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Abstract

Whenever describing purely diffusive behavior in multicomponent mixtures, the Maxwell-
Stefan equations pose an important framework for various engineering applications, which
include polymers (cf. [19, 54]), plasmas (cf. [26, 42]), ultrafiltration, electrolysis (cf. [69])
and even diffusion processes in the human lung (cf. [15]).

In this thesis, the link between molecular diffusion and the continuum-mechanical de-
scription in the Maxwell-Stefan equation is made plausible by following the recent exposition
by Boudin in [13], which illustrates the physical assumptions under which the Maxwell-Stefan
equations pose a valid model for describing multi-component diffusion on a macroscopic
scale. In addition, several current efforts of generalizing some of the simplifications made in
the model are stated.

Furthermore, an important result for the existence of weak solutions to the Maxwell-
Stefan equations (as presented in [40, 65]) is discussed in detail, by hinting links to the more
general framework of the “Boundedness-By-Entropy” method developed by Jüngel in [37].

Finally, a new conforming lowest-order Finite Element (FEM) discretization in space and
a semi-implicit Euler discretization in time is discussed, which employs an “entropy-variable”
formulation of the Maxwell-Stefan equations using techniques from Jüngel. For this purpose,
Python code employing this method has been written to solve 1D and 2D problems even
on complex polygonal geometries. The performance of the code is then investigated by a
benchmark, which employs the Method of Manifactured Solutions (MMS), yielding a novel
model problem with a given analytic solution.

Zusammenfassung

Die Maxwell-Stefan Gleichungen sind ein wichtiges Modell mit zahlreichen Anwendun-
gen in Industrie und Technik, welche rein diffusive Prozesse zwischen zwei und mehr Ga-
sen beschreiben können. Als einige Anwendungen der Maxwell-Stefan-Gleichungen (je nach
Anwendungen mit leichten Modifikationen) seien unter anderem Polymere (siehe [19, 54]),
Plasmen (siehe [26, 42]), Ultrafiltration, Elektrolyse (siehe [69]) und sogar die Beschreibung
diffusiver Phänomene in der menschlichen Lunge (siehe [15]) zu nennen.

In dieser Arbeit wird zunächst zum besseren Verständnisses des Modells eine Herleitung
der Maxwell-Stefan Gleichungen aus den Boltzmann-Gleichungen anhand eines jüngeren
Resultats von Boudin in [13] unternommen, um den physikalischen Anwendungsbereich und
die Verbindung zwischen mikroskopischer und makroskopischer Beschreibung deutlich zu
machen. Weiters wird ein kurzer Überblick auf aktuelle Forschungsfragen gegeben, wonach
möglicherweise einige Simplifizierungen des Modells fallen gelassen werden können.

Weiters wird ein wichtiges Resultat zur Existenz schwacher Lösungen der Maxwell-Stefan
Gleichung (siehe [40, 65]) ausgearbeitet, wobei die Einordnung des Beweises in den verall-
gemeinerten Rahmen der “Boundedness-By-Entropy”-Methode für Kreuz-Diffusionssysteme
von Jüngel [37] besprochen wird.

Im praktischen Teil der Arbeit wird anhand der in dem Existenzbeweis verwendeten
Methode, welche sogenannte Entropievariablen verwendet, eine neuartige numerische Dis-
kretisierung vorgestellt, welche die Maxwell-Stefan-Gleichungen löst. Die Ortsdiskretisierung
wird hierbei mit einer Finite Elemente-Diskretisierung niedrigster Ordnung vorgenommen,
während für die Zeitschritte ein semi-implizites Euler-Verfahren verwendet wird. Zur Unter-
suchung der Methode wurde Code in Python geschrieben, welcher in 1D und 2D auch auf
komplexen polygonalen Gebieten die Maxwell-Stefan Gleichungen lösen kann. Mittels der
“Method of Manifactured Solutions”, welche ein Problem mit einer bekannten analytischen
Lösung erzeugt und im Fall der Maxwell-Stefan Gleichungen erstmals angewendet wurde,
wird hierbei die Performance des Codes genauer untersucht und diskutiert.
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Das Studium der Maxwell’schen Abhandlung ist nicht leicht.

— J. Stefan (1871) in [64] on Maxwell’s work (1866) [47]
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1 Introduction

The Maxwell-Stefan equations are used to describe diffusive transport in multicomponent mix-
tures, which were originally stated by the physicists J.C. Maxwell [47] and J. Stefan [64] in the
19th century.
In the 1960s, Duncan and Toor have experimentally demonstrated in [24] the limitations of
the linear Fickian diffusion model used for describing a wide range of diffusional processes in
engineering, which failed to describe the phenomenon of uphill diffusion, where the flux of the
individual components is not in the direction of the concentration gradient, cf. [43] or [67,
ch. 5]. However, it should be noted that there exists a more general Fickian framework where
these phenomena can be described as well, cf. [67, ch. 3.2] or [66], but this yields a matrix
formulation with positive and negative coefficients, which is also not symmetric. Therefore the
Maxwell-Stefan framework is preferred in this case, especially if the appropriate Maxwell-Stefan
diffusion coefficients are given by experiments and/or auxiliary models, cf. [67, ch. 4].
Apart from modeling diffusional processes in dilute gases, Maxwell-Stefan type equations can
be also employed to study multicomponent mass transfer in polymers (cf. [19, 54]), plasmas (cf.
[42, 26]) and can be used to model ultrafiltration, electrolysis and porous catalysts (cf. [69]).
Another interesting application of the Maxwell-Stefan includes the modeling of diffusional pro-
cesses in the lower respiratory airways as presented in [15], which can be used to find oxygen
peaks of patients with chronic obstructive bronchopneumopathies, which are administered a
mixture of helium and oxygen.
The model for these various processes relevant in various applications throughout science and
engineering will be shortly introduced in section 1.1 and will then be made more rigorous in
section 2, where a derivation of the model from statistical physics is presented.

1.1 Preliminaries

In order to study the Maxwell-Stefan equation on a spacial domain Ω ⊂ Rd for d ∈ N+, one
considers a gaseous mixture of N + 1 molar concentrations ci of gases under isothermal and
isobaric conditions, where ci : R× Ω→ [0, 1] : (t, x) 7→ ci(x, t) and 1 ≤ i ≤ N + 1 and N ∈ N+.
The suitable non-linear system to describe the diffusion of multi-component mixtures, which
will be derived in section 2, is given by

∂ci
∂t

(x) + div(Ji) = ri(c(x, t)) in Ω, t > 0, 1 ≤ i ≤ N + 1. (1.1a)

On the boundary of the domain Ω we consider homogeneous Neumann boundary conditions for
all concentrations ci (i.e. no flux across the boundary ∂Ω), which are given by

∇ci · ν = 0 on ∂Ω, t > 0, 1 ≤ i ≤ N + 1, (1.1b)

where ν denotes the outwards pointing unit normal vector on ∂Ω.
The initial concentrations are given by measurable functions c0

i , such that there holds

ci(·, 0) = c0
i in Ω, 1 ≤ i ≤ N + 1. (1.1c)

The molar fluxes are related to the concentration gradients, i.e. by

∇ci = −
N+1∑
j=1
i 6=j

cjJi − ciJj
Dij

. (1.2)
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In (1.2) Dij denote the Maxwell-Stefan diffusion coefficients2 and J i ∈ Rd denotes the molar
flux, which itself is defined as

J i(ci, ui) = ci(x, t)ui(x, t), (1.3)

where ui(x, t) for 1 ≤ i ≤ N + 1 denotes the velocity of the components of the mixture.
By the definition of matrix-vector multiplication, one can reformulate (1.2) in matrix form as

∇c′︸︷︷︸
∈R(N+1)×d

= A(c(x, t))︸ ︷︷ ︸
∈R(N+1)×(N+1)

J(c(x, t))︸ ︷︷ ︸
∈R(N+1)×d

, (1.4)

where the matrix A is given via

Aij(x, t) =

dijci(x, t) i 6= j

−∑N+1
j=1
j 6=i

dijcj(x, t) i = j , (1.5)

Note that in (1.5) the short-hand dij = 1
Dij

is employed, while c′ = (c, cN+1) ∈ RN+1, where

c = (c1, . . . , cN ) ∈ RN .
Due to the assumption of isothermal and isobaric conditions, the sum of the molar concentrations
is constant and can be set to one, which serves as the following closure relation3:

N+1∑
j=1

ci(t, x) = 1 on R+ × Ω. (1.6)

However, the matrix A can not be inverted, as only N equations of (1.2) are linearly inde-
pendent.4 Hence the system needs an additional closure relation to be well-posed, therefore
it is normally assumed that there holds a transient equimolar diffusion in the mixture before
reaching the stationary state (cf. [10], [14, sec. 2]), which can be expressed via

N+1∑
k=1

Jk(t, x) = 0 on R+ × Ω. (1.7)

Via the closure relation (1.7), a straightforward dimensional reduction can be performed in
order to obtain a lower-dimensional system where the resulting matrix A0 ∈ RN×N can in fact
be inverted.5

By (1.7) there holds equivalently

JN+1 = −
N∑
j=1

J j = −J i −
N∑
j=1
j 6=i

J j 1 ≤ i ≤ N.

2For further information how these coefficients can be obtained in engineering, cf. [67, ch. 4].
3This can be further motivated, c.f. [28, ch. 2] or [10].
4It can be easily proven that the N + 1 fluxes are not linearly independent by summing (1.2) over all N + 1

components, which yields zero. Hence the N + 1 fluxes can’t be linearly independent as this holds for arbitrary
concentrations, which can be interpreted as coefficients to the flux-vectors.

5See Lemma 3.3 for further details.
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From (1.2), (1.6) and (1.7) there holds

∇ci = −J i
N+1∑
k=1
k 6=i

ci
Dik

+ ci

N∑
j=1
j 6=i

J j
Dij

+ ci
JN+1

Di,N+1

= −J i
N+1∑
k=1
k 6=i

ci
Dik

+ ci

N∑
j=1
j 6=i

J j
Dij
− ci

Di,N+1

J i +
N∑
j=1
j 6=i

J j



= −Ji

 ci
Di,N+1

+
N+1∑
j=1
j 6=i

cj
Dij

+ ci

N∑
j=1
j 6=i

(
1

Dij
− 1

Di,N+1

)
J j

= −Ji

 1

Di,N+1
+

N+1∑
j=1
j 6=i

(
1

Dij
− 1

Di,N+1

)
cj


︸ ︷︷ ︸

−a0
ii

+

N∑
j=1
j 6=i

ci

(
1

Dij
− 1

Di,N+1

)
︸ ︷︷ ︸

−a0
ij

J j

By above computation, one can define the N -dimensional diffusion matrix A0 ∈ RN×N by6

(A0)ij(c) =

− (dij − di,N+1) ci i 6= j

di,N+1 +
∑N

j=1
j 6=i

(dij − di,N+1) cj i = j 1 ≤ i, j ≤ N (1.8)

Assuming for the moment that A0(c) can be inverted, we can reformulate the coupled system
(1.1a) and (1.2) as an N -dimensional system via

∂

∂t

 c1(x, t)
...

cN (x, t)

− div

A0(c(x, t))−1

∇xc1(x, t)
...

∇xcN (x, t)


 =

 r1(c(x, t))
...

rN (c(x, t))


∂

∂t
c(x, t)− div(A0(c(x, t))−1∇xc(x, t)) = r(c) in Ω, t > 0. (1.9)

In Lemma 3.3, it will be proven that A0 can in fact be inverted. However, as stated in [40],
A−1

0 (c) may not be positive definite, which we will overcome by exploiting the entropy structure
of the Maxwell-Stefan equation, which will be discussed in detail in Section 3.

1.2 Thesis outline

The thesis is organized as follows:
In section 2, a derivation of the Maxwell-Stefan equations via the Boltzmann equations is given,
which was derived by Boudin in [13]. Futhermore, an overview on current research topics in
understanding diffusion from first principles is given.
In section 3, some of the results presented in section 1 will be made more rigorous and necessary
conditions for the existence of a solution to the Maxwell-Stefan system (1.1) will be presented,
which was first proven by Jüngel and Stelzer in [40, 65].

6We actually use the convention that the coefficients in the derivation of A0 are the coefficients of the matrix
−A0 to be consistent with [40]. Note that the contribution of the N + 1-st summand in the term defining a0

ii is
trivial.
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In section 4, the setup of a new discretization of the Maxwell-Stefan system is presented, which
was used to produce code that numerically solves the system in so-called “entropy variables”
using ideas from section 3. Furthermore, several issues related to writing efficient Python code
for solving the Maxwell-Stefan equations are addressed.
In section 5, the numerical performance of the code solving the Maxwell-Stefan equations is
discussed on several model problems, most prominently on a problem obtained by the Method
of Manifactured solutions (MMS), yielding a benchmark where an analytical solution is given,
against which the output of the solver can be compared. The relation between timestep size
and spatial discretization to obtain low-error solutions is further discussed.
Finally, in section 6, conclusions from the numerical experiments and a further outlook on open
research topics is presented.
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2 Derivation of the Maxwell-Stefan system via a diffusion limit

In this section, a recent result from Boudin as given in [13] is presented, which recovers the
Maxwell-Stefan system (1.1) from a scaling argument derived from the weak formulation of the
Boltzmann-equation.
This approach was chosen as the derivation is more rigorous than in many other approaches,
e.g. in [10, 67, 69], which are more focused on applications in engineering rather than math-
ematical rigor. Furthermore, this presentation yields some results which are important to the
later exposition in the existence proof, as e.g. the symmetry of the Maxwell-Stefan diffusion
coefficients Dij , which can be derived quite naturally in that framework. Hence it is suitable
to gain a better understanding of the modeling behind the Maxwell-Stefan equations and also
presenting the various assumptions necessary to derive the equations.
The presentation of the Boltzmann equations and the collision operators as stated in sections
2.1 and 2.3.1 is based on the expositions found in [18, 36, 53, 58].

2.1 A few notes on the Boltzmann equation

We consider a mixture of N + 1 components of species Ai, which are distributed according to
the probability density function fi(t, x, v) in three-dimensional space, i.e. x, v ∈ R3. Hereby
x denotes the position in three-dimensional space, vi the velocity of a given particle and t the
moment in time currently considered.
For any time t, the differential fi(t, x, v)dxdv is proportional to the number of molecules for the
species Ai in an element of the 6D-phase-space centered at the point (x, v) ∈ R6. Thus we can
express the molar concentrations of the species Ai by

ci(t, x) =

∫
R3

fi(t, x, v)dv t ≥ 0, x ∈ Ω. (2.1)

For this derivation, we assume that the mixture is non-reactive (thus ri = 0 in (1.1a) for
1 ≤ i ≤ N + 1), hence only mechanical collisions are considered.
For the derivation of the Boltzmann equation we start with the collision-free version of the
Boltzmann equation, which is given for the distribution function fi(x, vi, t) and an external
force field F(x, t) (e.g. a gravitational field) by

dfi
dt

=
∂fi
∂t

+ vi · ∇xfi +
F
mi
· ∇vifi = 0 (2.2)

for arbitrary x ∈ Ω, vi ∈ R3 and t ∈ R+. In (2.2), mi denotes the mass of the considered
particle of species Ai as usual.
Above equation is a direct result of a version of Liouville’s theorem formulated in µ-space7 and
can be found in various textbooks, e.g [36, Ch. 3.1] or [53, Ch. 3.3.1].
In the case of the Maxwell-Stefan equations considered here, we will neglect external force fields
such as electric or gravitational fields, therefore the following assumption is made:

Assumption 2.1 (Neglection of external forces). We neglect the last term of (2.2) as
we neglect external forces, thus F(t, x) = 0 for t ≥ 0, x ∈ Ω.

7The 6D phase space in which the Boltzmann equations are formulated is sometimes called µ-space (compare
e.g. [53, p. 22]), I will use this convention as a short hand as well.
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2.2 Elastic two particle collisions

In order to further study a collision model in the Boltzmann equations, elastic two particle
collisions have to be considered. For the Boltzmann equation with collision term, which is going
to be introduced shortly, we will therefore make the following assumptions:

Assumption 2.2 (Elastic collision). The collisions between the particles are assumed to
be elastic, i.e. both momentum and kinetic energy should be conserved during the collision.

Let vi be the velocity of the particle of species Ai before the collision, then the momentum is
defined by

p
i

= mivi. (2.3)

Let the primed quantities denote the respective quantities after the collision, then there should
hold for a closed system of n particles due to the conservation of momentum

n∑
i=1

p
i

=

n∑
i=1

p′
i
, (2.4a)

and due to the conservation of kinetic energy (elastic collisions)

n∑
i=1

mi(vi)
2

2
=

n∑
i=1

mi(v
′
i)

2

2
. (2.4b)

Let us now consider the collision of two particles of different species and study the momentum
exchange involved. In that case, (2.4a) and (2.4b) simplify to

mi(vi − v′i) +mj(vj − v′j) = 0 (2.5a)

mi(vi + v′i) · (vi − v′i) +mj(vj + v′j) · (vj − v′j) = 0, (2.5b)

by using the straightforward to prove identity for arbitrary x, y ∈ Rd and d ≥ 1

|x|2 −
∣∣y∣∣2 = (x+ y) · (x− y). (2.6)

From (2.5a) there holds mi(vi − v′i) := −mj(vj − v′j), thus substituting into (2.5b) yields

mj(vj − v′j) ·
[
−(vi + v′i) + (vj + v′j)

]
= 0.

As mj 6= 0, there are two possible solutions. Either there holds vj = v′j , which automatically
implies vi = v′i by (2.5a). This corresponds to the pre- and post-collisional velocities not
changing during the collision. The other, more interesting solution is for vi 6= v′i (and hence
vj 6= v′j), from which we can infer that the arithmetic mean of the pre- and post-collisional
velocities for both species is conserved, i.e.

vi + v′i = vj + v′j . (2.7)

By above equation, we can express vi and substitute it into (2.5a) and solve for the pre-collisional
velocity for particle of species Aj , i.e. vj . The same procedure can be applied to compute vi.
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As a result of this computation, the pre-collisional velocities w.r.t. the post-collisional velocities
are given by

vi =
(mi −mj)v

′
i + 2mjv

′
j

mi +mj
=

1

mi +mj

[
miv

′
i +mjv

′
j +mj(v

′
j − v′i)

]
(2.8a)

vj =
(mj −mi)v

′
j + 2miv

′
i

mi +mj
=

1

mi +mj

[
miv

′
i +mjv

′
j −mi(v

′
j − v′i)

]
. (2.8b)

We will choose a more convenient representation of (2.8) by introducing an arbitrary vector σ
on the unit sphere S2, which can e.g. be parametrized in spherical coordinates by

σ : [0, 2π)× [0, π]→ R3 : σ(ϕ, θ) 7→

sin(θ) cos(ϕ)
sin(θ) sin(ϕ)

cos(θ)

 . (2.9)

Thus we arrive at the following formulation8 by reformulating (2.8) by choosing σ ∈ S2

σ =
vj − vi∣∣vj − vi∣∣ , (2.10)

thus yielding

vi =
1

mi +mj

(
miv

′
i +mjv

′
j +mj

∣∣v′j − v′i∣∣σ) (2.11a)

vj =
1

mi +mj

(
miv

′
i +mjv

′
j −mi

∣∣v′j − v′i∣∣σ) . (2.11b)

2.3 Mono-species collision operators

2.3.1 Heuristic derivation of the collision operators

In order to understand the physics behind the collision operator better, a few heuristic assump-
tions from physical modeling need to be considered. In order to derive the collision term, we
start with stating several assumptions made on microscopic level for the particles, which are
taken from [53, p. 47]:

Assumption 2.3 (Neglection of multi-particle collisions). Only collisions between
two molecules at a time are considered. This is justified as collisions of more than two
particles are by far less likely (although such events have a finite positive probability) as
2-collisions. Note that this assumption is only justified for dilute gas mixtures.

Assumption 2.4 (Molecular chaos). The velocities of the particles in the mixture are
statistically independent, which is also called “molecular chaos”-hypothesis (cf. [53, p. 47]).

8Note that the conservation of momentum (2.5a) and kinetic energy (2.5b) yields 4 equations for 6 unknowns.
σ parametrizes the 2 degrees of freedom that are left.
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Due to assumption 2.1, the term containing the force F in 2.2 is neglected, thus yielding

∂fi
∂t

+ vi · ∇xfi = 0, (2.12)

which is also called free transport equation in [18] for each of the species probability densities
fi for 1 ≤ i ≤ N + 1.
As e.g. stated in [36], the result of a collision can be interpreted as individual particles jumping
to another trajectory in µ-space due to the collision. In the collisionless setting as in (2.2),
particles remain on their trajectory in the 6D µ-space.
If the result of a collision increases the number of particles with have velocity vi, then (2.12)
modifies to

∂fi
∂t

+ vi · ∇xfi = Gi(t, x, vi),

where we have introduced the gain term G(t, x, vi) ≥ 0. This term can be interpreted as a
probability density which states the probability of a particle with velocity vi being gained at
the spacial location x at time t.9

Similarly, one can define a loss-term Li(t, x, vi) ≥ 0, which defines the probability density of a
particle with velocity vi being lost at (x, t), hence resulting in

∂fi
∂t

+ vi · ∇xfi = −Li(t, x, vi).

Taking both of above considerations into account, one arrives at the balance equation

∂fi
∂t

(t, x, vi) + vi · ∇xfi(t, x, vi) = Gi(t, x, vi)− Li(t, x, vi). (2.13)

By assumption 2.4, we can describe the probabilities of two particles of species Ai and Aj with
velocities vi and vj respectively at the same location x at time t as the product of the probability
density functions, i.e. by

fi(t, x, vi)fj(t, x, vj).

Let us note in passing that fi and fj have to be understood as the probability density function
associated with the species of the i-th and j-th particle being present. If both particles belong
to the same species, say Ai, then the distribution functions are equal (although they have
independent arguments).
By assumption 2.3 it is sufficient to only consider the collision of two individual particles at a
time.
If two particles would always have the same probability to collide independently from their pre-
collisional velocities and scattering angle, then the product of the probability densities would be
equal to the probability of obtaining a particle of post-collisional velocity v′ ∈ R3, i.e. all particle
configurations satisfying (2.5) would then have the same probability to interact. However, this is
not a sufficient description of the general case. Therefore an interaction strength is introduced,
which models the probability of the collisions of two particles with given velocities and angle
to each other. This is expressed by a probability density function B(vi, vj , σ) called a collision-
kernel10, which is a function of the scattering angle σ ∈ S2 and the velocities vi, vj ∈ R3. The

9Note that the total number of particles of species Ai does not change under the conditions we are considering
(non-reactive mixtures), but the number of particles moving with a velocity in a certain velocity-band does.

10The collision kernel is related to the interpretation as a physical cross-section. Therefore we will switch
between those two interpretations of B as a cross-section (physical interpretation) and a kernel (mathematical
interpretation).
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specific form of B depends on the underlying model to represent the particles and the forces
acting during the collisions.
The term for gaining particles of post-collisional velocities v′i from arbitrary pre-collisional
velocities is given by the integral over all scattering angles σ ∈ S2 and all possible post-collisional
velocities v′j ∈ R3, thus by keeping in mind vk := vk(v

′
i, vj , σ) for k ∈ {i, j}, which relation can

be derived via (2.11), to be given by

Gi(t, x, v
′
i) =

∫
R3

∫
S2

Bi(vi, vj , σ)fi(t, x, vi(v
′
i, v
′
j))fj(t, x, vj(v

′
i, v
′
j))dσdv

′
j . (2.14a)

Similarly, one can define a loss-term, which accounts for losing particles with pre-collisional
velocity vi (as a particle having post-collisional velocity v′i can’t have pre-collisional velocity vi,
as the case vi = v′i is neglected) by

Li(t, x, vi) =

∫
R3

∫
S2

Bi(v
′
i, v
′
j , σ)fi(t, x, v

′
i(vi, v

′
j))fj(t, x, v

′
j)dσdv

′
j . (2.14b)

As stated in section 2.2, there is a possible solution vi = v′i and vj = v′j which satisfies (2.5),
which don’t correspond to the gain- and loss-terms. However, as this solution is a set of measure
zero in the set of all solutions satisfying (2.5), this case can be neglected, as stated in [18].
The cross-sections Bi are assumed to satisfy the following micro-reversibility assumption:

Assumption 2.5 (Microreversibility for cross-section). For any cross-section B there
should hold the micro-reversibility assumptions

B(vi, vj , σ) = B(vj , vi, σ) (2.15a)

B(vi, vj , σ) = B(v′i, v
′
j , σ) (2.15b)

By assumption 2.5 we can put (2.14a) and (2.14b) in the RHS of (2.13) together and thus obtain
for 1 ≤ i ≤ N + 1 that there holds

Qmi (f, f)(v′i) = G− L =

∫
R3

∫
S2

Bi(v
′
i, v
′
j , σ)

(
f(vi)f(vj)− f(v′i)f(v′j)

)
dσdv′j (2.16)

where vi, vj are defined by (2.11).11 By Qmi we denote the mono-species collision operator for
the species Ai, where the subscript for f has been dropped as there is only one species to be
considered.

2.3.2 Weak formulation of the monospecies collision operator

By making use of assumption 2.5, one can derive a weak formulation of (2.16).
For that purpose, we multiply (2.16) by an arbitrary test function ψ(v′i) : R3 → R and integrate
over all possible velocities. Hence there holds by using the notation fk := f(vk) and f ′k := f(v′k)
for k ∈ {i, j} for all ψ(v′i), that

Qw,mi [ψ] : =

∫
R3

Qmi (f, f)(v′i)ψ(v′i)dv
′
i

=

∫
R3

∫
R3

∫
S2

Bi(v
′
i, v
′
j , σ)

(
fifj − f ′if ′j

)
ψ(v′i)dσdv

′
jdv
′
i. (2.17)

11Note that due to (2.11) the functions vi and vj are actually functions of the form vk(v′i, v
′
j) for k ∈ {i, j}.
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As performed in various mathematical publications (e.g. in [22, 68]), a somewhat “special”
weak formulation for the collision term in the Boltzmann equations is chosen, which has several
benefits as will be demonstrated shortly. As performed there, this computation does not define
function spaces very rigorously, thus ignoring problems with integrability at infinity.12 The idea
of the weak formulation considered here is to apply several changes of variables on (2.17) to
obtain equivalent weak formulations, which are then combined to a very desirable form, which
make it easy to obtain several useful corollaries needed later on.
First, we perform the change of variables η : R6 → R6 : (v′i, v

′
j) 7→ (v′j , v

′
i). The jacobian of this

change of variables is trivial to compute and given by

η(v′i, v
′
j) =

(
03 I3

I3 03

)(
v′i
v′j

)
, (2.18)

where In denotes the n-dimensional identity matrix and 0n ∈ Rn×n the zero-matrix. As
det(dη) = −1 there holds by performing the change of variables on the RHS of (2.17), (2.15)
and Fubini’s theorem that

Qw,mi [ψ] =

∫
R3

∫
R3

∫
S2

Bi(v
′
j , v
′
i, σ)

(
fifj − f ′if ′j

)
ψ(v′j) |−1| dσdv′idv′j

=

∫
R3

∫
R3

∫
S2

Bi(v
′
i, v
′
j , σ)

(
fifj − f ′jf ′i

)
ψ(v′j)dσdv

′
jdv
′
i. (2.19)

Let us now consider the change of variables η : R6 → R6 : (v′i, v
′
j) 7→ (vi, vj). The relation

between the primed post-collisional variables and pre-collisional variables is defined by (2.8).13

Let vα,(β) and v′α,(β) for α ∈ {i, j} and β = 1, 2, 3 denote the β-th component of the vectors vα
and v′α respectively. By using this notation, we can now compute the jacobian dη ∈ R6×6 by
computing the differentials

∂vi,(k)

∂v′i,(l)
=

1

mi +mj
(miδkl −mjδkl) (2.20a)

∂vi,(k)

∂v′j,(l)
=

1

mi +mj
(mjδkl +mjδkl) (2.20b)

∂vj,(k)

∂v′i,(l)
=

1

mi +mj
(miδkl +miδkl) (2.20c)

∂vj,(k)

∂v′j,(l)
=

1

mi +mj
(mjδkl −miδkl), (2.20d)

where δαβ denotes the Kronecker-delta. Equivalently in matrix form, there holds

dη =
1

mi +mj

(
(mi −mj)I3 2mjI3

2miI3 (mj −mi)I3

)
∈ R6×6. (2.21)

A straightforward computation shows that there holds det(dη) = −1. Furthermore it is im-
portant to note that η is an involutory map, i.e η ◦ η = id or equivalently η−1 = η. Let
vi = η1(v′i, v

′
j) = η ◦ π1, vj = η2(v′i, v

′
j) = η ◦ π2 as well as v′i = η−1

1 (vi, vj) = η1(vi, vj) and

v′j = η−1
2 (vi, vj) = η2(vi, vj).

14

12One can e.g. assume smooth functions ψ ∈ C∞(R3,R) and f ∈ D(R3,R) as in [22].
13For the simplicity of the computation, we use (2.8) rather than the equivalent formulation (2.11) used

throughout this section.
14Hereby πi for i ∈ {1, 2} denotes the projection on the first or last three elements of a 6D vector.
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By this notation, we can study the action of η on the distribution functions f(vk) = f(η−1
k (v′i, v

′
j))

and f(v′k) for k ∈ {i, j}. There holds for the change of variables (v′i, v
′
j)→ (vi, vj)

f(vk(vi, vj)) = f(η−1
1 (vi, vj)) 7→ f(η ◦ η−1 ◦ πk(vi, vj)) = f(πk(vi, vj)) = f(vk)

f(v′k) 7→ f(η ◦ πk(vi, vj)) = f(ηk(vi, vj)) = f(v′k(vi, vj))

By the means of the jacobian of the change of coordinates and using the considerations above,
then (2.17) can be written via Theorem A.5 as

Qw,mi [ψ] =

∫
R6×S2

Bi(vi, vj , σ)
[
f(η1(vi, vj))f(η2(vi, vj))− f(vi)f(vj)

]
ψ(η1(vi, vj))d(σ, vi, vj)

=

∫
R6×S2

Bi(. . . )
[
f(η−1

1 (vi, vj))f(η−1
2 (vi, vj))− f(vi)f(vj)

]
ψ(η−1

1 (vi, vj))d(σ, vi, vj)

= −
∫
R6×S2

Bi(. . . )
[
f(vi)f(vj)− f(η−1

1 (vi, vj))f(η−1
2 (vi, vj))

]
ψ(η−1

1 (vi, vj))d(σ, vi, vj).

Note that in the first equality the microreversibility assumption (2.15) was used and in the
second equality that η is involutory. As the areas of integration before and after the change of
variables coincide, we can relabel the integration variables vk → v′k for k ∈ {i, j} to obtain

Qw,mi [ψ] = −
∫
R6×S2

Bi(v
′
i, v
′
j , σ)

[
f(v′i)f(v′j)− f(vi(v

′
i, v
′
j))f(vj(v

′
i, v
′
j))
]
ψ(vi(v

′
i, v
′
j))d(σ, v′i, v

′
j)

= −
∫
R3

∫
R3

∫
S2

Bi(v
′
i, v
′
j , σ)

(
f ′jf
′
i − fifj

)
ψ(vi)dσdv

′
jdv
′
i. (2.22)

By performing the change of coordinates η : (vi, vj) 7→ (vj , vi) on (2.22) (which has the same
transformation matrix as (2.18)), one obtains

Qw,mi [ψ] = −
∫
R3

∫
R3

∫
S2

Bi(vj , vi, σ)
(
fifj − f ′if ′j

)
ψ(vj)dσdvjdvi.

Again one makes use of Fubini’s theorem, uses the microreversibility assumptions (2.15) and as
the areas of integration are invariant by relabeling variables, to arrive at

Qw,mi [ψ] = −
∫
R3

∫
R3

∫
S2

Bi(v
′
i, v
′
j , σ)

(
f ′if
′
j − fifj

)
ψ(vj)dσdv

′
jdv
′
i. (2.23)

By adding the four expressions (2.17), (2.19), (2.22) and (2.23) and rearranging, while defining
ψk := ψ(vk) and ψ′k := ψ(v′k) for k ∈ {i, j}, there holds the weak formulation

Qw,mi [ψ] = −1

4

∫
R3

∫
R3

∫
S2

Bi(v
′
i, v
′
j , σ)

(
f ′jf
′
i − fifj

) (
ψi + ψj − ψ′i − ψ′j

)
dσdv′jdv

′
i. (2.24)

This weak form proves to be very useful, as (2.24) has to hold for an arbitrary test function
ψ(v). One can therefore plug in the choices

� ψ(v) = 1

� ψ(v) = v(k) for k = 1, 2, 3, i.e. the k-th component of v

� ψ(v) = |v|2
2 .
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As in the case of the monospecies collision operator there holds mi = mj in (2.8), thus one can
obtain by a straightforward computation that there holds∫

R3

Qmi (f, f)(v′i)1dv
′
i = 0 (2.25a)∫

R3

Qmi (f, f)(v′i)vi,(k)dv
′
i = 0 k = 1, 2, 3 (2.25b)∫

R3

Qmi (f, f)(v′i)
|vi|2

2
dv′i = 0 (2.25c)

This result will be very useful, as we can show that the number of molecules, the momentum
and the kinetic energy is conserved by the mono-species collision operator.

2.4 Bi-species collision operator

Let us now consider the collisional interaction between two different species Ai and Aj for
1 ≤ i, j ≤ N + 1. Furthermore let f := f(v′i) and g := g(v′j) be non-negative functions,
which correspond to probabilities of particles of the respective species with the respective post-
collisional velocities being present.
The bi-species collision operators are defined by

Qbij(f, g)(v′i) =

∫
R3

∫
S2

Bij(v
′
i, v
′
j , σ)

[
f(vi)g(vj)− f(v′i)g(v′j)

]
dσdv′j (2.26)

As in section 2.3 we assume that there holds the microreversibility assumption 2.5 for the cross
section Bij in (2.26).
We also need to define an operator describing the collisions of molecules of the species Aj with
the species Ai, as due to the different masses involved the pre-collisional velocities compute
slightly different than in (2.11) and are given as

v̂i =
1

mi +mj

(
mjv

′
i +miv

′
j +mi

∣∣v′j − v′i∣∣σ) (2.27a)

v̂j =
1

mi +mj

(
mjv

′
i +miv

′
j −mj

∣∣v′j − v′i∣∣σ) . (2.27b)

By the definitions in (2.27), one can define

Qbji(g, f)(v′i) =

∫
R3

∫
S2

Bji(v
′
i, v
′
j , σ)

[
g(v̂i)g(v̂j)− f(v′i)g(v′j)

]
dσdv′j . (2.28)

2.4.1 Weak formulation of the bi-species collision operator

We shall now formulate a weak formulation for (2.26). Again, there are several weak formula-
tions possible, however we will choose a convenient version by performing very similar arguments
involving the change of variables as in section 2.3.2.
By multiplying (2.26) with an arbitrary15 test function ψ and integrating over all possible

15Arbitrary is as always restricted to being to a certain functional analytical setting involving the correct
function spaces. For the time being this setting is not defined rigorously and the restrictions on the functions are
such that the Lebesgue integrals are well-defined.
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post-collisional velocities v′i, and using gα = g(vα) and g′α = g(v′α) for α ∈ {i, j}, there holds

Qw,bij [ψ] : =

∫
R3

Qbij(f, g)(v′i)ψ(v′i)dv
′
i

=

∫
R3

∫
R3

∫
S2

Bij(v
′
i, v
′
j , σ)

[
figj − f ′ig′j

]
ψ(v′i)dσdv

′
jdv
′
i. (2.29a)

As seen in section 2.3.2 we will now perform a change of coordinates η : R6 → R6 : (v′i, v
′
j) 7→

(vi, vj), which jacobian has been computed in (2.21).
Thus there holds with similar arguments as in section 2.3.2

Qw,bij [ψ] = −
∫
R3

∫
R3

∫
S2

Bij(v
′
i, v
′
j , σ)

[
figj − f ′ig′j

]
ψ(vi)dσdv

′
jdv
′
i. (2.29b)

By adding (2.29a) and (2.29b), one arrives at

Qw,bij [ψ] =
1

2

∫
R3

∫
R3

∫
S2

Bij(v
′
i, v
′
j , σ)

[
figj − f ′ig′j

] [
ψ′i − ψi

]
dσdv′jdv

′
i. (2.30)

By a similar argument using a change of variables from primed to unprimed variables as demon-
strated in section 2.3, (2.30) can be further simplified. There holds by suppressing the arguments
of Bij (as we make use of (2.15) anyway)

Qw,bij [ψ] := −1

2

∫
R6×S2

Bijf
′
ig
′
j

[
ψ′i − ψi

]
d(σ, v′j , v

′
i) +

1

2

∫
R6×S2

Bijfigj
[
ψ′i − ψi

]
d(σ, v′j , v

′
i)

= −1

2

∫
R3

∫
R3

∫
S2

Bijf
′
ig
′
j

[
ψ′i − ψi

]
d(σ, v′j , v

′
i) +

1

2

∫
R6×S2

Bijf
′
ig
′
j

[
ψi − ψ′i

]
d(σ, v′j , v

′
i)

By simplifying the above, one arrives at the representation

Qw,bij [ψ] =

∫
R3

∫
R3

∫
S2

Bij(v
′
i, v
′
j , σ)f ′ig

′
j

[
ψi − ψ′i

]
dσdv′jdv

′
i. (2.31)

For the collision operator for particles of species Aj colliding with particles of species Ai, one
can formulate a weak formulation as well by multiplying (2.28) by a test function φ : R3 → R
and integrating as before, thus defining

Qw,bji (φ) :=

∫
R3

Qbji(f, g)(v′i)φ(v′i)dv
′
i.

For notational convenience, we will drop the hats of the pre-collisional velocity variables for the
Aj → Ai-interaction which were used in section 2.4.
As already demonstrated in this section one can now perform the all changes of coordinates as
seen before in this section. The change of coordinates η : R6 → R6 : (v′i, v

′
j) 7→ (v̂i, v̂j) can be

computed by (2.27) to be

dη =
1

mi +mj

(
(mj −mi)I3 2miI3

2mjI3 (mi −mj)I3

)
, (2.32)

for which holds det(dη) = −1 as before. With the fact that this transformation conserves the
measure during the transformation as well, the same analysis using several changes of variables,
which was demonstrated throughout this section, can be applied to Qw,bji (φ).
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Hence for the sum of the collision operators, the following weak formulation can be worked out,
which is given by

Qw,bij [ψ] +Qw,bji [φ] = −1

2

∫
R3

∫
R3

∫
S2

Bij(v
′
i, v
′
j , σ)

[
figj − f ′ig′j

] [
ψi + φj − ψ′i − φ′j

]
dσdv′jdv

′
i.

(2.33)

Again the choice for the weak formulations made in (2.31) and (2.33) is quite advantageous
when it comes to proving fundamental physical properties. As the equations hold for arbitrary
test functions, one can make the following choices:

� By choosing ψ = 1 in (2.31), there holds

Qw,bij (1) = 0, (2.34a)

which we will later on use to prove the conservation of the total number of particles of
species Ai.

� By choosing ψk(v
′
i) = miv

′
i,(k) and φk(v

′
i) = mjv

′
j,(k) for k = 1, 2, 3 there holds from (2.33)

Qw,bij [ψk] +Qw,bji [φk] = 0 1 ≤ i, j ≤ N + 1, i 6= j. (2.34b)

by working out via (2.11) that there holds ψ(vi(v
′
i, v
′
j))+ψ(vj(v

′
i, v
′
j))−ψ(v′i)−φ(v′j) = 0,

where φ = (φ1, φ2, φ3)T and ψ = (ψ1, ψ2, ψ3)T .

� By choosing ψ = mi
2 |vi|

2 and φ =
mj
2

∣∣vj∣∣2 in (2.33), there holds

Qw,bij [ψ] +Qw,bji [φ] = 0 1 ≤ i, j ≤ N + 1, i 6= j. (2.34c)

By the results of sections 2.3 and 2.4, the coupled Boltzmann equations with no external force
field for a set of unknown distribution functions fi for 1 ≤ i ≤ N + 1 is hence given by

∂f

∂t
+ v · ∇xfi = Qmi (fi, fi) +

N+1∑
j=1
j 6=i

Qbij(fi, fj). (2.35)

2.5 The Maxwell-Stefan diffusion limit of the Boltzmann equation

We will now follow the main argument in [13]. The Maxwell-Stefan equations are used to
describe purely diffusional behavior and thus can’t account for any advection phenomena or
similar transport processes.
The assumptions made in [13, sec. 4] are the following:

Assumption 2.6 (Uniform temperature). There exists a uniform (in space) and con-
stant (in time) temperature.

Assumption 2.7 (Bulk velocity behavior). At any time, the bulk velocity of the mixture
is small and goes to zero when performing a limit on the scaled Boltzmann equation for
vanishing Mach- and Knudsen-numbers.
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Assumption 2.8 (Maxwellian Molecules). Each cross section Bij only depends on
v′i, v

′
j and σ through the deviation angle θ ∈ [0, π] between v′i − v′j and σ. For each pair

(i, j) with 1 ≤ i, j ≤ N + 1 and i 6= j there exists a function bij : [−1, 1]→ R+ that

Bij(v
′
i, v
′
j , σ) = bij

(
v′i − v′j
|v′i − v′j |

· σ
)

= bij(cos θ) (2.36)

Assumption 2.9 (Properties of bij). The function bij is assumed to be an even function,
i.e. bij(x) = bij(−x). Furthermore we assume bij ∈ L1([−1, 1]) which can be deduced by
Grad’s cutoff assumption for collision kernels.

By using these assumptions, one can prove the following straightforward lemma:

Lemma 2.1. There holds bij = bji.

Proof. Thanks to the microreversibility assumption 2.5 for the cross section Bij and assumptions
2.8 and 2.9, there holds

bij(cos θ) = bij

 v′i − v′j∣∣∣v′i − v′j∣∣∣ · σ
 = Bij(v

′
i, v
′
j , σ) = Bji(v

′
j , v
′
i, σ)

= bji

 v′j − v′i∣∣∣v′i − v′j∣∣∣ · σ
 = bji

 v′i − v′j∣∣∣v′i − v′j∣∣∣ · σ
 = bji(cos θ)

We will now consider a scaled version of the Boltzmann equations. In [58, eq. (2.18)] a dimen-
sionless version of the Boltzmann equation is derived and given by

St
∂f

∂t
+ v · ∇xf =

1

Kn
Q(f, f) (2.37)

where the Knudsen number Kn is given by

Kn =
λ

l0
, (2.38a)

whereas the Strouhal number Sn is defined as

Sn =
l0
ct0

. (2.38b)

In (2.38), t0 is a characteristic time scale, l0 is a characteristic length scale reflecting how far
gas is transported in the time t0, and λ = cτ is the mean free path of molecules (c is the speed
of sound and τ the mean free time of molecules).
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In the analysis carried out in [58, Ch. 2.2.1/2.2.2] it is also stated that the ratio l0
t0

corresponds
to the bulk velocity denoted by u0. This property can be related to the Mach-number Ma

Ma =
u0

c
.

It is further stated that by only considering small fluctuations about a reference flow, for the
bulk velocity there holds u0 � l0

t0
, corresponds to a situation where

Ma� St.

Applying the dimensionless form (2.37) to our structure of the collision term in (2.35), while
considering a diffusive limit, where the mean free path λ→ 0 and thus Kn→ 0, while considering
small Ma ∼ Sn→ 0, we can write the diffusive limit by assumption 2.7 as follows:

Definition 2.1 (Diffusional limit of the Boltzmann equation). Let ε > 0, and the
solutions of the scaled version of the multi-species Boltzmann equation be denoted by f εi
for 1 ≤ i ≤ N + 1, then each distribution function f εi shall solve the scaled version of the
Boltzmann equation (2.35), which is given by

ε
∂f

∂t
+ v · ∇xf εi =

1

ε
Qmi (fi, fi) +

1

ε

N+1∑
j=1
j 6=i

Qbij(fi, fj) on R+ × Ω× R3. (2.39)

This scaling argument is quite common and has e.g. also been derived in [36, Ch. 2.1] as
so-called “diffusion scaling”.
By means of the distribution function f εi one can define the concentration function similarly to
(2.1) by

cεi (t, x) =

∫
R3

f εi (t, x, v)dv. (2.40)

2.5.1 Ansatz function for the diffusion limit of the Boltzmann equations

The initial conditions of (2.39) are assumed to be Maxwellian functions with small macroscopic
velocity (as only diffusional processes are to be considered here). This model leads to the
following assumption:

Assumption 2.10. The initial condition of (2.39) is given by

f ε,0i (x, v) = c0
i (x)

( mi

2πkT

) 3
2

exp
[
− mi

2kT

∣∣v − εu0
i (x)

∣∣2] x ∈ Ω, v ∈ R3, (2.41)

where the temperature T > 0 is a fixed constant (cf. assumption 2.6) and the initial con-
centrations c0

i : Ω → R+ and u0
i : Ω → R3 do not depend on ε. Furthermore there shall

hold

N+1∑
k=1

c0
k = 1 on Ω.
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From the definition of f ε,0i as slightly perturbed Maxwellian functions, one can compute the
following relation:

Lemma 2.2. For f ε,0i as defined in (2.41), there holds

I(x) :=
1

ε

∫
R3

vf ε,0i (x, v)dv = c0
i (x)u0

i (x) x ∈ Ω. (2.42)

Proof. We will prove this vector valued equation for the k-th component v(k) and k = 1, 2, 3. By
reordering the order of integration, one can iterate the the integral by a permutation {1, 2, 3} →
{k, l,m} such that

I(k)(x) = K1(x)

∫ ∞
−∞

∫ ∞
−∞

K3(v(l), v(m))

∫ ∞
−∞

v(k) exp

[
−K2

(
v(k) − εu0

i,(k)

)2
]
dv(k)dv(l)dv(m),

where for convenience we set

K1(x) :=
1

ε
c0
i (x)

( mi

2πkT

) 3
2

K2 :=
mi

2kT

K3(v(l), v(m)) := e
−K2

∑
j 6=k(v(j)−εu0

i,(j)
)2

.

By making use of the solution of the Gaussian integral, i.e. there holds for α ∈ R+ and β ∈ R
that ∫ ∞

−∞
exp

[
−α(x− β)2

]
dx =

√
π

α
, (2.43)

one can obtain via integration by parts that

K4(x) :=

∫ ∞
−∞

v(k) exp

[
−K2

(
v(k) − εu0

i,(k)

)2
]
dv(k) =

√
πεu0

i (x)√
K2

.

It remains to compute

I(k) = K1(x)K4(x)

∫ ∞
−∞

e
−K2(v(m)−εu0

i,(m)
)2
[∫ ∞
−∞

e
−K2(v(l)−εu0

i,(l)
)2

dv(l)

]
dv(m).

As both of these integrals are Gaussian integrals of the form (2.43), there holds

I(k) = K1(x)K4(x)

√
π

K2

√
π

K2
,

thus by re-substituting the constants and simplifying, there holds the claim (2.42).

Assumption 2.11 (Maxwellian time evolution). It is assumed that the evolution of
system (2.39) is given by a local Maxwellian state, i.e. the distribution function f εi is given
by

f εi (t, x, v) = ci(x, t)
( mi

2πkT

) 3
2

exp
[
− mi

2kT
|v − εui(t, x)|2

]
t > 0, x ∈ Ω, v ∈ R3, (2.44)

where we suppose that there exist uεi : R+×Ω→ R3 and cεi : R+×R3 → R for 1 ≤ i ≤ N+1.
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Lemma 2.3. For the Maxwellian (2.44) the moments of order 0 and 1 w.r.t. to v are given
by

I0(t, x) =

∫
R3

f εi (t, x, v)dv = cεi (t, x) (2.45a)

Iε1(t, x) =

∫
R3

vf εi (t, x, v)dv = εcεi (t, x)uεi (t, x) (2.45b)

Proof. In order to prove (2.45a) one has to simply compute three Gaussian integrals via (2.43).
To prove (2.45b) one can use the proof from Lemma 2.2 by making use of the identity (2.42)
and substituting c0

i (x)→ cεi (t, x) and u0
i (x)→ uεi (t, x).

Lemma 2.4 (Mass conservation). Under the assumption that the distribution function is
given by (2.44) (cf. assumption 2.11), there holds that mass is conserved by (2.39).

Proof. By (2.25) and (2.34), there holds that the zeroth and first moment in v of the collision
operators for any f εi is trivial, thus (2.39) simplifies to

ε
∂

∂t

∫
R3

f εi (t, x, v)dv +∇x ·
∫
R3

f εi (t, x, v)vdv = 0

By (2.45) there holds for 1 ≤ i ≤ N + 1

∂cεi
∂t

+∇x · (cεi (x)uεi (x)) = 0 (2.46)

2.5.2 Balance of Momentum

In order to derive the balance law for the momentum of species Ai, one multiplies (2.39) by v
and thus obtains by observing, that the contribution for the mono-species collision operator is
trivial due to (2.25b) for the k-th component of v, that there holds

ε
∂

∂t

∫
R3

v(k)f
ε
i (t, x, v)dv +∇x ·

∫
R3

v(k)f
ε
i (t, x, v)vdv =

1

ε

∫
R3

v(k)Q
b
ij(f

ε
i , f

ε
i )(v)dv. (2.47)

First, we consider the RHS of (2.47), by setting

Θε
(k)(t, x) :=

1

ε

N+1∑
j=1
j 6=i

∫
R3

v(k)Q
b
ij(f

ε
i , f

ε
i )(v)dv.

By using the weak formulation (2.31) of the bi-species collision operator with the specific test
functions ψk(v) = v(k), (2.36) from assumption 2.8 and the expression for the pre-collisional
velocities (2.11), there holds
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Θε
(k)

=
1

ε

N+1∑
j=1
j 6=i

∫
R3

∫
R3

∫
S2

bij

(
v′i − v′j
|v′i − v′j |

· σ
)
f εi (v′i)f

ε
j (v′j)(vi,(k) − v′i,(k))dσdv

′
jdv
′
i

=
1

ε

N+1∑
j=1
j 6=i

∫
R6×S2

bij

(
v′i − v′j
|v′i − v′j |

· σ
)
f εi (v′i)f

ε
j (v′j)(vi,(k) − v′i,(k))d(v′i, v

′
j , σ)

=
1

ε

N+1∑
j=1
j 6=i

mj

mi +mj

∫
R6×S2

bij

(
v′i − v′j
|v′i − v′j |

·σ
)
f εi (v′i)f

ε
j (v′j)(v

′
j,(k)−v′i,(k)−|v′j−v′i|σ(k))d(v′i, v

′
j , σ).

The term containing σ(k) has trivial contribution for all k, which can be shown as follows:
Due to the parametrization of σ in polar coordinates as seen in (2.9), one can deduce that for
k = 1, 2, as from the integration over S2 the integration over the polar angle ϕ yields∫ 2π

0
cosϕdϕ =

∫ 2π

0
sinϕdϕ = 0.

For k = 3, there holds by the substitution s = cos θ∫
S2

bij

(
v′i − v′j
|v′i − v′j |

· σ
)
σ(3)dσ = 2π

∫ π

0
sin θ cos θbij(cos θ)dθ =

∫ 1

−1
sbij(s)ds = 0,

as due to assumption 2.9 bij is an even function. Thus Θε
(k) reduces to

Θε
(k) =

1

ε

N+1∑
j=1
j 6=i

mj

mi +mj

∫
R3

f εi (v′i)
∫
R3

f εj (v′j)
(
v′j,(k) − v′i,(k)

)∫
S2

bij

(
v′i − v′j
|v′i − v′j |

· σ
)
dσdv′jdv

′
i.

By making use of (2.45) and (2.36) from assumption 2.8 there holds

Θε =

N+1∑
j=1
j 6=i

2πmj‖bij‖L1([0,π])

mi +mj
(cεi c

ε
ju
ε
j − cεjcεiuεi ). (2.48)

Let us now consider the remaining terms in (2.47). For the term containing the time derivative,
there holds due to (2.45b)

ε
∂

∂t

∫
R3

vf εi (t, x, v)dv = ε2 ∂

∂t
[cεi (t, x)uεi (t, x)] . (2.49)

The divergence term in (2.47) can be further simplified by performing the substitution η(k) =
vk − εuεi,(k)(t, x)

Ξ(l) = ∇x ·
∫
R3

v(k)f
ε
i (v)vdv

= K1

3∑
k=1

∂

∂x(k)

[∫
R3

cεi (t, x)(η(k) + εuεi,(k))(η(l) + εuεi,(l))e
−K2|η|2dη

]

= K1

3∑
k=1

∂

∂x(k)

[∫
R3

cεi (t, x)
(
η(k)η(l) + ε

(
η(k)u

ε
i,(l) + η(l)u

ε
i,(k)

)
+ ε2uεi,(k)u

ε
i,(l)

)
e−K2|η|2dη

]
,
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by using the abbreviations

K1 =
( mi

2πkT

) 3
2

(2.50a)

K2 =
mi

2kT
. (2.50b)

As there holds for arbitrary γ ∈ R+ and j ∈ N∫ ∞
−∞

τ2j+1e−γτ
2
dτ = 0 (2.51a)∫ ∞

−∞
τ2e−γτ

2
dτ =

√
π

2γ
3
2

, (2.51b)

all terms containing a single η(α) or the product η(α)η(β) for 1 ≤ α, β ≤ 3 and α 6= β have trivial
contributions. Hence the terms of O(ε) have no contributions and the expression for Ξ reduces
via (2.51b) and (2.43) to

Ξ(l) = ε2
3∑

k=1

∂

∂x(k)

[
cεiu

ε
i,(k)u

ε
i,(l)

]
+
kT

mi

∂cεi
∂x(l)

. (2.52)

By collecting the results from (2.49), (2.52) and (2.48) and plugging them in (2.47), there holds

ε2

[
∂

∂t
(cεiu

ε
i ) +∇x · (cεiuεi ⊗ uεi )

]
+
kT

mi
∇xcεi =

N+1∑
j=1
j 6=i

2πmj‖bij‖L1([0,π])

mi +mj
(cεi c

ε
ju
ε
j − cεjcεiuεi ). (2.53)

2.6 Macroscopic equations and formal asymptotics

By using the conservation of mass (2.46) and the evolution of momentum for the scaled Boltz-
mann equation (2.53), one can infer that the Maxwellian distribution functions (2.44) are a
solution16 for the initial-boundary value problem of the scaled Boltzmann equations (2.39), if
the unknowns (cεi , u

ε
i ) for 1 ≤ i ≤ N + 1 solve

∂cεi
∂t

+∇x · (cεiuεi ) = 0 (2.54a)

ε2mi

kT

[
∂

∂t
(cεiu

ε
i ) +∇x · (cεiuεi ⊗ uεi )

]
+∇xcεi =

N+1∑
j=1
j 6=i

cεi c
ε
ju
ε
j − cεjcεiuεi
∆ij

. (2.54b)

Hereby the constants ∆ij are given via (2.53) by

∆ij =
(mi +mj)kT

2πmimj‖bij‖L1([0,π])
. (2.55)

Let us note in passing that due to the symmetry of bij (cf. Lemma 2.1) there holds ∆ij = ∆ji

for the coefficients in (2.55).
In order to deduce the Maxwell-Stefan equations, we first need to define

Jεi (t, x) :=
1

ε

∫
R3

vf εi (t, x, v)dv
(2.45b)

= cεi (t, x)uεi (t, x) t ≥ 0, x ∈ Ω, (2.56)

16Note that the Maxwellian distribution functions fεi are related to the molar concentrations cεi via (2.40).
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as well as the formal diffusive limits of cεi and Jεi by

ci(t, x) = lim
ε→0+

cεi

Jεi (t, x) = lim
ε→0+

Jεi .

By (2.56) we can rewrite (2.54) by letting ε → 0+ and thus obtain a system in the unknowns
(ci, J i) for 1 ≤ i ≤ N + 1 by

∂ci
∂t

+∇x · J i = 0 (2.58a)

∇xci =

N+1∑
j=1
j 6=i

ciJ j − cjJ i
∆ij

. (2.58b)

However, we have to prove that the sum over all ci is constant in the limit, which was postulated
in (1.6). In order to achieve this, we have to prove the kinetic energy conservation before
applying the diffusive limit. For that purpose, we pre-compute two auxiliary integrals. The
first one, denoted Γ, is given via

Γ =

∫
R3

|v|2 f εi (v)dv,

which can be solved via the substitution η(k) = v(k) − εuεi (t, x) and by using the notation in
(2.50), as there holds

Γ = K1

∫
R3

3∑
k=1

(η(k) + εuεi,(k))
2cεi e

−K2|η|2dη

= K1

∫
R3

cεi (t, x)
3∑

k=1

(
η2

(k) + 2εη(k)u
ε
i,(k) + ε2[uεi,(k)]

2
)
e−K2|η|2dη.

Collecting the terms O(1) of the expansion Γ =
∑

k Γkε
k, one has to compute the integral

for Γ0 by changing integral and summation and employing (2.43) and (2.51b) for a suitable
permutation {1, 2, 3} → {k, l,m} for each k to obtain

Γ0 = K1c
ε
i (t, x)

3∑
k=1

∫ ∞
−∞

e
−K2η2

(m)

[∫ ∞
−∞

e
−K2η2

(l)

[∫ ∞
−∞

η2
(k)e
−K2η2

(k)dη(k)

]
dη(l)

]
dη(m)

= cεi

3∑
k=1

K1
π

K2

√
π

2K
3
2
2

= 3cεi
kT

mi

Note that Γ1 = 0 due to (2.51a) and Γ2 =
∑3

k=1 ui,(k) with similar computations as for the
O(ε2) term in (2.52), although we are going to neglect this higher order term.
The second integral to compute is denoted Π and is given by

Π(α) :=

∫
R3

|v|2 v(α)f
ε
i (v)dv = K1c

ε
i

∫
R3

3∑
k=1

(η(k) + εuεi,α)2(η(α) + εuεi,(α))e
−K2|η|2dη.

By taking into account all terms that contain uneven powers of η(α) yield trivial contributions
to the integral, one obtains the representation

Π(α) := K1c
ε
i

3∑
k=1

∫
R3

(
εuεi,(α)(2η

2
(k)δαk + η2

(k)) + ε3[uεi,(k)]
3
)
e−K2|η|2dη
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Performing the expansion Π(α) =
∑

k Πk,(α)ε
k, one obtains by (2.43) and (2.51b) as before that

Π1,(α) = 5ε
kT

mi
cεiu

ε
i,(α)

and Π3,(α) =
∑

k[u
ε
i,(k)]

3cεi , which we are going to neglect as higher order term.

We can now multiply (2.39) by |v|
2

2 , integrate it w.r.t. v and sum over all 1 ≤ i ≤ N + 1. As
given by (2.25c), (2.34c) and the results of the expansion of the time derivative and divergence
term Γ and Π in this section, one can equate the lowest order terms in O(ε)

3
∂

∂t

[
N+1∑
k=1

cεi

]
+ 5∇x · [cεiuεi ] = 0 (2.59)

By performing the limit ε→ 0 in (2.59), there holds by using (2.46)

N+1∑
i=1

∂ci
∂t

= 0 (2.60a)

∇x ·
[
N+1∑
k=1

J i

]
= 0. (2.60b)

The equality (2.60b) is consistent with the closure relation (1.7). The equality (2.60a) ensures
that the total molar mass c =

∑N+1
k=1 c0

i is conserved over time. Thus the derivation of the
Maxwell-Stefan system (2.58) is consistent with the boundary conditions.

2.7 Remarks on Boudin’s Diffusional Limit and outlook

The coefficients ∆ij as derived in (2.55) can be identified with the binary Maxwell-Stefan diffu-
sion coefficients Dij , which have the physical dimension m2s−1. As we have shown that under
the given assumptions there holds ∆ij = ∆ji, one can also deduce the symmetry of the binary
diffusion coefficients, which are normally derived by the Onsager relations, cf. [51] or [67, p.
31f].
Trying to better understand connections between a mesoscopic and microscopic aspects of dif-
fusional processes is an active field of mathematical research, which is trying to reduce some
of the assumptions necessary to the derive the results in section 2. For example, there have
been various attempts to get rid of several assumptions made for the cross-section B, which
were made in this chapter. This holds for example for Grad’s angular cutoff assumption, which
was needed for several ground-breaking proofs (e.g. [22, 30]) as this theorem has far-reaching
consequences (e.g. [58, Th. 2.3.1, 2.3.4, 2.3.6, Prop. 3.2.1, 3.2.2]). There is currently quite
an active field of research on trying to get rid of this assumption while still proving existence
results for a (weak) solution to the Boltzmann equations. This is e.g. motivated as the cutoff
assumption is known to propagate singularities in the solution, see e.g. [2, 6, 11] or to obtain
better smoothness properties of the solution, see [1, 45]. Some of these efforts to overcome this
shortcoming can e.g. be studied in [31].
There has also been a quite recent (2017) result to study more general cross-sections than
considered here (as presenting the results in [14]) by Boudin himself, see [12].
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3 Global-in-time existence proof

In this section, a step-by-step derivation of the key result in [40] is presented, which is based on
the PhD thesis by Stelzer [65].
The proof presented here provides us with the existence of a (weak) solution of the Maxwell-
Stefan equations under fairly general conditions. However, as far as the uniqueness of the
solution is concerned, this is still an open problem as stated in [40].
Previously to Jüngel’s paper there have been results by Giovangigli in his monograph [28] for the
existence of a unique global solution of the Maxwell-Stefan system close to the thermodynamical
equilibrium and Bothe has shown in [10] the existence of a unique classical local-in-time solution.
Boudin studied a ternary system in [13], where he assumed that the diffusivities are equal, thus
leading to a further simplification of the system, such that he could prove the existence of a
global unique solution.
As stated in section 1, the Maxwell-Stefan system is given by (1.1). In order to prove the
existence of a solution to this system, the system is reformulated by introducing a formulation
exploiting the entropy structure of the problem. This method was developed and generalized
by Jüngel to be applicable to many relevant systems in physics and biology, e.g. in [37] or [35,
ch. 4].

3.1 Entropy formulation

In order to prove the existence of a solution to the Maxwell-Stefan equations, we make use
of a technique which can be applied to cross-diffusion systems, as which the Maxwell-Stefan
equations can be interpreted.
As Jüngel states in [37], the proof relies on the fact, that a reaction-diffusion system of the form

∂u

∂t
− div(A(u)∇u) = f(u), (3.1a)

with initial values u(·, 0) = u0 and homogeneous Neumann boundary conditions possesses a
gradient-flow structure, i.e. it can be written in the form

∂u

∂t
− div

(
B∇δH

δu

)
= f(u). (3.1b)

This leads us to the following definition explaining above terms (taken from [35, Def. 4.1]):

Definition 3.1 (Entropy formulation). The equality (3.1b) is called the entropy formu-
lation of (3.1a), if there exists a convex function h : D → [0,∞) (which is called entropy
density), which defines the variational (Fréchet-)derivative δH

δu of the entropy functional

H[u] =

∫
Ω
h(u(t, x))dx (3.2)

and the matrix B = h′′(u)A(u) is positive definite.

By identification of the Fréchet-derivative of H with its Riesz representative Dh(u) one can
introduce the entropy variable

w = Dh(u). (3.3)
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By this definiton, the system (3.1b) can be written in entropy variables as

∂u(w)

∂t
− div (B(w)∇w) = f(u(w)). (3.4)

One can show that if there holds f(u) · w ≤ 0 and B is positive semidefinite, then H is a
Lyapunov functional (i.e. d

dtH(u(t)) ≤ 0 for all t > 0). Hence it is justified that H can be
interpreted as an entropy.
In order to exploit the entropy structure of (1.9), one introduces the entropy density associated
to the Maxwell-Stefan system by

h(c) =
N∑
i=1

ci(ln(ci)− 1) + cN+1(ln(cN+1)− 1) c1, . . . , cN ≥ 0,
N∑
i=1

ci ≤ 1, (3.5)

where cN+1(c(x, t)) can be determined by c = (c1, . . . , cN ) via (1.6). By definition of the entropy
density (3.5) and (3.3), one can define the entropy variables for the Maxwell-Stefan equation by

wi =
∂h

∂ci
= ln

(
ci

cN+1

)
. (3.6)

Similarly, one can compute the Hessian H(c) = ∇2h(c), which is given by

H(c) = ∇2h(c) =
∂2h

∂ci∂cj
=

1

cN+1
+
δij
ci
. (3.7)

It is important that (3.6) can be inverted.17 Indeed one can derive from (3.6) that there holds
equivalently

ci(1 + ewi) + ewi
N∑
j=1
j 6=i

cj = ewi 1 ≤ i ≤ N,

which can be written in matrix form via

[IN + κ⊗ 1]︸ ︷︷ ︸
Ξ

·c = κ, (3.8)

where IN ∈ RN×N is the identity matrix, 1 = (1, . . . , 1)T ∈ RN and κ = (ew1 , . . . , ewN )T ∈ RN
for 1 ≤ i ≤ N . The matrix Ξ can be inverted by using the Sherman-Morrison formula (cf.
Lemma A.1), where by substituting A = IN in (A.4) there holds

(IN + κ⊗ 1)−1 = IN −
κ⊗ 1

1 + κ · 1 . (3.9)

By using (3.9) to invert (3.8) there holds

ci = [Ξ−1 · κ](i) =

N∑
j=1

(
δij −

ewi

1 +
∑N

k=1 e
wk

)
ewj = ewi

(
1−

∑N
j=1 e

wj

1 +
∑N

k=1 e
wk

)
.

17The existence of the inverse is important as we want to be able to recover the original solution ci from the
entropy variables w, cf. hypothesis H1 in section 3.2.
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By simplifying the above, one obtains

ci =
ewi

1 +
∑N

j=1 e
wj
. (3.10)

Hence one can interchange between the variables ci and the entropy variables wi for 1 ≤ i ≤ N
via (3.6) and (3.10).
Having defined the entropy variables, (1.9) can be reformulated in entropy variable formulation
as

∂

∂t
c− div(B(w)∇w) = r(c), (3.11)

where B ∈ RN×N is given by

B(w) = A0(c)−1H(c)−1. (3.12)

In (3.12) the reduced matrix A0 ∈ RN×N is given by (1.8).

3.2 Outline of the proof

While the original existence result for the Maxwell-Stefan equations has been formulated in [40],
the technicalities of the proof have been further generalized in [37], which provides a high level
view on which conditions have to be met in order to be able to prove the existence of a solution.
Jüngel has formulated four hypotheses in [35, 37], which need to be proven for a given system
in order for proving existence of a weak solution via the boundedness-by-entropy approach:

H1: There exists a convex nonnegative function h ∈ C2(D, [0,∞)) with D ⊂ Rn and n ≥ 1,
such that its derivative Dh : D → Rn is invertible on Rn.

H2’: Let D ⊂ (0, 1)n and for all z = (z1, . . . , zn) ∈ Rn and u = (u1, . . . , un) ∈ D there shall
hold that

zTD2h(u)A(u)z ≥
n∑
i=1

u2a
i z

2
i a ≥ −1

2
. (3.13)

H2”: There exists an α∗ > 0 such that for all u ∈ D and 1 ≤ i, j ≤ n there holds |Aij | ≤ a∗ |uj |a.

H3: There holds A ∈ C0(D,Rn×n), f ∈ C0(D,Rn), and there exists a positive constant Cf ∈
R+ such that

f(u) · h′(u) ≤ Cf (1 + h(u)) ∀u ∈ D. (3.14)

In section 3.4, we will prove the necessary properties for the Maxwell-Stefan system to show
that the hypotheses H1-H3 do in fact hold in combination with the entropy density defined in
(3.5). By that method one can prove that there exists a weak solution to the Maxwell-Stefan
system (1.1).

3.3 Assumptions for the Maxwell-Stefan system

In order to rigorously prove the existence of (weak) solutions to the Maxwell-Stefan system,
we need to state several assumptions for the system, which partly follow naturally from the
physical interpretations of the quantities involved. The existence of a solution can be derived
under the following assumptions:
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Assumption 3.1 (Domain). The domain Ω ⊂ Rd for 1 ≤ d ≤ 3 is a bounded domain with
a Lipschitz boundary, i.e. there holds ∂Ω ∈ C0,1.

The restriction on the smoothness on the domain will be needed later on in the proof to use
various embedding arguments, cf. section A.2.2.
For the initial data there holds that they are nonnegative measurable functions, indeed as ci are
assumed to be molar concentrations, there holds that c0 ∈ [0, 1]N+1 naturally by the governing
physical interpretation. Hence we assume the following:

Assumption 3.2 (Initial data). The initial molar concentrations c0 = (c0
1, . . . , c

0
N )T for

N ≥ 2 are non-negative measurable functions, and there holds c0
N+1 = 1−∑N

j=1 c
0
j and

N∑
i=1

c0
i ≤ 1 (3.15)

In section 2 we have derived the representation (2.55) for the Maxwell-Stefan diffusion coeffi-
cients Dij , which justifies that the coefficients are symmetrical and positive. Thus it is quite
natural to make the following assumption:

Assumption 3.3 (Diffusion matrix). The diffusion matrix Dij ∈ R(N+1)×(N+1) is a sym-
metrical matrix with Dij > 0 for i 6= j.

In hypothesis H3 in section 3.2 we have seen that is important to have appropriate bounds
for the source term, which will be made more clear in the proof in section 3.5. In order to
satisfy H3 with the entropy density (3.5) for the Maxwell-Stefan system, there is the following
restriction on the source term to be imposed:

Assumption 3.4 (Production rates). The production rate functions ri ∈
C0([0, 1]N+1,R) for 1 ≤ i ≤ N + 1 satisfy the relations

N+1∑
i=1

ri(c) = 0 (3.16a)

N+1∑
i=1

ri(c) ln(ci) ≤ Cr ∀c ∈ [0, 1]N+1 (3.16b)

where Cr ∈ R+ is a positive constant.
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3.4 Important bounds for the Maxwell-Stefan system

In order to prove the existence of a solution to the Maxwell-Stefan system (1.1), we need to
further investigate appropriate bounds for the diffusion matrix A(c) as given in (1.5).
For that purpose, the following assumption is made:

Assumption 3.5 (Positivity of molar concentrations). In this section, we assume
that c is strictly positive, i.e. there holds ci ≥ η for 1 ≤ i ≤ N (cN+1 is given by (1.6)) and
η ∈ R+.

By taking into account these properties for the Maxwell-Stefan cross diffusion matrix A(c), we
can prove the following result, which was originally proven in [10] and is also given in [40]:

Lemma 3.1 (Properties of A). Let δ = mini,j=1,...,N+1,i 6=j dij > 0 and ∆ = 2
∑N+1

i,j=1,i 6=j dij.
Then the spectrum σ(−A) of −A (where A is given by (1.5)) satisfies

σ(−A) ⊂ {0} ∪ [δ,∆).

Proof. By assumption 3.3, the matrix A as defined in (1.5) is quasi-positive (cf. definition A.5)
and irreducible (cf. definition A.3) by inspection, as the off-diagonal elements are all strictly
positive. By Theorem A.1 there holds that the spectral bound s(A) (cf. definition A.2) is a
simple eigenvalue of A. Furthermore Theorem A.1 states that the eigenvector v associated with
ρ(A) is strictly positive, i.e. v(i) > 0 for 1 ≤ i ≤ N . By definition A.2, as s(A) is the eigenvalue
with the largest real part, one can represent the spectrum σ(A) of the matrix A via

σ(A) ⊂ {s(A)} ∪ {z ∈ C : <(z) < s(A)}.

The next step is to show that c′ ∈ RN+1 is in fact a strictly positive eigenvector to the eigenvalue
0, thus by definition there holds (A− 0 · IN+1)c′ = 0. Indeed, by the definition (1.5) of A there
holds

[Ac′](i) = Aiici +
N+1∑
j=1
j 6=i

Aijcj = −
N+1∑
j=1
j 6=i

dijcjci +
N+1∑
j=1
j 6=i

dijcicj = 0 1 ≤ i ≤ N + 1.

As according to Theorem A.1 only the eigenvector associated with s(A) is strictly positive, this
implies s(A) = 0 and thus

σ(A) ⊂ {0} ∪ {z ∈ C : <(z) < 0}.

The analysis of the spectrum can be further refined by introducing the matrix C = diag
(√
c1, . . . ,

√
cN+1

)
and performing the similarity transformation to obtain AS = CAC−1, where C−1 is given by

C−1 = diag
(

1√
c1
, . . . , 1√

cN+1

)
. By inspection there holds for the elements aSij := (AS)ij

aSij =

{
aii i = j

dij
√
cicj i 6= j

1 ≤ i, j ≤ N + 1, (3.17)
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thus AS is a real symmetric matrix, for which the spectral theorem [32, Satz 12.3.6] can be
applied, yielding AS diagonalizable with an orthonormal basis of eigenvectors. Furthermore A
and AS are similar (via the basis change described by C), thus their spectra coincide. As all
eigenvalues λi ∈ R of AS are known to be situated on the real axis of the complex plane (cf.
[32, Satz 12.6.6]), the spectrum of A reduces to

σ(AS) = σ(A) ⊂ {0} ∪ {z ∈ R : z < 0} = (−∞, 0].

The bounds can be further refined by the following argument: One introduces the matrix
As(α) := AS − Dα where α ∈ (0, δ),

√
c′ :=

(√
c1, . . . ,

√
cN+1

)
and Dα := α

√
c′ ⊗ √c′.18 Fur-

thermore, −α is an eigenvalue of AS(α) with the strictly positive eigenvector
√
c, which can be

proven by computing

[(
AS(α) + αIN+1

)√
c′
]

(i)
= (aSii(α) + α)

√
ci +

N+1∑
j=1
j 6=i

aSij(α)
√
cj

=

−N+1∑
j=1
j 6=i

dijcj − αci + α

√ci +
N+1∑
j=1
j 6=i

(dij
√
cicj − α√cicj)√cj

= −
N+1∑
j=1
j 6=i

dijcj
√
ci + α(1− ci)

√
ci +

N+1∑
j=1
j 6=i

(dijcj
√
ci − αcj

√
ci)

=
√
ci

α(1− ci)− α
N+1∑
j=1
j 6=i

cj

 (1.6)
=

√
ci [α(1− ci)− α(1− ci)] = 0.

By Theorem A.1 there holds for α ∈ (0, δ)

σ(AS(α)) ⊂ (−∞,−α].

As AS(α) and Dα are both symmetric matrices, one can apply Theorem A.2 to get the bounds

λi(AS) = λi(AS(α) +Dα) ≤ λi(Dα) + λN+1(AS(α))︸ ︷︷ ︸
=−α

By Lemma A.3 there holds λi(Dα) = 0 for 1 ≤ i ≤ N and λN+1(Dα) = α|c|= α. Thus we are
able to restrict the bounds also for σ(AS) by λi ≤ −α and λN+1 ≤ 0. As AS is similar to A,
there holds for α ∈ (0, δ)

σ(AS) = σ(A) ⊂ {0} ∪ (−∞,−α].

This implies σ(−A) ⊂ {0} ∪ [δ,∞).
Now the upper bound of the spectrum of −A needs to be computed. Let ‖·‖F denote the
Frobenius norm and as the spectral norm ‖·‖2= ρ(·) can be bounded by the Frobenius norm

18Note that (
√
c′ ⊗
√
c′)ij =

√
cicj and by the definition of δ for the entries aSij(α) of the matrix AS(α) there

still holds aSij(α) > 0 for i 6= j, thus the matrix is still quasi-positive and irreducible.
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(cf. [3, p. 39]), there holds

ρ(−A) ≤ ‖−A‖F =

N+1∑
i,j=1

a2
ij

 1
2

=

N+1∑
i=1

N+1∑
j=1
j 6=i

dijcj


2

+
N+1∑
i,j=1
j 6=i

(dijci)
2


1
2

(A.27)
≤

3

N+1∑
i,j=1
j 6=i

(dijci)
2


1
2

< 2

N+1∑
i,j=1
j 6=i

dij = ∆.

by making use of ci ∈ (0, 1).

The next step is to check the following restrictions of A and AS on appropriate subspaces can
be inverted:

Lemma 3.2. Let Ã = A|im(A) with A defined in (1.5) and ÃS = AS |im(AS) with AS = CAC−1

and C = diag
(√
c1, . . . ,

√
cN+1

)
. Then A and AS are invertible on their images A and AS

and there holds

σ(−Ã) = σ(−ÃS) ⊂ [δ,∆) (3.18a)

σ((−AS)−1) ⊂ (1/∆, 1/δ] (3.18b)

with δ,∆ ∈ R defined as in Lemma 3.1.

Proof. As seen in the proof of Lemma 3.1, we have shown that zero is a simple eigenvalue to
A with eigenvector c, hence ker(A) = span(c). By the same argumentation and the proof for
Lemma 3.1, we have proven for the matrix AS defined in (3.17) that ker(AS) = span(

√
c′). By

a direct computation and a representation of the space {1}⊥ one can show that im(A) = {1}⊥,
where 1 = (1, . . . , 1)T ∈ RN+1. As AS is symmetric, it follows by [32, Satz 9.8.5, 12.1.7] that

RN+1 = ker(AS)⊥ ⊕ ker(AS) = im((AS)T )⊕ ker(AS) = im(AS)⊕ ker(AS). (3.19)

Furthermore by [61, Th. 3.4], as 0 is a real and semisimple eigenvalue of A by Lemma 3.1, there
holds

RN+1 = im(A)⊕ ker(A). (3.20)

Furthermore both Ã and ÃS are endomorphisms and by the definition of these maps there holds
σ(Ã) ⊂ σ(A) and σ(ÃS) ⊂ σ(AS). We claim that 0 is not contained in σ(Ã) or σ(ÃS). This is
proven by contraposition. Suppose 0 ∈ σ(Ã) and 0 ∈ σ(ÃS) then there exists a x 6= 0, such that
Ãx = 0 (ÃSx = 0 respectively). However, this implies x ∈ ker(Ã) (respectively x ∈ ker(ÃS)).
However, as the nullspace of the map has no intersection with the image except x = 0 due to
(3.20) (respectively (3.19)), this is a contradiction to the assumption x 6= 0. By contraposition,
Ã and ÃS are invertible on their respective domain, and in combination with the results from
Lemma 3.1 there holds (3.18).
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Due to Lemma 3.2 one can invert (1.4) as due to
∑N+1

i=1 J i,(ι) = 0 for 0 ≤ ι ≤ d from (1.7) there

holds that J ′(ι) = (J1,(ι), . . . , JN+1,(ι)) ∈ {1}⊥ = im(A). Thus by inverting (1.4) and obtaining

∇c′ = ÃJ ′ as in (1.1a), the latter can be written as

∂c

∂t
− divx(−Ã(c)∇c) = r(c). (3.21)

As already introduced in section 1, an N -dimensional system by using the closure relations
(1.6) and (1.7) is considered. In order to perform the dimensional reduction, one introduces the
matrices for a basis change via19

X = IN+1 − Λ, X−1 = IN+1 + Λ, Λ =


0
...
0
1

⊗


1
...
1
0

 .

This coordinate transformation can e.g. be motivated from section 1 in the derivation of the
reduced matrix A0 in (1.8). By performing a basis change on (3.21) to the X-basis, there holds
in the variables c = (c1, . . . , cN )T ∈ RN and J = (J1, . . . , JN )T ∈ RN×d by (1.6) and (1.7) that(

c
1

)
= X−1c(

J
0

)
= X−1J.

As seen in section 1 one can compute that in the coordinates in the X-Basis there holds(
∇c
0

)
= X−1∇c = (X−1AX)X−1J =

(
−A0J

0

)
,

where A0 is given by (1.8). Applying X−1 to (3.21) (performing the basis transformation to
X-coordinates) one obtains an N -dimensional system

∂ci
∂t
− divx(A−1

0 ∇ci) = ri(c) 1 ≤ i ≤ N, (3.22)

where cN+1 and JN+1 can by recovered by the closure relations (1.6) and (1.7).
Thus we have used the closure relations to reformulate the system as a lower dimensional system
where the diffusion matrix A (now A0) can be inverted. In order to make this statement more
precise, we need to prove the following relation for A0:

Lemma 3.3 (Properties of A0). The matrix A0 ∈ RN×N from (1.8) can be inverted and its
spectrum can be bounded by

σ(A0) ⊂ [δ,∆),

where δ,∆ ∈ R are defined as in Lemma 3.1. The elements of A−1
0 (c) are uniformly bounded

for c ∈ [0, 1]N .

19The inverse X−1 can e.g. be computed from X via (3.9) and vice versa, as seen before.
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Proof. As A0 = −X−1AX is similar to −A, their spectra coincide. As

X−1AX =

(
−A0 b

0 0

)
is an upper triangular block matrix and 0 is a simple eigenvalue of A (cf. Lemma 3.1), zero
can’t be an eigenvalue of A0 and the latter is thus invertible. From Lemma 3.1 there even holds

σ(A0) ∪ {0} = σ(−A) ⊂ {0} ∪ [δ,∆),

thus σ(A0) ⊂ [δ,∆). Now one needs to prove at the elements of A−1
0 are bounded from above.

The entries of A0 as given by (1.8) can be bounded by

|a0
ij |≤ |di,N+1|+

N∑
k=1
k 6=i

|dik − di,N+1|=: Ki(D) ≤ K(D).

Above, we have defined K := max1≤i≤N Ki > 0, for which holds |a0
ij |≤ K < ∞. By Lemma

A.4 one can represent A−1
0 via (A.7). As the determinant of a matrix can be represented by the

product of its eigenvalues, there holds det(A0) ≥ δN . As we’ve established that A0 is positive
definite, there holds for the elements ã0

ij of adj(A0) defined in (A.1b) by a simple corollary of

Hadamard’s inequality (A.9), that |ã0
ij |≤ KN−1(N − 1)

N−1
2 . Thus there holds

|(A−1
0 )ij |=

|ã0
ij |

det(A0)
≤ δ−NKN−1(N − 1)

N−1
2 =: C(N,D) <∞, (3.23)

which concludes the proof.

Remark 3.1. The uniform boundedness of the inverse A−1
0 from Lemma 3.3 actually cor-

responds to hypothesis H2” from section 3.2.

We will now study the Hessian matrix of the entropy density defined in (3.5):

Lemma 3.4. The Hessian (3.7) of the Maxwell-Stefan entropy density (3.5) defines an SPD
(symmetric, positive definite) matrix.

Proof. By inspection of (3.7), there holds hij = hji, thus it is symmetric. Hence for the proof of
the positive definiteness of H, one can use the principal minor criterion (cf. [32, Satz 9.10.13]),
which yields positive definiteness if for all principal minors Hk ∈ Rk×k (cp. definition A.8) and
1 ≤ k ≤ N there holds det(Hk) > 0.
As Hk for H in (3.7) can be represented by a rank-one perturbation of a regular matrix via

Hk = diag

(
1

c1
, . . . ,

1

ck

)
+

1
...
1

⊗
cN+1

...
cN+1

 , (3.24)
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there holds by (A.5) in Lemma A.2 that

det(Hk) =

(
k∏
i=1

1

ci

)1 +

1
...
1


T

diag (c1, . . . , ck)

cN+1
...

cN+1




=

(
k∏
i=1

1

ci

)1 + cN+1

k∑
j=1

cj

 > 0,

as cα ∈ (0, 1) for 1 ≤ α ≤ N + 1 due to assumption 3.5. Thus H is SPD.

With these results we can now prove the following properties for the entropy matrix B in (3.4):

Lemma 3.5 (Properties of B). The matrix B = A−1
0 H−1 is an SPD matrix. Furthermore,

the elements of B are bounded uniformly in c ∈ [0, 1]N+1.

Proof. By the definition of A0 in (1.8) and H in (3.7), one can compute the elements βij of
B−1 = HA0 as

βij =


di,N+1

(
1−∑N

k=1
k 6=i

ck

)(
1
ci

+ 1
cN+1

)
+
∑N

k=1
k 6=i

(
dk,N+1

cN+1
+ dik

ci

)
ck i = j

di,N+1

cN+1

(
1−∑N

k=1
k 6=i

ck

)
dj,N+1

cN+1

(
1−∑N

k=1
k 6=j

ck

)
+
∑N

k=1
k 6=j,i

dk,N+1
ck

cN+1
− dij i 6= j,

thus by inspection B−1 is symmetric. Due to Lemma A.5 (as we’ve proven that H is SPD in
Lemma 3.4), H−1 is SPD as well. Using Theorem A.4, the number of positive eigenvalues of
A0 = H−1B−1 equals the one for B−1, thus B−1 has only positive eigenvalues by Lemma 3.3.
Hence B−1 and B (again by Lemma A.5) are SPD. Now the uniform boundedness of B shall be
proven. The inverse H−1 = (Hij)1≤i,j≤N can be computed by using the rank-one perturbation
representation of H from (3.24) (as HN = H) and employing the Sherman-Morrison formula
(A.4) to arrive at

Hij(c
′) =

{
(1− ci)ci i = j

−cicj i 6= j
1 ≤ i, j ≤ N.

By naming αij := (A−1
0 )ij , one can represent the elements of B by

bij(c, A
−1
0 ) =


αii(1− ci)ci −

∑N
k=1
k 6=i

αikcick i = j

−αiicicj + αij(1− cj)cj −
∑N

k=1
k 6=i,j

αikcick i 6= j
1 ≤ i, j ≤ N. (3.25)

As in Lemma 3.3 uniform bounds for αij in c ∈ RN were presented in (3.23) and c ∈ [0, 1]N , it
is straightforward from above representation that

|bij(c(w))|≤ N max
1≤i,j≤N

|αij |
(3.23)
≤ NC(N,D) = C̃(N,D), (3.26)

thus all bij are uniformly bounded in c for 1 ≤ i, j ≤ N .
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We now have all the properties which are needed to prove the existence of a solution via the
boundedness-by-entropy method. The analysis necessary on A is quite general for existence
proofs by the boundedness-by-entropy method, which is summarized in the following remark:

Remark 3.2. Jüngel has stated in [35, Rem. 4.3] that in order for B(w) in (3.4) to be SPD,
the eigenvalues of the original Cross-Diffusion matrix A(u) from (3.1a) all need to be positive
(which was made plausible in the proof of Lemma 3.5 when employing Theorem A.4). Thus
this is a requirement for any Cross-Diffusion system if B shall be positive definite.

3.5 Existence proof by the boundedness-by-entropy method

In this section, the existence of a solution to the initial-boundary value problem of the reduced
Maxwell-Stefan system in entropy variables is derived, which is given as

∂

∂t
ci(w(x, t))− divx(B(w)∇xw(x, t)) = ri(c(x, t)) (3.27a)

∇wi · ν = 0 on ∂Ω wi(·, 0) = w0
i on Ω (3.27b)

for 1 ≤ i ≤ N . In (3.27), ci(w) can be recovered by (3.10). We still assume that c ∈ (0, 1)N+1

as in assumption 3.5 in this section.
The initial values w0

i can be computed from c0
i via (3.6), for which holds wi ∈ L∞(Ω) for

1 ≤ i ≤ N if c ∈ (0, 1)N+1. Then there holds the following theorem:

Theorem 3.1 (Global existence of a solution). Let assumptions 3.1, 3.2, 3.3, 3.4 hold.
Then there exists a weak solution to (1.1) which satisfies

ci ∈ L2
loc(0,∞;H1(Ω)),

∂ci
∂t
∈ L2

loc(0,∞;V ′)

and c(·, t) = (c1, . . . , cN+1) ∈ [0, 1]N+1 in Ω and t > 0. V ′ denotes the topological dual space of

V = {u ∈ H2(Ω) : ∇u · ν = 0}. (3.28)

Remark 3.3. Theorem 3.1 has been proven with the hypotheses H1, H2’, H2”, H3 from
section 3.2 in [35, Thm. 4.1] instead of the customly tailored assumptions in section 3.3,
which generalizes the proof to many other systems relevant in physics and biology, see [35,
ch. 4].

The proof is performed in several steps, which will be split into several sections for better
readability.

3.5.1 Step 1: Definition of an approximate system

The first step is to introduce a weak formulation for (3.27). By multiplying (3.27a) with an
appropriate test function v ∈ VN (VN is the cartesian product of the function space V defined

33



in (3.28)) and performing integration over the spacial domain Ω, one obtains

∫
Ω

N∑
i=1

∂ci
∂t

(w(t, x))vi(x)dx−
∫

Ω

N∑
i=1

 d∑
k=1

∂

∂xk

 N∑
j=1

bij(w)
∂wj
∂xk

 vi

 dx =

∫
Ω

N∑
i=1

ri(c(w))vidx.

By employing integration by parts and using the homogeneous Neumann boundary condition
(3.27b) on the boundary integral, one can infer

−
∫

Ω

N∑
i=1

 d∑
k=1

∂

∂xk

 N∑
j=1

bij
∂wj
∂xk

 vi

 dx =

∫
Ω

N∑
i=1

 d∑
k=1

 N∑
j=1

bij
∂wj
∂xk

 ∂vi
∂xk

 dx
−
∫
∂Ω

N∑
i,j=1

vibij ∇xwj · ν︸ ︷︷ ︸
(3.27b)

= 0

dx

=

∫
Ω

N∑
i=1

N∑
j=1

bij
(
∇xwj · ∇xvi

)
dx

=

∫
Ω
∇v : B∇wdx,

where the last equality above the shorthand (A.3) was used.
For the time being, the weak formulation of (3.27) can be written as∫

Ω

∂c

∂t
(w) · vdx+

∫
Ω
∇v : B∇wdx =

∫
Ω
r · vdx ∀v ∈ VN , (3.29)

where the specific structure of the term can be found explicitly above.
As stated in [35, p. 88f], we need to formulate an approximate system in order the weak
formulation is slightly adapted in order to prove the existence of a weak solution to (3.29):

� One introduces a higher-order regularisation term ε((−∆)m + id) with m > d
2 , ε > 0 and

id denotes the identity operator. As Jüngel states, this is due to two reasons:

– The operator w 7→ divB(w)∇w is usually not uniformly elliptic but the regularized
system arising by adding ε((−∆)m + id) can be proven to be uniformly elliptic w.r.t.
an appropriate Sobolev norm.

– The regularized equation can be solved in a more regular space Hm(Ω;RN ), which
has a continuous embedding into L∞(Ω;RN ).20 This is important as this ensures
the boundedness of w and thus also ensures the well-definedness of the inverse c =
h−1(w).

� The time derivative is discretized by an implicit Euler discretisation. This is used to avoid
problems with regularity in the time variable and leads to an elliptic system to be solved
in every timestep.

As we merely consider 1 ≤ d ≤ 3, it is sufficient to introduce the regularisation term

Rε(w, v) = ε

∫
Ω

∑
|α|=2

Dαw ·Dαv + w · vdx.

20A definition of vector valued Lebesgue and Sobolev spaces can be found in definitions A.13 and A.14.
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Thus the regularized version of (3.29) is given by∫
Ω

∂c

∂t
(wε) · vdx+

∫
Ω
∇v : B∇wεdx+ Rε(w

ε, v) =

∫
Ω
r · vdx ∀v ∈ VN .

By performing the discretisation of the time derivative by an implicit Euler discretisation (lowest
order discretisation with discretisation error scaling with O(τ)), one obtains an approximate
system, in which we search for wk+1 in an appropriate function space, such that for all test
functions v ∈ VN there holds

1

τ

∫
Ω

(
c(w(ε,τ),k+1)− c(w(ε,τ),k)

)
· vdx+

∫
Ω
∇v : B(w(ε,τ),k+1)∇w(ε,τ),k+1dx

+ ε

∫
Ω

∑
|α|=2

Dαw(ε,τ),k+1 ·Dαv + w(ε,τ),k+1 · vdx =

∫
Ω
r(w(ε,τ),k+1) · vdx,

(3.30)

where we use the shorthand notation w(ε,τ),k = w(ε,τ)(x, tk) with tk = τk for k ∈ N.

Remark 3.4. To ease up notation, the (ε, τ)-superscript in (3.30) will be dropped (thus
denoting w(ε,τ),k by wk). However, one should keep in mind that the solution is dependent
on the regularisation term which is dependent on ε > 0 and the time discretisation step-size
τ > 0. This convention will uphold until section 3.5.5 where the limit of c(ε,τ) → c (where
c(w) is a weak solution to (3.29))will be discussed.

The first step is to show the existence of a solution wk+1 of the approximate system (3.30) if
at the previous timestep tk there exists a wk ∈ L∞(Ω,RN ). This will be performed in section
3.5.2.

3.5.2 Step 2: Solution of a linearized version of the approximate system

Lemma 3.6. Let the assumptions of Theorem 3.1 hold and let wk ∈ L∞(Ω;RN ). Then there
exists a weak solution w ∈ VN to (3.30).

Proof. In this proof we wish to apply the Leray-Schauder fixed point theorem (cf. Theorem
A.6) to prove the existence of a solution for the k + 1-th timestep. Thus one has to construct
a continuous and compact map S : L∞(Ω;RN ) × [0, 1] → L∞(Ω;RN ). For that purpose,
we will define the bilinear form aŵ(w, v) and the linear form Fŵ,σ(v), such that for a fixed
ŵ ∈ L∞(Ω;RN ) there exists w ∈ VN such that there holds

aŵ(w, v) = Fŵ,σ(v) ∀v ∈ VN , (3.31)

where

aŵ(w, v) =

∫
Ω
∇v : B(ŵ)∇wdx+ ε

∫
Ω

∑
|α|=2

Dαw ·Dαv + w · vdx (3.32a)

Fŵ,σ(v) = −σ
τ

∫
Ω

(
c(ŵ)− c(wk)

)
· vdx+ σ

∫
Ω
r(c(ŵ)) · vdx. (3.32b)
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Note that be introducing ŵ we have linearized (3.30). Due to the structure of the variational
problem (3.31), the standard technique is to use the Lax-Milgram lemma (cf. Lemma A.7)
to prove the existence of an unique solution to the linearized problem. Due to Lemma 3.5 the
elements of B are bounded, thus |bij(c(ŵ))|< C holds for C > 0 as given in (3.26) independently
of ŵ. Thus there holds by employing the Cauchy-Schwarz inequality (cf. Theorem A.12 with
p = q = 2) multiple times in both the discrete and continuous version

aŵ(w, v) ≤ C‖∇w : ∇v‖L1(Ω)

+ ε
(
|w|H2(Ω;RN )|v|H2(Ω;RN )+‖w‖L2(Ω;RN )‖v‖L2(Ω;RN )

)
≤ C|w|H1(Ω;RN )|v|H1(Ω;RN )+ε‖w‖H2(Ω;RN )‖v‖H2(Ω;RN )

≤ max{C, ε}‖w‖H2(Ω;RN )‖v‖H2(Ω;RN )

In order to prove the coercivity of aŵ(·, ·), and we make use of the result from Lemma 3.5 that
B is positive definite there holds the estimate

aŵ(w,w) =

∫
Ω

d∑
k=1


∂w1
∂xk
...

∂wN
∂xk


T

B(ŵ)


∂w1
∂xk
...

∂wN
∂xk

 dx+ ε

∫
Ω

∑
|α|=2

|Dαw|2+|w|2dx > ε

∫
Ω

∑
|α|=2

|Dαw|2+|w|2dx.

Via the generalized Poincaré-inequality in Theorem A.8 (where we make use of assumption 3.1)
one can show by choosing p(u) = ‖u‖L2(Ω), that there holds21

ε

∫
Ω

N∑
k=1

∑
|α|=2

(Dαwk)
2 + (wk)

2dx = ε
N∑
k=1

|wk|2H2(Ω)+‖wk‖2L2(Ω)

(A.27)
≥ ε

2

N∑
k=1

(|wk|H2(Ω)+‖wk‖L2(Ω))
2

(A.25)
≥ ε

1

2C2
p

N∑
k=1

‖wk‖2H2(Ω)

= εKp‖w‖2H2(Ω;RN ),

thus aŵ(·, ·) is coercive. For F (·), as c ∈ [0, 1]N there holds by applying the Hölder inequality

Fŵ,σ(v) ≤ σ

τ
‖c(ŵ)− c(wk)‖L2(Ω;RN )‖v‖L2(Ω;RN )+σ‖r‖L2(Ω;RN )‖v‖L2(Ω;RN )

≤ σ

τ
meas(Ω)N‖v‖L2(Ω;RN )+σ‖r‖L∞(Ω;RN )meas(Ω)‖v‖L2(Ω;RN )

≤ C(Ω, τ,N, r)‖v‖H2(Ω;RN ),

for some 0 < C(Ω, τ,N, r) <∞, hence by Theorem A.7 there exists a unique solution wσ,ŵ ∈ VN
to (3.31) for any given σ ∈ [0, 1] and ŵ ∈ L∞(Ω;RN ). As the spacial dimension considered is
1 ≤ d ≤ 3, there holds that the embedding H2(Ω) ↪→ L∞(Ω) is compact (cf. definition A.17)
by the Rellich-Kondrachov theorem (cf. Theorem A.9 part ii, as m = 2 and p = 2 and thus
mp > d). This is indeed valid, as the composition E = E1 ◦ E2 of the compact embedding
E1 : H2(Ω) ↪→ C0,β(Ω) for 0 < β < 1

2 as given by Theorem A.9 part ii. and the continuous

21It can be proven easily, that for a linear polynomial p(x) = k0 +
∑d
i=1 kixi for k ∈ Rd+1 there holds

‖u‖L2(Ω)= 0⇒ u = 0 λd-a.e., which is necessary for Theorem A.8 to hold.
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embedding E2 : C0,β(Ω) ↪→ L∞(Ω) yields a compact embedding, as the composition of a
compact and a continuous map is compact. Hence by applying the theorem componentwise,
there holds the compact embedding H2(Ω;RN ) ↪→ L∞(Ω;RN ).22

We now wish to apply Theorem A.6 to S. For this application, we need make the choice of the
sought operator S more rigorous. By above result, we can define the operator S0 : L∞(Ω,RN )×
[0, 1]→ VN : S(ŵ, σ) 7→ wσ,ŵ. By embedding VN ↪→ L∞(Ω;RN ) we can define the operator S as

stated at the beginning of the proof as composition S = S0◦I : L∞(Ω;RN )×[0, 1]→ L∞(Ω;RN )
of the solution operator S0 and the embedding operator I := idH2(Ω;RN )→L∞(Ω;RN ). The idea is
that the composition of a compact (I) and continuous (S0) map is compact, thus S is a compact
(and continuous) operator.23

As w(x, t) = 0 ∈ VN is a solution for σ = 0 as a(0, v) = 0 for all v ∈ VN and the Lax-
Milgram lemma guarantees a unique solution, there holds S(ŵ, 0) = 0. Thus the last and
key component in order to apply Theorem A.6 is to show that for each element of the set
{w ∈ L∞(Ω;RN ) : S(w, σ) = w ∀σ ∈ [0, 1]} there holds ‖w‖L∞(Ω;RN )≤ C, i.e. to find a L∞-

bound for w independent of σ. Let w ∈ L∞(Ω;RN ) be a fixed point of S, then w solves (3.31)
with ŵ = w. By choosing the specific test function v = w ∈ VN , there holds

σ

τ

∫
Ω

(
c(w)− c(wk)

)
· wdx+

∫
Ω

∇w : B(w)∇w + ε
∑
|α|=2

|Dαw|2+|w|2
 dx

= σ

∫
Ω
r(w) · wdx

(3.33)

The first term of the LHS can be estimated by using the definition of w via the convex24 entropy
density function h in (3.6), hence by Taylor expansion there holds

h(c)− h(ĉ) ≤ ∇ch · (c− ĉ) ∀c, ĉ ∈ (0, 1)N .

As w = ∇ch it can be inferred that

σ

τ

∫
Ω

(
c(w)− c(wk)

)
· wdx ≥ σ

τ

∫
Ω

(
h(c(w))− h(c(wk))

)
dx ≥ −1

τ
meas(Ω)(N + 1). (3.34)

By using the positive definiteness of B due to Lemma 3.5, there holds

∫
Ω
∇w : B(w)∇wdx =

∫
Ω

d∑
k=1


∂w1
∂xk
...

∂wN
∂xk


T

B(w)


∂w1
∂xk
...

∂wN
∂xk

 dx ≥ 0. (3.35)

For the production rates r ∈ RN using rN+1 = −∑N
i=1 ri, there holds∫

Ω
r(c(w)) · wdx =

∫
Ω

N∑
i=1

ri(c(w)) (ln ci(w)− ln(cN+1(w))) dx =

∫
Ω

N+1∑
i=1

ri(c(w)) ln ci(w)dx

≤
∥∥∥∥∥
N+1∑
i=1

ri(c(w)) ln ci(w)dx

∥∥∥∥∥
L∞(Ω)

meas(Ω).

22It should be noted that by applying Rellich-Kondrachov theorem we have also made use of assumption 3.1.
23For more details on the continuity of S, cf. [37].
24Note that we have proven that the Hessian of h is positive definite in Lemma 3.4, thus h is a convex function

in c.

37



By using assumption 3.4 the L∞-term can be bounded by a constant Cr > 0 and thus∫
Ω
r(c(w)) · wdx ≤ Cr meas(Ω). (3.36)

The generalized Poincaré-inequality (Theorem A.8) states that there exists a Kp(Ω) := 1
C2
p
> 0

such that

Kp‖w‖2H2(Ω;RN )≤ |w|2H2(Ω,RN )+‖w‖2L2(Ω;RN ). (3.37)

By applying (3.34), (3.35), (3.36) and (3.37) to (3.33), there holds

σ

∫
Ω
h(c(w))dx+Kpετ‖w‖2H2(Ω;RN ) ≤ σ

∫
Ω
h(c(wk))dx+ στCr meas(Ω).

By further using that σ ∈ [0, 1] and thus

σKpετ‖w‖2H2(Ω;RN ) ≤ Kpετ‖w‖2H2(Ω;RN ),

one can infer the estimate∫
Ω
h(c(w))dx+Kpετ‖w‖2H2(Ω;RN ) ≤

∫
Ω
h(c(wk))dx+ τCr meas(Ω). (3.38)

As H[c] can be bounded from below by a negative constant by (3.34), this yields an uniform
bound in σ ∈ [0, 1] such that ‖w‖H2(Ω;RN )≤ C(ε, τ) < ∞. By embedding H2(Ω;RN ) ↪→
L∞(Ω,RN ) as seen before, there exists a C > 0 such that ‖w‖L∞(Ω;RN )≤ C. Thus by Theorem

A.6, there exists a fixed point w ∈ L∞(Ω;RN ) of S(w, 1) and hence a solution for (3.30). As
w ∈ H2(Ω;RN ) by above estimate, there holds w ∈ VN .

3.5.3 Step 3: Entropy dissipation estimate

The next step in the proof of Theorem 3.1 is to show an estimate for the entropy dissipation
term in (3.30). As the Matrix B(wk+1) is SPD, it can be diagonalized and has a positive smallest
eigenvalue λmin > 0. By this argument, there holds∫

Ω
∇wk+1 : B(wk+1)∇wk+1dx ≥

∫
Ω
λmin

N∑
i=1

|∇wk+1
i |2dx

However, as B depends (even nonlinearly) on wk+1 (therefore also λmin := λmin(B(wk+1))),
this does not yield a positive lower bound independent of wk+1, as this estimate is not uni-
form. However, Jüngel and Stelzer have shown that the following uniform estimate holds in the
variables

√
ci(wk+1):

Lemma 3.7. Let wk+1 ∈ VN be a weak solution to (3.30). Then there holds∫
Ω
∇wk+1 : B(wk+1)∇wk+1dx ≥ 4

∆

∫
Ω

N∑
i=1

|∇
√
ci(wk+1)|2dx, (3.39)

where
√
c := (

√
c1, . . . ,

√
cN )T and ∆ is defined as in Lemma 3.1.

38



Proof. In this proof, we will employ the short-hand ck = c(w(tk, x)) ∈ RN and ĉk = (ck, ckN+1) ∈
RN+1.25 First, we need to prove that there holds∫

Ω
∇wk+1 : B(wk+1)∇wk+1dx =

∫
Ω
∇ ln(ĉk+1) : (−Ã−1)∇ĉk+1dx, (3.40)

with Ã ∈ R(N+1)×(N+1) as defined in Lemma 3.2. For that purpose, one defines z = (z1, . . . , zN )T =
B(wk+1)∇wk+1 ∈ RN×d, zN+1 = −∑N

i=1 zi and ẑ = (z, zN+1) ∈ R(N+1)×d. By (3.6), there
holds

∇wk+1 : B(wk+1)∇wk+1 = ∇wk+1 : ẑ =

N∑
i=1

(
∇ ln(ck+1

i )−∇ ln(ck+1
N+1)

)
· zi

=
N+1∑
i=1

∇ ln(ck+1
i ) · ẑi = ln(ĉk+1) : ẑ.

(3.41)

By using ∇wk+1 = H∇xck+1 and the definition of B = A−1
0 H−1 there holds z = A−1

0 ∇ck. By

inverting this relation one defines ∇ck = A0z. Thus ck+1
i can be expressed by using (1.8) as

∇cki = (A0z)(i) =
N∑
j=1
j 6=i

(dij − di,N+1)(zic
k+1
j − zjck+1

i ) + di,N+1zi = −(Az)(i) = −(Ãẑ)(i),

since each column zi ∈ im(A). As Ãẑ ∈ im(A), we have (−Ãz)N+1 =
∑N

i=1(−Ãz)i = ∇ck+1
N+1.

Thus ĉk+1 = −Ãẑ and hence ẑ = (−Ã)−1∇ĉk+1. By substituting the result for ẑ into (3.41)
there holds the claim (3.40). As seen in the proof for Lemma 3.2 one can infer that for the images

of Ã = A|im(A) and ÃS = AS |im(AS) there holds im(A) = {1}⊥ and im(AS) = span{
√
ĉk+1}⊥ =

{C 1
2 x̂ : x̂ ∈ im(A)}, where C±

1
2 := diag

(
(ck+1

1 )±
1
2 , . . . , (ck+1

N+1)±
1
2

)
∈ R(N+1)×(N+1). As the

definition −A = C
1
2 (−AS)C−

1
2 implies that −Ã = C

1
2 (−ÃS)C−

1
2 , one can deduce (−ÃS)−1 =

C−
1
2 (−Ã)−1C

1
2 , and thus, as the smallest eigenvalue λmin((−AS)−1) ≥ 1

∆ by Lemma 3.2, there
holds

∇ ln(ĉk+1) : (−Ã)−1ĉk+1 = 4(∇
√
ĉk+1) : C−

1
2 (−Ã)−1C

1
2∇
√
ĉk+1

= 4∇
√
ĉk+1 : (−ÃS)−1∇

√
ĉk+1 ≥ 4

∆

N∑
i=1

∣∣∣∣∇√ck+1
i

∣∣∣∣2 .
We have thus found a positive uniform lower bound in c(w) of the entropy dissipation term.

Remark 3.5. The result of Lemma 3.7 proves that assumption H2’ from section 3.2 holds
for a = −1

2 .

3.5.4 Step 4: Uniform estimates

In the next step, uniform estimates for the entropy are derived, which is stated in the following
lemma:

25In order to avoid confusing typography in the superscripts, hatted variables are used instead of the usual
convention in section 3, that primed variables denote the respective quantities in RN+1.
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Lemma 3.8 (Discrete Entropy inequality). Let wk+1 ∈ VN be a weak solution to (3.30).
Then for k ≥ 0 there holds

H[ck] +
4τ

∆

∫
Ω
|∇
√
ck|2dx+Kετ‖wk+1‖2H2(Ω;RN )≤ H[ck−1] + C̃r, (3.42a)

where the functional H[·] is defined in (3.2) and C̃r(τ,Ω) = Crτ meas(Ω), K = 1
C2
p

(see Theo-

rem A.8) and k ∈ N+. By solving this estimate recursively there holds

H[ck] +
4τ

∆

k∑
j=1

∫
Ω
|∇
√
cj |2dx+Kετ

k∑
j=1

‖wk+1‖2H2(Ω;RN )≤ H[c0] + kC̃r. (3.42b)

Proof. Due to Lemma 3.6, there exists a solution wk+1 ∈ VN to (3.30). As (3.38) yields a
uniform bound in σ and (3.30) corresponds to the Leray-Schauder system we’ve constructed in
the proof of Lemma 3.6 with σ = 1, (3.38) together with (3.39) implies (3.42a). By summing
(3.42a) for j = 1, . . . , k there holds

k∑
j=1

(
H[wj ] +

4

∆

∫
Ω

N∑
i=1

|∇
√
cj(i)|

2dx+Kετ‖wj‖2H2(Ω;RN )

)
≤

k∑
j=1

H[wj−1] + kτCr meas(Ω)

and thus by appropriately comparing the H[wj ]-terms on each side of the inequality there holds
(3.42b).

In this section, the original variables c are considered rather than the entropy variables as there
are no uniform estimates in the w-variables. The main argument is in section is now to define
piecewise constant functions in time given as w(τ)(x, t) = wk+1(x) and c(τ)(x, t) = c(wk+1(x))
for x ∈ Ω, t ∈ (kτ, (k+ 1)τ ] and k ∈ N. One introduces the discrete time derivative Dτ and the
discrete time shift operator στ via

Dτ c
(τ) =

c(τ) − στ c(τ)

τ
=
c(τ)(x, t)− c(τ)(x, t− τ)

τ
x ∈ Ω, t ∈ (τ, T ].

By integrating (3.30) in the time variable and choosing piecewise constant-in-time test functions
φ : (0, T )→ VN there holds

1

τ

∫ T

0

∫
Ω

(c(τ) − στ c(τ)) · φdxdt+

∫ T

0

∫
Ω
∇φ : A−1

0 ∇c(τ)dxdt

+ ε

∫ T

0

∫
Ω

∑
|α|=2

Dαw(τ) ·Dαφ+ w(τ) · φdxdt =

∫ T

0

∫
Ω
r(c(τ)) · φdxdt

(3.43)

A density argument in [56, Prop. 1.36] shows that these piecewise constant-in-time functions
are dense in L2(0, T ;VN ), thus (3.43) also holds for φ ∈ L2(0, T ;VN ). On each of the discrete
time intervals, one can show the following estimates:
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Lemma 3.9. There exists a constant C > 0 independent of ε, τ and η (note that it is still
assumed that ci ≥ η > 0 for 1 ≤ i ≤ N + 1 due to assumption 3.5) such that

‖
√
c(τ)‖L2(0,T ;H1(Ω;RN ))+

√
ε‖w(τ)‖L2(0,T ;H2(Ω;RN )) ≤ C (3.44a)

‖c(τ)‖L2(0,T ;H1(Ω;RN ))+‖Dτ c
(τ)‖L2(0,T ;(VN )′)≤ C (3.44b)

Proof. Let us first note that for each function f (τ) for τ ∈ R+, which is piecewise constant on
the tessellation Tτ =

⋃
0≤k≤Nτ (kτ, (k + 1)τ ] ∪ (Nττ, T ] of ΩT = [0, T ] and Nτ := bTτ c ∈ N, we

have an (exact) discrete quadrature rule∫ T

0
f (τ)(t)dt =

Nτ∑
k=1

τf τ |(kτ,(k+1)τ ]+τ
−1λ((Nττ, T ])fNτ+1 =:

Nτ+1∑
k=1

σkτf
τ
k ,

where σk = 1 for 0 ≤ k ≤ Nτ and σNτ+1 = τ−1λ((Nττ, T ]). As σk ∈ [0, 1], we can bound it
from above by 1, thus as we seek an upper bound we will wlog assume that τNτ = T and the
then trivial Nτ + 1-st summand is omitted. Thus, by interpreting the sum over all c(τ) for an
appropriate k = Nτ as integration in the time domain, the discretization of (3.43) with the test
function φ|Tj= wj yields

Nτ∑
j=1

∫
Ω

(c(τ)|Tj−στ c(τ)) · wjdx+ τ

Nτ∑
j=1

∫
Ω
∇wj : A−1

0 |Tj∇c(τ)|Tjdx

+ ετ

Nτ∑
j=1

(
|wj |H2(Ω;RN )+‖wj‖L2(Ω;RN )

)
= τ

Nτ∑
j=1

∫
Ω
r(c(τ)|Tj ) · wjdx.

Via the estimates (3.34), (3.35), (3.36) and (3.37) applied to the above, which leads to estimates
as seen in (3.39) with k = Nτ , we can infer

H[cNτ ] +
4τ

∆

Nτ∑
j=1

N∑
i=1

‖∇
√
cj(i)‖

2
L2(Ω;Rd)+ετKp

Nτ∑
j=1

‖wj‖2H2(Ω;RN )≤ H[c0] + τNτ meas(Ω)Cr

≤ H[c0] + T meas(Ω)Cr =: C1(T,Ω, c0, Cr),

for a constant C1(T,Ω, c0, Cr) > 0 (and thus independent of ε and τ). Note that the estimate is
bounded for any fixed T , but unbounded for T →∞. As we restrict our solution to be a member
in the function space L2

loc(0,∞; ·) in Theorem 3.1, this does not yield a problem however.
As ci ∈ (0, 1) λd-a.e., there holds the estimate

‖(c(τ)
i )p‖L∞(0,T ;L∞(Ω))≤ 1 p ∈ R+. (3.45)

By definition A.12, Hölder inequality and (3.45) there holds

‖
√
c

(τ)
i ‖2L2(0,T ;H1(Ω)) = ‖

√
c

(τ)
i ‖L2(0,T ;L2(Ω))+τ

Nτ∑
k=1

N∑
i=1

‖∇
√
cki ‖2L2(Ω)

≤ T meas(Ω) +
∆(dij)

4
C1(T,Ω, c0, Cr) =: C2(T,Ω, c0, Cr, dij),
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as well as

√
ε‖w(τ)

i ‖2L2(0,T ;H2(Ω;RN ))= ετ

Nτ∑
j=1

‖wj‖2H2(Ω;RN )≤
1

Kp(Ω)
C1(T,Ω, c0, Cr) =: C3(T,Ω, c0, Cr),

for positive constants C2, C3 ∈ R+. Hence there exists a C = max{C2, C3} > 0, such that
(3.44a) holds.
For the uniform estimate of the time derivative (3.44b), let us first consider∥∥∥∥ ∂

∂xl
cki (x)

∥∥∥∥2

L2(Ω)

= 4

∥∥∥∥√cki ∂

∂xl

√
cki

∥∥∥∥2

L2(Ω)

≤ 4

∥∥∥∥ ∂

∂xl

√
cki

∥∥∥∥2

L2(Ω)

∥∥∥∥√cki ∥∥∥∥2

L∞(Ω)

≤ 4

∥∥∥∥ ∂

∂xl

√
cki

∥∥∥∥2

L2(Ω)

By above estimate, one can compute the bound

‖c(τ)
i ‖2L2(0,T ;H1(Ω)) = ‖c(τ)

i ‖2L2(0,T ;L2(Ω))+τ

Nτ∑
k=1

N∑
i=1

‖∇cki ‖2L2(Ω;Rd)

≤ ‖c(τ)
i ‖2L2(0,T ;L2(Ω))+4τ

Nτ∑
k=1

N∑
i=1

‖∇
√
cki ‖2L2(Ω;Rd)

≤ T meas(Ω) + ∆(dij)C1(T,Ω, c0, Cr) =: C̃2(T,Ω, c0, Cr, dij).

Considering an arbitrary test function φ ∈ L2(0, T ;H2(Ω;RN )) and the embedding L2(Ω) ↪→
(H1(Ω))′, starting from (3.43) and applying the Hölder inequality multiple times on the domain
QT = Ω× (0, T ) ⊂ Rd+1 yields

1

τ

∣∣∣∣∫ T

0

∫
Ω

(c(τ) − στ c(τ)) · φdxdt
∣∣∣∣

≤ ‖A−1
0 ‖L∞(QT ;RN×N )

d∑
k=1

‖∂xkc‖L2(QT ;RN )‖∂xkφ‖L2(QT ;RN )

+ ε‖w(τ)‖L2(0,T ;H2(Ω;RN ))‖φ‖L2(0,T ;H2(Ω;RN ))+‖r(c(τ))‖L2(QT ;RN ))‖φ‖L2(QT ;RN )

≤
[
C(N, dij)‖c‖L2(0,T ;H2(Ω;RN ))+

√
ε
√
ε‖w(τ)‖L2(0,T ;H2(Ω;RN ))+r∞T meas(Ω)

]
‖φ‖L2(0,T ;H2(Ω;RN ))

≤
[
C(N, dij) + C3(T,Ω, c0, r) + C5(r,Ω, T )

]
‖φ‖L2(0,T ;H2(Ω;RN ))

= C4(T,Ω, c0, r,N, dij)‖φ‖L2(0,T ;VN ),

where r∞ denotes the maximum of r, which exists due to r being a continuous function on a
compact domain due to assumption 3.4. In above inequalities, (3.23) was used to bound the
entries of A−1

0 . Furthermore, in order to use the bound of
√
ε‖w(τ)‖L2(0,T ;H2(Ω;RN ))≤ C3 we’ve

assumed ε ≤ 1. As we want ε → 0, this is not a too restrictive assumption. As of the above
result, we have proven by definition of the dual norm, that ‖Dτ c

(τ)‖L2(0,T,(VN )′)≤ C4, thus by

choosing C := max{C̃2, C4}, there holds (3.44b).

3.5.5 Step 5: Limits
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Remark 3.6. In this section, we perform both a limit in (τ, ε) → 0. For that purpose, we
consider a subsequence of the arbitrary null sequence θ(n) = 1

n and {θ(n)}∞n=1 → 0 such that
τn′ = εn′ = θ(n′).To ease up notation, we drop superscripts not currently considered in the
argument. For example, when considering the limit τn′ → 0, c(τn′ ) denotes c(τn′ ,εn′ ).

By the uniform estimates (3.44) from Lemma 3.9, one can now use a compactness result by
Dreher and Jüngel [23] to the family of piecewise constant-in-time functions c(τ). The Theorem
is stated in Theorem A.10, in order to apply it, we must check its assumptions. We choose
B = Lp(Ω;RN ), X = H1(Ω,RN ) and Y = (H2(Ω,RN ))′ (the admissible values for p ∈ N will
be stated shortly).
Firstly, we want to apply Theorem A.9 part i., to prove the compact embedding X ↪→ B, as
d = 3, m = 1 and p = 2 in our case yields mp ≤ d.26 As Theorem A.9 part i. yields the
restriction for B = Lp(Ω;RN ) that 1 ≤ p < dp

d−mp , there holds 1 ≤ p < 6.
Secondly, in order to prove the continuous embedding B ↪→ Y , the continuity of the embedding
Lp(Ω;RN ) ↪→ (H2(Ω;RN ))′ can be argued as follows: As H2(Ω;RN ) is a Hilbert space, by Riesz
representation theorem (cf. e.g. [25, p. 722]) there has to hold for each ξ ∈ (H2(Ω;RN ))′ that

Ξ :=

∣∣∣∣∫
Ω
ξ · vdx

∣∣∣∣ <∞ ∀v ∈ H2(Ω;RN ).

Under the assumptions of Theorem A.12 there holds

Ξ ≤ ‖ξ‖Lp(Ω;RN )‖v‖Lq(Ω;RN ).

By [27, Cor. 7.11] as d = 3, there holds for each coordinate vk ∈ C1
B(Ω) where CmB := {u ∈

Cm(Ω) : Dαu ∈ L∞(Ω)∧|α|≤ m} for 1 ≤ k ≤ N and m ∈ N, thus ‖v‖L∞(Ω;RN )<∞. By Lemma

A.8 this implies that ‖v‖Lq(Ω;RN )< ∞ for 1 ≤ q ≤ ∞, hence for ξ ∈ Lp(Ω;RN ) for 1 ≤ p ≤ ∞,

there holds Ξ <∞, hence Lp(Ω;RN ) ↪→ (H2(Ω;RN ))′ is continuous.
Thirdly, by the Cauchy-Schwarz inequality and (3.44b) there holds

‖Dτ c
(τ)‖L1(0,T ;(VN )′)=

∫ T

0
‖Dτ c

(τ)‖(VN )′1dt ≤ ‖1‖L2([0,T ])‖Dτ c
(τ)‖L2(0,T ;(VN )′)≤ TC.

We can thus apply Theorem A.10 part i., which yields as of (3.44b), that the sequence {c(τj)}∞j=1

for limj→∞ τj = 0 is relatively compact in L2(0, T ;Lp(Ω;RN )) for admissible p. If one re-
stricts to p > 1, then L2(0, T ;Lp(Ω;RN )) is furthermore a reflexive Banach space. Hence
one can now make use of the Eberlein-Šmuljan theorem (cf. Theorem A.11), which guaran-
tees as ‖c(τj)‖L2(0,T ;Lp(Ω;RN ))≤ C by (3.44b) that there exists a weakly convergent subsequence

c(τj′ ) ⇀ c weakly in L2(0, T ;Lp(Ω;RN )) for 1 < p < 6. As relative compactness ensured by
Theorem A.10 yields strong convergence (i.e. convergence in the norm) for a weakly convergent
(sub)sequence, there holds that for a bounded sequence with limj′→∞ τj′ → 0 that

c
(τj′ )

i → ci strongly in L2(0, T ;Lp(Ω;RN )), 1 ≤ i ≤ N, 1 < p < 6. (3.46)

As c(τ) is bounded in L∞(QT ) (as argued in (3.45)), thanks to Lemma A.8 there also holds
convergence λd+1-a.e. in Lp(QT ) for 1 < p ≤ ∞.

26Actually also for d = 1, 2 compact embedding could be proven by applying one of the other cases in Theorem
A.9. Note that this yields different (more relaxed) restrictions on admissible p as demonstrated in the proof here.
However, as the most interest is surely for solutions in R3, we restrict the rest of the proof to d = 3.
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By Lebesgue dominated convergence theorem (cf. Theorem A.13), as one can bound A−1
0 as

seen in (3.23) independently of c from above, there holds due to (3.46) that

A−1
0 (c(τj′ ))→ A−1

0 (c) strongly in Lp(QT ), p <∞.

As r(c) is continuous due to assumption 3.4, one can also find bounds for Lebesgue dominated
convergence theorem and thus

r(c(τj′ ))→ r(c) strongly in Lp(QT ), p <∞.

By the boundedness shown in (3.44b) and Theorem A.11 there exist subsequences of {τj}∞j=1 → 0
such that for 1 ≤ i ≤ N

Dτ c
(τj′ )

i ⇀
∂

∂t
ci weakly in L2(0, T, (VN )′),

∂

∂xl
c

(τj′ )

i ⇀
∂

∂xl
ci weakly in L2(0, T ;L2(Ω))

By extension, there holds due to the composition of a weakly and a strongly convergent sequence

A−1
0 (c(τj′ ))

∂

∂xl
c

(τj′ )

i ⇀ A−1
0 (c)

∂

∂xl
ci weakly in L2(0, T ;L2(Ω)).

As ε→ 0 strongly and
√
ε‖w(τ)‖L2(0,T ;H2(Ω;RN ))≤ C due to (3.44a), there holds

εw(τj′ ) → 0 strongly in L2(0, T ;H2(Ω;RN )).

This is sufficient to pass the limit (τ, ε) → 0 such that c(τ,ε) solving (3.43) converges to the
solution c which solves the system∫ T

0
〈∂tc, v〉 dt+

∫ T

0

∫
Ω
∇v : A−1

0 (c)∇cdxdt =

∫ T

0

∫
Ω
r(c) · vdx ∀v ∈ L2(0, T ;VN ), (3.47a)

which is equivalent to the strong formulation that there has to hold (understood distributionally)
in L2(0, T ; (VN )′)

∂c

∂t
− div(A−1

0 (c)∇c) = r(c). (3.47b)

There are a few subtleties left to show, which are e.g. discussed in [37] for more general cross-
diffusion systems.
Firstly, by (3.44b) and ε→ 0 there holds ∂tc ∈ L2(0, T ; (VN )′) as the norm is bounded. By iden-
tifying L2(0, T ; ·) = L2

loc(0,∞; ·), there holds the claim ∂tci ∈ L2
loc(0,∞; (VN )′) as stated in The-

orem 3.1. Via (3.44b) there also holds the claim from Theorem 3.1 that ci ∈ L2
loc(0,∞;H1(Ω)).

Secondly, as the homogeneous Neumann boundary conditions (1.1b) were built in the weak
formulation as well as in the approximation space of all wn obtained by the Leray-Schauder
fixed point theorem, by the continuity of c(w) they are satisfied by the limit.

Thirdly, due to (3.44b) and Theorem A.11 there exists a weakly convergent subsequence c
(τj′ ),0

i ⇀
c0
i , such that the initial datum is satisfied in V ′. This is important, as theorem A.10 the estimate

on the time derivative has only been required to be bounded on t ∈ [τ, T ] and not t ∈ [0, T ].
As we have actually shown the bounds up to c(τj′ ),0, we can choose the weakly convergent sub-
sequence up that the previous timestep variable in the first timestep satisfies the initial datum
in the V ′-sense.
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The last point that needs discussion is the limit η → 0 where η was defined in assumption 3.5,
to guarantee that ci ≥ η > 0 for 1 ≤ i ≤ N + 1.
As the entropy density (3.5) is defined for c0

i = 0 and finite, such that H[c0
i ] exists and is finite,

all the bounds from Lemma 3.9 needed for the Eberlein-Šmuljan arguments in this section still
hold in the limit η → 0.27 Furthermore by inspection of (1.8) the elements of A0 are properly
defined for for ci = 0 or ci = 1 for 1 ≤ i ≤ N + 1 and Lemma 3.3 guarantees that A0 can be
inverted.
By considering the slightly perturbed initial datum

c0,α
i =

c0
i + α

1 + α
≥ η, (3.48)

where α ∈ R+ can be chosen to ensure assumption 3.5.
Then, by performing the limit η → 0 (and hence α → 0), all non-vanishing limit objects are
well-defined.
Hence we have shown all properties of Theorem 3.1, which thus yields the existence of a solution
in any arbitrarily large but compact time interval.

27See the proof for Lemma 3.9 for details, where the bounds and their dependencies are derived.
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4 Numerical Setup for solving the Maxwell-Stefan System

4.1 Introduction

For the purpose of numerically solving the Maxwell-Stefan equations, a new method to dis-
cretize the Maxwell-Stefan equations has been proposed by Jüngel, which makes use of several
techniques employed by the boundedness-by-entropy method as presented in section 3. As
stated before (cf. also [40]), the matrix A−1(c) in (1.9) may not be positive definite and also
not necessarily symmetric.
By reformulating the system in entropy variables, as demonstrated in section 3.2, one obtains
an equivalent system (3.11) with a matrix B that is SPD, cf. Lemma 3.5.
Thus it is a reasonable endeavor to discretize the system in variables where the discretization has
in general more favorable numerical features. The numerical discretization has been performed
by using a (semi-)implicit Euler discretization, i.e. using a backwards Euler scheme, which uses
the diffusion matrix B from the previous timestep for simplicity. In the spatial domain, a lowest-
order discretization with conforming P1-Lagrange elements via the Finite-Element method has
been employed.
In this section, the mathematics behind the discretization is discussed further, which has been
used to obtain Python code solving the Maxwell-Stefan equations in a novel entropy-variable
discretization.

4.2 Solution strategy for the Maxwell-Stefan equations in entropy variables

In order to discretize the entropy formulation (3.11) with Finite Elements, we need to formulate
the weak formulation of the system.
By multiplication with an arbitrary scalar test function v ∈ V (where the appropriate function
space V has yet to be specified) and integration of (3.11) over the entire domain Ω, one obtains∫

Ω

∂

∂t
c(x, t)v(x)dx−

∫
Ω

div [B(w(x, t))∇w(x, t)] v(x)dx =

∫
Ω
r(c)v(x)dx ∀v ∈ V (4.1)

For avoiding further complications with the non-linearities in B(w), a semi-implicit Euler
timestep discretisation has been chosen, i.e. we allow the matrix B(w(x, t)) to depend on
the previous timestep.
One obtains the discretized system in time at the k-th timestep via integration by parts (by
exploiting the homogeneous Neumann boundary conditions from (1.1b)), which is given by

1

∆t

∫
Ω

[c(w(x, tk+1))− c(w(x, tk))]v(x)dx+

∫
Ω
B(w(x, tk))∇xw(x, tk+1) · ∇xv(x)dx

=

∫
Ω
r(c)v(x)dx ∀v ∈ V.

(4.2)

Due to (3.10), the system for the j-th component can be rewritten as∫
Ω

ewj(x,t
k+1)

1 +
∑N

i=1 e
wi(x,tk+1)

v(x)dx =

∫
Ω

ewj(x,t
k)

1 +
∑N

i=1 e
wi(x,tk)

v(x)dx

−∆t

∫
Ω
B(w(x, tk))∇xwj(x, tk+1) · ∇xv(x)dx

+ ∆t

∫
Ω
rj(c(w(x, tk+1))v(x)dx ∀v ∈ V.

(4.3)
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In order to solve this fully nonlinear coupled system in every timestep, we employ Newton’s
method, as e.g. proposed in [46, sec. 1.2.2].
The unknowns in (4.3) are the functions w(x, tk+1) at the new timestep tk+1. In our Finite
Element setting, we represent the w(x, tk+1) variables by a finite basis spanned by the test
functions {φ1(x), . . . , φNDof(x)}, where NDof denotes the number of degrees of freedoms (DOFs)
on the tesselation of the domain Ω. To perform the spatial discretization lowest order Lagrange
elements have been chosen (although the code would accept arbitrary order Lagrange elements
as well), i.e. conformal P1-elements, which linear local shape functions are determined by nodal
evaluation on the vertex points (in 2D, in 1D simply at the start- and end-point of the tesselation
intervals), see figure 1.

0 1

2

(0,0) (1,0)

(0,1)

Figure 1: Degrees of freedom (DOFs) for the linear conforming P1[R2] Lagrange element on
the reference triangle T̂ . The linear functionals defining the local shape function are nodal
evaluations on the vertex points of the triangle, uniquely determining the basis functions on the
reference triangle.

The unknowns to solve for are the scalar basis function coefficients αk+1
j,1 , . . . , αk+1

j,NDof associated

with the vertex points of the tesselation and the gas components at the timestep tk+1 where
k ≥ 0 and 1 ≤ j ≤ N (i.e. the components for the N different gases). One obtains the
representation of the entropy variables given by

wj(x, t
k+1) =

NDof∑
i=1

αk+1
j,i φi(x) 1 ≤ j ≤ N (4.4)

By substituting (4.4) into (4.3), we obtain for the j-th component of the system

∫
Ω

exp
[∑NDof

l=1 αk+1
j,l φl(x)

]
1 +

∑N
i=1 exp

[∑NDof
l=1 αk+1

i,l φl(x)
]v(x)dx =

∫
Ω

exp
[∑NDof

l=1 αkj,lφl(x)
]

1 +
∑N

i=1 exp
[∑NDof

l=1 αki,lφl(x)
]v(x)dx

−∆t

∫
Ω
B(w(x, tk))

(
NDof∑
l=1

αk+1
j,l ∇xφl(x)

)
· ∇xv(x)dx

+ ∆t

∫
Ω
rj(c(w(x, tk+1))v(x)dx ∀v ∈ Vh

(4.5)

It is important to note that above system (4.5) is in fact linear in terms of the test function
v(x) =

∑NDof
j=1 αlφl(x) for all arbitrary αl ∈ R, therefore it is sufficient that (4.5) holds for all
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basis elements φl and 1 ≤ l ≤ NDof. Thus we obtain

∫
Ω

exp
[∑NDof

l=1 αk+1
j,l φl(x)

]
1 +

∑N
i=1 exp

[∑NDof
l=1 αk+1

i,l φl(x)
]φn(x)dx =

∫
Ω

exp
[∑NDof

l=1 αkj,lφl(x)
]

1 +
∑N

i=1 exp
[∑NDof

l=1 αki,lφl(x)
]φn(x)dx

−∆t

∫
Ω
B(αk1,1, . . . , α

k
N,NDof)

(
NDof∑
l=1

αk+1
j,l ∇xφl(x)

)
· ∇xφn(x)dx

+ ∆t

∫
Ω
rj(c(w(x, tk+1))φn(x)dx 1 ≤ n ≤ NDof

(4.6)

At this level, we now employ Newton’s method in order to solve this nonlinear system of
equations for the new coefficients αk+1

j,l and 1 ≤ j < N , 1 ≤ l ≤ NDof. We want to find the
roots of a set of (nonlinear) equations Ri(x1, . . . , xn) = 0 for 1 ≤ i ≤ N by

m∑
j=1

∂

∂xj
Ri(x

(η)
1 , . . . , x(η)

n )δxj = −Ri(x(η)
1 , . . . , x

(η)
N ) i = 1, . . . , N (4.7a)

x
(η+1)
j = x

(η)
j + κδxj j = 1, . . . , N, (4.7b)

where κ ∈ (0, 1] denotes the relaxation parameter, which can be set smaller than 1 in case if a
damped Newton method is necessary in order to obtain convergence.
We therefore reformulate (4.6) by shifting all terms to the left-hand-side, thus obtaining the
algebraic structure from (4.7a). As initial guess for the root, the coefficients from the previous

time step can be used quite naturally, thus for the k + 1-th timestep we set α
(0)
j,l := αkj,l.

One therefore obtains

0
!

= Rτ,j(α
(η)
1,1, . . . , α

(η)
N,NDof)

=

∫
Ω

exp
[∑NDof

l=1 α
(η)
j,l φl(x)

]
1 +

∑N
i=1 exp

[∑NDof
l=1 α

(η)
i,l φl(x)

]φτ (x)dx

−
∫

Ω

exp
[∑NDof

l=1 α
(0)
j,l φl(x)

]
1 +

∑N
i=1 exp

[∑NDof
l=1 α

(0)
i,l φl(x)

]φτ (x)dx

+ ∆t

∫
Ω
B(α

(0)
1,1, . . . , α

(0)
N,NDof)

(
NDof∑
l=1

α
(η)
j,l ∇xφl(x)

)
· ∇xφτ (x)dx

−∆t

∫
Ω
rj(c(w(x, tk+1))φτ (x)dx.

(4.8)

In a next step, we will make use of quadrature rules in order to evaluate the integrals over
Ω in (4.8). We will employ Gauss quadrature28, which will however not be exact due to the

exponentials arising in (4.8). We can compute Rτ,j in the unknowns α
(η)
j,l ∈ R at iteration step

28We consider Gauss quadrature with Nq ∈ N quadrature points x̂q (1 ≤ q ≤ Nq) on the reference element T̂
and quadrature weights ωq.
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(0,0) (1,0)

(0,1)

~̂xq

T̂

~x0

~x1

~x2

~xq

T

Φ : T̂ → T : A~̂x+~b

Figure 2: Pictographic Representation of the strategy for the finite element discretisation. One
computes the values of the basis functions on the integration points x̂q on the reference element

T̂ and hence computes these values on an arbitrary element by using the affine diffeomorphism
x = Φ(x̂) = Jcx̂ + b, which maps to an arbitrarily shaped triangle Tc on the mesh. Here the
centroid rule for numerical quadrature is depicted for simplicity.

η ≥ 0, α
(0)
j,l := αkj,l given from the previous timestep and decomposing the domain in cells Tc via

Rτ,j(α
(η)
1,1, . . . , α

(η)
N,NDof) =

∑
Tc∈T
|det(Jc)|

Nq∑
q=1

exp
[∑NDof

l=1 α
(η)
j,l φl(x̂q)

]
1 +

∑N
i=1 exp

[∑NDof
l=1 α

(η)
i,l φl(x̂q)

]φτ (x̂q)ωq

−
∑
Tc∈T
|det(Jc)|

Nq∑
q=1

exp
[∑NDof

l=1 α
(0)
j,l φl(x̂q)

]
1 +

∑N
i=1 exp

[∑NDof
l=1 α

(0)
i,l φl(x̂q)

]φτ (x̂q)ωq

+ ∆t
∑
Tc∈T
|det(Jc)|

Nq∑
q=1

B(α(0), x̂q)

(
NDof∑
l=1

α
(η)
j,l ∇xφl(x̂q)

)
· J−Tc ∇x̂φτ (x̂q)ωq

−∆t
∑
Tc∈T
|det(Jc)|

Nq∑
q=1

rj(c(w(x̂q, t
k+1))φτ (x̂q)ωq,

(4.9)

where (Jc)ij := ∂xi
∂x̂j

denotes the Jacobian associated with the coordinate map from the reference

element T̂ to an arbitrary triangle Tc on the mesh. For a triangle Tc = conv(x0, x1, x2), Jc can
be computed by Jc = (x1 − x0, x2 − x0) ∈ R2×2, cf. figure 2.

For the Jacobian of R in terms of derivatives with respect to the unknowns α
(η)
1,1, . . . , α

(η)
N,NDof,

one obtains

∂Rτ,j
∂αm,n

=

∫
Ω

(
1 +

N∑
i=1

e
∑NDof
l=1 αi,lφl(x)

)−1 (
δmjφn(x)e

∑NDof
l=1 αj,lφl(x)

)
φτ (x)dx

−
∫

Ω

(
1 +

N∑
i=1

e
∑NDof
l=1 αi,lφl(x)

)−2 (
φn(x)e

∑NDof
l=1 αm,lφl(x)

)(
e
∑NDof
l=1 αj,lφl(x)

)
φτ (x)dx

+ ∆t

∫
Ω
δmj∇xφn(x) · ∇xφτ (x)dx.

(4.10)
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Again, we want to employ a more convenient formulation with quadrature and mapping back
to a reference triangle T̂ in order to compute φ(x) and ∇xφ(x). By using arguments as before
one obtains

∂Rτ,j
∂αm,n

=
∑
Tc∈T
|det(Jc)|

Nq∑
q=1

1 +
N∑
j=1

e
∑NDof
l=1 αj,lφl(x̂q)

−1(
δmjφn(x̂q)e

∑NDof
l=1 αj,lφl(x̂q)

)
φτ (x̂q)ωq

−
∑
Tc∈T
|det(Jc)|

Nq∑
q=1

1 +

N∑
j=1

e
∑NDof
l=1 αj,lφl(x̂q)

−2(
φn(x̂q)e

∑NDof
l=1 αm,lφl(x̂q)

)
·

(
e
∑NDof
l=1 αj,lφl(x̂q)

)
φτ (x̂q)ωq

+ ∆t
∑
Tc∈T
|det(Jc)|

Nq∑
q=1

B(α(0), x̂q)δmjJ
−T
c ∇x̂φn(x̂q) · J−Tc ∇x̂φτ (x̂q)ωq.

(4.11)

By means of above considerations, the strategy of solving the Maxwell-Stefan equations numer-
ically in entropy variables can be summarized in high-level pseudo-code in algorithm 1.

Data: ck(x), D, ∆t
for j=1,. . . ,nt − 1 do

Compute wk+j(x) from ck+j(x) via (3.6).
Compute wk+j+1(x) via Newton’s method by passing D, ∆t, wk (cf. algorithm 2).
Compute ck+j+1(x) from wk+j+1(x) via (3.10).

end

Result: ck+nt(x), wk+nt(x)

Algorithm 1: The solution strategy for solving the Maxwell-Stefan equations in pseu-
docode as used in solve maxwell stefan as seen in listing 3.

A more detailed overview of the implementation of Newton’s method in the code and strategies
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for damping the step-size in case of bad convergence properties can be studied in Algorithm 2.

Data: D, ∆t, wk(x), r, tol=1e− 8, β = 0.8
Set w(η−1) ← wk, i.e. use the old timestep as initial guess.
Assemble Ξ(wk, w(η−1),∆t,D) via (4.11).
Assemble R(wk, w(η−1),∆t,D, r) via (4.9).
Solve Ξδw(η) = R for δw(η).
w(η) ← w(η−1) + δw(η).
NR ← ‖R(wk, w(η),∆t,D, r)‖2.

while max
{∣∣∣ δw(η)

w(η)

∣∣∣} > tol ∧NR > N · tol do

Assemble Ξ(wk, w(η−1),∆t,D) via (4.11).
Assemble R(wk, w(η−1),∆t,D, r) via (4.9).
Solve Ξδw(η) = R for δw(η).
Update w(η) ← w(η−1) + δw(η).
Compute ÑR ← ‖R(wk, w(η),∆t,D, r)‖2.
/* Use damped Newton if residuum is worse than in the previous

iteration. */

n← 0
while ÑR > NR do

n← n+ 1
Update w(η) ← w(η−1) + βnδw(η).
Update ÑR ← ‖R(wk, w(η),∆t,D, r)‖2.

end

Update NR ← ÑR.
end

Set wk+1 ← w(η).
Result: wk+1(x)

Algorithm 2: Newton’s method in pseudocode as used in newton solve in listing 3.

It should be noted that when assembling the Jacobian Ξ as described in Algorithm 2, the
jacobian Ξ as well as the residual vector R need to be “flattened”, i.e. the jacobian in (4.11)
needs to be mapped to a matrix and the residual in (4.9) to a simple vector. This has been
achieved such, that for 0 ≤ i, k ≤ N − 1 and 0 ≤ j, l ≤ NDof− 1 there holds

Ξi·NDof+j,k·NDof+l =
∂Ri,j
∂αk,l

(4.12a)

Ri·NDof+j = Ri,j , (4.12b)

hence Ξ ∈ R(N ·NDof)×(N ·NDof) and R ∈ RN ·NDof. In order to solve the linear system that arises
in each step of the Newton’s method until convergence, a direct linear solver29 has been used,
which can accept sparse matrices as input and is hence by far more memory efficient, as lots of
entries equal to zero don’t need to be stored.30 As the geometries become more complex, the
issue of preconditioning may become more and more prominent, which was however beyond the
scope of the proof-of-concept implementation created for this thesis.
As the matrices may become large, one could also consider approximate solvers for the linear
system, which may decrease the time needed for solving very high-dimensional systems. The
Scipy sparse suite would e.g. support several well-established iterative solvers as GMRES or

29Cf. https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.spsolve.html us-
ing UMFPACK by default.

30See figure 3, where the sparsity pattern of Ξ is depicted for a model problem on two 2D-geometries.
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the CG-method, which could easily be patched into the code if needed.31

For extremely high dimensional problems, which may not even fit in the memory of one compu-
tational node alone, one should consider libraries like petsc4py provide very fast and scalable
solvers that are able to parallelize the solution process even across several computational nodes
using MPI, see e.g. [21].

(a) 169 DOF complex triangulation (b) 169 DOF: Ξ sparsity pattern

(c) 289 DOF unit square triangulation (d) 289 DOF: Ξ sparsity pattern

Figure 3: The sparsity pattern (nonzero entries of the matrix are marked) of the Jacobian as
assembled according to (4.11) and (4.12a) for a complex and a simple mesh pattern.

31For a complete list of possible sparse solvers, see e.g. https://docs.scipy.org/doc/scipy/reference/

generated/scipy.sparse.linalg.html.
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4.3 More information on the finite element assembly

In order to produce performant Python code to solve the Maxwell-Stefan equations, various
considerations had to be taken into account in order to undertake this task. However, it should
be taken seriously that even a prolific computer scientist like Donald Knuth issues the following
warning in [41]:

The real problem is that programmers have spent far too much time worrying
about efficiency in the wrong places and at the wrong times; premature optimization
is the root of all evil (or at least most of it) in programming.

As a consequence, optimization should only be performed on the real bottlenecks of a given
code, as every optimization normally impairs maintenability and portability across different
platforms and hardware. A usual thumb’s rule in software engineering is that according to the
Pareto-principle, that in most applications 80% of the runtime is spent in 20% of the code (cf.
[63, p.7]), which makes it worthwhile to further optimize the 20% as the most benefit can be
gained from optimizing these sections.
In order to make an informed choice regarding the sections which are worthwhile optimizing, the
usual approach is to gather data on the parts of the code, which make up most of the runtime.
For this purpose, normally a profiler is used to prioritize the optimization efforts. For Python,
there are various profilers available, cf. [29, ch. 2]. I have chosen to analyze the profiling
data with the graphical tool RunSnakeRun32, which provides a handy and quick overview of
the performance hotspots from visualizing the raw data obtained by the widely used profiler
cProfile.33 In figure 4, en exemplary output of a run using the most naive implementation
of assembling the Maxwell-Stefan jacobian and residual vector is depicted, which was sampled
over computing 10 timesteps of the Duncan-Toor experiment as described in section 5.2. As
can be deduced from figure 4, it is worthwhile to have a closer look at the assemblation of the
jacobian, as the function makes up over 75% of the total runtime.
Hence the assemblation of the Jacobian Ξ in Algorithm 2 has proven to be the performance
hotspot of the code, as sparse matrix assemblation in Python is unfortunately not very fast in
native Python, c.f. [20].
Some of the efforts in improving the performance of this code section to get decent performance
are hence described in the following sections.

4.3.1 Make use of trivial concurrency when assembling Newton step

The first naive approach achieve a speed-up was to make use of trivial concurrency of the assem-
blation process, i.e. the independent assemblation of the jacobian Ξ in (4.11) and the residual
vector R in (4.9). On modern multi-CPU systems (even most Laptops have 2 physical CPU
cores by now), one can reduce the wall time needed for assembling the matrix and the vector by
parallelizing these two as independent tasks with no data dependency whatsoever.34 An implicit
synchronization step is to wait until the result of both computations is available, as otherwise
the linear system Ξδw(η) = R can’t be solved until both ingredients Ξ ∈ R(N ·NDof)×(N ·NDof)

and R ∈ RN ·NDof are available. Even though the assemblation of Ξ is a more complex task
with a longer runtime t1[s] as the assemblation of R taking t2[s], the overall wall time tW will
approximately be tW = max{t1, t2} instead of tW = t1 + t2 in case of multiple cores being
available on the system.

32Cf. http://www.vrplumber.com/programming/runsnakerun
33Cf. https://docs.python.org/2/library/profile.html
34Software developers experienced with parallel programming lingo would call this situation an “embarrassingly

parallel problem”.
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Figure 4: Graphical output of RunSnakeRun processing profiling data collected by cProfile.
The block for the Maxwell-Stefan jacobian assembly is taking up over 75% of the runtime. This
data was collected by performing 10 timesteps of the Duncan-Toor experiment, cf. section 5.2.

However, one has to be mindful that each parallelization does include some overhead for setting
up processes/threads and communication, but as the job size is work-intensive enough as in
this case, this still yields an overall performance gain by making better use of the multicore
hardware at hand. In a typical example, assembling the jacobian took 2.1[s] while computing
R took 0.7[s], hence the overall performance gain was still reducing the runtime by 25% in each
assemblation step.
When trying to perform parallel operations in Python, one has to be mindful of the concurrency
limitations of the language due to the Global Interpreter Lock, in short GIL. In languages like
C/C++, one normally uses the concept of threads, which are “light-weight” objects for the
operating system (compared to processes), which allow to execute code in parallel inside a
process. These threads can be forked off whenever needed and form “teams” of threads which
can even itself fork off further teams of threads and join to the master thread after they have
executed a parallelizable section of the code. When writing multi-threaded programs, one has
to be very mindful that multiple threads accessing shared data do this such a “thread-safe”
fashion, that the result of the program is deterministic and not dependent on which threads are
accessing a shared resource at the same time. In Python35, the GIL ensures that (C-)libraries
which are not thread-safe can be run safely inside Python, by only allowing one thread at a
time to be executed.
As a consequence, threading in Python is not really concurrent, as each Python thread (although
being a full-weight POSIX thread in the OS) can only execute instructions when having acquired
the GIL and release it after several “atomic” Python commands (which loosely map to Python
interpreter instructions), allowing another thread to continue, cf. the presentation in [4]. There
are some libraries like Numpy which allow to release the GIL during certain array operations
relying on thread-safe C libraries36, however most applications for native Python threads include
I/O intensive programs (Python releases the GIL for certain I/O operations as well) like web-
crawlers and are not performing computationally intensive tasks inside Python.

35This holds at least for the CPython interpreter, which is the most common Python interpreter. Other
interpreters like Jython and IronPython do not have this limitation.

36Cf. http://scipy-cookbook.readthedocs.io/items/ParallelProgramming.html
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Figure 5: Pictographic representation of the internal structure of the ProcessPoolExecutor

class, inspired by the module doc string in https://github.com/agronholm/pythonfutures/

blob/3.2.0/concurrent/futures/process.py. Each job submitted to the executor gets a
unique job ID which can then be requested by the result() method of Future-object returned
upon submission.

The usual Python workaround for concurrency in scientific computing is to create several full-
weight Python processes, where each of these processes has their own Python interpreter set up.
These processes need to communicate their data via inter-process interfaces (e.g. via pipes), as
different processes don’t share the same address space in memory, which yields some overhead
to native threading however. The OS can then attribute the available CPU resources to the
different processes hence allow true multiprocessing, cf. [29].
The implementation of concurrently assembling the jacobian and the function has been per-
formed with the concurrent.futures module, which provide the abstraction of a
ProcessPoolExecutor and a ThreadPoolExecutor, which spawn a given number of Python
processes/threads (in computer science lingo these are called “workers”), which can accept
jobs, put them in a queue and submit them one after another to the available “workers”, when-
ever they are ready to accept new jobs. The access to the result()-method of the futures
returned by the executors upon job submission is a blocking call, which serves as a an implicit
synchronization until the result of the computation is available. The implementation of this con-
current assemblation can be found in listing 3 in the functions assemble futures (processes)
and assemble futures threading.

4.3.2 Usage of COO-Matrix format in Scipy

A second approach to speed up the matrix computation was to use the COO-Matrix datatype
for sparse matrices in Scipy37, which was motivated by a discussion on Stackoverflow38.
As stated before, sparse matrix datatypes have been employed as the jacobians for the Maxwell-
Stefan system only have a limited amount of nontrivial elements. The native approach was to
create a sparse matrix by specifying the dimensions and then looping over all intervals/trian-
gles on the mesh and successively adding (possibly) non-trivial contributions to the jacobians.

37Cf. https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.html
38Cf. https://stackoverflow.com/questions/10522296/how-to-assemble-large-sparse-matrices-

effectively-in-python-scipy
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However, it turned out that this was not the most efficient way to go in Python.
The COO-Matrix datatype chooses a different approach: This datatype accepts three arrays as
input,

i. one representing the row position i,

ii. one the column position j,

iii. one representing the data to be placed on the position (i, j), i.e. Ξij .

While to COO-Matrix object is not suitable to be passed to sparse solvers in Scipy, it has an
efficient to_csr() -method, which converts the COO-Matrix to a sparse matrix representation
in the widely used CSR-format, which can indeed be used by the SciPy solvers for sparse linear
systems. On each distinct index with a non-trivial value, there may be several contributions
from different cells in the triangulation. Entries which are accessed multiple times hence need
to be summed up later, which is performed by the to_csr()-method as demonstrated in the
small interactive code snippet below.

>>> import scipy.sparse as sparse

>>> col_array = [2, 2, 0]

>>> row_array = [1, 1, 0]

>>> data = [1., 2., 3.]

>>> shape = (3, 3)

>>> coo = sparse.coo_matrix((data, (row_array, col_array)), shape=shape)

>>> print coo

(1, 2) 1.0

(1, 2) 2.0

(0, 0) 3.0

>>> print coo.tocsr()

(0, 0) 3.0

(1, 2) 3.0

The to_csr()-method hence reduces multiple entries to the same index by adding them appro-
priately.
By the COO-matrix assembly approach, the runtime has been reduced to 33% of the original
sparse matrix assembly, which is already a respectable speedup.
It should be noted that this could even be further improved, as due to the procedure of filling
arrays with a distinct index and data for every cell and reducing multiple entries later on, one
eliminates the data dependency for different cells contributing to certain entries of the jacobian.
Hence one could parallelize the assembly by independently computing the contributions in
different cells on multiple cores, while the final reduction of multiple entires to the same index
is abstracted away in the to_csr()-method. At the time of the submission, unfortunately the
parallel loop over all elements has not been running stable yet, as a major rewrite had been
necessary to eliminate all Python object access in order to use native OpenMP multithreading
inside C/Cython (see section 4.3.3), rendering the completion of this refactoring as a future
task.

4.3.3 Usage of Cython to bridge high- and lowlevel language features

A third and final optimization I’d like to describe to more detail here involved the usage of
the high-performance oriented extension Cython [5] of the Python language, which provides a
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Cython 0.27.3
numpy 1.14.2
scipy 1.0

sympy 1.1.1
triangle 20170429

Table 1: The Python libraries for numerical computation used to produce the results as given
in section 5. For a complete list of dependencies, consult the requirements.txt file in the
repository.

compiler, which can create C code out of Python code, which can then be statically compiled
to a library (resulting in a shared object *.so on Linux systems). Cython can also wrap
C/C++ code to be accessible from Python, cf. [63]. It should be noted that Cython can also
be used as a compiled Python-like programming language of its own, which is a superset of
the Python language. By several extension keywords not available in plain Python, one can
place optimization hints as for example data type annotations useful to the Cython compiler,
which can then produce more efficient C code as output. Especially in scientific computing
applications, one can easily use basic C data types like int, double etc., which can then be
mapped from slow Python datatypes to its low-level equivalents in C in a very straightforward
fashion.
I have hence placed several datatype annotations in the code using the cdef-keyword in order
to optimize the existing Python code some more, resulting in very quick performance gains for
yet reasonable refactoring efforts. The implementation finally obtained to create the results in
section 5 could still be improved, as the main assemblation loop still requires frequent calls to the
Python/C-API resulting in some call-overhead, as not all Numpy functions used in the code do
have a native C interface yet. Nonetheless, using the Cython version of the assemblation process,
the execution time for the assembly dropped down to 10% of the original implementation, which
is a very satisfactory speedup. These efforts can be found in listing 4.

4.4 Setup of the code

For the purpose of solving the Maxwell-Stefan equations, a solver has been written in the
programming language Python as part of this thesis, which relies heavily on backends written
in the scientific libraries Scipy [34] and Numpy, both of which have several performant backends
in C and Fortran.
The code has been tested to run under the Linux operating systems Ubuntu 16.4LTS (Debian
derivate) and CentOS 7.4 (Red Hat derivate) with a CPython interpreter (Python 2.7.12) and
under OpenSUSE 12.3 using an Anaconda 5.1 Python interpreter (Python 2.7.14).
The installation process is described to detail in the README.md manual file39, hence I will only
highlight one possible combination of steps to set up the code in Ubuntu shortly:

Listing 1: Installation script Ubuntu to be run in the main folder

1 #!/bin/sh

2 sudo apt install python -dev python -pip python -tk gcc

3 pip install --user -r requirements.txt

4 pip install ./ --user

The libraries necessary to reproduce all results given in section 5 are given in table 1.

39The code is hosted in a private repository on https://bitbucket.org/gsmaster/mastertu_new. Please send
an E-mail to g.simbrunner@gmail.com for requesting access.
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In order to ensure the correct installation on one’s system, it is recommended to invoke py.test
in the folder containing the setup.py installation script.
The results in sections 5.1.1 and 5.1.2 and 5.2 were computed on an Intel i7-5500U Broadwell
CPU on the author’s personal Lenovo X1 Laptop.
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5 Numerical Results

In section 4, the procedure of discretizing the Maxwell-Stefan equations in entropy variables
has been discussed, as well several aspects of implementing a performant solver in Python.
The scope is now to verify the success of this method to compute several model problems and
to determine the accuracy of the method.
In order to undertake this task, the Method of Manufactured solutions (cf. section 5.1) has
been carried out on the Maxwell-Stefan equation, to provide a new reliable benchmark for any
Maxwell-Stefan equation solver implementation.
The results obtained by the code written for this purpose are discussed, as well as possible issues
and caveats when discretizing the Maxwell-Stefan equations are presented.

5.1 Solver verification via manufactured solution

With the rising power of computer algebra systems (CAS), there have been quite interesting
developments in solver verification procedures.
In this section I want to present the performance of the code written for this thesis by usage of
the method of manufactured solution (MMS), which have become quite popular in engineering
(cf. [52, 55, 57, 59]), as it presents a quite general framework to investigate the accuracy of a
given solver even for complex nonlinear PDEs.
The general idea is quite simple: If one has obtained a solver which is able to integrate an
arbitrary source term f , one can measure the quality of the solution produced by the code
on an artificial manufactured problem, where one can construct an analytic solution and thus
compare the numerical solution to the analytical one.
Suppose starting with a parabolic PDE with Neumann boundary conditions

ut(x, t) + Lu(x, t) = f(x, t) in Ω, t > 0 (5.1a)

u(·, 0) = u0(·) in Ω, t = 0 (5.1b)

∇xu(x, t) · ν = g(x, t) on ∂Ω× (0,∞), (5.1c)

where L denotes a (possibly nonlinear) elliptic operator acting on the spatial x-variables. The
idea is to use a sufficiently regular analytic ansatz function φ(x, t) satisfying the restraints

φ(x, 0) = u0(x) in Ω, t = 0 (5.2a)

∇xφ(x, t) · ν = g(x, t) on ∂Ω× (0,∞) (5.2b)

As φ(x, t) satisfies the boundary condition (5.2b) as well as the initial condition (5.2a), we can
solve a modified problem of (5.1) which is exactly the same except for the source term f(x, t),
which is directly computed by the action of the differential operators L and ∂

∂t on the given

“solution function” φ(x, t), thus yielding the right hand side f̃(x, t):

f̃(x, t) :=
∂φ

∂t
(x, t) + Lφ(x, t) (5.3)

For the Maxwell-Stefan problem with homogeneous Neumann boundary conditions, one can
choose the following ansatz function to be a manufactured analytical solution:

φ(x, t) :=
1

2(N + 1)

(
1 + e−kt

d∏
i=1

cos2(πxi)

)
k > 0 (5.4)
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One can easily compute that the solution function in (5.4) has been chosen such that it satisfies
the homogeneous Neumann BCs as given in (1.1b) on the boundary ∂Ω of the d-dimensional
cube domain Ω = (0, 1)d.

The constant 1
2(N+1) in (5.4) has been chosen such that φ ∈

[
1

2(N+1) ,
1

N+1

]
, therefore we can

ensure that all solution components are positive everywhere on the domain.
The initial condition for the numerical solver is simply given by φ(x, 0), i.e.

φ0(x) = φ(x, 0) =
1

2(N + 1)

(
1 +

d∏
i=1

cos2(πxi)

)
. (5.5)

In [13, sec. 4], a simpler representation for the ternary Maxwell-Stefan system is given under
the additional assumption D12 = D13, where it is shown that the equations reduce to a heat
equation for the first component and a drift-diffusion type equation in the second component.
As demonstrated by Boudin there, there holds for

β :=
1

D12
− 1

D23
(5.6)

that the Maxwell-Stefan equations reduce to

r1(x, t) =
∂c1
∂t
−D12∆xc1 (5.7a)

r2(x, t) =
∂c2
∂t
−∇x ·

[(
1

D23
+ βc1

)−1

(∇xc2 + βD12c2∇xc1)

]
. (5.7b)

From this representation, one can compute for the ansatz functions c1(x, t) = c2(x, t) = φ(x, t)
the respective source terms obtained by the MMS ansatz, i.e. r̃i(x, t), by substituting (5.4)
into (5.7). Hence one obtains a problem for which an analytic solution is known for c1 and c2

(and by using the identity c3 = 1 − c1 − c2 also for c3), which has similar numeric features as
computing the problem with a different source term, where in general no analytical solution is
known.
In order to have a diffusion matrix with nearly realistic Maxwell-Stefan diffusion coefficients
present, the Maxwell-Stefan diffusion components from [13, Sec. 2] for H2 −N2 and N2 −CO2

interaction are used in the numerical experiments in sections 5.1.1 and 5.1.2. Note that the
coefficient D23, i.e. the diffusion coefficient for H2-CO2-interaction, is set to the value of D13

(the diffusion coefficient for H2-N2-interaction) to make use of the simplification leading to
(5.7).40

(D)ij =

 0 0.833 0.833
0.833 0 0.168
0.833 0.168 0

 (5.8)

We also want to study the experimental convergence rate w.r.t. to the timestep and the spacial
and temporal discretization. For that purpose one can define the error

eh = ‖φ(t)− φh(t)‖L2(Ω) (5.9)

40Note that the entries in (5.8) are actually scaled to cm2s−1 to adapt to the smaller geometry compared to
the setting considered in [13, Sec. 2], which in the MMS cases considered here is a unit interval/square.
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at a given time t and a spacial discretization constant h ∼ O(∆x). If one can assume that the
discretization error satisfies eh ≤ Chp for some p ∈ N and C > 0, there should hold

eh1

eh2

=
Chp1
Chp2

.

and therefore the experimental convergence rate p is obtained by

ph1→h2 =
ln
(
eh1
eh2

)
ln
(
h1
h2

) . (5.10a)

If one assumes that h ∼ ∆x ∼ O(N−1) with N ∈ N being the number of equidistant grid points
in one spacial direction, (5.10a) reduces by substituting N−1

i = hi for i ∈ {1, 2} to

pN1→N2 = −
ln
(
eN1
eN2

)
ln
(
N1
N2

) . (5.10b)

5.1.1 1D case for manifactured solutions

In this section, the performance of the Maxwell-Stefan solver is evaluated by using the MMS
method on the 1D-domain Ω = (0, 1). It is simple to verify that the homogeneous Neumann
boundary conditions (1.1b) are satisfied by (5.4) and d = 1.
The RHS computed by the computer algebra system SymPy [49] (cf. the code in listing 2,
which was cross-checked with output from Mathematica) yields the source terms

r1(x, t) =
1

6

(
2π2D12 cos (2πx)− k cos2 (πx)

)
e−kt (5.11a)

r2(x, t) = −
1
6e
−kt

(D12ekt − 1
6(D12 −D23)(ekt + cos2 (πx)))2(

π2

2
D12(

4

6
(D12 −D23)(D23e

kt

− 1

6
(D12 −D23)(ekt + cos2 (πx))) sin (πx) sin (2πx) cos (πx)

+ (D12e
kt − 1

6
(D12 −D23)(ekt + cos2 (πx)))(

1

6
(D12 −D23)(cos (4πx)− 1)

− 4(D23e
kt − 1

6
(D12 −D23)(ekt + cos2 (πx))) cos (2πx))) + k(D12e

kt

− 1

6
(D12 −D23)(ekt + cos2 (πx)))2 cos2 (πx)

)
,

(5.11b)

such that (5.4) is an analytical solution to (1.9).
In figures 6 and 7 one can study quite closely the interplay of the timestep size ∆t and the
uniform spacial mesh cell size ∆x. If one considers the experimental convergence rates for
increasing the mesh resolution at given timestep sizes in this section, we are presented with
the at first glance counterintuitive fact that too fine mesh discretizations for a coarse timestep
size can even worsen the convergence properties (manifesting in negative convergence rates for
increasing the resolution, thus the error increases even though a finer mesh is computed).
In order to understand this behavior, the importance of the CFL number as a measure for the
stability of the numerical scheme needs to be considered. Let the CFL number be denoted by
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C∆x,∆t, which is defined by

C∆x,∆t = u
∆t

∆x
. (5.12)

In (5.12) u is a characteristic velocity determined by the features of the problem at hand.
Keeping the dependency on u aside, which is a problem dependent constant, there holds for the
CFL number C∆x,∆t � 1 if ∆x � ∆t. This is somewhat unexpected, since we use an implicit
method41, i.e. backwards Euler timestepping, which as an A-stable numerical scheme ensures
stability also for C∆x,∆t > 1. As it seems, we are still bound to the fact that we make use
of the diffusion matrix from the previous timestep, hence an explicit part is included in the
timestepping scheme as well, which may be responsible for this behavior. Hence we need to be
extra mindful when considering the analytical errors for different timesteps and spacial mesh
resolutions, that a coupling of timestep size and spacial resolution is present and needs to be
taken into account for low-error approximations.
In tables 2, 3 and 4, the experimental convergence rates for the first component c1 can be found
, where the spacial resolution is increased while the timestep is kept constant. From these tables
it is quite obvious that for coarse timestep sizes, increasing the mesh resolution only decreases
the error up to a point, above which finer mesh resolutions may actually increase the error.
This behavior can be attributed to the CFL number growing due to ∆x being several orders of
magnitude smaller than ∆t and hence a loss of stability in the timestepping scheme due to the
semi-implicit discretization is present.
The same qualitative behavior also holds for the second component c2, which shows an even
larger dependency of an appropriately chosen timestep for finer mesh resolutions. The tables
depicting the experimental convergence rates for different timestep sizes when increasing the
mesh resolution can be found in tables 5, 6 and 7.

41Actually a semi-implicit method is employed, which uses the matrix B from the old timestep, cf. section 4.
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Figure 6: The plots of the analytical L2(Ω)-errors for c1 for the 1D-MMS-approach as given in
section 5.1.1 with k = 3

100 chosen in (5.4) and (5.11).
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Figure 7: The plots of the analytical L2(Ω)-errors for c2 for the 1D-MMS-approach as given in
section 5.1.1 with k = 3

100 chosen in (5.4) and (5.11).
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Figure 8: The plots of the analytical L2(Ω)-errors for c1 for the 1D-MMS-approach as given in
section 5.1.1 with k = 3

100 chosen in (5.4) and (5.11).
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Figure 9: The plots of the analytical L2(Ω)-errors for c2 for the 1D-MMS-approach as given in
section 5.1.1 with k = 3

100 chosen in (5.4) and (5.11).
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Time [s] p16→32 p32→64 p64→128 p128→256 p256→512

5 1.905670 1.029031 0.086651 -0.011702 -0.005031
10 1.494016 0.482375 0.059822 0.007799 0.001466
15 1.120167 0.248526 0.032477 0.005524 0.001210

Table 2: Experimental convergence rate table at selected times for the c1-error presenting
pN1→N2 for the increasing number of mesh points N for timestep size ∆t = 0.5.

Time [s] p16→32 p32→64 p64→128 p128→256 p256→512

5 1.986032 1.914717 1.042173 0.100585 -0.008305
10 1.915682 1.508433 0.487907 0.062106 0.008421
15 1.827963 1.135680 0.251254 0.033124 0.005691

Table 3: Experimental convergence rate table at selected times for the c1-error presenting
pN1→N2 for the increasing number of mesh points N for timestep size ∆t = 0.125.

Time [s] p16→32 p32→64 p64→128 p128→256 p256→512

5 1.977869 1.995446 2.002272 2.007140 1.917687
10 1.977218 1.992753 1.990030 1.937252 1.513156
15 1.976728 1.990592 1.978133 1.850054 1.140778

Table 4: Experimental convergence rate table at selected times for the c1-error presenting
pN1→N2 for the increasing number of mesh points N for timestep size ∆t = 2−9.

Time [s] p16→32 p32→64 p64→128 p128→256 p256→512

5 1.608828 -0.557846 -0.150999 -0.036744 -0.009115
10 1.419528 -0.303269 -0.116012 -0.029618 -0.007423
15 1.011434 -0.102862 -0.059077 -0.016187 -0.004124

Table 5: Experimental convergence rate table at selected times for the c2-error presenting
pN1→N2 for the increasing number of mesh points N for timestep size ∆t = 0.5.

Time [s] p16→32 p32→64 p64→128 p128→256 p256→512

5 2.332589 1.638292 -0.546953 -0.149866 -0.036494
10 2.225202 1.442079 -0.296889 -0.114824 -0.029334
15 2.078958 1.029255 -0.100462 -0.058343 -0.015990

Table 6: Experimental convergence rate table at selected times for the c2-error presenting
pN1→N2 for the increasing number of mesh points N for timestep size ∆t = 0.125.

Time [s] p16→32 p32→64 p64→128 p128→256 p256→512

5 1.978136 2.014589 2.085351 2.357688 1.647927
10 1.978627 2.011602 2.069999 2.250303 1.449483
15 1.978903 2.008920 2.054054 2.104186 1.035129

Table 7: Experimental convergence rate table at selected times for the c2-error presenting
pN1→N2 for the increasing number of mesh points N for timestep size ∆t = 2−9.
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Figure 10: The L2-error dependency w.r.t. to the mesh resolution, as given by ‖[c1 −
c1,ana](t)‖L2([0,1]) on the left and ‖[c2− c2,ana](t)‖L2([0,1]) on the right at t = 5, 10, 15[s]. Only by
choosing a very fine timestep size, increasing the mesh resolution leads to satisfactory conver-
gence properties.
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5.1.2 2D case for manufactured solutions

In this section, we now consider the performance of the Maxwell-Stefan solver on the unit square
Ω = (0, 1)2. In order to triangulate the domain, the Python package triangle42 has been used,
providing a Delaunay triangulation of the domain (see figure 3c).
It is straightforward to compute that the homogeneous Neumann boundary conditions are
satisfied on each of the edges of the square by the ansatz function (5.4), such that there holds(

∂φ
∂x
∂φ
∂y

)
·
(
∓1
0

)
= 0 on {0} × [0, 1] ∪ {1} × [0, 1](

∂φ
∂x
∂φ
∂y

)
·
(

0
∓1

)
= 0 on [0, 1]× {0} ∪ [0, 1]× {1}

By using the computer-algebra algorithm as seen in listing 2, the following results for the MMS
source terms obtained are given as follows:

r1(x, y, t) = −1

6

(
2π2D12(−4 cos2 (πx) cos2 (πy) + cos2 (πx) + cos2 (πy))

+ k cos2 (πx) cos2 (πy)

)
e−kt

(5.13a)

r2(x, y, t) =
1
6e
−kt

(D12ekt − 1
6(D12 −D23)(ekt + cos2 (πx) cos2 (πy)))2

(π2D12(
1

12
(D12 −D23)(2D23e

kt − 1

3
(D12 −D23)(ekt + cos2 (πx) cos2 (πy)))

(cos (π(2x− 2y)) + cos (π(2x+ 2y))− 2) cos2 (πx) cos2 (πy)

− (D12e
kt − 1

6
(D12 −D23)(ekt + cos2 (πx) cos2 (πy)))

(
1

12
(D12 −D23)(cos (4πx)− 1) cos4 (πy)

+
1

12
(D12 −D23)(cos (4πy)− 1) cos4 (πx)

+ 4(−D23e
kt +

1

6
(D12 −D23)(ekt + cos2 (πx) cos2 (πy))) cos2 (πx) cos2 (πy)

+ 2(D23e
kt − 1

6
(D12 −D23)(ekt + cos2 (πx) cos2 (πy))) sin2 (πx) cos2 (πy)

+ 2(D23e
kt − 1

6
(D12 −D23)(ekt + cos2 (πx) cos2 (πy))) sin2 (πy) cos2 (πx)))

− k(D12e
kt − 1

6
(D12 −D23)(ekt + cos2 (πx) cos2 (πy)))2 cos2 (πx) cos2 (πy))

(5.13b)

In figures 11 and 12 the numerical performance of the code on a unit square mesh can be studied,
as the analytical error is known due to the MMS method. Most of the analysis carried remarked
in section 5.1.1 seem also to be valid here, although the restriction of the timestep size seems
to be less prominent as in 1D. The experimental convergence rates, as seen in tables 8, 9 for c1

and 10, 11 for c2, are even almost doubled compared to the 1D case and are also dropping less
rapidly to very bad convergence behavior for coarse timesteps compared to its 1D equivalents.

42Cf. https://github.com/drufat/triangle
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Time [s] p8→16 p16→32 p32→64 p64→128

5 3.734122 3.648561 2.612119 2.104564
10 3.753508 3.889441 3.238723 2.208426
15 3.757053 3.946002 3.605493 2.356740

Table 8: Experimental convergence table presenting the experimental convergence rates pN1→N2

for the increasing number of mesh points N for timestep size ∆t = 0.5 for the first component.

Time [s] p8→16 p16→32 p32→64 p64→128

5 3.733123 3.645885 2.605533 2.087762
10 3.753256 3.889005 3.235295 2.194979
15 3.756929 3.946275 3.607364 2.347811

Table 9: Experimental convergence table presenting the experimental convergence rates pN1→N2

for the increasing number of mesh points N for timestep size ∆t = 0.25 for the first component.

Time [s] p8→16 p16→32 p32→64 p64→128

5 2.134330 2.120504 2.348947 2.278502
10 2.466942 2.167397 2.403406 2.358967
15 2.761745 2.210887 2.469008 2.440262

Table 10: Experimental convergence table presenting the experimental convergence rates
pN1→N2 for the increasing number of mesh points N for timestep size ∆t = 0.5 for the sec-
ond component.

Time [s] p8→16 p16→32 p32→64 p64→128

5 2.097847 2.069538 2.183829 2.633448
10 2.452896 2.122454 2.243307 2.633159
15 2.755883 2.172019 2.314358 2.634613

Table 11: Experimental convergence table presenting the experimental convergence rates
pN1→N2 for the increasing number of mesh points N for timestep size ∆t = 0.25 for the second
component.
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Figure 11: The plots of the analytical L2(Ω)-errors for c1 for the 2D-MMS-approach as given
in section 5.1.2 with k = 2

100 chosen in (5.4) and (5.13).
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Figure 12: The plots of the analytical L2(Ω)-errors for c2 for the 2D-MMS-approach as given
in section 5.1.2 with k = 2

100 chosen in (5.4) and (5.13).
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Figure 13: The L2-error dependency w.r.t. to the mesh resolution, as given by ‖[c1 −
c1,ana](t)‖L2([0,1]2) on the left and ‖[c2 − c2,ana](t)‖L2([0,1]2) on the right at t = 5, 10, 15[s].
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5.2 Simulation for the Duncan-Toor experiment

A very well-studied example for situations where the Maxwell-Stefan diffusion laws are supe-
rior to classical Fickian theory is the Duncan-Toor experiment, which studies situations where
uphill-diffusion phenomena can be observed, i.e. the flux of a gas is directed opposite to its
concentration gradient, cf. [67, ch. 5.2].
This experiment by Duncan and Toor as presented in [24] serves as a reference point for most
expositions of the Maxwell-Stefan theory as it is a simple yet explanatory experiment, e.g. in
[15, sec. 2], [43], [67, sec. 5.4.2] and [69, sec. 2.3].
The Maxwell-Stefan diffusion coefficients for the diffusivities have been taken from [67, p. 130]
and are listed in Table 12.

Species H2 (j = 1) N2 (j = 2) CO2 (j = 3)

H2 (i = 1) - 83.3 68.0
N2 (i = 2) - 16.8
CO2 (i = 3) -

Table 12: The Duncan-Toor diffusivities taken from [67, p. 130] for 35.2◦C and 1-atm pressure.

All entries are given in
[
mm2

s

]
.

Variable Value [mm]

R1 26.49
R2 26.58
l 85.9
d 2.08

Table 13: The key values for setting up the computational Duncan-Toor domain as given in the
experiment by Duncan and Toor (taken from [15]), cf. figure 15.

Species c0
i (left bulb) c0

i (right bulb)

H2 (i = 1) 0.000 0.501
N2 (i = 2) 0.501 0.499
CO2 (i = 3) 0.499 0.000

Table 14: The initial concentrations for the molar fractions for the Duncan-Toor experiment
(taken from [15, Ch. 2]).

In [15, sec. 2] quite extensive numerics for the Duncan-Toor experiment has been carried out,
thus this can be used as a further reference solution against which the solution of the code can
be compared. As stated in [15], due to the axial symmetry of the experiment, one can restrict
to simulating the radial part of the bulbs and the tubes, as the mole fractions and the fluxes do
not depend on the angle and the angular component of the flux vector has trivial contributions.
The results of the simulation can be observed in figures 17 and 18 for timestep sizes of ∆t = 1[s]
∆t = 0.5[s]. In above example, 10 hours of concentration exchange have been simulated. The
peaks and the shape of the concentrations are in accordance with the reference figures in [15,
Fig. 4] or [43, Fig. 3], however the time scale in my figures seems to be off by a factor of
O(10), which I can not explain satisfactorily so far and is hopefully due to a dimensional error
in the discretization of some sort. It should however be noted that the uphill-diffusion for Ni-
trogen, which is the main feature of this experiment, where N2 moves in opposite direction to
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R1 R2

l

d

Figure 14: The geometry of the Duncan-Toor experiment, which consists of two circular bulbs
connected by a “bridge” of small diameter d. The two bulbs contain different mixtures of
nitrogen (N), carbon dioxide (CO2) and oxygen (O2). The valve in the middle is opened at
t = 0, thus allowing for concentration exchange via diffusion.

R1 R2

l

d
2

Figure 15: The 2D-computational domain for the Duncan-Toor experiment. The values chosen
for R1, R2, d and l are specified in Table 13 as taken from the original experiment by Duncan
and Toor [24].

the concentration gradient of the species, is clearly visible in the simulation. This behavior can
be explained via the interchange with gas molecules from other species, which carry nitrogen
molecules along until an equilibrium is reached for all components. Independently of the un-
fortunate scaling issue, the main feature of the Maxwell-Stefan equations is reflected quite well
for a complicated geometry.
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(a) 187 DOF triangulation (b) 188 DOF triangulation

(c) 201 DOF triangulation

Figure 16: The triangulation of the computational domain as sketched in figure 15.
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Figure 17: Results for the molar concentrations of the chemical constituents in the Duncan-Toor
experiment in the center of the left and right bulb of the geometry (cp. figure 15). Observe the
uphill diffusion phenomena for nitrogen.
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Figure 18: Results for the molar concentrations of the chemical constituents in the Duncan-Toor
experiment. Observe the uphill diffusion phenomena for nitrogen.
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6 Conclusions and outlook

In this thesis, the modeling and the necessary mathematical properties of the existence of a
solution to the Maxwell-Stefan equations have been exemplified to great detail.
Still there are many open questions regarding Maxwell-Stefan type systems, mathematically e.g.
a proof for the uniqueness of the solution (as stated in [40]), but also regarding the Boltzmann
equations and its limits leading to continuum-mechanical descriptions, e.g. the Euler or Navier-
Stokes equations (cf. [58]) or as demonstrated the Maxwell-Stefan equations.
As discussed in section 4, a new method for computing the Maxwell-Stefan equations in entropy
variables, while using backwards Euler in time and conforming P1-FEM in space has been
derived. Various caveats and implementational details of writing code solving the Maxwell-
Stefan equations have been addressed, which will require further investigations beyond the
proof-of-concept scope in this thesis.
From the numerical experiments as performed in section 5, it has been carried out that the
Python implementation written for this thesis using the proposed method can actually solve
Maxwell-Stefan type problems. With the benchmark developed by using the Method of Man-
ufactured Solutions, which to the best of my knowledge has not been carried out so far on
Maxwell-Stefan type systems, a new benchmark has been presented, which can be used for
solver verification throughout the field.
The numerical experiments have also made clear, that the quest for a stable all-purpose solver
for the Maxwell-Stefan equations will require some further features in the code as well as a
further theoretical understanding of the discretization process.
The most prominent issue arising from my experiments would be an adaptive timestepping
scheme, which should reflect that in case of a strongly changing solution, the timestep resolution
shall be very small, while in case of an almost stationary solution, the timestep should be chosen
as large as possible to significantly reduce computation time.
Furthermore, even though a damped Newton method has been implemented, in some cases for
certain combinations of D, ∆t and Ω, the Newton solver had troubles converging. This held
also for very small timesteps while larger timesteps were converging fine, which is similar to the
observations in [70]. Hence it needs more analysis on the numerical scheme on being less reliant
on informed guesses and parameter studies, such that the code will adapt the optimal timestep
and mesh refinement automatically.
The code present would already support higher-order discretizations in space, which may be
interesting to further investigate whether higher-order methods can be successfully applied to
solve the Maxwell-Stefan equations as well.
There have also been some interesting developments in using mixed FEM on the Maxwell-Stefan
problem as proposed in [48], which may also be an interesting undertaking in formulating an
entropy variables formulation in this setting.
Hence I think the quest of finding more performant and stable solvers for the Maxwell-Stefan
equations has still a lot of productive research questions left to offer, which will hopefully incite
the interested reader to fruitful further investigations.
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A Appendix

A.1 Results from Linear Algebra

A.1.1 Important Definitions

Let us first re-state the well-known notions of the the spectral bound and the spectral radius:

Definition A.1 (Spectral radius). Let A ∈ Rn×n for n ∈ N+ be a matrix with the as-
sociated eigenvalues λi ∈ C and 1 ≤ i ≤ n (eigenvalues are counted repeatedly by algebraic
multiplicity). The spectral radius of A denoted by ρ(A) is then given by

ρ(A) := max
1≤i≤n

|λi|

Definition A.2 (Spectral bound). Let A ∈ Rn×n for n ∈ N+ be a matrix with the as-
sociated eigenvalues λi ∈ C and 1 ≤ i ≤ n (eigenvalues are counted repeatedly by algebraic
multiplicity). The spectral bound of A denoted by s(A) is then given by

s(A) := max
1≤i≤n

<(λi)

where < denotes the real part of the (possibly) complex eigenvalues. Thus the spectral bound
is given by the largest real part of the eigenvalues.

The following definition of an (ir)reducible matrix has been given in [61, Sec. 3.11]:

Definition A.3 ((Ir)reducible Matrix). A matrix A ∈ Rn×n for n ∈ N+ is called re-
ducible, if there exists a disjoint partition {1, . . . , n} = I ∪ J such that (i, j) ∈ I × J implies
aij = 0. Equivalently, A is reducible if it can be brought in a block-triangular form

Â =

(
B C

0p,n−p D

)
by a permutation matrix Π ∈ Rn×n such that Â = ΠAΠ−1 (for sub-matrices B,C,D with
appropriate dimensions). If A is not reducible, it is called irreducible.

The following definition of a M-Matrix has been taken from [50]:

Definition A.4 (M-Matrix). A matrix A ∈ Rn×n for n ∈ N+ is called M-Matrix iff there
exists an α ∈ R and a matrix B ∈ Rn×n such that A can be written in the form A = αIn−B
with (B)ij ≥ 0 and α ≥ ρ(B), where ρ(B) denotes the spectral radius of B and In ∈ Rn×n
the identity matrix. If α = ρ(B), then A is a singular M-Matrix.
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Definition A.5 (Quasi-positive Matrix). A non-trivial matrix A ∈ Rn×n for n ∈ N+ is
called quasi-positive (or essentially non-negative), if all aij := (A)ij are non-negative except
on the main-diagonal, i.e. there holds aij ≥ 0 for i 6= j and 1 ≤ i, j ≤ n.

Furthermore we make use of the outer matrix product quite some time. As there are various
different notations throughout mathematics and physics, the notation used here is explicitly
given:

Definition A.6 (Outer product). Let x, y ∈ Rn. Then the outer product matrix Ξ = x⊗y
is given via

Ξij = x(i)y(j) 1 ≤ i, j ≤ n.

Definition A.7 (Adjugate Matrix). Let A ∈ Rn×n be a real matrix and n ∈ N+. Then
the adjugate matrix (or adjunct) of A is given by the transpose of the cofactor matrix of A,
i.e. by

adj(A) = Cof(A)T = ÃT =


ã11 ã12 · · · ã1n

ã21 ã22 ã2n
...

. . .
...

ãn1 ãn2 · · · ãnn


T

=


ã11 ã21 · · · ãn1

ã12 ã22 ãn2
...

. . .
...

ã1n ã2n · · · ãnn

 . (A.1a)

Note that at position (j, i) there is the cofactor ãij given. The cofactors ãij can be represented
by the minors Mij which arise by deleting the i-th row and the j-th column, thus

ãij = (−1)i+j det



a1,1 · · · a1,j−1 a1,j+1 · · · a1,n
...

. . .
...

...
. . .

...
ai−1,1 · · · ai−1,j−1 ai−1,j+1 · · · ai−1,n

ai+1,1 · · · ai+1,j−1 ai+1,j+1 · · · ai+1,n
...

. . .
...

...
. . .

...
an,1 · · · an,j−1 an,j+1 · · · an,n


︸ ︷︷ ︸

=:Mij

. (A.1b)

Definition A.8 (Principal Minor). Let A ∈ Rn×n and n ∈ N+. Then for 1 ≤ k ≤ n the
k-th principal minor is given by the determinant of the submatrix Ak ∈ Rk×k

Ak =


a11 a12 . . . a1k

a21 a22 . . . a2k

. . . . . . . . . . . .
ak1 ak2 . . . akk

 (A.2)
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Definition A.9 (Matrix-Matrix summation). Let A,B ∈ Rn×n and n ∈ N+, then the
Matrix-Matrix sum : is a short hand for

A : B =
N∑

i,j=1

AijBij . (A.3)

A.1.2 Important lemmas and theorems

The Sherman-Morrison formula, which was first proven in [62] and can be found in [61, Propo-
sition 3.21] is used to compute the inverse of a matrix A, which is perturbed by a rank-one
matrix (represented by an outer product):

Lemma A.1 (Sherman-Morrison formula). Let A ∈ Rn×n for n ∈ N+ and u, v ∈ Rn. If
A and A+ u⊗ v are non-singular, then there holds

(A+ u⊗ v)−1 = A−1 − 1

1 + vTA−1u
A−1(u⊗ v)A−1. (A.4)

Proof. This is e.g. proven in [61, p. 53f].

An useful corollary to the Sherman-Morrison formula is the following lemma to compute the
determinant of a matrix perturbed by a rank one matrix (cf. [61, Prop. 3.21]):

Lemma A.2 (Matrix determinant lemma). Given a non-singular matrix A ∈ Rn×n for
n ∈ N+ and u, v ∈ Rn, then there holds

det(A+ u⊗ v) = (1 + vTA−1u) det(A) = det(A)(uT adj(A)v), (A.5)

where adj(A) denotes the adjunct matrix of A (cf. definition A.7).

An important theorem is the Perron-Frobenius theory for non-negative matrices, which results
can e.g. be found in [61, Sec 8.3] or [33, Sec. 8.3]:

Theorem A.1 (Perron-Frobenius). Let A ∈ Rn×n be a quasi-positive and irreducible ma-
trix. Then its spectral bound s(A) is a simple eigenvalue of A associated with a strictly positive
eigenvector and s(A) > <(λi) for all eigenvalues λi ∈ σ(A) and λi 6= ρ(A). All eigenvectors
of A different from ρ(A) have no positive eigenvector.

The following theorem (corollary to the Courant-Fisher min-max theorem for hermitean/sym-
metrical matrices) can be found in [33, Thm. 4.3.1].
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Theorem A.2 (Weyl). Let A,B ∈ Rn×n for n ∈ N+ be symmetric matrices and let the
eigenvalues λi(A), λi(B) and λi(A+B) be arranged in increasing order, i.e. of the form

λmin = λ1 ≤ . . . ≤ λn = λmax.

Then for every pair of integers j, k such that 1 ≤ j, k ≤ n and j + k ≥ n+ 1 there one has

λj+k−n(A+B) ≤ λj(A) + λk(B)

As a corollary there holds

λi(A) + λ1(B) ≤ λi(A+B) ≤ λi(A) + λn(B)

The following lemma for the outer product of two vectors is given (note that outer products
produce a matrix with maximal rank of 1). This is e.g. proven in [61, p. 53]:

Lemma A.3 (Outer product matrix spectrum). Let x, y ∈ Rn, and n ∈ N+. Then there
holds for the spectrum of the outer product matrix Ξ ∈ Rn×n with Ξ = x⊗ v

σ(x⊗ y) = (0, . . . , 0︸ ︷︷ ︸
n−1

, x · y), (A.6)

i.e. 0 is an eigenvalue of algebraic multiplicity n − 1 and the result of the scalar product of
x · y is the only (possibly) non-trivial eigenvalue.

Lemma A.4 (Inverse representation by Cramer’s rule). Let A ∈ Rn×n with n ∈ N+ be
an invertible matrix. By Cramer’s rule, there holds

A−1 =
1

det(A)
adj(A) (A.7)

where adj(A) denotes the adjugate of A (cf. definition A.7)

The following result is useful to compute bounds on the determinant of a matrix, which can be
e.g. found in [61, sec. 6.6.1]:

Theorem A.3 (Hadamard’s inequality). Let A ∈ Cn×n for n ∈ N+. Then there holds

|det(A)|≤
n∏
i=1

 n∑
j=1

|aij |2
 1

2

, (A.8)

i.e. the determinant can be bounded by the product of the Hermitean norm in Cn of the rows.
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The following result of Theorem A.3 is useful to us:

Corollary A.1. Let A ∈ Rn×n a positive semi-definite matrix with real eigenvalues (λi ≥ 0
for 1 ≤ i ≤ n) and n ∈ N+. If there holds |aij |≤ δ for a constant δ ∈ R+, then there holds

det(A) ≤ δnnn/2 (A.9)

Proof. As A has eigenvalues which satisfy λi ≥ 0 and the determinant can be represented as
product of all eigenvalues, there holds |det(A)|= det(A). As |aij |≤ δ, there holds by (A.8)

det(A) ≤
n∏
i=1

 n∑
j=1

δ2

 1
2

=

n∏
i=1

δn
1
2 = δnn

n
2 .

Theorem A.4. Let A ∈ Rn×n and n ∈ N+ be symmetric and positive definite and B ∈ Rn×n
be symmetric. Then the number of positive eigenvalues of the product AB equals that for B.

Proof. The proof can be found by applying the result in [61, Prop 6.1] for hermitean matrices
to symmetric ones.

Lemma A.5. If A ∈ Rn×n is a positive definite, symmetric matrix, then so is its inverse A−1.

Proof. As A is positive definite and symmetric (A = AT ), it can be inverted since the determi-
nant can be represented as the product of the eigenvalues λi > 0. As A has full rank it is onto
Rn, thus an arbitrary y ∈ Rn can be represented by an appropriate x ∈ Rn and y = Kx. By

definition of positive definiteness there holds xTAx > 0 for any x ∈ Rn. Then there holds

yTA−1y = xTATA−1Ax = xTAx > 0,

thus A−1 is positive definite. The symmetry A−1 = (A−1)T follows by

In = AA−1 = (AT )−1AT = (A−1)TAT = (A−1)TA = A(A−1)T

where we made use of the fact that the left- and right-inverse is the same matrix (if the inverse
matrix exists) as well as the simple-to-prove fact that (A−1)T = (AT )−1. Thus A−1 is SPD.

A.2 Results from Analysis

A.2.1 Important definitions

The most important concept in the analytical treatment of PDEs is the notion of Sobolev spaces
and its associated norms and seminorms. First of we define the space of smooth functions with
compact support in Omega, where for a continuous function u ∈ C(Ω)

supp(u) = {x ∈ Ω : u(x) 6= 0} (A.10)
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and

C∞c (Ω) = {u ∈ C∞(Ω) : supp(u) = K compact ⊂ Ω} (A.11)

Furthermore we use the concept of Lp-spaces, which will be understood as Lp(Ω) = Lp(Ω,Bd, λ
d)

with respect to the d-dimensional Lebesgue measure λd and the Borel σ-algebra Bd induced by
the Euklidean topology in Rd and restricted on Ω if not otherwise specified. It is well estab-
lished, that the Lebesgue spaces for 1 ≤ p < ∞ form a Banach space [9, Th. 4.1.3] with their
associated norms43

‖f‖Lp(Ω):=

{(∫
Ω|f |pdλd(x)

) 1
p p <∞

ess sup f = inf
{

sup {|f(x)|: x ∈ Ω\N} : λd(N) = 0
}

p =∞
(A.12)

An important notion is the one of weak derivatives [25, p. 242f], which are distributional
derivatives that can still be represented in a function space, i.e. in

L1
loc(Ω) :=

{
u ∈ L1(K), ∀K compact ⊂ Ω

}
(A.13)

Definition A.10 (Weak derivative). Let u, v ∈ L1
loc(Ω) where Ω ⊂ Rd and d ∈ N+. Then

v is called the α-th weak derivative of u (denoted as Dα
w), iff∫

Ω
(Dα

wu)φdx = (−1)|α|
∫

Ω
v(Dαφ)dx ∀φ ∈ C∞c (Ω) (A.14)

which is unique up to sets of measure zero [25, p. 243]. Hereby Dα is a short hand for

α = (α1, . . . , αd) ∈ Nd and Dα = ∂|α|

∂x
α1
1 ···∂x

αd
d

.

With the notion of weak derivatives Dα
wu, one can define Sobolev spaces as follows (cp. [17, p.

29])44:

Definition A.11 (Sobolev spaces). Let k be a nonnegative integer and 1 ≤ p < ∞, one
can define the Sobolev norm

‖f‖k,p,Ω:= ‖f‖Wk,p(Ω)=


(∑

|α|≤k‖Dα
wf‖pLp(Ω)

) 1
p

p <∞
max|α|≤k‖Dα

wf‖L∞(Ω) p =∞
(A.15a)

and define the Sobolev spaces in either case with

W k,p(Ω) :=
{
f ∈ L1

loc(Ω) : ‖f‖Wk,p(Ω)<∞
}

(A.15b)

For p = 2 one obtains a Hilbert space Hk(Ω) = W k,2(Ω) with an inner product for f, g ∈
Hk(Ω)

(f, g)k,Ω = (f, g)Hk(Ω) =
∑
|α|≤k

(Dα
wf,D

α
wg)L2(Ω) (A.15c)

‖f‖Hk(Ω) := ‖f‖Wk,2(Ω) (A.15d)

43Taking into account that we denote with Lp(Ω) the equivalence class of all functions which coincide λd-a.e.
on Ω, cp. further e.g. [9, p. 139f]

44There are alternative definitions which lead to the same spaces under moderate restrictions, see e.g. [60, p.
27f].
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The associated Sobolev semi-norms for k ∈ N and 1 ≤ p < ∞ will be denoted and defined as
follows:

|f |k,p,Ω=


(∑

|α|=k‖Dα
wf‖pLp(Ω)

) 1
p

p <∞
max|α|=k‖Dα

wf‖L∞(Ω) p =∞
(A.16a)

For p = 2, we will also use the short hand

|f |Hk(Ω)=

∑
|α|=k
‖Dα

wf‖2L2(Ω)

 1
2

. (A.16b)

As we study parabolic equations, we need to extend the notion of Lebesgue spaces to Hilbert-
space valued functions. This leads to the following definition (taken from [39, Def. 6.23]):

Definition A.12 (Hilbert space valued Lebesgue spaces). Let H be a Hilbert space
and T > 0. Then the space denoted by Lp(0, T ;H) for 1 ≤ p ≤ ∞ is the set (of all
equivalence classes) of measurable functions u : (0, T )→ H, such that

‖u‖Lp(0,T ;H)=


(∫ T

0 ‖u(t)‖pHdt
) 1
p

p <∞
ess sup0<t<T ‖u(t)‖H p =∞

(A.17)

As we are using Cartesian products of Sobolev spaces in this thesis, we should also define the
induced norms explicitly for the reader’s convenience (taken from [16, p. 22/45]):

Definition A.13 (Vector valued Lebesgue spaces). Let u = (u1, . . . , un) be a function
u : Ω ⊂ Rd → Rn for d, n ∈ N+. Then the cartesian product of the Lebesgue spaces Lp(Ω) is
defined componentwise, i.e. by

[Lp(Ω)]n = Lp(Ω;Rn) = {u : Ω→ Rn : u(i) ∈ Lp(Ω) ∀1 ≤ i ≤ n},

where u(i) denotes the i-th coordinate of u. The associated Lp-norm is defined by

‖u‖Lp(Ω;RN )=


(∑n

k=1‖u(k)‖pLp(Ω)

) 1
p

p <∞
max1≤k≤n‖u(k)‖L∞(Ω) p =∞

(A.18)

Definition A.14 (Vector valued Sobolev spaces). Let u = (u1, . . . , un) be a function
u : Ω→ Rn for n ∈ N+. Then the cartesian product of the Sobolev space W k,p(Ω) is defined
componentwise, i.e. by

[W k,p(Ω)]n = W k,p(Ω;Rn) = {u ∈ [Lp(Ω)]n : u(i) ∈W k,p(Ω) ∀1 ≤ i ≤ n}.

The associated Sobolev norm is defined by

‖u‖[Wk,p(Ω)]n= ‖u‖Wk,p(Ω;Rn)=


(∑n

k=1‖u(k)‖pWk,p(Ω)

) 1
p

p <∞
max1≤k≤n‖u(k)‖Wk,∞(Ω) p =∞

(A.19)
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The following definition is taken from [25, p.254]:

Definition A.15 (Hölder spaces). i. If u : Ω ⊂ Rd → R is bounded and continuous,
we write

‖u‖C(Ω):= sup
x∈Ω
|u(x)|.

ii. The γ-th Hölder seminorm of u : Ω→ R is given by

|u|C0,γ(Ω):= sup
x,y∈Ω

x 6=y

|u(x)− u(y)|
|x− y|γ .

The Hölder space Ck,γ(Ω) then consists of all functions u ∈ Ck(Ω) for which

‖u‖Ck,γ(Ω):=
∑
α≤k
‖Dαu‖C(Ω)+

∑
α=k

|Dαu|C0,γ(Ω)<∞. (A.20)

The following definition is taken from [25, p. 724]

Definition A.16 (Compact linear operator). Let X and Y be Banach spaces. A
bounded linear operator K : X → Y is called compact provided for each bounded sequence
{uk}∞k=1 ⊂ X, the sequence {Kuk}∞k=1 is precompact in Y ; that is, there exists a subsequence
{ukj}∞j=1 such that {Kukj}∞j=1 converges in Y .

The following definition is taken from [25, p. 286]:

Definition A.17 (Compact embedding). Let X and Y be Banach spaces and X ⊂ Y .
X is compactly embedded in Y , written as

X ⊂⊂ Y

if

i. ‖u‖Y< C‖u‖X for all u ∈ X for some positive constant C > 0.

ii. Each bounded sequence in X is precompact in Y .

Definition A.18 (Weak convergence on Banach spaces). Let X be a Banach space
and X ′ denotes the topological dual space to X (linear continuous functionals on X). We
say the sequence {ui}∞i=0 ⊂ X converges weakly to u ∈ X (denoted by ui ⇀ u), if there holds

〈v, ui〉X′×X → 〈v, u〉X′×X ∀v ∈ X ′, (A.21)

where 〈·, ·〉X′×X denotes the dual pair 〈·, ·〉X′×X : X ′ ×X → R.
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Definition A.19 (Relative compactness). Let (X, T ) be a topological space, then K ⊆
X is called relatively compact, if its closure w.r.t. to the topology T is compact, i.e. each
open cover there is a finite covering with elements from T .

A.2.2 Important lemmas and theorems

The following theorem is taken from [8, Satz 4.3.1]:

Theorem A.5 (Transformation theorem for C1-Diffeomorphisms). Let D be a mea-
surable set in Rn for n ∈ N+, φ : D → φ(D) a C1-Diffeomorphism and let f be a measurable
Function on φ(D). Then there holds∫

φ(D)
f(x)dλn(x) =

∫
D
f(φ(y))|det(dφ(y))|dλn(y) (A.22)

The following important fixed point theorem which is convenient for many arguments in (non-
linear) PDE theory has e.g. been stated in [35, Th. A.4],[38, Satz 2.13] and is e.g. proven in
[27, Th. 11.6]:

Theorem A.6 (Leray-Schauder fixed point theorem). Let (B, ‖·‖B) be a Banach space
and S : B × [0, 1] → B a continuous and compact operator with S(v, 0) = 0. If for all v ∈ B
there exists a C > 0, such that for all u ∈ B and σ ∈ [0, 1] with S(u, σ) = u there holds

‖u‖B≤ C,

then v 7→ S(v, 1) posesses a fixed point.

On order to prove existence and uniqueness for a linear variational problem the Lax-Milgram
lemma can be employed, which can e.g. be found in [17, Th. 2.7.7] and [25, p. 315f]:

Theorem A.7 (Lax-Milgram). Given a Hilbert space (V, (·, ·)V ), a bilinear form a(·, ·) :
V × V → R which is

� continuous, i.e. there exists a C1 > 0 for all u, v ∈ V such that

a(u, v) ≤ C1‖u‖V ‖v‖V , (A.23a)

� coercive, i.e. for a C2 > 0 and all u ∈ V there holds

a(u, u) ≥ C2‖u‖2V , (A.23b)

as well as a linear form F (·) ∈ V ′, which is

A9



� continuous, i.e. there holds for a C > 0 for all v ∈ V

F (v) ≤ C‖v‖V . (A.23c)

Then there exists a unique u ∈ V that solves the variational problem

a(u, v) = F (v) ∀v ∈ V. (A.24)

The following generalized version of the Poincaré inequality is stated in [35, Th. A.1]:

Theorem A.8 (Generalized Poincaré inequality). Let Ω ⊂ Rd for d ∈ N+ be a bounded
set with Lipschitz boundary (i.e. ∂Ω ∈ C0,1) and let p be a continuous semi-norm on Hm(Ω)
for m ∈ N+, such that p(u) = 0 for any polynomial u ∈ Pm−1, i.e. a polynomial of degree
m− 1, implies u = 0. Then there exists a constant Cp > 0 such that for all u ∈ Hm(Ω) there
holds

‖u‖Hm(Ω)≤ Cp

 ∑
|α|=m

‖Dαu‖L2(Ω)+p(u)

 = Cp
(
|u|Hm(Ω)+p(u)

)
(A.25)

Jüngel furthermore states that examples for p(u) are p(u) = ‖u‖L2(Ω), p(u) = ‖u‖L2(∂Ω) and for
m = 1 also p(u) = ‖u‖L1(Ω).
The following inequality can e.g. be found in [27, p. 145]:

Lemma A.6 (Young’s inequality for Products). Let a, b ∈ R and a, b ≥ 0. Then there
holds for 1 < p ≤ q <∞ and 1

p + 1
q = 1 that

ab ≤ ap

p
+
bq

q
. (A.26)

The following Lemma is actually useful to us various times to find lower bounds for the vector
valued Hk-norm (thanks to Oliver Leingang for the hint):

Lemma A.7. Let ai ∈ R with ai ≥ 0 for 1 ≤ i ≤ n and n ∈ N+. Then there holds

n∑
i=1

a2
i ≥

1

2

(
n∑
i=1

ai

)2

. (A.27)

Proof. This can be proven by induction. For n = 1, the equality holds trivially, as a2
1 ≥

a2
1
2 . We

now perform the induction step n → n + 1. Let y :=
∑n

i=1 ai. By expanding (A.27), we need
to prove

y2 + a2
n+1

2
+ an+1y ≤ y2 + a2

n+1.
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Further simplification leads to

an+1y ≤
y2 + a2

n+1

2
.

This is exactly Young’s inequality (see Lemma A.6) with p = q = 2 and as an+1, y ≥ 0 (A.27)
holds.

In order to prove compact embedding between certain function spaces, the following result taken
from [27, Th. 7.26] is useful:

Theorem A.9 (Rellich-Kondrachov). Let Ω ⊂ Rd be a bounded open subset with ∂Ω ∈
C0,1. Then the following statements hold for m ∈ N+, j ∈ N:

i. If mp < d, 1 ≤ q < dp
d−mp , then

Wm,p(Ω) ⊂⊂ Lq(Ω),

ii. If 0 ≤ k < m− d
p < k + 1 then for α = m− d

p − k and any 0 < β < α

Wm,p(Ω) ⊂⊂ Ck,β(Ω),

where Ck,β(Ω) is defined as in definition A.15.

The following theorem has been proven by Dreher/Jüngel in [23, Th. 1]:

Theorem A.10 (Dreher/Jüngel). Let X,B and Y be Banach spaces such that the embed-
ding X ↪→ B is compact and the embedding B ↪→ Y is continuous. Furthermore, let either

i. 1 ≤ p <∞, r = 1 or

ii. p =∞, r > 1,

and let u(τ) be a sequence of functions, which are constant on each subinterval (tk−1, tk) sat-
isfying

τ−1‖u(τ) − στu(τ)‖Lr(τ,T ;Y )+‖u(τ)‖Lp(0,T ;X)≤ C0 ∀τ > 0, (A.28)

where C0 > 0 is a constant which is independent of τ . Then the following holds:

i. If p <∞, then (u(τ)) is relatively compact in Lp(0, T ;B).

ii. If p =∞, there exists a subsequence of (u(τ)) which converges to each space Lq(0, T ;B)
for 1 ≤ q <∞ to a limit which belongs to C0([0, T ];B).

The following result is proven in [7, Korollar 1.5]:
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Theorem A.11 (Eberlein-Šmuljan for reflexive Banach spaces). Let (B, ‖·‖B) be a
reflexive Banach space. Then each norm bounded sequence in B, i.e. {ui}∞i=0 and ‖ui‖B≤ C
for ui ∈ B, has a weakly convergent subsequence and u ∈ B, i.e.

uij ⇀ u.

A.3 Results from Measure Theory

A.3.1 Important theorems and lemmas

As we’ve denoted Lp-spaces and norms always w.r.t. to the measure space (Ω,Bd, λ
d) with

the d-dimensional Borel σ-algebra Bd and λd denoting the d-dimensional Lebesgue measure,
we introduce in this section the notation for an arbitrary measure space (Ω,S, µ) with an
appropriate σ-algebra S and a measure µ

‖f‖Lpµ(Ω)=

(∫
Ω
|f |pdµ

) 1
p

Theorem A.12 (Hölder inequality). Let (Ω,S, µ) be a measure space, and let f, g be mea-
sureable functions w.r.t. to the measure space. Then there holds for 1 ≤ p ≤ q ≤ ∞ and
1
p + 1

q = 1 (Hölder-conjugated)

‖fg‖L1
µ(Ω)≤ ‖f‖Lpµ(Ω)‖g‖Lqµ(Ω) (A.29)

Proof. See [44, Satz 13.4/Bem. 13.7] or [9, Th. 2.11.1].

For p = q = 2 the Hölder inequality yields the Cauchy-Schwarz inequality. By employing the
counting measure and the measure space (N, 2N, µ) with

µ(A) =

{
|A| A is finite

∞ A is infinite

one can prove for an arbitrary set I ⊆ N the discrete version of the Hölder inequality

∑
i∈I
|aibi|≤

(∑
i∈I
|ai|p

) 1
p
(∑
i∈I
|bi|q

) 1
q

. (A.30)

The following inclusion relation for Lp-spaces is quite useful, especially as we consider bounded
domains Ω ⊂ Rd, which form a finite measure space w.r.t. (Ω,Bd, λ

d) :

Lemma A.8 (Lp inclusion). Let (Ω,S, µ) be a finite measure space. Then there holds for
1 ≤ p ≤ q ≤ ∞ that Lqµ(Ω) ⊆ Lpµ(Ω). Furthermore each Lqµ-convergent sequence (fn) ∈ Lqµ
converges in Lpµ, i.e.

lim
n
‖fn − f‖Lqµ(Ω)= 0⇒ lim

n
‖fn − f‖Lpµ(Ω)= 0
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Proof. This lemma is straightforward to prove by Theorem A.12. There holds for f ∈ Lpµ for
r := q

p > 1 and s := q
q−p that

‖|f |p1‖p
L1
µ(Ω)

(A.29)
≤ ‖|f |p‖Lrµ(Ω)meas(Ω)

1
s = ‖f‖p

Lqµ(Ω)
meas(Ω)

1
s .

By taking the p-th root of the inequality there holds due to meas(Ω) <∞ that Lqµ(Ω) ⊆ Lpµ(Ω).
The second part of the lemma can be found in [44, Satz 13.25].

The following theorem is e.g. proven in [9, Th. 2.8.1]:

Theorem A.13 (Lebesgue dominated convergence). Suppose that µ-integrable func-
tions fn converge a.e. to a function f . If there exists a µ-integrable function Φ such that

|fn|≤ Φ µ− a.e. ∀n

then the function f is integrable and∫
Ω
fdµ = lim

n→∞

∫
Ω
fndµ

In addition

lim
n→∞

∫
Ω
|f − fn|dµ = 0

A.4 Code used

A.4.1 Analytical Results

Listing 2: Computation of the MMS results in section 5.1.1

1 from __future__ import print_function

2 import sympy as sy

3 import numpy as np

4 from sympy.utilities.autowrap import ufuncify

6 def gradient(symbolic_expr , der_symbols):

7 """

8 This computes the gradient of an symbolic expression with respect to the

9 variables given.

11 :param symbolic_expr: A Sympy expression containing a symbolic

12 representation of differentiable functions.

13 :param list der_symbols: A list of symbols to compute the derivatives w.r.

t.

14 them.

15 :return: A list containing the components of the gradient of the given

16 expression.

17 """

18 loc_gradient = []

20 for der_var in der_symbols:

21 res = sy.diff(symbolic_expr , der_var)
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22 loc_gradient.append(sy.simplify(res))

24 return loc_gradient

27 def divergence(vector_expr , der_symbols):

28 """

29 This computes the divergence of a given vector w.r.t. the given

derivatives

30 symbols.

32 :param list vector_expr: A list of symbolic expressions representing a

33 vector of dimension d.

34 :param der_symbols: The variables , where the derivatives w.r.t. them

should

35 be computed. You need d derivatives to compute the divergence.

36 :return: The divergence of the vector expression as computed by sympy

37 (simplified expression).

38 """

39 if len(vector_expr) != len(der_symbols):

40 print(vector_expr)

41 print(der_symbols)

42 raise ValueError(

43 "Can only compute the divergence if there are as many derivatives

"

44 "as in the vector.")

46 expr = 0

48 for i in range(len(der_symbols)):

49 expr += sy.diff(vector_expr[i], der_symbols[i])

51 expr = sy.simplify(expr)

53 return expr

56 def sym_multiply(sym_coeff , sym_vec):

57 """

58 This provides a "scalar" multiplication of vector valued sympy expression

59 with a float or a scalar sympy expression.

61 :param sym_coeff: The "scalar" coefficient.

62 :param sym_vec: The vector valued Sympy expression.

63 :return:

64 """

65 res_vec = []

66 for curr_elem in sym_vec:

67 res_vec.append(sy.simplify(sym_coeff*curr_elem))

69 return res_vec

72 def sym_add(vec1 , vec2):

73 """

74 This adds to vector valued Sympy expressions.

76 :param vec1: The first vector containing sympy expressions.

77 :param vec2: The second vector containing sympy expressions.

78 :return: The vector created from elementwise addition of the elements.
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79 """

80 if len(vec1) != len(vec2):

81 raise ValueError("Vector dimensions must agree!")

83 res_vec = []

85 for i in range(len(vec1)):

86 res_vec.append(sy.simplify(vec1[i]+vec2[i]))

88 return res_vec

91 def maxwell_stefan_analytical_rhs(sol1 , sol2 , diffusion_matrix , variables):

92 """

93 This implements a manifactured solution method as the MS are computed in 2

D,

94 as given in Boudin , Grec , Salvarani (2010): A mathematical and Numerical

95 analysis of the MS diffusion equations , p. 6, (18) -(19).

97 :param sol1: The solution ansatz function which is desired for the first

98 concentration (needs to satisfy BCs!)

99 :param sol2: The solution ansatz function which is desired for the second

100 concentration (needs to satisfy BCs!)

101 :param diffusion_matrix: The Matrix of the binary diffusion coefficients.

102 Can consist of symbols as well.

103 :param list variables: The list of symbols containing the symbols for the

104 derivatives.

105 :return: The two right hand sides obtained for the manifactured solution

106 problem.

107 """

108 rhs1 = sy.simplify(sy.diff(sol1 , "t")-diffusion_matrix [0, 1]* divergence(

109 gradient(sol1 , variables), variables))

111 # alpha = 1.0/ diffusion_matrix [0, 1] -1.0/ diffusion_matrix [0, 2]

112 beta = 1.0/ diffusion_matrix [0, 1] -1.0/ diffusion_matrix [1, 2]

113 time_derivative = sy.diff(sol2 , "t")

114 first_term = (1.0/ diffusion_matrix [1, 2]+ beta*sol1)**(-1)

115 second_term = gradient(sol2 , variables)

116 third_term = sym_multiply(

117 beta*diffusion_matrix [0, 1]*sol2 , gradient(sol1 , variables))

118 together = sym_multiply(first_term , sym_add(second_term , third_term))

119 rhs2 = sy.simplify(time_derivative -divergence(together , variables))

121 return rhs1 , rhs2

124 def eval_sympy_fun(sympy_expr , eval_vec):

125 """

126 Idea taken from https :// stackoverflow.com/questions /15478449/ evaluating -a-

127 function -at-a-point -in-sympy.

129 .. warning ::

130 Might be obsolete as of more performant new functions using numpy

131 backends for sympy.

133 :param sympy_expr: An arbitrary sympy expression.

134 :param eval_vec: The vector of a given point that evaluates the free

135 symbolic variables.

136 :return: The numerical value of the sympy function evaluated at the given

137 point.
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138 """

139 free_vars = sorted(sympy_expr.free_symbols , key=lambda a: str(a))

140 if len(free_vars) != len(eval_vec):

141 raise ValueError(

142 "The evaluation points need to be equal to the symbolic vars.")

144 evaluated = sy.simplify(sympy_expr.subs(zip(free_vars , eval_vec))).evalf()

146 return evaluated

149 def compute_rhs_unit_square_time_dependent ():

150 r"""

151 This computes the symbolic RHS obtained by the Method of Manifactured

152 Solutions (MMS) in 2D on a unit square (0,1)^2.

154 This uses the ansatz function

156 .. math::

157 \phi(x,y,t) = p [1+\ cos ^2(\pi x) \cos ^2(\pi y) e^{-kt}] \; k > 0

159 to compute the RHS as obtained by substituting \phi in the equations given

160 in Boudin , Grec , Salvarani (2010): A mathematical and Numerical

161 analysis of the MS diffusion equations , p. 6, (18) -(19).

162 """

163 x, y, t = sy.symbols("x y t")

164 k, p = sy.symbols("k, p")

165 gl1 = p + p * sy.cos(sy.pi * x)**2*sy.cos(sy.pi * y)**2*sy.exp(

166 -k * t)

167 print(sy.latex(gl1))

169 D = np.array ([[0, 0.833 , 0.833] , [0, 0, 0.168] , [0, 0, 0]])

170 D += D.transpose ()

172 d00 , d01 , d02 , d10 , d11 , d12 , d20 , d21 , d22 = sy.symbols(

173 "D11 , D12 , D13 , D21 , D22 , D23 , D31 , D32 , D33")

174 dsym = np.array ([[d00 , d01 , d02], [d10 , d11 , d12], [d20 , d21 , d22 ]])

176 res_1 , res_2 = maxwell_stefan_analytical_rhs(gl1 , gl1 , dsym , [x, y])

178 return res_1 , res_2

181 def compute_rhs_unit_interval_time_dependent ():

182 r"""

183 This computes the symbolic RHS obtained by the Method of Manifactured

184 Solutions (MMS) in 1D on the unit interval (0,1).

186 This uses the ansatz function

188 .. math::

189 \phi(x,y,t) = p [1+\ cos ^2(\pi x) \cos ^2(\pi y) e^{-kt}] \; k > 0

191 to compute the RHS as obtained by substituting \phi in the equations given

192 in Boudin , Grec , Salvarani (2010): A mathematical and Numerical

193 analysis of the MS diffusion equations , p. 6, (18) -(19).

194 """

195 x, t = sy.symbols("x t")

196 k, p = sy.symbols("k, p")

197 gl1 = p + p * sy.cos(sy.pi * x)**2*sy.exp(-k*t)
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198 print(sy.latex(gl1))

200 d00 , d01 , d02 , d10 , d11 , d12 , d20 , d21 , d22 = sy.symbols(

201 "D11 , D12 , D13 , D21 , D22 , D23 , D31 , D32 , D33")

202 dsym = np.array ([[d00 , d01 , d02], [d10 , d11 , d12], [d20 , d21 , d22 ]])

204 res_1 , res_2 = maxwell_stefan_analytical_rhs(gl1 , gl1 , dsym , [x])

206 return res_1 , res_2

209 if __name__ == '__main__ ':

210 res1_1d , res2_1d = compute_rhs_unit_interval_time_dependent ()

211 res1_2d , res2_2d = compute_rhs_unit_square_time_dependent ()

212 print(sy.latex(res1_1d))

213 print(sy.latex(res2_1d))

214 print(sy.latex(res1_2d))

215 print(sy.latex(res2_2d))

A.4.2 Code for solving the MS-equations

Listing 3: Main code for solving the M-S equations

1 """

2 Functions for solving the Maxwell -Stefan System with conforming P^k-FEM in

space

3 and implicit Euler timestepping

4 """

5 from __future__ import division , print_function

6 import warnings

7 import numpy as np

8 import scipy.sparse.linalg as splinalg

9 import time

10 import concurrent.futures

12 from fe_core.function_spaces.lagrange import LagrangeVectorFunction

13 from fe_core.function_space import FunctionSpace

14 from fe_core.finite_elements.lagrange_elements import LagrangeElement

15 from maxwell_stefan.utils import ParallizationStrategy , JacobianAssembly , \

16 NewtonNotConverged

18 LEGACY_MODE = True

20 if LEGACY_MODE:

21 import maxwell_stefan.assemble_ms_functions_legacy as assemble_ms

22 from maxwell_stefan.assemble_bmat_legacy import calc_c_from_w ,

calc_w_from_c

23 else:

24 import assemble_ms_functions as assemble_ms

25 from maxwell_stefan.assemble_bmat import calc_c_from_w , calc_w_from_c

28 def assemble_plain(f, fprime , uold , u0 , dt , d_mat , rhs):

29 """

30 This function assembles the Jacobian and the residual one after the other.

32 Parameters

33 ----------

34 f : function
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35 A function returning the resudual on all DOFs as vector

36 fprime : function

37 A function returing the jacobian of the residual.

38 uold : LagrangeVectorFunction

39 The function values of the previous iteration

40 u0 : LagrangeVectorFunction

41 The function values of the previous timestep.

42 dt : float

43 The timestep size

44 d_mat : np.ndarray

45 The Maxwell -Stefan diffusion matrix.

46 rhs : function or None

47 The (optional) source term of the Maxwell -Stefan equations , which can

be

48 evaluated in x-space.

50 Returns

51 -------

52 The jacobian and the residual.

53 """

54 jacobian = fprime(uold , u0, dt, d_mat=d_mat)

55 fun_vec = f(uold , u0 , dt , d_mat , rhs)

57 return jacobian , fun_vec

60 def assemble_futures(f, fprime , uold , u0 , dt , d_mat , rhs):

61 """

62 This function assembles the Jacobian by using several independent python

63 processes to compute the jacobian and the residual concurrently.

65 As each Python interpreter holds the GIL while computing , only multiple

66 processes can make use of multiple cores , however as the process has to be

67 forked and there is no shared memory (data needs to be pickled), there is

68 some overhead involved.

70 Parameters

71 ----------

72 f : function

73 A function returning the resudual on all DOFs as vector

74 fprime : function

75 A function returing the jacobian of the residual.

76 uold : LagrangeVectorFunction

77 The function values of the previous iteration

78 u0 : LagrangeVectorFunction

79 The function values of the previous timestep.

80 dt : float

81 The timestep size

82 d_mat : np.ndarray

83 The Maxwell -Stefan diffusion matrix.

84 rhs : function or None

85 The (optional) source term of the Maxwell -Stefan equations , which can

be

86 evaluated in x-space.

88 Returns

89 -------

90 The jacobian and the residual.

91 """

92 with concurrent.futures.ProcessPoolExecutor(max_workers =2) as executor:
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93 jacobian_future = executor.submit(fprime , uold , u0 , dt , d_mat=d_mat)

94 function_future = executor.submit(f, uold , u0 , dt , d_mat , rhs)

96 return jacobian_future.result (), function_future.result ()

99 def assemble_futures_threading(f, fprime , uold , u0 , dt , d_mat , rhs):

100 """

101 This function assembles the jacobian by using python threading to compute

102 the jacobian and the residual concurrently.

104 As each Python interpreter holds the GIL while computing , the context can

105 only switch when the process releases the GIL after an "atomic" operation

106 (some numpy functions can release the GIL when entering C-Code), there is

107 probably not much speedup for computationally expensive operations.

109 Parameters

110 ----------

111 f : function

112 A function returning the resudual on all DOFs as vector

113 fprime : function

114 A function returing the jacobian of the residual.

115 uold : LagrangeVectorFunction

116 The function values of the previous iteration

117 u0 : LagrangeVectorFunction

118 The function values of the previous timestep.

119 dt : float

120 The timestep size

121 d_mat : np.ndarray

122 The Maxwell -Stefan diffusion matrix.

123 rhs : function or None

124 The (optional) source term of the Maxwell -Stefan equations , which can

be

125 evaluated in x-space.

127 Returns

128 -------

129 The jacobian and the residual.

130 """

131 with concurrent.futures.ThreadPoolExecutor(max_workers =2) as executor:

132 jacobian_future = executor.submit(fprime , uold , u0 , dt , d_mat=d_mat)

133 function_future = executor.submit(f, uold , u0 , dt , d_mat , rhs)

135 return jacobian_future.result (), function_future.result ()

138 def newton_converged(du , u_vals , norm , tol):

139 r"""

140 This function determines the stopping condition for the Newton method in

141 :py:func:`newton_solve `.

143 Currently the Newton iterations are stopped , when one of the following is

144 true:

146 * max_x |du/u| < tol

147 * || residuuum ||_{l^2} < tol

149 Parameters

150 ----------

151 du : np.ndarray
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152 A numpy array of shape (N*NDof) containing the descent determined by

the

153 last newton step.

154 u_vals : np.ndarray

155 A numpy array of shape (N, NDof) containing the function values at the

156 DOFs of the last Newton iteration.

157 norm : float

158 The l^2 norm of the residuum on the DOFs throughout the mesh.

159 tol : float

160 The tolerance which is accepted.

162 Returns

163 -------

164 bool

165 """

166 no_relative_change = np.amax(np.abs(du) / u_vals.reshape(du.shape)) < tol

167 converged = norm < u_vals.shape [0] * tol

169 return no_relative_change or converged

172 def newton_solve(

173 f, fprime , u0, dt, omega=1, tol=1e-8, maxiter =50, beta =0.8,

174 damped_steps =6, d_mat=None , rhs=None ,

175 parallelization=ParallizationStrategy.NO_CONCURRENCY):

176 """

177 This employs Newton -Raphson such that a root of the function f near u0 is

178 searched.

180 :param f: The function (whole PDE=0) which root should be sought ,

181 this should return a vector.

182 :param fprime: The derivative with respect to the DOFs , this should return

a

183 Jacobian matrix.

184 :param ~. LagrangeVectorFunction u0: This is a vector valued function which

185 stores the values from the prevuous timestep.

186 :param float dt: The size of the timestep.

187 :param float omega:

188 :param float tol: The relative tolerance

189 :param int maxiter: The maximum number of iterations.

190 :param float beta: A parameter between 0 and 1 which is used in case

191 underrelaxation is needed for convergence

192 :param int damped_steps: How many times it should be tried to apply a

damped

193 Newton step with damping factor beta^n for n<= damped_steps if the

194 residuum should increase after an iteration.

195 :param np.array d_mat: The diffusion matrix evaluated at the old timestep.

196 :param rhs: The source term of the Maxwell -Stefan PDE as a function.

197 :param ParallizationStrategy parallelization: Whether to run a parallel

198 stategy (assembly of Jacobian and residuum on different

199 processes/threads) or not.

200 :return: An array with the new function values for a

201 :class:`~. LagrangeVectorFunction `.

202 :rtype: np.array

203 """

204 dim = u0.dim

205 dims = u0.values.shape

206 unew = LagrangeVectorFunction(u0.function_space , dim=dim)

207 uold = LagrangeVectorFunction(u0.function_space , dim=dim)

208 unew.values [:] = u0.values [:]
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210 jacobian = fprime(unew , u0, dt, d_mat=d_mat)

211 fun_eval = f(unew , u0, dt, d_mat , rhs)

212 deltau = splinalg.spsolve(jacobian , fun_eval)

214 unew.values [:] = u0.values [:]-omega*deltau.reshape(dims)

215 normold = np.linalg.norm(f(unew , u0, dt, d_mat , rhs))

216 iter_count = 0

218 while not newton_converged(deltau , unew.values , normold , tol):

219 iter_count += 1

220 if iter_count > maxiter:

221 raise NewtonNotConverged(maxiter , tol)

223 # deep -copy the values of the previous iteration

224 uold.values = unew.values [:]

226 # assemble the Newton step

227 tbegin = time.time()

228 if parallelization is ParallizationStrategy.NO_CONCURRENCY:

229 jacobian , fun_eval = assemble_plain(

230 f, fprime , uold , u0, dt, d_mat , rhs)

231 elif parallelization is ParallizationStrategy.FUTURES_PROCESSES:

232 jacobian , fun_eval = assemble_futures(

233 f, fprime , uold , u0, dt, d_mat , rhs)

234 elif parallelization is ParallizationStrategy.FUTURES_THREADING:

235 jacobian , fun_eval = assemble_futures_threading(

236 f, fprime , uold , u0, dt, d_mat , rhs)

237 else:

238 raise NotImplementedError(

239 "Parallelization stategy {} has not been implemented.".format(

240 parallelization))

241 tend = time.time()

242 print("Wall Time Assemble = {}s".format(tend - tbegin))

244 print("Abbruchbed = %g, normf = %g, maxf = %g"

245 % (np.amax((np.abs(deltau)/unew.values.reshape(dims [0]* dims [1]))

),

246 np.linalg.norm(fun_eval), np.amax(np.abs(fun_eval))))

248 deltau = splinalg.spsolve(jacobian , fun_eval)

249 unew.values [:] = uold.values [:]-omega*deltau.reshape(dims)

251 # Damped Newton for security

252 normnew = np.linalg.norm(f(unew , u0 , dt, d_mat , rhs))

253 n = 0

254 while normnew > normold:

255 print ("Rejected Newton Step , Step(%d)" % n)

256 n += 1

257 unew.values [:] = uold.values [:]-beta**n*deltau.reshape(dims)

258 normnew = np.linalg.norm(f(unew , u0 , dt , d_mat , rhs))

259 if n > damped_steps:

260 print(

261 "Newton has to perform bad step , as damping after {} "

262 "steps with beta ={} showed did not improve "

263 "residual!".format(damped_steps , beta))

264 break

265 if n > damped_steps:

266 warnings.warn(

267 'Badstep even if damped , trying new search direction.')
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268 normold = normnew

270 print("deltaumax(Step {}) = {}".format(

271 iter_count , np.amax(deltau)))

273 return unew.values [:]

276 def solve_maxwell_stefan(

277 cold , tsteps , degree , d_mat=None , dt=1e-2, rhs=None ,

278 jacobian_assembly=JacobianAssembly.COO_1 ,

279 parallelization=ParallizationStrategy.NO_CONCURRENCY ,

280 max_newton_steps =50):

281 """

283 Parameters

284 ----------

285 cold : LagrangeVectorFunction

286 A function storing the molar gas concentration from the last

287 timestep.

288 tsteps : int

289 The number of timesteps to be performed

290 degree : int

291 The degree of the P^k FEM (higher or lower order)

292 d_mat : np.ndarray

293 The MS -diffusion matrix

294 dt : float

295 The timestep size.

296 rhs : LagrangeVectorFunction

297 The source term for the MS equations at current timestep discretized

298 in space.

299 jacobian_assembly : JacobianAssembly

300 The strategy with which to assemble the Jacobian.

301 parallelization : ParallizationStrategy

302 Whether to run a parallel stategy (assembly of Jacobian and

303 residuum on different processes/threads) or not.

304 max_newton_steps : int

305 The maximal number of acceptable Newton iterations until which the

306 method must have converged.

308 Returns

309 -------

310 The entropy variables and the molar concentrations after tsteps

311 timesteps.

312 """

313 # cold contains the initial values of c on the DOFs , cold.shape = N x NDof

314 mesh = cold.function_space.mesh

315 fel = LagrangeElement(mesh.cell , degree)

317 fs = FunctionSpace(mesh , fel)

318 dim = cold.dim

319 wold = LagrangeVectorFunction(fs, dim=dim)

320 wnew = LagrangeVectorFunction(fs, dim=dim)

322 wold.values [:] = calc_w_from_c(cold.values [:], d_mat=d_mat)

324 jac_function = jacobian_assembly.associated_function

326 for k in range(tsteps):

327 wnew.values [:] = newton_solve(
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328 getattr(assemble_ms , "maxwell_stefan_function"),

329 getattr(assemble_ms , jac_function), wold ,

330 dt , d_mat=d_mat , rhs=rhs , parallelization=parallelization ,

331 maxiter=max_newton_steps)

332 # print(" maxdiff = %f" % np.amax(np.abs(wnew.values [:]-wold.values [:])

))

333 wold.values [:] = wnew.values [:]

334 cold.values [:] = calc_c_from_w(wnew.values [:], d_mat=d_mat)

336 return wnew , cold

Listing 4: Assemblation of the Matrices (Cython)

1 '''

2 Compile with

3 cython AssembleFunNew.pyx

4 Then use

5 gcc -shared -pthread -fPIC -fwrapv -O2 -Wall -fno -strict -aliasing

6 -I/usr/include/python2 .7 -o AssembleFunNew.so AssembleFunNew.c

7 '''

9 cimport cython

10 cimport numpy as np

11 import numpy as np

12 import scipy as sp

13 import scipy.sparse as sparse

14 import assemble_bmat

15 from fe_core.quadrature import GaussQuadrature

18 @cython.boundscheck(False)

19 @cython.wraparound(False)

20 def maxwell_stefan_function(

21 u, uold , double dt, np.ndarray[np.float64_t , ndim = 2] diff_m ,

22 rhs=None):

23 """

25 :param Function u: The function object where the data of the new timestep

26 shall be stored.

27 :param Function uold: The function from the old timestep.

28 :param float dt: The timestep in seconds.

29 :param diff_m: The Matrix with the binary diffusion Coefficients.

30 :param Function rhs: A numpy backend function which can be evaluated at

31 numpy arrays

32 :return:

33 """

34 fs = u.function_space

35 mesh = fs.mesh

37 qr = GaussQuadrature(mesh.cell , 2*fs.element.degree)

38 # fel = LagrangeElement(mesh.cell , fs.element.degree)

39 fel = fs.element

41 cdef unsigned int d, c, no_gases , n_dof , no_cells

42 cdef np.ndarray[np.float64_t , ndim = 2] jac , jac_min , uold_qp , phi , \

43 uold_values , unew_values , rhs_values

44 cdef np.ndarray[np.uint32_t , ndim = 2] cell_nodes

45 cdef np.ndarray[np.float64_t , ndim = 3] b_mat , gradphi , jacobians

46 cdef np.ndarray[np.float64_t , ndim = 1] qr_weights , cell_measures

47 cdef double detJ , meas_j
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49 phi = fel.tabulate(qr.points)

50 gradphi = fel.tabulate(qr.points , grad=True)

52 no_gases = u.dim

53 no_cells = mesh.entity_counts[mesh.dim]

55 # order u_{1,1},..., u_{1,NDof},..., u_{N,1},..., u_{N,NDof}

56 vec = np.zeros(no_gases*fs.node_count , dtype=np.float64)

57 n_dof = fs.node_count

59 # cache some properties to allow direct numpy access rather than the

slower

60 # Python object access in the loop

61 cell_nodes = np.copy(fs.cell_nodes)

62 qr_weights = np.copy(qr.weights)

63 jacobians = np.copy(fs.mesh.mesh_jacobians)

64 cell_measures = np.copy(fs.mesh.cell_measures)

65 uold_values = np.copy(uold.values)

66 unew_values = np.copy(u.values)

68 if rhs is not None:

69 rhs_values = np.copy(rhs.values)

71 for c in range(no_cells):

72 jac = jacobians[c]

73 jac_min = np.linalg.inv(jac)

74 meas_j = cell_measures[c]

75 uold_qp = np.einsum("qi ,di ->dq", phi , uold_values [:, cell_nodes[c]])

76 unew_qp = np.einsum("qi ,di ->dq", phi , unew_values [:, cell_nodes[c]])

77 b_mat = assemble_bmat.assemble_mat_b_alternative(uold_qp , diff_m)

79 denom_term_old = (1 + np.einsum("dq->q", np.exp(uold_qp)))**( -1)

80 denom_term_new = (1 + np.einsum("dq->q", np.exp(unew_qp)))**( -1)

82 for d in range(no_gases):

83 vec[n_dof*d+cell_nodes[c]] -= meas_j*np.einsum(

84 "q,q,qi,q->i",

85 np.exp(uold_qp[d, :]), denom_term_old , phi , qr_weights)

87 vec[n_dof*d+cell_nodes[c]] += dt*meas_j*np.einsum(

88 "qd,di,ba ,qib ,ca ,qjc ,q->j",

89 b_mat[:, d, :], unew_values [:, cell_nodes[c]], jac_min ,

90 gradphi , jac_min , gradphi , qr_weights)

92 vec[n_dof*d+cell_nodes[c]] += meas_j*np.einsum(

93 "q,q,qi,q->i",

94 np.exp(unew_qp[d, :]), denom_term_new , phi , qr_weights)

96 if rhs is not None:

97 vec[n_dof*d+cell_nodes[c]] -= dt*meas_j*np.einsum(

98 "j,qj,qi,q->i", rhs_values[d, cell_nodes[c]], phi , phi ,

99 qr_weights)

101 return vec

103 @cython.boundscheck(False)

104 @cython.wraparound(False)

105 def maxwell_stefan_jacobian(

106 u, uold , double dt, np.ndarray[np.float64_t , ndim = 2] d_mat):

107 fs = u.function_space

A24



108 mesh = fs.mesh

109 qr = GaussQuadrature(mesh.cell , 4*fs.element.degree)

110 fel = fs.element

112 cdef int c, j, m, no_gases , n_dof , no_cells

113 cdef np.ndarray[np.float64_t , ndim = 2] jac_min , unew_qp , uold_qp , phi

115 cdef np.ndarray[np.uint32_t , ndim = 2] cell_nodes

116 cdef np.ndarray[np.float64_t , ndim = 3] b_mat , grad_phi , jacobians

117 cdef np.ndarray[np.float64_t , ndim = 1] qr_weights , cell_measures

118 cdef double meas

120 phi = fel.tabulate(qr.points)

121 gradphi = fel.tabulate(qr.points , grad=True)

123 no_gases = u.dim

124 n_dof = fs.node_count

125 no_cells = fs.mesh.entity_counts[fs.mesh.dim]

127 # cache some properties to allow direct numpy access rather than the

slower

128 # Python object access in the loop

129 cell_nodes = np.copy(fs.cell_nodes)

130 qr_weights = np.copy(qr.weights)

131 jacobians = np.copy(fs.mesh.mesh_jacobians)

132 cell_measures = np.copy(fs.mesh.cell_measures)

134 a_mat = sparse.lil_matrix(

135 (no_gases*n_dof , no_gases*n_dof), dtype=np.float64)

137 for c in range(no_cells):

138 jac_min = np.linalg.inv(jacobians[c])

139 meas = cell_measures[c]

140 unew_qp = np.einsum("qi ,di ->dq", phi , u.values[:, cell_nodes[c]])

141 uold_qp = np.einsum("qi ,di ->dq", phi , uold.values[:, cell_nodes[c]])

142 b_mat = assemble_bmat.assemble_mat_b_alternative(uold_qp , d_mat)

143 denom_term = (1 + np.einsum("dq ->q", np.exp(unew_qp)))**(-1)

144 for j in range(no_gases):

145 for m in range(no_gases):

146 a_mat[np.ix_(

147 n_dof*j+cell_nodes[c], n_dof*m+cell_nodes[c])] += \

148 dt*meas * np.einsum("q,ba,qkb ,da,qmd ,q->km", b_mat[:, j, m

],

149 jac_min , gradphi , jac_min , gradphi , qr_weights)

151 if m == j:

152 a_mat[

153 np.ix_(n_dof*j+cell_nodes[c],

154 n_dof*m+cell_nodes[c])] += meas* \

155 np.einsum(

156 "q,qi ,q,qj ,q->ji",

157 denom_term , phi ,

158 np.exp(unew_qp[m, :]), phi , qr_weights)

160 a_mat[np.ix_(

161 n_dof*j+cell_nodes[c], n_dof*m+cell_nodes[c])] -= \

162 meas*np.einsum(

163 "q,q,qi ,q,qj ,q->ji", denom_term **2,

164 np.exp(unew_qp[m, :]), phi ,

165 np.exp(unew_qp[j, :]), phi , qr_weights)
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167 return a_mat.tocsr ()

169 @cython.boundscheck(False)

170 @cython.wraparound(False)

171 def maxwell_stefan_jacobian_coo_matrix(

172 u, uold , double dt, np.ndarray[np.float64_t , ndim = 2] d_mat):

173 fs = u.function_space

174 mesh = fs.mesh

175 qr = GaussQuadrature(mesh.cell , 4*fs.element.degree)

176 fel = fs.element

178 cdef unsigned int cn, j, m, no_gases , n_dof , no_cells , no_cell_dofs

179 cdef np.ndarray[np.uint32_t , ndim = 2] cell_nodes

180 cdef np.ndarray[np.uint32_t , ndim = 1] row_array , col_array

181 cdef np.ndarray[np.float64_t , ndim = 3] b_mat , grad_phi , jacobians

182 cdef np.ndarray[np.float64_t , ndim = 2] jac_min , unew_qp , uold_qp , phi

183 cdef np.ndarray[np.float64_t , ndim = 1] qr_weights , cell_measures

184 cdef double meas

186 phi = fel.tabulate(qr.points)

187 gradphi = fel.tabulate(qr.points , grad=True)

189 no_gases = u.dim

190 n_dof = fs.node_count

191 no_cell_dofs = fel.node_count

192 no_cells = fs.mesh.entity_counts[fs.mesh.dim]

194 # deep copy some properties to allow direct numpy access rather than the

195 # slower Python object access in the loop

196 cell_nodes = fs.cell_nodes [:]

197 qr_weights = qr.weights [:]

198 jacobians = fs.mesh.mesh_jacobians [:]

199 cell_measures = fs.mesh.cell_measures [:]

201 no_coo_entries = (

202 no_cells*no_gases *(no_gases -1) +

203 (no_gases -1)*no_gases*no_cells)*no_cell_dofs **2

205 row_array = np.empty(no_coo_entries , dtype=np.uint32)

206 col_array = np.empty(no_coo_entries , dtype=np.uint32)

207 data = np.empty(no_coo_entries , dtype=np.float64)

209 for cn in range(no_cells):

210 jac_min = np.linalg.inv(jacobians[cn])

211 meas = cell_measures[cn]

212 unew_qp = np.einsum("qi ,di ->dq", phi , u.values[:, cell_nodes[cn]])

213 uold_qp = np.einsum("qi ,di ->dq", phi , uold.values[:, cell_nodes[cn]])

214 b_mat = assemble_bmat.assemble_mat_b_alternative(uold_qp , d_mat)

215 denom_term = (1+np.einsum("dq ->q", np.exp(unew_qp)))**(-1)

216 for j in range(no_gases):

217 for m in range(no_gases):

218 # use loop indexing as done in

219 # https :// stackoverflow.com/questions /6604502/how -do -i-use -the

-

220 # indices -of -nested -for -loops -to -generate -a-consecutive -list -

221 # of-n

222 cell_idx = (m+j*no_gases+cn*no_gases **2)*no_cell_dofs **2

223 if cell_idx+no_cell_dofs **2-1 >= no_coo_entries:

224 raise ValueError(
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225 "Cell idx {} too large , number of entries: {}".format(

226 cell_idx , no_coo_entries))

227 row_array[cell_idx:cell_idx+no_cell_dofs **2] = np.outer(

228 n_dof*j+cell_nodes[cn],

229 np.ones(no_cell_dofs , dtype=int)).reshape(no_cell_dofs **2)

230 col_array[cell_idx:cell_idx+no_cell_dofs **2] = np.tile(

231 n_dof*m+cell_nodes[cn], no_cell_dofs)

232 data[cell_idx:cell_idx+no_cell_dofs **2] = dt*meas*np.einsum(

233 "q,ba,qkb ,da,qmd ,q->km", b_mat[:, j, m],

234 jac_min , gradphi , jac_min , gradphi , qr_weights).reshape(

235 no_cell_dofs **2)

236 if m == j:

237 data[cell_idx:cell_idx+no_cell_dofs **2] += meas*np.einsum(

238 "q,qi ,q,qj ,q->ji",

239 denom_term , phi , np.exp(unew_qp[m, :]),

240 phi , qr_weights).reshape(no_cell_dofs **2)

242 data[cell_idx:cell_idx+no_cell_dofs **2] -= meas*np.einsum(

243 "q,q,qi,q,qj,q->ji", denom_term **2,

244 np.exp(unew_qp[m, :]), phi , np.exp(unew_qp[j, :]),

245 phi , qr_weights).reshape(no_cell_dofs **2)

247 # convert to a CSR matrix

248 jac_mat = sparse.coo_matrix(

249 (data , (row_array , col_array)),

250 shape=( no_gases*n_dof , no_gases*n_dof)).tocsr()

251 return jac_mat

254 @cython.boundscheck(False)

255 @cython.wraparound(False)

256 def maxwell_stefan_jacobian_coo_matrix_2(u, uold , double dt , d_mat):

257 fs = u.function_space

258 mesh = fs.mesh

259 qr = GaussQuadrature(mesh.cell , 4*fs.element.degree)

260 fel = fs.element

262 cdef unsigned int c, j, m, no_gases , n_dof , no_cells , no_cell_dofs

263 cdef np.ndarray[np.float64_t , ndim = 2] jac_min , unew_qp , uold_qp , phi

265 cdef np.ndarray[np.uint32_t , ndim = 2] cell_nodes

266 cdef np.ndarray[np.float64_t , ndim = 3] b_mat , grad_phi , jacobians

267 cdef np.ndarray[np.float64_t , ndim = 1] qr_weights , cell_measures

268 cdef double meas

270 phi = fel.tabulate(qr.points)

271 gradphi = fel.tabulate(qr.points , grad=True)

273 no_gases = u.dim

274 n_dof = fs.node_count

275 no_cell_dofs = fel.node_count

276 no_cells = fs.mesh.entity_counts[fs.mesh.dim]

278 # cache some properties to allow direct numpy access rather than the

slower

279 # Python object access in the loop

280 cell_nodes = np.copy(fs.cell_nodes)

281 qr_weights = np.copy(qr.weights)

282 jacobians = np.copy(fs.mesh.mesh_jacobians)

283 cell_measures = np.copy(fs.mesh.cell_measures)
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285 row_array = []

286 col_array = []

287 data = []

289 for c in range(no_cells):

290 jac_min = np.linalg.inv(jacobians[c])

291 meas = cell_measures[c]

292 unew_qp = np.einsum("qi ,di ->dq", phi , u.values[:, cell_nodes[c]])

293 uold_qp = np.einsum("qi ,di ->dq", phi , uold.values[:, cell_nodes[c]])

294 b_mat = assemble_bmat.assemble_mat_b_alternative(uold_qp , d_mat)

295 denom_term = (1 + np.einsum("dq ->q", np.exp(unew_qp)))**(-1)

296 for j in range(no_gases):

297 for m in range(no_gases):

298 row_array.extend(np.outer(

299 n_dof*j+cell_nodes[c],

300 np.ones(no_cell_dofs , dtype=int)).flatten ())

301 col_array.extend(np.tile(

302 n_dof*m+cell_nodes[c],

303 no_cell_dofs))

304 data.extend(

305 dt*meas*np.einsum("q,ba,qkb ,da,qmd ,q->km", b_mat[:, j, m],

306 jac_min , gradphi , jac_min , gradphi , qr_weights).

reshape(

307 no_cell_dofs **2))

308 if m == j:

309 row_array.extend(np.outer(

310 n_dof*j+cell_nodes[c],

311 np.ones(no_cell_dofs , dtype=int)).flatten ())

312 col_array.extend(np.tile(

313 n_dof*m+cell_nodes[c],

314 no_cell_dofs))

315 data.extend(

316 meas*np.einsum(

317 "q,qi ,q,qj ,q->ji",

318 denom_term , phi ,

319 np.exp(unew_qp[m, :]),

320 phi , qr_weights).reshape(no_cell_dofs **2))

321 row_array.extend(np.outer(

322 n_dof*j+cell_nodes[c],

323 np.ones(no_cell_dofs , dtype=int)).flatten ())

324 col_array.extend(np.tile(

325 n_dof*m+cell_nodes[c],

326 no_cell_dofs))

327 data.extend(

328 -meas*np.einsum(

329 "q,q,qi ,q,qj ,q->ji", denom_term **2,

330 np.exp(unew_qp[m, :]), phi ,

331 np.exp(unew_qp[j, :]),

332 phi , qr_weights).reshape(no_cell_dofs **2))

334 # convert to a CSR matrix

335 jac_mat = sparse.coo_matrix(

336 (data , (row_array , col_array)),

337 shape=( no_gases*n_dof , no_gases*n_dof)).tocsr()

338 return jac_mat

Listing 5: Assemblation of the Matrices

1 import numpy as np

2 import scipy.sparse as sparse
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3 from maxwell_stefan.assemble_bmat_legacy import assemble_mat_b_alternative

4 from fe_core.quadrature import GaussQuadrature

7 def maxwell_stefan_function(u, uold , dt , diff_m , rhs=None):

8 """

10 :param Function u: The function object where the data of the new timestep

11 shall be stored.

12 :param Function uold: The function from the old timestep.

13 :param float dt: The timestep in seconds.

14 :param diff_m: The Matrix with the binary diffusion Coefficients.

15 :param Function rhs: A numpy backend function which can be evaluated at

16 numpy arrays

17 :return:

18 """

19 fs = u.function_space

20 mesh = fs.mesh

22 qr = GaussQuadrature(mesh.cell , 2*fs.element.degree)

23 fel = fs.element

25 phi = fel.tabulate(qr.points)

26 gradphi = fel.tabulate(qr.points , grad=True)

28 no_gases = u.dim

29 no_cells = mesh.entity_counts[mesh.dim]

31 # order u_{1,1},..., u_{1,NDof},..., u_{N,1},..., u_{N,NDof}

32 vec = np.zeros(no_gases*fs.node_count , dtype=np.float64)

33 n_dof = fs.node_count

35 # cache some properties to allow direct numpy access rather than the

slower

36 # Python object access in the loop

37 cell_nodes = np.copy(fs.cell_nodes)

38 qr_weights = np.copy(qr.weights)

39 jacobians = np.copy(fs.mesh.mesh_jacobians)

40 cell_measures = np.copy(fs.mesh.cell_measures)

41 uold_values = np.copy(uold.values)

42 unew_values = np.copy(u.values)

44 if rhs is not None:

45 rhs_values = np.copy(rhs.values)

47 for c in range(no_cells):

48 jac = jacobians[c]

49 jac_min = np.linalg.inv(jac)

50 meas_j = cell_measures[c]

51 uold_qp = np.einsum("qi ,di ->dq", phi , uold_values [:, cell_nodes[c]])

52 unew_qp = np.einsum("qi ,di ->dq", phi , unew_values [:, cell_nodes[c]])

53 b_mat = assemble_mat_b_alternative(uold_qp , diff_m)

55 denom_term_old = (1 + np.einsum("dq->q", np.exp(uold_qp)))**( -1)

56 denom_term_new = (1 + np.einsum("dq->q", np.exp(unew_qp)))**( -1)

58 for d in range(no_gases):

59 vec[n_dof*d+cell_nodes[c]] -= meas_j*np.einsum(

60 "q,q,qi,q->i",

61 np.exp(uold_qp[d, :]), denom_term_old , phi , qr_weights)
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63 vec[n_dof*d+cell_nodes[c]] += dt*meas_j*np.einsum(

64 "qd,di,ba ,qib ,ca ,qjc ,q->j",

65 b_mat[:, d, :], unew_values [:, cell_nodes[c]], jac_min ,

66 gradphi , jac_min , gradphi , qr_weights)

68 vec[n_dof*d+cell_nodes[c]] += meas_j*np.einsum(

69 "q,q,qi,q->i",

70 np.exp(unew_qp[d, :]), denom_term_new , phi , qr_weights)

72 if rhs is not None:

73 vec[n_dof*d+cell_nodes[c]] -= dt*meas_j*np.einsum(

74 "j,qj,qi,q->i", rhs_values[d, cell_nodes[c]], phi , phi ,

75 qr_weights)

77 return vec

80 def maxwell_stefan_jacobian(u, uold , dt , d_mat):

81 fs = u.function_space

82 mesh = fs.mesh

83 qr = GaussQuadrature(mesh.cell , 4*fs.element.degree)

84 fel = fs.element

86 phi = fel.tabulate(qr.points)

87 gradphi = fel.tabulate(qr.points , grad=True)

89 no_gases = u.dim

90 n_dof = fs.node_count

91 no_cells = fs.mesh.entity_counts[fs.mesh.dim]

93 # cache some properties to allow direct numpy access rather than the

slower

94 # Python object access in the loop

95 cell_nodes = np.copy(fs.cell_nodes)

96 qr_weights = np.copy(qr.weights)

97 jacobians = np.copy(fs.mesh.mesh_jacobians)

98 cell_measures = np.copy(fs.mesh.cell_measures)

100 a_mat = sparse.lil_matrix(

101 (no_gases*n_dof , no_gases*n_dof), dtype=np.float64)

103 for c in range(no_cells):

104 jac_min = np.linalg.inv(jacobians[c])

105 meas = cell_measures[c]

106 unew_qp = np.einsum("qi ,di ->dq", phi , u.values[:, cell_nodes[c]])

107 uold_qp = np.einsum("qi ,di ->dq", phi , uold.values[:, cell_nodes[c]])

108 b_mat = assemble_mat_b_alternative(uold_qp , d_mat)

109 denom_term = (1 + np.einsum("dq ->q", np.exp(unew_qp)))**(-1)

110 for j in range(no_gases):

111 for m in range(no_gases):

112 a_mat[np.ix_(

113 n_dof*j+cell_nodes[c], n_dof*m+cell_nodes[c])] += \

114 dt*meas * np.einsum("q,ba,qkb ,da,qmd ,q->km", b_mat[:, j, m

],

115 jac_min , gradphi , jac_min , gradphi , qr_weights)

117 if m == j:

118 a_mat[

119 np.ix_(n_dof*j+cell_nodes[c],

A30



120 n_dof*m+cell_nodes[c])] += meas* \

121 np.einsum(

122 "q,qi ,q,qj ,q->ji",

123 denom_term , phi ,

124 np.exp(unew_qp[m, :]), phi , qr_weights)

126 a_mat[np.ix_(

127 n_dof*j+cell_nodes[c], n_dof*m+cell_nodes[c])] -= \

128 meas*np.einsum(

129 "q,q,qi ,q,qj ,q->ji", denom_term **2,

130 np.exp(unew_qp[m, :]), phi ,

131 np.exp(unew_qp[j, :]), phi , qr_weights)

133 return a_mat

136 def maxwell_stefan_jacobian_coo_matrix(u, uold , dt , d_mat):

137 fs = u.function_space

138 mesh = fs.mesh

139 qr = GaussQuadrature(mesh.cell , 4*fs.element.degree)

140 fel = fs.element

142 phi = fel.tabulate(qr.points)

143 gradphi = fel.tabulate(qr.points , grad=True)

145 no_gases = u.dim

146 n_dof = fs.node_count

147 no_cell_dofs = fel.node_count

148 no_cells = fs.mesh.entity_counts[fs.mesh.dim]

150 # deep copy some properties to allow direct numpy access rather than the

151 # slower Python object access in the loop

152 cell_nodes = fs.cell_nodes [:]

153 qr_weights = qr.weights [:]

154 jacobians = fs.mesh.mesh_jacobians [:]

155 cell_measures = fs.mesh.cell_measures [:]

156 no_coo_entries = (

157 no_cells*no_gases *(no_gases -1) +

158 (no_gases -1)*no_gases*no_cells)*no_cell_dofs **2

160 row_array = np.empty(no_coo_entries , dtype=np.uint32)

161 col_array = np.empty(no_coo_entries , dtype=np.uint32)

162 data = np.empty(no_coo_entries , dtype=np.float64)

164 for cn in range(no_cells):

165 jac_min = np.linalg.inv(jacobians[cn])

166 meas = cell_measures[cn]

167 unew_qp = np.einsum("qi ,di ->dq", phi , u.values[:, cell_nodes[cn]])

168 uold_qp = np.einsum("qi ,di ->dq", phi , uold.values[:, cell_nodes[cn]])

169 b_mat = assemble_mat_b_alternative(uold_qp , d_mat)

170 denom_term = (1+np.einsum("dq ->q", np.exp(unew_qp)))**(-1)

171 for j in range(no_gases):

172 for m in range(no_gases):

173 # use loop indexing as done in

174 # https :// stackoverflow.com/questions /6604502/how -do -i-use -the

-

175 # indices -of -nested -for -loops -to -generate -a-consecutive -list -

176 # of-n

177 cell_idx = (m+j*no_gases+cn*no_gases **2)*no_cell_dofs **2

178 if cell_idx+no_cell_dofs **2-1 >= no_coo_entries:
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179 raise ValueError(

180 "Cell idx {} too large , number of entries: {}".format(

181 cell_idx , no_coo_entries))

182 row_array[cell_idx:cell_idx+no_cell_dofs **2] = np.outer(

183 n_dof*j+cell_nodes[cn],

184 np.ones(no_cell_dofs , dtype=int)).reshape(no_cell_dofs **2)

185 col_array[cell_idx:cell_idx+no_cell_dofs **2] = np.tile(

186 n_dof*m+cell_nodes[cn], no_cell_dofs)

187 data[cell_idx:cell_idx+no_cell_dofs **2] = dt*meas*np.einsum(

188 "q,ba,qkb ,da,qmd ,q->km", b_mat[:, j, m],

189 jac_min , gradphi , jac_min , gradphi , qr_weights).reshape(

190 no_cell_dofs **2)

191 if m == j:

192 data[cell_idx:cell_idx+no_cell_dofs **2] += meas*np.einsum(

193 "q,qi ,q,qj ,q->ji",

194 denom_term , phi , np.exp(unew_qp[m, :]),

195 phi , qr_weights).reshape(no_cell_dofs **2)

197 data[cell_idx:cell_idx+no_cell_dofs **2] -= meas*np.einsum(

198 "q,q,qi,q,qj,q->ji", denom_term **2,

199 np.exp(unew_qp[m, :]), phi , np.exp(unew_qp[j, :]),

200 phi , qr_weights).reshape(no_cell_dofs **2)

202 # convert to a CSR matrix

203 jac_mat = sparse.coo_matrix(

204 (data , (row_array , col_array)),

205 shape=( no_gases*n_dof , no_gases*n_dof)).tocsr()

206 return jac_mat

209 def maxwell_stefan_jacobian_coo_matrix_2(u, uold , dt , d_mat):

210 fs = u.function_space

211 mesh = fs.mesh

212 qr = GaussQuadrature(mesh.cell , 4*fs.element.degree)

213 fel = fs.element

215 phi = fel.tabulate(qr.points)

216 gradphi = fel.tabulate(qr.points , grad=True)

218 no_gases = u.dim

219 n_dof = fs.node_count

220 no_cell_dofs = fel.node_count

221 no_cells = fs.mesh.entity_counts[fs.mesh.dim]

223 # cache some properties to allow direct numpy access rather than the

slower

224 # Python object access in the loop

225 cell_nodes = np.copy(fs.cell_nodes)

226 qr_weights = np.copy(qr.weights)

227 jacobians = np.copy(fs.mesh.mesh_jacobians)

228 cell_measures = np.copy(fs.mesh.cell_measures)

230 row_array = []

231 col_array = []

232 data = []

234 for cn in range(no_cells):

235 jac_min = np.linalg.inv(jacobians[cn])

236 meas = cell_measures[cn]

237 unew_qp = np.einsum("qi ,di ->dq", phi , u.values[:, cell_nodes[cn]])
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238 uold_qp = np.einsum("qi ,di ->dq", phi , uold.values[:, cell_nodes[cn]])

239 b_mat = assemble_mat_b_alternative(uold_qp , d_mat)

240 denom_term = (1 + np.einsum("dq ->q", np.exp(unew_qp)))**(-1)

241 for j in range(no_gases):

242 for m in range(no_gases):

243 row_array.extend(np.outer(

244 n_dof*j+cell_nodes[cn],

245 np.ones(no_cell_dofs , dtype=int)).flatten ())

246 col_array.extend(np.tile(

247 n_dof*m+cell_nodes[cn],

248 no_cell_dofs))

249 data.extend(

250 dt*meas*np.einsum(

251 "q,ba ,qkb ,da ,qmd ,q->km", b_mat[:, j, m],

252 jac_min , gradphi , jac_min , gradphi , qr_weights).

reshape(

253 no_cell_dofs **2))

254 if m == j:

255 data[-no_cell_dofs **2:] += meas*np.einsum(

256 "q,qi ,q,qj ,q->ji",

257 denom_term , phi ,

258 np.exp(unew_qp[m, :]),

259 phi , qr_weights).reshape(no_cell_dofs **2)

261 data[-no_cell_dofs **2:] -= meas*np.einsum(

262 "q,q,qi ,q,qj ,q->ji", denom_term **2,

263 np.exp(unew_qp[m, :]), phi ,

264 np.exp(unew_qp[j, :]),

265 phi , qr_weights).reshape(no_cell_dofs **2)

267 # convert to a CSR matrix

268 jac_mat = sparse.coo_matrix(

269 (data , (row_array , col_array)),

270 shape=( no_gases*n_dof , no_gases*n_dof)).tocsr()

271 return jac_mat
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[38] Jüngel, Ansgar: Nichtlineare partielle Differentialgleichungen (2016). Lecture notes (in
German), online available at http://www.asc.tuwien.ac.at/~juengel/scripts/nPDE.

pdf
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[60] Schöberl, Joachim: Numerical Methods for Partial Differential Equations (2009). Lecture
notes, online available at http://www.asc.tuwien.ac.at/~schoeberl/wiki/lva/notes/
numpde.pdf

[61] Serre, Denis: Matrices : theory and applications. Graduate texts in mathematics. New
York, NY: Springer (2002). ISBN 0387954600

[62] Sherman, Jack and Morrison, Winifred J.: Adjustment of an Inverse Matrix Corre-
sponding to a Change in One Element of a Given Matrix. Ann. Math. Statist., vol. 21,
no. 1:(1950), pp. 124–127. URL http://dx.doi.org/10.1214/aoms/1177729893

[63] Smith, Kurt W.: Cython. Sebastopol, California: O’Reilly Media. ISBN 1-4919-0176-4
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