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Abstra
t

This paper illustrates an appli
ation of the so-
alled dimensional redu
tion modelling approa
h to obtain a

mixed, 3D, linear, elasti
 beam-model.

We start from the 3D linear elasti
 problem, formulated through the Hellinger-Reissner fun
tional, then

we introdu
e a 
ross-se
tion pie
ewise-polynomial approximation, and �nally we integrate within the 
ross

se
tion, obtaining a beam model that satis�es the 
ross-se
tion equilibrium and 
ould be applied to inho-

mogeneous bodies with also a non trivial geometries (su
h as L-shape 
ross se
tion). Moreover the beam

model 
an predi
t the lo
al e�e
ts of both boundary displa
ement 
onstraints and non homogeneous or


on
entrated boundary load distributions, usually not a

urately 
aptured by most of the popular beam

models.

We modify the beam-model formulation in order to satisfy the axial 
ompatibility (and without violating

equilibrium within the 
ross se
tion), then we introdu
e axis pie
ewise-polynomial approximation, and �nally

we integrate along the beam axis, obtaining a beam �nite element. Also the beam �nite elements have the


apability to des
ribe lo
al e�e
ts of 
onstraints and loads. Moreover, the proposed beam �nite element

des
ribes the stress distribution inside the 
ross se
tion with high a

ura
y.

In addition to the simpli
ity of the derivation pro
edure and the very satisfying numeri
al performan
es,

both the beam model and the beam �nite element 
an be re�ned arbitrarily, allowing to adapt the model

a

ura
y to spe
i�
 needs of pra
titioners.

Keywords: linear elasti
 beam, mixed variational modelling, beam analyti
al solution, stati
 analysis,

�nite element

1. Introdu
tion

The modelling of a beam body, i.e. a 3D, prismati
, slender, linear, and elasti
 body, is one of the most

investigated problem in the 
ontinuum me
hani
s �eld. Nevertheless, this resear
h area 
ontinues to be open

to new 
ontributions sin
e new design-philosophies (e.g. the limit-states or the performan
e-based designs)

and new te
hnologies (e.g. 
omposite materials) need more and more a

urate analysis. Readers may refer

to (Hjelmstad and Ta
iroglu, 2003) to get the idea about re
ent trends and dis
ussions in beam-modelling

�eld.

The Euler-Bernoulli (EB) beam model, proposed in eighteenth 
entury, is a simple beam model, still

widely used by pra
titioners, despite today's 
omputational instruments allow to handle more re�ned models.

In EB beam model, the 
ross se
tion is for
ed to remain rigid and orthogonal to the beam axis, also in
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deformed 
on�guration. It follows that 4 
ross-se
tion rigid motion (i.e.: (i) the axial displa
ement; (ii-

iii) the translations orthogonal to the beam axis; (iv) the rotation around the beam axis) are ne
essary

to des
ribe the beam kinemati
 and 4 independent Ordinary Di�erential Equations (ODEs) impose the

equilibrium between the internal resulting stresses (i.e.: axial 
ompression, shears, bending moments, and

torque) and the applied loads.

However, EB beam is e�e
tive only for extremely slender bodies. As a 
onsequen
e, in the past 
entury,

resear
hers developed many re�ned beam models. In the following we list a few signi�
ant examples, detailing

improvements with respe
t to the EB beam model.

� Timoshenko beam model. It does not for
e the 
ross se
tion to remain orthogonal to the beam axis

and it solves the shear-bending problems more a

urately (see e.g. (Timoshenko and Goodier, 1951)).

� Higher order beam models. They 
onsider more re�ned kinemati
s. As an example, they assume that

the 
ross se
tion 
an warp and/or 
hange shape (among the others, see e.g. (Vinayak et al., 1996)).

� Mixed beam models. They 
onsider both displa
ement and stress as independent variables with the

aim to improve the stress des
ription (see (Hjelmstad and Ta
iroglu, 2002) for a brief introdu
tion and

a literature review).

Unfortunately, to be e�e
tive, many re�ned beam models and also the EB beam model require sti�ness


orre
tion fa
tors that are not easy to evaluate, in relatively simple 
ases, too.

In the nineteen 
entury, Saint-Venant (SV) proposed a 
ompletely di�erent approa
h to beam modelling,

i.e. he provided the solution of the 
ontinuum me
hani
 problem for a beam body assuming that: (i) the body

is homogeneous and isotropi
; (ii) no distributed-loads are applied; (iii) loads and displa
ement 
onstraints

are applied far from the region where the solution is evaluated; (iv) stress 
omponents orthogonal to the

beam axis are negligible. Unfortunately, SV solution is not expli
it be
ause it depends on some unknown

warping fun
tions, governed by auxiliary Partial Di�erential Equations (PDEs) de�ned on the 
ross se
tion.

Readers may refer to (Timoshenko and Goodier, 1951) for more details.

Warping fun
tions are deeply investigated not only in order to determine the SV solution, but also

be
ause they are useful in the evaluation of sti�ness 
orre
tion fa
tors. As an example, Gruttmann et al.

(1999) dis
uss the physi
al meaning of the warping fun
tions and propose a numeri
al approa
h to solve

the auxiliary PDEs, 
omparing some numeri
al results with available analyti
al solutions. More re
ently,

La
arbonara and Paolone (2007) propose and 
ompare di�erent strategies to 
ompute the warping fun
tions,

highlighting advantages and 
riti
al steps of ea
h strategy. In general, the numeri
al 
omputation of warping

fun
tions 
ould be quite expensive. However, it must be done only on
e, after the se
tion geometry de�nition.

As a 
onsequen
e, the pro
edure is usually adopted in frame-stru
ture analysis.

In pra
ti
al appli
ations, many of the hypotheses that allow to obtain the SV solution 
ould be too

restri
tive. An attempt to over
ome the SV hypotheses was proposed by Ladeveze and Simmonds (1998),

under the assumption that the 
ross-se
tion is a pie
ewise 
onstant fun
tion along the beam axis. The 3D

solution is obtained applying the 3 steps listed in the following: (i) de�nition of the beam-model 
onstitutive

operators through the solution of problems de�ned in the 
ross se
tion, (ii) determination of the beam-model

solution governed by a 1D problem, and (iii) re
onstru
tion of the 3D solution through the 
ombination of

the 
onstitutive operators. In addition to the SV solution, the resulting solution takes into a

ount also lo
al

e�e
ts like stress 
on
entrations that o

ur in proximity of displa
ement 
onstrained boundary. As spe
i�ed

in (Ladeveze and Simmonds, 1998), the proposed theory determines exa
t stati
 and kinemati
 generalized

quantities (i.e. axial 
ompression, shears, bending moments, torque, and the dual kinemati
 variables).

A 
ompletely di�erent attempt to over
ome the SV hypotheses in beam model formulation was proposed

by Dong et al. (2001); Kosmatka et al. (2001) and Lin et al. (2001), that apply the dimensional redu
tion

method to the 
ontinuum me
hani
 PDEs problem in order to obtain a semi-analyti
al SV-like solution. The

authors assume displa
ement as independent variable and the Total Potential Energy variational prin
iple

as starting point in derivation whereas no restri
tive hypotheses on materials, stress des
ription, and loads

are 
onsidered. Some ODEs govern the resulting model solution that des
ribes e�e
tively also lo
al e�e
ts.

The advantages of the approa
h are: (i) the pro
edure does not need the a-priori de�nition and solution of
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auxiliary problems, (ii) sti�ness 
oe�
ient fa
tors are automati
ally 
omputed through the model derivation

pro
edure, and (iii) the des
ription of boundary e�e
ts result as a 
omponent of the homogeneous solution

of the ODEs governing the beam model problem.

It is worth mentioning that the dimensional redu
tion method was proposed by Kantorovi
h and Krylov

(1958) as a general mathemati
al pro
edure that exploits the geometry of the domain to redu
e the problem

dimension (in beam modelling from 3D PDEs to ODEs). The method is widely used in 
ontinuum me
hani


and we would 
ite, among other examples, (Vogelius and Babuska, 1981a,b; Alessandrini et al., 1999; Batra

et al., 2002), and Batra and Vidoli (2002).

Re
ently, Auri

hio et al. (2010) 
onsidered a planar beam problem and the Hellinger-Reissner (HR)

variational prin
iple as the starting point for the dimensional redu
tion pro
edure. By 
hoosing appropri-

ate 
ross-se
tion approximating pro�les, the resulting beam model is 
apable, in parti
ular, of a

urately

des
ribing the 
ross-se
tion stress distribution. In addition, Auri

hio et al. (2010) proposed a suitable FE

approximation of that beam model.

In this paper, we generalize the approa
h and the FE derivation pro
edure illustrated in Auri

hio et al.

(2010) to a 3D beam body. Due to the 2D nature of the 
ross-se
tions, the 
hoi
e of the approximating

pro�les requires more 
are than the 
orresponding planar 
ase.

A brief outline of the paper is as follows. In Se
tion 2 we de�ne the problem we are interested in, and

in Se
tion 3 we derive the beam model starting from the HR fun
tional, giving also some insight on the

stru
ture of its analyti
al solution. In Se
tion 4 we develop suitable FE s
hemes, and in Se
tion 5 we present

numeri
al results to illustrate the a
tual 
omputational performan
es of our approa
h.

2. Problem de�nition

We 
onsider a 3D, prismati
, slender, linear, and elasti
 body under the hypothesis of small displa
ements.

For simpli
ity, we 
onsider only isotropi
 materials, even if this assumption is not ne
essary for the model

derivation.

We de�ne the problem domain as:

Ω := l ×A (1)

where the beam longitudinal axis l ⊂ R and the 
ross se
tion A ⊂ R
2
are orthogonal, 
losed and bounded

sets. Figure 1 represents the domain Ω, the adopted Cartesian 
oordinate system, the initial and �nal 
ross

PSfrag repla
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Figure 1: 3D beam body geometry, 
oordinate system, dimensions, and adopted notations.

se
tions (A0 and Al respe
tively), and the lateral surfa
e L := ∂A × l, where ∂A is the boundary of the


ross se
tion, as illustrated in Figure 2. Thus, the domain boundary is ∂Ω := A0 ∪ Al ∪ L and we 
onsider

the partition {∂Ωt; ∂Ωs}, where ∂Ωt and ∂Ωs are the externally loaded and the displa
ement 
onstrained

boundaries, respe
tively. We noti
e that the body 
ould be inhomogeneous in the 
ross se
tion, as illustrated

in Figure 2. As a 
onsequen
e, the Young's modulus E and the Poisson's ratio ν are s
alar �elds depending

on the 
ross-se
tion 
oordinates, i.e. E : A → R and ν : A → R.

The pres
ribed boundary displa
ement sss : ∂Ωs → R
3
, the external load, de�ned as a surfa
e for
e density

ttt : ∂Ωt → R
3
, and the body load, de�ned as a volume for
e density fff : Ω → R

3
, are assumed to be su�
iently

smooth fun
tions.
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Figure 2: Cross se
tion geometry, 
oordinate system, and adopted notations.

Introdu
ing the symmetri
 stress tensor �eld σσσ : Ω → R
3×3
s , the displa
ement ve
tor �eld sss : Ω → R

3
,

the 
orresponding variation �elds δσσσ and δsss, and the following spa
es:

L2 (Ω) :=
{
sss : Ω → R

3 :

∫

Ω

sss ·sss dΩ < ∞
}

H(div,Ω) :=
{
σσσ : Ω → R

3×3
s :

∫

Ω

σσσ : σσσ dΩ < ∞ and (∇ ·σσσ) ∈ L2(Ω)
}

W := { sss ∈ L2 (Ω)
}

St := { σσσ ∈ H (div,Ω) : σσσ ·nnn|∂Ωt
= ttt
}

(2)

S0 := { δσσσ ∈ H(div,Ω) : δσσσ ·nnn|∂Ωt
= 000
}

the 3D elasti
 problem 
onsists in solving the following variational system.

Find sss ∈ W and σσσ ∈ St su
h that ∀δsss ∈ W

and ∀δσσσ ∈ S0

δJHR :=−

∫

Ω

δsss ·∇ ·σσσ dΩ−

∫

Ω

∇ · δσσσ ·sss dΩ−

∫

Ω

δσσσ :DDD−1 : σσσ dΩ−

∫

Ω

δsss ·fff dΩ

+

∫

∂Ωs

δσσσ ·nnn ·sss dA = 0

(3)

Above, DDD is the fourth order, linear, elasti
, isotropi
 tensor whi
h depends on the material parameters E
and ν.

We highlight that, due to the adopted formulation, the boundary equilibrium σσσ ·nnn|∂Ωt
= ttt is an essential


ondition, i.e. it is dire
tly inserted into the de�nition of the trial spa
e St. On the 
ontrary, the boundary


ompatibility sss|∂Ωs
= sss is a natural 
ondition, i.e. it is weakly imposed to the solution 
omponent sss through

the variational system (3).

3. Model derivation

In this se
tion, starting from the 3D problem weak formulation (3), we perform the dimensional redu
tion

whi
h is based on the introdu
tion of �eld 
ross-se
tion approximations and on a 
ross-se
tion integration.

For simpli
ity, in the model derivation, we swit
h to an engineering-oriented notation.

3.1. Cross-se
tion approximation and notations

The �rst step in the beam model derivation is to approximate the generi
 three-dimensional �eld γ :
Ω → R

( · )
as a linear 
ombination of d 
ross-se
tion shape fun
tions, stored in a ve
tor rrrγ : A → R

( · )×d
,
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weighted with arbitrary axial 
oe�
ient fun
tions γ̂γγ : l → R
d
, i.e. formally:

γ (x, y, z) ≈ rrrTγ (y, z) γ̂γγ (x) (4)

where ( · )
T
indi
ates the transposition operation.

We emphasize that the 
ross-se
tion shape fun
tions rrrγ (y, z) are a set of pre-assigned, linearly-independent
fun
tions. As a 
onsequen
e, the �eld γ (x, y, z) is uniquely determined by the axial 
oe�
ient fun
tions

γ̂γγ (x) that are indeed the unknowns of the beam model we are developing. In the following, we omit the

dependen
es of rrrγ on y, z and of γ̂γγ on x for notation simpli
ity.

Adopting Position (4) and swit
hing to an engineering notation we set:

sss :=





su
sv
sw



 ≈




rrrTu 000 000
000 rrrTv 000
000 000 rrrTw







ûuu
v̂vv
ŵww



 = RRRsŝss (5)

σσσ := {σxx, σyy, σzzτxy, τxz , τyz}
T
≈




rrrTσx
000 000 000 000 000

000 rrrTσy
000 000 000 000

000 000 rrrTσz
000 000 000

000 000 000 rrrTτxy
000 000

000 000 000 000 rrrTτxz
000

000 000 000 000 000 rrrTτyz








σ̂σσx

σ̂σσy

σ̂σσz

τ̂ττxy
τ̂ττxz
τ̂ττyz





= RRRσσ̂σσ
(6)

In the same way we de�ne the virtual �eld approximations:

δsss := RRRsδŝss; δσσσ := RRRσδσ̂σσ

A

ording to the engineering notations just introdu
ed, we re-de�ne the di�erential operator and the

normal unit ve
tor produ
t as follows:

Tensor notation Engineering notation

∇ ·σσσ ≡

(
∂

∂x
EEE1 +

∂

∂y
EEE2 +

∂

∂z
EEE3

)
RRRσσ̂σσ (7)

σσσ ·nnn ≡ (nxEEE1 + nyEEE2 + nzEEE3) RRRσσ̂σσ (8)

where produ
ts between partial derivatives and boolean matri
es EEEi, i = 1, 2, 3 must be intended as s
alar-

matrix produ
ts, whereas di�erential operators are applied to stress approximations RRRσσ̂σσ. The boolean

matri
es EEEi, i = 1, 2, 3, are de�ned as follows:

EEE1 :=




1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0




EEE2 :=




0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 0 1




EEE3 :=




0 0 0 0 1 0
0 0 0 0 0 1
0 0 1 0 0 0




(9)

In Se
tion 2, we denoted withDDD−1
the fourth order, linear, elasti
, isotropi
 tensor, while from now on, with

a small abuse, we use the same notation to indi
ate the 
orresponding square matrix obtained following the
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engineering notation. Therefore, we have:

DDD−1 :=
1

E




1 −ν −ν 0 0 0
−ν 1 −ν 0 0 0
−ν −ν 1 0 0 0
0 0 0 2 (1 + ν) 0 0
0 0 0 0 2 (1 + ν) 0
0 0 0 0 0 2 (1 + ν)




(10)

Due to assumption (4), 
omputation of partial derivatives is straightforward:

∂

∂x
γ = rrrTγ

d

dx
γ̂γγ = rrrTγ γ̂γγ

′
(11)

∂

∂y
γ =

∂

∂y
rrrTγ γ̂γγ = rrrTγ ,y γ̂γγ;

∂

∂z
γ =

∂

∂z
rrrTγ γ̂γγ = rrrTγ ,z γ̂γγ

where the prime means the derivative along x, ( · ) ,y and ( · ) ,z mean derivatives along y and z, respe
tively.

3.2. Model formulation

In the following we assume that ∂Ωs = A0, ∂Ωt = Al ∪ L, and the lateral surfa
e is unloaded, i.e.:

ttt|L = 000. The unloaded lateral surfa
e is an usual assumption in beam modelling. However, we noti
e that

the model derivation 
an be performed taking into a

ount arbitrary load 
onditions as well.

In order to strongly satisfy the boundary equilibrium, a

ording to the de�nition of St, see (2), we assume

that the external tra
tion ttt|Al

an be exa
tly represented using the pro�les RRRσ. This means that there exist

suitable ve
tors t̂ttx, t̂tty, and t̂ttz su
h that:

ttt|Al
=





rrrTσx
t̂ttx

rrrTτxy
t̂tty

rrrTτxz
t̂ttz



 (12)

Sin
e nnn|Al
= (1, 0, 0)

T
, De�nition (8) be
omes σσσ ·nnn|Al

= EEE1RRRσσ̂σσ
(
l
)
and the essential boundary 
ondition

σσσ ·nnn|Al
= ttt|Al


an be expressed as follows:





σ̂σσx

(
l
)

τ̂ττxy
(
l
)

τ̂ττxz
(
l
)



 =





t̂ttx
t̂tty
t̂ttz



 (13)

Introdu
ing the engineering notation and the approximations de�ned in se
tion 3.1, variational prob-

lem (3) be
omes:

δJHR = −

∫

Ω

δŝssTRRRT
s

[(
d

dx
EEE1 +

∂

∂y
EEE2 +

∂

∂z
EEE3

)
RRRσσ̂σσ

]
dΩ

−

∫

Ω

[(
d

dx
EEE1 +

∂

∂y
EEE2 +

∂

∂z
EEE3

)
RRRσδσ̂σσ

]T
RRRsŝss dΩ

−

∫

Ω

δσ̂σσTRRRT
σDDD

−1RRRσσ̂σσdΩ−

∫

Ω

δŝssTRRRT
s fff dΩ

+

∫

∂Ωs

[(nxEEE1 + nyEEE2 + nzEEE3)RRRσδσ̂σσ]
T
sss dA = 0

(14)
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Expanding produ
ts, introdu
ing the derivative notation (11), and re
alling that ∂Ωs = A0, Equation (14)

be
omes:

δJHR = −

∫

Ω

(δŝssTRRRT
s EEE1RRRσσ̂σσ

′ + δŝssTRRRT
s EEE2RRRσ,y σ̂σσ

+δŝssTRRRT
s EEE3RRRσ,z σ̂σσ + δσ̂σσ′TRRRT

σEEE
T
1RRRsŝss

+δσ̂σσTRRRT
σ ,yEEE

T
2RRRsŝss+ δσ̂σσTRRRT

σ ,zEEE
T
3RRRsŝss

+ δσ̂σσTRRRT
σDDD

−1RRRσσ̂σσ + δŝssTRRRT
s fff
)
dΩ

−

∫

A0

δσ̂σσTRRRT
σEEE

T
1 sss dA = 0

(15)

Splitting the integral on the domain Ω into an integral along the axis l and an integral on the 
ross se
tion

A, Equation (15) be
omes:

δJHR = −

∫

l

( δŝssTGGGsσσ̂σσ
′ + δŝssTHHHsσσ̂σσ + δσ̂σσ′TGGGσsŝss

+δσ̂σσTHHHσsŝss+ δσ̂σσTHHHσσσ̂σσ + δŝssTFFF ) dx

−δσ̂σσTSSS = 0

(16)

where

HHHsσ :=HHHT
σs =

∫

A

(
RRRT

s EEE2RRRσ,y +RRR
T
s EEE3RRRσ,z

)
dA

HHHσσ :=

∫

A

RRRT
σDDD

−1RRRσdA

GGGsσ =GGGT
σs :=

∫

A

RRRT
s EEE1RRRσdA (17)

FFF :=

∫

A

RRRT
s fffdA; SSS =

∫

A0

RRRT
σEEE1sssdA

Equation (16) represents the weak formulation of the beam model: the integrals are de�ned only along the

beam axis, whereas the 
ross-se
tion integrals be
ome 
oe�
ient matri
es.

To obtain the 
orresponding strong formulation, i.e. the asso
iated ODE system, we need to integrate

by parts the third term of Equation (16):

−

∫

l

δσ̂σσ′TGGGσsŝssdx = − δσ̂σσTGGGσsŝss
∣∣∣
x=l

x=0
+

∫

l

δσ̂σσTGGGσsŝss
′dx (18)

Substituting Equation (18) in Equation (16), re
alling that δσ̂σσ
(
l
)
= 000, and 
olle
ting the unknowns in a

ve
tor, we obtain:

∫

l

[
δŝssT ; δσ̂σσT

](
GGG

{
ŝss′

σ̂σσ′

}
+HHH

{
ŝss
σ̂σσ

}
−

{
FFF
000

})
dx

− δσ̂σσT (SSS −GGGσsŝss
)
= 0

(19)

where

GGG :=

[
000 −GGGsσ

GGGσs 000

]
HHH :=

[
000 −HHHsσ

−HHHσs −HHHσσ

]
(20)

Sin
e Equation (19) needs to be satis�ed for all the possible virtual �elds, we obtain the following ODE,

7



equipped with the essential boundary 
ondition (13).





GGG

{
ŝss′

σ̂σσ′

}
+HHH

{
ŝss
σ̂σσ

}
=

{
FFF
000

}
in l

GGGσsŝss = SSS at x = 0

σ̂σσx = t̂ttx at x = l

τ̂ττxy = t̂tty at x = l

τ̂ττxz = t̂ttz at x = l

(21)

We noti
e that, sin
e HHH 
ontains only y and z derivatives, it governs a generalized plane strain problem

de�ned in the 
ross se
tion. Furthermore, looking at the de�nition of GGG (see (20)�(17)) and at the de�nition

of the boolean matrix EEE1 (see (9)), we observe that all the 
oe�
ients multiplying σ̂σσ′

y, σ̂σσ
′

z, and τ̂ττ ′yz vanish.

As a 
onsequen
e, we 
on
lude that the beam model (21) is an algebrai
-di�erential problem where at least

σ̂σσy, σ̂σσz, and τ̂ττyz are determined through purely algebrai
 equations.

3.3. Cross-se
tion shape fun
tions de�nition

Due to the domain de�nition (1) we 
an represent the stress tensor as follows:

σσσ :=

[
σl τττ lA
τττAl σσσA

]
(22)

where

σl := σxx; τττ lA = τττTAl := [τxy; τxz ] ; σσσA :=

[
σyy τyz
τzy σzz

]

A

ordingly, we represent the divergen
e operator as follows:

∇ :=





∂

∂x
∇A



 where ∇A :=





∂

∂y
∂

∂z





(23)

We �rst re
all that the spa
e de�nition (2) requires in parti
ular σσσ ∈ H (div,Ω). Therefore, we must


hoose σσσ su
h that (∇ ·σσσ) ∈ L2 (Ω), i.e.:

∇ ·σσσ =





∂

∂x
σl +∇A ·τττ lA

∂

∂x
τττAl +∇A ·σσσA





∈ L2 (Ω) (24)

Su�
ient 
onditions that guarantee the satisfa
tion of (24) are the following:

∂

∂x
σl ∈ L2 (Ω) ; ∇A ·τττ lA ∈ L2 (Ω) ;

∂

∂x
τττAl ∈ L2 (Ω) ; ∇A ·σσσA ∈ L2 (Ω)

(25)

In addition to Conditions (25), as suggested by Alessandrini et al. (1999), to ensure that the model is

well-posed, one possible 
hoi
e is to require the following 
ondition:

∇ ·S0 = W (26)

8



Given a generi
 
ross-se
tion geometry, it is not trivial to de�ne 
ross-se
tion shape fun
tions that

satisfy 
onditions (25) and (26). As a 
onsequen
e, we start fo
using on the simplest 
ase, i.e. a beam with

a re
tangular 
ross-se
tion:

A =

{
(y; z) ∈ R

2 : y ∈

[
−
h

2
,
h

2

]
and z ∈

[
−
b

2
,
b

2

]}

where h is the beam thi
kness and b is the beam depth. Due to the simpli
ity of the 
onsidered geometry,

the 
ross-se
tion shape fun
tions 
an be de�ned as the tensor produ
ts of two pro�le fun
tion ve
tors pppγ (y)
and qqqγ (z):

pppγ : h → R
g; qqqγ : b → R

k; rrrTγ := vec
(
pppγ (y)qqq

T
γ (z)

)
(27)

where vec ( · ) is the linear operator that re-arranges a tensor into a row ve
tor. Obviously the g 
omponents

of pppγ and the k 
omponents of qqqγ are sets of linearly independent fun
tions.

Due to the introdu
tion of pro�le fun
tion de�nition (27), we 
an express Condition (26) as follows (
f.

also (5) and (6)).

Given ŝss, there exists σ̂σσ su
h that:

vec
(
pppσx

qqqTσx

)
σ̂σσ′

x + vec
(
ppp′τxy

qqqTτxy

)
τ̂ττxy + vec

(
pppτxz

qqq′Tτxz

)
τ̂ττxz

= vec
(
pppuqqq

T
u

)
ûuu

(28)

vec
(
pppτxy

qqqTτxy

)
τ̂ττ ′xy + vec

(
ppp′σy

qqqTσy

)
σ̂σσy + vec

(
pppτyzqqq

′T
τyz

)
τ̂ττyz

= vec
(
pppvqqq

T
v

)
v̂vv

(29)

vec
(
pppτxz

qqqTτxz

)
τ̂ττ ′xz + vec

(
ppp′τyzqqq

T
τyz

)
τ̂ττyz + vec

(
pppσz

qqq′Tσz

)
σ̂σσz

= vec
(
pppwqqq

T
w

)
ŵww,

(30)

and vi
eversa.

We 
onsider 
omplete polynomials as pro�le fun
tions and we denote with deg( · ) their maximum degree.

As a 
onsequen
e, to satisfy Equations (28), (29), and (30) we enfor
e the following �natural� 
onditions:

deg (pppσx
) = deg

(
pppτxy

)
− 1 = deg (pppτxz

) = deg (pppu)

deg
(
pppτxy

)
= deg

(
pppσy

)
− 1 = deg

(
pppτyz

)
= deg (pppv)

deg (pppτxz
) = deg

(
pppτyz

)
− 1 = deg (pppσz

) = deg (pppw)

deg (qqqσx
) = deg

(
qqqτxy

)
= deg (qqqτxz

)− 1 = deg (qqqu)

deg
(
qqqτxy

)
= deg

(
qqqσy

)
= deg

(
qqqτyz

)
− 1 = deg (qqqv)

deg (qqqτxz
) = deg

(
qqqτyz

)
= deg (qqqσz

)− 1 = deg (qqqw)

(31)

Table 1 displays the degree of pro�le fun
tions pppγ and qqqγ , assuming deg
(
pppτxy

)
= deg (qqqτxz

) = 2 and imposing

Equation (31).

As illustrated in Figure 3, we 
an de�ne non-elementary 
ross-se
tions assembling elementary re
tangular

blo
ks that we 
all �bers and we suppose to be homogeneous. We 
onstru
t the non elementary 
ross-se
tion

shape fun
tions rrrγ 
onsidering the pro�le fun
tions so far de�ned on ea
h �ber, requiring the pro�le-fun
tion


ontinuities spe
i�ed in Table 1, and imposing the essential boundary 
ondition σσσ ·nnn|∂A = 000. We spe
ify

that pro�le-fun
tion 
ontinuities are �xed in order to satisfy Condition (25).

3.4. Beam-model examples

In this sub-se
tion we evaluate and dis
uss the solution of the beam model (21) for the homogeneous

beam with square 
ross se
tion depi
ted in Figure 4. We assume that the properties of the material are E =

9
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Figure 3: Non-elementary 
ross-se
tion geometry de�nition, dimensions, and adopted notations.

Variable deg (pppγ) y 
ont. deg (qqqγ) z 
ont.

u 1 C−1
1 C−1

v 2 C−1
1 C−1

w 1 C−1
2 C−1

σx 1 C−1
1 C−1

σy 3 C0
1 C−1

σz 1 C−1
3 C0

τxy 2 C0
1 C−1

τxz 1 C−1
2 C0

τyz 2 C0
2 C0

Table 1: Degree and 
ontinuity of 
ross-se
tion pro�le fun
tions (C−1
means dis
ontinuous fun
tion).

105MPa and ν = 0.25 and, with respe
t to the notation introdu
ed in Figure 3, the 
ross-se
tion dimensions

are h = b = 1mm. We model the physi
al problem using 2 
ross-se
tion dis
retization: the one-�ber 
ross-

se
tion dis
retization, depi
ted in Sub-�gure 4(a), and the two-�ber 
ross-se
tion dis
retization, depi
ted

in Sub-�gure 4(b); the aim of these modelling 
hoi
es is to appre
iate the e�e
t of di�erent dis
retization

re�nement.

In the following, the matri
es GGG and HHH are evaluated through symboli
-
al
ulus fun
tions, whereas the

further results are obtained using numeri
al-
al
ulus fun
tions, both implemented in MAPLE software.

3.4.1. One-�ber 
ross-se
tion

After imposition of the lateral free-tra
tion boundary 
ondition, the one-�ber 
ross-se
tion beam has 33

unknowns. Sin
e rank (GGG) = 16, in the 
onsidered example we 
an distinguish between 16 unknowns that

are solutions of a di�erential problem, and the remaining 17 that are algebrai
ally determined by linear


ombination of the di�erential problem solutions. As already observed at the end of Sub-se
tion 3.2, the 9

σ̂σσy, σ̂σσz , and τ̂ττyz axial 
oe�
ient fun
tions are among the ones algebrai
ally determined. Moreover, looking

at Equation (21) for the 
onsidered example, the boundary 
onditions are 16, sin
e rank (GGGσs) = 8 and

the boundary equilibrium 
onsists of 8 
onditions. Therefore, the number of boundary 
onditions and the

number of essential �rst order di�erential equations in (21) perfe
tly mat
h.

As already explained in Auri

hio et al. (2010), to 
onstru
t the homogeneous solution of ODEs (21),

10
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Figure 4: Homogeneous, square 
ross-se
tion: dimensions and adopted dis
retization (h = b = 1mm, E = 105MPa, and
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we need the solution of the generalized eigenvalue problem:

det (λGGG+HHH) = 0 (32)

where λ is the eigenvalue. For the 
ase under investigation we obtain:

λλλ =

{
∼ 0

±3.3652± 1.1509i

}
[12]
[4]

where the numbers in square bra
kets are the eigenvalue multipli
ities (
onsidering all the possible 
ombi-

nation of sign of real and imaginary parts) and the notation ∼ 0 means that the eigenvalues vanish up to

the ma
hine pre
ision.

3.4.2. Two-�ber 
ross-se
tion

After imposition of the lateral free-tra
tion boundary 
ondition, the two-�ber 
ross-se
tion beam has

71 independent unknowns. Moreover, rank (GGG) = 36. Hen
e, 36 unknowns are solution of a di�erential

problem, whereas the remaining 35 are algebrai
ally determined by linear 
ombination of the di�erential

problem solutions. Looking at Equation (21) for the 
onsidered example, the boundary 
onditions are 36,

sin
e rank (GGGσs) = 18 and the boundary equilibrium 
onsists of 18 
onditions. Therefore, the number of

boundary 
onditions and the number of essential �rst order di�erential equations in (21) perfe
tly mat
h

for this 
ase, too.

In the two-�ber beam, the solution of the generalized eigenvalue problem (32) is:

λλλ =





∼ 0
±11.786
±10.116
±10.022
±8.2174
±8.1037

±4.5891± 1.2945i
±5.6931± 0.4331i

±4.9317
±3.3520± 1.1591i





[12]
[2]
[2]
[2]
[2]
[2]
[4]
[4]
[2]
[4]

and it is going to be dis
ussed in the next Sub-se
tion.
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3.4.3. Con
lusions on beam models

We 
omputed the solutions of the homogeneous problem asso
iated to (21) for the beam models so far

introdu
ed, but we do not report them sin
e their expressions are too long. However, the following remarks

about the solution stru
ture apply.

� Zero eigenvalues lead to polynomial terms, that 
orrespond to the polynomial terms that appear also

in the Saint-Venant solution. In parti
ular, the 12 zero eigenvalues 
orrespond to the 6 rigid body

translations and to the 6 uniform deformations: extension, torque, two bendings, and two shears

(asso
iated with bendings).

� Non-zero, 
omplex 
onjugate or real eigenvalues (generally represented as ±a ± ib) lead to harmoni


dumped fun
tions like Cie
±ax sin (bx+ Cj), that des
ribe lo
al e�e
ts near the boundaries, as it hap-

pens in other beam models, like Ladeveze and Simmonds (1998) and Allix and Dupleix-Couder
 (2010).

Similar 
on
lusions was also reported in Lin et al. (2001) where, moreover, the authors spe
ify that the

real part of the eigenvalue de�nes the inverse de
ay length of the 
orresponding boundary e�e
t. As a


onsequen
e, the smallest eigenvalue real-part provides an estimation of the length of the axis region where

boundary e�e
ts are not negligible.

From the 
omparison between the one- and two-�ber 
ross-se
tion beam models, it is possible to draw

some additional observations.

� The number of eigenvalues 
orresponds exa
tly to the rank ofGGGmatrix i.e. to the number of di�erential

equations governing the problem.

� The number of null eigenvalues does not 
hange. As a 
onsequen
e, we may 
on
lude that the poly-

nomial terms in the solution are independent from the number of 
onsidered �bers.

� Instead, the number of non-zero eigenvalues in
reases with the �ber number. As a 
onsequen
e, we

may 
on
lude that a �ner dis
retization improves at least the a

ura
y of the des
ription of lo
al

e�e
ts.

� The de
ay lengths of the two models are not so di�erent (the smallest real part of eigenvalues are

3.3652 and 3.3520 for one- and two- �ber 
ross-se
tions, respe
tively). As a 
onsequen
e, we may


on
lude that also the simplest model is e�e
tive in the evaluation of this parameter.

� In both models, the inverse of de
ay length ensures that the magnitude of dumped fun
tions is redu
ed

of more than the 96% of its initial value, in a length of 1mm.

The independen
e of the polynomial solution with respe
t to the number of �bers suggests the idea that the

modelling far from the extremal 
ross se
tions 
ould be done by means of few global degrees of freedom, as

in EB beam model. However, this idea will be the topi
 of future investigations.

4. FE derivation

The goal of this se
tion is to obtain a displa
ement-based beam FE formulation. A

ordingly, we intro-

du
e an approximation along the x dire
tion, modify the beam-model weak formulation (16), and perform

an integration along the axis. The pro
edure redu
es the algebrai
-di�erential equation system (21) to a

pure algebrai
 equation system.

4.1. Axial approximation

We introdu
e the following approximation:

γ̂γγ (x) ≈NNNγ (x) γ̃γγ (33)
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where

NNNγ =




NNNT
γ1 (x) 000 · · · 000
000 NNNT

γ2 (x) · · · 000
.

.

.

.

.

.

.

.

.

.

.

.

000 000 · · · NNNT
γd (x)




γ̃γγ = {γ̃γγ1, γ̃γγ2, · · · γ̃γγd}
T

A

ordingly, the i-th axial 
oe�
ient fun
tion γ̂i (x) is approximated as a linear 
ombination of some assigned

axial shape fun
tions, stored in the ve
tor NNNγi : l → R
t
; the numeri
al 
oe�
ients of the 
ombination are


olle
ted in the ve
tor γ̃γγi ∈ R
t
. In the following, we drop the expli
it dependen
e of NNNγ on x for notational

simpli
ity.

4.2. FE formulation

In the following, we assume that the beam is 
lamped in A0, i.e. sss = 000. Starting from beam-model weak

formulation (16), we integrate by parts with respe
t to the x dire
tion both the �rst and the third terms

obtaining the following, alternative beam-model weak formulation:

Find ŝss ∈ W̃ and σ̂σσ ∈ S̃ su
h that ∀ δŝss ∈ W̃ and ∀ δσ̂σσ ∈ S̃

δJHR =

∫

l

( δŝss′TGGGsσσ̂σσ − δŝssTHHHsσσ̂σσ + δσ̂σσTGGGσsŝss
′

−δσ̂σσTHHHσsŝss− δσ̂σσTHHHσσσ̂σσ − δŝssTFFF ) dx

−δŝssTTTT = 0

(34)

where TTT :=
∫
Al

RRRT
s tttdA, W̃ :=

{
ŝss ∈ H1(l) : ŝss|x=0 = 000

}
, and S̃ := L2(l). We re
all that:

L2 (l) :=

{
σ̂σσ :

∫

l

σ̂σσT σ̂σσdx < ∞

}

H1 (l) :=
{
ŝss : ŝss, ŝss′ ∈ L2 (l)

}

The FE dis
retization of the model follows from the introdu
tion of the axial shape fun
tion approxima-

tion (33) into the beam-model weak formulation (34):

δJHR =

∫

l

( δs̃ss
T
NNN ′T

s GGGsσNNNσσ̃σσ − δs̃ss
T
NNNT

sHHHsσNNNσσ̃σσ

+ δσ̃σσTNNNT
σGGGσsNNN

′

ss̃ss− δσ̃σσTNNNT
σHHHσsNNNss̃ss

− δσ̃σσ
T
NNNT

σHHHσσNNNσσ̃σσ − δs̃ss
T
NNNT

s FFF ) dx

− δs̃ssTNNNT
s TTT = 0

(35)

Colle
ting unknown 
oe�
ients in a ve
tor and requiring (35) to be satis�ed for all possible virtual �elds,

we obtain the following algebrai
 equation system:

[
000 KKKsσ

KKKσs KKKσσ

]{
s̃ss
σ̃σσ

}
=

{
T̃TT
000

}
(36)

where

KKKsσ =KKKT
σs :=

∫

l

(
NNN ′T

s GGGsσNNNσ −NNNT
s HHHsσNNNσ

)
dx

KKKσσ := −

∫

l

NNNT
σHHHσσNNNσdx; T̃TT :=

∫

l

NNNT
s FFFdx+ NNNT

s

∣∣
x=l

TTT

We highlight the following remarks.
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� Sin
e ŝss ∈ W̃ , the 
ontinuity of displa
ements along the beam axis is satis�ed a priori, whereas axial

equilibrium is weakly imposed through Equation (34).

� The weak formulation (34) is symmetri
.

4.3. Axial shape fun
tions de�nition

In this sub-se
tion we spe
ify how to 
hoose the FE approximation spa
es. We �rst noti
e that, sin
e

sss ∈ H1 (l), we need to impose axial 
ontinuity on displa
ements. Instead, sin
e σσσ ∈ L2 (l) stress 
omponents


an be axial-dis
ontinuous, and in general it is 
onvenient that they are so. Furthermore, to properly balan
e

the dis
rete spa
es, it seems reasonable to 
hoose W̃ and S̃ satisfying: ∀σ̂σσ ∈ S̃ there exists ŝss ∈ W̃ su
h that

d

dx
ŝss = EEE1σ̂σσ; ŝss = EEE2σ̂σσ; ŝss = EEE3σ̂σσ, (37)

and vi
eversa.

A

ordingly, we require the following 
onditions on the axial shape fun
tions:

deg (NNNu) = deg (NNNσx
) + 1 = deg

(
NNN τxy

)
= deg (NNN τxz

)

deg (NNNv) = deg
(
NNN τxy

)
+ 1 = deg

(
NNNσy

)
= deg

(
NNN τyz

)

deg (NNNw) = deg (NNN τxz
) + 1 = deg

(
NNN τyz

)
= deg (NNNσz

)

(38)

Assuming deg (NNNv) = 3 and imposing Equations (38), we determine the degree of axis shape fun
tions NNNγ ,

summarized in Table 2 together with properties of pro�le ve
tors.

Variable deg (pppγ) y 
ont. deg (qqqγ) z 
ont. deg (NNNγ) x 
ont.

u 1 C−1
1 C−1

2 C0

v 2 C−1
1 C−1

3 C0

w 1 C−1
2 C−1

3 C0

σx 1 C−1
1 C−1

1 C−1

σy 3 C0
1 C−1

3 C−1

σz 1 C−1
3 C0

3 C−1

τxy 2 C0
1 C−1

2 C−1

τxz 1 C−1
2 C0

2 C−1

τyz 2 C0
2 C0

3 C−1

Table 2: Degree and 
ontinuity of 
ross-se
tion pro�le fun
tions and axis shape fun
tions (C−1
means dis
ontinuous fun
tion)

Looking at the properties of the axial shape fun
tions summarized in Table 2, we noti
e that all stress


omponents are dis
ontinuous along the beam axis. Moreover, the matrix HHHσσ (see (17) and (10)) is

invertible. Therefore, it is possible to stati
ally 
ondense the stress variables out at the element level. This

leads to a displa
ement-based-like formulation of the problem, thus signi�
antly redu
ing the dimension of

the global sti�ness matrix and improving the FE algorithm e�
ien
y.

5. Numeri
al results

The goal of this se
tion is to illustrate the 
apability of the beam model and FE introdu
ed so far.

A

ordingly, we 
onsider the problems listed below.

1. Homogeneous square 
ross-se
tion beam, depi
ted in Figure 5(a).

2. Non-homogeneous square 
ross-se
tion beam, depi
ted in Figure 5(b).

3. Homogeneous L-shape 
ross-se
tion beam, depi
ted in Figure 5(
).
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We introdu
e the relative error de�nition for a generi
 variable γ:

eγrel :=

∣∣γ − γref
∣∣

|γref |
(39)

where γref
is the referen
e solution, to be spe
i�ed for ea
h problem under investigation.

FE solutions 
onsidered in this se
tion are evaluated through numeri
al-
al
ulus fun
tions implemented

in MATLAB software, unless spe
i�ed.

5.1. Homogeneous square 
ross-se
tion beam

We 
onsider the homogeneous beam with a square 
ross-se
tion depi
ted in Figure 5(a) and we dis
uss

the following aspe
ts.

1. Displa
ement error and 
onvergen
e of displa
ement solution.

2. Stress error.

3. Asymptoti
 behaviour.

We re
all that, in FE derivation, the beam is assumed to be 
lamped at the initial 
ross-se
tion (∂Ωs = A0;

sss = 000); moreover, we set l = 10mm, vanishing volume load (fff = 000), and a distributed shear load applied to

the �nal 
ross se
tion Al (ttt|Al
= [0,−1, 0]

T
MPa). In Figure 5(a), we de�ne the parameter δ that de�nes both

the 
ross-se
tion and the axial dis
retizations where the length of the kth axis FE is de�ned as lk := l/ (10 · δ).
In the following, the a
ronym MB FE (Mixed Beam Finite Element) denotes the beam model FE dis-


retization of Equation (36).

5.1.1. Displa
ement error

We 
onsider the y-oriented displa
ement 
omponent sv (see De�nition (5)) and we evaluate its mean

value v
(
l
)
on the �nal 
ross se
tion Al:

v
(
l
)
:=

∫
Al

rrrTv v̂vv|x=l dydz∫
Al

dydz
(40)

In order dis
uss the displa
ement solution of the MB FE, we 
ompare the solutions of the models listed

in the following.

� The analyti
al solution of Euler-Bernoulli beam,

� The analyti
al solution of Timoshenko beam,

� The numeri
al solution of the MB FE evaluated 
onsidering two 
ases:

� 1 �ber 
ross-se
tion (i.e. δ = 1),

� 25 �ber 
ross-se
tion (i.e. δ = 5).

� 3D numeri
al solutions obtained using the software ABAQUS and with 3D trilinear bri
ks. The

following uniform meshes are employed.

� A uniform mesh of 5× 5× 50 elements.

� A uniform mesh of 10× 10× 100 elements.

� A �ne and uniform mesh of 50×50×500 elements. This overkilled solution is used as the referen
e

solution srefv .
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Beam model v (10) mm ev rel

Euler-Bernoulli -4.000000 · 10−2
3.222 · 10−3

Timoshenko -4.030000 · 10−2
4.254 · 10−3

MB FE 1 �ber (δ = 1) -4.022380 · 10−2
2.355 · 10−3

MB FE 25 �ber (δ = 5) -4.012917 · 10−2
0.003 · 10−3

3D solution (mesh 5× 5× 50) -4.175198 · 10−2
40.437 · 10−3

3D solution (mesh 10× 10× 100) -4.051178 · 10−2
9.531 ·10−3

3D solution (vref ) -4.012929 · 10−2
-

Table 3: Mean value of �nal 
ross-se
tion displa
ement v (10) and the 
orresponding relative error for a 
antilever (l = 10mm,

b = h = 1mm) evaluated using di�erent beam models.
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Figure 6: Relative error ev rel plotted as fun
tion of the element size 1/δ.

In Table 3 we report the verti
al-displa
ement mean-value v
(
l
)
for the 
onsidered beam models and

their relative errors. We noti
e that all the models, even the two simplest ones (i.e., the Euler-Bernoulli and

the Timoshenko models) give a relative error below 5�. Furthermore, as expe
ted, MB FE 25 �ber model

provides the best solution, with a relative error 
lose to 10−6
, negligible in most pra
ti
al appli
ations. In

addition, despite the 
oarse dis
retization in the modelling pro
edure, the MB FE 1 �ber relative error is of

the order of 2�, better than both Euler-Bernulli and Timoshenko beams.

In Figure 6 we plot the relative error ev rel as fun
tion of the element size 1/δ. It is worth observing the

monotoni
 behaviour and the high speed 
onvergen
e.

5.1.2. Stress error

We fo
us our attention to the shear 
omponents τxy and τxz sin
e they have non-trivial distributions. In
the following, the numeri
al results refer to the 25 �ber dis
retization.

Figures 7(a) and 7(b) report the shear axial 
oe�
ient fun
tions τ̂ττxy and τ̂ττxz respe
tively. We remark

that they show dumped os
illations near the initial and �nal 
ross se
tions, while they are approximately


onstant otherwise. We noti
e that this numeri
al behaviour is 
onsistent with the ODEs homogeneous

solutions dis
ussed in Se
tion 3.4.

Moreover, the os
illations rapidly de
ay in an axial region whose length is of the order of magnitude of

the 
ross-se
tion edge, in a

ordan
e with the solution provided by the Saint-Venant prin
iple.

Figures 8(a) and 8(b) report the 
ross-se
tion distribution of shear 
omponents τxy (5, y, z) and τxz (5, y, z)
respe
tively. We 
onsider the 
ross se
tion at x = 5mm in order to ex
lude boundary e�e
ts. It is worth

noti
ing that the 
ross-se
tion shear 
omponent τxy has a paraboli
 distribution along y. Moreover, τxy is

not 
onstant along z, and the shear 
omponent τxz displays a non vanishing distribution in the 
ross se
tion.
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These latter results provide a shear stress evaluation whi
h is better than the one given by the simpli�ed

Jourawsky theory (e.g. Hjelmstad (2005)), usually adopted in 
onne
tion with 
lassi
al beam models.

Figures 8(
) and 8(d) report the 
ross-se
tion error distributions

∣∣τxy (5, y, z)− τrefxy (5, y, z)
∣∣
and

∣∣τxz (5, y, z)− τrefxz (5, y, ,

where τrefxy (5, y, z) and τrefxz (5, y, z) are referen
e solutions obtained using the results detailed in Timoshenko

and Goodier (1951)[Chap. 12℄. It is interesting to note that the numeri
al solution appears to be generally

a

urate. However, the error is higher 
lose to the 
ross se
tion edges.
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Figure 7: Shear axial 
oe�
ient fun
tions τ̂ττxy(x) and τ̂ττxz(x) for the 
ase of homogeneous and square 
ross se
tion.

5.1.3. Asymptoti
 analysis

In this sub-se
tion, we investigate the beam model behaviour as the 
ross-se
tion size tends to zero. It


an be shown that the 3D beam solution 
onverges to the EB solution, after a suitable s
aling of the loads

(see Ciarlet (1997), for instan
e). In this se
tion we numeri
ally verify that, de
reasing the 
ross-se
tion

size, the MB FE solution 
onverges to the EB solution, thus ensuring the asymptoti
 
onsisten
y of the

proposed beam model.

We 
onsider a beam with length and boundary 
onditions introdu
ed in Se
tion 5.1, and using a single

square �ber to dis
retize the 
ross se
tion. We use uniform meshes along the beam axis, and di�erent

de
reasing values of the 
ross se
tion size h. We implement the MB FE using numeri
al fun
tions available

in MAPLE software. In parti
ular, we exploit the 
apability of the software to use an arbitrary number

of digits during numeri
al 
al
ulation. Sin
e we are interested in the asymptoti
 behaviour, the EB beam

solution vref
(
l
)
is assumed as referen
e solution.

In Figure 9 we plot the relative error ev rel evaluated at di�erent ratios h/l, for di�erent axial meshes

(4 and 50 elements, respe
tively), and for di�erent ma
hine pre
isions (16 and 30 digits, respe
tively). We

noti
e that bad solutions are 
omputed when using 16 digits and for very small ratios h/l, independently of

the number of elements. However, satisfa
tory results are obtained for slendernesses of pra
ti
al engineering

interest. On the 
ontrary, raising to 30 digits, the 
omputed solutions display the 
orre
t behaviour. We

remark that the plateau regions for 4el(30dig) and 50el(30dig) in Figure 9 
orrespond to the error due to

the axial dis
retization, whi
h dominates the total error in the asymptoti
 regime (h/l << 1).
In Figure 10 we show the relative error of the single �ber MB FE, 
onsidering di�erent ratios h/l and

varying the number of elements in the axial dire
tion. The plot 
on�rms the 
onvergen
e of the solution,

independently of the ratio h/l when 30 digits are employed. As already noti
ed, a degenera
y in the


onvergen
e behaviour is experien
ed for very small h/l and 16 digit pre
ision.

5.1.4. Computational 
osts

In this subse
tion we give some information about the 
omputational performan
e of the proposed

method, 
omparing the numeri
al 
osts with the 
osts of a 3D displa
ement based analysis of the homoge-
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Figure 8: Shear 
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tion distributions (8(a) and 8(b)) and 
ross-se
tion error distributions (8(
) and 8(d)) for the 
ase of

homogeneous and square 
ross se
tion.
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neous square 
ross-se
tion beam.

The time elapsed to 
ompute the solutions is not a fair 
riterion due to the use of di�erent softwares

and ma
hines. Instead, in Table 4 we provide some information that may be used to 
ompare the di�erent

approa
hes. We noti
e that, in all the 
onsidered 
ases, the global sti�ness matri
es governing the problem

will be symmetri
, sparse, and with a band stru
ture.

The displa
ement relative error ev rel is the same as reported in Table 3 and it provides information

about the solution a

ura
y. The estimation of the number of DOFs (# DOFs) 
orresponds to the size

of the global sti�ness matrix. In parti
ular, for the 1- and 5- �ber models, # DOFs does not take into

a

ount the number of variables 
ondensed out at the element level, sin
e negligible with respe
t to number

of global DOFs (e.g. in the 5 �bre model ∼ 1.5 · 103 DOFs are 
ondensed on ea
h element). The number

of non-vanishing entries in the global sti�ness matri
es (# entries 6= 0) is stri
tly related to the memory

usage during 
omputation. The fourth 
olumn of Table 4 reports an estimation of the band width. The �fth


olumn reports an estimation of the number of �ops ne
essary to LU-fa
torize the global sti�ness matrix (#

�ops), under the following assumptions: (i) # DOFs ≫ band-width and (ii) the 
omputational 
ost of both

the assembling pro
edure and the post-pro
essing are negligible. As a 
onsequen
e, # �ops is evaluated

20



Model ev rel # DOFs # entries 6= 0 band-width # �ops

MB FE 1 �ber (δ = 1) 2.355 · 10−3
1.60 · 102 7.17 · 103 3.30 · 101 8.71 · 104

MB FE 25 �ber (δ = 5) 0.003 · 10−3
2.00 · 104 2.37 · 107 1.60 · 103 2.57 · 1010

3D solution (mesh 5× 5× 50) 40.437 · 10−3
5.40 · 103 4.37 · 105 4.33 · 102 5.05 · 108

3D solution (mesh 10× 10× 100) 9.531 ·10−3
3.63 · 104 2.94 · 106 1.45 · 103 3.83 · 1010

3D solution (mesh 50× 50× 500) - 3.90 · 106 3.16 · 108 3.12 · 104 1.90 · 1015

Table 4: Final 
ross-se
tion displa
ement relative error, number of DOFs used in the analysis (# DOFs), number of global

sti�ness-matrix entries di�erent from zero (# entries 6= 0), band width of the global sti�ness matrix (band-width), and

estimation of the number of �ops ne
essary to fa
torize the global sti�ness matrix (# �ops) for a 
antilever (l = 10mm,

b = h = 1mm) evaluated using di�erent beam models.

through the following equation (see Quarteroni et al., 2007):

# �ops =
# DOFs · (band-width)2

2
(41)

We highlight that the MB FE 25 �ber and the 3D solution (mesh 10 × 10 × 100) require 
omaprable

# �ops. Nevertheless, the former model provides a solution with a relative error that is 3 order of magnitude

smaller than the latter. The obtained results, even if non exhaustive, lead us to 
on
lude that the proposed

method has interesting numeri
al performan
es with respe
t to the standard 3D analysis.

5.1.5. Con
lusions on the beam model and the 
orresponding FE s
heme

Looking at all the analyses performed in this se
tion, we may remark what follows.

� As illustrated in Subse
tion 5.1.1, the MB and the 
orresponding FE s
heme 
an 
apture the real

displa
ement better than the most popular beam models (EB and Timoshenko models).

� As illustrated in Subse
tion 5.1.2, the proposed beam model has a signi�
ant a

ura
y in the stress

des
ription.

� As illustrated in Subse
tion 5.1.3, the asymptoti
 behaviour, for reasonable ratios h/l, is 
orre
t.

Nevertheless, we note that the MB FE s
heme may exhibits troubles for extremely small ratios h/l.

� As illustrated in Subse
tion 5.1.4, the MB FE is numeri
ally 
ompetitive with respe
t to standard

methods.

5.2. Non homogeneous 
ross-se
tion beam (soft 
ore beam)

In this subse
tion we 
onsider a beam with the non-homogeneous square 
ross-se
tion depi
ted in Figure

5(b), and modeled through 25 equal �bers. We assume the boundary 
onditions of the example in Se
tion

5.1. Furthermore, we set l = 20mm, E1 = 105MPa, E2 = 103MPa, and ν = 0.25 everywhere in the


ross se
tion. Along the beam axis we use a non-uniform 8 element meshes, whose nodal 
oordinates are


olle
ted in the following ve
tor: [0; 1; 2; 3; 10; 17; 18; 19; 20]. We plot the stress distribution in the 
ross

se
tion x = 10mm. The numeri
al results are reported in Figure 11.

Consistently with the Saint-Venant prin
iple, the stress 
omponents σyy, σzz and τyz are negligible.

Moreover, due to the large ratio between the two Young's moduli, stress distributions within the 
ore

appear always extremely regular and �at.

In this example the non uniform distribution of shear 
omponent τxy along z−dire
tion is less evident than

in the 
ase of homogeneous beam. The ratio between the maximum values of the shears τxy and τxz, is 
lose
to 10, whi
h 
on�rms, on
e again, that τxz should not be negle
ted. In order to validate the results, we


ompute a 3D numeri
al solution using the ABAQUS software and a homogeneous mesh of 40 bri
k elements.

In Table 5 we report the minimum and the maximum values of the 
ross-se
tion stress distribution evaluated

on the 
ross-se
tion x = 10mm. From the 
omparison of the two methods it is possible to appre
iate the

substantial agreement of the results. We noti
e that the high value of the σy, σz , and τyz in ABAQUS min

and max evaluation depends on some lo
alized instabilities that o

ur in numeri
al evaluation of stress.
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Figure 11: Stress distributions evaluated at x = 10mm for the non homogeneous 
ase.

MB FE ABAQUS

min max min max

σx −7.54 ·101 7.54 · 101 −7.55 ·101 7.55 · 101

σy −5.73 ·10−2 5.73 · 10−2 −2.57 ·10−1 2.57 ·10−1

σz −1.22 ·10−1 1.22 · 10−1 −3.36 ·10−1 3.39 ·10−1

τxy −1.23 ·100 0.00 · 100 −1.23 ·100 −8.01 ·10−2

τxz −1.25 ·10−1 1.25 · 10−1 −9.62 ·10−2 9.62 ·10−1

τyz −7.27 ·10−3 7.27 · 10−3 −1.02 ·10−1 1.02 ·10−1

Table 5: Minimum and maximum value of stress 
omponents distributions evaluated on the 
ross-se
tion x = 10mm for the

non-homogeneous 
ase, evaluated with di�erent methods.

5.3. L-shape 
ross-se
tion beam

We 
onsider the 
ross-se
tion geometry and �ber distribution reported in Figure 5(
). We assume the

beam length, the axial mesh, and the displa
ement 
onstraint of the example in Se
tion 5.2, while the

material parameters are set as E = 105MPa and ν = 0.25. We load the beam with a torsion moment

equal to 1Nmm in Al, imposed through a 
ouple of opposite unit for
es [0, 0, 1]N and [0, 0,−1]N applied in

verti
es (20,−0.5;−0.5) and (20, 0; 0.5) respe
tively. The stress distributions at x = 10mm are reported in

Figure 12.

It is interesting to observe that, as expe
ted, the magnitude of σx, σy , σz and τyz is negligible with respe
t
to the magnitude of the shear 
omponents τxy and τxz. Moreover, 
onsidering the 
ross-se
tion symmetry

highlighted in Figure 5(
), the τxy distribution is anti-symmetri
 respe
t to the τxy distribution. Finally,

a small stress 
on
entration of σx, σy, σz and τyz 
an be appre
iated 
lose to the se
tion verti
es where


on
entrated for
es are applied. In order to validate the results, we 
ompute a 3D numeri
al solution using

the ABAQUS software and a homogeneous mesh of 40 bri
k elements. In Table 6 we report the minimum

and the maximum values of the 
ross-se
tion stress distribution evaluated on the 
ross-se
tion x = 10mm.

From the 
omparison of the two method results it is possible to appre
iate the substantial agreement of the

results. We noti
e a small di�eren
e between the maximum values of τxy and τxz that o

urs in the re�ex
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Figure 12: Stress distributions evaluated at x = 10mm for the L-shape 
ross se
tion.

MB FE ABAQUS

min max min max

σx −3.61 ·10−3 1.74 ·10−3 −1.20 ·10−9 1.65 ·10−9

σy −2.68 ·10−2 5.78 ·10−2 −1.41 ·10−11 1.51 ·10−11

σz −7.50 ·10−3 7.19 ·10−3 −1.49 ·10−11 2.12 ·10−11

τxy −9.54 ·100 1.56 ·101 −1.66 ·101 9.55 ·100

τxz −1.56 ·101 9.54 ·100 −9.55 ·100 1.66 ·101

τyz −2.47 ·10−3 7.29 ·10−3 −8.12 ·10−12 1.24 ·10−11

Table 6: Minimum and maximum value of stress 
omponents distributions evaluated on the 
ross-se
tion x = 10mm for the

L-shape 
ase, evaluated with di�erent methods.

angle of the 
ross-se
tion where stress 
on
entration o

urs.

6. Con
lusions

In this paper we develop a 3D beam model methodology and possible 
orresponding FE s
hemes: starting

from a suitable Hellinger-Reissner formulation of the elasti
 problem, we derive beam models by using a

variational dimension redu
tion approa
h. When the pro�le fun
tions are properly sele
ted, the resulting

models lead to ODEs systems that 
an 
apture the boundary e�e
ts, too. However, we do not dis
uss how

to evaluate the warping fun
tions and the generalized stress and displa
ements. Those aspe
ts might be

treated as illustrated in Dong et al. (2001).

Introdu
ing a suitable FE dis
retization of the beam-model, we obtain a numeri
al s
heme 
apable of

a

urately des
ribing both displa
ement and stress �elds, as the numeri
al results 
on�rm.

Future developments of the present work 
ould in
lude: a rigorous mathemati
al study of the model; the

development of more spe
i�
 
ross-se
tion shape fun
tions, with the aim to handle more general geometries;

optimization issues, with the aim of redu
e the number of involved DOFs; the 
onsideration of more general


onstitutive laws.
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