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Abstract

Several authors have proposed and analyzed numerical methods for fractional differential oper-
ators, in particular Fourier Galerkin schemes and Caffarelli-Silvestre extensions. In this thesis
we consider a different approach. By means of a reduced basis method, the desired operator is
projected to a low dimensional space Vr, where the fractional power can be directly evaluated
via the eigen-system. The optimal choice of Vr is provided by the so called Zolotarëv points, en-
suring exponential convergence. Numerical experiments evaluating the operator and the inverse
operator confirm the analysis.

The time-dependent Fractional Cahn-Hilliard Equation (FCHE) is examined for further tests.
By a splitting method, the non-linear operator is decoupled from the regular Laplacian, such that
the linear parabolic equation is solved exactly on the low dimensional reduced space. Different
choices of the fractional power s are discussed and tested.
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1 Introduction
Numerical simulation of coarsening dynamics is a subject of great interest in computational
material science. Phenomena of this kind can be observed in both nature and technology.
The behavior of a binary alloy can be modeled by the so-called Allen-Cahn and Cahn–Hilliard
equation. In this thesis a generalization of those two models is considered, giving rise to the
Fractional Cahn-Hilliard Equation

∂u

∂t
(x, t) + (−∆)s(−ε2∆u(x, t) + f(u(x, t))) = 0.

Problems evolving from these models are complex and can not be solved analytically in general.
Numerical methods have to be installed. To this extent we aim to establish a numerically appeal-
ing scheme, such that, in addition to the widely common approaches, efficient implementations
for fractional diffusion operators are provided.

Outline of the thesis

In the beginning of this thesis the general framework of intermediate spaces and fractional
derivatives is introduced. We consider one special application of interest in terms of the Frac-
tional Cahn-Hilliard Equation, naturally arising from the Allen-Cahn and Cahn-Hilliard model.
A coarse overview with respect to its physical derivation in combination with some standard
analysis results is provided. We further sketch some present implementation techniques in con-
text of the fractional Laplacian.

The third chapter deals with two different approaches of interpolation theory, Banach and
Hilbert space interpolation. We provide both computationally and theoretically convenient
settings for the further course of action. Equivalence of those two methods appears to be the
main result of this section.

Subsequent, some standard techniques from calculus of variation are applied, giving the K-
functional an applicable form in order to make evaluations of interpolation norms possible.
Due to extensive computational costs, a reduced basis method is introduced, giving rise to the
reduced basis norm. A feasible choice of the reduced space and its efficient implementation is
discussed.

In the fifth chapter the connection between interpolation norms and their associated fractional
operators is deployed. Methods for inverse operator actions are installed. Moreover, we study
a first numerical example in terms of the fractional Poisson equation.

The sixth chapter deals with the involved analysis. An optimal choice of the reduced basis
is elaborated, such that exponential convergence rates for the error in the reduced basis norm
can be confirmed. Convergence for the reduced basis operator action is naturally obtained.
Numerical experiments affirm the analysis.

We finally dedicate our attention to the implementation of the Fractional Cahn-Hilliard Equa-
tion itself. A splitting method is installed. The resulting linear parabolic equation is projected
to the reduced space where its exact solution can be cheaply computed by means of the matrix
exponential function. Coarsening dynamics of FCHE models are studied for several fractional
powers.
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Implementation

All numerical examples and algorithms where implemented within the Python interface NGS-Py
of the open source software packages Netgen and NGSolve1, see [14] and [15].

Notation

Throughout this thesis we agree on the following notation:

〈·, ·〉V scalar product on the Hilbert space V
dim(V ) dimension of V

C∞per((a, b)
2) {u ∈ C∞((a, b)2) |u periodic on (a, b)2}

[...] matrix in column notation
[{...}] linear span of the set {...}
Vh H1-conforming finite element space of uniform mesh-size h
Vr reduced space of dimension r + 1
Vr reduced basis matrix of dimension (N + 1)× (r + 1)
r reduced basis dimension downsized by 1
N finite element space dimension downsized by 1
Ir (r + 1)× (r + 1) unit matrix
I (N + 1)× (N + 1) unit matrix
u coefficient vector of u ∈ Vh
u coefficient vector of u ∈ Vr
M mass matrix
A finite element matrix arising from the H1-scalar product

Â finite element matrix arising from the gradient bilinear form
‖ · ‖M by M induced norm

`2

{
x : N→ R

∣∣∣∣ ∑
k∈N
|x(i)|2 <∞

}
v∗ minimizer of the K-functional
v∗r minimizer of the reduced basis K-functional

v∗(tj) snapshot solution of the shifted Laplace problem with respect to tj
Πm space of polynomials on R up to degree m
K̄, K̄ ′ elliptic integrals
λmin λmin(M−1A)
λmax λmax(M−1A)

I refers to the interval [
√
λ−1
max, 1]

σ̂ refers to the interval [1,
√
λmax]

By a 4 b we mean that there exists a constant c ∈ R+ independent of a, b and r, such that
a ≤ cb.

1https://ngsolve.org/
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2 The Fractional Cahn-Hilliard Equation
The goal of this chapter is to elaborate the most common framework of fractional derivatives and
interpolation spaces in order to introduce the Fractional Cahn-Hilliard Equation. We further
establish the Fourier Galerkin method, serving as prototype for the approach performed in
subsequent chapters.

2.1 The fractional framework

Successive argumentations follow the outline of [1]. Consider an orthonormal basis (zk)k∈N of
L2(Ω) with Ω = (0, 2π)2, such that

−∆zk = µ2
kzk (2.1)

is satisfied in a weak sense with homogeneous Neumann boundary conditions. We apply spectral
theory with respect to (zk)k∈N in order to establish the fractional framework. Each u ∈ L2(Ω)
satisfies the expansion

u =
∑
k∈N

ukzk uk := 〈zk, u〉L2 ,

justifying the introduction of fractional spaces

Hs(Ω) :=C∞(Ω)
‖·‖Hs

s ∈ (0, 1), (2.2)

whereas the closure is taken with respect to the interpolation norm

‖u‖2Hs =
∑
k∈N

(1 + µ2
k)
su2
k.

Motivated by the relation

L2(Ω) ⊆ Hs(Ω) ⊆ H1(Ω) s ∈ (0, 1),

Hs(Ω) can be regarded as intermediate space between H0(Ω) = L2(Ω) and H1(Ω).

Remark 2.1. Along with periodic boundary conditions in (2.1), the choice of s ∈ (1, 2) for

Hs
per(Ω) :=C∞per(Ω)

‖·‖Hs

indeed gives rise to an intermediate space between the periodic Sobolev spaces H1
per(Ω) and

H2
per(Ω). We therefore allow s ∈ (1, 2) in this case, leading to an extrapolation space

H2
per(Ω) ⊆ H1+α

per (Ω) ⊆ H1
per(Ω)

for all α ∈ (0, 1).
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2.1.1 Fractional Laplacian

Identity (2.1) suggests the following definition.

Definition 2.2. For all s ∈ (0, 1) and u ∈ Hs(Ω) the fractional Laplace operator is defined as

(−∆)su =
∑
k∈N

µ2s
k ukzk.

One immediately observes the following property.

Lemma 2.3. Let r, s ∈ (0, 1) and u ∈ Hr+s(Ω). Then

(−∆)r+su = (−∆)r(−∆)su = (−∆)s(−∆)ru.

Proof. According to definition 2.2 there holds

(−∆)r(−∆)su = (−∆)r

(∑
k∈N

µ2s
k ukzk

)
=
∑
k∈N

µ2s
k uk(−∆)rzk

=
∑
k∈N

µ
2(r+s)
k ukzk = (−∆)r+su,

which is why the first identity holds. The second one follows analogously. �

Another important concept required for posing weak formulations of fractional Cahn-Hilliard
models is partial integration for fractional derivatives.

Lemma 2.4 (Fractional integration by parts). Let r, s ∈ (0, 1) and u, v ∈ Hr+s(Ω). Then there
holds

〈(−∆)r+su, v〉L2 = 〈(−∆)ru, (−∆)sv〉L2 .

Proof. Since

(−∆)r+su =
∑
k∈N

µ
2(r+s)
k ukzk

it follows by spectral decomposition

〈(−∆)r+su, v〉L2 = 〈
∑
k∈N

µ
2(r+s)
k ukzk,

∑
k∈N

vkzk〉L2

=
∑
k∈N

µ
2(r+s)
k ukvk

=
∑
k∈N

(
µ2r
k uk

) (
µ2s
k vk

)
= 〈(−∆)ru, (−∆)sv〉L2 .

�

Considerations from above justify the further course of action.

4



2.2 Derivation of the Fractional Cahn-Hilliard Equation

In the following section a physical derivation of the Fractional Cahn-Hilliard Equation is pro-
vided. We proceed similarly to [1], [8] and [19].

Multiphase flows in fluid dynamics deal with the simultaneous flow of an alloy which consist
either of the same material in different states (gaseous, liquid or solid) or of several materials
with different chemical properties but in the same state. We will examine the latter with binary
alloys in a bounded domain Ω only, such as phase separations of oil droplets in water.

To this extent let u(x, t) denote the concentration of one of the two components, a so called
order parameter. The purpose of such parameters is to distinguish between different phases,
i.e. spatial areas where the corresponding order parameter (physical or chemical quantity) is
constant. u might be expressed in units of mol/m3. Under the assumption of mass preservation
the opposite concentration is automatically determined as well.

Suppose that there is a pair of values (û1, û2) ∈ R2 and a pair of phases referred to as A and
B, such that the mixture can only be in equilibrium if and only if A has concentration û1 and
B concentration û2. This issue can be illustrated by a non-linear function F of bistable type,
admitting two local minima in û1 and û2 with

F (û1) = F (û2) = F ′(û1) = F ′(û2) = 0.

A common choice of F is given by

F (y) =
1

4
(1− y2)2,

such that û1 = −1 and û2 = 1. It is further assumed that the initial state u(x, 0) = u0(x) with
u0(Ω) ⊆ (û1, û2) provides a uniform, unstable mixture of the components, resulting in the phase
separation in which the alloy aims to evolve into phase A with concentration û1 and phase B
with concentration û2. Mathematically spoken, this corresponds to the value of a functional

Ê(u(x, t)) =

∫
Ω
F (u(x, t)) dx,

decreasing in time, finally reaching a minimum. One widely accepted approach is to deal with
the slightly modified functional

E(u(x, t)) =

∫
Ω
F (u(x, t)) +

ε2

2
|∇u(x, t)|2 dx

with a small parameter ε > 0. From a physical point of view, this corresponds to the common
assumption that materials have the tendency to evolve as uniform as possible. The penalty
term then restrains large jumps of the gradient.

It is reasonable to further assume that the amount of each component remains constant
throughout the evolution, resulting in the constraint∫

Ω
u(x, t) dx = const. (2.3)

The goal is now to develop a law of evolution for u, such that the energy E(u) decreases in time
while (2.3) holds. To this extent we consider the gradient of E and hope that mass preservation
is obtained.
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Let V be a Hilbert space and F : V −→ R, then the gradient ∇V F of F at point u ∈ V is
defined as the Riesz-representative of its first variation, i.e.

∀v ∈ V : 〈∇V F(u), v〉V =
d

dε
F(u+ εv)

∣∣∣∣
ε=0

.

The proportionality

∂u

∂t
= −∇VE(u) (2.4)

ensures decay of energy by means of the chain rule

∂

∂t
E(u(x, t)) = 〈∇VE,

∂u

∂t
〉V = −‖∇VE‖2V ≤ 0.

We pose the question which choice of V guarantees that (2.3) holds. Direct computations reveal
that for V = L2(Ω)

d

dε
E(u+ εv)

∣∣∣∣
ε=0

= 〈ε2∇u,∇v〉L2 + 〈F ′(u), v〉L2 = 〈−ε2∆u+ F ′(u), v〉L2 .

Together with (2.4) and f(u) := F ′(u) = u3 − u this results in the Allen-Cahn equation

∂u

∂t
+ (−ε2∆u+ f(u)) = 0 in Ω.

Formal computations confirm that the Allen-Cahn equation fails to preserve mass. This prob-
lem can be overwhelmed by the choice V = H−1(Ω). Again, the associated gradient can be
determined

∇H−1E(u) = (−∆)(−ε2∆u+ f(u)),

adding up to the Cahn-Hilliard equation

∂u

∂t
+ (−∆)(−ε2∆u+ f(u)) = 0 in Ω,

which does indeed satisfy (2.3), as shown in Lemma 2.5. To some extent the choice of H−1

might occur arbitrary. Therefore we extend the concept from above for V = H−s(Ω), s ∈ [0, 1],
yielding

∇H−sE = (−∆)s(−ε2∆u+ f(u)),

to finally obtain the Fractional Cahn-Hilliard Equation (FCHE)

∂u

∂t
+ (−∆)s(−ε2∆u+ f(u)) = 0 in Ω.

This provides the foundation to regard the following problem. For s ∈ [0, 1] and Ω = (0, 2π)2

we aim to find a smooth function u(x, t) on Ω× (0, T ], such that

∀(x, t) ∈ Ω× (0, T ]:
∂u

∂t
(x, t) + (−∆)s(−ε2∆u(x, t) + f(u(x, t))) = 0, (2.5a)

∀t ∈ (0, T ]: u(·, t) is 2π-periodic, (2.5b)

∀x ∈ Ω: u(x, 0) = u0(x), (2.5c)
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whereas f(u) = F ′(u) = u3 − u. The weak formulation is derived as usual. Multiplying (2.5a)
by a test function, integrating over the domain Ω and integration by parts lead to the familiar
variational setting: Find u ∈ L2([0, T ], H1+s

per (Ω)), such that for all t ∈ (0, T ]

∀v ∈ H1+s
per (Ω) : 〈∂u

∂t
, v〉L2 + 〈ε2(−∆)

1+s
2 u, (−∆)

1+s
2 v〉L2 + 〈f(u), (−∆)sv〉L2 = 0, (2.6)

with initial condition (2.5c). The choice of s = 0 corresponds to the weak formulation of the
classical Allen-Cahn equation whereas s = 1 refers to the Cahn-Hilliard equation.

2.3 Properties of the Fractional Cahn-Hilliard Equation

The question arises how the choice of s impacts certain properties of the equation. Especially,
we are interested in mass conservation and the non-increasing behavior of the energy E(u). As
shown below, both properties hold for all s ∈ (0, 1], such that the FCHE can be regarded as
pendent to the Cahn-Hilliard rather than Allen-Cahn equation, no matter how small the choice
of s is. We record:

Lemma 2.5. For all s ∈ (0, 1] the Fractional Cahn-Hilliard Equation is mass preserving.

Proof. In the following we show that

∀t ≥ 0:

∫
Ω
u(x, t) dx =

∫
Ω
u0(x) dx = const. (2.7)

holds for the weak solution of FCHE. Since every classical solution trivially satisfies (2.6), this
proofs the claim. Taking v ≡ 1 ∈ H1+s(Ω) as test function gives

〈∂u
∂t
, 1〉L2 = 0.

It follows

∂

∂t

∫
Ω
u(x, t) dx =

∫
Ω

∂u

∂t
(x, t) dx = 〈∂u

∂t
, 1〉L2 = 0.

We conclude that (2.7) is valid. �

Lemma 2.6. For all s ∈ [0, 1] the solution u of (2.5a) - (2.5c) satisfies

∀t ≥ 0 : E(u(x, t)) ≤ E(u0(x)) on Ω.

Proof. Every classical solution also solves the weak formulation. We obtain for all x ∈ Ω

d

dt
E(x, t) =

d

dt

∫
Ω
F (u(x, t)) +

ε2

2
|∇u(x, t)|2 dx

= 〈F ′(u(x, t)),
∂u

∂t
(x, t)〉L2 + 〈ε2∇u(x, t),∇∂u

∂t
(x, t)〉L2

= 〈f(u(x, t)),
∂u

∂t
(x, t)〉L2 + 〈ε2(−∆)u(x, t),

∂u

∂t
(x, t)〉L2

= 〈ε2(−∆)u(x, t) + f(u(x, t)),
∂u

∂t
(x, t)〉L2

= −〈ε2(−∆)u(x, t) + f(u(x, t)), (−∆)s(ε2(−∆)u(x, t) + f(u(x, t)))〉L2 .

Fractional integration by parts yields

d

dt
E(x, t) = −‖(−∆)

s
2 (ε2(−∆)u(x, t) + f(u(x, t)))‖2L2

≤ 0,

resulting in the claimed non-increasing property. �
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2.4 Computational state of the art

Several authors have proposed and analyzed numerical methods to implement fractional differ-
ential operators in order to solve equations of type (2.6). A widely common approach is given by
the Fourier-spectral Galerkin scheme which, among many others, has been discussed in [1], [17]
and [20]. Its semi-discretization in space for the weak formulation of FCHE can be formulated
in the following way: Find u ∈ VN = [{eikx1+ilx2

∣∣ k, l = −N, ..., N}], such that

∀t ∈ (0, T ] ∀v ∈ VN : 〈∂u
∂t
, v〉L2 + 〈ε2(−∆)

1+s
2 u, (−∆)

1+s
2 v〉L2 + 〈f(u), (−∆)sv〉L2 = 0.

Due to the choice of VN a decoupled system is derived. The fractional Laplace can be applied
according to its definition, leaving only derivatives in time but not in space.

A different concept is regarded in [2] and [6], where the fractional Laplace operator is imple-
mented by means of a harmonic extension problem. Consider the smooth and bounded solution
u of

∀x ∈ Rn: u(x, 0) = f(x),

∀x ∈ Rn, y > 0 : ∆u(x, y) = 0.

The square root of the Laplacian (−∆)
1
2 can then be identified with the operator

T : f 7→ −∂u
∂y

(x, 0).

A generalization for arbitrary (fractional) powers can be performed. The approach illustrated in
this thesis is a different one, interpreting fractional operators in context of Banach and Hilbert
space interpolation.
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3 Interpolation spaces
Interpolation spaces provide several applications in the field of PDEs, especially in context of
trace spaces and fractional derivatives. There are numerous ways to define and analyze those
kinds of intermediate spaces. In this chapter we examine two approaches in detail. One refers
to the classical Hilbert space interpolation based on expansions according to the eigen-system.
The other one is also applicable for Banach spaces, known as real method of interpolation or
Peetre’s method , see [4], [5] and [12].

3.1 Hilbert space interpolation

In section 2.1 we presumed the existence of an orthonormal basis of eigenfunctions satisfying
(2.1) in order to construct intermediate spaces Hs(Ω) of L2(Ω) and H1(Ω). For arbitrary Hilbert
spaces one works with some well known results from the field of functional analysis.

Theorem 3.1. Let (V0, 〈·, ·〉0), (V1, 〈·, ·〉1) be Hilbert spaces. The operator K : V1 −→ V0 is
compact if and only if there exists an orthonormal basis (zk)k∈N of V1 and a sequence (µk)k∈N

of positive real numbers with µk
k→∞−−−→ 0, such that for all k, l ∈ N

〈Kzk,Kzl〉0 = µ2
kδk,l.

Corollary 3.2. Let (V0, 〈·, ·〉0), (V1, 〈·, ·〉1) be Hilbert spaces, such that V1 is dense in V0 and the
embedding operator id : V1 −→ V0 is compact. Then there exists an orthonormal basis (zk)k∈N

of V0 and a family of positive real numbers (λk)k∈N with λk
k→∞−−−→∞, such that for all k ∈ N

∀v ∈ V1 : 〈zk, v〉1 = λ2
k〈zk, v〉0. (3.1)

Proof. (Sketch) The operator id : V1 −→ V0 is compact, according to Theorem 3.1 there exists
a basis (z̃k)k∈N of V1 and eigenvalues (µk)k∈N, such that for all k, l ∈ N

〈z̃k, z̃l〉1 = δk,l and 〈z̃k, z̃l〉0 = µ2
kδk,l.

Due to density (z̃k)k∈N is also an orthogonal basis of V0. We define

λk :=
1

µk
and zk := λkz̃k.

It easily follows that (zk)k∈N is an orthonormal basis of V0, since

〈zk, zl〉0 = λkλl〈z̃k, z̃l〉0 = λ2
kµ

2
kδk,l = δk,l.

For any v ∈ V1 ⊆ V0 we can therefore apply Fourier expansion with respect to (zk)k∈N to obtain

〈zk, v〉1 = 〈zk,
∑
l∈N

vlzl〉1 =
∑
l∈N

vl〈zk, zl〉1 =
∑
l∈N

λkλlvl〈z̃k, z̃l〉1 = λ2
kvk = λ2

k〈zk, v〉0.

We finally point out that (µk)k∈N converges to zero, yielding

λk
k→∞−−−→∞.

�
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Considerations from above provide all the necessary tools required to introduce the concept
of interpolation theory. We define:

Definition 3.3. A pair of Hilbert spaces ((V0, 〈·, ·〉0), (V1, 〈·, ·〉1)) is called Hilbert interpolation
couple if V1 ⊆ V0 is dense and the embedding operator id : V1 −→ V0 compact.

According to corollary 3.2 Hilbert interpolation couples allow the choice of an V0-orthonormal
basis of eigenfunctions (zk)k∈N, such that

∀v ∈ V1 : 〈zk, v〉1 = λ2
k〈zk, v〉0. (3.2)

(zk)k∈N is a complete system, ensuring that every u ∈ V0 admits the expansion

u =

∞∑
k=1

ukzk.

For all u ∈ V0 and v ∈ V1 ⊆ V0 there holds

‖u‖20 = 〈
∞∑
k=1

ukzk,

∞∑
l=1

ulzl〉0 =

∞∑
k=1

∞∑
l=1

ukul〈zk, zl〉0 =

∞∑
k=1

u2
k,

‖v‖21 = 〈
∞∑
k=1

vkzk,

∞∑
l=1

vlzl〉1 =

∞∑
k=1

∞∑
l=1

vkvl〈zk, zl〉1 =

∞∑
k=1

λ2
kv

2
k.

The identity

V1 = {u ∈ V0

∣∣ ∞∑
k=1

λ2
ku

2
k <∞}

suggests the introduction of the following definition.

Definition 3.4. Let (V0, V1) be a Hilbert interpolation couple. For each s ∈ (0, 1) the Hilbert
interpolation norm of (V0, V1) is defined as

‖u‖Hs(V0,V1) :=

( ∞∑
k=1

λ2s
k u

2
k

) 1
2

.

Its associated Hilbert interpolation space is

[V0, V1]Hs := {u ∈ V0 | ‖u‖Hs(V0,V1) <∞}.

Remark 3.5. The interpolation space ([V0, V1]Hs , ‖ · ‖Hs(V0,V1)) is a Hilbert space itself.

As long as it is clear from the context we will neglect the dependency in V0 and V1. [V0, V1]Hs

is indeed an intermediate space, since for all s ∈ (0, 1) there holds

V1 ⊆ [V0, V1]Hs ⊆ V0.

The most important case for further applications is given by the Hilbert interpolation couple
(L2(Ω), H1(Ω)). Notice that the constriction of [L2(Ω), H1(Ω)]Hs coincides with the approach
performed in section 2.

Example: Let V1 = H1
0 ([0, 1]) and V0 = L2([0, 1]). Then the eigen-pairs in (3.2) have the form

λk = k and zk(x) =
√

2 sin(kπx) k ∈ N.

Example: Let V1 = H1(Ω) and V0 = L2(Ω) with Ω = [0, 1]2. Then there holds

λk,l = π2(k2 + l2) and zk,l(x, y) = 2 cos(kπx) cos(lπy) k, l ∈ N.

The associated Hilbert interpolation norm on [L2(Ω), H1(Ω)]Hs is plotted in figure 1.

10



Figure 1: Hilbert interpolation norm of [L2(Ω), H1(Ω)]Hs with Ω = [0, 1]2 for different function
u ∈ L2(Ω).

3.2 Banach space interpolation

Argumentations from above are only applicable for Hilbert spaces. An alternative introduction
is provided which also works for feasible Banach spaces. Analogously to before we define under
which conditions a pair of Banach spaces is admissible for space interpolation.

Definition 3.6. A pair of Banach spaces ((B0, ‖ ·‖0), (B1, ‖ ·‖1)) is called Banach interpolation
couple if B1 ⊆ B0 is dense and the embedding operator continuous.

Interpolation between Banach spaces is based on the following definition.

Definition 3.7. Let (B0, B1) be a Banach interpolation couple. Then the K-functional of
(B0, B1) is defined as

K(B0, B1) : R+ ×B0 −→ R

(t, u) 7→ inf
v∈B1

√
‖u− v‖20 + t2‖v‖21.

Whenever possible we will suppress the dependency in B0 and B1 and write K(t, u) instead
of K(B0, B1)(t, u). Trivially there holds

∀u ∈ B1 : K(t, u) ≤ ‖u‖0 and K(t, u) ≤ t‖u‖1, (3.3)

ensuring that the integral (3.4) is well-defined.

Definition 3.8. Let (B0, B1) be a Banach interpolation couple. For each s ∈ (0, 1) the Banach
interpolation norm of (B0, B1) is defined as

‖u‖Bs(B0,B1) :=

(∫ ∞
0

t−2s−1K2(t, u) dt

) 1
2

. (3.4)

Its associated Banach interpolation space is

[B0, B1]Bs := {u ∈ B0 | ‖u‖Bs(B0,B1) <∞}.
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Remark 3.9. The interpolation space ([B0, B1]Bs , ‖ · ‖Bs(B0,B1)) is a Banach space itself.

As long as it is clear from the context we will neglect the dependency in B0 and B1. Similarly
to before it holds for all s ∈ (0, 1)

B1 ⊆ [B0, B1]Bs ⊆ B0.

For each fixed u ∈ B0 the K-functional is a non-decreasing, continuous and concave function in
t, converging to ‖u‖0 as t→∞.

Example: In figure 2 we consider the to (L2(Ω), H1(Ω)) associated K-functional on Ω = [0, 1]2

for different functions u ∈ L2(Ω).

Figure 2: K(L2(Ω), H1(Ω))(t, ui) for different ui, i = 1, 2, 3, with t ∈ [0, 10] on the unit square.

Even though definition 3.8 makes interpolation theory applicable for feasible Banach spaces,
we will rather consider its application in context of Hilbert interpolation couples, providing an
alternative approach to definition 3.4.

An important result for further applications is stated in the following Theorem. It guarantees
that in the Hilbert space case both interpolation methods coincide.

Theorem 3.10. Let (V0, V1) be a Hilbert interpolation couple. Then

‖ · ‖Bs(V0,V1) = Cs‖ · ‖Hs(V0,V1) with Cs =

√
π

2 sin(πs)
.

Proof. We proceed similarly to [7] and [13]. For each u ∈ [V0, V1]Hs with

u =
∑
k∈N

ukzk

one observes

K2(t, u) = inf
v∈V1
‖u− v‖20 + t2‖v‖21

= inf
(vk)∈`2

(λkvk)∈`2

∑
k∈N

(uk − vk)2 + t2λ2
kv

2
k

=
∑
k∈N

inf
vk∈R

(uk − vk)2 + t2λ2
kv

2
k.
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The minimum for each summand is taken for those vk which satisfy

−2(uk − vk) + 2t2λ2
kvk = 0 ⇐⇒ vk =

1

1 + t2λ2
k

uk.

Hence

K2(t, u) =
∑
k∈N

u2
k − 2

u2
k

1 + t2λ2
k

+
(1 + t2λ2

k)u
2
k

(1 + t2λ2
k)

2

=
∑
k∈N

u2
k

(1 + t2λ2
k)

(1 + t2λ2
k)
− 2u2

k

(1 + t2λ2
k)

(1 + t2λ2
k)

2
+ u2

k

(1 + t2λ2
k)

(1 + t2λ2
k)

2

=
∑
k∈N

u2
k

(1 + t2λ2
k)

(1 + t2λ2
k)
− u2

k

1

(1 + t2λ2
k)

=
∑
k∈N

u2
k

t2λ2
k

(1 + t2λ2
k)
.

Plugging in reveals

‖u‖2Bs =

∫ ∞
0

t−2s−1K2(t, u) dt

=

∫ ∞
0

t−2s−1
∑
k∈N

u2
k

t2λ2
k

(1 + t2λ2
k)
dt

=
∑
k∈N

∫ ∞
0

t−2s−1u2
k

t2λ2
k

(1 + t2λ2
k)
dt.

Substitution τ = λkt yields

‖u‖2Bs =
∑
k∈N

∫ ∞
0

(
τ

λk

)−2s−1

u2
k

τ2

1 + τ2

dτ

λk

=
∑
k∈N

λ2s
k u

2
k

∫ ∞
0

τ1−2s

1 + τ2
dτ

=

(∫ ∞
0

τ1−2s

1 + τ2
dτ

)
‖u‖2Hs .

Verifying the identity ∫ ∞
0

τ1−2s

1 + τ2
dτ =

π

2 sin(πs)

concludes the proof. �

Theorem 3.10 justifies the definition of

[V0, V1]s := [V0, V1]Hs = [V0, V1]Bs
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for Hilbert interpolation couples (V0, V1). Both ([V0, V1]s, ‖ · ‖Hs) and ([V0, V1]s, ‖ · ‖Bs) are
Hilbert spaces itself, such that the norms are equivalent involving only the constant Cs. For the
further course of action we will agree on the slightly modified notation

[V0, V1]Hs := ([V0, V1]s, ‖ · ‖Hs) [V0, V1]Bs := ([V0, V1]s, ‖ · ‖Bs)

in order to indicate which norm is involved.
Examples show that the construction of intermediate spaces accords to the natural under-

standing of interpolation. Under the assumption of Ω being a Lipschitz domain, one can proof
that

[L2(Ω), H2(Ω)]
H

1
2

= H1(Ω).

In a sense, boundary values are accounted as well, since

[L2(Ω), H2
0 (Ω)]

H
1
2

= H1
0 (Ω) [L2(Ω), H2

per(Ω)]
H

1
2

= H1
per(Ω).

Remark 3.11. Analogously to remark 2.1 extrapolation can only be applied to (L2(Ω), H1
per(Ω)),

such that the identity H2
per(Ω) ⊆ [L2(Ω), H1

per(Ω)]H1+α ⊆ H1
per(Ω) holds for all α ∈ (0, 1).
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4 Implementation of interpolation norms
Section 3 holds for general Banach and Hilbert interpolation couples. Throughout this thesis
though, we will be satisfied to deal with the case V0 = L2(Ω) and V1 = H1(Ω) primary. Argu-
mentation from before suggests two different approaches in order to compute their associated
interpolation norm. Either of those comes with its own difficulties attached. While the Banach
space method requires both the evaluation of an infimum and the computation of an improper
integral, the Hilbert approach involves extensive eigenvalue problems. It turns out that the
latter one is preferable for computational aspects, whereas the analysis better applies to the
Banach space framework.

4.1 Evaluation of the K-functional

Throughout what follows let Ω ⊆ Rd, d = 1, 2, 3, denote a bounded Lipschitz domain. Consider
the Banach interpolation couple (L2(Ω), H1(Ω)) together with its associated K-functional

K2(t, u) = inf
v∈H1

‖u− v‖2L2
+ t2‖v‖2H1 .

Evaluations of K involve the computations of a minimizer v∗(u, t), such that

K2(t, u) = ‖u− v∗(u, t)‖L2 + t2‖v∗(u, t)‖H1 .

It will be shown that v∗(u, t) is the weak solution of a partial differential equation, giving
K2(t, u) a computationally applicable form.

4.1.1 The variational framework

One immediately observes the following property.

Lemma 4.1. Let t ∈ R+ and u ∈ L2(Ω). v∗ ∈ H1(Ω) minimizes K(t, u) if and only if v∗

minimizes

F(u,t)(v) :=

∫
Ω
−2uv + v2 + t2(v2 + (∇v)2) dx v ∈ H1(Ω). (4.1)

Proof. Direct computations reveal

K2(t, u) = inf
v∈H1

‖u− v‖2L2
+ t2‖v‖2H1

= inf
v∈H1
〈u− v, u− v〉L2 + t2‖v‖2H1

= inf
v∈H1

‖u‖2L2
− 2〈u, v〉L2 + ‖v‖2L2

+ t2‖v‖2H1

= inf
v∈H1

∫
Ω
u2 − 2uv + v2 + t2

(
v2 + (∇v)2

)
dx.

Since ‖u‖2L2
affects the functional’s value only, but not the choice of the infimum itself, we can

neglect the first summand in the integral to conclude the claim. �

The problem is set in the framework of calculus of variation. For fixed u ∈ H1(Ω) and t > 0
find v∗ ∈ H1(Ω), such that

F(u,t)(v
∗) = inf

v∈H1
F(u,t)(v), (4.2)
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with

F(u,t) : H1(Ω) −→ R

v 7→
∫

Ω
F(u,t)(v(x),∇v(x)) dx

and

F(u,t) : R× Rd −−→ R
(z, p) 7→ −2u(x)z + z2 + t2

(
z2 + p2

)
.

Due to readability reasons we will neglect the subscript (u, t) in further notations, keeping in
mind that the problem holds a dependency in both u and t. Existence and uniqueness properties
of (4.2) follow by some standard results from calculus of variation.

Theorem 4.2 (Existence). Let X 6= ∅ be a linear space, F ∈ C∞(R× Rd) convex in p and its
variational integral

F : X −→ R

v 7→
∫

Ω
F (v(x),∇v(x)) dx

coercive, i.e.

∃α, β ∈ R+∀u ∈ X : F(v) ≥ α‖∇v‖2L2
− β. (4.3)

Then there exists a minimizer v∗ ∈ X, such that

F(v∗) = inf
v∈X
F(v).

Proof. See [3, Theorem 5.9]. �

Theorem 4.3 (Uniqueness). Let X be a linear space, F ∈ C(R × Rd) convex in each of its
arguments and F : X −→ R the associated variational integral. Then

v∗ ∈ X minimizes F =⇒ v∗is unique.

Proof. See [3, Theorem 5.10]. �

Both Theorems can be applied to the minimization problem of interest.

Corollary 4.4. For each t ∈ R+ and u ∈ H1(Ω) there exists a unique v∗ ∈ H1(Ω), such that

F(v∗) = inf
v∈H1

F(v)

with

F(v) :=

∫
Ω
−2uv + v2 + t2

(
v2 + (∇v)2

)
dx.
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Proof. We check the assumptions of Theorem 4.2. X = H1(Ω) 6= ∅ is a linear space and

F (z, p) := −2u(x)z + z2 + t2
(
z2 + |p|2

)
satisfies F ∈ C∞(R,Rd) and is convex in p. The non-trivial part is the coercivity. Cauchy-
Schwarz inequality reveals

F(v) = −2

∫
Ω
uv dx+ (1 + t2)

∫
Ω
v2 dx+ t2

∫
Ω

(∇v)2 dx

≥ − 2‖u‖L2︸ ︷︷ ︸
=:C1

‖v‖L2 + (1 + t2)︸ ︷︷ ︸
=:C2

‖v‖2L2
+ t2‖∇v‖2L2

.

We distinguish between two possible cases.

1. ‖v‖L2 > max
{
C1
C2
, 1
}

=⇒ −C1‖v‖L2 + C2‖v‖2L2
> 0

2. ‖v‖L2 ≤ max
{
C1
C2
, 1
}

=⇒ −C1‖v‖L2 ≥ −C1 max{C1
C2
, 1} =: −β

It follows

−C1‖v‖L2 + C2‖v‖L2 ≥ −β + C2‖v‖L2 ≥ −β.

Setting α := t2 yields

F(v) ≥ α‖∇v‖L2 − β,

for all v ∈ H1(Ω), granting the existence of a minimizer v∗ ∈ H1(Ω). Since F (z, p) is convex in
z as well, Theorem 4.3 provides uniqueness. �

The question arises whether the unique minimizer v∗ can be computed explicitly. To this
extent we specify the following definition (not in its most general form but in the one that fits
our setting adequately).

Definition 4.5. Let X be a linear function space over R with v, ξ ∈ X and F : X −→ R a
functional on X. Further let

φ(ε) := F(v + εξ)

for all ε ∈ R. If φ′(0) does exist, we define the first variation of F at v in direction ξ as

δF(v, ξ) := φ′(0).

The first variation can be considered as a weaker form of the concept of derivatives, where no
topology on X is required. Similarly to the smooth case one can derive a necessary condition
to detect local minimizer. Along with some technical assumptions it can be shown that each
minimizer v∗ satisfies

∀ξ ∈ C∞(Ω) : δF(v∗, ξ) = 0. (4.4)
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This condition can be formulated as partial differential equation, referred to as weak Euler-
Lagrange equation. It holds for all candidates satisfying (4.4)

0 = δF(v∗, ξ)

=
d

dε
F(v∗ + εξ)

∣∣
ε=0

=
d

dε

∫
Ω
F (v∗(x) + εξ(x),∇v∗(x) + ε∇ξ(x)) dx

∣∣∣∣
ε=0

=

∫
Ω

∂F

∂z
(v∗(x),∇v∗(x))ξ(x) +

d∑
i=1

∂F

∂pi
(v∗(x),∇v∗(x))

∂ξ

∂xi
(x) dx. (4.5)

For sufficiently smooth functions this is also true in the strong sense, resulting in the classical
Euler-Lagrange equation

∂F

∂z
(x, v∗(x),∇v∗(x)) +

d∑
i=0

∂

∂xi

[
∂F

∂pi
(x, v∗(x),∇v∗(x))

]
= 0.

Elaborations from above enable us to set the minimizer of the K-functional in correspondence
with the solution of a shifted Laplace problem, providing the essential information of this section.

Theorem 4.6. For each u ∈ H1(Ω) and t ∈ R+ the minimizer v∗ of (4.2) (or equivalently of
the K-functional) is the unique solution of the variational problem: Find v ∈ H1(Ω), such that

∀w ∈ H1(Ω) : 〈v, w〉L2 + t2〈v, w〉H1 = 〈u,w〉L2 . (4.6)

Proof. The weak Euler-Lagrange equation provides a necessary condition for minimizer of (4.2).

∂F

∂z
= −2u+ 2z + 2t2z,

∂F

∂pi
= 2t2pi.

Plugging into (4.5) and division by 2 leads to the claimed variational problem, which is uniquely
solvable. Corollary 4.4 concludes the proof. �

4.2 The finite element setting

Results from above can be applied to the discrete framework. Throughout what follows let
Vh ⊆ H1(Ω) be a finite element space of dimension N + 1. For each u ∈ Vh denote u ∈ RN+1

the uniquely assigned Galerkin vector, such that G(u) = u, whereas G denotes the Galerkin
isomorphism

G : RN+1 −→ Vh

u 7−→ u =
N∑
i=0

uiϕi

with a basis (ϕi)
N
i=0 of Vh. We consider the interpolation space [(Vh, ‖ · ‖L2), (Vh, ‖ · ‖H1)]Bs

together with its associated K-functional

K2(t, u) = inf
v∈Vh
‖u− v‖2L2

+ t2‖v‖2L2
t > 0, u ∈ Vh. (4.7)
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Analogously to section 2.1 one shows that the minimizer v∗(u, t) of (4.7) is the unique solution
of the shifted Laplace problem: Find v ∈ Vh, such that

∀w ∈ Vh : 〈v, w〉L2 + t2〈v, w〉H1 = 〈u,w〉L2 ,

giving rise to the linear system of equations

(M + t2A)v∗ = Mu (4.8)

with mass matrix M and H1-matrix A, arising from the H1-bilinear form. The K-functional’s
value is

K2(t, u) = ‖u− v∗‖2L2
+ t2‖v∗‖2H1

= ‖u− v∗‖2M + t2‖v∗‖2A.

Together with (4.8) this yields

K2(t, u) = ‖u− (M + t2A)−1Mu‖2M + t2‖(M + t2A)−1Mu‖2A. (4.9)

Due to this feasible handling of K(t, u) we are now able to dedicate our attention to the evalu-
ation of the associated interpolation norms.

4.3 Implementation of interpolation norms

The goal of this section is to provide an efficient implementation of the Banach interpolation
norm

‖u‖2Bs =

∫ ∞
0

t−2s−1K2(t, u) dt (4.10)

on the Banach interpolation space [(Vh, ‖ · ‖L2), (Vh, ‖ · ‖H1)]Bs . Due to (4.9) the integrand in
(4.10) can be evaluated for each t > 0. Ad hoc, one could aim to compute the interpolation
norm by means of numerical integration rules for improper integrals. However, this involves
plenty of evaluations in t, requiring each the solution of the associated shifted Laplace problem.
Ideas for improvement are discussed in the next section.

4.3.1 The reduced basis approach

We are now confronted with two major problems.

1. Improper integrals are difficult to solve accurately and might lead to substantial approxi-
mation errors.

2. Computational costs might exceed reasonable capacity since many evaluations for different
parameters t are required.

Both issues can be overwhelmed by a reduced basis approach. The concept is the following. We
introduce a subspace Vr ⊆ Vh of dimension r + 1, referred to as reduced space, and define its
associated reduced basis K-functional on Vh as

K2
r (t, u) := inf

vr∈Vr
‖u− vr‖2L2

+ t2‖vr‖2H1 t > 0, u ∈ Vh (4.11)

together with its induced reduced basis Banach interpolation norm

‖u‖2Bsr :=

∫ ∞
0

t−2s−1K2
r (t, u) dt. (4.12)
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Remark 4.7. For all u ∈ Vr the introduced norm ‖u‖Bsr coincides with the Banach interpolation
norm on the intermediate space

[(Vr, ‖ · ‖L2), (Vr, ‖ · ‖H1)]s.

Analogously to both the continuous and the finite element setting, evaluations of Kr(t, u) can
be related to the variational problem: Find vr ∈ Vr, such that

∀wr ∈ Vr : 〈vr, wr〉L2 + t2〈vr, wr〉H1 = 〈u,wr〉L2 .

By means of the reduced basis Galerkin isomorphism

Gr : Rr+1 −→ Vr

u 7−→ u =

r∑
i=0

u
i
ϕVri

according to a basis (ϕVri )ri=0 of Vr, the arising linear system of equations reads as

(Mr + t2Ar)v
∗
r

= Mru, (4.13)

with Mr, Ar ∈ R(r+1)×(r+1). The linear system (4.13) naturally arises (under the right choice
of the basis (ϕVri )ri=0) from (4.8). In order to establish this connection we state the following
definition.

Definition 4.8. Let {v0, ..., vr} be an L2-orthonormal basis of Vr. Then the associated reduced
basis matrix Vr is defined as

Vr := [v0, ..., vr] ∈ R(N+1)×(r+1).

Remark 4.9. Due to

δk,l = 〈vk, vl〉L2 =

∫
Ω
vkvl dx = vTkMvl

there holds

V T
r MVr = Ir ∈ R(r+1)×(r+1).

Vr can be regarded as prolongation, its transposed as restriction matrix between Vh and Vr,
operating on the related coefficient vectors.

The identity v∗r = Vrv
∗
r

plugged into (4.8) together with multiplication of V T
r from the left

yields

(V T
r MVr + t2V T

r AVr)v
∗
r

= V T
r Mu,

such that (under the assumption that the matrices Mr and Ar have been assembled with respect
to the to Vr associated basis, which we from now agree on) Mr = V T

r MVr = Ir and Ar = V T
r AVr

holds.

Remark 4.10. Even though Mr = Ir, at some points we will insist on writing Mr instead of
Ir in order to emphasize relevant aspects.
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The value of K2
r (t, u) can be expressed as

K2
r (t, u) = ‖u− v∗r‖2L2

+ t2‖v∗r‖2H1

= ‖u− v∗r‖2M + t2‖v∗r‖2Ar
= ‖u− Vr(Ir + t2Ar)

−1V T
r Mu‖2M + t2‖Vr(Ir + t2Ar)

−1V T
r Mu‖2A.

Along with a feasible choice of Vr we hope that

v∗r (t, u) ≈ v∗(t, u) =⇒ Kr(t, u) ≈ K(t, u),

=⇒ ‖u‖Bsr ≈ ‖u‖Bs .

The subsequent section gives rise to the question how a proper space Vr is constructed, such
that the required approximation properties hold in the best possible way.

4.3.2 Choice of the reduced space

Since both v∗ and v∗r involve a dependency in u and t, it is rather unlikely that any choice of
Vr ⊆ Vh with r � dim(Vh) provides reasonable approximation properties for all u ∈ Vh and
t > 0. The clue is to choose Vr = Vr(u) in dependency of u, such that at least

v∗r (t) ≈ v∗(t)

for all t ∈ R+ is satisfied appropriately. To this extent let u ∈ Vh be fixed throughout the
entire section. For given snapshots t0 = 0 and t1, ..., tr ∈ I := [tmin, tmax] ⊆ R+, tmin, tmax
to be determined later, we consider the related snapshot solutions v∗(tj) of the shifted Laplace
problem: Find v ∈ Vh, such that

∀w ∈ Vh : 〈v, w〉L2 + t2j 〈v, w〉H1 = 〈u,w〉L2 j = 0, ..., r. (4.14)

We set

Vr := [{v∗(t0), ..., v∗(tr)}] ⊆ Vh,

such that

v∗(t) ≈
r∑
j=0

αjv
∗(tj) αj = αj(t)

and further

‖u‖Bsr ≈ ‖u‖Bs .

Remark 4.11. Due to Vr = Vr(u) we will occasionally write ‖u‖Hs
r(u)

instead of ‖u‖Hs
r

in order

to emphasize the dependency in u.

Setting t0 = 0 guarantees that u = v∗(t0) is contained in the reduced space itself. This choice
can be justified in the following way. If u ∈ Vr, then

K2
r (t, u) = inf

vr∈Vr
‖u− vr‖2L2

+ t2‖vr‖2H1 ≤ t2‖u‖2H1 ,
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yielding

∀s ∈ (0, 1)∃ε > 0 ∀t ∈ (0, 1) : t−2s−1K2
r (t, u) ≤ t−2+ε−1K2

r (t, u) ≤ ‖u‖2H1

1

t1−ε
,

such that the limit

lim
c→0

∫ 1

c
t−2s−1Kr(t, u)2 dt

exists. Due to K2
r (t, u) ≤ ‖u‖2L2

one further obtains

∀s ∈ (0, 1)∃ ε > 0 ∀t ∈ (1,∞) : t−2s−1K2
r (t, u) ≤ t−ε−1K2

r (t, u) ≤ ‖u‖2L2

1

t1+ε
,

such that again

lim
c→∞

∫ c

1
t−2s−1K2

r (t, u) dt <∞

holds. Summing up, the choice of t0 = 0 ensures the convergence of the induced reduced basis
integral ∫ ∞

0
t−2s−1K2

r (t, u) dt, (4.15)

which does not necessarily hold if u 6∈ Vr.
The latter sampling points t1, ..., tr are taken with respect to the interval I = [tmin, tmax]

with

tmin :=
1√

λmax(M−1A)
and tmax := 1 ≈ 1√

λmin(M−1A)
. (4.16)

A deeper understanding of this choice will be given in section 6. The question arises how to
distribute t1, ..., tr across the interval, such that

‖u‖Bsr ≈ ‖u‖Bs

holds in the best possible way. For the moment we assume the snapshots to be geometrically
scattered across I and again refer to section 6 for further elaborations.

Before computational aspects are discussed we show that the term basis is indeed justified
for {v∗(t0), ..., v∗(tr)}.

Theorem 4.12. Assume that 0 = t0 < t1 < ... < tr and let v∗(tj) denote the solution of (4.14)
and (λk, zk)

N
k=0 the L2-orthonormal eigen-pairs of Vh, such that

∀w ∈ Vh : 〈zk, w〉H1 = λ2
k〈zk, w〉L2 .

Further let u ∈ Vh, m ≤ N with u ∈ [{z0, ..., zm}] and 〈zk, u〉L2 6= 0 for all k = 0, ...,m. Then

r ≤ m =⇒ {v∗(t0), ..., v∗(tr)} is linearly independent.

22



Proof. Fourier expansion yields (see Lemma 6.3)

v∗(tj) =
N∑
k=0

uk
1 + t2jλ

2
k

zk.

Assume that

r∑
j=0

αjv
∗(tj) =

r∑
j=0

αj

N∑
k=0

uk
1 + t2jλ

2
k

zk = 0

for some coefficients α0, ..., αr ∈ R. Permutation of the summation yields

N∑
k=0

r∑
j=0

αj
uk

1 + t2jλ
2
k

zk = 0.

Since u ∈ [{z0, ..., zm}] there holds uk = 〈zk, u〉L2 = 0 for k > m. It follows

m∑
k=0

r∑
j=0

αj
uk

1 + t2jλ
2
k

zk = 0.

Due to orthonormality of (zk)
m
k=0 and division by uk 6= 0 one observes

∀k ∈ {0, ...,m} :
r∑
j=0

αj
1

1 + t2jλ
2
k

= 0. (4.17)

Reformulation of (4.17) gives rise to the linear system of equations
1

1+t20λ
2
0
· · · 1

1+t2rλ
2
0

...
...

1
1+t20λ

2
m
· · · 1

1+t2rλ
2
m


α0

...
αr

 =

0
...
0

.

For the case m = r one can easily proof (for example by induction with the Laplacian determi-
nant expansion by minors) that the matrix is regular. In this case the equation can only hold
for

α0 = ... = αr = 0. (4.18)

We conclude that {v∗(t0), ..., v∗(tr)} is linearly independent for r = m. Every subset of a
linearly independent set is linearly independent itself which is why (4.18) also holds for all
r < m, proofing the claim. �

So far we have achieved to establish a procedure approximating the K-functional by means
of a reduced basis approach. Nevertheless, the reduced basis interpolation norm itself has a
rather inconvenient form from a computational point of view. This problem can be avoided by
reinterpreting (4.12) in context of Hilbert space interpolation.
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4.3.3 Computational aspects

The definition of Vr suggests a canonical choice of the associated reduced basis matrix Vr. We
agree on the following convention. Whenever Vr is noted in the subsequent, we refer to the
matrix arising from Gramm-Schmidt M -orthonormalization applied to [v∗(t0), ..., v∗(tr)].

The main result of this section is given in Theorem 4.14. The necessary preparation is provided
in the following.

Lemma 4.13. Let t ∈ R+, u ∈ Vh, β = ‖u‖L2 and e1 ∈ Rr+1 the first unit vector. Then

K2
r (t, u) = inf

y∈Rr+1
‖βe1 − y‖2Mr

+ t2‖y‖2Ar .

Proof. Since u = v∗(t0) ∈ Vr = [{v∗(t0), ..., v∗(tr)}] there holds

K2
r (t, u) = inf

vr∈Vr
‖u− vr‖2L2

+ t2‖vr‖2H1

= inf
y∈Rr+1

‖Vr(βe1 − y)‖2M + t2‖Vry‖2A

= inf
y∈Rr+1

(Vr(βe1 − y))TMVr(βe1 − y) + t2(Vry)TAVry

= inf
y∈Rr+1

(βe1 − y)TV T
r MVr(βe1 − y) + t2yTV T

r AVry

= inf
y∈Rr+1

‖βe1 − y‖2Mr
+ t2‖y‖2Ar .

�

Theorem 4.14. Let u ∈ Vh, s ∈ (0, 1) and β = ‖u‖L2. Then

‖u‖Bsr = Cs‖βe1‖Asr ,

with Cs as defined in Theorem 3.10.

Proof. Lemma 4.13 yields

‖u‖2Bsr =

∫ ∞
0

t−2s−1 inf
y∈Rr+1

(
‖βe1 − y‖2Mr

+ t2‖y‖2Ar
)
dt = ‖βe1‖2Bs ,

whereas the latter norm is taken with respect to the interpolation space

[(Rr+1, ‖ · ‖Mr), (Rr+1, ‖ · ‖Ar)]Bs .

Equivalence of the norms (Theorem 3.10) reveals

‖u‖Bsr = ‖βe1‖Bs = Cs‖βe1‖Hs = Cs‖βe1‖Asr ,

whereas ‖ · ‖Hs denotes the norm of [(Rr+1, ‖ · ‖Mr), (Rr+1, ‖ · ‖Ar)]Hs . For the last equality we
refer to Theorem 5.2 and the identity Mr = Ir. �

Analogously to before we relate the Banach setting with the Hilbert case in a reduced basis
sense. To this extent we define:

Definition 4.15. The reduced basis Hilbert interpolation norm of u ∈ Vh is defined as

‖u‖Hs
r(u)

:= ‖u‖Hs((Vr(u),‖·‖L2
),(Vr(u),‖·‖H1 )).
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Again, we will occasionally neglect the dependency in u in following discussions. The proof
of Theorem 4.14 immediately reveals:

Corollary 4.16. Let u ∈ Vh, s ∈ (0, 1) and β = ‖u‖L2. Then there holds

‖u‖Hs
r

= ‖βe1‖Asr .

Due to norm equivalence there is no reason to favor one of the interpolation norms over the
other. We therefore stick to the Hilbert space setting when it comes to computations in order
to avoid the inconvenient form of (4.12).

We summarize all the steps required to approximate the Hilbert interpolation norm of a finite
element function u ∈ Vh in a reduced basis sense:

1. For t0 = 0 and t1, ..., tr ∈ I compute the snapshot solutions v∗(tj) of the associated shifted
Laplace problems, i.e.

v∗(tj) = (M + t2jA)−1Mu,

and set V̂r = [v∗(t0), ..., v∗(tr)].

2. Apply Gramm-Schmidt orthonormalization to V̂r with respect to the M -scalar product in
order to obtain the reduced basis matrix Vr.

3. Compute the projected H1-matrix

Ar = V T
r AVr.

4. Compute Asr = ZrΛ
s
rZ

T
r by means of its small eigen-system.

5. Compute ‖u‖Hs
r

=
√
β2eT1 A

s
re1.

(L2, H
1)

Bs

Hs

([L2, H
1]s, ‖ · ‖Bs)

([L2, H
1]s, ‖ · ‖Hs)

Cs
1
Cs

Vr ⊆ H1

Vr ⊆ H1

([L2, H
1]s, ‖ · ‖Bsr )

([L2, H
1]s, ‖ · ‖Hs

r
)

Cs
1
Cs

Figure 3: Schematic structure of interpolation spaces and norms.

A computationally beneficial observation is that the convergence behavior of our method is
relatively robust in the choice of I. Numerical tests affirmed that in most cases it is sufficient

to take λ̃ ≈ λmax(M−1A) and set I = [
√
λ̃−1, 1] without loosing substantial approximation

properties. In this way expensive computations of λmax(M−1A) can be spared.
Under certain conditions the reduced basis norm is already exact for r < N .
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Theorem 4.17. Let (λk, zk)
N
k=0 be L2-orthonormal eigen-pairs of Vh, such that

∀w ∈ Vh : 〈zk, w〉H1 = λ2
k〈zk, w〉L2 .

Assume that m ≤ N and u ∈ Vh with u ∈ [{z0, ..., zm}]. Then

r ≥ m =⇒ ‖u‖Hs
r

= ‖u‖Hs .

Proof. We show that

Vr = [{v∗(t0), ..., v∗(tr)}] = [{z0, ..., zm}]

for r ≥ m. The snapshot solutions v∗(tj) ∈ Vh satisfy

∀w ∈ Vh : 〈v∗(tj), w〉L2 + t2j 〈v∗(tj), w〉H1 = 〈u,w〉L2 . (4.19)

Again, we refer to Lemma 6.3 to provide the expansion

v∗(tj) =

N∑
k=0

uk
1 + t2jλ

2
k

zk.

Since u ∈ [{z0, ..., zm}] it follows v∗(tj) ∈ [{z0, ..., zm}] for all j = 0, ..., r. We obtain

[{v∗(t0), ..., v∗(tr)}] ⊆ [{z0, ..., zm}].

Due to Theorem 4.12 the set {v∗(t0), ..., v∗(tr)} is linearly independent for r ≤ m, yielding

[{v∗(t0), ..., v∗(tr)}] ⊇ [{z0, ..., zm}]

for r ≥ m, proofing the claim. �

Remark 4.18. Theorem 4.17 shows that increasing the reduced space dimension is reasonable
as long as r < m. There holds

r ≥ m =⇒ ∀l ≥ 0 : Vr = Vr+l. (4.20)
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5 Implementation of fractional diffusion
operators

So far we have achieved to provide approximations for the interpolation norms on the inter-
mediate space [(Vh, ‖ · ‖L2), (Vh, ‖ · ‖H1)]s by means of a reduced basis method. This approach
naturally involves the definition of a fractional operator. It will be clarified that this operator
satisfies the desired requirements to realize a feasible approximation of (−∆)s.

5.1 Fractional operators

Throughout what follows let again Vh ⊆ H1(Ω) denote a conforming finite element space. The
normed space

[(Vh, ‖ · ‖L2), (Vh, ‖ · ‖H1)]Bs

is not only a Banach but also a Hilbert space. Hence, ‖ · ‖Bs induces a scalar product which is
inquired in the following Lemma.

Lemma 5.1. The Banach interpolation norm ‖ · ‖Bs on the Banach interpolation space
[(Vh, ‖ · ‖L2), (Vh, ‖ · ‖H1)]Bs satisfies

∀u ∈ Vh : 〈u, u〉Bs = ‖u‖2Bs ,

with

〈v, u〉Bs = vTM

∫ ∞
0

t−2s−1
(
M−1 − (M + t2A)−1

)
dtMu.

Proof. The minimizer of the K-functional v∗ ∈ Vh corresponds to the solution of the linear
system

(M + t2A)v∗ = Mu.

Direct computations reveal

‖u− v∗‖2L2
= ‖u− (M + t2A)−1Mu‖2M
=
(
u− (M + t2A)−1Mu

)T
M
(
u− (M + t2A)−1Mu

)
= uTMu− 2uTM(M + t2A)−1Mu+ uTM(M + t2A)−1M(M + t2A)−1Mu,

t2‖v∗‖2H1 = t2‖(M + t2A)−1Mu‖2A
=
(
(M + t2A)−1Mu

)T
t2A︸︷︷︸

=(M+t2A)−M

(
(M + t2A)−1Mu

)
= uTM(M + t2A)−1Mu− uTM(M + t2A)−1M(M + t2A)−1Mu.

This yields

K2(t, u) = ‖u− v∗‖2L2
+ t2‖v∗‖2H1

= uTMu− uTM(M + t2A)−1Mu = uTM(M−1 − (M + t2A)−1)Mu.
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Hence

‖u‖2Bs =

∫ ∞
0

t−2s−1K2(t, u) dt

=

∫ ∞
0

t−2s−1uTM
(
M−1 − (M + t2A)−1

)
Mudt

= uTM

∫ ∞
0

t−2s−1
(
M−1 − (M + t2A)−1

)
dtMu.

�

Although Lemma 5.1 provides a suitable representation for theoretical considerations, it is
again favorable to work in the Hilbert space framework when it comes to numerical computa-
tions. To this purpose we state the following Theorem.

Theorem 5.2. The Hilbert interpolation norm ‖ · ‖Hs on the Hilbert interpolation space
[(Vh, ‖ · ‖L2), (Vh, ‖ · ‖H1)]Hs satisfies

∀u ∈ Vh: 〈u, u〉Hs = ‖u‖2Hs ,

with

〈v, u〉Hs = vTM(M−1A)su. (5.1)

Proof. Let (λk, zk)
N
k=0 denote the L2-orthonormal eigensystem with the property

∀w ∈ Vh : 〈zk, w〉H1 = λ2
k〈zk, w〉L2 .

Further let

Z = (z0, ..., zN ) and Λ = Diag(λ2
0, ..., λ

2
N ).

We show that

M−1A = ZΛZ−1 (5.2)

holds. Since

ZTMZ = I and ZTAZ = Λ

it follows

M = Z−TZ−1 and A = Z−TΛZ−1.

All together

M−1A = (Z−TZ−1)−1Z−TΛZ−1 = ZZTZ−TΛZ−1 = ZΛZ−1,

which proofs (5.2). Computations of the right hand side of (5.1) reveal

uTM(M−1A)su = uTZ−TZ−1ZΛsZ−1u = uTZ−TΛsZ−1u.
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Basis transformation yields

u =

N∑
k=0

〈u, zk〉L2zk = Zû

with

û := (〈z0, u〉2L2
, ..., 〈zN , u〉2L2

)T ∈ RN+1.

Applying Z−1 from the left gives
Z−1u = û

to finally obtain

uTM(M−1A)su = ûTΛsû =
N∑
k=0

λ2s
k 〈u, zk〉2L2

= ‖u‖2Hs .

�

Trivially there holds

M(M−1A)s =

{
M(M−1A)0 = M, s = 0

M(M−1A)1 = A, s = 1
.

M and A are the finite element matrices arising from the bilinear forms

〈·, ·〉H0 = 〈·, ·〉L2 and 〈·, ·〉H1 = 〈·, ·〉L2 + 〈∇·,∇·〉L2 .

Therefore, M(M−1A)s can be regarded as interpolation operator between M and A. In a strong
sense, this refers to

M(M−1A)s ≈ (I + (−∆))s = I + (−∆)s. (5.3)

Direct computations of (M−1A)s ∈ R(N+1)×(N+1) according to the eigen-system are not appli-
cable for large N . Again, the reduced basis setting can be installed to overwhelm this inconve-
nience.

5.2 Reduced basis methods for fractional operators

In order to make computations of (5.3) affordable, we consider the following approach. Anal-
ogously to Theorem 5.1, one can show that ‖ · ‖Bs

r(·)
induces an operator on the finite element

intermediate space. The reduced basis norm gives a good approximation to the original inter-
polation norm, granting good chances that the same holds for the induced fractional operators.
In chapter 6 we will proof that this is indeed the case.

Lemma 5.3. The reduced basis Banach interpolation norm ‖·‖Bs
r(·)

on the Banach interpolation

space [(Vh, ‖ · ‖L2), (Vh, ‖ · ‖H1)]Bs satisfies

∀u ∈ Vh: 〈u, u〉Bs
r(u)

= ‖u‖2Bs
r(u)

with

〈v, u〉Bs
r(u)

= vTMVr

∫ ∞
0

t−2s−1
(
Ir − (Ir + t2Ar)

−1
)
dt V T

r Mu. (5.4)
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Proof. The relations u = Vru and Mr = V T
r MVr = Ir reveal

‖u− v∗r‖2L2
= ‖u− Vr(Ir + t2Ar)

−1V T
r Mu‖2M

= ‖u− Vr(Ir + t2Ar)
−1u‖2M

=
(
u− Vr(Ir + t2Ar)

−1u
)T
M
(
u− Vr(Ir + t2Ar)

−1u
)

= uTMu− 2uT (Ir + t2Ar)
−1u+ uT (Ir + t2Ar)

−1Mr(Ir + t2Ar)
−1u,

t2‖v∗r‖2H1 = t2‖Vr(Ir + t2Ar)
−1V T

r Mu‖2A
=
(
Vr(Ir + t2Ar)

−1u
)T
t2A
(
Vr(Ir + t2Ar)

−1u
)

=
(
uT (Ir + t2Ar)

−1V T
r

)(
(M + t2A)−M

)(
Vr(Ir + t2Ar)

−1u
)
.

Due to V T
r (M + t2A)Vr = (Ir + t2Ar) it follows

t2‖v∗r‖H1 = uT (Ir + t2Ar)
−1u− uT (Ir + t2Ar)

−1Ir(Ir + t2Ar)
−1uT .

Hence

K2
r (t, u) = uTMu− uT (Ir + t2Ar)

−1uT . (5.5)

Since u ∈ Vr it follows

uTMu = uTV T
r MVru = uTMru = uT Iru.

Identity (5.5) reveals

K2
r (t, u) = uT (Ir − (Ir + t2Ar)

−1)u.

Resubstituting u = VrMu concludes the proof. �

The reduced basis pendant to Theorem 5.2 reads as follows.

Theorem 5.4. The reduced basis Hilbert interpolation norm ‖·‖Hs
r(·)

on the Hilbert interpolation

space [(Vh, ‖ · ‖L2), (Vh, ‖ · ‖H1)]Hs satisfies

∀u ∈ Vh: 〈u, u〉Hs
r(u)

= ‖u‖2Hs
r(u)

,

with

〈v, u〉Hs
r(u)

= vTMVrA
s
rV

T
r Mu.

Proof. Let (λk, zk)
r
k=0 be L2-orthonormal eigenpairs of Vr, such that

∀wr ∈ Vr : 〈zk, wr〉H1 = λ2
k〈zk, wr〉L2 k = 0, ..., r.

Define the matrices

Zr := (z
0
, ..., z

r
) ∈ R(r+1)×(r+1) Λr := Diag(λ2

0, ..., λ
2
r) ∈ R(r+1)×(r+1),

such that

ZTr MrZr = ZTr Zr = Ir and ZTr (M−1
r Ar)Zr = Λr,
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to obtain

‖u‖2Hs
r

=
r∑

k=0

λ2s
k 〈u, zk〉2L2

= uTM(VrZr)Λ
s
r(VrZr)

TMu

= uTMVr(M
−1
r Ar)

sV T
r Mu

= uTMVrA
s
rV

T
r Mu.

�

Considerations from above provide all the necessary tools to introduce fractional operators in
a reduced basis sense. The action

u 7→MVr(M
−1
r Ar)

sV T
r Mu = MVrA

s
rV

T
r Mu

can be regarded as an approximation of the fractional operator action

u 7→M(M−1A)su, (5.6)

requiring only the computation of the small eigen-system

Asr = ZrΛ
s
rZ

T
r

on the reduced space Vr. We state the following definition.

Definition 5.5. The associated reduced basis operator of (5.6) with respect to u ∈ Vh is defined
as

M(M−1A)sr(u) := MVrA
s
rV

T
r M.

As long as it is clear from the context we will again neglect the dependency in u. One observes
that

(M−1A)su ≈ (M−1A)sru = VrA
s
rV

T
r Mu.

Remark 5.6. This construction provides a nonlinear dependency in the input vector u, resulting
in a nonlinear operator (M−1A)sr(·), such that

(M−1A)sr(u+v)(u+ v) 6= (M−1A)sr(u)u+ (M−1A)sr(v)v for v 6= u.

Whenever the application u 7→ (M−1A)sru is performed, the corresponding reduced basis matrices
Vr have to be deployed for each u ∈ Vh separately.

5.2.1 The inverse Operator

Implementation of the inverse reduced basis operator is apparently simple. Consider the vector
f ∈ RN+1 arising from finite element discretization applied to the right-hand side functional
〈f, ·〉L2 ∈ V ∗h . The goal is to provide an efficient procedure for the inverse action

f 7→ [M(M−1A)s]−1f.
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This can be achieved by slightly adapted reduced basis techniques. As done before, we apply
M -orthonormalization to the matrix

V̂r := [v∗(t0), ..., v∗(tr)],

but this time with

v∗(tj) = (M + t2A)−1f j = 0, ..., r

in order to obtain Vr. This setting enables us to sate the following Theorem.

Theorem 5.7. Assume that f ∈ L2(Ω) with its associated reduced basis matrix Vr. Further let
u ∈ Vh be the L2-projection of f on Vh, i.e

∀w ∈ Vh : 〈u,w〉L2 = 〈f, w〉L2 ,

such that M−1f = u holds. Then

[M(M−1A)sr(u)]
−1f = VrA

−s
r V T

r f. (5.7)

Proof. Identification of Vh with RN+1 gives

M(M−1A)sr : Vh −→ V ∗h =⇒ [M(M−1A)sr]
−1 : V ∗h −→ Vh.

The identity (M−1A)sr = VrA
s
rV

T
r M reveals

VrA
s
rV

T
r : V ∗h −→ Vh.

What remains to be proofed is that (5.7) holds.(
M(M−1A)sr

) (
VrA

−s
r V T

r

)
f =

(
MVrA

s
rV

T
r M

) (
VrA

−s
r V T

r

)
f

= MVrA
s
rMrA

−s
r V T

r f

= MVrA
s
rA
−s
r V T

r f

= MVrV
T
r f

= MVrV
T
r MM−1f

= MVrV
T
r Mu = MVru = Mu = f

�

Theorem 5.7 justifies the following definition.

Definition 5.8. Let f ∈ L2(Ω) with its associated reduced basis matrix Vr. Then the inverse
reduced basis operator of (5.6) with respect to f is defined as

(M−1A)−sr(f) := VrA
−s
r V T

r .

Definition 5.5 and 5.8 provide computationally appealing approximations for the fractional
operator actions

u 7→M(M−1A)su and u 7→ [M(M−1A)s]−1u.

So far we have only regarded fractional operators with respect to the full H1-matrix, resulting
in a finite element approximation to the fractional differential operator I+ (−∆)s. We now aim
to replace A by the matrix Â arising from the gradient bilinear form in order to obtain

(−∆)su ≈M(M−1Â)u.
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5.3 Fractional Laplace operator

This section is dedicated to the efficient implementation of fractional powers of the Laplacian
itself. Ad hoc one could assume that the fractional norm of the interpolation space between
(Vh, ‖ · ‖L2) and (Vh, | · |H1) induces the desired fractional operator action

u 7→M(M−1Â)u ≈M(M−1Â)sr(u)u = MVrÂ
s
rV

T
r Mu,

whereas Â denotes the matrix arising from the gradient bilinear form 〈∇·,∇·〉L2 . Unfortunately,
the H1-semi-norm neither is a norm on general finite element spaces Vh nor does it satisfy the
continuous embedding “(Vh, | · |H1) ⊆ (Vh, ‖ · ‖L2)”.

This inconvenience might be avoided by either postulating homogeneous Dirichlet data on
the boundary ∂Ω with Vh ⊆ H1

0 (Ω) or rather consider the averaged subspace

H̄1(Ω) :=

{
u ∈ H1(Ω)

∣∣∣∣ ∫
Ω
u dx = 0

}
⊆ H1(Ω)

and choose Vh ⊆ H̄1(Ω). In both cases Poincaré, respectively Friedrichs inequality provide
equivalence of the semi-norm and the H1-norm. Compact embedding (Vh, | · |H1) ⊆ (Vh, ‖ · ‖L2)
is guaranteed.

The question arises whether discussed techniques from section 5.2 can be interpreted reason-
ably if the embedding is not continuous, sparing manipulations of the finite element space Vh
in terms of boundary conditions or averaging techniques. To this extent we consider once more
the finite element eigenvalue problem: Find an orthonormal basis (zk)

N
k=0 of (Vh, ‖ · ‖L2) and

eigenvalues (λ̂k)
N
k=0, such that

∀w ∈ Vh : 〈∇zk,∇w〉L2 = λ̂2
k〈zk, w〉L2 k = 0, ..., N.

Obviously, z0 ≡ 1 is an eigenfunction to the eigenvalue λ̂2
0 = 0. One immediately observes

‖z0‖H0 = ‖z0‖L2 = |Ω| 6= 0,

while for all s > 0 there holds

|z0|2Hs :=

N∑
k=0

λ̂2s
k 〈zk, z0〉2L2

= λ̂2s
0 ‖z0‖2L2

= 0.

This involves a discontinuity in s = 0 with respect the mapping

s 7→ ‖u‖Hs

for any u ∈ K0 := {u ∈ Vh
∣∣ 〈∇u,∇u〉L2 = 0} = {u ∈ Vh

∣∣u = const.}, causing division
by zero as the inverse operator is applied. Analogously to the regular case with s = 1, the
fractional Laplacian is not invertible among general boundary conditions. Nevertheless, operator
application can still be given sense. Orthogonal decomposition of u ∈ Vh ⊆ H1(Ω), u = u0 + u1

with u0 ∈ K0 and u1 ∈ K
⊥L2
0 , holds for all s ∈ (0, 1)

(−∆)su = (−∆)s(u0 + u1) = (−∆)su1,

justifying the definition

[(Vh, ‖ · ‖L2), (Vh, | · |H1)]Bs := [(K⊥L2
0 , ‖ · ‖L2), (K⊥L2

0 , | · |H1)]Bs . (5.8)
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Since K⊥L2
0 is a closed subspace of H1(Ω) and thus a Hilbert space itself, (5.8) is well defined.

Hilbert space interpolation in this context is installed analogously. The induced reduced basis
operator gives rise to an approximation of the fractional Laplacian according to

u 7→MVrÂ
s
rV

T
r Mu ≈M(M−1Â)su.

Example. Consider the fractional Poisson equation

(−∆)su = f on Ω, (5.9a)

u = 0 on ∂Ω. (5.9b)

The behavior of u for various exponents s is surveyed in figure 4 for Ω = [0, 1]2 and f ≡ 1.

(a) s = 0.1 (b) s = 0.5

(c) s = 0.9 (d) s = 1

Figure 4: Solution of the fractional Poisson problem for different powers s.

A continuous transition for changing exponents s is observed. One notices that for small
fractional powers the solutions of (5.9a) - (5.9b) tends to approach a constant state in the interior
of Ω, rapidly decreasing closer to the boundary due to the postulated boundary conditions. This
is based on the fact that M(M−1Â)sr converges towards M as s → 0, such that its associated
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PDE degenerates to a simple projection problem. Notice that in the limit this problem is not
solvable due to the non-compatibility of f . Though, for all s > 0 the problem is solvable, forcing
the solution to the utterly constant state possible in case of small exponents.
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6 Error analysis
At some points of this thesis details have been spared for subsequent sections. We now have all
the necessary tools to catch up this lack of accuracy. We will affirm that there exists a tuple of
snapshots t1, ..., tr, naturally arising from convergence analysis, such that exponential decay in
the error for both norm and operator action is obtained.

6.1 Error estimates for the reduced basis interpolation norm

Throughout the entire chapter let Vh ⊆ H1(Ω) be a finite element space of dimension N + 1
and (zk)

N
k=0 the L2-orthonormal basis of Vh, such that

∀w ∈ Vh : 〈zk, w〉H1 = λ2
k〈zk, w〉L2 . (6.1)

The goal of this section is to bound the error in the reduced basis norm, which reads as∣∣∣‖u‖2Bsr − ‖u‖2Bs∣∣∣ =

∣∣∣∣∫ ∞
0

t−2s−1
(
K2
r (t, u)−K2(t, u)

)
dt

∣∣∣∣ . (6.2)

As shown below, the reduced basis norm approximates ‖ · ‖Bs from above, such that absolute
values can be spared.

Lemma 6.1. Let u ∈ Vh and r ∈ N. Then there holds

∀t ∈ R+ : Kr(t, u) ≥ K(t, u).

Proof. The relation Vr ⊆ Vh immediately reveals

∀t ∈ R+ : K2
r (t, u) = inf

vr∈Vr
‖u− vr‖2L2

+ t2‖vr‖2H1

≥ inf
v∈Vh
‖u− v‖2L2

+ t2‖v‖2H1 = K2(t, u),

concluding the proof. �

Theorem 6.2. Let u ∈ Vh and r ∈ N. Then there holds

‖u‖Bsr ≥ ‖u‖Bs .

Proof. Due to Lemma 6.1 it follows

‖u‖2Bsr =

∫ ∞
0

t−2s−1K2
r (t, u) dt ≥

∫ ∞
0

t−2s−1K2(t, u) dt = ‖u‖2Bs ,

concluding the proof. �

Estimates of (6.2) directly involve upper bounds for the reduced basis K-functional, justifying
the further course of action.
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6.1.1 Upper bounds for the reduced basis K-functional

We recap some important results. The reduced space is defined by Vr = [v∗(t0), ..., v∗(tr)] with

∀w ∈ Vh : 〈v∗(tj), w〉L2 + t2j 〈v∗(tj), w〉H1 = 〈u,w〉L2 j = 0, ..., r (6.3)

and t0 = 0, t1, ..., tr ∈ I ⊆ R+. The minimizer v∗ ∈ Vh of K2(t, u) satisfies

∀w ∈ Vh : 〈v∗, w〉L2 + t2〈v∗, w〉H1 = 〈u,w〉L2 . (6.4)

Its approximation v∗r ≈ v∗ in the reduced space satisfies

∀wr ∈ Vr : 〈v∗r , wr〉L2 + t2〈v∗r , wr〉H1 = 〈u,wr〉L2 .

The orthonormal basis (zk)
N
k=0 provides a beneficial representation for the minimizer v∗, which

has already been referred to in former chapters.

Lemma 6.3. Let v∗ denote the solution of (6.4). Then there holds

v∗ =

N∑
k=0

uk
1 + t2λ2

k

zk.

Proof. Both v∗ and u ∈ Vh provide the Fourier expansion

v∗ =
N∑
k=0

v∗kzk u =
N∑
k=0

ukzk.

It follows for all j = 0, ..., N

〈v∗, zj〉L2 + t2〈v∗, zj〉H1 = 〈u, zj〉L2

⇐⇒ 〈
N∑
k=0

v∗kzk, zj〉L2 + t2〈
N∑
k=0

v∗kzk, zj〉H1 = 〈
N∑
k=0

ukzk, zj〉L2

⇐⇒
N∑
k=0

v∗k〈zk, zj〉L2 + t2
N∑
k=0

v∗k〈zk, zj〉H1 =

N∑
k=0

uk〈zk, zj〉L2

⇐⇒ v∗j + t2λjv
∗
j = uj

⇐⇒ v∗j =
uj

1 + t2λ2
j

.

�

The following Lemma supplies us with the fundamental estimate on which further elaborations
are based on.

Lemma 6.4. Let u ∈ Vh and t ∈ R+. Then there holds

∀wr ∈ Vr : K2
r (t, u)−K2(t, u) ≤ ‖v∗ − wr‖2L2

+ t2‖v∗ − wr‖2H1
.
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Proof. Due to the minimization property of v∗r it follows for all wr ∈ Vr

K2
r (t, u)−K2(t, u) ≤ ‖u− wr‖2L2

+ t2‖wr‖2H1 − ‖u− v∗‖2L2
− t2‖v∗‖2H1 . (6.5)

One observes

‖u− wr‖2L2
− ‖u− v∗‖2L2

= 〈u− wr, u− wr〉L2 − 〈u− v∗, u− v∗〉L2

= ‖u‖2L2
− 2〈u,wr〉L2 + ‖wr‖2L2

− ‖u‖2L2
+ 2〈u, v∗〉L2 − ‖v∗‖2L2

= −2〈u,wr〉L2 + ‖wr‖2L2
+ 2〈u, v∗〉L2 − ‖v∗‖2L2

.

We define the bilinear form

a(u, v) := 〈u, v〉L2 + t2〈u, v〉H1 .

Due to

∀w ∈ Vh : a(v∗, w) = 〈u,w〉L2

and u ∈ Vh it follows

‖u− wr‖2L2
− ‖u− v∗‖2L2

= −2a(v∗, wr) + ‖wr‖2L2
+ 2a(v∗, v∗)− ‖v∗‖2L2

.

Hence

‖u− wr‖2L2
+ t2‖wr‖2H1 − ‖u− v∗‖2L2

− t2‖v∗‖2H1 = −2a(v∗, wr) + a(wr, wr) + 2a(v∗, v∗)− a(v∗, v∗)

= a(wr, wr)− 2a(v∗, wr) + a(v∗, v∗)

= ‖wr − v∗‖2L2
+ t2‖wr − v∗‖2H1 ,

which concludes the proof. �

Remark 6.5. Along with the choice wr = v∗r we can replace “≤” in (6.5) by “ =” to obtain

K2
r (t, u)−K2(t, u) = ‖v∗r − v∗‖2L2

+ t2‖v∗r − v∗‖2H1 .

Theorem 6.6. Let u ∈ Vh and t ∈ R+. Then for all α0, ..., αr ∈ R there holds

K2
r (t, u)−K2(t, u) ≤

N∑
k=0

(1 + t2λ2
k)

 1

1 + t2λ2
k

−
r∑
j=0

αj
1

1 + t2jλ
2
k

2

u2
k.

Proof. According to Lemma 6.4 it holds for any wr =
r∑
j=0

αjv
∗(tj) ∈ Vr

K2
r (t, u)−K2(t, u) ≤ ‖v∗ − wr‖2L2

+ t2‖v∗ − wr‖2H1
.

Spectral decomposition gives

‖v∗ − wr‖2H1 = ‖v∗ −
r∑
j=0

αjv
∗(tj)‖2H1

= ‖
N∑
k=0

v∗kzk −
r∑
j=0

αj

N∑
k=0

(v∗(tj))kzk‖2H1 .
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Lemma 6.3 reveals

‖v∗ − wr‖2H1 = ‖
N∑
k=0

uk
1 + t2λ2

k

zk −
r∑
j=0

αj

N∑
k=0

uk
1 + t2jλ

2
k

zk‖2H1

= ‖
N∑
k=0

 1

1 + t2λ2
k

−
r∑
j=0

αj
1

1 + t2jλ
2
k

ukzk‖2H1

=
N∑
k=0

‖

 1

1 + t2λ2
k

−
r∑
j=0

αj
1

1 + t2jλ
2
k

ukzk‖2H1

=

N∑
k=0

λ2
k

 1

1 + t2λ2
k

−
r∑
j=0

αj
1

1 + t2jλ
2
k

2

u2
k.

Computations in the L2-norm can be concluded analogously, proofing the claim. �

In the following, similar techniques we are familiar with from finite element error estimations
are applied. Since Theorem 6.6 holds for any arbitrary choice of α0, ..., αr ∈ R, we aim to choose
those coefficients in a way, such that

∀λ ∈ [
√
λmin,

√
λmax] :

 1

1 + t2λ2
−

r∑
j=0

αj
1

1 + t2jλ
2

 (6.6)

becomes small, whereas λmin := λmin(M−1A) and λmax := λmax(M−1A). In order to simplify
this problem we make the rather unrestrictive assumption that λmin ≥ 1 and consider (6.6) for
λ ∈ σ̂ := [1,

√
λmax] ⊇ [

√
λmin,

√
λmax] instead. Any possible bound of (6.6) on σ̂ then trivially

also holds on [
√
λmin,

√
λmax].

In the further course of action we will derive two different choices for the coefficients (αj)
r
j=0

in dependency of t ∈ R+. The first one ensures that (6.6) becomes small for t ≥ 1 whereas the
second achieves the same for t < 1.

To this extent we make a first ansatz and set α0 = 0 (the justification for this will become clear
in the following). The latter coefficients are determined by means of a rational interpolation
problem, being inquired in the subsequent Lemma.

Lemma 6.7. Let a > 1, Jl = [a−1, 1] and Jr = [1, a]. Assume that κ, κ1, ..., κr ∈ Jl, such that
κi 6= κj for i 6= j. Further define gκ(x) := 1

1+κx and the rational function space

R :=

[{
f(x) =

1

1 + κjx

∣∣∣∣ j = 1, ..., r

}]
.

Then the solution q of the rational interpolation problem: Find q ∈ R, such that

∀j ∈ {1, ..., r} : q

(
1

κj

)
= gκ

(
1

κj

)
(6.7)

satisfies the error estimate

∀x ∈ Jr : |gκ(x)− q(x)| ≤ 1

1 + κx

r∏
j=1

∣∣∣∣(1− κjx)

(1 + κjx)

∣∣∣∣ . (6.8)
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x
κ1 κ2 κ κ3−a−1 a−10−1 1 Jr

y

Figure 5: Illustration of the rational interpolation problem: Intervals Jl (cyan), Jr (green) to-
gether with gκ(x) (red) and its approximating rational functions (blue) in R.

Proof. Let

q(x) =
r∑
j=1

αj
1

1 + κjx

denote the unique solution of (6.7). Then

gκ(x)− q(x) =
1

1 + κx
−

r∑
j=1

αj
1

1 + κjx
=

p(x)

(1 + κx)
r∏
j=1

(1 + κjx)

(6.9)

for some p ∈ Πr. Due to the interpolation property there holds

∀j ∈ {1, ..., r} : p

(
1

κj

)
= 0.

The fundamental Theorem of algebra claims the existence of a constant C̃ = C̃(κ) ∈ R, such
that

p(x) = C̃

r∏
j=1

(
x− 1

κj

)
= C̃

r∏
j=1

(
xκj − 1

κj

)
= − C̃

r∏
j=1

κj︸ ︷︷ ︸
=:C

r∏
j=1

(1− κjx).

C = C(κ) can be further specified. Multiplying (6.9) by (1 + κx) and setting x = − 1
κ yields

1 =

C
r∏
j=1

(1 +
κj
κ )

r∏
j=1

(1− κj
κ )

⇐⇒ C =
r∏
j=1

(1− κj
κ )

(1 +
κj
κ )

=
r∏
j=1

(κ− κj)
(κ+ κj)

.
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All together we obtain for all x ∈ Jr

|gκ(x)− q(x)| = 1

1 + κx

r∏
j=1

∣∣∣∣(κ− κj)(κ+ κj)

(1− κjx)

(1 + κjx)

∣∣∣∣ ≤ 1

1 + κx

r∏
j=1

∣∣∣∣(1− κjx)

(1 + κjx)

∣∣∣∣ .
�

Remark 6.8. Notice that the interpolation takes place remote from the function’s singularities,
which are all accumulated on R−.

Minimizing the maximal deviation of the interpolation error (6.8) leads to a min-max problem
resembling error estimations with Chebyshev polynomials: Find κ1, ..., κr ∈ Jl, such that

min
θ1,...,θr∈Jl

max
x∈Jr

r∏
j=1

∣∣∣∣(1− θjx)

(1 + θjx)

∣∣∣∣ = max
x∈Jr

r∏
j=1

∣∣∣∣(1− κjx)

(1 + κjx)

∣∣∣∣ . (6.10)

Closely related problems have been discussed in [9], [10], [11], [18] and [21]. We summarize the
most important results.

Zolotarëv Points

Definition 6.9. Let k ∈ (0, 1) and

z(φ; k) =

∫ φ

0

1√
1− k2 sin2(θ)

dθ.

The elliptic function

dn(z; k) =

√
1− k2 sin2(φ)

is called delta amplitudinis. The parameter k is being referred to as elliptic modul. k′ := 1− k
defines the complimentary elliptic modul. The functions

K̄(k) =

∫ π
2

0

1√
1− k2 sin2(φ)

dφ and K̄ ′(k) =

∫ π
2

0

1√
1 + k2 cos2(φ)

dφ

are called elliptic integrals.

Remark 6.10. dn denotes one out of 12 so-called Jacobi elliptic functions, whose names come
from their application in differential geometry.

The solution of (6.10) is closely related to a slightly different min-max problem, giving rise
to the following Theorem.

Theorem 6.11. Assume that δ ∈ (0, 1) and m ∈ N. Then the solution of the problem: Find
κ1, ..., κr ∈ [δ, 1], such that

min
θ1,...,θr∈[δ,1]

max
x∈[δ,1]

r∏
j=1

∣∣∣∣(x− θj)(x+ θj)

∣∣∣∣ = max
x∈[δ,1]

r∏
j=1

∣∣∣∣(x− κj)(x+ κj)

∣∣∣∣ (6.11)

is given by the Zolotarëv points

Zj := dn

(
2(r − j) + 1

2r
K̄(δ′), δ′

)
j = 1, ..., r (6.12)

with δ′ := 1− δ2.
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Figure 6: Zolotarëv points (red) with r = 10, δ = 1
100 and its associated Zolotarëv product

(blue).

Proof. See [9] and [21]. �

The Zolotarëv points cause the least deviation from zero on [δ, 1] among all functions of the
form

P (x; θ1, ..., θr) :=

r∏
j=1

(x− θj)
(x+ θj)

.

As illustrated in figure 6 they are roughly geometrically distributed across the interior of the
interval, getting denser at the boundary and cause a similar behavior we are familiar with from
Chebyshev polynomials. The Zolotarëv product P (x;Z1, ...,Zr) has exactly r roots and r − 1
local extrema in [δ, 1].

We are now interested in the value

Er(δ) := max
x∈[δ,1]

r∏
j=1

∣∣∣∣(x−Zj)(x+ Zj)

∣∣∣∣ .
Theorem 6.12. Let δ ∈ (0, 1) and define

µ =

(
1−
√
δ

1 +
√
δ

)2

µ1 =
√

1− µ2 ρ = exp

(
−πK̄(µ1)

K̄(µ)

)
.

Then the product

∞∏
n=1

(1 + ρrn)(−1)n

converges for all r ∈ N and

Er(δ) = 2ρ
r
4

∞∏
n=1

(1 + ρrn)(−1)n ≤ 2ρ
r
4 .
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Proof. See [10]. �

Theorem 6.12 immediately provides an exponential decay of the error in r.

Corollary 6.13. Let δ ∈ (0, 1) and r ∈ N. Then there holds

∃C ∈ R+ : Er(δ) 4 e
−Cr,

whereas the involved constants only depend on δ.

Proof. Follows directly from Theorem 6.12. �

Since we are now familiar with the solution of (6.11), results can be set in correspondence
with the original min-max problem (6.10).

Lemma 6.14. Let r ∈ N, Zj, j = 1, ..., r, the Zolotarëv points (6.12) on Jl = [a−1, 1] for some
a > 1 and further Jr = [1, a]. Then there holds

min
θ1,...,θr∈Jl

max
x∈Jr

r∏
j=1

∣∣∣∣1− θjx1 + θjx

∣∣∣∣ = max
x∈Jr

r∏
j=1

∣∣∣∣1−Zjx1 + Zjx

∣∣∣∣ .
Proof. Direct computations reveal

max
x∈Jl

r∏
j=1

∣∣∣∣x− θjx+ θj

∣∣∣∣ = max
x∈Jl

r∏
j=1

∣∣∣∣∣ 1
x(x− θj)
1
x(x+ θj)

∣∣∣∣∣
= max

x∈Jl

r∏
j=1

∣∣∣∣∣1− θj 1
x

1 + θj
1
x

∣∣∣∣∣ = max
x∈Jr

r∏
j=1

∣∣∣∣1− θjx1 + θjx

∣∣∣∣ .
It follows that θ1, .., θr ∈ Jl minimize

max
x∈Jl

r∏
j=1

∣∣∣∣x− θjx+ θj

∣∣∣∣
if and only if they minimize

max
x∈Jr

r∏
j=1

∣∣∣∣1− θjx1 + θjx

∣∣∣∣ .
Theorem 6.11 concludes the proof. �

Corollary 6.15. Let r ∈ N and Zj, j = 1, ..., r, the Zolotarëv points (6.12) on Jl. Then

∃C ∈ R+ : max
x∈Jr

r∏
j=1

∣∣∣∣1−Zjx1 + Zjx

∣∣∣∣ 4 e−Cr,
whereas the involved constants only depend on λmax(M−1A).

Proof. Combining the proof of Lemma 6.14 with Corollary 6.13 one obtains

max
x∈Jr

r∏
j=1

∣∣∣∣1−Zjx1 + Zjx

∣∣∣∣ = max
x∈Jl

r∏
j=1

∣∣∣∣x−Zjx+ Zj

∣∣∣∣ 4 e−Cr.
�
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Optimal choice of Vr
We return from the abstract setting to the original problem, finding an upper bound for (6.6).
Define κ := t2, κj := t2j , x := λ2 and further Jl := [λ−1

max, 1], Jr := [1, λmax] in order to apply
Lemma 6.7 to obtain

∀λ ∈ σ̂:

 1

1 + t2λ2
−

r∑
j=1

α̂j
1

1 + t2jλ
2

 ≤ 1

1 + t2λ2

r∏
j=1

∣∣∣∣∣(1− t2jλ2)

(1 + t2jλ
2)

∣∣∣∣∣ . (6.13)

At this point it becomes clear why the snapshots t1, ..., tr have to be chosen with respect to the

interval I = [
√
λ−1
max, 1]. In order to minimize deviation of the error product in (6.13) we need

1− t2jλ2 ≈ 0 and therefore 1
tj
≈ λ ∈ σ̂ = [1,

√
λmax].

Lemma 6.14 suggests the choice of optimal sampling points tj with the property t2j = Zj .
Along with this choice Corollary 6.15 guarantees

∃C ∈ R :
r∏
j=1

∣∣∣∣∣(1− t2jλ2)

(1 + t2jλ
2)

∣∣∣∣∣ 4 e−Cr =: Θ(r)

and therefore

∀λ ∈ σ̂:

 1

1 + t2λ2
−

r∑
j=1

α̂j
1

1 + t2jλ
2

 4 Θ(r)

1 + t2λ2
. (6.14)

Motivated by its induced (asymptotically) optimal convergence rate we define:

Definition 6.16. A reduced space Vr = [v∗(t0), ..., v∗(tr)] ⊆ Vh is called optimal if and only if
its snapshots t0, ..., tr ∈ I satisfy

• t0 = 0,

• ∀j ∈ {1, ..., r} : t2j = Zj with Zolotarëv points Zj on [λ−1
max, 1].

Summarizing the outcomes from above leads to the main result of this section.

Theorem 6.17. Let u ∈ Vh, t ∈ R+ and Vr ⊆ Vh optimal. Then

∀r ∈ N : K2
r (t, u)−K2(t, u) 4

N∑
k=0

u2
k

1 + t2λ2
k

Θ2(r), (6.15)

whereas the involved constants only depend on λmax(M−1A).

Proof. Theorem 6.6 together with (6.14) yields

K2
r (t, u)−K2(t, u) 4

N∑
k=0

(1 + t2λ2
k)

(
1

1 + t2λ2
k

)2

Θ2(r)u2
k

=

N∑
k=0

u2
k

1 + t2λ2
k

Θ2(r).

�
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6.1.2 Error estimates with optimal sampling points

Section 6.1.1 procures an upper bound for the error in the reduced basis K-functional. It
immediately follows

0 ≤ ‖u‖2Bsr − ‖u‖
2
Bs =

∫ ∞
0

t−2s−1(K2
r (t, u)−K2(t, u)) dt

4
N∑
k=0

Θ2(r)u2
k

∫ ∞
0

t−2s−1 1

1 + t2λ2
k

dt.

The problem is that for any s ∈ (0, 1)

∀t ∈ (0, 1]:
t−2s−1

1 + t2λ2
k

=
1

t2s+1(1 + t2λ2
k)
≥ 1

t(1 + t2λ2
k)
,

such that

lim
ε→0

∫ 1

ε
t−2s−1 1

1 + t2λ2
k

dt ≥ lim
ε→0

∫ 1

ε

1

t(1 + t2λk)
dt =∞.

It follows that the integral ∫ 1

0
t−2s−1 1

1 + t2λ2
k

dt

does not exist, while∫ ∞
1

1

t2s+1(1 + t2λ2
k)
dt ≤

∫ ∞
1

1

t(1 + t2λ2
k)
dt ≤ 1

λ2
k

∫ ∞
1

1

t3
dt <∞.

We conclude that estimate (6.15) is sharp enough for t ∈ [1,∞) but not for the case t < 1. This
issue can be overwhelmed by taking v∗(t0) in the rational interpolation problem from Lemma
6.7 into account. By similar techniques we derive another interpolant to gain convergence on
(0, 1).

Theorem 6.18. Under the same assumptions of Theorem 6.17 there holds

∀r ∈ N : K2
r (t, u)−K2(t, u) 4

N∑
k=0

t4λ4
k

1 + t2λ2
k

Θ2(r)u2
k,

whereas the involved constants only depend on λmax(M−1A).

Proof. The proof follows the outline of section 6.1.1. Once more we aim to find an interpolant,
such that (6.6) becomes small, but this time with respect to a slightly adapted interpolation
problem without requiring α0 = 0. The problem reads as: For κ0 = 0 and given κ, κ1, ..., κr ∈ Jl
find q ∈ R̂ with

R̂ :=

[{
f(x) =

1

1 + κjx

∣∣∣∣ j = 0, ..., r

}]
,

such that

∀i ∈ {1, ..., r} : q

(
1

κi

)
= gκ

(
1

κi

)
,

q(0) = gκ(0).
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The solution

q(x) =

r∑
j=0

αj
1

1 + κjx
∈ R̂

satisfies

gκ(x)− q(x) =
1

1 + κx
− α0 −

r∑
j=1

αj
1

1 + κjx
=

p̂(x)

(1 + κx)
r∏
j=1

(1 + κjx)

for some p̂ ∈ Πr+1. One ascertains that

p̂(x) = C(κ)x
r∏
j=1

(1− κjx) with C(κ) = κ
r∏
j=1

κ− κj
κ+ κj

.

It follows for all x ∈ Jr

|gκ(x)− q(x)| = κx

1 + κx

r∏
j=1

∣∣∣∣(κ− κj)(κ+ κj)

(1− κjx)

(1 + κjx)

∣∣∣∣ ≤ κx

1 + κx

r∏
j=1

∣∣∣∣(1− κjx)

(1 + κjx)

∣∣∣∣ .
The rest follows analogously to the previous case. �

This time we obtain

‖u‖2Bsr − ‖u‖
2
Bs 4

N∑
k=0

Θ2(r)u2
k

∫ ∞
0

t−2s−1 t4λ4
k

1 + t2λ2
k

dt

=
N∑
k=0

Θ2(r)u2
k

∫ ∞
0

t3−2sλ4
k

1 + t2λ2
k

dt.

Even though the integral ∫ ∞
0

t3−2sλ4
k

1 + t2λ2
k

dt

does not exist, we gain convergence for t < 1, since∫ 1

0

t3−2sλ4
k

1 + t2λ2
k

dt ≤
∫ 1

0

t3λ4
k

1 + t2λ2
k

dt

≤
∫ 1

0

t3λ4
k

t2λ2
k

dt = λ2
k

∫ 1

0
t dt <∞.

In conclusion we have aimed to establish two different interpolants in order to bound the error in
K2
r on (0, 1) and [1,∞) separately, finally guaranteeing exponential convergence for the reduced

basis interpolation norm.

Theorem 6.19. Let u ∈ Vh and Vr ⊆ Vh optimal. Then

∀r ∈ N ∃C ∈ R+ : ‖u‖2Bsr − ‖u‖
2
Bs 4 ‖u‖2H1e

−Cr,

whereas the involved constants only depend on λmax(M−1A).
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Proof. Theorems 6.17 and 6.18 conclude

‖u‖2Hs
r
− ‖u‖2Hs 4

N∑
k=0

(∫ 1

0

t3−2sλ4
k

1 + t2λ2
k

Θ2(r) dt u2
k +

∫ ∞
1

t−2s−1

1 + t2λ2
k

Θ2(r) dt u2
k

)
.

Substituting with τ = tλk we obtain

‖u‖2Hs
r
− ‖u‖2Hs 4

N∑
k=0

u2
k

(∫ λk

0

τ3−2sλ2s−3
k λ4

k

1 + τ2
Θ2(r)

dτ

λk
+

∫ ∞
λk

τ−2s−1λ2s+1

1 + τ2
Θ2(r)

dτ

λk

)

=
N∑
k=0

λ2s
k Θ2(r)u2

k

∫ λk

0

τ3−2s

1 + τ2
dτ + λ2s

k Θ2(r)u2
k

∫ ∞
λk

τ−2s−1

1 + τ2
dτ

≤
N∑
k=0

λ2s
k Θ2(r)u2

k

(∫ λk

0

τ3−2s

τ2
dτ +

∫ ∞
λk

τ−2s−1

τ2
dτ

)

=

N∑
k=0

λ2s
k Θ2(r)u2

k

(∫ λk

0
τ1−2s dτ +

∫ ∞
λk

τ−2s−3 dτ

)

=
N∑
k=0

λ2s
k Θ2(r)u2

k

(
λ2−2s
k − λ−2s−2

k

)
=

N∑
k=0

Θ2(r)u2
k

(
λ2
k − λ−2

k

)
≤

N∑
k=0

Θ2(r)u2
kλ

2
k = Θ2(r)‖u‖2H1 .

�

Figure 7: Convergence plot of the error in the reduced basis norm.
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A numerical example is performed in order to testify analytical results. Consider the function

u =
m∑
k=0

zk

for some m < N and eigenfunctions (zk)
m
k=0 of (6.1). We study the convergence rate of ‖u‖Hs

r

for increasing r. Due to Theorem 4.17 the value ‖u‖Hs
m

can be taken as exact reference. As
illustrated in figure 7, exponential convergence is confirmed.

6.2 Error estimates for fractional operators

The reduced basis norm satisfies exponential convergence rates in r, granting good chances that
the same holds for the induced operator. Indeed, convergence behavior for the operator directly
follows from the previous section.

Theorem 6.20. Let u ∈ Vh and Vr ⊆ Vh optimal. Then for all r ∈ N there exists a constant
C ∈ R+, such that

∀w ∈ Vh: |〈w, u〉Bs
r(u)
− 〈w, u〉Bs | 4 ‖w‖H1‖u‖2H1e

−Cr,

whereas the involved constants only depend on λmax(M−1A).

Proof. Due to Lemma 5.3 the operator error 〈w, u〉Bs
r(u)
− 〈w, u〉Bs has the following form

wTM

(∫ ∞
0

t−2s−1
[
Vr(Ir − (Ir + t2Ar)

−1)V T
r −M−1 + (M + t2A)−1

]
dt

)
Mu.

One ascertains that the first term cancels out the third.

wTM
(
VrV

T
r −M−1

)
Mu = wT

(
MVrV

T
r MVru−Mu

)
= wT (MVru−Mu) = wT (Mu−Mu) = 0.

Computations of the remaining terms reveal

wT
[
−MVr(Ir + t2Ar)

−1V T
r Mu+M(M + t2A)−1Mu

]
= wT [−Mv∗r +Mv∗] .

All together this yields

〈w, u〉Bs
r(u)
− 〈w, u〉Bs = wT

(∫ ∞
0

t−2s−1 (Mv∗(t)−Mv∗r(t)) dt

)
=

∫ ∞
0

t−2s−1wTM (v∗(t)− v∗r(t)) dt

=

∫ ∞
0

t−2s−1〈w, v∗(t)− v∗r (t)〉L2 dt.

Together with the Cauchy-Schwarz inequality one obtains

|〈w, u〉Bs
r(u)
− 〈w, u〉Bs | ≤

∫ ∞
0

t−2s−1|〈w, v∗(t)− v∗r (t)〉L2 | dt

≤
∫ ∞

0
t−2s−1‖w‖L2‖v∗(t)− v∗r (t)‖L2 dt.
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Due to remark 6.5 there holds for all t ∈ R+

‖v∗(t)− v∗r (t)‖L2 ≤ ‖v∗(t)− v∗r (t)‖L2 + t2‖v∗(t)− v∗r (t)‖H1 = K2
r (t, u)−K2(t, u)

and thus

|〈w, u〉Bs
r(u)
− 〈w, u〉Bs | ≤ ‖w‖L2

∫ ∞
0

t−2s−1
(
K2
r (t, u)−K2(t, u)

)
dt

= ‖w‖L2(‖u‖2Bsr − ‖u‖
2
Bs)

4 ‖w‖H1‖u‖2H1e
−Cr.

�

Remark 6.21. Due to equivalence of the norms, convergence analysis from above also holds
for the Hilbert case.
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7 Numerical examples
In the subsequent, tools provided in previous chapters are examined and testified by means of
the open source finite element packages Netgen and NGSolve, see [14] and [15]. Consider the
Fractional Cahn-Hilliard Equation from chapter 2 on Ω = [−π, π]2:

∀(x, t) ∈ Ω× (0, T ]:
∂u

∂t
(x, t) + (−∆)s(−ε2∆u(x, t) + f(u(x, t))) = 0,

∀t ∈ (0, T ]: u(., t) is 2π-periodic,

∀x ∈ Ω: u(x, 0) = u0(x),

with f(u) = u3 − u and its weak formulation: Find u ∈ L2([0, T ], H1+s
per (Ω)), satisfying

∀v ∈ H1+s
per (Ω) : 〈∂u

∂t
, v〉L2 + 〈ε2(−∆)

1+s
2 u, (−∆)

1+s
2 v〉L2 + 〈f(u), (−∆)sv〉L2 = 0, (7.1)

such that initial conditions are satisfied. Finite element discretization results in the system of
ODEs

Mu′ + ε2M(M−1Â)1+su+M(M−1Â)sF (u) = 0

⇐⇒ u′ + ε(M−1Â)1+su+ (M−1Â)sF (u) = 0. (7.2)

This system can be solved efficiently by so called splitting methods in which the non-linear
operator is decoupled from the regular Laplacian. The linear parabolic equation is solved
directly on the low dimensional reduced space, while the nonlinear equation is treated with an
explicit time stepping method.

7.1 Splitting methods

We give a short introduction to fundamental concepts of splitting methods, justifying the further
course of action. Consider the ordinary differential equation

u′ +Au+Bu = 0 (7.3)

with initial condition u′(0) = u0 and linear operators A and B. By means of the matrix
exponential function the solution of (7.3) is given by

u(t) = e−t(A+B)u0.

The concept of splitting methods is based on the consideration

e−t(A+B)u0 ≈ e−tAe−tBu0,

referring to the combined evolution of the simpler equations

u′ +Au = 0 u′ +Bu = 0.

Only for commutating operators this leads to the exact evolution of (7.3), otherwise one can
show that

e−τ(A+B)u0 − e−τAe−τBu0 = O(τ2)

for general bounded operators A and B. Theory becomes more difficult as soon as nonlinear or
rather unbounded operators are included, nevertheless basic concepts remain the same.
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7.1.1 Lie-Trotter splitting for FCHE

We apply the approach from above to (7.2) in its simplest form by means of Lie-Trotter splitting
techniques. Decoupling of the equations leads to the linear, parabolic ODE

u′ + ε2(M−1Â)1+su = 0

and its nonlinear pendant

u′ + (M−1Â)sF (u) = 0.

We establish the reduced basis approximations

u′ + ε2(M−1Â)1+s
r u = 0, (7.4a)

u′ + (M−1Â)srF (u) = 0. (7.4b)

The solution u(t) of (7.4a) is given by the matrix exponential function

u(t) = exp(−tε2(M−1Â)1+s
r )u0

and can be computed exactly on the low dimensional space Vr. One observes

u′ + ε2(M−1Â)1+s
r u = 0 ⇐⇒ u′ + ε2VrÂ

1+s
r V T

r Mu = 0

⇐⇒ Vru
′ + ε2VrÂ

1+s
r V T

r MVru = 0.

Multiplication V T
r M form the left together with Mr = V T

r MVr = Ir yields

u′ + ε2(M−1Â)1+s
r u = 0 ⇐⇒ u′ + ε2Â1+s

r u = 0

⇐⇒ u′ + ε2ZrΛ
1+s
r ZTr u = 0.

The exact flow of this ODE on Vr is given by

u(t) = exp(−tε2ZrΛ
1+s
r ZTr )u

0
= Zr exp(−tε2Λ1+s

r )ZTr u0
.

There is now need to apply time stepping methods: The reduced basis operator projects the
entire ODE to the low dimensional space where the exact evolution can be determined by means
of the small eigen-system on Vr.

For the nonlinear ODE (7.4b) time stepping methods are required, giving rise to the question
whether explicit or implicit techniques should be deployed. The fractional Laplacian suggests
an implicit procedure, requiring the solutions of nonlinear equations or rather an explicit rep-
resentation of the matrix

(M−1Â)sr(·)

independent of its input argument. This can not be provided by the tools established in previous
chapters. In order to overcome this inconvenience as well as the non-linearity of the operator
F (·) we will consider explicit schemes only. The most simple procedure to do so is given by the
explicit Euler method

un+1 − un
τ

+ (M−1Â)srF (un) = 0 ⇐⇒ un+1 = un − τ(M−1Â)srF (un).

The approach from above is summarized in the following way. For given un ≈ u(tn) and time
step τ > 0 generate un+1 by

• computing
ũn+1 = VrZr exp(−τε2Λ1+s)ZTr V

T
r Mun,

• applying an explicit Euler step to obtain

un+1 = ũn+1 − τ(M−1Â)srF (ũn+1).
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7.2 Mass preservation on the reduced space

Before the first experiment is performed, some further theoretical considerations need to be
taken into account. Analogously to Lemma 2.3 mass conservation is also valid for the finite
element setting. The choice v ≡ 1 ∈ Vh ⊆ H1

per(Ω) ensures that the solution u ∈ Vh satisfies

∂

∂t

∫
Ω
u(x, t) dx = 0.

In general this does not hold for the reduced space case. If constant functions are not contained,
the choice v ≡ 1 is not feasible, yielding that the Fractional Cahn-Hilliard Equation does not
preserve mass on Vr. Problems of this kind can be easily dispatched by extending the reduced
basis by a constant function, ensuring that mass conservation is obtained.

We are finally able to conduct a first numerical example in order to verify considerations from
above and test the reliability of our implementation.

(a) s = 0.1 (b) s = 0.3 (c) s = 0.5 (d) s = 0.7

Figure 8: Evolution of the solution of FCHE for different fractional powers s with dim(Vr) = 9,
including constant functions, and initial condition u0. Configurations from top to
bottom at t = 5, 20, 50, 80.
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Example: We simulate the fusion of two tangential bubbles, represented by the initial condition

u0(x) =

{
1, if (x+ 1)2 + y2 ≤ 1 or (x− 1)2 + y2 ≤ 1

−1, else

with ε = 1
10 . The impact of changing fractional powers on the solution’s characteristic is

illustrated in figure 8. For all s ∈ (0, 1] mass conservation can be observed. In all conducted
tests both bubbles merge to one large circular shape, such that a steady state is obtained. The
rate at which this stationary state is achieved differs in the value of s. The larger s the faster
transition takes place. This phenomenon is plausible since the proof of Lemma 2.6 suggests that
the rate of change in the energy increases for raising fractional orders.

7.3 Coarsening dynamics of FCHE

Phase separation of a perturbed binary mixture, such as oil droplets in water, is simulated.

(a) φ = 0.25 (b) φ = 0.5 (c) φ = 0.75

Figure 9: Solutions of FCHE for various configurations φ and fractional orders s at T = 5 with
the same random initial perturbation and ε = 4

100 . Top to bottom: s = 0.2, 0.5, 0.8.
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Example: Consider a binary alloy set to a constant state ū = 1 − 2φ endued with a uniform
disturbance in [−0.2, 0.2]. The coarsening dynamics is surveyed with respect to the exponent s
and the composition φ in figure 9.

Similar behaviors can be observed for φ = 0.25 and φ = 0.75. The respective components
tend to form circular shaped droplets while in the case of equally composed mixtures an even
behavior is studied. Small fractional powers refer to rather subtle formations, whereas large s
come along with more connected and structured forms. Similar results have been observed in
[1].
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8 Conclusion and outlook

Summary

In this thesis an alternative approach for fractional diffusion operators has been established.
We have considered two different approaches for space interpolation with respect to the Hilbert
interpolation couple (L2(Ω), H1(Ω)) in a finite element setting. The Banach setting gives rise
to a natural choice of a reduced space Vr, providing all the essential information in order
to introduce the reduced basis norm. Along with an optimal choice of the sampling points
exponential convergence in dim(Vr) has been proofed. Computations are carried out in the
Hilbert space setting, such that only a small eigen-system has to be determined.

The reduced basis interpolation norms induce fractional operators, providing computationally
appealing approximations for the associated fractional operator actions. Again, exponential
convergence rates are confirmed. An efficient interaction between reduced basis operators and
the matrix exponential function has been deployed. This enables us to project arising linear,
parabolic ODEs to the low dimensional space Vr, where they are solved exactly.

Outlook

The present construction of the reduced space involves the choice of sampling points tj ∈ I
by means of the Zolotarëv points. This approach does not respect any hierarchical structures,
making manipulations of both r and mesh-size h computationally costly. One could aim to
derive an adapted selection procedure which provides successive composition of the reduced
basis, granting that computations can be spared as dimension of Vr increases or substantial
manipulations in h are performed.

Moreover, it is desirable to examine our approach in context with other differential operators,
equations and higher dimensions. All of this requires the coupling of the deployed reduced basis
method with feasible preconditioners, being of great interest for further experiments.

55



References
[1] AINSWORTH, Mark; ZHIPING, Mao: Analysis and approximation of a fractional Cahn-

Hilliard Equation - ISSN(online) 1095-7170

[2] ALVES, M., OLIVA, S.: An extension problem related to the square root of the Laplacian
with Neumann boundary condition, Electronic Journal of Differential Equations, Vol. 2014
(2014), No. 12, pp. 1–18. - ISSN: 1072-6691

[3] ARNOLD, Anton: Variationsrechnung, 2018
https://www.asc.tuwien.ac.at/ arnold/lehre/variationsrechnung/var-rechn.pdf
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[15] SCHÖBERL, Joachim: NETGEN An advancing front 2D/3D-mesh generator based on ab-
stract rules, In: Computing and Visualization in Science 1 (1997), Nr. 1, S. 41–52
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[21] ZOLOTARËV, E. I.: Collected works, St.-Petersburg Academy of Science, St.-Petersburg
1877 (Russian)

57


