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Kurzfassung

Die Fähigkeit, Ergebnisse zu reproduzieren, welche aus Computerrecherche resul-
tieren, ist unerlässlich für den Erfolg und die Glaubwürdigkeit des Faches. Diese wird
jedoch durch zunehmend größer werdende Datensätze und verschiedenster Kombinationen
von Hardware und Software Umgebungen deutlich erschwert. Bereits existierende Lösun-
gen fokussieren darauf Workflows erneut auszuführen, durch welche die ursprünglichen
Ergebnisse erzielt wurden. Allerdings sind diese Lösungen begrenzt, da sie sich nur mit
limitierten Prozessausführungen beschäftigen. Diese Arbeit befasst sich damit dieses
Problem durch die kontinuierliche und autonome Erfassung der systemweiten Provenance
zu beheben und dies in einer ontologischen Form darzustellen. Auf diese Weise, implemen-
tieren wir eine vollständige Systemlösung mit welcher Benutzer ihre Recherchen ausführen
können, ohne den zusätzlichen Mehraufwand der manuellen Verfolgung und Manipulation
dieser Informationen in Kauf nehmen zu müssen. In dieser wissenschaftlichen Arbeit,
beschreiben wir unseren Lösungsvorschlag dies zu erzielen und die Technologien die ihn
umfassen. Zusätzlich veranschaulichen wir zwei Methoden mittels welcher Benutzer die
resultierende Ontologie visualisieren und mit ihr interagieren können. Schlussendlich,
wird untersucht inwieweit unsere vorgeschlagene Lösung die erforderlichen Informationen
bereitstellt um die Reproduzierbarkeit von Ergebnissen der Computerrecherche sowie
ihrer zugehörigen Anwendungen zu ermöglichen.
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Abstract

The ability to reproduce results stemming from computational research is paramount
to the field’s success and its credibility. Making this task difficult are the increasingly
large data sets and assorted combinations of hardware and software environments being
employed by researchers. Existing solutions focus on re-executing the workflows from
which the original results were obtained. However, these solutions are limited in the
sense that they address only confined process executions. This work aims to rectify
this problem by continuously and autonomously capturing system wide provenance and
representing it in ontological form. In doing so, we implement a complete system solution
on which users can perform their research without the additional overhead of having to
manually track and manipulate this information themselves. In this paper, we explore our
proposed solution and the technologies it is comprised of. Additionally, we illustrate two
methods in which users can visualize and interact with the resulting ontology. Finally,
we examine to what extent our proposed solution provides the necessary information
to better enable the reproducibility of computational research results and its viable
applications.
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CHAPTER 1
Introduction

1.1 Motivation
With computers becoming progressively more capable, their role and influence in

the academic and industry communities continue to expand. The computational power
they provide is being increasingly utilized in not only scientific studies and research,
but also in critical applications found in a variety of industries such as transportation,
communication, and medical care. However, unlike traditional laboratory science, the
results of scientific research performed via the application of computational science
mechanisms are often difficult, or even impossible, to reproduce. This can be attributed
to experiments and applications that depend on specific input data and parameters being
executed in a variety of inconsistent software and hardware environments. Often times,
the aforementioned experiments and applications lack the proper documentation to assists
those who wish to reproduce and build upon the original result(s). In an effort to address
this problem, much research has been focused on how to not only create digital work that
is inherently more reproducible, but also on developing tools and utilities designed to
allow users and researchers and users to reliably validate and redeploy processes. However,
reproducing results in this manner is not always possible as a result of often complicated
workflows and process’ performed on what can best be described as a dynamic medley of
hardware and software.

1.2 Problem Statement
Modern buzzwords such as ’provenance’ and ’ontology’ are regularly found in

research pertaining to the issue of reproducibility. Mechanisms employing the concept
of provenance share the common goal of tracing a program’s execution, including its
software dependencies, the hardware and software environment in which it is executed,
and its inputs and outputs. This information can then be stored in an ontology, allowing
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1. Introduction

for a concise and structured representation of the relationships that exist between the
gathered provenance information. However, while one won’t be hard-pressed to find a
tool that serves to accomplish either of these goals, still missing is a tool that combines
both of these concepts. It is thus highly desirable to develop a solution that not only
accomplishes just that, but also does so in an accessible, automated, system-wide manner.

As a concrete example, we take a step back and consider the task of tracing the
provenance of a single Personal Document Format (PDF) file. More specifically, we wish
to track the provenance of all tables, images, etc., that are found in this PDF. First, we
face the challenge of capturing all of the pertinent information. Second, the challenge of
composing this information in the structure of an ontology. And lastly, the challenge of
presenting this information in a human-interactable form. Furthermore, this should be
performed automatically without user interaction, and not only for this single PDF, but
on a system-wide scale. To accomplish this task, a solution utilizing an interactive and
easy-to-use visual interface must be developed. The ideal tool would allow for users of
all skill ranges to quickly and efficiently identify a given component’s provenance and to
navigate the constructed ontology by means of graphical visualization.

1.3 Aim of this Work

This main result of this thesis is the prototype of a tool allowing the user(s) to
view the provenance of a given file on a very granular scale. That is to say, not only will
the provenance of a file be known, but also any components of the file such as images,
tables, graphs, etc. Users are able to interact with a graphical representation of an
ontology that captures the provenance information, and to expand or collapse nodes to
the desired level of detail. This solution thus solves the following three problems:

1) How to monitor and capture the provenance of files on a system-wide scale?

2) How to process captured information and represent it in the form of an ontology?

3) How to allow for the graphical querying of provenance and for the traversal of the
resulting provenance trees?

We will define the scope of the provenance information to be inclusive of the
software dependencies and Operating System (OS) information, as well as relevant inputs
and outputs from a process execution. Through the development and assessment of this
functional prototype we look to answer the following questions:

1) What constitutes adequate provenance information required for reproducibility?

2) What data is producible from the methodology and approach outlined in section
1.4 in order to obtain the necessary provenance information?

2



1.4. Methodological Approach

3) How much of this data were we able to reliably capture and represent in a functional
manner?

4) What processes lending themselves to reproducibility can benefit from the work
presented in this thesis?

5) What gaps in the data and its representation(s) can be identified for further work
and research in this subject area?

1.4 Methodological Approach

In order to accomplish the outcome described in section 1.3, we will break the
tool up into its individual components. We present here a brief overview of the main
components that will make up the solutions.

1.4.1 Versioning

A combination of Git and the NixOS[DLP10] will be used to perform the versioning
of both individual files and artifacts as well as the the file-system itself. The information
gathered from NixOS and Git will be used to allow for the retrieval of the exact file and
environment in which it was produced and/or utilized.

1.4.2 Logging

To strengthen the monitoring abilities detailed in section 1.4.1, we will also need
to trace the resources used in activities such as file generation. That is to say, the inputs,
outputs, and software dependencies will need to be captured. To do this, we will utilize
the Linux Audit Daemon[GRb].

1.4.3 Representation

The information gathered as detailed in sections 1.4.1 and 1.4.2 must now be
associated with one another and structured in a well-defined manner. To do this, we will
utilize the Prov-O Ontology[LMS13], and provide a solution allowing for the modification
of this ontology in an automated fashion utilizing the OWL2 API[HB09].

1.4.4 Interaction

To allow the user(s) to graphically interact with the captured data, we will utilize
Stanford’s Protégé[Mus15] and its plugins OntoGraf[Fal16] and SPARQL Query [Red16].
Users will be able to query for the desired data by means of the SPARQL[GSP13] query
language.

3



1. Introduction

1.5 Thesis Structure
The remaining sections of this thesis are organized as follows:

Chapter 2 provides insight into the topic of reproducibility in the context of
computation, as well as an overview of existing approaches.

Chapter 3 dives into the technological concepts and components that have been
employed in the prototype of the tool resulting from this work. This chapter also describes
a case study providing insight into the resulting output of the solution.

Chapter 4 describes in detail the solution, and how the concepts and components
from Chapter 3 work together in conjunction with various resources to achieve the goals
outline in section 1.3. This chapter also details the results of the case study described in
Chapter 3.

Chapter 5 seeks to provide answers to the questions posed in section 1.3, to reflect
on the solution detailed in the previous chapters, and to explore possible points of interest
leading from this work,

Finally, Chapter 6 will summarize the work and findings as presented in this thesis.

4



CHAPTER 2
Related Work

This section aims to familiarize the reader with the current state of affairs in
the world of computational reproducibility. It is therefore important that we provide
a clear and concise explanation for the concept of "reproducibility" in the context of
computational experimentation, and specifically in this paper.

In section 2.1.1 we will explore the distinction between the terms "reproducible"
and "replicable", as while at first glance they may seem very similar, there are subtle
differences between the two that have largely differentiating implications.

In section 2.1.2 we put the information from section 2.1.1 to work by studying
a handful of papers that address the issue of computational reproducibility from a
procedural standpoint. That is, papers that seek to change behavior as opposed to
creating tools and utilities.

Furthermore, in effort to further motivate the issue and ground it in a real-
world example, in section 2.1.3 we will study a case where the issue of computational
reproducibility has resulted in undesirable, dangerous, and confusing effects in software
used in the health care industry.

And last but not least, we will explore some of the existing approaches that aim to
solve this issue. In section 2.2.2 we will discuss perhaps the most brute force approach in
which a Virtual Machine (VM) is used to provide later users with the exact environment
in which an experiment was performed or application ran. In sections 2.2.1 and 2.2.4
we will examine how workflows have been utilized to provide high-level models of an
experiment’s sequence of operations, and where the shortcomings of this approach lie.

5



2. Related Work

2.1 Literature Studies

2.1.1 Reproducibility and Replicability

One of the main hallmarks of science and experimentation is the ability to reach
the same conclusion regardless of which methods were employed during experimentation.
To best understand this, we can turn to the world of traditional science. It is often the
case that a multitude of experiments or studies utilizing a wide variety of methodologies
and subject groups arrive at, and corroborate, the same conclusion. In fact, according to
[SBO+07], "In many areas of science it is only when an experiment has been corroborated
independently by another group of researchers that it is generally accepted by the scientific
community." [Dru09] argues that this would not be the case if an experiment were simply
replicated.

It is at this point that the distinction between "replicating" and "reproducing"
becomes necessary. Consider two experiments that both reach the conclusion that the
earth is round. Experiment A reaches this conclusion by observing the shadows of objects
at different locations (in fact, this is how the Greek astronomer Eratosthenes reached
this conclusion). Experiment B reaches this conclusion by using a telescope to observe
the varying star constellations in the sky (an observation made by Aristotle). While it
is of course common knowledge that the earth is round, we can draw some important
conclusions from these two experiments. First, we observe that in order to confirm that
the earth is round, it is not the case that one can only do so by performing the exact
same procedure as a previous experimenter. More specifically, Aristotle’s conclusions are
not invalid because they were not reached by replicating Eratosthenes’ experiment. In
the same light, Eratosthenes’ conclusions are not invalid because they were not reached
by replicating Aristotle’s experiment. In fact, [Dru09] goes on to say, "that the greater
the difference from the first experiment, the greater the power of the second". The second,
and perhaps the more powerful observation, is that it is not the experiment itself that is
accepted by the scientific community, but rather "the idea that the experimental result
empirically justifies" [Dru09].

Drawing still from the previous example, we can now see where the difference
between "reproducible" and "replicable" lies. Would Aristotle or Eratosthenes simply
have (re-)performed the same experiment as the another, using the same devices and
techniques, the experiment would have simply been replicated. But we must now ask
ourselves, what does replicating an experiment allow us to conclude? One should be
able to clearly see that replicating alone does not allow one to scientifically reason that
the experiment’s conclusions are valid and true, but rather provides only the ability to
confirm that the conclusion is a result of experiments process’ and methodologies. It is
only "reproducibility" in its most traditional form that allows experimenters to agree on
the common idea that is reached by a multitude of various experiments

Moving forward, we would like to take these observations and "map" them back
to the world of computational experimentation. It is argued in [SBO+07] that "Repro-
ducibility would be quite easy to achieve in machine learning simply by sharing the full
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2.1. Literature Studies

code used for experiments". We can see here that simply re-using the same code would
be akin to the to Aristotle or Eratosthenes using the same tools and instruments from
the others experiment, resulting in merely replicating the others experiment. However,
we can also make two additional conclusions from this argument:

1) We should be careful to not disregard the idea of "replicability" as something not
worthwhile or valuable.

2) The definition of "reproducible" in the context of computation experimentation is
often still a blurry one lying somewhere between "replicable" and "reproducible" as
we have previously defined them.

In fact, there are many situations where it is the replication of the exact conclusions
that is required in order to trust an experiments veracity, as we will see in section 2.1.3.
Additionally, this is often the case when users wish to build upon the conclusions of a
previous experiment, and being able to reliably replicate these results is critical in doing
so.

Finally, we now clarify where in this blurry spectrum the definition of "reproducible"
as used in the context of this thesis lies. We choose a definition that is more in line
with the idea of "replicable" as defined in this section. That is to say, the prototype tool
tool resulting from this thesis aids itself more to the act of recreating the exact same
environment, resources, and process’ used in the execution of the original experiment
and/or application.

2.1.2 Reproducibility Research

This section provides the reader with a brief overview of a variety of research
papers published within the context of computational reproducibility. These papers
revolve around the theme of analyzing the current climate of the field and suggest
procedures and rules to help researchers make it one more susceptible to reproducibility.

It perhaps makes the most sense to start by addressing the culture of the compu-
tational research scientific community. [Pen11] offers insight into this culture by arguing
that the "biggest barrier to reproducible research is the lack of a deeply ingrained culture
that simply requires reproducibility for all scientific claims", and that a "culture of
reproducibility” must be developed. This barrier is further explored in [CPM+14], where
the authors attempted to reproduce the results from a total of 613 published papers.
[CPM+14] reached out to the various publishers asking for source code for the published
results or assistance in reproducing the experiments when necessary. The results of their
efforts can be Figure 2.1. In total, 260 emails were sent, of which 30 (11.5%) received
no response, 81 (31.1%) received a "yes" response in which the publishers provided their
source code, and 149 (57%) received a "no" response in which the publishers refused to
provide their source code. These anecdotal results seem to indicate the absence of a

7



2. Related Work

Table 2.1: Summary of results from [CPM+14]; Source: [CPM+14]

"culture of reproducibility” as discussed in [Pen11], and instead indicate a reluctance to
help and a culture of proprietary algorithms.

In an attempt to directly address this issue, [SNTH13] presents ten simple rules
to guide researchers towards more useful, and reproducible computational researcher.
We address here only those that relate most closely to the work in this thesis.

Rule 1: For Every Result, Keep Track of How It Was Produced
This may seem like an intuitive rule, but it is also one that is easily forgotten or
inefficiently followed. [SNTH13] suggests that as opposed to manually documenting
an experiment steps, researchers should utilize automated tools, such as Workflows
(see sections 2.2.1 and 2.2.4).

Rule 3: Archive the Exact Versions of All External Programs Used
A common problem with many of the current reproducibility solutions, including
workflows, is the ability to obtain a 100% identical working environment. We will
later see (section 3.1.2) how traditional package managers can be adapted to help
solve this problem.

Rule 4: Version Control All Custom Scripts
In large toolchains, small changes can result in repercussions that are sometimes

8



2.1. Literature Studies

very difficult to track down. By versioning all used utilities and scripts, one can
easily rewind and fast-forward changes to help narrow down the cause. We will
see in sections 3.1.4 and 4.3.5 how we this idea is utilized in the thesis’ work.

Rule 10: Provide Public Access to Scripts, Runs, and Results
This rule speaks mostly to the work performed in [CPM+14]. The computational
research communty must adapt the conventional scientific community’s practice(s)
of being open, honest, and clear with ones results and experimental methods. It
will only be then that work in this field will be more easily corroborated and
trusted in its veracity.

[SNTH13] acknowledges that while their presented rules may sometimes not be
strictly adhered to in light of deadlines and other factors, that at the bare minimum "you
should at least be able to reproduce the results yourself". Once having achieved this,
[SNTH13] proposes two extensions for future work:

1) To go from a level where you can reproduce results in case of a critical situation,
to a level where you can practically and routinely reuse your previous work and
increase your productivity.

2) To ensure that peers have a practical possibility of reproducing your results, which
can lead to increased trust in, interest for, and citations of your work.

2.1.3 FreeSurfer

We now turn our attention to the FreeSurfer application. FreeSurfer is a free and
open source software suite developed by the Laboratory for Computational Neuroimaging
at the Athinoula A. Martinos Center for Biomedical Imaging. The FreeSurfer suite
allows users to process and analyze human brain Magnetic Resonance Imaging (MRI)
images. This application suite is of interest as a motivating example for the work in
this thesis in that issues surrounding its use coincide nicely with our working definition
of "reproducible" as defined in section 2.1.1. Specifically, [GHJ+12] uncovers issues
surrounding the accuracy of the FreeSurfer application in its measurements of cortical
thickness and volumes of neuroanatomical structures. Additionally, [GHJ+12] details how
the discrepancies in measurements stem from variables such as the FreeSurfer version, the
OS the application is ran on, and the hardware platform. A direct consequence of these
discrepancies is the inability accurately detect changes between measurements performed
across multiple systems.

We see in Table 2.2 the various hardware platforms and software versions that
were used by [GHJ+12] in the analysis of FreeSurfer. The takeaway from this table is
that a multitude of variables that can effect the results of the FreeSurfer application.
This naturally leads to questions such as: Does the number of CPUs affect the result(s)?
How do the different software dependencies such as libraries and the OS itself affect
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Table 2.2: Workstations used in the analysis of FreeSurfer; Source: [GHJ+12]

Figure 2.1: Effects of data processing conditions on the voxel volumes for a subsample of
(sub)cortical structures; Source: [GHJ+12]

the measurements? What impacts does the hardware itself have on the FreeSurfer
application? These are questions that are core to the issue of reproducibility. To further
motivate the impact of these variables, Figure 2.1 depicts the percentage of volume
differences in the measurements of (sub)cortical structures between analysis performed
on Mac OSX 10.5 and Mac OSX 10.6 with different FreeSurfer verions. We observe right
away the measurement discrepancies between OS and FreeSurfer versions.

We note here that this is a situation in which a solution allowing for the exact
replication of the original execution is necessary. [GHJ+12] concludes that FreeSurfer
users should "provide not only the version of FreeSurfer that was used, but also details
on the OS version and workstation". This is precisely the information that the work in
this thesis aims to provide to the user as described in section 1.3, detailed in Chapter 4,
and captured in our working definition of "reproducible".
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2.2 Existing Approaches

This section provides the reader with an overview of the existing approaches
attempting to solve the problem of computational reproducibility. We will explore some
of the leading and cutting edge solutions in regard to how each approaches the issue of
reproducibility, the central components that make up the solution, and their pitfalls and
shortcomings.

2.2.1 Workflows

As eluded to in the introduction, computers find themselves playing increasingly
key roles in the scientific community. A direct result of this has been an explosion in
the amount of data produced and made available to researchers. However, due to the
lack of scientific standards enforcing the use and development of this data, we find that
the data is spread across heterogeneous Database Management Systems (DBS) and data
structures [Rom08].

To combat this, researchers developed a form of experimentation called in silico
experimentation. In silico (Latin for "in silicon") experimentation allows for researchers
to perform research experiments utilizing computational models and tools while providing
access to information repositories [OAF+04]. However, in silico experimentation presents
a new issue: How can one represent the steps and procedures of an experiment in such a
way that allows for reproducibility at a future time? Workflows attempt to solve this
problem by allowing researchers to define a "precise description of a scientific procedure
— a multi-step process to coordinate multiple tasks, acting like a sophisticated script"
[HTT09].

The benefit of utilizing workflows is two-fold: (1) it allows researchers who are not
experts in fields such as programming or web services to not only have access to data,
but to be able to (re-)execute experiments themselves [HWS+06], and (2) "reduces the
overheads of downloading, installing, and maintaining resources locally whilst ensuring
access to the latest versions of data and tools" [WFDRG09].

To manage these workflows, Workflow Management Systems (WFMS) have been
developed to assist reseachers by providing a number of benefits and ease-of-use features.
WFMSs implement environments in which the execution of workflows can be (1)invoked,
(2) monitored and recovered from failures, (3), optimized for memory, storage, and
execution, (4) handled properly in terms of data management, (5) logged, and (6) secured
and monitored with regard to access polices [HTT09]. In Table 2.3 we find a summary
of three popular WFMSs; Taverna [MSRO+10], Kepler [LAB+06], and Activti [Rad12].

However, workflows and WFMSs do not always allow researchers to successfully
reproduce previous work. [MR15] examines a total of 1443 workflows and provides
statistics with regard to what percentage of the workflows were re-executable, and what
issues were faced in attempting to do so. We see in Table 2.4, that out of the 1443
examined workflows, only 917 (64.55%) were runnable (able to be open/ran by a WFMS).
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Table 2.3: Features of workflow systems; Source: [MRM16]

Table 2.5 indicates that only 731 (50.7%) of the 1443 workflows were executable, and
Table 2.6 shows us the execution results of these workflows, with only 341 having executed
successfully, or "29.2% of the original data set of 1,443 objects" [MR15]. The authors go
on to state that the majority of the workflows that are not re-executable suffered only
from trivial issues, but we leave this to the reader to further explore.

Table 2.4: Workflow Input Port Statistics; Source: [MR15]

Table 2.5: Workflow Executable Data Set; Source: [MR15]

Table 2.6: Workflow Execution Results; Source: [MR15]
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2.2.2 Virtual Machines

VMs offer a brute-force and arguably simple approach to solving the problem of
computational reproducibility. It allows researchers to deliver what [HBC15] refers to
as a "virtual reference environment" with a publication to facilitate the reproduction of
the publications results. Simply put, a VM affords users the ability to work on identical
software environments with regard to OS, applications, libraries, and configuration.

In fact, using a VM allows researchers to adhere to many of the rules presented
in [SNTH13] and outlined in section 2.1.2. Specifically, Rule 3 is obeyed by providing a
VM that comes with the exact version of all used programs, and rule 10 is satisfied by
packaging all the utilized scripts, runs, and results into the VM. [HBC15] goes on to list
the potential obstacles one might encounter in the distribution of VMs with published
papers.

The first and perhaps most obvious issue is that of size. VMs can very quickly
requires gigabytes of storage space, making the downloading of said VM not a realistic
requirement for future work. Other issues include things like "Issues of curation",
"Licensing and distribution", and "Specific architecture requirements" [HBC15], which we
leave to the reader to explore in more detail.

Furthermore, if one is looking for a solution that affords reproducibility in its
most traditional form (see section 2.1.1), then it should be quite clear that VMs are not
equipped to handle the task. VMs do little more than allow users to replicate what once
was. They do not intrinsically encode a process’ steps, govern ones execution, provide
information such as provenance, or allow the pipelining of future work. Through the
work of this paper, we aim to provide these missing features, some of which are necessary
even for the task of reproducibility as defined for use in this work (see section 2.1.1).

2.2.3 Docker

Docker is a relatively new (released in 2013) open source utility that offers a new
twist on some tried and true concepts. Specifically, Docker combines the approaches
of Linux Containers (LXC), OS virtualization, and version control utilities [Boe15].
Although Docker is marketed more towards the business sector, it has gained much
popularity in the fields of informatics and computational research [PF16].

At its core, Docker implements user-friendly access to LXCs, allowing users to
build, execute, and share them [PF16]. While LXCs, still require an underlying Linux
OS, they allow applications and their runtime environments to be isolated from the
underlying OS. A Docker Container (an LXC with additions from Docker) is defined
through what Docker has aptly named a Dockerfile. A Dockerfile is a human readable text
based "recipe" that defines the "necessary software dependencies, environment variables
and so forth needed to execute the code" [Boe15]. The Dockerfile can then be easily
saved, versioned, shared, and later used to build the original Docker Container when
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desired. Additionally, once built, the resulting container can be exported as a binary file
for ease of sharing, and are usually smaller than a VM [PF16].

We see in Figure 2.2 how (Docker) containers are layered with the systems software
and hardware components. We reiterate here a few important distinctions between a
VM and Docker Container. (1) Docker Containers do not contain any OS components.
They only serve to isolate applications and their dependencies from the underlying (OS)
software. (2) Subsequently, Docker Containers are much smaller in size than VMs, and
thus more easily shared. (3) VMs behave much more like a black box, while Docker
Containers provide clear insight into their contents and how they were created.

Figure 2.2: Container Layer Example; Source: [PF16]

However in term of true reproducibility, Docker suffers from some serious flaws, one
of which lies in the Dockerfile. Dockerfiles rely on the package manager of the underlying
Linux OS to obtain the dependencies required to build the Docker image. This means
that images built at different times "will install more recent versions of the same software"
and as a result will not always be bitwise identical [Boe15]. While it may be possible to
configure the package managers to avoid this situation, this is outside the feature-set of
Docker itself. Thus, Docker fails to provide a reliable solution for reproducibility both in
its traditional sense, and how it is defined for the work in this paper.

2.2.4 Vframework

In attempt to solve some of the issues with traditional workflows and WFMS,
[MPS+13] proposes Vframework; a framework for the verification of preserved processes.
In section 2.2.1 we saw that for a variety of reasons, only 29.2% of the tested workflows
were re-executable. Vframework attempts to mitigate these issues by performing complex
analysis techniques on the original workflow environment, as well as verification and
validation on the redeployment environment. In fact, Vframework does not only serve
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to ensure that a workflow is re-executable, but also that the results of the workflow are
identical at the time of re-execution.

Vframework accomplishes these tasks through seven steps that describe what
information is required to successfully verify a redeployed process, and how to capture
that data. Figure 2.3 depicts these steps of whose important details we will quickly cover
here.

Step 1: Describe the Original Environment
It is necessary to define a process’ context by identifying its environmental de-
pendencies. Additionally, potential redeployment scenarios must be considered
to allow for the identifying of relevant and significant properties to be saved and
utilized in the redeployment process.

Step 2: Prepare the System for Preservation
The interactions of the process must be identified. This includes a process’ inputs,
outputs, configurations, and external influences. Together, this information works
to ensure a deterministic execution of the process at the time of redeployment.

Step 3: Design Verification Settings
In order to accurately verify a process’ execution at the time of redeployment,
measurement points in the execution must be identified. These measurements
work to ensure that the correctness of the process execution.

Step 4: Capture Verification Data
This step involves the configuring of the tools and environment to be used in the
process of capturing the verification data. Additionally, the captured data itself is
verified for its correctness.

Step 5: Prepare System for Redeployment
The system being used for redeployment must be (1) configured for the capturing
of performance data, (2) redeploy the process on the new system, and (3) execute
the process.

Step 6: Capture Redeployment Performance Data
Performance data must be captured and verified. Additionally, the performance
data will be assessed to verify if the process was executed in a deterministic
manner.

Step 7: Compare and Assess
Finally, the original and redeployed execution results will be compared with one
another and a summary report detailing the results created.

We can see that Vframework offers a very comprehensive solution for the repro-
ducibility of computational research, and is by no means a flawed approach. However,
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Figure 2.3: Vframework Outline; Source: [MPS+13]

as the core ideology of Vframework revolves around the capturing and redeploying of
workflows, many of the same issues we have outlined in section 2.2.1 will also be faced
here.

2.3 Summary
In Chapter 2 we have covered a number of key topics critical to the remainder of

this paper by reviewing relevant literate and exploring a handful of existing approaches.
Most importantly, we have defined the term reproducibility within the scope of the work
presented: exact replication. We then uncovered some of the philosophical and cultural
issues that surround reproducible research within the computational research community,
and discovered that for reproducibility to gain traction within the community, a cultural
shift must occur. In [CPM+14], the authors arrived at this conclusion after encountering
much resistance from the publishers of other papers when asked about their work. To
observe the obstacles that analysis procedures face when executed across multiple software
versions and hardware platforms, we studied the Freesurfer application as presented in
[GHJ+12] and observed a number of discrepancies in the results of the applications.

Moving on to existing approaches, we covered two general techniques for dealing
with reproducibility: workflows and VMs. We discovered how workflows can make
complex systems more accessible for researchers who aren’t experts in programming, and
also how they can quickly degrade and become unusable [MR15]. It should also have
been clear from section 2.2.2 that VMs do not provide an adequate solution moving
forward. We also reviewed two existing tools/utilities: Docker and VFramework. We
found that while both offervery comprehensive and useful features, each leaves more to
be desired. Docker does not provide a solution that allows users to truly replicate the
original environment, and Vframework, relying on workflows, will ultimately fall victim
to many of the same issues as detailed in section 2.2.1.

16



CHAPTER 3
Methodology

This chapter aims to inform the reader of the methodology employed in the
development of the prototype tool presented in this paper. In doing so, we must
familiarize the reader with a number of concepts that are incorporated into the various
components of the final solution. In each subsection of section 3.1, a new concept will
be introduced and explained with the aid of examples and use-cases. For the unfamiliar
readers, this section will prove crucial in the continued reading of this thesis, specifically
in Chapter 4 where the concepts defined in this chapter will be implemented and adapted
to the presented work.

In section 3.1.1 we will review the Semantic Web and how ontologies, specifically
the OWL2 Ontology Language [MP12], build upon the Resource Description Framework
(RDF) by applying semantics to the structure it provides. We will continue to explore
this topic studying how the Prov-O data model utilizes the OWL2 Ontology Language
to express provenance.

Futhermore, in section 3.1.2 we will explore how package managers are used to
automate the process of installing and configuring software on an OS. We will also
briefly cover some of the issues that traditional package managers exhibit with regard to
reproducibility as motivation for the use of the Nix functional package manager in the
presented work.

In section 3.1.3 we will explore what "functional" means within the scope of
programming. Additionally, we will study NixOS [DLP10] and how it applies this concept
to create a OS that aspires to implement a purely function model for not only package
management, but also system configuration. In our study of NixOS, we will also review
the previous sections to explore how they are implemented within NixOS itself.

The concept of version control software will be explained in section 3.1.4. This
component is crucial to the proposed solution, as readers will discover in Chapter 4.
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In section 3.1.5 we will present the Linux Audit Daemon [GRb]. This component
of the solution is of high importance as it allows for the collecting of data to be parsed
and utilized in the remainder of the protoype tool presented in this paper.

We must then describe methodologies in which the user can view and interact
with provenance information. In sections 3.2.1 and 3.2.2 we will introduce how we can
use OntoGraf [Fal16] and SPARQL [GSP13] to accomplish this task.

Finally, in section 3.3 we will illustrate two working examples which we will
later use to present the results compiled from the combined work of the concepts and
components in the previous section.

3.1 Concepts and Components

3.1.1 The Semantic Web

The World Wide Web (WWW) is a seemingly endless resource of information,
allowing anyone to access data for almost any topic imaginable. In 2001, Tim Berners-Lee,
the "founder" of the WWW, realized that as the WWW grew increasingly larger and
with it the amount of data, that it lacked structure beyond web-page layouts and links.
To bring structure to the content of the WWW, Berners-Lee introduced concept of The
Semantic Web [BLHL01]. It is in [BLHL01] that we can find perhaps the most concise
definition of The Semantic Web; "The Semantic Web is not a separate Web, but an
extension of the current one, in which information is given well-defined meaning, better
enabling computers and people to work in cooperation". It is important to note here why
this definition, or concept, is truly significant. It may be easy to overlook, but the WWW
was not designed for computers to interpret and manipulate in a meaningful manner, but
rather for humans to read. Without structure, any sort of automated reasoning about
a web-page and its content would not be possible. In the remainder of this section, we
explore the structure that The Semantic Web has introduced, and how it applies to the
work in this thesis.

Before doing so, let us first bring the concept of The Semantic Web into the context
of this thesis. While it was originally conceived to bring structure to the WWW, the
very same concepts that make up The Semantic Web can be applied to data in general.
Just as the WWW saw (and continues to see) an explosion in data, so does the scientific
community. Furthermore, this data is not homogeneous data, and thus questions such as
"How do I use this data?", "What purpose does this data type serve?" and "What does
this data mean?" will be asked and must be answerable.[HTT09]. Ideally, these questions
should be answered through the use of tools that are able to infer the meaning of data,
and the relationships that exists between the various data points.

We must now define a few key terms that are crucial in understand the layers
of The Semantic Web. As seen in Figure 3.1, the Uniform Resource Identifier (URI)
is the most fundamental layer. The URI gives an object a unique and unambiguous
name that serves to help identify where that object came from [Bra07]. As an example,
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consider the situation in which we want to identify a person named Alice. We can
indicate where someone can find Alice in the phone book with the following URI:
http://www.examplephonebook.com/people#Alice. In this particular example,
we have chosen to utilize the hash (#) notation, allowing us to specify that the indicated
resource is not a web-page or document [CWL14]. Thus, the prefix of the URI for Alice
is then simply http://www.examplephonebook.com/people

Figure 3.1: Layers of The Semantic Web; Source: [Bra07]

We focus now on the RDF layer. This layer allows data to be linked together by
what is called a triple. A triple consists of three components as seen in Figure 3.2; the
subject, the predicate, and the object. We can then use triples to create relationships
between objects represented by URIs, giving them syntactical meaning. We note here that
a set of triples is called an RDF Graph. Consider the following example in which we wish
to indicate that Alice is the daughter of Bob. Here, Alice is the subject, isDaughterOf
the predicate, and Bob the object. In this example, the object, like the subject, is an
URI. However, it may also be the case that the object be a literal, with the predicate
indicating that the object has the specific literal value.

<http://www.examplephonebook.com/people#Alice>
<http://www.relationships.com/isDaughterOf>

<http://www.examplephonebook.com/people#Bob>

The last important and relevant layer to this work is the ontology layer. The full
expressive power of ontologies will be left to the reader to discover, and we cover here

19



3. Methodology

Figure 3.2: An RDF Triple; Source: [CWL14]

the extensions from the RDF layer both most relevant to the context of this work, and
to the fundamental understanding of ontologies and the OWL2 Ontology Language.

The ontology aims to solve many issues that can arise when using only RDF to
structure data. Consider the scenario where two different databases utilize two different
URIs for what is in fact, the same concept. The ability to discern these two concepts as
one and the same is enabled by the ontology layer through the expression of taxonomical
structures and inference rules. Taxonomy allows one to define classes and the relationships
among them, including explicit equivalence relations between URIs.

This entails a large number of benefits and increased expressive power through the
use of class properties and subclass inheritance rules. As an example of class properties,
we can specify that "an address may be defined as a type of location, and city codes may
be defined to apply only to locations" [BLHL01]. Such a specification places restrictions
on classes and their capabilities, and the ability for these specifications to be inherited
by subclasses allows for a large number of relations to be expressed.

Taking the next step, we can use these properties to infer further information
from triples. For example, "If a city code is associated with a state code, and an address
uses that city code, then that address has the associated state code" [BLHL01]. The
inference rules in the ontology layer thus allow computers to deduce new information
and to manipulate it according to predetermined rules in a way that is meaningful to the
user [Kuc04][BLHL01].

Now that we understand the ontology layer, let us briefly examine the OWL2
Ontology Language. Ontologies, as seen in the previous paragraphs, in essence provide
the means to establish classes and semantic relationships between them. How those
relationships are defined, how they are organized, and to what extent information can
be deduced and manipulated, is dependent on the ontology, or vocabulary, they are
implemented in. In the case of the OWL2 Ontology Language, there is a very high degree
of expressive power. Classes and objects can be described by relationships such as unions,
intersections, and disjointness, properties can be constrained by cardinality restrictions,
and also extended by functional relationships such as transitivity, inverses, and symmetry
[MP12]. An overview of the OWL2 structure can be seen in Figure 3.3.

The presented work utilizes the PROV Ontology (PROV-O); an ontology that
"expresses the PROV Data Model using the OWL2 Web Ontology Language" [LMS13].
Though not the focus of the section, we note that the PROV Data Model enables the
representation of provenance information in a model that is interchangeable between
systems [MM13].
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Figure 3.3: OWL2 Ontology Structure; Source: [MP12]

PROV-O Internationalized Resource Identifiers (IRI) (URIs extended to the
Unicode typeset) fall into three main categories: Starting Point Terms, Expanded Terms,
and Qualified Terms [LMS13].

Starting Point Terms
Starting Point Terms encompass the classes and properties that allow for the
expression of simple provenance information. The three classes in PROV-O are
prov:Entity, prov:Activity, and prov:Agent, each of which can be related to the
others by the use of the property terms. Some of the available properties include
prov:startedAtTime, prov:wasGeneratedBy, and prov:wasAssociatedWith.

Expanded Terms
Expanded Terms provide the ability to indicate additional information in the
provenance of the three PROV-O classes mentioned above. Examples include
classes such as prov:Collection, and properties such as prov:hadMember and
prov:value

Qualified Terms
Qualified Terms allow for even more detailed provenance information, in that they
enable the specification of attributes for relations existing between terms in the
previous two categories. For example, qualifiedGeneration can be used to provide
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more details about the generating entity including identification information,
attributes, and comments.

We will further explore the the PROV-O IRIs as necessary in section 4.3.7. Below
in Figure 3.4 we see an example of how the above definitions can relate with one another.

Figure 3.4: PROV-O Example; Source: [LMS13]

3.1.2 Package Managers

Methods in which software can be reliably employed and delivered has long been a
point of contention. Dating back to early versions of Microsoft Windows, the installation
of various programs often led to what has been dubbed Dynamic Linked Library (DLL)
hell; a situation in which the installation of one program and its dependencies breaks the
functionality of another. Package managers, through the use of packages, provide an easy
and automated solution to DLL hell and the process of obtaining and upgrading software.
Packages provide the means in which all required software source code, dependencies,
licenses, documentation, and installation specifications can be combined into a single
deliverable. [Spi12].

Package Managers, in their traditional sense, operate within an imperative model.
This entails that the actions performed in the updating of a package are done in a stateful
manner, resulting in the active destruction of files as they are updated. The implications
of this are sometimes subtle, but always far reaching. On Unix systems, files relevant to
installed packaged are conventionally installed to Unix’s hierarchical file system. That
is to say, dependencies and source code more often than not end up finding themselves
under directories such as /bin. The issue stems from the observation that objects in such
directories offer no transparency to software requiring its invocation. Put another way,
software invokes dependencies through the use of pointers to global mutable variables,
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without assurances as to what version of the dependency, and subsequently its behavior,
is being invoked. [DLP10].

We now briefly explore some shortcomings of imperative package managers as
well as motivations for moving towards functional package managers as described in
[DdJV04].

Variability
Flexible systems must support the presence of multiple variants of a dependency
on the same system. Software should not be broken when multiple variants of the
same dependency with different optional features exist on the same system.

Consistency
Similar to variability, multiple versions of a dependency on the same system
should not break installed software. The installation of new versions should not
be destructive in the sense that it deletes or overwrites files from the previous
version, on which current software may depend.

Atomicity
Upgrades are not atomic. This means that during an upgrade process, software
reliant on the affected dependencies may not function correctly. This affects more
than just individual components, as it is often the case that system-wide shared
libraries must be updated before others.

Identification
Software often specifies its dependencies by version number alone. Lacking is the
configuration specifications and build parameters that were used at the time of
compilation. Thus, version numbers by themselves cannot act as unique identifiers
for software packages.

Source/Binary Development
Source code and its corresponding binary package do not necessarily have a 1-to-1
correspondence. That is to say, the compiling of source code often requires explicit
actions from the user with respect to desired features and options, resulting in
binary images modeling a particular variant of the source code.

Centralized vs Local Package Management
Package deployment to a network of computers should ideally not require the
individual installation on each individual computer. Package Managers should
handle software deployment centrally, and allow individual users to adapt the
installations to their specific requirement should need be.

The Nix package manager has been specifically designed to address these issues,
and does so by utilizing a purely functional model. Nix thus delivers immutable packages
solely dependent on the inputs to the functions from which they were built. There are
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three main concepts that make up Nix: (1) Nix expressions, (2) the Nix Store, and (3)
generic means for sharing build results. The remainder of this section will explore these
three concepts, and their application to the presented work will be explored in section
4.3.1 [DdJV04][DLP10].

Nix Expressions
A Nix expression, detailed in Figure 3.5, is a function that takes a set of arguments
as seen at point [1]. These arguments are the dependencies required to build the
xmonad package. The output of the function is a derivation, described at point
[2]. The derivation contains an attribute set of the form {name = value;...}. This
attribute set contains the most important information for building a package: the
name, the fetchurl for the source, the build inputs (point [3]), the configuration
(point [4]), build instructions, and installation instructions. All name values, with
exception of the meta data at point [7], are subsequently passed as environmental
variables to the build script provided by the stdenv dependency [DdJV04][DLP10].
Also of significance is the $out variable at point [6], indicating the output path
of the package resulting from the build of the derivation. As a Nix expression
is a function, it must (1) be called with valid arguments, and (2) can be called
any number of times, always resulting in a new instance of the built package.
The most important implication of these two points is that each created instance
is independent from the other, and, unlike in the case of imperative package
management, do not interfere with each other. This is ensured by the $out
variable, whose importance is further explained in the description of the Nix Store
below [DdJV04][DLP10].

The Nix Store
In Figure 3.6 we see an example of the Nix Store directory structure. We briefly
explain the directory hierarchy, and how it maintains a purely function approach.
Where in this structure a built package finds itself is dictated by the $out variable
at Figure 3.5 point [6]. It must be ensured that a package’s location does not
interfere with other variants of the same package. This is accomplished by utilizing
a 160-bit hash of the derivation resulting from the evaluation of a Nix expression,
and more specifically, the attribute set of the resulting derivation. We reiterate
here that a package’s derivation contains not only its inputs and dependencies, but
also its configuration. The resulting hash is then used to create the directory name
where the built package is to be stored. This is demonstrated in the following
example from [DLP10]:

/nix/store/8dpf3wcgkv1ixghzjhljj9xbcd9k6z9r-xmonad-0.5/

In Figure 3.6, solid arcs are used to denote references to dependencies. These
dependencies include inputs to the Nix expression for the built package. Fur-
thermore, the Nix Store must ensure atomic operations, which is accomplished

24



3.1. Concepts and Components

Figure 3.5: Nix expression for xmonad; Source: [DLP10]

through the use of profiles. Italicized text represents symlinks, with dotted lines
representing their targets. We observe that the user Alice utilizes a symlink to the
user-environment at Figure 3.6 point [11]. This user environment subsequently
contains symlinks to packages to be used within that environment. Atomic opera-
tions within the Nix Store are thus accomplished by switching to various symlinked
environments, eliminating inconsistencies in the dependency structure of a package
as is often the case with imperative package managers. That is to say, upgrading
or rolling back changes is as simple as updating a symlink in the current users
$PATH environment variable [DLP10].

Sharing
Software distribution is a key component of package managers, and the ability to
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Figure 3.6: The Nix Store: Example for xmonad; Source: [DLP10]

identify software is critical in accomplishing this task. We know from our above
descriptions of Nix expressions and the Nix Store that built packages are placed in
directories comprised of 160-bit hashes. Because the hash of an individual package
is based on that packages derivation, the hash acts as a globally unique identifier
that allows for the deterministic identification of a package [DdJV04][DLP10].
The availability of a globally unique identifier provides several advantages over a
traditional imperative package manager. Although we have previously described
the methods in which the Nix Store builds packages, the functional manner in
which they are built also allows for the distribution of binary images. Upon the
request of a package, the Nix Store will automatically detect if the (re)building of
the package is required (due to for example a configuration change), and when
it is not required, will fetch a pre-built binary from a remote repository. Users
retrieving packages in this way can be sure that the binaries they are receiving
are exactly what they are requesting.

3.1.3 Functional Linux

In section 3.1.2 we saw how the Nix Package manager allows for both the creation
and distribution of software packages through the use of functional paradigms. While
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the Nix Package Manager can be utilized across a wide variety of OSs such as Mac OSX,
FreeBSD, and Windows, its core concepts allow for much more powerful applications. In
this section, we take the Nix Package Manager further by exploring how its concepts can
be used to implement an entire operating system, namely, the NixOS [DLP10].

The Nix derivations used within Nix expressions can also be used to build static
parts of an OS such as configuration files that are not modified dynamically at runtime.
In Figure 3.7 we can see how one can use a Nix derivation to build an sshd configuration
file that will exist in the Nix Store with its own unique hash identifier as described in
section 3.1.2. By examining the derivation, we can see that if a user desires that X11
forwarding be enabled, specifically if the option services.sshd.forwardX11 is set to yes,
then the xauth package is required. This represents a unique characteristic of the NixOS:
it allows for configuration files to enumerate their software package dependencies. A
consequence of this is that packages will not be built if they are not referenced by a
configuration file, and will not be garbage collected if they are [DLP10].

Figure 3.7: Nix Expression to build sshd_config; Source: [DLP10]

To specify the configuration to be used to build the NixOS, the user must edit the
/etc/nixos/configuration.nix file, an example of which can be seen in Figure 3.8. We see
that this configuration file specifies what kernel modules should be installed (point [14]),
what file systems should be mounted (point [15]), and that the SSH daemon should be
enabled (point [18]). We also see the enabling of the services.sshd.forwardX11 option
at point [19], which in turn is utilized by the Nix expression in Figure 3.7 to build the
SSHD configuration file [DLP10].

Changes to the NixOS configuration file can be activated through the use of the
nixos-rebuild switch command. In fact, this command allows the user to perform a number
of significant operations, including creating test configurations, as well as rolling back
and upgrading the NixOS. These operations share many of the same properties found in
the Nix Package Manager described in section 3.1.2: they are performed atomically, they
are non-destructive, and they allow system configurations to be reproducible. Figure 3.9
shows how previous configurations are presented to the user, allowing rolling back to be
as simple as selecting the desired configuration [DLP10].
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Figure 3.8: Nix Configuration File Example; Source: [DLP10]

3.1.4 Version Control Software

In section 2.1.2 we listed four rules that aim to help guide researchers towards
creating more useful and reproducible research. A key component to the presented work
is captured by Rule 4: Version Control All Custom Scripts. To do so, one must use
Version Control Software (VCS) such as Git or Subversion (SVN). In this section, we
briefly explain at a high-level the main working components and features of Git, a VCS,
that are relevant to the presented work.

VCS allows for the automated management of changes to documents, programs,
and collections of information in general. Specifically, it allows the iterative changes to
such resources to be tracked over time, and most importantly, for old versions to be
retrieved at a later time. In large projects, these features are essential for tasks such as
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Figure 3.9: The GRUB boot menu for a NixOS machine; Source: [DLP10]

finding and fixing bugs, rolling back to working versions of resources, and collaborative
work between teams of developers. [CC14].

In order to track changes, Git utilizes a data store called a repository found within
the working directory (as ./git) which a user wishes to version control. After initializing
the repository, users are provided with tools to manage the revision history of all objects
and files contained within the directory to which the repository belongs. The repository
contains information regarding the current version of a given file (or files), as well as
references to previous versions of said file(s). To track a file, a user must first add the
file to what is called the staging area, and then commit the file. Upon committing, a
40 character Secure Hash Algorithm 1 (SHA-1) hash is generated that allows for the
identification and retrieval of the commit, and subsequently its contents, at a later time.
This generated hash will prove crucial in the presented work, detailed in section 4.3.5. In
Figure 3.10 we see an example of the ’git log’ command, containing information about
commits within the repository, and specifically the generated SHA-1 hash. Additional
parameters may be passed to this command to detail the contained files [BDW16].
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Figure 3.10: ’git log’ Example; Source: [BDW16]

3.1.5 The Linux Audit Daemon

Crucial in capturing the provenance of data is the monitoring of the system on
which the data is utilized and manipulated. Specifically, the system calls, or syscalls for
short, must be captured in order to take account of the operations being performed on
the data. Syscalls allow for applications in user-space to interface to primitive functions
in the linux kernel, and examples include open, close, write, and create. While there are
many utilities that allow one to monitor the syscalls invoked on the system, we focus
here on The Linux Audit Daemon, or auditd for short [Red].

Auditd is a powerful monitoring/auditing utility for Linux providing users a highly
configurable method in which to capture syscalls. There are two main components of
auditd that allow for the fine tuning of the monitoring to be performed: the auditd.conf
configuration file [GRc], and the audit.rules rules file [GRd]. We briefly cover the
functionality that each provides, and in section 4.3.2 we will describe their solution
specific implementations [Red].

The auditd.conf file allows users to specify a number of configuration parameters
related to the handling of the log files created by the daemon. For the sake of brevity, we
describe here only the select few which play important roles in the daemons functionality.
[Red].

num_logs
As one can imagine, the monitoring of an entire system can result in very large
quantities of data being collected. This parameter allows the user to configure
the maximum amount of log files that can be created. The value specified is very
closely tied to the following two parameters.

max_log_file
This parameters allows for the configuring of the maximum size of an individual
log file. This value is specified in terms of megabytes.

max_log_file_action
Utilizing the previous two parameters, the max_log_file_action parameter de-
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scribes what action to perform upon a log file reaching the maximum size as
specified by the max_log_file parameter. Its valid values are ignore, syslog,
suspend, rotate and keep_logs. To better understand this parameter, we give an
example utilizing the rotate option:

num_logs = 5
max_log_file = 5
max_log_file_action = rotate

In the above example, the host system is limited to five log files, each with a
maximum size of five megabytes, being rotated when maximums are reached. The
keyword rotated specifies that when the maximum number of log files is reached,
the oldest log is deleted, the remaining log files are shifted down numerically, and
a new log file is created.

There are many more configurable parameters available to the user to define things
like the flushing of the log buffers, the name and location of the log files, system disk
space actions, and even TCP client parameters for logging to remote peers. The readers
are encouraged to read the auditd manpage for more information [Red][GRc].

The second main component of auditd is the audit.rules file. This file allows the
user to specify rules and filters dictating what exactly should be monitored by the daemon.
At the highest level, users can specify three types of rules: control, file, and syscall. We
focus here on syscall rules, as they are the most relevant to the presented work. Syscall
rules come in the following form and are arguments to the auditctl command:

auditctl -a action,list -F arch=value -S syscall -F field=value -k keyname

The -a argument specifies that the following rule be appended to the current list.
The action keyword may take only the value always or never, and indicates when to
enforce the rule for the specified list. The Linux kernel provides five rule matching lists,
though here we explain only the exit list and leave the remaining for the reader. The
exit list is checked at the time a syscall exits, and provides the daemon with the largest
amount of information, or fields, about the exiting syscall [Red][GRd].

The -F argument allows a user to specify filtering options for the captured data.
It is required to indicate the host system’s architecture before the syscall that is to be
monitored. Possible values for arch are b32 and b64 for 32-bit and 64-bit host systems
respectively. After having specified the host’s system architecture, the syscall to monitor
is provided by the -S argument. Further filtering options can be then provided and allow
data to be filtered by fields related to a user’s ID, the success of a syscall, file types, and
message types [Red][GRd].

Finally, the -k options allows users to label log messages matching the specified
rule with a key. The key can be an arbitrary string up to 31 bytes long, and allows for
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the easier identification of log messages that pertain to a specific activity a user wants to
monitor. There are many more configurable options for auditd to further refine the rules,
and we encourage the readers to review the auditctl man-page [GRa].

System events are captured by auditd in the form of records. In Figure 3.11, we
see an example of a captured event consisting of four record types: SYSCALL, PATH,
CWD, and PROCTITLE. Records of the SYSCALL type provide information about the
called syscall such as the caller’s User ID (UID), the syscall’s exit value, the command
name that called it, and the path to the calling executable. PATH records provide the
path to the argument(s) passed to the syscall. CWD records provide the current working
directory (CWD) for the process that invoked the syscall, and PROCTITLE records
encode the entire executed command-line in hex that lead to the captured event.

The records seen in 3.11 detail the execution of the /bin/cat command. Specifically,
the records indicate that the /bin/cat command was executed from the /home/shadowman
directory, and was used to print the contents of the file /etc/ssh/sshd_config. The time
of execution (1364481363.243:24287) is represented in the Unix time format, and can be
converted to a human-readable date with the Linux date command. Additionally, the
arguments provided to the syscall are found in the fields a0, a1, a2, and a3 in hexidecimal.
These arguments consist of the file to be accessed, mandatory flags governing the mode of
access (read-only, write-only, read/write), and additional optional flags further defining
the syscalls exact operation. We note that these arguments are not to be confused with
those passed to the /bin/cat command. Finally, we see the hexidecimal representation
(636174002F6574632F7373682F737368645F636F6E666967) of the full command line entry
used to execute this command.

Figure 3.11: Auditd Log Example; Source: [Red]

3.2 Data Interaction and Visualization

This section briefly outlines two tools that allow users to interact with provenance
information represented by RDF graphs or OWL semantics. These tools will be used to
explore the data of the working examples defined in section 3.3 and studied in 4.4.
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3.2.1 OntoGraf

OntoGraf [Fal16] is a plugin for Stanford’s Protégé application [Mus15]. OntoGraf
makes it possible to interactively navigate ontologyies by virtue of a graphical repre-
sentation of the ontology’s individuals and their relationships. Users are able to search
ontologies for individuals by keyword, and filter results by relationship and individual
type.

In Figure 3.12 we see an example query for the keyword "cheeseypizza". The
resulting interactive graph shows the ontology’s classes related to the searched keyword,
as well as the relationship(s) between them. That is, users can expand and collapse nodes
to explore the relationships represented in the ontology. Additionally, one can search
for terms in a variety of ways: contains, starts with, ends with, exact match, and regex
expressions. Finally, OntoGraf provides multiple visualization styles that organize the
results for better readability as desired.

Figure 3.12: OntoGraf Example; Source: [Fal16]

3.2.2 SPARQL Query

The SPARQL Query Language allows users to query RDF graphs as well as OWL
Ontologies. Compared to OntoGraf, SPARQL Queries provide finer search granularity.
Ontology prefixes, property values, and relationships can be queried for, with the results
being represented by sets or RDF graphs [GSP13]. For convenience, we again use a
plugin for Stanford’s Protégé application, SPARQL Query [Red16]. SPARQL queries
follow a very traditional query structure, with modifications to allow the specification of
RDF triples and semantic web prefixes [GSP13].
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In Figure 3.13 we see an example of a SPARQL Query. We note that the prefixes
are specified at the beginning of the query. Namespaces utilized in the ontology to be
queried must be specified at the beginning of the query by the PREFIX keyword. A
SPARQL Query can be composed in four different forms: SELECT, CONSTRUCT, ASK,
and DESCRIBE. In Figure 3.13 the SELECT form is being used, and we can see the
previously specified prefixes being used in the building of triples. The shown example
will find all pizzas that have mozzarella cheese as a topping [GSP13].

Figure 3.13: SPARQL Query Example; Source: [Red16]

3.3 Working Examples

In this section we define two working examples on which we will utilize the solution
as outlined in Chapter 4.

For our first working example, we will present the ontology resulting from the
captured provenance for the invocation of a single process. Specifically, we will use the
"pdflatex" terminal command to generate a PDF file from a TEX file. It is important to
note here that the solution is not restricted to be only functional for terminal commands.
By nature of the Linux Audit Daemon, all syscalls, even those initiated via Graphical
User Interfaces (GUIs), can be captured and processed.

The chosen TEX file, DatabaseReport.tex, requires the inclusion of numerous
images and libraries, and when compiled with pdflatex, allows for the general func-
tionality of the solution system to be demonstrated. The terminal command "pdflatex
DatabaseReport.tex" will be executed by our test user account, testResearcher1. At the
time of execution, our solution will be running in the background, spawned by the root
user of the host machine.

Once the pdflatex process has completed and the provenance information added
to the ontology, the data can be visualized and interacted with (as seen in section 4.4)
by way of the Protégé plugins OntoGraf and SQARQL query as detailed previously in
sections 3.2.1 and 3.2.2.
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After having established an understanding of the general functionality of the
presented solution system, we provide a less trivial working example. In this working
example we capture the provenance of a Latex document beginning from the time of
its acquisition, and continuing through numerous edits and compilations. During this
process, edits to the document will include both textual and included resources, and
updates to various components of the NixOS will be performed. Doing so will allow us to
present in further detail how the functionality provided by the Git Version Control and
NixOS components is represented in the resulting ontology. To bring the work presented
in this thesis full circle, the document used in this working example will be the very
LaTeX document used to compile this thesis itself.

3.4 Summary
In this chapter we covered the main technologies, concepts, and components that

make up the presented prototype tool. Section 3.1 introduced us to The Semantic Web,
where formalized structure brings form and relationships to the data found on the WWW.
In section 3.1.1 we saw how the various layers of The Semantic Web, specifically the
RDF and Ontology layers, allowed for great precision in the specification of data types of
relationships. We furthered defined how the OWL2 Ontology Language and PROV-O
can be used together to represent data provenance.

Section 3.1.2 provided us with our first look at one of the core components of the
presented prototype tool: the Nix Package Manager. We defined the shortcomings of
traditional imperative package managers, and how the Nix Package Manager solves many
of these problems by employing a functional model. We also saw how Nix Expressions
and the Nix store play key roles in the building and sharing of software packages.

In section 3.1.4 we saw how VCSs can be used to to track file changes and to
identify specific revisions of files. This functionality was examined in GIT, and will
play a crucial role in the identification of data and its provenance data in the presented
prototype tool.

Functional Linux, in particular the NixOS, was detailed in section 3.1.3 and we
saw how the fundamental concepts of the Nix Package Manager can be used to create a
functional operating system. The NixOS will provide an identifiable and reproducible
working environment in which workflows and experiments can be executed.

Section 3.1.5 gave insight into the Linux Audit Daemon and how it will provide
us with the provenance information of data used by the system. We saw how it can be
configured and used to trace the syscalls executed on the host system.

Provenance visualization utilities such as SPARQL Queries and OntoGraf were
explored in section 3.2, and finally, in section 3.3 we introduced the use-case that will be
studied in Chapter 4.
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CHAPTER 4
Ontological Representation of

Provenance

In the previous chapter, we covered the methodology used in the presented
prototype tool. This chapter explores the solution in detail, including how the previously
explored concepts and components are tailored to suit the solution. Furthermore,
we will see how the working examples in section 3.3 expose the functionality of the
presented solution. Lastly, we will examine the performance of the solution system and its
complexities. To remain true to our effort to promote the reproducibility of computation
research, the code used to implement the work in this thesis can be retrieved from the
following GitHub repository: https://github.com/RothTuThesis/ProvenanceOntology

4.1 Solution Outline
The goal of the prototype tool is to allow users and researchers alike to better the

reproducibility of their work and findings. We accomplish this by providing a host system
that automatically captures provenance information without explicit interaction from the
user or extensive programming or Information Technology (IT) knowledge. Additionally,
captured provenance information can then be queried for in a systematic manner, allowing
the user quick and easy access to the provenance for any given file contained within the
monitored directories. In Figure 4.1 we see an outline for the prototype tool presented in
this work.

Through the combined functionality of the components seen in Figure 4.1, users
must only start the auditd process as desired, or simply leave it running in the background.
The Log Parser automatically monitors the log file and will (though the combined use
of the Git Repository and Nix Store) enter the information into a PROV-O ontology.
The ontology can then be queried at a later time via Stanford’s Protégé and its various
plugins such as SPARQL Query and OntoGraf.
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Figure 4.1: Solution Structure

We see that the prototype tool is not only a tool that one can install and use
on an existing system, but is rather an entire system solution with the NixOS at its
core. We note here that the aim of the solution system is not to create a VM which
can/must be delivered to other researchers to enable research reproducibility. Instead
the solution is intended to provide researchers with an OS on which researchers can
perform experiments without the additional overhead or concern of manually tracing
data’s provenances or creating explicit workflows.

The following sections expand on the components seen in Figure 4.1 and outlined
in Chapter 3.1. By the end of this chapter, the reader will be familiar with how these
components are assembled and configured and how they provide the structure and
functionality of the solution.

4.2 Resources

4.2.1 OWL2

The OWL2 Ontology Language is one of the pillars of the presented solution, as
it allows for data to be interpreted and processed, as opposed to nearly presented to
the user. Within the scope of this work, the OWL2 API is used to both manipulate
and interpret the classes (and their members) and relationships defined by PROV-O
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(and subsequently the OWL2 Ontology Language). In this section we focus on the main
(relevant) features of the OWL2 Ontology Language and how the OWL2 API provides
access to these features. Specifically, we look at entities, literals, classes, data properties,
object properties, and axioms. [PSPM12]

The fundamental building blocks of an OWL2 Ontology are entities. Entities allow
us to define the vocabulary of an ontology and are identified by a unique IRI. Additionally,
the data properties, object properties, and classes, are all entity subtypes. Classes allow
for the representation of sets of individuals, while object and data properties allow one
to specify relationships with other individuals/classes and data values respectively. We
will see in section 4.3.7 how PROV-O defines its vocabulary as relevant to the presented
work. [PSPM12]

The data values specified by data properties are captured by literals. Literals
allow for the specification of string values, along with a datatype that indicates how to
interpret the string. For example, a literal can be of type xsd:string, indicating that it is
a character string in Extensible Markup Language (XML) [BM04].

Axioms allow one to specify what is true in the domain in which the ontology
exists. For the purposes of the presented work, axioms can be defined for classes, as
well as both object and data properties. Example of class axioms include SubClassOf,
EquivalentClasses, and DisjointUnion. Examples of object property axioms include
DisjointObjectProperties, InverseObjectProperties, and SymmetricObjectProperty. And
finally, examples of data property axioms include DataPropertyRange, EquivalentDat-
aProperties, and DisjointDataProperties. We note that PROV-O employs its own axioms
that build upon those of OWL2, and will be covered in section 4.3.7. [MP12] [LMS13].

In the presented solution, we access the above functionality by way of a few key
functions provided by the OWL2 API:

• OWLDataPropertyAssertionAxiom getOWLDataPropertyAssertionAxiom()

• OWLObjectPropertyAssertionAxiom getOWLObjectPropertyAssertionAxiom()

• OWLLiteral getOWLLiteral()

• void addAxiom()

However, to use the first three functions, we must instantiate an OWLDataFactory,
and for the last function, we must instantiate an OWLOntologyManager. The OWLOn-
tologyManager provides the main access point for actions such as creating, loading, and
accessing an ontology. The OWLOntologyManager is in turn required to instantiate the
OWLDataFactory, which provides the functionality required for creating entities, axioms,
and classes. Further details on how these functions are utilized in the presented solution
can be found in section 4.3.4. [HB09]
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4.2.2 JGit Java Library

To access (most of the) Git functionality in our solution, we utilize the JGit
Java Library [The17]. In the presented solution, JGit is utilized to perform basic Git
operations such as creating a Git Repository, as well as adding and committing files to
the repository. However, in the course of designing the presented solution, certain Git
functionalities were better served by the standard Git terminal commands. For example,
the status of the Git repository as returned by the JGit library proved inconsistent and
unreliable. As a result, specific Git terminal commands were used and are detailed in
sections 4.2.3.

4.2.3 Unix Commands

Not all the required functionality could be implemented in Java. As a result,
certain system commands needed to be executed on the host system. We briefly outline the
used system and Git commands, and in section 4.3.6 we detail how they are incorporated
into the presented solution.

readlink
The readlink command allows the user to resolve the true value/directory of a
symbolic link. The NixOS relies heavily on symbolic links and as such, the log
files from auditd contains many of them as well. Resolving the symbolic links
allows the presented solution to obtain the full directory of the used resources and
files. When the used resource is something stored in the Nix Store, the resolved
directory contains the 160 character hash, thus allowing precise identification and
more accurate provenance information.

awk
The awk command is a general purpose pattern scanning and processing utility for
textual data modification. In the scope of the presented work, the awk command
is used simply to extract the relevant fields from textual data. Specifically, it is
used to retrieve the username for a particular UID, as the auditd log files contain
only UIDs and not usernames. The returned username is later used in the ontology
to relate users to processes executed on the host system.

git [log | rev-parse | diff-index | update-index]
These various git commands are used to provide functionality that could not be
reliably provided utilized via JGit. The diff-index and update-index commands
are used in conjunction to obtain the status of the Git repository, while the log
and rev-parse commands are used in conjunction to retrieve a unique SHA-1 for
each tracked object/file. [Tor17]
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4.3 Component Implementation

4.3.1 NixOS

The backbone of the solution system is the NixOS. In section 3.1.3 we explored
the main concepts that make the NixOS what it is, and in this section, we detail how it
is used in the solution system.

Although the exact NixOS version is not required for future replication of the so-
lution, the utilized version is 17.09.1756.c99239bca0. More important is the configuration
file seen in Figure 4.2. We see a handful of important sections in this configuration file.
First, we note that the imports section provides several Nix derivations critical to the
functionality of the NixOS. In particular, these imports provide the resources allowing for
the NixOS to be ran in a graphical environment, to be packaged and used as a virtual box
image, to allow its configuration(s) to be modified and rebuilt, and finally, to subscribe
to the necessary Nix Store channel(s) for package manager functionality.

The next section specifies the audit rules, which we will visit in section 4.3.2.
After the audit rules are specified, we see the description of our test user account,
testResearcher1. The user’s home directory, description, and privileges are specified.
Next, we see the inclusion of the system packages to be installed on the NixOS. While
not all of the specified packages are critical to the implementation of the solution system,
of particular importance are the "git" and "audit" packages. We note that that the "audit"
package contains auditd, as well as many additional utilities allowing for the modification
of and interaction with the system’s audit entries. The remaining packages to be installed
are specified to provide the functionality required to demonstrate the applicability of the
presented solution system via the working examples described in section 4.4.

4.3.2 The Linux Audit Daemon

The Linux Audit Daemon, or auditd, is responsible for logging all the required
provenance information of objects on the host system. In this section, we cover the
implemented auditd rules and the configuration that governs its operation.

The auditd rules can be seen in Figure 4.2. We briefly explain the additions to the
syntax not covered in section 3.1.5. First, the audit service is set to enabled, after which
the rules to be used are specified. To ensure the correct rules (including the ordering) are
specified, the existing rules are deleted with the "-D" parameter. The following four rules
are all very similar in that that specify syscalls to monitor. Each rule is indicated to be
for 64-bit systems, and to only log calls that are successful. We see that the first rule
monitors the open and openat syscalls, and contains the additional "-p" parameter. This
parameter allows us to specify the access type to monitor. Here we specifically monitor
the objects which are written to by passing "w" to the "-p" parameter.

To aid the process of parsing the log file entries, the rule entries are given a unique
label for identification. In the solution’s auditd rules, these keys are WRITE_CMD,
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Figure 4.2: NixOS Solution Configuration

NORMAL_CMD, CLOSE_CMD, PROC_ARGS, and PROC_END, and are used to key
entries matching syscalls that write to files, open files, close files, provide the arguments
with which a process was invoked, and end processes respectively. The order ordering of
the rules is critical to the proper configuration of auditd. Syscalls that match multiple
auditd rules will be keyed to only the first matching rule the syscall is checked against. In
Figure 4.2, if the NORMAL_CMD rule to monitor the open and openat syscalls (without
the write permission restriction) would be placed first in the list, all open syscalls would
match only that rule entry, and none the entry monitoring the write access types. This
is especially critical in the implementation of the algorithm(s) used to process the log
entries for provenance information.
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The last three rules specify the exclusion of log entries. We exclude here all log
entries with "msgtype=PROCTITLE", as the information it provides is not necessary
and often redundant. While traditionally this msgtype captures the full command-line
used to invoke a process, log entries of this type corresponding to processes invoked from
shells such as "bash" fail to capture this information. In such cases, the exclusion of this
entry type serves to maintain a smaller log file. Additionally, when this entry type does
capture the command-line information, it is redundant in that the entries for the execve
syscall, subsequently matching the label PROV_ARGS, also contain this information.
Therefore, we chose to capture only the more comprehensive execve syscall.

Additionally, we note that the UID of our testResearcher1 user is 1003. The final
two exclusion rules exclude all entries not originating from the Audit User ID (AUID)
(the logged in user) and UID (the user who started the analyzed process) from this UID.
The UID should be modified with respect to the user accounts for which the researcher
desires to capture provenance information [GRa]. These three exclusion rules are critical
in the feasibility of the solution in that they prevent the generation of an unmanageable
amount of log entries. These additional log entries originate from the solution itself
performing the parsing of the entries. Thus, to solve this problem, the application must
be ran from a different account than that on which the processes to monitor are run.

In Figure 4.3 we see the solution’s audit configuration file. In it, we specify a
number of configurable options such as the location of the resulting log file, the actions
to be taken in the event of low system space, the number of logs, and the rotating of the
logs. Importantly we see that in our solution system, a log file will be deleted after 20
MB have been written to the system, and then every time an additional 5 MB have been
written to the system. We leave it to the reader to explore the configuration in further
detail. [GRc].

Figure 4.3: Auditd Solution Configuration (/etc/audit/audit.conf)
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4.3.3 Auditd Log Parser

This component of the solution system is responsible for parsing all of the entries
auditd makes to the specified log file. It contains all of the algorithms and logic for the
collection and processing of the log entries written to the auditd log file. In this section,
we detail the working structure of this parsing component and how it interacts with the
other components.

In Figure 4.4 we find an overview of the log parser’s structure. The core func-
tionality of the parser revolves around its ability to monitor the log file for changes. To
do this, we use the Tailer class from the Apache Commons Application Programming
Interface (API). The Tailer class is an implementation of the unix "tail -f" command,
and allows a Java application to spawn a listener thread signaling when a new entry is
written to a file. The new entry is subsequently provided to a handle() function, where it
is parsed and the necessary actions are performed.

The labeled syscalls entries seen in 4.2, each contain (different) critical information
that must be parsed to accurately represent the provenance of a given object and must be
handled differently. The PROC_END entry allows us to detect the completion of a process
on the host system, while the combination of the CLOSE_CMD and WRITE_CMD
entries allow us to detect that files have been modified, and when the modification of said
file is complete. Entries matching the label PROC_ARGS provide the command-line
used to invoke a process, thus providing the utilized arguments and parameters. And
finally, the NORMAL_CMD is a catch all rule for open and openat syscalls that do not
match the first WRITE_CMD.

Depending on the matched rule and the type of log entry, specific actions must
be taken, the most important of which is the entering required information into the
ontology via calls to the OWL2 API. Details about the ontological representation of
this information and its creation can be found in sections 4.3.7 and 4.3.4 respectively.
Additionally, the necessary maintenance actions must be performed when a file has been
modified, such as calling Git commands to keep the repository up-to-date. Further details
on this process can be found in section 4.3.5.

Figure 4.4: Audit Log Parser Solution Structure
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The presented solution system also allows for the customization of how the Auditd
Log Parser parses the log entries. In particular, users are able to provide lists of
executables and directories to be ignored, as well as symlinks that should be resolved.
This information is provided to the Auditd Log Parger via command line arguments as
seen in Figure 4.5. The motivation for these features is to allow the user to reduce the size
of the ontology by ignoring entries from executables and/or directories whose provenance
information is deemed (by the user) not necessary. This often includes background
processes/daemons performing system indexing operations, and non data modifying
terminal commands such as ls,ps, and grep. It is also often the case that executables
query directories such as proc, sys, and dev for process and system information which
may not be required for the desired provenance to be captured.

The ability to specify the symlinks to be resolved also allows for not only the size
of the resulting ontology to be managed, but also for the performance of the Auditd
Log Parser to be streamlined. This stems from the observation that many resources
utilized by applications are contained within Nix Store directories. The user is thus able
to specify the granularity level of the resulting ontology by configuring the directories
whose symlinks should be fully resolved. Additionally, should a directory resolve to a
Nix Store location, only the top level directory of the resolved symlink will be stored in
the ontology. As resolving symlinks is a timely and expensive operation, the results of
previous invocations of this resolution are stored for quick access during subsequent log
parsing. Should a user choose not to resolve a given directory in which a large amount
of utilized resources reside, while the resulting ontology will provide a more granular
depiction of the utilized resources, it will also increase (perhaps undesirably) in size,
restricting the ability to graphically interact with it. It is thus necessary for the user to
determine the balance of performance and granularity that fits their needs. Examples of
this functionality can be seen in section 4.4.

Finally, the handling of the resulting ontology is also configurable. Specifically,
users are able to indicate that an entirely new ontology be generated, or that an existing
ontology should be loaded and subsequently added to. Additionally, the name of the
resulting ontology may be provided, allowing users to chose to either (1) overwrite an
existing ontology, or (2) to create a new file for the resulting ontology. This configurability
provides users with the ability to capture provenance information for either single process
executions, or for extended periods of time while using the solution system. Users also
have the ability to export the ontology in its current state without ending Auditd Log
Parser process, or exporting the ontology while also ending the process by passing "export"
or "exit" to the process.

4.3.4 Ontology Maintenance

This component is responsible for creating the connection between the OWL2 API
and PROV-O. That is, it utilizes the OWL2 API to instantiate and maintain the PROV-O
ontology. Specifically, this component must create all the classes, data properties, object
properties, annotations, and relationships necessary to represent the desired provenance

45



4. Ontological Representation of Provenance

Figure 4.5: Auditd Log Parser Command Line Arguments

information. To properly do so, the Ontology Maintenance component must import all
additional ontologies that are utilized by PROV-O and specify the prefix corresponding
to each.

Additionally, while it is the Auditd Log Parser that decides what, when, and how
an ontology object should be updated, it is the Ontology Maintenance component that
directly interacts with the OWL2 API. This is accomplished through five API calls:

• void addOntologyClassAssertionAxiom()

• void addOntologyDataPropertyAssertionAxiom()

• void addOntologyDataPropertyAssertionAxiomLiteral()

• void addOntologyObjectPropertyAssertionAxiom()

• void addAtTimeObjectPropertyAnnotation()

In the presented solution, only two literal datatype will be used: xsd:dateTime
and xsd:string from the XML Schema [BM04]. The xsd:dateTime datatype adheres to
the formatting guidelines as defined by ISO 8601 [ISO04] and seen below in the following
example:

yyyy ’-’ mm ’-’ dd ’T’ hh ’:’ mm ’:’ ss zzzzzz
2017-11-02T16:02:17+01:00

Here, the ’T’ is a separator between the indicated date and time, while the ’zzzzzz’
specifies the timezone, which in this example is Central European Time (GMT+1).
[PSPM12]

The Ontology Maintenance component is also responsible for the loading and
saving of ontologies. While an ontology of any format can be loaded, the chosen output
format upon saving has been chosen to be the RDF/XML format. This format was chosen
as it provides a clear, concise, and minimal representation of the resulting ontology. The
resulting file is thus an RDF/XML serialization of the RDF translation of the ontology.
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4.3.5 Git Version Control

This component is responsible for initializing and maintaining the Git repository.
It does so by interacting with the JGit API as well as the GIT system commands. This
component helps ensure a few key concepts crucial to the solution.

First, it is important to note here that the JGit API is capable of handling a
traditional ".gitignore" file. As a critical part of the solution system, the ".gitignore" file
contains an entry to ignore all hidden files and directories. That is, files and directories
that begin with a dot. Second, this component ensures the integrity of the Git repository.
Specifically, files are only committed when modified. This may seem trivial, but the
JGit API proved not reliable in regard to the repositories status information, thus Git
terminal commands must be used to correctly determine the status. Finally, it provides
the means in which the Auditd Log Parser can retrieve the unique SHA-1 values for
an object contained within the repository. These Git terminal commands are provided
by this component in the form of pre-formatted strings to be called by the Auditd Log
Parser and executed by the System Command Executor component in section 4.3.6.

Additionally, in the solution system the Git repository is initialized to the user’s
home directory. In our working examples, this directory is /home/testResearcher1. Doing
so will allow for the provenance information of all files within the user’s home directory
to be captured and processed, while at the same time excluding this information for
anything outside of this directory. Limiting the scope of the repository is important as
most of the data outside of the user’s home directory is versioned by virtue of the NixOS,
and its exclusion gives way to a more feasible solution and provides a more well-defined
"workspace".

4.3.6 System Command Executor

The System Command Executor component provides the API necessary to execute
terminal commands from a Java application. This component is utilized by the Auditd Log
Parser component to execute Git commands and standard unix commands to accomplish
tasks that are not directly solvable in Java. For example, to obtain the username that
belongs to a UID found in the auditd log file(s), we must utilize the awk command to
parse the correct information from the /etc/passwd file.

Commands are executed within the Bash shell via the CommandExecutor class
of the Apache Commons API [Apa17]. The CommandExecutor class allows the Java
application to obtain both the output of the executed command, as well as its exit value.

However, executing terminal commands from a Java application is not without its
drawbacks, and can often lead to longer than desired processing times. Great effort has
been made to utilize only the necessary terminal commands, and to do so in such a way
as to have the least impact on the application’s runtime.
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4.3.7 Prov-O Model

The information parsed by the Auditd Log Parser component and provided to the
Ontology Maintenance Component is represented by the model found in Figure 4.6. In it,
we see the relationships used to link the various entities, activities, and agents together.

In order to create unique ontology objects, the names of entities and activities are
modified with the addition of a unique identifier. For entities and activities beginning
with PROCESS_, this identifier is the Message Digest 5 (MD5) hash of the combination
of the process’s name, its Process ID (PID), and the system time. For the lowest tier
entities, this unique identifier is the (unique short) SHA-1 hash value of the object in the
solutions Git repository. This unique identifier is not necessary for libraries used by a
process, as they reside inside the Nix Store, and thus already include a unique 160-bit
hash.

We note here that the *_Collection entities do not represent actual data present
on the host system, but rather superficial structures only present in the ontological
representation. This design choice in the model allows for the compartmentalization of
provenance information, leading to simplified visualizations and better organization. In
our case, resources are either used libraries, created files, or used resources other than
libraries. Additionally, the *_Collection entities are of type "prov:collection", a subclass
of the Entity class.

Entities in the ontology representing used resources and created files contain an
extra object property annotation and up to two data property assertions to provide
more information about the entity. Specifically, the time of use is represented by the
prov:atTime object property annotation, the time of generation is represented by the
prov:generatedAtTime data property assertion, and the location (directory) of the entity
on the host system is represented by the prov:location data property assertion. The
location is not part of the entities name in efforts to increase the ontologies readability
and utilization by visualization tools. We note that these additions are not appropriate
for the library entities, as their names contain both the directory and unique identifier
(from the Nix Store) as a design decision.

Libraries are thus represented in the ontology only by their directory. This design
choice is in effort to improve readability and keep the size of the ontology minimal, and is
only possible due to the nature of the NixOS. That is, because library files reside inside
the Nix Store, each can be traced to a unique directory. The Nix Store makes it possible
to rebuild (or retrieve) the exact directory the used library is located within via the
correct derivation.

4.4 Working Examples
In this section we present our working examples as described in section 3.3. We

begin first with section 4.4.1 where we use the pdflatex application to generate a PDF
file. This working example will provide an understanding of the basic functionality of
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Figure 4.6: Prov-O Solution Structure

the presented solution. Then, in section 4.4.2, we explore the presented solution in more
detail by capturing the provenance of a generated PDF file over an extended period of
time and through a series of system and file modifications. Readers will become familiar
with the ontological representation of the parsed provenance information, how the various
components of the presented solution provide functionality critical to its utility, and how
they can interact with this information through the use of the Protégé plugins OntoGraf
and SPARQL Query.

Both working examples will utilize the same optimizations with respect to the
auditd rules, the excluded processes and directories, and the symlinks to be resolved.
These optimizations can be seen in Table 4.1 and Figure 4.2.

4.4.1 Single Process Invocation

In Figure 4.7 we see an entry in the RDF/XML file representing the "Pro-
cess_<MD5>" box in Figure 4.6. This entry represents a central point in the ontological
representation of the provenance for our pdflatex working example, and is of type
"prov:Activity". We can see that in this case, the MD5 is 39E0EFE6FC3040CFEF9348
27239003DA, allowing us to uniquely identify this execution of the pdflatex application
from others. This entry also relates the activity to the responsible user (testResearcher1),
as well as its utilized and generated/created files and resources. Finally, we see the
starting and ending times of this execution.
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Ignored Processes Ignored Directories Resolved Symlinks
dbus /proc/ /etc/fonts/
baloo /tmp/ /run/current-system/
baloo_file /dev/
baloo_file_extr /sys/
plasmashell
dbus-daemon
ls
konsole
dolphin
ps
bash

Table 4.1: Working Example Optimizations

Figure 4.7: Example of Pdflatex Process in RDF Format

Figures 4.8, 4.9, and 4.10 depict the resources that were either created, used li-
braries, or other resources that are not libraries respectively. Each is type "prov:Collection",
a subclass of "prov:Entity". The members of each collection are related to their respective
entity though the "prov:hadMember" relationship. We see that in Figure 4.9, the collection
of used libraries, the entity name for each member is the full path of the directory in
which the utilized library resides. As previously discussed, this path, or more specifically
the unique 160-bit, allows for the precise identification of the library dependency used
at the time of execution. Entity members that belong to the remaining two collections
(used, created) are represented only by the file name local to the directory in which they
reside, in combination with the SHA-1 hash unique to the resources utilized version.

There are a few important distinctions to be made about how these entity members,
depicted in Figure 4.11 and Figure 4.12, are represented. We see that the entity in 4.11 con-
tains a "prov:generatedAtTime" data property. This time correlates directly to the "pdfla-
tex_39E0EFE6FC3040CFEF934827239003DA_created_collection" entity, indicating the
time at with the file was created. Additionally, this entity also contains a "prov:location"
data property which specifies the location, or directory, of the entity. Finally, for entity
members that are part of the "pdflatex_39E0EFE6FC3040CFEF934827239003DA_used
_collection", there is an additional object property annotation that indicates at what time
the entity was used by the pdflatex_39E0EFE6FC3040CFEF934827239003DA process.
This can be seen in Figure 4.12, where an annotation source (pdflatex_39E0EFE6FC3040C
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FEF934827239003DA_used_collection), property (prov:hadMember), target (DatabaseRe-
port.acr_14dc4ed), and time (prov:atTime) are specified.

Figure 4.8: Example of Pdflatex Created Collection in RDF Format

Figure 4.9: Example of Pdflatex Library Collection in RDF Format

Figure 4.10: Example of Pdflatex Used Collection in RDF Format

In Figure 4.13, Figure 4.14, and Figure 4.15, we see our working example as
presented by the Protégé OntoGraf plugin. As a result of the design choices in how
the ontology is modeled using PROV-O, it should be apparent to the reader, through
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Figure 4.11: Example of Pdflatex Entity in RDF Format

Figure 4.12: Example of Pdflatex Annotation in RDF Format

these figures, the level of control the user has regarding the granularity of the presented
provenance information. Specifically, the chosen model allows the user to see only the
provenance information they wish to see, should it be the utilized libraries, general
resources, or creates files. Figure 4.13 shows us the "main entry" for the pdflatex_39E*
process in the ontology. That is, we see the main entities that this process is related to:
the command line responsible for its invocation, the library, used, and three resource
collections (prefixed by pdflatex_39E*), and the associated user. The connections are
color coded based on the type of relationship that exists between any two given ontology
entities, and is viewable by mouse-over as seen in Figure 4.18.

The Protégé OntoGraf plugin also allows for the more detailed inspection of the
ontology objects by mousing over a given node. We can see an example of this in Figures
4.16 and 4.17. In the displayed tooltips, all object property and data property assertions
are displayed. We note here however that object property annotations are not displayed
by the OntoGraf plugin. Thus, OntoGraf will not display the xsd:dateTime object
property annotation indicating when a resource was utilized by a process. Additionally,
the relationships between nodes can also be viewed by mousing over the arcs connecting
the ontology nodes, as seen in Figure 4.18.

Figure 4.13: Example of Pdflatex User in Protégé OntoGraf
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Figure 4.14: Example of Pdflatex Process Activity in Protégé OntoGraf

Figure 4.15: Example of Pdflatex Used Collection in Protégé OntoGraf

Finally, in Figures 4.19, 4.20, and 4.21, we see how users can query the ontology
in a very specific manner. We provide examples for how a user can query for all processes
with which a user was associated, all processes that have used a specific library, and all
files that were utilized at a designated time. These SPARQL queries allow for the users
to find precisely the information they are searching for.

4.4.2 Ontology Over Time

To explore the utility of the various components of the presented solution, in this
section we present a variety of examples that reveal its capability and application in real
world scenarios.
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Figure 4.16: Example of Pdflatex Process Tooltip

Figure 4.17: Example of Pdflatex Entity Tooltip

Figure 4.18: Example of Pdflatex Relationship Label

As is the case for much of the computational research being performed today, the
data on which the research will be performed is obtained from from an external database
or repository on the internet. In our first example, we demonstrate our solution’s ability
to track the provenance of data starting from its time of acquisition and continuing
through various stages of its application on the solution system. Specifically, we will
download a TAR archive containing a revision of this very LaTeX document and all of
its resources, extract the contents of the TAR archive to a directory in our test user’s
home directory, and compile the LaTeX document to obtain a PDF file.

We begin first by looking at the ontology resulting from the process described in
Figure 4.22. In this figure there are a number of important observations to be made.
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Figure 4.19: Example of a SPARQL query selecting all processes associated with a specific
user

Figure 4.20: Example of a SPARQL query selecting all processes using a specific library

There are three applications that interact with the data represented in this ontology: wget,
tar, and pdflatex. Each application is associated with its corresponding process, which is
in turn associated with the resource collections as defined in previous section. We are able
to observe that the wget_7DD* process was used to obtain the THESIS_LATEX.tar
archive file. This archive was subsequently unpacked by the tar_2EB* process, and the
resulting files used by the pdflatex_569* process. The three entities in the middle of the
image are the _used collections (marked [1] and [2]) of the tar_2EB* and pdflatex_569*
processes, and the _created collection (marked [3]) of the pdflatex_569* process. We
note that the two _used collections are related to, and have thus utilized, many of the
same resources. Additionally, we observe that pdflatex_569* has created new revisions
of many of these files, including of course "RRoth_Thesis.pdf_3da3617" (marked [4]).
As the process prefixes do not allow one to see the entire name of the entity without
mousing over it, Figure 4.22 has been marked to indicate the entity types as follows: [M]
indicates the main entries of a process, and [C] indicates the collection entities that a
given process is related to.
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Figure 4.21: Example of a SPARQL query selecting entities used at a specific time

In Figure 4.23 we highlight the wget_7DD* process to demonstrate the ability
to capture the command-line used for its execution. Importantly, we observe that
this information includes the Uniform Resource Locator (URL) from which the file
was obtained. We note that the prov:wasStartedBy object property is encoded by the
rdf:resource XML attribute which enforces white space normalization. Therefore, spaces
in this object property are represented by %20.

To further investigate the provenance of the downloaded TAR archive and re-
sulting data, we demonstrate a SPARQL query in Figure 4.24. In this SPARQL query,
we query for _collection entities containing the resources "RRoth_Thesis.pdf", "THE-
SIS_LATEX.tar", and the class file used to generate the PDF file, "vutinfth.cls". The
query results allow users to more easily follow the provenance of some of the crit-
ical resources in this working example. Specifically, the results make it clear that
tar_2EB* used the exact TAR archive obtained by wget_7DD*, and that pdflatex_569*
used the exact class file extracted from the TAR archive by tar_2EB*. Further-
more, we observe that pdflatex_569* also created a new version of the thesis PDF,
"RRoth_Thesis.pdf_3da3617".

This brings us to the next step in this working example of the solution system;
demonstrating the Git Version Control and NixOS functionality. To do so, we invoke
multiple executions of the pdflatex executable to generate this thesis’ PDF file. More
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specifically, each execution of pdflatex will utilize different resources and even different
(versions of) libraries.

In Figure 4.25 we see the OntoGraf representation of the ontology resulting from
our multiple pdflatex invocations. The entity in the center of the image represents the
command-line used to invoke both pdflatex processes. Additionally, we see each process’
created files. We note that some files will not always change between executions, and are
thus re-used across multiple process executions. Should a file change from one execution
to the next, depending on how the process utilized this new version, it will be included in
the _created collection, and possibly the _used collection, of the new process execution,
and will be suffixed with a new SHA-1 hash. This behavior is also exhibited through
multiple executions of the pdflatex application, and often times includes files such as
generated bibliography or acronym files. In Figure 4.25, we see that the glossary files
(marked with [1]), the index file (marked with [2]), and the list of tables file (marked with
[3]), did not change from one execution of pdflatex to the next, and thus both processes
have created identical versions of these files. However, we observe that files such as logs,
and of course the generated PDF file, have been rebuilt, changed, and have thus received
new SHA-1 hashes from Git. These SHA-1 hashes can be used in Git utility commands
to obtain the exact version utilized, as described by the ontology.

In Figure 4.26 we see the results of a SPARQL query for _collection enti-
ties containing our generated PDF and our newly added images as see in Figure
4.22 and Figure 4.24. The most important observations to be made from this fig-
ure are that (1) there are three versions of the PDF generated in this working ex-
ample, that (2) only a single version of this PDF (_a2816ef) contains the two image
resources (Figure 4.22 as sol_prot_working_download_to_pdf_f77298b and Figure 4.24
as sol_sparql_working_download_to_pdf_f77298b), and that (3) each PDF created by
the pdflatex process utilized a different version of the LaTeX file. Changes between the
various versions of a given file, for example the three versions of the LaTeX file seen in
Figure 4.26, can be visualized through diff applications such as Meld or BeyondCompare,
or with the Git repository browser, Gitk. Additionally, we observe that the pdflatex_569*
process (the first invocation of pdflatex in our ontology) uses the exact version of the
LaTeX document obtained when unpacking the TAR archive. This thus demonstrates
the ability of the solution system to allow users to precisely identify which resources were
used by a given process, and subsequently in what files resulting from the execution of
said process these resources were used.

In additional to capturing the provenance of our working example across edits,
we have also done so across NixOS updates. Specifically, between pdflatex executions,
we have updated the entire NixOS to a newer version; from 17.09.1756.c99239bca0 to
17.09.2905.c1d9aff56e0. This process may sound like a non-trivial task, however due
the nature of the NixOS and its reliance on the Nix Package Manager, this update is
as simple as switching channels and rebuilding the NixOS. In this particular case, the
rebuilding of the NixOS did not require a restart of the system. Below are the commands
utilized to perform this task.
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nix-channel –add https://nixos.org/channels/channel-name nixos

nixos-rebuild switch –upgrade

In Figure 4.27 we see the results of a SPARQL query for libraries used by two
executions of the pdflatex application. Specifically, we query only for libraries that
are not members of more than one lib_collection entity to demonstrate the different
libraries that were used by the pdflatex processes. Additionally, we limit the results of
this query to a select few libraries (gcc, nixos, fontconfig, and glibc) to maintain the
effectiveness of the working example. We first observe that each pdflatex process was
executed on a different version of the NixOS. These high level "nixos" directories are the
resolved symlink paths of the /run/current-system/ directory, in which many system
specific libraries are located. Second, we observe that both pdflatex processes utilized
the "gcc-6.4.0" library. However, the respective members of each processes’ lib_collection
entity indicate via the 160-bit hash that these two libraries are not 100% identical. This
is a consequence of the libraries being compiled against different dependencies, and with
perhaps different configuration options as a result the environment in which they were
compiled (eg: different NixOS versions). We notice that this is also the case for the
"fontconfig-2.12.1" library. Importantly, as mentioned already in this section and in
section 3.1.2, this information is crucial in providing users with the ability to identify
exact resources, and of course for the concept of reproducibility as a whole. Finally, we
observe that each pdflatex process utilized entirely different versions of the "glibc" library,
with the "old" NixOS version using version 2.25-49, and the updated NixOS version
2.25-123.

4.4.3 Performance and Complexity

In this section we look to explore the performance and complexity of the presented
solution system. In doing so, we will demonstrate the effectiveness of our design decisions
in providing a feasible solution that contributes to the increased reproducibility of
computational research.

To better understand the presented solutions performance, we will compare the log
files and resulting ontologies for the executions of two largely different process executions:
pdflatex and Firefox. Pdflatex will be used to compile a PDF file from a LaTeX document,
and Firefox will be used to visit a website and download a single file to testResearcher1’s
home directory. These two processes will aid in exposing the complexities of both
command-line and GUI applications and the challenges of dealing with the operations
each respective process invokes on the solution system. As detailed in sections 4.3.2 and
4.3.3, there are a number of configurable options available to the users that allow for the
fine-tuning of ontolgies and the log files from which they were created. These options
include monitoring specific syscalls with auditd, excluding entry types and the actions of
specific UIDs with auditd, exclusions lists for processes and directories, and a white-list
for symlink resolution.
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In tables 4.2 and 4.3 we present the results of our two process executions by
breaking up the executions into three sections. The top most section presents the results
of the process executions using the optimal configuration as detailed in Table 4.1 and
Figure 4.2. The middle section presents the results of the process executions after
having removed the rule(s) corresponding to the row title from the auditd rules, while
maintaining the optimal Auditd Log Parser configuration. The final section presents the
results of the process executions after having removed the argument corresponding to the
row title from the execution of the Auditd Log Parser, but while still maintaining the
optimal auditd rules. That is, respective to each row in tables 4.2 and 4.3, the Auditd
Log Parser will not ignore specified processes or directories, and will not resolve the
specified symlinks to their Nix Store directories. As the optimizations removed in this
final section do not have an impact on the generated log file, the Auditd Log Parser
is executed on the log file generated during the process execution utilizing the optimal
configuration. We note that the "No Auditd Exclusion Rules" execution requires special
attention, which will be addressed later in this section.

The columns of tables 4.2 and 4.3 are defined as follows: size is defined as the
number of lines the respective logs and ontologies contain, execution time is defined
as the difference between the first and last time stamps of the generated log files, and
processing time is defined as the time required for the Auditd Log Parser to parse the
respective log files into the resulting ontology.

Log
Size

Ontology
Size

Execution
Time

Processing
Time

Optimal Configuration 5,057 1,551 12.3s 5.2s

Monitoring "write" Syscalls 8,080 1,692 14.1s 6.2s
No Auditd Exclusion Rules* 129,574 5,792 42.7s 22.8s

No Process Exclusions 5,057 3,086 12.3s 7.5s
No Directory Exclusions 5,057 1,567 12.3s 5.3s
No Symlink Resolving 5,057 1,567 12.3s 5.4s

Table 4.2: Pdflatex Execution Results

In both tables 4.2 and 4.3 we observe that our optimal configuration has produced
the best results for both process executions. That is, both executions yielded the smallest
logs (5,057 and 13,870 lines), the smallest ontology (1,551 and 1,449 lines), the shortest
execution times (12.3 and 31.9 seconds), and the shortest processing times (5.2 and
1.3 seconds). Interesting is the discrepancy between the log sizes and processing times
between the pdflatex command-line application and Firefox GUI application. Although
the pdflatex log size is less than one-half the size of that for Firefox, the processing time
is almost four-times as long. This discrepancy is a result of the Git Version Control
component of our solution system. Specifically, the pdflatex application creates 12 files
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Log
Size

Ontology
Size

Execution
Time

Processing
Time

Optimal Configuration 13,870 1,449 31.9s 1.3s

Monitoring "write" Syscalls 29,960 1,663 40.1s 2.3s
No Auditd Exclusion Rules* 158,480 8,954 55.3s 23.0s

No Process Exclusions 13,870 2,435 31.9s 2.4s
No Directory Exclusions 13,870 2,031 31.9s 1.3s
No Symlink Resolving 13,870 11,978 31.9s 1.6s

Table 4.3: Firefox Execution Results

in testResearcher1’s home directory, while Firefox only creates the single downloaded file.
As new files in our test user’s home directory are detected, the Auditd Log Parser must
perform the expensive operation of retrieving the current status of the Git repository
and determining if the files must be committed.

We next note the difference in log size between executions with and without auditd
monitoring "write" syscalls. Log sizes inflated in both applications, with the log for
pdflatex containing 59.78% more lines, and the log for Firefox containing 116.01% more
lines. This results in a one second longer processing time for each application’s log file.
We also observe that the execution times of each respective application have increased.
As auditd must now log more audit entries, it requires more computing power to do
so, thus decreasing the resources available to the application(s) running on the solution
system and ultimately slowing down the system.

The removal of the exclusion rules from auditd resulted in the largest difference
in the viability of the solution system. So much so in fact, that a change to the auditd
configuration was required in order to provide the results accurately. Without the
exclusion rules, specifically the UID exclusion rules, the audit entries made to the log
file(s) arrived at a volume too high to process in time. That is, due to our configuration
dictating that the log files should rotate when they reach 5MB, rotating occurred before
the Auditd Log Parser had successfully parsed the entire log. This resulted in provenance
information being lost and not represented in the ontology when exported. To combat
this issue, the configuration was changed to allow for each log file to grow to a maximum
of 20MB before rotating. This increased size restriction allowed for the Auditd Log Parser
to successfully parse the total provenance information resulting from the execution of
the two applications. However, this demonstrates a limit in regard to the Auditd Log
Parser’s efficiency, and the importance of optimizing its functionality in specific critical
areas.

Both execution and processing times were also at their highest during the executions
without the exclusion rules. One may be inclined to conclude that because the processing
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times of each respective application are well under the indicated execution times, that the
Auditd Log Parser should have been able to easily capture all of the process execution’s
provenance information. However, we must take into account the fact that entries made
to the log files are not consistent in their rate, and fluctuate with respect to the processes
currently being executed on the system. In the case of the executions without the auditd
exclusion rules, this results in both the Auditd Log Parser process and all spawned child
processes writing auditd entries to the log file.

We now turn our attention to the final section of tables 4.2 and 4.3 where the
effects of the Auditd Log Parser optimizations can be observed. In all cases, the removal
of a single optimization resulted in a less efficient implementation, with both processing
times and ontology sizes increasing when compared to the optimal configuration. However,
noteworthy is the impact that resolving the symlinks had on each application’s execution.
In particular, the ontology size for the Firefox execution increased by 726.64% compared
to that of the optimal configuration, while the pdflatex execution increased by only
1.03%. This highlights a fundamental difference in the computational work performed by
command-line applications and GUI applications, and it should be of no surprise that
GUI applications require additional resources in terms of fonts, graphics, libraries, and
frameworks. Our optimal configuration allowed for all resources contained within specific
(Nix Store) directories (see Table 4.1) to be represented in the ontology by only the top
level directory in which they are contained. Removing this functionality, in the case of
Firefox, results in thousands of font and graphic resources being individually referenced
in the ontology.

Also noteworthy is how the removal of the process exclusion argument affected the
pdflatex application. As this is a command-line application executed in the bash shell,
bash appears often in the log file(s) and thus in the resulting ontology. As bash is only
used to invoke the pdflatex application and has no affect on the data being manipulated
by the pdflatex application itself, it it safe to exclude it from the ontology.

4.5 Summary

In this chapter we presented the details of our proposed solution system. We
have covered how the resources, technologies, components, and concepts covered in
Chapter 3 have been employed to assists researchers in tracking the provenance of data
on the host system. Additionally, have seen how the NixOS (section 4.3.1) acts as the
backbone for our proposed solution, upon which core components such as the Linux
Audit Daemon (section 4.3.2) and the Auditd Log Parser (section 4.3.3) are implemented.
Additionally, we demonstrated how the Git Version Control Component allows for the
precise identification of resources both used and created within our testResearcher1’s
home directory. Most importantly, the model in which the provenance data is presented
in section 4.3.7, and put to use in section 4.4. Users were familiarized with the exact
specifications and structure of the ontology resulting from the proposed solution system
through the working examples with pdflatex, tar, and wget. Specifically, the RDF/XML
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representation of the ontology was presented and its features examined. Additionally, we
demonstrated how the Protégé plugins OntoGraf and SPARQL Query can be used to
interact with and visualize the ontology.
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Figure 4.22: Provenance of PDF file from downloading to compiling
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Figure 4.23: Wget tooltip indicating source URL

Figure 4.24: SPARQL query demonstrating working example provenance
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Figure 4.25: OntoGraf representation of provenance of multiple pdflatex executions

Figure 4.26: SPARQL query for provenance of multiple pdflatex executions
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Figure 4.27: SPARQL query for provenance of multiple pdflatex executions after NixOS
upgrade
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CHAPTER 5
Critical Reflection

In this chapter we look to answer the questions posed in section 1.3. To do so,
we will reflect on the fundamental goals that utilities enabling the reproducibility of
computational research seek to accomplish. Furthermore, we will explore in what ways
our presented solution system succeeds in meeting these goals, as well as the obstacles
faced while doing so. From these observations, we will then suggest applications for
which our proposed solution could be viably employed.

5.1 Provenance for Reproducibility

Provenance is critical for the definition of reproducibility as used within the context
of this thesis. It allows one to trace the origin of data though all steps in which has
been modified, exchanged, and created. In the development of our proposed solution, we
looked to answer the question about what constitutes adequate provenance information
required for reproducibility. The answer to these questions is best represented though
our chosen model implemented using the PROV-O ontology as seen in Figure 4.6. The
object properties, data properties, annotations, and literals capture the required data
and present it in such a way that its structure is easily accessible to the average and
skilled user alike. Importantly, these data points allow the user to identify exactly what
resources were used and/or created, when these resources were accessed, and where
they are located on the host file system for all process executions contained within the
ontology.

As we have discovered during the course of the presented work, capturing the
required information to address these questions requires special attention. Specifically,
resources can have existed in a variety of states on the host system and the ability to not
only reference, but to retrieve the correct variant of the resource essential to the task of
reproducing work via provenance information. To do so we require unique identifying
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information provided from, as in our proposed solution, version tracking applications and
functional programming paradigms.

The final critical component is the attachment of meaning to the provenance
information. Without meaning, the data for which we have provided the above data
points for lacks purpose and function. To do so, the data must be related to a user/agent
who performed a specific action. This affiliation between the data and a user/agent allows
for the inference of much more intrinsic relationships to be discovered. For example,
justifications for the actions performed can be deduced, responsibility and the ownership
of data can be designated, and accountability can be ascertained.

5.2 Captured Data and its Volume
In this section we look to reflect on what data was producible from the method-

ologies outlined in Chapter 3. In fact, the difficulties faced during development were not
in producing the required data, but in reducing the amount of data produced to only
the relevant and necessary information. These obstacles were both as a result of and
remedied by the Linux Audit Daemon.

Developing the rules and configuration of auditd was both a time consuming and
critical exercise in the development of the proposed solution. Close attention had to be
paid to the rules in order to ensure not only that the desired information was captured,
but that the amount of captured information remained feasible to extract and parse. As
an example of this, consider the first rule in Figure 4.3. Notice that this rule monitors
the open and openat syscalls, but only those specifying the “write” permission type.
This might seem counterintuitive, but it is with good reason that we chose to monitor
open syscalls as opposed to write syscalls. Simply put, monitoring the write syscalls has
the consequence of flooding the auditd log file, often times with redundant information,
that may result in the logs containing more information that can be timely processed.
Subsequently, the log files would grow quicker than the auditd log entries could be parsed,
and provenance information would be lost. Furthermore, the ordering of the rules is also
important when considering the keys assigned to each. As entries are processed, they will
match with the first matched rule. This can result in a vastly different categorization of
data given to the Auditd Log Parser should the ordering of the rules be "incorrect", and
subsequently incorrect parsing of the provenance information.

An additional design decision to curb the amount of data being logged was to
initiate both auditd and the Auditd Log Parser application from an account different
from that on which users will be performing their work. This allows for the specification
of rules, as seen in Figure 4.3, indicating to ignore all auditd log entries not from a
specific UID. In this way, we can automatically filter out all entries resulting from the
Auditd Log Parser itself without having to do any processing of our own. This results
in drastically smaller log files and quicker parsing times. Additionally, we observed in
section 4.4.3 how failing to exclude log entries from other UIDs can result in log files
growing quicker than they can be processed by the Auditd Log Parser. As a consequence
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of specifying the UID exclusion rules as seen in Figure 4.2, the solution system captures
the provenance of only a single UID.

We must also consider the amount of information we wish to retrieve from the
auditd logs. As we can see in Figure 3.11, each auditd log entry contains much more
information that what has been utilized in the solution system. For example, the fields a0,
a1, a2, and a3 contain detailed information about the arguments passed to corresponding
syscall. These fields are encoded in hexadecimal notation, and are interpretable with
utilities specially designed for auditd, such as the ausearch utility. There are numerous
other fields found in the auditd log entries, and we encourage the readers to further
explore them and their applications.

Finally, we must take into account the effects of collected volume of data on the
host system. It should not be surprising that a high volume of entries being written to
a log file requires extensive computing power. In fact, if one were to start auditd with
a single rule to monitor all syscalls, the entire system could be rendered unusable. It
is therefore important to that the configuration of the solution be suitable to the host
system on which it is running, and that the host system have sufficient computing power.

The culmination of the above points allows for our solution system to be a
feasible approach for capturing and manipulating provenance information. Without these
consideration, logs files would grow to unmanageable sizes within seconds and the amount
of parsing would be detrimental to the overall runtime and performance of the solution
system. Thus, acquiring a sufficient amount of data to represent the provenance of the
system is not an issue. What is an issue however, is regulating the flood of information
and sifting through it to identify the relevant and necessary data points.

5.3 Captured Data Representation and Accessibility

In this section we address some of the obstacles faced in representing the provenance
information and making it accessible to users. One of the key results of the solution
system is that is is easy to use for users of all skill levels. Being successful in this regard
required numerous decisions with respect to what format the information should be
represented in, and what applications can and should be used for interaction with the
information.

A critical component for the accessibility of the information was to allow for
graphical interaction. There are numerous applications and APIs available that allow
for the representation of ontologies, but it was ultimately decided to use Stanford’s
Protégé OntoGraf and SPARQL Query plugins. The reasons for this decision included
ease-of-use and a full-suite of ready-made features. While all of the captured provenance
information is accessible through the SPARQL Query plugin, this is not the case for
OntoGraf. Specifically, OntoGraf was not able to graphically represent the object property
annotations. For our solution, this means that the xsd:dateTime literal indicating the time
a resource was used by a process is not observable with the OntoGraf plugin. However,
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using "Individuals by class" tab in the Protégé application allows for this information
to be accessed. Furthermore, this information is also accessible through the SPARQL
Query plugin, as seen in Figure 4.21.

5.4 Viable Applications

The beauty of the presented solution system is that it is applicable to just about
any task performed on the host system. This is due to the functionality provided by the
combined use of the NixOS, the Linux Audit Daemon, and the Auditd Log Parser. Data
within the monitored directory is capable of being traced back to the application that
used and or generated it, as well as to the responsible user. This opens a wide array of
possibilities, a few of which we will cover in this section.

In section 2.1.3 we examined the Freesufer application used to analyze MRIs of
the human brain. As discussed, it was often the case that the measurements being
output by Freesurfer were inconsistent between systems. While this was sometimes due
to hardware differences, the underlying OS and utilized version of Freesurfer played a
major role in contributing to these differences. In [GHJ+12] it was suggested that users
provide information about the employed version of Freesurfer, as well as information
about the OS and workstation. The work presented in this paper would allow for the
automated collection of this data, as well as the parsing of this data into ontological form.
This would provide future users with a more complete overview of the original working
environment from which they could identify crucial information allowing for accurate
comparison of results from computational research applications.

Our solution system can also be used to enable extensive user auditing on the
host system. Specifically, though both OntoGraf and SPARQL queries, it is possible to
query the ontology for all users that have interacted with a given resource. The key word
in the previous sentence is "interacted", as this includes not only files that were modified
by the user, but also those that were utilized by processes that the user executed. This
allows for users obtain granular data time-lines regarding data access and modifications,
as well as to infer a resources origins.

Additionally, the solution system can also be used to enable extensive data auditing
on the host system. In much the same way that user auditing can be performed to analyze
all users that have interacted with a given resource, we can examine all executables,
processes, and resources that been utilized by a user or executable. This is useful in
situations where perhaps one is interested in resolving dependency information, or to what
extent a resource is utilized by applications on the the host system. This information
lends itself well to tasks such as determining the complexity of a process and its closure
with respect to its utilized resources and artifacts. In turn, the closure of a process can
be used to verify the process’ accuracy, integrity, and authenticity.
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5.5 Future Work
After having considered our reflections and results, in this section we explore what

areas are still open to future work and development.

Extensions to the Linux Auditing System
In this presented solution, our Auditd Log Parser and Ontology Maintenance
components are custom developed solutions that run on top of auditd. In a
future solution system such as that which we presented, it would be beneficial to
integrate these components into the Linux Auditing System, and subsequently
the kernel. Configuration parameters could be specified for the parser, similar to
those in Figure 4.3, detailing what fields should be parsed from the log entries.
Additionally, parameters indicating how to represent these fields in an ontology
would be configurable. As the OWL encoding of ontologies are nothing more than
text files, they could be supplied to the Linux Auditing as part of the configuration
file. In effect, this would allow for the automatic creation of ontologies from the
auditd log files, while only requiring lightweight configuration from the user.

Standalone Graphical Interface
While investigating the available options allowing for the graphical interaction
with ontologies, it became clear that a viable solution is missing from the aca-
demic market. There are plenty of available API’s allowing for the importing of
ontologies and subsequent graphical representation, but lacking are ready-made
solutions. Stanford’s Protégé also offers an API allowing developers to implement
plugins as standalone applications, but this process is not straight forward and
documentation is out of date. A graphical representation of the ontology seems to
be the most approachable method for users of all skill levels to interact with the
information. As such, the the development of a standalone application allowing
for such functionality would bring ontologies to a much larger audience.

Workflow Integration
Workflows, as discussed in section 2.2.1, undoubtedly offer increased reproducibility
of computational research results. We make two observations: (1) WFMSs do not
typically provide the means to inspect the provenance of individual data required
for execution, and (2) the presented solution does not present the procedure that
was employed during the execution of some (multi-step) task. Combining these
two points into a single solution would allow for a more detailed representation
of the actions that were performed on a system, while providing the users with
granular provenance information for the utilized resources.

5.6 Summary
In this chapter we reflected on some of the overarching themes and concepts of

the presented work, as well as a handful of obstacles encountered during development.
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The components making up the provenance information required for reproducibility
were covered in section 5.1, where we emphasized the importance of establishing the
relationships between the provenance data points. Furthermore, in section 5.2 we explored
many obstacles related to the pure volume of data being captured. These obstacles ranged
from possessing enough computing power and storage, to feasible auditd configurations.
Additionally, we reviewed some of the shortcomings and advantages of Stanford’s Protége
plugins OntoGraf and SPARQL Query in section 5.3, and the viable applications of the
solution system in section 5.4. Finally, in section 5.5, we outlined various areas in which
the presented work can be expanded.
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CHAPTER 6
Conclusion

In this thesis, we explored the many challenges that researchers face when at-
tempting to reproduce computational research results, and how our proposed solution
addresses these challenges. These challenges range from inconsistent results due to various
hardware and software environments, to missing input data critical to the execution of
some task. Our solution addresses these issues by automatically capturing and parsing
system-wide provenance information into ontological form. In this form, users are able to
interact with the ontology through applications such as Stanford’s Protégé. In our work-
ing example, we demonstrated how the Protégé plugins OntoGraf and SPARQL Query
can be used to access very granular provenance information for a given file, including
the provenance of its contents such as images and tables. We then exhibited how the
ontological form of this information can be used to access information about the pdflatex
executable from which this file was created, such as additional generated files, as well
as utilized resources and libraries. Additionally, detailed information such as file access
and generation times, file locations and versions, and how the relationships between the
ontology’s entities, activities, and agents are made easily accessible to the user through
graphical representation. It is through this ontological representation of the provenance
information that researchers gain a better and more accurate description of the working
environment and the data both created and utilized by a given task or entity. This in
turn allows researchers to more reliably and effectively reproduce previous computational
research results both of their own and of their peers.

73





List of Figures

2.1 Effects of data processing conditions on the voxel volumes for a subsample of
(sub)cortical structures; Source: [GHJ+12] . . . . . . . . . . . . . . . . . . 10

2.2 Container Layer Example; Source: [PF16] . . . . . . . . . . . . . . . . . . 14
2.3 Vframework Outline; Source: [MPS+13] . . . . . . . . . . . . . . . . . . . 16

3.1 Layers of The Semantic Web; Source: [Bra07] . . . . . . . . . . . . . . . . 19
3.2 An RDF Triple; Source: [CWL14] . . . . . . . . . . . . . . . . . . . . . . 20
3.3 OWL2 Ontology Structure; Source: [MP12] . . . . . . . . . . . . . . . . . . 21
3.4 PROV-O Example; Source: [LMS13] . . . . . . . . . . . . . . . . . . . . . 22
3.5 Nix expression for xmonad; Source: [DLP10] . . . . . . . . . . . . . . . . 25
3.6 The Nix Store: Example for xmonad; Source: [DLP10] . . . . . . . . . . . 26
3.7 Nix Expression to build sshd_config; Source: [DLP10] . . . . . . . . . . . 27
3.8 Nix Configuration File Example; Source: [DLP10] . . . . . . . . . . . . . 28
3.9 The GRUB boot menu for a NixOS machine; Source: [DLP10] . . . . . . 29
3.10 ’git log’ Example; Source: [BDW16] . . . . . . . . . . . . . . . . . . . . . 30
3.11 Auditd Log Example; Source: [Red] . . . . . . . . . . . . . . . . . . . . . 32
3.12 OntoGraf Example; Source: [Fal16] . . . . . . . . . . . . . . . . . . . . . . 33
3.13 SPARQL Query Example; Source: [Red16] . . . . . . . . . . . . . . . . . 34

4.1 Solution Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2 NixOS Solution Configuration . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3 Auditd Solution Configuration (/etc/audit/audit.conf) . . . . . . . . . . . 43
4.4 Audit Log Parser Solution Structure . . . . . . . . . . . . . . . . . . . . . 44
4.5 Auditd Log Parser Command Line Arguments . . . . . . . . . . . . . . . 46
4.6 Prov-O Solution Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.7 Example of Pdflatex Process in RDF Format . . . . . . . . . . . . . . . . 50
4.8 Example of Pdflatex Created Collection in RDF Format . . . . . . . . . . . 51
4.9 Example of Pdflatex Library Collection in RDF Format . . . . . . . . . . . 51
4.10 Example of Pdflatex Used Collection in RDF Format . . . . . . . . . . . . . 51
4.11 Example of Pdflatex Entity in RDF Format . . . . . . . . . . . . . . . . . 52
4.12 Example of Pdflatex Annotation in RDF Format . . . . . . . . . . . . . . 52
4.13 Example of Pdflatex User in Protégé OntoGraf . . . . . . . . . . . . . . . 52
4.14 Example of Pdflatex Process Activity in Protégé OntoGraf . . . . . . . . 53

75



4.15 Example of Pdflatex Used Collection in Protégé OntoGraf . . . . . . . . . 53
4.16 Example of Pdflatex Process Tooltip . . . . . . . . . . . . . . . . . . . . . 54
4.17 Example of Pdflatex Entity Tooltip . . . . . . . . . . . . . . . . . . . . . . 54
4.18 Example of Pdflatex Relationship Label . . . . . . . . . . . . . . . . . . . 54
4.19 Example of a SPARQL query selecting all processes associated with a specific

user . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.20 Example of a SPARQL query selecting all processes using a specific library 55
4.21 Example of a SPARQL query selecting entities used at a specific time . . 56
4.22 Provenance of PDF file from downloading to compiling . . . . . . . . . . . 63
4.23 Wget tooltip indicating source URL . . . . . . . . . . . . . . . . . . . . . 64
4.24 SPARQL query demonstrating working example provenance . . . . . . . . 64
4.25 OntoGraf representation of provenance of multiple pdflatex executions . . 65
4.26 SPARQL query for provenance of multiple pdflatex executions . . . . . . 65
4.27 SPARQL query for provenance of multiple pdflatex executions after NixOS

upgrade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

76



List of Tables

2.1 Summary of results from [CPM+14]; Source: [CPM+14] . . . . . . . . . . 8
2.2 Workstations used in the analysis of FreeSurfer; Source: [GHJ+12] . . . . 10
2.3 Features of workflow systems; Source: [MRM16] . . . . . . . . . . . . . . 12
2.4 Workflow Input Port Statistics; Source: [MR15] . . . . . . . . . . . . . . . 12
2.5 Workflow Executable Data Set; Source: [MR15] . . . . . . . . . . . . . . . 12
2.6 Workflow Execution Results; Source: [MR15] . . . . . . . . . . . . . . . . 12

4.1 Working Example Optimizations . . . . . . . . . . . . . . . . . . . . . . . 50
4.2 Pdflatex Execution Results . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3 Firefox Execution Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

77





Acronyms

API Application Programming Interface. 44, 47, 69, 71

AUID Audit User ID. 43

CWD current working directory. 32

DBS Database Management System. 11

DLL Dynamic Linked Library. 22

GUI Graphical User Interface. 34, 58–60

IRI Internationalized Resource Identifier. 21, 22, 39

IT Information Technology. 37

LXC Linux Container. 13

MD5 Message Digest 5. 48, 49

MRI Magnetic Resonance Imaging. 9, 70

OS Operating System. 2, 9, 10, 13, 14, 17, 27, 38, 70

PDF Personal Document Format. 2, 34, 48, 49, 54–58

PID Process ID. 48

RDF Resource Description Framework. 17, 19, 20, 32, 33, 35

SHA-1 Secure Hash Algorithm 1. 29, 56

SVN Subversion. 28

UID User ID. 32, 40, 43, 47, 58, 60, 68

79



URI Uniform Resource Identifier. 18–21

URL Uniform Resource Locator. 55

VCS Version Control Software. 28, 35

VM Virtual Machine. 5, 13, 14, 16, 38

WFMS Workflow Management System. 11, 71

WWW World Wide Web. 18, 35

XML Extensible Markup Language. 39, 55

80



Bibliography

[Apa17] Apache. Apache Jena: A free and open source Java framework for building
Semantic Web and Linked Data applications, 2017.

[BDW16] John D. Blischak, Emily R. Davenport, and Greg Wilson. A Quick Intro-
duction to Version Control with Git and GitHub. PLOS Computational
Biology, 12(1):e1004668, January 2016.

[BLHL01] Tim Berners-Lee, James Hendler, and Olli Lassila. The Semantic Web" in
Scientific American. Scientific American Magazine, 284, 2001.

[BM04] Paul V. Biron and Ashok Malhotra. XML Schema Part 2: Datatypes
Second Edition. W3C Recommendation, W3C, October 2004.

[Boe15] Carl Boettiger. An introduction to Docker for reproducible research. ACM
SIGOPS Operating Systems Review, 49(1):71–79, January 2015.

[Bra07] Steve Bratt. Semantic Web, and Other Technologies to Watch. Presentation
at the 2007 INCOSE International Workshop, Albuquerque, New Mexico,
January 2007.

[CC14] Bo Chen and Reza Curtmola. Auditable Version Control Systems. 2014.

[CPM+14] Christian Collberg, Todd Proebsting, Gina Moraila, Zuoming Shi, and
Alex M Warren. Measuring Reproducibility in Computer Systems Research.
In 1st ACM SIGPLAN Workshop on Reproducible Research Methodologies
and New Publication Models in Computer Engineering, 2014.

[CWL14] Richard Cyganiak, David Wood, and Markus Lanthaler. RDF 1.1 Concepts
and Abstract Syntax. W3C Recommendation, W3C, February 2014.

[DdJV04] Eelco Dolstra, Merijn de Jonge, and Eelco Visser. Nix: A Safe and Policy-
Free System for Software Deployment. Proceedings of the 18th USENIX
Conference on System Administration, pages 79–92, 2004.

[DLP10] Eelco Dolstra, Andres LöH, and Nicolas Pierron. NixOS: A purely functional
Linux distribution. Journal of Functional Programming, 20(5-6):577–615,
November 2010.

81



[Dru09] Chris Drummond. Replicability Is Not Reproducibility: Nor Is It Good
Science. Proceedings of the Evaluation Methods for Machine Learning
Workshop at the 26th ICML, 2009.

[Fal16] Sean Falconer. OntoGraf, 2016.

[GHJ+12] Ed H. B. M. Gronenschild, Petra Habets, Heidi I. L. Jacobs, Ron Mengelers,
Nico Rozendaal, Jim van Os, and Machteld Marcelis. The Effects of
FreeSurfer Version, Workstation Type, and Macintosh Operating System
Version on Anatomical Volume and Cortical Thickness Measurements. PLoS
ONE, 7(6):e38234, June 2012.

[GRa] Steve Grubb and Redhat. auditctl(8) - Linux man page.

[GRb] Steve Grubb and Redhat. auditd(8) - Linux man page.

[GRc] Steve Grubb and Redhat. auditd.conf(5) - Linux man page.

[GRd] Steve Grubb and Redhat. audit.rules(7) - Linux man page.

[GSP13] Steve Harris Garlik, Andy Seaborne, and Eric Prud’hommeaux. SPARQL
1.1 Query Language. W3C Recommendation. W3C, 2013.

[HB09] Matthew Horridge and Sean Bechhofer. The OWL API: a java API for
working with OWL 2 ontologies. In Semantic Web, volume 2, January 2009.

[HBC15] Daniel G. Hurley, David M. Budden, and Edmund J. Crampin. Virtual
Reference Environments: a simple way to make research reproducible.
Briefings in Bioinformatics, 16(5):901–903, 2015.

[HTT09] Tony Hey, Stewart Tansley, and Kristin Tolle. The Fourth Paradigm:
Data-Intensive Scientific Discovery. Microsoft Research, October 2009.

[HWS+06] Duncan Hull, Katy Wolstencroft, Robert Stevens, Carole Goble, Mathew R.
Pocock, Peter Li, and Tom Oinn. Taverna: a tool for building and running
workflows of services. In Nuclear Instruments and Methods in Physics
Research A, 2006.

[ISO04] ISO8601. Data elements and interchange formats – Information interchange
– Representation of dates and times. Standard, International Organization
for Standardization, Geneva, CH, December 2004.

[Kuc04] G Kuck. Tim Berners-Lee’s Semantic Web. South African Journal of
Information Management, 6, 2004.

[LAB+06] Bertram Ludäscher, Ilkay Altintas, Chad Berkley, Dan Higgins, Efrat
Jaeger, Matthew Jones, Edward A. Lee, Jing Tao, and Yang Zhao. Sci-
entific Workflow Management and the Kepler System: Research Articles.
Concurrency and Computation: Practice & Experience, 18(10):1039–1065,
August 2006.

82



[LMS13] Timothy Lebo, Deborah McGuinness, and Satya Sahoo. PROV-O: The
PROV Ontology. W3c Recommendation, W3C, April 2013.

[MM13] Paolo Missier and Luc Moreau. PROV-DM: The PROV Data Model. W3c
Recommendation, W3C, April 2013.

[MP12] Boris Motik and Bijan Parsia. OWL 2 Web Ontology Language Document
Overview (Second Edition). W3C Recommendation, W3C, December 2012.

[MPS+13] Tomasz Miksa, Stefan Pröll, Stephan Strodl, Ricardo Vieira, José Barateiro,
and Andreas Rauber. Framework for Verification of Preserved and Rede-
ployed Processes. iPRES 2013 - 10th International Conference on Preser-
vation of Digital Objects, pages 136 – 145, 2013.

[MR15] Rudolf Mayer and Andreas Rauber. A Quantitative Study on the Re-
executability of Publicly Shared Scientific Workflows. In 11th International
Conference on e-Science, pages 312–321. IEEE, August 2015.

[MRM16] Tomasz Miksa, Andreas Rauber, and Eleni Mina. Identifying Impact of
Software Dependencies on Replicability of Biomedical Workflows. Journal
of Biomedical Informatics, 64, 2016.

[MSRO+10] Paolo Missier, Stian Soiland-Reyes, Stuart Owen, Wei Tan, Alexandra Ne-
nadic, Ian Dunlop, Alan Williams, Tom Oinn, and Carole Goble. Taverna,
Reloaded. In Scientific and Statistical Database Management: 22nd Inter-
national Conference, SSDBM 2010, Heidelberg, Germany, June 30–July
2, 2010. Proceedings, pages 471–481. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2010. DOI: 10.1007/978-3-642-13818-8_33.

[Mus15] Mark A. Musen. The protégé project: a look back and a look forward. AI
Matters, 1(4):4–12, June 2015.

[OAF+04] Tom Oinn, Matthew Addis, Justin Ferris, Darren Marvin, Martin Senger,
Mark Greenwood, Tim Carver, Kevin Glover, Matthew R. Pocock, Anil
Wipat, and Peter Li. Taverna: a tool for the composition and enactment
of bioinformatics workflows. Bioinformatics, 20(17):3045–3054, 2004.

[Pen11] R. D. Peng. Reproducible Research in Computational Science. Science,
334(6060):1226–1227, December 2011.

[PF16] Stephen R Piccolo and Michael B Frampton. Tools and techniques for
computational reproducibility. GigaScience, 5(1):1–13, 2016.

[PSPM12] Peter Patel-Schneider, Bijan Parsia, and Boris Motik. OWL 2Web Ontology
Language Structural Specification and Functional-Style Syntax (Second
Edition). W3C Recommendation, W3C, December 2012.

83



[Rad12] Tijs Rademakers. Activiti in Action : Executable business processes in
BPMN 2.0. Manning Publications, Shelter Island, NY, first edition, 2012.

[Red] Redhat. Chapter 6. System Auditing.

[Red16] Timothy Redmond. SPARQL Query, 2016.

[Rom08] Paolo Romano. Automation of in-silico data analysis processes through
workflow management systems. Briefings in Bioinformatics, 9(1):57–68,
2008.

[SBO+07] Sören Sonnenburg, Mikio L. Braun, Cheng Soon Ong, Samy Bengio, Leon
Bottou, Geoffrey Holmes, Yann LeCun, Klaus-Robert Müller, Fernando
Periera, Carl Edward Rasmussen, Gunnar Rätsch, Bernhard Schölkopf,
Alexander Smola, Pascal Vincent, Jason Westen, and Robert Williamson.
The need for open source software in machine learning. Journal of Machine
Learning Research, 8, October 2007.

[SNTH13] Geir Kjetil Sandve, Anton Nekrutenko, James Taylor, and Eivind Hovig.
Ten Simple Rules for Reproducible Computational Research. PLoS Com-
putational Biology, 9(10):e1003285, October 2013.

[Spi12] D. Spinellis. Package Management Systems. IEEE Software, 29(2):84–86,
March 2012.

[The17] The Eclipse Foundation. JGit, 2017.

[Tor17] Linus Torvalds. Git, 2017.

[WFDRG09] Katy Wolstencroft, Paul Fisher, David De Roure, and Carole Goble. Sci-
entific Workflows. OpenStax CNX, November 2009.

84


	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Problem Statement
	Aim of this Work
	Methodological Approach
	Versioning
	Logging
	Representation
	Interaction

	Thesis Structure

	Related Work
	Literature Studies
	Reproducibility and Replicability
	Reproducibility Research
	FreeSurfer

	Existing Approaches
	Workflows
	Virtual Machines
	Docker
	Vframework

	Summary

	Methodology
	Concepts and Components
	The Semantic Web
	Package Managers
	Functional Linux
	Version Control Software
	The Linux Audit Daemon

	Data Interaction and Visualization
	OntoGraf
	SPARQL Query

	Working Examples
	Summary

	Ontological Representation of Provenance
	Solution Outline
	Resources
	OWL2
	JGit Java Library
	Unix Commands

	Component Implementation
	NixOS
	The Linux Audit Daemon
	Auditd Log Parser
	Ontology Maintenance
	Git Version Control
	System Command Executor
	Prov-O Model

	Working Examples
	Single Process Invocation
	Ontology Over Time
	Performance and Complexity

	Summary

	Critical Reflection
	Provenance for Reproducibility
	Captured Data and its Volume
	Captured Data Representation and Accessibility
	Viable Applications
	Future Work
	Summary

	Conclusion
	List of Figures
	List of Tables
	Acronyms
	Bibliography

