
Systematic Study of Variable
Roles and their Use in Software

Verification

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktorin der Technischen Wissenschaften

by

Yulia Demyanova, Msc.
Registration Number 01029734

to the Faculty of Informatics

at the TU Wien

Advisor: Ass.Prof. Dipl.-Math. Dr. Florian Zuleger

The dissertation has been reviewed by:

Assoc.Prof. Dr.
Philipp Rümmer

Ass.Prof. Dipl.-Ing. Dr.
Zvonimir Rakamarić

Vienna, 23rd January, 2018
Yulia Demyanova

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser
Dissertation ist in der Hauptbibliothek der
Technischen Universität Wien aufgestellt und
zugänglich.
http://www.ub.tuwien.ac.at

The approved original version of this thesis is
available at the main library of the Vienna
University of Technology.

http://www.ub.tuwien.ac.at/eng

DEDICATION

This dissertation is dedicated to the late Prof. Helmut Veith

who supervised me from 2011 to 2016

and who inspired most of the ideas presented here.

Erklärung zur Verfassung der
Arbeit

Yulia Demyanova, Msc.
Barichgasse 21/13, 1030 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 23. Jänner 2018
Yulia Demyanova

v

Acknowledgements

I would like to express my gratitude to a number of people with whose support and
encouragement this dissertation was written. First of all, I am very grateful to Prof.
Helmut Veith who supervised me for 5 years until he tragically passed away in 2016.
Helmut allowed me to join his group and shared with me his idea of using variable roles
in software verification. Helmut was always full of ideas, in many circumstances he was
extremely helpful and attentive to all people he came across.

It is hard to overestimate the help of Ass.Prof. Florian Zuleger, who co-supervised me
from the first years of my work and later on took over supervision for my thesis. Florian
patiently went through many iterations of reviewing our papers and this thesis; thanks
to his deep mathematical insights the formalisation of variable roles became much more
concise and clear. From Florian I tried to learn to precisely express my ideas and to
always give examples.

Finishing this work would be hardly possible without the help of Assoc.Prof. Georg
Weissenbacher, who supported me in different matters and patiently allowed me to
continue using my office after then end of my contract up to the last day of writing the
thesis. I am also very grateful to Prof. Thomas Eiter and Florian Zuleger for dealing
with bureaucratic hurdles during the last months before submitting the thesis.

I would also like to thank Igor Konnov, Ass.Prof. Zvonimir Rakamarić, Assoc.Prof.
Philipp Rümmer and Thomas Pani for their invaluable comments on the thesis. I thank
Philipp and Thomas for joint work, of which I have good memories, and for their readiness
to help at any time. Especially I thank Philipp for his help with finishing our paper and
parts of this thesis in spite of acute shortage of time and Thomas for translating the
abstract of the thesis into German. I am also grateful to Prof. Laura Kovács, Jakob
Zwirchmayr and Prof. Helmut Seidl for useful discussions about variable roles, and to
Andreas Holzer for his help at the early stage of my PhD studies.

I thank Moritz Sinn for carrying out seminars together and for providing his thesis as
a guideline. I was happy to have Mitra Tabaei, Ivan Radiček and Annu Gmeiner as
room mates, and I especially thank Mitra for being a good friend and for our interesting
discussions during lunch time.

I thank all the members of the FORSYTE group, especially Toni Pisjak for patiently
solving all my technical problems and Eva Nedoma for oftentimes preparing the official

vii

papers for me to travel to the U.K. to my husband.

Finally, I thank all my Russian friends and the clergy of St. Nicholas Russian Orthodox
Cathedral in Vienna, especially Fr.Vladimir, for filling my everyday life in Vienna with
joy. I am very grateful to my husband for his unconditional love and support, especially
during difficult weeks before deadlines. I express my deep gratitude to my parents who
put all their love into me and patiently waited until I finished this dissertation.

Kurzfassung

Eine der größten Herausforderungen in der Softwareverifikation ist die Auswahl geeigneter
Abstraktionen – also vereinfachter Programmmodelle, die zumindest jedes Verhaltens
des Originalprogramms erlauben. Die meisten Softwareverifikationstools sind aufgrund
der Unentscheidbarkeit des Verifikationsproblems darauf angewiesen, eine brauchbare
Abstraktion zu finden, die einerseits ein effizient analysierbares, gleichzeitig aber den-
noch genügend prezises Programmmodell liefert. Die Wahl einer solchen brauchbaren
Abstraktion verlangt jedoch nicht-triviales Verständnis des Originalprogramms und
wird daher entweder durch menschliche Unterstützung oder durch Heuristiken erreicht.
Dadurch liefert das Verifikationstool nur noch auf einer eingeschränkten Menge von
Originalprogrammen, der Anwendungsdomäne, erfolgreich Ergebnisse. Beispiele für An-
wendungsdomänen sind Gerätetreiber, nebenläufige Programme, Integer-Programme, usw.
Durch die Einschränkung von Verifikationstools auf bestimmte Anwendungsdomänen
entsteht eine weitere Herausforderung: die Auswahl eines optimalen Verifikationstools für
ein gegebenes Verifikationsproblem.

Der Unterschied zwischen einem Verifikationstool und menschlichem Programmverständ-
nis liegt darin, dass moderne Softwareverifikationstools Programme nicht als Artifakte
menschlicher Ingenieursarbeit betrachten, sondern sie blindlings in logische Formeln
übersetzen. In dieser Dissertation formalisieren und untersuchen wir das Konzept der
Variablenrollen, welches implizites Wissen über typische Muster der Variablenverwendung
in Programmen erfasst. Dieses Wissen wird von erfahrenen EntwicklerInnen sowohl zum
Schreiben als auch zum Verstehen von Programmen eingesetzt. Beispiele für solche Muster
sind Bitvektoren, Zählvariablen, Schleifeniteratoren, usw.

Wir stellen die Hypothese auf, dass mittels Kenntnissen über die Verwendung der Va-
riablenrollen im betrachteten Programm die zwei oben genannten Herausforderungen
– also die automatische Auswahl von brauchbaren Programmabstraktionen und die au-
tomatische Auswahl einens optimalen Verifikationstools für ein gegebenes Problem –
zu lösen sind. Dazu formalisieren wir den Begriff der Variablenrolle: Wir erstellen eine
Klassifikation der häufigsten Variablenrollen in anwendungsorientierten Open-Source-
Programmen und definieren ein Framework zur formalen Spezifikation derselben. Als
Spezifikationsmechanismus kommt dabei Datalog zum Einsatz.

Weiters untersuchen wir die Anwendung von Variablenrollen in der Softwareverifikation
anhand zweier Szenarien: Erstens erstellen wir ein Portfolio von Softwareverifikations-

ix

tools, das zur Auswahl eines Verifikationstools für ein gegebenes Verifikationsproblem
Programmmetriken verwendet, welche auf Variablenrollen basieren. Wir konstruieren
das Portfolio mithilfe eines Algorithmus zum maschinellen Lernen, und evaluieren unse-
re Implementierung anhand der "Competition on Software VerificationßV-COMP als
Fallstudie.

Zweitens verwenden wir Variablenrollen zur automatischen Generierung von Heuristiken
zur Programmabstraktion: Wir definieren Heuristiken für den Model-Checker Eldarica,
um Predikate für die initiale Abstraktion zu erstellen und die Abstraktionsverfeinerung
durch Templates für Craig-Interpolation zu lenken. Unter Verwendung der Variablenrollen
ersetzen wir die existierenden, in Eldarica eingebauten Heuristiken und definieren einige
neue Heuristiken. Wir evaluieren diesen Ansatz auf Verifikationsbeispielen aus dem SV-
COMP-Wettbewerb und der Literatur.

Abstract

A major challenge in software verification is choosing an abstraction — a simplified
program model which comprises a superset of behaviours of the original program. Since
software verification is undecidable, the efficiency of most software verification tools is
determined by choosing a suitable abstraction which yields a tractable yet still precise
enough program model. However, picking a suitable abstraction requires non-trivial
insights and is either done with human intervention, or implemented using heuristics,
tighting a verification tool to a restricted set of programs, called application domain.
Examples of application domains are device drivers, concurrent programs, integer pro-
grams, etc. The limitedness of application domains of verification tools causes another
verification challenge — an optimal choice of a verification tool for a given task.

The difference between a verification tool and a human reading a program is that
most modern software verification tools do not treat programs as human-engineered
entities and blindly translate a program to a logical formula. In this dissertation, we
formalise and study the concept of a variable role, which captures the implicit knowledge
about typical patterns of variable use in programs. This knowledge is employed by
experienced programmers to write and understand programs. Examples of these patterns
are bitvectors, counters, loop iterators, and so on.

We conjecture that the two challenges mentioned above, i.e. automatically choosing
a suitable program abstraction and optimally choosing a verification tool for a given
problem, can be solved with the knowledge of which variable roles are used in a program.
To this end, we formalise the notion of a variable role: we create a classification of most
frequent variable roles in practical open source programs and define a framework for a
formal specification of variable roles. As a specification formalism for variable roles we
use Datalog.

We explore the application of variable roles in software verification in two settings.
First, we create a portfolio solver which chooses a software verification tool for a given
verification task, using program metrics based on variable roles. We construct our
portfolio solver using a machine learning algorithm. As a case study, we evaluate the
implementation of our algorithm in the setting of the software verification competition
SV-COMP.

Second, we use variable roles to define heuristics for the automatic generation of program
abstraction. In particular, we define heuristics for the model checker Eldarica to

xi

generate predicates for initial abstraction and to guide abstraction refinement through
templates provided for Craig interpolation. Using variable roles, we re-implement the
existing built-in heuristics of Eldarica and define several new heuristics. We evaluate
our approach on a subset of benchmarks from the competition SV-COMP and verification
benchmarks from the literature.

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Empirical Choices in Software Verification 2
1.2 Implicit Structure of the Source Code . 6
1.3 Patterns of Variable Use . 6
1.4 Application Domains of Variable Roles . 7
1.5 Aim of the Work and Methodological Approach 11
1.6 Structure of the Thesis . 14
1.7 Contributions . 14
1.8 Our Publications on the Topic of the Thesis 15

2 Background 17
2.1 Model Checking . 17
2.2 Abstract Interpretation . 28

3 Definition and Computation of Variable Roles 41
3.1 Overview of Variable Roles . 41
3.2 Framework for the Specification and Inference of Roles 61
3.3 Definition of Roles . 68
3.4 Extension to Inter-Procedural Analysis . 103
3.5 Implementation . 110
3.6 Trade-Off for Pointer Analysis . 111

4 Empirical Software Metrics for Benchmarking of Verification Tools 113
4.1 Source Code Metrics for Software Verification 114
4.2 A Portfolio Solver for Software Verification 118
4.3 Experimental Results . 127

5 Role-Based Heuristics for Systematic Predicate Abstraction 137

xiii

5.1 Software Model Checking with Horn Clauses 137
5.2 Role-Based Predicate Abstraction . 141
5.3 Evaluation . 144

6 Related Work 149
6.1 Variable Usage Patterns . 149
6.2 Type Theory . 151
6.3 Program Query Languages . 153
6.4 Portfolio Solvers . 155
6.5 Choosing Interpolants with Suitable Predicates 156

7 Future Work and Conclusions 157
7.1 Summary of Contributions . 157
7.2 Threats to Validity . 159
7.3 Future Work . 161

8 Appendices 163
8.A Definitions of Supplementary Relations for Variable Roles 163
8.B Algorithm for Solving a System of Horn Clauses 170
8.C Definitions of Loop Patterns . 171
8.D Experimental Results for Portfolio Solver 172

List of Figures 179

List of Tables 181

Bibliography 183

CHAPTER 1
Introduction

Software verification aims at systematically checking the conformance of a program to
a specification. It uses methods of mathematical logic to construct a mathematical
proof about a program. To this end, the techniques of software verification create a
mathematical model of the program. Specifically, in order to reason about variable
values, the techniques of software verification analyse (or enumerate) program states,
where a state is an assignment of values to program variables. The set of all possible
program states is called the state space of a program. Programs written using modern
programming languages typically have infinite or intractably large state space. Therefore,
in order to reason about a program, the techniques of software verification create a finite
simplified model of a program under analysis, which captures the crucial properties of
the program.

Let us consider the following situation. Software engineer John wrote a Linux device
driver and wants to verify the driver. John knows that there exists more than a dozen
state-of-the art verification tools, and he needs to choose the one which gives the correct
answer for his task in shortest time. John also knows that according to Rice’s theorem,
any program property is undecidable, i.e. there is no algorithm which can solve every
verification problem. This means that whichever tool he chooses, there are tasks which
the tool cannot solve. To devise tools which efficiently solve the verification tasks arising
in practice, tool developers optimise their tools to a restricted set of tasks, called the
problem domain of a tool. With this in mind, John searches for a tool optimised to verify
device drivers.

To make an informed choice, John studies the results of the most recent software
verification competition SV-COMP’17. Luckily, the competition includes a dedicated
category of benchmarks called "DeviceDriversLinux64 Safety", which consists of Linux
device drivers and requires the analysis of pointer aliases and function pointers. To pick
the best tool, John looks at the competition results and chooses four tools which get the
highest score in the category "DeviceDriversLinux64 Safety". Specifically, these are the

1

1. Introduction

tools Ultimate Taipan, CPAchecker, Ultimate Automizer and BLAST. However,
when inspecting the results of the four tools for individual benchmarks in the category,
John finds out that the tools exhibit unsoundness (i.e. report safe when the benchmark
is unsafe), bugs (i.e. crash) and incompleteness (i.e. run out of memory or do not meet
the time limit). The category "DeviceDriversLinux64 Safety" contains almost 2800 tasks
with the average size of 14.8 KLOC, and John gives up trying to systematically analyse
the results and the respective tasks to make an optimal choice. Since it is only one driver
that he needs to verify, he decides to play safe and run all four tools to compare the
results.

Having solved one problem, John confronts another one. He finds out that the four
tools come with a set of configuration parameters. From the "Formal Methods" course
at the university John knows that in order to reduce an infinite or intractably large
state space of a program, tools create a simplified program model called abstraction.
The abstraction tracks all behaviours of the original program, and if a property holds
for program abstraction, it also holds for the program itself. In order to find a suitable
abstraction, which is accurate enough (i.e. not too coarse) but still tractable (i.e. not
too fine-grained), tool developers implement numerous strategies. It is these strategies
that are configured with parameters. Now John is facing a problem of choosing the right
parameters, and he solves the problem by trial and error in several iterations.

To conclude, this examples illustrates that at different stages of software verification
empirical choices need to be done. First, in order to verify a program, a software engineer
has to pick a suitable tool optimised for a given application domain. Second, tools use
strategies to find a suitable abstraction, and the strategies are often configured with
user-defined parameters. Therefore, we suggest in this thesis a systematic way to make
these empirical choices in software verification.

We organise the rest of this chapter as follows. In Section 1.1 we discuss the two empirical
choices in more detail. In Section 1.2 we explain that to make these choices, the implicit
information of the program source code can be used. We informally introduce our method
based on the implicit information, namely the patterns of variable use, in Section 1.3.
We discuss other possible application domains for our method in Section 1.4. We state
the aims of the thesis and describe our methodological approach in Section 1.5. We
give an overview of the structure of the thesis and a short summary of each chapter in
Section 1.6. Finally, we list the contributions of the thesis in Section 1.7 and discuss our
publications on the topic of the thesis in Section 1.8.

1.1 Empirical Choices in Software Verification

In this section, we describe the two empirical choices which need to be done for software
verification. Specifically, we first illustrate the problem of choosing a verification tool
on example of the software verification competition SV-COMP. Then, we discuss the
problem of choosing a suitable abstraction.

2

1.1. Empirical Choices in Software Verification

1.1.1 Problem 1: Choosing a Verification Tool

In the last two decades, there has been a remarkable practical advance in automated pro-
gram verification using tools such as Slam/Sdv [BR02], Blast [HJMS03], Cbmc [CKL04],
Satabs [CKSY05], Astrée [CCF+05], Slayer [BCC+07] and many others. The success
and gradual improvement of these tools is a multidisciplinary effort — modern software
verifiers combine methods from a variety of overlapping fields of research including model
checking [JM09], static analysis [FO76], shape analysis [NNH99], SAT solving [BHvM09],
SMT solving [KS08, BM07], abstract interpretation [CC77], termination analysis [CPR11],
pointer analysis [Hin01] etc.

The mentioned techniques all have their individual strengths, and a modern software
verification tool needs to pick and choose how to combine them into a strong, stable and
versatile tool. The trade-offs are based on both technical and pragmatic aspects: many
tools are either optimised for specific application domains (e.g. device drivers), or towards
the in-depth development of a technique for a restricted program model (e.g. termination
for integer programs1). Recent projects like CPA [BHT07] and FrankenBit [GB14] have
explicitly chosen an eclectic approach which enables them to combine different methods
more easily.

Example 1.1.1. For example, consider the annual International Competition on Software
Verification (SV-COMP2, since 2012) [Bey14, Bey15, Bey16]. SV-COMP is the most
ambitious attempt to create a common setup for comparing software verification tools and,
as of 2016, is based on more than 6,600 C source files. The files are manually partitioned
into categories, by characteristic features such as usage of bitvectors, concurrent programs,
Linux device drivers, etc. The scores of the competition SV-COMP’16, are shown in
Table 1.1. The negative scores correspond to wrong answers, which are heavily penalised
according to the scoring policy of the competition. The competition scores in Table 1.1
demonstrate that there is no tool which performs well in all categories. Specifically, 20
out of 35 participating tools are among the three best tools in at least one category, but
in at least one category each of the 20 tools either has low scores or does not participate.

For example, the tool CPA-Seq [DLW15] is among three best tools in the categories
which include bit operations, heap data structures, integer variables and control-flow,
and pointers and aliases, i.e. the categories BitVectors, Heap, IntegersControlFlow and
DeviceDriversLinux64. On top of that, CPA-Seq is the second best tool in the category
Overall, which comprises the tasks of all competition categories. However, CPA-Seq does
not implement check for termination and has poor support for arrays, see the categories
Termination and Arrays.

Similarly, the tool UAutomizer [HDG+16] is among four best tools in 7 out of 9
categories and the winner of the category Overall, but has poor support for floating point

1An integer program is a pointer- and structure-free abstraction of a program. The transformation
obtains a mathematical optimisation problem where program integer properties of interest are translated
to constraint variables.

2https://sv-comp.sosy-lab.org. Accessed 23 January 2018.

3

https://sv-comp.sosy-lab.org

1. Introduction

Verifier A
rr
ay
s

31
6
po

in
ts

m
ax

.
18
3
ta
sk
s

B
itV

ec
to
rs

92
po

in
ts

m
ax

.
60

ta
sk
s

H
ea
p

38
2
po

in
ts

m
ax

.
23
9
ta
sk
s

Fl
oa
ts

14
0
po

in
ts

m
ax

.
81

ta
sk
s

In
te
ge
rs
C
on

tr
ol
Fl
ow

36
29

po
in
ts

m
ax

.
23
31

ta
sk
s

Te
rm

in
at
io
n

11
29

po
in
ts

m
ax

.
63
1
ta
sk
s

C
on

cu
rr
en
cy

12
40

po
in
ts

m
ax

.
10
16

ta
sk
s

D
ev
ic
eD

riv
er
sL

in
ux

64
39
77

po
in
ts

m
ax

.
21
20

ta
sk
s

Fa
lsi
fic
at
io
nO

ve
ra
ll

23
71

po
in
ts

m
ax

.
60
30

ta
sk
s

O
ve
ra
ll

10
85
5
po

in
ts

m
ax

.
66
61

ta
sk
s

2LS 136 1196 -2438 -38205
AProVE 909
Blast -1653 2704
Cascade 197
CBMC 62 46 8 134 -1239 882 1972 391 3386
Ceagle 136
CIVL 1240
CPA-kInd 3 77 161 76 2095 0 0 2350 707 4094
CPA-RefSel 35 1539 0 0 3177 36 2157
CPA-Seq -61 87 234 75 2652 0 282 2801 496 4794
ESBMC 190 84 163 -15 1217 0 742 1688 248 4145
Lazy-CSeq 1240
MU-CSeq 1240
PredatorHP 298
SeaHorn -301 -131 -257 0 1572 504 -24659 1694 -4333 -22393
SMACK+Corral 146 44 155 0 2013 0 999 2206 800 4223
Symbiotic 101 -2 105 -18 633 0 0 980 -370 1223
UAutomizer 83 69 169 2 1865 895 2686 823 4843

Table 1.1 Results of SV-COMP’16. A number in i-th row and j-th column correspond to the
score of i-th tool in j-th SV-COMP category. Empty cells correspond to the cases when a tool
did not participate in a category. Dark grey, light grey and white+bold text respectively indicate
the first, second and third highest places in each category. When several tools have equal scores
in one category, tools with lower runtime in the category are ranked higher, according to the
placing policy of SV-COMP. We omit the runtimes for the sake of clarity. We show only the tools
which are among three best tools in at least one category.

operations and no support for concurrency, see the categories Floats and Concurrency.

The approach of optimising tools to a narrow domain is taken to the extreme by the
winner of the category Floats the tool 2LS [SK16], which has positive score only in one
more category besides Floats. Similarly, three best tools in the category Concurrency
MU-CSeq [TNI+16], Lazy-CSeq [ITF+14] and CIVL [ZEL+16] do not participate in
any other category than Concurrency. N

To summarise, numerous verification tools are implemented, and the tools have different
strengths and weaknesses. To choose a verification tool for a program, a software engineer
needs expertise in the state-of-the-art verification tools and understanding which challenges
the program poses for software verification.

We therefore formulate the following challenge which we solve in this thesis.

4

1.1. Empirical Choices in Software Verification

C1 – Challenge "Automatic choice of a verification tool". A method is needed
which automatically chooses the best suited software verification tool for a given verifica-
tion task. For choosing a tool, besides the application domain of a tool, different criteria
can be taken into account, such as soundness, runtime and memory consumption of a
tool, and so on.

1.1.2 Problem 2: Choosing Abstraction

Finding suitable abstractions is crucial for the efficiency of software verification. In
practice, to choose a suitable abstraction verification tools implement numerous heuristics.
Specifically, with heuristics we understand stategies, which tool developers implement so
that the tool more efficiently solves a restricted class of problems.

In particular, software verification tools use heuristics to chose logical formulas to create
an abstract model of a program, i.e. predicates and elements of abstract domains. In
addition, after creating an initial model, heuristics are used to iteratively refine the model,
i.e. obtain a more fine-grained model, in case the model is not precise enough to prove
the verification property of interest. We formally introduce the notions of predicates and
abstract domains, and the methods of automatic abstraction refinement in Chapter 2.

We give examples of heuristics in software verification tools in Sections 2.1.4 and 2.2.5.
Here we only mention that heuristics are typically domain-specific, i.e. tie verification
tools to a specific application area.

In addition, as argued in [NR10], heuristics are usually less explicitly documented than
the core algorithms used in verification tools.

Example 1.1.2. In the year 2017, in the software verification competition SV-COMP’17
the tool Esbmc participated in four different configurations, namely ESBMC, ESBMC-
falsi, ESBMC-incr and ESBMC-kind. In the competition report, the organisers
list the participating tools and for each tool give a link to a paper describing the tool.
However, for the configurations ESBMC, ESBMC-falsi and ESBMC-incr the same
link is provided, and the respective paper gives no details on the differences between
the configurations. In the same time, the four configurations show different results in
the competition. For example, in the category FalsificationOverall, which contains only
unsafe tasks, the configurations ESBMC-incr and ESBMC-kind take second and third
place respectively, the configuration ESBMC-falsi does not take any place and the
score of the configuration ESBMC is an order of magnitude lower than the score of the
three other configurations. Therefore, the results show that the heuristics implemented
in the different configurations have a serious impact on tool performance. N

Furthermore, heuristics are often manually configured by users of the verification tools.

Example 1.1.3. As of 2009 the static analyser Astrée contained at least 12 abstract
domains and 150 configuration options in order to specify which abstract domains to use
and the parameters of the abstract domains [CCF+09]. N

5

1. Introduction

Making the right choices to configure the heuristics of a verification tool needs understand-
ing of the internal functioning of the tool and is specific for a program under analysis.
The experimental results of rigorous evaluation of the heuristics are rarely reported with
a few exceptions [NR10, SMM11, TKK+14].

To summarise, to search for abstraction, verification tools implement numerous heuristics.
Heuristics have a big impact on the efficiency of tools. However, heuristics are not
systematic, since heuristics are tight to specific application domains and are poorly
documented. Furthermore, heuristics are not automatic, since some tools which implement
heuristics require human guidance and expertise to be properly configured.

We therefore formulate the following challenge which we solve in this thesis.

C2 – Challenge "Automatic choice of program-specific abstraction". A method
is needed which allows to automatically generate a suitable abstraction for a program
under analysis using formally specified heuristics.

1.2 Implicit Structure of the Source Code

Programs are human-engineered entities, and they have an implicit structure which
makes them easier to comprehend by a human. In particular, programs use specific
code patterns, are structured in procedures, have meaningful identifiers, are explained
with comments and documentation, etc. However, for majority of software verification
tools there is no difference between a human-written program and machine-generated
or obfuscated code. A software verification tool typically translates a program to a
simplified model thus losing the implicit structure. To solve the challenges mentioned
in the previous section, we study in this thesis the artefacts of the implicit structure.
Specifically, we study patterns of variable use, which we introduce in the next section.

1.3 Patterns of Variable Use

As argued above, there is a gap between what can be written in a programming language
and the way programmers write their code. Programs written in commonly used impera-
tive programming languages, such as C, Java, Perl, Python, share typical patterns of
variable use, like flags, loop iterators, counters, array indices, bitvectors, and so on. How-
ever, the type systems in these languages do not capture this information: variables used
in different patterns would typically be assigned same type, e.g. int in C. Experienced
programmers have informal knowledge of the patterns, and recognising the patterns in a
program helps them to understand the program. We call such patterns variable roles.
We illustrate variable roles with the following examples.

Example 1.3.1. Consider the C program in Fig. 1.1a, which computes the number of
non-zero bits of variable x. In every loop iteration, a non-zero bit of variable x is set to

6

1.4. Application Domains of Variable Roles

1 // n: counter
2 // x, x_old: bitvector
3 extern int x;
4 int n = 0;
5 int x_old = x;
6
7 while (x) {
8 n++;
9 x = x&(x-1);

10 }

(a) roles bitvector and counter

1 //fd: file descriptor
2 int fd = open(path, flags);
3
4 // c: character
5 int c, val=0;
6
7 while (read(fd, &c, 1)>0 &&
8 isdigit(c)) {
9 val = 10*val + c-’0’;

10 }

(b) roles character and file descriptor

Figure 1.1 Examples of usage patterns of integer variables in C programs.

zero and variable n is incremented. From statements n=0 and n++, a programmer deduces
that n is a counter. Similarly, from expression x&(x-1), which contains bitwise-and
operation, a programmer deduces that variable x is a bitvector. N

Example 1.3.2. Consider the code in Fig. 1.1b, which reads a decimal number from
a text file and stores its numeric representation in variable val. Since the function
open from the C standard library opens a file and returns its descriptor, a programmer
deduces from statement fd=open(path,flags) that variable fd is a file descriptor.
Similarly, since isdigit() is a character classification routine which checks whether its
parameter is a decimal digit, a programmer deduces from statement isdigit(c) that
c is a character. N

1.4 Application Domains of Variable Roles

We now motivate why variable roles are interesting to study and how the roles can be
used to solve the challenges stated in Section 1.1, specifically C1 (Automatic choice of a
verification tool) and C2 (Automatic choice of program-specific abstraction).

In Section 1.4.1 we describe the applications of roles in Software Verification which we
have investigated in this thesis and make connections to the respective sections of the
thesis. In particular, we discuss how we use variable roles to

i. define metrics for software verification benchmarks;

ii. build a portfolio solver to automatically choose a software verification tool;

iii. formally specify heuristics in software verification to automatically generate program-
specific abstraction.

We discuss further possible applications of variable roles in Section 1.4.2.

7

1. Introduction

1.4.1 Applications of Roles Studied in this Thesis

Metrics for Software Verification Benchmarks

In Chapter 4, we use variable roles to compute code metrics to compare software verifica-
tion benchmarks. Comparing benchmarks is an acute problem in software verification.
First, there exists no common set of benchmarks in the software verification community.
Therefore, benchmarks are often manually selected, handcrafted, or chosen a posteriori
to support a certain technical insight. Second, oftentimes neither the tools nor the
benchmarks are available to other researchers. For example, Windows device drivers from
Microsoft SDV toolkit [TKK+14] are available only in part and in the form of Boolean
programs, rather than the original C code.3 Third, some sets of benchmarks are very
large, as for example the benchmarks of the competition SV-COMP, which makes it
difficult to analyse the source code of the benchmarks manually.

We suggest that the three problems formulated above can be solved by devising variable
role based metrics over benchmarks. The metrics will give the following benefits:

1. understanding the presence of language constructs in benchmarks;
2. characterising benchmarks not publicly available and
3. understanding large benchmarks without manual inspection.

Portfolio Solvers for Software Verification

In Chapter 4, we also use variable-role-based program metrics to build a portfolio solver for
software verification tools and to explain the results of software verification competitions.
Here a portfolio solver is a software verification tool which uses heuristic preprocessing
to select one of the existing tools [HLH97, GS01, Ric76]. For the software verification
community, portfolio solving brings interesting advantages:

1. A portfolio solver optimally uses available resources. While in theory one may run
all available tools in parallel, in practice the cost of setup and computational power
makes this approach infeasible. A portfolio predicts the n tools it deems best-suited
for the task at hand, allowing better resource allocation.

2. It can avoid incorrect results of partially unsound tools. Practically every existing
software verification tool is partially incomplete or unsound. A portfolio can
recognise cases in which a tool is prone to give an incorrect answer, and suggest
another tool instead.

3. Portfolio solving allows us to select between multiple versions of the same tool. A
portfolio is not only useful in deciding between multiple independent tools, but
also between the same tool with different runtime parameters (e.g. command-line
arguments).

3https://www.microsoft.com/en-us/download/details.aspx?id=52338. Accessed 23
January 2018.

8

https://www.microsoft.com/en-us/download/details.aspx?id=52338

1.4. Application Domains of Variable Roles

1 extern int nondet_int();
2 int main() {
3 int n = nondet_int();
4
5 // k,i,j : local counter
6 int k, i, j;
7
8 for (k=0,i=0; i<n; i++,k++);
9 for (j=n; j>0; j--,k--) {

10 assert(k > 0);
11 }
12
13 return 0;
14 }

Figure 1.2 Code example for role-based heuristics in software verification: role local counter.

4. The portfolio solver gives insight into the state-of-the-art in software verification. As
argued in [XHHL12] for SAT solving and in Example 1.1.1 for software verification,
the state-of-the-art can be set by a combination of available solvers, rather than
the single best solver (e.g. a competition winner). This accounts for the fact that
different techniques have individual strengths and are often complementary.

Systematic Specification of Heuristics in Software Verification

In Chapter 3 we use variable roles to build a framework for the formal specification of
heuristics. In particular, we specify in the framework heuristics based on variable roles
independently from the implementation in the form of configuration files. In addition, in
Chapter 5, we use variable roles to generate program-specific abstraction from the code
under analysis. We illustrate this idea with the following example.

Example 1.4.1. The code in Fig. 1.2 increments variables i and k in the loop at line 8
until i reaches n, and in the loop at lines 9–11 variables j and k are decremented until j
reaches 0. The assertion checks that the value of variable k remains positive in the loop.
The assertion can be proven using the predicates k>=i and k>=j. However, these predi-
cates are difficult to find, e.g., the baseline version of model checker Eldarica [RHK13]
keeps generating a sequence of pairs of predicates (i<=1,k<=1), (i<=2,k<=2), etc.
As demonstrated by this example, heuristics are needed to guide interpolation towards
finding suitable refinement predicates.

The community has suggested various heuristics for this kind of verification problems.
For example, recall from Example 1.4.1 in Section 1.1.2 that the model checker Eldarica
uses Craig interpolation to generate predicates. To find suitable predicates, Eldarica
restricts the shape of predicates with user-specified templates. The template x1-x2
passed to Eldarica guides the interpolation solver used by Eldarica to the predicates
of the form x1-x2>=n, n∈ N. Using the templates i-k and k-j, the most recent

9

1. Introduction

version of Eldarica [LRS16] finds the predicates i-k≤0 and k-j≥0 respectively and
proves the program safe in 5 seconds and 6 CEGAR iterations.

With the goal of systematising and extending the previous heuristics of Eldarica, we
propose a heuristic which tracks the dependencies between loop counters as follows:
The heuristic searches for variables x assigned in a loop in a statement which matches
the pattern x=x+expr, where expr is an arbitrary expression. For each pair x1 and
x2 of such variables the heuristic generates a predicate template x1-x2 guiding the
interpolation solver to predicates of the form x1-x2>=n, n∈ N.

We formalise the heuristic using the variable role local counter which we informally
define as follows. Variable x is a local counter of loop L if x is assigned in a statement
x=x+expr, where expr is an arbitrary expression, and the statement x=x+expr is
nested in a body of the loop L. We give a formal definition of the role local counter
in Section 3.3.3 and the formal definition of the above heuristic based on this role in
Section 5.2. Our algorithm uses the role to infer the template as follows. For every pair
of local counters x1 and x2 of same loop L, generate the template x1-x2. N

1.4.2 Further Applications of Roles

Pre-Analysis in Multi-Stage Verification

Variable roles can be used to choose problem-specific parameters for model checkers, or
other analysis tools.

Example 1.4.2. In Section 2.2.5 we describe the packing heuristic implemented in
the tool Astrée for octagon abstract domain. To reduce the number of relations, the
heuristic splits the variables into packs and relates only the variables from same pack.
In particular, the heuristic puts into one pack the variables incremented or incremented
within the same loop. For example, for the code

x=10; for (i=0;i<=10;i++) x++;

the heuristic allows to find an invariant x-i=10.4 To formalise this heuristic, we use the
role local counter introduced in Example 1.4.1 as follows. Given variables x and y which
have the role loop counters in same loop L, configure the octagon abstract domain to
generate a dependency for the two variables. N

Program Understanding

Variable roles can be used in program understanding, e.g. in a program visualisation tool
which visualises program variables with images corresponding to their roles [SK04].

In addition, since roles capture typical patterns of variable usage, roles can be used in
teaching programming languages [SK05]. In the experiment of [SK05] three groups of

4We take this example from [CCF+06].

10

1.5. Aim of the Work and Methodological Approach

students were taught Pascal programming language in different conditions. In particular,
for the first group the concept of variable roles was used in the process of teaching, for
the second group role-based program visualisation was used in addition, and for the third
group the concept of variable roles was not used. The comparison of grades along with a
number of measures assessing program comprehension show that the group which used
the role-based program visualisation tool demonstrated the deepest knowledge of the
programming language.

In addition, roles can be used for algorithm recognition, e.g. using decision trees based on
the number of variables having specific roles and other structural code metrics [TKM11].
The role-based method of algorithm recognition [Tah10] was also used for automatic
assessment of programming assignments, specifically the implementations of sorting
algorithms [TMK08].

Bug Finding

A change of a variable role between consecutive code fragments can be used as an
indicator of a possible bug. The bug-finding tool Coverity [HCXE02] uses a similar
idea. In particular, Coverity infers a hypothetical expected order of statements, e.g.
the function call spin_lock() should be followed by the call to spin_unlock().
Then, Coverity detects the cases when the order of statements is not respected and
classifies these cases as possible bugs. We discuss this work in more detail in Chapter 6.

1.5 Aim of the Work and Methodological Approach
In this thesis we aim to formalise and study the notion of variables roles. In particular,
we are interested in the use of variable roles for program verification, because we believe
that variable roles carry information which can be used for solving the challenges of
Section 1.1, namely C1 (Automatic choice of a verification tool) and C2 (Automatic
choice of program-specific abstraction).

Tasks. We split the challenges into the following tasks:

T1 – Role specification framework. We develop a framework for the specification of vari-
able roles. Each specification in the framework is effective, i.e. a specification allows
to automatically infer which variables have the specified role.

We explore the use of variable roles in software verification (SV) :
T2 – Portfolio solver for Software Verification. First, we build a portfolio solver for soft-

ware verification to automatically choose a verification tool for a program using
variable roles identified in the program. As a case study, we build a portfolio solver
for the competition SV-COMP’14.

11

1. Introduction

Preparation: choice of bench-
marks and termination criteria

1. Case study

2. Theoretical framework

3. Prototype tool

4. Experiments

Are termination
criteria satisifed

Yes

No

Figure 1.3 Research cycle undertaken in the thesis.

T3 – Systematic heuristics for Software Verification. Second, we devise role-based heuris-
tics for choosing predicates in software model checking. As a case study, we choose
the model checking tool Eldarica. We reformulate the existing heuristics of the
tool, and we adapt the tool to different application domains using new heuristics.

Research cycle. In order to solve the three tasks, we develop a theoretical framework
and an implementation of our ideas, going through the steps of a research cycle illustrated
in Fig. 1.3. Before entering the loop, we choose a set of benchmarks for the class of
tasks we are interested in and define the criteria which the resulting framework and
implementation should satisfy. We then take the following steps in a loop. First, we do a
case study on a small subset of the benchmarks. Second, we use our findings to devise
a theoretical framework which solves the tasks of interest. Third, we implement our
framework in a prototype tool. Fourth, we evaluate the tool on the subset of benchmarks
not used in the case study. Finally, we use the results of the evaluation as a feedback
for refining our framework: if our termination criteria (which we discuss below) are not
satisfied, we go back to step 1.

In the course of this dissertation, we refined the framework and the set of roles in several
iterations. In particular, we changed the underlying formalism for the task T1 (Role
specification framework) from data-flow analysis to logic programming (see Section 3.2
for details). We also added several roles specific for the tasks T2 (Portfolio solver for SV)
and T3 (Systematic heuristics for SV) in a number of iterations so that the respective
termination criteria were met. We now describe in detail the steps of the cycle and define
the termination criteria.

Case study. To identify typical patterns of variable use, we do a case study on a subset

12

1.5. Aim of the Work and Methodological Approach

of a comprehensive code base of real-world software. To identify roles for the tasks
T2 (Portfolio solver for SV) and T3 (Systematic heuristics for SV), we analyse
the challenges which the benchmarks of the SV-COMP competition exhibit for the
participating tools and the challenging benchmarks for the tool Eldarica respectively.

Theoretical framework. We develop a framework for the specification and inference of
roles, and specify in this framework the variable roles identified in the previous step.
Using these roles, we devise an algorithm for a portfolio solver for SV and define
heuristics for Eldarica.

Prototype tool. First, we implement a prototype tool for automatic inference of roles.
Second, we implement a prototype portfolio solver. Third, we implement a tool which
automatically annotates C programs for Eldarica according to the heuristics defined
in the previous step.

Experiments and termination criteria. Finally, we evaluate the prototype tools on a set
of benchmarks.
We evaluate the portfolio solver on the benchmarks of the competition SV-COMP’14
and compute the score of the portfolio solver in the competition. We analyse the cases
of non-optimal choices of the portfolio solver and refine the respective set of roles. We
continue until the portfolio solver beats other tools by a clear margin.
We evaluate Eldarica with role-based heuristics on a set of benchmarks. We refine
the respective set of roles and the heuristics until we obtain a substantial increase in
the number of tasks solved by Eldarica with role-based heuristics. Specifically, we
set ourselves the goal to increase the number by 10%.

Requirements. We aim to devise a specification language for variable roles which is
both concise and expressive, so that typically used patterns of variable use in real-word
software can be formulated and the role definitions are concise.

Our implementation is intended to handle programs written in the C programming
language. The concepts and algorithms that we develop shall, however, be general enough
such that they can be applied also to other imperative languages.

Restrictions. To make the Role specification framework task feasible within the scope
of a PhD dissertation, we make the following assumptions. First, we restrict our study to
imperative languages. Second, the roles we devise apply to scalar and pointer variables,
and structure fields of a scalar type and pointer type — we leave out variables of structure
type. Finally, for the sake of efficiency of role inference, we only consider flow-insensitive
analyses for roles. All three restrictions are not intrinsic, and extending our work in any
of the three directions would make for interesting future work.

Methodology. We formulate the inference algorithm as a light-weight static analysis, i.e.
an efficient analysis executed at compile time. In our approach, we define a variable role
as a data-flow analysis which assigns to each variable at each program control location
zero or more variable roles.

13

1. Introduction

In particular, we follow a common approach and specify the analysis for a role using
logic programming [CGT89], as e.g. in [HVdM06, Rep95]. Our algorithm represents the
program transition relation as a database of facts and defines each role with a set of logic
rules. The inference of roles reduces to the inference of facts which encode the assignment
of roles to variables.

1.6 Structure of the Thesis

We organise the thesis as follows. In Chapter 2 we give preliminaries on software
verification and give examples of empirical choices in verification tools.

In Chapter 3 we define variable roles. We first informally describe the variable roles which
we identified for the tasks of the thesis (see Section 1.5 for the definition of the tasks).
We then define a framework for the specification and inference of roles and formally
define the roles. Finally, we describe an extension of our framework to inter-procedural
analysis and discuss the details of our implementation.

In Chapters 4 and 5 we explore the application of roles in software verification. Specifi-
cally, in Chapter 4 we define a portfolio solver for the SV-COMP software verification
competition. We first introduce our program metrics based on variable roles and other
features extracted with data-flow analyses. We then describe the algorithm of our port-
folio solver which uses the program metrics and evaluate the portfolio solver on the
SV-COMP benchmarks from the years 2014, 2015 and 2016.

In Chapter 5 we define a framework for the specification of role-based heuristics for
software verification and do a case study using the model checker Eldarica. We first
describe the preliminaries of the model checking technique employed by Eldarica, which
reduces program verification to the problem of satisfiability of a system of Horn clauses,
i.e. logical formulae of a special kind. We then describe our heuristics for Eldarica
based on variable roles and, finally, evaluate Eldarica on a set of benchmarks from
SV-COMP and related literature.

In Chapter 6 we give an overview of related work. We conclude and discuss threats to
validity and possible directions for future work in Chapter 7.

1.7 Contributions

In this dissertation we make the following contributions:

1. We give a formal definition of the concept of variable roles for imperative program-
ming languages:

a) We devise a set of variable roles which capture typical usage patterns of variables
in open-source industrial benchmarks;

14

1.8. Our Publications on the Topic of the Thesis

b) We propose a concise specification formalism for variable roles based on logic
programming which at the same time lends itself as a technique for automatic
inference of roles;

2. We explore the application of variable roles in software verification:

a) First, we identify variable roles important for the benchmarks of the SV-COMP
software competition. We devise source code metrics based on these roles. Using
the metrics, we build a portfolio solver for software verification. We show that
the portfolio solver would be a hypothetical overall winner of the competition
in three consecutive years (2014–2016).

b) Second, we suggest a method of specifying heuristics based on variable roles
for choosing program-specific abstraction. We do a case study on the model
checker Eldarica and identify variable roles important for Eldarica on a set
of software verification benchmarks. We show that not only all the existing
heuristics of Eldarica can be expressed using variable roles, but also that
the extended tool solves 11.2% more tasks on a set of benchmarks for software
verification, and shows a significant speedup on certain benchmark families.

1.8 Our Publications on the Topic of the Thesis

We made our first attempt to formally define variable roles in [DVZ13]. In particular,
we proposed a set of 14 roles which capture frequent usage patterns of variables in
imperative programs. We defined roles using intra-procedural data-flow analysis, and
used a standard fixed-point algorithm [NNH99] to infer the roles. We implemented
the role inference algorithm in a prototype tool. As a proof of meaningfulness of the
variable roles we used the roles to classify the benchmarks of the Software Verification
Competition SV-COMP’13, specifically to predict membership of the benchmarks to
different categories of the competition. My contributions to [DVZ13] are as follows:

• inspecting benchmarks and identifying frequently used code patterns;

• devising role specifications;

• implementing and evaluating the prototype tool.

Next, in [DPVZ15] and [DPVZ16], we used variable roles to devise program metrics and,
based on these metrics, built a portfolio solver for software verification. For the metrics
we used the variable roles from [DVZ13] as well as 12 new roles which capture usage
patterns of variables important for software verification. My contributions to [DPVZ15]
and [DPVZ16] are as follows:

• identifying and specifying new roles for the portfolio solver;

• implementing and evaluating an algorithm for the portfolio solver.

15

1. Introduction

Finally, in [DRZ17], we used variable roles to systematically specify heuristics in software
verification for creating program-specific abstractions. In particular, we defined 5 heuris-
tics for the generation of predicates and predicate templates, the latter guiding Craig
interpolation during abstraction refinement. Differently from [DVZ13], [DPVZ15] and
[DPVZ16], we introduced a new formalism for the specification of variable roles. Specifi-
cally, we defined roles as logic queries on the structure of a program, which allowed to
separate role specification from implementation into configuration files. My contributions
to [DRZ17] are as follows:

• analysing the cases of failure of Eldarica on a set of SV-COMP benchmarks
and devising missing predicates which (along with the predicates generated by
Eldarica) would allow Eldarica to verify the benchmarks;

• identifying variable roles capturing the missing predicates and devising role-based
heuristics to generate the predicates;

• devising the new logic-based framework for the specification of variable roles and
translating the existing specifications of roles to the new formalism;

• implementing the algorithms for role inference and predicate generation in a
prototype tool.

This dissertation is a cumulative summary of [DVZ13], [DPVZ15], [DPVZ16] and [DRZ17].
The thesis extends, however, our previous works by giving a full specification of variable
roles in Chapter 3 and auxiliary definitions in Section 8.A. In addition, in Chapter 2 we
give an overview of the notions and techniques which introduce the reader to the basics
of software verification. Finally, in Chapter 6 we provide a detailed review of the related
literature, which is not part of our previous works.

16

CHAPTER 2
Background

In Chapter 1 we stated that state-of-the-art software verification tools implement different
heuristics, and that these heuristics are not systematically specified and described. In this
chapter we discuss this problem in more detail. To this end, in Sections 2.1 and 2.2 we first
give preliminaries on the model checking and abstract interpretation verification methods
respectively. with examples of heuristics for both methods in several state-of-the-art
software verification tools.

2.1 Model Checking
Model checking is a method of verification which solves the following problem: given a
model of a system, exhaustively and automatically check whether this model meets a
given specification. Specifically, methods of model checking check whether a structure
representing a model of a system satisfies a logical formula representing a specification.

2.1.1 Labelled Transition System

An important class of model checking techniques reduces a verification problem to a graph
search. In particular, assertion properties check that some condition holds in a given
control location. Examples of assertion properties are checks that there is no division
by zero, there is at most one process in a critical section, or the result of computations
satisfies a functional specification. Model checking techniques translate an assertion
property to a dedicated error state in the program state space, and reduce the verification
task to a graph reachability problem. These techniques represent a program as a labelled
transition system (S, Sinit , R, T), with a set of states S, a set of initial states Sinit ⊆ S,
the transition relation R ⊆ S×Stmt×S and the set of transitions T ⊆ Loc×Stmt×Loc.

The set of program states S = Loc × V al contains pairs (`, v) of a program location
` ∈ Loc and a valuation v ∈ V al, where V al = [V ar → I] is a set of mappings from

17

2. Background

1 extern int n;
2
3 void main()
4 {
5 int x, y;
6 assume(x==n && y==n);
7
8 while (x!=0)
9 {

10 x--;
11 y--;
12 }
13
14 assert(y==0);
15 }

(a) Source code

. . . n=1

6: x=?,y=?

8: x=1,y=1

assume(x==n&&y==n)

10: x=1,y=1

assume(x!=0)

11: x=0,y=1

x--

8: x=0,y=0

y--

14: x=0,y=0

assume(x==0)

n=2

6: x=?,y=?

8: x=2,y=2

assume(x==n&&y==n)

10: x=2,y=2

assume(x!=0)

11: x=1,y=2

x--

8: x=1,y=1

y--

10: x=1,y=1

assume(x!=0)

11: x=0,y=1

x--

8: x=0,y=0

y--

14: x=0,y=0

assume(x==0)

. . .

error

(b) Labelled transition system

Figure 2.1 Concrete model of program in model checking.

program variables V ar to values I. The set of program states is called program state
space.

The transition relation is defined as R = {
(
(`1, v1), stmt, (`2, v2)

)
| (`1, stmt, `2) ∈ T ∧

JstmtK(v1) = v2}. Here J−K : Stmt → (V al ⇀ V al) is a semantic function which
transforms a statement stmt to a partial function, which in turn transforms an initial
valuation v1 to a valuation v2 after executing stmt.

Example 2.1.1. For example, consider the program in Fig. 2.1a. We show the labelled
transition system of the program in Fig. 2.1b. The labelled transition system contains
an infinite number of graphs, one for each initial value of the variable n, indicated with
labels n=1, n=2 etc., on top of each graph.

We show the graphic representation of a labelled transition system as follows:

• The nodes in the labelled transition system correspond to states S. We label
each node corresponding to a state s = (`, v) with a pair of a location ` ∈ Loc

18

2.1. Model Checking

(specifically, the line number in source code) and a valuation v ∈ V al, separated by
a column.

• The edges correspond to the transition relation R. Each edge corresponding to a
relation r = (s1, stmt, s2) goes from the node corresponding to the state s1 to the
node corresponding to the state s2, and we label such an edge with the statement
stmt.
We show every evaluation of a loop condition cond as an edge labelled with
statement assume(cond) or statement assume(!cond) for the cases when the
condition holds and does not hold respectively. For example, in Fig. 2.1b the loop
condition corresponds to edges assume(x!=0) and assume(x==0).

Consider the case when the value of variable n is 1. Initially, the values of the variables
x and y are undefined, which we denote with x=? and y=? in state labels. Then the
statement assume(x==n && y==n) is executed, leading to the state x=1,y=1. Next,
the loop condition x!=0 is evaluated to true, leading the system to a state with same
variable values. In the first loop iteration the decrement statement x-- in line 10 leads to
the state x=0,y=1 and the statement y-- in line 11 leads to the state x=0,y=0. Then
the loop condition is evaluated to false, leading the system to the state with same
variable values. Finally, the control proceeds to the assertion in line 14. The assertion
condition y==0 evaluates to true, with variable values not changed, and the program
terminates.

Similarly, if n=2, the loop terminates after two iterations. For any n, executing the loop
n times proves that the error state is not reachable for this n. However, since the labelled
transition system contains infinitely many states, it is not possible to exhaustively explore
the state space. N

State space explosion problem. Some model checkers, e.g. Cbmc [CKL04], use the
fact that integers manipulated by machines have a fixed bit width, and their values
are bounded. For example, for n-bit counter, the number of states is 2n. However, the
number of program states is exponential in the number of variables, and is typically
intractably large. For example, if a program contains k n-bit variables, its state space
contains 2n·k states. In case of dynamic data structures or loops, the number of executions
for which is unknown at compile time, the number of program states becomes infinite.
Therefore, in order to reduce the number of program states to a finite and tractable
number, verification tools are typically combined with abstraction.

2.1.2 Predicate Abstraction

An important class of abstraction is predicate abstraction [GS97], defined with a set of
predicates P , which are first-order formulae, e.g. x>0, or x+y<z, or ∀i(arr[i]>0), etc.
Given a set of predicates P , we define an extended set of predicates Pe = P ∪{¬p | p ∈ P}
and a set of abstract states S# = Loc× P(Pe), the latter called abstract state space.

19

2. Background

6: x=y,x=06: x=y,x!=0

8: x=y,x=08: x=y,x!=0

assume(x==n&&y==n)assume(x==n&&y==n)

14: x=y,x=0

assume(x==0)

10: x=y,x!=0

assume(x!=0)

11: x!=y,x!=0

x--

11: x!=y,x=0

x--

y--
y--

8: x!=y,x!=0

y--

8: x!=y,x=0

y--

10: x!=y,x!=0

assume(x!=0)

x-- x--

11: x=y,x!=0

x--

y--

11: x=y,x=0

x--

y--
14: x!=y,x=0

assume(x==0)

error

assert(y==0)

Figure 2.2 Abstract labelled transition system of the program in Fig. 2.1: P1 = {x=y,x=0}

An abstract state is computed with an abstraction function α : S → S# which
maps a concrete state to the corresponding abstract state as follows: α((`, a)) = (`,
{p ∈ Pe | a |= p}).

Abstract labelled transition system. The abstract labelled transition system for a
labelled transition system (S, Sinit , R, T) is then defined as (S#, S#

init , R
#, T), where

• the set of abstract states is defined as S# = {α(s) | s ∈ S},

• the set of abstract initial states is defined as S#
init = {α(s) | s ∈ Sinit} and

• the abstract transition relation R# ⊆ S# × Stmt × S# is defined as R# =
{
(
α(s1), stmt, α(s2)

)
| (s1, stmt, s2) ∈ R)}.

We will now illustrate predicate abstraction on example of the program in Fig. 2.1a. We
will create abstract labelled transition systems for two sets of predicates: P1 = {x =
y, x = 0} and P2 = {x = y, x = 0, x = y − 1}. We will show that the abstract system for
P1 is not precise enough to prove the property, while the abstract system for P2 proves
the program safe.

Example 2.1.2 (P1 = {x = y, x = 0}). Consider the code in Fig. 2.1a. A crucial
fact for proving that the assertion condition holds is that the variables x and y have the
same initial value and get decremented by the same value in the loop, and also that the
value of x is 0 at the loop exit. The predicates x=y and x=0 are suitable to prove the

20

2.1. Model Checking

property, because from the facts that x=y holds at the beginning of every loop iteration,
and x=0 holds at loop exit, follows that the assertion condition y==0 evaluates to true.

We show the labelled transition system for the program abstraction with the set of
predicates P1 ={x=y, x=0} in Fig. 2.2. To denote equality in node labels, we use the
symbol =, instead of C equality operator ==.

We will now explain step-wise how this abstraction is created, for a while not making
difference between thick and normal arrows. Initially, the variable values are unknown,
and the statement assume(x==n&&y==n) in line 6 leads to a state where the predicate
x=y holds. We do not show the initial states where x!=y holds, since the transition
relation does not include elements for these states.

Since the value of n is defined externally, it is not possible to reason at compile time
whether x=0 or its negation holds at line 6. Therefore, the set of concrete initial states
corresponds to two abstract states 6:(x=y,x=0) and 6:(x=y,x!=0) (here and below in this
chapter, we separate the control location in a state from the variable assignment with a
colon). When the loop condition x!=0 at line 8 is evaluated in the state 8:(x=y,x=0), the
condition does not hold. The assertion statement assert(y==0) at line 14, evaluated
in the same state, does not lead to an error state and the program terminates.

When the loop condition is evaluated in the abstract state 8:(x=y,x!=0), the loop
condition evaluates to true and the control reaches the loop body at line 10. Executing
the statement x-- leads to a state in which x!=y holds and either x=0 or its negation
holds, since x=y∧x!=0∧x′=x-1 is satisfiable both for x′=0 and for x′!=0. Therefore,
the abstract transition relation contains elements (10:(x=y,x!=0), x--, 11:(x!=y,x=0))
and (10:(x=y,x!=0), x--,11:(x!=y,x!=0)).

In state 11:(x!=y,x=0), executing the statement y-- either leads to the state 8:(x=y,x=0),
or to the state 8:(x!=y,x=0), since the abstraction does not tracks the fact that the
variables x and y were decremented by the same value in the loop. Similarly, executing
the statement y-- in the abstract state 11:(x!=y,x!=0) either leads to the state 8:(x=y,
x!=0), or to the state 8:(x!=y,x!=0).

In a similar way, executing the loop condition assume(x!=0) in state 8:(x!=y,x!=0)
leads to a (not yet visited) state 10:(x!=y,x!=0). Executing the statement x-- leads
to two (not yet visited) states 11:(x=y,x!=0) and 11:(x=y,x!=0), as well as to two
(already visited) states 11:(x!=y,x!=0) and 11:(x!=y,x=0). Executing the statement
y-- in the states 11:(x=y,x!=0) and 11:(x=y,x!=0) leads to the already visited states
8:(x!=y,x!=0) and 8:(x!=y,x=0) respectively.

Finally, after one or more iterations, evaluating the loop condition in the state 8:(x!=y,
x=0) leads to the state 14:(x!=y,x=0). Executing the statement assert(y==0) in the
state 14:(x!=y,x=0) leads to the error state. Therefore, the error state is reachable in
this abstract labelled transition system. N

21

2. Background

6: x=y,x=06: x=y,x!=0

8: x=y,x=0

assume(x==y&&y==n)

8: x=y,x!=0

assume(x==y&&y==n)

14: x=y,x=0

assume(x==0)

10: x=y,x!=0

assume(x!=0)

11: x=y-1,x=0

x--

y--

11: x=y-1,x!=0

x--

y--

error

Figure 2.3 Abstract labelled transition system of the program in Fig. 2.1: P2 =
{x=y,x=0,x=y-1}

Example 2.1.3 (P2 = {x = y, x = 0, x = y − 1}). Now we consider the set of
predicates P2 = P1 ∪ {x = y − 1}. We show the abstract system for P2 in Fig. 2.3. We
will also explain how the abstract system for P2 is constructed and show that in this
abstract system the error state is not reachable, i.e. the assertion property holds.

First, when constructing the abstract labelled transition system, the states 6:(x=y,x=0),
6:(x=y,x!=0), 8:(x=y,x=0), 8:(x=y,x!=0), 14:(x=y,x=0) and 10:(x=y,x!=0) are created
in the same way as in the system for P1. Similarly to the system for P1, program execution
from the abstract state 14:(x=y,x=0) terminates in two steps without reaching the error
state. For the sake of brevity, we do not show the predicate x!=y-1 in these states, since
it is implied by the predicate x=y.

Then, in the state 10:(x=y,x=0), evaluating the statement x-- leads either to the state
11:(x=y-1,x=0), or to the state 11:(x=y-1,x!=0). In both states we do not show the
predicate x!=y, since it is implied by the predicate x=y-1.

Finally, executing the statement y-- in the states 11:(x=y-1,x=0) and, 11:(x=y-1,x!=0)
leads to the states 8:(x=y,x=0) and, 8:(x=y,x!=0) respectively.

After one or more iterations, evaluating the loop condition in the state 8:(x=y,x=0) leads
to the state 14:(x=y,x=0). Executing the assertion statement in the state 14:(x=y,x=0)
does not lead to an error state.

To summarise, exploring all possible transitions shows that the error state is not reachable
in this abstract labelled transition system. N

22

2.1. Model Checking

2.1.3 Abstraction Refinement

Finally, we show how to construct more precise abstractions incrementally using an auto-
matic technique called conterexample-guided abstraction refinement (CEGAR) [CGJ+03].

Counterexample. First, a counterexample is located in the abstract system, i.e. a path
from an initial state to an error state. If there is at least one path in the concrete model
which is mapped to a counterexample using the function α, then the counterexample is
called feasible, otherwise it is called spurious. For example, in Fig 2.2 a counterexample
is shown with bold arrows. This counterexample is infeasible and thus is spurious. To
eliminate a spurious counterexample, model checking methods refine the set of predicates
using systematic techniques like Craig interpolation, or heuristics.

Craig interpolation. Craig interpolation [Cra57, McM05] finds for a mutually incon-
sistent pair of formulae (A,B), i.e. A ∧B → false, a formula I which is

1. implied by A, i.e. A→ I,
2. inconsistent with B, i.e. I ∧B → false and
3. expressed over the common variables of A and B.

To formulate a Craig interpolation problem, model checking techniques construct a path
formula for the counterexample in the concrete system as follows: for each edge of the
counterexample, the action statement (with which the edge is labelled) is added as a
conjunct to the path formula. In particular, each assignment statement is replaced with
an equality and the new value of the assigned variable is replaced with a newly introduced
primed variable. For example, the concrete path formula of the counterexample in Fig. 2.2
is

x
6= n ∧ y 6= n ∧ x

8
6= 0 ∧ x′ 10= x− 1 ∧ y′ 11= y − 1 ∧ x′ 8= 0 ∧ y′

14
!= 0. (2.1)

For demonstration purposes, we put over each (dis-)equality sign the line number of the
corresponding action statement. Note the newly introduced variables x′ and y′ for the
assignment statements in lines 10 and 11 and that the primed variables are used instead
of the variables x and y respectively in the conjuncts which are added afterwards.

There are several possible ways to split the path formula to formulae A and B. A possible
Craig interpolation problem for this counterexample is (A,B) s.t

A = (x = n ∧ y = n ∧ x != 0 ∧ x′ = x− 1) and
B = (y′ = y − 1 ∧ x′ = 0 ∧ y′ != 0).

The formulae A and B are inconsistent since the counterexample is infeasible. For this
Craig interpolation problem a possible interpolant is the formula I = (x′ = y − 1), since

1. x = n ∧ y = n ∧ x′ = x− 1→ x′ = y − 1 and
2. x′ = y − 1∧y′ = y − 1 ∧ x′ = 0 ∧ y′ != 0→ false and

23

2. Background

1. Create abstract model

2. Check
property No error in system

No error in
abstract model

3. Check
counterexample

Found coun-
terexample

Error in system

Counterexample
is feasible

4. Refine abstraction

Counterexample
is infeasible

Figure 2.4 CEGAR (Counterexample-guided abstraction refinement)

3. I uses the common variables of A and B.

CEGAR. As mentioned above, some model checking tools, e.g. Blast, CPAchecker,
UltimateAutomizer etc., use interpolants to refine a set of predicates. To make the
process of abstraction refinement (and model checking as a whole) automatic, many
software model checking tools, e.g. Blast, CPAChecker, Eldarica etc., use the
technique counter-example abstraction refinement (CEGAR).

CEGAR iteratively solves a verification task as shown in Fig. 2.4. In the 1 and 2 steps
of each iteration, an abstract system is created and the property is checked. By the
definition of the function α, if the property holds in the abstract system, then it also
holds in the concrete system (denoted as "No error in system"). If the property does not
hold in the abstract system, a counterexample is extracted and checked for feasibility in
step 3. If the counterexample is feasible, then there is an error in the concrete model
(denoted as "Error in system"), with the counterexample illustrating how the property is
violated in the model. If the counterexample is infeasible, then the abstraction is refined
in step 4, and the loop is repeated from step 1.

2.1.4 Heuristics in Model Checking

Heuristics in model checking are used both to find initial abstraction, e.g. the set P1
in Example 2.1.2, and during abstraction refinement, e.g. to find the predicate x=y-1
in the set P2 in Example 2.1.3. In this section we give examples of such heuristics in
state-of-the-art model checking tools.

SLAM. The model checker Slam, based on predicate abstraction with CEGAR, is
targeted at verifying Windows device drivers. Slam is included into Windows

24

2.1. Model Checking

1 #define Locked 0
2 #define Unlocked 1
3
4 void AcquireSpinLock(int state) {
5 assert(state == Unlocked);
6 state = Locked;
7 }
8
9 void ReleaseSpinLock(int state) {

10 assert(state == Locked);
11 state = Unlocked;
12 }
13
14 void foo() {
15 int protect = 1;
16 int state = Unlocked;
17 int *a;
18 ...
19 if (protect)
20 AcquireSpinLock();
21
22 for (i=0; i < 1000; a[i] = 0, i++);
23
24 if (protect)
25 ReleaseSpinLock();
26 }

Figure 2.5 Code example illustrating the heuristics of Yogi.

Static Driver Verifier (SDV) toolkit and uses built-in domain-specific heuristics to
extract refinement predicates from particular counterexamples [JM09, p. 24]. In
particular, Slam queries the theorem prover Zapato to check the feasibility of a
counterexample and, in case the counterexample is infeasible, returns a minimal
set of unsatisifiable constraints. The atomic formulae from this set are then used
by Slam as refinement predicates.

Zapato takes a quantifier-free first-order logic query and transforms it to constrains
of two types. The first set contains equality constraints for uninterpreted function
symbols. The second set contains the constraints of the form ax+ by ≤ d, where x
and y are variables, d is an integer and a and b are elements of the set {−1, 0, 1}.
Even though the obtained refinement predicates are of a restricted form, the
experimental results show, that the logic used by Zapato is sufficient for the
verification of Windows device drivers [BCLZ04].

Yogi. The model checker Yogi is also targeted at verifying Windows device drivers and
combines static analysis with symbolic execution. Symbolic execution computes the
result of executing a program path by consecutively applying to a symbolic input
the semantic function of the program statements which occur on the path. Yogi

25

2. Background

implements an iterative algorithm, which on one hand uses symbolic execution
to generate a (symbolic) input leading the program execution to the error state,
and on the other hand performs static analysis to prove that the error state is
unreachable.
The initial abstraction created by Yogi corresponds to an abstract labelled tran-
sition system which contains one abstract state for each control location in a
program.

1. The first heuristic Yogi implements adds to the initial abstraction the predi-
cates extracted from the conditionals of the verification property.
Example 2.1.4. Consider the code in Fig. 2.5, which initialises the array a
in a loop in line 22 and protects the initialisation by assigning to the variable
state the value Locked. The dots in Fig. 2.5 denote that part of the code
was omitted. The heuristic adds to the initial abstraction the predicates
state==Locked and state==Unlocked. N

In case the static analysis performed by Yogi generates a counterexample, Yogi
uses symbolic execution to check whether the counterexample is feasible. If the
counterexample is infeasible, Yogi uses the following two heuristics to refine
predicates at the point of assume statements; the assume statements being used
by Yogi to represent the conditions of if-then-else statements and of looping
constructs:

2. First, to create an abstraction of a program, the heuristic replaces the assume
statements on which the error state is not control dependent by skip state-
ments. However, in case the symbolic execution performed during feasibility
check determines that some of the removed assume statements occur on
the executed path, the heuristic adds back to the abstraction the respective
assume statements.
Example 2.1.5. Consider again the example in Fig. 2.5. The heuristic
replaces with a skip statement the statement assume(i<1000), which
represents the loop condition in line 22.
Suppose that Yogi needs to perform a refinement at line 22. In this case
Yogi adds the statement assume(i<1000) back to the abstraction. N

3. Second, the algorithm of Yogi performs the refinement as follows. For
an infeasible abstract path (sk−1,assume(φ), sk) in the counterexample, s.t.
sk−1 = (`k−1, Pk−1), sk = (`k, Pk) and Pk−1, Pk ∈ Pe, Yogi refines the abstract
state sk−1 with the predicates Pk ∪ {φ}.
The heuristic replaces the refinement Pk ∪ {φ} with the set Pk if the latter is
strong enough to eliminate the counterexample. A smaller set is preferable
because it makes the evaluation less computationally expensive.
Example 2.1.6. Continuing the example 2.1.5, suppose Yogi needs to per-
form a refinement at line 22. Suppose the infeasible abstract path in the

26

2.1. Model Checking

counterexample is (sk−1,assume(i<1000), sk), where sk−1 = (20, {}) and
sk = (22, {state==Locked}).
The algorithm of Yogi would refine the state sk−1 with the set of predicates
{state==Locked, i<1000}. The heuristic is able to eliminate the predicate
i<1000 from the refinement and simplify the abstraction. N

The evaluation of Yogi on SDV benchmark suite showed that the three heuristics
improve the performance of Yogi on Windows device drivers [NR10].

Eldarica. The model checker Eldarica [HKG+12, LRS16] is based on predicate ab-
straction with CEGAR. To eliminate spurious counterexamples, Eldarica uses
Craig interpolation, which is implemented in a theorem prover. In order to guide the
theorem prover to the interpolants containing the suitable predicates in a generally
infinite lattice of interpolants, Eldarica uses interpolation abstraction [LRS16].
In this method, Eldarica instruments interpolation queries with templates, which
are formulae restricting the symbols that can occur in interpolants. Specifically,
the interpolant is built only using the terms in the set of templates and numbers.

Example 2.1.7. Consider the binary interpolation query A ∧ B with A = (x =
1 ∧ y = 2) and B = (x > y). The interpolation problem has multiple solutions,
including I1 = (x = 1 ∧ y = 2) and I2 = (y = x+ 1). In a software model checker,
clearly I2 is preferable, since it abstracts from concrete values of the variables.
Interpolation abstraction can be used to distinguish between I1 and I2, e.g. by
preventing theorem provers to compute I1 as an interpolant. For this, template
terms are used which capture the expressions that an interpolant should contain.
In the example, given templates {x, y}, a theorem prover could compute either of
I1, I2; with the template {x− y}, a theorem prover can return (x− y = −1) ≡ I2,
but no longer I1.
To achieve this, Eldarica rewrites the interpolation query. In particular, given
the template x− y, Eldarica rewrites the formula A to Ar and the formula B to
Br as follows:

Ar = (x′ = 1 ∧ y′ = 2) ∧ x′ − y′ = x− yx′ − y′ = x− yx′ − y′ = x− y,
Br = x′′ − y′′ = x− yx′′ − y′′ = x− yx′′ − y′′ = x− y ∧ (x′′ > y′′) .

The rewriting consists of two parts:

– The variables x and y are renamed to x′ and y′ in the formula A and to x′′
and y′′ in the formula B.

– In this way, the knowledge about the exact values of the variables x and y is
lost. Instead, the limited knowledge about the difference x− y is introduced
(see the bolded parts of the formulae).

As a result, I1 is no longer a valid interpolant of Ar and Br (because Ar → I1 is
not valid any more), but I2 is. N

27

2. Background

2.2 Abstract Interpretation

Abstract interpretation is another method of verification which creates an approximation of
reachable program states. Specifically, reachable states are the states which can be reached
from an initial state in zero or more steps, and an approximation of the set of reachable
states is a set which includes all reachable states, and possibly other (unreachable) states.
We will now define basic notions used in abstract interpretation [NNH99].

2.2.1 Basic Definitions

A partial order (L,v) is a set L equipped with a binary relation v ⊆ L × L, s.t. the
relation v is

• reflexive (i.e. ∀x ∈ L.x v x),

• transitive (i.e. ∀x, y, z ∈ L.x v y ∧ y v z ⇒ x v z) and

• anti-symmetric (i.e. ∀x, y ∈ L.x v y ∧ y v x⇒ y v x).

Element y ∈ L is an upper bound of subset X of L if ∀x ∈ X.x v y. Similarly, element
y ∈ L is a lower bound of subset X of L if ∀x ∈ X.y v x.

A least upper bound tX of X is an upper bound of X which for all upper bounds y of X
satisfies tX v y. Similarly, a greatest lower bound uX of X is a lower bound of X which
for all lower bounds y of X satisfies y v uX. We will write x t y instead of t{x, y} and
x u y instead of u{x, y}.

A lattice is a partial order (L,v) s.t. for every two elements x, y ∈ L there is a least
upper bound xt y and a greatest lower bound xu y. We denote the largest element of L
with >, if it exists: > = tL. Similarly, we denote the smallest element of L with ⊥, if it
exists: ⊥ = uL.

A chain Y is a subset of a lattice L s.t. Y is totally ordered:

∀`1, `2 ∈ Y.(`1 v `2) ∨ (`2 v `1).

A finite chain Y is a chain which is a finite subset of L. A lattice L has finite height if
all its chains are finite.

An ascending chain is a sequence (`n)n of elements in L s.t.

∀n,m ∈ N.n ≤ m⇒ `n v `m.

We say that a sequence (`n)n eventually stabilises if

∃n0 ∈ N.∀n ∈ N.n ≥ n0 ⇒ `n = `n0 .

28

2.2. Abstract Interpretation

(−∞;∞)

([-1000;1000])

(−∞;1000] [-1000,∞)

(−∞;9992]

([-9992;9992])

[-9992,∞)

(−∞;9984.008]

([-9984.008;9984.008])

[-9984.008,∞)

(−∞;3.998]

([-3.998;3.998])

[-3.998,∞)

(−∞;2]

([-2;2])

[-2,∞)

∅

Figure 2.6 Lattice of a subset of intervals of rational numbers.

2.2.2 Abstract Elements

An abstract domain in abstract interpretation is a lattice of abstract elements.

Example 2.2.1 (Interval analysis). For example, the abstract domain which over-
approximates variable values with intervals is called interval domain. Elements of the
corresponding lattice are intervals. We illustrate the lattice of intervals of rational
numbers {[`, h] | `, h ∈ Q ∪ {−∞,∞} ∧ ` ≤ h} in Fig. 2.6. We will later use this lattice
in our examples. N

Given a concrete domain of states S, an abstract domain L and functions α : P(V al)→ L
and γ : L → P(V al), a Galois connection is a tuple (L,α, γ,P(V al)) s.t. γ preserves
arbitrary meets:

γ(
l
X) =

⋂
x∈X

γ(x)

The function α is called abstraction function, and the function γ is called concretisation
function.

2.2.3 System of Equations

Given a labelled transition system (S, Sinit , R, T) of a program and a lattice L of abstract
elements, the methods of abstract interpretation construct a recursive system of equations

(x1, . . . , xn) = (F1(x1, . . . , xn), . . . , Fn(x1, . . . , xn)) (2.2)

where

• n = |Loc| is the number of control locations of the program;

29

2. Background

1 extern int nondet();
2
3 void main() {
4 int in = 0;
5 int out = 0;
6
7 while (nondet()) {
8 previn = in;
9

10 in = nondet();
11 assume(in>=-1 && in<=1);
12
13 out=0.999*out+in-previn;
14 }
15
16 exit:
17 }

(a) Source code.

4 : x4

5 : x5

in=0

7 : x7

out=0

8 : x8

nondet()==true

16 : x16

nondet()==
false

10 : x10

previn=in

11 : x11

in=nondet()

13 : x13

in≥-1 &&
in≤1

out=0.999*out
+ in-previn

(b) Control flow graph.

Figure 2.7 High bandpass filter. The example is taken from a preprint1 with minor modifica-
tions.

• For each control location `i ∈ Loc, s.t. 1 ≤ i ≤ n, abstract element xi ∈ L is an
abstraction of a set of concrete valuations reachable at location `i (recall that we
define a state si as a pair of a location `i and variable valuation vi):

xi = α({vi | ∃`0, . . . , `i−1 ∈ Loc. ∃v0, . . . , vi−1 ∈ V al.
∃stmt1, . . . , stmti ∈ Stmt. (`0, v0) ∈ Sinit ∧
((`0, v0), stmt1, (`1, v1)) ∈ R ∧ . . .∧
((`i−1, vi−1), stmti, (`i, vi)) ∈ R}).

• For each control location `i ∈ Loc, s.t. 1 ≤ i ≤ n, vector function Fi : Ln 7→ L
computes the abstract element xi from the abstract elements xj in predecessor
locations (i.e. ∃j. ∃stmt. (`j , stmt, `i) ∈ T):

Fi(x1, . . . , xn) =
⊔

(`j ,stmt,`i)∈T

JstmtK#(xj).

Here the function J−K# : Stmt →
(
L → L

)
computes abstract element xi ∈ L in

state si obtained by executing statement stmt in state sj .

1https://pdfs.semanticscholar.org/8af5/9378233fd8ba49b6b1925b430e5662411dd0.
pdf. Accessed 23 January 2018.

30

https://pdfs.semanticscholar.org/8af5/9378233fd8ba49b6b1925b430e5662411dd0.pdf
https://pdfs.semanticscholar.org/8af5/9378233fd8ba49b6b1925b430e5662411dd0.pdf

2.2. Abstract Interpretation

Example 2.2.2. For example, consider the program in Fig. 2.7a. The code describes the
functioning of a digital filter – a system processing discrete-time signals. The variables in
and out denote the values of the current filter input and output respectively. The variable
previn stores the value of the previous filter input. The filter output is iteratively
calculated from the last output value and the last two input values. The verification
task is, given that the interval of the filter input in ∈ [−1, 1], to compute the interval to
which filter output out belongs.

In Fig. 2.7b we show the control-flow graph of the code in Fig. 2.7a:

• The nodes of the control-flow graph correspond to control locations in the program.
We label each node i with a pair (`i, xi) of the location `i and an abstract element
xi in location `i.

• The edges of the control-flow graph correspond to transitions t ∈ T : for each
t = (`i, stmt, `j) ∈ T there is an edge going from the node i to the node j and
labelled with statement stmt.

For this example, interval analysis constructs a system of equations 2.3 which looks as
follows:

x4(in) = >
x4(out) = >

x4(previn) = >

x5(in)x5(in)x5(in) = [0, 0][0, 0][0, 0]
x5(out) = >

x5(previn) = > (2.3)

x7(in) = x5(in) t x13(in)
x7(out)x7(out)x7(out) = [0, 0] t 0.999 ∗ x13(out) + x13(in)− x13(previn)[0, 0] t 0.999 ∗ x13(out) + x13(in)− x13(previn)[0, 0] t 0.999 ∗ x13(out) + x13(in)− x13(previn)

x7(previn) = x5(previn) t x13(previn)

x8(in) = x7(in)
x8(out) = x7(out)

x8(previn) = x7(previn)

x10(in) = x8(in)
x10(out) = x8(out)

x10(previn)x10(previn)x10(previn) = x8(in)x8(in)x8(in)

x11(in)x11(in)x11(in) =>>>
x11(out) = x10(out)

x11(previn) = x10(previn)

31

2. Background

x13(in)x13(in)x13(in) = [−1, 1][−1, 1][−1, 1]
x13(out) = x11(out)

x13(previn) = x11(previn)

x16(in) = x7(in)
x16(out) = x7(out)

x16(previn) = x7(previn)

N

where xi(var) is the value of a variable var ∈ Var in abstract state xi, and Var is the
set of program variables. An abstract state is an element of the lattice product, the latter
defined with set L× . . .× L︸ ︷︷ ︸

|Var | times

and a pointwise order v∗, s.t.

(x1, . . . , x|Var |) v∗ (x′1, . . . , x′|Var |) ⇔ ∀i. 1 ≤ i ≤ |Var |. xi v x′i.

The system 2.3 contains three types of equations:

• The equations highlighted with bold correspond to the action statements in the
transition system;

• The equation x7(in) = x5(in) t x13(in) states, that in location 7 the variable in
can take either of the values of the variable in in predecessor locations 5 and 13.
The equations for x7(out) and x7(previn) are defined similarly;

• The remaining equations are of the form xi(var) = xj(var) and describe the cases
when the value of a variable var is not modified between states (`j , xj) and (`i, xi).

2.2.4 Solving a System of Equations

We now describe how abstract interpretation computes the solution of the system of
equations 2.2.

Fixed point. By definition, X is a fixed point of a function F if F (X) = X. Abstract
interpretation techniques reduce the solution of the vector equation 2.2 to finding a fixed
point of the function F : Ln 7→ Ln, defined as follows:

F (x1, . . . , xn) = (F1(x1, . . . , xn), . . . , Fn(x1, . . . , xn)). (2.4)

If F1, . . . , Fn are monotone functions, then there exists the unique least fixed point of
function F [NNH99]. The unique least fixed point is computed by iteratively solving the
equation 2.2, starting from the initial values (⊥, . . . ,⊥), i.e.

(x1, . . . , xn) =
⊔
i≥0

F i(⊥, . . . ,⊥). (2.5)

32

2.2. Abstract Interpretation

If the lattice L has a finite height, then the sequence (x1, . . . , xn) eventually stabilises.

If the length of the lattice is infinite, abstract interpretation computes an over-approximation
of the least fixed point using a technique called widening.

Example 2.2.3. To illustrate the computation of the system of equations, we describe
how interval analysis of the program in Fig. 2.7a is computed by the abstract interpretation
tool Astrée. First, by iteratively solving the system of equations 2.3 with the initial
value x7(out) = ∅, Astrée obtains for x7(out) a sequence of intervals

(∅, [−2; 2], [3.998; 3.998], . . .).

The above sequence does not stabilise after two iterations. Therefore, according to a
heuristic implemented in Astrée, a widening technique is applied. N

Widening. An operator
`

: L×L 7→ L is a widening operator if the following conditions
hold:

• Operator
`

computes an upper bound of its operands, i.e. for `1
`
`2 it holds that

`1 v `1
h
`2 ∧ `2 v `1

h
`2.

• For an ascending chain (`n)n the chain (`
`

n)n, defined as

`
`

0 = `0

`
`

i+1 = `
`

i

`
`i+1,

is also ascending and eventually stabilises [NNH99, p. 226].

Each such widening operator represents a heuristic. We give an example for a widening
operator later in this section on page 35.

2.2.5 Heuristics in Abstract Interpretation

Below we summarise the stages of abstract interpretation where heuristics are used:

1. Since using all available abstract domains is too costly, an abstract domain or a
subset of abstract domains for a program under analysis needs to be chosen. The
choice of suitable abstract domains is usually done manually by a user of an abstract
interpretation tool.

2. Abstract domains are typically parametrised. The parameters are chosen using one of
two ways:

33

2. Background

1 void main()
2 {
3 int a, b, x, y;
4 if (a>b) {while (a<=0) {a++; b++;}}
5 if (x<y) {while (x>=0) {x--; y--;}}
6 }

Figure 2.8 Code example illustrating the packing heuristic for octagon in Astrée, taken
from [CCF+09].

a) manually by a user of a tool, e.g. Astrée analyser takes an optional parameter
which fixes the array size limit above which arrays are abstracted in a field-
insensitive way (if the parameter is not specified, the default value is used); or

b) automatically using heuristics (see below in this section).

Recall from Example 1.1.3 that the static analyser ASTRÉE implements at least 12
abstract domains and 150 configuration options in order to scale to hundreds of thousands
of lines of critical embedded C programs. Specifically, using the options a user specifies
which abstract domains to use and the parameters of the abstract domains.

We will now give examples of such heuristics implemented in ASTRÉE [CCF+09].

Packing heuristic for octagon abstract domain. The octagon abstract domain allows rep-
resenting conjunctions of constraints of the form ±x± y ≤ c, where X and Y are
program variables and c is a constant.
However, it is prohibitively expensive to compute the dependencies for all possible
combinations of program variables, e.g. for thousands of global variables at each
program point. Therefore, Astrée abstract analyser implements a heuristic which
splits variables in packs and relates the variables in one pack but not variables in
different packs.
The heuristic puts in one pack the variables:

– which are used together in linear expressions and
– which are incremented or decremented within loops,

and computes the transitive closure of linear dependencies within syntactic blocks.
Moreover, the heuristic puts a restriction that a variable appears in at most three
packs, which limits the number of packs updated at each statement. As a result,
the octagon analysis exhibits a linear (rather than theoretical quadratic) memory
worst-time cost [CCF+09, Section 4.3].

Example 2.2.4. For the code in Fig. 2.8, the heuristic creates two packs: {x,y}
and {a,b}, thus computing the lower and upper bounds for x-y, x+y, a-b and
a+b. N

34

2.2. Abstract Interpretation

Widening heuristic. We’ve mentioned in Section 2.2 on page 32 that Astrée implements
a heuristic which applies widening when a fixed point is not reached after two
iterations. In particular, the widening operator which Astrée implements is called
widening with thresholds.

Widening with thresholds replaces each unstable interval bound with the next
bound in a finite list T of thresholds. A heuristic of Astrée computes the list of
thresholds as a sequence T = (±αλk)0≤k≤N where the numbers α, λ and N are the
parameters of the heuristic.

In addition, the widening heuristic is parametrised with a pair of numbers (q, r).
The parameter q defines the number of times the constraint is unstable before the
widening is applied. Second, in order to prevent the intervals from being widened
too much, Astrée reduces the intervals after widening by applying the function F
from Eq. 2.4 to the solution q times.

Example 2.2.5. Recall the Example 2.2.3. For this program, the parameters
α = 1, λ = 10, q = 2 and r = 2 are chosen (the authors of the article2 do not
explicitly state whether these are the default parameters). To over-approximate the
fixed point of the system 2.3, Astrée finds the smallest bounds t1, t2 ∈ T which
approximate the fixed point:

[t1, t2] v [0; 0] t 0.999 ∗ x13(out) + x13(in)− x13(previn),

where the state s#
i is an abstract state at code line i and xi(v) is the abstract value

of variable v in abstract state s#
i . The smallest such interval is [−10000; 10000].

Then, Astrée iteratively reduces the interval by applying the abstract transfer
functions of the System 2.3 and obtains the sequence of intervals (see Fig. 2.6 on
page 29):

([−10000; 10000],
[−9992; 9992],

[−9984.008; 9984.008]).

As a result, Astrée reports for the variable out the interval [−9984.008; 9984.008].
N

Disjunction heuristics. The main source of imprecision in abstract interpretation is
approximating disjunctions in non-distributive abstractions, i.e. abstraction which
may loose information when computing a join [CCF+09, Section 3.1]. For example,
in the interval domain a union of the intervals [1,2] and [5,6] cannot be expressed and
is represented by an abstract element [1,6]. To recover the disjunctive information
Astrée implements the trace partitioning strategy [MR05].

2The preprint is available at https://pdfs.semanticscholar.org/8af5/
9378233fd8ba49b6b1925b430e5662411dd0.pdf. Accessed 23 January 2018.

35

https://pdfs.semanticscholar.org/8af5/9378233fd8ba49b6b1925b430e5662411dd0.pdf
https://pdfs.semanticscholar.org/8af5/9378233fd8ba49b6b1925b430e5662411dd0.pdf

2. Background

1 int v, sgn;
2
3 if (v<0)
4 sgn = -1;
5 else
6 sgn = 1;
7
8 int y=v/sgn;

(a) Partitioning strategy.

1 int mratio;
2 float x=0, xp;
3
4 while (1) {
5 xp = random(-100,100);
6 mratio = random(0,50);
7
8 x = (x*mratio + xp) / (mratio+1);
9 }

(b) Heuristic for division.

1 int tc[3]={0; 0.5; 0};
2 int tx[3]={-1; 1; INT_MAX};
3 int ty[3]={-1; -0.5; 0};
4
5 int i=0;
6 assume(x>=-100 && x<=0);
7
8 while (i<2 && x>tx[i]) i++;
9

10 y = tc[i]*x + ty[i];

(c) Heuristic for linear interpolation.

(-1,-1)
(0,-1/2)

(1,0)
x

y

(d) Plot of the polygonal path from the
program in Fig. 2.9c.

Figure 2.9 Examples illustrating the partitioning strategy in Atrée: (a) the example illustrat-
ing the functioning of the strategy, (b),(c) the examples illustrating two heuristics for enabling
the strategy.

Trace partitioning. The trace partitioning strategy allows to make a case split
on the program traces. A trace of a program (S, I, F, Stmt, T) is a sequence of
states (si)0≤i≤n, s.t.

s0 ∈ I ∧
∀i. 0 ≤ i ≤ n. (si ∈ S ∧ (si, si+1) ∈ T) ∧

sn ∈ F.

An abstract trace is obtained from a concrete trace (si)0≤i≤n by applying the
abstraction function α() to every state: (α(si))0≤i≤n.

Example 2.2.6. Consider the code in Fig. 2.9a, taken from [RM07]. In line 8
the value of sgn is either -1 or 1. However, an interval analysis would not
discover it, since the corresponding abstract value of sgn in interval analysis will
be [−1,−1] t [1, 1] which evaluates to [−1, 1]. Therefore the program can not be
proven safe from division by zero.
With the trace partitioning heuristic, Astrée distinguishes the following two
abstract traces:
1. (s#

3 ,s#
4 ,s#

8), s.t. s#
8 = (8, x8) and x8(v) = (−∞, 0) ∧ x8(sgn) = [−1,−1];

36

2.2. Abstract Interpretation

2. (s#
5 ,s#

6 ,s#
8), s.t. s#

8 = (8, x8) and x8(v) = [0,∞) ∧ x8(sgn) = [1, 1].
Both traces of the program can be proven safe from division by zero. N

To automatically determine the cases when trace partitioning should be enabled,
Astrée implements several heuristics which we describe below. We take the
description of the heuristics as well as the examples from [MR05, Section 4].

1. Barycenter heuristic. In a division operation, when a variable occurs both
in the divident and divider and ranges in a finite set with the size smaller than a
thousand, then Astrée creates separate partitions for each possible value of the
variable.

Example 2.2.7. Consider the code in Fig. 2.9b. The code computes in a loop the
barycenter (i.e. the center of mass) of several objects:

– At line 2 x is initialised with 0;
– At each loop iteration at line 8 the barycenter x of two objects is computed:

∗ The coordinate of the first object is the old value of x;
∗ The coordinate xp of the second object is initialised at line 5 with a value
in the interval [-100,100] (the function random(v1,v2) returns a
pseudo-random integer in the interval [v1,v2]);

∗ The mass of the first object is mratio times greater than the mass of
the second object, where the value mratio is initialised in line 6 with a
pseudo-random integer in the interval [0,50].

The verification task is to prove that the value of x does not overflow.
Using non-relational domains abstract interpretation techniques cannot prove the
task. For example, in an interval analysis the value of x diverges to the interval
(−∞,∞): suppose the old value x is in the interval [-100,100], then the new
value of x, (x*mratio + xp)/(mratio+1), lies in the interval [−5100, 5100].
To obtain a more precise result, a heuristic of Astrée creates a separate partition
for 51 possible values of the variable mratio and computes that x∈[-100,100].
N

2. Linear interpolation heuristic. Astrée uses the trace partitioning tech-
nique, when a sum of several expressions is computed, s.t.

– one summand is the i-th array element and
– another summand uses the variable i.

In particular, the partitioning starts from the point of the last non-trivial assignment
of the variable i, i.e. of a conditional assignment or assignment in a loop.

37

2. Background

Example 2.2.8. Consider the code in Fig. 2.9c. The code computes linear in-
terpolation of a function with a polygonal path, which we plot in Fig. 2.9d. The
polygonal path consists of 3 line segments, each defined with the arrays tx, ty
and tc:

– tx[i] stores the x-coordinate of the right end point of i-th segment, for
0≤i<2 (tx[2] is not used and is initialised with INT_MAX which is the
maximum value for an int)

– ty[i] stores the y-coordinate of the intersection point of i-th line segment
with the y-axis, for 0≤i≤2;

– tc[i] stores the slope of i-th line segment, for 0≤i≤2.

The interpolation value y is computed as follows. In the loop in line 8 the code
searches for a line segment, s.t. the condition tx[i-1]<x≤tx[i] holds. Then
in line 10 the code computes the y-coordinate of a point on the i-th line segment,
given the x-coordinate of the point. The verification task is: given the interval in
which the variable x lies, determine the interval of the variable y.

Without the linear interpolation heuristic, given the condition x∈[-100,0] at
line 6, the interval analysis of ASTRÉE gets the following result:

– at line 10: i∈[0,1];
– after line 10:

∗ for i=0: y∈[-1,-1];
∗ for i=1: y∈[-0.5+0.5*(-100),-0.5]=[-50.5,-0.5];

therefore y∈[-1,-1]∪[-50.5,-0.5]=[-50.5,-0.5].

With the linear interpolation heuristic, ASTRÉE applies the tracing technique,
since in line 10 a sum of an array element ty[i] and the expression tc[i]*(x-
tx[i]), which uses the variable i, is computed. The heuristic creates a separate
partition for traces in which the loop in line 8 terminates in i iterations. The
interval analysis of ASTRÉE with the linear interpolation heuristic gets a more
precise result than without the heuristic:

– at line 10: i∈[0,1];

– after line 10:

∗ for i=0: x∈[-100,0]∩(-∞,-1]=[-100,-1] (from the conditions in
lines 6 and 8) and y∈[-1,-1];

∗ for i=1: x∈[-100,0]∩(-1,1]=(-1,0] (from the conditions in lines 6
and 8) and y∈[-0.5+0.5*(-1),-0.5]=[-1,-0.5];

therefore y∈[-1,-1]∪[-1,-0.5]=[-1,-0.5]. N

38

2.2. Abstract Interpretation

3. Loop unrolling heuristic. Without a partitioning technique, Astrée cre-
ates one abstract state per control location in a loop. As a result, one abstract
state corresponds to all loop iterations, which leads to imprecise results.
To gain precision, Astrée implements a heuristic which creates separate partitions
and computes abstract states for the first n loop iterations (the authors of [MR05]
do not state how the value n is defined, we suppose it is a parameter of Astrée).
Then an abstract state for all the following iterations is achieved using widening
techniques.

Example 2.2.9. Some families of embedded programs, as those addressed by
Astrée, are executed in a loop. In the first one or several iterations of this
loop some variables are initialised, and it is helpful to analyse the first iterations
separately. N

For small loops Astrée performs the complete unrolling of the loop.

Example 2.2.10. Consider the following program:
1 for (i=0; i<max; i++) {t[i] = i;}

which initialises the array t in a loop. Without unrolling of the loop, an interval anal-
ysis computes the result i∈[0,max-1] and Astrée infers that t[i]∈ [0,max−1].
With a separate partition for each loop iteration, Astrée infers a more precise
result t[i]∈ [i,i]. N

As an alternative to the loop unrolling heuristic, Astrée implements a heuristic
which starts from a single partition for the whole loop and iteratively refines the
result by increasing the number of partitions.

39

CHAPTER 3
Definition and Computation of

Variable Roles

In this chapter we study the notion of variable role. In particular, we envision a set of
roles as a collection of patterns used by a programmer to compose a program. On the
other hand, depending on the application in which roles are used, different roles can be
of interest.

We identify domain-independent variable roles which capture frequently used patterns of
variable use and occur in different types of programs, independently of a program domain.
Our preliminary experiments [DVZ13] showed that the domain-independent set of roles
capture the typical patterns of variable use. For the tasks T2 (Portfolio solver for SV)
and T3 (Systematic heuristics for SV) the domain-independent set of roles, however, does
not suffice. We therefore identify additional roles for each of the tasks. To summarise,
we split our roles into three sets, namely the domain-independent set of roles and the
roles for tasks T2 and T3 respectively.

We introduce variable roles step by step. In particular, in Section 3.1 we give an overview
of roles. In Section 3.2 we define a framework for the specification and inference of
variable roles, thereby solving Task T1 (Role specification framework). In Section 3.3 we
formally define the roles introduced in Section 3.1.

In Section 3.4 we extend the role definitions given in Section 3.3 from intra- to inter-
procedural analyses. Finally, in Section 3.5 we discuss the implementation of the role
inference algorithm.

3.1 Overview of Variable Roles

In this section we give an overview of roles:

41

3. Definition and Computation of Variable Roles

• we discuss the criteria which we used when choosing roles;
• we give verbal definitions of roles;
• we illustrate the roles with C examples, in which we provide role annotations.

For each verbal role definition which we introduce in this section, we give a Datalog
program in Section 3.3.

We structure this section as follows:

• In Section 3.1.1 we make an overview of the domain-independent roles.
We give experimental results proving that the identified roles capture frequently
used code patterns in Chapter 4. In particular, we show that the set of roles suffices
to classify the benchmarks of the Software Verification Competition SV-COMP.

• In Section 3.1.2 we introduce the roles for the task Portfolio solver for SV.
We prove the usefulness of this set of roles in Chapter 4 by building a portfolio
solver based on these roles. We evaluate the portfolio solver in the setup of the
competition SV-COMP.

• Finally, in Section 3.1.3 we make an overview of the roles for the task Systematic
heuristics for SV.
We use this set of roles in Chapter 5 to define heuristics for creating program-specific
abstraction for software verification, specifically for the model checker Eldarica.

On completeness and soundness of role definitions. Before describing the roles, we
note that our definitions of roles are neither complete (i.e. definitions do not cover all
possible cases in which a role can be used), nor sound (i.e., given a role definition in the
form of patterns, some variables satisfying the patterns, do not actually have the role).
Nevertheless, our definitions are good for solving the challenges C1 (Automatic choice of
a verification tool) and C2 (Automatic choice of program-specific abstraction).

On soundness of role inference. In Section 3.6 we will comment on the soundness of the
algorithm which solves the system of equations describing variable roles.

3.1.1 Domain-Independent Roles

Domain-independent roles capture the most common patterns used in imperative pro-
gramming languages. In particular, the roles capture the concepts which a programmer
acquires when learning an imperative programming language and which he later uses to
write new programs. Examples of such concepts are array index, counter, boolean, etc.

To identify the domain-independent roles, we manually inspected the source code of the
cBench benchmarks.1 The benchmarks contain altogether approximately 5.2 KLOC of C

1http://ctuning.org/wiki/index.php/CTools:CBench. Accessed 23 January 2018.

42

http://ctuning.org/wiki/index.php/CTools:CBench

3.1. Overview of Variable Roles

C type Role name Informal definition

int

array index used in an array subscript

boolean assigned and compared only to 0, 1, and the result of a relational
operator

constant-assigned assigned only constant literals or constant-assigned variables

enumeration assigned and compared to only constant values, not used in relation
operators other than (dis)-equality;

branch condition a variable used in a relation operator in a branch condition

syntactic constant not assigned in the program (a global or an unused variable, or a formal
parameter to a external function)

loop iterator used in a loop condition, updated in the loop body
loop bound compared to a loop iterator in the loop condition

counter changed only in increment/decrement (by a constant value) statements,
or assigned a constant value

linear assigned linear combinations of linear variables
pointer offset used in pointer arithmetic
bitvector used in a bitwise operation
file descriptor used in a library function which manipulates files

character used in a library function which manipulates characters, or assigned a
character literal

allocation size passed to a memory allocation function
int, float arithmetic used in arithmetic or relational operators

input passed by address to an external function or assigned the return value
of an external function

unresolved 1) variable assigned the result of an external function call, or passed to
an external function as a parameter 2) structure field or global variable

Table 3.1 Informal definition of domain-independent variable roles.

code. For a subset of benchmarks we read the code line by line, trying to understand
what the code was doing. Then, having a good understanding of the code, we identified
a set of roles such that at least one role is assigned to every program variable.

In total we identified a set of 14 domain-independent roles. We will now give verbal
definitions of the roles and illustrate the roles with examples. We give a summary of the
roles in Table 3.1.

Array index. A variable x has the role array index if one of the following conditions
holds:

• x is used as an array subscript;;
• an array subscript is the expression x-c or x+c, where c is a constant number.

The condition for the moment is informal, we give a precise definition in Section 3.3.

Example 3.1.1. Consider the code in Fig. 3.1a from the LAME library2 which
converts audio to MP3 file format. We took the code from a cBench benchmark3

2http://lame.sourceforge.net. Accessed 23 January 2018.
3consumer_lame/src/util.c.

43

http://lame.sourceforge.net

3. Definition and Computation of Variable Roles

1 int bitrate_table[15];
2
3 int BitrateIndex(int bRate)
4 {
5 // index: array index
6 int index = 0;
7
8 // found: boolean, enumeration,
9 // branch condition,

10 // constant-assigned
11 int found = 0;
12
13 while (!found && index<15) {
14 if (bitrate_table[index]==bRate)
15 found = 1;
16 else
17 ++index;
18 }
19
20 if (found)
21 return index;
22 else
23 return -1;
24 }

(a) Roles boolean, constant-assigned, enumera-
tion, branch condition and array index

1 // count: loop bound, arithmetic
2
3 void byte_reverse(
4 unsigned long *buffer, int count)
5 {
6 unsigned char ct[4];
7
8 unsigned char* cp =
9 (unsigned char*) buffer;

10
11 // i: loop iterator, counter,
12 // linear, arithmetic
13 int i;
14
15 for (i = 0; i < count; ++i) {
16 ct[0] = cp[0];
17 ct[1] = cp[1];
18 ct[2] = cp[2];
19 ct[3] = cp[3];
20 cp[0] = ct[3];
21 cp[1] = ct[2];
22 cp[2] = ct[1];
23 cp[3] = ct[0];
24 cp += 4;
25 }
26 }

(b) Roles loop iterator, loop bound, counter, lin-
ear and arithmetic.

Figure 3.1 Code examples for domain-independent variable roles.

with minor modifications. Here and later in this chapter we annotate variables only
with the roles illustrated with the current example, omitting remaining variable
roles.
The function BitrateIndex() takes as a parameter bRate the bitrate charac-
teristic of the audio stream and determines the index index of the value bRate in
the table bitrate_table. Whether the entry is found is stored in the variable
found. Initially the variable found is set to 0. The code iteratively compares the
table entries bitrate_table[index] with the bitrate bRate for the index
values from 0 to 15. If a table entry equals bRrate, the variable found is set
to 1 and the loop terminates. The function BitrateIndex() returns the value
index if the value bRate was found in the table and -1 otherwise.
In this example, the variable index has the role array index, since index is used
in array subscript for the array bitrate_table. N

Boolean. A variable x has the role boolean if the following two conditions hold:

44

3.1. Overview of Variable Roles

1. All the expressions which are assigned to x or to which x is compared are one
of the following:

• constant values 1 and 0;
• the result of a relational operator, e.g. <, ==, etc.;
• a variable which has the role boolean;

2. The variable x is not used in operations other than equality, dis-equality and
logical operators, e.g. logical AND, etc.

Note that since there is no boolean data type in C language, the values 1 and 0
are used to represent the values true and false respectively.

Example 3.1.2. In the code in Fig. 3.1a the variable found has the role boolean,
since found is assigned only the constant values 0 and 1 and compared for equality
to 0 in line 20. N

Constant-assigned. A variable x is constant-assigned if it is assigned only constant values
and variables which have the role constant-assigned.

Example 3.1.3. In the code in Fig. 3.1a the variable found has the role constant-
assigned. Note that in general boolean variable is not necessarily a constant-assigned.
N

Enumeration. A variable x has the role enumeration if the following conditions hold:

1. The values which are assigned to x and to which x is compared are one of the
following:

• a constant value;
• a variable which has the role enumeration;

2. The variable x is not used in relation operators other than equality and dis-
equality.

Note that the role enumeration is a special case of the role constant-assigned.

Example 3.1.4. In the code in Fig. 3.1a the variable found is enumeration. N

Branch condition. A variable x is branch condition if x is occurs in a relation operator
in a condition of an if statement.

Example 3.1.5. In the code in Fig. 3.1a the variable found is a branch condition,
since found is implicitly compared to 0 in the condition of the if statement in
the line 20. N

Syntactic constant. A variable x has the role syntactic constant if the following conditions
hold:

45

3. Definition and Computation of Variable Roles

• x is not assigned in any statement;

• x is not accessed indirectly.

Example 3.1.6. In the example in Fig. 3.1a the variable bRate has the role
syntactic constant, since bRate is not modified anyhow. N

Loop iterator. A variable x has the role loop iterator of a loop L if the following two
conditions hold:

1. x is updated inside the body of a loop L;

2. x is used in the condition of the loop L in a relational operator.

Note that the role loop iterator is different from the previous roles since it has a
parameter L. We need this parameter first, because a loop iterator is used inside
a loop differently than outside the loop. Second, we use this parameter to later
define the role loop bound.

Example 3.1.7. Consider the code in Fig. 3.1b from the SHA cryptographic
algorithm.4 We took the code from a cBench benchmark5 with minor modifications.

The function byte_reverse() takes two arguments: an array buffer of integer
numbers and the length count of the array. The function changes the encoding of
the elements of buffer from big endian to little endian or vice versa, i.e. reverses
the order of bytes in every element of buffer. In every loop iteration the pointer
cp points to the i-th element of buffer. In lines 16–19 the four bytes of the i-th
element of buffer are stored in the array ct, and in lines 20–23 the four bytes
are copied back to the i-th element of buffer in reverse order.

In this example, the variable i has the role loop iterator, since i is updated in the
loop body and used in the loop condition in the less-than operator. N

Loop bound. A variable x has the role loop bound of loop L if x is compared in the
condition of loop L to the loop iterator of loop L using a relational operator.

Example 3.1.8. In the code in Fig. 3.1b the variable count has the role loop bound,
since count is compared to the loop iterator i in the condition of the loop. N

Counter. A variable x has the role counter is x is updated only in the following statements:

• x is assigned a constant value;

• x is incremented or decremented by a constant value.
4http://csrc.nist.gov/groups/ST/toolkit/secure_hashing.html. Accessed 23 Jan-

uary 2018.
5security_sha/src/sha.c.

46

http://csrc.nist.gov/groups/ST/toolkit/secure_hashing.html

3.1. Overview of Variable Roles

1 char hasSuffix(char* s,
2 const char* suffix)
3 {
4 // ns, nx: offset, input,
5 int ns = strlen(s);
6 int nx = strlen(suffix);
7
8 if (ns < nx)
9 return 0;

10
11 if (!strcmp(s+ns-nx, suffix))
12 return 1;
13
14 return 0;
15 }

(a) Roles pointer offset and input.

Figure 3.2 Code examples for domain-independent variable roles (cont.).

Example 3.1.9. In the code in Fig. 3.1b the variable i has the role counter, since
the statements in which i is updated, satisfy the definition: i is assigned 0 in
line 15 and is incremented by 1 in the same line.

Linear. A variable x has the role linear if x is assigned only expressions c0 +
∑n

i ci ∗ vi,
where ci are constant values and vi are linear variables.

Example 3.1.10. In the code in Fig. 3.1b the variable x has the role linear, since
it is assigned two linear expressions 0 and x+1. N

Arithmetic. A variable x has the role arithmetic if x is used in an arithmetic operation,
such as +, *, ≥, etc.

Example 3.1.11. In the code in Fig. 3.1b the variables i has the role arithmetic,
since i is used in an addition operator, and similarly count has the role arithmetic,
since count is used in the operator <. N

Pointer offset. A variable x is pointer offset if x is added to or subtracted from a pointer.

Example 3.1.12. Consider the code in Fig. 3.2a from the bzip2 compression
algorithm. The code is taken with minor changes from a cBench benchmark.6

The function hasSuffix() determines whether string s ends with substring
suffix. In line 8 a check is done whether the string suffix is longer than the

6bzip2d/src/bzip2.c.

47

3. Definition and Computation of Variable Roles

string s, using library function strlen(), which calculates the length of a string.
If suffix is shorter then s, then the last nx symbols of s are compared with
suffix (in line 11). The library function strcmp() returns 0 in case the strings
are equal.
In this example, the variables ns and nx are pointer offsets, since they are used in
the pointer arithmetic expression s+ns-nx. N

Input. A variable x has the role input if x is assigned the result of a call to an external
function.

Example 3.1.13. In the code in Figure 3.2a, the variables ns and nx have the role
input, since both are assigned the result of a call to the library function strlen().
N

Bitvector. A variable x is a bitvector if x if x is used in a bitwise operator, e.g. bit AND,
bit NOT, etc.

Example 3.1.14. Recall the example in Fig. 1.1a on page 7. In this example the
variable x has the role bitvector, since x is used in bit AND operator. N

File descriptor. A variable x has the role file descriptor if at least one of the following
cases holds:

1. x is assigned the result of a call to a standard library function which returns a
file descriptor, e.g. open(), dup(), etc.

2. x is passed as a parameter to a standard library function which manipulates
files, e.g. read(), lseek(), etc.

Example 3.1.15. Recall the example in Fig. 1.1b on page 7. In this example the
variable fd has the role file descriptor, since fd is assigned the result of a call to
the library function open. N

Character. A variable x has the role character if at least one of the following conditions
hold:

1. x is assigned a character symbol;
2. x is assigned the result of a call to a standard library function which returns a

character, e.g. getc(), etc.;
3. x is passed as a parameter to a standard library function which manipulates

characters, e.g. putc(), isupper(), etc.

Example 3.1.16. In the example in Fig. 1.1b the variable c has the role character,
since c is passed as a parameter to the function isdigit(). N

48

3.1. Overview of Variable Roles

1 #define EINTR 4
2 extern int nondet_int();
3
4 int mutex_lock_interruptible(int ldv_mutex)
5 {
6 int nondetermined = nondet_int();
7 assert(ldv_mutex == 1);
8
9 if (nondetermined)

10 {
11 ldv_mutex = 2;
12 return 0;
13 }
14 else
15 {
16 return -EINTR;
17 }
18 }

Figure 3.3 Code examples for domain-independent variable roles
(cont.): special role unresolved.

Allocation size. A variable x has the role allocation size if x is passed to a standard
library function which allocates memory. We give an example for this role in
Section 3.1.3 in Example 3.1.23 on page 53.

Unresolved. A variable x has the role unresolved if x is assigned the result of an external
function call or passed to an external function as an argument.

Example 3.1.17. Consider the code in Fig. 3.3, taken with minor modifications
from an SV-COMP’14 benchmark.7 The code models the function mutex_lock_
interruptible(), the parameter ldv_mutex of which holds the state of a
mutex. If no signal arrives while waiting for the lock, the function acquires the
lock and returns 0 (lines 11–12), otherwise the function returns the value -EINTR
(line 16).
Whether a signal has come is modelled with a non-deterministic function
nondet_int() assigned to the variable nondetermined (line 6). The variable
nondetermined has therefore the role unresolved. Otherwise, nondetermined
is used as a boolean, and the role unresolved expresses our assumption that the
external function nondet_int() returns a boolean. N

We introduce the role unresolved for the following purpose: our method computes an
approximation of the set of variables for the roles defined with negation. The exact

7ldv-linux-3.4-simple/32_1_cilled_true_ok_nondet_linux-3.4-32_
1-drivers--pci--hotplug--cpcihp_generic.ko-ldv_main0_sequence_infinite_
withcheck_stateful.cil.out.c.

49

3. Definition and Computation of Variable Roles

C type Role name Informal definition

int
thread descriptor passed as first argument to the pthread library function
integral the type is integral and can be cast to int

float floating point the type is floating point and can be cast to float
int, float scalar the type is scalar (integral or floating point)
int*, float* pointer to scalar the type is a pointer to scalar

struct_type*
pointer to structure the type is a pointer to a structure
pointer to non-flat struc-
ture

the type is a pointer to a structure with a pointer field

linked list the type is a pointer to a recursively defined structure

multi-linked list the type is a pointer to a recursively defined structure with
more than one pointer, e.g. doubly linked lists

pointer the type is a pointer

any_type* dynamic memory pointer assigned the result of a memory allocation function
recursive function result a return value of a recursively defined function

Table 3.2 Informal definition of additional roles for the portfolio solver. Type struct_type
stands for a C structure, any_type for an arbitrary C type.

solution for a role r defined with negation is computed as a set difference of the
transitive closure TC of the relation r and unresolved: TC(r)\TC(unresolved).

3.1.2 Roles for a Portfolio Solver for Software Verification

To identify roles for the task Portfolio solver for SV, we started from the domain-
independent set of roles. We observed, however, that these roles are not sufficient to
build a portfolio solver which is competitive enough to beat the participants of the
competition. Therefore, we extended the set of roles with several new roles capturing the
code structures which are challenging for software verification tools.

To this end we analysed the results of the competition SV-COMP’14, in particular the
following cases:

• a tool was unsound,
• a tool did not give an answer or
• a tool crashed.

We observed that particular code structures constitute strong or weak points of verification
tools depending on whether the tools are optimised to handle these structures. Using
this information, we extended the domain-independent set with 12 additional roles which
we list in Table 3.2.

Below we give a summary of the identified challenging code structures and the additional
roles which capture these structures. We illustrate the roles with examples.

Thread descriptor. A small number of the tools participating in the competition such
as CSeq-Lazy, CSeq-MU and CBMC are narrowly optimised for concurrent

50

3.1. Overview of Variable Roles

1 #include <pthread.h>
2 extern int nondet_int();
3 extern void* thr(void* arg);
4
5 void main() {
6 // t: thread descriptor
7 pthread_t t;
8
9 // len: scalar, integral scalar

10 int len = nondet_int();
11 assume(len>0);
12
13 // data: pointer, scalar pointer,
14 // dynamic memory pointer
15 int* data = malloc(
16 sizeof(int)*len);
17
18 while(1) {
19 pthread_create(&t,0,thr,data);
20 }
21 }

(a) Roles thread descriptor, integral, dynamic
memory pointer, pointer to scalar and pointer

1 // skip list node with two
2 // next pointers
3 struct sl_item {
4 struct sl_item *n1, *n2;
5 };
6
7 // skip list
8 struct sl {
9 struct sl_item *head, *tail;

10 };
11
12 // n1, n2, head, tail:
13 // pointer,
14 // pointer to structure,
15 // pointer to non-flat structure,
16 // linked list,
17 // multi-linked list
18
19 // skip_list: pointer,
20 // pointer to structure,
21 // pointer to non-flat structure,
22 struct sl* skip_list;

(b) Roles multi-linked list, linked list, pointer
to non-flat structure, pointer to structure and
pointer

Figure 3.4 Code examples for variable roles for portfolio solver.

code, while most other participants of the SV-COMP competition cannot handle
concurrent code.
To capture multi-threaded code patterns we introduce a role thread descriptor. A
variable x has the role thread descriptor if x is passed as a parameter to a function
of the pthread library, which manipulates threads.

Example 3.1.18. Consider the code in Fig. 3.4a, taken from an SV-COMP’15
benchmark8 with minor modifications. The program allocates memory for the array
data in lines 15–16. In the loop in lines 18–20 the program starts new threads
which execute the function thr with the argument data.
In this example, the variable t has the role thread descriptor, since t is passed to
the function pthread_create() as the first parameter, in which the descriptor
of a newly created thread is returned. N

Integral. A number of the participants, such as BLAST, FrankenBit, UFO and others,
are optimised to handle integral scalar data, rather than pointers.

8pthread-lit/sssc12_true-unreach-call.c.

51

3. Definition and Computation of Variable Roles

To capture code patterns with scalar data we introduce the role integral. A variable
x has the role integral if the datatype of x is scalar integer, e.g. int, long, char,
etc.

Example 3.1.19. In the code in Fig. 3.4a the variable len has the role integral,
because the type of len is int. N

Pointer. In contrast to the tools which are optimised to handle integral data structures,
a number of competition participants, such as Predator, CBMC and Symbiotic
are optimised to reason about pointers.
To capture code patterns with pointer data we introduce the role pointer. A variable
x has the role pointer if x is of a pointer data type.

Example 3.1.20. In the code in Fig. 3.4a the variable data has the role pointer.
N

Pointer to scalar and pointer to structure. A number of participants which handle pointer
data are optimised to arrays, e.g. BLAST and FrankenBit, while others imple-
ment the shape analysis to reason about dynamic data structures. To capture the
difference between the two types of code patterns, we introduce the roles pointer to
scalar and pointer to structure.
A variable x has the role pointer to scalar if the data type of x is a pointer to a
scalar data type. If the data type of a variable x is a pointer to a structure, then x
has the role pointer to structure.

Example 3.1.21. In the example in Fig. 3.4a, the variable data has the roles
pointer to scalar. N

Example 3.1.22. Consider the code in Fig. 3.4b from an SV-COMP’15 bench-
mark.9

The code in Fig. 3.4b defines the data type sl for a skip list, which is a data
structure for fast search within an ordered sequence of elements. The structure sl
is defined in lines 8–10 and contains the fields head and tail which point to the
beginning and to the end node respectively of the skip list. A variable skip_list
of the type sl is defined in line 22.
For the nodes of the skip list the type sl_item is defined at lines 3–5. Each list
node contains pointers to two other nodes n1 and n2 of the skip list.
In this example, the variable skip_list and the fields n1, n2, head and tail
have the role pointer to structure. N

Dynamic memory pointer. In order to differentiate between statically and dynamically
allocated data, we introduce the role dynamic memory pointer. A variable x has
the role dynamic memory pointer if at least one of the following cases holds:

9memsafety-ext/skiplist_2lvl_true-valid-memsafety.c.

52

3.1. Overview of Variable Roles

1. x is assigned the result of a call to a standard library function which returns a
pointer to dynamically allocated memory, e.g. malloc(), mmap(), etc.;

2. x is passed as a parameter to a function which manipulates dynamically allocated
memory, e.g. free(), mlock(), etc.

Example 3.1.23. In the code in Fig. 3.4a the variable data has the role dynamic
memory pointer, since data is assigned the result of a call to the function malloc().
The variable len, which is multiplied by the size of an integer and passed to the
function malloc() as a parameter, has the role allocation size (see the definition
of the role allocation size on page 49). N

Pointer to non-flat structure, linked list and multi-linked list. From pointers to structure
data types we separate two following cases:

• A variable x has the role pointer to non-flat structure if the type of x is a
pointer to a structure which contains a pointer field;

• A variable x has the role linked list if the type of x is a pointer to a recursively
defined structure.

• A variable x has the role multi-linked list if the type of x is a pointer to a
recursively defined structure s with more than one pointers to s.

Example 3.1.24. In the code in Fig. 3.4b the variable skip_list and the fields
head, tail, n1 and n2 have the role pointer to non-flat structure, since the
structure sl contains pointers.
The fields n1 and n2 have the role linked list, since the structure sl_item contains
pointers to structures of the same type sl_item.
Finally, since the structure sl_item contains two fields pointing to the structure
sl_item, then the fields n1 and n2 also have the role multi-linked list. N

Recursive function result. Handling recursive functions is not supported by some compe-
tition participants such as BLAST, FrankenBit, Threader etc.
To capture recursion we introduce the role recursive function result. A variable x
has the role recursive function result if at least one of the following conditions hold:

1. x is returned by a recursive function;
2. x is assigned the result of a call to a recursive function;

where a function f() is recursive if the definition of f() contains a call to f().

Example 3.1.25. Consider the code in Fig. 3.5a from an SV-COMP’14 bench-
mark.10 The code implements the Ackermann function

A(m,n) =


n+ 1 if m = 0
A(m− 1, 1) if m > 0 and n = 0
A(m− 1, A(m,n− 1)) if m > 0 and n > 0.

10recursive/Ackermann01_true.c.

53

3. Definition and Computation of Variable Roles

1 extern int nondet();
2
3 int ackermann(int m, int n) {
4 if (m==0) return n+1;
5 if (n==0) return ackermann(m-1,1);
6 return ackermann(m-1, ackermann(m,n-1));
7 }
8
9 int main() {

10 int m = nondet(), n = nondet();
11 int result = ackermann(m,n);
12 }

(a) Role recursive function result

1 float fabs(float n)
2 {
3 float f;
4
5 if (n >= 0) f = n;
6 else f = -n;
7 return f;
8 }

(b) Role floating point

Figure 3.5 Code examples for variable roles for portfolio solver (cont.).

In this example, the variable result at line 11 has the role recursive function result,
since result is assigned the result of a call to the recursively defined function
ackermann(). N

Floating point. Floating-point values are modelled by few competition participants, such
as CBMC, CPAChecker and ESBMC. Most other participants, however, do not
model floating point data.

To capture floating-point values we introduce a role floating point. A variable x
has the role floating point if x is of a floating point type, i.e. float, double or
long double.

Example 3.1.26. Consider the code in Fig. 3.5b taken from an SV-COMP’14
benchmark11 with minor modifications. The code implements the function fabs()
which returns an absolute value of its parameter.

In this example, the variables n and f have the role floating point, since the type
of these variables is float. N

3.1.3 Roles for Heuristics in Predicate Abstraction

In the task Systematic heuristics for SV we use variable roles to define heuristics for
software verification to find a suitable abstraction. Specifically, we do a case study on the
model checker Eldarica. Eldarica is based on predicate abstraction and Craig inter-
polation and has two main parameters controlling the analysis process: initial predicates
for predicate abstraction and templates which guide Craig interpolation [LRS16]. Both
parameters can be provided in the form of source code annotations. We give examples of
the annotations in Section 5.1.4.

11loops/lu.cmp_true.i.

54

3.1. Overview of Variable Roles

C type Role name Para-
meter

Informal definition

dynamic enumeration vi
the transitive closure of input variables (can be assigned only
input variables vi and constant values)

extremum – assigned the maximum or the minimum of two or more values

int
local counter L incremented or decremented in a loop L by arbitrary expression

parity c
used in the remainder operator with a constant value c or
incremented in a loop by a constant value c not equal to 1

assertion parameter expr
used in the condition expr of an assume or assertion statement,
or in a branch condition expr on the path to an assume/assertion
statement

Table 3.3 Informal definition of variable roles for heuristics in predicate abstraction.

To derive role-based heuristics for Eldarica, we analysed appr. 30 benchmarks which
could not be solved by Eldarica within the time limit of 15 minutes. In particular, we
analysed the SV-COMP’16 benchmarks from categories ”Integers and Control Flow” and
”Loops” and loop invariant generation benchmarks.

To find the roles capturing the patterns which are challenging for Eldarica, we took
the following steps:

1. We manually inspected the code of the benchmarks.
2. For each benchmark we manually found suitable predicates and templates Pman.
3. From the logs of Eldarica, we extracted the predicates and templates PEld which

Eldarica generated in the process of verification.
4. We then computed the difference Pmiss = Pman \ PEld of the two sets to obtain the

missing predicates.
5. Finally, we annotated the benchmarks with the predicates and templates Pmiss and

checked that Eldarica verifies the annotated benchmarks within the time limit.

From Pmiss we derived 5 new variable roles which capture the specific code patterns in
which the annotated variables are used.

Role parameters. Differently from the domain-independent roles and the roles for
the Portfolio solver for SV, the roles for Systematic heuristics for SV collect pieces of
information about the program like in a static analysis, which can be used then for
program verification. We call these pieces of information parameters of a role.

We give a summary of the roles in Table 3.3. We will now give verbal definitions of the
roles and illustrate the roles with examples.

Dynamic enumeration. A variable x has the role dynamic enumeration with parameter
vi if x is assigned only constant values and input variables, and input variable vi

is assigned to x (specifically, our algorithm computes the transitive closure of all
values assigned to x). A dynamic enumeration can be seen as a run-time analogue

55

3. Definition and Computation of Variable Roles

of a compile-time enumeration. Note that there can be multiple parameters for one
dynamic enumeration variable.

Example 3.1.27. The code in Fig. 3.6a initializes variables max1, max2 and
max3 with the values id1, id2 and id3 respectively, which are in turn initialized
non-deterministically. The assume() statement at lines 13–14 puts a restriction
that control reaches line 16 only if the condition (id1!=id2 && id1!=id3 &&
id2!=id3) evaluates to true.

In the loop the value max{id1,id2, id3}, which is the maximum of id1, id2
and id3 is calculated: At the first iteration, max1 is assigned the value max{id1,
id3}, and max2 and max3 are assigned the value max{id1,id2,id3}. After
the second iteration max1, max2 and max3 all store the value max{id1,id2,
id3}. Since id1, id2 and id3 have distinct values, only one of the conditions at
lines 22–24 evaluates to true. The assertion checks that the value of exactly one
of variables max1, max2 and max3 remains unchanged after two iterations, namely
maxi, where i=arg max

j
{idj}.

In this program, the variables id1, id2 and id3 have the role input, since these
variables are assigned the result of an external function call nondet_char().
Next, the variables max1, max2 and max3 have the role dynamic enumeration,
each with parameters id1, id2 and id3, since max1, max2 and max3 are assigned
only constant values, and the variables id1, id2, id3.

Note that the variables max1, max2 and max3 are also assigned in the statements
at lines 17–19, i.e. max1=max3 etc. We implicitly add to the definition of every
role r defined with negation a condition that a variable of role r can be assigned
variables of same role; we make this condition explicit in Section 3.3. N

Heuristic for dynamic enumeration. We use the role dynamic enumeration in
the following heuristic: for each variable x which has the role dynamic enumeration
with a parameter vi, our algorithm generates an equality predicate: x==vi. We
will define the heuristic formally in Section 5.2.

Example 3.1.28. For the program in Fig. 3.6a, our algorithm generates the
predicates max1==id1, max1==id2, max1==id3 for the dynamic enumeration
max1, predicates max2==id1, max2==id2, max2==id3 for max2 and predicates
max3==id1, max3==id2 and max3==id3 for max3. Eldarica uses these pred-
icates in the predicate abstraction technique in order to prove that exactly one
condition at lines 22–24 evaluates to true and cnt is incremented by exactly one.

To prove safe the program in Fig. 3.6a without annotations, Eldarica finds the 9
predicates during abstraction refinement, and the whole verification process takes
27 CEGAR iterations and 19 sec. However, for 88 out of 108 original programs from
SV-COMP with this pattern in category "Integers and Control Flow", of which the

56

3.1. Overview of Variable Roles

1 extern char nondet_char();
2 void main() {
3 // id1, id2, id3: input
4 int id1 = nondet_char();
5 int id2 = nondet_char();
6 int id3 = nondet_char();
7
8 // max1, max2, max3: dynamic
9 // enumeration, extremum

10 int max1=id1, max2=id2, max3=id3;
11 int i=0, cnt=0;
12
13 assume(id1!=id2 && id1!=id3 &&
14 id2!=id3);
15
16 while (1) {
17 if (max3 > max1) max1 = max3;
18 if (max1 > max2) max2 = max1;
19 if (max2 > max3) max3 = max2;
20
21 if (i == 1) {
22 if (max1 == id1) cnt++;
23 if (max2 == id2) cnt++;
24 if (max3 == id3) cnt++;
25 }
26
27 if (i>=1) assert(cnt==1);
28 i++;
29 }
30 }

(a) Roles dynamic enumeration, extremum and asser-
tion parameter

1 int nondet_int();
2 void main() {
3 int buflen = nondet_int();
4 int inlen = nondet_int();
5 assume(buflen > 1);
6 assume(inlen > buflen);
7
8 // buf: local counters
9 int buf = 0;

10 // buflim: loop bound
11 int buflim = buflen-2;
12
13 while (nondet_int()) {
14 if (buf == buflim) break;
15 assert(buf<buflen);
16 buf++;
17 assert(buf<inlen);
18 }
19 }

(b) Role local counter

1 extern int nondet_int();
2 void main() {
3 // i: parity
4 int i;
5 for (i=0; i<1000000; i+=2);
6 assert(i == 1000000);
7 }

(c) Role parity

Figure 3.6 Code examples for variable roles for software verification.

code in Fig. 3.6 is a simplified form12, Eldarica does not give an answer within
the time limit of 15 minutes. Predicate abstraction needs to generate for these
programs from 116 to 996 predicates, depending on the number of values, for which
the maximum is calculated. Since predicates are added step-wise in the CEGAR
loop, checking these benchmarks without the heuristic for dynamic enumeration is
time consuming. N

Extremum. A variable x has the role extremum if x is used in the pattern if (y ◦ expr)
x=y, where ◦ ∈ {<,>} and expr is an arbitrary expression.

Example 3.1.29. In the program in Fig. 3.6a, the variables max1, max2 and
12E.g. seq-mthreaded/pals_opt-floodmax.3_true-unreach-call.ufo.BOUNDED-6.

pals.c.

57

3. Definition and Computation of Variable Roles

max3 have the role extremum, because these variables are used in the conditional
assignments at lines 17, 18 and 19 respectively which match the pattern if
(y ◦ expr) x=y, i.e. if (max3>max1) max1=max3, etc. N

Heuristic for extremum and dynamic enumeration. For every variable x
which is both a dynamic enumeration and an extremum, our algorithm generates for
every pair y and z of parameters of the role dynamic enumeration two inequality
predicates y<z and y>z.

Example 3.1.30. For the code in Fig. 3.6a, our algorithm generates 6 predicates
id1<id2, id1>id2, id1<id3, id1>id3, id2<id3 and id2>id3. Eldarica
uses these predicates in the predicate abstraction technique to precisely evaluate
the conditions at lines 17–19.
Eldarica proves the program in Fig. 3.6a annotated with the 6 predicates and
9 predicates from Example 3.1.28, i.e. 15 predicates generated by our algorithm
altogether, in 8 sec and 0 CEGAR iterations. To prove 53 programs from SV-
COMP’16 with this pattern, annotated analogously by our algorithm, it takes
Eldarica from 21 to 858 sec (and from 0 to 4 CEGAR iterations). For the
remaining 55 benchmarks with this pattern from SV-COMP’16 the number of
abstract states becomes too large for Eldarica to be checked within the time limit.
N

Local counter. A variable x has the role local counter in loop L if x is assigned in the
body of loop L in a statement x=x+expr, where expr is an arbitrary expression.

Example 3.1.31. Consider the code in Fig. 3.6b. We take the code from an
SV-COMP’16 benchmark13 in a simplified form.
The code increments in a loop the buffer index buf by 1 until buflim is reached,
where buflim stores the size of the writeable part of the buffer. Alternatively, the
loop can terminate on a non-deterministic event if the function nondet_int(),
called in the loop condition at line 13, returns 0. The assertion at line 15 checks
that the buffer index buf does not exceed the buffer size buflen, and the assertion
at line 17 checks that buf does not exceed the size of the input stream inlen.
Since the variable buf is incremented in the loop body by 1, then buf is local
counter (for the only loop at lines 13–18). N

Heuristics for local counter. We use the role local counter in two following
heuristics:

1) Inequality between loop counter and loop bound. If the following conditions hold:
a) a variable x has the roles loop iterator in loop L and local counter in loop

L,
13loop-invgen/sendmail-close-angle_true-unreach-call.i.

58

3.1. Overview of Variable Roles

b) a variable b has the role loop bound in loop L,
c) x is compared to b in a (dis-)equality x==b or x!=b,
then our algorithm generates the predicates x<=b, x>=b, x<b and x>b.

To be precise, for efficiency reasons in the first heuristic our algorithm generates
only two of the four predicates (either x<=b and x<b, or x>=b and x>b). We
omit the details for the sake of simplicity.
Example 3.1.32. Recall from Ex. 3.1.31 that the variable buf in the program
in Fig. 3.6b has the role local counter. In addition, buf is loop iterator,
since buf is assigned in the loop body and is compared in the expression
buf==buflim at line 14, which our algorithm considers as a loop condition
(we give the precise definition of local counter in Section 3.3.3).
Next, since the variable buflim is compared in the loop condition buf==
buflim at line 14 to the loop iterator buf, then buflim is a loop bound.
Using these roles, our algorithm applies the first heuristic for local counter
and generates the predicates buf<buflim and buf<=buflim. N

2) Splitting assignments to loop bound. If the following conditions hold:
a) a variable b has the role loop bound in loop L,
b) b is modified in an assignment statement b=expr,
c) there is a variable x which has the role loop iterator and local counter in

same loop L,
then our algorithm generates predicates b>=expr and b<=expr. The condi-
tion 2c) restricts the number of the loops to which the heuristic is applied.

Similarly to the first heuristic for local counter, for efficiency reasons our
algorithm generates in the second heuristic for local counter only one of the
two predicates (either b>=expr, or b<=expr).
Example 3.1.33. For the program in Fig. 3.6b, since the variable buflim
has the role loop bound and buflim is assigned in the statement buflim=
buflen-2 at line 11, then our algorithm applies the heuristic and generates
the predicate buflim<=buflen-2.
Without our heuristics, Eldarica can not check the program within the
time limit: Eldarica generates a sequence of predicates buf<=1, buf<=2,
buf<=3, etc, for ever growing number of loop unrollings. However, when
we annotate the code with the predicates buf<buflim, buf<=buflim
computed by the heuristic Splitting assignments to loop bound, the predi-
cate buflim<=buflen-2 computed by the heuristic Inequality between loop
counter and loop bound (see Ex. 3.1.32) and the predicate inlen>buflen,
which we will explain later in this section in Ex. 3.1.35, Eldarica proves the
program safe.
A possible way to obtain the predicate buflim<=buflen-2 is to rewrite each
assignment, equality and dis-equality in the transition relation of a program

59

3. Definition and Computation of Variable Roles

with two inequalities. For example, for code in Fig. 3.6b the assignment
statement at line 11 will be represented by the conjunction of the inequal-
ities buflim>=buflen-2 ∧ buflim<=buflen-2, and the inequality in
the loop condition at line 14 will be represented by the disjunction of the
inequalities buf<buflim ∨ buf>buflim. Eldarica implements a con-
figuration which performs such re-writing, and the configuration proves the
program safe in 6 sec and 5 CEGAR iteration. However, the re-writing can
have a negative effect on the performance, because after the re-writing the
system of constraints used to encode the transition relation has the size in
the worst case exponential in the size of the system. Therefore, the second
heuristic for local counter is needed to choose a subset of the transitions to be
split. N

Assertion parameter. A variable x has the role assertion parameter with parameter Expr
if x is used in the condition Cond of an assert or assume statement, and Expr
is the smallest boolean-valued sub-expression of Cond, i.e. Expr which does not
contain logical operators.

Example 3.1.34. In the program in Fig. 3.6b, the following variables have role
assertion parameter :

– the variable buflen – with parameter buflen>1 (statement assume(
buflen>1) at line 5),

– the variables inlen and buflen – with parameter inlen>buflen (state-
ment assume(inlen>buflen) at line 6),

– the variables buf and buflen – with parameter buf<buflen (statement
assert(buf<buflen) at line 15) and

– the variables buf and inlen – with parameter buf<inlen (statement
assert(buf<inlen) at line 17). N

Heuristic for assertion parameter. For every assertion parameter used in
assertion condition Cond, our algorithm generates the predicate Cond.

Example 3.1.35. For the program in Fig. 3.6b, our algorithm generates the
predicates buflen>1, inlen>buflen, buf<buflen and buf<inlen. N

Parity. A variable x has the role parity with parameter n if at least one of the following
cases holds:

– x is incremented in a loop by a constant value n, s.t. n!=1;

– x is used in the expression x%n.

60

3.2. Framework for the Specification and Inference of Roles

Example 3.1.36. Consider the code in Fig. 3.6c from an SV-COMP’16 bench-
mark.14 The code iteratively increments the variable i by 2 starting from 0 until i
reaches 1000000. The assertion condition at line 6 checks that i equals 1000000.
In this program, the variable i has the role parity with parameter 2. N

Heuristic for parity. For each parity variable with parameter n our algorithm
generates the predicate template x%n.

Example 3.1.37. For the program in Fig. 3.6c, our algorithm generates the
template x%2.
Without this heuristic, Eldarica can not check the program within the time limit:
similarly to Ex. 3.1.33, Eldarica generates a sequence of predicates i==0, i==2,
i==4, etc. With the template annotation i%2, Eldarica proves the code safe in
2 CEGAR iterations and 1 sec. N

3.2 Framework for the Specification and Inference of
Roles

In this section we define a framework to formally specify and compute variable roles. We
define each variable role with a data-flow analysis [NNH99].

In particular, we formulate an insensitive data-flow analysis in Datalog. We specify
the control-flow graph of a program as a database of facts, and roles as logic queries
on this database. We then obtain the result of the analysis using the standard fixed-
point semantics of Datalog. In this way, choosing logic programming as a specification
formalism has two advantages: first, its notation is well known, and second, we can use
off-the-shelf logic engines for the computation of roles.

We give preliminaries on Datalog in Section 3.2.1, describe our algorithm for the transla-
tion of C code to a logic program in Section 3.2.2 and give the formal specification of
roles in Section 3.3.

3.2.1 Preliminaries on Datalog

A datalog program is constructed from the following items (listed in the order from
simplest to most complex):

Term. A term t takes values in some domain D, e.g. N, and is of the form:
– an integer; or
– a variable; or
– t1 ◦ t2; or
– f(t1, . . . , tk),

14loop-new/count_by_1_true-unreach-call.i.

61

3. Definition and Computation of Variable Roles

where tj are terms, ◦ ∈ {+,−, ∗, /} is an arithmetic operator, and f is a function
symbol (only interpreted functions are allowed).

Atom. An atom takes boolean values true and false and is of the form:
– p(t1, . . . , tm), or
– t1 ◦ t2, or
– t0 = f(t1, . . . , tk) (the symbol = should not be confused with the comparison

operator in the previous case, see the explanation below),
where p is a predicate symbol, f is a function symbol, tj are terms and ◦ ∈ {<,≤
, >,≥,==, ! =} is a comparison operator. Atom t0 = f(t1, . . . , tk) always evaluates
to true and assigns to term t0 the result of function f(t1, . . . , tk). Predicate and
function symbols start with a small letter, and variables start with a capital letter.

Literal. A literal is of the form A or not A for an atom A, where the connective not
corresponds to default negation.

Rule. A rule in Datalog is of the form A0 :− L1, . . . , Ln. The head of a rule A0 is an
atom. The body of a rule {Li} is a set of literals. A rule is evaluated as follows:
if every literal Li in the body evaluates to true, then the atom A0 in the head
evaluates to true. A rule with empty body is called a fact.

In this thesis we only deal with programs with stratified negation. A program has stratified
negation if the program contains no cyclic dependencies with negation. Formally, stratified
negation is implicitly defined using a directed graph which is constructed for a logic
program as follows:

• For each atom in a program there is a unique node v ∈ V in the graph;
• For each rule A0 :− L1, . . . , Ln and for each literal Lj there is an edge (A0, `, Aj)

from the node A0 to the node Aj with the label `, where ` =
{
p if Lj = Aj and
n if Lj = not Aj ,

where V is the set of edges R ⊆ V ×L×V and a set of labels L ∈ {n, p}. A program has
stratified negation if the graph does not contain cyclic paths containing edges labelled
with n.

3.2.2 Translation of C Code to a Datalog Program

Syntax of C Language

Our algorithm handles a subset of the C language defined in Fig. 3.7. We use indices
to differ between multiple instances of rule applications, e.g. d1 and d2 denote different
instances of application of the rule for definition d.

The rules in Fig. 3.7 define the following syntactic constructs:

Program. A program p consists of a sequence of definitions d.

62

3.2. Framework for the Specification and Inference of Roles

Grammar rules Explanation of the rules

Program
p ::= d; s

Definitions
d := t id | variable definition

d1; d2 sequence of definitions

Types
t ::= int | . . . | integral types

float | . . . | floating point types
t∗ | pointer type
struct st_id{t1 id1, . . . , tn idn} structure type

Statements
s ::= e1 = e2 | assignment statement

s1; s2 | sequence statement
if (e) then {s1} else {s2} | conditional statement
while (e) {s} loop statement

Expressions
e ::= id | variable

n | constant number
′ch′ | character symbol
e1 ◦2 e2 | binary operator, ◦2 ∈ {+,−, ∗, /,%}∪

{<,≤, >,≥,==, ! =} ∪ {<<,>>,&, |,∼,
∧} ∪ {&&, ||}

◦1e1 | unary operator, ◦1 ∈ {+,−,&, ∗, !}
e1[e2] | array element
f(e1, . . . , en) | function call
sizeof(t) size of type t

Figure 3.7 Syntax of a subset of C language handled by our algorithm. We use the following
notation: variable identifiers id, idi are elements of a set of variables V ar, function identifiers f
and structure identifiers st_id are elements of a set of functions Func and a set of structures
Struct respectively. Symbols n and ch belong to the set of rational numbers and character
symbols respectively. All other symbols, for which no rule is defined, are terminals, and are
highlighted with fixed-width font.

Definition. A definition d is either a single variable definition, or a sequence of definitions.

Type. Definitions use data types, where a type t can be integral, floating point, pointer
and structure type.

63

3. Definition and Computation of Variable Roles

Statement. The set of handled statements includes assignment, sequence, conditional
and loop statements and function calls (to the latter corresponds the rule s ::= e).

Expression. The set of handled expressions includes variables id, numeric and character
constants (n and ′ch′ respectively), binary and unary operators (◦2 and ◦1 respec-
tively), array elements, function calls and sizeof-expressions.
In this framework we define intra-procedural analyses, and the syntax specified
in Fig. 3.7 does not allow to introduce user-defined functions in programs. There-
fore, we restrict function calls to library function calls. C expression sizeof(t)
evaluates to the number of bytes needed to store type t.

Pre-Processing of C Code

To handle C programs, our algorithm performs a pre-processing step, during which the
algorithm makes the following transformations of the code:

Loops. Our algorithm re-writes for loops and do-while loops to while loops.

Example 3.2.1. Our algorithm rewrites the for loop in Fig. 3.8a to the while
loop in Fig. 3.8b, with the initialisation part i=0 prepended to the while loop.

Variable definition with initialisation. Our algorithm re-writes the initialisation part in
variable definitions to an assignment statement.

Example 3.2.2. The algorithm rewrites the variable definition int x=0; to the
sequence int x; x=0;.

Assignment statements. Our algorithm re-writes increment, decrement and compound
assignment statements to assignment statements.

Example 3.2.3. Consider again the code in Fig. 3.8a. The increment statement
i++ in the loop is re-written to the statement i=i+1, as shown in Fig. 3.8b.

Implicit conversion to boolean. Our algorithm re-writes every integer-valued expression
expr implicitly converted to a boolean-valued expression in a branch or loop
condition to the expression expr!=0.

Example 3.2.4. Our algrorithm re-writes the branch condition nondetermined
in Fig. 3.3, line 9 to nondetermined!=0.

Datalog Relations

Our method encodes the control-flow graph of a C program as a Datalog program by
translating every node and edge in the control-flow graph of the C program to one or
more facts in the logic program. In Table 3.4 we give the details of the translation: the
second column of the table shows a syntactic construct, and the third column lists the
corresponding logic facts.

64

3.2. Framework for the Specification and Inference of Roles

Table 3.4 Translation of C constructs to Datalog.

C declaration Translation to logic programC construct Syntactic rule, d ::=

Variable
definition

t id var(noded)
name(noded, id)
type(noded, t)

(a) Definitions

C statement Translation to logic programC construct Syntactic rule, s ::=

Assignment
statement

e1 = e2 assignment_stmt(nodes)
lhs_expr(nodes, nodee1)
rhs_expr(nodes, nodee2)

Sequence
statement

s1; s2 sequence_stmt(nodes)
stmt1(nodes, nodes1)
stmt2(nodes, nodes2)

Conditional
statement

if(e1) {s1} else {s2} if_stmt(nodes)
condition(nodes, nodee1)
then_stmt(nodes, nodes1)
else_stmt(nodes, nodes2)

Loop
statement

while(e1) {s1} while_stmt(nodes)
condition(nodes, nodee1)
body(nodes, nodes1)

(b) Statements

C expression Translation to logic programC construct Syntactic rule, e ::=

Constant
literal

n const_literal(nodee)
val(nodee, n)
type(nodee, typee)

Character
literal

′ch′ char_literal(nodee)
val(nodee, ′ch′)
type(nodee, int)

Binary
operation

e1 ◦2 e2 bop_expr(nodee)
opcode(nodee, ◦2)
lhs_expr(nodee, nodee1)
rhs_expr(nodee, nodee2)

Unary
operation

◦1 e1 uop_expr(nodee)
opcode(nodee, ◦1)
sub_expr(nodee, nodee1)

Array
element

e1[e2] array_expr(nodee)
arrayptr_expr(nodee, nodee1)
arrayind_expr(nodee, nodee2)

Function
call

f(e1, . . . , en) call_expr(nodee)
function(nodee, nodef)
param(nodee,i,nodeei)

Size of type sizeof(t) sizeof_expr(nodee)

(c) Expressions

65

3. Definition and Computation of Variable Roles

1 for(i=0; i<n; i++);

(a) Source code
1 var(3).
2 name(3,"i").
3 type(3,int).
4 const_literal(4).
5 val(4,"0").
6 type(4,int).
7 assignment_stmt(2).
8 lhs_expr(2,3).
9 rhs_expr(2,4).

10 var(7).
11 name(7,"n").
12 type(7,int).
13 bop_expr(6).
14 opcode(6,"<").
15 lhs_expr(6,3).
16 rhs_expr(6,7).

17 const_literal(10).
18 val(10,"1").
19 type(10,int).
20 bop_expr(9).
21 opcode(9,"+").
22 lhs_expr(9,3).
23 rhs_expr(9,10).
24 assignment_stmt(8).
25 lhs_expr(8,3).
26 rhs_expr(8,9).
27 while_stmt(5).
28 condition(5,6).
29 body(5,8).
30 sequence_stmt(1).
31 stmt1(1,2).
32 stmt2(1,5).

(c) Datalog program

1 i=0;
2 while (i<n) {
3 i = i+1;
4 }

(b) Preprocessed code.

(d) Control flow graph

Figure 3.8 Translation of C code to a Datalog program.

In particular, we denote a node corresponding to a definition d as noded, and nodes
corresponding to an expression e or a statement s as nodee and nodes respectively.
Similarly, we denote the types of respective constructs with typed, typee and types. We
will explain the meaning of each logic relation from the third column one by one in this
chapter, as the relations appear in examples.

Example 3.2.5. In Fig.3.8c we give a translation to Datalog of the code in Fig. 3.8a.
We show the corresponding control-flow graph (CFG) in Fig. 3.8d: we show identifiers
and codes of operations inside nodes, and the relations between the nodes – on the edges
of the CFG.

We now explain the relations which appear in the logic program. Here and further in
this chapter we will shorten names of some relations when depicting a control-flow graph,
as shown in Table 3.5.

Variable definition. The node 3 corresponds to the variable i and is encoded with the
relations var(3), name(3,"i") and type(3,int) at lines 1–3 of Fig. 3.8c;

In particular, the relation var(nodev) encodes that the node nodev corresponds
to a variable. Next, the relation name(nodev,v) encodes that v is the name of
the variable (or function) at node nodev. Finally, the relation type(nodev,t)
encodes that the type of the variable, constant or function at the node nodev is t.

Constant literal. The node 4 corresponds to the constant literal 0 and is encoded with
the relations const_literal(4), val(4,"0") and type(4,int) in lines 4–6
of Fig. 3.8c

66

3.2. Framework for the Specification and Inference of Roles

In particular, the relation const_literal(nodec) encodes that the node nodec
corresponds to a constant literal c, and the relation val(nodec,c) encodes that
c is the value of the constant at the node nodec.

Assignment statement. The node 2 corresponds to the assignment statement i=0; and
is encoded with the relations assignment_stmt(2), lhs_expr(2,3) and
rhs_expr(2,4) at lines 7–9.
In particular, the relation assignment_stmt(n) encodes that the node n cor-
responds to an assignment statement. The relations lhs_expr(n1, n2) and
rhs_expr(n1, n3) denote that the left- and right-hand side expressions of the
statement or the expressions at the node n1 are the expression at the nodes n2 and
n3 respectively.

Binary operation. The node 6 corresponds to the binary operation i<n, encoded with the
relations bop_expr(6), opcode(6,"<"), lhs_expr(6,3) and rhs_expr(6,
7) at lines 14–16.
In particular, the relation bop_expr(n) denotes that the node n corresponds to
a binary operation. The relation opcode(n,str) denotes that the string str is
the code of the operation at the node n. The relations lhs_expr(n1, n2) and
rhs_expr(n1, n3) have the same meaning as for an assignment statement.

Loop statement. The node 5 corresponds to the loop statement. Note that our algorithm
re-writes for-statements with while-statements, and therefore the statement
for(i=0;i<n;i++); is re-written to a sequence of statements i=0; while(i<n)
{i++;}. The while-statement at the node 5 is encoded with the relations
while_stmt(5), condition(5,6), body(5,8) at lines 27–29.
In particular, the relation while_stmt(n) encodes that the node n corresponds
to a while statement. Next, the relation condition(n1, n2) encodes that the
condition of the loop (or branch) statement at the node n1 is the expression at the
node n2. Finally, the relation body(n1, n2) encodes that the body of the loop
statement at the node n1 is the statement at node n2.

Sequence statement. The node 1 corresponds to the sequence statement obtained after
re-writing the for-loop, as discussed above. The node 1 is encoded with the
relations sequence_stmt(1), stmt1(1,2) and stmt2(1,3) at lines 30–32.
In particular, the relation sequence_stmt(n) encodes that the node n corre-
sponds to a sequence statement. The relations stmt1(n1,n2) and stmt2(n1,
n2) encode that the first and second statements of the sequence statement at the
node n1 are the statements at the nodes n2 and n3 respectively. N

67

3. Definition and Computation of Variable Roles

Table 3.5 Simplifications in our notation in control-flow-graphs.

Relation in logic program Notation in CFG
assigment_statement :=

sequence_stmt ;
while_stmt while
if_stmt if

condition cond
then_stmt then
else_stmt else

return_stmt return
lhs_expr lhs
rhs_expr rhs

arrayptr_expr arrptr
arrayind_expr arrind

call_expr call
macro_call_expr macro_call
sizeof_expr sizeof
function func

param0 /. . ./paramn par0/. . ./parn
PTR_PLUS_INT ptr+
PTR_MINUS_INT ptr-

BIT_AND &
BIT_OR |

3.3 Definition of Roles

We now give the definition of the roles introduced in Section 3.1. Specifically, in Sections
3.3.1, 3.3.2 and 3.3.3 we define the roles introduced in Sections 3.1.1, 3.1.2 and 3.1.3
respectively. We split each of the three sets of roles into two subsets – the roles defined
without negation and the roles defined with negation. Intuitively, the roles without
negation are defined using patterns in which a variable must be used at least once, so
that the variable is assigned the respective role, and the roles with negation – using
patterns in which a variable must not be used.

For the sake of readability, we put the definition of some auxiliary relations in Section 8.A
on page 163.

3.3.1 Domain-Independent Roles

Below we give the definition of the domain-independent set of roles with and without
negation.

Roles without Negation

Array index. Variable X is array index (denoted as array_index(X), line 1), if at least
one of the following conditions holds:

68

3.3. Definition of Roles

(a) Control flow graph

1 var(25).
2 type(25,26).
3 pointer_type(26).
4 name(25,
5 "bitrate_table").
6 var(10).

7 type(10,int).
8 name(10,"index").
9 array_expr(30).

10 arrayind_expr(30,25).
11 arrayptr_expr(30,10).

(b) Datalog program

Figure 3.9 Example for array index. The array expression bitrate_table[index] in
line 14 of code in Fig. 3.1a on page 44 translated to Datalog.

– There exists an array subscript expression Expr with index X, which we denote
with relation arrayind_expr(Expr,X) (line 1 in the listing below).

– X is assigned a variable Y which has the role array index (line 2).

1 array_index(X) :− var(X), array_expr(Expr), arrayind_expr(Expr,X).
2 array_index(X) :− var(X), assigned(X,Y), array_index(Y).

Here, the relations var, array_expr and arrayind_expr are generated by our
algorithm during the translation of a C program to Datalog. We highlight such
expressions with bold. Recall that the relation var(X) encodes the set of program
variables. Next, the relation array_expr(Expr) denotes that Expr is an array
subscription operation, and the relation array_ind(Expr,X) denotes that X is
subscript of the array subscription expression Expr.
The rule at line 2 computes the transitive closure of the set of variables assigned the
role array index. Specifically, the relation assigned(X,Expr), which we define
in Section 8.A, lines 2–3, denotes that the variable X is assigned the expression
Expr. We note that similar rules for computing the transitive closure exist for
all roles (the rules for loop iterator and loop bound are slightly different and we
discuss them separately). For the sake of brevity, we will not comment on the rule
for computing the transitive closure for the remaining roles.

Example 3.3.1. We illustrate the role array index on the example in Fig. 3.9. The
figure shows the CFG of the expression bitrate_table[index] in Fig. 3.1a on
page 44, line 14. The logic program, corresponding to the CFG in Fig. 3.9a, is
shown in Fig. 3.9b.
We clarify the remaining relations in the logic program. Recall that the relation
type(Expr,Type) denotes that the type of the expression Expr is Type and the
relation name(X,NameStr) denotes that the identifier of the variable (or function)
X is NameStr. Next, the relation pointer_type(Type) denotes that Type is
a pointer type. Finally, the relation array_ptr(Expr,PtrExpr) denotes that
PtrExpr is the subscripted array in the expression Expr.
For this program, the evaluation of the rule in line 1 infers that the variable index
is array index, encoded as array_index(nodeindex). N

69

3. Definition and Computation of Variable Roles

Branch condition. Variable X is branch condition (denoted as branch_cond(X), lines 3–
6 in the listing below) if there exists an if statement IfStmt with condition Cond,
with X being a literal of Cond (i.e. X is the smallest logical sub-expression of
Cond):

3 branch_cond(X) :− var(X), if_stmt(IfStmt), condition(IfStmt,Cond),
4 literal(Cond,Lit), bop_expr(Lit), opcode(Lit,Opcode),
5 eq_opcode(Opcode), operand(Lit,X), operand(Lit,Const),
6 const_literal(Const), val(Const,"0").
7
8 branch_cond(X) :− var(X), assigned(X,Y), branch_cond(Y).

Recall that the relation const_literal(Expr) denotes that Expr is a constant
number, and the relation val(Expr,ValStr) denotes that ValStr is the string
representation of the value of the constant Expr.
Recall also that the relation bop_expr(Expr) denotes that the expression Expr is
a binary operator. The relation opcode(Expr,Opcode) denotes that Opcode is
the code of the binary operator Expr, e.g. ">", "==", "!=", etc. For the convenience
of the reader, we have encoded all supported binary operation codes Opcode with
the relation bin_opcode(Opcode) in Section 8.A, lines 243–262. The relation
eq_opcode(Opcode) is defined in Section 8.A, lines 215–216 and includes the
codes of the equality and dis-equality operations. The relation operand(Expr,
SubExpr) denotes that SubExpr is (the left- or right-hand-side, or the only)
sub-expression of expression Expr.
The relation if_stmt(IfStmt) denotes that IfStmt is an if statement, and
the relation condition(IfStmt,Cond) denotes that the expression Cond is the
condition of a (branching or loop) statement IfStmt.
The relation literal(Cond,X) is defined in Section 8.A, line 27 and denotes
that the expression X is a literal of the boolean-valued expression Cond.

Example 3.3.2. Consider the Fig. 3.10a which shows the CFG of the statement
if (found) return index; else return -1; in Fig. 3.1a on page 44,
lines 20–23. The corresponding logic program is shown in Fig. 3.10b.
The relation then_stmt(IfStmt,ThenStmt) in the logic program denotes that
ThenStmt is the then-branch of the conditional statement IfStmt, and the relation
else_stmt(IfStmt,ElseStmt) denotes that ElseStmt is the else-branch of
the conditional statement IfStmt.
The relations lhs_expr(Expr,LhsExpr) and rhs_expr(Expr,RhsExpr) de-
note that LhsExpr and RhsExpr are the left- and right-hand-side operands of
the binary operator (or of an assignment statement) Expr.
The relation return_stmt(RetStmt) denotes that RetStmt is a return state-
ment, and the relation sub_expr(Expr,SubExpr) denotes that SubExpr is the
(only) sub-statement of a statement or expression Expr.

70

3.3. Definition of Roles

(a) Control flow graph

1 if_stmt(4).
2 condition(4,33).
3 then_stmt(4,34).
4 else_stmt(4,35).
5 var(10).
6 name(10,"index").
7 type(10,int).
8 var(12).
9 name(12,"found").

10 type(12,int).
11 bop_expr(33).
12 lhs_expr(33,12).

13 rhs_expr(33,19).
14 opcode(33,"!=").
15 const_literal(19).
16 val(19,"0").
17 type(19,int).
18 return_stmt(34).
19 sub_expr(34,10).
20 return_stmt(35).
21 sub_expr(35,37).
22 const_literal(37).
23 type(37,int).
24 val(37,"-1").

(b) Datalog program

Figure 3.10 Example for branch condition. The statement if (found) return index;
else return -1; in lines 20–23 of code in Fig. 3.1a on page 44 translated to Datalog.

For this example, the evaluation of the rule defining the relation literal (see
Section 8.A, line 27) infers the fact literal(33), where the node 33 cor-
responds to the expression found!=0. Then, the evaluation of the relation
operand (Section 8.A, lines 10–11) infers the facts operand(33,nodefound)
and operand(33,19), where the node 19 corresponds to the constant literal 0.
The definition of the relation eq_opcode (Section 8.A, lines 215–216) includes the
fact eq_opcode("!=").
Finally, the evaluation of the rule in lines 3–6 infers that the variable found has
the role branch condition, encoded as branch_cond(nodefound). N

Loop iterator. Variable X is loop iterator of loop WhileStmt (denoted as loop_it(X,
WhileStmt), lines 9–12 in the listing below) if the following conditions hold:

– There is a loop statement WhileStmt and assignment statement AsgStmt
s.t. AsgStmt is a sub-statement of WhileStmt;

– In AsgStmt the variable X is assigned;
– The condition Cnd of WhileStmt is a binary comparison operator of which
X is an operand.

9 loop_it(X,WhileStmt) :− var(X), while_stmt(WhileStmt),
10 assignment_stmt(AsgStmt),sub_stmt(WhileStmt,AsgStmt),
11 lhs_expr(AsgStmt,X), condition(WhileStmt,Cnd),bop_expr(Cnd),
12 opcode(Cnd,Opcode), compar_opcode(Opcode),operand(Cnd,X).
13
14 loop_it(X,WhileStmt) :− var(X),loop_it(Y,WhileStmt),
15 assignment_stmt(AsgStmt),sub_stmt(WhileStmt,AsgStmt),
16 lhs_expr(AsgStmt,X), rhs_expr(AsgStmt,Y).

Recall that the relation while_stmt(WhileStmt) denotes that WhileStmt

71

3. Definition and Computation of Variable Roles

(a) Control flow graph

1 var(4).
2 type(4,int).
3 name(4,"count").
4 while_stmt(8).
5 condition(8,12).
6 body(8,13).
7 var(10).
8 type(10,int).
9 name(10,"i").

10 bop_expr(12).
11 lhs_expr(12,10).
12 rhs_expr(12,4).

13 opcode(12,"<").
14 assignment_stmt(14).
15 lhs_expr(14,10).
16 rhs_expr(14,70).
17 bop_expr(70).
18 lhs_expr(70,10).
19 rhs_expr(70,71).
20 opcode(70,"+").
21 const_literal(71).
22 type(71,int).
23 val(71,"1").

(b) Datalog program

Figure 3.11 Example for loop iterator, loop bound, linear and counter. The statement for
(i=0; i<count; ++i) {. . .} in lines 15–25 of code in Fig. 3.1b on page 44 translated to
Datalog.

is a while statement and that our translation algorithm rewrites every loop to
a while statement. The relation assignment_stmt(AsgStmt) denotes that
AsgStmt is an assignment statement.
The relation sub_stmt(WhileStmt,AsgStmt), which we define in Section 8.A,
lines 59–74, denotes that in the CFG the node corresponding to AsgStmt is a child
node of the node corresponding to WhileStmt. The relation compar_opcode(
Opcode), which we define in Section 8.A, line 201–208 and 215–216, denotes that
Opcode is a binary relational operation, e.g. >, ==, etc.
Note that the relation for encoding loop iterator is binary, and takes the loop
WhileStmt as a parameter. We need the parameter for the following reasons:

1. The rule in lines 14–16 computes the transitive closure of loop iterators only inside
respective loop statements. Specifically, the rule infers that X is a loop iterator
of loop WhileStmt if there is a loop iterator Y of loop WhileStmt and there
is an assignment statement AsgStmt which is a sub-statement of WhileStmt
and in which variable X is assigned Y. The relation rhs_expr(Expr1,Expr2)
denotes that Expr2 is the right-hand side expression of expression or statement
Expr1.

2. The parameter WhileStmt is used in the definition of the role loop bound, which
we discuss later in this Section.

Example 3.3.3. Consider the example in Fig. 3.11a, which shows the CFG of
the statement for (i=0; i<count; ++i) {. . .} from the code in Fig. 3.1b on
page 44, line 15. We omit the body of the loop and denote the omitted body with
dots. The corresponding logic program is shown in Fig. 3.11b.

72

3.3. Definition of Roles

The definition of the relation compar_opcode (see Section 8.A on page 163,
lines 201–202) includes the fact compar_opcode("<"). The evaluation of the
rule defining the relation operand (see also Section 8.A, lines 10–11) infers the
facts operand(12,nodei) and operand(12,nodecount), where node 12 corre-
sponds to the comparison operation in the loop condition. The evaluation of the
rule defining the relation sub_stmt (in Section 8.A, lines 59–74) infers the fact
sub_stmt(8,14), where the nodes 8 and 14 correspond to the while statement
and the assignment to the variable i in line 15 respectively.
Finally, the evaluation of the rule in lines 9–12 infers that the variable i is loop
iterator, encoded as loop_it(nodei). N

Loop bound. Variable X is loop bound of loop WhileStmt (denoted as loop_bnd(X,
WhileStmt), lines 17–19 in the listing below) if the following conditions hold:

– There is a while statement WhileStmt, the condition Cnd of which is a
binary relational operation;

– The operands of Cnd are X and a variable Y;
– Y is a loop iterator of loop WhileStmt.

17 loop_bnd(X,WhileStmt) :− var(X), while_stmt(WhileStmt), condition(
WhileStmt,Cnd),

18 bop_expr(Cnd), opcode(Cnd,Opcode), compar_opcode(Opcode),
19 operand(Cnd,X), operand(Cnd,Y), X!=Y, loop_it(Y,WhileStmt).
20
21 loop_bnd(X,WhileStmt) :− var(X), loop_bnd(Y,WhileStmt),
22 assignment_stmt(AsgnStmt), sub_stmt(WhileStmt,AsgnStmt),
23 lhs_expr(AsgnStmt,X), rhs_expr(AsgnStmt,Y).

The transitive closure of the set of loop bound variables (lines 21–23) is computed
analogously to loop iterator variables.

Example 3.3.4. Consider again the CFG and logic program in Fig. 3.11. The
rule in lines 17–19 infers that the variable count is loop bound, encoded as
loop_bound(nodecount). N

Arithmetic. Variable X is arithmetic (denoted as used_in_arithm(X), lines 24–25 and
27–28), if there is a binary or unary arithmetic operation Expr (e.g. +, –, >, etc),
of which X is an operand.

24 used_in_arithm(X) :− var(X), bop_expr(Expr), opcode(Expr,Opcode),
25 arithm_opcode(Opcode), operand(Expr,X).
26
27 used_in_arithm(X) :− var(X), uop_expr(Expr), opcode(Expr,Opcode),
28 arithm_opcode(Opcode), operand(Expr).
29
30 used_in_arithm(X) :− var(X), assigned(X,Y), used_in_arithm(Y).

73

3. Definition and Computation of Variable Roles

Specifically, the term arithm_opcode(Opcode), which we define in Section 8.A,
lines 218–222, denotes that the Opcode is a code of an arithmetic operation.

The term uop_expr(Expr) denotes that Expr is an unary operation. Again, for
the convenience of the reader we encode the codes Opcode of all supported unary
operators with the relation un_opcode(Opcode) in Section 8.A, lines 264–269.

Example 3.3.5. Consider again the CFG and logic program in Fig. 3.11.

The definition of the relation arithm_opcode includes the fact arithm_opcode(
"+"), and the evaluation of the rule defining the relation operand (see Section 8.A,
lines 10–11) infers the fact operand(70,nodei), where node 70 corresponds to
the addition operation i+1.

Then, the evaluation of the rule in lines 24–25 infers that the variable i is arithmetic,
encoded as used_in_arithm(nodei). N

Pointer offset. Variable X is pointer offset (denoted as offset(X)) if at least one of
the following conditions holds:

– There is a binary operator Expr, the code of which is a pointer addition
operation + (denoted as "PTR_PLUS_INT"), and an operand of which is X,
i.e. offset is added to a pointer (lines 31–32 in the listing below);

– There is a binary operator Expr, the code of which is a pointer subtraction
operation – (denoted as PTR_MINUS_INT), and the right-hand side operand
of which is X, i.e. the offset is subtracted from a pointer (lines 34–35).

31 offset(X) :− var(X), bop_expr(Expr), opcode(Expr,"PTR_PLUS_INT"),
32 operand(Expr,X).
33
34 offset(X) :− var(X), bop_expr(Expr), opcode(Expr,"PTR_MINUS_INT"),
35 rhs_expr(Expr,X).
36
37 offset(X) :− var(X), assigned(X,Y), offset(Y).

Example 3.3.6. For example, in Fig. 3.12a we show the CFG of the the statement
ns=strlen(s); in line 5 and the expression s+ns-nx in line 11 of the code in
Fig. 3.2a on page 47. The translation these constructs to Datalog is shown in
Fig. 3.12b.

In particular, the relation func_decl(Func) denotes that Func is a function
declaration. The term call_expr(CallExpr) denotes that CallExpr is a call
expression, the relation function(CallExpr,Func) denotes that in the expres-
sion CallExpr the function Func is called, and the relation param(CallExpr,
I,ParExpr) denotes that the I-th parameter of the call expression CallExpr is
ParExpr.

74

3.3. Definition of Roles

(a) Control flow graph

1 var(3).
2 type(3,ptr).
3 name(3,"s").
4 var(13).
5 type(13,int).
6 name(13,"ns").
7 assignment_stmt(12).
8 lhs_expr(12,13).
9 rhs_expr(12,14).

10 func_decl(15).
11 name(15,"strlen").
12 call_expr(14).
13 function(14,15).
14 param(14,0,3).

15 var(16).
16 type(16,int).
17 name(16,"nx").
18 bop_expr(25).
19 lhs_expr(25,26).
20 rhs_expr(25,16).
21 opcode(25,
22 "PTR_MINUS_INT").
23 bop_expr(26).
24 lhs_expr(26,3).
25 rhs_expr(26,13).
26 opcode(26,
27 "PTR_PLUS_INT").

(b) Datalog program

Figure 3.12 Example for input and offset. Statement ns=strlen(s) in line 5 and the
expression s+ns-nx in line 11 of code in Fig. 3.2a on page 47 translated to Datalog.

In this example, the evaluation of the rule in lines 31–32 results in the inference
of the fact offset(nodenx). Similarly, the evaluation of the rule in lines 34–35
infers that the variable ns is offset, encoded as offset(nodens). N

Input. Variable X is input (denoted as input(X), line 38 in the listing below) if X is
assigned the result of a call to an externally defined function Func.

38 input(X) :− var(X), assigned_call(X,Func), ext_func(Func).
39 input(X) :− var(X), assigned(X,Y), input(Y).

In particular, the relation assigned_call(X,Func), which we define in Sec-
tion 8.A, lines 24–25, denotes that X is assigned a call expression, in which the
function Func is called. The relation ext_func(Func), which we define in
Section 8.A on page 163, line 89, denotes that Func is an externally defined
function.

Example 3.3.7. Consider again the example in Fig. 3.12a.

The evaluation of the rules defining the relations ext_func and assigned_call
infers the facts ext_func(nodestrlen) and assigned_call(nodens, nodestrlen)
respectively. The evaluation of the rule in line 38 infers that the variable ns is
input, encoded as input(nodens). N

Bitvector. Variable X is bitvector (denoted as bitvector(X)), if at least one of the
following conditions holds:

– There exists a binary operator Expr which is a bitwise operation, of which X
is an operand (lines 40–41); Specifically, the relation bit_opcode(Opcode),

75

3. Definition and Computation of Variable Roles

(a) Control flow graph

1 var(9).
2 type(9,int).
3 name(9,"x_old").
4 var(10).
5 type(10,int).
6 name(10,"x").
7 assignment_stmt(5).
8 lhs_expr(5,9).
9 rhs_expr(5,10).

10 assignment_stmt(14).
11 lhs_expr(14,10).
12 rhs_expr(14,21).

13 bop_expr(21).
14 lhs_expr(21,10).
15 rhs_expr(21,22).
16 opcode(21,"BIT_AND").
17 bop_expr(22).
18 lhs_expr(22,10).
19 rhs_expr(22,23).
20 opcode(22,"-").
21 const_literal(23).
22 type(23,int).
23 val(23,"1").

(b) Datalog program

Figure 3.13 Example for bitvector. Lines 5 and 9 of code in Fig. 1.1a on page 7 translated to
Datalog.

which we define in Section 8.A, lines 195–198, denotes that Opcode is the
code of a bit operation, e.g. bit-and, bit-or, etc.

– There exists an unary operator Expr which is a bitwise operation and takes
X as an operand (lines 43–44).

40 bitvector(X):- var(X), bop_expr(Expr), opcode(Expr,Opcode),
41 bit_opcode(Opcode), operand(Expr,X).
42
43 bitvector(X) :− var(X), uop_expr(Expr), opcode(Expr, Opcode),
44 bit_opcode(Opcode), operand(Expr,X).
45
46 bitvector(X) :− var(X), assigned(X,Y), bitvector(Y).

Example 3.3.8. For example, in Fig. 3.13a is shown the CFG of the statements
x_old=x; and x=x&(x-1); in Fig. 1.1a on page 7, lines 5 and 9 respectively.
The corresponding logic program is shown in Fig. 3.13b.

The definition of the relation bit_opcode includes the fact bit_opcode(
"BIT_AND"). Then, the evaluation of the rule in lines 40–41 infers that the
variable X is bitvector, encoded as bitvector(nodex). N

Example 3.3.9. We now illustrate the rule for computing the transitive closure
on example of the role bitvector. The evaluation of the rule defining the relation
assigned (see Section 8.A on page 163, lines 2–3) infers the fact assigned(
nodex_old,nodex). Then, the evaluation of rule in line 46 infers that the variable
x_old is bitvector, encoded as bitvector(nodex_old). N

File descriptor. Variable X is file descriptor (denoted as file_descr(X)), if at least
one of the following conditions holds:

76

3.3. Definition of Roles

(a) Control flow graph

1 func_decl(161).
2 type(161,int).
3 name(161,"read").
4 var(662).
5 type(662,int).
6 name(662,"fd").
7 call_expr(672).
8 function(672,161).
9 param(672,0,662).

10 param(672,1,674).

11 const_literal(675).
12 type(675,int).
13 val(675,"1").
14 param(672,2,675).
15 var(676).
16 type(676,int).
17 name(676,"c").
18 uop_expr(674).
19 sub_expr(674,676).
20 opcode(674,"ADDR_OF").

(b) Datalog program

Figure 3.14 Example for file descriptor and unresolved. The function call in line 7 of code in
Fig. 1.1b on page 7 translated to Datalog.

– X is passed as the I-th parameter to a function Func, s.t. Func is a library
function which takes a file descriptor as input, e.g. read() , write(), etc.)
(lines 47–48 in the listing below).
We denote such library functions with the relation file_use_func(
FuncName,I), which we define in Section 8.A, lines 118–129. Here, FuncName
is the name of the library function, and I is the number of the parameter
which corresponds to a file descriptor.
The relation act_arg(Func,I,Expr), which we define in Section 8.A,
lines 17–21, denotes there is a call to a function (or to a macro) Func and
the I-th parameter of CallExpr is Expr.

– X is assigned the result of a call to a function Func which returns a file
descriptor, e.g. open(), creat(), dup(), etc., (lines 50–51).
We denote such library functions with the relation file_def_func(
FuncName,fres), where FuncName is the name of the library function,
and the constant term fres denotes that the variable with the respective role
(in this case, a file descriptor) is returned as output of the function.

47 file_descr(X) :− var(X), act_arg(Func,I,X), name(Func,FuncName),
48 file_use_func(FuncName,I).
49
50 file_descr(X) :− var(X), assigned_call(X,Func), name(Func,FuncName),
51 file_def_func(FuncName,fres).
52
53 file_descr(X) :− var(X), assigned(X,Y), file_descr(Y).

Example 3.3.10. In Fig. 3.14a is shown the CFG of the expression read(fd,
&c, 1) from the code in Fig. 1.1b on page 7, line 7. The corresponding logic
program is shown in Fig. 3.14.

The relation sizeof_expr(Expr) denotes that Expr is a C sizeof expression.

77

3. Definition and Computation of Variable Roles

In this example, the definition of the relation file_use_func includes the fact
file_use_func(read,0), and the evaluation of the rule defining the relation
act_arg (see Section 8.A, lines 17–21) infers the fact act_arg(noderead,0,
nodefd). Finally, the evaluation of the rule in lines 47–48 infers that the variable
fd is file descriptor, encoded as file_descr(nodefd). N

Character. Variable X is character (denoted as char(X)) if at least one of the following
conditions holds:

– X is assigned a character literal, e.g. ’A’ (line 54 in the listing below).
Specifically, the relation char_literal(CharLit) denotes that CharLit
is a character literal.

– X is passed as the I-th argument to a library function Func which manipu-
lates characters and takes a character as the I-th parameter, e.g. putc(),
isalpha(), etc. (lines 56–57).
We denote such functions with the relation char_use_func(FuncName,
I), which we define in Section 8.A on page 163, lines 94–108. The parameters
of the relation have the same meaning as in the relation file_use_func
(see the role file descriptor above).

– X is assigned the result of a call to a library function which returns a character,
e.g. getc(), getchar(), etc. (lines 59–60).
We denote such functions with term char_def_func(FuncName, fres),
which we define in Section 8.A, lines 111–116. The parameters of the relation
have the same meaning as in the relation file_def_func.

54 char(X) :− var(X), assigned(X,CharLit), char_literal(CharLit).
55
56 char(X) :− var(X), act_arg(Func,I,X), name(Func,FuncName),
57 char_use_func(FuncName,I).
58
59 char(X) :− var(X), assigned_call(X,Func), name(Func,FuncName),
60 char_def_func(FuncName,fres).
61
62 char(X) :− var(X), assigned(X,Y), char(Y).

Example 3.3.11. Consider the example in Fig. 3.15a, which shows the CFG of
the expression isdigit(c) of the code in Fig. 1.1b, line 8.
Note that the library function isdigit(), as most functions from the standard
library which manipulate characters, is implemented as a macro. Here, the fact
macro_call_expr(972) denotes that the node 972 is a call to a macro. The
fact macro(972,973) denotes that the node 973 is the corresponding macro
definition (the name of which is isdigit(), as denoted by the fact name(973,
"isdigit")). Finally, the fact param(972,0,nodec) denotes that the first
parameter to the macro call is the variable c.

78

3.3. Definition of Roles

(a) Control flow graph

1 macro_call_expr(972).
2 macro(972,973).
3 param(972,0,977).
4 macro_decl(973).

5 name(973,"isdigit").
6 var(977).
7 type(977,int).
8 name(977,"c").

(b) Datalog program

Figure 3.15 Example for character. The macro call isdigit(c) in line 8 of code in Fig. 1.1b
on page 7 translated to Datalog.

In this example, the evaluation of the rule defining the relation act_arg()
(see the definition in Section 8.A, lines 17–21) infers the fact act_arg(973,
0,nodec). The definition of the relation char_use_func includes the fact
char_use_func("isdigit,0"). Finally, the evaluation of the rule in lines 56–
57 infers that c is a character, encoded as char(nodec). N

Allocation size. Variable X is allocation size (denoted as alloc_size(X)) if at least
one of the following cases holds:

– X is passed to a function Func which is a memory allocation function, denoted
as alloc_arg(X) (line 63 in the listing below).
Specifically, the relation alloc_arg in lines 71–72 includes the expressions
passed to a memory allocation function (e.g. malloc(), calloc(), etc.)
as a parameter which corresponds to the size of the allocated memory in the
respective function.
The relation dyn_mem_size_func(FuncName,I), which we define in Sec-
tion 1.1.2, lines 179–186 denotes that FuncName is the name of the library
functions which allocates memory and takes the size of the memory to be
allocated as I-th parameter.

– A binary operator Expr is passed to a memory allocation function, and Expr is
a multiplication of X and a sizeof() expression SizeOfExpr (lines 65–67).

63 alloc_size(X) :− var(X), alloc_arg(X).
64
65 alloc_size(X) :− alloc_arg(Expr), bop_expr(Expr), opcode(Expr,"*"),
66 operand(Expr,X),var(X), operand(Expr,SizeOfExpr),
67 sizeof_expr(SizeOfExpr).
68
69 alloc_size(X) :− var(X), assigned(X,Y), alloc_size(Y).
70
71 alloc_arg(X) :− act_arg(Func,I,X), name(Func,FuncName),
72 dyn_mem_size_func(FuncName,I).

79

3. Definition and Computation of Variable Roles

(a) Control flow graph

1 var(408).
2 type(408,int).
3 name(408,"len").
4 var(413).
5 type(413,ptr).
6 name(413,"data").
7 assignment_stmt(404).
8 lhs_expr(404,413).
9 rhs_expr(404,414).

10 call_expr(414).

11 function(414,415).
12 param(414,0,416).
13 func_decl(415).
14 type(415,ptr).
15 name(415,"malloc").
16 bop_expr(416).
17 lhs_expr(416,417).
18 rhs_expr(416,408).
19 opcode(416,"*").
20 sizeof_expr(417).

(b) Datalog program

Figure 3.16 Example for allocation size. The statement data=malloc(
sizeof(int)*len); in lines 15–16 of code in Fig. 3.4a on page 51, translated to
Datalog.

Example 3.3.12. In Fig. 3.16a is shown the CFG of the statement data=malloc(
sizeof(int)*len); from the code in Fig. 3.4a on page 51, lines 15–16. The
corresponding logic program is shown in Fig. 3.16b.
The definition of the relation dyn_mem_size_func includes the fact
dyn_mem_size_func(malloc,0), and the evaluation of the rule in lines 71–72
infers the fact alloc_arg(nodelen).
The evaluation of the rule defining the relation operand (see Section 8.A, lines 10–
11) infers the facts operand(416,nodelen) and operand(416,417), where
the node 416 corresponds to the multiplication operation sizeof(int)*len,
and the node 417 corresponds to the expression sizeof(int).
Finally, the evaluation of the rule in lines 65–67 infers that the variable len is
allocation size, encoded as alloc_size(nodelen). N

Unresolved. Variable X is unresolved (denoted as unresolved(X)) if at least one of the
following conditions holds:

– The variable X is assigned an expression Expr which is included in the relation
unresolved_expr (line 73 in the listing below).

– X is passed by value to an external function Func. Specifically, there is an
expression Expr passed as an argument to a call to al function Func, s.t.
Expr is an address-of operation (encoded with the code "ADDR_OF"), of
which X is the operand (lines 75– 76). Recall that the fact ext_func(Func)
encodes that Func is an external function.

73 unresolved(X) :− var(X), assigned(X, Expr), unresolved_expr(Expr).
74
75 unresolved(X) :− var(X), act_arg(Func,I, Expr), ext_func(Func),
76 uop_expr(Expr), opcode(Expr,"ADDR_OF"), operand(Expr,X).
77

80

3.3. Definition of Roles

(a) Control flow graph

1 var(1).
2 type(1,int).
3 name(1,
4 "nondet_int").
5 func_decl(1).
6 var(9).
7 type(9,int).
8 name(9,
9 "nondetermined").

10 assignment_stmt(8).
11 lhs_expr(8,9).

12 rhs_expr(8,10).
13 call_expr(10).
14 function(10,1).
15 const_literal(17).
16 type(17,int).
17 name(17,"0").
18 bop_expr(14).
19 lhs_expr(14,9).
20 rhs_expr(14,17).
21 opcode(14,"!=").

(b) Datalog program

Figure 3.17 Example for unresolved. The statement nondetermined=nondet_int(); and
the condition expression nondetermined in lines 6 and 9 respectively of code in Fig. 3.3 on
page 49, translated to Datalog.

78 unresolved(X) :− var(X), assigned(X,Y), unresolved(Y).

An expression Expr is included in the relation unresolved_expr if Expr is a
call to an external function (line 79 in the listing below).

79 unresolved_expr(Expr) :− called(Func,Expr), ext_func(Func).

In particular, the relation called(Func,CallExpr) which we define in Sec-
tion 8.A, line 14 denotes that CallExpr is a call expression to the function Func.

Example 3.3.13. Consider the example in Fig. 3.17a, which shows the CFG of
the statement nondetermined=nondet_int(); and the condition expression
nondetermined in lines 6 and 9 respectively of code in Fig. 3.3 on page 49. The
corresponding logic program is shown in Fig. 3.17b.
The evaluation of the rule defining the relation ext_func (see Section 8.A on
page 163, line 89) infers the fact ext_func(nodenondet_int). Then, the evaluation
of the rule in line 79 infers the fact unresolved_expr(10), where the node 10
corresponds to the call of the function nondet_int(). Finally, the evaluation of
the rule in line 73 infers that the variable nondetermined is unresolved, encoded
as unresolved(nodenondetermined). N

Roles with Negation

Boolean. Variable X is boolean (denoted as bool(X), line 80 in the listing below) if X is
not a non-boolean variable, denoted with relation non_bool_var(X):

80 bool(X) :− var(X), not non_bool_var(X).

81

3. Definition and Computation of Variable Roles

Variable X is non-boolean if X is:

1. assigned a non-boolean variable (line 83), or
2. assigned an expression Expr which is not boolean (denoted as not bool_expr(

Expr), line 86; we define and explain this relation below), or
3. used in a binary or unary operation which is neither a logical operation (encoded

as not logical_opcode(Opcode)) nor equality comparison (encoded as
not eq_opcode(Opcode)) (lines 89–90, 93–94 respectively), or

4. compared for equality to a non-boolean variable (lines 97–98) or
5. compared for equality to an expression which is not boolean (lines 101–102).

81 % Case split for non-boolean variables
82 %1. X is assigned a non-boolean variable
83 non_bool_var(X) :− assigned(X, Y), var(Y), non_bool_var(Y).
84
85 %2. X is assigned a non-boolean expression
86 non_bool_var(X) :− assigned(X, Expr), not bool_expr(Expr).
87
88 %3. X is used in a non-boolean binary operator
89 non_bool_var(X) :− bop_expr(Expr), opcode(Expr,Opcode),
90 not logical_opcode(Opcode), not eq_opcode(Opcode), operand(Expr,X).

91
92 %4. X is used in a non-boolean unary operator
93 non_bool_var(X) :− uop_expr(Expr), opcode(Expr,Opcode),
94 not logical_opcode(Opcode), operand(Expr,X).
95
96 %5. X is compared to a non-boolean variable
97 non_bool_var(X) :− bop_expr(Expr), opcode(Expr,Opcode), eq_opcode(

Opcode),
98 operand(Expr,X), operand(Expr,Y), var(Y), non_bool_var(Y).
99

100 %6. X is compared to a non-boolean expression
101 non_bool_var(X) :− bop_expr(Expr), opcode(Expr,Opcode), eq_opcode(

Opcode),
102 operand(Expr,X), operand(Expr,NonBoolExpr), not bool_expr(

NonBoolExpr).

The relations logical_opcode, eq_opcode and bool_res_opcode are de-
fined in Section 8.A on page 163, lines 233–235, 215–216 and 238–240 respectively
and include the codes of logical operations, (dis-)equality operations and the
operations which return a boolean value respectively.
A boolean expression Expr (denoted as bool_expr(Expr), lines 105–114 in the
listing below) is one of the following:

– A constant literal 0 or 1 (lines 105–106),
– A boolean-valued binary or unary operation, e.g. ">", "!=", logical-or, etc.
(lines 109–114).

82

3.3. Definition of Roles

(a) Control flow graph

1 func_decl(1).
2 name(1,
3 "BitrateIndex").
4 body(1,2).
5 var(12).
6 type(12,int).
7 name(12,"found").
8 assignment_stmt(8).
9 lhs_expr(8,12).

10 rhs_expr(8,13).
11 const_literal(13).
12 val(13,"0").
13 type(13,int).
14 uop_expr(16).
15 opcode(16,"LNOT").
16 sub_expr(16,18).
17 bop_expr(18).

18 lhs_expr(18,12).
19 rhs_expr(18,19).
20 opcode(18,"!=").
21 const_literal(19).
22 val(19,"0").
23 type(19,int).
24 assignment_stmt(29).
25 lhs_expr(29,12).
26 rhs_expr(29,32).
27 const_literal(32).
28 val(32,"1").
29 type(32,int).
30 bop_expr(33).
31 lhs_expr(33,12).
32 rhs_expr(33,19).
33 opcode(33,"!=").

(b) Datalog program

Figure 3.18 Example for boolean. The statements found=0; and found=1; and expressions
!(found!=0) and found!=0 in lines 11, 15, 13 and 20 of the code in Fig. 3.1a on page 44
translated to Datalog.

103 % Case split for boolean expressions
104 %1. zero or unit constant
105 bool_expr(Expr) :− const_literal(Expr), val(Expr,"0").
106 bool_expr(Expr) :− const_literal(Expr), val(Expr,"1").
107
108 %2. boolean-valued binary operator
109 bool_expr(Expr) :− bop_expr(Expr), opcode(Expr,Opcode),
110 bool_res_opcode(Opcode).
111
112 %3. boolean-valued unary operator
113 bool_expr(Expr) :− uop_expr(Expr), opcode(Expr,Opcode),
114 bool_res_opcode(Opcode).

Example 3.3.14. In Fig. 3.18a is shown the CFG of the statements found=0;
and found=1; and expressions !(found!=0) and found!=0 in lines 11, 15, 13
and 20 of the code in Fig. 3.1a on page 44. We omit the statements of the function
BitrateIndex() which do not use the variable found, and denote the ommited
part of the code with dots in node 2. The corresponding logic program is shown in
Fig. 3.18b.

In this example, the evaluation of the rules in lines 105 infers the fact bool_expr(13),
where the node 13 corresponds to the constant literal 0. Similarly, the facts
bool_expr(19) and bool_expr(32) are inferred.

Then, the evaluation of the rules in lines 83–102 infers that the transitive closure of
the relation non_bool_var does not contain the fact non_bool_var(nodefound).

83

3. Definition and Computation of Variable Roles

Finally, the evaluation of the rule in line 80 infers that found is boolean, encoded
with the fact bool(nodefound). N

Constant assigned. Variable X is constant-assigned (denoted as const_assign(X),
line 115 in the listing below), if X is not non-constant assigned (denoted as
non_const_assign_var(X)):

115 const_assign(X) :− var(X), not non_const_assign_var(X).

A variable X is non-constant assigned (line 116) if X is assigned an expression which
is not a constant expression:

116 non_const_assign_var(X) :− assigned(X,Expr), not const_expr(Expr).

A constant expression Expr (denoted as const_expr(Expr)) is either a constant
literal (line 118), or a binary or unary operation taking constant expressions as
operands (lines 120–121 and 123 respectively):

117 % constant expressions
118 const_expr(Expr) :− const_literal(Expr).
119
120 const_expr(Expr) :− bop_expr(Expr), lhs_expr(Expr,Op1),
121 const_expr(Op1), rhs_expr(Expr,Op2), const_expr(Op2).
122
123 const_expr(Expr) :− uop_expr(Expr), operand(Expr,Op), const_expr(Op).

Example 3.3.15. Consider again the example in Fig. 3.18.
The evaluation of the rule in line 118 infers the facts const_expr(13),
const_expr(32) and const_expr(19) (recall that the nodes 13, 32 and
19 correspond to the constant literals 0, 1 and 0).
Then, the evaluation of the rule in line 116 infers that the transitive closure of the re-
lation non_const_assign_var does not include the fact
non_const_assign_var(nodefound).
Finally, the evaluation of the rule in line 115 infers that the variable found is
constant assigned, encoded as const_assign(nodefound). N

Enumeration. Variable X is enumeration (denoted as enum(X), line 124) if X is constant
assigned and X is not compared to non-constant expressions (encoded as not
non_const_compar(X)):

124 enum(X) :− const_assign(X), not non_const_compar(X).

Specificallly, the relation non_const_compar (lines 125–127) includes a variable
X if X is compared to an expression Expr which is not a constant expression:

84

3.3. Definition of Roles

(a) Control flow graph

1 func_decl(1).
2 name(1,
3 "BitrateIndex").
4 body(1,2).
5 param(1,0,3).
6 var(3).
7 type(3,int).
8 name(3,"bRate").
9 var(25).

10 type(25,int).
11 name(25,"index").
12 bop_expr(28).

13 opcode(28,"==").
14 lhs_expr(28,30).
15 rhs_expr(28,3).
16 array_expr(30).
17 arrayind_expr(30,25).
18 arrayptr_expr(30,31).
19 var(31).
20 type(31,32).
21 pointer_type(32).
22 name(31,
23 "bitrate_table").

(b) Datalog program

Figure 3.19 Example for syntactic constant. The expression bitrate_table[
index]==bRate in lines 14 of code in Fig. 3.1a on page 44 translated to Datalog.

125 non_const_compar(X) :− bop_expr(Expr), opcode(Expr,Opcode),
126 compar_opcode(Opcode), operand(Expr,X), operand(Expr,Op), X!=Op,
127 not const_expr(Op).

Example 3.3.16. Consider again the example in Fig. 3.18. We have already
demonstrated that for this example the fact const_assign(nodefound) is in-
ferred.

Then, the evaluation of the rule in lines 125–127 infers that the transitive closure of
the relation non_const_compar does not include the fact
non_const_compar(nodefound).

Finally, the evaluation of the rule in line 124 infers that the variable found is
enumeration, encoded as enum(nodefound). N

Syntactic constant. Variable X is syntactic constant (denoted as synt_const(X), line 128)
if X is not modified (encoded as not modified(X)):

128 synt_const(X) :− var(X), not modified(X).

Variable X is modified, if either X is directly assigned some expression (line 129) or
there is an address-of operation of which X is an operand (line 130):

129 modified(X) :− assigned(X,Expr).
130 modified(X) :− uop_expr(Expr), opcode(Expr,"ADDR_OF"), operand(Op, X).

85

3. Definition and Computation of Variable Roles

Example 3.3.17. Consider the example in Fig. 3.19a, which shows the CFG of the
expression bitrate_table[index]==bRate in lines 14 of code in Fig. 3.1a on
page 44. This expression is the only expression in the function BitrateIndex()
which uses the variable bRate. We omit the remaining code and denote it with
dots. The corresponding logic program is shown in Fig. 3.19b.
In this example, the evaluation of the rules in lines 129–130 infers that the transitive
closure of the relation modified does not include the fact modified(nodebRate).
Then, the evaluation of the rule in line 128 infers that the variable bRate is
syntactic constant, encoded as synt_const(nodebRate). N

Counter. Variable X is counter (denoted as counter(X), line 131 in the listing below),
if X is not a non-counter variable (denoted as non_counter(X)):

131 counter(X) :− var(X), not non_counter(X).

A variable X is non-counter (lines 132–133) if X is assigned an expression which is
neither a constant expression (denoted as const_expr(Expr), see definition in
lines 118–123), nor a counter expression (denoted as cnt_expr(Expr,X)):

132 non_counter(X) :− assigned(X,Expr), not const_expr(Expr),
133 not cnt_expr(Expr,X).

A counter expression is one of the following:

– A binary addition operation, an operand of which is X (line 134);
– A binary subtraction operation, the left-hand side operand of which is X
(line 135).

134 cnt_expr(Expr,X) :− bop_expr(Expr), opcode(Expr,"+"), operand(Expr,X).
135 cnt_expr(Expr,X) :− bop_expr(Expr), opcode(Expr,"-"),lhs_expr(Expr,X).

Example 3.3.18. Consider again the example in Fig. 3.11 on page 72.
The evaluation of the rule in lines 134 infers the fact cnt_expr(70,nodei), and
the evaluation of the rule in lines 132–133 infers that the transitive closure of the
relation non_counter does not include the fact non_counter(nodei). Finally,
the evaluation of the rule in line 131 infers that the variable i is counter, encoded
as counter(nodei). N

Linear. Variable X is linear (denoted as linear(X), line 136) if X is not a non-linear
variable:

136 linear(X) :− var(X), not non_lin_var(X).

Variable X is non-linear, denoted with term non_lin_var(X) if X is

86

3.3. Definition of Roles

1. assigned a non-linear variable (line 139), or
2. assigned the result of a non-linear-shape expression Expr (line 142), denoted as

not linear_shape(Expr), or
3. assigned the result of a linear-shape expression Expr which uses a variable Y as

an operand (denoted as linear_expr_subvar(Expr,Y)), s.t. Y is non-linear
(lines 146–147).

137 % Case split for non-linear variables
138 %1. X is assigned a non-linear variable
139 non_lin_var(X) :− assigned(X,Y), var(Y), non_lin_var(Y).
140
141 %2. X is assigned the result of a non-linear operation
142 non_lin_var(X) :− assigned(X,Expr), not linear_shape(Expr).
143
144 %3. X is assigned the result of a linear operation
145 % in which non-linear variables are used
146 non_lin_var(X) :− assigned(X,Expr), linear_shape(Expr),
147 linear_expr_subvar(Expr,Y), non_lin_var(Y).

The expression Expr is linear-shape, denoted as linear_shape(Expr) if Expr
is

1. a constant expression (line 150), or
2. a variable (line 153), or
3. an addition or subtraction operation (denoted as add_opcode(Opcode)), the

operands of which are linear expressions (lines 156–158), or
4. a multiplication operation, one operand of which is a constant literal, and the

other one is a linear-shape expression (lines 162–164), or
5. an unary plus or unary minus operation (denoted as uadd_opcode(Opcode)),

the operand of which is a linear expression (lines 167–168):

148 % Recursive definition of a linear-shape expression
149 %1. Constant
150 linear_shape(Expr) :− const_expr(Expr).
151
152 %2. Variable
153 linear_shape(X) :− var(X).
154
155 %3. Binary plus or minus, the operands of which are linear operations
156 linear_shape(Expr) :− bop_expr(Expr), opcode(Expr, Opcode),
157 add_opcode(Opcode), lhs_expr(Expr,LhsExpr), linear_shape(LhsExpr),
158 rhs_expr(Expr,RhsExpr), linear_shape(RhsExpr).
159
160 %4. Multiplication, one operand of which is a constant, and the other

one
161 % is a linear operation
162 linear_shape(Expr) :− bop_expr(Expr), opcode(Expr, Opcode),

87

3. Definition and Computation of Variable Roles

163 Opcode="*", operand(Expr,Op1), const_literal(Op1),
164 operand(Expr,Op2), Op1!=Op2, linear_shape(Op2).
165
166 %5. Unary plus or minus, the operand of which is a linear operation
167 linear_shape(Expr) :− uop_expr(Expr), opcode(Expr, Opcode),
168 uadd_opcode(Opcode), operand(Expr,Op), linear_shape(Op).

To check that a variable X is used in a linear expression Expr, we use a recursively
defined binary relation linear_expr_subvar. Specifically, variable X is used in
a linear expression Expr if one of the following cases holds:

– Expr is X (line 171);

– Expr is a binary or unary operator, which has an operand Op and variable X
is used in Op (lines 174–175 and 178–179 respectively).

169 % Recursive definition of a linear operation Expr with variable X
170 %1. Variable (Expr=X)
171 linear_expr_subvar(X,X) :− var(X).
172
173 %2. A binary linear operation with operand Op which contains X
174 linear_expr_subvar(Expr,X) :− linear_shape(Expr), bop_expr(Expr),
175 operand(Expr,Op), linear_expr_subvar(Op,X).
176
177 %3. An unary linear operation with operand Op which contains X
178 linear_expr_subvar(Expr,X) :− linear_shape(Expr), uop_expr(Expr),
179 operand(Expr,Op), linear_expr_subvar(Op,X).

Example 3.3.19. Consider again the example in Fig. 3.11 on page 72.

The evaluation of the rule in line 171 infers the fact linear_expr_subvar(nodei,
nodei), and the evaluation of the rule in lines 174–175 infers the fact
linear_expr_subvar(70,nodei) (recall that the node 70 corresponds to the
addition operation i+1).

Then, the evaluation of the rule in line 118 infers the fact const_expr(71),
where the node 71 corresponds to the constant literal 1).

Next, the evaluation of the rules in lines 150 and 153 infers the facts
linear_shape(71) and linear_shape(nodei) respectively. Using these two
facts, the evaluation of the rule in lines 162–164 infers the fact linear_shape(70),
and the evaluation of the rules in lines 139–147 infers that the transitive closure
of the relation non_lin_var does not include the fact non_lin_var(nodei).
Finally, the evaluation of the rule in line 136 infers that the variable i is linear,
encoded as linear(nodei). N

88

3.3. Definition of Roles

3.3.2 Definition of Roles for a Portfolio Solver for Software
Verification

We now give the definitions of the roles for the portfolio solver. We note that all the
roles for the portfolio solver are defined without negation.

Roles without Negation

Thread descriptor. Variable X is thread descriptor, denoted as thread_descr(X), if
one of the following conditions hold:

– X is passed by address as I-th argument to a function which initialises its
I-th argument with a thread descriptor (denoted as thread_descr_def_
func(FuncName,I), lines 180–182 in the listing below), e.g. the function
pthread_create();

– X is assigned the result of a function which returns a thread descriptor (denoted
as thread_descr_def_ func(FuncName,fres), lines 184–185), e.g. the
function pthread_self();

– X is passed as I-th argument to a function which takes a thread descriptor
as I-th argument (denoted as thread_descr_use_func(FuncName,I),
lines 187–188), e.g. the function pthread_join().

180 thread_descr(X) :− var(X), act_arg(Func,I,Expr), name(Func,FuncName),
181 thread_descr_def_func(FuncName,I), uop_expr(Expr),
182 opcode(Expr,"ADDR_OF"), operand(Expr,X).
183
184 thread_descr(X) :− var(X), assigned_call(X,Func), name(Func,FuncName),
185 thread_descr_def_func(FuncName,fres).
186
187 thread_descr(X) :− var(X), act_arg(Func,I,X), name(Func,FuncName),
188 thread_descr_use_func(FuncName,I).
189
190 thread_descr(X) :− var(X), assigned(X,Y), thread_descr(Y).

We define the relations thread_descr_def_func and thread_descr_use_
func in Section 8.A on page 163 in lines 150–151 and 141–147 respectively.

Example 3.3.20. Consider the example in Fig. 3.20a, which shows the CFG of the
expression pthread_create(&t,0,thr,data) in Fig. 3.4a on page 51, line 19.
The corresponding logic program is given in Fig. 3.20b.
The definition of the relation thread_descr_def_func includes the fact
thread_descr_def_func("pthread_create",0). The evaluation of the
rule defining the relation act_arg (see Section 8.A, lines 17–21) infers the fact
act_arg(nodepthread_create,0,420), where the node 420 corresponds to the
address-of operator &t. Then, the evaluation of the rule defining the relation
operand (in Section 8.A, lines 10–11) infers the fact operand(420,nodet).

89

3. Definition and Computation of Variable Roles

(a) Control flow graph

1 func_decl(117).
2 type(117,int).
3 name(117,
4 "pthread_create").
5 func_decl(398).
6 type(398,ptr).
7 name(398,"thr").
8 var(413).
9 type(413,ptr).

10 name(413,"data").
11 call_expr(419).
12 function(419,117).
13 param(419,0,420).

14 param(419,1,421).
15 param(419,2,398).
16 param(419,3,413).
17 const_literal(421).
18 type(421,int).
19 val(421,"0").
20 var(422).
21 type(422,int).
22 name(422,"t").
23 uop_expr(420).
24 sub_expr(420,422).
25 opcode(420,"ADDR_OF").

(b) Datalog program

Figure 3.20 Example for thread descriptor. The expression pthread_create(&t,0,thr,
data) in line 19 of code in Fig. 3.4a on page 51 translated to Datalog.

(a) Graphical representation of the logic relations.

1 pointer_type(412).
2 points_to_type(412,int).
3 var(413).
4 type(413,412).
5 name(413,"data").
6 var(408).
7 type(408,int).
8 name(408,"len").

(b) Logic program.

Figure 3.21 Example for scalar and pointer to scalar. The definitions int len and int*
data in lines 10 and 15 of code in Fig. 3.4a on page 51 translated to Datalog.

Finally, using these facts, the evaluation of the rule in lines 180–182 infers that the
variable t is thread descriptor, encoded as thread_descr(nodet). N

Integral. Variable X is integral (denoted as scalar_int(X), line 191 in the listing
below) if X is of integral type.

191 scalar_int(X) :− var(X), type(X,Type), integral_type(Type).

Specifically, the relation integral_type(Type), defined in Section 8.A, lines 275–
276, encodes that the type Type is an integral type.

Example 3.3.21. Consider the example in Fig. 3.21b, which shows the translation
to a logic program of variable definitions int len and int* data in Fig. 3.4a
on page 51, lines 10 and 15 respectively.

90

3.3. Definition of Roles

We show a graphical representation of the logic relations in Fig. 3.21a. Specifically,
we depict the relations var, pointer_type and the constant term int as nodes,
and the relations type and points_to_type as edges.
For this example, the evaluation of the rule in line 191 infers that the variable len
is integral, encoded as scalar_int(nodelen). N

Scalar. Variable X is scalar (denoted as scalar(X), line 192 in the listing below) if X
is of scalar (i.e. integral or floating-point) type.

192 scalar(X) :− var(X), type(X,Type), scalar_type(Type).

Specifically, the relation scalar_type(Type), which we define in Section 8.A,
lines 282–283, encodes that Type is an integer or floating-point type.

Example 3.3.22. For the example in Fig. 3.21, the evaluation of the rule in
line 192 infers that the variable len is scalar, encoded as scalar(nodelen). N

Pointer to scalar. Variable X is pointer to scalar (denoted as ptr_scalar(X), lines 193–
194 in the listing below) if the type of X is pointer to a scalar type.

193 ptr_scalar(X) :− var(X), type(X,PtrType), pointer_type(PtrType),
194 points_to_type(PtrType,ScalarType), scalar_type(ScalarType).

Specifically, the term pointer_type(PtrType) denotes that PtrType is a
pointer type and the term points_to_type(PtrType,ScalarType) denotes
that the pointer type PtrType points to the type ScalarType.

Example 3.3.23. For the program in Fig. 3.21, the evaluation of the rule in
lines 193–194 infers that the variable data is scalar pointer, encoded as
ptr_scalar(nodedata). N

Pointer to structure. Variable X is pointer to structure (denoted as ptr_struct(X),
lines 195–196 in the listing below) if the type of X is a pointer to structure.

195 ptr_struct(X) :− var(X), type(X,PtrType), pointer_type(PtrType),
196 points_to_type(PtrType,StructType), structure_type(StructType).

Specifically, the term structure_type(StructType) encodes that
StructType is a structure type.

Example 3.3.24. Consider the example in Fig. 3.22a, which shows the CFG of
the definitions of the structures sl_item and sl and the variable skip_list in
Fig. 3.4b on page 51. The corresponding logic program is given in Fig. 3.22b.
For this program, the evaluation of the rule in lines 195–196 infers that the vari-
able skip_list and structure fields sl_item.n1, sl_item.n2, sl.head and

91

3. Definition and Computation of Variable Roles

(a) Graphical representation of the logic relations.

1 structure_type(332).
2 name(332,"sl_item").
3 pointer_type(333).
4 points_to_type(333,332).
5 structure_type(334).
6 name(334,"sl").
7 pointer_type(335).
8 points_to_type(335,334).
9 var(338).

10 field(334,338).
11 type(338,333)
12 name(338,"head").
13 var(341).
14 field(334,341).
15 type(341,333).
16 name(341,"tail").
17 var(344).
18 field(332,344).
19 type(344,333).
20 name(344,"n1").
21 var(346).
22 field(332,346).
23 type(346,333).
24 name(346,"n2").
25 var(348).
26 type(348,335).
27 name(348,"skip_list").

(b) Logic program.

Figure 3.22 Example for pointer to structure, pointer to non-flat structure, linked list, multi-
linked list. The definitions of the structures sl_item and sl and of the variable skip_list of
the code in Fig. 3.4b on page 51 translated to Datalog.

sl.tail have role pointer to structure, encoded as ptr_struct(nodeskip_list),
ptr_struct(noden1), ptr_struct(noden2), ptr_struct(nodehead) and
ptr_struct(nodetail) respectively. N

Pointer to non-flat structure. Variable X is pointer to non-flat structure (denoted as
ptr_non_flat_struct(X), lines 197–200 in the listing below) if the type of X
is pointer to type StructType, s.t. StructType is a structure with at least one
pointer field.

197 ptr_non_flat_struct(X):- var(X), type(X,PtrType),
198 pointer_type(PtrType), points_to_type(PtrType,StructType),
199 structure_type(StructType), field(StructType,Field),
200 type(Field,FieldPtrType), pointer_type(FieldPtrType).

92

3.3. Definition of Roles

Specifically, the term field(StructType,Field) encodes that structure
StructType has a field Field.

Example 3.3.25. Consider again the example in Fig. 3.22.
For this program, the evaluation of the rule in lines 197–200 infers that the
variable skip_list and structure fields sl_item.n1, sl_item.n2, sl.head
and sl.tail have role pointer to non-flat structure, encoded as ptr_non_flat_
struct(nodeskip_list), ptr_non_flat_struct(noden1), ptr_non_flat_
struct(noden2), ptr_non_flat_struct(nodehead) and ptr_non_flat_
struct(nodetail) respectively. N

Linked list. Variable X is linked list (denoted as linked_list(X), lines 201–203 in the
listing below) if the type of X is pointer to a recursively defined structure.

201 linked_list(X) :− var(X), type(X,PtrType), pointer_type(PtrType),
202 points_to_type(PtrType,StructType), structure_type(StructType),
203 field(StructType,Field), type(Field,PtrType).

Example 3.3.26. Consider the program in Fig. 3.22.
For this program, the evaluation of the rule in lines 197–200 infers that the struc-
ture fields sl_item.n1, sl_item.n2, sl.head and sl.tail have role linked
list, encoded as linked_list(noden1), linked_list(noden2), linked_
list(nodehead) and linked_list(nodetail) respectively. N

Multi-linked list. Variable X is multi-linked list (denoted as multi_linked_list(X),
lines 204–207 in the listing below) if the type PtrType of X is pointer to a structure
type StructType, s.t. StructType has at least two fields of type pointing to
PtrType.

204 multi_linked_list(X):− var(X), type(X,PtrType), pointer_type(PtrType),
205 points_to_type(PtrType,StructType), structure_type(StructType),
206 field(StructType,Field1), type(Field1,PtrType),
207 field(StructType,Field2), type(Field2,PtrType), Field1!=Field2.

Example 3.3.27. Consider the program in Fig. 3.22.
For this program, the evaluation of the rule in lines 204–207 infers that the
structure fields sl_item.n1, sl_item.n2, sl.head and sl.tail have role
multi-linked list, encoded as multi_linked_list(noden1), multi_linked_
list(noden2), multi_linked_list(nodehead) and multi_linked_
list(nodetail) respectively. N

Pointer. Variable X is pointer (denoted as ptr(X), line 208 in the listing below) if the
type PtrType of X is pointer type.

208 ptr(X) :− var(X), type(X,PtrType), pointer_type(PtrType).

93

3. Definition and Computation of Variable Roles

Example 3.3.28. Consider the program in Fig. 3.22.
For this program, the evaluation of the rule in lines 195–196 infers that the vari-
able skip_list and the structure fields sl_item.n1, sl_item.n2, sl.head
and sl.tail have role pointer, encoded as ptr(nodeskip_list), ptr(noden1),
ptr(noden2), ptr(nodehead) and ptr(nodetail) respectively. N

Dynamic memory pointer. Variable X is dynamic memory pointer (denoted as dyn_mem_
ptr(X)), if at least one of the following conditions holds:

– X is assigned the result of a call to a memory allocation function Func, e.g.
malloc(), calloc() etc (lines 209–210 in the listing below).
We denote such functions with the relation dyn_mem_def_func(FuncName,
fres), which we define in Section 8.A, lines 167–174;

– X is passed as I-th parameter to a standard memory manipulation function
which takes as I-th parameter a pointer to dynamically allocated memory, e.g.
memory deallocation function free() (lines 212–213 in the listing below).
We denote such functions with the relation dyn_mem_use_func(
FuncName,I), which we define in Section 8.A, lines 155–164.

209 dyn_mem_ptr(X) :− var(X), assigned_call(X,Func), name(Func,FuncName),
210 dyn_mem_def_func(FuncName,fres).
211
212 dyn_mem_ptr(X) :− var(X), act_arg(Func,I,X), name(Func,FuncName),
213 dyn_mem_use_func(FuncName,I).
214
215 dyn_mem_ptr(X) :− var(X), assigned(X,Y), dyn_mem_ptr(Y).

Example 3.3.29. Consider the program in Fig. 3.16 on page 80.
For this program, the evaluation of the rule defining the relation assigned_call
in Section. 8.A on page 163, lines 24–25 infers the fact assigned_call(nodedata,
nodemalloc). Then, the definition of the relation dyn_mem_def_func contains the
fact
dyn_mem_def_func("malloc",fres).
Finally, the evaluation of the rule in lines 209–210 infers that the variable data is
dynamic memory pointer, encoded as dyn_mem_ptr(nodedata). N

Floating point. Variable X is floating point (denoted as scalar_float(X), line 216 in
the listing below) if the type Type of X is a floating-point type.

216 scalar_float(X) :− var(X), type(X,Type), floating_point_type(Type).

Specifically, the relation floating_point_type(Type), which we define in
Section 8.A, line 279, encodes that the type Type is a floating-point type.

94

3.3. Definition of Roles

(a) Graphical representation of the logic relations.

1 var(3).
2 type(3,float).
3 name(3,"n_2_10").
4 var(10).
5 type(10,float).
6 name(10,"f").

(b) Datalog program

Figure 3.23 Example for floating point. The variable definitions float n and float f in
lines 1 and 3 respectively of code in Fig. 3.5b on page 54 translated to Datalog.

Example 3.3.30. Consider example in Fig. 3.23a, which shows the graphical
representation of the logic relation of the variable definitions float n and float
f in lines 1 and 3 respectively of code in Fig. 3.5b on page 54.

The definition of the relation floating_point includes the fact
floating_point_type(float). Then, for this program the evaluation of
the rule in line 216 infers that the variables n and f have the role floating point,
encoded with the facts scalar_float(noden) and scalar_float(nodef)
respectively. N

Recursive function result. We will define the role recursive function result in Section 3.4.4,
after we describe an extension of our framework to inter-procedural analysis.

3.3.3 Definition of Roles for Heuristics in Predicate Abstraction

Finally, we give the definitions of the roles for heuristics in predicate abstraction. We
again split the definitions to two groups depending on whether a role is defined using
negation.

Roles without Negation

Extremum. Variable X is extremum (denoted as extremum(X)), if the following condi-
tions hold:

– There is an if statement IfStmt, the condition Cond of which is the opera-
tor greater-than > or less-than < (encoded with the relation strict_rel_
opcode(Opcode), which we define in Section 8.A on page 163, lines 211–
212);

– An operand of IfStmt is a variable Y;

– There is an assignment statement AsgStmt which is a sub-statement of
IfStmt and X is assigned Y in AsgStmt (lines 217–220);

95

3. Definition and Computation of Variable Roles

(a) Control flow graph

1 var(26).
2 type(26,int).
3 name(26,"max1").
4 var(28).
5 type(28,int).
6 name(28,"max3").
7 if_stmt(54).
8 condition(54,55).

9 then_stmt(54,56).
10 bop_expr(55).
11 lhs_expr(55,28).
12 rhs_expr(55,26).
13 opcode(55,">").
14 assignment_stmt(56).
15 lhs_expr(56,26).
16 rhs_expr(56,28).

(b) Datalog program

Figure 3.24 Example for extremum. Statement if (max3>max1) max1=max3; of code in
Fig. 3.6a on page 57, line 17 translated to Datalog.

217 extremum(X) :− if_stmt(IfStmt), condition(IfStmt,Cond),
218 bop_expr(Cond), opcode(Cond,Opcode), strict_rel_opcode(Opcode),
219 var(Y), operand(Cond,Y), assignment_stmt(AsgStmt),
220 sub_stmt(IfStmt,AsgStmt), lhs_expr(AsgStmt,X), rhs_expr(AsgStmt,Y).
221
222 extremum(X) :− var(X), assigned(X,Y), extremum(Y).

We define the role extremum without parameters (which could be, e.g., a pair
of values of which an extremum is taken), since in the heuristic for Eldarica in
which we use this role, we do not need this information (see Section 5.2).

Example 3.3.31. Consider the example in Fig. 3.24a, which shows the CFG of
the statement if (max3>max1) max1=max3; of code in Fig. 3.6a, line 17. The
corresponding logic program is given in Fig. 3.24b.
The evaluation of the rule defining the relation operand (see Section 8.A on
page 163, lines 10–11) infers the fact operand(55,nodemax1), where the node
55 corresponds to the comparison operation max1>max3. Then, the evaluation
of the rule defining the relation sub_stmt (see Section 8.A, lines 59–74) infers
the fact sub_stmt(54,56), where the node 54 corresponds to the if statement,
and the node 56 corresponds to the assignment statement max1=max3.
Using these facts, the evaluation of the rule in lines 217–220 infers that the variable
max3 is extremum, encoded as extremum(nodemax3). N

Local counter. Similarly to loop counter and loop bound, role local counter is defined in
the scope of a loop WhileStmt.
Variable X is local counter in WhileStmt (denoted as local_cnt(X,WhileStmt))
if at least one of the following conditions holds:

– There is a loop statement WhileStmt and an assignment statement AsgStmt,
s.t. AsgStmt is a sub-statement of WhileStmt; and in AsgStmt X is
assigned an expression Expr, and Expr is the sum or the difference of X and
some other expression.

96

3.3. Definition of Roles

(a) Control flow graph

1 var(10).
2 type(10,int).
3 name(10,"n").
4 var(18).
5 type(18,int).
6 name(18,"i").
7 var(16).
8 type(16,int).
9 name(16,"k").

10 while_stmt(12).
11 condition(12,20).
12 body(12,21).
13 bop_expr(20).
14 lhs_expr(20,18).
15 rhs_expr(20,10).
16 opcode(20,"<").
17 sequence_stmt(21).
18 stmt1(21,28).

19 stmt2(21,24).
20 assignment_stmt(28).
21 lhs_expr(28,18).
22 rhs_expr(28,33).
23 const_literal(34).
24 type(34,int).
25 val(34,"1").
26 bop_expr(33).
27 lhs_expr(33,18).
28 rhs_expr(33,34).
29 opcode(33,"+").
30 assignment_stmt(24).
31 lhs_expr(24,16).
32 rhs_expr(24,36).
33 bop_expr(36).
34 lhs_expr(36,16).
35 rhs_expr(36,34).
36 opcode(36,"+").

(b) Datalog program

Figure 3.25 Example for local counter. The statement for (k=0, i=0; i<n; i++,
k++); of code in Fig. 1.2, line 8, translated to Datalog.

The last fact is encoded with the term cnt_expr(Expr,X), recall the defi-
nition of the relation cnt_expr in Section 3.3.1 on page 86, lines 134–135.

– There is an assignment statement AsgStmt which is a sub-statement of the
loop statement WhileStmt, s.t. in AsgStmt the variable X is assigned a
variable Y which is a local counter in WhileStmt.

223 local_cnt(X,WhileStmt) :− var(X), while_stmt(WhileStmt),
224 assignment_stmt(AsgStmt), sub_stmt(WhileStmt,AsgStmt),
225 lhs_expr(AsgStmt,X), rhs_expr(AsgStmt,Expr), cnt_expr(Expr,X).
226
227 local_cnt(X,WhileStmt) :− var(X), assignment_stmt(AsgStmt),
228 sub_stmt(WhileStmt,AsgStmt), lhs_expr(AsgStmt,X),
229 rhs_expr(AsgStmt,Y), local_cnt(Y,WhileStmt).

The parameter WhileStmt of the relation local_cnt is needed for two reasons.
First, we use the parameter in the rule in lines 227–229 to compute the transitive
closure of local counters, similarly to loop_counter and loop_bound. Second,
we use the parameter in a heuristic for Eldarica to define a predicate template
for two local counters located in the same loop (see Section 5.2).

Example 3.3.32. Consider the example in Fig. 3.25a, which shows the CFG of
the statement for (k=0, i=0; i<n; i++, k++); of code in Fig. 1.2, line 8.
In particular, the statement is rewritten by our algorithm to the sequence of
statements k=0; i=0; while(i<n) {i=i+1; k=k+1;}. The corresponding
logic program is shown in Fig. 3.25b.

97

3. Definition and Computation of Variable Roles

For this program, the evaluation of the rule defining the relation sub_stmt in
Section 8.A, lines 59–59 infers the fact sub_stmt(12, 28), where the node 12
corresponds to the loop statement, and the node 28 – to the assignment statement
i=i+1.
Then, the evaluation of the rule defining the relation cnt_expr infers the fact
cnt_expr(33,nodei), where the node 33 corresponds to the expression i+1.
Finally, the evaluation of the rule in lines 223–225 infers that the variable i is local
counter, encoded as local_cnt(nodei).
Using similar reasoning, the evaluation of the rule in lines 223–225 infers that the
variable k is local counter, encoded as local_cnt(nodek). N

Parity variable. Variable X is parity variable with constant literal parameter Num (denoted
as parity(X,Num)) if at least one of the following conditions holds:

– There is there is a binary remainder operation Expr, s.t. X is an operand
of Expr, and the other operand of Expr is Num (lines 230–231 in the listing
below);
Specifically, the operation code Opcode of the binary remainder operation is
encoded as opcode(Opcode,"REM").

– There is a while statement WhileStmt and an assignment statement
AsgStmt, s.t. in AsgStmt the variable X is assigned an expression Expr, and
Expr is either a sum or a difference of X and Num, encoded as inc_expr(Expr,
X,Num) (lines 233–235).

230 parity(X,Num) :− var(X), const_literal(Num), bop_expr(Expr),
231 opcode(Expr,"REM"), operand(Expr,X), operand(Expr,Num).
232
233 parity(X,Num) :− var(X), const_literal(Num), while_stmt(WhileStmt),
234 assignment_stmt(AsgStmt), sub_stmt(WhileStmt,AsgStmt),
235 lhs_expr(AsgStmt,X), rhs_expr(AsgStmt,Expr), inc_expr(Expr,X,Num).
236
237 parity(X, Num) :− var(X), assigned(X,Y), parity(Y,Num).

The term inc_expr(Expr,X,IncExpr) is derived if one of the following cases
holds:

– The expression Expr is a binary addition operation, of which the variable X
and the expression IncExpr are distinct operands (lines 238–239);

– Expr is a binary subtraction operation, of which the variable X is the left-hand
side expression, and the expression IncExpr is the right-hand side expression
(lines 241–242).

238 inc_expr(Expr,X,IncExpr) :− bop_expr(Expr), opcode(Expr,"+"),
239 operand(Expr,X), operand(Expr,IncExpr), X!=IncExpr.

98

3.3. Definition of Roles

(a) Control flow graph

1 sequence_stmt(5).
2 stmt1(5,7).
3 stmt2(5,6).
4 var(8).
5 type(8,int).
6 name(8,"i").
7 const_literal(9).
8 type(9,int).
9 val(9,"0").

10 assignment_stmt(7).
11 lhs_expr(7,8).
12 rhs_expr(7,9).
13 while_stmt(6).
14 condition(6,10).
15 body(6,11).
16 const_literal(12).
17 type(12,int).
18 val(12,"1000000").

19 bop_expr(10).
20 lhs_expr(10,8).
21 rhs_expr(10,12).
22 opcode(10,"<").
23 sequence_stmt(11).
24 stmt1(11,14).
25 stmt2(11,13).
26 assignment_stmt(13).
27 lhs_expr(13,8).
28 rhs_expr(13,15).
29 const_literal(16).
30 type(16,int).
31 val(16,"2").
32 bop_expr(15).
33 lhs_expr(15,8).
34 rhs_expr(15,16).
35 opcode(15,"+").

(b) Datalog program

Figure 3.26 Example for parity. The statement for (i=0; i<1000000; i+=2); of code
in Fig. 3.6c on page 57, line 5, translated to Datalog.

240
241 inc_expr(Expr,X,IncExpr) :− bop_expr(Expr), opcode(Expr,"-"),
242 lhs_expr(Expr,X), rhs_expr(Expr,IncExpr).

Example 3.3.33. Consider the example in Fig. 3.26a, which shows the CFG of
the statement for (i=0; i<1000000; i+=2); of code in Fig. 3.6c on page 57,
line 5. The corresponding logic program is given in Fig. 3.26b.
For this program, the evaluation of the rule defining the relation sub_stmt
(Section 8.A, lines 59–59 infers the fact sub_stmt(6, 13), where the node 6
corresponds to the loop statement, and the node 13 – to the assignment statement
i=i+2.
Then, the evaluation of the rule defining the relation sub_stmt (Section 8.A,
lines 59–59 infers the fact sub_stmt(6, 13), where the node 6 corresponds to
the loop statement, and the node 13 – to the assignment statement i=i+2.
Finally, using these facts, the evaluation of the rule in lines 233–235 infers that the
variable i is parity variable with parameter 2, encoded as parity(nodei,16). N

Assertion parameter. Variable X is assertion parameter of expression Expr (denoted
as assert_param(X,Expr), lines 243–244) if there is an assertion condition
Expr, encoded as assert_cond(Expr), which has a literal Lit (denoted as
literal(Expr,Lit), s.t. X is atom of Lit (denoted as atom(Expr,X)).

243 assert_param(X,Expr) :− var(X), assert_cond(Expr),

99

3. Definition and Computation of Variable Roles

(a) Control flow graph

1 var(31).
2 type(31,int).
3 name(31,"i").
4 var(33).
5 type(33,int).
6 name(33,"cnt").
7 if_stmt(47).
8 condition(47,90).
9 then_stmt(47,91).

10 const_literal(92).
11 type(92,int).
12 val(92,"1").
13 bop_expr(90).
14 lhs_expr(90,31).
15 rhs_expr(90,92).

16 opcode(90,">=").
17 func_decl(93).
18 type(93,int).
19 name(93,"assert").
20 call_expr(91).
21 function(91,93).
22 param(91,0,94).
23 const_literal(95).
24 type(95,int).
25 val(95,"1").
26 bop_expr(94).
27 lhs_expr(94,33).
28 rhs_expr(94,95).
29 opcode(94,"==").

(b) Datalog program

Figure 3.27 Example for assertion condition. The statement if (i>=1) assert(
cnt==1); of code in Fig. 3.6a on page 57, line 27 translated to Datalog.

244 literal(Expr,Lit), atom(Lit,X).
245
246 assert_param(X,Expr) :− var(X), assigned(X,Y), assert_param(Y,Expr).

An atom of an expression Expr, which we define with the relation atom in Sec-
tion 8.A on page 163, lines 46–47), is an arithmetic operand of Expr which is not
an arithmetic operation itself.

An expression Expr is assertion condition, encoded as assert_cond(Expr), if
at least one of the following conditions holds:

– The expression Expr is passed as I-th argument to an assertion function, e.g.
assert() (lines 247–248 in the listing below).
The relation assert_func(FuncName,I) encodes that FuncName is an
assertion function. We define the relation in Section 8.A on page 163, line 189).

– There is a call expression CallExpr, in which an assertion function Func
is called, and there is an if statement IfStmt of which CallExpr is a
sub-statement, and the condition of IfStmt is Expr (lines 250–252).

247 assert_cond(Expr) :− act_arg(Func,I,Expr), name(Func,FuncName),
248 assert_func(FuncName,I).
249
250 assert_cond(Expr) :− called(Func,CallExpr), name(Func,FuncName),
251 assert_func(FuncName,I), if_stmt(IfStmt), sub_stmt(IfStmt,CallExpr),
252 condition(IfStmt,Expr).

100

3.3. Definition of Roles

Example 3.3.34. Consider the example in Fig. 3.27a, which shows the CFG of
the statement if (i>=1) assert(cnt==1); of code in Fig. 3.6a on page 57,
line 27. The corresponding logic program is given in Fig. 3.27b.
The evaluation of the rule in lines 247–248 infers the fact assert_cond(94),
where the node 94 corresponds to the expression cnt==1. Then, the evaluation
of the rule defining the relation atom (see Section 8.A, lines 46–47) infers the
facts atom(94,nodecnt) and atom(94,95), where the node 95 corresponds to
a constant literal 1. Using these facts, the evaluation of the rule in lines 243–244
infers that the variable cnt is assertion parameter of expression cnt==1, encoded
as assert_param(nodecnt,94).
Similarly, the evaluation of the rule in lines 250–252 infers the fact assert_
cond(90), where the node 90 corresponds to the expression i>=1. The evaluation
of the rule defining the relation atom infers the facts atom(90,nodei) and
atom(90,92), where the node 92 corresponds to a constant literal 1. Finally,
given these two facts, the evaluation of the rule in lines 243–244 infers that the
variable i is assertion parameter of expression i>=1, encoded as assert_param(
nodei, 90). N

Roles with Negation

Dynamic enumeration. Variable X is dynamic enumeration with parameter variable Y
(denoted as dyn_enum(X, Y), lines 253–254) if the following conditions hold:

– X is not in the relation not_dyn_enum(X) and
– X is transitively assigned a variable Y (encoded as assigned_tc(X,Y)), s.t.
Y is input.

253 dyn_enum(X,Y) :− var(X), not non_dyn_enum(X), assigned_tc(X,Y),
254 input(Y).

The relation assigned_tc(X,Expr) is defined in Section 8.A on page 163, lines 6–
7 and computes the transitive closure of expressions Expr assigned to the variable
X.
A variable X is included in the relation non_dyn_enum (lines 255) if X is transitively
assigned an expression Expr which is not in the relation dyn_enum_expr(Expr).

255 non_dyn_enum(X) :− assigned_tc(X,Expr), not dyn_enum_expr(Expr)

An expresion Expr is in the relation dyn_enum_expr if Expr is one of the
following:
1) a variable (line 256),
2) a constant literal (line 257),
3) an input variable (line 258).

101

3. Definition and Computation of Variable Roles

(a) Control flow graph
1 func_decl(1).
2 name(1,"nondet_char").
3 var(16).
4 name(16,"id1").
5 assignment_stmt(15).
6 lhs_expr(15,16).
7 rhs_expr(15,17).
8 call_expr(17).
9 function(17,1).

10 var(18).
11 name(18,"id2").
12 assignment_stmt(14).
13 lhs_expr(14,18).
14 rhs_expr(14,19).
15 call_expr(19).
16 function(19,1).

17 var(20).
18 name(20,"id3").
19 assignment_stmt(12).
20 lhs_expr(12,20).
21 rhs_expr(12,21).
22 call_expr(21).
23 function(21,1).
24 var(26).
25 name(26,"max1").
26 assignment_stmt(25).
27 lhs_expr(25,26).
28 rhs_expr(25,16).
29 var(27).
30 name(27,"max2").
31 assignment_stmt(24).
32 lhs_expr(24,27).

33 rhs_expr(24,18).
34 var(28).
35 name(28,"max3").
36 assignment_stmt(22).
37 lhs_expr(22,28).
38 rhs_expr(22,20).
39 assignment_stmt(56).
40 lhs_expr(56,26).
41 rhs_expr(56,28).
42 assignment_stmt(58).
43 lhs_expr(58,27).
44 rhs_expr(58,26).
45 assignment_stmt(60).
46 lhs_expr(60,28).
47 rhs_expr(60,27).

(b) Datalog program

Figure 3.28 Example for dynamic enumeration. The statements id1=nondet_char();,
id2=nondet_char();, id3=nondet_char(); of code in Fig. 3.6a on page 57, lines 4–6,
the statements max1=id1;, max2=id2;, max3=id3; of same program, line 10, and the state-
ments max1=max3;, max2=max1; and max3=max2; of same program, lines 17–19 respectively,
translated to Datalog.

256 dyn_enum_expr(Expr) :− var(Expr).
257 dyn_enum_expr(Expr) :− const_literal(Expr).
258 dyn_enum_expr(Expr) :− call_expr(Expr).

Example 3.3.35. Consider the example in Fig. 3.28a, which shows the CFG of
the following statements:
– The statements id1=nondet_char();, id2=nondet_char();, id3=
nondet_char(); of code in Fig. 3.6a on page 57, lines 4–6;

– The statements max1=id1;, max2=id2;, max3=id3; of same program in
line 10;

– The statements max1=max3;, max2=max1; and max3=max2; of same pro-
gram in lines 17–19.

102

3.4. Extension to Inter-Procedural Analysis

The corresponding logic program is given in Fig. 3.28a. We omit the information
about types to keep the CFG readable.

First, the evaluation of the rule defining the relation assigned_tc() in Sec-
tion 8.A, lines 6–7 infers for the variable max1 the facts assigned_tc(nodemax1,
nodeid1), assigned_tc(nodemax1,nodeid2), assigned_tc(nodemax1,
nodeid3), assigned_tc(nodemax1,nodemax1), assigned_tc(nodemax1,
nodemax2), assigned_tc(nodemax1,nodemax3).

Next, the evaluation of the rule in line 256 infers the facts dyn_enum_
expr(nodeid1), dyn_enum_expr(nodeid2), dyn_enum_expr(nodeid3),
dyn_enum_expr(nodemax1), dyn_enum_expr(nodemax2), dyn_enum_
expr(nodemax3).

Using these facts, the evaluation of the rule in line 255 infers that the transitive
closure of the relation non_dyn_enum() does not include the fact non_dyn_
enum(max1).

In addition, using the reasoning explained in Section 3.3.1, the evaluation of the
rule in line 38 on page 75 defining the role input infers that the variables id1,
id2 and id3 are inputs, encoded as input(nodeid1), input(nodeid2) and
input(nodeid3).

Finally, the evaluation of the rule in lines 253–254 infers that the variable max1 is
dynamic enumeration with parameters id1, id2 and id3, encoded with the
facts dyn_enum(nodemax1, nodeid1), dyn_enum(nodemax1, nodeid2) and
dyn_enum(nodemax1, nodeid3).

Using a similar reasoning, the evaluation of the rule in lines 253–254 infers that
the variables max2 and max3 have the role dynamic enumeration with param-
eters id1, id2 and id3, encoded with the facts dyn_enum(nodemax2, nodeid1),
dyn_enum(nodemax2, nodeid2) and dyn_enum(nodemax2, nodeid3) for max2
and the facts dyn_enum(nodemax3, nodeid1), dyn_enum(nodemax3, nodeid2)
and dyn_enum(nodemax3, nodeid3) for max3.

3.4 Extension to Inter-Procedural Analysis

In this section we extend the analyses presented in Sections 3.3.1, 3.3.2 and 3.3.3 to
inter-procedural analysis.

3.4.1 Syntax of C Language

We first extend the syntax of the subset of C language handled by our algorithm from
Fig. 3.7, with new rules shown in Fig. 3.29. In particular, we add a rule for a function
definition and a return statement.

103

3. Definition and Computation of Variable Roles

Grammar rules Explanation of the rules

Definitions
d := . . . | rules for definitions from Fig. 3.7.

t f(t1 id1, . . . , tn idn) {s} | function definition

Statements
s ::= . . . | rules for statements from Fig. 3.7

return e return statement

Figure 3.29 Extention to the syntax of the subset C language defined in Fig. 3.7 with functions..
Recall that the terminals idi and f are variable and function identifiers respectively, and the
non-terminals t and e correspond to a data type and an expression respectively

Table 3.6 Translation of the C constructs from Fig. 3.29 to Datalog.

C declaration Translation to logic programC construct Syntactic rule, d ::=

Function
definitions

t0 f(t1 p1, . . . , tn pn) {s} func_decl(nodef)
name(nodef , f)
type(nodef , t0)
body(nodef , nodeb)

param(nodef,0,nodep1)
type(nodep1,t1)
. . .
param(nodef,n-1,pn)
type(nodepn,tn)

res_node(nodef,nodef_res)
var(nodef_res)
type(nodef_res, t0)

(a) Definitions
The node nodef_res corresponds to a pseudo-variable for the result of the function f .

C statement Translation to logic programC construct Syntactic rule, s ::=

return
statement

return e return_stmt(nodes)
sub_expr(nodes, nodee)
function(nodes, nodef)

(b) Statements.
The node nodef corresponds to the function f hosting the return statement.

3.4.2 Datalog Relations in Program Translation

Next, we show in Table 3.6 how the two new grammar constructs from Fig. 3.29 are
translated to Datalog.

For the convenience of the reader we remind the meaning of the following relations:

• The relation func_decl(nodef) denotes that the node nodef corresponds to a

104

3.4. Extension to Inter-Procedural Analysis

function.

• The relations name(nodef, f) and type(nodef, t0) denote that the name and
the type of the function (or variable) at the node nodef are f and t0 respectively.

• The relation param(nodef,i-1,nodepi) denotes that the variable at the node
nodepi is a (formal) parameter of the function at the node nodef . Before we have
already used the relation param for the actual parameters of a call expression.

For each function f we generate a node for a pseudo-variable nodef_res which holds a
summary of the return values of the function. We call this summary the result of the
function.15

We introduce the following new relations:

• The relation body(nodef, nodeb) in Table 3.6a denotes that the statement corre-
sponding to the node nodeb is the body of the function corresponding to the node
nodef .

• The relation res_node(nodef,nodef_res) in Table 3.6a denotes that the pseudo
variable at the node nodef_res holds the result of the function at the node nodef .

• The relation return_stmt(nodes) in Table 3.6b denotes that the node nodes

corresponds to a return statement.

We use the relation sub_expr(nodes,nodee) to denote that the expression at
the node nodee is the returned expression, i.e. the sub-expression of the return
statement at the node nodes. Further, we use the relation function(nodes,
nodef) to denote that the return statement at the node nodes corresponds to
the function at the node nodef , i.e. is a sub-statement of the body of the function
f.

3.4.3 Datalog Rules for Inter-Procedural Analysis

Finally, we add the following Datalog rules to extend the analyses for roles to inter-
procedural analyses:

a) Data-flow from a returned expression to the result of a function.
The rule in lines 259–261 in the listing below generates for each return statement
RetStmt in function Func the fact assigned(FuncRes,RetExpr), where the
node FuncRes corresponds to the pseudo-variable for the result of the function
Func, and the expression RetExpr corresponds to the expression returned in the
statement RetStmt.

15We introduce the pseudo-variable node for demonstration purposes. In our implementation, we
re-use instead the node corresponding to the function f .

105

3. Definition and Computation of Variable Roles

259 assigned(FuncRes,RetExpr) :− return_stmt(RetStmt),
260 sub_expr(RetStmt,RetExpr), function(RetStmt,Func),
261 res_node(Func,FuncRes).

b) Data-flow from the actual to the formal parameters.
The rule in lines 262–263 generates for each actual parameter ActParam in a
call expression CallExpr the fact assigned(FormParam,ActParam), where
FormParam is the formal parameter in the function definition of the function Func
at the same position I as the actual parameter ActParam.

262 assigned(FormParam,ActParam) :− called(Func,CallExpr),
263 param(CallExpr,I,ActParam), param(Func,I,FormParam).

c) Data-flow from the result of a function to a variable assigned a call expression.
The rule in line 264 generates for each assignment statement, in which a variable
X is assigned a call to a function Func, the fact assigned(X,FuncRes), where
the node FuncRes corresponds to the pseudo-variable for the result of the function
Func.

264 assigned(X, FuncRes) :− assigned_call(X,Func), res_node(Func,FuncRes).

Example 3.4.1. Consider the example in Fig. 3.30a, which shows the CFG of the state-
ments return n+1;, return ackermann(m-1,1); and return ackermann(m-1,
ackermann(m,n-1)); of the function ackermann() of the code in Fig. 3.5a on
page 54, lines 4, 5 and 6 respectively. The corresponding logic program is shown in
Fig. 3.30b.

We explain how interprocedural analysis works on example of the role linear. We do
this in two steps. In Step 1 we show how the rules for the interprocedural analysis in
lines 259–263 are applied to the program. In Step 2 we show how the facts inferred in
Step 1 are used to infer that the result of the function ackermann() is linear.

Step 1. Applying the interprocedural rules (lines 259–263).

a) Data-flow from a returned expression to the result of a function.
Note that the node 40 is allocated for a pseudo-variable for the result of the
function ackermann(). This is encoded with the fact res_node(2,40) in
line 5 of the Fig. 3.30. We denote the node 40 with nodeackermann_res.

The evaluation of the rule in lines 259–261, applied to the statement return
n+1; (corresponding to the node 11), infers the fact assigned(
nodeackermann_res,13), where the node 13 corresponds to the expression
n+1.

In a similar way, for the statements return ackermann(m-1,ackermann(

106

3.4. Extension to Inter-Procedural Analysis

(a) Control flow graph
1 type(2,int).
2 name(2,"ackermann").
3 func_decl(2).
4 body(2,3).
5 res_node(2,40).
6 var(40).
7 type(40,int).
8 var(4).
9 type(4,int).

10 name(4,"m").
11 param(2,0,4).
12 var(5).
13 type(5,int).
14 name(5,"n").
15 param(2,1,5).
16 return_stmt(11).
17 function(11,2).
18 sub_expr(11,13).
19 const_literal(14).
20 type(14,int).
21 name(14,"1").
22 bop_expr(13).
23 lhs_expr(13,5).

24 rhs_expr(13,14).
25 opcode(13,"+").
26 return_stmt(16).
27 function(16,2).
28 sub_expr(16,18).
29 call_expr(18).
30 function(18,2).
31 param(18,0,19).
32 const_literal(20).
33 type(20,int).
34 name(20,"1").
35 param(18,1,20).
36 const_literal(21).
37 type(21,int).
38 name(21,"1").
39 bop_expr(19).
40 lhs_expr(19,4).
41 rhs_expr(19,21).
42 opcode(19,"-").
43 return_stmt(6).
44 function(6,2).
45 sub_expr(6,22).
46 call_expr(22).

47 function(22,2).
48 param(22,0,23).
49 param(22,1,24).
50 const_literal(25).
51 type(25,int).
52 name(25,"1").
53 bop_expr(23).
54 lhs_expr(23,4).
55 rhs_expr(23,25).
56 opcode(23,"-").
57 call_expr(24).
58 function(24,2).
59 param(24,0,4).
60 param(24,1,26).
61 const_literal(27).
62 type(27,int).
63 name(27,"1").
64 bop_expr(26).
65 lhs_expr(26,5).
66 rhs_expr(26,27).
67 opcode(26,"-").

(b) Datalog program

Figure 3.30 Interprocedural analysis on example of the role linear. The statements return
n+1;, return ackermann(m-1,1); and return ackermann(m-1, ackermann(m,
n-1)); of the function ackermann() of the code in Fig. 3.5a on page 54, lines 4, 5 and
6 respectively, translated to Datalog.

107

3. Definition and Computation of Variable Roles

m,n-1)); and return ackermann(m-1,1); corresponding to the nodes
6 and 16 respectively, the evaluation of the rule in lines 259–261 infers the facts
assigned(nodeackermann_res,22) and assigned(nodeackermann_res,18),
where the node 22 corresponds to the expression ackermann(m-1,
ackermann(m,n-1)) and the node 18 – to the expression ackermann(m-1,
1).

b) Data-flow from the actual to the formal parameters.
Note that the variables m and n are formal parameters of the function
ackermann(). This is encoded with the facts param(nodeackermann,0,
nodem) and param(nodeackermann,1,noden) in lines 11 and 15 respec-
tively of the Fig. 3.30.

First, for the expression ackermann(m,n-1), corresponding to the node 24,
the evaluation of the rules in lines 262–263 infers the facts assigned(nodem,
nodem) and assigned(noden,26), where the node 26 corresponds to the
expression n-1.

Next, in a similar way, for the expression ackermann(m-1, ackermann(m,
n-1)) the evaluation of the rules in lines 262–263 infers the facts assigned(
nodem,23) and assigned(noden,24), where the node 23 corresponds
to the expression m-1 and the node 24 to the expression ackermann(m,
n-1)).

Finally, for the expression ackermann(m-1,1), corresponding to the node
18, the evaluation of the rules in lines 262–263 infers the facts assigned(
nodem,19) and assigned(noden,20), where the node 19 corresponds
to the expression m-1 and the node 20 – to the constant literal 1.

c) Data-flow from the result of a function to a variable assigned a call expression.

Now, recall that the facts assigned(nodeackermann_res,18) and assigned(
nodeackermann_res,22), were inferred in Step 1a), where the node 22 corre-
sponds to the expression ackermann(m-1,ackermann(m,n-1)) and the
node 18 – to the expression ackermann(m-1,1). To these facts now the
rule in line 264 is applied. The evaluation infers two identical trivial facts
assigned(nodeackermann_res,nodeackermann_res).

Step 2. Applying the rules for the role linear.
We now use the facts inferred in Step 1 to show that the result of the function
ackermann is linear. Recall that we defined the role linear in Section 3.3.1,
pages 86–88, lines 136–179 .

First, the evaluation of the rule for the relation linear_shape in lines 156–158 on
page 87 infers the facts linear_shape(13), linear_shape(19),
linear_shape(23) and linear_shape(26), where the node 13 corresponds
to the expression n+1, the nodes 19 and 23 – to the expression m-1 and the node

108

3.4. Extension to Inter-Procedural Analysis

26 – to the expression n-1.

Second, the evaluation of the rule for the relation lin_expr_subvar in lines 174–
175 on page 88 infers the facts linear_expr_subvar(13,noden),
linear_expr_subvar(19,nodem), linear_expr_subvar(23,nodem)
and linear_expr_subvar(26,noden).

Third, the evaluation of the rules for the relation non_lin_var in lines 139–147
on pages 87–87 infers that the transitive closure of the relation non_lin_var does
not include the variables n, m and nodeackermann_res.

Finally, the evaluation of the rule for the relation linear in line 136 on page 86
infers that the result of the function ackermann() is linear, encoded with the
fact linear(nodeackermann_res).

3.4.4 Additional Roles for a Porfolio Solver

Now, having defined the framework for inter-procedural analysis, we can introduce the
role recursive function result for a portfolio solver.

Recursive function result. Variable X is recursive function result (denoted as
recursive_func_res(X), lines 265–266 in the listing below) if X is assigned
the result of a call to a function Func, s.t. Func is recursively defined, i.e. the
definition Body of Func (denoted as body(Func,Body)) contains a call to the
function Func:

265 recursive_func_res(X) :− var(X), assigned_call(X,Func),
266 body(Func,Body), sub_stmt(Body,CallExpr), called(Func,CallExpr).
267
268 recursive_func_res(X) :− var(X), assigned(X,Y), recursive_func_res(Y).

Example 3.4.2. Consider the example in Fig. 3.31a, which shows the CFG of the
expression ackermann(m-1,1) and statement result=ackermann(m,n); in lines 5
and 11 respectively of code in Fig. 3.5a on page 54. The corresponding logic program is
shown in Fig. 3.31b.

For this program, the evaluation of the rule defining the relation assigned_call
in Section. 8.A on page 163, lines 24–25 infers the fact assigned_call(noderesult,
nodeackermann). Then, the evaluation of the rule defining the relation sub_stmt (see
Section 8.A, lines 59–74) infers the fact sub_stmt(3,18).

Finally, the evaluation of the rule in lines 265–266 infers that result is recursive function
result, encoded with the fact recursive_func_res(noderesult). N

109

3. Definition and Computation of Variable Roles

(a) Control flow graph

1 type(2,int).
2 name(2,"ackermann").
3 func_decl(2).
4 body(2,3).
5 var(4).
6 type(4,int).
7 name(4,"m").
8 param(2,0,4).
9 var(5).

10 type(5,int).
11 name(5,"n").
12 param(2,1,5).
13 call_expr(18).
14 function(18,2).
15 param(18,0,19).
16 const_literal(20).
17 type(20,int).
18 name(20,"1").
19 param(18,1,20).
20 const_literal(21).
21 type(21,int).

22 name(21,"1").
23 bop_expr(19).
24 lhs_expr(19,4).
25 rhs_expr(19,21).
26 var(38).
27 type(38,int).
28 name(38,"result").
29 assignment_stmt(30).
30 lhs_expr(30,38).
31 rhs_expr(30,39).
32 var(34).
33 type(34,int).
34 name(34,"m").
35 var(36).
36 type(36,int).
37 name(36,"n").
38 call_expr(39).
39 function(39,2).
40 param(39,0,34).
41 param(39,1,36).

(b) Datalog program

Figure 3.31 Example for recursive function result. The expression ackermann(m-1,1) and
statement result=ackermann(m,n); in lines 5 and 11 respectively of code in Fig. 3.5a on
page 54 translated to Datalog.

3.5 Implementation

We have implemented a tool for the specification of variable roles as and inference of
roles for variables in C programs.16

In our implementation the roles are inferred for variables and structure fields of scalar
data type. In addition, several roles are inferred for pointers, specifically the roles for the
portfolio solver, which we described in Section 3.1.2.

As an engine for evaluating Datalog programs, our tool uses an answer set solver
Clingo [GKKS14]. We chose the clingo solver, since our initial definitions of the
variable roles linear and dynamic enumeration included non-stratified negation, not
supported by standard Datalog (and supported by answer set solvers). Further, we
re-formulated the roles so that only stratified negation is used. Though, we did not
change to a new solver which not only saved the implementation effort but would also in
principle allow to extend our set of roles with new recursively defined roles which use
non-stratified negation.

16https://github.com/YuliaDemyanova/variable_roles. Accessed 23 January 2018.

110

https://github.com/YuliaDemyanova/variable_roles

3.6. Trade-Off for Pointer Analysis

3.6 Trade-Off for Pointer Analysis

As a trade-off between soundness and performance, our implementation does not include
pointer analysis (though we could extend our implementation with e.g. the implementation
of pointer analysis in Datalog [BS09]). As a result, the relation assigned which we
define in Section 8.A, lines 2–3, does not take into account indirect variable accesses.
Instead we extend the role unresolved to capture indirect accesses to variables.

We now describe how we extend the role unresolved to capture indirect variable accesses.

Unresolved. Variable X is unresolved (denoted as unresolved(X)) if either X satisfies
the definition of unresolved in Section 3.3.1, page 80, lines 73–78, or the following
condition holds:

– There is an address-of operation (encoded with the code "ADDR_OF"), of
which X is the operand (lines 269– 270).

269 unresolved(X) :− var(X), uop_expr(Expr), opcode(Expr,"ADDR_OF"),
270 operand(Expr,X).

We also extend the relation unresolved_expr as follows. An expression Expr is
included in the relation unresolved_expr if either Expr satisfies the conditions
for the definition of unresolved_expr in Section 3.3.1, page 81, line 79, or Expr
is one of the following:

– an array subscript expression (line 271),
– a pointer dereference operation, encoded with the operation code "DEREF"
(line 272 in the listing below).

271 unresolved_expr(Expr) :− array_expr(Expr).
272 unresolved_expr(Expr) :− uop_expr(Expr), opcode(Expr,"DEREF").

Example 3.6.1. Consider the example in Fig. 3.32a, taken from a cBench bench-
mark17 with some modifications. We omit some irrelevant code and denote the
omitted code with dots. The function swproc() stores the second element of the
array arg in the variable sw and does a case split on this value. In particular,
the variable sw is compared to the zero symbol (which typically indicates the end
of a string), and to several other character constant literals. The CFG of the
program and the corresponding logic program are shown in Figs. 3.32b and 3.32c
respectively.
The evaluation of the rule in line 271 infers the fact unresolved_expr(7), where
the node 7 corresponds to the array expression arg[1]. Then, given the fact

17office_ghostscript/src/imainarg.c.

111

3. Definition and Computation of Variable Roles

1 int swproc(const char* arg)
2 {
3 char sw = arg[1];
4
5 if (sw==0) {...}
6 else if (sw==’-’) {...}
7 else if (sw==’A’) {...}
8 ...
9 }

(a) Datalog program

(b) Control flow graph
1 var(3).
2 type(3,ptr).
3 name(3,"arg").
4 var(6).
5 type(6,int).
6 name(6,"sw").
7 assignment_stmt(5).
8 lhs_expr(5,6).
9 rhs_expr(5,7).

10 const_literal(8).
11 type(8,int).
12 name(8,"1").

13 array_expr(7).
14 arrayptr_expr(7,3).
15 arrayind_expr(7,8).
16 if_stmt(4).
17 condition(4,9).
18 then_stmt(4,10).
19 else_stmt(4,11).
20 const_literal(12).
21 type(12,int).
22 name(12,"0").
23 bop_expr(9).
24 lhs_expr(9,6).

25 rhs_expr(9,12).
26 opcode(9,"==").
27 if_stmt(11).
28 condition(11,13).
29 then_stmt(11,14).
30 const_literal(16).
31 type(16,int).
32 name(16,"’-’").
33 bop_expr(13).
34 lhs_expr(13,6).
35 rhs_expr(13,16).
36 opcode(13,"==").

(c) Datalog program

Figure 3.32 Example for (the extended version of) unresolved. The statement sw=arg[1];
and the statements if (sw==0){...} else if (sw ==’-’){...} of code in Fig. 3.32a,
lines 3 and 5–6 respectively, translated to Datalog.

assigned(nodesw,7) the evaluation of the rule in line 73 on page 80 infers that
the variable sw is unresolved, encoded as unresolved(nodesw). N

112

CHAPTER 4
Empirical Software Metrics for
Benchmarking of Verification

Tools

In this chapter, we explore the application of variable roles in software verification. In
particular, we devise program metrics based on variable roles and we use these metrics to
solve Task 2 formulated in Section 1.5, namely Portfolio Solver for Software Verification
(SV). We motivated this task in Section 1.4.1. To make the task practical, we solve
it in the context of the Software Verification Competition SV-COMP. We gave a brief
introduction in SV-COMP in the Section 1.1.1.

Recall that the benchmarks of the SV-COMP competition are manually partitioned into
categories, by characteristic features such as usage of bitvectors, concurrent programs,
Linux device drivers, etc. As a first step to solve the Task 2 (Portfolio Solver for
SV), we devised an algorithm which, given an SV-COMP benchmark, predicts its
category [DVZ13]. The algorithm is based on a machine learning technique called
support vector machines, and for making a prediction uses metrics devised from domain-
independent variable roles (see Section 3.3.1 for the definition of roles). In our experiments
we showed that these metrics are sufficient to classify SV-COMP benchmarks to the
competition categories. Note that our choice of the domain-independent variable roles
was based on examples from cbench rather than SV-COMP.

Further, we tried to build a portfolio solver for software verification using role-based
metrics. We elaborated our algorithm from [DVZ13] so that given a verification task
the algorithm predicts a software verification tool which would most efficiently solve the
task. In particular, our goal was to build a solver which would beat the participants of
the SV-COMP competition with a clear margin. We started with the metrics based on
domain-independent roles and our preliminary experiments showed that in a number of

113

4. Empirical Software Metrics for Benchmarking of Verification Tools

Table 4.1 Sources of complexity for 4 tools participating in SV-COMP’15, marked with + / – /
n/a when supported/not supported/no information is available. Extracted from the competition
report [Bey15] and tool papers [CKL04, DPV13].

Source of
complexity

CBMC Preda-
tor

CPA-
che-
cker

SMACK Corresponding feature
Name Ref. to

definition
pointers + + + + pointer

Sec. 3.3.1

arrays + – n/a + array index
non-static pointer off-
sets

– + n/a n/a pointer offset

non-static size
of heap-allocated
memory

+ + n/a n/a allocation size

bit operations + – + – bitvector
external functions + – n/a n/a input
dynamic data struc-
tures

n/a + n/a + linked list
Sec. 3.3.2

integer variables + + + + integral
multi-threading + – – – thread descriptor
unbounded loops – n/a n/a – LSB,LST,Lsimple,

Lhard
Sec. 4.1.2

pointers to functions + n/a n/a n/a mfpcalls,mfpargs
Sec. 4.1.3recursion – – – + mreccalls

big CFG (≥ 100
KLOC)

+ n/a n/a + mcfgblocks,
mmaxindeg

cases the algorithm makes non-optimal predictions. Therefore, we iteratively improved
the solver by adding new variable roles which captured the incorrectly predicted cases.
In this way, we devised an extended set of roles for portfolio solver, which we defined in
Section 3.3.2.

We describe the metrics for portfolio solver algorithm in Section 4.1. In addition to
the role-based metrics, our algorithm uses metrics based on patterns of loops in C
programs [PVZ15] and indicators of control-flow complexity. In Section 4.2 we give a
description of our portfolio solver algorithm and precede it with an introduction to the
machine learning techniques used in the portfolio solver. We describe the evaluation of
our portfolio construction on the data from SV-COMP in Section 4.3.

4.1 Source Code Metrics for Software Verification

To choose the software metrics describing SV-COMP benchmarks, we consider the various
techniques used in software verification along with their target domains, our intuition
as programmers, as well as the tool developer reports in their competition contribu-
tions. Table 4.1 exemplarily summarizes these reports for tools CBMC, Predator,
CPAchecker and SMACK: The first column gives obstacles the tools’ authors identified,

114

4.1. Source Code Metrics for Software Verification

the following columns show whether the feature is supported by respective tool, and
the last two columns reference the corresponding metrics, which we introduce below in
this section. The obtained metrics are naturally understood in three dimensions that we
motivate informally first:

1. Program Variables. Does the program deal with machine or unbounded integers?
Are the ints used as indices, bit-masks or in arithmetic? Dynamic data structures?
Arrays? Interval analysis or predicate abstraction?

2. Program Loops. Reducible loops or goto programs? FOR-loops or ranking functions?
Widening, loop acceleration, termination analysis, or loop unrolling?

3. Control Flow. Recursion? Function pointers? Multithreading? Simulink-style code
or complex branching?

Our hypothesis is that precise metrics along these dimensions allow us to predict tool
performance. The challenge lies in identifying metrics which are predictive enough to
understand the relationship between tools and benchmarks, but also simple enough to
be used in a preprocessing and classification step. In Sections 4.1.1, 4.1.2 and 4.1.3 we
introduce program features along the three dimensions – program variables, program
loops and control flow – and describe how to derive corresponding metrics using simple
data-flow analyses.1

4.1.1 Variable Role Based Metrics

The first set of features we consider are variable roles. We introduce the variable roles
for portfolio solver and describe our criteria for choosing the roles in Section 3.1.2. We
give the definitions of the roles in Section 3.3.2. Note that the set of variable roles for
portfolio solver extend the set of domain-independent variable roles which we describe in
Sections 3.1.1 and 3.3.1. We now define the metrics based on the variable roles.

Definition 1 (Variable role based metrics). For a given benchmark file f , we
compute the mapping ResR : Roles → 2Vars from variable roles to sets of program
variables of f . We derive role metrics mR that represent the relative occurrence of each
variable role R ∈ Roles:

mR = |ResR|
|Vars| R ∈ Roles (4.1)

4.1.2 Loop Pattern Based Metrics

The second set of program features we consider is a classification of loops in the program
under verification, as introduced in [PVZ15]. Although undecidable in general, the ability
to reason about bounds or termination of loops is highly useful for software verification:

1We stress that the classification of the loops and the identification of control flow-based features as
well as the implementation of respective algorithms are not the contributions of this dissertation.

115

4. Empirical Software Metrics for Benchmarking of Verification Tools

Table 4.2 List of loop patterns with informal descriptions.

Loop pattern Empirical
hardness Informal definition

Syntactically
bounded loops
Lbounded

easy The number of executions of the loop body
is bounded (considers outer control flow).

FOR loops LFOR intermediate The loop terminates whenever control flow
enters it (disregards outer control flow).

Generalized FOR
loops LFOR(*) advanced

A heuristic derived from FOR loops by
weakening the termination criteria. A good
heuristic for termination.

Hard loops Lhard hard Any loop that is not classified as generalized
FOR loop.

For example, it allows a tool to assert the (un)reachability of program locations after
the loop, and to compute unrolling factors and soundness limits in the case of bounded
model checking.

Criteria for choosing loop patterns. We consider 4 heuristics for loop termination
defined in [PVZ15]. In Table 4.2 we list the heuristics along with their informal definitions.
In particular, we list the heuristics in the order of weakening constraints, i.e. Lbounded ⊆
LFOR ⊆ LFOR(*) ⊆ Lhard, where LH denotes the set of loops matching the heuristic H:

First, the restricted set of the FOR loops corresponds to a frequently used programming
pattern. Then, the syntactically bounded and generalized FOR loops are obtained by
strengthening and weakening respectively the constrains of the FOR loop. Finally, the
hard loops are defined so that the classification of the loops is complete.

We give a more detailed definition of the heuristics in Appendix, Section 8.C. Below we
define the metrics based on loop patterns.

Definition 2 (Loop pattern based metrics). For a given benchmark file f , we
compute Lbounded, LFOR, LFOR(∗), Lhard, and the set of all loops Loops. We derive loop
metrics mH that represent the relative occurrence of each loop heuristic H:

mH = |LH |
|Loops| H ∈ {bounded,FOR,FOR(*), hard} (4.2)

4.1.3 Control Flow Based Metrics

Complex control flow poses another challenge for program analysis. To measure the
complexity of control flow, we introduce four additional metrics:

• For intraprocedural control flow, we count the following numbers:

116

4.1. Source Code Metrics for Software Verification

– The number of basic blocks in the control flow graph (CFG) mcfgblocks, where
a basic block is the longest possible sequence of code without branches;

– The maximum number of edges entering any basic block in the CFG mmaxindeg.

• To represent indirect function calls, we measure the following numbers:

– The ratio mfpcalls of call expressions taking a function pointer as argument
(over all call expressions);

– The ratio mfpargs of parameters to call expressions that have a function pointer
type (over all parameters to call expressions).

Criteria for choosing control flow features. We identify the features mcfgblocks and
mmaxindeg to capture the peculiarities of the category ECA. The term ECA stands for
event-condition action and the benchmarks of the category ECA represent automatically
generated code with lots of simple if-then-else branches. We have already justified
the choice of the metrics capturing indirect function calls in Section 4.1.1.

4.1.4 Usefulness of Our Features for Selecting a Verification Tool

In our experiments (see Section 4.3), we will demonstrate that a portfolio built on top
of these metrics performs well as a tool selector. In this section, we already give two
reasons why we believe these metrics have predictive power in the software verification
domain in the first place.

Tool developer reports. The developer reports in the competition report for SV-
COMP’15 [Bey15], as well as tool papers (e.g. [CKL04, DPV13], for a full list of tool
papers see the competition report), give evidence for the relevance of our features for
selecting verification tools: They mention language constructs, which – depending on
whether they are fully, partially, or not modeled by a tool – constitute its strengths
or weaknesses. We give a short survey of such language constructs in Table 4.1 and
relate them to our features. For example, Predator is specifically built to deal with
dynamic data structures (variable role linked list) and pointer offsets (offset), and
CPAchecker does not model multi-threading (thread descriptor) or support recursion
(recursive function result). For CBMC, unbounded loops (various loop patterns LH) are
an obstacle.

Preliminary experiments. In addition, in previous work we have successfully used
variable roles and loop patterns to deduce properties of verification tasks:

• In [DVZ13], we use variable roles to predict – for a given verification task – its
category in SV-COMP’13.

• In [PVZ15], loop patterns are shown to be good heuristics for identifying bounded
loops.

117

4. Empirical Software Metrics for Benchmarking of Verification Tools

These give further evidence for our claim that the features described above are useful in
predicting properties of verification tasks.

4.2 A Portfolio Solver for Software Verification

4.2.1 Preliminaries on Machine Learning

In this section we introduce standard terminology from the machine learning community
(see for example [Bis06]).

Supervised Machine Learning

In supervised machine learning problems, we learn a model M : Rn → R. The xi ∈ Rn

are called feature vectors, measuring some property of the object they describe. The
yi ∈ R are called labels.

We learn model M by considering a set of labeled examples X||y = {(xi, yi)}Ni=1. M is
then used to predict the label of previously unseen inputs x′ /∈ X.

We distinguish two kinds of supervised machine learning problems:

• Classification considers labels from a finite set y ∈ {1, . . . , C}. For C = 2, we call
the problem binary classification, for C > 2 we speak of multi-class classification.

• Regression considers labels from the real numbers y ∈ R.

Support Vector Machines

A support vector machine (SVM) [BGV92, CV95] is a binary classification algorithm
that finds a hyperplane w · x + b = 0 separating data points with different labels. We
first assume that such a hyperplane exists, i.e. that the data is linearly separable:

Also called a maximum margin classifier, SVM learns a hyperplane that maximizes the
gap ||w||−1 (margin) between the hyperplane and the nearest data points with different
labels. Maximizing the margin is formulated as

minimize ||w|| subject to yi(w · xi + b) ≥ 1 for i = 1, . . . , N (4.3)

which is usually encoded as the following quadratic programming problem:

maximize
N∑

i=1
αi −

1
2

N∑
i,j=1

αiαjyiyjxi · xj subject to αi ≥ 0 and
N∑

i=1
αiyi = 0. (4.4)

After computing the separating hyperplane on a set of labeled examples, a previously
unseen feature vector x′ is classified using function

M(x′) = sgn
(
w · x′ + b

)
. (4.5)

118

4.2. A Portfolio Solver for Software Verification

Thus M predicts the class of x′ by computing on which side of the hyperplane it falls.

If the data is not linearly separable, e.g. due to outliers or noisy measurements, there are
two orthogonal approaches that we both make use of in our portfolio solver:

Soft-margin SVM. Soft-margin SVM allows some data points to be misclassified
while learning the hyperplane. For this, we associate a slack variable ξi ≥ 0 with each
data point xi, where

ξi =
{
the distance from the hyperplane if xi is misclassified
0 otherwise

.

We thus replace Equation 4.3 with the following equation:

minimize ||w||+ C
N∑

i=1
ξi subject to yi(w · xi + b) ≥ 1− ξi for i = 1, . . . , N (4.6)

and substitute 0 ≤ αi ≤ C for the constraint αi ≥ 0 in Equation 4.4. Parameter C > 0
controls the trade-off between allowing misclassification and maximizing the margin.

Kernel transformations. Another, orthogonal approach to data that is not linearly
separable in the input space, is to transform it to a higher-dimensional feature space
H obtained by a transformation φ : Rn → H. For example, 2-class data not linearly
separable by R2 can be linearly separated in R3 if φ pushes points of class 1 above, and
points of class 2 below some plane.

The quadratic programming formulation of SVM allows for an efficient implementation
of this transformation: We define a kernel function K(xi,xj) = φ(xi) · φ(xj) instead
of explicitly giving φ, and replace the dot product in Equation 4.4 with K(xi,xj). An
example of a non-linear kernel function is the radial basis function (RBF): K(xi,xj) =
exp(−γ||xi − xj ||2), γ > 0.

For classifying unseen feature vectors x′, we replace Equation 4.5 with

M(x′) = sgn
(
w · φ(x′) + b

)
where w =

N∑
i=1

αiyiφ(xi). (4.7)

Probabilistic Classification

Probabilistic classification is a generalization of the classification algorithm, which searches
for a function M : Rn → Pr(y), where Pr(y) is the set of all probability distributions
over y. M(x′) then gives the probability p(yi | x′, X||y), i.e. the probability that x′
actually has label yi given the model trained on X||y. There is a standard algorithm for
estimating class probabilities for SVM [WLW04].

119

4. Empirical Software Metrics for Benchmarking of Verification Tools

Creating and Evaluating a Model

The labeled set X||y used for creating (training) model M is called training set, and
the set X ′ used for evaluating the model is called test set. To avoid overly optimistic
evaluation of the model, it is common to require that the training and test sets are
disjoint: X ∩X ′ = ∅. A model which produces accurate results with respect to ||w|| for
the training set, but results in a high error for previously unseen feature vectors x′ /∈ X,
is said to overfit.

Data Imbalances

The training set X||y is said to be imbalanced when it exhibits an unequal distribution
between its classes: ∃yi, yj ∈ y . num(yi)/num(yj) ∼ 100, where num(y) = |{xi ∈ X |
yi = y}|, i.e. imbalances of the order 100:1 and higher. Data imbalances significantly
compromise the performance of most standard learning algorithms [HG09].

A common solution for the imbalanced data problem is to use a weighting function
Weight : X → R [HD05]. SVM with weights is a generalization of SVM, where we

minimize ||w||+ C
N∑

i=1
Weight(xi)ξi. (4.8)

Weight is usually chosen empirically.

Multi-Class Classification

SVM is by nature a binary classification algorithm. To tackle multi-class problems, we
reduce an n-class classification problem to n binary classification problems: One-vs.-rest
classification creates one model Mi per class i, with the labeling function

Mi(x) =
{

1 if M(x) = i

−1 otherwise

and the predicted value is calculated as M(x) = choose {i |Mi(x) = 1}, where a suitable
operator choose is used to select a single class from multiple predicted classes.

4.2.2 The Competition on Software Verification SV-COMP

In this section we give the definitions which formalise the competition’s setup and which
we later use in the description of our portfolio solver (Section 4.2.3). Detailed information
about the competition is available on its website.2

SV-COMP maintains a repository of verification tasks, on which the competition’s
participants are tested:

2https://sv-comp.sosy-lab.org. Accessed 23 January 2018.

120

https://sv-comp.sosy-lab.org

4.2. A Portfolio Solver for Software Verification

Definition 3 (Verification task.). We denote the set of all considered verification
tasks as Tasks. A verification task v ∈ Tasks is described by a triple v = (f, p, type)
of a C source file f , verification property p and property type type. For SV-COMP’14
and ’15, type is either a label reachability check or a memory safety check (comprising
checks for freedom of unsafe deallocations, unsafe pointer dereferences, and memory
leaks). SV-COMP’16 adds the property types overflow and termination.

For each verification task, its designers define the expected answer, i.e. if property p
holds on f :

Definition 4 (Expected answer.). Function ExpAns : Tasks → {true, false} gives the
expected answer for task v, i.e. ExpAns(v) = true if and only if property p holds on f .

Furthermore, SV-COMP partitions the verification tasks Tasks into categories, a manual
grouping by characteristic features such as usage of bitvectors, concurrent programs,
linux device drivers, etc.

Definition 5 (Competition category.). Let Categories be the set of competition
categories. Let Cat : Tasks → Categories define a partitioning of Tasks, i.e. Cat(v)
denotes the category of verification task v.

Finally, SV-COMP assigns a score to each tool’s result and computes weighted category
scores. For example, the Overall SV-COMP score considers a meta category of all
verification tasks, with each constituent category score normalized by the number of tasks
in it. We describe and compare the scoring policies of recent competitions in Section 4.3.1.
In addition, medals are awarded to the three best tools in each category. In case multiple
tools have equal scores, they are ranked by runtime for awarding medals.

Definition 6 (Score, category score, Overall score.). Let scoret,v denote the score
of tool t ∈ Tools on verification task v ∈ Tasks calculated according to the rules of the
respective edition of SV-COMP. Let cat_score(t, c) denote the score of tool t on the tasks
in category c ∈ Categories calculated according to the rules of the respective edition of
SV-COMP.

4.2.3 Tool Selection as a Machine Learning Problem

In this section, we describe the setup of our portfolio solver T P . We give formal definitions
for modeling SV-COMP, describe the learning task as multi-class classification problem,
discuss options for breaking ties between multiple tools predicted correct, present our
weighting function to deal with data imbalances, and finally discuss implementation
specifics.

121

4. Empirical Software Metrics for Benchmarking of Verification Tools

Definitions

Definition 7 (Verification tool.). We model the constituent verification tools as set
Tools = {1, 2, . . . , |Tools|} and identify each verification tool by a unique natural number
t ∈ Tools.

Definition 8 (Tool run.). The result of a run of tool t on verification task v = (f, p, type)
is a triple

〈anst,v, runtimet,v,memoryt,v〉

where anst,v ∈ {true, false,unknown} is the tool’s answer whether property p holds on
file f , i.e.

anst,v =


true if t claims f satisfies p,
false if t claims f does not satisfy p
unknown if t claims it cannot decide p on f ,

or t fails to decide p on f (e.g. tool crash, time-/mem-out)

and runtimet,v ∈ R (respectively memoryt,v ∈ R) is the runtime (respectively memory
usage) of tool t on task v in seconds (respectively megabytes).

Definition 9 (Virtual best solver.). The virtual best solver (VBS) is an oracle that
selects for each verification task the tool which gives the correct answer in minimal time.

Machine Learning Data

We compute feature vectors from the metrics introduced in Section 4.1 and the results of
SV-COMP as follows:

For verification task v = (f, p, type) we define feature vector

x(v) = (marray index(v), . . . ,mrecusive function result(v),
mbounded(v), . . . ,mhard(v),
mcfgblocks(v), . . . ,mfpargs(v),
type)

where the mi(v) are our metrics from Section 4.1 computed on f and type ∈ {0, 1, 2, 3}
encodes if the property is reachability, memory safety, overflow, or termination.

We associate each feature vector x(v), with a label t ∈ Tools, such that t is the tool
chosen by the virtual best solver for task v. In the following, we reduce the corresponding
classification problem to |Tools| independent classification problems.

122

4.2. A Portfolio Solver for Software Verification

Formulation of the Machine Learning Problem

For each tool t ∈ Tools, T P learns a model to predict whether tool t gives gives a correct
or incorrect answer, or responds with „unknown“. Since the answer of a tool does not
depend on the answers of other tools, |Tools| independent models (i.e., one per tool) give
more accurate results and prevent overfitting.

We define labeling function Lt(v) for tool t and task v as follows:

Lt(v) =


1 if anst,v = ExpAns(v),
2 if anst,v = unknown,
3 otherwise.

I.e., Lt(v) = 1 if tool t gives the correct answer on v, Lt(v) = 2 if t answers unknown, and
Lt(v) = 3 if t gives an incorrect answer. A tool can opt-out from a category, which we
treat as if the tool had answered unknown for all of the category’s verification tasks. Thus,
for each tool t, we obtain training data {(x(v), Lt(v))}v∈Tasks from which we construct
model Mt.

Tool selection based on predicted answer correctness. Let operator choose :
(2Tools ×Tasks)→ Tools select for a given task one tool from a set of tools TPredicted ⊆
Tools (we give concrete definitions of choose below). Given |Tools| predictions of the
models Mt, t ∈ Tools for a task v, the portfolio algorithm selects a single tool tbest as
follows:

tbest =


choose(TCorr(v), v) if TCorr(v) 6= ∅,
choose(TUnk(v), v) if TCorr(v) = ∅ ∧ TUnk(v) 6= ∅,
twinner if TCorr(v) = ∅ ∧ TUnk(v) = ∅.

where TCorr(v) and TUnk(v) are the sets of tools predicted to give the correct answer
and respond with „unknown“ on v, respectively:

TCorr(v) = {t ∈ Tools |Mt(v) = 1}
TUnk(v) = {t ∈ Tools |Mt(v) = 2}

and twinner is the Overall winner of the competition, e.g. UltimateAutomizer in
SV-COMP’16.

Choosing among Tools Predicted Correct

We now describe three alternative ways of implementing the operator choose:

1. Time: T Ptime. We formulate |Tools| additional regression problems: For each tool
t, we use training data {(x(v), runtimenorm

t,v)}v∈Tasks to obtain a model M time
t (v)

predicting runtime, where

runtimenorm
t,v = norm(runtimet,v, {runtimet′,v′}t′∈Tools,v′∈Tasks)

123

4. Empirical Software Metrics for Benchmarking of Verification Tools

and norm normalizes to the unit interval:

norm(x,X) = x−min(X)
max(X)−min(X) .

The predicted value M time
t (v) is the predicted runtime of tool t on task v. We

define
choose(TPredicted, v) = arg min

t∈TPredicted
M time

t (v).

2. Memory: T Pmem. Similar to T Ptime, we formulate |Tools| additional regression
problems: For each tool t, we use training data {(x(v),memorynorm

t,v)}v∈Tasks to
obtain a model Mmem

t (v) predicting runtime, where

memorynorm
t,v = norm(memoryt,v, {memoryt′,v′}t′∈Tools,v′∈Tasks).

We define
choose(TPredicted, v) = arg min

t∈TPredicted
Mmem

t (v).

3. Class probabilities: T Pprob. We define the operator

choose(TPredicted, v) = arg max
t∈TPredicted

Pt,v

where Pt,v is the class probability estimate for Mt(v) = 1, i.e. the probability that
tool t gives the expected answer on v.

In Table 4.3 we present preliminary experiments comparing the choose operators for
category Overall in the setup of SV-COMP’14. We consider the following criteria: the
percentage of correctly and incorrectly answered tasks, SV-COMP score, runtime, and
the place in the competition.

Discussion. T Pmem and T Ptime clearly optimize the overall memory usage and run-
time, respectively. At the same time, they fall behind T Pprob with respect to the ratio
of correct answers and SV-COMP score. Our focus here is on building a portfolio for
SV-COMP, where tools are ranked by score. In the following we thus focus on the
implementation of choose from T Pprob and refer to it as T P.

Dealing with Data Imbalances

An analysis of the SV-COMP data shows that the labels Lt(v) are highly imbalanced: For
example, in SV-COMP’14 the label which corresponds to incorrect answers, Lt(v) = 3,
occurs in less than 4% for every tool. The situation is similar for SV-COMP’15 and ’16.
We therefore use SVM with weights, in accordance with standard practice in machine
learning.

124

4.2. A Portfolio Solver for Software Verification

Table 4.3 Comparison of formulations of T P, using different implementations of operator
choose. Runtime shown here is de-normalized from the predicted (normalized) value defined
above.

Setting Correct / Incorrect /
Unknown answers, % Score Runtime (min) Memory (GiB) Place

T Pmem 88/2/10 1047 2819 390.2 3
T Ptime 92/2/6 1244 920 508.4 1
T Pprob 94/1/5 1443 2866 618.1 1

Given a task v and tool t, we calculate the weighting function Weight as follows:

Weight(v, t) = Potential(v)× Criticality(v)×
Performance(t,Cat(v))× Speed(t,Cat(v)).

We briefly give informal descriptions of functions Potential, Criticality, Performance,
Speed before defining them formally:

• Potential(v) describes how important predicting a correct tool for task v is, based
on its score potential. E.g., safe tasks (ExpAns = true) have more points deducted
for incorrect answers than unsafe (ExpAns = false) tasks, thus their score potential
is higher.

• Criticality(v) captures how important predicting a correct tool is, based on how
many tools give a correct answer. Intuitively, this captures how important an
informed decision about task v, as opposed to a purely random guess, is.

• Performance(t, c) describes how well tool t does on category c compared to the
category winner.

• Speed(t, c) describes how fast tool t solves tasks in category c compared to the
fastest tool in the category.

Note that the weighting function uses the information about the correct answer and the
category of a task, which during the competition is withheld from the competition. This
is possible because we use the weighting function only for training our model, and we do
not use this information for testing the model.

We now formally define the four functions:

Potential(v) = scoremax(v)− scoremin(v)

where scoremax(v) and scoremin(v) are the maximal and minimal possible scores for task v,
respectively. For example, in the setup of SV-COMP’14, if v is safe, then scoremax(v) = 2
and scoremin(v) = −8.

125

4. Empirical Software Metrics for Benchmarking of Verification Tools

Criticality(v) = |{t ∈ Tools | anst,v = ExpAns(v)}|−1

is inversely proportional (subject to a constant factor) to the probability of randomly
choosing a tool which gives the correct answer.

Performance(t, c) = cat_score(t, c)− cat_scoremin(c)
cat_score(tcbest , c)− cat_scoremin(c)

is the ratio of SV-COMP scores of tool t and the category winner tcbest on tasks from
category c, where

tcbest = arg max
ti∈Tools

cat_score(ti, c)

cat_score(t, c) =
∑

{v∈Tasks|Cat(v)=c}
scoret,v

cat_scoremin(c) =
∑

{v∈Tasks|Cat(v)=c}
scoremin(v)

and scoret,v is the SV-COMP score of tool t on task v.

Speed(t, c) = ln rel_time(t, c)
ln rel_time(tcfst , c)

is the ratio of orders of magnitude of normalized total runtime of tool t and of the fastest
tool tcfst in category c, where

rel_time(t, c) = cat_time(t, c)∑
ti∈Tools cat_time(ti, c)

tcfst = arg min
ti∈Tools

cat_time(ti, c)

cat_time(t, c) =
∑

{v∈Tasks|Cat(v)=c}
runtimet,v.

Implementation of T P

Finally, we discuss details of the implementation of T P. We use the SVM machine
learning algorithm with the RBF kernel and weights as implemented in the LIBSVM
library [CL11]. To find optimal parameters C for soft-margin SVM and γ for the RBF
kernel, we do exhaustive search on the grid, as described in [HCL+03].

4.2.4 Virtual Strategies

To estimate how optimally our portfolio solver chooses a tool, we also define two theoretic
strategies Tcat and Tvbs, to which we will compare our portfolio solver in Section 4.3:

• Given a verification task v, Tcat selects the tool winning the corresponding compe-
tition category Cat(v).

126

4.3. Experimental Results

• Tvbs is the virtual best solver (VBS): the strategy selects for each verification task
the tool which gives the correct answer in minimal time.

Neither Tcat nor Tvbs can be built in practice: For Tcat, we would need to know competition
category Cat(v) of verification task v, which is withheld from the competition participants
(e.g., the category of a verification task could be predicted using our machine-learning
algorithm for benchmark classification [DVZ13]). For Tvbs, we would need an oracle
telling us the tool giving the correct answer in minimal time. Thus any practical approach
must be a heuristic such as the portfolio described in this work.

4.3 Experimental Results

4.3.1 SV-COMP 2014 vs. 2015 vs. 2016

Candidate tools and verification tasks. Considering the number of participating
tools, SV-COMP is a success story: Figure 4.1a shows the increase of participants over
the years. Especially the steady increase in the last two years is a challenge for our
portfolio, as the number of machine learning problems (cf. Section 4.2.3) increases. As
Figure 4.1b shows, also the number of verification tasks used in the competition has
increased steadily.

Scoring. As described in Section 4.2.2, SV-COMP provides two metrics for comparing
tools: score and medal counts. As Table 4.1c shows, the scoring policy has constantly
changed (the penalties for incorrect answers were increased). At least for 2015, this was
decided by a close jury vote.3 We are interested how stable the competition ranks are
under different scoring policies. Table 4.4 gives the three top-scoring tools in Overall
and their scores in SV-COMP, as well as the top-scorers of each year if the scoring policy
of other years had been applied:

Clearly, the scoring policy has a major impact on the competition results: In the latest
example of SV-COMP’16, UltimateAutomizer wins SV-COMP’16 with the original
scoring policy applied, but is not even among the three top-scorers if the policies of 2015
or 2014 are applied.

Given that SV-COMP score and thus also medal counts are rather volatile, we intro-
duce decisiveness-reliability plots (DR-plots) in the next section to complement our
interpretation of the competition results.

3The transcript of the meeting was originally published at http://sv-comp.sosy-lab.org/
2015/Minutes-2014.txt (accessed 6 February, 2015) and is no longer available. The archived version
is available at https://web.archive.org/web/20150413080431/http://sv-comp.sosy-lab.
org/2015/Minutes-2014.txt (accessed 23 January 2018).

127

http://sv-comp.sosy-lab.org/2015/Minutes-2014.txt
http://sv-comp.sosy-lab.org/2015/Minutes-2014.txt
https://web.archive.org/web/20150413080431/http://sv-comp.sosy-lab.org/2015/Minutes-2014.txt
https://web.archive.org/web/20150413080431/http://sv-comp.sosy-lab.org/2015/Minutes-2014.txt

4. Empirical Software Metrics for Benchmarking of Verification Tools

2012 2013 2014 2015 2016

10 11 15
22

35

(a) Number of participants in SV-COMP
over the years.

2012 2013 2014 2015 2016
277

2315 2868

5803
6661

(b) Number of verification tasks in SV-
COMP over the years.

Tool reports Tool’s answer SV-COMP score
2012 2013 2014 2015 2016

Unknown n/a 0 0 0 0 0

Property does not hold correct +1 +1 +1 +1 +1
incorrect -2 -4 -4 -6 -16

Property holds correct +2 +2 +2 +2 +2
incorrect -4 -8 -8 -12 -32

(c) Scoring policies of SV-COMP 2014, 2015, and 2016. Changing scores are shown in bold.

Figure 4.1 SV-COMP over the years: number of participants, number of verification tasks,
scoring policy.

Table 4.4 Overall competition ranks for SV-COMP’14–’16 under the scoring policies of SV-
COMP’14–’16.

Year
1st place (score) 2nd place (score) 3rd place (score)Compe- Sco-

tition ring

2014
2014 CBMC (3,501) CPAchecker (2,987) LLBMC (1,843)
2015 CBMC (3,052) CPAchecker (2,961) LLBMC (1,788)
2016 CPAchecker (2,828) LLBMC (1,514) UFO (1,249)

2015
2014 CPAchecker (5,038) SMACK (3,487) CBMC (3,473)
2015 CPAchecker (4,889) SMACK (3,168) UAutomizer (2,301)
2016 CPAchecker (4,146) SMACK (1,573) PredatorHQ (1,169)

2016 2014 CBMC (6,669) CPA-Seq (5,357) ESBMC (5,129)
2015 CBMC (6,122) CPA-Seq (5,263) ESBMC (4,965)
2016 UAutomizer (4,843) CPA-Seq (4,794) SMACK (4,223)

128

4.3. Experimental Results

4.3.2 Decisiveness-Reliability Plots

To better understand the competition results, we create scatter plots where each data
point v = (c, i) represents a tool that gives c% correct answers and i% incorrect answers.
Figure 4.2 shows such plots based on the verification tasks in SV-COMP’14, ’15, and
’16. Each data point marked by an unfilled circle ◦ represents one competing tool. The
rectilinear distance c+ i from the origin gives a tool’s decisiveness, i.e. the farther from
the origin, the fewer times a tool reports “unknown”. The angle enclosed by the horizontal
axis and v gives a tool’s (un)reliability, i.e. the wider the angle, the more often the tool
gives incorrect answers. Thus, we call such plots decisiveness-reliability plots (DR-plots).

Discussion. Figure 4.2 shows DR-plots for the verification tasks in SV-COMP’14–’16:

• For 2014 (Figure 4.2a), all the tools are performing quite well on soundness: none
of them gives more than 4% of incorrect answers. CPAchecker, ESBMC and
CBMC are highly decisive tools, with more than 83% correct answers.

• For 2015 (Figure 4.2b), the number of verification tasks more than doubled, and
there is more variety in the results: We see that very reliable tools (BLAST,
SMACK, and CPAchecker) are limited in decisiveness – they report “unknown”
in more than 40% of cases. The bounded model checkers CBMC and ESBMC are
more decisive at the cost of giving up to 10% incorrect answers.

• For 2016 (Figure 4.2c), there is again a close field of very reliable tools (CPAchecker,
SMACK, and UltimateAutomizer) that give around 50% of correct answers
and almost no incorrect answers. Bounded model checker CBMC is still highly
decisive, but gives 6% of incorrect answers.

We also give Overall SV-COMP scores (where applicable) in parentheses. Clearly, tools
close together in the DR-plot not necessarily have similar scores because of the different
score weights prescribed by the SV-COMP scoring policy.

Referring back to Figures 4.2a–4.2c, we also show the theoretic strategies Tcat and Tvbs
(see Section 4.2.4) marked by a square �. Both strategies illustrate that combining
tools can yield an almost perfect solver, with ≥ 90% correct and 0% incorrect answers.
(Note that these figures may give an overly optimistic picture – after all the benchmarks
are supplied by the competition participants.) The results for Tvbs compared to Tcat
indicate that leveraging not just the category winner, but making a per-task decision
provides an advantage both in reliability and decisiveness. A useful portfolio would thus
lie somewhere between CPAchecker, CBMC, Tcat, and Tvbs, i.e. improve upon the
decisiveness of constituent tools while minimizing the number of incorrect answers.

129

4. Empirical Software Metrics for Benchmarking of Verification Tools

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
0%

2%

4%

6%

8%

10%

not shown
for clarity &
comprehensi-
bility

bla
st

cb
mc

(3,
50
1)

cp
ach

eck
er
(2,
98
7)

cp
ali
en esb

mc
(97
5)

fbi
tllb

mc
(1,
84
3)pre

da
tor

(-1
84
)

sym
bio
tic

(-2
20
)

ufo
T vb

s
T ca

t
T
P

reports correct answer

re
po

rt
s
in
co
rr
ec
t
an

sw
er

(a) Decisiveness-reliability plot for SV-COMP’14.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
0%

10%

20%

not shown
for clarity &
comprehensi-
bility blas

t

cbm
c (1

,731
)

cpa
chec

ker
(4,8

89)

esbm
c (-

2,16
1)

seah
orn

(-6,
228

)

sma
ck

ulti
mat

eau
tom

izer
(2,3

01)

TvbsTcat
TP

reports correct answer

re
po

rt
s
in
co
rr
ec
t
an

sw
er

(b) Decisiveness-reliability plot for SV-COMP’15.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
0%

10%

20%

not shown
for clarity &
comprehensi-
bility

2ls
(-3

8,2
05)

bla
st

cbm
c (3

,38
6)fore

st

lpi

sea
hor

n (
-22

,39
3)

T vbsT ca
tTP

reports correct answer

re
po

rt
s
in
co
rr
ec
t
an

sw
er

(c) Decisiveness-reliability plot for SV-COMP’16.

Figure 4.2 Decisiveness-reliability plots for SV-COMP’14–’16. The horizontal axis gives the
percentage of correct answers c, the vertical axis the number of incorrect answers i. Dashed lines
connect points of equal decisiveness c+ i. The Overall SV-COMP score is given (if available) in
parentheses.

130

4.3. Experimental Results

4.3.3 Evaluation of Our Portfolio Solver

We originally implemented the machine learning-based portfolio T P for SV-COMP’14
in our tool Verifolio.4 When competition results for SV-COMP’15 became available,
we successfully evaluated the existing techniques on the new data, and described our
results in [DPVZ15]. We reused the portfolio construction published there to compute
the additional results for SV-COMP’16. We present these both in terms of the traditional
metrics used by the competition (SV-COMP score and medals) and T P’s placement in
DR-plots:

Setup. For our experiments we did not rebuild the infrastructure of SV-COMP, but use
numeric results from held competitions to compare our portfolio approach against other
tools. Following a standard practice in machine learning [Bis06], we randomly split the
verification tasks of SV-COMP’year into a training set trainyear and a test set testyear
with a ratio of 60:40. We train T P on trainyear and evaluate it on testyear by comparing
it against other tools’ results on testyear . As the partitioning into training and test sets
is randomized, we conduct the experiment 10 times and report the arithmetic mean of
all figures. Tables 4.3a–4.3c show the Overall SV-COMP scores, runtimes and medal
counts (we show the detailed scores for each category in Tables 8.1–8.3 on page 173 in the
Appendix, Section 8.D). The DR-plots in Figures 4.2a–4.2c show the portfolio marked by
a filled circle •.

Discussion. First, we discuss our results in terms of Overall SV-COMP score and
medals:

• For SV-COMP’14 (Table 4.3a), our portfolio T P overtakes the original Overall
winner CBMC with 16% more points. It wins a total of seven medals (1/5/1
gold/silver/bronze) compared to CBMC’s six medals (2/2/2).

• For SV-COMP’15 (Table 4.3b), T P is again the strongest tool, collecting 13% more
points than the original Overall winner CPAchecker. Both CPAchecker and
T P collect 8 medals, with CPAchecker’s 2/1/5 against T P’s 1/6/1.

• For SV-COMP’16 (Table 4.3c), T P beats the original Overall winner UltimateAu-
tomizer, collecting 66% more points. T P collects 6 medals, compared to the
original winner UltimateAutomizer with 2 medals (0/2/0) and the original
runner-up CPA-Seq with 5 medals (2/1/2).

Second, we discuss the DR-plots in Figures 4.2a–4.2c. Our portfolio T P positions itself
between CBMC, CPAchecker and the theoretic strategies Tcat and Tvbs. Furthermore,
T P falls halfway between the concrete tools and idealized strategies. We think this is a
promising result, but there is still room for future work. Here we invite the community

4http://forsyte.at/software/verifolio. Accessed 23 January 2018.

131

http://forsyte.at/software/verifolio

4. Empirical Software Metrics for Benchmarking of Verification Tools

blast cbmc
cpa-
check-
er

cpa-
lien esbmc fbit llbmc ufo T P Tcat Tvbs

Overall
468
2066

1292
4991

1235
1865

266
776

695
4024

666
898

853
978

735
381

1494
2211

1732
1310

1840
270

Medals 1/0/0 2/2/2 2/1/1 0/0/0 1/0/1 0/0/2 1/0/1 1/1/0 1/5/1 - -

(a) Overall SV-COMP score, runtime and medal counts for SV-COMP’14.

blast cas-
cade cbmc

cpa-
che-
cker

preda-
torhp smack

ulti-
mate-
kojak

ulcseq T P Tcat Tvbs

Overall
737
4546

806
5146

684
11936

2228
6288

389
96

1542
8727

1215
7979

273
12563

2511
6260

3231
4360

3768
1882

Medals 1/0/0 0/0/0 1/1/1 2/1/5 1/0/1 2/1/1 0/2/0 0/0/0 1/6/1 - -

(b) Overall SV-COMP score, runtime and medal counts for SV-COMP’15.
cpa-
bam

cpa-
kind

cpa-
refsel

cpa-
seq esbmc esbmc-

depthk smack uauto-
mizer T P Tcat Tvbs

Overall
898
11775

1678
12587

1151
10240

1907
12509

1699
8396

1283
9920

1684
14218

1965
11210

3269
8544

3800
8883

4238
2547

Medals 0/0/0 0/1/1 1/0/0 2/1/2 0/2/0 0/0/0 0/0/1 0/2/0 2/1/3 - -

(c) Overall SV-COMP score, runtime and medal counts for SV-COMP’16.

Figure 4.3 Experimental results for the eight best competition participants in Overall, plus our
portfolio T P on random subsets of SV-COMP, given as arithmetic mean of 10 experiments on the
respective test sets testyear . The two last columns show the idealized strategies Tcat, Tvbs (not
competing, for comparison only). The first row shows the Overall SV-COMP score and beneath
it the runtime in minutes. We highlight the gold, silver, and bronze medal in dark gray, light
gray and white+bold font, respectively. The second row shows the number of gold/silver/bronze
medals won in individual categories.

to contribute further feature definitions, learning techniques, portfolio setups, etc. to
enhance this approach.

In the following we discuss three aspects of T P ’s behavior in greater detail: The runtime
overhead of feature extraction, diversity in the tools chosen by T P, and cases in which
T P selects a tool that gives the wrong answer.

Constituent Verifiers Employed by our Portfolio

Our results could suggest that T P implements a trade-off between CPAchecker’s
conservative-and-sound and CBMC’s decisive-but-sometimes-unsound approach. Con-
trarily, our experiments show that significantly more tools get selected by our portfolio
solver (cf. Figures 4.4a–4.4c). Additionally, we find that our approach is able to select
domain-specific solvers: For example, in the Concurrency category, T P almost exclu-
sively selects variants of CSeq (and for 2016 also CIVL), which are specifically aimed at
concurrent problems.

132

4.3. Experimental Results

0 20 40 60 80 100
Overall

Sequentialized
Recursive

MemorySafety
HeapManipulation

DeviceDrivers64
ProductLines

Loops
ControlFlowInteger

ControlFlow
Concurrency
BitVectors

ot
ot
ot
ot

ot
ot

ot
ot
ot
ot

ot
ot

uf
uf

uf

uf
uf

s

p

p
p

p

p

l

l
l

l
l

l

fb

e
e

e

e
e

e
e

e

e
csmcsl

cl
cl

cc

cc

cc

cb
cb

cb
cb

cb
cb

cb
cb

cb
cb

cb

Percentage of verification tasks for which a tool was chosen, %

bl - blast
cb - cbmc

cc - cpachecker
cl - cpalien

csl - cseq-lazy
csm - cseq-mu

e - esbmc
fb - fbit
l - llbmc

p - predator
s - symbiotic
t - threader

uf - ufo
ua - ultimateAutomizer

uk - ultimateKojak
ot - other tools

(a) Tools selected by T P for SV-COMP’14.

0 20 40 60 80 100
Overall

Termination-crafted
Simple

Sequentialized
Recursive

MemorySafety
HeapManipulation

Floats
DeviceDrivers64

ProductLines
Loops
ECA

ControlFlowInteger
ControlFlow
Concurrency
BitVectors

Arrays

ot
ot

ot
ot

ot
ot

ot
ot
ot

ot
ot

ot
ot

ot
ot

ot

no

no

no

ulc

ulc

uk

uk
uk

uk

uk
uk

sm

sm

sm

sm
sm

sm

sm

sm

se

se

se

se
se

pr
pr

mu

mu

ma

l

l

hfu

fr

e
e

e
e

e

e
e

e
e

e
e

e
e

cc

cc

cc

cc

cc

cc

cc

cb

cb
cb

cb
cb

cb
cb

cb
cb

cb
cb

ca

ca

ca

bl

bl
bl

a

Percentage of verification tasks
for which a tool was chosen, %

a - aprove
be - beagle
bl - blast

ca - cascade
cb - cbmc

cc - cpachecker
cr - cparec
e - esbmc
f - forest

fr - forester
fu - function

h - hiptnt
l - lazycseq

ma - map2check
mu - mucseq
pe - perentie

pr - predatorhp
se - seahorn
sm - smack

ua - ultimateautomizer
uk - ultimatekojak

ulc - ulcseq
no - None

ot - other tools

(b) Tools selected by T P for SV-COMP’15.

Figure 4.4 Compositionality of the portfolio T P: Constituent tools selected per competition
category. Tools selected in less than 5% of cases are summarized under label “other tools”.

133

4. Empirical Software Metrics for Benchmarking of Verification Tools

0 20 40 60 80 100

Overall
DeviceDriversLinux64

Concurrency
Termination

Sequentialized
ProductLines

Recursive
Loops
ECA

Simple
ControlFlow

Floats
HeapMemSafety

HeapReach
BitVectorsOverflows

BitVectorsReach
ArraysMemSafety

ArraysReach

ot
ot

ot
ot

ot
ot

ot
ot

ot
ot

ot
ot

ot
ot

ot
ot

ot

no

no

no

vv

ua

ua

ua

ua

ua
ua

ua

syb

syb

sm
sm

sm
sm

sm

sm

sm

sm

se

se

se

se

pr
pr

lp

la

h

fr

ed

ed

ed

ed

es

es

es
es

cps

cps
cps

cps
cps

cps

cps
cps

cps
cps

cpr

cpr

cpr

cpr

cpr

cpk

cpk

cpk

cpb

cpb
cpb

cpb

cpb

ci

ceace

cb
cb

cb
cb
cb

cb
cb

cb
cb

cb
cb

cb
cb

cb
cb

bl

ap
2l

Percentage of verification tasks,
for which a tool was chosen, %

2l - 2ls
ap - aprove
bl - blast

ca - cascade
cb - cbmc
ce - ceagle

cea - ceagle-absref
ci - civl

cpb - cpa-bam
cpk - cpa-kind
cpr - cpa-refsel
cps - cpa-seq

di - divine
es - esbmc

ed - esbmcdepthk
fo - forest

fr - forester
h - hiprec
i - impara

la - lazycseq
lc - lctd
lp - lpi

ma - map2check
mu - mucseq
pa - pac-man

pr - predatorhp
se - seahorn
sk - skink

sm - smack
syb - symbiotic3
syd - symdivine
ua - uautomizer

uk - ukojak
ul - ulcseq
vv - vvt

no - None
ot - other tools

(c) Tools selected by T P for SV-COMP’16.

Figure 4.4 Compositionality of the portfolio T P: Constituent tools selected per competition
category. Tools selected in less than 5% of cases are summarized under label “other tools”.

Wrong Predictions

We manually investigated cases of wrong predictions made by the portfolio solver. We
identify i. imperfect tools and ii. data imbalances as the two main reasons for bad
predictions. In the following, we discuss them in more detail:

Imperfect tools. In SV-COMP, many unsafe (ExpAns(v) = false) benchmarks are
manually derived from their safe (ExpAns(v′) = true) counterparts with minor changes
(e.g. flipping a comparison operator). Two such files have similar or even the same
metrics (x(v) ≈ x(v′)), but imperfect tools don’t solve or fail to solve both of them
(Lt(v) 6= Lt(v′)). In particular, tools in SV-COMP are

• unsound: for example, in SV-COMP’16 the benchmarks loops/count_up_
down_{true,false}-unreach-call_true-termination.i differ in a sin-
gle comparison operator, namely equality is changed to inequality. Tool BLAST
solves the unsafe task correctly, and the safe one incorrectly (i.e. gives the same
answer for both).

• buggy: similarly to above, in SV-COMP’16 benchmarks recursive-simple/

134

4.3. Experimental Results

fibo_2calls_10_{true,false}-unreach-call.c differ in a single com-
parison operator. The tool Forest solves the safe task correctly, and crashes on the
unsafe one.

• incomplete: the benchmarks ldv-regression/mutex_lock_int.c_{true,
false}-unreach-call_1.i, also taken from SV-COMP’16, differ in a single
function call, namely mutex_unlock() is changed to mutex_lock(). The tool
CASCADE correctly solves the safe benchmark, and answers unknown for the
unsafe one.

This is unfortunate, as machine learning builds on the following assumption: Given
two feature vectors x and x′ with actual labels y and y′, if x ≈ x′ (where approximate
equality ≈ is defined by the machine learning procedure), then y = y′. This assumption
is violated in the cases illustrated above.

Counter-measures: In all cases, our metrics do not distinguish the given benchmark pairs.
To mitigate these results, the obvious solution is to improve the participating tools. To
solve the issue on the side of our portfolio, we believe more expensive analyses would have
to be implemented for feature extraction. However, these analyses would i. be equivalent
to correctly solving the verification problem directly and ii. increase the overhead spent
on feature extraction. A practical portfolio is thus limited by the inconsistencies exhibited
by its individual tools.

Data imbalances. In our training data we can find feature vectors on which, for a
given tool t, e.g. the number of correct answers noticeably outweighs the number of
incorrect answers. This corresponds to the problem of data imbalances (cf. Section 4.2.1),
which leads to the following bias in machine learning: For a verification tool that is
correct most of the time, machine learning prefers the error of predicting that the tool
is correct (when in fact incorrect) over the error that a tool is incorrect (when in fact
correct). In other words, "good" tools are predicted to be even "better".

Counter-measures: As described in Section 4.2.1, the standard technique to overcome data
imbalances are weighting functions. Discovering data imbalances and countering multiple
of them in a single weighting function is a hard problem. Our weighting function (cf.
Section 4.2.3) mitigates this issue by compensating several imbalances that we identified
in our training data, and was empirically tuned to improve results while staying general.

Overhead of Feature Extraction

By construction, our portfolio incurs an overhead for feature extraction and prediction
before actually executing the selected tool. In our experiments, we measured this overhead
to take a median time of x̃features = 0.5 seconds for feature extraction and x̃prediction = 0.5
seconds for prediction. We find this overhead to be negligible, when compared to verifi-
cation time. For example, the Overall winner of SV-COMP’16, UltimateAutomizer,

135

4. Empirical Software Metrics for Benchmarking of Verification Tools

exhibits a median verification time of x̃ua
verif = 24.9 seconds computed over all tasks in

SV-COMP’16.

Note that these numbers are not directly comparable, as x̃ua
verif stems from the SV-COMP

results on the SV-COMP cluster, whereas x̃t for t ∈ {features, prediction} was measured
during our own experiments on a different system.

136

CHAPTER 5
Role-Based Heuristics for

Systematic Predicate Abstraction

In this chapter we explore another application of variable roles in software verification,
namely we present a method for systematic specification of heuristics for generating
program-specific abstractions. To construct a program abstraction, a verification tool
needs information about variables and data structures used in the program. Our algorithm
collects this information using heuristics, which are based on variable roles.

As a case study, we use variable roles to specify heuristics for the model checker El-
darica [RHK13]. As the core procedure, Eldarica applies predicate abstraction and
counterexample-guided abstraction refinement. Eldarica requires a program to be
translated to a set of logic formulae of specific form called Horn clauses. We describe the
basics of the Eldarica’s functioning in Section 5.1.

In Section 5.2 we describe our heuristics for Eldarica, which use the roles defined in
Section 3.3.3. The heuristics are motivated by Eldarica’s previous built-in heuristics
and typical verification benchmarks from the literature and SV-COMP.

We implement a prototype tool which uses the specification of role-based heuristics to
guide Eldarica to a suitable abstraction. In Section 5.3 we describe the experimental
evaluation of our algorithm.

5.1 Software Model Checking with Horn Clauses

We start with an outline of the algorithm implemented by Eldarica [RHK13] as well
as a number of other tools [GLPR12, HB12] which reduce checking safety properties of a
software program to checking the satisfiability of Horn constraints (or Horn clauses) to
which a program is translated.

137

5. Role-Based Heuristics for Systematic Predicate Abstraction

5.1.1 Definitions

An atomic formula a is a formula that contains no logical connectives.

A literal ` is an atomic formula a or its negation ¬a. In the rest of the definitions we will
use the (possibly indexed) symbol ` to denote a literal.

A clause is a finite disjunction of literals `1 ∨ . . . ∨ `n.

A Horn clause is a clause with at most one unnegated literal: `1 ∧ . . . ∧ `n → `0. The
unnegated literal `0 forms the head of the clause, and the negative symbols `1 ∧ . . . ∧ `n
form the body of the clause.

A Horn clause is linear if it contains at most one relation symbol in its body.

A formula is in disjunctive normal form (DNF) if it is a disjunction of one or more
conjunctions of one or more literals: (`11 ∧ . . . ∧ `1n) ∨ . . . ∨ (`k1 ∧ . . . ∧ `kn).

5.1.2 Translation of a Program to Horn Constraints

Eldarica has a frontend which translates a C or C++ program to a set of Horn
clauses HC . In the translation, a Horn clause takes the form

B1 ∧ · · · ∧Bn ∧ ϕ→ H,

where

• Bi is an application Invi(ti1, . . . , tik) of a relation symbol Invi ∈ R to first-order
terms ti1, . . . , tik. Each relation symbol Invi corresponds to a control location i in
the program;

• ϕ is a relation-free constraint (i.e. a first-order formula) over variables occurring in
the literals Bi;
In our experiments, ϕ is always a formula in quantifier-free Presburger arithmetic,
but extension to other theories (e.g., arrays) is possible;

• H is either an application Inv(t1, . . . , tk) of a symbol Inv ∈ R to first-order terms,
or false.

Types of Horn Clauses in a Program Translation. Each Horn clause expresses
one of the following:

1. A pre-condition Pre(s̄e)→ Inve(s̄e) for the program entry point e, where Inve ∈ R
is a relation symbol and Pre is a first-order formula; and the formulae Pre(s̄e) and
Inv(s̄e) are defined over a vector of variables s̄e = (ve

1, . . . , v
e
k);

2. An inductiveness condition T (s̄c, s̄d)∧ Invc(s̄c)→ Invd(s̄d), where T is a first-order
formula encoding the transition relation between control locations c and d;

138

5.1. Software Model Checking with Horn Clauses

3. A safety assertion Invc(s̄c)→ P (s̄c), where P is a first-order formula encoding an
assertion condition at control location c.

The translation from software programs to Horn clauses HC is defined such that the
program is safe if and only if the clauses HC are satisfiable, i.e., if and only if the
predicates Invi can be interpreted in such a way that all clauses become valid.

5.1.3 Solving Horn Clauses with Predicate Abstraction

In Section 2.1 we gave preliminaries on the predicate abstraction and Craig interpolation
techniques as well as the CEGAR algorithm. In this section we describe a generalisation
of predicate abstraction from programs to Horn clauses. We focus in this thesis on
linear Horn clauses, which are sufficient to represent sequential programs, provided that
functions are handled via inlining, as done in our experiments.

Similarly to the predicate abstraction technique which we described in Section 2.1.2, the
predicate abstraction of Horn clauses is defined with a set of predicates P . Assume, a
set of program locations Loc is given; then a relation symbol Invi ∈ R is associated
with each location i ∈ Loc. Next, given a subset of predicates Q ⊆ P , let us denote by
DNF(Q) the set of DNF formulae over Q.

Model checkers like HSF [GLPR12] or Eldarica [RHK13] construct a solution

Sol : R → DNF(P)

of a set of Horn clauses HC , which assigns to each relation symbol Invi ∈ R a formula
f ∈ DNF(P) in disjunctive normal form. To this end, a Horn solver maintains a mapping

Π : R → P(P)

from relation symbols Invi ∈ R to finite subsets Pi ⊆ P of predicates P .

To construct a mapping Π, a Horn solver goes through the following steps:

1. The solver starts from some initial mapping Π = Π0; for instance, mapping every
relation symbol to an empty set of predicates.

2. The solver will then attempt to find a solution Sol for the system of Horn clauses
HC , s.t.

∀i ∈ Loc. Sol(Invi) ∈ DNF(Π(Invi)).

For example, in Appendix, Section 8.B we give an algorithm for creating a solution,
which we take from [RHK13]. The construction of a solution can fail because some
assertion clause

Inv(t̄)→ P (t̄)
is violated during the construction. In this case, the algorithm of Eldarica [RHK13]
extracts a counterexample C (in particular, C is in the form of a resolution proof
for deriving false from the set HC).

139

5. Role-Based Heuristics for Systematic Predicate Abstraction

3. A theorem prover is used to check the satisfiability of the counterexample C. If C
is satisfiable, then the set HC is unsolvable, with the counterexample C used as an
explanation;
Otherwise, additional predicates Πref : R → P(P) are generated from C using
Craig interpolation, leading to an extended mapping

∀i ∈ Loc. Π′(Invi) = Π(Invi) ∪Πref (Invi),

and the algorithm continues from Step 1.

The procedure has two main parameters that can be used to tune the abstraction process:

• initial predicates Π0 for predicate abstraction (see Step 1 above);

• interpolation templates T that guide Craig interpolation towards meaningful
predicates during abstraction refinement (see Section 5.1.4).

The pair (Π0, T) can be computed with the help of variable roles, as outlined in the
Section 3.1.3. It is important to note that neither parameter has any effect on soundness
of a model checker, only termination is affected.

We will now discuss interpolation templates in more detail.

5.1.4 Craig Interpolation with Templates

For every extracted counterexample, predicate abstraction-based model checkers rely
on theorem provers to find suitable interpolants, or interpolants containing the right
predicates, in a generally infinite lattice of interpolants. Eldarica uses interpolation
abstraction [LRS16] as a semantic way to guide the interpolation procedure towards
“good” interpolants; in this method, interpolation queries are instrumented to restrict
the symbols that can occur in interpolants, ranking the interpolants with the help of
templates. It has previously been shown that interpolation abstraction can significantly
improve the performance of Horn solvers [LRS16].

In the scope of this thesis, we focus on templates in the form of terms. For an example
of interpolation with templates in Eldarica we refer the reader to the Example 2.1.7 on
page 27, which we have previously given in Section 2.1.4.

Eldarica provides an interface to annotate programs to express preference of certain
interpolants. For instance, line 6 of the code in Fig. 1.2 on page 9 in Section 1.4.1 can be
annotated to express that the differences i-k and j-k are preferred templates:

4 int k, /*@ terms_tpl {i-k} @*/ i, /*@ terms_tpl{j-k} @*/ j;

Annotations are attached to variable declarations, and are then applied when computing
interpolants at control points in the scope of the variable. If no interpolant can be

140

5.2. Role-Based Predicate Abstraction

constructed using this template, a conventional interpolant will be used. Besides manual
annotation, Eldarica also has a set of inbuilt heuristics to choose meaningful templates
automatically [LRS16].

5.2 Role-Based Predicate Abstraction
We will now describe heuristics which we devise for the Eldarica model checker in the
form of initial predicates and predicate templates. To define these heuristics, we will use
the 5 variable roles which we defined in the Section 3.3.3, namely assertion parameter,
dynamic enumeration, extremum, local counter and parity. We will list the heuristics by
the roles used in them.

5.2.1 Role-based Initial Predicates

First, we give the definitions of role-based predicates.

Assertion parameter. For each assertion expression Expr (denoted as assert_expr(Expr))
with a literal Pred, our algorithm generates the predicate PredStr (denoted as
pred(PredStr), lines 273–274 in the listing below), where PredStr is a string
representation of Pred.

273 pred(PredStr):- assert_expr(Expr), literal(Expr,Pred),
274 expr_str(Expr,PredStr).

We define the relation expr_str(Expr,ExprStr), which computes the string
representation ExprStr of an expression Expr, in Appendix, Section 8.A, lines 76–
86.

Example 5.2.1. Recall the example in Fig. 3.27 on page 100, which represents
the CFG and the corresponding logic program for the statement if (i>=1)
assert(cnt==1).
We have shown in Section 3.3.3, Example 3.3.34 on page 100 that the evaluation of
the rule for the relation assert_expr (see Section 3.3.3, lines 247–248) computes
the fact assert_expr(94), where the node 94 corresponds to the expression
cnt==1.
Next, the evaluation of the rule defining the relation literal (see Section 8.A,
line 27) and of the rule defining the relation expr_str (Section 8.A, lines 76–86),
infers the facts literal(94,94) and expr_str(94,"cnt==1") respectively.
Finally, the evaluation of the rule in lines 273–274 generates the predicate cnt==1,
encoded as the fact pred("cnt==1"). N

Dynamic enumeration. For each dynamic enumeration variable X with parameter Y
(encoded as dyn_enum(X,Y)), our algorithm generates the predicate PredStr

141

5. Role-Based Heuristics for Systematic Predicate Abstraction

(lines 275–276 in the listing below), s.t. Xname and Yname are the identifiers of
the variables X and Y respectively, and PredStr is Xname==Yname.

275 pred(PredStr):- dyn_enum(X,Y), name(X,Xname), name(Y,Yname),
276 PredStr=@concat(Xname,"==",Yname).

The term @concat(Str1, . . . ,Strn) evaluates to the concatenation of the strings
Str1, . . ., Strn.

Example 5.2.2. Recall the example in Fig. 3.28 on page 102, which shows the CFG
and the corresponding logic program for the statements id1=nondet_char();,
id2=nondet_char();, id3=nondet_char(); the statements max1=id1;,
max2=id2;, max3=id3; and the statements max1=max3;, max2=max1; and
max3=max2;.
We have shown in Section 3.3.3, Example 3.3.35 on page 102 that the evaluation of
the rule defining the role dynamic enumeration (see Section 3.3.3, lines 253–254)
infers 9 facts dyn_enum(nodemax1,nodeid1), dyn_enum(nodemax1,nodeid2),
dyn_enum(nodemax1,nodeid3), etc.
Given these facts, the evaluation of the rule in lines 275–276, generates the pred-
icates max1==id1, max1==id2, max1==id3, encoded with the facts pred(
"max1==id1"), pred("max1==id2") and pred("max1==id3").
Similarly, the predicates max2==id1, max2==id2, max2==id3 for the dynamic
enumeration max2 and the predicates max3==id1, max3==id2, max3==id3 for
the dynamic enumeration max3 are generated. N

Extremum. For each variable X which is extremum (encoded as extremum(X)) and dy-
namic enumeration with two distinct parameters Y and Z (encoded as dyn_enum(X,
Y), dyn_enum(X,Z) and the fact X!=Y), our algorithm generates the predicate
PredStr (lines 277–278 in the listing below), s.t. the identifiers of the variables X
and Y are Xname and Yname respectively, and PredStr is Yname<Zname.

277 pred(PredStr):- extremum(X), dyn_enum(X,Y), dyn_enum(X,Z), Y!=Z,
278 name(Y,Yname), name(Z,Zname), PredStr=@concat(Yname,"<",Zname).

Example 5.2.3. Consider again the example in Fig. 3.28 on page 102.
We have shown in Section 3.3.3, Example 3.3.31 on page 96, that the variable max3
has the role extremum, encoded as extremum(nodemax3).
Next, in Example 5.2.2 we have shown how the facts dyn_enum(max3,id1),
dyn_enum(max3, id2) and dyn_enum(max3,id3) are inferred for dynamic
enumeration max3.
Given these facts, the evaluation of the rule in lines 277–278 generates the predi-
cates id1<id2, id2<id1, id1<id3, id3<id1, id2<id3 and id3<id2, encoded
with the facts pred("id1<id2"), pred("id2<id1"), pred("id1<id3"),

142

5.2. Role-Based Predicate Abstraction

pred("id3<id1"), pred("id2<id3") and pred("id3<id2") respectively.
N

5.2.2 Role-based Predicate Templates

Next, we give the definitions of role-based templates.

Local counter. For each pair of local counters X and Y which have same parameter
WhileStmt (encoded as local_cnt(X,WhileStmt) and local_cnt(Y,
WhileStmt) respectively), our algorithm generates the template TplStr (lines 279–
280 in the listing below), s.t. the identifiers of the variables X and Y are Xname
and Yname respectively, and TplStr is Xname-Yname.

279 tpl(TplStr):- local_cnt(X,WhileStmt), local_cnt(Y,WhileStmt),
280 X!=Y, name(X,Xname), name(Y,Yname), TplStr=@concat(Xname,"-",Yname).

Example 5.2.4. Recall the example in Fig. 3.25 on page 97, which shows the CFG
and the corresponding logic program for the statement for (k=0,i=0; i<n;
i++,k++);.

We have shown in Section 3.3.3, Example 3.3.32 on page 97 that the variables i and k
have the role local counter in same loop, encoded with the facts local_cnt(nodei,
12) and local_cnt(nodek,12), where the node 12 corresponds to the while
statement (recall that our algorithm rewrites the for statement to a while loop).

Given these facts, the evaluation of the rule in lines 279–280 generates the predicate
i-k, encoded with the fact tpl("i-k"). N

Parity. For each parity variable X with constant literal parameter Num the template
TplStr is generated (lines 281–282 in the listing below), s.t. the identifier of X is
Xname, the string representation of Num is NumStr and TplStr is Xname%Val
(where % is the remainder operator in the C language).

281 tpl(TplStr):- parity(X,Num), name(X,Xname), val(Num,NumStr),
282 TplStr=@concat(Xname,"%",NumStr).

Example 5.2.5. Recall the example in Fig. 3.26 on page 99, which shows the CFG
and the corresponding logic program for the statement for (i=0; i<1000000;
i+=2);.

We have shown in Section 3.3.3, Example 3.3.33 on page 99 that the variable i has
role parity with parameter 2, encoded as parity(nodei,16), where the node 16
corresponds to the constant literal 2.

Given this fact, the evaluation of the rule in lines 281–282 generates the predicate
i%2, encoded as tpl("i%2"). N

143

5. Role-Based Heuristics for Systematic Predicate Abstraction

5.3 Evaluation

We implemented our approach in a prototype tool and evaluated the tool on altogether
549 C benchmarks.1

Benchmarks. Table 5.1 lists the benchmarks and gives their characteristics. Specifically,
the benchmarks contain (listed in the same order as in Table 5.1):

1. Benchmarks of the competition SV-COMP’16 from the "Integers and Control Flow"
category. We excluded the Recursive sub-category and 75 benchmarks which contain
C structures and arrays;

2. Benchmarks from the Loops category of SV-COMP’16 (we excluded 50 benchmarks
for same reasons);

3. Benchmarks of the verification tool VeriMAP2 We excluded 234 duplicate bench-
marks contained in SV-COMP CFI, and 2 benchmarks, for which the transition
relations cannot be expressed with Presburger arithmetic;

4. Simplified versions3 of the benchmarks of tool llrêve for automated program equiv-
alence checking [FGK+14];

5. Loop invariant generation benchmarks of the verication tool HOLA [DDLM13].

Tools for comparison. In our experiments we compare the following tools:

• We evaluate the following configurations of Eldarica:

– Two unmodified versions of Eldarica: without interpolation abstraction
(to which we refer by Eld) and with interpolation abstraction and built-in
templates (Eld+B),

– Two versions of Eldarica enhanced with roles, with interpolation abstraction:
without built-in templates (Eld+R) and with built-in templates (Eld+BR).

Table 5.2 lists different choices for the parameters Π0 and T described in Sec-
tion 5.1.3.

• As a baseline we also compare Eldarica to SMT solvers Z3 [dMB08] and Spacer
[KGCC13].
We could not compare to the Duality engine of Z3 because of a bug in Duality,
which was not fixed by the time of submitting the paper with our results [DRZ17].

1The tool, the set of used benchmarks and the results of our evaluation are available at http:
//forsyte.at/software/demy/nfm17.tar.gz. Accessed 23 January 2018.

2http://map.uniroma2.it/vcgen/benchmark320.tar.gz. Accessed 23 January 2018.
3The original benchmarks are accessible at http://formal.iti.kit.edu/projects/improve/

reve and https://www.matul.de/reve. Accessed 23 January 2018.

144

http://forsyte.at/software/demy/nfm17.tar.gz
http://forsyte.at/software/demy/nfm17.tar.gz
http://map.uniroma2.it/vcgen/benchmark320.tar.gz
http://formal.iti.kit.edu/projects/improve/reve
http://formal.iti.kit.edu/projects/improve/reve
https://www.matul.de/reve

5.3. Evaluation

Table 5.1 Characteristics of the benchmarks used
for experimental evaluation

Name Number of files Size,
KLOCTotal Safe Unsafe

1 SV-COMP CFI 234 91 143 226.4
2 SV-COMP Loops 95 68 27 6.5
3 VeriMAP 153 133 20 13.2
4 Llreve 21 16 5 0.6
5 HOLA 46 46 0 1.4

Total 549 354 195 248.0

Table 5.2 Different configurations
of Eldarica: TEld denotes the tem-
plates generated by built-in heuristics
of Eldarica.

Name Π0Π0Π0 TTT

Eld ∅ ∅
Eld+B ∅ TEld

Eld+R Πroles Troles

Eld+BR Πroles Troles∪TEld

• Finally, we compare Eldarica to the model checker CPAchecker, which is not
based on Horn clauses. CPAchecker has very successfully participated in the
software competition in the recent years and thus provides an interesting choice for
comparison.

Experimental setup. We performed our experiments on 2.0GHz AMD Opteron PC
(31GB RAM, 64KB L1 cache, 512KB L2 cache). We did not restrict the number of cores
on which the tasks were performed. We report the wall-clock time measured using the
date shell utility. For evaluation we set the value of timeout for all tools to 15 minutes,
which is the value of the timeout in the SV-COMP competition. We put no memory
limit on the tools.

Overall improvement of Eldarica. The results of our evaluation are represented in
Fig. 5.1, which shows the number of solved and unsolved tasks, with safe and unsafe
tasks counted separately. Specifically, Fig. 5.1a gives a summary for all benchmarks, and
Figures 5.1b-5.1f show detailed results for each benchmark. In the bar plots on top of
each bar is the mean runtime of the respective tool, calculated without timeouts. The
times for Eld+R include the times for computing roles: the mean and median time of
annotating a program for all benchmarks amount to 3.8 sec and 0.8 sec respectively. We
observe that the best configuration of Eldarica is Eld+R, which solves the highest
number of tasks for every benchmark separately and for all benchmarks. The second
best configuration for most benchmarks is Eld+B. Overall Eld+R solves 11.2% more
tasks than Eld+B: 4.6% more safe and 6.6% more unsafe tasks. We conclude that the
configuration Eld+R improves on the previous configurations of Eldarica (Eld and
Eld+B).

Comparison of runtimes. Overall the runtime of Eld+R is comparable to the runtime
of other Eldarica’s configurations. In particular, the mean runtime of Eld+R on the
subset of the benchmarks solved by all tools is 1.3 times higher than the mean runtime
of Eld and 1.2 times higher than the mean runtime of Eld+B. The mean runtime of the
configuration Eld+BR is 1.1 times higher than the mean runtime of Eld+R on the same
subset of benchmarks.

145

5. Role-Based Heuristics for Systematic Predicate Abstraction

Proved
UNSAFE

Proved
SAFE

TO
UNSAFE

TO
SAFE

Not
Supported

CPAcheck
er Z3

Spacer Eld
Eld+B

Eld+R
Eld+BR

0 %

20 %

40 %

60 %

80 %

100 %
47.7s51.1s 52.0s54.1s17.1s 38.1s23.9s

14 7
71

118 98 82 58 27 27
16

122
115

103
93

62 65

277

203 230 257 293
325 325

185
92 99 107 105 135 132

(a) Summary for all benchmarks
CPAcheck

er Z3
Spacer Eld

Eld+B
Eld+R

Eld+BR
0 %

20 %

40 %

60 %

80 %

100 %
10.9s10.4s 10.2s11.2s12.7s 20.4s3.5s

7 4
22

32
26

21 12
1 1

6

5
5

6
6

6 6

46
32

40 47 56
67 67

21 19 20 21 21 21 21

(b) SV-COMP Loops benchmark

CPAcheck
er Z3

Spacer Eld
Eld+B

Eld+R
Eld+BR

Eld+BH
0 %

20 %

40 %

60 %

80 %

100 %
456s124s133s 169s160s17.8s 136s90s

37
65 62 40 44 23 24 34

2

95 89
82 84

54 57
6854

26 29
51 47

68 67
57

141

48 54 61 59
89 86 75

(c) SV-COMP CFI benchmark
CPAcheck

er Z3
Spacer Eld

Eld+B
Eld+R

Eld+BR
0 %

20 %

40 %

60 %

80 %

100 %
6.1s5.5s 6.0s4.5s17.2s 0.3s0.3s

6 13 7 14 2 2 22

127 120 126 119 131 131 131

18 20 20 20 20 20 20

(d) VeriMAP benchmark

CPAcheck
er Z3

Spacer Eld
Eld+B

Eld+R
Eld+BR

0 %

20 %

40 %

60 %

80 %

100 %
15.0s9.7s 11.6s6.5s19.3s 0.4s0.5s

6 8
3

7

1

10 8
13

9

16 15 16

5 5 5 5 5 5 5

(e) Llreve benchmark
CPAcheck

er Z3
Spacer Eld

Eld+B
Eld+R

Eld+BR
0 %

20 %

40 %

60 %

80 %

100 %
15.3s14.8s 21.1s10.8s19.6s 0.3s11.4s

7 36

22
21

15

3 2 2

40

17
22

31

43 44 44

(f) HOLA benchmark

Figure 5.1 Bar plots comparing the percentage of proved tasks for CPAchecker, Z3, Spacer
and different Eldarica configurations. Inside each bar is the percentage of the respective answers.
On top of each bar is the mean runtime computed without timeouts (for solved tasks).

146

5.3. Evaluation

1 10 100 1,000

1

10

100

1,000

Eld+R (CEGAR iterations)

E
ld

(C
E

G
A

R
it

er
at

io
ns

)

SAFE
UNSAFE

10 100 1,000

10

100

1,000

Eld+R (sec)
E

ld
(s

ec
)

SAFE
UNSAFE

Figure 5.2 Scatter plots comparing the number of CEGAR iterations and runtime, both in
logarithmic scale, of configurations Eld+R and Eld for benchmark SV-COMP CFI. The mean
runtime of Eld+R is 1.5 times smaller than that of Eld, and the average number of CEGAR
iterations of Eld+R is 19.0 times smaller than that of Eld, the four values calculated on the tasks
solved by both Eld and Eld+R.

For the benchmarks SV-COMP CFI we observe a significant speedup of Eld+R, as shown
in Fig. 5.2. SV-COMP CFI is a specific family of benchmarks because of their big size
and a large number of enumeration variables, see e.g. the code in Fig. 3.6a on page 57.
Note that in Fig. 5.2 we compare Eld+R to Eld, which is the second best configuration,
because for these benchmarks no heuristics are needed. The speedup of Eld+R for
SV-COMP CFI is caused by a considerable decrease in the number of CEGAR iterations.
To demonstrate this, we evaluate the configuration Eld+B with the timeout value of one
hour (denoted as Eld+BH in Fig. 5.1c). We observe that Eld+BH solves 12.8% more
unsafe and 9.0% more safe tasks than Eld+B.

The runtime of Eldarica is in average comparable to the runtime of the SMT solvers
on the set of the benchmarks solved by all tools: the mean runtime of Eld is 1.2 higher
than the mean runtime of Z3 and 1.6 lower than the mean runtime of Spacer.

To conclude, Eld+R does not considerably increase the runtime on all benchmarks, and
even shows a significant speedup for the family of benchmarks from SV-COMP CFI.

Comparison of roles with Eldarica’s previous heuristics. A comparison of Eld+R
to Eld+B shows that all but one benchmarks solved by old configurations of Eldarica
can also be solved by Eld+R. The one benchmark not solved by Eld+R requires a
predicate relating three variables in an equality, which according to our experience does
not fall into frequently used patterns. Moreover, as Fig. 5.1 shows, the configuration
Eld+BR, which combines roles and old heuristics of Eldarica, solves 3% less tasks than
Eld+R. One possible reason for the slowdown (and consequently the lower number of
solved benchmarks) of Eld+BR are redundant predicates generated by built-in heuristics

147

5. Role-Based Heuristics for Systematic Predicate Abstraction

of Eldarica. These results confirm that our framework not only describes new heuristics
but also captures all previous heuristics of Eldarica.

Improvement on unsafe benchmarks. Surprisingly, the initial predicates also help
to solve more unsafe benchmarks, as Fig. 5.1c shows. In principle, these predicates can
be found by Eld+B with a higher value of runtime, as demonstrated by the configuration
Eld+BH. We conclude that when variable roles are used, the number of solved unsafe
tasks does not decrease in general and even increases for SV-COMP CFI benchmarks.

Comparison of Eldarica to SMT solvers. We compare Eldarica to SMT solvers
Z3 and Spacer4. We note that a small number of tasks in benchmarks SV-COMP Loops
and HOLA cannot be processed by Z3 and Spacer because of existential quantifiers in
the SMT translation, which is not in the fragment handled by the PDR engine of Z3. We
denote these benchmarks as "Not Supported" in Fig. 5.1. We observe that, on one hand,
all configurations of Eldarica outperform both Z3 and Spacer in the number of solved
tasks, in particular Eld+R solves 30% more tasks than Z3. We note, however, that our
method for guiding predicate abstraction uses the structure of a program, which is not
preserved on the level of SMT formulae. On the other hand, the mean runtime of Z3 is
2.0 times lower than the mean runtime of Eld+R. To conclude, Eldarica outperforms
Z3 and Spacer in the number of solved tasks, but loses in speed.

Comparison of Eldarica to CPAchecker. Finally, we compare Eldarica to the
model checker CPAchecker. We observe that on safe and unsafe tasks the tools show
complementary strengths. In particular, CPAchecker proves more tasks unsafe than
Eldarica on CFI benchmarks, and on other benchmark sets shows comparable to El-
darica results. For safe benchmarks, however, on all benchmark sets CPAchecker can
prove fewer programs safe than the Eldarica configurations Eld+B, Eld+R and Eld+BR.
To conclude, Eldarica with interpolation abstraction outperforms CPAchecker on
safe benchmarks, while CPAchecker performs better on a family of unsafe benchmarks.

4We evaluate the default configuration of Z3 without command-line options. To execute Spacer, we
use the command-line option fixedpoint.xform.slice=false.

148

CHAPTER 6
Related Work

In this chapter we discuss the work related to variable roles and to the two applications of
variable roles which we explored. We structure it as follows: First, we describe the work
from different fields, where, similarly to variable roles, information is used about usage
patterns of variables. Then, we discuss the work related to the formalisation of variable
roles. In particular, we consider the related work in the theory of types and in program
query languages. Finally, we briefly speak about the work related to portfolio solvers
and about techniques aimed at choosing interpolants containing the suitable predicates.

6.1 Variable Usage Patterns

6.1.1 Teaching Programming Languages, Program Visualisation,
Pattern Recognision

The notion of variable roles, as patterns of how variables are initialised and updated,
is introduced by Sajaniemi et al. [Saj02], with a verbal definition of nine variable roles
for sorting algorithms from textbooks. The described roles are applied in teaching of
programming languages [SK05] and program visualisation [SK03]. Bishop et al. [BJ05]
implement a tool which applies static analysis techniques to automatically check role
annotations in Java code. Taherkhani [Tah10] uses variable roles in a decision tree
classifier to recognise sorting algorithms. This field of work serves as a starting point and
inspiration for the thesis; we come up with a more general set of variable roles for practical
open-source programs, provide a framework to formally specify and automatically infer
the roles, and make an extensive evaluation of our method on a large set of real-world
programs.

149

6. Related Work

6.1.2 Bug Finding

The commercial bug-finding tool Coverity1, evolved from an academic project [ECH+01],
uses so called programmer’s beliefs – propositional statements about variables and
functions. Using static analysis, it generates two kinds of statements. Beliefs of the first
kind are sound statements which follow from the requirements of safety, non-redundancy,
and reachability of the code, for example "a pointer is not null". The second kind of
beliefs are derived from the source code using statistical methods, for example "the calls
to functions f() and g() should be paired". This second type of rules, automatically
inferred from source code, is used as heuristics for ranking possible bugs. Here bugs are
violations of user-specified rules.

In addition, a language for an explicit specification of rules is devised [HCXE02, ECCH00],
which is similar in spirit to our specification language for specifying variable roles. On
one hand, our formalism is more expressive than the specification language of [HCXE02],
since the former uses set operations and allows to reason about multiple roles assigned
to a single variable and multiple variables assigned same role, which the latter does not
allow. On the other hand, the implementation of Coverity is no doubt more efficient
and scales to millions of lines of source code. However, Coverity is a closed commercial
tool.

6.1.3 Software Verification

Model checker CPAchecker chooses between explicit-value and BDD representation of a
variable, based on the operations in which the variable is used [ABF+13]. To this end, Apel
et al. extend the type system of C language with five types, called domain types, which
overapproximate the sets of variables used in logical, equality comparison, arithmetic
and bit operations and the set of variables that are used as loop counters respectively.
The domain types are also used in CPAchecker for predicate selection [BLW15]: a
heuristic assigns costs to predicates based on the costs of the variables they use, with the
costs of variables assigned according to their domain types.

The domain types in [BLW15] and [ABF+13] can be viewed as a restricted class of variable
roles. Differently from our work, where variable roles guide the generation of interpolants
(see Chapter 5), the domain types are used in [BLW15] to choose the "best" interpolant
from a set of already generated interpolants. In addition, our method generates role-based
initial abstraction (namely, predicates), while the method of [BLW15] does not.

In contrast to domain types devised for optimising the model checker CPAchecker, we
did not tie the concept of variable roles to a particular application beforehand. Therefore,
we devise a more general set of variable roles, and, as a result, choose a more expressive
specification formalism for roles. However, the price which we have to pay for a more
involved analysis is that the approach of CPAchecker for choosing predicates is more
scalable than our approach introduced in Chapter 5, since with the increase of the

1http://www.coverity.com. Accessed 23 January 2018.

150

http://www.coverity.com

6.2. Type Theory

Technique Specification language Decidability Features
of type
inference

Refinement
types

Regular tree grammar No
Decidable type inference ob-
tained with restrictions on re-
finements

Dependent +
index types

Typed λ-calculus with existen-
tial and universal quantifiers No

Manual type annotations com-
bined with automatic type
checking

Liquid types
Same as in dependent types,
but λ-expressions use a finite
set of predicates

Yes
SMT solver used to solve a sys-
tem of implications between
refinements

Type qualifiers Propositional language Yes
Inference rules specified im-
plicitly via annotation of li-
brary functions

Semantic type
qualifiers

Custom specification language
which uses C expressions Yes Type invariants used for check-

ing soundness of specification

Table 6.1 Summary of related work in type theory field.

number of role specifications or of the variables in program source code, the amount
of generated predicates and templates can become too large and have a negative effect
on the performance of Eldarica. In Chapter 5 we compare our prototype tool, which
infers role-based source code annotations for Eldarica, to the default configuration of
CPAchecker, and it would be an interesting future work to make a comparison to the
configuration of CPAchecker amended with domain types.

Finally, we believe that the representation of roles as logic queries is more readable than
rules in a type system, which are used in [ABF+13] to formalise domain types.

6.2 Type Theory

One possible way to formalise variable roles is to define a type system, where roles
correspond to types and are inferred during type inference, the approach taken in domain
types [ABF+13]. In this section we discuss the direction in type systems which extends
type systems to assign more fine-grained types to program variables and expressions,
rather than accept more programs as type correct. Below we list the directions of related
work, a summary of which we give in Table 6.1.

Refinement types [Fre94] refine types with atomic propositions, for example, "list is not
empty", "list is singleton", etc., the atomic propositions being organised in a lattice.
Refinement types use intersection type theory [Pie91], where an expression has
type σ∧τ when it has both type σ and type τ . Type inference for intersection types
is in general undecidable, and to obtain decidable type inference for refinement

151

6. Related Work

types, the intersection is restricted to refinements of the same base type, and the
lattice of refinements is required to be finite. The specifications of refinement types
are regular tree sets, and the inference reduces to abstract interpretation. The
inference for variable roles is similar to the inference of refinement types: abstract
transformers of datatype constructors in refinement types correspond to constraints
(in the form of logic rules) for statements and expressions in which a variable is
used, and a fixed point is computed for both systems. Our specification language
of variable roles is though more expressive than regular tree grammar used in
refinement types. In particular, the language of variable roles allows negation,
which is not allowed in the refinement types.

Dependent types [Xi98] introduce existential and universal quantifiers into types, which
allow to express invariants for complex data structures, e.g. red-black trees, and
function pre- and post-conditions, e.g. "function concat() takes two lists of the
length n and m respectively and returns a list of the length n+m". Dependent types
are usually combined with index types, which refine base types with Boolean-valued
expressions in some logic, for example "the value of the expression belongs to a given
interval". Type inference for dependent types is in general undecidable, therefore, a
combination of manual type annotations with automatic type checking is typically
used. We intentionally chose a less expressive language for the specification language
of variable roles for the sake of efficient inference of roles.

Liquid types [RKJ08] restrict dependent types to obtain a decidable inference procedure.
Liquid types refine base types with the conjunctions of predicates instantiated
from a fixed number of template linear inequalities with program variables, for
example x>0∧x<5. The inference procedure for liquid types is based on predicate
abstraction and reduces to computing a fixed point of a system of implications
between refinements, and uses an SMT solver for its implementation. This work is
complementary to our approach, since variable roles do not describe which values a
variable can take, but rather in which operations, functions etc. a variable is used.

Type qualifiers [Fos02], similarly to refinement types, refine data types with atomic
propositions, organised in a lattice, with the ordering imposed only on refined types
with the same base type. Type inference of type qualifiers reduces to solving a
system of inclusion constraints on lattice subsets. The main limitation of type
qualifiers is that their semantics is specified implicitly via the annotation of the
corresponding library functions, for example "when a library function lock()
(respectively unlock()) is called, the mutex variable which is passed to it is
assigned type locked (respectively unlocked)".

Semantic type qualifiers [CMM05] extend type qualifiers so that the specification is
given explicitly in the form of rules. In addition, the implementation of semantic
type qualifiers includes an interface for the specification of an invariant for the
values taken by variables of a given type. Besides checking the specification for
completeness and consistency, the invariant can be used to infer a set of rules

152

6.3. Program Query Languages

Tool Specification Featureslanguage
JQuery Prolog-like language Annotations needed to ensure termination

ASTLog Prolog-like language
with custom semantics

Light-weight analysis without fixed point
computations

CodeQuest Datalog Queries translated to SQL and evaluated
with an off-the-shelf engine

PQL Custom imperative lan-
guage

Queries translated to SQL and evaluated
with a non-standard BDD-based algorithm

Doop Datalog
Framework for logic-based specification of
pointer analysis with an efficient implemen-
tation

Table 6.2 Summary of related work in the field of code query languages.

automatically. Examples of semantic qualifiers are positive and negative values,
tainted pointers (i.e. "unchecked" pointers passed to the kernel by a user), pointers
which uniquely reference some memory location, etc. Both variable roles and
semantic type qualifiers follow an approach of separating the specification from the
implementation. Automatic inference of the specification for variable roles from an
invariant is an open interesting question, since for most variable roles it is not clear
how to formulate the invariant. Here the same remark applies as for the liquid
types: the variable roles specify how a variable is used rather than what it stores,
for example, consider variable role file descriptor from Example 1.3.2.

6.3 Program Query Languages

An alternative to the rule-based definition of variable roles using type systems is a
declarative definition in a specification language. Since variable roles describe the usage
patterns of variables, roles can be formalised as queries on the syntactical structure of a
program. In this section we will make an overview of the languages, designed for this
purpose, which are called program query languages.

6.3.1 Logic Languages for Program Analysis

A common approach in the design of code query languages is to represent the abstract
syntax tree (AST) of a program as a set of relations and to use logic programming to query
these relations. On one hand, the specification of static analysis using a logic language is
concise and is separated from its evaluation. On the other hand, the evaluation of such an
analysis is time and space consuming. Below we give an overview of tools implementing
different approaches to code query languages, which we summarise in Table 6.2.

JQuery. A state-of-the-art code query language for Java language is JQuery [JV03].

153

6. Related Work

For query specification JQuery uses a logic programming language TyRuBa,
similar to Prolog. Prolog is a Turing-complete language, but query evaluation in
Prolog might not terminate and is inefficient due to repeated subcomputations of
relations. TyRuba overcomes these problems with memoisation [CW96], i.e. re-uses
intermediate results. A drawback is that the relations which should be memoised
need annotations.

ASTLog. A light-weight alternative for code querying is the language ASTLog [C+97].
ASTLog achieves fast evaluation by restricting the queries to traversing the syntax
tree without support for fixed point computation. ASTLog has syntax similar
to Prolog. The semantics is different in that a query is evaluated on an AST
subtree rooted in the node matching the query parameter, rather than on the whole
database of facts. ASTLog is not expressive enough to express variable roles, since
data-flow analysis needs fixed point computation.

CodeQuest and PQL. Since the default implementation of Prolog stores the relations
in RAM, the analysis defined in Prolog does not scale to static analysis of real-world
programs. An alternative approach is to store facts in a relational database on
a disk. Examples of works following this approach are the code query languages
CodeQuest [HVdM06] and PQL [MLL05]. In CodeQuest queries are specified in
Datalog and translated to SQL extended with recursion [GP99], and then executed
using an off-the-shelf efficient interpreter. In PQL, aimed for finding bugs in Java
programs, queries are specified in an own imperative language and translated to
Datalog. Similarly to CodeQuest, PQL uses a database to evaluate queries, but
implements a non-standard BDD-based evaluation algorithm [WACL05].

Doop. An efficient tool Doop [BS09] for pointer analysis uses Datalog for query specifica-
tion, but does not build on top of a database. Doop drastically reduces evaluation
times for queries using manually introduced query optimisations, in particular
indexes and defining the order of joins in queries.

6.3.2 XML for Representing Code Structure

A different direction in code query languages is to represent AST as an XML2, see e.g.
JavaML [Bad00]. Such a representation allows to evaluate code queries and perform
other static analyses using a rich infrastructure of XML-related tools and techniques.
Specifically, XPath3 is a declarative language, targeted at writing queries on XML trees
using a compact expression-like syntax. Similarly to ASTLog, XPath evaluates a query
on a subtree rooted in the node matching its parameter and can not express a system of
recursive constraints. A Turing-complete functional language XQuery4,5 is extention

2https://www.w3.org/TR/xml/. Accessed 24 January 2018.
3https://www.w3.org/TR/xpath-3/. Accessed 24 January 2018.
4https://www.w3.org/TR/xquery-3/. Accessed 24 January 2018.
5The formal semantics of XQuery 1.0 and XPath 2.0 is described at https://www.w3.org/TR/

query-algebra/. Accessed 24 January 2018.

154

https://www.w3.org/TR/xml/
https://www.w3.org/TR/xpath-3/
https://www.w3.org/TR/xquery-3/
https://www.w3.org/TR/query-algebra/
https://www.w3.org/TR/query-algebra/

6.4. Portfolio Solvers

of XPath. A disadvantage of XQuery compared to a specification written in a logic
language is that the former is much more lengthy.

6.3.3 State Automata-Based Approach

Finally, an example of a code query languages neither based on logic programming, nor
on XML, is Metal [ECCH00, HCXE02]. Implemented as a compiler extension, the
framework evolved in the bug-finding tool Coverity, which we already mentioned in
Section 6.1. A specification in metal describes a state machine, with a state assigned
to each variable, and transitions fired when a pattern is matched. Transitions, however,
depend on the state of not more than one variable, therefore, recursively defined specifi-
cations are not allowed. The framework allows for both flow-sensitive and flow-insensitive
analyses. The syntax of the Metal language is not specified in [ECCH00, HCXE02], but
as far as we can judge, Metal is as expressive as the specification language of variable
roles, modulo the absence of recursively defined state transitions in Metal, which is
a not fundamental restriction, but forced due to performance reasons. The translation
between a specification in Metal an a specification of a variable role be done as follows:
the states of variables correspond to relations, and state transitions correspond to rules,
the pattern defining the body of the rule.

6.4 Portfolio Solvers
Portfolio solvers have been successful in combinatorially cleaner domains such as SAT
solving [XHHL08, KMS+11, Rou12], quantified Boolean satisfiability (QSAT) [SM07,
PT07, PT09], answer set programming (ASP) [GKK+11, MPR12], and various constraint
satisfaction problems (CSP) [LL98, GS01, OHH+08]. In contrast to software verification,
in these areas constituent tools are usually assumed to be correct.

A machine-learning based method for selecting model checkers was previously introduced
in [TKK+14]. Similar to our work, the authors use SVM classification with weights (cf.
Section 4.2.1). Our approach is novel in the following ways:

1. The results in [TKK+14] are not reproducible because i. the benchmark is not pub-
licly available, ii. the verification properties are not described, and iii. the weighting
function – in our experience crucial for good predictions – is not documented.

2. We demonstrate the continued viability of our approach by applying it to new
results of recent SV-COMP editions.

3. We use a larger set of verification tools (35 tools vs. 3). Our benchmark is not
restricted to device drivers and is >10 times larger (56 MLOC vs. 4 MLOC in
[TKK+14]).

4. In contrast to structural metrics of [TKK+14] our metrics are computed using data-
flow analysis. Based on tool designer reports (Table 4.1) we believe that they have

155

6. Related Work

superior predictive power. Precise comparison is difficult due to non-reproducibility
of [TKK+14].

6.5 Choosing Interpolants with Suitable Predicates
There has been extensive research on tuning abstraction refinement techniques, in such
a way that convergence of model checkers is ensured or improved. This research in
particular considers various methods of Craig interpolation, and controls features such as
interpolant strength, interpolant size, the number of distinct symbols in interpolants, or
syntactic features like the magnitude of coefficients.

In Section 6.1.3 we have already compared our method for defining role-based heuristics
in order to find suitable predicates (see Chapter 5) to domain types which were used in
CPAchecker in a heuristic for choosing interpolants [BLW15].

For a further detailed survey of the techniques for choosing interpolants containing
suitable predicates we refer the reader to the work which implements in Eldarica one
of such techniques [LRS16].

156

CHAPTER 7
Future Work and Conclusions

7.1 Summary of Contributions
We have formulated the major contributions of our thesis in Section 1.7. In this section
we discuss the contributions in more detail.

1. We give a formal definition of the concept of variable roles for imperative pro-
gramming languages. As we mention in our discussion of related literature (see
Section 6.1), concepts similar to the notion of variable roles have been used in
different fields, such as software verification [BLW15], program understanding and
teaching programming languages [Saj02] and bug finding [ECH+01]. However, to
the best of our knowledge, our work is the first one where the concept of variable
role is stated formally.

a) We do a case study on a comprehensive code base and devise a classification
of variable roles which capture the typical usage patterns of variables. In
particular, we formulate 18 domain-independent variable roles, using a collection
of benchmarks from industry (see Section 3.1.1). The classifications suggested
by previous methods are either very coarse [BLW15], or targeted for a specific
application domain for roles [ECH+01], or derived from programs of a specific
kind and hence are restricted to a narrow set of variable usage patterns [Saj02].
The variable roles formulated in this thesis are more general than the roles
suggested in the previous methods and are derived from practical open-source
benchmarks.

b) We propose a concise specification formalism for variable roles based on logic
programming, which at the same time lends itself as a technique for automatic
inference of roles (see Chapter 3). Our specification framework uses Datalog
rules to define variable roles. We believe that Datalog rules are more concise
and understandable than type system rules of [BLW15]. Another advantage of

157

7. Future Work and Conclusions

Datalog is the possibility to evaluate role definitions using off-the-shelf logic
engines.

2. We explore the application of variable roles in software verification:
a) First, we identify 12 additional variable roles important for the benchmarks of

the software competition SV-COMP. We use variable roles, loop patterns and
control flow features to devise source code metrics.1 Using these metrics, we
build a portfolio solver for software verification (see Chapter 4).

As we mention in Section 6.4, a similar approach of a machine-learning based
portfolio solver which employs code metrics to choose a verification tool was
formulated and implemented in [TKK+14]. Nonetheless, our method is different
from [TKK+14] in that our algorithm employs semantic, rather than structural
metrics. Next, our work is re-producible since we formally define our metrics
and our weighting function which we use to handle data imbalances. In addition,
our work includes a more extensive evaluation: our portfolio is based on 35
verification tools vs. 3 in [TKK+14] and is evaluated on the source based of 56
MLOC vs. 4 MLOC in [TKK+14].

Our evaluation demonstrates the generality of our approach: devised for the
setting of the competition SV-COMP’14, our portfolio solver would become a
hypothetical overall winner of SV-COMP’14 as well as SV-COMP’15 and ’16
without major changes. We believe that the success of our approach is to a great
extend due to our weighting function (see Section 4.2.3), which on one hand
formalises the knowledge about the competition setting and scoring policies,
and on the other hand is general enough to be applied to settings other than
SV-COMP.

b) Second, we suggest a variable role-based method for the specification of heuris-
tics for choosing program-specific abstraction (see Chapter 5). To the best of
our knowledge, our thesis is the first work to formally describe heuristics in
software verification (authors of verification tools either describe their heuristics
informally [NR10, LRS16, CCF+09] or do not describe them at all).

As a case study, we use variable roles to formulate heuristics for the model
checker Eldarica. We identify 5 new variable roles important for Eldarica
on a set of SV-COMP verification benchmarks. We implement existing built-in
heuristics of Eldarica as well as 5 new heuristics derived from our set of
benchmarks.

Finally, we evaluate Eldarica extended with role-based heuristics on an ex-
tensive set of benchmarks from SV-COMP and literature. We stress that we
derive our heuristics from a small fraction of SV-COMP benchmarks (appr. 35
benchmarks altogether) and evaluate the extended tool on a much larger set
including benchmarks from other sources than SV-COMP (see Section 5.3 for

1The loop patterns and control flow features are not the contributions of the author of this thesis.

158

7.2. Threats to Validity

details). Our evaluation demonstrates that Eldarica extended with role-based
heuristics solves 11.2 % more tasks on our set of benchmarks, and shows a
significant speedup on certain benchmark families.

7.2 Threats to Validity

In this section we discuss threats to internal and external validity.

Threats to internal validity
Overlap between training and test data. The major threat to internal validity
for results in the machine learning field, and therefore for the evaluation of our
portfolio solver, is a selection bias when there is an overlap between training and
test data, leading to falsely pronounced results in the machine learning accuracy on
the test data. As discussed in Section 4.2.3, a feature vector in our formulation of
a machine learning task consists of program metrics and the type of a verification
task, i.e. reachability, memory safety, etc. The threat of overlap between training
and test data arises because only 70% of SV-COMP benchmarks in the year 2016
(65% and 77% in the years 2015 and 2014 respectively) have unique metrics, since
many unsafe benchmarks are manually derived from their safe counterparts with
minor changes, e.g. flipping a comparison operator, etc. We therefore mitigate this
threat by partitioning the learning data in such a way that every pair of programs
with same metrics occurs either in training, or in test set, but not partitioned to
different sets.

Random effects. We use pseudo-random partitioning of the machine learning
data to a training and test set, modulo the restriction mentioned in the previous
paragraph. To mitigate random effects in the evaluation of our portfolio solver,
we perform 10 experiments with different partitionings, and we report the mean
results for the 10 experiments (see Section 4.3.3 and Tables 8.1 on page 173, 8.2 on
page 175 and 8.3 on page 177).

Non-determinism in constituent verifiers of the portfolio solver. In our
algorithm, we assume that all the verifiers used by our portfolio solver are de-
terministic. Non-determinism might happen, for example, if a verification tool
employs an SMT solver which uses different random seeds on each run. In case
the assumption of determinism is not satisfied, machine learning data might be
inconsistent, i.e. to a feature vector x(v) of a verification task v may correspond
two (or more) different labels L1(v), L2(v), . . . (we use the notation introduced in
Section 4.2.3). For example, a verification tool might give an answer "safe" on a
first run and not terminate on a second run. In case inconsistent data is partitioned
into training and test set, misclassification (i.e. a high classification error) will
occur. We exclude this threat by the way the benchmarks are partitioned. Even
more importantly, usually an effort is made by designers of verification tools to
make their tools deterministic, in particular to achieve reproducible results.

159

7. Future Work and Conclusions

Uncovering additional information about benchmarks to the portfolio
solver. We stress that our portfolio solver receives same input as the participants
of the competition, e.g. the test data does not include the competition category of
a verification task, neither the anticipated answer, i.e. safe/unsafe.

Errors in labelling benchmarks as safe/unsafe. The next threat to internal
validity are possible errors in labelling verification tasks as safe or unsafe. In our
evaluation of both the portfolio solver and heuristics for Eldarica (Sections 4.3.3
and 5.3 respectively), we assumed that the labelling made by the designers of the
benchmarks is correct. Though, in the evaluation of the heuristics for Eldarica
in Section 5.3, we found two errors in labelling benchmarks from the set Llreve,
when safe benchmarks were labelled by the designers as unsafe. We reported our
results for the corrected labelling.

Neglecting time overhead. As explained in Section 4.2, our portfolio solver
performs additional computations such as program feature extraction and prediction
of the optimal verification tool for a task. We report in Section 4.3.3 the median
overhead time, which amounts to x̃features = 0.5 seconds for feature extraction and
x̃prediction = 0.5 seconds for prediction. We find this overhead to be negligible, when
compared to median verification time, the median verification time of the winner
of SV-COMP’16 UltimateAutomizer is 24.9 seconds.

Nonuniform time measurement. Recall that for the evaluation of our portfolio
solver we did not re-run the SV-COMP competition, but used the results published
on the competition website. Since we executed our algorithm for the feature
extraction and the prediction of the optimal tool on a different machine than the
one on which the competition was executed, the overhead time is not directly
comparable to the run-times of the tools, though the overhead time can be used as
an estimation.

Threats to external validity
Overfitting of portfolio solver. Threats to external validity of our portfolio
solver evaluation can arise because these results may not generalise to other types
of benchmarks or other verification tools. In the machine learning field this problem
is called overfitting.

Indeed, we did not evaluate our setting on benchmarks other than the SV-COMP
benchmarks, because for this evaluation we would need to have a sufficient for
machine learning number of benchmarks labelled as safe/unsafe, and it would be
difficult to get these benchmarks outside of SV-COMP. Next, we would need to run
all constituent verification tools of the portfolio solver on the new set of benchmarks
(recall again, that for our experiments, we did not run the tools ourselves, but used
the results of the competition). We believe, though, that this additional effort is
time consuming and goes outside of the scope of our thesis. On top of that, we note
that the set of the benchmarks of the SV-COMP competition is quite manifold: first,
the set contains different types of programs, such as Linux device drivers as well

160

7.3. Future Work

as verification tasks submitted by competition participants, including concurrent,
recursive and other types of programs; second, the SV-COMP verification tasks
include verification properties of different types such as reachability, memory safety,
overflow and termination.
Finally, we note that in our experiments we evaluated the portfolio solver in
the setting of three editions of SV-COMP in the years 2014, 2015 and 2016 (see
Section 4.3.3), with a number of participating tools added, removed or updated
between the editions. Taking into account all the above arguments, we hope that
our portfolio solver will generalise to previously unseen benchmarks and verification
tools.
Non-generalisation of heuristics. A similar threat of external validity arises
for our evaluation of Eldarica extended with heuristics, i.e. the extended tool
may show performance regression on other benchmarks than those from which the
heuristics were derived. As mentioned in Section 3.1.3, we designed our heuristics
based on appr. 30 benchmarks which could not be solved by Eldarica within the
time limit of 15 minutes. In particular, we analysed the SV-COMP’16 benchmarks
from categories ”Integers and Control Flow” (SV-COMP CFI) and ”Loops” (SV-
COMP Loops) and loop invariant generation benchmarks (HOLA). The analysed
benchmarks constitute 5% of the set of 549 C benchmarks which we used to evaluate
Eldarica enhanced with heuristics, see Table 5.1 on page 145 for details.
In our experiments the enhanced tool shows improvement in the number of solved
tasks on the sets of benchmarks SV-COMP CFI, SV-COMP Loop and HOLA .
On the remaining benchmark sets the unmodified version of Eldarica with built-in
heuristics Eld+B (see Table 5.2 on page 146 for the description of used configurations
of Eldarica) already solves 98% of the tasks, and the enhanced tool does not show
the improvement on these sets of benchmarks. However, on the overall set of
benchmarks, the enhanced tool does not show performance regression, as reported in
Section 5.3. These observations give us hope that our algorithm and implementation
can be successfully applied to other benchmarks.

7.3 Future Work

As future work, we believe that variable roles are interesting to study both on their own
and in application to software verification techniques.

First, it would be interesting to incorporate into our notion of variable roles the information
from comments in source code and from names of variables. To this end, one can use the
methods of natural language processing and the existing work in this direction in the
program understanding field [DP06, LFB07].

Second, the framework for defining variable roles can be enhanced by incorporating
flow-sensitivity into roles. With this approach, variable roles would be assigned to a
variable per control location or per block of code – to compare, in our thesis a single role

161

7. Future Work and Conclusions

is assigned to a variable at all control locations, with the role summarising the usage
patterns of the variable across the whole program. Flow-sensitivity would provide more
accurate information about usage patterns of variables. In addition, flow-sensitive roles
could be used to detect possible bugs when a role of a variable changes; for instance, this
approach is implemented in the Coverity bug finding tool [ECH+01].

Next, it would be interesting to evaluate our portfolio solver in a new setting, where the
portfolio solver is trained on the benchmarks of the software verification competition
(or some other representative set of benchmarks) and is tested on verification tasks not
included in the competition benchmarks. We stress that in the experiments which we
present in this thesis, we use disjoint sets of benchmarks for training and testing of our
portfolio solver. Nonetheless it would be interesting to explore the effectiveness of our
approach applied to other verification tasks.

Finally, the implementation of the algorithm which we present in this thesis can be
enhanced in terms of efficiency. In particular, the time of evaluating a logic program can
be reduced by optimising Datalog queries [BS09]; an orthogonal enhancement increasing
the scalability of the approach would be to store the translated program (for which the
roles are inferred) in a relational database and to translate Datalog queries to the SQL
language [HVdM06, MLL05].

162

CHAPTER 8
Appendices

8.A Definitions of Supplementary Relations for Variable
Roles

1 % Variable X is assigned expression Expr
2 assigned(X,Expr):- assigment_stmt(Stmt), lhs_expr(Stmt,X)
3 rhs_expr(Stmt,Expr).
4
5 % Transitive closure of the relation assigned
6 assigned_tc(X,Expr):- assigned(X,Expr).
7 assigned_tc(X,Expr):- assigned(X,Z), assigned_tc(Z,Expr).
8
9 % Expression SubExpr is an operand of the operator Expr

10 operand(Expr,SubExpr):- lhs_expr(Expr,SubExpr).
11 operand(Expr,SubExpr):- rhs_expr(Expr,SubExpr).
12
13 % function Func is called
14 called(Func,CallExpr):- call_expr(CallExpr), function(CallExpr,Func).
15
16 % Expression Arg is I-th actual parameter of a function/macro call
17 act_arg(Func,I,Arg):- call_expr(CallExpr), function(CallExpr,Func),
18 param(CallExpr,I,Arg).
19
20 act_arg(Macro,I,Arg):- macro_call_expr(MacroCallExpr),
21 macro(MacroCallExpr,Macro), param(MacroCallExpr,I,Arg).
22
23 % Variable X is assigned a call to function Func
24 assigned_call(X,Func):- assigned(X,CallExpr), call_expr(CallExpr),
25 function(CallExpr,Func).

Figure 8.1 Specification of supplementary relations for defining variable roles.

163

8. Appendices

26 % Expression Lit is a literal of the boolean expression Expr
27 literal(Expr,Lit):- bool_subexpr(Expr,Lit), not comp_bool_expr(Lit).
28
29 % Expression SubExpr is a boolean-valued subexpression of expression Expr
30 bool_subexpr(Expr,SubExpr):- bool_subexpr(Expr,Expr1), bop_expr(Expr1),
31 opcode(Expr1,Opcode), logical_opcode(Opcode), operand(Expr1,SubExpr).
32
33 bool_subexpr(Expr,SubExpr):- bool_subexpr(Expr,Expr1), uop_expr(Expr1),
34 opcode(Expr1,Opcode), logical_opcode(Opcode), operand(Expr1,SubExpr).
35
36 bool_subexpr(Expr,Expr).
37
38 % Compound boolean expression -- logical AND, OR or NOT.
39 comp_bool_expr(Expr):- bop_expr(Expr), opcode(Expr,Opcode),
40 logical_opcode(Opcode).
41
42 comp_bool_expr(Expr):- uop_expr(Expr), opcode(Expr,Opcode),
43 logical_opcode(Opcode).
44
45 % Expression Atom is an atom of Expr
46 atom(Expr,Atom):- arithm_subexpr(Expr,Atom), not bop_expr(Atom),
47 not uop_expr(Atom).
48
49 % Expression SubExpr is an integer-valued subexpression of expression Expr
50 arithm_subexpr(Expr,SubExpr):- arithm_subexpr(Expr,Expr1), bop_expr(Expr1),
51 opcode(Expr1,Opcode), arithm_opcode(Opcode), operand(Expr1,SubExpr).
52
53 arithm_subexpr(Expr,SubExpr):- arithm_subexpr(Expr,Expr1), uop_expr(Expr1),
54 opcode(Expr1,Opcode), arithm_opcode(Opcode), operand(Expr1,SubExpr).
55
56 arithm_subexpr(Expr,Expr).
57
58 % Statement SubStmt is a sub-statement of statement Stmt
59 sub_stmt(Stmt,SubStmt) :- sub_stmt(Stmt,SeqStmt), sequence_stmt(SeqStmt),
60 sub_stmt1(SeqStmt,SubStmt).
61
62 sub_stmt(Stmt,SubStmt) :- sub_stmt(Stmt,SeqStmt), sequence_stmt(SeqStmt),
63 sub_stmt2(SeqStmt,SubStmt).
64
65 sub_stmt(Stmt,SubStmt) :- sub_stmt(Stmt,WhileStmt), while_stmt(WhileStmt),
66 body(WhileStmt,SubStmt).
67
68 sub_stmt(Stmt,SubStmt) :- sub_stmt(Stmt,IfStmt), if_stmt(IfStmt),
69 then_stmt(IfStmt,SubStmt).
70
71 sub_stmt(Stmt,SubStmt) :- sub_stmt(Stmt,IfStmt), if_stmt(IfStmt),
72 else_stmt(IfStmt,SubStmt).
73
74 sub_stmt(Stmt,Stmt).

Figure 8.2 (Cont.) Specification of supplementary relations for defining variable roles.

164

8.A. Definitions of Supplementary Relations for Variable Roles

75 % Str is the string representation of the expression Expr
76 expr_str(Expr,Str):- bop_expr(Expr), opcode(Expr,Opcode),
77 lhs_expr(Expr,LhsExpr), rhs_expr(Expr,RhsExpr),
78 expr_str(LhsExpr,LhsExprStr), expr_str(RhsExpr,RhsExprStr),
79 Str=@concat("(",LhsExprStr,Opcode,RhsExprStr,")").
80
81 expr_str(Expr,Str):- uop_expr(Expr), opcode(Expr,Opcode),
82 sub_expr(Expr,SubExpr), expr_str(SubExpr,SubExprStr),
83 Str=@concat("(",Opcode,SubExprStr,")").
84
85 expr_str(Expr,Str):- var(Expr), name(Expr,Str).
86 expr_str(Expr,Str):- const_literal(Expr), val(Expr,Str).
87
88 % Func is an external function
89 ext_func(Func):- func_decl(Func), not has_body(Func).
90 has_body(Func):- func_decl(Func), body(Func,Body).
91
92 % Relations which encode function names for roles
93 % Standard library functions which manipulate characters
94 char_use_func("fputc",0).
95 char_use_func("putc",0).
96 char_use_func("putchar",0).
97 char_use_func("isalnum",0).
98 char_use_func("isalpha",0).
99 char_use_func("isascii",0).

100 char_use_func("isblank",0).
101 char_use_func("iscntrl",0).
102 char_use_func("isdigit",0).
103 char_use_func("islower",0).
104 char_use_func("isprint",0).
105 char_use_func("ispunct",0).
106 char_use_func("isspace",0).
107 char_use_func("isupper",0).
108 char_use_func("isxdigit",0).
109
110 % Standard library functions which return a character
111 char_def_func("fgetc",fres).
112 char_def_func("getc",fres).
113 char_def_func("fgetwc",fres).
114 char_def_func("getwc",fres).
115 char_def_func("getchar",fres).
116 char_def_func("getwchar",fres).

Figure 8.3 (Cont.) Specification of supplementary relations for defining variable roles.

165

8. Appendices

117 % Standard library functions which manipulate file descriptors
118 file_use_func("read",0).
119 file_use_func("write",0).
120 file_use_func("fstat",0).
121 file_use_func("openat",0).
122 file_use_func("fcntl",0).
123 file_use_func("fchmod",0).
124 file_use_func("fchown",0).
125 file_use_func("dup",0).
126 file_use_func("dup2",0).
127 file_use_func("dup3",0).
128 file_use_func("lseek",0).
129 file_use_func("mmap",0).
130
131 % Standard library functions which return a file descriptor
132 file_def_func("open",fres).
133 file_def_func("openat",fres).
134 file_def_func("creat",fres).
135 file_def_func("dup",fres).
136 file_def_func("dup2",fres).
137 file_def_func("dup3",fres).
138 file_def_func("fcntl",fres).
139
140 % Standard library functions which manipulate thread descriptors
141 thread_descr_use_func("pthread_cancel",0).
142 thread_descr_use_func("pthread_detach",0).
143 thread_descr_use_func("pthread_equal",0).
144 thread_descr_use_func("pthread_equal",1).
145 thread_descr_use_func("pthread_getschedparam",0).
146 thread_descr_use_func("pthread_join",0).
147 thread_descr_use_func("pthread_setschedparam",0).
148
149 % Standard library functions which return a thread descriptor
150 thread_descr_def_func("pthread_create",0).
151 thread_descr_def_func("pthread_self",fres).
152
153 % Standard library functions which manipulate
154 % dynamically allocated memory
155 dyn_mem_use_func("free",0).
156 dyn_mem_use_func("cfree",0).
157 dyn_mem_use_func("malloc_usable_use",0).
158 dyn_mem_use_func("munmap",0).
159 dyn_mem_use_func("mprotect",0).
160 dyn_mem_use_func("msync",0).
161 dyn_mem_use_func("madvise",0).
162 dyn_mem_use_func("mlock",0).
163 dyn_mem_use_func("munlock",0).
164 dyn_mem_use_func("mincore",0).

Figure 8.4 (Cont.) Specification of supplementary relations for defining variable roles.

166

8.A. Definitions of Supplementary Relations for Variable Roles

165 % Standard library functions which return the address
166 % of dynamically allocated memory
167 dyn_mem_def_func("malloc",fres).
168 dyn_mem_def_func("calloc",fres).
169 dyn_mem_def_func("realloc",fres).
170 dyn_mem_def_func("memalign",fres).
171 dyn_mem_def_func("valloc",fres).
172 dyn_mem_def_func("pvalloc",fres).
173 dyn_mem_def_func("mmap",fres).
174 dyn_mem_def_func("mremap",fres).
175
176 % Standard library functions which allocate memory dynamically
177 % or manipulate dynamically allocated memory
178 % and take as a parameter the size of the memory allocation
179 dyn_mem_size_func("malloc",0).
180 dyn_mem_size_func("calloc",1).
181 dyn_mem_size_func("realloc",1).
182 dyn_mem_size_func("memalign",1).
183 dyn_mem_size_func("valloc",0).
184 dyn_mem_size_func("pvalloc",0).
185 dyn_mem_size_func("mmap",1).
186 dyn_mem_size_func("mremap",2).
187
188 % Assertion functions
189 assert_func("assert",0).
190
191 %
192 % OPERATION CODES
193 %
194 % Bitwise operators
195 bit_opcode("BIT_AND").
196 bit_opcode("BIT_OR").
197 bit_opcode("BIT_XOR").
198 bit_opcode("BIT_NOT").
199
200 % Comparison operators
201 compar_opcode(Opcode):- rel_opcode(Opcode).
202 compar_opcode(Opcode):- eq_opcode(Opcode).
203
204 % Relational operators
205 rel_opcode("<").
206 rel_opcode("<=").
207 rel_opcode(">").
208 rel_opcode(">=").
209
210 % Strict relational operators
211 strict_rel_opcode("<").
212 strict_rel_opcode(">").
213
214 % Equality operators
215 eq_opcode("==").
216 eq_opcode("!=").

Figure 8.5 (Cont.) Specification of supplementary relations for defining variable roles.
167

8. Appendices

217 % Arithmetic operators
218 arithm_opcode(Opcode):- rel_opcode(Opcode).
219 arithm_opcode(Opcode):- add_opcode(Opcode).
220 arithm_opcode(Opcode):- uadd_opcode(Opcode).
221 arithm_opcode("*").
222 arithm_opcode("/").
223
224 % Addition and subtraction operators
225 add_opcode("+").
226 add_opcode("-").
227
228 % Unary plus and minus operators
229 uadd_opcode("+").
230 uadd_opcode("-").
231
232 % Logical operators
233 logical_opcode("LOR").
234 logical_opcode("LAND").
235 logical_opcode("LNOT").
236
237 % Boolean-valued operators
238 bool_res_opcode(Opcode):- logical_opcode(Opcode).
239 bool_res_opcode(Opcode):- rel_opcode(Opcode).
240 bool_res_opcode(Opcode):- eq_opcode(Opcode).
241
242 % Codes of supported binary operators
243 bin_opcode("+").
244 bin_opcode("-").
245 bin_opcode("*").
246 bin_opcode("/").
247 bin_opcode("REM"). % remainder operator
248 bin_opcode("PTR_PLUS_INT"). % pointer plus integer
249 bin_opcode("PTR_MINUS_INT"). % pointer minus integer
250 bin_opcode(">").
251 bin_opcode(">=").
252 bin_opcode("<").
253 bin_opcode("<=").
254 bin_opcode("==").
255 bin_opcode("!=").
256 bin_opcode("BIT_SHL"). % left bit shift
257 bin_opcode("BIT_SHR"). % right bit shift
258 bin_opcode("BIT_AND"). % bit and
259 bin_opcode("BIT_OR"). % bit or
260 bin_opcode("BIT_XOR"). % bit xor
261 bin_opcode("LAND"). % logical and
262 bin_opcode("LOR"). % logical or

Figure 8.6 (Cont.) Specification of supplementary relations for defining variable roles.

168

8.A. Definitions of Supplementary Relations for Variable Roles

263 % Codes of supported unary operators
264 un_opcode("+"). % unary plus
265 un_opcode("-"). % unary minus
266 un_opcode("ADDR_OF"). % address-of
267 un_opcode("DEREF"). % pointer dereference
268 un_opcode("BIT_NOT"). % bit not
269 un_opcode("LNOT"). % logical not
270
271 %
272 % DATA TYPES
273 %
274 % Integral type
275 integral_type(int).
276 integral_type(char).
277
278 % Floating-point type
279 floating_point_type(float).
280
281 % Scalar type
282 scalar_type(Type):- integral_type(Type).
283 scalar_type(Type):- floating_point_type(Type).

Figure 8.7 (Cont.) Specification of supplementary relations for defining variable roles.

169

8. Appendices

8.B Algorithm for Solving a System of Horn Clauses
Here we describe an algorithm from [RHK13] which we use in Step 2 of the algorithm on
page 139, Section 5.1.3.

We assume the following:

• A mapping Π : R → P(P) from relation symbols Invi ∈ R to finite sets Pi ⊆ P of
predicates P .

• For each relation symbol Invi ∈ R a vector x̄i of formal argument variables has
been fixed.

The algorithm constructs an abstract reachability graph (ARG), which is a hyper-
graph (S,E), where

• S ⊆ {(Invi, Q) | Invi ∈ R, Q ⊆ Π(Invi)} is the set of nodes.
Each node is a pair consisting of a relation symbol Invi and a set of predicates Q.

• E ⊆ S∗ ×HC × S is a hyper-edge relation.

An edge e ∈ E
e = (〈s1, . . . , sn〉, h, s),

labelled with a Horn clause h ∈ HC ,

h = (B1 ∧ · · · ∧Bn ∧ ϕ→ H),

implies that

– si = (Invi, Qi), and Bi = Invi(t̄i) for all i = 1, . . . , n.
Note that t̄i are vectors of terms passed as actual arguments to the relation
symbols Invi in the clause h;

– s = (Inv, Q), H = Inv(t̄),
where again t̄ is a vector of argument terms passed as actual arguments to
the relation symbol Inv in the clause h; and Q is calculated as

Q = {ψ ∈ Π(Inv) | Q1[t̄1] ∧ · · · ∧Qn[t̄n] ∧ ϕ |= ψ[t̄]}.

Here, we write Qi[t̄i] for the conjunction of the predicates Qi, with the formal
arguments x̄i replaced by the argument terms t̄i.

An ARG (S,E) is called closed if the edge relation E represents all Horn clauses in HC :
For every clause h ∈ HC ,

h = (Inv1(t̄1) ∧ · · · ∧ Invn(t̄n) ∧ ϕ→ H)

and every sequence of nodes

(Inv1, Q1), . . . , (Invn, Qn) ∈ S,

one of the following holds:

170

8.C. Definitions of Loop Patterns

• Q1[t̄1] ∧ · · · ∧Qn[t̄n] ∧ ϕ |= false, or

• there is an edge E(〈(Inv1, Q1), . . . , (Invn, Qn)〉, h, (Inv, Q)) such that

– H = Inv(t̄), and
– Q = {ψ ∈ Π(Inv) | ϕ ∧Q1[t̄1] ∧ · · · ∧Qn[t̄n] |= ψ[t̄]}.

If (and only if) the solution can be expressed symbolically using DNF formulae from
predicates P , then the set HC of Horn clauses has a closed ARG (see [RHK13] for a
proof).

A closed ARG is created using a fixed-point procedure, starting from the empty sets of
nodes and edges: S = ∅, E = ∅ (for details see [RHK13]).

Given a closed ARG (S,E) for Horn clauses HC , a solution Sol : HC → P(P) for HC is
extracted from (S,E) as follows:

Sol(Invi) =
∨

{s∈S | s=(Invi ,Qi)}

(∧
q∈Qi

q
)
.

8.C Definitions of Loop Patterns
In this section we define the loop patterns which we introduce in Section 4.1.2.

1. A loop is a FOR loop if the following conditions hold:

a) The loop iterator i is monotonically incremented by a constant number;
b) The loop condition is a predicate of the form i ◦ expr ,

where ◦ ∈ {≥,≤, >,<,==, ! =} and expr is an expression;
c) The expression expr is a loop invariant;
d) The loop condition is evaluated at every loop iteration;
e) The loop condition eventually evaluates to true.

2. A loop is syntactically bounded if the loop itself and all the nesting loops are FOR
loops;

3. A loop is a generalized FOR loop if all of the conditions for the FOR loop hold except
for one of the following conditions:

• 1e) and 1a);
• 1c);
• 1d).

4. A loop is a hard loop if it is not generalized FOR loop.

For a formal definition using data-flow analysis and a detailed discussion see [PVZ15].

171

8. Appendices

8.D Experimental Results for Portfolio Solver
In Tables 8.1–8.3 we show the detailed results of the evaluation of our portfolio solver
T P and idealised strategies Tcat and Tvbs.

continued on next page. . .

Category blast cbmc cpa-
checker

cpa-
lien

cseq-
lazy

cseq-
mu esbmc fbit llbmc

BitVectors - 33
15

30
28 - - - 30

9 - 33
0

Concurrency - 49
187

0
1z - 53

6
53
9

20
209 - 0

0

ControlFlow
202
1763

218
694

418
393

164
523 - - 396

614
406
512

405
348

DeviceDrivers64
1084
150

987
3201

1055
455 - - - 941

2013
1066
293

0
1

HeapManipulation - 52
114

39
69

25
127 - - 37

69 - 39
99

MemorySafety - -2
94

38
6

7
127 - - -24

117 - 15
159

Recursive - 13
78

0
0 - - - -21

96 - 1
0

Sequentialized - 91
512

44
910 - - - 98

689 - 84
371

Overall
468
2066

1292
4991

1235
1865

266
776

183
6

183
9

695
4024

666
898

853
978

Medals 1/0/0 2/2/2 2/1/1 0/0/0 1/0/0 0/1/0 1/0/1 0/0/2 1/0/1

Table 8.1 Experimental results for the competition participants, plus our portfolio T P on
random subsets of SV-COMP’14, given as arithmetic mean of 10 experiments on the respective
test sets testyear . The two last columns show the idealized strategies Tcat, Tvbs (not competing,
for comparison only). The first rows show the respective SV-COMP score and beneath it the
runtime in minutes. We highlight the gold, silver, and bronze medal in dark gray, light gray and
white+bold font, respectively. The last row shows the number of gold/silver/bronze medals won
in individual categories.

172

8.D. Experimental Results for Portfolio Solver

. . . continued from previous page

predator symbi-
otic threader ufo

ultimate-
Auto-
mizer

ultimate-
Kojak T P Tcat Tvbs

-34
1

15
114 - - 4

42
-8
110

30
9

33
0

33
0

0
0

-30
204

40
53 - 0

1
0
1

52
26

53
6

53
1

183
792

29
3046 - 373

176
66
563

70
694

409
278

469
170

503
46

21
83

384
3848 - 1067

163
0
24

0
24

1036
1276

1084
150

1111
42

43
11

38
150 - - 5

1
5
1

50
64

52
114

53
0

6
27

-61
0 - - 0

1
0
1

15
63

38
6

38
0

-7
5

2
117 - - 6

72
5
78

10
77

13
78

15
57

-19
622

-13
410 - 38

41
20
111

4
1061

96
389

98
689

132
122

44
1541

-97
7891

137
53

735
381

193
816

94
1973

1494
2211

1732
1310

1840
270

0/0/1 0/0/0 0/0/0 1/1/0 0/0/1 0/0/0 1/5/1 - -

Table 8.1 Experimental results for the competition participants, plus our portfolio T P on
random subsets of SV-COMP’14, given as arithmetic mean of 10 experiments on the respective
test sets testyear . The two last columns show the idealized strategies Tcat, Tvbs (not competing,
for comparison only). The first rows show the respective SV-COMP score and beneath it the
runtime in minutes. We highlight the gold, silver, and bronze medal in dark gray, light gray and
white+bold font, respectively. The last row shows the number of gold/silver/bronze medals won
in individual categories.

173

8. Appendices

continued on next page. . .

Category

ap
ro
ve

be
ag
le

bl
as
t

ca
sc
ad

e

cb
m
c

cp
ac
he
ck
er

cp
ar
ec

es
bm

c

fo
re
st

fo
re
st
er

fu
nc
tio

n

hi
pt
nt

Arrays - - - - -85
20

1
87 - -123

0 - - - -

BitVectors - -0
81 - 25

128
28
8

26
30 - 29

2 - - - -

Concurrency - - - - 402
600

0
17 - 402

290 - - - -

ControlFlow - - 436
4091

384
4243

78
6436

999
3348 - 817

2664
247
0

0
18 - -

Device-
Drivers64 - - 1092

329 - 906
3881

1027
1468 - 894

2354 - - - -

Floats - - - - 56
136

34
160 - 4

104 - - - -

Heap-
Manipulation - - - 31

101
39
98

40
62 - 30

57
0
0

13
0 - -

Memory-
Safety - - - 76

673
-167
117

131
40 - -306

114
0
3

8
0 - -

Recursive - 2
33 - - 8

79
6
82

7
59

-18
20 - - - -

Sequentia-
lized - - - - -71

425
58
857 - 98

396 - - - -

Simple - - 15
126 - 23

135
25
136 - 14

20 - - - -

Termination
245
283 - - - 0

0
0
1 - -343

11 - - 144
13

219
24

Overall
241
283

36
114

737
4546

806
5146

684
11936

2228
6288

121
59

-38
6032

194
3

84
18

142
13

215
24

Medals 1/0/0 0/0/0 1/0/0 0/0/0 1/1/1 2/1/5 0/0/0 2/0/1 0/0/0 0/0/0 0/0/0 0/0/1

Table 8.2 Experimental results for the competition participants, plus our portfolio T P on
random subsets of SV-COMP’15, given as arithmetic mean of 10 experiments on the respective
test sets testyear . The two last columns show the idealized strategies Tcat, Tvbs (not competing,
for comparison only). The first rows show the respective SV-COMP score and beneath it the
runtime in minutes. We highlight the gold, silver, and bronze medal in dark gray, light gray and
white+bold font, respectively. The last row shows the number of gold/silver/bronze medals won
in individual categories.

174

8.D. Experimental Results for Portfolio Solver

. . . continued from previous page

la
zy
cs
eq

m
ap

2c
he
ck

m
uc
se
q

pe
re
nt
ie

pr
ed
at
or
hp

se
ah

or
n

sm
ac
k

ul
tim

at
e-

au
to
m
iz
er

ul
tim

at
ek
o-

ja
k ul
cs
eq

T
P

T
ca

t

T
vb

s

- - - - - 2
652

46
14 - 2

666
2
666

34
16

46
14

75
1

- - - - - -37
41 - - 0

10
-28
49

24
16

29
2

34
2

480
37 - 480

106 - - -3554
1 - 380

994
0
34

0
35

477
67

480
37

480
6

- - - 180
75 - 910

3622
713
6588 - 799

5129
381
9694

661
4348

1076
3074

1243
1537

- - - - - 1058
816

1000
2049 - 105

67
30
72

1068
800

1092
329

1191
134

- - - - - -76
0 - - -19

3
-18
3

54
132

56
136

57
73

- - - - 42
9

-16
0

41
12 - 31

58
31
87

39
13

42
9

52
0

- 23
50 - - 93

87
0
0 - - 39

586
27
580

115
247

131
40

146
1

- - - - - -38
0

14
16 - 10

38
4
103

3
53

14
16

16
7

- - - - - 5
581 - - 12

950
2

1093
83
408

98
396

130
109

- - - - - 30
25

25
49 - -0

160
3
182

29
37

30
25

32
3

- - - - - 0
0 - - 233

276
0
0

205
124

245
283

295
10

190
37

40
50

190
106

142
75

389
96

-1534
5740

1542
8727

150
994

1215
7979

273
12563

2511
6260

3231
4360

3768
1882

1/0/0 0/0/0 0/1/0 0/0/0 1/0/1 1/1/2 2/1/1 0/0/0 0/2/0 0/0/0 1/6/1 - -

Table 8.2 Experimental results for the competition participants, plus our portfolio T P on
random subsets of SV-COMP’15, given as arithmetic mean of 10 experiments on the respective
test sets testyear . The two last columns show the idealized strategies Tcat, Tvbs (not competing,
for comparison only). The first rows show the respective SV-COMP score and beneath it the
runtime in minutes. We highlight the gold, silver, and bronze medal in dark gray, light gray and
white+bold font, respectively. The last row shows the number of gold/silver/bronze medals won
in individual categories.

175

8. Appendices

continued on next page. . .

Category

2l
s

ap
ro
ve

bl
as
t

ca
sc
ad

e

cb
m
c

ce
ag
le

ci
vl

cp
a-
ki
nd

cp
a-
re
fs
el

cp
a-
se
q

Arrays
-173
227 - - 22

228
32
322 - - 2

241
-35
153

-38
260

BitVectors
-242
97 - - - 18

86 - - 30
90

13
113

34
53

Heap
-623
62 - - 86

413
62
256 - - 67

73
63
61

100
279

Floats
64
38 - - - 64

169
63
38 - 41

164
19
101

38
165

Integers-
ControlFlow

541
6899 - -633

5025 - -515
7091 - - 850

6427
626
6708

1058
4914

Termination
-1336
3

360
619 - - - - - 0

2
0
2

0
2

Concurrency
-9789
9 - - - 361

634 - 513
188

0
34

0
32

127
2642

DeviceDrivers-
Linux64

768
916 - 1037

888 - 747
8329 - - 887

5558
1216
3070

1067
4196

Overall
-15055
8251

484
619

202
5912

394
642

1577
16887

549
38

415
188

1678
12587

1151
10240

1907
12509

Medals 1/0/0 1/0/0 0/0/0 0/0/0 0/1/0 0/0/1 0/0/1 0/1/1 1/0/0 2/1/2

Table 8.3 Experimental results for the competition participants, plus our portfolio T P on
random subsets of SV-COMP’16, given as arithmetic mean of 10 experiments on the respective
test sets testyear . The two last columns show the idealized strategies Tcat, Tvbs (not competing,
for comparison only). The first rows show the respective SV-COMP score and beneath it the
runtime in minutes. We highlight the gold, silver, and bronze medal in dark gray, light gray and
white+bold font, respectively. The last row shows the number of gold/silver/bronze medals won
in individual categories. For readability, we omit tools that did not win any medals in the original
competition.

176

8.D. Experimental Results for Portfolio Solver

. . . continued from previous page

es
bm

c

la
zy
cs
eq

m
uc
se
q

pr
ed

at
or
hp

se
ah

or
n

sm
ac
k

sy
m
bi
ot
ic
3

ua
ut
om

iz
er

T
P

T
ca

t

T
vb

s

82
305 - - - -122

424
62
114

47
205

36
763

89
342

119
248

136
51

32
55 - - - -56

6
17
96

1
151

26
81

29
72

33
22

36
0

69
211 - - 118

94
-102
0

65
49

45
49

79
172

104
85

129
194

153
7

-4
147 - - - - - -4

14
1
6

61
42

64
38

66
5

515
3242 - - - 678

5629
787
9027

263
10982

743
7163

806
5202

1181
4668

1428
2041

- - - - 199
551

0
5 - 351

470
344
430

360
619

416
63

305
1490

513
73

513
23 - -9827

2
422
668

0
1

0
57

492
206

513
23

513
8

622
2946 - - - 640

2590
829
4260

369
6653

1044
2499

1059
2164

1216
3070

1394
372

1699
8396

415
73

415
23

411
94

-8865
9202

1684
14218

580
18056

1965
11210

3269
8544

3800
8883

4238
2547

0/2/0 0/1/0 1/0/0 1/0/0 0/0/0 0/0/1 0/0/0 0/2/0 2/1/3 - -

Table 8.3 Experimental results for the competition participants, plus our portfolio T P on
random subsets of SV-COMP’16, given as arithmetic mean of 10 experiments on the respective
test sets testyear . The two last columns show the idealized strategies Tcat, Tvbs (not competing,
for comparison only). The first rows show the respective SV-COMP score and beneath it the
runtime in minutes. We highlight the gold, silver, and bronze medal in dark gray, light gray and
white+bold font, respectively. The last row shows the number of gold/silver/bronze medals won
in individual categories. For readability, we omit tools that did not win any medals in the original
competition.

177

List of Figures

1.1 Examples of usage patterns of integer variables in C programs 7
1.2 Code example for role-based heuristics in software verification 9
1.3 Research cycle undertaken in the thesis . 12

2.1 Concrete model of program in model checking 18
2.2 Abstract labelled transition system . 20
2.3 Abstract labelled transition system: refined abstraction 22
2.4 CEGAR (Counterexample-guided abstraction refinement) 24
2.5 Code example illustrating the heuristics of Yogi 25
2.6 Abstract lattice: intervals . 29
2.7 Example for abstract interpretation: high bandpass filter 30
2.8 Code example illustrating the packing heuristic for octagon in Astrée 34
2.9 Code examples illustrating the partitioning strategy in Atrée 36

3.1 Code examples for domain-independent variable roles 44
3.2 Code examples for domain-independent variable roles (cont.) 47
3.3 Code examples for special role unresolved . 49
3.4 Code examples for variable roles for portfolio solver 51
3.5 Code examples for variable roles for portfolio solver (cont.) 54
3.6 Code examples for variable roles for software verification 57
3.7 Syntax of the language handled by our algorithm 63
3.8 Translation of C code to a Datalog program 66
3.9 Role definition: example for array index . 69
3.10 Role definition: example for branch condition 71
3.11 Role definition: example for loop iterator, loop bound, linear and counter . . 72
3.12 Role definition: example for input and offset 75
3.13 Role definition: example for bitvector . 76
3.14 Role definition: example for file descriptor and unresolved 77
3.15 Role definition: example for character . 79
3.16 Role definition: example for allocation size 80
3.17 Role definition: example for unresolved . 81
3.18 Role definition: example for boolean . 83
3.19 Role definition: example for syntactic constant 85

179

3.20 Role definition: example for thread descriptor 90
3.21 Role definition: example for scalar and pointer to scalar 90
3.22 Role definition: example for pointer to structure, pointer to non-flat structure,

linked list, multi-linked list . 92
3.23 Role definition: example for floating point . 95
3.24 Role definition: example for extremum . 96
3.25 Role definition: example for local counter . 97
3.26 Role definition: example for parity . 99
3.27 Role definition: example for assertion condition 100
3.28 Role definition: example for dynamic enumeration 102
3.29 Syntax of the language, handled by our algorithm: extention with functions . 104
3.30 Example for interprocedural analysis . 107
3.31 Role definition: example for recursive function result 110
3.32 Role definition: example for the extended version of unresolved 112

4.1 SV-COMP’14–’16: number of participants, number of verification tasks,
scoring policies . 128

4.2 Decisiveness-reliability plots for SV-COMP’14–’16 130
4.3 Results of portfolio solver in SV-COMP’14–’16 132
4.4 Tools selected by portfolio solver for SV-COMP’14–’15 133
4.4 Tools selected by portfolio solver for SV-COMP’16 134

5.1 Number of proved tasks of Eldarica with role-based heuristics 146
5.2 Runtime and number of CEGAR iterations for Eldarica with role-based

heuristics . 147

8.1 Specification of supplementary relations for defining variable roles (page 1) . 163
8.2 Specification of supplementary relations for defining variable roles (page 2) . 164
8.3 Specification of supplementary relations for defining variable roles (page 3) . 165
8.4 Specification of supplementary relations for defining variable roles (page 4) . 166
8.5 Specification of supplementary relations for defining variable roles (page 5) . 167
8.6 Specification of supplementary relations for defining variable roles (page 6) . 168
8.7 Specification of supplementary relations for defining variable roles (page 7) . 169

180

List of Tables

1.1 Results of SV-COMP’16 . 4

3.1 Informal definition of domain-independent variable roles 43
3.2 Informal definition of additional roles for the portfolio solver 50
3.3 Informal definition of variable roles for heuristics in predicate abstraction . . 55
3.4 Translation of C constructs to Datalog . 65
3.5 Simplifications in our notation in control-flow-graphs 68
3.6 Translation of C constructs to Datalog: extension to functions 104

4.1 Sources of complexity for 4 tools participating in SV-COMP’15 114
4.2 List of loop patterns with informal descriptions 116
4.3 Experimental comparison of three different formulations of portfolio solver . . 125
4.4 Hypothetical results of SV-COMP’14–’16 under different scoring policies . . . 128

5.1 Characteristics of our benchmarks used for the evaluation of Eldarica with
role-based heuristics . 145

5.2 Different configurations of Eldarica . 145

6.1 Summary of related work in type theory field 151
6.2 Summary of related work in the field of code query languages 153

8.1 Detailed results of the evaluation of portfolio solver on the benchmarks of
SV-COMP’14 (page 1) . 172

8.1 Detailed results of the evaluation of portfolio solver on the benchmarks of
SV-COMP’14 (page 2) . 173

8.2 Detailed results of the evaluation of portfolio solver on the benchmarks of
SV-COMP’15 (page 1) . 174

8.2 Detailed results of the evaluation of portfolio solver on the benchmarks of
SV-COMP’15 (page 2) . 175

8.3 Detailed results of the evaluation of portfolio solver on the benchmarks of
SV-COMP’16 (page 1) . 176

8.3 Detailed results of the evaluation of portfolio solver on the benchmarks of
SV-COMP’16 (page 2) . 177

181

Bibliography

[ABF+13] Sven Apel, Dirk Beyer, Karlheinz Friedberger, Franco Raimondi, and Alexan-
der von Rhein. Domain types: Abstract-domain selection based on variable
usage. Hardware and Software: Verification and Testing, 8244(1):262–278,
2013.

[Bad00] Greg J Badros. Javaml: a markup language for java source code. Computer
Networks, 33(1):159–177, 2000.

[BCC+07] Josh Berdine, Cristiano Calcagno, Byron Cook, Dino Distefano, Peter W
O’hearn, Thomas Wies, and Hongseok Yang. Shape analysis for composite
data structures. In Computer Aided Verification (CAV), pages 178–192.
Springer, 2007.

[BCLZ04] Thomas Ball, Byron Cook, Shuvendu K Lahiri, and Lintao Zhang. Zapato:
Automatic theorem proving for predicate abstraction refinement. In Interna-
tional Conference on Computer Aided Verification, pages 457–461. Springer,
2004.

[Bey14] Dirk Beyer. Status report on software verification - (competition summary
SV-COMP 2014). In Tools and Algorithms for the Construction and Analysis
of Systems (TACAS), volume 8413 of Lecture Notes in Computer Science,
pages 373–388. Springer, 2014.

[Bey15] Dirk Beyer. Software verification and verifiable witnesses - (report on SV-
COMP 2015). In Tools and Algorithms for the Construction and Analysis of
Systems (TACAS), volume 9035 of Lecture Notes in Computer Science, pages
401–416. Springer, 2015.

[Bey16] Dirk Beyer. Reliable and reproducible competition results with benchexec
and witnesses (report on SV-COMP 2016). In Tools and Algorithms for
the Construction and Analysis of Systems (TACAS), volume 9636 of Lecture
Notes in Computer Science, pages 887–904. Springer, 2016.

[BGV92] Bernhard E. Boser, Isabelle Guyon, and Vladimir Vapnik. A training algo-
rithm for optimal margin classifiers. In Workshop on Computational learning
theory (COLT), pages 144–152. ACM, 1992.

183

[BHT07] Dirk Beyer, Thomas A. Henzinger, and Grégory Théoduloz. Configurable
software verification: Concretizing the convergence of model checking and
program analysis. In Computer Aided Verification (CAV), volume 4590 of
Lecture Notes in Computer Science, pages 504–518. Springer, 2007.

[BHvM09] Armin Biere, Marijn Heule, and Hans van Maaren. Handbook of satisfiability,
volume 185. IOS press, 2009.

[Bis06] Christopher M Bishop. Pattern recognition and machine learning. Springer,
2006.

[BJ05] Craig Bishop and Colin G Johnson. Assessing roles of variables by program
analysis. In Conference on Computer Science Education, TUCS General
Publication, pages 131–136. Turku Centre for Computer Science, 2005.

[BLW15] Dirk Beyer, Stefan Löwe, and Philipp Wendler. Refinement selection. In
Model Checking of Software (SPIN), pages 20–38. Springer, 2015.

[BM07] Aaron R Bradley and Zohar Manna. The calculus of computation: decision
procedures with applications to verification. Springer, 2007.

[BR02] Thomas Ball and Sriram K. Rajamani. The SLAM project: debugging system
software via static analysis. In Principles of Programming Languages (POPL),
pages 1–3. ACM, 2002.

[BS09] Martin Bravenboer and Yannis Smaragdakis. Strictly declarative specification
of sophisticated points-to analyses. ACM SIGPLAN Notices, 44(10):243–262,
2009.

[C+97] Roger F Crew et al. Astlog: A language for examining abstract syntax trees.
In Conference on Domain-Specific Languages (DSL), volume 97, page 18.
USENIX, 1997.

[CC77] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approximation of
fixpoints. In Principles of Programming Languages (POPL), pages 238–252.
ACM, 1977.

[CCF+05] Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine
Miné, David Monniaux, and Xavier Rival. The astreé analyzer. In Program-
ming Languages and Systems, volume 3444 of Lecture Notes in Computer
Science, pages 21–30. Springer, 2005.

[CCF+06] Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine
Miné, David Monniaux, and Xavier Rival. Combination of abstractions in
the astrée static analyzer. In Asian Computing Science Conference (ASIAN),
pages 272–300. Springer, 2006.

184

[CCF+09] Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine
Miné, and Xavier Rival. Why does astrée scale up? Formal Methods in
System Design (FMSD), 35(3):229–264, 2009.

[CGJ+03] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut
Veith. Counterexample-guided abstraction refinement for symbolic model
checking. Journal of the ACM, 50(5):752–794, 2003.

[CGT89] Stefano Ceri, Georg Gottlob, and Letizia Tanca. What you always wanted
to know about datalog (and never dared to ask). IEEE Transactions on
Knowledge and Data Engineering, 1(1):146–166, 1989.

[CKL04] Edmund M. Clarke, Daniel Kroening, and Flavio Lerda. A tool for checking
ANSI-C programs. In Tools and Algorithms for the Construction and Analysis
of Systems (TACAS), volume 2988 of Lecture Notes in Computer Science,
pages 168–176. Springer, 2004.

[CKSY05] Edmund M. Clarke, Daniel Kroening, Natasha Sharygina, and Karen Yorav.
SATABS: sat-based predicate abstraction for ANSI-C. In Tools and Algorithms
for the Construction and Analysis of Systems (TACAS), volume 3440 of
Lecture Notes in Computer Science, pages 570–574. Springer, 2005.

[CL11] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector
machines. ACM Transactions on Intelligent Systems and Technology (TIST),
2(3):27, 2011.

[CMM05] Brian Chin, Shane Markstrum, and Todd D. Millstein. Semantic type quali-
fiers. In Programming language design and implementation (PLDI), volume 40,
pages 85–95. ACM, 2005.

[CPR11] Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Proving program
termination. Communications of the ACM, 54(5):88–98, 2011.

[Cra57] William Craig. Linear reasoning. a new form of the herbrand-gentzen theorem.
Journal of Symbolic Logic, 22(3):250–268, 1957.

[CV95] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine
learning, 20(3):273–297, 1995.

[CW96] Weidong Chen and David S Warren. Tabled evaluation with delaying for
general logic programs. Journal of the ACM, 43(1):20–74, 1996.

[DDLM13] Isil Dillig, Thomas Dillig, Boyang Li, and Kenneth L. McMillan. Inductive
invariant generation via abductive inference. In Conference on Object Oriented
Programming Systems Languages & Applications (OOPSLA), volume 48,
pages 443–456. ACM, 2013.

185

[DLW15] Matthias Dangl, Stefan Löwe, and Philipp Wendler. Cpachecker with support
for recursive programs and floating-point arithmetic - (competition contribu-
tion). In Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), volume 9035 of Lecture Notes in Computer Science, pages 423–425.
Springer, 2015.

[dMB08] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: an efficient SMT
solver. In Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), volume 4963 of Lecture Notes in Computer Science, pages 337–340.
Springer, 2008.

[DP06] Florian Deissenboeck and Markus Pizka. Concise and consistent naming.
Software Quality Journal, 14(3):261–282, 2006.

[DPV13] Kamil Dudka, Petr Peringer, and Tomáš Vojnar. Byte-precise verification
of low-level list manipulation. In Static Analysis Symposium (SAS), volume
7935 of Lecture Notes in Computer Science, pages 215–237. Springer, 2013.

[DPVZ15] Yulia Demyanova, Thomas Pani, Helmut Veith, and Florian Zuleger. Empirical
software metrics for benchmarking of verification tools. In Computer Aided
Verification (CAV), Part I, volume 9206 of Lecture Notes in Computer Science,
pages 561–579. Springer, 2015.

[DPVZ16] Yulia Demyanova, Thomas Pani, Helmut Veith, and Florian Zuleger. Empirical
software metrics for benchmarking of verification tools. In Software Engineer-
ing, volume 252 of Lecture Notes in Informatics, pages 67–68. Gesellschaft
für Informatik, 2016.

[DRZ17] Yulia Demyanova, Philipp Rümmer, and Florian Zuleger. Systematic predicate
abstraction using variable roles. In NASA Formal Methods Symposium (NFM),
volume 10227 of Lecture Notes in Computer Science, pages 265–281. Springer,
2017.

[DVZ13] Yulia Demyanova, Helmut Veith, and Florian Zuleger. On the concept
of variable roles and its use in software analysis. In Formal Methods in
Computer-Aided Design (FMCAD), pages 226–230. IEEE, 2013.

[ECCH00] Dawson R. Engler, Benjamin Chelf, Andy Chou, and Seth Hallem. Checking
system rules using system-specific, programmer-written compiler extensions.
In Symposium on Operating System Design & Implementation (OSDI), pages
1–16. USENIX, 2000.

[ECH+01] Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou, and Benjamin
Chelf. Bugs as deviant behavior: A general approach to inferring errors
in systems code. In Symposium on Operating System Principles (SOSP),
volume 35, pages 57–72. ACM, 2001.

186

[FGK+14] Dennis Felsing, Sarah Grebing, Vladimir Klebanov, Philipp Rümmer, and
Mattias Ulbrich. Automating regression verification. In Automated software
engineering (ASE), pages 349–360. ACM, 2014.

[FO76] Lloyd D Fosdick and Leon J Osterweil. Data flow analysis in software
reliability. ACM Computing Surveys (CSUR), 8(3):305–330, 1976.

[Fos02] Jeffrey Scott Foster. Type qualifiers: lightweight specifications to improve
software quality. PhD thesis, University of California Berkeley, 2002.

[Fre94] Tim Freeman. Refinement Types for ML. PhD thesis, Bell Laboratories,
1994.

[GB14] Arie Gurfinkel and Anton Belov. Frankenbit: Bit-precise verification with
many bits - (competition contribution). In Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), volume 8413 of Lecture
Notes in Computer Science, pages 408–411. Springer, 2014.

[GKK+11] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Torsten Schaub,
Marius Thomas Schneider, and Stefan Ziller. A portfolio solver for answer set
programming: Preliminary report. In Logic Programming and Nonmonotonic
Reasoning (LPNMR), volume 6645 of Lecture Notes in Computer Science,
pages 352–357. Springer, 2011.

[GKKS14] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub.
Clingo = ASP + control: Preliminary report. CoRR, abs/1405.3694, 2014.

[GLPR12] Sergey Grebenshchikov, Nuno P. Lopes, Corneliu Popeea, and Andrey Ry-
balchenko. Synthesizing software verifiers from proof rules. In Programming
Language Design and Implementation (PLDI), pages 405–416. ACM, 2012.

[GP99] Peter Gulutzan and Trudy Pelzer. SQL-99 complete, really. CMP Books,
1999.

[GS97] Susanne Graf and Hassen Saïdi. Construction of abstract state graphs with
PVS. In Computer Aided Verification (CAV), volume 1254 of Lecture Notes
in Computer Science, pages 72–83. Springer, 1997.

[GS01] Carla P. Gomes and Bart Selman. Algorithm portfolios. Artificial Intelligence,
126(1-2):43–62, 2001.

[HB12] Krystof Hoder and Nikolaj Bjørner. Generalized property directed reachability.
In Theory and Applications of Satisfiability Testing (SAT), volume 7317 of
Lecture Notes in Computer Science, pages 157–171. Springer, 2012.

[HCL+03] Chih-Wei Hsu, Chih-Chung Chang, Chih-Jen Lin, et al. A practical guide to
support vector classification. Technical report, National Taiwan University,
2003.

187

[HCXE02] Seth Hallem, Benjamin Chelf, Yichen Xie, and Dawson R. Engler. A system
and language for building system-specific, static analyses. In Programming
Language Design and Implementation (PLDI), pages 69–82. ACM, 2002.

[HD05] Yi-Min Huang and Shu-Xin Du. Weighted support vector machine for classifi-
cation with uneven training class sizes. In Machine Learning and Cybernetics,
volume 7, pages 4365–4369, 2005.

[HDG+16] Matthias Heizmann, Daniel Dietsch, Marius Greitschus, Jan Leike, Betim
Musa, Claus Schätzle, and Andreas Podelski. Ultimate automizer with two-
track proofs - (competition contribution). In Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), volume 9636 of Lecture
Notes in Computer Science, pages 950–953. Springer, 2016.

[HG09] Haibo He and Edwardo A Garcia. Learning from imbalanced data. Knowledge
and Data Engineering, 21(9):1263–1284, 2009.

[Hin01] Michael Hind. Pointer analysis: haven’t we solved this problem yet? In
Program Analysis For Software Tools and Engineering (PASTE), pages 54–61.
ACM, 2001.

[HJMS03] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Grégoire Sutre.
Software verification with BLAST. In Model Checking of Software (SPIN),
volume 2648 of Lecture Notes in Computer Science, pages 235–239. Springer,
2003.

[HKG+12] Hossein Hojjat, Filip Konecný, Florent Garnier, Radu Iosif, Viktor Kuncak,
and Philipp Rümmer. A verification toolkit for numerical transition systems
- tool paper. In Formal Methods (FM), volume 7436 of Lecture Notes in
Computer Science, pages 247–251. Springer, 2012.

[HLH97] Bernardo A Huberman, Rajan M Lukose, and Tad Hogg. An economics
approach to hard computational problems. Science, 275(5296):51–54, 1997.

[HVdM06] Elnar Hajiyev, Mathieu Verbaere, and Oege de Moor. codeQuest: scalable
source code queries with datalog. In European Conference on Object-oriented
Programming (ECOOP), volume 4067 of Lecture Notes in Computer Science,
pages 2–27. Springer, 2006.

[ITF+14] Omar Inverso, Ermenegildo Tomasco, Bernd Fischer, Salvatore La Torre, and
Gennaro Parlato. Bounded model checking of multi-threaded C programs via
lazy sequentialization. In Computer Aided Verification (CAV), volume 8559
of Lecture Notes in Computer Science, pages 585–602. Springer, 2014.

[JM09] Ranjit Jhala and Rupak Majumdar. Software model checking. ACM Com-
puting Surveys, 41(4):21, 2009.

188

[JV03] Doug Janzen and Kris De Volder. Navigating and querying code without get-
ting lost. In International Conference on Aspect-oriented software development
(AOSD), pages 178–187. ACM, 2003.

[KGCC13] Anvesh Komuravelli, Arie Gurfinkel, Sagar Chaki, and Edmund M Clarke.
Automatic abstraction in smt-based unbounded software model checking.
In Computer Aided Verification (CAV), volume 8044 of Lecture Notes in
Computer Science, pages 846–862. Springer, 2013.

[KMS+11] Serdar Kadioglu, Yuri Malitsky, Ashish Sabharwal, Horst Samulowitz, and
Meinolf Sellmann. Algorithm selection and scheduling. In Principles and
Practice of Constraint Programming (CP), volume 6876 of Lecture Notes in
Computer Science, pages 454–469. Springer, 2011.

[KS08] Daniel Kroening and Ofer Strichman. Decision Procedures - An Algorithmic
Point of View. Texts in Theoretical Computer Science (EATCS). Springer,
2008.

[LFB07] Dawn Lawrie, Henry Feild, and David Binkley. Extracting meaning from
abbreviated identifiers. In Source Code Analysis and Manipulation (SCAM),
pages 213–222. IEEE, 2007.

[LL98] Lionel Lobjois and Michel Lemaître. Branch and bound algorithm selection by
performance prediction. In National Conference on Artificial Intelligence and
Innovative Applications of Artificial Intelligence Conference (AAAI/IAAI),
pages 353–358. AAAI Press / The MIT Press, 1998.

[LRS16] Jérôme Leroux, Philipp Rümmer, and Pavle Subotić. Guiding craig interpo-
lation with domain-specific abstractions. Acta Informatica, 53(4):387–424,
2016.

[McM05] Kenneth L. McMillan. Applications of craig interpolants in model checking. In
Tools and Algorithms for the Construction and Analysis of Systems (TACAS),
volume 3440 of Lecture Notes in Computer Science, pages 1–12. Springer,
2005.

[MLL05] Michael C. Martin, V. Benjamin Livshits, and Monica S. Lam. Finding
application errors and security flaws using PQL: a program query language.
In Conference on Object-Oriented Programming (OOPSLA), volume 40, pages
365–383. ACM, 2005.

[MPR12] Marco Maratea, Luca Pulina, and Francesco Ricca. The multi-engine ASP
solver me-asp. In Logics in Artificial Intelligence (JELIA), volume 7519 of
Lecture Notes in Computer Science, pages 484–487. Springer, 2012.

[MR05] Laurent Mauborgne and Xavier Rival. Trace partitioning in abstract inter-
pretation based static analyzers. In European Symposium on Programming

189

(ESOP), volume 3444 of Lecture Notes in Computer Science, pages 5–20.
Springer, 2005.

[NNH99] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of
program analysis. Springer, 1999.

[NR10] Aditya V. Nori and Sriram K. Rajamani. An empirical study of optimizations
in YOGI. In International Conference on Software Engineering (ICSE, Volume
1), pages 355–364. ACM, 2010.

[OHH+08] Eoin O’Mahony, Emmanuel Hebrard, Alan Holland, Conor Nugent, and Barry
O’Sullivan. Using case-based reasoning in an algorithm portfolio for constraint
solving. In Irish Conference on Artificial Intelligence and Cognitive Science
(AICS), 2008.

[Pie91] Benjamin C Pierce. Programming with intersection types and bounded poly-
morphism. PhD thesis, Carnegie Mellon University Pittsburgh, 1991.

[PT07] Luca Pulina and Armando Tacchella. A multi-engine solver for quantified
boolean formulas. In Principles and Practice of Constraint Programming
(CP), volume 4741 of Lecture Notes in Computer Science, pages 574–589.
Springer, 2007.

[PT09] Luca Pulina and Armando Tacchella. A self-adaptive multi-engine solver for
quantified boolean formulas. Constraints, 14(1):80–116, 2009.

[PVZ15] Thomas Pani, Helmut Veith, and Florian Zuleger. Loop patterns in C
programs. Electronic Communication of the European Association of Software
Science and Technology (ECEASST), 72, 2015.

[Rep95] Thomas W Reps. Demand interprocedural program analysis using logic
databases. In Applications of Logic Databases, pages 163–196. Springer, 1995.

[RHK13] Philipp Rümmer, Hossein Hojjat, and Viktor Kuncak. Disjunctive interpolants
for horn-clause verification. In Computer Aided Verification (CAV), volume
8044 of Lecture Notes in Computer Science, pages 347–363. Springer, 2013.

[Ric76] John R. Rice. The algorithm selection problem. Advances in Computers,
15:65–118, 1976.

[RKJ08] Patrick Maxim Rondon, Ming Kawaguchi, and Ranjit Jhala. Liquid types.
In Programming Language Design and Implementation (PLDI), volume 43,
pages 159–169. ACM, 2008.

[RM07] Xavier Rival and Laurent Mauborgne. The trace partitioning abstract domain.
ACM Transactions on Programming Languages and Systems (TOPLAS),
29(5):26, 2007.

190

[Rou12] Olivier Roussel. Description of ppfolio 2012. In SAT Challenge, page 46,
2012.

[Saj02] Jorma Sajaniemi. An empirical analysis of roles of variables in novice-
level procedural programs. In International Symposium on Human-Centric
Computing Languages and Environments (HCC), pages 37–39. IEEE, 2002.

[SK03] Jorma Sajaniemi and Marja Kuittinen. Program animation based on the
roles of variables. In ACM symposium on Software visualization, pages 7–16,
205. ACM, 2003.

[SK04] Jorma Sajaniemi and Marja Kuittinen. Visualizing roles of variables in
program animation. Information Visualization, 3(3):137–153, 2004.

[SK05] Jorma Sajaniemi and Marja Kuittinen. An experiment on using roles of
variables in teaching introductory programming. Computer Science Education,
15(1):59–82, 2005.

[SK16] Peter Schrammel and Daniel Kroening. 2ls for program analysis - (competition
contribution). In Tools and Algorithms for the Construction and Analysis of
Systems (TACAS), volume 9636 of Lecture Notes in Computer Science, pages
905–907. Springer, 2016.

[SM07] Horst Samulowitz and Roland Memisevic. Learning to solve QBF. In Confer-
ence on Artificial Intelligence (AAAI), pages 255–260. AAAI Press, 2007.

[SMM11] Pavel Shved, Vadim Mutilin, and Mikhail Mandrykin. Static verification
“under the hood”: Implementation details and improvements of blast. In
Spring/Summer Young Researchers’ Colloquium on Software Engineering,
number 5, 2011.

[Tah10] Ahmad Taherkhani. Recognizing sorting algorithms with the c4. 5 decision tree
classifier. In Program Comprehension (ICPC), 2010 IEEE 18th International
Conference on, pages 72–75. IEEE, 2010.

[TKK+14] Varun Tulsian, Aditya Kanade, Rahul Kumar, Akash Lal, and Aditya V Nori.
Mux: algorithm selection for software model checkers, 2014.

[TKM11] Ahmad Taherkhani, Ari Korhonen, and Lauri Malmi. Recognizing algorithms
using language constructs, software metrics and roles of variables: An ex-
periment with sorting algorithms. The Computer Journal, 54(7):1049–1066,
2011.

[TMK08] Ahmad Taherkhani, Lauri Malmi, and Ari Korhonen. Algorithm recognition
by static analysis and its application in students’ submissions assessment. In
International Conference on Computing Education Research (ICER), pages
88–91. ACM, 2008.

191

[TNI+16] Ermenegildo Tomasco, Truc L. Nguyen, Omar Inverso, Bernd Fischer, Sal-
vatore La Torre, and Gennaro Parlato. Mu-cseq 0.4: Individual memory
location unwindings - (competition contribution). In Tools and Algorithms for
the Construction and Analysis of Systems (TACAS), volume 9636 of Lecture
Notes in Computer Science, pages 938–941. Springer, 2016.

[WACL05] John Whaley, Dzintars Avots, Michael Carbin, and Monica S. Lam. Using
datalog with binary decision diagrams for program analysis. In Asian Sym-
posium on Programming Languages and Systems (APLAS), volume 3780 of
Lecture Notes in Computer Science, pages 97–118. Springer, 2005.

[WLW04] Ting-Fan Wu, Chih-Jen Lin, and Ruby C. Weng. Probability estimates for
multi-class classification by pairwise coupling. Journal of Machine Learning
Research, 5:975–1005, 2004.

[XHHL08] Lin Xu, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Satzilla:
Portfolio-based algorithm selection for SAT. Journal of Artificial Intelligence
Research (JAIR), 32:565–606, 2008.

[XHHL12] Lin Xu, Frank Hutter, Holger Hoos, and Kevin Leyton-Brown. Evaluating
component solver contributions to portfolio-based algorithm selectors. In
International Conference on Theory and Applications of Satisfiability Testing
(SAT), volume 7317 of Lecture Notes in Computer Science, pages 228–241.
Springer, 2012.

[Xi98] Hongwei Xi. Dependent Types in Practical Programming. PhD thesis, Carnegie
Mellon University Pittsburgh, 1998.

[ZEL+16] Manchun Zheng, John G. Edenhofner, Ziqing Luo, Mitchell J. Gerrard,
Michael S. Rogers, Matthew B. Dwyer, and Stephen F. Siegel. CIVL: ap-
plying a general concurrency verification framework to c/pthreads programs
(competition contribution). In Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), volume 9636 of Lecture Notes in Computer
Science, pages 908–911. Springer, 2016.

192

	Kurzfassung
	Abstract
	Contents
	Introduction
	Empirical Choices in Software Verification
	Implicit Structure of the Source Code
	Patterns of Variable Use
	Application Domains of Variable Roles
	Aim of the Work and Methodological Approach
	Structure of the Thesis
	Contributions
	Our Publications on the Topic of the Thesis

	Background
	Model Checking
	Abstract Interpretation

	Definition and Computation of Variable Roles
	Overview of Variable Roles
	Framework for the Specification and Inference of Roles
	Definition of Roles
	Extension to Inter-Procedural Analysis
	Implementation
	Trade-Off for Pointer Analysis

	Empirical Software Metrics for Benchmarking of Verification Tools
	Source Code Metrics for Software Verification
	A Portfolio Solver for Software Verification
	Experimental Results

	Role-Based Heuristics for Systematic Predicate Abstraction
	Software Model Checking with Horn Clauses
	Role-Based Predicate Abstraction
	Evaluation

	Related Work
	Variable Usage Patterns
	Type Theory
	Program Query Languages
	Portfolio Solvers
	Choosing Interpolants with Suitable Predicates

	Future Work and Conclusions
	Summary of Contributions
	Threats to Validity
	Future Work

	Appendices
	Definitions of Supplementary Relations for Variable Roles
	Algorithm for Solving a System of Horn Clauses
	Definitions of Loop Patterns
	Experimental Results for Portfolio Solver

	List of Figures
	List of Tables
	Bibliography

