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Abstract 
This paper provides innovative and effective instruments for the simplified 
analysis of serviceability limit states for pitched, kinked, and tapered GLT beams. 
Specifically, formulas for the evaluation of maximal horizontal and vertical 
displacements are derived from a recently-proposed Timoshenko-like non- 
prismatic beam model. Thereafter, the paper compares the proposed servicea-
bility analysis formulas with other ones available in literature and with highly- 
refined 2D FE simulations in order to demonstrate the effectiveness of the pro-
posed instruments. The proposed formulas lead to estimations that lie mainly 
on the conservative side and the errors are smaller than 10% (exceptionally up 
to 15%) in almost all of the cases of interest for practitioners. Conversely, the 
accuracy of the proposed formulas decreases for thick and highly-tapered 
beams since the beam model behind the proposed formulas cannot tackle lo-
cal effects (like stress concentrations occurring at bearing and beam apex) that 
significantly influence the beam behavior for such geometries. Finally, the pro-
posed formulas are more accurate than the ones available in literature since 
the latter ones often provide non-conservative estimations and errors greater 
than 20% (up to 120%). 
 
Keywords 
Serviceability Analysis, Non-Prismatic Timber Beams, Tapered Beams, 
Pitched Beams, Maximal Displacements 

 

1. Introduction 

Nowadays, the usage of non-prismatic beams and pillars within GLT struc-
tures is a quite common practice in timber engineering since it allows for an 
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efficient utilization of the material and, therefore, a more economical design. 
This trend benefits also from the technologies adopted in modern production 
plants that allow to easily obtain structural elements with complex geometries 
without significant increase of the production costs. Conversely, such opti-
mized structural elements have to be designed carefully, otherwise the design 
optimization and the production effort are not paying off. In particular, in or-
der to obtain an effective design, the modeling tools must accurately tackle two 
fundamental aspects: the mechanical properties of wood and the effects of beam 
geometry. 

Regarding the mechanical properties of wood, its natural orthotropy causes 
the wooden elements to be extremely stiff and strong along the grain while the 
low stiffness and strength of wood perpendicularly to the fiber could represent a 
weak spot, maybe responsible for the premature failure of the structural element. 
Furthermore, the material orthotropy leads to significant shear deformations (also 
within slender elements) which, therefore, should always be considered within 
the design process [1]. Finally, looking at the design of wooden structures, the 
high ratio between the wood strength and stiffness leads the serviceability limit 
states to be often more restrictive than the ultimate limit states. 

Concerning the effects of beam geometry, the variation of the cross-section 
size and shape causes the shear stress distributions within the cross-section to 
be substantially different from the prismatic beams [2]. Furthermore, the non- 
prismatic geometry induces significant stress orthogonal to the beam axis. Last 
but not least, both shear and orthogonal stresses could concentrate close to the 
cross-section boundaries. Such a problematic is known since the first half of the 
past century thanks to the analytic results discussed in [3] [4], which provide 
the solution of equilibrium partial differential equations—i.e., the stress distri-
bution—for an infinite long wedge loaded in the apex. Later on, Krahula [5] ge-
neralized the analytic results to linearly-tapered beams of arbitrary material whe-
reas Riberholt [6] exploited the analytic results in order to predict stress distri-
bution within tapered timber beams, proposing a former method for the simpli-
fied analysis of ultimate limit states of these particular beams. The effects of non- 
trivial stress distribution on beam failure were also extensively discussed in stan-
dard [1] [7] and advanced [8] literature and incorporated in most of national 
and international technical rules [9] [10]. 

Unfortunately, the effects that the mentioned stress distribution has on dis-
placements and stiffness of non-prismatic structural elements have not received 
a similar attention. In fact, also nowadays, the displacement analysis of non- 
prismatic beams are based on Euler-Bernoulli or Timoshenko beam ODEs in 
which cross-section area and inertia are tackled as parameters varying along the 
beam axis [7] [11] [12] [13]. Unfortunately, these modeling approaches are not 
able to tackle the complex stress distribution’s effects and lead to unsatisfactory 
results as noticed since the sixties of past century [14] [15] [16]. 

The situation worsens considering FE modeling since non-prismatic beams 
are often approximated with a sequence of beam elements with piecewise-cons- 



G. Balduzzi et al. 
 

34 

tant thickness [17] [18]. Unfortunately, this approach introduces further ap-
proximation errors and even increases the computational efforts without any 
real benefit for the model accuracy [15]. As a consequence, several researchers 
suggest the usage of 2D or 3D FE in order to obtain accurate stiffness and dis-
placement descriptions [19]. Unfortunately, the full FE discretization is not so 
common in timber engineering practice due to the approach complexity and the 
corresponding high computational cost (if compared with standard beam FE). 
Instead, simplified approaches dominate the design process despite their incon-
sistency and the coarse predictions contrast with the need of accurate servicea-
bility analysis and the optimization goals [20]. As a consequence, the effective 
modeling of non-prismatic structural elements remains a research field opened 
to new contributions. 

In recent years, several non-prismatic beam models have been proposed in an 
attempt to overcome the so far discussed problematic [21] [22] [23] [24]. Un-
fortunately, the most of them suffer from severe limitations e.g., they can tackle 
only symmetric and linearly tapered beams, present energy inconsistency, or 
lead to extremely complicated equations. In a recent work, Balduzzi et al. [25] 
proposed a simple Timoshenko-like model that overcomes the so far introduced 
problems. In particular, global equilibrium and compatibility ODEs can tackle 
also planar beams with complex geometry. Furthermore, the stress distribution 
within the cross-section satisfies boundary and internal equilibrium, recovering 
the analytic results discussed in [3] for simple geometry. Finally, the constitutive 
relations allow to catch the effects produced by non-trivial stress distribution 
and geometry on beam’s stiffness and displacements. Thereafter, the paper pro-
vides also analytic solution of the governing ODEs for simple geometries and 
several numerical examples, demonstrating that the model is effective and accu-
rate. Later on, Balduzzi et al. [26] exploited the ODEs analytic solution for the 
evaluation of maximal displacements of several cambered GLT beams, indicat-
ing that the proposed beam model could be an effective tool for the serviceability 
analysis of non-prismatic GLT beams. 

On the basis of such a work, this paper aims at i) detailing the derivation of 
formulas capable to estimate quantities of interest for practitioners during the 
serviceability limit state analysis; ii) validating the obtained results through the 
systematic comparison with other formulas existing in literature and with high-
ly-refined numerical solutions for a large number of cases of practical interest, 
and iii) demonstrating that the proposed instruments significantly increase the 
accuracy of the serviceability states analysis. 

The paper is structured as follows: Section 2 briefly resumes beam model’s 
ODEs; Section 3 derives the formulas for the evaluation of maximal displace-
ments, introduces the other ones available in literature, and compares them 
from a theoretical point of view; Section 4 describes the validation campaign; 
Section 5 compares the results obtained with different methods and highly re-
fined 2D FE analysis; and Section 6 resumes main advantages and weak spots of 
the proposed approach and delineates further research developments. 
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2. Timoshenko-Like Beam Model 

This section recaps the Timoshenko-like beam model ODEs derived by Balduzzi 
et al. [25] and their analytic solution. Readers may refer to [25] for further de-
tails on the beam ODEs derivation and discussion. 

The beam behaves under the hypothesis of small displacements and plane 
stress state and is made of a homogeneous and linear-elastic material. We in-
troduce the beam length l, the beam longitudinal axis, [ ]{ }: 0,L x l= ∈ , the beam 
center line :c L →  , and the cross-section height :h L +→   (where +  in- 
dicates strictly positive real values). 

The cross-section lower and upper boundaries, , :l uh h L →   are defined as 
follows 

( ) ( ) ( ) ( ) ( ) ( )1 1: ; :
2 2l uh x c x h x h x c x h x= − = +            (1) 

and the 2D problem domain Ω  is defined as follows 

( ) ( ) ( ){ }: , ,l ux y x L y h x h xΩ = ∀ ∈ → ∈                (2) 

Figure 1 represents the 2D domain Ω , the adopted Cartesian coordinate 
system Oxy , the lower and upper boundaries ( )ly h x=  and ( )uy h x= , the 
center line ( )y c x= , and a generic cross-section ( )A x . 

We assume that the lower and upper boundaries ( )lh x  and ( )uh x  are un-
loaded. Being 2 2: s

×Ω → σ  the 2D symmetric stress tensor and 
T 2, :x y l un n h h = ∪ →  n  the outward unit vector, the equilibrium on lower 

and upper boundaries reads ( ) 0
l uh h∪

⋅ =σ n . Using the unit vector definition 

( )
( )

2

1
11

h x

h x

′ 
= ±  

−′+  
n                    (3) 

and the boundary equilibrium, we can express the shear stress τ  as a function 
of the axial stress xσ  

x
x x

y

n
h

n
τ σ σ′= − =                      (4) 

where h  represents either ( )lh x  or ( )uh x , depending on the point where we 
are evaluating the boundary equilibrium and the notation ( )′⋅  means the deriv-
ative with respect to the independent variable x . 
 

 
Figure 1. Generic, 2D beam geometry, coordinate system, dimensions and 
adopted notations. 
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Finally, for convenience, we introduce the linear function ( )b y  defined as 

( )
( )( )
( )

2 c x y
b y

h x
−

=                           (5) 

2.1. Ordinary Differential Equations of Beam Model 

The non-prismatic Timoshenko-like beam model uses the kinematics usually 
adopted for prismatic Timoshenko beam models (i.e., the cross-section is rigid 
in its plane and can rotate with respect to the center line). Therefore, the dis-
placement field 2:Ω→ s  can be approximated as follows 

( ) ( )
( )

( ) ( ) ( ) ( )

( )

,
, 2,

x

y

h xs x y u x b y xx y
s x y

v x

ϕ
 

  −   = ≈   
    

 



s              (6) 

where :u L →   is the center-line horizontal displacement, : Lϕ →   is the 
cross-section rotation, and →Lv :  is the center-line vertical displacement. 

The beam compatibility is expressed through the following ODEs 

( ) ( ) ( ) ( )
( ) ( )
( ) ( ) ( )

0 x u x c x x
x x
x v x x

ε ϕ
χ ϕ
γ ϕ

′ ′= −
′=
′= +

                    (7) 

where the horizontal deformation ( )0 xε , the curvature ( )xχ , and the shear 
deformation ( )xγ  represent the generalized deformations. 

We introduce the internal forces i.e., the horizontal internal force ( )H x , the 
resulting bending moment ( )M x , and the vertical internal force ( )V x , re-
spectively defined as follows 

( ) ( )
( ) ( ) ( ) ( )

( ) ( )

( ) ( )
( ) ( ) ( ) ( )

, d ;    , d

, d
2

u u

l l

u

l

h x h x
xh x h x

h x
xh x

H x x y y V x x y y

h x
M x x y b y y

σ τ

σ

= =

=

∫ ∫

∫ 

 

Being , , :q m p L →  , :m L →  , and :p L →   the horizontal, bending, 
and vertical resulting loads, respectively, the beam equilibrium reads 

( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( )

H x q x
M x H x c x V x m x
V x p x

′ = −
′ ′+ ⋅ − = −
′ = −

              (8) 

Given the cross-section lower lh  and upper uh  boundary definitions (1) and 
the relations resulting from boundary equilibrium (4), the cross-section stress 
distributions can be expressed as 

( ) ( ) ( ) ( )0 1,x x xx y x b y xσ σ σ= +                                (9a) 

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2
0 0 1

2
0 1

3, 1
2 2

1 3  
2 2 2

x x

x x

h x
x y b y x x c x x b y

h x
c x x x b y

τ τ σ σ

σ σ

′ 
′= − − − 

 
′  ′+ − − +  

  

 



   (9b) 
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with 

( ) ( )
( ) ( ) ( )

( )
( ) ( )

( )0 1 02

6; ;x x

H x V x
x x M x x

h x h xh x
σ σ τ= = = −  

For the constitutive relations derivation, we consider the following simplified 
expression of stress potential 

( ) ( )2 2
* , ,1

2
x

x xy

x y x y
E G

σ τ 
Ψ = +  

 
                 (10) 

where xE  and xyG  denote Young’s and shear modulus. 
Substituting the stress recovery relations (9) into Equation (10), the beam 

constitutive relations can be obtained by 

( ) ( )
( )

( ) ( ) ( )
( )

( ) ( ) ( )
( )

( )
* * *

0 d ; d ; du u u

l l l

h x h x h x

h x h x h x
x y x y x y

N x M x V x
ε χ γ∂Ψ ∂Ψ ∂Ψ

= = =
∂ ∂ ∂∫ ∫ ∫  

finally leading to the following expression of the beam constitutive relations 

( )
( )
( )

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

( )
( )
( )

0 H M V

H M V

H M V

x x x x H x
x x x x M x
x x x x V x

ε ε ε ε
χ χ χ χ
γ γ γ γ

     
    =    
         

          (11) 

where 

( ) ( )
( )

( )
( ) ( )

( ) ( ) ( ) ( )
( )

( ) ( ) ( )
( )

( ) ( )
( )

( )
( ) ( )

( ) ( ) ( )
( )

( ) ( )

2 2

2

2 2

3 3 3

2

1
5 12

8
;

55

9 12 12
5

3 6;
55

H
xy xy x

M H V H
xyxy

M
xy xy x

V M V
xyxy

c x h x
x

G h x G h x E h x

c x h x c x
x x x x

G h xG h x

h x c x
x

G h x G h x E h x

h x
x x x

G h xG h x

ε

ε χ ε γ

χ

χ γ γ

 ′ ′
= + +  
 

′ ′ ′
= = − = = −

 ′ ′
= + +  
 

′
= = =

 

2.2. Analytical Solution of Beam Model ODEs 

Substituting the constitutive relations (11) into the compatibility Equation (7) 
gives us the beam model ODEs in the following compact form 

( )
( )
( )
( )
( )
( )

( )

( )

( )
( )
( )
( )
( )
( )

( )
( )
( )

0 0 0
0 0 0

1 0
=

0 0 0 0
1 0 0 0

0 0 0

H V M

H V M

H V M

H x H x q x
V x V x p x

c xM x M x m x
x x

v x v x
c xu x u x

χ χ χϕ ϕ
γ γ γ
ε ε ε

′      
      ′      
    ′  ′ −     −      ′       

      ′
      

′′ −            

0

   (12) 

Since the matrix that collects equations’ coefficients has a lower triangular 
form with vanishing diagonal terms, the ODEs’ analytic solution can easily be 
obtained through an iterative procedure of row by row integration, starting from 

( )H x  and arriving at ( )u x . The resulting homogeneous solution of the beam 
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model ODEs (12) is provided in Appendix A. Since the beam model is consti-
tuted by 6 first-order ODEs, the homogeneous solution depends on 6 parameters 
( 1C , 2C , 3C , 4C , 5C , and 6C , respectively) depending on the boundary con-
ditions. With an analogous procedure, but considering a constant vertical load 
( )p x p= , it is possible to obtain the particular solution provided in Appendix 

B. 

2.3. Highlights on Beam Model’s Capabilities and Limitations 

It is worth noticing the following aspects deeply influencing the so far intro-
duced beam model effectiveness. 
• The model equations (i.e., compatibility (7), equilibrium (8), and constitutive 

relations (11)), highlighted with a box in Section 2.1, provide a consistent 
description of internal forces, stresses, deformations, and displacements pro- 
perly accounting for the non-trivial geometry effects. Conversely, as already 
discussed in Section 1, the models available in literature are often incomplete 
or based on inconsistent assumptions. Therefore, they can provide only par-
tial and not-satisfactory descriptions of the complex phenomena that occur 
within a non-prismatic beam. As an example, models that describe cross- 
section stress distribution [6] do not provide information about displace-
ments whereas models that provide information on displacements [7] neglect 
the effects of cross-section stress distribution. 

• Referring to the simplified stress potential (10), the proposed model does not 
account for all the terms of the 2D stress potential, but only for the terms 
strictly related to axial and shear stresses. This choice allows for a significant 
reduction of the model complexity, but, conversely, it brings some limita-
tions when this model is applied to beams with rapid variation of the cross- 
section or significant slope of the center line (i.e., , 1l uh h ≈ ). Fortunately, 
the beams’ geometries that could be affected by significant errors are very 
rare in timber construction. 

• According to the adopted kinematics and stress representation, the intro-
duced beam model has not the capability to tackle boundary effects. In par-
ticular, the proposed stress representation Equation (9) is valid only suffi-
ciently far from initial and final cross-sections, corners (like the apex of a 
double pitched beam), and zones where concentrated loads are applied. 

3. Formula for the Evaluation of Maximal Displacements 

This section exploits the homogeneous and particular solutions derived in Sec-
tion 2 to analytically evaluate the maximal displacements of GLT non-prismatic 
beams. Furthermore, the analytic results are compared with displacement solu-
tions available from the literature to show the performance of the proposed model 
with respect to design’s state of art. 

3.1. GLT Beam’s Geometry and Mechanical Properties Definitions 

Considering the symmetric beam depicted in Figure 2, we introduce the follow-
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ing non-dimensional parameters 

0 0 0

; ;aph l
h h h

α β λ∆
= = =                 (13) 

The additional geometrical parameters that characterize the beam geometry 
are defined as 

( )

( )
( )0

0

2 2tan

2 1tan 2

1 12
2 12 2

l

ap
u

ap

l
h h

l

h h
c

l

βθ
λ

β αθ
λ

β α
λ

∆
= =

∆ + − + −
= =

 ∆ + −  + − ′ = =

           (14) 

Assuming 1α >  and 0β =  a pitched beam (see Figure 3(a)) is obtained, 
whereas assuming 1α >  and 0β > , we obtain a generic tapered beam (see 
Figure 3(b)). Furthermore, setting 1α =  and 0β >  a kinked beam is obtained 
(see Figure 3(c)), whereas setting 1α >  and 
 

 
Figure 2. Beam considered for the derivation of simplified formulas: geometry definition, 
dimensions, adopted notations, boundary conditions, and loads. 
 

   
(a)                                   (b) 

   
(c)                                   (d) 

Figure 3. Typical GLT beam geometries that the proposed formulas can tackle. (a) 
Pitched beam 1α >  and 0β = ; (b) Tapered beam 1α >  and 0β > ; (c) Kinked 

beam 1α =  and 0β > ; (d) Double-pitched beam ( )1 1
2

β α= − − . 
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( )1 1
2

β α= − −  

we obtain a double-pitched beam (see Figure 3(d)). Finally, assuming 1α =  
and 0β =  the prismatic beam geometry is recovered. 

The main parameters defining the mechanical response of wood are (i) the 
elastic modulus along the fiber direction 0E , (ii) the elastic modulus perpendi-
cular to the fiber direction 90E , (iii) the Poisson’s coefficient ν , and (iv) the 
shear modulus G . These properties are related to the Young’s modulus xE  
and shear modulus xyG  to be used within the beam constitutive relations (12) 
through the following expressions 

( )( ) ( )( )

( ) ( )( )( )

2 2

0

90

cos 2 1 sin 2

4 4
1 cos 2

cos 2 2 1 2 1
4

f f
x

f
f

E E G

E

θ θ

θ
θ ν ν

+
= +

−
+ − + +

              (15a) 

( )( ) ( )( ) ( ) ( )( )2 2 2

0 90sin 2 sin 2 1 2 cos 2xy f f fG E E Gθ θ ν θ= + − +    (15b) 

where fθ  is the angle between the wood fiber direction and the horizontal axis 
x , as depicted in Figure 2. The Young’s xE  and shear xyG  moduli (15) are 

extrapolated from the rotated stiffness matrix defining the constitutive relations 
of the orthotropic material, assuming that 2

90 0 0E Eν ≈  ([27], Chapter 2). 

3.2. Derivation of Simplified Formulas 

In the following we evaluate the maximal displacements of non-prismatic GLT 
beam. In particular, we exploit the symmetry of the beam illustrated in Figure 2 
in order to further simplify the problem. Therefore, we consider only the left half 
of the beam, imposing the following boundary conditions. 

( ) ( ) ( )0 0; 0 0; 0 0; 0; 0; 0
2 2 2
l l lN M v T u ϕ     = = = = = =     

     
  (16) 

It is worth noticing that the boundary condition on horizontal displacements 
so far introduced disagrees with the constraints represented in Figure 2. Never-
theless, trivial calculations allow to recover the real displacement. 

Asking the analytic solution reported in Appendices A and B to satisfy the 
boundary conditions (16), it is possible to determine the six coefficients iC  for 

1 6i =   which are reported in Appendix C. Finally, the substitution of their 
values into the homogeneous solution leads to determine the analytic expres-
sions of all the generalized quantities ( )u x , ( )v x , ( )xϕ , ( )N x , ( )V x , and 

( )M x  that we do not report for brevity. 

3.3. Maximal Vertical Displacement 

The maximal vertical displacement is one of the most significant parameters in 
serviceability states analysis. In the following, we compare the evaluation of such 
a quantity, done with the theory proposed in the present paper and with several 
other approaches available in literature. 
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3.3.1. Proposed Model 
The maximal vertical displacement mv , occurring at the beam’s middle-span 
( )2v l  is expressed as the sum of a bending and a shear contribution 

4 2

3
00

5 12 1 6
2 384 8 5

v v
m pE pG

x xy

l pl plv v k k
E G h bh b

 = = − − 
 

           (17) 

According to the model proposed in this paper, the bending and the shear 
coefficients, v

pEk  and v
pGk  are as follows 

( )( )
( )

( )
( )

( )

( )
(

)

2 3 2

42

3 2 2 2 2
4

4 3 2 2 3 2
32

2 2 2

2 ln 2 1 8 11 4 16
5 1

ln
8 20 20 13 10 10 2 10 3

1
1  29 80 80 69 110

2 1

  30 55 40 10 19 10 4

v
pE

v
pG

k

k

α α α α α α

α α

α
α α β αβ α αβ β α β

α

α α β α β α α β
α α

αβ α αβ β α β

+ − + − +
=

−

= + + − − + + − +
−

− + + − −
−

− + + + − − +

 (18) 

It is worth noticing that the bending coefficient v
pEk  does not depend on 

β , while the shear coefficient v
pGk  depends on both coefficients α  and β . 

Figure 4 shows the values of coefficients v
pEk  and v

pGk  evaluated for different 
α  and β  and it allows to recognize the effects of the beam rise ∆  on the to-
tal displacements. In particular, as expected for a prismatic beam (i.e., 1α =  
and 0β = ), 1v v

pE pGk k= = , confirming that the proposed beam model has the 
capability to recover the maximal displacements of a prismatic beam. Further-
more, for a kinked beam (see Figure 3(c)) with a rise equal to the height of the 
beam at the bearing (i.e., 1α =  and 1β = ), the shear contribution is 5 times 
bigger than the one obtained considering a prismatic beam. In other words, the 
beam rise ∆  deeply influences the beam behaviour and the proposed formula 
(17) has the capability to tackle this phenomena. Finally, the plot ( )1 2β α= − , 
corresponding to the double-pitched beam (see Figure 3(d)), represents the 
 

 

Figure 4. Maximal vertical displacement coefficients v
pEk  and v

pGk  evaluated for different values of α  and β . 
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minimum of all the possible plots. Therefore, we can conclude that the double- 
pitched beam represents the stiffer geometrical configuration for a non-prismatic 
beam. 

3.3.2. Comparison with Results from the Literature 
Schneider and Albert [28] propose the following formula for the evaluation of 
the maximal vertical displacement 

4 2
* * *

3
0 00

5 12 1 6
2 384 8 5

v v
m pE pG

l pl plv v k k
E Gh bh b

 = = − − 
 

           (19) 

where the coefficients *v
pEk  and *v

pGk  are defined as 

* *
2 3

3

1 2;
0.85 10.15

v v
pE pGk k

αα
α

= =
+ + 

 

             (20) 

These equations are used, among others, by Piazza et al. [1] and Angelis [29]. 
Ozelton and Baird [7] propose an approach similar to (19), providing differ-

ent formulas for the evaluation of the coefficients *v
pEk  and *v

pGk . Nevertheless, 
the numerical values of the coefficients reported in [7] coincide with the ones 
coming from Equation (20) for all the values of α  of practical interest. There-
fore, since the so far introduced approaches are equivalent, we do not report the 
formula provided by Ozelton and Baird [7] for brevity. Obviously, conclusions 
and remarks done for [28] are valid also for [7]. 

A further formula for the evaluation of maximal displacement was proposed 
by Porteous and Kermani [13], reading 

4 2
** ** **

3
0 00

5 12 1 6
2 384 8 5

v v
m pE pG

l pl plv v k k
E Gh bh b

 = = − − 
 

          (21) 

where the coefficients **v
pEk  and **v

pGk  are defined as 

( ) ( )
**

3 2

**

19.2 2 1 3 22 ln 4
1 2 11 1

4 1 1ln 1
1 1 2

v
pE

v
pG

k

k

α α
α αα α

α α
α α

 + +  = + − −  − + − + 
 + + = −  − −   

         (22) 

It is worth having a closer look at the modeling approaches underlying the so 
far introduced formulas. As illustrated by Ozelton and Baird [7], Equation (19) 
is based on a model that considers only the variation of cross-section area and 
inertia. As already noticed in Section 1, this approach is affected from heavy li-
mitations that lead to coarse estimations. Furthermore, Equations (19) and (21) 
are derived considering a pitched beam (Figure 3(a)). Nonetheless, all the books 
and manuals cited within this section assume that the same coefficients can be 
considered valid for all the possible non-prismatic beam geometries depicted in 
Figure 3, neglecting the effects of the beam rise ∆ . Obviously, this assumption 
results to be inadequate looking at Figure 4. Finally, Equation (17) accounts for 
the real fiber orientation within the beam through xE  and xyG  definition (15). 
On the contrary, Equations (19) and (21) use directly the mechanical properties 
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of the material 0E  and G , resulting therefore less rigorous. 
Figure 5 shows a comparison between the coefficients v

pGk  (Equation (18)) 
evaluated for pitched and double-pitched beams, *v

pGk  (Equation (20)), and *v
pGk  

(Equation (22)), respectively. It is worth highlighting that v
pGk  varies signif-

icantly considering a double-pitched beam (i.e., ( )1 2β α= − ) and a pitched 
beam (i.e., 0β = ). Specifically, v

pGk  for the double-pitched beam can easily be 
the half of the coefficient for the pitched beam, confirming that the parameter 
β  has a crucial role in determining the real beam displacements. Conversely, 

*v
pGk  and **v

pGk  are not influenced by variations of the beam rise since, as no-
ticed before, they are derived from models unable to tackle this aspect. Finally, 
whereas the solution proposed by Schneider and Albert [28] is at least reasona-
bly close to the one proposed in this paper for the double pitched beam, the 
model proposed by Porteous and Kermani [13] is substantially different for all 
the considered geometries. Further details about the comparison of these three 
models can be found in [25]. 

3.4. Maximal Horizontal Displacement 

The maximal horizontal displacement provides a fundamental information for 
the design of bearing devices. In the following, we compare the evaluation of 
such a quantity, done with the theory proposed in the present paper and with 
another approach available in literature. 

3.4.1. Proposed Model 
According to the kinematic assumptions (6), the maximal horizontal displace-
ment mu  can be expressed as 

( ) ( ) ( ) ( ) ( )
0 0

0, 0 2 0 0
2 2m x

h h
u s u u hϕ ϕ

 
= − = − ⋅ = − 

 
      (23) 

 

 
Figure 5. Comparison of the maximal vertical displacement coeffi-
cients (evaluated using different methods proposed in literature) v

pGk , 
*v

pGk , and **v
pGk  evaluated for pitched and double-pitched beams. 
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According to the model proposed in this paper, the maximal center-line ho-
rizontal displacement u  and the maximal rotation ϕ  are estimated through 
Equations (24) and (26). 

Maximal center-line horizontal displacement: In analogy with the maximal 
vertical displacement, we express the maximal horizontal displacement of the 
beam’s center-line u  as the sum of a bending and a shear contribution 

( )
3

2
0

10 2 2u u
pE pG

x xy

pl plu u k k
E G bh b

= = − −               (24) 

Accordingly to the model proposed in this paper, the coefficients u
pEk  and 

u
pGk  are as follows 

( )
( )( )( )

( )( )
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β α α α α α α α
α α
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α α β αβ α

α

αβ β α β

β α α α β α β α α β
α α

αβ α αβ β α β
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+ − + − +
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+ −
+ + −

−

− + − − +

+ −
− + + − −

−

− + + + − − +

   (25) 

Figure 6 shows the values of coefficients u
pEk  and u

pGk  evaluated for differ-
ent values of α  and β  and it allows to recognize the effects that beam taper 
and rise have on the maximal center-line horizontal displacement. In particular, 
for a double-pitched beam (i.e., ( )1 2β α= − ), 0u u

pE pGk k= = . This means that, 
as expected, the vertical loads do not induce center-line horizontal displace-
ments in consequence of the beam symmetries. Finally, as expected for a pris-
matic beam (i.e., 1α =  and 0β = ), 0u u

pE pGk k= = , confirming once more that 
the proposed beam model has the capability to recover trivial solutions. 
 

 

Figure 6. Maximal center-line horizontal displacement coefficients u
pEk  and u

pGk  evaluated for different values of α  and β . 
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Maximal rotation: In analogy with the maximal vertical displacement, we 
express the maximal beam rotation ϕ  as the sum of a bending and a shear 
contribution 

( ) ( )
3

3
00

1 120
24 pE pG

x xy

pl pll k k
E G h bh b

ϕ ϕϕ ϕ ϕ= = − = +            (26) 

According to the model proposed in this paper, the coefficients pEkϕ  and 

pGkϕ  are as follows 

( )
( )

( )
( )

( )

( )
( )

2 3 2
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4 3 2 2 3 2 2 2 2
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ϕ

ϕ

α α α α α

α α
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α αβ β α β

α

α α β α β α α β αβ α αβ β α β

α α

− + − +
= −

−

= − + + − − +
−

+ + − − − + + + − − +
+

−

 (27) 

It is worth noticing that the bending coefficient pEkϕ  does not depend on β  
whereas the shear coefficient pGkϕ  depends on both coefficients α  and β . 

Figure 7 shows the values of coefficients pEkϕ  and pGkϕ  evaluated for dif-
ferent values of α  and β  and it allows to recognize the effects of the beam 
taper and rise on the maximal cross-section rotation. In particular, as ex-
pected for a prismatic beam (i.e., 1α =  and 0β = ), 1pEkϕ =  and 0pGkϕ = , 
confirming that, for this simple geometry, only bending contributes to the beam 
rotation. Furthermore, the bending contribution becomes negligible for large 
values of α  i.e., 0lim pEkϕ

α→∞ = . Finally, for pGkϕ , the plot ( )1 2β α= − — 
corresponding to the double-pitched beam (see Figure 3(d))—represents the 
minimum of all the possible plots. Therefore, Figure 7 confirms also that the 
double tapered beam represents the stiffer geometrical configuration for a non- 
prismatic beam. 
 

 

Figure 7. Maximal rotation coefficients pEkϕ  and pGkϕ  evaluated for different values of α  and β . 
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3.4.2. Results from Literature 
Piazza et al. [1] report the following formula in order to estimate the maximal 
horizontal displacement 

* *0= 2 3.2m m
h

u c v
l

 ′ + 
 

                    (28) 

Considering the boundary conditions (16) and assuming that the beam cen-
terline is a rigid body, *2 mc v′  and *

mv  are the horizontal displacement at the 
bearing and the vertical displacement at the middle-span length of a compatible 
rigid body motion. The latter contribution *

03.2 mh v l  provides the exact value 
of the maximal horizontal displacement induced by the rotation only in case of 
prismatic beams. As a consequence, with increasing α  and β  (see Equation 
(13)), the result of Equation (28) is expected to become more and more inaccu-
rate. 

4. Numerical Validation 

This section aims at determining the accuracy of the proposed formulas and 
comparing the performances of the proposed approach with the existing ones. 
Accordingly, it compares the results of the formulas introduced in Section 3 with 
the numerical results obtained through several FE analysis. 

Some of the geometries considered within this section have no practical inter-
est due to feasibility limits or convenience. Nevertheless, we decided to consider 
all of them in order to highlight all possible weaknesses of the models. 

4.1. Case Definitions 

The validation study consists of beams with different shapes, lengths, and upper 
boundary slopes. Accordingly, we classify each numerical test using the label 
Sllss structured as follows: 
• the first letter S  indicates the shape, where the letters P , T , and K  in-

dicate pitched (Figure 3(a)), tapered (Figure 3(b)), and kinked (Figure 3(c)) 
beams, respectively. 

• the first two numbers ll  indicate the beam length, where the numbers 05, 
10, 20, and 30 indicate a total length l  of 5, 10, 20, and 30 m, respectively. 

• the latter two numbers indicate the slopes of the upper boundary ( )tan uθ  
expressed as a percentage, where the numbers 05, 10, 20, and 30 imply 5%, 
10%, 20%, and 30% boundary slope, respectively. 

Referring to Figure 2, in all the considered cases we assume that the initial 
beam height 0h  is equal to 1. For the tapered beams, we assume that the slope 
of the lower boundary is the half of the upper one i.e., ( ) ( )tan tan 2l uθ θ= . For 
the kinked beams, we assume 1.001α =  instead of 1α =  in order to avoid 
numerical problems already highlighted by Balduzzi et al. [25]. Furthermore, it 
is also worth noticing that for this particular beam’s shape more effective mod-
eling solutions (e.g., considering inclined prismatic beams) exist. Once more, we 
decided to consider also kinked beams in order to highlight all possible weak-
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nesses of the models. Finally, we assume that wood’s fibers are parallel to the 
lower boundary i.e., f lθ θ= . 

We assume that all the beams are made of wood classified as GL24h according 
to [30]. Therefore, we set E0 = 9.667 Gpa, E90 = 0.3250 Gpa, G = 0.6000 Gpa, and 

0.22ν = . The assumptions so far introduced are merely indicative. In fact, the 
usage of particular production technologies (like asymmetrically combined or 
cross laminated GLT) could modify significantly the material mechanical prop-
erties that therefore should be calibrated according to adequate experimental 
campaign [8] [31]. Finally, the distributed load p  is set to the artificial value of 
200 kN/m. 

Table 1, in Appendix D, details the geometrical and mechanical parameters 
for each case we are going to consider within the validation process. Table 1 al-
lows to notice that the Young’s modulus xE  could reduce more than 15% and 
the shear modulus xyG  could increase more than 5 times considering the real 
grain orientation, confirming that the effects of fiber orientation are not negligi-
ble. 

4.2. 2D Numerical Solutions 

For each beam geometry specified above, we compute the solution of the 2D 
elastic problem using the commercial FE package ABAQUS [32]. The following 
assumptions have been made. 
• Exploiting the problem symmetry, as done in the analytic model, we consider 

only the left half of the beam. 
• In order to model the bearing, we impede vertical displacements for the 

nodes that stay in the region 0x =  and 0 02 3 10h y h− < < − . This choice 
aims at avoiding singularity in 2D solution. 

• We constraint horizontal displacements for nodes at 2x l= . Obviously, this 
choice leads to maximal horizontal displacements which are the half than the 
size of the real beam. 

• We neglect the dead weight of the beam. 
• Preliminary numerical simulations highlighted that the location of the linear 

distributed load within the 2D domain does not significantly influence the 
results. For this reason, we choose to apply the distributed load on the lower 
boundary lh . Furthermore, we set the magnitude of the applied load *q  to 
be equal to ( )cos lq θ⋅  such that the vertical reaction at the bearing will be 
equal to 2q l⋅ . The values of *q  are given in Table 1. 

• The 2D domain of the beam is discretized with a structured mesh of linear 
triangles. 

In order to validate the beam model we considered the following parameters. 
• The maximal horizontal displacement ref

mu . 
• The maximal vertical displacement ref

mv . 
• The maximal 2D horizontal displacement field 2D

mu . 
• The maximal 2D vertical displacement field 2D

mv . 
In particular, we evaluate the maximal center-line horizontal displacement refu  
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and the maximal rotation refϕ  through the linear regression of the horizontal 
displacements of nodes at 0x = , whereas the maximal horizontal displacement 

ref
mu  is evaluated as 

ref ref ref
0=mu u h ϕ+                      (29) 

Finally, the maximal vertical displacement ref
mv  is evaluated as follows: 

ref

1 1

1 1n m

m i j
i j

v v v
n m= =

= −∑ ∑                    (30) 

where the subscripts i and j refer to nodes at 2x l=  and 0x = , respectively. 
It is worth recalling that the beam kinematics (6) assumes a rigid cross-section 

leading the beam model solution (Appendices A and B) to account only the 
mean values of cross-section displacements. Therefore, the beam model predicts 
a vanishing vertical displacement at 0x =  in order to satisfy boundary condi-
tions (16). Unlike that, the 2D FE model can catch cross-section deformations 
and stress concentrations that result in a non-vanishing mean-value of vertical 
displacements at 0x =  and other local effects. 

On the one hand, the usage of the maximal 2D displacements 2D
mv  and 2D

mu  
is not appropriate for the validation of formulas (17) and (23) since they ac-
counts for phenomena not tackled by the model introduced in Section 2.1. 
Aiming at overcome the inconsistency, we have introduced the parameters ref

mu  
and ref

mv  (Equations (29) and (30)) that allow to eliminate most of the local ef-
fects from the FE solution and to provide reference solutions that could be used 
for a more rigorous beam model validation. 

On the other hand, since the 2D FE simulations describe the physical problem 
more accurately than the beam model, the usage of 2D

mv  and 2D
mu  should re-

veal the effectiveness of the proposed formula in describing the real behavior of 
the beams under analysis. In particular, a large difference between ref

mv  and 
2D
mv  (and between ref

mu  and 2D
mu ) indicates that local effects prevail on the beam 

behavior and therefore the beam model cannot be effective in predicting the dis-
placement of that specific body. In order to highlight this aspect, we introduce 
the relative differences between the beam maximal displacements and the cor-
responding 2D maximal displacements 

ref 2 ref 2

2 2;
D D

m m m m
v uD D

m m

v v u u
v u

δ δ
− −

= =                (31) 

that provide a measure of the influence of local effects on the beam behavior. 
Obviously, the inconsistency between the beam model and the 2D solution is 
expected to vanish for slender beams, according to classical results in beam 
theories [33]. 

In order to ensure the adoption of appropriate numerical results as a reference 
solution, we perform an accurate convergence analysis. Accordingly, for every 
specific beam length and shape we focus on the 30% boundary-slope geometry 
since it leads to the most distorted mesh. We consider a series of meshes starting 
with a characteristic element size of 0.1 m and successive refinements with a 
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characteristic length of 0.1 2n  with increasing n . We arrest the refinements 
when the relative difference between the maximal vertical displacement ref

mv , 
evaluated with two subsequent meshes, is smaller than 10−4. Thereafter, the same 
characteristic element size is used for all the beams with the same shape and 
length. It is worth highlighting that the condition breaking the mesh refinements 
is highly restrictive and leads therefore to extremely refined meshes. A so big 
accuracy is usually not required in engineering practice, but is herein adopted in 
order to ensure that, reporting the reference solutions, any approximation error 
is smaller than the adopted number truncation. 

Table 2 (in Appendix E) reports all the results of the ABAQUS simulations. 
The quantity el. size refers to the characteristic element size adopted in the si-
mulation and # el. refers to the number of elements constituting the mesh. Table 
2 reports also the values of vδ  and uδ , defined in Equation (31). 

5. Comparison and Discussion of Results 

This section compares results obtained through the formulas introduced in 
Section 3 with the numerical results of the 2D FE analysis described in Section 
4.2. 

For each quantity ζ , we consider the relative error 

ref

refeζ
ζ ζ
ζ
−

=                          (32) 

Differently from usual error definitions, in Equation (32) the absolute-value 
operators are omitted. This choice depends on the fact that we would highlight 
when formulas introduced in Section 3 overestimate (i.e., lead to a positive error) 
or underestimate (i.e., lead to a negative error) the numerical values which are 
considered as reference values. In authors’ opinion, this information is crucial 
since it allows to determine if the prediction is on the safe side or not. 

Table 3 and Table 4 (in Appendix F) report the values of the estimated max-
imal displacements and their relative errors for all the considered cases. Figures 
8-10 compare the relative errors obtained using formulas introduced in Section 
3 for pitched, tapered, and kinked beams, respectively. 

5.1. Pitched Beams 

On the one hand, Figure 8(a) shows that the relative error of the proposed for-
mula (17) is usually smaller than 2% and up to 10% for the 5 m long beams. On 
the other hand, Formula (19) proposed by Schneider and Albert [28] underesti-
mates the maximal vertical displacements *

mv  with relative errors often bigger 
than 10%. Finally, the formula (21) proposed by Porteous and Kermani [13] 
overestimates the maximal vertical displacements **

mv  with errors that often ex-
ceed 100%. It is also worth recalling that the high values of vδ  (over 30%) in-
dicate that 2D effects prevail for the 5 m long samples. Therefore, for this specif-
ic length, evaluations coming from all the considered beam models are not relia-
ble due to intrinsic beam model limitations. 
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(a) 

 
(b) 

Figure 8. Pitched beams: comparison of relative errors obtained using different methods 
and considering different geometries. (a) Maximal vertical displacement relative errors 
with respect to numerical results (reference). Comparison with models available in lite-
rature; (b) Maximal 2D horizontal displacement relative errors with respect to numerical 
results (reference). Comparison with models available in literature. 
 

Figure 8(b) shows that the proposed formula (23) estimates the maximal ho-
rizontal displacement mu  with an error usually smaller than 2.5% and up to 8.5% 
for the 5 m long beams. On the contrary, the formula (28) proposed by [1] esti-
mates the maximal horizontal displacement *

mu  with an error often bigger than 
10% and up to 80% for the 5 m long beams. Once more, the high values of uδ  
(over 40%) for the 5 m long samples indicate that evaluations coming from both 
the considered beam models are not reliable for these specific cases. 

5.2. Tapered Beams 

Figure 9(a) shows that the proposed model predictions exhibit a relative error 
generally smaller than 10%. The maximal error (33%) occurs in predicting the 
maximal vertical displacement mv  of tapered beams width length l = 5 m where, 
nevertheless, the high value of vδ  (over 30%) indicates that the beam models 
are not effective. The formula (19) proposed by Schneider and Albert [28] unde-
restimates the maximal vertical displacement mv  with a relative error up to 20% 
even for the long beams. Finally, the formula (21) proposed by Porteous and Ker-
mani [13] leads to very inaccurate predictions, with a error that exceeds 80%. 
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(a) 

 
(b) 

Figure 9. Tapered beams: comparison of relative errors obtained using different methods 
and considering different geometries. (a) Maximal vertical displacement relative errors 
with respect to numerical results (reference). Comparison with models available in lite-
rature; (b) Maximal 2D horizontal displacement relative errors with respect to numerical 
results (reference). Comparison with models available in literature. 
 

Figure 9(b) shows that the errors on the prediction of the maximal horizontal 
displacement mu  (see Equation (23)) are smaller than 10% and up to 33% for 
the 5 m long beam. Conversely, the errors relative to the formula (28) proposed 
by Piazza et al. [1] tends to underestimate the maximal horizontal displacement 
up to 20% also for slender beams. 

5.3. Kinked Beams 

Figure 10(a) shows that the proposed formula (17) predicts the maximal vertical 
displacement mv  of kinked beams with a relative error exceptionally bigger 
than 10%. As usual, more significant errors occur for the 5 m long beams for 
which the high value of vδ  indicates that 2D effects prevail and therefore the 
beam model is no longer effective. Both the formulas (19) and (21) underesti-
mate the maximal vertical displacements and leads to similar relative errors that 
often overcome 20%. It is worth recalling that, as discussed in Section 3.3.2, both 
Equations (19) and (21) neglect the beam rise’s effects and therefore the pro-
vided estimation coincides with the maximal vertical displacement of a prismatic 
beam with thickness 0h  and length l . 
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(a) 

 
(b) 

Figure 10. Kinked beams: comparison of relative errors obtained using different methods 
and considering different geometries. (a) Maximal vertical displacement relative errors 
with respect to numerical results (reference). Comparison with models available in lite-
rature; (b) Maximal 2D horizontal displacement relative errors with respect to numerical 
results (reference). Comparison with models available in literature. 
 

Figure 10(b) shows that the proposed approach (23) leads to relative errors 
exceptionally bigger than 10% and up to 40% only for the beams of length l = 5 
m. Moreover, the formula (28) proposed by Piazza et al. [1] usually underesti-
mates the maximal horizontal displacement mu , leading to errors that often over-
come 20%. 

6. Conclusions 

This paper derives several formulas for the simplified analysis of serviceability 
limit states from a recently proposed Timoshenko-like model for a non-prismatic 
beam. The main advantage of the Timoshenko-like model is its capability to 
consistently tackle the effects of geometry on stress distributions, constitutive 
relations, equilibrium, and compatibility equations. Therefore, the resulting for- 
mulas provide an accurate prediction of the maximal displacements. 

The comparison of the proposed formulas with highly refined 2D FE solutions 
allows the following conclusions. 
• The errors obtained using the proposed formulas are smaller than 10% in 

most cases. 
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• Only when the proposed formulas are applied to thick beams ( 10λ  ), they 
could induce more heavy errors, exceptionally over 30%. Nonetheless, nu-
merical results reveal also that 2D effects certainly prevail for thick beams, 
leading any evaluation coming from all the considered beam models not re-
liable. 

• The proposed formulas provide estimates which lie mainly on the conserva-
tive side of safety. 

The comparison with commonly used approaches allows to conclude that the 
proposed formulas are significantly more accurate. In particular, the literature 
review and the numerical results highlight the following weak spots of the ap-
proaches proposed in literature. 
• The majority of formulas available in literature are derived from models that 

often contradict each other e.g., neglecting the effects of beam rise (see Equa-
tions (19) and (21)), not considering the effects of stress distribution (see 
Equation (21)), or not accounting the real beam rotation (see Equation (28)). 
Therefore they can provide only partial descriptions of the complex pheno-
mena that occur within a non-prismatic beam. 

• The maximal vertical displacement estimate *
mv  proposed by Schneider and 

Albert [28] is more accurate than the one proposed by Porteous and Kermani 
[13] **

mv . However, it provides non-conservative estimations with relative 
errors often larger than 20% also for slender beams. 

• The maximal vertical displacement estimate **
mv  proposed by Porteous and 

Kermani [13] leads to errors over 100% also for slender beams.  
• The formula proposed by Piazza et al. [1] is less reliable than the one pro-

posed in this paper, since it provides non-conservative estimations with rela-
tive errors that are often bigger than 20% also for slender beams. 

Therefore, the proposed approach represents a significant enhancement of the 
instruments that practitioners can use for the design of GLT beams since the 
proposed formulas, derived from a highly consistent model, result to be more 
accurate than the existing ones for most of the cases of interest for practitioners. 

Further developments will include the consideration of other load conditions, 
beam geometries (like cambered beams), and the derivation of more refined in-
struments (e.g., analytic models and FE), capable to take into account the entire 
stress potential, generic boundary conditions, and more complicated geometries 
like asymmetric or curved beams. 
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Appendix 
A. Homogeneous Solution 

In the following we report the homogeneous solution of Equations (7), (8), and 
(11). It assumes that ( ) 0 1h x h h x= +  and ( ) 1c x c x= . 
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B. Particular Solution 

In the following we report the particular solution of Equations (7), (8), and (11), 
evaluated assuming a homogeneous vertical load. It assumes that ( ) 0 1h x h h x= +  
and ( ) 1c x c x= . 
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C. Evaluation of the Homogeneous-Solution Coefficients 

In the following we report the values of homogeneous-solution coefficients ob-
tained imposing the boundary condition (16). 
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D. Case’s Geometry 

In the following we report the values of parameters that define the geometry of 
each case. 
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Table 1. Beam parameters for the geometries considered in validation procedure. α  is the ratio between the middle-span and 
the bearing heights, β  is the ratio between the beam rise and the height at the bearing, fθ  is the orientation of the wood fibers, 

c′  is the centerline slope, ( )tan lθ  and ( )tan uθ  are slopes of lower and upper boundaries, respectively, xE  and xyG  are the 

projected wood mechanical properties, and *p  is the distributed load magnitude. 

Case α  β  fθ  c′  ( )tan lθ  xE  xyG  *p  ( )tan uθ  

P0505 1.1250 0.0000 0.025 1.4324 0.000 9.6667 0.6000 200.00 0.050 
P0510 1.2500 0.0000 0.050 2.8648 0.000 9.6667 0.6000 200.00 0.100 
P0520 1.5000 0.0000 0.100 5.7296 0.000 9.6667 0.6000 200.00 0.200 
P0530 1.7500 0.0000 0.150 8.5944 0.000 9.6667 0.6000 200.00 0.300 
P1005 1.2500 0.0000 0.025 1.4324 0.000 9.6667 0.6000 200.00 0.050 
P1010 1.5000 0.0000 0.050 2.8648 0.000 9.6667 0.6000 200.00 0.100 
P1020 2.0000 0.0000 0.100 5.7296 0.000 9.6667 0.6000 200.00 0.200 
P1030 2.5000 0.0000 0.150 8.5944 0.000 9.6667 0.6000 200.00 0.300 
P2005 1.5000 0.0000 0.025 1.4324 0.000 9.6667 0.6000 200.00 0.050 
P2010 2.0000 0.0000 0.050 2.8648 0.000 9.6667 0.6000 200.00 0.100 
P2020 3.0000 0.0000 0.100 5.7296 0.000 9.6667 0.6000 200.00 0.200 
P2030 4.0000 0.0000 0.150 8.5944 0.000 9.6667 0.6000 200.00 0.300 
P3005 1.7500 0.0000 0.025 1.4324 0.000 9.6667 0.6000 200.00 0.050 
P3010 2.5000 0.0000 0.050 2.8648 0.000 9.6667 0.6000 200.00 0.100 
P3020 4.0000 0.0000 0.100 5.7296 0.000 9.6667 0.6000 200.00 0.200 
P3030 5.5000 0.0000 0.150 8.5944 0.000 9.6667 0.6000 200.00 0.300 
T0505 1.0625 0.0625 0.038 2.1486 0.025 9.6551 0.6231 199.94 0.050 
T0510 1.1250 0.1250 0.075 4.2972 0.050 9.6204 0.6920 199.75 0.100 
T0520 1.2500 0.2500 0.150 8.5944 0.100 9.4835 0.9627 199.01 0.200 
T0530 1.3750 0.3750 0.225 12.8916 0.150 9.2621 1.3962 197.79 0.300 
T1005 1.1250 0.1250 0.038 2.1486 0.025 9.6551 0.6231 199.94 0.050 
T1010 1.2500 0.2500 0.075 4.2972 0.050 9.6204 0.6920 199.75 0.100 
T1020 1.5000 0.5000 0.150 8.5944 0.100 9.4835 0.9627 199.01 0.200 
T1030 1.7500 0.7500 0.225 12.8916 0.150 9.2621 1.3962 197.79 0.300 
T2005 1.2500 0.2500 0.038 2.1486 0.025 9.6551 0.6231 199.94 0.050 
T2010 1.5000 0.5000 0.075 4.2972 0.050 9.6204 0.6920 199.75 0.100 
T2020 2.0000 1.0000 0.150 8.5944 0.100 9.4835 0.9627 199.01 0.200 
T2030 2.5000 1.5000 0.225 12.8916 0.150 9.2621 1.3962 197.79 0.300 
T3005 1.3750 0.3750 0.038 2.1486 0.025 9.6551 0.6231 199.94 0.050 
T3010 1.7500 0.7500 0.075 4.2972 0.050 9.6204 0.6920 199.75 0.100 
T3020 2.5000 1.5000 0.150 8.5944 0.100 9.4835 0.9627 199.01 0.200 
T3030 3.2500 2.2500 0.225 12.8916 0.150 9.2621 1.3962 197.79 0.300 
K0505 1.0010 0.1250 0.050 2.8762 0.050 9.6204 0.6920 199.75 0.050 
K0510 1.0010 0.2500 0.100 5.7410 0.100 9.4835 0.9627 199.01 0.100 
K0520 1.0010 0.5000 0.200 11.4706 0.200 8.9654 1.9682 196.12 0.200 
K0530 1.0010 0.7500 0.300 17.2002 0.300 8.1948 3.4024 191.57 0.300 
K1005 1.0010 0.2500 0.050 2.8705 0.050 9.6204 0.6920 199.75 0.050 
K1010 1.0010 0.5000 0.100 5.7353 0.100 9.4835 0.9627 199.01 0.100 
K1020 1.0010 1.0000 0.200 11.4649 0.200 8.9654 1.9682 196.12 0.200 
K1030 1.0010 1.5000 0.300 17.1945 0.300 8.1948 3.4024 191.57 0.300 
K2005 1.0010 0.5000 0.050 2.8677 0.050 9.6204 0.6920 199.75 0.050 
K2010 1.0010 1.0000 0.100 5.7324 0.100 9.4835 0.9627 199.01 0.100 
K2020 1.0010 2.0000 0.200 11.4620 0.200 8.9654 1.9682 196.12 0.200 

K2030 1.0010 3.0000 0.300 17.1916 0.300 8.1948 3.4024 191.57 0.300 

K3005 1.0010 0.7500 0.050 2.8667 0.050 9.6204 0.6920 199.75 0.050 
K3010 1.0010 1.5000 0.100 5.7315 0.100 9.4835 0.9627 199.01 0.100 
K3020 1.0010 3.0000 0.200 11.4611 0.200 8.9654 1.9682 196.12 0.200 
K3030 1.0010 4.5000 0.300 17.1906 0.300 8.1948 3.4024 191.57 0.300 



G. Balduzzi et al. 
 

59 

E. ABAQUS Results 

In the following we report the values of ABAQUS results used as reference solutions for the numerical validation of 
the proposed formulas. 

 
Table 2. ABAQUS resuls. el. size is the characteristic element size, # el. is the number of elements, ref

mv  is the maximal 

cross-section vertical displacement, 2D
mv  is the maximal value of the 2D vertical displacement field, vδ  is the relative difference 

between maximal vertical displacement and its mean-value, ref
mu  is the maximal cross-section horizontal displacement, 2D

mu  is 
the maximal value of the 2D horizontal displacement field, and uδ  is the is the relative difference between maximal horizontal 
displacement and its mean-value. 

case el. size ref
mv  2D

mv  vδ  # el. ref
mu  2 D

mu  uδ  

P0505 1.56E−3 2.846E−3 4.208E−3 −3.24E−1 2.18E+6 5.653E−4 1.009E−3 −4.40E−1 

P0510 1.56E−3 2.508E−3 3.937E−3 −3.63E−1 2.31E+6 5.127E−4 9.627E−4 −4.67E−1 

P0520 1.56E−3 2.111E−3 3.644E−3 −4.21E−1 2.59E+6 4.523E−4 9.094E−4 −5.03E−1 

P0530 1.56E−3 1.896E−3 3.505E−3 −4.59E−1 2.88E+6 4.221E−4 8.823E−4 −5.22E−1 

P1005 1.56E−3 2.463E−2 2.725E−2 −9.60E−2 4.61E+6 3.935E−3 4.809E−3 −1.82E−1 

P1010 1.56E−3 1.801E−2 2.080E−2 −1.34E−1 5.13E+6 3.194E−3 4.083E−3 −2.18E−1 

P1020 1.56E−3 1.186E−2 1.491E−2 −2.05E−1 6.20E+6 2.405E−3 3.309E−3 −2.73E−1 

P1030 1.56E−3 9.209E−3 1.245E−2 −2.60E−1 7.32E+6 2.023E−3 2.933E−3 −3.10E−1 

P2005 3.13E−3 2.319E−1 2.371E−1 −2.20E−2 2.56E+6 2.490E−2 2.664E−2 −6.53E−2 

P2010 3.13E−3 1.313E−1 1.370E−1 −4.11E−2 3.08E+6 1.748E−2 1.925E−2 −9.17E−2 

P2020 3.13E−3 6.420E−2 7.042E−2 −8.83E−2 4.14E+6 1.104E−2 1.284E−2 −1.40E−1 

P2030 3.13E−3 4.217E−2 4.878E−2 −1.35E−1 7.85E+6 8.365E−3 1.016E−2 −1.77E−1 

P3005 6.25E−3 8.105E−1 8.183E−1 −9.58E−3 1.06E+6 6.863E−2 7.136E−2 −3.83E−2 

P3010 6.25E−3 3.879E−1 3.964E−1 −2.15E−2 1.89E+6 4.372E−2 4.637E−2 −5.71E−2 

P3020 6.25E−3 1.598E−1 1.692E−1 −5.55E−2 2.98E+6 2.494E−2 2.760E−2 −9.61E−2 

P3030 6.25E−3 9.605E−2 1.060E−1 −9.41E−2 4.04E+6 1.787E−2 2.053E−2 −1.30E−1 

T0505 7.81E−4 3.114E−3 4.527E−3 −3.12E−1 8.45E+6 7.109E−4 1.157E−3 −3.86E−1 

T0510 7.81E−4 2.950E−3 4.486E−3 −3.42E−1 8.73E+6 7.874E−4 1.244E−3 −3.67E−1 

T0520 7.81E−4 2.779E−3 4.558E−3 −3.90E−1 9.33E+6 9.713E−4 1.444E−3 −3.27E−1 

T0530 7.81E−4 2.747E−3 4.764E−3 −4.23E−1 1.00E+7 1.200E−3 1.685E−3 −2.88E−1 

T1005 1.56E−3 3.011E−2 3.291E−2 −8.52E−2 4.35E+6 5.293E−3 6.167E−3 −1.42E−1 

T1010 1.56E−3 2.517E−2 2.834E−2 −1.12E−1 4.62E+6 5.368E−3 6.262E−3 −1.43E−1 

T1020 1.56E−3 1.944E−2 2.328E−2 −1.65E−1 5.18E+6 5.596E−3 6.519E−3 −1.42E−1 

T1030 1.56E−3 1.660E−2 2.106E−2 −2.12E−1 5.79E+6 6.017E−3 6.960E−3 −1.35E−1 

T2005 3.13E−3 3.389E−1 3.448E−1 −1.72E−2 2.31E+6 3.994E−2 4.170E−2 −4.21E−2 

T2010 3.13E−3 2.356E−1 2.426E−1 −2.88E−2 2.57E+6 3.719E−2 3.896E−2 −4.56E−2 

T2020 3.13E−3 1.396E−1 1.483E−1 −5.86E−2 3.11E+6 3.279E−2 3.462E−2 −5.28E−2 

T2030 3.13E−3 9.913E−2 1.093E−1 −9.29E−2 3.68E+6 3.066E−2 3.253E−2 −5.73E−2 

T3005 3.13E−3 1.357E+0 1.366E+0 −6.86E−3 3.65E+6 1.273E−1 1.305E−1 −2.45E−2 
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T3010 3.13E−3 8.221E−1 8.333E−1 −1.35E−2 4.24E+6 1.107E−1 1.136E−1 −2.48E−2 

T3020 3.13E−3 4.098E−1 4.238E−1 −3.30E−2 5.44E+6 8.734E−2 9.011E−2 −3.07E−2 

T3030 3.13E−3 2.613E−1 2.776E−1 −5.86E−2 6.71E+6 7.531E−2 7.811E−2 −3.58E−2 

K0505 7.81E−4 3.491E−3 5.247E−3 −3.35E−1 8.20E+6 8.933E−4 1.433E−3 −3.76E−1 

K0510 7.81E−4 3.675E−3 5.637E−3 −3.48E−1 8.23E+6 1.185E−3 1.747E−3 −3.22E−1 

K0520 7.81E−4 4.301E−3 6.726E−3 −3.61E−1 8.35E+6 1.945E−3 2.551E−3 −2.38E−1 

K0530 7.81E−4 5.270E−3 8.187E−3 −3.56E−1 8.55E+6 3.023E−3 3.670E−3 −1.76E−1 

K1005 1.56E−3 3.815E−2 4.180E−2 −8.73E−2 4.10E+6 7.252E−3 8.314E−3 −1.28E−1 

K1010 1.56E−3 3.955E−2 4.395E−2 −1.00E−1 4.12E+6 9.579E−3 1.068E−2 −1.03E−1 

K1020 1.56E−3 4.504E−2 5.119E−2 −1.20E−1 4.18E+6 1.554E−2 1.673E−2 −7.09E−2 

K1030 1.56E−3 5.420E−2 6.229E−2 −1.30E−1 4.28E+6 2.417E−2 2.544E−2 −4.98E−2 

K2005 1.56E−3 5.439E−1 5.522E−1 −1.51E−2 8.20E+6 6.906E−2 7.127E−2 −3.11E−2 

K2010 1.56E−3 5.586E−1 5.698E−1 −1.97E−2 8.23E+6 9.885E−2 1.012E−1 −2.28E−2 

K2020 1.56E−3 6.177E−1 6.358E−1 −2.84E−2 8.35E+6 1.708E−1 1.733E−1 −1.45E−2 

K2030 1.56E−3 7.184E−1 7.443E−1 −3.47E−2 8.55E+6 2.698E−1 2.725E−1 −1.00E−2 

K3005 1.56E−3 2.692E+0 2.706E+0 −5.21E−3 1.23E+7 2.722E−1 2.789E−1 −2.38E−2 

K3010 1.56E−3 2.754E+0 2.775E+0 −7.39E−3 1.23E+7 4.158E−1 4.229E−1 −1.66E−2 

K3020 1.56E−3 3.007E+0 3.043E+0 −1.18E−2 1.25E+7 7.528E−1 7.612E−1 −1.11E−2 

K3030 1.56E−3 3.440E+0 3.492E+0 −1.47E−2 1.28E+7 1.202E+0 1.211E+0 −8.15E−3 

F. Displacement Estimations and Relative Errors 

In the following we report the estimations of maximal displacements evaluated with different formulas and their 
relative errors. 

 
Table 3. Displacements evaluated with different methods and their relative errors. Maximal vertical displacements mv , *

mv , and 
**
mv  evaluated through Equation (17) (proposed formula), (19) [28], and (21) [7], respectively and their relative errors. 

case mv  *
mv  **

mv  
mve  *

mve  **

mve  

P0505 2.724E−03 2.768E−03 2.997E−03 −4.29E−02 −2.73E−02 5.31E−02 

P0510 2.362E−03 2.404E−03 2.766E−03 −5.85E−02 −4.18E−02 1.03E−01 

P0520 1.938E−03 1.917E−03 2.402E−03 −8.17E−02 −9.17E−02 1.38E−01 

P0530 1.717E−03 1.613E−03 2.128E−03 −9.43E−02 −1.49E−01 1.23E−01 

P1005 2.438E−02 2.457E−02 2.985E−02 −1.01E−02 −2.39E−03 2.12E−01 

P1010 1.776E−02 1.769E−02 2.454E−02 −1.38E−02 −1.76E−02 3.62E−01 

P1020 1.164E−02 1.089E−02 1.767E−02 −1.88E−02 −8.17E−02 4.90E−01 

P1030 9.023E−03 7.741E−03 1.356E−02 −2.02E−02 −1.59E−01 4.73E−01 

P2005 2.312E−01 2.312E−01 3.371E−01 −3.07E−03 −3.13E−03 4.54E−01 

P2010 1.310E−01 1.279E−01 2.308E−01 −2.28E−03 −2.61E−02 7.57E−01 

P2020 6.436E−02 5.720E−02 1.281E−01 2.52E−03 −1.09E−01 9.95E−01 
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P2030 4.260E−02 3.366E−02 8.216E−02 1.01E−02 −2.02E−01 9.48E−01 

P3005 8.087E−01 8.053E−01 1.349E+00 −2.21E−03 −6.46E−03 6.65E−01 

P3010 3.877E−01 3.737E−01 8.049E−01 −5.96E−04 −3.67E−02 1.08E+00 

P3020 1.608E−01 1.384E−01 3.764E−01 6.65E−03 −1.34E−01 1.36E+00 

P3030 9.771E−02 7.355E−02 2.174E−01 1.73E−02 −2.34E−01 1.26E+00 

T0505 2.960E−03 2.998E−03 3.128E−03 −4.97E−02 −3.74E−02 4.23E−03 

T0510 2.686E−03 2.768E−03 2.997E−03 −8.93E−02 −6.16E−02 1.60E−02 

T0520 2.215E−03 2.404E−03 2.766E−03 −2.03E−01 −1.35E−01 −4.68E−03 

T0530 1.843E−03 2.130E−03 2.570E−03 −3.29E−01 −2.25E−01 −6.42E−02 

T1005 3.002E−02 2.988E−02 3.325E−02 −2.77E−03 −7.67E−03 1.04E−01 

T1010 2.527E−02 2.457E−02 2.985E−02 4.00E−03 −2.39E−02 1.86E−01 

T1020 1.903E−02 1.769E−02 2.454E−02 −2.11E−02 −9.01E−02 2.62E−01 

T1030 1.479E−02 1.357E−02 2.063E−02 −1.09E−01 −1.83E−01 2.43E−01 

T2005 3.423E−01 3.376E−01 4.200E−01 1.02E−02 −3.83E−03 2.39E−01 

T2010 2.448E−01 2.312E−01 3.371E−01 3.87E−02 −1.90E−02 4.30E−01 

T2020 1.489E−01 1.279E−01 2.308E−01 6.66E−02 −8.38E−02 6.53E−01 

T2030 1.005E−01 8.163E−02 1.681E−01 1.38E−02 −1.77E−01 6.95E−01 

T3005 1.374E+00 1.351E+00 1.846E+00 1.26E−02 −4.07E−03 3.60E−01 

T3010 8.607E−01 8.053E−01 1.349E+00 4.69E−02 −2.05E−02 6.41E−01 

T3020 4.474E−01 3.737E−01 8.049E−01 9.19E−02 −8.81E−02 9.64E−01 

T3030 2.754E−01 2.135E−01 5.316E−01 5.38E−02 −1.83E−01 1.03E+00 

K0505 3.179E−03 3.266E−03 3.268E−03 −8.92E−02 −6.45E−02 −6.38E−02 

K0510 3.037E−03 3.266E−03 3.268E−03 −1.74E−01 −1.11E−01 −1.11E−01 

K0520 2.951E−03 3.266E−03 3.268E−03 −3.14E−01 −2.41E−01 −2.40E−01 

K0530 3.114E−03 3.266E−03 3.268E−03 −4.09E−01 −3.80E−01 −3.80E−01 

K1005 3.787E−02 3.726E−02 3.729E−02 −7.36E−03 −2.35E−02 −2.26E−02 

K1010 3.924E−02 3.726E−02 3.729E−02 −8.03E−03 −5.81E−02 −5.72E−02 

K1020 4.264E−02 3.726E−02 3.729E−02 −5.31E−02 −1.73E−01 −1.72E−01 

K1030 4.718E−02 3.726E−02 3.729E−02 −1.29E−01 −3.13E−01 −3.12E−01 

K2005 5.539E−01 5.361E−01 5.367E−01 1.85E−02 −1.43E−02 −1.33E−02 

K2010 5.904E−01 5.361E−01 5.367E−01 5.70E−02 −4.02E−02 −3.92E−02 

K2020 6.640E−01 5.361E−01 5.367E−01 7.49E−02 −1.32E−01 −1.31E−01 

K2030 7.443E−01 5.361E−01 5.367E−01 3.60E−02 −2.54E−01 −2.53E−01 

K3005 2.756E+00 2.658E+00 2.661E+00 2.37E−02 −1.25E−02 −1.15E−02 

K3010 2.954E+00 2.658E+00 2.661E+00 7.25E−02 −3.49E−02 −3.39E−02 

K3020 3.344E+00 2.658E+00 2.661E+00 1.12E−01 −1.16E−01 −1.15E−01 

K3030 3.758E+00 2.658E+00 2.661E+00 9.24E−02 −2.27E−01 −2.27E−01 
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Table 4. Displacements evaluated with different methods and their relative errors. Maximal cross-section horizontal displace- 
ments mu  and *

mu  evaluated through Equations (23) and (28) [1] respectively, and their relative errors. 

case [ ]mmu  [ ]* mmu  
mve  *

mu
e  

P0505 5.536E−04 1.910E−03 −2.07E−02 6.89E−01 
P0510 4.895E−04 1.779E−03 −4.53E−02 7.35E−01 
P0520 4.161E−04 1.611E−03 −8.01E−02 7.81E−01 
P0530 3.865E−04 1.516E−03 −8.44E−02 7.95E−01 
P1005 3.906E−03 9.091E−03 −7.35E−03 1.55E−01 
P1010 3.147E−03 7.431E−03 −1.45E−02 1.64E−01 
P1020 2.350E−03 5.664E−03 −2.29E−02 1.78E−01 
P1030 1.997E−03 4.799E−03 −1.30E−02 1.86E−01 
P2005 2.481E−02 4.854E−02 −3.54E−03 −2.53E−02 
P2010 1.739E−02 3.325E−02 −5.48E−03 −4.90E−02 
P2020 1.101E−02 2.059E−02 −2.98E−03 −6.76E−02 
P2030 8.489E−03 1.548E−02 1.48E−02 −7.45E−02 
P3005 6.857E−02 1.262E−01 −9.31E−04 −8.09E−02 
P3010 4.359E−02 7.723E−02 −3.15E−03 −1.17E−01 
P3020 2.498E−02 4.245E−02 1.25E−03 −1.49E−01 
P3030 1.827E−02 2.991E−02 2.20E−02 −1.63E−01 
T0505 6.567E−04 2.143E−03 −7.63E−02 5.07E−01 
T0510 6.834E−04 2.187E−03 −1.32E−01 3.89E−01 
T0520 7.494E−04 2.259E−03 −2.28E−01 1.63E−01 
T0530 7.962E−04 2.321E−03 −3.36E−01 −3.25E−02 
T1005 5.192E−03 1.180E−02 −1.90E−02 1.15E−01 
T1010 5.270E−03 1.155E−02 −1.82E−02 7.57E−02 
T1020 5.431E−03 1.097E−02 −2.95E−02 −1.98E−02 
T1030 5.415E−03 1.045E−02 −1.00E−01 −1.32E−01 
T2005 4.000E−02 7.933E−02 1.51E−03 −6.96E−03 
T2010 3.811E−02 7.166E−02 2.49E−02 −3.64E−02 
T2020 3.474E−02 5.884E−02 5.94E−02 −1.03E−01 
T2030 3.135E−02 4.980E−02 2.23E−02 −1.88E−01 
T3005 1.286E−01 2.455E−01 1.09E−02 −3.54E−02 
T3010 1.149E−01 2.067E−01 3.76E−02 −6.68E−02 
T3020 9.480E−02 1.520E−01 8.54E−02 −1.30E−01 
T3030 7.992E−02 1.189E−01 6.12E−02 −2.11E−01 
K0505 7.853E−04 2.418E−03 −1.21E−01 3.53E−01 
K0510 9.620E−04 2.745E−03 −1.88E−01 1.58E−01 
K0520 1.350E−03 3.398E−03 −3.06E−01 −1.26E−01 
K0530 1.806E−03 4.051E−03 −4.02E−01 −3.30E−01 
K1005 7.085E−03 1.566E−02 −2.30E−02 7.94E−02 
K1010 9.449E−03 1.938E−02 −1.36E−02 1.16E−02 
K1020 1.486E−02 2.683E−02 −4.37E−02 −1.37E−01 
K1030 2.135E−02 3.428E−02 −1.17E−01 −2.91E−01 
K2005 6.995E−02 1.394E−01 1.29E−02 9.65E−03 
K2010 1.043E−01 1.931E−01 5.49E−02 −2.35E−02 
K2020 1.845E−01 3.003E−01 8.00E−02 −1.21E−01 
K2030 2.817E−01 4.075E−01 4.42E−02 −2.45E−01 
K3005 2.812E−01 5.495E−01 3.29E−02 9.21E−03 
K3010 4.492E−01 8.153E−01 8.03E−02 −1.97E−02 
K3020 8.444E−01 1.347E+00 1.22E−01 −1.05E−01 
K3030 1.326E+00 1.878E+00 1.03E−01 −2.18E−01 
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