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Abstract 

An increasing number of the population lives and works in cities. It is widely expected that these patterns 

persist as urban areas account for a greater share of activity. This asks for high rise buildings and 

advanced foundations systems, which are able to transfer high loads from the ground surface into deep 

layers.  

This master thesis focuses on the optimisation of combined piled raft foundations (CPRFs), which are 

hybrid foundation systems combining the bearing capacity of a foundation raft with the piles. Elements 

of the foundation exercise a mutual load-bearing effect and present reciprocal interactions as well as 

interactions with the subsoil. Herein both a semi-analytical approach for the simulation of soil structure 

interaction and a multi-objective optimisation to minimise the required resources for the deep foundation 

are used. After outlining the semi-analytical model for the design of pile groups and CPRFs, it is applied 

in a standard CPRF benchmark from the literature. The obtained design is then optimised using genetic 

algorithms.  

This new design approach enables a rapid and robust semi-analytical approximation of the load-bearing 

behaviour of the structure, which can facilitate the calculation and cost estimation of projects in the 

tender phase. It is further implemented in a script capable of an optimised design covering geotechnical 

as well as structural aspects. By using multi-objective optimisation, better and more cost-effective 

results have been achieved compared to reference solutions presented in the literature. As far as the 

overall need for concrete masses for the raft and the piles is concerned, the obtained solutions show 

significant reduction of required concrete. The findings of these analyses contribute to the cost efficient 

design of foundation systems combining the need of practical engineering, advanced soil mechanical 

approaches and optimisation techniques.  

It has further been shown that a direct relation between costs and settlement can be established and 

displayed in the form of a Pareto front. This finding facilitates the evaluation of the possible cost savings 

with a concrete insight into the increased risks following those savings. The representation of a Pareto 

front enables a rapid cost-benefit analysis. This optimisation procedure represents a new perspective for 

constructors and planners, which opens the way for more competitive solutions in foundation design 

and fosters the optimisation of complex problems in civil engineering.   

 





 
 

Kurzfassung  

Ein zunehmender Teil der Bevölkerung lebt und arbeitet in Städten. Es ist zu erwarten, dass diese 

Tendenz fortdauert, da sich in Ballungsräume ein erheblicher Teil der Wirtschaftstätigkeit konzentriert. 

Der steigende Wohnraumbedarf in Großstädten bei hohen Grundstückspreisen führt unter anderem zum 

Bau von Hochhäusern in Ballungsräumen. Diese Hochhäuser fordern hochentwickelte Gründungen, die 

die hohen Lasten von der Gründungsoberfläche in tiefliegende Bodenschichten übertragen können.  

Im Rahmen der vorliegenden Diplomarbeit wurden Kombinierte Pfahl-Plattengründungen (KPP) 

diskutiert. KPP sind geotechnische Verbundkonstruktionen mit gemeinsamer Tragwirkung von 

Fundamentplatte und Pfählen,  die komplexe Wechselwirkungen aufweisen, sowohl zwischen den 

einzelnen Strukturelementen als auch mit dem Boden.  Ein semi-analytisches Berechnungsverfahren 

wurde für die Abschätzung der Boden-Bauwerk Interaktion durchgeführt. Darüber hinaus wurde eine 

multikriterielle Optimierung für die Reduzierung der erforderlichen Ressourcen der Gründung 

entwickelt. Nachdem das semi-analytische Berechnungsverfahren für Pfahlgruppen und KPP 

hervorgehoben wird, wird es mit erprobten Beispielen aus der Literatur verglichen. Der daraus 

resultierende Entwurf wird schlussendlich mittels genetischer Algorithmen optimiert.  

Dieses neue Verfahren ermöglicht eine schnelle und robuste Näherung des Tragverhaltens der 

Gründung, das die Kostenermittlung und die Berechnung in der Ausschreibungsphase  unterstützen 

kann. Zudem wird das Verfahren in einem Skript abgeleitet, welches sowohl die geotechnische als auch 

die konstruktive Bemessung abdeckt. Anhand multikriterieller Optimierung wurden kosteneffektivere 

Lösungen im Vergleich zu jenen aus der Literatur erarbeitet. Die Menge an erforderlichem Baumaterial 

konnte reduziert werden, ohne die Fähigkeiten des Trageverhaltens zu verringern.  

Darüber hinaus wurde gezeigt, dass mit Hilfe eines evolutionären Algorithmus eine direkte Verbindung 

zwischen optimaler Setzung und minimalen Kosten abgeleitet und mittels einer Paretofront dargestellt 

werden kann. Auf die Gefahr hin, dass die Setzungen zunehmen, kann so festgestellt werden, welche 

Kosteneinsparungen möglich ist. Die Darstellung der Paretofront ermöglicht außerdem eine schnelle 

Kosten-Nutzen-Analyse. Dies eröffnet eine neue Sichtweise für Bauunternehmen beziehungsweise 

Planungsbüros und unterstützt damit sowohl die Planung kompetitiver Lösungen als auch die 

Optimierung von komplexen Problemstellungen im Bauwesen.  

 

 

 





 
 

Résumé 

Une part croissante de la population vit et travaille dans les villes et il est très probable que cette tendance 

persiste étant donné que les aires urbaines concentrent une grande part de l’activité économique. Ce 

phénomène conduit à un développement des gratte-ciels et des superstructures, édifices nécessitant des 

fondations capables de transférer de fortes charges de la surface de la fondation jusqu’à des couches de 

sol plus profondes.  

Le présent mémoire se penche sur l’optimisation de fondations mixtes radier-pieux, fondations hybrides 

combinant la capacité portante d’un radier avec celle d’un groupe de pieux. Les éléments de cette 

fondation exercent un effet mutuel de portance et présentent des interactions complexes radier-pieux-

sol. Une approche semi-analytique pour la simulation de l’interaction sol-structure ainsi qu’une 

optimisation multi objectifs pour minimiser la quantité de ressources nécessaire sont effectués. Après 

avoir mis en avant le modèle semi-analytique développé pour modéliser les groupes de pieux et les 

fondations mixtes, celui-ci est appliqué à des cas concrets pour pouvoir comparer les résultats à ceux 

obtenus numériquement par diverses études scientifiques. Le design est ensuite optimisé par 

l’intermédiaire d’algorithmes génétiques.  

Cette nouvelle approche de conception permet une approximation rapide et robuste de la capacité 

portante de la structure, ce qui aide au dimensionnement de la fondation et à l’estimation des coûts lors 

des procédures d’appel d’offre ou pour concevoir un design préliminaire. Le modèle est implémenté 

dans un script couvrant aussi bien les aspects géotechniques que structurels. A l’aide d’une optimisation 

multi-objectif, des résultats plus économiques que ceux obtenus numériquement ont pu être obtenus. 

Les résultats montrent en effet une réduction significative de la quantité de béton nécessaire pour des 

performances similaires.  

Une relation directe entre le coût de la structure et le tassement, représentée au moyen d’un optimum de 

Pareto, a par ailleurs été obtenue. Il est ainsi plus facile d’évaluer quelles économies peuvent être 

effectuées sans pour autant affecter la sécurité de la fondation. Cette représentation sous forme de 

frontière d’efficacité de Pareto permet une analyse coûts-avantages rapide. La procédure d’optimisation 

développée représente une nouvelle perspective pour les constructeurs et les bureaux d’études, qui ouvre 

la voie à des solutions plus compétitives concernant la conception des fondations et l’optimisation de 

problèmes complexes du génie civil.  
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1 Introduction 

1.1 Scope of the thesis and research objective 
Cities are often seen as centres of economic growth, providing opportunities for study, innovation and 

employment. The growing housing space demand in cities combined with a steep rise in real estate leads 

to the development of more and more high-rise buildings in city centres. Amongst others, this is the case 

in Frankfurt am Main, Germany, where numerous skyscrapers were constructed in the last decades (see 

Figure 1.1).  

Design, construction and performance of these superstructures largely rely on the stability of their 

foundations. Deep foundations are often necessary to transfer loads of such major structures in the 

subsoil. A possible alternative to these foundations is a combination of elements of shallow foundations 

on the one hand with elements of deep foundations, on the other hand, forming the so-called Combined 

Piled-Raft Foundations (CPRF). A CPRF is thus a geotechnical composite construction coupling the 

bearing effect of both foundation elements raft and piles.  

Major advantages of combined piled raft foundations are lower settlements of the whole structure as 

well as a reduction of the volume of material used in comparison with deep foundations, leading to 

optimised cost and better economic viability. Thus, such foundations are often chosen for highly loaded 

buildings or bridge foundations.  

This master thesis aims at developing an algorithm capable of a quick, robust and optimised design of 

CPRFs covering the basic geotechnical as well as structural aspects. This algorithm should be a smart 

and efficient tool, which allows a rapid and simple adaptation of the local boundary conditions. The 

calculation time should not exceed some seconds. It should include elaborated approaches such as a 

non-homogeneous soil model with a linearly increasing modulus or the introduction of a failure 

criterion. Consequently, the developed algorithm would offer an evolved design but would remain quick 

and easy to handle.  

Figure 1.1: Development of recent high-rise buildings in Frankfurt am Main, after [31]. 
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This algorithm would be suitable for the preliminary and tender design of a project. Depending on the 

legal details of the tender documents, one should be able to change the construction concept, the 

construction material and the static system of a high-rise building in order to meet the required design 

specifications. The most important purpose of the tender phase is the development of a safe structure 

with the smallest possible price. However, for detailed analyses and final design, it is recommended to 

have recourse to numerical methods [24], which are the only ones capable of a realist and trustworthy 

enough design.   

The simplified design of CPRF should be automatized in the developed algorithm so that the calculation 

can be applied easily and quickly to various projects. This new design approach enables a rapid semi-

analytical approximation of the load-bearing behaviour of the structure. In combination with standard 

structural analysis software such as RFEM, it allows the design of CPRFs after the state of the art. 

Developing the algorithm with the programming language Python (see Section 1.2.4) allowed to achieve 

this simplified design process.  

Moreover, this semi-analytical calculation method is optimised using mathematical algorithms to 

minimise the volume of construction material as well as the settlement of the foundation, leading to a 

set of optimal solutions. This new design strategy is validated through a benchmark comparing the 

results with tested calculations coming from the CPRF guidelines.  

This master thesis is divided into five main parts. Chapter 2 gives an overall view of several pile 

foundation systems, their way of load transfer to the subsoil and the particularities of the different 

systems. Chapter 3 covers the design method of pile groups. The thesis is based on a literature study in 

order to compare different design and calculation methods. In particular, it outlines how the algorithm 

is developed and describes the improvements realised compared to Rudolf (2005) [47].  Chapter 4 deals 

with the design of combined piled raft foundations. Different design and calculation methods are 

compared and the developed calculation method is described. Chapter 5 contains case studies on pile 

groups and CPRFs to test the efficiency and the reliability of the developed solution. A comparison with 

tested examples coming from the literature is carried out. Chapter 6 treats the optimisation of pile groups 

and combined piled raft foundations to minimise a multi-objective problem using genetic algorithms. 

Finally, Chapter 7 summarises the main findings of the thesis and draw conclusions from them.  

1.2 Methodology  
The predefined methodology used to achieve the design of CPRFs is summarised in Figure 1.2. 

 

 

 

 

 

 

 

 

 

Figure 1.2: Workflow representing the methodology followed during the master thesis. 
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In Figure 1.2 the following abbreviations are used: 

1.2.1 Literature study 

A literature study is performed covering, in particular, the concepts of pile group and CPRF design. 

Different design approaches are summarised and compared with a special focus on global and partial 

safety factor concepts. 

The emphasis is put on analytical approximation procedures, and in particular on a comparison regarding 

assumptions, expected precision and limits of these procedures. As numerical methods are concerned, 

the principal point of interest is the constitutive equations used to model the subsoil.  

The study regarding multi-criteria optimisation contains fundaments on mathematical optimisation, pros 

and cons of different algorithms, possibilities of the programming language Python to achieve the 

requested optimisation as well as advantages of a Pareto front in the cost calculation. 

1.2.2 Pile group and CPRF design 

An easy way to design CPRF can be achieved following two different possible approaches. One 

possibility is to begin the calculation studying exclusively a shallow foundation and to incorporate 

elements of deep foundations as well as the resulting interactions afterwards. The other method is to 

initiate the calculation with the deep foundation and add the elements of the shallow foundations (such 

as the slab) subsequently. The latter solution is chosen for this thesis.   

The design process is divided into two major steps: analytical design of a pile group (deep foundation) 

followed by a numerical calculation of the slab using the output parameters of the analytical calculation 

(i.e. the spring stiffness of each pile). The combination of these two steps provides the desired 

calculation of a CPRF. Geotechnical as well as constructive aspects are covered in the algorithm, whose 

input parameters are easily modifiable by the user. The analytical design is based on Rudolf (2005) [47], 

modified and extended to describe the pile group more realistically and to meet the needs of the current 

codes.  

As a first step, the analytical calculation of a pile group is coded into a Python framework based on 

Rudolf (2005) [47]. Adaptations are made to meet the needs of a fast and simultaneously accurate design 

covering the following points:  

 group effect of a pile group, 

 stress dependent stiffness, 

 settlement differences between distinct piles of a group and 

 non-linear load-bearing behaviour.  

The analytical calculation procedure of this algorithm is summarised in a workflow that enables an easier 

comprehension of the method (see Figure 3.3). After this, the load-settlement behaviour of the pile group 

(and in particular the spring stiffness) is transmitted to the program RFEM to complete the calculation 

of the CPRF. The stress resultants of the slab are also evaluated with the help of this structure analysis 

0 Literature study, 

1 Analytical description of the load-settlement behaviour of a CPR foundation and development of 

an adequate Python code, 

2 Optimisation of the piles (number, spacing, diameter, length…) using multi- objective optimisation, 

3 Benchmark and comparison with the state of the art and 

4 Python interface with RFEM. 
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software. The transfer of the results must be facilitated between Python and RFEM to enable the 

dimensioning of the foundation slab, which cannot occur with the analytical calculation in Python. 

1.2.3 Optimisation 

The use of the language Python to describe the analytical process enables an easy coupling with an 

optimisation library also implemented in Python. The modification and the simulation of a multitude of 

variables are also made possible with the algorithm. 

CPRF optimisation must be based on a robust analytical calculation strategy to offer reliable results. In 

fact, no divergence of the calculation should occur during the numerous iteration steps of the 

optimisation. That is why a benchmark is necessary, conjointly with a precise study of the relevant input 

parameters for each defined CPR to optimise. The multi-criteria optimisation aims at finding optimum 

input parameters such as pile length, pile radius, distribution of the position of piles and thickness of the 

foundation slab. Those parameters influence the global cubature and in this way the total cost of the 

structure. In the end, a Pareto front is to be produced to visualise the set of optimal solutions.  

1.2.4 Calculation programs 

Different tools are used in this thesis: the structural analysis software RFEM, the programing language 

Python and its specific library pygmo.  

Python is a universally used high-level, interpreted and dynamic programming language. The design of 

its code provides code readability and clear structures. The required syntax is said to be more straight-

forward than the one used in other programming languages. Besides, maintenance is handled easily and 

the language is accessible. The version used in the study is Python 3.6.2. 

The finite element method program RFEM enables a quick and easy modelling of various structures. 

Both static and dynamic calculations are possible with RFEM. Due to its modular software concept, the 

basic program can be extended with dedicated modules to meet the needs of each user. The additional 

module RF-SOILIN permits, for example, the design of shallow foundations using the subgrade reaction 

modulus method. The version used for this work is RFEM 5.11. 

Pagmo (implemented in C++) or pygmo (in Python, for PYthon Global Multi-objective Optimizer) is a 

scientific library for optimisation problems. It was coded by Izzo and Biscani (2017) [27]. It is built 

around the idea of providing a unified interface and enables the use of a multitude of already 

implemented algorithms. Its coding style is easy to understand and uses classes to define among others 

problems, algorithms and populations. It is strongly recommended to use Anaconda [2] to fulfil the 

installation of the pygmo library, making it easy and straightforward. However, Izzo and Biscani (2017) 

[27] indicate that pygmo is relatively new and that the syntax of the code may change in the next few 

years. Adapting the algorithm in significant proportions may be necessary. The version of pygmo used 

in the study is pagmo2-v2.6.



 

 

2 Pile Foundation Systems 

2.1 Single pile 
Single piles are piles that do not interact with other piles (or to a negligible degree), neither through the 

ground nor the superstructure [33]. 

When designing piles, one distinguishes between “internal” and “external” pile capacities. The internal 

capacity refers to the safety against pile material’s failure (concrete, reinforced concrete, steel, timber, 

etc.). As for the external capacity, it refers to the analysis of the safety against failure of the ground 

surrounding the pile. According to EC7 [20], both the ultimate limit state (ULS) and the serviceability 

limit state (SLS) have to be analysed concerning the internal and the external safety analysis. 

Piles can be subject to all types of loading: both vertical and horizontal forces as well as bending 

moments. Moreover, the actions may interact with each other to a certain degree. For example, the 

application of horizontal forces leads to the apparition of bending moments but also increases the vertical 

forces [33]. In most of the cases, however, the non-axial actions are neglected: foundation piles are 

predominantly axially loaded. 

The axial resistance of a single pile can be divided in two components: the base resistance Rb,k(s) and 

the shaft resistance Rs,k(s). The pile resistance is then obtained by summing these two components (see 

Equation (2.1). Note that k is the index for the characteristic value. 

)s(R)s(R)s(R k,sk,bk,pile   (2.1) 

 

The pile shaft resistance Rs,k(s) is calculated as the integral of the skin friction qs,k over the pile skin 

surface. The pile base resistance Rb,k(s) as the integral of the end bearing qb,k over the contact area of the 

pile base, see Equations (2.2) and (2.3). 

4

2D
q)s(R k,bk,b   (2.2) 

dzD)z,s(q)s(R k,sk,s   (2.3) 

 

Both resistances are generally related to the vertical displacements (described by the settlement 𝑠 at the 

pile head). They are represented in Figure 2.1 until the settlement limit sg after Katzenbach et al. (2016) 

[31]. 

The settlement limit sg to mobilise the full base resistance Rb,k(sg) is defined in Equation (2.4) with Ds 

the diameter of the pile shaft.  

sg D.s 100  (2.4) 
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Figure 2.1: Characteristic resistance-settlement curve (RSC) of a single pile [31]. 

The settlement limit ssg (cm) to mobilise the pile shaft resistance Rs,k(ssg) (MN) is defined as 

 cm..R.s s,ksg 03500500   (2.5) 

 

Resistance-settlement curves present shapes specific to the resistance predominantly used by a pile to 

transfer loads to the ground. Two major types of piles can thus be recognised: piles making 

predominantly use of the shaft resistance (called “skin friction piles”) and piles mostly using the base 

resistance (“end-bearing piles”) to transfer loads. For a pile subject to shaft resistance, one observes a 

pronounced curvature of the load-displacement curve. This is because the limit value of the skin friction 

qs is normally reached at relatively small pile displacements. Once qs is exceeded, only the base 

resistance increases notably (that is to say for larger displacements) [34]. As for end-bearing piles, they 

present a less pronounced curvature for the same reason as explained above (the base resistance 

increases up to large settlements). 

2.2 Pile grillage  
A pile grillage consists of single piles bound together with the help of a superstructure and positioned 

far enough to each other so that the interaction between them in terms of pile load-bearing behaviour 

can be neglected.  

2.3 Pile group 
Several piles form a group if they have an influence on each other regarding their load-bearing behaviour 

and are united using a common pile cap. The mutual influence of the piles is called group effect or pile-

pile interaction. The group effect of axially loaded piles can refer to both the settlement and the 

resistance. 
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The settlement-related group effect Gs is expressed as 

E

G
s

s

s
G   (2.6) 

 

The resistance-related group effect 𝐺𝑅 is defined by the factor 

EG

G
R

Rn

R
G   (2.7) 

 

 

The limit distance after which the group effect between two neighbouring piles can be neglected is often 

taken as 6D or 8D, with D the pile diameter. However, the limit distance can also take into account other 

parameters such as the pile length, the Poisson’s ratio or the thickness of the compressible layer. The 

limit distance increases for example with increasing embedment depth d. For small settlements the 

equivalent pile group normally displays smaller resistances than single piles. That is, however, the 

contrary at larger settlements [33].  

The load-bearing behaviour of a group of piles differs for every pile depending on its respective position 

(see Figure 2.2). In low-settlement pile groups, corner piles normally exhibit the highest pile resistances, 

the central piles the smallest. On the contrary, at larger settlements the distribution among piles can be 

inverted because of interlocking effects [33]. 

Kempfert et al. (2012) [33] propose an approximation method to calculate the group effect in terms of 

the settlement (see Equation (2.6)) of compression pile groups. This method is based on nomograms, 

which are derived from extensive FEM parameter studies made on bored pile groups. The method should 

be adopted preferentially to determine the settlement behaviour in the serviceability limit state. It is also 

suited to obtain characteristic pile spring stiffness, which depends on the position within the pile group. 

 

Figure 2.2: Pile denomination within a group (adapted from [33]). 

sG mean settlement in a pile group, 

sE settlement of an equivalent single pile under the mean pile load of the group, 

RG overall resistance of the pile group, 

RE resistance of the single pile at the mean settlement of the pile group and 

nG number of piles in the group. 
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The settlement-related group factor Gs, which enables to determine the mean settlement of a pile group 

subject to a central, vertical action, is given in Equation (2.8) after Kempfert et al. (2012) [33]. 

321 SSSGs   (2.8) 

 

 

Even if the original parameter studies were carried out on bored piles, those results can be extended to 

other types of piles using the factor S3. The factors presented in Equation (2.8) are obtained by reading 

the established nomograms. These nomograms are differentiated for cohesive and non-cohesive soils 

regarding their stiffness moduli. In a first approximation, the moduli are set as displayed in Table 2.1 

and constitute the application limits. 

An example is presented for a cohesive soil of type (II). The factor concerning the influence of the soil 

type and the group geometry can be read in Figure 2.3, the value of the group size influence factor in 

Figure 2.4 (depending on the ratio a/d where a is the pile spacing and d the pile embedment depth). A 

multitude of other nomograms is available in Kempfert et al. (2012) [33] to cover a broader range of the 

ratio a/d as well as different types of soil. In Figure 2.3 and Figure 2.4, FG represents the vertical action 

on the whole pile group and RE,s=0.1D the pile resistance of a single pile for a settlement s = 0.1 D with D 

pile diameter. 

Finally, it should be mentioned that the pile cap slab is assumed as almost rigid, meaning that the 

differential settlements within the pile group are neglected. 

Table 2.1: Characterisation of the soil depending on the stiffness modulus. Adapted from [33]. 

 

 

 

 

S1 factor depending on the influence of the soil parameters and the group geometry (pile length 𝐿, pile 

embedment depth in load-bearing ground 𝑑, pile centre distances 𝑎  as shown in Figure 2.3), 

S2 factor depending on the size of the group as shown in Figure 2.4 and 

S3 pile type influence factor. 

Type of soil Stiffness modulus Es [MN/m2] 

cohesive I 5-15 

cohesive II 15-30 

non-cohesive ≥ 25 

not load-bearing < 5 
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Figure 2.3: Nomogram showing the influence of the soil type and the group geometry of a bored pile 

group for a cohesive soil (group of soil “cohesive II” according to Table 2.1) [33]. 

Figure 2.4: Nomograms showing the influence of the group size for the determination of the mean 

settlement of a pile group in a cohesive soil (group of soil “cohesive II” according to Table 2.1) [33]. 

2.4 Combined piled raft foundation 
Piled-raft foundations are structures able to transfer loads to the ground with foundation slabs and piles 

exercising a mutual load-bearing effect [33]. The interactions shown in Figure 2.5 must all be considered 

simultaneously.  

The characteristic value of the total resistance of a piled raft (as a function of the settlement) Rtot,k(s) is 

therefore composed of the sum of the characteristic values of the resistances of all n piles of a pile group  

and of the characteristic value of the resistance of a raft mobilized by contact pressure Rraft,k(s). The latter 

is calculated as the integral of the contact pressure σ(x,y) over the area of the pile slab (see Figure 2.6 

and Equation (2.9)). 

(a) a/d=1.5 (b) a/d=1.2 
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Figure 2.5: Soil-structure interaction after [24]. 

)s(R)s(R)s(R k,raft

n

i

i,k,pilek,tot 
1

 (2.9) 

 

Where Rpile,k,i(s)  is defined in Section 2.1. 

The load-bearing effect of a piled raft is defined by the piled raft coefficient αPR (see Equation (2.10). 

This coefficient indicates the part of the total action transferred by the piles. The remaining part of the 

action is transmitted to the ground using the contact pressure of the foundation slab. A piled raft 

coefficient of 1 corresponds to a pure pile foundation (calculated after DIN 1054:1976 [13] Section 5) 

and a coefficient of 0 represents a pure shallow foundation (calculated after DIN 1054:1976  [13] Section 

4), see Figure 2.7. This figure shows a qualitative example of the piled raft coefficient depending on the 

settlement of the piled raft sPR ≡ sKPP over the settlement of a shallow foundation ssh ≡ sFl presenting the 

same foundation area and the same actions as the piled raft.  

)s(R

)s(R

)s(
s,k,tot

n

i

i,k,pile

PR


 1  

(2.10) 

Figure 2.6: Combined piled-raft foundation as a geotechnical structure, pile and raft resistances [24]. 

1. Pile-soil interaction 

2. Pile-pile interaction 

3. Raft-soil interaction 

4. Pile-raft interaction 
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Figure 2.7: Settlement of a CPRF depending on the piled raft coefficient αPR, adapted from [24]. 

One can mention that the piled raft coefficient depends on the load level and thereby on the settlement 

of the piled raft. The design of piled raft foundation will be developed more precisely in Chapter 4 of 

this thesis. Analysis of piled raft foundations follows the German “guidelines for the design, 

dimensioning and construction of piled raft foundations“ („Richtlinie für den Entwurf, die Bemessung 

und den Bau von Kombinierten Pfahl-Plattengrundungen“ (KPP-Richtlinie Hanisch et al. (2002) [24]). 

Additional advice is to be found in the EC 7-1 Handbook [23]. Exhaustive information regarding pile 

foundation systems can be found in the Recommendations on piling (EA-Pfähle) of the “Deutschen 

Gesellschaft für Geotechnik” [33]. The design of pile groups will be discussed in more detail in the 

following chapter of this thesis. 





 

 

3 Pile group design 

3.1 Literature review on pile group design 
Different methods have been developed to study the settlement behaviour of a pile group. They all differ 

with regards to their calculation method, the needed input parameters, the precision of the results, the 

area of application or the computational costs. They can be grouped under three main categories: 

numerical, analytical and empirical methods.  

The most powerful methods are the numerical methods and among them probably the Finite Element 

Method (FEM). Numerical methods can be applied in almost all cases (non-linear constitutive soil 

models, stratified soils, etc.), which makes their utilisation attractive. However, these methods require 

an intensive computational cost and present a high complexity. Boundary Element Methods (BEM) are 

more tractable as they only proceed in a discretization of the boundaries and not of the entire structure 

[7], but are nowadays less attractive since the obstacle of the computational cost tends to disappear. In 

any case, numerical methods require a sufficient experience from the user. Moreover, adequate input 

parameters have to be chosen correctly.  

There are the reasons why analytical methods are still used and developed as they offer an easier solution 

to a problem or enable a simple preliminary design. The modelling requires less investment but still 

offers satisfactory results in comparison with a numerical model – the latter one is thought to be more 

precise. However, these models also contain some input parameters, which have to be estimated (for 

example the influence radius, see Section 3.2.4). 

Empirical models only allow for a rather rough approximation. Their application is suitable for pilot 

studies or plausibility checks during the design of complex pile groups with other methods. An overview 

of the above-mentioned design methods is presented Table 3.1. Application fields of the methods (that 

is to say for which phase of the project the design methods are suitable) are displayed in relation to their 

complexity (time and cost investment). 

The literature review on pile group design is summarised in Table 3.2 after Rudolf (2005) [47]. 

Superposition refers to the displacement fields of individual piles within the group. Some of the 

mentioned methods are detailed in the following subchapters. 

Table 3.1: Overview of different calculation methods, design of pile groups, adapted from [37]. 

 

Application Method Complexity 

Preliminary design 

Utilisation of approximate methods 

(analytical, empirical), which offer 

satisfying results in a limited amount of 

time. 

 

Dimensioning Boundary Element Method (BEM) 

Special investigation and 

analysis 

Finite Difference Method (FDM) 

Finite Element Method (FEM) 
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Table 3.2: Calculation methods for a pile group (adapted from [47]). 

3.1.1 Empirical methods 

Empirical methods are based on results of laboratory and field tests of equivalent single piles embedded 

in the same subsoil. The settlement of the group 𝑠𝐺 is obtained by multiplication of the settlement of the 

equivalent single pile 𝑠𝐸  with the settlement-related group effect 𝐺𝑠 as presented Equation (2.6). The 

group effect of Skempton (1953) [48] is applicable to displacement piles and presented Equation (3.1), 

where BG represents the equivalent width of the pile group (BG given in feet). 
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Other empirical values of the group effect have been determined, for instance by Hettler (1986) [25] for 

cohesive soils (Equation (3.2)) or by Poulos and Davis (1980) [44] Equation (3.3) for pile groups with 

a rigid pile cap.  
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In (3.2), λG and λE are influence coefficients depending on the embedment depth of the piles (for the 

group respectively for the single pile), and as represents the pile spacing. 

Method Approach Remark 

Numerical  

Banerjee and Discroll (1976) BEM, whole pile group 
Linear load-bearing 

behaviour 

Poulos and Davis (1980) 
BEM, superposition, influence 

coefficients 

Non-linear load-bearing 

behaviour 

Banerjee and Butterfield (1981) BEM, whole pile group Non-linear load-bearing 

Randolph and Wroth (1979) FEM 
Elastic load-bearing 

behaviour, only in SLS 

Analytical  

Randolph and Wroth (1979) 
Superposition, influence 

coefficients 

Elastic load-bearing 

behaviour, only in SLS 

Chow (1986) 
Superposition, influence 

coefficients 

Non-linear load-bearing 

behaviour 

Guo and Randolph (1997) 
Superposition, influence 

coefficients 

Elastic pile load-bearing 

behaviour 

Rudolf (2005) 
Superposition, influence 

coefficients 

Non-linear behaviour, failure 

criterion 

Empirical  

Skempton (1953) Displacement pile 

Rigid pile cap 

Cohesive soils 

Poulos and David (1980) 

Hettler (1986) 
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In Equation (3.3), αji is an interaction factor defined in Poulos and Davis (1980) [44]. 

3.1.2 Analytical methods  

Analytical methods developed to design pile groups are mostly based on the theory of elasticity. 

Randolph and Wroth (1979) [46] and Guo and Randolph (1997) [22] have adopted an elastic load-

bearing behaviour. Non-linear elastic, ideal plastic behaviours can also be modelled, for example, in 

Chow (1986) [7] or in Rudolf (2005) [47], the latter one taking a failure criterion into account. Those 

approaches may combine pure analytical models with empirical values to obtain results as close as 

possible to those of numerical simulations. The different methods can be distinguished as to whether the 

subsoil is considered homogenous or not.  The widely employed method of Randolph and Wroth (1979) 

[46] following the theory of elasticity is detailed below, while the methods of Chow (1986) [7] and 

Rudolf (2005) [47] are presented in the next section.  

Randolph and Wroth (1979) [46] divide subsoil into two layers, the upper one stretching from the pile 

head to the pile base and the lower layer representing the stratum under the pile base. It is admitted that 

the skin friction induces settlements in the upper layer whereas settlements in the lower layer are caused 

by the base pressure of the pile. It is also assumed that the skin friction is constant over the whole pile.  

Considering the vertical equilibrium of an infinitesimal volume of a pile as shown in Figure 3.1 (a), the 

Equation (3.4) is obtained.  
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The first term of the equation represents the shear stress variation depending on the axial distance to the 

pile and the second term the increase in vertical stress state with the depth. Following the hypothesis 

that the increase of the vertical stress is negligible with respect to the modification of the shear stress, 

the equation of equilibrium can be simplified (the second term is neglected). It ensues the expression of 

the shear stress in radial direction Equation (3.5) (see Figure 3.1 (b)):  

Figure 3.1: (a) Stress state of an infinitesimal volume [52] (b) Shear stress distribution on the pile 

shaft in radial direction [9]. 

(b) (a) 
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Combining the Equation (3.5) with the equations of the theory of elasticity for a homogeneous and 

isotropic material, one obtains the expression of the vertical settlement of the pile shaft ss: 
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The resistance of the pile shaft is obtained combining the Equation (3.6) with the expression of the skin 

friction τ0 = Rs/As, where As represents the section of the pile shaft. The result is a relation between the 

vertical settlement of the pile shaft and its resistance shown Equation (3.7).  
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As for the settlement at the pile base, the solution of Boussinesq (1885) [5] for a rigid circular fundament 

in an elastic half-space is adopted, see Equation (3.8). 

DE
Rs bb
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The relations of the settlements of the pile base and the pile shaft as a function of the resistances 

(Equations (3.7) and (3.8)) are the basis for the modelling of the pile-pile interaction of various analytical 

methods.  

3.1.3 Numerical methods 

The first numerical methods developed were based on the theory of elasticity. The early computer 

programs for pile group analysis are largely inspired by the research of Banerjee and Discroll (1976) 

[4], Poulos and Davis (1980) [44] and Randolph and Wroth (1979) [46]. Numerical methods have not 

ceased to be improved until now, leading to very elaborated and realistic models.  

Banerjee and Discroll (1976) [4] present a BEM where the soil is modelled as a homogeneous, linear 

elastic material. The computer program developed from his work has since been improved to include a 

linearly increasing stiffness modulus of the soil. The program developed by Poulos and Davis (1980) 

[44] is based on a simplified BEM for the single pile analysis and the calculation of the interaction 

factors for two equally loaded identical piles Chow (1987) [8]. Soil non-linearity is modelled by limiting 

the stresses at the pile-soil interface. The program of Randolph and Wroth (1979) [46] is based on 

analytical solutions, either derived theoretically or adapted from finite element results for single piles. 

The pile-soil interaction is based on interaction factors determined by expressions fitted to the results of 

finite element analyses [8].   

τ0 skin friction, 

ν Poisson’s ratio, 

E stiffness modulus, 

rm influence radius (discussed in Section 3.2.4) and 

rp pile radius. 
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3.2 Design approach according to Rudolph (2005) 
The analytical calculation method presented in this section is mostly inspired by Randolph and Wroth 

(1979) [46] and extended by Rudolf (2005) [47] to take a failure criterion into account, both for the pile 

shaft and the pile base. The method based on the theory of elasticity after Randolph and Wroth (1979) 

[46] was developed Section 3.1.2. This calculation method enables to study the load-settlement 

behaviour for higher settlements and until the Ultimate Limit State. The modified and improved 

calculation method is then coded in a Python script and included in Appendix A.1. 

3.2.1 Assumptions  

Some assumptions have been made to simplify the analytical method.  The pile slab is rigid and no 

deflection occurs (“biegestarre Pfahlkopfplatte” in German). This allows for simplifying the problem to 

a unique settlement for the whole pile group. This assumption is questionable as Eurocode 7 

recommends precisely stating the design of a pile group through the settlement differences (see Section 

3.3). No elongation of the piles takes place (“dehnstarre Pfähle”), pile shaft and pile base can therefore 

be studied separately. The pile group is subject to a predominantly central vertical load (horizontal load 

and bending moment are neglected). 

3.2.2 Flexibility coefficients 

The solution proposed is based on a linear-elastic soil behaviour using empirical parameters. Flexibility 

coefficients (or influence coefficients) fi,j denoting the settlement of the pile i due to a unit load at the 

pile j are introduced. Following the hypothesis that piles are not subject to lengthening, different 

coefficients for the pile shaft and the pile base can be defined separately:  
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From the expressions of the settlement of a single pile derived from Randolph and Wroth (1979) [46] 

and presented Equations (3.7) and (3.8), both flexibility coefficients for the pile shaft and the pile based 

are expressed. It has to be mentioned that each pile is divided into several pile layers to better reproduce 

the pile behaviour up to the failure. This also allows for reproducing a stratified foundation ground if 

needed.   

The coefficient for the pile shaft is defined as follows: 
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Where Lk represents the length of pile segment associated with the considered pile layer and ri,j the 

distance between the pile i and the pile j. If piles are spaced so far apart that ri,j > rm with rm the influence 

radius, the corresponding flexibility coefficient (see Section 3.2.2) is set to zero. Note that for the 

ss settlement of the pile shaft, 

sb settlement of the pile base, 

Rs resistance of the pile shaft and 

Rb resistance of the pile shaft. 
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influence coefficient fs,i,i,k of one pile over itself, the value of ri,i = rp is used with rp the radius of the 

pile.The coefficient for the pile base is: 
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Other equivalent expressions are commonly seen (for example in Grabe and Pucker (2011) [21] or 

Chow (1986) [7]) involving the shear stress modulus G instead of the stiffness modulus E using the well-

known formula of Equation (3.14), valid for a homogeneous and isotropic material.   
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Those expressions of the flexibility coefficients are well appropriate to model the pile-pile interaction 

in the form of matrices. The gathering of the different flexibility coefficient in matrices simplifies the 

implementation of the approach into a Python script. 

3.2.3 Equilibrium of the pile group 

The settlement of a pile is expressed as the sum of the products between pile resistance and influence 

coefficients as expressed Equation (3.15), with npiles the number of piles in the group and nlayer the 

number of layers within a pile. 
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Following the hypothesis of a rigid pile cap, the settlement is set to be the same for every pile and allows 

to deal with the global settlement s. Thus, one can calculate the settlement of the pile group as well as 

the resistance load for a given load using the condition of equilibrium. The equation system is expressed 

as follows: 

cbA   (3.16) 
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Where the submatrix (fs,i,j,k) containing the flexibility coefficients of the section k for every pile is noted 

Fs,k. Solving this equation in b, one has access to the values s1, Rs,i
1 and Rb,i

1 representing the settlement 

and the pile resistances subject to a unit load.  

cAb
1  (3.18) 

 

The multiplication with the total load 𝐹 finally provides the numerical values of the settlement and of 

the resistances of the pile group.  

Fss 1  

FRR i,bi,b
1  

FRR i,si,s
1  

(3.19) 

3.2.4 Influence radius 

As mentioned Section 3.2.2, an influence radius rm is introduced to pilot the influence of the group effect 

between piles. This parameter depicts to what extent the mutual interaction between piles occurs 

following an empirical law. If piles are spaced so far apart that ri,j > rm, the corresponding flexibility 

coefficient is set to zero (see Figure 3.2).  

Different propositions from several authors are regrouped by Rudolf (2005) [47] and adapted in Table 

3.3. In Table 3.3, the thickness of the compressible layer H is defined as the thickness of the layer 

comprised between two incompressible layers, the earth’s surface being seen as an incompressible soil 

layer. According to the definition of Cooke (1974) [9], the influence radius depends only on the pile 

diameter. The influence radius calculated with this simple formula is in almost every case 

underestimated. Formulas that include not only geometrical but also soil parameters have been 

developed afterwards to improve the proposition of Cooke (1974) [9]. 

The definition of Randolph and Wroth (1979) [46] is initially conceived for single piles and is extended 

to pile groups using the additional parameter rg. This influence radius leads to overestimated values if 

the pile spacing is too large. Indeed, the additional term rg has, in this case, an overstated impact on the 

influence radius. 

Figure 3.2: Dependency on the influence radius with influence coefficients (a) Cross-section through 

the pile group (b) Plan view of a pile group. Adapted from [47]. 

(b) (a) 
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Table 3.3: Empirical models for the influence radius 𝑟𝑚 (adapted from [47]). 

 

 

Both formulas of Randolph and Wroth (1979) and Cooke (1974) have been criticized – for instance by 

Lutz (2002) [37] – because the influence of the thickness of the compressible layer is not taken into 

consideration. Lutz (2002) [37] suggests that pile-raft and pile-pile interaction factors depend on the 

thickness of the compressible layer; that is why this depth should also appear in the calculation  of the 

influence radius.  

The parameter 𝛼 introduced by Lutz (2002) [37] to correct and extend the approach of Randolph and 

Wroth (1979) [46] varies between two extreme values, the smallest (α = 2.5) is obtained for a relation 

H = 2 L and the highest (α = 5.5) corresponds to an infinite extensive half-space. To determine the 

influence of the thickness of the compressible layer, a second empirical model was developed by Lutz 

(2002) [37] consisting of a hyperbolic relation between the coefficient α and the ratio H ⁄ L. 

Studies carried out by Liu (1996) [36] show that the influence radius mostly depends on both pile length 

and pile diameter. An interdependency is also determined between the influence radius and the thickness 

of the compressible layer, whose impact on the influence radius has a similar order of magnitude as the 

pile parameters. This formula must be handled carefully because for a substantial thickness of 

compressible layer, the radius of influence reaches infinite values.  

Rudolf (2005) [47] mentions that the above presented propositions have been developed based on the 

linear initial area of the load-bearing behaviour of the pile group and are therefore not adapted to describe 

the real pile resistance distribution within the group. Based on the results of FEM calculations, Rudolf 

(2005) [47] finally recommends a simple relation between the radius of influence and the pile length.  

3.2.5 Failure criterion 

The failure criterion is evaluated for every pile layer of each pile following the yield criterion of Mohr-

Coulomb as shown Equation (3.20).  
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Lutz (2002) 

L Rudolf (2005) 

rg radius of the circle having the same area as the pile group 

D pile diameter, 

v Poisson’s ratio, 

H thickness of the compressible layer, 

α factor depending on H with 2,5 ≤ α ≤ 5,5 and 

L pile length. 
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The subdivision of the piles in different layers allows for an evaluation of the failure criterion in every 

section; the resistance-settlement curve thus presents a more realistic shape up to the failure.  

A full failure by sliding (slippage) of a pile section is preceded by a non-linear soil behaviour in the 

surrounding area of the pile layer, which leads to a discontinuity in the soils parameters [7]. If full 

slippage occurs in a given pile layer, there is no further interaction between that pile section and the 

other sections of the group. 

If the failure criterion is not fulfilled, the matrix A gathering the influence coefficients (see Equation 

(3.17)) has to be adapted. If, for example, the failure occurs on the first layer (k = 1) of the pile number 

1 of a 2x2 pile group, the corresponding flexibility coefficients of the submatrix Fs,1 whose either index 

i or j with i ≠ j  takes the value 1, are set to zero (see Equation (3.21)). This means physically that for 

next load iterations, no more pile shaft force is added for this pile layer.  























444342

343332

242322

11

0

0

0

000

,,s,,s,,s

,,s,,s,,s

,,s,,s,,s

,,s

,

fff

fff

fff

f

1sF  (3.21) 

 

The last element of the corresponding line (in this example the last element of the first line of the matrix 

A defined Equations (3.16) and (3.17) , i.e. the coefficient -1 that is multiplied with the settlement) is 

also set to 0. Indeed, when a layer breaks down, no more settlement occurs. Since fs,1,1 is different from 0, 

the corresponding resistance R1,1
1 of the matrix b takes the value 0 to maintain the equilibrium.  

It has been shown that usually the failure never happens in the base for usual cases [47] or at least 

appears for higher settlements (i.e. higher actions) than for the shaft. This is because the base resistance 

increases up to very large settlements whereas the limit value of skin friction qs is usually reached at 

relatively small pile displacements [34], see Section 2.1. If in any case, a failure occurs in the pile base, 

the same adaptation of the matrix A as for the pile shaft is needed. 

3.2.6 Workflow 

The implemented calculation method, whose properties and major theories are presented within this 

section, can be summarised in a workflow (see  Figure 3.3). The calculation method proposed by Rudolf 

(2005) [47] is an iterative procedure. By applying the last step by step the non-linear load-settlement 

behaviour of the soil can be better predicted.  

The input parameters are the geometry of the piles and the parameters of the soil. The flexibility 

coefficients calculated following Equations (3.11) and (3.12) are gathered in the matrix A as presented 

in the Equation (3.18). The equation of equilibrium is calculated for a unit load, the stress and settlement 

state are set up afterwards using Equation (3.19). 

σ1 principal stress in direction 1, 

σ3 principal stress in direction 3, 

φ friction angle and 

c cohesion. 
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The failure criterion (3.20) is then applied to this state. If the failure criterion of the base is not fulfilled, 

the matrix A is adapted and the equation of equilibrium is solved again, leading to new stress and 

settlement state (state (1)). Otherwise, the next failure criterion (this time for the shaft) is verified 

immediately (and the state (1) is simply equal to the initial state (0)). The same pattern is then repeated 

for the pile shaft, leading (or not) to a new stress and settlement state (state (2)).   

The calculation procedure presents two distinct loops: the first one, or major loop, runs until the total 

load is applied (the incremental load is calculated as the total load divided by the number of increments). 

The second one, encapsulated within the major loop, is running while the two different stress and 

settlement states (1) and (2), which are calculated after each failure criterion, do not differ of more than 

1% (called iteration criterion).  
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 Figure 3.3: Workflow representing the main steps of the procedure of Rudolf (2005) [47]. 
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3.3 Modifications and improvements 
To describe the pile group more realistically and to render the design applicable to generic structures, 

modifications and improvements were made to the analytical procedure presented in Section 3.2. Those 

modifications are in any case required by the current codes (EC7 [20] and DIN 1054:2005 [14]). Indeed, 

Eurocode 7 introduces new requirements regarding the calculation of pile groups, in particular, a more 

realistic and precise approach of:  

 the group effect of a pile group, 

 the settlement differences between piles of a group called differential settlement and 

 the non-linear load-bearing behaviour.  

The modifications and improvements had a positive effect on the precision in the above-listed features.  

3.3.1 Accuracy of the influence radius 

To compare the different influence radiuses obtained with the empirical models in Table 3.3, a 44 pile 

group with a constant pile spacing of six meters and a Poisson’s ratio of the soil of 0,4 has been studied. 

The results are presented in Figure 3.4, which shows the influence radius for the group effect. The 

radiuses of influence have to be understood as it is illustrated in Figure 3.2: piles positioned outside each 

circle see their influence coefficient set to zero whereas piles positioned inside each circle see their 

influence coefficient calculated following the Equation (3.11).  Note that the circles, defined by their 

corresponding radius of influence, are here represented with their centres in the middle of the pile group 

to give an overview. Normally, they have to coincide with every pile alternatively, as shown Figure 3.5 

using the first pile of the pile group as an example. It can be observed Figure 3.5 that a corner pile 

interacts with fewer other piles than a centre pile.  

As it can be noticed, there are tremendous differences between the obtained radiuses. The influence 

radius of Cooke (1974) rm,Cooke = 6.0 m is indeed four times smaller than the one of Lutz (2002) using the 

maximal admissible value of 𝛼, rm,  Lutz,  α= 5.5 = 26.4 m. Extreme values are not appropriate to depict the 

group effect as they lead to either include all the piles within the radius of influence or exclude too many 

of them.  

Figure 3.4: Representation of the influence radius using different empirical models. 
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Figure 3.5: Radiuses of influence represented with their origin at the pile 1. 

The current calculations are based on Lutz’s formula with a value of α = 2,5 as it seems to offer the most 

appropriate trade-off. However, Rudolf (2005) [47] mentions that there is no perfect formula for 

calculating the influence radius. Radiuses are generally overrated, leading to an underestimation of the 

resistance of the inner piles. Indeed, the flexibility coefficients fi,j grow as the influence radius increases, 

that is to say the pile resistance decreases to observe the equilibrium of Equation (3.15).  

All empirical models in Table 3.3 were implemented into a Python file. The user can thus easily choose 

which model to apply. After that, the algorithm asks for the input parameters defined in Table 3.3. 

3.3.2 Comparison of flexibility coefficients 

Two different models of the pile group effect were studied, one by Rudolf (2005) [47] presented in 

Section 3.2 and the other by Chow (1986) [7] shown below. 

The solution proposed by Chow (1986) [7] includes a subdivision of every pile into several nodes as 

illustrated in the example Figure 3.7. Interaction effects between nodes within the same pile are ignored. 

That is to say, fi,j is set to 0 if i takes values in the nodes of the pile j (where the load is applied), except 

if i = j; in that case, the same coefficient is applied as in Rudolf (2005) [47].  

The calculation is based on the continuum mechanic theory of Mindlin (1936) [38], which is valid for a 

vertical point load in a homogeneous, isotropic elastic half-space: 
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 Figure 3.6: Calculation of the flexibility coefficients after Mindlin (1936) [38] in [21]. 

The different parameters are well represented by Grabe and Pucker (2011) [21] (see Figure 3.6). If the 

soil is non-homogeneous, the mean value of the soil shear modulus at node 𝑖 and node 𝑗 replaces the 

constant shear modulus of the homogeneous soil.  

Both calculation methods are compared by using a simplified two-dimensional pile group composed of 

three piles and subdivided into twelve nodes (see Figure 3.7). The calculated coefficients are gathered 

into “Flexibility matrices”, with each element of the matrix containing the corresponding flexibility 

coefficient, as illustrated in Figure 3.8. The flexibility matrix after Rudolf (2005) [47] (Figure 3.8 (a)) 

appears easy to follow: each pile is represented by a square of the same colour, and there is no 

subdivision into nodes within a pile. The reciprocal influence of the two border piles – represented by 

the two squares on the bottom left and the top right of the matrix in white – is smaller than the influence 

of two neighbouring ones because of the larger distance separating them. The group effect is also more 

significant for the pile base as for the shaft. 

 

Figure 3.7: Position of the nodes for a two dimensional pile group study. 

z depth of the node where the displacement is evaluated (node i), 

c depth of the node where the load is applied (node j), 

R1 equals  czr 2
 

R2 equals  czr 2
 

r distance between node i and node j, 

v Poisson’s ratio and 

G shear stress modulus.  
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Figure 3.8: Flexibility matrix using the theories of (a) Rudolf (2005) [47] (b) Chow (1986) [7]. 

It can be observed that the coefficients after Chow (1986) [7] are about ten times higher than those used 

by Rudolf (2005) [47]. Furthermore, the influence of node 4 over node 8 is greater than over node 7, 

which itself is higher than over 6, etc., due to the greater distance separating the nodes. It has to be noted, 

however, that the influence of node 4 over node 12 is of the same order of magnitude than over the node 

8, even if the node 12 is two times further than the node 8.  

The flexibility coefficients after Rudolf (2005) [47] were implemented as they offer lower values of the 

coefficients. Indeed, it is shown in Section 3.2.4 that the influence radius and thus the influence 

coefficient are generally overrated. Moreover, the flexibility coefficients after Rudolf (2005) [47] depict 

the subject matter in a more comprehensive way.  

It has to be mentioned that both solutions presented above are valid for linear soil behaviour, they only 

offer an approximation of the real interaction effects. Both authors proposed iterative methods to apply 

the total load step by step and thus take into account the non-linearity of the soil behaviour. 

3.3.3 Soil stiffness 

The calculation procedure of Rudolf (2005) [47] using a constant stiffness modulus of soil is extended 

by adopting a depth-dependent soil stiffness. Indeed, this stiffness modulus is not constant in the reality 

but grows with an increasing stress state. The subdivision of the model into different layers makes 

possible that a stress state and thus a modulus can be calculated for every layer.  

Von Soos and Engel (2008) [49], among others, take into account the dependency of the stiffness 

modulus with the depth and hence expresses the stiffness of the soil as presented in Equation (3.23).  
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σref reference pressure, usually set to 100 kPa, 

ve dimensionless parameter that pilots the variation of the soil stiffness with depth (the product ve σref is 

the equivalent of Eref in Grabe and Pucker (2011) [21]) and 

we dimensionless parameter comprised between 0 and 1 (corresponds to n in Grabe and Pucker (2011) 

[21]). 

(a) (b) 
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 Table 3.4: Typical values of ve and we for different soils adapted from [49]. 

 

 

 

 

 

The exponent we is according to experience comprised between 0.4 and 0.7 for sands and between 0.8 

and 1.0 for plastic clay. Some typical values of these dimensionless parameters are given in Table 3.4. 

It has to be mentioned that the values of the stiffness modulus also vary from place to place within a 

homogeneous layer. This variation is not considered in the present study.  

3.3.4 Loading cases 

Contrary to the analytical procedure after Rudolf (2005) [47], the pile group is no longer assumed to be 

only subject to a central vertical load (see Section 3.2.1). The algorithm is modified so that a different 

vertical load can be applied to every pile. This facilitates the modelling of problems where the structure 

to support is not obviously symmetrical and where a part of the foundation is more loaded than the 

others.  

To ensure a simple analytical calculation, vertical equivalent loads are used, to take into account the 

action of horizontal loads. Two load models are seen as equivalent if they generate the same loading 

state. An equivalent model is made possible by the means of a pair of loads directed in opposite 

directions (Figure 3.9). As seen in Section 2.1, the application of horizontal forces also increases the 

intensity of vertical forces. This loading case can now be considered more precisely by a modification 

of the distribution of the loads. 

Following the same pattern, it can be assumed that bending moments applied on the structure lead to the 

apparition of an asymmetrical vertical loading. Bending moments can also be generated by the 

application of horizontal loads; in this case, it is referred to the equivalence presented in Figure 3.9. 

Figure 3.9: Horizontal load equivalence with a pair of loads operating in opposite directions [47]. 

 we ve 

Medium plastic clay  30 0.9 

Lightly plastic silt 110 0.6 

Uniform fine sand 300 0.6 

Well graded sand 600 0.55 
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3.3.5 Geometrical parameters  

The developed algorithm allows for more variation regarding the geometrical parameters such as the 

pile length and its position.  

The code is indeed extended to give possibility to set a different pile length 𝐿𝑖 for every pile. This is in 

particular useful for the optimisation of the foundation that will be achieved in Section 6.2. The 

graduation of the pile length constitutes a major improvement in the foundation design: piles subject to 

higher loads can be lengthened whereas other piles are shortened. This is, for example, the case with 

central axially loaded foundations: corner and edge piles can be designed shorter than the inner piles as 

they transfer a lower load to the ground.  

The user is also enabled to set the position of a pile using its Cartesian coordinates, rather than only a 

constant pile spacing, which only permits the conception of rectangular and constantly spaced piled raft. 

Round CPRFs can, for example, be created. This solution concurs in the minimisation of the total 

cubature of CPRFs.  

3.3.6 Differential settlement 

The fact that a unique settlement is considered for the whole structure is a major limitation to the 

analytical method of Rudolf (2005) [47]. The assumption that the foundation slab is rigid prevents from 

conceiving a model that depicts the real settlement of the structure.   

A differential settlement for each pile can easily be modelled by using a vector s1 of size “number of 

piles” instead of a scalar s1 and by creating a loop over the number of piles for each calculation of the 

settlement. The Equation (3.19) is therefore modified to consider the settlement as a vector (see Equation 

(3.24)).   

iii Fss 1  

ii,bi,b FRR 1  

ik,i,sk,i,s FRR 1  

(3.24) 

 

It needs to be noted that the load was also transformed into a vector to take a distributed load into account 

as it has been explained in Section 3.3.4. The iteration procedure is therefore modified, and the 

simplified description of the calculation presented in Equation (3.24) can be divided into two different 

steps shown in Equations (3.25) and (3.26). Instead of calculating a unique incremental load for all the 

piles ΔF, an incremental load ΔFi is necessary for each pile i, which increases the complexity of the 

iteration procedure. After each resolution of the equation of equilibrium, the results contained in the 

vector b (see Equation (3.18)) are multiplied with the corresponding incremental load to obtain the 

incremental stress and settlement state of each pile, see Equation (3.25).  

iii F)s(bs    

ii,bi,b F)R(bR    

ik,i,sk,i,s F)R(bR    

(3.25) 

 

Then the stress and settlement state is set up by adding the existing state with the incremental values 

(Equation (3.26)). This iteration procedure is summarised in Figure 3.10, where the resistance-

settlement curve of one pile is subdivided into the different incremental states.  
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Figure 3.10: Resistance-settlement curve of one pile showing the schematic steps of the iteration                    

procedure. Adapted from [47]. 

 

It should also be noted that the settlement differences are only affected by the variation of the load 

exerted on each pile. Indeed, as it has been shown in Equation (3.17), only the scalar settlement for the 

whole structure is affected by the group effect in the resolution of the equation of equilibrium. The 

settlement subject to a unit load, which is calculated by solving the equation of equilibrium of Equation 

(3.18) is then multiplied by the incremental load for each iteration. This settlement is thus affected by 

the variation of the load exerted on each pile. To study the influence of the loading distribution over the 

settlement, two different load cases are compared in Figure 3.11. The geometrical and soil parameters 

used for this comparison are those of the case study on pile groups that will be developed in Chapter 5.  

Figure 3.12 compares the distribution of the pile resistances and of the differential settlement for a 

constantly and a linear distributed load. As it becomes visible, the settlement stays constant (18 cm) for 

a constantly distributed load of 5 MN, whereas the settlements are increasing for an increasing load (21 

cm for a load of 6 MN) and inversely. The modified algorithm allows to model the differential settlement 

required by Eurocode 7. 

Figure 3.11: Distribution of a total load of 30 MN over six piles (a) constantly distributed load (b) 

linear distributed load. 

iii sss   

i,bi,bi,b RRR   

k,i,sk,i,sk,i,s RRR   

(3.26) 
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Figure 3.12: Distribution of the pile resistances (MN, inside the circles) and of the settlement (cm, 

below the circles) for a constantly distributed load (a) and a linear distributed load (b). 

3.3.7 Object oriented programming  

The developed code is object-oriented, meaning that the scripts are designed with objects that are 

interacting with each another. Indeed, the language Python is based on the concept of classes, whose 

instances are called “objects”.   

The development of an object-oriented script is necessary for the optimisation, which will be presented 

in Chapter 6. Indeed, to code a problem in the optimisation library Pygmo, it is necessary to transfer the 

results of the object “pile group” to another class, which is defining the problem to optimise. The 

optimisation is therefore not possible without this type of programming. Moreover, the code is easily 

readable for a new user due to the numerous comments and the referencing of the different equations 

used. The structure of the code is also improved. 

A major advantage of the object-oriented programming is its code reusability: the created objects can 

easily be reused in other programs. The code maintenance is also facilitated as the object oriented 

programs are easier to modify and maintain than non-object oriented ones. The legacy of the code must 

indeed be considered from its inception, either to improve its features easily in the future or to modify 

it to be compatible with more recent computers and software. 

3.3.8 Workflow 

The design approach is summarised in a workflow presented in Figure 3.14, where the major 

improvements and modifications made from the initial workflow of Rudolf (2005) [47] shown in Figure 

3.3 are highlighted in red. Moreover, in order to better depict the implemented calculation procedure, 

the structure of the workflow has been slightly adapted.  

Major improvements are made within the input of the calculation procedure. Indeed, this step gathers 

the various modifications made on the loading cases (differentiation of the vertical load for each pile 𝑉𝑖, 
introduction of horizontal loads 𝐻𝑖 and bending moments 𝑀𝑖), the pile length differences for each pile 

𝐿𝑖 and the user-defined geometry of the piles.  

The stiffness of the soil is not constant anymore but depends on the stress state of the subsoil. Thus, the 

stiffness modulus must be updated for every stress state that is calculated. The soil stiffness is also 

implied in the calculation of the flexibility coefficients for the pile base fb and for the pile shaftfs, which 

must be updated according to the new stress state.   

(a) (b) 

https://en.wikipedia.org/wiki/Instance_(computer_science)
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Moreover, the accuracy of the influence radius has an impact on the flexibility coefficients of the pile 

shaft 𝑓𝑠, which is modifying as a consequence the flexibility matrix A.   

Differential settlement is taken into account for the calculation of every new settlement state, leading to 

the implementation of additional iterative loops over the number of piles. The iteration procedure is also 

modified as the incremental load is different for every pile. Therefore, the number of “major loops” as 

defined in Section 3.2.6 increases by a factor “number of piles”. 

3.4 Limitations and drawbacks 
In spite of these improvements and modifications, the developed algorithm still shows some limitations 

and drawbacks. 

It should be noted that in the literature, no interaction between the radius of influence and the loading 

of the pile group has been taken into account so far. It might be assumed that the higher the loading, the 

longer the radius of influence, since the loading is influencing the soil in a larger extent and therefore 

could affect piles placed further away.  

The Mohr-Coulomb failure criterion (MC) is a simple but effective failure criterion given in the state of 

the art (e.g. EC7 [20]). Other more advanced criteria like those of Lade-Duncan (LD) or Matsuoka-

Nakai (MN) presented in Figure 3.13 would offer a high stress level of failure, but ask for different input 

parameters, which are difficult to derive from standard laboratory investigations. MN and LD yield 

surfaces are smoother versions of the MC yield surface. Huber (2013) [26] indicates that the choice of 

the constitutive failure criterion within a linear elastic, perfectly plastic constitutive model has a 

significant impact on the bearing capacity as well as on the failure probability of foundations.  

Moreover, the horizontal loads and bending moments are not applied directly but modelled using 

equivalent loads, which is only an approximation. Indeed, a realistic equivalent should require a 

horizontal bedding as it is illustrated in Figure 3.9. However, this horizontal bedding is not implemented 

in the developed analytical calculation; therefore, the calculation developed in this thesis should be 

limited to the design of initial and tender projects and not for detailed planning.  

The analytical method developed in this section and coded in a Python script only describes the load-

bearing behaviour of pile groups, which can be extended for the design of combined piled raft 

foundations. 

Figure 3.13: Failure criteria of Mohr-Coulomb, Matsuoka-Nakai and Lade-Duncan represented on the 

deviatoric plane [26]. 
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 Figure 3.14: Pile group design workflow of the Python script inspired from Rudolf (2005) [47] and 

improvements (highlighted in red). 
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4 Design of combined piled raft foundation 

4.1 Literature review on piled raft foundations 
Numerous calculation methods can be chosen for the design and the calculation of CPRF. All of them 

are based on different modelling schemes. Theses modelling schemes combined with different boundary 

conditions and simplified assumptions lead to disparate results. Many of these methods are only suitable 

for a preliminary design of CPRFs or in very simple cases. Only numerical methods can depict correctly 

the reality [31]; resorting to these methods is thus necessary for the design of complex projects. Similar 

to the design of pile groups, three main methods of calculation can be described: empirical, analytic and 

numerical calculation methods. In addition, calculation methods with equivalent models were used in 

the nineties, in which the CPRF were substituted by deep shallow foundations or thick single piles. An 

overview of the existing calculation methods is presented in Table 4.1. The overview of the different 

methods, including their complexity presented in Table 3.1, is still valid for the design of combined 

piled raft foundations.  

4.1.1 Equivalent models 

In equivalent methods, the CPRF is replaced by a strongly simplified foundation, commonly by a 

shallow foundation or a thick single pile. The calculation is then carried out for this substitute model. 

These methods can be separated into two main approaches: the equivalent raft method and the equivalent 

pier method.   

In the equivalent deep shallow foundation (or equivalent raft method) proposed by Poulos (1993) [42], 

the action is applied on a virtual equivalent surface, which is situated at a specified depth under the 

CPRF. This surface is determined depending on the loading case and the initial geometry of the raft. 

The calculated settlement results from the settlement of the substituted surface, which takes the influence 

of the piles into account. The settlement of the equivalent surface is determined using the elasticity 

theory of shallow foundations in an elastic, isotropic half-space. This method has been modified by 

Thaher (1991) [51], who uses a semi-empirical approach. The load-bearing behaviour of the raft is 

described analytically (employing the stiffness modulus method) and the modelling of the piles follows 

an empirical approach.  

In the case of the equivalent pile method according to Poulos (1993) [42], the pile group is replaced by 

an equivalent single pile, whose diameter and stiffness is calculated based on approximated formulas. 

4.1.2 Empirical methods 

Empirical calculation methods are based on in situ measurements and model tests. The load-bearing 

capacity of a pile is deduced by means of correlations and tabled values referring to similar soils and 

similar geometrical configuration of piles. The results of laboratory and field tests also allow for the 

determination of the load-bearing behaviour of pile groups. Moreover, various empirical methods are 

taking into consideration the group effect using empirical approaches. 
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Table 4.1: Calculation methods for a combined piled raft (adapted from [47]). 

4.1.3 Analytical methods 

Two different approaches can be used for the analytical methods. One possibility is to begin the 

calculation studying exclusively a shallow foundation and to incorporate elements of deep foundations 

afterwards. The other possibility is to initiate the calculation with the deep foundation and add the 

elements of the shallow foundations (such as the slab) subsequently. For example, the load-bearing 

capacity of the raft is calculated by first neglecting the piles. If the loads exceed the bearing capacity of 

the raft, the remaining loads are divided among the piles [31]. Analytic methods often present the main 

Method Approach Remark 

Numerical  

Davis and Poulos (1972) FDM (Finite difference method), 

superposition 

 

Butterfield and Banerjee 

(1981) 

BEM  

Poulos (1994) BEM, superposition Non-linear load-bearing 

behaviour 

Hybrid numerical (both BEM and FEM) 

O’Neil (1981) Hybrid model  

Chow (1986) Modified hybrid model  

El-Mossallamy (1996) Slab: FEM 

Group effect: BEM 

Non-linear load-bearing 

behaviour 

Analytical 

Randolph (1983) Superposition Linear-elastic 

El-Mossallamy (1996) Principle of path-independent support   

Lutz (2002) Superposition Linear-elastic 

El-Gendy et al. (2006) Hybrid, based on empirical values Non-linear load-bearing 

behaviour 

Vrettos (2006) Superposition Linear elastic, irregular 

geometry 

Empirical  

 Correlation of the load-bearing behaviour of a 

single pile using laboratory and field tests. 

 

 Consideration of the group effect using 

empirical approaches. 

 

Equivalent methods 

Thaher (1991) Modified deep shallow foundation  

Poulos (1993) Deep shallow foundation (“equivalent raft 

method”) 

 

Poulos (1993) Thick single pile (“equivalent pile method”)  
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disadvantage that not all interaction effects are regarded. This approach is thus convenient as a first 

assessment.  

It is not excluded that analytical methods make use of some empirical equations to model the load-

bearing behaviour structural elements (see for instance El-Gendy et al. (2006) [18]). The frontier 

between these two calculation methods is not always clearly defined as most of the time geotechnical 

engineering is based on empirical constitutive laws.  

One of the simplest analytical methods for the estimation of the load-bearing behaviour of CPRFs is the 

principle of path-independent support (“Prinzip der wegunabhängigen Stützung” in German), used for 

instance by El-Mossallamy (1996) [19]. As a first step, the maximal bearing capacity of the raft is 

determined by disregarding the load distribution in the pile group. Every pile constituting the group is 

then seen as an independent single pile with no consideration of the pile-pile interaction. The assumption 

is made that the settlement of the raft is so high that the ultimate bearing capacity of single piles is 

completely mobilised. The determination of the CPRF settlement equals the settlement of the raft under 

the previously determined loading case. This method presents the main disadvantage that pile-pile and 

pile-raft interactions are neglected.  

Other analytical methods are predominantly based on the theory of elasticity. The approximation 

procedure of Randolph (1983) [45] is initially conceived for a single “pile with cap” and extended to 

piled raft foundations. The approach of Randolph (1983) [45] is based on the idea that the behaviour of 

CPRFs can be expressed in the form of a load-settlement relation summarised in Equation (4.1). 
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The main diagonal contains variables that describe the load-settlement behaviour of the pile (wpp) and 

the cap (wcc) separately. Factors situated outside the main diagonal describe the interaction between 

elements of the CPRF. This matrix is often called “stiffness matrix” of the CPRF because the inverse of 

a settlement under unit load has the same unit as a stiffness.  Under the condition of compatibility (or 

“reciprocal theorem” [37]) wpc = wcp, it is possible to calculate the total stiffness of the CPRF kPR as in 

Equation (4.2), where αcp is the pile-raft interaction factor. 
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wp pile group settlement, 

wc cap settlement, 

wpp settlement of the pile group under a unit load, 

wcc settlement of the cap under a unit load, 

wcp pile group settlement due to a unit load on the cap, 

wpc cap settlement due to a unit load on the pile group, 

Pp loading of the pile group and 

Pc loading of the pile cap. 
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For the determination of the load-settlement behaviour of the pile cap (wcc or indirectly kc), formulas 

proposed by Poulos and Davis (1974) [43] are adopted.  

As for the settlement of the pile group wpp, the solution of Randolph and Wroth (1979) [46] presented 

in Section 3.1.2 is applied, where the settlement of the pile group is obtained by superposition of the 

settlement trough of every single pile. Another variant also proposed by Randolph (1983) [45] does not 

have recourse to a superposition method but uses a group effect whose interaction factors are introduced 

by Poulos and Davis (1974) [43]. 

Due to the symmetry of the stiffness matrix (Equation (4.1)) and using further approximations and 

simplifications together with a comparison with numerical simulations and empirical values, the 

interaction factor αcp can be estimated. This approximation enables to calculate simply the factor wcp as 

presented in Equation (4.3).  
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The load-settlement behaviour of the CPRF is then completely known. This analytical approach is the 

basis for various extended approaches. Vrettos (2006) [53] extends the approach of Randolph (1983) 

[45] to take into account a variable pile spacing and a different pile length for every pile. This method 

also allows for a differentiation of the load-bearing behaviour of edge piles from the one of inner piles.  

In the modified approach of Lutz (2002) [37], the deduction of the stiffness matrix occurs using different 

formulas than those of Randolph (1983) [45]. The load-settlement behaviour of the cap described by wcc 

is obtained using the formula of Steinbrenner (1934) [50]. The pile-raft interaction wpc = wcp is 

determined based on the properties of negative skin friction piles. Indeed, when the load is not directly 

applied to the pile but to the surrounding surface of the soil, it leads to the apparition of negative skin 

friction. Lutz (2002) [37] exploits the fact that the settlement of the subsoil due to surface loads must 

equal the settlement of the piles at the depth of the so-called “neutral layer” zN. After introducing a 

calculation of this neutral layer, the interaction pile-raft is obtained for wcp = wcc(z = zN).  

4.1.4 Numerical methods 

As far as numerical methods are concerned, the Finite Element Method (FEM) is the most commonly 

used. The advantages and disadvantages of numerical methods presented for pile groups are also valid 

for the design of CPRFs. These methods can simulate complex geometries as well as nonlinear 

constitutive equations. For three-dimensional models, a linear-elastic material behaviour is often applied 

to foundation elements, whereas the soil is modelled using elasto-plastic material behaviour. In 

comparison with calculation methods for pile groups, the numerical design of CPRF can be extended to 

the use of hybrid methods, which are combining both BEM and FEM in the same calculation method.  

In the Boundary Element Method (BEM), elements of the foundation are numerically described and 

coupled to a medium using compatibility conditions. The medium, describing the subsoil, is often 

r0 pile radius, 

rm radius of influence and 

rc equivalent radius of the pile cap. 
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defined as an elastic half-space. The major advantage of BEMs is that the deformation field can be 

described exclusively according to the discretisation of the boundary elements, as implemented for 

CPRFs in Banerjee and Butterfield (1981) [3]. It is possible to combine a BEM to model the pile group, 

as described in Section 3.1.3, together with a BEM to model shallow foundations, as presented in Ohde 

(1942) [39]. 

When using the Finite Difference Method (FDM), the differential equations adopted to describe the 

load-bearing behaviour of the CPRF are discretised, and the partial derivatives are varied over small 

finite elements whose mesh covers the whole system, as in Davis and Poulos (1972) [10]. 

As for the FEM, it has to be distinguished between 2D and 3D models. Two-dimensional models 

(usually axially symmetric) are not always able to produce satisfactory results, in particular for models 

using non-linear constitutive equations. This is due to the apparition of hoop tensions, which influence 

the results [37]. Nowadays, two-dimensional models are not often used and are replaced by three-

dimensional models, which do not present those drawbacks and allows for more complex geometry. 

4.2 Design procedure for PRF 
As mentioned in Section 2.4, the design of piled raft foundations usually follows the German guidelines 

“Kombinierte Pfahl-Plattengründungen” (KPP-Richtlinie) from Hanisch et al. (2002) [24]. These 

guidelines present the state of the art of the CPRF design. The initial CPRF guideline published in 2002 

and still considered as the reference for the design of CPRFs is making use of the global safety factor 

concept. This guideline has meanwhile been translated and published in English by the International 

Society for Soil Mechanics and Geotechnical Engineering [30]. This version is adapted to the current 

partial safety factor concept. Extended information about safety concepts can be found in Appendix B. 

4.2.1 Area of application  

The guidelines apply to the design, dimensioning, construction and testing of predominantly vertically 

loaded piled raft foundations. If the soil stratum below the foundation slab has a relatively low-stiffness 

(for instance in cases presenting soft, cohesive or organic soils), the guidelines do not apply. That is also 

the case for stratified ground with a stiffness ratio between the soil surface and the lowest layer of the 

structure greater than 10, or in cases with a piled raft coefficient αPR exceeding 0.9 [24].  

Piled raft foundations have to be assigned to the Geotechnical Category 3 (GC 3) according to ÖNORM 

EN 1997-1 [23]. Indeed, due to the various interactions between foundation elements among each other 

as well as interactions with the subsoil, CPRFs present a very complicated load-bearing and deformation 

behaviour.  

4.2.2 Calculation method requirements for PR design 

Alongside the pile group effect, the contact pressure resistance influences the load-bearing behaviour of 

foundation piles in a combined piled raft significantly. Therefore, a requirement for a safe design of a 

piled raft is the use of a reliable calculation method. A method is said to be reliable if it can depict 

realistically and trustworthy the interdependency between the structure, the soil and the foundations 

[24]. The choice of the model to describe the material behaviour of soil has to be justified. Moreover, 

soil investigation on site and in laboratory is required since a sufficient knowledge of deformation and 

strength properties of the subsoil is needed.  

To design a piled raft foundation, knowledge of the load-bearing behaviour of a single pile under similar 

ground conditions is also necessary. If no information of the external capacity of a single pile (defined 

in Chapter 2) under similar ground conditions is available, a pile test loading has to be performed 

following DIN 1054:1976 [13]. If no test loading is made, it is also possible to determine the external 



54 4 Design of combined piled raft foundation 

 

capacity of the corresponding pile using empirical values after DIN 4014:1990 [15] and DIN 4026:1975 

[16]. Requirements described in these codes have to be fulfilled before assigning the empirical values. 

The use of empirical values and its transferability to the planned CPRF have to be justified and proven 

[24]. The mathematical model used to design a piled raft has to be able to depict properly the shear 

action on the pile shaft as well as the compressive action on the pile base of the equivalent single pile.  

4.2.3 Ultimate Limit State - ULS  

The analysis of the Ultimate Limit State should eliminate the danger of damage to structures and human 

life. It aims at ensuring a sufficient load-bearing capacity and excludes any threat for humans. The 

verifications for the external and internal load-bearing capacity have to be performed to design a piled 

raft in ULS. Piled raft external and internal capacities are defined similarly to single piles (Section 2.1): 

internal capacity refers to the safety against piled raft single components’ failure (pile, slab…). External 

capacity refers to the analysis of the safety against failure of the ground surrounding the pile while 

interacting with foundation elements. 

4.2.3.1 External bearing capacity in ULS  

The two versions of the guidelines after Hanisch et al. (2002) [24] and after Katzenbach and Choudhury 

(2013) [30] differ slightly concerning the analysis of the external bearing capacity in ULS due to the 

introduction of the partial safety concept. The older approach is presented in Equation (4.4), whereas 

the new one is shown in Equation (4.6). The initial guideline of 2002 stipulates that a sufficient failure 

safety for the whole system is obtained under the condition 





m

j

k,tot,j,k RS
1

1  (4.4) 

 

 

The value of the global safety factor 𝜂 depends on the loading case (LC) after DIN 1054:1976  [13] 

Section 2.2 and has to be taken as follows: 
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R1,tot,k is calculated as the total resistance of a piled raft extracted from the calculated resistance-

settlement curve (RSC) under a two times greater action as the one initially applied. If the failure appears 

for a smaller action than the double applied action, R1,tot,k has to be set as the value of the resistance 

where the inflexion point of the RSC appears [24].  

The approach presented above may be considered as obsolete since 2008, date after which the old codes 

were no longer applicable. The new safety concept is extended in Katzenbach and Choudhury (2013) 

[30]. The analysis of the external bearing capacity in ULS can be conducted following Equation (4.6).  

 

η global safety factor,  

m total number of actions, 

Sk,j characteristic value of an action j and 

R1,tot,k characteristic value of the total resistance of a piled raft, ULS. 
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The characteristic value of the total resistance is calculated similarly as in the global safety concept: it 

is equal to the load at which the settlement of the CPRF begins to increase drastically on the load-

settlement curve [24].  

If no realistic computational model is available to calculate R1,tot,k, an alternative solution can be used in 

“simple cases”. For those cases, it is allowed to evaluate R1,tot,k by means of the characteristic value of 

the base resistance of the foundation raft constituting the CPRF. Criteria for the “simple case” are: 

 simple and uniform geometrical configuration of the CPRF (identical pile length and diameter, 

constant pile spacing and quadratic or round foundation raft), 

 homogenous subsoil (approximately constant stiffness of the subsoil between the layers), 

 central loads (concentrated in the centre of gravity) and 

 dynamic loads negligible. 

No proof of all single piles is needed, i.e. the analysis of the external bearing capacity of a CPRF is 

sufficient to prove the safety of the piles.  

4.2.3.2 Internal bearing capacity in ULS  

As far as the material of the construction elements of the CPRF is concerned (e.g. foundation piles or 

foundation slab), it has to be designed against failure following the codes relative to this material.  The 

analysis of the internal capacity has to be performed for every significant stressing condition. Following 

stressing conditions have to be analysed:  

 piles: compression with deflection and shearing, tension during construction stages, 

 slab: deflection, shearing, punching in the area of the load introduction and of the foundation 

piles. 

To calculate stress resultants, characteristic quantities of the action have to be distributed among the pile 

group and the slab according to the piled raft coefficient αPR. The verification is then provided using 

these actions after DIN 1045:1988 [12] or Eurocode 2 [17]. The more unfavourable calculation result is 

chosen. If no detailed analysis is carried out, the piles have to be reinforced to the minimum amount. 

The schematic concept of the proof for the ULS is shown in Figure 4.1. 

Ed design value of the effect of actions, 

EG,k characteristic value of the effect of a permanent action, 

EQ,k characteristic value of the effect of a variable action, 

γG  partial safety factor for a permanent action, 

γQ  partial safety factor for a variable action, 

γR partial safety factor for a resistance and 

R1,tot,k characteristic value of the total resistance of a piled raft, ULS. 
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Figure 4.1: Proof and safety concept in the ULS after [30]. 

4.2.4 Serviceability Limit State - SLS  

The analysis of the Serviceability Limit State guarantees the long-term usability of the construction. It 

should ensure its functional reliability and prevent loss of service. This analysis focuses on the 

deformation of the structure. Absolute settlements, as well as differential settlements, have to be 

analysed. Similarly to the ULS, external and internal load-bearing capacities have to be verified to 

design a piled raft in the SLS. 

4.2.4.1 External bearing capacity in SLS  

A sufficient failure safety is obtained under the condition 
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The parameter Cd is defined by the requirements of the planed piled raft or the influence of neighbouring 

structures. Limit values for the acceptable settlement s2 (or sSLS) and difference settlement ∆s2 have to 

be fixed depending on the sensibility of the structure with deformation and settlement. The effect of the 

action E2,d has to be determined under the onefold sum of the characteristic value of an action Sk,j. 

The calculation of the resistance property Cd on the example of the settlement difference is shown in 

Figure 4.2. The characteristic settlement for the SLS sSLS is read on the resistance-settlement curve of 

the piled raft and represents the allowed settlement of a structure. To consider the potential differential 

settlement between piles, the characteristic settlement has to be increased or reduced by a factor ∆sSLS. 

An estimation of ∆sSLS = 0.15 sSLS is given in Katzenbach et al. (2016) [31] and should be adopted if no 

further analyses are made.  

E2,d design value of the action effect for SLS, 

E2,k characteristic value of the action effect for SLS, 

Sk,j  characteristic value of an action j and 

Cd resistance property for SLS (settlement, crack width, etc.). 
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Figure 4.2: Determination of the expected differential settlement of a pile group [31]. 

4.2.4.2 Internal bearing capacity in SLS  

Following stressing conditions have to be verified: 

 piles: crack width limitation, 

 slab: crack width limitation, admissible deflection and settlement difference. 

The schematic concept of the proof for the SLS is shown in Figure 4.3. 

4.2.5 Piled raft monitoring  

The measurement-technology monitoring of a piled raft is an indispensable component of the partial 

safety concept (see Figure 4.4). It provides, during the construction phase and in the operating phase: 

 the verification of the mathematical model and calculation approaches, 

 an early recognisability of possible critical situations, 

 a verification of the calculated settlement forecasts and 

 the conservation of evidence. 

 

 

Figure 4.3: Proof and safety concept in the SLS [30]. 
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Figure 4.4: Monitoring of a CPRF, adapted from [31]. 

4.3 Adopted design approach  
The adopted design of CPRFs is divided into two main steps: analytical calculation of a pile group and 

numerical simulation of the raft. The analytical design of a pile group has been presented in Section 3.3. 

It covers the analysis of the load-bearing behaviour, which takes into consideration pile-soil and pile-

pile interactions. Raft-soil and pile-raft interactions have to be modelled to deliver a realist and 

trustworthy design approach.  

4.3.1 Modelling of the raft-soil interaction 

Various methods exist to model the distribution of the contact pressure of raft foundations, which 

constitutes the basis for the modelling of the raft-soil interaction. Following calculation procedures are 

applicable [31]: 

 distribution under rigid foundations according to Boussinesq (1885) [5], 

 stress trapeze method, 

 subgrade reaction modulus method, 

 stiffness modulus method and 

 numerical methods.  

These procedures are sorted from the simplest to the most complex and realistic approaches. The theory 

according to Boussinesq (1885) [5] is, for example, only applicable for simple cases since it only offers 

a rough approximation of the contact pressure distribution. Foundation borders should theoretically 

support infinitely high tensions. The stress trapeze method (see Figure 4.5 (a)) is also suitable for simple 

cases and small foundations. In this method, the considered stresses are assumed to be linearly 

distributed along the foundation. 
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Figure 4.5: Different models of raft-soil interaction after [32]. (a) Stress trapeze method (b) Subgrade 

reaction modulus method (c) Stiffness modulus method. 

More advanced methods are the subgrade reaction modulus and the stiffness modulus method (see 

Figure 4.5 (b) and (c)), which are usually sufficient for the analysis. As far as the subgrade reaction 

modulus method is concerned, the subsoil is seen as a system of independent springs, where a uniform 

load causes a uniform settlement of the structure [31]. The stiffness modulus method models the subsoil 

as an “elastic half-space with a system of connected springs” [31]. A uniform load causes a settlement 

trough. The methods presented so far are only approximate solutions. On the contrary, the most precise 

procedure is the numerical approach since it depicts more realistically the rigidity of the foundation as 

well as the non-linear behaviour of the subsoil.  

The method chosen to analyse the raft-soil interaction in the present study is the subgrade reaction 

modulus method. This method is widely applied and offers the possibility to compare the obtained 

results with tested designs from the literature. Moreover, the limited complexity of this method makes 

it easier to implement than the stiffness modulus method.  

The subgrade reaction modulus of the slab ki can be calculated using numerical simulation. This is, for 

example, the case with the additional module RF-SOILIN of the software RFEM, employed to design a 

shallow foundation using the subgrade reaction modulus method. Another possibility to access the 

subgrade reaction modulus of a CPRF is by means of empirical tables. These values are based on the 

results of equivalent shallow foundations, which are combined with determined factors resulting of the 

monitoring of existing CPRFs [24]. 

4.3.2 System rigidity 

The contact pressure under a foundation slab mostly depends on the relation between the rigidity of the 

structure and the rigidity of the subsoil. To proceed in a realistic analysis of the contact pressure, it is 

necessary to investigate the rigidity of the whole system. The knowledge of the distribution of the 

contact pressure is also conditioning the determination of internal forces such as deformations and 

bending moments. The system rigidity K of a rectangular spread foundation according to Kany (1974) 

[29] is expressed in Equation (4.9), derived from the general definition of this parameter presented in 

Equation (4.8). This parameter offers a value for the appreciation of the raft-soil interaction. 

stiffness subsoil

stiffness structure
K  (4.8) 

(b) 

(c) 

(a) 
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For a circular shallow foundation, the length of the foundation l adopted for rectangular geometries is 

replaced by the diameter of the circular foundation in Equation (4.9). 

Different systems will be compared in Chapter 6. It is necessary to use a standard parameter to lead 

these comparisons. Kany (1974) [29] introduced limit values of the system rigidity K to differentiate 

between limp and rigid foundations. These values are presented in Table 4.2. 

Table 4.2: Type of foundation according to the system rigidity. Adapted from [31]. 

 

 

 

 

For limp foundations, the contact pressure presents the same distribution as the load applied on the 

structure, as illustrated in Figure 4.6 (a). On the contrary, for rigid foundations, higher stresses appear 

on the edge of the structure. A constant loading of the foundation leads to a non-linear distribution of 

the contact pressure (Figure 4.6 (b)).  

Depending on the thickness of the foundation, and thus on its rigidity, shallow foundations can be 

conceived with or without reinforcement, even if reinforced foundations should be favoured due to their 

greater robustness. The thickness of the reinforced concrete slab depends on the bending moments as 

well as on the punching (local failure due to punctual loading). A thicker slab may permit to avoid the 

introduction of shear reinforcement. This is why a difficult choice has often to be made: decrease the 

volume of the foundation to save costs on concrete utilisation but introduce other solutions such as 

reinforcement, or increase the volume of the foundation and save reinforcement costs.  

Figure 4.6: Contact pressure distribution for limp (a) and rigid (b) shallow foundations after [31]. 

EPR modulus of elasticity of the slab, 

Es stiffness modulus of the subsoil, 

h height of the shallow foundation and 

l length of the shallow foundation. 

System rigidity K Type of foundation 

10.K   Rigid foundation 

0.1<0010 K.   Intermediate area 

0.001<K  Limp foundation 

(a) (b) 
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4.3.3 Workflow 

To compensate the main disadvantage of analytic methods mentioned in Section 4.1 – some interactions 

are disregarded in pure analytic methods –, a hybrid calculation method making use of a numerical 

calculation of the slab is carried out. The output parameters of the analytical calculation, i.e. the spring 

stiffness Ci of each pile, become the input parameters for the numerical calculation. 

A workflow of the adopted hybrid design approach is presented in Figure 4.7. The main input parameters 

of the analytical method are the total load Fi, the pile length Li, the pile radius ri and the pile spacing dx, 

dy in two dimensions. Given those elements and the geotechnical parameters, the algorithm calculates 

the settlement and the resistance of the piles. The spring stiffness of each pile Ci  can thus be determined. 

In combination with the subgrade reaction modulus of the slab ki, the CPRF is modelled in RFEM. The 

resistances Ri are modified due to the influence of the foundation slab, which also transfers loads into 

the ground. Moreover, it is made possible to access the piled raft coefficient αPR (see Equation (2.10)), 

which indicates the part of the total action transferred by the piles.  

The loads carried by the piles, calculated with RFEM, become the input loads of the analytical 

calculation of a pile group in Python. This load is lower than the initial one because of the influence of 

the slab, which transfers a part of the load directly into the ground. Using this updated load distribution, 

the spring stiffness of each pile is calculated anew and transmitted to RFEM. 

The introduction of an iterative procedure between Python and RFEM is necessary since the first 

evaluation alone does not correctly depict the pile-raft interaction. In fact, only the influence of the pile 

group is considered after the first iteration using the analytical calculation in Python. The piled raft 

coefficient αPR equals one since only the pile group is supporting loads. Moreover, the spring stiffness 

of each pile is low due to the high settlement occurring by neglecting the influence of the raft. If the 

spring stiffness of each pile is small, a large part of the load is supported by the slab during the next 

RFEM calculation. Thus, for the second iteration, the value of αPR is at its lowest (see Figure 4.8).  

Figure 4.7: Workflow of the adopted hybrid design approach of CPRFs. 



62 4 Design of combined piled raft foundation 

 

 

Figure 4.8: Evolution of the piled raft coefficient during the iterative procedure (design of CPRF 

guideline example 1 version 3). 

Since a large part of the load is carried by the slab, only the limited amount of the loads carried by the 

piles are transferred to Python for the next iteration step. Following a similar scheme, this leads to higher 

spring stiffness due to the lower settlements. If spring stiffnesses of the piles are more significant, the 

part borne by the slab is smaller, which means that the piled raft coefficient αPR increases in comparison 

with the preceding iteration. The iteration steps are repeated until a convergence is found. To get a more 

comprehensive overview of the explained iteration process, the successive values of the piled raft 

coefficient αPR obtained during the iteration procedure for the design of the first example of the CPRF 

guideline version 3 are shown in Figure 4.8. This calculation is detailed in Section 5.2. 

The optimisation process, appearing on the workflow Figure 4.7 if a convergence value is found, is 

developed in Chapter 6. New, optimised values of pile length, pile diameter and pile spacing are 

calculated. These values are used to determine the final spring stiffness of each pile. The final design of 

the CPRF is then obtained after the final simulation with RFEM.     

4.4 Limitations and drawbacks 
A major limitation of this design approach is the fact that the transfer of the calculated loads and spring 

stiffnesses is not automated. The interface between RFEM and other software using the additional 

module RF-COM is only accessible with given programming languages such as Visual Basic, Visual 

Basic for Applications (VBA) and Visual C++. The direct communication between RFEM and Python 

is not currently possible.    

It should also be noted that the calculation of the subgrade reaction modulus of the slab is not always 

straightforward. The values obtained using empirical approaches are often valid for a given soil or a 

defined geometry. Therefore, these values are not directly transferable to different projects. Moreover, 

the subgrade reaction modulus method disregards the influence of surrounding contact pressures.  

To evaluate the efficiency and the reliability of the developed solution, a comparison with tested 

examples coming from the literature is carried out.
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5 Case studies on pile groups and piled raft 

foundations 

To compare and validate the results of the developed design approach, a case study has been carried out. 

It compares several typical configurations of pile groups and piled raft foundations with the state of the 

art. The CPRF guideline offers a wide range of examples to compare the different types of foundations. 

Four different variants are presented to design foundations of a multi-span bridge crossing a valley 

(problem 1 in the CPRF guideline, Hanisch et al. (2002) [24]). The first variant is a simple shallow 

foundation, the second one is a pile group made of twelve piles embedded in talus material, the third 

one presents the design of a CPRF with six piles and the last one is a pile group of six piles embedded 

in the rock. The focus is on the comparison of the obtained results with the second and third examples 

mentioned above. The geometrical and soil parameters adopted for those studies are presented Table 5.1 

and Table 5.2 respectively.    

Table 5.1: Geometrical parameters of different pile groups for the benchmark study on pile groups. 

 

Table 5.2: Soil parameters of different standard soils for the benchmark study on pile groups. 

 

Pile group parameters Guidelines 1.2 and 1.3 End bearing Skin friction 

Pile diameter D [m] 1.5 0.9 0.9 

Pile length L [m] 15 9 9 

Load F [MN] 30 3 10 / 15 

Pile layers 8 6 6 

Total number of layers 9 9 9 

Soil parameters 
Well graded sand 

(guidelines 1.2 and 1.3) 
Uniform fine sand Clay 

Poisson’s ratio ν [-] 0.25 0.3 0.45 

Friction angle φ [°] 25 35 18 

Specific weight of the soil γ' 

[kN/m3] 
10 11 7 

Cohesion c  [kN/m] 5 0 5 

we  [-] 0.55 0.6 110 

ve [-] 400 300 1 

Secant modulus, pile top [MPa] 10 7 1 

Secant modulus, pile base [MPa] 48.1 44.6 6.2 
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5.1 Pile groups 
The case study on pile groups is carried out using the second example of the CPRF guideline (referred 

to in this chapter as “Guideline 1.2”) as well as other standard case studies, such as pile groups 

predominantly making use of the end bearing or the skin friction to transfer loads to the ground. The 

analytical design approach used for the design of pile groups is presented in Section 3.3. 

5.1.1 Guideline 1.2   

The second version of the first problem presents a pile group made of twelve piles constantly spaced 

whose parameters are summarised in Figure 5.1. This 34 pile group is subject to a central load of 30 

MN. The position and numbering of the piles are shown in Figure 5.2 with 𝑎 representing the pile 

spacing and 𝐷 the diameter of the piles. As mentioned in Hanisch et al. (2002) [24], the admissible 

settlement of the bridge foundation is fixed to sadm = 4 cm considering the requirements of the 

superstructure. Using the algorithm developed in Python, an analytical calculation is carried out. The 

resistance-settlement curve (RSC) can be displayed for every pile. As discussed in Section 2.1, the total 

resistance of a pile Rpile,k(s) can be divided into two components, the resistance of the shaft Rs,k(s) and 

the resistance of the base Rb,k(s). These components are represented separately to get a better overview 

of the load transmission mechanism. The pile group has a symmetrical geometry and the structure is 

centrally loaded, one can therefore limit the study to three representative piles whose RSCs are shown 

in Figure 5.3, 5.4 and 5.5: one inner pile (pile number 5), one edge pile (pile number 4) and one corner 

pile (pile number 3). The resistance-settlement curve of every pile is therefore known.  

Figure 5.1: Illustration of the major parameters used in the benchmark “Guideline 1.2”.  

Figure 5.2: Position of the piles for the benchmark “Guideline 1.2” with 𝑎 pile spacing and 𝐷 pile 

diameter. 
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The results obtained using the analytical calculation implemented in Python are compared with the 

reference solution from Hanisch et al. (2002) [24], obtained by means of numerical simulation (FEM 

model).  

One observes that the shapes of the RSCs are similar in both calculation methods within an initial area. 

It should be noted that the shape of the RSC for the edge pile is coinciding with the shape of the corner 

pile to a large extent. However, the area in which the flat branch of the RSC begins to show a steeply 

sloping branch appears for a higher settlement in the case of the edge pile than for the corner pile 

(compare Figure 5.3 and Figure 5.4). In other words, the corner pile presents signs of failure for a lower 

settlement than the edge pile. This phenomenon also occurs in the numerical calculation.  

The transition area of the pile shaft resistance appears for a larger settlement in the numerical calculation 

than in the analytical calculation. This could be explained by an oversimplified model of the stress state 

in the subsoil implemented in the analytical approach [47]. Another factor influencing the behaviour of 

the pile shaft resistance is the yield criterion of the soil. The difference of shaft resistance may also be 

because the Modified Cap Model of Drucker-Prager adopted in Hanisch et al. (2002) [24] exhibits a 

stiffer soil behaviour than the Mohr-Coulomb failure criterion used in the developed calculation [47]. 

This appearance is most striking when it comes to inner piles (Figure 5.5), whereas corner and edge 

piles only display limited discrepancies between the two models 

The pile base resistance presents approximately the same curve for the different piles of the group, for 

the analytical as well as for the numerical approaches. The values obtained with both methods largely 

correspond to one another. The values obtained analytically are slightly smaller due to the depth-

dependant stiffness modulus of soil implemented in the calculation. Moreover, when a pile section fails, 

this results in the occurrence of an inflexion point in the RSC of the base resistance (see for example 

Figure 5.3, orange curve) and a steeper slope appears. If one section breaks down, other sections are 

indeed loaded more strongly to compensate the lack of bearing capacity induced by the failed part since 

remaining parts still have bearing reserves. This behaviour does not appear in the FEM approach because 

the failure criterion is different. Here, the analytical calculation offers a more realistic modelling of the 

failure mechanism. 

 

Figure 5.3: Comparison of the RSCs for the corner pile obtained with an analytical calculation and 

with a numerical simulation (reference design from Hanisch et al. (2002) [24]). 

FEM Semi-analytical  
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 Figure 5.4:  Comparison of the RSCs for the edge pile obtained with an analytical calculation and 

with a numerical simulation (reference solution from Hanisch et al. (2002) [24]). 

 

Figure 5.5: Comparison of the RSCs for the inner pile obtained with an analytical calculation and 

with a numerical simulation (reference solution from Hanisch et al. (2002) [24]). 

The inner pile Figure 5.5 does not display coinciding shapes between the two models because of the 

influence of the pile shaft resistance.  For small settlements, the RSC of the inner pile resistance exhibits 

a steep slope whereas RSCs of other piles are quite moderate. After the inflexion point, this behaviour 

is inverted; the slope is flatter regarding the inner pile. The reference solution of Hanisch et al. (2002) 

[24] does not contain an inflexion point – the slope is relatively constant with an increasing settlement.  

The results of the settlement and the resistance of each pile for both design approaches are presented in 

Figure 5.6. A reason that could explain the different load-bearing behaviour of the piles for a similar 

settlement is the different mobilisation of the skin friction occurring in each pile. Indeed, the inner piles 

are “protected” by the outer piles, preventing the skin friction from being activated. This is mostly the 

FEM Semi-analytical  

FEM Semi-analytical  
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case for the numerical simulation, where the outer resistances are two to three times higher than the 

inner resistances.  

Contrary to the FEM calculation, pile resistances are distributed in a fairly uniform way when following 

the analytical method, even if the tendency is maintained. This difference can be explained by the impact 

of the group effect, which is more significant for the analytical approach and counterbalances the 

shielding of the outer piles over the inner piles. Indeed, the inner piles are directly surrounded by more 

piles than the edge or corner piles, leading to an increased group effect. The differences between the two 

models are highlighted in Table 5.3. 

Moreover, the analytical calculation provides bigger settlements of the foundation regarding the 

reference solution. As briefly mentioned above, those differences might lie in the fact that the applied 

failure criteria are different (Mohr-Coulomb for the analytical calculation and Drucker-Prager for the 

numerical calculation). However, it should be mentioned that EC7 stipulates that the use of the Mohr-

Coulomb’s failure criterion is also admitted. In addition, the stiffness of the soil differs, the developed 

analytical approach adopts an increasing stiffness modulus with the depth whereas the numerical 

calculation simplifies the model with a constant stiffness modulus of soil. Finally, one could note that 

the FEM model takes the influence of the pile cap into account, which transfer slightly less than 10% of 

the total load directly into the ground according to Hanisch et al. (2002) [24]. This is not the case for 

the semi-analytical calculation where the pile cap is not involved in the load transfer mechanism.  

The coefficient of earth pressure at rest K0 also differs between the two models. The developed semi-

analytical model adopts the simplified approach conceived by Jaky (1944) [28] shown Equation (5.1) 

where φ is the friction angle. With the given friction angle of 25°, the coefficient of earth pressure at 

rest amounts to 0.42, while the 3D FEM model uses a constant coefficient of 0.50 as presented in 

Hanisch et al. (2002) [24]. 

)(K sin10   (5.1) 

 

Moreover, a limitation of the maximal stress is applied in the 3D FEM model. The principal stresses are 

limited by a cap with an associated flow rule in the hydrostatic stress range. This is, however, not 

decisive in the developed design approach, as the failure criterion is only applied along the shaft and for 

the pile base.  

The proof of external serviceability is adduced for both design approaches as the settlement of 3.6 cm 

calculated with the analytical calculation as well as the settlement of 3.0 cm obtained with the reference 

solution are lower than the admissible settlement of 4.0 cm. 

Table 5.3: Highlights of the differences between the two models. 

 

Parameters 
Developed semi-

analytical model 

3D FEM reference model [24] 

Failure criterion Mohr-Coulomb Drucker-Prager 

Maximal stress unlimited limited (Cap Model) 

Dilatancy Ψ considered not considered 

Earth pressure at rest K0 after Jaky (1944) [28]  direct field tests 

Stiffness modulus Es depth-dependant constant 
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 Figure 5.6: Comparison of the results obtained for the benchmark “Guideline 1.2” (a) analytical 

calculation (b) FEM model from Hanisch et al. (2002) [24]. Pile resistance inside the piles (MN), 

settlement under the piles (cm). 

5.1.2 End bearing pile and skin friction pile 

As mentioned in Section 2.1, resistance-settlement curves generally present shapes specific to the 

resistance predominantly used by a pile to transfer loads to the ground. This is why the two major types 

of piles are compared in this subchapter: the “skin friction” piles and the “end-bearing” piles. The 

geometrical as well as geotechnical parameters used for this study are referred to in Table 5.1 and Table 

5.2. The end bearing pile is presented in Figure 5.8 and the skin friction pile in Figure 5.7. To model the 

end bearing problem, the upper part of the pile is embedded in a soil with a poor bearing capacity such 

as clay, whereas the lower part of the pile is embedded in soil with a superior bearing strata such as a 

uniform fine sand (see Figure 5.8). This modelling of the subsoil is simply inverted to obtain a skin 

friction problem, where a uniform fine sand is present above clay strata (Figure 5.7).    

According to Kempfert et al. (2012) [34], one should observe a pronounced curvature of the load 

displacement curve for a pile subject to shaft resistance (skin friction pile) since the limit value of the 

skin friction is reached at relatively small pile displacements. For end-bearing piles, however, RSCs 

present a less pronounced curvature because the base resistance increases up to very large settlements. 

Those affirmations are confirmed by the analytical approach developed in this thesis. Indeed, the 

modification of curvature is smoother after the inflexion point of the end bearing pile Figure 5.9 than 

after this of the skin friction pile Figure 5.10. Moreover, the remarks made on the RSCs for the 

benchmark “Guideline 1.2” are still confirmed for these two problems. 

Figure 5.7: Illustration of the major parameters of the benchmark “skin friction pile”. 

(a) (b) 
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Figure 5.8: Illustration of the major parameters of the benchmark “end bearing pile”. 

In regard to the end bearing problem Figure 5.9, it is remarkable that the resistance of the inner pile (pile 

5) is almost only constituted of the base resistance, the skin friction having a limited influence. That is 

why the inner pile resistance displayed in Table 5.4 is approximately three times lower than the 

resistance of the surrounding piles. Here, the phenomenon of shielding of the inner pile by the outer 

piles mentioned by Hanisch et al. (2002) [24] is clearly visible: the skin friction is not activated at low 

settlements. 

Such differences are also visible in the skin friction problem in Figure 5.10. Indeed, one observes 

substantial differences between the pile resistances for a small loading (10 MN), whereas for a more 

significant load (15 MN), the pile resistances are more or less constantly distributed (Table 5.4). When 

the applied load becomes too high, the protecting effect of the outer piles is arguably not sufficient 

anymore; instead, the skin friction is activated for every pile.  

Figure 5.9: Position of the end-bearing piles and load-settlement curve for the corner pile (pile 

number 3), edge pile (number 4) and inner pile (number 5). 
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Figure 5.10: Position of the skin friction piles and load-settlement curve for the corner pile (3, top 

right), edge pile (4, bottom left) and inner pile (5, bottom right). Total load of 15 MN. 

Table 5.4: Results obtained for the benchmark end bearing and skin friction pile. 

 

 

 

 

 

 

 

 

Finally, Katzenbach et al. (2016) [31] mention that for a pile group predominantly making use of the 

base pressure to transfer loads to the ground, the foundation can be modelled and calculated analogically 

to a deep raft foundation. For a skin friction pile group, however, the determination of the settlement is 

much more complex and the recourse to a numerical calculation should be considered.  

5.2 Combined piled raft foundation  
The case study on combined piled raft foundation is carried out using the third example of the CPRF 

guideline example 1 (referred to in this chapter as “Guideline 1.3”). The geometrical and soil parameters 

adopted for the example “Guideline 1.3” are the same as those used for the example “Guideline 1.2” 

and are referenced in Table 5.1 and Table 5.2. Only the number of piles is modified, i.e. twelve piles for 

the pile group instead of six piles for the combined piled raft foundation (see Figure 5.11). The 

contribution of the slab is now taken into account in the adopted model. As mentioned in Section 5.1.1 

the admissible settlement of the bridge foundation is fixed to sadm = 4 cm considering the requirements 

of the superstructure.   

 End bearing Skin friction 

3 MN 10 MN 15 MN 

Settlement [cm] 4.56 1.6 3.59 

Inner pile [MN] 0.17 0.51 1.57 

Edge pile [MN] 0.33 1.03 1.65 

Corner pile [MN] 0.37 1.34 1.71 
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Figure 5.11: Position of the piles for the benchmark “Guideline 1.3”. 

The combined piled raft is modelled as presented in Section 4.3, combining a semi-analytical calculation 

of the pile group with a numerical calculation of the slab (hybrid method). This design approach is 

compared with the FEM model of Hanisch et al. (2002) [24] presented in the CPRF Guideline.  

The adopted subgrade reaction modulus is derived from a numerical simulation conceived by Hanisch 

et al. (2002) [24]. To obtain a reliable comparison, both models use the same subgrade reaction modulus 

calculated for a rigid slab. However, the spring stiffness for each pile as well as the yield criterion 

adopted are different.  

Table 5.5 contains empirical values of the ratio ks, CPRF/ks, shallow between the subgrade reaction modulus 

of the CPRF and the equivalent shallow foundation, which permits to calculate the subgrade reaction 

modulus of the CPRF. In Table 5.5, 𝑎 represents the pile spacing and D the diameter of the piles. Those 

ratios are valid for the pre-dimensioning of CPRF in stiff cohesive soils and they mostly depends on the 

rigidity of the raft and on the stiffness of the subsoil. Upper limit values are valid for flexible rafts, while 

lower limit values are applicable to rigid rafts.  

Combining those empirical values and the subgrade reaction modulus of the equivalent shallow 

foundation calculated in Hanisch et al. (2002) [24], one obtains the subgrade reaction modulus of the 

rigid CPRF, which is presented Figure 5.12. Results are graded from a lower modulus in the inner area 

to a higher modulus in the outer part.  

Given that for CPRFs a part of the action is applied directly near the surface of the soil strata, the 

expected settlement should tend to exceed the one of 3.0 cm obtained with a pile group in the “Guideline 

1.2”, as explained in Hanisch et al. (2002) [24].  

Table 5.5: Empirical values for the determination of the subgrade reaction modulus under a CPRF in 

cohesive soils. Adapted from [24]. 

 

  

 

 

 

 Subgrade reaction modulus ratio 

ks, CPRF/ks, shallow 

Pile axis spacing Inner area Border area 

a/D = 3.0 0.1 - 0.2 0.8 - 0.9 

a/D=6.0 0.2 - 0.7 0.8 - 0.9 



72 5 Case studies on pile groups and piled raft foundations 

 

Figure 5.12: Subgrade reaction modulus for the CPRF of the “Guideline 1.3” according to [24].  

The resistance-settlement curves are obtained with the help of the Python script, where the input loads 

are derived using the convergence procedure described in Section 4.3. Those input loads are presented 

in Table 5.6. The modification of the piled raft coefficient occurring during the process is shown in 

Figure 4.8. The remaining part of the initial load of 30 MN is directly carried out by the foundation slab.  

Resistance-settlement curves for the corner pile and for the edge pile are shown in Figure 5.13 and 

Figure 5.14. Both are compared with the reference solution. It can be observed that the general shapes 

of the RSCs coincide with the reference solution. However, the area in which the flat branch of the RSC 

begins to sink into a steeply sloping branch appears, in the case of the numerical simulation, for a higher 

settlement than with the hybrid approach (around 4 cm for the numerical simulation in comparison with 

1.5 to 2 cm for the hybrid approach).  

It can also be noted that, similarly to pile groups, the transition area begins for a lower settlement for the 

corner pile than for the edge pile. The corner pile presents signs of failure before the edge pile. This 

behaviour also occurs in the case of the numerical calculation, but for a greater settlement. At equivalent 

settlements, the CPRF obtained by numerical simulation can thus carry higher loads than the hybrid 

design. The results of the simulation are presented in Figure 5.15.  

Table 5.6: Input parameters for the determination of the resistance-settlement curves obtained with the 

convergence procedure. 

 

 

 

 

 Load [kN] 

Corner pile (1,2,5,6) 3447 

Edge pile (3,4) 3393 

Total load applied 20574 
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Figure 5.13: Comparison of the RSCs for the corner pile obtained with the developed design approach 

and with a numerical simulation (reference solution from Hanisch et al. (2002) [24]). 

Figure 5.14: Comparison of the RSCs for the edge pile obtained with the developed design approach 

and with a numerical simulation (reference solution from Hanisch et al. (2002) [24]). 

 

FEM Semi-analytical  

FEM Semi-analytical  
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Figure 5.15: Comparison of the results for the benchmark “Guideline 1.3” (a) developed design 

approach (b) FEM model from Hanisch et al. (2002) [24]. Pile resistance inside the piles (MN), 

settlement under the piles (cm). 

The final spring stiffness for the corner pile amounts to 49.4 MN/m and, for the edge pile, to 48.6 MN/m. 

The final design of the CPRF is finally obtained with the help of RFEM in Figure 5.16, providing 

detailed results of the semi-analytical calculation Figure 5.15 (a). 

Given that a larger part of the total load is carried by the slab in the hybrid calculation (see Figure 5.17 

comparing the piled raft coefficient of the two different approaches), the obtained pile resistances are 

expectedly smaller. However, the settlements are almost twice as high in the hybrid method as in the 

reference solution. This difference can be explained with the same arguments than those used for the 

pile group design, which were highlighted in Table 5.3. The introduction of a more complex constitutive 

equation of soil in the semi-analytical calculation such as the Hardening Soil Model could improve the 

quality of the results.  

Figure 5.16: Final calculation in RFEM using the final spring stiffness calculating with a semi-

analytical approach. 

(b) (a) 
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Figure 5.17: Comparison of the piled-raft coefficient 𝛼𝑃𝑅. 

To better compare the two models, one finally calculates their piled raft coefficients. According to 

Hanisch et al. (2002) [24], CPRFs with a coefficient αPR between 0.3 and 0.9 have been put into practice. 

Related to technical and economic aspects, a CPRF coefficient αPR CPRF between 0.5 and 0.7 can be 

considered as ideal [31]. Those limit values are represented in Figure 5.17 together with the piled raft 

coefficients of the two approaches. It can be said that the developed approach offers an amelioration of 

the piled raft coefficient, but, at the same time, increases the settlement.  

The settlement calculated with the design approach developed in this thesis lies above the admissible 

value of the settlement sadm = 4 cm, whereas this value is not exceeded in the reference solution. The 

foundation of the bridge pillar as CPRF with the given geometrical parameters designed following the 

developed method is therefore not possible. Further optimisation of these parameters is necessary.  

In a nutshell, the analytical approach for the design of pile groups 3.3 provides satisfactory results and 

a good approximation of the numerical results for edge and corner piles. However, the pile shaft 

resistance of the inner pile presents discrepancies with the numerical calculation due to the influence of 

the group effect in the semi-analytical calculation. The hybrid method presented in 4.3 enables to 

optimise the piled raft coefficient but simultaneously increases the settlement, which can lead to a 

problem for the design of CPRF. 

To reduce costs while designing a safe structure, it is necessary to optimise the design of the foundations. 

An optimisation method applicable to pile groups and CPRFs is therefore proposed in the next chapter 

of this thesis.
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6 Optimisation of pile groups and piled raft 

foundations 

6.1 Optimisation method 

6.1.1 Problem 

Optimisation procedures are sorted into two main groups of problems: those with single objective and those with 

multiple objectives. A general mathematical problem of optimisation is described as follows:  

Find:  boundaryupper  boundary,lower  Ax   

To minimise: (x)f ℝ𝑛𝑜𝑏𝑗 

Subject to:  0)x(ce   

And   0)x(ci   

where x is called decision vector or chromosome, ce ∈ ℝ𝑛𝑒𝑐 represents the equality constraints (with nec 

the number of equality constraints), ci ∈ ℝ𝑛𝑖𝑐 the inequality constraints (with nic the number of inequality 

constraints), A is the box-bounds and nobj is the number of objectives to minimise. Such a problem is 

expressed in various other forms, for instance:  

 )x(fmin ℝ𝑛𝑜𝑏𝑗 00  )x(c,)x(c,Ax ie  (6.1) 

 

In most cases, the problem of optimisation revolves around minimisation, but sometimes optimisation 

requires maximisation. In the latter case, one expresses the maximisation problem as an equivalent of 

the minimisation problem as follows:   

  AxAx )x(f)x(f   minmax  (6.2) 

 

In this context, “equivalent” means here that the solutions are the same and that the optimal values are 

of opposite sign. An optimisation method can be used for both minimisation and maximisation problems.  

As mentioned in Chase et al. (2009) [6], there is rarely a single optimal solution of a multi-objective 

problem if the objectives conflict. That is often the case for applied engineering projects, where the best 

performance at the lowest price is sought: improving the performance often leads to increasing costs. In 

this case, a multi-objective optimisation should be performed, commonly called Pareto optimisation, 

providing multiple solutions representing a trade-off between the objectives. Further details are to be 

found in Section 6.1.3 regarding, for example, the non-dominated sorting in multi-objective 

optimisation. 

To benchmark the performance of multi-objective Pareto optimisation methods, special problems, or 

test functions, were created containing some obstacles or difficulties in order to converge to the Pareto 

https://esa.github.io/pagmo2/docs/python/tutorials/using_problem.html
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front. This is the case of the ZDT family of functions presented in Zitzler et al. (2000) [54], named after 

its authors Zitzler, Deb and Thiele, which is conceived for two-objective problems.  

The first ZDT function (box constrained continuous problem in 𝑛 dimensions, with n > 1) is used to test 

the developed Python scripts. The first ZDT function is expressed as follows:  
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(6.3) 

 

It has been decided to use this test function in two dimensions, g is then simply expressed as g(x) = 

1+4.5 x2. 

The Pareto optimal front is well known analytically and formed for g(x) = 1 [54]. This enables to study 

precisely the convergence of the solution to the Pareto front precisely. A metric is for example defined 

and introduced by Izzo and Biscani (2017) [27]. This convergence metric allows measuring a “distance” 

of a population from the analytical Pareto front (more precisely the average distance of each individual 

of the input population). A distance of zero indicates that the optimal front is reached. 

6.1.2 Population 

A population is a storage for candidate solutions to some problem, sometimes called individuals. A 

population contains a problem and a number of decision vectors together with their fitness vectors. The 

fitness function determines the quality of the solution, that is to say their concordance with the objective 

function. 

The best individual that has ever been part of a population is called “champion” and is not necessarily 

currently part of the population. The champion can only be extracted in single objective problems; in 

multi-objective problems, the notion of solution is better expressed using non-dominated fronts (see the 

following section).  

6.1.3 Algorithm 

A large number of algorithms were created to solve the general problem presented above. Sorting them 

is complex due to the considerable number of parameters defining each algorithm. Algorithms can be 

deterministic or stochastic. A deterministic algorithm is an algorithm which, given an input, will always 

produce the same output and execute the same sequence. On the contrary, stochastic optimisation 

methods are optimisation methods that generate and use random variables. 

6.1.3.1 Iterative methods 

Iterative methods differ according to whether they evaluate Hessians, gradients, or only function values. 

Evaluating Hessians and gradients improves the convergence but at the same time increases the 

computational cost of each iteration. The well-known Newton’s method approximate, for example, 

Hessians using finite differences whereas the Gradient descent’s method uses gradient evaluations.  

These methods present some disadvantages, for example the fact that the objective function must be 

smooth enough to be differentiable, or even two times differentiable for the Hessian matrix. In civil 

engineering, the mathematical properties of the objective functions are often not well-known and it may 

even be difficult to express the objectives explicitly. Furthermore, initial conditions must be given to 

https://esa.github.io/pagmo2/docs/python/tutorials/using_population.html
https://esa.github.io/pagmo2/docs/python/py_population.html#pygmo.population
https://esa.github.io/pagmo2/docs/python/py_problem.html#pygmo.problem
https://esa.github.io/pagmo2/docs/python/py_problem.html#pygmo.problem
https://esa.github.io/pagmo2/docs/python/tutorials/using_algorithm.html
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Optimization_(mathematics)
https://en.wikipedia.org/wiki/Iterative_method
https://en.wikipedia.org/wiki/Random_variable
https://en.wikipedia.org/wiki/Subroutine
https://en.wikipedia.org/wiki/Hessian_matrix
https://en.wikipedia.org/wiki/Smooth_function
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initiate the iterative process, and this choice can drastically influence the result. Moreover, the 

convergence is slow and can lead to a suboptimal solution. That is why other algorithms were developed.  

6.1.3.2 Combinatorial optimisation 

A combinatorial optimisation consists of finding an optimal object from a finite set of objects. It 

concerns problems where at least a part of the box bound contains discrete values. They are often used 

in the Constraint Composite Graph theory or in the Game theory.  

6.1.3.3 Heuristics and metaheuristics 

To solve more complex problems and to avoid the disadvantages of the iteration methods mentioned 

above, techniques were created to determine decision vectors that are not strictly optimal, but that give 

a good approximation of the minima or maxima, and which converge in a reasonable time. This enables 

to solve problems that would otherwise require too much time. A huge advantage of these methods is 

that they make few or no assumptions about the problem being optimised and are able to search very 

large spaces of candidate solutions. Heuristic algorithms are stochastic as they need random parameters 

to evolve.  

Heuristics algorithms will be used to optimise CPRFs, and in particular some genetic algorithms, 

themselves member of the family of the evolutionary algorithms. An evolutionary algorithm uses the 

concept of biological evolution, based on the notions of variation (recombination, reproduction, 

mutation, etc.) and selection. In each generation, or iteration of the algorithm, new candidate solutions 

are created by a variation of the individuals of the former generation. Then, some individuals are selected 

to become parents in the next generation based on their fitness. If the decision vectors with the best 

fitness are systematically chosen, the process is said to be elitist and leads to a quicker convergence. 

Acting so, one takes the risk to push aside bad decision vectors that could have produced extremely 

good ones by reproduction in the next generations.  

As mentioned above, genetic algorithms are part of the larger class of the evolutionary algorithms. Their 

general process is summarised in Figure 6.1. 

Figure 6.1: Simplified process of a genetic algorithm. 

https://en.wikipedia.org/wiki/Finite_set
https://en.wikipedia.org/wiki/Evolutionary_algorithm
https://en.wikipedia.org/wiki/Biological_evolution
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However, such algorithms do not guarantee an optimal solution is ever found. It is only established that 

none of the obtained solutions dominates the others. The notion of non-dominated sorting is a common 

technique to sort designs in a multi-objective optimisation study. As explained in Chase et al. (2009) 

[6], one individual dominates another if it is better regarding one objective and not worse regarding all 

other objectives.  

Figure 6.2 summarises the major types of algorithm available to solve single and multi-objectives 

problems. 

 

Figure 6.2: Simplified sorting of the main families of algorithms.  

6.1.3.4 Some examples 

Algorithms were chosen within the pygmo library to study the CPRFs because of their robustness and 

the large documentation available. They constitute a solid benchmark to test against.  

The Non-dominated Sorting Genetic Algorithm-II (NSGA-II) is a solid and popular multi-objective 

algorithm. As indicated in its name, it is part of the genetic algorithms whose general process is shown 

in Figure 6.1. The speciality of the NSGA-II is the use of crowding distance comparison and non-

dominated selection to select the next generation that will be evaluated (see Figure 6.3 and Deb et al. 

(2002) [11]). The total population Rt (of size 2n) formed by Pt and Qt, is sorted using the non-dominating 

method. The population contained in the best front set F1 is selected first to create the new population 

Pt+1. In the example in Figure 6.3, the last set F3 would lead to an oversized population Pt+1. We thus 

sort the solutions of 𝐹3 using the crowded-comparison. Solutions which are far away (called “not 

crowded”) from other solutions are given a higher preference during the selection. This is done in order 

to make a diverse solution set and avoid a crowded solution set. Pt+1 of size n is then used for selection, 

crossover and mutation to create Qt+1, and so on.  

The NSGA-II algorithm needs some input parameters to run. These are the number of generations to 

evolve, the size of the population, the crossover probability, called cr, and the mutation probability, 

called m. The default values given by the Python library used to solve the optimisation problem are cr 

= 0.95 and m = 0.01. Note that the conditions cr ∈ [0,1[ and  m ∈ [0,1] have to be fulfilled. These default 

values are in accordance with the values generally seen in genetic algorithms. The crossover probability 

is chosen high (usually 0.8 - 0.9) and the mutation far smaller (around 0.005 - 0.01) [6]. A high crossover 

rate gives a global search capability to the algorithm, which enables to search within the whole box 

bound of the problem. The low mutation rate helps to explore the local vicinity of the possible solutions, 

also called local search capability. 
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Figure 6.3: NSGA-II Procedure, illustration taken from [11]. 

According to Izzo and Biscani (2017) [27], the Multi Objective Evolutionary Algorithm by 

Decomposition (MOEAD) is a very successful optimisation algorithm. The main idea of this algorithm 

is the decomposition of the optimisation problem into different scalar subproblems, which are optimised 

simultaneously. Each subproblem is optimised exploiting only information from its several 

neighbouring subproblems since neighbouring subproblems should have close optimal solutions [35]. 

This enables a lower computational complexity at each generation than other algorithms, such as the 

non-dominated sorting genetic algorithm. The population is then composed of the best solution found 

for each subproblem. Different methods were developed to decompose the optimisation problem. The 

most commonly used are the Weighted Sum approach, the Tchebycheff approach and the boundary 

intersection approach. More details on these methods can be found in Li (2007) [35]. These three 

possibilities of decomposition are selectable in pygmo, together with a mutation rate to create an 

offspring.  

As further developed in a benchmark study in Appendix C.2, the MOEAD turns out to be inapplicable 

for the present optimisation problem. Indeed, the algorithm tends to favour one objective over the other; 

it exaggerates the impact of the volume reduction over the settlement objective. That is why the NSGA-

II is predominantly chosen for the present study. 

6.2 Optimisation of pile groups 
The optimisation of pile groups is a complex engineering task as the problem to solve cannot be 

expressed in a simple and straightforward way but in a complex semi-analytical calculation. The 

properties of the objective functions are not known, and one cannot make statements about the steadiness 

of the functions, their convexity, the number of maxima, etc. The lack of information about some precise 

mathematical functions (which are normally available for standard optimisation problems) makes the 

use of evolutionary algorithms necessary. One does not need to make mathematical assumptions about 

the problem to optimise.  

The foundation of a bridge pillar is optimised, consisting of a 43 pile group subject to an axial centrally 

load of 30 MN. One takes as reference the initial design coming from the CPRF Guideline and presented 

in Section 5.1.1 “Guideline 1.2”. The optimisation method is coded in a Python script and included in 

Appendix A.2. 
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6.2.1 Design parameters  

Different design parameters are optimised in this study, chosen to meet the needs of the optimisation. 

The pile spacing is modelled by means of two parameters, one over the length of the foundation raft, the 

other over its width. Therefore, rectangular configurations of the pile group can be optimised. The 

possibilities of the optimisation stay limited to rectangular configurations since only numerical values 

(i.e. the distance between two piles in two directions) can be varied, and a randomly generated position 

of the pile in a grid is not carried out.  

One standard radius is adopted for all the piles and varied during the optimisation. This assumption is 

made for practical reasons. On the construction site, usually one drilling machine is available, which is 

able to drill piles of standard diameter. The construction of piles, each one of which having different 

diameters would not be easily accomplishable on site. Therefore, the study is limited to one radius 

parameter.   

Concerning the pile length, a different parameter is adopted for every pile; twelve length parameters are 

therefore necessary. In total, fifteen parameters are contained in the decision vector: twelve for the pile 

lengths, two for the pile spacing and one for the pile radius.  

6.2.2 Objective functions 

The foundation must be configured so that the smallest settlement is reached. This objective is often 

achieved by increasing the number of piles or lengthening them, which leads to a larger volume of the 

foundation and thus to higher costs. The present problem to optimise is therefore multi-objective: 

improving an objective function worsens other aspects of the problem. 

Material and manufacturing costs as well as construction costs of the foundation elements are strongly 

simplified and supposed proportional to the volume of the foundation. The costs are a direct function of 

the volume. No difference in the costs between the construction of the piles and the construction of the 

raft is taken into account in a first approximation.  

The optimisation problem is composed of the objective functions presented in Equations (6.4) and (6.5), 

where 𝛼 is the proportionality factor between the costs and the volume of the foundation and x the 

decision vector generated within a box-bound. The lower and upper boundaries of the decision vectors 

are defined in Section 6.2.3. 

)x(s)x(f max1  (6.4) 

 

costsfoundation2  )x(V)x(f  (6.5) 

6.2.3 Constraints and box boundaries 

For this optimisation problem, no equality or inequality constraints are considered. Nevertheless, the 

design parameters are only varied within physically meaningful limits, which are presented in Table 6.1. 

6.2.4 Results 

The optimisation is performed using the NSGA-II algorithm, which appears to be the most suitable in 

comparison to other tested algorithms. The crossover rate cr amounts to 0.95 and the mutation rate m to 

0.01. A sufficient amount of individuals and generations are chosen to obtain a satisfactory result 

according to the simulations realised in an academic benchmark (see Appendix C.1). 
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Table 6.1: Boundaries of the design parameters for the optimisation of the “Guideline 1.2”. 

 

Figure 6.4 represents the investigated solutions of the objective functions, where the initial population 

is displayed with black dots and the evolved population (in red) forms the final Pareto front, i.e. the 

optimal set of solutions. The optimal set of solutions is not necessarily the set of decision vectors of the 

last iteration of the genetic algorithm. 

For each point of the Pareto front, none of the two objective functions can be improved without 

worsening the other one. It is not possible, for any of the red triangles forming the Pareto front in Figure 

6.4, to improve the settlement without simultaneously increasing the volume of the foundation, 

respectively to reduce the volume without increasing the settlement.   

The reference solution of Hanisch et al. (2002) [24] is plotted as a blue dot. The blue dotted lines delimit 

a predominance area, which contains all the solutions that are improving the initial reference design in 

terms of both settlement and volume. The intersection of the dotted blue line with the Pareto front 

constitutes two specific optimal solutions: the “lowest settlement” and “lowest volume” solution. The 

lowest volume (or volume optimum) solution is the solution that presents, for the same settlement as the 

reference solution, the lowest volume; and inversely for the lowest settlement solution. The settlement 

and volume optima solutions are presented in Table 6.3. The geometrical parameters of the foundation 

for the reference solution and for both optima solutions are contained Table 6.2.  

Figure 6.4: Fitness of the objective functions plotted in the objective space, settlement over the 

volume of the piles (Pareto front highlighted in red). 

Designation Minimum value [m] Maximal value [m] 

Pile length 10 25 

Pile radius 0.6 1 

Pile spacing (length) 1.5 6 

Pile spacing (width) 1.5 6 
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Table 6.2: Parameters of the original chosen design and of the lowest volume and lowest settlement 

solutions, mean values for the length of each standard pile; values are given in meters. 

 

Table 6.3: Lowest volume and lowest settlement solution referring the original chosen design. 

 

The initial design of the pile group could be optimised successfully. The pile volume has been reduced 

by 33% for a comparative settlement, and the settlement has been diminished by 50% for the same 

volume.   

6.3 Optimisation of CPRFs 
The foundation of a bridge pillar consisting of a 32 CPRF subject to an axial centrally load of 30 MN 

is optimised. One takes the initial design coming from the CPRF Guideline and presented in Section 5.2 

“Guideline 1.3” as reference.  

Design parameters and objective functions are the same as those presented for the optimisation of pile 

groups in Section 6.2. It has to be noted that the number of design parameters is smaller for the 

optimisation of CPRFs since the number of piles used is lower. The decision vectors contain nine 

parameters: six for the piles, two for the pile spacing and one for the pile radius.  

6.3.1 Rigidity 

In this optimisation study, two types of foundations are compared, one foundation presenting a rigid raft 

and the other a more flexible raft. One determines the type of foundation in relation to the thickness of 

the slab presented in Equation (6.6), derived from Equation (4.9).  

l
E

E
Kh

PR

s
3 12  (6.6) 

 

where Es is calculated as the mean value of the stiffness of the subsoil and equals 40 MPa. The chosen 

material for the slab of the CPRF is a concrete of strength class C25/30 whose modulus of elasticity EPR 

amounts to 32 GPa. The length of the pile l is 12 m. 

 Reference Lowest volume Lowest settlement 

Length corner pile  15 17.55 22.13 

Length edge pile  15 15.66 19.38 

Length inner pile  15 11.55 19.45 

Pile diameter  1.5 1.20 1.28 

Pile spacing (length)  3 5.99 5.98 

Pile spacing (width)  3 5.97 5.88 

 s [cm] ∆s [%] V [m3] ∆V [%] 

Reference solution 3.00 - 318 - 

Volume optimum 3.12 +4.0 212 -33.3 

Settlement optimum 1.51 -49.7 316 -0.6 
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Table 6.4: Limit thickness of the slab for the benchmark “Guideline 1.3”. 

 

The thickness of the rigid slab is set to two meters and the thickness of the intermediate foundation to 

one meter following the desired categories of Table 6.4. The study of a limp foundation leads to 

inapplicable results since a slab thinner than 30 cm is not able to carry the required loads for the given 

geometrical parameters of the piles. The adopted subgrade reaction modulus for the rigid foundation is 

the one already calculated Section 5.2 and presented in Figure 5.12. For the subgrade reaction of the 

intermediate slab, however, it is necessary to calculate a new reaction modulus since the ratios presented 

in Table 5.5 depend on the rigidity of the desired foundation. Combining those empirical values and the 

subgrade reaction modulus of the equivalent shallow foundation calculated in Hanisch et al. (2002) [24], 

one obtains the subgrade reaction modulus of the intermediate CPRF presented in Figure 6.5. 

Figure 6.5: Subgrade reaction modulus for the CPRF of the example “Guideline 1.3”, intermediate 

slab. Adapted from [24]. 

6.3.2 Box boundaries 

The box boundaries of the decision vectors generated in this optimisation problem are introduced in 

Table 6.5. The minimum values are of special importance. Indeed, for a given generation of the 

algorithm, if one randomly generated decision vector is set up with all the design parameters at their 

minimum values, the unfavourable geometry could lead to a breakdown of the foundation. The minimum 

values are then chosen so that none of the generations leads to a possible failure of the CPRF. 

Table 6.5: Boundaries of the design parameters for the optimisation of the CPRF “Guideline 1.3”. 

System rigidity K Type of foundation Thickness of the slab [m] 

10.K   Rigid foundation 41.h   

0.1<0010 K.   Intermediate area 41<30 .h.   

0.001<K  Limp foundation 0.3<h  

Designation Minimum value [m] Maximum value [m] 

Pile length 12 22 

Pile radius 0.72 1.2 

Pile spacing (length) 3.5 5 

Pile spacing (width) 3.5 6 
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6.3.3 Results 

The NSGA-II algorithm is used with the same crossover and mutation ratio as for the optimisation of 

pile groups. Figure 6.6 represents the investigated solutions of the objective functions for both CPRFs. 

The dotted red and orange lines are nonlinear regressions of the optimal decision vectors extending the 

Pareto fronts for values that could not be covered by the optimisation.   

The reference solution of Hanisch et al. (2002) [24] for the CPRF is plotted as a blue point and the 

predominance area formed as presented in Section 6.2. As the dotted blue lines delimiting this area cross 

the two Pareto fronts, each foundation design possesses both lowest volume and settlement solutions. 

The lowest settlement solution (obtained when the volume of the piled raft is fixed to the volume of the 

reference solution) for both foundation designs are coinciding to a large extent. That is not the case for 

the lowest volume solution: the CPRF presenting the thinner foundation slab enables a more significant 

reduction of the volume of the whole piled raft.  

Due to the symmetry of the structure and given the axial central load, one can restrict the study of the 

piles to two standards piles enumerated in Figure 6.7: the edge piles are referenced to as “1” and the 

corner piles as “2”. 

 Figure 6.6: Pareto fronts for a rigid slab (in orange) and for an intermediate slab (in red) 

obtained for 960 iterations. 

Figure 6.7: Pile numbering and geometrical parameters for the reference design [24]. 
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The geometrical parameters obtained for the lowest volume solution of both foundations are presented 

in Table 6.6 and those for the lowest settlement solution in Table 6.7. 

It can be noted that the piles of the volume optimum are shorter than the piles of the settlement optimum. 

This is particularly visible for the rigid CPRF, where both corner and edge piles are three meters longer 

for the optimum settlement than for the optimum volume. As a general rule, the optimised piles are 

longer than those of the reference solution. The obtained pile lengths are coherent since a pile 

lengthening reduces the settlement but increases the volume; it is logical that the optimum settlement 

presents longer piles whereas the optimum volume tends to reduce their length. 

Moreover, optimised piles are longer than the reference piles since the hybrid design approach exhibits 

higher settlements than the reference solution (Section 5.2) for equal geometrical parameters. To obtain 

at least the same settlements as the reference, longer piles are necessary. Lowest settlement solutions 

(Table 6.7) for the two CPRF designs display different geometrical parameters but achieve 

approximately the same result, as shown in Figure 6.6. The CPRF with an intermediate slab presents 

shorter piles but a larger pile diameter than the foundation with a rigid slab. The pile spacing obtained 

is similar for the two designed foundations as well as for the reference solution.   

Settlement and volume optima solutions for both foundation types referring the original chosen design 

are compiled in Table 6.8. A reduction of the settlement of 55% has been reached for both chosen 

designs referring the initial solution of Hanisch et al. (2002) [24]. The CPRF adopting an intermediate 

slab has led to the largest reduction of the volume (37%). To get a better overview of the obtained 

geometrical parameters, an illustration of the different designs is presented in Figure 6.8 for the 

settlement optimum. The three piled raft foundations have the same volume, whereas the settlements of 

the two optimised designs are 55% smaller than the one of the reference design.  

Table 6.6: Parameters of the original chosen design and of the lowest volume solution, mean values of 

the length for each standard pile. Values are given in meters. 

Table 6.7: Parameters of the original chosen design and of the lowest settlement solution, mean values 

of the length for each standard pile. Values are given in meters. 

 Reference Rigid slab Intermediate slab 

Length corner pile (2) 
15 

17 17 

Length edge pile (1) 18 16.5 

Pile diameter 1.5 1.4 1.4 

Pile spacing (length) 4.5 4.65 4.5 

Pile spacing (width) 6 5.9 5.8 

Slab thickness 2.2 2 1 

 Reference Rigid slab Intermediate slab 

Length corner pile (2) 
15 

20.5 18 

Length edge pile (1) 21.6 16.5 

Pile diameter 1.5 1.4 2 

Pile spacing (length) 4.5 4.8 4.9 

Pile spacing (width) 6 5.7 5.8 

Slab thickness 2.2 2 1 
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Table 6.8: Lowest volume and lowest settlement solution referring the original chosen design. 

 

 

 

 

 

 Figure 6.8: Illustration of the optimised CPRFs in comparison with the reference design for the 

lowest settlement solution. 

 s [cm] ∆s [%] V [m3] ∆V [%] 

Reference solution 3.60 - 429 - 

Volume 

optimum 

Rigid slab 3.51 -2.5 383 -10.7 

Intermediate slab 3.62 +0.5 272 -36.6 

Settlement 

optimum 

Rigid slab 1.62 -55.0 427 -0.5 

Intermediate slab 1.58 -56.1 428 -0.2 

Intermediate slab  

Rigid slab  

Reference design 

1.4 m 
2.0 m 1.5 m 

2.5 m 

2.0 m 

1.0 m 

Settlement (cm)  

1.62 

1.58 

3.60 

Volume (𝑚3)  

427 

428 

429 
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Figure 6.9: Piled-raft coefficients for different designs of the “Guideline 1.3”. 

The piled raft coefficients of the different designs are summarised in Figure 6.9, where the same limit 

values are presented in Section 5.2: admissible values are delimited by the red lines and optimum values 

by the green ones. The settlement of the shallow foundation used to calculate the ratio sPR/sslab comes 

from the numerical simulation of the CPRF guideline example 1 version 1 “Guideline 1.1” of Hanisch 

et al. (2002) [24]. 

The initial design of the thesis presented in Section 5.2 adopts a rigid slab, together with the “Reference 

guideline” solution of Hanisch et al. (2002) [24]. Both designs are not optimal, the first one presenting 

a too high settlement and the second one transferring a too large load component by means of the piles, 

as shown by the piled raft coefficient approaching 0.9 in Figure 6.9. On the contrary, the two optimised 

solutions present satisfactory results. The optimised CPRF with a rigid slab presents lower settlements 

than the reference solution and its piled raft coefficient approaches the optimal area. The optimised 

CPRF with an intermediate flexible slab has even been able to reach a piled raft coefficient in the optimal 

area for a slightly higher settlement than the optimised CPRF with a rigid slab.  

Moreover, the proof of external serviceability is adduced for both optimised designs as the settlements 

of 1.6 cm respectively 1.58 cm calculated with the geometrical parameters of the settlement optima are 

lower than the admissible settlement sadm = 4 cm. 

6.4 Limitations and drawbacks 
A major limitation of the current optimisation method is that the influence of the slab (interaction raft-

soil and interaction raft-pile) is not taken into account during the evolution of the genetic algorithm. 

Indeed, the genetic algorithm works with the results of the analytical algorithm developed in Python and 

does not communicate directly with RFEM. The different Pareto fronts obtained therefore present, to a 

large extent, the same shape up to a translation of the curve corresponding to the difference of the volume 

of the slab.  

Moreover, only rectangular pile configurations can be investigated. In contrast to the initial design where 

the piles can be positioned according to their Cartesian coordinates and form an arbitrary geometry, the 
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optimisation of such an arbitrary geometry is not possible. Indeed, the genetic algorithm needs to 

optimise values and cannot directly “optimise” a point defined by its coordinates.  

One can call attention to the fact that the reinforcement is not taken into consideration in the foundation. 

There are no special costs for the reinforcement of the raft or the piles.  

It has to be noted that the cost of the foundation is considered as proportional to the volume of the piled 

raft. This is equivalent to the introduction of a constant price per running meter, independent of the depth 

of the pile. Moreover, no influence factor is introduced between the volume of the slab and the volume 

of the piles, even if the costs are not the same for those elements. The producibility of the foundation is 

not considered in the optimisation, the assumption that the costs are directly proportional to the volume 

of the piled raft is strong and does not truly depict the reality. That is why the results of this optimisation 

have to be considered as a theoretical design study.  

  



 

 

7 Summary and conclusions 

Combined piled raft foundations are composite foundation systems combining the bearing capacity of a 

foundation raft with the one of the piles. Elements of the foundation exercise a mutual load-bearing 

effect and present reciprocal interactions (pile-pile and pile-raft) as well as interactions with the subsoil 

(pile-soil and raft-soil). In a CPRF system, the piles are employed as a measure to limit the settlements 

of a high loaded footing.  

To the present day, a generally established and applicable analytical approximation procedure for CPRFs 

does not exist. This thesis presents a simplified method for the design of pile groups and of combined 

piled raft foundations based on a semi-analytical approach. This new design approach enables a rapid 

and robust approximation of the load-bearing behaviour of the structure, where the local boundary 

conditions can be easily adapted. An algorithm capable of creating an optimised design covering 

geotechnical as well as structural aspects is developed. This contribution also focuses on a multi-

objective optimisation in practical applications using evolutionary algorithms. Based on a case study, it 

is shown that the required concrete masses for the piles and the raft of the CPRF can be significantly 

reduced. 

This approximation procedure is based on sophisticated approaches, such as a non-homogeneous subsoil 

and a stress dependency of the soil stiffness. The model divides CPRF into a pile group and a footing, 

which is elastically bedded on the subsoil and on the pile group. The load-settlement curve for each pile 

is iteratively calculated for each load increment considering the mutual interaction between each pile. 

The interaction is considered by using a so-called influence radius in a simplified and load-independent 

way. Moreover, the load-settlement behaviour of each pile is derived on the basis of the Mohr-Coulomb 

failure criterion on the base and along the shaft of each pile. The developed algorithm offers an evolved 

design but remains straightforward and easy to handle. 

In the proposed model the resulting load-settlement curves are used to calculate the equivalent spring 

stiffness for each pile. These spring stiffnesses and an estimated bedding of the raft on the subsoil are 

used as an input for iterative simulations using the standard design software RFEM, in which the CPRF 

raft is simulated as a bedded plate. Using this iterative simulation approach, one can calculate relatively 

fast the complex soil structure interaction of a CPRF foundation. The significant advantage of this new 

semi-analytical model is its high calculation speed, which is required for an efficient use of optimisation 

algorithms. 

This approximation procedure can be applied to the design of foundations within the tender phase or to 

preliminary designs, when a good approximation model for the determination of the load-bearing 

behaviour is necessary but the recourse to numerical simulations is not compulsory. For the final 

dimensioning or within the execution phase, additional 3D FE calculations should be carried out since 

the model satisfies a simplified approach method and does not truly depict all the related effects. 

In Chapters 3 and 4, different design approaches for pile groups respectively for combined piled raft 

foundations were presented, which thus contribute to a better understanding of deep foundation designs. 

In particular, the development of the script was described and the resulting improvements were 

compared to the initial analytical procedure of Rudolf (2005) [47]. The developed semi-analytical 

calculation method for CPRF was described in Chapter 4. 
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The basics of deep foundations were outlined in Chapter 2 and shall help to develop an understanding 

of their way of transferring loads to the subsoil and the particularities of the different existing systems. 

Moreover, they help interpret results of case studies presented in Chapter 5 to test the efficiency and the 

reliability of the developed solution by referring to tested examples from the literature. These case 

studies showed the application of the developed calculation method and shall guide the reader to a 

comprehensive understanding of the presented approaches.  

Moreover, an overview of multi-objective optimisation problems was presented in Chapter 6. A newly 

developed way of optimisation using genetic algorithms was put forth. The semi-analytical calculation 

was optimised using mathematical algorithms to minimise the volume of necessary material as well as 

the settlement of the foundation, leading to a set of optimal solutions.  

The results obtained by means of the simplified procedure are in good concordance with numerical 

calculations even if they do not entirely coincide due to the use of different models, boundary conditions 

and assumptions. It has been shown that the major advantages of CPRFs are a lower settlement of the 

whole structure as well as a reduction of the volume of material used in comparison with deep 

foundations, leading to optimised costs and a better economic viability. 

Engineering design often relies on constant arrangement and symmetry of structures. However, such 

constant configurations are generally not very cost-effective. Moreover, the load-transfer capacity of 

elements of the foundation is rarely completely exploited. That is why an optimisation of deep 

foundations is of great advantage. By using the multi-objective optimisation library pygmo, better and 

more cost-effective results have been achieved compared to the reference solution from Hanisch et al. 

(2002) [24]. Based on the obtained results, it is arguable that the pile lengths are an effective measure 

to reduce the settlements of the CPRF in combination with a flexible raft. Concerning the overall need 

for concrete masses for the raft and for the piles, the obtained solutions show a significant reduction of 

required concrete. The settlement by identical volume has been reduced by 50% for pile groups and by 

55% for CPRFs (for both rigid and more flexible slabs) in comparison with findings presented in the 

literature. However, these results have to be considered as theoretical design studies, since the 

producibility of the foundation as well as its internal bearing capacity have not been examined.  

It has further been shown that by means of an optimisation procedure, a direct relation between costs 

and settlement can be established and displayed in the form of a Pareto front. This facilitates the 

evaluation of possible cost saving measures with a concrete insight into the increased risks following 

those savings. The representation of a Pareto front enables a rapid cost-benefit analysis when a limit 

settlement concerning the serviceability must be stated. This optimisation procedure presents a new 

perspective for constructors and planners, which opens the way for more cost-effective and thus 

competitive solutions in foundation design and the optimisation of complex problems in civil 

engineering. 

The proposed and applied design model of the current paper could be further improved with the help of 

the following suggestions. An interface for the automated transmission of the results between RFEM 

and the Python algorithm should be developed. This would allow for a more efficient iteration procedure 

regarding CPRF design. Moreover, the use of both FEM programs Plaxis 3D and RFEM could lead to 

a more precise and trustworthy design than the use of RFEM solely. Moreover, an interface between the 

Python script and Plaxis 3D could be developed. Finally, additional studies should be conducted 

regarding constitutive equation of soils, such as the Hardening Soil Model with Small Strain Stiffness 

(HS-Small). The implementation of such models would improve the quality of the CPRF design.
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Appendix A    Python Codes  

A.1    Analytical calculation of a pile group  
1   # -*- coding: utf-8 -*- 

2   """ 

3   Created on Wed Jan 24 16:38:19 2018 

4   @author: Corentin 

5   """ 

6   import numpy  

7   

8   import matplotlib  

9   

10  import matplotlib.pyplot as plt  

11  

12  class PileGroup(object):  

13      """This class calculates the load-settlement curve of a pile group based on 

14      Rudolf (2005), 'Beanspruchung und Verformung von Gründungskonstruktionen  

15      auf Pfahlrosten und Pfahlgruppen unter Berücksichtigung des Teilsicherheits 

16      konzeptes' E.1 Quellcode Berechnungsverfahren Bruchkriterium 'MC'"""  

17      __name__ = 'Calculation of a pile group foundation' 

18       

19     

20      def __init__(self): 

21          """NB: Pile lengths, pile radius and pile spacing are directly given in 

22          the method's arguments to meet the needs of pygmo"""  

23          self.plot_fig = True # Boolean running the final plot of the figures          

24          """Geometry of the piles""" 

25          # Radius of the pile [m]    

26          self.npx = 4  

27          # Number of piles in x direction 

28          self.npy = 3  

29          # Number of piles in y direction 

30          self.np = self.npx * self.npy  

31          # Total number of piles               

32          """Load""" 

33          self.Fv = numpy.array([30000, 30000, 30000, 30000, 30000, 30000, 30000, 

34                                 30000, 30000, 30000, 30000, 30000]) 

35          # len(self.Fv) must be egal to self.np: 

36          print(numpy.mean(self.Fv))  

37          # Total vertical Load [kN]                 

38          """Underground""" 

39          self.n_layer = 8  

40          # Number of layers up to the pile base  

41          self.n_bottom = 9  

42          # Number of layers up to the model bottom 

43          self.n_elem_b = 5  

44          # Virtual failure pile base(eq (7.20 & 7.21))  

45          # The concordance between analytical and FEM results is good for  

46          # self.n_elem_b = 5, see p.84 

47  #        self.z = numpy.array([0, 1.5, 2.5, 4, 7, 9, 11, 13, 15, 22])  

48          self.z_bottom = 22 

49          self.nu = numpy.array([0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25,  

50                                 0.25])  

51          # Poisson's ratio [-] 

52          self.phi = numpy.array([25, 25, 25, 25, 25, 25, 25, 25, 25])  

53          # Friction angle(°) 
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54          self.gamma = numpy.array([10, 10, 10, 10, 10, 10, 10, 10, 10])  

55          # Specific weight of the soil (below groundwater table) [kN/m3]  

56          self.cohes = numpy.array([5, 5, 5, 5, 5, 5, 5, 5, 5])  

57          # Cohesion [kN/m] 

58          self.psi = self.phi-30  

59          # Dilatancy(°) 

60          self.psi[numpy.where(self.psi < 0)] = 0  

61          # Dilatancy values cannot be negative       

62          self.K0 = 1-numpy.sin(numpy.deg2rad(self.phi)) 

63          # Coefficient of earth pressure at rest [-]               

64           

65          """Iteration method""" 

66          self.n_iter_tot = 80 

67          # Number of iterations   

68          self.f_iter = 10  

69          # Number of iterations, failure criterion pile base.         

70          """Secant modulus' modification with the depth 

71          see K.J. Witt, Grundbau Taschenbuch Teil 1, 7. Auflage, pp.124-125""" 

72          self.sigma_ref = 100  

73          # Reference pressure [kN/m2], set to 100kN/m2,  

74          self.ve = 400  

75          # Coefficient that pilots the modification of the modulus with  

76          # depth, ve * sigma_ref coresponds to the "E_ref" in Grabe and Pucker,  

77          # Beitrag zum Entwurf und zur Ausführung von KPP. 

78          self.we = 0.55 # Coefficient that pilots the modification of the   

79          # modulus with depth, is comprised between 0 and 1 and coresponds to n 

80          # in Grabe and Pucker  

81          #Examples: 

82          # - Lightly plastic silt  

83          #    we = 110 

84          #    ve = 0.6 

85          # - Well graded sand 

86          #    we = 600 

87          #    ve = 0.55 

88          # - Uniform fine sand 

89          #    we = 300 

90          #    ve = 0.6          

91  

92          self.settlement() 

93          self.volume()         

94           

95      def volume(self, decision_vect = [15, 15, 15, 15, 15, 15,  

96                                        15, 15, 15, 15, 15, 15, 0.75, 3, 3]): 

97          """ Calculates the volume of all piles in m3 with given default values 

98          for pile length, pile radius and pile spacing 

99          NB: decision_vect = [lp[0], ... lp[np], rp, dx, dy] 

100         with 

101         lp: pile length [m] 

102         rp: pile radius [m]  

103         dx: pile spacing, x direction [m] 

104         dy: pile spacing, y direction [m]"""  

105         V = 0 

106         for i in range(self.np): 

107             V += numpy.float( 

108                     numpy.pi*decision_vect[self.np]**2*decision_vect[i])  

109         # Volume of the piles (m3). dtype = float is necessary to compute the  

110         # problem using the pygmo library 

111         print('lp_1 = %s' %decision_vect[0]) 

112         print('lp_2 = %s' %decision_vect[1]) 

113         print('lp_3 = %s' %decision_vect[2]) 

114         print('lp_4 = %s' %decision_vect[3]) 

115         print('lp_5 = %s' %decision_vect[4]) 

116         print('lp_np = %s' %decision_vect[self.np-1]) 

117         print('rp = %s' %decision_vect[self.np]) 

118         print('dx = %s' %decision_vect[self.np+1]) 
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119         print('dy = %s' %decision_vect[self.np+2]) 

120         print('V = %s' %V) 

121         return(V) 

122 

123 

124          

125     def settlement(self, decision_vect = [15, 15, 15, 15, 15, 15, 

126                                           15, 15, 15, 15, 15, 15, 0.75, 3, 3]):                 

127         """ Calculates the settlement (cm) of the pile group with given  

128         default values for pile length, pile radius and pile spacing 

129         NB: decision_vect = [lp[0], ... lp[np], rp, dx, dy] 

130         with 

131         lp: pile length [m] 

132         rp: pile radius [m]  

133         dx: pile spacing, x direction [m] 

134         dy: pile spacing, y direction [m]"""   

135 

136 #%% Initialisation     

137         x = numpy.zeros(self.np)  

138         # x coordinate of each pile [m] 

139         y = numpy.zeros(self.np)  

140         # y coordinate of each pile [m] 

141         r = numpy.zeros((self.np,self.np))  

142         # Distance between two piles 

143         rm = numpy.zeros(self.np) 

144         # Influence radius for each pile 

145         z_pile = numpy.zeros((self.np,self.n_layer+1)) 

146         # Depth of each pile layer  

147         fs = numpy.zeros ((self.np,self.np,self.n_layer))  

148         # Coefficients of influence for the pile shaft 

149         fb = numpy.zeros ((self.np,self.np))  

150         # Coefficients of influence for the pile mantel 

151         a = numpy.zeros(((self.n_layer+1)*self.np+1, 

152                          (self.n_layer+1)*self.np+1))  

153         # Concatenation of the coefficients of influence, see equation (7.11)  

154         c = numpy.zeros(((self.n_layer+1)*self.np+1)) # see equation (7.11) 

155         Es = numpy.zeros(self.n_layer) 

156          

157         """Failure criterion of the pile base""" 

158         # NB: index f could refer to "failure"  

159         sigma_z0_pile = numpy.zeros(self.np)  

160         # Vertical stress, pile bottom  

161         fsigma_z0_pile = numpy.zeros(self.np) 

162         fsigma_x0_pile= numpy.zeros(self.np) 

163         fy = 0 

164         fx = numpy.zeros (self.f_iter) 

165         fr = numpy.zeros (self.f_iter)  

166         fc = numpy.zeros(self.np) 

167         fz = numpy.zeros(self.np) 

168         # cf CHOW, Analysis of vertical loaded pile groups, eq (15), (1986) 

169         fR1 = numpy.zeros((self.np,self.f_iter))  

170         fR2 = numpy.zeros((self.np,self.f_iter))   

171         fsigma_x = numpy.zeros((self.np,self.f_iter))  

172         # Vertical stress for the pile base failure 

173         fsigma_z = numpy.zeros((self.np,self.f_iter))  

174         # Horizontal stress for the pile base failure 

175         ftau_xz = numpy.zeros((self.np,self.f_iter))  

176         # Shear stress for the pile base failure 

177         fsigma_1 = numpy.zeros((self.np,self.f_iter))  

178         # Principal stress 1 for the pile base failure 

179         fsigma_3 = numpy.zeros((self.np,self.f_iter))  

180         # Principal stress 3 for the pile base failure 

181         MC_base = numpy.zeros((self.np,self.f_iter))  

182         # Expression of the MC's failure criterion pile base 

183         n_failure_b = numpy.zeros(self.np)  
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184         # Number of elements under the pile base where the failure  

185         # occured (eq (7.20 & 7.21)) 

186          

187         """Failure criterion of the pile shaft""" 

188         sigma_z1_s = numpy.zeros((self.np,self.n_layer))  

189         # Vertical stress in the middle of each soil layer 

190         sigma_x1_s = numpy.zeros((self.np,self.n_layer))  

191         # Horizontal stress in the middle of each soil layer 

192         tau_s = numpy.zeros((self.np,self.n_layer))  

193         # Shear stress for the pile shaft failure 

194         sigma_z1_s_buffer = numpy.zeros(self.np)  

195         # Buffer 

196         sigma_1_s1 = numpy.zeros((self.np,self.n_layer))  

197         # Principal stress 1 for the pile shaft failure 

198         sigma_3_s1 = numpy.zeros((self.np,self.n_layer))  

199         # Principal stress 3 for the pile shaft failure 

200         MC_shaft = numpy.zeros((self.np,self.n_layer))  

201         # Expression of the MC's failure criterion pile shaft 

202         Failure_s = numpy.zeros((self.np,self.n_layer))  

203         # "Boolean" used to test the failure criterion of the shaft 

204          

205         """Storage of the results""" 

206         dFv = numpy.zeros(self.np) 

207         # Incremental load 

208         Rb = numpy.zeros(self.np)  

209         # Final load base 

210         Rb1 = numpy.zeros(self.np)  

211         # Load in the base during the first passage within one increment  

212         Rb2 = numpy.zeros(self.np)  

213         # Load in the base during the second passage within one increment  

214         Rs = numpy.zeros((self.np,self.n_layer))  

215         # Final load shaft 

216         Rs1 = numpy.zeros((self.np,self.n_layer))  

217         # Load in the shaft during the first passage within one increment 

218         Rs2 = numpy.zeros((self.np,self.n_layer))  

219         # Load in the shaft during the second passage within one increment  

220         s_tot = numpy.zeros(self.np)  

221         # Total settlement 

222         s1 = numpy.zeros(self.np) 

223         # Settlement during the first passage within one increment 

224         s2 = numpy.zeros(self.np) 

225         # Settlement during the second passage within one increment 

226         delta_Rs = numpy.zeros((self.np,self.n_layer))  

227         # Incremental stress state for the pile shaft 

228         delta_Rb = numpy.zeros(self.np)  

229         # Incremental stress state for the pile base 

230         Rs_tot = numpy.zeros(self.np)  

231         # Total pile shaft load (sum of all the layer loads)  

232          

233         """Matrix to plot the results""" 

234         Rb_plot = numpy.zeros((self.np,self.n_iter_tot)) 

235         Rs_tot_plot = numpy.zeros((self.np,self.n_iter_tot)) 

236         R_tot_plot = numpy.zeros((self.np,self.n_iter_tot)) 

237         s_tot_plot = numpy.zeros((self.np,self.n_iter_tot))  

238 #%% Geometrical conditions 

239         """Set up the depth of each pile""" 

240         for i in range (self.np): 

241             z_pile[i] = numpy.linspace(0,decision_vect[i],self.n_layer+1) 

242         """Set up the position of each pile"""  

243         for i in range(self.npx):  

244             # Piles in x direction 

245             for j in range(self.npy):  

246                 # Piles in y direction 

247                 n_pile = j+i*self.npy  

248                 # Number of the considered pile 
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249                 x[n_pile] = x[0]+i*decision_vect[self.np+1]  

250                 # x coordinate of the considered pile 

251                 y[n_pile] = y[0]+j*decision_vect[self.np+2]  

252                 # y coordinate of the considered pile 

253         """Set up a distance matrix of the piles""" 

254         for i in range(self.np): 

255             for j in range(self.np): 

256                if i==j:         

257                    r[i,j]=decision_vect[self.np] 

258                else:            

259                    r[i,j]=numpy.sqrt((x[i]-x[j])**2+(y[i]-y[j])**2) 

260         """Set up the influence radius for each pile"""   

261         # Initiates instances of the class RadiusOfInfluence [m] 

262         # From Lutz (2003), Tabelle 7.1 

263         for i in range(self.np): 

264             rm[i] = InfluenceRadius.lutz_alpha( 

265                     self, decision_vect[i], numpy.mean(self.nu), 2.5)  

266                         

267 #%% Calculate vertical and horizontal stresses in the middle of each soil layer 

268         for i in range(self.np): 

269             for k in range(self.n_layer): 

270                 sigma_z1_s[i,k] = sigma_z1_s_buffer[i]+(0.5* 

271                           (z_pile[i,k+1]-z_pile[i,k]))*self.gamma[k] 

272                 sigma_z1_s_buffer[i] = sigma_z1_s_buffer[i]+(z_pile[i,k+1]- 

273                                                      z_pile[i,k])*self.gamma[k]  

274                 # Stock the value at the extremity of each layer to calculate  

275                 # the next stress state in the next middle layer 

276                 sigma_x1_s[i,k] = sigma_z1_s[i,k]*self.K0[k] 

277             sigma_z0_pile[i] = sigma_z1_s_buffer[i] 

278             sigma_z1_s_buffer[i] = 0 

279             fsigma_z0_pile[i] = sigma_z0_pile[i]+decision_vect[ 

280                     self.np]*self.gamma[self.n_bottom-1] 

281             fsigma_x0_pile[i] = fsigma_z0_pile[i]*self.K0[self.n_bottom-1] 

282          

283 #%% Calculate the stiffness modulus of soil Es         

284         for i in range(self.np): 

285             for k in range(self.n_layer): 

286                 Es[k] = self.ve*self.sigma_ref*(sigma_z1_s[i,k]/ 

287                   self.sigma_ref)**self.we 

288                  

289 #%% Calculate coefficient of influence from pile shaft j on pile shaft i (7.6) 

290         # "Einflussbeiwert des Pfahlmantelwiderstandsanteiles"  

291         # Here i and j indexes don't stick to x and y axes, each pile within 

292         # the radius of influence is taken into account one after another 

293         for k in range(self.n_layer): # For each layer  

294             for i in range(self.np):  

295                 for j in range(self.np):  

296                     fs[i,j,k] = (1+self.nu[k])/(Es[k]*numpy.pi* 

297                       (z_pile[i,k+1]-z_pile[i,k]))*numpy.log(rm[i]/r[i,j])  

298                     # NB: log coresponds to the neperian logarithmus  

299                     if r[i,j] > rm[i]:  

300                         fs[i,j,k] = 0  

301                         # The coefficient is set to 0 if the radius of  

302                         # influence is exceeded 

303                          

304 #%% Calculate the coefficient of influence from base j on base i (eq 7.7) 

305         # 'Einflussbeiwert des Pfahlfußlwiderstandsanteiles' 

306         for i in range(self.np):    

307             for j in range (self.np):   

308                 fb[i,j] = (1-self.nu[self.n_layer]**2) /(Es[self.n_layer-1]* 

309                   numpy.pi*r[i,j]) 

310                 if i == j: 

311                     fb[i,j] = fb[i,j] * numpy.pi/2 

312 #%% Assemble matrix a (equation 7.15) 

313         for k in range (self.n_layer): 
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314             for i in range (self.np): 

315                 for j in range (self.np): 

316                     a[i+self.np*k,j+self.np*k] = fs[i,j,k] 

317         for i in range (self.np):  

318             for j in range (self.np): 

319                 a[i+self.np*self.n_layer,j+self.np*self.n_layer] = fb[i,j] 

320         for i in range ((self.n_layer+1)*self.np): 

321             a[(self.n_layer+1)*self.np,i] = 1 

322             a[i,(self.n_layer+1)*self.np] = -1 

323          

324 #%% Assemble vector c (equation 7.15) 

325         c[(self.n_layer+1)*self.np] = 1 # equivalent to c[-1] = 1 

326          

327 #%% Calculation procedure (see "7.3 Eigenes analytisches Berechnungsverfahren") 

328         for iteration in range(self.n_iter_tot):  

329             # Beginning of the loop 

330             for i in range(self.np): 

331                 dFv[i] = self.Fv[i]/self.n_iter_tot  

332             # Calculate the value of the additional force for each increment 

333             laufwhile = 1 

334             lauf1 = 0   

335             while laufwhile != 0:  

336                 # The loop runs until two succesive values of Rb, Rs or s don't 

337                 # differ of more than 1% 

338                 lauf1 += 1 

339                 if lauf1 > 100: 

340                     print('Divergence') 

341                     break  

342          

343 #%% Resolution of the equation of equilibrium (1st time) 

344                 db = numpy.linalg.solve(a,c) #a*x=c solved by linalg.solve(a,c) 

345                 # db contains delta_Rs from line 1 to np*n_layer, delta_Rb from 

346                 # line np*n_layer to np*(n_layer+1), ds line 1+np*(n_layer+1), 

347                 # cf. equation (7.15) 

348                 for i in range(self.np): 

349                     delta_Rb[i] = db[self.n_layer*self.np+i]*dFv[i]  

350                     # eq (7.13b), calculation of the incremental stress state  

351                     # for the pile base 

352                     Rb1[i] = Rb[i]+delta_Rb[i] 

353                 for k in range (self.n_layer): 

354                     for i in range(self.np): 

355                         delta_Rs[i,k] = db[k*self.np+i]*dFv[i] # eq (7.13c),  

356                         # calculation of the stress state for the pile shaft 

357                         Rs1[i,k] = Rs[i,k]+delta_Rs[i,k] 

358          

359 #%% Determination of the failure criterion for the base  

360                 for i in range(self.np): 

361                     fc[i] = decision_vect[i]  

362                     # Depth node j (unit load applied) 

363                     fz[i] = decision_vect[i]+decision_vect[self.np]  

364                     # Depth node i (where displacement evaluated) 

365                 for i in range(self.np): 

366                     n_failure_b[i] = 0 

367                     for f in range (self.f_iter): 

368                         fx[f] = f*2/9*2*decision_vect[self.np]  

369                         # Source unknown 

370                         fr[f] = (fx[f]**2+fy**2)**0.5  

371                         # fy was set to 0 

372                         fR1[i,f] = (fr[f]**2+(fz[i]-fc[i])**2)**0.5  

373                         # cf CHOW, eq (15), (1986) 

374                         fR2[i,f] = (fr[f]**2+(fz[i]+fc[i])**2)**0.5  

375                         fsigma_x[i,f] = fsigma_x0_pile[i]-

Rb1[i]/(8*numpy.pi*(1-self.nu[self.n_bottom-1]))*((1-2*self.nu[self.n_bottom-

1])*(fz[i]-fc[i])/(fR1[i,f]**3)-3*fx[f]**2*(fz[i]-fc[i])/(fR1[i,f]**5)+(1-

2*self.nu[self.n_bottom-1])*(3*(fz[i]-fc[i])-4*self.nu[self.n_bottom-
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1]*(fz[i]+fc[i]))/(fR2[i,f]**3)-(3*(3-4*self.nu[self.n_bottom-1])*fx[f]**2*(fz[i]-

fc[i])-6*fc[i]*(fz[i]+fc[i])*((1-2*self.nu[self.n_bottom-1])*fz[i]-

2*self.nu[self.n_bottom-1]*fc[i]))/(fR2[i,f]**5)-

30*fc[i]*fx[f]**2*fz[i]*(fz[i]+fc[i])/(fR2[i,f]**7)-4*(1-self.nu[self.n_bottom-

1])*(1-2*self.nu[self.n_bottom-1])/fR2[i,f]/(fR2[i,f]+fz[i]+fc[i])*(1-

fx[f]**2/(fR2[i,f]*(fR2[i,f]+fz[i]+fc[i]))-fx[f]**2/fR2[i,f]**2))           

376                         fsigma_z[i,f] = fsigma_z0_pile[i]-

Rb1[i]/(8*numpy.pi*(1-self.nu[self.n_bottom-1]))*(-(1-2*self.nu[self.n_bottom-

1])*(fz[i]-fc[i])/(fR1[i,f]**3)+(1-2*self.nu[self.n_bottom-1])*(fz[i]-

fc[i])/(fR2[i,f]**3)-3*(fz[i]-fc[i])**3/(fR1[i,f]**5)-(3*(3-

4*self.nu[self.n_bottom-1])*fz[i]*(fz[i]*fc[i])**2-3*fc[i]*(fz[i]+fc[i])*(5*fz[i]-

fc[i]))/(fR2[i,f]**5)-30*fc[i]*fz[i]*(fz[i]+fc[i])**3/(fR2[i,f]**7)) 

377                         ftau_xz[i,f] = -Rb1[i]*fx[f]/(8*numpy.pi*(1-

self.nu[self.n_bottom-1]))*(-(1-2*self.nu[self.n_bottom-1])/(fR1[i,f]**3)+(1-

2*self.nu[self.n_bottom-1])/(fR2[i,f]**3)-3*(fz[i]-fc[i])**2/(fR1[i,f]**5)-(3*(3-

4*self.nu[self.n_bottom-1])*fz[i]*(fz[i]+fc[i])-

(3*fc[i]*(fz[i]+fc[i])))/(fR2[i,f]**5)-

30*fc[i]*fz[i]*(fz[i]+fc[i])**2/(fR2[i,f]**7)) 

378                         fsigma_1[i,f] = 

0.5*(fsigma_x[i,f]+fsigma_z[i,f])+((fsigma_x[i,f]-

fsigma_z[i,f])**2/4+ftau_xz[i,f]**2)**0.5 

379                         fsigma_3[i,f] = 0.5*(fsigma_x[i,f]+fsigma_z[i,f])-

((fsigma_x[i,f]-fsigma_z[i,f])**2/4+ftau_xz[i,f]**2)**0.5 

380                         # MC's fracture criterion  for the pile base, eq (7.14) 

381                         MC_base[i,f] = 0.5*fsigma_1[i,f]*(1-numpy.sin( 

382                                 self.phi[self.n_layer-1]*numpy.pi/180))-

0.5*fsigma_3[i,f]*(1+numpy.sin(self.phi[self.n_layer-1]*numpy.pi/180))-

self.cohes[self.n_layer-1]*numpy.cos(self.phi[self.n_layer-1]*numpy.pi/180) 

383                         if MC_base[i,f] > 0: 

384                             n_failure_b[i] += 1 # increment of 1 

385                         # If the failure criterion of the base is not fulfilled 

386                         # adapt matrix a AND solve again the equation b = a\c.  

387                         # If the failure criterion is fulfilled, don't adapt  

388                         # matrix a, verify directly the failure criterion for  

389                         # the shaft 

390          

391 #%% Update of the coefficient of influence from pile base j on pile base i  

392                 for i in range(self.np): 

393                     for j in range(self.np): 

394                         fb[i,j] = (1-self.nu[self.n_layer]**2)/( 

395                                 Es[self.n_layer-1]*numpy.pi*r[i,j] 

396                                 )*self.n_elem_b/(self.n_elem_b-n_failure_b[i] 

397                                 +1e-10)  

398                         # equation (7.21) 

399                         if n_failure_b[i] == self.n_elem_b: 

400                             fb[i,j] = 0  

401                             # The failure occured, coefficient set to 0 

402                         elif i is j: 

403                             fb[i,j] = fb[i,j] * numpy.pi/2 

404 #%% Adaptation of matrix a (first time) after the failure of the base, (7.16)           

405                     for i in range(self.np): 

406                         for j in range(self.np): 

407                             a[i+self.np*self.n_layer, 

408                               j+self.np*self.n_layer] = fb[i,j]                     

409                     for i in range(self.np): 

410                         a[(self.n_layer+1)*self.np,i+self.np*self.n_layer] = 1 

411                         if n_failure_b[i] == self.n_elem_b: 

412                             a[self.n_layer*self.np+i, 

413                               (self.n_layer+1)*self.np] = 0 

414                         else:  

415                             a[self.n_layer*self.np+i, 

416                               (self.n_layer+1)*self.np] = -1 

417                         

418 #%% Resolution of the equation of equilibrium (2nd time) 

419                     db = numpy.linalg.solve(a,c)  
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420                     # Solves a second time when failure criterion of the base  

421                     # not fulfilled (different solution due to the modification 

422                     # of matrix a) 

423                     for i in range(self.np): 

424                         s1[i] = db[(self.n_layer+1)*self.np]*dFv[i] 

425                     for i in range(self.np): 

426                         delta_Rb[i] = db[self.n_layer*self.np+i]*dFv[i] 

427                         Rb1[i] = Rb[i]+delta_Rb[i] 

428                     for k in range(self.n_layer): 

429                         for i in range(self.np): 

430                             delta_Rs[i,k] = db[k*self.np+i]*dFv[i] 

431                             Rs1[i,k] = Rs[i,k]+delta_Rs[i,k] 

432                              

433 #%%  Determination of the failure criterion for the shaft 

434                     for k in range(self.n_layer): 

435                         for i in range(self.np): 

436                             if Failure_s[i,k] == 0: 

437                                 tau_s[i,k] = Rs1[i,k]/((z_pile[i,k+1]-

z_pile[i,k])*2*decision_vect[self.np]*numpy.pi) 

438                                 sigma_1_s1[i,k] = 

(sigma_z1_s[i,k]+sigma_x1_s[i,k])/2+((sigma_z1_s[i,k]-

sigma_x1_s[i,k])**2/4+tau_s[i,k]**2)**0.5 

439                                 sigma_3_s1[i,k] = 

(sigma_z1_s[i,k]+sigma_x1_s[i,k])/2-((sigma_z1_s[i,k]-

sigma_x1_s[i,k])**2/4+tau_s[i,k]**2)**0.5 

440                                 # MC's failure criterion for the shaft (7.14) 

441                                 MC_shaft[i,k] = 0.5*sigma_1_s1[i,k]*(1-

numpy.sin((self.phi[k]+self.psi[k])*numpy.pi/180))-

0.5*sigma_3_s1[i,k]*(1+numpy.sin((self.phi[k]+self.psi[k])*numpy.pi/180))-

self.cohes[k]*numpy.cos((self.phi[k]+self.psi[k])*numpy.pi/180) 

442                                 if MC_shaft[i,k] >= 0: 

443                                     Failure_s[i,k] = 1            

444                     #If the failure criterion of the shaft is not fulfilled,  

445                     # adapt another time the matrix a AND go back to the  

446                     # equation b = a\c "first time" If the failure criterion is 

447                     # fulfilled, go directly to the next iteration 

448                      

449 #%% Update of the coefficient of influence from pile base j on pile base i              

450                     for k in range(self.n_layer): 

451                         for i in range(self.np): 

452                             if Failure_s[i,k] == 1: 

453                                 for j in range(self.np): 

454                                     if j is not i: 

455                                         fs[i,j,k] = 0  

456                                         # Coef set to 0 if failure appears           

457 #%% Adaptation of matrix a (second time) after the failure of the shaft, (7.16) 

458                     for k in range(self.n_layer): 

459                         for i in range(self.np): 

460                             for j in range(self.np): 

461                                 a[i+self.np*k,j+self.np*k] = fs[i,j,k] 

462                     for k in range(self.n_layer): 

463                         for i in range(self.np): 

464                             a[(self.n_layer+1)*self.np, 

465                               i+self.np*self.n_layer] = 1 

466                             if Failure_s[i,k] == 1: 

467                                 a[k*self.np+i,(self.n_layer+1)*self.np] = 0 

468                             else:  

469                                 a[k*self.np+i,(self.n_layer+1)*self.np] = -1 

470                           

471 #%% Resolution of the equation of equilibirum (3rd resolution) 

472                 db = numpy.linalg.solve(a,c)  

473                 for i in range(self.np): 

474                     s2[i] = db[(self.n_layer+1)*self.np]*dFv[i]  

475                 # Second resolution  

476                 for i in range(self.np): 



A.1    Analytical calculation of a pile group  109 

 

477                     delta_Rb[i] = db[self.n_layer*self.np+i]*dFv[i] 

478                     Rb2[i] = Rb[i]+delta_Rb[i] 

479                 for k in range(self.n_layer): 

480                     for i in range(self.np): 

481                         delta_Rs[i,k] = db[k*self.np+i]*dFv[i] 

482                         Rs2[i,k] = Rs[i,k]+delta_Rs[i,k]  

483                           

484 #%% Verification of the iteration condition 

485                 # NB: the loop runs while boolean different from 0 (boolean is  

486                 # reset to 1 each time before entering the loop "while"). 

487                 laufwhile = 0  

488                 # Set to 0, if difference < 1%, go out of the loop while 

489                 for i in range(self.np): 

490                     if abs((s2[i]-s1[i])/s2[i]) >= 0.01: 

491                         laufwhile = 1 

492                 for i in range(self.np): 

493                     if ((Rb2[i]-Rb[i])-(Rb1[i]-Rb[i]))/(Rb2[i]-Rb[i]) >= 0.01: 

494                         laufwhile += 1 

495                 for i in range(self.np): 

496                     for k in range(self.n_layer): 

497                         if ((Rs2[i,k]-Rs[i,k])-(Rs1[i,k]- 

498                             Rs[i,k]))/(Rs2[i,k]-Rs[i,k]+1e-10) >= 0.01: 

499                             laufwhile += 1          

500             # End of the loop while 

501                              

502 #%% Calculate total settlement, load shaft and load base 

503             """Total settlement""" 

504             for i in range(self.np): 

505                 s_tot[i] = s_tot[i]+s2[i] 

506             """Total load in the pile base""" 

507             for i in range(self.np): 

508                 Rb[i] = Rb[i]+delta_Rb[i]  

509             """Total load in each layer of the pile shaft""" 

510             for k in range(self.n_layer): 

511                 for i in range(self.np): 

512                     Rs[i,k] = Rs[i,k]+delta_Rs[i,k]      

513             """Sum of all the layer loads to obtain a single pile shaft load""" 

514             for i in range(self.np): 

515                 Rs_tot[i] = 0 

516                 for k in range(self.n_layer): 

517                     Rs_tot[i] = Rs_tot[i]+Rs[i,k]   

518             """Total load in a pile"""    

519             R_tot = Rb+Rs_tot  

520 #%% Storage of the results after each iteration 

521             Rb_plot[:,iteration] = Rb 

522             Rs_tot_plot[:,iteration] = Rs_tot 

523 #            for i in range(self.np): 

524 #                if Rs_tot_plot[i,iteration] < 0: 

525 #                    Rs_tot_plot[i,iteration] = 0              

526             R_tot_plot[:,iteration] = R_tot 

527             s_tot_plot[:,iteration] = -s_tot*100 

528         # End of the incremental loop, increase dFv for the next loop  

529 #%% Plot results 

530         if self.plot_fig: 

531             for i in range(2,5): 

532                 plt.figure() 

533                 plt.plot(Rs_tot_plot[i,:],s_tot_plot[i,:], color='#4682B4',  

534                          linestyle=':', marker='.', label='Rs_%s'%(i+1)) 

535                 plt.plot(Rb_plot[i,:],s_tot_plot[i,:],color='orange',  

536                          linestyle=':', marker='.', label ='Rb_%s'%(i+1)) 

537                 plt.plot(R_tot_plot[i,:],s_tot_plot[i,:],color='#2F4F4F',  

538                          linestyle='--', marker='o', label ='Rtot_%s'%(i+1)) 

539                 plt.title('Pile %d, D = %s m' 

540                           %(i+1, 2*decision_vect[self.np])) 

541                 plt.xlabel('Load (kN)') 
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542                 plt.ylabel('Settlement (cm)') 

543                 plt.grid() 

544                 plt.box('on') 

545                 plt.legend() 

546                 graph_name = 'Load-settlement curve pile %s'%(i+1) 

547                 plt.savefig(graph_name+'.png') 

548                 plt.show() 

549                  

550             fig = plt.figure() 

551             plt.plot(x,y,'o', color='#2F4F4F', markersize=12) 

552             plt.title('Position of the piles, a/D = %.1f'  

553                       % (decision_vect[self.np+1]/(2*decision_vect[self.np]))) 

554             plt.xlabel('x (m)') 

555             plt.ylabel('y (m)') 

556             plt.grid() 

557             plt.box('on') 

558             position = fig.add_subplot(111) 

559             for i in range(self.np): 

560                 position.annotate('%s'%(i+1), xy=(x[i], y[i]),  

561                                   xytext=(x[i]+0.25, y[i]+0.06))  

562                 # Assignement of the numerotation to each point  

563             graph_name = 'Position of the piles' 

564             plt.savefig(graph_name+'.png') 

565              

566             fig = plt.figure() 

567             plt.plot(x,y,'o', color='#2F4F4F', markersize=0)    

568             plt.title('Distribution resistances (MN)\nand settlement (cm)') 

569             plt.xlabel('x (m)') 

570             plt.ylabel('y (m)') 

571             plt.grid() 

572        

573             plt.box('on') 

574             plt.ylim([-1, max(y)+1]) 

575             plt.xlim([-1.5, max(x)+1.5]) 

576 #            plt.axis('equal') 

577             subplot = fig.add_subplot(111) 

578             for i in range(self.np): 

579                 subplot.annotate('%.1f'%(R_tot[i]/1000), xy=((x[i], y[i])),  

580                                  xytext=(x[i]-0.3, y[i]-0.1))  

581                 subplot.annotate('%.1f'%(s_tot[i]*100), xy=((x[i], y[i])),  

582                                  xytext=(x[i]-0.25, y[i]-0.9)) 

583                 subplot.add_artist(matplotlib.patches.Circle((x[i], y[i]),  

584                                 R_tot[i]/(2*numpy.mean(R_tot)), edgecolor = 

585                                 '#2F4F4F', facecolor = 'none', linestyle='-')) 

586             graph_name = 'Benchm KKP1, Resistance and settlement distribution' 

587             plt.savefig(graph_name+'.png')                                                       

588 

589         print("Settlement: %10.2f cm" %(numpy.mean(s_tot)*100))  

590         # Round the float to 2 decimal places in a 10-place field 

591         return(numpy.mean(s_tot)) 

592          

593 class InfluenceRadius(object):     

594     """ This class gathers functions calculating the radius of influence using  

595     different empirical models: 

596         - Cooke (1974) 

597         - Wroth (1979) 

598         - Lutz using the correction factor alpha (2003) 

599         - Lutz using the thickness of the compressible layer (2003) 

600         - Liu (1996) 

601     For more information see M. Rudolf (2005) p. 75""" 

602 

603 

604     def __init__(self, diameter = None , length = None, poisson = None,  

605                  alpha = None, thickness = None): 

606         self.diameter = diameter 
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607         self.length = length 

608         self.poisson = poisson 

609         self.alpha = alpha 

610         self.thickness = thickness 

611          

612     def cooke(self, diameter): 

613         """Radius of influence using Cook's formula with parameters: 

614             - Diameter""" 

615         radius = 10*diameter # [m] 

616         return(radius) 

617      

618     def wroth(self, length, rg, poisson): 

619         """Radius of influence using Wroth's formula (1979) with parameters: 

620             - Length of the pile  

621             - Radius rg of the circle having the same area as the pile group 

622             rg = sqrt(a*b/pi) with a and b dimensions of the pile group  

623             - Poisson's ratio""" 

624         radius = 2.5*length*(1-poisson)+rg # [m] 

625         return (radius) 

626          

627     def lutz_alpha(self, length, poisson, alpha): 

628         """Calculation of the radius of influence using Lutz's formula relative  

629         of the coefficient alpha (2003). Alpha is a factor correcting the  

630         formula of Wroth (1979), comprised between 2.5 and 5.5. Parameters: 

631             - Length of the pile 

632             - Poisson's ratio 

633             - Alpha coefficient 

634         NB: For an infinitely extended half space, alpha = 5.5 and for  

635         H/L = 2, alpha = 2.5""" 

636         radius = alpha*length*(1-poisson) # [m] 

637         return (radius) 

638      

639     def lutz_thickness(self, length, poisson, thickness): 

640         """Calculation of the radius of influence using Lutz's formula relative  

641         of the "thickness of the compressible layer"(2003). Parameters:  

642             - Lengths of the pile 

643             - Poisson's ratio 

644             - Thickness of the compressible layer""" 

645         radius = 1/(0.18182+0.43636*length/thickness)*(1-poisson)*length # [m] 

646         return(radius) 

647              

648     def liu(self, diameter, poisson, length, thickness): 

649         """Radius of influence using the formula of Liu (1996) with parameters: 

650             - Diameter of the pile 

651             - Poisson's ratio 

652             - Length of the pile 

653             - Thickness of the compressible layer""" 

654         radius = diameter*1.1*(1-3.5*poisson**2.5)*(thickness/length)**0.68*( 

655                 length/diameter)**0.85 # [m] 

656         return (radius) 

657          

658 if __name__ == '__main__': 

659     instance_pile = PileGroup()  
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A.2    Multi-optimisation of a pile group  
   # -*- coding: utf-8 -*- 

1   """ 

2   Created on Tue Feb 20 16:04:37 2018 

3   

4   @author: Corentin 

5   """ 

6   

7   import time # Used to calculate the computation time 

8   

9   import pygmo as pg # Optimisation library, Pagmo 2.7 

10  

11  import matplotlib.pyplot as plt 

12  

13  from PileGroup_calculation_15param import PileGroup  

14  # Imports the class "PileGroup"  

15  

16  tmps_total_1 = time.time() # Starts the measurement of the computation time 

17  

18  class PileOptimPareto(object): 

19      """ Defines a User Defined Problem (UDP) with 2 objectives  

20      (volume of the piles and settlement of the pile group), unconstrained """  

21       

22      def __init__(self, dim = 15): 

23          self.dim = dim  

24          # Set up the dimension of the problem (ie decision vector's dimension)  

25          self.instance_pile = PileGroup()  

26          # Creates one instance of the imported class PileGroup, defines  

27          # it as a local variable  

28           

29      def get_nobj(self): 

30          """ Sets up the number of objectives of the problem""" 

31          return(2) 

32            

33      def get_bounds(self): 

34          """ Sets up the lower and upper boundaries of the decision vector   

35          (here pile length and pile radius, in meters)""" 

36          return([10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 0.6, 1.5, 1.5],  

37                  [25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 1, 6, 6]) 

38          # of the form ([lower boudaries], [upper boudaries]) 

39          # ie lp = [10, 25], rp = [0.6, 1], dx = [1.5, 6], dy = [1.5, 6] 

40       

41      def get_name(self): 

42          """ Sets up the name of the problem""" 

43          return ("PileOptimPareto") 

44       

45      def fitness(self, decision_vect): 

46          """ Defines the objectives of the problem.  

47          "decision_vect" is of dimension "dim" """ 

48          objective1 = self.instance_pile.volume(decision_vect)  

49          # Volume of the piles (m3) 

50          objective2 = self.instance_pile.settlement(decision_vect)  

51          # Settlement of the pile group (m) 

52          return (objective1, objective2) 

53       

54  if __name__ == '__main__': 

55      instance_pileoptim = PileOptimPareto()  

56       

57  #%% Input 

58  generations = 30  

59  # Number of generations of the algorithm  

60  popul = 72 

61  # Number of individuals that will be evolved (NB: for the NSGA-2  

62  # algotithm, a minimum of 5 and a multiple of 4 individuals is needed) 
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63  algo_name = "NSGA2"  

64  #algo_name = "MOEAD"  

65  # Only used to give information in the plot, not necessary to run the algorithm 

66  

67  #%% Instantiates a problem and evolves it 

68  probl = pg.problem(PileOptimPareto(15))  

69  # Instantiates a pygmo problem constructing it from the UDP 

70  

71  nsga2 = pg.algorithm(pg.nsga2(gen = generations))  

72  # Instantiates a pygmo algortihm (here the algorithm is defined in a class of  

73  # the pygmo library, but it is possible to code our own algorithm (User Defined  

74  # Algorithm, UDA)) 

75  

76  tmps_init_1 = time.time()  

77  # Starts the measurement of the initialisation of the population 

78  pop = pg.population(probl, popul)  

79  # Initialises the population made of individuals bound to the problem (number  

80  # of fitness evaluations rises to the number of the population) 

81  tmps_init_2 = time.time() - tmps_init_1 

82  

83  f = pop.get_f()  

84  # Gets the initial fitness vector  

85  plt.scatter(f[:,0], f[:,1]*100, color = 'black', label = 'Initial population',  

86              marker = '.')  

87  # Plots the initial fitness vector (one column contains one objective) 

88  

89  tmps_evolve_1 = time.time()  

90  # Starts the measurement of the evolution of the algorithm 

91  pop = nsga2.evolve(pop)  

92  # Runs the evolution (optimisation) of the algorithm 

93  tmps_evolve_2 = time.time() - tmps_evolve_1 

94  

95  nb_fitness_eval = pop.problem.get_fevals()  

96  # Gets the number of times the objectives are calculated 

97  x = pop.get_x()  

98  # Gets the evolved decision vectors 

99  f = pop.get_f()  

100 # # Gets the evolved fitness vector  

101 

102 #%% Visualisation  

103 plt.scatter(f[:,0], f[:,1]*100, color = 'red', marker = 'v', label =  

104             'Evolved population (Pareto front)\nFitness evaluations: %d'  

105             %nb_fitness_eval)  

106 plt.scatter(318.08, 3.0, color = 'blue', label = 'Reference solution') 

107 plt.plot([318.08, 318.08], [0, 3.0], 'b--', lw = 1.5)  

108 # vertical line between points [318.08,0] and [318.08,3.0] 

109 plt.plot([0, 318.08], [3.0, 3.0], 'b--', lw = 1.5) 

110 # Plots the evolved fitness vector (one column contains one objective) 

111 plt.xlim([0, 800]) 

112 plt.ylim([0, 13]) 

113 plt.title('Benchmark CPR1 variant 2, 15 parameters \n algorithm %s, %s 

generations, %s individuals' %(algo_name, generations, popul)) 

114 plt.xlabel('Volume of the piles ($m^{3}$)') 

115 plt.ylabel('Settlement (cm)') 

116 plt.grid() 

117 plt.legend(loc = 1)  

118 # Legend box fixed at the top right corner 

119 plt.savefig('Benchmark KPP1 variant 2 15 parameters, algorithm %s, %s 

generations, %s individuals.png' %(algo_name, generations, popul)) 

120 plt.show() 

121 

122 tmps_total_2 = time.time() - tmps_total_1  

123 # Ends the measurement of the total computation time 

124 print("Execution time, init population : %10.2f min" %(tmps_init_2/60)) 

125 print("Execution time, algorithm: %10.2f min" %(tmps_evolve_2/60)) 
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126 print("Execution time, total: %10.2f min" %(tmps_total_2/60)) 

127 

128 #%% Saves data, just in case 

129 with open('Data %s_%s_%s 15 param.txt' 

130           %(algo_name, generations, popul),'w') as out_file:  

131     # 'w' refers to 'write' 

132     out_string = "Fitness \n" 

133     out_string += str(f) 

134     out_string += "\n"*2 + "Decision vector: \n" 

135     out_string += str(x) 

136     out_file.write(out_string) 



 

 

 

Appendix B    Global and partial safety concept  

With the introduction of Eurocode 7 in 2005 and its partial safety concept, a new approach concerning 

design in the geotechnics has been taking place. A single standard safety concept has been unified in 

Europe. The global safety factor made use of a single safety factor to ensure a sufficient safety level. 

The safety concept derived from Eurocode 7 (or its counterpart ÖNORM EN 1997-1 in Austria or DIN 

EN 1997-1 in Germany) is established by means of a reduction of the resistance values and an increased 

action calculated with different safety factors. It has to be said that other comparable codes (such as the 

DIN 1054:2005-01 in Germany [14]) have been maintained and applied as long as they do not contradict 

Eurocode 7 within a coexistence period. The old code DIN 1054:1976-11 [13] has no longer been 

applicable since 2008.  

Two different limit states have to be analysed: the ultimate limit state aims at assuring a sufficient load-

bearing capacity and at excluding any threat for humans, whereas the serviceability limit state guarantees 

the long-term usability of the construction.  

B.1    Global safety concept 
A construction is said to be safe according to the global safety concept if the characteristic resistance 

(abbreviated 𝑅) and the characteristic stress or action (commonly abbreviated 𝑆) verify the following 

equation involving the global security factor η 

RS   (B.1) 

 

Note that the action effect is commonly called E. Only one parameter is used to take into account all the 

different types of inherent imponderability of the geotechnical construction. This parameter depends on 

the considered load case according to DIN 1054:1976 [13]. Some objections can thus be made to this 

concept, as exposed by Adam (2016) [1]: 

 For a major part of the geotechnical designs (slippage, tipping, load-bearing capacity of piles…) 

differentiated safety factors exist, determined empirically or arbitrarily. 

 Every design load cannot be evaluated separately, making the safety concept untraceable. 

 This concept is not able to depict the safety reserves or the utilisation factor of the construction. 

That is why a new concept was developed that aims to eliminate these drawbacks.   

B.2    Partial safety factor concept 
For every calculation step, the dispersion of the influence parameters is directly included using the so-

called partial safety factors γ. Resistances and stresses are described using characteristic values (index 

k), representing the “safe” mean value of statistical analyses (that is to say somewhat more than the 

mean value of the action respectively somewhat less than the mean value of the resistance). The 

characteristic values are then increased or attenuated using partial safety factors, whether they operate 

favourably or unfavourably (see equation (B.2) and Adam (2016) [1]). The obtained values are called 

design values (index d).  
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The calculation of design values can be generalised. For actions, it is either directly determined or 

derived from a representative value Frep that is multiplied by a partial factor γF (ÖNORM B 1997-1-1) 

as in Equation (B.3). 

Frepd FF   (B.3) 

 

For geotechnical parameters, they are calculated using the characteristic value divided by the partial 

safety factor of the material γM.  
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Following ÖNORM B 1997-1-1 (the national guidance of Eurocode 7), all material safety factors γM 

used to design pile foundations or shallow foundations are equal to 1. That is to say, all design 

approaches in Austria are conducted using the characteristic soil parameters.   

In Eurocode 7, three design approaches are presented. They depict the different calculation and design 

philosophies existing in Europe [1]. In Austria, only the Design Approaches (DA) 2 and 3 are employed. 

It is also stated that for pile and shallow foundations, the DA 2 has to be applied (ÖNORM B 1997-1-

1). For the DA 2, it should be verified that “a limit state of rupture or excessive deformation will not 

occur using following combination of sets of partial factors” see [20]: 

Combination: A1 “+" M1 "+" R2 

The following terminology is adopted: A refers to the Actions, M to the Material properties and R to the 

Resistances. In this approach, partial factors are applied to actions or to the effects of actions A 

(equivalents of the German “Einwirkung” and “Beanspruchung”) and to ground resistances R. They do 

not apply to material properties (all material safety factors are set to γM = 1 in the set M1). As an example, 

the table of sets A1 and A2 is presented in Table B.1 (see Annex A.3 of Eurocode 7-1). Using the design 

values outlined above, the two limit states can be verified. 

Ultimate limit state  

The ultimate limit state is verified if the design value of the action Sd is not exceeding the design value 

of the resistance of a construction Rd or a construction part.  
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Table B.1: Partial factors on actions following two different sets of partial factors [20]. 

 

Serviceability limit state 

The design of the serviceability limit state is carried out by the equation 

dd CE   (B.6) 

 

in which Cd represents the design value of the decisive serviceability criterion. For example, a 

deformation serviceability criterion is the limit value of the deformation, after which the serviceability 

of a structure is not given (for example not admissible cracks). This limit value has to be set during the 

design of the structure. 

B.3    Comparison of the two concepts 
Both concepts are summarised in Figure B.1. In particular, Eurocode 7 introduces new requirements 

regarding the calculation of piles. Some characteristics of a pile group have to be designed more 

precisely than it had been the case in DIN 1054:1976-11 [13], for example:  

 the group effect of a pile group, 

 the settlement differences between piles of a group and 

 the non-linear load-bearing behaviour.  

Figure B.1: Representation of the global and partial safety concepts. 





 

 

 

Appendix C    Optimisation  

C.1    Academic benchmark 
To study the influence of the input parameters on the efficiency of the algorithm, an academic 

benchmark is carried out. The problem considered in this study, i.e. the first problem of the ZDT family 

in two dimensions, was presented in Section 6.1.1 together with the associated metric used to quantify 

the quality of the solution.  

C.1.1    Influence of the number of generations 

To optimise the ZDT1 problem, the number of individuals that are to be evolved for each simulation 

must be determined. One then varies the number of generations applied to this initial population and 

evaluates the precision of the obtained Pareto front. It is clear due to Figure C.1 that the higher the 

number of generations, the greater the precision of the convergence. If the initial population is not 

evaluated, selected, mutated and inserted in the new population a sufficient number of times, decision 

vectors are not able to converge to an optimal Pareto set. For only two generations, the distance to the 

Pareto front amounts to 2.45 but is reduced to 0.31 for 10 generations. 

Figure C.1: Influence of the number of generations on the convergence of the genetic algorithm (a) 2 

iterations (b) 4 iterations (c) 10 iterations. 

(b) 

(c) 

(a) 
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C.1.2    Influence of the population size 

Here, the number of generations is fixed while the number of individuals is increased for each 

simulation. It is noteworthy in Figure C.2 that the larger the population, the better the convergence. This 

is due to mutations and crossovers, which occur for each iteration. Indeed, if the population is larger, 

more individuals are mutated, creating a more diverse offspring. This offspring possibly contains 

decision vectors closer to the analytical solution in comparison with a simulation featuring few 

individuals. Mutation and crossover increase the chance to evolve to the optimal Pareto front. For 10 

generations and 12 individuals, the distance to the Pareto front is 1.56, whereas when using 60 

individuals, the optimal Pareto front is almost reached (distance of 0.03).  

With a sufficient number of iterations and an adequate population size, the convergence to the optimal 

Pareto front is reached (see Figure C.3). 

It has to be added that some input parameters like the crossover rate can be optimal for one given 

problem and unsatisfactory for another one. Some parameters are specific to each problem, but an 

increasing number of generations or a larger initial population will unconditionally improve the quality 

of the result. However, it leads to a more significant computational complexity. 

Figure C.2: Influence of the population size on the convergence of the genetic algorithm (a) 12 

individuals (b) 32 individuals (c) 60 individuals. 

 

(a) (b) 

(c) 
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Figure C.3: Convergence to the optimal Pareto front for 30 generations and 40 individuals. 

C.2    Choice of the algorithm 
As mentioned in Section 6.1.3, different algorithms are implemented in pygmo and selectable by the 

user. The algorithms MOEAD and NSGA-II were compared on the basis of the Benchmark “Guideline 

1.2”.  

The MOEAD algorithm turns out to be inapplicable for the present optimisation problem. In fact, the 

algorithm tends to favour one objective over the other; it exaggerates the impact of the volume reduction 

over the settlement objective, as pointed out in Figure C.4 (a) where only a part of the Pareto front is 

covered. Decision vectors mainly stay in the area of minimum volumes with high settlements and do 

not depict the whole range of optimal solutions. 

Variations of the crossover and mutation rate as well as an increase of the number of generations and of 

the population size did not result in forming an evenly distributed set of solution over the possibility of 

the Pareto front in its entirety (see Figure C.4 (b)). Even if an improvement is to be attested, a lowest 

settlement solution cannot be reached. The NSGA-II algorithm permits to cover a more significant range 

of the optimal Pareto set as shown in Figure 6.4. This is why the NSGA-II is preferably chosen as a 

basis for the present study. Nevertheless, not all algorithms are suitable for all problems, i.e. the 

algorithm has to be chosen anew for each optimisation task.  

Figure C.4: Application of the MOEAD algorithm on the benchmark “Guideline 1.2” (a) 15 

generations, 48 individuals (b) 80 generations, 100 individuals. 

(a) (b) 


