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Abstract

This paper illustrates an application of the so-called dimensional reduction modelling approach to obtain a
mixed, 3D, linear, elastic beam-model.

We start from the 3D linear elastic problem, formulated through the Hellinger-Reissner functional, then
we introduce a cross-section piecewise-polynomial approximation, and finally we integrate within the cross
section, obtaining a beam model that satisfies the cross-section equilibrium and could be applied to inho-
mogeneous bodies with also a non trivial geometries (such as L-shape cross section). Moreover the beam
model can predict the local effects of both boundary displacement constraints and non homogeneous or
concentrated boundary load distributions, usually not accurately captured by most of the popular beam
models.

We modify the beam-model formulation in order to satisfy the axial compatibility (and without violating
equilibrium within the cross section), then we introduce axis piecewise-polynomial approximation, and finally
we integrate along the beam axis, obtaining a beam finite element. Also the beam finite elements have the
capability to describe local effects of constraints and loads. Moreover, the proposed beam finite element
describes the stress distribution inside the cross section with high accuracy.

In addition to the simplicity of the derivation procedure and the very satisfying numerical performances,
both the beam model and the beam finite element can be refined arbitrarily, allowing to adapt the model
accuracy to specific needs of practitioners.

Keywords: linear elastic beam, mixed variational modelling, beam analytical solution, static analysis,
finite element

1. Introduction

The modelling of a beam body, i.e. a 3D, prismatic, slender, linear, and elastic body, is one of the most
investigated problem in the continuum mechanics field. Nevertheless, this research area continues to be open
to new contributions since new design-philosophies (e.g. the limit-states or the performance-based designs)
and new technologies (e.g. composite materials) need more and more accurate analysis. Readers may refer
to (Hjelmstad and Taciroght, 2003) to get the idea about recent trends and discussions in beam-modelling
field.

The Euler-Bernoulli (EB) beam model, proposed in eighteenth century, is a simple beam model, still
widely used by practitioners, despite today’s computational instruments allow to handle more refined models.
In EB beam model, the cross section is forced to remain rigid and orthogonal to the beam axis, also in
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deformed configuration. It follows that 4 cross-section rigid motion (i.e.: (i) the axial displacement; (ii-
iii) the translations orthogonal to the beam axis; (iv) the rotation around the beam axis) are necessary
to describe the beam kinematic and 4 independent Ordinary Differential Equations (ODEs) impose the
equilibrium between the internal resulting stresses (i.e.: axial compression, shears, bending moments, and
torque) and the applied loads.

However, EB beam is effective only for extremely slender bodies. As a consequence, in the past century,
researchers developed many refined beam models. In the following we list a few significant examples, detailing
improvements with respect to the EB beam model.

e Timoshenko beam model. It does not force the cross section to remain orthogonal to the beam axis

and it solves the shear-bending problems more accurately (see e.g. (Timoshenko and Goodier, [1951)).

e Higher order beam models. They consider more refined kinematics. As an example, they assume that
the cross section can warp and/or change shape (among the others, see e.g. (Vinayak et all, |l99_d))

e Mized beam models. They consider both displacement and stress as independent variables with the
aim to improve the stress description (see dHJﬁlmsLad_and_Tamnghj,lZQQﬂ) for a brief introduction and
a literature review).

Unfortunately, to be effective, many refined beam models and also the EB beam model require stiffness
correction factors that are not easy to evaluate, in relatively simple cases, too.

In the nineteen century, Saint- Venant (SV) proposed a completely different approach to beam modelling,
i.e. he provided the solution of the continuum mechanic problem for a beam body assuming that: (i) the body
is homogeneous and isotropic; (ii) no distributed-loads are applied; (iii) loads and displacement constraints
are applied far from the region where the solution is evaluated; (iv) stress components orthogonal to the
beam axis are negligible. Unfortunately, SV solution is not explicit because it depends on some unknown
warping functions, governed by auxiliary Partial Differential Equations (PDEs) defined on the cross section.
Readers may refer to (Imlmm_am_(ig_odisﬂ, |l95j) for more details.

Warping functions are deeply investigated not only in order to determine the SV solution, but also
because they are useful in the evaluation of stiffness correction factors. As an example, (Gruttmann et all

) discuss the physical meaning of the warping functions and propose a numerical approach to solve
the auxiliary PDEs, comparing some numerical results with available analytical solutions. More recently,
Lacarbonara and Paolond (Imoj) propose and compare different strategies to compute the warping functions,
highlighting advantages and critical steps of each strategy. In general, the numerical computation of warping
functions could be quite expensive. However, it must be done only once, after the section geometry definition.
As a consequence, the procedure is usually adopted in frame-structure analysis.

In practical applications, many of the hypotheses that allow to obtain the SV solution could be too
restrictive. An attempt to overcome the SV hypotheses was proposed by [Ladeveze and Simmonds (|l9_9_§),
under the assumption that the cross-section is a piecewise constant function along the beam axis. The 3D
solution is obtained applying the 3 steps listed in the following: (i) definition of the beam-model constitutive
operators through the solution of problems defined in the cross section, (ii) determination of the beam-model
solution governed by a 1D problem, and (iii) reconstruction of the 3D solution through the combination of
the constitutive operators. In addition to the SV solution, the resulting solution takes into account also local
effects like stress concentrations that occur in proximity of displacement constrained boundary. As specified
in (Ladeveze and Simmonds, |l99_8), the proposed theory determines exact static and kinematic generalized
quantities (i.e. axial compression, shears, bending moments, torque, and the dual kinematic variables).

A completely different attempt to overcome the SV hypotheses in beam model formulation was proposed
by Dong et all (2001); Kosmatka et all (2001) and Lin_et. all (2001), that apply the dimensional reduction
method to the continuum mechanic PDEs problem in order to obtain a semi-analytical SV-like solution. The
authors assume displacement as independent variable and the Total Potential Energy variational principle
as starting point in derivation whereas no restrictive hypotheses on materials, stress description, and loads
are considered. Some ODEs govern the resulting model solution that describes effectively also local effects.
The advantages of the approach are: (i) the procedure does not need the a-priori definition and solution of
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auxiliary problems, (ii) stiffness coefficient factors are automatically computed through the model derivation
procedure, and (iii) the description of boundary effects result as a component of the homogeneous solution
of the ODEs governing the beam model problem.

It is worth mentioning that the dimensional reduction method was proposed by [Kantorovich and Kryloy
M) as a general mathematical procedure that exploits the geometry of the domain to reduce the problem
dimension (in beam modelling from 3D PDEs to ODEs). The method is widely used in continuum mechanic
and we would cite, among other examgles, (Vogelius and Babuskal, |19&I_a|Ja, \Alessandrini et all, 11999; Batra
(2002)

Recently, mm;cm)_eﬁ,_aj dZOLd considered a planar beam problem and the Hellinger-Reissner (HR)
variational principle as the starting point for the dimensional reduction procedure. By choosing appropri-
ate cross-section approximating profiles, the resulting beam model is capable, in particular, of accurately
describing the cross-section stress distribution. In addition, |Auricchio et all (l2_0_l_d) proposed a suitable FE
approximation of that beam model.

In this paper, we generalize the approach and the FE derivation procedure illustrated in
(@) to a 8D beam body. Due to the 2D nature of the cross-sections, the choice of the approximating
profiles requires more care than the corresponding planar case.

A brief outline of the paper is as follows. In Section 2] we define the problem we are interested in, and
in Section [l we derive the beam model starting from the HR functional, giving also some insight on the
structure of its analytical solution. In Section Ml we develop suitable FE schemes, and in Section [Blwe present
numerical results to illustrate the actual computational performances of our approach.

2. Problem definition

We consider a 3D, prismatic, slender, linear, and elastic body under the hypothesis of small displacements.
For simplicity, we consider only isotropic materials, even if this assumption is not necessary for the model
derivation.

We define the problem domain as:

Q:=IxA (1)

where the beam longitudinal axis I C R and the cross section A C R? are orthogonal, closed and bounded
sets. Figure [ represents the domain 2, the adopted Cartesian coordinate system, the initial and final cross

0.
[

Figure 1: 3D beam body geometry, coordinate system, dimensions, and adopted notations.

o~

sections (Ap and A; respectively), and the lateral surface L := 9A x [, where JA is the boundary of the
cross section, as illustrated in Figure 2l Thus, the domain boundary is 09 := Ay U A; U L and we consider
the partition {9€; 00}, where 9 and 0, are the externally loaded and the displacement constrained
boundaries, respectively. We notice that the body could be inhomogeneous in the cross section, as illustrated
in Figure2l As a consequence, the Young’s modulus F and the Poisson’s ratio v are scalar fields depending
on the cross-section coordinates, i.e. £: A—Randv: A — R.

The prescribed boundary displacement 3 : 9Q, — R3, the external load, defined as a surface force density
t : 0Q; — R3, and the body load, defined as a volume force density f :  — R3, are assumed to be sufficiently
smooth functions.



Figure 2: Cross section geometry, coordinate system, and adopted notations.

Introducing the symmetric stress tensor field o : Q — R3*3, the displacement vector field s : Q — R3,
the corresponding variation fields do and s, and the following spaces:

L*(Q) ::{s:Q%RB:/s-sdQ<oo}
Q

H(div, Q) := {U:Q%Rixgz/a:adﬂ<ooand (V-o) e L*(Q)}
Q

W:={secL*(Q))}
Sy:={ o€ H(div,Q): U'"|aQt = t} @
So :={ do € H(div,Q) : b0 nlyg, =0}

the 3D elastic problem consists in solving the following variational system.

Find s € W and o € S; such that Vs €¢ W
and Véo € Sy

6Jm ;=—/5s-v-ad9—/v-aa-sdg—/&r:D*l;adQ—/(ss-fdQ (3)
Q Q Q Q

+ 6c-n-8dA =0
20,

Above, D is the fourth order, linear, elastic, isotropic tensor which depends on the material parameters E
and v.

We highlight that, due to the adopted formulation, the boundary equilibrium o -n| a0, = tis an essential
condition, i.e. it is directly inserted into the definition of the trial space S;. On the contrary, the boundary
compatibility S|BQS =§ is a natural condition, i.e. it is weakly imposed to the solution component s through
the variational system ().

3. Model derivation

In this section, starting from the 3D problem weak formulation (Bl), we perform the dimensional reduction
which is based on the introduction of field cross-section approximations and on a cross-section integration.
For simplicity, in the model derivation, we switch to an engineering-oriented notation.

3.1. Cross-section approximation and notations

The first step in the beam model derivation is to approximate the generic three-dimensional field ~ :
Q — R() as a linear combination of d cross-section shape functions, stored in a vector Tyt A— R()xd,
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weighted with arbitrary azial coefficient functions 4 : 1 — R%, i.e. formally:
v (@,y.2) =17 (y,2)% (2) (4)

where (-)” indicates the transposition operation.

We emphasize that the cross-section shape functions 7., (y, z) are a set of pre-assigned, linearly-independent
functions. As a consequence, the field v (z,vy, z) is uniquely determined by the axial coefficient functions
4 (x) that are indeed the unknowns of the beam model we are developing. In the following, we omit the
dependences of r, on y, z and of 4 on x for notation simplicity.

Adopting Position (@) and switching to an engineering notation we set:

Su r’ 0 0 u

s:=¢ s, p=| 0 rI' 0 v 3 =R (5)
Sw 0 0 7l w

o= {O’zz,O'yy,O'ZZTIy,TIZ,TyZ}T ~

T 0 0 0 0 0 &s

o «Z 0 0 0 0 &
Y Y

o 0o £ o0 0 0 6: | _p (6)

0o 0 o0 rZ 0 0 Foy (10

0 0 0 0 7 0 Fao

0 0 0 0o 0 T ][

In the same way we define the virtual field approximations:
0s:= R,08; do :=R,00

According to the engineering notations just introduced, we re-define the differential operator and the
normal unit vector product as follows:

Tensor notation Engineering notation
v = aE—l—aE—i—aE R,6 (7)
7 a or ' oy o7 ? o7
on = (n.E1 +nyEs+n.E3) R,6 (8)

where products between partial derivatives and boolean matrices E;, i = 1,2,3 must be intended as scalar-
matrix products, whereas differential operators are applied to stress approximations R,6. The boolean
matrices E;, i = 1,2, 3, are defined as follows:

1000 00
Ei:=|00 010 0
(0000 1 0|
[0 0010 0]
E;:=|0 100 0 0 9)
00000 1)
[0 000 1 0]
E;:=|0 000 01
(00100 0

In Section 2], we denoted with D! the fourth order, linear, elastic, isotropic tensor, while from now on, with
a small abuse, we use the same notation to indicate the corresponding square matrix obtained following the
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engineering notation. Therefore, we have:

1 —v -V 0 0 0
v 1 —v 0 0 0
1 v —v 1 0 0 0
-1 ._ *
b T E| 0 0 02104v) 0 0 (10)
0 0 0 0 2(14wv») 0
0 0 0 0 0 2(1+v)
Due to assumption [@]), computation of partial derivatives is straightforward
0 d
N Al SN 9
%’Y—TV %7—7'77 (11)
0

3.2. Model formulation

In the following we assume that Qs = Ay, 09 = A; U L, and the lateral surface is unloaded, i.e.:
t|, = 0. The unloaded lateral surface is an usual assumption in beam modelling. However, we notice that
the model derivation can be performed taking into account arbitrary load conditions as well.

In order to strongly satisfy the boundary equilibrium, according to the definition of Sy, see (), we assume
that the external traction #| 4, can be exactly represented using the profiles R,. This means that there exist

suitable vectors t,, iy, and ¢, such that:

t,

yéy (12)
t

z

T

N

ty =4 T
r

Pl Pl

z

Since nl|,, = (1,0,0)", Definition (B) becomes o-n|l, = ER,0 (I) and the essential boundary condition
o-n|,, = t|,, can be expressed as follows:

6. (1) t.
Tay (Z) = Zy (13)
T2 (1) t.

Introducing the engineering notation and the approximations defined in section [3] variational prob-
lem (3)) becomes:

dQ)

N O N N )
0Jmr = —/ 08 .RS —F,+ —FE>+ —FEs3 | R,0
Q dz dy 0z

5+ 8+ 2B\ R, TR § dQ)
_/Q El"‘a_y 2+£3 o 00 sS (14)
— / 66" RID'R,6d0) — / 68" RTf d

Q Q

+ / [(neE1 +nyEs +n.E3) Ry66]" 8dA =0
0N



Expanding products, introducing the derivative notation (II), and recalling that 9Qs = Ay, Equation (I4)
becomes:

6Jm = — / (65" RTE\R,6' + 63" RTE2R,,, 6
Q
+08"RTEsR,,.6 + 66" RLETR,3
+06"RL,,EYR.5 + 06" RY,. ETR.% (15)
+06"RED'R,6 + 65" R” f) )

— | 066"RTET3dA =0
Ao
Splitting the integral on the domain € into an integral along the axis [ and an integral on the cross section
A, Equation (I3]) becomes:

0 = — / (08" Go6" + 05" Hyo6 + 06" Gosd
l

+66TH 3+ 66T H 06 + 657 F ) do (16)
—66"8§ =0
where
H,, - HT — / (RTER,., +RTE;R, .. ) dA
A
H,, = / RID™'R,dA
A
G, =Gt = / RTE\R,dA (17)
A
F = / R'fdA; S= | RIE3dA
A Ao

Equation (I8) represents the weak formulation of the beam model: the integrals are defined only along the
beam axis, whereas the cross-section integrals become coefficient matrices.

To obtain the corresponding strong formulation, i.e. the associated ODE system, we need to integrate
by parts the third term of Equation (I6):

z=l
— / 66" G dr = — 067 G yss t / 66" G5 dx (18)
l r= l

Substituting Equation (&) in Equation (I8), recalling that é6 (I) = 0, and collecting the unknowns in a

vector, we obtain:
flawmsoo] (e & f={o ) "

~ 6" (S —Gys8) =0

L 0 _Gsa L 0 _Hsa
G o |: Gas 0 :| H:= |: _Has _HO'O' :| (20)

Since Equation ([I9) needs to be satisfied for all the possible virtual fields, we obtain the following ODE,

@
N—
+
SN
—
Q> w

where



equipped with the essential boundary condition (I3).

G{j}ﬂ{{j}{ﬁ} in 1

Gas§:§ at =0

&x:ix at r=1 (21)
Foy =1, at =1

For =1, at x=1

We notice that, since H contains only y and z derivatives, it governs a generalized plane strain problem
defined in the cross section. Furthermore, looking at the definition of G (see (20)—(I7)) and at the definition
of the boolean matrix E; (see (@), we observe that all the coefficients multiplying &;, 6', and ‘f‘;Z vanish.
As a consequence, we conclude that the beam model [2T)) is an algebraic-differential problem where at least
0y, 0, and T, are determined through purely algebraic equations.

3.3. Cross-section shape functions definition

Due to the domain definition () we can represent the stress tensor as follows:

o’:[ o1 Tia } (22)

TAl OA

where
Oyy Tyz }

. . _ T . _ . . .i
O] = Ogg; TIA =Ty = [sz;Tzz]; g = |: - o
zy zz

Accordingly, we represent the divergence operator as follows:

5 0
Vi={ 72 where V,:={ 9 (23)
v a
A I
0z

We first recall that the space definition (2)) requires in particular o € H (div,2). Therefore, we must
choose ¢ such that (V-o) € L?(Q), i.e.

527 +Va-Tia )
Vio={ O e L% () (24)

T Al +Va-04
Sufficient conditions that guarantee the satisfaction of (24]) are the following:
9 2 2
5,0 €L (2); Va-mia€L7(Q);
X

0
%TAZGLQ(Q); VA-O‘AGLQ(Q)

In addition to Conditions (23), as suggested by [Alessandrini et. al! (1999), to ensure that the model is

well-posed, one possible choice is to require the following condition:

(25)

V-So=W (26)



Given a generic cross-section geometry, it is not trivial to define cross-section shape functions that
satisfy conditions (23] and (28). As a consequence, we start focusing on the simplest case, i.e. a beam with
a rectangular cross-section:

h h b b
_ . 2 . oz __ 2
A_{(y,z)eR .ye[ 2,2} andze[ 2,2]}

where h is the beam thickness and b is the beam depth. Due to the simplicity of the considered geometry,
the cross-section shape functions can be defined as the tensor products of two profile function vectors p (y)
and g, (2):

L :h—RI; q,:b— R rz = vec (py (y) qz (2)) (27)

where vec (-) is the linear operator that re-arranges a tensor into a row vector. Obviously the g components
of p, and the k components of g, are sets of linearly independent functions.
Due to the introduction of profile function definition ([27)), we can express Condition (28] as follows (cf.

also (&) and (@])).

Given 8, there exists ¢ such that:

vee (po.a,) 6%+ vee (1, a7 ) Fay + vec (pr, ) o

(28)
_ T\ 5
= vec (pugy,) @

vec (pTIquwy) f';y + vec (p;yqu) 0, + vec (Pryzqu) Tys (20)
= vec (pugy ) ®

vec (pr,.qr. ). + vec (p;yzqzyz) Ty + vee (po.q) ) 6 (30)

= vec (puway,) W,

and viceversa.
We consider complete polynomials as profile functions and we denote with deg( - ) their maximum degree.
As a consequence, to satisfy Equations (28), (29), and (B0) we enforce the following “natural” conditions:

deg (po, ) = deg (mey) — 1 =deg (p-,.) = deg (pu.)
deg (pr,,) = deg (ps,) — 1 = deg (pr,.) = deg (p,)
deg (p-,.) = deg (p-,.) — 1 = deg (p,, ) = deg (pu,)
(31)
deg (¢o,) = deg (gr,,) = deg(g-,.) — 1 = deg(qu)
deg (gr,,) = deg (¢5,) = deg (gr,.) — 1 = deg (gv)
deg (g-,.) = deg (qr,.) = deg (go.) — 1 = deg (qu)

Table[dldisplays the degree of profile functions p, and g, assuming deg (pmy) = deg (¢,.) = 2 and imposing
Equation (BI).

As illustrated in FigureBl we can define non-elementary cross-sections assembling elementary rectangular
blocks that we call fibers and we suppose to be homogeneous. We construct the non elementary cross-section
shape functions r, considering the profile functions so far defined on each fiber, requiring the profile-function
continuities specified in Table [[ and imposing the essential boundary condition o -n|,, = 0. We specify
that profile-function continuities are fixed in order to satisfy Condition (23]).

3.4. Beam-model examples

In this sub-section we evaluate and discuss the solution of the beam model 1) for the homogeneous
beam with square cross section depicted in Figure @l We assume that the properties of the material are F =
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Y fiber
: ho,
h;
h
O h2 z
h1
b1 ba b; bm

Figure 3: Non-elementary cross-section geometry definition, dimensions, and adopted notations.

Variable | deg(py) w cont. deg(g,) = cont
u 1 Cc1 1 Cc1
v 2 c! 1 c—1
w 1 c! 2 c—1
Oy 1 c-! 1 c!
oy 3 cY 1 c-!
o, 1 c-1 3 o

Toy 2 o 1 c1!
Tus 1 c1! 2 o

Tyz 2 o 2 o

-1

Table 1: Degree and continuity of cross-section profile functions (C'~' means discontinuous function).

10° MPa and v = 0.25 and, with respect to the notation introduced in Figure[B] the cross-section dimensions
are h = b = 1 mm. We model the physical problem using 2 cross-section discretization: the one-fiber cross-
section discretization, depicted in Sub-figure and the two-fiber cross-section discretization, depicted
in Sub-figure the aim of these modelling choices is to appreciate the effect of different discretization
refinement.

In the following, the matrices G and H are evaluated through symbolic-calculus functions, whereas the
further results are obtained using numerical-calculus functions, both implemented in MAPLE software.

3.4.1. One-fiber cross-section

After imposition of the lateral free-traction boundary condition, the one-fiber cross-section beam has 33
unknowns. Since rank (G) = 16, in the considered example we can distinguish between 16 unknowns that
are solutions of a differential problem, and the remaining 17 that are algebraically determined by linear
combination of the differential problem solutions. As already observed at the end of Sub-section B2] the 9
0y, 0, and T, axial coefficient functions are among the ones algebraically determined. Moreover, looking
at Equation (ZI) for the considered example, the boundary conditions are 16, since rank (G,s) = 8 and
the boundary equilibrium consists of 8 conditions. Therefore, the number of boundary conditions and the

number of essential first order differential equations in (2I]) perfectly match.
As already explained in [Auricchio et all (2010), to construct the homogeneous solution of ODEs (21,
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.

b1

=
[N

T T
Y v

[

b

(a) one-fiber discretization (b) two-fiber discretization
(b1 = b2 = 0.5mm)

S

Figure 4: Homogeneous, square cross-section: dimensions and adopted discretization (h = b = lmm, F = 10°MPa, and
v = 0.25).

we need the solution of the generalized eigenvalue problem:
det (A\G+ H) =0 (32)

where )\ is the eigenvalue. For the case under investigation we obtain:

) ~0 [12]
=\ £3.3652 + 1.1509i 4]

where the numbers in square brackets are the eigenvalue multiplicities (considering all the possible combi-

nation of sign of real and imaginary parts) and the notation ~ 0 means that the eigenvalues vanish up to
the machine precision.

3.4.2. Two-fiber cross-section

After imposition of the lateral free-traction boundary condition, the two-fiber cross-section beam has
71 independent unknowns. Moreover, rank (G) = 36. Hence, 36 unknowns are solution of a differential
problem, whereas the remaining 35 are algebraically determined by linear combination of the differential
problem solutions. Looking at Equation (ZI]) for the considered example, the boundary conditions are 36,
since rank (G,5) = 18 and the boundary equilibrium consists of 18 conditions. Therefore, the number of
boundary conditions and the number of essential first order differential equations in (21 perfectly match
for this case, too.

In the two-fiber beam, the solution of the generalized eigenvalue problem (B2)) is:

~0 [12]
+11.786 2]

+10.116 2]

+10.022 2]

5 +8.2174 2]
- +8.1037 2]
+4.5891 + 1.2945i [4]
+5.6931 + 0.4331i (4]
+4.9317 2]

+3.3520 4+ 1.1591i [4]

and it is going to be discussed in the next Sub-section.
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3.4.8. Conclusions on beam models

We computed the solutions of the homogeneous problem associated to (ZI)) for the beam models so far
introduced, but we do not report them since their expressions are too long. However, the following remarks
about the solution structure apply.

e Zero eigenvalues lead to polynomial terms, that correspond to the polynomial terms that appear also
in the Saint-Venant solution. In particular, the 12 zero eigenvalues correspond to the 6 rigid body
translations and to the 6 uniform deformations: extension, torque, two bendings, and two shears
(associated with bendings).

e Non-zero, complex conjugate or real eigenvalues (generally represented as +a + ib) lead to harmonic
dumped functions like C;e** sin (bx + C;), that describe local effects near the boundaries, as it hap-

pens in other beam models, like Ladeveze and Simmondd (1998) and |Allix and Dupleix-Couderd (2010).

Similar conclusions was also reported in (@) where, moreover, the authors specify that the
real part of the eigenvalue defines the inverse decay length of the corresponding boundary effect. As a
consequence, the smallest eigenvalue real-part provides an estimation of the length of the axis region where
boundary effects are not negligible.

From the comparison between the one- and two-fiber cross-section beam models, it is possible to draw
some additional observations.

e The number of eigenvalues corresponds exactly to the rank of G matrix i.e. to the number of differential
equations governing the problem.

e The number of null eigenvalues does not change. As a consequence, we may conclude that the poly-
nomial terms in the solution are independent from the number of considered fibers.

e Instead, the number of non-zero eigenvalues increases with the fiber number. As a consequence, we
may conclude that a finer discretization improves at least the accuracy of the description of local
effects.

e The decay lengths of the two models are not so different (the smallest real part of eigenvalues are
3.3652 and 3.3520 for one- and two- fiber cross-sections, respectively). As a consequence, we may
conclude that also the simplest model is effective in the evaluation of this parameter.

e In both models, the inverse of decay length ensures that the magnitude of dumped functions is reduced
of more than the 96% of its initial value, in a length of 1mm.

The independence of the polynomial solution with respect to the number of fibers suggests the idea that the
modelling far from the extremal cross sections could be done by means of few global degrees of freedom, as
in EB beam model. However, this idea will be the topic of future investigations.

4. FE derivation

The goal of this section is to obtain a displacement-based beam FE formulation. Accordingly, we intro-
duce an approximation along the x direction, modify the beam-model weak formulation (I6]), and perform
an integration along the axis. The procedure reduces the algebraic-differential equation system 2I)) to a
pure algebraic equation system.

4.1. Azial approximation

We introduce the following approximation:
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where

N(z) 0 - 0

0 Nz - 0

N, = ) ) . )
0 0 - N

~  (~ o~ ~ T
Y ={y1 Y2, Yat
Accordingly, the i-th axial coefficient function 4; (x) is approximated as a linear combination of some assigned
azial shape functions, stored in the vector N.; : | — R; the numerical coefficients of the combination are
collected in the vector 4; € R'. In the following, we drop the explicit dependence of N, on x for notational
simplicity.

4.2. FFE formulation

In the following, we assume that the beam is clamped in Ay, i.e. s = 0. Starting from beam-model weak
formulation (I6]), we integrate by parts with respect to the x direction both the first and the third terms
obtaining the following, alternative beam-model weak formulation:

Find 8 € W and 6 € S such that V63 € W and V66 € S

6Jm = / (687 G.p6 — 68" H 6 + 667 G, 8’
! (34)
—66"H .8 — 66" H o6 — 08" F ) dx

—83TT =0

where T := [, RTtdA, W := {3 € H'(I): 3|,_, =0}, and S := L2(l). We recall that:

L2 (1) == {a : /laTadx < oo}
H'(1):={3:8,8 e L* (1)}

The FE discretization of the model follows from the introduction of the axial shape function approxima-
tion ([B3) into the beam-model weak formulation (34]):

5T — / (65" NG, N,& — 55 NTH,,N &
l

+66'N'G,,N'5— 066" N'H,,N 3 (35)
—66'NTH,,N,6 — 65 NTF ) du
— 6 NT'T =0

Collecting unknown coefficients in a vector and requiring (33]) to be satisfied for all possible virtual fields,
we obtain the following algebraic equation system:

{KO }H{;}{ﬁ} (36)

K., =K' = / (NJG,wN, —NI'H,,N,)dx
l

where

K, = —/NZHUUNGCLT; T :/NZFd$+ NZ’x:zT
1 l

We highlight the following remarks.
13



e Since § € W, the continuity of displacements along the beam axis is satisfied a priori, whereas axial
equilibrium is weakly imposed through Equation (B4).

e The weak formulation (34) is symmetric.

4.3. Azial shape functions definition

In this sub-section we specify how to choose the FE approximation spaces. We first notice that, since
s € H' (1), we need to impose axial continuity on displacements. Instead, since ¢ € L? (I) stress components
can be axial-discontinuous, and in general it is convenient that they are so. Furthermore, to properly balance
the discrete spaces, it seems reasonable to choose W and S satisfying: V& € S there exists § € W such that

d
—s=FE06;, s=FEys; s=EFE;0, (37)
dx

and viceversa.
Accordingly, we require the following conditions on the axial shape functions:
deg (Nu) = deg (NGT) + 1 =deg (NTq:y) = deg (NTmz)
deg(N,) =deg(N.,, ) +1=deg(N,,) =deg(N-,. ) (38)
deg (N,) =deg(N,,.)+1=deg (nyz) =deg (N,.)

Assuming deg (N, ) = 3 and imposing Equations (B8]), we determine the degree of axis shape functions N,
summarized in Table [2] together with properties of profile vectors.

Variable | deg(py) 1y cont. deg(g,) =zcont. deg(N,) x cont.
u 1 c-1 1 c-1 2 o
v 2 c-! 1 c-! 3 o
w 1 c-! 2 c-! 3 o
Oy 1 c1t 1 c1t 1 c1t
oy 3 o 1 c-! 3 c-!
o 1 c-! 3 O 3 c-!
Tuy 2 O 1 c-! 2 c-!
Tez 1 c-! 2 O 2 c-!
Ty= 2 c° 2 o 3 c!

Table 2: Degree and continuity of cross-section profile functions and axis shape functions (C~! means discontinuous function)

Looking at the properties of the axial shape functions summarized in Table Bl we notice that all stress
components are discontinuous along the beam axis. Moreover, the matrix H,, (see (I7) and ([dQ)) is
invertible. Therefore, it is possible to statically condense the stress variables out at the element level. This
leads to a displacement-based-like formulation of the problem, thus significantly reducing the dimension of
the global stiffness matrix and improving the FE algorithm efficiency.

5. Numerical results

The goal of this section is to illustrate the capability of the beam model and FE introduced so far.
Accordingly, we consider the problems listed below.

1. Homogeneous square cross-section beam, depicted in Figure [5(a)]
2. Non-homogeneous square cross-section beam, depicted in Figure
3. Homogeneous L-shape cross-section beam, depicted in Figure

14
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(a) non-homogeneous cross section: geometry (b) non-homogeneous cross section: geometry and

and mesh definition (in the considered mesh definition (in the considered example
example h = b = 1lmm, § variable, h=b=1mm, a = 0.2mm, F; = 10°MPa,
E = 10°MPa, and v = 0.25) E3 = 103MPa, and v = 0.25)
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(c) L-shape cross section: geometry and mesh
definition (in the considered example
b= 1mm, h = 0.5mm, a = ¢ = 0.125mm,
E = 10°MPa, and v = 0.25)

Figure 5: Cross-sections geometries and discretizations of the beams considered in Section
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We introduce the relative error definition for a generic variable ~:

=]
Cryrel 1= W (39)
where 77¢f is the reference solution, to be specified for each problem under investigation.

FE solutions considered in this section are evaluated through numerical-calculus functions implemented
in MATLAB software, unless specified.

5.1. Homogeneous square cross-section beam

We consider the homogeneous beam with a square cross-section depicted in Figure and we discuss
the following aspects.

1. Displacement error and convergence of displacement solution.
2. Stress error.
3. Asymptotic behaviour.

We recall that, in FE derivation, the beam is assumed to be clamped at the initial cross-section (025 = Ap;
5 = 0); moreover, we set [ = 10mm, vanishing volume load (f = 0), and a distributed shear load applied to
the final cross section A; (¢4, = [0, —1, 0]" MPa). In Figure[5(a)| we define the parameter § that defines both
the cross-section and the axial discretizations where the length of the k'" axis FE is defined as ), := 1/ (10-6).

In the following, the acronym MB FE (Mixed Beam Finite Element) denotes the beam model FE dis-
cretization of Equation (36).

5.1.1. Displacement error

We consider the y-oriented displacement component s, (see Definition (&) and we evaluate its mean
value T (Z) on the final cross section A;:

5 () i fAz rl 0| _;dydz
fAz dydz

(40)
In order discuss the displacement solution of the MB FE, we compare the solutions of the models listed
in the following.
e The analytical solution of Euler-Bernoulli beam,
e The analytical solution of Timoshenko beam,
e The numerical solution of the MB FE evaluated considering two cases:

— 1 fiber cross-section (i.e. § = 1),
— 25 fiber cross-section (i.e. § = 5).
e 3D numerical solutions obtained using the software ABAQUS and with 3D trilinear bricks. The
following uniform meshes are employed.
— A uniform mesh of 5 x 5 x 50 elements.
— A uniform mesh of 10 x 10 x 100 elements.

— A fine and uniform mesh of 50 x 50 x 500 elements. This overkilled solution is used as the reference
solution s7¢/.
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Beam model v (10) mm €urel
Euler-Bernoulli -4.000000 -10~2 | 3.222 -1073
Timoshenko -4.030000 -1072 | 4.254 -1073
MB FE 1 fiber (6 = 1) -4.022380 -1072 | 2.355 1073
MB FE 25 fiber (§ = 5) -4.012917 -1072 | 0.003 -1073
3D solution (mesh 5 x 5 x 50) -4.175198 -10~2 | 40.437 -10~3
3D solution (mesh 10 x 10 x 100) | -4.051178 -10~2 | 9.531-1073
3D solution (v"¢¥) -4.012929 1072 -

Table 3: Mean value of final cross-section displacement = (10) and the corresponding relative error for a cantilever (I = 10mm,
b = h = 1lmm) evaluated using different beam models.

—6

10 0:4
178

Figure 6: Relative error e, ..; plotted as function of the element size 1/4.

In Table Bl we report the vertical-displacement mean-value v (7) for the considered beam models and
their relative errors. We notice that all the models, even the two simplest ones (i.e., the Euler-Bernoulli and
the Timoshenko models) give a relative error below 5%o. Furthermore, as expected, MB FE 25 fiber model
provides the best solution, with a relative error close to 1075, negligible in most practical applications. In
addition, despite the coarse discretization in the modelling procedure, the MB FE 1 fiber relative error is of
the order of 2%, better than both Euler-Bernulli and Timoshenko beams.

In Figure 6l we plot the relative error e, .. as function of the element size 1/4. It is worth observing the
monotonic behaviour and the high speed convergence.

5.1.2. Stress error

We focus our attention to the shear components 7., and 7, since they have non-trivial distributions. In
the following, the numerical results refer to the 25 fiber discretization.

Figures and report the shear axial coefficient functions 7., and 7, respectively. We remark
that they show dumped oscillations near the initial and final cross sections, while they are approximately
constant otherwise. We notice that this numerical behaviour is consistent with the ODEs homogeneous
solutions discussed in Section B4l

Moreover, the oscillations rapidly decay in an axial region whose length is of the order of magnitude of
the cross-section edge, in accordance with the solution provided by the Saint-Venant principle.

Figures[8(a)]and[8(b)]report the cross-section distribution of shear components 7., (5,y, z) and 7, (5, y, z)
respectively. We consider the cross section at £ = 5mm in order to exclude boundary effects. It is worth
noticing that the cross-section shear component 7., has a parabolic distribution along y. Moreover, 7., is
not constant along z, and the shear component 7,., displays a non vanishing distribution in the cross section.
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These latter results provide a shear stress evaluation which is better than the one given by the simplified

Jourawsky theory (e.g. Hjelmstad (1201)_5)), usually adopted in connection with classical beam models.
Figures[8(c)|and[8(d)]report the cross-section error distributions | 7., (5,4, 2) — 75¢7 (5,5, 2)| and |7z (5,4, 2) — 7557 (5,9

where 77¢/ (5.4, 2) and 77¢f (5.4, 2) are reference solutions obtained using the results detailed in Timoshenko

and Goodier (1951)[Chap. 12]. Tt is interesting to note that the numerical solution appears to be generally

accurate. However, the error is higher close to the cross section edges.

5
—= 3
[al)
=)
8
« g {
-1
-3
‘ ‘ ‘ ‘ ‘ _5 ‘ ‘ ‘ ‘ ;
0 2 4 6 8 10 0 2 4 6 8 10
2 [mm)] @ [mm]
(a) Tay(2) (b) Taz(x)

Figure 7: Shear axial coefficient functions 7.4 (x) and 74 (x) for the case of homogeneous and square cross section.

5.1.3. Asymptotic analysis

In this sub-section, we investigate the beam model behaviour as the cross-section size tends to zero. It
can be shown that the 3D beam solution converges to the EB solution, after a suitable scaling of the loads
(see (1997), for instance). In this section we numerically verify that, decreasing the cross-section
size, the MB FE solution converges to the EB solution, thus ensuring the asymptotic consistency of the
proposed beam model.

We consider a beam with length and boundary conditions introduced in Section [} and using a single
square fiber to discretize the cross section. We use uniform meshes along the beam axis, and different
decreasing values of the cross section size h. We implement the MB FE using numerical functions available
in MAPLE software. In particular, we exploit the capability of the software to use an arbitrary number
of digits during numerical calculation. Since we are interested in the asymptotic behaviour, the EB beam
solution 7"¢f (Z) is assumed as reference solution.

In Figure [@ we plot the relative error e, evaluated at different ratios h/z, for different axial meshes
(4 and 50 elements, respectively), and for different machine precisions (16 and 30 digits, respectively). We
notice that bad solutions are computed when using 16 digits and for very small ratios h/I, independently of
the number of elements. However, satisfactory results are obtained for slendernesses of practical engineering
interest. On the contrary, raising to 30 digits, the computed solutions display the correct behaviour. We
remark that the plateau regions for 4el(30dig) and 50el(30dig) in Figure [ correspond to the error due to
the axial discretization, which dominates the total error in the asymptotic regime (h/l << 1).

In Figure [0 we show the relative error of the single fiber MB FE, considering different ratios h/l and
varying the number of elements in the axial direction. The plot confirms the convergence of the solution,
independently of the ratio h/l when 30 digits are employed. As already noticed, a degeneracy in the
convergence behaviour is experienced for very small 2/l and 16 digit precision.

5.1.4. Computational costs
In this subsection we give some information about the computational performance of the proposed
method, comparing the numerical costs with the costs of a 3D displacement based analysis of the homoge-
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Figure 8: Shear cross-section distributions (8(a)| and [8(b)|) and cross-section error distributions (8(c)|and [8(d)) for the case of
homogeneous and square cross section.
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Figure 10: Relative error e, ,.; plotted as function of the number of elements for different ratios h/i

neous square cross-section beam.

The time elapsed to compute the solutions is not a fair criterion due to the use of different softwares
and machines. Instead, in Table @] we provide some information that may be used to compare the different
approaches. We notice that, in all the considered cases, the global stiffness matrices governing the problem
will be symmetric, sparse, and with a band structure.

The displacement relative error e, ,.; is the same as reported in Table [3l and it provides information
about the solution accuracy. The estimation of the number of DOFs (# DOFs) corresponds to the size
of the global stiffness matrix. In particular, for the 1- and 5- fiber models, # DOFs does not take into
account the number of variables condensed out at the element level, since negligible with respect to number
of global DOFs (e.g. in the 5 fibre model ~ 1.5-10% DOFs are condensed on each element). The number
of non-vanishing entries in the global stiffness matrices (# entries # 0) is strictly related to the memory
usage during computation. The fourth column of Tabled reports an estimation of the band width. The fifth
column reports an estimation of the number of flops necessary to LU-factorize the global stiffness matrix (#
flops), under the following assumptions: (i) # DOFs > band-width and (ii) the computational cost of both
the assembling procedure and the post-processing are negligible. As a consequence, # flops is evaluated
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Model €y rel # DOFs | # entries # 0 | band-width # flops

MB FE 1 fiber (6 = 1) 2.355 1073 | 1.60 -10° 7.17 -103 3.30 -10t | 8.71 -10%
MB FE 25 fiber (§ = 5) 0.003 -10~2 | 2.00 -10* 2.37 -107 1.60 -10% | 2.57 -101°
3D solution (mesh 5 x 5 x 50) 40.437 1073 | 5.40 - 103 4.37 -10° 4.33 -10* | 5.05 -108
3D solution (mesh 10 x 10 x 100) | 9.531-107% | 3.63 -10* | 2.94 -10° 1.45 -10% | 3.83 -101°
3D solution (mesh 50 x 50 x 500) - 3.90 -106 3.16 -108 3.12 -10* | 1.90 -10'®

Table 4: Final cross-section displacement relative error, number of DOFs used in the analysis (# DOFs), number of global
stiffness-matrix entries different from zero (# entries # 0), band width of the global stiffness matrix (band-width), and
estimation of the number of flops necessary to factorize the global stiffness matrix (# flops) for a cantilever (I = 10mm,
b = h = 1lmm) evaluated using different beam models.

through the following equation (see (Quarteroni et all, [2007):

_ # DOFs- (band-width)?
# flops = 5

We highlight that the MB FE 25 fiber and the 3D solution (mesh 10 x 10 x 100) require comaprable
# flops. Nevertheless, the former model provides a solution with a relative error that is 3 order of magnitude
smaller than the latter. The obtained results, even if non exhaustive, lead us to conclude that the proposed
method has interesting numerical performances with respect to the standard 3D analysis.

(41)

5.1.5. Conclusions on the beam model and the corresponding FE scheme
Looking at all the analyses performed in this section, we may remark what follows.

e As illustrated in Subsection BTl the MB and the corresponding FE scheme can capture the real
displacement better than the most popular beam models (EB and Timoshenko models).

e As illustrated in Subsection (121 the proposed beam model has a significant accuracy in the stress
description.

e As illustrated in Subsection [F13] the asymptotic behaviour, for reasonable ratios h/l, is correct.
Nevertheless, we note that the MB FE scheme may exhibits troubles for extremely small ratios h/1.

e Ag illustrated in Subsection B.1.4] the MB FE is numerically competitive with respect to standard
methods.

5.2. Non homogeneous cross-section beam (soft core beam,)

In this subsection we consider a beam with the non-homogeneous square cross-section depicted in Figure
and modeled through 25 equal fibers. We assume the boundary conditions of the example in Section
I Furthermore, we set [ = 20mm, E; = 10°MPa, E, = 10°MPa, and v = 0.25 everywhere in the
cross section. Along the beam axis we use a non-uniform 8 element meshes, whose nodal coordinates are
collected in the following vector: [0;1;2;3;10;17;18;19;20]. We plot the stress distribution in the cross
section = 10mm. The numerical results are reported in Figure [I1]

Consistently with the Saint-Venant principle, the stress components oy, 0., and 7,. are negligible.

Moreover, due to the large ratio between the two Young’s moduli, stress distributions within the core
appear always extremely regular and flat.
In this example the non uniform distribution of shear component 7,, along z—direction is less evident than
in the case of homogeneous beam. The ratio between the maximum values of the shears 7, and 7., is close
to 10, which confirms, once again, that 7., should not be neglected. In order to validate the results, we
compute a 3D numerical solution using the ABAQUS software and a homogeneous mesh of 40 brick elements.
In Table[d we report the minimum and the maximum values of the cross-section stress distribution evaluated
on the cross-section x = 10mm. From the comparison of the two methods it is possible to appreciate the
substantial agreement of the results. We notice that the high value of the o, 0., and 7, in ABAQUS min
and max evaluation depends on some localized instabilities that occur in numerical evaluation of stress.
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Figure 11: Stress distributions evaluated at = 10mm for the non homogeneous case.

MB FE ABAQUS
min max min max
0. | —7.54-101 | 7.54-10" | —7.55-101 7.55-10"
oy | —5.73-107% | 5.73-1072 | —2.57-10~' | 2.57-107!
o, | —1.22-107' | 1.22-107* | —3.36-10"' | 3.39-10°!
Tey | —1.23-10° | 0.00-10° | —1.23-10° | —8.01-1072
Tes | —1.25-1071 | 1.25-1071 | —9.62-1072 | 9.62-10~!
Ty. | —7.27-1073 | 7.27-1073 | —1.02-107" | 1.02-107!

Table 5: Minimum and maximum value of stress components distributions evaluated on the cross-section x = 10mm for the
non-homogeneous case, evaluated with different methods.

5.8. L-shape cross-section beam

We consider the cross-section geometry and fiber distribution reported in Figure We assume the
beam length, the axial mesh, and the displacement constraint of the example in Section (.2 while the
material parameters are set as £ = 10°MPa and v = 0.25. We load the beam with a torsion moment
equal to INmm in A;, imposed through a couple of opposite unit forces [0,0,1] N and [0,0, —1] N applied in
vertices (20, —0.5; —0.5) and (20, 0;0.5) respectively. The stress distributions at 2z = 10mm are reported in
Figure

It is interesting to observe that, as expected, the magnitude of 0., 0y, 0. and 7, is negligible with respect
to the magnitude of the shear components 7,, and 7,.. Moreover, considering the cross-section symmetry
highlighted in Figure the 7, distribution is anti-symmetric respect to the 7., distribution. Finally,
a small stress concentration of o, oy, 0, and 7,. can be appreciated close to the section vertices where
concentrated forces are applied. In order to validate the results, we compute a 3D numerical solution using
the ABAQUS software and a homogeneous mesh of 40 brick elements. In Table [l we report the minimum
and the maximum values of the cross-section stress distribution evaluated on the cross-section = 10mm.
From the comparison of the two method results it is possible to appreciate the substantial agreement of the
results. We notice a small difference between the maximum values of 7., and 7,. that occurs in the reflex
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Figure 12: Stress distributions evaluated at z = 10mm for the L-shape cross section.

MB FE ABAQUS

min max min max

0y | —3.61-107% | 1.74-1073 | —1.20-1077 1.65-107°
oy | —2.68- 1072 | 5.78-1072 | —1.41-10"'1 | 1.51.-10~ 1
o, | =7.50-1072% | 7.19-1073 | —1.49-10~11 | 2.12-10~ !
Tey | —9.54- 100 1.56- 10" —1.66-10" 9.55-10°
Te» | —1.56-10! 9.54-10° —9.55-10° 1.66 - 10"
Ty. | —2.47- 1073 | 7.29-1073 | —8.12-10712 | 1.24.10~ 1!

Table 6: Minimum and maximum value of stress components distributions evaluated on the cross-section z = 10mm for the
L-shape case, evaluated with different methods.

angle of the cross-section where stress concentration occurs.

6. Conclusions

In this paper we develop a 3D beam model methodology and possible corresponding FE schemes: starting
from a suitable Hellinger-Reissner formulation of the elastic problem, we derive beam models by using a
variational dimension reduction approach. When the profile functions are properly selected, the resulting
models lead to ODEs systems that can capture the boundary effects, too. However, we do not discuss how
to evaluate the warping functions and the generalized stress and displacements. Those aspects might be
treated as illustrated in [Dong et all (2001).

Introducing a suitable FE discretization of the beam-model, we obtain a numerical scheme capable of
accurately describing both displacement and stress fields, as the numerical results confirm.

Future developments of the present work could include: a rigorous mathematical study of the model; the
development of more specific cross-section shape functions, with the aim to handle more general geometries;
optimization issues, with the aim of reduce the number of involved DOFs; the consideration of more general
constitutive laws.
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