
DISSERTATION

Insight in Analog Systems:

A Semi-Symbolic Approach using enhanced
Deviation Traceability

Submitted at the Faculty of Electrical Engineering and Information Technology,
TU Wien in partial fulfillment of the requirements for the degree of

Doktor der technischen Wissenschaften (equals Ph.D.)

under supervision of

Univ.-Prof. Dr. Christoph Grimm
Fachbereich Informatik - Entwicklung Cyber-Physikalischer Systeme

Technische Unversität Kaiserslautern

and

Prof. Dr.-Ing. Lars Hedrich
Institut für Informatik - Professur für Entwurfsmethodik

Johann Wolfgang Goethe Universität Frankfurt

and

Apl. Prof. Dr.-Ing. habil. Helmut Gräb
Fakultät für Elektrotechnik und Informationstechnik

- Lehrstuhl für Entwurfsautomatisierung
Technische Universität München

by

Dipl.-Ing. Michael Rathmair
Matr.Nr. 0426124

Veronikagasse 34/4, 1170 Vienna

Date of Defense: 23.03.2018

Die approbierte Originalversion dieser
Dissertation ist in der Hauptbibliothek der
Technischen Universität Wien aufgestellt und
zugänglich.
http://www.ub.tuwien.ac.at

The approved original version of this thesis is
available at the main library of the Vienna
University of Technology.

http://www.ub.tuwien.ac.at/eng

Abstract

Technological innovations in the field of embedded systems are pushing the development of devices
even further. The achieved performance is significantly influenced by inner systems characteris-
tics such as robustness, accuracy, and reliability. These characteristics are potentially affected by
uncertainties which are represented by unpredictable, unspecified deviations of parameters.

The goal of this thesis is to consider such parameter deviations during model-driven system
development processes. Besides classical approaches, where numerical simulations are executed
multiple times, I focus in semi-symbolic methods based on affine Arithmetic forms. They enable a
new spectrum of analysis features which evaluate the propagation of deviations through functional
blocks, give a more precise understanding of deviation impacts, and enable efficient identification
of potential optimization. The development of such new analysis techniques, consequencing the
mentioned benefits for system development, is the primary scientific contribution of this thesis.
To achieve this, a set of new concepts needed to be developed, and were implemented as an open
source software framework.

Finally, I apply the developed concepts on demonstration applications. These are defined on dif-
ferent levels of abstraction, ranging from deviant models described through high-level behavioral
specifications to the modeling of parameter variations in semiconductor devices. The presented
examples underline the versatile use of the developed software framework, and significant en-
hancements of deviation tracing features.

The results of this thesis are meant to motivate designers to integrate semi-symbolic modeling,
simulation and analysis techniques in the system development design flow. Future applications
make the use of semi-symbolic modeling, simulation, and analysis absolutely essential to handle
the rising system complexity and increasing number of uncertain system parameters.

II

Kurzfassung

Technologische Innovationen im Bereich von eingebetteten Computer-Systemen treiben den En-
twicklungsstand von elektronischen Geräten immer weiter voran. Die Performance eines Sys-
tems, welche unter anderem durch innere Systemeigenschaften wie Robustheit, Genauigkeit und
Zuverlässigkeit definiert ist, kann dabei durch Unsicherheiten wesentlich vermindert werden. Un-
sicherheiten wie zum Beispiel Schwankungen in Versorgungsspannungen, Toleranzen in Herstel-
lungsprozessen von Bauelementen und Temperaturveränderungen, resultieren in unvorhersehbare,
unspezifizierte Schwankungen in Systemparametern.

In dieser Arbeit werden Parameterschwankungen bereits in der modellgetriebenen Entwurfsphase
eines Systems berücksichtigt. Neben den existierenden klassischen Ansätzen, bei denen nu-
merische Simulationen mehrfach ausgeführt werden, konzentriere ich mich auf semi-symbolische
Methoden basierend auf Affiner Arithmetik. Mittels semi-symbolischer Methoden wird das Ver-
folgen von Abweichungen und somit deren Fortpflanzung über Funktionsblöcke in Simulation-
sprozessen abgebildet. Dies eröffnet ein völlig neues, erweitertes Spektrum an Analysemöglich-
keiten, welche Entwickler helfen Parameterschwankungen und deren Auswirkungen bzw. Effekte
im System besser zu verstehen, und somit gezielt Optimierungspotentiale aufzuzeigen. Die En-
twicklung von Analyseprozessen ist der primäre wissenschaftliche Beitrag dieser Arbeit. Um dies
zu erreichen, musste eine Reihe neuer Konzepte erstellt werden, welche anschließend als Open-
Source-Software-Framework implementiert wurden.

Schließlich zeige ich die praktische Anwendbarkeit der entwickelten Methoden anhand von demon-
strativen Beispielen. Diese sind dabei auf verschiedensten Abstraktionsebenen, von high-level Ver-
haltensbeschreibungen bis zur Modellierung von Parametervariationen in Halbleiterstrukturen,
definiert. Die Beispiele unterstreichen die vielseitige Verwendung des entwickelten Software-
Frameworks, sowie die Vorteile der erwähnten Verfolgbarkeit von Unsicherheiten im System-
modell.

Die Ergebnisse dieser Arbeit sollen Entwickler zur Integration von semi-symbolische Modellie-
rungs-, Simulations- und Analysetechniken im System Design Flow motivieren. Für zukünftige
Anwendungen werden derartige Modellierungs-, Simulations- und Analyseprozesse absolut not-
wendig, um den Anstieg an Systemkomplexität und die zunehmende Anzahl unsicherer System-
parametern zu bewältigen.

III

Preface

This Ph.D. thesis is about enhancements in simulation and analysis processes for electronic cir-
cuits and systems. Uncertainty represented as parameter deviations are considered during design
time processes such as modeling, simulation, and analysis. Especially new analysis features arise,
which enables designers to understand a system better and enhance the insight. This additional
knowledge is subsequently used for optimization and refinement of the design.

The rest of this thesis is organized as follows:

Chapter 1 introduces into the topic of range based system simulation, highlights current trends
and applications. The increasing functional density and simultaneously decreasing silicon circuit
structures enhances the impact of uncertainties. In this chapter, a motivation is formulated for
research on enhanced range based methods for modeling, simulation and analysis.

In Chapter 2 I discuss state of the art and related publications including approaches and trends
of range based system simulation, modeling, and analysis processes.

Chapter 3 describes the simulation framework implemented for this work in general. Approaches
for representing uncertainties and enhanced features for their traceability are described in detail.

Chapter 4 is about extended analysis and verification features. The described processes highlight
critical structures and operation periods. Results enhance the system insight and identify poten-
tially critical deviation effects.

Chapter 5 evaluates the proposed simulation and analysis methods in demonstration examples.
Results illustrate the proposed enhancements as well as efficiency and performance of the imple-
mented framework.

Chapter 6 concludes the thesis by recapitulating main results and highlighting the main contri-
bution to the research field. Finally, future research questions and possible expansions of the
realized simulation and analysis framework are identified.

IV

Acknowledgements

I would like to acknowledge and thank all people that encouraged and supported me during my
Ph.D. time. My special thanks go to my supervisors and reviewers Prof. Christoph Grimm,
Prof. Lars Hedrich, and Prof. Helmut Gräb. Thank you also to Prof. Axel Jantsch and Prof.
Hermann Kaindl from the Institute of Computer Technology for their help and support in Vienna.

I am very grateful to my colleagues and friends Florian Schupfer, Carna Radojicic, Friedrich
Bauer, Christoph Luckeneder, and many more people from the Institute of Computer Technology
who gave helpful suggestions and valuable discussion through these intense and exciting years of
scientific work and thesis writing.

Last but most important I like to thank my parents, family and close friends who made all that
possible. They offered never-ending motivation and unconditional support during all the time.

Thank you!

V

Table of Contents

1 Introduction 1

1.1 Scientific Challenges and Tasks . 5

1.1.1 Motivation . 5

1.1.2 Problem Description Based on an Example 7

1.1.3 The Focus of this Work . 9

1.1.4 Hypothesis . 9

1.2 Contribution to the Research Field . 9

1.3 What this Thesis is not About . 11

1.4 Discussion of Expected Results . 11

2 State of the Art and Background 12

2.1 Definitions and Terminology of Uncertainty . 12

2.2 Modeling of System Uncertainties . 16

2.2.1 A Metamodel for Uncertainties in Computer Models 17

2.2.2 Classification and Origin of Uncertainties 18

2.2.3 Interval Representations . 20

2.2.4 Semi-Symbolic Modeling of Uncertainties 21

2.3 Simulation Techniques for considering Range Inputs 24

2.3.1 Multi-run Approaches . 24

2.3.2 Interval Simulation Techniques . 26

2.3.3 Semi-Symbolic Calculation Methodology . 28

2.3.4 Selected Affine Arithmetic Properties on a Dense Number Space 34

2.4 Discussion of Modelling and Simulation Techniques considering Uncertainty 35

2.5 System Analysis Approaches . 39

2.5.1 Sensitivity Analysis . 39

2.5.2 Stability analysis . 41

2.5.3 Assertion-based Verification . 41

2.6 Related Work . 44

3 Affine Arithmetic Framework with Enhanced Features for Traceability 46

3.1 Framework Architecture . 46

3.1.1 Object Oriented Representation of Affine Arithmetic forms 48

3.1.2 Symbol Management . 51

3.1.3 Basic AAF Traceability Functionalities . 54

3.2 User Selectable Approximation of Non-linear Operations 56

VI

3.2.1 Application Specific Approximation Techniques 57
3.2.2 Interval-exact Approximation . 61
3.2.3 Approximating Behavioral Discontinuities 66

3.3 Interval-based Simulation . 67
3.4 Multi-run Functions . 68
3.5 Integration in a SystemC/AMS Environment . 73
3.6 Performance and Scalability . 75
3.7 Framework Expandability . 78

4 Analysis Techniques Based on Traceability Features 80
4.1 Analysis Techniques facilitated by AAF Simulation 80
4.2 Objective-driven System Analysis . 82
4.3 Ratio Analysis and Deviation Metrics . 84

4.3.1 Absolute and Relative Deviation Analysis 84
4.3.2 Correlation Analysis . 85
4.3.3 Metrics for Deviation Assessment . 88

4.4 Assertion Driven System Analysis . 90
4.5 Temporal Tracing of Deviations . 94
4.6 Structural Deviation Analysis . 97

4.6.1 Uncertainties cause-and-effect Analysis . 101
4.6.2 Localization of Deviation Causes . 102
4.6.3 Guided Deviation-hot-spot Detection . 104

4.7 Sensitivity Analysis . 107
4.8 Frequency Domain Analysis . 108
4.9 Formal System Analysis . 109
4.10 Runtime Verification and Interface to other Simulators 110

5 Demonstration Examples and Results 112
5.1 Inverter Chain as a Ring Oscillator . 112
5.2 Amplitude-Shift Keying (ASK) Modulator . 120
5.3 Power-line Communication (PLC) System . 125
5.4 Adaptive Cruise Control (ACC) . 142

6 Conclusion and Outlook 155
6.1 Summary and Discussion of Results . 155
6.2 Future Research Work . 157

Literature 159

Internet References 167

VII

Abbreviations

AA Affine Arithmetic
AADD Affine Arithmetic Decision Diagram
AAFA Affine Arithmethic assertion
AAF Affine Arithmetic form
ABV Assertion-based verification
ACC Adaptive Cruise Control
ADC Analog to digital converter
ADT Abstract data type
API Application Programming Interface
ASIC Application Specific Integrated Circuit
ASK Amplitude-Shift Keying
AST Abstract syntax tree
BCD Bipolar-CMOS-DMOS
BER Bit Error Rate
BIST Built-In Self-Test
BSIM Berkeley Short-channel Insulated Gate FET Model
CC Cruise Control
CMOS Complementary Metal-Oxide-Semiconductor
CPS Cyber-physical system
CTL Computation Tree Logic
DC Distance Control
dll Dynamic-Link Library
DoE Design of Experiments
DSP Digital Signal Processor
EMC Electromagnetc Compability
ESL Electronic System Level
FET Field effect transistor
FFT Fast Fourier Transformation
FIR finite impulse response
FPGA Field Programmable Gate Array
FSM Finite state machine
GCC GNU Compiler Collection
HDL Hardware description language
IC Integrated Circuit
IEEE Institute of Electrical and Electronics Engineers
IIR Infinite impulse response
IoT Internet of Things
IP Interlectual property
LGPL Lesser General Public License
LoA Level of Abstraction

VIII

LSB Least Significant Bit
LTL Linear-Time Temporal Logic
MC 8 Model Computer 8
MC Monte Carlo
MoC Model of Computation
MOSFET Metal Oxide Semiconductor Field Effect Transistor
MOS Metal Oxide Semiconductor
MSB Most Significant Bit
NRE Non-recurring Engineering
NTBI Negative Bias Temperature Instability
OAT One-at-a-Time
pdf Probability density function
PLC Power-line communication
PL Power line
PPTL Probabilistic Propositional Temporal Logic
PSL Property specification language
PTL Propositional Temporal Logic
PVT Process, Voltage and Temperature
RF Radio Frequency
SA Sensitivity Analysis
SDR Signal to Deviation Ratio
SESYD Semi-Symbolic System Discovery
SNR Signal to Noise Ratio
SoC System on Chip
SPICE Simulation Program with Integrated Circuit Emphasis
STL Standard Template Library
TDF Timed Data Flow
3PIP Third party intellectual property
ULP Ultra Low Power
USB Universal Serial Bus
VHDL Very High Speed Integrated Circuit Hardware Description Language
XAAF Extended Affine Arithmetic form

IX

1 Introduction

Today, “Making Things Smarter” is definitely one of the biggest trends in the development and
design of new electronic devices. Modern society demands a wide variety of new applications
and services. This has the consequence that digital electronic technology is significantly driven
by “smart” device characteristics. For manufacturers, new opportunities in application areas like
consumer electronics, automotive applications, communication infrastructure and industrial ap-
plications may arise. Smart electronics are integrated everywhere from household appliances to
industrial production plants. Devices get conjoint to the so-called Internet of Things (IoT), where
millions of nodes are linked to a computer cloud network [KG13]. Besides local computational
functionalities, IoT nodes are designed to satisfy a collaborative task. However, but what is it
that makes a device “smart”? - In the following paragraphs, I want to clarify this question by
discussing some selected technological drivers.

Communication: IoT applications mainly rely on the assumption of a pervasive service infras-
tructure providing a communication channel. Application data is continuously shared between
nodes resulting in a steadily rising volume of traffic. For example, the enterprise communication
bandwidth required by smart mobile devices is continually growing by a factor of three almost
every two years [Qui13]. The implemented communication channels have to be flexible and use a
wide variety of different physical media (wireless, optical fiber, copper, etc.). As a consequence,
data transfer parameters (delay, errors, bandwidth, etc.) highly depend on the localization of the
device and its surrounding environment.

Computing power: As already mentioned the IoT is a network of embedded processor nodes
acting as data sources (sensors), sinks (actuators) as well as storage, routing and digital compu-
tation elements [KG13, ABC+11]. Efficient execution of the realized software functionalities also
requires enhanced computational hardware-power. Mainly, standard processors are integrated
into complex multi/many-core system architectures. In 2017 ARM represents the leading archi-
tecture for processors, and according to [Cou17] it’s an absolute must for a foundry to have this
architecture in the product portfolio. From a full platform perspective, manufacturers aim to
provide highly reusable (static) application platforms to cover various types of IoT applications.
Thus, system design not necessarily enables optimal hardware utilization. In terms of software
behavior, this may result in varying computational delays, performance, accuracy, robustness, etc.

Customization: Early devices based on mechanical or electro-mechanical components behave
more or less uniformly over time (if we set aside the rudimentary configuration possibilities). For

1

Introduction

modern embedded IoT systems potential customization and reconfiguration options are playing
an increasingly important role (e. g. situation-aware behavior). This has a further significant
impact on the integration of standard processor units (e. g. ARM technology). Through software
updates of embedded processors, smart devices may be customized to be used in an entirely new
way [KG13]. In architectures where functions are realized by digital or analog customized ASIC
(Application Specific Integrated Circuit) circuitry (e. g. audio/video decoding, data encryption,
etc.) customization is more or less applied at the design level. In order to bring products to the
market as fast as possible, designers are increasingly reusing components from previous projects
and integrating external third party intellectual property cores (3PIP). This design practice, how-
ever, entails a higher risk of uncertainty effects, as the behavior of IP cores may vary depending
on the target platform and technology.

Energy efficiency and mobile devices: A further driving force for smart mobile devices is
efficient management of supply energy. If power is provided by battery packs or energy harvesting
units, a minimized average consumption is a strict requirement [KG13]. Solutions for achieving
this goal may be architectural optimization of components (low power technologies) or behavioral
modification of hardware functionalities (voltage- and frequency scaling, etc.). In a technologi-
cal perspective in November 2017 Samsung proposed a 40% lower power consumption achieved
through a change from 14 nm to 10 nm FinFET technology [7]. These trends result in varying
electrical circuit characteristic which may also influence the performance, robustness or accuracy
of a full system.

Services and Applications

Smart Grid Smart Homes

Machine to Machine Communication

Energy Efficiency

Security

Safety

...

Mobile Processing

Technology Innovations
Miniaturization

Low-power Components
Simulation
and Verification

Communication

Analog Functionalities ...

Test and
Test Equipment

Available
Electronic Components

Sensing

Embedded
Processing

Connectivity
Signal
Manipulation

Information
Storage

Influences

Implemented in

Used for

Figure 1.1: Internet of Things technology circle indicating the interaction of innovations, available com-
ponents and services. [KG13]

Figure 1.1 illustrates the three parts of the IoT technology puzzle [KG13]. New services and ap-
plications required by customers motivate scientists to advance their research towards the latest
technological trends. Innovations are adapted for being integrated into industrial manufacturing
processes. As a result, new components implied in application areas like sensing, embedded pro-
cessing, connectivity, information storage, signal manipulation, etc. are integrated into “smart”
devices. Such new hardware modules in combination with appropriate software applications
achieve the smart functionality aimed for [KG13]. Each cycle of this sequence takes electronic
components and devices to a “smarter” level within the collaborative architecture of the IoT.

2

Introduction

The functional density of systems will be continuously rising. In principle, the functional set
of a system can be split into tasks implemented in hardware or software. From a cost effort-
benefit perspective, according to [8] at a system design using 10 nm technology, approximately
62.5 % ($120 million) of total cost are invested in hardware- and 37.5 % ($72 million) in software
development. One challenge in designing state of the art embedded systems is to deploy tasks to
hard- and software implementations concerning given performance requirements. My focus is on
the design of hardware components. However, complex software requires enhanced architectures
of hardware resources for efficient execution (standard processors, hardware accelerators, memory
interfaces, etc.). Structural feature sizes are shrinking and technologies which do not necessarily
scale according to “Moore’s Law” have to be taken into account [ABC+11, Cou17], [10].

For Internet of Things applications, the so-called More than Moore principle provides additional
value in different ways. As a first part, I discuss an application perspective. According to
[ABC+11] the following innovations on an application level following this principle and will sig-
nificantly influence future chip properties:

• Non-digital functionalities are migrated from board-level into the package of a chip.
Analog components are reallocated to the same silicon die as digital structures. This results
in a mixed signal architecture where, on chip level, analog and digital domains are com-
bined. Due to the functional conjunction, the resulting structure is called a mixed signal
System on Chip (SoC). New challenges as electrical signal interactions between digital and
analog domain will arise. In a technology perspective, a significant task is to enhance the
compatibility of the standard CMOS (Complementary Metal-Oxide-Semiconductor) pro-
duction and non-digital technologies such as analog filters, signal converters, RF (Radio
Frequency) components, etc. [ABC+11].

• More than Moore also refers to an enhanced capability of interaction with the envi-
ronment of the chip. This includes communication between devices (Machine to Machine
communication) and with the user (user interface). Unfortunately, manufacturers use a
large repertoire of communication languages (protocols) and varying communication chan-
nels. A potential solution, may be software-defined radio, where a RF front end is configured
by software instructions [40].

• As already mentioned, mobile applications may be subjected to tight constraints of power
consumption. Improved innovations in architectural design (e. g. voltage and frequency
scaling) and silicon technology are introduced in so-called Ultra Low Power (ULP) compo-
nents. For example, [FDC13] promises a decrease of leakage currents and delays by 23 %
and 29 % respectively for arithmetical circuits realized using FinFET instead of planar
transistor technologies.

As a second part, I give an overview of current advances in silicon technology to highlight the
continuous downsizing trend of silicon structures. As a consequence, components suffer from a
lower reliability due to increased occurrences of so-called “soft errors” and PVT (Process, Voltage
and Temperature) variability [ZMR17, DPAC17, MBDG12].

Structural sizes for analog circuits. Where structural sizes for digital hardware functional-
ities decrease continuously, for analog functions smaller does not necessarily mean better. Limi-
tations are caused by double/multi pattering at finer processes which have a significant impact
on signal uncertainty and sensitivity characteristics. Extra masks for manufacturing and lower
supply voltages because of design constraints expense the development of analog functional blocks

3

Introduction

[Qui13]. Thus, analog design does not scale as fast as digital structures, and mass production in
2016 is still at 28 nm and above [Qui13, OSY+16], [15, 4]. In addition, analog structures have to
be interfaced to high-density digital functionalities, which means that the gap between digital and
analog technology nodes will be widened with each new generation of digital technology [Qui13].

For digital functionalities such as processors, memory chips, interconnects, etc. downsizing
is like a race. Planar FETs (Field effect transistors) are more or less limited to structural sizes
of approximately 20 nm and above [Qui13], [9]. The problem with a planar sub-22 nm process
is a poor short-channel electrostatic potential leading to a degraded channel characteristic and
high leakage current [FDC13]. However, due to relatively low IC design costs of approximately
$30 million, planar 22 nm is still in the race for high volume production and according to [9]
TSMC announced a new energy efficient 22 nm bulk planar process in 2017 [9]. In general the
market has shifted from planar technology to FinFET structures 16/14 nm and beyond [9]. By
the end of 2017 Global Foundries, Intel, Samsung and TSMC were ready to ship 10 nm and/or
7 nm chips [11]. A 7 nm design requires an effort of $271 million and 500 man-years to bring out
a mid-range SoC (System on Chip) for production [11, 8]. But according to [8] a 7 nm design
compared to 16/14 nm provides a speed-up of 35 %, consumes 65 % less power and has a 3.3x
density improvement. In 2018, however, the race is still not over and manufacturers plan to go for
5 nm and 3 nm so called ”gate-all-arround” FETs in 2020 and 2022 [12]. Figure 1.2 shows a road
map estimation (originally published in [Cou17]) for the future foundry market. Beyond 2020
this prediction is very uncertain. Unpredictable multiple effects in lithography, silicon structure,
etc. and many other unknowns will pose hard challenges for semiconductor technology research
[12].

Figure 1.2: 10 nm will come first but business strategies of customers will force the 7 nm technology in
the next decades [Cou17].

I would like to sum up, and elaborate different kind of uncertainty causes for IoT applications
using leading-edge silicon devices. On the one hand, variability is caused by semiconductor tech-
nology itself, as explained in the previous paragraph. Today, chip makers are struggling with
several problems in high-end FinFET processes. Open challenges, significantly influencing uncer-
tainty in devices, are for example: lithography processes, unexpected contact resistances, killer
defects significantly impacting the yield, PVT variations, structural inaccuracies (FIN dimen-
sions), Negative Bias Temperature Instability (NTBI) and electromigration effects, complexity
and cost of design processes, etc. [ZMR17, DPAC17, Wie17], [8, 11, 12]. These uncertainties on

4

Introduction

silicon level are propagated from silicon level to application level because they affect the electri-
cal characteristics of components (drain current in on and off state, gate-source voltages, delay,
etc.). The final consequences are uncertain parameters and device characteristics. On the other
hand, I have already mentioned variability caused by the application domain (e. g. uncertain
delays in wireless communication channels, environmental temperature, misuse, etc.) Some of
these application-level uncertainties are partially/fully driven by uncertainties in the silicon (e. g.
computation delay influenced by FET switching delays) and vice versa (e. g. environmental over
temperature of a device may significantly affect silicon material effects). Thus, there are various
potential circular dependencies between high and low level uncertainty causes, resulting in a di-
rect link from process- to performance variations [TM13]. In any case, they all affect the inner
parameters of a system resulting in uncertain behavior, performance measures and robustness.

1.1 Scientific Challenges and Tasks

Scientific challenges motivating this thesis are primarily driven by the described trends in smart
devices. As mentioned, consequent downsizing of silicon structures, changing environmental
conditions, potential misuse of devices, etc. all enhance variability. They may significantly
influence the behavior, but at least definitely impact the performance of a system. The following
subsections motivate this work propose new methodologies in modeling, simulation and especially
analysis to take into account potential variations already in the design phase.

1.1.1 Motivation

A major goal for state of the art mixed signal systems design is effective verification during
all development phases. Bugs, design errors, specification mismatches, undocumented behavior,
etc. should be detected as early as possible. Redesigns or redefinition loops during the design
cycle of a product cause increased costs and delay market launch. The main objective of this
thesis is not classical verification of functional requirements. The focus is on the verification and
analysis of system characteristics caused by the variability of parameters. As already stated in
the introduction (Section 1), modern IoT systems face various uncertain parameters which may
significantly influence the behavior and performance of the system. For the efficient design of
such systems besides functional verification, additional consideration and analysis of parameter
deviations during development may result in significant benefit.

The following detailed discussion about the motivation for this thesis (and also the main part) is
sectioned into three pillars:

• Models for systems featuring deviant inputs and parameters.

• Efficient simulation techniques and management of simulation results.

• Enhanced analysis of the simulation results, which increases insight. The evaluation of de-
viation related system characteristics is embedded into a modeling, simulation and analysis
flow.

For design verification processes, a projected design is represented by an appropriate model
(model-driven system design). The abstraction level of models may range from a coarse block-
oriented system view to a fully refined description of the hardware structures [Dre10, Chapter

5

Introduction

Introduction]. For future designs which imply large functional diversification one system models
will not be sufficient [ABC+11]. Therefore, a set of models are constructed. Potential problems
caused by consistency, version management etc. are not part of this work. Verification models for
uncertainty analysis so-called range based models may be part of this model set. Models for the
analysis of parameter deviations in principle have similar requirements as models for functional
verification (e. g. efficiency, complexity, accuracy, expressiveness, etc.) [RSRG12b, RSRG12a].

In addition to modeling adapted simulation techniques have to be developed. There are already
some published range based simulation techniques based on different types of models. Especially
semi-symbolic approaches derived from computer graphic applications reduce the computational
effort dramatically compared to classical multi-run techniques [Rad16]. Thus, the main part
of this thesis deals with semi-symbolic modeling and applied enhanced range based simulation
techniques. Based on the available frameworks SystemC [23] and SystemC AMS [38] we already
have an effective and approved simulation environment for mixed signal systems. Due to open
source licensing of these tools the presented modeling simulation and analysis procedures are
implemented as an extension framework for SystemC/SystemC AMS.

Commonly used numerical simulation techniques are adapted and extended by arithmetic func-
tionalities enabling the handling of semi-symbolic representation of deviation. This creates extra
value as new possibilities for analysis enhancing the system insight. Insight is defined as the
effective monitoring and tracing of internal signals and their corresponding effects (gaining, at-
tenuation, correlation, etc.). Sophisticated consideration of additionally achieved knowledge may
improve the design processes of future electronic systems. As proposed the robustness of a sys-
tem represented as dedicated signal sensitivities against their deviation causes may impact (and
eventually damage) the full behavior. Hence, the third, and one of the main motivation pillar of
this thesis, is to enable enhanced analysis of inner system characteristics. This has the goal of
gaining performance and decreasing the behavioral impact of deviant system inputs.

Deviated Signals
and Parameters

Mixed Signal
System
Design

Sensitivities
Behavioral Impact
Internal Effects ...?

Model

Model

Model

...

Simulation
Framework

Enhanced
Analysis
Techniques

Figure 1.3: Analysis run illustrating a human verification engineer interested in enhanced insight into a
mixed signal system design with deviated inputs. In this thesis selected semi-symbolic models
representing such deviations are generated and handed over to a SystemC AMS simulation
environment. Subsequent analysis enables optimization processes to adjust signal sensitives,
monitor internal deviation effects, etc.

Figure 1.3 depicts an abstracted system simulation and analysis sequence. A human verification
engineer intends to verify and evaluate potential optimizations of a mixed-signal system design.
A central condition of this verification process is that input signals and parameters of the system

6

Introduction

deviate from the ideal value. Verification and analysis goals deal with questions regarding inner
characteristics of the system under test (e. g. signal sensitivities with respect to input deviations,
behavioral correctness inside the range of tolerances, internal uncertainty gaining or attenuation
effects, etc.) Then a set of models is transformed or deduced from the initial (exact) design.
These models are simulated under consideration of the defined uncertainties. Finally, range
based analysis techniques are applied to the resulting simulation outputs. The increased internal
knowledge and insight close the loop by refinement and optimization of the original design. As
a result, range based analysis may raise the robustness of the design, guarantee correct behavior
under specified signal tolerances (safety properties) and may guide design optimization.

1.1.2 Problem Description Based on an Example

In this subsection, I want to give a short demonstration example illustrating the importance of
considering uncertainties and their associated impact during the design time.

In 2016 a company selling electronic cash register systems asked for help at our institute. Their
system is implemented on a USB flash drive, and they had run into increasingly reported prob-
lems that flash drives dying unexpectedly after a few weeks of operation. The error seemed to
occur randomly and did not affect all drives. Putting the situation in the terminology of this
thesis, there was an unspecified, unacceptable variability in lifetime and reliability significantly
impacting the performance of the product. Time pressure before market launch forced designers
to focus their effort on getting the system running, with the consequences that test and verifica-
tion procedures get a shortened time slot within the project plan. System analysis of potential
uncertainty effects and their impact was not carried out at all.

The errors reported could have various causes and engineers involved in the project had different
educated guesses and starting points for locating the problem. One possible approach I proposed
the project team is so-called inverse propagation variability modeling (see Figure 1.4 and Section
2.2). Based on lab experiments, a functional model (for hard- and software) is derived. Con-
figuration and parameters are evaluated from measurements (see Figure 1.3). The goal of the
process is to increase the insight regarding possible uncertainties and thus locate the cause(s) of
the variability in the lifetime (see Figure 1.4). The main advantage of a model-based analysis,
instead of exhaustive lab testing, is that “what if” questions can be answered with less effort
(e. g. time saving for a high number of virtual versus real flash memory read/write cycles). In
addition, by explicitly modeling uncertainty causes their impact and propagation can be traced
during virtual test processes, while actual lab testing obfuscate such effects.

The modeling process itself follows a top-down approach as illustrated in Figure 1.4. In the first
iteration behavioral models are highly abstract, but cover the full application context including
selected variabilities of environmental properties, user interaction parameters, software behavior,
analog circuit properties, etc. (e. g. environment temperature, unspecified frequent plug in/off of
the flash drive, variable hotspot times regrading read/write executions, etc.) In the next itera-
tion the model is refined to a component/IC/module level of abstraction. The internal chips of
the USB flash drive [41], software components, as well as analog circuitry, are described using a
block-oriented functional model. Typical variabilities within this model are component parameter
drift, supply voltage parameters, IC temperature, etc. (e. g. power supply peak at plug in/off

7

Introduction

System/Application Level Model

E
n
v
ir

o
n
m

e
n
t

U
se

r

Component/Module Level Model

C
o
n
n
e
ct

o
r

C
o
n
tr

o
lle

r
Silicon Level Model

40nm Flash Cell

Pe
rf

o
rm

a
n
ce

Pa

ra
m

e
te

rs

Po
w

e
r

S
u
p

p
ly

Fl
a
sh

M

e
m

o
ry

 I
C

R
e
a
d

/W
ri

te

S
o
ft

w
a
re

...

......

USB Flash Memory Drive

Lifetime

Robustness

Reliability

...

Inverse propagation variability modelling

Lab Experiments and System Analysis

Figure 1.4: System analysis example of an USB flash memory application. For inverse propagation
variability modeling I define different levels of abstraction. An essential tool for variability
analysis is comprehensive impact tracing as illustrated by the red marked path.

operations, variabilities and distortion of the supply voltage, unspecified variabilities in the heat
map of ICs, offset drift, gain variability and nonlinearities in analog circuit components, etc.)
The final refinement step, having the lowest level of abstraction is a model representing behavior
in silicon level. In the present example, this could be a model of the flash memory cells (e. g.
[KH05, PSN04, TUS16]). Variabilities which may be considered at this level include: cell capacity
parameters, aging and breakdown characteristics, read/write delay, soft-errors such as Negative
Bias Temperature Instability (NTBI), etc. As a result, this approach allows a comprehensive
verification and analysis of various uncertainties in the full application. However, the effort for
refining a specific submodel to a lower abstraction level is high. The spent workforce directly
correlated with a significant increase of the systems insight and knowledge regarding variations.
In a modeling perspective, it is essential that the selected methodology allow detailed tracing of
variabilities and their associated effects as well as chain-linking over specified abstraction levels.
In Figure 1.4 this is highlighted by the red path which traces the propagation of a variability
caused in the environment domain through the various models to its impact resulting in reduced
hardware liftetime. One major goal of the described approach is an exhaustive cause and effect
analysis.

Regarding the faulty USB flash drives, the reduction of lifetime was ultimately found to have been
caused by a combination of flash memory aging effects and poor application design (high number
of read/write cycles). However, these causes were discovered by best practice lab experiments
without any resulting knowledge of a variability cause-effect characteristic. Detailed consideration
and enhanced effort in modeling/simulation and analysis, also considering variabilities already
during the design phase, however, would have made this application more robust.

8

Introduction

1.1.3 The Focus of this Work

As mentioned, the work is about the analysis and evaluation of inner system characteristics which
are caused by parameter deviations. Besides classical approaches (multi-run, Interval Arithmetic),
a semi-symbolic modeling, simulation, and analysis flow is presented. The focus of this thesis
is enhanced analysis techniques enabled by deviation traceability features of the semi-symbolic
approach (e. g. cause-consequence analysis, correlation tracking, temporal and structural tracing,
etc.). Traceability allows detailed impact tracking of selected deviations from their causes to
their consequences in the system’s behavior. For the implementation and management of semi-
symbolic traceability features, already published frameworks have to be extended. This thesis
presents an academic approach but discusses in detail why a semi-symbolic methodology with its
specific deviation traceability character may improve the future industrial design and verification
tools.

1.1.4 Hypothesis

The research effort invested for this work concentrates on methodological approaches and pro-
cesses for increasing analysis capabilities of mixed signal systems during the design phase. The
described techniques enable the integration of range values into a system modeling, simulation,
analysis and verification flow. For this thesis I have formulated the following three hypothesis
statements:

a) For enhanced behavioral analysis HDL models defined in SystemC AMS, VHDL, Verilog,
etc. have to be extended to accept range inputs. There is a need for augmented cre-
ation of models for different types of analysis and verification tasks to examine uncertainty.
Especially semi-symbolic modeling approaches demonstrate their advantages in expressive-
ness when the number of uncertainties rises and chained deviation effects receive an
increased impact onto the designed system behavior.

b) For simulation of enhanced models, associated computation concepts need to be integrated
into a software framework usable for C ++-based simulation environments. An extendable
object-oriented framework architecture provides detailed information about the prop-
agation of deviation causes through the system structure (tracing information).

c) Evaluation of deviation tracing information during a simulation run enables new analy-
sis methods which may entail a significant increase in system insight. So-called inner
systems characteristics, such as value bounds, sensitivities, cause-and-effect chains, sta-
bility issues, etc., can be analyzed individually for each included component. Furthermore,
evaluated analysis results may guide subsequent optimization processes and thus integrate
range based modeling, simulation and analysis techniques into a comprehensive enhanced
design-time verification flow.

1.2 Contribution to the Research Field

My contributions to the research field started in 2012, but Semi-symbolic simulation using Affine
Arithmetic forms (AAFs) in general had already been studied prior to that (see [SKG+10,

9

Introduction

GHW04, BGG+09] etc.). This thesis is partially based on the following selected publications:

RATHMAIR, M. ; SCHUPFER, F. ; RADOJICIC, C.; GRIMM, C.: Extended framework for
system simulation with Affine Arithmetic. In: Forum on Specification and Design Languages
(FDL), 2012 - [RSRG12b]
An object-based implementation of AAF data types in C ++ is presented. Extended function-
alities such as deviation symbol management, tracing of uncertainties and application-specific
approximation algorithms are introduced.

RADOJICIC, C. ; SCHUPFER, F. ; RATHMAIR, M.; GRIMM, C.: Assertion-based verification
of signal processing systems with Affine Arithmetic. In: Forum on Specification and Design Lan-
guages (FDL), 2012 - [RSRG12a]
Introduces assertion-based system verification using semi-symbolic system simulation methods.
Functions for verification applications such as temporal operators, relation operations, analog
frequency operators, etc. are defined for Affine Arithmetic forms.

RATHMAIR, M. ; SCHUPFER, F. ; GRIMM, C.; RADOJICIC, C.: Simulationsgestützte Anal-
yse der inneren Eigenschaften von Mixed-Signal Systemen (german). In: Proceedings of 16.
Workshop - Analog Circuits 2014 - [RSGR14]
In this publication sensitivity-, correlation-, and interaction effect analysis procedures for AAF
based system simulations are introduced. The main outcome of this paper is that semi-symbolic
analysis and the subsequent knowledge of inner properties of a system may improve design and
optimization procedures.

RATHMAIR, M.: Range Based Analysis of Inner Systems Characteristics. In: Design, Automa-
tion and Test in Europe (DATE) 2015, EDAA PhD Forum - [Rat15]
In the submitted extended abstract and the poster for the PhD Forum, I present the full context
of this thesis. As a conclusion, I highlight the motivation of increased system insight enabled by
an extended simulation framework including deviation tracing features and associated analysis
processes.

RATHMAIR, M. ; SCHUPFER, F.: Dealing with Uncertainties in Electronic Systems Simula-
tion. In: VSS - VIENNA young SCIENTISTS SYMPOSIUM 2015 - [RS15]
In this publication types of uncertainties, associated correlation effects and their representation
using Affine Arithmetic forms are identified. This is shown using an adapted BSIM3 Transistor
model which is used in an inverter stage. The impact of production uncertainty on the inverter’s
propagation delay is evaluated.

GRIMM, C. ; RATHMAIR, M.: Dealing with Uncertainties in Analog/Mixed-Signal Systems:
Invited. In: Proceedings of the 54th Annual Design Automation Conference 2017 - [GR17]
In the paper we describe the deviation modeling and documentation approach using AAF and
extended AAF forms in detail. Besides uncertain values also uncertain events (control flow
deviations) are introduced. We illustrate the proposed approach using a PLC (Power-line com-
munication) data transmission system.

10

Introduction

RADOJICIC, C. ; GRIMM, C. ; JANTSCH, A. ; RATHMAIR, M.: Towards Verification of Un-
certain Cyber-Physical Systems: In: Proceedings 3rd International Workshop on Symbolic and
Numerical Methods for Reachability Analysis - 2017 - [RGJR17]
In this paper, we focus on modeling uncertain cyber-physical systems and how these models can
be verified. Therefore, we show how partially existing methods defined for different MoC (Model
of Computation) are adapted and integrated into a standard system design process.

RATHMAIR, M. ; LUCKENEDER, C. ; KAINDL, H. ; RADOJICIC, C.: Semi-symbolic Simula-
tion and Analysis of Deviation Propagation of Feature Coordination in Cyber-physical Systems.
In: Proceedings of the 51st Hawaii International Conference on System Sciences - HICSS 18 -
[RL+18] - Best paper awarded
In this publication, we use the AAF approach and associated analysis features in the context of
automotive feature coordination. A model of ACC (Adaptive Cruise Control) including unpre-
dictable deviations (e. g. speed profile of the car in front) is created. Results describe the impact
on the feature’s performance (distance and speed control) in detail.

1.3 What this Thesis is not About

The main method in this thesis for representing uncertainties is to model them using abstract
symbols. This semi-symbolic method has the advantage that signal ranges of outputs can be
computed within one simulation step. Multi-run approaches, which require various simulation
runs, as well as classical interval arithmetic are implemented in the proposed framework but not
studied in detail. Such methods are state of the art and essential for discussion as well as for the
evaluation of advantages and disadvantages of semi-symbolic approaches.

Analysis methods are based on simulation results evaluated by semi-symbolic simulation. They
are applied during the design phase of a system. Thus, models for verification and analysis
procedures are pre-synthesized and/or pre-compiled functional representations of a piece hard-
/software. This thesis is not about testing processes or the evaluation of adequate test patterns
for embedded systems. Proposed analysis and verification methods are applied (but not limited)
to abstract models.

Approaches for system refinement and optimization processes (loops in the design cycle) as focused
in [Sch13] are not part of this thesis. The concepts proposed aim primarily to expand the inner
knowledge and increase the insight into system concerning the impact of parameter uncertainties.

1.4 Discussion of Expected Results

Expected Results of this thesis are enhancements in range based system analysis processes mainly
enabled by semi-symbolic modeling and simulation. Consideration of parameter deviations and
uncertainties in circuits and systems may become a significant co-existing technique to state of the
art functional circuit verification. The focused strength of a semi-symbolic verification approach
lies in its ability to trace the propagation of deviations from their cause to their consequences.
This should significantly enhance the insight and provide added value for subsequent debugging
and optimization procedures. This work is expected to be a further contribution towards the
future integration of semi-symbolic approaches into an industrial design flow.

11

2 State of the Art and Background

This chapter gives an overview and background of state of the art approaches for modeling,
simulation and analysis techniques considering uncertainty. Figure 2.1 sketches some selected
fields and methods described in the following subsections.

Modeling

Simulation

D
e
v
ia

te
d
 S

y
st

e
m

 P
a
ra

m
e
te

rs A Metamodel

Semi-Symbolic Modeling

Multi-run Approaches

Related Work

Analysis

Interval Representations

Interval Arithmetic

Affine Arithmetic

Stability- and Sensitivity Analysis

Assertion-based Verification

Formal Verification

Design of Experiments

Figure 2.1: State of the art approaches and related work in the field of system-modelling, -simulation
and -analysis considering deviated parameters.

2.1 Definitions and Terminology of Uncertainty

This preceding section is a short survey of frequently/commonly used definitions and terms such
as “system”, “uncertainty”, “deviation” etc. Some of them may slightly vary in other research
fields. However, for the rest of this thesis technical terms and phrases are used as defined in the
following.

A System in the context of this work
The term “system” is widely used in various fields of technical applications ranging from mete-

orology via mechanical and electrical engineering to biology. The Oxford Dictionary [34] holds
a general but for this work pretty well fitting definition of: “A set of things working together as
parts of a mechanism or an interconnecting network” [34].

12

State of the Art and Background

M
o
d
u
le

C
h
ip

Mixed-Signal ICs
Processors
Communication Systems
etc.

C
ir
c
u
it

Tr
a
n
s
is
to
r Components

Silicon Structures
etc.

Uncertainties in/caused by

Environment

User Behavior

Parameter
Configurations

Cyber Physical Systems
Industrial Systems
etc.

A
p
p
li
c
a
ti
o
n

Voltage

Chip TemperatureJitter
Signal Drift

Uncertainties in/caused by

Material
Properties

Radiation

Soft-Errors
Yield

Uncertainties in/caused by

Figure 2.2: Layered definition of the term “system” used for this work. An application includes chips
and modules based on transistor circuits.

As shown in Figure 2.2 for this thesis a system, in general, may be assigned to one of the
illustrated layers. The layers also identify a level of abstraction for uncertain parameters and
associated deviation effects.

CPS (cyber-physical system) Applications are included in the highest layer of this stack. They are
highly abstracted descriptions of functional behavior including components as computers (with
software), sensors, communication equipment, analog devices etc. in an ESL (Electronic System
Level) style. The next lower level is defined as chip, module, IC level. Main components of this
level are refined descriptions of hardware/software functions on a block level (e. g. multiplexer,
adder, memory registers, analog filters, mixers, etc.). System on Chip (SoC) and System in Pack-
age are components, where several sub-components (analog or digital) are integrated on/in the
same chip/package, are also assigned to this abstraction level. The most refined systems, and
thus the lowest layer in the presented stack, are netlists/circuits and transistors.

For the rest of this work the term “system” is used as described in this presented layered defini-
tion. Default, the full thesis is focused on the middle layer where a system includes a bunch of
analog/digital modules described by appropriate models.

Besides the definition of a system itself some associated terms independent of its level are de-
scribed in the following [PKB07]:
Input: Signals which are located at the border of the defined system representation that drives
or force the associated internal state to respond. Inputs may change each simulated time-step.
Parameter: Parameters are defined as a super set including system inputs. In general, param-
eters represent a numerical variable which can be constant or configurable. Parameter may have
some variations (e. g. caused by changing environmental conditions), which are basis of enhanced
system uncertainty analyses.

13

State of the Art and Background

Output: Output variables/signals are of particular interest at any kind of system analysis. They
characterize how the system presents its reactions based on the given inputs and/or the system’s
history. Inputs and Outputs are used for interaction with other systems.
System State: A set of variables models the current internal state of a system. These variables
may be modified at each time-step during the simulation process (driven by input events). The
full state of the system is defined by the internal state in combination with the variables repre-
senting in- and output signals.

Uncertainty
Within this work, I will focus on uncertainties occurring in technical (engineering) applications.
However, uncertainties face in many situations in our everyday life, ranging from the departure
time of a bus taking for the way to work, to biological systems, where uncertainty in the DNA
is essential for new populations. In a generalized and intuitive perspective, we encounter un-
certainties as tolerances, which define that a value is located unpredictable inside a specified
confidence interval [Dro09]. In a technical application where data is evaluated from experiments,
measurements or computed from a model a value holds ubiquitous uncertainty [Wol09]. Also,
it is worth to mention that storing data digitally adds additional inaccuracies. Typically, IEEE
754 standardized floating-point numbers are used which round an answer per definition if it is
inexact. There is an exciting research field for replacing floats by so-called ”posits” which poten-
tially overcome disadvantages of standard float types [GY17]. Designing a system under given
uncertainties addresses additional requirements. Uncertainty is strictly speaking, unavoidable,
and significantly important in highly optimized, robust and flexible systems [Neu04]. This forces
designers to treat uncertainties in the full development life-cycle, especially during design time.

The mentioned tolerance window is located around a single numerical best estimate value, where
calculated/measured samples may be clustered. This best estimate value may be obtained from
numerical or analytic models, and represents a single value indicating an exact numerical solution.
But the best estimate value is still an estimation of the reality because modeling a system is,
in any case, a simplification and hence adds unavoidable uncertainty (see Section 2.2). For the
rest of the work, the context are uncertain computer models and uncertain data, caused
by parameter variations.

According to [WHR+03] the nature of uncertainty is that it is never known whether a specific
sampled value is greater or less than the “exact”, best estimate value [WHR+03]. In fact, the
quality of a scientific computer model may be characterized by the difference between computed
results and measured output values derived from the corresponding experiments on a real system
implementation [Cel91]. Within this work models and associated simulation methods are proposed
where besides a numerical exact value, bounds for tolerances are evaluated under given deviated
inputs/parameters.

Correlated uncertainty
According to [Dro09] correlated uncertainty is defined by the existence of a dependency between
uncertain components. Otherwise, uncertainties are uncorrelated. In a further perspective, un-
certainty consequences are affected by multiple causes which depend on each other (e. g. the
drift of two clock signals based on the frequency-temperature drift of a single oscillator crystal).
Thus, correlated system uncertainties are partially inferred from a common unpredictable effect
(physically, component variability, semiconductor material properties etc.) [Dro09].

There are different types of correlations: Direct correlation, where an uncertain event directly
affects multiple values, and indirect correlations, where effects may be chained and consequences

14

State of the Art and Background

are not directly in touch. Reciprocal correlation can be found where an increasing characteristic
in uncertainty A consequences a decreasing effect in uncertainty B [Dro09].

For a measure of correlation, the so-called Pearson product moment correlation coefficient rxy
is defined. It is a normalized and dimensionless value between −1 and 1. Bounds of this range
represent total correlation (reciprocal or direct), or uncorrelated for rxy = 0. Further, details for
the product-moment correlation coefficient can be found in [Dro09, p.117] and [SCS+00, p.23].

According to [WHR+03] a system uncertainty or a common component of multiple uncertainties
are called random or statistical if they are totally uncorrelated. A probability distribution function
of randomly sampled values located around the best estimate indicates the characteristic for
covering a specific random uncertainty effect [WHR+03]. An outstanding example of totally
uncorrelated (normally distributed) uncertainty effects applied on single data points are defined
by observing effects of radioactive materials.

Variability
For this thesis, the term variability is defined according to [WHR+03]. Variability describes the
spread of an uncertain value set. Thus, variability is defined as the maximum and minimum
values uncertain data may reach. Variability is well known while uncertainty is based on lack of
scientific or technical knowledge. For example, if we consider the throwing coin experiment, data
variability is given by the two results which are heads or tails. If the experiment is considered
randomly, the frequency of heads and tails results is entirely unpredictable denoting a so-called
epistemic uncertainty [WHR+03]. For standard uncertainties where the possible value space is
defined by normal distributions the variability can be determined by standard deviation or median
measures.

Deviation
For this work, the term deviation is not used as a synonym for uncertainty. As described in
[Dro09] and other textbooks for statistics, the sign of a deviation is known. The deviation of a
dedicated sample indicated by its magnitude, the distance to the best estimate value, and the sign
represents whether a sample is too small or too large [Dro09, Neu04]. Thus, the deviation is a
measure of how precise the given point is to the exact/best estimate value [Dor10]. For correction
purposes of a single data-point or the full model, the deviation of continuously sampled values is a
significant characteristic. For example, let’s assume the results of a simulation model, computing
best estimate values for given test cases, consistently produces too small values compared to real
measurements. Based on the deviation (magnitude and sign) between real values and computed
best estimate values the simulation model may be corrected to improve its quality. Analogous
to uncertainty, multiple deviations may be correlated [Dro09]. According to the previously men-
tioned example concerning the uncertain frequency of an oscillator, all derived clock frequencies
are too small/large if the common oscillating frequency is too small/large.

Confidence interval
In general, a defined confidence interval is a range of data samples we trust with a given level of
confidence [Dor10]. Thus, a defined confidence interval is not a probability that sampled data are
located within this range. A defined confidence interval is located around the true/exact value
a model may produce. The peak confidence of 100% trust level is given if the exact estimated
value is observed. For spanning a bounded confidence interval around this peak indicating the
best estimate sample a dedicated confidence interval has to be defined (e. g. 95% is often chosen
for Gaussian distributed data) [Dor10].

Outliers
Outliers, also called flyers, are data points which lie at an abnormal distance to the location of

15

State of the Art and Background

the rest of the data. In fact, it has to be defined in principle, what an abnormal characteristic
is concerning the distribution of all defined data values. This mainly depends on the probabil-
ity distribution of inspected/computed data related to the distance of the outlier value to the
best estimate value [Dro09], [29]. The occurrence of an outlier may be mainly caused by two
possibilities [Dro09]:

• The model which computes an outlier data-point is wrong. Due to unconsidered mod-
eling circumstances (undesired input constellations, wrong model parameters, inaccurate
implementation of algorithms, etc.) the computed value may face an outlier.

• The value of the data-point itself is wrong and hence indicate an abnormality (e. g. the
interpretation of a produced data value is insufficient, scaling factors are erroneous, etc.).

Thus, it is advisable to consider produced outliers sufficiently, to enhance the quality of the
modeling and design process or to identify errors which may rarely occur in the deployed system.
Proposed options for dealing with outliers according to [Dro09] are:

• Identify the outlier values and correct them. Check the input values applied to a model
carefully and debug implemented algorithms in a white-box manner. If the cause of a
produced outlier is identified the model may be corrected or extended to avoid/cutoff the
abnormal computation value.

• Simply exclude the outlier observation, document the occurrence and eventually accept an
increased model inaccuracy.

• Select a larger variability for the data set produced by a model and include the produced
outlier value to the range based system analysis. Dependent on the used uncertainty model
(see Section 2.2) the best estimate value has to be corrected.

• In a design perspective, the observation of an outlier may highlight uncovered asymptotic
poles of the system characteristic. Detailed inspection and analysis of the model besides
the obtained range based analysis may increase the performance of the design.

However, dealing with outliers and associated analysis of abnormalities in inspected/generated
data is a state of the art research topic and covered in several publications such as [YWS17],
[LYX+10], [WJCK16].

2.2 Modeling of System Uncertainties

Creating computer models and virtual prototypes for the design of technical applications is a
commonly used procedure for almost all technical development processes. A model defines an
abstracted representation which behaves within a specified modeling context accordingly to the
projected application. Abstraction of modeling refers to simplification in structure, functional
coverage, behavior, etc. in predefined operational bounds. Modeled systems are embedded into
a simulation environment where virtual execution is performed. Test vectors are applied, and
the correct behavior of the model is evaluated. A high number, and eventually risk critical,
constellations of input valuations can be applied during the design process (answer so-called
what-if questions) [WHR+03].

16

State of the Art and Background

Creating application models (at a specific level of abstraction) during design time has the following
selected advantages:

• Enables high-level functional verification (formal and informal) against a given system spec-
ification.

• Performance measures can be evaluated at a very early stage in the design process.

• Fast and cheap regression testing after changes and optimization of the design.

• Analysis methods enable the evaluation of coverage measures to estimate the progress of
verification and confidence before moving to lab prototypes and fabrication.

In addition to implementing planned model behavior, the consideration of uncertainties in spe-
cific components and modules is of increased interest as introduced. Unpredictable deviations in
signals, parameters, configurations, behavioral descriptions, etc. are represented in this system
analysis processes. According to [AAC12] two different challenges can be identified at the usage
of deviation models.

Forward propagation describes a technique where uncertainty ranges are specified based on
the analysis of the constructed behavioral model. Thus, variations are defined before a specific
real implementation of the model is built. Analysis processes mainly verify if the system behaves
according to the specified properties under assumed worst-case operation (reflected by the devi-
ation ranges).

Inverse propagation uses experimental results from a final implemented system or a pro-
totype implementation. Evaluated outputs are used to identify and locate uncertainties in the
constructed computer model. Extended observation may also successively increase the knowledge
about real system behavior, refine the modeled functionalities and evaluate optimization to maxi-
mize system performance [KO01]. By using enhanced (symbolic) representations for uncertainties,
in the model potential correlations of deviation effects deduced from a real implementation can
be represented.

2.2.1 A Metamodel for Uncertainties in Computer Models

[KD07] presents a conceptional mathematical description of considering uncertainties, applicable
for any type of computer models. This abstract metamodel (a generalized model for modeling
uncertainties) is finally used to identify and locate causes of uncertainty and of course their im-
pact. Detailed analysis allows a categorization into location, level, and nature of deviations as
discussed in [WHR+03, KD07] and [WJBK10].

At the proposed abstract description a computer model has a defined vector of inputs x =
(x1, x2, . . . , xN) and outputs y = (y1, y2, . . . , yM). Single vector elements represent signals, pa-
rameters, configurations, etc. Valuations of inputs are within strictly defined value ranges as
given by the system specification. Elements of x take their values out of a corresponding set of
basic random variables X = (X1, X2, . . . XN). An input sub-model fx(X,Θf) defines the prob-
abilistic distribution of X. Functions gi, i = 1, 2, . . .M defines the relation between inputs and
outputs of the model y = gi(x,Θg). The parameter Θg denotes uncertainties of the model itself.

17

State of the Art and Background

For forward propagation parameters Θf and Θg are defined during the specification phase of the
system, while for inverse propagation these characteristics are deduced from experimental results.

Figure 2.3: A metamodel for considering uncertainties in any type of computer models according to
[KD07].

Figure 2.3 illustrates the described metamodel where three exemplary inputs x = (x1, x2, x3) are
selected by the probabilistic sub-models fx1(X1,Θf1), fx2(X2,Θf2), fx3(X3,Θf3). Model outputs
y = (y1, y2, y3, y4) are computed under their corresponding functions gi. Model uncertainties are
covered by the parameters Θg. This metamodel is independent of the obtained application model
and a mathematical construction for the consideration of uncertainties in any type of computer
models.

2.2.2 Classification and Origin of Uncertainties

Using the definitions of the presented metamodel, uncertainties in computer models can be
mapped to one of the following categories concerning its cause [KD07, AAC12]:

1. Uncertainties in the set of available random numbers X for the specification of input vari-
ables. These uncertainties are deduced from an inadequate design specification or evaluated
from experiments on an implementation. For example, if a range of input signal values in
the set X is not fully covered as defined in a system specification, which results in a lack of
possible model input valuations.

2. Uncertainty model errors caused by the selection of a probabilistic submodel represented
by the function fX(x,Θf). This function describes deviations in the distribution of basic
variables.

3. Uncertainties in the physical in/output submodel described by the function y = gi(x,Θg).
These are caused by inaccuracies in dedicated model implementations.

4. Statistical uncertainties which are caused by parameter estimations of Θf and Θg in the
corresponding submodels. These estimation functions are directly related to the quality
of available system information. For forward propagation Θf and Θg are defined by the
system specification. They specify the model respecting that the following implementation
operates correctly. Inversely, whether a real implementation is represented by a model
an increased amount of observed and analyzed experimental data allow a more accurate
estimation of model parameters [WHR+03].

18

State of the Art and Background

5. There are additional uncertainties in the case that the model is evaluated by inverse prop-
agation. Observation process for Θf and Θg may be highly erroneous.

6. Uncertainties in the representation of numbers and iterative calculations in the model.
Computational errors are caused by limited bit widths of digital number representations
and rounding errors [GY17].

As a result of the presented metamodel and the identification of uncertainty causes mainly two
critical factors for deviations in computer models are faced. First, parameter and input un-
certainty described as value ranges and associated probability distributions. They are either
context specific input signals or statically parameterize the behavior of the modeled system.
Second, Model inadequacy describes uncertainties in the structure, accuracy, type, etc. of the
model itself. A model is a simplified and abstracted representation of reality. Hence, a model is
not perfect and exhaustively representing the full behavior of an implementation [KO01, AAC12].

The so-called three-dimensional concept presented in [WHR+03] classifies uncertainty in loca-
tion, nature, and level (see Figure 2.4). The main idea of this classification is a mapping of
uncertainty into a dedicated category. This has further consequences in the documentation of
uncertainty and their associated effects (discussed in more detail later). A drawback of the fol-
lowing categorization is that uncertainty underlays a lack of knowledge and may behave in a
completely random way.

1. Location: Describes where the uncertainty occurs within the full model. Full model in
this context means all described modeling information including the context, boundaries,
model structure uncertainties, technical uncertainties, inputs, parameters, etc.

2. Level: The level of uncertainty highly correlates with the general level of knowledge (in-
sight) of the system. The level of uncertainty may range from complete deterministic
understanding to total ignorance and unpredictability.

3. Nature: [WHR+03] proposes for the nature of uncertainties two different types. Eptimistic
uncertainty is given by the lack of knowledge, and variability uncertainty is defined by
inherent deviation of parameters from their perfect value. Precise evaluation of uncertainty
nature in general increases the knowledge and guides designers to consider, and finally
reduce them achieving a more efficient system design.

Lo
ca
ti
o
n

Nature

Le
ve
l

Figure 2.4: Classification of uncertainty in Nature, Location and Level [WHR+03].

The context of this thesis is electronic circuit and system design. Classification of uncertainty
effects and their causes has been already discussed in detail in the following theses [Rad16, Sch13].
I just give a short selected summary of which uncertainties are modeled typically within a circuits
and systems context:

19

State of the Art and Background

• Input variations: voltage variation of input signals, supply voltage variations, ground
bounce, voltage level distortion, signal noise, jitter in voltage phase and frequency, offset
voltage drift, initial value variations etc.

• Component variations: component characteristics tolerances, temperature dependencies,
aging effects, etc.

• Circuit level variations: gain deviations (opamp, mixer, filter, etc.), attenuation feed-
back loop variations, time delay variations, ADC (Analog to digital converter) quantization
errors, round off errors in DSPs (Digital Signal Processors), etc.

• Silicon level-, and process variations: electron/holes mobility variations, NTBI (Neg-
ative Bias Temperature Instability) soft-errors, aging effects, process variability (e. g. MOS
gate dimensions), etc.

• Modeling variations: Abstraction errors, value quantization errors, rounding and trun-
cation, lack of parameter correlations, etc.

• Environment variations: unspecified usage, unpredictable events, unplanned decisions,
security and safety issues, etc.

The next subsections focus in particular state of the art methods for modeling the itemized
uncertainties. The presented methods differ in expressiveness, as well as in their abilities to
describe uncertainty effects.

2.2.3 Interval Representations

Exact scalar numbers , are commonly used for representing values within a precise mathematical
context. For an application in the real world, physical values have unavoidable (sometimes un-
predictable) errors. This has the consequence that they deviate from an exact value. However,
it does not matter whether this error comes from measurement processes, approximations, vari-
abilities, representation as a limited bit-width digital number, etc. Using a single scalar number
is not longer sufficient, the described error is covered by introducing a tolerance measure.

A popular method to describe tolerances is using interval representations. A set of two numbers
indicating upper and lower numeric bounds (X and X) is defined, where an inclusion of the
exact number (x) is guaranteed X = [X,X] = {x : X ≤ x ≤ X} [HJVE01, MKC09, Pop98].
An exemplary interval on a number ray is illustrated in Figure 2.5. Based on this definition the
number set of all valid interval representations I is defined according to

I = {[X,X]|X,∈ R ∧X ∈ R ∧X ≤ X} (2.1)

Figure 2.5: Interval specification

This pairwise description is also called endpoint notation for tolerances [MKC09]. Endpoint
notation as presented, indicates a “closed” interval where upper and lower bounds are included

20

State of the Art and Background

in the defined interval range. If upper and lower bounds are represented by non-infinite values,
the interval is called bounded. It may happen that an interval gets unbounded caused by a
mathematical operation (e. g. division where zero is an element of the divisor) [HJVE01].

2.2.4 Semi-Symbolic Modeling of Uncertainties

Semi-symbolic approaches for modeling uncertainty are an extension of standard interval repre-
sentations introduced in Subsections 2.2.3 and 2.3.2. Deviations are modeled by using symbols
indicating uncertainty causes. This solves the traceability problem (described in detail in the next
sections) and overcomes several further disadvantages of Interval Arithmetic and multi-run based
simulation methods. In this work, I will use Affine Arithmetic forms (AAF) for semi-symbolic
modeling, simulation and system analysis processes.

Affine Arithmetic (AA) is a range based computation methodology which was originally developed
for computer graphics [CS93]. It can be used for symbolic modeling of parameter deviations in any
fields of technical calculations. Scalar exact values are extended by linear superimposed deviation
parts. The central value (sometimes also called nominal value) and deviations are merged into a
compound data type called an Affine Arithmetic form (AAF) [SF03, GGB06].

An AAF according to [SF97, SF03] and used for this thesis is mathematically defined as:

x̂ = x0 +
N∑
i=1

xiεi = x0 +
∑
i∈Nx̂

xiεi (2.2)

with x̂ ∈ A , x0, xi ∈ R , i ∈ N+ , εi ∈ U
N ∈ N = max(Nx̂)

Nx̂ = {i|xi 6= 0}

In this work, a variable representing an AAF is indicated by a hat sign (e. g. x̂). The scalar center
value x0 (x0 ∈ R) denotes the exact value which is present if the deviation is 0. This is the equal
numerical value as used for standard numeric simulation without considering any uncertainty.

The full deviation range of an AAF is partitioned in a sum of partial deviations xi. xi are
scalar numbers with xi ∈ R. Each partial deviations is multiplied by a deviation symbol (some-
times called noise symbol) εi. These have an unpredictable value between −1 and +1. Thus,
Affine Arithmetic forms hold no information about a statistical probability distribution of devi-
ations. Symbols just represent that their value is guaranteed, but unpredictable, and unknown
between −1 and 1. ε symbols are also representable as a closed interval with the range [−1, 1];
εi ∈ U = [−1, 1] ⊆ R [PLV10]. xi scale this range for the given AAF. All partial deviations of an
AAF are superimposed, and the sum describes the total variability around the numerical center
value x0. Due to the symmetry of ε symbols all modeled deviations are located symmetrically
around the center value. A deviation symbol may represent a physical uncertainty effect which
influences signals or system parameters (e. g. manufacturing tolerances, temperature, electro-
magnetic influences, . . .) [GGB06, Sch13] and enable new possibilities in simulation and analysis
of a system. i is the counting index for the sum of partial deviations. It must be taken into
consideration that an AAF can contain different deviations which associated noise symbol index
i is not sequentially increasing (e. g. 50 + 3ε2 − 5ε4). One method to avoid this is to allow se-
quentially counting up indices to the limit of N . An extra definition specifies that non impact

21

State of the Art and Background

uncertainties have a partial deviation value xi of zero (e. g. 50 + 0ε1 + 3ε2 + 0ε3 + 0ε4 − 5ε4). An
further method is to define a specific set Nx̂ which contains only indices where the corresponding
partial deviation is not zero. i ∈ Nx̂ and i ∈ N+ (e. g. 50 + 3ε2− 5ε4, Nx̂ = {2, 4}) [SF03]. In this
work this latter sum method will be used for representing AAFs. With the definitions expressed
in equation 2.2 for all valid Affine Arithmetic forms a specific number set A is defined. All real
numbers are subset of A (R ⊆ A). Standard Affine Arithmetic forms as used in this thesis include
real and no complex values (C * A).

Figure 2.6: Graphical number ray representation of an AAF

In Figure 2.6 a graphical representation of an AAF is shown on a number ray. The included sub
ranges (defined by partial deviation values) are plotted symmetrically around the central value in
an accumulated style. Thus, the presentation is a worst-case scenario where positive and negative
interval bounds are specified by ε values of ±1. The order of the sub intervals is not significant
due to the commutativity of the sum operation (in most of the cases the index i is increasing
from inside to outside located sub intervals). As already mentioned, and illustrated in the figure
sub intervals are never overlapping.

For the description of variation in time an Affine Arithmetic signal x̂(t) is defined as a (maybe
large) sequence of AAF samples [GR17]:

x̂(t) = x0(t) +
∑
i∈Nx̂

xi(t)εi (2.3)

The dependency of partial deviations xi on time is optional. If xi varies in time or is dependent
on other values (e. g. x0) a deviation is called dynamic. Otherwise, a deviation is called static
(constant).

Figure 2.7 illustrates an AAF signal. The dashed red line indicates the center value. The blue lines
represent the bounds for the deviation 1 associated with the symbol ε1. This partial deviation
is static and thus has a constant value over time. The partial deviation associated with the
symbol ε2 is dynamic, and its value depends on the value of x0. Boundaries for the accumulated
partial deviation 1 and 2 are plotted in green. The order for plotting and accumulation of the
two included partial deviations is in this case defined as ε1,ε2 but is in general arbitrary. For an
AAF signal each point in time is defined by a single Affine Arithmetic form sample. In Figure 2.7
this is indicated for t = 0.2.

As a summary, the following advantages and disadvantages of representing uncertainty by Affine
Arithmetic forms are discussed.

Advantages:

• A selected type of uncertainty can be modeled by using a freely assignable deviation symbol
εi.

22

State of the Art and Background

time

x

Figure 2.7: Illustration of an AAF signal

• The description of correlated uncertainty effects is provided by multiple usage of deviation
symbols in Affine Arithmetic forms.

• Partial deviations xi have a sign and can be either positive or negative. This describes
their impact if they are interrelated with correlated forms. Thus, for deviations gaining and
attenuation effects (e. g. amplifiers or feedback loops) can be modeled.

Disadvantages:

• Used symbols have to be managed by an adequate modeling framework. Unmanaged dy-
namic creating and deleting of symbol instances will lead to disarrayed structure and maybe
lack of correlation representation.

• A limit of uncertainty modeling capabilities is given by the closeness and symmetry of
AAFs. Partial deviations are due to their ε definition closed symmetric intervals.

• Standard Affine Arithmetic forms hold no information about the statistical probability
distribution of deviation inside the defined ε interval.

• For the presentation of results and especially temporal traces Affine Arithmetic forms have
to be unpartitioned to scalar traces. Traces of AAF datatype cannot be plotted by standard
waveform viewer tools by default.

• For sure there is an enhanced model complexity which forces a system architect analyzing
deviation effects, their origin and correlation effects in detail. This is time-consuming and
requires an increased effort during the design phase.

23

State of the Art and Background

2.3 Simulation Techniques for considering Range Inputs

In this section I will describe how the techniques for uncertainty modeling, presented in Section
2.2 are used for system simulation. Strictly speaking, basic mathematical operations and associ-
ated functions (e. g. for transferring intervals to AAFs and vice versa) are described Multi-run,
Interval Arithmetic and Affine Arithmetic simulation methods are motivated, and their advan-
tages/disadvantages for comprehensive system simulation are highlighted.

2.3.1 Multi-run Approaches

A commonly used approach to cover uncertainties of signals, component characteristics, param-
eters, etc. at simulation are so-called multi-run techniques. Single numerical simulation runs
are executed multiple times at varying scalar input valuations. Hence, for each run a single
value, limited by an uncertainty tolerance window, is selected for each uncertain variable. The
deterministic model used for this approach is equal to the initial system design used for classical
functional simulation [Rub81]. The evaluated uncertainty is considered within the simulation
process itself, but not within the model. Thus, there is no specific modeling required for per-
forming this type of simulation. Main common characteristic of the following described multi-run
methods is the repeated execution of single simulation runs, under sequential changes of input
valuations [Ray08].

Monte Carlo simulation
Monte Carlo (MC) is a type of multi-run simulation where this value is selected randomly, con-
sidering a specified probability density function (pdf). This pdf represents a model for the total
variance and distribution of uncertain inputs and parameters. Thus, MC simulation allows the
definition of a statistical distribution of deviations. The Monte Carlo method can be seen as
a what-if analysis resulting in statistical characteristics about the reaction of the system under
inputs deviating from their ideal value [PKB07, HA08, Rub81, SCS+00].

According to [Ray08] the methodological steps when performing a MC simulation can be identi-
fied (illustrated in Figure 2.8):
Model Generation: As mentioned the model used for MC simulation includes no modifications
from the exact initial design. For uncertainty analysis, there is no need for adaption of the original
model used for design purposes (functional simulation, verification, high-level synthesis, etc.).
Input Distribution Identification: As a second step deviated inputs are described. First,
it has to be defined which inputs of the model are considered to be under variations. Second,
the corresponding characteristic of the variation is determined. Since deviations originate from
a stochastic manner, underlying input probabilistic distributions have to be identified. Proposed
input characteristics are derived from historical data or analysis of a real-world application.
Random Variable Generation: Based on the variable distributions identified at the previous
step a set of random input variables is generated. The set identifies one specific operation point
of the system. Thus, the simulation is pure numerical with scalar inputs. Outputs, which are
mapped to the generated input variable set, are monitored and collected for further processing.
This step, which is the core part of the classical sequential Monte Carlo simulation procedure, is
repeated N times. N represents the accuracy which is proportional to the sample density of the
simulation run.
Analysis and Decision Making: As a final step simulation results are post-processed. Ap-
plied algorithms calculate standard sample statistical measures like mean, variance, skewness,
histograms, sensitivity analysis parameters etc.

24

State of the Art and Background

Model Generation

Input Distribution
Identification

Random Variable
Generation

?

?

Analysis and
Decision Making

N

Figure 2.8: Steps of a full Monte Carlo simulation process. First, the input model has to be defined.
Second, the probability distribution of the varying input nodes are defined. Third, as a main
step, random input valuations are generated N times. Last, the generated simulation results
may be analyzed in a statistical way.

Enhancements in Monte Carlo methods:
Due to the huge popularity of Monte Carlo methods and their integration in commercial simula-
tion tools several scientific publications are enhancing the MC simulation method. Research fields
reach from circuit simulation, solid-state structures, biomedical applications to financial analysis
and many more. Common goals are to speed up simulation processes and enhance the accuracy.

[SB15] gives a survey of sampling techniques for a defined reliability problem. The failure probabil-
ity is given by integration of a probability density function (pdf) where the result is not known as
a closed form. Thus, MC integration, which samples the according pdf, is used. [SB15] presents
first simple sampling techniques (antithetic variate sampling, Latin Hypercube Sampling) and
second, intelligent techniques (importance sampling, asymptotic sampling, etc.) These methods
are compared and benchmark measures are evaluated based on specified use cases. Especially
importance sampling is a significant technique in the context of simulation applications. [CL07]
presents an illustrative example in the introduction section of the publication which highlights
the power of importance sampling: ”For an event occurring with probability 10−4, one expects
the occurrence of 1 event every 10000 simulation runs. [. . .] To simulate a small probability
P (A), importance sampling changes the measure P to Q under which A is no longer a rare event
[. . .].” [CL07] This addresses the problem that the number of simulation runs N has to be very
large to give good coverage of the full deviation range [CGM07]. Wights are defined by the ratio
between the P and Q distribution. The according function over the full range of the distributions
is then called importance function. Finding this importance function is essential for the method.
[CGM07] discusses this problem in detail and presents approaches using normalized distributions
in combination with estimators and coordinated re-sampling.

Worst case simulation
Worst-case simulation is a sub-type of multi-run simulations where parameters are not selected
randomly, but lower and upper boundary values are considered. Hence, the number of single runs
can be pre-calculated and depends on all defined possible combinations of boundary values. The

25

State of the Art and Background

number of runs grows exponentially by the number of considered uncertainties [Rub81]. Worst-
case simulation is a well applicable simulation method for applications where the system response
can be considered as monotonic. If monotonicity is fulfilled, worst-case behavior is defined as a
combination of worst-case uncertainty combinations [Dro09].

Implementation of Multi-run Methods in commercial tools
[JHY11] reports about implementing MC methods in their Matlab/Simulink tool. The proposed
method uses Matlab’s random number generators and stores result in M-dimensional arrays where
M is the number of MC rounds. Systems illustrated in the example section of [JHY11] are
described by a set of formulas and not within a hierarchical structure of modules. Thus, a reset
of the model is done by re-initialization of variables and MC execution is realized by looped
calculation of the defined formulas. For result analysis, they use Matlab to calculate statistical
parameters and create handsome diagrams.

[HWC08] is about implementing MC simulation with Modelica [17]. The discussed approach is
close to the standard J2748 [18] which describes random pattern handling within VHDL-AMS.
[HWC08] reports in detail how different types of random number generators are implemented
and integrated within the Modelica simulation framework. The model calculation (a differen-
tial amplifier) is called within a loop structure. None of the two proposed frameworks provide
functionalities for MC round management and efficiently controlling the full Multi-run simulation
behavior.

SPICE (Simulation Program with Integrated Circuit Emphasis) implements Multi-run simula-
tion and analysis techniques natively in the simulation environment [Cad10]. Functions for MC
simulation, worst case analysis, parameter sweeping, etc. are provided per default. Developers
of SPICE based tools follow more and more the trend towards full system simulation (e. g. [28]).
Besides circuit elements, models may also include abstract behavioral blocks as transfer functions,
signal processing algorithms, processor cores including software, etc. [Cad10].

2.3.2 Interval Simulation Techniques

Interval representations for modeling uncertainties are introduced in Subsection 2.2.3. For the
development of an Interval Arithmetic based simulation framework mathematical operations have
to be defined. An interval can be seen as a compound interval-type which is given by its upper
and lower bounds [MKC09]. Intervals have to be bounded (specific non-infinite lower and upper
limits) for the definition of this arithmetic. According to [MKC09] basic operations for intervals
are defined. x and y are representative values located inside the specified intervals X and Y .

X ⊕ Y = [x⊕ y : x ∈ X, y ∈ Y],⊕ = +− ·/

Resulting intervals defined by a ⊕ operations are calculated using the operand’s upper and lower
limits [Kol93, MKC09].

X ± Y = [X ± Y ,X ± Y]

X · Y = [min(S),max(S)], S = {X · Y ,X · Y ,X · Y ,X · Y } (2.4)

X/Y = X · (1/Y), (1/Y) = [1/Y , 1/Y], 0 /∈ Y (2.5)

26

State of the Art and Background

Additional interval parameters associated for the following discussions are width w(X), absolute
value |X| and midpoint m(X).

|X| = max{|X|, |X|} (2.6)

w(X) : I 7→ R (2.7)

w(X) = |X −X| (2.8)

m(X) : I 7→ R (2.9)

m(X) = (1/2)(X +X) (2.10)

Using these characteristics every interval can be represented alternatively by a midpoint/width
form [Kol93, MKC09]

X = m(X) +

[
−1

2
w(X),

1

2
w(X)

]
(2.11)

X = m(X) +
w(X)

2
[−1, 1] (2.12)

According to these definitions several publications [HJVE01, MKC09, Kol93] present a complete
Interval Arithmetic (also including order relations, union-, intersection operations, etc.). Most
cited Interval Arithmetic implementation for C ++ is ”Boost” [24]. For Matlab which is widely
used ”b4m” is developed and provided as an add-on toolbox [6]. In general, Interval Arithmetic is
well embedded into simulation environments and there are a lot of publications using IA for circuit
and system case studies. Authors mainly address runtime advantages in contrast to multi-run
techniques as Monte Carlo and worst-case simulation. The focus of this work is enhanced analysis
features by deviation tracing. This is just fractionally given in the IA calculus and motivates to
extend for Affine Arithmetic as given in Subsections 2.2.4 and 2.3.3.

For interval arithmetic [HJVE01] presents the following set of algebraic properties:
Correctness for Interval Arithmetic, describes that the result of an operation covers all individ-
ually possible result values. This is valid for arbitrary point-wise scalar execution of any scalar
inside the argument intervals.
Totality is given if an operation is defined for all possible arguments. For interval arithmetic,
this is just partially fulfilled (unbounded result by a division of an interval containing 0).
Closeness defines that an interval operation results from a valid interval. This is also just
partially fulfilled (exception is a division where the dividend interval contains the value 0). Ac-
cording to [HJVE01] this problem can be alternatively described by distributing the interval as

1
[X,X]

where 1
[X,0−]

= [−∞, 1
X] and 1

[0+,X]
= [1

X
,∞]. As a concequence, the division results in

union of [−∞, 1
X] and [1

X
,∞]. This set has more information than the single form joint interval

result of [−∞,∞].
Optimality defines that the resulting interval of an operation is not wider than necessary. In
some cases, optimality is defined by including an endpoint to a specific interval or not (open or
closed interval definition).
Efficiency is mainly driven by higher complex algorithms. It may happen that various subrou-
tine calls slow down simulation speed, especially in execution systems without a floating-point
arithmetic unit.

For conclusion, I discuss advantages and disadvantages for interval representations and their
associated simulation techniques:

27

State of the Art and Background

Advantages:

• Intervals provide an easy-to-use possibility representing uncertainty as ranges by upper and
lower worst-case value definition.

• Interval representations are well embedded into industrial applications and a standard for
representing tolerance measures.

• Under consideration of bounded intervals IA simulation is fast and provides a range result
within a single simulation step.

• Mathematical operations are well defined, and in general, the result of an operation (at
least for basic +,−, ·, /) is a bounded interval [DLM07].

• For plotting simulation results, lower/higher bounds can be used to illustrate potential
worst-case behavior. In principle, two plots represent a single signal. Both plots are stan-
dard numerical sequences, which can be processed by standard waveform viewer tools.

• The already identified idea of an enhanced datatype representing sets of disjoint intervals
would enable new possibilities for deviation modeling in the circuits and systems context
[HJVE01, DLM07].

Disadvantages:

• Intervals are defined in a conservative nature for covering all achievable values resulting
from an exact calculation. Thus, intervals resulting form sequential calculations may get
disappointingly large (conservative propagated uncertainty) [Pop98].

• Uncertainty causes represented by interval definitions cannot be identified uniquely [HJVE01].
This has following disadvantages in analysis and tracing of intervals. Uncertainty repre-
sented by intervals is obfuscated in the output forms, and its impact cannot be traced back
to specific causes.

• Correlated uncertainty effects cannot be represented. At default representation, interval
forms can not be linked.

• As a result of the previous two items, an interval may just get larger at sequential calcu-
lations. For circuits including feedback loops, it may happen that deviation bounds are
affected by attenuation effects.

2.3.3 Semi-Symbolic Calculation Methodology

Using Affine Arithmetic forms for simulation, operators for AAFs have to be defined the so-called
affine arithmetic based on A. The proposed goal is just to replace scalar values in a numerical
computer model by Affine Arithmetic forms for considering uncertainty. The modeling method-
ology using Affine Arithmetic forms is introduced in Subsection 2.2.4.

First, I introduce basic linear operations which do not require approximation of results. This
means that the result of an operation can be represented by a valid AAF. For A these are the affine

28

State of the Art and Background

addition, subtraction and all basic operators where one operand is a scalar (see equations 2.13
and 2.14).

x̂⊕lin ŷ, x̂ ∈ A, ŷ ∈ A where ⊕lin = +,− (2.13)

x̂⊕lin y, y ∈ R where ⊕lin = +.− . · ./ (2.14)

Using the definition of an AAF given in equation 2.2 these linear operations are defined as:

x̂± ŷ = x0 ± y0 +
∑
i∈Nx̂

xiεi ±
∑
i∈Nŷ

yiεi (2.15)

= x0 ± y0 + (xi ± yi)εi + (xi+1 ± yi+1)εi+1 + . . . (2.16)

x̂± y = x0 ± y +
∑
i∈Nx̂

xiεi (2.17)

x̂ · y = x0 · y +
∑
i∈Nx̂

(xi · y)εi (2.18)

x̂/y = x0/y +
∑
i∈Nx̂

(xi/y)εi (2.19)

As a result, it can be evaluated that these linear operations handle correlations correctly. Strictly
speaking, partial deviation of both operators associated with equal deviation symbols (repre-
senting a common deviation cause) are operated correctly. In IA impacts of equal causes, are
represented, and computed independently. Thus, origins are obfuscated and incorporated in an
accumulated interval representation.

Besides these linear operations also other mathematical operations have to be specified. They
are non-linear because the result is no longer representable by a valid Affine Arithmetic form,
according to equation 2.2.

x̂⊕nonlin ŷ = z, x̂ ∈ A, ŷ ∈, z /∈ A where ⊕nonlin = ·, /, etc. (2.20)

In standard Affine Arithmetic forms only linear deviations can be expressed. A quadratic AAF
approach, which is not used in this work has been published in [GGB06]. Non-linear functional
operations on two or more AAFs can produce polynomial terms with an order greater than one.
For example, the multiplication of two Affine Arithmetic forms may contain linear combinations
and quadratic expressions of deviation symbols. For further ongoing calculation, it is required
that such non-linear operations return a valid AAF. High order partial deviations have to be
converted to linear terms. Therefore, appropriate approximation algorithms for multiplication,
division, inversion, exponential function, trigonometric functions, etc. have to be integrated into
an AAF calculation framework [SF03]. The conventional method of approximations is to add an
additional deviation symbol (in this thesis this is called a system deviation) covering the non-
linear characteristics of the operation. Already published approximation schemes for non-linear
operations in A are:

Strict linearization (Taylor form): The non-linear characteristic of an operation can be lin-
earized at any operation point within the deviation range. Therefore, often the central value is

29

State of the Art and Background

used, but also other operation points where the tangent is calculated are possible. The result
is a linear function which can be represented by an AAF according to equation 2.2. This first
order Taylor approximation adds no extra system deviation symbols but leads automatically to
a systematic calculation error due to under-approximation [SF03]. An advantage of this method
is that the returned AAF solution has an exact functional value and correct partial deviations
(sensitivities) at the point of linearization. A disadvantage is that the calculation error has an
unpredictable sign for values unequal to the point of the linearization. The absolute value and
the sign of the error depend on the second derivation of the exact mathematical form. This ap-
proximation method can be used for applications where small absolute errors close to the point of
linearization are given. The approximation is only accurate if nearly all ε values are predictable
in a limited range around the point of linearization (e. g. operation point of a transistor circuit).

Chebyshev approximation: The goal of the Chebyshev approximation method is to calculate
a minimum-area parallelogram. The parallelogram have to enclose the exact (non-linear) result
function in the given ε intervals of [−1, 1] [SF03]. The slope of the non-vertical parallelogram
sides is computed from the first derivation of the non-linear function. This additional deviation
represented by the area of the parallelogram is modeled by an additionally added system deviation
symbol. Thus, the vertical height of the parallelogram defines the additional partial deviation
value [RK15], [Gra09]. Due to the property that deviations are located symmetrically around the
AAF’s center value for this approximation also a shifted center value is required. An advantage
of this approximation method is that full inclusion of the exact result at any specific ε value (−1
to +1) is guaranteed. The area of the parallelogram defined by the additional partial deviation
approximation value depends on the nonlinearity of the operation [Gra09]. A disadvantage of this
approximation method is that there is over-approximation at least one of the interval bounds.
Another disadvantage is that the center value is shifted at this method. For a repeated execution
of operations (within a loop) the exact central value must be reminded. This is accomplished
by the simultaneous implementation of approximations within the AAF class (see Section 3.2).
Applications for Chebyshev approximation are simulations where inclusion of the exact resulting
value must be guaranteed for every single value of included deviation symbols.

Minimal range approximation: The minimal range approximation is defined as a minimiza-
tion problem. An AAF is constructed which fulfills the requirement that the radius of the form
is a minimum [Gra09], [RK15]. A disadvantage of this approximation is that all deviations (also
user deviations which represent the sensitivity of the output in respect to parameter deviations)
are manipulated, and exact computable linear factors of the result are overwritten (and lost for
further calculations). An advantage of minimal range approximation is that there is no over--
approximation at the interval bounds [GGB06].

Figure 2.9 shows the Taylor, Chebyshev and minimal range approximation of a non-linear function
(bold line in both figures). In Figure 2.9-a the linear function labeled with crosses is an AAF
Taylor approximation at the central value. The gray shaded area is the parallelogram spanned by
a Chebyshev approximation of the non-linear function. The grayed area at Figure 2.9-b illustrates
the full inclusion parallelogram of a minimal range approximation. As a result, the figures indicate
over-approximation, shifted central values and deviation sensitivity properties of each discussed
method.

30

State of the Art and Background

a) b)

Deviation Symbol ValueDeviation Symbol Value

Function Value Function Value

Figure 2.9: Approximations of a non-linear function (bold curve). a) Illustrates a linearization (Tay-
lor approximation) and the spanned area resulting from a Chebyshev approximation. b)
Illustrates the spanned area at an approximation with the minimal range method.

Besides definition of an arithmetic on A I give a brief overview and discuss some selected addi-
tional functions defined on AAFs.

Hansen’s form
Hansen’s form is a combination of AAF and interval representations initially defined in [Kra06]:

x̃ = x0 +
∑
i∈Nx̂

xiεi + [X,X] (2.21)

I and A are subsets of all valid Hansen’s forms. The interval can be zero, and the set Nx̂ can
be empty. Hansen’s forms have the advantage that potential widening of AAF ranges, caused
by approximation of non-linear operations, can be specified by the interval part of the form. No
additional symbol has to be added to the affine part of the result. Thus, linear and non-linear
operations defined on Hansen’s forms always result in a Hansen’s form. Potential advantages of
this representation, in general, are given by constant time and space complexity [Rad16]. I will
use an approach similar to the Hansen’s form for motivating a new type of approximation (see
Subsection 3.2.2).

Radius of an AAF
The radius of an AAF is defined by its deviation bounds. Basically, the bounds are given by
summing up all included partial deviation values xi of a form independent of its sign. Thus, the
radius represents the worst-case variability resulting from individual −1,1 settings of deviation
symbols. As given in equation 2.22 the radius of a AAF is the absolute sum of all partial deviation
values [Gra09]. The radius calculation function mathematically expressed as rad, is a function
which operated from the set A the set of affine forms to R+ a real scalar positive number (including
0):

rad(x̂) : A 7→ R+

R+ = {γ|γ ∈ R ∧ γ ≥ 0}

31

State of the Art and Background

The radius of a scalar is due to non-existing deviation parts defined as 0. rad(z) = 0 for z ∈ R.
For valid AAF the radius is a positive real value defined according to equation 2.22.

rad(x̂) =
∑
i∈Nx̂

|xi| (2.22)

x̂ ∈ A , xi ∈ R , rad(x̂) ∈ R+

In addition to this definition of the radius function for Affine Arithmetic forms the following
properties are discussed:

• rad is a non-injective function. A rad value of the co-domain is not uniquely leading to a
single AAF element of its domain [Die03, p.55]. Due to a custom partition of deviations
one radius value can be assigned to the same AAF. rad(x̂1) = rad(x̂2) ⇒ x̂1 = x̂2 is not
fulfilled. Radius equivalence do not result in identical affine forms.

• The rad function is surjective, because each element of the co-domain is assigned to at least
one element of its domain [Die03, p.56].

• The rad function is not bijective (just surjectivity is fulfilled) [Die03, p.56]. This means
that the rad function is not uniquely invertable.

• Each functional composition rad ◦ rad results in zero. Assume ζ = rad(x̂), ζ ∈ R and
rad(ζ) = 0 ⇒ rad(rad(x̂)) = 0.

• The rad function is not linear. According to

rad(a · x̂) = a · rad(x̂)∑
i∈Nx̂

|a · xi| = a ·
∑
i∈Nx̂

|xi|

due to |a · xi| = a · |xi|
a ∈ R , x̂ ∈ A

it fulfills homogeneity. But it is not additiv:

rad(â+ b̂) 6= rad(â) + rad(b̂)∑
i∈{Nâ ∪Nb̂}

|ai + bi| 6=
∑
i∈Nâ

|ai|+
∑
i∈Nb̂

|bi|

due to the triangle inequality |ai + bi| 6= |ai|+ |bi|
â ∈ A , b̂ ∈ A

For linearity both properties have to be fulfilled [Wil03], so it is not linear.

Maximum and minimum Functions
Maximum and minimum functions return the bounds of an AAF under the consideration of its
accumulated modeled uncertainty. The functions are mathematically expressed as max and min
and assign an element in the set A to a scalar number in R.

min(x̂) : A 7→ R
max(x̂) : A 7→ R

32

State of the Art and Background

Maximum and minimum of an AAF can be calculated using the radius function rad.

min(x̂) = x0 − rad(x̂) (2.23)

max(x̂) = x0 + rad(x̂) (2.24)

x̂ ∈ A , min(x̂) ∈ R , max(x̂) ∈ R

min and max of a real scalar value are equal to the value itself. An AAF with radius 0 has
the property that all partial deviations are 0 with the consequence that minimum and maximum
values are equal to its center value.

min(y) = max(y) = min(x̂) = max(x̂) = y

if y ∈ R , x̂ ∈ A with x0 = y and rad(x̂) = 0

Due to the symmetry of the deviations around the center value minimum and maximum of an
AAF can be directly transferred to each other.

max(x̂) = min(x̂) + 2 · rad(x̂) (2.25)

min(x̂) = max(x̂)− 2 · rad(x̂) (2.26)

The min/max function has the following mathematical properties:

• min, max functions are not injective because a maximum element of the co-domain can be
mapped form several Affine Arithmetic forms in the domain of the functions.

• The min, max functions are surjective because each element of the co domain can be
mapped at least to one element of the domain.

• Due to the non-ijectivity the minimum, maximum functions are not uniquely invertable.
A given scalar value representing a maximum/minimum can not be mapped to a single
specific AAF.

• Each functional composition max ◦max, min ◦min results, and also multiple functional
compositions result in the max/min value of the innermost operation (the max/min of a
scala is the value itself).

max(max(x̂)) = max(x̂)

min(min(x̂)) = min(x̂)

∀x̂ ∈ A

Thus, idempotence with respect to a functional composition is fulfilled for min and max.

• Linearity is not given for the min, max functions. On the first hand, homogeneity is fulfilled
due to the homogeneity of the radius function (see equations 2.25 and 2.26). On the other
hand additivity is not fulfilled due to the non-linearity of radius function. Thus, min and
max are also non-linear.

Transformation functions between I and A
Using the previously defined functions (rad, min, max, m w), transformation functions between

33

State of the Art and Background

intervals I and Affine Arithmetic forms A can be defined. The transformation Γ and its pseu-
doinverse transformation Θ maps an element of A to I and vice versa.

Γ(x̂) : A 7→ I
Θ(X) : I 7→ A

For the definition of the transformation functions m, w for intervals and min, max, rad functions
for AAFs are used.

Γ(x̂) = [min(x̂),max(x̂)] = X (2.27)

Θ(X) = m(X) + δ = x̂ (2.28)

where δ =
∑
i∈Nx̂

xiεi ∧ rad(x̂) =
w(X)

2

X ∈ I , x̂ ∈ A

The transformation function Γ is not injective, but surjective. This has the consequence that Γ is
not uniquely invertable. min and max functions used for the definition of Γ equation 2.27 are not
uniquely invertable. Strictly speaking, multiple combinations of partial deviations (subintervals of
an AAF) can lead to equal boundary values which represent an interval. However, for applications
the so-called pseudo inverse transformation Θ makes sense Θ 6= Γ−1. Θ may return one possible
AAF representation of an interval. The interval width w(X) can be arbitrarily partitioned to
multiple partial deviations.

2.3.4 Selected Affine Arithmetic Properties on a Dense Number Space

In this section I discuss selected topological aspects of A. In general, a binary relation between
two AAF elements of the set A is defined as a subset of the Cartesian Product of A × A. For
the statement A(x̂, ŷ) a relation R is defined as R = {(x̂, ŷ) ∈ A × A|A(x̂, ŷ)}. This can be also
written as x̂Rŷ [Her06, p.28]. Specific definitions of A can be used to define an order of AAFs
(order relation). In the following itemization selected order relations are defined.

• < and ≤: The less relation is defined in a way that an AAF has to be smaller than an other
under worst case considerations (bounds of the AAF). This is expressed as R< = {(x̂, ŷ) ∈
A × A|max(x̂) < min(ŷ)}. The ≤ relation expresses that bounds of the AAF may touch
(be equal) at a single point R≤ = {(x̂, ŷ) ∈ A× A|max(x̂) ≤ min(ŷ)}.

• > and ≥: These relations are defined similar to < and ≤, R> = {(x̂, ŷ) ∈ A× A|min(x̂) >
max(ŷ)} and R≥ = {(x̂, ŷ) ∈ A× A|min(x̂) ≥ max(ŷ)}.

• ==: For the equivalence relation using AAFs two types of equivalence are defined: identical
and equal. The == checks if two AAFs are identical. This means, that central values
are equal and all deviations are equal (partial deviation values and associated symbols)
R== = {(x̂, ŷ) ∈ A× A|x0 = y0 ∧ xi = yi∀i ∈ Nx̂∧ ∈ Nŷ}.

• � =: This is an AAF equal relation. Two AAFs are equal according to � = if central
values are identical and worst-case deviations, their radius, is identical. Partial deviations
and deviation symbols may be different (two AAFs are equal if they are identical). R�= =
{(x̂, ŷ) ∈ A× A|x0 = y0 ∧ rad(x̂) = rad(ŷ)}.

34

State of the Art and Background

• �: The � relation is an overlapping relation. This relation can be defined using > and <
relations of R applied on the AAF’s bounds. R� = {(x̂, ŷ) ∈ A × A|(min(b̂) < min(â) ∧
min(â) < max(b̂) < max(â)) ∨ (max(b̂) > max(â) ∧min(â) < min(b̂) < max(â))}.

• ��: The �� relation defines that an AAF is completely enclosed by the other. R�� =
{(x̂, ŷ) ∈ A× A|max(x̂) > max(ŷ) ∧min(x̂) < min(ŷ)}.

Figure 2.10: Graphical presentation of previously defined relations in A.

These defined relations are often used in the form of an operator as x̂ ⊕ ŷ : A × A 7→ B with
⊕ =<,≥, >,≥,==, � =, �, ��. These operators (and the associated relations) are visualized using
abstract examples in Figure 2.10.

Handling comparison operators where the result is a binary statement are easy to evaluate and
well implemented in the AAF framework presented by Darius Grabowski [Gra09]. The software
framework implemented for this thesis offers the operators itemized above.

Very interesting but unfortunately significantly harder to evaluate are binary operators where
the result is an AAF or an AAF is compared with a scalar (e. g. analog to digital conversion),
x̂ ⊕ ŷ : A × A 7→ A. For example, the computation of a minimum form of two given AAFs,
min(x̂, ŷ), can not be reduced to the computation of < operators (as we know that from numerical
values). I address this topic and its implementation in Subsection 3.2.3 and in an example
presented in Subsection 5.4.

2.4 Discussion of Modelling and Simulation Techniques consid-
ering Uncertainty

In this section I recap advantages, disadvantages and properties of uncertainty representations
and calculation methodologies. The listed items are discussed specifically for electronic system
modeling and simulation applications (as used in this thesis).

Already published library implementations for AAF based modeling and simulation

A basic version of an AAF library was implemented in [31]. The C ++ library is based on
the original AAF work from Stolfi and Figueired [SF97] and is open source licensed under GNU
LGPL (Lesser General Public License). An extended implementation is presented by Darius

35

State of the Art and Background

Grabowski in [Gra09]. It features enhanced functions for circuit and system simulation and is
basis for further extensions. This library implementation is frequently used with the SystemC
and SystemC AMS simulators.

[Sch13] presents a Fourier transformation algorithm for Affine Arithmetic forms. This enables
system analysis in the frequency domain which is a significant enhancement for the analysis of
telecommunication applications.

[GGB06, GOB08] presents a range based solver for circuits described on transistor level. Occur-
ring uncertainty in transistor models may influence the full circuit behavior significantly. Differ-
ential equations are solved numerically. For non-linear transistor characteristics an approximation
scheme adds additional deviation symbols to guarantee a enclosure of the potential exact result.

A building block library for communication systems is presented in [OSG11]. For analysis pur-
poses, the authors use Affine Arithmetic forms for the consideration of range inputs and parameter
variations. The building block library includes templates for signal sources, arithmetic compo-
nents, filters, and channels.

One of the recently published extensions based on AA is XAAF (Extended Affine Arithmetic form)
[RGJR17]. It extends the described AAF analog variability modeling with functions and methods
for digital behavior. Discrete behavior is represented by using a constrained decision tree called
AADD (Affine Arithmetic Decision Diagram). A basic description of AADD representations is
given in Subsection 5.4.

For the implementation of the range based assertion-based verification methodology using Sys-
temC AMS we used the AAF library of Grabowski [Gra09, RSRG12a]. This analysis method is
further described in Section 4.4.

The AAF library implementation from Grabowski is a good basis for many AAF extensions
implementations and modeling applications. However, for enhanced analysis requirements (espe-
cially deviation tracing) and functional expandability which is one of the main contribution of
this thesis a reimplementation using new software structures is a valuable approach and detailed
discussed in Chapter 3 and 4.

The following Table 2.1 holds requirements on modeling and simulation on the left side and
discuss advantages(+)/disadvantage(-) of the presented methodologies considering uncertainty
(multi-run methods, Interval Arithmetic, Affine Arithmetic forms) in columns.

36

State of the Art and Background

Table 2.1: Summary of advantages and disadvantages of described simulation methodologies considering
uncertainties.

Multi-run approaches Interval Arithmetic AAF

In
it

ia
l

m
o
d

el
m

o
d

ifi
ca

ti
o
n

+ Simulation models used
for functional verification
can be identically used for
uncertainty analysis.
- Pattern generators have to
be included in the simula-
tion model and connected to
the model’s interface.
- For stimulation of inner
signals data path have to
be cut and temporary con-
nected to pattern genera-
tors.

+ Numerical models de-
rived from functional
simulation models can be
used. Calculating worst-
case outputs is reduced to
numeric processing input
bounds.

- Scalar variables have
to be replaced by a tu-
ple representing bounds
(tolerances).

- Numerical values repre-
sented by a scalar in orig-
inal models have to be re-
placed by an appropriate
compound AAF type.
+ AAF modeling forces de-
signers for initial awareness
of uncertainties and strict
uncertainty documentation.

C
om

p
u

ta
ti

on
ti

m
e -Simulation time which di-

rectly reflects the number of
single runs, mainly depends
on the number of uncertain
inputs and the selected cal-
culation accuracy.
+ The multi-run simulation
run can be aborted after
each single run.

+ An output interval is
computed within a single
computation of the model.
Due to the reduced com-
plexity of operations IA
is the fastest simulation
methodology within the dis-
cussed methods.

+ AA produces a range re-
sult within a single compu-
tation of the full model.
- Due to the increased com-
plexity of operations and
enhanced information in-
cluded in the AAF datatype
a computation is in principle
slower than using IA.

M
at

h
em

at
ic

a
l

o
p

er
at

io
n

s + Operators are scalar val-
ues and thus all standard
operations offered by the
C ++ language can be used.
+ The result of an operator
is in general a scalar value,
which requires no approxi-
mation.

- Using intervals as a com-
pound datatype requires
redefinition of mathemat-
ical operations within the
simulation framework.
+ Operations result in
valid interval representa-
tions (however bounded or
unbounded), and require no
approximation forms.

- Affine Arithmetic forms re-
quires a strict redefinition of
all used operations. In prin-
ciple, the exact center values
can be calculated using de-
fault scalar operators.
- Results of non-linear op-
erations require approxi-
mated forms. Approxi-
mation types have specific
properties which may be a
basis for customized uncer-
tainty analysis.

37

State of the Art and Background

Multi-run approaches Interval Arithmetic AAF

T
ra

ce
ab

il
it

y
of

u
n

ce
rt

ai
n
ty

+ At the inputs of a model
specific generator represents
an uncertainty uniquely.
- Uncertainty is consid-
ered by varying input and
parameter values sequen-
tially. Uncertainty itself is
not specifically modeled and
thus obfuscated by the ex-
ecution of multiple simula-
tion runs.

- Uncertainty is explicitly
modeled by interval forms.
If ti comes to computation,
intervals are potentially con-
catenated to single result in-
tervals. The missing indica-
tion of subintervals reduces
traceability features signifi-
cantly.

+ In Affine Arithmetic each
uncertainty is modeled indi-
vidually and marked by a
symbol. Partial deviations
indicate portions of uncer-
tainty which can be traced
back to its origin by struc-
tural or temporal tracing
procedures.

R
ep

re
se

n
ti

n
g

u
n

ce
rt

ai
n
ty

ca
u

se
s + A specific uncertainty is

covered by run-wise sequen-
tial updating generator val-
ues. This represents a spe-
cific uncertainty cause in-
cluding its statistical distri-
bution.
- The cause information is
just present at model in-
puts. Worst-case behav-
ior evaluated from detailed
result analysis can be just
matched to a specific model
input valuation.

- Intervals values are driven
by a specific uncertainty
cause, but are not marked.
Thus, intervals propagated
through the model can not
longer be uniquely identified
and matched to an uncer-
tainty cause.

+ Using Affine Arithmetic
forms allows identification
of represented subintervals
to a specific uncertainty
cause at any point in time.
Within an AAF each par-
tial deviation can be traced
back to its cause by follow-
ing the associated deviation
symbol.

T
o
ol

s
fo

r
re

su
lt

p
re

se
n
ta

ti
o
n

+ Traces are temporary or-
dered sequences of scalar
values which can be plot-
ted by standard waverform
viewer tools.
- The number of traces for
a single output is directly
correlated with the num-
ber of selected simulation
runs. For complex system
structures and high accu-
racy this number can be-
come extremely high.

+ An interval represen-
tation can be plotted by
standard waveform view-
ing tools. Upper and
lower bounds form tempo-
ral scalar traces represent-
ing worst-case system be-
havior over time.

- An Affine Arithmetic form
is a compound datatype in-
cluding subintervals which
represent different uncer-
tainty causes. Subinter-
vals can be plotted indi-
vidually. For a repre-
sentation where deviations
are symmetrically located
around the center value
Affine Arithmetic form have
to be converted into a plot-
table form viewing subinter-
vals in an accumulated style.

38

State of the Art and Background

Multi-run approaches Interval Arithmetic AAF
M

an
ag

em
en

t
o
f

th
e

si
m

u
la

ti
on

p
ro

ce
ss

- For multi-run simulation
the sequential procedure
of resetting the model,
updating data generators
and managing the total
number of individual runs
has to be managed by the
simulation core.
+ Multi-run procedures
may be easily imple-
mentable also for third-
party simulators. External
scripts may use specific
simulator API functions
managing the multi-run
simulation procedure and
read data from external
files.

+ Uncertainty simulation
using IA requires no specific
management of the simula-
tion procedure. Range re-
sults represented by upper
and lower bounds are avail-
able after each model com-
putation.

+ AAF based simulation
in principle, just replaces
scalar types as used in nu-
merical simulation by Affine
Arithmetic forms. Thus, no
management and sequential
execution of the model for a
specific point in time is re-
quired.
- For enhanced analysis pro-
cesses using AAFs the AAF
objects itself, creation of de-
viation symbols, etc. has to
be managed.

2.5 System Analysis Approaches

In this section, I introduce and discuss state of the art system analysis methods. The pro-
posed functions are partially already included in some model-driven development toolkits or even
available as individual third-party software applications. However, the techniques selected for
this section are somehow related to the analysis of parameter deviations which are potentially
caused by uncertainties. I evaluate their applicability in the context of this thesis, highlight
advantages/disadvantages and motivate potential enhancements.

2.5.1 Sensitivity Analysis

One of the original definitions of Sensitivity Analysis (SA) is that “Sensitivity analysis studies
the relationship between information flowing in and out of a model”. [SCS+00] refines this
definition by dealing with uncertainties of input variables and model parameters with the goal to
increase the confidence of the model and its predictions. Thus, SA is closely linked to uncertainty
analysis [SCS+00, p.3]. According to [HG17] the major activity of SA is the identification of the
importance of an input signal under consideration of its impact on the model’s output. However,
the selected context and specific measures for sensitivity assessment are required.

In general, SA is a well proven methodology has as a goal to determine the following selected
items [SCS+00, p.6, p.9]:

• The factors mainly influencing the output variability and thus require enhanced verification
effort to optimize the system’s behavior.

• Parameters which have less importance and can be potentially omitted in following refine-
ment steps.

39

State of the Art and Background

• Evaluation of calibration input parameter values where low sensitivity measures result in
maximum robustness.

• A set of parameters that are correlated and their variability effects interact each other.

• A measure of the quality of the model which is defined as the consistency between the model
and the real system implementation concerning input changes.

A possible classification of SA processes given in [SCS+00, HPM17] and other publications is to
divide them to local SA, global SA and screening methods.

Local SA
These methods determine the impact of inputs to the outputs by calculating first derivatives
with respect to input variables. The approach is also called One-at-a-Time (OAT) because one
input is changed while all others have a constant value. Mathematically this is expressed as:
Oi = (Xi/Yi) · (∂Y/∂Xi). This is a relative measure definition of Y caused by a change of
Xi by a fixed fraction of Xi’s central value. The partial derivation values may constitute a
comprehensive sensitivity matrix S of the system. This measure is applicable if the variation
around the input central value is small (e. g. ±5%). Otherwise, it returns insufficient results if
the model’s I/O characteristic is highly non-linear. The evaluated OAT measure is erroneous if
the system’s output is affected by combinations of uncertainties representing correlation effects
[HPM17],[HG17],[SCS+00, p.10, p.81].

Global SA
Global SA methods evaluate the impact to an output over the full range of possible input variation.
Global methods are often used in combination with a model derived from DoE and the input
variation is described under a specific probability density function [SCS+00, p.11, p.101]. Thus,
global SA is able to evaluate effects of an input Xi while all other inputs Xj , j 6= i are varied
as well. These methods are in general complex and computationally expensive (potential large
number of simulations) for reaching an appropriate sampling density [HPM17].

Screening methods
Screening methods are highly applicable for systems having a high number of inputs and thus a
high computational complexity. The idea of screening is to identify a subset of dominating inputs.
This identification process is highly based on experience knowledge and “trial and error” processes,
finding out the often low number of significant inputs [SCS+00, p.10]. A more structured method
presented in [HPM17] is the Morris method. The evaluation of a multidimensional semi-global
trajectory allows efficient identification of influential inputs within a low number of simulation
runs [HPM17].

In Figure 2.11 the introduced SA methods are evaluated under the perspective of the system
complexity and required simulation runs.

For a conclusion of this subsection, I discuss the main advantages and disadvantages of Sensitivity
Analysis as a specific analysis process considering uncertainty:

+ Local SA can be assessed with relatively low computational effort. If the mathematical
relation between inputs and outputs is known as a function the derivatives can be evaluated
analytically (the reason why 0 simulation runs is included in the gray area in Figure 2.11). If
a black box style model has to be analyzed the OAT method is a low effort way to estimate
the output reactions in principle if inputs deviate from their nominal value.

40

State of the Art and Background

Number of simulation runs

0 1 10 100 1000 10000 100000

C
o
m

p
le

x
it

y
 o

f
th

e
 m

o
d

e
l

Local SA
Methods

Global SA
Methods

Screening
Methods

...

Figure 2.11: Assessment of sensitivity analysis methods under the number of simulation runs and the
complexity of the system model [HPM17].

+ Screening converges fast to get a rough impression about the general reaction and the
direction of this reaction if a system parameter starts slightly drifting.

+ Global SA delivers good and confident results based on statistical methods and a high
number of simulation runs.

+ For standard AA, where only linear deviations are considered, SA defined as first order
derivatives, result in corresponding partial deviation values. Thus, local SA is ”cost-free”
at using AAFs for uncertainty representation.

+ SA is well embedded into industrial devlopment tools. For example: Cadence Virtuoso
Analog Design Environment [5], Synopsys Platform Architect [20], and many more.

- If the I/O characteristic is highly non-linear local SA may return very inaccurate results.

- Correlation effects, where uncertainties are not independent from each other, has to be
included accurately in the modeling procedure first, before they can be considered in a
subsequent SA process.

2.5.2 Stability analysis

If a system is influenced by uncertain system parameters for sure the question of “is it possible
that the system gets unstable under the given parameter variations?” arise. This issue is highly
related to Sensitivity Analysis. Potential approaches are to extend classical stability analysis as
applied in circuit and system theory. Published research articles focus in interval extensions of
the Lyapunov stability theory [MMC11, chapter 6],[KPM04] or use Hurwitz polynomials [WH07].
A further interesting challenge in stability analysis is the consideration of time-varying delays
within the system structure. The presence of time delays is significant for proper reactions given
by feedback loops (e. g. in control systems) and thus may result in catastrophic instabilities and
oscillations [KKK11].

2.5.3 Assertion-based Verification

ABV (Assertion-based verification) is a state of the art technology used for design verification
through all development phases of a system. It is highly embedded in standard industrial design

41

State of the Art and Background

flows and tools support comfortable formulation, management, checking and reuse of assertion
statements.
Originally ABV was mainly used in software for many decades and first published in 1947. Thus,
from there on nearly every programming language features a more or less powerful assertion
statement [Jon03]. The main idea is not to use the assert primitive to catch invalid arguments of
functions as a replacement of robust programming procedures. But, they should be used in the
sense of debugging and verification purposes to instrument the piece of code under test [BZ10].
Using assertions also for model-driven hardware development faces several advantages, and it
has been publiched in 2007 that already 68% of engineers use assert statements for efficient
verification of their hardware designs [27].
A significant advantage of ABV is that a created assertion database can be used for verification
of the system at the full design process, from specification to operation phase as illustrated in
Figure 2.12.

Specification Design

Simulation Emulation Formal

Prototype Silicon Operation

Dynamic Verification Static Verification

Siclicon Debug Online Monitoring

Assertion
Checking

Figure 2.12: Assertion checking for system verification during the full development and operation life
cycle [BZ10].

As shown in the Figure 2.12 during the design phase assertion checking may be applied as static
or dynamic verification methods. Dynamic means that the model is integrated into a simulation
or emulation environment and specified test cases are applied. Expected results are checked by
evaluating prior specified assertion formulas. In contrast to dynamic methods, formal algorithms
prove the satisfaction of assertion statements on a given system model mathematically (see Sec-
tion 4.9). Thus, the specification of test cases is not required which is one of the major advantages
of formal assertion checking (property checking). However, formal algorithms face an exponen-
tially rising complexity problem for large system structures. Dynamic, simulation-based ABV,
which is also used in this thesis, is predominantly used in the industrial design flow. The right
side of Figure 2.12 indicates that assertion checking is not limited to the design phase. Based
on assertion synthesis algorithms as presented in [BZ10] and Section 4.10, hardware assertion
checkers can be integrated into the design for test execution during system operation.

Property specification language (PSL) is the IEEE standard for formulating assertion formu-
las [PSL10]. For hardware verification the PSL assertion standard got integrated in various
hardware modeling and design languages (VHDL IEEE 1076, Verilog IEEE 1364, SystemVerilog
IEEE 1800, SystemC IEEE 1666). PSL can be used either for dynamic and static verification.
The abstract structure of PSL is organized by four layers (from lower to higher). A Boolean
layer contains Boolean expressions as logical operators, bit expressions, clock declarations, etc.
The temporal layer is most important to describe hardware behavior. It extends propositional
logic by temporal operators which enables the formulation of timing behavior. Thus, PSL in-

42

State of the Art and Background

cludes LTL (Linear-Time Temporal Logic) and CTL (Computation Tree Logic) operators as
always, next, never, until, etc. [PSL10, Lam05]. A verification layer is used to define direc-
tives for the used verification tool. In PSL beside assert also other verification directives as
assume, restrict, cover, etc. are defined. Last, a modeling layer is used to define the behavior
of design inputs (e. g. value ranges, types, etc.) [PSL10].

In the following itemization, I discuss advantages and disadvantages of assertion checking:

+ ABV is easy to integrate into a system design flow and available in various state of the
art tools. Also, the design tools support the management of assertions, functional coverage
assessment as well as tool functionality for dynamic and static verification processes [14].
As a result, this reduces verification time, increases and focuses the design effort and helps
to find errors and bugs in an earlier design stage [39].

+ PSL is an IEEE standardized language. According to [PSL10] PSL has a high expressive
power and enables specification of a large class of real-world properties.

+ Properties can be also formulated in a more abstract semi-formal way. A semi-formal
property specification uses logical and temporal operators in combination with data and
signal descriptions formulated in natural language. In a further step, these semi-formal
properties are refined using specific variable and signal names defined in the design under
test. Semi-formal properties can be assigned to a specific application, stored in a company’s
knowledge database and reused over several design projects. In [RSK14] and [RS13] I used a
database of malicious circuit properties to check designs for hardware Trojans. In [RHKP15]
I use semi-formal property formulations for verifying business processes.

+ According to Figure 2.12 for hardware designs, assertion statements can be synthesized
to runtime-verification hardware checkers. These benefits built-in self-test strategies ap-
plied during operation of safety-critical applications. According to [BZ10] these synthesis
algorithms (translation into FSM checker automats) are well known.

- Dynamic ABV requires the specification of test cases, including test setup, test operation
and result checking processes. Thus, assertion formulations may be highly dependent on
a specific test case stimuli. If assertions fail two possibilities which have to be further
inspected manually arise. First, the lack of proper stimulus or second, evaluated system
misbehavior fails an assertion statement [BZ10].

- Primary outputs, and especially for more fine-grained verification also internal signals must
be available/accessible [Lam05]. For black-box IP where this is possible, back-tracing of
errors to their cause may be a challenging task.

- Assertions represent a ”golden rule” manually derived from the system specification [BZ10].
This step may cause errors and/or uncertainties. An engineer has to deal with questions
like ”How many assertions do I have to write?”, ”Is a requirement fully covered by the set
of defined assertions?”, etc.

So, ABV is well published and used for numerical system simulation and verification. We follow
up these ideas and extend ABV for input ranges which is presented in Section 4.4.

43

State of the Art and Background

2.6 Related Work

The topics discussed so far in this state of the art section are highly related to the main contribu-
tion of this thesis. The following research fields can be seen as cognate disciplines but potentially
interesting for the context of this thesis.

Design of Experiments
The Design of Experiments (DoE) method is related to the theory presented in Subsection 2.2.1.
In principle, a metamodel is constructed based on experimental data. The model structure
and its parameter set are evaluated from measurements on already realized systems or well-
founded simulations. Basically, for the description of input/output relations linear first order
models and quadratic polynomials for non-linear effect are used. In publications, DoE is used for
sensitivity analysis, worst-case analysis and further model-based verification [Kle08]. If second-
order estimates are not considered the DoE model is in principle describing the equal behavior as
an AAF model. The main difference of the DoE approach to IA and AAF based models is that
DoE constructs a stochastic behavioral model while other approaches operate on deterministic
nominal models which expand an exact behavioral description by deviations [Kle08],[SCS+00,
p.51].

Checkpointing
Scientific simulations of complex systems may become very computationally expensive and thus
long-time running. Checkpointing is a concept where the full state of the simulation is stored pe-
riodically. In the case that a long simulation process unpredictably terminated during execution,
it can be recovered and continued at the last checkpointed simulation state. However, it is not
a trivial task to determine the time interval between continuous checkpoints [XHZ12]. A further
application of checkpointing approaches is parallel discrete event simulation. The full model is
partitioned into a set of logical processes (LPs). LPs are distributed on multiple simulation cores
where event notification messages including the simulation context and a simulation timestamps
are shred. If a time-stamp order violation is detected, the simulation has to be rolled back to
the last checkpoint where values are correct. This mechanism provides an enormous speed up
caused by parallel execution of LPs in contrast to classical single core simulation [QS03] [Fuj99,
p.122]. A potential application for checkpoint and return simulation approaches for uncertainty
simulation is to use the process in a multi-run perspective. If the impact of a modeled variability
affects a selected internal signal, a checkpoint is set. The simulation is sequentially rolled back
and further output values are computed resulting in a coverage of the full variability range.

Symbolic simulation
Symbolic simulation is a formal verification procedure. The main idea is to replace specific nu-
meric valuations by symbols. Thus, a comprehensive verification coverage can be reached within a
single or very few simulation runs. The origin of symbolic execution of pieces of code is in software
testing in the 1970s. The procedure was then adapted for checking models describing abstract
(hardware) system behavior. [Her16] presents a complete symbolic simulation of SystemC models
by extending a symbolic simulator with a state based search (model checking) for the evaluation
of cycles. This approach allows effective formal verification of the specified model against safety
properties, deadlocks, etc. However, formal verification has a large potential in general and will
significantly affect future verification tools (also for industrial applications) [Dre17, p.155],[16].

Formal methods and probabilistic model checking
Model checking (or property checking) is a formal verification technique based on models of system
behavior and properties, specified unambiguously in formal languages. The behavioral model of

44

State of the Art and Background

the system under verification is often specified using a Finite state machine (FSM). The properties
to be checked on the behavioral model are formulated in a Propositional Temporal Logic (PTL).
Eligible tools operate on a formalized finite transition representation (M) and check whether such
a property (p) holds on this model (M |= p) [Kro10, Bie09]. Model checking does not require
the execution of the model within a simulation framework. Thus, also no testbench and test case
specification is needed. Algorithms analyze the model itself and result in a mathematical proof
whether the formulated formal property is satisfied by the model [Kro10, Dre17].

In the perspective of formal model checking in combination with uncertainty analysis, probabilistic
model checking is interesting. Similar to the technique preliminary described in the last paragraph
probabilistic model checking is a technique for checking qualitative characteristics, but in this case
it is a stochastic system model (e. g. Markov decision processes, stochastic multi-player games,
etc.) [Dre17]. This has the consequence that possible states, potential transitions including
uncertain timing of transition occurrences, etc. can be specified using probability values (e. g.
the probability of a system error occurring with the next 5 ms). The set of operators is extended
to Probabilistic Propositional Temporal Logic (PPTL) (e. g. s satisfies Ponp[ψ] if the probability
of taking a path from s satisfying ψ is in the interval specified by on p) [Dre17]. A popular open
source tool used for various scientific publications is the PRISM [35] model checker.

45

3 Affine Arithmetic Framework with
Enhanced Features for Traceability

In this chapter I describe the C ++ based AAF framework, called SESYD framework (Semi-
Symbolic System Discovery), implemented for this thesis. In the following subsections, I discuss
functional requirements for range based calculations and enhanced analysis features with a focus
on deviation tracing. For satisfying these requirements, I present the SESYD approach using an
object-oriented software architecture. Properties of the implemented framework are compared
with already published AAF libraries (see Section 2.4). However, the SESYD framework is a
modified, revised re-implementation based on the work form Darius Grabowski [Gra09]. The
following subsections discuss, why it’s worth to re-design this framework using new data struc-
tures and a modular approach especially for enhanced tracing, analysis features and customized
expandability.

3.1 Framework Architecture

Based on models and associated simulation methods for considering uncertainty as presented in
Chapter 2, I identify the following functional software requirements. These requirements are used
as a basis for the implementation of a simulation framework and associated enhanced analysis
features:

1. Clear framework structure including a documented Application Programming Interface
(API).

2. Expandability using a modular software architecture. Complexity is manageable and rep-
resented by a clear set of hierarchically categorized subfeatures.

3. Adaptability of analysis processes for user-specific verification depth and optimized simula-
tion runtime.

4. Clear documentation of all implemented features and models for cross-project reusability.

5. Applicability and ability to integrate various modern (commercial) simulation cores.

6. State of the art implementation language in a way that the framework sources can be
compiled for various platforms.

46

Affine Arithmetic Framework with Enhanced Features for Traceability

7. Abstract modeling scheme so that methodologies can be applied to any kind/field of simu-
lation application.

In the following sections, I discuss the itemized requirements in detail and describe their impact
on the framework design.

SESYD Framework

ADT

AAF

Intervals

Math

Arithmetic

Approximations
Rel. Operators

Analysis

Dev. Impact
Tracing
Signal Quality

Multi-run

Pattern Generators
Simulation Control

CommonTools

Naming Service
Config Management

File Plotting
Logging

Deviations

Figure 3.1: SESYD framework overview.

For the framework implementation I tried to use a software architecture which can be easily
enriched by user-specific modules. Features are partitioned as illustrated in Figure 3.1. Each
shown box represents a module including a set of subfeatures. ADT (Abstract data type) pro-
vides template classes for representing Affine Arithmetic forms, deviations, deviation symbols
and intervals used as specific datatypes for representing uncertainty (see Section 2.2). The Math
module defines arithmetic (+,−, ·, /, . . .) and relational (<,≤, >,≥,==, . . .) operators required
for simulation purposes. This is achieved by C ++ operator overloading. In addition to op-
erator redefinitions, the module holds multiple algorithms for approximating non-linear Affine
Arithmetic operations (see Subsection 2.2.4). The Analysis module is one of the most important
implementation contributions described in this thesis. Enhanced algorithms for uncertainty im-
pact analysis, assertion-based verification, tracing, and deviation metric evaluation are included.
These system analysis processes, enabled by detailed and straight modeling of uncertainty using
AAFs, return the most enhancing result towards an increased system insight into the imple-
mented system model. The Multi-Run module extends SystemC simulation core functionalities
by multi-run methods (Monte Carlo, Worst-case, etc.). Features of this module are various test
pattern generators and core classes for multi-run simulation control. The Common Tools module
includes auxiliary functionalities and submodules for usability with a good performance (e. g. con-
figuration file management, logging information and plotting simulation results having a datatype
specified in ADT, etc.). The rightmost part of Figure 3.1 shows the implemented folder structure
of modules in the SESYD eclipse project workspace.

The functions mainly described and discussed within this thesis are focused on representing
uncertainties by Affine Arithmetic forms and associated analysis features. Enhanced analysis
methods as tracing, detailed impact analysis, etc. rely on extended uncertainty information
included in Affine Arithmetic forms. However, the implemented SESYD framework is designed to
be expandable for new/other uncertainty representations and their associated analysis algorithms.

A further advantage of the presented SESYD framework is a user adaptable setup of analysis
features applied during a simulation run. Detailed analysis highly consumes simulation runtime,
memory load, and hard disk space. The adaptability of the SESYD framework enables specific
and on the fly en-/disabling of analysis processes (e. g. tracing of signals, assertion checking,
calculation of metrics, etc.). Also for the computation of approximation forms, a similar concept
is implemented.

Some modules of the framework are mandatory for the basic operation (e. g. naming service,
symbol management, logging, etc.). These are specifically initialized by calling the

47

Affine Arithmetic Framework with Enhanced Features for Traceability

void initSesydFramework(void) function. Due to tight functional dependencies the following
modules must not be instantiated multiple times (in the code they are defined using the single-
ton software design pattern): logger, ID generator, deviation symbol manager, tracing module,
monitoring module, multi-run management.

The full SESYD framework is implemented in the object-oriented programming language C ++.
The framework architecture and proposed features are significantly influenced by the object-
oriented concepts of the C ++ programming language. However, this offers several performance
and applicability features (see Sections 3.6 and 3.7). A major characteristic of my implemented
framework is that “everything” is handled as an object having an unique ID and a name. This
means that instantiated functional components and data structures (AAF, deviation, trace, as-
sertion, logger, etc.) are represented by a corresponding C ++ object. During the simulator
execution objects are located in the user memory space. Corresponding pointers are handed over
to object management and analysis modules.

3.1.1 Object Oriented Representation of Affine Arithmetic forms

One of the central data structure in the SESYD implementation is the class representing an Affine
Arithmetic forms.

1

2
3

4

3 3

Container for Deviations

1 2

3

4

Figure 3.2: SESYD framework overview.

Figure 3.2 illustrates the mathematical definition of an AAF (see equation 2.2) and its mapping
to software objects implemented in the framework. Thus, an AAF instance is in principle a
compound object including Deviations and Deviation Symbols. The central value x0 (2) is
mapped to a single double-type variable. A deviation xiεi (3) includes a scalar partial deviation
value and a pointer to a Deviation Symbol object(4). A Deviation Symbol representing an
εi (4) contains an automatically assigned index variable (see Subsection 3.1.2) and may hold some
additional administrative information further describing the modeled uncertainty (e. g. location,
level, nature; see Subsection 2.2.2). In an implementation perspective, it is significant that just
one pointer (reference) to a Deviation Symbol object is included within a Deviation. Thus,
deviation correlations can be realized. Multiple deviations in various AAFs may point to the
same Deviation Symbol objects.

An AAF may include multiple deviations (symbol and a scalar partial deviation value) as given
in the basic definition (equation 2.2) Thus, Deviation instances have to be collected within an
appropriate container. During a simulation run the number of Deviation in the container is
in general not constant. This has the consequence that the container size has to be potentially

48

Affine Arithmetic Framework with Enhanced Features for Traceability

adapted. [Gra09] uses for deviation storage a low level C-implementation. As shown in the
left part of Figure 3.3, partial deviations and their indices are stored in two expandable array
structures. Strictly speaking, within the AAF class two pointers indicating the start address of
the arrays are held. If a partial deviation is added (e. g. by a non-linear mathematical opera-
tion approximation) and the size of the initially allocated memory space is not longer sufficient,
completely new arrays are constructed, content is copied, pointers are overwritten, and the old
container is deleted. For partial deviation lookup, the full array structure has to be scanned
sequentially. Management functions for pointers, memory spaces and length variables are imple-
mented manually by the developer.
In my framework as shown in the left part of Figure 3.3 I use the standard C ++ 11 unordered
map STL (Standard Template Library) container type [25]. Within this container partial devi-
ations (strictly speaking deviation objects - see Subsection 3.1.1) are unordered and represented
by a pair of a key element and associated data (the deviation object). For internal container man-
agement, a bucket is used which is identified by a hash value. This enables a fast (hash-based)
access and lookup of Deviation objects [25]. In contrast to the approach using array structures,
container access and management functions are predefined by the C ++ 11 STL and not a part
of the developed code.

AAF class

Pointer to partial
deviations array

Pointer to index
Array

Length identifier

Allocated memory section

Array management
functions

modify

Allocated memory section

allocate
free
resize

AAF class

unordered map
Container of
deviation Objects

C++ 11 Container class
- Management functions
- Buckets
- Hash function
etc.

Figure 3.3: Approaches for storing partial deviations in an AAF class.

The efficiency of this Deviation container and associated access methods is primarily influenc-
ing the effectiveness of the full framework. During development also other container types were
tested. Specific performance impacts are discussed in Subsection 3.6.

According to an object oriented software concept the AAF class holds data as shown in Figure 3.2
and associated functions in combination. In C ++ mathematical operators (e. g. +,−, <,≤,
etc.) may be overloaded and redefined with corresponding operator symbols but accepting AAF
datatype. The following itemization holds a selection of functions and operators implemented in
the SESYD framework (accepting AAFs, and AAFs in combination with scalar types):

• Basic mathematical operators: +,-,*,+=,*=, etc.

• AAF specific operators: Radius, Maximum, Minimum, Conversion functions to inter-
vals, etc.

• Relational operators: >,>=, <,<=, . . .

• Approximation functions: Computation of approximation results, check if a form is an
approximation, etc.

• AAF management functions: Add a deviation, Rename, Cleanup, GetID, getName,
etc.

49

Affine Arithmetic Framework with Enhanced Features for Traceability

• Verification and Debugging: Dump AAF content, various print functions, write an
AAF content into a waveform files, etc.

A detailed list of all implemented functions and operators and their associated descriptions can
be found in the doxygen documentation of the AAF class.

0..1-deviationSymbol

LibSESYD::AAF

+ opAid : ID_TYPE

+ opBid : ID_TYPE

+ AAF()

+ AAF(name : string)

+ AAF(c : const AAF&)

+ AAF(exactValue : double)

+ AAF(name : string, exactValue : double)

+ ~ AAF()

+ getCvalue() : double

+ getCvalueExact() : double

+ getCvalueIntervalExact() : double

+ getbetaChebyshev() : double

+ getName() : string

+ getId() : ID_TYPE

+ setCvalue(v : double)

+ getDeviations() : std::unordered_map< unsigned int, Deviation * >&

+ getSetOfDeviationIndizes() : std::set< unsigned int >&

+ aafDump() : string

+ aafPrintSystemDeviationSymbolInfomationList() : string

+ aafPrintSystemDeviationSymbolInfomationListFull() : string

+ aafprint() : string

+ aafPrintTerm() : string

+ operator <<(out : std::ostream&, v : AAF&) : std::ostream&

+ RequestIntervalExactResult() : string

+ RequestIntervalExactResultMinMaxOption() : string

+ RequestLinearizedResult() : string

+ RequestChebyshevInclusionResult() : string

+ RequestMinRangeResult() : string

+ RequestAllResults() : string

+ snr() : double

+ snrdB() : double

+ dp() : double

...

LibSESYD::Deviation

+ Deviation()

+ Deviation(c : const Deviation&)

+ Deviation(name : string, value : double, sym : DeviationSymbol*)

+ ~ Deviation()

+ printDeviation() : string

+ printFullDeviationInformation() : string

+ printDeviationTerm() : string

+ operator <<(out : std::ostream&, v : Deviation&) : std::ostream&

+ getDeviationSymbol() : DeviationSymbol*

...

LibSESYD::DeviationSymbol

+ symbolSource : userSymbolSource_t

+ DeviationSymbol()

+ DeviationSymbol(name : string)

+ ~ DeviationSymbol()

+ isSysDeviation() : bool

+ setSysDeviationFlag()

+ setSymbolSource(o : nloperator_t, op1 : ID_TYPE, op2 : ID_TYPE)

+ printDeviationSymbol() : string

+ printFullDeviationSymbolInformation() : string

+ printDeviationSymbolTerm() : string

+ getName() : string

+ getIndexId() : unsigned int

Figure 3.4: Class diagramms of the implemented AAF, Deviation and Deviation Symbol objects (AAF
and Deviation are not completely shown. For comprehensive details see the Doxygen code
documentation)

Figure 3.4 illustrates the class diagram of AAF, Deviation and DeviationSymbol implemen-
tations. In this picture AAF and Deviation shows just a selected subset of included methods.
For further details please check the doxygen code documentation.

In general, representing simulation data by a class structure, with its tight conjunction of data
and associated methods is very useful. Thus, Affine forms can be structurally represented, col-
lected in containers, used as a base class, etc. In the work of Grabowski [Gra09] only the AAF
type is declared as an object. Partial deviation values are represented as a single scalar value
and symbols are not modeled at all. In the SESYD framework I followed the concept that ”ev-
erything” is a software object (AAFs, intervals, monitors, traces, assertions, etc.) So I use class
encapsulation of an AAF and all included subparts. Also, deviations and deviation symbols are
classes which can hold additional information besides its scalar value (e. g. further values repre-
senting approximations (see Subsection 3.2), pointers to other objects, a container of references

50

Affine Arithmetic Framework with Enhanced Features for Traceability

to other objects, etc.). In a real-life industrial perspective additional information can be used for
enhanced deviation documentation as well as functions for debugging and test procedures can be
added. Disadvantages are given by an increased memory footprint caused by the additional over-
head. However, this is not a substantial problem for state of the art simulation platforms where
several gigabytes of memory are available. If the implemented framework might be migrated to
resource constraint in-filed platforms where simulation runs are executed during operation of a
device this issue may become critical.

3.1.2 Symbol Management

As described in the last subsection a specific deviation symbol ε is represented as an individual
software object. AAF instances including an unordered map container of deviations. Each
deviation holds one references to a symbol object. Pointers to deviation symbol instances are
returned from the C ++ new operator. These pointers are stored in the corresponding deviation
object and additionally handed over to a symbol management software module.

In the symbol manager, pointers to all symbol instances created during a simulation run are
registered and collected. In essence the deviation symbol manager holds a vector of pointers to
all instantiated deviation symbols (see Figure 3.5). As described in Subsection 2.2.4 a deviation
symbols represents a specific deviation cause. So the mentioned vector reflects all uncertainty
causes modeled within the system. A specific cause, resulting in a behavioral impact on the system
(e. g. temperature, jitter, voltage, etc.), is unique in the physical domain. Thus, the C ++ symbol
class is implemented using the singleton design pattern. Due to consistency reasons, symbols must
not be uncoordinatedly created and destroyed by a user or other objects. The symbol manager
also manages the creation and destruction of symbols, by offering appropriate request and delete
methods.

0..1-single

DeviationSymbol

LibSESYD::DeviationSymbolManager
- instance_flag : bool
- single : DeviationSymbolManager*
- listOfAllSymbols : std::vector< DeviationSymbol * >
+ ~ DeviationSymbolManager()
+ getInstance() : DeviationSymbolManager*
+ RequestNewDeviationSymbol(name : std::string) : DeviationSymbol*
+ RequestNewSystemDeviationSymbol() : DeviationSymbol*
+ RequestApproxSymbol(symsource : userSymbolSource_t) : DeviationSymbol*
+ PrintSystemDeviationSymbolInfomation() : std::string
+ ResetManager()
- DeviationSymbolManager()
- getNextIndexId() : unsigned int

Figure 3.5: Class diagramms of the implemented DeviationSymbolManager module.

Figure 3.5 illustrates the class diagram of the deviation symbol manager module. It is imple-
mented using the singleton design pattern because multiple instantiations of managers are not
allowed (consitency reasons). The instantiation of the manager is included as a subfunction in
the framework’s void initSesydFramework(void) method.

The central function for the mentioned coordinated creation of new deviation symbols is
RequestNewDeviationSymbol. If the user wants to add a new deviation to an AAF, the con-
structor of the deviation object places a symbol request at the manager. Single parameter for this
associated request function is a name variable appointing the uncertainty (e. g. chip temperature
variation, offset voltage drift, etc.) If the deviation symbol is already existing (name equivalence

51

Affine Arithmetic Framework with Enhanced Features for Traceability

check) in the system a reference to the corresponding already existing DeviationSymbol object
will be returned. Otherwise, as described a new symbol would be instantiated and added to the
management vector.

Similar to collecting deviations within an AAF the question of ”is the std::vector C ++ STL
container sufficient for collecting deviation symbols” may arise. First, in contrast to deviations the
number of symbols, reflecting physical uncertainties, is constant after elaboration of the model.
Second, according to [26] vectors have a good performance in adding and removing elements at
the ends. Thus, creating new elements during runtime (deviation symbols caused by non-linear
mathematical operations) will perform efficiently. Third, for checking if a deviation symbol is
already in the container an exhaustive container lookup has to be done. Therefore, vectors are
highly efficient in sequential accessing elements (similar to arrays) [26]. As a result of this manual
analysis of execution use cases, I argue that std::vector is an appropriate and sufficient container
for the deviation symbol manager module. During the process of this thesis, I did no evaluation
of other container types for the symbol manager.

Deviation
Symbol

- User
"Name 1"

Deviation
Symbol

- User
"Name 2"

Deviation
Symbol

- User
"Name 3"

Deviation
Symbol
- System
"AutoName1"
SymbolSource

Deviation Symbol Manager
References to existing deviation symbols

M1

M2

NL1

Input influence
Reference

Figure 3.6: Overview over implemented types of deviation symbols and the given relation to modeled
uncertainty causes.

Figure 3.6 illustrates the symbol manager, four symbol objects and a small system model (includ-
ing two modules and a non-linear operation). Blue dashed lines show that references of deviation
symbols are registered and stored in the vector container. Red dotted arrows indicate that the
modeled deviation symbols represent a physical uncertainty stimulating at inputs or resulting in
uncertainty caused by non-linear AAF operations. The second deviation symbol (”Name2”) influ-
ences the upper and the lower inputs of the system. Thus, corresponding input Affine Arithmetic
assertions and deviations are associated with this symbol which models correlated uncertainty.
Further illustrated, in this implemented AAF framework two different types of deviation symbols
are existing.

• User deviation symbols are created by the user (verification engineer or the person
creating the model). Each time the RequestNewDeviationSymbol method is called as

52

Affine Arithmetic Framework with Enhanced Features for Traceability

already mentioned a new user deviation symbol is created (except the symbol is already
existing). User deviation symbols have a human readable name and description.

• System deviation symbols are added due to the execution of non-linear affine operations
[Gra09]. Their creation (call of the request symbol function of the symbol manager) is
integrated in the corresponding approximation algorithm (see Section 3.2). However, system
deviation symbols have an auto-generated name and a SymbolSource variable. For a non-
linear operation, a SymbolSource variable holds the object identifiers of the operands and
an identifier for the applied operation. This is stored in a binary expression tree structure.
A defined SymbolSource variable is used for evaluation if a user deviation symbol for a
dedicated non-linear operation is already existing. Thus, the corresponding check is based
on a tree equivalence matching algorithm.

To distinguish user and system deviations a Boolean flag is included in the deviationSymbol
class (see Figure 3.4). (Note: A potentially more efficient approach could be the creation of a
base class, and deriving separate classes for user and system deviation symbols.) The presented
approach of having two types of symbols enables a user-friendly uncertainty documentation.
Also additional information for location, level, and nature as described in Subsection 2.2.2 can be
integrated. For a system deviation, the cause (given by non-linear operations) can be evaluated
by manual analysis of SymbolSource identifiers.

A known issue of the AAF framework published in [Gra09] addresses the discussed identification
if a deviation symbol is already existing or not. As mentioned earlier in [Gra09] a deviation
is represented by a single scalar value in combination with an associated array index. After a
non-linear operation, consequently a new symbol is created.

In system simulation applications sequential non-linear affine operations as loops of periodically
equal operations at each timestep may be included. For example in modeling a finite impulse
response (FIR) filter having deviated filter coefficients. For this case, a checking functionality
as implemented in the symbol manager guthat guarantees that only one extra deviation symbol
(source is always the same) is added independently of the number of executions. In a conserva-
tive approach adding a new symbol at each execution the number of included deviation symbols
and associated partial deviations will explode. In [Gra09] this is solved by sequentially calling a
cleanup method, combining small partial deviation to a single one.

In contrast to the framework implemented in [Gra09] where deviation symbols are not mod-
eled explicitly as objects, for the SESYD approach I identify and discuss the following listed
advantages:

+ Enhanced traceability of symbols from a specific represented cause to their impact in single
Affine Arithmetic forms is provided (see next subsection).

+ Deviation symbols caused by non-linear operations are marked by a specific boolean flag.
Thus, for a given AAF (e. g. representing the output of a system) a verification engineer
can easily evaluate if an included deviation is caused by a physical uncertainty effect, or
caused by approximation of an included non-linear operation within the system (see aso
Section 2.3.3).

53

Affine Arithmetic Framework with Enhanced Features for Traceability

+ Deviations and associated deviation symbols can be used in an independent way, which has
the concequence that customized object to object linking may offer enhanced information
for analysis and debugging.

+ Additional information can be added to a symbol specification (location, level, nature, etc.
as introduced in [WHR+03] and discussed in Subsection 2.2.2). Representing a deviation
symbol as a class allows enhanced uncertainty documentation, including additional infor-
mation for subsequent analysis.

+ For further enhancment of semi-symbolic simulation methods, new symbols can be defined
easily and integrated to the symbol manger’s functions (e. g. Introduction of XAAF ω
symbols [Rad16]).

- A significant disadvanatge is given by the runtime and memory overhead of the symbol
manager. Browsing the containers and keeping track of all registered symbols is slowing
simulation. From a verification perspective the additional information about the system’s
inner behavior is a dominating added value for subsequent analysis and optimization.

3.1.3 Basic AAF Traceability Functionalities

Basic uncertainty traceability information is by definition already included in Affine Arithmetic
forms. Deviations and their associated symbols representing a physical effect can be monitored
during a simulation run. Figure 3.7 illustrates a system model with two functional blocks and
associated affine signals (at one selected point in time) â, b̂, ĉ, ẑ, ô. AAFs enable to trace specific
impacts of the two included physical causes, to all instantiated signals by reminding partial
deviation values (for ε1 and ε2).

Figure 3.7: Basic deviation tracing is by definition included in the AAF modeling methodology

The described management of symbols and their representation as C ++ objects enable efficient
basic traceability of uncertainties. The proposed methods are described as basic features given
by the implementation of the symbol manager. Enhanced traceability features and associated
analysis algorithms are described in Sections 4.5 and 4.6. As previously mentioned deviation
symbol information including the index of the deviation symbol will never change during simula-
tion runtime. Naming and user-definable additional information as location, uncertainty effect,
etc. provide tracing of deviations in an AAF object. Optimization and cleanup algorithms which
delete deviations of an AAF must not delete instances of deviation symbols.

In the following, I define two tracing methods which are featured by the behavior of the symbol
management module:

54

Affine Arithmetic Framework with Enhanced Features for Traceability

Figure 3.8: a) Forward tracing: Starts at the deviations and links to a deviation symbol. b) Backward
tracing: Starts at the deviation symbol and links to all referenced affine forms.

Forward tracing as illustrated in Figure 3.8-a is defined as a pointer link between a deviation
and a deviation symbol. Unused symbols are still kept in the symbol manager’s vector. This is
highly related to the integration of a deviation symbol reference into an AAF (see Figure 3.2). In
a higher level abstraction view within this method, tracing is given as the ability to follow partial
deviation contributions of a specific AAF to underlying uncertainty causes.

The second tracing method associated with deviation symbol management is the vice versa direc-
tion called backward tracing (see Figure 3.8-b). As described deviation symbols objects may
not be constructed by the user, they are requested at the symbol manager which constructs them
in a coordinated way. Whenever a symbol is requested a reference to the requesting AAF object
is stored in the deviation symbol itself. So a deviation symbol holds references to all AAF objects
it is included in (see Figure 3.8-b). This allows tracing ability starting at the deviation symbol
representing an uncertainty cause back to its containing AAF objects. Strictly speaking, a devi-
ation symbol holds a list of Affine Arithmetic forms indicating initial (user specified) impacts of
uncertainty.

The deviation symbol manager provides a function for writing a full information listing including
all deviation symbols into a C ++ output stream. This stream containing dumped symbol infor-
mation can be forwarded to a file, stringbuffer, console output, etc. Listing 3.1 shows a snippet
of such a dumping output. The printed symbol has the index 1 and a user-defined name and
description is set for deviation documentation. ε1 is a symbol which is associated with a deviation
added by the user calling the addDeviation method. For forward tracing, the dump function
of an AAF prints all included deviations and their name parameter of the included deviation
symbols (strictly speaking symbol references). In a backward tracing perspective, it can be seen
that the deviation symbol ε1 is included in the AAF objects named aaf1, aaf3 and aaf7.

55

Affine Arithmetic Framework with Enhanced Features for Traceability

Listing 3.1: Snippet illustrating the list output of all deviation symbols

Deviation Symbol Manager:

FULL SYMBOL INFORMATION LIST

Symbol e1 -

Name: deviation effect temperature

Description: Ambient temperature deviation of module 1

Is USER deviation

Symbol is referenced by:

- aaf1

- aaf3

- aaf7

---8<---

Basic traceability as given in Figure 3.7 implemented by AAF naively is also given in the frame-
work presented by [Gra09]. [Gra09] uses two arrays for deviation representation. Thus, identical
items within the index arrays at two forms represent deviations having the same cause. This
enables forward traceability as described above. Information for backward traceability is not
explicitly maintained in Grabowski’s framework, whereas the SESYD framework allows managed
object to object linking. The presented framework architecture and basic traceability features
provide information which can be used for enhanced deviation traceability features as presented
in Chapter 4.

3.2 User Selectable Approximation of Non-linear Operations

As given in equations 2.15 and 2.20 in AA operations are divided into linear and non-linear ones.
In the according state of the art Section 2.3.3 I present how the result of a non-linear operations
can be represented by an approximation form (see Figure 2.9). Commonly used and already
published approximation schemes are Taylor-, Chebyshev- and Minimal Range approximation.
In the framework of Grabowski [Gra09] all of these three methods are implemented for several non-
linear operations (including trigonometric, logarithmic and exponential functions). Within the
SESYD framework these approximations are implemented for the multiplication and the division
operator. For enriching the SESYD framework with other operations [Gra09] can be taken as
a great template. The corresponding algorithms have to be adapted for the SESYD software
architecture. Differences are given in deviation representation, adding/removing deviations from
AAFs, the introduction of system deviation symbols, etc. (see previous subsections).

However, the important part of this thesis is not implementing various types of operations, but to
discuss new concepts for how approximations are represented within the SESYD approach, how
they can be managed, and how they influence analysis possibilities. I will discuss these questions
within the following subsections, consequently using the multiplication operation as a running
example.

56

Affine Arithmetic Framework with Enhanced Features for Traceability

3.2.1 Application Specific Approximation Techniques

The main statement of this section is that the application of a specific approximation algorithm
is highly dependent on the analysis and verification task. To motivate this, first, I will identify
some requirements on an approximation algorithm and their resulting Affine Arithmetic form:

• As already mentioned, the goal of approximation algorithms is to calculate a valid AAF
which represents a potentially non-linear characteristic. In general, the approximated form
has to fully enclosure the non-linear exact result (at least by its bounds).

• The result has to be a bounded affine form, also for repeated (looped) execution of the
according non-linear operation. This might become a problem because published approx-
imation algorithms, in general, add an extra deviation symbol to a form by every single
execution. To overcome this, three methods can be applied: A sequential call of a cleanup
method accumulates small partial deviations which are caused by approximation. Hansen’s
form can be used where no new symbols are added, but approximation deviations are rep-
resented by intervals. As used in the SESYD framework symbols can be managed, and a
cause-identifier is stored. Sequential execution of a specific non-linear operation may have
equal operators at every single execution.

• As usual at approximation computing an error measure have to be given.

• An approximation method has to return results which are reasonable respecting the modeled
application. This may become important if the approximation is seen in a more general
perspective where also piecewise discontinuous functions are considered.

Furthermore, the next itemization lists some selected properties and characteristics of an approxi-
mation AAF. Figure 3.9-a shows a non-linear function x̂e (dashed red line) and its approximation
x̂a (in blue). They are evaluated concerning the given requirements. At the end of the next sec-
tion, I will give an overview of published approximation schemes using the following properties.

• Interval bound values: As illustrated in Figure 3.9-b the approximated form has an
additional deviation symbol ε2 (blue lines indicate the bounds for ε2 = ±1). At the interval
bounds, representing worst-case deviations the approximation forms have an over-approxi-
mation indicated as o1 and o2, where o1,2 = |x̂a − x̂e| and ε1 = ∓1, ε2 = ±1

• Shift of the central value: The central value of the approximated form must be symmet-
rically to its bound values (ε2 = ±1, blue lines). Thus, the central value of x̂a is in general
not equal to the central value of x̂e, o3 = |x̂a − x̂e| where ε2 = ε1 = 0 (see Figure 3.9-c).

• Average, minimum/maximum difference: The difference characteristics as average,

minimum and maximum can be defined as: 1/2·
1∫
−1
|x̂a−x̂e|dε1 , min/max(|x̂a−x̂e|)

∣∣
ε1=−1...+1

• Central value sensitivity: Besides these values also sensitivities (for ε1) may differ be-
tween the exact and the approximated form. This is shown in Figure 3.9-d. As a property

measure I define the quotient of sensitivities at the center value: ∂x̂e(ε1)
∂ε1

/
∂x̂a(ε1,ε2)

∂ε1

∣∣∣∣
ε1=0

57

Affine Arithmetic Framework with Enhanced Features for Traceability

a) b) c)

d) e) f)

Figure 3.9: Properties of AAF approximations

• Bound sensitivity: Sensitivities can be also evaluated at the boundaries of the defined

AAF range (see Figure 3.9-e): ∂x̂e(ε1)
∂ε1

/
∂x̂a(ε1,ε2)

∂ε1

∣∣∣∣
ε1=±1

A significant situation happens if

the according sensitivity quotient is negative. Thus, the reaction of the system caused by
slight variation of ε1 is complementary.

• Average, Minimum/maximum sensitivity difference: Similar to the differences in
the value domain average, minimum/maximum can be evaluated for sensitivity:

1/2 ·
1∫
−1

(
∂x̂e(ε1)
∂ε1

/
∂x̂a(ε1,ε2)

∂ε1

)
dε1 , min/max

(
∂x̂e(ε1)
∂ε1

/
∂x̂a(ε1,ε2)

∂ε1

) ∣∣∣∣
ε1=−1...+1

• Area: In Figure 3.9-f the area spanned by the included additional deviation symbol ε2 is
marked. This area represents the variability added to the exact solution to strictly enclose
the non-linear characteristic. The shaded area can be calculated by 2 · ∂x̂a(ε2)∂ε2

= 2 · x2. In
cases of a singularity of the the exact result within the ε1 = −1 . . . 1 range, this area is
divergent towards ∞ and therefore fails the requirement given above.

• Computation complexity and memory space: Besides the explained mathematical
properties these two properties are significant for calculating approximations in a computer.
The computation complexity informs about the number of steps that have to be computed
for an approximation at a sequential execution. The memory space property gives a measure
of the memory area that has to be allocated by a approximation AAF where a non-linear
operation is executed sequentially (adding new symbols).

58

Affine Arithmetic Framework with Enhanced Features for Traceability

Approximation algorithms have different features regarding the given items above. Hence, for an
application, it is an added value if a verification engineer is not limited to sticking at one specific
approximation scheme. Different types of verification tasks would require particular constraints
on the used approximation forms. As an example I give the following three selected use cases:

• Worst-case analysis has the requirement that potential over-approximation should be as
low as possible. Specific sensitivities against variabilities in deviation symbols would be of
minor interest (e. g. verification of safety-critical systems).

• On the other hand, for sensitivity analysis applications the over-approximation at the
bounds is of small importance. It may be significant that the sensitivity of a limited zone
around the central value is as exact as possible.

• If a non-linear operation is executed within a loop structure the given area property can
be interesting. Additional deviation symbols covering nonlinearities should be limited to
optimize the variability (area) caused by approximation.

Especially for safety-critical mixed signal system applications, correct output bounds are required
[SG10]. In this case, the approximation gap inside the specified deviation range is of minor
importance. Primary objective of the system analysis is to check whether the bounds of an affine
output signal is within a defined tolerance specification or not (worst-case behavior). Based on
the presented already published approximation schemes (Section 2.3.3) this property is satisfied
by the minimal range scheme.

A further important statement if it comes to AAF approximation is correct linear partial deviation
values. They allow qualitative statements about deviation sensitivity at the central value [SF03].
This sensitivity property is a significant disadvantage of minimal range approximation. Sensitivity
values (also for user deviations which are in general caused by modeled physical effects) are
modified in order to satisfy the minimum area objective (see Figure 2.9). This may falsify the
result dramatically if this approximation result is a data basis for system sensitivity analysis.
To satisfy this property Chebyshev approximation is the best choice. The sensitivity of the
approximation AAF is equal to the exact sensitivity at the center value.

In the framework of Grabowski [Gra09] all approximation computations within a simulation run
are calculated by a single selected algorithm type. The algorithm itself is selected before the start
of the run. At the SESYD framework within an AAF object, multiple approximation forms can
be reminded. So an engineer can select in advance which approximation schemes are calculated
during a simulation run. For subsequent post-processing one of them is used according to the
specified type of verification task. In addition, as an enhanced function, approximations can
be enabled/disabled during simulation runtime. This results in a so-called application specific
approximation technique for Affine Arithmetic forms.

In an implementation perspective, the AAF class and its included deviations are extended by
scalar variables representing different types of approximations. In general an approximation form
in this framework is defined as

x̂a = βm + x1ε1 + x1ε1 + . . . xnεn + αmεm (3.1)

where x̂a represents an approximation AAF,m is the index for a specific approximation type, βm is
the shifted central value for approximation m (see Figure 3.9-c), x1...nε1...n are user deviation and

59

Affine Arithmetic Framework with Enhanced Features for Traceability

Figure 3.10: Characterization of an approximation using α and β values.

αmεm represents the additional system deviation. The m in the α and β indices can be replaced
by a name identifier for the approximation method (e. g. αChebyshev). This representation of an
AAF, representing one specific approximation is illustrated in Figure 3.10.

As already mentioned the classes for AAF and Deviation are extended by scalar variables for
alphas and betas. At the time of writing in the SESYD framework, Taylor, Chebyshev, minimum
range and Interval-exact approximations are implemented. The extended framework structure is
illustrated in Figure 3.11. As indicated in yellow a specific approximation is selected by picking
corresponding scalar values of AAF and system deviation objects. New approximation methods
can be added easily by adding corresponding α and β scalar variables. For future framework
versions, the α and β values can be potentially stored in vector containers.

Figure 3.11: Extended classes for AAF and Deviation including α and β values for Taylor, Chebyshev,
minimum range and interval-exact approximations.

In the SESYD framework multiple approximations can be computed within a single non-linear
operation. For management, an approximation register as illustrated in the class diagram shown in
Figure 3.12 is implemented. In this object two static references named DefaultApproximation
and ArithmeticApproximation are included. ArithmeticApproximation defines the set of
computed approximation types, and DefaultApproximation defines which approximation is
used for AAF printing, plotting and debugging functions. Strictly speaking, one configuration
defines which approximations are calculated during simulation and the other defines which type
is used for standard functions. A computation of approximation variables α and β is triggered
at all executed operations the associated AAF is involved in. This guarantees that all available
approximation forms are valid after each non-linear operation.

60

Affine Arithmetic Framework with Enhanced Features for Traceability

In general, the SESYD framework has functions for loading framework configurations from a
config file on the file system. For config file decoding the GNU libconfig library is used. The
configuration file hold path definitions for waveform and result files, switches for debug message
levels, deviation tracing and monitoring configurations, approximation configurations, etc.

+DefaultApproximation +ArithmeticApproximation

LibSESYD::ApproxRegister

+ DefaultApproximation : ApproxRegister*

+ ArithmeticApproximation : ApproxRegister*

+ initApproximationRegisters()

+ ApproxRegister()

+ setApproximation(ApproximationType : approx_t)

+ addApproximation(ApproximationType : approx_t)

+ clearApproximation(ApproximationType : approx_t)

+ resetApproximationDefault()

+ resetApproximationArithmetic()

+ printApproximation() : string

+ retApproximationCode() : long

+ getApproximation() : approx_t

+ operator ==(rhs : approx_e) : bool

+ isSet(rhs : approx_e) : bool

Figure 3.12: Class diagramm of the approximation register used for the definition of computed and
default approximation types.

3.2.2 Interval-exact Approximation

Goal and motivation for the interval-exact approximation is to combine advantages of minimal
range and Chebyshev approximation. Strictly speaking, having exact interval bound values, and
correct sensitivity properties of the center value. The already identified disadvantage of a shifted
central value for all approximation schemes adding extra system deviation symbols is solved by
the SESYD framework architecture (exact central value is stored and shifted ones are handled
with β values). A significant drawback of the framework implemented in [Gra09] is that shifted
central values are not stored at all. This has the consequence that at sequential multiplications
partial user deviations are multiplied by wrong central values. Thus, the mentioned shift (in the
value domain) has also an impact to partial deviation values representing system sensitivities.
The SESYD framework stores and uses the exact cental value correctly in subsequent operations.

For explaining the interval exact approximation algorithm a multiplication of two AAFs will be
discussed, but the basic idea of the method can be adapted for any abitrary non-linear operation.
An advantage of AA system simulation is that correlated deviation causes can be modeled by
using the same ε symbols in multiple affine forms [SF03, PLV10]. Such correlations must be taken
into consideration at a functional composition of two or more Affine Arithmetic forms. Based on
given correlation situations different cases for calculating the interval-exact approximation can
occur.

One case of AAF multiplication is that deviations of both affine operators â and b̂ are completely
uncorrelated. Mathematically expressed for Nâ and Nb̂, which are the sets of the operand’s devia-
tion symbols indices (see equation 2.2) Nâ∪Nb̂ = {} is valid. An independent consideration of the
operands is possible. Each AAF operand can be converted into an equal interval representation
[SF03]. These representations can be multiplied by using an algorithm published in [Pop98, Al-
gorithm 3.1]. The result is an exact interval solution (only upper and lower value of the resulting

61

Affine Arithmetic Framework with Enhanced Features for Traceability

range are calculated not an AAF) for the operation. The multiplication of two affine forms can
be partitioned into two parts. The first one is a pure affine term with an exact central value and
linear user deviations. The second part includes all non-linear terms of the multiplication [SF03].
Combined quadratic terms included in the exact mathematical result are replaced by one new
system deviation. This contains a α approximation value and a modified central value β in the
affine form. At this type of approximation β is set to the middle of the calculated exact result
interval and α is set to the radius difference between the exact interval solution and the affine
part. This results in an affine representation with no over-approximation and correct calculated
linear user deviation parts.

Fu
nc

tio
n

Va
lu

e

Deviation
Symbol Value ε1

ε2=1

Minimum

ε2=-1

Figure 3.13: Interval exact approximation method

The second case is a multiplication of correlated AAFs. An independent consideration of the
operands is not longer possible [SF03]. At having one or more correlated deviation symbols,
the mathematically exact result contains a quadratic term. The graph of the result concerning
the deviation values ε forms a parabola object. In this case, it can happen that minimum or
maximum values of the result interval are defined by deviation symbol permutations unequal
to their −1 or +1 bounds. In the example shown in Figure 3.13 the minimum is located at a
deviation symbol value of 0.42 (for n-correlated symbols a combination of ε values is possible).
In other words, the minimum or maximum resulting value is inside of the [−1, 1] interval for ε
values. Minimum or maximum values of the parabolic result function are analytically calculated
(n-dimensional extremum problem). It can be proven that minimum and maximum values of an
exact result generated by the multiplication of correlated AAFs are located at the edges of the
object spanned in the n-dimensional ε-space. Minima and maxima can be found in one varying
ε value and all other deviation symbols of the result are permutations of +1 or −1 values. This
calculation returns exact interval bounds of the operation result. The approximation value α and
corrected central value β can be calculated as explained for uncorrelated multiplications.

Multiplications of AAFs which include a mix of correlated and uncorrelated deviation symbols
have to consider all +1/−1 combinations of uncorrelated symbols. Uncorrelated deviations are
always linear factors which extrema are located at −1 or +1 ε-value combinations. Each +1/−1
permutation of uncorrelated symbols will result in a pure correlated form which can be handled
as explained previously.

62

Affine Arithmetic Framework with Enhanced Features for Traceability

Example:
Figure 3.13 illustrates the result of the interval exact approximation for a multiplication of 2 +
4ε1 and −20 + 15ε1. The bold line is the mathematical exact result including quadratic terms
−40 − 50ε1 + 60ε1

2. It can be seen in the chart that interval bounds of the result are −50 at
ε1 = 0.42 and 70 at ε1 = −1. The result of the interval exact approximation introduces an
additional system deviation symbol with an approximation value α of 10.21, and a modified
center value β of 9.79. The approximated affine form ŷ is 9.79−50ε1 + 10.21ε2. The radius of the
approximated result AAF is equal to the range spanned by the exact result of the multiplication.
As previously mentioned this approximation is optimized for simulations where exact interval
bounds and correct user partial deviations of an AAF are required.

For the discussion of advantages and disadvantages of the interval-exact approximation scheme
in the following table holds qualitative statements (including also state of the art techniques pre-
sented in Section 2.3.3). Basis are the introduced approximation properties defined in Subsection
3.2.1 and Figure 3.9.

63

Affine Arithmetic Framework with Enhanced Features for Traceability

Table 3.1: Properties of implemented approximation algorithms

Taylor Chebyshev Minimal Range Interval-exact

B
ou

n
d

s
(F

ig
.

3.
9-

b
) - This approxima-

tion adds no system
deviation symbol.
Thus, the approx-
imation form has
a potentially large
over- and under-
approximation if the
exact characteristic
is highly non-linear.

- At least one inter-
val bound may have
an over-approxi-
mation caused by
conservative enclo-
sure of the exact
characteristic.

+ The goal of
minimal range ap-
proximation is to
calculate a min-
imum enclosure
area without over--
approximation.
Thus, interval
bound values are
exact.

+ This type of ap-
proximation has the
goal to calculate a
form having exact
interval bound.

C
er

n
tr

al
va

lu
e

sh
if

t
(F

ig
.

3.
9-

c)

+ This scheme ap-
proximates using a
tangent at the center
value. Thus, there
is no shift of the ap-
proximation form’s
central value.

- The approxima-
tion form is based
on the first deriva-
tion at the central
value of the exact
function. The cen-
tral value shift de-
pends on the calcu-
lated value for the
partial system devi-
ation. The shifted
central value has to
fulfill the AAF sym-
metry requirement.

- see Chebyshev ap-
proximation

+- Similar to the
Chebyshev approxi-
mation, but if a min-
imum/maximum is
within the valid val-
ues for epsilon, the
partial system devi-
ation, and thus the
shift of the approx-
imation center value
is smaller.

D
iff

er
en

ce
(F

ig
.

3.
9-

c)

+- The minimum
difference is due to
the tangent approx-
imation zero, but
the average differ-
ence might be de-
pendent on the non-
linearity significan-
tely high

+ The approxima-
tion form’s central
value is always
within the enclosure
form. Thus, the
minimum differ-
ence is also zero.
Also, the average
difference over the
full range is lower
compared to Taylor
approximation.

+- Due to the con-
straint of exact in-
terval bounds, in
general, the partial
system deviation is
larger compared to
Chebyshev. Thus,
the average differ-
ence is also larger.
For the minimum,
the same property
as for Chebyshev is
given.

- If a minimum/-
maximum is within
the epsilon interval
the partial system
deviation value is
smaller compared to
Chebyshev. Thus,
the average differ-
ence may get disap-
pointingly large.

64

Affine Arithmetic Framework with Enhanced Features for Traceability

Table 3.2: Properties of implemented approximation algorithms-part2

Taylor Chebyshev Minimal Range Interval-exact

C
en

tr
al

va
lu

e
se

n
si

ti
v
it

y
(F

ig
.

3
.9

-d
) + Taylor approxi-

mation is a tangent
at the central value
representing exact
sensitivity. For
applications where
sensitivities are rel-
evant and behavior
can be linearized
in a single opera-
tional point, Taylor
approximation re-
turns less complex
forms due to no
extra added system
deviation symbols.

+ The Chebyshev
approximation takes
the sensitivity of the
exact form as a ba-
sis. Thus, the sensi-
tivity is exact at the
center value.

- Due to the given
approximation con-
straints, sensitivities
are modified and are
in general not equal
to the sensitivity of
the exact form in the
center value.

+ This approxima-
tion is similar to
Chebyshev and has
exact sensitivities at
the center value.

B
ou

n
d

se
n

si
ti

v
it

ie
s

(F
ig

.
3.

9-
e)

- The slope (rep-
resenting sensitivity)
of the tangent at the
bounds is unequal to
slope at the center.

- The Chebyshev
approximation takes
the sensitivity of the
center value which is
in general not equal
to the sensitivity of
the interval bounds.

+- In general, min-
range approximation
constraints require a
sensitivity value at
one at the interval
bounds. Thus, the
approximation sensi-
tivity is equal to sen-
sitivity at the value
bounds. If a min-
imum/maximum is
within the epsilon
interval, the sensi-
tivity is set to zero.

- The interval-exact
approximation takes
the sensitivity of the
center value which is
not equal to the sen-
sitivity at the inter-
val bounds.

S
en

s.
d

iff
er

en
ce

(F
ig

.
3
.9

-e
) - The average sen-

sitivity difference is
highly dependent on
the nonlinearity of
the initial function.
In general the sen-
sitivity of an ap-
proximation respect-
ing the non system
deviation symbols is
constant.

+- The Chebyshev
approximation takes
the sensitivity from
the center value.
The average sensi-
tivity difference is
low if sensitivities
given on the full
interval are around
the sensitivity at the
center value.

- User deviations
representing sensi-
tivities are modified
to satisfy constraints
of the approxima-
tion algorithm.
Thus, the average
sensitivity difference
is dependent on the
sensitivities inside
the based exact
function interval.

+- See Chebyshev
approximation.

65

Affine Arithmetic Framework with Enhanced Features for Traceability

Table 3.3: Properties of implemented approximation algorithms-part3

Taylor Chebyshev Minimal Range Interval-exact

A
re

a
(F

ig
.

3.
9-

f)

+- Taylor approxi-
mation adds no ex-
tra system devia-
tion symbol. Thus,
a non-linear charac-
teristic is not en-
closed.

+ Compared to
minimum range
approximation,
Chebyshev approx-
imation results in
a smaller enclo-
sure area under
the price of poten-
tial over-approxi-
mation/under-
approximation.

+- Minrange in
general is a min-
imization result
regarding low en-
closure area, but
due to the second
requirement of no
over-approximation
the area may get
for some cases
disappointingly
large.

+ Interval-exact ap-
proximation reduces
the value of the addi-
tional partial system
deviation, with the
consequence that a
full enclosure over
the complete vari-
ability interval can
not be guaranteed
(but with exact in-
terval bounds).

3.2.3 Approximating Behavioral Discontinuities

Within the prior subsections, I described approximation methods focused on basic mathematical
operations as (mainly) multiplication, division, exponential, trigonometric, etc. Here a little more
generalized approximation approach which is also applicable to operations described in Subsection
2.3.4 (e. g. minimum of two AAFs evaluating an AAF as result) is discussed.

As long as the characteristic to approximate is continuous (but non-linear) an approximation
according to the previously defined algorithms, resulting in a full enclosing form, can be computed.
The approximation problem gets significantly more complex if discontinuous behavior has to be
approximated. Such behavioral discontinuities may be caused by the introduction of compare
operators with divides a given joint AAF range into two or more subranges. Strictly speaking,
an operator described as x⊕ ŷ : R× A 7→ A.

An elegant and impressive solution for handling discontinuities in the AAF domain is one of
the leading research activities by Carna Radojicic introducing the concept of Affine Arithmetic
Decision Diagram (AADD) [Rad16]. We describe the basics of the AADD method in the ACC
example, Subsection 5.4.

For handling discontinuities within the SESYD framework, I compute an AAF approximation
based on interval considerations. We describe the algorithm based on the following small running
example: Assume two signals as illustrated on the left side of Figure 3.14. The first one is an
AAF signal which central value is continuously increasing, x̂(t) (red lines). The second one is a
constant value represented by a scalar, y(t) (blue line). As operation for this illustrating example,
the maximum of both signals is evaluated. Mathematically expressed as max(x̂(t), y(t)), which
is a function of the type A× R 7→ A.

As already mentioned I compute this max operation in an interval perspective. Thus, the il-
lustrated time window in Figure 3.14 is partitioned into three sections. In sections 1 and 3 the
maximum situation is clearly defined. Whereas in section 1 is caused by the scalar value (in the
output form the scalar is the central value, and the set of deviations is empty, R ⊆ A). The maxi-
mum of section 3 is given by the AAF x̂ (see right part of Figure 3.14 where the approximation is
colored in green). ε values in x̂ can have any arbitrary values inside their ±1 specification, but the

66

Affine Arithmetic Framework with Enhanced Features for Traceability

time

v
a
lu
e

1 2 3
time

v
a
lu
e

Figure 3.14: Evaluation of an approximation AAF for the maximum of x̂(t) and y(t)

scalar y is smaller in any case. In other words, the minimum boundary value of x̂ is greater than
y. In section 2 the situation is uncertain and somehow unclear. In an interval perspective, the
lower bound of the max is still given by the scalar value. The upper bound is defined by the upper
bound of the AAF x̂. Thus, the AAF x̂ is split. There are potential epsilon valuations where
the maximum is given by the AAF and others where it is defined by the scalar value. AADDs,
in this case, consider both possible cases considering previously evaluated epsilon constraints. In
the SESYD framework an auxiliary AAF for this uncertain section 2 is generated. The form
has a symmetric central value according to the evaluated interval bounds, and the size of the
range is defined by a partial deviation value associated with a system deviation symbol. This is
expressed as max(x̂(t)+y(t))

2 + |max(x̂(t)−y(t))|2 · εj where j /∈ Nx̂. For this process the most significant
advantage of the SESYD framework regarding approximation handling comes into play. At the
transfer from section 1 to 2 the AAF x̂ is not deleted but stored in the AAF object (modified
each point in time). The described auxiliary form representing the approximation is given by
corresponding α and β values (see Figure 3.11). The approximation management for section 2
is set that this approximation is presented as the value of the AAF object, while the original
form is stored in the background. But the background form is still needed for evaluation of the
point in time when to switch from section 2 to 3, where the situation is clear again. It has to
be mentioned that if the approximation form is used for subsequent calculations (e. g. within a
feedback loop) the transition from section 2 to 3 gets uncertain as well. Thus, this process results
in an approximation in value and time domain.

3.3 Interval-based Simulation

In the SESYD framework also intervals are implemented (see ADT in Figure 3.1). Therefore, I
used the basic endpoint representation and associated basic operations +,−, ·, / as presented in
Sections 2.2.3 and 2.3.2. Intervals are represented as an object. The corresponding class diagram
of a C ++ interval object is illustrated in Figure 3.15. As indicated, the class holds beside

67

Affine Arithmetic Framework with Enhanced Features for Traceability

overloaded math operators also methods for midpoint-, radius evaluation, bound modification
and printing.

LibSESYD::Interval

+ Interval()

+ Interval(c : AAInterval&)

+ Interval(l : double, h : double)

+ Interval(l : double, h : double, name : string)

+ Interval(a : const AAF)

+ ~ Interval()

+ operator =(: const AAInterval&) : AAInterval&

+ intvprint()

+ intvprint(format : const int)

+ getlo() : double

+ gethi() : double

+ width() : double

+ modlo(low : const double)

+ modhi(high : const double)

+ modlohi(low : const double, high : const double)

+ mid() : double

+ radius() : double

+ mintrigo() : Interval

+ operator +=(rhv : const AAInterval&) : AAInterval&

+ operator +(rhv : const AAInterval&) : Interval

+ operator -=(rhv : const AAInterval&) : AAInterval&

+ operator -(rhv : const AAInterval&) : Interval

+ operator *=(rhv : const AAInterval&) : AAInterval&

+ operator *(rhv : const AAInterval&) : Interval

+ operator /=(rhv : const AAInterval&) : AAInterval&

+ operator /(rhv : const AAInterval&) : Interval

+ getId() : unsigned short

Figure 3.15: Class diagram of the interval ADT

An interval object can be associated with an AAF to create a Hansons form as described in
Subsection 2.3.3. This enables modeling of a mixed specification of uncertainties using interval
and Affine Arithmetic forms. The implementation of intervals is more or less straightforward
coding and can be highly re-implemented using the work of Grabowski [Gra09] as a template.
For future applications also the well tested IA framework “Boost” [24] can be interfaced.

3.4 Multi-run Functions

I mainly use the SystemC simulator in combination with the developed SESYD framework. Multi-
run simulation methods are by default not provided within the SystemC standard [Sys12]. As
illustrated in Figure 3.1 I implemented a specific multi-run module integrated in the framework.
It enhances SystemC by functions for multi-run simulation as well as result management, tracing
and simulation setup.

Conceptual challenges for implementing multi-run simulation in SystemC
The main problem, as depicted by the SystemC simulation flow diagram Figure 3.16, is that
the simulator API provides no function to explicitly re-initialize the simulation process. Strictly
speaking, if the state of the simulator exceeded to SC RUNNING or SC PAUSED there is
no function like sc reset() leading back to SC ELABORATION [Sys12].

68

Affine Arithmetic Framework with Enhanced Features for Traceability

SC_ELABORATION

SC_BEFORE_END_OF_ELABORATION

SC_END_OF_ELABORATION

SC_START_OF_SIMULATION

SC_RUNNING SC_PAUSED

SC_END_OF_SIMULATION

SC_STOPPED

sc_start

sc_start

sc_pause

Starvation

sc_stop sc_stop

Figure 3.16: SystemC simulation flow (Similified illustration of [Sys12, p. 34]).

At a closer look to the SystemC source code documentation, there is a class named sc simcontext
implementing the simulation context for a simulation run. Instantiating multiple simulation con-
text objects for multi-run simulation looks very promising and besides the framework published
in [SIVT06] this was also my first approach. Unfortunately, several disadvantages can be high-
lighted. According to the language reference manual [Sys12] since SystemC version 2.0.1 the
class is deprecated. Thus, this approach in combination with state of the art versions (2.3.1
for this work) is not possible. An other drawback, reported in [SIVT06] (which is confirmed by
my experiences), is that continuous destroying and recreating the sc simcontext object creates
memory leaks. SystemC developers also report in web forums that deleting sc simcontext is not
designated. However, I tested the approach but number of executed runs is limited to approxi-
mately 8000. Then SystemC crashes with a segmentation fault due to the described generation
of memory leaks. A third major drawback is that each recreation of the simulation context is
accompanied by a new model elaboration. This behavior increases simulation time is redundant
in multi-run simulations and thus not required. The model structure is equal for each multi-run
simulation round, just the input parameters are diversified.

A further possible multi-run approach is to call the precompiled SystemC executable (executing a
single simulation run of the model) sequentially. Thus, the execution, as well as stimuli definition
and collecting results, are fully controlled by external scrips or third-party applications [SIVT06].
However, the sequential load, and unload, of the executable (also including the re-elaboration of
the model) adds further additional delays. A significant advantage compiling several executable
as a package is that their execution can be selectively distributed to multiple processor cores or
machines.

The SESYD multi-run implementation approach
My approach for this work is to integrate multi-run simulations into a single executable (including
the model, the SESYD framework, and the SystemC simulator core). Drawbacks are given by
model re-elaboration and sequential loading/unloading the executable should be avoided. By
shrinking this runtime overhead, I expect maximum multi-run simulation speed for execution on
a single core machine. A further requirement is independent controllability of each simulation

69

Affine Arithmetic Framework with Enhanced Features for Traceability

run by management objects which are not destroyed at an application model reset.

A central idea of the multi-run module is having two specific classes. One providing management
functionalities for handling simulation rounds, stimulus generation, etc., and one for conducting
the simulation core. For this thesis, SystemC is used as a simulation framework, but the generic
interface enables also the usage of other third-party simulators.

According to the previously described challenges resetting the application model without resetting
the SystemC simulation, core is a challenging task. SystemC provides built-in functions for
process control. As described in the Language Reference Manual [Sys12] for each type of processes
a handle can be requested. This process handle allows calling control functions as suspend,
resume, reset, kill, etc. [Sys12]. A dedicated reset function, which is a conventional C ++
member function may call described SystemC process control functions and re-initializes internal
variables. A further possibility is to implement a dedicated reset port in the module’s interface.
This method requires no calls of process control functions and resetting is fully covered by the
system specification. Processes are sensitive to the reset signal, and the according behavior
is clearly defined. A detailed description and guideline to make a model ready for multi-run
simulations is given later.

Class structure of the SESYD multi-run module

SESYD Framework

Multi-run Module

Multi-run
Stimulus
- Random Pattern Generators
- Sequence Generator
- Boundry-Value Generator
- ...

File writer

- Dump Waveforms and Results
- Signal Management
- ...

Configurations and
Logging

- Configure Path and
- Common Setup
- ...

Tracing and Monitoring

- Collect Results
- Post-processing of Results
- ...

Multi-run Manager

- Update of Generator Signals
- Trigger Model Reset
- Round Management
- ...

Multi-run Simulation
Control
- Conduct an Application Model
- Trigger Control Signals
- Collect Application Events
- ...

SystemC Simulation
Environment

Top Structure of a
Hierachical SystemC
Application Model

M2

M3

M1
M4

Figure 3.17: Overview over the implemented multi-run module described within this thesis. Classes are
highlighted in gray. Most important are the multi-run manager and multi-run simulation
control classes fully defining the multi-run behavior and resetting the SystemC application
model.

Figure 3.17 illustrated a block diagram of the SESYD multi-run module including a short de-
scription of associated functions. The module is a collection of classes (marked in gray) which
main parts are:

• Multi-run Stimulus: This is an extensible set of classes to describe different types of
pattern generators.

• File Writer: Signal traces are written into vcd (value change dump) waveform files. The
SystemC simulation environment provides functions for writing SystemC specific signals
into files, but not for extended writing behavior used for multi-run simulation. For correct

70

Affine Arithmetic Framework with Enhanced Features for Traceability

time information a virtual timestamp, which starts at t = 0 after each simulation round,
can be requested at the multi-run management class. Registered signal names are extended
by ”*r”, where r is an integer number representing the simulation round.

• Configurations and Logging: General simulation configurations and framework settings
(path names, enabling debugging, etc.) are read from a configuration file using the config++
library.

• Tracing and Monitoring: For detailed analysis of the application model additional trac-
ing and monitoring functionalities are integrated into the framework. They allow, for ex-
ample registering a specific data-path through the model for automatic monitoring whether
uncertainty values exceed specified bounds.

• Multi-run Manager: The multi-run manger implements control functions for the full
simulation procedure.

• Multi-run Simulation Control: This class interfaces the simulation environment and
resets the application model. From a hierarchical perspective it is on the same level as the
application model and fully integrated into the SystemC environment. A simulation control
object instantiates the application model top structure and two SC THREAD processes.
File- and object-name of the top module are configured by macros in the class header file.
Thus, the sc main function, which is called after startup, instantiates a new object of the
simulation control class. One of the two started threads is a timer which may limit the
maximum simulation time of a single round. A new simulation round can be triggered by
the described timeout or by notification of a specific user definable set of SystemC events.
The second process which is called round controller executes the following steps in a loop:

1. Wait for the timeout or a user specific event to trigger the reset of the model. The
first execution is started automatically after elaboration of the SystemC model.

2. Check conditions whether a next round is triggered or the maximum number of simu-
lation rounds is already reached.

3. Reset the SystemC application model, including canceling user events and calling reset
functions or setting the reset pin as described previously.

4. Update all stimulus pattern generators to new calculated values. This defines a new
parameter set for the following simulation run.

5. New values of pattern generators, defining the simulation setup of the next round, are
written into an ID-file. For analysis of the plotted traces this file is very helpful because
it contains a complete mapping between specific rounds and the applied parameter set.

6. Last the described timer process limiting the maximum simulation time per round is
resetted.

Stimulus pattern generators
Stimulus generators are used to source the application model with a set of scalar parameter values
in each simulation round. Types of generators implemented for this work are random pattern
generators, sequencers, boundary value generators and value list generators. In addition to these
sampling techniques, basic functions for importance sampling are implemented. The Generators
offer the following functions: getValue, update, reset and getStatus.

71

Affine Arithmetic Framework with Enhanced Features for Traceability

Multi-run Stimulus
Generator

Random Pattern
Generator

Sequence
Generator

Boundry Values
Generator

Value List
Generator

Random Number
Algorithm

1
MinPM

MinPM+shuffle

Normal Distribution

Figure 3.18: Class diagram of implemented pattern generators. Multi-run Stimulus Generator and Ran-
dom Number Algorithm are designed to be abstract interfaces for the integration of cus-
tomized pattern generators.

These functions are declared within an abstract C ++ base class. A generic interface is provided to
define user-specific generator behavior. The corresponding class diagram is shown in Figure 3.18.

A random pattern generator implements a single instance of a random number generation
algorithm. This abstract class provides a rand function which is overwritten for each specific
algorithm implementation. Algorithms may provide characteristics regarding sequence periods
and probability distributions. MinPM, which stands for ”Minimal” random number generator
from Park and Miller, calculates uniform random deviate, at a period of approximately 2.1 · 109

[PTVF02]. Authors of [PTVF02] report that this algorithm is quite good but under rare circum-
stances conflicts with the generation algorithm may happen. Thus, they propose an enhanced
algorithm including a shuffling process that the j-th value in the sequence is not present at the
j-th algorithm call. In addition, I implemented a random pattern generator having a normal
probability distribution. Therefore, built in C ++ 11 random pattern generator classes are used.
For documenting the probability distribution of a pattern generator a so called distribution file
can be dumped.

A sequence generator returns a scalar number between defined lower and upper boundary
values. These limits and a resolution parameter are set at the instantiation of the generator. The
returned value chain starts at the specified lower bound and is increased sequentially after each
call of the update method.

A boundary value generator is similar to a sequencer except the definition of a resolution is
not needed. Just corner cases represented by lower and upper boundaries are returned.

A value list generator is a special kind of a sequencer where generated values are predefined
and initially handed over using a vector.

Multi-run round management
For management and behavioral control of the full multi-run simulation the Multi-run Simulation
Control class (see Figure 3.17) provides an appropriate set of methods.

Stimulus pattern generators can be registered at the Multi-run Manager object and corresponding
references are stored into a list. Thus, the manager has access to generator manipulation functions
as reset, update, etc. The so-called “generator update rule” specifies which and how registered
pattern generators are updated automatically at the end of a multi-run round. “update all” means
that each of the registered generators, independent of its type are updated. In the case of random

72

Affine Arithmetic Framework with Enhanced Features for Traceability

pattern generators, a completely new set of random variables is determined for the next simulation
round. For implementing corner case and worst case simulation the update rule can be set to
“update exhaustive”. At this configuration a generator is sequentially updated until its status is
finished (e. g. for an increasing sequencer the specified upper value bound is reached). After that,
the according generator is reset and the next generator in the list is updated. By implementing
this generator behavior, sequencers present in combination all possible combinatorial value at
the outputs. To control the behavior of simulation runs, within the Multi-run Manager class
a second rule called “simulation end rule” is defined. One possible rule-setup is to specify a
maximum number of simulation rounds N . Besides this strict limitation also specifying “infinite”
is possible. Functions for aborting, pausing and resuming during the execution of the simulation
are provided in the corresponding class. A further configuration of the simulation end rule is
to calculate the number of simulation rounds given by the registered pattern generators. For
the previously described sequencer setup and an “update exhaustive” generator update rule, the
number of simulation rounds can be calculated in advance.

Design integration
Making a SystemC design ready for multi-run simulations using this framework the application
model has to fulfill some requirements. In general, as reported in Subsection 2.3.1 there is no
need for model modification because exact numerical design models can be used. However, the
integration in the SESYD framework in combination with a SystemC simulation requires the
following modifications:

1. In the SystemC main function (sc main), create a new Multi-run Simulation Control object
and set specific macros defining the top structure of the application model.

2. Each module must implement the possibility of being resetted. The call of reset functions
or driving reset port pins must be accomplished in the full model hierarchy. The Multi-run
Simulation Control object just calls the reset function in the top module. In detail, for
SC THREAD processes, request a handle and call the process control functions reset
and resume. For SC METHOD processes, add a reset port, add sensitivity and strictly
specify the reset behavior.

3. Replace SystemC tracing function calls by their multi-run versions provided by the frame-
work.

4. As described, variations in multi-run simulation methodology are considered by creating an
appropriate pattern generator, and repeated execution of single simulation runs. Thus, a
major part of making a model ready for multi-run is to replace constant parameter values
by the corresponding pattern generators. For automatic round management all generators
are registered at the Multi-run Manager class.

5. Before starting the simulation (calling sc start) the simulation behavior has to be config-
ured, by defining the mentioned rule setup.

3.5 Integration in a SystemC/AMS Environment

In an implementation perspective, the SESYD framework can be compiled with a standard GCC
(GNU Compiler Collection) toolchain (for this thesis I use the version 4.8.1). For logging and
configuration file management I use the freely available operating system libraries log4cpp and

73

Affine Arithmetic Framework with Enhanced Features for Traceability

config++ respectively. Functions declarations are included in the SESYD.hpp and integrated
in a LibSESYD C ++ namespace. The framework is initialized by calling the
initSesydFramework function. I show the usage of basic SESYD functions and objects at the
following exmple of a filter. For the implemented system I used the SystemC simulator. For
detailed information about SystemC see [GLMS10].

The system simulated in this mini-example adds three sinusoidal signals having different frequen-
cies. Then a part of the frequency spectrum is cut out using a high order digital filter. In the
following, I describe the SESYD significant inline code snippets of the model. First, I designed a
waveform generator as a SystemC module, which parameters are name, amplitude frequency and
phase:

Each of the generated waveform holds an AAF object including 2 user deviations called ”random
noise” (associated with a correlated deviation symbol), and ”ModuleDevVariation”.

In the process part of the wavegen module the central value of the AAF and the non correlated
partial deviation value is modified at each call of the module. Therefore, the methods setCvalue
and setDeviationValue provided by the AAF class are used.

The accumulated waveform including the central value (black dashed line) and four partial devi-
ation values associated with the symbols ε1,2,3,4 are plotted in Figure 3.19.

This AAF signal is then filtered by a digital finite impulse response (FIR) filter. Filter coefficients
are computed using the online filter tool T-filer [22]. The website allows graphically designing the
filter characteristic. The corresponding filter coefficients are computed, inserted into a C-array
structure and appropriate filter functions (read and write samples) are generated. These can be
directly copied into a SystemC module.

The filter for this example is designed to propagate the 100 Hz part and attenuate the 700 Hz
and 900 Hz part of the accumulated signal. The evaluated FIR filter has a history length of 103

74

Affine Arithmetic Framework with Enhanced Features for Traceability

Figure 3.19: Accumulated signal of the three waveform generators. A zoomed section of the signal
between 1 ms and 3 ms is showen in the lower right corner.

taps and its frequency characteristic is illustrated in Figure 3.20

The output of the filter is illustrated in Figure 3.21. The figure shows the output AAF including
the central value (dashed line) and all accumulated partial deviation associated with ε1,2,3,4. The
characteristic of the signal indicates that it takes quite a while until all 103 filter taps are filled
and the signal reaches a steady sinusoidal state.

The corresponding frequency spectra of the filter’s in- and output signals are evaluated and
discussed in the frequency domain analysis Section 4.8.

This section presents an impression of using the SESYD framework within a C/C ++ based
environment as SystemC or SystemC AMS. Implemented classes as described in Section 3.1
offers a set of commonly used methods for handling AAFs.

3.6 Performance and Scalability

To discuss the topic of performance in this section, thee steps are discussed. These steps are
organized according to the possible impact on the overall performance of a system simulation
using the SESYD framework:

1. Signal monitoring: Access to mass storage on the computer is slow even at the time
of solid state drives. As a result, it is inevitable that the recording of simulation data and

75

Affine Arithmetic Framework with Enhanced Features for Traceability

Figure 3.20: FIR filter characteristic

Figure 3.21: The output of the filtered signal. A zoomed section of the first positive maximum in the
signal is shown in the lower right corner.

76

Affine Arithmetic Framework with Enhanced Features for Traceability

its storage in waveform files can potentially take up a large part of the total simulation
runtime. Especially in a highly complex system, this motivates a goal-oriented use of anal-
ysis processes as presented in Section 4.2. Planning, estimating the effort and redefining
verification processes (focusing on temporal and structural domains) can make a signifi-
cant contribution to shortening the total verification time (simulation runs plus analysis
processes).

2. Lookup processes in data structures: I briefly discussed this issue in Subsection
3.1.1 already. As mentioned for the storage of references to instantiated objects in AAFs
I use appropriate C ++ 11 container types. The selection of the container has been opti-
mized during the framework development. The unordered map container has shown to
be particularly efficient for storing deviations in AAFs. Finding stored items (references to
deviation objects) is many times more efficient by using a hash function than using a stan-
dard STL vector container. Tests have shown that using unordered map instead, results
in an improvement of a factor of 3-5 (depending on the application and system complexity).
The use of arrays and scalar variables for deviations, as implemented in Grabowski’s frame-
work [Gra09], is of course even faster. In general, the implementation of Grabowski is well
optimized concerning simulation runtime. Unfortunately, SESYD framework is slower by
a factor of 4-7 (depending on the simulation setup). Nevertheless, the SESYD framework
outweighs the benefits of an extensible data structure and the associated better system
analysis capabilities. In the future, the SESYD implementation can also be improved, for
example by further optimization of soft- and hardware architectures.

3. Algorithmic performance: A new approximation scheme for non-linear operations in
the implemented framework is the interval-exact approximation (see Subsection 3.2.2) I will
discuss the algorithmic performance using this approximation algorithm as an example. A
mathematical challenge at the interval-exact algorithm is to find an exact result interval if
both operands of the multiplication contain correlated deviation symbols. By evaluating the
Hessian Matrix of the n-dimensional extrema problem (each deviation symbol is a dimension
with a limited interval of [−1, 1]) it can be proven that minima or maxima of the parabola
can only be located at the corners of the deviation symbol space. So if G Symbols are
correlated, there are G · 2G−1− 1 candidates for being minima or maxima of the non-linear
result. Each minimum or maxima position calculation requires 6 · (G− 1) + 7 floating-point
operations. So the total algorithmic complexity for the calculation of maxima and minima
positions at G correlated affine deviation symbols is (G · 2G−1 − 1) · (6 · (G − 1) + 7). If
minima or maxima locations are not inside of the [−1, 1] interval all corners which result
from −1, 1 permutations of the deviation symbols must be taken into consideration as well.
At G correlated symbols these are 2G corners. The calculation of minima and maxima
values requires again 2 ·G + 1 floating-point operations. The given measures are intended
to give the impression that the value G(number of correlated deviation symbols) is mainly
responsible for the execution time of the algorithm. For example, the execution time for
1000 multiplications approximated with the interval-exact method is given in the following
table:

The result of the execution time evaluation is that at increasing number of correlated
deviation symbols the execution time is increasing at about a power of 2.4. The test has
been executed on a dual-core x64 desktop machine.

77

Affine Arithmetic Framework with Enhanced Features for Traceability

Table 3.4: Timing complexity of the discussed interval-exact approximation algorithm

G Execution Time for 1000 Multiplications

2 104ms

3 250ms

4 530ms

5 1103ms

The SESYD framework scales satisfactorily concerning the number of integrated uncertainties.
An inconspicuous example of this issue is given in Section 4.8. For the generation of the spectrum,
an AAF signal is processed by a FIR filter with a history length of 100 samples. The filter
coefficients themselves are AAFs each including an individual deviation symbol, representing 100
different uncorrelated uncertainty causes. The largest system model tested in this thesis is the
PLC system described in Subsection 5.3. The system contains 34 SystemC modules, and the AAF
simulation takes 31 different uncertainty causes into account. Based on the simulation results and
of course the utilized runtime, I expect good scalability and usability for models having increased
complexity and comprehensiveness.

Further potential improvements in runtime and scalability would be an adaptation for multi-core
processors (both the SESYD framework and the used simulation core, in this case, SystemC
would have to be adapted). In an application perspective, many calculations could be executed
in parallel and distributed to multiple physical cores (e. g. multiplication of AAF matrices,
approximation algorithms, etc.). The resulting added value in performance and simulation time
would have to be determined in particular (see Section 6.2).

3.7 Framework Expandability

As the first statement in this section, I want to explicitly mention that the implemented SESYD
framework is open source, freely available and licensed under LGPL. The framework is pro-
grammed in C ++ (minimum requirement of C ++ 11) and uses well-documented STL features.
The source code can be compiled for various platforms (e. g. linux, windows - see Section 4.10)
and target architectures (e. g. ARM architecture). The code is also documented using Doxygen
[37] inline code documentation.

In the implementation, I tried to follow a strategy that the code is well structured and any data
is well encapsulated into a corresponding C ++ object. These objects can be easily enriched by
additional member variables and methods. Also, object-oriented concept as derivation, templates,
etc. can be applied using the implemented framework objects. The full framework is partitioned
into functional modules including a set of the mentioned objects (see Figure 3.1). New user specific
modules can be added under respecting some common functions. These common functions such
as logging, configuration file loading, printing, naming service, symbol management etc. are
initialized by calling the initSesyd method. Interface descriptions for these common modules
can be found in the Doxygen documentation. The idea of this architecture is to provide a toolkit
where single functional modules can be added to the framework (more or less) independently
(similar to packages in a Linux operating system). So, for example, if a user develops a new AAF

78

Affine Arithmetic Framework with Enhanced Features for Traceability

approximation algorithm the interface to the approximation management has to be used, and the
approximation can be integrated as an extension of the already implemented math module (see
Figure 3.1).

There are some open issues in the expressiveness using AAF for modeling deviation effects. To
close that potential gap, extensions, strictly speaking, merging of co-existing AAF frameworks
can be identified as future tasks. Potential framework extensions are:

• Modeling of enhanced functions. As already mentioned in Section 3.2 the set of mathe-
matical non-linear operations is at the time of thesis writing, reduced to multiplication and
division. The framework developed by Grabowski [Gra09], includes the computation of
approximations for many other operations. Potential extension of the SESYD framework
is to use the code of Grabowski as a template to expand the operator set of the SESYD
framework.

• The theory of AAFs can be extended by a probabilistic arithmetic. Thus, standard devi-
ations are included in AAFs and arithmetic operators have to be extended. We described
the basics of such forms in [GR17].

• Already published extensions to the standard AAFs used in this thesis are quadratic AAFs
[MT06], modified AA in tensor form [SLMW04], the theory of using zonotopes for uncer-
tainty representation [OBJ05], etc.

• As already reported the concept of Affine Arithmetic Decision Diagrams (AADDs) is very
powerful for modeling digital and control flow behavior in systems. Thus extending the
SESYD framework with the AADD concept is a very ambitious extension [Rad16, RGJR17]

• A potential extension which is related to the last item is to release the constraint that devia-
tion ranges are located symmetrically around its nominal value (e. g. 5 V +2%,−3%). Even
more enhanced deviation effects are given by unjoint tolerance windows discrete tolerance
probability distributions where the central value might not be enclosed be the corresponding
tolerance window.

79

4 Analysis Techniques Based on Traceability
Features

In this chapter, I describe enhanced analysis features based on Affine Arithmetic modeling and
simulation methods. They are mainly based on the deviation symbol traceability features facili-
tated by Affine Arithmetic forms introduced in Subsections 3.1.3 and 3.1.2. Besides the descrip-
tion of the methods itself, I discuss and highlight issues why they are not efficiently implementable
using IA or multi-run approaches. The presented analysis techniques are integrated into the anal-
ysis module of the SESYD framework as illustrated in Figure 3.1. These enhanced processes have
a significant added value compared to basic forward and backward tracing as described in Sub-
section 3.1.3.

4.1 Analysis Techniques facilitated by AAF Simulation

Modeling parameter deviations by AAFs require in general an enhanced effort compared to In-
terval Arithmetic and multi-run techniques (more complex algorithms, approximations, symbol
management, etc.). But, in the perspective of applicable analysis procedures, this approach
faces potential possibilities for more detailed, enhanced insight into the system’s behavior. As
proposed in Section 2.2.4 AAF mainly overcomes the so-called traceability problem. Thus, the
following enhanced analysis functions, in detail described in the next subsections, are based on
these traceability properties facilitated by AA.

• Ratio-metrics (absolute ratios, correlation measures, quality metrics)

• Assertion driven tracing

• Temporal tracing

• Structural analysis (structural tracing, localization of attenuation and gaining effects, cause
and effect analysis, deviation hot-spot detection)

• Sensitivity analysis (sensitivity based tracing)

As mentioned in the introduction of this chapter most of the itemized analysis functions rely on
the properties exclusively given by AAFs. For IA and multi-run approaches the effective imple-
mentation of the itemized analysis procedures is due to the lack of traceability information not

80

Analysis Techniques Based on Traceability Features

possible. Besides the required traceability properties of AAF itself, object-oriented implementa-
tion characteristics of the SESYD framework rises further advantages in implementing enhanced
analysis features (e. g. object to object linking by holding pointers to referenced object instances).

Documentation of uncertainties
In general, documentation of design and verification information is essential for a successful design
project. AAFs allow documenting deviations of parameters and properties in an uncertainty
matrix. In rows potential propagated uncertain values are listed. In columns, the corresponding
deviation information given from the formal AAF representation are listed. These are:

• The nominal value x0, or a range in which nominal values can lie.

• For each basic continuous uncertainty εi and its according partial deviation value xi.

• Either a safe bound for higher-order level effects (xn+1 of an AAF) or a comment stating
this is 0 or an unknown uncertainty (”u”) that must be considered as a risk.

• Additional documentation, such as the location, level and nature of the uncertainty (see
Subsection 2.2.2).

This uncertainty matrix can be extended by further probabilistic information if enhanced semi-
symbolic forms as described in [GR17] are used. Discrete uncertainties lead to different system
modes for which, if necessary, rows are repeated if the entries are different. Figure 4.1 gives a
template for an uncertainty matrix.

Parameter,
input

Nominal
value

Uncertainty (per std. unit)
associated with varations in

Higher-order
effects

Location,
level,
natureP V T ...

<ParName1> ... ,0 or "u" internal,
external ...

Figure 4.1: Uncerteinty matrix template. ∅ = uncorrelated 1st-order effects; P=Process variations; V =
voltage variation; T = temperature variation.

Uncertain signals, as (maybe large) sequences of uncertain AAF samples (see equation 2.3), are a
good data basis for analysis tools. For that purpose, we parameterize signal templates, tolerance
schemes, or specifications in temporal logic [GR17]. Uncertain signals in such a representation
complement the uncertain parameters and properties in an uncertainty matrix. In more complex,
hierarchical designs, the information can be integrated into tools and languages for systems
engineering, and requirements- and risk-management such as SysML [32] or DOORS [36]. In
that way, correlations and risks can be documented for overall system design.

The specification of an uncertainty matrix is in general also possible for uncertainty models using
interval Arithmetic and range definitions for multi-run techniques. But correlations of uncertainty
with a deviated physical value and the following contribution to uncertain system behavior is not
modeled in detail. Deviations are stated as tolerance ranges obfuscating associated causes. Thus,
the traceability and detailed sensitivity analysis (as given by the columns in Figure 4.1) are
not possible. However, evaluating an uncertainty matrix guides a designer to a comprehensive
evaluation of possible variabilities in a design and formally documenting them.

81

Analysis Techniques Based on Traceability Features

4.2 Objective-driven System Analysis

The layered modeling approach proposed for range based system analysis is in principle illus-
trated in Figure 1.4. A block oriented highly abstracted application model is stepwise refined
towards a physical representation. The depth of refinement depends on the required insight to
satisfy specified verification and analysis goals. Similar to the refinement of models a refinement
procedure in an analysis perspective is proposed. The objective of analysis may be connected
with the context of the system design. Some selected examples are:

• For mobile devices energy efficiency of components and low-power design is essential. Thus
modeling and associated analysis procedures focus on identifying potential energy savings
within the design (sleep-mode periods, leakage current, etc.).

• Safety critical systems (automotive) have to satisfy hard robustness properties (e. g. for
standardization according to ISO 26262). Thus, enhanced verification effort will be invested
on cause-impact analysis of deviations and failure and effect analysis.

• Precise analog RF circuits as used in transceiver frontends rely on high accuracy. Analysis
objectives may be sensitivity and frequency impact analysis concerning the used analog
components and software parts executed in DSP hardware.

System analysis

Temporal
traces

System
structure

Spectra
of signals

Impact
matrices

Time

Arch
ite

ctu
re

Fr
eq

ue
nc

y

D
ependencies

Sensitivities

Sensitivity
map

..
.

..
.

..
.

f

t

t

Pe
a
k

d
ri

ft

Li
n
e
a
ri

ty

..
. ..
.

S1

S2

S1

S11

S12

S2

S21

S22

S23

Other objectives

Figure 4.2: Selected initial objecives of AAF analysis, including potential refinement steps.

For the context of this thesis, I propose the introduced analysis refinement for AAF deviation
modeling. As initial analysis objectives, I specify the directions as illustrated in Figure 4.2.

• An analysis objective in time, results in temporal traces. For coarse analysis, the temporal
trace of a signal is sampled in low resolution which allows coarse identification of interesting
periods in simulation time. In subsequent simulation runs the sampling density is increased.

• An analysis goal can be verifying the structural domain of a model. High level models
are stepwise refined to evaluate structural details. Analysis goals may target potential
structural modifications to increase properties like robustness, safety, etc.

82

Analysis Techniques Based on Traceability Features

• Frequency domain analysis is a potential objective for systems driven by periodic signals.
In refinement steps, characteristic parameters of the spectrum (including variation bounds)
may be evaluated.

• For enhanced analysis of variation dependencies, impact matrices are evaluated. In princi-
ple, they describe dependencies of signals. Dependency values are represented by specific
measures. In refinement steps potential ”bad block” unspecified gaining an objected partial
deviation are identified. In this thesis this procedure is called structural deviation hot-spot
detection.

• In contrast to the described dependency objective a sensitivity map directly holds partial
deviation values (In the AAF context sensitivities are represented by corresponding partial
deviation values). Within refinement steps potential correlations to other sensitivities or
dynamic behavior over time may be identified.

• Besides the itemized objectives also other customer specific analysis directions can be de-
fined. However, in analysis processes objectives are given by a mix of the described objec-
tives (e. g. sensitivity analysis specified in a specific simulation time window where signifi-
cant events may occur).

Analysis goal
"what-if question"

Simulation run(s)

Analysis
goal

reached?

Analysis objective
refinement

Model refinement

Evaluation of results

Analysis objective(s)AAF Model(s)

End

Start

J

N

Figure 4.3: Proposed AAF based system analysis flow including model and objective feedback loops.

The definition of analysis objectives will guide an engineer through the course of AAF verification
and system analysis (increasing the system insight) in a formal and symbolic way. As illustrated
in Figure 4.3 I define a workflow including two feedback loops for model and analysis refinement.
A specified analysis goal is representing the interest of the engineer which may be formulated by
a ”what-if question” (e. g. what is the behavioral impact of the uncertain event XY occurring
within the period AB, and which function block has to be optimized to reduce that impact?)
Modeling and objective refinements are executed as described above by increasing the level of

83

Analysis Techniques Based on Traceability Features

detail, decreasing the level of abstraction and focusing the following iterations in a direction to-
wards satisfying the specified analysis goal.

In principle, the proposed objective-driven analysis flow is also applicable for IA and multi-run
approaches. But due to the basic traceability features facilitated by Affine Arithmetic assertions
specific refinement steps are just enabled or may be executed much more goal-oriented (e. g.
Analysis with the objective of enhanced dependency evaluation). In essence, full traceability given
by AAF makes the proposed approach efficiently usable and significantly enhances verification
including uncertainties.

4.3 Ratio Analysis and Deviation Metrics

As illustrated in Figure 4.2 comparing partial deviations each other is essential for every analysis
objective [WHW15]. Just AAFs provide precise information about how a given range is composed
by sub-ranges representing a specific uncertainty cause. In principle, measures presented in
this section assess the value of deviations relative to other quantities (deviations) in the system
model. The calculated measures are presented by an accurate matrix forms and graphical map
illustrations. Depending on the verification goal metrics are monitored over a specified period of
time or system sub-structures and guide the verification engineer in model and analysis refinement
steps.

4.3.1 Absolute and Relative Deviation Analysis

According to equation 2.2 a set of partial deviations is included in an Affine Arithmetic form.
They indicate how the total deviation represented by the bounds is portioned. The bounds in
general, are given by the radius of the corresponding form (see equation 2.22).

As proposed in Subsection 2.2.4 a partial deviation, strictly speaking, its associated deviation
symbol stands for a modeled physical uncertainty. An absolute impact measure is defined by a
partial deviation value for each point in time. Static deviations have a constant absolute deviation
impact where dynamic deviations have a time dependency.

Thus, more interesting is a relative deviation impact measure. In the basic form, each included
partial deviation is rated to the radius of the corresponding AAF. Mathematically these relative
deviation impacts xrel,i(t) for a single point in time t is expressed as:

xrel,i(t) =
|xi|

rad(x̂)
∀i ∈ Nx̂ (4.1)

with rad(x̂) =
∑
i∈Nx̂

|xi|

Static deviations do not have a constant measure as proposed for an absolute metric. Their
relative impact is variable and may get high percentage values if at a specific timestep other
dynamic deviations are small. The relative deviation measure has the advantage that dominating

84

Analysis Techniques Based on Traceability Features

deviation impacts can be easily evaluated for each timestep. To illustrate the results of time-
stepwise relative deviation impact calculation a temporal plot can be generated. Absolute and
relative uncertainty calculation functions, as well as plotting features, are fully implemented
within the analysis module of the SESYD framework.

Potential other, application specific measure rate partial deviation values to other characteristic
values in the system model (e. g. the maximum occurring partial deviation value within the
simulation process).

As discussed the relative and absolute impact measures informs about the partitioning of the
deviation range at a given point in time. For impact evaluation over a time window (t = t0 to
t = tend) (e. g. 0 to the end of simulation tsim,end) the corresponding relative impact measures
xrel,i(t) get integrated:

γi =

∫ tend

t0

xrel,i(t)dt

The result is a global (over the specified time window) measure informing about the accumulated
impact of a selected deviation xi.

A strict requirement for the evaluation of the proposed absolute, relative and accumulated mea-
sures is the knowledge of how input deviations affect the analyzed AAF. Strictly speaking, detailed
deviation tracing information including partial deviation values is necessary. For IA and multi-run
methods where this deviation tracing is not featured the presented metrics can not be defined.

Example: As an example highlighting the proposed absolute, relative and accumulated measures
I use the AAF signal â(t) = x0+x1ε1+x2ε2+x3ε3 with x0 = 1−(2t ·cos(4+20t)+2 ·t4), x1 = 0.2,
x2 = 0.5·cos(x0) and x3 = 0.1·x0. Figure 4.4a shows an AAF signal plot illustrating subranges for
partial deviations associated with ε1 (blue), ε2 (green) and ε3 (red), located symmetrically around
the central value (dashed black). Figure 4.4b illustrates the trace of partial deviation values over
time representing an absolute impact measure as described above. Figure 4.4c shows the relative
impact measures evaluated over the plotted time window from 0 to 0.8 sec. As described the static
partial deviation associated with ε2 is not longer a constant line because its rated to the radius
(see equation 4.1). Percentage values complement to 100%. Figure 4.4d shows an accumulated
representation of Figure 4.4c. Calculated gamma values γ1,2,3 are the integrated relative deviation
values representing the blue, green and red marked area respectively.

4.3.2 Correlation Analysis

In Subsection 2.2.4 I propose that the ability to describe correlations between deviations is one of
the most powerful modeling feature facilitated by Affine Arithmetic forms. In the state of the art
Section 2.1 I cite a general definition of correlated deviations and describe how different types of
correlation (direct, indirect and reciprocal) can be specified [Dro09, p.117]. For general purposes
the Pearson Correlation Coefficient is introduced which is a basis for the following correlation
measures defined for Affine Arithmetic forms.

According to the definition of an AAF (see equation 2.2) a deviation symbol εi represents an
uncertainty. If a selected symbol is used in multiple AAFs, these AAFs are correlated in gen-
eral. Thus, a Boolean deviation measure using the principle of deviation backward tracing (see

85

Analysis Techniques Based on Traceability Features

A
A

F
S

ig
n
a
l
p

lo
t

Te
m

p
o
ra

l
p

lo
t

o
f

a
b

so
lu

te
im

p
a
ct

 m
e
a
su

re
s

Te
m

p
o
ra

l
p

lo
t

o
f

re
la

ti
v
e

im
p

a
ct

 m
e
a
su

re
s

Te
m

p
o
ra

l
p

lo
t

o
f

co
m

m
u

la
te

d
re

la
ti

v
e
 i
m

p
a
ct

 m
e
a
su

re
s

[%]

[%]

a)

b)

c)

d)

Figure 4.4: Examples for absolute, relative and integrated deviation impact metrics.

Subsection 3.1.3 and Figure 3.8) can be defined. In the SESYD framework all symbol objects
are collected in a container. For backward tracing a pointer to AAF objects, where the deviation
symbols are included in, is stored. In an implementation perspective the so-called isCorrelated
function checks this stored vector of pointer(s). Mathematically this Boolean correlation measure
is described as:

isCorrelated(x̂, ŷ) : A× A 7→ B

isCorrelated(x̂, ŷ) =

{
TRUE if Nx̂ ∩Nŷ 6= ∅
FALSE otherwise

A function called CorrType is similar to the isCorrelated function but returning an element
of the set {−1, 0, 1}, where −1 stands for reciprocal correlated, 0 for uncorrelated and 1 for direct
(positive) correlated. CorrType has as parameters two partial deviations, and is defined as:

86

Analysis Techniques Based on Traceability Features

corrType(xi, yj) : R× R 7→ {−1, 0, 1}
with xi deviation of x̂ , yj deviation of ŷ

corrType(xi, yj) =


−1 if sig(xi) 6= sig(yi)

1 if sig(xi) = sig(yi)

0 otherwise

In principle, the result 0 of the corrType function is redundant to CorrType(xi, yi) with the
additional constraint Nx̂ ∩Nŷ 6= ∅.

Further, the corrType function is applied for all partial deviations included in the two checked
AAFs. The −1, 1 values are scaled by the ratio of the partial deviation values and as a result, all
these correlation ratios are accumulated. Thus, I get a measure returned by the so-called corr
function representing a measure for the deviation correlation between two forms. To overcome the
problem that this measure returns 0 (representing that two AAFs are completely uncorrelated) if
the reciprocal correlation is equal to the direct correlation, I use the absolute values of the partial
deviation quotient. The corr measure is defined as:

corr(x̂, ŷ) : A× A 7→ R

corr(x̂, ŷ) =
∑

i∈{Nx̂∩Nŷ}

∣∣∣∣ yixi
∣∣∣∣ (4.2)

A significant disadvantage of this measure is that the influences of correlated partial deviation
values is obfuscated by the accumulation. It would be nice to evaluate which correlated par-
tial deviation is dominating this measure. Thus, I propose a correlation matrix C holding this
information in its elements. The matrix is defined as:

C(x̂, ŷ) =


c1,1 c1,2 · · · c1,j
c2,1 c2,2 · · · c2,j

...
...

. . .
...

ci,1 ci,2 · · · ci,j


with i = {∀Nx̂} , j = {∀Nŷ}

ci,j =

{
“x” if εj is system deviation and i ∈ SymbolSource of εj

corrType(xi, yj) ·
∣∣∣yjxi ∣∣∣ otherwise

In principle, the (corr) function (equation 4.2) evaluates the absolute sum of the elements placed
on the main diagonal. A further interesting information is included in the correlation matrix:
According to Subsection 3.1.2 in the SESYD framework user and system deviation symbols are
introduced. A system deviation symbol results from an approximation, to cover non-linear char-
acteristics. Thus, a partial system deviation is caused by at least two other deviations and is
thus however correlated with them (the partial deviation value depends on the approximation

87

Analysis Techniques Based on Traceability Features

algorithm, see Section 2.3.3). When it comes to the creation of a new system deviation sym-
bol, the SESYD framework reminds the symbols of the operators in a SymbolSource structure
(see Subsection 3.1.2). Thus, the tracing information is present and can be integrated into the
proposed correlation matrix as an element marked as ”x”.

Example: Figure 4.5 illustrates an example for calculating the correlation measures described
above. The two AAFs x̂ and ŷ are selected signals from a system model M at a point in time.
The symbol ε4 is caused by a non-linear operation between ε1 and ε2 resulting in two ”x” elements
in the matrix C.

...

...

...

Figure 4.5: An example for calculation the defined correlation measures for two AAFs

4.3.3 Metrics for Deviation Assessment

In the last two subsections, I introduce measures which rate deviation to each other, resulting in
absolute and relative metrics as well as correlation statements. The proposed measures within
this subsection assess qualitative statements of AAFs and AAF signals.

Signal to Deviation Ratio: First, I define a measure similar to the SNR (Signal to Noise Ratio)
known from signal theory. It is defined as the ratio between the signal to the superimposed noise
magnitude [Sem05, p. 27]. For AAFs the so-called SDR (Signal to Deviation Ratio) is defined as
the ratio between the central value to included partial deviations (absolute values) [Sch13]. The
functions are named as sdr and sdrrad. Their values can be expressed in a dB scale. The sdrrad
computes a signal quality measure considering accumulated deviations (radius) of a form.

88

Analysis Techniques Based on Traceability Features

sdr(xi) =

∣∣∣∣x0xi
∣∣∣∣

i ∈ Nx̂

sdrrad(x̂) =

∣∣∣∣ x0
rad(x̂)

∣∣∣∣ (4.3)

sdr(rad)[dB](x̂) = 10 · log10(sdr(rad)(xi(x̂)))

Due to the quotient in the sdr functions, there is potential expressivenes problem if the partial
deviation xi gets 0.

Minimum and maximum partial deviatios: As already mentioned the SESYD framework pro-
vides a snapshot of all signals as a collection of AAF objects for each point in simulation time.
Partial deviation information is comprehensively available by iteration over registered AAF ob-
jects. Thus, the minimum and maximum partial deviation of a model M at a selected point in
time can be evaluated. They are defined as

mind(M) = min(xĵ,i) , ∀ĵ ∈M and ∀i ∈ Nĵ
maxd(M) = max(xĵ,i) , ∀ĵ ∈M and ∀i ∈ Nĵ

More specific, is to evaluate minimum and maximum deviations of a single selected uncertainty
(corresponding deviations are associated with the equal ε symbol).

mind(M, i) = min(xĵ,i) , ∀ĵ ∈M|i ∈ Nĵ
maxd(M, i) = max(xĵ,i) , ∀ĵ ∈M|i ∈ Nĵ

In essence, mind and maxd values are two examples of reference values for rating partial devi-
ation values within AAFs (see relative deviation measures). In an analysis perspective, this is
potentially more expressive for the assessment of partial deviations. For future extensions and
user-specific analysis procedures also other reference values can be defined (e. g. average of all
AAF central values which are chained as a specific computation path).

Figure 4.6 shows a system model M. A special focus is set to partial deviations associated with
the symbol ε1. The maximum ε1 related partial deviation holds the AAF x̂4. As described all
other ε1 deviations can be rated using x4,1 as a reference. Partial deviations can be clustered
by using constraints, formulated as assertion statements, defined on rational measures. This is
illustrated in blue in Figure 4.6.

Example:
Figure 4.7 shows an example. The system model M, having two functional blocks which are
connected by three AAF signals. The proposed measures for sdr and sdrrad are computed for
each form as well as mind and maxd for the model.

89

Analysis Techniques Based on Traceability Features

Figure 4.6: Illustration of a model M where deviations associated with ε1 are rated to the minimum
partial deviation associated with ε1 of the full model.

Figure 4.7: System model M and computed deviation assessment measures.

4.4 Assertion Driven System Analysis

The concept of ABV described in Section 2.5.3 is extebded for handling value ranges (strictly
speaking Affine Arithmetic forms). As illustrated in Figure 4.8-a and -b two different approaches
can be taken.

The simulation and verification architecture shown in Figure 4.8-a has been published in [RSRG12a].

90

Analysis Techniques Based on Traceability Features

System Model Testbench and
AAFA

SystemC-AMS Environment

C++

System Model Testbench

C++ and SESYD Framework

System Simulator Assertion Objects
and
Checker

a) b)

Figure 4.8: Assertion checking approaches [RSRG12a] andimplementation in the SESYD framework.

The concept of Affine Arithmethic assertion is introduced which redefines assertion operators ac-
cepting Affine Arithmetic forms at their inputs. The system model, the testbench as well as
Affine Arithmetic assertions are strictly integrated into the SystemC AMS simulation environ-
ment. Thus, formulated assertion statements are compiled to SystemC AMS checker modules
[RSRG12a]. Variables included in assertion formulas are directly connected to corresponding
signals and operators are represented by predefined SystemC AMS processes. The AAFA toolset
contains templates for defining step response, rise/fall time, slew rate and operational range prop-
erties. Therefore, standard operators in time and frequency domain are provided. Due to the
open framework structure, user-defined operators can be integrated. An assertion statement is
computed based on a layered structure similar to the one described for PSL in Subsection 2.5.3:
signal layer, Boolean layer, temporal layer, and a verification layer. In [RSRG12a] we demonstrate
using AAFA for verifying a IIR (Infinite impulse response) filter example.

As a second approach, which is implemented in the SESYD framework, I propose a simulation
and verification structure shown in Figure 4.8-b. The main difference is that assertion checking is
not integrated within the system simulation environment. At approach a) the system model and
the testbench use features of the system simulation tool (MoC, process scheduling, channels, etc.),
where the functions of the SESYD framework (including assertions and the checker functions) are
entirely independent and defined in pure C ++. Thus, an assertion statement is not translated to
a behaviorally equal set of SystemC AMS modules, but evaluated by a C ++ expression parser.

Figure 4.9: Class collaboration diagram for the Assertion class.

Features for the proposed assertions checking in the SESYD framework are defined in several
auxiliary classes. The central one is the assertion class. Its interaction is illustrated in the
collaboration diagram Figure 4.9. The constructor of an assertion object takes the assertion
formula as a string, which is handed over to a parser object. Functions and characteristics of
the implemented parser are discussed in further detail in the next paragraph. The output of a

91

Analysis Techniques Based on Traceability Features

successful parse process is an AST (Abstract syntax tree) which root node is stored as a pointer
in the assertion object. For validation and illustration purposes this AST can be plotted to a
*.dot file. An evaluator object computes the result of the specified assertion. This computation
is triggered manually by calling the evaluate method of the assertion class.

For assertion parsing, the first approach was to use the well-established free library muParser
[1]. MuParser is proposed for parsing mathematical expressions in an effective and fast way. Un-
fortunately, the available library is limited in just accepting numeric datatypes [1]. The ability to
use other datatypes (as AAF) is not implemented. Thus, I decided to develop a custom assertion
parser which is fully extendable in types and operators. As a starting point, I used the tutorial
(and following linked articles) presented in [2]. The full parser has a layered architecture, each
representing a specific type of operators - numerical, relational, logical and temporal (illustrated
in Figure 4.10) The associated grammar of a layer is given on the right side of Figure 4.10. A
parse-process starts its evaluation at the top layer, checking first for a temporal operator: A, O,
P or epsilon if there is no one present. The grammar of the numerical layer (well explained in
[2]) handles multiplication/division in precedence to addition/subtraction. In this layer Number
stands for any numerical constant and Variable for a pointer to any data. During the parsing
process for each detected element according to the grammar definition corresponding temporary
tokens (see Figure 4.9) are used. Finally, based on token relations the abstract syntax tree of
the expression is synthesized, and its root node is stored in the assertion object.

ExpressionNumeric -> Term Expression1

Expression1 -> + Term Expression1 | - Term Expression1 | epsilon

Term -> Factor Term1

Term1 -> * Factor Term1 | / Factor Term1 | epsilon

Factor -> (ExpressionNumeric) | - Factor | Number | Variable

ExpressionRel -> ExpressionNumeric ExpressionRel1

ExpressionRel1 -> < ExpressionNumeric | > ExpressionNumeric|

 <= ExpressionNumeric | >= ExpressionNumeric | epsilon

ExpressionLog -> ExpressionRel ExpressionLog1 | (ExpressionRel ExpressionLog1)

ExpressionLog1 -> & ExpressionLog | | ExpressionLog | epsilon

ExpressionTemp -> A (ExpressionLog) | O (ExpressionLog) | P (ExpressionLog) | epsilon

NUMERIC LAYER

RELATIONAL LAYER

LOGICAL LAYER

TEMPORAL LAYER

Figure 4.10: Layered Architecture of the custom assertion expression parser for the SESYD framework.
The right side holds the defined grammar for interpreting expressions of the associated
layer.

The checker implemented for this thesis accepts the operators given in red in Figure 4.10. Es-
pecially the temporal operators A, O and P are significant. Figure 4.11 illustrates them at a
state transition example. As indicated, the system changes its state (S0 to S3) at (t0 to t3). A
green tickmark within the circle means that the stated logical expression q is fulfilled at the cor-
responding state. Below, the A, O and P operators applied on q are evaluated. In this example
the check function is called at each indicated point in simulation time (t0 to t3).

• A - Always: The A operator at a specific point in time returns TRUE if q is TRUE at
the current point in time and all previous.

• O - Once: O returns TRUE if q is satisfied at the current point in time or at least at one
previous simulation point.

92

Analysis Techniques Based on Traceability Features

• P - Previous: The temporal operator P returns TRUE if q is satisfied at the previous point
in time.

s0 s1 s2 s3
t0 t1 t2 t3

A(q)

O(q)

P(q)

Figure 4.11: SESYD Assertion checker temporal operators.

Extension of operators, types, check behavior, etc. are fully customizable, using the already
implemented code fragments as templates.

A further instantiated object as shown in the class collaboration diagram Figure 4.9 is the
Evaluator. It computes the result of a successfully parsed assertion statement by traversing
the corresponding AST from bottom to its top. An assertion statement includes abstract names
representing data points of the system model. For binding abstract variable names included in
the assertion formulas, two variants are possible: For AAFs a naming service lookup can be per-
formed. Numeric types (doubles, integers, etc.) can be bounded manually by pointer assignment.
Strictly speaking, a leaf node in the AST holds a constant or a pointer to a data object within
the model.

Example:

A_0x1c180d0

&_0x1c180a0

>_0x1c18b20 <=_0x1c18070

+_0x1c18a00 +_0x1c18af0

*_0x1c18950 0

Cval 1

*_0x1c18a90

500

+_0x1c18700 +_0x1c187f0

*_0x1c186a0

dev1

*_0x1c18790

3

AAF Central Value Deviation1 Deviation2 Deviation3

Figure 4.12: Assertion example and the corresponding Abstract syntax tree.

93

Analysis Techniques Based on Traceability Features

As an example Figure 4.12 illustrates the abstract syntax tree of the assertion formula A((Cval >
500)&(dev1 <= 3)). The assertion specifies that the central value of an AAF must be higher
than 500 and its deviation dev1 has to be less or equal than 3, at any simulation time (temporal
operator A). The nodes of the AST hold: operators (and the corresponding address of the node
(for dot file representation)), constants (500, 3, 0, 1) and variables which point to the double type
variables of the specified AAF. The numerical layer of the parser inserts extra ∗1 and +0 nodes
to handle parentheses terms and operator precedence correctly (not relevant for this example).

For comparison of the proposed approaches (SystemC AMS and C ++ based, see Figure 4.8) the
following statements are discussed:

• At the SystemC AMS based approach the assertion formula, strictly speaking, its repre-
sentation as SystemC AMS modules are tightly bound to the model under verification and
its applied Model of Computation. A resulting advantage by the integration of the asser-
tion checker in the simulation environment is a strict synchronization between the assertion
check processes and the model computation.

• The SystemC AMS approach strictly requires the SystemC AMS simulator core which
decreases flexibility and its integration into other applications.

• At the second presented approach, assertions are defined as C ++ objects. The correspond-
ing class includes full information representing the assertion formula as a AST independent
of any simulation environment. The check function and other provided methods (manage-
ment, AST print, etc.) can be called user specifically. Assertion checking synchronized
with the execution of the system model is dependent on manual function calls and thus
completely defined by the model’s verification code.

• C ++ assertion representations can be used for any C ++ application. Thus, they can be
easily managed in data structures, stored in files, handed over to other tools, etc. However,
due to loosely binding to a specific simulator tool I use assertions also for objective sensitive
triggering of verification processes (e. g. temporal tracing procedures in Section 4.5).

• As reported in Subsection 4.3.3 assertions can be also used for defining constraints for
deviation clustering.

• The C ++ assertion module integrated into the SESYD framework is fully expandable
concerning new operators and input datatypes. The chosen grammar and functionalities
are not as well tested as commercial or well-established open source assertion frameworks.

4.5 Temporal Tracing of Deviations

New enhanced tracing methodologies expanding basic AAF forward and backward tracing are
enabled by the AAF approach. In particular, the analysis of deviation propagation, is signifi-
cantly interesting. Within this and the next section tracing in temporal and structural domain
is introduced and its conceptual implementation in the SESYD framework is described. First, I
define in general what a “trace” is and introduce associated features.

Definition of an Affine Arithmetic trace:
An AA trace is defined as a sequence of real numbers which represents partial deviation values.

94

Analysis Techniques Based on Traceability Features

First, I define an auxiliary function called select operating on a given Affine Arithmetic form

select(x̂(t), εi) =

{
xi(t), i ∈ Nx̂
0, otherwise

(4.4)

select as defined in equation 4.4 extracts a partial deviation value with respect to a ε symbol.
Thus, select formally evaluates the corresponding portion of an AAF range associated with a
specified uncertainty cause.

Second, the trace sequence itself τ(εi) is defined:

τ(εi) =< a0, a1, a2, . . . , ak > (4.5)

The length of the sequence k may be limited by the defined simulation time or by the analysis
setup. Values ak included in the sequence represent partial deviations in the following described
by the usage of select functions. As indicated in the equation a trace just includes partial de-
viations associated with a single uncertainty cause. εi is a constant function parameter. For
the application of the select function, there are two remaining possibilities. First, a trace for
a selected point in time t, and second for a specific AAF x̂ can be defined. These are the two
proposed types of traces: temporal and structural.

In this section, I define temporal traces which includes partial deviation values from an AAF at
increasing points in time. This is illustrated in Figure 4.13 and can be formally described by the
following set of equations:

τtemporal(εi) =< a0, a1, a2, . . . , ak > (4.6)

a0 = select(x̂(t0), εi)

a1 = select(x̂(t1), εi)

a2 = select(x̂(t2), εi)

. . .

ak = select(x̂(tk), εi)

f1

f2

...f1 f1 f1

f2 f2 f2

Figure 4.13: Content of a temporal trace are partial definitions of a selected AAF

A temporal trace facilitates a time-specific analysis of a single AAF value within the system.
Strictly speaking, a conventional plot of an AAF object, where the central value and accumulated
deviation impacts are illustrated, is a special representation of a temporal trace. But features
offered by a tracing object implemented in the proposed SESYD framework are more enhanced
than just recording partial deviation values.

95

Analysis Techniques Based on Traceability Features

A tracing object within the SESYD framework is an autonomous functional (analysis) module
independent of the simulation model. Before the start of the temporal tracing procedure, data
points are registered, and the tracing behavior is configured. For registering a specific AAF for
temporal tracing, at a newly instantiated tracing object the following options can be used:

• In the SESYD framework it is possible to hand over a pointer to an AAF object in order
to create a trace for each included ε symbol in the form, τtemporal(εi)∀i ∈ Nx̂.

• An accumulated trace of an AAF can be defined including the radius values for a specified
AAF (independent of the number of partial deviations).

• A single partial deviation value can be used for tracing, using the select function, as defined
in equation 4.6.

After a single call of the registering function, the tracing object is locked. Multiple or changing
data registration during operation of the tracing object is not provided.

A second configuration option specifies the temporal sampling behavior of the tracing object.
One of the following configurations are possible:

• At manual sampling each call of the snapshot function adds a sequence element of the
configured data points to the trace.

• A constant sample rate can be defined. The snapshot function is called automatically
according to the defined rate in samples per second. The predefined macros SR MAX
and SR NULL configured the tracing object to the maximum available sampling rate (de-
pending on the computation period of the model) and deactivates sampling, respectively.
For configurations where a tracing object samples the monitored value not at each model
computation step sr 6= SR MAX, a second sequence with equal length holding the corre-
sponding sample timestamps is created.

• For focused inspection of importance points temporal intervals can be specified asso-
ciated with a specific sampling rate. Temporal intervals may be specified by giving absolute
tmin and tmax values, or by defining an importance point timportant and a temporal radius
trad. Each interval is associated with a specific constant sample rate. Thus, for using this
option, a temporal trace holds an ordered set of time intervals and sampling rates. However,
this setup also specifies an autonomous start of recording samples.

• A further start option can be defined by using assertion statements. Therefore, an
assertion is specified according to Section 4.4 which triggers the start of the temporal
tracing procedure.

• For memory limited simulation environments a static section of tracing memory can
be specified within this option. The sampling behavior is defined to sample recent data
denser, while historical trace information gets deleted to keep the number of trace elements
constant.

As a result a temporal trace may identify points in time when partial deviations exceed unspecified
tolerance values or have their minimum or maximum values. The corresponding timestamps can
be stored in a set {tcritical1,2,3,...}. These points in time potentially indicate critical states of

96

Analysis Techniques Based on Traceability Features

the system or event impact where the full behavior may violate system performance or safety
requirements. Evaluated points are used for further detailed inspection using a temporal trace at
a refined (more specific to this point in time) setup, or for structural evaluation of the deviation
cause (analysis refinement - see Figure 4.2).

Results of a temporal trace allow detailed analysis of a deviation cause and its impact on the total
radius of an AAF during the specified analysis time. This impact analysis may help designers
to evaluate system states where a specific uncertainty cause has a dominant characteristic. For
optimization, this may be a potential starting point for decreasing this uncertainty radius and
thus majorly improve the system’s performance.

A temporal trace sequence can also be integrated over time, similar to the procedure described
in Subsection 4.3.1. The temporally limited impact of a partial deviation over the specified trace
length is evaluated, indicating the impact of a partial deviation during the analyzed portion of
the simulation time.

The first derivation of the sequence of a temporal trace is the sensitivity of the system against the
specified uncertainty cause. In this case, the sensitivity is evaluated under special consideration
of the configuration of the tracing module (e. g. set sampling frequency). Thus, results may differ
from results evaluated from classical AAF sensitivity analysis. The first derivation is reduced to
the difference of sequence elements. The focus of the analysis is limited to the period where the
temporal trace is specified to execute monitoring.

Example: Figure 4.14 shows a system model M which is analyzed using proposed temporal
tracing objects. The objective of the analysis procedure is to find the maximum positive deviation
impact in the AAF signal marked in red, at the configured simulation time window of 0 to 1 s.
First, the tracing object Trace a is defined. It monitors both integrated partial deviations
associated with the symbols ε1 and ε2 respectively. The sampling rate of the trace is set to a rate
of 5 samples per second. As a result, we see that the impact of ε2 deviation holds the dominating
maximum partial deviation value within the time interval. Thus, I refine the analysis by using
tracing object Trace b. This reduces the number of samples by constraining the trace activation
to periods where the central value is greater or equal to 0.3. Finally, by using Trace c I zoom
into the area where the maximum of partial deviation is assumed. For numeric evaluation of the
maximum value, the sample rate is set to its maximum. As a result, the maximum impact can
be found without fully sampling the AAF over the complete 0 to 1 simulation time interval at
a high sampling rate (This is illustrated for verification in the red box). For complex systems
this process of monitoring and recording all partial deviations can get very time and memory
consuming. In contrast, the presented stepwise refined analysis process using temporal traces
successes the verification objective in a faster, less complex and more directed (guided) way.

4.6 Structural Deviation Analysis

As a correspondent tracing method to the proposed traces in the temporal domain, structural
traces which monitor partial deviations in the system structure are defined. Structural tracing
is a path-selective analysis of the system. For its definition, a path p̃ represents an ordered
set of signals/segments s < 1, 2, 3, . . . > within the system structure. p̃is specified as p̃ =<
s1, s2, s3, . . . >;. Signals/segments define the data flow between functional blocks associated with
a pointer to an AAF object.

97

Analysis Techniques Based on Traceability Features

Trace a

Trace b

Trace c

...

...

...

... ...

...

Figure 4.14: Verification of the AAF signal marked in red using a refined sequence of different types of
temporal traces.

A path may specified manually or partially guided by the framework:

• For manual path definition the model is explored by hand. A verification engineer se-
lects signal connections (circuit segments) and adds them to a path structure. This path

98

Analysis Techniques Based on Traceability Features

is subsequently used for structural tracing. An advantage of manual path specification is
the full control of the inspected level of abstraction. Functional blocks can be grouped
as illustrated by the gray box in Figure 4.15. Path segments inside specified groups may
be omitted which decreases the complexity and focuses following verification steps. Thus,
independently of the given model type (white-, gray- or black-box) path definition can be
manually abstracted or refined according to the goal of the verification processes. Fig-
ure 4.15 shows a defined trace p̃ including segments s1 to s5. Functional blocks f2, f3
and f6 are grouped (described as submodels at a refined level of abstraction),because it is
assumed that further insight into their connections is not interesting.

f1

f2 f3

f6 f7

f4

f8

f5

Figure 4.15: Manual specification of a path trough a system model.

• Guided (semi-automatic) path definition is based on analysis of deviation propaga-
tion through the system. The path identification process is additionally supported by the
module’s call sequence information (process scheduling) and static analysis of associated
inputs/outputs of functional blocks. For the evaluation of structural information, I used
the software package gSysC which plots a structural map including all signals and mod-
ules within a system [Eib04]. We extended the gSysC framework by corresponding macros
working with AAF objects. This structural information data includes comprehensive depen-
dency information, and path segments are included into a path structure p̃ in an adequate
order. However, some previous simulation steps, used for creating the path information,
are required. The impact of a specific deviation cause represented by a deviation symbol
and its partial deviation value is analyzed. If the selected deviation impact exceeds a pre-
viously defined threshold value at the output of a functional block, the associated output
signal(segment) s is added to the path structure. If a deviation has an appreciable impact
on multiple outputs the path structure, is forked. As a result, it has to be mentioned that
for potential dynamic deviations and their propagation a semi-automatic path definition is
associated with a single selected point in simulation time. Figure 4.16 illustrates the results
of automatic path extraction in an example system. The analysis of partial deviation values
for path extraction starts at the input segment s1 (specified manually). Output analysis of
the block f1 results that the segment s2 has to be added to the path set next. The analyzed
partial deviation propagates to segments s8 and s10 resulting in four different extracted
path specifications p̃1 to p̃4.

Similar to temporal traces each signal/segment sn in a path definition is associated with an
Affine Arithmetic form. Strictly speaking, a SystemC signal type holds a pointer to an AAF
object representing its affine value. The select function is applied to each AAF object associated
with the elements of the path definition. A partial deviation value (extracted by select) has a
specific uncertainty cause εi and is defined as a constant point in time t. This is illustrated in

99

Analysis Techniques Based on Traceability Features

f1

f2 f3

f6 f7

f4

f8

f5

Figure 4.16: Guided specification of a path through the system model.

Figure 4.17). Formally, the sequence elements of a structural trace are defined as:

τstructural(εi) =< a0, a1, . . . , ak > (4.7)

a0 = select(x̂0(t), εi)

a1 = select(x̂1(t), εi)

. . .

ak = select(x̂k(t), εi)

f1

f2 f3

f5 f6

f4

Figure 4.17: Structural trace

Similar to temporal tracing after the simulation process, data monitored by a structural trace is
post-processed, and the following conclusions/results may be identified:

A structural trace may indicate data connections and associated chains, where a partial deviation
exceeds specified tolerance ranges. The analyzed partial deviation and the point in time are given
as parameters to the select functions in the trace. Such a check, may also be defined by the
violation of a more complex specified assertion statement, as described in Section 4.4. However,
a set of critical system signals/segments scritical1,2,3,..., representing transferred data between
functional modules, are identified. For a verification engineer, this enables detailed analysis of
the deviation impact at different portions of a data path through the system architecture.

At an occurring assertion violation as discussed in the previous paragraph, specified paths (guided
or manually defined) may be used for tracking the identified critical deviation back to its cause.
Evaluated critical segments may also be included in multiple paths. In this case, multiple devi-
ations applied on inputs of the system model may affect the identified critical path. A similar
procedure can be used for deviation propagation analysis of a critical segment to the output
borders of the system architecture.

100

Analysis Techniques Based on Traceability Features

As discussed in the last paragraphs at least two threshold values have to be specified (alternatively,
two constraints formulated as assertion statements). First, a lower threshold verifies if a specific
system segment s is included in the path structure p̃ (semi-automatic procedure). Second, a
defined value threshold verifies if a given deviation specification is violated at a point in time t.
Strictly speaking, first, it has to be specified if a segment is included into an analysis path and
second, it has to be defined whether this path is critical. However, the definition of threshold
values for verification in the temporal and structural domain may interact, and the selection of
values might become significant for analysis. Thus, I propose a combined, temporal and structural
tracing analysis according to a suggested workflow presented in Subsection 4.6.3.

4.6.1 Uncertainties cause-and-effect Analysis

In the prior part of this section, I discuss the basics of structural tracing as trace identification,
their representation as a mathematical construct and the evaluation of critical segments within
a path.

In this subsection, first, I go one step back and discuss how structural tracing is used for the
assessment of a (system) global deviation situation. The goal of this analysis is to evaluate a cause-
consequence estimation, by low analysis effort [SCS+00, p.87]. Results are AAFs representing
this causes and consequences. For a subsequent structural analysis this identified AAFs are then
used as start- and endpoints for path specification.

..
. ..
.

Black
Box
Model

Figure 4.18: Cause-concequence analysis process

The analysis process starts at the inspection of the system’s outputs as illustrated in Figure 4.18
O = {ô1, ô2, ô3, . . . , ôn}. The system model is considered as a black box. The level of abstraction
for this process is not significant. Deviations included in output signals are rated by using appro-
priate deviation measures as introduced in Section 4.3. In addition to the calculated measures,
the system specification itself may influence the rating of the output form’s partial deviations
(e. g. it may happen that a large variation of a selected output is not that significant as a numer-
ically lower deviation at another output, due to the given application). However, this two-step
process results in a rating of partial deviations included in output forms of the system, expressed
as an ordered sequence drated =< xk,m, . . . > where 1 ≤ k ≤ n and m ∈ Nôk (see Figure 4.18).
The highest rated partial deviation is the first potential candidate for analysis refinement (and
for optimization). Thus, the associated uncertainty cause εm which is included in ôk is traced to
the system’s inputs. From a global perspective, this means that I check input AAFs and evaluate
the set of AAFs where the identified deviation symbol is included in, see Figure 4.18. This can
be expressed as: I = {̂i1, î2, î3, . . . , îp} where for εm, m ∈ Nôk ∧m ∈ Nîq is given with 1 ≤ q ≤ p.

101

Analysis Techniques Based on Traceability Features

This cause-consequence (strictly speaking “consequence-cause”) tracing information can be pre-
sented in tabular form, illustrated in Table 4.1. In this table, partial deviations of output AAFs
are presented in rows, and input AAFs in columns. If a selected input (cause) has a consequence
in a partial deviation of an output form a red “X” is put in the corresponding cell of the table.
The table can be evaluated for a selected set of outputs, or if the process described above is re-
peated for all included partial deviations in the rating sequence, this results in a complete, rated
cause-consequence table.

Table 4.1: Cause consequence table

...

..
.

..
.

..
.

X

X

X

X X

From such a cause-consequence table the following results can be identified enhancing the global
overview of the deviation situation in the modeled system or can be used as a basis for a subsequent
analysis refinement step.

• Correlations between inputs are represented by multiple “X” marks in a row.

• If a partial deviation is highly rated, associated with a system deviation symbol and thus
integrated into the cause-consequence table, the according row has no “X” mark. Further
detailed analysis is required with detailed cause tree inspection of the system deviation
symbol (see Subsection 3.1.2).

• The presented cause-consequence table is an ordered table. This means that upper rows
have more impact considering deviation measures and a manual rating caused by additional
constraints given by the system/application specification.

• Output-Input AAF pairs of the table and the associated symbols can be used for automatic
or manual structural trace generation. These constructed traces are then used for enhanced
local (structural) analysis as described in the next subsection.

4.6.2 Localization of Deviation Causes

As proposed the next step in analysis refinement is a local structural analysis, based on the eval-
uated cause-consequence results. Information derived from the cause-consequence table (input
AAF, output AAF, ε-symbol) is used to identify deviation propagation traces through the sys-
tem (manually or semi-automatic). Within such a path selected segments may violate specified

102

Analysis Techniques Based on Traceability Features

S7

S1

S2

S3
S4

S5
S6

Block Level Model

In
p

u
ts

O
u
tp

u
ts

S8
S9

S1 S2 S3 S4 S5 S6

S1 S2 S7 S8 S9

Path 1

Path 2

Figure 4.19: Identified traces based on cause-concequence analysis. Segments S8 and S8 violate a devi-
ation specification. But this does not necessarily mean that the amplifier in red is critical.

deviation boundaries (this is decided by a threshold value or an assertion formula). An example
is given in Figure 4.19.

In Path 2 segments S8 and S9 violate a given deviation specification. Segments S represent par-
tial deviation values associated with a selected εi in a structural trace according to the definition
given in equation 4.7. But as clear as the situation may seem, the ”bad block” block in the path
is not necessarily the amplifier highlighted in red. Only the partial deviation value of segment S7
violates the specification. This motivates a measure for rating the deviation propagation.

The first derivation of a trace which can be defined by the absolute difference of path elements
is as a measure qualitatively not expressive. A high deviation change rate from one segment to
another does not necessarily mean an attenuation of a deviation (partial deviation can also be
negative). However, a more expressive measure is to rate the value of a segment to the previous
one in the specified path. Thus, a sequence ∂τstructural(εi) can be defined according to:

∂τstructural(εi) =

〈
|a1|
|a0|

,
|a2|
|a1|

,
|a3|
|a2|

, . . . ,
|ak|
|ak−1|

〉
(4.8)

For each element (fraction) within this sequence, representing the deviation propagation from a
segment to the next one, the following qualitative statements are defined.

If an element in ∂τstructural(εi)
= 0: This is the best case that may happen. An included partial deviation is eliminated by the
functional block(s) between the analyzed segments
< 1: The partial deviation gets attenuated. Strictly speaking, the variation associated with the
symbol (εi) has at the output of a block(s) a lower value than at the input.
= 1: The deviation propagates directly from one segment to the next one, without any attenua-
tion or gaining effect.
> 1: The partial deviation, associated with (εi) is gained in the functional block(s) between the
analyzed blocks. This means, that the output variability concerning the uncertainty represents
by (εi) is increased.
As a consequence, for the evaluation of the worst critical block within a specified path,
max(∂τstructural(εi)) has to be evaluated. As specified a critical block includes an internal com-
putation which gains the selected deviation (ε symbol for the inspected path) in a way that one
or more subsequent path segments violate the deviation specification.

This measure also allows the detection of deviation chaining effects. A chaining effect is defined as
a sequence of blocks (included in a path) where no single block is outstandingly gaining a partial
deviation. All blocks of the chain, gain the inspected deviation by a similar factor. This finally

103

Analysis Techniques Based on Traceability Features

leads to a violation of the deviation specification at an arbitrary segment. Strictly speaking,
the identification of critical blocks is an anomaly analysis of the deviation propagation sequence.
This proposed process of identifying critical blocks is getting significantly more complicated if
feedback loops are included in a path (see the ACC example in Subsection 5.4).

Example:
A small example, Figure 4.20 shows a system model with three inputs, one output and two blocks
(an adder and a multiplier). The proposed tracing functions and the identification of the critical
block is computed for a specific point in time t0. First, I start with the inspection of the output. It
includes two partial deviations, which are in this example rated according to their absolute value.
The inspection of according ε1 and ε2 deviation symbols results in the shown cause-consequence
table. For each “X”mark in the table, I refined the analysis process by generating a path and a
structural trace through the system. Finally, the proposed deviation propagation sequence of the
structural traces are computed. The maximum evaluation of the sequences result that the block
located between segments s5 and s4 (the multiplier) is critical.

+

x

X X
X

Figure 4.20: Example illustraing structural tracing and the detection of a critical block

4.6.3 Guided Deviation-hot-spot Detection

In this subsection, I describe an approach for combining temporal and structural deviation tracing.

• Temporal tracing is an analysis of partial deviation values in the time domain. The
objective is to detect critical points in simulation time that potentially correlates with the
occurrence of critical events (a point in time where deviation exceeds a specified maximum
tolerance).

• Structural tracing has the objective to identify critical functional blocks (a block within
the system structure which gains a deviation improperly). Thus, it is an analysis process
applied along a specified data path through the system structure.

To follow the concept of analysis refinement, integrated into the presented workflow in Figure 4.3, I
propose to use both tracing features in a composite way. So-called “deviation-hot-spot detection”
is executing temporal and structural tracing in a loop sequentially focusing towards a specific point
in time and a part of the system structure.

Figure 4.21 illustrates the hot-spot detection approach at a selected path p̃1 (highlighted in green)
in the block level model. Partial deviation values associated with the deviation symbol ε1 for each

104

Analysis Techniques Based on Traceability Features

segment of p̃1 are included in a structural trace τstructural(ε1). For illustration on the right side
of Figure 4.21, these partial deviation values are plotted as bars. The sequence values of the
structural trace are indicated by the red dashed line for one point in simulation time t0. The
structural trace is evaluated for a series of time-slices during the simulation. Thus, each bar in the
time domain (illustrates as fading out bar plots) represents a temporal trace τtemporal(ε1) for the
given segment. The temporal trace is indicated as a blue dashed line for one selected path segment
in Figure 4.21. The result is a deviation 3D map in the temporal and structural dimensions for
the specified path p̃1 through the system, and a the deviation symbol ε1. In general critical points
in time result in large absolute partial deviation values and critical functional blocks are indicated
by large values in the deviation propagation sequence of a structural trace.

S1

S2

S3
S4

S5
S6

P
a
rt

ia
l
D

e
v
ia

ti
o
n

V
a
lu

e

S1 S2 S3 S4 S5 S6

...

Ti
m

e

Block Level Model

In
p
u
ts

O
u
tp

u
ts

at Segment S1

for Time t0

Figure 4.21: Combination of structural and temporal tracing, resulting in a 3D deviation map for an ε
symbol and a specified path.

For exhaustive analysis, this approach requires high effort. For a full deviation map of a model all
deviation propagation paths for all deviations at a high temporal resolution have to be computed
and stored for post-processing. This highlights once again the motivation for analysis refinement
and objective driven deviation analysis procedures.

Example:

sin
Gen

MULT1 MULT2

5

0.2

s1

s2
s3 s4

Figure 4.22: Block-level system model of the discussed example and the trace of the pulsed input signal.

In this example a deviation map and the associated hot-spot detection procedure for the model
illustrated in Figure 4.22 is shown. The block sin Gen generates a sinusoidal AAF signal ac-
cording to the given equations. There is only one deviation symbol ε1 which propagates through
the system on the path p̃ =< s1, s2, s3, s4 >. This AAF signal is amplified by a factor of 5

105

Analysis Techniques Based on Traceability Features

and then multiplied by an input pulse sequence (which is initially multiplied by 0.2). The pulse
sequence is illustrated at the left side of Figure 4.22. First, it is multiplied by the sinusoidal AAF
(MULT1) and second, due to the decreasing amplitude of input pulses the result is multiplied by
an exponentially rising value (MULT2).

It is not directly evident which point in time and which block causes the maximum deviation
deviation at the model’s output.

t=107ms
s=4
dev=1.46

t=7ms
s=3
dev=-1.947

Figure 4.23: Deviation map including markers for two identified points in time and segments within the
system structure.

The upper part of Figure 4.23 illustrates the 3D deviation map for the symbol ε1 of the path p̃.
For evaluation of the included temporal traces the 3D plot is rotated to a 2D time vs. partial
deviation value, viw Figure 4.23. The worst-case absolute partial deviation value (here associated
with the symbol ε1) is at a simulation time of 7 ms and occurs on segment s3 (see Figure 4.22).
The second biggest absolute value occurs at time 107 ms but at segment s4 (the output of the
system). As a second step, the structural traces at the identified points in time are defined:
for t = 7 ms: τstructural(ε1) =< −0.195,−0.974,−1.947,−0.292 >
for t = 107 ms: τstructural(ε1) =< 0.195, 0.974, 0.195, 1.46 >

106

Analysis Techniques Based on Traceability Features

The according derivation propagation sequences for used for the identification of critical blocks
are:
for t = 7 ms: ∂τstructural(ε1) =< 5, 1.997, 0.148 >
for t = 7 ms: ∂τstructural(ε1) =< 5, 0.2, 7.48 >

As a result, for simulation time t = 7 ms the input amplifier is responsible for the worst-case
deviation present at segment s3. For t = 107 ms the ouput of multipier MULT2 has a maximum
deviation associated with symbol ε1 at segment s4. In a qualitativ perspective the second siuation
is worse because this is the deviation impact is present at the system’s output.

4.7 Sensitivity Analysis

As already described in Subsections 2.5.1 and 2.3.3 sensitivity (strictly speaking local sensitivity)
are given as first partial derivations. In the AAF context this is expressed as ∂x̂/∂εi. For AAFs the
sensitivity calculation results in the corresponding partial deviation value. Due to the limitation
to linear AAFs the sensitivity is constant within the ε = ±1 range. This has the consequence
that non-linear characteristics, have to be approximated. The evaluation of exact sensitivity at
the central value is a significant property of approximation algorithms (see Section 3.2).

Figure 4.24: Sensitivity analysis of an uncorrelated AAF multiplication

Figure 4.24 illustrates the exact multiplication result of two uncorrelated AAFs. The axis defines
±1 ranges of two deviation symbols and the colored surface illustrates the result. The right
figure shows some characteristic sensitivity results which are potentially interesting for enhanced
system analysis (e. g. bound sensitivities (red lines), 0 sensitivity marked by the cross, maximum
sensitivity etc.) For some mathematical operations (e. g. AAF multiplication) these sensitivity
values can be exactly calculated in advance (see Subsection 3.2.2). For further subsequent calcu-
lations, the approximated AAF is used. The architecture of the SESYD framework can be easily
extended to store such characteristic values in AAF or deviation classes (see Section 3.1).

107

Analysis Techniques Based on Traceability Features

4.8 Frequency Domain Analysis

The transformation of AAF signals into a Fourier and Laplace domain is published and well
studied by Florian Schupfer [Sch13, SKG+10]. The outcome of the theory behind Fast Fourier
Transformation (FFT) for AAF signals is that FFT is a linear transformation and thus par-
tial deviations which superimpose the center value in the time domain are also partial frequency
deviations superimpose the Fourier transformed center value signal. Strictly speaking, in the spec-
trum the transformed center value signal is surrounded by partial frequency deviation subranges
representing step-wise accumulated partial deviation bounds where ε symbols are ±1 [Sch13].

I did not integrate the FFT calculation block into the SESYD framework yet. For frequency
domain analysis the FFT post-processing function of the waveform viewer tool Synopsys Custom
WaveView ADV [19] is used. The tool offers FFT calculation of scalar waveforms under various
configuration parameters (e. g. windowing function, number of points, sampling rate, etc.). The
AAF plotting functions of the SESYD framework generate individual waveforms for partially
accumulated deviations (see any time domain AAF plots). According to the theory described
above they can be used instantly for computing the frequency spectrum of the AAF signal. This
allows comprehensive traceability on the first side from one signal spectrum to an other (struc-
tural tracing using spectra) and on the other side between time and frequency domain. Analysis
refinement as described in Section 4.2 can be also applied using refined parameter settings for
FFT post-processing. For enhanced frequency domain analysis also absolute deviation measures
as introduced in Subsection 4.3.1 can be FFT post-processed. The resulting information is the fre-
quency characteristic of dynamic partial deviation values. For example, this allows the detection
of deviation value oscillations in the system.

Example:

Fi
lt

e
r

in
p
u

t
si

g
n
a
l

Fi
lt

e
r

o
u
tp

u
t

si
g
n
a
l

Figure 4.25: Frequency spectra of the input and filtered output signals of the example given in Section
3.5

For demonstration, I use AAF signals from the example described in Section 3.5. Figure 4.25
illustrate the frequency spectra of the filter’s input (three added sinusoidal signals with frequencies

108

Analysis Techniques Based on Traceability Features

of 100, 700, 900 Hz) and its output. The spectrum of the input signal is given on the left side of
Figure 4.25 and shows that the frequencies of the waveform generators 1, 2 and 3 are partially
included in the accumulated signal indicated by spectral peaks at 100, 700, 900 Hz respectively.
According to the filter characteristic (see Figure 3.20) these peaks are significantly attenuated in
the spectrum of the output AAF (see right side of Figure 4.25). Partial deviations (colored in
blue, red, orange and magenta) result in just small deviations in the spectrum of the input signal.
Frequency deviations of the output are increased.

Figure 4.26: Spectrum of a filtered noise signal to generate colored noise.

As a second example, I use a band-pass filter for the generation of colored noise. The input of the
filter is a random noise signal, and the spectrum of the filter output is illustrated in Figure 4.26.
The filter has a pass frequency of 270 Hz, a bandwidth of 150 Hz, and a history length of 100
samples. In this case, the filter coefficients are deviated (each filter coefficient is an AAF), which
has the result that the frequency spectrum variation is impacted by 100 symbols and associated
partial deviation values. Figure 4.26 shows the central value in blue and accumulated (radius)
upper and lower bounds in green and red respectively. In this demo, the deviation of filter
coefficients is defined that large that for accumulated bounds of each ε symbol the band-pass
filter characteristic completely disappears.

4.9 Formal System Analysis

Besides simulation-based system verification in the recent years formal, symbolic methods became
more and more important caused by integration from research to an industrial context (e. g.
Cadence Jasper Gold formal verification platform [13]). I already introduced the basics of formal
verification in Section 2.6 and pointed to the specific purpose of probabilistic methods. Here I used
basic symbolic model checking for verification of systems with parameter deviations. It has to be
emphasized that for this thesis I used formal verification software NuSMV as an available tool
not digging into details of algorithms and the math behind. The tool is open source, available for

109

Analysis Techniques Based on Traceability Features

commonly used OS, well documented, easy to use and its efficiency is proven by several scientific
publications [3].

In principle for model checking two parts have to be defined according to Figure 4.27:

First, a system model represented by a transition system is defined using a specific NuSMV
input language (strictly speaking the model defined in using the input language is automatically
translated to an internal transition system for the algorithms). For example, the expressiveness
of the NuSMV input language allows the definition of Finite state machines, sequential control
flow instructions, etc. as well as constraining variables to subranges of numeric types. That’s the
point where range based analysis comes into play. Input variations of the model are represented
by such subranges, where the initial value is not initially set (see Figure 4.27). In a model checking
perspective this means that possible numeric valuations are translated to a set of possible initial
states in the transition system. Such specified variations have the characteristic of tolerance
intervals. This has the consequence that the association to a specific cause and the definition of
subranges as in the AAF methodology is not possible.

Second, a set of properties is defined which are verified against the specified model. Property
formulas may include propositional as well as temporal CTL* operators (CTL* is a superset
of Computation Tree Logic (CTL) and Linear-Time Temporal Logic (LTL)). Thus, similar (or
even equal) formulas used for Assertion-based analysis as presented in Section 4.4 can be used for
model checking. Property formulas may particularly express safety and robustness characteristics
derived from the system specification (see Figure 4.27). The significant difference (advantage) in
contrast to ABV is that model checking requires no test bench, because it’s a formal math-based
analysis of the system and no simulation based execution [Kro10]. Unfortunately the effort for
modelchecking increases sequentially at increasing system complexity. This has the concequence
that for complex large systems the runtime of the checking process may become several hours.
In [RS16] for formal system verification I propose a effort estimation in form of a cost function
for verifcation panning.

As already mentioned the specified formulas are checked on the model, where the result is a
(math-based) proof [Kro10, Bie09]. Under the view that variables can be specified by value
ranges the property formulas are also checked for these ranges. If a selected property is violated
NuSMV prints a representative counterexample for debugging.

Model

Properties

NuSMV
Tool CounterexapleSpecification

Value = Lower bound ... Upper bound

Figure 4.27: The model checking process using the NuSMV tool

4.10 Runtime Verification and Interface to other Simulators

Runtime verification is system analysis and verification during operation. The analysis meth-
ods proposed so far are applied during design time of a system. A side activity to developing the
simulation based SESYD framework I implemented a case study where assertions are translated
to particular hardware monitors. The methodology is similar to the Assertion-based verification
approach used in [RSRG12a] where assertions are represented by functionally equal SystemC

110

Analysis Techniques Based on Traceability Features

AMS modules. The process for translating Property specification language (PSL) statements to
a monitor structure is well understood [BZ10, SKW08, Eco06]. We translate AAF based defini-
tions into corresponding intervals where the generated hardware monitors check the bounds. In
an implementation perspective I used the Hardware description language VHDL and deployed
the monitors in a Xilinx Zynq development board [21].

We implemented a mixed software-hardware application which is monitored by various assertion
checkers. For evaluation, we stimulated the system’s inputs in a way that the specified operational
tolerances are violated, which has the consequence that selected assertion violations are reported
by the corresponding monitor modules. This enables continuous diagnosis of assertions specified
for ABV at design time during the operation of the system. Disadvantages of this approach are
similar to drawbacks of Built-In Self-Test (BIST) methods in the context of online system testing
(e. g. circuit area overhead, potential distorted timing behavior, enhanced development effort,
etc.)

For using the SESYD framework within other software tools, I developed an Appropriate sim-
ulator Application Programming Interface. As mentioned, the SESYD framework is pro-
grammed in C ++, thus it can be integrated natively (by sourcecode or precompiled) into an
C/C ++ based application (as SystemC). As a case study I compiled the SESYD framework on
a windows platform (using Visual Studio) as a Dynamic-Link Library (dll). This library is then
integrated into the commercial simulation and prototyping framework LabView [30]. LabView
is a block-oriented modeling environment implementing a Timed Data Flow (TDF) model of
computation. However, we developed a set of blocks integrated into a toolbox, using the dll
interface for calling selected functions of theSESYD framework (e. g. creating/adding deviations,
symbol management, etc.) (see left side of Figure 4.28). The right side of Figure 4.28 shows a
multiplication of two AAFs in LabView code (G programming language). A potential advantage
of LabView is the ability of creating simulation prototypes by just dropping some blocks into a
modeling pane, connect them, and having a nice looking visualization of results.

Figure 4.28: SESYD framework compiled as windows dll and used in the commercial simulation tool
LabView.

111

5 Demonstration Examples and Results

In the presented examples, I focus to the main contribution of this thesis which is the design of
an AA simulation framework including full deviation tracing features and associated enhanced
analysis processes. I conclude each example with a comprehensive discussion of results derived
from the implementations.

Circuits
Transistors

Modules
Chips

Applications

Ring Oscillator

Power-line Communication
System

Adaptive Cruise Control

Signal Modulator

Figure 5.1: Overview of the implemented examples at various Level of Abstraction

The presnted system models are in the context of circuit and cyber-physical system design. Ac-
cording to Figure 5.1 the examples are located in different layers, representing the model’s level
of abstraction. The ring oscillator demo (Subsection 5.1) models transistor propagation delays
impacting the frequency variation of a ring oscillator and is thus located at the lowest level of ab-
straction. The signal modulator (Subsection 5.2) and the Power-line communication transceiver
(Subsection 5.3) examples are defined on a module level combining (abstractly) described be-
havioral blocks. The last example is at an application level layer modeling the behavior of an
Adaptive Cruise Control (ACC) application (Subsection 5.4) implemented in modern cars.

5.1 Inverter Chain as a Ring Oscillator

This example demonstrates the influence of physical manufacturing inaccuracies in semiconduc-
tor production. Variations in the shaping of silicon and metal structures, as well as material
characteristics, may influence the behavior of implemented transistors. Of course, variations are
in a range that the information represented digitally is unaffected. Hence, variations in analog
style as propagation delay, threshold voltage, input capacitances etc. are analyzed. They have

112

Demonstration Examples and Results

an analog cause and can be seen as parasitic MOS PVT deviations. Uncertaintainties in the pro-
posed model are defined as W/L (transistors width to length ratio) mismatch, charge mobility
variations, voltage variations etc.

The timing model

The core element of the example is a timing model for a single CMOS inverter as illustrated in
Figure 5.2. The figure shows the internal symmetric structure of a PMOS (Q1) and a NMOS
(Q2) transistor which logically inverts the Boolean input signals. Hence, for timing evaluation
switching delays of the transistors are analyzed in detail.

Figure 5.2: CMOS inverter element and the according symmetric inner structure composed by a NMOS
and PMOS transistor.

The timing model of the oscillator is evaluated by analysis of switching characteristics of ac-
cording MOS devices. The proposed model for planar technology transistors is reduced to a
simplified behavior omitting physical short channel effects occurring at structural sizes below
100 nm [MMMAY01], resistances of wires and silicon conductivity inside the MOS device.

The propagation delay, which is defined as the time delay until the output has a voltage of V cc/2,
is mainly affected by capacitances. At a switch-on event at t = 0 as illustrated in Figure 5.4 the
logical level changes from LOW to HIGH which equals a 0 V to V cc voltage change. Transistor
Q1 is switched off immediately and for the evaluation of timing values the circuit is reduced to a
structure given in Figure 5.3 [FS]. For t ≤ 0 the load-capacitance is charged to the voltage level
V cc equally to the output voltage Uo. The propagation delay for the switch-on event is defined
as the time the output voltage drops from V cc to V cc/2 (see Figure 5.4).

The output voltage of the inverter follows the output characteristic of the NMOS transistor
illustrated in Figure 5.6. As already mentioned, before the switch-on event the output voltage is
V cc and moving from point A to C in according to the characteristic defined by the transistor
(see Figure 5.6).

First, I describe the trace between point A and B where the NMOS transistor is in saturation
mode. This time interval is defined as a partial delay time named tdON1. Saturation mode for the
MOSFET is in general given if the condition UDS > (V cc−UthN)∧UDS ≤ V cc is fulfilled [TS86].
The according drain current iD2 for this region is defined as iD2sat = kN · (UGS2 −UthN)2, where
UGS2 = V cc. Relation between current and voltage at the load capacitance C is defined by the
differential equation Q = C · uDS2 with Q = −

∫
iD2satdtdON1 ⇒ tdON1 = −C

∫
1

iD2sat
duDS2.

uDS2 is eqaual with the output voltage uo of the circuit. Limits of the integral for the evaluation

113

Demonstration Examples and Results

Figure 5.3: Reduced circuit for the turn-
on event of the described in-
verter circuit

LOW

HIGH

Figure 5.4: Summarized timing trace for a switch-on and
switch-off event of a single inverter.

ABC

Linear
Mode

Saturation
Mode

Figure 5.5: The output characteristic of the NMOS transistor. The output voltage of the circuit is
moving from point A to C, passing saturation mode and linear mode of the transistor.

of partial time interval tdON1 are given by points A and B in Figure 5.6. This results in a partial
time interval tdON1 where the NMOS transistor Q2 is in saturation mode:

tdON1 = −C
∫ V cc−Uth

V cc

1

kN · (V cc− UthN)2
duo =

C · UthN
kN · (−V cc+ UthN)2

(5.1)

Second, the timing interval the output voltage continues dropping down to V cc/2 where the
transistor is in linear (triode) mode. According to Figure 5.6 this time interval tdON2 is located
between marked points B and C. Linear mode of the NMOS transistor is generally defined by the
UDS voltage constraints UDS > 0∧UDS ≤ (V cc−UthN) [TS86]. The according drain current iD2lin

is not longer independent of uDS2 and defined as iD2lin = 2kN ·
(
(UGS2 − UthN) · uDS2 − 1

2uDS2
2
)
.

The corresponding differential euation for tdON2 is given as tdON2 = −C
∫

1
iD2lin

duDS2.

As illustrated in the reduced circuit Figure 5.3, the drain current iD2lin , UGS2 is substituted by
the input voltage level V cc for t > 0, and uds2 is equal to the output voltage uo. Limits of the
integral are given by points B and C in Figure 5.6. The partial timing value tdON2 for the NMOS
transistor Q2 being in linear mode is

tdON2 = −C
∫ V cc/2

(V cc−UthN)

1

2kN ·
(
(V cc− UthN) · uo − 1

2uo
2
)du0 =

1

2

C ln
(

V cc
3V cc−4UthN

)
kN (−V cc+ UthN)

(5.2)

For the total propagation delay specified by the switch-on sequence partial delays tdON1 and

114

Demonstration Examples and Results

tdON2 are added to the following equation.

tdON = tdON1 + tdON2 =
C · UthN

kN · (−V cc+ UthN)2
+

1

2

C ln
(

V cc
3V cc−4UthN

)
kN (−V cc+ UthN)

(5.3)

The switch-off event is defined as a logical transition from HIGH to LOW at the input of the
gate. Considering the circuit at transistor level, this is equal to a transition of the output voltage
fromGND to V cc (see Figure 5.4). Due to the symmetric structure of the inverter circuit as shown
in Figure 5.2 the switch-off event can be analyzed similarly to the switch-on event discussed in the
last paragraphs. Differences to the switch-on event are given by the responsibility of Q1 for the
charge of the load capacitance C. Under consideration of reversed voltage and current counting
directions and the negative output characteristic of the PMOS device [TS86] the switch-off time
is defined as:

tdOFF =
C · |UthP |

kP · (−V cc+ UthP)2
+

1

2

C ln
(

V cc
3V cc−4|UthP |

)
kP (−V cc+ |UthP |)

(5.4)

Constants kN and kP in equations 5.3 and 5.4 are defined by material as well as structural
characteristics of the according P- and NMOS transistor. For MOS transistors k is defined as
k = µCOx

′

2 · WL where µ defines the charge mobility in the semiconductor material, COx
′ the

site-related capacitance of the oxide material and W/L the silicon structure gate width to length
(called channel aspect ratio). For the according transistor type and under consideration of the
site-related capacitances kN and kP are given as kN = 1

2 ·
εOxNµNWN
TOxNLN

and kP = 1
2 ·

εOxPµPWP
TOxPLP

where εOx are the permitivities of the P and N doped silicon material and TOx are oxide thickness
values of the P- and NMOS transistors [TS86].

As illustrated in equations 5.3 and 5.4 the load capacity C has a significant impact to tdON and
tdOFF . For this example the capacity is the sum of the following parts:
Gate input capacitance to the next gate - For this example inverters are structured in a
chain, where the output of a single CMOS inverter is driving the next one.

CinNext = COxP
′WPLP + COxN

′WNLN (5.5)

COxP
′ =

εOxP
TOxP

(5.6)

COxN
′ =

εOxN
TOxN

(5.7)

Parasitic Depletion Capacitance - Is defined by the bottom and sidewall capacity:

CDB = CBottom + CSW (5.8)

CBottom = CJN
′WNLdiffN + CJP

′WPLdiffP (5.9)

CSW = CJSWP
′(WP + 2LdiffP) + CJSWN

′(WN + 2LdiffN) (5.10)

CJN
′ and CJP

′ are defined as site-rated zero-bias drain-bulk junction capacitance. LdiffN and
LdiffP are diffusion length values for the p and n doped region. CJSW

′ is a length-rated capaci-
tance value at the sidewalls of the inverter.
Parasitic Wire-Capacitance - Wires are metal lines connecting the output of an inverter
with the next stage. Due to low depletion influence the wire capacitance Cwire is approximately
the capacitance formed by the oxide [Mit98].

Cwire =
εWOx(WmLm)

TWOx
(5.11)

115

Demonstration Examples and Results

where εWOx is the permitivity of the thick wire oxide, Wm and Lm are the structural dimensions
of the wire and TWOx defines the thickness of the wire oxide.

The total load capacitance C for this model is defined by the sum of the described partial
capacitance components.

C = CinNext + CDB + Cwire (5.12)

The result is a propagation delay model for an inverter including semiconductor level effects of
MOS transistors. Some parameters within the presented equations are evaluated form the BSIM
3 v.2 (Berkeley Short-channel Insulated Gate FET Model) model equations. Manufacturing
parameters of the MOS model are set according to the C5 semiconductor process. Values can be
evaluated form process datasheets and several published measurements [33]. The C5 process is
optimized for 5 V mixed signal applications, but can be adapted for low-voltage and low-power
purpose. Structural sizes features a minimum value of 0.5µm. This enables a relatively cheap
production procedure without any extra costs associated with extra mask production for Bipolar-
CMOS-DMOS (BCD) processes [33]. However, for this example, I used the set of parameters
presented in the following table.

Table 5.1: Parameter set for the presented propagation delay model

Parameter Symbol Value Description

VCC 5 V Inverter supply voltage

UthP 0.92V PMOS threshold voltage

UthN 0.65V NMOS threshold voltage

εOxP/N 3.45 · 10−11 Fm−1 P/NMOS gate oxide permitivity

µP 135 cm2V −1s−1 PMOS charge mobility

µN 550 cm2V −1s−1 NMOS charge mobility

TOxP/N 10nm P/N Gate oxide thickness

CJP/N
′ 0.2 · 10−3 F/m2 P/NMOS diffusion capacity

LdiffP 3.5 · 10−8m PMOS diffusion length

LdiffN 5 · 10−8m NMOS diffusion length

CJSW
′ 0.5nF/m P/NMOS sidewall capacity

εWOx 3.45 · 10−11 Fm−1 wire oxide permitivity

Lm 0.5mm Metal wire length

Wm 10µm Metal wire width

TWOx 100nm Metal wire oxide thickness

Transistor width and length uncertainty analysis

For analysis purposes, I extended this exact numerical model by considering parameter uncer-
tainties in the transistor’s dimensions. Thus, the parameters LP/N and WP/N are represented by
the following Affine Arithmetic forms. According to [Mit98] in practice, the PMOS transistor’s

116

Demonstration Examples and Results

(W/L) is a factor of two larger to compensate the lower hole mobility in the channel.

WN = 10 · 10−6 + 2 · 10−6ε1 + 1 · 10−6ε2 (5.13)

WP = 20 · 10−6 + 2 · 10−6ε1 + 1 · 10−6ε2 (5.14)

LN/P = 0.6 · 10−6 + 0.05 · 10−6ε1 + 0.06 · 10−6ε3 (5.15)

In principle, the transistor gates have an exact dimension of 10 × 0.6µm. For modeling process
variabilities three ε symbols are used. ε2 and ε3 models the production accuracy of the planar
process in W (e. g. x coordinate) and L (e. g. y coordinate) direction respectively. With ε1
I model common accuracy variability of the process in both directions. Besides the defined
deviations model a transistor pair mismatch of the P- and NMOS included in a single inverter
stage. In essence, this example shows that considering variability effects associated with physical
process variations by AAFs is reduced to the replacement of numerical W and L parameters by
Affine Arithmetic forms. The effort for introducing uncertainty is low in contrast to the evaluation
of the model itself.

The analysis objective, (see Section 4.2) is to evaluate the bonds of the propagation delay to
derive frequency bounds of the subsequently developed ring oscillator and to assess sensitivities
and impact of the modeled variability effects.

Results and discussion

Figure 5.6: Transistor propagation delay under uncertain structural transistor dimensions.

Figure 5.6 shows the switch-on (left side) and switch-off (right side) propagation delay time (on
the y-axis). These delays occur at a LOW to HIGH and vice versa inverter input event. The
time values are plotted under variation of the correlated symbol ε1 and the worst-case valuations
of ε2 and ε3 (±1). The exact solution which represents the result of numeric exact computation is
for tdON = 2.6 ns and for tdOFF = 2.1 ns. This corresponds to ε1,2,3 = 0 and is highlighted in blue
in both diagrams. The resulting bounds of the propagation switching delays are for tdON : 1.97 ns
to 3.78 ns and for tdOFF : 1.59 ns to 3.05 ns. These bounds are highlighted by green crosses.

117

Demonstration Examples and Results

The minimum propagation delays are caused by worst-case symbol valuations of ε1 = 1, ε2 = 1,
ε3 = −1 and the maximum delay by ε1 = −1, ε2 = −1, ε3 = 1 respectively. The lines in the
diagram indicate the worst-case traces: red line for ε2 = 1 and ε3 = ±1, and blue line for ε2 = −1
and ε3 = ±1.

Next, sensitivity analysis is applied to evaluate the impact of single uncertainties to the switch-
on/off delay times. Sensitivities are computed by the first derivation under respect of deviation
symbols while other deviation symbols are zero. This results in the corresponding sensitivities at
the exact central point. The following table holds the snesitivities of tdON and tdOFF at variations
of uncertainties represented by ε1,2,3,.

Table 5.2: Sensitivity of the propagation delay against variation of uncertainties associated with symbols
ε1,2,3,

Sensitivity of tdON Sensitivity of tdOFF

ε1 −4.38 · 10−10 −3.37 · 10−10

ε2 −2.67 · 10−10 −2.13 · 10−10

ε3 1.15 · 10−10 1.08 · 10−10

The common relations between the transistor’s channel dimensions and its speed, reflected by
the sensitivity values, are: W ↑⇒ td ↓ and L ↓⇒ td ↓. In the following enumeration I discuss
qualitative statements derived from sensitivity analysis results:

1. For both delay times the uncertainty associated with ε1, which is the correlated one for
W and L, has the dominating. If ε1 is positive W increases more, relative to L (2 : 10/20
versus 0.05 : 0.6). Thus the W increase is dominating which results in a dominating negative
derivation of propagation delay times.

2. The symbol ε2 is included in W only. If ε2 is positive (W gets larger due to the modeled
variation) the transistor switching delay decreases, which correlates to a negative sign of
the corresponding sensitivity.

3. The symbol ε3 is included in L only. A positive ε3 value represents an increased channel
length (L indicates the physical distance between the source and drain) caused by a vari-
ability. This slows down the transistor which correlates with a positive sensitivity value of
the propagation delays.

Figure 5.7 illustrates the delay time variation under accumulated variations (radius) of W and L.

Ring oscillator application

A ring oscillator contains an odd number of the described inverter models in a chain. The
output of the last inverter is fed back to the input of the first one within the chain. Thus the
output, which may be an arbitrary connection signal in the chain, switches continuously between
a HIGH and LOW level. The frequency depends on the propagation delays of the included
inverters (tdON and tdOFF) and the number of inverters within the chain (N). If I consider

118

Demonstration Examples and Results

Figure 5.7: Accumulated impact of W and L variatins to the propagation delay times for a switch-on
and switch-off event.

ranges for the propagation delay tdON,Min/Max and tdOFF,Min/Max the corresponding range of the
oscillators output frequency can be computed by:

fMax = 1/TMin = 1/(N · tdON,Min +N · tdOFF,Min)

fMin = 1/TMax = 1/(N · tdON,Max +N · tdOFF,Max)

The output frequency range using the evaluated propagation delay values of the inverter model
is given in Table 5.3. As a result Table 5.3 shows that the variations in the output frequency are
highly sensitive to propagation delay variation. Thus, in an application perspective, such a ring
oscillator do not have a proper frequency reproducibility. In other words, the output frequency
may vary (in the worst case) by a factor of approximately two from one device to another.

Table 5.3: Frequency output range of a N-stage ring oscillator using the deviated inverter model above.

N TMin TMax fMin fMax

5 17.80ns 34.15ns 29.28 MHz 56.18 MHz

19 67.64ns 129.77ns 7.71 MHz 14.78 MHz

29 103.24ns 198.07ns 5.05 MHz 9.69 MHz

49 174.44ns 334.67ns 2.99 MHz 5.73 MHz

99 352.44ns 676.17ns 1.48 MHz 2.84 MHz

199 708.44ns 1.36µs 735.74 kHz 1.41 MHz

299 1.06µs 2.04µs 489.68 kHz 939.46 kHz

399 1.42µs 2.73µs 366.95 kHz 704.01 kHz

. . .

In essence, this example shows, how an exact numerical model on silicon level is extended for
range analysis using Affine Arithmetic. Results, in this case, a high propagation delay impact of

119

Demonstration Examples and Results

the correlated process uncertainty for W and L, may may enhance the insight, and motivate for
subsequent range analysis procedures to maximize the performance of a design.

5.2 Amplitude-Shift Keying (ASK) Modulator

The example described in this section is a two-stage Amplitude-Shift Keying (ASK) modulator.
The model is illustrated in Figure 5.8. A digital input data stream described as a rectangular
function is multiplied by two sinusoidal carrier signals. Such ASK modulator systems are fre-
quently used for digital communication purposes. A digitally encoded information is modulated
on a high-frequency carrier signal (in this example in two stages) for (e. g. wireless transmission).

Figure 5.8: Structure of the modeled system. Digital input information is multiplied twice by high-
frequency carrier signals. The modulated output signal can be directly used for wireless
transmission.

Input signal model

The input signal is a digital data stream illustrated in Figure 5.9. Low and high level of the
Boolean input levels will be distorted and superimposed with a deviation signal in the physical
domain. These effects are caused by the transmission of the signal, Electromagnetc Compability
(EMC) effects, signals influencing each other (crosstalk), etc. In the AAF domain, this is modeled
using the deviation symbol ε1. The mathematical representation of the input signal is:

x̂(t) =


Hi+ a1ε1 if 1ms ≤ t ≤ 2ms

and 4ms ≤ t ≤ 6ms
Lo+ a2ε1 otherwise

(5.16)

Where Hi is the logical high level of 3.3V , Lo is the logical low level of 0.2V , a1 is the partial
deviation value of 0.02V at low level and a2 is the partial deviation value of 0.04V at the high
level.

Frequency synthesizer model

The two included frequency synthesizers are submodels of the system illustrated in Figure 5.8. In
digital electronics design, predefined analog signals are often generated with the help of a lookup

120

Demonstration Examples and Results

D
ig

it
a
l
in

p
u
t

S
ig

n
a
l

Figure 5.9: Digital input data stream. A rectangular input waveform with two steady levels representing
the logical levels of the binary input information.

table. The calculated values (in this case one quarter of a full sine period) are loaded from the
table and transferred to an analog output in equidistant timesteps. Due to the limited bit width
of the sine values and the continuous reload of sampling values this results in value and time
discrete representation of the sine signal (dashed line in Figure 5.10). In this case, the stepwise
signal trace describes the physical domain. Through time discretization the sinusoidal signal s(t)
is defined as:

s(t) = sin(ωt) ·
∞∑

n=−∞
δ(t− nT) (5.17)

Where ω is the angular frequency of the signal, δ is the Dirac impulse and T is the timing period
for reloading new samples from the lookup table.

Time [s]

Fu
n

ct
io

n
 V

a
lu

e Generated
Signal

n n+1

Range at one
Timestep

Upper and
Lower Bound Envelope
Functions

T

Figure 5.10: The dashed line illustrates the synthesized step wise sine signal. Upper and lower bound
envelope functions describes a full inclusion area of the physically generated signal.

A potential model for the defined synthesized signal is to describe the waveform with the help of
IA. As shown in Figure 5.10 for each point in time, an upper and lower functional limit is defined.
This results in an area enveloping the step wise trace. At the points in time when a new value of
the lookup table is loaded the interval is defined as

S = [sin(ω · (n− 1)T), sin(ω · nT)] (5.18)

Where ω is the angular frequency of the signal, n is a counting variable indicating the discrete
timestep and T is the sample reload period.

121

Demonstration Examples and Results

In an AAF perspective, the rectangular signal is modeled as an ideal sinusoidal function superim-
posed with a partial deviation which enclosures the step wise characteristic. In implementations,
the discrete generated signal is filtered. This filter between synthesizer and modulation stage
transfers the hard-edged rectangular signal into a smooth sinusoidal waveform. However, bound
values reflecting partial deviation values are strictly defined at the reload points. In between the
signal may float but not exceeding the modeled bounds. The central value is set to the half of
the step size, and a deviation is located symmetrically to describe the mentioned bounds (upper
and lower sine waveform shown in Figure 5.10).

ŝ[n] =
sin(ω(n− 1)T) + sin(ωnT)

2
+ (sin(ωnT)− sin(ω(n− 1)T)) · εi (5.19)

Where ω is the angular frequency of the signal, n is a counting variable indicating the discrete
timestep, T is the value reload period and ε1 is the unpredictable deviation symbol with a value
between −1 and 1.

For this example, which computes values using continuous time, the following AAF signals rep-
resenting the outputs of the frequency synthesizers, f1(t) and f2(t) (see Figure 5.8) are used:

f̂1(t) = A1 · sin(2πf1t) + b1 · cos(2πf1t)ε2
f̂2(t) = [A2 · sin(2πf2t) + b2 · cos(2πf2t)ε2] + b3ε3

The synthesizer generating f2 has an additional constant deviation. A1 is the first carrier signal
amplitude of 3V , f1 is the first carrier frequency of 10kHz, b1 is the synthesizer-f1 partial devi-
ation value of 0.2V , A2 is the second carrier amplitude of 5V , f2 is the second carrier frequency
of 20kHz, b2 is the synthesizer-f2 partial deviation value of 0.1V and b3 is a constant deviation
of 0.08V . ε2 models a deviation which is caused by a step wise generation of the sinusoidal wave-
forms. The type of signal generation is the same for each generator, so this deviation symbol is
present in both modulation signals and reflects a correlation.

The output signal of the system is given by the multiplication of the digital input data sign by
the sinusoidal carriers:

ŷ(t) = x̂(t) · f̂1(t) · f̂2(t)
The given computation contains an uncorrelated (modulation stage 1) and a correlated (modula-
tion stage 2) multiplication. In this example, for the non-linear multiplication operations, various
approximations of the output signal according to Section 3.2 are calculated.

Analysis

The central value (equal to exact simulation without considering any deviations) of the output
signal (solid line) and the input signal (dashed line) are shown in Figure 5.11-a. For Analysis of
the output signal, main interest is in worst-case signal values at a logical HIGH and LOW input
signal. Thus, the analysis objective is to evaluate the maximum of the output radius in time,
and the value of this maximum including all subranges. The point in time for the maximum of
the radius can be evaluated using a temporal trace as described in Section 4.5. The maximum
deviation of the synthesizer signals is located at their amplitude zero cross (sine central value
and cosine partial deviation value). Figure 5.11-b is a zoomed view of the modulated undeviated
output signal at a logical level transition (t = 1 ms). As shown in this figure maximum output
deviations are calculated at simulation times ts1 for a LOW input and at ts2 for a HIGH input.

122

Demonstration Examples and Results

ts1

a) b)

Time [ms]

A
m

p
lit

u
d
e
 o

f
th

e
 I
n

p
u
t

S
ig

n
a
l
[V

]

A
m

p
lit

u
d
e
 o

f
th

e
 m

o
d

u
la

te
d
 S

ig
n
a
l
[V

]

A
m

p
lit

u
d
e
 o

f
th

e
 m

o
d
u
la

te
d
 S

ig
n
a
l
[V

]

ts2

Time [ms]

Figure 5.11: a) Rectangular digital input signal (dashed curve) and modulated output signal without
deviation calculation. b) Zoomed undeviated output signal at a logical low to high transition
at 1 ms. Maximum output deviations are calculated at ts1 and ts2.

Results and discussion

The essence of this example is to compare the impact of different approximation schemes for
the included multiplication. Table 5.4 presents all important output signal parameters of both
mixing stages for a HIGH and LOW logical input state. The first column holds the type of
approximation where lin. stands for linearized, Int. Ex. for interval exact and Ch. for Chebyshev
approximation (see Section 3.2.1). The second column contains the modified central value β for
each approximation. The mathematically exact central value can be found at each linearized
approximation. All other methods (marked by a *) have a shifted central value, but due to
the system structure according to Figure 3.11 the exact center value will be reminded at any
operation. The next two columns hold approximation values for system added deviation symbols
due to the non-linear multiplications. ε4 is generated at the first modulation stage and ε5 at
the second one (see Figure 3.11). Partial user type deviations a1, a2 and a3 corresponding to
the deviation symbols ε1, ε2 and ε3 are stated in the header of each table part. The last two
columns of Table 5.4 holds the over-approximation of each calculated method (LB stands for
lower bound and UB for upper bound). Over-approximation is defined as the difference between
exact interval bounds, which are also stated in each table header and the bounds resulting out of
the approximation form.

The linearized (first-order Taylor) approximation contains the exact central value, correct partial
deviations and needs no system approximations. The result can be seen as a linearization at an
operating point (in this case the central value) as known from the calculation methodology of
standard semiconductor circuits. The over-approximation is significant at one interval bound.
At the other bound there is an under-approximation. That is why linearization approximation
is only applicable for simulations where the correct deviation sensitivities at the central value
are required, independent of over- or under-approximation for simulation points unequal to the
central value. As it can be seen in Table 5.4 over- and under-approximation values are equal at
uncorrelated multiplications and unequal in correlated ones. This has its reason in the existence of
quadratic ε terms in the symbolic result of a multiplication of correlated forms (see Figure 2.9-a).

The interval exact approximation has the property that interval bounds have no over-approxi-
mation. As shown in the first two sub-tables of Table 5.4 for uncorrelated multiplications no

123

Demonstration Examples and Results

Table 5.4: Resulting affine forms at the modulated output of mixing stage 1 and 2, at a logical high and
low input level

Approx. ε4 ε5 Oapprox. Oapprox.

Method β α α LB UB

Stage 1 - Low Signal, Simulation at ts1

Partial Deviations: a1 = 0.042427, a2 = 0.084853

Exact Output Interval=[0.305472, 0.560031]

Lin. 0.424266 0 0 0.008485 -0.008485

Int. Ex.* 0.432751 0 0 0 0

Ch.* 0.428509 0.004243 0 0.008485 0

Stage 1 - High Signal, Simulation at ts2

Partial Deviations: a1 = 0.084853, a2 = 1.400078

Exact Output Interval=[5.532429, 8.502291]

Lin. 7.000389 0 0 0.016971 -0.016971

Int. Ex.* 7.017360 0 0 0 0

Ch.* 7.008874 0.008485 0 0.016971 0

Stage 2 - Low Signal, Simulation at ts1

Partial Deviations: a1 = 0.212133, a2 = 0.636399, a3 = 0.033941

Exact Output Interval=[1.350184, 3.124974]

Lin. 2.121330 0 0 0.111327 -0.121170

Int. Ex.* 2.237579 0 0.004922 0 0

Ch.* 2.171309 0.021213 0.049979 0.132541 0

Stage 2 - High Signal, Simulation at ts2

Partial Deviations: a1 = 0.424266, a2 = 10.500584, a3 = 0.560031

Exact Output Interval=[24.453335, 47.442782]

Lin. 35.00195 0 0 0.936270 -0.955956

Int. Ex.* 35.94806 0 0.009843 0 0

Ch.* 35.45869 0.042427 0.456788 0.978742 0

additional system deviation α is needed. Only if there are quadratic or higher order terms in the
mathematically exact result further deviations for the correction of the radius in a way to reach
exact interval bounds are required. In comparison to all other approximation methods mentioned
in this thesis, the shift of the central value is the largest one.

At the Chebyshev approximation in each multiplication stage a system deviation α is added. For
the full inclusion of all results independent of all user deviation signal values an extension of the
radius with the approximation value α is always required [Gra09]. At repeated multiplications
(as applied in this example) it is required to multiply all deviations (system and user type) by
the exact calculated central value, not with the β value of the corresponding approximation. If
not done so linear factors of the result representing system’s deviation sensitivities will become
incorrect. The methodology is to approximate only non-linear terms all other affine representable
parts must be calculated exactly. Over-approximations stated for the Chebyshev method in Table
5.4 are only present at one of the interval bounds. This property follows the theoretical description
shown in Figure 2.9.

The result of the worst case analysis is that at a logical low level the input signal range of 0.04V is

124

Demonstration Examples and Results

transformed to a worst case modulated output deviation interval of 2.97V to 2.986V depending on
the approximation in the simulation. At a logical HIGH input the overlapped input deviation
signal reaches an output interval of 22.99V to 23.968V also depending on the approximation
method.

5.3 Power-line Communication (PLC) System

Within this section, I demonstrate the proposed uncertainty tracing and analysis methodologies
which are fully integrated into the SESYD framework using a Power-line communication (PLC)
system. A PLC system transfers payload sensory data between two processing nodes using the
available power line wires as a communication medium. Hence, data bit signals are sequentially
modulated on the 230/110 V 50/60 Hz power line. For the rest of the section an Austrian power
grid having 230 V, 50 Hz is assumed (supply quality standard according to EN50160 [DIN11]).

PLC is on the first side a state of the art research field (channel characteristics and modeling,
performance increase, optimization, etc. [LGLK14, BKBD06]) and on the other side several
applications using PLC are well embedded in the field (in-home communication, data transfer for
smart metering services, etc. [LL15, SS16]).

In this example, uncertainties can be divided into deviations of the power line signal and variations
in the transceiver modules. Decreases in the power supply quality modeled as frequency and
magnitude variations may be caused by alternation of load, unbalanced power generation and
consumption on grid branches, electromagnetic influences, switching events, etc. Internal parts of
the transceiver chips have commonly known PVT (Process, Voltage and Temperature) uncertainty
effects of analog circuits (inaccurate gain, offset drift, temperature impact, voltage supply etc.)
Detailed description of variations explicitly considered are described later. However, under the
impact of modeled uncertainties and resulting transmission the total system performance is not
clear first. The proposed methods guide a designer to increase the system insight and finally to
a starting point for optimization.

Block diagram and functional description

Modulation
Controller

Modulation
Stage

Modulation
Sig. Gen.

Ennable Enable
f1...4

Modulation Signals
1...4

Level
Filter

104.5kHz - Bit3

75.5kHz - Bit2

46.5kHz - Bit1

17.5kHz - Bit0

B
it

 R
e
co

v
e
ry

Send Data
34 x 4bit

Powerline
Sig. Gen.

Receive Data
34 x 4bit

Transmitter Receiver

PLC
Channel

MC8
Core

MC8
Core

Sensors

Figure 5.12: Block diagram of the modeled Power-line communication data transmission system. Trans-
mitter and receiver modules are connected to MC8 CPU cores generating and processing
application data. A power line signal generator in combination with a simple channel model
represents the power distribution grid in a house.

125

Demonstration Examples and Results

Figure 5.12 illustrates the block diagram of the modeled system. For this example, only the
forward data path transmission from the left to the right MC8 processing core is modeled. As
data payload a set of eight 16 bit sensor data from a weather station application (temperature,
humidity, illumination, air pressure, rainfall, wind speed, wind direction and ozone level) are
transmitted. For an application model also including backward transmission, the involved com-
munication equipment just gets mirrored realizing a bidirectional transceiver chip. The power
line signal is modeled by a specific signal generator as illustrated in the figure. The positive half
cycle (10 ms) of the sinusoidal 230 V, 50 Hz signal is applied to the transmitter module. This time
period is divided into 34 transmission slots each 285µs long and a 152µs pause (see Figure 5.13).
This timing used in the modules of the transmitter and receiver is derived from positive zero-cross
of the power line signal. Totally, this results in a transmission time of 152µs+34·85µs = 9.842ms.
Thus, the maximum calculated operating power line frequency is 50.803Hz. During every sin-
gle slot, four bit of payload data is transferred simultaneously. This results in a unidirectional
data transmission rate of 6.64 kbps. Inside the transmitter, a modulation controller is responsible
for generating control signals according to the slot timing and the applied input data. Sinu-
soidal modulation signals having frequencies of 17.5 kHz (LSB-Least Significant Bit), 46.5 kHz,
75.5 kHz and 104.5 kHz (MSB-Most Significant Bit) are synthesized in the modulation signal
generator. According to applied four bit transmission data packets represented by enable signals
corresponding modulation frequency are modulated on the powerline carrier (see Figure 5.13).

...

t [ms]100

S
LO

T
 0

S
LO

T
 1

S
LO

T
 2

S
LO

T
 3

3

S
LO

T
 3

2

S
LO

T
 3

1

zero
cross

Bit0 Bit1 Bit3 Bit4

4Bit
Pack

230V
50Hz

Figure 5.13: Data transmission scheme for the PLC system. The timing is synchronized by the power
line zero cross. After a 152µs pause 34 transmission cycles each including four bit of
information are applied.

For the channel characteristic, I defined a transmission characteristic based on Figure 5.14. The
diagram shows measured data for an in-house, application published in [BKBD06]. I designed
a FIR (finite impulse response) filter, with a length of 101 samples, approximating the shown
channel characteristic for the house.

At the receiver side, first a level filter subtracts a 230V/50Hz function to eliminate large signal
amplitudes of the carrier. The following filter bank included as four digital bandpass filters as
illustrated in the block diagram (Figure 5.13). Depending on their specific cut-off characteristics
their history length are 141 (LSB), 171, 169 and 169 (MSB) samples. Filter coefficients and
history length are adjusted to majorily transfer the spectral parts indicating the modulated bit
information. The corresponding FFT post-processed spectrum of the signal applied to the filters
is plotted in Figure 5.15. The plot shows, that if all four bits are set to TRUE each defined
frequency component forms a clearly defined peak within the spectrum. The according FIR (finite

126

Demonstration Examples and Results

Frequency [kHz]

A
tte

nu
at

io
n

 [d
B

]

0

-10

-20

-30

-40

50 100 150 200 250 300 350 400 450

Figure 5.14: PLC channel characteristic of in-house transmissions [BKBD06]. For this example, the
illustrated in-house channel characteristic is approximated by a FIR filter.

impulse response) filters are designed with the help of the online tool Tfilter [22] see Section
3.5. Pass-bands are 15 kHz wide and located symmetrically around the expected modulation
frequencies. The bit recovery block illustrated in Figure 5.12 implements a recovery algorithm
which is equal for all four transferred bits in a pack. The corresponding filtered waveforms are
sampled at a clock frequency of 1MHz. If the absolute value of a sample is greater than a
defined threshold, a counter is increased. The counter value is evaluated at the end of each slot.
If it exceeds a predefined counter threshold value the corresponding bit is recovered to TRUE.
A tight synchronization between sending and receiving node is not required. Receive and send
procedures are triggered by positive zero-cross events of the power line signal.

Figure 5.15: FFT view of the received signal after the level filter. The figure illustrates an all TRUE four
bit pack indicated by clear peaks at the designed frequency components of the corresponding
modulation signals.

Parameter setup and uncertainties within the model

As illustrated in Figure 5.16 in total 31 deviation effects are modeled. Their initial influence on
the functional blocks in the transmission system is given in red. Variations in the PL generation
module, are set to the limits specified in the EN50160 [DIN11] standard. The modulation signal
generator includes four identical analog signal generators for each used sinusoidal modulation
signal. We assume a common synchronization and amplification stage for each generator. Thus, a
correlated deviation representing the amplifier’s process variation is modeled. In addition, I model
an individual offset variation for each single modulation signal generator. At the transmitter side,

127

Demonstration Examples and Results

the temperature and the supply voltage drift is modeled. The PLC channel used for this example
has a varying attenuation factor over the full frequency spectrum. The level filter, which subtracts
a 230V/50Hz function to eliminate large signal amplitudes has slight variations in the synthesized
subtraction function. Last at the receiver side I modeled deviations in the bandpass filter bank.
All filters have a correlated gain variation and each filter have an individual gain variation in the
specified filter characteristic. Similar to the transmitter module temperature and supply voltage
variations at the receiver module are modeled as well.

Modulation
Controller

Modulation
Stage

Modulation
Sig. Gen.

Ennable Enable
f1...4

Modulation Signals
1...4

Level
Filter

104.5kHz - Bit3

75.5kHz - Bit2

46.5kHz - Bit1

17.5kHz - Bit0

B
it

 R
e
co

v
e
ry

Powerline
Sig. Gen.

Transmitter Receiver

PLC
Channel

MC8
Core

MC8
Core

Sensors

Temperature
Voltage

Temperature
Voltage

Fequency
Magnitude
Unbalance Magnitude

Offset drift
Phase jitter

Attenuation

Gain
Offset driftNonlinearity

Ouput Offset

Fequency
Offset
Magnitude

Figure 5.16: Block diagram of the modeled Power-line communication data transmission system and
modeled uncertainties given in red.

Figure 5.16 just informs about the uncertainty causes represented as deviation within the model.
The following uncertainty matrix, according to the template given in Figure 4.1, is evaluated for
detailed documentation of uncertainty impact to parameters in the system. The presented table
also includes the configuration of the application parameters (nominal values).

128

Demonstration Examples and Results

Table 5.5: Uncertainty matrix for the PLC example - detailed caption on the next page

129

Demonstration Examples and Results

Caption for the table on the previous page:

∅ = uncorrelated first-order effects

TT/R = Transmitter/Receiver side temperature

VT/R = Transmitter/Receiver side supply voltage level

PMsig −Ampl = Process variation of the modulation signal amplifier

PMsig − drift = Phase drift of the modulation signal amplifier

Lo, Le, N = Deviation location, level and nature according to Subsection 2.2.2

e/i = external/internal

s/d = static/dynamic deviation

P = The deviation is correlated with a specific modeled Process variation of the according module

1 = Deviation caused by disturbances on the power grid

2 = Deviation caused by parameter variation caused by parameter configurations

nv = Nominal value

Numerical simulation of the PLC system

Figure 5.17: Exact numerical simulation run of the PLC transmission system

130

Demonstration Examples and Results

First, I demonstrate the behavior of the PLC system using not deviated parameters. Therefore, I
executed an exact numerical simulation run not considering any deviations. Figure 5.17 illustrates
a comprehensive set of input and output signals. The digital processor core MC8 executes for this
demo an assembly program that sequentially increases a 4-bit counter value. The frequency for
counting up is set that for each slot a new counter value is presented for transmission. Waveform
1 in Figure 5.17 shows the modulated power line signal which is presented at the output of
the transmitter block. Waveform 2 illustrates a digital enable signal for the modulation stage
which is generated based on the zero-cross events of the PL signal. Waveforms 3-6 illustrate the
digital signals representing transmission data (in this case an up counting value). Waveforms 7-10
illustrate the output of the receive filters for every single bit. These signals are forwarded to the
bit recovery block. Signals 11-14 illustrate the recovered binary information. Figure 5.17 shows
that in the exact case the input information can be recovered without any error (BER = 0 - Bit
Error Rate) at the receiver side.

System simulation and analysis using multi-run methods

Within this part of the example, I present two selected experiments (out of a series) where I simu-
late and analyze the given PLC transmission system using the multi-run module implemented in
the SESYD framework. For simulation control, resetting the model, random pattern generation,
processing the results, etc. I used the concepts presented in Section 3.4.

For the first experiment, variations of the power line which are modeled by the following pattern
generators are considered:

• Power line frequency: Normal distributed random pattern generator - Mean= 50Hz, Stan-
dard deviation = 0.2Hz

• Constant voltage offset: Uniform distributed random pattern generator - Lower bound =
−5V , Upper bound = 5V

• Channel delay characteristic resulting in a phase shift between sender and receiver power
line signal: Uniform distributed random pattern generator - Lower bound = −0.01 rad,
Upper bound = 0.01 rad

• Electromagnetic noise. This generator is updated after each simulation step: Normal dis-
tributed random pattern generator - Mean= 0V , Standard deviation=4V

The deviated power line signal is illustrated in the upper waveform of Figure 5.19. As a goal,
we are interested in the number of transmission errors within one slot. Figure 5.18 illustrates a
two-dimensional diagram plotting frequency and offset voltage against occurring slot errors. The
printed surface forms a trough having a minimum (BER = 0) at the 50Hz/0V point. As a
result of this multi-run simulation, the itemized power line variations are fully considered and
the resulting system responses can be studied in detail. Impact factors to bit transfer error rates
can be evaluated in the form of input valuations, but they can not be traced to their initial cause
explicitly. Figure 5.19 illustrates the power line half-cycle waveform and the corresponding filtered
signal of the LSB. On the left panel of the diagram illustrates the traced multi-run waveforms
named by their recorded multi-run simulation round.

In the second experiment (an extension of the first ones) a potential optimization of the receiver is
addressed. As described previously, for each slot the bit recovery algorithm is based on counting

131

Demonstration Examples and Results

Figure 5.18: Slot errors under the dependence of the power line frequency and a static offset voltage.
These parameters have significant impact on the occurrence of erroneous data transmission.
Due to the design of sender and receiver nodes the minimum (no errors) is located around
the 50Hz/0V point.

samples which absolute values are greater than a defined threshold. As illustrated in the lower
waveform of Figure 5.19, showing the filtered LSB signal, due to the occurring deviations the
definition of this threshold value may become a tricky task. If it is set too high just a few samples
corresponding a correct bit detection exceed this value. This increases the probability of not
detecting bits which are set to TRUE. On the other side, if the level is set too low disturbances,
as occurring if the bit is set FALSE, leads to incorrectly triggered counter increases. However,
this results in false positive detection of bits. The main challenge of this experiment is to find
optimal threshold levels for bit recovery. We consider the four threshold parameters as design
variations. Thus, their static values are replaced by sequence generators. Lower and higher
bounds are set to ±3 around their approximated values. So there are eight stimuli generators
within this simulation. Setting the corresponding end rule to exhaustive (considering all possible
sequencer value combinations) results into 9900 single simulation rounds. For each multi-run
round 11ms are simulated at a sampling frequency of 1MHz. The simulation has been executed
on machine with the following specifications: CPU: Intel Core I7-6700K 4.00 GHz 4Core, RAM:
4x 16GB DDR4 2400 RAM, OS: Ubuntu 16.04 LTS. On this computer the required simulation
time was 7 h and 35 min.

Results of the full simulation are collected in a *.csv table file. A part of the full table is illustrated
in Figure 5.20. Column one holds the simulation run, columns two to seven the given parameter
set specified by the stimulus generators and the last column indicates the occurred slot errors
(Level bx stand for the described detection threshold level for bitx). The first task towards
optimization is to filter the table just including runs with no slot errors. 1528 simulation runs
indicating diverse parameter sets fulfills that criteria. This table is a starting point for further
multi-criteria optimization which is out of scope for this work. However, optimization is based
on results provided form the multi-run simulation considering parasitic power line deviations as
well as design variations used for optimization.

Simulation and analysis of the PLC system using AAFs

First, I show some general results of the PLC system simulation using AA. Second, I focus int
he bit error rate property of the system, and show how it can be elaborated by applying the

132

Demonstration Examples and Results

Figure 5.19: The upper waveform illustrates multiple plots of the power line signal including deviations
represented by the pattern generators. The lower graph shows the filtered LSB signal at
the receiver which is handed over to the bit recovery block. As illustrated the deviations of
the power line cause reasonable disturbances in filtered signals.

presented analysis procedures. Uncertainties and the corresponding causes included in the PLC
system are given in Table 5.5. There are 31 user deviation symbols and five system deviation
symbols instantiated. For system deviation symbols the corresponding AAF object IDs and the
associated operations are given as symbol source information. The following table is derived from
the output of the symbol management module (the output listing itself holds more details and is
thus complex and long).

Figure 5.21 illustrates a part of the transmitted PL signal. The dashed brown line labels the center
value, and each subinterval represents an individually modeled uncertainty. As indicated, the first
(power line frequency), second (power line magnitude) and fourth (transmitter side temperature)
subintervals have a significant impact on the resulting voltage range.

Figure 5.22 illustrates the first 1 ms of a transmission cycle (a full PL half cycle). Similar to figure
Figure 5.17 transmitted and received bit sequences as well as analog signals are shown. But in
this case, blue lines indicate the corresponding bounds given by AAFs under consideration of all
31 modeled uncertainties included in the PLC system.

The objective selected for the subsequent system analysis is the evaluation of deviations respon-
sible for potential transmission errors (causes for bit errors, BER 6= 0). As already described in
the last paragraphs where I use multi-run methods for analysis, the setup for threshold values for
the bit recovery algorithm is critical.

The recovery, block increases an internal counter if the absolute signal value is greater than a
configured threshold. Thus, at the end of each slot, the bit is recovered to TRUE or FALSE
explicitly depending on this counter value. If an AAF, as for this analysis, is presented to the
bit recovery algorithm a similar situation as described in Subsection 3.2.3, where an AAF is
compared to a numeric threshold value (see Figure 5.24), is given.

133

Demonstration Examples and Results

Figure 5.20: A part of the full result table for experiment 3. Each row representing a specific simulation
run indicates a parameter set resulting in a simulation run with no occurring slot errors.
Level b1 to b4 stand for the considered bit recovery threshold values which are continuously
modified around a previously approximated value. Optimization algorithms may finally
evaluate an optimal threshold parameter set based on this result table.

Table 5.6: Uncertainty and associated symbols in the modeled PLC system. Strictly speaking this table
hols the symbol assignments for uncertainties given in the uncertainty matrix Table 5.5. S.d.
= System Deviation Symbol, src. = source identifier

εx Models uncertainty in εx Models uncertainty in

1 PL signal frequency 19 Receiver filters output gain

2 PL signal unbalance 20 Level filter frequency

3 Relative PL signal magnitude 21 Level filter offset

4 Tansmitter side temperature 22 Level filter magnitude

5 Transmitter side voltage level 23 Level filter offset (P)

6 Modulation signals pahse drift 24 Receiver filter 1 gain

7 Modulation signals amplitude 25 Receiver filter 1 offset

8 Modulation signal 1 offset 26 Receiver filter 2 gain

9 Modulation signal 2 offset 27 Receiver filter 2 offset

10 Modulation signal 3 offset 28 Receiver filter 3 gain

11 Modulation signal 4 offset 29 Receiver filter 3 offset

12 Nonlinearity Modulation stage 1 30 Receiver filter 4 gain

13 Nonlinearity Modulation stage 2 31 Receiver filter 4 offset

14 Nonlinearity Modulation stage 3 32 S.d. - PLC ch. gain mult. - src: ID68 * ID65

15 Nonlinearity Modulation stage 4 33 S.d. - rec. filter 1 gain mult. - src: ID234 * ID225

16 PLC channel attenation 34 S.d. - rec. filter 2 gain mult. - src: ID386 * ID377

17 Receiver side temperature 35 S.d. - rec. filter 3 gain mult. - src: ID568 * ID559

18 Receiverside voltage level 36 S.d. - rec. filter 4 gain mult. - src: ID748 * ID739

The left part of the figure shows different cases of how the threshold level can be located relative
to the AAF central value (in blue) and its bounds (in red). However, there are four cases where
the bit recovery explicitly defined also under the presence of uncertainty. For all other cases, the
bit recovery is uncertain. In contrast to the example presented in Subsection 3.2.3 the evaluation
of an output AAF is not required, strictly speaking, it is sufficient to know if the recovery is
uncertain or not. For implementing the described analysis in principle, I used two counters.
One incrementing its value if the bit recovery is resulting uncertain for a point in simulation

134

Demonstration Examples and Results

Figure 5.21: The transmitted PL signal and the included partial deviations associated with symbols ε1
to ε15

Figure 5.22: Time domain results. Upper and lower signals illustrate the binary transmitted and received
values. The analog traces illustrate the transmitter output, receiver input and the four
filtered signals used for the bit recovery process.

135

Demonstration Examples and Results

counter
theshold

TRUE FALSE

co
u
n
te
rco

u
n
te
r

u
n
ce
rt
a
in

u
n
ce
rt
a
in

uncertain uncertain TRUE FALSE

Figure 5.23: Possible cases, if the recovery algorithm is extended for AA.

time and another one increasing if the recovery is explicit. At the end of a slot, the uncertain
result counter is added and subtracted from the explicit result counter. If the result of this
addition/subtraction is higher or less than the set threshold value, the bit can be recovered to
TRUE or FALSE respectively (see the right illustration of Figure 5.24). However, the point is
that the recovery at the end of the slot can still be explicit also under the presence of uncertain
bit recovery evaluations during the inspected slot. Strictly speaking, this is the goal of a robust
bit recovery concept.

Figure 5.24: Analysis example of three selected time slots recovering a binary signal based on uncertain
and explicit recovery results.

An example for the transmission of the LSB in an arbitrary slot is illustrated in Figure 5.24. The
vertical cursors delimit the time windows of the shown transmission slots. The horizontal courses
at ±6 mark the threshold value for bit recovery. The central value (brown line) is surrounded by
the accumulated bounds of all included partial deviations (radius) (red and blue line). According
to the described cases illustrated in Figure 5.24 there are points in time when the recovery
situation is explicit, and others where it is uncertain. Corresponding binary signals (representing
the situation) are given as et1 (explicitly TRUE) and u1 (uncertain). For each simulation point

136

Demonstration Examples and Results

where the mentioned binary signals are TRUE corresponding counters are incremented. At the
end of each slot, the binary input information (emf1 - enable modulation signal 1) is tried to be
recovered by evaluation of the current counter values (the recovered signal is the recb1 signal). As
indicated, the first two slots in Figure 5.24 the recovered information is equal to the transmitted
one, where at the third slot the recovery fails, representing a bit-transmission error. The cause
of the transmission error at this stage of system analysis can be identified as a too large value of
the uncertain recovery counter caused by too large accumulated patial deviations.

Figure 5.25: Debug output listing of the BER analysis process

Of course, I did this single bit transmission analysis for all bits and all transmission slots. In
Figure 5.25 I give the debug output listing of the analysis for transmission slot 5 and 27 and the
configured counter and value thresholds as defined in the model. For example, bit 1 in slot 5 can
be explicitly recovered to FALSE. The upper range of the recovery counter (in light blue) 29 is
small er than the threshold of 50. The recovery is explicit for all bits in the slot (marked by the 1’s
in green). In slot 27 the situation is worse. Three of the four bits cannot be recovered explicitly.
The counter values for explicit recovery looks good but caused by the deviations of the recovery
input signal there are too many uncertain recovery states within the slot. For transmission test
data again the counting 4bit value as illustrated in Figure 5.17 is used. However, the analysis
results that under the specified parameter setup and the given uncertainties 43 of 136 bits cannot
be recovered explicitly → BER = 0.316. This does not necessarily mean that the average bit
error rate is that high, but under worst-case deviation considerations for each transmission slot,
31.6% of the transmitted bits are erroneous.

At the next step, this analysis is refined towards the evaluation of more knowledge about the
cause of that high worst-case transmission errors. Therefore, I continue with impact analysis
using temporal and structural traces.

As discussed in Subsections 4.3.1 and 4.6.3 the integrated impact of partial deviation is calculated.
Figure 5.26 illustrates the accumulated impact of ε1,2,3,16 uncertainties for the four filter outputs
(bit0 to 3 - top to bottom resp.). Corresponding partial deviation values (in this case the absolute
values) are integrated over time. ε1,2,3,16 are external uncertainties caused by PL variations. The
dashed lines are the gain variations of the corresponding filters. As a result, the power line
deviations in frequency, magnitude, unbalance and channel attenuation (only these are illustrated
in the figure) have a major impact in a global perspective. Thus, for the following analysis, I
mainly focus on ε1,2,3,16 uncertainties and analysis of the LSB bit output.

Further, temporal tracing is used for the evaluation of the point in time when the critical uncer-

137

Demonstration Examples and Results

Figure 5.26: Integrated absolute deviations at the receiver filter outputs (shows only 5 having the main
impact)

tainties are propagated to the filter output. Figure 5.27 shows the impact of the ε1,2,3,16,24 partial
deviations in percent. The trend indicates that the impact of the partial deviation associated
with ε1 (PL frequency variation) is getting dominant at the end of the transmission cycle.

To verify that, the absolute values for the identified partial deviations are plotted in Figure 5.28.
As indicated, in the upper plot, first the pink line forms the peaks in transmitted bit periods,
then cyan and finally red gets dominating. Due to the limited time windows (the receiver filter
output is just relevant if the LSB is FALSE) the situation is more clear at inspecting the output
of the level filter (lower plot of Figure 5.28). The partial deviations for PL frequency (red),
unbalance (pink), magnitude (orange) and channel attenuation (cyan) ε1,2,3,16 are shown. To
identify the peak also the sum of the mentioned partial deviation (dark blue line) is illustrated.
The dashed lines in the plot illustrate the partial deviation impact of receiver and transmitter
side temperature and supply voltage variation. For this analysis, these impacts are not relevant.
As a result, I identified not a single critical point in time but a period (trend). The selected
partial deviations impact, the total variation and thus the impact to the BER gets worse at the
end of the transmission cycle. However, for the following structural analysis, I focus on the last
transferred bit pack (cursor in Figure 5.28) at 9 ms to 10 ms.

In Figure 5.29 the path for further structural analysis p̃ =< s1, s2, s3, s4, s5 > is illustrated in

138

Demonstration Examples and Results

Figure 5.27: Temporal monitor output showing selected deviations and their impact to the radius of the
selected AAF

Figure 5.28: Temporal monitor showing the absolute values of selected deviations for verification that
the end of a transmission is critical.

green. The path is specified semi-automatically by tracing the propagation of symbols ε1,2,3,16.
ε1,2,3 have their cause in the PL generator block and ε16 in the PL channel model.

For structural tracing results, the following color code, mapping segments on the specified path
to lines in plots, is defined: cyan=s5, pink=s4, orange=s3, black=s2, blue=s1. Figure 5.30 shows
a combined temporal and structural view for the selected partial deviations associated with the
symbols ε1,2,3,16. The time period for the plots is refined to a sampling window of the second half
of the transmission 5 ms to 10 ms. The plot illustrates the structural propagation (color-coded
within each plot) of the selected deviations (each individual plot). The partial deviations of the
power line gets propagated through the system at nearly no attenuation. Strictly speaking, the
pink, orange, black and blue lines are lying upon each other. But this is already clear because the

139

Demonstration Examples and Results

Modulation
Controller

Modulation
Stage

Modulation
Sig. Gen.

Ennable Enable
f1...4

Modulation Signals
1...4

Level
Filter

104.5kHz - Bit3

75.5kHz - Bit2

46.5kHz - Bit1

17.5kHz - Bit0

B
it

 R
e
co

v
e
ry

Send Data
34 x 4bit

Powerline
Sig. Gen.

Receive Data
34 x 4bit

Transmitter Receiver

PLC
Channel

MC8
Core

MC8
Core

Sensors

s1

s2 s3

s4 s5

Figure 5.29: The colored trace highlights the path specified for structural analysis

Figure 5.30: Combined temporal and structural trace view illustrating the propagation of selected un-
certainties.

50 Hz payload signal of the power line is more or less not damped between the transmitter and
receiver block (see frequency characteristic of the channel Figure 5.14). Thus, also PL variations
are propagated to the level filter input. The level filter itself just subtracts a constant 230 V /50 Hz
signal, which consequences no attenuation in frequency, unbalance and magnitude variations. As
a result, the central value at the output of the level filter is quite small (0 in the exact case)
but the variations, especially associated with ε1,2 (frequency and unbalance), having a value
approximately 2.5 and 10 are directly propagated to the level filter’s output. Thus, the pink line
(partial deviations on s4=output of the level filter) is approximately equal to the PL deviations
at the input (orange line = s3).

To verify this results, which identifies the level filter as the critical block of the model, the
SDR (Signal to Deviation Ratio) as proposed in Subsection 4.3.3 and given in equation 4.3 is
evaluated. The color-code for the mapping (lines to path segments) is given above. The cyan and
pink plot indicating the two signal segments at the output of the level filter has a dominating low

140

Demonstration Examples and Results

Figure 5.31: SDR (Signal to Deviation Ratio) analyis of the PLC transmission system.

(compared to the others) SDR value. This correlates with the fact that the radius of the AAF is
large compared to the AAF’s central value.

Discussion of analysis results

As a result of this step by step refined analysis process, I identified the following critical parts of
the modeled PLC transmission system:

• In the time domain, due to the specified frequency variation and PL unbalance variation,
at the end of the transmission (positive half-cycle of the PL signal) the radius of the PL
signal has its maximum. This results in worse bit transmission performance for the slots at
the end of a cycle.

• In the structural domain, the identified dominating variations of PL frequency, unbalance,
magnitude and the channel attenuation gets directly propagated to the output of the level
filter. This has the consequence that the corresponding SDR quality measure is very low.
Strictly speaking, the radius of the AAF is large compared to the center value.

All the presented simulation and analysis results are evaluated from 4 simulation runs and 3
analysis refinement steps:

1. Initial AAF based simulation of the system to identify the uncertain behavior of the bit
recovery process.

141

Demonstration Examples and Results

2. Inserting relative monitors at the output of the receiver filters. They show that the inte-
grated impact, and identify dominating uncertainties in the filter’s outputs.

3. Specification of an analysis path through the system and inserting temporal and structural
monitors for guided deviation hot-spot detection. Results show, that the end of the trans-
mission is critical caused by unattenuated propagation of PL variation via the critical level
filter in the receiver.

4. To verify the results also specific SDR monitors are inserted in each segment of the specified
analysis path.

This underlines the performance of applied analysis features used for this example.

Each single simulation run (strictly speaking the last simulation run including the maximum
number of monitors) took a computation time of approximately 2 h and 8 min. The simulation
has been executed on machine with the following specifications: CPU: Intel Core I7-6700K 4.00
GHz 4Core, RAM: 4x 16GB DDR4 2400 RAM, OS: Ubuntu 16.04 LTS. This is a significant
speedup compared to the multi-run simulation (7 h and 35 min) described above.

Potential first steps towards optimization of the PLC system

As discussed, the critical block in the system is the included level filter. A first optimization
is to replace the static behavior by an adaptive filter behavior. The adaptiveness is defined as
continuous modification of the 230 V /50 Hz signal used for subtraction, to reduce the impact
of frequency, unbalance and magnitude variations in the filter’s output. Strictly speaking, the
current PL magnitude, frequency and unbalance parameters are sensed at the input of the filter,
and the subtraction signal is correspondingly adapted for the following transmission cycles. In an
AAF modeling perspective this means that the following correlations are introduced: ε2 = ε21 =
ε23 and ε3 = ε22. The frequency variation in the level filter is not considered at all in the specified
model. As a first optimization step, the mentioned correlations are modeled. Simulation results
show that the bit error rate of the model including the modified daptive filter is 0.082. Compared
to the previous results of 0.316, this is a significant performance improvement.

5.4 Adaptive Cruise Control (ACC)

In this example, I present modeling, simulation, and analysis of Adaptive Cruise Control (ACC).
ACC is an automotive driver-assistance feature implemented in modern upper-class cars. In
modeling perspective ACC is represented as a high-level CPS model including a description of
the system’s environment.

Automotive feature modeling

ACC has in principle two functional modes as indicated in Figure 5.32. First, it acts as a cruise
controller keeping the speed of the car at a constant user-selectable level. This is called Cruise
Control (CC) mode. The driver may release the gas pedal completely, and the speed is managed
by a controller. The selected cruise speed is held as long as the track in front of the car is clear from

142

Demonstration Examples and Results

any obstacles (the left scenario in Figure 5.32). In real implementations, this selected target speed
may range from 40 to 200 kilometers per hour, depending on the installed sensor equipment and
implemented version of the ACC feature. Second, if a vehicle in front appears the distance to it is
monitored continuously, and the own speed value is adapted to satisfy a minimum target distance
(see Figure 5.32, right scenario). Therefore, the engine torque is reduced, eventually, an other
gear is selected, and/or brake input is applied to decelerate the vehicle. This is called Distance
Control (DC) mode. Here potential safety considerations come into play. A rear-end collision has
to be avoided under full impact of the automatic controller system. In real implementations for
critical (emergency) situations manual brake input of the driver is still required [WS15]. Thus,
ACC is a driver assistance system and not an entirely dependable ”auto pilot”. If the car in front
accelerates the target distance will be held as long as the speed is not exceeding the configured
CC speed.

GO! BRAKE

130 10880

Figure 5.32: Specific ACC scenarios, illustrating Cruise Control (CC) and Distance Control (DC) modes
of the feature.

ACC is already well understood as a single feature from an engineering viewpoint [WS15]. I
study it from the perspective of a composite feature. Cruise Control (CC) and Distance Control
(DC) operate independently while their individual speed requests have to be coordinated. For
coordination of these subfeatures features various methodologies based on Mediator-Coordinator
patterns, hill-climbing, objective functions, etc. can be found in the literature [LRK17, EDK13].
For this work, I follow the engineering approved coordination scheme strictly selecting the min-
imum speed request of both subfeatures [WS15]. For the rest of this example car A denotes the
own vehicle and car B the vehicle driving in front of A.

In general, I follow a modeling scheme shown in Figure 5.33. The idea is to partition the model
into three layers: a physical layer a request layer and a feature(and coordination) layer. The upper
layer defines a model of the physical environment describing kinematics of the vehicle. Values as
distance, speed, acceleration, and torque are arranged as a chain of values which interact under
their corresponding physical dependencies. These dependencies can be specified in three different
ways. First, a static characteristic curve (derived from measurements) may be defined (e. g. the
influence of an applied engine torque value to the acceleration of the vehicle). Second, values
may depend each other by Newton’s laws. For example, the acceleration is defined as the first
derivation of the speed. Third, dependencies can be described by more complex behavior (e. g.
defined as an FSM model). The green circles in the physical model mark potential value conflict
where dependencies have to be resolved. For the described ACC model these resolutions are
solved by a coordinator function at the feature level. In general, the physical model relies on a
strict balance of physical quantities. Interfacing points to the lower feature layer are given by a
set of requests and by measurement data. Single features (F) can place their requests directly at
the physical chain or as mentioned coordinate their requests by specific coordination functionality
(C). Monitored physical values are fed back to the feature’s inputs. This results in a closed data
path acting as a closed loop controller system.

143

Demonstration Examples and Results

TorqueAccelerationSpeedDistance

Speed B

Request Request Request Request

Hierachical Features
and Coordination

F F F

C

C

R
e
q
u
e
st

La
y
e
r

Fe
a
tu

re
La

y
e
r

P
h
y
si

ca
l

La
y
e
r

Figure 5.33: A generalized modeling approach for automotive features. The physical model (top layer)
is connected to the implemented features via a request layer. Feature requests have to be
coordinated that the physical quantities are in balance and corresponding dependencies are
resolved.

ACC model and uncertainty documentation

SpeedDistance

Speed B

DC CC

C

Figure 5.34: Physical and fearure layer of the ACC model deived form the model illustrated in Fig-
ure 5.33.

Based on the modeling scheme of features shown in Figure 5.33 I define the model for this ACC
example (see Figure 5.34). Physical quantities are reduced to the speed of the cars and the distance
between them. The unidirectional dependency is given by Newton’s law d =

∫ t
0 (vB−vA)dt+dinit,

where d stands for the distance between car A and car B, vA and vB for the corresponding speed
values and dinit for the initial distance. The dependency between speed and distance has an
uncertain characteristic which is defined by the unpredictable speed of car B. In contrast to the
prior described examples, this model has a closed loop datapath indicated as a red trace in
Figure 5.34. The ACC feature is represented by the CC and DC subfeatures and a coordinator.
The coordinated speed value output is a speed request at the physical part of the model.

The block diagram of the implemented ACC model (and then used for simulation and analysis)
is illustrated in Figure 5.35. The CC subfeature delivers a constant speed value at its output.
DC computes a speed request according to the following controller formula:

SpeedRequestDC = (diatancesensed − distancetarget) · k + speedCarB (5.20)

where k is a proportional factor multiplied by the difference of sensed distance and the selected
target distance. As described CC and DC may request a speed level according to their individual

144

Demonstration Examples and Results

CC Speed
Request:

CC

DC

Coordinator
Physical
Model

DC Speed
Request:

CC Speed
Selection

DC Target
Distance
Selection

Speed Profile
of Vehicle B

Current Distance

Figure 5.35: Block diagram of the modeled ACC system

independent behavior. The coordinator block forwards the lower speed request of both subfeatures
at each point in time. For the driving behavior of car B, I assume a static speed profile as
illustrated by the red trace in Figure 5.36. The distance between car A and car B is computed
using the physical formula described in the last paragraph. A representative part of the distance
output of the model (sensed distance) is fed back to the input, which means that in the following
inducted uncertainty will be continuously propagated over time. The ACC system in particular
includes besides linear blocks a discontinuity given by the coordinator behavior switching between
the system’s CC and DC modes.

Figure 5.36: Driving profile of vehicle B represented as an AA signal

Much as in [LRK17], only the typical scenario is studied where car A is approaching first vCC > vB
until the selected target distance is reached, while car B does not change its speed according to
the left part of Figure 5.36. Car A keeps the distance until car B accelerates (according to the
right part of the figure) vB > vACC . Car A may also increase its speed now, but it must not
exceed the selected CC cruise speed.

As a set of parameter deviations representing uncertainty I consider two deviation causes (indi-
cated in red in Figure 5.35). These are a deviating CC speed selection of car A and an unpre-
dictable speed profile offset of car B (see blue boundary value traces in Figure 5.36).

Table 5.7 contains the parameter setup of the model for semi-symbolic simulation, including

145

Demonstration Examples and Results

deviations and their corresponding values. According to these values, initial AAFs v̂A and v̂B
can be stated as v̂A = vCC +vCC,1 · ε1 = 100 + 2.5 · ε1 and v̂B = vB,init+vB,2 · ε2 = 50 + 5 · ε2. The
uncertainty causes represented by the ε1 and ε2 symbols directly influence the coordinator output
speed request and the calculated distance between the vehicles. Symbols are propagated through
the system and fed back to the input of the Distance Control block. Thus, partial deviations
of a time-step also influence future simulation time-steps. The full model is calculated with a
time-step period of 10 ms.

Table 5.7: Parameter setup and deviation documentation of the ACC example

Parameter Description Value

ACC configuration of car A

dinit Initial distance between vehicle A and B 40m
vCC Cruise control speed setup 100 km/h (= 27.78m/s)
vCC,1 Deviation of the cruise control speed setup ±2.5 km/h, (= ±0.694m/s)
dtarget Distance control target distance setup 15m
k Distance controller proportional factor 1

Speed profile of car B

vB,init Initial speed of vehicle B 50 km/h, (= 13.9m/s)
taccelerate Time period before vehicle B accelerates 40 s

aB Acceleration rate of vehicle B 0.417m/s2

vB,2 Speed deviation of vehicle B ±5 km/h, (= ±1.39m/s)

Coordinator block

For the coordination of CC and DC, I use a minimum coordinator block, which forwards their
lower speed request value as applied at its inputs. In the SESYD framework, no minimum
operator for AAFs is available yet, min(v̂CC , v̂DC), where v̂CC and v̂DC are AAFs.

Figure 5.37 shows the individual CC and DC speed requests when car A is in CC mode and
approaching car B. The center value of v̂CC is constant at 100 km/h, superimposed by a 2.5 km/h
deviation (symbol ε1). The center value and the specified deviation range are illustrated by the
brown dashed and the red lines, respectively. v̂DC is decreasing according to the implemented
control equation 5.20. Again, the brown dashed line indicates the center value and the red
line the deviation caused by the symbol ε1. Additionally, v̂DC includes the deviation symbol ε2
representing the speed deviation of car B, where the blue lines show the accumulated deviation
of both ε1 and ε2. Due to the closed-loop model structure, v̂CC and v̂CC are correlated through
including the same symbol ε1.

The rightmost simulation point in Figure 5.37 indicates the first point in time when the ranges of
the speed requests from CC and DC overlap, v̂CC � v̂DC = true. In principle, starting from this
point in time, due to the unpredictable values of the ε symbols, I cannot determine with certainty
whether the CC or the DC speed request has a lower value. Such a characteristic is called an
uncertain minimum.

At a closer look, due to the given symbol correlation between v̂CC and v̂DC , it may even happen
that the point in time when the minimum of requested speeds becomes uncertain is additionally
shifted in time. Hence, in a first step I handle the given ε1-correlation correctly by calculating
the AA subtraction of v̂DC and v̂CC . The result of v̂z = v̂DC − v̂CC is plotted in Figure 5.38. The

146

Demonstration Examples and Results

Figure 5.37: CC and DC speed requests and their deviations over time, until their ranges start to overlap

minimum becomes uncertain if the value 0 is within the calculated interval range of v̂DC − v̂CC .
This can be expressed by using the functions value and range: 0 ∈ range(value(v̂z)) [Rad16].
The arrows in the figure indicate such a situation. If and when this happens, cannot be uniquely
evaluated if the ACC feature is in CC or DC mode, due to the unknown values of ε1 and ε2.

Figure 5.38: Plot of v̂DC − v̂CC and a case where 0 is included within its interval range

Minimum approximation using intervals

As a second step, for points in time when the minimum is uncertain, approximations are calcu-
lated. The first minimum approximation is based on Interval Arithmetic calculations, which do
not take correlations between CC and DC requests into account. Interval Arithmetic calculations,
in general, result in more pessimistic solutions than Affine Arithmetic calculations.

As illustrated in Figure 5.39, I have to distinguish four cases of how the ranges of CC and DC
may relate to each other. The ranges on the right plotted in red are the results for each case, to
be used for our approximation of the minimum form min(v̂CC , v̂DC).

147

Demonstration Examples and Results

Figure 5.39: Cases of overlapping CC and DC ranges and the corresponding range for the minimum
approximation

To create an output AAF for the minimum operator based on that, I handle the approximation
representation in the same way as for non-linear operators such as multiplication, division, etc.
The affine part of the result is defined either by the CC or the DC request, depending on their
central values. However, the output of the minimum operator is an AAF caused by the DC or
CC request inputs, respectively. We also add an extra symbol and a partial deviation αi, which
widens this range if the minimum is uncertain (see Subsection 3.2.1) For the resulting AAF, I also
calculate an approximation central value βi, which is located in the middle of the approximated
output range.

As a result and to sum up, my approximation for the minimum operator includes a two-step
process:

• First I evaluate an AAF for v̂DC − v̂CC . If 0 is included within its interval range, we
know that the minimum value is uncertain and can be caused by a CC or a DC request,
respectively. The system can be in CC or DC mode depending on the unknown value of ε
symbols.

• As a second step, if the minimum is uncertain, I calculate an approximation form covering
the worst case. The approximation interval is evaluated by uncorrelated IA considerations
including different cases of overlapping situations. Finally, the approximation is stored
within an AAF object setting corresponding α and β values.

Minimum evaluation with Affine Arithmetic Decision Diagrams

Since the minimum approximation with intervals does not utilize any of the information contained
in an AAF in addition to the intervals per se, I also use a more precise approximation with
AADDs. AADDs are a central concept of the thesis published by Carna Radojicic [Rad16].
Results using AADDs are a more precise reference for the evaluation of the presented interval
based approximation implemented in the SESYD framework.

As described above, the minimum is uncertain if we cannot determine if CC or DC has a lower
value, i.e., if the value 0 is within the calculated interval range of v̂DC − v̂CC . The basic idea for
handling this uncertainty is to use a binary decision diagram for minimum evaluation. At each

148

Demonstration Examples and Results

point in time during the simulation when this uncertainty exists, an internal vertex is created
in such a diagram with two successor edges, labeled true and false, depending on whether the
condition (v̂DC − v̂CC ≥ 0) is fulfilled. The value true signifies the CC case, i.e., in this part of
the tree the assumption is that the speed request of CC is used. For the value false, however,
the speed request of DC is taken. Since v̂DC and v̂CC are AAFs, this distinction depends on
the values of ε1 and ε2. A solver is used for finding those partitions of epsilon ranges for which
the condition is fulfilled or not. Through recursive application for the next point in time of the
simulation, a tree structure is created. For each vertex below in the tree, only these value ranges
are valid, of course. For each path, there is a terminal vertex, whenever there is no minimum
uncertainty any more. It is assigned the AAF of v̂DC or v̂CC , respectively.

Simulation and results

In the simulation run, the speed profile of car B as shown in Figure 5.36 is used. Car A is
approaching first, while vA = vCC > vB, until the selected target distance is reached. This is
illustrated in the left part of Figures 5.40, 5.41 and 5.42. Then, as long as the speed of car B does
not change, vA = vDC = vB, the DC block holds the given target distance. This time period is
cut out in the figures. Once car B accelerates resulting in vB > vCC , car A may also increase its
speed, but it must not exceed the selected CC cruise speed (see the right part of Figures 5.40, 5.41
and 5.42). Hence, there is a discrete change involved again, this time from vA = vDC to vA = vCC .

For calculating the minimum of AAFs, I used the approximations based on interval considerations
and AADDs as defined above. The corresponding lines in the figures are shown in magenta and
green, respectively. For showing the subintervals for the interval approximations, I use red lines
for ε1 and blue lines for accumulated ε1 and ε2 deviations.

...

...

Figure 5.40: CC and DC speed requests

Figure 5.40 illustrates the speed requests of CC and DC, respectively. CC has a constant speed
request of 27.78 m/s and a deviation range of 0.694 m/s indicated by the red lines representing
the bounds of the range. The DC feature has a decreasing speed characteristic caused by the
decreasing distance between the vehicles. The blue lines show the accumulated ε1 and ε2 devi-
ation causes of the DC speed request for AAF using the interval-based approximation for the
coordinator block. First, ACC is in CC mode, and the upper bound of the CC request is clearly
smaller than the lower bound of the DC request, until the ranges start to overlap, which is marked
by the two vertical cursors (strictly speaking, the v̂DC − v̂CC interval range includes 0).

149

Demonstration Examples and Results

Starting at this point in time, the minimum operation of the coordinator block is approximated.
The corresponding output of the coordinator is shown in Figure 5.41. I evaluate two approx-
imations for the minimum based on intervals and AADDs, respectively. The slight differences
between the green and the magenta line in the left part of the figure are caused by the behavior
of the interval-based approximation, which is still switching between DC and CC modes based
on the center value of the AAF.

...

Figure 5.41: Approximated minimum coordinator output

As a result of the coordinator, I plot in Figure 5.41 the boundaries of the approximation forms
for interval approximation (in magenta), and for AADD-based approximation (in green). Due to
the strict requirement of an AAF that the center value has to be in the middle of the spanned
range, for the interval-based approximation a center value is additionally calculated (stored as a
β value within an AAF object). It is illustrated by the brown dashed line.

Once the minimum is no longer uncertain (the DC request is for certain smaller than the CC
request), ACC is in DC mode. The speed request changes its characteristic to an exponentially
shaped curve, asymptotically approaching a value of 13.9 m/s (see the horizontal cursor), which
is the speed of car B. The exponential shape is caused by the control behavior of the DC feature
(see equation 5.20) and the closed-loop system structure.

The right parts of the Figures illustrate the acceleration scenario of car B. I focus on the effect
occurring at the point in time when car B is becoming faster than the CC speed of car A (t > 68 s).
Much as in the approach scenario, the DC and CC request ranges start to overlap and the
coordinator calculates an approximation for the minimum (more precisely in two different ways).
For the interval-based approximation ACC switches between CC and DC mode, depending on
the minimum of the center values of their requests. Thus, ACC switches back to CC mode, but
DC is still independently calculating speed requests in parallel. Due to the constant output of
the coordinator (CC speed), for DC the feedback loop is broken. Thus, the deviation bounds are
increasing. The coordinator is still approximating the minimum by taking the interval minimum
according to the cases shown in Figure 5.39. This explains the partially parabolic shape of the
approximation curve of the minimum values. Hence, for the described scenario where car B is
speeding up and exceeding the configured CC speed of car A, the minimum approximation has a
pronounced pessimistic range. The approach using AADDs (green line in Figure 5.41) does not
have this effect and is, therefore, much more precise.

Figure 5.42 shows the distance between car A and car B over time. The corresponding center
value (brown dashed line) starts at the defined initial distance of 40 m. Since there is no initial
deviation set for the distance, the first simulation point is an AAF having a radius of 0. In the

150

Demonstration Examples and Results

...

Figure 5.42: Distance between car A and B

following, the deviations of the CC speed (based on the symbol ε1) and the speed of car B (based
on the symbol ε2), continuously influence the range of the distance, until ACC is in DC mode
and the deviation causes (partial deviation values) are constant. Due to the physical dependency
between the speeds of car A and B, also the partial deviation values get integrated over time.
The influence of ε1 is illustrated by the partial deviation bounds as shown in red boundary lines,
the influence of ε2 by the blue boundary lines, where more precisely the red part has to be taken
out, since the blue lines show the accumulated partial deviations.

A closer look at the subinterval ranges for ε1 and ε2 reveals that the partial deviation with
the symbol ε2 representing the speed deviation of car B has a higher impact on the deviation
range of the distance. This can be seen in Figure 5.42, since for all points in time (except 0)
the differences between the red lines and the brown center line is smaller than the differences
between the blue and the red lines. If and when ACC is in DC mode (illustrated on the right
from the courser in Figure 5.42), the radius of the distance is decreasing. This is caused by the
closed-loop system structure including the DC controller block, which continuously attenuates
partial deviation values. The asymptotic trend of the distance line approaches the user-specified
target distance of 15 m.

The right part of Figure 5.42 illustrates the distance range for the situation where car B exceeds
the selected CC speed of car A. Based on the approximation effect for the interval-based approach
described in Figure 5.41, there is also an impact on the distance boundaries. The parabolic shape
of the curve of the approximated speed output of the coordinator is propagated to the distance.
Thus the displayed lines for AAF are also a pessimistic approximation of the distance between
car A and B. This effect is strongly decreased if the time span of overlapping CC and DC requests
is shorter (e. g. caused by a larger acceleration of car B).

The green lines in Figure 5.42 illustrate the bounds of the minimum using AADDs. Also for the
distance, the effect of the uncertain mode switch from DC to CC (t > 68 s) for the interval-based
minimum approximation is not present when using AADDs.

The more precise approximation of the minimum operation using AADDs requires an increased
simulation runtime, as compared to using the intervals only. The simulation of the presented
driving scenario using an AADD-based minimum took about 4 minutes (on a standard PC),
compared to 5 seconds using the interval-based approach.

151

Demonstration Examples and Results

ACC feature analysis

For the analysis of the ACC feature, I created temporal and structural traces as defined in Sections
4.5 and 4.6 First I started with two temporal traces for the partial deviations included in the
distance AAF. The initial objective of the analysis is to identify the point in time when the
deviation of the distance is a maximum. The temporal traces of the partial deviations included in
the distance value is illustrated in Figure 5.43. The red line is the trace for the partial deviation
associated with ε1 (deviation of CC speed), the blue line for ε2 (speed deviation of car B).

Figure 5.43: Temporal trace of the distance

Based on these trace results, the following qualitative statements for the analyzed ACC feature
and the given scenario can be made:

• The partial deviation value of the distance for ε1 is negative due to the dependencies given
by the physical model. Consider a positive value of ε1, causing a speed value vA > vCC .
This results in a faster approach towards car B, i.e., a smaller distance, as compared to
vA = vCC .

• The absolute impact of the deviation associated with ε2 on the distance is higher than the
one associated with ε1, by a factor of 2 (equal to the ratio of the given speed deviations).

• The critical system state (in terms of distance deviation) occurs if and when the ACC
feature is in CC mode. Due to the lack of any distance control function, deviations get
continuously integrated, which also widens the total range (see the left part of Figure 5.43
until ACC switches to DC mode at t = 0.825 s). This is also the case after the mode change
from DC back to CC at t = 73.3 s. The slope of the linear part indicates for the initial
approach of car A an increase of the deviation of the distance between the vehicles by 2 m
within one second.

152

Demonstration Examples and Results

• The first mode change from CC to DC at t = 0.825 s is picked as a critical point in
time for our simulation and selected for further analysis using a structural trace (analysis
refinement).

To refine the analysis procedure I continued the verification process with creating structural traces.
For the ACC example, I created two structural traces for ε1 and ε2, respectively, which is specified
in the equation below. The point in time for recording the trace is set to ts = 0.825 s, where ACC
switches from CC to DC mode in the given driving scenario. The traces are defined according to
the following equation, and include all data values of the system (v̂CC , v̂DC , v̂A, v̂B, d̂):

τstructural1,2(ε1,2) =< select(v̂CC(ts), ε1,2),

select(v̂DC(ts), ε1,2), select(v̂A(ts), ε1,2),

select(v̂B(ts), ε1,2), select(d̂(ts), ε1,2) >

Evaluating these formulas with the corresponding values results in the following numerical se-
quences:

τstructural1(ε1) =< 0.694, 0.534, 0.649, 0, 0.534 >

τstructural2(ε2) =< 0, 0.2, 0, 1.39, 1.11 >

Defined traces may include partial deviation values from different physical quantities (speeds and
a distance in this case). To facilitate the comparison of the partial deviation values included here,
we divide them by the radius (computed by the rad operator) of the corresponding AAF (and
multiply by 100) to get a percentage value.

τstructural1%(ε1) =〈 69.4

rad(v̂CC)
,

53.4

rad(v̂DC)
,

64.9

rad(v̂A)
,

0

rad(v̂B)
,

53.4

rad(d̂)

〉
=

< 100%, 72.75%, 100%, 0%, 32.48% >

τstructural2%(ε2) =〈 0

rad(v̂CC)
,

20

rad(v̂DC)
,

0

rad(v̂A)
,

139

rad(v̂B)
,

111

rad(d̂)

〉
=

< 0%, 27.25%, 0%, 100%, 67.52% >

As a result, we can directly interpret these numbers for tracing the development of distance
deviations in the system structure. At the given point in time for this structural analysis, ACC is
in CC mode, hence the distance contribution of ε1, 32.48%, results from v̂CC . The vB deviation
impact of 67.52% on the distance range is only propagated in the physical model, which is based
on Newton’s laws. Also the speed profile deviation of car B is given by the simulated scenario
and cannot, in principle, be improved by the ACC feature. Unfortunately, the major part of the
integrating characteristic of the distance (partial deviation associated with ε2) while ACC is in
CC mode cannot be optimized. Thus, the only possibility to decrease the integration effect is to
reduce the deviation of the CC speed parameter.

For further evaluation of the ACC feature, I abstracted the model to a qualitative minimalist
model used for formal system analysis as described in Section 4.9 [RLK16]. In general, I followed
the modeling scheme presented in Figure 5.33. This includes a physical model, models for the CC
and DC features and a feature coordinator. But, in this case, each of this submodels is represented

153

Demonstration Examples and Results

as a finite state machine. States of the FSM models represent a classification of values (in the
form of an interval) for corresponding physical quantities. Thus, I do not longer use scalar values
for physical quantities. For example the DC and CC features may request a low, medium or high
speed request. The corresponding speed values of the claassification are not relevant for model
checking the behavior of the system in general. Transitions between states are given by conditions
depending on individual sub-FSM states (e. g. the coordinator FSM changes its state to low if
CC is in state high and DC is in state low (minmum behavior)). Also, the distance value between
car A and car B is calssified (CC Guided,DC Target,Too Close and Collision) representing states
physical model FSM. For example, Figure 5.44 illustrates a selected part of the complete model
showing the state machines representing the behavior of car B (upper FSM) and the FSM for the
distance between the cars. An important benefit of formally checking the ACC feature is that in
the perspective of model checking we are not forced to define the driving profile of car B. After
an initial speed setup car B may change its states (low,medium,high) individually not defined by
a specific speed profile as given in Figure 5.36 above.

Figure 5.44: FSM models (a selected part of the full ACC model) representing the posiible behaviors of
car B and the distance classification.

These states, strictly speaking, the Collision state, is used for definition of the following safety
property:

AG(state phy dist 6= COLLISION) = ¬EF (state phy dist = COLLISION) (5.21)

In the perspective of formal verification, model checking one of the given formulas results in a state
reachability problem which can be in natural language formulated as: Starting from the initial
state, there exists no computation path where the Collision state of the Distance Classification
FSM is reached. For experiments, I used the model checking tool NuSMV [3] and in [RLK16] I
show some results of the runs. We discuss the abstraction of the model in detail and address the
requirement of the Too Close in the FSM representing a model for the distance.

154

6 Conclusion and Outlook

In this chapter, I conclude this thesis. First, I give a resume of evaluated results and contributions
to the research field. This includes advantages of the re-implemented SESYD framework and the
associated enhanced system analysis processes. Second, I identify and discuss selected future
research topics which conduct this thesis and potentially further advance the context of range
based system analysis and verification processes.

6.1 Summary and Discussion of Results

In this summary, I reiterate the importance of range based modeling- simulation- and analysis
techniques during the design phase. For highly innovative applications, such as those firmly
integrated into the areas such as Industry 4.0 and IoT, the requirements in functional density,
reliability, flexibility, and robustness are becoming more and more demanding. In general, pa-
rameter deviations receive an increasing impact on a system’s performance and in worst-case
considerations, the system will not operate at all. Besides internal variabilities, also external
uncertainties have to be taken into account. cyber-physical systems highly interact with their
physical sourrounding and can not rely on predictable static environmental conditions. They
have to satisfy minimum performance requirements also at their specified operational bounds.

Thus, the goal of range based processes, as described in this thesis, is to increase the insight into
the system during its design phase, with particular attention to potential occurring uncertainty.
Such uncertainties (internal or external) entail parameter variations which propagate through
the system structure. It is a significant added value for design processes and subsequent system
optimization if this propagation of deviations can be tracked and better understood.

This thesis presents a set of concepts (also integrated into a software framework) for modeling,
simulation, and analysis of systems with deviant inputs.

Modeling:
The primary approach in this work is to use semi-symbolic techniques (Affine Arithmetic forms)
for the representation of uncertainties. This has the consequence that a set of new enhanced
analysis features is enabled. I use the original form of AAFs (Affine Arithmetic forms) which
do not include any probabilistic information or enhanced structures for representing control flow
uncertainty. However, I motivate a new object-oriented approach for mapping AAFs to object
data structures (and their implementation in the C ++ programming language). This has the

155

Conclusion and Outlook

consequence that the usage of AAFs gets more flexible and extensible. New features, such as
user-specific approximations, symbol management, etc. which were not possible in prior AAF
framework implementations, are provided.

Simulation:
Concerning simulation procedures, I mainly use already published state of the art algorithms for
AAF and IA operations. For multi-run methods, I present a module in the framework which can
be interfaced with the SystemC simulation core to enable multi-run functionalities. Multi-run
approaches are not provided by the original SystemC implementation till now. However, these
simulation methods have to be adapted for being integrated into the mentioned object-oriented
framework. Besides arithmetic operations, I developed various new features for plotting and post-
processing simulation results with the goal that the designed AAF-, interval-, multi-run variable
objects can be presented in a standard waveform viewer.

System analysis:
The developed system analysis features and their application are beside the new framework
architecture the main scientific contribution of this thesis. For analysis, I focus on processes
which benefit significantly (or are even possible) by representing parameter deviations using
AAFs. Strictly speaking, the proposed algorithms rely on the ability to monitor the propagation
of deviations through the system (deviation tracing) which is comprehensively enabled by AAFs.
To get to the point, appropriate analysis procedures are:

• Ratio analysis and deviation metrics, which allows the identification of correlations as well
as an impact assessment of specific uncertainty causes.

• Assertion driven system analysis is used for checking assertion statements, including range
based expressions, during the run of a simulation.

• Temporal tracing of deviations is used for enhanced monitoring of deviations in the time
domain.

• Structural deviation tracing analyzes deviation impact on specified paths through the sys-
tem structure.

• Deviation hot-spot detection combines temporal and structural tracing features to iden-
tify critical events in the temporal domain, and critical functional blocks in the structural
domain.

• Frequency domain analysis is mainly featured by the FFT post-processing functions of
the used waveform viewer. However, their application requires the mentioned enhanced
simulation result plotting functions.

• Formal system analysis, based on model checking algorithms is used to check potential
violations of safety-critical properties caused by parameter deviations.

In general, I propose to use the given analysis features in a planned and refined approach. First,
an initial analysis objective is set, and potential verification goals are defined. Second, a proper
analysis method is applied and refined in a way that the specified goal orientation is followed step
by step until sufficient insight for subsequent optimization is reached.

The developed modeling, simulation and analysis concepts are presented by using four demon-
stration examples. These examples are models which are defined on different levels of abstraction.

156

Conclusion and Outlook

• On a silicon level, a timing model of an inverter stage based on the included transistors
is presented. The impact of production uncertainties in transistor dimensions to switching
propagation delays is analyzed. The propagation delay model is subsequently used for
modeling a ring oscillator. The example shows how silicon level uncertainties propagate to
high level consequences in the inverter’s switching performance.

• A communication transmitter system is modeled by a two-stage an Amplitude-Shift Keying
modulator. For the including non-linear multiplication operations various approximations
are calculated. On the first side, this example shows the user specific approximation man-
agement implemented in the SESYD framework and on the other side, the characteristics
of approximation algorithms are highlighted.

• On a module level of abstraction, a power-line communication system is shown. Parameter
deviations in the model are given by uncertain power-line characteristics (e. g. frequency,
unbalance) and uncertain parameters in transmitter and receiver modules (e. g. tempera-
ture, voltage offset). For deviation analysis the propagation of uncertainties is evaluated
in temporal and structural domain. Thus, critical events during a transmission cycle and
critical functional blocks in the system architecture are identified.

• In a system level perspective an abstract behavioral model of ACC (Adaptive Cruise Con-
trol) is presented. ACC is a closed loop controller which has in addition two operational
modes. These modes represent behavioral discontinuities which significantly influence the
behavioral bounds of the system.

The presented examples underline the added value of the analysis concepts presented in the
thesis. Analysis results, which are mainly enabled by enhanced deviation tracing features of
the implemented framework, enhance the knowledge about inner systems characteristics and
enable goal oriented subsequent design optimization. Thus, this contribution in AAF analysis
approaches is a potential further steps towards the integration of AAF modeling, simulation and
analysis methodologies into industrial design tools.

6.2 Future Research Work

For future research I highlight selected technological directions for pottential subsequent activities:

Range based in-field simulation
The main idea of this approach is to deploy simulation and analysis applications to computer
systems which are distributed in the production field. In contrast to runtime verification ap-
proaches as introduced in Section 4.10 at this method, the full simulation core (including analysis
functions) and a model of the system is executed on the hardware target. Strictly speaking, a
processor integrated within a system runs in addition to the control software a simulation of its
application. Possible application fields are: process control, energy and IT applications, ambient
electronics, safety-critical applications, etc. In practice, today often very powerful and possibly
multi-core processor units (e. g. ARM architecture) are used. Simulation runs for example can be
executed during standby phases or on unused processor cores in parallel to the control applica-
tion software. Goals and advances of this parallel simulation approach are On-the-fly analysis and
optimization of the considered system, tuning of the control algorithm by enhanced parameter

157

Conclusion and Outlook

estimation and decision-making, detection of potential fault states in advance, increase of the
long-time period efficiency, etc.

For the proposed simulation running on the target system also range based (AAF) approaches are
promising. This allows more precise forecasts and behavioral estimations if disturbances of input
parameters, environmental changes, unforeseeable events, strictly speaking, dynamic deviations,
are present. As a result, the efficiency of the system can be potentially increased based on
evaluated output ranges. As an initial proof of concept, I compiled the SystemC simulator
and the proposed SESYD framework for the ARM platform and deployed the simulation to a
Raspberry Pi development system. Next steps are to create a specific demo application and show
the added value of the approach.

Machine learning guided system analysis
This approach addresses the idea to extend the SESYD framework by machine learning algo-
rithms. The created knowledge base is used for analysis processes in a way to identify potentially
interesting anomalies in the model’s signal outputs and for goal-oriented automatic guidance
through the verification process. Training data for appropriate algorithms may be evaluated
from sequential simulation-based regression testing or created manually by supervised learning.
Generated knowledge databases may also be used in a cross-project way, and can be shared as
a cloud knowledge database for the verification of open source system designs. The concept of
range based simulation may bring an added value in combination with the proposed learning
approach. For example potential causes (e. g. critical AAF symbols) responsible for worst-case
behavior can be evaluated first by deviation tracing methods. Second, based on regression runs
for the propagation of the deviation cause a corresponding propagation template can be learned.
This knowledge may subsequently assist a verification engineer in marking further critical paths
through the system.

Blockchain technology for trusted verification
Blockchain technologies will potentially become the revolutionary innovation influencing all kind
of applications in the next years [PM17]. The main idea is to use blockchain technology for
system verification. In professional system development processes the results of verification are
already stored in databases. Maybe these verification data, including the setup, system version,
configurations, the results, etc. are added to a blockchain structure. This has the potential
benefit that performed verification steps, and their results cannot be manipulated. Admittedly,
that’s a very vague idea but eventually, these technologies may influence future verification tools.

158

Literature

[AAC12] Arendt, Paul D. ; Apley, Daniel W. ; Chen, Wei: Quantification of Model
Uncertainty: Calibration, Model Discrepancy, and Identifiability. In: Journal of
Mechanical Design (2012), October, Nr. 100908, S. 1–12

[ABC+11] Arden, Wolfgang ; Brillouet, Michel ; Cogez, Patrick ; Graef, Mart ; Huiz-
ing, Bert ; Mahnkopf, Reinhard ; Pelka, Joachim ; Pfeiffer, Jens-Uwe ;
Rouzaud, Andre ; Tartagni, Marco ; Van Hoof, Chris ; Wagner, Joachim:
Towards a ”More-than-Moore” roadmap. In: Report from the CATRENE Scien-
tific Committee, 2011

[BGG+09] Barke, E. ; Grabowski, D. ; Graeb, H. ; Hedrich, L. ; Heinen, S. ; Popp, R.
; Steinhorst, S. ; Wang, Yifan: Formal approaches to analog circuit verification.
In: Design, Automation Test in Europe Conference Exhibition, 2009. DATE ’09.,
2009. – ISSN 1530–1591, S. 724–729

[Bie09] Chapter Bounded Model Checking In: Biere, Armin: Handbook of Satisfiability.
Bd. 184. ios press, 2009, S. 457–481

[BKBD06] Bausch, J. ; Kistner, T. ; Babic, M. ; Dostert, K.: Characteristics of Indoor
Power Line Channels in the Frequency Range 50 - 500 kHz. In: 2006 IEEE Inter-
national Symposium on Power Line Communications and Its Applications, 2006,
S. 86–91

[BZ10] Boule, M. ; Zilic, Z.: Generating Hardware Assertion Checkers - For Hard-
ware Verification, Emulation, Post-Fabrication Debugging and On-line Monitoring.
Bd. 1. SPringer Science+ Business Media, 2010

[Cad10] Cadence Design Systems Inc.: Cadence PSpice A/D and PSpice advanced analysis.
2010

[Cel91] Cellier, Francois E.: Defining Uncertainty - A Conceptual Basis for Uncertainty
Management in Model-Based Continuous system modeling. New York : Springer-
Verlag, 1991. – ISBN 0387975020

[CGM07] Cappe, O. ; Godsill, S.J. ; Moulines, E.: An Overview of Existing Methods
and Recent Advances in Sequential Monte Carlo. In: Proceedings of the IEEE 95
(2007), May, Nr. 5, S. 899–924. – ISSN 0018–9219

[CL07] Chan, Hock P. ; Lai, Tze L.: Efficient importance sampling for Monte Carlo
evaluation of exceedance probabilities. In: Ann. Appl. Probab. 17 (2007), 04, Nr.
2, S. 440–473

[Cou17] Courtland, R.: Moore’s law’s next step: 10 nanometers. In: IEEE Spectrum 54
(2017), January, Nr. 1, S. 52–53. – ISSN 0018–9235

[CS93] Comba, J. ; Stolfi, J.: Affine atithmetic and its applications to computer graph-

159

LITERATURE LITERATURE

ics. In: Anais do VI Simposio Brasileiro de Computacao Grafica e Processamento
de Imagens (SIBGRAPI), 1993

[Die03] Dieschmid, Hans J.: Höhere Mathematik . Differential- und Integralrechnung.
Manz Verlag, 2003. – ISBN 3–7068–1390–4

[DIN11] DIN: Standard EN 50160 - Voltage Characteristics in Public Distribution Systems.
DIN, July 2011. – Scientific Report. – ISSN EN 50160:2011–02

[DLM07] Daumas, Marc ; Lester, David R. ; Muñoz, César A.: Verified Real Number
Calculations: A Library for Interval Arithmetic. In: CoRR abs/0708.3721 (2007)

[Dor10] Dorey, Fredrick J.: Statistics in Brief: Confidence Intervals. In: Springer- In
Brief (2010)

[DPAC17] Dutta, T. ; Pahwa, G. ; Agarwal, A. ; Chauhan, Y. S.: Impact of Process Vari-
ations on Negative Capacitance FinFET Devices and Circuits. In: IEEE Electron
Device Letters PP (2017), Nr. 99, S. 1–1. – ISSN 0741–3106

[Dre10] Chapter Introduction In: Drechsler, Rolf: Advanced Formal Verification. Bd. 1.
Kluwer Academic Publishers, 2010

[Dre17] Drechsler, Rolf: Formal System Verification: State-of the-Art and Future
Trends. Springer, 2017

[Dro09] Drosg, Manfred: Dealing with Uncertainties - A Guide to Error Analysis. 2.
Springer Dordecht Heidelberg London New York, 2009

[Eco06] Economakos, George: Behavioral synthesis with SystemC and PSL assertions for
interface specification. In: Circuits and Systems, 2006. ISCAS 2006. Proceedings.
2006 IEEE International Symposium on IEEE, 2006, S. 4–pp

[EDK13] Ertl, D. ; Dominka, S. ; Kaindl, H.: Using a Mediator to Handle Undesired
Feature Interaction of Automated Driving. In: 2013 IEEE International Conference
on Systems, Man, and Cybernetics, 2013. – ISSN 1062–922X, S. 4555–4560

[Eib04] Eibl, Christian J. gSysC - Visualisierung von SystemC-Projekten. 2004
[FDC13] Farid, Moshgelani ; Dhamin, Al-Khalili ; Come, Rozon: Ultra-Low Leakage

Arithmetic Circuits Using Symmetric and Asymmetric FinFETs. In: Journal of
Electrical and Computer Engineering 2013 (2013), August

[FS] FH-Stralsund: Die CMOS Logik. – Lecture notes
[Fuj99] Fujimoto, Richard M.: Parallel and Distribution Simulation Systems. 1st. New

York, NY, USA : John Wiley & Sons, Inc., 1999. – ISBN 0471183830
[GGB06] Grabowski, D. ; Grimm, C. ; Barke, E.: Semi-symbolic modeling and simulation

of circuits and systems. In: Circuits and Systems, 2006. ISCAS 2006. Proceedings.
2006 IEEE International Symposium on, 2006, S. 4 pp.–986

[GHW04] Grimm, Ch. ; Heupke, W. ; Waldschmidt, K.: Semi-Symbolic Modeling and
Analysis of Noise in Heterogeneous Systems. In: Froum on Specification and Design
Languages (FDL 04), 2004

[GLMS10] Groetker, Thorsten ; Liao, Stan ; Martin, Grant ; Swan, Stuart: System
Design with SystemC. Springer Publishing Company, Incorporated, 2010

[GOB08] Grabowski, D. ; Olbrich, M. ; Barke, E.: Analog circuit simulation using range
arithmetics. In: 2008 Asia and South Pacific Design Automation Conference, 2008.
– ISSN 2153–6961, S. 762–767

[GR17] Grimm, Christoph ; Rathmair, Michael: Dealing with Uncertainties in
Analog/Mixed-Signal Systems: Invited. In: Proceedings of the 54th Annual Design
Automation Conference 2017. New York, NY, USA : ACM, 2017 (DAC ’17). –
ISBN 978–1–4503–4927–7, S. 35:1–35:6

[Gra09] Grabowski, Darius: Gebietsarithmetische Verfahren zur Simulation analoger

160

LITERATURE LITERATURE

Schaltungen mit Parameterunsicherheiten, Gottfried Wilhelm Leibniz Universität
Hannover, PhD Thesis, 2009

[GY17] Gustafson, John ; Yonemoto, Isaac: Beating Floating Point at its Own Game:
Posit Arithmetic. In: Supercomputing Frontiers and Innovations 4 (2017), Nr. 2.
– ISSN 2313–8734

[HA08] Hung, H. ; Adzic, V.: Monte Carlo Simulation of Device Variations and Mis-
match in Analog Integrated Circuits. In: Proceedingd of National Conference On
Ungraduate Research, 2008

[Her06] Herfort, W.: Skriptum für Mathematik 3 für Elektrotechnik - Wintersemester,
TU-Wien, 2006

[Her16] Herdt, Vladimir: Complete Symbolic Simulation of SystemC Models: Efficient
Formal Verification of Finite Non-Terminating Programs. Springer, 2016

[HG17] He, J. ; Guan, X.: Uncertainty Sensitivity Analysis for Reliability Problems with
Parametric Distributions. In: IEEE Transactions on Reliability 66 (2017), Sept,
Nr. 3, S. 712–721. – ISSN 0018–9529

[HJVE01] Hickey, T. ; Ju, Q. ; Van Emden, M. H.: Interval Arithmetic: From Principles
to Implementation. In: J. ACM 48 (2001), September, Nr. 5, S. 1038–1068. –
ISSN 0004–5411

[HPM17] Hasan, K. N. ; Preece, R. ; Milanovic, J. V.: Priority Ranking of Criti-
cal Uncertainties Affecting Small-Disturbance Stability Using Sensitivity Analysis
Techniques. In: IEEE Transactions on Power Systems 32 (2017), July, Nr. 4, S.
2629–2639. – ISSN 0885–8950

[HWC08] Haase, Joachim ; Wolf, Susann ; Clauß, Christoph: Monte Carlo Simulation
with Modelica. Frauenhofer-Institute for Integrated Circuits, Design Automation
Division, 2008. – 601–604 S

[JHY11] Jie, Han ; Huaiyan, Chen ; Yun, Cao: Uncertainty evaluation using Monte Carlo
method with MATLAB. In: Electronic Measurement Instruments (ICEMI), 2011
10th International Conference on Bd. 2, 2011, S. 282–286

[Jon03] Jones, C. B.: The early search for tractable ways of reasoning about programs.
In: IEEE Annals of the History of Computing 25 (2003), April, Nr. 2, S. 26–49. –
ISSN 1058–6180

[KD07] Kiureghian, Armen D. ; Ditlevsen, Ove: Aleatory or epistemic? Does it
matter? In: Special Workshop on Risk Acceptance and Risk Communication,
2007

[KG13] Karimi, Kavian ; Gary, Atkinson: What the Internet of Things (IoT) Needs to
Become a Reality. In: White Paper of Freescale and ARM, 2013

[KH05] Kang, Yong H. ; Hong, Songcheol: A simple Flash memory cell model for transient
circuit simulation. In: IEEE Electron Device Letters 26 (2005), Aug, Nr. 8, S. 563–
565. – ISSN 0741–3106

[KKK11] Kokil, Priyanka ; Kar, Haranath ; Kandanvli, V: Stability analysis of linear
discrete-time systems with interval delay: a delay-partitioning approach. In: ISRN
Applied Mathematics 2011 (2011)

[Kle08] Kleijnen, J. P. C.: Design Of Experiments: Overview. In: 2008 Winter Simula-
tion Conference, 2008. – ISSN 0891–7736, S. 479–488

[KO01] Kennedy, Marc C. ; O’Hagan, Anthony: Bayesian calibration of computer mod-
els. In: Journal of the Royal Statistical Society (2001), Nr. 3, S. 425–464

[Kol93] Kolev, L. V.: Interval Methods for Circuit Analysis. Bd. 1. Advanced Series on
Circuits and Systems, 1993

161

LITERATURE LITERATURE

[KPM04] Kolev, Lubomir ; Petrakieva, Simona ; Mladenov, Valeri: Interval criterion
for stability analysis of discrete-time neural networks with partial state saturation
nonlinearities. In: Neural Network Applications in Electrical Engineering, 2004.
NEUREL 2004. 2004 7th Seminar on IEEE, 2004, S. 11–16

[Kra06] Kraemer, Walter: Generalized Intervals and the Dependency Problem. In:
PAMM 6 (2006), Nr. 1, S. 683–684. – ISSN 1617–7061

[Kro10] Kropf, Thomas: Introduction to Formal Hardware Verification. Bd. 1. Springer-
Verlag Berlin Heidelberg, 2010

[Lam05] Lam, William K.: Hardware Design Verification: Simulation and Formal Method-
Based Approaches (Prentice Hall Modern Semiconductor Design Series). Upper
Saddle River, NJ, USA : Prentice Hall PTR, 2005. – ISBN 0131433474

[LGLK14] Liu, S. ; Gou, B. ; Li, H. ; Kavasseri, R.: Power-Line Communication Channel
Characteristics Under Transient Model. In: IEEE Transactions on Power Delivery
29 (2014), Aug, Nr. 4, S. 1701–1708. – ISSN 0885–8977

[LL15] Li, M. ; Lin, H. J.: Design and Implementation of Smart Home Control Systems
Based on Wireless Sensor Networks and Power Line Communications. In: IEEE
Transactions on Industrial Electronics 62 (2015), July, Nr. 7, S. 4430–4442. – ISSN
0278–0046

[LRK17] Luckeneder, Christoph ; Rathmair, Michael ; Kaindl, Hermann: Investigating
and Coordinating Safety-critical Feature Interactions in Automotive Systems Using
Simulation. In: Proceedings of the 50th Hawaii International Conference on System
Sciences, 2017

[LYX+10] Liu, B. ; Yin, J. ; Xiao, Y. ; Cao, L. ; Yu, P. S.: Exploiting Local Data Uncer-
tainty to Boost Global Outlier Detection. In: 2010 IEEE International Conference
on Data Mining, 2010. – ISSN 1550–4786, S. 304–313

[MBDG12] McConaghy, Trent ; Breen, Kristopher ; Dyck, Jeffrey ; Gupta, Amit:
Variation-aware design of custom integrated circuits: a hands-on field guide.
Springer Science & Business Media, 2012

[Mit98] MIT - CMOS Inverter: Propagation delay. 1998. – Lecture notes
[MKC09] Moore, Ramon E. ; Kearfott, R. B. ; Cloud, Michael J.: Introduction to

Interval Analysis. Society for Industrial and Applied Mathematics, 2009
[MMC11] Martynyuk, Anatolii A. ; Martynyuk-Chernienko, Yu A.: Uncertain dynam-

ical systems: stability and motion control. CRC Press, 2011
[MMMAY01] Miura-Mattausch, M. ; Mattausch, H.J. ; Arora, N.D. ; Yang, C.Y.: MOS-

FET modeling gets physical. In: Circuits and Devices Magazine, IEEE 17 (2001),
Nov, Nr. 6, S. 29–36. – ISSN 8755–3996

[MT06] Messine, Frédéric ; Touhami, Ahmed: A general reliable quadratic form: An
extension of affine arithmetic. In: Reliable Computing 12 (2006), Nr. 3, S. 171–
192

[Neu04] de Neufville, Richard: Uncertainty Management for Engineering Systems Plan-
ning and Design. In: Engineering Systems Sympossium (2004), March, S. 1–18

[OBJ05] Ostrovsky-Berman, Yaron ; Joskowicz, Leo: Uncertainty envelopes. In: Eu-
roCG, 2005, S. 175–178

[OSG11] Ou, Jiong ; Schupfer, Florian ; Grimm, Christoph: System Level Robust Com-
munication System Design using Extended SystemC AMS Building Block Library.
In: Austrochip 2011 - Workshop on Microelectronics, 2011, S. 39–44

[OSY+16] Okamoto, D. ; Suzuki, Y. ; Yashiki, K. ; Hagihara, Y. ; Tokushima, M. ; Fu-
jikata, J. ; Kurihara, M. ; Tsuchida, J. ; Nedachi, T. ; Inasaka, J. ; Kurata,

162

LITERATURE LITERATURE

K.: A 25-Gb/s; 5 mm2 Chip-Scale Silicon-Photonic Receiver Integrated With 28-
nm CMOS Transimpedance Amplifier. In: Journal of Lightwave Technology 34
(2016), June, Nr. 12, S. 2988–2995. – ISSN 0733–8724

[PKB07] Perraud, J.-M. ; Kuczera, G. ; Bridgart, R.J.: Towards a Software Archi-
tecture to Facilitate Multiple Runs of Simulation Models. In: MODSIM 2007
International Congress on Modelling and Simulation. Modelling and Simulation
Society of Australia and New Zealand, 2007, S. 846–852

[PLV10] Pennachin, Cassio ; Looks, Moshe ; de Vasconcelos, Joao A.: Robust sym-
bolic regression with affine arithmetic. In: Pelikan, Martin (Publisher) ; Branke,
Jürgen (Publisher): GECCO, ACM, 2010. – ISBN 978–1–4503–0072–5, S. 917–924

[PM17] Peck, M. E. ; Moore, S. K.: The blossoming of the blockchain. In: IEEE
Spectrum 54 (2017), October, Nr. 10, S. 24–25. – ISSN 0018–9235

[Pop98] Popova, Evgenija D.: On the Efficiency of Interval Multiplication Algorithms. In:
Real Numbers and Computers 3 (1998), S. 117–131

[PSL10] IEEE Standard for Property Specification Language (PSL). In: IEEE Std 1850-
2010 (Revision of IEEE Std 1850-2005) (2010), April, S. 1–182

[PSN04] Portal, J. M. ; Saillet, B. ; Nee, D.: Flash memory cell diagnosis: high
level model. In: Proceedings. 2004 IEEE Computational Systems Bioinformatics
Conference, 2004, S. 100–104

[PTVF02] Press, William H. ; Teukolsky, Saul A. ; Vetterling, William T. ; Flannery,
Brian P.: Numerical Recipes in C++ (2Nd Ed.): The Art of Scientific Computing.
New York, NY, USA : Cambridge University Press, 2002. – ISBN 0–521–75033–4

[QS03] Quaglia, F. ; Santoro, A.: Nonblocking checkpointing for optimistic parallel
simulation: description and an implementation. In: IEEE Transactions on Parallel
and Distributed Systems 14 (2003), June, Nr. 6, S. 593–610. – ISSN 1045–9219

[Qui13] Quinn, Patrick J.: FPGA based silicon innovations exploiting ”More than Moore”
technology. In: Conference on Ph.D. Research in Microelectronics and Electronics,
PRIME, 2013

[Rad16] Radojicic, Carna: Symbolic Simulation of Mixed-Signal Systems with Extended
Affine Arithmetic, PhD Thesis, 2016. – 115 S

[Rat15] Rathmair, M.: Range Based Analysis of Inner Systems Characteristics. In:
Design, Automation and Test in Europe (DATE) 2015, EDAA PhD Forum, 2015

[Ray08] Raychaudhuri, Samik: Introduction to Monte Carlo simulation. In: Mason,
Scott J. (Publisher) ; Hill, Raymond R. (Publisher) ; Mönch, Lars (Publisher) ;
Rose, Oliver (Publisher) ; Jefferson, Thomas (Publisher) ; Fowler, John W.
(Publisher): Winter Simulation Conference, WSC, 2008. – ISBN 978–1–4244–
2708–6, S. 91–100

[RGJR17] Radojicic, Carna ; Grimm, Christoph ; Jantsch, Axel ; Rathmair, Michael:
Towards Verification of Uncertain Cyber-Physical Systems. In: Proceedings 3rd In-
ternational Workshop on Symbolic and Numerical Methods for Reachability Anal-
ysis, SNR@ETAPS 2017, Uppsala, Sweden, 22nd April 2017., 2017, S. 1–17

[RHKP15] Rathmair, Michael ; Hoch, Ralph ; Kaindl, Hermann ; Popp, Roman: Consis-
tently Formalizing a Business Process and its Properties for Verification: A Case
Study. In: The Practice of Enterprise Modeling - 8th IFIP WG 8.1. Working Con-
ference, PoEM 2015, Valencia, Spain, November 10-12, 2015, Proceedings, 2015,
S. 126–140

[RK15] Rump, Siegfried M. ; Kashiwagi, Masahide: Implementation and improvements
of affine arithmetic. In: Nonlinear Theory and Its Applications, IEICE 6 (2015),

163

LITERATURE LITERATURE

Nr. 3, S. 341–359
[RL+18] Rathmair, Michael ; Luckeneder, Christoph ; ; Kaindl, Hermann ; Carna,

Radojicic: Semi-symbolic Simulation and Analysis of Deviation Propagation of Fea-
ture Coordination in Cyber-physical Systems. In: Proceedings of the 51th Hawaii
International Conference on System Sciences, 2018

[RLK16] Rathmair, M. ; Luckeneder, C. ; Kaindl, H.: Minimalist Qualitative Models
for Model Checking Cyber-Physical Feature Coordination. In: 2016 23rd Asia-
Pacific Software Engineering Conference (APSEC), 2016. – ISSN 1530–1362, S.
233–240

[RS13] Rathmair, M. ; Schupfer, F.: Hardware Trojan detection by specifying malicious
circuit properties. In: 2013 IEEE 4th International Conference on Electronics
Information and Emergency Communication, 2013, S. 317–320

[RS15] Rathmair, M. ; Schupfer, F.: Dealing with Uncertainties in Electronic Systems
Simulation. In: VSS - VIENNA young SCIENTISTS SYMPOSIUM 2015, 2015,
S. 34–35

[RS16] Rathmair, M. ; Schupfer, F.: Metrics for Formal Property Checking Against
Undesired Circuit Behavior in Embedded Systems. In: ITG-Fachbericht Analog
2016, 2016, S. 64–69

[RSGR14] Rathmair, M. ; Schupfer, F. ; Grimm, C. ; Radojicic, C.: Simulationsgestützte
Analyse der inneren Eigenschaften von Mixed-Signal Systemen (german). In: Pro-
ceedings of 16. Workshop - Analog Circuits 2014, 2014, S. 10–11

[RSK14] Rathmair, M. ; Schupfer, F. ; Krieg, C.: Applied formal methods for hardware
Trojan detection. In: Circuits and Systems (ISCAS), 2014 IEEE International
Symposium on, 2014, S. 169–172

[RSRG12a] Radojicic, C. ; Schupfer, F. ; Rathmair, M. ; Grimm, C.: Assertion-based
verification of signal processing systems with affine arithmetic. In: Specification
and Design Languages (FDL), 2012 Forum on, 2012. – ISSN 1636–9874, S. 20–26

[RSRG12b] Rathmair, M. ; Schupfer, F. ; Radojicic, C. ; Grimm, C.: Extended frame-
work for system simulation with affine arithmetic. In: Specification and Design
Languages (FDL), 2012 Forum on, 2012. – ISSN 1636–9874, S. 168–175

[Rub81] Rubinstein, Reuven Y.: Simulation and the Monte Carlo Method. New York :
John Wiley&Sons, Inc., 1981

[SB15] Santos, K.R.M. d. ; Beck, A.T.: A benchmark study on intelligent sampling
techniques in Monte Carlo simulation. In: Latin American Journal of Solids and
Structures 12 (2015), 08, S. 624 – 648. – ISSN 1679–7825

[Sch13] Schupfer, Florian: Design Refinement of Communication Systems Applying
Range Based Simulations, Vienna University of Technology, PhD Thesis, 2013

[SCS+00] Saltelli, Andrea ; Chan, Karen ; Scott, E M. [u. a.]: Sensitivity analysis. Bd. 1.
Wiley New York, 2000

[Sem05] Semmlow, J.L.: Circuit, Systems, and Signals for bioengineers: A Matlab based
introduction. Elsevier Academic Press, 2005. – ISBN 0–12–08–8493–3

[SF97] Stolfi, Jorge ; Figueiredo, Luiz Henrique D. Self-Validated Numerical Methods
and Applications. 1997

[SF03] Stolfi, J. ; de Figueired, L.H.: An Introduction to Affine Arithmetic. In:
TEMA Trend. Mat. Apl. Comput. Bd. 4, 2003, S. 297–312

[SG10] Schupfer, F. ; Grimm, C.: Towards more Dependable Verification of Mixed-
Signal Systems. In: Verification over discrete-continuous boundaries. Dagstuhl,
Germany : Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany, 2010

164

LITERATURE LITERATURE

(Dagstuhl Seminar Proceedings 10271). – ISSN 1862–4405
[SIVT06] Sevillano, Juan F. ; Irizar, Andoni ; Velez, Igone ; Tomasena, K.: Efficient

Monte Carlo Simulation Using SystemC. In: FDL, ECSI, 2006. – ISBN 978–3–00–
019710–9, S. 235–237

[SKG+10] Schupfer, F. ; Kärgel, M. ; Grimm, C. ; Olbrich, M. ; Barke, E.: Towards
abstract analysis techniques for range based system simulations. In: Specification
Design Languages (FDL 2010), 2010 Forum on, 2010, S. 1–6

[SKW08] Straka, Martin ; Kotásek, Zdeněk ; Winter, Jan: The design of hard-
ware checkers for verification and diagnostic purposes. In: Brno University of
Technology-Faculty of Information Technology 612 (2008), S. 66

[SLMW04] Shou, Huahao ; Lin, Hongwei ; Martin, Ralph ; Wang, Guojin: Modified
affine arithmetic in tensor form. In: The Proceedings of International Symposium
on Computing and Information (ISC&I 2004), Zhuhai, Guangdong, China Bd. 2,
2004, S. 642–646

[SS16] Sharma, Konark ; Saini, Lalit M.: Power-line communications for smart grid:
Progress, challenges, opportunities. In: Renewable and Sustainable Energy Reviews
67 (2016), S. 704 – 751. – ISSN 1364–0321

[Sys12] IEEE Standard for Standard SystemC Language Reference Manual. In: IEEE Std
1666-2011 (Revision of IEEE Std 1666-2005) (2012), Jan, S. 1–638

[TM13] Chapter From Process Variations to Performance Variations In: Trent Mc-
Conaghy, Jeffrey Dyck Amit G.: Variation-Aware Design of Custom Integrated
Circuits: A Hands-on Field Guide. Bd. 1. Springer-Verlag New York, 2013

[TS86] Tietze, U. ; Schenk, Ch.: Halbleiter-Schaltungstechnik. 8th. Berlin : Springer,
1986

[TUS16] Taranalli, V. ; Uchikawa, H. ; Siegel, P. H.: On the Capacity of the Beta-
Binomial Channel Model for Multi-Level Cell Flash Memories. In: IEEE Journal
on Selected Areas in Communications 34 (2016), Sept, Nr. 9, S. 2312–2324. – ISSN
0733–8716

[WH07] Wang, Z. H. ; Hu, H. Y.: Robust Stability of Time-Delay Systems with Uncer-
tain Parameters. In: Hu, H. Y. (Publisher) ; Kreuzer, Edwin (Publisher): Iutam
Symposium on Dynamics and Control of Nonlinear Systems with Uncertainty. Dor-
drecht : Springer Netherlands, 2007. – ISBN 978–1–4020–6332–9, S. 363–372

[WHR+03] Walker, W.E. ; Harremoes, P. ; Rotmans, J. ; vna der Sluijs, J.P. ; van
Asselt, M.B.A. ; Janssen, P. ; von Krauss, M.P. K.: Defining Uncertainty - A
Conceptual Basis for Uncertainty Management in Model-Based Decision Support.
In: Journal of Integrated Assessment (2003), Nr. 1, S. 5–17

[WHW15] Wang, S. ; Han, L. ; Wu, L.: Uncertainty Tracing of Distributed Generations
via Complex Affine Arithmetic Based Unbalanced Three-Phase Power Flow. In:
IEEE Transactions on Power Systems 30 (2015), Nov, Nr. 6, S. 3053–3062. – ISSN
0885–8950

[Wie17] Wiesinger, R:: Aging and Wear Out Effects in SoCs. Jan 2017. – TU Wien, SoC
Seminar Course (384.159)

[Wil03] Wille, Detlef: Repetitorium der Linearen Algebra Teil 1. Bd. 4. Springer, 2003. –
ISBN 3–923923–40–6

[WJBK10] Warmink, J.J. ; Janssen, J.A.E.B. ; Booij, M.J. ; Krol, M.S.: Identification
and classification of uncertainties in the application of environmental models. In:
Environmental Modelling and Software 25 (2010), Nr. 12, S. 1518 – 1527. – ISSN
1364–8152

165

LITERATURE LITERATURE

[WJCK16] Welte, A. ; Jaulin, L. ; Ceberio, M. ; Kreinovich, V.: Robust data processing
in the presence of uncertainty and outliers: Case of localization problems. In: 2016
IEEE Symposium Series on Computational Intelligence (SSCI), 2016, S. 1–7

[Wol09] Wolf, Marco: A Modeling Language for Measurement Uncertainty Evaluation,
Swiss Federal Institute of Technology, Zuerich, PhD Thesis, 2009

[WS15] Winner, H. ; Schopper, M.: Adaptive cruise control Handbuch Fahrerassisten-
zsysteme. Springer, 2015. – 851–891 S

[XHZ12] Xiao, Xi-sheng ; Huang, Ying-ping ; Zhang, Xi-hui: Optimizing checkpoint for
scientific simulations. In: Journal of Zhejiang University SCIENCE C 13 (2012),
Dec, Nr. 12, S. 891–900. – ISSN 1869–196X

[YWS17] Yu, T. ; Wang, X. ; Shami, A.: Recursive Principal Component Analysis-Based
Data Outlier Detection and Sensor Data Aggregation in IoT Systems. In: IEEE
Internet of Things Journal 4 (2017), Dec, Nr. 6, S. 2207–2216

[ZMR17] Zimpeck, A. L. ; Meinhardt, C. ; Reis, R.: Robustness evaluation of finFET
transistors under PVT variability. In: 2017 1st Conference on PhD Research in
Microelectronics and Electronics Latin America (PRIME-LA), 2017, S. 1–4

166

Internet References

[1] http://beltoforion.de/article.php?a=muparser. muparser - Fast Math Parser Library
- Version 2.2.5, Accessed: July 2017.

[2] http://mariusbancila.ro/blog/2009/02/03/evaluating-expressions-part-1/. Tu-
torial in developing a parser for mathematical expressions, Accessed: July 2017.

[3] http://nusmv.fbk.eu/. NuSMV: a new symbolic model checker, Accessed: January 2018.
[4] https://blogs.synopsys.com/theeyeshaveit/2012/09/05/silicon

-validating-28-nm-interface-and-analog-ip-designs/. Silicon Validating 28-
nm Interface and Analog IP Designs, Accessed: September 2012.

[5] https://community.cadence.com/cadence_blogs_8/b/cic/

posts/keeping-your-circuit-in-tune. Keeping Your Circuit in Tune: Sensitiv-
ity Analysis and Circuit Optimization, Accessed: April 2014.

[6] https://de.mathworks.com/matlabcentral/linkexchange/

links/936-b4m-interval-arithmetic-toolbox. b4m - Interval Arithmetic Toolbox,
Accessed: November 2017.

[7] https://news.samsung.com/global/qualcomm-and-samsung-collaborate-on-10nm

-process-technology-for-the-latest-snapdragon-835-mobile-processor. Qual-
comm and Samsung Collaborate on 10nm Process Technology for the Latest Snapdragon
835 Mobile Processor - Samsung Newsroom - November 2017, Accessed: December 2017.

[8] https://semiengineering.com/10nm-versus-7nm/. 10nm versus 7nm, Accessed: April
2016.

[9] https://semiengineering.com/22nm-process-war-begins/. 22nm Process War Begins,
Accessed: April 2017.

[10] https://semiengineering.com/moores-law-a-status-report/. Moore s Law: A Status
Report, Accessed: April 2017.

[11] https://semiengineering.com/racing-to-107nm/. The Race to 10-7nm, Accessed: May
2017.

[12] https://semiengineering.com/uncertainty-grows-for-5nm-3nm/. Uncertainty Grows
For 5nm, 3nm, Accessed: December 2016.

[13] https://www.cadence.com/content/cadence-www/global/en_US/home/tools/

system-design-and-verification/formal-and-static-verification/

jasper-gold-verification-platform.html?cmp=dmzweb1. Cadence JasperGold
Formal Verification Platform (Apps), Accessed: January 2018.

[14] https://www.cadence.com/content/cadence-www/global/en_US/home/tools/

system-design-and-verification.html. Cadence Verification Suite, Accessed: July
2017.

167

http://beltoforion.de/article.php?a=muparser
http://mariusbancila.ro/blog/2009/02/03/evaluating-expressions-part-1/
http://nusmv.fbk.eu/
https://blogs.synopsys.com/theeyeshaveit/2012/09/05/silicon
-validating-28-nm-interface-and-analog-ip-designs/
https://community.cadence.com/cadence_blogs_8/b/cic/posts/
https://community.cadence.com/cadence_blogs_8/b/cic/posts/
keeping-your-circuit-in-tune
https://de.mathworks.com/matlabcentral/linkexchange/links/
https://de.mathworks.com/matlabcentral/linkexchange/links/
936-b4m-interval-arithmetic-toolbox
https://news.samsung.com/global/qualcomm-and-samsung-collaborate-on-10nm
-process-technology-for-the-latest-snapdragon-835-mobile-processor
https://semiengineering.com/10nm-versus-7nm/
https://semiengineering.com/22nm-process-war-begins/
https://semiengineering.com/moores-law-a-status-report/
https://semiengineering.com/racing-to-107nm/
https://semiengineering.com/uncertainty-grows-for-5nm-3nm/
https://www.cadence.com/content/cadence-www/global/en_US/home/
tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform.html?cmp=dmzweb1
tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform.html?cmp=dmzweb1
tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform.html?cmp=dmzweb1
https://www.cadence.com/content/cadence-www/global/en_US/home/
tools/system-design-and-verification.html
tools/system-design-and-verification.html

INTERNET REFERENCES INTERNET REFERENCES

[15] https://www.design-reuse.com/articles/28591/mixed-signal-ip

-design-challenges-in-28-nm-and-beyond.html. Mixed-Signal IP Design Chal-
lenges in 28 nm and Beyond, Accessed: December 2016.

[16] https://www.mentor.com/products/fv/questa-formal/. Questa Formal Verification -
Complements simulation-based RTL design verification, Accessed: January 2018.

[17] https://www.modelica.org/. Modelica, Accessed: January 2018.
[18] https://www.sae.org/standards/content/j2748_200610/. VHDL-AMS Statistical

Analysis Packages, Accessed: January 2018.
[19] https://www.synopsys.com/verification/ ams-verification/

waveform-analysis-debug/custom-waveview-adv.html. Synopsys Custom Wave-
View ADV, Accessed: January 2018.

[20] https://www.synopsys.com/verification/virtual-prototyping/

platform-architect.html. Platform Architect MCO, Accessed: January 2018.
[21] https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html. Zynq-

7000 All Programmable SoC, Accessed: January 2018.
[22] http://t-filter.engineerjs.com/. TFilter - The free online FIR filter design tool, Ac-

cessed: January 2018.
[23] http://www.accellera.org/downloads/standards/systemc. Accellera Systems Initative

- SystemC Standard, Accessed: February 2014.
[24] http://www.boost.org/doc/libs/1_65_1/libs/numeric/interval/doc/interval.

htm. Boost Interval Arithmetic Library, Accessed: November 2017.
[25] http://www.cplusplus.com/reference/unordered_map/unordered_map/. Unordered

Map - C++ reference, Accessed: September 2017.
[26] http://www.cplusplus.com/reference/vector/vector/. Vector- C++ reference, Ac-

cessed: November 2017.
[27] http://www.deepchip.com/posts/dvcon07.html. The 2007 DeepChip Verification Cen-

sus - A Census of 818 Engineers on Design Verification Tool Use, Accessed: July 2017.
[28] http://www.flowcad.de/. FlowCAD, Accessed: January 2018.
[29] http://www.itl.nist.gov/div898/handbook/. NIST/SEMATECH e-Handbook of Sta-

tistical Methods, Accessed: Feb 2015.
[30] http://www.ni.com/en-us/shop/labview.html. National Instruments LabView 2017,

Accessed: January 2018.
[31] http://www.nongnu.org/libaffa/. Libaffa - C++ Library for Affine Arithmetic, Ac-

cessed: August 2017.
[32] http://www.omgsysml.org/. SysML webpage, Accessed: December 2017.
[33] http://www.onsemi.com/PowerSolutions/content.do?id=16693. C5: 0.5 Micrometer

Process Technology, Accessed: October 2014.
[34] http://www.oxforddictionaries.com/definition/english/system. Oxford Dictionar-

ies, Accessed: January 2014.
[35] http://www.prismmodelchecker.org/. PRISM - A probabilistic model checker, Accessed:

January 2018.
[36] http://www.rcm2.co.uk/products/DOORS.htm. DOORS (Dynamic Object-Oriented Re-

quirements System), Accessed: December 2017.
[37] http://www.stack.nl/~dimitri/doxygen/. Doxygen code documentation tool, Accessed:

January 2018.
[38] http://www.systemc-ams.org/. SystemC AMS - Home page of the SystemC AMS study

group, Accessed: February 2014.
[39] http://www.techdesignforums.com/practice/guides/guide-

168

https://www.design-reuse.com/articles/28591/mixed-signal-ip
-design-challenges-in-28-nm-and-beyond.html
https://www.mentor.com/products/fv/questa-formal/
https://www.modelica.org/
https://www.sae.org/standards/content/j2748_200610/
https://www.synopsys.com/verification/
ams-verification/waveform-analysis-debug/custom-waveview-adv.html
ams-verification/waveform-analysis-debug/custom-waveview-adv.html
https://www.synopsys.com/verification/virtual-prototyping/platform-architect.html
https://www.synopsys.com/verification/virtual-prototyping/platform-architect.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
http://t-filter.engineerjs.com/
http://www.accellera.org/downloads/standards/systemc
http://www.boost.org/doc/libs/1_65_1/libs/numeric/interval/doc/interval.htm
http://www.boost.org/doc/libs/1_65_1/libs/numeric/interval/doc/interval.htm
http://www.cplusplus.com/reference/unordered_map/unordered_map/
http://www.cplusplus.com/reference/vector/vector/
http://www.deepchip.com/posts/dvcon07.html
http://www.flowcad.de/
http://www.itl.nist.gov/div898/handbook/
http://www.ni.com/en-us/shop/labview.html
http://www.nongnu.org/libaffa/
http://www.omgsysml.org/
http://www.onsemi.com/PowerSolutions/content.do?id=16693
http://www.oxforddictionaries.com/definition/english/system
http://www.prismmodelchecker.org/
http://www.rcm2.co.uk/products/DOORS.htm
http://www.stack.nl/~dimitri/doxygen/
http://www.systemc-ams.org/
http://www.techdesignforums.com/practice/guides/guide-

INTERNET REFERENCES INTERNET REFERENCES

to-assertion-based-verification/. Assertion-based verification, Accessed: July
2017.

[40] http://www.ti.com/solution/software-defined-radio-sdr-diagram. SDR- Software
defined radio solutions from Texas Instruments, block-diagram, design considerations and
application notes, Accessed: December 2013.

[41] http://www.usbdev.ru/cics/icsmi/. SM2XX Family - Flash Memory Card Controllers,
Accessed: December 2017.

169

to-assertion-based-verification/
http://www.ti.com/solution/software-defined-radio-sdr-diagram
http://www.usbdev.ru/cics/icsmi/

Curriculum Vitae

Dipl.-Ing. Michael Rathmair studies at the TU Wien since 2004. He finished the bachelor
program for electrical engineering and information technology and the master program in the
field of computer technology. His master thesis is about the design of computer systems for
smart energy applications. Since 2011 he started his Ph.D. studies, and works as a university-
and project assistant at the TU Wien - Insitute of Computer Technology (ICT). His scientific
interests focus in the field of enhanced system verification (range-based simulation methods,
formal system verification, model-driven testing), and the design of leading-edge IoT and industry
4.0 applications.

List of selected publications:

RATHMAIR, M. ; LUCKENEDER, C. ; KAINDL, H. ; RADOJICIC, C.: Semi-symbolic Simula-
tion and Analysis of Deviation Propagation of Feature Coordination in Cyber-physical Systems.
In: Proceedings of the 51st Hawaii International Conference on System Sciences - HICSS 18

M. RATHMAIR, C. LUCKENEDER, H. KAINDL: Minimalist Qualitative Models for Model
Checking Cyber-physical Feature Coordination. In Proceedings of the 23rd Asia-Pacific Software
Engineering Conference (APSEC 2016), S. 8, Hamilton, Neuseeland, 2016.

GRIMM, C. ; RATHMAIR, M.: Dealing with Uncertainties in Analog/Mixed-Signal Systems:
Invited. In: Proceedings of the 54th Annual Design Automation Conference 2017

M. RATHMAIR, F. SCHUPFER, C. RADOJICIC, C. GRIMM Extended Framework for System
Simulation with Affine Arithmetic. In Proceedings of the 2012 Forum on specification & Design
Languages (FDL 2012), 2012, S. 161 - 168.

M. RATHMAIR, F. SCHUPFER Metrics for Formal Property Checking Against Undesired Cir-
cuit Behavior in Embedded Systems. In: ITG-Fachbericht ANALOG 2016, 2016, S. 64 - 69.

M. RATHMAIR, M. MOSBECK, M. MEISEL, S. WILKER Embedded systems design for In-
dustry 4.0, Presentation: eNDUSTRIE 4.0 Hackathon (invited), Sonnenwelt Großschönau.

M. RATHMAIR, F. SCHUPFER, C. KRIEG: Applied Formal Methods for Hardware Trojan
Detection. In: Proceedings of ISCAS2014, International Symposium on Circuits and Systems,
2014, S. 169 - 172.

170

	Titlepage
	Abstract
	Kurzfassung
	Preface
	Acknowledgements
	Table of Contents
	Abbreviations
	Introduction
	Scientific Challenges and Tasks
	Motivation
	Problem Description Based on an Example
	The Focus of this Work
	Hypothesis

	Contribution to the Research Field
	What this Thesis is not About
	Discussion of Expected Results

	State of the Art and Background
	Definitions and Terminology of Uncertainty
	Modeling of System Uncertainties
	A Metamodel for Uncertainties in Computer Models
	Classification and Origin of Uncertainties
	Interval Representations
	Semi-Symbolic Modeling of Uncertainties

	Simulation Techniques for considering Range Inputs
	Multi-run Approaches
	Interval Simulation Techniques
	Semi-Symbolic Calculation Methodology
	Selected Affine Arithmetic Properties on a Dense Number Space

	Discussion of Modelling and Simulation Techniques considering Uncertainty
	System Analysis Approaches
	Sensitivity Analysis
	Stability analysis
	Assertion-based Verification

	Related Work

	Affine Arithmetic Framework with Enhanced Features for Traceability
	Framework Architecture
	Object Oriented Representation of Affine Arithmetic forms
	Symbol Management
	Basic AAF Traceability Functionalities

	User Selectable Approximation of Non-linear Operations
	Application Specific Approximation Techniques
	Interval-exact Approximation
	Approximating Behavioral Discontinuities

	Interval-based Simulation
	Multi-run Functions
	Integration in a SystemC/AMS Environment
	Performance and Scalability
	Framework Expandability

	Analysis Techniques Based on Traceability Features
	Analysis Techniques facilitated by AAF Simulation
	Objective-driven System Analysis
	Ratio Analysis and Deviation Metrics
	Absolute and Relative Deviation Analysis
	Correlation Analysis
	Metrics for Deviation Assessment

	Assertion Driven System Analysis
	Temporal Tracing of Deviations
	Structural Deviation Analysis
	Uncertainties cause-and-effect Analysis
	Localization of Deviation Causes
	Guided Deviation-hot-spot Detection

	Sensitivity Analysis
	Frequency Domain Analysis
	Formal System Analysis
	Runtime Verification and Interface to other Simulators

	Demonstration Examples and Results
	Inverter Chain as a Ring Oscillator
	Amplitude-Shift Keying (ASK) Modulator
	Power-line Communication (PLC) System
	Adaptive Cruise Control (ACC)

	Conclusion and Outlook
	Summary and Discussion of Results
	Future Research Work

	Literature
	Internet References
	Curriculum Vitae

