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�The problem of distinguishing prime numbers from composite numbers and of re-

solving the latter into their prime factors is known to be one of the most important

and useful in arithmetic.�

Carl Friedrich Gauss, Disquisitiones Arithmeticae, 1801

Ron and Hermione have 2 children: Rose and Hugo.



Vogon poetry is the 3rd worst in the universe.
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Abstract

Prime numbers have been a signi�cant focus of mathematics throughout the years.

Although the study of prime numbers may seem at �rst quite simple, perhaps be-

cause every schoolchild knows what a prime number is, the search for all of the

secrets of prime numbers is far from over. Even one of the most famous, thus far

unsolved, problems in mathematical history is directly linked to prime numbers,

namely the Riemann Hypothesis.

Until 2002, it was simply assumed that prime numbers can be di�erentiated from

composites in polynomial time with a great deal of certainty; however, there was

no de�nite proof to say this problem can be solved in polynomial time. If the

General Riemann Hypothesis is true, though, some algorithms would classify as

deterministic polynomial. If a counterexample for such an algorithm can be found,

the test would not longer be classi�ed as deterministic but rather probabilistic.

In 2002, though, three Indian mathematicians developed a deterministic algorithm

that runs in polynomial time; it is totally independent not only from the Riemann

Hypothesis but also all other conjectures - the �rst of its kind. This result is, of

course, groundbreaking for not only the speci�c �eld of number theory but also

all of mathematics. The development of such an algorithm proves that the prime

number problem can be deterministically solved in polynomial time. Additionally,

following this initial discovery, further optimizations have been made by other

researchers.
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Introduction

While mathematicians have spent years attempting to understand prime numbers,

their e�orts have not remained purely of theoretical relevance. Many people may

not realize it but prime numbers are found in some of the most important as-

pects of their everyday lives. For instance, all encryption methods used to guard

personal data, Internet banking transactions and even the simple withdrawal of

money, are all based on prime numbers.

This paper will initially provide an overview of the history of the study of prime

numbers and explain the di�erence between probabilistic and deterministic prime

number tests. Additionally, attention will be paid to the Riemann Hypothesis and

its relevance to prime numbers and it will be shown how previously probabilistic

tests can be made deterministic. The paper will then focus on the primary topic,

namely the �rst deterministic polynomial algorithm for determining the primality

of a given number.
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1. History

1.1. Pythagoras and Euclid

De�nition 1.1.1 (Prime numbers):

An integer p > 1 is called a prime number i� its only divisors are trivial (1

and p).

An integer m > 1, which is not prime, is called composite.

Research on prime numbers and its properties began with the ancient Greeks and

Pythagoras (circa 500 BC). In 300 BC, Euclid wrote a series of 13 books, called

Elements, on geometry and number theory. [29][30] In Book IX of Elements, Euclid

stated and proved that prime numbers are more than any assigned multitude of

prime numbers [17][book IX, proposition 20]:

Proposition 1.1.2:

There are in�nitely many prime numbers.

Proof. Let all the prime numbers be a �nite set P = {p1, p2, . . . , pr}.
Let m be p1 · p2 · . . . · pr + 1.

m is either prime or composite.

If m is prime we found a prime number that is not in the set P .

If m is composite, it is divisible by a prime number p. If p would be one of the

prime numbers of the set, it would also divide the di�erence m−p1 ·p2 · . . . ·pr = 1.

Because p cannot divide 1, we found a prime number not in the set P .

This proof uses another crucial proposition from another one of Euclid's 13 books

of Elements [17][book XII, proposition 31]: Any composite number is measured by

some prime number.
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1.2. Eratosthenes

In 200 BC, Eratosthenes invented an algorithm to distinguish between prime and

composite numbers. This algorithm is called the Sieve of Eratosthenes. The �rst

step is to write down all natural numbers beginning with 2 up to a limit N (for

example 100). The next step is to cross out all the numbers that are divisible by

2, which excludes every second number. The next number that is not crossed out

is 3, so all other numbers that are divisible by 3 are crossed out. This goes on

with the next number that is not crossed out, namely 5. If this is continued until

the last number, all remaining numbers are prime and all crossed out numbers are

composite [30]

2 3 ��HH4 5 ��HH6 7 ��HH8 ��HH9 ���XXX10

11 ���XXX12 13 ���XXX14 ���XXX15 ���XXX16 17 ���XXX18 19 ���XXX20

���XXX21 ���XXX22 23 ���XXX24 ���XXX25 ���XXX26 ���XXX27 ���XXX28 29 ���XXX30

31 ���XXX32 ���XXX33 ���XXX34 ���XXX35 ���XXX36 37 ���XXX38 ���XXX39 ���XXX40

41 ���XXX42 43 ���XXX44 ���XXX45 ���XXX46 47 ���XXX48 ���XXX49 ���XXX50

���XXX51 ���XXX52 53 ���XXX54 ���XXX55 ���XXX56 ���XXX57 ���XXX58 59 ���XXX60

61 ���XXX62 ���XXX63 ���XXX64 ���XXX65 ���XXX66 67 ���XXX68 ���XXX69 ���XXX70

71 ���XXX72 73 ���XXX74 ���XXX75 ���XXX76 ���XXX77 ���XXX78 79 ���XXX80

���XXX81 ���XXX82 83 ���XXX84 ���XXX85 ���XXX86 ���XXX87 ���XXX88 89 ���XXX90

���XXX91 ���XXX92 ���XXX93 ���XXX94 ���XXX95 ���XXX96 97 ���XXX98 ���XXX99 ���XXX100

The method behind this algorithm is very simple. 2 is a prime number, all of its

multiples are crossed out. The next number that is not crossed out has to be a

prime number and the search continues for numbers that are not divisible by a

prime. Furthermore, the algorithm can be modi�ed to have a better running time

using the following proposition:

Proposition 1.2.1:

Every composite number n has a prime factor which is at most
√
n.

Proof. n is a composite number with prime factors p1, p2, . . . , pr. So n = p1 ·
p2, . . . pr.

Without loss of generality, take two arbitrary prime factors, pi and pj. If pi >
√
n

and pj >
√
n, then pi · pj >

√
n ·
√
n = n. Thus, one of the prime factors must be

less than or equal to
√
n.

Sirus Black was wrongfully convicted of the murder of 13 people.



First, in step i of the algorithm, all composite numbers between 0 and p2i have

already been crossed out. Additionally, the algorithm can be terminated when

jumping to a prime number pj, whose square is bigger than the limit N . In the

example above, mulitples of 11 do not have to be looked at, because
√

100 < 11.

This concludes that in just four steps (with using the prime numbers 2, 3, 5 and

7) all numbers between 2 and 100 can be identi�ed to be prime or composite.

Although this adjustment makes the algorithm much more e�cient, it is very

ine�cient for larger numbers. To check the primality of a number n, every single

number up to
√
n has to be dealt with �rst. [29][33][35]

1.3. Fermat

After Eratosthenes, a signi�cant amount of time passed without any great e�ort

towards better understanding prime numbers, which coincided with the Dark Ages.

In the 17th century, Pierre de Fermat had a huge impact on number theory. His

most important works (all named after him, of course) include Fermat's Little

Theorem, Fermat's Factorization Method and Fermat's Last Theorem. The latter

was �rst proven by Andrew Wiles in 1995. With his Factorization Method, he

invented a new method in factorizing large numbers. [29][41]

Moreover, to this day, his Little Theorem is extremely important, serving as the

foundation for many other number-theoretical �ndings.

Theorem 1.3.1 (Fermat's Little Theorem):

If p is prime and a is an integer > 1 with (a,p)=1, then

ap−1 ≡ 1 (mod p)

Another commonly seen version of this theorem states (with the same properties):

ap ≡ a (mod p)

Those two versions are congruent to each other.
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Before proving Fermat's Little Theorem other theorems have to be stated �rst:

Lemma 1.3.2:

If p is a prime number and a ∈ Z. Then a is its own inverse modulo p i�

a ≡ ±1 (mod p).

Proof. "⇒": Assume a is its own inverse modulo p. Then a2 ≡ 1 (mod p). This

is equivalent to (a2− 1) ≡ 0 (mod p). So p|(a2− 1) and (a2− 1) = (a+ 1)(a− 1).

So p has to divide either a+ 1 or a− 1. It follows that a ≡ +1 (mod p) or a ≡ −1

(mod p).

"⇐": Assume a ≡ ±1 (mod p). Then a2 ≡ 1 (mod p). So it follows that a is its

own inverse modulo p. [41]

Theorem 1.3.3 (Wilson's Theorem):

p is a prime number i�

(p− 1)! ≡ −1 (mod p) (1.3.1)

Proof. "⇒": For p = 2 and p = 3 it is true. So assume p > 3. Each integer a with

1 ≤ a ≤ p − 1 has a unique inverse (a proof can be found in [41][pages 49-51])

modulo p. W.l.o.g. a′ with 1 ≤ a′ ≤ p− 1 is the inverse of a. Because of Lemma

1.3.2 a 6= a′ for 2 ≤ a ≤ p− 2.

So when looking at 2 · 3 · · · (p − 2) = (p − 2)!, every a with 2 ≤ a ≤ p − 2 also

has its (unique) inverse in the product too. So (p− 2)! ≡ 1 (mod p). Multiplying

both sides with p− 1 leaves (p− 1)! ≡ p− 1 ≡ −1 (mod p).

"⇐": Let n = ab with a, b ∈ Z with 1 ≤ a < n. Obviously, a|(n − 1)!. Because

n|((n − 1)! + 1) ((n − 1)! ≡ −1 (mod n)) and a|n, a|((n − 1)! + 1). So, a|((n −
1)! + 1− (n− 1)!. If follows that a|1, so a = 1. [41]

Proof of Fermat's Little Theorem. All the integers a, 2a, 3a,.. (p − 1)a are not

divisible by p, because (a, p) = 1 and (i, p) = 1 for 1 ≤ i ≤ p− 1.

Also none of those integers are congruent. If ia ≡ ja (mod p) then iaa′ ≡ jaa′

(mod p), with a′ being the inverse of a. So this is only true for i ≡ j (mod p).

So the set {a, 2a, 3a, ..(p− 1)a} has to be congruent to the set {1, 2, 3, ...p− 1}.
If follows that

a · 2a · 3a · ...(p− 1)a = ap−1(p− 1)! ≡ (p− 1)! (mod p)
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Applying Theorem 1.3.1 (Wilson's Theorem) the congruence becomes −ap−1 ≡ −1

(mod p). This is equivalent to ap−1 ≡ 1 (mod p). [41]

With this Theorem, he also proved one half of the Chinese Hypothesis, dating back

2000 years:

An integer n is prime i� 2n − 2 is divisible by n.

"⇒" is Fermat's Little Theorem, because 2n − 2 is divisible by n is equivalent to

2n ≡ n (mod n).

For "⇐" counterexamples were found, for example 2341−2 is divisible by 341. But

341 is composite: 341 = 11 · 31. [29]

Fermat's Little Theorem can rather easily tell if a number is composite, because

if an 6≡ a (mod n) for an integer number n, n cannot be prime. But on the other

hand, if n passes the test, it may be prime.

De�nition 1.3.4 (Fermat Pseudoprime):

Composite numbers that pass the test with a certain a are called Fermat

pseudoprimes to base a.

Example 1.3.5:

231 is a pseudoprime to base 2.

[31]

De�nition 1.3.6 (Carmichael Number):

Composite numbers that pass the test for all a > 1 with (a, n) = 1 are called

Carmichael Numbers.

The smallest Carmichael Number is 561 = 3 · 11 · 17. Although Carmichael Num-

bers occur rarely, it was proven in 1994 by Alford, Granville and Pomerance in [3]

that there are in�nitely many Carmichael Numbers. [29][41]

Fermat and Mersenne studied certain kinds of numbers that they thought associ-

ated with prime numbers. Fermat conjectured that numbers of the form 22n + 1

are always prime for n ∈ N. Those numbers are named after him, namely Fermat
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numbers. Although it is true for n = 0, ..., 4, Euler found out that 225 + 1 is divis-

able by 641. To this day, no other primes of this type have been found. It remains

a conjecture if there are any more, maybe even in�nitely many. [29]

Theorem 1.3.7:

Numbers of the form 2n + 1 for n 6= 2k, with k ∈ N, are composite.

Proof. If n is not a power of 2, then n has an odd factor.

n = a · b, with b odd.

2n + 1 = (2a)b + 1 = (2a + 1)(2a(b−1) − 2a(b−2) + 2a(b−3) − . . .+ 1)

Theorem 1.3.8 (Mersenne Numbers):

Mersenne Numbers Mn = 2n − 1 are always composite, when n is composite.

Proof. n = a · b, where a and b do not have to be prime.

The Mersenne Number Mab = 2ab − 1 can be written as

2ab − 1 = (2a − 1) · (2a(b−1) + 2a(b−2) + . . .+ 2a + 1)

[30]

If p is prime, it does not mean that Mp is also prime. Nevertheless, most of the

largest known primes are of this form. // As of 29 April 2018, the largest known

Prime Number is a Mersenne Number : M77232917, found on 26 December 2017 as

part of the GIMPS (Great Internet Mersenne Prime Search) project. [12]

1.4. Euler

Leonhard Euler studied Prime Numbers in the 18th century, about 100 years later

than Fermat. He generalized 1.3.1 Fermat's Little Theorem. Now, the modulus m

does not have the condition of being prime any more. Before stating the Theorem,

a new function has to be introduced.

Apollo 17 was the last moon landing.



De�nition 1.4.1 (Euler ϕ-function):

The Euler ϕ-function ϕ(n) for integer n > 0 is de�ned by

ϕ(n) = |{x ∈ Z|1 ≤ x ≤ n; (x, n) = 1}|

So, ϕ(n) is the number of positive integers less than or equal to n that are relatively

prime to n. [30]

Theorem 1.4.2 (Euler's Theorem):

If a positive integer m and a ∈ Z with (a,m) = 1, then

aϕ(m) ≡ 1 (mod m)

Euler's Theorem looks very similar to Fermat's Little Theorem. In fact, for m ∈ P
the Euler φ-function ϕ(m) = m− 1 is exactly Fermat's Little Theorem.

Proof. First, there are exactly ϕ(m) distinct integers ri with i ∈ {1, 2, . . . , ϕ(m)}
and 1 ≤ ri ≤ m ∀ri that hold the property (ri,m) = 1.

The next step of the proof is to show the equality {r1, r2, . . . , rϕ(m)} = {r1 · a, r2 ·
a, . . . , rϕ(m) · a}.
If (ri · a,m) > 1 for one i, there is a prime divisor p of (ri · a,m) with p|ri · a and

p|m.

So p|m and eighter p|ri or p|a. This is impossible, because (ri,m) = 1 and (a,m) =

1. This means (ri · a,m) = 1.

So far {r1, r2, . . . , rϕ(m)} ⊇ {r1 · a, r2 · a, . . . , rϕ(m) · a}.
If ri ·a = rj ·a for some i, j. In addition, a has a unique inverse modulo m, denoted

with a′. From ri · a · a′ = rj · a · a′ follows, that ri = rj and this means that the

the two sets are the same.

So

r1 · a · r2 · a · · · rϕ(m) · a ≡ r1 · r2 · · · rϕ(m) (mod m)

aϕ(m) · r1 · r2 · · · rϕ(m) ≡ r1 · r2 · · · rϕ(m) (mod m)

So it follows that

m|(aϕ(m) · r1 · r2 · · · rϕ(m) − r1 · r2 · · · rϕ(m))

18



m|((aϕ(m) − 1) · r1 · r2 · · · rϕ(m))

Because (r1 · r2 · · · rϕ(m),m) = 1, m|(aϕ(m) − 1) and it follows that

aϕ(m) ≡ 1 (mod m)

[30]

Another property of prime numbers that is based on Fermat's Little Theorem and

Wilson's Theorem is Euler's Criterion.

Before the Criterion, the Legendre Symbol and the Jacobi Symbol must be in-

troduced:

De�nition 1.4.3 (Legendre Symbol):

Let p be an odd prime and a an integer with p - a.
Then the Legendre Symbol is de�ned as(

a

p

)
=

{
+1 if ∃x ∈ Zp with x2 ≡ a (mod p)

−1 otherwise

If
(
a
p

)
= +1, then a is called a quadratic residue modulo p, otherwise a is a

quadratic nonresidue modulo p.

De�nition 1.4.4 (Jacobi Symbol):

Let p be an odd positive integer > 1 with n = pα1
1 · pα2

2 · · · pαr
r and a an integer

with (a, n) = 1.

Then the Jacobi Symbol is de�ned as(a
n

)
=

(
a

p1

)α1

·
(
a

p2

)α2

· · ·
(
a

pr

)αr

with
(
a
pi

)
being Legendre Symbols.

If (a, n) > 1 then
(
a
n

)
= 0.

[41]

In golf, the clubhouse is referred to as the 19th Hole.



Theorem 1.4.5 (Euler's Criterion):

Let p be an odd prime number and a an integer with p - a. Then(
a

p

)
≡ a(p−1)/2 (mod p)

[6][18][41]

Proof. There are two cases. Either
(
a
p

)
= 1 or

(
a
p

)
= −1.

First assume
(
a
p

)
= 1. Then there exists a x with x2 ≡ a (mod p). So

a(p−1)/2 ≡ (x2)(p−1)/2 ≡ xp−1 (mod p)

Because of Fermat's Little Theorem: xp−1 ≡ 1 (mod p) and thus

a(p−1)/2 ≡ 1 (mod p)

a(p−1)/2 ≡
(
a

p

)
(mod p)

Now to the second case: Assume that
(
a
p

)
= −1. Each i ∈ Zp has an inverse

j ∈ Zp. The inverse is unique and also i 6= j (otherwise i2 = a and
(
a
p

)
= 1).

Pairing them up will result in

a(p−1)/2 ≡ (p− 1)! (mod p)

Because of Wilson's Theorem ((x, p) = 1): (p− 1)! ≡ −1 (mod p). So

a(p−1)/2 ≡ −1 (mod p)

a(p−1)/2 ≡
(
a

p

)
(mod p)

[41]
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1.5. The Chinese Remainder Theorem

At �rst sight, the following Theorem may not be associated with prime numbers

as much as the other Theorems in this Chapter, but nevertheless, it is crucial for

a number of proofs of prime number algorithms.

Theorem 1.5.1 (The Chinese Remainder Theorem):

Let n1, n2, . . . , nk be pairwise coprime and greater than 1 and a1, a2, . . . , ak ∈
Z. Then the system of n equations

a ≡ a1 (mod n1)

a ≡ a2 (mod n2)

...

a ≡ ak (mod nk)

has a unique solution for a modulo n1 · n2 · · ·nk.

Proof. First, let's de�ne N := n1 · n2 · · ·nk. Let's show

a ≡
k∑
i=1

ai · (N/ni) · (N/ni)−1 (mod N)

It is easy to see that a ≡ ai (mod ni) for all i.

Next, a has to be unique modulo n. Assuming there exists an a′ 6≡ a (mod N),

but a′ ≡ ai (mod ni), this means a − a′ is a multiple of ni for all i. This implies

a− a′ is also a multiple modulo N , therefore a ≡ a′ (mod N).

[25][36]
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2. Prime Numbers and Prime

Number Tests

2.1. Prime Number Tests

There are di�erent tests to determine if a number n is prime or not. In general,

prime number algorithms can be classi�ed into two groups: Probabilistic Prime

Number Tests and Deterministic Prime Number Tests.

2.1.1. Probabilistic Prime Number Tests

As the name already assumes, Probabilistic Prime Number Tests only tell with a

certain probability whether a number is prime or composite.

One famous example for a Probabilistic Prime Number Test is based on 1.3.1

Fermat's Little Theorem. As previously mentioned, composite numbers that pass

the test with a certain a are called Fermat Pseudoprimes (1.3.4) to base a. If they

pass is for all a > 0 with (a, n) = 1, they are called Carmichael Numbers (1.3.6).

On the other hand, if the test declares a number as composite, it is for sure com-

posite. Despite this small room for error this test is widely used for primality

Algorithm 1 fermat(m: positive integer > 1, a: positive integer > 1)

if am−1 6≡ 1 (mod m) then
return composite

else
return probably prime

end if

testing since the errors occur so rarely. For example, for base 2, if n → ∞ the

error goes to zero. Although its time complexity is polynomial, the only problem

is that it is not deterministic. [2][13]
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2.1.2. Deterministic Prime Number Tests

More interesting for this paper are Deterministic Prime Number Tests, which only

have two possible outcomes with no uncertainty regarding a number's primality,

thereby preventing the return of Pseudoprimes. If the test outputs prime, the

number is prime; if the test outputs composite, the number is composite.

A very easy example is the Sieve of Eratosthenes. Moreover, similar algorithms

based on the same idea check every number from 2 to
√
n to determine whether

n is prime or composite. The time complexity for this test, however, is Θ(
√
n). [2]

Algorithm 2 checkprime(m: positive integer > 1)

for i=2 to �oor(sqrt(m)) do
if m/i=0 then
return composite

end if
end for
return prime

Another Deterministic Prime Number Test already encountered is based on Wil-

son's Theorem. If one were to multiply m − 1-times, the algorithm's time com-

plexity explodes, thereby becoming very slow. Θ(m) is even worse than trivially

checking all numbers up to
√
m.

Algorithm 3 wilson(m: positive integer > 1)

if (m− 1)! ≡ −1 (mod m) then
return prime

else
return composite

end if

While both of those tests are deterministic, they are also ine�cient with horren-

dous time complexities.

These two algorithms are just examples for Deterministic Prime Number Tests.

The aim has always been to �nd algorithms that are deterministic and have a

decent time complexity with the goal of �nding one that runs in polynomial time.

23 players are allowed to be on the roster of a rugby game.



2.2. The Compexity Class P

One very important aspect of a prime number algorithm is its time complexity.

This is where the e�ciency of an algorithm comes into play: "[...] an algorithm

whose memory requirements are larger than the number of atoms on earth or

whose execution takes several billion years would not be very helpful." [33]

The complexity of an algorithm depends on how resources depend on an input.

One aspect of complexity theory is very important: the running time. The run-

ning time is de�ned by the number of elementary instructions when an algorithm

is applied to an input.

Nowadays, although computers have increasingly more computational power al-

lowing for calculations to be executed faster, the time complexity is independent

of the computational power of a computer.

De�nition 2.2.1 (E�cient algorithm):

An algorithm is e�cient or polynomial if the time complexity is bounded by

O(nk) for some constant k, where n denotes the input size.

This class of decision problems is called P .

Although non-e�cient algorithms can have a better running time than e�cient

algorithms for a small input n, this de�nition is very practical.

In addition to the complexity class P , one important complexity class is NP .

In the NP class, the problems are "veri�able" in polynomial time. This means, if

there is a certi�cate of a solution, it would take polynomial time to verify it.

There exists a hypothesis that those two complexity classes are in fact the same.

The o�cial formulation of the problem is [11]:

Conjecture 2.2.2:

Does P = NP?
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It is one of seven Millenium Problems de�ned by the Clay Mathematics Institute1.

Solving it comes with a prize money of 1 Million US Dollars. As of today, only the

Poincaré Conjecture has been solved and was awarded with a Fields Medal while

all of the other six problems remain unsolved. [11][13][33]

1http://www.claymath.org/millennium-problems
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3. Conditional Polynomial Prime

Number Tests

In Chapter 2.1.2 Deterministic Prime Number Tests two algorithms were intro-

duced. Although they have the advantage of being deterministic, thus having no

error, they are not desireable because of their poor time complexities.

In the 1970s, two probabilistic algorithms were introduced that could be made de-

terministic under the assumption of the Generalized Riemann Hypothesis (GRH).

In this chapter, the Riemann Hypothesis (RH), the Generalized Riemann Hypoth-

esis and the properties needed for the two algorithms are established. After that,

the two algorithms are discussed. [2][38]

3.1. The Riemann Hypothesis and the

Generalized Riemann Hypothesis

3.1.1. The Riemann ζ-function

The base of the Riemann Hypothesis is the Riemann ζ-function. Although its

de�nition may seem easy, mathematicians have been studying it for more than a

hundred years.
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De�nition 3.1.1 (Riemann ζ-function):

The Riemann ζ-function for s ∈ C, is de�ned as the absolutely convergent

series

ζ(s) :=
∞∑
n=1

1

ns

on the half-plane Re(s) > 1.

The connection between the function and prime numbers is expressed in the next

Theorem.

Theorem 3.1.2 (Euler product of the Riemann ζ-function):

For s ∈ C and Re(s) > 1 the Riemann ζ-function is

ζ(s) =
∏
p

(
1− 1

ps

)−1
(3.1.1)

where p in P.

Proof. Because ζ(s) is absolutely convergent, the factors can be rearranged without

changing the limit. Also |p−s| < 1 and

1 + p−s + (p2)−s + (p3)−s + · · · = 1

1− p−s

and because of the uniqueness of the prime factorization

ζ(s) =
∏
p

(
1− 1

ps

)−1
[37]

[7][42][43]
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3.1.2. Analytic continuation of the Riemann ζ-function

Analytically continuing ζ(s) to the complex plane C gives a meromorphic function

with one simple pole at s = 1 with residue 1 [43]. Continuing ζ(s) is neither easy

nor straightforward. The �rst part is to continue the function to the half-plane

Re(s) > 0:

Proposition 3.1.3:

There exists a meromorphic continuation of ζ(s) for Re(s) > 0.

Proof. First, a real number t can be written as t = [t] + {t}, where [t] denotes the

integer part and {t} the fractional part.

ζ(s) =
∞∑
n=1

1

ns
=
∞∑
n=1

s

∞∫
n

1

ts+1
dt =

= s

∞∫
1

∑
n≤t

1

ts+1
dt = s

∞∫
1

[t]

ts+1
dt =

= s

∞∫
1

t

ts+1
dt− s

∞∫
1

{t}
ts+1

dt =

=
s

s− 1
− s

∞∫
1

{t}
ts+1

dt (3.1.2)

Because {t} ∈ [0, 1[, the integral converges for Re(s) > 0. So (3.1.2) converges

for Re(0) for all points except for s = 1. So for Re(s) > 0, except s = 1, the

continuation is analytic and thus unique.

[42]
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Theorem 3.1.4:

The Riemann ζ-function can be analytically continued to the whole complex

plane with a single pole at s = 1 (with residue 1).

The functional equation is

ζ(s) = 2sπs−1 sin
(sπ

2

)
Γ(1− s)ζ(1− s) (3.1.3)

with s 6= 0, 1

Continuing the ζ-function uses a similar idea as Proposition B.0.7.

By using the transformation s 7→ 1−s, the function is de�ned on the whole complex

plane. The center of symmetry is at s = 1
2
and because of Proposition 3.1.3, ζ(s)

is de�ned for Re(s) ≥ 1
2
. This transformation also de�nes it for Re(s) ≤ 1

2
, which

de�nes ζ(s) on the whole complex plane.

The idea behind it may sound simple, but the proof of it is de�nitely not easy.

Proof. For Re(s) > 0

Γ
(s

2

)
π−s/2n−s =

∞∫
0

xs−1e−xπ−s/2n−sdx

Using the Substitution x = πn2y, with n being a positive integer, results in the

following integral:

Γ
(s

2

)
π−s/2n−s =

∞∫
0

ys/2−1e−πn
2ydy

Summing over all n nor Re(s) > 1 adds up to

Γ
(s

2

)
π−s/2

∞∑
n=1

n−s =
∞∑
n=1

∞∫
0

ys/2−1e−πn
2ydy

With the identity in Proposition C.0.13:

Γ
(s

2

)
π−s/2ζ(s) =

∞∫
0

ys/2−1 · 1

2
(θ(y)− 1)dy

29 is the number of knuts in one sickle.



By just looking at the intervall [0, 1] and substituting z = 1
y
and using Proposition

C.0.13, it follows that

1∫
0

ys/2−1 · 1

2
(θ(y)− 1)dy =

=

1∫
∞

z−s/2+11

2
(θ

(
1

z

)
− 1)

dz

−z2
=

=

∞∫
1

z−s/2−1
1

2
(
√
zθ(z)− 1)dz =

=

∞∫
1

z−s/2−1
1

2

√
zθ(z)− z−s/2−11

2
dz =

=

∞∫
1

z−s/2−1
1

2

√
zθ(z)− z−s/2−11

2
+ z−s/2−1

√
z

2
− z−s/2−1

√
z

2
dz =

=

∞∫
1

z−s/2−1
1

2

√
zθ(z)dz − 1

s
+

1

s− 1
−
∞∫
1

z−s/2−1
√
z

2
dz =

=
1

s(s− 1)
+

∞∫
1

z−(s+1)/21

2
(θ(z)− 1)dz

So

Γ
(s

2

)
π−s/2ζ(s) =

1

s(s− 1)
+

∞∫
1

z−(s+1)/21

2
(θ(z)−1)dz+

∞∫
1

ys/2−1 ·1
2

(θ(y)−1)dy =

=
1

s(s− 1)
+

∞∫
1

(x−(s+1)/2 + xs/2−1)
1

2
(θ(x)− 1)dx

Also 1
2
(θ(x)− 1) = O(e−πx) for x ≥ 1 because

θ(x) = 1 + 2e−πx + 2 ∗ e−4πx + 2e−9πx + . . .
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= 1 + 2e−πx(1 + e−3πx + e−8πx + . . . )

The term 1 + e−3πx + e−8πx + . . . is bounded, so

1

2
(θ(x)− 1) = O(e−πx)

This is an upper bound, the integral converges uniformly on every bounded domain

in C. Thus

1

s(s− 1)
+

∞∫
1

(x−(s+1)/2 + xs/2−1)
1

2
(θ(z)− 1)dx

is an analytic function, invariant under the transformation s 7→ 1−s. This means,

Γ
(
s
2

)
π−s/2ζ(s) is also an analytic function in C\{0, 1} and it is also invariant

under s 7→ 1− s. This means

Γ
(s

2

)
π−s/2ζ(s) = Γ

(
1− s

2

)
π−(1−s)/2ζ(1− s)

ζ(s) =
Γ
(
1−s
2

)
Γ
(
s
2

) πs−1/2ζ(1− s) (3.1.4)

With Proposition B.0.8:

1

Γ( s
2
)

=
Γ(1− s

2
) sin(πs

2
)

π

(3.1.4) equals

ζ(s) = Γ

(
1− s

2

)
Γ
(

1− s

2

)
sin
(πs

2

)
πs−3/2ζ(1− s)

And with Proposition B.0.9:

Γ
(

1− s

2

)
Γ

(
1− s

2

)
=
√
π2sΓ(1− s)

ζ(s) = 2sπs−1 sin
(sπ

2

)
Γ(1− s)ζ(1− s)

[39][42]
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3.1.3. The zeros of the Riemann ζ-function

Looking at (3.1.1) Euler's product of ζ(s) it is easy to see that it has no zeros for

Re(s) > 1.

For Re(s) < 0 the sine-term in the analytic continuation (3.1.3) gives zeros at

the negative even integers: s = −2,−4,−6, . . . are called trivial zeros. Because

Γ(1− s) 6= 0 for Re(s) < 0 those are all zeros for Re(s) < 0.

For 0 ≤ Re(s) ≤ 1 (called the critical strip) it is not easy to calculate the ze-

ros. In fact, it is proven that there are in�nitely many zeros in that strip (see

[43]), nevertheless only �nitely many zeros are known to this point. All of those

known zeros have the form 1
2

+ i · α for some α ∈ R.

This problem is called The Riemann Hypothesis and is probably the most fa-

mous unsolved problem in Mathematics and one of the seven Millenium Problems

of the Clay Mathematics Institute; another one is stated on page 24. The o�cial

formulation of the problem is [7]:

Conjecture 3.1.5 (The Riemann Hypothesis):

The nontrivial zeros of ζ(s) have real part equal to 1
2
.

[7][43]

3.1.4. Dirichlet L-Functions

To make it even more complicated, one can extend the Riemann ζ-function to

what is called a Dirichlet L-Function.

De�nition 3.1.6 (Dirichlet character):

Let D be a positive integer. A function χ : Z → C is called a Dirichlet

character modulus D if

χ(mn) = χ(m)χ(n) ∀m,n ∈ Z,
χ(n) = χ(n+ kD) with k ∈ Z and

χ(n) = 0 i� (n,D) > 1.
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De�nition 3.1.7 (Principal character):

χ0 is the principal character modulus D :

χ0(n) =

{
1, if (n,D) = 1

0, otherwise

Characters that are not principal are called nonprincipal characters.

Similar to De�ntion 3.1.1 is the De�nition of the Dirichlet L-Series :

De�nition 3.1.8 (Dirichlet L-Series):

Let χ be a Dirichlet character modulus D and s ∈ C. The Dirichlet L-Series
is de�ned as

L(s, χ) =
∞∑
n=1

χ(n)

ns

It is also convergent for Re(s) > 1 and if χ is nonprincipal it converges for

Re(s) > 0.

Similar to Theorem 3.1.2, there exists a product formula, too:

Theorem 3.1.9:

For s ∈ C and Re(s) > 1

L(s, χ) =
∏
p

(
1− χ(n)

ps

)−1
with p in P.
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From this, it is easy to see the connection to the Riemann ζ-function:

Lemma 3.1.10:

Let χ0 be the principal character modulus D. Then

L(s, χ0) = ζ(s)
∏
p|D

(
1− p−s

)

All Dirichlet L-Series can be analytically continued to the so-called Dirichlet L-

Functions. If χ is a nonprincipal character, then the series L(s, χ) =
∑∞

n=1
χ(n)
ns

converges for Re(s) > 0, the corresponding function L(s, χ) is analytic in C.
Continuing L(s, χ) is similar to the continuation of ζ(s). If χ0 is the principal

character, then L(s, χ0) can be continued to a meromorphic function, that has a

single pole at s = 1 with residue ϕ(D)/D.

[14][28][40]

3.1.5. The zeros of the Dirichlet L-Functions

The zeros of ζ(s) have a great deal to do with the distribution of the primes.

Similar to that, the zeros of L(s, χ) say a lot about the distibution of primes in a

residue class. [14]

Conjecture 3.1.11 (The Generalized Riemann Hypothesis):

The zeros of L(s, χ), with χ being an arbitrary Dirichlet character, in the half

plane Re(s) > 0 have real part equal to 1
2
.

The connection between the Generalized Riemann Hypothesis and Conditional

Polynomial Prime Number Tests is the following:

Theorem 3.1.12:

Assume the GRH.

Let G be a nontrivial subgroup of Z∗D such that all residue classes x with

(x,D) = 1 and x < n are contained in G.

Then n < 2 log2D.
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Proof. G is a nontrivial subgroup of Z∗D with x ∈ G for all positive x < n.

Without loss of generality, G is maximal.

Then there is a nonprincipal character χ with G ⊂ ker(χ) and χ(x) = 1 for all

x < n.

First, let D < 1000. If D < 3, there are no nontrivial subgroups of Z∗D.
For 3 ≤ D < 1000 and D ∈ P it has a primitive root < 1.7 log2D. [45]

If D is composite, it has a divisor at most
√
D and

√
D < 2 log2D for 6 ≤ D <

1000.

The harder part of the proof is for D ≥ 1000.

Now, using Lemma D.0.20 and taking a = 1
2
:

√
n(

3
2

)2 ≤ 1

2
· (1 + r(n)) · (logD + t(n)) + s(n)

Also, 0 ≤ logD + t(n) ≤ logD ([5][1][44]).

Thus

√
n ≤ 9

8
· (1 + r(n)) · (logD) +

9

4
· s(n)

√
n ≤ 9

8
·
(

1 + r(n) +
2 · s(n)

log 1000

)
· (logD)

Also, r(n)→ 0 and s(n)→ 0 for su�cient large values of n.

√
n <
√

2 logD

n < 2 log2D

[14]

3.2. The Solovay-Strassen Primality Test

The problem with primality tests based on Fermat's Little Theorem are the al-

ready discussed Carmichael Numbers. An ideal primality test would have no Pseu-

doprimes or at least no composite numbers that fail for a su�ciently small number

of bases a.
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In the 1970s, Robert M. Solovay and Volker Strassen developed a randomized

polynomial prime number algorithm. Their algorithm can be made deterministic

assuming the Generalized Riemann Hypothesis. [2] The Primality Test is based on

1.4.5 Euler's Criterion.

Theorem 3.2.1:

Let n be an odd positive integer. If there exists an integer a with (n, a) = 1

and (a
n

)
6≡ a(n−1)/2 (mod n) (3.2.1)

Then n is composite.

Proof. n can either have a prime divisor more than once or n is squarefree.

First, let n be an odd composite number that is squarefree, hence n = p1 · p2 · · · pr
with r ≥ 2. All pi are distinct odd primes.

Next, take a b ∈ Z that is a quadratic nonresidue modulo p1. So(
b

p1

)
= −1

With the Chinese Remainder Theorem there exists an a ∈ Z with

a ≡ b (mod p1)

and

a ≡ 1 (mod n/p1)

This means, that a is relatively prime to both p1 and n/p1. So (a, n) = 1.

Furthermore,(
b

p1

)
=

(
a

p1

)
= −1
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and for 1 < i ≤ r(
1

pi

)
=

(
a

pi

)
= 1

This means(a
n

)
=

(
a

p1

)
·
(
a

p2

)
· · ·
(
a

pr

)
= (−1) · 1 · · · 1 = −1

Let (a
n

)
≡ a(n−1)/2 (mod n)

then

−1 ≡ a(n−1)/2 (mod n)

Furthermore

−1 ≡ a(n−1)/2 (mod n/p1)

But

1 ≡ a ≡ a(n−1)/2 (mod n/p1)

Now assume that n is of the form n = pk ·m with p ∈ P, k ≥ 2 and (p,m) = 1.

Because of the Chinese Remainder Theorem there exists an a with

a ≡ 1 + p (mod p2)

and

a ≡ 1 (mod m)

This means (a, p) = 1 and (a,m) = 1 and it follows, that (a, n) = 1.

If (a
n

)
≡ a(n−1)/2 (mod n)

Roulette is played using a wheel containing 37 numbered slots.



holds, then (by squaring both sides) also

1 ≡ an−1 (mod n)

which is Fermat's Little Theorem.

Also

1 ≡ an−1 ≡ (1 + p)n−1 ≡ 1 + (n− 1) · p (mod p2)

So

0 ≡ (n− 1) · p (mod p2)

n ≡ 1 (mod p2)

But n is a multiple of p2, so there is a contradiction too.

[9]

This proof also shows that n can only be a Carmichael Number if n is squarefree.

3.2.1. The Probabilistic Solovay-Strassen Primality Test

A very e�ective but probabilistic Prime Number Test is based on Theorem 3.2.1.

It is easy to show that the number of false positives for a composite number n is

bounded by n−1
2
. On that property, there exists a randomized test.

De�nition 3.2.2 (Euler Pseudoprime):

n is an Euler pseudoprime to a base a if n is an odd composite number with

(n, a) = 1 and (3.2.1) holds.

The number of all bases a, for which n is an Euler pseudoprime is denoted by

E(n) := |{a (mod n) : n is an Euler pseudoprime to base a}|

If (3.2.1) fails for a base a, then it is called an Euler witness.
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Theorem 3.2.3:

Let n be an odd composite integer > 1, then E(n) < n−1
2
.

Proof. First de�ne three sets:

A = {1 ≤ a ≤ n− 1 : (a, n) = 1 ∧
(a
n

)
≡ a(n−1)/2 (mod n)}

B = {1 ≤ a ≤ n− 1 : (a, n) = 1 ∧
(a
n

)
6≡ a(n−1)/2 (mod n)}

C = {1 ≤ a ≤ n− 1 : (a, n) > 1}

Obviously, |A|+ |B|+ |C| = n− 1 and because of Theorem 3.2.1, B is not empty;

additionally, 1 ∈ A. Furthermore, because n is composite, C is non-empty too.

Let's take an arbitrary b ∈ B and look at the set A · b = {a · b (mod n) : a ∈ A}.
For all a ∈ A the following condition holds: (a · b, n) = 1 and

(a · b)(n−1)/2 ≡ a(n−1)/2 · b(n−1)/2 ≡
(a
n

)
· b(n−1)/2 (mod n)

a · b is either in A or B. If it is in A, then

(a · b)(n−1)/2 ≡
(
a · b
n

)
≡
(a
n

)
·
(
b

n

)
(mod n)

It follows that(
a · b
n

)
· b(n−1)/2 ≡

(a
n

)
·
(
b

n

)
(mod n)

b(n−1)/2 ≡
(
b

n

)
(mod n)

This is a contradiction to b ∈ B, therefore a · b ∈ B ∀a ∈ A.

Also, if a · b ≡ a′ · b mod n then a = a′. This means, that |A| = |A · b| ≤ |B|.
So

n− 1 = |A|+ |B|+ |C| ≥ |A|+ |A|+ 1 > 2|A|
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Which means that

E(n) = |A| < n− 1

2

[9]

Theorem 3.2.3 states that more than half of the bases a ∈ {1, 2, . . . n − 1} are

witnesses for the compositeness of n. Based on that Theorem, there exists a ran-

domized probabilistic primality test:

Algorithm 4 probabilisticsolovaystrassen(n: positive odd integer > 1)

choose random integer a ∈ [2, n− 1] with (n, a) = 1
if
(
a
n

)
≡ a(n−1)/2 (mod n) then

return probably prime
end if
return composite

If n is prime, the algorithm always gives probably prime. If n is composite, the

algorithm gives probably prime in less than half the cases. Running the algorithm

k times results in a probability of (1
2
)k for never �nding a witness.

The time complexity of the algorithm is Õ(log2 n) with the right implementation.

Running it k times results in a time complexity of Õ(k · log2 n). [16]

3.2.2. The Deterministic Solovay-Strassen Primality Test

To get to the deterministic albeit conditional version of the algorithm, the smallest

Euler witness has to be further bounded. The only downside is that every proof

bounding the smallest Euler witness by c · ln2 n, with c being a constant, requires

properties of the still unproven Generalized Riemann Hypothesis. The constant c

has been proven to be at most 2 by Eric Bach in [5].

Theorem 3.2.4:

Assume the GRH.

Then every odd composite positive integer n has an Euler witness at most

2 · ln2n.
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Proof. With Theorem 3.1.12 a nontrivial subgroup G of Z∗n and x ∈ G ∀x < a′

exists with a′ < 2 log2 n.

Let this subgroup be

G = {a ∈ Z∗n|
(a
n

)
≡ a(n−1)/2}

Obviously, G is a subgroup of Z∗n.
Moreover, G is nontrivial, because G 6= Z∗n (for every a there are witnesses) and

G 6= {1̄}.
Thus, there exists an a′ with a′ 6∈ G (G is maximal) and a′ < 2 log2 n.

[9]

Now, after at most 2 · ln2n steps, a composite number is identi�ed.

Algorithm 5 solovaystrassen(n: positive odd integer >1)

W = min{b2 · ln2nc, n− 1}
for a=2 to W do
if
(
a
n

)
6≡ a(n−1)/2 (mod n) then

return composite
end if

end for
return prime

The time complexity of this algorithm is at most O(log5 n). [36]

3.3. The Miller-Rabin Primality Test

At the same time as Robert M. Solovay and Volker Strassen published their re-

sults, Gary L. Miller and Michael O. Rabin developed their deterministic but

conditional polynomial prime number algorithm.

In 1975, Gary L. Miller used Fermat's Little Theorem to obtain a deterministic

polynomial prime number algorithm assuming the Generalized Riemann Hypoth-

esis. His results are in [26]. A few years later, Michael O. Rabin modi�ed the

algorithm to make it unconditional but randomized while maintaining the poly-

nomial time complexity. His results are in [32].

41 is the number of votes required to sustain a �libuster in the US Senate.



In contrast to the original order of research, this chapter starts o� with the ran-

domized algorithm and �nishes with the deterministic one. [2][14]

Theorem 3.3.1:

Let p be an odd prime number with p− 1 = 2st, where t is odd. For a ∈ Z∗p{
at ≡ 1 (mod p)

a2
it ≡ −1 (mod p) for some i with 0 ≤ i ≤ s− 1

(3.3.1)

Proof. First, let p be an odd prime number.

Let's recall 1.3.1 Fermat's Little Theorem:

For a > 1 with (a, p) = 1

ap ≡ 1 (mod p)

The �rst case is that at ≡ 1 (mod p), which concludes the �rst part of the proof.

So assume at 6≡ 1 (mod p). To get to ap ≡ 1 mod p by only squaring at, at

one point the square root of 1 (mod p) has to occur. Because the polynomial

X2 − 1 (mod p) has only two solutions: ±1, at one point the sequence a2
it has to

be −1. This concludes the second part of the proof.

So if p is prime, one of the conditions has to hold.

[15]
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3.3.1. The Probabilistic Miller-Rabin Primality Test

The conversion of Theorem 3.3.1 does not necessarily hold:

De�nition 3.3.2 (Strong Pseudoprime):

n is a strong pseudoprime to a base a if n is an odd composite number and

(3.3.1) holds. The number of all bases a, for which n is a strong pseudoprime

is denoted by

S(n) := |{a (mod n) : n is a strong pseudoprime to base a}|

[14]

Theorem 3.3.3:

Let n be an odd composite integer with n > 9, then S(n) ≤ 1
4
· ϕ(n).

Proof. [14] or [10]

Theorem 3.3.3 states, that for at least 3
4
of all bases a ∈ {1, 2, . . . n − 1} n is not

a strong pseudoprime. a is called a witness for an odd composite number n.

The following algorithm is very similar to the Solovay-Strassen randomized al-

gorithm:

Algorithm 6 probabilisticmillerrabin(n: positive odd integer > 3)

�nd s, t with n− 1 = 2st and t odd
choose random integer a ∈ [2, n− 1] with (n, a) = 1
if at ≡ 1 (mod n) then
return probably prime

else
for i=0 to s-1 do
if a2

it ≡ −1 (mod n) then
return probably prime

end if
end for

end if
return composite

Barbie and Ken broke up after 43 years.



It is easy to see that a is not a witness for an odd composite n in less than 1
4
of

the cases. Running the algorithm k times results in a probability to never choose

a witness of
(
1
4

)k
.

Using special fast multiplication techniques to implement the algorithm results

in a time complexity Õ(log2 n). Running the algorithm k times gives a time com-

plexity of Õ(k · log2 n) [38].

3.3.2. The Deterministic Miller-Rabin Primality Test

Similar to the Deterministic Solovay-Strassen Primality Test, there also exists a

deterministic version of the Miller-Rabin Primality Test. The two algorithms also

have a number of commonalities. Every Euler witness for the Solovay-Strassen

Test is also a witness for the Miller-Rabin Test. The conversion does not hold,

which is also consistent with at least 50% being Euler witnesses and 75% witnesses

for the Miller-Rabin Test.

Lemma 3.3.4:

For an odd positive integer > 1, an Euler witness is a witness for the Miller-

Rabin primality test.

Proof. It is easier to prove: if an integer a is not a Miller-Rabin witness, then it is

also not an Euler witness.

This means, if

at ≡ 1 (mod p)

or

a2
it ≡ −1 (mod p) for some i with 0 ≤ i ≤ s− 1

for some a ∈ Z∗n and n− 1 = 2st with t odd, then(a
n

)
≡ a(n−1)/2 (mod n)
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Because

a(n−1)/2 = a2
st/2 = a2

s−1t

it follows that

a(n−1)/2 ≡ ±1 (mod n)

Let's consider 2 cases.

First, s = 1. So

a(n−1)/2 ≡ at ≡ ±1 (mod n)

Because (n− 1)/2 is odd(a
n

)
=
(a
n

)(n−1)/2
If a(n−1)/2 ≡ 1 (mod n), then(a

n

)
=
(a
n

)(n−1)/2
=

(
1

n

)
= 1

If a(n−1)/2 ≡ −1 (mod n), then(a
n

)(n−1)/2
=

(
−1

n

)
= (−1)(n−1)/2

Because s = 1, (n− 1)/2 is odd.

So (a
n

)
= −1

This concludes the proof of the �rst case, namely where s = 1.

The second case is s > 1. If a2
s−1t ≡ −1 (mod n), then a(n−1)/2 ≡ −1 (mod n).

Otherwise a2
s−1t ≡ a(n−1)/2 ≡ 1 (mod n), because either at ≡ 1 or a2

it ≡ −1
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(mod n) with i < s− 1. If ak ≡ 1 (mod n) and k is odd, then(a
n

)
=
(a
n

)k
=

(
1

n

)
= 1

The next step is to count all powers of 2 in each p−1, where p is a prime divisor of n.

Let p−1 = 2sptp with sp ≥ 1 and tp odd. Because a
2it ≡ −1 (mod n), (at)2

i ≡ −1

(mod p). So the order of at (mod p) is 2i+1. It follows, that 2i+1|(p − 1). This

means, that i < sp and

p ≡ 1 (mod 2i+1) (3.3.2)

Because p is prime(
a

p

)
≡ a(p−1)/2 ≡ a2

sp−1tp (mod p)

Because t is odd(
a

p

)
≡
(
a

p

)t
≡ a2

sp−12tp ≡ a(2
itp)(2

sp−1−itp) ≡ (−1)2
sp−1−i

(mod p)

If i = sp−1, then 2sp−1−i = 1, otherwise 2sp−1−i is even. So
(
a
p

)
= −1 if i = sp−1

and
(
a
p

)
= 1 if i < sp − 1.

With (3.3.2) follows

p ≡ 1 + c · 2i+1 (mod 2i+2)

with c ∈ {0, 1}. c = 0 if i < sp − 1 and 1 if i = sp − 1.

Then(
a

p

)
= (−1)c

Now, n = p1 · p2 · · · pr.(a
n

)
=

r∏
j=1

(
a

pj

)
=

r∏
j=1

(−1)cj = (−1)
∑
cj (3.3.3)
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Also,

n ≡
r∏
j=1

pj ≡
r∏
j=1

(1 + cj · 2i+1) ≡ 1 +

(
r∑
j=1

cj

)
· 2i+1 (mod 2i+2)

Let c̃ =
r∑
j=1

cj = |{j : i = spj − 1}|.

So because of (3.3.3) it follows that(a
n

)
= (−1)c̃ (3.3.4)

and

n ≡ 1 + c̃ · 2i+1 ≡ 2st+ 1 (mod 2i+2)

If i = s− 1 (recall: a(n−1)/2 ≡ −1), then 2i+2 = 2s+1 and

1 + c̃ · 2i+1 ≡ 2st+ 1 (mod 2s+1)

So t ≡ c̃ (mod 2), which means that c̃ is odd.

Because of (3.3.4)(a
n

)
= −1

If i < s− 1 (recall: a(n−1)/2 ≡ 1), then i+ 2 ≤ s, so 2s ≡ 0 (mod 2i+2). So

c̃ · 2i+1 ≡ 0 (mod 2i+2)

This means, that c̃ is even and because of (3.3.4)(a
n

)
= 1

[10]

In the television series Alias, the number 47 is of signi�cant importance.



Theorem 3.3.5:

Assume the GRH.

The smallest witness for an odd composite positive integer n is at most 2· ln2n.

Proof. It follows directly from Lemma 3.3.4.

Now, if the GRH holds, the smallest witness for an odd composite n is bounded by

2 · ln2n. This means only bases smaller or equal to this bound have to be checked.

Algorithm 7 millerrabin(n: positive odd integer > 1)

W = min{b2 · ln2nc, n− 1}
�nd s, t with n− 1 = 2st and t odd
for a=2 to W do
if at 6≡ 1 (mod n) then
if a2

it 6≡ −1 (mod n) ∀i : 0 ≤ i ≤ s− 1 then
return composite

end if
end if

end for
return prime

The time complexity for the deterministic version of the Miller-Rabin Primality

Test was �rst stated and proven in [26]; it is Õ(log4 n).

48



4. Deterministic Polynomial

Prime Number Tests

All of the algorithms mentioned in chapter 2 are either probabilistic or ine�cient

due to the time complexity. Algorithms mentioned in chapter 3 are both of that,

assuming the Generalized Riemann Hypothesis is true. In this chapter, an uncon-

ditional deterministic prime number algorithm is indroduced that runs in polyno-

mial time. In 2002, Manindra Agrawal, Neeraj Kayal and Nitin Saxena presented

the AKS prime number algorithm in a paper simply called PRIMES is in P. [2][38]

4.1. Generalization of Fermat's Little Theorem

The algorithm is based on one simple Theorem, a generalization of 1.3.1 Fermat's

Little Theorem.

Theorem 4.1.1 (Fermat for polynomials):

Let p be a prime number. Then

(P (X))p ≡ P (Xp) (mod p)

holds for all polynomials P with integer coe�cients.

Proof. The proof is done by using induction over the degree d of P .

For d = 0 it is simply Fermat's Little Theorem.

Let's suppose the Theorem is true for degree at most d. Let Q be such a polynomial

with degree at most d and P = aXd+1 + Q a polynomial with degree d + 1 and

integer coe�cient a.
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(P (X))p = (aXd+1+Q(X))p = (aXd+1)p+

p−1∑
k=1

(
p

k

)
(aXd+1)k(Q(X))p−k+(Q(X))p

(4.1.1)

Because

(aXd+1)p = ap(Xd+1)p = ap(Xp)d+1

and because of 1.3.1 Fermat's Little Theorem

ap(Xp)d+1 ≡ a(Xp)d+1 (mod p)

it follows that

(aXd+1)p ≡ a(Xp)d+1 (mod p)

The sum in (4.1.1) is equivalent to 0 (mod p) because
(
p
i

)
= p!

i!·(p−i)! ≡ 0 (mod p).

Moreover, (Q(X))p ≡ Q(Xp) (mod p) as it has degree at most d.

It therefore follows that

(P (X))p ≡ a(Xp)d+1 +Q(Xp) = P (Xp) (mod p)

[33]

Taking P (X) = X + a with integer a relatively prime to the modulo even gives an

"if and only if" criterion:

Theorem 4.1.2:

Let a ∈ Z, n ∈ N, n ≥ 2, (a, n) = 1.

Then n is prime i�

(X + a)n ≡ Xn + a (mod n) (4.1.2)

Proof. Let's examine (X + a)n − (Xn + a): for 0 < i < n, the coe�cient of xi is(
n
i

)
an−i.

If n is prime
(
n
i

)
= n!

i!·(n−i)! ≡ 0 (mod n) and all the coe�cents are zero.
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If n is composite, there exists a prime q with q|n. Let qk|n and qk+1 - n. Then

(with n = qk ·m)(
n

q

)
=
n · (n− 1) · · · (n− q + 1)

q!
=

=
(qk ·m) · (n− 1) · · · (n− q + 1)

q!
=

=
(qk−1 ·m) · (n− 1) · · · (n− q + 1)

(q − 1)!

Because q does not divide any number between n − q + 1 and n − 1 qk -
(
n
q

)
, it

follows that
(
n
q

)
6≡ 0 (mod n). Also, (an−q, n) = 1, so an−q 6≡ 0 (mod n).

So,
(
n
q

)
an−q, the coe�cient of Xq, is not zero and (X + a)n − (Xn + a) does not

vanish over Zn. [2]

Although Theorem 4.1.2 is a deterministic prime number test, the time complexity

is not desirable. In the worst case, n coe�cients have to be checked, so the time

complexity is O(n). A simple solution to improve time complexity (and thereby

also the running time) is to reduce the number of coe�cients. Instead of compar-

ing the coe�cients modulo n, comparing them in the ring Zn[x]/(Xr − 1) with an

appropriately small r would do exactly that. [2]

De�nition 4.1.3:

Let f(X), g(X) be integer polynomials. Then the notation

f(X) ≡ g(X) (mod h(X), n)

means f(X) ≡ g(X) in the ring Zn[X]/(h(X)).

Lemma 4.1.4:

If n is prime, then

(X + a)n ≡ Xn + a (mod Xr − 1, n) (4.1.3)

Proof. It follows immediately from Theorem 4.1.2 that all values of a and r satisfy

the equation. [2]

51



A problem with which the algorithm has to contend is that a few composite num-

bers may, in fact, satisfy equation (4.1.3) for some a and r, too. Agrawal, Kayal

and Saxena already have a solution for that: "we show that for appropriately

chosen r if the equation (4.1.3) is satis�ed for several a's, then n must be a prime

power. The number of a's and the appropriate r are both bounded by a polyno-

mial in log n and therefore, we get a deterministic polynomial time algorithm for

testing primality." [2]

4.2. The AKS Prime Number Algorithm

Algorithm 8 aks(n: positive integer > 1)

Step 1
if n = ab for a ∈ N and b > 1 then
return composite

end if

Step 2
Find the smallest r such that or(n) > log2 n

Step 3
if 1 < (a, n) < n for some a ≤ r then
return composite

end if

Step 4
if n ≤ r then
return prime

end if

Step 5
for a = 1 to b

√
ϕ(r) log nc do

if (X + a)n 6≡ Xn + a (mod Xr − 1, n) then
return composite

end if
end for

Step 6
return prime

Theorem 4.2.1:

The algorithm aks(n) returns prime i� n is prime.
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Proving this Theorem requires some more work:

Lemma 4.2.2:

If n is prime, the algorithm aks(n) returns prime.

Proof. If n is prime steps 1 and 3 cannot return composite. Also, 5 never returns

composite because of Lemma 4.1.4, thus the algorithm returns prime.

The algorithm returning prime in step 4 means the input n has to be prime,

otherwise there would be a non-trivial factor of n identi�ed in step 3.

The only remaining case to check is step 6. This means, check if all composite

numbers have been identi�ed by either step 1, 3 or 5.

Lemma 4.2.3:

lcm(n) is the least common multiple for the �rst n numbers. For n ≥ 9:

lcm(n) ≥ 2n

Proof. First, consider the integral for 1 ≤ m ≤ n

I = I(m,n) =

1∫
0

xm−1(1− x)n−mdx =

=

1∫
0

xm−1
n−m∑
k=0

(
n−m
k

)
(−x)kdx =

=

1∫
0

n−m∑
k=0

(
n−m
k

)
(−1)kxk+m−1dx =

=
n−m∑
k=0

(
n−m
k

)
(−1)k

1∫
0

xk+m−1dx =

=
n−m∑
k=0

(
n−m
k

)
(−1)k

1

k +m

Because every denominator in the sum is at most n, I · lcm(n) ∈ Z.

53 players are allowed to be on the roster of an NFL game.



Repeatedly integrating I by parts gives

I = I(m,n) =

1∫
0

xm−1(1− x)n−mdx =

=
n−m
m

1∫
0

xm(1− x)n−m−1dx =

=
(n−m)(n−m− 1)

m(m+ 1)

1∫
0

xm+1(1− x)n−m−2dx =

...

=
(n−m) · · · (n−m− (n−m− 1))

m · · · (m+ (n−m− 1))

1∫
0

xm+(n−m−1)(1−x)n−m−(n−m−1)−1dx =

=
(n−m)(n−m− 1) · · · 1
m(m+ 1) · · · (n− 1)

1∫
0

xn−1dx =

=
(n−m)(n−m− 1) · · · 1
m(m+ 1) · · · (n− 1)n

=

=
(n−m)! ·m!

m · n!
=

1

m ·
(
n
m

)
It follows that m ·

(
n
m

)
|lcm(n) ∀m, 1 ≤ m ≤ n.

Also

n ·
(

2n

n

)
|lcm(2n) and (2n+ 1) ·

(
2n
n

)
= (n+ 1) ·

(
2n+1
n+1

)
|lcm(2n+ 1)

Because lcm(2n)|lcm(2n+ 1), both n ·
(
2n
n

)
and (2n+ 1) ·

(
2n
n

)
divide lcm(2n+ 1).

From (2n+ 1, n) = 1 it follows that n · (2n+ 1) ·
(
2n
n

)
|lcm(2n+ 1).

lcm(2n+ 1) ≥ n(n+ 1)

(
2n

n

)
≥ n ·

2n∑
k=0

(
2n

k

)
= n · (1 + 1)2n ≥ 22n+1
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The last inequality holds for n ≥ 2. For even numbers the inequality also holds,

because if n ≥ 4 lcm(2n+ 2) ≥ lcm(2n+ 1) ≥ 22n+2. So

lcm(n) ≥ 2n

for n ≥ 9. [27]

Lemma 4.2.4:

There exists a r ≤ max{3, dlog5 ne} such that or(n) > log2 n.

Proof. r = 3 satis�es all the conditions for n = 2: o3(2) = 2 > log2 2 = 1, thus

assume n ≥ 3.

First, consider r as the smallest number that does not divide the product

nblogBc ·
blog2 nc∏
i=1

(ni − 1) (4.2.1)

with B := dlog5 ne.

(r, n) cannot be divisible by all the prime divisors of r because r does not di-

vide nblogBc. So it follows that r
(r,n)

does not divide (4.2.1) either. Because r is the

smallest number not dividing (4.2.1), (r, n) = 1 and or(n) exists.

r also does not divide any ni − 1 for 1 ≤ i ≤ blog2 nc, so

or(n) > log2 n

Second,

nblogBc ·
blog2 nc∏
i=1

(ni − 1) <

< nblogBc+
1
2
log2 n·(log2 n−1) ≤=

≤ nlog4 n =

= (2logn)log
4 n =

= 2log5 n ≤
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≤ 2B (4.2.2)

Because dlog5 ne > 10 Lemma 4.2.3 can be applied, the least common multiple of

the �rst B numbers is at least 2B.

Let's assume that r > B, then for all 1 ≤ i ≤ B, i divides (4.2.1). Then

lcm(B) ≤ nblogBc ·
blog2 nc∏
i=1

(ni − 1)

But because of (4.2.2) it is not true, so r ≤ B. [2]

Now that or(n) > 1, there must be a prime divisor p of n, such that or(p) > 1. In

order to get to step 5, p > r, otherwise step 3 or 4 would terminate the algorithm.

For the same reason, (n, r) = 1 and therefore p, n ∈ Z∗r.
Also, de�ne l := b

√
ϕ(r) log nc.

In step 5 of the algorithm, l equations are checked. For the algorithm to proceed

to step 6, all l of them have to be equivalent:

(X + a)n ≡ Xn + a (mod Xr − 1, n)

for 0 ≤ a ≤ l.

It follows that

(X + a)n ≡ Xn + a (mod Xr − 1, p) (4.2.3)

for 0 ≤ a ≤ l.

Because p is prime and Theorem 4.1.2

(X + a)p ≡ Xp + a (mod Xr − 1, p) (4.2.4)

for 0 ≤ a ≤ l.

From (4.2.3) and (4.2.4) it follows that

Xn + a ≡ (X + a)n ≡ ((X + a)p)
n
p ≡ (Xp + a)

n
p (mod Xr − 1, p)

56



Substituting X with X
1
p gives (X

1
p is unique)

(X + a)
n
p ≡ X

n
p + a (mod Xr − 1, p)

for 0 ≤ a ≤ l.

Because of this, n and n
p
both behave like prime, a property we will term in-

trospective. [2][8]

De�nition 4.2.5:

Let f(X) be a polynomial and m ∈ N, then m is introspective for f(X) if

[f(X)]m ≡ f(Xm) (mod Xr − 1, p)

It is easy to see that both n and n
p
are introspective for X +a with 0 ≤ a ≤ l. The

next two Lemma show some properties about introspective numbers :

Lemma 4.2.6:

Introspective numbers are closed under multiplication. So if m and m′ are

introspective for f(X), so is m ·m′.

Proof. m is introspective, so

[f(X)]m ≡ f(Xm) (mod Xr − 1, p)

[f(X)]m·m
′ ≡ [f(Xm)]m

′
(mod Xr − 1, p) (4.2.5)

For m′:

[f(X)]m
′ ≡ f(Xm′) (mod Xr − 1, p)

Replacing X with Xm gives

[f(Xm)]m
′ ≡ f(Xm·m′) (mod Xm·r − 1, p)
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Xr − 1 divides Xm·r − 1, so

[f(Xm)]m
′ ≡ f(Xm·m′) (mod Xr − 1, p) (4.2.6)

From (4.2.5) and (4.2.6) it follows that

[f(X)]m·m
′ ≡ f(Xm·m′) (mod Xr − 1, p)

[2]

Lemma 4.2.7:

The set of polynomials for which a number m is introspective is closed under

multiplication. So if m is introspective for f(X) and g(X), then m is also

introspective for f(X) · g(X).

Proof.

[f(X) · g(X)]m ≡ [f(X)]m · [g(X)]m ≡ f(Xm) · g(Xm) (mod Xr − 1, p)

[2]

Because of Lemma 4.2.6 and Lemma 4.2.7, every number in the set

I = {
(
n

p

)i
· pj|i, j ∈ N}

is introspective for every polynomial

P = {
l∏

a=0

(X + a)ea |ea ∈ N}

The next step is to de�ne a group G, which is the set of all residues of numbers in

I modulo r. Because (n, r) = 1, it is also a subgroup of Z∗r. Let t := |G|. Because
G is generated by n

p
and p modulo r and because of Lemma 4.2.4: or(n) > log2 n,

t > log2 n. [2][8]

In order to de�ne the second group crucial for the �nal steps of the proof, a few

properties about Cyclotomic Polynomials over �nite �elds have to be stated:
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De�nition 4.2.8 (Cyclotomic Polynomial):

A cyclotomic polynomial Cr(X) divides Xr − 1 but not Xk − 1 for k ∈
{1, 2, . . . r − 1}.

Cyclotomic Polynomials are irreducible over Z. In the �nite �eld Fp, Cyclotomic

Polynomials Qr(X) do not have to be irreducible. In fact, there exists an irre-

ducible factor h(X) of Qr(X) with degree or(p) ([8]) because or(p) > 1, the degree

of h(X) is also greater than one.

Let's de�ne another group H as the set of all residues of polynomials in P modulo

p and h(X). H is generated by its elements X,X + 1, X + 2, . . . , X + l in the �eld

F := Fp[X]/h(X). [2][8][33]

The next step of the proof is putting an upper and a lower bound on |H|.

Lemma 4.2.9:

If n is not a power of p, then |H| ≤ n
√
t.

Proof. First, take a look at the subset I ′ of I:

I ′ := {
(
n

p

)i
· pj|i, j ∈ {0, 1, . . . , b

√
tc}}

Since n is not a power of p, I ′ has (b
√
tc + 1)2 > t distinct numbers. Moreover,

because |G| = t, there have to be two numbers in I ′ that are equal modulo r. Let

m1 and m2 be those numbers and without loss of generality let m1 > m2.

Xm1 ≡ Xm2 (mod Xr − 1)

Let f(X) be an arbitrary polynomial in P .

[f(X)]m1 ≡ f(Xm1) ≡ f(Xm2) ≡ [f(X)]m2 (mod Xr − 1, p)

Because of this

[f(X)]m1 ≡ [f(X)]m2 (mod Xr − 1, p)

is in F.

59 is the jersey number of my favorite football player, Luke Kuechly.



It follows that f(X) ∈ H is a root of the polynomial Q(Y ) = Y m1 − Y m2 in

the �eld F. Thus, Q(Y ) has at least |H| distinct roots in F . Because the degree
of Q(Y ) is m1 ≤ (n

p
· p)b

√
tc ≤ n

√
t, |H| ≤ n

√
t. [2][8]

Lemma 4.2.10:

|H| > n
√
t

Proof. The �rst step is to show that two arbitrary polynomials f(X) and g(X) ∈
P , with degree smaller than t, map to di�erent elements in H. Let f(X) ≡ g(X)

in F and let m ∈ I. It follows that

[f(X)]m ≡ [g(X)]m

in F.

Because m ∈ I, it is introspective for f(X) and g(X) and also h(X) divides

Xr − 1:

f(Xm) ≡ g(Xm)

in F.

It follows that Xm is a root of the polynomial Q(Y ) = f(Y )− g(Y ) ∀m ∈ G.
G is a subgroup of Z∗r, so (m, r) = 1 and Xm is a primitive rth root of unity.

This implies that there are |G| = t distinct roots of Q(Y ) in F, but the degree of
Q(X) is smaller than t because of the degree of f(X) and g(X). This contradicts

f(X) ≡ g(X) in F, so f(X) 6≡ g(X) in F.
Additionally, because i 6= j in Fp for 1 ≤ i 6= j ≤ l and l = b

√
ϕ(r) log nc <√

r log n < r < p, X,X + 1, . . . , X + l are distinct in F.
Furthermore, the degree of h(X) is greater than one, so X,X + 1, . . . , X + l 6= 0

in F. Because of this, there are at least l+1 distinct polynomials of degree one inH.

So there exist at least (number of combinations with repetition)

t−1∑
i=0

(
l + 1

i

)
=

t−1∑
i=0

(
l + 1 + i− 1

i

)
=

t−1∑
i=0

(
l + i

i

)
=

(
l + t− 1 + 1

t− 1

)
=

(
t+ l

t− 1

)
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distinct polynomials of degree smaller than t in H.

So

|H| ≥
(
t+ l

t− 1

)
Because t > log2 n >, t >

√
t log n and therefore t ≤ b

√
t log nc+ 1

|H| ≥
(
b
√
t log nc+ 1 + l

b
√
t log nc+ 1− 1

)
Also, l = b

√
ϕ(r) log nc ≥ b

√
t log nc:

|H| ≥
(

2 · b
√
t log nc+ 1

b
√
t log nc

)
Because

2·b
√
t lognc+1∑
i=0

(
2 · b
√
t log nc+ 1

i

)
= 22·b

√
t lognc+1

it follows that

|H| > 2b
√
t lognc+1 ≥ n

√
t

[2][8]

Lemma 4.2.11:

If the algorithm aks(n) returns prime, then n is prime.

Proof. Because of Lemma 4.2.11 |G| > n
√
t, but Lemma 4.2.2 states that if n is

not a prime power |G| ≤ n
√
t. So n has to be a power of p: n = pk for k ∈ N+. For

k > 1, the alogrithm returns composite in step 1, therefore k = 1 and n is prime.

[2]

Proof of Theorem 4.2.1. Because of Lemma 4.2.2 and Lemma 4.2.11, the algo-

rithm returns prime i� n is prime.

Some minutes have 61 seconds.



4.2.1. Time Complexity

Theorem 4.2.12:

The asymptotic time complexity of the AKS Prime Number Algorithm aks(n)

is Õ(log21/2 n).

Proof. Step 1: If n is a perfect power ab then n = b(n 1
b )bc, where b runs up to

log n. The time complexity is Õ(log3 n).

Step 2: In this step, the smallest r with the condition or(n) > log2 n is found.

Checking if the order is bigger than the limit can be done in Õ(r · log2 n) because

only nk 6= 1 (mod r) for all k ≤ log2 n needs to be checked. Also, the numbers of

r are bounded by O(log5 n) (Lemma 4.2.4), so the time complexity in this step is

Õ(log7 n).

Step 3: The computation of a greatest common divisor has the time complex-

ity of O(log n). Because r of them are checked, it is O(r · log n), which results in

O(log6 n) because of Lemma 4.2.4.

Step 4: This step does not require a great deal of time, merely O(log n).

Step 5: The for-loop runs at most
√
ϕ(r) log n times. In every cycle, there is

an if-condition that requires O(log n) multiplications of degree r polynomials with

coe�cients of the size O(log n). In total, it makes Õ(r · log2 n). This translates

into a total time complexity of Õ(r ·
√
ϕ(r) log3 n) = Õ(r

3
2 log3 n) = Õ(log21/2 n).

Step 6: This step only returns prime, thus the time compexity is O(1).

Step 5 dominates all others which results in a time complexity of Õ(log21/2 n)

for the whole algorithm. [2]

This proves that the time complexity of the AKS prime number algorithm is poly-

nomial. Nevertheless, it is still desirable to get to an even better time complexity.

This can be done by bounding r even more. The best case would be r = O(log2 n),

bringing the total time complexity down to Õ(log6 n).
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5. Recent Developments

Since the paper Primes is in P was published, there have been several attempts to

improve the time complexity from Õ(log21/2 n) to Õ(log6 n) or even further. There

are two conjectures, Artin's Conjecture and Sophie-Germain Prime Density Con-

jecture, that support the possibility of such a time complexity. The �rst conjecture

even holds under the Generalized Riemann Hypothesis.

Conjecture 5.0.13 (Artin's Conjecture):

For all n ∈ N, where
√
n 6∈ N, the number of primes q ≤ m for which oq(n) =

q − 1 is asymptotically A(n) · m
lnm

.

A(n) is Artin's constant with A(n) > 0.35.

Conjecture 5.0.14 (Sophie-Germain Prime Density Conjecture):

The number of primes q ≤ m with 2q + 1 ∈ P is asymptotically 2C2m
ln2m

.

C2 is the twin prime constant and estimated to be approximately 0.66.

Another conjecture would improve the time complexity to Õ(log3 n).

Conjecture 5.0.15:

If r ∈ P and r does not divide n and if

(X − 1)n ≡ Xn − 1 (mod Xr − 1, n) (5.0.1)

then either n is prime or n2 ≡ 1 (mod r).

If this conjecture is true, the algorithm can be modi�ed to �rst search for an r,

where r does not divide n2 − 1. Such an r can be found in the interval [2, 4 log n]

[4]. With this r, the congruence (5.0.1) can be veri�ed in Õ(log2 n). This gives a

time complexity of Õ(log3 n).
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Although the conjecture is true for r ≤ 100 and n ≤ 1010 [21], in 2003, Hen-

drik Lenstra and Carl Pomerance have given an heuristic argument that suggests

that the conjecture is false. [2]

Without using any conjecture, a Lemma provided in [19] does not rely on an un-

proven hypothesis; with this, the time complexity can be improved to Õ(log15/2 n):

Lemma 5.0.16:

There exist constants c > 0 and n0 such that, for all x ≥ n0:

|{q|q ∈ P, q ≤ x ∧ P (q − 1) > q2/3}| ≥ c · x

lnx

Theorem 5.0.17:

The time complexity of aks(n) is Õ(log15/2 n).

Proof. With Lemma 5.0.16, step 2 of the algorithm �nds an r = O(log3 n) with

or(n) > log2 n. This results in a time comlexity of Õ(log15/2 n).

[2][19]

5.1. Primality testing with Gaussian periods

In 2009, Hendrik Lenstra and Carl Pomerance modi�ed the algorithm aks(n) to get

an improved time complexity of Õ(log6 n). They are also performing computations

in a ring extension of Zn. Instead of generating their rings by roots of unity, they

are using Gaussian Periods. [2][24]

64



65



Conclusion

Time complexity has always been a signi�cant concern when attempting to di�er-

entiate prime numbers from composite numbers. Although there are tests that are

su�ciently fast, most of them are, unfortunately, probabilistic, which means that

there is room for error. Until 2002, mathematicians assumed that the Prime Num-

ber Problem is, in fact, polynomial but thus far had been unable to prove it. With

the paper PRIMES is in P ([2]), Agrawal, Kayal and Saxena provided the proof

that had thus far been missing. They were able to develop an algorithm, based

on Ferman's Little Theorem, that can deterministically distinguish primes from

composites with a time complexity of Õ(log21/2 n). Their algorithm was further

improved upon by Carl Pomerance, reducing the time complexity to Õ(log15/2 n).

Why is this paper so signi�cant? Firstly, it provides additional to the heat of

the discussion whether P = NP . Actually having proof of a problem being poly-

nomial that has otherwise thus far been o�cially categorized as NP for ages might

provide new insight into other current NP problems.

Moreover, theGeneralized Riemann Hypothesis, despite not yet having been proven,

says that a deterministic algorithm might be polynomial. Even though the GRH

remains unsolved to this day and the AKS algorithm is not based on the GRH,

having a deterministic polynomial time algorithm gives an indication that it might

indeed be true.

In number theory, this algorithm is groundbreaking as it is the very �rst deter-

ministic polynomial prime number test in history. Furthermore, it also opens up a

lot of potential and providing insight into reexamining famous conjectures, such as

the Riemann Hypothesis. Nonetheless, while being a signi�cant �nding, it remains

theoretical due to it still having a higher time complexity than some based on

the Riemann Hypothesis, thus making it unattractive for real world prime number

tests. Instead, probabilistic or deterministic algorithms based on the Riemann Hy-

pothesis remain better tools for determining primality outside of theoretical work.

Despite the risks inherent with this approach, it is worth it since the errors are

virtually non-existent.
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Appendices
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A. Asymptotic Growth of

Functions

In order to characterize the e�ciency of an algorithm, several types of asymptotic

notations are introduced. They make it easier to compare similar alogrithms and

give information about their running time. The asymtotic e�ciency gives infor-

mation on how the running time increases when the size of the input increases. An

algorithm that is asymptotically more e�cient than another algorithm means that

with a large enough input, it will have the better running time than the other; for

a very small input, it may be the other way around. [13] The �rst notation gives

an asymptotic upper bound for a function f(n):

De�nition A.0.1 (Big O-notation):

f(n) = O(g(n)) :⇔ ∃c, n0 > 0 : 0 ≤ f(n) ≤ c · g(n) ∀n ≥ n0

In chapter 4 another notation is used [2]:

De�nition A.0.2:

Õ(t(n)) := O(t(n) · poly(log t(n)))

with t(n) being a function of n.

Another notation gives the asymptotic lower bound for a function f(n):

De�nition A.0.3 (Big Ω-notation):

f(n) = Ω(g(n)) :⇔ ∃c, n0 > 0 : 0 ≤ c · g(n) ≤ f(n) ∀n ≥ n0
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A much tighter bound is the next notation, it gives both an upper and a lower

bound for a function f(x):

De�nition A.0.4 (Big Θ-notation):

f(n) = Θ(g(n)) :⇔ ∃c1, c2, n0 > 0 : 0 ≤ c1 ·g(n) ≤ f(n) ≤ c2 ·g(n) ∀n ≥ n0

[13][33][34]
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B. The Gamma function

De�nition B.0.5 (Γ-function):

For Re(s) > 0, the Γ-function is de�ned as

Γ(s) =

∞∫
0

xs−1e−xdx

A few properties of the Γ-function are:

Proposition B.0.6:

Γ(s+ 1) = sΓ(s)

Proof.

Γ(s+ 1) =

∞∫
0

xse−xdx = −e−xxs|∞0 +

∞∫
0

sxs−1e−xdx = sΓ(s)

Proposition B.0.7:

Γ(s) can be analytically continued to the whole complex plane with simple

poles at the negative integers (including 0).

Proof. Because of Proposition B.0.6, Γ can be continued to −1 < Re(s) ≤ 0 exept

for s = 0. Repeating that for the negative half-plane gives an analytic continuation

with simple poles at 0,−1,−2, . . . .

The Hubble constant is approximately 71 km/s/Mpc.



Proposition B.0.8 (Formula of complements):

Γ(s)Γ(1− s) =
π

sin(πs)

A proof can be found in [20].

Proposition B.0.9 (Duplication formula of Legendre):

Γ(s)Γ

(
s+

1

2

)
=
√
π21−2sΓ(2s)

A proof can be found in [20].
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C. Fourier transformation

De�nition C.0.10 (Fourier transformation):

The Fourier transformation f̂ of an integrable function f on R is de�ned as

f̂(x) =

+∞∫
−∞

f(y)e−2πixydy

Proposition C.0.11 (Poisson Summation):

If g is in�nitely di�erentiable, then

∞∑
m=−∞

g(m) =
∞∑

m=−∞

ĝ(m)

Proof. First, let's de�ne h(x) :=
∑∞

k=−∞ g(x+ k).

The Fourier series is

h(x) =
∞∑

m=−∞

cme
2πimx

with cm de�ned as

cm :=

1∫
0

h(x)e−2πimxdx

=

1∫
0

∞∑
k=−∞

g(x+ k)e−2πimxdx

Sheldon Cooper's favorite number is 73.



=
∞∑

k=−∞

1∫
0

g(x+ k)e−2πimxdx

=

∞∫
−∞

g(x+ k)e−2πimxdx

= ĝ(m)

This means that

∞∑
k=−∞

g(k) = h(0)

=
∞∑

k=−∞

cke
−2πim·0

=
∞∑

k=−∞

ck =
∞∑

k=−∞

ĝ(k)

[39]

Proposition C.0.12:

For f(x) := e−πx
2

f(x) = f̂(x)

A proof can be found in [39].

Proposition C.0.13:

For f(
√
ux) = e−πux

2
with u > 0, f̂(

√
ux) = e−πx

2/uu−1/2.

Also, for θ(u) :=
∑

n∈Z e
−πn2u

θ(1/u) =
√
uθ(u) (C.0.1)

Proof.

f(
√
ux) = e−πux

2

= e−π(
√
ux)2
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f̂(
√
ux) =

∞∫
−∞

e−2πixye−π(
√
ux)2dx =

=

∞∫
−∞

e−2πixy/
√
ue−πx

2 dx√
u

=

=
1√
u
f̂

(
y√
u

)
Prop.C.0.12

=

=
1√
u
f

(
x√
u

)
=

=
1√
u
e−πx

2/u

In conclusion,

f̂(
√
ux) =

1√
u
e−πx

2/u (C.0.2)

(C.0.1) holds because:

θ(u) =
∑
n∈Z

e−πn
2u =

=
∑
n∈Z

f(
√
un)

Prop.C.0.11
=

=
∑
n∈Z

f̂(
√
un)

(C.0.2)
=

=
1√
u

∑
n∈Z

e−πn
2/u =

=
θ(1/u)√

u

[39]
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D. Lemma for Theorem 3.1.12

De�nition D.0.14 (ψ-function):

Let ψ(x) be the logarithmic derivative of the Gamma function.

ψ(x) =
Γ′(x)

Γ(x)

De�nition D.0.15:

ψζ(s) :=
1

2
ψ
(s

2

)
− n log π

2

De�nition D.0.16:

ψL(s) :=
α

2
ψ
(s

2

)
+
β

2
ψ

(
s+ 1

2

)
− n log π

2

with β =

{
0 if χ(−1) = 1

1 otherwise
and α = 1− β.

De�nition D.0.17 (Mangoldt function):

Λ(x) =

{
log p for n = pk

0 else
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Lemma D.0.18:

ζ ′(s)

ζ(s)
= B +

∑
ρ

(
1

s− ρ
+

1

ρ

)
− 1

s
− 1

s− 1
− ψζ(s)

Lemma D.0.19:

L′(s)

L(s)
= Bχ +

∑
ρ

(
1

s− ρ
+

1

ρ

)
− 1

2
Aχ − ψL(s)

In both Lemma, ρ denotes a nontrivial zero of either ζ(s) or L(s, χ). B, Bχ

and Aχ are constants. B = −
∑

ρRe
(

1
ρ

)
= 1

2
log(4π) − 1 − γ

2
= −0.02309...

(γ = 0.57732...).

Lemma D.0.20:

Assume the GRH.

Let χ be a nonprincipal character on Z∗D and χ(x) = 1 for all n < x.

For 0 < a < 1

√
n

(a+ 1)2
≤ 1

2a+ 1
· (1 + r(n)) · (log(D) + t(n)) + s(n)

with

r(n) =
(a+ 2) · log n+ 1

na+1/2

s(n) =
5/2 · log n+ 1

na+1/2
+

β

(a− 2)2 · n5/2

t(n) = − log π + ψ

(
a+ β + 1

2

)
+ (2a+ 1) · (γ + 2− log(4π))+

2
ζ ′

ζ
(1 + a) + 4

∑
x≥n

Λ(x)

x1+a
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β =

{
0 if χ(−1) = 1

1 otherwise

Outline of the proof for Lemma D.0.20. The inequality in D.0.20 starts o� with

a more easy to prove equality that does not assume the Generalized Riemann

Hypothesis :

n

(a+ 1)2
=
∑
ρ

±nρ(ρ+ a)2+I0+I−+
∑
x<n

Λ(x)(1−χ(x))
(x
n

)a
log
(n
x

)
(D.0.1)

In the �rst sum of (D.0.1), there is a plus if ρ is a primitive root of ζ(s) and minus

if it is a primitive root of L(s, χ). The exact value of I− is not important and

it can be estimated very easily and without assuming the Generalized Riemann

Hypothesis.

I− ≤
β

(a− 2)2n2
(D.0.2)

I0 needs a little more attention than I−:

I0 = (β − 1)
1

a2
+

log n

na

(
ζ ′

ζ
− L′

L

)
(−a) +

1

na

(
ζ ′

ζ
− L′

L

)′
(−a)− β

n(a− 1)2

Estimating I0 involves the GRH.

If β = 0 then

I0 = − 1

a2
+

log n

ana
+

1

a2na
+

log n

na

(∑
ρ

±
(

1

−a− ρ
− 1

2− ρ

)
+

(
ζ ′

ζ
− L′

L

)
(2) +

3

2

)
+

1

na

(∑
ρ

∓ 1

(ρ+ a)2
+

1

(a+ 1)2

)

The next step involves using de�nitions and rearanging terms, so it is rather easy.
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Now the part where the Generalized Riemann Hypothesis comes into play:∣∣∣∣∣∑
ρ

±
(

1

−a− ρ
− 1

2− ρ

)∣∣∣∣∣ ≤∑
ρ

∣∣∣∣ 1

a+ ρ
+

1

2− ρ

∣∣∣∣ ≤∑
ρ

2 + a

|(ρ+ a)(ρ− 2)|
≤
∑
ρ

2 + a

|ρ+ a|2

An estimation for the second sum is similar. For β = 1 it involves estimations on

ψ(x). It follows that

I0 ≤
log n

na

(∑
ρ

2 + a

|ρ+ a|2
+

5

2

)
+

1

na

(∑
ρ

1

|ρ+ a|2
+ 1

)
(D.0.3)

Probably the most crucial step is the next one:

Assuming the GRH

∑
ρ

1

|ρ+ a|2
=
∑
ρ

(
1

2a+ 1

(
1

s− ρ
+

1

s− ρ

))
≤

1

2a+ 1

(
log

D

π2
+ 2

(
1

a
+

1

a+ 1

)
+ ψ

(
a+ 1

2

)
+

ψ

(
a+ β + 1

2

)
+ 2

ζ ′

ζ
(1 + a) + 2Re

L′

L
(1 + a)

) (D.0.4)

The equality is true if Re(ρ) = 1
2
.

Theorem 3.1.12 follows with using (D.0.1) and the estimations for I− and I0 and

(D.0.4).

[5][22][23]

A full proof can be found in [5].

The atomic number of gold is 79.



E. The distribution of prime

numbers

E.1. The prime number theorem

While it is of great interest to assign numbers into two groups, primes and com-

posites, lately, �nding patterns in the distribution of prime numbers has grown in

signi�cance.

De�nition E.1.1:

Let x ∈ R with x > 0 and the function

π(x) = |{p|p ∈ P, 1 < p ≤ x}|

Then π(x) denotes the number of primes less or equal than x.

The idea is to �nd functions that behave approximately like π(x). It should be

easy to do calculations with those functions.

In 1793, Carl Friedrich Gauss conjectured that π(x) behaves approximately like
x

ln(x)
for large values of x. About 100 years later, two independent proofs were

found.

Theorem E.1.2 (Prime Number Theorem):

lim
x→∞

π(x)ln(x)

x
= 1

[41]

Even though the Prime Number Theorem is the most famous one for approximat-

ing π(x), there are others, too.

80



Theorem E.1.3:

π(x) ∼ Li(x) =

x∫
2

dt

log(t)

Li(x) is called the Eulerian Logarithmic Integral Funtion.[30] The following table

compares π(x) with two of its approximations: x
ln(x)

and Li(x). x
ln(x)

and Li(x)

have been rounded to its nearest integer.

x π(x) x
ln(x)

Li(x)

101 7 4 5

102 25 22 29

103 168 145 177

104 1229 1086 1245

105 9592 8686 9629

106 78498 72382 78627

107 664579 620421 664917

108 5761455 5428681 5762208
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List of Symbols

N the natural numbers including 0

N+ the natural numbers not including 0

Z the integer numbers

R the real numbers

C the complex numbers

P the prime numbers

Zn the ring of residue classes modulo n

Z∗n {a ∈ Zn|(a, n) = 1}
Re(s) the real part of a complex number

x ≡ y (mod n) x = y + nk with k ∈ Z
(x, y) the greatest common divisor of x and y

lcm(x, y) the least common multiple of x and y

x! x! =
x∏
k=1

k

|A| the number of elements in the set A

dxe the smallest n ∈ Z with n ≥ x

bxc the largest n ∈ Z with n ≤ x

[x] the integer part of x

{x} the fractional part of x(
n
k

) (
n
k

)
= n!

k!·(n−k)!
ker(f) ker(f) = {x|f(x) = 0}
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Barney Stinson's made-up statistics always include the number 83.
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