FAKULTAT
FUR INFORMATIK

Faculty of Informatics

Autonomous in hand object
learning from rgb-d input with a
mobile robot

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of
Diplom-Ingenieur
in
Computer Science
by

Dominik Streicher, BSc
Registration Number 1026446

to the Faculty of Informatics
at the TU Wien

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Markus Vincze
Assistance: Dipl.-Ing. Dr.techn. Michael Zillich

Vienna, 13" September, 2017

Dominik Streicher Markus Vincze

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 - www.tuwien.ac.at

Erklarung zur Verfassung der
Arbeit

Dominik Streicher, BSc
Heide 2.a Strasse 3, 3331 Kematen an der Ybbs

Hiermit erklére ich, dass ich diese Arbeit selbstédndig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollstdndig angegeben habe und dass ich die Stellen der
Arbeit — einschlieilich Tabellen, Karten und Abbildungen —, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 13. September 2017

Dominik Streicher

iii

Danksagung

Besonders danken mochte ich dem Betreuer dieser Arbeit, Herrn Projektass. Dipl.-Ing.
Dr.techn. Michael Zillich. Er unterstiitzte meine Arbeit durch wertvolle Anregungen
und interessante Diskussionen und trug damit wesentlich zur Qualitdt dieser Arbeit bei.
Ebenfalls moéchte ich dem ACIN Institut danken, die mich herzlichst in Threr Gruppe
aufgenommen haben und mir stets bei allen Anliegen zur Seite standen.

Weiters mochte ich noch meinem verstorbenen Vater danken, der mir stets ein Vorbild war
und mich in meinem Leben stetig unterstiitzte und mir das Studium so erst ermoglichte.

Kurzfassung

Diese Arbeit prasentiert einen methodischen Ansatz, um ein Objekt in einer menschlichen
Hand zu modellieren. Ein grofler Vorteil unserer Methode ist, dass die Modellierung in
Echtzeit und ohne aufwéindige manuelle Kalibrierung funktioniert. Ebenfalls kann das
Objekt direkt in der Hand modelliert werden, was einen groflen Vorteil in der [Human
Robot Interaction (HRI) bietet. Hier konnen Objekte direkt in der Hand des Benutzers
erkannt werden, ohne dass dieser die Objekte irgendwo speziell platziert. Um das zu
erreichen présentieren wir eine Losung zur effizienten Segmentierung der Hand und des
Hintergrundes mittels einer RGB-D Kamera. Hierbei werden wir anhand des Gesichts
die Hautfarbe extrahieren und anschlieBend damit die Hand im Bild entfernen. Danach
wird das freistehende Objekt segmentiert. Anschlieffend verwenden wir die [Vision for
Robotics (V4R)-Bibliothek um die einzelnen Bilder zu einem vollstéandigen 3D-Modell
hinzuzufiigen. Am Ende unserer Arbeit werden wir anhand einiger Objekte die Effizienz
demonstrieren und die Grenzen dieser Methode aufzeigen.

vii

Abstract

This thesis presents a full methodological approach to model objects, which are held
in human hands. A major advantage of our method is, that it works in real time and
does not need a complex manuel calibration. Another advantage is, that the object
can be modeled inside of the users hand, which is a big advantage in [HRI. That means
objects can be learned without puting them in some designated place. To acheive this, we
present a solution for efficient segmention of the user’s hand and the background, using
an RGB-D camera. For this we will extract the skin color of the user’s face to detect
the user’s hand and remove it in the image. Afterwards the object will be segmented.
To combine the different views, we use [VAR-Librabry to map the single images to a
3D-model. To show the efficiency of our method, we present at the end some models,
which we created with our method and discuss the limits.

ix

Kurzfassung

Abstract

Contents

1

2

Introduction

Related work

Contents

2.1 Object detection|
2.2 Hand detection

Study on object grasping
3.1 Environment of the study oo,

3.2 Case study A
3.3 Case study B
3.4 Conclusion .

Hand detection

4.1 Face based Adaptive Skin Color Model

4.2 Postprocessing

Object Segmentation

Modelling

Results

7.1 Valid points (VP)
7.2 Invalid points (IP)
7.3 Evaluationl.
Limitations

8.1 Object requirements| o

8.2 Environment

vii

ix

xi

w

15
15
16
16
17

29
29
31

35

39

41
41
41
42

53
53
54

X1

9 Conclusion and further work
List of Figures

List of Tables

List of Algorithms

Acronyms

Bibliography

57

59

61

63

65

67

CHAPTER

Introduction

Modeling of objects has a significant importance in the area of computer vision. Having
3D models of objects can be useful for higher-level tasks like recognition, tracking and
manipulation. For robots, which are operating in unstructed real-world enviroments it is
important that they autonomously learn and adapt their environment. One important
element of such a mobile robot’s environment are the objects present there. Fully three
dimensional scanners, which are now widely available allows us easily to create 3D point
clouds from the environment. A major challenge is to apply segmentation, recognition and
pose estimation in occluded environments, where scenes are captured by low-resolution
RGBD-sensors like the Microsoft Kinect. [FAB™17] [NL13] [LN10] [AADT11] [ML].
One project challenging all these tasks is the SQUIRREL project. SQUIRREL addresses
these issues by actively controlling clutter and incrementally learning to extend the
robot’s capabilities while doing so. The robot tackles clutter one bit at a time and
also extends its knowledge continuously as new bits of information become available.
SQUIRREL is inspired by a user driven scenario, that exhibits all the rich complexity
required to convincingly drive research, but allows tractable solutions with high potential
for exploitation. We propose a toy cleaning scenario, where a robot learns to collect toys
scattered in loose clumps or tangled heaps on the floor in a child’s room, and to stow
them in designated target locations. [Squ].

This work is part of the SQUIRREL project and was initially motivated by the purpose
of object regocnition in a children’s room. Before we can efficiently recognize objects,
we need the corresponding models for the objects, which should be recognized. To get
a full 3D model of an object we need different views of the same object, which can be
combined to one model. One approach is to drive around the object and get so different
views. But often its not possible to drive around, for example not enough space or the
robot is not mobile. The goal of this project is to create a 3D model of an object by
rotating it with a human hand in front of a RGB-D camera. There should be also no
manual calibration necessary to obtain the model. Another requirement is, that it should

1

1. INTRODUCTION

work in real-time, which means, that the object can be observed in less than one second.
We do not found any ready to use solutions for our project. So we decided to divide the
problem in three parts. The first part is responsible for hand detection. The second part
contains the segmentation of the object in the human hand. The third part contains the
modelling of the object with V4R [V4R]. In figure 1.1 a simplified visual representation
of our method is shown.

l.—igr)dlmo'del Detect hand Segment hand Track object Create 3D model
initialistaion

Figure 1.1: Visual representation of our workflow.

At the end of this thesis, we will present our experimental results and will discuss the
limitations of our method.

CHAPTER

Related work

2.1 Object detection

Especially for our specific problem, detecting objects in human hands, there is not much
related work available.

There exists already an implementation of an in hand scanner from Point Cloud Library
(PCL)| [PCL]. The purpose of the in-hand scanner application is to obtain a 3D model
from a small object using a RGB-D camera. The user is turning the object around in
front of the sensor, while the geometry is reconstructed gradually. We also tried this
implementation, which is shown in figure 2.1. The big disadvantage of this application is,
that the user has to adjust manually a bounding box around the object. Also the color
for segmenting the hand, has to be manually adjusted. Afterwards the user has to hold
the object very carefully inside of the bounding box, which is not very easy, if the user
has to rotate the object too. So this program is not usable for our project, because we
need a user-friendly system usable by naive users, without the need top keep looking at
the screen.

Another approach [KHRFE11] is building 3D models of unknown objects based on a depth
camera observing the robot’s hand while moving an object. The approach integrates
both shape and appearance information into an articulated Iterative Closest Point (ICP)
approach to track the robot’s manipulator and the object. Objects are modeled by
sets of surfels, which are small patches providing occlusion and appearance information.
Experiments show that their approach provides very good 3D models even when the
object is highly symmetric and lacks visual features and the manipulator motion is noisy.
Autonomous object modeling represents a step toward improved semantic understanding,
which will eventually enable robots to reason about their environments in terms of objects
and their relations rather than through raw sensor data. In their approach they use
a kalman filter to estimate the pose of the object by the use of joint encoders at the

3

2. RELATED WORK

MainWindow

Reset camera Coloring Mesh representation Help

= = = = — Settings =]
Input | | Processed| Continuous registration | | Single registration | | Show model | Clean | Reset

Input data processing

Crop coordinates

X min -15 || xmax 10 |.
y min -15 || ymax 5

z min 50 |.| zmax :
Erode size 3 =

Color segmentation

Hmin | 210 .| Hmax 270 (2
Smin |20 | .| Smax 100
Vmin (20 .| Vmax 100 I
Dilate size 3 -
Inverted Enabled
)
Computation: 3.3 fps Registration
isualization: 30.3 fps iearatian

Figure 2.1: PCL In-hand-scanner.

gripper. In our project the object is in a human hand, therefore we have no further
information beside the camera image. That means that this approach is not suitable in
our environment.

One approach [KLK14] uses an incremental learning method, which allows tracking
objects without prior knowledge. In this paper, they propose a novel model-free approach
for tracking multiple objects from RGB-D point set data. This study aims to achieve
the robust tracking of arbitrary objects against dynamic interaction cases in real-time.
In order to represent an object without prior knowledge, the probability density of each
object is represented by Gaussian mixture models with a tempo-spatial topological graph.
A flexible object model is incrementally updated in the pro-posed tracking framework,
where each RGB-D point is identified to be involved in each object at each time step.
Furthermore, the proposed method allows the creation of robust temporal associations
among multiple updated objects during split, complete occlusion, partial occlusion,
and multiple contacts dynamic interaction cases. The performance of the method was
examined in terms of the tracking accuracy and computational efficiency by various
experiments, achieving over 97% accuracy with five frames per second computation time.
The problem with this solution is, that it only works if the hand and the object are not
in touch all the time. Therefore this approach would be not able to segment the hand
from the object.

Another approach [SMZ"16] uses a 3D articulated Gaussian mixture alignment strategy

2.2. Hand detection

tailored to hand object tracking that allows fast pose optimization. The alignment
energy uses novel regularizers to address occlusions and hand-object contacts. For added
robustness, they guide the optimization with discriminative part classification of the
hand and segmentation of the object. The problem on this approach is, that it requires a
calibration of the users’ hand shape, which is currently a manual process and can not be
done in our environment.

2.1.1 Conclusion

As we can see there is no ready to use solution for our project. So we have to divide the
problem. A very important part of our project is detecting the hand in the image. If we
can find the hand, we can detect the object and segment out the hand from the object.
There is also a lot of research alreday done on hand-detection on which we want to take
some closer look.

2.2 Hand detection

A solution for hand detection [Han] is based on color recognition. The program is
initialized by sampling color from the hand, which is shown in figure 2.2l The hand
is then extracted from the background by using a threshold using the sampled color
profile. Each color in the profile produces a binary image which in turn are all summed
together. A nonlinear median filter is then applied to get a smooth and noise free binary
representation of the hand. In the final step the convex hull is calculated. We evaluated
the program, as seen in figure [2.3. The program works really well, but the big problem is
the initialization step, which is shown in figure [2.2l The program provides only a timer,
which triggers the snapshot of the hand. So it is not so easy to take a good sample of
the hand. In our environment the user does not have any screen, so its not possible to
take a predefined snapshot of the hand.

Another approach would be to use the NiTE [NiT] framework from Primesense, which
takes also 3D information into account. It gives us the ability to track the hand and
also the skeleton of a user. We also tried this with our Kinect, which is shown in figure
2.4. In an initialization step the user in front of the camera has to wave with his hand.
After this step if the NiTE framework detects successfully the hand, a coloured point
is drawn on the depth image. Also a line is drawn to the coloured point, which shows
the tracked path of the detected hand, which is shown in figure 2.5. As seen in figure
2.4/ it works really fine. Also if the user has an object in the hand like in figure 2.5,
not the hand is tracked, only the object, which would be also fine for our project. The
problem is the robustness of this application. As seen in figure [2.6/ and in figure 2.7 that
no coloured point is drawn. This means that the tracking dit not work in these cases.
Another problem is, that there is no distinction between an object in the hand and the
hand itself. So its not suitable for our project.

As already mentioned, there is also the possibility to use a skeleton tracker with NiTE,

2.

RELATED WORK

Figure 2.2: Initialization step, taking color samples of the hand.

which is shown in figure 2.8. If the skeleton is found by the NiTE framework a coloured
line is shown in the image. In figure [2.8| the purple line shows the estimated skeleton.
This method works really fine, if the whole body is captured by the camera. In figure 2.9,
figure 2.10/ and in figure 2.11] are shown, if only parts of the body seen by the camera it
does not work very well. Especially in our case it is really difficult to set up a condition
for the user to show the whole body on the camera. This means that the user has to
ensure that she/he has a minimal distance to the camera, which is about 2-3 meters.
Therefore a skeleton tracker is not usable for our project.

Another approach [TSTT15|, presents a robust method for capturing articulated hand
motions in realtime using a single depth camera. The system is based on a realtime
registration process that accurately reconstructs hand poses by fitting a 3D articulated
hand model to depth images. They register the hand model using depth, silhouette,
and temporal information. To effectively map low-quality depth maps to realistic hand
poses, they regularize the registration with kinematic and temporal priors, as well as
a data-driven prior built from a database of realistic hand poses. We also tried this
approach, which is shown in figure [2.12 This method is has the best result compared
with the previous hand tracking methods. But it has two big disadvantages. The first

2.2. Hand detection

DNEEEEELUDE
|n|anEE[EE
{

;

Flgure lnfar

Purn ket efects: 3

I wlght, width 453 | 264
1= Fara: true

Figure 2.3: Result of the OpenCV hand detection.

is, the user needs a wristband, that this method works. Also the color of the wristband
has to be adjusted manually. And the second big problem is, that it does not work
with objects in hand, which is shown in figure [2.13 With these two limitations it is not
suitable for our project.

Another paper [YGHS'17] discusses the performance of 11 state-of-the-art methods
on hand pose estimation. They provide an evaluation on three different tasks, single
frame 3D pose estimation, 3D hand tracking, and hand pose estimation during object
interaction. They analyze the performance of different |convolutional neural networks
(CNN) structures with regard to hand shape, joint visibility, view point and articulation
distributions. As testbed for their analysis they use The Hands In the Million challenge
[YYGHKI17], which provides a big dataset of hand images. One problem is, that they
do not talk about execution time. So we do not know how long this methods run on
one scenario. Another problem is that the images shown in the paper are very simple
compared to our scenario. This means in their images the hand is always visible and a
big part of the image. In our scenario only parts of the hand or the fingers are shown.

2. RELATED WORK

Figure 2.4: Using the NiTE framework for hand detection.

2.2.1 Conclusion

There is no unique recipe for hand detection. Some of them use color information and
some are using 3D information to get the hand by its shape. To decide which concept is
better suitable for our project, we decided to do a study, how people are holding objects
in front of a camera, which is shown in the next chapter.

2.2. Hand detection

Figure 2.5: Using the NiTE framework for hand detection with an object in the hand.

Figure 2.6: Hand is not detected with NiTE

2. RELATED WORK

Figure 2.7: Hand is not detected with NiTE.

Figure 2.8: Using the NiTE framework for skeleton tracking.

10

2.2. Hand detection

Figure 2.9: Skeleton tracking failed, case 1.

Figure 2.10: Skeleton tracking failed, case 2.

11

2.

RELATED WORK

12

vlomE e

Tracking!

Figure 2.11: Skeleton tracking failed, case 3.

oA
(5
,

'

>

Y
Rl
B

=

Figure 2.12: Hand tracking with htrack

2.2. Hand detection

Figure 2.13: Hand tracking with htrack, with an object in the hand

13

CHAPTER

Study on object grasping

To find a robust solution for our problem, we studied the cases how people are interacting
with objects in front of the camera. The study will show us, how people are grasping
different types of objects. It also shows us, how people position themselves in front of
the camera and which body parts are seen by the camera. This gives us an initial set of
conditions, which we have to cover and shows us which preconditions are useful to get a
good image from the RGB-D camera. For our study we used four different objects. The
test person is also doing the test one time sitting and one time standing in front of the
camera.

3.1 Environment of the study

3.1.1 Camera

For the study we used the Kinect, which is an RGB-D camera from Microsoft. We
installed it on a height of 85cm and ensured, that there are no obstacles between the
camera and the test person. We also ensured that there is enough space in front of the
camera for the test person.

3.1.2 Conditions

For the study we have to ensure that the object is visible for the camera. Therfore we
needed some conditions for the test persons, which are described below.

e Hold only one object at the same time in front of the camera.
e Try to hold the object in the center of the camera view.

e The feedback shows you, if the camera can see the object.

15

3.

STUDY ON OBJECT GRASPING

16

Feedback

As already mentioned in the conditions section above, we needed some kind of feedback,
that the test person knows, if the camera can see the object. Especially the Kinect has a
gap of about 60cm in front of the camera, where no depth data is available. In the big
picture, the application should run on a robot, where a feedback is limited. Therefore we
decided to perform a case study with two cases. In case study A the test person only
gets a binary feedback, if the camera can see the object. In case study B the test person
gets a full feedback of the current view of the robot.

3.2 Case study A

3.2.1 Study description

Please hold each object one after another in front of the camera. Try to hold the object
in the center of the camera view. Also try to hold the object not too near and not too
far away from the camera. The image on the screen will show you, if the camera can see
the object.

If the image is red, the camera can not see the object. Otherwise if it is the
camera can see the object.

Please do this process one time sitting on the chair and one time standing in front of the
camera.

3.2.2 Images

In the figures 3.1] - 3.6/ can be seen the results from case study A. In the first column
the test person is sitting in front of the camera. In the second column the test person is
standing in front of the camera.

3.3 Case study B

3.3.1 Study description

Please hold each object one after another in front of the camera. Try to hold the object
in the center of the camera view. Also try to hold the object not too near and not too
far away from the camera. The image on the screen will show you, if the camera can see
the object.

If the object disappears in the image the camera is not able to see it.

3.4. Conclusion

Please do this process one time sitting on the chair and one time standing in front of the
camera.

3.3.2 Images

In the figures 3.7 - 3.11| can be seen the results from case study b. In the first column
the test person is sitting in front of the camera. In the second column the test person is
standing in front of the camera.

3.4 Conclusion

We can see that people are holding different objects in many different ways. Some persons
are holding the object with both hands and others with one hand. In conclustion there is
a wide diversity, how objects could be held. Therefore we are not able to cover up all
cases, how objects can be held. Especially if the hand masks the object or the object is
held too close to another object or body part. In this case the clustering will fail. We
also see that the type of feedback has no major effect, how objects are held in front of
the camera. It has also no effect, if the person sits or stands. An important aspect we
can see in the result of the study is, that in some cases the hand is only partially seen by
the camera. In some cases only one or two fingers are seen by the camera. Therefore
hand tracking approaches with kinematic hand models are not suitable and we decided
to only rely on skin color for hand detection. In figure 1.1] the complete process of our
method is shown.

17

3. STUDY ON OBJECT GRASPING

Figure 3.1: Study on grasping with binary feedback (I).

18

3.4. Conclusion

Figure 3.2: Study on grasping with binary feedback (II).

19

3. STUDY ON OBJECT GRASPING

Figure 3.3: Study on grasping with binary feedback (III).

20

3.4. Conclusion

Figure 3.4: Study on grasping with binary feedback (IV).

21

3. STUDY ON OBJECT GRASPING

Figure 3.5: Study on grasping with binary feedback (V).

22

3.4. Conclusion

Figure 3.6: Study on grasping with binary feedback (VI).

23

3. STUDY ON OBJECT GRASPING

Figure 3.7: Study on grasping with full feedback (I).

24

3.4. Conclusion

Figure 3.8: Study on grasping with full feedback (II).

25

3. STUDY ON OBJECT GRASPING

Figure 3.9: Study on grasping with full feedback (III).

26

3.4. Conclusion

Figure 3.10: Study on grasping with full feedback (IV).

27

3. STUDY ON OBJECT GRASPING

Figure 3.11: Study on grasping with full feedback (V).

28

CHAPTER

Hand detection

To find the hand of the user we make use of the skin color. There are several skin color
detection methods based on a scope of possible skin colors available [RMG97] [VSAOQ3].
They provide equations for the skin detection in different color spaces. Another method
[LzP10] compared the algorithms based on the three colorspaces RGB, YCy,C, and HSV
and combined them into a new algorithm to increase the accuracy. A big problem with
these skin detection methods is the dependency on camera settings, illumination, people’s
tans and ethnic groups. [KMBO07]. Therefore many false positives and false negatives in
the skin detection can occur [VSAQ3]. This would lead to a bad object segmentation. To
get a more robust skin detection, we decided to use an adaptive skin-colour-model based
on the user’s face [CCHIO] [MZTII]. Especially face detection using Haar Cascades
[VJO1] [LRO3] works very well and can be easily applied. This method uses a grayscale
image as input, therefore it has not so much effect on illumination and skin color.

4.1 Face based Adaptive Skin Color Model

In our project we are using the face detection algorithm provided by OpenCV, which uses
the Haar Cascade method to get an individual skin color model for the person. In figure
4.1 and figure 4.2/ the face detection applied in our test scenario are shown. The pink
circle around the face represents the detected face. If we have found a face, we continue
with the algorithm described in [CCHI0] to get a individual skin model of the person in
front of the camera. To get rid of the eyes, hair and other dark regions in the detected
face region, we make use of the luminance distribution of the pixels in the face region.
Observing the histogram of the face, darker pixels like eyes and hair are located at the
extreme left [CCHI10]. At the other side we get the mean value located at the peak of
the luminance histogram, which is shown in figure 4.3 based on the image in figure 4.1
To remove the darker pixels of the face region, we trim the left hand side by mirroring
the right hand side. In figure 4.3 this is shown by the green lines. All pixels outside of

29

4.

HAND DETECTION

30

these two lines are ignored. In figure 4.4/ can be seen the filtered face, where the black
regions are representing the pixels which are filtered out.

Figure 4.1: Face detecion using Haar Cascade method.

For our skin color model we use the R component of the RGB color space and the
normalized RG colors (r,g). With these three components we set up our adaptive skin
color model (r,g,R), which is less sensitive to changes in light source [CCH10]. In equation
and it is shown how the normalized color values are calculated. In figure
the color histogram of the three channels r,g and R are shown, which can be modeled by
three narrow Gaussian distributions. To get a symmetric distribution, we also mirror
the right hand side to the left hand side, which is shown by the green lines. All pixels
outside these lines are ignored. Afterwards we can model the skin colors by Gaussian
distributions GM;(u;, 0;), where o; is the standard deviation and p; is the mean, i =, g,
and R. p; and o; are calculated as in 4.3 and where n is the number of pixels in the

trimmed face region [CCHI0).

R
v 4.1
""RiG+B (1)

G

__ v 4.2
I"RYG+B (42)

1 .
Wi = — Z li(z,y), i=rgand R (4.3)

n
(z,y)E face region

4.2. Postprocessing

Face detection

o; = J - > (Ii(z,y) — wi)?, i=r,gand R (4.4)

(z,y)E face region

After we calculated o; and p; where i = r, g and R, we can set the upper and lower limits
for the skin color detection as described in Equations and [4.7. In figure 4.6 the
result of our skin detection in based on figure 4.2] is shown.

UpperBound; = ji; + 2+ oi,i =7r,9 and R (4.5)
LowerBound; = p; —2*oi,i =r,g and R (4.6)
Upper Bound, > r > Lower Bound,

skin = q Upper Bound, > g > LowerBound, (4.7)
Upper Boundr > R > Lower Boundg

4.2 Postprocessing

In figure we can see that most parts of the skin are covered by the method, described
above. But given that the object has an arbitary texture, parts of the object surface
can be falsely detected as skin. Especially we often tend to observe a few skattered skin
pixels on object surfaces. To remove this noise we apply an erosion and dilation |[Opeb|
on the detected skin mask. The result of the ersion and dilation based on figure is

31

4. HAND DETECTION

Figure 4.3: Luminance histogram of the face region.

Figure 4.4: Image of the Face region after filtering darker pixels.

shown in figure |4.7. Another problem is the reliability of the skin mask. We can not
ensure that all pixels of the hand, are detected as skin. For this reasons we are applying
a Closing on the hand mask, which is the same as apply first a dilation and then an
erosion on the mask (erode(dilate(mask))) [Opea]. After the Closing, all holes between
skin pixels are filled up. To ensure to get rid of hand pixels on the border nearby the
object, which are not effected by the closing method, we apply again a dilation on the
skin mask, which is shown in figure 4.8 After this step we have an oversized hand mask,
which is used to remove all hand pixels.

32

4.2. Postprocessing

(a) r (b) g () R

Figure 4.5: Color histograms (r,g,R) of the face region.

@ & skin mask before noise reduction

Figure 4.6: Skin detection, where white pixels represent skin pixels.

33

4. HAND DETECTION

Figure 4.7: Skin mask after applying erosion and dilation.

Figure 4.8: Picture of the hand mask after closing and dilating.

34

CHAPTER

Object Segmentation

Now we have identified the hand of the user, the next step is to segment the object the
user is holding. For the object segmentation we use the 3D information of the camera,
searching for the nearest biggest cluster in front of the camera. For this purpose we need
a full removal of the user’s hand. If we apply the skin mask on our original 3D image, we
can remove all skin pixels. After this step we get a 3D-image, where the object in the
hand is fully separated from the hand.

To segment the object in the hand we apply euclidean clustering, starting from the nearest
3D point from the center of the camera. From this point we check all its pixel-wise
neighbours (exploiting the fact that input point clouds coming from the Kinext are always
organised as a rectangular grid). If the euclidiean distance is small enough the neighbour
is added to the cluster and its respective neighbours are checked, otherwise it is rejected.
This process is repeated until no more neighours can be added. This process is shown
in Alg. |5.1. The result of the euclidean clustering on our test scenario can be seen in
figure [5.1, where the green circle marks the nearest point to the center of the camera
view, which is also the start point of the clustering. After this step we have a first rough
segmentation mask o fthe object. A reamaining problem is that some parts (larger than
a few individual noise pixels, see Sec. section 4.2) of the object can actually be skin
colored and thus falsely removed as skin pixels. To fix this problem we calculate the
convex hull of the object mask. to get rid of falsely removed parts of the object. Another
problem is that contours are often inaccurate, which is shown in figure [5.2| or parts of the
hand are not removed. For this purpose we make use of Grabcut to get a better object
segmentation [RKB04].

Grabcut was designed to get pixel-precise object (foreground) contours from some rough
initialisation, e.g. samples of fore- and background strokes supplied by a user. In our
case the above rough segmentation is used as initialistaion. In figure 5.1 the result of our
clustering is shown. Also some parts of the object especially contours are falsely removed.
To fix this problem, we dilate the mask, which is calculated by the clustering. After this

35

5. OBJECT SEGMENTATION

step we get a bigger mask, which is shown in figure 5.3. Now the contours of the object
are included. As side effect, also parts of the hand and the background are included,
which will be removed by Grabcut. For this purpose we define all pixels of our original
image as sure background except the dilated object mask (see figure 5.3). These pixels
are denoted as predicted foreground. After applying the Grabcut-algorithm with one
iteration we get an image, where the object is segmented, which is shown figure 5.4.

Algorithm 5.1: Euclidean clustering

Input: A matrix I'mg, a scalar startPoint
Output: A matrix ObjMask

1 queue.push__back(start Point);

2 while queue.size > 0 do

3 currentPizel = queuel0];

4 queue.erase(0);

5 // Tterate over all 2D neighbours of the current pixel.
6 foreach Neighbour n of currentPixel do
7

8

9

if Fuclidean distance of n and currentPixel < maximal distance then
// Check if the pixel is already part of the Object mask
if ObjMask.getPixel(n) == 0; then
10 // Add the neighbour to the queue and the object mask
queue.push__back(n);
11 ObjMask.setPizel(n) = 1,
12 else
13 ‘ continue;
14 end
15 else
16 ‘ continue;
17 end
18 end
19 end

20 return ObjMask;

36

Figure 5.1: Image after applying the euclidean clustering. The green circle defines the
start point of the clustering.

Figure 5.2: Part of a 3D-Image, where we can see that the contour of the yellow object is
not accurate.

37

5. OBJECT SEGMENTATION

Figure 5.3: Dilated object mask. White pixels are denoted as sure background.

Figure 5.4: Result of grabcut.

38

CHAPTER

Modelling

After the segmentation we have a 3D image of the object from the current camera view.
To get a full 3D model we need several views from different poses, which we can combine
to one model. This is done by a method published by J. Prankl, A. Aldoma, A. Svejda,
and M. Vincze [PASV15], which is part of the V4R-Library [V4R]. The basic idea of this
method is to extract Scale-invariant feature transform (SIFT)-points [Low04] from each
view. These interest points are used to map each view to the correct pose in the final 3D
model.

For the first view, we use the nearest point as reference point for the euclidean clustering
(see figure 5.1). In the further views, we calculate the centroid of the segmented objected,
and use the nearest point the centroid as new reference point for the clustering. This
allows the user also to move the object, while rotating it in front of the camera. In figure
6.1 the modeling process is shown. The points in the image represents the SIFT points
of the object.

Figure 6.1: Picture of interest points.

39

CHAPTER

Results

As already mentioned, we have not found any other scientific work for object learning
in human hands. Therefore we are not able to compare our method with others. To
quantizise our results we introduce our own evaluation method. The learned object will
be rated by two different properties:

e Valid points (VP)

e Invalid points (IP)

7.1 Valid points (VP)

This property defines how many points of the object are in our final 3D model compared
to all points, which would be possible. This means, points which are not seen by the
camera (e.g. parts of the object covered by the hand) or not part of the object are not
taken into account. The value is calculated as shown in Equation |7.1 and is between 0
and 1. If the value is 1 all points which are seen by the camera are in our 3D model.

_ Validpoints in our 3D model

VP =

All possible pixels (7.1)

7.2 Invalid points (IP)

This property defines how many invalid points are in our final 3D model compared to all
points in our 3D model. This means, points which are not part of the object (e.g. part
of the hand or the background) are defined as invalid points and compared to all points
in the 3D model. The value is calculated as shown in Equation |7.2/ and is between 0 and
1. If the value is 0 there are no wrong points in our 3D model.

41

7. RESULTS

Invalid points

IP =
All points in the 3Dmodel

(7.2)

7.3 Evaluation

In table 7.1 we show quantitive results of several objects captured with a Microsoft Kinect
RGB-D camera. We ensured sufficient light conditions for the camera and enough space
for the manipulation of the object. We also ensured there are no objects between the target
object and the camera. For every object we used maximal 3 attempts. Unfortunately
to calculate the exact values of our evaluation method, we would need perfect models
of our test objects. Also calculating the exact number of possible pixels, would be very
difficult. Therefore we estimated the values by taking several specific views of every
object. In each view we colored missing parts in red and pixels which are not part of the
object, green. Afterwards we calculated the number of valid and invalid points by the
corresponding pixels in the view.

A full pixel distribution is shown in figure [7.1. The blue bar represents all pixels in our
view, which are part of the object. The green bar shows the number of pixels, which
are not part of the object (e.g. hand or background). The brown bar shows, how many
pixels are missing in the view. The sum of the blue and brown bar are all possible pixels
in the view.

42

Object ‘ Cornflakes box ‘ Cornflakes box ‘ Cornflakes box ‘ Cornflakes box
View | 1 | 2 | 3 | 4

Image

VP 1.00 0.99 0.99 1.00

P 0 0 0 0

Object ‘ Cornflakes box ‘ Cornflakes box ‘ Cornflakes box #2 ‘ Cornflakes box #2
View | 5 | 6 | 1 | 2

Image

VP 1.00 0.99 0.95 0.98

IP 0 0 0.04 0

Object ‘ Cornflakes box #2 ‘ Cornflakes box #2 ‘ Cornflakes box #2 ‘ Cornflakes box #2

7.3. Evaluation

View 3 4 5 6
Image

VP 1.00 0.99 1.00 0.99
IP 0.03 0.13 0.05 0.12
Object ‘ Game box Game box Game box Game box
View | 1 2 3 4
Image

VP 1.00 0.75 1.00 1.00
1P 0.04 0 0.04 0.06
Object ‘ Game box Game box FEgg box Egg box
View | 5 6 1 2
Image

VP 1.00 0.96 0.99 0.97
1P 0.04 0.00 0.01 0.00
Object ‘ Egg box Egg box Book Book
View | 3 4 1 2
Image

VP 0.77 0.73 1.00 0.95
P 0.01 0.00 0.00 0.00
Object ‘ Book Book Book Book
View | 3 4 5 6

43

7. RESULTS

Image

VP 0.60 0.98 0.74 0.56
IP 0.00 0.00 0.00 0.00
Object ‘ Christmas box Christmas box Christmas box Christmas box
View | 1 | 2 | 3 | 4
Image

VP 0.98 0.80

Ip 0.00 0.00

Object ‘ Christmas box ‘ Christmas box ‘

View | 5 | 6 | 1 | 2
Image

VP

IP

Object ‘ Tea box ‘ ‘ Pad ‘ Pad
View | 3 | | 1 | 2
Image

VP 0.95 0.7 0.76 0.60
IP 0.05 0.04 0.00 0.00
Object | Pad | Pad | |

View 3 4

44

7.3. Evaluation

Image
VP 0.75 0.51
IP 0.00 0.00

Table 7.1: Evaluation of different objects.

In table 7.2 the overall performance for each object is shown. The values are calculated
by the sum of all views for each object. In figure 7.2 the pixel distribution of the overall
performance for each object is illustrated.

Object ‘ Cornflakes box ‘ Cornflakes box 2 ‘ Game box ‘ Egg box ‘ Book ‘ Christmas box ‘ Tea box ‘ Pad
VP 0.995 0.980 ‘ 0.952 ‘ 0.860 ‘ 0.820 ‘ 0.774 ‘ 0.757 ‘ 0.623

1P 0.000 0.055 0.033 0.005 0.000 0.000 0.045 | 0.000

Table 7.2: Overall performance for each object.

Further the qualitative result of our objects are illustrated in 7.3/ - |7.10.

In figure 7.3 we modeled a cornflakes box with our approach. It can be seen that our
method modeled most parts of the box correctly. Especially these types of object works
really good with our method.

In figure 7.4 we modeled a second cornflakes box. In this case we also see some parts of
the hand in the 3D model.

In figure |7.5/ we modeled a game box. There we can see that some parts of the surface
are missing (holes). This happens if some areas of the object are detected as skin.

In figure 7.6 we modeled an egg box with our method. Most parts of the box were learned
correctly. We can further see, that there is also a little part of the hand visible in the
3D model. Especially if the skin detection does not detect all pixels of the hand, some
artefacts in the 3D model can occur.

In figure [7.7 we modeled a book with our method. It can be seen that the pages of the
book are missing. This happens if Grabcut can not differentiate between the background
and parts of the object. In this case the pages and the background are white and so
Grabcut detected the pages as background. Furthermore it can be seen that it looks like
the book would be opened. This is caused by noisy depth information which lead to an
angular error. This error is accumulative.

In figure 7.8 we modeled a christmas box. It can be seen that the roof of the box is
missing as in the figure before the pages. In this case the roof and the background are
white and so Grabcut detected the roof as background. Further can be seen that there is
again an angular error, which is caused as in the figure before by noisy depth data.

In figure [7.9 we modeled a tea box. Some parts of the object are missing, because of
the size of the object. Most parts were covered by the hand and so not enough interest

45

7. RESULTS

points found. Also parts of the hand are in the 3D model visible.
In figure |7.10 we modeled a pad. It can be seen that most parts of the object are missing.
There were not enough interest points available to learn this object.

46

7.3. Evaluation

Felative number of pizels

Relative number of pizels

Seltue number of et

Seltve number of et

o
o

=
H

o
3

=
a

o
@

=
=

o
o

a
i

=

o

0s

08

07

0e

0s

04

03

0z

04

Figure 7.1: Pixel distribution

(g) Tea box.

07

Relatue number of pixels

0z

wiew

Seltue number of psetn

Seltue number of psetn

Seltve number of et

o

(h) Pad.

of all objects for each view.

pinels

47

7. RESULTS

I bt pizels
[Jinveslid pinels
I i 5ing pivels

0o

08 -

07

05 —

04 -

Rielative number of pixels

03 -

01 -

comfiakes bos | comfiskes bow2 qame box eqg box christmas b pad

Figure 7.2: Sum of all views for every object.

Figure 7.3: 3D model of a cornflakes box, captured with our method.

48

7.3. Evaluation

Figure 7.5: 3D model of a game box, captured with our method.

49

7. RESULTS

TE LD viewer

Figure 7.7: 3D model of a book, captured with our method..

50

7.3. Evaluation

Figure 7.10: 3D model of a pad, captured with our method.

51

CHAPTER

Limitations

We first look at characteristics of the objects, which produce a good model. But also
how the environment and the user impact the quality of the resulting model.

8.1 Object requirements

Results in the previous chapter only objects, which have been successfully modeled. We
also tried some other objects, which could not be modeled. Therefore we need some
requirements, which the object has to fulfill.

8.1.1 Size

If the object is too small, not enough SIFT-points are available. Therefore the different
views of the object can not be mapped together. Also if we want to model a thin object,
we have the same problem. During the rotation, there will be one pose where the thin
side of the object faces the camera. At this point maybe no interest points are detected
and the modeling process would fail at this point. Another problem, if the object is too
small, is that it could not be segmented, because we dilate the detected hand mask. If
the object is too small it could be part of the dilation. On the other side, the object can
also be too big. It is necessary to hold the object in the hand for the segmentation step
and it is also necessary to rotate it in front of the camera to get a 3D model. If this is
not possible, our method will fail.

8.1.2 Texture

Another important requirement is the existence of SIFT-points. If our method can not
find any interest points, it is not possible to map the different views. Especially mostly
monochrome and faint objects are very difficult to model, with our method.

23

8.

LIMITATIONS

54

8.1.3 Reflections

Another problem is the reflection of the surface of the object (e.g. mirror, glass, ...). In
this case the RGB-D sensor is not able to get a valid 3D information. Without the 3D
information we can not cluster the object. If only few parts or at an oblique angle the
object is reflective our method will also succeed. But if the whole object or most of the
part are reflective our method will be not able to cluster the object.

8.2 Environment

Also the envrionment, which means the light conditions and the user are important to
get a accurate 3D-model of the object.

8.2.1 Light

In our experiments we ensured a good light condition, which is very important for the
skin detection. If there is insufficient light, parts of the background or the object seems
to have the same color as the skin and the segmentation could fail.

8.2.2 User

Another important limitation is the user. Our skin detection is based on the face. So if the
user has a beard or wears glasses, the accuracy of the skin detection is affected. We also
tried some experiments with a particular user with and without glasses, which produces
a different outcome. Especially without glasses the accuracy of the skin detection was
better. Also with a beard the skin detection worked not as good, as without beard. There
is also another limitation, if the color of the skin of the user’s hand differs too much
with the color of the skin of the user’s face. Therefore the skin of the hand could not be
detected and the segmentation would fail.

8.2.3 Camera

In our tests we used the Microsoft Kinect, which is a cheap alternative to professional
depth cameras. The Kinect was not designed for such a usecase and so therefore some
problems can occur using it. Especially 3D information at near distances are very
problematic. In figure [8.1] an original 3D image of the camera is shown. As it can be
seen the object in the hand is not fully visible. This is caused by the fact, there is no 3D
information available at some areas. In figure 8.2 the back of the same object at the same
distance to the camera is shown. There it can be seen, that the object is fully visible.
Also if we increase the distance to the camera, shown in figure [8.3 more 3D information is
available. But if we increase the distance to the camera, the texture quality of the object
is decreased, because the RGB-Image of the Kinect has only a resolution of 640x480
pixels. In figure |8.1 the object has a size of 96x190 pixel. In figure [8.3| the same object

8.2. Environment

has a size of 73x146 pixel. This means in figure [8.3| the object has only 58% of the size
as in figure |8.1.

Figure 8.1: Original 3D view of the camera. Grey pixels are denoting areas without 3D
information.

Figure 8.2: Original 3D view of the camera. Backside of the object.

Figure 8.3: Original 3D view of the camera with increased distance from the object to
the camera.

55

CHAPTER

Conclusion and further work

While not solving all problems for all conditions, the presented method allows to obtain
satisfactory 3D models for a certain class of objects (sufficiently large and textured). We
have shown a working setup, which is a good base for further research on this topic. The
process is quite self explanatory and takes no complex feedback for the user. In our case
the whole process took about 20-40 seconds for a typical object. In our results some errors
in the 3D models can occur (e.g. holes in model, parts of the hand visible,..). Especially
the Kinect provides such a bad RGB-image compared with nowadays cameras. Grabcut
and V4R would benefit from a better RGB-image. Another improvement would be if
Grabcut make use of 3D information. Therefore the algorithm could better distinguish
between parts of the object and the background with the same color. Also the hand
detection could be improved by combining skin color detection and kinematic models.
This could lead to a better hand detection. Afterwards if the hand is detected, the object
detection before clustering could be also improved by concluding that the object is in the
hand. There is also the problem, that the full 3D model conists of many single 3D views
of the object. If at least one view contains part of the hand, it can be seen in the full 3D
model. Therefore it would be better to count the occurrence of every pixel and decide at
the end if it is part of the model.

o7

List of Figures

1.1 Visual representation of our workflow.| 2
2.1 PCL In-hand-scanner. 4
2.2 Initialization step, taking color samples of the hand. 6
2.3 Result of the OpenCV hand detection. 7
2.4 Using the NiTE framework for hand detection., 8
2.5 Using the NiTE framework for hand detection with an object in the hand. 9
2.6 Hand is not detected with NiTEl 9
2.7 Hand is not detected with NiTE.| 10
2.8 Using the NiTE framework for skeleton tracking. 10
2.9 Skeleton tracking failed, case 1.,o oo 11
2.10 Skeleton tracking failed, case 2./ 11
2.11 Skeleton tracking failed, case 3.o 12
2.12 Hand tracking with htracko 0. 12
2.13 Hand tracking with htrack, with an object in the hand 13
3.1 Study on grasping with binary feedback (I).[. 18
3.2 Study on grasping with binary feedback (II).| 19
3.3 Study on grasping with binary feedback (III).[. 20
3.4 Study on grasping with binary feedback (IV). 21
3.5 Study on grasping with binary feedback (V). 22
3.6 Study on grasping with binary feedback (VI). 23
3.7 Study on grasping with full feedback (I). 24
3.8 Study on grasping with full feedback (IT). 25
3.9 Study on grasping with full feedback (ITT). 26
3.10 Study on grasping with full feedback (IV). 27
3.11 Study on grasping with full feedback (V). 28
4.1 Face detecion using Haar Cascade method.| 30
4.2 Face detecion with object in hand.o 31
4.3 Luminance histogram of the face region.| 32
4.4 Image of the Face region after filtering darker pixels. 32
4.5 Color histograms (r,g,R) of the face region.| 33
4.6 Skin detection, where white pixels represent skin pixels. 33

29

4.7
4.8

0.1

0.2

9.3
5.4

6.1

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10

8.1

8.2
8.3

60

Skin mask after applying erosion and dilation..
Picture of the hand mask after closing and dilating.,

Image after applying the euclidean clustering. The green circle defines the
start point of the clustering.
Part of a 3D-Image, where we can see that the contour of the yellow object is
not accurate. oL oL Lo
Dilated object mask. White pixels are denoted as sure background.
Result of grabcut.

Picture of interest points.| Lo

Pixel distribution of all objects for each view.|
Sum of all views for every object.|.o
3D model of a cornflakes box, captured with our method.
3D model of a second cornflakes box, captured with our method.
3D model of a game box, captured with our method.
3D model of an egg box, captured with our method.
3D model of a book, captured with our method..,
3D model of a christmas box, captured with our method.|
3D model of a tea box, captured with our method.|
3D model of a pad, captured with our method.

Original 3D view of the camera. Grey pixels are denoting areas without 3D
information.
Original 3D view of the camera. Backside of the object.|
Original 3D view of the camera with increased distance from the object to
the camera. e

34
34

37

37
38
38

39

47
48
48
49
49
50
50
51
51
51

95
95

95

List of Tables

7.1 Evaluation of different objects. L. 45
7.2 Overall performance for each object. 45

61

5.1 FEuclidean clustering

List of Algorithms

63

CNN convolutional neural networks. |7

HRI Human Robot Interaction. |vii, [ix

ICP Iterative Closest Point. 3

PCL Point Cloud Library. |3

SIFT Scale-invariant feature transform. 39, 53

V4R Vision for Robotics. |vii, [ix

Acronyms

65

[AAD*11]

[CCH10]

[FAB*17]

[Han]

[KHRF11]

[KLK14]

[KMBO7]

[LN10]

[Low04]

Bibliography

Eren Erdal Aksoy, Alexey Abramov, Johannes Dorr, Kejun Ning, Babette
Dellen, and Florentin Worgotter. Learning the semantics of object—action
relations by observation. The International Journal of Robotics Research,
30(10):1229-1249, 2011.

Meng-Kai Jiang Chen-Chiung Hsieh, Dung-Hua Liou. Fast enhanced face-
based adaptive skin color model, 2010.

T. Faulhammer, R. Ambrug, C. Burbridge, M. Zillich, J. Folkesson,
N. Hawes, P. Jensfelt, and M. Vincze. Autonomous learning of object
models on a mobile robot. IEEE Robotics and Automation Letters, 2(1):26—
33, Jan 2017.

Hand tracking and recognition with opencv.
http://simena86.github.i0/blog/2013/08/12/
hand-tracking—and-recognition-with—-opencv/. Accessed:
2017-06-18.

Michael Krainin, Peter Henry, Xiaofeng Ren, and Dieter Fox. Manipulator
and object tracking for in-hand 3d object modeling. Int. J. Rob. Res.,
30(11):1311-1327, September 2011.

Seongyong Koo, Dongheui Lee, and Dong-Soo Kwon. Incremental object
learning and robust tracking of multiple objects from rgh-d point set data.
J. Vis. Comun. Image Represent., 25(1):108-121, January 2014.

P. Kakumanu, S. Makrogiannis, and N. Bourbakis. A survey of skin-color
modeling and detection methods. Pattern Recogn., 40(3):1106-1122, March
2007.

Dongheui Lee and Yoshihiko Nakamura. Mimesis model from partial
observations for a humanoid robot. The International Journal of Robotics
Research, 29(1):60-80, 2010.

David G. Lowe. Distinctive image features from scale-invariant keypoints.
International Journal of Computer Vision, 60(2):91-110, Nov 2004.

67

http://simena86.github.io/blog/2013/08/12/hand-tracking-and-recognition-with-opencv/
http://simena86.github.io/blog/2013/08/12/hand-tracking-and-recognition-with-opencv/

[LRO3]

[LzP10]

[ML]
IMZT11]
INiT]
[NL13]

[Opea]

[Opeb]

[PASV15]

[PCL]

[RKBO4]

[RMG97]

[SMZ*16]

68

Pisarevsky V. Lienhart R., Kuranov A. Empirical analysis of detection
cascades of boosted classifiers for rapid object detection., 2003.

Qiong Liu and Guang zheng Peng. A robust skin color based face detection
algorithm. In 2010 2nd International Asia Conference on Informatics in
Control, Automation and Robotics (CAR 2010), volume 2, pages 525-528,
March 2010.

Justus Piater Manuel Lang. Explaining point cloud segments in terms of
object models. Accessed: 2018-01-29.

A. Mittal, A. Zisserman, and P. H. S. Torr. Hand detection using multiple
proposals. In British Machine Vision Conference, 2011.

Primesense nite. https://en.wikipedia.org/wiki/PrimeSensel
Accessed: 2017-08-08.

Anh Nguyen and Bac Le. 3d point cloud segmentation: A survey. pages
225-230, 11 2013.

Opencv closing. https://docs.opencv.org/2.4/doc/tutorials/
imgproc/opening_closing_hats/opening_closing_hats.
html#closing. Accessed: 2017-07-04.

Opencv ersion and dilation. https://docs.opencv.org/2.4/
doc/tutorials/imgproc/erosion_dilatation/erosion_
dilatation.html. Accessed: 2017-07-03.

J. Prankl, A. Aldoma, A. Svejda, and M. Vincze. Rgb-d object modelling
for object recognition and tracking. In 2015 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 96-103, Sept
2015.

In-hand scanner for small objects. http://pointclouds.org/
documentation/tutorials/in_hand_scanner.php. Accessed:
2017-06-11.

Carsten Rother, Vladimir Kolmogorov, and Andrew Blake. "grabcut':
Interactive foreground extraction using iterated graph cuts. ACM Trans.
Graph., 23(3):309-314, August 2004.

Yogesh Raja, Stephen J. McKenna, and Shaogang Gong. Segmentation
and tracking using colour mizture models, pages 607-614. Springer Berlin
Heidelberg, Berlin, Heidelberg, 1997.

Srinath Sridhar, Franziska Mueller, Michael Zollhoefer, Dan Casas, Antti
Oulasvirta, and Christian Theobalt. Real-time joint tracking of a hand

manipulating an object from rgb-d input. In Proceedings of European
Conference on Computer Vision (ECCV), 2016.

https://en.wikipedia.org/wiki/PrimeSense
https://docs.opencv.org/2.4/doc/tutorials/imgproc/opening_closing_hats/opening_closing_hats.html#closing
https://docs.opencv.org/2.4/doc/tutorials/imgproc/opening_closing_hats/opening_closing_hats.html#closing
https://docs.opencv.org/2.4/doc/tutorials/imgproc/opening_closing_hats/opening_closing_hats.html#closing
https://docs.opencv.org/2.4/doc/tutorials/imgproc/erosion_dilatation/erosion_dilatation.html
https://docs.opencv.org/2.4/doc/tutorials/imgproc/erosion_dilatation/erosion_dilatation.html
https://docs.opencv.org/2.4/doc/tutorials/imgproc/erosion_dilatation/erosion_dilatation.html
http://pointclouds.org/documentation/tutorials/in_hand_scanner.php
http://pointclouds.org/documentation/tutorials/in_hand_scanner.php

[V4R]

[VJo1]

[VSA03]

[YGHS™17]

[YYGHK17]

Squirrel project. http://www.squirrel-project.eu/. Accessed:
2017-09-13.

Andrea Tagliasacchi, Matthias Schroder, Anastasia Tkach, Sofien Bouaziz,
Mario Botsch, and Mark Pauly. Robust articulated-icp for real-time hand

tracking. Symposium on Geometry Processing (Computer Graphics Forum),
2015.

Vir library. https://www.acin.tuwien.ac.at/
vision—-for—-robotics/software-tools/v4r—library/. Ac-
cessed: 2017-12-04.

Paul Viola and Michael Jones. Rapid object detection using a boosted
cascade of simple features, 2001.

Vladimir Vezhnevets, Vassili Sazonov, and Alla Andreeva. A survey on pixel-
based skin color detection techniques. In IN PROC. GRAPHICON-2003,
pages 85-92, 2003.

Shanxin Yuan, Guillermo Garcia-Hernando, Bjorn Stenger, Gyeongsik
Moon, Ju Yong Chang, Kyoung Mu Lee, Pavlo Molchanov, Jan Kautz, Sina
Honari, Liuhao Ge, Junsong Yuan, Xinghao Chen, Guijin Wang, Fan Yang,
Kai Akiyama, Yang Wu, Qingfu Wan, Meysam Madadi, Sergio Escalera,
Shile Li, Dongheui Lee, Iason Oikonomidis, Antonis Argyros, and Tae-Kyun
Kim. 3d hand pose estimation: From current achievements to future goals,
2017.

Shanxin Yuan, Qi Ye, Guillermo Garcia-Hernando, and Tae-Kyun Kim.
The 2017 hands in the million challenge on 3d hand pose estimation, 2017.

69

http://www.squirrel-project.eu/
https://www.acin.tuwien.ac.at/vision-for-robotics/software-tools/v4r-library/
https://www.acin.tuwien.ac.at/vision-for-robotics/software-tools/v4r-library/

	Kurzfassung
	Abstract
	Contents
	Introduction
	Related work
	Object detection
	Hand detection

	Study on object grasping
	Environment of the study
	Case study A
	Case study B
	Conclusion

	Hand detection
	Face based Adaptive Skin Color Model
	Postprocessing

	Object Segmentation
	Modelling
	Results
	Valid points (VP)
	Invalid points (IP)
	Evaluation

	Limitations
	Object requirements
	Environment

	Conclusion and further work
	List of Figures
	List of Tables
	List of Algorithms
	Acronyms
	Bibliography

