                          | -5,1                   |     |               |
| 1716                | $^{9,2}$         | 33,2                        | 36,2                                          | -3,0                   |     |               |
| 1717                | $^{7,6}$         | 33,3                        | $45,\!0$                                      | -11,7                  |     |               |
| 1718                | 11,2             | 28,1                        | 29,7                                          | $-1,\!6$               |     |               |
| 1719                | $11,\!1$         | 27,2                        | $29,\!9$                                      | -2,7                   |     |               |
| 1720                | $^{5,5}$         | 82,9                        | 72,1                                          | 10,8                   |     |               |
| 1721                | 8.4              | 32.2                        | 40.3                                          | -8.1                   |     |               |



| Scherben- | $t_{\rm s}$ | $f_{ m p,St}$ | $f_{\rm St}(t_{\rm s})$ | v          | out | Anmerkung |
|-----------|-------------|---------------|-------------------------|------------|-----|-----------|
| nummer    | [mm]        | $[N/mm^2]$    | $[N/mm^2]$              | $[N/mm^2]$ |     |           |
| 1901      | $^{9,5}$    | 35,0          | $33,\!9$                | $^{1,1}$   |     |           |
| 1902      | $^{8,2}$    | $34,\!9$      | 38,3                    | $-3,\!5$   |     |           |
| 1903      | $9,\!3$     | 35,2          | $34,\!5$                | 0,7        |     |           |
| 1904      | $^{7,7}$    | $43,\!4$      | 40,7                    | $^{2,7}$   |     |           |
| 1905      | $^{7,7}$    | $44,\!4$      | 40,7                    | $^{3,7}$   |     |           |
| 1906      | $^{8,1}$    | 39,2          | 38,9                    | $0,\!3$    |     |           |
| 1907      | $^{7,6}$    | 41,2          | $41,\!3$                | -0,1       |     |           |
| 1908      | $^{9,2}$    | $35,\!8$      | $34,\!9$                | $1,\!0$    |     |           |
| 1909      | $^{8,0}$    | 40,4          | 39,2                    | $1,\!2$    |     |           |
| 1910      | $^{6,5}$    | 49,7          | 49,0                    | 0,7        |     |           |
| 1911      | 10,3        | 29,0          | $31,\!9$                | -2,9       |     |           |
| 1912      | $^{6,8}$    | 47,8          | $46,\! 6$               | $^{1,2}$   |     |           |
| 1913      | $^{7,1}$    | 40,2          | 44,1                    | $-3,\!9$   |     |           |
| 1914      | $^{9,2}$    | 34,9          | 34,7                    | $_{0,2}$   |     |           |
| 1915      | $^{8,6}$    | 33,2          | $36,\!8$                | $-3,\!6$   |     |           |
| 1916      | $^{6,4}$    | $56,\!5$      | $49,\! 6$               | $^{6,9}$   |     |           |
| 1917      | $^{6,0}$    | $54,\!3$      | $53,\!4$                | $0,\!8$    |     |           |
| 1918      | $^{6,7}$    | 44,8          | 47,2                    | -2,4       |     |           |
| 1919      | $^{6,8}$    | 41,5          | 46,8                    | -5,3       |     |           |
| 1920      | $^{8,0}$    | 39,9          | 39,3                    | $0,\!6$    |     |           |
| 1921      | 6,9         | 39,8          | 46,0                    | -6,2       |     |           |
| 1922      | $^{8,2}$    | 40,9          | $38,\! 6$               | $^{2,3}$   |     |           |
| 1923      | $^{7,6}$    | 39,2          | $41,\!3$                | -2,1       |     |           |
| 1924      | $10,\!6$    | $33,\!8$      | $31,\!3$                | $^{2,4}$   |     |           |
| 1925      | $10,\!6$    | 34,0          | $31,\!3$                | $^{2,7}$   |     |           |
| 1926      | 10,0        | 32,2          | 32,7                    | -0,5       |     |           |



| Scherben- | $t_{\rm s}$ | $f_{\rm p,St}$ | $f_{\rm St}(t_{\rm s})$ | v [N/m 2]   | out | Anmerkung |  |
|-----------|-------------|----------------|-------------------------|-------------|-----|-----------|--|
| nummer    | [mm]        |                | [IN/IIIII-]             | [IN/IIIII-] |     |           |  |
| 2001      | 17,1        | $18,\!8$       | $19,\! 6$               | -0,8        |     |           |  |
| 2002      | $16,\!4$    | 20,3           | 20,1                    | $^{0,2}$    |     |           |  |
| 2003      | $15,\! 6$   | 21,0           | $20,\!6$                | $^{0,4}$    |     |           |  |
| 2004      | 20,0        | 18,7           | $18,\!3$                | $^{0,4}$    |     |           |  |
| 2005      | 19,7        | 18,0           | 18,4                    | -0,4        |     |           |  |
| 2006      | 17,7        | $19,\! 6$      | 19,3                    | $0,\!3$     |     |           |  |
| 2007      | $14,\!4$    | 21,8           | 21,7                    | $0,\!0$     |     |           |  |
| 2008      | 14,7        | 21,8           | 21,4                    | $^{0,4}$    |     |           |  |
| 2009      | $11,\!4$    | 27,8           | $25,\!9$                | $1,\!9$     |     |           |  |
| 2010      | $11,\!1$    | 27,1           | $26,\! 6$               | $^{0,5}$    |     |           |  |
| 2011      | $11,\!1$    | $27,\! 6$      | $26,\!5$                | $1,\!0$     |     |           |  |
| 2012      | $^{9,2}$    | 29,2           | 31,9                    | -2,7        |     |           |  |
| 2013      | $9,\!9$     | 27,3           | $29,\! 6$               | -2,3        |     |           |  |
| 2014      | $^{5,4}$    | 64,8           | $65,\!4$                | $-0,\!6$    |     |           |  |
| 2015      | $5,\!6$     | 62,4           | 60,8                    | $1,\!5$     |     |           |  |

# Anhang D

# Fotodokumentation



Abb. D.1: HLz 17 mit Bohrkernen und daraus gewonnen Scherben

## D.1 Versuchssteine und Bohrkerne der Prüfserie C

**HLz 01 HLz 03** Bohrkern RF aus HLz01Bohrkern RN aus HLz03Bohrkern M aus HLz 01 Bohrkern M aus HLz03





Bohrkern RF aus HLz05



Bohrkern M aus HLz 05



Bohrkern RN aus HLz06



Bohrkern M aus HLz 06



HLz 09





Bohrkernteil RF aus HLz07



Bohrkern RN aus HLz09



Bohrkernteil RF aus HLz07



Bohrkern M aus HLz09





Bohrkern RF aus HLz $10\,$ 



Bohrkern RF aus HLz12



Bohrkern M aus HLz 10



Bohrkern M aus HLz12

HLz 13







Bohrkern RN aus HLz13



Bohrkern RN aus HLz14





0

Bohrkern M aus HLz14


HLz 17







017

Bohrkern RN aus HLz17



Bohrkern RN aus HLz19



Bohrkern M aus HLz17



Bohrkern M aus HLz19







Bohrkern RF aus HLz20

## D.2 Volumetrische Bestimmungsmethode des Lochanteils



 ${\bf Schritt} \ {\bf 1}: {\rm Tara-Masse \ bestimmen}$ 



Schritt 2: Wassermasse  $m_{w,1}$ 



Schritt 3: Volumenverdrängung



Schritt 4: Wassermasse  $m_{w,2}$ 

## **Bibliografie**

## Literaturverzeichnis

- K. Breit. "Einflüsse auf die Druckfestigkeit des Ziegelscherbens: Belastungsrichtung Größe Schlankheit". Diplomarbeit. Technische Universität Wien, 1989.
- [2] S. L. Burtscher. "Size effect of concrete and sandstone in compression". Dissertation. Technische Universität Wien, 2002.
- [3] O. Graf, K. Alberti und E. Siebel. Handbuch der Werkstoffprüfung: Die Prüfung nichtmetallischer Baustoffe. 2., verb. Aufl./bearb. von: K. Alberti et al. Berlin Göttingen Heidelberg: Springer, 1957.
- S. Härig. "Welchen Einfluß haben 15-cm-Würfel auf die Betondruckfestigkeit?" In: Betonwerk + Fertigteil-Technik 3 (1977), S. 133–138.
- J. Henkel. "Evaluation of the quality of historic brickwork: Methods of strength assessment". In: *Mauerwerk* 2016/5 (Okt. 2016), S. 391–406.
- U. Huster und W. Seim. "Bewerten, Instandsetzen und Verstärken". In: Mauerwerksbau aktuell – Praxishandbuch 2009: Für Architekten und Bauingenieure. Hrsg. von K. Schneider, G. Sahner und R. Rast. Berlin: Bauwerk, 2009.
- B. Ilschner und R. F. Singer. Werkstoffwissenschaften und Fertigungstechnik: Eigenschaften, Vorgänge, Technologien. 5., neu bearbeitete Auflage. Berlin Heidelberg: Springer, 2010.
- [8] INWT Statistics GmbH. Bestimmtheitsmaß R<sup>2</sup>. URL: https://www.inwt-statistics. de/blog-artikel-lesen/Bestimmtheitsmass\_R2-Teil2.html (Zugriff am 03.03.2018).
- B. Kompiller. "Versuche zur Ermittlung der Druckfestigkeit von Mauermörtel: Stempeldruckfestigkeit". Diplomarbeit. Technische Universität Wien, 1993.
- [10] MathWorks Inc. Evaluating Goodness of Fit. URL: https://de.mathworks.com/help/ curvefit/evaluating-goodness-of-fit.html (Zugriff am 27.02.2018).
- [11] R. Müller. "Size Effect im Betonbau". Diplomarbeit. Technische Universität Wien, 2001.
- [12] L. Papula. Mathematik für Ingenieure und Naturwissenschaftler: Band 3 Vektoranalysis, Wahrscheinlichkeitsrechnung, Mathematische Statistik, Fehler- und Ausgleichsrechnung. 7., aktualisierte Aufl. 2016. Wiesbaden: Vieweg+Teubner, 2016.
- [13] A. Pech, H. Gangoly, P. Holzer und P. Maydl. Ziegel im Hochbau : Theorie und Praxis. Baukonstruktionen SB. Basel: Birkhäuser, 2015.
- [14] F. Ritter. *Einführung in die Baustoffkunde*. Wien: Springer, 1950.
- [15] R. Wendehorst und G. Neroth. Wendehorst Baustoffkunde: Grundlagen Baustoffe Oberflächenschutz; mit 363 Tabellen. 27., vollst. überarb. Aufl. Wiesbaden: Vieweg + Teubner, 2011.

## Normenverzeichnis

- [16] DIN 105-100:2012-01. Mauerziegel Teil 100: Mauerziegel mit besonderen Eigenschaften. Deutsches Institut f
  ür Normung e.V. (DIN). Berlin.
- [17] DIN 18555-9:1999-09. Pr
  üfung von M
  örteln mit mineralischen Bindemitteln Teil 9: Festmörtel, Bestimmung der Fugendruckfestigkeit. Deutsches Institut f
  ür Normung e.V. (DIN). Berlin.
- [18] ÖNORM B 1996-3:2016-07. Eurocode 6: Bemessung und Konstruktion von Mauerwerksbauten – Teil 3: Vereinfachte Berechnungsmethoden für unbewehrte Mauerwerksbauten – Nationale Festlegungen und Ergänzungen zur ÖNORM EN 1996-3. Österreichisches Normungsinstitut (ON). Wien.
- [19] ÖNORM B 1998-3:2016-02. Eurocode 8: Auslegung von Bauwerken gegen Erdbeben Teil 3: Beurteilung und Ertüchtigung von Gebäuden – Nationale Festlegungen zu ÖNORM EN 1998-3 und nationale Erläuterungen. Österreichisches Normungsinstitut (ON). Wien.
- [20] ÖNORM B 3200:2013-06. Mauerziegel Anforderungen, Pr
  üfungen, Klassifizierung und Kennzeichnung – Erg
  änzende Bestimmungen zur ÖNORM EN 771-1. Österreichisches Normungsinstitut (ON). Wien.
- [21] ÖNORM EN 1990:2013-03. Eurocode: Grundlagen der Tragwerksplanung; Deutsche Fassung EN 1990:2002 + A1:2005 + A1:2005/AC:2010. Österreichisches Normungsinstitut (ON). Wien.
- [22] ÖNORM EN 1996-1-1:2009-11. Eurocode 6: Bemessung und Konstruktion von Mauerwerksbauten – Teil 1-1: Allgemeine Regeln für bewehrtes und unbewehrtes Mauerwerk. Österreichisches Normungsinstitut (ON). Wien.
- [23] ÖNORM EN 771-1:2015-12. Festlegungen für Mauersteine Teil 1: Mauerziegel; Deutsche Fassung EN 771-1:2011 + A1:2015. Österreichisches Normungsinstitut (ON). Wien.
- [24] ÖNORM EN 772-1:2015-12. Prüfverfahren für Mauersteine Teil 1: Bestimmung der Druckfestigkeit. Österreichisches Normungsinstitut (ON). Wien.
- [25] ÖNORM EN 772-3:1999-01. Pr
  üfverfahren f
  ür Mauersteine Teil 3: Bestimmung des Nettovolumens und des prozentualen Lochanteils von Mauerziegeln mittels hydrostatischer W
  ägung. Österreichisches Normungsinstitut (ON). Wien.
- [26] ÖNORM EN 772-9:2005-05. Pr
  üfverfahren f
  ür Mauersteine Teil 9: Bestimmung des Loch und Nettovolumens sowie des prozentualen Lochanteils von Mauerziegeln und Kalksandsteinen mittels Sandf
  üllung. Österreichisches Normungsinstitut (ON). Wien.
- [27] ÖNORM EN 772-13:2000-10. Pr
  üfverfahren f
  ür Mauersteine Teil 13: Bestimmung Nettound Brutto-Trockenrohdichte von Mauersteinen (außer Natursteinen). Österreichisches Normungsinstitut (ON). Wien.
- [28] ÖNORM EN 772-16:2011-06. Pr
  üfverfahren f
  ür Mauersteine Teil 16: Bestimmung der Ma
  ße. Österreichisches Normungsinstitut (ON). Wien.